@c RADEON R(Z;N AMDZ1

COMPUTE SHADERS

AMDA

GPUOQOpen

AGENDA

e Introduction to Compute Shaders.
* Software.
* Hardware.

* Memoryon RDNA™2.
 (aches.
* Groupshared memory (aka LDS).
* Texture Access.

* Execution model on RDNA™?2.
* Divergence.
e Scalarization.

* Export.

* (Conclusion.

AMDQ

GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

INTRODUCTION

= AMDQO

: GPUODEI’] AMD PUBLIC Compute Shaders Game Industry Conference 2021

THE COMPUTE PIPELINE

* Incase you watched my talk from last year at the GIC20 ...

 Remember the compute pipeline?

Compute Shader Stage

Py | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

ON THE RDNA"2 ARCHITECTURE

Textures
Command and
List Buffers

|

Shader

;
l

A 4

Constants

Dual Compute Unit

Command

Processor
Processor

Input

B Compute Pipeline

AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

DISPATCH A COMPUTE SHADER - EXAMPLE

From a developer‘s point of view:
What commands do we need to submit (to the command processor) to schedule a compute shader dispatch?

Compute

Shader

Input resource, read-only Output resource, read & write
Shader Resource View (SRV) Unordered Access View (UAV)

Constants
Constant Buffer View (CBV)

AMDQ |

GPUODEH AMD PUBLIC

Compute Shaders | Game Industry Conference 2021

DISPATCH A COMPUTE SHADER - EXAMPLE

AMDQ

GPUOpen

Input resource, read-only
Shader Resource View (SRV)

AMD PUBLIC

Make sure your resources are in the right state. If not,

transition, e.g., to

D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE.

Compute

Shader

Output resource, read & write
Unordered Access View (UAV)

Constants
Constant Buffer View (CBV)

| Compute Shaders | Game Industry Conference 2021

DISPATCH A COMPUTE SHADER - EXAMPLE

AMDQ

GPUOpen

Make sure your resources are in the right state. If not,
transition, e.g., to
D3D12_RESOURCE_STATE_UNORDERED_ACCESS.

Compute
Shader

Input resource, read-only
Shader Resource View (SRV)

AMD PUBLIC

Output resource, read & write
Unordered Access View (UAV)

Constants
Constant Buffer View (CBV)

| Compute Shaders | Game Industry Conference 2021

DISPATCH A COMPUTE SHADER - EXAMPLE Can lead to 2
significant
Avoid COMMON state whenever pOSSible performance drop!
(and this is not specific to Compute Shaders (©)).

AMDQ

GPUOpen

Input resource, read-only
Shader Resource View (SRV)

AMD PUBLIC

Compute

Shader

Output resource, read & write
Unordered Access View (UAV)

Constants
Constant Buffer View (CBV)

| Compute Shaders | Game Industry Conference 2021

DISPATCH A COMPUTE SHADER - EXAMPLE

Input resource, read-only
Shader Resource View (SRV)

Update constants if necessary,
e.g., with current per-frame data.

AMDQ

GPUODEH AMD PUBLIC

Compute
Shader

Output resource, read & write
Unordered Access View (UAV)

Constants
Constant Buffer View (CBV)

| Compute Shaders | Game Industry Conference 2021

DISPATCH A COMPUTE SHADER - EXAMPLE

« "Bind" the resources - so the GPU knows which resources to access and how you refer to them in the shader.
* "Bind" your compute pipeline - it contains your compute shader you want to run.
* Dispatch!

Compute

Shader

Input resource, read-only Output resource, read & write
Shader Resource View (SRV) Unordered Access View (UAV)

Constants
Constant Buffer View (CBV)

AMDQ |

GPUODEH AMD PUBLIC

Compute Shaders | Game Industry Conference 2021

DISPATCH ®

A single workitem for vertex shaders is a vertex.

A single workitem for pixel shaders is a pixel.

A single workitem for compute shaders is called a thread.

Abstract thingy ...

AMDQ

GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

DISPATCH - FULLSCREEN PASS

A fullscreen pass runs on every pixel in the output screen:

1080

For compute shaders,
1920 we need to explicitly specify the number of threads.

This means, we need 1920x1080 pixel shader invocations.

