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Abstract

Area of Habitat (AOH) is a deductive model which maps the distribution of suitable habitat  at

suitable altitudes for a species inside its broad geographical range. AOH maps have been validated

using  presence-only  data  for  small  subsets  of  species  for  different  taxonomic  groups,  but  no

standard validation method exists when absence data are not available. We develop a novel two-step

validation protocol for AOH which includes first a model-based evaluation of model prevalence

(i.e, the proportion of suitable habitat within a species’ range), and second a validation using species

point localities (presence-only) data. We applied the protocol to AOH maps of terrestrial birds and

mammals. In the first step we built logistic regression models to predict expected model prevalence

(the proportion of the range retained as AOH) as a function of each species’ elevation range, mid-

point of elevation range, number of habitats, realm and, for birds, seasonality. AOH maps with large

difference between observed and predicted model prevalence were identified as outliers and used to

identify a number of sources of systematic error which were then corrected when possible. For the

corrected AOH, only 1.7% of AOH maps for birds and 2.3% of AOH maps for mammals were

flagged  as  outliers  in  terms  of  the  difference  between  their  observed  and  predicted  model

prevalence. In the second step we calculated point prevalence, the proportion of point localities of a

species falling in pixels coded as suitable in the AOH map. We used 48,336,141 point localities for

4889 bird species and 107,061 point localities for 420 mammals. Where point prevalence exceeded

model prevalence, the AOH was a better reflection of species’ distribution than random.  We also

found that 4689 out of 4889 (95.9%) AOH maps for birds, and 399 out of 420 (95.0%) AOH maps
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for  mammals  were  better  than  random.  Possible  reasons  for  the  poor  performance  of  a  small

proportion of AOH maps are discussed.

Introduction

An accurate estimate of the distribution of species is central to ecological and conservation research

and action. There are three different classes of information on the distribution of species (Rondinini

and  Boitani,  2006).  These  are  1)  point  localities  (latitude  and  longitude)  of  individuals;  2)

geographic ranges, which are derived by mapping the extent of known point localities along with

expert knowledge; and 3) species distribution models, which use environmental and other relevant

variables associated with the species to refine geographical ranges. Species distribution models are

of  two  types  (Stoms  et  al.,  1992).  The  first  are  deductive  models,  which  use  expert-based

information on species’ habitat use to model the suitable areas for the species. The second type are

inductive models, in which the environmental conditions at point localities where the species were

recorded are interpolated over wider areas. 

Area of Habitat (AOH; also known as Extent of Suitable Habitat, ESH) is a deductive model which

maps the distribution of suitable habitat for a species inside its broad geographical range (Brooks et

al., 2019). It aims to reduce commission errors present in the range map while minimizing omission

errors. Several sets of AOH maps for different taxonomic groups at continental and global scales

have already been produced (Rondinini et al., 2005; Rondinini et al., 2006; Catullo et al., 2008;

Jenkins  and  Giri,  2008;  Rondinini  et  al.,  2011;  Ficetola  et  al.,  2015;  Tracewski  et  al.,  2016;

Lumbierres et al., 2021b).

Habitat models are prone to two major types of errors: omission errors occur when suitable habitat

areas for the species are wrongly mapped as being unsuitable, commission errors occur when areas

unsuitable for the species are wrongly mapped as being suitable. Quantification of these errors is

one of the key parts of the habitat modeling process and is done by validation. The omission and

commission errors could both be quantified only when independent presence and absence data on

the species are available. In such cases standard validation metrics such as True Skill  Statistics

(TSS) (Allouche et al., 2006) and the Boyce Index (Boyce et al., 2002) are used. In case of AOH

maps produced for large taxonomic groups when true absence data are not available, no standard

validation method exists.

