GXTARIAL - BOWED

DESCRIPTION

A BSH retaining ring is designed to compensate for accumulated tolerances on a shaft. Once snapped into the groove, bowed rings exert a force or a "preload" on the retained parts for the range specified.

HOW TO IDENTIFY

1. Verify bowed external design and appearance.
2. Measure the shaft diameter (Ds).
3. Measure the maximum ring cross section (S Max).
4. Measure the minimum ring cross section (S Min).
5. Measure the ring thickness (T).
6. Find the part in the chart.

Item \#	Shaft Diameter	Groove Size					Ring Size \& Weight							Clearance Diameter		Thrust Load ${ }^{1}$ Sq. Corner Abutment	
		Diameter		Width		Depth	FreeDiameter		Thickness ${ }^{2}$		Bow Height		$\begin{gathered} \text { Weight } \\ \text { Per } \\ 1,000 \\ \text { pcs. } \end{gathered}$	Expanded Over Shaft	Released in Groove	Ring Safety Factor of 4	Groove Safety Factor of 2
	Ds	Dg	Tol.	W	Tol.	d	Df	Tol.	T	Tol.	Bh	Tol.	lbs.	L1	L2	$\begin{gathered} \mathrm{Pr} \\ \text { lbs. } \end{gathered}$	$\begin{gathered} \mathrm{Pg} \\ \text { lbs. } \end{gathered}$
BSH-025	.250" (1/4)	.230"	$\begin{aligned} & \pm .0015^{\prime \prime} \\ & .0015^{\prime \prime} * \end{aligned}$.040"	$\begin{aligned} & +.003 / \\ & -.000 " 1 \end{aligned}$.010"	.225"	$\begin{aligned} & +.002 / \\ & -.004 " 1 \end{aligned}$.025"	$\pm .002 "$. 047 "	$\pm .006 "$. 21	.45"	. 43 "	599	175
BSH-027	.276"	.255"	$\begin{aligned} & \pm .002 " \\ & .002 " * * \end{aligned}$.040"		.010"	.250"	$\begin{aligned} & +.002 / \\ & -.005 " 1 \end{aligned}$.025"	$\pm .002 "$. 047 "	$\pm .006{ }^{\prime \prime}$. 23	.48"	.46"	660	195
BSH-028	.281" (9/32)	. 261 "		.040"		.010"	. 256 "		.025"	$\pm .002 "$. 047 "	$\pm .006{ }^{\prime \prime}$. 24	.49"	.47"	670	200
BSH-031	.312" (5/16)	.290"		.040"		.011"	. 281 "		.025"	$\pm .002 "$. 047 "	$\pm .006 "$. 27	.54"	.52"	751	240
BSH-034	.344" (11/32)	. 321 "		.040"		.011"	.309"		.025"	$\pm .002 "$. 047 "	$\pm .006 "$. 31	.57"	.55"	812	265
BSH-035	. 354 "	.330"		.040"		.012"	.320"		.025"	$\pm .002 "$. 047 "	$\pm .006{ }^{\prime \prime}$. 35	.59"	.57"	832	300
BSH-037	. 375 " (3/8)	. 352 "		.040"		.012"	. 338 "		.025"	$\pm .002 "$. 047 "	$\pm .006 "$. 39	.61"	.59"	883	325
BSH-039	. 394 "	. 369 "		.040"		.012"	. 354 "		.025"	$\pm .002 "$. 047 "	$\pm .006{ }^{\prime \prime}$. 42	.62"	.60"	954	335
BSH-040	.406" (13/32)	. 382 "		.040"		.012"	. 366		.025"	$\pm .002 "$. 047 "	$\pm .006 "$. 43	.63"	.61"	964	350
BSH-043	.438" (7/16)	.412"		.040"		.013"	. 395 "		.025"	$\pm .002 "$. $047{ }^{\prime \prime}$	$\pm .006 "$. 50	.66"	.64"	1,035	400
BSH-046	.469" (15/32)	. 443 "		.040"		.013"	.428"		.025"	$\pm .002 "$. 047 "	$\pm .006 "$. 54	.68"	.66"	1,117	450
BSH-050	.500" (1/2)	.468"	$\begin{aligned} & \pm .002 " \\ & .004 " * * \end{aligned}$.055"		.016"	.461"		.035"	$\pm .002 "$. 063 "	$\pm .007{ }^{\prime \prime}$. 91	.77"	.74"	1,675	550
BSH-055	.551"	.519"		.055"		.016"	.509"	$\begin{aligned} & +.005 / \\ & -.010 " \end{aligned}$.035"	$\pm .002 "$. 063 "	$\pm .007{ }^{\prime \prime}$. 90	. 81 "	.78"	1,827	600
BSH-056	.562" (9/16)	.530"		.055"		.016"	.521"		.035"	$\pm .002 "$. 063 "	$\pm .007$ "	1.1	.82"	.79"	1,878	650
BSH-059	.594" (19/32)	.559"	$\begin{aligned} & \pm .003 " \\ & .004 " * * \end{aligned}$.055"		.017"	.550"		.035"	$\pm .002 "$. 063 "	$\pm .007{ }^{\prime \prime}$	1.2	.86"	.83"	1,979	750
BSH-062	.625" (5/8)	.588"		.055"		.018"	.579"		.035"	$\pm .002 "$. 063 "	$\pm .007$ "	1.3	.90"	.87"	2,091	800
BSH-066	.669"	.629"		.055"		.020"	.621"		.035"	$\pm .002 "$. 063 "	$\pm .007$ "	1.4	.93"	.89"	2,233	950
BSH-066	.672" (43/64)	.631"		.055"		.020"	.621"		.035"	$\pm .002 "$. 063 "	$\pm .007{ }^{\prime \prime}$	1.4	.93"	.89"	2,233	950
BSH-068	.688" (11/16)	.646"		.062"		.021"	.635"		.042"	$\pm .002 "$. 073	$\pm .008{ }^{\prime \prime}$	1.8	1.01"	.97"	3,451	1,000
BSH-075	.750" (3/4)	.704"		.062"		.023"	.693"		.042"	$\pm .002 "$. 073 "	$\pm .008{ }^{\prime \prime}$	2.1	1.09"	1.05"	3,756	1,200