Rasterizer

3 vertices I 1920x7080 pixels

40 | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

HIERARCHY OF WORK ITEMS

X (dim 0) Dispatch(4,3,2);
> = The dispatch call invokes 4 * 3 * 2 = 24 thread groups
=|1| 0,00 | 10,0 | 2,0,0 | 3,0,0 ° in undefined order.
C o =
> || 0,20 Thread (5,1,0)
vLGAT] | |
SV_GroupThreadID: (5,1,0)

SV_GrouplD: (2,1,0)

SV_DispatchThreadID: (2,1,0) * (8,2,4) + (5,1,0) = (21, 3, 0)
SV_Grouplindex: 0*8*2+1*8+5= 13

In the compute shader,
the thread group size is

declared using
Thread group (2,1,0)
[numthreads(8, 2, 4)] 0,00 [1,0,0 [20,0 | 3,0,0 | 4,00 500600 [700 |-
0,1,0 ~),2
-> each thread group has oy I I I I I

U, L Z

64 threads.

based on: https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/sv-dispatchthreadid

AMDZ
GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

DISPATCH A COMPUTE SHADER - FULLSCREEN PASS

e Qutput resource: 1920x1080 texels.
* Approach: each thread produces 1 output texel -> need 1920x1080 threads.
* |f we choose a thread group size of 8x8, we need 240x135 thread groups.

Compute

Shader

Input resource, read-only Output resource, read & write
Shader Resource View (SRV) Unordered Access View (UAV)

Constants
Constant Buffer View (CBV)

Py | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

DISPATCH A COMPUTE SHADER - FULLSCREEN PASS

e Qutput resource: 1920x1080 texels.
* Approach: each thread produces 4 output texel -> need 960x540 threads.
* |f we choose a thread group size of 8x8, we need 120x68 thread groups.

Compute

Shader

Input resource, read-only Output resource, read & write
Shader Resource View (SRV) Unordered Access View (UAV)

Constants
Constant Buffer View (CBV)

Py | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

DISPATCH A COMPUTE SHADER - FULLSCREEN PASS

e Qutput resource: 1920x1080 texels.
* Approach: each thread produces 4 output texel -> need 960x540 threads.
* |f we choose a thread group size of 8x4, we need 120x135 thread groups.

Compute

Shader

Input resource, read-only Output resource, read & write
Shader Resource View (SRV) Unordered Access View (UAV)

Constants
Constant Buffer View (CBV)

Py | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

SCHEDULING OF THE WORKLOAD

* Dual Compute Units are designed to execute parallel workloads!

* The number of Dual CUs depends on the card,
e.g., Radeon™ RX 6900 XT has 40 Dual CUs.

ITE]
cu

Dual Dual
CcuU CcuU

Dual

u Dual 4 x 32-wide SIMDs One vector register (VGPR) holds one

cu

Dual Dual Dual Dual
CcuU CcuU cu cuU
EEEEENENEN
Dual Dual Dual ITE]]TE] BEEEEEERE
CuU CcuU CcuU CcuU cuU EEEEEEEE
EEEEREEEN
Dual Dual Dual Dual
cu cu cu cu 32 threads per SIMD.

per Dual CU. value per thread.

One scalar register (SGPR) holds one
value per wave.

AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

SCHEDULING OF THE WORKLOAD

* Dual Compute Units are designed to execute parallel workloads!

* The number of Dual CUs depends on the card,
e.g., Radeon™ RX 6900 XT has 40 Dual CUs.

Each thread group gets
scheduled to an available
Dual Dual Dual Dual Dual CU.
cu cu cu cu
EEEEENENEN
Dual Dual Dual Dual Dual EEEEEEEE
CuU CuU CcuU Ccu cu EEEEEEEE
M m EEEEREEEN
Dual Dual Dual Dual
cu 32 threads per SIMD.
Dual Dual Dual Dual .)
qu CUJ 4 x 32-wide SIMDs One vector register (VGPR) holds one

per Dual CU. value per thread.

One scalar register (SGPR) holds one
value per wave.

AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

SCHEDULING OF THE WORKLOAD

* Dual Compute Units are designed to execute parallel workloads!