Rondinini  et  al.  (2011)  and  Ficetola  et  al.  (2015)  used  point  localities  from  GBIF  (Global

Biodiversity  Information  Facility)  (www.gbif.org)  to  validate  AOH  maps  for  mammals  and

amphibians respectively. AOH maps for South Asian mammals (Catullo et al., 2008) and African

2

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70



vertebrates (Rondinini et al., 2005) were also validated using point localities. Brooks et al. (2019)

recommend  using  point  localities  for  validation  and  inclusion  of  AOH  maps  for  IUCN

(International Union for Conservation of Nature) Red List assessment. However, point localities are

often not available for many species and are biased towards certain taxonomic group and well-

studied areas.

In this paper, we developed a novel two-step validation protocol for AOH which includes: a) a

model-based evaluation of model prevalence (i.e., the proportion of a species’ range that comprises

AOH), and b) a validation using species point localities (presence-only) data. We demonstrate the

use of this approach by validating a new set of AOH maps produced by Lumbierres et al. (2021b)

for all terrestrial birds and mammals. The validation method developed here is an iterative process

whereby systematic errors in the production of AOH (e.g. in the matching of habitat classes to land

cover maps) were identified using logistic regression models, then corrected where possible and a

new set of AOH maps produced. Then we employed a point validation analysis for the subset of

species  for  which  point  localities  were  available  to  assess  the  performance of  the  AOH maps.

Finally, we assessed the extent to which the subset of species for which point locality data were

available were representative of those for which no point data were available. 

2. Methods

The new set of AOH maps (Lumbierres et al., 2021b) was produced at a resolution of 100 m using a

novel habitat-land cover model (Lumbierres et al., 2021a) which associated the different land cover

classes in the Copernicus land cover map (Buchhorn et al., 2019) with the Level-1 habitat classes of

the IUCN habitat classification scheme (IUCN, 2012). The IUCN habitat classification scheme is a

hierarchy of habitat classes, and each species assessed in the IUCN Red List is assigned to one or

more of these habitat classes, based on available information in the literature, unpublished reports

and expert knowledge. The habitat-land cover model (Lumbierres et al., 2021a) has the provision of

associating IUCN habitat classes to land cover classes using three different thresholds (1, 2 and 3).

Lower thresholds permit weaker associations between land cover and habitat classes. Therefore,

with threshold 1 each land cover class is associated with more habitat classes than with threshold 3.

Lumbierres et al. (2021b) produced a set of AOH maps for each of the three different thresholds by

clipping out of each species’ range any cells of land cover that were not linked by the model to the

habitat class(es) to which the species was coded, then further clipping out parts of the range falling

outside the elevation range of the species.

3

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103



In order to identify the best threshold among the three thresholds and to validate the set of AOH

maps with the best threshold at species level, we quantified two measures: ‘model prevalence’ and

‘point prevalence’. Model prevalence is defined as the proportion of pixels inside the range that

were retained in the AOH. For example, if 25% of the pixels present in the original range map are

clipped out because they contain unsuitable habitat, fall outside the species’ elevation range or both,

the model prevalence is 0.75. Point prevalence is defined as the proportion of point localities (or

their buffers) out of all points inside the range of a species falling inside the suitable pixels. For

example the Red-tailed Comet (Sappho sparganurus) had a total of 71 point localities within its

range,  of  which  62  fell  in  pixels  coded  as  suitable  in  the  species’ AOH map,  giving  a  point

prevalence of 62/71 = 0.88.

Because the number of habitats associated with each land cover class decreases with increasing

thresholds, model prevalence is highest for threshold 1 models and lowest for threshold 3 models.

With increasing threshold, commission errors are expected to decrease (which is the main purpose

of AOH) but omission errors might increase. Our validation protocol therefore aimed to control for

omission errors. We did this by calculating point prevalence and model prevalence across the three

thresholds and identified the set of AOH maps for which the mean model prevalence was lowest

without compromising the mean point prevalence. 

