

Technical Report 12503

NATO REFERENCE MOBILITY MODEL, EDITION I USERS GUIDE

VOLUME I

OPERATIONAL MODULES

DA Project 1L162601AH91

Prepared by

Stevens Institute of Technology Davidson Laboratory Castle Point Station Hoboken, NJ 07030

Contract DAAK30-77-C-0027

OCT 1979

for

US Army Tank-Automotive Research & Development Command Warren, MI 48090

TABLE OF CONTENTS

LIST	0F	FIGUR	ES	• • •	•			•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	vi
LIST	0F	TABLE	IS		•	•	• •	•	••	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	vii
LIST	0F	APPEN	ID I C ES		•	••	• •	•	••	•	• •	•	•	•	• •	•	•	• .	•	•	•	•	•	vii
1. 1	NTR	ODUCT	ION A	ND OVE	RVI	EW.	• •	•	••	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	1
	Α.	Back	ground	d	•	•••	• •	•	•••	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	1
	Β.	Mode	ling (Off-Ro	ad '	Vehi	cle	Mot	5 i 1	ity		•	•	•	•	•	•	•	•	•	•	•		5
	c.	0ve ra	all St	tructu	ire 🗄	of t	the	INR	1M.	•	• •	•	•	•		•	•	•	•		•	•	•	8
	D.	Mode	1 Inpi	uts an	nd P	repr	oce	ssoi	rs.	•	• •	•	•	•	•	•	•	•	•		•	•	•	12
		1.	Terra	ain	•	••	• •	• •	• •	•		•	•	•	•	•		•	•	•	•	•	•	12
		2.	Vehid	cle	•	•••		• •	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	13
		3.	Drive	er	•	••	• •	• •	• •	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	15
		4.	Scena	ario .	•	• . •	• •	• •	• •	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	15
	Ε.	Stand	d-Alor	ne Sim	ula	tion	n Mo	dule	25.	•	•••	•	•	• •	•	٠	•	•	•	•		•	•	17
		1.	0bsta	acle-c	ros	sing	j Mo	dule	-0	357	8B •	•	•		•	•	•	•	•	•	•	•	•	17
		2.	Ride	Dynam	ics	Mod	lule	~ -	VEł	IDY	Ν.	•	•	• •	•	•	•	•	•	•	•	.•	•	18
		3.	Main	Compu	tat	iona	1 M	odul	es	~~~	NR	MM	•	• •	•	•	•	•	•	•	•	•	•	21
			a۰	Area	1 Te	erra	in	Unit	: Ma	odu	le.	•	•	• •	•	•	•	•	•	•	•	•	•	22
			b.	Road	Mod	dule	• •	• •	•	•	••	•	•	•••	•	•	•	•	•	•	• .	. •	•	28
	F.	Ackno	wledg	gement	S•	••	• •	• •	•	•	• •	•	•	• •	•	•	•	•	•	•	•	•	•	30
11.	ALG	OR I THM	1S AND	EQUA	T 0	۷5.	•••	••	•	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	33
	Α.	Conti	rol an	nd 1/0	Mod	dule	• •		•	•		•	•		•		•	•	•	•			•	33
		1.	Subro	out i n e	SCI	v -	Scei	nari	<u>ه</u> ٥	÷ Co	ont	rol	1	npu	t٠				•		•		•	36
		2.		utine										-										-
		3.	Subro	utine	VPF	> _	Veh	icle	Pr	epi	roc	ess	or	Co	ntı	·01	•	•	•		•	•		36
		4.	Subro	utine	TEF	RTL	- Te	erra	in	Tra	ans	lat	or		•			•	•	•	•		•	36
			a۰	Terr	ain	Inp	ut/	Tran	sla	itic	n	Sub	ro	uti	ne	MA	P74	4	•	•	•	•	•	38
			b۰	Terr	ain	Inp	ut/	Tran	sla	tic	on	Sub	ro	uti	ne	MP	RD	74	•	•		•	•	39
			c۰	Terr	ain	Inp	ut/	Tran	sla	tic	on	Sub	ro	uti	ne	MA	P7	1	•	•	•		•	40
		5•	Subro	utine	ARE	AL	- Ai	real	Мс	dul	e	Con	tro	51.	•		•	•	•	•	•	•	•	41
		6.		utine																				41
		7.	Subro	utine	BUF	FO	- Ba	astc	00	itpi	ıt.	•			•		•	•	•	•	•	•		42

Β.	Vehicle Preprocessor	43
	1. Subroutine III - Units Conversion Routine	43
	2. Subroutine 112 - Gross Combined Weight	44
	3. Subroutine 113 - Maximum Tire Speed	44
	4. Subroutine 114 - Maximum Path Width	46
	5. Subroutine 115 - Tire Deflection Ratio	46
	6. Subroutine 116 - Characteristic Length	46
	7. Subroutine 117 - Ground Contact Area	47
	8. Subroutine 118 - Controlling Lateral Distance	47
	9. Subroutine 119 - Maximum Rolling Radius	48
	10. Subroutine 1110 - Maximum Braking Force	48
	<pre>11. Subroutine III1 - Horsepower/ton</pre>	48
	12. Subroutine III2 - Vehicle Cone Index in Fine Grained Soil	49
	13. Subroutine 1113 - Vehicle Cone Index in Coarse Grained	
		51
	-	
		53
	16. Subroutine III6 - Power Train	53
	a. Subroutine TRAIN - Construction of Tractive Effort vs. Speed Curves	54
	 (1) Subroutine AUTOM - Tractive Effort vs. Speed of Vehicle with Automatic Trans- mission and Torque Converter 	56
	(2) Subroutine STICK - Tractive Effort vs. Speed of Vehicle with Manual Trans- mission	58
	b. Subroutine FIT - Quadratic Curve Fit to Tractive	20
	Effort vs. Speed Relationship.	58
	17. Subroutine 1117 - Rotating Mass Factor	62
c.	Terrain Preprocessor	63
D.	Areal Module	68
	 Subroutine IV1 - Obstacle Spacing and Area Denied 	68
	2. Subroutine IV2 - Land/Marsh Operating Factors	73

Page iii

R-2058, VOLUME I Operational Modules

3.	Subroutine IV3 - Pull and Resistance Coefficients 74
	a. Fine Grained Soil
	b. Coarse Grained Soil
	c. Muskeg
	d. Shallow Snow
4.	Subroutine IV4 - Summed Pull and Resistance Coefficient 88
5.	Subroutine IV5 - Slip Modified Tractive Effort 89
	a. Subroutine TFORCF - Soil Limited Tractive Effort 95
	 b. Subroutine VELFOR - Maximum Velocity Overcoming a Given Resistance
	c. Subroutine SLIP - Powered Traction Element Slip for a Given Traction Coefficient
	d. Subroutine QUADS - Quadratic Fit to 5 Points 101
6.	Subroutine IV6 - Resistance Due to Vegetation 101
7.	Subroutine IV7 - Driver Dependent Vehicle Vegetation Override Check
8.	Subroutine IV8 - Total Resistance Between Obstacles 102
9.	Subroutine IV9 - Speed Limited by Resistance Between Obstacles
10.	Subroutine IV10 - Speed Limited by Surface Roughness 104
11.	Subroutine IVI1 - Total Braking Force Soil/Slope/ Vehicle
12.	Subroutine IV12 - Maximum Braking Force Soil/ Slope/Vehicle/Driver
13.	Subroutine IV13 - Speed Limited by Visibility
14.	Subroutine IV14 - Selected Speed Between Obstacles 108
15.	Subroutine 1V15 - Maximum Speed Between and Around Obstacles
16.	Subroutine IV16 - Obstacle Override Interference and Resistance
17.	Subroutine IV17 - Driver Dependent Vehicle Speed over Obstacles
18.	Subroutine IV18 - Speed Onto and Off Obstacles 113
19.	Subroutine IV19 - Average Terrain Unit Speed While Accelerating/Decelerating Between Obstacles

				- Time and Dis m one Velocity	to			•	•		123
			b. Subroutine TXGEA Gear		stance			•	•	••	124
		20.	Subroutine IV20 - Kin Check	ematic Vegetati				•			129
		21.	Subroutine IV21 - Max								-
	E.	Road	odule	• • • • • • • •	• • •		••	•	•	••	132
		1.	Initialization					•	•		133
		2.	Velocity Dependent Re	sistance • • •	• • •	• •	••	•	•		133
			a. Surface Resistar	ce • • • • • • •	• • •	••		•	•	•••	133
			b. Aerodynamic Resi	stance • • • •	• • •	•••	• •	•	•		135
			c. Wheeled Axle Tu	ning Resistance		••		•	•	••	135
			d. Tandem Wheel Al	gning Resistand	ce	• •		•	•		136
		3.	Non-Velocity Depender	nt Resistance .		••		•	•	••	136
			a. Tracked Turning	Resistance • •	• • •	• •	• •	•	•	••	136
			b. Rolling Resistar	ice · · · · · ·	• • •		• •	•	•	••	137
			c. Grade Resistance		• • •	••	• •	•	•	• •	138
		4.	Speed Limited by Res	stance • • • •	• • •	•••	• •	•	•	•••	138
		5.	Speed Limited by Sur	ace Roughness.	• • •	•••	• •	•	•	••	138
		6.	Speed Limited by Slid	ling on Curves.	• • •	• •	• •	•	•	• •	139
		7.	Speed Limited by Tip	ing on Curves.	• • •	•••	• •	•	•	• •	139
		8.	Speed Limited by Vis	bility	• • •	• •	• •	•	•		139
		9.	Curvature Speed Limi		• • •	••	• •	•	•	• •	141
	F.	Line	r Feature Module • •	•••••	• • •	••	• •	•	•	••	144
111.	INF	PUTS A	OUTPUTS		• • •	•••	•	• •	•	•••	145
	Α.	Intr	duction	• • • • • • • •	• • •	•••	•	•	•	• •	145
	Β.	Vehi	le Data		• • •	•••	•	•	•	• •	. 147
	C.	Terr	in Input Operation	al Modules	• • •	•••	•	• •	•	• •	154
		1.	Areal Terrain Input	File - Class In							
			Values		• • •	• •	•	• •	٠	• •	154

	2. Areal Terrain Input File - Real Values 157
	3. Road Terrain Input File
D.	• Scenario and Control Input Data • • • • • • • • • • • • • • • • 162
E	• Output. • • • • • • • • • • • • • • • • • • •
IV. RF	EFERENCES

Page v

Page vi

LIST OF FIGURES

1.4.1		Prospective Users of Vehicle Performance Prediction Methodology
1.0.1		General Organization of the Initial Nato Reference Mobility Model
I.E.1		General Flow of INRMM Areal Module
11.A.1		Structure of Control and 1/0 Module
11.A.2		Structure of Subroutine TERTL
11.B.1		Powertrain Calculation Logic of Subroutine 1116
11.8.2		Plot of Tractive Effort vs. Speed Array
II.B.3		Possible Anomaly in Quadratic Equation Fit to a Gear 61
11.0.1		Side View of an Obstacle
11.C.2		Vehicle Approach to Obstacle
11.D.1		Area Denied Due to an Obstacle
11.0.2		SUBROUTINE IV5 - Slip Modified Tractive Effort 90
11.D.3		Tractive Effort vs. Speed Modification for Soil and Slope
11.D.4		Flow Chart of SUBROUTINE IV18
11.D.5		Possible Speed Profiles Across an Obstacle and Between Obstacles
11.0.6	940 440	Speed Profile when Obstacle Approach Speed Cannot be Attained
11.D.7		Representation of Tractive Effort vs. Speed Relation

LIST OF TABLES

1.0.1		Terrain, Vehicle, Driver Attributes Characterized
		in INRMM Mobility Model Data Base
11.D.1		Slipperiness Conditions and Parameters
11.E.1	-	Curvature Speed Limits
III.B.1		Vehicle Input Data NAMELIST VEHICL
111.0.1		Terrain Input File Structure
111.2.2		Terrain Input File Structure Real Value
111.0.3		Terrain Input File Structure Roads
11.D.1		Control Input Data - Operational Modules NAMELIST CONTRL
111.D.2		Control and Scenario Variables - Operational Modules NAMELIST SCENAR

LIST OF APPENDICES

Α.	Listing of	Program	NRMM															
Β.	Vehicle Inp	ut Files	for Progr	am NRMM														
	M60 A1 (T	ank)			•		•	•	•	•	• •	•	•	•	•	•	•	B-2
	M 151 (J	eep)	• • • • •		•		•	•	•	•	• •	•	•		•		•	B-7
C.	Terrain Inp	ut _. Files	for Progr	am NRMM														
	Areal Ter	rain Inp	out File	Class	Int	erv	al	Fo	orm	at		F	11	e (CKI	۲.	•	C-2
•	Road Terr	ain Inpu	it File	Real Va	lue	s F	or	mat	t -	- 1	- 1 1	е	скі	KRI	D.	•	•	C-3
D.	Sample Outp	ut of Pr	ogram NRMM	I														
	Vehicle:	M60 A1	Terrain:	СКК	•	• •	•	•	•	•	• •	•	•		•		•	D-2
	Vehicle:	M60 A1	Terrain:	CKKRD.	•		•	•	•	•		•	•	•	•	•	•	D-10
	Vehicle:	M 151	Terrain:	СКК	•		•	٠	•	•	• •		•	•	•	•	•	D-18
	Vehicle:	M 151	Terrain:	CKKRD.	•		•	•	•	•	• •	•	•	•	•	•	•	d- 26
F.	Possible ST	OP's in	Program NR	MM														

I INTRODUCTION AND OVERVIEW*

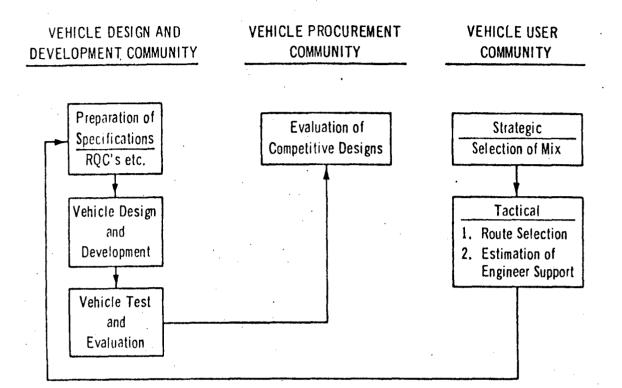
The NATO Reference Mobility Model (NRMM) is a collection of equations and algorithms designed to simulate the cross-country movement of vehicles. It was developed from several predecessor models, principally AMC-74 (Jurkat, Nuttall and Haley (1975)). This report, in several volumes, provides some background and motivation for most aspects of the model, and presents documentation for the coded version now available through the U. S. Army Tank-Automotive Research and Development Command (TARADCOM).

A. Background

Rational design and selection of military ground vehicles requires objective evaluation of an ever-increasing number of vehicle system options. Technology, threat, operational requirements, and cost constraints change with time. Current postures must be reexamined, new options evaluated, and new trade-offs and decisions made. In the single area of combat vehicles, for example, changes in one or another influencing factor might require trade-offs that run the gamut from opting for an air or ground system, through choosing wheels, tracks or air cushions, to designating a new tire.

The former Mobility Systems Laboratory of the then U. S. Army Tank-Automotive Command (TACOM) and the U. S. Army Engineer Waterways Experiment Station (WES) are the Army agencies responsible for

* This chapter is adapted from Jurkat, Nuttall and Haley (1975).


conducting ground mobility research. In 1971, a unified U. S. ground mobility program, under the direction of the then Army Materiel Command (AMC), was implemented that specifically geared the capabilities of both laboratories to achieve common goals.

Page 2

As a first step in the unified program, a detailed review was made of existing vehicle mobility technology and of the problems and requirements of the various engineering practitioners associated with the military vehicle life cycle. One basic requirement was identified as common to all practitioners surveyed: the need for an objective analytical procedure for quantitatively assessing the performance of a vehicle in a specified operational environment. This is the need that is addressed to a substantial extent by the INRMM and its predecessors.

In theory, a single methodology can serve some of the needs of all major practitioners, provided it relates vehicle performance to basic characteristics of the vehicle-driver-terrain system at appropriate levels of detail.

Three principal categories of potential users of the methodology were identified: the vehicle development community, the vehicle procurement community, and the vehicle user community (Figure I.A.1). The greatest level of detail is needed by the design and development engineer (vehicle design and development community) who is incerested in subtle engineering details--for example, wheel geometry, sprung masses, spring rates, track widths, etc.--and their

PROSPECTIVE USERS OF VEHICLE PERFORMANCE PREDICTION METHODOLOGY

FIGURE I-A-1

interactions with soil strength, tree stems of various sizes and spacings, approach angles in ditches and streams, etc. At the other end of the spectrum is the strategic planner (user community), who is interested in such highly aggregated characteristics as the average cross-country speed of a given vehicle throughout a specified region--the net result of many interactions of the engineering details with features of the total operational environment. Between these two extremes, is the person responsible for selection of the vehicles who must evaluate the effect of changes of major subsystems or choose from

concepts of early design stages. To be responsive to the needs of all three user communities, the methodology must be flexible enough to provide compatible results at many levels and in an appropriate variety of formats.

Page 4

Interest in a single, unified methodology applicable to the needs of these three principal users led to the creation of a cross-country vehicle computer simulation combining the best available knowledge and models of the day. Much of this knowledge was collected in Rula and Nuttall (1971). The first realization of the simulation was a series of computer programs known as the AMC-71 Mobility Model, called AMC-71 for short (US ATAC(1973)). This model first became operational in 1971; it was published in 1973. It was conceived as the first generation of a family whose descendants, under the evolutionary pressures of subsequent research and validation testing results, application experiences, and growing user requirements, would be characterized by greater accuracy and applicability. A relatively current status report may be found in Nuttall, Rula and Dugoff (1974).

The first descendant, known as AMC-74, is the basis for the INRMM. It is documented in Jurkat, Nuttall and Haley (1975). The following is a description of this model.

B. Modeling Off-Road Vehicle Mobility

In undertaking mobility modeling, the first question to be answered was the seemingly easy one: What is mobility? The answer had been elusive for many years. Semantic reasons can be traced to the beginnings of mobility research, but there was also a pervasive reluctance to accept the simple fact that even intuitive notions about a vehicle's mobility depend greatly on the conditions under which it is operating. By the mid-1960s, however, a consensus had emerged that the maximum feasible speed-made-good* by a vehicle between two points in a given terrain was a suitable measure of its intrinsic mobility in that situation.

This definition not only identified the engineering measure of mobility, but also its dependence on both terrain and mission. When, at a suitably high resolution, the terrain involved presents the identical set of impediments to vehicle travel throughout its extent, mobility in that terrain (ignoring edge effects) is the vehicle's maximum straight-line speed as limited only by those impediments. But when, as is typically the case, the terrain is not so homogeneous, the problem immediately becomes more complex. Maximum speed-made-good then becomes an interactive function of terrain variations, end points specified, and the path selected. (Note that the last two constitute at least part of a detailed mission statement.) As a way to achieve a useful simulation in this complicated situation the INRMM deliberately

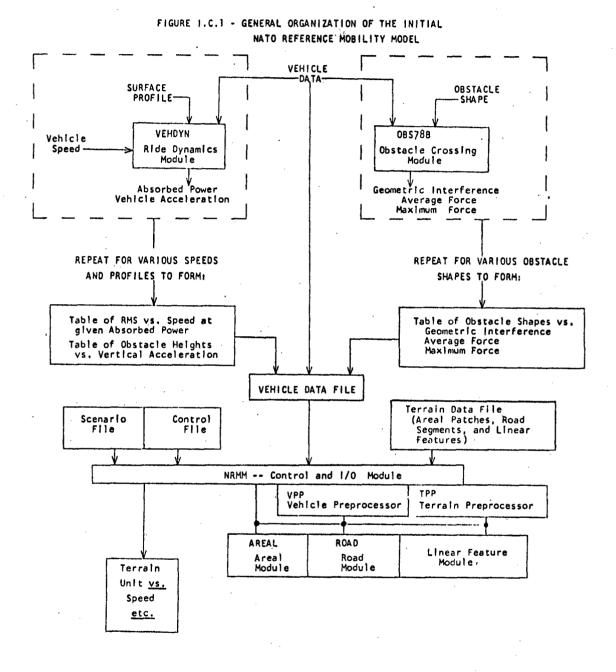
*Speed-made-good between two points is the straight-line distance between the points divided by total travel time, irrespective of path.

simplifies the real areal terrain into a mosaic of terrain units within each of which the terrain characteristics are considered sufficiently uniform to permit use of the simple, maximum straight-line speed of the vehicle to define its mobility in, along, or across that terrain unit. A terrain unit or segment specified for a road or trail is, similarly, considered to have uniform characteristics throughout its extent.

Maximum speed predictions are made for each terrain unit without concern for whether or not distances within the unit are adequate to permit the vehicle to reach the predicted maximum. This vehicle and terrain-specific speed prediction is the basic output of the model. The model, in addition, generates data that may be used to predict operational vibration levels, mission fuel consumption, etc., and can provide diagnostic information as to the factors limiting speed performance in the terrain unit.

The speed and other performance predictions for all terrain units in an area can be incorporated into maps that specify feasible levels of performance that a given vehicle might achieve at all points in the area. At this point, the output is reasonably general and is essentially independent of mission and operational scenario influences. The basic data constituting the maps must usually be further processed to meet the needs of specific users. These needs vary from relatively simple statistics or indices reflecting overall vehicle compatibility with the terrain, to extensive analyses involving detailed or generalized missions. None of these so called

post-processors is included as part of the INRMM.


C. Overall Structure of the INRMM

In formulating AMC-71, it was recognized that its ultimate usefulness to decision makers in the vehicle development, procurement, and user communities would depend upon its realism and credibility. (See Nuttall and Dugoff (1973).) These perceived requirements led to several more concrete objectives related to the overall structure of the model. It was determined that the model should be designed to:

- 1. Allow validation by parts and as a whole.
- Make a clear distinction between engineering predictions and any whose outcome depends significantly upon human judgment, with the latter kept visible and accessible to the model user.
- 3. Be updated readily in response to new vehicle and vehicle-terrain technology.
- 4. Use measured subsystem performance data in place of analytical predictions when and as available and desired.

These objectives, plus the primary goal of supporting decision making relating to vehicle performance at the several levels, clearly dictated a highly modular structure that could both provide and accept data at the subsystem level, as well as make predictions for the vehicle as a whole. The resulting gross structure of the model is illustrated in Figure I.C.1.

At the heart of the model are three independent computational modules, each comprised of analytical relations derived from laboratory and field research, suitably coupled in the particular type of operation. These are:

- 1. The Areal Module, which computes the maximum feasible speed for a single vehicle in a single areal terrain unit (patch).
- 2. The Linear Feature Module, which computes the minimum feasible time for a single vehicle, aided or unaided, to cross a uniform segment of a significant linear terrain

feature such as a stream, ditch, or embankment (not currently available).

3. The Road Module, which computes the maximum feasible speed of a single vehicle traveling along a uniform segment of a road or trail.

These Modules and the Terrain and Vehicle Preprocessors are collected in a computer program called NRMM and are described in this volume.

These three Modules may be used separately or together. Alternately, INRMM has the ability to simulate travel from terrain unit to terrain unit in the sequence given by the terrain input file. In this mode, known as the traverse mode, sufficient output data can be provided so that the user may calculate acceleration and deceleration times and distances between and across terrain unit boundaries, and thereby determine actual travel time and speed-made-good over a chosen route.

All three modules draw from a common data base that describes quantitatively the vehicle, the driver, and the terrain to be examined in the simulation. The general content of the data base is shown in Table I.C.1.

TABLE I.C.1

Terrain, Vehicle, Driver Attributes Characterized in INRMM Data Base

Terrain

Vehicle

Driver

Surface Composition Type Strength

Surface Geometry Slope Altitude Discrete Obstacles Roughness Road Curvature Road Width Road Superelevation

Geometric characteristics

Inertial characteristics

Mechanical characteristics Reaction Times

Recognition distance

Acceleration and impact tolerances

Minimum acceptable speeds

Vegetation Stem Size Stem Spacing

Linear Geometry Stream cross section Water velocity Water depth

D. Model Inputs and Preprocessors

1. Terrain

For the purposes of the model, each terrain unit is described at any given time by values for a series of 22 mathematically independent terrain factors for an areal unit (including lake and marsh factors), 10 for the cross section of a linear feature to be negotiated, and 9 to quantify a road segment . General-purpose terrain data also include separate values for several terrain factor values that vary during the year. For example, at present such general data for areal terrain include four values for soil strength (dry, average, wet, and wet-wet seasons) and four seasonal values for recognition distances in vegetated areas. Similar variations in effective ground roughness, resulting from seasonal changes in soil moisture (including freezing) and in the cultivation of farm land, can be envisioned for the future. Further details on the terrain factors used are given in Rula and Nuttall (1975).

As discussed earlier, the basic approach to representing a complex terrain is to subdivide it into areal patches, linear feature segments, or road segments, each of which can be considered to be uniform within its bounds. Besides supplying actual values for the terrain factors, this concept may be implemented by dividing the range of each individual terrain factor value into a number of class intervals, based upon considerations of vehicle response sensitivity and practical measurement and mapping resolution problems. A patch or

a segment is then defined by the condition that the class interval designator for each factor involved is the same throughout. A new patch or segment is defined whenever one or more factors fall into a new class interval.

Before being used in the three computational Modules, the basic terrain data are passed through a Terrain Data Preprocessor, called TPP, in the Computer Program NRMM. This preprocessor does three things:

- 1. Converts as necessary all data from the units in which they are stored to inches, pounds, seconds and radians, which are used throughout the subsequent performance calculations.
- 2. Selects prestored soil strengths and visibility distances according to run specifications, which are supplied as part of the scenario data (see below).
- 3. Calculates from the terrain measurements in the basic terrain data a small number of mathematically dependent terrain variables used repeatedly in the computational modules.

2. Vehicle

The vehicle is specified in the vehicle data base in terms of its basic geometric, inertial, and mechanical characteristics. The complete vehicle characterization as used by the performance computation modules includes measures of dynamic response to ground roughness and obstacle impact, and the clearance and traction requirements of the vehicle while it is negotiating a parametric series of discrete obstacles.

The model structure permits use at these points of appropriate data derived either from experiments or from supporting stand-alone simulations used as preprocessors. Available as modules of the INRMM is a two-dimensional ride and obstacle crossing Dynamics Module for obtaining requisite dynamics responses (currently called VEHDYN and described in Volume III) and an Obstacle Module for computing obstacle crossing traction requirements and interferences (currently called OBS78B and described in Volume II). Both derive some required information from the basic vehicle data base, and both, when used, constitute stand-alone vehicle data preprocessors.

Page 14

There is also a Vehicle Data Preprocessor called VPP (integral to NRMM) which, like the Terrain Data Preprocessor, has three functions:

- 1. Conversion of vehicle input data to uniform inches, pounds, seconds, and radians.
- Calculation, from the input data, of controlling soil performance parameters and other simpler dependent vehicle variables subsequently used by the computational modules, but usually not readily measured on a vehicle or available in its engineering specifications.
- Computation of the basic steady-state traction versus speed characteristics of the vehicle power train, from engine and power train characteristics.

As in the case of dynamic responses and obstacle capabilities, the last item, the steady-state tractive force-speed relation, may be input directly from proving ground data, when available and desired. 3. Driver

The driver attributes used in the model characterize the driver in terms of his limiting tolerance to shock and vibration and his ability to perceive and react to visual stimuli affecting his behaviour as a vehicle controller. While these attributes are identified in Figure I.C.1 and Table I.C.1 as part of the data base INRMM provides for their specific identification and user control so that the effects of various levels of driver motivation, associated with combat or tactical missions, for example, can be considered.

4. Scenario

Several optional features are available to the user of the INRMM (weather, presumed driver motivation, operational variations in tire inflation pressure) which allow the user to match the model predictions to features or assumptions of the full operational scenario for which predictions are required. Model instructions which select and control these options are referred to as scenario inputs.

The scenario options include the specification of:

- 1. Season, which, when seasonal differences in soil strength constitute a part of the terrain data, allows selection of the soil strength according to the variations in soil moisture with seasonal rainfall, and
- 2. Weather, which affects soil slipperiness and driving visibility, (including dry snow over frozen ground and associated conditions).
- 3. Several levels of operational influences on driver tolerances to ride vibrations and shock, and on driver strategy in

negotiating vegetation and using brakes.

4. Reasonable play of tire pressure variations to suit the mode of operation--on-road, cross-country, and in sand.

E. Stand-Alone Simulation Modules

As indicated above, the Model is implemented by a series of independent Modules. The Terrain and Vehicle Preprocessors, already described, form two of these. Two further major stand-alone simulation Modules will now be outlined.

1. Obstacle-crossing Module-OBS78B

This Module determines interferences and traction requirements when vehicles are crossing the kind of minor ditches and mounds characterized as part of the areal terrain; it is described fully in Volume II. It is used as a stand-alone Preprocessor Module to the Areal Module of INRMM.

The Obstacle-crossing Module simulates the inclination and position, interferences, and traction requirements of a two-dimensional (vertical center-line plane) vehicle crossing a single obstacle in a trapezoidal shape as a mound or a ditch. The module determines a series of static equilibrium positions of the vehicle as it progresses across the obstacle profile. Extent of interference is determined by comparison of the obstacle profile and the displaced vehicle bottom profile. Traction demand at each position is determined by the forces on driven running gear elements, tangential to the obstacle surface, required to maintain the vehicle's static position. Pitch compliance of suspension elements is not accounted for but frame articulation (as at pitch joints, trailer hitches, etc) is permitted.

The Obstacle-crossing Module produces a table of minimum clearances (or maximum interferences) and average and maximum force required to cross a representative sample of obstacles defined by combinations of obstacle dimensions varied over the ranges appropriate for features included in the areal terrain description. This simulation is done only once for each vehicle. Included in the INRMM Areal Module is a three-dimensional linear interpolation routine which, for any given set of obstacle parameters, approximates from the derived table the corresponding vehicle clearance (or interference) and associated traction requrements. Obviously, the more entries there are in the table, the more precise will be the determination.

2. Ride Dynamics Module- VEHDYN

The Areal Module examines as possible vehicle speed limits in a given terrain situation two limits which are functions of vehicle dynamic perceptions: speed as limited by the driver's tolerance to his vibrational environment when the vehicle is operating over continuously rough ground, and speed as limited by the driver's tolerance to impact received while the vehicle is crossing discrete obstacles. It is assumed that the driver will adjust his speed to ensure that his tolerance levels will not be exceeded.

The Ride Dynamics Module of INRMM, called VEHDYN and described in Volume III, computes accelerations and motions at the driver's station (and other locations, if desired) while the vehicle is operating at a given speed over a specific terrain profile. The

profile may be continuously, randomly rough, may consist solely of a single discrete obstacle, uniformly spaced obstacles of a specific height or may be anything in between. From the computed motions, associated with driver modeling and specified tolerance criteria, simple relations are developed for a given vehicle between relevant terrain measurements and maximum tolerable speed. The terrain measurement to which ride speed is related is the root mean square (rms) elevation of the ground profile (with terrain slopes and long-wavelength components removed). The terrain descriptors for obstacles are obstacle height and obstacle spacing.

The terrain parameters involved, rms elevation and obstacle height and spacing, are factors quantified in each patch description, and rms elevation is specified for each road segment. Preprocessing of the vehicle data in the ride dynamics module provides an expedient means of predicting dynamics-based speed in the patch and road segment modules via a simple, rapid table-lookup process.

The currently implemented Ride Dynamics Module is a digital simulation that treats vehicle motions in the vertical center-line plane only (two dimensions). It is a generalized model that will handle any rigid-frame vehicle on tracks and/or tires, with any suspension. Tires are modeled using a segmented wheel representation, (see Lessem (1968)) and a variation of this representation is used to introduce first-order coupling of the road wheels on a tracked vehicle by its tracks.

a) Driver model and tolerance criteria.

It has been shown empirically that, in the continuous roughness situation, driver tolerance is a function of the vibrational power being absorbed by the body. (See Pradko, Lee and Kaluza (1966).) The same work showed that the tolerance limit for representative young American males is approximately 6 watts of continuously absorbed power, and the research resulted in a relatively simple model for power absorption by the body. The body power absorption model, based upon shaping filters applied to the decomposed acceleration spectrum at the driver's station, is an integral part of the INRMM two-dimensional dynamics simulation.

In the past, only the 6 watt criterion was used to determine a given vehicle's speed as limited by rms roughness. More recent measurements in the field have shown that with sufficient motivation young military drivers will tolerate more than 6 watts for periods of many minutes. Accordingly, INRMM will accept as vehicle data a series of ride speed versus rms elevation relations, each corresponding to a different absorbed power level, and will use these to select ride-speed limits according to the operationally related level called for by the scenario. The Ride Dynamics Module will, of course, produce the required additional data, but some increased running time is involved.

The criterion limiting the speed of a vehicle crossing a single discrete obstacle, or a series of closely, regularly spaced obstacles,

is a peak acceleration at the driver's seat of 2.5-g passing a 30-Hz. filter. Data relating the 2.5-g speed limit to obstacle height and spacing can be developed in the ride dynamics module by inputting appropriate obstacle profiles.

INRMM requires two obstacle impact relations: the first, speed versus obstacle height for a single obstacle (spacing very great); and the second, speed versus regular obstacle spacing for that single obstacle height (from the single obstacle relation) which limits vehicle speed to a maximum of 15 mph. For obstacles spaced at greater than two vehicle lengths, the single-obstacle speed versus obstacle height relation is used. For closer spacings, the least speed allowable by either relation is selected.

3. Main Computational Modules - NRMM

The highly iterative computations required to predict vehicle performance in each of the many terrain units needed to describe even limited geographic areas are carried out in the three main computational modules. Each of these involve only direct arithmetic algorithms which are rapidly processed in modern computers. In INRMM, even the integrations required to compute acceleration and deceleration between obstacles within an areal patch are expressed in closed, algebraic form.

Terrain input data include a flag, which signifies to the model whether the data describes an areal patch, a linear feature segment, or a road segment. This flag calls up the appropriate computational Module.

a) Areal Terrain Unit Module

This Module calculates the maximum average speed a vehicle could achieve and maintain while crossing an areal terrain unit. The speed is limited by one or a combination of the following factors:

- 1. Traction available to overcome the combined resistances of soil, slope, obstacles, and vegetation.
- 2. Driver discomfort in negotiating rough terrain (ride comfort) and his tolerance to vegetation and obstacle impacts.
- 3. Driver reluctance to proceed faster than the speed at which the vehicle could decelerate to a stop within the, possibly limited, visibility distance prevailing in the areal unit (braking-visibility limit).
- 4. Maneuvering to avoid trees and/or obstacles.
- 5. Acceleration and deceleration between obstacles if they are to be overriden.
- 6. Damage to tires.

Figure I.E.1 shows a general flow chart of how the calculations of the Areal Module are organized.

After determination of some vehicle and terrain - dependent factors used repetitively in the patch computation (1),* the Module is entered with the relation between vehicle steady-state speed and theoretical tractive force and with the minimum soil strength that the vehicle requires to maintain headway on level, weak soils. These data

* Numbers in parentheses correspond to numbers in Figure I.E.1.

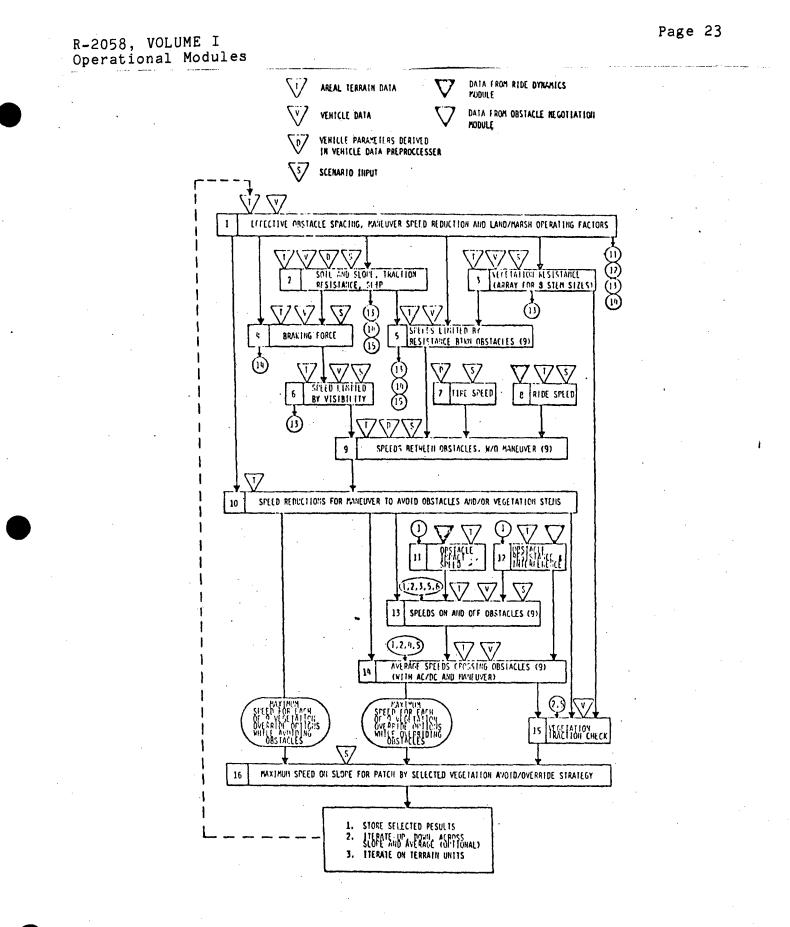


FIGURE I.E.1 -- GENERAL FLOW OF INRMM AREAL MODULE

are provided by the vehicle data preprocessor. Soil and slope resistances (2) and braking force limits (4) are computed, and the basic tractive force-speed relation is modified to account for soil-limited traction, soil and slope resistances, and resulting tire or track slip. Forces required to override prevailing tree stems are calculated for eight cases (3): first, overriding only the smallest stems, then overriding the next largest class of stems as well, etc., until in the eighth case all stems are being overridden.

Stem override resistances are combined with the modified tractive force-speed relation to predict nine speeds as limited by basic resistances (5). (The ninth speed corresponds to avoiding all tree stems.)

Maximum braking force and recognition distance are combined to compute a visibility-limited speed (6). Resistance and visibility-limited speeds are compared to the speed limited by tire loading and inflation (7), if applicable, and to the speed limit imposed by driver tolerance to vehicle motions resulting from ground roughness (8). The least of these speeds for each tree override-and-avoid option becomes the maximum speed possible between obstacles by that option, except for degradation due to maneuvering (9).

Obstacle avoidance and/or the tree avoidance implied by limited stem override requires the vehicle to maneuver (or may be impossible).

Using speed reduction factors (derived in 1) associated with avoiding all obstacles (if possible) and avoiding the appropriate classes of tree stems, a series of nine possible speeds (possibly including zero, or NOGO) is computed (10).

A similar set of nine speed predictions is made for the vehicle maneuvering to avoid tree stems only (10). These are further modified by several obstacle crossing considerations.

Possible NOGO interference between the vehicle and the obstacle is checked (12). If obstacle crossing proves to be NOGO, all associated vegetation override and avoid options are also NOGO. If there are no critical interferences, the increase in traction required to negotiate the obstacle is determined (12).

Next, obstacle approach speed and the speed at which the vehicle will depart the obstacle, as a result of the momentarily added resistance encountered, are computed (13). Obstacle approach speed is taken as the lesser of the speed between obstacles, reduced for maneuver required by each stem override and avoid option, and the speed limited by the driver to control his crossing impact (11). Speeds off the obstacle are computed on the basis solely of the soil-and slope-modified tractive force-speed relation (22), i.e. before the tractive force speed relation is modified to account for vegetation override forces, the traction increment required for obstacle negotiation, or any kinetic energy available as a result of the associated obstacle approach speed (13).

Final average speed in the patch for each of the nine tree stem override and avoid options, while the vehicle is overriding patch obstacles, is computed from the speed profile resulting, in general, from considering the vehicle to accelerate from the assigned speed off the obstacle to the allowable speed between obstacles (or to a lesser speed if obstacle spacing is insufficient), to brake to the allowable obstacle approach speed, and to cross the obstacle per se at the computed crossing speed.

Following a final check to ensure that traction and kinetic energy are sufficient for single-tree overrides required (and possible resetting of speeds for some options to NOGO) a single maximum in-patch speed (for the direction of travel being considered relative to the in-unit slope) is selected from among the nine available values associated with obstacle avoidance and the nine for the obstacle override cases. If all 18 options are NOGO, the patch is NOGO for the direction of travel. If several speeds are given, selection is made by one of two logics according to scenario input instructions.

In the past the driver was assumed to be both omniscient and somewhat mad. Accordingly, the maximum speed possible by any of the 18 strategies was selected as the final speed prediction for the terrain unit (and slope direction). Field tests have shown, however, that a driver does not often behave in this ideal manner when driving among trees. Rather, he will take heroic measures to reach some reasonable minimum speed, but will not continue such efforts when those measures involve knocking down trees that he judges it imprudent to attack,

even though by doing so he could go still faster. In INRMM, either assignment of maximum speed may be made: the absolute maximum which addresses the vehicle's ultimate potential, or a lesser value which in effect more precisely models actual driver behavior.

If the scenario data specify a traverse prediction, the in-unit speed and other predictions are complete at this point, and the model stores those results specified by the user and goes on to consider the next terrain unit (or next vehicle, condition, etc). When a full areal prediction is called for, the entire computation is repeated three times: once for the vehicle operating up the in-unit slope, once across the slope, and once down the slope. Desired data are stored from each such run prior to the next, and at the conclusion of the third run, the three speeds are averaged. Averaging is done on the assumption that one-third of the distance* will be travelled in each direction, resulting in an omnidirectional mean.

* the average speed, V_{av} , is the harmonic average of the three speeds, i.e. $V_{av} = 3/[(1/V_{up}) + (1/V_{across}) + (1/V_{down})]$

b) Road Module

The Road Module calculates the maximum average speed a vehicle can be expected to attain traveling along a nominally uniform stretch of road, termed a road unit. Travel on super highways, primary and secondary roads, and trails is distinguished by specifying a road type and a surface condition factor. From these characteristics, values of tractive and rolling resistance coefficients for wheeled and tracked vehicles on hard surfaced roads are determined by a table look-up. For trails, surface condition is specified in terms of cone index (CI) or rating cone index (RCI). Traction, motion resistance, and slip are computed using the soil submodel of the Areal Module, with scenario weather factors used in the same way as in making off-road predictions.

The relations used for computing vehicle performance on smooth, hard pavements are taken from the literature (Smith (1970) and Taborek (1957)).

The structure of the Road Module, while much simpler, parallels that of the Areal Module. Separate speeds are computed as limited by available traction and countervailing resistances (rolling, aerodynamic, grade, and curvature), by ride dynamics (absorbed power), by visibility and braking, by tire load, inflation and construction, and by road curvature per se (a feature not directly considered in the Areal Module). The least of these five speeds is assigned as the maximum for the road unit (for the assumed direction relative to the

specified grade).

The basic curvature speed limits are derived from American Association of State Highway Officials (AASHO) experience data for the four classes of roads (AASHO (1975)) under dry conditions and are not vehicle dependent. These are appropriately reduced for reduced traction conditions, and vehicle dependent checks are made for tipping or sliding while the vehicle is in the curve.

At the end of a computation, data required by the user are stored. If the model is run in the traverse mode, the model returns to compute values for the next unit; if in the areal mode, it automatically computes performance for both the up-grade and down-grade situations and at the conclusion computes the bidirectional (harmonic) average speed. Scenario options are similar to those for the Areal Module.

F. Acknowledgments

As with any comprehensive compendium covering knowledge in a particular subject area, the results are due to the combined effort of all workers in the discipline. The authors, in this case, are somewhat akin to the scribes of ancient days, recording and organizing the wisdom and folly of those around them.

There are those, however, whose contributions stand out as related to the creation of the Mobility Model itself. The authors w.sh to acknowledge these people explicitly.

> Clifford J. Nuttall, Jr., currently with the Mobility Systems Division, Geotechnical Laboratory at the U. S. Army Engineer Waterway Experiment Station (WES) provided the inspiration for many of the submodels, guided the evolution of the content of the entire model, and provided the wisdom and judgement which hopefully kept the various portions in proportion with each other. Additional experience in use of this and predecessor models came from many studies conducted by Donald Randolph at WES. During the model development period, general direction and supervision at WES came from W. G. Schockley, A. A. Rula, E. S. Rush and J. L. Smith.

> Peter Haley, from the Tank Automotive Concepts Laboratory, USA TARADCOM, and also the manager of the NATO Reference Mobility Model, in addition to providing overall guidance and judgment

did much of the seemingly endless detailed design and testing of the algorithms and code. He was aided in the coding by Thomas Washburn. Direct supervision of the model development at TARADCOM came from Zoltan J. Janosi, who also now serves as Chairman of the Technical Management Committee of the NATO Reference Mobility Model. General supervision during the project was provided by J. G. Parks, O. Renius, and Lt. Col. T. H. Huber. Dr. E. N. Petrick, Chief Scientist of USA TARADCOM, the moving force of the NATO RSI effort in the U. S. Army vehicle community, provided overall guidance and support for this activity. He has been aided in this by Edward Lowe, NATO Standardization and Metrication Officer at TARADCOM.

Newell Murphy of the Mobility Systems Division, WES, provided the driving force behind the current version of the Ride Dynamics Module, supervising its conception, creation, and testing as well as guiding the field work supporting it. Richard Ahlvin of WES and Jeff Wilson of Mississippi State University bore primary responsibility for the production of the sequence of computer programs which have implemented this Module.

The authors also wish to acknowledge the contributions of their colleagues at Stevens Institute of Technology. Jan Nazalewicz was responsible for much of the Obstacle Module. Supervision and guidance during the project came from I. Robert Ehrlich and Irmin O. Kamm.

The arduous task of entering and formatting the text of this report was performed by M. Raihan Ali and Gabriel Totino. Graphics and charts were prepared by Mary Ann McGuire and Christopher McLaughlin. The authors benefited from a careful review of the first draft by Peter Haley. Finally each of the authors notes than any errors are the fault of the other author.

II ALGORITHMS AND EQUATIONS

The INRMM has been implemented in a computer program called NRMM, written in FORTRAN Extended, version 4.6, for the CDC 6600 computer. The description of the Operational Modules which follows occasionally refers to particular aspects of this implementation.

A. Control and I/O Module

The Control and I/O Module (C&I/O) of NRMM consists of a main program and several subroutines which control the flow between vehicle and terrain input and the two operational modules for patches (Areal terrain units) and roads. It is also responsible for output. An overall illustration of the Control and I/O Module is given in Figure II.A.1.

After initialization and setting of variables to their default values, the program opens the files required. It then calls subroutine SCN to read the control variables, which determine how the program is to operate, and the scenario variables, which determine conditions of the simulation.

The program then calls subroutine VEH, which reads the vehicle data, and subroutine VPP, the Vehicle Preprocessor, which calculates vehicle descriptors derived from the vehicle input data, some of which depend on values of scenario variables. Details of these calculations are given in the next section, Section II.B.

Page 34

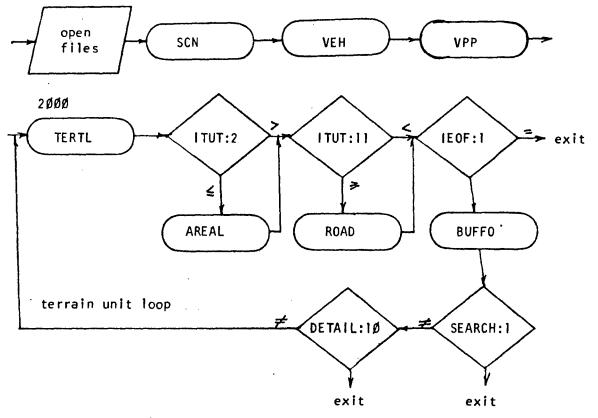


FIGURE 11.A.1 -- Structure of Control and 1/0 Module

The program then enters the terrain loop; that is, it reads the descriptors of the terrain unit under control of subroutine TERTL and its subroutines MAP71, MAP74, MPRD74, calculates several terrain descriptors derived from the primary terrain input data, some of which also depend on values of scenario variables. The program then selects the appropriate operational module, AREAL or ROAD, and calculates the speed the vehicle could be expected to go on that terrain unit. The program returns to TERTL and repeats these calculations if there is more terrain data. If not, the program exits.

There are two options that restrict the loop to a single terrain unit other than if only one terrain unit is present in the terrain input file. Setting control variable SEARCH to 1 indicates that a single terrain unit, whose terrain unit number is given by NTUX, is to be sought in the terrain input file and that the mobility model calculations are to be performed for that one unit only. Control variable DETAIL indicates to what level of detail the output is to be written. The following actions are taken for various values of DETAIL.

- DETAIL = 1: only the output from BUFFO is written this consists of terrain unit identification, grade, and maximum and selected speeds only.
- 2. DETAIL = 2,3 or 4: above output is written. Also control, scenario and vehicle input is echoed, and output from the vehicle Preprocessor is written.
- 3. DETAIL = 5 : results from almost all intermediate calculations are written. A printer-plot of the tractive effort vs. speed relationship is generated and program execution is terminated after the vehicle preprocessor.
- 4. DETAIL = 10: Results from almost all intermediate calculations are written.

Setting DETAIL to 10 results in a large volume of output. A check is made in the C&I/O Module and if DETAIL = 10 an exit is made after execution on one terrain unit.

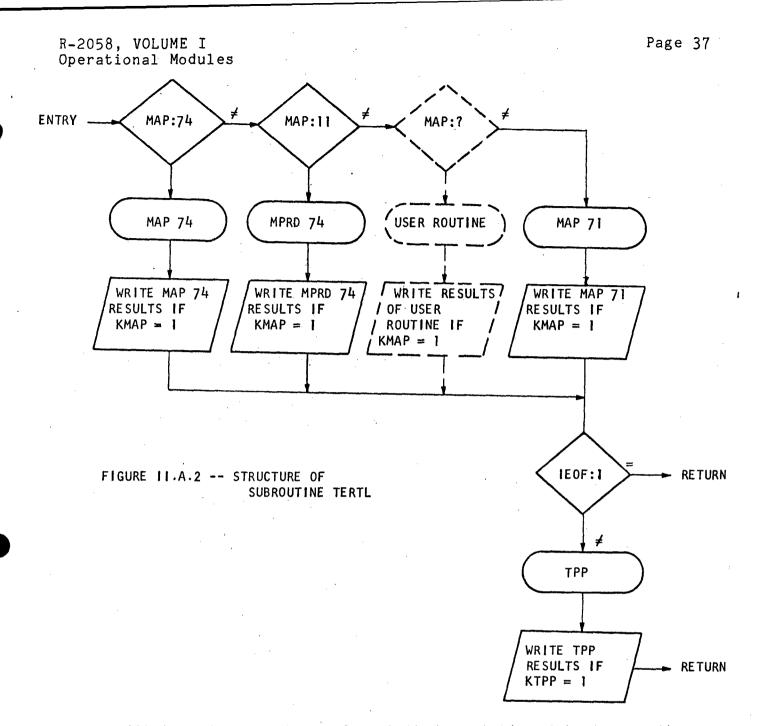
The individual subroutines of the C&I/O Module will now be described briefly.

1. Subroutine SCN - Scenario and Control Input

This subroutine sets default values for the scenario variables (see Section III.D) and then reads the control variables. These consist of flags controlling writing of output for the entire program and individual routines, and the single terrain unit search described above. Then the scenario variables are read, echoed if the appropriate flag (KSCEN) was set to 1, and converted to standard units as necessary.

Page 36

2. Subroutine VEH - Vehicle Input


This subroutine reads the vehicle parameters as described in Section III.B.1 below and echoes them if the flag KVEH is set to 1.

3. Subroutine VPP - Vehicle Preprocessor Control

This is the Vehicle Preprocessor control program. It consists solely of a series of calls to Subroutines II1, II2,...,II17 and output statement executions as the flags KII1, KII2,...,KII17 are set. If DETAIL = 5, a printer plot describing the vehicle power train is written using Subroutine PLTSET.

4. Subroutine TERTL - Terrain Translator

This subroutine controls the terrain data inputs. Since terrain files are often large and the results of long and expensive effort,

users will be reluctant to re-format their existing data to use the NRMM. Instead, the user may write a FORTRAN subroutine which reads the existing files and adjusts the data to satisfy the terrain data requirements of NRMM. Calls to these subroutines are controlled by a Control/Scenario variable called MAP. Three terrain data input routines are currently part of NRMM:

i) Subroutine MAP71, called if MAP is not equal to one of the

Page 38

values below,

- ii) Subroutine MAP74, called if MAP = 74,
- iii) Subroutine MPRD74, called if MAP = 11.

If the user writes a terrain input routine, called MXXXXX, for an existing data file, a unique, new value of MAP must be assigned and an appropriate IF, CALL and echo write (if desired) need to be added to Section 2., ALGORITHM, in Subroutine TERTL. Care must be taken that this new subroutine, MXXXXX, provides values for the complete list of terrain variables required by NRMM.

Each of the terrain data input subroutines must contain a check for end of terrain data. The existing routines use the CDC run-time FORTRAN function subprogram called EOF which returns a value of 1 if the READ tried to read a record but found an end-of-file instead. In this case the terrain input subroutines set the flag IEOF = 1 which is passed through TERTL to the C&I/O main program; whereupon the NRMM run will terminate.

If another terrain unit was read, TERTL will call Subroutine TPP, the Terrain Preprocessor, described in Section II.C. below, and will write the results if the flag KTPP is set. TERTL then returns.

a) Terrain Input/Translation Subroutine MAP74

This subroutine reads a record for each terrain unit consisting of actual terrain descriptors. These include various values for cone index, grade, obstacle geometry and spacing, surface roughness, spacing of vegetation in eight stem diameter classes, and various values of recognition distance. The particular value of cone index and recognition distance chosen depend on the scenario variables ISEASN and MONTH, respectively. The format of the data to be read by this subroutine is described in Section III.C.2.

The input record also contains NTU, the terrain unit number. If SEARCH = 1 (that is, a particular terrain unit is sought), MAP74 will continue to read terrain unit records, discarding those for which NTU differs from NTUX. Only when a record is read for which NTU = NTUX will MAP74 return to TERTL.

b) Terrain Input/Translation Subroutine MPRD74

This subroutine was designed to read records describing roadway units, including trails compiled for a particular study. For this study the speed limits imposed by horizontal curvature were included as terrain data. Since the Road Module required road curvature as the descriptor, this routine translates the curvature speed limit back to curvature.

The routine first establishes a table relating curvature to maximum speed for four classes of roads: superhighways, primary roads, secondary roads, and trails. Then MPRD74 reads a record of actual values describing the roadway, including cone indexes, grade, recognition distances, surface roughness, curvature speed limit,

coefficient of friction, superelevation, and a surface condition factor. The curvature vs. speed table is then interpolated to set a curvature based on the curvature speed of the actual roadway unit. The format of the data to be read by this subroutine is described in Section III.C.3.

The input record also contains NTU, the terrain unit number. If SEARCH = 1 (that is, a particular roadway unit is sought), MPRD74 will continue to read roadway unit records, discarding those for which NTU differs from NTUX. Only when a record for which NTU = NTUX is read will MPRD74 process the data and then return to TERTL.

c) Terrain Input/Translation Subroutine MAP71

This subroutine was designed to read terrain data as class interval designators and to translate these designators into actual terrain descriptors. This is the format of the terrain data files read by an earlier mobility model, AMC71.

The entire range of possible values for each of the terrain descriptors is divided into a sequence of intervals from which a single number, the interval representative, is used for all terrain units whose actual value of that descriptor falls within that interval. This interval is given an integer as its designator. The terrain files read by MAP71 consist of records, one for each terrain unit, containing one or two digit integers designating those intervals into which the terrain descriptors fall.

The subroutine first establishes tables, one for each terrain descriptor, of representatives for each designator. This is done by DATA statements. Then records are read, tests are made for end of input file (and NTUX if SEARCH = 1) and the class interval representatives are loaded into the terrain descriptors by simple table lookup procedures. The format of the data to be read by this subroutine is described in Section III.C.1.

A test is made to check the compatability of obstacle parameters and flags are set for those stem diameter classes not present in the terrain unit. The routine then returns to TERTL.

5. Subroutine AREAL - Areal Module Control

This subroutine is the control program for the Areal Module. It consists solely of a sequence of CALL's to subroutines named IV1, IV2,...,IV21, each call followed by a test of the corresponding flag KIV1, KIV2,...,KIV21 to determine if the results of that subroutine are to be written. The Areal Module is described in section II.D below. The subroutine then returns to the C&I/O main program.

6. Subroutine ROAD - Road Module

Since the Road Module is considerably smaller than the Areal Module no separate control program was written. This subroutine is the entire Road Module and described in Section II.E below.

7. Subroutine BUFF0 - Basic Output

This is the basic output subroutine of the C&I/O Module. The particular outputs are described in Section III.E.

120

B. Vehicle Preprocessor

The Vehicle Preprocessor Module consists of a sequence of subroutines named II1, II2,...,II17, and some additional subroutines named TRAIN, AUTOM, STICK, LINEAR, FIT, APPROX, SOLVER, LINES, RESIDU, PLTSET, SCAL, LIMITS, FIXER and CURPT called by II16. These routines adjust dimensions and calculate derived vehicle descriptors, including the tractive effort vs. speed relationship.

The tractive effort vs. speed relationship, at this stage (i.e., without attenuation for soil limits or slip) also known as the rim pull curve of the vehicle, is fitted by a sequence of quadratic curves for various ranges of speeds. If the program encounters difficulties with the curve fit procedure it will print/plot the points and the curves for user analysis and intervention. Alternately the user may wish to have the points and curves plotted in any case by setting the switch DETAIL to 5.

The individual subroutines comprising the Vehicle Preprocessor will now be described.

1. Subroutine II1 - Units Conversion Routine

This routine changes those vehicle parameters that are not entered in the units of lbs, inches, radians and/or seconds into these units. One exception is the engine revolutions per minute which are converted to revolutions per second, not radians per second.

Those users describing their vehicles in SI units will be required to modify this routine extensively or perhaps write a separate program to change the vehicle data into the U.S. Customary units used in NRMM.

2. Subroutine II2 - Gross Combined Weight

The weight on each suspension assembly is given as part of the vehicle input. In addition, the flag IP(i) = 1 indicates that assembly i is powered and the flag IB(i) = 1 indicates that assembly i is braked. This subroutine sums the weights on all the assemblies into GCW and the weight on the powered and braked assemblies into GCWP and GCWB, respectively. The weight on the non-powered, GCWNP, and non-braked, GCWNB, assemblies is also calculated.

3. Subroutine II3 - Maximum Tire Speed

This subroutine calculates a maximum speed which a wheeled vehicle could travel without destroying the tire. This speed, VTIRE(j), calculated

for

j = 1 fine grained soil

j = 2 coarse grained soil

j = 3 highway

depends primarily on tire size, construction, and inflation pressure.* The formulas are, for each assembly i,

 $s = (b_{ti} - .4b_{ri})/.75$

* For further explanation on how inflation pressure is used in this Model see Section II.D.3.

 $h = (4.32/s^{2.38})[(W_i/n_i)(1/(d_{ri}+s))]^{1.71}$ where b_{ti} = section width of tires b_{ri} = width of rims W_i = load on entire assembly $n_i = number of tires$ d_{ri} = diameter of rims. For radial tires (ICONST(i) \neq 1) $V_{tij} = 100.(p_{ij}/h)^2$ in miles per hour and for bias ply tires (ICONST(i) = 1) $V_{tij} = 70.(p_{ij}/h)^{2.25}$ in miles per hour where p_{ij} = pressure used in tires on assembly i for j = 1 fine grained soil j = 2 coarse grained soil j = 3 highway V_{tij} = maximum safe speed for tires on assembly i at pressure j. $V_{\texttt{tij}}$ is converted to inches per second in II3. The maximum safe tire speed for the vehicle is then

VTIRE(j) = min {V_{tij} for all i}

for tire pressure j.

These relationships are patterned after Eklund (1945) with modifications.

4. Subroutine II4 - Maximum Path Width

In this subroutine the maximum path width of the suspension assemblies is found by subtracting the clearance between the left and the right suspension assembly elements from the tread width and finding the largest such number.

5. Subroutine II5 - Tire Deflection Ratio

For each wheeled assembly i the variable δ_{ij} , or DFLCT(i,j), gives the deflection of the tire at the pressure used for j = 1 fine grained soil, j = 2 coarse grained soil, and j = 3 highway. This routine calculates the deflection ratio, DRAT(i,j), as the ratio of the deflection and the section height, h_i .

6. Subroutine II6 - Characteristic Length

In this routine the characteristic length, l_{ij} or CHARLN(i,j), of a suspension assembly i is set to the track length TRAKLN(i) of assembly i if tracked or

 $l_{ij} = 2(\delta_{ij} d_{ti} - \delta_{ij}^2)^{1/2}$ if wheeled where $\delta_{ij} = DFLCT(i,j)$

 d_{ti} = diameter of tire on assembly i

7. Subroutine II7 - Ground Contact Area

In this routine the ground contact area, GCA(i,j), for the elements on suspension i is set to

2 * characteristic length * track width if tracked or

characteristic length * section width if wheeled Since the characteristic length depends on tire pressure j, so does the ground contact area.

8. Subroutine II8 - Controlling Lateral Distance

In this routine, the minimum lateral distance, WTMAX, from the center of gravity to the supporting element of each suspension assembly is found. This represents the maximum lateral support base. Thus for wheeled vehicles

WTMAX = min { $t_i/2 - y_{CG} + (b_i/2)*ID_i$ for all i}

where

 $t_i = tread$ width of suspension i

b_i = section width of tires on suspension I
ID_i = 0 if singles
 1 if duals

and for tracked vehicles

 $WTMAX = min \{t_i/2 - y_{CG} \text{ for all } i\}$

9. Subroutine II9 - Maximum Rolling Radius

The rolling radius of the tire is calculated from the revolutions per mile, $REVM_i$, which is an input parameter, as RR = max (12*5280)/(2 *REVM_i)

10. Subroutine II10 - Maximum Braking Force

This subroutine calculates the maximum braking force the vehicle can support by summing the product of the braking coefficient, XBRCOF, entered as part of the vehicle data, and the weight on each suspension element for those suspension elements which are allowed to be braked [IB(i) = 1].

This force is to represent the vehicle's ability to arrest its running gear regardless of the running gear ground surface traction coefficient.

11. Subroutine II11 - Horsepower/ton

Here the net horsepower, HPNET, entered as part of the vehicle data is divided by the weight of the vehicle supported on the powered traction elements, CGWP, converted to tons.

12. Subroutine II12 - Vehicle Cone Index in Fine Grained Soil

This routine calculates the single pass Vehicle Cone Index for fine grained soil (VCIFG) for each suspension assembly by applying the equations for all-wheeled and tracked vehicles to a single axle or a pair of tracked elements. For wheeled axles, a separate VCIFG is calculated for the three tire pressures, possibly different, recommended for fine grained soil, coarse grained soil, or roads. For wheeled axles, the following calculations are made: Contact Pressure Factor: CPFFG = $W_i/(n_ib_id_i/2)$

where for each axle i

	W _i = weight on axle		
	ⁿ i = number of tires		
	b _i = section width) .
·	d _i = outside diameter of	tire	
Weight Facto	or: WF = .553 W _i /1000.	if	W <u>i</u> ≤2,000 1
· ·	= .033 W _i /1000. + 1.	if	2,000 <w<u>i<13,500</w<u>
	= .142 W _i /100042	if	13,500 <w<u>i<20,000</w<u>
	070 11		

= $.278 W_{i}/1000$. - $3.115 \text{ if } 20,000 < W_{i}$ Tire Factor: $TF = (10 + b_i)/100.$

Grouser Factor: GF = 1.00 without chains (ICHAIN_i = 0) = 1.05 with chains $(ICHAIN_{i} = 1)$

Wheel Load Factor: WLORF = $(W_i/1000)/(n_i/2)$

Clearance Factor: CLF = CLRMIN;/10

Engine Factor: EF = 1.00 if less than 10 hp/ton = 1.05 if 10 hp/ton or more

Transmission Factor: TFX = 1.00 for automatic (ITVAR = 0)

 $W_i < 2,000$ lbs

= 1.05 for manual (ITVAR 🗲 0)

Tire Deflection Factor: $TDF_{ij} = [((1 - \delta_{ij})/b_i)/.85]^{1.5}$

where δ_{ij} = deflection of the tire on axle i when inflated

with pressure recommended for

j = 1 fine grained soil
j = 2 coarse grained soil
j = 3 roadway

Mobility Index: XMI = [(CPFFG*WF)/(TF*GF) + WLORF - CLF]*EF*TFX Vehicle Cone Index (Wheeled, Fine Grained Soil)

 $VCIFG_{ij} = [11.48 + .2 XMI - 39.2/(XMI + 3.74)]TDF_{ij}$

For a left- right pair of tracked suspension elements, the following calculations are made:

Contact Pressure Factor: CPFFG = $W_i/(2l_ib_i)$

where for each left-right pair of tracked elements i

 W_i = weight supported by pair

l_i = length of tracked element in contact with
ground

b_i = width of tracked element

Weight	Factor:	WF	=	1.0	if	W _i <50,000
		WF	=	1.2	if	50,000 <u><</u> W _i <70,000
		WF	=	1.4	if	70,000 <u><</u> W _i <100,000
		WF	=	1.8	if	100,000 <u><</u> W _i

Track Factor: $TF = b_i/100$ Grouser Factor: GF = 1.0 if grouser height less than 1.5 in. GF = 1.1 if grouser height is 1.5 in. or more

Bogie Factor: WLORF = $W_i/10/N_i/A_{si}$

where N_i = total number of road wheels on tracks in contact with ground

 A_{si} = area of one track shoe (in²) Clearance Factor: CLF = CLRMIN_i/10 Engine Factor: EF = 1.00 if 10 hp/ton or more on element i = 1.05 if less than 10 hp/ton on element i Transmission Factor: TFX = 1.0 if automatic (ITVAR \neq 0) TFX = 1.05 if manual (ITVAR = 0) Mobility Factor: XMI = [(CPFFG*WF)/(TF*GF) + WLORF - CLF]*EF*TFX Vehicle Cone Index (Tracked, Fine Grained Soil) VCIFG = 7 + .2 XMI - 39.2/(XMI + 5.6)

13. Subroutine II13 - Vehicle Cone Index in Coarse Grained Soil

This routine calculates the single pass Vehicle Cone Index for coarse grained soil (VCICG) for each suspension assembly by applying the equations for an all-wheeled and tracked vehicle to each single axle or each pair of left-right tracked elements. For wheeled axles, a separate VCICG is calculated for the three tire pressures, possibly different, recommended for fine grained soil, course grained soil, and roads.

For wheeled axles, the following calculations are made:

Wheel Diameter Factor: WDF = 2. if $b_i/d_{ri} \ge 2.4$

WDF = 5. if $b_{i/d_{ri} < 2.4}$

where $b_i = nominal$ tire width

d_{ri} = rim diameter

Contact Pressure Factor:

CPFCG = $.607p_{ij} + 1.35[(117.*ply rating)/(WDF*b_i + d_{ri})]$ - 4.93

```
R-2058, VOLUME I
                                                                 Page 52
Operational Modules
        where p_{ij} = pressure of tire on assembly i recommended
                      for j = 1 fine grained soil
                          j = 2 coarse grained soil
                          j = 3 roadways
Contact Area Factor: CAF = log_{10}(W_i/CPFCG)
        where W_i = weight on axle i
Strength Factor:
        STF = .0526(n_i + .0211p_{ij}) - .35CAF + 1.587
        where n_i = number of tires on axle i
Vehicle Cone Index is then 10 raised to the power STF:
        VCICG_{ij} = 10^{STF}
For tracked assemblies, the VCICG is set equal to zero since it is not
used in further calculations.
14. Subroutine II14 - Vehicle Cone Index for Muskeg
```

This routine calculates the single pass Vehicle Cone Index for muskeg (VCIMUK) as follows:

where $b_i = track$ width $l_i = track$ length on ground

The use of these relationships to model vehicle performance on muskeg is included primarily for comleteness. It is a simplistic model based on data of a single study, Schreiner(1967).

15. Subroutine II15 - Combined Contact Pressure Factor

This subroutine finds the maximum contact pressure factor across suspension assembly. For wheeled assemblies a separate maximum is sought for each pressure setting, j = 1 fine grained soil, j = 2coarse grained soil, and j = 3 roadway.

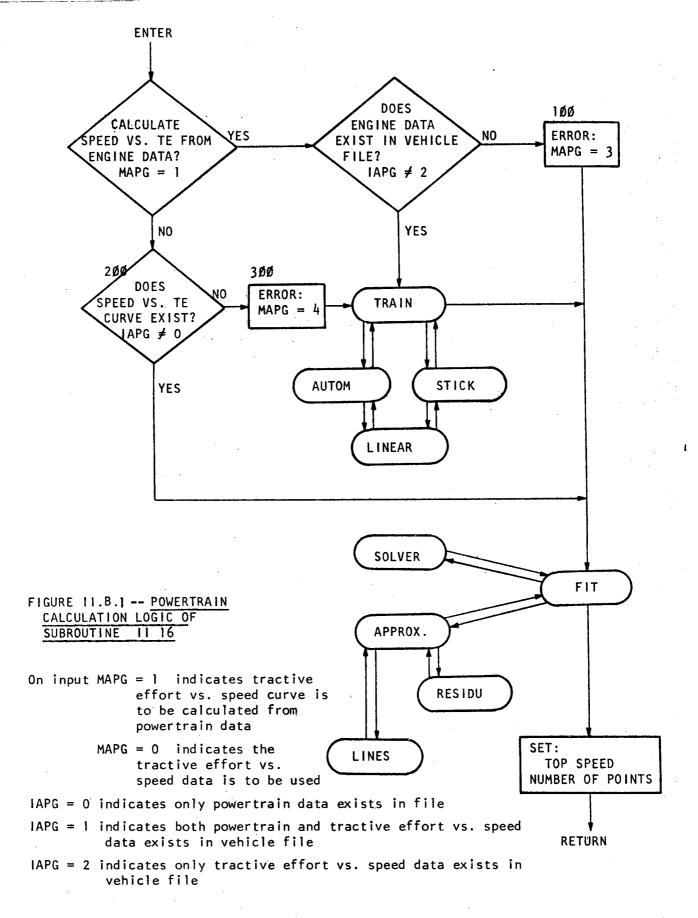
16. Subroutine II16 - Power Train

This subroutine controls the calculations used to specify the power train of the simulated vehicle.

The driving, as opposed to braking, characteristics of the vehicle are modeled by a tractive effort vs. speed of vehicle relationship. This relationship is given by a series of quadratics

 $F(v) = c_n v^2 + b_n v + a_n$

where different values for the constants c_n , b_n , a_n are used for different "gears", n. For computational purposes the gears are really speed ranges. Thus, if $v_{0}=0 \le v_1 \le v_2 \le \cdots \le v_n$ is a non-decreasing sequence of speeds that represent the "gear" intervals, the tractive effort relationship given by the above formula applies for $v_{n-1} \le v \le v_n$.


The precise manner of selecting the sequence $\{v_n: n=0,1,\ldots,NG\}$ and the number of gears, NG, consists of several discrete steps. The logic of this calculation is shown in Figure II.B.1.

The first step depends on whether the tractive effort vs. speed was entered as part of the vehicle data. If so, Subroutine FIT is entered immediately to calculate NG, the v_n 's, and the coefficients a_n , b_n , and c_n .

If the table of tractive effort vs. speed is to be constructed, it is constructed from basic power train descriptors such as engine torque at given RPM, the torque converter characteristics, the transmission and differential and/or transfer case ratios, and the radius of the drive sprocket or wheels. These calculations are controlled and performed by Subroutine TRAIN and the Subroutines AUTOM and STICK.

a) Subroutine TRAIN - Construction of Tractive Effort vs. Speed Curves

This routine controls the calculations to construct a table of tractive effort vs vehicle speed values. Since no slip or surface characteristics are used, this may be called the "rim pull curve". This routine first loads the speed array, POWER(SPEED,N), with values of forward speed from zero to 100 MPH in half mile-per-hour increments. The variable SPEED is declared integer and given a value 1

and used for clarity. POWER(FORCE,N) is initialized at zero. Here the variable FORCE is also declared integer and given the value 2 and used for clarity.

The engine torque vs. engine speed relationship is stored in the array ENGINE where the speed values are located in ENGINE(RPM,N) and the torque in ENGINE(TORQUE,N). Here RPM =1 and TORQUE = 2, both declared integer. If the vehicle is fitted with an engine-to-transmission transfer gear box, this relationship is modified to represent the torque vs. speed at the output shaft of this gear box.

Subroutine TRAIN then calls AUTOM for simulation of an automatic transmission or STICK for simulation of a manual transmission. Upon return, diagnostic output is written if called for.

(1) Subroutine AUTOM - Tractive Effort vs. Speed of Vehicle with Automatic Transmission and Torque Converter

The following calculations are performed for each transmission gear ratio and vehicle speed:

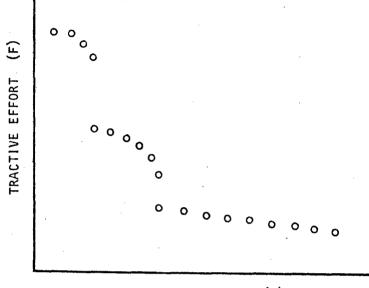
The routine first converts the vehicle speed to torque converter output speed by dividing by 2pi times the wheel/sprocket radius and multiplying by the final drive and transmission gear ratios. A trial value of engine RPM is then chosen and the resulting

torque converter speed ratio is calculated. From the input data, a torque converter input speed is estimated (by linear interpolation of the torque converter input speed vs. speed ratio data). The square of the ratio of this torque converter input speed to the engine output speed [which physically must be one but may not be due to the trial value of engine speed not being physically realizable] is then multiplied by the input torque at which the torque converter relationships apply to yield a torque converter input torque. From the engine data, an engine output torque is estimated by linearly interpolating the engine speed vs. torque relationship (also input data). The mismatches between engine output torque and torque converter input torque and engine output speed and torque converter input speed (physically both of which must be the same) are used to adjust the estimated engine speed higher or lower. This adjustment is performed by following a binary iteration scheme.

Once an engine speed at which both the engine output torque matches the estimated torque converter input torque and the engine output speed matches the torque converter input speed has been determined, the torque converter torque ratio at the specified speed ratio is used to calculate a torque converter output torque which when multiplied by gear ratios and efficiencies of the transmission and final drive and divided by the moment arm of the driving wheel/sprocket yields a driving force (tractive effort).

For each gear, the above calculations are done for every speed in the vehicle speed array. For each speed, the maximum tractive

effort among those for various gears is chosen.


(2) Subroutine STICK - Tractive Effort vs. Speed of Vehicle with Manual Transmission

For each speed and each gear, the vehicle speed is transformed into an engine speed by dividing by the circumference of the driving wheel/sprocket and multiplying by the final drive and transmission gear ratios. An engine torque is then estimated by linearly interpolating the engine speed vs. torque relationship. This torque is then transformed into a driving force (tractive effort) by multiplying by the transmission and final drive gear ratios and efficiencies and dividing by the moment arm of the driving wheel/sprocket.

For each speed, the maximum tractive effort among those for the various gears is chosen.

b) Subroutine FIT - Quadratic Curve Fit to Tractive Effort vs. Speed Relationship

The Tractive Effort vs. Speed relationship above may be visualized as a sequence of points on a plot of those two variables. This routine determines the coefficients of a sequence of quadratics $F = a + bv + cv^2$ and the minimum and maximum speeds for which each of these quadratics fit the relationship plotted above. Each speed range for which a different set of coefficients (a,b,c) must be used

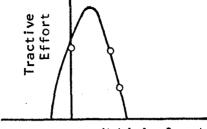
VEHICLE SPEED (V)

FIGURE 11.B.2 -- Plot of Tractive Effort vs. Speed Array

will be called a "gear" since for some vehicle transmissions the speed range may actually correspond to the speeds for which a particular transmision gear is used.

From the plot it is immediately apparent for what speed ranges each gear should be defined. This is due to the powerful pattern recognition capability of the human eye and brain. An efficient computer algorithm which has the same capability for a sequence of number pairs stored in computer memory is difficult to develop. Although the algorithm of this subroutine is capable of successfully distinguishing maximum and minimum speeds for each gear for large

class of engine/transmission combinations there are still occasional tractive effort vs. force relationships for which the quadratic fit procedure will not be satisfactory. In these cases the program will terminate and print-plot the relationship for human intervention.


Page 60

The procedure used here is, starting with three points, to sequentially fit quadratics using a least squares criterion and to test if the next point falls within a range of 2% of the tractive effort predicted by extrapolation of the fitted curve. If it does, this (next) point is included in the current gear and the procedure is repeated for the following point. If it does not, a new gear is started.

When all the points "belonging" to gear n have been found the coefficients of the least squares fitted quadratic (ATF,BTF,CTF) are calculated by use of a matrix inversion routine called SOLVER and the minimum, VGV(n,1), and maximum, VGV(n,5), speeds of the gear are set. Three speed values are interpolated at regular spacing [VGV(n,2), VGV(n,3), and VGV(n,4)] and the values of tractive effort for these five speeds are calculated [TRACTF(n,1),...,TRACTF(n,5)]. A new gear, n+1, is then started from the last speed value VGV(n,5).

When these calculations are complete a subroutine called APPROX calculates the difference between the quadratic approximation to the points and the straight lines fitted between any two adjacent points within the speed range of the gear. Subroutine LINES and RESIDU are used here. RESIDU checks if the difference is large and sets an error

indicator if it is. This test is used to avoid anomalous fits such as illustrated in Figure II.B.3.

Vehicle Speed

FIGURE 11.B.3. -- Possible Anomaly in Quadratic Equation Fit to a Gear

When this occurs, the program produces a print-plot of the tractive effort vs. speed relationship (both points and fitted curve) and writes a message indicating where the problem occured and a suggestion that additional points be included in the tractive effort vs. speed array. The subroutines which are used to produce the print plot are PLTSET, PNTRLT, SCAL, RESCAL, LIMITS and CURPLT.

If the basic tractive effort vs. speed relationship was originally entered as point pairs, all that is required is that additional point pairs be inserted as indicated. Otherwise, a possible solution is to enter the tractive effort vs. speed pairs as read from the printer-plot produced above as vehicle input data with the additional points inserted and to set MAPG to 0.

17. Subroutine II17 - Rotating Mass Factor

This routine calculates a factor which simulates the inertial mass of the rotating parts which have to be accelerated when the entire vehicle is accelerated. The factor varies depending on the gear in which the transmission is engaged. The formula is Rotating Mass Factor_{NG} = 1+ m_{F1} + m_{F2} *(r_{NG})² where NG = gear number $m_{F1} = .14$ if there is a tracked assembly on the vehicle = .03 otherwise $m_{F2} = [.008(id)^{1.68}n_e]/n_cW$ i = 2 if the engine is a two cycle diesel = 1 otherwise d = displacement in cubic inches $n_{\rho} = number of engines$ n_{c} = number of cylinders W = gross combined weight of vehicle $r_{NG} = (F_{NG}r_w)/(\eta Q_m)$ F_{NG} = tractive effort at center speed of gear NG r_w = rolling radius of driving wheel or sprocket radius $\eta = .7$ if there is a tracked assembly = .9 otherwise Q_m = maximum torque of engine regardless of gear.

C. Terrain Preprocessor

The Terrain Preprocessor is a short subroutine whose primary purpose is to adjust dimensions of the incoming terrain data, to select specific terrain values from optional ones based on scenario variables, calculate some derived terrain descriptors and adjust the terrain for a snow cover if so called for.

First the obstacle dimensions, recognition distance, radius of curvature, and stem spacing are converted to inches. Grade and obstacle approach angle are converted to radians. One of the RCI's given for dry, normal and wet season is selected based on the value of the scenario variable ISEASN.

An elevation correction factor for engine performance is calculated using the equation

ECF = 1 - .04e/1000.

where e = elevation of the terrain unit in feet, an input variable.

There are terrain situations where, even though the input data indicates obstacles are present in the patch, their effect on vehicle performance is negligible. In this case a flag, IOBS, is set to 1 indicating a patch bare of obstacles. This is done when

- 1. obstacle spacing is greater than 197 feet
- 2. obstacle approach angle is from 179 to 181 degrees.

Several parameters describing obstacle spacing are given by the equations below. A test is made to determine the consistency of the three input obstacle parameters in case of a mound since the class interval method of obstacle definition (e.g. as read by MAP71) could result in obstacles that cannot be physically realized. In this case the obstacle base width, OBW, is altered to be consistent with the other two parameters α_0 and h_0 . The resulting obstacle base width is designated here by w_0 .

The ground level width of the obstacle:

$$w_{og} = w_0 + 2h_0 ABS(\cos \alpha_0 / \sin \alpha_0)$$
 for trenches
= w_0 for mounds

where

h_o = obstacle height

 α_0 = obstacle approach angle

 W_{O} = base width of obstacle

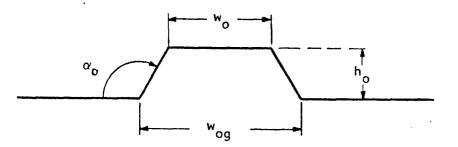


FIGURE II.C.1 -- Side View of an Obstacle

The top of a mound or bottom of a trench is the minimum obstacle width.

$$W_0 = W_0$$
 for trench
= $W_0 - 2h_0 * ABS(\cos \alpha_0 / \sin \alpha_0)$ for mound

The maximum extent across an obstacle:

$$d_0 = (w_{og}^2 + 1_0^2)^{1/2}$$

where $l_0 = length of obstacle$

It is assumed here that the ground level plan of the obstacles base is rectangular with width w_0 and length l_0 .

