

This page intentionally left blank.

Preface

This document describes the Metadata and Time/Date (MTD) Tools that are extracted from the

Science Data Processing (SDP) Toolkit for the Earth Observing System Data and Information

System (EOSDIS) Maintenance and Development (EMD) Project to comprise the MTD Toolkit

release. The extracted tools are to be called “Toolkit”, “Toolkit_MTD”, or "the Tools" in the rest

of this document (the SDP Toolkit that the present tools have been extracted from will still be

referenced to as “SDP Toolkit”).

The tools in the Toolkit_MTD have the same functionality as the respective tools in the SDP

Toolkit; with some minor differences in error reporting; and some added functionality such as

enabling reading metadata from an ASCII file. The differences are described in this document.

The SDP Toolkit is described in the Release 8 SDP Toolkit User’s Guide for the EMD Project

(333-EED-001, Rev. 02).

Toolkit_MTD is intended to be used in conjunction with the Hierarchical Data Format (HDF) tools

and HDF-EOS extensions to HDF. These tools are described in HDF-EOS Library User’s Guide

for the EED Project, Volume 1: Overview and Examples (170-EED-001) and in HDF-EOS Library

 iii 170-EED-003

User’s Guide for the EED Project, Volume 2: Function Reference Guide (170-EED002). Both

HDF4 and HDF5 - based files are supported.

The primary purpose of this tool set is to allow EOSDIS extended data providers the capability of

formatting their products in ECS standard formats, without requiring the entire SDP Toolkit

package. Toolkit_MTD will also allow creation of and access to ECS standard metadata.

Toolkit_MTD is intended to be used by data providers who will produce products at their local

facilities and then deliver those products to be archived and distributed from ECS Data Active

Archive Centers (DAACs). The tools are not intended to be used by ECS instrument teams who

will deliver production code to the DAACs. For this reason, the metadata and time conversion

tools have been extracted from the rest of the Toolkit, giving a streamlined version for use by

external (to ECS) data providers.

Toolkit_MTD will operate in Windows 98 & NT platforms as well as on the Unix and LINUX

platforms which the SDP Toolkit currently operates on (see Note in Section 5.1 for an update on

this). The software is written in the C language and FORTRAN bindings are provided.

Toolkit_MTD will be kept current with updates to the SDP toolkit.

This document provides a listing of routine calling sequences, detailed descriptions, examples of

usage as well as installation instructions. A brief description of software design and content is also

provided. The document accompanies a software delivery that contains implementations of the

tools described therein. We note that this version of extracted tools contains provisions for

error/status messaging, process control, and file handling in lieu of an operational data production

system. This handling will be via manipulation of and access to external files.

Technical Points of Contact are:

Abe Taaheri, Abe_Taaheri@Raytheon.com

Raytheon Company

5700 Rivertech Court

Riverdale, MD 20737

 iv 170-EED-003

Abstract

The MTD Toolkit Users Guide for the EMD Project is an extraction of and an extension of SDP

Toolkit Users Guide for the EMD delivered under the Earth Observing System Data and

Information System (EOSDIS) Evolution and Development (EED) Contract (NNG10HP02C). It

was first delivered in October 1998. This current Users Guide is updated to match the Release 7

SDP Toolkit delivery. The MTD Toolkit Users Guide describes MTD Toolkit routine usage for

EOSDIS extended data providers, who will produce products at their local facilities and then

deliver those products to be archived and distributed from the ECS Data Active Archive Centers

(DAACs). The MTD Toolkit allows EOSDIS extended data providers the capability of formatting

their products in ECS standard formats, without requiring the entire SDP Toolkit package. This

document describes the overall design of the MTD Toolkit, provides a general explanation of

usage, and installation procedures on computer platforms for which software development and

certification have been done. Detailed listings of routines, calling sequences, inputs and outputs

and examples of usage are also provided.

Keywords: toolkit, metadata, MTD, HDF, HDF5, HDF-EOS, HDF-E, data, format, production,

error, handling, input, output, windows, NT, LINUX

 v 170-EED-003

This page intentionally left blank.

 vi 170-EED-003

Contents

Preface

Abstract

1. Introduction

1.1 Identification --- 1-1

1.2 Scope -- 1-1

1.3 Purpose and Objectives -- 1-1

1.4 Status and Schedule --- 1-2

1.5 Document Organization -- 1-4

2. Related Documentation

2.1 Parent Documents ... 2-1

2.2 Applicable Documents ... 2-1

2.3 Information Documents .. 2-1

3. Toolkit Design

4. Toolkit Usage and Functionality

4.1 Introduction .. 4-1

4.2 Functionality .. 4-1

4.3 MET Tools ... 4-1

4.4 Time/Date Tools .. 4-2

4.5 Error/Status Log ... 4-2

4.6 HDF-EOS ... 4-2

 vii 170-EED-003

5. Toolkit_MTD Installation and Maintenance

5.1 Introduction .. 5-1

5.2 Installation Procedures for UNIX Platforms .. 5-1

 5.2.1 Toolkit_MTD Release Notes ... 5-1

 5.2.2 To Install the Toolkit_MTD from a Disk–Based Tar File 5-3

 5.2.3 Compiling User Code with the Toolkit_MTD .. 5-27

5.3 Installation Procedures for Windows .. 5-29

5.4 Instructions on Making Changes to Installation Procedures for UNIX Platforms 5-36

5.5 Link Instructions ... 5-38

5.6 Test Drivers ... 5-39

5.7 User Feedback Mechanism ... 5-40

6. Toolkit Specification

6.1 Introduction .. 6-1

6.2 Toolkit Tools .. 6-2

 6.2.1 Metadata Tools ... 6-2

6.2.2 Error/Status Reporting (SMF Tools) .. 6-43

6.2.3 Time and Date Conversion Tools ... 6-54

List of Figures

3-1 Diagram Showing the Connection Between MET Tools and Support Tools 3-2

3-2 Diagram Showing the Relation Between TD Tools and Support Tools 3-3

3-3 Data Flow Diagram .. 3-4

List of Tables

1-1 Toolkit Routine Key... 1-2

1-2 Toolkit Routine Listing .. 1-3

 viii 170-EED-003

5-1 SDP Toolkit_MTD Development Configuration .. 5-25

5-2 Required Directory Environment Variables .. 5-26

5-3 Required Compiler and Library Environment Variables .. 5-27

5-4 Values of OSTYPE ... 5-37

5-5 Environment Variables ... 5-37

6-1 PGS_MET_SetFileId Returns ... 6-4

6-2 PGS_MET_GetFileId Inputs ... 6-6

6-3 PGS_MET_GetFileId Returns .. 6-6

6-4 PGS_MET_SDstart Inputs .. 6-8

6-5 PGS_MET_SDstart Outputs ... 6-8

6-6 PGS_MET_SDstart Returns ... 6-9

6-7 PGS_MET_SDend Outputs .. 6-10

6-8 PGS_MET_SDend Returns .. 6-10

6-9 PGS_MET_Init Inputs .. 6-12

6-10 PGS_MET_Init Outputs .. 6-12

6-11 PGS_MET_Init Returns .. 6-13

6-12 PGS_MET_Init_NonMCF Inputs ... 6-16

6-13 PGS_MET_Init_NonMCF Outputs .. 6-16

6-14 PGS_MET_Init_NonMCF Returns .. 6-17

6-15 PGS_MET_SetAttr/ PGS_MET_SetMultiAttr Inputs .. 6-21

6-16 PGS_MET_SetAttr/ PGS_MET_SetMultiAttr Returns ... 6-21

6-17 PGS_MET_GetSetAttr Inputs .. 6-27

6-18 PGS_MET_GetSetAttr Outputs .. 6-27

6-19 PGS_MET_GetSetAttr Returns .. 6-28

6-20 PGS_MET_GetPCAttr Inputs ... 6-30

6-21 PGS_MET_GetPCAttr Outputs .. 6-31

6-22 PGS_MET_GetPCAttr Returns .. 6-31

6-23 PGS_MET_GetConfigData Inputs ... 6-35

 ix 170-EED-003

6-24 PGS_MET_GetConfigData Outputs ... 6-35

6-25 PGS_MET_GetConfigData Returns ... 6-36

6-26 PGS_MET_Write Inputs ... 6-38

6-27 PGS_MET_WriteReturns ... 6-39

6-28 PGS_SMF_SetStaticMsg Returns .. 6-44

6-29 PGS_SMF_SetDynamicMsg Returns ... 6-46

6-30 PGS_SMF_GetMsgByCode Returns ... 6-49

6-31 PGS_SMF_TestStatusLevel Returns ... 6-51

6-32 Estimated Errors in UT1 Predictions (Milliseconds of Time and

Equivalent Meters of Geolocation Error) .. 6-60

6-33 PGS_TD_SetFileId Returns .. 6-62

6-34 PGS_TD_UTCtoTAI Inputs ... 6-64

6-35 PGS_TD_UTCtoTAI Outputs ... 6-64

6-36 PGS_TD_UTCtoTAI Returns ... 6-65

6-37 PGS_TD_TAItoUTC Inputs ... 6-67

6-38 PGS_TD_TAItoUTC Outputs .. 6-67

6-39 PGS_TD_TAItoUTC Returns ... 6-67

6-40 PGS_TD_TAItoTAIjd.c Inputs ... 6-69

6-41 PGS_TD_TAItoTAIjd Outputs ... 6-69

6-42 PGS_TD_TAIjdtoTAI Inputs .. 6-71

6-43 PGS_TD_TAItoGAST Inputs ... 6-73

6-44 PGS_TD_TAItoGAST Outputs .. 6-73

6-45 PGS_TD_TAItoGAST Returns .. 6-73

6-46 PGS_TD_UTCtoSCtime Returns ... 6-76

6-47 PGS_TD_SCtime_to_UTC Outputs ... 6-79

6-48 PGS_TD_SCtime_to_UTC Returns ... 6-79

6-49 PGS_TD_ASCIItime_AtoB Inputs ... 6-82

6-50 PGS_TD_ASCIItime_AtoB Outputs .. 6-82

6-51 PGS_TD_ASCIItime_AtoB Returns .. 6-82

 x 170-EED-003

6-52 PGS_TD_ASCIItime_BtoA Inputs ... 6-84

6-53 PGS_TD_ASCIItime_BtoA Outputs .. 6-84

6-54 PGS_TD_ASCIItime_BtoA Returns .. 6-84

6-55 PGS_TD_UTCtoGPS Inputs .. 6-86

6-56 PGS_TD_UTCtoGPS Outputs ... 6-86

6-57 PGS_TD_UTCtoGPS Returns ... 6-86

6-58 PGS_TD_GPStoUTC Inputs .. 6-88

6-59 PGS_TD_GPStoUTC Outputs ... 6-88

6-60 PGS_TD_GPStoUTC Returns .. 6-88

6-61 PGS_TD_UTCtoTDTjed Inputs ... 6-90

6-62 PGS_TD_UTCtoTDTjed Outputs .. 6-90

6-63 PGS_TD_UTCtoTDTjed Returns .. 6-90

6-64 PGS_TD_UTCtoTDBjed Inputs .. 6-93

6-65 PGS_TD_UTCtoTDBjed Outputs .. 6-93

6-66 PGS_TD_UTCtoTDBjed Returns .. 6-93

6-67 PGS_TD_TimeInterval Inputs ... 6-96

6-68 PGS_TD_TimeInterval Outputs ... 6-96

6-69 PGS_TD_TimeInterval Returns ... 6-96

6-70 PGS_TD_UTCtoUTCjd Inputs ... 6-98

6-71 PGS_TD_UTCtoUTCjd Outputs .. 6-98

6-72 PGS_TD_UTCtoUTCjd Returns .. 6-98

6-73 PGS_TD_UTCjdtoUTC Inputs ... 6-100

6-74 PGS_TD_UTCjdtoUTC Outputs .. 6-100

6-75 PGS_TD_UTCjdtoUTC Returns .. 6-100

6-76 PGS_TD_UTCtoUT1 Inputs ... 6-102

6-77 PGS_TD_UTCtoUT1 Outputs .. 6-102

6-78 PGS_TD_UTCtoUT1jd Inputs .. 6-105

6-79 PGS_TD_UTCtoUT1jd Outputs ... 6-105

6-80 PGS_TD_UTCtoUT1jd Returns ... 6-105

 xi 170-EED-003

6-81 Get Leap Second Inputs ... 6-107

6-82 Get Leap Second Outputs .. 6-107

6-83 Get Leap Seconds Returns ... 6-108

Appendix A. Assumptions

Appendix B. SMF Usage

Appendix C. PCFT Files

Appendix D. Population of Granule Level Metadata Using the

Metadata Tools

Appendix E. Test Drivers

Appendix F. Config File Used by MET/TD Tools

Appendix G. Structure of the File “utcpole.dat”

Abbreviations and Acronyms

 1-1 170-EED-003

1. Introduction

1.1 Identification

This Toolkit Users Guide is an extraction of and an extension to the SDP Toolkit Users Guide for

the ECS delivered under the Earth Observing System Data and Information System (EOSDIS)

Core System (ECS), Contract (NAS5–60000). The current MTD Toolkit Users Guide is updated

for the Release 8 Toolkit delivery made in March 2014. Subsequent versions will accompany

major ECS releases. This Toolkit Users Guide will be updated in conjunction with the SDP Toolkit

Users Guide.

1.2 Scope

This User’s Guide describes software tools which can be used by data providers who will produce

products at their local institutions and then deliver those products to ECS DAACs for archival and

distribution. The user calling interface is the same as that contained in the SDP Toolkit version

5.2.19 (Release 8 SDP Toolkit User’s Guide for the EED Project, 333-EED001). The tools

described in this document consist of metadata formatting and access tools and time and date

conversion tools.

It is expected that users of this software will use it in conjunction with HDF and HDF-EOS data

formatting and access software. HDF is the NASA ECS Project standard data format and HDFEOS

is an extension of that format, focusing HDF data structure standards on specific earth sciences

data types. Users will use the metadata tools to build ECS standard metadata which will be

included as global attributes with in the HDF (HDF-EOS) data granules.

The SDP Toolkit and HDF-EOS use as an underlying time format, TAI, or International Atomic

Time. For this reason, time and data conversion tools are provided in this package so that users

can create other time formats of their choosing.

This document describes the overall design of the Toolkit, provides a general explanation of usage,

and installation procedures on computer platforms for which software development and

certification have been done. Detailed listings of routines, calling sequences, inputs and outputs

and examples of usage are also provided.

1.3 Purpose and Objectives

This document describes in detail the installation and usage of metadata access and time

conversion tools. A user will be provided with detailed calling sequences and examples of usage

of all the routines described in this document. Descriptions of error handling and external file

access are also provided. Instructions for access to the software and electronic versions of this

document will be provided.

 1-2 170-EED-003

In the description of the Toolkit routines, descriptive information is presented in the following

format:

TOOL TITLE

NAME:

SYNOPSIS:

Procedure or routine name

C: C language call

FORTRAN: FORTRAN77 or FORTRAN90 language call

DESCRIPTION: Cursory description of routine usage

INPUTS: List and description of data files and parameters input to the routine

OUTPUTS: List and description of data files and parameters output from the routine

RETURNS: List of returned parameters indicating success, failure, etc.

EXAMPLES: Example usage of routine

NOTES: Detailed information about usage and assumptions

REQUIREMENTS: Requirements from PGS Toolkit Specification, Oct. 93 which the routine

satisfies

1.4 Status and Schedule

This Users Guide accompanies a set of Toolkit routines, delivered in March 2014. Table 1–2 below

gives a complete listing; brief description; and delivery dates of Toolkit software available to users.

Table 1–1 provides a key to the tool names and the section where the specific tools can be located.

Table 1-1. Toolkit Routine Key

Key Class Section

MET Meta Data Access 6.2.1

SMF Status Message File (Error/Status) 6.2.2

TD Time Date Conversion 6.2.3

In Table 1–2 a list of Toolkit routines is given, with delivery data and page number references in

this Users Guide.

Table 1–2 lists Toolkit routines alphabetically by class as defined in the key below. The class

keyword follows the Product Generation System (PGS) keyword (e.g., PGS_MET).

Table 1-2. Toolkit Routine Listing (1 of 2)
Tool Name Description Date Page

PGS_MET_GetConfigData Enables the user to get the values of Config data parameters held in

the PC table
 6–35

 1-3 170-EED-003

PGS_MET_GetFileId This tool retrieves logical ID assigned for a file entry in PCFT file

filetable.temp. It returns FileId if successful, 0 otherwise.
 6–6

PGS_MET_GetPCAttr Retrieves parameter values from the PC table which are either

located as HDF attributes on product files or in separate ASCII files
 6–30

PGS_MET_GetSetAttr The MCF is initialized into memory, some parameters are

automatically set and some are set using PGS_MET_SetAttr. This

tool retrieves these values

 6-27

PGS_MET_Init Initializes a metadata configuration file (MCF) 6–12

PGS_MET_Init_NonMCF Initializes an ASCII file containing metadata. 6–16

PGS_MET_Remove Contains PGS_MET_Remove() which frees the memory held by the

metadata configuration file (MCF) and data dictionary object

description language (ODL) representations

 6-42

PGS_MET_SetAttr
PGS_MET_SetMultiAttr

Enables the user to set the value of metadata parameters 6–20

PGS_MET_SetFileId This tool sets logical IDs assigned for the user defined files in PCFT

file filetable.temp (See Note below)
 6–4

PGS_MET_SDstart This tool opens HDF4 or HDF5 files for writing metadata to ithem 6-8

PGS_MET_SDend This tool closes files oened by PGS_MET_SDstart 6-10

PGS_MET_Write Enables the user to write different groups of metadata to separate

HDF attributes
 6–38

PGS_SMF_GetMsg Provide the means to retrieve a previously set message from the static

buffer PGS_SMF_Set....
 6–50

PGS_SMF_GetMsgByCode Provide the means to retrieve the message string corresponding to a

specific mnemonic code
 6–49

PGS_SMF_SetDynamicMsg Provide the means to set a user–defined error/status message in

response to the outcome of some segment of processing.
 6–46

PGS_SMF_SetStaticMsg Provide the means to set a predefined error/status message in

response to the outcome of some segment of processing.
 6–44

PGS_SMF_TestStatusLevel Will return a defined status level constant 6–51

PGS_TD_SetFileId This tool sets logical Ids assigned for the files for TD tool in the PCFT

file filetable.temp (See Note below)
 6-62

PGS_TD_ASCIItime_AtoB Converts binary time values to ASCII Code B time values of the form

year_month_day_time_of_day in the Consultative Committee on

space Data Systems (CCSDS) format

 6–82

PGS_TD_ASCIItime_BtoA Converts binary time values to ASCII Code A time values of the form

year_month_day_time_of_day in the CCSDS format
 6–84

PGS_TD_GPStoUTC Converts to Coordinated Universal Time (UTC) time value from

Global Positioning System (GPS) time by converting to internal time,

adding the GPS_minus_UTC_leapseconds from the leapseconds file,

and converting to GPS format following CCSDS ASCII standard A

 6–88

PGS_TD_LeapSec Find Leap second value 6-107

PGS_TD_Sctime_to_UTC Converts spacecraft clock time to UTC for EOS platforms or for

foreign spacecraft
 6–78

PGS_TD_TAItoGAST Converts International Atomic Time (TAI) (toolkit internal time) to

Greenwich apparent sidereal time (GAST) expressed as the hour

angle of the true vernal equinox of date at the Greenwich meridian
(in radians)

 6–73

 1-4 170-EED-003

Table 1-2. Toolkit Routine Listing (2 of 2)
Tool Name Description Date Page

PGS_TD_TAIjdtoTAI Converts TAI Julian date to time in TAI seconds since 12 AM UTC 11-

1993.
 6-71

PGS_TD_TAItoTAIjd Converts time in TAI seconds since 12 AM UTC 1-1-1993 toTAI

Julian date.
 6-69

PGS_TD_TAItoUTC Converts TAI time value to UTC time 6-67

PGS_TD_TimeInterval Computes the elapsed TAI time in seconds between any two epochs

after January 1, 1958
 6–96

PGS_TD_UTCtoGPS Converts UTC time value to GPS time by converting to internal time,

adding the GPS_minus_UTC_leapseconds from the leapseconds file,

and converting to GPS format following CCSDS ASCII standard A

 6–86

PGS_TD_UTCtoTAI Converts UTC time to TAI time by first converting UTC to internal time

and then adding the TAI_minus_UTC_leapseconds from the

leapseconds file

 6–64

PGS_TD_UTCtoTDBjed UTC to Barycentric Dynamical Time (TDB) time conversion 6–93

PGS_TD_UTCtoTDTjed UTC to Terrestrial Dynamical Time (TDT) time conversion 6–90

PGS_TD_UTCtoUT1 Converts UTC to UT1 time 6–102

PGS_TD_UTCtoUT1jd Converts UTC time in CCSDS ASCII Time Code to UT1 time as a

Julian date
 6–105

PGS_TD_UTCjdtoUTC Converts UTC as a Julian date to UTC in CCSDS ASCII Time Code A

format.
 6-100

PGS_TD_UTCtoUTCjd Converts UTC in CCSDS ASCII Time Code A format to UTC as a

Julian date.
 6-98

PGS_TD_UTC_to_Sctime Converts UTC to Spacecraft clock time for EOS standard of Foreign

Spacecraft
 6–75

Note: If both the MET and TD tools are to be used in the same code, all input/output entries must

be in one filetable.temp. One call to PGS_MET_SetFileId or PGS_TD_SetFileId will be

enough to load Ids and physical file names into memory.

1.5 Document Organization

The document is organized as follows:

Section 1 Introduction—Presents the scope and purpose of this document.

Section 2 Related Documentation—Provides a bibliography of reference documents

organized by parent and applicable documents.

Section 3 Toolkit Design Overview—Provides the philosophy and high level description

of the Toolkit

Section 4 Toolkit Usage and Functionality—Describes the functionality to be provided in

the Toolkit.

Section 5 Toolkit Installation—Contains installation procedures for the machines for

which Version 1 of the Toolkit has been certified.

 1-5 170-EED-003

Section 6 Toolkit Specification—Contains calling sequences, description and usage

examples for Toolkit routines.

Appendix A Assumptions

Appendix B SMF Usage

Appendix C PCFT File

Appendix D Population of Granule Level Metadata using the SDP metadata tools

Appendix E Test Drivers

Appendix F Config File Used by MET/TD Tools

Appendix G Structure of the File "utcpole.dat”

Acronyms and Abbreviations

 1-6 170-EED-003

This page intentionally left blank.

 170-EED-003

2. Related Documentation

2.1 Parent Documents

The parent documents are the documents from which this Toolkit Users Guide’s scope and content

are derived.

333-EED-001 Release 8 SDP Toolkit User’s Guide for the EED Project.

Available at https://observer.gsfc.nasa.gov/ftp/edhs/sdptk

2.2 Applicable Documents

The following documents are referenced within this Toolkit Users Guide, or are directly applicable,

or contain policies or other directive matters that are binding upon the content of this volume.

170-EMD-001 HDF-EOS Library User’s Guide for the ECS Project, Volume 1:

Overview and Examples. Available at

https://observer.gsfc.nasa.gov/ftp/edhs/hdfeos.

170-EMD-002 HDF-EOS Library User’s Guide for the ECS Project, Volume 2:

Function Reference Guide. Available at

https://observer.gsfc.nasa.gov/ftp/edhs/hdfeos.

CCSDS 301.0–B-2 Consultative Committee for Space Data Systems (CCSDS)

Recommendation for Space Data System Standards: Time Code

Formats, 4/90

none University of Illinois/National Center for Supercomputing

Applications; NCSA HDF Calling Interfaces and Utilities, Version 3.2;

3/93

none University of Illinois; Getting Started With HDF, 1993

This is also available via anonymous file transfer protocol (ftp) from

ftp.ncsa.uiuc.edu (141.142.20.50)

2.3 Information Documents

The following Internet link to a document/information, although not directly applicable, amplifies

or clarifies the information presented in this document. This reference is not binding on this

document.

194-815-SI4 SDP Toolkit Primer (current version available through WWW access:

Please see TOOLKIT web site’s document page)

2-1

This page intentionally left blank.

 170-EED-003

2-2

 3-1 170-EED-003

3. Toolkit Design

The Metadata and Time/Date tools have been extracted from the SDP Toolkit. The Toolkit_MTD's

design follows the design of the SDP Toolkit with two major differences; the first replaces the

process control file with a simple filetable file and the second is using a different scheme, but with

similar format, in reporting toolkit errors. The PCF is an external file which maps logical unit

numbers to physical handles. In ECS, this file is generated automatically prior to data production.

Filetable is used for the same purpose but its usage is left up to the user- to be manually or

automatically generated. This is explained in detail in sections 4, 5, 6, and Appendices.

As in the SDP Toolkit, the naming of the tools has been standardized to include two prefixes: one

to denote its membership in the family of SDP Tools and the other to indicate the general area of

functionality covered by the tools. For example, a Toolkit routine that performs a time conversion

will be prefixed with ‘PGS_TD_’. The remaining portion of each name will be detailed enough

to indicate the explicit functionality performed by the tool (e.g., “PGS_TD_UTCtoTAI”).

The Toolkit routines are divided into two classes; Main tools and Support tools.

The Main tools are tools that the users interact with such as the TD tools, MET tools, and several

optional SMF tools for handling error messages.

The Support tools are the routines that are used by the main tools and will not be called by the

user. These are the IO, PC, CUC, CSC, CBP, MEM, and several MET routines. The diagrams on

the next few pages show the inter relation between main and support tools and the data flow.

 3-2 170-EED-003

Figure 3-1. Diagram Showing the Connection between MET Tools and

Support Tools

 3-3 170-EED-003

Figure 3-2. Diagram Showing the Relation between TD Tools and Support Tools

 3-4 170-EED-003

Figure 3-3. Data Flow Diagram

 170-EED-003

4. Toolkit Usage and Functionality

4.1 Introduction

The Metadata and Time/Date tools delivered with this document are extracted from the SDP

Toolkit to create a stand-alone tool for the Metadata as well as the Time/Date tools. This

standalone Toolkit, to be called Toolkit_MTD (or simply Toolkit) to distinguish it from the SDP

Toolkit, functions similarly to SDP Toolkit with some differences that will be mentioned where

appropriate.

4.2 Functionality

Unlike the SDP Toolkit, the Toolkit_MTD does not require Process Control Files (PCFs) as

explained in the SDP Toolkit User’s Guide. Instead, it uses a simple file table, referred to as

Private Customized File Table (PCFT), which is explained in detail in Appendix C. This file

includes all the entries for the files that are used in a run and maps logical identifiers to physical

file names. After creation, this file must be copied to the directory where the executable is run.

The copied file name should be filetable.temp. Note that some entries in this file have fixed logical

identifiers and the user is only free in specifying the file name and/or the path. Other logical Ids

can be any number as long as they are unique. Before calling any other MET or TD tools, the user

is required to call PGS_MET_SetFileId() or PGS_TD_SetFileId(). These functions read the file

identifiers and their physical names from filetable.temp into memory for later use by MET and

TD tools. In addition, these functions redirect error messages to the LogStatus file that the user

specifies in the filetable.temp.

In the SDP Toolkit, certain configuration parameters are held in the PCF file, and are retrieved by

the PGS_MET_GetConfigData(), or by the PC support tools in the TD tools. Since in the

Toolkit_MTD no PCF file is used, these configuration parameters are held in a “separate file such

as configfile, that has an entry in the filetable.temp with a fixed logical identifier 5000. See

Appendix F for details on this file.

4.3 MET Tools

Once the file identifiers are set, other MET tools can be used to initialize metadata files, set the

attributes and write metadata to the products such as HDF files (both HDF4 and HDF5 file types).

See Section 6.2.1 and 6.2.2. Examples in Appendix D shows the steps that may be taken in reading,

setting, and writing metadata from input files to output files. It is worth emphasizing that in

addition to initializing MCF files as in the SDP Toolkit, MET tools in the Toolkit_MTD can

initialize any file in which attribute values are written as ASCII records. The initialization of the

ASCII files are accomplished by a call to the PGS_MET_Init_NonMCF function. After the

initialization, the situation is as if an MCF file has been initialized with one major difference. The

values for the objects in the ASCII file are set in that file and they cannot be set using

 170-EED-003

4-1

PGS_MET_SetAttr function. (except the ProductionDateTime object which is set by the Toolkit).

The initialization of an ASCII metadata file is actually a two-step process which is hidden from

the user. The first step is the creation of an MCF file from the input ASCII metadata file. This is

accomplished by a call to PGS_MET_ConvertToMCF inside the function

PGS_MET_Init_NonMCF. The MCF file to be created must have an entry in the filetable.temp

(see Appendix C, where this MCF file is named as a temporary MCF). The second step in the

PGS_MET_Init_NonMCF is initialization of the created MCF file by a call to PGS_MCF_Init.

Another added functionalityto the MET tools is recovering the file Ids from their physical names.

This is accomplished by a call to PGS_MET_GetFileId, giving the filename (including path) as an

input. The returned fileID can then be used as an input for other MET tools that require the file ID.

Another difference with the SDP Toolkit is the location where some configuration parameters are

held. In the SDP Toolkit certain configuration parameters are held in the PCF file. Those

configuration parameters in the Toolkit_MTD are held in a config file which has an entry in the

filetable.temp. Appendix F explains this file in detail. See also example 1 in Appendix D on

getting the parameters stored in this file.

4.4 Time/Date Tools

Once the file identifiers are set by a call to PGS_MET_SetFileId() or PGS_TD_SetFileId() for the

Time/Date tool (see Appendix A on required files for the tools), one can use other Time/Date tools

to convert easily and accurately between different representations of time, such as spacecraft time,

UTC, Internal Atomic Time and Julian date. After conversion, the time values can be added to

metadata using MET tools, such as PGS_MET_SetAttr. The use of these tools is straightforward

and ample examples are provided in section 6.2.3 and test drivers are in the directory

$PGSHOME/test/test_TIME.

4.5 Error/Status Log

Toolkit error messages are reported in the LogStatus file. The logical Id for this file in the PCFT

file (i.e. filetable.temp) is 10100. The error redirection to this file is implemented in the

PGS_MET_SetFileId or PGS_TD_SetFileId functions, since by design these are the first functions

to be called by the user. If the PCFT file does not contain an entry for the LogStatus file, the error

messages will be directed to the standard output. The error report mechanism is a combination of

mechanisms implemented in the SDP Toolkit and HDF tools. For details refer to section 6.2.2

4.6 HDF-EOS

HDF-EOS and HDF-EOS5 are standalone packages that may be used in conjunction with the

Toolkit_MTD. They implement the EOS standard methods for accessing HDF4 and HDF5 format

files respectively. Three interfaces are provided: Point, Swath, and Grid. Please refer to the HDF-

EOS User’s Guide for more details.

4-2

 5-1 170-EED-003

5. Toolkit_MTD Installation and Maintenance

5.1 Introduction

The Toolkit_MTD can be installed on UNIX Platforms SGI (both 64-bit and new 32-bit ABIS),

SUN, DEC, HP, LINUX (both 64 bit and 32 bit), IBM, IA64, and MACINTOSH (please see Table

5.1 for more details). It can also be installed in PCs running Windows. Installation procedures on

UNIX Platforms are outlined in Section 5.2 and Installation Procedures for Windows NT/98/XP

are in Section 5.3.

5.2 Installation Procedures for UNIX Platforms

5.2.1 Toolkit_MTD Release Notes

5.2.1.1 Multiple Architecture Support

The Toolkit_MTD has the option of being installed with simultaneous support for multiple

architectures. This means that it is not necessary to install a separate copy of the Toolkit_MTD for

each host architecture to be supported. Instead, a single copy of the Toolkit_MTD, installed on a

file server in a networked environment, may serve multiple hosts of different architecture types.

Running concurrent tasks on the Toolkit_MTD is possible, but it requires that each process be

configured so that all output files, including Toolkit_MTD log files, are written to a separate area

to avoid collisions. This is done by using a Private Customized File Table (PCFT) for each

concurrent task. Note that any such PCFT MUST contain required entries for proper Toolkit_MTD

functioning.

The directory structure of the Toolkit_MTD allows multiple architecture support. Subdirectories

of the Toolkit_MTD home directory are as follows:

 bin binary and script executables Note 1

database data resource files used by the Toolkit_MTD Note 1

doc documentation

include header files

lib the Toolkit_MTD library Note 1

obj object files used to build the Toolkit_MTD library Note 1

 objcpp object files used to build C++ version of Toolkit_MTD library Note 1

runtime runtime files Note 2

src source code

 5-2 170-EED-003

test test area

Note 1:

The directories bin, database, lib, obj and objcpp all contain architecture-specific files residing in

subdirectories named for the architecture. One such subdirectory will be created for each run of

the installation script on a given architecture. Toolkit_MTD environment variables are set by the

environment scripts to automatically map to the appropriate directories.

The database directory contains a subdirectory named common for data files shared by all

architectures.

Note 2:

The directory runtime contains sample data files shared by all architectures. Currently the only

files distributed in this directory are the PCFT (filetable.template) and configfile (configfile.dat)

for the test drivers in the test subdirectory.

5.2.1.2 DAAC Toolkit_MTD Support

The Toolkit_MTD supports DAAC as well as SCF sites. A single distribution file supports all

sites. The type of Toolkit_MTD built is determined by command line options to the installation

script.

5.2.1.3 Support for the IRIX 6.2 Operating System

The Toolkit_MTD now fully supports the SGI IRIX64 Operating System. Under IRIX64 there are

two Application Binary Interfaces (ABI). The Toolkit_MTD treats each of these ABIs as a separate

architecture. The table below gives the formats:

 ABI compiler flag Toolkit_MTD name

new-style 32 bit -n32 sgi32

 64 bit -64 sgi64

These formats run only under IRIX 6.x.

5.2.1.4 HDF Integration

The Toolkit_MTD installation procedures include sections that cover the installation of the

National Center for Supercomputer Applications (NCSA) HDF file access packages, HDF4 and

HDF5. HDF has been adopted as the standard data format for EOSDIS Core System product

generation, archival, ingest, and distribution capabilities.

HDF (i.e. both HDF4 and HDF5) is needed in order to build and use the Metadata (MET) and

Date/Time (TD) tools.

An installation script for HDF is included as part of the main Toolkit_MTD distribution. It is

provided to simplify the installation of HDF4 and HDF5 as much as possible, greatly reducing the

number of steps in NCSA's own installation procedure. As of ECS Release 8, the Toolkit_MTD

 5-3 170-EED-003

uses hdf-4.2.10 and hdf5-1.8.12. The HDF distributions themselves are located in compressed tar

files, called hdf-4.2.10.tar.gz and hdf5-1.8.12.tar.gz which must be downloaded separately.

With a full installation, HDF4 and HDF5 require approximately 60 Mb of disk space, after the

installation files are cleaned up. They may be installed in any location; i.e., they do not have to be

stored under the Toolkit_MTD home directory. The disk partition where HDF4 and HDF5 are

installed should have about 120 Mb of free space.

5.2.1.5 HDF-EOS Integration

The Toolkit_MTD installation procedures include a section which covers the installation of HDF-

EOS, and HDF-EOS5 standalone packages that may be used in conjunction with the

Toolkit_MTD. It implements the EOS standard methods for accessing HDF format files (Both

HDF4 and HDF5). Three interfaces are provided: Point, Swath and Grid. Please refer to the HDF-

EOS User's Guide for more information. As of Release B0, the Toolkit_MTD requires HDF-EOS

2.0 or later. The distribution files for HDF-EOS and HDF-EOS5 are available from the same

server where the Toolkit_MTD distribution files are located.

The Toolkit_MTD HDF-EOS handles the details of unpacking the distribution files, setting HDF4

and HDF5 dependencies, and running the HDF-EOS and HDF-EOS5 installation scripts.

HDF-EOS and HDF-EOS5 may also be installed manually, either before or after the Toolkit_MTD

is installed. HDF4 and HDF5 must be installed before installing HDF-EOS and HDF-EOS5.

5.2.2 To Install the Toolkit_MTD from a Disk–Based Tar File

5.2.2.1 Preliminary

If HDF4 and HDF5 has not been installed it should is be installed at this time. You must first

download the HDF4 distribution file hdf-4.2.10.tar.gz and HDF5 distribution file hdf51.8.12.tar.gz

before proceeding. They may be loaded into any directory on your system, i.e. they need not reside

in the Toolkit_MTD home directory. The same applies to the HDF-EOS distribution file HDF-

EOS2.19v1.00.tar.Z and HDF-EOS5 distribution file HDFEOS5.1.15.tar.Z, if you plan to install

HDF-EOS and HDF-EOS5 (recommended) while installing the Toolkit_MTD.

Important HDF Note:

The Toolkit_MTD-supplied HDF4 and HDF5 installation scripts contain various platformspecific

patches and bug fixes that allow HDF to be successfully installed on all platforms supported by

the Toolkit_MTD. In most cases, both the libraries and utilities are built. Also the script

automatically sets up the installed HDF directories so that the Toolkit_MTD can find them.

Because of these factors, we strongly recommend that even if you already have hdf-4.2.10 and

hdf5-1.8.12 installed, you RE-INSTALL HDF4 and HDF5 AT THIS TIME, using the

Toolkit_MTD-supplied HDF installation scripts.

Starting with 5.2.19 version MTD TOOLKIT can also be auto configured and installed like HDF4,

HDF5, HDF-EOS2, and HDF-EOS5. If you prefer to install TOOLKIT and related software using

 5-4 170-EED-003

auto configure features please see README-AUTOCONF file in the doc directory. The direction

for autoconf installation of HDF-EOS2 and HDF-EOS5 are provided in the file

AUROCONF_INSTALL in the doc directory of their source code distributions.

Historical Note:

Please note the acronym PGS (Product Generation System) is used throughout the Toolkit_MTD

software in place of SDP. This is for historical reasons: the name was changed as of Release 3 of

the SDP Toolkit. We regret any confusion this may cause.

5.2.2.2 Unpacking the Distribution File

1. Select a location for the Toolkit_MTD directory tree. It should be on a disk partition

with at least 80 Mb of free space. If you plan to install HDF in the same partition,

you will need at least 110 Mb of free space. If you plan to install support for

multiple architectures, you will need about 20 Mb Toolkit_MTD space + 30 Mb

HDF space for each additional architecture supported.

 Multiple Architecture Support Note

As previously mentioned, it is now possible to build the Toolkit_MTD with support for

multiple architectures (currently only SUN and SGI are supported). The distribution file

need only be unpacked once, to support all architectures. If the Toolkit_MTD is to be built

with multiple architecture support, the area chosen to unpack the distribution should be on

a network file system accessible from all hosts to be supported. (Please note that the SGI

supports two different architectures. So, if building a multiple architecture installation to

support the SGI only, the file system need not be accessible across the network.)

2. Copy the file MTDTK5.2.19v1.00.tar.Z to the target directory by typing the

command:

 cp MTDTK5.2.19v1.00.tar.Z <target-dir>

 where <target-dir> is the full pathname of your target directory.

3. Set your default directory to the target directory by typing the command: cd

<target-dir>

4. Uncompress this file and extract the contents by typing the command: zcat

MTDTK5.2.19v1.00.tar.Z | tar xvf -

 This will create a subdirectory of the current directory called TOOLKIT_MTD. This is the

top-level Toolkit_MTD directory, which contains the full Toolkit_MTD directory

structure.

5.2.2.3 Starting the Installation Procedure

1. Set your default directory to the top-level Toolkit_MTD directory by typing the command:

 5-5 170-EED-003

 cd TOOLKIT_MTD

 Multiple Architecture Support Note:

The Toolkit_MTD installation script must be run once for each of the architectures to be

supported. To do this, simply login to the desired host and set your directory to the

toplevel Toolkit_MTD directory: <target-dir>/TOOLKIT_MTD. Then, proceed to run

the installation script, starting at Step 2, below. The installation runs MUST be done

ONE AT A TIME. Attempting to run concurrent installation procedures may cause

errors.

2. Determine options for the Toolkit_MTD installation script.

 Before running the Toolkit_MTD installation script, you must determine the command line

options appropriate for your site. These options are referred to in this section as <install-

options>.

 These options tell the installation script such things as whether to build for SCF or DAAC,

and whether to build for FORTRAN-90 compatibility, (FORTRAN-77 is the default). The

table below gives the basic site options. Other options follow.

 Site FORTRAN <install-options>

 SCF FORTRAN-77 (none)

 SCF FORTRAN-90 -f90

 DAAC FORTRAN-77 -daac

 DAAC FORTRAN-90 -daac -f90

 Please refer to part 1 of the Notes section, below, for information about platforms that

currently support FORTRAN-90. When doing a FORTRAN-90 installation, the use of

fc_path option, (see below), is highly recommended.

It is RECOMMENDED that you specify the name of the installation directory specifically.

When installing the Toolkit_MTD in a directory which is being automounted or which is

a link, the Toolkit_MTD may not be able to correctly determine the name of the directory

where you are installing it. You can specify the name of the installation explicitly by

adding the following to <install-options>:

 -pgshome <installation directory> where <installation directory> is the top level

Toolkit_MTD directory name (e.g.: /usr/local/TOOLKIT_MTD). Note that this option can

NOT be used to specify an installation directory other than where the TOOLKIT_MTD

has already been created in the steps prior to running the INSTALL script.

If you wish to save the output of the installation run in a log file (RECOMMENDED), add

the following to <install-options>: -log <log-file>

 Where <log-file> is the name of the log file.

If you wish to compile the Toolkit_MTD in debug mode add the following to <installoptions>:

 -dbug

 5-6 170-EED-003

 This will replace the optimization flag "-O" with "-g" for all files compiled into the

Toolkit_MTD library. This allows Toolkit_MTD routines to be viewed from within a

source code debugger.

 To install the C++ version of the library, libPGSTKcpp.a, you may use the –cpp option to

specify that you want the C++ version. To do this, add the following to <install-options>:

 -cpp

 To ensure that the proper C++ compiler is found by the script, you may use the –cpp_path

option to specify its location. To do this, add the following to <install-options>:

 -cpp_path <C++-compiler-path>

 (example: –cpp_path /usr/bin/cpp)

Where <C++-compiler-path> is the directory where the desired C++ compiler is located.

This option should not be needed at most sites.

 To ensure that the proper C compiler is found by the script, you may use the -cc_path option

to specify its location. To do this, add the following to <install-options>:

 -cc_path <C-compiler-path>

 (example: -cc_path /usr/bin/cc)

 Where <C-compiler-path> is the directory where the desired C compiler is located. This

option should not be needed at most sites.

 To ensure that the proper FORTRAN compiler is found by the script, you may use the fc_path

option to specify its location. To do this, add the following to <install-options>: -fc_path

<FORTRAN-compiler-path>

 (example: -fc_path /usr/bin/f90)

 Where <FORTRAN-compiler-path> is the directory where the desired FORTRAN compiler

is located. This is particularly advisable when using FORTRAN-90.