[^0]TO ORDER DIFFERENT MATERIAL/FINISHES, APPEND SUFFIX UITH YOUR CHOICE:
"NONE" • -BC • -SS • -ZD • -Z3

GKTARMAL - BOWED

Item \#	Distance Outer Groove Wall to Face of Retained Part			Force Needed to Flatten Rings		Radii \& fers	Max. Load w/R Max. or Ch Max.	Edge Margin	Lug Height		Maximum Section		Minimum Section		Hole Diameter		Gauging Dia.	RPM Limits Standard Material
	$\underset{\text { Min. }}{\mathrm{J}}$	$\underset{\text { Max. }}{\mathrm{J}}$	J Tol. Min/Max	lbs.	$\begin{gathered} R \\ \text { Max. } \end{gathered}$	$\begin{gathered} \hline \text { Ch } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \hline P^{\prime} r \\ \text { lbs. } \end{gathered}$	Y	H	Tol.	$\begin{gathered} \hline s \\ \text { Max. } \end{gathered}$	Tol.	$\begin{gathered} \hline \mathrm{S} \\ \text { Min. } \end{gathered}$	Tol.	R	Tol.	Gd Min.	RPM
BSH-025	.030"	.038"	.008"	50	.018"	. $011{ }^{\prime \prime}$	470	.030"	.080"	$\pm .003 "$.035"	$\pm .003^{\prime \prime}$.025"	$\pm .003 "$.290"	$\begin{aligned} & +.010 / \\ & -.002 " \end{aligned}$.290"	80,000
BSH-027	.030"	.038"	.008"	50	.0175"	.0105"	470	.031"	. 081 "	$\pm .003 "$.035"	$\pm .003 "$.024"	$\pm .003 "$. 315 "		.315"	76,000
BSH-028	.030"	.038"	.008"	50	.020"	.012"	470	.030"	.080"	$\pm .003 "$.038"	$\pm .003 "$.0255"	$\pm .003 "$. 326		. 326 "	74,000
BSH-031	.030"	.038"	.008"	50	.020"	.012"	470	.033"	.087"	$\pm .003 "$.040"	$\pm .003 "$.026"	$\pm .003 "$. 357 "		. 357 "	70,000
BSH-034	.030"	.038"	. 008	45	. 021 "	.0125"	470	.033"	.087"	$\pm .003 "$.042"	$\pm .003 "$.0265"	$\pm .003 "$.390"		.390"	64,000
BSH-035	.030"	.038"	.008"	45	.023"	.014"	470	.036"	.087"	$\pm .003 "$.046"	$\pm .003 "$.029"	$\pm .003 "$.405"		.405"	62,000
BSH-037	.030"	.038"	. 008	45	.026"	.0155"	470	.036"	.088"	$\pm .003 "$.050"	$\pm .003 "$.0305"	$\pm .003 "$. 433 "		. 433 "	60,000
BSH-039	.030"	.038"	.008"	40	.027"	.016"	470	.037"	.087"	$\pm .003 "$.052"	$\pm .003 "$.031"	$\pm .003 "$.452"		.452"	56,500
BSH-040	.030"	.038"	.008"	40	.0285"	.017"	470	.036"	.087"	$\pm .003 "$.054"	$\pm .003^{\prime \prime}$.033"	$\pm .003 "$.468"		.468"	55,000
BSH-043	.030"	.038"	.008"	35	.029"	.0175"	470	.039"	.088"	$\pm .003 "$.055"	$\pm .003 "$.033"	$\pm .003 "$. 501 "		. 501 "	50,000
BSH-046	.030"	.038"	.008"	35	. 031 "	.018"	470	.039"	.088"	$\pm .003 "$.060"	$\pm .003 "$.035"	$\pm .003 "$.540"		.540"	42,000
BSH-050	.042"	.053"	. $011^{\prime \prime}$	90	.034"	.020"	910	.048"	.108"	$\pm .003 "$.065"	$\pm .004 "$.040"	$\pm .004 "$.574"		.574"	40,000
BSH-055	.042"	.053"	. $011^{\prime \prime}$	85	.027"	.0165"	910	.048"	.108"	$\pm .003 "$.053"	$\pm .004 "$.036"	$\pm .004 "$.611"		.611"	36,000
BSH-056	.042"	.053"	. $011^{\prime \prime}$	80	.038"	. 023 "	910	.048"	.108"	$\pm .003 "$.072"	$\pm .004 "$.041"	$\pm .004 "$.644"		.644"	35,000
BSH-059	.042"	.053"	. $011{ }^{\prime \prime}$	70	.0395"	.0235"	910	.052"	.109"	$\pm .003 "$.076"	$\pm .004 "$.043"	$\pm .004 "$.680"		.680"	32,000
BSH-062	.042"	.053"	. $011{ }^{\prime \prime}$	60	.0415"	. 025 "	910	.055"	.110"	$\pm .003 "$.080"	$\pm .004 "$.045"	$\pm .004 "$.715"		.715"	30,000
BSH-066	.042"	.053"	. $011{ }^{\prime \prime}$	50	.040"	. 024 "	910	.060"	.110"	$\pm .003 "$.082"	$\pm .004 "$.043"	$\pm .004 "$.756"		.756"	29,000
BSH-066	.042"	.053"	. $011{ }^{\prime \prime}$	50	.040"	.024"	910	.060"	.110"	$\pm .003 "$.082"	$\pm .004 "$.043"	$\pm .004 "$.758"		.758"	29,000
BSH-068	.049"	.060"	. $011{ }^{\prime \prime}$	70	.042"	. 025 "	1,340	.063"	.136"	$\pm .004 "$.084"	$\pm .005{ }^{\prime \prime}$.048"	$\pm .005{ }^{\prime \prime}$.779"		.779"	28,000
BSH-075	.049"	.060"	. $011{ }^{\prime \prime}$	65	.046"	.0275"	1,340	.069"	.136"	$\pm .004 "$.092"	$\pm .005{ }^{\prime \prime}$.051"	$\pm .005{ }^{\prime \prime}$.850"		.850"	26,500

