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Abstract. Tropical forest dynamics play a crucial role in the
global carbon, water, and energy cycles. However, realisti-
cally simulating the dynamics of competition and coexis-
tence between different plant functional types (PFTs) in trop-
ical forests remains a significant challenge. This study aims
to improve the modeling of PFT coexistence in the Function-
ally Assembled Terrestrial Ecosystem Simulator (FATES), a
vegetation demography model implemented in the Energy
Exascale Earth System Model (E3SM) land model (ELM),
ELM-FATES. Specifically, we explore (1) whether plant trait
relationships established from field measurements can con-
strain ELM-FATES simulations and (2) whether machine
learning (ML)-based surrogate models can emulate the com-
plex ELM-FATES model and optimize parameter selections
to improve PFT coexistence modeling. We conducted three
ensembles of ELM-FATES experiments at a tropical forest
site near Manaus, Brazil. By comparing the ensemble exper-
iments without (Exp-CTR) and with (Exp-OBS) considera-
tion of observed trait relationships, we found that accounting
for these relationships slightly improves the simulations of
water, energy, and carbon variables when compared to obser-
vations but degrades the simulation of PFT coexistence. Us-
ing ML-based surrogate models trained on Exp-CTR, we op-
timized the trait parameters in ELM-FATES and conducted
another ensemble of experiments (Exp-ML) with these op-
timized parameters. The proportion of PFT coexistence ex-
periments significantly increased from 21 % in Exp-CTR to

73 % in Exp-ML. After filtering the experiments that allow
for PFT coexistence to agree with observations (within 15 %
tolerance), 33 % of the Exp-ML experiments were retained,
which is a significant improvement compared to the 1.4 %
in Exp-CTR. Exp-ML also accurately reproduces the annual
means and seasonal variations in water, energy, and carbon
fluxes and the field inventory of aboveground biomass. This
study represents a reproducible method that utilizes machine
learning to identify parameter values that improve model fi-
delity against observations and PFT coexistence in vegeta-
tion demography models for diverse ecosystems. Our study
also suggests the need for new mechanisms to enhance the
robust simulation of coexisting plants in ELM-FATES and
has significant implications for modeling the response and
feedbacks of ecosystem dynamics to climate change.

1 Introduction

Tropical ecosystems feature the highest biodiversity on
Earth, maintaining more than 75 % of all known species
(Mora et al., 2011; Mitchard, 2018). The dynamics of trop-
ical forests are closely related to the regional and global
carbon, energy, and water cycles (Bonan, 2008; Piao et al.,
2020). Vegetation is expected to face more water stress from
vapor pressure deficit increase and soil moisture reduction
with global warming (McDowell et al., 2020). Tree mortality
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rates are accelerating in some tropical regions due to rising
atmospheric water stress (Bauman et al., 2022; Hubau et al.,
2020; Zuleta et al., 2017). Tropical forests currently make
an approximately neutral contribution to the global carbon
cycle as a result of a large land use source balanced by sinks
in recovering and undisturbed forests, but they may become a
carbon source in the future under the threat of climate change
and human-induced disturbance (Mitchard, 2018; Gatti et al.,
2021). Therefore, both understanding and modeling tropical
forest dynamics and related feedbacks have crucial implica-
tions for projecting future changes in the global climate sys-
tem.

Dynamic global vegetation models (DGVMs) are the pri-
mary tools to simulate terrestrial ecosystem dynamics of
plant functional type distribution, ecosystem composition
and functioning, and ecosystem response to and recovery
from disturbance (e.g., fire and wind damage) (Longo et al.,
2019; Fisher et al., 2018; Foley et al., 1996; Sitch et al., 2003;
Cao and Woodward, 1998; Berzaghi et al., 2019; McMahon
et al., 2011). Conventional DGVMs represent plant commu-
nities using an area-averaged representation of plant func-
tional types (PFTs) in each grid cell. Their relatively sim-
ple structures have the advantage of high computational effi-
ciency for use in Earth system models (Fisher et al., 2018;
Snell et al., 2014). However, these models do not capture
many demographic processes. For example, plants of each
represented PFT typically have identical properties (e.g., tree
size), which limits the capability of modeling ecosystem
dynamics and functioning of canopy gap formation, PFT
competition, and disturbance reactions (Feeley et al., 2007;
Stark et al., 2012; Hurtt et al., 1998; Moorcroft, 2003; Bris-
ter et al., 2020). To address these limitations, researchers
have developed a new of generation DGVMs called vege-
tation demographic models (VDMs), commonly including
individual-based models and cohort-based models (Fisher et
al., 2018). The individual-based models, also known as for-
est gap models, explicitly represent vegetation as individ-
ual plants and simulate their birth, growth, and death (Fyl-
las et al., 2014; Christoffersen et al., 2016; Sato et al., 2007;
Jonard et al., 2020; Maréchaux and Chave, 2017). These
models incorporate the stochasticity and heterogeneity of
the plant light environment mechanistically and thereby can
typically represent PFT competitive exclusion, succession,
and coexistence. However, explicit simulations of individual
plants with stochastic processes suffer a substantial compu-
tational penalty and limit applicability over large or global
scales (Fisher et al., 2018). To capture sufficient ecosystem
dynamics and maintain relatively high computational effi-
ciency, “cohort-based” models have been proposed (Haverd
et al., 2013; Medvigy et al., 2009; Ma et al., 2022; Moor-
croft et al., 2001; Weng et al., 2015; Longo et al., 2019;
Martín Belda et al., 2022). In cohort-based approaches, indi-
vidual plants are grouped together as “cohorts” based on their
similar properties, including size, age, and PFT (Fisher et
al., 2018). Many cohort-based models have been developed

and widely used across regional to global scales. Examples
of cohort-based models include the Ecosystem Demography
model (ED) (Moorcroft et al., 2001), the Functionally As-
sembled Terrestrial Ecosystem Simulator (FATES) (Fisher et
al., 2018, 2015), and the Geophysical Fluid Dynamics Labo-
ratory (GFDL) Land Model 3 with the Perfect Plasticity Ap-
proximation (LM3-PPA) (Weng et al., 2015). In this study,
we employ the FATES model, a widely used tool for mod-
eling ecosystem dynamics in multiple ecosystems, includ-
ing tropical (Holm et al., 2020; Koven et al., 2020; Chitra-
Tarak et al., 2021; Cheng et al., 2021), boreal (Lambert et
al., 2022), and mixed-conifer forests (Buotte et al., 2021) and
forest disturbance (Huang et al., 2020).