NAG FORTRAN-90 Note:

 If using a NAG FORTRAN-90 compiler to build the Toolkit_MTD library, add the -nag

option to <install-options>, after the -f90 and-fc_path options. This will allow the

Toolkit_MTD to generate the proper C to FORTRAN bindings. This option should not be

used when building the Toolkit_MTD on an SGI. See the note, below.

 SGI Multiple Architectures Note:

 On the SGI (as of IRIX64 6.2), the default is to build the Toolkit_MTD in 64-bit mode. The

following table gives the option to specify the appropriate architecture to be built:

 5-7 170-EED-003

binary format architecture <install-options>

new-style 32 bit sgi32 -sgi32

 64 bit sgi64 -sgi64

 SGI FORTRAN-90 Note:

 On SGI and SGI Challenge platforms running IRIX 6.2 and earlier, the type of FORTRAN-

90 compiler is automatically determined by the script. On the 64-bit SGI Challenge

platform, the compiler chosen depends on the binary architecture type selected.

 The script will override the setting of the -NAG flag, if specified, because only the

combination listed below will build properly. The following table shows which compiler

is used for each architecture:

binary format architecture f90

new-style 32 bit sgi32 SGI

 64 bit sgi64 SGI

 When the -NAG option is specified, it is a good idea to specify the f90 compiler location via

the -fc_path option, ("Setting the FORTRAN compiler path", above), to ensure that the

script uses the right compiler.

 By default the Toolkit_MTD supports the C language and one of FORTRAN77 or

FORTRAN90. The installation procedure, therefore, normally requires a FORTRAN

compiler. If no FORTRAN compiler available the Toolkit_MTD may be installed without

a FORTRAN compiler by specifying -no_ftn on the command line of the bin/INSTALL

script.

 Note that HDF still requires a FORTRAN compiler. In order the Toolkit_MTD to successfully

install without a FORTRAN HDF must be installed independently (i.e. NOT from the

Toolkit_MTD INSTALL script) (see HDF Installation Section, below).

 If you have already installed NCSA's HDF4 package, you can specify the installation location

explicitly. If you do so, the Toolkit_MTD installation procedure will not attempt to install

HDF, using the installation you have specified instead. To do this, add the following

to <install-options>:

 -hdfhome <HDF4 installation directory>

 where <HDF4 installation directory> is the HDF4 directory which contains the bin/ lib/ and

include/ sub-directories of the installed HDF4 package.

 If you have already installed NCSA's HDF5 package, you can specify the installation location

explicitly. If you do so, the Toolkit_MTD installation procedure will not attempt to install

HDF5, using the installation you have specified instead. To do this, add the following

to <install-options>:

 -hdf5home <HDF5 installation directory>

 5-8 170-EED-003

 where <HDF5 installation directory> is the HDF5 directory which contains the bin/ lib/ and

include/ sub-directories of the installed HDF5 package.

 If you have already installed ECS's HDF-EOS package, you can specify the installation

location explicitly. If you do so the Toolkit_MTD installation procedure will not attempt

to install HDF-EOS, using the installation you have specified instead. To do this, add the

following to <install options> :

 -hdfeos_home <HDF-EOS installation directory>

 where <HDF-EOS installation directory> is the HDF-EOS directory which contains the bin/

lib/ and include/ sub-directories of the installed HDF-EOS package.

 If you have already installed ECS's HDF-EOS5 package, you can specify the installation

location explicitly. If you do so the Toolkit_MTD installation procedure will not attempt

to install HDF-EOS5, using the installation you have specified instead. To do this, add the

following to <install options>:

 -hdfeos5_home <HDF-EOS5 installation directory>

 where <HDF-EOS5 installation directory> is the HDF-EOS5 directory which contains the

bin/ lib/ and include/ sub-directories of the installed HDF-EOS5 package.

 WARNING: the installation procedure will not make any checks of the versions of any pre-

installed packages you specify in this way. It is your responsibility to ensure that any such

packages you specify in this manner are at the approriate version level for the version of

the Toolkit_MTD being installed.

 By default the Toolkit_MTD installation is an interactive procedure. If you would like to run

the installation in "batch" mode add the following to <install-options>:

 -batch

 Note that the installation procedure is not as flexible when run in this mode. Namely, when

using the script to install HDF and/or HDF-EOS, these packages will be installed under the

TOOLKIT_MTD directory (i.e. the default locations for these packages). This behavior

cannot be changed, although you MAY still specify the locations of pre-installed versions

of these packages using the appropriate <install-options> (see above). Also if you specify

the -dbug switch the Toolkit_MTD, HDF4, HDF5, HDF-EOS and HDFEOS5 will all be

installed in debug mode. Finally if you attempt to install HDF4 (or HDF5) and an installed

HDF4 (or HDF5) is found in the default location it will be deleted and the whole HDF (or

HDF5) package will be reinstalled. If you attempt to install HDFEOS (or HDF-EOS5) and

an hdfeos (or hdfeos5) directory is found to exist in the default location it will be "re-used".

5.2.2.4 Run the Toolkit_MTD Installation Script

Please note that the installation script for this release of the Toolkit_MTD requires user interaction.

Because of this, it should NOT be run as a background task. The new installation script,

bin/INSTALL, is actually a front end for five other scripts: bin/INSTALL-HDF4, bin/INSTALL-

HDF5, bin/INSTALL-HDFEOS-Wrap, bin/INSTALL-HDFEOS5-Wrap, and bin/INSTALL-

 5-9 170-EED-003

Toolkit. Each of these scripts may be run with the -h option to display a usage message. In most

cases, it will not be necessary to run any of these scripts directly from the command line.

 To run the script, type the command:

 bin/INSTALL <install-options> where <install-options> is the list of options

determined in the previous step.

 The installation script will then run. It will output various startup messages, beginning with:

 TOOLKIT_MTD Installation starting at <date/time>

 The script will then output a message discussing the HDF requirement, after which it issues a

prompt which gives you an opportunity to quit.

 Continue installation [yes] ?

 To continue the installation, press return.

ZLIB Installation Section

1. The script prompts with:

 Is zlib-1.2.8 installed at your site [no] ?

 If ZLIB is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of ZLIB installed, you may type 'y' and hit

return. In this case, the script will ask where ZLIB is installed:

 Pathname where directory zlib-1.2.8 is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that ZLIB

is really installed there. Please proceed to the toolkit Installation Section, below.

3. The script prompts with:

 Do you wish to install zlib-1.2.8 now [yes] ?

 Hit return to continue.

4. The script responds with:

 Running the ZLIB Installation Script ...

 It may also output a few informational messages, depending on the installation options

selected.

5. By default, the script looks for the distribution file in your current and parent

directories. If the file is found in either of these locations, the script will continue to the

next step. Otherwise, it will prompt with:

 Pathname where zlib-1.2.8.tar.gz is located ?

 Please enter the correct location and hit return.

 5-10 170-EED-003

6. The script then asks where the ZLIB directory will be created. The default is

<toolkithome-directory>/zlib/$BRAND, where $BRAND is the toolkit architecture

being built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory `zlib-1.2.8' will be created [<default>] ?

 If you want ZLIB installed elsewhere, please enter the pathname at the prompt.

Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the ZLIB installation must be built for each of the architectures to be supported by

this toolkit installation. We therefore recommend using the default ZLIB directory,

suggested by the installation procedure, as it helps keep track of which architecture was

used to build ZLIB.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the

specified location, and the installation procedure is run.

8. This completes the interactive portion of the ZLIB installation. When the ZLIB

section is complete, it outputs the message: ZLIB installation ending at: <date/time>

JPEG Installation Section

1. The script prompts with:

 Is jpeg-6b installed at your site [no] ?

 If JPEG is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of JPEG installed, you may type 'y' and hit

return. In this case, the script will ask where JPEG is installed:

 Pathname where directory jpeg-6b is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that JPEG

is really installed there. Please proceed to the toolkit Installation Section, below.

3. The script prompts with:

 Do you wish to install jpeg-6b now [yes] ?

 Hit return to continue.

4. The script responds with:

 Running the JPEG Installation Script ...

 5-11 170-EED-003

 It may also output a few informational messages, depending on the installation options

selected.

5. By default, the script looks for the distribution file in your current and parent

directories. If the file is found in either of these locations, the script will continue to the

next step. Otherwise, it will prompt with:

 Pathname where jpegsrc.v6b.tar.Z is located?

 Please enter the correct location and hit return.

6. The script then asks where the JPEG directory will be created. The default is

<toolkithome-directory>/jpeg/$BRAND, where $BRAND is the toolkit architecture

being built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'jpeg-6b' will be created [<default>]?

 If you want JPEG installed elsewhere, please enter the pathname at the prompt.

Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the JPEG installation must be built for each of the architectures to be supported by

this toolkit installation. We therefore recommend using the default JPEG directory,

suggested by the installation procedure, as it helps keep track of which architecture was

used to build JPEG.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes]?

 Hit return to continue. The contents of the distribution file are then extracted into the

specified location, and the installation procedure is run.

8. This completes the interactive portion of the JPEG installation. When the JPEG

section is complete, it outputs the message:

 JPEG installation ending at: <date/time>

SZIP Installation Section

1. The script prompts with:

 Is szip2.1 installed at your site [no] ?

 If SZIP is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of SZIP installed, you may type 'y' and

hit return. In this case, the script will ask where SZIP is installed:

 Pathname where directory szip2.1 is located [<default>] ?

 5-12 170-EED-003

 Type in the full pathname and hit return. The script will check to make sure that SZIP is

really installed there. Please proceed to the toolkit Installation Section, below.

3. The script prompts with:

 Do you wish to install szip2.1 now [yes] ?

 Hit return to continue.

4. The script responds with:

 Running the SZIP Installation Script ...

 It may also output a few informational messages, depending on the installation options

selected.

5. By default, the script looks for the distribution file in your current and parent

directories. If the file is found in either of these locations, the script will

continue to the next step. Otherwise, it will prompt with:

 Pathname where szip-2.1..tar.gz is located ?

 Please enter the correct location and hit return.

6. The script then asks where the SZIP directory will be created. The default is

<toolkithome-directory>/szip/$BRAND, where $BRAND is the toolkit

architecture being built, given by the table in Note 2 of the NOTES section,

below.

 Pathname where directory 'szip2.1' will be created [<default>] ?

 If you want SZIP installed elsewhere, please enter the pathname at the prompt.

Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the SZIP installation must be built for each of the architectures to be supported by

this toolkit installation. We therefore recommend using the default SZIP directory,

suggested by the installation procedure, as it helps keep track of which architecture was

used to build SZIP.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the

specified location, and the installation procedure is run.

8. This completes the interactive portion of the SZIP installation. When the SZIP

section is complete, it outputs the message:

 SZIP installation ending at: <date/time>

 5-13 170-EED-003

 HDF4 Installation Section

1. The script prompts with:

 Is Hdf-4.2.10 installed at your site [no] ?

 If HDF4 is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of HDF4 installed, you may type 'y' and hit

return. In this case, the script will ask where HDF4 is installed:

 Pathname where directory Hdf-4.2.10 is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that HDF4 is

really installed there. Please proceed to the Toolkit_MTD Installation Section, below.

3. The script prompts with:

 Do you wish to install Hdf-4.2.10 now [yes] ?

 Hit return to continue.

4. The script responds with:

 Running the HDF Installation Script ...

 It may also output a few informational messages, depending on the installation options

selected.

5. By default, the script looks for the distribution file in your current and parent

directories. If the file is found in either of these locations, the script will continue to the

next step. Otherwise, it will prompt with:

 Pathname where Hdf-4.2.10.tar.gz is located ?

 Please enter the correct location and hit return.

6. The script then asks where the HDF directory will be created. The default is

<Toolkit_MTD-home-directory>/hdf/$BRAND, where $BRAND is the Toolkit_MTD

architecture being built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'Hdf-4.2.10' will be created [<default>] ?

 If you want HDF4 installed elsewhere, please enter the pathname at the prompt.

Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the HDF4 installation must be built for each of the architectures to be supported by

this Toolkit_MTD installation. We therefore recommend using the default HDF directory,

suggested by the installation procedure, as it helps keep track of which architecture was

used to build HDF.

 5-14 170-EED-003

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the

specified location, and the installation procedure is run.

8. This completes the interactive portion of the HDF installation. When the HDF

section is complete, it outputs the message:

 HDF installation ending at: <date/time>

Note regarding HDF on DEC Digital Unix: Please see Warning in Section 5.6.

HDF5 Installation Section

1. The script prompts with:

 Is hdf5-1.8.12 installed at your site [no] ?

 If HDF5 is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of HDF5 installed, you may type 'y' and hit

return. In this case, the script will ask where HDF5 is installed:

 Pathname where hdf5-1.8.12 directory is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that HDF is

really installed there. Please proceed to the Toolkit_MTD Installation Section, below.

3. The script prompts with:

 Do you wish to install hdf5-1.8.12 now [yes] ?

 Hit return to continue.

4. The script responds with:

 Running the HDF5 Installation Script ...

It may also output a few informational messages, depending on the installation options

selected.

5. By default, the script looks for the distribution file in your current and parent

directories. If the file is found in either of these locations, the script will continue to the

next step. Otherwise, it will prompt with:

 Pathname where hdf5-1.8.12.tar.gz is located ?

 Please enter the correct location and hit return.

6. The script then asks where the HDF5 directory will be created. The default is

<Toolkit_MTD-home-directory>/hdf5/$BRAND, where $BRAND is the

Toolkit_MTD architecture being built, given by the table in Note 2 of the NOTES

section, below.

 5-15 170-EED-003

 Pathname where directory ' hdf5-1.8.12' will be created [<default>] ?

 If you want HDF5 installed elsewhere, please enter the pathname at the prompt.

Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the HDF5 installation must be built for each of the architectures to be supported by

this Toolkit_MTD installation. We therefore recommend using the default HDF directory,

suggested by the installation procedure, as it helps keep track of which architecture was

used to build HDF5.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the

specified location, and the installation procedure is run.

8. This completes the interactive portion of the HDF5 installation. When the HDF5

section is complete, it outputs the message:

 HDF5 installation ending at: <date/time>

 HDF-EOS Installation Section

1. The script prompts with:

 Is HDF-EOS2.19v1.00 installed at your site [no]? [yes] ?

 If HDF-EOS is not installed, hit return and proceed to step 3, below

2. If you already have the correct version of HDF-EOS installed, you may type ‘y’

 and hit return. In this case, the script will ask where HDF-EOS is installed

 Pathname where HDF-EOS2.19v1.00 is installed [<default-path>]

3. The script prompts with:

 Do you wish to install HDF-EOS2.19v1.00 now [yes] ?

Hit return to continue 4. The

script responds with:

 Installing HDF-EOS ...

 It may also output a few informational messages, depending on the installation options

selected.

 5-16 170-EED-003

5. By default, the script looks for the distribution file in your current and parent

directories. If the file is found in either of these locations, the script will continue to

the next step. Otherwise, it will prompt with:

 Pathname where HDF-EOS2.19v1.00.tar.Z is located ?

 Please enter the correct location and hit return.

6. The script then asks where the HDF-EOS directory will be created. The default is

<Toolkit_MTD-home-directory>.

 Pathname where directory 'hdfeos' will be created [<default>] ?

 If you want HDF-EOS installed elsewhere, please enter the pathname at the prompt.

Otherwise, simply hit return to continue. If installing for an additional architecture,

(refer to the Multiple Architecture Support Note in Step 1 of "Starting the installation

procedure"), use the same directory as for the first instance of HDF-EOS - a single

copy will support multiple architectures.

 7A. Single-Architecture Installation

 If this is a single-architecture installation, or the first platform of a multiplearchitecture

installation, do this step. Otherwise proceed to step 7B.

 The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the

specified location, and the installation procedure is run. Proceed to step 8

7B. Multiple-Architecture Installation

 If this is an additional platform in a multiple-architecture installation, i.e. the INSTALL

script is being run again to add support for an additional architecture, (refer to the

Multiple Architecture Support Note in Step 1 of "Starting the installation procedure"),

proceed as follows:

The script asks you to verify the information entered, prompting with: Continue

[yes] ?

 Hit return to continue. The script should respond with;

 The directory hdfeos already exists.

 [O]verwrite, [R]e-use or [Q]uit (default) ?

 Type 'R' and hit return. The script will build HDF-EOS for the new architecture using the

existing copy of the directory structure. Libraries and executables will be added to the

architecture-specific subdirectories of the HDF-EOS 'bin' and 'lib' directories,

respectively. Do NOT use the Overwrite option - it will clobber the previous

architecture-specific installation(s).

 5-17 170-EED-003

8. This completes the interactive portion of the HDF-EOS installation. When the HDFEOS

section is complete, it outputs the message:

 HDFEOS installation ending at: <date/time>

 For information about user setup, as well as instructions for compiling and linking with

HDF-EOS, Refer to the file README in the HDF-EOS 'doc' directory.

HDF-EOS5 Installation Section

1. The script prompts with:

 Is HDF-EOS5 installed at your site [no]? [yes] ?

 If HDF-EOS5 is not installed, hit return and proceed to step 3, below

2. If you already have the correct version of HDF-EOS5 installed, you may type ‘y’

 and hit return. In this case, the script will ask where HDF-EOS5 is installed

 Pathname where HDF-EOS5 is installed [<default-path>]

3. The script prompts with:

 Do you wish to install HDF-EOS5 now [yes] ?

 Hit return

to continue

4. The script responds with:

 Installing HDF-EOS5 ...

 It may also output a few informational messages, depending on the installation options

selected.

5. By default, the script looks for the distribution file in your current and parent

directories. If the file is found in either of these locations, the script will continue

to the next step. Otherwise, it will prompt with:

Pathname where HDF-EOS5.1.15.tar.Z is located ? Please

enter the correct location and hit return.

6. The script then asks where the HDF-EOS5 directory will be created. The default is

<Toolkit_MTD-home-directory>.

 Pathname where directory 'hdfeos5' will be created [<default>] ?

 If you want HDF-EOS5 installed elsewhere, please enter the pathname at the prompt.

Otherwise, simply hit return to continue. If installing for an additional architecture,

(refer to the Multiple Architecture Support Note in Step 1 of "Starting the installation

 5-18 170-EED-003

procedure"), use the same directory as for the first instance of HDF-EOS5 - a single

copy will support multiple architectures.

 7A. Single-Architecture Installation

 If this is a single-architecture installation, or the first platform of a multiplearchitecture

installation, do this step. Otherwise proceed to step 7B.

 The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the

specified location, and the installation procedure is run. Proceed to step 8

7B. Multiple-Architecture Installation

 If this is an additional platform in a multiple-architecture installation, i.e. the INSTALL

script is being run again to add support for an additional architecture, (refer to the

Multiple Architecture Support Note in Step 1 of "Starting the installation procedure"),

proceed as follows:

 The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The script should respond with;

 The directory hdfeos5 already exists.

 [O]verwrite, [R]e-use or [Q]uit (default) ?

 Type 'R' and hit return. The script will build HDF-EOS5 for the new architecture using

the existing copy of the directory structure. Libraries and executables will be added to

the architecture-specific subdirectories of the HDF-EOS5 'bin' and 'lib' directories,

respectively. Do NOT use the Overwrite option - it will clobber the previous

architecture-specific installation(s).

8. This completes the interactive portion of the HDF-EOS5 installation. When the

HDFEOS5 section is complete, it outputs the message:

HDFEOS5 installation ending at: <date/time>

For information about user setup, as well as instructions for compiling and linking with

HDF-EOS5, Refer to the file README in the HDF-EOS5 ‘doc’ directory.

 Toolkit_MTD Installation Section

1A. SCF Installation

 If the SCF version of the Toolkit_MTD is being built (the default), the script outputs the

messages:

 Running the TOOLKIT_MTD Installation Script . . .

 5-19 170-EED-003

 TOOLKIT_MTD installation script: INSTALL-Toolkit

 Starting at: <date/time>

 The SCF version of the TOOLKIT_MTD library libPGSTK.a will be built

1B. DAAC Installation

 If the DAAC version of the Toolkit_MTD is being built (-daac option), the script outputs

the messages:

Running the TOOLKIT_MTD Installation Script …

TOOLKIT_MTD installation script: INSTALL-Toolkit

Starting at: <date/time>

The DAAC version of the TOOLKIT_MTD library libPGSTK.a will be built.

 1C. C++ Installation

If the C++ version of the Toolkit_MTD is being built (-cpp option) the script is set up

so that the C/FORTRAN version of the library will be built first with the C++ of the

library libPGSTKcpp.a, afterwards.

2. The Toolkit_MTD installation script outputs status messages as it goes, ending with:

 INSTALL-Toolkit completed successfully at <date/time>

 If an error occurred during the installation process, the last message will appear as:

 INSTALL-Toolkit completed with errors at <date/time>

 NOTE: If the installation was run with the –log option, the above messages will appear

only in the log file, not on the screen.

3. Wait for completion messages. If no errors were encountered during either HDF or

Toolkit_MTD installation, the final script message is:

 TOOLKIT_MTD installation completed at <date/time>

 Otherwise messages of the following form will appear:

 INSTALL: Error: <error message>

 TOOLKIT_MTD installation canceled

4. Review the installation log.

 Every attempt has been made to trap all possible installation errors and report them at the

end of the installation process. Nonetheless, it is a good idea to review the installation

log to verify that it completed without errors. If errors were noted, the log can help to

identify precisely what went wrong. Please note that some warning messages, (NOT

fatal errors), may occur in the course of a normal successful installation run.

 5-20 170-EED-003

5.2.2.5 User Account Setup

Once the Toolkit_MTD has been installed, the accounts of Toolkit_MTD users must be set up to

define environment variables needed to compile and run code with the Toolkit_MTD (see parts 2

and 3 of the Notes section 5.2.2.8, below).The type of setup depends on the user’s login shell.

1A. C shell (csh) users:

 Edit the Toolkit_MTD user’s .cshrc file to include ONLY ONE of the following two lines:

 (EITHER:) source <SDP-home-

dir>/bin/$BRAND/pgs-env.csh

 (OR:) source <SDP-home-dir>/bin/$BRAND/pgs-dev-

env.csh

 where <SDP-home-dir> is the full path of the Toolkit_MTD home directory, and $BRAND is

an architecture-specific value for your host. Please refer to part 2 of the Notes section,

below, to determine the correct value.

 The script pgs-env.csh sets up all the variables discussed in part 3 of the Notes section, below,

and it adds the Toolkit_MTD bin directory to the user path.

 The script pgs-dev-env.csh sets up all of the variables set by pgs-env.csh and adds the

Toolkit_MTD bin directory to the user path. In addition, it automatically sets up the

compiler flag variables discussed in part 4 of the Notes section below, to work on any of

the system environments listed in part 1 of the Notes section, below.

 The environment variables will become available during all subsequent login sessions. To

activate them for the current session, simply type one of the two lines listed above, at the

Unix prompt.

C++ version of the scripts:

Edit the Toolkit_MTD user’s .cshrc file to include ONLY ONE of the following two lines:

(EITHER:) source <SDP-home-dir>/bin$BRAND/pgs-env.csh.cpp

(OR:) source <SDP-home-dir>/bin$BRAND/pgs-dev-

env.csh.cpp where <SDP-home-dir>/bin/$BRAND/pgs-dev-

env.csh.cpp

where <SDP-home-dir> is the full path of the Toolkit home directory, and $BRAND is an

architecture-specific value for your host. Please refer to part 2 of the Notes section, below, to

determine the correct value.

The script pgs-env.csh.cpp sets up all the variables discussed in part 3 of the Notes section,

below, and it adds the toolkit bin directory to the user path.

 5-21 170-EED-003

The script pgs-dev-env.csh.cpp sets up all of the variables set by pgs-env.csh.cpp and adds the

toolkit bin directory to the user path. In addition, it automatically sets up the compiler flag

variables discussed in part 4 of the Notes section below, to work on any of the system

environments listed in part 1 of the Notes section, below.

The environment variables will become available during all subsequent login sessions. To

activate them for the current session, simply type one of the two lines listed above, at the Unix

prompt.

 Note regarding path setup with pgs-dev-env.csh and pgs-dev-env.csh.cpp:

 The scripts pgs-dev-env.csh and pgs-dev-env.csh.cpp also makes available a variable called

pgs_path. This can be added to the user’s path to ensure that it accesses the directories

necessary for the compilers and other utilities used to generate executable programs. It is

not added to the user path by default, because in many cases it adds unnecessary complexity

to the user path. To add pgs_path to the user path, modify the Toolkit_MTD user’s .cshrc

file to include the following:

 set my_path = ($path) # save path

source <SDP-HOME-DIR>/bin/$BRAND/pgs-dev-env.csh # PGS setup set

path = ($my_path $pgs_path) # add pgs_path

 INSTEAD OF either of the two options listed at the beginning of this step. Note that it is the

user’s responsibility to set up his or her own path so that it doesn’t duplicate the directories

set up in pgs_path. Please also note that the pgs_path is added AFTER the user’s path. This

way, the user’s directories will be searched first when running Unix commands.

1B. Korn shell (ksh) users:

 Edit the Toolkit_MTD user’s .profile file to include ONLY ONE of the following two lines:

 (EITHER:)

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh

 (OR:)

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh where <SDP-home-dir> is the full

path of the Toolkit_MTD home directory, and $BRAND is an architecture-specific value for

your host. Please refer to part 2 of the Notes section, below, to determine the correct value.

 The script pgs-env.ksh sets up all the variables discussed in part 3 of the Notes section, below,

and it adds the Toolkit_MTD bin directory to the user path.

 The script pgs-dev-env.ksh sets up all of the variables set by pgs-env.ksh and adds the

Toolkit_MTD bin directory to the user path. In addition, it automatically sets up the

compiler flag variables discussed in part 4 of the Notes section below, to work on any of

the system environments listed in part 1 of the Notes section, below.

 5-22 170-EED-003

 The environment variables will become available during all subsequent login sessions. To

activate them for the current session, simply type one of the two lines listed above, at the

Unix prompt.

 Note regarding path setup with pgs-dev-env.ksh and pgs-dev-env.ksh.cpp:

 The scripts pgs-dev-env.ksh and pgs-dev-env.ksh.cpp also makes available a variable called

pgs_path. This can be added to the user’s path to ensure that it accesses the directories

necessary for the compilers and other utilities used to generate executable programs. It is

not added to the user path by default, because in many cases it adds unnecessary complexity

to the user path. To add pgs_path to the user path, modify the Toolkit_MTD user’s .profile

file to include the following:

 my_path=”$PATH” # save path

 <SDP-HOME-DIR>/bin/$BRAND/pgs-dev-env.ksh # PGS setup

 PATH=”$my_path:$pgs_path” ; export PATH # add pgs_path

 INSTEAD OF either of the two options listed at the beginning of this step. Note that it is the

user’s responsibility to set up his or her own path so that it doesn’t duplicate the directories

set up in pgs_path. Please also note that the pgs_path is added AFTER the user’s path. This

way, the user’s directories will be searched first when running Unix commands.

C++ version of the scripts:

Edit the SDP Toolkit user’s .profile file to include ONLY ONE of the following two lines:

(EITHER:)

 <SDP-home-dir>/bin$BRAND/pgs-env.ksh.cpp

(OR:)

 <SDP-home-dir>/bin$BRAND/pgs-dev-env.ksh.cpp

where <SDP-home-dir> is the full path of the toolkit home directory, and $BRAND is an

architecture-specific value for your host. Please refer to part 2 of the Notes section, below, to

determine the correct value.

The script pgs-env.ksh.cpp sets up all the variables discussed in part 3 of the Notes section,

below, and it adds the toolkit bin directory to the user path.

The script pgs-dev-env.ksh.cpp sets up all of the variables set by pgs-env.ksh.cpp and adds the

toolkit bin directory to the user path. In addition, it automatically sets up the compiler flag

variables discussed in part 4 of the Notes section below, to work on any of the system

environments listed in part 1 of the Notes section, below.

The environment variables will become available during all subsequent login sessions. To

activate them for the current session, simply type one of the two lines listed above, at the Unix

prompt.

1C. Bourne shell (sh) users:

 5-23 170-EED-003

 Set up the required Toolkit_MTD environment variables by appending the contents of the

file

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh

 or the file

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh

 to the end of the Toolkit_MTD user’s .profile, where <SDP-home-dir> is the full path of the

Toolkit_MTD home directory, and $BRAND is an architecture-specific value for your

host. Please refer to part 2 of the Notes section, below, to determine the correct value.

 The environment variables will become available during all subsequent login sessions. To

activate them, log out and then log back in.

5.2.2.6 File Cleanup

Once the Toolkit_MTD has been built and tested, you can delete certain temporary files and

directories to save some disk space. Note that once these files have been removed, you will need

to unpack the original distribution file in order to re-do the installation. To remove these files: cd

<SDP-home-dir>/bin/$BRAND

 /bin/rm –r tmp # delete temp files used in bin cd <SDP-

home-dir>/database

 /bin/rm de200.dat # delete ephemeris ASCII file

5.2.2.7 Rebuilding the Toolkit_MTD library

The Toolkit_MTD installation procedure now makes it easy to rebuild the Toolkit_MTD library

without having to re-install the entire Toolkit_MTD. This may be useful in the event that any

problems are encountered during the installation process. SCF Installation

To rebuild the Toolkit_MTD library at an SCF site do the following:

Set directory.

 Cd <SDP-home-dir>

Type: bin/INSTALL-Toolkit <install-options> -lib_only

where <install-options> are the installation options set in step 2 of Starting the Installation

Procedure, above.

SCF Installation

To rebuild the C++ version of toolkit library at an SCF site do the following:

Set directory.

 Cd<SDP-home-dir>

Type:

 5-24 170-EED-003

 bin/INSTALL-Toolkit <install-options> -cpp_lib_only

where <install-options> are the installation options set in step 2 of Starting the Installation

Procedure, above.

5.2.2.8 NOTES:

1. The Toolkit_MTD was built and tested in a multi–platform environment using officially

supported platforms SUN5.10, LINUX (32-bit, 64-bit), WINDOWS, CYGWIN, and

MACINTEL (32-bit, 64-bit). The MTD TOOLKIT was previously supported in the

following platforms, operating systems, and compilers, and still one may work in if they

are available:

Table 5-1. SDP Toolkit_MTD Development Configuration

Platform OS Version C Compiler FORTRAN C++ Compiler

SGI IRIX 6.5.9 SGI C 7.3.1m

SGI C 7.4.2m
SGI FORTRAN 7.3.1m

 SGI FORTRAN 7.4.2m

SGI C++

Sun Solaris 5.8 Sun C 5.2 Sun FORTRAN 5.2 SUN C++ 5.2

Sun Solaris 5.9 Sun C 5.3 Sun FORTRAN 5.3 SUN C++ 5.7

Sun Solaris 5.10 Sun C 5.7 Sun FORTRAN 8.1

(F95)
SUN C++ 5.3

DEC Digital Unix 4.0d Dec C 5.6-079 DEC FORTRAN 4.1-6

HP11 HP-UX11 B.11 B.11.02.02

HPC

HP F90 V11.01.27

IBM AIX 4.3.3 xlc 5.1.0.2 xlc 5.1.0.2

Red Hat Linux Linux

(32 bit)
2.6.32-
358.2.1.e16.

x86_64 #1

SMP

gc gcc 4.4.7 g77 3.4.6

Red Hat Linux Linux

(64 bit)
2.6.32-
358.2.1.e16.

x86_64 #1
SMP

gcc 4.4.7 g77 3.4.6

Itanium(IA) 64,

SUSE LINUX

SUSE

LINUX
2.6.5-

7.252sn2

ia64

gcc 3.3.3 g77 3.3.3

POWER
MACINTOSH

Darwin 7.9.0

gcc 3.3.2 g77 3.1

CYGWIN i686

cygwin
1.5.19 gcc 3.4.4 gcc 3.4.4

Intel Mac 32-
bit

Darwin 12.5.0 gcc 4.2.1 gfortran 4.3.0

Intel Mac 64-
bit

Darwin 12.5.0 gcc 4.2.1 gfortran 4.3.0

 5-25 170-EED-003

 Notes:

a. SGI is also running SGI FORTRAN 90 version 7.3.1.3m and NAG FORTRAN-90

2.2.

b. Compilers are provided by platform vendors unless specified.

2. Toolkit_MTD architecture type names

 To track architecture dependencies, the Toolkit_MTD defines the environment variable

$BRAND. Following is a list of valid values for this variable, which is referred to

throughout this document:

$BRAND Architecture dec DEC

Alpha hp HP 9000, HP-UX11 ibm

 IBM RS-6000

sgi SGI (old-style 32-bit ABI) sgi32 SGI

(new-style 32-bit ABI)

 sgi64 SGI (64-bitABI)

linux Red Hat Linux, Enterprise Linux, SuSE Linux, IA64 macintosh Power

Macintosh (Darwin)

 winnt98 CYGWIN

3. In order to use the Toolkit_MTD libraries and utilities, a number of environment variables

MUST be set up to point to SDP directories and files. These variables are automatically set

up in User Account Setup section of the installation instructions. They are listed here for

reference:

Table 5-2. Required Directory Environment Variables

Name Value Description

PGSHOME <install–path>/Toolkit_MTD

(where <install–path> is the

absolute directory path above

Toolkit_MTD)

top level directory

PGSBIN ${PGSHOME}/bin/($BRAND) executable files

PGSDAT ${PGSHOME}/database/
($BRAND)

Toolkit_MTD database files

PGSINC ${PGSHOME}/include include (header) files

PGSLIB ${PGSHOME}/lib/($BRAND) library files

PGSOBJ ${PGSHOME}/obj/($BRAND) Toolkit_MTD object files

PGSRUN ${PGSHOME}/runtime runtime work files

PGSSRC ${PGSHOME}/src Toolkit_MTD source files

PGSTST ${PGSHOME}/test test area

 5-26 170-EED-003

PGSCPPO ${PGSHOME}/objcpp/($BRAND) Toolkit_MTD C++ object files

4. Other Toolkit_MTD environment variables

 In addition, the makefiles which are used to build the libraries require certain

machine–specific environment variables. These set compilers, compilation flags and

libraries, allowing a single set of makefiles to serve on multiple platforms. The User

Account Setup section of the installation instructions explains how to set them up

They are listed here for reference:

Table 5-3. Required Compiler and Library Environment Variables

Name Description

CC C compiler

CFLAGS default C flags (optimize, ANSI)

C_CFH C w/ cfortran.h callable from FORTRAN

CFHFLAGS CFLAGS + C_CFH

C_F77_CFH C w/ cfortran.h calling FORTRAN

C_F77_LIB FORTRAN lib called by C main

F77 FORTRAN compiler

F77FLAGS common FORTRAN flags

F77_CFH FORTRAN callable from C w/ cfortran.h

F77_C_CFH FORTRAN calling C w/ cfortran.h

CFH_F77 same as F77_C_CFH

F77_C_LIB C lib called by FORTRAN main

CPPFLAGS Default C++ Flags

CPPFHFLAGS CPPFLAGS

CPP C++ Compiler

5. For a complete list of the tools provided with this release of the Toolkit_MTD, please refer

to Section 1, Table 1–2

6. The majority of the Toolkit_MTD functions are written in C. These C–based tools include

the file cfortran.h, using it to generate machine–independent FORTRAN bindings.

5.2.3 Compiling User Code with the Toolkit_MTD

In order to compile your programs in conjunction with the Toolkit_MTD, certain flags MUST be

set on the compiler command lines. These flags vary, depending on the platform type and operating

system.

The Toolkit_MTD includes command files that set up environment variables to simplify the task

of compiling with Toolkit_MTD code. The user is responsible for ensuring that his or her code

complies with the ANSI standards. The following subset is relevant for this discussion:

 CC the name of the C compiler (usually cc)

 5-27 170-EED-003

CFHFLAGS required C compilation flags (ANSI C mode, optimized)

F77 the name of the FORTRAN compiler (usually f77)

F77_CFH required FORTRAN compilation flags

HDFSYS a flag used to tell the code what platform is being used

 PGSINC the location of the Toolkit_MTD include files

PGSLIB the location of the Toolkit_MTD library libPGSTK.a

HDFINC HDF include files

HDFLIB HDF Library files

 HDF5INC HDF5 include files

HDF5LIB HDF5 Library files

 ZLIBINC ZLIB include files

ZLIBLIB ZLIB Library files

 JPEGINC JPEG include files

JPEGLIB JPEG Library files

 SZIPINC SZIP include files

SZIPLIB SZIP Library files

 CPP The name of the C++ Compiler (usually CC)

To automatically set up these variables for your platform do the following:

 for csh users, type:

 source <Toolkit_MTD-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.csh

 for ksh users, type:

 . <Toolkit_MTD-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.ksh

 where <Toolkit_MTD-HOME-DIRECTORY> is the location where the Toolkit_MTD is

installed (e.g. /usr/local/PGSTK)

for C++ version, csh users, type:

source <TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.csh.cpp for

C++ version, ksh users, type:

 .<TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.ksh.cpp

where <TOOLKIT-HOME-DIRECTORY> is the location where the Toolkit is installed

(e.g./usr/local/PGSTK)

You may then view the settings of these variables with the command:

 $PGSBIN/pgs-flags

 NOTE: On some platforms, some of these variables are blank. This is normal—the compile

lines given below should work anyway.

 5-28 170-EED-003

Since the Toolkit_MTD was built with HDF and HDF5 support, you may use the lines listed below

for compiling with HDF support:

 C to object:

 $CC -c $CFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –I$HDF5INC -

I$SZIPINC myfile.c C++

to object:

 $CPP –c $CPPFHFLAGS –D$HDFSYS –I$PGSINC -I$HDFINC –I$HDF5INC

I$SZIPINC myfile.c

 C to executable:

 $CC $CFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –I$HDF5INC -I$SZIPINC

 -L$PGSLIB -L$HDFLIB –LHDF5LIB –L$SZIPLIB\

 myfile.c -lPGSTK -ldf (-l ...) –lsz -o myfile C++ to

executable:

 $CPP $CPPFHFLAGS –D$HDFSYS –I$PGSINC –I$HDFINC –I$HDF5INC –

I$SZIPINC

 –L$PGSLIB -L$HDFLIB –L$HDF5LIB –L$SZIPLIB\

 myfile.c –1PGSTK –1df (-1 …) –lsz –o myfile

 FORTRAN to object:

 $F77 -c $F77_CFH myfile.f FORTRAN

to executable:

 $F77 -c $F77_CFH myfile.f $PGSLIB/libPGSTK.a $HDFLIB/libdf.a

 $HDF5LIB/libhdf5.a\

 (other libraries ...) -o myfile

The important thing in this case is that your code gets linked with the HDF library. You do not

need -I$HDFINC unless your C or C++ code makes direct calls to HDF.

5.3 Installation Procedures for Windows

The instructions which follow assume that you will be using the 'zip' file that we provide, either

(pgstk5.2.19r1.zip) with fortran or with no fortran.

In building TOOLKIT_MTD from source code you may select between two build environment

options depending on your application and environment needs. Each option has its own Visual

C++ executables in the zip file:

Option I, (pgstk5.2.19r1.zip): Select windows/dev_without_fortran

Test and Utility configuration: TOLKIT_MTD library, and utilities, no fortran

 5-29 170-EED-003

Option II, (pgstk5.2.19r1.zip): Select windows/dev_with_fortran Full

configuration: TOOLKIT_MTD library and utilities, with fortran.

Preconditions:

To build the TOOLKIT_MTD library, it is assumed that you have done the following:

1. Installed MicroSoft Developer Studio (.net) and Visual C++ 9.0 (or later). Visual Fortran 9.0

(or later) is needed if you are going to build the full TOOLKIT_MTD Library with Fortran

support.

2. Installed HDF Group Hdf-4.2.10, HDF5-1.8.12, SZIP2.1, ZLIB1.2.8, and jpegsrc.v6b (or have

downloaded teir pre-compiled binaries)

3. Set up a directory structure to unpack the library. For example:

c:\ (any drive)

PGSTKHOME\ (any folder name)

4. Copy the source distribution archive to that directory and unpack it using the appropriate

archiver options to create a directory hierarchy.

INSTRUCTIONS FOR LIBRARY AND UTILITY INSTALLATION, NO FORTRAN:

1. You will use pgstk5.2.19r1.zip

Run WinZip on c:\PGSTKHOME\pgstk5.2.19r1.zip. This should create TOOLKIT_MTD

directory with a windows subdirectory. The windows directory has 2 'dev' sub directories that

contain Developer Studio workspace TOOLKIT_MTD.dsw and TOOLKIT_MTD.sln.

Instructions for installing TOOKIT_MTD are also provided in the file

Install_TOOLKIT_MTD_XP_Studio.net.readme located in the ‘dev‘ directories.

2. Invoke Microsoft Visual C++ .net by double clicking on TOOLKIT_MTD.dsw or

TOOLKIT_MTD.sln. You may also run Microsoft Visual C++ and then open

<PGSTKHOME>\TOOLKIT_MTD\dev_without_fortran\TOOLKIT_MTD.dsw workspace or

TOOLKIT_MTD.sln.

3. Under Tools-> Options-> Project", select "VC++ Directories".

 Under "Show directories for", select "Include files".

 Add the following directories: (note that your MS studio path will be different from ours

and you will need some modification to all paths)

 F:\Program Files\Microsoft Visual Studio\VC7\include

 F:\Program Files\Microsoft Visual Studio\Vc7\include\sys

 5-30 170-EED-003

 F:\Program Files\Microsoft Visual Studio\Vc7\atlmfc\include

 F:\Program Files\Microsoft Visual Studio\SDK\v1.1\include

 <top-level HDF4 directory>\include

 <top-level HDF5 directory>\include

 <top-level jpeg>\include or <top-level jpeg> where the *.h files are.

<top-level zlib>\include

<top-level szip>\include

<top-level hdfeos5>\include

 <top-level hdfeos >\include

 <top-level PGSTK directory>\TOOLKIT_MTD\include

 <top-level PGSTK directory>\TOOLKIT_MTD\include\CUC

 <top-level PGSTK directory>\dev

4. Under Tools-> Options-> Project", select "VC++ Directories".

 Under "Show directories for", select "Library files".

 Add the following directories: (note that id HDF contains only static libraries, you may

omit dll related directories and choose to build only static TOOLKIT library)

 F:\Program Files\Microsoft Visual Studio\Vc7\PlatformSDK\Lib

F:\Program Files\Microsoft Visual Studio\VC7\lib

 F:\Program Files\Microsoft Visual Studio\Vc7\include\sys

 F:\Program Files\Microsoft Visual Studio\Vc7\atlmfc\lib

 F:\Program Files\Microsoft Visual Studio\SDK\v1.1\lib

 <top-level HDF4 directory>\release\lib

 <top-level HDF4 directory>\release\dll

 <top-level HDF5 directory>\release\lib

 <top-level HDF5 directory>\release\dll

 <top-level jpeg>\lib or <top-level jpeg> if *.lib files are there.