The mean obstacle approach width:

$$\bar{w}_{oa} = 2(l_0 + w_{og})/\pi$$

It is assumed here that the rectangle represented by the base of the obstacle may be oriented at any angle to the approach path of the vehicle and that this approach angle is uniformly distributed between 0 and $\pi/2$. The mean approach width is derived by:

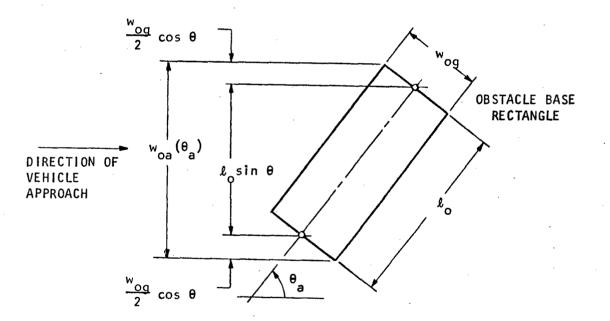


FIGURE 11.C.2 -- Vehicle Approach to Obstacle

where

 $W_{oa}(\theta_a)$ = obstacle approach width

a = vehicle approach angle

Note that for obstacle crossing, both in the Obstacle Module and in the Areal Module, it is assumed that $\theta_a = 90$ degrees. The calculations here are used in the calculations of speed reduction due to maneuvering around obstacles in Areal Module Subroutine IV1. Average Terrain Unit Area per Obstacle:

$$A_0 = \pi (S_0/2)^2$$

where S₀ = average obstacle spacing. This average spacing is calculated by counting the number of obstacles in a large circular area of diameter D. Obstacle spacing is then

 $S_0 = [(\pi/N)(D/2)^2]^{1/2}$

where N = number of obstacles in a circular area of diameter D. S_0 is an input terrain variable. Since S_0 can be interpreted as the circle diameter which on average contains one obstacle, the area per obstacle is given by the above formula.

For regularly spaced obstacles which cannot be avoided $W_{og} = d_0 = \overline{w}_{oa} = A_0 = 0.$

If the scenario variable ISNOW calls for a snow cover of z_s inches, the "snow machine" is used. This is a portion of code which sets the surface/soil type to signal snow (IST = 4), reduces the height of obstacles $z_s Y/.8$ where Y = snow specific gravity, and attenuates the surface roughness by a factor of $\gamma/.4$ for snow depth below twice the surface roughness, RMS, and by a factor of

 $1 - 1/2(1 - Y/.4) (z_s/RMS)$

for snow depths above twice RMS.

No snow is permitted on water covered terrain units and the above obstacle attenuation is not performed for roads and trails (which have no obstacles). The Terrain Preprocessor then returns to the Control and I/O Module.

D. Areal Module

The Areal Module, similar to the Vehicle Preprocessor, is a series of subroutines which are called sequentially by subprogram AREAL of the Control and I/O Module. This section will describe these subroutines in the order that they are called.

1. Subroutine IV1 - Obstacle Spacing and Area Denied

This subroutine calculates data for factors which are used in Subroutines IV2,IV15,IV16,IV17 and IV18 to model the average speed lost due to the increased time it would take a vehicle to maneuver around obstacles and vegetation. This speed loss is related to the size of the vehicle and the density (inverse spacing) of the obstacles and vegetation.

Vegetation, in NRMM, is categorized into NI categories and ranked from small to large stem diameter values. For the data files read by MAP71 and MAP74, NI = 8 and the spacing for a class is that for all the vegetation in that and higher classes. The data files yield a value for the average spacing of the vegetation in each stem diameter class. (The word "class" has been in common use for "category" in this field.) The vehicle/driver speed will be selected from those achieved under a variety of possible avoidance and override strategies. These strategies are all combinations of avoiding and overriding obstacles and avoiding or overriding vegetation in certain size classes as described below.

Within the program these various speed estimates are indexed by stem diameter classes i = 1,2,...,NI. Thus, SRFV(i) stands for the speed reduction factor due to overriding vegetation in stem diameter classes 1,2,...,i-1 and avoiding stem diameter classes i,i+1,...,NI. Furthermore, SRFO(i) stands for the speed reduction factor due to avoiding obstacles while overriding vegetation in stem diameter classes 1,2,...,i-1 and avoiding those in classes i,i+1,...,NI. Eventually these 2NI factors will be applied (although not as explicitly calculated variables in the program) to 2NI speeds for each of 3 slope crossing conditions (uphill, level and downhill) if cross country simulation is called for (NTRAV = 3). This results in 6NI speed estimates. If NTRAV = 1, only one slope crossing condition is estimated and 2NI speeds are calculated.

This calculation of these speed reduction factors is based on the concept that each obstacle or tree to be avoided can be translated into an area of the terrain that is denied to the vehicle, or more precisely above which the CG of the vehicle cannot go. For instance, for a tree with a diameter of d and a vehicle with a width w the area denied by that one tree is a circle of radius (d+w)/2 centered at the tree. If many of the areas denied are scattered at random over the terrain unit, any one traverse will be forced to deviate from a straight line for maneuvers around the scattered obstructions. The length of the path is increased when the density of the obstructions and/or the size of the vehicle is increased. Both of these factors increase the area denied. For purposes of NRMM an empirical relation between speed reduction and overall area denied is used to account for

obstruction avoidance.

In this routine the area denied due to the obstacles, ADO, and the area denied due to avoiding vegetation in classes i,i+1,...,NI, PAV(i), are calculated. Several checks are made for various conditions.

Obstacle avoidance is considered first. If the terrain unit is bare of obstacles, NEVERO is set to 2 indicating that the obstacle override calculations are to be skipped and ADO = 0, indicating no area is denied due to obstacles. The routine then considers vegetation avoidance.

Alternately, if the obstacles are so arranged that they are unavoidable, such as in rice paddies, ADO = 100. and the effective obstacle spacing OBSE = OBS, the actual obstacle spacing.

If obstacles are potentially avoidable, consideration is given as to whether they are small enough to fit under the vehicle or must be bypassed. The variable WI represents the minimum width between running gear elements of the vehicle, i.e., an obstacle no wider than WI will fit under the vehicle if it is no higher than CL, the ground clearance of the vehicle. If the obstacle is wider than WI it will not fit between the running gear and the effective width of the obstacle, EWDTH, is the width of the vehicle, WDTH, plus the width of the obstacle, OAW. The effective obstacle spacing is then OBSE = AREAO/EWDTH, the area assigned to each obstacle divided by the

effective obstacle width.

If the obstacle fits between the running gear elements, the effective width of the obstacle is the path width of a single running gear element, PWTE, plus the obstacle width, OAW. The effective obstacle spacing is then calculated as above. A check is made if the obstacle is higher than the ground clearance; if it is, NEVERO = 1 to indicate no obstacle override since the obstacle is too narrow to support the vehicle and too high to fit under it. Then the effective width and spacing is calculated from the full vehicle width, WDTH.

> The area denied by the obstacles is then calculated by ADO = 100 (area denied by a single obstacle)/(terrain unit area per obstacle).

The terrain unit area per obstacle is modeled as a circle whose diameter is the effective obstacle spacing. This area is $\pi(OBSE/2)^2$.

The area denied by a single obstacle is modeled by surrounding the rectangular obstacle base by a band the half-width of the vehicle and summing the areas of all the regions indicated in the figure II.D.1.

Thus the area denied by a single obstacle is

OBL*WA + 2(OBL*WDTH/2) +2(WA*WDTH/2) + π (WDTH/2)². The last term is the sum of the four quarter circles which form a full circle of radius WDTH/2.

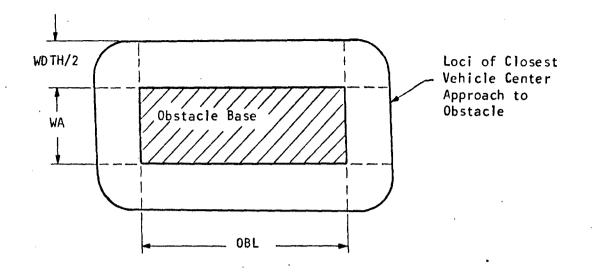


FIGURE 11.D.1 -- Area Denied Due to an Obstacle

To calculate the area denied by the vegetation to be avoided the density of stems in each stem diameter class is calculated first. Since the input data gives the average spacing of vegetation in a stem diameter class and greater, the spacing of individual classes has to be separated. This is given by:

The percentage of the area denied by avoiding stems in stem diameter classes i, i+1,...,NI is given by

$$PAV_{i} = 100/s_{i}^{2} \left[\sum_{j=i}^{NI} d_{vj} d_{j} / \sum_{j=1}^{NI} d_{j} - WDTH \right]$$

where d_{vj} = diameter of stems in stem diameter class j WDTH = width of the vehicle.

The total area denied due to avoiding obstacles and stems in stem diameter classes i,i+1,...,NI is given by

 $ADT_i = ADO + PAV_i(100-ADO)/100$ This formula takes some account of the possibility that the vegetation grows on obstacles. No additional area would be denied due to avoiding such vegetation.

2. Subroutine IV2 - Land/Marsh Operating Factors

This routine accounts for terrain units which may be water covered. The effect of the water may be to support part of the weight of the vehicle, reducing the effective normal forces on the running gear needed for traction. At the limit, the vehicle may be fully supported and will be swimming.

The routine first screens the terrain unit type. If it is dry, the float indicator is set to zero, r_{water} (WRATIO in the code) is set to one indicating the full load of the vehicle is on the running gear, and the under water drag area (DAREA) is set to zero. The routine then sets the tire pressure indicator, JPSI, and exits.

If the terrain unit is not dry, a test is made to determine if the water is sufficiently deep to prohibit fording. This can occur for a nonswimming vehicle and will result in a no go indicator, NOGOWD, to be set indicating the vehicle cannot proceed across this terrain unit. For a swimming vehicle this will result in a fully floating operation for which the selected terrain unit speed is set to the swimming speed, VSS, modified by vegetation avoidance. Water covered patches are assumed bare of obstacles.

If the vehicle can ford, that is, when the water is sufficiently deep to be noted but not deep enough to lift the vehicle clear off the ground or to stop its progress, the buoyancy is calculated by linear interpolation in a table of water depth (WDPTH) vs. weight reduction ratio (WRAT) yielding a value of r_{water} below 1.0 which, when applied to vehicle weight terms will reduce ground contact pressure. A final calculation results in the frontal area of the vehicle subjected to the water drag forces for later incorporation into the driving/braking force calculations. Before exit this routine sets JPSI, the tire pressure index. See description of the next routine for an explanation.

3. Subroutine IV3 - Pull and Resistance Coefficients

In this routine the draw-bar pull over weight (DOW) and resistance over weight (RTOW) coefficients for the given vehicle and the soil of the current terrain unit are calculated. Separate pull and resistance coefficients are calculated for each suspension

assembly, thus allowing the simulation of half tracks and tracked vehicles pulling wheeled trailers as well as combinations with large weight variations between axles. Also, different resistance coefficients are calculated for each assembly when it is braked and/or powered (DOWPB,RTOWPB) as opposed to towed in a free wheeling mode (RTOWT). The basic equations are included in Rula and Nuttall (1971) with revisions by Turnage (1972).

Four surface types are included: fine grained soils, coarse grained soils, muskeg and snow. For fine grained soils, provisions are made to simulate the effect on traction of slippery soil surface conditions due to recent rainfall, flooding and or standing water. Separate slipperiness effects are included for CH soils, which are largely impervious to water, and for other, more pervious fine grained soils. Coarse grained soils, muskeg and snow are assumed to never have slipperiness conditions caused by standing water, flooding or rainfall.

Where soil is very soft (soil strength exceeding vehicle cone index by at most 20) slipperiness is not a factor. If this excess (RCIX) is greater than 20 the pull coefficients are reduced by an exponential relationship detailed below. At a certain level, given by RCIX > RCIS, the reduction factor becomes constant indicating a "skating condition" on an extremely hard surface. The routine also accounts for the presence (NPAD = 1) or absence (NPAD = 0) of track road pads.

As described in the various routines of the Vehicle Preprocessor above [Sections II.B.3, II.B.5, II.B.6, II.B.7, II.B.12, and II.B.13], allowance is made for vehicles with central inflation pressure systems by allowing changes in tire pressure due to various soil conditions. The input data may contain up to three different tire pressures for use on fine grained soils, coarse grained soils, and highways. The scenario variable NOPP indicates how these should be used. If NOPP = 0, a vehicle which can change its inflation pressure is being simulated and the pressure appropriate for the terrain surface is used. On fine grained soil, muskeg, snow and water covered terrain units the fine grained soil pressure is used. If NOPP is not 0, the tire pressure is set to the inflation pressure to be used for all terrain units regardless of the type. The variable JPSI, set in routine IV2, indicates the pressure to be used: JPSI = 1for fine grained soil pressure, JPSI = 2 for coarse grained soil pressure, and JPSI = 3 for highway pressure.

In the current subroutine, JPSI indexes the value of VCIFG, DRAT, CPFFG, CHARLN, and GCA to be used. These are, respectively, the vehicle cone indices for fine grained soil, the tire deflection ratio, the contact pressure factor for fine grained soil, the characteristic lengths of the traction elements, and the ground contact area. All of these values depend on tire deflection which depends on the inflation pressure.

This subroutine uses three other subroutines, FGSTR, FGSPC, and FGSPR. These will now be described.

Subroutine FGSTR calculates the fine grained soil towed motion resistance (RTOW) for a suspension assembly. The routine first checks if the assembly is both powered and braked. If so, the assumption is made that it will never be free rolling (towed) so RTOWT, the returned coefficient, is set to zero. If the assembly may be towed and is tracked an error list is written on unit LUN1 and the program is halted since towed, tracked assemblies are not simulated. For towed, wheeled assemblies

W' = W_i r_{water}/n_i

where W_i = weight on axle i

 r_{water} = weight reduction ratio due to buoyancy

(=1. for dry terrain units)

 n_i = number of wheels on axle i

Then

 $\beta = [RCIb_{id_{i}} (\delta_{ij})^{1/2}]/[W' (1 - .5b_{i}/d_{i})]$ where RCI = rated cone index for assembly b_{i} = section width of tire

d_i = outside diameter of tire

 δ_{ij} = deflection ratio for pressure j

and

RTOW = $1 - .3412\beta$ for $\beta \le 2$ RTOW = $.04 + .2/(\beta - 1.35)$ for $\beta > 2$

This concludes Subroutine FGSTR.

Subroutine FGSPC calculates the fine grained soil pull coefficient (DOW). It depends on the contact pressure factor (CPF) and the excess rating cone index (RCIX) as follows:

```
R-2058, VOLUME I
Operational Modules
         RCIX = RCI - VCIFG_{ii}
For tracked assemblies and CPF < 4
         DOW = .544 + .0463RCIX
                   - [(.544 + .0463RCIX)<sup>2</sup> - .0702RCIX]<sup>1/2</sup>
         for RCIX < 0, DOW = .076RCIX
For tracked assemblies and CPF > 4
         DOW = .455 + .0392RCIX
                   -[(.455 + .0392RCIX)^2 - .0526RCIX]^{1/2}
         for RCIX < 0, DOW = .056RCIX
For wheeled assemblies and CPF < 4
         DOW = .3885 + .0265RCIX
                   -[(.3885 + .0265 \text{ RCIX})^2 - .0358 \text{ RCIX}]^{1/2}
         for RCIX < 0, DOW = .046RCIX
For wheeled assemblies and CPF > 4
         DOW = .379 + .0219RCIX
                 - [(.379 + .0219 \text{ RCIX})^2 - .0257 \text{ RCIX}]^{1/2}
         for RCIX < 0, DOW = .033RCIX
This concludes Subroutine FGSPC.
```

Subroutine FGSPR calculates the motion resistance coefficient (RTOWPB) of a powered/braked assembly. Similarly to the previous routine, it depends on excess RCI and the contact pressure factor as follows:

For tracked assemblies:

RTOWPB = .045 + 2.3075/(RCIX + 6.5)

for RCIX < 0 and CPF < 4 RTOWPB = .4 - .072RCIX

for RCIX < 0 and CPF \geq 4 RTOWPB = .4 - .052RCIX

For wheeled assemblies and CPF < 4

RTOWPB = .035 + .861/(RCIX + 3.249)

for RCIX < 0 RTOWPB = .3 - .043RCIX

For wheeled assemblies and CPF > 4

RTOWPB = .045 + 2.3075/(RCIX + 6.5)

for RCIX < 0 RTOWPB = .4 - .029RCIX

This completes Subroutine FGSPR.

Returning to Subroutine IV3, initially a test is made to determine the soil type and a transfer is made to the appropriate portion of code which is described next.

a) Fine Grained Soil

For fine grained soils the excess RCI is calculated with respect to the VCIFG_{ij} for assembly i and tire pressure j (if wheeled).

RCIX = RCI - VCIFG_{ii}

For an assembly never driven nor braked the powered resistance (RTOWPB_i) and pull coefficient (DOWPB_i) are set to zero and the towed resistance coefficient (RTOWT_i) is calculated by a call to Subroutine FGSTR. For powered or braked assemblies and a dry terrain

unit successive calls to FGSPC, FGSPR and FGSTR are used to calculate $DOWPB_i$, RTOWPB_i and RTOWT_i, respectively.

If the terrain unit is wet, the value of NSLIP indicates the extent of surface water according to Table II.D.1. For wheeled assemblies, the factor

 $x = \delta_{ij}/.4 - .375$

where δ_{ij} = deflection ratio of tires on assembly i at inflation j, is used to account for the beneficial effects of high inflation pressure, which helps to maintain the "circular" shape of the tire and thereby improves the tire's ability to break through the slippery layer.

Table II.D.1

Slipperiness Conditions and Parameters

NSLIP	Meaning			
1 2 3 4 5 6	less the more the less the less the	an 1" rain with an 6 hours rain an 6 hours rain an 1" rain with an 6 hours rain an 6 hours rain	with no : with no : free sur: with free	free water free water face water e surface water
CH Soils Impervious to Water				
	Tracked	Assemblies	Wheeled	Assemblies
NSLIP	DOWCS	RCIS	DOWCS	RCIS
1 2 3 4 5 6	•5 •3 •1 •1 •15	150 200 200 300	.35 .25x .2x .15x .15x .15	200 150 150
All Other Fine Grained Soils				
	Tracked	Assemblies	Wheeled	Assemblies
NSLIP	DOWCS	RCIS	DOWCS	RCIS
1 2 3 4 5 6		100 100 100 100 100 100	.1 .1 .1x	80 80 80 80 80 80

These relationships are not used for excess rating cone index, RCIX, less than or equal to 20. In that case the assumption is made that the soil is weak and plastic in relation to the load to be imposed on it by the vehicle and therefore surface water will not have a significant effect on traction and resistance. The coefficients \mathtt{DOWPB}_i , \mathtt{RTOWPB}_i and \mathtt{RTOWT}_i are calculated by calls to

subroutines FGSPC, FGSPR, and FGSTR, respectively.

For a soil/vehicle combination where the excess rating cone index (RCIX) exceeds 20, values for comparison rating cone index (RCIO) and pull coefficient (DOWCO) are set as follows: Tracked Assemblies: RCIO = 18. DOWCO = .4 Wheeled Assemblies: RCIO = 20. DOWCO = .55 and RCIS and DOWCS are set according to Table II.D.1.

If RCIX exceeds RCIS (from the table) and the assembly is wheeled, the pull coefficient is set to the table value of DOWCS and $RTOWPB_i$ and $RTOWT_i$ are calculated using subroutines FGSPR and FGSTR, respectively.

In case of a tracked assembly (and RCIX greater than or equal to RCIS), a further distinction is made for the presence of track road pads. If track pads are present (NPAD =1) the same calculations as for wheeled assemblies are made (under the observation that in both cases a rubber/soil interface exists). If there are no pads (NPAD = 0), in order to include the effect of grouser action when no pads are fitted the pull coefficient (DOWPB_i) is set to the average of DOWCS (from the table) and D (as calculated by subroutine FGSPC). The resistance coefficients are again calculated by subroutine FGSPR and FGSTR.

For excess rating cone index (RCIX) less than RCIS (from table) the pull coefficient (in this case DOWS) is calculated by the

log-linear relation

(log DOWS - log DOWCS)/(log DOWCO - log DOWCS) =

(log RCIX - log RCIS)/ (log RCIO -log RCIS)

For tracked assemblies with track pads, DOWS from this equation is averaged with the pull coefficient D from Subroutine FGSPC to form $DOWPB_i$. Otherwise DOWS becomes $DOWPB_i$. The resistance coefficients $RTOWPB_i$ and $RTOWT_i$ are calculated by subroutines FGSPR and FGSTR.

b) Coarse Grained Soil

This portion of Subroutine IV3 calculates the pull and resistance coefficients for each assembly when the terrain unit contains coarse grained soil. Dimensionless numerics developed by Turnage (1972) are used instead of the vehicle cone index (VCI). A basic cone index gradient term is calculated from

G = .8645CI/3.

For tracked vehicles, the towed resistance is set to zero since the NRMM does not model towed tracks. The pull coefficient is calculated from the pi term

for

 $\pi_{t} = [.6G(b_{i}l_{i})^{1.5}]/W_{i}$ where W_{i} = weight on assembly i b_{i} = track width l_{i} = track length on ground by DOWPB_i = .121 + .258log π_{t}

^π t<u><</u>25

R-2058, VOLUME I
Operational ModulesPage 84 $DOWPB_i = .339 + .109log^{m}t$ for $25 < \pi t \le 100$ $DOWPB_i = .481 + .038log^{m}t$ for $100 < \pi t \le 1000$ $DOWPB_i = .595$ for $1000 < \pi t$ $DOWPB_i = .595$ for $1000 < \pi t$ Then the powered/braked resistance coefficient is calculated from $RTOWPB_i = .6 - DOWPB_i$.

For wheeled axles, if the axle is never towed, the towed resistance coefficient, $RTOWT_i$, is set to zero. If the axle can be towed, the pi term is calculated by

 $\pi_{t} = G(b_{i}d_{i})^{1.5} \quad i^{1/3}/[(1-\delta_{ij})^{3} (1+b_{i}/d_{i})W_{i}/n_{i}]$ where W_{i} = weight on axle n_{i} = number of wheels on axle b_{i} = section width of tires on axle d_{i} = diameter of tires on axle i = axle number (from front)

 δ_{ij} = deflection ratio for tires at inflation j The towed resistance coefficient is then calculated by

$$RTOWT_{i} = .44 - .01^{\pi}t + [(.44 - .01^{\pi}t)^{2} + .0002^{\pi}t + .08]^{1/2}$$

If the wheeled axle can be powered or braked the width and weight are adjusted for the presence or absence of dual wheels. The pi term is

 $\pi_d = G(Bd_i)^{1.5}\delta_{ij} / W[i]^{1/2}$ where the above notation is used with

> B = b_i for singles, $2b_i$ for duals W = W_i/n_i for singles, $2W_i/n_i$ for duals.

The pull coefficient is then given by

 $DOWPB_i = .53 - 4.5/(\pi_d + 3.7)$ and the powered/braked resistance is

 $RTOWPB_i = .6 - DOWPB_i$.

c) Muskeg

This portion of the subroutine IV3 calculates the pull and resistance coefficients for each suspension assembly when the surface of the terrain unit is designated as muskeg or peat. The equations used are basically those developed for fine grained soils when the contact pressure factor is greater than or equal to 4psi. The excess rating index is calculated from

 $RCIX = RCI - VCIMUK_i$

where RCI = rating cone index of terrain unit

 $VCIMUK_i$ = vehicle cone index calculated for assembly i A candidate resistance coefficient is calculated by

RT = 1.if $RCIX \le -100$ RT = 1. - .006(RCIX + 100.)if $-100 < RCIX \le 0$ RT = .045 + 2.3075/(6.5+RCIX)if0 < RCIX

The towed resistance coefficient is set by

RTOWT_i = RT if assembly may be towed = 0 if assembly is always either powered or braked.

R-2058, VOLUME I Page 86 Operational Modules The powered resistance coefficient is set by $RTOWPB_i = RT$ if assembly may be powered or braked = 0 if assembly can only be towed. For unpowered assemblies the pull coefficient is set to zero. For powered assemblies the following cases are distinguished: $DOWPB_i = -1$. if RCIX < -100. $DOWPB_{i} = -1. + .1(RCIX + 100.)$ if -100.<RCIX<0 $DOWPB_{i} = .5464 + .1091RCIX$ $- [(.5464 + .1091RCIX)^2 - .192RCIX]^{1/2}$ if O<RCIX and the vehicle is tracked with contact pressure factor less than 4 psi $DOWPB_{i} = .3537 + .02258RCIX$ $- [(.3537 + .02258 \text{ RCIX})^2 - .03071 \text{ RCIX}]^{1/2}$ in all other cases.

d) Shallow Snow

This portion of subroutine IV3 calculates the pull and resistance coefficients for each suspension assembly when the scenario variables indicate that the terrain unit is covered with a shallow layer of snow. For this model shallow snow is defined as snow covering frozen ground at a depth less than the characteristic length of the tire or less than one third of the track length on ground.

Resistance is based on the force required for bulk movement of snow whereas traction is based on the Coulomb equation. Thus the towed resistance for wheeled vehicles is calculated from

$$RT = (10n_i b_i \gamma z_s) / (Nd_i l_{ii})$$

where $n_i = number$ of wheels on assembly i

N = total number of wheel axles on vehicle

 b_i = section width of tire on assembly i

 d_i = diameter of tire on assembly i

 γ = specific weight of the snow

 $z_s = snow depth$

 l_{ij} = characteristic length of tire on assembly i

at inflation j (see Section II.B.6))

and for tracked vehicles from

 $RT = (\gamma z_{s}) / (21_{ij})$

where l_{ij} = the characteristic length of the track.

For suspension assemblies that are never towed, $\text{RTOWT}_i = 0$. For assemblies that may be powered or braked the above equations are used for RTOWPB_i .

The pull coefficients are calculated using

 $TOWMAX = \tan \varphi + (cA_{ij}n_i)/W_i \qquad \text{wheeled assembly}$ $TOWMAX = \tan \varphi + (cA_i/W_i) \qquad \text{tracked assembly}$ where φ = internal angle of friction

c = cohesion

 A_{i}, A_{ij} = ground contact area n_{i} = number of wheels on assembly i

 W_i = weight supported by assembly i.

The pull coefficient is then set to

 $DOWPB_i = TOWMAX - RT.$

In all cases (fine grained soil, slippery fine grained soil, coarse grained soil, muskeg or snow) Subroutine IV3 passes on

RTOWT_i = towed resistance coefficient
RTOWPB_i = powered/braked resistance coefficient
DOWPB_i = pull coefficient
for each suspension assembly i.

4. Subroutine IV4 - Summed Pull and Resistance Coefficients

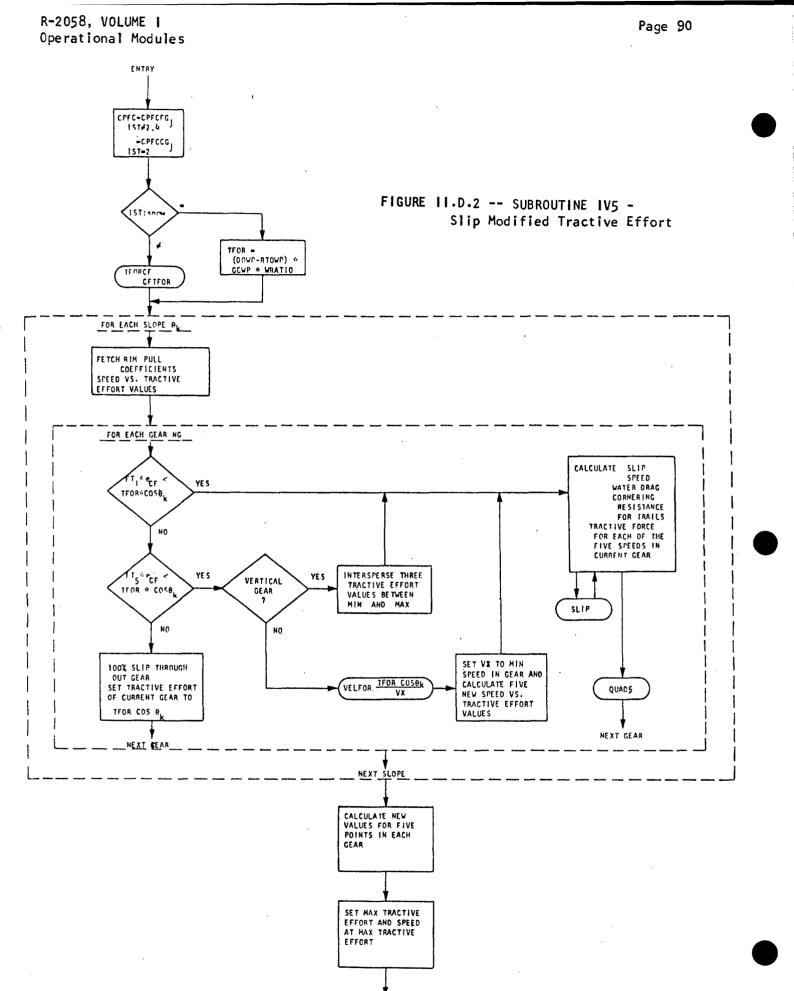
In this routine the individual suspension assembly resistance and pull coefficients are summed to provide overall, average vehicle coefficients. The formulas concerning traction are:

RTOWP = sum of RTOWPB_i*W_i/GCWP for powered assemblies i
DOWP = sum of DOWPB_i*W_i/GCWP for powered assemblies i
RTOWNP = sum of RTOWT_i*W_i/(GCW-GCWP) for unpowered
assemblies i

where RTOWP = average powered assembly resistance coefficient DOWP = average powered assembly pull coefficient RTOWNP = average un-powered assembly resistance coefficient W_i = weight supported by assembly i GCWP = weight supported by all powered assemblies GCW = gross combination weight RTOWPB_i = powered resistance coefficient of assembly i DOWPB_i = pull coefficient of assembly i

 $RTOWT_i$ = towed resistance coefficient of assembly i. The formulas concerning braking are similar to the above except that the summation is over the braked and non-braked assemblies.

5. Subroutine IV5 - Slip Modified Tractive Effort


This routine modifies the vehicle tractive effort vs. speed relationship, calculated in Subroutine II16 of the VPP, for slippage of the running gear in the soil. This relationship was stored as the coefficients of a quadratic relating speed to tractive effort in a "gear". Each gear was specified as an interval in the speed range of the vehicle.

This subroutine calls four other subroutines named TFORCF, VELFOR, SLIP, and QUAD5. These routines calculate

- 1. the soil limited maximum tractive effort (TFOR) available to the vehicle [by TFORCF]
- 2. the maximum velocity (VX) achievable when just overcoming a given resistance [by VELFOR]
- 3. the slip of the running gear (SLIP) when operating at a certain pull force coefficient [by SLIP]

4. the least square fitted quadratic to five points under the constraint that the fitted curve must pass through the extreme points of the independent variable, SPEED, [by QUAD5].

Subroutine IV5 first retrieves the appropriate ground contact pressure factor (either $CPFCFG_j$ or $CPFCCG_j$) and, in the case of soil types other than snow, calls subroutine TFORCF to calculate the maximum tractive effort (TFOR) available from the soil. In case of snow cover this is calculated from the pull (DOWP) and powered resistance (RTOWP) coefficients times the effective weight on the powered wheels. The routine then performs the following calculations



T RE TURN

for each slope (θ_k) and gear (NG).

Gears do not necessarily correspond to real gears in the transmission; they are intervals in the total speed range for which the tractive effort vs. speed curve (rim pull curve) can be well approximated by a quadratic

 $F = a_{NG} + b_{NG}v + c_{NG}v^2$ for $v_{1,NG} \le v \le v_{5,NG}$. Five points { $(v_{i,NG}, F_{i,NG})$, i=1,...,5: $v_{i-1,NG} \le v_{i,NG}$, i=2,...5} are given for the curve for each gear NG. A "vertical" gap, as shown in figure II.D.2, at speed \bar{v} is approximated as a gear with $v_{1,NG} = \cdots = v_{5,NG}$ and five values of F as indicated by the figure. It is generally assumed that $F_{1,NG}$ is the maximum tractive effort in gear NG (i.e. $F_{1,NG} \ge F_{i,NG}$) and that F5,NG is

NB: The lines represent rim pull curve. The entire gear NG = 1 is represented by the point at v = 0.

the minimum tractive effort in gear NG (i.e. $F_{5,NG} \leq F_{i,NG}$).

The routine fetches the coefficients (a_{NG} , b_{NG} , c_{NG}) and the points ($v_{i,NG}$, $F_{i,NG}$) for each gear. These will be modified for slip. First the total tractive effort available from the vehicle in each gear NG, $F_{1,NG}e_{CF}$, corrected by a terrain unit elevation factor e_{CF} , is compared to the slope modified maximum surface traction TFORcos θ_k . If not all the vehicle tractive force can be applied ($F_{1,NG}e_{CF} \ge TFORcos\theta_k$) the minimum surface tractive force $F_{5,NG}e_{CF}$ is compared to the maximum surface tractive force throughout the gear ($F_{5,NG}e_{CF} > TFORcos\theta_k$) the entire gear is approximated by 100% slip, the speeds $v_{i,NG}$ are all set to zero and the tractive effort is set to a constant TFORcos θ_k . The quadratic then reduces to $a_{NG} = TFORcos\theta_k$ with $b_{NG}=c_{NG}=0$.

If the soil can support a tractive effort between the minimum and maximum of the gear NG ($F_{5,NG} < TFORcos\theta_k \leq F_{1,NG}$), the subroutine VELFOR is called to determine the speed v* in the interval $[v_{1,NG,v_{5,NG}}]$ at which the vehicle produces the maximum surface tractive effort. The interval representing the gear NG is now adjusted to be $[v_{1,NG} = v^*, v_{5,NG}]$, the maximum tractive effort for this gear is reset to

 $F(v^*) = a_{NG} + b_{NG}v^* + c_{NG}(v^*)^2$ and five new values of tractive effort are calculated at equally spaced speed values from v^* to $v_{5,NG}$. These become the new gear $\{(v_{i,NG},F_{i,NG}), i=1,...,5: v_{1,NG}=v^*\}$. If this gear was a

vertical gear, the five points would be equally spaced from $F_{1,NG}$ to $F_{5,NG}$ all at $v_{1,NG}$.

If the maximum available tractive effort in the soil, modified for slip, is greater than the rim pull tractive effort, corrected for elevation, everywhere in the gear (TFORcos θ_k > $F_{i,NG}e_{CF}$) the computations proceed directly to adjustment of the speeds $V_{i,NG}$ for slip.

The above computations have the effect of limiting the tractive effort vs. speed curve of the vehicle, the rim pull curve, by the maximum tractive effort available from the terrain unit surface material. Each of the five points ($v_{i,NG}$, $F_{i,NG}$) for each gear NG are now individually adjusted for slip, altitude, and extra drag using the equations below. The force coefficient is calculated by

 $y = (F_{i,NG} e_{CF} r_w)/(GCWPcos\theta_k) - CF$

where

r_W = proportion of vehicle weight on running gear (=1 except possibly for water covered terrain units)

CF = slip curve correction factor (calculated in Subroutine TFORCF)

GCWP = gross combination weight on powered suspension elements.

This ratio is used by Subroutine SLIP to calculate the slip required of the traction elements (SLIPX) to produce force $F_{i,NG}$ for the given vehicle and terrain unit. The vehicle speed is then adjusted by

 $v_c = v_{i,NG}$ (1. - SLIPX) and the new point ($v_c, F_{i,NG}e_{CF}$) replaces ($v_{i,NG}, F_{i,NG}$) in the tractive effort vs. speed curve for the current terrain unit.

For water covered terrain units a hyperbolic drag is calculated from

 $w_{\rm D} = (.001110 \, {\rm A} \, {\rm v_c}^2)/2$

where $C_D = drag$ coefficient

A = submerged frontal area

and this drag is subtracted from F_{i.NG^eCF}.

For terrain units designated as trails, a cornering drag for wheeled assemblies is calculated by

```
\begin{array}{rcl} F_c = F_e \; \left\{ sum \; of \; \left( W_e cos \theta_k v_{iNG,\;MPH} / 111.1 \; R^{\,\prime} \right)^2 \\ & \left[ .75 / n_1 \alpha_1 (TFOR/GCWP) \right] & \text{for all wheeled assemblies 1} \\ \end{array} \right. \\ \\ \text{where} \quad F_e = \text{superelevation factor given by} \\ \quad F_e = 1 \; - \; 7.495 \text{R'e} \\ \quad e \; = \; \text{superelevation angle} \\ \quad R^{\,\prime} \; = \; \text{radius of curvature in feet} \\ \quad v_{iNG,\;MPH} \; = \; \text{speed } v_{i,\;NG} \; \text{in } \text{MPH} \\ \quad W_1 \; = \; \text{weight on axle 1} \\ \quad n_1 \; = \; \text{number of wheels on axle 1} \\ \quad \alpha_1 \; = \; \text{cornering stiffness of tires on axle 1} \\ \end{array} \right. \\ \\ \text{This force is subtracted from } F_{i,\;NG}^e \text{CF.} \end{array}
```

The five new tractive effort vs. slip corrected speed points for each gear are now fitted with a quadratic which is constrained to

pass through the points for the minimum and maximum slip corrected speeds of the gear using Subroutine QUAD5. Before returning, subroutine IV5 sets the maximum available tractive effort value for each slope, FORMX(K), and the speed at which FORMX(K) occurs, VFMAX(K).

a) Subroutine TFORCF - Soil Limited Tractive Effort

The drawbar pull and traction vs excess rating cone index relationships used in NRMM are based on tests conducted at 20% slip (Turnage (1972)). Subroutine IV5 requires tractive effort at 100% slip.

This routine calculates the slip curve correction factor, CF, and the soil limited tractive effort, TFOR, according to the following formulas:

Fine Grained Soil

Tracked Vehicles

CF = DOWP758 + RTOWP	for CPFC < 4
TFOR = (CF + .82)GCWP	

 $CF = DOWP - .671 + RTOWP \qquad for CPFC \ge 4$ TFOR = (CF + .71)GCWP

Wheeled Vehicles

 $CF = DOWP - .674 + RTOWP \qquad for CPFC < 4$ TFOR = (CF + .76)GCWP $CF = DOWP - .585 + RTOWP \qquad for CPFC > 4$

Muskeg

Wheeled Vehicles and CPFC \geq 4 CF = DOWP - .68 + RTOWP TFOR = (CF + .745)GCWP All other cases CF = DOWP - .88 + RTOWP TFOR = (CF + .91)GCWP

b) Subroutine VELFOR - Maximum Velocity Overcoming a Given Resistance

This routine finds the maximum velocity, v*, that a vehicle can travel while overcoming a given resistance from the tractive effort vs. speed curve after adjustment for soil limited traction and driving element slip.

The tractive effort vs. speed curve is given by

 $F = a_{NG} + b_{NG}v + c_{NG}v^2,$

a sequence of quadratics in various speed ranges $(v_{1,NG} \leq v \leq v_{3,NG})$, where NG indexes the speed ranges from 1 to NGR, the number of speed ranges (or gears). Note that for this routine there are three speeds given for each gear. This routine in effect solves for maximum v given an F by solving the quadratic equation

 $c_{NG}v^2 + b_{NG}v + (a_{NG} - F) = 0.$ Let the discriminant be denoted by

 $d^2 = b_{NG}^2 - 4(a_{NG} - F)c_{NG}$.

For $d^2 < 0$ it must be true that $c_{NG} \neq 0$ and $a_{NG} - F \neq 0$. Then the quadratic has no real solution. If $c_{NG} > 0$, the tractive effort vs. speed curve for the gear NG lies entirely above the value F so the speed, v*, that the vehicle can achieve is set to the maximum in the gear, namely v* = $v_{3,NG}$. If $c_{NG} < 0$ the entire curve for the gear is below the value F so the vehicle cannot overcome the resistance in the gear NG and thus a lower gear is tested.

For $d^2 = 0$ two cases can occur. For $c_{NG} \neq 0$ there is a unique intersection between the quadratic and the line F = constant. Since a single point intersection (tangency) between the tractive effort vs. speed curve and the line F = constant is, realistically, similar to no intersection at all, decisions like those for the case of $d^2 < 0$ are made when $c_{NG} < 0$ [seek a lower gear] and when c_{NG} > 0 [set v* = v_{3,NG}]. When $c_{NG} = 0$, then $b_{NG} = 0$ (since $d^2 =$ 0) and thus the tractive effort vs. speed curve for gear NG is a

horizontal line through a_{NG} . If F < a_{NG} the vehicle can proceed at maximum speed in the gear [set v* = $v_{3,NG}$] and if F > a_{NG} the vehicle cannot overcome the resistance F in gear NG and thus a lower gear is sought.

For a positive discriminant, $d^2 > 0$, and $c_{NG} = 0$, the tractive effort vs. speed curve in gear NG is a straight line. If the intersection of this line with F = constant is to the right of the maximum speed, $v_{3,NG}$, in gear NG then if $b_{NG} > 0$ the curve is below F = constant in the speed range NG and the vehicle cannot overcome the resistance F in gear NG and thus a lower gear is sought. If $b_{NG} < 0$ then the curve is above F = constant and v* = $v_{3,NG}$. If the intersection is to the left of the minimum speed, $v_{1,NG}$, in gear NG then the reverse is true, namely that v* = $v_{3,NG}$ if $b_{NG} >$ 0 and a lower gear is sought if $b_{NG} < 0$. For the case when the intersection occurs at (v,F) and $v_{1,NG} < v < v_{3,NG}$ then v* = v for $b_{NG} < 0$ and a lower gear is sought for $b_{NG} > 0$.

For a positive discriminant and $c_{NG} \neq 0$ there are two real roots for the quadratic equation, the greater being designated by v = RH while the lesser by v = RL. Three cases may be distinguished, the first for both roots negative. Then in the range of a gear the tractive effort vs. speed curve is either entirely above (indicated by ${}^{b}_{NG} > 0$) or entirely below (indicated by ${}^{b}_{NG} < 0$) the line F = constant. The v* = v_{3,NG} or lower gear is sought, respectively. In the second case only one root is positive, then results similar to the prior d² > 0, c = 0 case are used. The curves for positive v are

not straight lines in this case but they are strictly monotonic with less and less curvature for increasing v. In the third case when both RH and RL are positive a test is made as to their relationship to $v_{1,NG}$ and $v_{3,NG}$. The cases are distinguished by the determination of whether the tractive effort vs. speed curve is above or below F = constant. If it is above at $v_{1,NG}$ then the highest root in the interval $v_{1,NG} < v < v_{3,NG}$ is used as v*. If the curve is above at both $v_{1,NG}$ and $v_{3,NG}$, then $v^* = v_{3,NG}$. If the curve is below at $v_{1,NG}$ a lower gear is sought.

If the subroutine cannot find a gear for which the tractive effort exceeds the resistance a final test against the maximum tractive effort, FORMX, is made. If FORMX \geq F, the velocity v* = v_{max} , the velocity at which the vehicle exhibits its maximum tractive effort. If FORMX < F, then v* = 0.

c) Subroutine SLIP - Powered Traction Element Slip for Given Traction Coefficient

This routine uses empirical equations presented in Appendix A of Rula and Nuttall (1971) to determine the longitudinal slip of the powered traction elements in order to produce a given traction (pull) coefficient, y. These relationships are given by the following: Fine Grained Soil

Tracked

S = .0257y - .0161 + .01519/(.8353 - y) for CPFC<4 S = .0733y - .0063 + .00734/(.7177 - y) for CPFC>4

R-2058, VOLUME I Page 100 Operational Modules Wheeled S = .0621y - .021 + .01888/(.7794 - y) for CPFC<4 S = .084y - .016 + .01414/(.6697 - y) for CPFC>4 In case of wheeled vehicles with CPFC > 4 on fine grained soil the slip is further reduced by dividing it by 1.1 if the vehicle is equipped with a locking differential. Coarse Grained Soil Tracked S = -.0083 + .005312/(.573 - y) for rigid tracks S = 1.074y - .72+ $[(1.074y - .72)^2 + .09y + .009]^{1/2}$ for flexible tracks Wheeled S = .0074y - .0061 + .00374/(.5785 - y)This last value of S is further reduced by dividing by 1.1 if the vehicle is equipped with a locking differential. Muskeg S = .0585y - .0106 + .01336/(.964 - y) for tracked vehicle with CPFC < 4S = .1024y - .00864 + .01062/(.7564 - y) all others In the case of wheeled vehicles with a locking differential, S is further reduced by dividing by 1.1. Shallow Snow $S = .3(1 - [1-y]^{1/2})$ for y < 1S = 1 for y > 1In all cases if S lies outside the interval 0 < S < 1 it is set to 1.

d) Subroutine QUAD5 - Quadratic Fit to 5 Points

This subroutine uses the least square criterion to fit a quadratic to five points under the constraints that the curve must pass through the points with the lowest and highest value of the independent variable.

6. Subroutine IV6 - Resistance Due to Vegetation

This subroutine calculates the resistance to vehicle motion caused by vegetation when the vehicle attempts to override it. Since vegetation is categorized into NI classes on the basis of stem diameter, separate resistance forces are calculated for each class. If the terrain unit is bare of vegetation all the resistances are set to zero. All resistances are also set to zero for the smallest stem diameter class. Otherwise, for each stem diameter class i beginning at class 2 the force needed to override the largest tree in class i is given by

 $F_{v,i+1} = (56/5.8) * d_{vmi}^3$

and the force against the vehicle pushbar exerted by such an override attempt is given by

 $F_{vm,i+1} = (40 - b_{PB}/2)d_{vmi}^3$. The force required to override all the vegetation in classes i and stem diameters is given by

 $F_{v,i+1} = 12w100[sum of jd_{vj}^3 for j=1 to i]$ where d_{vmi} = stem diameter of the largest stems in class i d_{vj} = stem diameter of representative stem in class j

> b_{PB} = push bar height of vehicle w = width of vehicle

j = density of stems in class j. These relationships may be found in Rula and Nuttall (1971) starting on page 157.

7. Subroutine IV7 - Driver Dependent Vehicle Vegetation Override Check

This routine determines the maximum stem diameter class which the driver will try to override. For each class not overridden an indicator is set as to whether it was driver tolerance or pushbar capacity that limited the override. The driver tolerance is based on longitudinal acceleration and is currently limited by 2 g's. Thus if for stem class i, $F_{vmi} > F_{mPB}$, the indicator will be set to no override [IMPACT(i)=1] due to pushbar weakness. If $F_{vmi}/GCW > 2.$, the indicator will be set to no override [IMPACT(i)=2] due to driver limit. If both limits are exceeded IMPACT(i)=3. The maximum stem diameter class to be overridden (indexed by MAXI) will be the largest stem class for which neither limit was exceeded.

8. Subroutine IV8 - Total Resistance Between Obstacles

In this routine the resistance to vehicle motion due to soil, slope and vegetation is summed to produce a resistance between obstacles. For each slope (up,level,down indexed by k) the resistance while overriding a single tree of stem diameter class i is given by

 $R_{T1ki} = GCWsin\theta_k + (RTOWP*CGWP + RTOWNP*CGWNP)r_wcos\theta_k + F_{v1i}$

and the resistance while overriding all vegetation in stem diameter classes i-1 and smaller is

 $R_{Tki} = GCWsin\theta_k + (RTOWP*GCWP + RTOWNP*GCWNP)r_wcos\theta_k + F_{vi}$ where GCW = gross combined weight

GCWP = gross combined weight on powered elements

GCWNP = gross combined weight on unpowered elements

 θ_k = slope angle

RTOWP = powered elements resistance coefficient

RTOWNP = unpowered elements resistance coefficient

- r_W = proportion of vehicle weight on running gear elements (=1 except possibly for water covered terrain units)
- F_{v1i} = force required to override the largest tree in stem diameter class i-1
 - F_{vi} = force required to override vegetation in stem diameter classes i-1 and smaller.

9. Subroutine IV9 - Speed Limited by Resistance Between Obstacles

This routine uses Subroutine VELFOR (described as part of Subroutine IV5 above) to determine the maximum speed the vehicle could travel while overcoming the resistance R_{T1ki} and R_{Tki} calculated in Subroutine IV8.

If the resistance due to soil, slope and vegetation in a certain stem diameter class is larger than that which the vehicle is capable of overcoming at any speed, the velocity is set to zero and MAXI is lowered to reflect the fact that vegetation override will not be attempted for that class. In traverse mode (NTRAV=1) all velocities for slopes other than the designated slope are set to zero.

10. Subroutine IV10 - Speed Limited by Surface Roughness

Prior to runs of NRMM, a cross plot of speed vs. surface roughness was made from repeated runs of VEHDYN (See Chapter 1. Overview). Each of these cross-plots implies that, for the given surface roughness, the speed given is the maximum speed the vehicle can operate without subjecting the driver to vibrations exceeding a certain level of absorbed power. INRMM allows for several of these plots, giving results for several levels of absorbed power, to be entered as part of the vehicle data. The choice of which one to use is indicated by scenario variable LAC.

In this routine the speed vs. surface roughness array is searched and linearly interpolated for the maximum speed a vehicle could travel without subjecting the driver to vibrations resulting in an absorbed power greater than the limits implied by the choice of LAC.

11. Subroutine IV11 - Total Braking Force - Soil/Slope/Vehicle

This routine calculates the total braking force available to the vehicle. Two basic components are calculated. The first is the braking force due to the resistance of the running gear which is always present regardless of whether the brakes are on or not. This force is estimated as

 $X_1 = (RTOWB*GCWB + RTOWNB*GCWNB)r_w$

where RTOWB = resistance coefficient of braked running gear elements RTOWNB = resistance coefficient of unbraked running gear

elements

- GCWB = gross combined weight on braked running gear elements
- GCWNB = gross combined weight on unbraked running gear elements
 - r_w = proportion of vehicle weight supported by running gear elements (=1 except possibly for water covered terrain units).

The other component calculated is due to the retardation force when the brakes are applied. The maximum retardation force available from the terrain unit surface material is calculated by

 $X_2 = (DOWB + RTOWB)GCWBr_w$

where DOWB is the pull coefficient of the powered wheels. This force, adjusted for slope, is compared to the maximum force the vehicle can exert, $X_{\rm BR}$, the lesser of the two being used. The total braking is the sum of these two components plus or minus the force due to gravity on slopes. Thus

 $T_{BFk} = GCWr_{w}sin\theta_{k} + X_{1}cos\theta_{k} + min[X_{BR}, X_{2}cos\theta_{k}]$

Page 106

where θ_k = slope angle.

If T_{BFk} is negative [due to $\sin\theta_k$ on downhill slopes] a no-go indicator is set , NOGOBF=1, under the supposition that the vehicle cannot be controlled without sufficient braking. Calculations are continued since the situation being simulated may not actually stop the vehicle, as for instance, on a long straight downhill slope for which the next terrain unit is flat and sufficiently bare of obstructions to allow run-out.

12. Subroutine IV12 - Maximum Braking Force -Soil/Slope/Vehicle/Driver

In this routine the maximum braking force calculated in the previous routine may be attenuated due to simulation of driver actions. It has been observed that drivers do not always use the maximum braking force available either due to choice or lack of skill. In addition drivers may not even use all of that braking force, preferring to always keep some in reserve for "safety's sake". These actions are modeled by two vehicle inputs:

> DCLMAX = the maximum braking force (in g's) a driver will use due to comfort or skill (the "lunch box" limit)

SFTYPC = the percentage of the theoretical maximum the driver will actually use "for safety" (e.g. to prevent lockup of wheels).

If the user wishes no restriction on the performance of the vehicle due to driver imposed limits, the scenario variables DCLMAX and SFTYPC

should be set to high values.

The braking used in further calculations is given by

 B_{MXk} = min[DCLMAX*GCW, T_{BFk} *SFTYPC/100] where k = slope index (1 = up, 2 = level, 3 = down).

13. Subroutine IV13 - Speed Limited by Visibility

In this routine the maximum speed at which a driver may proceed to just stop within the visibility distance without exceeding the braking force (calculated in the previous routine) is calculated. The recognition distance is calculated by:

 $D_r = D_v h_e/60$

where $D_v = visibility distance$

 h_{e} = driver eye height.

The deceleration due to the braking force the driver will actually use is given by

a_{ck} = B_{MXk} g/GCW where g = acceleration of gravity

k = slope index (1 = up, 2 = level, 3 = down)

 B_{MXk} = maximum braking force actually used on slope k. The maximum speed limited by visibility, V_{vk} , is calculated from the solution of the equation for recognition distance required to stop, which is

 $D_r = t_r V_{Vk} + V_{Vk}^2 / (2B_{MXk})$ where t_r = reaction time between recognition and application of brakes.

If the braking force B_{MXk} is nonpositive, the speed limited by visibility is set to zero. In addition, if V_{vk} is positive but less than VISMNV, the minimum speed the driver will accept despite full obscuration of his vision, then V_{vk} is set to VISMNV.

14. Subroutine IV14 - Selected Speed Between Obstacles

This routine chooses the minimum among the following speeds for travel between obstacles. This selection is made for each slope vegetation override class.

V_{RID} = velocity limited by surface roughness
V_{vk} = velocity limited by visibility and braking force
on slope k

A separate speed limit, V_{ttki} , is chosen for each slope k (1 = up, 2 = level, 3 = down) and overriding vegetation in class i-1 and smaller. Less than 100% of $V_{SOIL,k,i}$ is used since the velocity distance curve has an asymptote at $V_{SOIL,k,i}$, which means that a vehicle can never accelerate up to $V_{SOIL,k,i}$.

This routine calculates, for each slope k and vegetation override index i, VBO_{ki} , the maximum speed the vehicle can achieve while traveling between obstacles, and $V_{AVOIDki}$, the speed which the vehicle can achieve in the terrain unit while avoiding all obstacles.

Between obstacles, VBO_{ki} represents the maximum speed a vehicle can travel while overriding vegetation in stem diameter classes i-1 and smaller while avoiding all vegetation in stem diameter classes i and larger by maneuvering. This maneuvering will lower the overall average speed due to path elongation and a variety of other factors. The extent to which this speed is lowered depends on PAV_i, the percentage of area denied due to maneuvering around vegetation in stem diameter classes i and greater. The relationships are: Tracked Vehicles

for $PAV_i \leq 3\%$ no reduction $(VBO_{ki} = V_{ttki})$ for $3\% \leq PAV_i \leq 7\%$ $S_{MG} = [(392.93 - V_{ttki})PAV_i]/4 + (7V_{ttki} - 3*392.93)/4$ $VBO_{ki} = min[S_{MG}, V_{ttki}]$ for $7\% \leq PAV_i \leq 52.5\%$ $S_{MG} = 453.2 - 8.603PAV_i$ $VBO_{ki} = min [S_{MG}, V_{ttki}]$ for $52.5\% \leq PAV_i$ set $VBO_{ki} = 0$ Wheeled Vehicles for $PAV_i \leq 3\%$ no reduction $(VBO_{ki} = V_{ttki})$

Around and between obstacles, VAVOID_{ki} represents the overall maximum speed the vehicle can travel while overriding vegetation in stem diameter classes i-1 and smaller and avoiding both obstacles and vegetation in stem diameter classes i and greater. The equations used to calculate VAVOID_{ki} are similar to those used above to calculate VBO_{ki} except that ADT_i , the percentage area denied by avoiding obstacles and vegetation in stem diameter classes i and greater, is used in place of PAV_i .

 $VAVOID_{k,i}$ for k = 1,2,3 if NTRAV = 3 or k = 1 if NTRAV = 1 i = 1,...,NI

is the complete set of speeds calculated for driving strategy which avoids obstacles. The next comparable set of speeds is VOVER_{ki}, which simulates the driving strategy that overrides obstacles. From these two sets of speeds the overall terrain unit speed is selected with some modifications in the last two routines of the Areal Module, Subroutines IV20 and IV21.

16. Subroutine IV16 - Obstacle Override Interference and Resistance

This routine uses a simplistic three dimensional, linear interpolation routine, subroutine D3LINC, on the arrays developed from the Obstacle Module, OBS78B. prior to execution of the Operational Modules of the INRMM. Three tables were developed from the Obstacle Module

i) FOO vs OBH, OBAA, and OBW

ii) F_{OOMAX} vs OBH, OBAA, and OBW

iii) CLEAR vs OBH, OBAA, and OBW

where

OBAA = obstacle approach angle (denoted by α_0 in TPP)

OBW = obstacle base width (denoted by W_{og} in TPP)

OBH = obstacle height (denoted by h_0 in TPP)

FOO = overall tractive effort to override obstacle

F_{OOMAX} = maximum tractive effort required during override of obstacle

CLEAR = minimum clearance/maximum interference during override of obstacle

The outputs of this routine are FOM, FOMMAX, and CLR, which are the overall tractive effort, maximum tractive effort, and clearance/interference for overriding obstacles in the current terrain unit respectively.

If this routine determines that vehicle/obstacle interference occurs, the flag NEVERO is set to 3.

17. Subroutine IV17 - Driver Dependent Vehicle Speed Over Obstacles

The routine linearly interpolates two arrays developed from the Ride Dynamics Module, VEHDYN, prior to execution of the Operational Modules of the INRMM. These tables give

i) VOOB vs OBH

ii) VOOBS vs OBSE

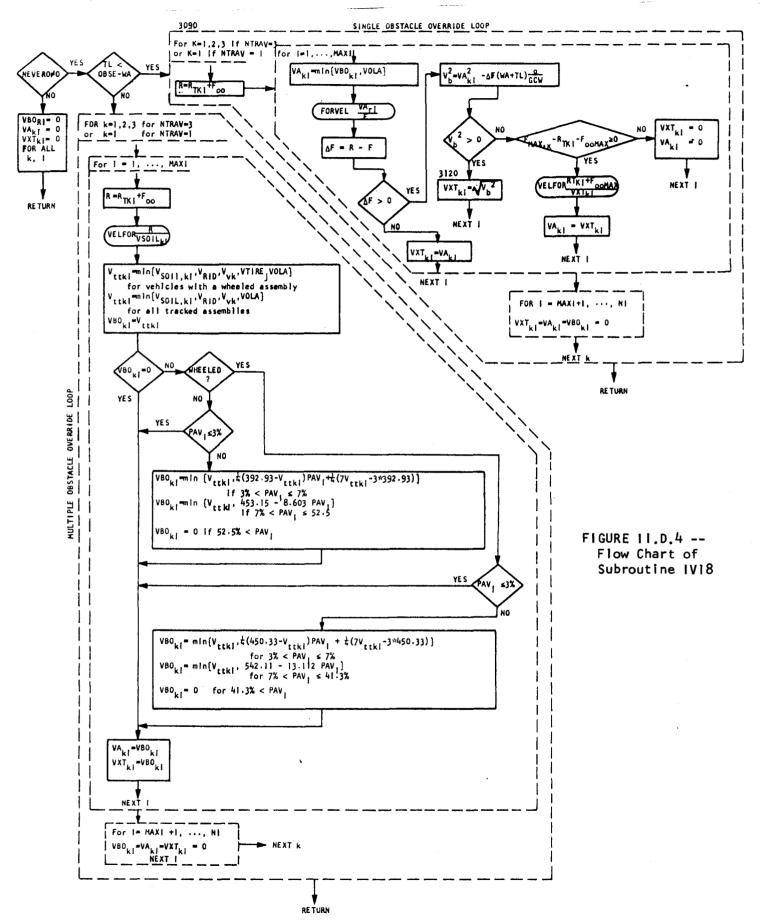
where OBH = obstacle height (denoted by h in TPP)

OBSE = effective obstacle spacing (calculated in subroutine IV1)

VOOB = maximum constant forward velocity during override of an obstacle of height h_o which results in a vertical acceleration on the driver (or some other critical location) limited by a certain g level. Currently 2.5g at the driver's station is used.

VOOBS = maximum constant forward speed during the override of obstacles whose spacing is OBSE. This maximum speed is limited by both the absorbed power criterion and the vertical acceleration criterion on the driver (or some other critical location on the vehicle).

The relationship between VOOBS and OBSE is used here without regard for obstacle height. Current practice is to generate this relationship using VEHDYN with a constant obstacle height for all spacings. The height used should be that which limits the vehicle speed to 15 mph. as determined from the single obstacle relation.


The logic of the routine is that if the average distance between obstacles (OBSE - WA) is less than the wheel base or track length on the ground, only the second array (VOOBS vs. OBSE) is interpolated and the resulting speed is used for VOLA, the maximum obstacle approach speed.

If the distance between obstacles is between the wheelbase or track length on the ground and twice the full wheelbase or track length both arrays are interpolated and the lesser of the two speeds is used for VOLA. If the distance between obstacles is greater than twice the wheelbase or track length on the ground then only the first array (VOOB vs. OBH) is interpolated and the resulting speed is used for VOLA.

18. Subroutine IV18 - Speed Onto and Off Obstacles

This routine determines the maximum approach speed, VA_{ki} , at the first contact with an obstacle and the exit speed, VXT_{ki} , when departing the obstacle after overriding. Possible adjustments to the speed between obstacles, VBO_{ki} , are also made. If the prior routines of the Areal Module have determined that there cannot be override or there can be no gain in speed due to override, an indicator NEVERO is set to 1,2 or 3. In this case the routine sets all the speeds $VA_{ki} =$ $VXT_{ki} = VBO_{ki} = 0$.

If the obstacles are so closely spaced (TL \geq OBSE - WA) that the vehicle essentially is always in contact with one of them then an

assumption is made that the driver will choose to proceed at a steady speed over the terrain unit (i.e., no acceleration/deceleration between obstacles). This speed, V_{ttki}, is determined to be the maximum speed limited by the driver's comfort level overriding obstacles (VOLA), the general roughness level (V_{RTD}), the visibility/braking force limit (V_{vk}) , the tire limit $(VTIRE_i)$ if there are wheeled suspension elements, and the soil/vegetation/ slope/obstacle resistance limit (VSOIL_ki) calculated by VELFOR, a subroutine described above in Section II.D.5.b). The resistance used here is that of the soil/vegetation/slope for the terrain unit, plus that resistance due to overriding the obstacle, FOM. The speed "between obstacles", VBO_{ki} is then calculated from V_{ttki} by attenuating $\mathtt{V}_{\texttt{ttki}}$ due to possible maneuvering to avoid vegetation in stem diameter classes i and greater. This calculation is the same as that described in Subroutine IV15 above (Section II.D.15)). Then the approach and exit speeds are all set to the same value as the speed between obstacles ($VA_{ki} = VXT_{ki} = VBO_{ki}$). This will guarantee that no acceleration/deceleration can occur since no speed changes across and between obstacles will occur.

For the case where the vehicle can fit entirely between obstacles (TL < OBSE - WA) it is theoretically possible that the vehicle could accelerate to speed VBO_{ki} or some lesser speed after leaving the obstacle at speed VXT_{ki} before braking in order to reduce speed to VA_{ki} when approaching the next obstacle. In this case the three speeds, VA_{ki} , VXT_{ki} , and VBO_{ki} are calculated as follows.

The resistance of soil and slope is given by R_{Tk1} , the soil/slope/vegetation resistance avoiding vegetation in classes 1,2,...,NI. The use of this resistance makes the assumption that obstacles are bare of vegetation.

For each vegetation class i and slope class k the approach speed, VA_{ki} , is set equal to the lesser of the soil/slope/vegetation limited speed (V_{ttki}) and the human colerance limited obstacle impact speed (VOLA). A subroutine, called FORVEL, is used to evaluate the tractive effort, F, available at speed VA_{ki} . This subroutine searches the various speed ranges or "gears" and then evaluates the appropriate quadratic. A force deficit is calculated by

 $\Delta F = R_{Tk1} + F_{OO} - F.$

If $\Delta F \leq 0$ then there is enough tractive effort available to overcome both soil/slope and obstacle resistance hence no speed is lost in crossing the obstacle. In this case $VXT_{ki} = VA_{ki}$.

If $\Delta F > 0$, there is not enough tractive effort available. A check is made to see if the obstacle can be overcome by some of the kinetic energy of the vehicle. A terminal speed exiting the obstacle is calculated from

 $V_b^2 = VA_{ki}^2 - \Delta F(WA + TL)g/GCW$ where WA = obstacle width TL = wheel base or track length on ground

g = acceleration of gravity

GCW = gross combination weight.

If $V_b^2 \ge 0$, there is sufficient kinetic energy available to override the obstacle and the exiting speed is $VXT_{ki} = V_b$.

If $V_b^2 < 0$, there is not sufficient energy available to override the obstacle when approaching it at VA_{ki} . Since there usually is more tractive effort available at lower speeds, a test is made to see if the obstacle can be overriden at any speed by comparing $F_{MAX,k}$ to R_{Tk1} + F_{OOMAX} , where

F_{MAX,k} = maximum tractive effort available
F_{OOMAX} = maximum tractive effort required
during obstacle override

If $F_{MAX,k} < R_{Tk1} + F_{OOMAX}$, override is not possible and $VA_{ki} = VXT_{ki} = 0$.

If $F_{MAX,k} > R_{Tk1} + F_{OOMAX}$, override is possible and the assumption is made that the vehicle will cross the entire obstacle at the speed, V_{FMAX} , which yields the maximum tractive effort. This is calculated by Subroutine VELFOR. Then $VA_{ki} = VXT_{ki} = V_{FMAX}$.

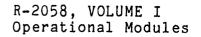
19. Subroutine IV19 - Average Terrain Unit Speed While Accelerating/Decelerating Between Obstacles

This routine calculates the time it takes for the vehicle to traverse various portions of the terrain unit and the distance it

travels during this time. From this time and distance calculation an average speed, VOVER_{ki}, is calculated.

The various times and portions are specified by

- T_a,X_a = time and distance during acceleration from velocity VXT_{ki} after leaving an obstacle
- T_{BO}, X_{BO} = time and distance during constant velocity travel at speed VBO_{ki} between obstacles
- T_b, X_b = time and distance during deceleration (braking) from VBO_{ki} (or some lesser speed if $T_{BO} = X_{BO} = 0$) to VA_{ki}, the maximum


obstacle approach speed

 T_{OO}, X_{OO} = time and distance crossing the obstacle. If VBO_{ki} cannot be reached before braking must begin then T_{BO} = X_{BO} = 0. The various possibilities are indicated in Figure II.D.5. The routine makes use of three other subroutines:

- ACCEL which calculates the time and distance to accelerate from one speed, V_a , to another $V_b > V_a$. If speed V_b cannot be reached by acceleration an error flag, NV2FLG, is set.
- TXGEAR which is called by ACCEL and calculates the time and distance required in one gear during acceleration
- VELFOR the maximum speed achievable while overcoming a given resistance (described as part of Subroutine IV5 above)

The above times and distances are calculated as follows:

 $X_{00} = WA + TL$ $T_{00} = 2X_{00}/(VA_{ki} + VXT_{ki})$

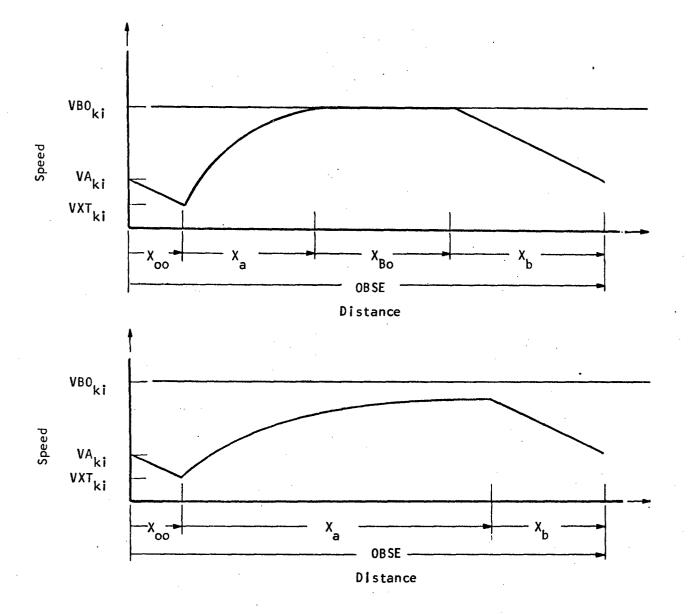


FIGURE 11.D.5 -- Possible Speed Profiles Across an Obstacle and Between Obstacles

where

WA = obstacle width

TL = wheelbase or track width on ground

 $X_{BO} = OBSE - X_{OO} - X_a - X_b$

where

 $T_{BO} = X_{BO} / VBO_{ki}$ if $X_{BO} \ge 0$

OBSE = effective obstacle spacing

 $T_{BO} = 0$ if $X_{BO} < 0$

For any speed $V_M > VA_{ki}$,

 $T_{b} = [M_{v}(V_{M} - VA_{ki})]/B_{MXK}$

where $M_v = vehicle mass$

B_{MXK} = maximum braking force

and

 $X_{b} = (V_{M} + VA_{ki})T_{b}/2$

The overall average terrain unit speed while crossing obstacles is then given by

 $VOVER_{ki} = OBSE/(T_{OO} + T_a + T_b + T_{BO})$ for slope k = 1 up, 2 level, 3 down if NTRAV = 3 k = 1 if NTRAV = 1

while overriding vegetation in stem diameter class i-1 and smaller and avoiding vegetation in stem diameter class i and larger. These relationships can all be calculated if X_a , T_a , and the final speed after acceleration, denoted above by V_M , are known.

Several initial checks are made. If $VXT_{ki} = VBO_{ki}$, then the speed between, onto and off the obstacle are all the same and the overall terrain unit speed crossing obstacles is $VOVER_{ki} = VBO_{ki}$. If $VA_{ki} = VXT_{ki} = 0$ then obstacles cannot be crossed and $VOVER_{ki}$ = 0.

If $VXT_{ki} < VA_{ki}$, Subroutine ACCEL is called to determine if the vehicle can accelerate from $V_a = VXT_{ki}$ to $V_b = VA_{ki}$; that is, can the vehicle when leaving an obstacle at speed VXT_{ki} accelerate up to the maximum approach speed VA_{ki} in the distance

Operational Modules

between obstacles? If the distance to do so, X_a , is greater than the space between obstacles, OBSE - WA -TL, or the flag NV2FLG is set, it means the vehicle cannot accelerate to the approach speed VA_{ki} and VELFOR is called to determine if there is any speed at which the vehicle can overcome the soil/slope/vegetation and obstacle resistance, given by R_{Tk1} + F_{OOMAX} (see Figure II.D.6 for the speed profile). If such an override speed exixts, VOVER_{ki} is set to this override speed; otherwise VOVER_{ki} = 0.

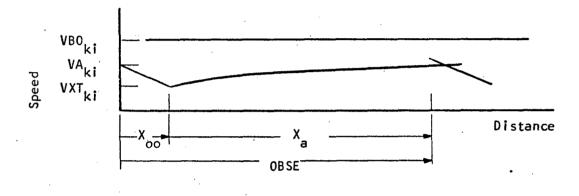


FIGURE 11.D.6 -- Speed Profile when Obstacle Approach Speed cannot be Attained

Once it is known that there is enough distance between obstacles and/or the vehicle has enough excess traction to accelerate at least up to the approach speed of the next obstacle, Subroutine ACCEL is called to determine if the vehicle can accelerate to VBO_{ki} , the maximum speed between obstacles, and if so, the distance, X_a , and time, T_a , required. The time, T_b , and distance, X_b , to brake from VBO_{ki} to VA_{ki} are also calculated and if the sum of X_a and X_b is less than the space between obstacles, OBSE - WA -TL, then $VOVER_{ki}$ is calculated from formulas at the beginning of

this section. (See Figure II.D.5 for the speed profile of this case.)

If the distance, X_a , to reach VBO_{ki} plus the distance, X_b , to brake back down to VA_{ki} exceeds the distance between obstacles, then the speed VBO_{ki} can never be reached between obstacles before braking has to begin. The lower speed profile of Figure II.D.5 applies to this case. The distance-speed coordinates of the point B have to be determined. The speed coordinate, to be called V_M , must have a value in the interval from VA_{ki} and VBO_{ki} and the distance coordinate, $X_{00} + X_a$, must have a value between X_{00} and OBSE $-X_b$. Actually only one number among V_M , X_a , and X_b needs to be determined, since the others can be found from it and other known values.

 V_M is the value sought. Successive approximations to V_M are postulated by a binary search within the speed interval from VA_{ki} to VBO_{ki} . For each such postulated value of V_M , the distance X_a to accelerate to V_M from VXT_{ki} and the distance X_b to decelerate from V_M to VA_{ki} are calculated. If $X_{00} + X_a + X_b > OBSE$ then V_M is adjusted to a lower value; if $X_{00} + X_a + X_b < OBSE$ then V_M is adjusted to a higher value. Ten such adjustment are made (corresponding to a speed precision of 2^{-10} of the difference between VBO_{ki} and VA_{ki}).

The distance coordinate is highly sensitive with respect to the final speed before braking, V_M , in the sense that a small difference in v_M can lead to a large difference in $X_{00} + X_a$. As a

consequence, it may result that even though the speed precision is as stated above, after 10 iterations the distance $X_{OO} + X_a + X_b$ is still significantly different from OBSE.

If the final distance is larger than OBSE, VBO_{ki} is reduced by 1 MPH decrements and the entire search for V_M is repeated. If the distance is smaller, no corrective action is taken since the result is that there will be a distance between obstacle at which the vehicle will travel at the constant speed V_M . Any error caused by this are considered negligible.

A value of $VOVER_{ki}$ is calculated for every combination of slope k (up, level, down or traverse) and vegetation override/avoid strategy i; for vegetation classes and/or obstacles which cannot be overriden $VOVER_{ki} = 0$.

a) Subroutine ACCEL - Time and Distance to Accelerate from One Velocity to Another

This routine calculates the time, T, and the distance, X, required for the vehicle to accelerate from one speed, V₁, to another V₂ \geq V₁. From the tractive effort vs speed curve, the "gear" or speed range, n_{g1}, of the initial speed V₁ is found $(V_{n_{g1},1} \leq V_1 \leq V_{n_{g1},3})$. Similarly, the gear, n_{g2} of the final speed, V₂ is found $(V_{n_{g2},1} \leq V_2 \leq V_{n_{g2},3})$.

If $n_{g1} < n_{g2}$, the Subroutine TXGEAR is called repeatedly to calculate the time and distance in each gear from n_{g1} to n_{g2} . If, within any gear, the vehicle cannot accelerate to the final speed of the gear, V_{n3} , or the final speed to be reached, V_2 , an error flag, NV2FLG, is set and the highest speed within that gear that the vehicle can achieve is calculated by a Binary search.

b) Subroutine TXGEAR - Time and Distance in a Gear

In this routine the quadratic functions representing tractive effort for vehicle speed are integrated to yield time and distance in each gear.

For illustrative purposes, a single gear, or speed range representing a fixed set of quadratic coefficients is shown on Figure II.D.7.

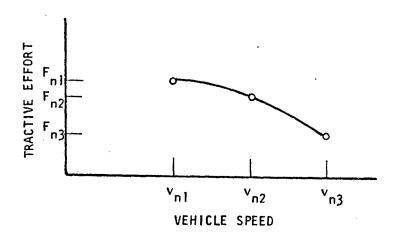


FIGURE 11.D.7 -- Representation of Tractive Effort vs. Speed Relation

For this gear, the relationship is given by

 $F = a_n + b_n v + c_n v^2$

for $v_{n\,1} \leq v \leq v_{n\,3}$. Similar sets of constants (a_n, b_n, c_n) were calculated in Subroutine IV5 for all gears n=1,2,. . ,NGR.

The differential equation to be solved is given by

 $M \dot{v} = F - R_{Tki}$

where M = vehicle mass

 $R_{\rm Tki}$ = soil/slope/vegetation resistance to be overcome. The excess force F - $R_{\rm Tki}$ is the tractive effort being used to accelerate from v_1 to v_2 within the gear n. Usually $v_1 = v_{n1}$ and $v_2 = v_{n3}$ but it is possible for $v_{n1} \leq v_1 \leq v_2 \leq$

v_{n3}.

The above differential equation is separated and integrated thus

$$I = \int_{v_1}^{v_2} (1/[c_n v^2 + b_n v + (a_n - R_{Tki})]) dv$$

$$= \int_0^c (1/M) dt = t/M$$

If the discriminant $d_n^2 = b_n^2 - 4c_n(a_n - R_{Tki})$, then the time to accelerate from v_1 to v_2 in gear r is given by if $d_n^2 < 0$

$$t = 2M/(-d_n^2)^{1/2} \arctan[(2c_nv + b_n)/(-d_n^2)^{1/2}] \begin{vmatrix} v_2 \\ v_1 \end{vmatrix}$$
$$d_n^2 = 0$$

if

$$t = -2M/(2c_nv + b_n) \begin{vmatrix} v_2 \\ v_1 \end{vmatrix}$$

Page 126

R-2058, VOLUME I Operational Modules

if

$$d_n^2 > 0$$
 and $d_n = +[d_n^2]^{1/2}$

$$t = M/(d_n^2)^{1/2} \ln[(2c_nv+b_n-d_n)/(2c_nv+b_n+d_n)] \begin{vmatrix} v_2 \\ v_1 \end{vmatrix}$$

These relationships may be read from tables of integrals, e.g., Abramowitz and Stegun (1965).

In the cases $d_n^2 > 0$, the distance to accelerate from v_1 to v_2 can be calculated directly. For $d_n^2 > 0$, the equation for t can be solved for v_2 to yield

 $v_2(t) = 1/2c_n[2d_n/(1 - v_1e^{td_n/M}) - b_n - d_n]$ and this integrated to yield distance thus

$$X(t) = \int_{0}^{t} v_{2}(t) dt$$

= $1/c_{n}[(d_{n} - b_{n})t/2 + M \ln((1 - v_{1} e^{td_{n}/M})/(1 - v_{1}))]$

Similarly for $d_n^2 = 0$

$$v_2(t) = 1/2c_n[2M/(2C_nv_1 + b_n) - t) - b_n]$$

and

$$X(t) = \int_0^t v_2(t) dt$$

 $= (M/c_n) \ln[2M/(2M - t(2c_nv1 + b_n))] - b_nt/2c_n$ In the case $d_n^2 < 0$, the equation for t can be solved for $v_2(t)$ in terms of v_1 but this formula cannot be integrated in closed form to yield X(t). In this case the gear is approximated by two straight lines fitted from (v_{n1},F_{n1}) to (v_{n2},F_{n2}) and from (v_{n2},F_{n2}) to (v_{n3},F_{n3}) . For each of these lines the integral equation

$$\int_{v_1}^{v_2} [1/(bv + (a - R_{Tki}))]dv = \int_0^t [1/M]dt$$

(where the coefficients a and b stand for either set) is solved to yield

$$t = (M/b) ln[(bv_{2} + (a - R_{Tki}))/(bv_{1} + (a - R_{Tki}))]$$

$$v_{2}(t) = (v_{1} + (a - R_{Tki})/b)e^{bt/M} - (a - R_{Tki})/b$$

$$X(t) = \int_{0}^{t} v_{2}(t) dt$$

$$= (1/b^{2})[(bv_{1} + a - R_{Tki})M(e^{bt/M} - 1) - (a - R_{Tki})bt]$$

These latter relationships are also used in the case where the quadratic formula for a gear really was a straight line, namely $c_n = 0$.

The only other case for which formulas are needed is the case where both $c_n = b_n = 0$. Here the integral equation is

$$\int_{v_1}^{v_2} [1/(a_n - R_{Tki})] dv = \int_0^t [1/M] dt$$

and

$$t = M[(v_2 - v_1)/(a_n - R_{Tki})]$$

X(t) = [(a_n - R_{Tki})t^2]/2M + v_1t

The various formulas above can, of course, yield negative values if applied without concern as to whether the vehicle can really accelerate from v_1 all the way to v_2 in gear r, and in fact whether the vehicle can accelerate beyond v_1 at all. NV2FLG = 1 will be used to represent the case where the vehicle cannot accelerate

beyond v_1 and NV2FLG = 2 will be used to denote the case where v_2 cannot be reached. These questions can be resolved by considering the locations of the two roots of

$$F = c_n v^2 + b_n v + (a_n - R_{Tki}) = 0.$$

As long as the quadratic on the left hand side represents positive values of tractive effort within the domain $v_1 \leq v \leq v_2$, there is excess tractive effort available for acceleration. To determine whether the quadratic is positive within $v_1 \leq v \leq v_2$ the coefficients can be tested; 27 combinations of c_n , b_n , and $(a_n - R_{Tki})$ being positive , zero or negative can result. Let $R_2 = (-b_n + d_n^2)/2c_n$ be the larger root and $R_1 = (a_n - R_{Tki})/(c_nR_2)$ be the smaller. Then NV2FLG = 1 will result from

> $c_n > 0$, $b_n < 0$, $a_n - R_{Tki} < 0$ and $v_1 < R_2$ $c_n > 0$, $b_n < 0$, $a_n - R_{Tki} > 0$ for $d_n^2 > 0$ and $v_1 > R_1$ or $v_1 = R_1$ for $d_n^2 = 0$ $c_n > 0, b_n = 0, a_n - R_{Tki} < 0$ and $v_1 \leq R_2$ $c_n > 0, b_n > 0, a_n - R_{Tki} < 0$ and $v_1 < R_2$ $c_n \leq 0$, $b_n \leq 0$, $a_n - R_{Tki} \leq 0$ all cases $c_n \le 0$, $b_n < 0$, $a_n - R_{Tki} > 0$ and $v_1 \ge R_1$ $c_n = 0, b_n > 0, a_n - R_{Tki} < 0$ and $v_1 \leq R_1$ $c_n = 0, b_n > 0, a_n - R_{Tki} = 0$ and $v_1 \leq 0$ $c_n < 0, b_n \le 0, a_n - R_{Tki} > 0$ and $v_1 \ge R_2$ $c_n < 0, b_n > 0, a_n - R_{Tki} < 0$ and $v_1 < R_1$ or $v_1 \ge R_2$.

NV2FLG = 2 will result from

 $\begin{array}{c} c_n > 0, \ b_n < 0, \ a_n - R_{Tki} > 0 \\ & \text{and} \ v_2 > R_1 \ \text{or} \ v_1 < R_2 \\ & \text{but not} \ v_1 > R_1 \ \text{when} \ d_n^2 > 0 \\ & \text{or} \ v_2 = R_1 \ \text{when} \ d_n^2 = 0 \end{array}$ $\begin{array}{c} c_n = 0, \ b_n < 0, \ a_n - R_{Tki} > 0 & \text{and} \ v_2 \ge R_1 \\ c_n < 0, \ b_n \le 0, \ a_n - R_{Tki} > 0 & \text{and} \ v_2 \ge R_2 \\ c_n < 0, \ b_n > 0, \ a_n - R_{Tki} < 0 & \text{and} \ v_2 \ge R_2. \end{array}$

Subroutine TXGEAR performs a decision tree on c_n , b_n , d_n^2 , R_1 and R_2 to determine if the flag NV2FLG needs to be 0,1 or 2 and then uses the appropriate formulas for t and X(t) to calculate the time and distance in gear n.