Additional attribute data on adjacent page.
Larger sizes may be available upon request.
For hardness specifications, see page 107.
** F.I.M. (Full Indicator Movement) - Maximum allowable deviation of runout between groove and shaft. Based on housings/shafts made of cold rolled steel. For more information on thrust load and safety factor see pages 14 \& 15 .
2 For plated rings add . $002^{\prime \prime}$ to the listed maximum thickness. Maximum thickness will be a minimum of .0002" less than the listed groove width (W) minimum.

HUYETT.COM • 785-392-3017

GXTARIAL - BOWED

HOW TO IDENTIFY

1. Verify bowed external design and appearance.
2. Measure the shaft diameter (Ds).
3. Measure the maximum ring cross section (S Max).
4. Measure the minimum ring cross section (S Min).
5. Measure the ring thickness (T).
6. Find the part in the chart.

Item \#	Shaft Diameter	Groove Size					Ring Size \& Weight							Clearance Diameter		Thrust Load Sq. Corner Abutment	
		Diameter		Width		Depth	Free Diameter		Thickness ${ }^{2}$		Bow Height		Weight Per 1,000 pcs.	Expanded Over Shaft	Released in Groove	Ring Safety Factor of 4	Groove Safety Factor of 2
	Ds	Dg	Tol.	W	Tol.	d	Df	Tol.	T	Tol.	Bh	Tol.	lbs.	L1	L2	$\begin{gathered} \mathrm{Pr} \\ \text { lbs. } \end{gathered}$	$\begin{gathered} \mathrm{Pg} \\ \text { lbs. } \end{gathered}$
BSH-078	.781" (25/32)	.733"	$\begin{aligned} & \pm .003 \\ & .004 " * * \end{aligned}$.062"	$\begin{aligned} & +.003 / \\ & -.000 " \end{aligned}$.024"	.722"	$\begin{aligned} & +.005 / \\ & -.010^{\prime \prime} \end{aligned}$.042"	$\pm .002 "$.073"	$\pm .008$ "	2.2	1.12"	1.08"	3,959	1,300
BSH-081	.812" (13/16)	.762"		.062"		.025"	.751"		.042"	$\pm .002 "$.073"	$\pm .008$ "	2.5	1.15"	1.10"	4,060	1,450
BSH-087	.875" (7/8)	.821"		.062"		.027"	.810"		.042"	$\pm .002 "$. 073 "	$\pm .008{ }^{\prime \prime}$	2.8	1.21"	1.16"	4,365	1,650
BSH-093	.938" (15/16)	.882"		.062"		.028"	.867"		.042"	$\pm .002 "$.073"	$\pm .008{ }^{\prime \prime}$	3.1	1.34"	1.29"	4,720	1,850
BSH-098	.984" (63/64)	.926"		.062"		.029"	.910"		.042"	$\pm .002 "$. 073 "	$\pm .008$ "	3.5	1.39"	1.34"	4,923	2,000
BSH-100	1.000" (1)	.940"		.062"		.030"	.925"		.042"	$\pm .002 "$. 073 "	$\pm .008$ "	3.6	$1.41{ }^{\prime \prime}$	1.35"	5,024	2,100
BSH-102	1.023"	.961"		.062"		.031"	.946"		.042"	$\pm .002 "$. 073 "	$\pm .008$ "	3.9	1.43 "	1.37"	5,126	2,250
BSH-106	1.062" (1-1/16)	.998"	$\begin{array}{\|l\|} \hline \pm .004 \\ .005 " * * \end{array}$.070"		.032"	.982"	$\begin{aligned} & +.010 / \\ & -.015 " \end{aligned}$.050"	$\pm .002 "$.085"	$\pm .012$ "	4.8	1.5"	1.44"	6,293	2,400
BSH-112	1.125" (1-1/8)	1.059"		.070"		.033"	1.041"		.050"	$\pm .002 "$.085"	$\pm .012 "$	5.1	1.55"	1.49"	6,699	2,600
BSH-118	1.188" (1-3/16)	1.118"		.070"		.035"	1.098"		.050"	$\pm .002 "$.085"	$\pm .012$ "	5.6	1.61 "	1.54"	7,105	2,950
BSH-125	1.250" (1-1/4)	1.176"		. 070 "		. 037 "	1.156"		.050"	$\pm .002 "$.085"	$\pm .012$ "	5.9	1.69"	1.62"	7,460	3,250
BSH-131	1.312" (1-5/16)	1.232"		.070"		.040"	1.214"		.050"	$\pm .002 "$.085"	$\pm .012{ }^{\prime \prime}$	6.8	1.75"	1.67"	7,866	3,700
BSH-137	$1.375{ }^{\prime \prime}(1-3 / 8)$	$1.291{ }^{\prime \prime}$.070"		.042"	1.272"		.050"	$\pm .002 "$.085"	$\pm .012{ }^{\prime \prime}$	7.2	1.8"	1.72"	8,222	4,100
BSH-143	1.438" (1-7/16)	1.350"		.070"		.044"	1.333 "		.050"	$\pm .002 "$.085"	$\pm .012$ "	8.1	1.87"	1.79"	8,628	4,500
BSH-150	1.500" (1-1/2)	1.406"		.070"		.047"	1.387 "		.050"	$\pm .002 "$.085"	$\pm .012$ "	9.0	1.99"	1.90"	8,932	5,000
BSH-162	1.625" (1-5/8)	1.529"	$\begin{aligned} & \pm .005^{\prime \prime} \\ & .005 " * * \end{aligned}$.096"	$\begin{aligned} & +.005 / \\ & -.000^{\prime \prime} \end{aligned}$.048"	1.503"	$\begin{aligned} & +.013 / \\ & -.020 " \end{aligned}$. 062 "	$\pm .003 "$.115"	$\pm .015{ }^{\prime \prime}$	13.2	2.17"	2.08"	12,028	5,500
BSH-175	1.750 " (1-3/4)	1.650"		.096"		.050"	1.618"		.062"	$\pm .003 "$.115"	$\pm .015^{\prime \prime}$	15.3	$2.31{ }^{\prime \prime}$	$2.21{ }^{\prime \prime}$	12,992	6,200