The point  localities  for  bird  species  were downloaded from eBird  (www.ebird.org),  the  largest

global repository for data on point localities of birds. eBird provides a metadata file called “eBird

basic data set” (Cornell Lab of Ornithology, 2020) which is a compilation of all the validated point

localities at species level and is updated monthly. These point localities are submitted by citizen

scientists  as  well  as  experts  worldwide  and  are  checked  by  local  experts  to  remove  obvious

misidentifications before they are made available for download (Sullivan et  al.,  2009).  We first

downloaded the metadata file from eBird updated in January 2020 which was then queried in R (R

Core Team, 2018) using the auk package (Strimas-Mackey et al., 2018), as recommended by eBird,

to extract the point localities at  species level.  The taxonomy of Birdlife International (BirdLife

International and Handbook of the Birds of the World, 2020), which is that followed by the IUCN,

was matched with eBird’s taxonomy and point localities of only those species common to both were

queried and extracted from the metadata. Of the 10,813 species listed in Birdlife International’s list

for which AOH maps were produced, 9628 species matched by name. Of these 9628 species, 8998

species shared the same taxonomic concept and for 730 species the scientific names matched but

the taxonomic concept did not.

To ensure that only high-accuracy points were used for the validation, we selected the stationary

points from eBird’s metadata. The stationary points are those that have coordinate uncertainty of
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less than 30 m. We then applied a temporal filter of 2019-2020 because the point localities from

2005-2018 were used to calibrate the habitat-land cover model in Lumbierres et al. (2021a). This

ensured there was no overlap between the calibration and validation data. The points were further

filtered by the range polygon of the species provided by the IUCN Red List website (IUCN, 2020)

to  remove  the  small  number  of  points  falling  outside  the  range  (many  of  them  likely  to  be

misidentifications).  Since  the  AOH  maps  in  question  only  include  a  certain  combination  of

presence, origin and seasonality of the range,  we used the same combination to filter the point

localities. This ensured that we only included points which fell inside the boundaries of the selected

range maps. We also made sure that only one point locality was allowed per pixel of the AOH map

to avoid clustering of points. Finally, we excluded species which had fewer than 10 point localities

after all the filters were applied. A total of 4889 bird species had 4,836,141 point localities after

filtering.  For  mammals,  point  localities  were  downloaded  from  GBIF  (Cold  Spring  Harbor

Laboratory, 2021) following the taxonomy of Global Mammal Assessment (which is followed by

IUCN)  with  same  temporal  and  spatial  filters  as  with  birds  except  the  filter  of  coordinate

uncertainty which was set to 300 m for mammals. This was done because far too many mammal

species would be excluded in the validation if we only considered point localities with coordinate

uncertainty of less than 30 m. The  rgbif  package (Chamberlain et  al.,  2021) in  R was used to

download the points for mammals. A total of 107,061 point localities for 420 species were available

for mammals after applying all the filters. 

A buffer  of  300  m  was  applied  around  all  the  point  localities  to  account  for  the  positional

uncertainty of the points and for the fact that the location usually records that of the observer at the

time of observation and not the focal animal, following Jung et al. (2020). The buffers of point

localities were then overlaid on top of the AOH maps across all three thresholds at species level and

if at least one pixel coded to suitable habitat was found inside the buffer, the pixel was considered to

be  validated  at  that  point  locality.  The  count  of  validated  pixels  was  used  to  calculate  point

prevalence at species level across all three thresholds.

We identified the threshold that produced a set of AOH maps for which the mean model prevalence

was lowest without detriment to the mean point prevalence. 

We then employed a two-step approach to validate the set of AOH maps with the optimal threshold.

In the  first  step,  we identified  potential  systematic  errors  in  the  AOH maps  using a  modeling

approach  that  aimed  to  identify  species  whose  model  prevalence  was  larger  or  smaller  than

expected, given the characteristics of the species concerned. In the second step, we validated the

AOH maps using point localities following Rondinini et al. (2011).
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2.1 A modeling approach to identify outliers 

We used logistic generalized linear models to predict model prevalence of the set of AOH maps

produced using the  optimal  threshold as  a  function of  a  number  of  independent  variables,  and

identified  outliers  whose  observed  model  prevalence  was  significantly  higher  or  lower  than

predicted by the model. Outliers were then examined to identify systematic errors in, for example,

the way habitats  were coded to land cover classes in the production of the AOH maps, and to

identify species that might be coded to the wrong habitats or elevation limits. For example, if a

species’ range includes a high proportion of a particular land cover type not associated with the

suitable habitats of the species in the land cover-habitat association table (Lumbierres et al., 2021b),

or if errors in coding species to elevation limits mean that most of the range is outside the species’

stated limits, the model prevalence would be lower than predicted by the model. 