Despite ongoing applications, robust simulations of com-
petition and coexistence in cohort-based VDMs remain a ma-
jor challenge. In niche-based coexistence theory, coexisting
species require both convergence in strategy to adapt to the
surrounding environment (“environmental filtering”) and di-
vergence in strategy to ensure differentiation in resource re-
quirements (“niche partitioning”) (Kraft et al., 2008; Adler et
al., 2013). These same constraints apply to coexisting PFTs
as modeled by VDMs. Thus, on the one hand, VDMs need
to include mechanisms that capture critical niche dimen-
sions (e.g., spatial and temporal variation in light, water, and
nutrients). For example, the multilayer canopy structure in
FATES provides vertical light resource differentiation. An-
other essential aspect is to assign reasonable plant functional
traits (i.e., the parameters that define a given plant functional
type) to satisfy environmental filtering, ensure niche parti-
tioning, and consequently preserve PFT coexistence. Con-
sidering the relatively high computational cost of VDMs and
the host land surface models, it is not feasible to directly ap-
ply global optimization methods such as shuffled complex
evolution (Duan et al., 1992) to calibrate trait-related pa-
rameters because this could be a time-consuming and com-
putationally intensive process (Rouholahnejad et al., 2012).
Therefore, most previous studies use the filtered ensemble
approach to select trait-related parameters involving several
steps: (1) generating a parameter ensemble based on refer-
ence trait ranges or correlations, (2) conducting ensemble
model simulations, and (3) filtering the parameter ensem-
ble by coexistence and other criteria (e.g., observation con-
straints). For example, Huang et al. (2020) applied FATES
implemented in the Community Land Model (CLM; herein
CLM-FATES) with two tropical PFTs to study forest dynam-
ics at tropical sites. They performed 70 one-at-a-time experi-
ments before obtaining one reasonable parameter set. Buottte
et al. (2021) used CLM-FATES to simulate forest dynamics
of pine and incense cedar over the Sierra Nevada of Califor-
nia, and their two stages of experiments (360 plus 72 runs)
only yielded four sets of parameters that met the given crite-
ria. The filtered ensemble approach has low efficiency, which
hinders VDMs’ application to modeling ecosystem dynamics
under the changing climate. In addition, trait relationships
derived from field measurements are often used to infer pa-
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rameter selections when simulating coexistence. For exam-
ple, Longo et al. (2020) used multiple trait relationships de-
rived from various datasets to guide parameter selection for
different PFTs in the ED-2.2 model simulations. However,
whether the observed trait relationships can efficiently im-
prove PFT coexistence simulation in current VDMs is still
unclear. Earlier studies using FATES have also highlighted
the importance of reproductive feedbacks in maintaining or
prohibiting coexistence (Fisher et al., 2010; Maréchaux and
Chave, 2017). Fundamentally, if PFTs have highly contrast-
ing reproductive output, the model tends towards competitive
exclusion, and thus discerning areas with at least approxi-
mately equal fitness is necessary. While representing a large
number of plant functional types may improve the likelihood
of coexistence (Koven et al., 2020), this comes at a consider-
able computational expense.

Machine learning (ML) has facilitated Earth science stud-
ies (Shen, 2018; Nearing et al., 2021; Zhu et al., 2022; Pal et
al., 2019; Jung et al., 2019), possibly providing a promising
approach to improve PFT coexistence modeling in VDMs.
ML algorithms have been broadly and successfully employed
in recent decades. They can be used as standalone models to
predict variables of interest or integrated with process-based
models to improve simulations (Xu and Liang, 2021; He et
al., 2022; Peatier et al., 2022). Among these applications, ML
has shown advantages as a surrogate model for parameter
optimization and sensitivity quantification, including its ef-
fectiveness and easy application, its ability to implicitly deal
with complex nonlinear correlations and high dimensional
data, and handle interactions between variables (Sit et al.,
2020; Antoniadis et al., 2020; Tsai et al., 2021). One promis-
ing approach is to construct ML-based surrogate models us-
ing data from initial model simulations to emulate the rela-
tionship between inputs (i.e., model parameters) and model
outputs (Wang et al., 2014). The computationally inexpen-
sive surrogate model can then be efficiently used for pa-
rameter optimization and sensitivity analysis. For example,
Dagon et al. (2020) implemented artificial neural networks to
emulate the satellite leaf area constrained version of CLM5
(Lawrence et al., 2019) and estimated optimal parameters to
improve the global simulation of gross primary production
and latent heat flux. Sawada (2020) developed an ML sur-
rogate model to optimize the land surface model parameters
and improve soil moisture and vegetation dynamics simula-
tions. Watson-Parris et al. (2021) built a general tool to ef-
ficiently emulate Earth system models for uncertainty quan-
tification and model calibration. Although employing ML-
based surrogate models to optimize the trait parameters and
hence improve the vegetation dynamics modeling in VDMs
is promising, this area of research remains under-explored.

This study aims to improve PFT coexistence modeling in
VDMs. The cohort-based FATES implemented in the Energy
Exascale Earth System Model (E3SM) land model (ELM;
Golaz et al., 2019), i.e., ELM-FATES, is taken as our test bed.
The ELM land model simulates surface energy fluxes, soil

and canopy biophysics, hydrology, and soil biogeochemistry,
whereas FATES simulates live vegetation processes, litter
dynamics, and fire. We first examine whether trait relation-
ships constructed from field measurements can help improve
ELM-FATES simulations. Second, we explore whether ML-
based surrogate models can help optimize key trait parame-
ters in ELM-FATES to improve the simulation of PFTs coex-
istence. Our model experiments are conducted for a tropical
rainforest site located in Manaus, Brazil. This paper is orga-
nized as follows. Section 2 describes ELM-FATES, summa-
rizes the key functional trait-related parameters, introduces
the machine learning algorithms, and explains the overall ex-
perimental design. Results are presented in Sect. 3, followed
by discussions and conclusions in Sects. 4 and 5, respec-
tively.

2 Methodology

2.1 Study site and data

Our study site is located at kilometer 34 (K34) of the
ZF2 road, Manaus, Brazil (latitude: − 2.6091◦ S; longitude:
−60.2093◦W). The K34 site is an old-growth primary forest
with minimal human disturbances (Holm et al., 2020). The
annual precipitation is about 2252 mm, and the mean tem-
perature is about 26.68 ◦C (https://ameriflux.lbl.gov/sites/
siteinfo/BR-Ma2, last access: 6 June 2022). The wet sea-
son is from November to May, and the dry season is from
June to October (Fang et al., 2017). Hourly meteorologi-
cal forcing (i.e., precipitation, air temperature, relative hu-
midity, wind speed, surface pressure) at the K34 eddy co-
variance flux tower from 2002 to 2005 was obtained from
the LBA-ECO CD-32 Flux Tower Network Data Compila-
tion (Restrepo-Coupe et al., 2021). Observational reference
datasets obtained from Holm et al. (2020) include gross pri-
mary production (GPP), evapotranspiration (ET), sensible
heat flux (SH), Bowen ratio (BW, the ratio between sensi-
ble heat and latent heat), and inventory data-based above-
ground biomass (AGB). The GPP, ET, SH, and BW observa-
tions are monthly climatological averages from 2000 to 2008
(Table S1). The AGB at this site is about 303±2.3 Mg ha−1.
These observational data were used to evaluate the ELM-
FATES simulations and constrain the ML surrogate models.

2.2 ELM-FATES and parameters

ELM-FATES is used as the model test bed. ELM is the land
model of E3SM, which is the host land model of FATES
(Golaz et al., 2019; Leung et al., 2020; Holm et al., 2020).
FATES is a size- and age-structured vegetation model de-
veloped from the Community Land Model with Ecosys-
tem Demography (CLM-ED) (Fisher et al., 2015; Koven et
al., 2020). FATES includes two key structural components:
ecosystem demography (ED; Moorcroft et al., 2001) and a
modified version of perfect plasticity approximation (PPA,
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Purves et al., 2008). FATES discretizes the simulated land-
scape into spatially implicit patches representing different
disturbance histories of the ecosystem since the last dis-
turbance. Within each patch, the hypothetical population of
plants is grouped into cohorts: a cohort consists of a popu-
lation density of trees with similar size and the same plant
functional type. Cohorts are organized, via the PPA con-
cept, into canopy layers, and compete for light based on
their canopy vertical positions (e.g., canopy layer vs. un-
derstory layer). The understory layer is formed when the
canopy area becomes greater than the total ground area, and
some fraction of each cohort is “demoted” to the understory
as a function of its height. The number of patches and co-
horts varies depending on processes, including recruitment,
growth, mortality, competition, and disturbance. The modi-
fied PPA probabilistically splits cohorts into discrete canopy
and understory layers based on a function of their height
(Strigul et al., 2008; Fisher et al., 2010). A detailed de-
scription of the FATES model can be found in its techni-
cal note (Zenodo, https://doi.org/10.5281/zenodo.3517272;
FATES Development Team, 2019).