Additional attribute data on adjacent page.
TO ORDER DIFFERENT MATERIAL/FINISHES,
APPEND SUFFIX WITH YOUR CHOICE:
TO ORDER DIFFERENT MATERIAL/FINISH
APPEND SUFFIX WITH YOUR CHOICE:
"NONE" • -BC • -SS • -ZD • -Z3

ACCUMULATED TOLERANCES

This component was originally held in place by a basic SH retaining ring. But there was play in the assembly since the parts were made on the low side of the tolerances.

The manufacturer switched to the BSH bowed retaining ring. The curved shape of the ring compensated for the slightly undersized pieces and held the components tightly in place.

WHAT ARE ACCUMULATED TOLERANCES? In manufacturing, parts cannot be produced to an exact dimension. For example, a part that must be .500 " thick, may be produced at a tolerance of $+.001 /-.001$ ". The plus and minus dimensions are tolerances, and simply mean that parts produced on the high side (.501") or on the low side (.499") are within tolerance. Parts made on the low side of the tolerance will be loose or have play on the shaft when a standard ring is installed. Parts made on the high side of the tolerance will extend further into the groove and prevent a standard ring from being fully installed. $\mathrm{BE} / \mathrm{BHO} / \mathrm{BSH}$ bowed retaining rings are designed to compensate for accumulated tolerance by acting like a spring once installed into a groove.