20. Subroutine IV20 - Kinematic Vegetation Override Check

Various prior subroutines have calculated speeds limited by various factors such as soil/slope/vegetation resistance, ride roughness, obstacle resistance, maneuvering to avoid obstacles and vegetation, etc. As each new factor was considered the possibility arose that the prior maximum speed for a given slope (up, level, down or traverse) and vegetation override/avoid strategy the speed first calculated on the basis of soil/slope/vegetation resistance had to be reduced. A question now arises if at the final speeds VAVOID_{ki} and VOVER_{ki} there is enough excess traction and kinetic energy to still override vegetation in the stem diameter classes i-1 and smaller. This routine performs this test as follows:

Subroutine FORVEL is called to calculate the excess traction available at speed VOVER_{ki} which is added to the kinetic energy GCW $(VOVER_{ki})^2/2g$, where GCW is the gross combination weight and g is the acceleration of gravity. If this sum is less than the force needed to override the largest stem diameter in class i-1, an indicator NOGOVO_{ki} is reset. If the force is sufficient, NOGOVO_{ki} = 1. Similarly, NOGOVA_{ki} = 1 if the excess tractive effort plus the kinetic energy available at speed VAVOID_{ki} is sufficient to override the largest stem in vegetation class i-1; otherwise NOGOVA_{ki} = 0.

21. Subroutine IV21 - Maximum Average Speed

In this routine a speed, from all the \texttt{VAVOID}_{ki} and $\texttt{VOVER}_{ki},$ is selected according to several criteria which include:

- 1. for each k, select the maximum of all $VAVOID_{ki}$ and $VOVER_{ki}$
- 2. if the maximum speed is less than VWALK, the vehicle will proceed at that maximum speed.
- 3. if the maximum is greater than VWALK and the resulting acceleration due to overriding vegetation is less than one g and the stem diameter class i is less than that designated by IOVER, then proceed at the maximum
- 4. if the maximum is greater than VWALK but i > IOVER or the acceleration is greater than g, continue to reduce the stem diameter class to be overriden until the criteria of 3) are met.

After the above are selected for each slope (up, level, down, or traverse) the final speeds calculated are the harmonic average of the individual speeds in each of the slopes. [If any of these individual speeds is zero, the harmonic average is set to zero.] Two speeds are

reported by this routine, the maximum speed (VMAX) regardless of vegetation override and the maximum speed (VSEL) which keeps the acceleration below one g and does not override stems in class IOVER or greater.

Page 132

E. Road Module

The Road Module of the INRMM calculates the maximum speed a vehicle can travel if the terrain unit is a road or a trail. Roads in the INRMM are terrain units characterized by a non-yielding surface with a coefficient of friction and a surface condition factor as well as curvature, superelevation, roughness and slope. There are no obstacles or vegetation on roads. This Module is also used for trails, which are terrain units characterized by yielding soils but otherwise are similar to roads.

For both roads and trails it is assumed that each terrain unit contains sections for up and down or just level or up or down travel. In rolling terrain there are seldom stretches of road that would be classified as distinct terrain units that contain both up/down and level parts.

The major portions of this Module calculate aerodynamic, rolling, cornering and grade resistance, and from this find a speed limited by these resistances. This speed is compared to that limited by ride roughness, sliding and tipping on curves, and a braking/visibility limit. An overall curvature speed limit derived from tests conducted by the American Association of State Highway Officials (AASHO) is applied before a final maximum speed is selected.

These portions are comparable to various subroutines in the Areal Module. The Road Module, being shorter, was coded as a single

subroutine with calls to appropriate subroutines of the Areal Module for the yielding soil. These individual sections of the Road Module will now be described.

1. Initialization

Various constants are set, some of which are needed only for compatability with the subroutines of the Areal Module used for trails.

2. Velocity Dependent Resistance

In this section the surface resistance, aerodynamic drag and turning resistance are calculated.

a) Surface Resistance

This calculation differs between roads and trails. For trails Subroutines IV3, IV4, and IV5 of the Areal Module are called to calculate

> RTOWxx - the resistance coefficient for powered (RTOWP) nonpowered (RTOWNP), braked (RTOWB), non-braked (RTOWNB), powered and braked (RTOWPB), and towed (RTOWT) running gear assemblies,

DOWxx - the pull coefficients of powered (DOWP), braked (DOWB), and powered and braked (DOWPB) running gear assemblies, and

> Tractive effort vs. velocity relationship adjusted for the slip of the running gear. this relationship is given as a series of speed intervals (gears) for each of which a quadratic curve (F = $c_nv^2 + b_nv + a_n$) represents the relationship.

See the description of these routines in Section II.D above.

For hard surfaces, primary and secondary roads, resistances are calculated for each of the five velocity, force points of each gear and subtracted from the tractive effort. (See description of Subroutine IV5 in Section II.D.5). A new set of quadratics are then fitted, by Subroutine QUAD5, to yield a resistance modified tractive effort vs. speed relationship.

Initially the tractive effort, adjusted for altitude by the elevation correction factor ECF, is limited by the traction available from the surface given by

 $T_s = \mu_j GCWP \cos \theta_k$ where $\mu_j = \operatorname{coefficient}$ of friction for surface condition factor j GCWP = gross combination weight on powered running gear assemblies

 θ_k = slope angle.

If T_s is less than tractive effort (rim pull curve) the tractive effort vs. speed curve is modeled as a horizontal line at $F = T_s$ until such speed, v*, that the rim pull curve is exactly equal to T_s . The gears are so adjusted that the first gear is a horizontal line at T_s for speed v such that $0 \le v \le v^*$ and the next gear

b) Aerodynamic Resistance

After adjustment for surface traction limit, the aerodynamic drag at each velocity, v_{ni} , in each gear is calculated from

 $F_{AD} = .0026 C_D A_F v_{ni}^2$ adjusted so that the units match where $C_D = drag$ coefficient

 $A_{\rm F}$ = frontal area. (ft.²)

c) Wheeled Axle Turning Resistance

First the superelevation factor is calculated from

 $e = 1 - 14.95 R_c e_a / 12* v_{ni}^2$

where

R_c = radius of curvature

e_a = superelevation angle.

The turning resistance for any wheeled assemblies is speed dependent and calculated by

 $F_{CC} = (e/n_i C_{\alpha}) [W_i \cos \theta_k v_{ni}^{2/111R_c}]^2$ where i = running gear (wheeled) index

R_c = radius of curvature

 W_i = weight on axle i

 n_i = number of wheels on axle i

 C_{n} = average cornering coefficient (slope at slip angle = 0

in lateral force vs. slip angle relationship,Lbs./Deg.). The units of C_{σ} do not follow the INRMM standards in this formula. Furthermore, the constant 111, which comes from the formula in Smith (1970), implies that v_{ni} is in miles per hour. The code in NRMM makes a final adjustment to inches per second. Only terms for wheeled assemblies are included in the sum for F_{CC} . These two resistances are subtracted from the tractive effort vs. speed relationship and a new set of quadratics are fitted to the adjusted (speed, tractive effort-resistance) points by Subroutine QUAD5.

Page 136

d) Tandem Wheel Aligning Resistance

This resistance is calculated by

 $F_{TC} = (e + j/2R_c) \sum_i (W_i + W_{i+1})b_i$ where i = index of front axle of a tandem pair $b_i = spacing$ between tandem axles.

3. Non-velocity Dependent Resistance

In this category are turning resistance on tracked assemblies and rolling and grade resistance.

a) Tracked Turning Resistance

The resistance of tracked assemblies to turns is given by the Merritt equation (Merritt (1946) or Ray (1970)) in terms of the width to length ratio

$$\alpha_i = t_i/l_i$$

where $t_i =$ track of tracked assembly i

l_i = length of track on ground of assembly i
A "Merritt constant" is calculated as

 $M_{ki} = 1.0624 - .6999\alpha_i + .051848\alpha_i^2 + .05488\alpha_i^3$ and a radius factor as

> $K_{1i} = M_{ki}(1.18 - .0090895 R_c/12.$ + .00003779($R_c/12.$)² + 6.70476*10⁻⁸($R_c/12$)³)

The turning resistance is then calculated by

$$F_{CT} = TFOR/GCW \sum_{i} K_{1i}W_i + F_{CC}$$
 for trails
 $= \mu_j \sum_{i} K_{1i}W_i + F_{CC}$ for roads
 $TFOR = maximum$ tractive effort available from surface
 $GCW = gross$ vehicle weight.

where

b) Rolling Resistance

The rolling resistance for trails (soft surface) is given by

 $F_{R} = S(RTOWP*GCWP + RTOWNP*GCWNP)\cos\theta_{k}$

where GCWNP = gross combination weight on non-powered wheels

S = surface condition factor.

For roads (hard surface) the rolling resistance is calculated separately for each running gear assembly i by

 $F_{Ri} = (.007 + .0939/psi)W_iS$ for wheeled assemblies = $.045W_{iS}$ for tracked assemblies where psi = pressure in the tires on axle i. The total rolling resistance is $F_R = \sum F_{Ri}$.

c) Grade Resistance

The grade resistance is simply $F_{Gk} = GCWsin\theta_k$ for each slope angle θ_k .

4. Speed Limited by Resistance

The resistances calculated above are summed $F_T = F_{Gk} + F_R$ + F_{TC} + F_{CT} and Subroutine VELFOR (See description of Subroutine IV5 of the Areal Module) is used to calculate the maximum speed achievable, V_D , overcoming F_T .

5. Speed Limited by Surface Roughness

Each road or trail unit description includes an RMS elevation indicating microroughness of the surface. The VRIDE array, calculated from the results of repeated runs of the Ride Dynamics Module (Vol. III) is interpolated to yield the maximum speed, V_R , achievable over the current road or trail unit keeping the driver absorbed power below the level used in the cross-plots of the results of the Ride Dynamics Module. These crossplots are part of the vehicle data file. (See Section II.D.10.)

6. Speed Limited by Sliding on Curves

For trails and secondary roads it is possible for banking (or reversed camber) to be steep enough so that vehicles could slide on curves at achievable speeds. This section calculates the maximum speed achievable before sliding by

> $V_s = [385.9R_c(tan e_a + TFOR/GCW)/$ (1 - TFORtan e_a/GCWP)]^{1/2} for trails,

 $V_s = [385.9R_c(\tan e_a + \mu_j)/(1 - \mu_j \tan e_a)]^{1/2}$ for roads,

7. Speed Limited by Tipping on Curves

Similarly the maximum speed with which a vehicle could negotiate a curve before tipping over is calculted by

 $V_{\rm T} = [385.9R_{\rm c}(t_{\rm W} + h_{\rm CG}t_{\rm S} - t_{\rm W}t_{\rm S} - t_{\rm W}t_{\rm S} - t_{\rm W}t_{\rm S})]^{1/2}$ where $t_{\rm W}$ = maximum tread width $h_{\rm CG}$ = height of CG.

8. Speed Limited by Visibility

The speed limited by a driver being able to see an obstruction in time to brake to a halt before striking it is calculated by a call to Subroutine IV13 of the Areal Module. That subroutine requires the maximum braking force available from the vehicle and surface, possibly

attenuated by the maximum deceleration to which the driver will choose to be subjected. The total braking force, F_{TB} , available is calculated by Subroutine IV11 of the Areal Module in case the terrain unit is a trail (soft surface). For roads (hard surfaces)

 $F_{TBk} = GCWsin\theta_k + min [X_{BR}, \mu_jGCWBcos\theta_k]$ where $X_{BR} = maximum$ braking effort of the vehicle.

The program may call a NOGO (not completing the processing for this terrain unit) if $F_{TBk} < 0$ due to insuffient braking ability.* When the total braking effort is available, the maximum braking effort the driver will actually use is calculated by

When the total braking effort is available, the maximum braking effort the driver will actually use is calculated by

 $F_{BMAX,k} = min [D_{max} GCW, F_{TBk} S_p/100.]$ where $D_{max} = maximum$ deceleration which the driver will use

 S_{p} = percent of total braking effort driver will use

(simulating the effect that the driver will reserve

some percentage of the braking effort "for safety") These driver limits may be overriden by setting D_c and S_p to higher values. in the Scenario inputs. $F_{BMAX,k}$ is the force used by Subroutine IV13 to calculate speed limited by visibility, V_v .

* If post processors will concern themselves with acceleration/deceleration between terrain units in traverse mode, users may wish to change the code to allow all calculations in spite of the lack of braking ability (this requires the elimination of the two RETURN statements in Section 5B - Total Braking Hard Surface of the Computer Program).

9. Curvature Speed Limit

Since physical stability limits on vehicles are often far greater than the self imposed ones exhibited by a driver, a set of empirically derived curvature vs. speed limits are included in the Road Module Of the INRMM. They are based on a curve published by AASHO (1965) supplemented by observations made at the USAEWES. The relationships used are presented in Table I.E.1. This table is currently an integral part of the terrain input routine MPRD74. If user terrain input routines are to be added which will read road or trail data, this table (or others like it) will have to be included in these new routines.

Page 142

Table II.E.1

Curvature Speed Limits

Radius of Curvature (feet)	Super- highways	Speed Limit: Primary Roads	s (MPH) Secondary Roads	Trails
5730	100	100	70	55
1910	70	70	60	49
1146	60	60	58	44
819	54	54	50	42
637	48	48	43	39
458	41	41	36	34
327	34	34	31	29
229	29	29	26	23
164	25	25	23	19
115	19	19	19	14
82	13	13	13	10

The curvature speed limit, V_c , is calculated by a linear interpolation of this table. If the coefficient of friction, μ_j , or the surface limited pull ratio, TFOR/GCWP, is less than .7, the curvature speed limit, V_c , is further attenuated by the square root of the ratio of μ_j or TFOR/GCWP to .7.

10. Speed Selection

The Maximum roadway speed is now chosen for each slope angle θ_k to be the minimum of the following:

 $VTIRE_j$ = speed limited by tire at inflation pressure j V_p = speed limited by resistance V_L = posted speed limits (scenario variable) V_T = speed limited by tipping V_s = speed limited by sliding on curve

 V_{RID} = speed limited by ride roughness

 V_v = speed limited by visibility/braking

 V_{c} = speed limited by curvature.

In traverse mode, NTRAV = 1, only one speed for θ_k is reported. For bidirectional travel, NTRAV = 3, a speed for θ_k and $-\theta_k$ is calculated and a harmonic average is taken as the selected overall speed for the road or trail unit.

F. Linear Feature Module

No code or description of the Linear Feature Module of the INRMM is included at this stage of development.

A. Introduction

When the time came to produce a FORTRAN implementation of the Operational Modules of the INRMM, NRMM, following the AMC-74 Report (which is essentially a coding specification) the decision was made that the Vehicle and Terrain Preprocessors, Areal, Road and Linear Feature Modules would be coded following the ANSI FORTRAN -66 standard, to allow portability. However input and output would be part of the Control and I/O Module which need not conform to the Standard. The programmers have attempted, however, to use only those extensions to the FORTRAN language which are commonly available. In particular in NRMM, NAMELIST directed READ and WRITE are used for vehicle, scenario and control input and most output.

To use the model, the sequence of operations may be organized as follows:

- 1. Vehicle data are collected (or measured, estimated or assigned by analogy) and organized into computer input files in formats specified by Sections III.B, Vol. III, Vehicle Data for the Ride Dynamics Module, and III.a, Vol. II, Vehicle Data for the Obstacle Module, described below.
- 2. Terrain data are gathered (or measured, estimated, or assigned by analogy) and organized into computer input files in formats specified by Section III.C, Terrain Data for the Operational Modules, described below.
- 3. The range of obstacle and surface roughness data present in the terrain data files is used to specify the base values for input to the preprocessor modules. These base values are organized into input files in formats specified in Volumes II and III.

4. The Ride Dynamics Module, VEHDYN, is run using the vehicle data file and a terrain profile exhibiting a value of the surface roughness (RMS), obstacle height (OBH) of a single obstacle or obstacle spacing (OBS) for sequence of equally spaced, identical obstacles. Successive runs are made varying forward speed (V). Crossplots are made for RMS vs. V for fixed value of absorbed power, OBH vs. V for fixed value of maximum vertical acceleration, and OBS vs. V for fixed values of obstacle height and maximum vehicle acceleration. These three tables are made part of the vehicle input data for the Operational Modules.

Page 146

- 5. The Obstacle Module, OBS78B, is run using the vehicle data file organized as in Section III.A, Vol. II and a table of obstacles described by height (OBH), approach angle (OBAA), and width (OBW). For each obstacle, OBS78B will calculate minimum clearance (CLRMIN), maximum force (FOOMAX), and average force (FOO) during a simulated override of the obstacle. These sets of six numbers are organized into a single table which is made part of the vehicle input data for the Operational Modules.
- 6. The vehicle data, along with the results of Steps 4 and 5 or equivalent data, above, is organized into a computer input file in format as specified by Section III.B below.
- 7. The scenario/control file is constructed for each operational module run as specified by Section III.D below.
- 8. The Operational Modules, organized into a source file called NRMM, is run using the vehicle file from Step 6, the terrain file from Step 2, and the scenario/control file from Step 7, above.

The result of these eight steps will be a computer file giving vehicle speed for each terrain unit which was included in the terrain file of the Operational Modules. Other results beside speed are also given. Usually, further computer programs which use this terrain unit vs. speed file as input will be required to further evaluate the vehicle performance. These other programs, called post-processor as a group, will be developed by the user for his or her own purpose.

Experienced programmers will notice that the coded version of the INRMM is highly modular and coded so that a person reading the code will have a good idea of what is being calculated. This approach has resulted in a rather inefficient program, both globally and locally. Experienced programmers will undoubtedly want to enhance program efficiency after the current code is understood.

B. Vehicle Data

The data used to describe the vehicle for NRMM consist of a large number of vehicle descriptors together with outputs of the ride dynamics and obstacle modules. All these data are organized into a single computer file and read from unit LUN3. The vehicle descriptors are read using a NAMELIST directed read statement (NAMELIST VEHICL). The descriptors which are included are listed and described in Table III.B.1.

The data from the Obstacle Module is read using a formatted READ statement which accepts the results as produced by the Obstacle Module program and described in Volume II. Sample input files are contained in Appendix B.

Table III.B.1

Vehicle Input Data - NAMELIST VEHICL

Variable Name	Description
ACD	Aerodynamic drag coefficient
ASHOE(I)	Area of one track shoe on track assembly I, (in ² .)
AVGC	Average cornering stiffness of tires (lb./deg.)
AXLSP(I)	Distance from running gear assembly I to next assembly (inter-axle distance) (in.)
CD	Hydrodynamic drag coefficient
CGH	Height of CG of loaded vehicle above ground (in.)
CGLAT	Lateral distance of CG measured from centerline of combination (in.)
CGR	Loaded horizontal distance from CG to centerline of rearmost suspension assembly of prime mover (in.)
CID	Displacement of each engine (in ³ .)
CL	Minimum ground clearance of combination (in.)
CLRMIN(I)	Minimum ground clearance of assembly I (in.)
CONV1(1,J)	Input speed component of the torque converter speed ratio versus torque converter input speed curve, (rpm)
CONV1(2,J)	Speed ratio component of the torque converter speed ratio versus torque converter input speed curve at constant input torque, TQIND
CONV2(1,J)	Torque ratio component of the torque converter speed ratio versus torque converter torque ratio curve
CONV2(2,J)	Speed ratio component of the torque converter speed ratio versus torque converter torque ratio curve
DFLCT(I,J)	Deflection of each tire on axle assembly I under load WGHT(I)/NWHL(I), in., at the pressure specified for J=1 fine grained, =2 coarse grained, =3 highway
DIAW(I)	Outside wheel diameter of unloaded tires on running gear assembly I (in.)
DRAFT	Combination draft when fully floating (in.) (0 if combination cannot float)

TABLE III.B.1 (Continued)

Variable Description Name

ENGINE(1,J) Engine speed component of engine speed versus engine torque curve, (rpm)

ENGINE(2,J) Engine torque component of engine speed versus engine torque curve, (lb.-ft.)

EYEHGT Height of driver's eyes above ground (in.)

FD(1) Final drive gear ratio

FD(2) Final drive efficiency

FORDD Maximum water depth combination can ford (in.) (Note: FORDD= DRAFT if DR'AFT $\neq 0.$)

GROUSH(I) Track grouser height of track assembly I (in.)

HPNET Net engine power (HP.)

HVALS(N) Nth obstacle height in driver limited speed vs obstacle height table for single obstacle crossing

IAPG
0 if power train data available only,
1 if both measured tractive effort and power train data given,
2 if measured tractive effort given only

- IB(I) 1 if running gear assembly I is braked, 0 otherwise
- ICONST(I) 0 if radial tires are on wheel assembly I, 1 if bias tires

ICONV1 Number of point pairs in the array CONV1(I,J)

ICONV2 Number of point pairs in the array CONV2(I,J)

- ID(I) 0 if wheels on wheeled assembly I are singles, 1 if duals
- IDIESL 2 if the engine is a two cycle diesel, 1 otherwise

IENGIN Number of point pairs in the array ENGINE(I,J),

IP(I) 1 if running gear assembly I is powered, 0 otherwise

IPOWER Number of point pairs in the array POWER(I,J)

TABLE III.B.1 (Continued)

Variable Name	Description
IT(I)	O if assembly I is not part of a tandem axle, J if assembly I is the Jth of a tandem axle
ITCASE	1 if vehicle has engine to transmission transfer gear box 0 otherwise
ITRAN	0 if transmission is manual with clutch, 1 if automatic transmission with torque converter
ITVAR	1 if transmission is mechanical, O if transmission is hydraulic
LOCOIF	1 if all powered running gear assemblies have locking differentials, 0 otherwise
LOCKUP	0 if torque converter does not lockup, 1 if torque converter has lockup
MAXIPR	Number of surface roughness values per tolerance level
MAXL	Number of roughness tolerance levels specified
NAMBLY	Total number of running gear assemblies
NBOGIE(I)	Number of road wheels on track assembly I
NCHAIN(I)	1 if chains are present on tire on assembly I O otherwise
NCYL	Number of cylinders per engine
NENG	Number of engines
NFL(I)	0 if track on assembly I is rigid, 1 otherwise
NGR	Number of transmission gear ratios
NHVALS	Number of height values used in arrays VOOB and HVALS

TABLE III.B.1 (Continued)

Variable Name	Description
NPAD(I)	1 if track on assembly I has pads, O otherwise
NSVALS	Number of obstacle spacing values used in arrays VOOBS and SVALS
NVEH(I)	0 if running gear assembly I is tracked, 1 if wheeled
NWHL(I)	Number of tires on wheeled assembly I
NWR	Number of water depths between 0 and FORDD for which weight ratios are given
PBF	Maximum force pushbar can tolerate (lb.)
PBHT	Unit pushbar height (in.)
PFA	Vehicle projected frontal area (in ² .)
POWER(1,J)	Vehicle velocity component of the tractive effort versus speed curve (mi/hr. on input)
POWER(2,J)	Tractive force component of the tractive force versus speed curve (lb.)
QMAX	Maximum torque of each engine (ftlb.)
RDIAM(I)	Rim diameter of wheel for tires on axle assembly I (in.)
REVM(I)	Revolutions/mile of tire element on assembly I, (rev/mi)
RIMW(I)	Wheel rim width of assembly I, (in.)
RMS(N)	Nth surface roughness value (in.)
RW(I)	Track thickness + bogie rolling radius for tracked assembly I (in.)
SAE	Swamp angle (egress) (deg.)
SAI	Swamp angle (ingress) (deg.)

TABLE III.B.1 (Continued)

Variable Name	Description
SECTH(I)	Section height of tires on running gear assembly I (in.)
SECTW(I)	Section width of tires on running gear assembly I
(in.)	
SVALS(N)	Nth obstacle spacing in driver limited speed versus obstacle spacing table for successive obstacle crossing
TCASE(1)	Gear ratio for gear between engine and transmission (1. if no such gear)
TCASE(2)	Efficiency of gear between engine and transmission (1. if no such gear)
TL	Distance from front of first running gear assembly to rear of last (in.)
TPLY(I)	Tire ply rating of tires on axle I
TPSI(I,J)	Tire inflation pressure of tires on axle I (psi), specified for j=1 fine grained, =2 coarse grained, =3 highway
TQIND	Constant torque converter input torque at which torque converter performance curves are measured, (lbft.)
TRAKLN(I)	Track length of track assembly I (in.)
TRAKWD(I)	Track width of track assembly I (in.)
TRANS(1,J)	Transmission gear ratio of gear NG
TRANS(2,J)	Transmission efficiency of gear NG
VAA	Vehicle approach angle (deg.)
VDA	Vehicle departure angle (deg.)
VFS	Vehicle fording speed
VOOB(I)	Maximum driver limited speed at which vehicle can impact an obstacle of height HVALS(I) if obstacles are spaced farther than two vehicle lengths apart (mph)

TABLE III.B.1 (Continued)

Variable Description Name

VOOBS(I) Maximum driver limited speed at which vehicle can impact successive obstacles spaced SVALS(I) apart (mph)

VRIDE(I,J) Maximum speed over ground for surface roughness class I at roughness tolerance level J (mph)

VSS Maximum combination still water speed without auxiliary propulsion (mph)

VSSAXP Maximum combination still water speed with auxiliary propulsion (mph)

WC Winch capacity (1b.)

WDAXP Water depth at which auxiliary power can be used (in.)

WDPTH(N) Nth water depth (in.)

WDTH Maximum combination width (in.)

WGHT(I) Weight on running gear assembly I (lb.)

WI Minimum width between running gear elements (in.)

WRAT(N) Ratio of vehicle weight on ground to total vehicle vehicle weight at Nth water depth, WDPTH(N)

WRFORD Proportion of combination weight supported by ground when combination is operating at maximum fording depth

WT(I) Tread width of running gear assembly I (in.) (Center to center plane if duals)

WTE(I) Minimum width between left-right suspension elements (tires or tracks) on assembly I (in.)

XBRCOF Maximum combination braking coefficient per assembly in lb./lb. of load carried

C. Terrain Input - Operational Modules

The user has several options in the organization of his terrain input data. First, the data required to describe each terrain unit varies depending on its nature, areal, road or linear feature. Secondly, over the years areal terrain data has been amassed in computer readable form in two different structures and the current computer program contains terrain data input/translation routines which accept data in each of these arrangements and perform the computations necessary to pass the expected data to the Terrain Preprocessor and the Areal Module. Only a single organization of road data is presently supported. Finally the user can, of course, prepare a customized subroutine to accept data in another format. The terrain data organization is signaled by the control variable MAP. The three organizations of data now implemented are described below.

Page 154

It should be noted that the terrain input routines and the output subroutine, BUFFO, are now coded to deal with terrain data files which contain only areal units or road units, not a mixture of the two types.

1. Areal Terrain Input File - Class Interval Values

The first option for representation of areal terrain data is that used in the AMC-71 Mobility Model. For each of the 22 primary descriptors of the terrain unit, the data file contains the [integer] value of the factor class in which the descriptor lies.

Table III.C.1

Terrain Input File Structure

Variable Name	Input Format	Description
NPAT	I4	Terrain unit number (index)
IST	12	Soil type - 1 fine grained 2 coarse grained 3 muskeg 6 fine grained soil CH relatively impervious to water
IRCI1	12	Soil strength class - dry season
IRCI2	12	Soil strength class - normal season
IRCI3	12	Soil strength class - wet season
IGRADE	I1	Topographic slope class
IOA	12	Obstacle approach angle class
IOH	I1	Obstacle height class
IOW	I1	Obstacle width class
IOL	I1	Obstacle length class
IOS	I1	Obstacle spacing class
IOST	I1	Ostacle spacing type 1 - potentially avoidable (random) 2 - nonavoidable (linear)
IRMS	I1	Surface roughness class
ISTEM1	I1	Spacing class of vegetation in stem diameter class 1 and greater
ISTEM2	I1	Spacing class of vegetation in stem diameter class 2 and greater
ISTEM3	I1	Spacing class of vegetation in stem diameter class 3 and greater

Page 156

Table III.C.1 (Continued)

Variable Name	Input Format	Description
ISTEM4	I1	Spacing class of vegetation in stem diameter class 4 and greater
ISTEM5	I1	Spacing class of vegetation in stem diameter class 5 and greater
ISTEM6	I 1	Spacing class of vegetation in stem diameter class 6 and greater
ISTEM7	I1	Spacing class of vegetation in stem diameter class 7 and greater
ISTEM8	I1 .	Spacing class of vegetation in stem diameter class 8 and greater
IRD	I1	Recognition distance class
AREA	F10.3	Area

Note: Area is not used in the Mobility Model. It is included in many of the existing terrain files and is included in the input and reported in the output for convenience in further processing of the output.

Page 157

2. Areal Terrain Input File - Real Values

The second option supported by the current program for input of terrain data is a format used for a variety of studies performed in the United States during the middle of the 1970 decade. This format provides for input of actual values for various primary terrain descriptors. The organization of the data for each terrain unit is presented in Table III.C.2.

A few changes in the content of the terrain data should be noted. First, a fourth soil strength value is included to extend to an extremely wet seasonal condition, presently taken as the wet season condition during a year when daily rainfall is 150% of the long term average values for the area. Secondly, four recognition distances are included to provide for the variation in this quantity with season (primarily due to changes in vegetation). The value used is determined from the scenario variable MONTH.

The organization of the data should be carefully noted. The data for each terrain unit occupy two lines of the input file and some of the positions on each line are not used. Most of the data are read as four digit whole numbers with the decimal point omitted. To allow the expected range of the values to fit reasonably with the implied scaling a mixture of units is used, as noted in the table. In particular the surface roughness value is multiplied by 10.

Table III.C.2

Terrain Input File Structure - Real Values

Variable Name	Input Format	Description
NTU	15	Terrain unit number
IST	12	Soil type - 1 fine grained 2 course grained 3 muskeg 6 fine grained soil CH relatively impervious
	20X	to water Filler
RCIC(1)	I4	Soil strength - dry (RCI)
RCIC(2)	I4	Soil strength - average (RCI)
RCIC(3)	I 4	Soil strength - wet (RCI)
RCIC(4)	I4	Soil strength - wet, wet (RCI)
GRADE	I4	Topographic slope (%)
ΑΑ	I4	Obstacle approach angle (deg.)
OBH	I4	Obstacle height (in.)
OBW	I4	Obstacle width (ft.)
OBL	14	Obstacle length (ft.)
OBS	14	Obstacle spacing (ft.)
IOST	I4	Obstacle spacing type 1 - potentially avoidable (random) 2 - nonavoidable (linear)
ACTRMS	I4	10*Surface roughness (RMS - 10*in.)
NOTE: The remai	ning data form t	he second line
	5X	Filler
S(1)	I4	Mean spacing (in ft.) of vegetation in stem diameter class 1 and greater
S(2)	I4	Mean spacing (in ft.) of vegetation in stem diameter class 2 and greater

Table III.C.2 (Continued)

Variable Name	Input Format	Description
S(3)	I4	Mean spacing (in ft.) of vegetation in stem diameter class 3 and greater
S(4)	14	Mean spacing (in ft.) of vegetation in stem diameter class 4 and greater
S(5)	I4	Mean spacing (in ft.) of vegetation in stem diameter class 5 and greater
S(6)	14	Mean spacing (in ft.) of vegetation in stem diameter class 6 and greater
S(7)	I4	Mean spacing (in ft.) of vegetation in stem diameter class 7 and greater
S(8)	I4	Mean spacing (in ft.) of vegetation in stem diameter class 8 and greater
RDA1	I4	Recognition distance - Winter
RDA2	I4	Recognition distance - Spring
RDA3	I4	Recognition distance - Summer
RDA4	I4	Recognition distance - Autumn
AREA	F8.4	Area of the terrain unit

NOTE: Area is not used in the mobility model. It is included in many of the existing terrain files and is included in the input and reported in the output for convenience in further processing of the output.

Page 160

3. Road Terrain Input File

The terrain data input routine contained in the program is that requried to accept the terrain data files which were prepared for studies conducted in the mid 1970's using programs other than the NRMM Road Module. These simple programs do not use the full collection of road descriptors required for the NRMM Road Module.

Missing values are provided by the input/translation routine, MPRD74. Furthermore, for the earlier studies, the road segment curvature was preprocessed into a speed limit so that the curvature must be computed from this speed limit (and the speed limit recomputed in TPP!). The organization of data is much like that described for areal terrain in the previous section. Soil strength is provided (for trails) for our seasonal conditions, visibility recognition distances for four seasons and most of the data is read as four digit whole numbers like that described in the previous section.

Variable Name	Terrain Input Input Format	File Structure - Roads Description
NTU IROAD	15 12	Terrain unit number Road type index 1 - super highway 2 - primary road 3 - secondary road 4 - trail
IST	12	Soil type (used for trails) 1 - fine grained 2 - coarse grained 6 - fine grained, CH, relatively impervious to water
IURB	12	Urban code
RCIC(1)	I4	Soil strength - dry season (RCI)
RCIC(2)	I4	Soil strength - average season (RCI)
RCIC(3)	I4	Soil strength - wet season (RCI)
RCIC(4)	I4	Soil strength - wet, wet season (RCI)
GRADE	I4	Topographic slope (%)
R DA 1	I4	Recognition distance - Winter (ft.)
RDA2	I4	Recognition distance - Spring (ft.)
RDA3	I4	Recognition distance - Summer (ft.)
RDA4	I4	Recognition distance - Autumn (ft.)
ACTRMS	14	10*Surface roughness (RMS - in.)
CURVV	I4	AASHO Curvature speed limit (mph)
DIST	F8.4	Road segment length (mi.)

NOTE: Road segment length is not used in the mobility model. It is included in many of the existing terrain files and is included in the input and reported in the output for convenience in further processing of the output.

Page 162

D. Scenario and Control Input Data

To provide flexibility to the user in the use of the NRMM many options are provided through the scenario and control variables. The control variables SEARCH and NTUX allow restriction of the operational modules to a single terrain unit anywhere in the terrain file. The variable MAP indicates the format of the terrain input file. The remainder of the control variables allow the user to generate output at any of the 41 breakpoints in the flow of data through NRMM.

The scenario variables provide an option to model some of the operations which may be possible for a given vehicle on a fixed terrain. Presently available terrain files contain soil strength and visibility limits under different conditions which are specified by ISEASN and MONTH. Shallow snow can be introduced using the indicator ISNOW with the snow described by COHES, GAMMA, PHI and ZSNOW. For roadways, an overall speed limit can be set by VLIM and recognition distance variation due to weather (e.g. fog) can introduced by RDFOG. Variables NSLIP and ISURF indicate surface moisture content for areal and road terrain units respectively.

The variable NTRAV allows the model to be run in "traverse" or "omnidirectional" modes. In the former mode the speed is calculated only for the topographic slope value (which may be negative) in the terrain data. In the latter mode, speeds are calculated with the input slope, its negative and [for areal units] zero slope and then the harmonic average of the speeds is computed and reported.

Several of the scenario variables describe the man-vehicleterrain relations. These include the roughness acceptance level, LAC, speeds at which a driver will proceed regardless of lack of visibility (which may be different on and off road), VBRAKE and VISMN, and the driver's reaction time, REACT. Braking is controlled for comfort and safety through DCLMAX and SFTYPC while vegetation override is set through IOVER and VWALK.

The final scenario variables allow selection of the tire pressure (including the possibility of using the optimal tire pressure for each terrain unit as is possible on a vehicle equipped with a proper central tire inflation system) and selecting between an input (perhaps measured) tractive effort vs speed curve and one produced by the program from the power train characteristics.

The control and scenario variables are assembled into a single input data file and input to the program through two NAMELIST directed READ statements located in subroutine SCN. In SCN, default values are first set. Next most of the control variables are read using NAMELIST "CONTRL". The output print controls are then set as determined by the value of DETAIL. Finally, the remainder of the control variables and the scenario variables are read using NAMELIST "SCENAR". It is assumed that the computer self initializes variables to zero. The control and scenario variables are described in Tables III.D.1 and III.D.2. The variables are grouped in the tables as they are to be grouped in the input data file. Thus the second table contains both control and scenario variables. A sample data file is contained in

the Appendix.

TABLE III.D.1

Control Input Data - Operational Modules NAMELIST CONTRL

Variable Name	Default Value	Description
DETAIL	1	Level of detail of output 1-Summary output together with any detailed outputs specified through the KXXXX variables described below. 2-Echoes of vehicle, control and scena- rio inputs together with output for each terrain unit of a) terrain unit number and type
	· · · · · · · · · · · · · · · · · · ·	 b) selected speed made good c) average speed made good d) speeds upgrade, on level and down grade contributing to the selected speed made good e) speeds upgrade, on level and down grade contributing to the average
		speed made good f) grade g) terrain unit area 3,4-Presently, the same as 2 5-All output possible from the vehicle preprocessor together with a printer
		plot of the tractive effort vs speed curve - terminates execution after the vehicle preprocessor 10-All outputs - in general, inputs and outputs are reported at each break- point in the flow of computation
		through the vehicle pre-processor and areal modules - can only be run on a single terrain unit (the effect is the same as settinng all the KXXXX variables to 1)
NTUX		The number of the terrain unit when output is to be produced for a single terrain unit from a terrain input data file with more than one terrain unit (see SEARCH)
SEARCH		Search option flag: O-Output desired for all terrain units in terrain input data file 1-Output desired only for a single terrain unit specified by NTUX

TABLE III.D.1 (Continued)

Variable Default Description Name Value

Note: The remaining variables are the output controls. For each the output described is produced if the variable = 1 and is not produced if the variable = 0. If DETAIL = 5 or 10, all values read are over written and set to 1.

KSCEN	Control and scenario variables are echoed
KVEH	Vehicle input data is echoed
KII1	Input and output of subroutine II1
KII2	Input and output of subroutine II2
KII3	Input and output of subroutine II3
KII4	Input and output of subroutine II4
KII5	Input and output of subroutine II5
KII6	Input and output of subroutine II6
KII7	Input and output of subroutine II7
KII8	Input and output of subroutine II8
KII9	Input and output of subroutine II9
KII10	Input and output of subroutine II10
KII11	Input and output of subroutine II11
KII12	Input and output of subroutine II12
KII13	Input and output of subroutine II13
KII14	Input and output of subroutine II14
KII15	Input and output of subroutine II15
KII16	Input and output of subroutine II16
KII17	Input and output of subroutine II17
KMAP	Terrain input data are echoed. The values
	reported are those passed to the computa-
	tional modules after any translation
	required for the input file format
КТРР	Input and output of the terrain preprocessor
KIV1	Input and output of subroutine IV1
KIV2	Input and output of subroutine IV2
KIV3	Input and output of subroutine IV3
KIV4	Input and output of subroutine IV4
KIV5	Input and output of subroutine IV5
KIV6	Input and output of subroutine IV6
KIV7	Input and output of subroutine IV7
KIV8	Input and output of subroutine IV8
KIV9	Input and output of subroutine IV9
KIV10	Input and output of subroutine IV10
KIV11	Input and output of subroutine IV11
KIV12	Input and output of subroutine IV12

TABLE III.D.1 (Continued)

Variable Name	Default Value	Description
KIV13 KIV14 KIV15 KIV16 KIV17 KIV18 KIV19 KIV20 KIV21	· · ·	Input and output of subroutine IV13 Input and output of subroutine IV14 Input and output of subroutine IV15 Input and output of subroutine IV16 Input and output of subroutine IV17 Input and output of subroutine IV18 Input and output of subroutine IV19 Input and output of subroutine IV20 Input and output of subroutine IV21

Note: This table is organized in a (hopefully) logical rather than alphabetical order - In particular, the KXXXX which provide output control are grouped after the other variables and are in order of use in the program.

TABLE III.D.2

Control and Scenario Variables - Operational Modules NAMELISȚ SCENAR

Variable Name	Default Value	Description
COHES DCLMAX	.05 .50	Cohesion of snow (lb./in ² .) Maximum deceleration the driver will actually accept (g's)
GAMMA I OVE R	.20 9	Specific gravity of snow The index of the maximum stem diameter class to be overriden if the speed to do
ISEASN	1	so is greater than walking speed Seasonal soil strength - 1 dry (moisture) indicator for 2 normal areal terrain 3 wet
ISURF	1	4 wet,wet Seasonal surface traction – 1 dry condition indicator for roads 2 wet 3 ice covered
ISNOW		Shallow snow cover indicator 0 no snow 1 snow cover
LAC	1	Indicator of surface roughness absorbed
MAP	71	power acceptance level Terrain input file format indicator 71 - class interval values, areal terrain
MAPG	1	 74 - Real values, areal terrain 74 - Real values, road terrain Powertrain computation method 1-Tractive effort vs speed data calculated from engine & transmission characteristics
MONTH		2-Input tractive effort vs speed data used Month of year (1=Jan.,2=Feb.,etc. required
NOPP	0	<pre>if MAP= 11 or 74) Operating tire pressure indicator O-Tire pressure used for each terrain unit determined by surface type in that unit 1-Tire pressure for cross-country used for all terrain units</pre>
NSLIP	0	2-Tire pressure for sand used for all terrain units 3-Tire pressure for highways used for all terrain units Surface moisture due to rain fall indicator (for areal terrain) 0-No moisture to make surface slippery 1-Less than 1 in. of rain with no free surface water 2-Less than 6 hours flooding with no free surface water

		TABLE III.D.2 (Continued)
Variable Name	Default Value	Description
NSLIP		 3-More than 6 hours flooding with no free surface water 4-Less than 1 in. of rain with free surface water 5-Less than 6 hours flooding with free surface water 6-More than 6 hours flooding with free surface water
NTRAV	3	Operational mode 1-Traverse 3-Omnidirectional
NTUX		Number of terrain unit to be examined if SEARCH = 1
PHI RDFOG	21.0 1000.0	Internal friction angle of snow (deg.) Recognition distance on road, influenced by weather (in.)
REACT	•5	Driver reaction time (time from recognition to initiation of decelera- tion) (sec.)
SFTYPC	90.0	Percent of maximum deceleration available that the driver will actually use (%)
VBRAKE	5.0	Speed at which vehicle will proceed on a road if visibility is entirely obscured (mph)
VISMNV	2.0	Speed at which vehicle will proceed in areal terrain if visibility is entirely obscured (mph)
VLIM ZSNOW	55.0 3.0	Speed limit on road (mph) Snow depth (in.)

Page 170

E. Output

NRMM has been designed to provide to its users a quantity of output data which can vary from a single number, speed-made-good on one terrain unit, to hundreds of pages covered with numbers (to a printer and/or file). The selection of the data to be written during the program execution from that which is possible is determined by the input values of the control variables described in the preceding section. Four choices of outputs are implemented in the NRMM computer code at present through the control variable DETAIL.

If DETAIL = 1 only the basic output of the NRMM is written for each terrain unit in the terrain input file. This consists of the following for areal terrain units:

1. Terrain unit number, NTU

2. Terrain type, ITUT

1 - normally dry patch
2 - marsh or other water covered patch
11 - superhighway
12 - primary road
13 - secondary road
14 - trail

- 3. The omnidirectional speed-made-good attainable by the vehicle in the terrain unit, VMAX
- 4. The attainable speed-made-good going with the topographic slope (up grade)
- 5. The attainable speed-made-good on level
- 6. The attainable speed-made-good going against the topographic slope (down grade)
- 7. The selected omni-directional speed-made-good which considers both the vehicle capabilities and human factors, VSEL

8. The selected speed-made-good upgrade

9. The selected speed-made-good on level

10. The selected speed-made-good down grade

11. Grade (topographic slope)

12. Area of the terrain unit

All speeds are in miles per hour, grade (topographic slope) is in percent and area is repeated from the input file. On roads, since the selected speed-made-good is the same as the attainable speed-made-good, items 3.-6. are not included in the output, also, on a road one can only proceed with or against the given grade so item 9 is omitted.

If DETAIL = 2, the basic output table described above is preceded by listings of the values of the control and scenario variables and the vehicle input data. This additional data is written using NAMELIST, so that the name of each variable precedes its value.

Setting DETAIL = 5 provides complete information about the vehicle pre-processor. After each major subroutine of the vehicle pre-processor (II1 - II17) a NAMELIST is written which contains the input and output of the subroutine. In addition, a line printer-plot of the tractive effort vs. speed curve is output. This printer-plot is also produced when errors are detected in the automatic curve-fitting section of the vehicle pre-processor. The program execution is terminated after the vehicle pre-processor (before any terrain data is read) at this output level. R-2058, VOLUME I Operational Modules

If DETAIL = 10, all available data is written to the output file. In addition to all the data described above (except the printer plot), after each major subroutine of the Areal Module (IV1-IV21) the input and output of the subroutine is written. Again, this is done through a NAMELIST so that each variable is identified. Detail level 10 output is not presently implemented for the Road Module. Since this output is voluminous, the program terminates after a single terrain unit.

The user of the NRMM who requires a different selection of data from that written under one of the above options has two choices. The 42 control variables for writing of intermediate output KII1-KII17, KIV1-KIV21, KMAP, KSCEN, KTPP and KVEH provide great flexibility for production of desired output. Alternately, the output section of the Control & I/O Module, Subroutine BUFFO, can be modified to yield the desired results. Samples of output are included in the appendices.

Page 172

R-2058, VOLUME I Operational Modules

IV REFERENCES

Abramowitz, Milton and Stegan, Irene A., <u>Handbook of Mathematical</u> Functions, National Bureau of Standards, Applied Mathematics Series, December 1965.

American Association of State Highway Officials (AASHO), <u>A Policy on</u> <u>Geometric Design of Rural Highways</u>, 1965, The American Association of State Highway Officials, Washington, D. C., pp 152 to 159.

Eklund, K. F., "The Influence of Load and Inflation on the Selection of Pneumatic Tires for Military Vehicles", Report 922, April 1945, U. S. Army Engineers Research and Development Laboratories, Fort Belvoir, Va.

Jurkat, M. P., Nuttall, C. J., and Haley, P. W., "The AMC '74 Mobility Model", Technical Report No. 11921 (LL-149), May 1975, U. S. Army Tank-Automotive Command, Warren, Mich.

Lessem, A. S., "Dynamics of Wheeled Vehicles: A Mathematical Model for the Traversal of Rigid Obstacles by a Pneumatic Tire", Technical Report M-68-1, U. S. Army Waterways Experiment Station, CE, Vicksburg, Miss., May 1968.

Merritt, H. E., "The Evolution of a Tank Transmission", The Institution of Mechanical Engineers, Vol. 154, p.412, April 1946.

Nuttall, C. J., Jr., and Dugoff, H. J., "A Hierarchial Structure of Models for the Analysis of Land Mobility Systems", presented at Twelfth Annual U. S. Army Operations Research Symposium, Durham, N. C., Oct 1973.

Nuttall, C. J., Jr., Rula, A. A., and Dugoff, H. J., "Computer Model for Comprehensive Evaluation of Cross-Country Vehicle Mobility", Earthmoving Industry Conference, SAE Paper No. 740426, presented at Society of Automotive Engineers, Apr 1974.

Pradko, F., Lee, R. A., and Kaluza, V., "Theory of Human Vibration Response", Paper 66-WA-BHF-15, presented at ASME Meeting, Nov 1966.

Ray, J. R., "Investigation of the Factors Involved in Steering Tracklaying Vehicles", Technical Report No. 10969 (AD 871157), May 1970, U. S. Army Tank-Automotive Command, Warren, Mich.

Rula, A. A., and Nuttall, C. J., Jr., "An Analysis of Ground Mobility Models (ANAMOB)", Technical Report M-71-4, Jul 1971, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Rula, A. A. and Nuttall, C. J., Jr., "Terrain Modeling to Support Mobility Evaluation", <u>Proceedings of Fifth International Conference</u>, <u>The International Society for Terrain-Vehicle Systems, Inc.</u>, Detroit, Mich., Vol 4, Jun 1975.

Page 173

R-2058, VOLUME I Operational Modules

Schreiner, B. G., "A Technique for Estimating the Performance of Tracked Vehicles in Muskeg", Journal of Terramechanics, Vol. 4, 1967, No. 3, pp 23 to 29.

Smith, G., "Commercial Vehicles Performance and Fuel Economy", Society of Automotive Engineers, Special Publication 355, 1970.

Taborek, J. J., <u>Mechanics of Vehicles</u>, Penton Publications, Cleveland, Ohio, 1957.

Turnage, G. W., "Performance of Soils Under Tire Loads, Application of Test Results to Tire Selection for Off-Road Vehicles", Technical Report 3-666, Report 8, Sept 1972, U. S. Army Waterways Experiment Station, CE, Vicksburg, Miss.

U. S. ATAC, "The AMC-71 Mobility Model", Technical Report No. 11789 (LL 143), Vols. I and II, Jul 1973, U. S. Army Tank-Automotive Command, Warren, Mich.

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

PROGRAM NRMM 4

	UT PU T				•							
+ T	AP E1	=	OUT	PU	T 🚛							
+ T	AP E2											
+ T.	AP E3	Ŧ	81,									
+ T/	APE4	=	81,									
+ Ti	AP E5	=	81,						*			
+ T/	APE10	=	512									
						(· ·)	-					 •
TITLE			DEN	~ ~	***	74.774	40					
UBCAN	NIZAT		K E N	U E	RUD	INITY	MU	UEL				
				NIV.	ALLT				ADCH	4410	051	
			• •		1 UM 		F 62.			ANU.	UC4	
					•				,			
					ASS I	GNMENT	r s					
	DH MON	-				IFOF						
	MMON					KBUEF						
	DM MON	-				LUN1						
	MMON					LUN2						
	MMON					LUN3						
	NON					LU N4						
	MMON					LUN5						
	MNON					1U.N6						
	MNON					LUN7						
	MMON					LUNS						
	MMON					LUN9						
	MMON		J/			LUNIØ						
	TEGER					NB						
	MAON TEGER		NUE/			NB Doulu						
	MMON											
	TEGER		UE	~4		COWN Egf						
	MNON		งกะง	(1		66F						
	TEGER		10 27			FORCE						
	MNON		IUEJ	()		FORCE						
	TEGER		1027	.,		GR						
	MNON		(DE)			GR						
	MMON					LEVEL						
	TEGER			• •		NA						
	MHON		DE)			MN					,	
	TEGER					FRM						
CO	MMON	/IN	DEX	1		REM						
	TEGER					SPEED						
	MMON	/IN	DEX	1		SAEEC						
	FEGER				S	5.4						
	MON	/IN	DEX	1		SR						
	TEGER					R						
C.01	MMON .	/IN	DEX	1		R						
	EGER					ORQUE						

00000000000

175

PAGE A-2

COMMAND

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

COMMON	/INDEX/	TØRQUE	
INT EGER		N B	
COMMON	/INDEX/	UR .	
INTEGER		MX	
COMPON	/INDEX/	MX	
COMMON	/VEHICL/	ACD	
	/VEHICL/	ASHOE	(20)
	/VEHICL/	AVIGC	• - •
	/VEHICL/	AXLSP	(20)
	/VEHICL/	CB	
	/VEHICL/	CGH	
	/VEHICL/	CELAT	
	/VEHICL/	CBR	
	/VEHICL/	CED	
	/VEHICL/	Ch	
	/VEHICL/	CERMIN	1201
	/VEHICL/		(2,25)
		CONV1	(2+25)
	/VEHICL/	CBAV 2	(20,3)
	/VEHICL/	CELCT	•
COMNON		CJAW	1201
-	/VEHICL/	DRAFT	
	/VEHICL/	ENGINE	12,501
	/VEHICL/	EXENGT	
	/VEHICL/	FØ	(2)
	/VEHICL/	FORDD	
COMMON	/VEHICL/	GROUSH	(20)
COMMON	/VEHICL/	HWAL S	(25)
	/VEHICL/	IMPG	
	/VEHICL/	48	(20)
COMMON	/VEHICL/	ID	(20)
REAL		IDIESL	
COMMON	/VEHICL/	IDIESL	
COMMON	/VEHICL/	IENGIN	
COMPON	/VEHICL/	18 I	(20)
COMPON		ICONST	(20)
COMMON	/VEHICL/	ICONV1	
COMMON	/VEHICL/	IGONV2	
COMPON	/VEHICL/	IROWER	
	/VEHICL/	IT	(20)
COMMON	/VEH/ICL/	HUCASE	
COMMON	/VEHICL/	ITRAN	
COMPON	/VEHICL/	IIVAR	
	/VEHICL/	LECKUP	
COMMON	/VEHICL/	#AXIPR	
COMMON	/VEHICL/	₽∆XL	
COMMON		NAMBLY	
	/VEHICL/	NBOGIE	(20)
COMNON	/VEHICL/	NCHAIN	(20)
REAL		NCYL	
COMNON	/VEHICL/	NGYL	
REAL		NENG	
COMMON	/VEHICL/	NENG	

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

COMMON		HRNET NGR	(20)
COMMON COMMON COMMON	/VEHICL/	AHVALS NRAD NSVALS	(20)
COMMON COMMON		NXEH NWHL	(20)
COMMON	/VEHICL/	NNR	3 2 0 1
COMMON	/VEHICL/ /VEHICL/	F8F P8ht	
	/VEHICL/	PEA	
	/VEHICL/	POWER	(2,201)
	/VEHICL/	CNAX	
	/VEHICL/	RBIAM	(20)
	/VEHICL7 /VEHICL/	FEVN Riemw	(20) (20)
	/VEHICL/	FNS	(20)
	/VEHICL/	RM	1201
	/VEHICL/	SAE	
	/VEHICL/	SAI	
COMMON	/VEHICL/ /VEHICL/	SECTH	(20)
	/VEHICL/	SMALS	(25)
COMMON		TGASE	{2}
COMMON		ЛЬ	
COMMON		TRLY	(20)
7	/VEHICL/ /VEHICL/	TOSI TQIND	(20,3)
	/VEHICL/	TRAKEN	(20)
	/VEHICL/	TRAKWD	(20)
	/VEHICL/	TRANS	(2,20)
	/VEHICL/	VAA	
	/VEHICL/ /VEHICL/	VDA Ves	
	/VEHICL/	VECB	(25)
	/VEHICL/	VEGBS	(25)
COMMON		VRIDE	(20,3)
	/VEHICL/	VSS	
	/VEHICL/ /VEHICL/	NSSAXP NC	
	/VEHICL/	NDAXP	-
	/VEHICL/	WDPTH	(20)
	/VEHICL/	WOTH	
COMMON	/VEHICL/	WGHT	(20)
COMPON	/VEHICL/	NRAT Waford	(20)
	/VEHICL/	hT.	(20)
COMPON	/VEHICL/	W.T.E	(20)
	/VEHICL/	WWAX P	
COMMON	/VEHICL/	XBRCOF h E	
CONTRON	A A CHI CEA	19 S	

PAGE A-4

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

COM MON COM MON COM MON COM MON COM MON COM MON COM MON COM MON COM MON COM MON	/PREP/ /PREP/ /PREP/ /PREP/ /PREP/ /PREP/ /PREP/ /PREP/ /PREP/ /PREP/ /PREP/ /PREP/ /PREP/	LOCDIF SHF A ATF ELF CWARLN CRFCFG CRFCG CRFCG CRFCG CRFFG CTF DRAT GCA GCWB GCWB	{ 3, 4 } (20) (20 , 3) (20 , 3) (3) (3) (3) (20 , 3) (20 , 3) (20 , 3) (20 , 3)
COMMON COMMON COMMON COMMON	/PREP/ /PREP/ /PREP/ /PREP/ /PREP/	GEWNP GEWP FRT NDF NVEHC	(38)
COMPON Compon	/PREP/ /PREP/ /PREP/ /PREP/	PHTE F FNK FR Tractf	(3) (20) (20,5)
COMMON COMMON COMMON COMMON COMMON	/PREP/ /PREP/ /PREP/ /PREP/	TRAPSI VCICG VCIFG VCIMUK VGV	(3) (20,3) (20,3) (20) (20,5)
COMPON COMPON COMPON COMPON		VI VIIRE Memax X X Br	(3)
COMPON COMPON COMMON COMMON COMMON COMMON	/085/ /085/ /085/ /085/ /085/	AVALS CLEAR FOO FOBMAX LOVALS NANG	(14) (7,14,5) (7,14,5) (7,14,5) (7) (7)
COMMON COMMON COMMON COMMON COMMON	/OBS/ /OBS/ /OBS/ /DERIVE/ /DERIVE/	NCHGT NUDTH LVALS ADT NEGOBF CAREA	(5) {91
COMMON COMMON COMMON COMMON COMMON	/DERIVE/ /DERIVE/ /DERIVE/	COWB COWP COWPB FA	(20) (20,3)

PAGE A-5

٠,

COMNON	/DERIVE/	FAT	(9)
	/DERIVE/		(9)
	/DERIVE/	FB	(20,3)
	/DER IVE/		(20,3)
	/DERIVE/		(9)
	/DERIVE/		
	/DERIVE/	FONMAX	
	/DERIVE/		(3)
	/DERIVE/		
	/DERIVE/	TMAY	(3)
	/DER IVE/	IELOAT INAX ISAFE	(3)
	/DERIVE/		134
	/DERIVE/	MAXI	
	/DERIVE/	BENX	(3)
	/DER IVE/	NEVERO	())
COMPON	/DERIVE/	COSE	
	/DERIVE/		(9)
	/DERIVE/	FTOWE	(9)
	/DERIVE/		
	/DERIVE/		
	/DERIVE/		1.201
	/DERIVE/		(20)
	/DERIVE/	,	(20)
	/DERIVE/	STRACT	(20,3,3h
	/DERIVE/	SRFO	(9)
	/DERIVE/	SRFV	1 9) 1 2 0)
COMMON		STR	(3,9)
	/DERIVE/	TRE	(3)
COMPON		TBEN	(9)
	/DERIVE/	TRES IS	(3,9)
	/DERIVE/	NA	(3,9)
CUMMUN	/DERIVE/ /DERIVE/	NGGOVA	(3,9)
COMPON	JUERIVE/	NAVOID	(3,9)
	/DERIVE/		(3,9)
	/DERIVE/		
	/DERIVE/		(3)
	/DERIVE/		
	/DERIVE/ /DERIVE/		120,3,31
COMMON		NEGOVO	(3,9)
COMPON COMPON		VNAX	1 3 4
COMMON		VNAX 1 VNAX 2	(3) (3,9)
COMMON	/DERIVE/	VELA	12421
COMMON	/DERIVE/		12 01
		VOVER	(3,9)
	/DERIVE/ /DERIVE/	VRID	
COMMON		VSEL	(2)
	/DERIVE/	VSEL1	(3)
		WSEL2	(3,9)
		VSCIL	(3, 9)
COMMON		N LT	(3,9)
COMPON		VXT	(3,9)
COMMON	/DERIVE/	ND GONO	

COMMON	/DERIVE/	WRAT IO	
	/TERRAN/		
	/TERRAN/		
	/TERRAN/		
	/TERRAN/	AREAD	
COMMON	/TERRAN/	C.F	
COMMON		CIST	
	/TERRAN/	EANG	
	/TERRAN/	EGF	
	/TERRAN/	ELEV	
COMMON	/TERRAN/	FNU	131
COMMON	/TERRAN/	GRADE	
COMPON	/TERRAN/	ICBS	
	/TERRAN/	IEST	
CUMPUN	/TERRAN/	IRGAD	
	/TERRAN/	·15.	(9)
COMPON	/TERRAN/	ist	
COMMON	/TERRAN/	TJUK	
	/TERRAN/	NE	
	/TERRAN/		
	/TERRAN/	CAN	
CUMPON	/TERRAN/	CBAA	
COMMON	/TERRAN/	СӨН	
	/TERRAN/		
	/TERRAN/		
	•		
	/TERRAN/		
COMMON	/TERRAN/	CBMINW	
COMMON	/TERRAN/	CEIA	
COMPON	/TERRAN/	NJ AS HO	
	/TERRAN/	RADC	
	/TERRAN/	PC I	
COMMON		FCIC	(4)
COMPON		RCWRV	(11)
COMMON	/TERRAN/	RO	
COMMON	/TERRAN/	FEA	(12)
	/TERRAN/	S	(9)
	/TERRAN/	SE	(9)
	/TERR AN/	SDL	
			(9)
	/TERRAN/	SURFF	
	/TERRAN/	TANPHI	
COMNON	/TERRAN/	THETA	(3)
COMMON	/TERRAN/	VEURV	(4,11)
COMNON	/TERRAN/	h.4	
COMMON		hC	
COMNON		CEHES	
COMMON		VMALK	
COMMON		ECLNAX	
COMMON	/SCEN/	IG.AMM A	
COMMON	/SCEN/	IEVER	
COMMON		ISEASN	
	/SCEN/		
		ISURF	
CUMPUN	/SCEN/	ISNOW	

PASE A-7

COMMON	/SCEN/	K#11
	/SCEN/	KII2
	/SCEN/	K413
COMFON		KīI4
COMMON	/SCEN/	K 145
COMMON	/SCEN/	KII6
COMMON	/SCEN/	K ± 17
	/SCEN/	KII8
COMNON	/SCEN/	K419
COMPON	/SCEN/	
COMPON	/SCEN/	KE11Ø
		K4111
	/SCEN/	K.1112
	/SCEN/	K4113
COMMON	/SCEN/	K 114
COMMON	/SCEN/	K#115
COMPON	/SCEN/	KI116
	/SCEN/	K#117
	/SCEN/	KNAP
	/SCEN/	KSCEN
	/SCEN/	KTPP
	/SCEN/	K¥EH
COMMON		K BV 1
	/SCEN/	K €¥2
COMMON	/SCEN/	K 3V 3
COMMON		K€¥4
COMNON		KBV5
	/SCEN/	K≰V6
	/SCEN/	K連V7
	/SCEN/	
		K∉¥B
	/SCEN/	KIV9
COMMON		K IV10
	/SCEN/	K EM I I
	/SCEN/	K÷≣¥12
	/SCEN/	K3V1.3
COMMON	/SCEN/	K老V14
COMMON	/SCEN/	K 1V 15
COMMON	/SCEN/	K4V16
COMMON		K1V17
	/SCEN/	K#V18
	/SCEN/	K 1V 19
	/SCEN/	KEN20
	/SCEN/	
		K 1 21
COMMON		LAC
INTEGER		CETAIL
	/SCEN/	CETAIL
COMMON	/SCEN/	MAP
COMMON	/SCEN/	₽₩₽G
COMMON		PENTH
COMMON		NOPP
COMMON	/SCEN/	NSLIP
COMMON	ISCEN/	NIRAV
COMMON		NTUX
CORPON	JUCHT	N U W/I

PAGE A-8

), VOLUME I DIX A - LISTING OF PROGRAM NRMM
c	COMMON /SCEN/ PLI COMMON /SCEN/ REACT COMMON /SCEN/ REFOG INTEGER SEARCH COMMON /SCEN/ SETYPC COMMON /SCEN/ VERAKE COMMON /SCE
С	TR = 1 UP = 1 MX = 3 3. INITIALIZE I/O CHANNELS REWIND LUN2 REWIND LUN3 REWIND LUN4 KEWIND LUN5
c	REWIND LUNIØ 4. REAC SCENARIO PARAMETERS
С	CALL SCN 5. REAC VEHICLE PARAMETERS CALL VEH(KVEH)
С	6. EXECUTE VEHICLE PRERROCESSOR CALL VPP
C 2000	7. EXECUTE TERRAIN TRANSLATOR CONTINUE
C	CALL TERTL 8. EXECUTE AREAL OR RCAD MODULE IF(ITUT .LE, 2) CALL AREAL
C	IF(ITUT .GE. 114 CALL ROAD 9. OUTPUT REQUESTED INFORMATION IF(IEOF .EQ. 14 GO TO 4000

182

	CAL	L BUFFØ		,					
	IF	(SEARCH	.EQ.1)	.OR. (DETAIL	. EQ.	1011	GOT	0 400
		GO TO 2	2000						
100	CONTIN	UE							
	END								
S	UBROUTIN	E SCN				÷			
5	CENAR IO	INPUT RI	JUTINE						
1	. LABLED	CONMON	ASST.GNNE	INTS					
	COMMON		IEOF						
	COMMON		K.BU F						
	COMMON	-	LUNI						
	COMMON		LUNZ						
	COMMON		LUN3						
	COMPON		LWN4						
	COMMON		LUN5						
	COMMON	/10/	LUN6						
	COMMON	/10/	LUN7						
	COMPON	/10/	LUN 8						
	COMMON	/10/	LUN9			•			
	COMMON	/10/	LUN1						
	COMMON	/SCEN/	CICHE						
	COMPON	/SCEN/	VALAL	K					
	COMMON	/SCEN/	DELM		,				
	COMMON	/SCEN/	GAMM	A					
	COMMON	/SCEN/	IGVE	R					
	COMMON	/SCEN/	ISEA	SN					
	COMMON	/SCEN/	ISUR	F					
	COMMON	/SCEN/	×19NO	W					
	COMMON		K&11						
	COMPON		K通12						
	COMMON		Ka 13						
	COMMON		K.114						
	COMMON		K 15						
	COMMON		K116	*					
	COMMON		K 117				÷		
	COMMON		K418						
	COMMON		K£19	~					
		/SCEN/	KÆ₹1:						
	COMNON		KEIII						
		/SCEN/	长透过上						
		/SCEN/	KÆI1:						
		/SCEN/	K@114						
		/SCEN/	KÆI1!						
	COMMON	/SCEN/	K.34110						
		/SCEN/	КІ 11 ° КМАР	,					
	COMMON		KSCEI	A i					
	CONTINUN			*					
	COMNON	/SCEN/	KTPP						

		COMPO	N /S(CEN	1		KāVI	ł							
		COMMO		CEN			K#V2								
		_		CEN											
		COMMO					KUN								
		CONNO		CEN			K-IV4								
		COMMO	N /S(CEN	/		K a n S	5							
		COMMO	N /S(CEN	1		K 3V 6								
		COMMO	N /SI	CEN	1		K.JV7	1							
		COMMO	N ISI	CEN	1		KIVE	3							
		COMPO		CEN			KJV								
		COMMO		CEN			KZV1								
		COMMO		CEN			K-SV)								
		COMMO		CEN			KZVI								
		CONMO		CEN			Kaiv)								
		-													
		COMNO		CEN			KEV 3								
		COMPO		CEN			KAV								
		COMMO		CEN			KEVI								
		COMMO		CEN			Kain I	17							
		COMMO	N 751	CEN	1		K:EV 1	8							
		COMMO	N /S	CEN	1		Killy	19							
		COMMO	N /S!	CEN	1		KIEV 2	20							
		COMMO	N /S!	CEN	1		KAN								
		COMMO					LAC								
		INTEG					CET	1 II							
		COMMO		CEN.	,		CET								
		COMNO					MAP								
		COMMO					₽:å₽(2							
		COMMO					NBN1								
		COMNO					NCPI								
		COMPO		CEN			NSL								
		COMPO		CEN			AJR								
		COMMO		CEN			NEU								
		COMMO		CEN			FHI	•							
								~~							
		COMPO		CEN.			REAL								
		COMMO		CEN			ROF								
		INTEG		.			SEAF								
		COMMO					S BAI								
		COMMO		CEN			SET								
		COMMO		CEN			VBRI								
		COMMO					VISI								
		CONNO					VEI	N							
		COMPO	N /S	CEN	/		ZSNO	3W							
С	2.	SCENA	RIO	INPL	JT. I	PAR	ANEI	ERS							
		NAM EL	IST -	/SC	ENAF	27									
	+	C 0	HE S	• DI	CLM	A X	,GAI	AMA	,	IOV	ER	, ISEA	SN	, ISURF	:
	+	, IS	NOW	,L	AC		, NAI	Р	,	NAP	G	MONT		NOPP	
	+	, NS	LIP	• N1	RA		, ATL		-	PHI		REAC		ROFOG	;
	+	, SF	TYPC				-	SMNV		VLI		,ZSNC			
		NAMEL							-	-					
	+		ETAI		KS			,KVE	н		•K14	1	, KÆ	12	
	+		113		KÎ		-	KLI			,KLI		.KI		
	+	•K	814	1	KI	19		FKLI			,KII		,Kł		
	+	₽K	II 13		KI	114	1	KII	1 :5		,KII		,KI		

184

PAGE A-11

С

K-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

С

С

310

320

+

, KT PP ,KIV1 , KMAP "KIV2 ,KIV5 .KIV6 ,KIV4 .KIV7 ,KIV9 .KIV1Ø #KIV11 ,KIV12 ,KLV14 ,KI V15 ,KIV16 .KINE7 ,KIV19 .KIV2Ø .KIV21 ,NTUX 3. INITIALIZE SCENARIO VARIABLES .05 COHES Ξ VWALK Ξ 4.00 DCL MAX = **.**5Ø GAMMA .20 = TOVER = 9 ISEASN =1 ISNOW = 6 ISURF Ξ 1 LAC -1 DETAIL =1 71 MAP ± MAPG × 1 NOPP = Ø NSL IP = Ø NTRAV = 3 PHI = 21.00 .5Ø REACT = =1000-00 RDF CG SEARCH =Ø SFTYPC = 90.00 VBRAKE = 5.00 VISMNV = 2.00 VLIM Ξ 55.00 = ZSNOW 3.00 4. READ CONTROL VARIABLES READ(LUN4, CONTRL) IF(CETAIL .EQ. 1) 60 TO 330 IFC CETAIL .EQ. 21 GC TO 310 IF(CETAIL .EQ. 3) GO TO 310 IFICETAIL .EQ. 41 G8 TO 310 IF (CETAIL .EQ. 51 60 TO 320 IF(DETAIL .EO. 10) GC TO 320 WRITE(LUN1,3000) DETAIL STOP 1 GO TO 320 CONTINUE KSCEN = 1= 1 KVEH GO TO 330 CONTINUE KSCEN = 1 KVEH = 1 KII1 = 1 KII2 = 1 KII3 = 1 KII4 = 1

PAGE A-12

KIV3

.KIV8

+K∎V13

KIV18

-S EARCH

	KII5 = 1
	KII6 = 1
	KII7 = 1
	KII8 = 1
	KI19 = 1
	$KILI \emptyset = 1$
	KIIII = 1
	KIII2 = 1
	KII13 = 1
	KIII4 = 1
	KII15 = 1
	KII16 = 1
	KIII7 = 1
	KMAP = 1
	KTPP = 1
	KIV1 = 1
	KIV2 = 1
	KIV3 = 1
	KIV4 = 1
	KIV5 = 1
	KIV6 = 1
	KIV7 = 1
	KIV9 = 1
	KIV10 = 1
	KIV11 = 1
	KIV12 = 1
	KIV13 = 1
	KIV14 = 1
	KIV15 = 1
	KIV16 = 1
	KIV17 = 1
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	KIV19 = 1
	KIV20 = 1
n n 1	KIV21 = 1
33ŵ	
~	IF/KSCEN .EQ. 14 WEGTE/LUN1,CONTRLE
C	5. READ SCENARIO VARIABLES
	REACLUNA, SCENARI
~	IF(KSCEN .EQ. 1) WRETE(LUN1, SCENAR)
C	6. UNITS CONVERSION
	PHI = PHI*3.14159265/180.
	VBRAKE = VBRAKE + 17.6
	VISMNV = VISMNV*17.6
	VLIP = VLIM + 17.6
	VWALK = VWALK*17.6
3000	FORMAT(1X,31HINVAL ID SPECIFICATION OF DETAIL, 12)
	RETURN

SUBROUTINE VEH(KVEH)

С

PAGE A-13

.