In this study, we configured two PFTs in ELM-FATES,
i.e., early successional and late successional broadleaf ev-
ergreen tropical trees, which can represent a primary axis
of variability in tropical forests (Huang et al., 2020; Re-
ich, 2014; Díaz et al., 2016). There are tradeoffs between
the plant traits of these two PFTs. Compared with the late
successional PFT, the early successional PFT is more light
demanding and fast growing but with lower woody density,
shorter leaf and root lifespans, and higher background mor-
tality. To represent the drought impacts on forest dynam-
ics, the early successional PFT is further assumed to be less
drought resistant with shallower rooting depth and is hence
more easily affected by drought conditions (Oliveira et al.,
2021). The corresponding tradeoffs and parameters between
these two PFTs are shown in Fig. 1 and Table 1.

2.3 Machine learning algorithm

We built ML-based surrogate models to emulate ELM-
FATES simulations. To represent the relationships between
ELM-FATES parameters and simulations (e.g., AGB), we
used eXtreme Gradient Boosting (XGBoost; Chen and
Guestrin, 2016), a decision-tree-based ensemble machine
learning algorithm. Ensemble learning techniques combine
the predictions of multiple independent base models (e.g.,
decision trees) to produce more accurate predictions, with
popular algorithms such as Random Forest (Breiman, 2001)
and XGBoost. While Random Forest builds an ensemble of
parallel trees using bagging and produces the final prediction
by averaging the outputs of all individual trees, XGBoost se-
quentially trains a set of decision trees using boosting (Fried-
man, 2001), where each successive tree corrects the mistakes
of its predecessors, and the final prediction is obtained by
combining the predictions of all trees using a weighted sum.

XGBoost not only handles complex nonlinear interactions
and collinearity between different features but also provides
a parallel implementation that effectively solves a range of
data science problems. It has been successfully applied in a
variety of fields within Earth and Environmental Sciences,
such as urban temperature emulation (Zheng et al., 2021c),
wildfire-burned area (Wang et al., 2021), emissions predic-
tion (Wang et al., 2022), flash flood risk assessment (Ma
et al., 2022), and aerosol property estimation (Zheng et al.,
2021a, b).

2.4 Experimental design

The experimental design flowchart is shown in Fig. 2. Over-
all, we generated three ensembles of parameter values, i.e.,
Par-CTR, Par-OBS, and Par-ML, and conducted three en-
sembles of corresponding ELM-FATES experiments, i.e.,
Exp-CTR, Exp-OBS, and Exp-ML. Exp-CTR is the control
experiment without being constrained by the observed trait
relationships. Exp-OBS considered the constraint of the ob-
served trait relationships. Par-ML was generated by machine
learning surrogate models, which were trained based on Exp-
CTR, and then used to conduct Exp-ML. The detailed exper-
iment procedures are described below.

2.4.1 Procedure 1: parameter sampling

The procedure “P1” in Fig. 2 is used to generate an ensem-
ble of parameter values for each experiment ensemble, i.e.,
Exp-CTR, Exp-OBS, and Exp-ML. First, a number of initial
parameter sets (e.g., 5000 sets) were generated using Latin
hypercube sampling (LHS; Mckay et al., 2000). Second, the
initial parameter sets were filtered by the trait tradeoffs be-
tween early and late successional PFTs (Fig. 1). We repeat-
edly increased the number of initial parameter sets in the first
step until 1500 parameter sets were obtained in the second
step. Each ELM-FATES experiment starts from bare ground
and runs for 350 years to reach an equilibrium state by cy-
cling the meteorological forcing during 2002–2005, and the
last 4 years of the simulations were analyzed.

2.4.2 Procedure 2: initial ELM-FATES experiments of
Exp-CTR and Exp-OBS

To test whether plant trait relationships established from field
measurements can improve the ELM-FATES simulations, we
derived three trait relationships based on the tropical studies
of Koven et al. (2020) and Longo et al. (2020). Using the dig-
itized data from Fig. 3 in Koven et al. (2020), the background
mortality Mbk (see Table 1 for parameter definitions) can be
empirically computed from the maximum carboxylation rate
Vcmax,

Mbk = 0.0082× e(0.0153×Vcmax). (1)

Based on the equations in Fig. S18 of Longo et al. (2020),
the leaf longevity (Lleaf) and wood density (WD) can be cal-
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Figure 1. Schematic representation of tradeoffs between early and late successional PFTs. Dark red denotes a higher parameter value. The
tradeoffs of the top five traits are used to constrain the parameter sampling.

Table 1. Summary of ELM-FATES trait parameters for two PFTs.

Parameter type Parameter name Symbol Unit Early PFT Late PFT Range

Optimized parameter Maximum carboxylation rate of
Rubisco at 25 ◦C, canopy top

Vcmax µmolCO2 m−2 s−1 Vcmax,early > Vcmax,late 40–105

Specific leaf area, canopy top SLA m2 g C−1 SLAearly > SLAlate 0.005–0.04

Background mortality rate Mbk 1 yr−1 Mbk, early >Mbk, late 0.005–0.05

Wood density WD g cm−3 WDearly <WDlate 0.2–1.0

Leaf longevity Lleaf year Lleaf, early < Lleaf, late 0.2–3.0

Maximum size of storage C
pool relative to the maximum
size of leaf C pool

CRs2l – same 0.8–1.5

Fixed parameter Root longevity Lroot year 0.9 2.6 –

Fine rooting distribution profile
parameter a

Ra – 7 7 –

Fine rooting distribution profile
parameter b

Rb – 2 0.4 –

BTRAN threshold below which
drought mortality begins.

Mbtran – 0.4 1.0× 10−6 –

Soil water potential at full
stomatal closure

ψclosure mm −113000 −242000 –

Parameter references (Huang et al., 2020; Koven et al., 2020; Longo et al., 2020; Holm et al., 2020; Cheng et al., 2021; Domingues et al., 2005; Chitra-Tarak et al., 2021;
Buotte et al., 2021).
Ra and Rb are parameters that determine the rooting depth and vertical distribution of fine roots.
BTRAN is the plant water stress factor. BTRAN ∈ [0,1], where 0 represents full water stress and 1 represents no water stress.

culated via the specific leaf area (SLA),

Lleaf = 0.0001×SLA(−2.32), (2)
WD=−0.583× ln(SLA)− 1.6754. (3)

These trait relationships were used to generate parameters for
Par-OBS.

Two initial sets of experiment ensembles, i.e., Exp-CTR
and Exp-OBS (procedure “P2” in Fig. 2), were conducted

based on Par-CTR and Par-OBS, respectively. For Par-CTR,
1500 parameter sets were generated from the procedure P1
based on the entire set of 11 parameters, i.e., Vcmax,early,
Vcmax,late, SLAearly, SLAlate, Mbk, early, Mbk, late, WDearly,
WDlate, Lleaf, early, Lleaf, late, and CRs2l (maximum size of
storage C pool relative to the maximum size of leaf C pool,
Table 1). For Par-OBS, 1500 parameter sets were generated
from the procedure P1 but were only based on five parame-
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Figure 2. Overall flowchart of experimental design and associated analysis.

ters (i.e., Vcmax,early, Vcmax,late, SLAearly,SLAlate, and CRs2l).
The other six parameters (Mbk, early, Mbk, late, WDearly,
WDlate, Lleaf, early, and Lleaf, late) in Par-OBS were calcu-
lated based on the trait relationships defined by Eqs. (1)–(3).
Therefore, compared to Par-CTR, the parameters in Par-OBS
are constrained by the observed trait relationships. The dis-
tributions of these two parameter sets are shown in Fig. S1.
Vcmax, SLA, and CRs2l have similar distributions between
Par-CTR and Par-OBS. Compared with Par-CTR, Par-OBS
has a narrower distribution of Mbk but broader distributions
of WD and Lleaf.