The predictors fitted to the logistic models included: elevation range of the species (upper elevation

limit minus lower elevation limit), mid-point of the elevation range, number of habitats to which the

species is coded against in the IUCN Red List, seasonality of species (breeding and non-breeding

ranges in case of migratory birds) and the geographical realm of the species. In case of migratory

birds, Lumbierres et al. (2021b) has three different classes ( resident, breeding and non- breeding

seasonalities) of AOH maps based on seasonality of the species. We merged resident seasonality to

breeding and non breeding seasonalities to have AOH maps with only two seasonalities ( breeding

and non-breeding). The dependent variable was the model prevalence of the AOH maps. Data from

a  total  of  10475  AOH maps  for  9163  bird  species  (including  for  some  species  with  separate

breeding and non-breeding ranges) and 2758 AOH maps for 2758 mammal species were used to

build logistic regression models for birds and mammals separately using the  lme4 (Bates et al.,

2015) package in R . Data on elevation were lacking for many mammal and bird species which is

the reason why not all species could be included in the logistic model. After testing taxonomic

genus, family and order as random effects in the model to control the non-independence of closely

related taxa, family was selected for fitting as the residual variance was lowest for the models with

family as the random effect for both birds and mammals. The predictive power of the model was

assessed by calculating marginal R2 and conditional R² using the  insight (Lüdecke et al.,  2019)

package in R. The marginal R2 expresses how much of the variation in data is explained by the fixed

effects and conditional R² tells how much of the variation in data is explained by both fixed and

random effects.

The Tukey fences outlier detection test (Wilcox, 2017) was used to identify outliers based on the

difference  between the  estimated  and observed  values  of  model  prevalence.  This  test  uses  the
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interquartile ranges to estimate the outliers in a data-set. The outlier test identified mild lower and

upper threshold values for the difference between estimated and observed values.

Mild upper threshold = (interquartile range * 1.5) + upper quartile 

Mild lower threshold  = lower quartile - ( interquartile range * 1.5)     

The AOH maps identified as mild upper outliers have an observed model prevalence much larger

than their  predicted model  prevalence,  whereas maps identified as  mild lower outliers have an

observed model prevalence much smaller than their predicted model prevalence.

In order to investigate the sources of errors in the outliers, we produced two more sets of AOH

maps for the outliers. One set included AOH maps which were produced by clipping the range of

the species by the altitudinal range only (AOH  Elevation  only). Similarly, the other set included AOH

maps which were derived by clipping the range with only suitable habitat of the species (AOH Habitat

only). If the model prevalence of an outlier was equal or nearly equal to the model prevalence of its

AOH Elevation  only,  then  we concluded that  the under-representation of  model  prevalence could be

attributed to errors in elevation range of the species. If the model prevalence of an outlier was equal

or nearly equal to the model prevalence of AOH Habitat only, then the source of error could be attributed

to the mapping of the habitats inside the range using the habitat-land cover crosswalk (Lumbierres

et al., 2021a) or to errors in the species’ habitat coding. Furthermore, in some of the outliers the

under-representation  could  result  from  inclusion  of  large  proportion  of  habitats  which  were

unsuitable for the species but were inside the range map of the species. Outliers do not necessarily

represent errors in AOH, as species might legitimately have very high or low model prevalence, but

by identifying suites of outliers sharing common characteristics we were able to identify and correct

a number of systematic errors in AOH production. The models also allowed us to identify species

whose AOH maps might be unreliable and whose habitat and elevation coding needs to be checked.