 <top-level zlib>\lib

 <top-level szip>\lib

 <top-level szip>\dll

 <top-level hdfeos5>\lib

 <top-level hdfeos >\lib

 <top-level PGSTK directory>\TOOLKIT_MTD\lib

 <top-level PGSTK directory>\dev

 <top-level PGSTK directory>\dev\PGSTK\Release

 5-31 170-EED-003

 where

 <top-level PGSTK directory> may be

 F:\TOOLKIT_MTD5.2.19\with_Fortran\pgstk5.2.19r1

 <top-level HDF4 directory> may be F:\4210-win

 <top-level HDF5 directory> may be F:\5-1812-win

 <top-level szip> may be F:\zlib128-windows

 <top-level hdfeos5> may be F:\hdfeos5_1_15b\hdfeos5

 <top-level hdfeos > may be F:\hdfeos2_19b\hdfeos

 <top-level szip> may be F:\szip21-win-xp-enc

 <top-level jpeg> may be F:\jpeg-6b

5. Select "Build", then Select "Configuration Manager".

 Select "Debug" or "Release" for Active Solution Configuration.

6. Select the "PGSTK" project by clicking on it on the TOOLKIT_MTD Solution tree.

 Then select Project -> Properties. In the popped up window:

a. in "Librarian -> General -> Output File" enter ".\Release\PGSTK.lib" if you are

creating Release toolkit library or ".\debug\PGSTK.lib" if you are creating debug toolkit

library.

b. Click "apply" the click "OK"

c. Select on "CBP" project by clicking on it on the TOOLKIT_MTD Solution tree.

 Then select Project -> Properties. In the poped up window Select

"C/C++" --> "Preprocessor" and add "INTEL86, VISUAL_CPLUSPLUS,

H5_USE_16_API" to

 "Preprocessor definitions" if they do not show up in the list.

d. Repeat step C for other projects CSC, ephtobin, EXTRA, IO, MEM, MET,

 PGS_TD_NewLeap and TD.

f. For projects "PGS_TD_NewLeap" and "ephtobin" you need to do:

Select "Project" --> Properties. In the popped up window Select "Linker -> Input". Add

following to the "Additional Dependencies":

pgstk.lib hd421.lib hm421.lib hdf5.lib libjpeg.lib zdll.lib szlib.lib. Then press "apply" then

"OK".

 5-32 170-EED-003

g. Select File -> Save All

7. Select "PGSTK" project by clicking on it on the TOOLKIT_MTD Solution tree.

build the Release version of the TOOLKIT_MTD library by selecting:

a. Build -> Build PGSTK

b. Build -> Project only -> Link

8. build the Release version of the TOOLKIT_MTD utility PGS_TD_NewLeap and ephtobin.

a. Select PGS_TD_NewLeap on the tree. then select Build -> Build PGS_TD_NewLeap

b. Select ephtobin on the tree. then select Build -> Build ephtobin

9. Repeat above steps for the debug version of libraries and utilities, if you desire, after changing

configuration after selecting Build -> Configuration Manager and "Active Solution

Configuration" to "Debug". Note that now for input libraries you should select debug ones that

usually end with "d" befor ".lib", such as pgstkd.lib.

10. Run the installation batch file win32ins.bat (after editing and correcting for

TOOLKIT_MTD parent directory path) in directory <top-level

 PGSTK directory>\TOOLKIT_MTD\windows\dev_without_fortran\.

Commands in this file will copy pgstk.lib, pgstkd.lib and utilities to <top-level PGSTK

directory>\TOOLKIT_MTD\bin\nt_98 and

<top-level PGSTK directory>\TOOLKIT_MTD\lib\nt_98, and remove the temporary files.

The <top-level PGSTK directory>\TOOLKIT_MTD\bin\nt_98 directory will contain utilities:

PGS_TD_NewLeap.exe ephtobin.exe

The <top-level PGSTK directory>\TOOLKIT_MTD\lib\nt_98 directory will contain PGSTK

libraries:

pgstk.lib (TOOLKIT_MTD Library of release version) pgstkd.lib

(TOOLKIT_MTD library of debug version)

 where

 <top-level PGSTK directory> may be C:\PGSTKHOME

INSTRUCTIONS FOR FULL TOOLKIT_MTD INSTALLATION WITH FORTRAN:

 5-33 170-EED-003

1. You will use pgstk5.2.19r1.zip

 Run WinZip on

 c:\PGSTKHOME\pgstk5.2.19r1.zip

 This should create directories called 'TOOLKIT_MTD'. The windows sub directory will

contain 'dev_with_fortran' directory contains a Developer Studio workspace

TOOLKIT_MTD.dsw and TOOLKIT_MTD.sln

2. Follow instructions for steps 2 to 10 above after adding Fortran compiler related include and

Lib directories below to corresponding set in steps 3 and 4.

 F:\Program Files\Microsoft Visual Studio\<Fortran Include Directory>

F:\Program Files\Microsoft Visual Studio\<Fortran Lib Directory>

Compile Notes:

If you are building an application that uses the TOOLKIT_MTD library pgstk.lib (release version

) or pgstkd.lib (debug version), the following locations will need to be specified for locating header

files and linking in the HDF4, HDF5, JPEG, SZIP, ZLIB and TOOLKIT_MTD libraries:

F:\Program Files\Microsoft Visual Studio\Vc7\PlatformSDK\Lib

 F:\Program Files\Microsoft Visual Studio\VC7\lib

 F:\Program Files\Microsoft Visual Studio\Vc7\include\sys

 F:\Program Files\Microsoft Visual Studio\Vc7\atlmfc\lib

 F:\Program Files\Microsoft Visual Studio\SDK\v1.1\lib

 <top-level HDF4 directory>\release\lib

 <top-level HDF4 directory>\release\dll

 <top-level HDF5 directory>\release\lib

 <top-level HDF5 directory>\release\dll

 <top-level jpeg>\lib or <top-level jpeg> if *.lib files are there.

 <top-level zlib>\lib

 <top-level szip>\lib

 <top-level szip>\dll

 <top-level hdfeos5>\lib

 <top-level hdfeos >\lib

 <top-level PGSTK directory>\TOOLKIT_MTD\lib\nt_98

 5-34 170-EED-003

 F:\Program Files\Microsoft Visual Studio\VC7\include

 F:\Program Files\Microsoft Visual Studio\Vc7\include\sys

 F:\Program Files\Microsoft Visual Studio\Vc7\atlmfc\include

 F:\Program Files\Microsoft Visual Studio\SDK\v1.1\include

 <top-level HDF4 directory>\include

 <top-level HDF5 directory>\include

 <top-level jpeg>\include or <top-level jpeg> if *.h files are there.

 <top-level zlib>\include

 <top-level szip>\include

 <top-level hdfeos5>\include

 <top-level hdfeos >\include

 <top-level PGSTK directory>\TOOLKIT_MTD\include

 <top-level PGSTK directory>\TOOLKIT_MTD\include\CUC

 <top-level PGSTK directory>\dev

 where

 <top-level PGSTK directory> may be

 F:\TOOLKIT_MTD5.2.19\with_Fortran\pgstk5.2.19r1

 <top-level HDF4 directory> may be F:\4210-win

 <top-level HDF5 directory> may be F:\5-1812-win

 <top-level szip> may be F:\zlib128-windows

 <top-level hdfeos5> may be F:\hdfeos5_1_15b\hdfeos5

 <top-level hdfeos > may be F:\hdfeos2_19b\hdfeos

 <top-level szip> may be F:\szip21-win-xp-enc

 <top-level jpeg> may be F:\jpeg-6b

 Please refer to the <top-level PGSTK directory>\dev\compile_XP_readme.txt or

 <top-level PGSTK directory>\dev\Test_Driver_XP.txt file for more information on

compiling an application with the TOOLKIT_MTD libraries on Windows XP.

In order to use PGSTK.lib or PGSTKd.lib, it is needed to set up environment variable

"PGSHOME":

in "Control Panel" double click on "System". In the "System Properties" window select

"Advanced". Click "Environment Variables" and enter the new variable name as PGSHOME

and value as <top-level PGSTK directory> may be F:\PGSTKHOME

 5-35 170-EED-003

You may have done this also by Opening autoexec.bat file (if it exists) and adding 1 line at the

end of the file

 Set PGSHOME=<top-level PGSTK directory>\TOOLKIT_MTD

 where <top-level PGSTK directory> may be something like

F:\PGSTKHOME if you have F:\PGSTKHOME as the parent directory

 for TOOLKIT_MTD directory; For excample:

 F:\TOOLKIT_MTD5.2.14\with_Fortran\pgstk5.2.19r1

MORE HELPFUL POINTERS:

Here are some notes that may be of help if you are not familiar with using the Visual C++

Development Environment.

Project name and location issues:

The files in pgstk5.2.19r1.zip must end up in the dev_with_fortran\ (or

dev_without_fortran\)\and TOOLKIT_MTD\ directories installed by pgstk5.2.19.zip.

If you must install TOOLKIT_MTD.dsw in another directory, relative to dev\ , you will be

asked to locate the project files, when you open the project TOOLKIT_MTD.dsw.

5.4 Instructions on Making Changes to Installation Procedures for

UNIX Platforms

The installation procedures given in the subsection 5.2 should work seamlessly for a platform in

Table 5–1. This subsection gives instructions on making changes to the installation procedure of

subsection 5.2, which may be necessary if one uses a different configuration. Here we give a step–

by–step procedure for making these modifications.

In the following procedure, <SDP-home-dir> refers to the Toolkit_MTD home directory.

a. After unpacking the tar file, but before running bin/INSTALL, (steps a–e in Section 5.2, edit

the file INSTALL-Toolkit in <SDP-home-dir>/bin directory.

 The section starting with the comment at line #771 and ending at line #1160 must be modified

for your platform. This section consists of a switch block that checks the value of the

environment variable BRAND and sets the flags for each platform accordingly. Modify

ONLY the block associated with your platform.

 The proper block can be determined from the following table:

 5-36 170-EED-003

Table 5-4. Values of OSTYPE

Value of $BRAND Platform type

sun5.x Sun Sparc (SunOS 5.X)

sgi32, sgi64 SGI Indigo

hp HP 11.00

dec DEC Alpha

ibm IBM RS-6000

linux

Red Hat Enterprise Linux,

SuSE Linux, IA64

macintel Intel Macintosh

winnt98 Cygwin

 Within each block the following variables are set:

Table 5-5. Environment Variables

Name Description

CC C compiler

CFLAGS default C flags (optimize, ANSI)

C_CFH C w/ cfortran.h callable from FORTRAN

CPP C++ compiler

CPPFLAGS Default C++ flags

CPPFHFLAGS CPPFLAGS + CPP_CFH

CFHFLAGS CFLAGS + C_CFH

C_F77_CFH C w/ cfortran.h calling FORTRAN

C_F77_LIB FORTRAN lib called by C main

F77 FORTRAN compiler

F77FLAGS common FORTRAN flags

F77_CFH FORTRAN callable from C w/ cfortran.h

F77_C_CFH FORTRAN calling C w/ cfortran.h

CFH_F77 same as F77_C_CFH

F77_C_LIB C lib called by FORTRAN main

HDFSYS system type as defined by HDF

 Modify the code to set these variables to the appropriate values for your compilers.

Variables CFHFLAGS, CFH_F77, and HDFSYS should never require

modifications. The most important ones are: CC the C compiler

 5-37 170-EED-003

 CPP the C++ compiler

 F77 the FORTRAN compiler

 CFLAGS Must set the C compiler for ANSI C code

 CPPFLAGS Must set the C++ compiler for ANSI C++

C_CFH needed to compile C Toolkit_MTD code that uses cfortran.h for FORTRAN

bindings

F77_CFH needed when compiling FORTRAN to object code callable from C using

cfortran.h

F77_C_CFH needed when compiling FORTRAN drivers that call C subroutines with

FORTRAN bindings written in C using cfortran.h These flags MUST be properly set in order

to build the Toolkit_MTD. b. edit the file pgs-dev-env.csh.tmp in <SDP-home-dir>/bin/tmp

 The section starting with comment at line #251 and ending at line #453 is identical to the

previously mentioned section in the file bin/INSTALL-Toolkit, and must be modified in

the same way.

c. continue with the Toolkit_MTD installation by running bin/INSTALL (step f in Section 5.1,

corresponding to step 6 in <SDP-home-dir>/README

5.5 Link Instructions

This subsection gives instructions on how to link Toolkit_MTD libraries with your code.

The delivery consists of a single Toolkit_MTD library called libPGSTK.a.

Here we give generic command lines for linking with this library. We use $C_COMPILER and

$F77_COMPILER to indicate both the compiler name and any machine–specific compiler flags

used by the science software developer. The relevant environment variables must have been

previously set up; see the "Installation Procedures" subsection of this section. To link C code in

file "main.c" with the Toolkit_MTD, on all machines:

 $C_COMPILER -I$PGSINC -L$PGSLIB main.c -lPGSTK –lm

To link C++ code in file “main.c” with the Toolkit, on all machines:

 $CPP_COMPILER –I$PGSINC –L$PGSLIB main.c –1PGSTK -lm

To link FORTRAN 77 code in file "main.f" with the Toolkit_MTD, on all machines:

 $F77_COMPILER main.f $PGSLIB/libPGSTK.a NOTES:

Specific examples on how to link particular Toolkit_MTD functions on the Toolkit_MTD

development platforms are given with the supplied tool test drivers. See the "Test Drivers" in

Section 5.6.

If you are using a different development configuration than one of those given in table 5–1

 5-38 170-EED-003

("Toolkit_MTD Development Configuration") of Section 5.2, see Section 5.4 ("Instructions on

Making Changes to Installation Procedures") above.

To ensure compatibility of code at the DAACs, science teams are strongly

encouraged to use the same compiler switches used by the Toolkit_MTD where

possible. These switches enforce ANSI/POSIX standards, necessary for

compiling the Toolkit_MTD with the same functionality on all tested platforms;

using the same switches in your code makes it more likely that your code will

quickly pass integration and test at the DAAC. The compilers and their

respective switches are represented by the environment variables $CC,

$CFLAGS, $CPP, $CPP_FLAGS, $F77, $F77FLAGS, and are defined in the

file $PGSHOME/bin/pgs_dev_env.csh. $CC, $CPP and $F77 contain the names

of the C and FORTRAN compilers respectively. $CFLAGS, $CPPFLAGS and

$F77 flags contain the compiler switches (options) used by the Toolkit_MTD

with the C and FORTRAN compilers respectively.

5.6 Test Drivers

Also included with this Toolkit_MTD delivery is test driver programs located in the test

subdirectory.

These test programs are provided to aid the user in the development of software using the

Toolkit_MTD. The user may run the same test cases as included in this file to verify that the

Toolkit_MTD is functioning correctly. These programs were written to support the internal test of

the Toolkit_MTD and are not an official part of the Toolkit_MTD delivery; users make use of

them at their own risk. No support will be provided to the user of these programs. The test directory

contains source code for a driver in C and FORTRAN for each tool; README files explaining

how to use each driver; sample output files; and input files and/or shell scripts, where applicable.

Warning for DEC Digital Unix Platform Users Concerning HDF4.1r3:

The FORTRAN testdrivers for MET tools may fail to create executables for the drivers if you use

.HDF4.1r3. This is due to the fact that the early release of HDF4.1r3 did not support FORTRAN

on DEC, therefore, the library libmfhdf.a does not contain FORTRAN object files. NCSA is aware

of this problem on the DEC platform, and will fix it in their next release of HDF. This problem

only affects the DEC platform. With version 5.2.7.1 of Tooklit_MTD a fix was made in

INSTALL-HDF4.1r3 script to solve the problem. If the problem still exist (which is unlikely)

follow these steps to correct the problem:

1. Go to the directory “<TOOLKIT_MTD-home-directory>/bin/dec” and type:

source pgs-dev-env.csh

2. Go to the directory where hdf-4.2.10 is installed. Go to the subdirectory mfhdf/fortran and

edit “Makefile”. Replace “FC = NONE” with “FC = f77”. Terminate edit and type: make

all

 5-39 170-EED-003

3. Go to the directory mfhdf/libsrc and type:

 cp libmfhdf.a ../../lib/.

to replace libmfhdf.a that already exists in the HDF4.1r3/lib directory.

4. Try compiling fortran testdrivers that failed earlier, by following the steps in the

README_MET file.

5.7 User Feedback Mechanism

The mechanism for handling user feedback, documentation and software discrepancies, and bug

reports follows:

a. An account at the ECS facility has been set up for user response:

 pgstlkit@raytheon.com

b. Users will e–mail problem reports and comments to the above account. A receipt will be

returned to the sender. A workoff plan for the discrepancy will be developed and status

report issued once a month. Responses will be prioritized based on the severity of the

problem and the available resources. Simple bug fixes will be turned around sooner, while

requested functional enhancements to the Toolkit_MTD will be placed in a recommended

requirements database (RRDB) and handled more formally.

c. The following format will be used for email response.

Name:

 Date:

 EOS Affiliation (DAAC, Instrument, Earth Science Data and Information System

(ESDIS), etc.):

 Phone No.:

 Development Environment:

 Computing Platform:

 Operating System:

 Compiler and Compiler Flags:

 Tool Name:

 Problem Description:

 (Please include exact inputs to and outputs from the Toolkit_MTD call, including error

code returned by the function, plus exact error message returned where applicable.)

 Suggested Resolution (include code fixes or workarounds if applicable):

d. In addition to the email response mechanism, a phone answering machine is also provided.

The telephone number is: 301–851–8373. Calls will be returned as soon as possible. We

 5-40 170-EED-003

note that the email user response mechanism has been in operation for several years and

has been effective in gathering user feedback. Email is our preferred method of responding

to users.

 5-41 170-EED-003

This page intentionally left blank.

 6-1 170-EED-003

6. Toolkit Specification

6.1 Introduction

In this section, we give a descriptive list of Toolkit software tools designed to satisfy the

requirements for metadata and time tools listed in PGS Toolkit Requirements Specification for the

ECS Project, Hughes Information Technology Systems, Inc. 193-801-SD4-001, October 1993 and

updated in versions through May 2000. The following fields are provided: a name, a synopsis field,

a description of each tool, a list of input and output, an error return field, examples, notes, and a

cross reference to the target Toolkit requirement(s).

It is assumed that ECS science software requests for metadata formatting and time/date requests

must be made through the Toolkit, as explained in section 4.1. These tools are described in Section

6.2.

Toolkit routines use the following naming convention:

PGS_GROUPNAME_FUNCTIONALNAME. The GROUPNAME denotes the function of that

group of Toolkit routines: IO=Input/Output, SMF=Status/message Facility, MEM=Memory

Management, MET=metadata, TD=time and date conversion, PC=ProcessControl, CBP=Celestial

Body Position, CUC=Constant and Unit Conversion, CSC=Coordinate System Conversion. The

remaining part of the name has sufficient detail to indicate the functionality of the tool. (See also

Section 3.2)

There are several C (.h) and FORTRAN (.f) included files listed in the tool descriptions in the

following sections, e.g., PGS_IO.h. These files are meant to contain descriptions of data structures,

constants; headers; configuration information for data files called by the tools; common symbols;

return codes, etc., used in that section. To view these files, look in Toolkit directory

$PGSHOME/include.

A note on error handling: Since each function has only one return value; every effort has been made

to preserve the most important warning or error value on returning. Given that subordinate

functions often have several possible returns, and different users have different priorities, it is

always advisable to check the message log as well as examining the return. When totally

inconsistent behavior is found in a return from a subordinate function, the returned value is

PGS_E_TOOLKIT. Example: a Toolkit function passes an internally generated vector, whose

length is certain to be nonzero, to a subordinate function. The lower-level function then returns a

warning or error return saying that the vector is of zero length; while the higher level function

returns PGS_E_TOOLKIT. Another example: if a valid spacecraft tag is passed in, but rejected as

invalid down the processing line, the error PGS_E_TOOLKIT is returned by the higher-level

function. Thus return value PGS_E_TOOLKIT indicates a flaw in the software, the violation of an

array boundary, a hardware, compiler, or system error, corrupted data, or some similarly serious

condition that invalidates the processing.

 6-2 170-EED-003

6.2 Toolkit Tools

6.2.1 Metadata Tools

This set of tools is designed to manage the metadata that are generated with each EOS product, i.e.,

the granule-level metadata. The tools also provide a mechanism for populating the inventory data

base tables with the metadata for each granule. The purpose of these tools is:

• To ensure that the metadata produced conforms to ECS standards in content and format;

and

• To provide access files from within the science algorithms to metadata contained in input

files.

The overall context of metadata in ECS, and further details on the use of the metadata tools are

provided in Appendix D of this document.

The metadata tools in the toolkit library are called from within a PGE to read and write metadata.

The metadata attributes that will be assigned values during processing are identified in the metadata

configuration file (MCF). The MCF is read into memory and toolkit calls are used to populate

values for the attributes. When the metadata population process is complete, metadata “blocks” are

written to product output files as HDF data objects called global attributes (not to be confused with

individual metadata elements which are also called attributes). All output metadata is in object

description language (ODL).

The first tool to be called is PGS_MET_SetFileId. This function sets logical file ID for the files

that are used by MET tools. The tool reads logical Ids assigned for the MCF, ASCII, configfile,

and other temporary input/output files in the PCFT file called filetable.temp, that should reside in

the directory where the executable is run. A template for this file is given in Appendix C. The

defined logical IDs can be used as input for other MET tools. These IDs for the file listed in the

PCFT can also be recovered using PGS_MET_GetFileId.

Multiple MCFs may be opened and written to from within a single PGE. The five metadata tools

that are used in conjunction with MCFs must be called in a specific sequence, once for each MCF.

First, each MCF must be initialized with PGS_MET_Init, which also assigns values for “system”

metadata. Values generated within the PGE are assigned to attributes in the MCF using

PGS_MET_SetAttr or PGS_MET_SetMultiAttr. To return the value of any metadata attribute

in the MCF that has received a value PGS_MET_GetSetAttr may be used. After all values have

been assigned, PGS_MET_Write is used to write the metadata to the product or, alternatively for

non-HDF products, to a separate ASCII metadata file. Finally, PGS_MET_Remove frees up

memory used by the MCFs. Note that in order to write metadata to an HDF file user needs to open

HDF file before calling PGS_MET_Write. If the HDF file is of type HDF4 user may still call

HDF’s SDstart for this purpose. However, if the HDF file is of type HDF5 user must call

PGS_MET_SDstart to open the file (this function can also be used to open HDF file of type

HDF4). The file opened by PGS_MET_SDstart needs to be closed by a call to

PGS_MET_SDend after writing metadata to it.

 6-3 170-EED-003

In addition to MCF, attribute values can be written into any file as ASCII records. This kind of file

should be initialized by PGS_MET_Init_NonMCF. This routine runs the file against the parser

and creates a temporary MCF file. The temporary MCF file is then initialized by PGS_MET_Init

as an ordinary MCF file.

Two additional toolkit routines are used to read metadata values from within the PGE. These may

be called independently of any MCF. PGS_MET_GetPCAttr may be used to return the value of

metadata from input files identified to the process control (PC) system.

PGS_MET_GetConfigData may be used to return the value of runtime metadata from the config

file that is identified in the PCFT file.

The FORTRAN versions of PGS_MET_SetAttr, PGS_MET_SetMultiAttr

PGS_MET_GetConfigData, PGS_MET_GetSetAttr, and PGS_MET_GetPCAttr must include an

underscore and an extra character at the end of the function name to indicate the data type being

handled: _S for string values, _I for integer and unsigned int values, and _D for single or double

precision real values. For example, the function PGS_MET_SetAttr actually represents three

different FORTRAN functions (the same applies for PGS_MET_SetMultiAttr):

• PGS_MET_SetAttr_S to set the value of string and datetime attributes

• PGS_MET_SetAttr_I to set integer and unsigned int values; and

• PGS_MET_SetAttr_D to set real or double values

As discussed in greater detail in Appendix D, two separate metadata blocks are handled by the

metadata tools. These are called inventory and archive. Inventory consists of “core” attributes, i.e.

those that are part of the ECS Data Model, which will reside in the ECS inventory tables and will

thus be available to query on in locating granules. Archive metadata refers to metadata that a data

producer wants to be included with the data granule, but need not be searchable by the system and

will therefore not be used to populate the inventory tables. Archive metadata can, however, be read

from HDF input files using toolkit calls.

The inventory and archive blocks are referenced in the toolkit calls by an array, e.g. mdHandles(n),

where n=1 (for C, n=2 for FORTRAN) indicates inventory metadata and n=2 (or n=3 for

FORTRAN) indicates archive metadata. To write an ASCII version of the metadata for non-HDF

files mdHandles(0) (or n=1 for FORTRAN) is used to indicate that all metadata block are to be

written together. It is possible to define other blocks and write them to HDF product output files

or to ASCII metadata output files, but these will not be handled by the system. For example, if the

granule is subsetted using ECS routines, only the inventory and archive blocks will be copied into

the resultant file.

Additional description and extensive examples of the usage of MET tools can be found in the HDF-

EOS Users Guide for the EED Project, Vol. 1, Section 7 and 8.

A description of each MET tool follows:

Establish Logical IDs for Files to be Used

 6-4 170-EED-003

NAME:

SYNOPSIS:

PGS_MET_SetFileId()

C: #include <PGS_MET.h>

PGSt_SMF_status

PGS_MET_SetFileId()

FORTRAN: include ‘PGS_SMF.h’ include ‘PGS_tk.f’

 integer function pgs_met_setfileid()

DESCRIPTION: This tool sets logical IDs assigned for the user defined files in PCFT file

filetable.temp.

INPUTS: None

OUTPUTS:

RETURNS:

None

Table 6-1. PGS_MET_SetFileId Returns

Return Description

PGS_S_SUCCESS Successful return

PGSPC_E_FILE_OPEN_ERR Error opening file File_Table or LogStatus file

EXAMPLES: C:

 PGSt_SMF_status returnstatus;

returnstatus = PGS_MET_SetFileId();

if (returnstatus != PGS_S_SUCCESS)

 {

 *** do some error handling ***

:

:

}

FORTRAN:

 implicit none

 integer returnstatus

 6-5 170-EED-003

 integer PGS_MET_SetFileId

 returnstatus = PGS_MET_SetFileId()

 if (returnstatus .ne. PGS_S_SUCCESS) goto 999

NOTES: None

 6-6 170-EED-003

Get Logical ID for a File listed in the PCFT file

NAME:

SYNOPSIS:

PGS_MET_GetFileId()

C: #include <PGS_MET.h>

 PGSt_SMF_status

PGS_MET_GetFileId(

char *filename)

FORTRAN: include ‘PGS_SMF.h’ include ‘PGS_tk.f’

 integer function pgs_met_getfileidf(filename)

 character*(*) filename

DESCRIPTION:

INPUTS:

This tool retrieves logical ID assigned for a file entry in PCFT file

filetable.temp. It returns FileId if successful, 0 otherwise.

Table 6-2. PGS_MET_GetFileId Inputs

Name Description Units Min Max

filename File name (with full path) for an entry in

PCFT
none variable variable

OUTPUTS: None

RETURNS:

Table 6-3. PGS_MET_GetFileId Returns

Return Description

File ID Successful return

0 (zero) Failed to find ID

EXAMPLES: C:

 PGSt_SMF_status fileid;

fileid = PGS_MET_GetFileId(“/home/username/MY_MCF_file”);
if (fileid == 0)

 {

 6-7 170-EED-003

 *** do some error handling ***

:

:

}

 FORTRAN:

 implicit none

integer fileid

 integer PGS_MET_GetFileIdF

 fileid = PGS_MET_GetFileIdF(“/home/username/MY_MCF_file”)

 if(fileid .eq. 0) goto 999

 NOTES: None

 6-8 170-EED-003

Open HDF File of Type HDF4 or HDF5 for Writing Metadata

NAME:

SYNOPSIS:

PGS_MET_SDstart()

C: #include <PGS_MET.h>

#include <PGS_tk.h>

PGSt_SMF_status

PGS_MET_SDstart(

char *filename,

uintn access_mode,

PGSt_integer *HDFfid)

FORTRAN: include ‘PGS_SMF.f’ include ‘PGS_tk.f’

 integer function pgs_met_sfstart(filename, access_mode, hdffid)

 character*(*) filename

integer hdffid

DESCRIPTION:

INPUTS:

This tool opens the HDF files of type HDF4 and/or HDF5 and initializes the

SD inetface.

Table 6-4. PGS_MET_SDstart Inputs

Name Description Units Min Max

filename HDF file name (with full path) none variable variable

access_mode Access mode for opening HDF file. It can

be: HDF4_ACC_RDONLY,
HDF4_ACC_RDRW,
HDF4_ACC_CREATE for HDF4 files and
HDF5_ACC_RDONLY,
HDF5_ACC_RDWR,
HDF5_ACC_CREATE for HDF5 files

none

OUTPUTS:

Table 6-5. PGS_MET_SDstart Outputs

Name Description Units Min Max

HDFfid SD id of the file opened none N/A N/A

 6-9 170-EED-003

RETURNS:

Table 6-6. PGS_MET_SDstart Returns

Return Description

PGS_S_SUCCESS

PGSMET_E_HDF5_FILE_TYPE_E

RROR
Cannot determine whether the file is hdf4, hdf5, or none-hdf type

PGSMET_E_SD_START File <filename> is not HDF type and cannot be opened

PGSMET_E_SD_START Cannot open HDF5 file <filename>

PGSMET_E_SD_START Cannot open HDF4 file <filename>

EXAMPLES: C:

PGSt_SMF_status retstatus;

 PGSt_integer Sdid;

retstatus = PGS_MET_SDstart(“/home/username/myhdf.h5”,

HDF5_ACC_RDWR, &SDid);

if (retstatus != 0)

{

 *** do some error handling ***

:

:

}

FORTRAN:

 implicit none

 integer sdid

 integer status

 status = PGS_MET_SFstart(“/home/username/myhdf.h5”,

 * HDF5_ACC_RDWR,

sdid) if(status .ne. 0) goto 999 NOTES: None

Close HDF file of Type HDF4 or HDF5

 6-10 170-EED-003

NAME:

SYNOPSIS:

PGS_MET_SDend()

C: #include <PGS_MET.h>

#include <PGS_tk.h>

PGSt_SMF_status

PGS_MET_SDend(

cha PGSt_integer HDFfid)

FORTRAN: include ‘PGS_SMF.f’ include

‘PGS_tk.f’

 integer function pgs_met_sfend(hdffid)

integer hdffid

DESCRIPTION: This tool closes the HDF files of type HDF4 and/or HDF5 that have been opened

by calling PGS_MET_SDstart.

INPUTS:

Table 6-7. PGS_MET_SDend Outputs

Name Description Units Min Max

HDFfid SD id of the file opened none N/A N/A

OUTPUTS: None

RETURNS:

Table 6-8. PGS_MET_SDend Returns

Return Description

PGS_S_SUCCESS

PGSMET_E_SD_END Cannot close the HDF file with ID <sd id>

EXAMPLES: C:

PGSt_SMF_status retstatus;

 PGSt_integer Sdid;

 6-11 170-EED-003

retstatus = PGS_MET_SDend(SDid);

if (retstatus != 0)

{

 *** do some error handling ***

:

:

}

 FORTRAN:

 implicit none

 integer sdid

 integer status

 status = PGS_MET_SFend(sdid)

 if(status .ne. 0) goto 999

 NOTES: None

Initialize a Metadata Configuration File (MCF) into Memory

NAME:

SYNOPSIS:

PGS_MET_Init()

C: #include "PGS_MET.h"

PGSt_SMF_status

PGS_MET_Init(

 PGSt_PC_Logical fileId,

 PGSt_MET_all_handles mdHandles)

FORTRAN: include "PGS_MET.f"

include "PGS_SMF.f" include “PGS_tk.f”

 integer function pgs_met_init(fileId, mdHandles)

 integer fileId

character* PGS_MET_GROUP_NAME_L

 mdHandles(PGS_MET_NUM_OF_GROUPS)

 6-12 170-EED-003

DESCRIPTION:

INPUTS:

Initializes MCF file containing metadata.

Table 6-9. PGS_MET_Init Inputs

Name Description Units Min Max

fileId MCF file id none variable variable

OUTPUTS:

Table 6-10. PGS_MET_Init Outputs

Name Description Units Min Max

mdHandles metadata groups in MCF none N/A N/A

RETURNS:

Table 6-11. PGS_MET_Init Returns

Return Description

PGS_S_SUCCESS

PGSMET_E_LOAD_ERR Unable to load <MCF> information. Lower level routines contain

more information

PGSMET_E_GRP_ERR Master groups are not supposed to be enclosed under any other

group or object. The offending group is <name>

PGSMET_E_GRP_NAME_ERR Group name length should not exceed

PGS_MET_GROUP_NAME_L - 5.

PGSMET_E_NO_INVENT_DATA Inventory data section not defined in the MCF

PGSMET_E_DUPLICATE_ERR There is a another object with the same name for object

<name>

Duplicate names are not allowed within master groups

PGSMET_E_NUM)FMCF_ERR Unable to load. The number of MCFs allocated has been

exceeded.

PGSMET_E_PCF_VALUE_ERR Metadata objects to be set from values defined in PCF could not

be set. See error returns form the lower level routines.
Initialization takes place nevertheless.

EXAMPLES: C:

 #include "PGS_MET.h"

 #define INVENTORYMETADATA 1

#define MODIS_FILE 10253 /* This value must also be defined in

the PCFT file “filetable.tmp”

 10253|hdftestfile|/home/asiyyid/pgetest/fortran/hdftestfile

 6-13 170-EED-003

: */

#define ODL_IN_MEMORY 0

int main()

{

PGSt_MET_all_handles handles;

char * fileName = "/home/modis/hdftestfile"; /*

the user should change this accordingly */

int32 hdfRet, sdid;

extern AGGREGATE PGSg_MET_MasterNode;

PGSt_SMF_status ret = PGS_S_SUCCESS;

PGSt_integer fileId =

PGSd_MET_MCF_FILE; PGSt_integer i; double

dval, dval[6]; char* sval;

sval = (char*) malloc(30);

ret= PGS_MET_SetFileId();

 ret=

PGS_MET_Init(fileId, handles); if(ret !=

PGS_S_SUCCESS)

 {

printf("initialization failed\n");

return 0;

 }

PGS_MET_Remove();

printf("SUCCESS\n");

return 0;

}

FORTRAN: include

"PGS_SMF.f"

include "PGS_tk.f "

include "PGS_MET.f"

C the file id must also be defined in the PCFT file filetable.temp as

follows

C 10253|hdftestfile|/home/asiyyid/pgetest/fortran/hdf

C testfile

 integer pgs_met_init

integer pgs_met_SetFileId

integer MODIS_FILE

 parameter(MODIS_FILE = 10253)

integer INVENTORYMETADATA

parameter(INVENTORYMETADATA = 2)

 6-14 170-EED-003

integer ODL_IN_MEMMORY

parameter(ODL_IN_MEMMORY = 1)

C the groups have to be defined as 49 characters long.

C The C interface is 50.

C The cfortran.h mallocs an extra 1 byte for the null C

character '\0/', therefore making the actual length of a C

string pass as 50.

 character*PGS_MET_GROUP_NAME_L 1

mdHandles(PGS_MET_NUM_OF_GROUPS)

character*50 fileName integer result

integer hdfReturn double precision

dval(1), dval(6) char*80 sval(5)

C you must change this file spec in the PCF and the example

C before running this example.

 fileName = "/home/asiyyid/pgetest/fortran/hdftestfile"

 result = pgs_met_setfileid()

 result = pgs_met_init(PGSd_MET_MCF_FILE, groups)

if(result.NE.PGS_S_SUCCESS) then

 print *, "Initialization error. See Logstatus for

details" endif print *, "SUCCESS"

 end

NOTES: The MCF file must be in the format described in Appendix D.

 Effective with the November 1996 SCF Toolkit release, multiple MCFs can now

be initialized by repeated calls to this function.

REQUIREMENTS: PGSTK-0290, PGSTK-0370

 6-15 170-EED-003

Initialize an ASCII Metadata File into Memory

NAME:

SYNOPSIS:

PGS_MET_Init_NonMCF()

C: #include "PGS_MET.h"

PGSt_SMF_status

PGS_MET_Init_NonMCF(

 PGSt_PC_Logical fileId,

 PGSt_MET_all_handles mdHandles)

FORTRAN: include "PGS_tk.f" include

"PGS_SMF.f"

 integer function pgs_met_init_nonmcf(fileId, mdHandles)

 integer fileId

character* PGS_MET_GROUP_NAME_L

 mdHandles(PGS_MET_NUM_OF_GROUPS)

DESCRIPTION:

INPUTS:

Initializes an ASCII file containing metadata.

Table 6-12. PGS_MET_Init_NonMCF Inputs

Name Description Units Min Max

fileId ASCII file id none variable variable

OUTPUTS:

Table 6-13. PGS_MET_Init_NonMCF Outputs

Name Description Units Min Max

mdHandles metadata groups in temporary

MCF file created
none N/A N/A

RETURNS:

Table 6-14. PGS_MET_Init_NonMCF Returns

Return Description

PGSMET_E_PCREAD_ERR Unable to obtain filename or attribute filename from the PC Table

PGSMET_E_ODL_MEM_ALLOC ODL routine failed to allocate memory

PGSMET_E_SD_START Unable to open the HDF file

 6-16 170-EED-003

PGSMET_E_OPEN_ERR Unable to open temporary input file with file ID <aggregate name>

PGSMET_E_FINDATTR Unable to get the attr index

PGSMET_E_SD_INFO Unable to retreive SD attribute information

PGSMET_E_MALLOC_ERR Unable to allocate memory for the HDF attribute

PGSMET_E_SD_READ Unable to read HDF attribute

PGSMET_E_ODL_READ_ERR Unable to create ODL tree < aggName> with file ID <FileId>

PGSMET_E_TYPE_ERR Unable to obtain data type for the unset attribute

PGSMET_E_CONVERT_ERR Unable to convert HDF-EOS metadata product file, in which unset

attributes were defined as NOT SET for Data Location PGE, NOT
SUPPLIED for Data Location MCF, and NOT FOUND for Data

Location NONE, to an MCF file

PGSMET_E_OPEN_ERR Could not produce temporary MCF file for metadata file

PGSMET_E_NO_Initialization Could not initialize temporary MCF file produced for the metadata file

EXAMPLES:

C: #include "PGS_MET.h"
 #define INVENTORYMETADATA 1

#define MODIS_FILE 10253 /* This value must also be defined in

the PCFT file “filetable.tmp

 10253|hdftestfile|/home/asiyyid/pgetest/fortran/hdftestfile

: */

#define ODL_IN_MEMORY 0

int main()

{

PGSt_MET_all_handles handles;

char * fileName = "/home/modis/hdftestfile"; /*

the user should change this accordingly */

int32 hdfRet, sdid;

extern AGGREGATE PGSg_MET_MasterNode;

PGSt_SMF_status ret = PGS_S_SUCCESS;

PGSt_integer fileId =”user defined ASCII file

ID”; PGSt_integer i; double dval, dval[6]; char*

sval;

sval = (char*) malloc(30);

 ret=PGS_MET_SetFileId();

ret= PGS_MET_Init_NonMCF(fileId, handles);
if(ret != PGS_S_SUCCESS)

 {

printf("initialization failed\n");

return 0;

 }

 6-17 170-EED-003

PGS_MET_Remove();

printf("SUCCESS\n");

return 0;

} FORTRAN:

 include "PGS_SMF.f"

 include "PGS_tk.f"

 include "PGS_MET.f"

C the file id must also be defined in the PCFT file filetable.temp as

follows

C 10253|hdftestfile|/home/asiyyid/pgetest/fortran/hdf

C testfile

 integer pgs_met_init_nonmcf

 integer pgs_met_SetFileId

 integer MODIS_FILE

parameter(MODIS_FILE = 10253)

integer INVENTORYMETADATA

parameter(INVENTORYMETADATA = 2)

integer ODL_IN_MEMMORY

parameter(ODL_IN_MEMMORY = 1)

C the groups have to be defined as 49 characters long.

C The C interface is 50.

C The cfortran.h mallocs an extra 1 byte for the null C

character '\0/', therefore making the actual length of a C

string pass as 50.

 character*PGS_MET_GROUP_NAME_L 1

mdHandles(PGS_MET_NUM_OF_GROUPS)

character*50 fileName integer result

integer hdfReturn double precision

dval(1), dval(6) char*80 sval(5)

C you must change this file spec in the PCF and the example

C before running this example.

 fileName = "/home/asiyyid/pgetest/fortran/hdftestfile"

 result = pgs_met_setfileid()

 result = pgs_met_init_nonmcf(”user defined ASCII file ID”,

groups)

 if(result.NE.PGS_S_SUCCESS) then

 print *, "Initialization error. See Logstatus for

details" endif print *, "SUCCESS" end

 NOTES: None

 6-18 170-EED-003

Assign Values to Metadata Attributes

NAME:

SYNOPSIS:

PGS_MET_SetAttr() and PGS_MET_SetMultiAttr()

C: #include "PGS_MET.h"

PGSt_SMF_status PGS_MET_SetAttr(

 PGSt_MET_handle mdHandle,

 char *attrNameStr, void *attrValue)

PGSt_SMF_status PGS_MET_SetMultiAttr(

 PGSt_MET_handle mdHandle,

 char *attrNameStr,

 PGSt_integer num_val,

 void *attrValue)

FORTRAN: include "PGS_tk.f"

include "PGS_MET.f"

include "PGS_SMF.h"

 integer function pgs_met_setattr(mdHandle, attrNameStr, attrValue)

 character*(*) mdHandle

character*(*) attrName 'user

defined' attrValue

 integer function pgs_met_setmultiattr(mdHandle, attrNameStr, num_val,

attrValue)

 character*(*) mdHandle character*(*)

 attrNameStr

'user defined' attrValue

integer num_val

DESCRIPTION: After an MCF file is initialized into memory the user may assign values to

metadata attributes using PGS_MET_SetAttr or PGS_MET_SetMultiAttr.

Users may assign multiple values to metadata attributes, whose NUM_VAL

is 1 in the MCF file, using PGS_MET_SetMultiAttr(). This function sets

the multi-value attribute and modifies NUM_VAL value to num_val passed

to the function. The values can be of following types and their array

counterparts

 6-19 170-EED-003

 PGSt_integer, PGSt_double, PGSt_real, char * (string)

INPUTS:

Table 6-15. PGS_MET_SetAttr/ PGS_MET_SetMultiAttr Inputs

Name Description Units Min Max

mdHandle metadata group in MCF none N/A N/A

attrNameStr name.class of parameter none N/A N/A

attrValue value of attribute to be inserted none N/A N/A

num_val number of values to be set by the user if

NUM_VAL is 1 in the MCF
none 1 N/A

OUTPUTS: None

RETURNS:

Table 6-16. PGS_MET_SetAttr/ PGS_MET_SetMultiAttr Returns

Return Description

PGS_S_SUCCESS

PGSMET_E_NO_INITIALIZATION Metadata file is not initialized

PGSMET_E_NESTED_OBJECTS Object descriptions enclosing related objects must not be

enclosed themselves by other objects

PGSMET_E_ODL_MEM_ALLOC ODL routine failed to allocate memory

PGSMET_E_PARENT_GROUP Multiple objects must have enclosing groups around them

PGSMET_E_CLASS_PARAMETER Container object must also have class parameter defined

PGSMET_E_METADATA_CHILD metadata Objects are not allowed to enclose other objects

PGSMET_W_NOT_MULTIPLE Object is not supposed to be multiple therefore resetting the

value. The user may have given a class with the metadata

name

PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.