* The number of Dual CUs depends on the card, The threads get scheduled to a

e.g., Radeon™ RX 6900 XT has 40 Dual CUs. SIMD in wavefronts:

Either 32 threads or 64 threads.

ITE]
cu

Dual Dual
CcuU CcuU

Dual

u Dual 4 x 32-wide SIMDs One vector register (VGPR) holds one

cu

Dual Dual Dual Dual 7
Cu Cu Cu Cu
EEEEEEEN
Dual Dual Dual Dual Dual BEEEEEERE
CuU Cu Cu Cu Cu EEEEEEEE
EEEEREEEN
Dual Dual Dual Dual
cu cu cu cu 32 threads per SIMD.

per Dual CU. value per thread.

One scalar register (SGPR) holds one
value per wave.

AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

SCHEDULING OF THE WORKLOAD

* Dual Compute Units are designed to execute parallel workloads!

The 32 threads on the SIMD. In
case of wavefront 64, another 32
threads get scheduled right after

the first batch.

* The number of Dual CUs depends on the card,
e.g., Radeon™ RX 6900 XT has 40 Dual CUs.

ITE]
cu

Dual Dual
CcuU CcuU

Dual

u Dual 4 x 32-wide SIMDs One vector register (VGPR) holds one

cu

Dual Dual Dual Dual '
CcuU CcuU cu cuU
EEEEENENEN
Dual Dual Dual ITE]]TE] BEEEEEERE
CuU CcuU CcuU CcuU cuU EEEEEEEE
EEEEREEEN
Dual Dual Dual Dual
cu cu cu cu 32 threads per SIMD.

per Dual CU. value per thread.

One scalar register (SGPR) holds one
value per wave.

AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

MEMORY & COMMUNICATION

AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

Shader Engine Shader Engine

Dual Compute Unit Dual Compute Unit Dual Compute Unit Dual Compute Unit
RA RA RA RA
Dual Compute Unit Dual Compute Unit Dual Compute Unit Dual Compute Unit
RA RA RA RA
RA RA RA RA

Dual Compute Unit Dual Compute Unit Dual Compute Unit Dual Compute Unit
RA RA RA RA

RA RA RA RA

Dual Compute Unit Dual Compute Unit Dual Compute Unit Dual Compute Unit
RA RA RA RA

RA RA RA RA
Dual Compute Unit Dual Compute Unit Dual Compute Unit Dual Compute Unit
RA RA RA RA

4 x 16 bit Memory Interface
INFINITY CACHE
JHJIVI ALINIANI

3Je4133U| AloWaN 3G 9L X 1

Global Memory -> Local Device Memory. - T

RB+ Rasterizer RB+

Prim Unit RB+ RB+ Prim Unit RB+

Caches.
* Infinity Cache (Global).

* L2 Cache (Global). w Lo
« L1Cache (Shader Array = 5 Dual CUs).
e L0 Cache (CU).

RA RA RA RA

Dual Compute Unit Dual Compute Unit Dual Compute Unit Dual Compute Unit
RA RA RA RA

RA RA RA RA

Dual Compute Unit Dual Compute Unit Dual Compute Unit Dual Compute Unit
RA RA RA RA

RA RA RA RA

4 x 16 bit Memory Interface
INFINITY CACHE
JHIVI ALINIANI

3Je4433u| AlOWN 1 9L X

Dual Compute Unit Dual Compute Unit Dual Compute Unit Dual Compute Unit
RA RA RA RA

RA RA RA RA

Dual Compute Unit Dual Compute Unit Dual Compute Unit Dual Compute Unit
RA RA RA RA

Groupshared Memory, aka Local Data Share (LDS) =& = =
(DuaI CU) Shader Engine Shader Engine

PCIE GEN 4 MULTIMEDIA ENGINE DISPLAY ENGINE

INFINITY FABRIC

AMDZ
D GPUODEI’] AMD PUBLIC | Compute Shaders Game Industry Conference 2021

THE RDNA™2 COMPUTE UNIT

Vector Registers Scalar Units
Ray Accelerator Vector LO

Stream Processors Schedulers Scalar Registers

Scalar Data Cache Local Data Share Texture Texture
Shader Instruction Cache Filter Units ~ Mapping Units

AMDZD1
| Compute Shaders | Game Industry Conference 2021

GPUOpen AMD PUBLIC

COMMUNICATION WITHIN A DISPATCH

 Communication between all thread groups, e.g., via a global atomic counter.
 E.g., incase you want to figure out the last active thread group.
* Each thread group increases the counter by completion.
* The last active thread group will know it’s last by reading the counter.