SALES@LUYETT.COM

GXTARTAL - BOWED

SUFFIX MATERIAL/FINISH
\#\#\# = CARBON SPRING STEEL, PHOSPHATE
\#\#\#-BC = BERYLLIUM COPPER, PLAIN
\#\#\#-SS $=$ PH 15-7 MO STAINLESS STEEL, PLAIN
\#\#\#-ZD = CARBON SPRING STEEL, ZINC YELLOW
\#\#\#-Z3 = CARBON SPRING STEEL, ZINC TRIVALENT
Material/finish combinations may not be available in all sizes.
More finishes available, see page 22 for a complete listing.

Item \#	Distance Outer Groove Wall to Face of Retained Part			Force Needed to Flatten Rings		able adii \& ers	Max. Load w/R Max. or Ch Max.	Edge Margin	Lug Height		Maximum Section		Minimum Section		Hole Diameter		Gauging Dia.	RPM Limits Standard Material
	$\underset{\text { Min. }}{\mathrm{J}}$	$\underset{\text { Max. }}{\mathrm{J}}$	J Tol. Min/Max	lbs.	$\begin{gathered} \mathrm{R} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { Ch } \\ \text { Max. } \end{gathered}$	$\begin{aligned} & \hline P^{\prime} r \\ & \text { lbs. } \end{aligned}$	Y	H	Tol.	$\begin{gathered} \hline \mathrm{S} \\ \text { Max. } \end{gathered}$	Tol.	$\begin{gathered} \hline \mathrm{S} \\ \text { Min. } \end{gathered}$	Tol.	R	Tol.	Gd Min.	RPM
BSH-078	.049"	.060"	. $011{ }^{\prime \prime}$	60	.047"	.028"	1,340	.072"	.136"	$\pm .004 "$.094"	$\pm .005 "$.052"	$\pm .005 "$.883"	$\begin{aligned} & +.010 / \\ & -.002 \text { " } \end{aligned}$.883"	25,500
BSH-081	.049"	.060"	. $011{ }^{\prime \prime}$	55	.047"	.028"	1,340	.075"	.136"	$\pm .004 "$.096"	$\pm .005{ }^{\prime \prime}$.054"	$\pm .005{ }^{\prime \prime}$.914"		.914"	24,500
BSH-087	.049"	.060"	. $011{ }^{\prime \prime}$	45	.051"	.035"	1,340	. $081{ }^{\prime \prime}$.137"	$\pm .004 "$.104"	$\pm .005{ }^{\prime \prime}$.057"	$\pm .005 "$.987"		.987"	23,000
BSH-093	.049"	.060"	. $011{ }^{\prime \prime}$	40	.055"	.033"	1,340	.084"	.166"	$\pm .004 "$.110"	$\pm .00{ }^{\prime \prime}$.063"	$\pm .005 "$	1.054"	$\begin{aligned} & +.015 / \\ & -.002 " \end{aligned}$	1.054"	21,500