PGSMET_E_ILLEGAL_TYPE Illegal type definition for metadata <attrName>. It should be a

string

PGSMET_E_NO_DEFINITION Unable to obtain <attr> of metadata <parameter> Either type

or numval not defined

PGSMET_E_ILLEGAL_NUMVAL Illegal NUMVAL definition for metadata <attrName>. It should

be an integer

PGSMET_E_DD_UNKNOWN_PARM The requested parameter <parameter name> could not be

found in <agg node>

PGSMET_E_NEW_ODL_DATA_ERR Unable to create a new odl <parameter>, probably due to lack

of memory

PGSMET_E_INV_DATATYPE Invalid data type definition in MCF for parameter <name>

PGSMET_E_INVALID_LOCATION Invalid location for setting attribute value

EXAMPLES:

 6-20 170-EED-003

C:

/* For setting Inventory Attributes in the MCF */
 char *svals[5]
 PGSt_MET_all_handles

handles; PGSt_integer num_val;

char AttrName[256]; char

AttrValString[256]; char

cptr; / NUMVAL i the MCF = 6 */
 dvals[0] = 10.0; dvals[1]

= 20.0; dvals[2] = 30.0;

dvals[3] = 40.0; dvals[4]

= 50.0; dvals[5] = 60.0;

ret = PGS_MET_SetAttr(handles[INVENTORYMETADATA],

 "GRingPointLatitude.1", dvals);

/* For setting Product Specific Attributes */

strcpy(informationname,"TestingAttribute1");

ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],

"AdditionalAttributeName.1",&informationname);

strcpy(informationname,"testingAttributeValue1");

ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
" ParameterValue.1",&informationname);

strcpy (AttrName, "AdditionalAttributeName.1");

 strcpy (AttrValString, "string 1"); cptr =

AttrValString;
 ret = PGS_MET_SetAttr(handles[INVENTORYMETADATA],AttrName,&cptr);

 strcpy (AttrName, "ParameterValue.1"

); svals[0] = (char *) malloc(30);

svals[1] = (char *) malloc(30); svals[2]

= (char *) malloc(30); svals[3] =

(char *) malloc(30); svals[4] = NULL;
 strcpy(svals[0], "Astring 11");

strcpy(svals[1], "Astring 22");

strcpy(svals[2], "Astring 33");

strcpy(svals[3], "Astring 44"); num_val

= 6;
 ret = PGS_MET_SetMultiAttr(handles[INVENTORYMETADATA],

AttrName, num_val, svals);

FORTRAN:

 IMPLICIT NONE
 INCLUDE “PGS_tk.f”
 INCLUDE 'PGS_SMF.f'
 INCLUDE 'PGS_MET.f'

INCLUDE 'PGS_PC.f'
 INCLUDE 'hdf.inc'
 integer PGS_MET_Init

integer PGS_MET_SetAttr_s

 6-21 170-EED-003

integer PGS_MET_SetMultiAttr_s

character*50 svals2(5)

character*(PGSd_MET_GROUP_NAME_L)
 + mdHandles(PGSd_MET_NUM_OF_GROUPS) ! metadata group in MCF

character*256 AttrName character*256 AttrValString

integer status
 integer num_val

 integer INVENTORY

PARAMETER (INVENTORY = 2)

integer MCF_FILE
 PARAMETER (MCF_FILE = 10250)

 status = PGS_MET_Init (MCF_FILE, mdHandles)
 AttrName = "AdditionalAttributeName.1"
 AttrValString = "string 2"
 status = PGS_MET_SetAttr_s (mdHandles(INVENTORY), AttrName,

& AttrValString)

 AttrName = "ParameterValue.1"

svals2(1) = "Astring 11" svals2(2)

= "Astring 22" svals2(3) = "Astring

33" svals2(4) = "Astring 44"

svals2(5) = PGSd_MET_STR_END

num_val = 6

 status = PGS_MET_SetMultiAttr_s(mdHandles(INVENTORY), AttrName,
 & num_val, svals2)

C For setting Inventory Attributes in an HDF file

 dvals(1) = 10.0

 dvals(2) = 20.0

 dvals(3) = 30.0

 dvals(4) = 40.0

 dvals(5) = 50.0

 dvals(6) = 60.0
 ret =
 pgs_met_setattr_d(groups(INVENTORYMETADATA),

 1 “GRingPointLatitude.1", dvals)
C For setting Product Specific Attributes

 informationname = "TestingAttribute1"

 ret = pgs_met_setattr_s(groups(INVENTORYMETADATA), 1

"AdditionalAttributeName.1",informationname) informationname

= "testingAttributeValue1" ret =

pgs_met_setattr_s(groups(INVENTORYMETADATA),
 1 "ParameterValue.1",informationname)

 6-22 170-EED-003

NOTES: 1. Multiplicity:

In TK5, a CLASS statement was introduced so that metadata objects with the same

name could be distinguished from each other in the ODL tree. In TK5.1 this

functionality was further extended to allow a single metadata object in the MCF to

have multiple instances. This means that all the metadata objects within a master

group in the MCF must have unique names. The use of the CLASS field in the

name of a metadata attribute is optional and is needed only when the attribute in

the MCF is within a group having a CLASS statement. See Appendix D for details

and examples. 2. Nested Metadata:

There are certain metadata objects which are always described as a group of related

metadata. To allow such groups to stay together in the MCF and the ODL tree,

nested metadata objects are defined in the MCF using "Container Objects." in the

MCF with related metadata as its child members. The child members are set

individually as before. The container object does not have a value since it defines

a concept and not an entity.

In the case of multiple container objects (e.g. there could be more than one instances

of gring polygons), when a call to set a value of one of the child metadata objects

is made, it is the container object which is duplicated with a different class creating

instances of all the child members. It is the users responsibility to set their values

as well with subsequent call. Examples are given in Appendix D. 3. Array Filling:

TK5 imposed a restriction that metadata objects with values defined as arrays must

be set with all the elements filled. This restriction is now lifted and the user has the

freedom to set 1 to n values for a particular parameter where n is defined in the

NUM_VAL field in the MCF. In this case where the values are being retrieved, the

end of array is marked by:

 INT_MAX for integers

 UINT_MAX for unsigned integers

 DBL_MAX for doubles

 NULL char * (strings)

These values are defined in the limits.h and floats.h. Its analogous to null terminated strings

defined as char[] arrays.

FORTRAN Users:

 Use PGSd_MET_INT_MAX, PGSd_MET_DBL_MAX and

PGSd_MET_STR_END respectively.

The user can check for these values to determine the actual number of values

retrieved. In case where the number of values retrieved is equal to n, there is no end

of array marker since user is expected to know n for setting the return buffer.

4. Permissible Data Locations:

 6-23 170-EED-003

PGS_MET_SetAttr and PGS_MET_SetMultiAttr can be used to assign values to

metadata attributes which have DATA_LOCATION = “PGE”, “MCF”, “PCF”, or

“TK”. Any attribute with DATA_LOCATION = “DSS”, “DAAC,” or “DP” can

not be set by the PGE. An attempt to do so with PGS_MET_SetAttr or

PGS_MET_SetMultiAttr will result in an error message

 of

PGSMET_E_INVALID_LOCATION being generated in the runtime LOG file.

5. Metadata Types:

The tool provides a void interface through which different types of metadata can be

set. The types supported are:

 PGSt_integer

 PGSt_uinteger

 PGSt_double

 string

and their arrays counterparts. PGSt_real has been omitted because of the changes in

TK5.1.

It is very important that variable string pointers are used for string manipulations.

This is because void interface is used. For example, the following piece of code

would give an error or unexpected results:
.

.
char a[100];
. . strcpy(a,

"MODIS");
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", a);
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],

"SATELLITE_NAME", &a);

The first call is wrong because the routine expects char** but cannot force it

because of void interface. The second call is wrong too because of the declaration

of 'a' which is a constant pointer, i.e. it would always point to the same location in

memory of 100 bytes. Only the following construct will work with the routine in

which the string pointer is declared as a variable char *a = "MODIS"
. . retVal =

PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],

"SATELLITE_NAME", &a);

The above discussion is also true for arrays of strings. For example, the following is

not allowed for the same reasons as above
.

.
char a[10][100];
.

.
strcpy(a[0], "MODIS");

 6-24 170-EED-003

retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", &a[0]);

while the following is acceptable:
.
.
char *a[10];
. . a[0] =

"MODIS";

 retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],

"SATELLITE_NAME", &a[0]);

IMPORTANT

The void buffer should always be large enough for the returned values otherwise routine

behavior is uncertain.

REQUIREMENTS: PGSTK-0290 PGSTK-0410 PGSTK-380

 6-25 170-EED-003

Accesses Metadata Attributes Already Set in Memory

NAME:

SYNOPSIS:

PGS_MET_GetSetAttr()

C: #include "PGS_MET.h"

 PGSt_SMF_status

PGS_MET_GetSetAttr(

PGSt_MET_handle mdHandle,

 char* attrNameStr, void* attrValue)

FORTRAN: include "PGS_tk.f" include

 "PGS_MET.f" include

 "PGS_SMF.h"

 integer function pgs_met_getsetattr(mdHandle, attrNameStr,

attrValue) character* mdHandle character* attrName

'user defined' attrValue

DESCRIPTION:

INPUTS:

The MCF is first initialized into memory and some of the parameters are

automatically set and some are set by the user using PGS_MET_SetAttr().

This tool is used to retrieve these values.

Table 6-17. PGS_MET_GetSetAttr Inputs

Name Description Units Min Max

mdHandle metadata group none N/A N/A

 attrName name.class of parameter none N/A N/A

OUTPUTS:

Table 6-18. PGS_MET_GetSetAttr Outputs

Name Description Units Min Max

attrValue value of attribute to be passed

back to the user
none N/A N/A

RETURNS:

Return Description

PGS_S_SUCCESS

 6-26 170-EED-003

Table 6-19. PGS_MET_GetSetAttr Returns

EXAMPLES:

C:

/* For accessing Inventory Attributes in an HDF file */

 for(i = 0; i < 6; i++) dvals[i] = 0.0;
 ret = PGS_MET_GetSetAttr(handles[INVENTORYMETADATA],
 "GRingPointLatitude.1", dvals);

for(i = 0; i < 6; i++) printf("%lf", dvals[i]);

printf("\n");

/* For accessing Product Specific Attributes in an HDF file */
 strcpy(sval," ");
 ret=PGS_MET_GetSetAttr(handles[INVENTORYMETADATA],
 "AdditionalAttributeName.1",&sval);

 for(i = 0; i<1; i++) printf("%s",

sval); printf("\n");

strcpy(sval," ");

"ParameterValue.1",&sval); for(i = 0; i<1;

i++) printf("%s", sval); printf("\n");
FORTRAN:

C For accessing Inventory Attributes in an HDF file

PGSMET_E_NO_INITIALIZATION Metadata file is not initialized

PGSMET_E_DD_UNKNOWN_PARM The requested parameter <parameter name> could not

be found in <agg node>

PGSMET_W_METADATA_NOT_SET The metadata <name> is not yet set

PGSMET_E_NO_DEFINITION Unable to obtain <attr> of metadata <parameter>

 Either NUM_VAL or type is not defined

PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.

 6-27 170-EED-003

 dvals(1) = 0.0

dvals(2) = 0.0 dvals(3) =

0.0 dvals(4) = 0.0

dvals(5) = 0.0 dvals(6) =

0.0

 ret = pgs_met_getsetattr_d(groups[INVENTORYMETADATA],
 1 "GRingPointLatitude.1", dvals)
 print *, dvals(1), dvals(2), dvals(3), dvals(4),
 1 dvals(5), dvals(6)

C For accessing Product Specific Attributes in an HDF file

 sval = " "
 ret=pgs_met_getsetattr_s(groups[INVENTORYMETADATA], 1

"AdditionalAttributeName.1",sval)
 print *, sval
 sval = " "
 ret=pgs_met_getsetattr_s(groups[INVENTORYMETADATA],
 1 "ParameterValue.1",sval)

print *, sval

NOTES: See notes 1,2,3, and 4 in PGS_MET_SetAttrib()

REQUIREMENTS: PGSTK-0290 PGSTK-380

 6-28 170-EED-003

Accesses Metadata Parameters in HDF Products or

Independent ASCII Files

NAME:

SYNOPSIS:

PGS_MET_GetPCAttr()

C: #include "PGS_MET.h"

 PGSt_SMF_status

PGS_MET_GetPCAttr(

PGSt_PC_Logical fileId,

PGSt_integer version, char

* hdfAttrName, char

* parmName, void *

parmValue)

FORTRAN: include "PGS_tk.f"

include "PGS_MET.f"

include "PGS_SMF.h"

 integer function pgs_getpcattr(fileId, version, hdfAttrName, parmName,

parmValue)

 character* fileId integer

 version character*

 hdfAttrName

character* parmName

'user defined' parmValue

DESCRIPTION:

INPUTS:

Metadata parameters held in HDF attributes or in a separate ASCII file can

be read using this tool

Table 6-20. PGS_MET_GetPCAttr Inputs

Name Description Units Min Max

 fileId product file id none variable variable

version product version number none 1 variable

hdfAttrName name of HDF attribute containing metadata none N/A N/A

parmName metadata parameter name none N/A N/A

OUTPUTS:

Table 6-21. PGS_MET_GetPCAttr Outputs

Name Description Units Min Max

 6-29 170-EED-003

attrValue value of attribute to be passed back to the user none N/A N/A

RETURNS:

Table 6-22. PGS_MET_GetPCAttr Returns

Return Description

PGS_S_SUCCESS

PGSMET_E_PCREAD_ERR "Unable to obtain <filename or attribute filename> from the PC

table" Most likely that <filename or attribute filename> is not

defined in the PCF

PGSMET_E_FILETOODL_ERR "Unable to convert <filename> into an ODL format" error

returns from lower level routines should explain the problem

PGSMET_E_AGGREGATE_ERR Unable to create ODL aggregate <aggregate name> It

definitely means that ODL routine has failed to allocate enough

memory

PGSMET_E_SYS_OPEN_ERR Unable to open pc attribute file Usually if the file does not exist

at the path given, check the name and path of the file

PGSMET_E_ODLTOVAL_ERR Unable to convert attribute values from the ODL format error

returns from lower level routines should explain the problem

PGSMET_E_NULL_PARAMETER The requested parameter is a null value

PGSMET_E_NOT_SET The requested parameter is not set

EXAMPLES: C:

 char grpName[100];

/* For accessing Inventory Attributes in an HDF file */

 for(i = 0; i < 6; i++) dvals[i] = 0.0;
 ret = PGS_MET_GetPCAttr(MODIS_FILE, 1, "coremetadata",
 "GRingPointLatitude.1", dvals);

for(i = 0; i < 6; i++) printf("%lf", dvals[i]);

printf("\n");

/* For accessing Product Specific Attributes in an HDF file */

 strcpy(sval," ");
 ret=PGS_MET_GetPCAttr(MODIS_FILE,1,"coremetadata",
 "TestingAttribute1",&sval);

for(i = 0; i<1; i++) printf("%s", sval);

printf("\n");

/* For accessing attributes in the ASCII Metadata file */
/* NOTE: For retrieving attribute values from the ASCII metadata file, users
have to generate a group name first before calling the function
PGS_MET_GetPCAttr. The procedures are as follows:
1:
 In this case the group name is INVENTORYMETADATA
 sprintf(grpName, "%s%s", PGSd_MET_GROUP_STR, "INVENTORYMETADATA");

 6-30 170-EED-003

2:
 ret = PGS_MET_GetPCAttr(10268, 1, grpName, "REPROCESSINGPLANNED",
 &sval);

*/

 strcpy(sval," ");
 sprintf(grpName, "%s%s", PGSd_MET_GROUP_STR,
 "INVENTORYMETADATA");
 ret = PGS_MET_GetPCAttr(10268, 1, grpName,
 "REPROCESSINGPLANNED", &sval); for(i = 0; i<1;

i++) printf("%s", sval); printf("\n");

/* For LandSat7 Metadata output file */
/* NOTE: For retrieving the attribute from the Landsat7 meta file, users have

to generate a group name first before calling the function PGS_MET_GetPCAttr.
The procedures are as follows:

1:
 In this case the group name is

"FORMAT_SUBINTERVAL_METADATA_1"

sprintf(grpName,"%s%s",PGSd_MET_LSAT_GRP_STR,
 "FORMAT_SUBINTERVAL_METADATA_1");
 2:
 ret = PGS_MET_GetPCAttr(10269, 1, grpName,
 "CONTACT_PERIOD_START_TIME", &sval);

*/
 strcpy(sval," ");
 sprintf(grpName,"%s%s",PGSd_MET_LSAT_GRP_STR,
 "FORMAT_SUBINTERVAL_METADATA_1");
 ret = PGS_MET_GetPCAttr(10269, 1, grpName,
 "CONTACT_PERIOD_START_TIME", &sval);
 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");

FORTRAN:

 char grpName[100];

C For accessing Inventory Attributes in HDF file

 for(i = 0; i < 6; i++) dvals(i) = 0.0
 ret = pgs_met_getpcattr_d(MODIS_FILE, 1, "coremetadata",
 1 "GRingPointLatitude.1", dvals)
 print *, dval(1), dval(2), dval(3), dval(4), dval(5),
 1 dval(6)

C For accessing Product Specific Attributes in HDF file

 6-31 170-EED-003

 sval = " "
 ret=pgs_met_getpcattr_s(MODIS_FILE, 1, "coremetadata",
 1 " TestingAttribute1",&sval)

 print *, sval

C For accessing attributes in ASCII Metadata file

 sval = " "
 ret = pgs_met_getpcattr_s(10268, 1, grpName,
 1 "REPROCESSINGPLANNED", &sval)
 print *, sval

C For Landsat7 Metadata file
 sval = " "
 grpName(1:)=PGSd_MET_LSAT_GRP_STR//

1 "FORMAT_SUBINTERVAL_METADATA_1"
 ret = pgs_met_getpcattr_s(10269, 1, grpName,
 1 "CONTACT_PERIOD_START_TIME", &sval

 print *, sval

NOTES: See Notes 1,2,3, and 4 in PGS_MET_SetAttr

 In the ECS production environment all input files are accompanied by an

ASCII version of the metadata (the .met file) so PGS_MET_GetPCAttr will

always read metadata from the .met file. In the SCF environment if the data

input file is in HDF a .met file need not be present and the metadata can be

read from the file itself. This is an example of how an HDF input file should

be designated in the PCFT:

10253|hdfinputfile|/my/product/directory/hdfinputfile

 The file names in the second and third fields must be identifal. If the input

file is not in HDF, the metadata will be read from an ASCII file which must

be separately identified in the third field of the input product entry of the

PCFT, as shown in this example:

10253|inputfile|/my/product/directory/inputfile.met

 The .met file must have the same name as the product input file, with the .met extension appended.

This file must be placed in the same directory as the input file.

Effective with the November 1996 SCF Toolkit delivery, the separate

ASCII file can now be in the same format as the output from

PGS_MET_Write().

 In the ECS production environment the ASCII metadata file that

accompanies a data input file delivered by Science Data Server does not

 6-32 170-EED-003

contain archive metadata. For this reason, archive metadata can only be read

from input files that are in HDF. If used to read a value for a metadata

attribute that is contained in an HDF global text attribute named

“archivemetadata” or “productmetadata” PGS_MET_GetPCAttr will

attempt to read the metadata from the HDF file, even though an ASCII .met

file is present. In all other cases, PGS_MET_GetPCAttr reads the ASCII

.met file.

The ASCII file may be in one of two formats; either that written out by the

PGS_MET_Write() routine or simple parameter=value construct. These

formats are shown below for a simple case

 OBJECT = SOMEPARAMETER

 NUM_VAL = 1

 VALUE = 200

 END_OBJECT = SOMEPARAMETER

 or

 SOMEPARAMETER = 200

 Note that if a parameter appears twice in the ASCII file (with the same parameter name and Class

extension) only the first occurrence will be returned.

REQUIREMENTS: PGSTK-0290 PGSTK-0235

 6-33 170-EED-003

Accesses Configuration Data in the Config File Table

NAME:

SYNOPSIS:

PGS_MET_GetConfigData()

C: #include "PGS_MET.h"

 PGSt_SMF_status

PGS_MET_GetConfigData(

 char* attrName, void* attrValue)

FORTRAN: include "PGS_tk.f"

include "PGS_MET.f"

include "PGS_SMF.h"

 integer function pgs_met_getconfigdata(attrName,

attrValue) character* attrName 'user defined' attrValue

DESCRIPTION: Certain configuration parameters are held in the configfile table as follows

 10220|REMOTEHOST|sandcrab

This tool would retrieve the value "sandcrab" from the configfile table given

the name of the parameter "REMOTEHOST". The parameter id 10220 is

not used here. The value string (e.g.. sandcrab) is assumed to be in ODL

format and therefore different types are supported.

INPUTS:

Table 6-23. PGS_MET_GetConfigData Inputs

Name Description Units Min Max

attrName name of parameter in configfile none N/A N/A

OUTPUTS:

Table 6-24. PGS_MET_GetConfigData Outputs

Name Description Units Min Max

attrValue value of attribute to be passed back to the

user
none N/A N/A

RETURNS:

Table 6-25. PGS_MET_GetConfigData Returns

Return Description

PGS_S_SUCCESS

 6-34 170-EED-003

PGSMET_E_AGGREGATE_ERR "Unable to create ODL aggregate <aggregate name>" This

should never occur unless the process runs out of memory.

PGSMET_E_CONFIG_VAL_STR_ERR "Unable to obtain the value of configuration parameter <name>

from the configfile". Likelihood is that either the parameter does

not exist in the configfile or the configfile itself is in error.

PGSMET_E_CONFIG_CONV_ERR "Unable to convert the value of configuration parameter

<name> from the configfile into an ODL format". Its most likely

that the string values is not in ODL format.

EXAMPLES:

C:

/* These values must be defined in the PCF otherwise error is returned

*/

 ret = PGS_MET_GetConfigData("REV_NUMBER", &ival);

strcpy(datetime, "");

 ret = PGS_MET_GetConfigData("LONGNAME", &datetime);

 dval = 0;

 ret = PGS_MET_GetConfigData("CENTRELATITUDE", &dval);

printf("%d %lf %s\n", ival, dval, datetime);

FORTRAN:

C Retrieve some values from the PCF files. These must be

C defined in the PCF, otherwise the routine would return error

C Note the way _i for integer, _d for double and _s for strings are used

C at the end of the function name. This is necessary because fortran

C compiler would complain about type conflicts if a generic name

C is used

 ret = pgs_met_getconfigdata_i("REV_NUMBER", ival)

 datetime = ""

 ret = pgs_met_getconfigdata_s("LONGNAME", datetime)

dval = 0

 ret = pgs_met_getconfigdata_d("CENTRELATITUDE", dval)

 if(ret.NE.PGS_S_SUCCESS) then

 print *, "GetConfigData failed.

endif

 print *, ival, dval, datetime

NOTES: See Notes 1, 2, 3, and 4 for PGS_MET_SetAttr().

Although This tool ignores the first field in the configfile depicting the config id, it

is still important that this field is unique in the configfile to function correctly User

is responsible for the returned buffers to be large enough to hold the returned values.

 6-35 170-EED-003

Addendum for TK5.1

This routine now simply retrieves the values from the configfile and does not

perform type and range checking. The user is still required to assign enough space

for the returned values.

REQUIREMENTS: PGSTK-0290 PGSTK-0380

 6-36 170-EED-003

Write Metadata and their Values to HDF Attributes and/or

ASCII Output Files

NAME: PGS_MET_Write()

SYNOPSIS:

C: #include "PGS_MET.h"

FORTRAN:

PGSt_SMF_status

PGS_MET_Write(

 PGSt_MET_handle mdHandle,

 char * hdfAttrName,

 PGSt_integer hdfFileId)

 include 'PGS_tk.f'

include 'PGS_MET.f'

include 'PGS_SMF.h'

 integer function pgs_met_write(mdHandle, hdfAttrName, hdfFileId)

 character* mdHandle

 character* hdfAttrName

 integer hdfFileId

DESCRIPTION:

INPUTS:

This is the final tool that PGE uses when all the metadata parameters are set

in memory. The tool checks that all the mandatory parameters are set.

Table 6-26. PGS_MET_Write Inputs

Name Description Units Min Max

mdHandle metadata group in MCF none N/A N/A

hdfAttrName HDF attribute name to contain metadata none N/A N/A

hdfFileId HDF file ID none N/A N/A

OUTPUTS: None

RETURNS:

Return Description

PGS_S_SUCCESS

 6-37 170-EED-003

Table 6-27. PGS_MET_WriteReturns

EXAMPLES:

C:
/* Write to ASCII metadata file for non-HDF output product */
 ret= PGS_MET_Write(handles[ODL_IN_MEMMORY],NULL, 101);

if(ret != PGS_S_SUCCESS)
 {
 printf("ASCII Write failed\n");
 }
/* Write to HDF file */
 ret= PGS_MET_Write(handles[INVENTORYMETADATA], "metadata", sdid);

 if(ret != PGS_S_SUCCESS)
 {

PGSMET_E_NO_INITIALIZATION Metadata file is not initialized

PGSMET_E_ODL_MEM_ALLOC ODL routine failed to malloc memory space

PGSMET_E_GROUP_NOT_FOUND No group called <name> found in the MCF

PGSMET_E_OPEN_ERR Unable to open <temporary> file with file id <fileId>

PGSMET_E_SD_SETATTR Unable to set the HDF file attribute. Note: HDF4.0r2 and

previous versions of HDF have imposed a limit.

PGSMET_E_MALLOC_ERR Unable to allocate memory for the hdf attribute

PGSMET_E_MAND_NOT_SET Some of the mandatory parameters were not set

PGSMET_E_FGDC_ERR Note: HDF attribute is still written out. Unable to convert UTC

input date time string to FGDC values

PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.

PGSMET_E_HDFFILENAME_ERR Unable to obtain HDF filename.

PGSMET_E_ASCII_ERR Unable to open MET ASCII file.

 6-38 170-EED-003

 printf("HDFWrite failed\n");

} FORTRAN:
C Write to ASCII file for non-HDF output product
 result= pgs_met_write(groups(ODL_IN_MEMORY),dummyStr, 101)

if(result.NE.PGS_S_SUCCESS.AND.
result.NE.PGSMET_MAND_NOT_SET) then

 1 print *,"ASCII Write failed"
 endif
C Write to HDF file
 result= pgs_met_write(groups(INVENTORYMETADATA),
 1 "coremetadata", sdid)

 if(result.NE.PGS_S_SUCCESS.AND.
result.NE.PGSMET_MAND_NOT_SET) then

 1 print *,"ASCII Write failed"

 endif

NOTES: When writing an attribute which has been defined as "UNSIGNED INT", the value

written to the ASCII or HDF file may appear negative. The user should use

the type “unsigned int” or the ECS equivalent (PGSd_uinteger) to interpret the

value correctly. (see Note 4 of PGS_MET_SetAttr in Section 6.2.1.)

This routine can be used multiple times to write/attach separate master groups as

local or global HDF attributes. To attach a mastergroup to a local element in an

HDF file, an sds_id must be passed in as an argument, rather than an

sd_id(hdfFileId). !!!NOTE!!! : Attaching metadata to a local element using the

Toolkit is not standard practice for HDF-EOS files and should be avoided.

When writing the inventory metadata (MASTERGROUP =

INVENTORYMETADATA in the MCF, mdHandle = coremetadata in the function

call) to an HDF file, an ASCII version of the metadata is automatically created in

the data product output directory. It is given the same name as the data product

output, with the extension .met, i.e. ProductName.met. If the data product output

is not in HDF, the following lines must be included in the PCFT in order to create

this required .met file:

100|ProductName|my/output/directory/productName
.

. where the second field is simply a

comment.

An ASCII version of the metadata file will be created in the execution directory

with the name ProductName.met. The user needs to call PGS_MET_Write with

mdHandle[0], the HDF attribute name set to NULL and the identifier set to the

logical identifier in the PCFT (i.e. 100).

2. If MANDATORY parameters are not set, an error

PGSMET_E_MAND_NOT_SET is returned only in a PGE. The value of the

metadata is set to as follows:

 6-39 170-EED-003

 DATA_LOCATION VALUE

 PGE "NOT SET"

 PCF "NOT FOUND"

 MCF "NOT SUPPLIED" TK “NOT

OBTAINED” DSS “NOT PROVIDED”

DAAC “NOTSUPPORTED” DP “NOT

INCLUDED”

The writing of the hdf header is not affected

NOTE: A warning PGSMET_W_METADATA_NOT_SET is issued if

MANDATORY has the value FALSE in the MCF, and the specific attribute will

not appear in the HDF-EOS attribute or the ASCII file.

3. Only system errors such as memory failure, file openings etc. should be able

to abort the write procedure.

4. NUM_VAL and CLASS fields are written in the HDF header For metadata

of type DATETIME, additional metadata is produced:

CALENDATDATETIME becomes CALENDARDATE and TIMEOFDAY.

RANGEBEGININGDATETIME becomes RANGEBEGININGDATE

 and RANGEBEGININGTIME

RANGEENDINGDATETIME becomes RANGEENDINGDATE

 and RANGEENDINGTIME

The user no longer has to worry about the size of the MCF exceeding the HDF limit

on attribute sizes. This is now handled internally. The user simply needs to set

coremetadata (or archivemetadata) and if the limit is exceeded, coremetadata.0, .1,

etc. are produced.

5. With the release 5.2.19 of MTD TOOLKIT users can get INVENTORY

metadata in XML format in addition to the ODL format. To get both *.met and

*.xml files user need to modify their filetanle.temp file adding 2 lines

10260|XMLstylesheet.temp

10303|science.xsl|~/database/common/MET||||1

and modify configfile.dat file adding 1 line (see Appendix F)

#XML METADATA GENERATION FLAG; 0=no, 1=yes

10256|XML METADATA GENERATION FLAG|1

 as shown in the template files in the runtime directory of MTD TOOLKIT.

If the configfile.dat does not include the line, or the line exist, but flag is set to zero

as

 6-40 170-EED-003

#XML METADATA GENERATION FLAG; 0=no, 1=yes

10256|XML METADATA GENERATION FLAG|0

MTD toolkit should work as in previous versions, creating only ODL metadata.

When XML flag is set to 1 in the configfile.dat file, MTD TOOLKIT will produce

*.xml besides the *.met file for INVENTORY metadata and also will write XML

metadata into the HDF file in the "xmlmetadata" global attribute as for the

coremetadata.

REQUIREMENTS: PGSTK-0290, PGSTK-0380, PGSTK-0400, PGSTK-0450, PGSTK-0510

 6-41 170-EED-003

Free Memory of MCFs

PGS_MET_Remove()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status

PGS_MET_Remove()

FORTRAN: include "PGS_tk.f"

include "PGS_MET.f"

include "PGS_SMF.h"

 integer function pgs_met_remove()

DESCRIPTION: This routine removes ODL representation of all MCF files and some internal

files used by the MET tools.

INPUTS: None

OUTPUTS: None

RETURNS:

EXAMPLES:

C:

None

 result = PGS_MET_Remove();

 printf("SUCCESS\n");

 return 0;

FORTRAN:

 print *, ival, dval, datetime

 result = pgs_met_remove()

 print *, "SUCCESS"

end

NOTES: This routine must be called by the user before the program terminates.

REQUIREMENTS: PGSTK-0430

6.2.2 Error/Status Reporting (SMF Tools)

To detect and report on error and status conditions in a consistent manner across the ECS,

standardized status messages and status codes must first be established. The method used to

institute these message/code pairs is similar to the one used by HDF and HDF-EOS. The error

NAME:

 6-42 170-EED-003

codes are enumerated in such a fashion that each code corresponds to a status identifier. These

identifiers take the form of defined mnemonics that visually conveys the essence of the status

message.

Thus the Toolkit routines actually contain their own collection of status codes and associated status

messages for describing the state of each Toolkit function. Users of the Toolkit functions should

examine the return values of each tool before performing any other action. To inform a calling unit

(user’s software) about the exit state of a called Toolkit routine, each Toolkit function sets a status

message and assigns a status code to the return value as mentioned above. On the basis of its

interpretation of this return value, the calling unit may elect to perform some error handling. As

part of this procedure, the user should either propagate the existing status code up through their

calling hierarchy, or set a status code and message to represent the outcome of any local error

handling attempt.

Upon detection of an error state, users are advised to report on the existing error prior to performing

an error handling procedure. The content of these reports might include the following: a user-

defined message string to convey the nature of the status condition, a userdefined action string to

indicate the next operation to be performed in response to the status condition, and a system defined

string that uniquely identifies the environment in which the status condition occurred. However,

this is merely a suggestion; the user is free to define the content of the status reports to satisfy their

own requirements. The method for reporting this information will involve the generation of a report

from the information just described and the subsequent transmission of that report to the

appropriate destination(s).

The error reporting tools report errors in a file that is identified by the logical ID of 10100. An

entry such as

10100|LogStatus|<path>/LogStatus in the PCFT file will direct errors to the LogStatus file. This

file will be opened once a call is made to either PGS_MET_SetFileId or PGS_TD_SetFileId, which

are the first functions to be called by the user to establish logical IDs for the file that the user intends

to use. The message will be written to the log file every time that PGS_SMF_SetStaticMsg or

PGS_SMF_SetDynamicMsg is called in a routine.

Example:

(10028) : PGSMET_E_FILETOODL_ERR

detected in : PGS_MET_GetPCAttr() unable

to convert HDF attribute info on ODL format.

A few other SMF tools that are useful in error handling are also explained in this section.

Set Static Status Message

 6-43 170-EED-003

PGS_SMF_SetStaticMsg()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status

PGS_SMF_SetStaticMsg(

 PGSt_SMF_code code, char

 *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_setstaticmsg(code,funcname)

 integer code

 character*32 funcname

DESCRIPTION: This tool will provide the means to set a pre-defined error/status message in

response to the outcome of some segment of processing.

INPUTS: code-mnemonic error/status code generated by message compiler (see

 “smfcompile”)

 funcname-function where the status condition occurred

OUTPUTS: None

RETURNS:

Table 6-28. PGS_SMF_SetStaticMsg Returns
Return Description

PGS_S_SUCCESS Success

PGS_E_UNIX UNIX error message

PGSSMF_E_LOGFILE Error opening status, report or user files

PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus; returnStatus

=

 PGS_SMF_SetStaticMsg(PGSSMF_E_UNDEFINED_UNIXERROR,

 “My_Function()”);

FORTRAN: implicit none

 integer returnstatus

integer

 pgs_smf_setstaticMsg

returnstatus =
 pgs_smf_setstaticMsg(PGSSMF_E_UNDEFINED_UNIXERROR,

 ‘my_function()’)

NAME:

 6-44 170-EED-003

NOTES: The parameter “funcname” can be passed in as NULL if you do not wish to record that

routine that noted this error. However, it is strongly recommended that you

pass the routine name for tracking purposes.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0650

 6-45 170-EED-003

Set Dynamic Status Message

PGS_SMF_SetDynamicMsg()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status

PGS_SMF_SetDynamicMsg(

 PGSt_SMF_code code, char

 *msg,

 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_setdynamicmsg(code,msg,funcname)

 integer code

 character*240 msg character*32

funcname

DESCRIPTION: This tool will provide the means to set a runtime specific status message,

for a particular status code, in response to the outcome of come segment of

processing.

INPUTS: code-mnemonic error/status code generated by message compiler

 msg-message string to be saved into the static buffer

 funcname-function where the status condition occurred

OUTPUTS: None

RETURNS:

Table 6-29. PGS_SMF_SetDynamicMsg Returns

Return Description

PGS_S_SUCCESS Success

PGS_E_UNIX UNIX error

PGSSMF_E_LOGFILE Error opening status, report or user files

EXAMPLES:

C: Having defined a mnemonic code in the SMF file:

 INSTR_E_BAD_CALIBRATION Calibration value %7.2f

 is not within tolerance

NAME:

 6-46 170-EED-003

We would like to insert the calibration factor into the message template

during processing, since the value is not fixed prior to runtime. The

message that would be set in the status buffer would then appear as:

‘Calibration value 356.23 is not within tolerance’

 PGSt_SMF_status returnStatus;
 PGSt_SMF_code code;

char msg[PGS_SMF_MAX_MSG_SIZE]; char

buf[PGS_SMF_MAX_MSGBUF_SIZE]; float

calibration_factor = 356.23;

 calibration_factor = Get_Instrument_Calibration(NIGHT);

/# value of 356.23 returned #/

 returnStatus =

PGS_SMF_GetMsgByCode(INSTR_E_BAD_CALIBRATION,msg);

 sprintf(buf,msg,calibration_factor);

PGS_SMF_SetDynamicMsg(INSTR_E_BAD_CALIBRATION,buf,Level1A_Initialization()”)

FORTRAN: Having defined a mnemonic code in the SMF file:

 INSTR_E_BAD_CALIBRATION Calibration value is not

 within tolerance ->

 We would like to insert the calibration factor to the end of the message

template during processing, since the value is not fixed prior to runtime.

The message that would be set in the status buffer would then appear as:

 ‘Calibration value is not within tolerance -> 356.23’ implicit

none
 integer pgs_smf_getmsgbycode

 integer pgs_smf_setdynamicmsg

 integer returnstatus

character*240 msg

character*480 buf

 real calibration_factor

 integer msglen

character*8 coeff_str

calibration_factor = get_instrument_calibration(NIGHT) C

value of 356.23 returned

 returnstatus = pgs_smf_getmsgbycode(

 6-47 170-EED-003

 INSTR_E_BAD_CODE,msg)

 6-48 170-EED-003

 write(coeff_str,’(F7.2)’) calibration_factor

 msglen = len(msg) buf =

msg(1:msglen)//coeff_str

 pgs_smf_setdynamicmsg(INSTR_E_BAD_CALIBRATION, buf,

 ‘level1A_initialization’);

NOTES: Note that you can have the flexibility of associating any dynamic message string to the

defined mnemonic code via this routine.

 This tool can be used in various situations. For instance the user might want to concatenate some

message strings together and assign the resultant string to an existing

mnemonic code, so that this message can be passed forward to another

module for further processing. Alternatively it can be used to embed runtime

variables in the defined message template before saving this message string

to the static message buffer.

 The parameter “funcname” can be passed in as NULL if you do not wish to record the routine that

noted this error. However, it is strongly recommended that you pass the

routine name for tracking purposes.

 The parameter “msg” can be passed in as NULL. If you do, no message is associated with the

mnemonic code.

 Refer to utility “smfcompile” for additional information on the format of the message compiler.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0650

Get Status Message by Code

PGS_SMF_GetMsgByCode()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status

PGS_SMF_GetMsgByCode(

 PGSt_SMF_code code,

 char msg[]);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_getmsgbycode(code,msg)

 integer code

 character*240 msg

NAME:

 6-49 170-EED-003

DESCRIPTION: This tool will provide the means to retrieve the message string that is

associated with a specific status code in the Status Message Files.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: msg-user pre-defined message string

RETURNS:

Table 6-30. PGS_SMF_GetMsgByCode Returns

Return Description

PGS_S_SUCCESS Success

PGS_E_UNIX UNIX error

PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES: See example for

PGS_SMF_SetDynamicMsg().

NOTES: This tool provides a simple Status Message

File (SMF) lookup function. It should be used

primarily for retrieving messages that contain

C-style formatting tokens to facilitate the

replacement of those tokens with runtime

data.

REQUIREMENTS: PGSTK-0580, PGSTK-0650

Get Status Message

PGS_SMF_GetMsg()

SYNOPSIS

C: #include <PGS_SMF.h>

 void

PGS_SMF_GetMsg(

 PGSt_SMF_code *code,

 char mnemonic[],

 char msg[]);

NAME:

 6-50 170-EED-003

FORTRAN: call pgs_smf_getmsg(code,mnemonic,msg)

 integer code character*32 mnemonic

 character*480 msg

DESCRIPTION: This tool will provide the means to retrieve status information from the static

buffer, for use when reporting on specific status conditions.

INPUTS: None

OUTPUTS: mnemonic-previously set mnemonic error/status string

 msg-previously set message string

RETURNS: None

EXAMPLES: See example for PGS_SMF_SetDynamicMsg().

NOTES: Until a call is made which sets status information into the buffer, none

exists. Therefore, first time calls to this function may return the following

for each of the arguments: code=0, mnemonic=””, and msg=””.

 A call to any of the PGS_SMF_Set*() functions will load status information

into the static buffer. To ensure that the caller of your function can receive

the intended information, calls to the PGS_SMF_Set*() functions should

be performed just prior to returning control back to the caller.

 To ensure that the status information received pertains to the status

condition set during the last function call, it is imperative that the user

invoke this function immediately upon gaining control back from the

function that set the status information.

REQUIREMENTS: PGSTK-0580, PGSTK-0650

Test Status Level

PGS_SMF_TestStatusLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

NAME:

 6-51 170-EED-003

 PGSt_SMF_status

PGS_SMF_TestStatusLevel(

 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_teststatuslevel(code)

 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a defined status level

constant.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS:

Table 6-31. PGS_SMF_TestStatusLevel Returns

Return Description

PGS_SMF_MASK_LEV_S Success level status

PGS_SMF_MASK_LEV_M Message level status

PGS_SMF_MASK_LEV_U User information level status

PGS_SMF_MASK_LEV_N Notice level status

PGS_SMF_MASK_LEV_W Warning level status

PGS_SMF_MASK_LEV_E Error level status

PGS_SMF_MASK_LEV_F Fatal level status

PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus; int *intPtr;

 returnStatus = PGS_MEM_Malloc(&intPtr,sizeof(int)*10);

switch(PGS_SMF_TestStatusLevel(returnStatus))

{ case

PGS_SMF_MASK_LEV_S:

 6-52 170-EED-003

 /# This is a success level status #/

break;

 case PGS_SMF_MASK_LEV_M:

 /# This is a message level status #/

break;

 case PGS_SMF_MASK_LEV_U:

 /# This is a user information level status #/

break;

 case PGS_SMF_MASK_LEV_N:

 /# This is a notice level status #/

break;

 case PGS_SMF_MASK_LEV_W:

 /# This is a warning level status #/

break;

 case PGS_SMF_MASK_LEV_E:

 /# This is a error level status #/

break;

 case PGS_SMF_MASK_LEV_F:

 /# This is a fatal level status #/

break; default:

 /# Undefined status level

#/ break; }

FORTRAN: implicit none

INTEGER pgs_pc_getnumberoffiles

 INTEGER returnstatus

 INTEGER numfiles

 INTEGER levelmask

 PARAMETER (ceres4 = 7090)

 INTEGER ceres4

 returnstatus = pgs_pc_getnumberoffiles(ceres4,numfiles)

levelmask = pgs_smf_teststatuslevel(returnstatus)

IF (levelmask .EQ. PGS_SMF_MASK_LEV_S) THEN

C This is a success level status

ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_M) THEN

C This is a message level status

ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_U) THEN

 6-53 170-EED-003

C This is a user information level status

ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_N) THEN

C This is a notice level status

ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_W) THEN

C This is a warning level status

ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_E) THEN

C This is a error level status

ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_F) THEN

C This is a fatal level status

ELSE

C Undefined status level ENDIF

NOTES: The returned level constants are ordered by

 severity with PGS_SMF_MASK_LEV_S having a small

 integral value and PGS_SMF_MASK_LEV_F having the highest.