The counter needs to be
visible to all thread groups.

. Otherwise ...
Finishes. Am | last? -> Reads the counter.

No -> Increases the counter.

Thread Group O > o| — 1
Thread Group 1 > 1| — 2 7
Thread Group 9 > 1| — | 2 I
Finishes. Am | last? -> Reads the counter. ®
Yes!!! -> Does some extra work.
Thread Group n > 32399

Py | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

COMMUNICATION WITHIN A DISPATCH e counter meede to b

« Communication between all thread groups, e.g., via a global atomic counter. visible to all thread groups.
« E.g. incaseyou want to figure out the last active thread group. K .
: , Needs to be at least in the
* Each thread group increases the counter by completion.

, , . , L2 Cache - first cache that is
e The last active thread group will know it's last by reading the counter. slobal
Finishes. Am | last? -> Reads the counter.

No -> Increases the counter.
Thread Group 0 > 0| — 1

Needs to be marked as
globallycoherent in the
shader: bypasses LO and L1.

Thread Group 1 > 1| — 2 7
Thread Group 9 > 2 | — | 3 V
Finishes. Am | last? -> Reads the counter.
Yes!!! -> Does some extra work.
Thread Group n > 32399

Py | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

COMMUNICATION WITHIN A THREAD GROUP

 Communication between threads of a single thread group.
* All threads are on the same Dual Compute Unit.
* We can share data between threads within a thread group using groupshared memory.

* E.g., useful if multiple threads have to access the same data.

some lds[threadIndex] = a; 4 3 9

3 2 7
GroupMemoryBarrierWithGroupSync () ; */////////‘/////////‘/////////‘/////////

AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

GROUP SHARED MEMORY - LOCAL DATA SHARE (LDS)

e LDSis banked on RDNA™2 and GCN.

* Bank conflicts increase latency of instructions - try to avoid them!

Float4 array:

€ £ £ g g g g g
£ £ £ g g g g g
€ £ £ £ £ £ g g
€ £ £ € £ g g g
£ £ £ £ £ g g g
€ £ £ £ £ £ g ¢
£ £ £ g€ g g g g
€ £ £ £ £ £ g g

y
y
y
y
y
y
y
y

< X ¥ < < < < <
< ¥ ¥ < x < < <
L <L < <R < L <L <R
< ¥ ¥ ¥ ¥ < < <
<X ¥ ¥ ¥ x < < <
< ¥ ¥ ¥ < < < <
< X ¥ ¥ <X <x < <

Reading X
— 8 bank conflicts.

€ £ £ £ £ £ g =
XX o} X ox X X%
€ £ £ £ £ £ g =
€ £ £ £ £ £ g =
iS¢ ki ok e X e
€ £ £ £ £ £ £ =
5 <l aa el sl e s i
£ £ £ £ £ £ g =
€ £ £ £ £ £ £ =
SIS s e
€ £ £ £ £ g g =
€ £ £ £ £ £ £ =

C < L < SR S <
< X ¥ ¥ ¥ < < <
< ¥ ¥ ¥ ¥ < < <
< X X < ¥ < < <
< ¥ ¥ ¥ ¥ < < <
<X X ¥ ¥ ¥ < < <
< X ¥ ¥ < < < <
< X ¥ ¥ < < < <

AMD PUBLIC Compute Shaders Game Industry Conference 2021

GROUP SHARED MEMORY - LOCAL DATA SHARE (LDS)

e LDSis banked on RDNA™2 and GCN.

* Bank conflicts increase latency of instructions - try to avoid them!

Array of floats:

Reading X
- 2 bank conflicts.

AMD PUBLIC Compute Shaders Game Industry Conference 2021

COMMUNICATION WITHIN A WAVEFRONT

 Communication between threads of a single wavefront.
* All threads are on the same SIMD.

* Athread can access the data of another thread within the same wavefront using wave operations, e.g.,
* QuadReadAcrossX
* QuadReadAcrossY

AMDQ

GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

MEMORY & CACHES

Global Memory -> Local Device Memory.