BSH-098	.049"	.060"	.011"	40	.056"	.0335"	1,340	.087"	.167"	$\pm .004 "$.114"	$\pm .005^{\prime \prime}$.0645"	$\pm .005{ }^{\prime \prime}$	1.106"		1.106"	20,500
BSH-100	.049"	.060"	. $011{ }^{\prime \prime}$	35	.057"	.034"	1,340	.090"	.167"	$\pm .004 "$.116"	$\pm .005{ }^{\prime \prime}$.065"	$\pm .005{ }^{\prime \prime}$	1.122"		1.122"	20,000
BSH-102	.049"	.060"	. $011{ }^{\prime \prime}$	35	.058"	.035"	1,340	.093"	.168"	$\pm .004 "$.118"	$\pm .005{ }^{\prime \prime}$.066"	$\pm .005^{\prime \prime}$	1.147"		1.147"	19,500
BSH-106	.057"	.068"	.011"	60	.060"	.036"	1,950	.096"	. $181{ }^{\prime \prime}$	$\pm .004 "$.122"	$\pm .006{ }^{\prime \prime}$. 069	$\pm .006 "$	1.192"		1.192"	19,000
BSH-112	.057"	.068"	.011"	55	.063"	.038"	1,950	.099"	.182"	$\pm .004 "$.128"	$\pm .006 "$.071"	$\pm .006 "$	1.261"		1.261 "	18,800
BSH-118	.057"	.068"	.011"	50	.064"	.0385"	1,950	.105"	.182"	$\pm .004 "$.132"	$\pm .006$.072"	$\pm .006 "$	1.325"		1.325"	18,000
BSH-125	.057"	.068"	.011"	45	.068"	. 041 "	1,950	.111"	.183"	$\pm .004 "$.140"	$\pm .006 "$.076"	$\pm .006 "$	1.396"		1.396"	17,000
BSH-131	.057"	.068"	.011"	40	.068"	. 041 "	1,950	.120"	.183"	$\pm .004 "$.146"	$\pm .006 "$.0765"	$\pm .006{ }^{\prime \prime}$	1.458"		1.458"	16,500
BSH-137	.057"	.068"	.011"	35	.072"	.043"	1,950	.126"	.184"	$\pm .004 "$.152"	$\pm .006{ }^{\prime \prime}$.082"	$\pm .006 "$	1.529"		1.529"	16,000
BSH-143	.057"	.068"	. $011{ }^{\prime \prime}$	30	.076"	.045"	1,950	.132"	.184"	$\pm .004 "$.160"	$\pm .006 "$.086"	$\pm .006 "$	1.600"		$1.600{ }^{\prime \prime}$	15,000
BSH-150	.057"	.068"	.011"	30	.079"	.047"	1,950	.141"	.214"	$\pm .004 "$.168"	$\pm .006 "$.091"	$\pm .006 "$	1.668"		1.668"	14,800
BSH-162	.069"	.094"	.025"	55	.087"	.052"	3,000	.144"	.235"	$\pm .004 "$.180"	$\pm .006 "$.097"	$\pm .006 "$	1.812"		1.812"	13,200
BSH-175	.069"	.094"	. 025 "	50	. $091{ }^{\prime \prime}$.054"	3,000	.150"	.237"	$\pm .004 "$.188"	$\pm .006{ }^{\prime \prime}$.101"	$\pm .006{ }^{\prime \prime}$	1.945"		$1.945{ }^{\prime \prime}$	12,200