Exp-CTR and Exp-OBS each include 1500 total 350-
year ELM-FATES simulations. We averaged the last 4
years of these simulations for analysis, i.e., simulation out-
puts: Out-CTR and Out-OBS, respectively. To quantify the
PFT coexistence, we computed the biomass ratio between
early successional PFT and the total biomass, denoted as
BRe2t. For brevity, we denote the ELM-FATES experiments
with BRe2t ∈ [0.1, 0.9] as “coexistence”, BRe2t ∈ [0.0, 0.1)
as “late”, and BRe2t ∈ (0.9, 1.0] as “early”. We calculated

BRe2t based on Out-CTR and Out-OBS and then computed
the fraction of coexistence experiments in each ensemble. As
we will show in Sect. 3.1, when considering the observed
trait relationships, Exp-OBS has a lower fraction of coexis-
tence experiments. Therefore, only Exp-CTR was used for
further ML-related analysis. We also performed some anal-
ysis of Exp-CTR to explore whether the parameters of the
coexistence experiments have correlations with each other
(Sect. 3.2).

2.4.3 Procedure 3: ML surrogate models and
sensitivity analysis

Based on Exp-CTR, we trained XGBoost models to emulate
the ELM-FATES model behavior and analyzed the parameter
sensitivity (procedure “P3” in Fig. 2). A total of 16 variables
were used as XGBoost model features, including 11 param-
eters in Par-CTR and 5 parameter differences between early
and late successional PFTs. The corresponding ELM-FATES
annual average outputs were used as XGBoost model targets.
Specifically, six models were built, i.e., XGB_ET, XGB_SH,
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XGB_BW, XGB_GPP, XGB_AGB, and XGB_BR for pre-
dicting ET, SH, BW, GPP, AGB, and BRe2t, respectively. The
ML models were trained, tested, and subsequently utilized to
perform the parameter sensitivity analysis, as described in
Sect. 2.5.

2.4.4 Procedure 4: ML surrogate models application
and validation

The trained XGBoost models were then used to help se-
lect ELM-FATES parameters (procedure “P4” in Fig. 2).
First, initial parameter sets were generated from procedure
P1 based on the entire set of 11 parameters (Table 1, identi-
cal to the parameter set used for the generation of Par-CTR).
Second, these parameter sets and parameter differences were
sent to six XGBoost surrogate models to predict ET, SH,
BW, GPP, AGB, and BRe2t. Third, the predictions were fur-
ther filtered by two criteria: (1) compared to observations,
the relative biases of the predicted ET, SH, BW, GPP, and
AGB should be less than 15 %, and (2) the XGBoost model-
predicted BRe2t should be within [0.3, 0.7], which corre-
sponds to the range where the XGB-BR model exhibited rel-
atively better performance (Fig. 5). We repeated these three
steps until we obtained 1500 sets of XGBoost model pre-
dictions that matched the criteria. Finally, we obtained 1500
sets of XGBoost model predictions and their corresponding
1500 sets of parameters (Par-ML). We also checked whether
the selected Par-ML could match the empirical relationships
derived from the empirical analysis in procedure P2 (see
Sect. 3.2 and 3.5 for details). Following this, the 1500 sets of
parameters in Par-ML were sent to ELM-FATES to conduct
350-year runs (i.e., Exp-ML). The last 4 years of the simula-
tions were averaged (i.e., Out-ML) for further analysis. We
then filtered Out-ML based on a relative bias of 15 % or less
compared to observations and PFT coexistence to identify
the optimal experiments and corresponding parameters.

2.5 ML model development and SHAP analysis

The process of building each of the six ML surrogate models
is described. Taking BRe2tas an example, the 1500 pairs of
16 features and the corresponding simulated BRe2t were ran-
domly split into two groups, with 90 % used for training and
the remaining 10 % used for testing. Given that the coexis-
tence experiments only account for 20.6 % in the simulations
of Exp-CTR (Sect. 3.1), we used 90 % of the data for train-
ing to ensure sufficient coexisting samples were included in
the training process. Optimizing the hyperparameters of the
XGBoost model is crucial for its performance. To achieve
this, we employed the Bayesian optimization method during
the training process (Snoek et al., 2012). In addition, to avoid
overfitting during hyperparameter optimization, we utilized a
5-fold cross-validation method (Feigl et al., 2021). The mean
squared error was used as the objective function to achieve
the optimal hyperparameters. The root-mean-squared error

(RMSE) and R-squared value (R2) are used to quantify the
overall model performance for the training and testing data
prediction.

Based on the trained XGBoost models, we subsequently
employed a game theory approach called SHapley Additive
exPlanations (SHAP; Lundberg and Lee, 2017; Lundberg et
al., 2018, 2020) to gain insights into the parameter sensitiv-
ity of ELM-FATES. SHAP assumes that features (predictive
variables) interact and collaborate in a prediction game, with
each feature receiving a payout for its contributions. This ap-
proach provides a unified measure of feature importance to
explain both individual samples and the entire dataset, which
is distinct from intrinsic feature importance methods such
as the feature importance in XGBoost (Lundberg and Lee,
2017). This approach has been widely used in various fields,
including interpreting a digital soil mapping model (Padarian
et al., 2020) and identifying the critical drivers of wildfires
(Wang et al., 2021). In this study, we performed SHAP anal-
ysis for each XGBoost model and used the SHAP values as
a proxy to quantify the relative importance of ELM-FATES
parameters.

3 Results

3.1 Comparison between Exp-CTR and Exp-OBS

Constraining the input traits using the observed trait rela-
tionships yields slightly better ELM-FATES simulations of
water, energy, and carbon variables (Fig. 3a–e). The distribu-
tions of the relative biases of ET, SH, BW, and GPP have sim-
ilar ranges between the two sets of experiments (Fig. 3a–d).
Compared with Exp-CTR, the 50th percentiles of relative bi-
ases of ET, SH, BW, and GPP for Exp-OBS (with constrained
traits) are closer to zero, indicating Exp-OBS is slightly bet-
ter than Exp-CTR. The distribution of simulated AGB for
Exp-OBS is much narrower than Exp-CTR (Fig. 3e), which
could be due to the narrower distribution of Mbk (Fig. S1).

Exp-CTR has a much higher fraction of coexisting PFT
simulations than Exp-OBS (Fig. 3f and Table S2). Overall,
70.6 % of experiments in Exp-CTR and 94.5 % of experi-
ments in EXP-OBS have simulated BRe2t that is greater than
0.9. This indicates that both Par-CTR and especially Par-
OBS favor the early successional PFT. As for the coexisting
experiments with BRe2t ∈ [0.1, 0.9], Exp-CTR has about 5
times more coexisting experiments (20.6 %) than Exp-OBS
(4.1 %). Further filtering the coexisting cases by observa-
tions (Table S1), only 21 experiments remain in Exp-CTR,
and only 6 experiments remain in Exp-OBS (Table S2). Even
though Exp-OBS considered the observed trait relationships,
it has fewer coexisting cases within the reasonable observa-
tion ranges than Exp-CTR. Therefore, Exp-OBS is not used
in our remaining analysis.
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Figure 3. Distribution of ELM-FATES simulations for Exp-CTR and Exp-OBS. The y axis in (f) is logarithmic. Relative bias is equal to
simulation-observation

observation × 100 (%). In (a)–(e), the top horizontal bars with three vertical lines denote the relative bias at the 25th, 50th, and 75th
percentiles, respectively. The grey-shaded area in (f) represents the coexistence biomass ratio between 0.1 and 0.9.