Caches.

But how to access data in the first place?

 Infinity Cache (Global).
e L2 Cache (Global).
* L1Cache (Shader Array = 5 Dual CUs).

e LO Cache (CU).

Groupshared Memory, aka Local Data Share (LDS)

4 x 16 bit Memory Interface

4 x 16 bit Memory Interface

INFINITY CACHE

INFINITY CACHE

Shader Engine

Dual Compute Unit
RA

RA
Dual Compute Unit
RA
RA
Dual Compute Unit
RA
RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA
RA

Dual Compute Unit
RA

RA
Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Prim Unit RB+

Shader Engine

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

RB+

Dual Compute Unit
RA

RA

Dual Compute Unit
RA
RA

Dual Compute Unit
RA

RA
Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Prim Unit RB+

RB+
RB+

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA
RA

Prim Unit RB+

Ras

zer RB+

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA
Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA
RA

RB+

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA
RA

Dual Compute Unit
RA
RA

Prim Urnit RB+
Rasterizer RB+

Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA
Dual Compute Unit
RA

RA

Dual Compute Unit
RA

RA

Dual Compute Unit
RA
RA

JHJIVI ALINIANI

JHIVI ALINIANI

338433U] AOWSaIN HG 9L X b

3Je4433u| AlOWN 1 9L X

Shader Engine Shader Engine

PCIE GEN 4 MULTIMEDIA ENGINE DISPLAY ENGINE

INFINITY FABRIC

(Dual CU).

AMDZD1

: GPUOpen

AMD PUBLIC | Game Industry Conference 2021

Compute Shaders

TEXTURE ACCESS - READING & WRITING

* (Contiguous reads and writes are faster than scattered.

* More likely that the requested data lies within a cache line.

[numthreads (64,1,1)]

////’

float4 color = inputTexture[threadID];

Prefer a quad pattern over a linear pattern:

[numthreads (8,8, 1)]

float4 color = inputTexture[threadID];

v

AMDQ

GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

TEXTURE ACCESS - READING & WRITING

* Contiguous reads and writes are faster than scattered.

* More likely that the requested data lies within a cache line.

* Writes to UAVs: Not just contiguous writes, but preferably contiguous writes of whole 256Byte blocks per
wave.

—> Can help maximizing bandwidth in compute shaders.

 Rule of thumb:

« 8x8 thread group writes 8x8 block of pixels.
* Write to all channels if possible!

AMDQ

GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

TEXTURE ACCESS - READING & WRITING

For a output texture that has 4 channels, but you only compute the output for 3 of them:
output [threadID] .xyz = color.xyz;

However, just writing 3 channels and not all 4 channels means, that it's not a whole block of 256Bytes.

In fact, it can be more efficient to load the 4t" channel:
* color.w = output[threadID].w
* output[threadID] .xyzw = color.xyzw

If the 4t channel is unused, you could write a ‘dummy’ data:
* output[threadID] .xyzw = float4 (color.xyz, 1.0f);

AMDQ

GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

TEXTURE ACCESS - READING & WRITING

Or, if we go back to one of our previous examples: What to do when 1 thread writes out 4 output values?

A thread group size of 8x8 writing out 16x16 texels.

int?2 index = threadID * 2;

output[index + 1int2(0,0)].xyzw = color0.xyzw;
output[index + int2(1,0)].xyzw = colorl.xyzw;
output[index + 1int2(0,1)].xyzw = color2.xyzw;
output[index + int2(1,1)].xyzw = color3.xyzw;

Py | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

TEXTURE ACCESS - READING & WRITING

Or, if we go back to one of our previous examples: What to do when 1 thread writes out 4 output values?

A thread group size of 8x8 writing out 16x16 texels.

int?2 index = threadID * 2;

output[index + int2(0,0)].xyzw = color0.xyzw;

output[index + int2(1,0)].xyzw = colorl.xyzw;
output[index + 1int2(0,1)].xyzw = color2.xyzw;
output[index + int2(1,1)].xyzw = color3.xyzw;

Py | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

TEXTURE ACCESS - READING & WRITING

Or, if we go back to one of our previous examples: What to do when 1 thread writes out 4 output values?