2.2 Point validation of AOH maps of terrestrial birds and mammals

We validated 4889 bird and 420 mammal species’ AOH maps using the filtered point localities. The

point validation was done by comparing the model and point prevalence at species level. If the point

prevalence  exceeded  model  prevalence  at  species  level,  the  AOH maps  performed  better  than

random, otherwise they were no better than random. We also calculated the percentage of suitable
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habitat pixels inside the buffers to ensure that the validation success wasn’t due to one or fewone off

pixels falling inside the 300 m buffer. 

One of the major issues with citizen science data is that there is often a non-representative spread of

data across species. It is therefore possible that the species included in the point validation analysis

are not representative of the species not included.  We assessed how representative the validation

sample size was by comparing the representation of variables such as family, order, genus, realm,

elevation range, mid-point of the elevation range, range size and extinction risk categories for birds

and mammals between species with and without point data. The point validation was done in R and

GRASS (GRASS Development Team, 2017). 

3. Results

After comparing point and model prevalence of 4889 birds and 420 mammal species across all the

three thresholds, we selected the set of AOH maps derived by using threshold 3 in the habitat-land

cover model. At threshold 3, the mean model prevalence decreased as compared to thresholds 1 and

2  with  much  lower  change  in  the  mean  point  prevalence  (Table  1  and  2)  for  both  birds  and

mammals.

Threshold 1 Threshold 2 Threshold 3

Mean model prevalence 0.81 ± 0.21 SD 0.77 ± 0.23 SD 0.65 ± 0.25 SD

Mean point prevalence 0.95 ± 0.14 SD 0.94 ± 0.14 SD 0.90 ± 0.17 SD

Table 1:  Mean model and point prevalence for AOH maps with standard deviation of 4889 bird

species across 3 different thresholds.

Threshold 1 Threshold 2 Threshold 3

Mean model prevalence 0.87 ± 0.21 SD 0.83 ± 0.22 SD 0.73 ± 0.24 SD

Mean point prevalence 0.95 ± 0.14 SD 0.95 ± 0.15 SD 0.93 ± 0.17 SD

Table 2: Mean model and point prevalence for AOH maps with standard deviation of 420 mammal

species across 3 different thresholds.

We also assessed the relative contribution of elevation range, habitat, and both in reducing the range

to AOH. For both birds and mammals, most of the pixels removed from the range were because
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either the habitat or the elevation were unsuitable, with a relatively small proportion being removed

because both were unsuitable (Figs. 1,2). The proportion of the range that was clipped out on the

basis of having unsuitable habitat at suitable elevations increased as model prevalence decreased,

whereas  there  was  little  change  across  the  same  axis  in  the  proportion  of  the  range  that  was

excluded on the basis of having suitable habitat at unsuitable elevations (Figs. 1,2). The number of

both bird and mammal species peaked at model prevalence of 95-100% and gradually decreased as

the model prevalence decreased. 

Figure 1: Percentage contribution of elevation range, habitat and both in clipping the IUCN range

to produce AOH maps for birds. Each bar represents a 5% bin of model prevalence, divided to show

how much of the range was clipped out due to unsuitable habitat at suitable elevations (“Habitat

unsuitable”), by suitable habitat at unsuitable elevations (“Elevation unsuitable”) and by unsuitable

habitat at unsuitable elevations (“Elevation and habitat unsuitable”). The red blocks correspond to

the second y-axis and show the number of species falling into each 5 % bin of model prevalence.
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Figure 2: Percentage contribution of elevation range, habitat and both in clipping the IUCN range

to AOH for mammals. See caption to Fig. 1 for interpretation.

For birds, the logistic model identified 178 AOH maps (1.7%) as lower outliers and 118 AOH maps

(1.1%) as upper outliers out of 10475 AOH maps for 9163 terrestrial bird species. Similarly for

mammals,  the logistic  model  was applied to  the AOH maps of  2758 species and identified 64

(2.3%) as lower outliers and 21 (0.8%) as upper outliers.