3.2 Parameter analysis of Exp-CTR

We also tested whether simple parameter correlations can
be constructed to guide the simulation of PFTs coexistence.
No simple parameter correlations can be built to distinguish
the coexisting cases from the early and late cases in Exp-
CTR (Figs. 4, S2, and S3). Most parameter (or parameter
difference) spaces show large overlaps between early, late,
and coexisting cases (Figs. S2 and S3). Notably, we empiri-
cally built three linear equations based on the boundaries in
the parameter spaces for the coexisting cases (Fig. 4). Co-
existing cases are primarily located in spaces with SLAlate >

0.35×SLAearly+0.003 (Fig. 4a and d), Vcmax,diff <−4800×
SLAdiff+100 (Fig. 4b and e), and WDdiff > 55×SLAdiff−1.3
(Fig. 4c and f), where Vcmax,diff = Vcmax,early−Vcmax,late, and
SLAdiff and WDdiff are defined likewise. Within these con-
strained parameter spaces, the percentage of coexisting cases
increases from the original 20.6 % (i.e., 309 out of 1500)
to 32.6 % (i.e., 304 out of 932). Therefore, these empir-
ical correlations could help guide ELM-FATES parameter
selection for coexisting PFTs. On the other hand, a domi-
nant proportion (i.e., 67.4 % (100 %–32.6 %)) of experiments
are still either early or late cases within the constrained pa-
rameter spaces and cannot robustly predict PFT coexistence.
Moreover, despite further considering the observational con-
straints (black scatters in Fig. 4; Table S2), the 21 experi-
ments (2.3 %, 21 out of 932) are still sparsely distributed
in the parameter space of the coexisting cases, so no sim-
ple correlations can be developed based on these simula-

tions. Therefore, simple empirically built relationships be-
tween plant traits provide limited benefit to guiding ELM-
FATES parameter selection for modeling PFTs coexistence
while matching the observations. This finding provides addi-
tional motivation for the ML-based approaches.

3.3 XGBoost model performance

Overall, the XGBoost surrogate models show good per-
formance in predicting ELM-FATES simulations (Fig. 5).
Based on Exp-CTR (i.e., Par-CTR and Out-CTR), six XG-
Boost models were trained. In training, the RMSEs for the
six models are zero or nearly zero, and R2s are close to
one. In the testing, four XGBoost models (i.e., XGB_ET,
XGB_SH, XGB_BW, XGB_GPP) still show good perfor-
mance with small RMSE and large R2 (> 0.95). XGB_AGB
shows a little degradation with R2 of 0.88. The performance
of XGB_BR also shows degradation, with R2 decreasing
from 1.0 in training to 0.75 in testing. XGB_BR cannot pre-
dict the ELM-FATES-simulated BRe2t of 0 or 1 well when
only one PFT survives. This indicates that PFT competition
processes in ELM-FATES, which determine BRe2t and AGB,
are highly nonlinear and difficult to emulate even using a
state-of-the-art machine learning algorithm.

3.4 SHAP parameter importance analysis

Figure 6 shows the feature importance, including parame-
ters and parameter differences, for different XGBoost mod-
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Figure 4. Relationships between selected parameters of Par-CTR. These parameters are presented in three groups, i.e., green color for the
late cases with BRe2t ∈ [0.0,0.1), orange color for the coexisting cases with BRe2t ∈ [0.1,0.9], and blue color for the early cases with
BRe2t ∈ (0.9,1.0]. Black stars represent coexistence cases further filtered by observational constraints. Panels (d)–(f) are the corresponding
kernel density estimate plots of the scatter plots shown in (a)–(c). Vcmax,diff = Vcmax,early−Vcmax,late. SLAdiff and WDdiff are defined
likewise.

els. Features (on the y axis) with a higher mean absolute
SHAP value (on the x axis) denote a larger contribution to
the XGBoost model prediction. The number of most impor-
tant features is different for predicting ET, SH, BW, and GPP
compared to predicting AGB and BRe2t.

For the XGBoost models that predict ET, SH, BW, and
GPP, the top three features have the largest SHAP values
compared to the rest (Fig. 6a–d). Notably, these top three fea-
tures are the same and correspond to the early successional
PFT, i.e., Vcmax,early, SLAearly, and Lleaf, early. Most ELM-
FATES experiments in Exp-CTR used as the training samples
for the XGBoost models are early cases. Therefore, the pa-
rameters of early successional PFT have dominant contribu-
tions in the XGBoost model predictions of overall grid-level
fluxes. These three parameters are positively correlated with
ET and GPP and negatively correlated with SH and BW (red
vs. blue bars in Fig. 6a–d; see Fig. S4 for more details), re-
flecting the fundamental carbon metabolism of the typically
dominant early successional plant.

For the XGBoost surrogate models of AGB and BRe2t,
more than eight features have large SHAP values (Fig. 6e
and f). Both early and late successional PFT parameters con-

tribute to predicting the two variables. Compared with the
predictions of ET, SH, BW, and GPP with only three major
features, predicting AGB and BRe2t is relatively complex.
This is because AGB and particularly BRe2t are closely re-
lated to the PFT competition process in which both the early
and late PFT traits are crucial. Especially for BRe2t, the most
important features are the parameter difference between the
early and late successional PFTs. For example, SLAdiff is
positively correlated to BRe2t. Therefore, to have coexisting
PFTs with BRe2t ∈ [0.1,0.9], the SLA of two PFTs should
be neither too large nor too small.

3.5 XGBoost model parameter selection

Using the XGBoost surrogate models, the Par-ML was se-
lected, including 1500 sets of parameters and the corre-
sponding parameter differences between the early and late
successional PFTs (Sect. 2.4, procedure P4 in Fig. 2). We
examined whether Par-ML matches the empirical relation-
ships shown in Fig. 4 (Sect. 3.2), i.e., SLAlate > 0.35×
SLAearly+ 0.003, Vcmax,diff <−4800×SLAdiff+ 100, and
WDdiff > 55×SLAdiff− 1.3. In total, 99.1 % (1486 out of
1500) of parameter sets are consistent with the empiri-
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Figure 5. The performance of XGBoost surrogate models in the training and testing for predicting (a) ET, (b) SH, (c) BW, (d) GPP, (e) AGB,
and (f) BRe2t.

cal relationships, indicating the XGBoost models implicitly
learned these simple relationships.

The parameter distributions of Par-ML show different pat-
terns from the early and late parameters of Par-CTR (green
vs. blue regions in Fig. 7), but there are large overlaps be-
tween the coexistence parameters of Par-CTR and Par-ML
(orange vs. green regions, e.g., the third column in Fig. 7).
This indicates that the XGBoost surrogate models learned
to select parameters around the parameters’ space of the
coexisting cases. Par-ML also tends to have a smaller pa-
rameter difference between the early and late successional
PFTs in terms of SLAdiff and Vcmax, diff. However, Par-ML
also shows different patterns from the coexisting parame-
ters of Par-CTR, probably because the XGBoost-selected pa-
rameters were also constrained by multiple observations and
implicitly considered parameter tradeoffs. For example, the
Vcmax,early and Vcmax, late of Par-ML are located in narrower
ranges than the coexisting parameters of Par-CTR (first two
columns in Fig. 7).