С С С С

VEHICLE PARAMETER IN		ÍNE
1. LABLED COMMON ASS	LIGNMENTS	
COMMON /IO/	-160F	
COMMON /IO/	KBUFF	
COMPON /IO/	LUN1	
COMMON /LO/	LUN2	
COMMON /IO/ COMMON /IO/ COMMON /IO/ COMMON /IO/ COMMON /IO/	LNN3	
COMMON /IO/	LUN4	
COMMUN ZEOZ	LUN5	
COMMON /IO/	LUN6	·
COMMON /ID/	LUN7	
COMMON /IO/	LUN8	
COMMON /IO/	LUN9	
COMMON /IO/	luni e	• .
CGMMON /VEHICL/		
COMMON /VEHICL/		1201
COMMON /VEHICL/		
COMMON /VEHICL/		(20)
COMMON /VEHICL/	CD	
COMMON /VEHICL/	CIGH	
COMMON /VEHICL/	CGLAT	
COMMON /VEHICL/	CGR	
COMMON /VEHICL/	C∉D	
COMMON /VEHICL/	CL	4
COMMON /VEHICL/ COMMON /VEHICL/ COMMON /VEHICL/ COMMON /VEHICL/ COMMON /VEHICL/	CERMIN	(20)
CUMMUN /VEHICL/	CENV1	(2.25)
COMPON /VEHICL/	CONV 2	{2,25}
CONKON /VEHICL/		-
COMMON /VEHICL/		(20)
COMMON /VEHICL/		1.5 5.01
COMMON /VEHICL/	ENGINE	12,501
COMMON /VEHICL/	EXENCE	
COMNON /VEHICL/	- FU	(2)
COMMON JVEHICL/		1.000
COMMON /VEHICL/ COMMON /VEHICL/	CREUSH	120+
COMMON /VEHICL/	IAPG	(25)
COMMON /VEHICL/	18-0	1203
COMMON /VEHICL/	IG	(20) (20)
REAL	IGLESL	1207
COMMON /VEHICL/	404ESL	
COMMON /VEHICL/	IENGIN	
COMPON /VEHICL/	IR	(20)
COMMON /VEHICL/	ICONST	(20)
COMMON /VEHICL/	ICONV4	
COMMON /VEHICL/	ICONV2	
COMMON /VEHICL/	ARGWER	
COMMON /VEHICL/	IL	(20)
COMMON /VEHICL/	ITCASE	
COMMON /VEHICL/	ITRAN	

	/VEHICL/	4TV AR	
COMNON		LECKUP	
	/VEHICL/	MAKIPR	
COMMON		PAXE	
COMMON		NAMBLY Necgie	(20)
COMMON		NCHAIN	(20)
COMMON REAL	/VENICE/	ACYL	1201
COMPON	/VEHICL/	NCYL NCYL	
KEAL	/VENICL/	NENG	
	/VEHICL/		
	/VEHICL/	HENET	
	/VEHICL/		120)
	/VEHICL/	NBR	
	/VEHICL/	N MALS	
	/VEHICL/	NAD	(20)
	/VEHICL/	NSVALS	
	/VEHICL/	NWEH	(29)
COMMON		NHHL	(20)
COMPON	• • • .	NHR	
COMINON			
	/VEHICL/	PBHT	
	/VEHICL/	FEA	
	/VEHICL/	PONER	(2,201)
	/VEHICL/	CNAX	· •
COMMON	/VEHICL/	ROJAM	(20)
COMMON	/VEHICL/	R EV N	(20)
	/VEHICL/	Ræmw	(20)
COMMON		FAS	(20)
COMMON		RM	(20)
	/VEHICL/	SAE	
	/VEHICL/	SAL	1.241
	/VEHICL/	SECTH	(20)
	/VEHICL/	SECTW	(20) (25)
	/VEHICL/ /VEHICL/	SVALS TCASE	(2)
	/VEHICL/	Th	121
	/VEHICL/	TALY	(20)
	/VEHICL/	TRSI	(20,3)
	/VEHICL/	TEIND	~~~~~
COMMON		TRAKLN	(20)
	/VEHICL/	TRAKWD	(20)
	/VEHICL/	TFANS	12,201
COMMON		VAA	• - • • -
COMMON	/VEHICL/	NDA	
CONFON	/VEHICL/	VES	
COMMON		VÆGB	1251
	/VEHICL/	VOOBS	(25)
	/VEHICL/	VRIDE	(20,3)
	/VEHICL/	ASS	
	/VEHICL/	VSSAXP	
LUMMON	/VEHICL/	N C	

PAGE A-15

· C

С С С С

С С С

Ρ	AG	E	A-	16	
---	----	---	----	----	--

	COMMON /VEHIC					
	COMMON /VEHIC		(20)			
	COMPON /VEHIC					
	COMMON /VEHIC		[20]			
	COMMON /VEHIC	_/ WRAT	(20)			
	COMMON /VEHIC	L/ WRFORD				
	COMMON /VEHIC	L/ NJ	1201			
	COMMON /VEHIC	/ NUE	(20)			
	COMMON /VEHIC					
	CONMON /VEHIC					
	COMMON /VEHICI					
	COMMON /VEHICL	· •				
	COMMON /VEHICI					
	COMPON /OBS/	ANALS	(14)			
	COMMON /OBS/	CEEAR		5 1		
			(7,14,			
	COMMON /OBS/	FEC	(7,14,			
· .	COMMON ZOBSZ	FOCMAX	17,14,	うれ		•
	COMPON JOBS/	HEVALS	17)			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	COMMON /OBS/	NANG				4
	COMMON /OBS/	NEHGT				
	COMMON /OBS/	NHDT H				
	COMMON /OBS/	WWALS	(5)			
	2. VEHICLE INPUT					
	NAMELIST /VEHI					
+	ACD ,ASH	· · · · · · ·	AXLSP	₩CD	, CGH	CGLAT
		ا ا ا ا				-
+	,CGR ,CIC		, CLRMIN	, CONV 1	, CONV2	DFLCT
+	,CGR ,CIL ,CIAW ,DRA		, CL RMIN	,CONV1 ,FD	, CONV2	, DFLCT
		FT .ENGINE	, EY EHGT	• FD	FORDD	, GROUSH
+	, CIAW , DRA , HPNET , HVA	FT .ENGINE	,EYEHGT ,IB	.FD .10	,FORDD, IDIESL	, GROUSH , IENGIN
+	, CIAW , DRA , HPNET , HVA	FT SENGINE LS SAPG INV1 SECONV2	,EYEHGT ,IB ,IP	• FD • IO • IPOWER	,FORDD ,IDIESL ,IT	, GROUSH , IENGIN , ITCASE
+ + +	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV	FT .ENGINE LS .EAPG NV1 .CONV2 AR .LOCDIF	, EYEHGT , IB , IP , LOCKUP	#FD #10 #IPOWER #NAXIPR	,FORDD ,IDIESL ,IT ,MAXL	, GROUSH , IENGIN , ITCASE ,NAMBLY
+ + + +	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH	FT .ENGINE LS .EAPG INV1 .CONV2 AR .CONV2 AR .COLIF	, EYEHGT , IB , IP , LOCKUP , NENG	•FD •IO •IPOWER •NAXIPR •NFL	,FORDD ,IDIESL ,IT ,MAXL ,NGR	, GROUSH , IENGIN , ITCASE ,NAMBLY , NHVALS
+ + + +	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV	AFT - ENGINE LS - MAPG INV1 - CONV2 AR - COCDIF IAIN - MCYL ALS - NVEH	• EYEHGT • IB • IP • LOCKUP • NENG • NWHL	■ FD ■ ID ■ IPOW ER ■ MAX IPR ■ NFL ■ NWR	<pre>#FORDD #IDIESL #IT #MAXL #NGR #PBF</pre>	• GROUSH • IENGIN • ITCASE • NAMBLY • NHVALS • PBHT
+ + + +	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW	FT GINE SAPG NV1 GCONV2 AR CONV2 AR CONV2 ALS NVEH ER GMAX	• EY EHGT • I B • I P • LOCKUP • NENG • NWHL • RDJAM	■ FD ■ ID ■ IPOW ER ■ MAX IPR ■ NFL ■ NWR ■ REVM	<pre>FORDD JDIESL JIT MAXL NGR PBF RIMW</pre>	• GROUSH • IENGIN • ITCASE • NAMBLY • NHVALS • PBHT • RMS
+ + + + + +	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE	FT .ENGINE LS .EAPG NV1 .CONV2 AR .LOCDIF AIN .MCYL ALS .NVEH ER .GMAX .SAI	, EYEHGT , IB , IP , LOCKUP , NENG , NWHL , RDJAM , SECTH	■ FD ■ IO ■ IPOW ER ■ MAX IPR ■ NFL ■ NWR ■ REVM ■ SECTW	<pre>FORDD JDIESL JIT MAXL NGR PBF RIMW SVALS</pre>	, GROUSH , IENGIN , ITCASE , NAMBLY , NHVALS , PBHT , RMS , TCASE
* * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL	FT .ENGINE LS .EAPG NV1 .CONV2 AR .CONV2 AR .COL ALS .NVEH ER .OMAX .SAI Y .FPSI	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TGIND	■ FD ■ ID ■ IPOW ER ■ MAX IPR ■ NFL ■ NWR ■ REVM ■ SECTW ■ TRAKLN	<pre>FORDD JDIESL JIT MAXL NGR PBF RIMW SVALS JTRAKWD</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS
* * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA	FT .ENGINE LS .EAPG NV1 .GCONV2 AR .CONV2 AR .CONV2 AR .CONV2 ALS .NVEH ER .OMAX .SAI Y .TPSI .VFS	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TGIND VOOE	<pre>> FD . LD . IPOW ER . MAX IPR . NFL . NFL . NWR . REVM . REVM . SECT.W . TRAKLN . VOD BS</pre>	<pre>FORDD JDIESL IT MAXL NGR PBF RIMW SVALS TRAKWD VRIDE</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC	FT .ENGINE .LS .EAPG NV1 .CONV2 AR .CONV2 AR .COL AIN .MCYL ALS .NVEH ER . MMAX .SAI Y .FPSI .NDAXP	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB WOPTH	• FD • ID • IPOW ER • MAX IPR • NFL • NFL • NWR • REVM • SECTW • TRAKLN • VODBS • W DTH	<pre>> FORDD , IDIESL , IT , MAXL , NGR , PBF , RIMW , SVALS , TRAKWD , VRIDE , WGHT</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS
* * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF	FT Image: Second se	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TGIND VOOE	<pre>> FD . LD . IPOW ER . MAX IPR . NFL . NFL . NWR . REVM . REVM . SECT.W . TRAKLN . VOD BS</pre>	<pre>FORDD JDIESL IT MAXL NGR PBF RIMW SVALS TRAKWD VRIDE</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP	SFT SINGINE SAPG NV1 SCONV2 AR SCONV2 AR SCONV2 ALS NVEH ER SNAL SAI Y STRSI SKFS NDAXP ORD SMT	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB HOPTH WTE	• FD • IO • IPOW ER • MAX IPR • NFL • NWR • REVM • SECTW • TRAKLN • VOD BS • W DTH • WW AX P	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C	FT ENGINE LS JAPG NV1 CONV2 AR EOCDIF AIN XCYL ALS NVEH ER GMAX SAI Y JFPSI VFS NDAXP ORD WT	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TGIND VOOB WOPTH WTE	• FD • ID • IPOW ER • MAX IPR • NFL • NWR • REVM • SECTW • TRAKLN • VOD BS • W DT H • WW AX P	<pre>> FORDD , IDIESL , IT , MAXL , NGR , PBF , RIMW , SVALS , TRAKWD , VRIDE , WGHT</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N	FT ENGINE LS JAPG NV1 CONV2 AR EOCDIF AIN XCYL ALS NVEH ER ONAX SAI Y JFPSI VFS NDAXP ORD HT LEAR OHGT	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TGIND VOOB WOPTH WTE	• FD • IO • IPOW ER • MAX IPR • NFL • NWR • REVM • SECTW • TRAKLN • VOD BS • W DTH • WW AX P	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N , REAC VEHICLE P	FT INGINE IS Image: Im	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TGIND VOOB WOPTH WTE	• FD • ID • IPOW ER • MAX IPR • NFL • NWR • REVM • SECTW • TRAKLN • VOD BS • W DT H • WW AX P	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N , REAC VEHICLE P READ(LUN3, VEHI	FT INGINE IS INGINE IS INCONV2 AR INCONV2 AR INCONV2 AR INCONV2 AR INCONV2 ALS INVEH ER INMAX ISAI INCONVEH ER INMAX ISAI Y IFFS INDAXP ORD INT IEAR FOR OHGT INWE ARAMETERS CLE	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB WOPTH WTE C ITH V	<pre>> FD . ID . IPOW ER . MAX IPR . NFL . NWR . REVM . SECTW . TRAKLN . VOD BS . W DT H . WWAX P FOOMAX . VALS</pre>	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N , REAC VEHICLE P READ(LUN3, VEHI IF(KVEH , EQ. 1	FT ENGINE LS JAPG NV1 CONV2 AR EOCDIF AIN MCYL ALS NNEH ER GMAX SAI SAI Y FPSI NFS NDAXP ORD WT / FOI ARAMETERS CLE) WR ITE(LUN)	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB HOPTH WTE C C IVEHICLE	<pre>> FD . ID . IPOW ER . MAX IPR . NFL . NWR . REVM . SECTW . TRAKLN . VOD BS . W DT H . WWAX P FOOMAX . VALS</pre>	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N , REAC VEHICLE P READ(LUN3, VEHI IF(KVEH . EQ. 1	FT INGINE IS Image: Im	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB HOPTH WTE C I.VEHICLE	<pre>> FD . ID . IPOW ER . MAX IPR . NFL . NWR . REVM . SECTW . TRAKLN . VOD BS . W DT H . WWAX P FOOMAX . VALS</pre>	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICG , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS ,C , NANG ,N , REAC VEHICLE P READ(LUN3, VEHI IF(KVEH .EQ. 1	FT GINGINE SAPG NV1 GCONV2 AR CONV2 AR COCUIF AIN MCVL ALS NVEH ER OMAX SAI Y GTPSI WFS MDAXP ORD WT / LEAR FOI OHGT NWE ARAMETERS CLE WR ITE(LUN FERENCE HIST	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB HOPTH WTE C IVEHICLE	<pre>> FD . ID . IPOW ER . MAX IPR . NFL . NWR . REVM . SECTW . TRAKLN . VOD BS . W DT H . WWAX P FOOMAX . VALS</pre>	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICG , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N REAC VEHICLE P READ(LUN3, VEHI IF(KVEH .EQ. 1	FT GINGINE SAPG NV1 GCONV2 AR CONV2 AR COCUIF AIN SCYL ALS NVEH ER OMAX SAI Y STRSI SAI Y STRSI STRSI SAI Y STRSI SAI Y STRSI STRSI SAI Y STRSI SAI Y	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB HOPTH WTE C IVEHICLE	<pre>> FD . ID . IPOW ER . MAX IPR . NFL . NWR . REVM . SECTW . TRAKLN . VOD BS . W DT H . WWAX P FOOMAX . VALS</pre>	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICG , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N B. READ VEHICLE P READ(LUN3, VEHI IF(KVEH .EQ. 1 OBSTACLE INTER READ(LUN3, 1000	FT GINGINE SAPG NV1 GCONV2 AR CONV2 AR CONV2 AR SOCOLF ALS NVEH ER ONAX SAI Y STPSI SVFS NDAXP ORD ST / LEAR FOI OHGT NWE ARAMETERS CLE) WR ITE(LUN) FERENCE HIST DUNNY	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB HOPTH WTE C IVEHICLE	<pre>> FD . ID . IPOW ER . MAX IPR . NFL . NWR . REVM . SECTW . TRAKLN . VOD BS . W DT H . WWAX P FOOMAX . VALS</pre>	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N , READ VEHICLE P READ(LUN3, VEHI IF(KVEH .EQ. 1 , DBSTACLE INTER READ(LUN3, 1000 REAC(LUN3, 2000	FT ENGINE LS JAPG INV1 CONV2 AR EOCDIF AIN MCYL ALS NVEH ER ONAX SAI SAI Y JFPSI WFS NDAXP ORD MT / LEAR ORD MT / FOI ORD MT / FOI ORD MT / NUAXP ORD MT / FOI DHAM FOI DUNMY NOLAT	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB HOPTH WTE C IVEHICLE	<pre>> FD . ID . IPOW ER . MAX IPR . NFL . NWR . REVM . SECTW . TRAKLN . VOD BS . W DT H . WWAX P FOOMAX . WALS</pre>	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N , REAC VEHICLE P READ(LUN3, VEHI IF(KVEH . EQ. 1) OBSTACLE INTER READ(LUN3, 1000 REAC(LUN3, 1000	FT ENGINE LS JAPG INV1 CONV2 AR EOCDIF IAIN MCYL ALS NVEH ER ONAX SAI SAI Y JEPSI WFS NDAXP ORD MT / LEAR ORD MT / FOI OHGT NWH ARAMETERS CLE) WR ITE(LUN) FERENCE HISI FERENCE HISI DUNMY NOLAT DUNMY NOLAT	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB HOPTH WTE C IVEHICLE	<pre>> FD . ID . IPOW ER . MAX IPR . NFL . NWR . REVM . SECTW . TRAKLN . VOD BS . W DT H . WWAX P FOOMAX . WALS</pre>	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS
* * * * * * * * * * *	, CIAW , DRA , HPNET , HVA , ICONST , ICO , ITRAN , ITV , NBOGIE , NCH , NPAD , NSV , PFA , POW , RW , SAE , TL , TPL , VAA , VDA , VSSAXP , WC , MRAT , WRF NAMELIST / BUMP AVALS , C , NANG , N , READ VEHICLE P READ(LUN3, VEHI IF(KVEH .EQ. 1 , DBSTACLE INTER READ(LUN3, 1000 REAC(LUN3, 2000	FT Image: Second seco	EYEHGT IB IP LOCKUP NENG NWHL RDIAM SECTH TQIND VOOB HOPTH WTE C IVEHICLE	<pre>> FD . ID . IPOW ER . MAX IPR . NFL . NWR . REVM . SECTW . TRAKLN . VOD BS . W DT H . WWAX P FOOMAX . WALS</pre>	<pre>FORDD , IDIESL ,IT ,MAXL ,NGR ,PBF ,RIMW ,SVALS ,TRAKWD ,VRIDE ,WGHT ,XBRCOF</pre>	, GROUSH , IENGIN , ITCASE ,NAMBLY ,NHVALS ,PBHT ,RMS ,TCASE ,TRANS ,VSS

	DIX A - LISTING CF FROM	
	REAC(LUN3,2000) NW1	
	REAC(LUN3,1000) DU	
	READ(LUN3,1000) DUI	¥N Y
600	FORMAT(A1)	
2000	FORMAT(5X,12)	
	DO 3000 NW=1, NWDTH	
	DO 3013 NA=1,NA Do 3020 NH=1.	
	READILUNA	
		NH, NA, NWA,
		(BH+NA+NW)+
		AA, NH I,
	+ HOVALS	
	+ AVALS	
	+ WVALSI	
4000	CONTINUE	.2, F10, 1, F10, 1, F10, 2, F14, 2, F10, 2)
3020 3010	CONTINUE	
3000	CONTINUE	
C	REAC(LUN3,BUMP)	
č	IF(KVEH .EQ. 1) WR	IDE(LUN1, BUMP)
-	RETURN	
	END	
	SUBROUTINE VPP	
C		
C C	VEHICLE PREPROCESSGR	
C		
č	1. LABLED COMMON ASSI	GNNENTS
		IEGF
		KBUFF
	-	LVN1
		LUN3 LUN4
		LUNG
		LUN7
	-	LUN 8
		LUN9
		LNN10
		NO N E
		re Dewn
		CGWN
	INTEGER	EFF
	COMMON /INDEX/	£65
		FORCE
	COMMON /INDEX/	FORCE
		A.A.
		GR GR

PAGE A-17

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

INTEGER 10 COMMON /INDEX/ 44 INT EGER FRA RRM COMPON /INDEX/ INTEGER SREED COMMON / INDEX/ SEEED INT EGER SR COMMON /INDEX/ SR INTEGER TR COMMON /INDEX/ TR INT EGER TORCUE TERQUE COMPON /INDEX/ INTEGER U# COMMON / INDEX/ UG INT EGER FX. COMPON /INDEX/ ۲X COMMON /VEHICL/ ACD COMMON /VEHICL/ ASHOE (20) COMMON /VEHICL/ AVIGC COMMON /VEHICL/ AXLSP (20) COMMON /VEHICL/ CO COMMON /VEHICL/ CCH COMMON /VEHICL/ CELAT COMMON /VEHICL/ COR COMMON /VEHICL/ CID COMMON /VEHICL/ C₽ **CERMIN** COM#ON /VEHICL/ (20) COMMON /VEHICL/ CENV1 (2,25) COMMON /VEHICL/ CONV2 (2,25) COMMON /VEHICL/ GELCT (20,3) COMMON /VEHICL/ CAN 1201 COMMON /VEHICL/ CRAFT COMMON /VEHICL/ ENGINE (2,50) COMNON /VEHICL/ EXENCT COMMON /VEHICL/ Fß {2} COMMON /VEHICL/ FORDD COMMON /VEHICL/ CROUSH (20) COMMON /VEHICL/ HWALS (25) COMMON /VEHICL/ INPG COMMON /VEHICL/ 18 (20) COMMON /VEHICL/ ID (20) REAL IDIESL COMMON /VEHICL/ IBIESL COMMON /VEHICL/ IENGIN COMMON /VEHICL/ 10 (20) TOONST COMMON /VEHACL/ (20) COMMON /VEHICL/ ICONV1 COMPON /VEHICL/ ICONV2 COMMON /VEHICL/ JROWER COMNON /VEHICL/ 13 (20) COMMON /VEHICL/ INCASE COMMON /VEHICL/ ITRAN

PAGE A-18

COMNON	/VEHICL/	ITVAR	
COMMON	ZVEHICL/	LECKUP	
	/VEHICL/	MAKIPR	
	/VEHICL/	PAXE	
	/VEHICL/	NAMBLY	
COMMON		NBCGIE	(20)
COMMON		NGHAIN	(20)
REAL	/ Enice/		1201
	MENTER /	NOYL	
	/VEHICL/	NEXL	
REAL		NENG	
	/VEHICL/	NENG	
COMMON		HENET	
	/VEHICL/	NÆL	(20)
COMMON		NGR	
COMMON	/VEHICL/	NHVALS	
COMMON	/VEHICL/	NRAD	(20)
COMMON	/VEHICL/	NSWALS	
COMNON	/VEHICL/	NWEH	(20)
COMMON	/VEHICL/	NHHL	(20)
	/VEHICL/	NNR	•
	/VEHICL/	FBF	
	/VEHICL/	FBHT	
	/VEHICL/	FEA	
	/VEHICL/	PBWER	(2,201)
	/VEHICL/	CNAX	
	/VEHICL/	RDIAM	(20)
	/VEHICL/	REVM	(20)
	/VEHICL/	REMW	(20)
COMPON		FNS	(20)
COMMON		FN	[20]
COMMON		SAE	
	/VEHICL/	SAE	
_	/VEHICL/	SECTH	(20)
COMPON		SECTW	(20)
	/VEHICL/	SWALS	(25)
	/VEHICL/	TEASE	(2)
	/VEHICL/	Tk	
	/VEHICL/	TRLY	1201
	/VEHICL/	TRSI	(20,3)
	/VEHICL/	TGIND	
	/VEHICL/	FRAKLN	1201
	/VEHICL/	TRAKWD	(20)
	/VEHICL/	THANS	(2,20)
	/VEHICL/	NAA	
	/VEHICL/	V DIA	
	/VEHICL/	VES	
COMNON	/VEHICL/	VEGB	(25)
COMPON	/VEHICL/	VOOBS	(25)
COMMON	/VEHICL/	VRIDE	(20,3)
	/VEHICL/	NSS	
	/VEHICL/	VSEAXP	
	/VEHICL/	hC	
CORPOR	/ TENEOL/		

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

	/VEHICL/		
	/VEHICL/	- · · ·	1201
	/VEHICL/	METH	
	/VEHICL/	WEHT	(20)
COMMON	• • • • • • • •	ARAT	(20)
COMMON		WRFORD	
COMMON		h T	(20)
COMMON	• = • • • • •	WIE	(20)
COMMON		WHAX P	
COMMON		XERCOF	
COMMON		Hall	
COMMON		LECD IF	
COMNON		SHE	
	/PREP/	A	(3,4)
	/PREP/	AJF	(20)
	/PREP/	BJF	(20)
	/PREP/	CHARLN	120,31
	/PREP/	CRECFIG	(3)
COMPON		CRFCCG	(3)
	/PREP/	CRFCC	(20,3)
	/PREP/	CRFFG	(20,3)
	/PREP/	CTF	(20)
	/PREP/	CRIAT	(20,3)
	/PREP/	CCA	(20,3)
	/PREP/	GOW	
	/PREP/	ECWB	
COMMON	• ••	GCWNB	
COMMON		GEWNP	
COMMON		COWP	
COMPON		計算丁	(
COMPON		ND.F.	(38)
COMMON	/PREP/	NVEHC	
	/PREP/	IFNITE R	(2)
	/PREP/	FNX	(3)
	/PREP/	FRA 68	(20)
COMMON		TRACTE	1 3/4 51
	/PREP/	TRAPSI	(20,5) (3)
	/PREP/	VEICE	• • •
COMPON	/PREP/	VGIFG	(20,3) (20,3)
COMMON	/PREP/	VCIMUK	(20)
-	/PREP/	VEV	(20,5)
COMMON	/PREP/	NE .	(20,3)
COMMON	/PREP/	VTIRE	(3)
LOMMON	/PREP/	WEMAX	
	/PREP/	X	(3)
	/PREP/	WER	1 ~ ~
COMMON		COHES	
	/SCEN/	VMALK	
	/SCEN/	CCLMAX	
	/SCEN/	GAMMA	
	/SCEN/	IOVER	

PAGE A-20

COMMON	/SCEN/	IS EAS N
	/SCEN/	
	/SCEN/	
		*411
		KII2
	/SCEN/	
		KII3
	/SCEN/	KII4
	/SCEN/	KJI5
	/SCEN/	KĒI6
	/SCEN/	K417
	/SCEN/	KII8
	/SCEN/	K-119
	/SCEN/	KII10
COMMON	/SCEN/	K#111
COMMON	/SCEN/	KI112
COMPON	/SCEN/	K4113
COMMUN	/SCEN/	KEA 14
COMMON	/SCEN/	K##15
COMPON	/SCEN/	KEI16
COMMON	/SCEN/	K 🖬 17
COMPON	/SCEN/	KNAP
COMMON	/SCEN/	KSCEN
COMMON	/SCEN/	KTRP
COMMON	/SCEN/ /SCEN/ /SCEN/	KWEH
COMMON	ISCEN/	K#¥1
	/SCEN/	KEV2
COMMON	/SCEN/	KIV2
COMPON	/SCEN/	- KEV4
COMPON	/SCEN/	K ₹ ₩5
	/SCEN/	K∉₩6
	/SCEN/	K∃¥7
	/SCEN/	KĀVB
	/SCEN/	KBV9
	/SCEN/	K 1 V 1 Ø
	/SCEN/	K-4V11
CUMPUN	/SCEN/	K#V12
	/SCEN/	K∰V13
COMPON	/SCEN/	KEV14
LUMMUN	/SCEN/	K∄V15
CUMPUN	/SCEN/	K ∉ V16
	/SCEN/	K3V17
	/SCEN/	K #¥18
	/SCEN/	KEV19
	/SCEN/	KEV2D
	/SCEN/	KIV21
	/SCEN/	LAC
INTEGER		CETAIL
COMMON		CETAIL
	/SCEN/	FAP
COMMUN	/SCEN/	MAPG
	/SCEN/	PENTH
COMPON	/SCEN/	NOPP

PAGE A-21

۰.

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

С

COMPON /SCEN/ NSLIP COMMON /SCEN/ NTRAV COMPON /SCEN/ NEUX COMMON /SCEN/ FHI COMMON /SCEN/ REACT COMMON /SCEN/ FOFOG INT EGER SEARCH COMMON /SCEN/ SEARCH COMPON /SCEN/ SETYPC COMMON /SCEN/ VERAKE COMMON /SCEN/ VESMAV COMMON /SCEN/ VEIM COMMON /SCEN/ ZSNCW 2. ALGCRITHM CALL IIII CONV1 , ENGINE , IAP . , ICONV1 , IENGIN , IPOWER , MAXIPR , MAXE + ,NHVALS ,NSVALS , PFA , POWER , OM:AX , R₽M , SPEED ,TORQUE ,VAA ,VDA + ,TQINC VOCB VOOBS FVRIDE VSS A NAMELIST /XII1/ CONV 1 , ENGINE , IAPE ,ICONV1 , IENGIN , IPOWER , MAXIPR , MAXE + ,NHVALS ,NSVALS , PFA *RPH , POWER , QMAX ,SPEED ,TORQUE ,VDA .VOGB ٠ ,TQIND ,VAA . VOO BS ,VSS ,VRIDE IF(KII1 .EQ. 1) WRITE(LUN1,XII1) CALL 1121 GCW , GCWB , GCWNB ,GCWNP , GCW P .IB , IP .NAMBLY + ,WGHT) NAMELIST /XII2/ + GCW GCWAB GCWNP , GCWB , GCWP , IP , IB . NAMBEY + .WGHT IF(KII2 _EQ. 1) WRITE(LUN1, XJI2) CALL II3(ICONST , NAMBLY , NVEH , NW HL , RDIAM , RINW .SECTW , TPS 1 • .VTIRE .WGHT) NAMELIST /XII3/ + , NW HL + ICONST , NAMBLY , NVEH ,RDIAM ,RINW .SECTW ,TPS] + .VTIRE , WGHT IF(KII3 .EQ. 1) WRITE(LUN1, XIL3) CALL II4(NAMBLY , PHTE ÷ , WT ,WTE) NAMELIST /XII4/ + NAMBLY , PWTE , WT ,WTE IF(KII4 .EQ. 14 WRITE(LUN1, XII4) CALL II5(DFLCT , DR AT , NAWBLY , NV EH ,SECTH) NAMELIST /XII5/ + DFLCT ,DRAT , NAMBEY , NVEH ,SECTH IF(KII5 .EQ. 1) WRITE(LUN1-XII5) CALL LIGI

195

R-2058. VOLUME I PAGE A-23 APPENDIX A - LISTING OF FROGRAM NRMM + CHARLN , DFLCT , DIAW , NAMBLY , NVEH TRAKEN) NAMELIST /XII6/ + CHARLN, DFLCT, CIAW, NAMBLY, NVEH , TRAKLN IF(KII6 .EQ. 1) WRITE(LUN1,XII6) CALL II70 + CHARLN , GCA NAMBLY NVEH ,SECTW ,TRAKWD) NAMELIST /XII7/ + CHARLN , GCA , NAMELY , NVEH ,SECTH ,TRAKWD IF(KII7 .EC. 1) WRITE(LUN1,XII7) CALL II8(WTMAX J CGLAT ,ID NAMBLY NVEH SECTH WT NAMELIST /XIIB/ + CGLAT .ID NAMELY NVEH ,SECTW .WT ---- WT MAX IF(KII8 .EQ. 1) WRITE(LUN1,XII8) CALL II94 + IP ,NAMBLY ,NVEH ,REVM RR 1 NAMELIST /XII9/ + IP ,NAMBLY,NVEF ,REVM , RR IF(KII9 .EQ. 1 & WRITE(LUN1,XII9) CALL IIIU(,NAMBLY,WGHT ,KBRCOF,XBR) + IB NAMELIST /XLL10/ , NAMBLY , WGHT , XBRCOF , XBR + IB IF(KIII0 .EQ. 1) WRATE(LUNI,XII10) CALL II111 + GCWP , HPNET , HPT + NAMELIST /XIII1/ + GCWP ,HPNET , HPT IF(KIII1 .EQ. 1) WRITE(LUN1,XII11) CALL LI12(ASHOE ,CLRMIN ,CPFFE ,DFLCT ,DIAW GROUSH HPT .IB , TIVAR , NAMERY , NBCGIE , NCHAIN , NVEH , NWHL ,SECTH + .IP ,TRAKLN , TRAKWE ,VCIFG ,WGHT) + SECTH NAMELIST /XII12/ + ASHOE , CLRMIN , CPF.F6 , DFLCT , DIAW GROUSH HPT .IB ,ITVAR , NAMBLY , NBCGIE , NCHAIN , NVEH , NWHL -SEC TH + ,IP + ,SECTH ,TRAKLN ,TRAKND ,VCIFG ,WGHT IF(KIT12 .EQ. 1) WRITE(LUN1,XII12) CALL III3(, IP + CPFCG ,IB ,NAMBLY ,NVEH .NWHL + , RDIAM , SECTW , TPLY , TPSI , VCICG , WGHT) NAMELIST /XII13/ SECTW , TPL ,NA≯BLY ,NVEH + CPFCG ,IB , NW HL , TPL Y + .KDIAM TPSI VCICG - WGHT IFI KIII3 .EQ. 1 | WRITE(LUN1,XIII3) CALL II14(,IP + UIAW ,IB ,NAMBLY ,NVEH , SECTIN , TRAKEN , TRAKWD , VCINUK , WGHT) + , NWHL NAMELIST /XII14/

R-2058, VOLUME I APPENDIX A - LISTING OF FREGRAM NRMM

С С

C

С

С С

, IP , NAMBLY , NV EH , IB + DIAW SECTW , TRAKEN , TRAKED , VCIMUK , WGHT + .NWHL IF(KII14 .EQ. 1) WRIJE(LUN1,XII14) CALL II15(CPFCCG, CPFCFG, CPFCG, CPFFG, IB , NV EHC , NAMBLY , NVEL + .IP NAMELIST /XII15/ + CPFCCG, CPFCFG, CPFCE, CPFFG , I B + ,IP ,NAMBLY ,NVEF . NV EHC IF(KII15 .EQ. 1) WRITE(LUN1,XII15) CALL II16(.BTF , CONVI ,CONV2 ,CTF "EFF , ENGINE , FD ATF , ICONV1 , ICONV2 , IENGIN , IPOWER , ITCASE + .FORCE • GR . IAP C ,KII16 LOCKUP LUNI , MAPG ,ITRAN ,PE ,RPM , SPEED ,TCASE , POWER, ,RR + ,NGR • SR + ,TORQUE ,TQIND ,TR ,TRACTE ,TRANS ,VGV ,TOPS PD ,NPT S ,IERRCR) NAMELIST /XII16/ ATE ,BTF ,CGNV1 CONV2 , CT F , EFF , ENGINE , FD .ICONV1 .ICONV2 .IENGIN .IERROR .ITCASE .FCRCE , GR , TAPIC + + ,ITRAN ,KIII6 ,LCCKUP ,LUN1 , MAPG , PE , RPM , POWER , RR , SPEED + ,NGR +SR ,TCASE TRACTE TRANS VOV ,TORQUE ,TQIND ,TR TOPS PD ... NPT S ,IERROR + IF(KII16 .EQ. 1 h WRITE(LUNE-XII16) CALL LI17(÷ CID , IDIESL , GCW , NAKBLY NCYL , NENG , RR , NGR ,RMX ,TRACTE 1 ٠ ,NVEH ,CMAX NAMELIST /XII17/ , IDIESL , NCYL NENG NV EH . ON AX CID +RMX IF(KIII7 .EQ. 1) WRITE(LUN1,XII17) IF((DETAIL .NEL 5) .AND. (IERROR .NE. 1)) GOTO 100 CALL PLTSETI ,VGV , NGR ,ATF ,BTF .CTF NFTS , TPOWER , POWER , TCPSPD, LUN1) STOP 3 100 CONTINUE RETURN END SUBROUTINE II1(+ CONV1 , ENGINE , IAPC , ICCNV1 , IENGIN , IPOWER , MAXIPR , MAXE POWER , QMAX , RPM + ,NHVALS ,NSVALS , FFA ,SPEED , TORQUE + .TOINE .VAA • VDÅ JUCB JUOOBS VRIDE ,VSS 🖡 **UNITS CONVERSION ROUTINE** 1. VARIABLE DECLARATION REAL CONV1 (2.25) REAL ENGINE (2,25) INTEGER IAPG

INTEGER

ICONV1

INTEGER IENGIN INT EGER IPOWER **INTEGER** 1 INTEGER MAXIPR MAXL INTEGER RPM INT EGER INTEGER SPEED INT EGER TOROUE INT EGER N INTEGER NH INT EGER NHVAL S INT EGER NR INT EGER NS INTEGER NSVALS REAL POWER (2.201) REAL OMAX TQIND REAL REAL VAA VDA REAL VOGB 1541 REAL REAL VOOBS (54) REAL VRIDE (50-10) REAL VSS С 3. ALGCRITHM VSS=VSS+5280.+12./69./60. DO 110 NH=1, NHVALS VOUB(NH)=VOCE(N+)+5280.+12./60./60. CONTINUE 110 DO 120 NS=1, NSVALS VOUBS(NS) = VOCBS(AS) +5280. +12./60./60. 120 CONTINUE DO 135 L=1, MAXL CO 130 NR=1. MAX IER VRIDE(NR, L) = VRIDE(NR, L) = 5280. = 12./60./60. CONTINUE 130 135 CONTINUE PFA=PFA+144. VAA=VAA=3.14159265/280. VDA=VDA =3.14159265/180. IF(IAPG .EO. 1 . 68 TC 145 CO 140 N=1, IFCWER POWER(SPEED, N+=POWER(SPEEC, N)+(88./60.4+12. CONT INUE 140 145 CONTINUE IF: IAPG .EQ. 2) GE TC 199 CO 150 N=1, IENGIN ENGINE(RPM, NJ = ENGINE(RPM, N)/60.0 ENGINE (TORQUE, N) = ENGINE (TORQUE, N) 412.0 150 CONT INUE CO 170 N=1,ICONV1 CONVI(RPM,NJ=CONV1(RPM,N)/60J

198

170	C	ONTINUE					
		MAX =QMAX	°12-0	· .			
	• 1	QIND=TQIN	D\$12.0				
199	CONT	INUE					
	RETU						
	END						
		INE LIZE					
	+ GCW		GCWNB	, GCWNP	, GCW P		
	+ ,IB			WGHT 1	-	·•	
τ			1.000.000	1.000.			
C	CIMENS I	ON					
	+ IB(2		.8	P (20)		, WGHT (2Ø)	
		INED WEIGH				8 H OTT 1 (2 20 4	
L GR	GCW=0.0					·	
	GCW-D.D.						
	GCWB=Ø.		,				
		I=1,NAMBLY					
		GCH+WGHT (
		=GCWB+WGH7					
		= GCWP+WGHT	(LI)*FLO	ATE IPEI	3 3		
216	CONTINU						
	GCWNP=G						
	+	CW-GCWB					
	RETURN						
	END						
	SUBROUT	INE II3(
	 I CON S 	T ,NAMBLY	• NV EH	NWHL	, RDLAM		
	+ ,RIMW	SECTW	,TPS-I	,VT IRE	,WGHT)		
C							
	DIMENSI	ON					
	+ ICON	ST(20)	, NHE	H(2Ø)		NWHE (20)	
	+ ,RDIA	M(20)	, FāM	W4201		SECTW(20)	
	+ ,TPSI	(20,3)	,NBC	20,31			
•	+ ,VTIR	E(3)	, WSH	T(20)			
C MA	XIMUM TI	RE SPEED R	CUTINE				
	DG 325	J=1,3					
	DO 3	20 I=1, NAA	BLY				
	V	T(1,J)=0.					
	I	F(NVEH(1)	.EQ.Ø) GC TO	315		
				4#RIMW()		5	
		HWY=(4.				-	
	ŀ			-		(RDIAM(I)+S1))**1.71;)
				EQ. 1) (
				+5280.+1	· – –		
	•			I.J./HWY			
		GO TO					
310		CONTINUE					
		VT(I, J) =		280	1.3600-1		
	•			F/HMA1++			
315		ONTINUE	1 J A 1 AQUU	re 1100 0 7			
320	CONT						
325	CONTINU					•	
263	CONTINU	- .					

PAGE A-26

```
R-2058, VOLUME I
APPENDIX A - LISTING OF FROGRAM NRMM
      CO 340 J=1,3
         VTIRE(J)=VT(1,J)
         CO 330 I=2, NAMBLY
            IF(VT(I,J) .LT. MTIRE(J))
               VTIRE(J)=VT(Iad)
     ٠
 330
         CONTINUE
34Ø
     CONTINUE
      RETURN
         END
      SUBROUTINE II4(
     + NAMBLY "PWTE "NT
                                ,WTE )
С
     DIMENSION
     + WT(20)
                             JATEL201
   MAXIMUM PATH WIDTH OF COMBINATION'S TRACTION ELEMENTS
С
      PWTE=WT(1)-WTE(1)
      DG 410 I=2,NAMBLY
         IF((WT(I)-WTE(I)) .GT. PWTE)
            PWTE=NT(I)-WTELIA
410
      CONTINUE
      RETURN
         END
      SUBROUTINE II5(
      DFLCT DRAT
                       , NAMELY , NVEH , SECTH )
     ÷
С
      DIMENSION
                                                 ,NVEH420)
         DFLCT(20,3)
                            •DRAT(20,3)
     .
        , SEC THE 201
     +
   TIRE DEFLECTION RATIOS
С
      CO 520 J=1,3
         DO 510 I=1,NAMBLY
            IF(NVEH(I) . EQ. () GO TO 500
               DRAT(I,J)=OFLCT(I,J)/SECTH(I)
500
            CONT INUE
510
         CONTINUE
52Ø
      CONTINUE
      RETURN
         END
      SUBROUTINE II6(
     + CHARLN, DFLCT, CIAN, NAMBLY, NVEH
                                                 , TRAKLN I
С
      DIMENSION
                             JDFLCT (20,3)
     +
         CHARLN(20,3)
                                                  -DIAW(20)
        , NVEH 20)
                             TRAKLNI201
     ٠
   CHARACTERISTIC LENGHT OF ELEMENTS
С
      CO 630 J=1,3
         DO 620 I=1, NAMBLY
            IF( NVEH(I) .EQ. 1 ) GC TO 610
Û
               TRACKED ELEMENT
               CHARLN(I, J)= TRAKLN(I)
               GO TO 620
61 Ø
            CONTINUE
```

200

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

С	HUE	ELED ELI	IN CHIT				
C		RLN(I,J	-				
				14-07-04			
			CFLCT41				
124	_		(1,J)#BFI		b b i		
620	CONTIN	UE					
630	CONTINUE						
	RETURN			·			
	END						
	SUBROUTIN						
	+ CHARLN	, GCA	, NAMBLY	, NV EH	,SECTW	, TRAKWI	
	DIMENSION						÷.,
	+ CHARLN		₽GC	AL 20,31		,NVEH	[20]
	+ "SEC TWI	201		RAKWE(20	2		
C G	ROUND CONTA	CT AREA	OF ELENE	NTS			
	DO 730 J=	1,3	С.,				
	DO 72Ø	I=1, NAP	IBLY				
	IFL	NVEH(I)	-EQ. 1)	GO TO 7	10		
C			ELEMENT				
			= CHAREN	1	AKWD(L) +	2.	
710		TINUE					
Ċ		ELED ELE	MENT				
•			IARL NX E. J	A SECTW	1.1.1		•
720	CONTIN				/		
	CONTINUE	01.					
150	RETURN						
	NET UNIT						
	END						
	END	- T. T. O. /					
	SUBROUTIN		5 6 62 mg 54		0.5.07.		
~			, NANELY	,NVEH	" SECT₩	.WT	. WT MAX
C	SUBROUTIN + CGLAT	, ID	, NANELY	NVEH	" SECT₩	* WT	, WT MAX
C	SUBROUTIN + CGLAT DIMENSION	, ID				-	
C	SUBROUTIN + CGLAT DIMENSION + ID(20)	, ID		•NVEH EH≰ 20)		≠WT #SECTN	
	SUBROUTIN + CGLAT DIMENSION + ID(20) + ,WT(20)	, ID	. ∌ ₩V	EH≰ 2Ø)		-	
	SUBROUTIN + CGLAT DIMENSION + ID(20) + .WT(20) DNTROLLING 1	, ID	. ∌ ₩V	EH≰ 2Ø)		-	
	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500	,ID LATERAL	•NV D IST ANCE	EH≰ 2Ø)		-	
	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 T=1	,ID LATERAL I,NAMBLY		EH4 20) To C.G.		-	
C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 T=1 IF(NVE	,ID LATERAL I,NAMBLY H(I) .EQ	NV Distance ، 2) BC	EH4 20) To C.G.		-	
	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 T=1 IF(NVEN WHEI	,ID LATERAL I,NAMBLY H(I) .EQ ELED ELE	NV Distance فق BC Ment	EH420) To C.G. To 810		-	
C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 I=1 IF(NVEN WHEN	,ID LATERAL 1,NAMBLY H(I) .EQ ELED ELE P={ wt[]	- NV DISTANCE - DJ BC Ment J/2. +-C	EH⊈2Ø) To C.G. To 810 GLAT	•	-	
C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 I=1 IF(NVEN WHEN TEMN	,ID LATERAL 1,NAMBLY H(I) .EQ ELED ELE P={ wt{L +{ Sectw	NV Distance فق BC Ment	EH⊈2Ø) To C.G. To 810 GLAT	•	-	
C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 I=1 IF(NVEN WHEN TEMN	,ID LATERAL 1,NAMBLY H(I) .EQ ELED ELE P={ wt[]	- NV DISTANCE - DJ BC Ment J/2. +-C	EH⊈2Ø) To C.G. To 810 GLAT	•	-	
C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 I=1 IF(NVEN WHEN TEMN	,ID LATERAL I,NAMBLY H(I) EQ ELED ELE P=1 WT11 +(SECTW F0 820	- NV DISTANCE - DJ BC Ment J/2. +-C	EH⊈2Ø) To C.G. To 810 GLAT	•	-	
c ca	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DTROLLINGI WTMAX=500 DO 830 T=1 IF(NVEN WHEN TEMN + GO T CONTINU	,ID LATERAL I,NAMBLY H(I) EQ ELED ELE P=1 WT11 +(SECTW F0 820	• NV DISTANCE • 23 BC MENT 3/2. +-C {I}/2, }	EH⊈2Ø) To C.G. To 810 GLAT	•	-	
С Са С 81 ð	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DTROLLING I WTMAX=500 DO 830 T=1 IF(NVEI WHEI TEMI + GO T CONTINU TRACKEI	,ID LATERAL 1,NAMBLY H(I) EQ ELED ELE P={ wt[] +{ Sectw TO 820 JE D ELEMEN	• NV DISTANCE • 23 BC MENT 3/2. +-C {I}/2, }	EH420) TO C.G. TO 810 GLAT *FLCAT(•	-	
С Са С 81 ð	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DTROLLING I WTMAX=500 DO 830 T=1 IF(NVEI WHEI TEMI + GO T CONTINU TRACKEI	, ID LATERAL 1,NAMBLY H(I) EQ ELED ELE P={ wT{I +{ SECTW FD 82Ø JE D ELEMEN wT{I}/2	→NV DISTANCE - 23 BC MENT 3/2. +-C {I}/2, }	EH420) TO C.G. TO 810 GLAT *FLCAT(•	-	
C C C C C C C C C C C C C C C C C C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 I=1 IF(NVEN WHEN TEMP + CONTINU TRACKED TEMP=(CONTINU	, ID LATERAL 1,NAMBLY H(I) EQ ELED ELE P={ wT{I +{ SECTW FO 82Ø JE D ELEMEN WT{I}/2 JE	→NV DISTANCE - 23 BC MENT 3/2. +-C {I}/2, }	EH420) TO C.G. TO 810 GLAT *flCAT(T	•	-	
C C C C C C C C C C C C C C C C C C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 I=1 IF(NVEN WHEN TEMF + GO I CONTINU TRACKED IF(TEMF=	, ID LATERAL 1,NAMBLY H(I) EQ ELED ELE P={ wT{I +{ SECTW FO 82Ø JE D ELEMEN WT{I}/2 JE	→NV DISTANCE • Ø) BC MENT)/2. +-C (I)/2, + T . }-CGLA	EH420) TO C.G. TO 810 GLAT *flCAT(T	•	-	
C C C C C C C C C C C C C C C C C C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DNTROLLING I WTMAX=500 DO 830 T=1 IF(NVEN WHEN TEMP + GO T CONTINU TRACKED TEMP=(CONTINU IF(TEMP	, ID LATERAL I,NAMBLY H(I) EQ ELED ELE P=[WT[I] +(SECTW FO 82Ø JE D ELEMEN WT[I]/2 JE C .GE. W AX=TEMP	→NV DISTANCE • Ø) BC MENT)/2. +-C (I)/2, + T . }-CGLA	EH420) TO C.G. TO 810 GLAT *flCAT(T	•	-	
C C C C C C C C C C C C C C C C C C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DITROLLING I WTMAX=500 DO 830 T=1 IF(NVEN WHEN TEMF + GO T CONTINU TRACKED TEMP=(CONTINU IF(TEMF WTMA	, ID LATERAL I,NAMBLY H(I) EQ ELED ELE P=[WT[I] +(SECTW FO 82Ø JE D ELEMEN WT[I]/2 JE C .GE. W AX=TEMP	→NV DISTANCE • Ø) BC MENT)/2. +-C (I)/2, + T . }-CGLA	EH420) TO C.G. TO 810 GLAT *flCAT(T	•	-	
C C C C C C C C C C C C C C C C C C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DIROLLING I WTMAX=500 DO 830 T=1 IF(NVEN WHEN TEMF + GO T CONTINU IF(TEMF WTMA CONTINUE	, ID LATERAL I,NAMBLY H(I) EQ ELED ELE P=[WT[I] +(SECTW FO 82Ø JE D ELEMEN WT[I]/2 JE C .GE. W AX=TEMP	→NV DISTANCE • Ø) BC MENT)/2. +-C (I)/2, + T . }-CGLA	EH420) TO C.G. TO 810 GLAT *flCAT(T	•	-	
C C C C C C C C C C C C C C C C C C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DTROLLING I WTMAX=500 DO 830 T=1 IF(NVEN WHEN TEMF CONTINU IF(TEMF=(CONTINU CONTINUE RETURN	, ID LATERAL I,NAMBLY H(I) EQ ELED ELE P=[WT[I] +(SECTW FO 82Ø JE D ELEMEN WT[I]/2 JE C .GE. W AX=TEMP	→NV DISTANCE • Ø) BC MENT)/2. +-C (I)/2, + T . }-CGLA	EH420) TO C.G. TO 810 GLAT *flCAT(T	•	-	
C C C C C C C C C C C C C C C C C C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DIROLLINGI WTMAX=500 DO 830 T=1 IF(NVEN WHEN TEMF CONTINU TRACKED TEMP=(CONTINU CONTINUE RETURN END	, ID LATERAL I,NAMBLY H(I) EQ ELED ELE P={ WT[I] +(SECTW FO 82Ø JE D ELEMEN WT{I}/2 JE . GE. W AX=TEMP JE	→NV DISTANCE • Ø) BC MENT)/2. +-C (I)/2, + T . }-CGLA	EH420) TO C.G. TO 810 GLAT *flCAT(T	•	-	
C C C C C C C C C C C C C C C C C C C	SUBROUTIN + CGLAT DIMENSION + ID(20) + WT(20) DIROLLINGI WTMAX=500 DO 830 T=1 IF(NVEN WHEN TEMF GO T CONTINU TRACKED TEMF=(CONTINU IF(TEMF WTMA CONTINUE RETURN END SUBROUTINE	, ID LATERAL 1,NAMBLY H(I) EQ ELED ELE P={ WT[] +{ SECTW TO 820 JE D ELEMEN WT{I}/2 JE - GE. W AX=TEMP JE	→NV DISTANCE • Ø) BC MENT)/2. +-C (I)/2, + T . }-CGLA	EH420) TO C.G. TO 810 GLAT *FLCAT(T TO 825	•	-	

PAGE A-28

)

```
PAGE A-29
R-2058, VOLUME I
APPENDIX A - LISTING OF PROGRAM NRMM
C
    DIMENSION
    + IP[20]
                       NVEH(20)
                                        .REVM(20)
С
  C
  ROLI ING RADIUS OF LARGEST POWERED TIRE ELEMENT
C
С
  С
    KR=0.0
     DC 910 I=1.NAMBLY
       IF( IP(I) .EQ. # ) GO TO 910
          RX=1 5280.0+12.2 1/1 2.0+3.14159265#REVM[]] 1
          IF( RR .LT. RX ) RR=RX
       CONTINUE
910
     RETURN
       FND
     SUBRDUTINE II104
    + IB ,NAMBLY,WGHT ,WBRCOF, XBR )
C
    DIMENSION
                       "NGHT ( 20)
    + IB(20)
С
   С
  MAXIMUM BRAKING FORCE DEVELOPED BY BRAKED ASSEMBLIES
C
  С
Ĺ
     XBR=0.0
     CC 1010 I=1,NAMBLY
        XBR=XBR+XBRCOF#WGHT011#FLCAT( IB(1) )
1010 CONTINUE
     RETURN
       END
     SUBROUTINE IIII (
    + GCWP .HPNET , HPT A
С
С
С
   ------
  HURSEPOWER/TON
С
С
   -------------
C
     HPT=HPNET/(GCWP/2000.)
     RETURN
        END
     SUBROUTINE II12(
    + ASHUE .CLRMIN , CPFFG , DFLCT , CIAW , GROUSH , HPT
                                                      , I B
            , ITVAR , NAMBEY , NBCGIE , NCHAIN , NVEH , NWHL
                                                     .SECTH
    + ,IP
    + ,SECTH ,TRAKLN ,TRAKWD ,VCIFG ,WGHT +
C
     CIMENSION
                                        , CPFFG( 20, 3)
                        CL PHIN(20)
       ASHOEL 201
    +
                                        , GROUSH(20)
                       ACIAW(20)
       , DFLCT(20,3)
    ٠
                                        ,NBDGIE(20)
    *
       , IB(2Ø)
                        -IP(20)
```

	+ ,NCHAIN(20)	ANVEH(2B)	NWHL(20)
			, TDF(3)
	+ ,SECTH(20) + ,TRAKLN(20)	TRAKWD(20)	VCIFG(20,3)
		#INANHUI2D*	84 CTLO1 21 24
	+ ,WGHT[20]		
C		· · · · · · · · · · · · · · · · · · ·	
~			
	HICLE CONE INDEX IN		
C			
C			
	CO 1556 I=1, NAMBLY		
		6 .AND. IB(1) .EQ	
		EG. # GO TO 1534	
С		میر هد هر مزید چه زیر می وی بینای اس مر	
С		SSEMBLY ROUTINE	
С	-		
C		RESSURE FACTOR	
		i,1)#WGHT(I)	
		TWEIA#FLOATENWHLEI)) # DI AW ([] / 2.)
	_	1,2)=CPFFG(1,1)	
	CPFFG(1,3.)=CPFFG(1,1)	
С	WEIGHT FA		
	IF(WG	HTI 14 .GE. 2000-0 1	GO TO 1510
	WF=	0.553*WCHT(1)/1000.	
	GG	TC 2516	
151Ø	CONTIN	UE	
	IF (WG	HT(IA .GE. 13500.)	GO TO 15.12
	WF=1	0.033+WCHT(1)/1000.	0+1-0
	GO '	TO 19816	
1512	CONTIN	JE	
	LFI WG	HT144 .GE. 20000.0) GD TO 1514
	WF=1	0.142#WGHT{I}/1000.	0-0-42
	GC [·]	TO 1516	
1514	CONTIN	JE .	
	WF=0.2	78+16HT111/1000.0-3	.115
1516	CONTINUE		
С	TIRE FACTO		
	TF=(10.	.0+SECTWEI)1/102.0	
C	GROUS ER FI	ACTER	
	IF(NCI	HAINGIN .EC. Ø F GO	TO 1518
		1.05	
	GO	FO 152Ø	
1518	CONTIN	JE	·
	GF=1.0		
1520	CONTINUE		
C	WHEEL LOAT	D FACTOR	
	WLORF=1	GHT41) /1000.0/FLOA	I(NWHL61))/2.
C	CLEARANCE	FACTOR	
-		RMIN441/10.0	
С	ENGINE FAC	CTOF	
	IF(HP)	-LE. 10.0) GO TO	1522
	EF=1		•
	GO 1	FC 1524	

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM 1522 CONTINUE EF=1.05 1524 CONTINUE С TRANSMISSION FACTOR IF(ITVAR ... EQ. Ø) GO TO 1526 TFX=1.45 GO TC 4528 1526 CONTINUE **TFX=1.0** 1528 CONTINUE C TIRE DEFLECTION FACTOR DO 1530 J=1.3 TDF(J)=441.0-DFLCT(I; J)/SECTH(I))/0.85) ++1.5 1530 CONTINUE С MOBILITY INDEX XMI=(CPFFG(I,1) #WF/TF/GF#WLORF-CLF) # EF#TFX С VEHICLE CONE ANDEX DO 1532 J=2.3 VCIFG(1))=(11.48+2.2*XMI-39.2/1XMI+3.74) *TDF#UN 1532 CONTINUE GO TO 1556 1534 CONT INUE С ----С TRACKED ASSEMBLY ROUTINE C C CONTACT PRESSURE FACTOR CPFFG(I,1)=WGHT(I)/(2.+TRAKLN(I)+TRAKWD(I)) CPFFG(I,2)=CFEFG(I,1)CPFFG(I,3)=CF#FG(I,1) С WEIGHT FACTOR IF(WGHT(I) .0E. 50000.0) GO TO 1636 WF=1.0 GO TO 1542 1536 CONTINUE IF4 WGHT(I) .GE. 70000.0 . GO TO 1538 WF=1.2 GO TO 1542 1538 CONTINUE IF4 WGHT411 ... GE. 100000.0 1 GO TO 1540 WF=1.4 GO TO 1542 1540 CONTINUE WF=1.8 1542 CONTINUE С TRACK FACTOR TF=TRAKWD(I)/100.0 С GROUSER FACTOR IFI GROUSH(I) .LT. 1.5) GO TO 4544 GF=1.1 GO TO 1546 1544 CONTINUE

PAGE A=31

GF=1.0 1546 CONTINUE C BUGIE LOAD RANGE FACTOR WLORF=WGHT(I) &10.0/FLOAT(NEDGIE(I))/ASHOE(I) С CLEARANCE FACTOR CLF=CLRMIN(1)\$10.0 С ENGINE FACTOR IF(HPT .LT. 10.0) GO TO 1548 EF=1.0 GO TO 1550 1548 CONTINUE EF=1.05 1550 CONTINUE С TRANSMISSION FACTOR IF(ITVAR .EC4 0 + GG TO 1552 TFX=1.05 GO TO 1554 1552 CONTINUE TFX=1.Ø 1554 CONT INUE MOBILITY INDEX C XMI=(CPF6G(I), IA+WF/TF/GF+WLORF-CLF)+EF+TFX С VEHICLE CONE INCOX VCIFG(1,1)=7,過+0.24XMI-39.2/(XNI+5.8) VCIFG(1,2)=VCMFG(1,1) VCIFG(I,3)=VCMFG(L,1) 1555 CONTINUE 1556 CONTINUE RETURN END SUBROUTINE II131 + CPFCG ,IB , IP ,NAMBLY ,NVEH ,NWHL + ,RDIAM ,SECTW ,TPLY ,TPSI ,VCICG ,WGHT) DIMENSION CPFCG(20,3) #IB(20) , IP (20) ,NVEH(20) -NWHL (20) , RDIAM(20) , SEC TW (20) TPLY(20) , TPS 1(20,3) ,VCICG(20,3) С С **C** . VEHICLE CONE INDEX IN COMPSE GRAINED SOIL С С DG 1670 L=1.NAMBLY IFI IPITI .EQ. 8 .AND. IBITI .EQ. 0 . GO TO 1660 IF(NVEH(I) .EQ. Ø) GC TO 1640 С С WHEELED ASSEMBLY, ROUTINE С С WHEEL DIAMETER FACTOR IFL SECTWARE/RDIAMAIN .LT. 2.4 % GO TO 1610 WDF=2.0

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

1/13	GC TC .	1622	
1610	CONTINUE WDF=5.0		
1620	CONTINUE		
1020	DO 1630 J=1,	3	
с		RESSURE FACTOR	
C		1,0)=0.607+TPSI4L,	18+
+		541117.0+TPLY(I)/	5
+		F#SECTW(I)+RDIAM()	[11]-4-93
C		REA FACTOR	
		CG1Ø(WGHT(I)/CPFCC	G(I. J)++
С	STRENGH F		
	STF=Ø.	Ø\$26≠FLCAT (NWHL(L)	++0_0211 +TPSI(I,J)
+	-0.	354CAF+1.587	
C		CNE INDEX	
		144)=10.0**STF	
1630	CONTINUE		
	GO TO 1660		
	CONTINUE		
•			•
C .	TRACKED ASSEMBL		
•	*****		
í	CO 1650 J=1,3		
9 / F.X	VCICG(I,J)=Ø		
1650 (1660 CON			
1670 CONTINU			
RETI			
END	.		
	TINE LI14 (
		, NAMBLY , NV EH	
		KEN ,TRAKWD ,VCIM	JK "WGHT J
DIMENS	ION		
+ DIAI	n(20)	#1B(2Ø)	,IP(20)
+ ,NVEI		WWHL(20)	# SECTW(20)
+ ,TRAI	(LN(20)	TRAKWEL201	, WGHT (20)
+ ,VCI	NUK (20)	•	
Ç			
C VEHICLE CO	INE INDEX IN MU		
6			
	I=1, NAMBLY	***	A 1 CO TO 1700
		. AND. 18(1) .EQ.	
		· # • 6L 10 1/10	
*		IFADIAW(I) +FLOAT	(NUH) (1)).)
	GO TO 1730	TANK TALLER CROCK	21300132-2-2-7-7
	CONTINUE		
	CIMUK(I)=13.0+	244625+WGHT4 11	
+	/(TRAKWD(I)+		
1728 CON		······································	
	TINUE		

PAGE A-33

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

1730 CONTINUE RETURN END SUBROUTINE II15 (+ CPFCCG , CPFCFG , CPFCG , CPFFG , I8 , NANBLY , NVER , NVERC + ,IP С DIMENSION ,CPECEG(3) +CPFCG(20,3) CPFCCG(3) + ,CPFFG(20,3) #IB(20) , IP1 201 ٠ .NVEH(20) * ا С С COMBINED CONTACT PRESSURE FACTOR ROUTINE С С С N1=0 $N2 = \emptyset$ DO 1802 I=1, NAMBLY IF(NVEH(I) .EQ. 0 + N1=-1 IF(NVEH(L) .EQ. 1 A N2=1 1800 CONTINUE NVEHC=N1+N2 IF(NVEHC .NE. 1) GO TO 1840 DO 1830 J=1,3 $CPFCFG(J) = \emptyset \cdot \emptyset$ CPFCCG(J)=Ø.Ø CO 1820 I=1, NANBEY IF4 1B(1) . EC4 Ø .AND. IP(1) . EQ. Ø) GO TO 1820 IF (CPFFG(A)J) .GT. CPFCFG(J) > CPFCFG(J)=CPFEG[I]J) IFI CPFCGLA, JA .GT. CPFCCG(JA & CPFCCG(J)=CPFCG(I)) CONTINUE 1610 CONTINUE 1820 1830 CONTINUE GO TO 1890 1840 CONTINUE DO 1882 J=1.3 $CPFCFG(J) = \emptyset . \emptyset$ $CPFCCG(J) = \emptyset \cdot \emptyset$ DO 1870 I=1, NAMBLY, IFI NVEH(I) .NE. Ø) GO TO 1860 IFI IBILI .EC. Ø .AND. IPILI .EQ. Ø) GO TO 1850 IF(CPFFG41,J) .GT. CPFCFG(J)) CPFCFG(J)=CPFFG(I,J) IF (CP FCG() J) JGT. CPFCCG(J)) GP FCCG(J)=CP FCG(I,J) CONTINUE 1850 1860 CONT INUE 1870 CONTINUE CONTINUE 1880 1890 CONTINUE RETURN END-SUBROUTINE II16 (

		VOLUPE A - LI		F FROGRA	MNRMM			PAGE A-35
	+ .	FORCE	• GR	. IAP6	.CONV2 .iconv1 .lun1	. ICONV2	.ENGINE .IPOWER	
С	+ ; + ; + ;	NGR TORQUE IERRCR	, PE , TQLND)	+ PGWER , TR	,RR ,TRACTF	⇒MAPG ●RPM ●TRANS	.sR ,topspd	
с с с с с	PG	WER TRA	AIN SCEN	AR IO LES	ĨĊ			
C C	-		****	سالو حاب عو د. ده در				
C	.1 .	REAL REAL REAL REAL REAL REAL INTEGI INTEGI INTEGI INTEGI INTEGI INTEGI INTEGI INTEGI INTEGI INTEGI INTEGI	BTF CON CTNG FD P FD P FD P FD P FD P FD P FD P FD P	<pre>{ 26}</pre>	5) 5) Ø1) 5)			
		REAL	VGV					
C	3.		¶THM PG .NE.	1) GO TO Q. 2) GE				

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

	+	CALL TRAIN CONV1	+CONV2	, ENGINE	, FD	. ICONV 1
*	+	, ICONV2	, JENGIN	, ITCASE	ITRAN	,LOCKUP
	•	•EFF	FORCE	, GR	RPM	,SPEED
	+	, SR	JURQUE	-	NGR	PE
	+	RR	JCASE		TRANS	, IPOWER
	♦ 1	POWER	ALUN1		-	•
		CALL FIT	4			
	+	IPOWER	. EORCE	SPEED		
	+	, POWER	,ATF	,8TF	,CTF	
	+	, NGR	, TRACTE	, V.GV	JERROR	.LUN1 .KI 116
	·	GO TO 400				
00		NTINUE				
		PG=3				
		L FIT (
			JRICE , SP		~ - -	
	+	POWER		, etf -		
		-	RACTE .VG	SV "II	ERROR "LL	IN1 ,KII16)
27.29		TC 400				
ØØ	CONTIN					
		G .EQ. 1) (
		L FIT (Power ,fi	-D.C.E. CO	ECO	·	
	*] *				CTE	
		, FUNER	,ATF CTF ,VGV	, Diff IERF	ROR ,LUNI	
	-	TO 400	JEE 3404	1 1 2 1 2 1 2		. 1V1101
60	CONTIN					
~ 0	MAPG=4					
		RAIN (
	+ CON		2, ENGI	NE "FD	, ICON	IV 1
	+ , ICO		-			
	+ , EFF					
	+ , SR	, TORG	NUE ,TR	, NGR	, PE	
	+ "RR	,TCAS	E ,TQIN	D TRAN	IS , IPOW	ER
	• , POW	IER "LU'NI	. ₽ KII1	6)		
	CALL F	IT (
	+ I	POWER ,FC	DRCE ,SP	EED		
	÷ .	. POWER	, AT F	,BTF ,	CTF	
	+ "NGR		TF VGV			,KII16)
00		i = POWERISF		1#160./88.	1/12.	
		INTEL TOP SP	0 + 5 + 4 . 1			
	CONTIN					
	RETURN					
	END		•			
		E AUTOM (· · · · · · · · ·		.	/
· ·	+ ENGINE		CONV1	, ICONM 1	, CONV 2	
	+ ,ICONV2	•		•NGR	,FD	
	+ ;RR	₽PE	FOWER	, I POWER	RPM	
	+ ,TORCUE + ,SPEED	-	∌TR #LUN1	∍GR ≓KII16≬	, EFF	

209

R-2058, VOLUPE I Appendix A - listing of program NRMM

С AUTUMATIC TRANSMISSION WITH TORQUE CONVERTER С _ _ _ _ _ _ _ _ _ _ _ _ С С 1. VARIABLE DECLARATION REAL CONV1 (2+25) 628251 REAL CONV2 REAL ENGINE (2.25) ESMAX REAL REAL ESMIN REAL FD (2) INT EGER ICONV1 I CONV 2 INTEGER INTEGER IENGIN INTEGER IPOWER EFF INT EGER INTEGER FORCE INTEGER GR RPM INTEGER INT EGER SPEED **INTEGER** SR. INTEGER TORQUE INTEGER TR INT EGER N NG INT EGER INTEGER NGR REAL PE REAL POWER (26201) KEAL P1 RPMIN REAL RPMOUT REAL REAL **R**R REAL SPDINC REAL SRATIC REAL TF REAL TORCEN TOROIN REAL REAL TOIND REAL TRANS (2=25) TRATIC REAL С 2. ALGCRITHM DC 160 NG=1,NGR CO 150 N=1,201 ESMIN=ENGINEX RPM, 1) ESMAX=ENGINE(PPM, IENGIN) RPMOUT = (FOWERISPEEC, NIZ2.0/3.14159265/RR) *FDIGRI +TRANSI GR, NGI 110 CONTINUE RPMIN= (ESPEN+ESMAX)/2.0 SRATIO=RPHOUT/RPMIN IF(SRATIU ,LE. CONVILSR, ICONVII) GO TO 120 SRATIO=CONV1(SR, ICCNV1) CONTINUE 120

R-2058, VOLUME I Appendix A - Listing of Program NRMM

PAGE A-38

		CALL LI	NEAR 4			
	+			- SR	• RPM	SPATIO
	+	SPDINC		1 311	# 117/11	JUWI IO
			TQIND*(RPM	TN/S DOTN	D1 442	
		CALL LI			01	
	+ .	ENGINE	- MENGIN	9 PM	TORQUE	DONTN
	+	TORGEN			FIGRACE	1111 H
		-		.15 . 1.	3/60.0) 60	TO 120
С			LCCP			10 530
•			EN JEC. TO	POTNI CO	TO 120	
С			LCGP	NWINI GU		
•			EN ALT. TO	ROTNA ES		
		IFITORC	EN GT. TO	ROTNA ESI	MINEDOMIN	
		GO TO 1		rwant co	1. THE WE WE WITH	
130		ONTINUE	10			
		1=PE+TORC	INJEAR R			
				ENU GT	ABS(P1)	CO TO 144
	1	CALL LI			MODILTA 1	00 10 140
	÷		SACONV2		,TR	-SRATIO
	+	TRATIO	•	131	9 T IX	ADVALIO
	•		IN#TRATIO#1	RANSICA	NG	
	+		EFFangi#FD			
					POWERIFUR	S.NI-TE
			ER JLT. NI			
14Ø	Cr	ONTINUE		TIONCO-	•	
150	CONT		· ·			
160	CONTINUE					
C	3.DIAGNOSTI					
•	IFI KII16		ATA 300			
	WRITEL LUN1					
190	FORMAT(1H1		()			
	WRITE LUN1				-	
2.00	FORMAT(1H0,		=)			
				=RPN-SRI	J=1, ICONV 1	1
210	FORMAT (10X	E14.8.2X	E14-8-2X-F	14 8 2X	F14.8-2Y-F1	4.8,2X,E14.8)
	WRITE (LUN1,	2201	· · ·			
220	FORMAT(1H0,		=)			
				=TR-SRL	J=1, ICONV2)	
	WRITE(LUN1,	230) EFF				
230	FORMAT(1HØ,	8HEFF	= ,]41			
	WRITE(LUN1,	2401	-			
240	FORMAT(1HØ.	8 HENGINE	= }			
	WRITE(LUN1.	210) ((EN	GINE(L,J),	I=RPM.TO	RQUE), J=1, I	ENGIN)
•	WRITE(LUN1,	245) FD(E	FF+,FD(GR)		• • •	
245	FORMAT (1HØ,	8 HFD	=, E14.8,2X	• E1 4 • 8)		
	WRITE(LUN1,	250) FORC			, IENGIN, IPO	WERNGR
25Ø	FORMAT(1HØ.	8HFORCE	= 4 4 4 1 -			···•··
	+ 1 HØ,	8 HGR	=+=4+/+1+B	,8HICONV	1 =,14,/,	
		8HICONV 2	=:, <u>44</u> , /61HB	,8HIENGI	N =, 14, /,	•
	+ 1HØ,	8HIPOWER	=, 14, /, 1+2		=,14)	
	WRITE(LUN1,					
260	FCRMAT(1HØ,	8 HP OWER	= 1			

R-2058, VOLUME I APPENDIX A - L'ISTING CF FROGRAM NRMM

	WRITE(LUN1,210) ((POWER(1,1),I=SPEED,FORCE),J=1,IPOWER)
	WRITELLUN1,2701 RR
70	FURMAT(1H0,8HRR =,824.8)
	WRITELLUN1,280) RPM,SFEED,SR,TORQUE,TR
80	
עט	FORMAT(1H0,8HRPM =,44,/,1H0,8HSPEED =,14,/, + 1H0,8HSR =,34,/,1H0,8HTCRQUE =,14,/,
	+ $1H3.8HTR =$
	WRITE(LUN1,290)
90	FORMAT (1HØ,8HTRANS = .)
	WRITE(LUN1,210) ((TRANSMI,JA,I=GR,EFFA,J=1,NGR)
	WRTTE(LUN1.310) TGIND
10	FORMAT (1HU,8HTQINC =,814.8)
	CONTINUE
	RETURN
	END
	SUBROUTINE FIT (
	+ IPOWER ,FORCE , SPEEG
	+ ,POWER ,ATF ,ETF ,CTF ,NGR ,TRACTF
	+ ,VGV ,IERROR ,LUN1 ,KII16)

	VARIABLE DECLARATIONS
	DIMENSION A (3,4)
	-
	DIMENSION ATE (20)
	DIMENSION BTF (20)
	DIMENSION CTF (20)
	DIMENSION POWER (2,201)
	DIMENSION TRACTF(20,5)
	DIMENSION VGV (22,5)
	DIMENSION X (3)
	INTEGER BEGIN
	INTEGER FORCE
	INTEGER END
	INTEGER RIGHT
	INTEGER SPEEC
	LOGICAL MEMBER
	REAL MEDIAN
	and a set of the set o
• •	INITIALIZE PROGRAM INLECIES
	$\cdots \cdots $
	PCT = 2.0
	NGR=1
	IERROR=0
	FMAX=0
	VMAX=0. DG 2000 I=1.JPOWER

212

.

. . . .

R-2058, VOLUME I Appendix A - Leisting of Frggram NRMM

2000 C	IF(POWER(FORCE, I)GT. FMAX) FMAX=POWER(FORCE, I) IF(POWER(SPEED, I)GT. VMAX) VMAX=POWER(SPEED, I) CONTINUE
C C C C	BEGIN BY FITTING A CUAGRATIC TO THE FIRST THREE POINTS
	DG 2105 N=1,IPOWER IF(FOWER(FORCE,N) .EC. POWER(FORCE,N+1)) GO TO 2100 LEFT=N RIGHT=LEFT+2 NEXT=RIGHT#1 BEGIN=LEFT END=RIGHT GO TO 2110
2100	ATF (NGR)=POWER(FOR(%,N+1) BTF(NGR)=Ø. CTF (NGR)=Ø. LEFT=1 RIGHT=N+1 IF(POWER(FORCE,N+1) .NE. POWER(FORCE,N+2)) GO TO 2172
2110 2120 2122 2122 C	CONTINUE CONTINUE DO 2121 IR=1,3 CO 2120 IC=1,4 A(IR,IC)=0.
С С С С	BUILD THE "A" MATRIX FOR THE LEAST SQUARES FIT PROCEDURE CO 2140 N=BEGIN, END IF(N-1 .LT. 14 GO TO 2130
С С С С С	CHECK WHETHER TWO ADJACENT PCINTS HAVE THE SAME VALUE OF SPEED AS MIGHT OCCUR AT A GEAR SHIFT POINT.
C .	JF (POWER (SREED, N) .EQ. POWER (SPEED, N-1) .ANC. deFT.LE. N-3) GO TO 2168 IF (FOWER (SPEEC, N) .EQ. POWER (SPEED, N-1) .ANC.LEFT .EQ. N-2) GO TO 2165 IF (FOWER (SPEED, N) .EQ. POWER (SPEED, N-1) .AND.LEFT .EQ. N-1) .AND.LEFT .EQ. N-1) .AND.LEFT .EQ. N-1) .A(3,4)=A(3,4) #POWER (FORCE, N) A(2,4)=A(2,4) #POWER (FORCE, N) * (POWER (SPEED, N)/17.6)
	A(1,4)=A(1,4)+POWER(FORCE,N++(POWER(SPEED,N)/17.6)++2

PAGE A-41 R-2058, VOLUME I APPENDIX A - LISTING OF PROCRAM NRMM A(3,3)=A(3,3)±1. A(2,3)=A(2,3.001 PEWER(SPEED, NA/17.6) A(1,3)=A(1,3)+#POWER(SPEED,N+/17.6)+#2 A(1,2)=A(1,2)#(POWER(SPEED,N)/17.6)#*3 A(1.1) = A(1.1) + (POWER(SPEEC, N)/17.6) ++4 CONTINUE 2140 A(2,1)=A(1,2) A(2.2)=A(1.3) A(3,1)=A(1,3) A(3,2)=A(2,3) С С CALL SUBROUTINE TO INVERT "A" MATRIX AND SOLVE FOR С Ú THE COEFFICIENTS TO THE FITTED QUADRATIC С С CALL SOLVER (A, XA X(2) = X(2) / 17.6X(1) = X(1) / 17.6 / 12.6С С C CHECK NEXT POINT AGAINST THE MAXIMUM NUMBER IN ARRAY С C IF(RIGHT+1 .GT. IPCNER) GC TO 2270 MEDIAN=X(3)+X(2)**POWER(SPEEC,NEXT)+X(1)*POWER(SPEED,NEXT)**2 CIFFER=PCT+NECIAN/100-0 LOWER=MEDIAN-CLEBER UPPER=MEDIAN+CIFEER MEMBER=.TRUE. IF(POWER(FORCE, NAXT) .LT. LOWER) MEMBER=.FALSE. IF (POWER(FORCE, NEXT) .GT. UPPER) MEMBER=. FALSE. IF(.NOT. MEMBER) GC TO 2170 RIGHT=RIGHT+1 NEXT=RIGHT+1 BEGIN=RIGHT END=RIGHT GO TO 2122 С С -----STRAIGHT LINE GEAR С С _____ С 2165 X(1)=Ø. RIGHT=RIGHT-1 X(2)=(POWER(FARCE, RIGHT)-POWER(FORCE, LEFT))/ (POWER(SREEC, RIGHT) - POWER(SPEEC, LEFT)) t X(3)=POWER(FCRCE,LEFT)-X(2)*POWER(SPEED,LEFT) GO TO 2170 R IGHT=R IGHT-1 2168 2170 CONTINUE ATF(NGR)=X(3)

R-2058, VOLUME I Appendix A - Listing of Frogram NRMM

	BTF(NGR)=X(2)
	CTF (NGR)=X(1)
2172	
	VGV (NGR, 5) = POWER(SREEE, RIGHT)
	DO 2176 L=2,4
	VGV(NGR,L)=VGV(NGR,L-1) + (VGV(NGR,5) - VGV(NGR,1))/4.
2176	CONTINUE
2170	DO $2177 L=1,5$
	•
	TRACTFINGR,L)=ATEINGRI + BTFINGRI + VGVINGR,LI +
	+ CTEINGRI + VGVINGR,LI + VGVINGR,LI
2177	CONTINUE
	IF(CTF(NGR) .EQ. Ø. GO TC 2173
	CALL APPROX (
	+ POWER , FORCE , SPEED , NGR , LEFT
	+ ,RIGHT ,ATF ,BTF ,CTF ,IERROR
	+ ,FMAX ,VMAX ,LUNI)
	IFICTFINGRI .EQ. Ø.4 GO TC 2172
	GU TU 2173
С	
С	┍╶┥╸╸╸╸╸╸┟┟┆┊╴╸╴┑┥┇╺┆ <i>┥┫╬╸╸╸╸╸╸╸╸╸╸</i> ┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍
C	BACKUP TWO POINTS FOR ARTIFICIAL GEAR AT GAP IN TRACTIVE FORCE.
C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
C	
-	RIGHT=RIGHT-2
2173	
	IF(LEFT .LE. N-2) GO TO 2175
C	
č	
с с с с с	IF A GAP IN THE TRACTIME FORCE DATA OCCURS SUCH AS AT THE
č	SHIFT POINT OF A MANUAL TRANSMISSION, INSERT AN ARTIFICIAL
č	GEAR WHICH IS A VERTICAL LINE HAVING ZERO COEFFICIENTS AND
r i	MN, MD, MX SPEED VALUES EQUAL TO THE VALUE AT THE GAP. SET
č	THE MN, MX TRACTIVE FORCE VALUES EQUAL TO THE END POINTS OF
Ŭ -	THE DISCONTINUITY, AND THE MO TRACTIVE FORCE EQUAL TO THE
- C	AVERAGE OF THE MN, MX WALUES. PROCEED TO THE NEXT REAL GEAR.
C	AVENAGE OF THE MN; MA HALUES. PROCEED TO THE NEXT REAL GEAK.
C .	
C .	ELEDUEDIEDEED NA WE DOUEDLEDEED N 111 OD TO DIED
	F(POWER(SPEED, N) .NE. POWER(SPEED, N-1)) GO TO 2175
	RIGHT=RIGHT +1
	ATF(NGR)=0.
	BTF(NGR)=0.
	CTF(NGR)=Ø.
	CO 2178 L=1,5
	VGV(NGR, L)=PCWER(SPEED, RIGHT)
2178	CONTINUE
	TRACTF(NGR,1)=PDWER(FORCE,RIGHT-1)
	TRACTF(NGR, 5)=PCWER(FORCE, RIGHTH
	CO 2179 L=2.4
	TRACTF(NGR, L H#TRACTF(NGR, L-1H -
+	<pre>x itracte(ngr,1) - tracte(ngr,5)) / 4.</pre>
2179	CONTINUE
2175	IFIRIGHT+2 .GT. IPCWER) GC TO 2180

```
PAGE A-43
R-2058, VOLUME I
APPENDIX A - LISTING OF FROGRAM NRMM
        NGR=NGR+1
        LEFT=RIGHT
        RIGHT=LEFT+2
        NEXT=RIGHT+1
        BEGIN=LEFT
        END=RIGHT
     GO TO 2110
     CONTINUE
2180
С
С
      TEST FINAL POINT. FIT STRAIGHT LINE IF FINAL
C
۵
     POINT LIES OUTSIDE GF #REVIOUS GEAR.
С
     С
      IF(RIGHT .GE. IPCWER) 60 TO 2190
        NGR=NGR+1
        LEFT=RIGHT
        RIGHT=LEFT+1
        BEGIN=LEFT
        END=RIGHT
        X(1) = \emptyset.
        X(2)={POWER(FORCE, ENC)-POWER(FORCE, BEGIN))/
             (POWER(SPEEC, END)-POWER(SPEED, BEGIN))
     ÷
        x(3)=POWER(FORCE, END)-x(2)*POWER(SPEED, END)
         GO TO 2170
2190 CONTINUE
С
С
      EXIT RCUTINE
С
      -----
      IF( KII16 .NE. 1 | GCTE 2300
C '
      -----
     DIAGNOSTIC OUTPUT
С
С
      ------
      WRITE(LUN1,2195)
 2195 FORMAT(1H1,4H$FIT,/)
      WRITE(LUN1,2200)
     FORMAT(1H0,8HATE
2205
                         = )
      WRITELLUN1,22101 LATFING, NG=1, NGR)
     FORMAT (1 0X, E14.8, 2X, E14.8, 2X, E14.8, 2X, E14.8, 2X, E14.8, 2X, E14.8, 2X, E14.8,
2210
      WRITE(LUN1,2220)
     FORMAT(1H0,8HBTF
                         = 1
2228
      WRITE(LUN1,2210) (BTE/LAG),NG=1,NGR)
      WRITE(LUN1,2240)
2249
     FORMAT (1H0.8HCTF
                         = )
     WRITE(LUN1,2210) (CTF(AG),NG=1,NGR)
      WRITE(LUN1,2260) FCRCE
      WRITE(LUN1,2250) IERRCR
225.
     FORMAT(1HØ,8HIERROR =,14)
2260
      FORMATIING, SHFORCE =, 141
      WRITE(LUN1,2270) IPOWER
      FORMAT(1HØ,8HIPOWER =,14)
2270
      WRITE(LUN1,2280) NGR
```

R-2058, VOLUME I Appendix A - Listing of Frogram NRMM

2280 FORMAT(1HØ,8HNGR =====5+ WRITE(LUN1 2320) 2320 FORMAT (1HØ, 8HPOWER =) WRITE(LUN1,2210) ((POWER(L,N),L=1,2),N=1, IPOWER) WRITE(LUN1,2340) SPEEC 2340 FORMAT (1H0,8HSPEED =, 34) WRITE(LUN1,2350) 2350 FORMAT (1HØ, 8HTRACT F = 1WRITELLUN1,2210) ((TRACTF(NG,L),L=1,54,NG=1,NGR) WRITE(LUN1,2370) 237Ø FORMAT(1HØ,8HVGV = } WRITELLUN1,22101 LLVGVONG,LJ,L=1,5J,NG=1,NGRJ 2300 CONTINUE RETURN END SUBROUTINE SOLVER (A.K. С С С MATRIX INVERSION SUBRONTINE C a man a man fra man a sa a sa afa pan infa fing a panj С С C VARIABLE DECLARATIONS Ċ C CIMENSION A(3,4) DIMENSION 8(3,4) DIMENSION X(3) INTEGER COLUMN INTEGER ROW C DO 20 ROW=1,3 00 10 COLUMN=1,4 E(ROW, COLUMN)= A (ROW, COLUMN) 10 CONTINUE 2Ø CONTINUE DO 50 KPIVOT=1,2 С С С NORMALIZE W.R.JT. PINGTAL ELEMENT С C NPIVOT=5-KPIVOT DO 30 KCUNT=1,NFIVCI COLUMN=5-KOUNT B(KPIVOT, COLUMN HAB(KPIVET, COLUMN) /B(KPIVOT.KPIVOT) 30 CONTINUE KEL IM=K PIVOT +1 C С С PERFORM ELIMINATION ON ROWS OF MATRIX A

PAGE A-44

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRAM

С С DO 45 RCW=KELIM,3 CO 40 COLUMN=KELBM.4 B(ROW, COLUMN) = B(ROW, COLUMN) -(B(RGW, KPIVOT)/B(KPIVOT, KPIVOT)) ÷ *BLK PIVOT, COLUMN) + 40 CONT INUE 45 CONTINUE 50 CONTINUE С С С PERFORM BACK SUBSTITUTEON TO CETAIN С COEFFICIENTS X(1), X(2), X(3) С -----Ű x(3) = B(3,4)/B(3,3)CO 70 KBACK=2,3 ICOEFF=4-KBACK KTERMS=ICOEFF+1 0=0. DO 60 COLUMN=KTERMS#3 C=Q+B(ICOEFF,COLUMN) *X(COLUMN) 60 CONTINUE $X(ICUEFF) = (B(ICUEFF_4) - Q)/B(ICUEFF_F) = (B(ICUEFF_F) = (B(ICUEFF_F) - Q)/B(ICUEFF_F) = (B(ICUEFF_F) = (B(ICUEFF_F) = (B(ICUEFF_F) - Q)/B(ICUEFF_F) = (B(ICUEFF_F) = (B($ 70 CONTINUE RETURN END С SUBROUTINE APPROX + (POWER , FORCE , SPEED , NGR , NLEFT , NRIGHT ,BTF ,CTA , LERROR , FMAX + JATE +LUN1) + VMAX С € COMPARISON OF A SECOND ORDER POLYNOMIAL CURVE С C FITTED TO THE POWERTRAIN DATA AND A STRAIGHT С LINE FITTED EXACTLY BETWEEN TWO ADJACENT POINTS. С С С С -----C 1. VARIABLE DECLARATIONS С С DIMENSION ATF 120) DIMENSION BTF (28) DIMENSION CTF 1241 DIMENSION POWER (2,201) REAL LINED (120) (120) REAL LINE1 INTEGEK FORCE

218

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

INTEGER SPEED REAL QUADØ REAL QUAD1 REAL QUAD2 REAL XCOORD (201) REAL YCOORD (201) С С C 2. ALGCRITHM С -----С DO 200 N=NLEFT, NRIGHT XCOORD(N) = POWER(SPEED, N) YCOORD(N) = POWER(BORCE.N) 200 CONTINUE QUACO = ATF (NGR) QUAD1=8TF(NGR) QUAC2 = CTFINGRA CALL LINES! NLEFT ,NRIGHT ,XCOCRD ,YCCCRD ,LINED ,LINE1) CALL RESIDU(NLEFT ,NRIGHT , XCOCRD ,YCOORD ,LINED ,LINE1 ٠ + ,QUADØ ,QUAD1 ,QUAC2 ,TERROR ,FMAX + "VMAX .LUN1) ATF (NGR) =QUADØ BTF (NGR)=QUAD1 CTF(NGR)=QUAD2 CONT INUE RETURN END С SUBROUTINE LINES + INLEFT ,NRIGHT , XCOCRD , YCCORD , LINED , LINEIN С С С EXACT LINEAR FIT BETWEEN TWO ADJACENT POINTS С ~~~~~~~~ С C С and the second **C** + 1. VARIABLE DECLARATIONS С Ĉ REAL LINEØ (120) REAL LINE1 41201 INTEGER SEG INTEGER SEGA INTEGER SEGB REAL XCOORD (201) REAL YC00RD (201) С ----С

PAGE A-46

2. ALGERI	THM						
SEGA=N SEGE=N	LEFT+1 RIGHT						
DO 200	SEG=SEGA		SEC N-MCO				
+		(X COOR	G(SEG)-X	COORD(S	EG-144		
LII CONTIN	IEØ(SEG)=Y(GOPELS	EGI-LINE	14 SEG)*	XCOORDISE	EG)	
RETURN							
END							
SUBROUTIN	IE RESIDU •NRIGHT •2	COCRD	VCCOPD	IINCA	LIMET		
	, QUAD1 ,				, LINCI		
+ 🖌 MAX	,LUNI)						
	BETWEEN F						
1. VAR IAI	ERR GR	AT LENS					
1. VAR IAN REAL REAL REAL REAL INT EG INT EG INT EG INT EG INT EG INT EG INT EG REAL REAL REAL REAL	ERR GR LENPPA LENPPB LINEØ LINE1 R SEG R Z R SEGA R SEGB R SEG1 R SEG2 CUADØ QUAD1 QUAC2 XCOORD YCOORD	AT L CNS 1201 1201 1201 1201					
1. VAR IAN REAL REAL REAL REAL REAL INT EG INT EG INT EG INT EG REAL REAL REAL REAL	ERR GR LENPPA LENPPB LINEØ LINE1 R SEG R Z R SEGA R SEGB R SEG1 R SEG2 CUADØ QUAD1 QUAD1 QUAD2 XCOORD YCOORD	AT L CNS 1201 1201 1201 1201					
1. VAR IAN REAL REAL REAL REAL INT EG INT EG INT EG INT EG INT EG INT EG REAL REAL REAL REAL	ERR GR LENPPA LENPPB LINEØ LINE1 R SEG R Z R SEGA R SEGB R SEG1 R SEG2 CUADØ QUAD1 QUAD1 QUAD2 XCOORD YCOORD	AT L CNS 1201 1201 1201 1201					
1. VAR IAN REAL REAL REAL REAL REAL INT EG INT EG I	ERR GR LENPPA LENPPB LINEØ LINE1 R SEG R Z R SEGA R SEGB R SEG1 R SEG2 CUADØ QUAD1 QUAD1 QUAD2 XCOORD YCOORD	AT L CNS 1201 1201 1201 1201					

R-2058, VOLUME I Appendix A - Listing of Frogram NRMM

1. FIRST ORDER FOLYNOMIAL
ALLNE($Z_{+}X$)=LIAEØ(Z)+LINEI(Z)+X
2. SECOND ORCER POLYNOMIAL
$QUAD(X) = QUAD0 \pm QUAD1 + X + QUAD2 = X + = 2$
3. RESIDUAL
RESID(Z,X)=ABSIQUAD(X)-ALINE(Z,X))
B. CIFFERENCE CALCULATION BETWEEN QUADRATIC CURVE
AND THE STRAIGHT LINE FITTED BETWEEN TWO ADJACENT POINTS
$\cdots = \cdots = a_{1} + a_{2} + a_{2$
PCT1=0+05
PCT2 = 0.01
SEGA=NLEFT+1
SEGBENRIGHT
DO 250 SEG=SEGA, SEGB
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FIND THE VALUE OF X WHERE THE DIFFERENCE BETWEEN
THE QUADRATIC CURVE AND THE STRAIGHT LINE VALUES
OF Y ARE A MAXIMUM.
*** *************
XPUINT=(LINE%ESEG)-QUAD1)/(2:+QUAD2)
IF(XPOINT LET XCOORD(SEG-1) LOR.
XPOINT -GL XCOCRD(SEG)) GO TO 230
CALCULATE THE SLOPE OF THE QUAGRATIC AT XPOINT
$\cdots = \cdots = a_1 + a_2 + a_3 + a_4 + a_1 + a_2 + a_3 + a_4 + a_$
SLOPE=2.#QUAD2#XPOINT + QUAD1
CALCULATE THE MAXIMUM DISTANCE BETWEEN THE CURVE AND
CALOUDATE THE MAALPREM DISTANCE SERVEEN THE CONVE AND

CALCULATE THE MAXIMUM DISTANCE BETWEEN THE CURVE AND THE STRAIGHT LINE IE THE MAXIMUM OCCURS BETWEEN THE END POINTS OF THE LINE.