This enables you to perform conditional tests between a particular status

code and one of the provided level constants.

REQUIREMENTS: PGSTK-0590

 6-54 170-EED-003

6.2.3 Time and Date Conversion Tools

The ability to convert easily and accurately between different representations of time is crucial to

EOS science data processing. The time and date conversion routines in the Toolkit will convert

between spacecraft time, UTC, International Atomic Time (TAI) and Julian date, as well as

converting double precision values to and from CCSDS ASCII formats. Time values are converted

for use in science software and as parameters when performing geo-coordinate transformations. In

addition, converting time parameters to ASCII or to other more easily read formats facilitates the

time values being added to metadata and to various processing logs in a human-readable form.

The spacecraft, UTC, Julian Date, and other times used as input and output for the time and date

conversion routines will be in accord with the Consultative Committee for Space Data Systems

(CCSDS) standard time code formats where applicable. The formats are described in CCSDS Blue

Book, Issue 2, Time Code Formats, (CCSDS 301.0-B-2) issued by the Consultative Committee for

Space Data Systems (NASA Code- OS, NASA, Washington DC 20546), April 1990. Various EOS

supported spacecraft will deliver time data in various CCSDS binary codes. The Toolkit will

translate times from these codes to more user friendly formats. Therefore, binary formats will not

be described in the present manual. The reader is referred to the Blue Book and to interface

documents for the particular spacecraft of interest. The ASCII codes will be described herein both

for the convenience of users, and because we have exercised discretion in permitting or forbidding

certain truncations.

Because UTC as a real variable is discontinuous at leap seconds boundaries (approximately every

one to two years) it has been decided to carry it only in ASCII formats. TAI time runs at the same

(Standard International compatible) rate and will be carried as a double precision number, in two

ways: Julian Date and seconds from Jan. 1, 1993 UTC midnight.

Toolkit times are either character strings (CCSDS ASCII format), an array of two high precision

real values (Toolkit Julian Dates) or a single high precision real value (all other values).

6.2.3.1 Time Acronyms

GAST Greenwich Apparent Sidereal Time

GMST Greenwich Mean Sidereal Time

GPS Global Positioning System MJD

 Modified Julian Date

TAI International Atomic Time

TDB Barycentric Dynamical Time TDT

 Terrestrial Dynamical Time

TJD Truncated Julian Date

UT1 Universal Time

UTC Coordinated Universal Time

6.2.3.2 ASCII Time Formats

The CCSDS ASCII Time Codes (A and B formats) are defined in the CCSDS Blue Book, pages

2-6 to 2-8. The full format requires all the subfields be present, but certain subsets of the complete

 6-55 170-EED-003

time codes are allowed (pages 2-7 to 2-8 of the Blue Book). The Toolkit will handle input and

output with slightly different restrictions.

CCSDS ASCII Time Code A as implemented by the Toolkit:

YYYY-MM-DDThh:mm:ss.d->dZ

[Example 2002-02-23T11:04:57.987654Z] where

YYYY = a four character subfield for year, with value in range 0001-9999

MM = a two character subfield for month with values 01-12, leading zeros required DD =

a two character subfield for day with values in the range 01-eom, where eom is 28,

29, 30, or 31 according to the month (and, for February, the year)

The “T”, a separator, must follow the DD subfield; if and only if there are more characters

after the DD subfield; the string will be accepted and parsed such that mm, ss, and d are

treated as 0. In that case, a “Z” will still be accepted, but not required, at the end.

hh = a two character subfield for hours, with values 00-23 mm

= a two character subfield for minutes, with values 00-59

ss = a two character subfield for seconds, with values 00-59 (00-60 in a positive leap second

interval, 00-58 in the case of a negative leap second)

d->d an n-character subfield, (n < 7 for input n = 6 for output), for decimal fraction of a

second, with each digit in the range 0-9. If the decimal point appears on input, digits must

follow it.

Z - terminator, optional on input

The CCSDS ASCII Time Code B format, described on p. 2-7 of the Blue Book, is:

YYYY-DDDThh:mm:ss.d->dZ

[Example 2002-054T11:04:57.987654Z]

The format is identical to the Code A except that the month, day combination MM-DD is

replaced by day of year, i.e.,

DDD = Day of Year as a 3 character subfield with values 001-365 in non leap years and

001-366 in leap years.

NOTE: The CCSDS Formats require all leading zeros be present.

ASCII Time Input

ASCII time input strings may be in either CCSDS ASCII Time Code A format or CCSDS ASCII

Time Code B format. All Toolkit functions requiring input ASCII time strings will correctly

identify either format.

 6-56 170-EED-003

The Toolkit requires input ASCII time strings to include at least full dates (in format A or B) and

will accept ASCII time strings that include times with up to six digits after the decimal point, or

subsets truncated from the right (i.e., fractions of a second, whole seconds, minutes, or hours can

be omitted by the user and the values will be set to zero. If a subfield is omitted the whole subfield

should be omitted; e.g., “ss” cannot be replaced by “s” for seconds.) The time string may also not

end with a field delimiter: “T”,”:” or “.”. Users are warned that no error status or message will

issue if any of these subfields is missing, so long as truncation is from the right; users should be

careful to pass a string of sufficient length to accommodate their data! The Toolkit will not accept

truncations from the left; i.e., the year, month and day must be present as four, two, and two digits

respectively, or the year as four digits and the day of year as three. Truncation from the left would

be too dangerous in view of the coming century change.

Finally, the Toolkit will provide an error message, which will include passing one or more of the

offending characters, if the format is violated by input data. In this context, day numbers in excess

of the allowable value for the month (and year, for February) are considered errors in format (e.g.,

a fatal message will issue if DDD = 366 (format B) or MM = 02 and DD = 29 (format A) in a non

leap year). A fatal message will issue if the integer part of the seconds subfield runs over 58 in the

presence of a negative leap second or over 59 in the absence of a positive leap second. There is no

protection against missing data in the presence of a positive leap second if the integer seconds

subfield fails to read 60; in that case Toolkit routines cannot populate the leap second interval.

ASCII Time Output

All ASCII time output strings will be in CCSDS ASCII Time Code A format (except for the output

of PGS_TD_ASCIItime_AtoB(), which will be in CCSDS ASCII Time Code B format).

The Toolkit will output the full format (date and time), to six digits in the fractional seconds, even

though the accuracy may be poorer than one microsecond. There are two reasons why the Toolkit

will output microseconds, even though most users will not want numbers more accurate than one

millisecond: (i) At least one platform (AM1) plans to provide microseconds; we do not wish to

degrade their resolution. (ii) We wish to provide for upgradeability.

The Toolkit will issue a terminal “Z” on the output string to facilitate identification of the end of

string and to signify Universal time.

The output strings will be 27 characters in Code A, including the “Z”, and 25 in Code B, including

the “Z” (Note: this does NOT include the terminating NULL character required in C strings).

6.2.3.3 Toolkit Internal Time (TAI)

Toolkit internal time is the real number of continuous SI seconds since the epoch of UTC 12 AM

1-1-1993. Toolkit internal time is also referred to in the Toolkit as TAI (upon which it is based).

Values are maintained as single high precision real numbers (C: PGSt_double, FORTRAN:

DOUBLE PRECISION). The numbers will be negative until midnight, UTC Jan. 1, 1993 and

positive after that. The whole number part carries whole seconds and the fractional part carries

fractions of a second.

 6-57 170-EED-003

6.2.3.4 Toolkit Julian Dates

6.2.3.4.1 Format

Toolkit Julian dates are kept as an array of two real high precision numbers (C: PGSt_double,

FORTRAN: DOUBLE PRECISION). The first element of the array should be the half integer

Julian day (e.g., N.5 where N is a Julian day number). The second element of the array should be

a real number greater than or equal to zero AND less than one (1.0) representing the time of the

current day (as a fraction of that (86400 second) day. This format allows relatively simple

translation to calendar days (since the Julian days begin at noon of the corresponding calendar

day). Users of the Toolkit are encouraged to adhere to this format to maintain high accuracy (one

number to track significant digits to the left of the decimal and one number to track significant

digits to the right of the decimal). Toolkit functions that do NOT require a Julian type date as an

input and that do return a Julian date will return it in the above mentioned format. Toolkit functions

that require a Julian date as an input and do NOT return a Julian date will first convert (internally)

the input date to the above format if necessary. Toolkit functions that have a Julian date as both an

input and an output will assume the input is in the above described format but will not check and

the format of the output may not be what is expected if any other format is used for the input.

6.2.3.4.2 Meaning

Toolkit “Julian dates” are all derived from UTC Julian Dates. A Julian date in any other time stream

(e.g., TAI, TDT, UT1, etc.) is the UTC Julian date plus the known difference of the other stream

from UTC (differences range in magnitude from 0 seconds to about a minute). Note that although

UTC days having leap seconds actually contains 86401 seconds, this is not true for Julian Days of

any kind as implemented in the Toolkit. TAI, UT1, TDT and TDB Julian Days are all 86400

seconds, while the UTC Julian Day with the leap second contains duplicate values for one second;

only in ASCII form does it have 86401 distinct seconds.

6.2.3.4.3 Examples

In the following examples, all Julian Dates are expressed in Toolkit standard form as two double

precision numbers. For display here, the two members of the array are enclosed in braces {} and

separated by a comma.

a. UTC to TAI Julian dates conversion

The Toolkit UTC Julian date for 1994-02-01T12:00:00 is: {2449384.50, 0.5}. TAI-UTC

at 1994-02-01T12:00:00 is 28 seconds (.00032407407407 days). The Toolkit TAI Julian

date for 1994-02-01T12:00:00 is:

{2449384.50, 0.5 + .00032407407407} = {2449384.50, 0.50032407407407}

Note that the Julian day numbers in UTC and the target time stream may be different by +

or - 1 for times near midnight.

b. UTC to UT1 Julian dates conversion

 6-58 170-EED-003

The Toolkit UTC Julian date for 1994-04-10T00:00:00 is: {2449452.50, 0.0}. UT1-UTC

at 1994-04-10T00:00:00 is -.04296 seconds (-0.00000049722221 days). The Toolkit UT1

Julian date for 1994-04-10T00:00:00 is:

 {2449452.50, 0.0 - 0.0000004972222}

= {2449452.50, -0.0000004972222}

= {2449451.50, 0.9999995027778}

6.2.3.5 Time Boundaries

Many of the Toolkit functions that require time as an input or output keep track of time in the SDP

Toolkit internal time format (see above). Most of these functions depend on the file leapsec.dat

that contains the values of TAI-UTC (leap seconds).

Some Toolkit functions also (or instead) rely on the file utcpole.dat that contains the values of

UT1-UTC.

The times that can be processed by a function may depend on the values maintained in one or both

of these files which are updated periodically with new values.

6.2.3.5.1 TAI-UTC Boundaries

The minimum and maximum times that can successfully be processed by functions requiring the

value TAI-UTC depend on the file leapsec.dat that relates leap second (TAI-UTC) values to UTC

Julian dates. The file leapsec.dat contains dates of new leap seconds and the total leap seconds

times on and after Jan 1, 1972. For times between Jan 1, 1961 and Jan 1, 1972 it contains

coefficients for an approximation supplied by the International Earth Rotation Service (IERS) and

the United States Naval Observatory (USNO). These approximations are the same as adopted by

the Jet Propulsion Laboratory (JPL) ephemeris group that produces the DE series of solar system

ephemerides, such as DE200, and are used consistently with IERS/USNO/JPL usage. For times

after Jan 1, 1961, but before the last date in the file, the Toolkit sets TAI-UTC equal to the total

number of leap seconds to date, (or to the USNO/IERS approximation, for dates before Jan 1,

1972). If an input date is before Jan 1, 1961 the Toolkit sets the leap seconds value to 0.0. This is

consistent with the fact that, for civil timekeeping since 1972, UTC replaces Greenwich Mean

Solar Time (GMT), which had no leap seconds. Thus for times before Jan 1, 1961, the user can,

for most Toolkit-related purposes, encode Greenwich Mean Solar Time as if it were UTC. If an

input date is after the last date in the file, or after Jan 1, 1961, but the file cannot be read, the

function will use a calculated value of TAI-UTC based on a linear fit of the data known to be in

the table as of early 1997. This value is a crude estimate and may be off by as much as 1.0 or more

seconds. If the data file, leapsec.dat, cannot be opened, or the time is outside the range from Jan 1,

1961 to the last date in the file, the return status level will be 'E'. Even when the status level is 'E',

processing will continue, using the default value of TAI-UTC (0.0 for times before Jan 1, 1961, or

the linear fit for later times). Thus, the user should always carefully check the return status. For

times between 1961 and 1972, the leap seconds file contains data used in approximations designed

to correct Greenwhich Mean Time to as close an equivalent of UT1 as possible; the Toolkit thus

determines Earth rotation from GMT in that period.

 6-59 170-EED-003

6.2.3.5.2 UT1-UTC Boundaries

UT1 is the standard measure of axial Earth rotation and is used by all Toolkit functions for

geolocation that locate the spacecraft relative to Earth, or Earth relative to sky (inertial space). UT1

can be reversibly transformed to "Greenwich Hour Angle". It is therefore important to maintain

accurate values of UT1. The minimum and maximum times that can successfully be processed by

functions requiring the value UT1-UTC depend on the file utcpole.dat that relates UT1-UTC

values to UTC dates. The file utcpole.dat starts at June 30, 1972.

The file utcpole.dat, which is maintained periodically, contains final (definitive) and predicted

values for UT1 - UTC and related variables that describe polar motion, a small correction (~< 15

meters) to geographic positions due to polar wander and wobble. When the file is updated, the

definitive data will reach to within a week in the past of the update time, and the predicted data

will extend about one year into the future. A success status message will be returned if all input

times correspond to final values. A warning status message will be returned if predicted values are

encountered. An error message will be returned if the time requested is beyond the end of the

predictions, or the file cannot be read. The "predicted" values are expected to be satisfactory for

most users for several weeks, even if the file is not updated weekly as it should be, because the

predictions are rather good for many weeks. Users who desire to reprocess for better accuracy (<

1 m Earth position) will notice their results changing. Because the U.S. Naval Observatory (USNO)

gradually refines its older solutions for Earth rotation, which are captured in our file "utcpole.dat",

changes at the millimeter to centimeter level may be noticed weeks later even for data processed

with "final" values for UT1. The following Table, based on error estimates in the USNO data table

“finals.data” as of April 23, 1996, indicates the one-sigma errors to be expected in using the file

“utcpole.dat”. The days in the left column should be interpreted as days since the last update of the

file. The error is due to the inability to predict Earth rotation precisely. The error for times in the

recent past (not shown) is only of order < 10 cm. The "interim" data quality supported in TK5 is

no longer carried. The first few weeks of predictions are as good as the old "interim" values. Note

that the rather small error values in Table 6-32 are a tiny part of the overall difference, UT1 - UTC,

which is typically in the range ~ -0.9 to 0.9 seconds, or ~ -420 to +420 m. Please see Appendix H

for an example of a utcpole.dat file.

Table 6-32. Estimated Errors in UT1 Predictions

(Milliseconds of Time and Equivalent Meters of Geolocation Error)

Prediction Period

(Days)

Error
(milliseconds)

(1 std deviation)

Error
(meters at the equator)

(1 std deviation)

1 0.3 0.14

30 3.9 1.7

60 6.5 3.0

90 8.8 4.0

120 10.9 4.9

150 12.9 5.8

180 14.8 6.7

 6-60 170-EED-003

225 17.5 7.9

270 20.1 9.0

315 22.5 10.1

360 24.9 11.0

365 25.7 11.5

Because of the reduced accuracy with predicted UT1, and the maximum extension of one year to

the predictions, when a relevant function is used, carefully check the return status. A success (‘S’)

level status message will be returned if all input times correspond to final values. A warning (‘W’)

level status message will be returned if any input times correspond to predicted values, even though

the error may not be large enough to concern most users. An error (‘E’) level status message will

be returned if the file utcpole.dat cannot be found or if an input time is outside the range of values

in the file.

These error messages due to end-of-data could cause problems for users who wish to run

simulations one year or more in advance. Users needing to run simulations in the far future can

follow procedures shown on the Toolkit Home Page under “Upgrading to Toolkit 5.2” at their own

risk. These procedures are risky in an SCF environment or other non-DAAC environment, because

of the possibility of pointing at the edited (and hence, false) data files when processing real data.

There could also be risk at a DAAC environment if anyone found a way to point at these files with

an altered PCFT, e.g. if a command-line run were possible in processing science data.

6.2.3.6 Updating the Leap Seconds File

The file $PGSDAT/TD/leapsec.dat contains leap seconds data, used by many tools. Since new leap

seconds must be appended when they are announced, the file must be periodically updated. The

Toolkit contains utilities to perform this update function. If the leap seconds file is more than 83

days old, and the last leap second in the file is also more than 83 days in the past of the time which

is being translated by the time tools, an error return will result, because the time cannot be reliably

translated. So long as the updates are performed periodically as explained below, users will

encounter no problem in processing current or past data, or simulations for the near term future.

Users needing to process far future simulations should consult the Toolkit web site or the Toolkit

maintenance and operations staff.

The shell script update_leapsec.sh, which is found in $PGSBIN, will update the leapsec.dat file

to the current date. The Clear Case version, update_leapsec_CC.sh, will do the same job within

a Clear Case (CM) view. To maintain a current leapsec.dat, the appropriate script must be run at

least every month; running once a week offers more protection against an error condition, in case

of problems with ftp. The leap seconds are declared by International Earth Rotation Service (IERS)

in France, on the basis of their estimates of variations in Earth rotation. Leap seconds are usually

added at the start of January or July, and announced nearly six months ahead. The IERS can,

however, announce leap seconds on as little as 90 days notice, after which the U.S. Naval

Observatory may need up to a week to post them. For that reason, the 83 day file life is enforced,

and weekly running of the scripts is advised. Update_leapsec.sh calls PGS_TD_NewLeap, a C

program that performs most of the actual update work.

 6-61 170-EED-003

The update is done by collecting the latest information via ftp from the U. S. Naval Observatory.

At the DAACs, the process is done automatically by the scheduler. At Science Computing

Facilities, for Toolkits through version 5.2.1, drop 4, users will need to have a ".netrc" file in their

home directories, as explained in the comments within the scripts. Later releases will not need such

a file.

 6-62 170-EED-003

6.2.3.7 Time and Date Conversion Tools

Establish Logical IDs for Files to be Used

NAME:

SYNOPSIS:

PGS_TD_SetFileId()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_SetFileId();

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_setfileid()

DESCRIPTION: This tool sets logical Ids assigned for the user defined files in the PCFT file

filetable.temp.

INPUTS: None

OUTPUTS:

RETURNS:

None

Table 6-33. PGS_TD_SetFileId Returns

Return Description

PGS_S_SUCCESS Successful return

PGSTD_E_FILE_OPEN_ERR Error opening file File_table or LogStatus file

EXAMPLES:

C: PGSt_SMF_status returnStatus;
 returnstatus = PGS_TD_SetFileId();

if (returnStatus != PGS_S_SUCCESS)

{

*** do some error handling ***

 :

 :

}

FORTRAN: implicit none

 integer returnstatus

 6-63 170-EED-003

 integer pgs_td_setfileid
returnstatus = pgs_td_setfileid() if

(returnstatus .ne. pgs_s_success) goto 999

NOTES: None

 6-64 170-EED-003

Convert UTC to TAI Time

NAME:

SYNOPSIS:

PGS_TD_UTCtoTAI()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_UTCtoTAI(

 char asciiUTC[28],

 PGSt_double *secTAI93);

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_utctotai(asciiutc, sectai93)

 character*27 asciiutc double

precision sectai93

DESCRIPTION:

INPUTS:

This tool converts UTC time in CCSDS ASCII Time Code (A or B format)

to Toolkit internal time (real continuous seconds since 12AM UTC 1-1-93).

Table 6-34. PGS_TD_UTCtoTAI Inputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII Time
Code A format or ASCII Time
Code B format

time 1961-01-01T00:00:00Z see NOTES

OUTPUTS:

Table 6-35. PGS_TD_UTCtoTAI Outputs

Name Description Units Min Max

secTAI93 continuous seconds since 12AM UTC

Jan. 1, 1993
seconds -1009843225.5 see NOTES

RETURNS:

Table 6-36. PGS_TD_UTCtoTAI Returns

Return Description

PGS_S_SUCCESS Successful return

PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time

 6-65 170-EED-003

PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time

PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time

PGS_E_TOOKIT Something unexpected happened, execution aborted

EXAMPLES:

C: PGSt_SMF_status returnStatus;
 char asciiUTC[28];

 PGSt_double secTAI93;

 strcpy(asciiUTC,”1993-01-02T00:00:00.000000Z”);

returnStatus = PGS_TD_UTCtoTAI(asciiUTC,&secTAI93);

if (returnStatus != PGS_S_SUCCESS)

{

*** do some error handling ***

 :

 :

}

printf(“TAI: %f\n”,secTAI93);

FORTRAN: implicit none

 integer

 pgs_td_utctotai integer

 returnstatus

character*27 asciiutc

double precision sectai93

asciiutc = ‘1993-01-02T00:00:00.000000Z’

returnstatus = pgs_td_utctotai(asciiutc,sectai93)

if (returnstatus .ne. pgs_s_success) goto 999

write(6,*) ‘TAI: ‘, sectai93

NOTES: TIME ACRONYMS:

 TAI is: International Atomic Time

UTC is: Universal Coordinated Time TIME

BOUNDARIES:

See Section 6.2.3.5.1 (TAI-UTC Boundaries)

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time is the real number of continuous SI seconds since the epoch of UTC 12 AM

1-1-1993. Toolkit internal time is also referred to in the toolkit as TAI

(upon which it is based).

REFERENCES FOR TIME:

 6-66 170-EED-003

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical

Almanac, Explanatory Supplement to the Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210, PGSTK-1220

 6-67 170-EED-003

Convert TAI to UTC Time

NAME:

SYNOPSIS:

PGS_TD_TAItoUTC()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_TAItoUTC(

 PGSt_double secTAI93,

 char asciiUTC[28]);

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_taitoutc(sectai93,

asciiutc) character*27 asciiutc

 double precision sectai93

DESCRIPTION:

INPUTS:

This tool converts Toolkit internal time (real continuous seconds since

12AM UTC 1-1-93) to UTC time in CCSDS ASCII Time Code A format.

Table 6-37. PGS_TD_TAItoUTC Inputs

Name Description Units Min Max

secTAI93 continuous seconds since 12AM

UTC Jan. 1, 1993
seconds -1009843225.577182 see NOTES

OUTPUTS:

Table 6-38. PGS_TD_TAItoUTC Outputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII Time

Code A format
time 1961-01-01T00:00:00 see NOTES

RETURNS:

Table 6-39. PGS_TD_TAItoUTC Returns

Return Description

PGS_S_SUCCESS Successful return

PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time

PGS_E_TOOLKIT Something radically wrong occurred

EXAMPLES:

 6-68 170-EED-003

C: PGSt_SMF_status returnStatus;

PGSt_double secTAI93;

char asciiUTC[28];

 secTAI93 = 86400.;

returnStatus = PGS_TD_TAItoUTC(secTAI93,asciiUTC);

if (returnStatus != PGS_S_SUCCESS)

{

*** do some error handling ***

 :

 :

}

printf(“UTC: %s\n”,asciiUTC);

FORTRAN: implicit none

 integer pgs_td_taitoutc

integer returnstatus

double precision sectai93 character*27

 asciiutc

sectai93 = 86400.D0

returnstatus = pgs_td_taitoutc(sectai93,asciiutc)

if (returnstatus .ne. pgs_s_success) goto 999

write(6,*) ‘UTC: ‘, asciiutc

NOTES: TIME ACRONYMS:

 TAI is: International Atomic Time

UTC is: Universal Coordinated Time TIME

BOUNDARIES:

See Section 6.2.3.5.1 (TAI-UTC Boundaries)

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time is the real number of continuous SI seconds since the epoch of UTC 12 AM

1-1-1993. Toolkit internal time is also referred to in the toolkit as TAI

(upon which it is based).

REFERENCES FOR TIME:

CCSDS 2301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical

Almanac, Explanatory Supplement to the Astronomical Almanac. REQUIREMENTS: PGSTK-

1170, PGSTK-1210, PGSTK-1220

 6-69 170-EED-003

Convert Toolkit Internal Time to TAI Julian Date

NAME:

SYNOPSIS:

C:

PGS_TD_TAItoTAIjd()

#include <PGS_TD.h>

PGSt_double *

PGS_TD_TAItoTAIjd(

 PGSt_double secTAI93,

 PGSt_double jdTAI[2])

FORTRAN

include “PGS_SMF.f” include “PGS_tk.f” double

precision function pgs_td_taitotaijd(sectai93, jdtai)

double precision sectai93 double precision jdtai(2)

DESCRIPTION: This function converts time in TAI seconds since 12 AM UTC 1-1-1993 to

TAI Julian date.

INPUTS:

Table 6-40. PGS_TD_TAItoTAIjd.c Inputs

Name Description Units Min Max

secTAI93 Toolkit internal time (seconds since 12 AM seconds 1958-01-01 none

OUTPUTS:

Table 6-41. PGS_TD_TAItoTAIjd Outputs

Name Description Units Min Max

jdTAI TAI Julian date days 2437300.5 see NOTES

RETURNS:

EXAMPLES:

TAI Julian date (address of jdTAI).

C: PGSt_double secTAI93;

 PGSt_double jdTAI[2];

secTAI93 = 86400.;
PGS_TD_TAItoTAIjd(secTAI93,jdTAI);

 6-70 170-EED-003

 ** jdTAI[0] should now have the value: 2448989.5 **

** jdTAI[1] should now have the value: 0.0003125 **

FORTRAN: double precision sectai93 double precision

jdtai sectai93 = 86400.D0 call

pgs_td_taitotaijd(sectai93, taijd) ! jdtai[0]

should now have the value: 2448989.5

! jdtai[1] should now have the value: 0.0003125

NOTES: TAI is: Toolkit International Atomic Time measured from 1993-01-01

 The translation to and from UTC begins Jan 1, 1961. It is valid until about 6 months after the last

leap second, in $PGSDAT/TD/leapsec.dat. When the script

$PGSBIN/TD/update_leapsec.sh is run regularly the leap seconds file will

be kept current and will be valid six months ahead.

 Since TAI was not defined before 1958-01-01 this is the formal lower

limit, but practically, the tool will work for any time after 4713 BC, if TAI93

is interpreted as seconds before Jan 1, 1993 UTC midnight.

REFERENCES FOR TIME:

 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data

Systems)

 Astronomical Almanac, Explanatory Supplement to the Astronomical

Almanac

REQUIREMENTS: PGSTK - 1220, 1160, 1170

Convert TAI Julian Date to Toolkit Internal Time

NAME:

SYNOPSIS:

PGS_TD_TAIjdtoTAI()

 C: #include <PGS_TD.h>

 PGSt_double

 PGS_TD_TAIjdtoTAI(

PGSt_double jdTAI[2])

 6-71 170-EED-003

FORTRAN: double precision function pgs_td_taijdtotai(jdtai)

double precision jdtai(2)

DESCRIPTION:

INPUTS:

This function converts TAI Julian date to time in TAI seconds since 12 AM

UTC 1-1-1993.

Table 6-42. PGS_TD_TAIjdtoTAI Inputs

Name Description Units Min Max

 jdTAI TAI Julian date days 2437300.5 ANY

OUTPUTS: None

RETURNS: Toolkit internal time (seconds since 12 AM UTC 1-1-1993). EXAMPLES:

C PGSt_double secTAI93;

 PGSt_double jdTAI[2];

 jdTAI[0] = 2448989.5;

jdTAI[1] = 0.0003125;

 secTAI93 = PGS_TD_TAIjdtoTAI(jdTAI);

/* secTAI93 should now have the value: 86400.*/

NOTES: TAI is: International Atomic Time

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems)

Astronomical Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK - 1220, 1160, 1170

 6-72 170-EED-003

Convert TAI to GAST

NAME:

SYNOPSIS:

PGS_TD_TAItoGAST()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_TAItoGAST(

 PGSt_double secTAI93,

 PGSt_double *gast)

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_taitogast(sectai93,gast)

 double precision sectai93

 double precision gast

DESCRIPTION:

INPUTS:

This function converts TAI (toolkit internal time) to Greenwich Apparent

Sidereal Time (GAST) expressed as the hour angle of the true vernal

equinox of date at the Greenwich meridian (in radians).

Table 6-43. PGS_TD_TAItoGAST Inputs

Name Description Units Min Max

secTAI93 continuous seconds since 12AM UTC Jan. 1, 1993 seconds -426297609.0 see NOTES

OUTPUTS:

Table 6-44. PGS_TD_TAItoGAST Outputs

Name Description Units Min Max

gast Greenwich Apparent Sidereal Time radians 0 2PI

RETURNS:

Table 6-45. PGS_TD_TAItoGAST Returns

Return Description

PGS_S_SUCCESS Successful return

PGSCSC_W_PREDICTED_UT1 Status of UT1-UTC correction is predicted

PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time

PGSTD_E_NO_UT1_VALUE No UT1-UTC correction available

PGS_E_TOOLKIT Something radically wrong occured

EXAMPLES: None

NOTES: TIME ACRONYMS:

 6-73 170-EED-003

 GAST is: Greenwich Apparent Sidereal Time

TAI is: International Atomic Time

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time is the real number of continuous SI seconds since the

epoch of UTC 12 AM 1-1-1993. Toolkit internal time is also referred to in

the toolkit as TAI (upon which it is based).See Section 6.2.3.4 Time and

Date Conversion Tool Notes

TIME BOUNDARIES:

See Section 6.2.3.5.2 (UT1-UTC Boundaries)

REFERENCES FOR TIME:CCSDS 2301.0-B-2 (CCSDS =>

Consultative Committee for Space Data Systems) Astronomical Almanac,

Explanatory Supplement to the Astronomical Almanac. REQUIREMENTS: PGSTK-1170,

PGSTK-1210

 6-74 170-EED-003

Convert UTC Time to Spacecraft Clock Time

NAME:

SYNOPSIS:

PGS_TD_UTC_to_SCtime()

C: #include <PGS_TD.h>

FORTRAN:

PGSt_SMF_status

PGS_TD_UTC_to_SCtime(

 PGSt_tag spacecraftTag,

 char asciiUTC[28],

 PGSt_scTime scTime[8]);

include ‘PGS_SMF.f’

include ‘PGS_TD.f’

include ‘PGS_tk.f’

 integer function pgs_td_utc_to_sctime(spacecrafttag, asciiutc, sctime)

 integer spacecrafttag

 character*27 asciiutc character*8

 sctime

DESCRIPTION: This tool converts UTC in CCSDS Time Code A or B to spacecraft clock

time in platform dependent format.

INPUTS: spacecraftTag-Spacecraft identifier; must be one of: PGSd_TRMM,

PGSd_EOS_AM, PGSd_EOS_PM_GIIS, PGSd_EOS_PM_GIRD

 asciiUTC-UTC time in CCSDS ASCII Time Code A or CCSDS ASCII

Time Code B format. The values of MAX, and MIN depend on the

spacecraft, see the files containing the specific conversions for more

information

OUTPUTS: scTime-Spacecraft clock time in platform dependent CCSDS format.

UNITS, MAX, and MIN depend on the spacecraft, see the files containing

the specific conversions for more information.

RETURNS:

Table 6-46. PGS_TD_UTCtoSCtime Returns

Return Description

PGS_S_SUCCESS Successful execution

PGSTD_E_SC_TAG_UNKNOWN Unknown spacecraft tag

PGSTD_E_TIME_FMT_ERROR Error in input time format

PGSTD_E_TIME_VALUE_ERROR Error in input time value

 6-75 170-EED-003

PGSTD_E_DATE_OUT_OF_RANGE Input date is out of range of s/c clock

PGSTD_E_NO_LEAP_SECS Leap seconds correction unavailable at requested time

PGS_E_TOOLKIT An unexpected error occurred

EXAMPLES:

C: char asciiUTC[28];
 PGSt_scTime scTime[8];

PGSt_SMF_status returnStatus;

 strcpy(asciiUTC,”1995-02-04T12:23:44.125438Z”); returnStatus =

PGS_TD_UTC_to_SCtime(PGSd_EOS_AM,asciiUTC,

 scTime);

if (returnStatus != PGS_S_SUCCESS)

{

*** do some error handling ***

 :

 :

}

FORTRAN: implicit none

 integer pgs_td_utc_to_sctime
character*27 asciiutc

character*8 sctime

integer returnstatus

 asciiutc = ‘1995-02-04t12:23:44.125438Z’ returnstatus =

pgs_td_utc_to_sctime(pgsd_eos_am,asciiutc,

 sctime)

if (returnstatus .ne. pgs_s_success) then

 :

c *** do some error handling ***

 : endif

NOTE: WARNING: To properly convert times to or from TRMM s/c clock time

the value of the TRMM Universal Time Correlation Factor (UTCF) must

be known. This value must be supplied by the user in the Config file. The

following line MUST be contained in the Config file for any process that

is converting to or from TRMM s/c clock time:

 10123|TRMM UTCF value|<UTC VALUE>

 Where the proper value of the UTCF should be substituted for <UTC

VALUE>.

 6-76 170-EED-003

 There is no corresponding problem for AM1 clock time, which is specified

to have an accuracy of 100 microseconds.

 UTC is: Coordinated Universal Time

See Section 6.2.3.2 (ASCII Time Formats)

The output spacecraft times vary in format. The supported spacecraft times are in the following

formats:

 TRMM CUC (platform specific variant of CCSDS

 Unsegmented time code(CUC) used)

EOS AM CDS (platform specific variant of CCSDS day

 segmented time code (CDS) used)

EOS PM GIIS CDS

 EOS PM GIRD CUC

 REFERENCES FOR TIME:

 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical

Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK- 1170

Convert Spacecraft Clock Time to UTC Time

NAME:

SYNOPSIS:

PGS_TD_SCtime_to_UTC()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_SCtime_to_UTC(

 PGSt_tag spacecraftTag,

 PGSt_scTime scTime[][8], PGSt_integer

numValues,

 char asciiUTC[28],

 PGSt_double offsets[])

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_TD.f’

include ‘PGS_tk.f’

 6-77 170-EED-003

 integer function pgs_td_sctime_to_utc(spacecrafttag,

 sctime,numvalues,asciiutc,

 offsets)

 integer spacecrafttag

 character*8 sctime(*)

 integer numvalues

 character*27 asciiutc double

precision offsets(*)

DESCRIPTION: This tool converts spacecraft clock time in platform dependent CCSDS

format to UTC in CCSDS ASCII Time Code A format.

INPUTS: spacecraftTag-Spacecraft identifier, must be one of: PGSd_TRMM,

PGSd_EOS_AM, PGSd_EOS_PM_GIIS, PGSd_EOS_PM_GIRD

 scTime-Array of spacecraft clock times in platform dependent CCSDS

format. UNITS, MAX, and MIN depend on the spacecraft, see the files

containing the specific conversions for more information.

 numValues-number of elements in the input scTime array (and therefore the

output offsets array)

OUTPUTS:

Table 6-47. PGS_TD_SCtime_to_UTC Outputs
NAME DESCRIPTION UNITS

asciiUTC UTC time of first s/c clock time in input array (in CCSDS ASCII Time Code

A format). The values of MAX, and MIN depend on the spacecraft, add

values from prologs!

ASCII

offsets Array of offsets of each input s/c clock time in input array scTime relative to

the first time in the array. This includes the first time as well (i.e., the first

offset will be 0.0). The values of MAX, and MIN depend on the first time as

well the spacecraft. Add values from prologs!

seconds

RETURNS:

Table 6-48. PGS_TD_SCtime_to_UTC Returns
Return Description

PGS_S_SUCCESS successful execution

PGSTD_W_BAD_SC_TIME one or more input s/c times could not be deciphered

PGSTD_E_BAD_INITIAL_TIME the initial input s/c time (first time in input array) could not be

deciphered
PGSTD_E_SC_TAG_UNKNOWN unknown/unsupported spacecraft ID tag

PGS_E_TOOLKIT an unexpected error occurred

EXAMPLES:

C: #define ARRAY_SIZE 1000

 6-78 170-EED-003

 PGSt_scTime scTime[ARRAY_SIZE][8];

char asciiUTC[28];

PGSt_double offsets[ARRAY_SIZE];

PGSt_SMF_status returnStatus;

 *** Initialize scTime array ***

 :

 :

 returnStatus = PGS_TD_SCtime_to_UTC(PGSd_EOS_AM,scTime,

 ARRAY_SIZE,asciiUTC,

 offsets);

if (returnStatus != PGS_S_SUCCESS)

{

*** do some error handling ***

 :

 :

}

FORTRAN: implicit none

 integer pgs_td_sctime_to_utc

integer array_size

character*8 sctime(array_size)

character*27 asciiutc double

precision offsets(array_size)

 integer returnstatus

 *** Initialize sctime array ***

 :

 :

returnstatus = pgs_td_sctime_to_utc(pgsd_eos_am,sctime,

 array_size,asciiutc,

 offsets)

if (returnstatus .ne. pgs_s_success) then

 :

*** do some error handling ***

 :

endif

NOTES: WARNING: To properly convert times to or from TRMM s/c clock time

the value of the TRMM Universal Time Correlation Factor (UTCF) must

be known. This value must be supplied by the user in the Config file. The

following line MUST be contained in the Config file for any process that

is converting to or from TRMM s/c clock time:

 10123|TRMM UTCF value|<UTC VALUE>

 Where the proper value of the UTCF should be substituted for <UTC VALUE>.

 6-79 170-EED-003

 There is no corresponding problem for AM1 clock time, which is specified

to have an accuracy of 100 microseconds.

This function converts an array of input s/c times to an initial time and an

array of offsets relative to this initial time. If the first time in the input array

cannot be deciphered, this function returns an error. If any other time in the

input array cannot be deciphered, the corresponding offset is set to

PGSd_GEO_ERROR_VALUE and this function continues after setting the

return value to a warning.

See Section 6.2.3.2 (ASCII Time Formats)

 The input spacecraft times vary in format. The supported spacecraft times

are in the following formats:

 TRMM CUC (platform specific variant of CUC used)

 EOS AM CDS (platform specific variant of CDS used)

 EOS PM GIIS CDS

 EOS PM GIRD CUC

 UTC: Coordinated Universal Time

 TAI: International Atomic Time

CUC: CCSDS Unsegmented Time Code

 CDS CCSDS Day Segmented Time Code

REQUIREMENTS: PGSTK-1170

 6-80 170-EED-003

Convert CCSDS ASCII Time Format A to Format B

NAME:

SYNOPSIS:

PGS_TD_ASCIItime_AtoB()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_ASCIItime_AtoB(

 char asciiUTC_A[28],

 char asciiUTC_B[27]);

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function

pgs_td_asciitime_atob(asciiutc_a,asciiutc_b);

 character*27 asciiutc_a character*26 asciiutc_b

DESCRIPTION: This Tool converts UTC time in CCSDS ASCII Time Code A to CCSDS

ASCII Time Code B.

INPUTS:

Table 6-49. PGS_TD_ASCIItime_AtoB Inputs

Name Description Units Min Max

asciiUTC_A UTC Time in CCSDS ASCII Time Code A N/A N/A N/A

OUTPUTS:

Table 6-50. PGS_TD_ASCIItime_AtoB Outputs

Name Description Units Min Max

asciiUTC_B UTC Time in CCSDS ASCII Time Code B N/A N/A N/A

RETURNS:

Table 6-51. PGS_TD_ASCIItime_AtoB Returns

Return Description

PGS_S_SUCCESS Successful return

PGSTD_E_TIME_VALUE_ERROR Error in input time value

PGSTD_E_TIME_FMT_ERROR Error in input time format

PGS_E_TOOLKIT Something unexpected happened, execution of function

terminated prematurely

EXAMPLES:

 6-81 170-EED-003

C: PGSt_SMF_status returnValue;

char asciiUTC_A[28];

char asciiUTC_B[27];

 strcpy(asciiUTC_A,”1998-06-30T10:51:28.320000Z”);

returnValue = PGS_TD_ASCIItime_AtoB(asciiUTC_A,asciiUTC_B);

if (returnValue != PGS_S_SUCCESS)

{

** test errors, take appropriate action **

 :

 :

}

printf(“%s\n”,asciiUTC_B);

FORTRAN: implicit none

 integer pgs_td_asciitime_atob

integer returnvalue

character*27 asciiutc_a

character*26 asciiutc_b

 asciiutc_a = ‘1998-06-30T10:51:28.320000’

returnvalue = pgs_td_asciitime_atob(asciiutc_a,asciiutc_b)

if (returnvalue .ne. pgs_s_success) goto 999

write(6,*) asciiutc_b

NOTES: The output of this tool is in CCSDS ASCII Time Code B format.

 See Section 6.2.3.2 (ASCII Time Formats)

REQUIREMENTS: PGSTK-1170, PGSTK-1180, PGSTK-1210

Convert CCSDS ASCII Time Format B to Format A

NAME:

SYNOPSIS:

C:

PGS_TD_ASCIItime_BtoA()

#include <PGS_TD.h>

 6-82 170-EED-003

FORTRAN:cd

PGSt_SMF_status

PGS_TD_ASCIItime_BtoA(

 char asciiUTC_B[27],

 char asciiUTC_A[28]);

include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function

pgs_td_asciitime_btoa(asciiutc_b,asciiutc_a);

 character*26 asciiutc_b character*27 asciiutc_a

DESCRIPTION: This Tool converts UTC time in CCSDS ASCII Time Code B to CCSDS

ASCII Time Code A.