Additional attribute data on adjacent page.
Larger sizes may be available upon request.
** F.I.M. (Full Indicator Movement) - Maximum allowable deviation of runout between groove and shaft.
1 Based on housings/shafts made of cold rolled steel. For more information on thrust load and safety factor see pages 14 \& 15.
2 For plated rings add .002" to the listed maximum thickness. Maximum thickness will be a minimum of $.0002^{\prime \prime}$ less than the listed groove width (W) minimum.

INSTALLATION TOOLS AVAILABLE, SEE PAGE 248

Material		Size Range	Scale	Rockwell Hardness
(blank)	Carbon Steel, (SAE 1060-1090)	$\begin{aligned} & 25-46 \\ & 50-81 \\ & 87-102 \\ & 106+ \end{aligned}$	$\begin{aligned} & 30 \mathrm{~N} \\ & 30 \mathrm{~N} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 69.5-73 \\ & 66-71 \\ & 47-53 \\ & 47-52 \end{aligned}$
-SS	Stainless Steel, (PH 15-7 Mo)	$\begin{aligned} & 25-81 \\ & 87+ \end{aligned}$	$30 \mathrm{~N}$	$\begin{aligned} & 63-69.5 \\ & 44-51 \end{aligned}$
-BC	Beryllium Copper	$\begin{aligned} & 18-23 \\ & 25-102 \\ & 106+ \end{aligned}$	$\begin{aligned} & 15 \mathrm{~N} \\ & 30 \mathrm{~N} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 77-82^{\bullet} \\ & 54-62 \\ & 34-43 \end{aligned}$

* Hardness cannot be checked with any degree of accuracy directly on these rings.

STACKED OPTIONS AVAILABLE, SEE HUYETT.COM FOR MORE DETAILS

[^0]: Additional attribute data on adjacent page.