> ERROR(SECA=RESID(SEG,XPOINT) G0_T0_240

C 23Ø

С

С С С

С

Ċ

С

С

С

С

C C C C C

С

С С

C C C C C C C C C C C C C

CCCCC

С

000000

LENPPA=RESID#SEG,XCOORD(SEG-1)) LENPPB=RESID#SEG,XCOORD(SEG))

CALCULATE DIFFERENCE BETWEEN CURVE AND STRAIGHT LINE IF THE MAXIMUM OCCURS AT THE END POINTS OF THE LINE.

ERROR(SEGI=ANAX1(LENPPA,LENPPB)

R-2058. VOLUME I PAGE A-49 APPENDIX A - LISTING OF FRGGRAM NRMM IFIERKORISEGA .EC. LENPPAI XPOINT=XCOORDISEG-1) IF(ERROR(SEG) .EQ. LENPPB) XPDINT=XCODRD(SEG) SLOPE=2. +QUAD2 +XPOINT + QUAD1 С С С CALCULATE THE NORMAGIZED SLOPE С FOR THE ENTIRE POWERTRAIN CURVE C -----С 240 SLOPEN=ABS(SEOPE=V MAX/FMAX) С С С CHECK WHETHER CURVE EXTENCS BEYOND MAKIMUM TRACTIVE FORCE С IF SO, FIT STRAIGHT LINE BETWEEN POINTS AT WHICH THIS OCCURS. С С QHAX=AMAX1(CNAD(XPCINT), QUAD(XCDORD(SEG-1)). CUAD(XCOORD(SEGH)) + IF (QMAX .GT. FMAK) GO TO 260 С С C CALCULATE ALLOWABLE ERROR BETWEEN QUADRATIC C CURVE AND STRAIGHT LINE WHICH INCLUDES VARIABLE С ERRCR BASED ON THE WORMALIZED SLOPE. С С ALLOW=[(CUACWXCOORE(SEG-1)] + QUADEXCOORD(SEG))/2.)+ PCT1 + SLCPEN+PCT2+QUAD(*PQINT) IF(ALLOW .GT. ERRORISEG)) GO TO 250 SEGI=SEG  $\Rightarrow$  1 SEG2=SEG # 2 WRITE(LUN1,22#0) SEG1,SEG,SEG2,SEG1 IERROR=1 250 CONTINUE GO TO 270 26B  $QUAD2 = \emptyset$ . QUAD1=LINE1 (SEG) QUADØ=LINEØ4SEG) NR IGHT = SEG 2200 FORMATLIX, 32HOURVE FIT ERROR EXCEEDED BETWEEN, 1X, 12HDATA POINTS: 213,/ 8X, 38HINSERT DATA POINT BETWEEN DATA POINTS: 2131 270 CONTINUE RETURN END SUBROUTINE LINEAR & AFRAY, LARRAY, INC, MDEP, X, Y + C DIMENSION ARRAY(2.50) С С C LINEAR INTERPOLATION SUBROUTINE С ~~~~~

### R-2058, VOLUME I Appendix A - Listing of Program NRMM

1	FL ARR	AYII	ND.11 .L	E. ARRAYI IN	D. LARRAY	1 GO TO 11	Ø
				RAY I, JI A			-
	STOP						
C	ONTINU	E		۰.,			
1	F( X .	GE.	ARRAYLIN	0,11 ) 60 1	0 120		
	Y=∅.						
	GO TI	0 15	Ø	,			
	ONT INU						
I			ARRAYLIN	D, IARRAY) 1	GO TO 13	Ø	
	Y=Ø.1	-		·			
	Gũ T(	-	Ø				
	ONTINU						
	TEMP1 =						
D	0 140		-				
				JEE. ARRAY			
+				D, Nali )			
	Y٩		•		-	-ARRAY (MDEP	
ŧ				ND ( A) )/( A	RRAY(IND,	N#1)-ARRAY(	END,N
~	-		150	•			
Ľ	ONTINU			THITBOOLOATS	0		
			WHUI BE	INTERPLOATE	:U		
r	STOP	_					
-	ETURN	<b>F</b>					
R	ETURN						
c			STICK (	•			
ാ				TRANS	NCP		
4				. 30 - A MAILA		<b>j</b> 1 <b>U</b>	
				JI PAWE B	. RPM	TOROUF	
+	RR .		POWER	SPEED			
+ +			POWER				
+ +	∙RR ∍GR		POWER				
+ + +	,RR ,GR ,KII16	5 } 4	,POWER ,EFF	SPEED			
+ + +	,RR ,GR ,KII16	5 } 4	,POWER ,EFF				
+ + +	,RR ,GR ,KII16 ANUAL 1	5)  FRA NS	,POWER ,EFF	SPEED			
+ + + + - M -	,RR ,GR ,KII16 ANUAL 1	5) [RA NS	,POWER ,EFF	SPEED			
+ + + + - M -	•RR •GR •KII16 ANUAL 1	5) [RA NS	,POWER ,EFF	SPEED REUTINE			
+ + + + - M -	,RR ,GR ,KII16 ANUAL 1 . VARIA REAL	5) [RA NS	, POWER , EFF SMISSIGN DECLARAT ENGINE	SPEED			
+ + + + - M -	,RR ,GR ,KII16 ANUAL 1 ANUAL 1 . VARIA REAL REAL	5) [RA NS	, POWER , EFF SMISSIGN DECLARAT ENGINE ESMAX	SPEED REUTINE			
+ + + + - M -	,RR ,GR ,KII16 ANUAL 1 . VARIA REAL REAL REAL	5) [RA NS	, POWER , EFF SMISSIGN DECLARA ENGINE ESMAX ESMIN	SPEED RCUTINE TLCN 124251			
+ + + + - M -	,RR ,GR ,KII16 ANUAL 1 ANUAL 1 . VARIA REAL REAL REAL REAL REAL	S) FRANS ABLE	, POWER , EFF SMISSIGN DECLARA ENGINE ESMAX ESMIN FD	SPEED REUTINE			
+ + + + - M -	,RR ,GR ,KII16 ANUAL 1 ANUAL 1 . VARIA REAL REAL REAL REAL REAL INTEG	S) FRANS ABLE	, POWER , EFF SMISSIGN DECLARAT ENGINE ESMAX ESMIN FD IENGIN	SPEED RCUTINE TLCN 124251			
+ + + + - M -	RR ,GR ,KIIIG ANUAL 1 ANUAL 1 . VARIA REAL REAL REAL REAL INTEG INTEG	SER SER	, POWER , EFF MISSIGN DECLARAT ENGINE ESMAX ESMIN FD IENGIN IPOWER	SPEED RCUTINE TLCN 124251			
+ + + + - M -	RR ,GR ,KIIIG ANUAL I ANUAL I REAL REAL REAL REAL INTEG INTEG	ABLE GER GER GER	, POWER , EFF SMISSIGN DECLARAT ENGINE ESMAX ESMIN FD IENGIN IPOWER EFF	SPEED RCUTINE TLCN 124251			
+ + + + - M -	RR ,GR ,KIIIG ANUAL I ANUAL I REAL REAL REAL REAL INTEG INTEG INTEG	ABLE GER GER GER	, POWER , EFF SMISSIGN DECLARAT ENGINE ESMAX ESMIN FD IENGIN IPOWER EFF FORCE	SPEED RCUTINE TLCN 124251			
+ + + + - M -	RR ,GR ,KII16 ANUAL 1 - VARIA REAL REAL REAL REAL INTEG INTEG INTEG	ABLE BER BER BER	, POWER , EFF SMISSIGN DECLARAT ENGINE ESMAX ESMIN FD IENGIN IENGIN IPOWER EFF FORCE GR	SPEED RCUTINE TLCN 124251			
+ + + + - M -	RR GR KII16 ANUAL 1 VARIA REAL REAL REAL REAL INTEG INTEG INTEG INTEG INTEG	SI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	, POWER , EFF SMISSIGN DECLARA ENGINE ESMAX ESMIN FD IENGIN IPOWER EFF FORCE GR RPM	SPEED RCUTINE TLCN 124251			· · ·
+ + + + - M -	RR GR KIIIG ANUAL I ANUAL I ANUAL I VARIA REAL REAL REAL REAL REAL INTEG INTEG INTEG INTEG INTEG INTEG	ABLE CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS CRANS C	, POWER , EFF SMISSIGN DECLARA ENGINE ESMAX ESMIN FD IENGIN IENGIN IPOWER EFF FORCE GR RPM SPEED	SPEED RCUTINE TLCN 124251			
+ + + + - M -	RR ,GR ,KIIIG ANUAL 1 	ABLE BERRER BERRER BERRER BERRER BERRER	, POWER , EFF SMISSIGN DECLARA ENGINE ESMAX ESMIN FD IENGIN IENGIN IPOWER EFF FORCE GR RPM SPEED TORQUE	SPEED RCUTINE TLCN 124251			
+ + + + - M -	RR GR KIIIG ANUAL VARIA REAL REAL REAL REAL REAL INTEG INTEG INTEG INTEG INTEG INTEG INTEG INTEG	ABLE BERRER BERRER BERRER BERRER BERRER	, POWER , EFF SMISSIGN DECLARAT ENGINE ESMAX ESMIN FD IENGIN IENGIN IPOWER EFF FORCE GR RPM SPEED TORQUE N	SPEED RCUTINE TLCN 124251			
+ + + + - M -	RR ,GR ,KIIIG ANUAL I ANUAL I ANUAL I REAL REAL REAL REAL REAL INTEG INTEG INTEG INTEG INTEG INTEG INTEG INTEG	ABLE BERRER BERRER BERRER BERRER BERRER BERRER BERRER	, POWER , EFF SMISSIGN DECLARAT ENGINE ESMAX ESMIN FD IENGIN IENGIN IPOWER EFF FORCE GR RPM SPEED TORQUE N NG	SPEED RCUTINE TLCN 124251			
+ + + + - M -	RR GR KIIIG ANUAL VARIA REAL REAL REAL REAL REAL INTEG INTEG INTEG INTEG INTEG INTEG INTEG INTEG	ABLE BERRER BERRER BERRER BERRER BERRER BERRER BERRER	, POWER , EFF SMISSIGN DECLARAT ENGINE ESMAX ESMIN FD IENGIN IENGIN IPOWER EFF FORCE GR RPM SPEED TORQUE N	SPEED RCUTINE TLCN 124251			

223

```
R-2058, VOLUME I
APPENDIX A - LISTING OF FRGGRAM NRMM
                   RPMEN
         REAL
         REAL
                   RR
         REAL
                   TF
                   TORGEN
         REAL
         REAL
                   TRANS
                           (i=25)
С
      2. ALGCRITHM
Ĉ
         ESMIN=ENGINE(RPN,1)
         ESMAX=ENGINE(RP+, LENGIN)
         DC 120 NG=1,NGR
            CO 110 N=1,201
               RPMEN=( PCWER4SPEED, N)/2.4/3.14159265/RR )+
                     FD1 GR ##TRANSI GR, NG !
     ٠
               IF(RPMEN .LT. ESPIN) GO TO 110
                   IF(RPMEN .GT. ESMAX) GO TO 120
С
                      EXIT LESP 110
                   CALL LINEAR(ENGINE, IENGIN, RPM, TORQUE, RPMEN, TORQEN )
                   TF=TORCEN#TRANS(GR, NG)#TRANS(EFF, NG)
                      ◆FD(GR)#FD(EFF)/RR
     ÷
                   IF (POWER(FORCE, N) .LT. TF) POWER(FORCE, N)=TF
                   IF(IPOWER JLT. N) IPOWER=N
            CONT INUE
110
120
         CUNTINUE
         CC 300 N=2, IPOWER
            NN=IPOWER - N + 1
            IF( POWER( FORCE, NN) .EQ. 0.)
                POWER(FORCE, NS) = POWER(FORCE, NN+1)
300
         CONTINUE
C
C
      3. DIAGNOSTIC OUTPUT
      IF [KII16 .NE. 1) GOTC 210
      WRITELLUNI,100)
      FORMAT(1H1,6H$STICK,//
100
      WRITE(LUN1 115) EFF
115
      FORMAT(1HØ,8HEFF
                           = . 14 1
      WRITE(LUN1,125)
125
      FORMAT(1HØ,8FENGINE =)
      WKITE(LUN1,130) ((ENGINE(I,J),I=RPM,TORQUE),J=1,[ENGIN)
130
      FORMAT(10X,6(E14.8,2X))
      WRITE(LUN1,140) (FD(1),1=1,2)
140
      FURMAT(1HØ,8HFD
                           =,21E14.8,2X))
      WRITELLUN1,150) FORCE, GR, IENGIN, IPOWER, NGR
150
      =, 14, 1,
              1H0,8HIENGIN =, 14, /, 1H2,8HIPOWER =, 14, /.
                           =, 344
             1HØ,8HNGR
      WRITE(LUN1,160)
      FURMAT(1HØ,8HPOWER
                           = )
161
      WPITE(LUNI,130) ((PCWER(I,J),I=SPEED,FORCE),J=1,IPOWER)
      WKITE(LUN1,170) RPM
172
      FORMAT (1HØ,8HRPM
                           =, 141
      WRITE(LUN1,180) RR
180
      FORMAT(1HØ,8HRR
                           =., E14.8)
```

 $22^{4}$ 

### PAGE A-52

R-2058, VOLUME I Appendix A - Listing of Froeram NRMM

190 200 210	FORMAT(1HØ, WRITE(LUN1, FORMAT(1HØ, WRITE(LUN1, CONTINUE	200) Bhtrans	=)	=GR., EFFI., J	=1,NGR)
	RET URN END				
	SUBROUTINE * CONV1	TRAIN { +CONV2	ENGINE	, FC	, IGONV1
	+ ,ICONV2	, LENGIN	STCASE	, ITRAN	,LOCKUP
	+ ,EFF	FORCE	#GR	RPM	,SPEED
	+ , SR	, TORQUE	#TR	, NGR	, PE
	+ ,RR + ,POWFR	TCASE	TQIND	, TRANS	, IPOWER
С	+ , POWER	LUNI	¢KII16)		
č		<b>.</b>		****	
Ĉ	CONSTRUCTIO	N OF THE	VEHICLE		
C C C	TRACTIVE EF			CURVE	
	FROM POWER 1				
C C	a a a se		에 제 같은 이 같이 아이가 다 다 다 다	*****	
c	1. VAR IABLE		1.08		
C	REAL	CONV1			
	REAL	CONV2	-		
	REAL	ENGINE		•	
	REAL		(,2)		
	INTEGER				
	INTEGER	I CONV 2			•
	INT EGER INT EGER	IENGIN IPOWER			
	INTEGER	ITCASE			
	INTEGER	LOCKUP			· · ·
	INT EGER	EFF			
	INT EGER	FORCE			
	INTEGER	GR			
	INTEGER INTEGER	RPM SPEED.			
	INTEGER	SPEED			
	INTEGER	TORQUE			
	INTEGER	TR			
	INT EGER	N			
	INTEGER	NGR			
	REAL	PE			
	REAL		(20201)		
	REAL REAL	RR TCASE	[2]		
	REAL	TQIND			
		• • • • • • • • • • • • • • • • • • • •			
	REAL		(2025)		
С	REAL	TRANS	(2025)		
C C		TRANS	(2025)		

,

•

R-2058, VOLUME I PAGE A-53 APPENDIX A - LISTING OF PROGRAM NRMM DC 2010 N=1,201 POWER(SPEED, N) = FEGAT(N-1) + 0.5+(88./60.)+12.0 FOWERIFORCE, N)=040 2010 CONTINUE С С ADJUST TRANSMISSION INPUT FOR ENGINE С TO TRANSMISSION TRANSFER CASE С ------IFI ITCASE .EQ. Ø | GO TO 2021 CO 2020 N=1, IENGIN ENGINELRPM, N = ENGINELRPM, N)/TCASE(GR) ENGINE(TORQUE, N) RENGINE(TORCUE, N) +TCASE(GR) +TCASE(EFF) CONTINUE 2WLØ 2021 CONTINUE С a, a a a a a a a a giù a a a С CHOOSE TRANSMISSION TYPE С ------IF( ITRAN .EC. & ) 60 TO 2040 CALL AUTOM ( ENGINE , LENGIN , CONV1 +ICONV1 , CONV 2 ٠ ٠ I CONV2 ,TOIND ,TRANS **NGR** FD ,RR ,PE , IPOWER , RPM , POWER + , EFF , TORQUE ,TR , GR ÷ ,SR "KII16J , FCRCE ,LUN1 ÷ ,SPEED IFI LOCKUP .EC. 4 1 GO TO 2050 2040 CONTINUE CALL STICK ( , N GR ENGINE . HENGIN , TRANS , FD ٠ . I FOWER , TORQUE , RR "ROWER , RPN ٠ , GR , EFF , SPEED , FORCE + ,LUN1 ,KII161 2050 CONTINUE С С 3. DIAGNOSTIC OUTPUT IF( KI116 .NE. 1 ) GOTO 300 WRITE(LUN1,190) 190 FORMAT(1H1,6H\$TRAIN,/) kRITE(LUN1,200) 202 FORMAT (1HØ,8HCONV1 =) WRITE(LUN1,210) ((CGNV1(I,J),I=RPM,SR),J=1,ICONV1) FORMAT(10X,E14.8,ZX,E14.8,2X,E14.8,2X,E14.8,2X,E14.8,2X,E14.8,2X,E14.8) 210 WRITE(LUN1,220) FORMAT(1HØ,8HCONV2 =) 222 WRITE(LUN1,210) ((CONV2(I,J),I=TR,SR),J=1,ICONV2) WRITE(LUN1,230) EFF FORMAT (1HØ,8HEFF =, {4) 236 WRITE(LUN1,240) 240 FORMATIINØ, BHENGINE = J wkITE(LUN1,210) ((ENGINE(I,J),I=RPM,TORQUE),J=1,IENGIN) WRITE(LUN1,245) FD(EFF),FD(GR) 245 FORMAT (1HØ,8HFD =,=14-8,2X,E14-8) WRITE(LUN1,250) FORCE, GR, ICONV1, ICONV2, IENGIN, ITCASE, ITRAN,

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

IPGWER JLOCKUP, NGR 25Ø FORMAT(1H0,8HFORCE =,14// 1HØ,8HGR =+34+1+8,8HICONV1 =+14+/+ 1H0,8HICONV2 =,44,8,1H0,8HIENGIN =, 14,4, 1H0,8HITCASE = , 14, /, 1H0,8HITRAN =, 14./. 1H0,8HIPOWER = 34, /41H0,8HLOCKUP =, 144/, 1HØ,8HNGR =,44) WRITE(LUN1,260) 260 FORMAT(1HØ,8HPOWER =) WRITE(LUN1,210) ({POWER4I,J},I=SPEED,FORCE),J=1,IPOWER) WRITE(LUN1,270) RR 270 FORMAT 11HØ,8HKR =,814.81 WRITE(LUN1,280) RPN, SFEED, SR, TORQUE, TR 280 FORMAT (1HØ,8HRPM =,14,/,1+8,8HSPEED =,14,/, 1 HØ,8 HSR =,14,/,1H0,8HTORQUE =,14,/, 1HØ,8HTR WRITE(LUN1,285) (TCASEDIN, I=GR, EFF) 285 FORMATIINØ,8HTCASE = 21 E14.8,2X)) WRI TE( LUN1, 290) 290 FORMAT(1H0, BHTRANS =) WRITE(LUN1,210) ((TRANS(I,J),I=GR,EFF),J=1,NGR) WRITE(LUN1,310) TQIND 310 FORMAT (1H0,8HTQIND =,E14.8) 300 CONTINUE RETURN END SUBROUTINE II17( ,IDIESL , GCW .NAMBLY ,NCYL , NENG CID + ,NGR , NVEH , CMAX RMX •• RR ,TRACTE ) С С -----С ROTATING MASS FACTERS С С С 1. VARIABLE DECLARATION REAL IDIESL REAL MF1 REAL MF₂ REAL NCYL REAL NENG INTEGER NVEH (28) REAL RMX (20) REAL TRACTE (24,5) С С 2. ALGCRITHMS MF1 = 1.03 $ETA = \emptyset.9$ DO 1710 I=1.NAMBLY IF(NVEHLI) .NE. #) GO TO 1710 MF1 = 1.14 $ETA = \emptyset.7$ GO TO 1720

# K-2058, VOLUME I APPENDIX A - LISTING OF FROERAM NRMM

.

171Ø 172Ø 173Ø	DO 1730 NG=1,NGR	ESE*CID)**1.68)/NCYL/GCW)*NENG TFONG.3)*RR/ETA/QMAX * NF2*GR*GR
C C	TERRAIN TRANSLATCRS	
C		
С С С	1. LABLED COMMON ASS Common /IO/ Common /IO/ Common /IO/	LGRMENTS IEGF KBUFF LUN1
	COMMON /IO/	LUN2
	COMMON /10/	LUN3
	COMMON /IO/ Common /IO/	-LUIN4 LUIN5
	COMMON /10/	LUNG
	COMMON /IO/	LUN7
	COMMON /IO/	LUN8
	COMPON /10/	LUN9
	COMMON /IO/ Integer	
	COMMON /INDEX/	
	INTEGER	
	COMMON /INDEX/	CEWN
	INT EGER	E&F
	COMMON /INDEX/	EEF
	INTEGER	FORCE
	COMNON /INDEX/ Integer	F&RCE 6r
	COMMON /INDEX/	GR
	COMMON /INDEX/	LEVEL
	INTEGER	HA .
	COMMON /INDEX/	MN
	INTEGER	FBM
	COMPON /INDEX/ Integer	
	COMMON /INDEX/	SREED
	INTEGER	SA
	COMPON /INDEX/	SR
	INT EGER	T P
	COMMON /INDEX/	TR
	INTEGER	TERCUE
	COMPON /INDEX/ Integer	TARQUE UF
	COMMON /INDEX/	UR .

R-2058, VOLUME I Appendix A - Listing of Frogram NRMM

> INT EGER NX . COMMON /INDEX/ MX COMMON /TERRAN/ A:A COMMON /TERRAN/ ACTRMS COMMON /TERRAN/ AREA COMMON /TERRAN/ AREAC COMMON /TERRAN/ 64 COMMON /TERRAN/ CAST COMMON /TERRAN/ EANG ECF COMNON /TERRAN/ COMMON /TERRAN/ ELEV COMMON JTERRAN/ FNU (3) COMMON /TERRAN/ GRADE COMMON /TERRAN/ 1685 COMPON /TERRAN/ AØST. COMMON /TERRAN/ IROAD COMMON /TERRAN/ 15 (9) COMPON /TERRAN/ IST COMMON /TERRAN/ ATUT COMMON /TERRAN/ NÆ COMMON /TERRAN/ NIU COMMON /TERRAN/ CAW COMPON /TERRAN/ CBAA COMMON /TERRAN/ 68H COMMON /TERRAN/ CBL **C8S** COMMON /TERRAN/ COMPON /TERRAN/ CON COMPON /TERRAN/ CBNINW COMMON /TERRAN/ CDIA COMMON /TERRAN/ NNASHO COMMON /TERRAN/ RADC COMMON /TERRAN/ FOI COMMON /TERRAN/ SC IC (4) COMPON /TERKAN/ RCURV (11) COMPON /TERRAN/ RE COMMON /TERRAN/ FEA (12) COMMON /TERRAN/ S (9) COMMON /TERRAN/ SE (9) COMPON /TERRAN/ SCL (9)COMMON /TERRAN/ SURFF COMMON /TERRAN/ TANPHI COMMON /TERRAN/ THETA (3) COMMON /TERRAN/ VCURV (4,11) COMMON /TERRAN/ WA COMMON /TERRAN/ hB. COMMON /SCEN/ COHES COMMON /SCEN/ VHALK COMMON /SCEN/ COLMAX COMMON /SCEN/ GAMMA COMMON /SCEN/ IEVER COMMON /SCEN/ **ISEASN**

COMMON /SCEN/

PAGE A-56

229

ISURF

# R-2058, VOLUME I Appendix A - listing of program nrmm

COMMON	ICCCN /	TENOU
COMMON		ISNOW
	/SCEN/	K I I I
COMNON	/SCEN/	<b>KII2</b>
COMMON	/SCEN/	K Z Z 3
	/SCEN/	KII4
COMMON		K #15
COMPON		<b>K]I6</b>
COMMON		K # 17
COMNON		K418
COMMON	/SCEN/	K419
COMMON	/SCEN/	KEIIØ
COMMON		K4411
COMMON		48815
COMMON		
		K-113
	/SCEN/	KEI14
COMPON	/SCEN/	K4415
COMMON	/SCEN/	KII16
COMMON	/SCEN/	K.E.117
	/SCEN/	KNAP
COMMON	/SCEN/	KSCEN
COMMON	/SCEN/	-
CUMPUN	/SUEN/	KIPP
CUMMON	/SCEN/	KVEH
	/SCEN/	K.1V 1
COMNON	/SCEN/	K <b>∃</b> V2
COMMON	/SCEN/	K.4¥3
COMMON	/SCEN/	ドネイタ
	/SCEN/	KAV5
COMMON		K W 6
COMMON		- K: JV 7
COMMON		K₫V8
		KJV9
COMMON		
COMMON		K3V1 Ø
COMMON		K:EV11
COMMON		KAV12
COMMON	/SCEN/	KAV13
COMNON	/SCEN/	KZV1 4
COMMON	/SCEN/	K 3V 15
	/SCEN/	×IV16
COMPON		K.1V17
COMMON		K 3W18
COMMON		KJV19
COMMON		
		K.1V2Ø
COMPON		K:1V21
COMMON		LAC
INTEGER		CETA IL
COMMON		CETAIL
COMPON	/SCEN/	MAP
COMMON	/SCEN/	⊯ <b>∦₽</b> G
COMMON	/SCEN/	PENTH
COMPON		NEPP
	/SCEN/	NSLIP
COMMON		NIRAV
CORRON	FJUCIN	1 M 10 10 10 W

COMMON /SCEN/ NWUX COMMON /SCEN/ FMA REACT COMMON /SCEN/ COMPON /SCEN/ REFOG SEARCH INT EGER COMMON /SCEN/ SEARCH COMMON /SCEN/ SETYPC COMMON /SCEN/ VERAKE COMMON /SCEN/ VISANV COMMON /SCEN/ VENIM COMPON /SCEN/ ZSNOW С 2. ALGCRITHM TELMAP .EQ. 74) GO 10 2010 IFIMAP .EQ. 111 60 TO 2015 С CLASS INTERVAL TERRAIN TRANSLATOR С С CALL MAP710 JEL EV , GRADE , IEOF , IS , ACTRMS , AREA , IOST AA ,OBH .OBL ,ITUT ,LUN2 ,NI ,NTU ,NTUX ,IST **,**S ,SD , SDL ,SEARCH + "08S , RC LC , RD , OBW + ,WD ) DIAGNOSTIC OUTPUT LIST С NAMELIST /XMAP71/ , GRADE , LEOF , IOST , IS ,ACTRMS ,AREA , EL EV AA NTU NTUX DBH **₽NI** .OBL ,ITUT ,LUN2 + JIST ,08W ,RCLC ,RD ,SDL .SEARCH + "08S •S •SD + "WD IF((KMAP.EQ.1) .ANC. (IEOF.EQ.8)) WRIJE(LUN1,XMAP71) GO TO 2020 2010 CONTINUE С С NATURAL TERRAIN UNITS TRANSLATOR С CALL MAP741 , EL EV , GRADE , LEOF , IOST . IS ACTRMS , AREA AA ٠ **NTUX ,**08H ,ITUT ,LUN2 ,MONTH ,NI ,NTU + .IST RCIC ,RDA1 ,OBS , RD , R DA , RDA2 + .0BL • CBW **,** S , SD ,SEARCH .WD 1 ,RDA4 ,SDL + "RDA3 DIAGNOSTIC OUTPUT LAST С NAMELIST / XMAP74/ , EL EV , GRADE AA , ACTRMS , AREA , I EOF , IOST , IS , OBH ,NTUX ,ITUT ,LUN2 ,MONTH ,NI , NTU + JIST , CBW ,RD ,RDA1 . RDA2 RCIC , RDA + ,08L , OBS ,SDL SEARCH WD + ,RDA3 ,RDA4 • S , SD C DIAGNOSTIC OUTPUT IF((KMAP.EQ.1) .ANC. (IEOF.EQ.0)) WRITE(LUN1,XMAP74) GO TO 2020 C ROAC NET TRANSLATOF C C

2015 CALL MPRD74(

PAGE A-59 8-2058. VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM . FMU + ACTRMS, CURVV, CIST EANG . EL EV , GRADE , LUN2 .NTUX , IKOAG , IST TUT . IURB NTU + ,IEOF RC , RADC , RDA , RDFOG + ,NVASHO ,MONTH , RCURV ,RCIG , VCURM I + .SEARCH .SURFF С DIAGNOSTIC OUTPUT LAST NAMELIST /XROAD/ , GRADE , EL EV ACTRMS .CURVV , CIST , EANG , FMU + ,NTU , ITUT "NTUX + ,IEOF ,IROAD , IST , IURB ,LUN2 ,RDFOG ,RCIC , RCURV , RDA + .NVASHO .NONTH , RADC "RC + .SEARCH .SURFF ... VCURY IFL(KNAP .EQ. 1) .AND. VIECF .EQ. 01+ WRITE(LUN1, XROAD) 2020 CONTINUE IF( IEOF .EQ. 1) GO TO 4000 С С TERFAIN PREPROCESSOR С CALL TPP( , EL EV , GANMA ACTRMS AREAD ,CI . GRADE ECF + 44 WAD ,OBAA ,NI + .IO8S ,ISEASN , ISNCH , IST . ITUK , 0 BW . ODIA ,RADC ,08L , CBMINW , OBS ,PHI + •0BH TANPHI , THETA , RD ,S , WA ZSNON ) ,RCIC + .RCI DEAGNOSTEC OUTPUT LEST С NAMELIST /XTPP/ , EL EV , GRADE , ECF + GAMMA , ACTRMS , AREAG ,CI + 44 •NI .OAW ,0BAA + ,IOBS , ISEASN , ISNGH , IST ,ITUT PHI , RADC , CBMENN , OBS ...OBW . ODIA + ,08H , OBL ,ZSNOH ,TANPHI ,THETA ,WA + .RCI .RCIC , RD γS DEAGNOSTEC OUTPUT С IF(KTPP .EG. 1) WRITE(LUN1.XTPP) 4. TERMINUS С 4020 CONTINUE RETURN END SUBROUTINE AREAL С -----С _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ С С С 1. LABLED COMMON ASSIGNMENTS COMMON /IO/ I &GF KBUFF CONFON /IO/ CONNON /IO/ LNN1 COMMON /IO/ LNN2 1003 COMMON /IO/ LUN4 COMPON /IO/ COMMON /IO/ LUN5 COMNON /IO/ LUN6 LUN7 CONMON /IO/ COMMON /IO/ LNN8 COMMON /10/ LUN9 COMMON /IO/ LUNIO INTEGER .ND

#### R-2058, VOLUME I Appendix A - Listing of Program NRMM

COMPON /INDEX/	NO	
INTEGER	CGWN	
COMMON /INDEX/		
INT EGER	ERF	
COMMON /INDEX/	EEF	
INTEGER	FERCE	
COMMON /INDEX/	FORCE	
	GR	
COMMON /INDEX/	GR	
COMMON /LNDEX/	LEVEL	
INTEGER	IN N	
COMMON /INDEX/	M D	
INT EGER	和愛知	
COMMON /INDEX/	RRM	·
INTEGER	SPEED	
	SPEED	
INTEGER	S P S R	•
COMPON /INDEX/	SK	
INTEGER	TR	
COMMON /INDEX/	TR	
INTEGER Compon /Index/ Integer	TERQUE TERQUE	
INTEGER	I KAUC	•
COMMON /INDEX/		
	je X	
COMMON /INDEX/	N X	
COMMON /VEHICL/	460	
COMMON /VEHICL/		1293
COMPON /VEHICL/		
COMMON /VEHICL/	AXLSP	(20)
COMMON /VEHICL/ COMMON /VEHICL/	CB	
COMMON /VEHICL/	CGH	
COMMON /VEHICL/	CELAT	
COMMON /VEHICL/ COMMON /VEHICL/ CUMMON /VEHICL/ COMMON /VEHICL/ COMMON /VEHICL/	CĠŔ	
COMMON /VEHICL/	CAD	
COMMON /VEHICL/	C &	
COMPON /VEHICU/	CERMIN	
COMMON ZVEHICL		(2,25)
COMMON /VEHICL/	CONV2	(2,25)
COMMON /VEHICL/	C&LCT C#AW	(20,3) [20]
COMMON /VEHICL/	CRAFT	1201
COMMON /VEHICL/	ENGINE	(2,50)
	EXENCT	129307
COMMON /VEHICL/	FD	(2)
COMMON /VEHICL/	FORDD	
	EROUSH	(20)
COMMON /VEHICL/	FYALS	(25)
COMMON /VEHICL/	IAPG	
COMMON /VEHICL/	18	(20)
COMMON /VEHICL/	18	1201
REAL	IGIESL	κ.

PAGE A-60

R-2058, VOLUME I Appendix A - listing of frogram NRMM

COMPON	/VEHICL/	IDIESL	
CUMMON	/VEHICL/	IENGIN	
	/VEHICL/	16	1201
COMPON		LONST	(20)
			1201
	/VEHICL/	IGGNV1.	
	/VEHICL/	ICONV2	
COMPON	/VEHICL/	I₽CWER	
COMNON	/VEHICL/	đĩ	(20)
COMPON	/VEHICL/	ITCASE	
COMMON		ITRAN	
COMMON			
		ITVAR	
	/VEHICL/	LOCKUP	
	/VEHICL/	₽AX I PR	
COMMON	/VEHICL/	PAXL	·
COMMON	/VEHICL/	MANBLY	
CONVON	/VEHICL/	NEOGIE	(20)
COMMON		ACHAIN	(20)
REAL	r v militæstr		1 60 1
	110000 CI 2	NGYL	
	/VEHICL/	NEYL	
KEAL		NENG	
	/VEHICL/	NENG	
COMMON	/VEHICL/	FRNET	
COMPON	/VEHICL/	AFL	(20)
	/VEHICL/	NGR	
	/VEHICL/	NHVALS	
	/VEHICL/		1041
		N FAD	(20)
	/VEHICL/	NSVALS	
	/VEHICL/	NVEH	(20)
COMMON	/VEHICL/	Nate	(20)
	/VEHICL/	NWR	
CEMPON	/VEHICL/	PBF	
COMPON	/VEHICL/	FBHT	
COMMON	/VEHICL/	₽₩А	
	/VEHICL/	FEWER	(2,201)
	/VEHICL/	CNAX	
	/VEHICL/	FDIAM	(20)
	/VEHICL/		
	-	FEVM	(20)
	/VEHICL/	Rama	(20)
	/VEHICL/	RNS	(20)
	/VEHICL/	FW	(20)
	/VEHICL/	SAE	
COMPON	/VEHICL/	SAI	
COMPON	/VEHICL/	SECTH	(20)
	/VEHICL/	SECTW	(20)
	/VEHICL/		(25)
	/VEHICL/	TGASE	(2)
	/VEHICL/	TE	167
	/VEHICL/	TRLY	1 241
			(20)
	/VEHICL/	TASI	120,31
	/VEHICL/	TRIND	
	/VEHICL/	TRAKLN	1201
COMMON	/VEHICL/	TRAKWD	1201

PAGE A-61

### R-2058, VOLUME I Appendix A - Listing of Frogram NRMM

COMMON /VEHICL/	TRANS	(2,20)
COMMON /VEHICL/	VAA	
COMMON /VEHICL/	NBA	
COMMON /VEHICL/	VÆS	
COMMON /VEHICL/	VOCB	(25)
COMPON /VEHICL/	VOOBS	1251
COMMON /VEHICL/	VALDE	(20,3)
COMMON /VEHICL/	NSS	
COMMON /VEHICL/	NSSAXP	
COMMON /VEHICL/	hC.	
COMMON /VEHICL/	NDAX P	
COMMON /VEHICL/	NOPTH	(20)
COMMON /VEHICL/	WOTH	
COMMON /VEHICL/	MGHT	(20)
COMMON /VEHICL/	WRAT	(20)
COMMON /VEHICL/	ARFORD	
COMMON /VEHICL/	AT.	(20)
COMMON /VEHICL/	WE	(20)
COMMON /VEHICL/	WWAXP	(=0)
COMPON /VEHICL/	X8RCCF	
COMMON /VEHICL/	in last	
COMMON /VEHICL/	LECDIF	
COMMON /VEHICL/	SHF	
COMMON /PREP/	Δ.	(3,4)
COMPON /PREP/	ATF	(20)
COMMON /PREP/	BTF	(20)
COMMON /PREP/	CHARLN	(20,3)
COMPON /PREP/	CRECEG	(3)
COMPON /PREP/	100000	(3)
COMPON /PREP/	CAFCG	(20,3)
COMMON /PREP/	CREFG	(20,3)
COMMON /PREP/	CIF	(20)
COMMON /PREP/	CRAT	(20,3)
COMMON /PREP/	CCA	120,31
COMMON ZPREPZ	GOW	120131
COMPON /PREP/	GOWB	
COMPON /PREP/	GCWNB	
COMMON /PREP/	GGWNP	
COMMON /PREP/	GOWP	
COMPON /PREP/	Hat	
COMMON /PREP/	NEF	138 1
COMMON /PREP/	NVEHC	1000
COMMON /PREP/	FWTE	
COMPON /PREP/	F	(3)
COMPON /PREP/	FNX	(20)
COMMON /PREP/	FR	• • • • • • •
COMMON /PREP/	TRACTE	(20,5)
COMPON /PREP/	TRAPSI	(3)
COMPON /PREP/	VEICE	(20,3)
COMMON /PREP/	VEIFG	(20,3)
COMMON /PREP/	VCIMUK	(20)
COMPON /PREP/	VGV	(20,5)
		1

PAGE A-62

### R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

CGMNON	/PREP/	VT	(20,3)
COMPON		VTIRE	(3)
COMMON	•	NTMAX	
	· •		
COMMON	-	X	(3)
COMPON	/PREP/	X BR	
COMMON	/OBS/	AVALS	(14)
COMMON	/08S/		(7. 14, 5)
COMMON	10857	FGG	17,14,52
COMPON		FOOMAK	
			(7,14,5)
COMNON		HOVALS	(7)
COMMON		NANG	
COMPON		NEHGT	
COMINON		NACTH	
COMMON		WVALS	(5)
COMMON		ADT	(9)
		•	171
	/DERIVE/	NEGCBF	
	/DERIVE/	CAREA	
COMMON	/DERIVE/	DIEW B	
COMNON	/DERIVE/	COWP	
	/DERIVE/	CEWPB	(20)
	/DERIVE/		
		FA	(20,3)
COMNON		FAT	(9)
COMMON	• • • • • • • •	FAT1	191
COMMON	/DERIVE/	FB	(20,3)
COMMON	/DERIVE/	FG	(28,3)
COMMON	• • - • - •	FNT	(9)
COMMON		FEN	
COMMON			
		FONMAX	1
COMMON		FØRMX	(3)
CONFON		IFLOAT	
COMMON	/DERIVE/	INAX	(3)
COMPON	/DERIVE/	ISAFE	(3)
COMMON	/DERIVE/	. <b>J</b>	· ·
	/DERIVE/	PAX I	
	/DERIVE/	BENX	(3)
	/DERIVE/	NAVERO	
	/DERIVE/	CBSE	
	/DERIVE/	.FAV	[9]
COMPON	/DERIVE/	ATOWE	
COMMON	/DERIVE/	REOWNB	
COMMON		FEOWNP	
COMMON	/DERIVE/	FEOWP	
COMMON	/DERIVE/	FTOWPB	1201
COMPON	/DERIVE/	FEONT	(20)
		SJRACT	(20,3,3)
COMMON		SRFO	(9)
COMPON		SREV	{9}
COMPON	/DERIVE/	SIR	(3,9)
COMMON	/DERIVE/	TBF	(3)
COMMON	/DERIVE/	TBEN	(9)
COMPON		TRES IS	(3,9)
COMMON	• • • • • •		•
COMPON	FUERLYE/	N A	(3,9)

# R-2058, VOLUME I Appendix A - Listing of Frogram NRMM

COMMON	/DERIVE/	<b>NGGOVA</b>	(3,9)
	/DERIVE/	VAVOID	(3,9)
	/DERIVE/		(3,9)
	/DERIVE/		(9)
	/DERIVE/	VELV	(3)
	/DERIVE/	WENAX	131
	/DERIVE/	VIS	(20,3,3)
	/DERIVE/	NEIGOVO	(3,9)
	/DERIVE/	VNAX	
COMMON	/DERIVE/	VNAX 1	(3)
COMMON	/DERIVE/	VMAX 2	(3,9)
COMMON	/DERIVE/	NELA	-
COMMON	/DERIVE/	VEVER	(3,9)
COMMON	/DERIVE/	VRID	•
COMPON	/DERIVE/	VSEL	
COMMON	/DERIVE/	VSEL1	(3)
COMMON	/DERIVE/	VSEL 2	(3,9)
	/DERIVE/	NSCIL	.13,91
COMMON	/DERIVE/	NET	(3,9)
	/DERIVE/	VXT	(3,9)
COMMON	/DERIVE/	ADGONG	
COMMON	/DERIVE/	WRAT IO	
COMMON	/TERRAN/	AA	
COMMON	/TERRAN/	AGTRMS	
COMMON	/TERRAN/	AREA	
COMMON	/TERRAN/	AREAC	
COMMON		CÆ	
COMMON		CIST	
COMMON		EANG	
COMMON		ECF	•
	/TERRAN/	EF EA	
	/TERRAN/	FMU	(3)
COMMON		GRADE	
	/TERR AN/	IEBS	
	/TERRAN/	IGST	
	/TERRAN/	IROAD	
	/TERRAN/	15	191
	/TERRAN/	IST	
	/TERRAN/	13UT	•
COMMON		NB	
COMMON	/TERRAN/	NTU	
COMPON	/TERRAN/	CAW	
COMMON	/TERRAN/	CEAA	
COMMON	/TERRAN/ /TERRAN/	CSH	
COMMON		CBL CBS	
COMMON		CBM	
	/TERRAN/	CBMINW	
	/TERRAN/	CDIA	
	/TERR AN/	NVAS HO	
	/TERRAN/	RADC	
COMMON	/TERRAN/	FCI	
9011-01 <b>1</b>	2 1 LIVIN PULL	<b>₩</b> " <b>/%#</b> ' <b>*</b>	

PAGE A-64

R-2058, VGLUME I APPENDIX A - LISTING OF FROGRAM NRMM

	/TERR AN/	21 39	(4)
	/TERRAN/		
			(11)
	/TERRAN/		
	/TERRAN/		(12)
	/TERR AN /	S	(9)
COMMON	/TERRAN/	SD	(9)
COMPON	/TERRAN/	S BL	(,9)
	/TERRAN/		•••
	/TERRAN/		
	/TERRAN/		(3)
	/TERRAN/		(4,11)
	TERRAN/		(4,11)
		· · · · ·	
	/TERRAN/	WB	
CUMPUN	/SCEN/	CEHES	
COMMON	/SCEN/	.V.M.AL.K	
COMMON	/SCEN/	ECLNAX	
COMMON	/SCEN/	<b>CANNA</b>	
COMMON	/SCEN/	IGVER	
	/SCEN/	ISEASN	
	ISCEN/	TSURF	
	/SCEN/	USNOW	
	/SCEN/	K∎I1	
	/SCEN/	K通道2	
	/SCEN/	KEI3	
	/SCEN/	K:344	
	/SCEN/	KJ 15	
COMINON	/SCEN/	K <b>J</b> 46	
	/SCEN/	K#17	
	/SCEN/	K 118	
	/SCEN/	KJ 19	
	/SCEN/	KJ110	
	/SCEN/	KÆII 1	
	/SCEN/	K#112	
	/SCEN/	KI113	
	/SCEN/	K#114	
	/SCEN/	K£115	
	/SCEN/	K-1-116	
	/SCEN/	K.3117	
	/SCEN/	KNAP	
COMMON	/SCEN/	KSCEN	
COMNON	/SCEN/	KTPP	
COMMON	/SCEN/	KVEH	
	/SCEN/	KAV1	
COMMON	/SCEN/	KEV2	
COMMON	/SCEN/	KJV3	
COMMON	/SCEN/	KIV4	
COMPON	/SCEN/	KJEV 5	
CUMMON	/SCEN/	K.3V6	
COMMON	/SCEN/	KJV7	
COMMON	/SCEN/	KIV8	
CUMPUN	/SCEN/		
		Kaiv9	
COMNON	/SCEN/	K 11 1 0	

# R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

•

COMNON	/SCEN/	KāV	11					
	SCEN/		12					
	/SCEN/							
	/SCEN/	KJV						
	/SCEN/	KJV						
	/SCEN/	KAV						
		•						
	SCEN/							
	/SCEN/	K IV						
	/SCEN/	K <b>∗J</b> V						
	/SCEN/	* <b>J</b> V						
	/SCEN/	KAN						
	/SCEN/	LAC						
INTEGE	R	CET	AIL					
COMMON	/SCEN/	CET	AIL					
COMMON	/SCEN/	MAP	•					
COMMON	/SCEN/	* AP	G		•			
COMMON	/SCEN/	#ON	TH					
	/SCEN/	NGP						
	/SCEN/							
	/SCEN/	NUR		•				
	/SCEN/	NIU						
	/SCEN/	FHI						
	/SCEN/	REA		· .				
	/SCEN/	FOF				·		
INTEGE		-						
		SEA						
	/SCEN/	S 8A						
	/SCEN/	SET						
COMMON	,	VOR						
COMMON		V⊯S						
COMMON		VEI						
COMPON		ZŚNI	DW					
2. ALGORI								
CALL I	V.1 (							
+ ADO	, ADT	, AREAO	,CL	, EWDT H	, IOBS	, IOST	, IS	
+ ,NEVERO	• NI	, CAW	,OBAA	,CBH	,08L	😼 OBS	, OBS E	
+ JODIA	, PAV	PWTE	ý S	,50	TDEN	,WA	. NDT H	
+ ,WI )								
DTAGNO	STICOUT	PUT LIST	r					
NAMELL	ST /XIVI	LZ .						
+ ADO			J CL	. EWDTH	. IOBS	. IOST	•1S	
+ ,NEVERO	• NI	. CAW	OBAA	.08H	OBL	• UBS		
+ ,ODIA						WA		
+ ,WI		•					,	
	STIC DUT	PUT	·					
			ITELLUN1,	XTVIL				
CALL								
+ CL		- CRAFE	- EGROD	GRADE	TELDAT	. TORS	. 1ST	
- CC -	IDCI	- NOCEMO	_NOPE	NUP	JUTCOAT	* 20 EN	AT21	
+ ,ITUT + ,VSS	- WD	LODIM	JUTE	,∦INN A ,∐A Q ∐ ,		JUNEN WDEARA	₹VJE2 1	
CCV9 T	170 CTTC CLAT	すみひとも強いのいて、 ものです		<b>****</b> **	WALLU	WKTUKU	•	
		PUT LOSI	r					
	ST /XIV2			~~	• <b>P</b> 1 0 1 -			
+ CL	, UAKEA	, LKAFI	••*UKOD*	, GRAUE	, IFLUAT	1082	,IST	

C

c

С

С

R-2058, VOLUME I PAGE A-67 APPENDIX A - LISTING OF PROGRAM NRMM 🖢 NW R •NWR •PWFE •SRFV •WRAT •WRATIO •WRFORD VSEL + ,ITUT ,JPSI , NGGCHD , NOPP + VSS ,WDPTH ,WDTH , WD С DIAGNOSTIC OUTPUT IF(KIV2 .EQ. 1) WRITE(LUN1, XIV2) CALL IV3( ,CGHES ,CPFFG ,DLAW , GAMMA + CHARLN,CI DOWPS , DRAT ,IP , IST + ,GCA ,IB , ID JPSI _LUN1 , NAMBLY + ,NPAD ,NSLIP ,NVEF ,NWHL ,RCI ,RTGWPB ,RTOWT ,SECTM + ,TANPHI ,TRAKLN ,TRAKWD ,VCIFG ,VCHMUK ,WGHT ,WRATIO ,ZSNGW ) С DIAGNOSTIC OUTPUT LAST NAMELIST /XIV3/ , CCHES , CPFFG , DIAW + CHARLN ,CI , DOWPB , DRAT , GAMNA , IB , EST + ,GCA ,ID ,IP , JPSI , LUNI , NAMBLY + NPAD ,NSLIP , NVEH , NWHL ,RCH ,RTOWPB ,RTOWT ,SECTW + TANPHI ,TRAKLN ,TRAKWD ,VCIFG ,VCIMUK ,WGHT ,WRATID ,ZSNOW С DIAGNOSTIC OUTPUT IF(KIV3 .EQ. 1) WR ITE(LUN1,XIV 3) CALL IV41 + DOWB , DOWP , COWF.B , GCW , GCWB , GCWP , IB , IP + , NAMBLY , RTOWB , RTOWAB , RTOWP , RTOWP , RTOWP , RTOWT , WGHT ) С DIAGNOSTIC OUTPUT LEST NAMELIST /XIV4/ + DOWB ,DOWP ,COMPE ,GCW ,GCWB ,GCWP ,IB ,IP + ,NAMBLY ,RTOWB ,RTCWNB ,RTCWNP ,RTOWP ,RTOWPB ,RTOWT ,WGHE , IP DIAGNOSTIC OUTPUT С IF(KIV4 .EQ. 1) WRTHE(LUN1,XIV4) CALL IV50 , BT.F + ATF , AVGC , CPFCCG , CPFCFG , CTF ,DAREA · "CD + ,DOWP ,EANG ,ECF + ,IFLOAT ,IST ,ITUT FB FC FORMX GCWR LOCDIF NAMBLY NFL NGR RADC RTOWP STRACT TFOR • FA + DOWP + ,IFLOAT ,IST ,ITUT ,JPSI + ,NTRAV ,NVEH , NVEHC ,NWHL + ,THETA ,TRACTF ,VFMAX ,VG , NH HL .VGV ,WGHT ,WRATIO ,LUNE ) С DIAGNOSTIC OUTPUT LIST NAMELIST /XIV5/ ,AVGC ,BTF ,CD ,EANG ,ECF ,FA + ATE CPFCCG CPFCFG CTF ,DAR EA ,FB ,FC ,FORMX ,LOCDIF ,NAMBLY ,NFL , GCWR + ,DOWP + ,IFLOAT ,IST + ,IFLOAT ,IST ,ITUT ,JPSI ,LOCDIF ,NAMBLY ,NFL ,NGR + ,NTRAV ,NVEH , NVEHG ,NWHL ,RAGC ,RTOWP ,STRACT ,TFDR + ,THETA ,TRACTF ,VEMAN .VG ,VGV ,WGHT ,WRATIO С DIAGNOSTIC OUTPUT IF(KIV5 .EQ. 1) WRITE(LUN1,XIV5) CALL IV61 + FAT ,NI , FMT ,FAT1 .PBHT .SD , WDTF 1 , TDEN + .SDL С DIAGNOSTIC OUTPUT LIST NAMELIST /XIV6/ + FAT ,FAT1 , SDL ,TDEN + FMT • NI , PBHT SE. + ,WDTH С DIAGNOSTIC OUT.PUT IFIKIV6 .EQ. 1) WR ITEGLUN1, XIV6) CALL IV7( ,IMPACT ,MAXI ,NI "PBF ) FMT , GCW

### R-2058, VOLUME I Appendix A - Listing of Procram NRAM

						÷ .			
					_		•		
С			NOSTLC OL		T				
		NAME	LIST /XIV	17/					
	+	FMT	,GCW	, IMPAGT	,MAXI	JNI.	,PBF		
С			NOSTIC OL						
		IFLK	IV7 .EQ.	1) WRAT	ELUN1,X	IV7)			
		CALL	IV84						
	+	FAT	,FAT1	, GCW	GCWNP	. GCWP	.MAXI	•NTRAV	RTOWNP
	+	-RTOWP	, STR	. THETA	TRES IS	WRATIO	2	•	• • • • • • • • • • • • • • • • • • • •
С			NOSTIC OL				•		
Ť			LIST /XIV		•				
	+		,FAT1		GOWND	. CCH P	. MAYT	NTRAV	ATO MND
			,STR					JULDAY	Burn rentert.
C	•		NOSTIC OL			A NOWE TO			
C									
		154 0	IV8 .EQ.	TI NKUTE	LUNIAL	V O J			
		CALL	1791						
	+	FA	IV91 ,FB	++L	# FURMA	, MAX 1	, NGK		•
-	+	₽NI	#NIKAV	, INESAS	,VEMAX	,VG	"A 2011	3	
C			NOSTIC OU				•		
		NAME	LIST /XIV	19/					
	+	FA	, FB	,FC	,FORMX	, MAXI	• N GR	, NI	, NTR AV
	+	TRES I	LIST /XIV ,FB S,VFMAX NOSTIC OU	•VG	,VSGIL				
С		DIAG	NOSTIC OU	TRPUT					
		IF(K)	IV9 .EQ.	1) WRAIE	(LUNI,XI	V9} ·			
		CALL	IV10(		•				
	+	ACTRM	S,LAC	, MAX ARR	RMS	,VRID	,VRIDE	<b>a</b> 1	· · · ·
С		DIAG	NOSTIC OU	TPUT LIS	ľ				
		NAME	LIST /XIV	18/					
	+	ACTRM	S ,LAC	- FAX DER	. RM S	.VRIDE	•VR ID		·
C			NOSTIC OU		•	• • • • • • • •			
			IVIØ EQ.		ELUN1.X	11101			
		CALL							
	· •		, GCW	. CCWB	.CCHNB		NTRAV		
		RTOWE	RTOWNB	TBE	THETA	LID AT TO	-YBP		
C	•	DTAC	VOSTIC OU	TOILT SITE	<b></b>	Annerg	AVDU +		
U			LIST /XIV		• • •	•			1
		nous	, GCW	0000 111	CCHNR	NOCORE		8 TOUR	STOWND
			, THETA	I GLAC	JUCHND	+ NUGUEF	JNIKAV	+KIUND	INI UMNO
с	•	TAC	A LET 1	JWKA PEU	PRDR				
L			NOSTIC OU						
			EV11 .EQ.	T1 Mikeli	CILUNI#X				
	_		IV12(						
•	+			, GCW		.SFIYPC	TBE J		
C			NOSTIC OU						
			IST /XIV						
_	<b>+</b>		, DCL MAX		, NTRAV	,SFTYPC	∎TBF		
С			NOSTIC OU		· ·	· .			·
			V12 .EQ.	1) WRATE	E(LUN1,X)	[V]:2]			
			IV131						
	+		, EYEHGT			"RD	REACT	.VELV	VISMNV )
С		DIAGN	NOSTIC OU	TPUT LIST	•				
		NAMEL	IST XXIV	13/					
· · ·	+	BFMX	, EY EHGT	, GCW	, NT PAV	,RD	REACT	, VELV	<b>VISNNV</b>
C			IDSTIC OU		•			_	

24 I

PAGE A-68

		VOLUME							PAGE A-69
APPE	NDT	X A - LI	STING UP	PRUGMAR					
			13 .EQ.						
		CALL I JPSI	• NI		• NV EHC	, V EL V	, VR ID		
c		,VSOIL DIAGNO	STIC OUT	PUT LIST					
		JPSI		4/ , NTRAV	NV EHC	.VELV	,VRID	,VSOIL	,VTIRE
C		VT DIAGNO	ISTIC OUT						
			V14 .EQ.	i i iri	TELLUN1,	,XIV14)			
		CALL I ADT		, NTRAV	.NV EHC	PAV	,VAVOID	<b>,</b> ∀BQ	₽VTT ₽
С		DIAGNO NAMELI							
с	+	ADT	,NI	, NTRAV	, NV EHC	,PAV	.VAV01D	<b>, VB</b> O	,VTI
C		IF(KIV	15 .EQ.	11 WRITE					
		CALL IV AVAL S NEVERO	161	ECH	COMMAN	500	TOOMAY		
	*	AVAL S	, LLEAK	J NHDTH	.08AA	•08H	• OBMINW	.WVALS	PINAIN C
С		NAMEL J	ISTAL UUN	1901 Landi 67					
	+	AVAL S	.CLEAR	, FOM	,FOMMAX	, FOO	, FOOMAX	HOV ALS	, NANG
С	+		,NOHGT Stic out		,0844	• CBH	, UBMINW	WVALS	
C			/16 .EQ.		E(LUN1,X)	[¥16↓			
	÷	HVALS	, NEVERO	, NHV ALS	,NSVALS	,OBH	OBSE		
с		SVALS				<b>, VOO</b> 85	,WA )		
Ū			IST /XIVI						
		HVAL S				₽08Ħ	. OBSE	,SVALS	,TL
C		DIAGNO	ISTIC OUT	PUT					
		CALL I	/17 .E0.	1) MK-111	ELUNI,X	141/4			
	+	FA	,FB	, FC	FON			, GCW	JPS I
	÷	,MAXI	, NEVERO		, NI	-	, NV EHC	OBSE	,SRFW
	+	TL	, TRESIS	,VA ,VTIFE	,VBC ≠VXT	,VELV ,WA )	,V FMAX	₽VG	•VOL A
C		, VR ID DIAGNO	JSTIC OUT	-	-	9 M M Y			
			IST /XIVI			<b></b>			
		FA	+FB	FC	#FOM		, FORMX , NV EHC	,GCii ,OBSE	JPS I SRFV
		,MAXI ,TL	, NEVERO	-	,NI ,VBC	, VELV	, VFNAX	-	, VOL A
		VRID	, VSOIL		,VXT	•W:A			
C		DIAGNO	STLC OUT	<b>RP UT</b>		-			
			/18 .EQ.	11 WF3T6	ELUN1,X	IV184			
	•	CALL BEMX	•FA	, FB	,FC	. FOMMAX	, FORMX	,GCW	LUNI
		NEVERO	-	• NI	NTRAV	. OBSE	RMX	STRACT	-
		TRESIS		,VBO	VEPAX	.VG	, VOVER	+VXT	•#A #

R-2058, VOLUME I Appendix 4 - Listing of Fragram NRMM

С	DIAGNOS	TIC OUTPUT LIS					
•		T /XIV19/					
		FA ,FB	•EC	- FOMMAX	- FORMX	4 GCW	
	+ ,NEVERO ,I	NGR , NI	NTRAV	-OBSE	RMK	, STRACT	JTI
	+ THESIS	VA ,VBC	• NT RAV • VF MAX	VG	VOVER		,WA
С		TIC OUTPUT			110421	***	<b>J</b> H K
•		9 .EQ. 1   WRATI	E ILINT . XI	191			
	CALL IV2						
		FB ,FC	, FORMX	• GCW	,MAXI	- NGR	, NOGOVA
		NTRAV STR		-	, VOVER		1100014
С		TIC OUT PUT LIST		•••		-	
	NAMELIST	T /XIV20/	•				
	+ FA ,ł	FB "FC	+ FORMX	, GCW	, MAXI	, NGR	NOGOVA
	+ ,NCGOVO ,t	NTRAV , STR	,VAVCID	,VG	<b>VOVER</b>	-	-
Ŭ.	DIAGNOST	TIC OUT PUT					
	IF(KIV29	J .EQ. 11 WRATE	E(LUN1, XI	V201			
	CALL IV2	21(					
	+ DOWN ,F	FMT "GCW	.IMAX	.IOVER	, IS AFE	LEVEL	-NI
•	+ ,NOGOVA ,N	NOGOVO , NTRAV	•UP	.VAVOID		VMAX1	
	+ , VOVER , \	VSEL ,VSELL	VSEL2	, VWALK 3	•		-
С		FIC OUTPUT LIST	•				
		/XIV21/					
	+ DOWN ,F	MT ,GCW	"IMAX	, IOV ER	,ISAFE	LEVEL	•NI
	+ ,NOGD VA ,N	CGOVO , NTRAN	-JUP	VAVOID	, V M.AX	.VMAX1	,VMAX2
	+ VOVER V	/SEL ,VSELI	VS EL 2	VWALK			
С		IC OUT PUT					
_		.EQ. 11 WRATE	(LIUNI, XI	V21)			
C	3. TERMINUS		· · ·				
	CONTINUE						
	RETURN						
	END						•
	SUBROUTINE						
			, EL EV		, IEOF	-	<b>,</b> IS
	+ 101 11				,NTUX	,OBH	OBL
		BW RCIC	#RD	<b>#</b> S	•SD	SDL ·	, SEARCH
	+ ,WD )	. ·					
č							
C	NAD LECEND	INPUT ROUTINE		COM AT 1			
С С С С			TANC/I F			•	
C							
č	1. VAR LARI F	DEFINITION					
Ŭ	INTEGER	IS (94				:	
	REAL	RCIC 144					
	REAL	S (9)					
	REAL	SD (9)					
	REAL	SDL (9)					
	INTEGER	SEARCH					
	REAL	FNAA (14)					
	REAL	FNGRAC ( 8)					
	REAL	FNOBH (7)					
	REAL	FNCBL 174					

243

		REAL FNOBS (8)
		REAL FNGBW (5)
		REAL FNRCI (14)
		REAL FNRD (9)
		REAL FNRMS (SH
		REAL FNSPAC (8)
С	з.	TERFAIN FEATURE CLASSES
č		A. SURFACE STRENGTH CLASSES LB/SQBIN
v		CATA FNRCI(1) /200.0/,
	+	FNRCI(2) /250.0/,
	+	FNRCI(3) /190-0/
	+	FNRCI(4) /138.0/,
	+	FNRCI(5) / 86-0/,
		FNRCI(6) / 50-0/;
	+	FNRCI(7) / 36-8/
	+	
	+	FNRCI(8) / 29-3/,
		FNRCI(9) / 28.87,
	ŧ	FNRCI(10) / 14.0/.
	+	FNRCI(11) / 5.0/
С		B. GRADE CLASSES RERCENT
		CATA FNGRAD(1) # 1.0/,
	+	FNGRAD(2) 4 3.5/,
	+	FNGRAD(3) 4 7.5/.
	ŧ.	FNGRAD(4) 415.0/,
	+	FNGRAD(5) 200.01.
	+	FNGRAD(6) 458.8/,
	+	FNGRAD(7) #65.0/.
_	+	FNGRAD(8) /72;0/
C		C. RECOGNITION DISTANCE CLASSES FT
		CATA FNRD(1) /164.0/,
	+	FNRD(2) /121.0/,
	+	FNRD[3) / 59.2/,
	+	FNRD(4) / 34.8/
	<b>•</b> :	FNRD(5) / 24.6/
	+	FNRD(6) / 17-41.
	+	FNRD(7) / 1215/
	+	FNRD(8) / 7.5/,
	+	FNRD(9) / 2.6/
С		D. CBSTACLE SPACING CLASSES FT
		CATA FNOBS(1) /197.0/,
	+	FNOBS(2) /331.0/,
	+	FNOBS(3) / 51.2/,
	+	FNOBS(4) / 31.5/,
	+	FNOBS(5) / 22.3/,
	+	FNOBS(6) / 15.7/,
	+	FNOBS(7) / 10.8/,
	+	FN0BS (8) / 3.9/
С		E. CBSTACLE APPROACH ANGLE CLASSES DEG
		CATA FNAA(1) /129.8/,
	+	FNAA(2) /181-0/,
	ł	FNAA(3) /127.0/
	+	FNAA(4) /183.0//

244

	÷	FNAA15) /133.0/,
	+	FNAA(6) /187.0/,
	*	FNAA(7) /184-0/,
	+	FNAA(8) /196.00.
	+	FNAA(9) /154-0/.
	•	FNAA(10) /206.8/,
	•	FNAA(11) /162.0/,
		FNAA(12) /218-84,
	•	FNAA(13) /112.0/.
	•	FNAA(14) /24830/
<i>.</i> <b>–</b>	Ŧ	
ũ		
		DATA FNOBH(1) / 3-15/-
	+	FNOBH(2) / 7.87/,
	+	FNOBH(3) /11381/,
	+	FNOBH(4) /15.75/,
	+	FN0BH151 /20.87/
	+	FNOBH(6) /28435/,
	+	FNOBH(7) /43-46/
C		G. OBSTACLE WIDTH CLASSES FT
		CATA FNOBW(1) /11.80/,
	+	FNOBW(,2) / 3.48/,
	÷	FNOBW(3) / 2.49/,
	+	FNOBW(4) / 2.51/,
	+	FNOBW(5) / 0.49/
С		H. CBSTACUE LENGTH GLASSES FT
		CATA FNOBL(1) / Ø.66/,
	+	FNOBL(2) / 2.36/,
	+	FNOBL(3) / 5.25/,
	+	FNOBL(4) / 8.53/,
	+	FNOBL(5) / 15.09/,
	+	FNOBL(6) 1256-00/,
	+	FNOBL(7) /492-0/
С		I. SURFACE ROUGHNESS CLASSES IN
•		CATA FNRMS(1) / 3.25/
	÷	FNRMS(2) /3-00/,
	<b>+</b> -	FNRMS(3) /2600/,
	ŧ	FNRMS(4) 23.007.
	+	FNRMS(5) /6.02/,
	+	FNRMS(6) 45.004,
	+	FNRMS(7) /00.00/,
	+	FNRMS(8) /3.00/,
	+	FNRMS19) 18-00/
Ъ.		J. VEGATATION SPACING CLASSES FT
		CATA FNSPACILL \$300.07,
	+	FNSPAC(2) # 65.6/,
	+	FNSPAC(3) ¥ 51-27,
	÷	FNSPAC(4) # 31+5/,
	+	FNSPAC(5) # 22-37,
	+	FNSPAC(6) # 15-7/4
	+	FNSPAC(7) \$ 10-8/.
	+	FNSPAC(8) # 3.9/
C	4 -	READ LEGEND

. REAC LEGEND

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM 422 CONTINUE  $IEOF = \emptyset$ READILUN2,40001 NPAT ,IRCI2 " ERC II , IRCI3 , IST , IOA , IOL + ,IGRACE -10H ,ICW , I STEM1 , ISTEM2 **,105** , IOST , TRMS .ISTEM6 .ISTEM3 ,ISTEM4 .dSTEM5 .ISTEM7 • , AREA + JISTEM8 , IRD 4000 FORMATII4,412,11,12,1511,F18.3) IF(EOF(LUN2) SECJ Ø) GO TO 420 IEOF = 1GO TO 600 420 CONTINUE IF((SEARCH .EQ. 1) JAND. (NTUX .NE. NPAT)) GO TO 400 5. CONVERT FROM CLASSE TO REAL UNITS C CONTINUE 500 A. TERRAIN UNIT NUMBER С NTU=NPAT С E. TERRAIN UNIT TYPE ITUT=1 C C. SOIL TYPE С IST C C. SURFACE STRENGTH LB/SC-IN RCIC(1) = FNRCI(IRCI1) RCIC(2)=FNRCI(IREE2) RCIC(3)=FNRCI(LACI3) C E. GRADE PERCENT GRADE=FNGRAD(IGRADE) F. SURFACE ROUGHNESS С ACTRMS=FNRMS(IRMS) G. VISIBILATY С FT RD=FNRD(IRD) H. CEPTH OF STANCING WATER Ç FT WD =0.0 C I. ELEVATION FT ELEV=0.0 C K. CBSTACLE SPACING FT OBS=FNOBS(IGS) С L. OBSTACLE AVOIDABILITY FOTENTIAL С TOST M. CBSTACLE APPROACH ANGLE DEGREES С AA=FNAA(ICA) C N. OBSTACLE HEIGHT IN CBH=FNOBH(IOH) FT С 0. CBSTACLE WIDTH OBW=FNOBW{ICW} С P. OBSTACLE LENGTH FT CBL=FNOBL(IQL) С R. NUMBER OF STEM CHASSES NI = 8С S. MEAN SPACING OF STEPS S(1)=FNSPAC(ISTEN1)

246

> S(2)=FNSPAC(ISTEN2) S(3)=FNSPAC(ISTEN3) S(4)=FNSPAC(ISTEN4) S(5)=FNSPAC(ISTEN5) S(6)=FNSPAC(ISTEN6) S(7)=FNSPAC(ISTEN7) S(8)=FNSPAC(ISTEN9)

T. MAXIMUN STEN DIANETER

SDL(1)=0.98 SDL(2)=2.36 SDL(3)=3.94 SDL(4)=5.51 SDL(5)=7.09 SDL(6)=8.66 SDL(7)=9.84 SDL(8)=15.00

U. MEAN STEM DIAMETER

V. EARREN VEGATATICN FLAG

LS(I)=0 GO TO 540

ACTRMS , AREA

CO 540 I = 1, NI1

CONTINUE IS(I)=1

SD (1)=Ø.49 SD (2)=1.67 SD (3)=3.15 SD (4)=4.73 SD (5)=6.30 SD (6)=7.88 SD (7)=9.25 SD (8)=12.42

NII=NI-1

CONT INUE IS(NI)=Ø

,ITUT

, OBS

, RDA4

6. EXIT ROUTINE

SUBROUTINE MAP74

+ (AA

, I ST

+ ,RDA3

+ ,08L

÷

CONTINUE RETURN END IN

IN

IFC S(I) .EC. S(I+1) ) GO TO 530

С

C

~	
1.	

-

,

530

54Ø

600

2

С

C C C C C

С

C C C 1. GLOSSARY AA DEGREE COSTACLE - APPROACH ANGLE ACTRMS IN RMS ROUGHMESS

,LUN2 🖉

, CBW

MAP LEGEND INPUT ROUTINE CANCTA FORMATE

• S

247

, EL EV

,RCIC

,SD

, MONTH

, GRADE

,NI

, RD

SDL

, IEOF

,NTU

, RDA

SEARCH WD J

, IOST

,NTUX

RDAL

, IS

• OBH

,RDA2

AREA SO. MI. Ĵ, AR EA С **ELEVATION** ELEV FT Ĵ, GRACE PERCENT SLOPE Jr IOB S BARREN OBSTACLE FLAG Ħ С IOST 1-RANDCM EBSTACLE - SPACING TYPE £ 2-LINEAR С IS(I) BARREN VEGETATION FLAGS CLASS I Ħ С ITUT Ħ TERPAIN UNIT TYPE C # END OF INFORMATION FLAG **IEOF** С KMAP Ħ CALL LIST DUMP FLAG C Ħ ABGICAL UNIT FLAG NUMBER 2, TERRAIN LUN2 C MONTH ( 1 THROUGH 12 ) MONTH # C NUMBER OF VEGETATION CLASSES # NI С Ħ NTU TERRAIN UNIT NUMBER С OBH INCH **OBSTACLE - REIGHT** C **BBSTACLE LENGTH** OBL FEET С OBS FEET **BBSTACLE - SPACING** С **OBSTACLE - WIDTH** OBW. INCH C SGIL STRENGTH - CRY RCIC(1) RCT С RCIC(2) RCI SGIL STRENGTH - AVERAGE С RCIC(3) SOIL STRENGTH - WET RCI С RCIC(4) SOIL STRENGTH - WET, WET RCI C WISIBILITY FEET R D C STEP SPACING OF STENS OF DIAMETER CLASS SIII FEET Ç SD(I) LN MEAN STEM DIAMETER. CLASS I С NAXIMUM STEM DIAMETER, CLASS I SDL(I) IN С WD FEET DEPTH OF STANDING NATER C 2. VARIABLE DECLARATICA INTEGER IS ( 5+ RCIC REAL (4) REAL RDA (12) REAL S 191 SD 191 REAL 191 REAL SDL SEARCH INT EGER DATA (25) INTEGER C 4. ALGCRETHM 4000 CONTINUE  $IEOF = \emptyset$ READ(LUN2,400)NTN, IST, DATA, AREA FORMAT(15,12,20×1214,/,5×,1214,F8.4) 486 LF (EOF (LUN2) . EQ. Ø) GO TO 4020 IEOF = 1GO TO 5000 RCIC(1) = DATA(1) 4020 RCIC(2) = DATA(2) RCIC(3) = DATA(3) RCIC(4) = DAT#(4) GR ADE = DATALS) ÅÅ – = DATIAL 61 OBH = CATALTI OBW = DATAISI

= OBh / 12.

= DATAX91

= DATA(10)

OBW

OBL

OBS

4005

4030

4040

IOST = DATA(11)ACTRMS = DATA(12) DO 4005 I=1,8 SII = DATA(1+12) CONTINUE RDA1 = DATM(21)RDA2 = DATAL221 RDA3 = DATA(23) = DATAL241 RD A4 CONT INUE IF((SEARCH .EQ. 1) "AND. (NTUX .NE. NTU)) GO TO 4000 RDA(1) = RDA1  $\hat{R}DA(2) = RDA1$ RDA(3) = RDA1RDA(4) = RDA2RDA(5) = RDA2RDA(6) = RDA2RDA(7) = RDA3 RDA(8) = RDA3 RDA(9) = RDA3RDA(10) = RDA4 kDA(11) = RDA4RDA(12) = RDA4ACTRMS = ACTRMS/10,0 = Ø.Ø ELEV ITUT = 1 = 8 NI NIA = NI-100 4040 I=1, NI1 IFISILI .EQ. SILALIJ GC TO 4030  $IS(I) = \emptyset$ GO TO 4048 CONT INUE IS(I) = 1CONTINUE IS(NL) = Ø RD = RDALMONT+* SD(1) = 0.49 SD( 2) = 1.67 SD(3) = 3.15 SD(4) = 4.73 SD(5) = 6.30 = 7.88 SD[ 6) = 9.25 SD(7) SD( 8) = 12.42 SDL(1) = 0.98SDL(2) = 2.36 SOL(3) = 3.94SDL (4) = 5.51

PAGE A-76

• VOLUME I IX A - LIST	ING CF FRG	GRAN NRMM				PAG
SDL (5)	= 7.09					
SDL(6)						
SDL(7)						
SDL (8)						
WD	••					
CONTINUE Return						
END						
SUBROUTINE						
(ACTRMS ,C	URVV , CIS	F ,EANG	, EL EV	, FMU	, GRADE	
,IEUF ,I ,NVASHO ,M	ROAD , IST		JURB	, LUN2	+NTU	, NTU
, SEARCH , S	UNIH PRAU	L PRCURV	<b>y</b> KU	,RDA	, RDFOG	•RCI
younten yo						
			*****			
MAP LEGEND	INPUT REUT	INE (ROAC	MAP AMC74	+J		
		•				
1. GLUSSARY		·.				
ACTRMS		ANS ROUGH				
CUR VV DIST	NPH NILES	AASHG CUR			11	
EANG	DEGREE	ROAC SEGNI				
ELEV	FEET	ELEVATION				
FMU(1)	#	CCEFFICIE			DRY	
FMU121	#	CCEFFICIE				
FNU(31	#	COEFFICIE	NT OF FR.	ICT ION -	ICE	
GRACE						
IRCAD ITUT	# #	RUAC TYPE JERRAIN U	TT TYPE			
IST	# #	SOLL TYPE	ALE IGPL			
IURE	#	NRBAN CODI	E			
NTU	#	TERPAIN U		ER		
NTUX	#	SPECIFIC			BER	
MONTH	#	NONTH (1 1				
RADC	FEET	RADIUS OF				
RD	FEET	MAS IBLLIT			ONTH	
R DA(12) RDF CG	FEET FEET	WEATHER R				
RCIC(1)	RCI	SGIL STRE			NUE	
RCIC(2)	RCI	SOIL STRE				
RCIC(3)	RCI	SOIL STRE				
KCIC(4)	RCI	SOIL STRE				
SUR FF	#	RGAD SURF.	ACE ROUG	HNESS FL	AG	
2. VAR IABLE	DECLARATI	C N				
REAL		4 <b>b</b>				
REAL	RCURV					
		1.21				
REAL						
REAL REAL	FMU (	34				
REAL	FMU ( VCURV (					

K-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

INT EGER SEARCH С C 3. ALGCRITHM С A. AASHO TABLE RADIN'S OF CURVATURE FT RCURV(1) =5730. RCURV/21 = 1910. RCURV(3) =1146. RCURV (4) = 819-RCURV(5) = 637. RCURVI6) = 458. RCURV(7) = 327. RCURV(8) = 229. RCURV(9) = 164. RCURV(10) = 115. 82. RCURV(11) =C B. AASHO TABLE SPEEB LIMIT SUPERHIGHWAYS MPH VCURV(1.1) =100. =70. VCURV(1,2) VCURV(1,3) =60. VCURV(1,4) =54. VCURV(1,5) =48. VCURV(1,6) =41 -=34. VCURV(1,7) =29. VCURV41,81 VCURV(1,9) =25. VCURV(1,10) =19. VCURV(1,11) =13. С C. AASHO TABLE SPEED LIMIT SECONDARY RUADS MPH VCURV(3,1), #70. VCURV(3,2) =60. VCURV(3,3) =58. VCURV(3,4) =50. VCURV(3,5) =43. VCURV(3,6) =36. VCURV[3,7] =31. VCURV(3,8) =26. VCURV(3,9) =23. VCURV(3,12) =19. VCURV(3,11) =13. Ĉ D. AASHO TABLE SPEED LIMIT TRAILS MPH VCURV(4,1) =55. VCURV (4,2) =49. =44. VCURV(4.3) VCURV(4,4) =42. VCURVL4,51 **#39**. =34. VCURV (4,6) VCURV(4,7) =29. VCURV (4,8) =23. VCURV(4,9) =19. VCURV(4,10) =14. VCURV[4,11] =10. E. AASHO TABLE SPEED LIMIT PRIMARY RUADS MPH

C

251

R-2058, VOLUME I PAGE A-79 APPENDIX A - LISTING OF FROGRAM NRMM VCURV(2.1) = VCUPV(1.1) VCURV(2,2) = VCURV(1,2)VCURV[2,3] = VCURV[1,3] $VCURV(2_4) = VCURV(1_4)$ VCURV(2.5) = VCURV(1,5)= VCURV(1,6)VCURV(2.6) VCURV(2,7) = VCURV(1,7) VCURV(2.8) = VCURV(1.8) = VCURV(1,9) VCURV(2,9) VCURV(2,10) = VCURV(1,10)VCURV[2,11] = VCURV[1,11] 6000 CONTINUE  $IEOF = \emptyset$ READ(LUN2,602) NTU, IROAD, IST, LURB, RDATA, DIST 600 FORMAT/15,312,1114,F8.4) IF(EDF(LUN2) .EQ. 0) GO TO 6020 IEOF = 1GO TO 7000 6020 RCIC(1) = REATA(1) RCIC(2) = REATA(2) RCIC(3) = REATA(3) RCICI41 = RCATA(4)GRADE = RCATA(5) RDAI = REATAIL R CA2 = RCATA(7) = REATAL81 RDA3 RDA4 = REATA(9) = REATA(10) ACTRMS = REATA(11) CURVV CONTINUE IFI (SEARCH .EQ. 1) ,AND. (NTUX .NE. NTU)) GO TO 6000 = RDA1 RDA(1) RDA(2) = REA1 RDA(3) = RCA1 RDA(4) = RCA2RDA(5) = RDA2RDA(6) = RCA2RDA(7) = RCA3 RDA(8) = REA3 RDA(9) = RDA3 RDA(10) = RCA4RDA(11) = RCA4RDA(12) = REA4ACTRMS = ACTRMS/10. ELEV = Ø. EANG = 0. FMU(1) = Ø.75 FMU(2) = Ø.35 FMU(3) = Ø.1 ITUT = IRCAC + 1Ø SURFF = 1. IF(ITUT .EQ. 13) SURFF = 2.

PAGE A-80 R-2058, VOLUME I APPENDIX A - LISTING OF FROERAM NRMM NVASHO = 11LF( LTUT .EQ. 114 RCR040 = 1000. IF(ITUT .EQ. 12) RCRCAD = 5002 IF(LTUT .EC. 13) RDROAD = 250. LF(ITUT .EQ. 14) RCROAD = 150. RD = AMIN1(RDA(MONTH), RDFOG, ROROAD) IF(CURVV .GT. VCURV(IRCAD, 1)) GO TO 6060 IF(CURVV .LT, VCURV(IRGAC, NVASHO)) GO TO 6070 DO 6030 NY=2, NVASHO IF(CURWY .UT. VCURV(IROAD,NV)) GO TO 6030 RAES = RCURV(NV) + 1CURVV - VCURVIIRDAD, NV 1)* KRCURV(NV) - RCURV(NV-1))/ EVCURVIIRDAD, NV) - VCURVEIRDAD, NV-1 ) GO TO 7000 CONT I NUE 6030 GO TO 7000 RADC = RCURVII) + (CURVV - VCURV(4ROAD, 1))+ 6060 {RCURV(1) - RCURV(2))/ (VCURV(HROAD, 1) - VCURV(IROAD, 2)) GC TO 7000 RADC = RCURVENVASHE) + (CURVV - VCURV(IROAD, NVASHO) + 6070 (RCURWINVASIO) - RCURV (NV ASHO-1))/ (VCURVEIRDAC, NVASHO) - VCURV(IRDAD, NVASHO-1)) 7000 CONT INUE RETURN END SUBROUTINE TPP - GRADE , EC F . EL EV , GANMA ACTRMS , AREAG ,CI + (AA , OBAA , ISEASN , ISNCH ,IST , ITUN • NI , DAW ٠ .IOBS ,OBL , GBMINW , OBS , CBH ,ODIA ,PHI ,RADC + OBH + .RCL .RCIC , RD **₽**S TANPHE THETA ,WA ZSNGH ) С C ------С TERRAIN PREPROCESSCR C ------С С 1. VARIABLE DECLARATION REAL RCIC 144 1.91 REAL S REAL THETA (3) С 3. ALGCRITHM С A. UNITS CONVERSION IF(ITUT .GE. 11) GC TO 3005  $IOBS = \emptyset$ IF( CBS .GE. 197.0 ) ICBS = 1 IF4 AA .GE. 179. JAND. 44 .LE. 181. ) IOBS = 1 CBL = 12.*OBLCBS = 12.*OBSCBW = 12.+0BW RD = 12.4RD 3005 RADC= 12. *RADC IF(ITUT .GE. 11) GO TO 3015

		CO 3010 I=1, NI
		S(U) = 12.*S(4)
3010		CONTINUE
С	8.	SLOPE ANGLE
3015		THETA(1) = ATAN(BRACE/100.)
		THETA(2) = 0.0
		THETA(3) = -THETA(1)
C	с.	CONE INDEX
		CI = RCIC(ISEASN#
C	D.	RATING CONE INDEX
		RCI = CI
C	E.	ELEVATION CORRECTION FACTOR
		ECF = 104 *ELE¥/1000.
		JF(ITUT .GE. 11) GO TO 3030
C	F.	OBSTACLE APPROACH ANGLE
		IF(10BS . EQ. 1) BC TO 3020
		CBAA = AA + 3.141592657188.
C	G.	CBSTACLE GEGPETFX VARIABLES
		IF (AA .GT. 180.) 60 TO 3017
		IF4 (OBW/2.) .GT. LOEH+ABS(COS(OBAA)/SIN(OBAA)))
+		GO TO 3016
		OBW = 2. #BBH+ ABS(COS(OBAA)/SIN(OBAA))
3016		OBMINW = OBW - 2'. + CBH+ AESI COSIOBAAI/SINIOBAAI)
		$WA = CB_W$
		GC TO 3018
3Ø17		CBMINW = CBW
2.41.0		WA = OBW + 21+OBH+ABS(COSLOBAA)/SIN(OBAA))
3918		AREAO = 3.14199265+08S+08S/4.
		0AW = 2.*(CBL + WA)/3.14159245
		ODIA = (GBL+9BL + WA+WA)++0.5 GC TO 3030
3020		CONTINUE
3020		hA = 0.0
		ODIA = 0.0
		CAW = 2.6
		AREAO = 0.0
3030		CONTINUE
C	H₊	SNOW MACHINE
		IFLITUT .EQ. 21 BC TO 3060
		IFIISNOW .EQ. 01 GO TO 3060
		IST = 4
		TANPHI = SINIRGINCCS(PHI)
C		OBSTACLE ATTENJATION
		IF((OBAA .GT. 3.14159265) .OR. (ITUT .GE. 11)) GD TO 3040
		OBH = CBH-ZSNCW+GAMMA/Ø.8
3040		CONTINUE
C		SURFACE R CUGHNESS ATTENUATION
		IF(ZSNOW .LT. 2.0+ACTRMS) GO TO 3050
		ACTRMS = AGTRMS+( 1.0-(1.0-GAMMA/0.4))
20 5 (4		GO TO 3060
3050		CONTINUE ACTRMS = ACTRMS+{15+(1GAMMA/.41+{ZSNOW/ACTRMS})
		ACINITS - ACIDITATATOTATATOTATATOAMMA/OMITALSINUN/ACIKMSII

PAGE A-81

.