INPUTS:

Table 6-52. PGS_TD_ASCIItime_BtoA Inputs

Name Description Units Min Max

asciiUTC_B UTC Time in CCSDS ASCII Time Code B N/A N/A N/A

OUTPUTS:

Table 6-53. PGS_TD_ASCIItime_BtoA Outputs

Name Description Units Min Max

asciiUTC_A UTC Time in CCSDS ASCII Time Code A N/A N/A N/A

RETURNS:

Table 6-54. PGS_TD_ASCIItime_BtoA Returns (1 of 2)

Return Description

PGS_S_SUCCESS Successful return

PGSTD_E_TIME_VALUE_ERROR Error in input time value

Table 6-54. PGS_TD_ASCIItime_BtoA Returns (2 of 2)

Return Description

PGSTD_E_TIME_FMT_ERROR Error in input time format

PGS_E_TOOLKIT Something unexpected happened, execution of function

terminated prematurely

EXAMPLES:

C: PGSt_SMF_status returnValue;
char asciiUTC_B[27];

char asciiUTC_A[28];

 6-83 170-EED-003

 strcpy(asciiUTC_B,”1998-181T10:51:28.320000Z”);

returnValue = PGS_TD_ASCIItime_BtoA(asciiUTC_B,asciiUTC_A);

if (returnValue != PGS_S_SUCCESS)

{

** test errors, take appropriate action **

 :

 :

}

printf(“%s\n”,asciiUTC_A);

FORTRAN: implicit none

 integer pgs_td_asciitime_btoa
integer returnvalue

character*26 asciiutc_b

character*27 asciiutc_a

 asciiutc_b = ‘1998-181T10:51:28.320000’

returnvalue = pgs_td_asciitime_btoa(asciiutc_b,asciiutc_a)

if (returnvalue .ne. pgs_s_success) goto 999

write(6,*) asciiutc_a

NOTES: The output of this tool is in CCSDS ASCII Time Code A format.

 See Section 6.2.3.2 (ASCII Time Formats)

REQUIREMENTS: PGSTK-1170, PGSTK-1180, PGSTK-1210

NAME:

 6-84 170-EED-003

Convert UTC to GPS Time

PGS_TD_UTCtoGPS()

SYNOPSIS:

C:

#include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_UTCtoGPS(

 char asciiUTC[28],

 PGSt_double *secGPS);

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function

pgs_td_utctogps(asciiUTC,secgps) character*27

 asciiutc double precision secgps

DESCRIPTION:

INPUTS:

This tool converts from UTC time to GPS time.

Table 6-55. PGS_TD_UTCtoGPS Inputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII

Time Code A or B format
time 1961-01-01 T00:00:00 2008-03-30

T23:59:59.999999

OUTPUTS:

Table 6-56. PGS_TD_UTCtoGPS Outputs

Name Description Units Min Max

secGPS Continuous real seconds since

0 hrs UTC on Jan. 6, 1980
seconds -599961636.577182 890956802.999999

RETURNS:

Table 6-57. PGS_TD_UTCtoGPS Returns

Return Description

 6-85 170-EED-003

PGS_S_SUCCESS Successful return

PGSTD_E_NO_LEAP_SECS No leap seconds correction available input time

PGSTD_E_TIME_FMT_ERROR Error in format of ASCII UTC time

PGSTD_E_TIME_VALUE_ERROR Error in value of the ASCII UTC time

PGS_E_TOOLKIT Something unexpected happened, execution of function

terminated prematurely

EXAMPLES:

C: char asciiUTC[28];

PGSt_double secGPS;

PGSt_SMF_status returnStatus;

char err[PGS_SMF_MAX_MNEMONIC SIZE]

char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus = PGS_TD_UTCtoGPS(asciiUTC,&secGPS);

if(returnStatus != PGS_S_SUCCESS)

{

 PGS_SMF_GetMsg(&returnStatus, err,

msg); printf(“\n ERROR: %s”, msg); }

FORTRAN: implicit none

 integer

 pgs_td_utctogps

character*27 asciiutc

double precision secgps

integer returnstatus

integer anerror

character*35 errname

character*150 errmsg

 returnstatus = pgs_td_utctogps(asciiutc,secgps)

if(returnstatus .ne. PGS_S_SUCCESS) then

 returnstatus = pgs_smf_getmsg(anerror,errorname,errmsg)

write(*,*) errname,errmsg endif

NOTES: See Section 6.2.3.2 (ASCII Time Formats)

 See Section 6.2.3.5.1 (TAI-UTC Boundaries)

 GPS: Global Positioning System

 TAI: International Atomic Time

UTC: Coordinated Universal Time

REQUIREMENTS: PGSTK-1170, PGSTK-1210

NAME:

 6-86 170-EED-003

Convert GPS to UTC Time

PGS_TD_GPStoUTC()

SYNOPSIS:

C:

#include <PGS_TD.h>

FORTRAN:

PGSt_SMF_Status

PGS_TD_GPStoUTC(

 PGSt_double secGPS,

 char asciiUTC[28]);

include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_gpstoutc(secgps, asciiutc)

 double precision secgps

 character*27 asciiutc

DESCRIPTION:

INPUTS:

This tool converts from GPS time to UTC time.

Table 6-58. PGS_TD_GPStoUTC Inputs

Name Description Units Min Max

secGPS Continuous real seconds since 0 hrs

UTC on Jan. 6, 1980
seconds -599961636.577182 see NOTES

OUTPUTS:

Table 6-59. PGS_TD_GPStoUTC Outputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII Time Code A time 1961-01-01 see NOTES

RETURNS:

Table 6-60. PGS_TD_GPStoUTC Returns

Return Description

 6-87 170-EED-003

PGS_S_SUCCESS Successful return

PGSTD_E_NO_LEAP_SECS No leap seconds correction for input time

PGS_E_TOOLKIT Something unexpected happened, execution of function terminated

prematurely

EXAMPLES:

C: char asciiUTC[28];

PGSt_double secGPS;

PGSt_SMF_status returnStatus;

char err[PGS_SMF_MAX_MNEMONIC SIZE]

char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus = PGS_TD_GPStoUTC(secGPS,asciiUTC);

if(returnStatus != PGS_S_SUCCESS)

{

 PGS_SMF_GetMsg(&returnStatus, err,

msg); printf(“\n ERROR: %s”, msg); }

FORTRAN: implicit none

 integer

 pgs_td_gpstoutc

character*27 asciiutc

double precision secgps

integer returnstatus

integer anerror

character*35 errname

character*150 errmsg

 returnstatus = pgs_td_gpstoutc(secgps,asciiUTC)

if(returnstatus .ne. PGS_S_SUCCESS) then

 returnstatus = pgs_smf_getmsg(anerror,errorname,errmsg)

write(*,*) errname,errmsg endif

NOTES: See Section 6.2.3.2 (ASCII Time Formats)

 See Section 6.2.3.5.1 (TAI-UTC Boundaries)

 GPS: Global Positioning System

 TAI: International Atomic Time

UTC: Coordinated Universal Time

REQUIREMENTS: PGSTK-1170, PGSTK-1210

NAME:

 6-88 170-EED-003

Convert UTC Time to TDT Time

PGS_TD_UTCtoTDTjed()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_UTCtoTDTjed(

 char asciiUTC[28],

 PGSt_double jedTDT[2]);

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_utctotdtjed(asciiutc, jedtdt)

 character*27 asciiutc double

precision jedtdt(2)

DESCRIPTION:

INPUTS:

This tool converts UTC in CCSDS ASCII time format A or B to TDT as a

Julian date (TDT = Terrestrial Dynamical Time)

Table 6-61. PGS_TD_UTCtoTDTjed Inputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII time Code A or B

format
time 1961-01-01 see NOTES

OUTPUTS:

Table 6-62. PGS_TD_UTCtoTDTjed Outputs

Name Description Units Min Max

jedTDT TDT as a Julian date days see NOTES see NOTES

RETURNS:

Table 6-63. PGS_TD_UTCtoTDTjed Returns

Return Description

PGS_S_SUCCESS Successful return

PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time

 6-89 170-EED-003

PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time

PGSTD_E_NO_LEAP_SECS Leap second errors

PGS_E_TOOLKIT Something unexpected happened, execution of function

terminated prematurely

EXAMPLES:

C: PGSt_SMF_status returnStatus;

char asciiUTC[28] =

 “2002-06-30T11:04:57.987654Z”;

PGSt_double jedTDT[2];

char err[PGS_SMF_MAX_MNEMONIC SIZE]

char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus=PGS_TD_UTCtoTDTjed(asciiUTC,jedTDT);

if (returnStatus != PGS_S_SUCCESS)

 {

PGS_SMF_GetMsg(&returnStatus,err,msg);

printf(“\nERROR: %s”,msg) }

FORTRAN: implicit none

 integer

 pgs_td_utctotdtjed integer

 returnstatus

character*27 asciiutc double

precision jedtdt(2) character*33

 err character*241 msg

 asciiutc = ‘1998-06-30T10:51:28.320000Z’

returnstatus = pgs_td_utctotdtjed(asciiutc,jedtdt)

if (returnstatus .ne. pgs_s_success)

 returnstatus =

pgs_smf_getmsg(returnstatus,err,msg) write(*,*)

err, msg endif

NOTES: TIME ACRONYMS:

 TDT is: Terrestrial Dynamical Time

 UTC is: Coordinated Universal Time

Prior to 1984, there is no distinction between TDT and TDB; either one is denoted “ephemeris

time” (ET). Also, the values before 1972 are based on U.S. Naval

Observatory estimates, which are the same as adopted by the JPL Ephemeris

group that produces the DE series of solar system ephemerides, such as

DE200.

Section 6.2.3.4 (Toolkit Julian Dates)

NAME:

 6-90 170-EED-003

See Section 6.2.3.2 (ASCII Time Formats)

See See Section 6.2.3.5.1 (TAI-UTC Boundaries)

 6-91 170-EED-003

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical

Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK-1215

 6-92 170-EED-003

Convert UTC Time to TDB Time

NAME:

SYNOPSIS:

PGS_TD_UTCtoTDBjed()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_UTCtoTDBjed(

 char asciiUTC[28],

 PGSt_double jedTDB[2]);

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_utctotdbjed(asciiutc, jedtdb)

 character*27 asciiutc double

precision jedtdb(2)

DESCRIPTION:

INPUTS:

This tool converts UTC in CCSDS ASCII time format A or B to TDB as a

Julian date (TDB = Barycentric Dynamical Time)

Table 6-64. PGS_TD_UTCtoTDBjed Inputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII time Code A or B

format
time 1961-01-01 see NOTES

OUTPUTS:

Table 6-65. PGS_TD_UTCtoTDBjed Outputs

Name Description Units Min Max

jedTDB TDB as a Julian date days see NOTES see NOTES

RETURNS:

Table 6-66. PGS_TD_UTCtoTDBjed Returns

Return Description

PGS_S_SUCCESS Successful return

PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time

PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time

PGSTD_E_NO_LEAP_SECS Leap second errors

PGS_E_TOOLKIT Something unexpected happened, execution of function

terminated prematurely

 6-93 170-EED-003

EXAMPLES:

C: PGSt_SMF_status returnStatus;

char asciiUTC[28] =

 “2002-02-23T11:04:57.987654Z”;

PGSt_double jedTDB[2];

char err[PGS_SMF_MAX_MNEMONIC SIZE]

char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus=PGS_TD_UTCtoTDBjed(asciiUTC,jedTDB);

if (returnStatus != PGS_S_SUCCESS)

 {

PGS_SMF_GetMsg(&returnStatus,err,msg);

printf(“\nERROR: %s”,msg) }

FORTRAN: implicit none

 integer

 pgs_td_utctotdbjed integer

 returnstatus character*27

 asciiutc double precision

jedtdb(2) character*33 err

character*241 msg

 asciiutc = ‘1998-06-30T10:51:28.320000Z’ returnstatus =

pgs_td_utctotdbjed(asciiutc,jedtdb) if (returnstatus .ne.

pgs_td_utctotdbjed(asciiutc,jedtdb) returnstatus =

pgs_smf_getmsg(returnstatus,err,msg) write(*,*)

err, msg

endif

NOTES: TIME ACRONYMS:

 TDB is: Barycentric Dynamical Time

UTC is: Coordinated Universal Time

 Prior to 1984, there is no distinction between TDT and TDB; either one is

denoted “ephemeris time” (ET). Also, the values before 1972 are based on

U.S. Naval Observatory estimates, which are the same as adopted by the

JPL Ephemeris group that produces the DE series of solar system

ephemerides, such as DE200.

 See Section 6.2.3.2 (ASCII Time Formats)

 See Section 6.2.3.4 (Toolkit Julian Dates)

See Section 6.2.3.5.1 (TAI-UTC Boundaries)

REFERENCES FOR TIME:

 6-94 170-EED-003

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical

Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK-1215

 6-95 170-EED-003

Compute Elapsed TAI Time

NAME:

SYNOPSIS:

PGS_TD_TimeInterval()

C: #include <PGS_TD.h>

 pgs_status

PGS_TD_TimeInterval(

 PGSt_double startTAI,

 PGSt_double stopTAI,

 PGSt_double *interval)

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_timeinterval(starttai, stoptai, interval)

 double precision starttai

 double precision stoptai

 double precision interval

DESCRIPTION:

INPUTS:

This function computes the elapsed TAI time in seconds between any two

time intervals.

Table 6-67. PGS_TD_TimeInterval Inputs

Name Description Units Min Max

startTAI start time in TAI seconds none none

stopTAI stop time in TAI seconds none none

OUTPUTS:

Table 6-68. PGS_TD_TimeInterval Outputs

Name Description Units Min Max

interval elapsed time interval seconds none none

RETURNS:

Table 6-69. PGS_TD_TimeInterval Returns

Return Description

PGS_S_SUCCESS Successful return

EXAMPLES:

 6-96 170-EED-003

C: PGSt_SMF_status returnStatus;

PGSt_double startTAI;

PGSt_double stopTAI;

PGSt_double interval;

 startTAI = 34523.5;

stopTAI = 67543.2;

returnStatus = PGS_TD_TimeInterval(startTAI,stopTAI,

 &interval);

FORTRAN: implicit none

 integer pgs_td_timeinterval

integer returnstatus

double precision starttai

double precision stoptai double

precision interval

 returnstatus = pgs_td_timeinterval(starttai,stoptai,

 interval)

NOTES: This interval is the same as elapsed internal time and is the true interval in

System International (SI) seconds.

REQUIREMENTS: PGSTK-1190

Convert UTC in CCSDS ASCII Format to Julian Date Format

NAME:

SYNOPSIS:

PGS_TD_UTCtoUTCjd()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_UTCtoUTCjd(

 char asciiUTC[28],

 PGSt_double jdUTC[2])

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_utctoutcjd(asciiutc, jdutc)

character*27 asciiutc double

precision jdutc(2)

 6-97 170-EED-003

DESCRIPTION:

INPUTS:

Converts ASCII UTC times to UTC Julian Dates

Table 6-70. PGS_TD_UTCtoUTCjd Inputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS

ASCII time Code A or B

format

time 1961-01-01 see NOTES

OUTPUTS:

Table 6-71. PGS_TD_UTCtoUTCjd Outputs

Name Description Units Min Max

jdUTC[2] UTC Julian date days none none

RETURNS:

Table 6-72. PGS_TD_UTCtoUTCjd Returns

Return Description

PGS_S_SUCCESS successful return

PGSTD_M_LEAP_SEC_IGNORED leap second portion of input time discarded

PGSTD_E_TIME_FMT_ERROR error in format of input ASCII UTC time

PGSTD_E_TIME_VALUE_ERROR error in format of input ASCII UTC time

PGS_E_TOOLKIT something unexpected happened, execution aborted

NOTES: Caution should be used because UTC Julian Date jumps backwards each time a leap

second is introduced. Therefore, in a leap second interval the output times

will repeat those in the previous second (provided that the UTC ASCII

seconds field ran from 60.0 to 60.9999999 etc. as it should during that one

second). Therefore, the only known uses for this function are:

(a) to get UT1, (after conversion to modified Julian Date by subtracting

2400000.5) by accessing an appropriate table of

 differences

(b) to determine the correct Julian Day at which to access any table based on

UTC and listed in Julian date, such as leap seconds, UT1, and polar motion tables.

UTC is: Coordinated Universal Time

See section 6.2.3.4 (Toolkit Julian Dates)

REQUIREMENTS: PGSTK - 1170, 1220

 6-98 170-EED-003

Convert UTC Julian Date to CCSDS ASCII Time Code A Format

NAME:

SYNOPSIS:

PGS_TD_UTCjdtoUTC()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_UTCjdtoUTC(

 PGSt_double jdUTC[2], PGSt_boolean

onLeap,

 char asciiUTC[28])

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_utcjdtoutc(jdutc,onleap,asciiutc)

double precision jdutc(2) integer onleap

character*27 asciiutc

DESCRIPTION:

INPUTS:

This tool converts UTC as a Julian date to UTC in CCSDS ASCII Time

Code A format.

Table 6-73. PGS_TD_UTCjdtoUTC Inputs

Name Description Units

 jdUTC UTC time as a Julian date days

onLeap Indicates if input time is occurring during a leap second T/F

OUTPUTS:

Table 6-74. PGS_TD_UTCjdtoUTC Outputs

Name Description Units

 asciiUTC UTC time in CCSDS ASCII Time Code A format time

RETURNS:

Table 6-75. PGS_TD_UTCjdtoUTC Returns

 Return Description

PGS_S_SUCCESS successful return

PGSTD_E_TIME_FMT_ERROR a leap second was indicated at an inappropriate time

PGS_E_TOOLKIT something unexpected happened

 6-99 170-EED-003

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 PGSt_double jdUTC[2]={2449534.5,0.5};

 char asciiUTC[28];

returnStatus = PGS_TD_UTCjdtoUTC(jdUTC,PGS_FALSE,asciiUTC);

 if (returnStatus != PGS_S_SUCCESS)

{

*** do some error handling ***

 :

 :

}

/* asciiUTC now contains the value: “1994-

07-01T12:00:00.000000Z” */ printf(“UTC:

%s\n”,asciiUTC);

FORTRAN: integer pgs_td_utcjdtoutc

integer returnstatus

double precision jdutc(2)

character*27 asciiutc

jdutc(1) = 2449534.5D0

jdutc(1) = 0.5D0

returnstatus = pgs_td_utcjdtoutc(jdutc,pgs_false,asciiutc)

if (returnstatus .ne. pgs_s_success) goto 999

! asciiutc now contains the value:

! ‘1994-07-01T12:00:00.000000Z’

write(6,*) ‘UTC: ‘, asciiutc

NOTES: UTC is: Coordinated Universal Time

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data

Systems)

Astronomical Almanac, Explanatory Supplement to the Astronomical

Almanac

See section 6.2.3.4 (Toolkit Julian Dates)

REQUIREMENTS: PGSTK - 1210, 1220, 1160, 1170

 6-100 170-EED-003

Convert UTC to UT1

NAME:

SYNOPSIS:

PGS_TD_UTCtoUT1()

C: #include <PGS_CSC.h>

#include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_UTCtoUT1(

 char asciiUTC[28],

 PGSt_double *secUT1);

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_utctout1(asciiutc, secut1)

 character*27 asciiutc double

precision secut1

DESCRIPTION:

INPUTS:

This tool converts a time from CCSDS ASCII Time (Format A or B) to UT1

Table 6-76. PGS_TD_UTCtoUT1 Inputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII

Time Code A or B format
time 1971-01-01T00:00:00 also see notes Date

OUTPUTS:

Table 6-77. PGS_TD_UTCtoUT1 Outputs

Name Description Units Min Max

secUT1 UT1 in seconds from midnight sec 0.0 86400.999999

RETURNS: PGS_S_SUCCESS

PGSTD_E_TIME_FMT_ERROR

PGSTD_E_TIME_VALUE_ERROR

PGSCSC_W_PREDICTED_UT1 PGSTD_E_NO_UT1_VALUE

PGS_E_TOOLKIT

EXAMPLES:

 6-101 170-EED-003

C: PGSt_SMF_status returnStatus

char asciiUTC[28] = “2002-07-27T11:04:57.987654Z

PGSt_double secUT1

char err[PGS_SMF_MAX_MNEMONIC SIZE]

char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus=PGS_TD_UTCtoUT1(asciiUTC,&secUT1);

if (returnStatus != PGS_S_SUCCESS)

{

PGS_SMF_GetMsg(&returnStatus,err,msg);

printf(“\nERROR: %s”,msg) }

FORTRAN: implicit none

 integer

 pgs_td_utctout1 integer

 returnstatus

character*27 asciiutc

double precision secut1

character*33 err

character*241 msg

 asciiutc = ‘2002-07-27T11:04:57.987654Z’

returnstatus = pgs_td_utctout1(asciiutc,secut1)

if (returnstatus .ne. pgs_s_success) then

 returnstatus =

pgs_smf_getmsg(returnstatus,err,msg) write(*,*)

err, msg endif

NOTES: Although UT1 was used for civil timekeeping before Jan. 1, 1972, today

UT1 is a measure of Earth rotation only; it is a measure of the angle of the

Greenwich Meridian from the equinox of date such that 24 hours of System

International (SI) seconds (86400 seconds) of TAI or TDT constitute one

full revolution. As such, it can be directly reduced to Greenwich Apparent

Sidereal Time (GAST). This function should be used with caution near

midnight. For example, if UTC is 0.5 seconds before midnight, and UT1 -

UTC = 0.6 s, then this function returns 0.1 s, but the day has changed.

 Prior to Jan. 1, 1972, either UT1 or, for a brief period, a variant called UT2

that accounts for some of the periodic nonuniformities of Earth rotation,

were used for time keeping.

TIME ACRONYMS:

 UT1 is: Universal Time

 6-102 170-EED-003

UTC is: Coordinated Universal

Time See Section 6.2.3.2 (ASCII Time Formats) See Section

6.2.3.5.2 (UT1-UTC Boundaries)

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems), Astronomical

Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK-1215

 6-103 170-EED-003

Convert UTC to UT1 Julian Date

NAME:

SYNOPSIS:

PGS_TD_UTCtoUT1jd()

C: #include <PGS_TD.h>

 PGSt_SMF_status

PGS_TD_UTCtoUT1jd(

 char asciiUTC[28],

 PGSt_double jdUT1[2])

FORTRAN: include ‘PGS_SMF.f’

include ‘PGS_tk.f’

 integer function pgs_td_utctout1jd(asciiutc, jdut1)

 character*27 asciiutc double

precision jdut1(2)

DESCRIPTION:

INPUTS:

This tool converts a time from CCSDS ASCII Time (Format A or B) to UT1

Julian date.

Table 6-78. PGS_TD_UTCtoUT1jd Inputs

Name Description Units Min

asciiUTC UTC time in CCSDS ASCII Time Code A format or ASCII Time

Code B format
ASCII 1961-01-01

OUTPUTS:

Table 6-79. PGS_TD_UTCtoUT1jd Outputs

Name Description Units

jdUT1 UT1 Julian date as two real numbers, the first a half integer number of

days and the second the fraction of a day between this half integer

number of days and the next half integer day number.

days

RETURNS:

Table 6-80. PGS_TD_UTCtoUT1jd Returns

Return Description

PGS_S_SUCCESS Successful execution

PGSTD_M_LEAP_SEC_IGNORED Leap second portion of input time discarded

PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time

PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time

PGS_E_TOOLKIT Something unexpected happened, execution aborted

 6-104 170-EED-003

EXAMPLES: None

NOTES: Although UT1 was used for civil timekeeping before Jan. 1, 1972, today

UT1 is a measure of Earth rotation only; it is a measure of the angle of the

Greenwich Meridian from the equinox of date such that 24 hours of System

International (SI) seconds (86400 seconds) of TAI or TDT constitute one

full revolution. As such, it can be directly reduced to Greenwich Apparent

Sidereal Time (GAST).

 Prior to Jan. 1, 1972, either UT1 or, for a brief period, a variant called UT2

that accounts for some of the periodic nonuniformities of Earth rotation,

were used for time keeping.

 TIME ACRONYMS:

 UT1 is: Universal Time

UTC is: Coordinated Universal Time

See Section 6.2.3.2 (ASCII Time Formats)

See Section 6.2.3.4 (Toolkit Julian Dates) See

Section 6.2.3.5.2 (UT1-UTC Boundaries)

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical

Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK-1170, PGSTK-1210

Get Leap Second

NAME:

SYNOPSIS:

PGS_TD_LeapSec()

C:

#include <PGS_TD.h>

PGSt_SMF_status

PGS_TD_LeapSec(

PGSt_double jdUTC[2],

PGSt_double *leapSec,

PGSt_double *lastChangeJD,

PGSt_double *nextChangeJD, char

 *leapStatus)

 6-105 170-EED-003

FORTRAN include ‘PGS_SMF.f’

include ‘PGS_tk.f’

integer funtion pgs_td_leapsec(jdutc,leapsec,lastchangejd,nextchangejd,

leapstatus

 double precision jdutc(2)

double precision leapsec

double precision lastchangejd

double precision nextchangejd

character*10 leapstatus

DESCRIPTION:

INPUTS:

This tool accesses the file ‘leapsec.dat’, extracts the leap second value for an

input Julian Day number, and returns an error status.

Table 6-81. Get Leap Second Inputs

Name Description Units Min Max

jdUTC UTC Julian Day number days (see NOTES) N/A N/A

OUTPUTS:

Table 6-82. Get Leap Second Outputs
Name Description Units Min Max

leapSec leap second value for day jdUTC, read from table seconds 0 N/A

lastChangeJD Julian Day number upon which that leap second value

was effective
days (see NOTES) N/A N/A

nextChangeJD Julian Day number of the next ACTUALor PREDICTED

leap second
days (see NOTES) N/A N/A

leapStatus indicates whether the leap second value is ACTUAL,
PREDICTED, a LINEARFIT, or ZEROLEAPS (leap
second value is set to zero if the input time is before

the start of the table)

 N/A N/A N/A

RETURNS:

Table 6-83. Get Leap Seconds Returns

Return Description

PGS_S_SUCCESS successful execution

PGSTD_W_JD_OUT_OF_RANGE invalid input Julian Day number

PGSTD_W_DATA_FILE_MISSING leap second file not found

EXAMPLES:

 PGSt_double jdUTC[2];
PGSt_double leapsecond;

PGSt_double lastChangeJD;

PGSt_double nextChangeJD;

 6-106 170-EED-003

PGSt_SMF_status returnStatus;

char leapStatus[10];

 jdUTC[0] = 2439999.5; jdUTC[1] = 0.5;

returnStatus = PGS_TD_LeapSec(jdUTC,&leapsecond,

 &lastChangeJD,

 &nextChangeJD,leapStatus);

if (returnStatus != PGS_S_SUCCESS)

{

/* handle errors */

} NOTES:

With Toolkit 5.2, the functions that call PGS_TD_LeapSec() will return an error

and write a diagnostic message to the Log Status File indicating that an obsolete format

was encountered in the Leap Seconds file, if they encounter the “PREDICTED” status.

UTC: Coordinated Universal Time

 TAI: International Atomic Time REQUIREMENTS:

PGSTK - 1050, 0930

6.2.3.8 TD Functions PGS_TD_SetFileId

This tool sets logical file IDs for the files to be used.

PGS_TD_ADEOSIItoTAI

This tool converts ADEOS-II s/c clock time (instrument time + pulse time) to TAI (prototype

code).

PGS_TD_ADEOSIItoUTC

This tool converts converts ADEOS-II s/c clock time (instrument time + pulse time) to a UTC

string in CCSDS ASCII Time Code A format (prototype code).

PGS_TD_ASCIItime_AtoB

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_ASCIItime_BtoA

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_EOSAMtoTAI

This function converts EOS AM spacecraft clock time in CCSDS day segmented Time Code

(CDS) (with implicit P-field) format to TAI (as real continuous seconds since 12AM UTC 1-

11993).

PGS_TD_EOSAMtoUTC

 6-107 170-EED-003

This function converts EOS AM spacecraft clock time in platform-dependent format to UTC in

CCSDS ASCII time code A format.

PGS_TD_EOSPMGIIStoTAI

This function converts EOS PM spacecraft GIIS clock time in CCSDS day segmented Time Code

(CDS) (with implicit P-field) format to TAI (as real continuous seconds since 12AM UTC 1-1-

1993).

PGS_TD_EOSPMGIIStoUTC

This function converts EOS PM spacecraft GIIS clock time in platform-dependent format to UTC

in CCSDS ASCII time code A format.

PGS_TD_EOSPMGIRDtoTAI

This function converts EOS PM spacecraft GIRD clock time in CCSDS Unsegmented Time Code

(CUC) (with explicit P-field) format to TAI (as real continuous seconds since 12AM UTC 1-1-

1993).

PGS_TD_EOSPMGIRDtoUTC

This function converts EOS PM spacecraft GIRD clock time in CCSDS unsegmented Time Code

(CUC) (with explicit P-field) format to UTC in CCSDS ASCII time code A format.

PGS_TD_FGDCtoUTC

This function converts an FGDC ASCII date string and time string to CCSDS ASCII Time Code

(format A). The input FGDC time string may be in “Universal Time” or “local time” format.

PGS_TD_GPStoUTC

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_ISOinttoTAI

This function converts an integer number that represents an ISO time (YYMMDDhh) to TAI.

PGS_TD_ISOinttoUTCjd

This function converts an integer number that represents an ISO time (YYMMDDhh) to a UTC

time in toolkit Julian date format.

PGS_TD_JDtoMJD

This function converts a Julian date to a modified Julian date.

PGS_TD_JDtoTJD

This function converts a Julian date to a truncated Julian date.

PGS_TD_JulianDateSplit

This function converts a Julian date to Toolkit Julian date format

 6-108 170-EED-003

PGS_TD_LeapSec

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_MJDtoJD

This function converts a modified Julian date to a Julian date.

PGS_TD_PB5CtoUTCjd

This function converts a time in PB5C time format to TAI (Toolkit internal time).

PGS_TD_PB5toTAI

This function converts a time in PB5 time format to TAI (Toolkit internal time).

PGS_TD_PB5toUTCjd

This function converts a time in PB5 time format to UTC time in toolkit Julian date format.

PGS_TD_SCtime_to_UTC

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_TAIjdtoTAI

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_TAIjdtoTDTjed

This function converts TAI Julian date to TDT Julian ephemeris date.

PGS_TD_TAIjdtoUTCjd

This function converts TAI Julian date to UTC Julian date.

PGS_TD_TAItoGAST

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_TAItoISOint

This function converts TAI to an integer number that represents an ISO time (YYMMDDhh).

PGS_TD_TAItoTAIjd

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_TAItoUDTF

This tool converts TAI to a UDTF integer array.

PGS_TD_TAItoUT1jd

This tool converts continuous seconds since 12AM UTC 1-1-93 to UT1 time as a Julian date.

PGS_TD_TAItoUT1pole

 6-109 170-EED-003

This tool converts continuous seconds since 12AM UTC 1-1-93 to UT1 time as a Julian date and

returns x and y polar wander values and UT1-UTC as well.

PGS_TD_TAItoUTC

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_TAItoUTCjd

This tool converts continuous seconds since 12AM UTC 1-1-93 to UTC time as a Julian date.

PGS_TD_TDBjedtoTDTjed

This function converts TDB (Barycentric Dynamical Time) as a Julian ephemeris date to TDT

(Terrestrial Dynamical Time) as a Julian ephemeris date.

PGS_TD_TDTjedtoTAIjd

This function converts TDT Julian ephemeris date to TAI Julian date.

PGS_TD_TDTjedtoTDBjed

This function converts TDT (Terrestrial Dynamical Time) as a Julian ephemeris date to TDB

(Barycentric Dynamical Time) as a Julian ephemeris date.

PGS_TD_TJDtoJD

This function converts a truncated Julian date to a Julian date.

PGS_TD_TRMMtoTAI

This function converts TRMM spacecraft clock time in CCSDS Unsegmented Time Code (CUC)

(with implicit P-field) format to TAI (Toolkit internal time).

PGS_TD_TRMMtoUTC

This function converts TRMM spacecraft clock time in CCSDS unsegmented Time Code (CUC)

(with implicit P-field) format to UTC in CCSDS ASCII time code A format.

PGS_TD_TimeInterval

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_UDTFtoTAI

This function converts a UDTF integer array to TAI.

PGS_TD_UDTFtoUTCjd

This function converts a UDTF integer array to a UTC Julian date.

PGS_TD_UT1jdtoUTCjd

This tool converts UT1 time as a Julian date to UTC time as a Julian date.

PGS_TD_UTC_to_SCtime

 6-110 170-EED-003

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_UTCjdtoISOint

This function converts a UTC time in toolkit Julian date format to an integer number that represents

an ISO time (YYMMDDhh). PGS_TD_UTCjdtoPB5

This function converts a UTC time in toolkit Julian date format to PB5 time format.

PGS_TD_UTCjdtoPB5C

This function converts a UTC time in toolkit Julian date format to PB5C time format.

PGS_TD_UTCjdtoTAIjd

This tool converts UTC as a Julian date to TAI as a Julian date.

PGS_TD_UTCjdtoUT1jd

This tool converts UTC time as a Julian date to UT1 time as a Julian date.

PGS_TD_UTCjdtoUTC()

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_UTCtoADEOSII

This function converts UTC in CCSDS ASCII time code A (or B) format to ADEOS s/c clock

format (this is a prototype only).

PGS_TD_UTCtoEOSAM

This function converts UTC in CCSDS ASCII time code A (or B) format to EOS AM spacecraft

(s/c) clock time in CCSDS Day Segmented (CDS) Time Code (with implicit P-field) format.

PGS_TD_UTCtoEOSPMGIIS

This function converts UTC in CCSDS ASCII time code A (or B) format to EOS PM spacecraft

(s/c)GIIS clock time in CCSDS Day Segmented (CDS) Time Code (with implicit P-field) format.

PGS_TD_UTCtoEOSPMGIRD

This function converts UTC in CCSDS ASCII Time Code A or CCSDS ASCII Time Code B

format to EOS PM spacecraft GIRD clock time in CCSDS Unsegmented Time Code (CUC)

(with explicit P-field) format.

PGS_TD_UTCtoFGDC

This function converts UTC Time in CCSDS ASCII Time Code (format A or B) to the equivalent

FGDC ASCII date string and time string. The time string will be in “Universal Time” or “local

time” format depending on the value of the input variable tdf.

PGS_TD_UTCtoGPS

See description in 6.2.3.7 Time and Date Conversion Tools.

 6-111 170-EED-003

PGS_TD_UTCtoTAI

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTAIjd

This tool converts UTC in CCSDS ASCII time format A or B to TAI as a Julian date.

PGS_TD_UTCtoTDBjed

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTDTjed

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTRMM()

This function converts UTC in CCSDS ASCII time code A (or B) format to TRMM spacecraft

(s/c) clock time in CCSDS Unsegmented Time Code (CUC) (with implicit P-field) format.

PGS_TD_UTCtoUT1

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_UTCtoUT1jd

See description in 6.2.3.7 Time and Date Conversion Tools.

PGS_TD_UTCtoUTCjd

See description in 6.2.3.7 Time and Date Conversion Tools. PGS_TD_calday

This function converts Julian day to calendar day (year, month, day).

PGS_TD_gast

This function converts GMST, nutation in longitude and TDB Julian date to Greenwich Apparent

Sidereal Time expressed as the hour angle of the true vernal equinox of date at the Greenwich

meridian (in radians).

PGS_TD_gmst

The function converts UT1 expressed as a Julian day to Greenwich Mean Sidereal Time, i.e. the

hour angle of the vernal equinox at the Greenwich meridian (in radians).

PGS_TD_julday

This function converts calendar day (year, month, dat) to Julian day.

PGS_TD_sortArrayIndices

This function sorts an array of PGSt_double (double precision) numbers in ascending order.

PGS_TD_timeCheck

 6-112 170-EED-003

This function accepts a character array (string) as an input and returns a value indicating if the

string is in a valid CCSDS ASCII format.

 6-113 170-EED-003

This page intentionally left blank.

 A-1 170-EED-003

Appendix A. Assumptions

The following is a list of assumptions made in developing the specification of the routines in the

SDP Toolkit described in section 6.

A.1 Toolkit Tools

A.1.1 HDF File Access Tools

a. The users will be provided the HDF NCSA source codes. They need to install it on their

own (for UNIX and Windows 98 and NT) or by install scripts provided with this release

(UNIX Platforms only). (HDF distribution is available via anonymous ftp from

ftp.ncsa.uiuc.edu, 141.142.20.50 or HTTP download from

http://hdf.ncsa.uiuc.edu/rel4links.html.)

A.1.2 Metadata

PGS_MET_Init(), PGS_MET_Init_NonMCF()

a. A Metadata Configuration File (MCF) or an ASCII file will be built around the 'parameter

= value' form to provide maximum flexibility. Each metadata element will be fully

described in the MCF. This information will be held in memory in a set of linked structures

or similar constructs.

b. The core metadata descriptions will be supplied by ECS.

c. It is assumed that only one header will be initiated at any one time during processing.

PGS_MET_Write()

a. It is assumed that the output of the metadata tools will be to an HDF formatted product. In

each case the product/file may be existing or new. It is assumed that these products/files

will be opened and closed using the appropriate tools (e.g., open/close generic file); i.e.,

the _MET_ tools do not perform these functions.

b. It is assumed that further interaction with the inventory is done using other software that

interacts with the metadata file produced by this tool.

PGS_MET_GetPCAttr()

a. It is assumed that input products are accessed through the PCFT file filetable.temp and

support tools

b. It is assumed that the metadata in input files is available either 1. in the same form as that

written by PGS_MET_Write or 2. in a simple separate ASCII text file. In both cases, the

metadata file is referenced in the field prescribed by the rules in creating the PCFT file.

 A-2 170-EED-003

PGS_MET_GetConfig ()

a. It is assumed that configuration data is held in config file as prescribed by the config file

rules of Toolkit (see Appendix F).

b. It is assumed that configuration data will be accessed using the label field.

A.1.3 Error/Status Reporting Tools

a. It is assumed that only one log file will need to be created by the Toolkit: User Status Log.

b. Toolkit Errors are directed to the User Status Log file.

A.1.4 Bit Manipulation Tools

a. It is assumed that bit–manipulation functionality will be provided inherently by the language

for 'C' and Fortran90, and that users of Fortran77 will use compilers that conform to MIL

STD 1753 in order to obtain these capabilities.

A.1.5 Time and Date Conversion Tools

PGS_TD_UTCtoTAI()

a. The current leap seconds file must be available.

PGS_TD_TAItoUTC()

a. The current leap seconds file must be available.

PGS_TD_UTCtoGPS()

a. The current leap seconds file must be available.

PGS_TD_GPStoUTC()

a. The current leap seconds file must be available.

PGS_TD_SCtime_to_UTC()

a. The Spacecraft time difference file or coefficients for interpolation must be available. The

current leap seconds file must be available.

PGS_TD_UTC_to_SCtime()

a. The Spacecraft time difference file or coefficients for interpolation must be available. The

current leap seconds file must be available. User responsibility to work with difference

from nearest tick (interpolate between ticks if desired). It is assumed that this requirement

is intended for cross checking of data and that the usual transformation is from Spacecraft

Clock time to other standards, such as UTC. If the user wants to interpolate, they will have

to take answer back to UTC and find the difference from the original UTC; then go to next

tick on that side and interpolate between the two. It would be possible to rework

 A-3 170-EED-003

this tool to provide the two nearest ticks on either side of the UTC time and interpolation

weights.

PGS_TD_TimeInterval()

a. It is user responsibility to supply TAI times, although GPS times can be used instead. The

two must not be mixed. All the function does is to subtract double precision numbers.

 A-4 170-EED-003

This page intentionally left blank.

 170-EED-003

Appendix B. SMF Usage

B.1 Description

This appendix complements the description on the usage of error reporting SMF tools in Section

6.2.2. As mentioned before, the toolkit errors are reported in the LogStatus file, which is opened

on a call made to PGS_MET_SetFileId or PGS_TD_SetFileId. The error reporting format is

similar to the SDP Toolkit error report format. However, the method used to report the error is

similar to the method used in HDF. The codes and their explanations are in the file PGS_tk.h in

the include directory.

• All functions should return one of the following return codes as defined in PGS_SMF.h

(FORTRAN users refer to PGS_SMF.f) to indicate the status of the Toolkit operation

unless a return is unwarranted altogether as in a simple mathematical function (e.g., y

= sine(x)):

 PGS_S_SUCCESS Successful operation

PGS_E_ECS A general ECS error occurred

PGS_E_TOOLKIT A general TOOLKIT error occurred

PGS_E_UNIX A UNIX error occurred

PGS_E_HDF An HDF–EOS error occurred

PGS_E_DCE A DCE error occurred

PGS_E_ENV A Toolkit environment error was detected

 Note that additional defined return codes will be added for various COTS/modules in the

future should the need arise.

• Before returning a status code, the unit (i.e., routine, function, procedure, etc.,) should

load the specific status information into the static buffer. This is accomplished by

calling one of the PGS_SMF_Set* tools.

• The calling function should check the return status of the called unit. If an error

condition occurred, the specific error data can be retrieved using the PGS_SMF_Get*

tools.

 The tools that set or retrieve status data to/from the static buffer area are listed under PGS

Error/Status Reporting Tools in the Toolkit User's Guide.

 170-EED-003

B-1

SMF syntax: Syntax for SMF definition is specified in the variant Bachus–Nauer Form (BNF)

notation that follows:

 BNF notes: [optional item]; { range bounded}; + concatenation [] and space symbols indicate

blank or space character

 allowed_ascii_char ::= { [! " # & ' () % * + , - . /]

 Note on levels:

 S stands for success

 A stands for action (action_label definition only)

 M stands for message

 U stands for user information

 N stands for notice

 W stands for warning

 E stands for error

 F stands for fatal

B-2

 [DIGIT]

 [: ; < = > ? @]

 [UPPER_CASE_LETTER]

 [LOWER_CASE_LETTER]

 [[\] ^ _ ` { | } ~] }

spacing ::= {[\n] [\t] []}

comment_str ::= #

instrument ::= 3{[UPPER_CASE_LETTER]}10

label ::= 3{[UPPER_CASE_LETTER]}10

level ::= S | M | U | N | W | E | F

mnemonic ::=1{[DIGIT][_][UPPER_CASE_LETTER]}31

mnemonic_label ::= label + _ + level + _ + mnemonic

action_label ::= label + _ + A + _ + mnemonic

message_str ::= 1{[] [allowed_ascii_char]}240

action_str ::= message_str

status_definition ::= mnemonic_label + spacing +

 message_str

 [+ :: + action_label]

action_definition ::= action_label + spacing + action_str

 C-1 170-EED-003

Appendix C. PCFT Files

The files that are used during runtime must be entered to a Private Customized File Table (PCFT)

file. Once it is complete it should be copied to the directory where the user executes his/her code

with file name filetable.temp. In reality, the PCFT file is a simplified version on the PCF file

which is fully explained in the SDP Toolkit User’s Guide.

This appendix provides a detailed description of how to define PCFT files

C.1 Defining PCFT Files

This section of the appendix discusses the various components of a Private Customized File Table

(PCFT). A sample PCFT format is provided, which is used by the test drivers in the test directory.

It contains the actual entries required to support the test drivers for both MET and TD tools..