3.6 Validation of ML selected parameters

ELM-FATES simulations of Exp-ML based on the ensem-
ble parameters of Par-ML selected by the XGBoost surrogate
models can better capture the observations and have more co-
existing cases than Exp-CTR (Fig. 8). The median values of
simulated variables for Exp-ML are closer to observations
with relative biases closer to zero than Exp-CTR (Fig. 8a,

blue vs. green boxes). The Exp-ML-simulated variables also
have more concentrated distributions than Exp-CTR. Com-
pared to the skewed distribution of BRe2t in Exp-CTR with a
large proportion of early cases, Exp-ML has a more normally
distributed BRe2t (Fig. 8b). Specifically, Exp-ML has about
3.6 times more coexisting cases than Exp-CTR, i.e., 73.1 %
(1097 out of 1500) in Exp-ML vs. 20.6 % (309 out of 1500)
in Exp-CTR (Table S3). After being further constrained by
observations (Table S3), one-third of the experiments (i.e.,
495 out of 1500) in Exp-ML remain, and this ratio is 23.6
times more than 1.4 % (21 out of 1500) in Exp-CTR.

The XGBoost surrogate model-predicted variables also
match well with those simulated using ELM-FATES in Exp-
ML (Fig. 8, orange vs. green boxes), indicating the over-
all reasonable accuracy for the XGBoost model predictions.
Compared to the ELM-FATES results using Par-ML, the XG-
Boost models show better performance for ET, SH, BW, and
GPP but relatively degraded performance for AGB and BRe2t
(Fig. S5). It is consistent with the performance of the XG-
Boost models’ training and testing results (in Sect. 3.3).

3.7 Parameter tradeoff for coexistence experiments

Parameters of the early and late successional PFTs show
tradeoffs for the coexisting experiments. Large relative dif-
ferences in SLA, Vcmax, and WD (more negative) favor the
early successional PFT, while large relative differences in
Mbk and Lleaf favor the late successional PFT. Therefore, in
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Figure 6. Mean absolute SHAP values for different XGBoost surrogate models for the top 10 most important features. Absolute SHAP values
are sorted in decreasing order from top to bottom. For each feature (y axis) in each XGBoost model, the Spearman correlation coefficient is
calculated between the feature values and the corresponding SHAP values (Fig. S4). The red color means that a given feature is positively
correlated with the predicting variable, whereas blue denotes a negative correlation.

Exp-CTR, compared to the early and late cases, the coex-
isting cases have intermediate relative differences in SLA,
Vcmax, WD, Mbk, and Lleaf (dashed boxes in Fig. 9). The co-
existing cases in Exp-ML have similar patterns with interme-
diate relative differences in SLA, Vcmax and Lleaf compared
to the early and late cases (solid boxes in Fig. 9). However,
Mbk and especially WD show the largest relative difference
for the coexisting cases compared to the early and late cases
in Exp-ML. These two parameters still show a tradeoff in
determining coexisting PFTs because larger WD favors the
early PFT, whereas larger Mbk favors the late PFT.

In Exp-ML, the parameter spaces of the coexisting cases
show large overlaps with the early and late cases (Fig. S6).
There are no simple correlations between these parameters

to distinguish the coexisting cases from the early and late
cases (also see Sect. 3.2). Although WDdiff of the coexisting
cases still overlap with the early and late cases, when WDdiff
is less than roughly −0.4 g cm−3, only coexisting cases exist
(Fig. S6). Nevertheless, this rule (i.e., WDdiff <−0.4) alone
cannot ensure PFT coexistence (see Fig. 7).

3.8 Seasonal variation comparison

Figure 10 shows the seasonal variations in ET, SH, BW, and
GPP for observations and simulations of the finally selected
495 experiments in Exp-ML with good model performance
(Table S3). Overall, the simulated ET shows a similar sea-
sonal variation to ET observation (Fig. 10a), with relatively
small ET in the wet season (November–May), high ET in the
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Figure 7. Comparison of parameter or parameter difference in Par-CTR vs. Par-ML for 11 features. The diagonal plots represent each
parameter’s distribution, and the rest of the subplots are kernel density estimate plots. There are three groups, i.e., blue for the early and late
cases of Par-CTR, orange for the coexisting cases of Par-CTR, and green for Par-ML selected by XGBoost models.

dry season (June–October), and ET peaks in August. How-
ever, compared to the observations, ELM-FATES overesti-
mates ET, especially during the wet season. The simulated
SH also shows a similar seasonal variation with the SH ob-
servation except in March. ELM-FATES overestimated SH
from January to May but underestimated SH from Septem-
ber to December (Fig. 10b). Due to the discrepancy between
simulated ET and SH, the model underestimates BW from
September to December (Fig. 10c).

The simulated GPP has minor seasonal variability com-
pared to the observed GPP. ELM-FATES overestimates GPP
from June–August in the dry season but underestimates GPP
over October–December. The lower GPP over June–August
indicates that plants may be relatively water stressed or en-

ergy limited during these months. However, the large ET ob-
servation over the same period implies that this site is un-
likely to be water limited or strongly energy limited. The
ELM-FATES simulations also display little water stress year-
round (Fig. S7). Therefore, there are likely elements of the
seasonal cycle (e.g., phenological responses of photosyn-
thetic capacity) that are not yet captured here. Additionally,
tower estimates of GPP may also have large uncertainties.
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Figure 8. Comparison between the ELM-FATES simulations for Exp-CTR and Exp-ML. (a) Relative bias for simulated ET, SH, BW, GPP,
and AGB. (b) Simulated BRe2t. ML prediction represents the selected XGBoost model predictions after filtering with observation and
biomass ratio (i.e., the XGB_prds, procedure P4 in Fig. 2).

Figure 9. Parameter relative difference (%) between early successional PFT and late successional PFT for Exp-CTR (box with dashed line)
and Exp-ML (box with solid line). Parameter relative difference is calculated, taking SLA as an example, as follows:

SLAearly−SLAlate
(SLAearly+SLAlate)/2

×

100 %.

4 Discussion

4.1 Limited guidance of observed trait relationships for
PFT coexistence modeling in FATES

We found degraded PFT coexistence in ELM-FATES simu-
lation when observed trait relationships are considered. More
specifically, constrained by observed trait relationships, Exp-
OBS has fewer coexisting cases than Exp-CTR, which does

not consider the observed trait relationships. The observed
trait relationships were derived from site measurements in
the species-rich tropical ecosystem where plant coexistence
commonly happens (Kraft et al., 2008), which is expected to
enhance the PFT coexistence simulations. This inconsistency
could be due to several possible reasons. First, ELM-FATES
is a typical “trait filtering” model (Fisher et al., 2018), and the
realistic simulation of PFT dynamics largely depends on the
fidelity with which trait tradeoff surfaces are prescribed in the
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Figure 10. Mean monthly observations and selected optimal ELM-FATES simulations in Exp-ML for (a) ET, (b) SH, (c) BW, and (d) GPP.
Each red line represents one experiment simulation (4-year simulation average). The black curves are monthly climatologic averages from
2000 to 2008, and the grey-shaded area represents the interannual variabilities (i.e., mean± standard deviation).

model (Scheiter et al., 2013). Implicit representation of trait
tradeoff in the current ELM-FATES model may not be well
balanced, which may differ from the observed trait relation-
ships that lead to coexistence in the real world (at least for the
ecosystem at our study site). In particular, there may be cor-
related tradeoffs that are measured (e.g., with below ground
processes, Chitra-Tarak et al., 2021) but not represented in
the model. A second reason could be the mismatch between
different spatial scales. The observed trait relationships are
derived from field measurements across tropical forests over
a large region with diverse species and climate. For exam-
ple, the relationship in Eq. (1) is for plant species in Panama.
In contrast, ELM-FATES simulations were conducted at the
K34 site scale with specific species composition. Therefore,
the large-scale trait relationships may not reflect the small-
scale trait relationships. Wright et al. (2005) showed that trait
relationships fitted for individual sites varied considerably.
Third, the observed trait relationships are based on simplified
equations, which may not be able to comprehensively reflect
PFT coexistence. For example, although Eq. (2) derived from
Longo et al. (2020) can reflect the negative relationship be-
tween SLA and Lleaf, the R2 of this equation is about 0.49,
which may not be accurate enough to represent trait relation-
ships. Additionally, these Eqs. (1)–(3) do not consider the

uncertainty in trait covariance. In Koven et al. (2020), the
uncertainties between trait covariance were considered when
sampling parameters for FATES experiments. Furthermore,
machine learning models can also be employed to extract the
relationships between plant traits, which can then be incor-
porated into ELM-FATES and evaluated in future studies.