3060 CONTINUE RETURN END SUBROUTINE IV1 + [AD0 , ADT AREAD , CL ", EWDT.H , IOBS , IOST , IS + ,NEVERO ,NI , CAN , OBAA ,OBSE JOBH ,08L +OBS PAV .ODIA , PWTE •S -SD TOEN -WA .WDT H + WI ) С С С EFFECTIVE OBSTACLE SPACING AND SPEED REDUCTION FACTORS DUE С С TO VEGETATION AND/OR CESTACLE AVOIDANCE С C 1. VARIABLE DECLARATION (94 REAL ADT INTEGER STEM INT EGER IS 1694 194 REAL PAV S REAL (94 REAL SD - 194 REAL TDEN 191 С 3. ALGORITHM NEVERO = Ø С A. CBSTACLE SPACEING AND STUMP/BOULDER INTERFERENCE CHECK IF(IOBS .NE. 1) 00 TO 3010 С 1. PATCH BARE GF OBSTACLES NEVERO = 2= 0. ADO GO TO 3070 2. PATCH CONTAINS OBSTACLES С 3010 CONTINUE IF1 LOST .NE. 2) GO TO 3020 С A. OBSTACLE ARE UNAVOIDABLE, UNABLE TO MANEUVER OBSE = C8S = 199. ADO GO TO 3070 С B. OBSTCLE ARE POTENTIALY AVOIDABLE 3020 IF(ODIA .LJ. WIN GO TO 3030 1. OBSTACLE IS WIDER THAN MINIMUM WIDTH С С + BETWEEN RUNNING GEAR ELEMENTS. EWDTH = NOTH+GAW OBSE = AREAO/EWDTH GO TO 3464 С 2. OBSTACLE NARROWER THAN THE NINIMUM WIDTH С + BETWEEN RUNNING GEAR ELEMENTS. 3030 CONTINUE EWOTH = PHTE+GAW OBSE = AREAO/ENDTH IF( CBAA .GE. 3.14159265 ) GO TO 3050 A. CBSTACLE IS CONVEX, (BOULDER/STUMP) C IF(ICL-OBH) .GT. Ø.) GO TO 3040

255

PAGE A-83 R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM С 1. BELLY HANGUP NEVERG = 1ENOTH = WOTHOOAW CASE = AREAO/ EWETH 2. NO BELLY INTERFERENCE C 3040 CENT INUE С B. GBSTACLE IS CONCAVE, (TRENCH/DEPRESSION) 3050 CONTINUE B. AREA DENIED CUE ID AVGIDING OBSTACLES, (ADD) С CONTINUE 3060 ADO = 100.4{CBL+WA+(0BL+WA++WDTH+WDTH+WDTH+3-14159265/4 + + /( OBSE*OBSE*3.14159245/4. ) С C. VEGETATION DENSITY 3070 CONTINUE NIA = NI-1NIB = NI+1CO 3090 I=1,NIA IF( IS( I) .NE. 1) 60 TO 3080  $TDEN(1) = \emptyset$ . GO TC 3098 3080 TDEN(I) = (4.83.141592651*(12/S(I1*#2-1./S(I*1**2) 3090 CONTINUE IF(IS(NI) .NE. 14 GO TC 3100 TDEN(NI) = 0. GO TO 3110 31 00 TDEN(NI) = 4./43.14159265*S(NI)**2) TDEN(NIB) = 0.0С C. AREA DENIED BY VEGETATION, PAV(I) CONT INUE 3110 CO 3160 I=1,NI  $SUMA = \emptyset$ . DO 3130 STEN-I, NI SUMA = SUMA+TDENISTEMI 3130 CONTINUE IF(SUMA .NE. 44) GO TO 3140  $PAV(I) = \ell_{*}$ GO TC 3162 3140 CONTINUE SUMB = 0.DO 3150 STEN=B.NI SUMB = SUMBASD(STEM) TDEN(STEM) 3150 CONTINUE PAV(I) = 100 + 415UMB/SUMA + HDTH)/S(I) + 23160 CONT INUE PAV(NI+1) = 0E. TOTAL AREA CENIED DUE TO OBSTACLES AND VEGETATION С 3210 CONT TNUE CO 3240 I=1,NIB ADT(I)=ADG+PAV4I)=(180.-ADO)/100. 3240 CONT INUE F. IS THERE ANY PENALTY FOR OBSTACLE AVOIDANCE С CO 3250 I=1,NIB

250		NTINUE		PAV(I))		•		
		VERO = 2		ter en				
1260		NTINUE						
		TURN	•					
	END							
	SUBROUTI		-	60000	CD 405	TELOAT	1005	TCT
	+ (CL					, IFLOAT		
	+ JITUT					, WRATIO		
	+ ⊯VSS	, WU	PAUPIA	110 PU	IMAND	JAKAI 10	WKTUKD	•
							•	
	I AND/MAR	SH OPERAT	ING FAC	TORS				
•				•				
	1. VARIA	BLE DECLA	RATICS					
	REAL	SR FV						
	REAL	WDPT	H (29)					
τ.	REAL		(24)					
•	3. ALGOR	ITHM	-				•	
	A. SE	T OPERATI	ONTYPE	· · ·				
		$GOWD = \emptyset$						
		LITUT .EC						
	IF	(IST .EG		TO 3010				
		GO TO 30						
	1.	DRY LAND		I EN				
010		CONTINUE						
		IFLOAT =						
		WRATIO =		,				
		DAREA =						
	2	GO TO 21					•	
Ø2Ø	۲.	MARSH GP CONTINUE	-					
020		IOBS =						
		GRADE =						
		IF4 WD			TO 3040			
				P TO FOR				
				. 8.0)		Ø3 Ø		
				DEEP FO				
			GOWD =					
			EL 🖬 🕯					
		RE	TURN					
				JLLY FLO	ATING			
030			NTINUE					
			LCAT = i	-				
				/SS #SRFV (	2)			
			TURN					
		B. VEHIC		PDING				
040		CONTI						
			T = 1	)PTH(1))	00 TO 5			
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				am 10		

257

R-2058, VULUME I PAGE A-85 APPENDIX A - LISTING OF FROGRAM NRMM GG TC 3490 3050 CONTINUE DO 3080 N=2-NWR IF(WD .GT. WDPTH(N)) GD TO 3070 WRATHE = WRATEN-1146WRAT(N)-WRATEN-111+ + (WD-WDPTH(N-1))/(WDPTH(N)-WDPTH(N-1)) GU TO 3090 3070 CONTINUE 3080 CONTINUE WRATIO = WRAT(NWR)+(WRFORD-WRAT(NWR))+ + (WD-WEPTH(NWR))/(FORES-WEPTH(NWR)) 3090 CONTINUE DAREA = 2.0 + PHTE+WD JF(WD .GT. CL) DAREA= NDTH+ (WD-CL)+2.0+PWTE+CL 21 00 CONTINUE **B. TIRE PRESSURE INDEX** С IF(NOPP .NE. Ø) GO TO 2110 JPSI = 2IF(IST _EQ. 14 JPSI = 1 IF(IST .EC. 3A JPST = 1 IF(IST .EG. 44 JPSI = 1 IF(IST .EG. 64 JPSI = 1 GO TO 3120 2110 CONTINUE JPSI = NOFP3120 CONTINUE RETURN END SUBROUTINE IV3 , DOWPB + (CHARLN , CI , COHES , CPFFG . CLAW , DRAT , GAMMA ,IP ,18 JPSI "LUNI , NAMBLY + ,GCA **, I**D .IST ,RCI + .NPAD ,NSLIP ,NVEF ,RTOWPB ,RTOWT , SEC TH , NW HL + ,TANPHE ,TRAKLN ,TRAKWC ,NCIFG VCIMUK ,WGHT +WRATIO -ZSNOW ) С C -----С PULL AND RESISTANCE CEEFFICIENTS С ------Ċ С 1. VARIABLE DECLARATION REAL B REAL CHARLN (28,3) REAL CI REAL COHES REAL CPFFG (24,3) REAL 0 REAL DIAW (2.9) REAL DOWCO REAL DOWCS REAL DOWPB (20) REAL DOWS REAL OR AT. (20,3) REAL G

	REAL	GAMMA			
	REAL	GC A	(24,3)		
	INT EGER	I st			
	I NT EGER	IB	(20)		
	INTEGER	ID	(24)		
	INTEGER	IP .	(24)		
	INTEGER	IST			
	INTEGER	JPSI			
	INT EGER	KIV3			
	INTEGER	LUN1			
	INT EGER	NA MBL Y			
	INT EGER	NPAD	(20)	•	
	INTEGER	NSLIP			
	INTEGER	NVEH	(24)		
	INT EGER	NWHE	1201		
	REAL	PID			
	REAL	PIT			
	REAL	RCI			
			. ·		
	REAL	RCIO	· · ·		
	REAL	RCIS			
	REAL	RCIX			
	REAL	RT	1.201		
	REAL	RTOWPB		·	
	REAL	RTOWT	(24)		
	REAL	SECTW	(2)	•	
	REAL	TANPHI	•		
	REAL	TOWMAX	1.003		
	REAL	TRAKEN	(20)	•	
	REAL	TRAKWO			
	REAL	VCIFG	(24,3)		
	REAL	VCIMUK	[20]		
	REAL	W			
	REAL	WGHT	(24)		
	REAL	WRATIC			
	REAL	XK			
	REAL	XKDELT	.*		
	REAL	XN		· •	
	REAL	XNVEH			
	REAL	ZSNOW			
3.	DETERMINE				
	IF(IST .E				
	IF IST .E				
	IFLIST .E				
	IF(IST .E				
	IF(JIST .E	Q. 6) GC	) TO 3100		
	STOP 6				
4.		NED SOIL	FULL AND	RES IST, ANCE	CO EFFICIENTS
	CONTINUE				· · · · ·
	DO 3414 I:		-		
	60 I V-01	トエーソア エミグ	T J DC T L		

С

C 31*0*0

> RCIX=RCI-VCIFG(IdUPSI) IF((IP(I) .EC. I& dOR. (IB(I) .EC. I&) GO TO 3132 RTOWPB(I) = 840

R-2058, VOLUME 1 PAGE A-87 APPENDIX A - LISTING OF FROGRAM NRMM DOWPB (I) =  $\mathcal{L}_{\rightarrow}\mathcal{Q}$ CALL FGSTR ( DIAW 1 3 1 ٠ , DRAT ( I, JPSI ) , 18 ( 4 ) 1 1 1 , IP ,NVEH ( 4 ) , NWHL  $(\pm)$ ,RCI ,RTOWT 1 **E** I ,SECTW { **3** } , WGHT ( 1) WRATIO ,LUN1 ) GO TO 3414 3132 CONTINUE IF(NSLIP .NE. Ø) GD TO 3134 CALL FGSPC ( CPFFG ( J , JPSI ) ٠ **,** D ÷ ٠ ,NVEH ,RCIX ) DOWPB(T)=C CALL FGSPR ( CPFFG ( . . JPSI ) , NVEH ( E ) , RCIX ,RTOWPE ( 4 ) . CALL FGSTR ( DIAW (1) ٠ , DRAT (J, JPSI) ( .B h **,** IB , IP (3) , NVEH  $( \mathbf{E} )$ ( 4) , NWHL , RC T ,RTOWT ( 1 ) ( ] ) .SECTW ,WGHT ( 4 4 ,WRATIC ,LUN1 ) GO TO 3414 3134 CONTINUE IF(NVEH(I) . EQ. 14 GO TO 3306 С A. TRACKED SLEPPERY ROUTINE RCIO = 2.1.0 DOWCO = 4.55IF( RCIX .GT. 20.0 ) GO TO 3168 CALL FGSPC 1 CPFFG ( I , JPSI ) ,D , NV EH E I 1 260

RCIX ) DOW PB( IA=D CALL FRSPR 4 CPFFG ( I , JPSI ) (1) ,NVEH , RC IX ,RTGWPE 4 I F 1 CALL FESTR 111 DIAW , DR AT ( I , JPSI ) 111 .IB , IP 1 I J 1 1 1 NV EH , NWHL 111 ,RCI RTONT 1 1 1 SECTW XII WGHT 1 I ,WRATIC ,LUNIN GO TO 3614 3168 CONTINUE IF(IST .NE. 6) GC TO 3224 3174 IF( NSL48 .NE. 1) GG TO 3182 DCWCS = 0.5RCIS = 200.0 GO TO 3252 3182 IFENSLER .NE. 2) GO TO 3190 COWCS = 0.3 RCIS = 150.0 GO TO 3252 3190 IFINSLAR .NE. 3) GC TO 3198 COWCS = 0.3RCLS = 200.0 GO TO 3252 3198 IFINSLAR .NE. 41 GC TO 3206 COWCS = 0.1 RCIS = 200.0GO TO 3252 2206 IF(NSLIP .NE. 5) GO TO 3214 COWCS = 0.1 RCIS . = 300.0 GO TO 3252 3214 IFINSLIP .NE. 6) GC TO 3222 DOWCS = 0.15= 500.0 RCIS GO TO 3252 STOP 7 3222 3224 CONTINUE IF(IST .NE. 1) GC TO 3251 RCIS = 100.0IF(NSLIR .NE. 1) GC TO 3230

261

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM COWCS = 0.45GO TO 3252 IF(NSLIE .NE. 2) GO TO 3234 3230 COWCS = 0.3GC TC 3252 IF(NSLIF .NE. 3) GC TO 3238 3234  $CCWCS = \emptyset_{-2}$ GO TO 3252 IFENSLIP .NE. 4) GC TO 3242 3238 COMCS = 0.1GC TO 3252 IF(NSLIP .NE. 51 GO TO 3246 3242  $COWCS = \emptyset \cdot 1$ GO TO 3252 IF(NSLIE .NE. 6) GG TO 3250 3246  $COWCS = \emptyset.15$ GC TC 3252 3250 STGF CONTINUE 3251 STOF 10 IFI RCIX .GE. RCIS | GO TO 3282 3252 XN=ALOG201 DOWCO/DOWCS )/ALOG101 RCIS/RCID ) XK=DCWS&RCIS++XN DOWS=XK41(1./RCIX) 44XNh IF( NPAB(I) JEC. Ø ) GO TO 3274 COWPB(I)=DCWS CALL FGSPR ( CPFEG 4 I, JPSI 4 ÷ ,NVEH ( I ) ,RC IX ,RTCMPB ( I ) 1 CALL FGSTR ( DIAN ( I ) ,DRAT ( I, JPSI ) , LB 4 1 ) .IP 4 I ) ,NVE 1 1) NWHE 1 1) ,RC-I ÷ ,RTICHT ( I ) 1 1 1 SECTW ,WGHE 4 I ) , WR AT LC ,LUN1) GO TO 3414 5274 CONTINUE CALL FGSPC 4 CPFFG 4 I, JPSI) + **,**D , NV EH (I),RCIX F DOWPB(14=0.5+( D+DCWS )

262

	GO TO 3414
32 82	IF(NPAD(I) .EC. 2) GO TO 3296
	DOW FB1 II = DOWCS
	CALL FGSPR (
+	CPFFG ( I , JPSI )
+	NVEH ( I )
+	, RC IX
+	RTEWPE 4 I h h
·	CALL FESTR (
<b>_</b>	DIAW 4 I b
· •	, DRAT (I, JPSI)
•	,IB (I)
*	,IP (I)
+	NVEH 4 I A
+	NWHL I I
+	, RC I
+	,RTCWT ( I )
+	,SECTW 4 I b
+	WGHT ( I )
+	,WRATIC
+	,LUN1)
	GU TO 3414
296 د	CONTINUE
	CALL FGSPC K
+	CPFFG ( J , JPSI )
+	,D
+	NVEH ( I )
	RCIX
•	$DOWPB(I) = \ell_{\phi} 5 \# (D + DOWS)$
	CALL FGSPF (
	CPFFG ( # , JPSI )
*	
*	
•	RCIX
+	RTOWPB ( I )
	CALL FGSTF &
+	DIAW & J
<b>∳</b> ·	DRAT ( JPSI)
+	, IB ( ) )
<b>*</b>	•IP ( 1 )
+	,NVEH 化通声
+	,NWHL (《语》
+	RCI
+	,RTOWT ( E )
+	SECTH ( A)
· •	,WGHT 🥼 🧉 🕯
+	, WR AT IC
· · · · •	, LUNI I
	GU TO 3414
3306	CONTINUE
C	B. WHEELED SLIPFERY ROUTINE
	XKDELT={ DRATH, JPSI /0.4 1-0.375
	RCI0=18.0

263

DCWCO=0.4IFI RCIX .GT. 20.0 1 GD TO 3324 RCIX=RCIX-2.0 CALL FGSPC ( CPFFG 4 I, JPSI ) ÷ ÷ •D ,NVEH (I) ,RCIX I DOWPB(I)=C CALL FGSPF 4 CPFFG ( I , JPSI ) ٠ ,NVEH ( ) ,RCIX ,RTCWPB(通) ) . CALL EGSTR L ٠ DIAW 1 1 1 .DRAT 4 I JPSI 1 ٠ ,IB  $\mathbf{FI}$ , IP ŧ 111 ŧ , NV EH (I) ÷ .NWFL 111 , RC I ٠ ÷ ,RT CWT 4 1) ,SECTW X I 4 ŧ ,WGHT 11) ŧ ,WRATIE ٠ · "LUN1) GO TO 3414 3324 CONTINUE IF(IST .NE. 6) GC TO 3378 IF (NSL IP .NE. 1) GO TO 3038 DOWCS 🛋 0.35 RCIS ₩ 300-B GO TO 3394 3338 IF(NSLIP .NE. 2) GO TO 3346 DOWCS # Ø. 25+XKDELT ⇒ 150.0 RCIS GC TC 3394 IF(NSLIP .NE. 3) GO TO 3354 BOWCS # Ø.2+XKDELT 3346 4 299.49 RCIS GO TC 3394 3354 IF(NSLIP .NE. 4) GG TO 3362 Ø. 15+XKCELT DOWCS 4 4 150.0 RCIS GO TC 3394 IF (NSLIP .NE. 5) GO TO 3370 3362 DOWCS 🖼 Ø.15+XKCELT 4 150-0 RCIS GG TG 3394 3370 IF(NSLIP .NE. 6) GO TO 3376 DOWCS # 0.15

264

I.

PAGE A-92

R-2058, VOLUME I Appendix A - Listing of Program NRMM

	RCIS = 100.0
3.7.7.4	GU TO 3394
3376	STOP 11
3378	CONTINUE
	RCIS=80.0
	IF(NSLIP .NE. 1) GO TO 3386
	00WCS=0.3
33 G 4	GD TO 3394
3386	IF(NSLIP .NE. 4) GO TO 3392
	DDWCS=0.1+NKDELT
22.02	GO TO 3394
3392	CONTINUE
770/	$DOWCS = \emptyset \cdot i$
3394	CONTINUE
	IFIRCIX .GE. ACISH GO TO 3408
	XN=ALOGIØX DOWCO/DOWCS #/ALOGIØ( RC#S/RCIO )
	DOWPB(I)=XK/( RCIX**XN )
	CALL FIGSPR ( CPFFG 1 JPSI )
+	NVEH ( I )
÷.	RCIX
	RTOWPE ( I )
·	CALL FGSTR L
+	DIAW (I)
+	DRAT ( I , JPSI )
+	,IB (I)
+	IP (I)
+	NVEH I I
+	NWAL I I D
• •	RCI
+	RTCHT A I D
+	SECTW & I B
+	,WGHT I I I
+	, WR AT IC
+	, LUNI )
	GO TO 3414
3408	CONTINUE
	DGWPB(I) = DCWCS
	CALL FGSPR (
+	CPF冊G ( 注 , JPSI ) ,NVEH ( 动 )
*	PNVEH ( ) A D PRCIX
•	RTOWPB ( E )
	CALL FGSTR 4
+	DIAW ( 1)
÷.	, DRAT (, E, JPSI)
+	
+	
+	, NVEH ( 📲 )
+	NWHL C. A D
+	+ RCI
· · · · · · · · · · · · · · · · · · ·	

```
PAGE A-93
R-2058, VOLUME I
APPENDIX A - LISTING OF FROGRAM NRMM
                    ,RTOWT
                             4 3 1
     ٠
                            ( 1)
                    ,SECTW
                             6 1 1
                    . WGHT
                        ,WRATIC
                        ,LUN1 F
3414
          CONTINUE
          GO TO 3999
       5. COARSE GRAINED SOIL PULL AND RESISTANCE CDEFFICIENTS
C
36 00
          CONTINUE
          G = CI * .8645/3.
          00 3630 I=1, NAMBLY, 1
              IF(NVEH(I) .EQ. #) GG TG 3620
                 A. WHEELED BLENENT ALGORITHM
С
                    IF((JP(I) .EQ. 0) .OR. (IB(I) .EQ. 0)) GO TO 3610
                       RTOWTIIS = 0.
                        GO TO 3612
3612
                    CONTINUE
                         = WGHT#IA/FLOAT(NWHL(JA)
                    W
                    PIT = G \neq (ASECTW(I) \neq DIAW(I)) \neq 1.51 \neq (FLOAT(I) \neq (1./3.))
      + /( W+((1.0-DRAT(I.JPS]))++3.2)+(1.00SECTW(I)/DIAW(I))
                    RTOWT(I) = \emptyset_{\bullet}44 - \hat{\theta}_{\bullet}\hat{\theta}1 \neq PIT
                 ((0.44-0.01+F#T) ++ 2)+0.0002+PIT+0408 )
      + +SQRT (
3612
                    CONTINUE
                    IF((IP(L) .EQ. 0) .ANC. (IB(I) .EQ. 0)) GO TO 3618
                        IF( ID( IN .EQ. 1) GO TO 3614
                           B = SECTW(I)
                           W = WGHTEI/FLOAT(NWHL(I))
                           GO TØ 3616
3614
                        CONTINUE
                        B = 2 - 2 + S = CTH(I)
                        W = 2.00WHGHT(I)/FLOAT(NWHL(I))
3616
                        CGNTINUE
                        PIC = 64((B*DIAW(I))**1.5)
                        PIC = G = G = (I B \neq D I A W (I)) \neq (I)
      + + (DRAT(I, JPSI))/(W+(F&GAT(I)++0.5))
                        DOW FB 441 = .53-4.5/(PIC+3.7)
                        RTCWPB(I) = .6-DOWPB(I)
                        GG TC 3630
3618
                    CONTINUE
                    DOWPB (I) # 0.0
                    RTOWPB(I) A 0.0
                    GO TO 3638
              B. TRACKED ELEMENT ALGORITHM
С
                 CONTINUE
3620
                 RTOWT[I] = J.A
                 IF((IP()) .EC. 1) .AND. (IB(I) .EQ. 1) GO TO 3621
       WRITE(LUN1,1000)
                    FORMAT 4
1000
      + /, 37H THERE IS NO SCILL PULL AND RESISTANCE,
      + /,37H ALGORITHM FOR TOWED TRACKED ELEMENTS)
                    STOP
3621
                 CONTINUE
```

	PIT = 0.6+G+( (TRAKWD(I)+TRAKUN(I)+++1.5 )
+	/WGHT(1)/2.
	IF(PIT _GT. 25.) GO TO 3622
	DOWPB(I) = .121+.258+4L0G10(PII)
	GO TO 362.8
3622	IF(PIT .GT. 100.) GO TO 3624
	DOWPB(I) = .339 + .109 + ALOG10(PIT)
	GD TO 3628
3624	IF(PIT .GT4 1000.) GO TO 3626
	DOWPB(I) = .481+.038+ALOG10(PIT)
	GO TE 3628
3626	CONTINUE
2020	DOWPB (1) # 4595
3628	CONTINUE
5020	RTOWPBILL # .6 - DOWPBILL + .045
3630	CONTINUE
2000	GO TO 3999
C 6	. MUSKEG PULL AND RESISTANCE COEFFICIENTS
3700	CONTINUE
5100	DO 3728 I=1,NAMBLY, 2
	RCIX = RCI-VCIAUMIA
	$IF(RCIX GT_J - 102m) GO TO 3710$
	RT = 1
	GO TO 3714
371 Ø	IF(RCIX .GT. 0.) GG TO 3712
311 5	$RT = 106 \neq 0 RCIX + 100.1$
	GO TO 3714
3712	CONTINUE
5712	RT = .045+2.3475/16.5+RCIX1
3714	IF((IP(I) .EC. 20 .OR. (IB(I) .EQ. 0)) GO TO 3716
	RTOWT(I) = 0.
	RTOWPB(I) = RI
	GO TO 3720
3716	IF((IP(I) .EC. 1) .CR. (IB(I) .EQ. 1)) GO TO 3718
	RTOWT(I) = RI
	RTOWPB(I) = 24
	$DOWPB(I) = J_{A} \partial$
	GO TO 3720
3718	CONTINUE
- • • •	RTOWT (I) = RT
	RTOWPBEII = RT
3720	IF(RCIX .GT128.) 68 TO 3722
	DOWPB(I) = -140
	GO TO 3728
3722	IFIRCIX .GT. U.E. GO TO 3724
	DOWPB(I) = -14+.01+(RCIX+100.)
	GO TO 3728
3724	IF
. + (	(NVEH(1) _EQ. ØN .ANB. (CPFFG(1,JPSI) .LT. 4.0)) GO TO 3726
	DOWP B(1)=Ø。3537+編。但2258=RCIX
+ -	{ { { { { { { { -3537+.02258 +RC IX} + +2.} } - { { { { { { { { { -3537+.02258 +RC IX} + + +2.} } } } }
	GO TO 3728

```
R-2058, VOLUME I
                                                                      PAGE A-95
APPENDIX A - LISTING OF FROERAM NRMM
3726
             COWPB(I) =0.5464 +9.1091 +RCIX
     + -{{{{.5464+.1091*RCIX4#*2.1-{.192*RCIX4}**.5}
3728
         CONTINUE
          GO TO 3999
C
      7. SHALLOW SNOW PULL AND RESISTANCE COEFFICIENTS
3840
          CONTINUE
          XNVEH = \emptyset \cdot \emptyset
          DO 3805 I=1, NAMELY
             XNVEH = FLOAT( NVEH(1) )+XNVEH
3805
          CONTINUE
          DO 3820 I=1,NAMBLY, 1
             IF(NVEH(I) . EQ. Ø) GC TC 3814
                RT = 101+(FLCAT(NWHL(I))+SECTWGE)/DIAW(I))
     + *(GAMMA*ZSNOW/CHARLNUS, JPSI)/XNVEH
                IF((IP(I) .EC. Ø) .OR. (IP(I) .EQ. Ø)) GO TO 3810
                    RTGWT(I) = Ø.
                    RTOWPB(1) = RT
                    GO TO 3813
                IF((IP(I) .E(d 1) .CR. (IE(L) .EQ. 1)) GO TO 3812
3810
                    RTOWT(I) = RT
                    RTOWPB(I) # 0.
                    DOWPB(I) = 0.
                    GU TO 3822
3812
                CONTINUE
                    RTOWT 11 - RT
                    RTOWPB(I) = RT
3813
                CONTINUE
                    TOWMAX.
                              = TANPHI+CUHES*GCALI, JPSI+
                                #FLOAT(NWHL(I))/WGHT(I)
     4
                    DOWPB(I) = TOWMAX-RT
                    GO TO 3022
3814
             CONTINUE
             RT = 5.0+GAMMA+(2SNCW/CHARLN(I, JPSI)-0.15)
             IF(RT .GE. 0.04 .60 TO 3815
                RT = \emptyset \cdot \emptyset
             IFI(IP(I) .EC. ØN .OR. (IB(I) .EC. ØN GO TO 3816
3815
                RTOWT (I) = 4.
                RTOWPB(I) = RT
                GO TO 3819
             IF ((IP(I) .EC. 1) .OR. (IB(I) .EQ. 1) GO TO 3818
3816
                RTOWT (I) = AF
                RTOWPB(I) = \emptyset_{a}
                DOWPB (I) = \emptyset_{\neq}
                GO TO 3828
3818
             CONTINUE
                RTOWT ( L) = RT
                RTOWPB(I) = RT
3819
             CONTINUE
                       = TANPH1+COHES+GCA(I, JPS1)/WGHT(I)
             TOWMAX
             COWPBLED = TOWNAX-RT
3820
          CONTINUE
3999
          CONTINUE
```

RETURN END SUBROUTINE IV4 + (DOWB ,DOWP , CGWIFB , GCW , GCWB GCMP ,18 , IP . + NAMBLY , RTOWB , RTGWNB , RTCWNP , RTOWP , RTOWPB , RTOWT →WGHJ ) Ĉ С С SUMMED PULL AND RESISTANCE COEFFICIENTS Ċ С С 1. VARIABLE DECLARATION REAL DOWPB (24) INTEGER 18 1241 INT EGER IP (24) RTOWPB (20) REAL RTOWT (20) REAL REAL WGHT 12:1) ũ 3. ALGORITHM DOWE = 0.0 DOW P = 0.0 RTOWB = 0.0 RTOWP = 0.0  $RTOWNB = \emptyset \cdot \emptyset$ KTOWNP = 0.0 DO 3050 I=1.NAMBLY IF(GCWP .EQ. 0.0+ GC TC 3010 RTOWP = RTOW ##FLOAT(IP(I))#RTOWPB(I)#WGHT(I)/GCWP DOWP = DOWF±FLOAT(IP(I)) + DOWPB(I)+WGHT(I)/GCWP IF ( (GCW-GCWP) .Eg. 0.0) GO TO 3020 3010 RTOWNP = RTOWNP+FLOAT(1-IP(I)) + #RTOWT(1) #WGHT(1)/(GCW-GCWP) IF (GCWB .EQ. Ø.2) GC TC 3030 3020 RTOWB = RTOME+FLCAT(IB(I)) + RTOWPB(I) + WGHT(I) / GCWB DOWB = DOW BAFLOAT(IB(I)) + DOWPB(I) + WGHT(I)/ GOWB IF((GCW-GCWB) .EQ. 0.0) GO TO 3040 3030 RTOWNE = RTOWNE+FLOAT(1-IB(I+A *R TOW T( I) * WGHT (I) / (G CN-GCW P) CONT INUE 3040 CONTINUE 3050 RETURN END SUBROUTINE IV5 ,CD , AVGC , CPFCCG , CPFCFG , CTF + (ATF , ETF DAR EA , ECF FORMX , GCWR + .DOWP , EANG ,FB ,FC JEA . ,LOCDIF ,NAMBLY ,NFL , NGR , ITUT , JPSI + ,IFLOAT , IST + ,NTRAV ,NVEH , NVEHC , NWHL ,RACC ,RTOWP ,STRACT ,TFDR ,TRACTE ,VEMAX , WGHT WRATID .LUNE ) + THETA ,VG -VGV С С С SLIP MCDIFIED TRACTIVE EFFORT С С

```
С
      1. VARIABLE DECLARATION
         REAL
                    ATE
                           (20)
                    BTF
         REAL
                           (20)
                    CPFCCG 134
         REAL
                    CPECEG (3)
         REAL
         REAL
                    CTF
                           1241
         REAL
                    FA
                            (28-3)
                    FATENF (24,3)
         REAL
         REAL
                    FB
                            (28,3)
         REAL
                    FBTEMF (28.3)
         REAL
                    FC
                            (29,3)
         REAL
                    FCTEMF ( 24,3)
         REAL
                    FORMX (3)
                    FOUADS (5)
         REAL
                    FT EMP (24,5)
         REAL
                    FTEMPC (24,5)
         REAL
         INTEGER
                    NVEH
                            (24)
         INT EGER
                    NWHL
                            (24)
                    STRACT (24,3,3)
         REAL
         REAL
                    THETA (3)
         REAL
                    TRACTE 12451
         REAL
                    VEMAX 131
         REAL
                           12433,31
                    VG
                    VGTENF (24,3,3)
         REAL
         REAL
                           124:51
                    VGV
                    VQUADS (5)
         REAL
         REAL
                    VTEMP [24.5]
                    VTEMPC (20.5)
         REAL
         REAL
                    WGHT
                           1241
С
      3. ALGORITHM
      FCC = \emptyset.
      CPFC = CPFCFG(JPSI)
      IF (LST .EQ. 2) CPFC=CPFCCG(JPSI)
      IF (IST .EQ. 4) GO TO 3000
         CALL TFORCF(CF, CPFC, DOWP, GCWP, IST, NFL, NV EHC, RTOWP, TFOR, LUNI)
 3000 00 3602
                K=1.NTRAV
         COS X = COS (THETA (K))
         IF (IST .EQ. 4) TFOR=(DCWP+RTOWP)+GCWP#WRATIO
         NG1 = 1
             CO 3060
                       NG=1.NGR
                FATEMPING, KI # ATFING
                FBTEMPING, KI # BTFINGI
                FCTEMPING,KI # CTFING)
                DC 3050 L=145
                   VTEMP(NG,L) = VGV(NG,L)
                   FTEMP(NG, L4 = TRACTF(NG, L)
 3050
                CONTINUE
                L=1
                DO 3060 L1=1.5.2
                   VGTEMPING.A.H. = VGV(NG,L1)
                   L=L+1
 3060
            CONTINUE
```

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

CO 3500 NG=1, NOR IFI FTEMP(NG, 1)*ECF ULT. TFOR*COSX) GO TO 3300 IF(FTEMPING,5)+ECF .LT. TFOR+COSX) GO TO 3200 С C 100% AT TOP SPEED IN GEAR С NG1 = NG1+1FC( NG, KA=Ø.  $FB(NG, K) = \emptyset$ . FAL NG KA=TFOR+COSX 00 3100 L=1.3 VGLAGALYKI = 0. STRACT(NG,L,K)=FA(NG,K) 3100 CONTINUE GO TO 3500 С С 100% SLIP AT OTHER THAN TOP SPEED С 3200 IF (VTEMP(NG.5) .EQ. VTEMP(NG.1)) GO TO 3260 FX = TFER+COSX. CALL VEEFORIFX, FATEMP, FBTEMP, FCTEMP, ٠ FX, K, NGR, VX, VFMAX, VGTENPI С С RESET LOW POINT TO LOWEST SPEED THAT IS NOT С 100% SLIP С  $VTEMPING_{1} = VX$  $FTEMP(NG_1) = FX/ECF$ XINT = 0VTEMP(NG, 5) - VTEMP(NG, 1))/4.00 3250 L=2,4 VTEMMING,L) = VTEMPING,L-1) + XINT FTEMR(NG,L) = CTF(NG)+VTEMP(NG,L)+VTEMP(NG,L) + BTF(NG)+VTEMP(NG,L) + ATF(NG) 3250 CONTINUE GG TG 3300 С Ċ SPEEDS EQUAL - INCREMENT ON FORCE С FTEMPING, 1) = TFOR*COSX 3263 = (FTEMP(NG,1) - FTEMP(NG,5))/4. YINT DO 3388 b=2,4 FTEMP(NG,L) = FTEMP(NG,L-1) - YINT 3380 CONTINUE С С COMPUTE SLIP FOR ALL POINTS IN GEAR С 3300 DC 3400 L=1-5 VX = VTEMPONG,L1 FX = FTENFONG;LI*ECF FSL = FX/COSX#WRATIO YX = FSL/GEWP - CFIF (IST .EC. 4)YX=FX/TFOR

PAGE A-99 R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM CALL SLIP(CPFC, IST, LOCCIF, NFL, NVEHC, SLIPX, YX) VTEMPOING.LA = VX+11.-SLIPXA WDRAG = <5*, Ø0111*CO*DAREA*VTEMPO(NG,L)**2 IF(ITUT .NE. 14) GC TO 3390 С DRAG CORNERING RESISTANCE FOR TRAILS (WHEELED) C Ĉ  $FCC = \emptyset$ . FE = 1. - 7.495*(RACC/12.)*EANG DO 3350 1=1.NAMBLY IFINVEHII) .LT. 1) GO TO 3350 F1 = ([WGHT(])*COSX*VTEMPO(NG,L)**2)/ [ 111.1 *RADC + )*( 12'./17.6/17.6) ٠ FCG = {{FE*F1*F1}/{FLOAT (NWHL(I))*AVGC}} .75/(TFOR/GCWP) # FCC 3350 CONTINUE FTEMPOING, L) = FX - FLOAT(IFLOAT) #WORAG - FCC 3390 3400 CONTINUE С С COMPUTE NEW COEFFICIENTS C IFLING .NE. 11 .CR. (FTEMP(NG,E) .NE. FTEMP(NG,5))) GO TO 3410 ٠ FA(NG, K) = ATF(NG)FBING, KI = BTFING FC(NG,K) = CTF(NG)GO TO 3438 L=1.5 00 3420 3410 FQUAD5(L) = FTEMPC(NG,L) VQUAD5(L) = VTEMPC(NG,L) 3420 CONTINUE CALL QUADS(VCUADS, FCUADS, A, B, C) FA(NG,K) = AFB(NG,K) = BFC(NG,K) = C3430 L = 1DO 3450 L1=1.5.2 VG(NG,L,K) = VTEMPO(NG,L1) $STRACT{NG_k,K} = FC(NG_K) = VG(NG_L,K) = VG(NG_L,K) +$ FB(NG,KI=VG[NG,L,K] + FA[NG,K] + L = L+1CONTINUE 345Ø 3500 CONTINUE VEMAX(K) = VG(NG1,1,K) FORMX(K) = STRACJ(NG1,1,K) 36JØ CONTINUE RETURN END SUBROUTINE IV6 + (FAT ,FAT1 , EMT , NI .PBHT ,SD SDL .TDEN + ,WDTH 1

С

R-2058, VOLUME I APPENDIX A - LISTING OF FRGGRAM NRMM

RESISTANCE DUE TO VEGEWATION

С

С

С

```
C
С
      1. VARIABLE DECLARATION
С
         REAL
                   FAT
                          198
         REAL
                   FAT1
                          1.51
         REAL
                   FMT
                         194
         REAL
                   SD
                          191
         REAL
                   SDL
                          (9)
                   TDEN
                          1 94
         REAL
                   TFAT
                          191
         REAL
С
      3. ALGCRETHM
         FAT (1) = \emptyset \cdot \emptyset
         FAT1(1) = 0.0
         FMT(1) = 0.0
         TFAT(1) = 0.0
         DO 3030 I=1.NI
            IF(TDEN(I) .EC. 4.0) GC TO 3020
               FAT1(I+1) = 456./5.81+SOL(11++36
               FMT (1+1) = 440.-PBHT/2.1*SOL(1)+*3.
               TFAT(I+1) = 0.40
               DO 3010 K=1.1
                  TFAT(1+1) = TFAT(1+1)+TDEN(K)+100.0+SD(K)++3
3010
               CONTINUE
               FAT (1+1) = 12. + TFAT(1+1)+WOTH
               GO TO 3030
3020
            CONTINUE
            FAT1(I+1) = \emptyset_{\bullet}\emptyset
            FMT (1+1) = 0.0
            FAT (I+1) = FAT(a)
3030
         CONTINUE
         RETURN
         END
      SUBROUTINE IV7
                     , IMPACT ,MAXI
     + LEMT .GCW
                                      •NI
                                               , PBF )
С
С
      -----
      CRIVER-DEPENDENT VEHICLE VEGETATICN OVERRIDE CHECK
C
С
      С
C
     1. VARIABLE DECLARATION
        REAL
              FMT dsa
                  IMPACT (S)
        REAL
С
     3. ALGCRITHM
        NI1 = NI+1
        DO 3040 I=1.NI1
            IMPACT(I) = \emptyset
            IF(FNT(I) LE. FBF) GO TO 3010
              IMPACT(J) = 1
3010
            IFI(FMT[I]/GCW] LE. 2.1 GO TO 3020
```

273

.

```
PAGE A-101
R-2058, VOLUME I
APPENDIX A - LISTING OF PROGRAM NRMM
             IMPACT(I) = IMPACT(I)+2.
3020
             IF(IMPACT(I) JNE. 9.) GO TO 3030
             MAXI = I
3030
          CONT INUE
3040
        CONTINUE
        RETURN
        END
     SUBROUTINE IV8
                                                        ,RTOMNP
    + (FAT
             FAT1
                  ,GCW ,GCWNP ,GCWP ,MAXI
                                                ,NTRAV
                   , THETA , TRESIS , WRATIO
             , STR
    + ,RTOWP
С
С
     -------
С
     TOTAL RESISTANCE BETWEEN COSTACLES
С
     Ċ
C.
     1. VARIABLE DECLARATION
        REAL
                FAT 194
                      691
        REAL
                 FAT1
                 STR
                       (3.9)
        REAL
                 THETA (3)
        REAL
                 TRESIS (3.9)
        REAL
С
     3. ALGCRITHM
        DO 3020 K=1.NTRAV
           CUMMY = GCW#SIN(THETA(K))
    + + ( RTO + P + GCWP + RTOW NP + CCWNP) + CCS (THET A(K) + WRAT IO
           CO 3010 I=1, MAX 1
             TRESIS(K, I) = DUMMY+FAT (I)
                  (K,I) = DUPNY+FAT1(I)
             STR
3010
           CONTINUE
30 20
        CONTINUE
        RETLRN
        END
     SUBROUTINE IV9
                                                        , NTR AV
    + (FA ,FB
                    , FC
                            ,FORMX ,MAXI
                                          , NGR , NI
    + ,TRESIS , VFMAX , VG
                            ,VSCIL 1
С
С
     С
     SPEED LIMITED BY RESISTANCE BETWEEN OBSTACLES
Č
     С
С
     1. VAR JABLE DECLARATION
                 F۵
                       (24.3)
        REAL
        REAL
                 FB
                       (24,3)
                       (24,3)
        REAL
                 FC
        REAL
                 FORMX (3)
        REAL
                 TRESIS (3#9)
                 VEPAX (3)
        REAL
                 VG
                       1 24, 3, 31
        REAL
        REAL
                 VSOIL (3,9)
     3. ALGCRITHM
С
        M2 = MAXI
        DO 3030 I=1,M2
```

CALL VELFOR + (TRESIS(1,I),FA,FB,FC,FCRMX,1,NGR,VSDIL(1,I),VFMAX,VG) IF(VSGLL(1,I) ... NE. 0.01 GO TO 3010 MAXI = I3010 IF(NTRAV .EQ. 11 GD TO 3020 CALL VELFOR + (TRESIS(2,I),FA,FB,FC,FCPMX,2,NGR,VSOIL(2,I),VFMAX,VG) CALL VELFOR + (TRESIS(3,I),FA,FE,FC,FORMX,3,NGF,VSUIL(3,I),VFMAX,VG) 3020 CONT INUE 3030 CONTINUE M1 = MAXI + 1 $M_2 = NI + 1$ DG 3050 I=M1,M2 VSOIL(1,I) = 220IF(NTRAV .EQ. 1) GO TO 3040 VSCIL(2,1) = 0.0 VSOIL(3,I) = 4.0CONTINUE 3040 3050 CONTINUE RETURN END SUBROUTINE IV10 , VRID ,VRIDE ) + LACTRMS .LAC , MAX LER , RMS С С SPEED LIMITED BY SURFACE FOUGHNESS С С С C 1. VARIABLE DECLARATION REAL RMS [20] VR.IDE (20,3) REAL C 3. ALGORITHM DG 3020 NR=2,MAXIPR IFLACTRMS .GE. FNS(NR)) GO TO 3010 VRID = VRIDE(NR-1+LAC)+(ACTRNS-RMS[NR-1]) + + (VRICE(NR.LAC)-VRICEBAR-1.LAC))/(RMS(NR)-RMS(NR-1)) GO TO 3030 CONT INUE 3010 CONTINUE 3020 VRIC = VRIDE(MAXIPELLAC) 3630 CONTINUE RETURN END SUBROUTINE IV11 ,GCWNB ,NOGOEF ,NTRAV ,RTOWB ,RTOWNB . GCW E + 1DOWB ,GCW , THETA , WRAT 10 , XBR 1 + TBF С С С TOTAL BRAKING FORCE - SCIL/SLOPE/VEHICLE С С

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM С 1. VARIABLE DECLARATION REAL THETA (34 REAL TBF (3) С 3. ALGCRITHM X1 = (RTOWB = GCW E + RTEWNB = GCWNB = + WRATIO X2 = (DOWB+RTOWE) + COWB+WRATIC TBF(1) = GCW*SIN(THETA(1))+WRATIO+X1+COS(THETA(1)) + +AMIN1(XBR,X2+CCS(THETA(1))) IF(NTRAV .NE. 1) GC TO 3020 IF(TBF(1) .GE. 2.0) GO TO 3010 NOGOBF = Ø GO TO 4000 3010 CONT INUE NOGOBF = 1GO TO 4000 3020 CONTINUE  $TBF(2) = X1 + AMINI{XBR_X2}$ TEF(3) = GCW+SIN(THETA(3))+WRATIO+X1+COS(THETA(3)) + +AMIN1(XBR, X2+COS4THETA(3))) IF(TBF(3) .GE. 0.01 GO TO 3030 NOGGBF = 1GO TO 4000 CONTINUE 3030 NOGOBF =  $\emptyset$ 4000 CONTINUE RETLRN END SUBROUTINE IV12 + {BFMX ,DCLMAX ,GCW NTRAV SFTYPC .THE H С С С MAXIMUM BRAKING FORCE . SOIL/SLOPE/VEHICLE/DRIVER С С С 1. VAR JABLE DECLARATION BFMX (3) REAL REAL TBF 131 С 3. ALGCRITHM BFMX(1) = AMINI (DCLNAX+GCW . TEF(14+SFTYPC/100.) IF(NTRAV .EQ. 1) GC TC 0010 BFMX(2) = AMINIADCLMAX*GCW , TBF(2)*SFTYPC/100.) EFMXI31 = AMINIIBCLMAX+GCW , TBF(3)+SFTYPC/100.1 3610 CONTINUE RETURN END SUBROUTINE IV13 + IBFMK ,EYEHGT,GCW ,NTRAV ,RD ,REACT ,VELV VISHNV ) С С С SPEED LIMITED BY VISIBILITY С С

C	1. VARIABLE DECLARATION
L	REAL BEMX (30
	REAL VELV 131
С	3. ALGCRITHM
L	DO 3030 K=1,NTRAV
	IF(BFMX(K) .GT. #.0) GC TO 3010
	$VELV(K) = \emptyset \cdot \emptyset$
	GO TO 3030
3010	
2010	$RECD = RD \neq EY EHGT / 69$
	$ACC = BFX(k) \neq 385.9/GCW$
	$C = ((REACC+ACC)+2) + 2 \cdot 0 + RECD+ACC$
	C = ACC * REACT
	VELV(K) = -(C-SCRTIDIN
	IF(VELV(K) .GE. VISMNV) GO TO 3020
	$VELV(K) = V \pm SMNV$
3020	
3030	
2050	RETURN
	END
	SUBROUTINE IV14
	+ (JPSI ,NI ,NTRAW ,NVEHC ,VELV ,VRID ,VSOIL ,VTIRE
	+ VIT )
С	
č	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
L.	- SEFFELED SHEED REIMEEN ARSIVERS RIWTLED RIA ATSTRIFTA.
C C	SELECTED SPEED BETWEEN OBSTACLES LIMITED BY, VISIBILITY, Ride. Tirfs. And Soil/Slope/Vegetation Resistance.
С	RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE.
C C	
С	RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE.
С С С	RIDE, TIRFS, AND SOIL/SLOPE/VEGETATION RESISTANCE.
С С С	RIDE, TIRFS, AND SOIL/SLOPE/VEGETATION RESISTANCE.
С С С	RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (3)
С С С	RIDE, TIRFS, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (34 REAL VSCIL (349)
С С С	RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (3) REAL VSCIL (3)9) REAL VTIRE (3)
с с с	<pre>RIDE, TIRFS, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV 434 REAL VSCIL (349) REAL VSCIL (349) REAL VTT (349) 3. ALGORITHM NI1 = NI+1</pre>
с с с	<pre>RIDE, TIRFS, AND SGIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (3) REAL VSCIL (3)9) REAL VSCIL (3)9) REAL VTT (3) 3. ALGORITHM NI1 = NL+1 DO 3030 K=1,NTRAV</pre>
с с с	<pre>RIDE, TIRFS, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV 434 REAL VSCIL (349) REAL VSCIL (349) 3. ALGCRITHM NI1 = NL+1 DO 3030 K=1,NTRAV CO 3020 I=1,NI1</pre>
с с с	<pre>RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV 434 REAL VSCIL (3)9) REAL VSCIL (3)9) REAL VTTRE (34 REAL VTT (3,9) 3. ALGCRITHM NI1 = NL+1 DO 3030 K=1,NTRAV CO 3020 I=1,NI1 V1 = .99*VSOIL4K,14</pre>
с с с	<pre>RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV 434 REAL VSCIL (3)9) REAL VSCIL (3)9) REAL VTTRE (34 REAL VTT (349) 3. ALGCRITHM NI1 = NL+1 DO 3030 K=1,NTRAV CO 3020 I=1,NI1 V1 = .99*VSOIL4K,14 IF(NVEHC .EQ1) GO TO 3010</pre>
с с с	<pre>RIDE, TIRES, AND SGIL/SLGPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (3) REAL VSCIL (3)9) REAL VSCIL (3)9) REAL VTT (3)9) 3. ALGORITHM NI1 = NL+1 DO 3030 K=1,NTRAV CO 3020 I=1,NI1 V1 = .99*VSOIL4K,11 IF(NVEHC .EQ1) GO TO 3010 VTT(K, I) =</pre>
с с с	<pre>RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATICN REAL VELV 434 REAL VSCIL (349) REAL VSCIL (349) REAL VTT (349) 3. ALGCRITHM NII = NL+1 DC 3030 K=1,NTRAV CO 3020 I=1,NII VI = .99*VSOUL4K,14 IF(NVEHC .EQ1) GO TO 3010 VTT(K, I) = + AMINI(VTIRE(JPSI), V1, VRID, VELV(K))</pre>
с с с	<pre>RIDE, TIRES, AND SGIL/SLGPE/VEGET ATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (3) REAL VSCIL (3)9) REAL VTIRE (3) REAL VTT (3)9) 3. ALGORITHM NI1 = NL+1 DO 3030 K=1,NTRAV CO 3020 I=1,NI1 V1 = .99*VSOHL(K)* IF(NVEHC .EQ1) GO TO 3010 VTT(K, I) = + AMINI(VTIRE(JPSI), V1, VRID, VELV(K)* GO TO 3020</pre>
с с с	RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (3) REAL VSCIL (3)9) REAL VTTRE (3) REAL VTT (3)9) 3. ALGCRITHM NII = NL+1 DC 3030 K=1,NTRAV CO 3020 I=1,NII VI = .99*VSOIL4K,II IF(NVEHC .EQ1) GO TO 3010 VTT(K,I) = + AMINI(VTIRE(JPSI), V1, VRID, VELV(K)) GO TO 3020 CONTINUE
с с с	RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE. 
С С С З Ø1 Ø	<pre>RIDE, TIRES, AND SGIL/SLGPE/VEGET ATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV 43 REAL VSCIL (3)91 REAL VSCIL (3)91 REAL VTT (3)93 3. ALGCRITHM NII = NL+1 DO 3030 K=1,NTRAV CO 3020 I=1,NI1 VI = .99*VSOUL4K,NI IF(NVEHC .EQ1) GO TO 3010 VTT(K,I) = + AMINI(VTIRE(JPSI), V1, VRID, VELV(K)) GO TO 3020 CONTINUE VTT(K,I) = + AMIN1(V1, VRID, VELV4N))</pre>
C C C 3Ø1Ø 3Ø2Ø	<pre>RIDE, TIRES, AND SGIL/SLGPE/VEGET ATION RESISTANCE. 1. VARIABLE DECLARATICN REAL VELV (3) REAL VSCIL (3)9) REAL VTTRE (3) REAL VTT (3)9) 3. ALGCRITHM NI1 = NL+1 DC 3030 K=1,NTRAV CO 3020 I=1,NI1 V1 = .99*VSOIL4K,N) IF(NVEHC .EQ. ~1) GO TO 3010 VTT(K,I) = + AMINI(VTIRE(JPSI), V1, VRID, VELV(K)) GO TO 3020 CONTINUE VTT(K,I) = + AMINI(V1, VRID, VELV(M)) CONTINUE</pre>
С С С З Ø1 Ø	RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (3) REAL VSCIL (3)9) REAL VTTE (3) REAL VTT (3)9) 3. ALGCRITHM NII = NL+1 DO 3030 K=1,NTRAV CO 3020 I=1,NI1 VI = .99*VSOIL4K,%) IF(NVEHC .EQ. ~1) GO TO 3010 VTT(K,I) = + AMINI(VTIRE(JPSI), V1, VRID, VELV(K)) GO TO 3020 CONTINUE VTT(K,I) = + AMINI(V1, VRID, VELV(#)) CONTINUE CONTINUE
C C C 3Ø1Ø 3Ø2Ø	RIDE, TIRES, AND SGIL/SLGPE/VEGET ATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (3) REAL VSCIL (3)99 REAL VTTRE (3) REAL VTT (3)99 3. ALGCRITHM NII = NL+1 DO 3030 K=1,NTRAV CO 3020 I=1,NII VI = .99*VSOIL4K,VI IF(NVEHC .EQ1) GO TO 3010 VTT(K,I) = + AMINI(VTIRE(JPSI), V1, VRID, VELV(K)) GO TO 3020 CONTINUE VTT(K,I) = + AMINI(V1, VRID, VELV(M)) CONTINUE CONTINUE CONTINUE CONTINUE RETURN
C C C 3Ø1Ø 3Ø2Ø	RIDE, TIRES, AND SOIL/SLOPE/VEGETATION RESISTANCE. I. VARIABLE DECLARATICN REAL VELV (34 REAL VSCIL (349) REAL VTTRE (34 REAL VTT (349) 3. ALGCRITHM NII = NL+1 DC 3030 K=1,NTRAV CO 3020 I=1,NII VI = .994VSOIL4K,VI IF(NVEHC .EQ1) GO TO 3010 VTT(K,II = + AMINI(VTIRE(JPSI), V1, VRID, VELV(K)) GO TO 3020 CONTINUE VTT(K,II = + AMINI(V1, VRID, VELV(M)) CONTINUE CONTINUE CONTINUE RETURN END
C C C 3Ø1Ø 3Ø2Ø	RIDE, TIRES, AND SGIL/SLGPE/VEGET ATION RESISTANCE. 1. VARIABLE DECLARATION REAL VELV (3) REAL VSCIL (3)99 REAL VTTRE (3) REAL VTT (3)99 3. ALGCRITHM NII = NL+1 DO 3030 K=1,NTRAV CO 3020 I=1,NII VI = .99*VSOIL4K,VI IF(NVEHC .EQ1) GO TO 3010 VTT(K,I) = + AMINI(VTIRE(JPSI), V1, VRID, VELV(K)) GO TO 3020 CONTINUE VTT(K,I) = + AMINI(V1, VRID, VELV(M)) CONTINUE CONTINUE CONTINUE CONTINUE RETURN

PAGE A-104

### R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRAM

C С C MAXIMUM SPEED BETWEEN AND AROUND OBSTACLES Ũ С 1. VARIABLE DECLARATION 6 ADT REAL 191 REAL PAV 191 REAL VAVCID (3.9) V BO (349) REAL VTT REAL (3,9) С 3. ALGCRITHM NII = NI+LDO 3200 K=1.NTRAV CO 3190 I=1,NI1 VBO(K,I)=VTT(Wal) VAVGID(K, I)=VBT(K, I). IF(VTT(K, I) .8C. 0.) GO TO 3190 IFINVEHC .EC. 11 GO TO 3260 С С A. TRACKED VEHICLE ROUTINE FOR MANEUVERING AROUND С AND BETWEEN COSTACLES С LF(PAV(1) _LE. 3.) GO TO 3030 IF(PAV(J) .GE. 7.1 GO TO 3010 SNG=14392-93-VTT(K_111/4_)+PAV(1) + (7.+VTT(K, 1)-3.+392.93)/4. 4 V BCL K#I) = AMIN14 SMG, VTT4K, I)-GG TC 3930 3010 IF(FAV4 1) .GT. 52.5) GO TO 3020 SMG=463-15-8.603*PAV(I) VBG44,I}=AMIN1(SMG,VTT4K,I)) GC TG 3030 VBO(K,I)=Øa 3020 IF(ADT(1) LE. 3.) GO TO 3190 3030 IFLADTER GE. 7.1 GO TO 3040 SMG=2(392.93-VTT(K, LA)/4.)#ADT(1) +(7. +VIT(K, IM-3. +392.93)/4. VAV CADLK, I)=AMIN1(SMG, VTT(K, I)) GO TO 3190 IF(ADT(1) .GT. 52.5) GO TO 3050 3040 SMG=#53-15-8.643+ADT(I) VAVE D(K, I) = AMIN1(SMG, VTT(K, I)) CO TO 3190 3050 VAVCID(K.I)=0. GO TO 3190 C C B. WHEELED VEHICLE ROUTINE FOR MANEUVERING AROUND С AND BETWEEN COSTACLES С 3060 IF(PAV(1) .LE. 3.) GO TO 3090 IF(PAV(1) 4GE. 7.1 GO TO 3070

		SMG=(	4458.33-VTT (	K.111/42	+PAV(#)	
	+			TT(K.1)-1		11/4 .
		VBOLK	(, IA=AMIN1( SH	G,VTŤ(K,	[]]	
			3990			
307Ø			1 GT . 41.31		ð 8 <i>9</i>	x
		*	42411-13.112			
			, IA = AMEN 11 SM	G,VTIIK,	I))	
			3990			
3080		VBO(K,I)				
3020	1Ft		LE 3.1 GO T		•	
			) GE 7.1 G			
	<b>1</b>	240-1	(450-33-VTT(	T(K,I)-3.		11.
	Ŧ	VAVOI	D.(M., I)=AMIN1			· • • •
			3190	624034114	17 4 4 1	
3160			) "GT. 41.3)	60 TO 31	1.0	
5160			42411-13.112			
			D.(K., I)=AMIN1		(K-1))	
			3190			
3110		VAVOIDIK				•
31 90	CON	TINUE	•			
3200	CONTINUE		. •			
	RETURN					
	END					
	SUBROUTINE I					
						HOVALS ,NANE
r	+ ,NEVERO ,NO	NHOI PNW	UIN JUBAA	#UBH	JUDMINW	,WVALS )
C C						
č	OBSTACLE OVE		•		-	
Č						
C						
			2 · · · · · · · · · · · · · · · · · · ·			
ũ	1. VAR JABLE					
	REAL	AVALS	(14)			
	REAL REAL	AVALS CLEAR	(14)			• •
	REAL Real Real	AVALS CLEAR CLR	(14)			
	REAL REAL REAL REAL	AVALS Clear Clr Fom	(14)			
	REAL REAL REAL REAL REAL	AVALS CLEAR CLR Fom Fommax	(14) (714,5)			
	REAL REAL REAL REAL REAL REAL	AVALS CLEAR CLR Fom Fommax Foo	(14) (714,5) (7414,5)			
	REAL REAL REAL REAL REAL REAL REAL	AVALS CLEAR CLR FOM FOMMAX FOO FOOMAX	(14) (714,5) (714,5) (714,5) (714,5)			
	REAL REAL REAL REAL REAL REAL REAL REAL	AVALS CLEAR FOM FOMMAX FOO FOOMAX HOVALS	(14) (714,5) (714,5) (714,5) (714,5)			
	REAL REAL REAL REAL REAL REAL REAL INTEGER	AVALS CLEAR CLR FOM FOMMAX FOO FOOMAX HOVALS I	(14) (714,5) (714,5) (714,5) (714,5)			
	REAL REAL REAL REAL REAL REAL REAL INTEGER INTEGER	AVALS CLEAR FOM FOMMAX FOO FOOMAX HOVALS I II	(14) (714,5) (714,5) (714,5) (714,5)			
	REAL REAL REAL REAL REAL REAL REAL INTEGER	AVALS CLEAR CLR FOM FOMMAX FOO FOOMAX HOVALS I	(14) (714,5) (714,5) (714,5) (714,5)			
	REAL REAL REAL REAL REAL REAL INTEGER INTEGER INTEGER	AVALS CLEAR FOM FOMMAX FOO FOOMAX HOVALS I I I J	(14) (714,5) (714,5) (714,5) (714,5)			
	REAL REAL REAL REAL REAL REAL REAL INTEGER INTEGER INTEGER INTEGER	AVALS CLEAR FOM FOMMAX FOO FOOMAX HOVALS I I J JJ	(14) (714,5) (714,5) (714,5) (714,5)		· · · · · · · · · · · · · · · · · · ·	
	REAL REAL REAL REAL REAL REAL REAL REAL	AVALS CLEAR GLR FOM FOMMAX FOO FOOMAX HOVALS I I J J J J K K K K N	(14) (714,5) (714,5) (714,5) (714,5)		· · · · · · · · · · · · · · · · · · ·	
	REAL REAL REAL REAL REAL REAL REAL REAL	AVALS CLEAR CLR FOM FOMMAX FOO FOOMAX HOVALS I I J J J J J K K K K N NANG	(14) (714,5) (714,5) (714,5) (714,5)	· ·		
	REAL REAL REAL REAL REAL REAL REAL REAL	AVALS CLEAR GLR FOM FOMMAX FOO FOOMAX HOVALS I I J J J J J K K K K N NANG NEVER C	(14) (714,5) (714,5) (714,5) (714,5)	·		
	REAL REAL REAL REAL REAL REAL REAL REAL	AVALS CLEAR CLR FOM FOMMAX FOO FOOMAX HOVALS I I J J J J J K K K K N NANG	(14) (714,5) (714,5) (714,5) (714,5)	·		

# R-2358, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM REAL OBAA

REAL **OBH** OBMINW REAL REAL WVALS 154 С 3. ALGCRITHM IF(NEVERO .EQ. 0) GE TO 3010 = 8.3 FOM FOMMAX = 0.0GO TC 3150 3010 CONTINUE IF((NOHGT .NE. 1) .AND. (OBH .GT. HOVALS(1))) GO TO 3020 I = 1II = 1GO TO 3050 3020 CONTINUE DC 3030 N=2,NOHCT IF(OBH .LE. HOVAUSINA) GO TC 3040 3030 CONTINUE T = NOHGTII = NOHGTGO TO 3050 CONTINUE 3640 T = N-1II = N3050 CONTINUE IF((NANG .NE. 1) .AND. (DBAA .GT. AVALS(1)) GO TO 3#60 J = 1 JJ = 1GO TO 3090 3060 CONTINUE DO 3070 N=2, NANG IF(OBAA .LE. AVALS(N)) GO TO 3080 3070 CONTINUE J = NANGJJ = NANGGO TO 3090 3080 CONTINUE J = N-1JJ = NIF (NHOTH .NE. 1) .AND. (CBMINW .GT. WVALS(1))) GO TO 3100 3090 K = 1KK = 1GO TO 3130 3100 CONTINUE DC 3110 N=2 . NWDTH IF (OBMINW .LE. AWALS(N)) GO TO 3120 311Ø CONTINUE K = NWDTH KK = NWDTH GO TO 3130 3120 CONTINUE K = N-1

KK = NCONTINUE 3138 CALL D3LINC ,CLEAR ,I **,**11 . ر و + ICLR , K • KK HUVALS , AVIALS .WVALS ,OBH , CBA4 , OBMINW ) IF(CLR .GE. 0.0) GC TO 3140 NEVERO = 3GO TO 3150 3140 CONTINUE CALL D3LINC , I I + (FOMMAX , FOOMAX , I . . , K , KK ,HOVALS ,AVALS • J J , CBAA -WVALS ,OBH ,OBMINW 1 CALL D3LINC + (FON , F00 • I · ,11 • J ,JJ ,K ,WVALS ,OBH + +JJ , KK HOVALS AVALS , CBAA ,OBMINW ) CONTINUE 3150 RETURN END SUBROUTINE IV17 + (HVALS ,NEVERO , NHVANS , NSVALS ,OBH ,OBSE , SVALS ,TL ,VOOB ,VCCES ,WA + .VOLA С С しょうしゅう ちょうちょう かうしょう ちょうかん かいちょうしょう しょうしょう しょうしょう Ċ DRIVER-DEPENDENT VEHICLE SPEED OVER OBSTACLES С ------C С 1 J VARIABLE DECLARATION REAL HVALS (25) REAL SVALS (25) VOOB REAL (25) REAL VOOBS (25) C 3. ALGORITHM VOLA = 0.0 IF( NEVERO .NE. Ø 1 GOTO 3090 IF((OBSE-WA) .LT. TL) GC TO 3030 DO 3020 NH=2, NHVALS IFLOBH .GT4 HVALS(NH) GO TO 3010 VOLAB = VOCB(NH-1 + (OBH-HVALS(NH-1)) + *(VOOB(NH)-VOOB(NH-1)}##(HVALSINH)-HVALSINH-1)J GO TO 3030 CONTINUE 3610 3020 CONTINUE VOLAB = VCGB(NHVALS) 3030 CONTINUE JF((OBSE-WA) .LT. (2.*TL)) GO TO 3040 VOLA = VOLABGO TO 3090 CONTINUE 3040

PAGE A-108

CO 3060 NS=2.NSVALS

PAGE A-109 R-2058, VULUNE I APPENDIX A - LISTING OF FROGRAM NRMM IF(OBSE .GT. SVALS(NS)) GO TO 3050 VOLAS = VCEBS(NS-1)+(CBSE-SVALS(NS-1)) + A(VOUBS (NS) - VOOBS (NS- J)) / (SVAL SINS) - SVALS INS-1)) GO TO 3070 3050 CONTINUE CONT INUE 3060 VOLAS = VOOBS(NSWALS) 3070 CONTINUE IF ( CBSE-WAT LT J TLT GC TO 3080 VOLA = AMIN14VGLAB, VOLASI GO TO 3090 3080 CONTINUE VOLA = VOLAS3690 CONTINUE **RETURN** END SUBROUTINE IV18 , F8 ,FON , GCW FOMMAX , FORMX + (FA , FC , JPS I ,NEVERO , NGR .NVEHC + ,MAXI NI ,NTRAV OBSE , PAV ,V BC + TL TRESIS .VA JV EL V .VFMAX .VG .VOLA + ,VRID ,VSOIL ,VTIFE ,VXT ,WA F С C С SPEED CNTO AND OFF GB.STACLES C C С 1. VARIABLE DECLARATION REAL FA (28.3) REAL FB (24.3) REAL FC (24,3) REAL FORMX 1.34 REAL PAV (9) REAL TRESIS (3,9) REAL VA. 62-91 REAL (3-9) VBO REAL VELV (3) REAL VEMAX 131 REAL ٧G (24,3,3) REAL VSOIL (3,9) REAL VTIRE 131 REAL VTT H 3, 9h VXT REAL 13491 C 3. ALGCRITHM NL1 = NI + 1MAXI1=MAXI+1 IF(NEVERO .EQ. #4 GC TO 3830 CO 3020 K=1,NTR4V DO 3010 I=1, NB1  $VBO(K, I) = \emptyset_{\bullet}$ VA (K, I) = 84 VXT(K,I) = 0.3610 CONTINUE

PAGE A-110

R-2058, VOLUME I Appendix A - Listing of Program NRMM

3 02 0	CONTINUE
3020	GO TO 3150
2020	
3030	CONTINUE
~	IF(TL .LT. (CBSE#WAJ) GC TO 3090
C	A. MULTIPLE COSTACLE ROUTINE
	DO 3080 K=1, N&RAV
	DO 3068 L=1,MAXI
	RESIST # TRESIS(K, I)+FOM
	CALL VELFOR
	+ (RESIST, FA, FB, FC, FORME, K, NGR, VSOIL(K, I), VFMAX, VG)
	IFINVERC .EQ11 GC TO 3040
	VTTXKyI) =
	+ AMINI(VSOIL(K,I),VRICOVELV(K),VTIRE(JPSI),VOLA)
	GC TO 3050
3040	CONTINUE
	VIT(K)) =
ι,	+ AMINIIVSDILIK, II, VRID, VELV(KI, VOLA)
3050	CONTINUE
	VBO(K, HA=VIT(K, I)
	IF(VBO(K, 1) .EC. Ø.) GO TO 3059
	IF(NVEHQ .EQ. 1) GO TO 3056
C	
С С С	TRACKEC VEHICLE ROUTINE FOR MANEUVERING
C	BETWEEN OBSTACLES
С	
	IF( PAV 11) .LE. 3.1 GO TO 3059
	IFLPAVLI) - GE. 7-) GD TO 3051
	SMG=[(392493-VAT(K,I)]/4+) *PAV(])
	+ +{7_+VTT(K,1)-3.+392.93)/4.
	VBO(K,I)=AMIN1(SMG,VTT(K,I))
	GC TO 3059
30 51	IELPAVIII .GT. 52.5) GO TO 3052
•	SMG=453_15-8.603*PAVIII
	VBOIK; I) = AMINI(SMG; VTT(K, I))
	GC TC 3059
3052	VBO(K, I )=0.
	GO TO 3659
C	
C ·	WHEELED VEHICLE ROUTINE FOR MANEUVERING
С	BETWEEN BOSTACLES
С	
3050	IF( PAV (4) .LE. 3.1 GO TO 3059
	IF(PAV(1) .GE. 7.) GO TO 3057
	SNG=11450.33-VTT(K-114/4.)+PAVII
	+ + + + + + + + + + + + + + + + + + +
	VBBLK, I) = AMIN1 (SMG, VTT(K, I))
	GG TO 3059
3057	IF4 FAV( I) .GT. 41.3) GO TO 3058
	SNG=542.11-13.112*PAV111
	VOB(K, I)=AMINL(SMG,VTT(K, I))
	GE TO 3059
3058	VBC (K, I)=0.

```
PAGE A-111
R-2058, VGLUME I
APPENDIX A - LISTING OF PROGRAM NRMM
3059
                       VA IK, LA=VBO(K, I)
                       VXT(K, I)=VBO(K,I)
3060
                    CONTINUE
                    DO 3072 L=MAXIL_NII
                       VA (K, I) = \emptyset.
                       VXT (K - H = N.
                       VBO(K, I) = g_{-}
3070
                    CONTINUE
300.4
                CONTINUE
                 GO TO 3150
             B. SINGLE OBSTACLE ROUTINE
С
3000
                 CONTINUE
                DU 3140 K = 1 \text{ NTRAV}
                    FORRQ = TFESIS(K,1) + FOM
                    DO 3130 I = 1,MAXI
                       VA(K, L) = AMIN1(VBC(K, L), VOLA)
                       CALL FCRVEL
     + (F, FA, FB, FC, FORMX, K, NOR, VALK, I), VFMAX, VGJ
                       FORCEF # FORRO-F
                       IF(FCREAF .GT. Ø.) GO TO 3100
                           VXT(K,I) = VA(K,I)
                           GC TE 3130
3100
                       CONTINUE
                       VBSC = VALK.I) ++2-FORDEF+(WA+TL) +385.9/GCW
                       IF(VBSC .GT. Ø.) GO TO 3120
                           IF
     + ((FORMX(K)-TRESIS(K, 11-FOMMAX) .GE. 0.) GO TO 3110
                              VXT(K_{\bullet}I) = 0.
                              VA \{K_{i}I\} = \emptyset_{-}
                              GB TC 3130
2110
                           CONT4NUE
                           CALL VELFOR
     +((TRESIS[K,1]+FOMMAX), #A, FB, FC, FORMX, K, NGR, VXTIK, I), VFMAX, VG)
                           VA(K_{p}I) = VXT(K_{i}I)
                           GG TØ 313Ø
3120
                       CONTINUE
                       VXTIK, 1 = SQRT (VBSC)
3130
                    CONTINUE
                    DO 3140 L 4 MAXI1,NI1
                       VXT(K I) = 0
                       VA(K, L) = \emptyset
                       VBC (K_{\bullet} = 0.
3140
                    CONT INUE
                CONTINUE
3150
                DC 3170 K=1,NTRAV
                    DO 3160 I=1.MAXI
                        IF( VA(K,I) .GT. VEO(K,I)) VA(K,I)=VBO(K,I)
                       IF(VXTXH,I) .GT. WAK,IND VXT(K,I) = VA(K,I)
3161
                    CONTINUE
3178
                 CONTINUE
          RETURN
          END
```

C	+ ,NEVERO ,N	FA ,FB NGR ,NI VA ,VBC	, NT RAV		, RMX	.GC₩ ,STRACT ,VXT	TL
С С	AVERAGE PAT	CH SPEED ACC AND CROSSING	EL ERAT ING	/ DECELER			
č							
C · · · · · · · · · · · · · · · · · · ·	1 - 1/AD TADI 5						
L		E DECLARATION BEMX (34)					
		FA (24					
	REAL	FB (2.0					
	REAL	EC (20	- 31				
	REAL	FORMX (3.					
	REAL	RMX (.24 STRACT (.24	\$				
	REAL	STRACT 124	•3 •3 h				
		TRESIS (3)	91				
	REAL	VA (34	9 <b>)</b>				
	REAL	VBO 434 VFMAX 434	71				
	REAL	VE 124	2.21				
	DEAL	VOVER (34	9 J ¥ J ¥				
		VXT 134					
c	3. ALGOR	•				·	
0		NI+1		·			
		120 K = 1,NTR					
	DC	) 3010 I = 1#					
		VOVER(K,I)	= Ø.				
3012		INTINUE					
3020	CONTI						,
	CONTI	VERG NE. 21	60 10 40	מש			
		GCW/385.9					
		50  K = 1.NTR	AV ·				
		3140 I = 141					
С		DETERMINE A		E EXIT SP	EED. IS	SPEED	
С	+ BETWEEN DE	STACLES, IF					
		LFIVALK,I)	.EQ. Ø	AND. VXT	(K.I) .E	Q. Ø.I	
	+ GO TO 3140						
		LFIVBOIK, IA			J TO 304	0	
			<b>II</b> = VXT(I	<,I₽			
7410		GO TO 31 Continue	<b>4</b> 10			•	
3040 C		DETERMINE I	-		DISTANC	E	
c	+ BETWEEN OB	STACLES TO A					FED.
•	· Derneen de	IFIVXTIK, IA					
		CALL ACC					
	+ (FA, F8, FC,	GCW, IK, NGF		G, RMX, STF	RACT		
		, VXTIK, II., VA					
• .		IF					
		· · · · · · · · · · · · · · · · · · ·					

PAGE A-112

R-2058, VOLUME I APPENDIX A - LISTING CF FROGRAM NRMM + ((XA LLE. (OBSE-WA-TLA) .ANC. (NV2FLG .EQ. 01) GO TO 3060 DUNRY = TRESIS4K, 1++FOMMAX IF(FORMX(K) JLT. DUMMY) GO TO 3050 CALL VELFOR (DUMMY_FA_FB.FC.FCRNX_K_NGR_VQVER(K#I)_VFMAX_VG) IFIVOVER(K, I) .GE. VXT(K, I)) GO TO 3140 VOVER(K,I) = WXT(K,I) GO TO 3140 3050 CONTINUE  $VOVER(K, I) = \emptyset$ . GO TO 3149 3060 CONTINUE 3070 CONT INUE ACCELERATION/DECELERATION REQUIRED; CETERNINE C С + IF "VEO" CAN BE REACHED IN TIME TO DECELERATE TO "VA" CALL ACCEL + (FA, FB, FC, GCW, I, K, NGF, NGR, NV2FLG, RMX, STRACT, TA, TRESIS, VXT(K, I), VBO(K, I), V2F, VG, XA, LUN1) ٠ IF(NV2FLG , EQ. 2) GO TO 3090 C VBO CAN BE REACHED TB = VM#1VBO(K,I)-VA(K,I))/BFMX(K) XB = .5#EVBO(K,IA+VA(K,Ih)+TB IF((XA+MB) .GT. (OBSE-WA-TL)) GO TO 3080 ũ ENOUGH SPACE BETWEEN OBSTACLES TOO = 2.+(WA#TL)/(VA(K,I)+VXT(K,I)) TBO = (OBSE-WA+TL-XA-XB)/VBO(K,I) VOVER(K, L) = OBSE/(TAATBO+TB+TOO)GO TE 3140 3080 CONTINUE 3090 CONTINUE ACCELERAT ION/DECELERATION REQUIRED; С + DETERMINE VELOCITY WHICH CAN BE REACHED BEFORE С С + DECELERATION IS REQUIRED AND TIME BETWEEN AND C + OVER CBSTACLES. VLOW = VA4M,I) VHGH = VBC4K, JADO 3130 J 4 1,10. VMIC = {VLOW+VHGH}/2. CALL ACCEL + (FA, FB, FC, GCW, I,K, NGF, NGF, NV2FLG, RMK, STRACT, TA, TRESIS, VXT(K, I), VMID, V2F, VG, XA, LUN1 IF(NV2FEG .NE. 2) GO TO 3100 VHGH = VHIC CC TE 3130 IF(NV2FEG .NE. 1) GO TO 3110 3100 VHGF = VLOW VLCW = VA(K,I) GG TØ 3130 3110 CONTINUE TB = VN4(VMID-VA(K, J))/BFMX(K)  $XB = \emptyset_{S} = \emptyset_{S} = VMID + VA(K, I) + TB$ IF((XA+XB) .LE. (DESE-WA-TL)) GO TO 3120

286

VHGH = VHIC GO TG 3130 3120 CONTINUE VICH = NMID 3130 CONTINUE LFIIXA+XBJ GLE. LOBSE-WAHTLAJ GO TO 3145 V80(K.a) = V8C(K.1)-17.6 GC TG BUZU 3145 TBO = (OBSE-WA-TL-XA-XB)/VMID**TO**O = 2.4(WA+TL)/(VA(K, I) + VXT(K, I))VOVER(K, I) = OBSE/(TA+TBO+TB+TUO) 3140 CONTINUE 3150 CONTINUE 4000 CONTINUE RETURN END SUBROUTINE IV20 ,FB + (FA , FC ,FORMX ,GCW , NGR .MAXI NOGOVA , STR ,NOGOVO ,NTRAV WAVEID WVG , VOVER 1 С С _____ С KINEMATIC VEGETATION EVERRIDE CHECK С С С 1.VARIABLE DECLARATION REAL FA 128431 F8 REAL 128.31 REAL FC (2843) REAL FORMX (3) INTEGER NUGEVA (3.9) INTEGER NOGOVO (3.9) REAL STR (3.9) REAL VAVOLD 13491 REAL VG -(28+3,3) REAL VOVER 13 С 3. ALGERITHM DO 3050 K = 1.NTRAN DO 3040 I = 1.MAXICALL FORVEL (##FA, FB, FC, FCRMX, KeNGR, VOVER(K, J), VFNAX #VG) DUMMY = F+4.45+GCW+VOVER4K41+442.1/385.9 IFLDUMMY .GT. STREK, IN GO TO 3010 NOGOVO(K, 1) = Ø GO TO 3028 3010 CONTINUE  $NOGOVO(K_{2}I) = 1$ 3020 CONT INUE CALL FORVEL 4E, FA, FB, FC, FORMX, K, NGR, VAVO ID(K, I), VFMAX, VG) DUMMY = F+1.5*GCW#VAVOID(K, IA++2.1/385.9 IFIDUMMY .GT. STRIK.IN GC TO 3030 NOGOVALK.IA = Ø GO TO 305.0 3030 CONTINUE

287

	8, VOLUME I IDIX A - LIS		GNAM NRMM			
		OGOVA(K,I)	= 1			
Z	CUNT					
8	CONTINU	E				
	RETURN END					
	SUBROUTINE	1/21				
			-IMAX	,IOVER ,ISAFE	LEVEL	,NI
	+ ,NOGOVA ,					
	+ .VOVER .		LI VSEL2	-		
		******	*****			
	MAXINUM AV	ERAGE SPEEL	DALGCRITHM			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****				
	1. VAR IABL	E DECLARATI	LCN			
	REAL	Α				
	REAL	B				
	INT EGER	DOWN				
	REAL		194			
	INTEGEF					
	INT EGER					
	INT EGBR		34			
	INTEGER INTEGER					
	INTEGER					
	INT EGEF					
	INTEGER					
	INTEGER		,			
	INTEGEF					
	INTEGER		-			
	I NT EGEF		13970			
	INTEGER					
	REAL	VAVGIC	(3.9)			
	REAL	VMAX	· - •			
	REAL		[34			
	REAL	VMAX2				
	REAL	VOVER	(3#Yk			
	REAL REAL	VSEL VSEL1 (31			
	REAL	VSEL2 (
	REAL	VWALK				
	3. ALGORI	ГНМ	,			
	NI1=NI	+1				
		K=1,NTRAV				
		010 I=1, NI				
		A = VOVER 4	Kyd)+FLIOAT(NOGOVO (K,I)		
			K.JIAFLOATI = Amaxila,B	NOGOVA(K,I))		

288

·

PAGE A-116

R-2058, VOLUME I Appendix A - Listing of procram NRMM

3810	CONTINUE
3220	CONTINUE
	DO 3070 K=1,NTRAV
	CO 3060 I=1,NI1
	IF(VMAX2(K,L) 4GT, VWALK) GO TO 3030
	VSEL2{K.I} = VMAX2{K,I}
20.24	GO TO 3050
3030	CONTINUE
	IF((FMT(I)/GCM) GT 1 OR.I.6E. LOVER) GO TO 3040
	VSEL2(K, I) = VMAX2(K, I)
	GO TO 3050
3040	CCNTINUE
	VSEL2(K,I) = 0.0
32 5Ø	CONTINUE
3660	CONTINUE
32 7 Ø	CONTINUE
	DO 3100 K=1, NTRAV
	$VMAX1\{K\} = VMAX24K, 1\}$
	IMAX(K) = 1
	CO 3090 I=2,NI1
	IFEVMAX14K1 .6E. VMAX24K,III GO TO 3080
	VMAX1(K) = VMAX2(K,I)
	IMAX(K) = I
3680	CONTINUE
3090	CONTINUE
31 02	CONTINUE
	DO 3130 K=1,NTRAV
	VSEL1(K) = VSEL24(K,1)
	ISAFE(K) = 1
	CO 3120 I=2,NI1
	IF(VSEL1(K) .6E. VSEL2(K,1) GO TO 3110
	VSELI(K) = VSEL2(K,I)
	ISAFELKI 🛤 I
3110	CONTINUE
31 2 Ø	CONTINUE
3130	CONTINUE
С	
	IF(NTRAV .EQ. 1) GC TO 3150
	IFIVMAXI(UP) ZEC. Ø.0) GC TO 3140
	IFIVMAXIILEVELA ,EQ. 0.0) GC TO 3140
	IF(VMAX1(DOWN) "EC. 0.0) GO TO 3140
	VMAX =
+	3.0/({1./VMAX1{UP})+(1./VMAX1{LEVEL}++(1./VMAX1{DOWN}))
	GO TO 3168
3140	CONTINUE
,	$VMAX = \emptyset \cdot \emptyset$
	GO TO 3160
3150	CONTINUE
	VMAX = VMAX1(UP)
3160	CONTINUE
	IFENTRAV .EQ. 11 GC TO 3180
,	IF(VSEL1(UP) 4EC. 0.0) GO TO 3170

	VOLUME I X A - LISTING CF F	RGGRAM NRM	1M		I	PAGE A-117
	IF(VSEL1(LEVE) IF(VSEL1(DOWN) VSEL =					
۲	3.0/1 (1./VSEL1 (UP)	** {: ./VSEL	.1(LEVEL)	** 1. / VSEL	1 (DOWN)))	
	GO TO 3190					
3170	CONTINUE					
	VSEL = 0.0					
21 00	GO TO 3190					
31 80	CONTINUE					
3190	VSEL = VSEL1(UP) Continue					
5170	RETURN					
	END					
c		aj ani lati afirma na				
č	ROADWAY MODULE -	AMC 74				
č						
с с с с с		~ -				
С		•				
S	UBROUTINE ROAD					
С						
	INTEGER	NG				
	COMMON /INDEX/	- N B				
	INTEGER	COWN				
	COMMON / INDEX/	DEWN				
	INTEGER	ERF				
	COMMON /INDEX/ Integer	EEF Force				
	COMMON /INDEX/	FERCE				
	INTEGER	GR				,
	CONMON /INDEX/	ER				
	COMMON /INDEX/	LEVEL				
	INT EGER	MB				
	COMMON /INDEX/	NN				
	INTEGER	Fen				
	COMPON /INDEX/	RAM				
	INTEGER	SREED				
	COMMON /INDEX/	SREED				
	INTEGER	SR				
	COMPON /INDEX/	SR				
	INTEGER Common /Index/	TA TR				
	INTEGER	THERCUE				
	COMMON /INDEX/	TURQUE				
	INTEGER	UP				
	COMMON /INDEX/	LR				
	INTEGER	#X				
	COMPON /INDEX/	MX .				
	COMMON /VEHICL/	ACD				
	COMMON /VEHICL/	ASHOE	(20)			
	COMMON /VEHICL/	AVGC				
	COMMON /VEHICL/	AXLSP	(20)			
	CONMON /VEHICL/	CD				

1

COMMON /VEHICL/	CGH	
	COLAT	
COMMON /VEHICE/		
COMNON /VEHICL/	CAR	
COMNON /VEHICL/	C 10	
COMMON /VEHICL/	Cla	
		1 201
COMMON /VEHICL/	CARMIN	(20)
COMPON /VEHICL/	CONVI	(2+25)
COMMON /VEHICL/	CONV 2	(2,25)
COMMON /VEHICL/	CELCT	120.3.1
	DEAW	(29)
COMMON /VEHICL/		1 60 4
COMPON /VEHICL/	CRAFT	
COMMON /VEHICL/	ENGINE	(2,50)
COMMON /VEHICL/	EXENGT	
	FD	121
		664 .
COMMON /VEHICL/	FERDD	
COMMON /VEHICL/	GROUSH	(20)
COMMON /VEHICL/	HWAL S	(25)
	IAPG	
CUMMON /VEHICL/	() () () () () () () () () ()	
COMMON /VEHICL/	18	1201
COMMON /VEHICL/	ID	(20)
REAL	IGLESL	
COMMON /VEHICL/	LBIESL	
COMMON /VEHICL/	IENGIN	•
COMMON /VEHICL/	. IA	(20)
COMMON /VEHICL/	ICGNST	(20)
COMMON /VEHICL/	ICONV1	
CUMNON /VEHICL/	IOONV2	
COMMON /VEHICL/	LEOWER	
COMPON /VEHICL/	- H T	(20)
COMMON /VEHICL/	JICASE	
	IERAN	
COMMON /VEHICL/	ITAAP	
COMNON /VEHICL/	LECKUP	
COMMON /VEHICL/	NAXIPR	
COMMON /VEHICL/	MAXL	
	NAMBLY	
COMMON /VEHICL/	•	
COMMON /VEHICL/	NBOG IE	(20)
COMMON /VEHICL/	ACHAIN	(20)
REAL	NOYL	
COMMON /VEHICL/	NEYL	
	NENG	
REAL		
COMMON /VEHICL/	NENG	
COMMON /VEHICL/	FANET	
COMMON /VEHICL/	AGL	(20)
COMPON /VEHICL/	NER	•
COMNON /VEHICL/	NHVALS	
COMMON /VEHICL/	NEAD	1201
COMMON /VEHICL/	NSVALS	
COMMON /VEHICL/	NVEH	(20)
COMMON /VEHICL/	NMEHL	(20)
	• •	1201
COMMON /VEHICL/	NWR	·
COMPON /VEHICL/	f.8.F	

PAGE A-118

COMPON		FEHT	
COMPON	/VEHICL/	F F:A	
COMPON	/VEHICL/	FEWER	(2,201)
COMNON	/VEHICL/	CNAX	
COMPON	/VEHICL/	FOIAM	1201
COMMON		REVM	(20)
COMMON		FENW	(20)
COMPON		FINS	(20)
COMNON		FW	(20)
COMMON		SAE	120.
COMMON			
		SAI	(> ()
COMPON	• • • • • • • • • • • •	SECTH	1201
COMMON		SECTW	1201
COMMON	· · - · · - ·	SWAL S	(25)
	/VEHICL/	TCASE	(2)
	/VEHICL/	Tit	
COMMON		TRLY	(20)
	/VEHICL/	TESI	(20,3)
COMMON	/VEHICL/	TGIND	
COMMON	/VEHICL/	TRAKLN	(20)
COMMON	/VEHICL/	TRAK WD	(20)
CONMON	/VEHICL/	TRANS	12,201
COMMON	/VEHICL/	VAA	
COMMON		VBA	
COMMON		VES	
COMMON		VEGB	(25)
COMPON		VECBS	(25)
COMMON		VRLDE	(28,3)
CONMON		VSS	(2095)
COMMON		WSSAXP	
COMMON		NG	
COMMON			
COMMON		NUAXP	()()
		ABATH	€ 20 ₽
COMPON		ABTH	1.2.01
COMPON		WGHT	(20)
	/VEHICL/	HRAT	1201
COMMON	-	WRFORD	
	/VEHICL/	4E	(20)
	/VEHICL/	WTE	(28)
	/VEHICL/	AMAXP	
	/VEHICL/	XERCOF	
COMHON	/VEHICL/	W 3	
COMMON		LOCDIF	
COMPON	/VEHICL/	SHF	
COMPON	/PREP/	. A	(3,4)
COMPON		AIF	(20)
COMMON	/PREP/	BTF	(20)
COMMON	/PREP/	CHARLN	(20,3)
COMMON		CRECEG	(.3)
COMMON		CRFCCG	(3)
COMMON		CRECG	(20,3)
COMMON	/PREP/	CRFFG	(20,3.)