A thread group size of 8x8 writing out 16x16 texels.

int?2 index = threadID * 2;

output[index + 1int2(0,0)].xyzw = color0.xyzw;
output[index + int2(1,0)].xyzw = colorl.xyzw;
output[index + 1int2(0,1)].xyzw = color2.xyzw;

output[index + int2(1,1)].xyzw = color3.xyzw;

AMDZD1
| Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

TEXTURE ACCESS - READING & WRITING

Or, if we go back to one of our previous examples: What to do when 1 thread writes out 4 output values?

A thread group size of 8x8 writing out 16x16 texels.

int2 index = threadID * 2;

output[index + 1int2(0,0)].xyzw = color0.xyzw;
output[index + int2(1,0)].xyzw = colorl.xyzw;

output[index + int2(0,1)].xyzw = color2.xyzw;

output[index + int2(1,1)].xyzw = color3.xyzw;

40 | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

TEXTURE ACCESS - READING & WRITING

Or, if we go back to one of our previous examples: What to do when 1 thread writes out 4 output values?

A thread group size of 8x8 writing out 16x16 texels.

int2 index = threadID * 2;

output[index + 1int2(0,0)].xyzw = color0.xyzw;
output[index + int2(1,0)].xyzw = colorl.xyzw;

output[index + 1int2(0,1)].xyzw = color2.xyzw;

output[index + int2(1,1)].xyzw = color3.xyzw;

AMDZD1
| Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

TEXTURE ACCESS - READING & WRITING

Or, if we go back to one of our previous examples: What to do when 1 thread writes out 4 output values?

A thread group size of 8x8 writing out 16x16 texels. .-.-.-.-
T

output[threadID + int2(0,0)].xyzw = color0.xyzw;

HEEEEEENE

output [threadID + int2(8,0)].xyzw = colorl.xyzw;

output [threadID + int2(0,8)].xyzw = color2.xyzw;
output [threadID + int2(8,8)].xyzw = colord.xyzws HEEEEEEE

AMDZD1

GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

TEXTURE ACCESS - READING & WRITING

Or, if we go back to one of our previous examples: What to do when 1 thread writes out 4 output values?

A thread group size of 8x8 writing out 16x16 texels.

output[threadID +
output[threadID +
output[threadID +
output[threadID +

AMDZD1

int2(0,0)].
int2(8,0)].
int2(0,8)].
int2(8,8)].

XYZW =
XYZW =
XYZW =

XYZW =

AMD PUBLIC

color0.xyzw;

colorl.xyzw;

color2.xyzw;

color3.xyzw;

Compute Shaders

Game Industry Conference 2021

GPUOpen

EXECUTION MODEL

= AMDQO

: GPUODEI’] AMD PUBLIC Compute Shaders Game Industry Conference 2021

EXECUTION OF A WAVEFRONT

block_a:

s mov b64 s[0:1], exec groupshared float data[64];

; condition test, writes results to s[2:3]

s mov bo64 s[2:3], condition [ngmthrgadsﬁ8,8<1)]

s_mov_b64 exec, s[2:3] void main (ulnt index : SV GrouplIndex)

s branch execz block c {

; ‘if' part: computeDetail () ; « 1t (cond:Lt:Lon)_
computeDetail () ;

s not bo4 exec, exec

s_bragch execz block d else]

block c: - computeBasic() ;

; ‘else' part: computeBasic() ;

block d: }

s mov _bo4 exec, s[0:1]

;code afterwards

AMDQ

GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

EXECUTION OF A WAVEFRONT

block a:
s _mov_bo64

’
S
S

_mov_bo4
_mov_bo4

s[0:1], exec
condition test, writes results to s[2:3]

s[2:3],

exec,

s[2:3]

s branch execz block c

4

S

‘if' part:

_not bo4

condition

computeDetail () ;

exec,

exec

s branch execz block d
block c:

.
4

‘else' part:

block_d:
s mov _bo4
;code afterwards

AMDQ

GPUOpen

exec,

s[0:1]

computeBasic() ;

AMD PUBLIC

Save exec

exec = result of test per thread

Invert exec

Restore exec

Compute Shaders | Game Industry Conference 2021

EXECUTION OF A WAVEFRONT

block_a:

block_c:

block_d:

AMDQ

GPUOpen

AMD PUBLIC

Save exec

exec = result of test per thread . B

Invert exec

Restore exec

Compute Shaders | Game Industry Conference 2021

EXECUTION OF A WAVEFRONT

block_a:

block_c:

block_d:

AMDQ

GPUOpen

AMD PUBLIC

Save exec

exec = result of test per thread B

Invert exec

Restore exec

Compute Shaders | Game Industry Conference 2021

EXECUTION OF A WAVEFRONT - TEXTURE ACCESS

The address to a texture is stored in scalar registers:

image load v[5:8], [v22, v23, v5], s[12:19] dmask:0xf dim:S5Q RSRC TMG 2D ARRAY

|

Address to your texture.
Stored in scalar register s[12:19]. [numthreads (8,8, 1)]

void main(uint3 index : SV _GroupThreadID)
Your UV coordinates. |
Stored in vector register v22, v23, v5. float4 value = imgSrc.Load (index.xy) ;
Unique per thread.

RWTexture2D imgSrc :register (ul) ;

A 4

The loaded values will be stored in v[5:8] (4 channels).
Unique per thread.

40 | Compute Shaders | Game Industry Conference 2021

GPUODEI’] AMD PUBLIC

EXECUTION OF A WAVEFRONT - TEXTURE ACCESS

* This becomes interesting, when there is an array of textures.

* Well ... Not really if the index is constant.

RWTexture2D imgSrc [] :register (ul) ;

image_load v[2:5], v[0:1], s[4:11] dmask:0xf dim:SQ_RSRC_IMG_2D
[numthreads (8,8, 1)]
void main(uint3 index : SV _GroupThreadID)

{

float4 value = imgSrc[0].Load(index.xy) ;

| .
s[4:11] points to imgSrc[0].

AMDQ |

Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

EXECUTION OF A WAVEFRONT - TEXTURE ACCESS

* This becomes interesting, when there is an array of textures.
 Whatif the index is non-uniform though?

* Potentially, each thread could access a different texture within the array.

RWTexture2D imgSrc [] :register (ul) ;

[numthreads (8,8, 1)]
void main(ulnt3 index : SV GroupThreadID)

{

float4 value = imgSrc[NonUniformResourceIndex (imgIndex)].Load (index.xy) ;

N

} By default, the compiler assumes
the index is uniform.
We need to explicitly tell it is not.

AMDZl
GPUO[I]EI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

EXECUTION OF A WAVEFRONT - TEXTURE ACCESS

RWTexture2D imgSrc [] :register (ul) ;

[numthreads (8,8, 1)]
vold main (uint3 index : SV GroupThreadID)

{

float4 value = imgSrc[NonUniformResourcelIndex (imgIndex)].Load (index.xy) ;

}

The address of the texture is still stored in scalar registers!

image_load v[3:6], v[0:1], s[8:15] dmask:0xf dim:SQ_RSRC_IMG_2D
e~

This is the same for each
thread ...

Py | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

EXECUTION OF A WAVEFRONT - TEXTURE ACCESS

RWTexture2D imgSrc [] :register (ul) ;

[numthreads (8,8, 1)]
vold main (uint3 index : SV GroupThreadID)

{

float4 value = imgSrc[NonUniformResourcelIndex (imgIndex)].Load (index.xy) ;

}

The address of the texture is still stored in scalar registers!

image_load v[3:6], v[0:1], s[8:15] dmask:0xf dim:SQ_RSRC_IMG_2D

e~
So for each unique texture,

we have to have a separate
call.

40 | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

WATERFALL

floatd4 value = imgSrc[NonUniformResourceIndex (imglIndex)].Load(1ndex.xy)

The compiler will iterate through all threads until every thread has the correct index. This is also called ‘waterfall’,

_L2 _ Pick each descriptor one by one, load them into a scalar register.
v_readfirstlane b32 s4, v2
v_cmp_eq_u32_e32 vcc_lo, s4, v2 Check if we picked the right descriptor for the thread.
s and saveexec b32 85, VCC_lO
s cbranch execz L0
If not, skip image load. Jump to _LO.
BVFO O:
image load Load the images for all active threads.
s _andn2 b32 s3, s3, exec lo
Exit “waterfall”.
s cbranch sccO L1
LO:

All threads that have not executed imageLoad yet are here.
s_mov_b32 exec_lo, 83 Update exec mask.

s and b32 exec lo, exec lo, s3
s branch 12 - EEEEEEENEEEEE

N Jump back to start of waterfall.