C.1.1 PCFT Components

• Subject Fields A PCFT file MUST contain the following subject fields:

Product Input Files - list of ECS standard product data files

 required as input to the PGE

Product Output Files - list of ECS standard product data files

 generated by the PGE

Support Input Files - list of ECS, or Instrument ancillary/support

 data files required as input to the PGE

Support Output Files - list of ECS, or Instrument ancillary/support

 data files generated by the PGE

Intermediate Input - list of non–volatile temporary files required

 as input to the PGE

Intermediate Output - list of non–volatile temporary files generated

 by the PGE

Temporary I/O - list of volatile temporary files generated and

 accessed by the PGE at runtime only

• Record Fields Each dependency record MUST contain, in the proper order, all of

 the fields required for the particular type of Subject.

Identifier - Numeric representation of logical identifier

 (range 10,000–10,999 reserved for Toolkit use

 only)

 Reference - UNIX file/

 Attribute - Full UNIX path to Product Attribute file

 C-2 170-EED-003

C.1.2 Format Rules

• All Record fields are placed in the order shown above

• All comments must begin with the pound sign token '#'

• Comment tokens must be placed in column one

• There can be no blank lines in the file

• All Record entries must begin in column one

• All Record fields except the last one must be delimited with a pipe token '|'

• A Dummy record with identifier = 0 (as in the sample) must be entered before the last line

• The last line of the file must begin with a subject field token '?'

C.1.3 Sample:

The following file was delivered along with the Toolkit Installation. To access this file, go to

directory $PGSHOME/runtime. This file has all the entries required to run test drivers for MET

and TD tools in the directory $PGSHOME/test (Note: For WINDOWS 95/98/NT one must use

“\” instead of “/” for directories)

This file is needed for testing TIME tools. Only the Path for the files
need to be changed.

The following IDs are defined in the TOOLKIT and they SHOULD NOT be changed

10100|LogStatus|MTD_TOOLKIT_DIR/runtime/LogStatus
5000|configfile.dat|MTD_TOOLKIT_DIR/runtime/configfile.dat
10252|GetAttrtemp|MTD_TOOLKIT_DIR/test/test_MET/GetAttrtemp
10254|MCFWrite.temp|MTD_TOOLKIT_DIR/test/test_MET/MCFWrite.temp
10255|AsciiDump|MTD_TOOLKIT_DIR/test/test_MET/AsciiDump
10256|temporary.MCF|MTD_TOOLKIT_DIR/test/test_MET/temporary.MCF
10301|leapsec.dat|MTD_TOOLKIT_DIR/database/common/TD/leapsec.dat
10401|utcpole.dat|MTD_TOOLKIT_DIR/database/common/CSC/utcpole.dat
10402|earthfigure.dat|MTD_TOOLKIT_DIR/database/common/CSC/earthfigure.dat
10601|de200.eos|MTD_TOOLKIT_DIR/database/common/CBP/de200.eos
10801|sc_tags.dat|MTD_TOOLKIT_DIR/database/common/EPH/sc_tags.dat
10302|udunits.dat|MTD_TOOLKIT_DIR/database/common/CUC/udunits.dat
10260|XMLstylesheet.temp|MTD_TOOLKIT_DIR/database/common/MET/XMLstylesheet.temp

Style Sheet for XML INVENTORY Metadata (DO NOT REMOVE THIS ENTRY)

10303|science.xsl| MTD_TOOLKIT_DIR/database/common/MET/science.xsl

Logical IDs assigned for input/output files can be changed BUT they
should be diffrent from the IDs assigned above.

10251|data_dict|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/data_dict

 C-3 170-EED-003

10271|dummy|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFmorahan4
10284|dummy|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/asciitestfile
5721|hdftestfile|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile
5722|hdftestfile_5722|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile_5
722
5724|hdftestfile_5724|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile_5
724
5725|hdftestfile_5725|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile_5

725
5728|LISUSR|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/LISUSR
5729|LIS_FILTERED|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/LIS_FILTERED
5730|hdftestfile_5730|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile_5

730
5731|ascii_input|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MOP_THRESH

5030|MCFfile|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile
5031|MCFfile_1|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile_1
5033|MCFfile_3|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile_3
5036|MCFfile_6|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile_6
5038|MCFfile_8|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile_8

files to check PGS_MET_InitNonMCF function

5800|MOD10_L2_ASCII.met|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MOD10_L2_AS
CII.met
5801|morahan44_ascii|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/morahan44_asci

i
5802|MOD10_L2_HDF1.hdf|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MOD10_L2_HDF
1.hdf
5803|MOD10_L2_HDF2.hdf|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MOD10_L2_HDF

2.hdf
5804|NAT_File|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/NAT_File

HDF5 files for testing HDF5 functionality

5771|hdftestfile.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/hdftestfile.

h5
5779|LIS_FILTERED.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/LIS_FILTERE
D.h5
5774|hdftestfile_5774.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/hdftest

file_5774.h5
5780|hdftestfile_5780.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/hdftest

file_5780.h5
5852|MOD10_L2_HDF1.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/MOD10_L2_H
DF1.h5
5853|MOD10_L2_HDF2.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/MOD10_L2_H
DF2.h5

End this table with next two lines. Last line should be ?

0|DUMMY|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/DUMMY ?

 C-4 170-EED-003

This page intentionally left blank.

 D-1 170-EED-003

Appendix D. Population of Granule Level Metadata

Using the Metadata Tools

D.1 Introduction

The purpose of this appendix is to provide detailed guidance on the use of the Toolkit for writing

and reading granule-level metadata, i.e. the metadata that is associated with each instance of an

input or output product. Section D.2 provides an overview of metadata in ECS and places the

granule-level metadata handled by the toolkit in context with the larger metadata picture. Section

D.3 outlines the procedures that are to be followed in interacting with ECS in the process of

defining product metadata and provides a list of tools and references that will be useful in

developing metadata. Section D.4 describes how metadata is generated and written to output files

using the toolkit. Section D.4 also includes a discussion of how HDF and non-HDF product files

are treated differently. Section D.5 discusses metadata toolkit usage. Section D.6 describes in detail

the structure and syntax of the MCF. Section D.7 discusses metadata in HDF vs. non-HDF input

and Output Files.

D.2 Overview of Metadata

Within ECS, the term "metadata" relates to all information of a descriptive nature that is associated

with a product or dataset. This includes information that identifies a dataset, giving characteristics

such as its origin, content, quality, and condition. Metadata can also provide information needed

to decode, process and interpret the data, and can include items such as the software that was used

to create the data.

These various types of information have been analyzed and developed into the ECS Earth Science

Data Model, reference Document: 311-CD-002-005 ("Science Data Processing Segment Database

Design and Database Schema Specification for the ECS Project, 5/96"); and updates for the ECS

Release B.0.: 420-TP-015-002 (“B.0 Implementation Earth Science Data Model for the ECS

Project) and 420-TP-016-001 (“Backus-Naur Format (BNF) Representation of the B.0 Earth

Science Data Model for the ECS Project”.)

D.2.1 The B.0 Earth Science Data Model

The ECS Data Model consists of a bounded set of attributes intended to cover the essential

characteristics of all earth science data sets. This is sometimes referred to as “core” metadata. Not

all core attributes are applicable to all data sets, but the core includes those attributes which most

users employ to formulate searches and which most users would want to know about a data set

when it was delivered.

All data or products in ECS belong to at least one collection. A collection is an aggregation of related

elements called granules. A granule is the smallest piece of data that is independently managed by the

system, i.e. represented by a record in the inventory. A granule may belong to more than one collection..

 D-2 170-EED-003

An ECS core metadata attribute can be collection-level, granule-level or both. Collection-level

attributes describe a collection as a whole. These attributes include the collection name, the data

center where the collection resides, the technical contact for the collection, etc. Granule-level

attributes describe characteristics whose values vary granule to granule, such as the measurement

time and location. If granule-level attributes are also present at the collection level, the collection-

level attribute reflects the union of the values assigned to each granule. For example, a granule

may have a start and stop time assigned to it. The collection-level start and stop times would be

the earliest and latest times, respectively, of the member granules.

Individual collections may have important metadata associated with them which is not represented

in the core set of metadata attributes. These are called product-specific metadata, and several

options are available for handling them in ECS. Some product-specific metadata will reside in ECS

database tables and will therefore be searchable by users, while other metadata will not. Whether

product-specific metadata is searchable or not, and where and how it is supplied to the system is

discussed in Section D.6.4.

D.2.2 Earth Science Data Types

Before a new collection can be added to ECS, an Earth Science Data Type (ESDT) descriptor file

must be composed and submitted to Science Data Server, a component of the Data Server

Subsystem. The ESDT descriptor file is parsed into components and used in various ECS

subsystems as shown in Figure D-1. The ESDT descriptor file specifies the set of metadata

attributes chosen to describe the collection. Most collection-level attributes are known beforehand

so their values are specified in the descriptor file. Collection-level metadata attributes are

delivered to the Interoperability Subsystem, which uses them to generate advertisements and

entries for the GCMD, as well as the Data Management Subsystem, to support distributed

searching.

For the granule level the descriptor file contains only a list of the attributes and a specification of

how values will be assigned to them. This information is used to generate a Metadata Configuration

File (MCF), which is delivered to the Data Processing Subsystem or the Ingest Subsystem on

demand. The descriptor also carries valid values and ranges for Product-Specific attributes and a

list of services for the collection. See Section D.3 for roles and responsibilities for preparation of

the collection and granule metadata.

 D-3 170-EED-003

Figure D-1. Metadata Flow in ECS

ECS uses collection metadata in the descriptor file to advertise a new collection and to update the

system-wide data dictionary. From the granule attributes in the ESDT descriptor Science Data

Server produces a Metadata Configuration File (MCF) that is filled in during product generation

(for products produced within ECS) or filled in during ingest processing (for external data

delivered to ECS).

Data providers and producers should exercise special care when selecting granule attributes to

represent their data and in writing values for those metadata. An error in a collection attribute or

value can be corrected by manual edits to the ESDT descriptor file but an error in a granule attribute

or value can affect all members of the collection in the inventory.

D.2.3 Mandatory Metadata

In 420-TP-016 (“Backus-Naur Format (BNF) Representation of the B.0 Earth Science Data Model

for the ECS Project) designates the minimum set of metadata attributes that must be supplied for

different categories of product managed by ECS. The categories of metadata support are as

follows:

 Full level of metadata - required for products generated with ECS

 Intermediate level of metadata - required for products generated outside ECS,

 but ingested and used within ECS

 Limited level of metadata - applies to all other data sets.

ESDT Descriptor File

Collection Metadata Values
Granule Metadata Attributes
Valids/Ranges for Product Specific
Attributes
List of Services

1
2
3

4

Data Server

Subsystem

Data Processing Subsystem

Ingest Subsystem Data Management

Subsystem

Interoperability Subsystem

4 , 2, 3, 1

2

2
1 , 3, 4

Advertisements
DIFs for GCMD 1 , 4

 D-4 170-EED-003

The selection of metadata attributes for inclusion in any given product is done at the time the ESDT

descriptor for that product is built. The toolkit can check that granule-level mandatory attributes

have been populated during granule production, as described in Section D.6.2.

D.3 Procedures and Support

An MCF file is necessary for each output produced by a PGE that is to be stored on the Science

Data Server. If multiple granules with the same ESDT are being produced, the same MCF is

reused for each granule.

In prior SDP Toolkit versions, an all-inclusive MCF template was included and the science

software developer had to edit the template to customize it to the particular need. Since the

structure of each MCF is tightly couple to the definition of corresponding ESDT, it was deemed

necessary to substantially change this process for science software development for ECS

Release B.0.

EOSDIS metadata support staff are available to assist with generation of both ESDT descriptor

files and MCFs to be used in science algorithm testing. If the name of an ECS contact for metadata

and ESDTs has not been provided to you, please send an email message requesting such support

to landover_pgstlkit@raytheon.com. Specific questions regarding metadata or ESDTs may also

be sent to this email address.

D.4 The Granule Metadata Population Process

Figure D-2 is a schematic of the process by which data granules and their metadata are generated.

In Step 1 Science Data Server notifies Science Data Processing of the arrival of input data needed

to produce new data granules. When all the inputs are available, Science Data Processing then

requests Science Data Server to return a Metadata Configuration File (MCF) that is to be filled in

with values for the granule metadata attributes (Step (2)). In Step (3) Science Data Processing

generates new data granules (i.e., a science data product) by running a Product Generation

Executive (PGE) together with a PCFT File that defines the input and output file locations and

other control parameters to the PGE. In Step (4) the PGE, using the SDP Toolkit, writes values

for the granule metadata attributes into the MCF. These steps are described in detail in Sections

D.5 and D.6 of this Appendix.

 D-5 170-EED-003

Figure D-2. Science Data Production and Archival Scenario

In Step (5) the populated MCF (inventory metadata) is written into both the data product (if it is in

HDF) and to an ASCII metadata file which is then subsequently inserted into Science Data Server

to populate the inventory database tables.

Information describing the internal structure of an HDF-EOS data product, and its data elements,

is attached to the granule by the PGE using HDF-EOS calling sequences. This "structural"

metadata is not used to populate the inventory, rather it is used to support the services which may

be performed upon the granule. There is no direct association between the metadata groups set up

in the MCF and the structural metadata. Note that there is no need to define structural metadata

within an MCF. The structural metadata is automatically generated by the HDF-EOS APIs and

has the attribute name "structmetadata.N" (N=0...9). This is described in more detail in the HDF-

EOS Users Guide.

D.5 Metadata Toolkit Usage

Section 6 of the main body of the Toolkit Users’ Guide gives the calling sequences for each

metadata toolkit functions, along with examples of code in both ANSI C and FORTRAN. The

purpose of this section is to explain how the tools work together and provide a step-by-step

example.

 D-6 170-EED-003

D.5.1 Overview

Multiple MCFs may be opened and written to from within a single PGE. It is also possible to open

metadata files where the attribute values are written as ASCII records. There are four metadata

tools that are used in conjunction with an MCF or ASCII metadata file that must be called in a

specific sequence for each MCF. First, each MCF or ASCII must be initialized with

PGS_MET_Init or PGS_MET_Init_NonMCF. Each call to PGS_MET_Init or

PGS_MET_Init_NonMCF returns a unique identifier for that MCF or the temporary MCF that is

created from the ASCII metadata file. Values generated within the PGE are assigned to attributes

in the MCF using PGS_MET_SetAttr and/or PGS_MET_SetMultiAttr, which is called once

per attribute. After all values have been assigned, PGS_MET_Write is used to write the metadata

to the product as well as a separate ASCII metadata file (And XML file. See notes at the bottom

of PGS_MET_Write). Before writing metadata to an HDF file PGE must open HDF file for

writing. If the HDF file is of HDF4 type this can be accomplished by calling HDF’s function

SDstart (or sfstart for FORTRAN). If the HDF file is of type HDF5 the PGE must call

PGS_MET_SDstart (this can also be used for HDF files of type HDF4). Finally,

PGS_MET_Remove frees up memory occupied by the MCFs and PGS_MET_SDend closes

HDF file.

Three additional metadata tools are used from within the PGE to read in metadata values.

PGS_MET_GetSetAttr returns the value of any metadata attribute in an MCF that has loaded

into memory. Two other tools may be called independently of any MCF: PGS_MET_GetPCAttr

returns the value of metadata attributes from input files (either embedded metadata in HDF-EOS

files, or independent ASCII metadata files), and PGS_MET_GetConfigData returns the value of

runtime metadata from the config file discussed in Appendix F.

D.5.2 Example 1

This example includes retrieval of metadata from an HDF file and from the config file, and setting

and writing attributes in a new product. These code fragments are in C. Consult Section 6 for the

equivalent calls in FORTRAN. Some concepts introduced in this example are explained in further

detail in Section D.6.

First the function PGS_MET_SetFileId() is called to open and read the contents of the file filetable.temp

that includes entries for the files to be used (See Appendix C for sample)
 /* Set File Ids for input/output files */

ret = PGS_MET_SetFileId();

Next a value for the runtime parameter with the name “Runtime_ID” is read from the userdefined runtime

parameters section of the Config file using PGS_MET_GetConfigData:

/* get values from Config file */

ret =
PGS_MET_GetConfigData(“Runtime_ID”,&rtid);

Next, PGS_MET_GetPCAttr is used to read a value for the attribute EquatorCrossingLongitude from

the inventory metadata block of an HDF input file whose fileID is 10265. Another call to

PGS_MET_GetPCAttr reads in a value MAX_DELTA from a separate ASCII file with fileID 5731.

 D-7 170-EED-003

(See notes under PGS_MET_GetPCAttr in Section 6.2.1 concerning specification of metadata input

files in the PCFT.)

/* get value from metadata block of input file */

ret =
PGS_MET_GetPCAttr(10265,1,INVENTORYMETADATA,"EquatorCrossingLongitude",&val);

/* get value from ASCII metadata file */

ret =
PGS_MET_GetPCAttr(5731,1,INVENTORYMETADATA,"MAX_DELTA",&dval);

Then PGS_MET_Init is used to read into memory an MCF whose fileID is 10250 and check its

syntax. An array mdHandles is returned with pointers for each metadata block in the MCF (see

Sections 6.2.1 and D.6.1 for details).

/* Initialize an MCF into memory */

ret =
PGS_MET_Init(10250,mdHandles);

The PGE now calculates a new value for LocalVersionID writes it to the MCF held in memory.

PGS_MET_SetAttr locates the attribute name and assigns a value to it.

/* assign value to attribute in MCF */

ret =
PGS_MET_SetAttr(mdHandles[1],"LocalVersionID",&val);

A value already assigned to the MCF in memory is needed by the PGE so PGS_MET_GetSetAttr is

used to retrieve it.

/* Read back in value of attribute in memory */

ret =
PGS_MET_GetSetAttr(mdHandles[1],"SensorCharacteristicValue.1”,value)

The PGE has finished setting all the values which are mandatory in the MCF, but there is still some

relevant granule information the data provider wishes to add. The PGE accomplishes this by

writing this information to the product specific metadata

group in the INVENTORYMETADATA section of the MCF. A suffix “1” is added to the

second argument of the call to distinguish multiple uses of these parameters, as discussed in Section

D.6.

/* assign value to Product-Specific Attribute */

ret =
PGS_MET_SetAttr(handles[1],"AdditionalAttributeName.1",”Max_Slope”);
 ret

=
PGS_MET_SetAttr(handles[1],"ParameterValue.1",”57.5”)

The PGE now writes some granule metadata to the archive block of the MCF. This metadata will not

be searchable in the inventory database tables, but it will be readable using toolkit calls.

 D-8 170-EED-003

/* assign value to attribute in MCF in Archive block*/
ret =
PGS_MET_SetAttr(handles[2],"Runtime_ID",&rtid);

Once the algorithm has finished retrieving and setting values in the memory, the final stage is to

write the inventory and archive metadata blocks to the product. PGS_MET_Write writes the

metadata blocks to an HDF file as HDF global attributes (an unfortunate duplication of terms; an

HDF attribute should not be confused with an individual metadata attribute). Note that a separate

call to PGS_MET_Write is required for the inventory and archive metadata blocks.
/* open the HDF file of type HDF4 for writing metadata */

sdid1 = SDstart(“HDF4_File.hdf”, HDF4_ACC_RDWR);

/* Write Metadata Blocks to HDF4 output file */

ret =
PGS_MET_Write(mdHandles[1],"coremetadata",sdid1);
 ret

=
PGS_MET_Write(mdHandles[2],"archivemetadata",sdid1);

/* Write all Metadata Blocks to ASCII output file */

ret =
PGS_MET_Write(mdHandles[0],NULL,101);

/* open the HDF file of type HDF5 for writing metadata */

ret =
PGS_MET_SDstart(“HDF5_File.h5”, HDF5_ACC_RDWR, &sdid2);

/* Write Metadata Blocks to HDF5 output file */

ret =
PGS_MET_Write(mdHandles[1],"coremetadata",sdid2);
 ret

=
PGS_MET_Write(mdHandles[2],"archivemetadata",sdid2);

/* Remove MCF from memory and close HDF files */

ret =
PGS_MET_Remove();

 (void) SDend(sdid1);

(void) PGS_MET_SDend(sdid2);

It is imperative that PGS_MET_Write be called in order to generate an ASCII metadata and XML

metadata (See note at the bottom of PGS_MET_Write API) output file, as this is the means by

which inventory database tables are populated during Insert of the product into the Data Server

Subsystem. This ASCII metadata output file is generated automatically when the

INVENTORYMETADATA section is written to an HDF product. If a non-HDF output product

is being generated that will be archived by ECS, it is necessary to use PGS_MET_Write to generate

 D-9 170-EED-003

this ASCII metadata output file using a variation in the calling sequence. The user must give the

mdHandle[0], reserved to point to the whole MCF, the second arguments as NULL, and the final

argument as the file ID. In either case the metadata output file is given the same name as the data

product output file, but with the suffix “.met” attached. If the file ID in PGS_MET_Write is set to

NULL, a default ASCII dump file is created. More examples of writing metadata to product files

are given in the HDF-EOS Users’ Guide, Volume 1, Section 8.

The format of the metadata written into the product or output as a separate ASCII file is Object Description

Language, ODL, which is described in more detail in the next section.

D.5.3 Example 2

Users can create their own metadata file with attribute values entered as ASCII records. This

example includes initializing such an ASCII metadata file, reading its contents into the memory

after creating a temporary MCF file and then writing it to an HDF file or another ASCII file. A

sample ASCII file and the MCF file generated from it is presented in Section D9. As in Example

1, the code fragments are in C.

First the function PGS_MET_SetFileId is called to set file IDs for input/output files
 /* Set file Ids for input/output files */
 ret = PGS_MET_SetFileId();

Next, PGS_MET_Init_NonMCF is used to read the contents of the ASCII metadata file

morahan44_ascii whose file ID is 5801. The returned mdHandles will point to the temporary MCF

file created with this call
 /* Initialize an ASCII metadata file */

 ret = PGS_MET_Init_NonMCF(5801,

mdHandles);

Except the object “ProductionDateTime” which will be set by the Toolkit, values for other objects are set

in the ASCII file and cannot be changed by a call to PGS_MET_SetAttr.

Once the metadata is read to the memory, the inventory metadata can be written to the product.

It can also be written to another ASCII output.
/* open the HDF file of type HDF4 for writing metadata */

sdid1 = SDstart(“HDF4_File.hdf”, HDF4_ACC_RDWR);

/*Write metadata to HDF output file with id sdid1*/ ret

= PGS_MET_Write(mdHandles[1], “coremetadata”, sdid1);

/* Wrote metadata to ASCII output file with id 5804 */

ret = PGS_MET_Write(mdHandles[0], NULL, 5804);

/* open the HDF file of type HDF5 for writing metadata */

ret =
PGS_MET_SDstart(“HDF5_File.h5”, HDF5_ACC_RDWR, &sdid2);

/* Write Metadata Blocks to HDF5 output file */

ret =
PGS_MET_Write(mdHandles[1],"coremetadata",sdid2);

 D-10 170-EED-003

/* Remove MCF from memory and close HDF files */

ret =
PGS_MET_Remove();

 (void) SDend(sdid1);

(void) PGS_MET_SDend(sdid2);

D.6 Structure of the Metadata Configuration File (MCF)

As described in Section D.3, the MCF is the vehicle for populating granule-level metadata

attributes which are then attached to product granules and used to populate the inventory database

tables. Since the MCF is a byproduct of the ESDT descriptor file, it should not be necessary for

data producers to be cognizant of its structure and syntax. However, this section of the Appendix

is being provided to assist anyone having a need to create or modify an MCF. Another reason for

being familiar with the format of the MCF is that the populated MCF, which is written to the

product file and passed as an ASCII file to Science Data Server, is in Object Description Language

(ODL) and is nearly identical in format to the MCF that serves as input to the PGE.

The structure of the MCF allows users to distinguish between two types of metadata: that which

will be used to populate the inventory in the data server and therefore will be available for

searching on granules, and that which is important to the description of the granule and therefore

needs to be kept with the granule as it is archived, but need not be searchable. These separate parts

(or Mastergroups as they are called in the MCF) are called Inventory and Archive metadata.

D.6.1 MASTERGROUPS

The MCF consists of one or more "master groups.” The only required MASTERGROUP is called

INVENTORYMETADATA which contains the metadata attributes whose values will be inserted

into the inventory database tables, as well as being written to (or exported with) the product. Any

number of additional MASTERGROUPs can be created and values can be written to them, but

these metadata values will not appear in the inventory database and will only written to the product.

Each MASTERGROUP is written as an HDF global attribute using PGS_MET_Write. Inventory

metadata must be written to an HDF global attribute named “coremetadata.” By convention, there

is just one additional MASTERGROUP named ARCHIVEMETADATA and it is written to an

HDF global attribute named “archivemetadata.” It should be noted that the PGS_MET_Write tools

will automatically create multiple HDF global attributes, e.g. coremetadata.1, coremetadata.2,

coremetadata.3, ... to accommodate a MASTERGROUP that exceeds the HDF size limits for

global attributes. When this HDF file is used as input to another PGE, the multiple global attributes

are recognized by the toolkit as a single block. However, other HDF tools may need to be instructed

to access the attributes individually.

The MCF must start with:

GROUP = INVENTORYMETADATA
 GROUPTYPE = MASTERGROUP

 D-11 170-EED-003

 and end that master group with:

END_GROUP = INVENTORYMETADATA

If additional, non-inventory metadata are to be included in the MCF, they must appear between:

GROUP = ARCHIVEDMETADATA
 GROUPTYPE = MASTERGROUP

and:

END_GROUP = ARCHIVEDMETADATA

A parameter called GROUPTYPE is assigned the value MASTERGROUP to signal the toolkit

that all attributes enclosed within the named group are to be treated as a block. This distinguishes

the mastergroups from other groupings of attributes as described below.

D.6.2 MCF Hierarchy

The hierarchical organization of attributes in the MCF follows as closely as possible the conceptual

model of ECS metadata as described in DID-311. The MCF is written in Object Description

Language, or ODL, which enables a hierarchical organization of information using Groups,

Objects, and Parameters. Groups are used to represent Classes in the ECS Data Model and Objects

are used to represent individual metadata attributes. Each Object is described by a number of

Parameters. The following example will be used in describing each of these terms:

GROUP = ECSDataGranule

 OBJECT = SizeMBECSDataGranule

 Data_Location = "DSS"

 NUM_VAL = 1
 TYPE = "DOUBLE"
 Mandatory = "FALSE"
 END_OBJECT = SizeMBECSDataGranule

 OBJECT = DayNightFlag

 Data_Location = "PGE"

 NUM_VAL = 1
 TYPE = "STRING"
 Mandatory = "TRUE"
 END_OBJECT = DayNightFlag

 OBJECT = ProductionDateTime

 Data_Location = "TK"

 NUM_VAL = 1
 TYPE = "DATETIME"
 Mandatory = "TRUE"
 END_OBJECT = ProductionDateTime

 D-12 170-EED-003

 OBJECT = LocalVersionID

 Data_Location = "PGE"

 NUM_VAL = 1
 TYPE = "STRING"
 Mandatory = "TRUE"
 END_OBJECT = LocalVersionID

END_GROUP = ECSDataGranule

In this example the Group ECSDataGranule consists of four objects, SizeMBECSDataGranule,

DayNightFlag, ProductionDateTime, and LocalVersionID. Each object is described using four

Parameters: Data_Location, NUM_VAL, TYPE, and Mandatory. These four parameters are

required for every object in the MCF (except objects which are containers as described below).

In the MCF an object can be described using the parameters: Data_Location, Mandatory,

NUM_VAL, TYPE, CLASS and Value. All parameter names are case insensitive and their

arguments (i.e. what appears to the right of the “=“ sign) must be in quotes, unless the argument is

numeric. A description of each parameter follows.

Data_Location - The metadata tools are used to set metadata values for a product granule coming

from three possible input sources—the Metadata Configuration File itself, the Process Control File

and the PGE. The parameter Data_Location indicates the source of population. Data_Location

must be set for every object.

“MCF” - When the Data_Location is equal to “MCF” the object will have its value set in

the MCF using the “Value = “ parameter. This option is used for attributes whose values

will remain the same for all granules. An example is the mandatory attribute collection

ShortName, which is included in each granule for identification purposes.

“PGE” - When the Data_Location is equal to “PGE” the object will have its value set by

the science software using the PGS_MET_SetAttr and/or PGS_MET_SetMultiAttr

metadata tool. This is the way most objects are set.

“PCF” - The Process Control File contains all file input and output specifications as well

as runtime parameters. When the Data_Location is equal to “PCF” the object will have its

value set automatically during initialization of the MCF when using PGS_MET_Init. The

Toolkit will locate the Object name within the USER DEFINED RUNTIME

PARAMETERS in the Config file and the corresponding value will be assigned to the

Object. The attribute name to be searched on must be written between the first and second

delimiters in the Config file, and its corresponding value between the second and third

delimiters . (For further details on the format of the Config file, see Appendix C of this

document.) For example, if the Config file contained:

 10255|PLATFORMSHORTNAME|"TRMM"

then

 D-13 170-EED-003

ret = PGS_MET_GetConfigData("PLATFORMSHORTNAME",&val)

would return “TRMM” in val. In the Config file quotes are only necessary when the

datatype of the value in the MCF is STRING. If an attribute is to be stored in the Config

file as a runtime parameter, the attribute name must be in UPPER case and must appear

only once in the Config file.

“NONE” - used only in conjunction with container objects as discussed below.

The MCF may also provide place holders for metadata attributes that will be set at a later stage in a

granule’s life. Other possible values for Data_Location include:

• “DAAC” for attributes that will be given values later at the DAACs, (e.g.

OperationalQualityFlag),

• “DP” for attributes that will be given values later by the Data Producer, (e.g. ScienceQualityFlag),

• “DSS” for attributes that will be given values later by the Data Server Subsystem, (e.g.

SizeMBECSGranule), and

• “TK” for attributes automatically given values by the Toolkit, (e.g. ProductionDateTime.

Mandatory - This parameter, which can have the values “TRUE” or “FALSE,” provides a means

for checking the metadata population process. PGS_MET_Write returns an error if no value has

been set for an attribute which has Mandatory = “TRUE”. If no value has been set for a attribute

which has Mandatory = "FALSE" a warning will be returned. In the former case PGS_MET_Write

sets the value to “NOT_SET”. Any attempt to insert a data granule into Data

Server will fail if any of the attributes have Mandatory=“TRUE” but an attribute value of

“NOT_SET.” An attribute with Mandatory = "FALSE" that is not set will be omitted from the

output metadata file.

Attributes designated in the ECS Data Model as being mandatory should have the mandatory flag set

to “TRUE”. Science Data Server may reject any granule that is lacking mandatory metadata.

Type - The type parameter allows the metadata tools to set the correct datatype for attributes

written by the PGE. The permitted values for this parameter are: “DATE”, “TIME”,

"DATETIME", "INTEGER", "DOUBLE", "STRING" and "UNSIGNEDINT. DATETIME is of

the form 1997-04-03T12:36:00”.

Note that since ODL does not support unsigned integers, the value written by the PGS_MET_Write

tool may appear negative, but the Toolkit handles any conversion between signed and unsigned

values based on the TYPE. Users must remember that setting of datatype they require will be using

ODL specific types. This does not interfere with the users own setting datatype of values returned

from the Toolkit call (e.g. a float may be converted to a double).

NUM_VAL - An attribute can be single-valued or a one-dimensional array of values. NUM_VAL

gives the maximum number of elements in an attribute value array. Any number of values up to

this limit may be set. If NUM_VAL is greater than one and the value is set in the PCF or the MCF,

 D-14 170-EED-003

the array is enclosed in parentheses: e.g. (“value1”,”value2”,...) or (12, 34, 45, 88). To set a array

of values using the metadata tools, PGS_MET_SetAttr and/or PGS_MET_SetMultiAttr is called

once with an array as the attribute value. See notes for PGE_MET_SetAttr in Section 6.2.1.4

which describe conventions for partial filling of arrays.

Value - This parameter is only present in the MCF template when the Data_Location = “MCF”.

In the output metadata file, after the metadata population is complete, the parameter Value appears

for all attributes. As noted previously, if a value has not been filled by either the PGE, PCF or

MCF, then either a default value will be set, or the attribute will not be written, and an error or

warning will be returned from PGS_MET_Write..

CLASS - In the ECS Data Model some classes may be repeated multiple times. For example, in

a granule the attribute SensorCharacteristic may be used once to describe a sensor’s operating

temperature and again to give a reference voltage. The CLASS parameter is used to signal the

toolkit than the attribute named by an object in the MCF will be written to multiple times and that

each write should create a separate instance of that object in the metadata output file. This is

discussed in the next section.

D.6.3 Setting Multiple Attribute Values

Some attribute names can be used multiple times. The permitted multiplicity is specified in the

ECS Data Model (see 420-TP-016-001). To allow an attribute or group of attributes to be multiply

defined they must be bounded by an object called a “container.” This object container is then

bounded by an affiliated group name. The CLASS for the container object must be set to "M",

where M stands for multiple. For example:

GROUP = SensorCharacteristic

 OBJECT = SensorCharacteristicContainer
 Data_Location = "NONE"

 Class = "M"
 Mandatory = "TRUE"

 OBJECT = SensorShortName

 Data_Location = "PGE"

 Mandatory = "TRUE"

 Class = "M"
 TYPE = "STRING"

 NUM_VAL = 1
 END_OBJECT = SensorShortName

 OBJECT =

SensorCharacteristicName

 Data_Location = "PGE"

 Mandatory = "TRUE"

 Class = "M"
 TYPE = "STRING"

 NUM_VAL = 1
 END_OBJECT = SensorCharacteristicName

 D-15 170-EED-003

 OBJECT =

SensorCharacteristicValue

 Data_Location = "PGE"

 Mandatory = "TRUE"

 Class = "M"
 TYPE = "STRING"

 NUM_VAL = 1
 END_OBJECT = SensorCharacteristicValue

 END_OBJECT = SensorCharacteristicContainer

END_GROUP = SensorCharacteristic

To use an attribute multiple times the PGS_MET_SetAttr tool must be called with a CLASS suffix to the

attribute name. For example, using CLASS = 1:

PGS_MET_SetAttr(mdHandles[1],"SensorShortName.1”,”SHIRS”)
PGS_MET_SetAttr(mdHandles[1],"SensorCharacteristicName.1”,”CentralWavelength”

)
PGS_MET_SetAttr(mdHandles[1],"SensorCharacteristicValue.1”,”450.1”)

The actual suffix used is not important but integer increments are advised. CLASS is only present

for objects and groups which have multiple instances. Collection-level metadata attributes are used

to define a data type for this and other “self-defining” attributes (see Section 6.4).

A new instance of the container object is created by the tools on output each time attribute is used. For

example, if a second sensor characteristic were set using:

PGS_MET_SetAttr(mdHandles[1],"SensorShortName.2”,”AVHRR”)
PGS_MET_SetAttr(mdHandles[1],"SensorCharacteristicName.2”,”Model_No”)
PGS_MET_SetAttr(mdHandles[1],"SensorCharacteristicValue.1”,”AH773Z”)

Note that SensorCharacterisiticValue is numeric in the first case and alphanumeric in the second

case. Although the same attribute in the MCF is being used multiple times, its type is set only once.

Therefore, in the MCF its type must be “string” and the values being assigned must be set in quotes

inside PGS_MET_SetAttr. The true datatype for sensor characteristic (or any of the self-defining

attributes) is set in the collection-level metadata. The value of the attribute

SensorCharacterisitcDataType would anyone someone to convert the string returned for

SensorCharacterisitcValue to it’s correct data type. The metadata output file would look like this:

GROUP = SensorCharacteristic

 OBJECT = SensorCharacteristicContainer
 CLASS = "1"

 OBJECT = SensorShortName
 CLASS = "1"
 NUM_VAL = 1
 VALUE = “AVHRR”
 END_OBJECT = SensorShortName

 D-16 170-EED-003

 OBJECT = SensorCharacteristicName
 CLASS = "1"

 NUM_VAL = 1
 VALUE = “Central Wavelength”
 END_OBJECT = SensorCharacteristicName

 OBJECT = SensorCharacteristicValue

 CLASS = "1"

 NUM_VAL = 1
 VALUE = “450.1”
 END_OBJECT = SensorCharacteristicValue

 END_OBJECT = SensorCharacteristicContainer

 OBJECT = SensorCharacteristicContainer
 CLASS = "2"

 OBJECT = SensorShortName
 CLASS = "2"
 NUM_VAL = 1
 VALUE = “AVHRR”
 END_OBJECT = SensorShortName

 OBJECT = SensorCharacteristicName

 CLASS = "2"

 NUM_VAL = 1
 VALUE = “Model_No”
 END_OBJECT = SensorCharacteristicName

 OBJECT = SensorCharacteristicValue

 CLASS = "2"

 NUM_VAL = 1
 VALUE = “AH773Z”
 END_OBJECT = SensorCharacteristicValue

 END_OBJECT = SensorCharacteristicContainer

END_GROUP = SensorCharacteristic

This example shows the ODL structure of the metadata written to the product, and what parameters

are kept to describe the objects. Not all parameters held within the MCF are written to the metadata

output file. The parameters which are written for each object are: NUM_VAL, CLASS and the

VALUE associated with the object.

Data_Location must be consistent for all objects within a container. In other words, you cannot

have the Data_Location for ExclusionGRingFlag be “MCF” and then have GRingPointLatitude

with Data_Location = “PGE” within the same GPolygonContainer.

 D-17 170-EED-003

D.6.4 Product-Specific Attributes

The ECS Data Model contains a number of the attributes that are termed self describing. These are

used to extend the ECS Data Model by allowing the definition of new attributes. Since these are

usually defined solely for a particular product, they are sometimes referred to as ProductSpecific

Attributes or PSAs. The classes holding attributes in this category are: AdditionalAttributes and

SensorCharacteristics. The classes VerticalSpatialDomain and RegularPeriodic can also be

considered self-describing.

Self-describing attributes are defined by classes which include a name, datatype, description and

value for the new attribute. The name, datatype and description are defined at the collection level,

while the value is given at the granule level (i.e. written to the granule’s metadata using the toolkit)

along with the attribute name so that the association with the collection-level attributes can be

made. Self-describing groups can be set multiple times by a PGE and the product-specific attribute

value can be a single-dimensional array by setting NUM_VAL greater than 1. The

AdditionalAttributes class has the following construction in an MCF (see example of previous

section as well):

 GROUP = AdditionalAttributes
 OBJECT = AdditionalAttributesContainer

 Data_Location = "NONE"

 Class = "M"
 Mandatory = "TRUE"

 /* AdditionalAttributes */

 OBJECT =

AdditionalAttributeName

 Data_Location = "PGE"

 Mandatory = "TRUE"

 TYPE = "STRING" Class =

"M"
 NUM_VAL = 5
 END_OBJECT = AdditionalAttributeName

 /* InformationContent */
 GROUP = InformationContent

 Class = "M"

 OBJECT = ParameterValue

 Data_Location = "PGE"

 Mandatory = "TRUE"

 TYPE = "STRING"

 NUM_VAL = 5
 END_OBJECT = ParameterValue

 END_GROUP = InformationContent

 D-18 170-EED-003

 END_OBJECT = AdditionalAttributesContainer
 END_GROUP = AdditionalAttributes

In the example above, NUM_VAL is the largest number of possible values (i.e. the largest possible

array size) of any attributes that will be set using “AdditionalAttributes.” For example, if two

product-specific attributes will be set, one single-valued and the second an array of dimension 5,

then NUM_VAL must be set to 5.

Note that although PSAs are written as name/value pairs, they are read in the same fashion as core

attributes. That is, PGS_MET_SetAttr is called twice to write out a PSA, once to populate

AdditionalAttriubteName, then once to set ParameterValue. However, PGS_MET_GetSetAttr or

PGS_MET_GetPCAttr need only be called once, with the value given to

AdditionalAttributeName in order to obtain the value given to ParameterValue.

D.7 Metadata in HDF vs. non-HDF input and Output Files

Once populated, the MCF carries the granule-level metadata information. This information is

delivered to Science Data Server to populate the inventory database tables. In order for the data

product to be most useful, this information needs to be either embedded within the product or

closely tied to it. If the output product is in HDF, the toolkit automatically writes the granulelevel

metadata to the product as one or more HDF Global Attributes. HDF attributes have a 64K size

limit, so the toolkit automatically generates additional attributes to hold all metadata being written.

If the output product is not in HDF a separate ASCII metadata file must be generated. This is

accomplished using PGS_MET_Write is the manner described in main body of the Toolkit

documentation.

D.8 MCF Syntax

The MCF is closely based on Object Description Language (ODL) libraries. Most information

pertinent to PGE developers about ODL and its functionality is contained within this document.

Additional information is available at the WWW address

http://pds.jpl.nasa.gov/stdref/chap12.htm. ODL is based on a parameter = value syntax. Additional

information on this notation can be found at WWW address

http://bolero.gsfc.nasa.gov/ccsds/ccsds_document_access.html.

• ODL handles parameters and values in Upper case. The metadata toolkit converts all

character strings in the MCF to upper case upon initialization into memory.

• ODL only recognizes a character string value when it is in quotation marks.

• ODL accepts only UTC Time/Date which must be in CCSDS ASCII format (A or B)

• ODL will only accept INTEGER, UNSIGNEDINT, DOUBLE, DATETIME or STRING as

a value for type

 D-19 170-EED-003

D.9 ASCII Metadata file and Resultant MCF

Following is a sample ASCII metadata file that can be read by PGS_MET_Init_NonMCF. This

function in turn creates an MCF file and initializes it as a normal MCF file. The sample MCF

generated from the sample ASCII file is presented after the ASCII file. Note that in order to be

able to write the metadata to product file using PGS_MET_Write, we should have the object

ProductionDateTime as shown in the sample. The value entered for this object will be set by the

Toolkit at the time of writing the metadata into a product file. Without this object

PGS_MET_Write will return an error.