PAGE A-119

COMPON	/PREP/	CTF	(20)
COMPON	/PREP/	ERAT	(28,3)
COMMON	/PREP/	GEA	(20,3)
COMMON	/PREP/	GGW	• - • • •
COMPON	/PREP/	GEWB	
COMPON	/PREP/	COWNB	
COMPON	• • •	GEWNP	
COMMON		GCWP	
COMMON		FRT	
COMMON		NBF	1381
COMMON	· · ·	AVEHC	•
COMMON		FNTE	
COMMON		F	(3)
	/PREP/	FINX	(20)
	/PREP/	R R	
	/PREP/	TRACTE	(20,5)
	/PREP/	TRAPSI	(3)
	/PREP/	VGICG	(20,3)
COMMON	/PREP/	VGIFG	120,31
	/PREP/	VCIMUK	(20)
COMMON		VGV	(20,5)
COMMON	/PREP/	N.E.	(20,3)
COMMON	/PREP/	VIIRE	(3)
COMMON	/PREP/	WEMAX	·
COMMON	/PREP/	X	131
COMMON	/PREP/	XER	·
COMMON	/DERIVE/	ABT	(9)
COMMON	/DERIVE/	NEGOBE	
COMMON	/DERIVE/	CAREA	
COMPON		CENB	
COMMON	/DERIVE/	COWP	
COMMON		CEWPB	1201
	/DERIVE/	FA	(20,3)
	/DERIVE/	FAT	(9)
	/DERIVE/	FAT1	(9)
	/DERIVE/	FB	(20,3)
COMKON		F.C.	(20,3)
	/DERIVE/	FNT	(9)
CUMMUN	/DERIVE/	F 8 M F 8 M AX	
	/DERIVE/		(3)
	/DERIVE/ /DERIVE/	FORMX ABLOAT	()/
COMPON COMPON		IMAX	(3)
	/DERIVE/	ISAFE	(3)
	/DERIVE/	J	()/
	/DERIVE/	NAXI	
	/DERIVE/	BEMX	(3)
	/DERIVE/	NEVERO	
	/DERIVE/	CASE	
	/DERIVE/		{9) ·
	/DERIVE/		-
	/DERIVE/	FTEWNB	

PAGE A-120

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

	/DERIVE/	RTOWNP	
COMPON		FTCWP	
COMMON		RTOWPB	(20)
COMMON		FEOWT	(20)
CONNON		STRACT	(20,3,3)
COMPON			(9)
COMMON		SRFV	(9)
COMMON COMMON		STR	(3,9)
COMPON			(3)
COMMON		TDEN TRES IS	(9)
COMMON			(3,9) (3,9)
COMPON		NGGOVA	(3,9)
	/DERIVE/	VAVGID	(3,9)
COMMON		VBG	(3,9)
COMMON		LAPACT	(9)
	/DERIVE/	VELV	(3)
	/DERIVE/	VENAX	(3)
COMMON		VE	(20,3,3)
COMMON		AGGUVO	(3,9)
COMMON		VNAX	
COMNON		V MAX 1	(3)
	/DERIVE/	VNAX 2	(3,5)
COMNON	/DERIVE/	VELA	
COMMON	/DERIVE/	VØVER	(3,9)
CONFON	/DERIVE/	VRID	-
COMMON	/DERIVE/	NSEL	
COMMON	/DERIVE/	VSEL1	(3)
COMPON		VSEL 2	(3,9)
COMMON		VSGIL	(3,9)
COMPON		NET	(3,9)
COMPON	• • • • • •	V.XT	(3,94
COMPON		ABIGONO	
COMPON		HRATIO	
COMMON	/TERRAN/ /TERRAN/	AA Actrms	
	/TERRAN/	AREA	
	/TERRAN/	AREAO	
	/TERRAN/	CI	
COMPON		CIST	
COMPON	/TERRAN/	EANG	
COMPON	/TERRAN/	ECF	
COMMON	/TERRAN/	ELEV	
COMMON	/TERRAN/	FNU	(3)
COMMON	/TERRAN/	GRADE	
COMPON	/TERRAN/	IOBS	
COMMON	/TERRAN/	lest	
COMMON	/TERRAN/	IRGAD	
COMPON	/TERRAN/	15	(9)
COMMON	/TERRAN/	IST	
COMMON	/TERRAN/	ITUT	
COMPON	/TERRAN/	N.3	
		004	

CGMMON /TERRAN/NJUCGMMON /TERRAN/CAMCOMMON /TERRAN/CBHCOMMON /TERRAN/CBHCOMMON /TERRAN/CBHCOMMON /TERRAN/CBHCOMMON /TERRAN/CBHCOMMON /TERRAN/CBHCOMMON /TERRAN/CBHCOMMON /TERRAN/CBHCOMMON /TERRAN/RADCCOMMON /TERRAN/RADCCOMMON /TERRAN/ROICCOMMON /TERRAN/ROICCOMMON /TERRAN/ROICCOMMON /TERRAN/ROICCOMMON /TERRAN/ROICCOMMON /TERRAN/ROICCOMMON /TERRAN/SCOMMON /TERRAN/SCOMMON /TERRAN/SCOMMON /TERRAN/SUCOMMON /TERRAN/SUCOMMON /TERRAN/SUCOMMON /TERRAN/SUCOMMON /TERRAN/SUCOMMON /TERRAN/SUCOMMON /TERRAN/SUCOMMON /TERRAN/SUCOMMON /TERRAN/SUCOMMON /SCEN/CHHESCOMMON /SCEN/CHHAXCOMMON /SCEN/GAMACOMMON /SCEN/SURFCOMMON /SCEN/SUN				
COMMON /TERRAN/ CBAA COMMON /TERRAN/ CBH CONMON /TERRAN/ CBH COMMON /TERRAN/ CBA COMMON /TERRAN/ CBM COMMON /TERRAN/ CBA COMMON /TERRAN/ CBA COMMON /TERRAN/ CBA COMMON /TERRAN/ FADC COMMON /TERRAN/ FADC COMMON /TERRAN/ FADC COMMON /TERRAN/ RGIC (44 CGMMON /TERRAN/ RGIC (44 CGMMON /TERRAN/ RGIC (44 COMMON /TERRAN/ SGI (93 COMMON /TERRAN/ SGI (93 COMMON /TERRAN/ SURFF CGMMON /TERRAN/ SURFF CGMMON /TERRAN/ SURFF CGMMON /TERRAN/ WGIRV (40 COMMON /TERRAN/ WGIRV (40 COMMON /TERRAN/ WGIRV (40 COMMON /SCEN/ CGIMAX CGMMON /SCEN/ CGIMAX CGMMON /SCEN/ GAMMA COMMON /SCEN/ GAMMA COMMON /SCEN/ ISURF COMMON /SCEN/ KII3 COMMON /SCEN/ KII3	COMMON	/TERRAN/	NJU	
COMMON /TERRAN/CBAACOMMON /TERRAN/CBHCOMMON /TERRAN/CBLCOMMON /TERRAN/CBUCOMMON /TERRAN/CBACOMMON /TERRAN/CBAINWCOMMON /TERRAN/CBIACOMMON /TERRAN/ROCCOMMON /TERRAN/ROCCOMMON /TERRAN/ROCCOMMON /TERRAN/ROCCOMMON /TERRAN/ROCCOMMON /TERRAN/ROCCOMMON /TERRAN/ROCCOMMON /TERRAN/ROCCOMMON /TERRAN/ROACOMMON /TERRAN/ROACOMMON /TERRAN/SECOMMON /TERRAN/SECOMMON /TERRAN/SUCOMMON /SCEN/CUNAXCOMMON /SCEN/SUNAKCOMMON /SCEN/SUNAKCOMMON /SCEN/SUCOMMON	COMMON	/TERRAN/	CAW	
COM MON/TERR AN/C8HCOM MON/TERR AN/C6LCGM MON/TERR AN/CBWCOM MON/TERR AN/CBI ACOM MON/TERR AN/CGI ACOM MON/TERR AN/RADCCOM MON/TERR AN/RADACOM MON/TERR AN/RADACOM MON/TERR AN/RADACOM MON/TERR AN/RADACOM MON/TERR AN/SDLCOM MON/TERR AN/SDLCOM MON/TERR AN/SULCOM MON/TERR AN/SULCOM MON/TERR AN/SULCOM MON/TERR AN/SULCOM MON/TERR AN/WECOM MON/TERR AN/WECOM MON/TERR AN/WECOM MON/SCEN/CGH AXCOM MON/SCEN/CGH AXCGM MON/SCEN/GAMMACOM MON/SCEN/GAMMACOM MON/SCEN/KII3COM MON/SCEN/KII3COM MON/SCEN/KII3COM MON/SCEN/KII4COM MON/SCEN/KII3COM MON/SCEN/KII3COM MON/SCEN/KII3COM MON/SCEN/KII1C	COMMON	/TERRAN/	CBAA	
CONMON /TERRAN/ CBL CGM MON /TERRAN/ CBS COM MON /TERRAN/ CBM INW COM MON /TERRAN/ CBM INW COM MON /TERRAN/ CBTA CGM MON /TERRAN/ RGT COM MON /TERRAN/ RB COM MON /TERRAN/ RB COM MON /TERRAN/ SB (91) COM MON /TERRAN/ SDL (91) COM MON /TERRAN/ SURFF CGM MON /TERRAN/ SURFF CGM MON /TERRAN/ ME COM MON /TERRAN/ WEUR / (4, 11) COM MON /TERRAN/ WEUR / (4, 11) COM MON /TERRAN/ WE COM MON /TERRAN/ WE COM MON /SCEN/ CGHES CGM MON /SCEN/ CGHES CGM MON /SCEN/ CGHES CGM MON /SCEN/ GAMMA COM MON /SCEN/ ISEA SN COM MON /SCEN/ ISEA SN COM MON /SCEN/ KII1 COM MON /SCEN/ KII2 COM MON /SCEN/ KII3 COM MON /SCEN/ KII17 COM MON /SCEN/ KII17 COM MON /SCEN/ KII17 COM MON /SCEN/ KII17 COM MON /SCEN/ KII17			CBH	
CGM MON /TERRAN/ GBS COM MON /TERRAN/ GBH INW COM MON /TERRAN/ GBH INW COM MON /TERRAN/ GBH INW COM MON /TERRAN/ GBIA CGM MON /TERRAN/ NVAS HO COM MON /TERRAN/ RGI COM MON /TERRAN/ RGI CGM MON /TERRAN/ RGI COM MON /TERRAN/ RB COM MON /TERRAN/ RB COM MON /TERRAN/ RB COM MON /TERRAN/ SB (91 COM MON /TERRAN/ SB (91 COM MON /TERRAN/ SB (91 COM MON /TERRAN/ SB (91 COM MON /TERRAN/ SDL (91 COM MON /SCEN/ SUURF COM MON /SCEN/ CGHES CGM MON /SCEN/ CGHES CGM MON /SCEN/ SDNOW COM MON /SCEN/ SINOW COM MON /SCEN/ KII COM MON /SCEN/ KII CO		• • • •		
COMMON /TERRAN/CBMCOMMON /TERRAN/GBMCOMMON /TERRAN/AYASHOCOMMON /TERRAN/FADCCOMMON /TERRAN/FADCCOMMON /TERRAN/RGICCAMMON /TERRAN/RGICCAMMON /TERRAN/RGURVCOMMON /TERRAN/RBCOMMON /TERRAN/RBCOMMON /TERRAN/RBCOMMON /TERRAN/SDLCOMMON /TERRAN/SDLCOMMON /TERRAN/SDLCOMMON /TERRAN/SDLCOMMON /TERRAN/SDLCOMMON /TERRAN/SDLCOMMON /TERRAN/SDLCOMMON /TERRAN/SDLCOMMON /TERRAN/SDLCOMMON /TERRAN/SULCOMMON /TERRAN/SULCOMMON /TERRAN/SULCOMMON /TERRAN/WAURVCOMMON /TERRAN/WAURVCOMMON /TERRAN/WAURVCOMMON /TERRAN/WAURVCOMMON /SCEN/COHESCOMMON /SCEN/COHESCOMMON /SCEN/GAMMACOMMON /SCEN/ISURFCOMMON /SCEN/KAI1COMMON /SCEN/KAI2COMMON /SCEN/KAI3COMMON /SCEN/KAI3COMMON /SCEN/KAI3COMMON /SCEN/KAI12COMMON /SCEN/KAI12COMMON /SCEN/KAI12COMMON /SCEN/KAI12COMMON /SCEN/KAI12COMMON /SCEN/KAI12COMMON /SCEN/KAI12COMMON /SCEN/KAI12COMMON /SCEN/KAI12				,
COM MON/TERR AN/CBM INWCOM MON/TERR AN/RGIACOM MON/TERR AN/RADCCOM MON/TERR AN/RGICCOM MON/TERR AN/SGICOM MON/TERR AN/SGICOM MON/TERR AN/SGICOM MON/TERR AN/SGICOM MON/TERR AN/SGICOM MON/TERR AN/SGICOM MON/TERR AN/WAIKCOM MON/TERR AN/WAIKCOM MON/TERR AN/WAIKCOM MON/SCEN/CGH ESCOM MON/SCEN/CGH AXCGM MON/SCEN/GAMMACOM MON/SCEN/ISURFCOM MON/SCEN/KII13COM MON/SCEN/KII13 <td></td> <td></td> <td></td> <td></td>				
COMMON /TERRAN/ CGIA COMMON /TERRAN/ NYASHO COMMON /TERRAN/ FADC COMMON /TERRAN/ RGI COMMON /TERRAN/ RGIC (4) CGMMON /TERRAN/ RGURV (11) COMMON /TERRAN/ RGURV (11) COMMON /TERRAN/ RB COMMON /TERRAN/ RB COMMON /TERRAN/ SB (9) COMMON /TERRAN/ SB (9) COMMON /TERRAN/ SDL (9) COMMON /TERRAN/ SURFF CGMMON /TERRAN/ SURFF CGMMON /TERRAN/ SURFF CGMMON /TERRAN/ WA COMMON /SCEN/ CGHES CGMMON /SCEN/ CGHES CGMMON /SCEN/ GAMMA COMMON /SCEN/ IGVER COMMON /SCEN/ ISURF COMMON /SCEN/ ISURF COMMON /SCEN/ KII1 COMMON /SCEN/ KII3 COMMON			•	•
COMMON /TERRAN/ NYASHO COMMON /TERRAN/ FADC COMMON /TERRAN/ FADC COMMON /TERRAN/ RGIC (4) COMMON /TERRAN/ RGIC (4) COMMON /TERRAN/ RGURV (11) COMMON /TERRAN/ RB COMMON /TERRAN/ RB COMMON /TERRAN/ SB (9) COMMON /TERRAN/ SB (10) COMMON /SCEN/ CGHES COMMON /SCEN/ CGHES COMMON /SCEN/ CGHES COMMON /SCEN/ CGHES COMMON /SCEN/ SINCW COMMON /SCEN/ SII1 COMMON /SCEN/ SII2 COMMON /SCEN/ SII2 COMMON /SCEN/ SII3 COMMON /SCEN/ SII4 COMMON /SCEN/ SII17 CGMMON /SCEN/ SII17 CGMMON /SCEN/ SII13 COMMON /SCEN/ SII13 COMMON /SCEN/ SII13 COMMON /SCEN/ SII13 COMMON /SCEN/ SII17 COMMON /SCEN/		• • •		-
COMMON /TERRAN/ FADC COMMON /TERRAN/ RGI COMMON /TERRAN/ RGI COMMON /TERRAN/ RGIC (4) COMMON /TERRAN/ RGI COMMON /TERRAN/ RB COMMON /TERRAN/ RB (12) COMMON /TERRAN/ SB (9) COMMON /TERRAN/ SB (9) COMMON /TERRAN/ SDL (9) COMMON /SCEN/ SJL (
COMMON /TERRAN/ COMMON /TERRAN/ RGICRGICOMMON /TERRAN/ RGURVRGURV(11)COMMON /TERRAN/ RGMON /TERRAN/ RGURV(12)COMMON /TERRAN/ RGURVS(9)COMMON /TERRAN/ SGLSGL(9)COMMON /TERRAN/ SGLSGL(9)COMMON /TERRAN/ SGLSGL(9)COMMON /TERRAN/ SGLSGL(9)COMMON /TERRAN/ SGLSGL(9)COMMON /TERRAN/ SGLSGL(9)COMMON /TERRAN/ SGLSGL(11)COMMON /TERRAN/ COMMON /TERRAN/ SGEN/ COMMON /TERRAN/ CGMMON /SCEN/ CGHES(4,11)COMMON /SCEN/ CGMMON /SCEN/ CGMMON /SCEN/ CGMMON /SCEN/ CGMMON /SCEN/ SGEN/ CGMMON /SCEN/ SGEN/<			•	
COMMON /TERRAN/ CGMMON /TERRAN/ RGURVRGURV(11)COMMON /TERRAN/ COMMON /TERRAN/ SGURVR8(12)COMMON /TERRAN/ SGURVS8(9)COMMON /TERRAN/ SGURVS91(9)COMMON /TERRAN/ SGURVS01(9)COMMON /TERRAN/ SGURVS01(9)COMMON /TERRAN/ SGURVS01(9)COMMON /TERRAN/ SGURVS01(9)COMMON /TERRAN/ SGURVS01(11)COMMON /TERRAN/ SGURVS01(11)COMMON /TERRAN/ COMMON /TERRAN/ COMMON /TERRAN/ COMMON /TERRAN/ COMMON /SCEN/ CGMMON /SCEN/ KII3COMMON /SCEN/ SGUNCOMMON /SCEN/ COMMON /SCEN/ COMMON /SCEN/ CGMMON /SCEN/ CGMMON /SCEN/ KII3S00COMMON /SCEN/ CGMMON /SCEN/ CGMMON /SCEN/ CGMMON /SCEN/ KII3C00COMMON /SCEN/ CGMMON /SCEN/ CGMMON /SCEN/ CGMMON /SCEN/ KII17C00COMMON /SCEN/ CGMMON /SCEN/ KII13C00COMMON /SCEN/ KII13C00COMMON /SCEN/ KII13C00COMMON /SCEN/ KII13C00COMMON /SCEN/ KII13C00COMMON /SCEN/ KII17C00COMMON /SCEN/ KII17C00COMMON /SCEN/ KII17C00COMMON /SCEN/ KII17C00COMMON /SCEN/ KII17C00				
CGMMON /TERRAN/ COMMON /TERRAN/ R8RGURV(11)COMMON /TERRAN/ COMMON /TERRAN/ S0(9)COMMON /TERRAN/ S0(9)COMMON /TERRAN/ S0L(9)COMMON /TERRAN/ S0L(9)COMMON /TERRAN/ S0L(9)COMMON /TERRAN/ S0L(9)COMMON /TERRAN/ S0L(11)COMMON /TERRAN/ S0L(3)COMMON /TERRAN/ S0L(4,11)COMMON /TERRAN/ S0L(4,11)COMMON /TERRAN/ S0L(4,11)COMMON /TERRAN/ S0L(4,11)COMMON /TERRAN/ S0L(6)COMMON /TERRAN/ S0L(6)COMMON /SCEN/ C0MMON /SCEN/ C0MMON /SCEN/(6)COMMON /SCEN/ C0MMON /SCEN/1500WCOMMON /SCEN/ C0MMON /SCEN/1500WCOMMON /SCEN/ C0MMON /SCEN/ C0MMON /SCEN/1500WCOMMON /SCEN/ C0MMON /SCEN/ K313(5)COMMON /SCEN/ C0MMON /SCEN/ C0MMON /SCEN/ C0MMON /SCEN/ K313(5)COMMON /SCEN/ C0MMON /SCEN/ K314(5)COMMON /SCEN/ C0MMON /SCEN/ K3110(5)COMMON /SCEN/ K3112(5)COMMON /SCEN/ K3113(5)COMMON /SCEN/ K3113(5)COMMON /SCEN/ K3113(11)COMMON /SCEN/ K3113(5)COMMON /SCEN/ K3113(5)COMMON /SCEN/ K3113(5)COMMON /SCEN/ K3117(5)COMMON /SCEN/ K3117(5)COMMON /SCEN/ K3117(6)COMMON /SCEN/ K3117(6)<		•		643
COMMON /TERRAN/ R8 COMMON /TERRAN/ R0A (12) COMMON /TERRAN/ S0A (9) COMMON /TERRAN/ S0A (4) COMMON /TERRAN/ W4 COMMON /TERRAN/ W4 COMMON /TERRAN/ W4 COMMON /TERRAN/ W4 COMMON /TERRAN/ W4 COMMON /SCEN/ C0HES CGMMON /SCEN/ C0HES CGMMON /SCEN/ C0HES CGMMON /SCEN/ C0HES COMMON /SCEN/ C0HES COMMON /SCEN/ C0HES COMMON /SCEN/ C0HES COMMON /SCEN/ S1 COMMON /SCE				
COMMON /TERRAN/ COMMON /TERRAN/ SOL(121COMMON /TERRAN/ SOLSOL(91COMMON /TERRAN/ SOLSOL(91COMMON /TERRAN/ SOLSOL(91COMMON /TERRAN/ SOLSOL(91COMMON /TERRAN/ SOLSOL(91COMMON /TERRAN/ SOLSOL(91COMMON /TERRAN/ SOLSOL(91COMMON /TERRAN/ SOLSOL(91COMMON /TERRAN/ SOLSOL(91COMMON /TERRAN/ SOLSOL(4, 11)COMMON /TERRAN/ SOLWALK(4, 11)COMMON /SCEN/ COMMON /SCEN/ SOLWALK(4, 11)COMMON /SCEN/ SOLSOLSOLCOMMON /SCEN/ SOLKIISOLCOMMON /SCEN/ SOLKIISOLCOMMON /SCEN/ SOLKIISOLCOMMON /SCEN/ SOLKIISOLCOMMON /SCEN/ SOLKIIICOMMON /SCEN/ SOLCOMMON /SCEN/ SOLKIIICOMMON /SCEN/ SOLCOMMON /SCEN/ SOLKIIICOMMON /SCEN/ SOLCOMMON /SCEN/ SOLKIIICOMMON /SCEN/ SOLCOMMON /SCEN/				
COMMON /TERRAN/ S (9) COMMON /TERRAN/ SB (9) COMMON /TERRAN/ SDL (9) COMMON /TERRAN/ SURFF CGMMON /TERRAN/ SURFF CGMMON /TERRAN/ TANPHI COMMON /TERRAN/ THETA (3) COMMON /TERRAN/ WE COMMON /TERRAN/ WE COMMON /TERRAN/ WE COMMON /TERRAN/ WE COMMON /SCEN/ COHES CGMMON /SCEN/ COHES CGMMON /SCEN/ COLMAX CGMMON /SCEN/ COLMAX CGMMON /SCEN/ COLMAX CGMMON /SCEN/ COLMAX CGMMON /SCEN/ INFR COMMON /SCEN/ ISBASN CCMMON /SCEN/ ISBNOW COMMON /SCEN/ KII1 COMMON /SCEN/ KII2 COMMON /SCEN/ KII3 COMMON /SCEN/ KII3				(12)
COMMON /TERRAN/ SB (9) COMMON /TERRAN/ SURFF CGMMON /TERRAN/ SURFF CGMMON /TERRAN/ TANPHI COMMON /TERRAN/ TANPHI COMMON /TERRAN/ TANPHI COMMON /TERRAN/ WA COMMON /TERRAN/ WA COMMON /TERRAN/ WA COMMON /SCEN/ COHES COMMON /SCEN/ ISURF COMMON /SCEN/ ISURF COMMON /SCEN/ KIII COMMON /SCEN/ KIII COMMON /SCEN/ KIII COMMON /SCEN/ KIII COMMON /SCEN/ KIII COMMON /SCEN/ KII3 COMMON /SCEN/ KII3				
COMMON /TERRAN/ SOL (91 COMMON /TERRAN/ SURFF CGMMON /TERRAN/ TANPHI COMMON /TERRAN/ TANPHI COMMON /TERRAN/ WÉURV (4,11) COMMON /TERRAN/ WÉ COMMON /TERRAN/ WÉ COMMON /TERRAN/ WÉ COMMON /SCEN/ CGHES CGMMON /SCEN/ CGHES CGMMON /SCEN/ CGLNAX CGMMON /SCEN/ CGLNAX CGMMON /SCEN/ GAMMA COMMON /SCEN/ GAMMA COMMON /SCEN/ ISLASN CCMMON /SCEN/ ISLASN CCMMON /SCEN/ ISLASN CCMMON /SCEN/ ISLASN COMMON /SCEN/ ISLASN COMMON /SCEN/ ISLASN COMMON /SCEN/ ISLASN COMMON /SCEN/ KII1 COMMON /SCEN/ KII3 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17				
COMMON /TERRAN/ SURFF CGMMON /TERRAN/ TANPHI COMMON /TERRAN/ TANPHI COMMON /TERRAN/ WEURV (4,11) COMMON /TERRAN/ WE COMMON /TERRAN/ WE COMMON /SCEN/ COHES COMMON /SCEN/ COHES COMMON /SCEN/ COHES COMMON /SCEN/ COHES COMMON /SCEN/ COHAX COMMON /SCEN/ COMMA COMMON /SCEN/ GAMMA COMMON /SCEN/ ISLARF COMMON /SCEN/ ISLARF COMMON /SCEN/ ISLARF COMMON /SCEN/ KII1 COMMON /SCEN/ KII2 COMMON /SCEN/ KII3 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17				
CGMMON /TERRAN/ TANPHI CGMMON /TERRAN/ THETA (3) CGMMON /TERRAN/ WÉURV (4,11) CGMMON /TERRAN/ WÉ CGMMON /TERRAN/ WÉ CGMMON /SCEN/ CGHES CGMMON /SCEN/ CGHES CGMMON /SCEN/ CGHAX CGMMON /SCEN/ CGLNAX CGMMON /SCEN/ CGLNAX CGMMON /SCEN/ CGLNAX CGMMON /SCEN/ ISLAFF COMMON /SCEN/ ISLAFF COMMON /SCEN/ ISLAFF COMMON /SCEN/ KII CGMMON /SCEN/ KII C				1 7 *
COMMON /TERRAN/ THETA (3) COMMON /TERRAN/ WEURV (4,11) COMMON /TERRAN/ WE COMMON /TERRAN/ WE COMMON /SCEN/ COHES COMMON /SCEN/ COHES COMMON /SCEN/ COLMAX COMMON /SCEN/ COLMAX COMMON /SCEN/ COLMAX COMMON /SCEN/ FISURF COMMON /SCEN/ FISURF COMMON /SCEN/ FISURF COMMON /SCEN/ KII1 COMMON /SCEN/ KII2 COMMON /SCEN/ KII3 COMMON /SCEN/ KII3 COMMON /SCEN/ KII3 COMMON /SCEN/ KII5 COMMON /SCEN/ KII5 COMMON /SCEN/ KII5 COMMON /SCEN/ KII5 COMMON /SCEN/ KII5 COMMON /SCEN/ KII5 COMMON /SCEN/ KII9 COMMON /SCEN/ KII9 COMMON /SCEN/ KII9 COMMON /SCEN/ KII9 COMMON /SCEN/ KII9 COMMON /SCEN/ KII9 COMMON /SCEN/ KII11 COMMON /SCEN/ KII13 COMMON /SCEN/ KII13 COMMON /SCEN/ KII13 COMMON /SCEN/ KII13 COMMON /SCEN/ KII17 COMMON /SCEN/ KII13 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17			-	
COMMON /TERRAN/ VEURV (4.11) COMMON /TERRAN/ WB COMMON /TERRAN/ WB COMMON /SCEN/ COHES COMMON /SCEN/ COHES COMMON /SCEN/ COLMAX COMMON /SCEN/ COLMAX COMMON /SCEN/ COLMAX COMMON /SCEN/ FIGURE COMMON /SCEN/ FIGURE COMMON /SCEN/ FIGURE COMMON /SCEN/ FIGURE COMMON /SCEN/ KIII COMMON /SCEN/ KIII COMMON /SCEN/ KIIS COMMON /SCEN/ KIII3 COMMON /SCEN/ KIII3 COMMON /SCEN/ KIII3 COMMON /SCEN/ KIII3 COMMON /SCEN/ KIII3 COMMON /SCEN/ KIII3 COMMON /SCEN/ KIII3				(2)
COMMON /TERRAN/ WB CGMWON /TERRAN/ WB COMMON /SCEN/ CGHES CGMMON /SCEN/ CGHES CGMMON /SCEN/ CGLMAX CGMMON /SCEN/ CGLMAX CGMMON /SCEN/ CGLMAX CGMMON /SCEN/ GAMMA COMMON /SCEN/ HGVER COMMON /SCEN/ HSURF COMMON /SCEN/ HSURF COMMON /SCEN/ KJI1 COMMON /SCEN/ KJI2 COMMON /SCEN/ KJI3 CGMMON /SCEN/ KJI3 CGMMON /SCEN/ KJI4 COMMON /SCEN/ KJI5 CGMMON /SCEN/ KJI5 CGMMON /SCEN/ KJI7 CGMMON /SCEN/ KJI7 CGMMON /SCEN/ KJI9 COMMON /SCEN/ KJI9 COMMON /SCEN/ KJI10 COMMON /SCEN/ KJI12 COMMON /SCEN/ KJI12 COMMON /SCEN/ KJI13 COMMON /SCEN/ KJI17 CGMMON /SCEN/ KJI17 CGMMON /SCEN/ KJI17 COMMON /SCEN/ KJI17 COMMON /SCEN/ KJI17 COMMON /SCEN/ KJI17				
CGMMON /TERRAN/ NC COMMON /SCEN/ CGHES CGMMON /SCEN/ CGHES CGMMON /SCEN/ CGLMAX CGMMON /SCEN/ CGLMAX CGMMON /SCEN/ CGLMAX CGMMON /SCEN/ CGLMAX COMMON /SCEN/ CGLMAX COMMON /SCEN/ FIGURF COMMON /SCEN/ FIGURF COMMON /SCEN/ KII1 COMMON /SCEN/ KII1 COMMON /SCEN/ KII3 COMMON /SCEN/ KII5 COMMON /SCEN/ KII5 COMMON /SCEN/ KII5 COMMON /SCEN/ KII5 COMMON /SCEN/ KII5 COMMON /SCEN/ KII7 CGMMON /SCEN/ KII9 COMMON /SCEN/ KII9 COMMON /SCEN/ KII10 COMMON /SCEN/ KII10 COMMON /SCEN/ KII11 COMMON /SCEN/ KII13 COMMON /SCEN/ KII13 COMMON /SCEN/ KII13 COMMON /SCEN/ KII13 COMMON /SCEN/ KII13 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17 COMMON /SCEN/ KII17				149111
COMMON /SCEN/CGHESCGMMON /SCEN/CGLMAXCGMMON /SCEN/CGLMAXCGMMON /SCEN/FOVERCOMMON /SCEN/FOVERCOMMON /SCEN/FOURFCOMMON /SCEN/FSURFCOMMON /SCEN/FSURFCOMMON /SCEN/FSURFCOMMON /SCEN/KAI1COMMON /SCEN/KAI2COMMON /SCEN/KAI3COMMON /SCEN/KAI3COMMON /SCEN/KAI5COMMON /SCEN/KAI6COMMON /SCEN/KAI6COMMON /SCEN/KAI7CGMMON /SCEN/KAI7CGMMON /SCEN/KAI8COMMON /SCEN/KAI17CGMMON /SCEN/KAI17CGMMON /SCEN/KAI12COMMON /SCEN/KAI12COMMON /SCEN/KAI12COMMON /SCEN/KAI13COMMON /SCEN/KAI12COMMON /SCEN/KAI13COMMON /SCEN/KAI13COMMON /SCEN/KAI13COMMON /SCEN/KAI15COMMON /SCEN/KAI15COMMON /SCEN/KAI15COMMON /SCEN/KAI15COMMON /SCEN/KAI15COMMON /SCEN/KAI15COMMON /SCEN/KAI15COMMON /SCEN/KAI16COMMON /SCEN/KAI16COMMON /SCEN/KAI17COMMON /SCEN/KAI17COMMON /SCEN/KAI17COMMON /SCEN/KAAP	-			
CGMMON/SCEN/VMALKCGMMON/SCEN/CGLMAXCGMMON/SCEN/IGVERCOMMON/SCEN/IGVERCOMMON/SCEN/ISLASNCGMMON/SCEN/ISLASNCGMMON/SCEN/ISNOWCOMMON/SCEN/KAII	-			
COMMON/SCEN/CGL MAXCGMMON/SCEN//GMMACOMMON/SCEN//IGVERCOMMON/SCEN//ISEASNCOMMON/SCEN//ISURFCOMMON/SCEN//ISNOWCOMMON/SCEN/KIICOMMON/SCEN/KIICOMMON/SCEN/KII3COMMON/SCEN/KII3COMMON/SCEN/KII5COMMON/SCEN/KII5COMMON/SCEN/KII5COMMON/SCEN/KII6COMMON/SCEN/KII7CGMMON/SCEN/KII8COMMON/SCEN/KII17CGMMON/SCEN/KII11COMMON/SCEN/KII13COMMON/SCEN/KII13COMMON/SCEN/KII13COMMON/SCEN/KII15COMMON/SCEN/KII15COMMON/SCEN/KII17COMMON/SCEN/KII17COMMON/SCEN/KII17COMMON/SCEN/KII17COMMON/SCEN/KII17				
CGMMON/SCEN/GAMMACOMMON/SCEN/IGVERCOMMON/SCEN/ISEASNCCMMON/SCEN/ISURFCOMMON/SCEN/ISNOWCOMMON/SCEN/KAI1COMMON/SCEN/KAI2COMMON/SCEN/KAI3COMMON/SCEN/KAI3COMMON/SCEN/KAI4COMMON/SCEN/KAI5COMMON/SCEN/KAI6COMMON/SCEN/KAI6COMMON/SCEN/KAI7CGMMON/SCEN/KAI8COMMON/SCEN/KAI10COMMON/SCEN/KAI12COMMON/SCEN/KAI12COMMON/SCEN/KAI12COMMON/SCEN/KAI13COMMON/SCEN/KAI13COMMON/SCEN/KAI13COMMON/SCEN/KAI15COMMON/SCEN/KAI15COMMON/SCEN/KAI15COMMON/SCEN/KAI15COMMON/SCEN/KAI15COMMON/SCEN/KAI15COMMON/SCEN/KAI15COMMON/SCEN/KAI15COMMON/SCEN/KAI16COMMON/SCEN/KAI16COMMON/SCEN/KAI17COMMON/SCEN/KAI17COMMON/SCEN/KAI17COMMON/SCEN/KAI17				
COM HON/SCEN/IGVERCOM HON/SCEN/ISEASNCOM HON/SCEN/ISURFCOM HON/SCEN/ISNOWCOM HON/SCEN/KIICOM HON/SCEN/KIIICOM HON/SCEN/ <td>-</td> <td></td> <td></td> <td></td>	-			
COMMON/SCEN/ISEASNCOMMON/SCEN/ISURFCOMMON/SCEN/ISNOWCOMMON/SCEN/KIICOMMON/SCEN/KIICOMMON/SCEN/KIICOMMON/SCEN/KIICOMMON/SCEN/KII5COMMON/SCEN/KII5COMMON/SCEN/KII5COMMON/SCEN/KII6COMMON/SCEN/KII7CGMMON/SCEN/KII9COMMON/SCEN/KII9COMMON/SCEN/KII11COMMON/SCEN/KII13COMMON/SCEN/KII13COMMON/SCEN/KII13COMMON/SCEN/KII15COMMON/SCEN/KII15COMMON/SCEN/KII17COMMON/SCEN/KII17COMMON/SCEN/KII17COMMON/SCEN/KII17COMMON/SCEN/KII17	-			
CCMMON /SCEN/ISURFCOMMON /SCEN/ISNOWCOMMON /SCEN/KJI1COMMON /SCEN/KJI2COMMON /SCEN/KJI3COMMON /SCEN/KJI3COMMON /SCEN/KJI4COMMON /SCEN/KJI5COMMON /SCEN/KJI7COMMON /SCEN/KJI7CGMMON /SCEN/KJI7CGMMON /SCEN/KJI7CGMMON /SCEN/KJI9COMMON /SCEN/KJI10COMMON /SCEN/KJI11COMMON /SCEN/KJI12COMMON /SCEN/KJI13COMMON /SCEN/KJI13COMMON /SCEN/KJI15COMMON /SCEN/KJI15COMMON /SCEN/KJI17COMMON /SCEN/KJI17COMMON /SCEN/KJI17	-			
COMPON /SCEN/ISNOWCOMPON /SCEN/KIICOMPON				
COMNON /SCEN/KIICOMNON /SCEN/KII2COMNON /SCEN/KII3COMNON /SCEN/KII3COMNON /SCEN/KII5COMMON /SCEN/KII5COMMON /SCEN/KII7COMMON /SCEN/KII7COMMON /SCEN/KII7COMMON /SCEN/KII7COMMON /SCEN/KII8COMMON /SCEN/KII9COMMON /SCEN/KII10COMMON /SCEN/KII11COMMON /SCEN/KII13COMMON /SCEN/KII13COMMON /SCEN/KII15COMMON /SCEN/KII15COMMON /SCEN/KII17COMMON /SCEN/KII17COMMON /SCEN/KII17				
COMMON /SCEN/K.J.12COMMON /SCEN/KJ13COMMON /SCEN/KJ14COMMON /SCEN/KJ15COMMON /SCEN/KJ17COMMON /SCEN/KJ17COMMON /SCEN/KJ17COMMON /SCEN/KJ18COMMON /SCEN/KJ18COMMON /SCEN/KJ110COMMON /SCEN/KJ111COMMON /SCEN/KJ112COMMON /SCEN/KJ113COMMON /SCEN/KJ113COMMON /SCEN/KJ15COMMON /SCEN/KJ15COMMON /SCEN/KJ15COMMON /SCEN/KJ17COMMON /SCEN/KJ17COMMON /SCEN/KJ17COMMON /SCEN/KJ17				
COMMON /SCEN/KII3COMMON /SCEN/KII4COMMON /SCEN/KII5COMMON /SCEN/KII7COMMON /SCEN/KII7COMMON /SCEN/KII7COMMON /SCEN/KII8COMMON /SCEN/KII9COMMON /SCEN/KII10COMMON /SCEN/KII11COMMON /SCEN/KII11COMMON /SCEN/KII13COMMON /SCEN/KII13COMMON /SCEN/KII15COMMON /SCEN/KII15COMMON /SCEN/KII17COMMON /SCEN/KII17COMMON /SCEN/KII17		,		
COMMON /SCEN/K&I4COMMON /SCEN/K&I5COMMON /SCEN/K&I6COMMON /SCEN/K&I7COMMON /SCEN/K&I8COMMON /SCEN/K&I9COMMON /SCEN/K&I10COMMON /SCEN/K&I11COMMON /SCEN/K&I12COMMON /SCEN/K&I12COMMON /SCEN/K&I13COMMON /SCEN/K&I13COMMON /SCEN/K&I13COMMON /SCEN/K&I15COMMON /SCEN/K&I15COMMON /SCEN/K&I15COMMON /SCEN/K&I17COMMON /SCEN/K&I17COMMON /SCEN/K&I17				
COMMON /SCEN/KII5COMMON /SCEN/KII6CUMMON /SCEN/KII7CGMMON /SCEN/KII8COMMON /SCEN/KII9COMMON /SCEN/KII9COMMON /SCEN/KII10COMMON /SCEN/KII11COMMON /SCEN/KII12COMMON /SCEN/KII13COMMON /SCEN/KII13COMMON /SCEN/KII13COMMON /SCEN/KII15COMMON /SCEN/KII17COMMON /SCEN/KII17COMMON /SCEN/KII17				
COMMON /SCEN/Kai6COMMON /SCEN/kai7COMMON /SCEN/kai8COMMON /SCEN/kai9COMMON /SCEN/kai10COMMON /SCEN/kai12COMMON /SCEN/kai12COMMON /SCEN/kai12COMMON /SCEN/kai13COMMON /SCEN/kai13COMMON /SCEN/kai13COMMON /SCEN/kai14COMMON /SCEN/kai15COMMON /SCEN/kai15COMMON /SCEN/kai15COMMON /SCEN/kai17COMMON /SCEN/kai17COMMON /SCEN/kai17				
COMMON /SCEN/KII7CGMMON /SCEN/KII8COMMON /SCEN/KII9COMMON /SCEN/KII9COMMON /SCEN/KII10COMMON /SCEN/KII11COMMON /SCEN/KII12COMMON /SCEN/KII3412COMMON /SCEN/KII3412COMMON /SCEN/KII35COMMON /SCEN/KII13COMMON /SCEN/KII55COMMON /SCEN/KII15COMMON /SCEN/KII17COMMON /SCEN/KII17COMMON /SCEN/KII17				
CGMNON /SCEN/KÆI8COMMON /SCEN/KÆI9COMMON /SCEN/KÆI10COMMON /SCEN/KÆI11COMMON /SCEN/KÆI12COMMON /SCEN/KÆI13COMMON /SCEN/KÆI13COMMON /SCEN/KÆI15COMMON /SCEN/KÆI15COMMON /SCEN/KÆI15COMMON /SCEN/KÆI17COMMON /SCEN/KÆI17COMMON /SCEN/KÆI17	-			
COMMON /SCEN/KII9COMMON /SCEN/KII10COMMON /SCEN/KII11COMMON /SCEN/KII2COMMON /SCEN/KII33COMMON /SCEN/KII33COMMON /SCEN/KII55COMMON /SCEN/KII56COMMON /SCEN/KII17COMMON /SCEN/KII17COMMON /SCEN/KII17				4
COMMON /SCEN/KHI10COMMON /SCEN/KHI11COMMON /SCEN/KHI12COMMON /SCEN/KHI13COMMON /SCEN/KHI14COMMON /SCEN/KHI15COMMON /SCEN/KHI15COMMON /SCEN/KHI17COMMON /SCEN/KHI17COMMON /SCEN/KHI17				
COMNON /SCEN/KIII1COMPON /SCEN/KII2COMPON /SCEN/KII3COMPON /SCEN/KII3COMPON /SCEN/KII5COMPON /SCEN/KII5COMPON /SCEN/KII7COMPON /SCEN/KII7COMPON /SCEN/KII7				
COMFON /SCEN/KJ112COMMON /SCEN/KJ113COMMON /SCEN/KJ144COMMON /SCEN/KJ15COMMON /SCEN/KJ15COMMON /SCEN/KJ17COMMON /SCEN/KJ117COMMON /SCEN/KJ117				
COMMON /SCEN/KIII3COMMON /SCEN/KII4COMMON /SCEN/KI15COMMON /SCEN/KI16COMMON /SCEN/KI17COMMON /SCEN/KI17COMMON /SCEN/KNAP				
COMMON /SCEN/ KEI14 COMMON /SCEN/ KEI15 COMMON /SCEN/ KEI16 COMMON /SCEN/ KEI17 COMMON /SCEN/ KAP	-			
COMMON /SCEN/ KII15 COMMON /SCEN/ KII16 COMMON /SCEN/ KII17 COMMON /SCEN/ KNAP				
COMMON /SCEN/ KII6 Common /SCEN/ KII17 Common /SCEN/ KNAP				
COMMON /SCEN/ KII17 Common /SCEN/ KNAP				
COMMON /SCEN/ KNAP	-			
LUMPUN / SCEN/ KSCEN				
	CUMPUN	1 SUEN/	FJUEN	

PAGE A-122

	/SCEN/	KTPP
	/SCEN/	KWEH
COMMON	/SCEN/	KaV1
COMMON	/SCEN/	* IV 2
COMPON	/SCEN/	K-47.3
COMMON	/SCEN/	K3¥4
COMMON	/SCEN/	KāV5
	/SCEN/	k 3₩6
	/SCEN/	K. 1 V 7
	/SCEN/	KIV8
	/SCEN/	K 1V9
	/SCEN/	K#V10
	/SCEN/	KJV11
	/SCEN/	KOV12
	/SCEN/	KAVIS
	SCEN/	
		NEV14
	/SCEN/	KJV15
	/SCEN/	K IV1 6
	/SCEN/	K.1.V.17
COMPON		K] ₩18
	/SCEN/	K 19
	/SCEN/	K 1 ₩2 Ø
	/SCEN/	K IV 21
COMMON		LAC
INTEGE		CETAIL
COMMON		CETAIL
COMMON	/SCEN/ /SCEN/	NAP
COMNON	/SCEN/	MAPG
COMMUN	/SCEN/	MONTH
COMMON	/SCEN/	NEPP
	/SCEN/	NSLIP
	/SCEN/	NTRAV
	/SCEN/	NEUX
	/SCEN/	₩I.
COMNON		REACT
COMMON		RDFCG
INTEGER		SHARCH
	/SCEN/	STARCH
	/SCEN/	SETYPC
COMMON		VARAKE
COMPON	/SCEN/ /SCEN/	WISMNV
		VEIN
COMMON		ZSNOW
		ARAT LONS
REAL	FATEMP	
REAL	FBTEMP	-
REAL	FCTEMP	
REAL	FTEMP	(20,5)
REAL	FTEMPC	
REAL	FGRADE	
REAL	FQUAD	(5)

C 1.

REAL

K1

PAGE A-124 R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM REAL MERITK REAL VGTEMP (20 , 3.3) REAL VPOWER (3) REAL VTEMP (20,54 VTEMPO (20,54 REAL VROAD (3) REAL VQUAD (5) REAL С С 2. ALGCRITHMS С С С ROUTINE 1 - SPEED LINITED BY AEROLYNAMIC, ROLLING, CORNERING С AND GRAEB RESISTANCE Ċ С С SECTION IA - INITIAMIZATION C. FCC = Ø. FCTRAK = Ø. = Ø. FR = Ø. FTC IGAP = Ø. WTSPA = Ø. WRATIO = 1С С 1A.1 - SUPERELEVATION EFFECT FACTOR С FE = 1. - 7.495* (RACC/12.)*EANG С DO 6005 NG=1,NGR DC 6000 L=1,5 $VTEMP[NG_{J}L] = VGV(NG_{J}L)$ FTEMP(NG,L) = TRACTE(NG,L) 60.00 CONTINUE 6005 CONTINUE IF(NCPP .NE. Ø) JPSI = NCPP IF (NCPP .EQ. \emptyset) JPSI = 3 C С SECTION 18 - VELOCATY DEPENDENT RESISTANCES С С 18.1 - SOFT SURFACES (TRAILS) С IF(ITUT .NE. 14) GG IC 6102 CALL IV31 CHARLN ,CI , COMES , CPFFG , DIAW DOWPB DRAT , GANNA + , ID , IP , IST , NVEH , NWHL , RCI ,NAMBLY ÷ ,GCA ,IB ,UPSI .LUN1 NPAD NSLIP NVEH NWHL RCI RTOWPB RTOWT SECTW TANPHI TRAKLN TRAKWE VCIFG VCIMUK WGHT WRATID ZSNOW) ٠ ٠ CALL IV41 . DOWP DOWB ,DOWP ,CCWPB ,GCW ,GCWB ,GCWP ,IB ,IR ,NAMBLY ,RTOWB ,RTGWNE ,RTOWNP ,RTOWP ,RTOWPB ,RTOWT ,WGHT) ÷ ÷ CALL IV51

PAGE A-125 R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM , CD .AVGC , BTE , DAREA CPFCCG CPFCFG CTF + ATE ,FB , EANG , ECR , FC FORMX . DOWP , FA # GCWP + ,LOCDIF ,NAMBLY ,NFL .JPSI .NGR , ITNT + . IFLOAT . IST ,RADC , NVEHC RTOWP NTRAV , NVEH , NWHL ,STRACT ,TEOR ÷ .THETA .TRACTF .VFNAX .VG , VGV , WGHT ,WRATIO ,LUN1) GO TO 6161 C C 18.2 HARD SURFACE (FRIMARY AND SECONDARY ROADS) С 61 12 DO 6155 K=1,NTRAV#2 NG1 = 1COSX = COS(THETA(K)) DO 6154 NG=1.NGR FA(NG,K) = A. FB(NG,K) = A. FC(NG,K) = IFATEMP(NG.KA = ATFING) FBTEMP(NG,KA = BTF(NG) FCTEMPENG, KA = CTFENGA С 18.2.1 - TRACTIVE EFFORT MODIFIED FOR SURFACE TRACTION C С AND SPEED DEPENDENT RESISTANCES С IF(TRACTE(NG,1)*ECF .LT. FMU(ISURF)*GCWP*COSX) GO TC 6130 IF(TRACTF(NG, 5) + ECF .LT. FMU(ISURF) + GCWP + COSX) GO TC 6110 С MINIMUM GEAR LINITED BY SURFACE TRACTION С C NG1 = NG1 + 1FC(NG,K) = 0.FBLING,KA = 0. FAING, KA = FMULISURF AGCHP+COSX DC 6105 41=1.3 $VG(NG_L_1,K) = 0$ STRACT(NG,L1,K) = FA(NG,K)CONTINUE 6105 GO TO 6254 C SURFACE TRACTION LINIT SCHEWHERE WITHIN SEAR С C IF(VTE#RENG, 1) .EQ. VTEMP(NG,5) + GO TO 6120 6110 FX = FMULISURFI +GCWP+COSX FORPXEK = FX L = LCO 6111 L1=1,5,2 VOTEMP(NG,L,K) = VGV(NG,L1) L = L + 1611E CONTINUE CALL VELFOR(,FATEMP ,FBTEMP , FCTEMP , FORMX FX

+	,K ,NGR ,VX ,VFMAX ,VGTEMP)
	RESET MININUM SPEEC IN GEAR TO THE POINT THAT OCCURS AT THE SURFACE TRACTION LIMIT
C	VTENRING, 1) = VX
	FTEMRUNG, 1) = FX/ECF XINT = (VTEMP(NG,5) - VTEMR(NG,1))/4.
	DC 6115 L=2,4 VTEMP(NG,L) = VTEMP(NG,L-1) + XINT
	FIEMPING,LI = CTFING)+VIENPING,L)++2 + BTHING)+VIENPING,LI +
+	AT F(NG)
6115	CGNT&NUE G0 T40 6130
С	SPEEDS EQUAL, INCREMENT ON FORCE
C C	
6120	FTEMP[NG,1] = FMU[ISURF]=GCWP#CUSX VINT = AFTEMP[NG,1] - FTEMP[NG,5]]/4.
	DD 6125 L=2,4 $FTEMP(NG_{*}L) = FTEMP(NG_{*}L-1) - YINT$
6125	
C C	18.2.2 - COMPUTE VELOCITY DEPENDENT RESISTANCES
С	DO 6142 L=1,5
613Ø C	
C C	1B-2-2-1 - AERODYNANIC DRAG
•	FCC = 0. FAD = .0026*ACD*PFA*VTEMP(NG,LI*VTEMP[NG,L]/
+	144./17.6/17.6
с	DC 6135 I=1,NAMELY
c	4# (NVEH (I) .LT. 1) GO TO 6135
C C	18.2.2.2 - TURNING RESISTANCE (WHEELED)
C	F1 = (&WGHTH(I&+COSX+VTEMP(NG,L)++2)/
*	<pre>(111.1*RADC))*(12./17.6/17.6) FCC = {FE*F1*F1}/{FLOAT {NWHL []} *AV GC } FCC</pre>
6135	CONTANUE
	FV = FAD + FCC FTE#AQ(NG,L) = FTEMP(NG,L) - FV
6143	VTE##P(NG,L) = VTEMP(NG,L) Continue
01 4 4	IFLVGV(HG,1) .NE. VGV(NG,5)) GD TO 6141
	IGAF = 1 Go To 6152
6141	IF((NG NE. 1) .OR.

PAGE A-126

299

• ·

PAGE A-127 R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM (FTEMPING, 1) JNE. FTEMPING, 5.))) GD TO 6145 + FA4NG.K = FTEMPO(NG.1) FB(MG,K) = 0. FC(NG,K) = 0.GO JO 6152 DO 6150 L=1.5 6145 FOUADILI = FTEMPOING.LA VQUAB(L) = VTEMPO(NG,L) 6150 CONTINUE CALL QUADS (VOUAD FCUAD A0 B1 C2) FALNG. KA = A0 FB(NG, K) = B1 $FCING_K = C2$ 61 52 = 1 L DO 6153 L1=1,5,2 = VTEMPD(NG_L1) VG(NB-L-K) STRACT(NG,L,K) = FC(NG,K)+VG(NG,L,K)++2 + FB(NG_K) = VG[NG,L,K] + FA[NG,K] ÷ 1=1+1 CONTINUE 6153 CONTINUE 6154 VFMAX(K) = VGINGI, 1, KFORMX(K) = STRACT(NG1,1,K) 6155 CCNTINUE С С 1C - NUN-VELOCITY CEPENDENT RESISTANCES С Ĉ 1C.1 - DRAG FORCE FOR TANDEM ALIGNING (WHEELED) С NSPACE = NAMBLY, - J DC 6160 1=1.NSPACE IF (NVEH(L) .LT. 1) GC TO 6160 IFIIT(I) .NE. 14 GO TO 6160 WTSPA = WTSPA + (WGHT(I) + WGHT(I+1))+AXLSP(I) 61 6 Ø CONTINUE FTC = FE#10.5#FNL#ISURF1#WTSPA/RADC1 С С 1C.2 - TURNING RESISTANCE (TRACKED) С DC 6165 I=1,NAMBLY 6161 IF({NVEH(I) .GJ4 0) .OR. (RACC/12. .GT. 305.)) GO TO 6165 ALPHA = WT41 /TRAKLN(I) MERITK = 1.3624 - 0.6999*ALPHA + 0_951848 * AL PH A* AL PHA + 0.854848 AL PHA4ALPHA4 ALPHA XKI = 1.18 - 0.0090895 *RADC/12. + 0.44003779*(RADC/12.1**2 -+ (6.179476E-08) +(RABC/12.1++3 K1 = MERHTKAXK1 IF(ITUT .NE, 14) GG TO 6164 С C 1C.2.1 - TURNING RESUSTANCE SOFT SURFACE (TRACKED) 300

C FCTRAK = K1+(TFOR/GCW)+WGHT(I) + FCC GO TC 6185 C 1C.2.2 - TURNING RESISTANCE HARD SURFACE (TRACKED) С C FCTRAK = KIAFMULISURFI+WGHTLII + FCC 6164 CCNTINUE 6165 С 1C.3 - ROLLING RESISTANCE С С IF(ITUT .NE. 14+ 80 TO 6170 С С 1C.3.1 - SOFT SURFACE (TRAILS) С FR = {RTOWP*GCWP & RTOWNP*GCWNP}*COS{THETA}*SURFF GC TO 6185 С С 1C.3.2.1 - HARD SURFACE (WHEELED) С 6170 DC 6178 I=1,NAMBL% LFINVEHILA .LT. 1) GO TO 6175 FØ = .007 + .0939/TPSIII.JPSII FR = FØ +WGHTIII+SURFF + FR GO TO 6178 С С 1C.3.2.2 - HARD SURFACE (TRACKED) С 6175 FR = .045+WGHT41+SURFF + FR 6178 CONTINUE С С 1C.4 - GRADE RESISTANCE С 6185 DC 6190 K=1,NTRAV#2 FGRADE(K) = GCW+SIN(THETA(K)) 6190 CONTINUE С 1C.5 - TOTAL NON-VELOCITY DEPENDENT RESISTANCES Û С DC 6199 K=1, NTRAV.2 RESIST = FGRALEIK) + FR + FTC + FCTRAK С С C - SPEED LIMITED BY TOTAL RESISTANCES C LF(IGAP .NE. 1) GO TO 6198 DO 6197 NG=1.NGR IF(VGV(NG,1) _NE. VGV(NG,5)) GO TO 6197 IFI(FTENPO(NG, 1) .LT. RESIST) .OR. (FTENPOING,5) GT. RESISTIN GO TO 6197 VROWER(K) = VTEMPO(NG.1) CO TO 6199 6197 CONTINUE

301

6198 CALL VELFCR ,FC RESIST , FA - FOR MX •FB **♦**VEL VEMAX VG 1 , NGR • K VPOWER(K) = VEL 6199 CONTINUE С С Û ROUTINE 2 - SPEED LIMITED BY SURFACE ROUGHNESS С С 6200 CENTINUE DG 6210 NR=2, MAXIRR IF(ACTRMS .GE. RMS(NF)) GO TO 6210 VRID = VRICEENR-1, LAC) + (ACTRMS - RMS(NR-1))* (VRIDE(NR,LAC) - VRIDE(NR-1,LAC))/ ٠ (RMSLNR) - RMS[NR-1]) 4 GO TO 6300 CONTINUE 6210 VRID = VRIDE(MAX IGR, LAC) С С ٤ ROUTINE 3 - SPEED LINITED BY SLIDING ON CURVES С Ċ CONTINUE 63 k Ø $TANG = TAN{EANG}$ IF(ITUT .NE. 14) GO TO 6305 С С **JA.1 - SLIDING ON CURVES SOFT SURFACES (TRAILS)** С VSLID = SORT(385.9*RADC*(TANG * TFOR/GCWP)/ 11. - (TEOR/GCWP)+TANG)) ÷ GO TO 6400 С 3A.2 - SLIDING ON CURVES HARD SURFACES С (PRIMARY AND SECONDARY ROADS) Ç. С VSLID = SQRT(385.9*RADC*(TANG + FMUXISURF))/ 6305 (1. 4 FMU(ISURF)*TANG)) С С С ROUTINE 4 - SPEED LINITED BY TIPPING ON CURVES C C 0400 CONTINUE VTIP = SQRT(385.94RADC*(WTMAX + CGH#TANG)/ {CGH → WTMAX+TANG}} ŧ С C С ROUTINE 5 - TOTAL BRAKING FORCE С С

302

PAGE A-129

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

050ũ CONTINUE IF(ITUT .NE. 14) GO TO 6510 C С 5A - TOTAL BRAKING SOFT SURFACES С CALL IV114 GCW GCWB GCWNB NOGOBF INTRAV DCWB R TOWB , RTOWNE , TEF , THETA , WRATIO , X BR GC TO 6600 С С 5B - TOTAL BRAK ING BARD SURFACES С 651Ø $TBF(1) = GCW \Rightarrow SIN(THETA(1)) +$ AMIN14X8R, FMULISURF) + GCWB+CDS(THETA(1)) IF(NTRAV .NE. 1) 60 TO 6530 IF(TBF(1) .GE. Ø.) GO TO 6520 NOGOBF = 1VSEL = Ø... RETURN NOGOBF = \emptyset 6520 GO TO 6600 $TEF(3) = GCW \neq SIN(THETA(3)) +$ 6530 AMIN1(XER, FAUL ISURF) + GCWE+COSLIHETA(3))) IF(TBF(3) .GE. 0.4 GO TO 6540 NOGOBF = 1VSEL = 0. RETURN 6540 NCGOBF = \emptyset С С Ċ ROUTINE 6 - DRIVER DICTATED BRAKING LIMITS С a na na an an air a ra a an ra ra a' a' a' al a' an an an an an an air a' a' an a' al an an an an an an an an a С CCNTINUE 6600 BFMX(1) = AMIN1(CCLMAX+GCW,TBF(1)+SFTYPC/100) IF(NTRAV .EQ. 1) 60 TO 6700 BFMX(3) = AMINILOCUMAX*GCW,TBF(3)*SFTYPC/100.) С С С ROUTINE 7 - SPEED LINITED BY VISIBILITY C С CONTINUE 6700 CALL IV13 , NT R AV BFMX JEYEHGT JGGW , REACT , VELV ,VBRAKE A R D С С ROUTINE 8 - AASHG CURVATURE SPEED LINIT С ¢ ADJUSTED FOR SLIPPERY SURFACES С С

303

R-2058, VOLUME I PAGE A-131 APPENDIX A - LISTING OF FROGRAM NRMM 6822 CONTINUE IFIRADC/12. . LT. RCURVINVASHOIL GO TO 6815 IF(RADC/12. .GT. RCURV(1)) GO TO 6825 DO 6810 NV=2.NVASHO IF(RADC/32. ALT. RCURV(NVH) GO TO 6810 VAASHE = & VCURV(IROAD, NV) + (RADC/12.-RCURV(NV))+ (VCURV(IROAD, NV-1) - VCURV(IROAD, NV))/ ٠ XRCURV(NV-1) - RCURVENV) +17.6 GC TC 6834 681 Ø CONTINUE GO TO 6830 VAASHO = {VCURV{IRGAD, NVASHO} + {RADC/12. - RCURV(NVASHO))* 6815 {VCURV[IRGAD, NVASHO] - VCURV(IRGAD, NVASHO-1))/ (RCURV(NWASHO) - RCURV(NVASHO-1))) *17.6 ŧ GC TO 6830 6825 VAASHO = (VCUFWLIROAC,1) + (RADC/12. - RCURV(1))* (VCUEN(IRDAD, 1) - VCURV(IRDAD, 2))/ {RCURN411 - RCURV12144417.6 683Ø IF(((LTUT .NE. 144 .AND. (FMULISURF.) .GE. .7)) .OR. ((ITUT .EQ. 144 .AND. (TFCR/GCWP .GEL .7))) GO TO 6900 IF((ITUT INE, 14) .AND. (FMU(ISURF) ILT. .71) GO TO 6840 C С **8A - SOFT SURFACES** C VAASHC = VAASHO+SQRT((TFOR/GCWP)/0.7) GO TO 6980 С 88 - HARD SURFACES C С 0844 VAASHC = VAASHC+SQRT(FNU(ISURF)/0.7) C С ------С ROUTINE 9 - MAXIMUN RCADWAY SPEEC С 6900 CONTINUE $VSEL = \emptyset$. DC 6950 K=1-NTRAV-2 IF(NVEHC . LE. 4) VTIRE(JPSI) = 1760. VROAD(K) = AMINIEVAASHO, VELVEK), VRID, VSLID, VTIP VSEL1(K) = AMIA1(VLIM, VPOWER(K), VROAD(K), VTIRE(JPSI)) IF (NTRAV . NE. 11 GO TO 6950 VSEL = VSEAL(UP) RETURN 095J CONTINUE IF((VSEL1(UP) .EC, &.) .OR. (VSEL1(DOWN) .EQ. 0.)) GO TO 7000 VSEL = 2./X(14/VSEL1(UP)) + (1.4VSEL1(DOWNA)) CONTINUE 7260 RETURN END SUBROUTINE BUFFØ С С

C C C C C C C

GUTPUT ALGORITHM	
1. LABLED COMMON ASS Common /IO/	LIGNNENT S
	KBUFF
	LUN1
	LUN2 LUN3
COMPON /IO/	LUN4
	LNN5
	LUN6
COMMON /IO/	LUN7
COMPON /ID/	LUN8
COMPON /IO/	LUN9
COMMON /IO/	LUN1Ø NB
INTEGER COMMON /INDEX/	₩0 1¥0
INTEGER	COWN
COMPON / INDEX/	COWN
INT EGER	EBF
COMPON /INDEX/	E&F
	FORCE
COMMON /INDEX/	FERCE
	GR GR
	LEVEL
	*8
COMMON /INDEX/	MN
INTEGER	Fen
COMMON /INDEX/	RRM
INT EGER	SPEED
COMMON /INDEX/ Integer	SREED Sr
COMMON /INDEX/	SR
INTEGER	TR
COMMON /INDEX/	TR
INTEGER	TERCUE
COMPON /INDEX/	TERQUE
INTEGER Common /Index/	U.P. 10.R
INTEGER	€× ₽X
COMPON /INDEX/	₽X.
COMMON /DERIVE/	ADT
COMMON /DERIVE/	NGGOBF
COMMON /DERIVE/	CAREA
COMPON /DERIVE/ Compon /Derive/	CONB
COMMON /DERIVE/	COMPB
COMPON /DERIVE/	FA
COMMON /DERIVE/	FAT
CONMON /DERIVE/	

(9)

(20) (20,3) (9) (9)

COMMON	/DERIVE/	FB	(20,3)
CUMMON		FC	(20,3)
CONMON		FNT	(9)
	• • • • • • • • •		1 71
COMPON		FON	
COMNON		FBHNAX	
COMPON	/DERIVE/	FERMX	(3)
COMMON	/DERIVE/	IGLOAT	
	/DERIVE/	INAX	(3)
	/DERIVE/	ISAFE	(3)
			1 31
	/DERIVE/	:J	
COMMON		MAXI	
COMMON	/DERIVE/	BEMX	131
COMMON	/DER IVE/	NEVERO	
COMNON	/DERIVE/	CBSE	
	/DERIVE/	PAV	191
	/DERIVE/	RTOWE	
COMMON		RICHNB	
	/DERIVE/	FITEWNP	
COMMON	/DERIVE/	FEOWP	
COMPON	/DERIVE/	FTOWPB	(20)
COMMON	/DERIVE/	RECHT	(20)
	/DERIVE/	STRACT	(20,3,3)
COMPON		SRFO	(9)
	/DERIVE/		
		SRFV	(9)
	/DERIVE/	STR	(3,9)
	/DERIVE/	T.B.F	(3)
	/DERIVE/		(9)
COMMON	/DERIVE/	TRES IS	(3,9)
COMPON	/DERIVE/	VA	[3,9]
COMMON	/DERIVE/	NEGOVA	(3,9)
COMMON	/DERIVE/	VAVOID	(3,9)
COMMON		VBG	(3,9)
COMMON		INPACT	191
	/DERIVE/	VELV	(3)
	/DERIVE/	VENAX	(3)
	/DERIVE/	VE	(20,3,3)
COMMON		AGOVO	(3,9)
	/DERIVE/	VNAX	
COMMON	/DERIVE/	VNAX 1	(3)
COMMON	/DERIVE/	VNAX2	(3,5)
COMPON	/DERIVE/	VELA	-
	/DERIVE/	.VOV ER	(3,9)
	/DERIVE/	VRID	
	/DERIVE/	VSEL	
	/DERIVE/	VSEL1	(3)
COMPON		VSEL 2	(3,5)
COMMON		VSGIL	(3,9)
	/DERIVE/	:VIIT	[3,9]
	/DERIVE/	YXT .	(3,9)
COMMON	/DERIVE/	ADGONO ,	
COMPON	/DERIVE/	NPATIO	
COMMON	/TERRAN/	AA	

PAGE A-1.33

COMMON	/TERRAN/	ACTRMS	
	/TERRAN/	AREA	
	/TERRAN/	AREAC	
-	/TERRAN/	CI	
COMMON		CIST	
	/TERRAN/	EANG	
	/TERRAN/	ECF	
	/TERRAN/	ELEV	
COMMON	/TERRAN/	FNU	(3)
COMMON	/TERR AN/	GRADE	
COMMON	/TERRAN/	IBBS	
	/TERRAN/	IBST	
	/TERRAN/	IRGAD	
	/TERRAN/	15	<u>(</u> 9)
	/TERRAN/	IST	
	/TERRAN/	ITUT	
	/TERRAN/	N£	
	/TERRAN/	A TU	
-	/TERRAN/	CAN	
	/TERRAN/	CBAA	
	/TERRAN/	CBH	
	/TERRAN/	CBL	
	/TERRAN/	C BS C BW	
	/TERRAN/ /TERRAN/	CBMINW	
	/TERRAN/	COIA	
-	/TERRAN/	NYASHO	
	/TERRAN/	FADC	
	/TERRAN/	FG4	
	/TERRAN/	FEIC	(4)
COMPON		RCURV	(11)
	/TERRAN/	RG	
COMMON		FDA	(12)
	/TERRAN/	S	(9)
COMMON	/TERRAN/	SG	(9)
COMMON	/TERR AN/	SDL	(9)
	/TERRAN/	SURFF	
COMMON	/TERRAN/	TANPHI	
COMMON	/TERRAN/	THET A	(3)
	/TERRAN/		{4,11}
	/TERRAN/		
COMPON	/TERRAN/	w C	
		ana majar	
VARIAB	E DECLARA	TLLNS	

REAL MPH ZNPH1=MPH(VMAX) ZMPH2=MPH(VMAX1(UP)+ ZMPH3=MPH(VMAX1 (LEVEL) ZMPH4=MPH(VMAX1(DOWN)) ZMPH5=MPH(VSEL)

С С С С

307

PAGE A-1-34

```
PAGE A-135
R-2058, VOLUME I
APPENDIX A - LISTING OF FRGGRAM NRMM
         ZMP +6=MPH(VSEL1(UPJ4
         ZNP+7=MPH(VSEL11LEVEL)
         ZNPH8=MPH(VSEL1(DGWA))
         IF(ITUT .GE. 11) GC TO 2030
         IF(KBUFF .EQ. 1) GC TO 2020
        KBUFF = 1
         WRITE(LUN1,2000)
                                       UP LEVEL
2000
                                                              UP LEVEL
         FORMAT(70H1 NTU ITUT VMAX
                                                 DOWN VSEL
     +DOWN GRADE
                   AREA, //+
      3. DYNAMIC OUTPUT SECTION
C
         WRITE(LUN1Ø) NTL, LTUT, ZMPH1, ZMPH2, ZMPH3, ZMPH4, ZMPH5, ZMPH6,
2020
                      ZMPH7, ZMPH8, GRADE, AREA
         WRITE(LUN1,3030) NTW, ITUT, ZMPH1, ZMPH2, ZMPH3, ZMPH4, ZMPH5, ZMPH6,
                          ZMRH7,ZMPH8,GRADE,AREA
     ÷
         GO TO 4000
         IF(KBUFF .EQ. 1) GC TO 2040
2030
            KBUFF = 1
            WRITE(LUN1,2900)
2900
         FORMAT(42H1 NTU ITUT VSEL
                                      UP DOWN GRADE DISTANCE, //)
         WRITELLUN1, 2950 NTW, ITUT, ZNPH5, ZMPH6, ZMPH8, GRADE, DIST
2040
2950
         FORMAT(1X,14,3X,12,6(1X,F5.2),1X,F8.4)
         FORMAT(1X, 14, 4X, 11, 8(1X, F5.2), 1X, F5.2, 1X, F0.4)
3000
      3. TERMINUS
C.
4000
         CONTINUE
         RETURN
         END
      SUBROUTINE ACCEL
                       , FC
               ,FB
                               , GCW
     + {FA
                                       • I
               , NGF
                               ,NV2FLG ,RNX
                       , NGR
     + "K
     + .STRACT .T
                       ,TRESHS .V1
                                       ,V2
               ,VG
                       • X
                               +LUN1 +
     + ,V2F
                             C
              _____
С
      TIME AND DISTANCE TO AGCELERATE FROM ONE VELOCITY TO ANOTHER
C
      G
      1. VARIABLE DECLARATION
С
         REAL
                   FA
                          (20,3)
         REAL
                   FB
                          (24,3)
         REAL
                   FC
                          (24,3)
         REAL
                   RMX
                          (20)
                   STRACT LZE, 3,31
         REAL
                   TRESIS ( 3., 9).
         REAL
         REAL
                   VG
                          (28.3.3)
      3. ALGCRITHM
ί
         VM = GCW/385.9
Ĺ
         A. CETERMINE GEARS #NG1 .NG21 UF THE INITIAL
     + AND FINAL VELOCITIES.
C
            CO 3010 NG=1,NGF
               IF (V1 .LE. VG4NG,3,K)) GC TO 3020
5010
            CONT INUE
3020
            CONT INUE
            NG1 = NG
```

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

•	DO 3030 NG=NG1, N&R
	IF4V2 .LE. VGUNG,3,K)) GC TO 3040
3030	
3040	
	NG2 = NG
	IF (NG1 . NE. NG2) GO TO 3080
Ü.	B. SINGLE GEAR ROUTINE
	VL = V1
	VH = V2
	$NG = NG1$ $T = \emptyset_{\bullet}$
	X = 0.
	CALL TXGEAR
	+ (FA, FE, FC, GCW, I, K, NG, #V2FLG, RMX, STRACT, JT, TRES IS, VL, VH, VG, XX)
	IF (NV2FLG .NE. 01 GC TO 3050
	T = TT
	X = XX
	GC TC 4000
3050	IF (NV2FLG .NE. 14 GC TC 3060
	GO TO 3260
3060	IF (NV2FLG .NE. 21 GO TO 3070
	GO TO 4000
3070	CONTINUE
-	GG TO 4005
C	C. MULTIPLE GEAR ROWTINE
3080	CONTINUE
	τ = Ø. × = Ø.
	$\begin{array}{l} x = 0 \\ vL = V1 \end{array}$
	$VH = VG[NG1_3]K$
	CALL TXGEAR
	+ {FA,FE,FC,GCW,I,K,NG, BV2FLG, RMX, STRACT, TT, TRESIS, VL, VH, VG, XX}
	IF (NV2FLG .NE. #1 GC TO 3130
	T = TT
	VS = VG(NG1, 3 # K)
	X = XX
	IFING2 .LE. ING1+11) GO TO 3090
	GO TO 316.0
3090	CONTINUE
	VL = VS
	VH = V2 NG = NG2
	CALL TXGEAR
	+ (FA,FE,FC,GCW,I,K,NG,KV2FLG, MX, STRACT, TT, TRESIS, VL, VH, VG, XX)
	IF(NV2FLG .NE, Ø) GO TO 3100
	T = T + TT
	X = X + X X
	GO TO 4020
3100	IF(NV2FLG .NEd 1) GC TO 3110
	VF2 = V61NG1, 3, K
	NGF = NG1
	NV2FLG = 2