Py AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

GPUOpen

WATERFALL

floatd4 value = imgSrc[NonUniformResourceIndex (imglIndex)].Load(1ndex.xy)

The compiler will iterate through all threads until every thread has the correct index. This is also called ‘waterfall’,

_L2 _ Pick each descriptor one by one, load them into a scalar register.
v_readfirstlane b32 s4, v2
v_cmp_eq_u32_e32 vcc_lo, s4, v2 Check if we picked the right descriptor for the thread.
s and saveexec b32 85, VCC_lO
s cbranch execz L0
If not, skip image load. Jump to _LO.
BVFO O:
image load Load the images for all active threads.
s _andn2 b32 s3, s3, exec lo
Exit “waterfall”.
s cbranch sccO L1
LO:

All threads that have not executed imageLoad yet are here.
s_mov_b32 exec_lo, 83 Update exec mask.

s and b32 exec lo, exec lo, s3
s branch 12 - HEEEEEEEREEER

N Jump back to start of waterfall.

Py AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

GPUOpen

WATERFALL

floatd4 value = imgSrc[NonUniformResourceIndex (imglIndex)].Load(1ndex.xy)

The compiler will iterate through all threads until every thread has the correct index. This is also called ‘waterfall’,

_L2 _ Pick each descriptor one by one, load them into a scalar register.
v_readfirstlane b32 s4, v2
v_cmp_eq_u32_e32 vcc_lo, s4, v2 Check if we picked the right descriptor for the thread.
s and saveexec b32 85, VCC_lO
s cbranch execz L0
If not, skip image load. Jump to _LO.
BVFO O:
image load Load the images for all active threads.
s _andn2 b32 s3, s3, exec lo
Exit “waterfall”.
s cbranch sccO L1
_LO:
s mov_b32 exec lo, s5
s _and b32 exec lo, exec lo, s3
s _branch L2

AMDQ

GPLH]DEH AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

EXPORT

= AMDQO

: GPUODEI’] AMD PUBLIC Compute Shaders Game Industry Conference 2021

ON THE RDNA"2 ARCHITECTURE

Command
List

Vertices,
Textures
and

Constants

Buffers

|

Command
Processor

Input

T
Shad;ar l I

Processor Dual Compute Unit

AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

B Compute Pipeline

SHADER EXPORT

Shader Export is not used for compute shaders.

* Pixel shaders can be blocked from exporting by other waves.
* Exporting takes time.
* While a shader is waiting to be able to export, it still occupies the resources.

—> Could prevent to launch new waves to already start their work.

Compute Shaders do not suffer from this.

Can be beneficial in highly varying workloads.

40 | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

CONCLUSION

* Compute shaders are quite flexible.

» |f the fixed function pipeline stages of the graphics pipeline are not needed, e.g., the rasterizer,
considering to use compute shaders is worth a thought.
« Efficient use of caches is essential:

* How are textures accessed?
* How and which threads are sharing data?

* Keeping divergence low during shader execution is important:
e (an we scalarize certain parts of the shader?

« Efficient write pattern.
e Scattered write patterns can hurt performance a lot @
* Make sure to write out in 256Byte blocks per wave to maximize bandwidth.

40 | Compute Shaders | Game Industry Conference 2021

GPUODEH AMD PUBLIC

DISCLAIMER & ATTRIBUTES

Disclaimer:

The information presented in this document is for informational Eurposes only and may contain technical inaccuracies,
omissions, and typographical errors. The information contained herein is subject to change and may be rendered
inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard
version changes, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that
cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or
revise this information. However, AMD reserves the right to revise this information and to make changes from time
to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT
MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE
TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING
FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

©2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon, Ryzen and combinations thereof are trademarks of
Advanced Micro Devices, Inc. o _ o _ _ _
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMDQ

GPUODEI’] AMD PUBLIC | Compute Shaders | Game Industry Conference 2021