The mean of mid-point of elevation of the bird and mammal species identified as upper outliers was

2725 m and 3193 m respectively while  the mid-point  of  elevation for  species  which were not

identified as upper outliers was 1261 m for birds and 1289 m for mammals. This suggests that

species  identified  as  upper  outliers  were  those  found  in  higher  elevation.  These  species  were

identified as upper outliers because the logistic models predicted low model prevalence at higher

elevations. Also, the range maps for high-altitude species are drawn using contour maps, therefore

most of the range is within the correct attitudinal band leading to high model prevalence for these

species.

The lower outliers indicate where model prevalence was possibly underestimated due to potential

errors in habitat  mapping/coding and elevation range of the species. We found that the habitats

“Shrubland” and “Savannah” in the habitat-land cover crosswalk were not associated with the land
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cover class “Herbaceous cover”, leading to under-representation of these habitat types and hence

lower model prevalence than estimated by the logistic model (Fig. A1). We also found mismatch in

the elevation range and geographical range for the lower outliers (Fig. A2). There were few cases

where the range included large proportion of a particular land cover type which was not associated

with the suitable habitat of the species (Fig. A3). Moreover, we found that there was no land cover

information in the Copernicus land cover map for very small range polygons located on oceanic

islands which caused the AOH maps for these species to be empty. Furthermore, the land cover

class “open forest unknown” was discarded in the habitat land cover model. This led to low model

prevalence  of  AOH  maps  for  some  species  whose  ranges  included  this  land  cover.  This  was

corrected and a new set of AOH maps produced. 

Point validation

Out  of  4889 bird  species  (45% of  all  bird  species)  for  which  point  data  were  available,  4689

(95.9%)  had  higher  point  prevalence  than  model  prevalence  and  200  species  had  lower  point

prevalence than model prevalence (Fig. 3). The mean percentage of pixels coded as suitable inside

the 300 m buffers of point localities of 4889 species of birds was 62% (Fig. A5).
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Figure 3: Point prevalence vs model prevalence for terrestrial birds. Colors indicate the number of

habitats each species is coded to, size of circles indicates the number of point localities. 

Out of 420 mammal species (8% of all mammal species) for which point data were available, 399

(95.0%) had point prevalence higher than model prevalence (Fig. 4). The mean percentage of pixels

coded as suitable inside the 300 m buffers of point localities of 420 species of mammals was 78%

(Fig. A5). 
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Figure 4: Point prevalence vs model prevalence for terrestrial mammals. Interpretation as in Fig. 3.

Representativeness of validation sample 

We found that for birds over 60% all families, genera and orders were represented in the sample

included in the point validation and species from all biomes were represented but representation for

mammals was lower, as expected due to the much lower proportion of mammal species for which

point locality data were available (Fig. 5).  

The validation points were spread across all of the variables and majority of their sub-classes (Fig.

A6, Fig.  A7).  Species with validation points  tended to have larger  range sizes,  wider elevation

ranges and to be coded to more habitat classes than those without. Furthermore, validation points

were not available for any critically endangered or endangered mammals as these species are rare in

the wild.
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Figure 5: Taxonomic representativeness of validation sample for birds and mammals.

Discussion

On comparing our point  validation results  with previous validation analysis  of  AOH maps,  we

found  that  validation  results  are  similar  to  or  better  than  previous  exercises.  For  mammals,

Rondinini et al. (2011) evaluated AOH maps for 263 species at 300 m resolution, of which 241

(91.6 %) were better than random as compared to 95.0% in our analysis. However, it should be

noted that the mean model prevalence for AOH maps of Rondinini et al. (2011) was 54.8 ± 21.5 SD

as compared to 65.16 ± 25.42 for our AOH maps. The ratio of mean point prevalence to mean

model prevalence for Rondinini et al. (2011) was 1.4 compared to 1.38 in our case. Ficetola et al.