4.2 Advantages of ML surrogate models on improving
PFT coexistence modeling

ELM-FATES simulations driven by parameters selected us-
ing the XGBoost models essentially improved PFT coexis-
tence and better captured observations. Compared to the ini-
tial Exp-CTR, which was used to train the XGBoost mod-
els, the proportion of coexisting PFTs in Exp-ML reaches
73.1 %, 3.6 times more than the 20.6 % in Exp-CTR. Fur-
ther filtering the coexistence experiments by observations,
Exp-ML still has 33.0 % of experiments left with good model
performance, 23.6 times that of the 1.4 % of experiments in
Exp-CTR with good performance. Our ML-based approach
also outperforms the empirical correlations built in Sect. 3.2,
which only yield 32.5 % of coexistence experiments, and this
reduces to 2.3 % of experiments if further constrained by ob-
servation. The large proportion of optimal experiments se-
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lected by our ML approach also outperforms previous studies
using direct filtering approaches. Buotte et al. (2021) con-
ducted two stages of experiments to select optimal param-
eters for CLM-FATES modeling with two conifer species;
only 0.3 % (1 out of 360) of the cases met the given crite-
ria in the first stage of experiments, which increased to 5.5 %
in the second stage of experiments. Huang et al. (2020) con-
ducted CLM-FATES modeling with two tropical PFTs at the
Tapajós National Forest sites; only 1 parameter set out of 70
(about 1.4 %) was selected with reasonable fractions of two
PFTs and minor errors compared to observations. In addi-
tion, the parameter selection procedures of these two studies
require some degree of subjective decision making and ex-
pert knowledge. On the other hand, our ML-based approach
takes a more objective procedure, and little expert knowl-
edge is required except for the initial determination of the
parameter reference ranges. Importantly, we believe this ap-
proach can be repeatable as, e.g., model developments lead to
changes between the parameter values and model predictions
of forest structure and function and can be used to define
constrained ensemble values that will allow assessment of
confidence in model predictions. Even though simulating the
coexistence of different plants may not be a big concern for
individual-based VDMs, e.g., LPJmL-FIT (Sakschewski et
al., 2015, 2016) and TROLL (Maréchaux and Chave, 2017),
our approach also could be applied to the selection of key pa-
rameters that regulate vegetation dynamics in these models.

Our study also reproduced the observations satisfactorily.
Holm et al. (2020) conducted the ELM-FATES simulation
with only one PFT considered at the same K34 site. Our
study yields better or similar performance in the magnitude
of AGB and the magnitude and seasonal variation in GPP,
ET, SH, and BW (Table 2 and Fig. 3 in Holm et al., 2020,
vs. Figs. 8 and 10 in this study). It should also be noted
that the overestimation of simulated energy fluxes (latent
heat and SH) from January to May could be associated with
the energy-related processes (e.g., energy partition, surface
albedo) in ELM-FATES. Other potential reasons could be re-
lated to the uncertainties in atmospheric forcing and the com-
mon issue of incomplete energy budget closure at eddy co-
variance towers (Wilson et al., 2002; Foken, 2008; Da Rocha
et al., 2009).

Compared to the predictions of GPP, ET, SH, and BW
simulated by ELM-FATES, the XGBoost surrogate models
show slightly degraded performance in predicting the sim-
ulated BRe2t and AGB (Figs. 5 and S5). Three parameters
(Vcmax,early, SLAearly, and Lleaf, early) mainly control the pre-
dictions of ET, SH, BW, and GPP, while eight features are
crucial for predicting AGB and BRe2t. Even though the XG-
Boost algorithm has an excellent ability to capture com-
plex nonlinear relationships, it does not predict the PFT-
competition-related variables of AGB and BRe2t well be-
cause the physical model cannot robustly predict coexist-
ing PFTs due to the higher dimensionality of predicting PFT
composition as compared to other ecosystem variables. An-

other important point worth mentioning is the small sample
size of coexistence cases in Exp-CTR, with only 309 cases
having BRe2t in the range of [0.1, 0.9], while the major-
ity of cases are dominated by either early or late succes-
sional PFT. This limited sample size may not provide enough
data to train the XGBoost surrogate model sufficiently for
predicting BRe2t within the range of [0.1, 0.9]. Therefore,
further studies are still needed to improve the emulation
of PFT-competition-related variables. Other approaches that
have been applied in VDMs but not specifically for PFT
coexistence modeling, for example, the generalized likeli-
hood uncertainty estimation (GLUE) approach (Zhang et al.,
2022) and the Bayesian model emulation approach (Fer et
al., 2018), could provide alternative ways. Furthermore, we
suggest exploring other machine learning algorithms, such
as Gaussian processes and neural network algorithms, which
may be better suited for capturing nonlinear correlations and
learning from sparse data.

Overall, our study presents a reproducible approach that
utilizes machine learning to identify parameter values that
improve model fidelity against observations and promote co-
existence between plant functional types in vegetation de-
mography models across diverse ecosystems. This approach
has the potential to enhance the modeling of PFT coexis-
tence in other ecosystems, such as the mixed conifer forests
in Sierra Nevada, California (Buotte et al., 2021); Amazon
forests subject to selective logging (Huang et al., 2020);
and tropical forests with heterogeneous soils and subject to
droughts in Panama (Cheng et al., 2021).

4.3 Trait tradeoffs between coexisting PFTs

Trait-related parameters show tradeoffs between early and
late successional PFTs for the ELM-FATES-simulated co-
existing experiments. The relative differences between the
two PFTs in SLA, Vcmax, and WD complementarily coordi-
nate with the relative difference in Mbk and Lleaf and hence
avoid competitive exclusion (Fig. 9). These ELM-FATES re-
flected tradeoffs are consistent with the niche-based species
coexistence mechanisms of environmental filtering and niche
partitioning (Michalko and Pekár, 2015; Adler et al., 2013).
On the one hand, in the coexisting cases, the relative dif-
ferences between the two PFTs’ parameters should not be
considerable. For example, a large difference in SLA more
likely favors the early cases (dashed green box in Fig. 9).
This is related to environmental filtering in which coexist-
ing species require some degree of convergence in strategy
to survive and persist under given environmental conditions
(Cadotte and Tucker, 2017; Thakur and Wright, 2017). On
the other hand, some degree of differences should exist be-
tween the two PFTs’ parameters in the coexisting cases. This
is related to niche partitioning to ensure either differences
in resource requirements or differences in tolerance to sur-
rounding conditions (Kraft et al., 2015; Fowler et al., 2013).
Phenomenological evidence has shown that functional trait

https://doi.org/10.5194/gmd-16-4017-2023 Geosci. Model Dev., 16, 4017–4040, 2023



4032 L. Li et al.: A machine learning approach targeting parameter estimation for PFT coexistence modeling

variation promotes coexistence or increases species richness
(Uriarte et al., 2010; Angert et al., 2009; Adler et al., 2006;
Mason et al., 2012; Ben-Hur et al., 2012).