ASCII Metadata File
GROUP=LEVEL0METADATA
 OBJECT = ProductionDateTime

 VALUE = 1998-04-06T19:24:37.000
 NUM_VAL = 1
 TYPE = "DATETIME"
 END_OBJECT = ProductionDateTime
 OBJECT=VOYAGER_02
 Value= "g3aexpm1"

Num_Val=1
 Type= "STRING"
 END_OBJECT=VOYAGER_02
 OBJECT=Data_Start_Time
 Value= 1997-01-29T15:31:02.1234
 Num_Val=1
 Type= DATETIME
 END_OBJECT=Data_Start_Time
 OBJECT=Data_End_Time
 Value= 1997-07-28T12:00:00.123456
 Num_Val=1
 Type= DATETIME
 END_OBJECT=Data_End_Time
 OBJECT=SizeMBECSDataGranule
 Value=20
 Num_Val=1
 Type="INTEGER"
 END_OBJECT=SizeMBECSDataGranule
 OBJECT=Overflow_flag
 Value= 31459

Num_Val=1
 Type="INTEGER"
 END_OBJECT=Overflow_flag

OBJECT=Total_NE
 Value= 3.1459e2

Num_Val=1
 Type="DOUBLE"
 END_OBJECT=Total_NE

OBJECT=Total_SS
 Value= 222.33E-2

Num_Val=1
 Type="DOUBLE"

 D-20 170-EED-003

 END_OBJECT=Total_SS

OBJECT=Total_SR
 Value= 1
 Num_Val=1
 Type="INTEGER"

END_OBJECT=Total_SR

OBJECT=Total_MR
 Value= 0

Num_Val=1
 Type="INTEGER"

END_OBJECT=Total_MR

OBJECT=Total_MS
 Value= 0

Num_Val=1
 Type="INTEGER"

END_OBJECT=Total_MS
 OBJECT=Special_Calibration
 Value= 0

Num_Val=1
 Type="INTEGER"
 END_OBJECT=Special_Calibration
 OBJECT=Research_mode

Value= 0

Num_Val=1
 Type="INTEGER"
 END_OBJECT=Research_mode
 OBJECT=Begin_Orbit_Number
 Value= "SHOT_1_RANGE_TO_SUEFACE"
 Num_Val=1
 Type="STRING"
 END_OBJECT=Begin_Orbit_Number

OBJECT=End_Orbit_Number
 Value= "(null) 4206770 %3B"
 Num_Val=1
 Type="STRING"
 END_OBJECT=End_Orbit_Number

OBJECT=USA_NASA
 Value= "g3aexpm2"

Num_Val=1
 Type= "STRING"

END_OBJECT=USA_NASA

OBJECT=SHOT_1
 Value= "g3aexpm3"

Num_Val=1
 Type= "STRING"
 END_OBJECT=SHOT_1
 OBJECT=SHOT_2
 Value= "g3aexpm3"

Num_Val=1
 Type= "STRING"

END_OBJECT=SHOT_2
 END_GROUP=LEVEL0METADATA
END

 D-21 170-EED-003

Temporary MCF File Created from ASCII Metadata File
GROUP = INVENTORYMETADATA
 GROUPTYPE = MASTERGROUP

 OBJECT = PRODUCTIONDATETIME
 VALUE = 1998-04-06T19:24:37.000Z
 NUM_VAL = 1
 TYPE = "DATETIME"

DATA_LOCATION = TK
 MANDATORY = FALSE
 END_OBJECT = PRODUCTIONDATETIME

 OBJECT = VOYAGER_02
 VALUE = "g3aexpm1"

NUM_VAL = 1
 TYPE = "STRING"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = VOYAGER_02

 OBJECT = DATA_START_TIME
 VALUE = 1997-01-29T15:31:02.1234Z
 NUM_VAL = 1
 TYPE = DATETIME

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = DATA_START_TIME

 OBJECT = DATA_END_TIME
 VALUE = 1997-07-28T12:00:00.123456Z
 NUM_VAL = 1
 TYPE = DATETIME

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = DATA_END_TIME

 OBJECT = SIZEMBECSDATAGRANULE
 VALUE = 20
 NUM_VAL = 1
 TYPE = "INTEGER"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = SIZEMBECSDATAGRANULE

 OBJECT = OVERFLOW_FLAG
 VALUE = 31459

NUM_VAL = 1
 TYPE = "INTEGER"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = OVERFLOW_FLAG

 D-22 170-EED-003

 OBJECT = TOTAL_NE
 VALUE = 3.1459e+02

NUM_VAL = 1
 TYPE = "DOUBLE"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = TOTAL_NE

 OBJECT = TOTAL_SS
 VALUE = 2.22e+00
 NUM_VAL = 1
 TYPE = "DOUBLE"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = TOTAL_SS
 OBJECT = TOTAL_SR

VALUE = 1
 NUM_VAL = 1
 TYPE = "INTEGER"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = TOTAL_SR

 OBJECT = TOTAL_MR

VALUE = 0
 NUM_VAL = 1
 TYPE = "INTEGER"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = TOTAL_MR

 OBJECT = TOTAL_MS

VALUE = 0
 NUM_VAL = 1
 TYPE = "INTEGER"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = TOTAL_MS

 OBJECT = SPECIAL_CALIBRATION
 VALUE = 0
 NUM_VAL = 1
 TYPE = "INTEGER"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = SPECIAL_CALIBRATION

 OBJECT = RESEARCH_MODE
 VALUE = 0
 NUM_VAL = 1

 D-23 170-EED-003

 TYPE = "INTEGER"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = RESEARCH_MODE

 OBJECT = BEGIN_ORBIT_NUMBER
 VALUE = "SHOT_1_RANGE_TO_SUEFACE"
 NUM_VAL = 1
 TYPE = "STRING"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = BEGIN_ORBIT_NUMBER

 OBJECT = END_ORBIT_NUMBER
 VALUE = "(null) 4206770 %3B"
 NUM_VAL = 1
 TYPE = "STRING"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = END_ORBIT_NUMBER

 OBJECT = USA_NASA
 VALUE = "g3aexpm2"

NUM_VAL = 1
 TYPE = "STRING"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = USA_NASA

 OBJECT = SHOT_1
 VALUE = "g3aexpm3"

NUM_VAL = 1
 TYPE = "STRING"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = SHOT_1

 OBJECT = SHOT_2
 VALUE = "g3aexpm3"

NUM_VAL = 1
 TYPE = "STRING"

DATA_LOCATION = MCF
 MANDATORY = FALSE
 END_OBJECT = SHOT_2

END_GROUP = INVENTORYMETADATA

END

 E-1 170-EED-003

Appendix E. Test Drivers

The Toolkit_MTD is delivered with a series of test drivers for metadata and time/date tools.

These test programs are provided to aid users in the development of software using the

Toolkit_MTD. The user may run the same test cases as included in the directories

$PGSHOME/test/test_MET or $PGSHOME/test/test_TIME, to verify that the Toolkit_MTD is

functioning correctly. The directories contain source codes for a driver in C and Fortran for all

tools, metadata and time/date, makefiles for the tool groups, README files explaining how to use

the drivers, filetable.temp showing the files needed to run the drivers, sample input files and

sample output files. The input/output files required by these drivers are tabulated in the

filetable.temp, that needs to be edited to correct the path for the required files (see Appendix C.)

To compile and run the test drivers, follow the steps mentioned in the README files in the test

subdirectories test_MET and/or test_TIME. The output files from the drivers can be checked

against the sample outputs using UNIX “diff” command to assure that the tools are installed and

working properly.

In a UNIX environment one can also use the script runTest (or runTest.cpp for C++ installed

Toolkit MTD) in the directory $PGSHOME/test/Common. The script runs all test programs in

test_MET and test_TIME directories, producing *.diff files between outputs and sample outputs.

If the script is used for running test programs, there is no need for editing filetable.temp prior to

executing runTest (or runTest.cpp), where the script will produce correct filetable.temp for the test

programs. Please see the file README.script in the directory $PGSHOME/test/Common for

details.

The following is the listing for a C program that demonstrates the use of functions for MET tools.

The PCFT file used for this example is followed by this listing.

/**
BEGIN_FILE_PROLOG:

FILENAME: PGS_MET_example.c

DESCRIPTION:
 This file contains the test driver for the following functions :

PGS_MET_Init()
PGS_MET_Init_NonMCF()
PGS_MET_SetFileId()
PGS_MET_GetFileId()
PGS_MET_GetConfigData()
PGS_MET_GetPCAttr()
PGS_MET_SetAttr()
PGS_MET_SetMultiAttr()
PGS_MET_GetSetAttr()
PGS_MET_Write()
PGS_MET_Remove()

 it also calls the following

functions:

 E-2 170-EED-003

 SDstart()
 SDend()
INPUTS:
 Input files used in this example are in the directory
 /TOOLKIT_MTD/test/test_MET/MET_TestData
 The PCFT file used for this example is in the same directory
 (PCFT_TOOLKIT_MTD_MET_example) and followed this code listing.

AUTHORS :
 Abe Taaheri / Space Applications Corporation

HISTORY :
 1-Jun-1998 AT Original version

END_FILE_PROLOG:
**/
/* include files */
#include <PGS_MET.h>
#include <PGS_tk.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <hdf.h>
#include <mfhdf.h>
#include <PGS_SMF.h>

#define INVENTORYMETADATA 1
#define ARCHIVEDMETADATA 2
#define ODL_IN_MEMORY 0

extern PGSt_SMF_status
PGS_PC_GetReference(PGSt_MET_Logical prodID, PGSt_integer *version,char
 *referenceID);
 int

main()
{

/***
 Declarations.
***/

 PGSt_MET_all_handles mdHandles;
 PGSt_MET_all_handles handles;
 char fileName1[PGSd_MET_FILE_PATH_MAX]=""; char

fileName2[PGSd_MET_FILE_PATH_MAX]=""; char

my_HDF_file[PGSd_MET_FILE_PATH_MAX]=""; char

my_HDF5_file[PGSd_MET_FILE_PATH_MAX]=""; char

msg[PGS_SMF_MAX_MSG_SIZE]; char

mnemonic[PGS_SMF_MAX_MNEMONIC_SIZE]; char

fileMessage[PGS_SMF_MAX_MSG_SIZE];
 char
myFile[PGSd_MET_FILE_PATH_MAX]="/net/cherokee/DEM/stx_MET_TIME/test/SCF_METADATA_TOOLS
/test/test_MET/MET_TestData/MODIS_FILE.hdf";
 int32 sdid1;
 PGSt_integer sdid5;
 PGSt_SMF_status ret = PGS_S_SUCCESS;

 E-3 170-EED-003

 char *informationname;

PGSt_integer ival =3;
 PGSt_double dval=203.2;

 PGSt_integer fileId, fileId2;

 PGSt_integer i;
 PGSt_integer version;
 PGSt_SMF_status returnStatus;
 char *mysaval[5];

 /**/
 /* Associate logical IDs with physical filenames. */
 /**/

ret=PGS_MET_SetFileId();
 printf("ret after PGS_MET_SetFileId()is %d in Main\n",ret);

 if(ret != PGS_S_SUCCESS)
 {
 printf(" Failed in assigning logical IDs\n");
 }

 /*recover file name for fileId=PGSd_MET_MCF_FILE */
 version = 1; fileId =

PGSd_MET_MCF_FILE;
 returnStatus = PGS_PC_GetReference(fileId,
 &version,
 fileName1);

 if (returnStatus != PGS_S_SUCCESS)
 {

 PGS_SMF_GetMsg(&returnStatus, mnemonic, msg);

 if (returnStatus != PGS_S_SUCCESS)
 {
 strcpy(fileMessage, msg);

PGS_SMF_SetDynamicMsg(returnStatus,
 fileMessage,

 "metatest");
 }
 }

else {
 printf("The input file for ID %d is %s\n",fileId,fileName1);
 }

 /* test PGS_MET_GetFileId for recovering file ID */

 fileId2 = PGS_MET_GetFileId(myFile);
 if(fileId != 0)
 {
 version = 1;
 returnStatus = PGS_PC_GetReference(fileId2,

 E-4 170-EED-003

 &version,

 fileName2);
 if (returnStatus != PGS_S_SUCCESS)
 {
 PGS_SMF_GetMsg(&returnStatus, mnemonic, msg);

if (returnStatus != PGS_S_SUCCESS)
 {
 strcpy(fileMessage, msg);

 PGS_SMF_SetDynamicMsg(returnStatus,
 fileMessage,

 "metatest");
 }
 }
 else
 {
 printf("The input file for ID %d is %s\n",fileId2,fileName2);
 }
 }
 informationname=(char *) malloc(330);

 /* Test PGS_MET_GetPCAttr */

 for (i=0;i<5;i++)
 {
 mysaval[i]=(char *) malloc(330);

strcpy(mysaval[i], "");
 }
 fileId = 5039;
 ret=PGS_MET_GetPCAttr(fileId,1,"coremetadata.0",
 "ReprocessingPlanned",mysaval);

 if(ret !=PGS_S_SUCCESS)
 {
 printf("ReprocessingPlanned after PGS_MET_GetPCAttr is failed\n");
 }

else
 {
 printf("ReprocessingPlanned after PGS_MET_GetPCAttr is successful:
%s\n",mysaval);
 for(i = 0; i<5; i++) printf("%s ", mysaval[i]);
 }
 printf("\n");

 ret=PGS_MET_GetPCAttr(fileId,1,"coremetadata.0",
 "REPROCESSINGACTUAL",&informationname);

 if(ret !=PGS_S_SUCCESS)
 {
 printf("REPROCESSINGACTUAL after PGS_MET_GetPCAttr is failed\n");
 }

else
 {
 printf("REPROCESSINGACTUAL after PGS_MET_GetPCAttr is successful:
%s\n",informationname);
 }

 E-5 170-EED-003

 ret=PGS_MET_GetPCAttr(fileId,1,"coremetadata.0",
 "QAPercentMissingData.1",&ival);

 if(ret !=PGS_S_SUCCESS)
 {
 printf("QAPERCENTMISSINGDATA after PGS_MET_GetPCAttr is failed\n");
 }

else {
 printf("QAPERCENTMISSINGDATA after PGS_MET_GetPCAttr is successful: %d\n",ival);
 }
 ret=PGS_MET_GetPCAttr(fileId,1,"coremetadata.0",
 "WESTBOUNDINGCOORDINATE",&dval);

 if(ret !=PGS_S_SUCCESS)
 {
 printf("WESTBOUNDINGCOORDINATE after PGS_MET_GetPCAttr is failed\n");
 }

else
 { printf("WESTBOUNDINGCOORDINATE after PGS_MET_GetPCAttr is successful:
%lf\n",dval);
 }
 ret=PGS_MET_GetPCAttr(fileId,1,"coremetadata.0",
 "EastBoundingCoordinate",&dval);

 if(ret !=PGS_S_SUCCESS)
 {
 printf("EastBoundingCoordinate after PGS_MET_GetPCAttr is failed\n");
 }

else
 { printf("EastBoundingCoordinate after PGS_MET_GetPCAttr is successful:
%lf\n",dval);
 }
 ret=PGS_MET_GetPCAttr(fileId,1,"coremetadata.0",
 "SouthBoundingCoordinate",&dval);

 if(ret !=PGS_S_SUCCESS)
 {
 printf("SouthBoundingCoordinate after PGS_MET_GetPCAttr is failed\n");
 } else { printf("SouthBoundingCoordinate after PGS_MET_GetPCAttr is

successful:
%lf\n",dval);
 }
 ret=PGS_MET_GetPCAttr(fileId,1,"coremetadata.0",
 "NorthBoundingCoordinate",&dval);

 if(ret !=PGS_S_SUCCESS)
 {
 printf("NorthBoundingCoordinate after PGS_MET_GetPCAttr is failed\n");
 } else { printf("NorthBoundingCoordinate after PGS_MET_GetPCAttr is

successful:
%lf\n",dval);
 }
 ret=PGS_MET_GetPCAttr(fileId,1,"coremetadata.0",
 "RangeBeginningDateTime",&informationname);

 if(ret !=PGS_S_SUCCESS)

 E-6 170-EED-003

 {
 printf("RangeBeginningDateTime after PGS_MET_GetPCAttr is failed\n");
 }

else
 { printf("RangeBeginningDateTime after PGS_MET_GetPCAttr is successful:
%s\n",informationname);
 }

 /* test PGS_MET_GetPCAttr with archivemetadata */

 ret = PGS_MET_GetPCAttr(fileId2, 1, "archivemetadata", "WestBoundingCoordinate",
&dval);
 if(ret == PGS_S_SUCCESS)
 {
 printf("dval for WestBoundingCoordinate in ARCHIVEDMETADATA is:%lf ", dval);

 printf("\n");
 }

else {
 printf("EastBoundingCoordinate in ARCHIVEDMETADATA after PGS_MET_GetPCAttr is

failed\n");
 }

 ret = PGS_MET_GetPCAttr(fileId2, 1, "archivemetadata", "EastBoundingCoordinate",
&dval);
 if(ret == PGS_S_SUCCESS)
 {
 printf("dval for EastBoundingCoordinate in ARCHIVEDMETADATA is:%lf ", dval);

 printf("\n");
 }

else {
 printf("EastBoundingCoordinate in ARCHIVEDMETADATA after PGS_MET_GetPCAttr is

failed\n");
 }

ret =

PGS_ME

T_GetP

CAttr(

fileId

2, 1,

"archi

vemeta

data",

"South

Boundi

ngCoor

dinate

",
&dval);
 if(ret == PGS_S_SUCCESS)
 {
 printf("dval for SouthBoundingCoordinate in ARCHIVEDMETADATA is:%lf ", dval);

 printf("\n");
 }

else {
 printf("SouthBoundingCoordinate in ARCHIVEDMETADATA after PGS_MET_GetPCAttr is

failed\n");

 E-7 170-EED-003

 }
 ret = PGS_MET_GetPCAttr(fileId2, 1, "archivemetadata", "NorthBoundingCoordinate",
&dval);
 if(ret == PGS_S_SUCCESS)
 {
 printf("dval for NorthBoundingCoordinate in ARCHIVEDMETADATA is:%lf ", dval);

 printf("\n");
 }

else {
 printf("NorthBoundingCoordinate in ARCHIVEDMETADATA after PGS_MET_GetPCAttr is

failed\n");
 }

 /* Initialize MCF file */

 fileId = 10250;
 ret=PGS_MET_Init(fileId,handles);

 if (ret !=PGS_S_SUCCESS)
 {
 printf("initialization failed\n");

 return 0;
 }

else {
 printf("ret after PGS_MET_Init is %d\n",ret);
 }

 /* test PGS_MET_SetAttr */

 ival=667788;
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "QAPERCENTINTERPOLATEDDATA.1",&ival);
 printf("ret after SetAttr for QAPERCENTINTERPOLATEDDATA.1 is %d\n",ret);

ival=12345;
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "QAPercentMissingData.1",&ival);
 printf("ret after SetAttr for QAPercentMissingData.1 is %d\n",ret);

ival=123;
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "QAPercentOutofBoundsData.1",&ival);
 printf("ret after SetAttr for QAPercentOutofBoundsData.1 is %d\n",ret);

ival=23456;
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "QAPercentOutofBoundsData.2",&ival);
 printf("ret after SetAttr for QAPercentOutofBoundsData.1 is %d\n",ret);

ival=56789;
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "QAPercentMissingData.2",&ival);
 printf("ret after SetAttr for QAPercentMissingData.1 is %d\n",ret);

 E-8 170-EED-003

 strcpy(informationname,"Exercise1");

ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],

 "AutomaticQualityFlagExplanation.1",&informationname);
 printf("ret after SetAttr for AutomaticQualityFlagExplanation.1 is %d\n",ret);

 strcpy(informationname,"1997/12/23");

ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "RangeBeginningDateTime",&informationname);
 printf("ret after SetAttr for RangeBeginningDateTime is %d\n",ret);

 strcpy(informationname,"1997.07/30");

ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "RangeBeginningDate",&informationname);
 printf("ret after SetAttr for RangeBeginningDate is %d\n",ret);

strcpy(informationname,"ReprocessingplannINVENTReprocessingplannINVENTReprocessingplan
nINVENT");
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "ReprocessingPlanned",&informationname);
 printf("ret after SetAttr for ReprocessingPlanned is %d\n",ret);

 strcpy(informationname,"\"ReprocessingplannARCHIVE");

ret=PGS_MET_SetAttr(handles[ARCHIVEDMETADATA],
 "ReprocessingPlanned",&informationname);
 printf("ret after SetAttr for ReprocessingPlanned is %d\n",ret);

 strcpy(informationname,"Reprocessin");

ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "ReprocessingActual",&informationname);
 printf("ret after SetAttr for ReprocessingActual is %d\n",ret);

 strcpy(informationname,"ID1111");
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "LocalGranuleID",&informationname);
 printf("ret after SetAttr for LocalGranuleID is %d\n",ret);

 strcpy(informationname,"version1234");

ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "LocalVersionID",&informationname);
 printf("ret after SetAttr for LocalVersionID is %d\n",ret);

 strcpy(informationname,"Flag1");
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "DayNightFlag",&informationname);
 printf("ret after SetAttr for DayNightFlag is %d\n",ret);

 strcpy(informationname,"Flag1");
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "DayNightFlag",&informationname);
 printf("ret after SetAttr for DayNightFlag is %d\n",ret);

 strcpy(informationname,"information1");
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "ParameterName.1",&informationname);
 printf("ret after SetAttr for ParameterName is %d\n",ret);

 E-9 170-EED-003

 strcpy(informationname,"information2");
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "ParameterName.2",&informationname);
 printf("ret after SetAttr for ParameterName.2 is %d\n",ret);

 strcpy(informationname,"information3");
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "ParameterName.3",&informationname);
 printf("ret after SetAttr for ParameterName is %d\n",ret);

 strcpy(informationname,"information4");

ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "ParameterName.4",&informationname);
 printf("ret after SetAttr for ParameterName is %d\n",ret);

dval=111.11;
 ret=PGS_MET_SetAttr(handles[ARCHIVEDMETADATA],
 "WestBoundingCoordinate",&dval);
 printf("ret WestBoundingCoordinate is %d %f\n",ret,dval);

dval=222.22;
 ret=PGS_MET_SetAttr(handles[ARCHIVEDMETADATA],
 "northBoundingCoordinate",&dval);
 printf("ret northBoundingCoordinate is %d %f\n",ret,dval);

dval=333.33;
 ret=PGS_MET_SetAttr(handles[ARCHIVEDMETADATA],
 "EastBoundingCoordinate",&dval);
 printf("ret EastBoundingCoordinate is %d %f\n",ret,dval);

dval=444.44;
 ret=PGS_MET_SetAttr(handles[ARCHIVEDMETADATA],
 "SouthBoundingCoordinate",&dval);
 printf("ret SouthBoundingCoordinate is %d %f\n",ret,dval);

dval=11.11;
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "WestBoundingCoordinate",&dval);
 printf("ret WestBoundingCoordinate is %d %f\n",ret,dval);

dval=22.22;
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "northBoundingCoordinate",&dval);
 printf("ret northBoundingCoordinate is %d %f\n",ret,dval);

dval=33.33;
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "EastBoundingCoordinate",&dval);
 printf("ret EastBoundingCoordinate is %d %f\n",ret,dval);

dval=44.44;
 ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "SouthBoundingCoordinate",&dval);
 printf("ret SouthBoundingCoordinate is %d %f\n",ret,dval);

 E-10 170-EED-003

 /* Get the value of set attribute */

dval=11.11;
 ret=PGS_MET_GetSetAttr(handles[INVENTORYMETADATA],
 "SouthBoundingCoordinate",&dval);

 printf("after PGS_MET_GetSetAttr: ret SouthBoundingCoordinate is %d
%f\n",ret,dval);

 /* Get data from config file */

 ret = PGS_MET_GetConfigData("TEST_PARM_FLOAT", &dval);
 printf("after PGS_MET_GetConfigData : ret TEST_PARM_INT is %d %f\n",ret, dval);
 /* write metadata to HDF4 and ASCII files */
 version =1;

fileId = 5049;

 ret = PGS_PC_GetReference(fileId, &version, my_HDF_file);

 if (ret == PGS_S_SUCCESS)
 {
 sdid1=SDstart(my_HDF_file, HDF4_ACC_CREATE);
 }

printf

("Afte

r

SDstar

t

sdid1

is

%d\n",

sdid1)

;

 /************* write INVENTORYMETADATA to HDF4 file *****************/

 ret=PGS_MET_Write(handles[INVENTORYMETADATA],"coremetadata",sdid1);
 printf("ret after PGS_MET_Write is %d\n",ret);

 if(ret !=PGS_S_SUCCESS && ret != PGSMET_W_METADATA_NOT_SET)
 {
 if (ret == PGSMET_E_MAND_NOT_SET)
 {
 printf("some mandatory parameters were not set\n");
 }
 else
 {
 printf("HDF4 write failed\n");
 }
 }

 /************** write ARCHIVEDMETADAT to HDF4 file *****************/

 ret=PGS_MET_Write(handles[ARCHIVEDMETADATA],"archivemetadata",sdid1);

 E-11 170-EED-003

 printf("ret after PGS_MET_Write is %d\n",ret);

 if(ret !=PGS_S_SUCCESS && ret != PGSMET_W_METADATA_NOT_SET)
 {
 if (ret == PGSMET_E_MAND_NOT_SET)
 {
 printf("some mandatory parameters were not set\n");
 }
 else
 {
 printf("HDF4 write failed\n");
 }
 }

 /******************** write to non-HDF file ***********************/

 fileId = 5804;
 printf("non-hdf file to be written has fileId %d\n", fileId);

ret=PGS_MET_Write(handles[ODL_IN_MEMORY],NULL,fileId); printf("ret

after PGS_MET_Write is %d\n",ret);

 if(ret !=PGS_S_SUCCESS && ret != PGSMET_W_METADATA_NOT_SET)
 {
 if (ret == PGSMET_E_MAND_NOT_SET)
 {
 printf("some mandatory parameters were not set\n");
 }
 else
 {
 printf("ASCII write failed\n");
 }
 }

 /*************** write to default non-HDF file ******************/

 ret=PGS_MET_Write(handles[ODL_IN_MEMORY], NULL, NULL);

printf("ret after PGS_MET_Write is %d\n",ret);

 if(ret !=PGS_S_SUCCESS && ret != PGSMET_W_METADATA_NOT_SET)
 {
 if (ret == PGSMET_E_MAND_NOT_SET)
 {
 printf("some mandatory parameters were not set\n");
 }
 else
 {
 printf("ASCII write failed\n");
 }
 }

 /* write metadata to HDF5 file */
 version =1;

fileId = 5059;

 ret = PGS_PC_GetReference(fileId, &version, my_HDF5_file);

 E-12 170-EED-003

 if (ret == PGS_S_SUCCESS)
 {
 ret = PGS_MET_SDstart(my_HDF5_file, HDF5_ACC_RDWR, &sdid5);
 }
 printf("After PGS_MET_SDstart sdid5 is %d\n",sdid5);

 /************* write INVENTORYMETADATA to HDF5 file *****************/

 ret=PGS_MET_Write(handles[INVENTORYMETADATA],"coremetadata",sdid5);
 printf("ret after PGS_MET_Write is %d\n",ret);

 if(ret !=PGS_S_SUCCESS && ret != PGSMET_W_METADATA_NOT_SET)
 {
 if (ret == PGSMET_E_MAND_NOT_SET)
 {
 printf("some mandatory parameters were not set\n");
 }
 else
 {
 printf("HDF5 write failed\n");
 }
 }

 /************** write ARCHIVEDMETADAT to HDF5 file *****************/

 ret=PGS_MET_Write(handles[ARCHIVEDMETADATA],"archivemetadata",sdid5);
 printf("ret after PGS_MET_Write is %d\n",ret);

 if(ret !=PGS_S_SUCCESS && ret != PGSMET_W_METADATA_NOT_SET)
 {
 if (ret == PGSMET_E_MAND_NOT_SET)
 {
 printf("some mandatory parameters were not set\n");
 }
 else
 {
 printf("HDF5 write failed\n");
 }
 }

 SDend(sdid1);
 (void) PGS_MET_SDend(sdid5);
 PGS_MET_Remove();

free(informationname);

 /* Initialize an ASCII metadata file */
 fileId = 5801;

 ret = PGS_MET_Init_NonMCF(fileId, mdHandles);
 if (ret !=PGS_S_SUCCESS)
 {
 printf("initialization failed for ASCII metadata file\n");
 return 0;

 E-13 170-EED-003

 }

else {
 printf("ret after PGS_MET_Init_NonMCF is %d\n",ret);
 }
 /* write metadata to HDF file */
 version =1;
 fileId = 5802;

 ret = PGS_PC_GetReference(fileId, &version, my_HDF_file);

 if (ret == PGS_S_SUCCESS)
 {
 sdid1=SDstart(my_HDF_file, HDF4_ACC_CREATE);

}

 printf("After SDstart sdid1 is %d\n",sdid1);

 /************* write INVENTORYMETADATA to HDF file *****************/

 ret=PGS_MET_Write(mdHandles[INVENTORYMETADATA],"coremetadata",sdid1);
 printf("ret after PGS_MET_Write is %d\n",ret);

 if(ret !=PGS_S_SUCCESS && ret != PGSMET_W_METADATA_NOT_SET)
 {
 if (ret == PGSMET_E_MAND_NOT_SET)
 {
 printf("some mandatory parameters were not set\n");
 }
 else
 {
 printf("HDF write failed\n");
 }
 }
 SDend(sdid1);
 PGS_MET_Remove();

 printf("Complete...\n");
 return 0; }

The following is the PCFT file that is needed for the example above. The Path for the

files needs to be changed to point where the input files are, and where the output files

are to be created.

Note that for windows NT/98 one should use “\” instead of “/” in the directory structure.

This file is needed for testing TIME tools. Only the Path for the files
need to be changed.

 E-14 170-EED-003

The following IDs are defined in the TOOLKIT and they SHOULD NOT be changed

10100|LogStatus|MTD_TOOLKIT_DIR/runtime/LogStatus
5000|configfile.dat|MTD_TOOLKIT_DIR/runtime/configfile.dat
10252|GetAttrtemp|MTD_TOOLKIT_DIR/test/test_MET/GetAttrtemp
10254|MCFWrite.temp|MTD_TOOLKIT_DIR/test/test_MET/MCFWrite.temp
10255|AsciiDump|MTD_TOOLKIT_DIR/test/test_MET/AsciiDump
10256|temporary.MCF|MTD_TOOLKIT_DIR/test/test_MET/temporary.MCF
10301|leapsec.dat|MTD_TOOLKIT_DIR/database/common/TD/leapsec.dat
10401|utcpole.dat|MTD_TOOLKIT_DIR/database/common/CSC/utcpole.dat
10402|earthfigure.dat|MTD_TOOLKIT_DIR/database/common/CSC/earthfigure.dat

10601|de200.eos|MTD_TOOLKIT_DIR/database/common/CBP/de200.eos
10801|sc_tags.dat|MTD_TOOLKIT_DIR/database/common/EPH/sc_tags.dat
10302|udunits.dat|MTD_TOOLKIT_DIR/database/common/CUC/udunits.dat
10260|XMLstylesheet.temp|MTD_TOOLKIT_DIR/database/common/MET/XMLstylesheet.temp

Style Sheet for XML INVENTORY Metadata (DO NOT REMOVE THIS ENTRY)

10303|science.xsl| MTD_TOOLKIT_DIR/database/common/MET/science.xsl

Logical IDs assigned for input/output files can be changed BUT they
should be diffrent from the IDs assigned above.

10251|data_dict|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/data_dict
10271|dummy|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFmorahan4
10284|dummy|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/asciitestfile
5721|hdftestfile|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile
5722|hdftestfile_5722|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile_5
722
5724|hdftestfile_5724|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile_5
724
5725|hdftestfile_5725|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile_5

725
5728|LISUSR|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/LISUSR
5729|LIS_FILTERED|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/LIS_FILTERED
5730|hdftestfile_5730|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/hdftestfile_5

730
5731|ascii_input|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MOP_THRESH

5030|MCFfile|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile
5031|MCFfile_1|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile_1
5033|MCFfile_3|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile_3
5036|MCFfile_6|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile_6
5038|MCFfile_8|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MCFfile_8

files to check PGS_MET_InitNonMCF function

5800|MOD10_L2_ASCII.met|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MOD10_L2_AS
CII.met
5801|morahan44_ascii|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/morahan44_asci

i
5802|MOD10_L2_HDF1.hdf|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MOD10_L2_HDF
1.hdf

 E-15 170-EED-003

5803|MOD10_L2_HDF2.hdf|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/MOD10_L2_HDF

2.hdf
5804|NAT_File|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/NAT_File

HDF5 files for testing HDF5 functionality

5771|hdftestfile.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/hdftestfile.

h5
5779|LIS_FILTERED.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/LIS_FILTERE
D.h5
5774|hdftestfile_5774.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/hdftest

file_5774.h5
5780|hdftestfile_5780.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/hdftest

file_5780.h5
5852|MOD10_L2_HDF1.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/MOD10_L2_H
DF1.h5
5853|MOD10_L2_HDF2.h5|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData_H5/MOD10_L2_H

DF2.h5

End this table with next two lines. Last line should be ?

0|DUMMY|MTD_TOOLKIT_DIR/test/test_MET/MET_TestData/DUMMY ?

 E-16 170-EED-003

This page intentionally left blank.

 170-EED-003

Appendix F. Config File Used by MET/TD Tools

During runtime some attributes are needed to be read (e.g. using PGS_MET_GetConfigData) from

a file other than MCF. In SDP Toolkit, these attributes were available from the PCF file. For the

Toolkit, these attributes will be available through a file that is referred to as Config file. This file

has an entry in the PCFT file (see Appendix C) with a unique identifier (5000). Each record

contains an identifier (any arbitrary but unique number), atrribute name, and attribute value(s).

Note that the record fields are separated with a pipe token ‘|’.

Following is a sample Config file used for the MET and TD test drivers in the $PGSHOME/test

directory.

#--#

The numbers 10120-10123 are used in TD test tools. They should not be changed #

#--#

10123|TRMM UTCF value|0.0

10120|ADEOS-II s/c reference time|0.0

10121|ADEOS-II ground reference time|0.0

10122|ADEOS-II s/c clock period|0.0

#---#

MET test configuration parameters. The numbers 5991-5996 #

can be any numbers, as long as they are not repeated #

#---#

5991|TEST_PARM|1,2,3,4,5

5992|TEST_PARM_FLOAT|99.9

5993|TEST_PARM_STRING|SAT_0

5994|TEST_PARM_STRINGS|"SAT_1 is","a satellite"

5995|EOS_PLATFORM|OTD

5996|TEST_PARM_DOUBLE|0.0546781045

#XML METADATA GENERATION FLAG; 0=no, 1=yes

10256|XML METADATA GENERATION FLAG|0

#--#

Last line should be a question mark (?). #

#--#?

F-1

 170-EED-003

This page is intentionally left blank

F-2

 G-1 170-EED-003

Appendix G. Structure of the File “utcpole.dat”

The file specification given here is not expected to change for the life of the EOSDIS project. It is

provided so that users may read columns other than those read by the Toolkit. The Toolkit reads

only the first header line of this file and columns 1, 2, 4, 6, 7, and 8. The columns are as follows:

1. modified UTC Julian date

2. x component of polar motion, arc seconds

3. one standard deviation error estimate for column 2 values (see qualification below)

4. y component of polar motion

5. one standard deviation error estimate for column 4 values (see qualification below)

6. UT1 - UTC in seconds of time

7. one standard deviation error estimate for column 6 values (see qualification below)

8. data quality indicator

The columns are tab delimited. There are exactly 65 characters per line, including the newline

character, except in the header. The two header lines total 168 characters, including the newlines.

The data are all from the U.S. Naval Observatory (USNO), except for the error values from 1972

(beginning of file) to 1979; these are guesses by Dr. Peter Noerdlinger in the absence of other

information, but were sent to the Observatory for comment and no objection was received. The

errors after 1979 Jan 1 are one standard deviation errors and could easily be read by users who

need these numbers. There was no project requirement for accuracy, but the Toolkit staff felt that

the numbers should be saved in case of later interest. Date flagged "f" in the last column are "final"

but may change by very small amounts (cm to mm range), when new data are ingested at USNO

or the Observatory updates their earth rotation model. The data marked "p" are predicted data.

They tend to change more as updates are performed by the USNO.

Selected sections of a typical data file are shown below. The regions given in detail are beginning

of file, a section around a leap second, the transition to predicted data, and the end of the file.

File Updated: 1998-03-05T17:26:41Z, using USNO ser7 finals.data file of Mar 5

MJD x(arc sec) x error y(arc sec) y error UT1-UTC(s) UT error qual

41317 +0.061000 0.002000 +0.051000 0.002000 -0.043200 0.000200 f 41318

 +0.058000 0.002000 +0.049000 0.002000 -0.046100 0.000200 f

41319 +0.055000 0.002000 +0.048000 0.002000 -0.049000 0.000200 f

 G-2 170-EED-003

41320 +0.052000 0.002000 +0.047000 0.002000 -0.052000 0.000200 f 41321

 +0.048000 0.002000 +0.045000 0.002000 -0.054900 0.000200 f

41322 +0.045000 0.002000 +0.044000 0.002000 -0.057900 0.000200 f

----------------section removed here covering many decades, to save space-----------------

-----------------next few lines show transition at a leap second-------------------------

50077 -0.164345 0.000052 +0.174418 0.000129 -0.429816 0.000010 f 50078 -

0.166356 0.000052 +0.177657 0.000130 -0.432590 0.000002 f 50079 -0.168543

0.000059 +0.180703 0.000099 -0.435312 0.000011 f 50080 -0.170630 0.000055

 +0.183521 0.000088 -0.437914 0.000011 f 50081 -0.172500 0.000054

 +0.186204 0.000088 -0.440347 0.000011 f 50082 -0.174396 0.000107

 +0.188956 0.000130 -0.442584 0.000038 f 50083 -0.176051 0.000119

 +0.191918 0.000124 +0.555381 0.000022 f 50084 -0.177290 0.000118

 +0.194805 0.000120 +0.553526 0.000020 f 50085 -0.178255 0.000098

 +0.197606 0.000157 +0.551818 0.000015 f

---------------section removed here covering over two years, to save space ----------------

-----------------next few lines show transition to predicted data------------------------

50868 -0.051310 0.000209 +0.187877 0.000224 +0.115291 0.000015 f 50869 -

0.054006 0.000216 +0.188612 0.000245 +0.113184 0.000016 f 50870 -0.056066

0.000180 +0.189348 0.000237 +0.110919 0.000016 f 50871 -0.057614 0.000176

 +0.190131 0.000231 +0.108499 0.000017 f 50872 -0.058668 0.000158

 +0.191538 0.000239 +0.105943 0.000017 f 50873 -0.059457 0.000106

 +0.193336 0.000270 +0.103315 0.000027 f

50874 -0.060498 0.000096 +0.195182 0.000176 +0.100719 0.000031 f

50875 -0.061903 0.000069 +0.196987 0.000150 +0.098242 0.000031 f 50876

 -0.063387 0.000076 +0.198881 0.000169 +0.095935 0.000038 f 50877

 -0.064763 0.004200 +0.200551 0.004200 +0.093803 0.000300 p 50878

 -0.066208 0.005100 +0.202151 0.005100 +0.091816 0.000505 p 50879

 -0.067709 0.005713 +0.203691 0.005713 +0.089933 0.000684 p 50880

 -0.069255 0.006192 +0.205182 0.006192 +0.088073 0.000849 p

50881 -0.070836 0.006591 +0.206632 0.006591 +0.086174 0.001004 p

 G-3 170-EED-003

50882 -0.072444 0.006936 +0.208049 0.006936 +0.084217 0.001152 p 50883

 -0.074071 0.007242 +0.209440 0.007242 +0.082200 0.001293 p 50884

 -0.075711 0.007518 +0.210811 0.007518 +0.080116 0.001429 p 50885

 -0.077358 0.007770 +0.212168 0.007770 +0.077970 0.001561 p 50886

 -0.079007 0.008003 +0.213516 0.008003 +0.075777 0.001690 p 50888

 -0.082293 0.008422 +0.216201 0.008422 +0.071295 0.001938 p 50889

 -0.083923 0.008613 +0.217545 0.008613 +0.069030 0.002058 p 50890

 -0.085540 0.008794 +0.218895 0.008794 +0.066774 0.002175 p

50891 -0.087141 0.008965 +0.220254 0.008965 +0.064551 0.002291 p

--------------------- numerous lines removed here, to save space ---------------------

50959 -0.126231 0.014474 +0.345196 0.014474 -0.074207 0.008276 p 50960 -

0.125711 0.014523 +0.347152 0.014523 -0.075710 0.008351 p

50961 -0.125162 0.014571 +0.349097 0.014571 -0.077087 0.008425 p

 G-4 170-EED-003

This page intentionally left blank.

 AB-1 170-EED-003

Abbreviations and Acronyms

AI&T algorithm integration & test

API application program interface

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly

ITIR)

BNF Backus–Naur Form

CBP celestial body position

CCR configuration change request

CCSDS Consultative Committee on Space Data Systems

CDRL Contract Data Requirements List

CDS CCSDS day segmented time code

CERES Clouds and Earth Radiant Energy System

CM configuration management

COTS commercial off–the–shelf software

CSC coordinate system conversion

CUC CCSDS unsegmented time code

DAAC distributed active archive center

DBMS database management system DCW

 Digital Chart of the World

DEM digital elevation model

DTM digital terrain model

ECI Earth centered inertial

ECR Earth centered rotating

ECS EOSDIS Core System

EDC Earth Resources Observation Systems (EROS) Data Center

EDHS ECS Data Handling System

EDOS EOSDIS Data and Operations System

EOS Earth Observing System

 AB-2 170-EED-003

EOSAM EOS AM Project (morning spacecraft series)

EOSDIS Earth Observing System Data and Information System

EOSPM EOS PM Project (afternoon spacecraft series)

EPH ephemeris data access

ESDIS Earth Science Data and Information FOV

field of view ftp file transfer protocol GAST

Greenwich apparent sidereal time

GCT geo–coordinate transformation

GCTP general cartographic transformation package

GMST Greenwich mean sidereal time

GPS Global Positioning System

GSFC Goddard Space Flight Center HDF

hierarchical data format http hypertext

transport protocol

IEEE Institute of Electrical and Electronic Engineers

IERS International Earth Rotation Service

IP Internet protocol

JPL Jet Propulsion Laboratory LaRC

 Langley Research Center

MCF metadata configuration file

MEM memory management

MET metadata

MODIS Moderate–Resolution Imaging

Spectroradiometer NASA National Aeronautics and

Space Administration netCDF network common data

format NGDC National Geophysical Data Center

NMC National Meteorological Center (NOAA)

ODL object description language PC

 process control

 AB-3 170-EED-003

PCF process control file

PCFT Private Customized File Table

PDPS planning & data production system

PDS production data set

PGE product generation executive (formerly product generation executable)

PGS Product Generation System

PGSTK Product Generation System Toolkit

POSIX Portable Operating System Interface for Computer Environments

SCF Science Computing Facility

SDP science data production

SDPF science data processing facility

SDPS Science Data Processing Segment (ECS)

SFDU standard formatted data unit

SGI Silicon Graphics Incorporated

SMF status message file

SPCS State Plane Coordinates Spheroid

SSM/I Special Sensor for Microwave/Imaging

TAI International Atomic Time

TD time date conversion

TDB Barycentric Dynamical Time

TDT Terrestrial Dynamical Time

TRMM Tropical Rainfall Measuring Mission (joint US – Japan)

UARS Upper Atmosphere Research Satellite

UCAR University Corporation for Atmospheric Research

URL universal reference locator

UT universal time

UTC Coordinated Universal Time

UTCF universal time correlation factor

UTM universal transverse mercator

WWW World Wide Web

 AB-4 170-EED-003

This page intentionally left blank.