(2015) found that AOH for 94% of 115 amphibian species used in the validation analysis were

better than random with the mean model prevalence for species with validation points being 0.79 ±

0.21 SD. The ratio of mean point prevalence to mean model prevalence was 1.18 in this case. 

Moreover,  Catullo  et  al.  (2008)  found  that  140 AOH maps  out  of  190  (73.7  %)  South  Asian

mammal species  gave positive validation results  while  Rondinini  et  al.  (2005) found the mean

proportion  of  suitable  habitats  correctly  mapped  inside  the  range  for  181  species  of  African

vertebrates was 0.55 ± 0.01 SE using presence-absence data sets. The high validation success in our

analyses could be attributed to the use of novel habitat-land cover model (Lumbierres et al., 2021a),

the use of logistic regression models to identify systematic errors and the larger validation sample

as  compared  with  previous  exercises.  Furthermore,  the  underlying  land  cover  map  used  in
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Lumbierres et al. (2021b), has the highest resolution among the global land cover maps providing

with more detailed land cover classification.

The point validation identified a small proportion of AOH maps which were no better than random.

Some of these had high model prevalence. In such cases, point prevalence must be exceptionally

high for the models to be better than random since even if a majority of point localities fall within

the AOH these maps may perform no better than random. For the AOH maps which were no better

than random and had low point prevalence, this was usually due to an apparent error in the coding

of elevation range of the species, the areas inside the range of the species where the point localities

fell being clipped out by what was assumed to be an erroneous elevation range. A list of species

with probably erroneous elevation coding will  be forwarded to IUCN Red List  team for future

corrections.

AOH maps aim to minimize the commission errors known to be present in species ranges without

increasing omission errors (Rondinini and Boitani, 2006). One of the limitations of this validation

analysis is the inability to quantify the commission errors of the AOH maps as we don’t have the

true absence data of the species. Therefore, some uncertainty remains in AOH maps regarding the

commission errors.

Also, there are some intrinsic errors in the models as identified by the logistic regression analysis.

The species which are coded only to habitats like “Shrubland” might have under-represented model

prevalence as discussed above. However, the number of AOH maps identified as lower outliers by

the application of the logistic model was low for birds (178/10475) and for mammals (64/2758),

indicating that for the majority of AOH maps the observed model prevalence was fairly close to that

predicted by the model. 

The AOH maps validated in this paper is the largest validation done till date in terms of number of

species validated for birds and mammals. These maps will be freely available after the publication

of Lumbierres et al. (2021b). We have also provided the metadata for all the species along with

validation statistics in this paper which can be used as a guideline by the users while using the AOH

maps.
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Appendix A

Figure A1: AOH map for species Zimmerius chicomendesi. The species is coded against “Forest”

and “Shrubland” habitats and the elevation range falls inside the IUCN range. However, the land

cover inside this  range map includes a high proportion of “Herbaceous cover” land cover  type

which is not associated with “Shrubland”  habitat  in the habitat – land cover association table.

Therefore, the model prevalence of this AOH is much lower than expected.
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Figure A2: AOH map for the species Icterus graduacauda. The IUCN range of the species doesn’t

cover much of the elevation range. Therefore, the model prevalence of this species is lower than

estimated.
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Figure A3: AOH for the species Semnopithecus entellus. There is a large proportion of land cover

class “Cropland” inside the range map of this species. However, this species is not coded to habitats

that are associated with the land cover “Cropland”. Therefore, the model prevalence is lower than

estimated.
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Figure A4: Point validation of the AOH map of the species Red-tailed Comet using model and

point prevalence. The yellow circles represent the buffered point localities of Red-tailed Comet.
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Figure A5: Histogram of mean percentage of suitable AOH pixels inside the 300 m buffer for

mammals and birds species used in point validation. 
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Figure A6: Comparison of species with and without validation points for mammals. 

Figure A7: Comparison of species with and without validation points for birds.
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Data and code availability

The point localities used in the validation analyses along with the metadata tables summarizing the

validation analyses can be found at  http://doi.org/10.5281/zenodo.5109073. The same DOI can be

used to access the code used for validation and to also access some sample AOH maps which were

validated. 
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