In our ELM-FATES simulations, the primary axis of com-
petition for resources is light. The tradeoffs between the two
PFTs’ parameters differentiate their vertical competition in
light absorption, which has been shown to strongly control
tropical forest community composition (Farrior et al., 2016;
Poorter et al., 2003). Even though the early PFT has a shal-
lower rooting depth than the late PFT, there is no critical dry
condition during our simulation period (i.e., corresponding
to values of the water stress factor (BTRAN) close to 1.0 in
Fig. S7). Therefore, competition for water resource access
negligibly contributes to PFT coexistence in this study. Pre-
vious tropical studies also revealed these coexistence mech-
anisms. At a tropical forest site in eastern Ecuador, Kraft et
al. (2008) found that concurring trees are often less ecolog-
ically similar, and both environmental filtering (different to-
pographic habitats of ridgetops vs. valley) and niche differ-
entiation simultaneously contribute to species coexistence.
Swenson and Enquist (2009) also found that at small spatial
scales in a tropical forest, most traits of coexisting species
were under-dispersed, consistent with environmental filter-
ing, while the seed mass and maximum height were over-
dispersed, reflecting niche partitioning.

4.4 Limitations and further model development

Some limitations exist in our experiments. Niche partitioning
is a critical aspect of promoting species coexistence, which
is closely related to spatial heterogeneity, temporal hetero-
geneity, disturbances (e.g., nature enemy, fire), and resource
partitioning (Adler et al., 2013). In our current ELM-FATES
simulations, some processes that have been or are being de-
veloped in the model are not considered. These processes
include nutrient limitation (Holm et al., 2020), fire distur-
bance (Fisher et al., 2015), subsurface lateral flow (Fang et
al., 2022), and plant hydraulics (Chitra-Tarak et al., 2021; Li
et al., 2021). Ignoring these processes could limit the poten-
tial of niche partitioning among PFTs in our ELM-FATES
simulations. Topography has been recognized as an essen-
tial spatial heterogeneity factor for tropical forests, but it is
not considered in ELM-FATES (Kraft et al., 2008; Costa et
al., 2022). For example, Fang et al. (2022) coupled a three-
dimensional hydrology model (ParFlow) with ELM-FATES
and found that lateral flow plays a prominent role in govern-
ing aboveground biomass, and Cheng et al. (2021) also found
a critical role for subsurface hydrology on coexistence. As
these processes are added to the model, the reproducibility
aspects of the XGBoost method to identify PFT combina-
tions that match a broad range of criteria will be particularly
important.

Lacking other features or processes could also affect PFT
coexistence in the current FATES. For example, plant trait
plasticity, the idea that plants can adjust their morpholog-

ical and/or physiological traits to better adapt to the envi-
ronment (Nicotra et al., 2010; Bloomfield et al., 2018; Mc-
Dowell et al., 2022), is also not appropriately considered in
FATES. Leaf traits such as Vcmax and SLA do vary vertically
through the canopy in FATES via a prescribed relationship
described by Lloyd et al. (2010). Liu and Ng (2019) found
that the SLA of a desert shrub is significantly correlated with
seasonal water availability. Additionally, FATES only con-
siders the inter-PFT variance of functional traits (e.g., dif-
ferent Vcmax for early and late PFTs). However, studies re-
vealed that trait variations commonly exist within and be-
tween species (Wright et al., 2005; Engemann et al., 2016;
Meng et al., 2015; Dong et al., 2020; Siefert et al., 2015), and
these play a vital role in maintaining plant diversity (Violle
et al., 2012; Lu et al., 2017). Reproductive features that en-
hance competitive exclusion tendencies have been illustrated
to affect coexistence (Maréchaux and Chave, 2017; Fisher
et al., 2018). Hanbury-Brown et al. (2022) discussed the im-
portance of the representation of forest regeneration, includ-
ing improving parameters and algorithms for reproductive al-
location, dispersal, seed survival and germination, environ-
mental filtering in the seedling layer, and tree regeneration
strategies adapted to wind, fire, and anthropogenic distur-
bance regimes. Besides, both growth–survival and stature–
recruitment tradeoffs are critical to accurately predict suc-
cessional patterns in tropical forest structure and competition
(see details in Rüger et al., 2020), which should also be better
considered in future model development. Furthermore, mea-
sured plant traits are increasingly available. For example, the
TRY datasets (Kattge et al., 2020) can be used to improve
the model process and parameterizations. Future studies into
properly and adequately using these datasets to guide VDM
parameterizations are advocated.

4.5 Enhancing VDM prediction with machine learning

We provide a brief overview of how machine learning can
be applied to improve the modeling of plant dynamics,
specifically in the context of vegetation demographic mod-
els. Firstly, ML can be used to derive trait parameter val-
ues. For instance, in this study, ML could be applied to re-
place the simple equations to derive the relationships be-
tween measured traits (Sect. 4.1). By integrating multiple
datasets, including in situ measurements, atmospheric forc-
ing, and remote sensing, ML could derive the spatial patterns
and temporal variations in trait parameters for use in large-
scale VDM modeling. Secondly, ML can be utilized to opti-
mize parameters by developing surrogate models that emu-
late the relationships between the parameters and the VDM
simulations and using the surrogate models to identify op-
timal parameter values. This application has demonstrated
success in this study and previous studies (e.g., Tsai et al.,
2021; Dagon et al., 2020; Watson-Parris et al., 2021). An-
other benefit of using ML in VDMs is the ability to develop
benchmark datasets. For example, studies have successfully
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employed ML to derive AGB datasets for various ecosys-
tems (Morais et al., 2021; Zhang et al., 2020; Li et al., 2020;
da Bispo et al., 2020; Pham et al., 2020). These datasets can
serve as benchmarks to evaluate the accuracy of VDM simu-
lations. Lastly, ML can be used to replace semiempirical sub-
models with only small theoretical bases in DGVMs (Reich-
stein et al., 2019). For example, accurately modeling wildfire
using process-based wildfire models integrated in DGVMs
remains challenging. However, ML-based wildfire models
have shown advantages in accuracy and computational ef-
ficiency (Rodrigues and de la Riva, 2014; Jain et al., 2020;
Sayad et al., 2019) and have the potential to be employed in
Earth system models to improve wildfire simulations (e.g.,
Zhu et al., 2022).

5 Conclusions

In this study, we explored two possible solutions to improve
PFT coexistence modeling in a cohort-based model (ELM-
FATES): (1) using plant trait relationships established from
field measurements and (2) using machine learning surrogate
models to optimize trait parameter values. Three ensembles
of ELM-FATES experiments were conducted over a tropi-
cal forest site at Manaus, Brazil. We found that consider-
ing the observed trait relationships (Exp-OBS) slightly im-
proves the simulations of water (ET), energy (SH and BW),
and carbon (GPP, AGB) when compared against observations
but degrades the simulation of PFT coexistence. Based on
Exp-CTR, the ML surrogate models were built to optimize
the ELM-FATES parameters by integrating the observations
(i.e., ET, SH, BW, GPP, and AGB) and PFT coexistence crite-
ria. Exp-ML, with parameters selected by the ML surrogate
models, vastly improves the simulation of PFT coexistence
and also better reproduces the annual means and seasonal
variations in ET, SH, BW, GPP, and the filed inventory of
AGB. This study demonstrates the benefits of using machine
learning models to improve the modeling of PFT coexistence
in ELM-FATES, with important implications for modeling
the response and feedback of ecosystem dynamics to climate
change. Our results also suggest that the incorporation of ad-
ditional mechanisms into ELM-FATES is essential for robust
modeling of coexisting PFTs.
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