R-2058, VOLUME I PAGE A-137 APPENDIX A - LISTING OF FROGRAM NRMM GO TO 4000 3110 IF(NV2FLG .NE, 2) GC TO 3120 GO TO 3268 3128 CONTINUE GC TO 4005 3130 IF(NV2FLG .NE. 14 GO TO 3140 GO TO 4000 IF(NV2FLG .NE. 2) GO TO 3150 3140 GO TO 3262 CONTINUE 315Ø GO TO 4005 D. ACCELERATE THROUGH INTERMEDIATE GEARS Ĺ CONTINUE **516**9 M1 = NG1 + 1 $M_2 = NG_{2-1}$ CO 3200 NG=M1,M2 VL = VSVH = VG(NG, 3, K)CALL TXGEAR + (FA, FE, FC, GCW, I, K, NG, BV2FLG, RMX, STRACT, TT, TRESIS, VL, VH, VG, XX) IF(NV2FLG .NE4 0) GO TO 3170 T = T + TEVS = VG[NG#3,K] X = X + XXGO TO 3200 3170 IFINV2FLG _NE 11 GO TO 3180 GO TO 3212 IF(NV2FLG .NE. 2) GO TO 3190 3180 GO TO 3268 31 9 Ø CONTINUE GO TO 4005 CONTINUE 3200 GO TO 3220 CONTINUE 3210 NGF = NG-1 V2F = VG(NGF, 3, K)NV2FLG = 2GO TO 4000 3220 CONT INUE NG = NG2VL = VSVH = V2CALL TXGEAR + (FA,FB,FC,GCW,I,K,NG,NV2FLG,RMX,STRACT,TT,TRESIS,VL,VH,VG,XX) IF(NV2FLG .NE4 0) GO TO 3230 T = T + TTX = X + XXGO TO 4000 IF(NV2FLG .NE. 1) GC TO 3240 323Ø NGF = 16-1V2F = VGENGF, 3, K)NV2FLG = 2

	GO TO 4000	
3240	IF(NV2FLG .NEJ 2) GC TO 3250	
3240	GO TO 3260	
3250	CONTINUE	
76.70	GC TO 4005	
С	E. ERROR ROUTINE	
3260	CONTINUE	
72.90	VAV=(VL+VH)/2.	
	DO $3300 J = 1, 4$	
	CALL TXGEAR	
	+ {FA,FB,FC,GCW,I,K,NG,NV2FUG,RMX,STRACT,TT,TRESIS,VL,VAV,VG,XX	
	IFINV2FLG .NEL Ø) GO TO 3270	
	VH = VAV	
	$VAV = \{VL + \forall H\}/2.$	
	GD TO 3300	
3270	IFINV2FLG NEW 11 GO TO 3280	
	$VAV = {VAV + VH}/2$.	
	GO TO 3300	
3280	IF(NV2FLG .NEW 2) GE TO 3290	
	VH = VAV	
	VAV = (VL # MH I / 2.	
	GO TO 3342	
3290	CONTINUE	
	GO TO 4005	
3300	CONTINUE	
	V2F = VAV	
	NGF = NG	
	NV2FLG = 2	
	T = T * T T	
<u>^</u>	X = X + X X	
C	4. TERMINUS	
4000	CONTINUE	
1.105		
4 1 0 5		
	WRITE(LUN1,4020) WRITE(LUN1,4020) $(EA/AC \times A (C-1) (CP))$	
	WRITE(LUN1,4030) (FAING,KN,NG=1,NGR) WRITE(LUN1,4040)	
	WRITELLUN1,4030) [FB[N0,K],NG=1,NGR]	
	WRITE(LUN1,4050)	
	WRITE(LUN1,4030) (FC(N&K),NG=1,NGR)	
	WRITE(LUN1,4060) GCW, KANGR, NV2FLG	
	WRITE(LUN1,4070)	
	WRITE(LUN1,4030) ((STFACT(NG,M,K),M=1,3),NG=1,NGR)	
	WRITE(LUN1,4080) T ,TRESISIK, IA, V1 ,V2 ,V2F	
	+ ,X	
4010	FORMATIIH1,6H\$ACCEL,/}	
4020	FORMAT(/,1X,8HFA =	
4030	FORMAT19X,51E15.8,5X,0	
4040	FORMAT(/,1X,8HFB =)	
4050	FORMAT1/,1X, SHFC =4	
4060	FORMAT(/,1X,8HGCW ====================================	
	★ I4,1,X,8HNV2FLG =10€44	

```
R-2058, VOLUME I
APPENDIX A - LISTING OF PROCHAM NRMM
4070 FORMAT(/,1X,8HSTRACT =4
4083
     FORMAT(/,1X,8HT
                           = 1E15.8,/,1X,8HTRESIS =, E15.8,/,
     ٠
               1X,8HV1
                           =_E15.8_/_1X_8HV2
                                                 ₹.E15.8,/,
     ÷
               1X.BHV2F
                          .=#E15.8,/,1X,8HX
                                                 =,E15.8)
         RETURN
         END
      SUBROUTINE DILINC
     + 1D
                       , I
                               ,11
               • A
                                       , J
               ∎ K
                       . KK
     L L . +
                               ,VALI
                                       VALJ
               , VI
     + ,VALK
                       , V.J
                               VK I
С
      C
      THREE-CIMENSIONAL LINEAR INTERPOLATION SUBROUTINE
Č
C
      EXTRAPOLATION AT CONSTANT LEVEL BEYOND LAST
      ELEMENTS OF ARRAY.
С
      Ĉ
C
      1. VARIABLE DECLARATION
         REAL
                   Α
                          17=14-51
         REAL
                   VAL
                          1.7+
         REAL
                   VALJ
                          (14)
         REAL
                   VALK
                          (5)
C
      2. ALGORITHM
         IF(I .NE. II) GO TC 2010
            ALL = A[I, J, K]
            ALH = A(I, J, KK)
            AHL = A(I, JJ, K)
            AHH = A(I, JJ, KK)
            GO TO 2020
20.10
         CONTINUE
         DUMMY = (VI-VALI(I)++/(VALI(II)-VALI(I))
               = A( I, J, KREDUPNY& ALII, J, KR-AL I, J, KR
         ALL
               = A( I, J,KK #DUMMY + (A(II, J,KK)-A( I, J,KK))
         ALH
         AHL
               = A( I, JJ, K)+DUMMY+(A(II, JJ, K)-A( I, JJ, K))
         AHH
               = A( I, JJ, KK) + DUMMY + (A(II, JJ, KK) - AI I, JJ, KK))
c 820
         IF(J .NE. JJ) GC TC 2030
            AL = ALL
            AH = ALH
            GO TU 2040
         CONTINUE
2030
         DUMMY = (VJ-VALJ(J)) + (VALJ(J)) - VALJ(J))
               = ALL+DUMNY+ CAHL-ALL)
         AL
               = ALH+DUMMY + (AHH-ALH)
         AH
2144
         IF(K JNE. KK) GC TC 2050
            C = AL
            GO TO 3000
2050
         CONTINUE
         D = AL+(AH-AL)*(VK-VALKik))/(VALKIKK)-VALKIK))
£.
      3. TER MINUS
        CONTINUE
3000
        RETURN
        END
     SUBROUTINE FGSPC
```


R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

NVEH RCIX) + (CPF .D ũ FINE GRAINED SOIL FULL CCERFICIENT ALGORITHM C C С C 1. ALGORITHM IF[NVEH .EQ. 1) GO TO 1040 С TRACKED ASSEMBLY. IF (CPF .GE. 4.4 GO TO 1020 IF(RCIX .LT. 4.) GO TO 1010 D =.544+.0463*RCIX-((.544+.0463*RCIX)**2.-.0702*RCIX)**.5 GO TO 2002 CONTINUE 1010 $D = .056 \neq RCIX$ С $D = .076 \approx RCLX$ GO TO 2000 1620 IF (RCIX .LT. 0.) GO TO 1030 D = + _4554+_0392*RCIX-({_4554+_0392*RCIX}**2-0_0526*RCIX}**0.5 GO TO 2000 1030 CONT INUE $C = .056 \neq RCIX$ GO TO 2000 1040 CONTINUE WHEELED ASSEMBLY С IF(CPF .GE. 4.) GO TO 1060 IF(RCIX .LT. Ø.) GO TO 1050 D = + _3885-_0265+RCIX-{{_3885+_0265+RCIX}++2-_0358+RCIX}+*.5 GO TO 2000 1050 CONTINUE C = .046 * RCIXGO TO 2000 IF(RCIX .LT. 0.) GC TO 1070 1000 D = + .379+.0219*RCIX+{{.379+.0219*RCIX}**2-.0257#RCIX}**.5 GO TO 2000 CONTINUE 1070 $D = -033 \neq RCIX$ 2. TERMINUS С -2000 CONTINUE RETURN END SUBROUTINE FGSPR + (CPF ,NVEH ,RCIX ,RTOWPE) С والمراجعة والمرجوعة بأرابة والأراجة والمراجع المراجع والمراجع С FINE GRAINED SUIL POWERED ASSEMBLY MOTION RESISTANCE С С C 1. ALGORITHM IF(NVEH .EQ. 1) GO TO 1030

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM TRACKED ASSEMBLY С IF(RCIX .LT. 0.) GO TO 1010 RTOWPB = .045+2.3075/(RCIX+6.5) GO TO 2000 IF(CPF .GE. 4.) 00 TO 1020 1010 RTOWPB = .4→.072+RCIX GO TO 2000 1020 CONTINUE RTCWPB = .4 - .052 RCIXGO TO 2000 WHEELEU ASSEMBLY С IF(RCIX .LT. 0.) GC TO 1050 1030 IF(CPF .GE. 4.) 80 TO 1040 RTOWPB = .035+.861/(RCIX+3.249) GO TO 2000 CONTINUE 1040 . RTOWPB = .045+2.3075/(RCIX+6.5) GO TO 2000 IF(CPR .GE. 4.) GO TO 1060 1050 RTOWPB = .3-.043+RCIX GO TO 2000 1060 CONTINUE RTDhPB = .4 - .029 + RCEXС 2. TERMINUS 2000 CONTINUE RETURN END SUBROUTINE FGSTR , I P , DRAT + (DIAw , 18 • NV EH , RTOWT , SECTW , WGHT RCI + .NWHL + ,WRATIO ,LUN1 } С С FINE GRAINED SOIL TOWED MOTION RESISTANCE С С 2. ALGORITHM IF((IP .EO. Ø) .ANC, (IB .EO. ØA) GO TO 2010 NEVER TOWED ASSEMBLY С RTOWT = \emptyset . GO TO 3000 2010 CONTINUE С TOWED ASSEMBLY IF(NVEH .NE. Ø) GO TO 2020 С TRACKED ASSEMBLY WRITE(LUN1,3010) + IP , NV EH WRITE(LUN1,3020) DIAW . DRAT **,** [B , NWHL , RTOWT , SECTW , WGHT RCI WRAT IG 3010 FORMAT (1H1,6H\$FGSTR,/) 3020 FORMAT(/,1X,8HDIAW =,E15.8,/,1X,8HDRAT =, E15.8,/, 1X,8HIB =415 ,/+1X,8HIP =,15,/, ٠ ,/,1X,8HNWHL =,15 =,15,/, 1 X,8HNVEH ÷ =#E15.8,/,1X,8HRTOWT =.E15.8,/, 1X,8HRCI

	+					X,8HWGHT	=+E15.8,/y
	F	1 X,	8 HWRAT	IO =#I	E15.81		
		STOP					
2020	C	DNTINUE					
5	W	HEELED	ASSEMBL	Y			
	WP	al = ₩GH	IT #WRAT	IC/FE	CAT(NWHL)		
		ETA =					
	+ (RC)	I + SECT W	DIAW*D	RAT##	.5)/(WPW4	I.+SECTW	/2./DIAW+)
		-(BETA .					· · · · ·
		RTOWT	= 1.~.	341.241	BETA		·
		GOTO	3000				
2030	C	DNTINUE					
		10WT = .	.04+.2/	BETA-	-1.35)		
		TO 300					
2		ERMINUS					
		INTINUE			•		
~ ~ 7		TURN					
		ND					
		UTINE I	FORVEL				
				FB	,FC	, FORMX	
	+ "K	•	GR ,		VENAX		
	FORCI	AV AL IA	ABLE AT	A GEN	VEN VELOC	ITY	
		AV AL IA			VEN VELOC		
		,			4 m m m m fp m m m m m		
	1. V	AR LABLE	DECLAR		4 as as 4 fr a a a a a a		
	1. V/ RI	AR JABLE	DECLAR				
~	1. V/ RI RI	AR JABLE EAL EAL	DECLAR FA FB	AT LCN (20) (20)	,3) ,3)		
	1. V/ RI RI	AR JABLE EAL EAL EAL	DECLAR	AT L CN (28) (28) (28)	,3) ,3)		
	1. V/ RI RI RI	AR JABLE EAL EAL EAL EAL	DECLAR FA FB FC FURMX	AT LCN (20) (20) (21) (3)	,3) ,3)		
	1. V/ RI RI RI	AR JABLE EAL EAL EAL EAL EAL	DECLAR FA FB FC FURMX VFMAX	AT LCN (20) (20) (21) (3) (3)	,3) ,3) ,3)	1 TY	
	1. V/ RI RI RI RI RI	AR JABLE EAL EAL EAL EAL EAL EAL EAL	DECLAR FA FB FC FURMX VFMAX VG	AT LCN (20) (20) (21) (3)	,3) ,3) ,3)		
	1. V/ RI RI RI 2. AL	AR JABLE AL AL AL AL AL AL AL GCRITHM	DECLAR FA FB FC FURMX VFMAX VG	AT J C N (20) (20) (2) (3) (3) (3) (3) (20)	,3) ,3) ,3) ,3,3)		
~	1. V/ RI RI RI 2. AL	ARJABLE EAL EAL EAL EAL EAL EGCRITHN E(V + GE	DECLAR FA FB FC FURMX VFMAX VG VFMAX	AT J C N (20) (20) (2) (3) (3) (3) (3) (20)	,3) ,3) ,3)		
	1. V/ RI RI RI 2. AL	ARJABLE EAL EAL EAL EAL EAL EGCRITHN F(V • GE• F = FC	DECLAR FA FB FC FURMX VFMAX VG VFMAX DRMX(K)	AT J C N (20) (20) (2) (3) (3) (3) (3) (20)	,3) ,3) ,3) ,3,3)		
	1. V/ RI RI RI RI 2. AL	AR JABLE AL AL AL AL AL GCRITHN V GE. F = FC GO TO	DECLAR FA FB FC FURMX VFMAX VG VFMAX DRMX(K)	AT J C N (20) (20) (2) (3) (3) (3) (3) (20)	,3) ,3) ,3) ,3,3)		
	1. V/ RI RI RI RI 2. AL	AR JABLE AL AL AL AL AL GCRITHN F = FC GO TO DN TINUE	DECLAR FA FB FC FURMX VFMAX VG VFMAX SRMX(K) 3000	AT L CN (20) (20) (21) (3) (3) (3) (3) (20)	,3) ,3) ,3) ,3,3)		
	1. V/ RI RI RI RI 2. AL	AR JABLE AL AL AL AL AL AL GCRITHN F = FC GO TO NTINUE 2030 N	DECLAR FA FB FC FURMX VFMAX VG VFMAX SRMX(K) 3000	AT L CN (20) (20) (20) (3) (3) (3) (3) (3) (3) (3) (3	,3) ,3) ,3,3) ,3,3) ;6 TO 201	0	
	1. V/ RI RI RI RI 2. AL	AR JABLE AL AL AL AL AL AL GCRITHN F = FC GO TO NTINUE 2030 N IF (V	DECLAR FA FB FC FURMX VFMAX VG VFMAX SRMX(K) 3000 NG=1,NG	AT L CN (20) (20) (20) (20) (3) (3) (3) (3) (3) (3) (3) (3	,3) ,3) ,3,3) ,3,3) ,60 TO 201	Ø 0 2020	3.K)
	1. V/ RI RI RI RI 2. AL	AR JABLE AL AL AL AL AL AL GCRITHN F = FC GO TO NTINUE 2030 N IF (V F =	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX S000 NG=1,NG GT VG FCN	AT L CN (20) (20) (20) (3) (4) (3) (3) (3) (4) (5) (5)	,3) ,3) ,3,3) ,3,3) ,60 TO 201	0	Ĝ,K)
010	1. V/ RI RI RI RI 2. AL	AR JABLE AL AL AL AL AL AL AL AL GCRITHN F = FC GO TO NTINUE 2030 M IF (V F = GO	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX S000 NG=1,NG GT. VG IFC(N) TO 300	AT L CN (20) (20) (20) (3) (4) (3) (3) (3) (4) (5) (5)	,3) ,3) ,3,3) ,3,3) ,60 TO 201	Ø 0 2020	G,K)
Ø19 029	1. V/ RI RI RI 2. AL II	AR JABLE AL AL AL AL GCRITHN (V - GE. GO TO N TINUE 2030 N IF (V - F = GO CONTIN	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX S000 NG=1,NG GT. VG IFC(N) TO 300	AT L CN (20) (20) (20) (3) (4) (3) (3) (3) (4) (5) (5)	,3) ,3) ,3,3) ,3,3) ,60 TO 201	Ø 0 2020	G,K)
Ø 1 Ø Ø 2 Ø	1. V/ RI RI RI 2. AL II	AR JABLE AL AL AL AL AL AL GCRITHN (V GE. GC TO NTINUE 2030 N IF (V F = GO CONTIN NTINUE	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX S000 NG=1,NG GT. VG IFC(N) TO 300	AT L CN (20) (20) (20) (3) (4) (3) (3) (3) (4) (5) (5)	,3) ,3) ,3,3) ,3,3) ,60 TO 201	Ø 0 2020	G,K)
010 020 030	1. V/ RI RI RI 2. AL I I CC DC	AR JABLE AL AL AL AL AL AL AL AL AL AL AL AL AL	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX S000 NG=1,NG GT. VG IFC(N) TO 300	AT L CN (20) (20) (20) (3) (4) (3) (3) (3) (4) (5) (5)	,3) ,3) ,3,3) ,3,3) ,60 TO 201	Ø 0 2020	3 , K)
010 020 030	1. V/ RI RI RI 2. AL II CC DC CC 5. TF	AR JABLE AL AL AL AL AL AL AL AL AL AL AL AL AL	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX S000 NG=1,NG GT. VG IFC(N) TO 300	AT L CN (20) (20) (20) (3) (4) (3) (3) (3) (4) (5) (5)	,3) ,3) ,3,3) ,3,3) ,60 TO 201	Ø 0 2020	3 , K)
010 020 030	1. V/ RI RI RI 2. AL II CC DC CC 5. TF CC	AR JABLE AL AL AL AL AL AL AL AL AL AL AL AL AL	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX S000 NG=1,NG GT. VG IFC(N) TO 300	AT L CN (20) (20) (20) (3) (4) (3) (3) (3) (4) (5) (5)	,3) ,3) ,3,3) ,3,3) ,60 TO 201	Ø 0 2020	3 , K)
010 020 030	1. V/ RI RI RI 2. AL II CC DC CC F 3. TF CC RE	AR JABLE AL AL AL AL AL AL AL AL AL AL AL AL AL	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX S000 NG=1,NG GT. VG IFC(N) TO 300	AT L CN (20) (20) (20) (3) (4) (3) (3) (3) (4) (5) (5)	,3) ,3) ,3,3) ,3,3) ,60 TO 201	Ø 0 2020	б , К)
010 020 030	1. V/ RI RI RI 2. AL 11 CC DC CC 5. F 3. TF CC RE	AR JABLE AL AL AL AL AL AL AL AL AL AL AL AL AL	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX SRMX(K) 3000 NG=1,NG GT. VG IFC(N) TO 3001	AT L CN (20) (20) (20) (3) (4) (3) (3) (3) (4) (5) (5)	,3) ,3) ,3,3) ,3,3) ,60 TO 201	Ø 0 2020	б , К)
	1. V/ RI RI RI 2. AL II 2. AL II CC DC CC DC CC CC F SUBRC	AR JABLE AL AL AL AL AL AL AL AL AL AL AL AL AL	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX SORMX(K) 3000 NG=1,NG GT. VG IFC(N) TO 300 NUE	AT L CN (20) (20) (20) (3) (3)	,3) ,3) ,3,3) ,3,3) ,60 TO 201 ,K)) GC T ,+FB(NG,K	Ø 0 2020	З , К)
010 020 030	1. V/ RI RI RI 2. AL II 2. AL II CC DC CC DC CC CC CC CC CC CC CC CC CC	AR JABLE AL AL AL AL AL AL AL AL AL AL AL AL AL	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX SORMX(K) 3000 NG=1,NG GT. VG IC TO 300 NG=1,NG TO 300 NG=1,NG	AT L CN (20) (20) (20) (3) (3)	,3) ,3) ,3,3) ,3,3) ,60 TO 201 ,K)) GC T ,FB(NG,K	Ø 0 2020	G,K)
010 020 030	1. V/ RI RI RI 2. AL II 2. AL II CC DC CC DC CC CC F SUBRC	AR JABLE AL AL AL AL AL AL AL AL AL AL AL AL AL	DECLAR FA FB FC FURMX VFMAX VG VFMAX VG VFMAX SORMX(K) 3000 NG=1,NG GT. VG IFC(N) TO 300 NUE	AT L CN (20) (20) (20) (3) (3)	,3) ,3) ,3,3) ,3,3) ,6 TO 201 ,K)) GC T ,FB(NG,K	Ø 0 2020	3 , K)

.

PAGE A-142

R-2058, VOLUME I Appendix A - Listing of Program NRMM

```
+ _LUN1 }
C
           QUADRATIC FIT THROUGH THREE POINTS SUBROUTINE
ü
С
     С
C
     1. ALGCRITHM
        AA = (Y2 - Y1)/(X2 - X1)
        BB = (Y3 - Y1)/(X3 - X14)
        CC = (BB-AA)/(X3-X2)
          = Y1-AA\RightarrowX1+CC\RightarrowX1\ddaggerX2
        Α
        B = AA - CC \neq \{X1 + X2\}
           = CC
        C
С
     2. CHECK TO INSURE THAT THERE IS NO DIVISION BY ZERO (0)
          IF((X3-X1) JEC. 0, .OR. (X3-X2) .EQ. 0. .OR.
          (X2-X1) .EQ. 0.) 60 TO 3900
     ٠
          GC TO 4000
3900
          WRITE(LUN1, 3910)
391Ø
     FOR MAT (1H1, 39 HDIVISION BY ZEFO (0) IN SUBROUTINE OUAD, /)
С
     3. TERMINUS
4000
        RETURN
        END
     SUBROUTINE QUADS(X ,Y #A ,B ,C)
С
Ũ
      C
     LEAST SQUARES FIT THREUGH FIVE POINTS PASSING
С
     THROUGH THE FIRST AND LAST POINTS. EQUATION
С
     OF THE FORM: Y = A + B \neq X + C \neq X \neq 2
С
     ----
                                          _____
С
С
     1. VARIABLE DECLARATIONS
           RE AL X
                    (5)
           REAL Y
                     (5)
           REAL A
           REAL B
           REAL C
C
      ĉ
С
     TRANSFORM ARRAY INTO THE UNIT SQUARE
C
      يو جاني ڪره هاي وه هاره وه وارو هاره ها هه به موجه جاني وه جاني وه جاني و جاني جاني وي وي وي وي وي و
С
     CX=X(5) → X(1)
     CY = Y(5) - Y(1)
     XXSUM=0.
     XYSUM=0.
     DO 2000 I=1.5
        XTI = (X(I) - X(I))/CX
        YTI = Y(I) - Y(I)
        XYSUN=XYSUN + YTI + XTI+CY
        XXSLM=XXSUM + XTI+{XTI - 1.}
2000
     CONTINUE
С
C
```

PAGE A-144

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

UNIT SQUARE COEFFICIENTS

FIVE POINT FIT COEFFICIENTS

しんり トット アンチャーザイー しゅうし しみか うみしや うん

B=C4*(CX*C2 - 2.*X(1)*C3)

• Y

A. FINE GRAINED SOIL

TRACKED

CONTINUE

CONTINUE

GC TO 2160

S = S/1.1

IF(IST .NE. 2) GC TE 2100

WHEELED

CONTINUE

CONTINUE

GO TO 2160

GO TO 2160

A=Y[1) + X(1)+C4+(X(1)+C3 - CX+C2)

, LUN:1 1

IF(NVEHC .EQ. 1) GO TO 2020

IF (CPFC .GE. 4.) GO TO 2040

S = .084+Y-.016+.01414/(.6697-Y) IF(LOCDIF .NE. 14 GC TO 2050

GO TO 2160

S = S/1.1

IF(CPFC .GE. 4.) GO TO 2010

ー ふくちゅう うちのうざい りょう ちゅうちょ やみ たぬかな りちょう ちょうそう ふちゅん

INTERMEDIATE TERM (NOT A COEFFICIENT)

C3=XYSLM/XXSUM C2=CY - C3

C4=1./(CX+CX)

SUBROUTINE SLIP

+ (CPFC , IST

SLIP ALGORITHM

2. ALGORITHM

C=C4*C3 RETURN END

+ .S

С

C C

С

С

000 00 00

> C C C

> > С

С

С

C

Ü

С

·

2010

2020 2030

С

2040 2050

2060

317

, LCCCIF ,NFL ,NVEHC

IFI(IST .NE. 1) .ANB. (IST .NE. 6)# GO TO 2060

S = .0733+Y-.0063*.00734/(.7177-Y)

S = .0621 +Y-.421+.01888/(.7794-Y) IF(LOCDIF .NE. 1) GC TO 2030

S = .0257+X-.0161+.01519/(.8353-Y)

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM С B. COARSE GRAINED SEIL IF(NVEHC .EQ. 1) GO TO 2080 С TRACKED IFENEL .EC. 1+ GO TO 2070 С RIGID TRACK $S = -.0083 - 005312/(.573 - Y_{i})$ GO TO 2160 2070 CONTINUE FLEXIBLE TRACK С YY = 1.074 + Y - .72S = YY + ((YY + Q2) + .09 + Y + .009) + + .5GO TO 2160 CONT INUE 2000 Ĉ **WHEELED** $S = .0074 \neq Y - .0061 + .00374/(.5785-Y)$ IF(LOCDIF .NE. 11 GO TO 2090 S = S/1.12090 CONTINUE GO TO 2160 IF(IST .NE. 3) GC TO 2130 2100 C C. MUSKEG IF({NVEHC .EC. 14 .@R. (CPFC .GE. 4.)) GO TO 2110 S = .0585 * Y - .0106 + .01336 / (.964 - Y)GO TO 2160 2110 CONT INUE S = .1024 + Y - .00864 + .01062/(.7564 - Y)IF ((NVEHC .NE. 14 .GR. (LOCCIF .NE. 1)) GO TO 2120 S = S/1.1CONT INUE 2120 GO TC 216Ø IF[IST .NE. 4] GO TE 2150 2130 D. SHALLOW SNOW С IF(Y .LT. 1.) GC TO 2140 S = 1.GO TO 2166 2140 CONTINUE S = .3*[1.-[1.-Y1.##.5] GO TO 2168 E. ERROR С 2150 WRT TE{ LUN1, 2200 + WRITE(LUN1,2210) CPFC , IST .LOCCLF .NFL , NVEHC • Y • S 2200 FORMATIIH1,6H\$STICK,/1 2210 FORMAT(/,1X,8HCPFC =, E15.8, /, 1X, 8HIST =,15 .1. ,/,1X,8HNFL 1X,8HLOCDIF =#15 ٠ =.15 ./. =#15 ٠ 1X,8HNVEHC ,/,1X,8HS =,E15.8,/, 1 X,8HY =#E15.8) + STOP С F. FUNCTION LIMITS 2160 CONTINUE IF((S .GE. 0.) AND. (S .LE. 1.)) GO TO 2170 S = 1.

R-2058, VOLUME I Appendix A - Listing of Program NR#M

2170	CONTINUE			
С	CONTINUE 3. TERMINUS RETURN			
	RETURN			
	END			
	SUBROUTINE TFORCE			
	+ 1CF _,CPFC _,CCWF _,GCWP _,IST			
	+ ,NFL ,NVEHC ,RTOWN ,TFOR ,LUNI	}		
C				
C C	SGIL LIMITED TRACTIVE EFFORT ALGORITHM			
	•		•	
L	2. ALGORITHM IF((IST .NE. 1) .ANG. (IST .NE. 6))	co	τn	2640
c	A. FINE GRAINED	ĢU	10	2040
C	IF(NVEHC .EQ. 1) GO TO 2020			
C	TRACKED			
v	IFICPFC .GE. 4.1 GO TO 2010			
	$CF = \{DCMP+*758\} + RTOWP$			
	TFOR = [CFA.82]+GCWP			
	GO TO 3440			
2010	CONTINUE			
	CF = (DCWP - 4671) + RTOWP			
	TFOR = (CF4+72)+GCWP			. •
2 42 4	GO TO 3000			
2020	CONTINUE			·
C	WHEELED If{CPFC .ge. 4.1 go to 2030			
	CF = (DCWP - 4614) + RTOWP			
	TFOR = (CF +76) + GCWP			
	GO TO 3000			
2030	CONTINUE			
	CF = (DOWP=.585)+RTOWP			
	TFOR = (CF+.655) + GCWP			
	GO TO 3000			
2040				
С	B. COARSE GRAINED		•	
C 1	IF(NVEHC .EQ. 1) GO TO 2060			
C	TRACKED IF(NFL .EC. 14 GO TO 2050			
С	RIGID TRACK			
Ŭ	CF = .076			
	TFOR = (CF#.568)+GCWP			
	GO TO 3000			
2050	CONTINUÉ			
C	FLEX TRACK			
	CF = .1			
	TFOR = (CF+.6951+GCWP			
3/74 17	GO TO 3000 Constants			
2060 C	CONTINUE WHEELED			
	CF = RTOWP+DOW@56			
·	$TFOR = \{CF + 575\} + 6CWP$			
	GO TO 3000			

PAGE A-146

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM 2070 IF(IST .NE. 3) GO TO 2090 С C. MUSKEG IF((NVEHC .NE. 84 .OR. (CPFC .GE. 4.1) GO TO 2080 CF = RTCWP+BOWP-.88 TFOR = {CF+_921+GCWP GO TO 3000 2080 CONTINUE CF = RTOWP+DOWR-.68 TFOR = 1CF+.7451+3CWPGO TU 3000 2090 CONTINUE D. ERROR Ċ WRITE(LUN1,2100) WRITE(LUN1,2110) CF , CPFC # COWP . GCWP , IST ,NVEHC ,RTOWP ,TFOR ٠ , NFL 2100 FORMAT (1H1, 7HSTFCRCF, / A 2110 FORMAT (/, 1X, 8HCF =_E15.8,/,1X,8HCPFC =>E15.8,/, =_E15_8,/,1X,8HGCWP ÷ 1 X,8HDOWP =, E15.8,/, ,/,1X,8HNEL ٠ 1X,8HIST ≠**#**15 =.15 ... ÷ 1 X,8 HNVEHC **≈**,∎15 ,/,1X,8HRTOWP =,E15.8,/, =+E15-81 . 1X,8HTFOR STOP 12 С 3. TERMINUS 3020 CONTINUE RETURN END SUBROUTINE TXGEAR + (FA • F8 ,FC .GCW **,** I , NG .NV2FLG .RMX + .K ,STRACT ,T **,** V2 ,VG •X 1 + ,TKESIS ,VI С C TIME AND DISTANCE IN A GEAR Ċ С С 1. VARIABLE DECLARATION REAL FA (24,3) REAL FB (28,3) REAL FC (20,3) REAL RMX . (.28) STRACT [24.3,3) REAL REAL TRESIS (:3+9) REAL VG (24,3,3) С 2. ALGCRITHM C A. SET COMMON VALUES VM = [GCW/385.9] + RMX(NG) A = FA(NG,K) B = FB(NG.KA С = FC(NG.K) F = TRESISAN.I) CSQ $= B \neq B - 4 \downarrow \neq 4 A + F + \neq C$ NV2FLG = 0. С **B. SOLUTION TREE**

R-2058, VOLUME I Appendix A - Listing of Fregram NRMM

IF(C) 26, 17, 1 1. POSITIVE CURVATURE С 1 IF(B) 2, 11, 44 С A. NEGATIVE SHOPE AT V=0. 2 CONTINUE IF(A-F) 3.3.4 С 1. NEGATIVEAZERO EXCESS TRACTION 3 $R2 = \{-B + SQRT(DSC)\} / \{2 \neq C\}$ R1 = (A - F)/(C + R2)IF(V1.G0.R2) GO TO 36 NV2FLG=1 RETURN С 2. POSITIVE EXCESS TRACTION IF(CSO) 38.8.5 4 С A. FOSITIVE DISCRIMINANT R2 = i + B + SQRT(DSQ))/12. + C)5 R1=14-FJ/(C#R2) IF(V2.LE. R1.OR. V1.GE. R2) GO TO 36 IF(V2-R1) 7,7,6 NV2FEG=1 6 RETURN 7 NV2FLG=2 RETURN C B. ZERC DISCRIMINANT $R2 = \{4B \neq SQRT(DSQ)\}/(2, *C)$ 8 R1={A-F}/(C*R2) IF(VE.GT.R1.OR.V2.LT.R1) GO TO 37 IF(V1-R1) 7,6,7 C. C. NEGATIVE DISCRIMINANT B. ZERO SLOPE AT V=0. С 11 IF(A-F) 13,12,98 С 1. ZERG EXCESS TRACTION 12 T=VM#(1./V1-1./V2)/C X={VM/C}+ALOG{VM/{VM-V1+C+T}} RETURN C 2. POSITIVE EXCESS TRACTION 13 R2=SORTODSON/12.+C) R1 = (A - f)/(C + R2)IF(V1.GJ.R2) GO TO 36 NV2 FLG=1 RETURN С C. POSITIVE SHOPE AT V=0. 14 IF(A-F) 15,15,16 C 1. NEGATIVE/ZERO EXCESS TRACTION 15 $R1 = \{-B - SCRT(DSQ)\} / \{2 - *C\}$ R2=[A-F]/(C+R1) IF(V1.CT.R2) GO TO 36 NV2FLG=2 RETURN С 2. POSITIVE EXCESS TRACTION 16 IF(DSQ) 38,37,36 2. ZERO CURVATURE С

321

R-2058, VOLUME I Appendix A - Listing of Fragram NRHM

17	IF(B) 18,22,25
C C	
18	A. NEGATIVE SEOPE AT V=0.
	IF(A-F) 19,19,20
C	1. NEGATIVE/ZERO EXCESS TRACTION
19	NV2FLG=1
	RETURN
C	2. POSITIVE EXCESS TRACTION
20	R1 = -1 A - EI/B
	IF(V1-F2) 21, 19,19
21	IF(V2-LT-R1+ GO TO 35
	NV2FLG=2
	RETURN
C	B. ZERC SLOFE AT V=8.
22	IF(A-F) 23,23,24
C	1. NEGATIVE/ZERO EXCESS TRACTION
23	NV2FLG=1
23	RETURN
<u>c</u>	
, C	2. POSITIVE EXCESS TRACTION
24	T=VM+{V2-V1}/{A-F}
	X=((A-F1#T/42.+VMJ+V11#T
_	RETURN
C	C. POSITIVE SLOPE AT V=0.
25	IF(A-F.GE'.4. 4 60 TO 35
	R1=-1 A-£↓/B
	IF(V1. CT.R1) GC TO 35
	NV2FLG=1
	RETURN
C	3. NEGATIVE CURVATURE
26	IF(B) 27,27,31
C	A. NEGATIVE/ZERO CURVATURE
27	IF(A-F) 28,28,29
C	1. NEGATIVE/ZERO EXCESS TRACTION
28	NV 2FLG=2
	RETURN
С	2. POSITIVE EXCESS TRACTION
29	R1 = I - B + SQRT(DSQ) I / I 2. + CI
	R2= (A-F4/(C+R1)
	IFIVI.LT.R21 GO TO 30
	NV2FLG=1
	RETURN
30	IF(V2-LE-R2) GO TO 36
	NV 2 FL G = a
	RETURN
С	B. POSITIVE CURVATURE
31	IF(A-F.GE.A. OR.ESQ.GT.Ø.) GO TO 32
	NV2FLG=1
	RETURN
32	R2=(-B-SQRT{DSQ})/{2.4+C}
<i></i>	R1= (A-F+/(C+R2)
	JF(V1.LS.R1J GO TO 33
	ALIATORGALTA AD ID 33
	TE(V1 . CE. 823 AO TO 33
	IF(V1.68.R2) GO TO 33 GO TO 36

PAGE A-149

PAGE A-150

R-2058, VOLUME I APPENDIX A - LISTING OF FROGRAM NRMM

33	NV 2 FLG =1
	RETURN
34	IF(V2.LE.R2) GC TO 36
	NV2FLG=2
	RETURN
С	C. ### ROUTINE
35	T={VM/B} + ALOGE B+V2+A-F}/{B+V1+A-F}}
	X=-{A-F} #T/B+{VM%{B#B}}#{B#V1+A-F}#{EXP{T#B/VM}-1.}
	RETURN
C	D. LOG ROUTINE - POSITIVE DISCRIMINANT
36	D=SQRT(DSQ)
	V1 BAR= (2, +C+V1+E+D) / (2.+C+V1+B+D)
	V2BAR=12.#C+V2+B+D1/42.#C+V2+B+D1
	T={ VM/D} +ALOG(V28AR/V18AR) x={ _5+(D-B} +T-V+4ALOG({1V18AR+ExP(T+D/VM)}/
	+ (1V1BAR))/C
	RETURN
С	E. RECIPROCAL ROUTINE - ZERO DISCRIMINANT
37	T=2.+VN#(1./(2.+0+V1+B)-1./(2.+C+V2+B))
	x={VM/CJ+ALOG[2,4VM/[2J+VM-T+[2++C+V]+B]}}5+B+T/C
	RETURN
C	F. NEGATIVE ROUTINE - MAKE TWO GEARS FITTED BYW STRAIGHT
С	+ LINES OUT OF ONE FITTED BY A QUADRATIC.
38	SH= { STRACT { NG, 3, K} - STRACT { NG, 2, K} } / { VGL NG, 3, K} - VGL NG, 2, K}
	ZH= (STRACT (NG, 2, K) + VG(NG, 3, K)-STRACT (NG, 3, K) + VG(NG, 2, K) +/
	+ (VG(NG,3,K)-VG(NG,2,K))
	SL=(STRACT(NG,2,4)-STRACT(NG,1,K))/(VG(NG,2,K)-VG(NG,1,K))
	ZL={ STRACT(NG, I, K)+VG{ NG, 2, K}-STRACT(NG, 2, K}+VG{ NG, 1, K} }/
	+ (VG[NG, 2, K]-VG[NG, 1, KA)
	IF(V2.GE.VG(NG,2%K)) GO TO 39
	S=SL
39	GO TO 42 IF(V1.LE.VG(NG,2#K)) GO TO 40
37	S=SH
	Z=ZH
	GO TO 42
40	IF(V2.LE.AMAX1(~4ZH-F)/SH,-(ZL-F)/SL)) GD TO 41
,0	NV2FLG=2
	RETURN
41	TL=(VM/SL) *ALOGEESL+VGENG, 2,KI+ZL-F)/(SL+V1+ZL-F))
	TH= (VM/SH) + ALOG(#SH+V2+ZH-F)/(SH+VG(NG\$2,K)+ZH-F))
	X=(SL+V1+ZL-F)+V#+(EXP{SL+TL/VH}-1,)/(SL+SL)
	+ +{ SH# VG{ NG, 2, K}+ZH-F}#VN#{ EXP[SH#TH/VN}-1. }/{ SH#SH}
	+ -{ZL-F}*TL/SL-{ZH-F}*TH/SH
	T=TL+TH
	RETURN
42	VZ=-{Z-F}/S
	IF (V2-LT.VZ) GD 80 43
	NV2FLG=Ø
43	RETURN T=(VM/S) *ALOG((S&V2 +Z-F)/(S *V1 +Z-F))
73	I - FAMA DA - MEOGES DEACAC - LAVED + ATAC - LAVED + ATAC - LAVED

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

	RETU		-)- 1-4 V M3	RE EXP(541/	VM)-12)-(Z-	r: 40411/(54
3.	TERMIN					
	END					
SUE		E VELFOI	R			
+ [F				#FC	,FORMX	
+ +		, NGR				
-				******		
MA)	CIMUM VI	ELOCITY	OVERC	ENING A GI	VEN RESISTA	NCE
		******		<u> </u>		
1.		LE DECLI				
	REAL	FA		4 31		
	REAL	FB		8,31		
	REAL	FC		1,31		
	REAL		MX (3)			
	REAL		AX (3			
~	REAL		12	4,3,31		
2.	ALGCRI					
		INDEX=1	-			
		+1-INDE			FALMO KA JEA	
				ELING#KI#d	FA(NG,K)-F)	
		1,2,4				
	DISCRI	MINANT,	NEGAL	EVE		
		NG,KII				
		MINANT,				
		NG,K))				
		MINANT,				
		NG ,K]- F NG ,K]] :				
				₽ ₩ √F B{NG ₀ K}		
		NG,1,K)				
		NG,KJ)			,	
		NG,3,K1				
		NG.KII				
		NG,K))	• •			
		NG.KII				
					FCLNG, KJJ	
				AFC (NG,K)		
	GO TO	14		-		
	R1 = (-F)	BING.K)	-SORT (@SQ1)/(2.4	FCLNG,KAA	
				GFC(NG,K))	
		N1(R1,R)				
		X14R1,R				
		NG,K11			•	
		NG.1.K.		-		
		NG.3,K).	-			
			LGT.RL	AND.VG(NO	G, 1, KH-LT .RH) GO TO 10
	GO TO					
		NG, 1, K)				
	IF{VG{ IF{VG{	NG.1.K)				

324

R-2058, VOLUME I Appendix A - Listing of program NRMM

	IF(FORMX(K)-F) 23,22,22
22	VEL=VFMAX(K)
	GO TO 60
23	VEL =Ø •
- 14	GO TO 60
20	VEL =VGING, 3, Kh
0.0	GO TO 60
30	VEL=R
40	GO TO 60 Vel=Rl
49	GO TO 60
50	VEL=RH
50	GO TO 60
C	3. TERMINUS
. 60	CONTINUE
	END
	REAL FUNCTION MPH (ARG)
С	
Ċ	UNITS CONVERSION
C	
С	1. VARIABLE DECLARATION
	REAL ARG
ü	2. ALGCRITHM
C	A. IN/SEC TO MPH
	MPH = ARG / 17.6
~	RETURN
C	3. TERNINUS
c	END
C C	
	SUBROUTINE PLTSET(
	+ NPTS, VGV, NGR, ATF, BTF, CT
	+ POWER, TOPSPD, LUN1.
С	
Č,	ϕ of ϕ
C	PRINTER PLOT OF POWER TRAIN CATA AND
С -	QUADRATIC CURVE FITTED TO THE DATA
C	
С	
	REAL POWER (2,201)
	REAL ATE (20)
	REAL BTF (20)
	REAL CTF (20) REAL VGV (20,5)
	REAL VGV (20,5) REAL DI (2,400)
	REAL D2 (2,400)
C	
С С С С	NPTS = NUMBER OF POINTS TO PLOT
č	VGV = GEAR MIN AND MAX SPEEDS
Č	NGR = MAX NUMBER CE GEARS IN VEHICLE
C	ATF = A COEF. OF CUADRAT IC EQUATION
Ċ	BTF = B COEF. CF (WADRATIC EQUATION
· ·	

CTF.

IPOWER,

```
R-2058, VOLUME I
                                                                PAGE A-153
APPENDIX A - LISTING OF PROGRAM NRMM
С
      CTE
              = C COEF. OF CNACRATIC EQUATION
С
      IPOWER = NUMBER OF TRACTIVE FORCE POINTS
C
              = TRACTIVE FORCE POINTS FOR MPH
      POWER
      TOPSPD = TOP SPEED CF VEHICLE IN .25 MPH INCREMENTS
ί
С
              = LOGICAL UNIT 1
      LUN1
C
С
    ROUND OFF POWER ARRAY BY NEAREST .25 MPH
С
      CALL RESCAL(IPDWER, POWER)
      CALL FIXER(NPTS, IPCWER, POWER, 01)
С
С
    RECONSTRUCT QUADRATIC CURVE DATA USING COEF.
С
      CALL CURPLT(NPTS, VGV, NGR, ATF. ETF, CTF. D2)
С
    PLOT THE DATA ON PRINTER
С
С
      CALL PNTPLT(D1, D2, NPT'S, TOPS PC, LUNIA
      RETURN
      END
С
С.
      SUBROUTINE PNTPLT(
                          . NETS.
                                   TOPSPD.
         DATA1.
                  DATA2
                                              LUN1)
С
С
      Ĉ
      ROUTINE TO DO A PRINT PLGT
С
         ------
С
      DIMENSION DATA1(2,400) DATA2(2,400), LPDINT(120), AXH(13)
      DIMENSION LABLY(400+, LINE(12)
С
С
      DATA1 = FIRST CURCE CATA POINTS
С
      DATA2 = SECOND CURVE DATA POINTS
С
               = MAXIMUM MILES PER HOUR IN PLOT
      TOPSPD
C
      LUNI
             = LOGICAL UNIT 1
С
      DATA ICASH/10H+-----
      DATA IBLANK/10H
      DATA LABLY(52), LABLY(53), LABLY(54), LABLY(55), LABLY(56),
           LABLY (57), LABLY (58), LABLY (59), LABLY (60), LABLY (61),
           LABLY (62), LABLY (63), LABLY (64), LABLY (65), LABLY (66),
           LABLY(67), LABLY(68)/
     ÷
           1+S,1H ,1HP,1+ ,1HE,1H ,1HE,1H ,1HD,1H ,1H ,1H ,
     ٠
           1HM,1H ,1HP,1H ,1HH/
С
Ĉ
    INITIALIZE PRINT LINE TO ALL SPACES
С
      DU 5 K=1,120
      IPOINT (K) = IBLANK
5
      CONTINUE
      DO 7 N=1,51
                                 326
```

R-2058, VOLUME I APPENDIX A - LISTING OF PROGRAM NRMM

7 LABLY(N) = IBLANKCO 8 N=69, NPTS 8 LABLY (N) = I BLANK С С SET UP Y AXIS LABEL С DO 55 N=1,12 55 L INE(N) = IDASH С С **RESCALE PCINTS FOR .25 MFH INCREMENTS** Ĉ CALL RESCAL(NPTS, DATA14 CALL RESCALINPTS DATA2N С С COMPUTE MIN, MAX AND SCALE FACTORS FOR X AXIS С CALL LIMITSIDATA1, CATA2, NPTS, BMIN, BMAX, SCALE) С С PRINT X AXIS LABEL AND LABELED TIC MARKS Ċ 888 FORMAT(1H1,44X,20HTRACTIVE FORCE - LBS,/) WRITE(LUN1,888) STRT=BMIN DO 33 N=1,13 AXH(N) = STRTSTRT=STRT+((BMAX-BNINL/12.) 33 CONTINUE WRITE(LUN1,777) (AXH(N+,N=1,13) 777 FORMAT11X,13(F8.0,2X)) WRITE(LUN1,50) (LINE(N+,N=1,12) FORMAT(6X,12A10,1H+) 5Ø С С INITIALIZE SPEED, FLAGS AND INCEX VARIABLES C VSPEED=0. IFL G=1 20 INDEX1=1 INDEX2=1С С NOW BEGIN PLOTTING LOOP C **10 CONTINUE** С С BLANK PLOT STRING FOR NEW LINE С DO 20 N=1,120 20 IPOINT(N)=IBLANK С С GET ALL CATAL POINTS AT THIS SPEED INTO PRINT STRING С 30 IF (DATA1(1, INDEX1).NE.VSPEED) GOTO 40 CALL SCAL(BMIN, SCALE, CATA1(2, INDEX1), 1, IPOINT)

```
R-2058, VOLUME I
                                                                PAGE A-155
APPENDIX A - LISTING OF FROGRAM NRMM
      INDEX1=INDEX1+1
      GOTO 30
С
С
    NOW PUT CATA2 POINT FOR THIS SPEED INTO STRING
С
   40 CONTINUE
      CALL SCALL BMIN, SCALE, CATA2(2, INDEX2), 2, IPO INT )
      INDEX2 = INDEX2+1
C
    PRINT STRING, CHECK IFLG TO SEE IF NUMBER IS
С
С
    NEEDED ON AXIS
C
      IF (IFLG.LT.20) GOTO 60
      WRITE(LUN1,1000) LABL Y(INDEX2-1), VSPEED, (IPD-INT(J), J=1, 120)
 1000 FORMAT(1x, A1, F3.0, 2H +, 120A1)
      IFLG=1
      GOTO 72
   60 CONTINUE
      WRITE(LUN1,1010) LABL VOINDEX 2-14, (IPOINTEJ), J=1, 120)
 1010 FORMAT (1X, A1, 3X, 2H 1, 120A1)
      IFLG=IFLG+1
С
C
    BUMP VSPEED UP BY 0.25 NEH
С
    IF NOT FINISHED, REPEAT FROM 10 WITH NEW VSPEED
С
   70 CONTINUE
      VSPEED=VSPEED+0.25
      IF (INCEX2.LE.NPTS) GOTO 10
      WRITE(LUN1,65) TOPSPD, ILINE(N),N=1,12)
      FORMAT (1X, F4-1, 1X, 12A 14, 1H+)
65
      WRT TE( LUN1,444)
      FORMAT (/,21X,6HLEGEND,4,21X,6H-----,//,21X,17HX -
                                                             DATA POINTS
444
     +,//,21%,25H# - FITTED CURVE POINTS,
     +//,21X,48HD - COINCIDENT VALUES OF CURVE AND DATA POINTS!
      RETURN
      END
С
С
      SUBROUTINE SCAL (
                          CATA.
                                   IFLG.
                                           LPCINT)
         BMIN,
                 SCALE,
С
C
      С
      HORIZONTAL SCALE SUBRCUTINE
С
      ------
С
      DIMENSION IPOINT(120)
      DATA IEX, ISTAR, IZERG, IQLANK /1HX, 1H+, 1H0, 1H
C
с
с
      BMIN = MININUM VALUE FOR X AXIS
      SCALE= SCALE FACTOR FAGM "LINITS"
Ċ
      DATA = VALUE OF DATA FOINT
С
      IFLG = PRINT FLAG
```

R-2058, VOLUME I Appendix A - Listing of Fragram NRMM

C	
C G	RETURNED :
Č C	IPOINT = FORMATED LINE OF PLCT CHARS
с с	COMPUTE SCALE FACTOR
c	IPT=INT(0.5+((DATA-BMIN)/SCALE))
C C	DETEMINE PRINT CHARACTER
	IF(IPT.LE.Ø.OR.IPT.GT.120) RETURN IF(IPOINT(IPT).EQ.IBLANK) GOTO 10 IPOINT(IPT)=IZERO RETURN
1Ø	IPDINT(IPT)=ISTAR
	IF(IFLG-EQ-1) IPOINT(IRTA=IEX Return
_	END
C C	
Ŭ	SUBROUTINE RESCAL
C	+ NPTS, DATA)
c	·····································
Ĉ	SUBROUTINE TO RESCALE ECR .25 MPH INCR.
C C	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
С	DIMENSION DATA(2,488)
C	NPTS = NUMBER OF PCINTS IN ARRAY
ն Շ	DATA = ARRAY OF POINTS TO BE CHANGED
č	AINCR = NUMBER OF DIVISIONS PER NILE / HOUR
	AINCR=4.
	DO 10 N=1,NPTS ITEMP=INT(.5+AINCR+DATA(1,N))
	DATA(1,N)=FLOAT(ITEMP)/AINCR
10	CONTINUE
	R ET URN END
C _1	
C	
	SUBROUTINE LIMITS(+ DATA1, DATA2, NATS, EMIN, BMAX,
С	
С С С	LOCATE MINIMUM MAXIMUN + SCALE FACTORS
č	LUGAIE MINIMUM MAAIMUR - SCALE FACIURS Salassassassassassassassassassassassassas
C C	DIMENSION DATA1(2,400),DATA2(2,400)

329

SCALEI

```
R-2058, VOLUME I
                                                           PAGE A-157
APPENDIX A - LISTING OF PROGRAM NRPM
C
     DATAL
             = ARRAY OF FIRST DATA
С
     DATA2
             = ARRAY OF SECOND DATA
С
     BMIN
             = DATA MINIMUM VALUE
С
     EMAX
             = DATA MAXIMUN VALUE
C
     SCALE
             = SCALE FACTOF
С
     BMIN=9.9E99
     BMA X=-9.9E99
     DO 10 N=1,NPTS
     BMIN=AMIN1(BMIN, DATA1(2, N), DATA2(2, N))
     BMAX=AMAX1 (BMAX, DATA1 (2, N), DATA2 (2, N)
10
     CONTINUE
     SCALE=ABS(BMAX-BMIN)/120.
     RETURN
     END
С
С
     SUBROUTINE FIXER(
        NPTS.
                IPOWER.
                         FRWER,
                                 611
C
С
     С
     SUBROUTINE TO RESCALE ROWER ARRAY
С
     С
     DIMENSION POWER(2,201) JD1(2,400)
C
С
     NPTS
              = NUMBER CF FEINTS IN PLOT
С
     IPOWER
              = NUMBER CF FGINTS IN POWER ARRAY
С
     POWER
              = POWER DATA NPH AND TRACTIVE FORCE
C
     D1
              = NEW ARRAY DE POWER POINTS IN 25 MPH INCEMENTS
С
     00 5 N=1., NPTS
5
     D1(1,N)=-1.
     DO 10 N=1, IPOWER
     NN=N
С
C
   CONVERT FROM INCH / SEC TO MPH
С
     D1(1,NN) = POWER(1,N) - 4 - 17.6
     D1(2,NN) = POWER(2,N)
10
     CONTINUE
     RETURN
     END
C
C
     SUBROUTINE CURPLT(
        NPTS,
                      NGR,
                             ATF,
    ٠
               VGV,
                                   BTF,
                                          CTF,
                                                D21
С
C
     C
     GENERATE CURVE FROM GUGDRATIC EQUATION
С
     С
```

R-2058, VOLUME I APPENDIX A - LISTING CF FROGRAM NRMM

```
REAL ATF
                   (20)
      REAL BTF
                   (20)
      REAL CTF
                   (20)
      REAL VGV
                   (20.5)
      REAL D2
                   (2,400)
С
С
      NPTS
                = NUMBER OF FEINT IN CURVE
С
      VGV
                = GRAR SHIFT SPEEDS
С
С
      NGR
                = NUMBER OF GEARS IN VEHICLE
      ATF
                = A COEF. OF GUADRATIC EQUATION
C
      BTF
                = B COEF. OF GUADRATIC EQUATION
С
      CTF
                = C COEF. OF QUADRATIC EQUATION
C
C
    RETURNED;
С
С
             = DATA ARRAY OF CURVE POINTS
      D2
С
      VSPEED=-.25
      NG=1
      DO 10 N=1,NPTS
3
      CONT INUE
      VSPEED=VSPEED+.25
5
      CONTINUE
      IF(NG.GT.NGR) GOTO 10
      Y=ATF{NG} + BTF{NG}*VSREED*17.6 + CTF{NG}*{VSPEED*17.6}**2
      IF({ VSPEED # 17.6 } ... T. VGV(NG,5) } GOTO 20
      NG=NG+1
      GOTO 5
      CONTINUE
2Ø
      D2(1,N) = VSPEED
      D2(2_N)=Y
10
      CONTINUE
      RETURN
      END
```

APPENDIX 8

VEHICLE INAUT FILES FOR PROGRAM NRMM

R-2058, VOLUME I VEHICLE INPUT FILE FOR PROGRAM NRMM - M60A1 TANK M60, TANK, COMBAT, FULL TRACKED, 105MM GUN

HEAVE NATURAL FREQUENCY 1.36 CY/SEC **\$ VEHICLE** NAMBLY=1. NVEH(1) = 0, WGHT(1)=109800.. IP(1) = 1, 18(1)=1,REVM(1)=832.0. TRAKWD(1) = 28.,GROUSH(1) = 1.5.NPAD(1)=1, A SHOE (1) = 194.. TRAKLN(1)=167., NBOGIE(1)=12, NFL(1)=1, F.W(1)=15.5. WTE(1)=87., WT(1)=115., IAPG=1,ACD=1.2. CD=1.2. PFA=9 2 ... HPNET = 643 ., CID=1791., IDIESL=1.. NCYL=12.. NENG=1 .. QMAX=1682., IENGIN=13. ENGINE(1,1) = 1200., 1610., 1300., 1645., 1400., 167.8., 1500., 1682., 1600., 1680., 1700., 1675.. 1800., 1655., 1900., 1630., 2000 .. 1000 ... 2100., 1560., 2200., 1515., 2300 .. 1476 ... 2400., 1420., ITCASE=1. TCASE(1) = .862, .98,ITRAN=1. ITVAR=Ø, TQIND=900., ICONV2=12, CONV2(1,1) = 3.660, 0.0,3.125, 0.1, 2.650, 0.2.

K-2058, VULUME I VEHICLE INPUT FILE FOR PROGRAM NRMM - M60A1 TANK

2.228, 0.3, 1.950, 0.4, 1.670, 0.5, 1.420, 0.6. 1.220, 0.7, 1.050, 0.8, 3.980, 0.85, 0.970, 0.90, 0.970, 1.00, ICUNV1=12, CONV111,1)= 1875., 0.0, 1850., 0.1, 1825., 0.2, 1815., 0.3, 1830., 0.4, 1895., 0.5, 1970 .. 0.6, 2030 .. 0.7. 2130., 0.8, 2210., 0.85, 2500 .. 0.9. 2800., 1.0, LOCKUP=0. NGR=2. TRANS{1,11= 3.497, 0.98, 1.250, 0.98, FD(1) = 5.08, 0.98,XBRCOF=0.8. TL=167., CL=15.. CGH=54.25. CGR=119.5, CGLAT =0.0. PBHT=45.0. EYEHGT=55.. WDTH=143.. WI=87., WC=0.0. PBF=218000., MAXL=1. MAXIPR=9, RMS(1) = 0.25, 1.0, 2.0. 3.0. 4.0. 5.0. 6.Ø, 7.Ø, 8.0. VRIDE(1,1) = 35.25, 34.00.

334

PAGE 8-3

R-2058, VOLUME I Vehicle input file f		M NRMM -	M6ØA1 TANK		PA	GE B-4
· · · · · · · · · · ·					×	· 1
21.13.						•
14.10.					. · ·	
11.00,			4 - 1 - ¹			1
16.75,				· .		•
10.50,		. *				
10.25,	2 		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			* · · ·
10.00.						
NHVAL S=7,						
VOOB(1) = 100				. 1		
100					· .	· .
12.,						2
6		1 - A.	,			
4. ,					:	
4*		the second second			•	•
4 HVALC/21- // 0						
$HVALS(1) = \ell \cdot \theta$						
9.0, 10.0,						
12.0,	1					• •
15.0,						
20.0,			• •			I
46.0,						
NSVAL S=9,						
SVALS(1) = 1.,						
5.,						,
10.,	· .	,				
25 . ,	. *	, ·	· · · ·			
50.,						
100			1			•
200	!	-	1			
400						
660.,						
VOOBS(1)= .08,						
.39,						
.77,						
1.93, 3.86,						
7.73 ,						÷
15.45,		•				
30.91,						
46.36,						
\$END						
NOHGT						
3						
NANG						
8					·	
NWDTH						
3						
CLRMIN FCOMAX	F00	HOV ALS	AVALS	WVALS		
INCHES PEUNDS	POUNDS	INC HES	RADIANS	INCHES		
37.03 8948.5	372.1	3.15	1.95	5.88		
24.42 27276.2	1842.0	15.75	1.95	5 - 88		

R-2058, VOLUME I VEHICLE INPUT FILE FOR PROGRAM NRMM - M60A1 TANK

6.57	89773.8	5211+1	33.46	1.95	5.88
37.03	8 94 8 • 5	394.3	3.15	2 • 4 8	5 - 88
24.38	24473.2	1604-8	15.75	2.48	5.88
6.72	50134.8	3800.0	33.46	2.48	5.88
37.03	8948.5	399.0	3.15	2.69	5.88
24.56	18969.2	1390.5	15.75	2.69	5.88
11.43	32415.7	3010.3	33.46	2.69	5.88
36.90	8456.0	386.8	3.15	2.86	5.88
24.30	17646.6	1259.3	15.75	2.86	5.88
20.43	30044.5	2787.9	33.46	2.86	5.88
38.22	8281.7	707.0	3.15	3-42	5.88
21.27	18699.8	2246.3	15.75	3.42	5 - 88
2.87	30244.5	2696.0	33.46	3.42	5 • 88
39.64	4124.4	224+7	3.15	3.60	5.88
31.01	13744.0	1544.0	15.75	3.60	5.88
-1.30	30816.3	2642+9	33.46	3.60	5.88
40.00	3757.7	174.5	3 .15	3.80	5.88
36.63	13166.8	982.9	15.75	3.80	5.88
20.31	31678.1	2626.5	33.46	3.80	5 - 88
40.00	1612.7	3∅•6	3.15	4.33	5.88
39.54	4149.3	145.9	15.75	4.33	5 - 88
37.79	5566.1	-125.5	33.46	4.33	5.88
37.13	9272.2	484.4	3.15	1.95	29.88
24.26	12489.2	-316.4	15.75	1.95	29-88
6.57	79647.8	4974.4	33.46	1.95	29.88
37.13	9272.2	500.0	3.15	2.48	29.88
24.22	20072.6	862.5	15.75	2 48	29.88
6.62	51346.5	4342+5	33.46	2+48	29 . 88
37.13	9272 •2	516.7	3.15	2.69	29.88
24.36	20378.0	1717.0	15.75	2.69	29 - 88
11.70	34 087.7	3769.5	33.46	2.69	29.88
36.99	8456.0	527.7	3.15	2 • 86	29.88
24.57	15926.4	1465.5	15.75	2.86	29 . 88
20.55	30044.5	3131.9	33.46	2.86	29.88
37.17	844 8 • 1	629.9	3.15	3.42	29.88
14.79	18895.7	1864.3	15.75	3.42	29 • 88
2.92	30044.5	3040.6	33.46	3.42	29.88
36.88	7208.2	- 219- 2	3.15	3.60	29.88
22.08	31861.0	2261.9	15.75	3.60	29.88
-11.56	34784.1	3152.8	33.46	3.60	29.88
36.71	9361.9	1001-2	3.15	3.80	29.88
27.21	20061.7	1637.8	15.75	3.80	29.88
3.49	48 38 6 . 8	4522.6	33.46	3.80	29+88
38.68	5964.9	196-1	3.15	4.38	29.88
37.04	7279.0	-102.6	15.75	4.33	29.88
35.01	12253.2	759.8	33.46	4.35	29.88
37.17	9272.2	231.1	3.15	1.95	141.60
24.77	20814.9	1 24 0 . 4	1575	1.95	141-60
6.59	79704.9	4401-1	33.46	1.95	
37.17	9272.2	236.3	3.15	2.48	141.60
24.44	35968-2		15.75	2.48	141.60
6.62	52 81 5 . 6	3648 • 1	33.46	2.48	141.60

336

PAGE 8-5

R-2058, VOLUME I Vehicle input file for program NRMM - M60A1 TANK

37.17	9272.2	241.8	3.15	2.69	141.60
24.40	27603.5	1707.9	15.75	2.69	141.60
11.59	34088.9	3306.2	33.46	2.69	141.60
36.93	8456.0	429.9	3.15	2.86	141.60
24.46	18740.7	1827-2	15.75	2.86	141.60
20.55	30844.5	3062.1	33.46	2.86	141.60
34 . 03	8295.3	471.2	3.15	3.42	141.60
22.76	19812.2	2295.4	15.75	3.42	141.60
20.46	30044.5	3493.0	33.46	3.42	141.60
34.12	9326.8	741.4	3.15	3.69	141.60
16.75	32341.8	2497.8	15.75	3.60	141.60
9.38	34368.4	4266.5	33.46	3.60	141.60
33.89	9787.3	452.9	3.15	3.80	141.00
12.40	38383.1	2027.9	15.75	3.80	141.60
-1.83	48928.4	3741.5	33.46	3.80	141.60
33.91	8474.2	608.2	3.15	4.33	141.60
10.90	18269.4	955.9	15.75	4.33	141.60
-23.03	79892.1	5167.6	33.46	4.33	141 . 60

PAGE 8-6

Ż

R-2058 VULUME I VEHILLE INPUT FILE FOR PROGRAM NRMM - M151 JEEP M151 JEEP NATO MOBILITY MODEL TEST VEHICLE **\$VEHICLE** WI=45.8, LOCDIF=0, NAMBLY=2. NVEH(1)=1, NVEH(2)=1, WGHT(1) = 1740.0, WGHT (2)=1460.0, IP(1) = 1. IP(2) = 1, IB(1) = 1. IB(2)=1, RDIAM(1) = 16.0, RDIAM(2)=16.0, RIMW(1)=4.5. RIMW(2) = 4.5. ICONST(1)=1. ICONST(2)=1, TPLY(1) =6.0, TPLY(2)=6.0. REVM(1) =720.0. REVM (2) = 728.8. DIAW(1)=30.8. DIAW(2)=30.8. SECTW(1)=7.15. SECTW(2)=7.15. SECTH(1) = 7.40, SECTH(2) = 7.40, TPSI(1,2)=15.0. TPSI(2, 2) = 15.0, TPSI(1,1) = 15.0. TPSI(2.1) = 15.0.TPSI(1,3) = 25.0, TPSI(2,3) = 25.0, DFLCT(1,1)=1.31. DFLCT(1,2)=1.31, DFLCT(2,1)=1.14, DFLCT(2, 2) = 1.14,DFLCT(1,3) =1.0. DFLCT(2,3)=1.0, NWHL(1) = 2,NWHL(2) = 2, $ID(1) = \emptyset$, ID(2)=0. CLRMIN(1) = 11.4,CLRMIN(2)=11.4. WTE(1)=45.6, WTE(2)=45.6, WT(1)=53.0,

R-2058, VOLUME I VEHICLE INPUT FILE FOR PROGRAM NRMM - M151 JEEP

WT(2)=53.0, NCHAIN(1) = 2, NCHAIN(2)=0,HPNET=73.92. ACD=1.2. CD=1.2, AXLSP(1) =85... AVGC=12Ø., CID=141.5. IDIESL=1., NCYL =4., NENG=1.. QMAX=115., $IT(1) = \emptyset$, IT(2) = 0. PFA=22.5, $IAPG = \emptyset$. IPOWER=17, POWER(2,1) =2195.0. POWER(2,2)=2185.0, POWER(2,3) =2050.0, POWER(2,4)=1815.0, POWER(2,5) =1205.0. POWER(2.6)=1180.0. POWER(2,7) =1 085.0, POWER(2,8)=870.0. POWER(2,9) =660.0, POWER(2,10)=650.0, POWER(2,11)=615.0, POWER(2,12)=560.0, POWER(2,13)=420.0, POWER (2,14 = 385.0, POWER(2,15)=355.0, POWER(2,16)=340.0, POWER(2,17)=310.0. POWER(1,1)=0.0. POWER(1,2) =4.9, POWER(1,3)=7.5, POWER(1,4) = 10.0POWER(1,5) = 10.1,POWER(1,6) =12.0. POWER(1.7)=15.5. POWER(1,8) =19.8. POWER(1,9)=19.9. POWER(1,10)=25.0, POWER(1,11)=30.0. POWER(1,12)=33.0. POWER(1,13)=33.1. POWER(1,14)=40.0. POWER(1,15)=45.0. POWER(1,16)=50.0, POWER (1,17)=56.0,

PAGE 8-8

R-2058, VOLUME I VEHICLE INPUT FILE FOK PROGRAM NRMM - M151 JEEP

ITRAN=0, IENGIN=10. ENGINE(1,1) = 800.0, ENGINE (1,2)=1200.0, ENGINE(1,3) = 1600.0, ENGINE(1,4) = 2000.0, ENGINE(1,5)=2400.0, ENGINE(1,6)=2800.0. ENGINE(1,7)=3200.0, ENGINE(1,8) = 3600.0, FNGINE(1.9)=4000.0. ENGINE(1.10) = 4400.0, ENGINE(2,1)=115. \emptyset , ENGINE(2,2)=115.0, ENGINE(2,3)=115.0, ENGINE(2,4)=115-0, ENGINE(2,5)=112.0, ENGINE(2,6)=108.0, ENGINE(2,7)=103.0, ENGINE(2,81=96.0. FNGINE(2,9)=88.0, ENGINE(2.12) = 80.0.ITCASE=0. TCASE(1)=1.0. TCASE(2) = 1.0. NGR=4. TRANS(1.1) =5.712. TRANS(1,2)=3.179. TRANS(1,3) =1.674, TRANS(1,4)=1.000. TRANS(2,1) = 0.9, TRANS(2,2)=0.9, TRANS(2,3) =0.9, TRANS(2,4)=0.9. FD(1)=4.86. FD(2)=0.9, LOCKUP=0. XBRCOF=0.7. CL =9.1. VAA=06.0, VDA=37.0. TL=85.0, WDTH=64.0. CGH=10.3. CGK=42.0. CGLAT=0.0, PBHT = 20.0. EYEHGT=52.5. WC=0.0. PBF=3200.0. MAXL =1.

MAXIPR=9,

PAGE 8-9

R-2058, VOLUME I VEHICLE INPUT FILE FOR PROGRAM NRMM - M151 JEEP

RMS(1)=0.25. RMS(2)=1.0. KMS(3)=2.0. RMS(4)=3.0. RMS(5)=4.0. RMS(6)=5.0. RMS(7)=6.0. RMS(8)=7.0. KMS(91=8.0. VRIDE(1,1)=76.5, VR IDE(2.1) =21.0. VRIDE(3,1)=9.5, VRIDE(4,1) =5.1. VRIDE(5.1) = 2.0. VRIDE(6,1) =2.0, VRIDE(7,1)=2.0. VRIDE(8.1) =2.0. VRIDE(9,1) = 2.0, NHVALS=7. VOOB(1) = 100.00VOB(2) = 20.0.VOOB(3)=6.0. VOOB(4) = 4.0,VOOB(5) = 2.2. $VUOB(6) = 1 \cdot 0$ VOOB(7)=1.0. HVALS(1)=0.01, HVALS(2)=4.0, HVALS(3)=8.0, HVALS(4) = 12.0, HVALS(5) = 16.0, HVAL S(6)=20.0, $HVALS(7) = 4\ell \cdot 0$, NSVALS=16, VUOBS(1) = 15.0, VOOBS(2) = 15.0. VOOBS(3)=15.0, VOOBS(4) = 15.0, VOOBS(5) = 15.0, VOOBS(6) = 15.0, VOOBS(7) = 15.0, VOOBS(8) = 15.0. VOOBS(9) = 15.0, VOOBS(10)=15.0. VOOBS(11)=15.0. VOOBS(12) = 15.0. VOOBS(13)=15.0. VOOBS(14) = 15.0, VOOBS(15)=15.0. VOOBS(16) = 15.0,

SVALS(1)=1.0, SVALS(2)=2.0,

PAGE B-10

	VOLUME I INPUT FILE	FOR PROGRAM	1 NRMP - 1	M151 JEEP		PAGE 8-11
	3)=3.0.					
	4)=4.0.					:
	5)=5.0,					
	$(6) = 6 \cdot 0$					
	(7) = 7.0					
-	8)=8.0,					
	(9)=9.0, 10)=10.0.					
	11)=11.0.					
	121=12.0.					
	13)=13.0.					
	141=15.0,					
	15)=20.0.					
	16)=40.0.					
\$						
NOHG T				a		
3						
NANG						
8						
NWDTH						
3						
CLRMIN	FOOMAX	FUG	HOV ALS	AV AL S	WVALS	
I NCHE S	PCUNDS	POUNDS	INCHES	RADIANS	INC HES	
6 - 85	941.6	31.2	3.15	1.95	5.88	
-3.75	2179.6	127.1	15.75	1.95	5.88	
-21.21	2208.5	237.5	33.46	1.95	5.88	
6.85	1015.5	35.6	3.15	2.48	5.88	
-3.54	1 261.2 960.9	118.7 160.6	15.75 33.46	2•48 2•48	5.88 5.88	
6.85	696.1	25.5	3.15	2.69	5.88	
-2.31	646.7	124.9	15.75	2.69	5.88	•
-3.95	646.3	98.2	33.46	2.69	5.88	
7.45	411.2	34.3	3.15	2.86	5.88	
2.93	404.0	69.7	15.75	2.86	5.88	
2.61	799.3	98.3	33.46	2.86	5.88	
7.19	417.7	40.9	3.15	3.42	5.88	
5.50	444.5	88.7	15.75	3.42	5.88	
3.10	799.3	103.9	33.46	3.42	5.88	
7.42	734.7	35.5	3.15	3.60	5.88	
1.20	757.6	135.1	15.75	3.60	5.88	
-4.83 8.20	839.1 662.5	135.3 16.3	33.46 3.15	3.60 3.80	5.88 5.88	
.08	1170.4	-180-3	15.75	3.80	5.88	
-9.54	1301.5	240.0	33.46	3.80	5.88	
9.65	344.3	4.8	3.15	4.33	5.88	
5.79	1150.8	43.5	15.75	4.33	5.88	
23	2378.6	146.0	33.46	4.33	5.88	
6.85	592.1	-2.8	3.15	1.95	29.88	
-3.75	2163.4	99.1	15.75	1.95	29.88	
-21.46	2029.6	150.9	33.46	1.95	29.88	
6.85	1015.5	29.3	3.15	2.48	29.88	
-3.75	1 252 •4	£8•4	15.75	2.48	29.08	

342

liza.

-4.92	1110.3	109.8	33.46	2.48	29.88
6.85	698.1	24.7	3.15	2.69	29.88
•59	658.10	69.2	15.75	2.69	29.88
.52	837.9	116.9	33.46	2.69	29.88
7.45	411.2	28.8	3.15	2.86	29.88
4.86	443.4	50.1	15.75	2.86	29.88
4.75	799.3	105.0	33.46	2.86	.29 . 88
7.29	417.6	31.1	3.15	3.42	29.88
5.40	444.5	57.0	15.75	3.42	29.88
4.92	799.3	108.6	33.46	3.42	29.88
6.83	708.6	39.9	3.15	3.00	29 . 88
.78	761.3	119.2	15.75	3.60	29.88
-2.82	842.2	137.0	33.46	3.60	29.88
6.70	991.4	34.9	3.15	3.80	29.88
-2.46	1178.4	145.1	15.75	3.80	29.88
-10.26	1318.0	195.9	33.46	3 • 80	29.88
6.68	575.1	4.9	3.15	4.33	29.88
-3.01	2401.8	157.0	15.75	4.33	29.88
-23.83	2551.4	228.7	33.46	4.33	29.88
6.85	541.3	-6.0	3.15	1.95	141.60
50	2428.4	87.4	15.75	1.95	141.60
-11.40	2556.1	128.8	33.46	1.95	141.00
6.85	1093.9	18.1	3.15	2.48	141.60
2.84	1170.6	68.6	15.75	2.48	141.60
73	1 30 4 . 9	145.9	33.46	2.48	141.60
6.85	707.5	16.9	. 3.15	2.69	141.60
4.40	758.7	75.1	15.75	2.69	141.60
3.83	837.9	132.5	33.46	2.69	141.60
7.45	416.8	17.0	3.15	2.86	141.60
6.75	443.4	65.4	15.75	2.86	141.60
6.88	799.3	103.0	33.46	2.86	141-60
7.67	417.2	19.1	3.15	3.42	141.60
7.28	388.0	65.9	15.75	3-42	141.60
6.85	799.3	106.8	33.46	3.42	141.60
6.84	707.1	20.1	3 -15	3.60	141.60
4.25	709.1	78.2	15.75	3.60	141.60
3 • 8 8	839.7	135.9	33.46	3.60	141.60
7.08	1094.0	18.6	3.15	3.80	141.60
2.104	1168.7	83.3	15.75	3.80	141.60
60	1312.2	164.2	33.46	3.80	141.60
6.00	1131.4	30.3	3.15	4.33	141.60
03	2397.2	8 2.3	15.75	4.33	141.60
-15.46	2549+8	147.3	33.46	4.33	141.60

APPENDIX C

TERRAIN INDUT FILES FOR PROGRAM NRMM

PAGE C-2

1 1 1 1 11 1111111111111111111111111111
2 1 5 5 51 111111111111111
3 1 6 6 61 11111111111111111
4 1 8 8 81 111111111111111111
5 11010101 1111111111111111
6 1 1 1 12 1111111111111111
7 1 1 1 3 1111111111111111
8 1 i 1 14 11111111111111111 9 1 1 1 16 1111111111
9 1 1 1 16 111111111111111111 10 1 1 1 17 1111111111
12 2 5 5 51 1111111111111111
13 2 6 6 61 111111111111111
14 2 8 8 81 11111111111111111
15 21010101 1111111111111111
16 2 1 1 12 11111111111111111
17 2 1 1 13 11111111111111111
18 2 1 1 14 1111111111111111
19 2 1 1 16 11111111111111111 20 2 1 1 17 11111111111111111
20 2 1 1 17 111111111111111 21 1 1 1 11 11 11111111
24 1 1 1 11 11 11 11 11 11 11 11 11 11 11
25 1 1 1 11 11111911111111
26 1 1 1 11 111111666665551
27 1 1 1 11 111111887655551
28 1 1 1 11 111111666666661
29 1
30 1 1 1 11 111111888887651 31 1 1 1 1111433311666665551
32 1 5 5 5111433311887655551
33 1 5 5 5111433311666666661
34 1 1 1 1111433211887655551
35 1 5 5 5111433211666665551
36 1 1 1 11113521111111111
37 1 1 1 1111135221111111111
38 1
39 1
42 1 1 1 1113437321111111111
43 1 1 1 1113437821111111111
44 1 1 1 11 11 11 11 11 11 11 11 11 11 1
45 1 1 1 11 11111111111111
46 1 3 1 11 111111111111111
47 1 5 5 1
49 1 5 5 51 11111111111111
50 1 / 7 71 111111111111111

R-2058, VOLUME I Road terkain input file - file CKK FO

1	1	1	4	300	300	300	300	3	1000	1000	1000:	1000	1	70	0.1000
4	2	1	4	300	300	300	300	7	502	500	500	500	2	40	0.1100
3	2	1	4	300	300	300	300	7	500	500	500	500	2	55	0.1260
4	2	1	1	300	300	300	300	3	500	500	500	5ØØ	2	25	0.1300
5	3	1	4	300	300	300	300	3	250	250	25Ø	25Ø	8	55	0.140U
6	3	1	4	300	386	300	300	15	500	500	500	500	8	55	0.1500
7	3	1	4	300	300	300	300	3	500	500	500	500	25	40	0.1600
8	3	1	4	25 Ø	190	80	80	3	250	250	250	25 Ø	8	40	0.1700
ÿ	4	1	4	250	190	36	36	3	25Ø	25 Ø	250	250	8	55	0.1800
16	4	1	4	200	200	200	200	15	250	250	250	25Ø	8	55	0.1900
11	4	1	4	200	200	80	80	15	258	250	250	250	8	55	0.2000
12	4	i	4	250	200	200	200	3	25Ø	250	250	250	25	49	0.2100
13	4	ì	4	25Ø	200	200	200	3	79	79	79	79	10	30	0.2200
14	4	1	4	250	200	200	200	3	25Ø	25Ø	25Ø	25 Ø	10	9	0.2300

PAGE C-3

APPENDIX D

SAMPLE OUTPUT OF PROGRAM NRMM

This Appendix contains output generated by executing NRMM using the vehicle and terrain input files of Appendices B and C. In all cases, the control variable DETAIL was set to 2. This results in output of the control, scenario and vehicle data through NAMELIST directed WRITE's. This is followed by the speed-made-good as described in Section II.E. The control variable SEARCH was set to 0.

For the Areal terrain, the scenario variables MAP and ISEASN were set to 71 and 3 respectively. For the Road terrain, the scenario inputs were MAP = 11, ISEASN = 3 and MONTH = 1. The default values were used for all other control and scenario variables.

These outputs are presented as examples. The terrain files are artificial. They were made up to systematically exercise portions of the Model.

R-2058, VOLUME I Sample output of prugram NRMM - Vehicle: M60A1, Terráin: CKK	PAGE D-2
<pre>\$CONTRL DETAIL = 2, KSCEN = 1, KVEH = 1, KII1 = 0, KII2 = 0, KII3 = 0, KII4 = 0, KI15 = 0, KI16 = 0, KI17 = 0, KI18 = 0, KI19 = 0, KI110 = 0, KI111 = 0, KI112 = 0, KI112 = 0,</pre>	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	

KI V2	=	Ø,
KIV3	=	Ø,
KI V4	=	0,
KI V 5	=	Ø,
KT V6	=	Ø,
KIV7	=	Ø,
KI V8	=	Ø,
KI V9	=	Ø,
KIV1Ø	=	Ø,
KIV11	=	Ø,
KI V12	=	Ø,
KI V13	=	3,
KI V14	=	14,
KIV15	=	Ø,
KI V16	=	Ø,
KI V17	=	3,
KI VI B	Ξ	Ø,
KIV19	=	Ø,
KI V2 Ø	=	ø,
KI V21	=	0,
NTUX	=	1,
SEARCH	=	Ø,
\$END		

R-2058, VOLUME I Sample Output of Program NRMM - VEFICLE: M60A1, TERRAIN: CKK

\$SCENAR		
COHES	=	.5E-01,
DCLMAX	=	.5E+00.
GAMMA	=	-2E+00,
IOVER	Ξ	9,
ISEASN	Ξ	3,
ISURF	=	1,
ISNOW	=	ø,
LAC	Ξ	1,
MAP	=	71,
MAPG	=	1,
MONTH	=	1,
NOPP	Ξ	Ø,
NSLIP	Ξ	Ø.
NTRAV	=	3,
NTUX	=	1.
PHI	=	.21E+Ø2,
REACT	=	.5E+00,
RDFOG	=	.1E+04.
SFTYPC	=	•9E+Ø2,
VBRAKE	=	.5 E+01,
VI SMNV	=	.2E+Ø1,
VLIM	=	.55E+Ø2,
ZSNOW	=	.3 E+01.
\$END		

.

PAGE D-3

R-2058, VOLUME I Sample output of prugram NRMM - Vehicle: M60A1, Tekrain: CKK PAGE D-4

1

SVEHICLE ALD = .12E+Ø1. ASHOE AVGC = 0.0. AXL SP CD = .12E+01. CGH = .5425E+Ø2. CGLAT = 0.2, CGR = .1195E+Ø3. CID = .1791E + 04, CL = .15E+02. 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, CONV1 = .1875E+04, 0.0, .185E+04, .1E+00, .1825E+04, .2E+00, .1815E+04. .3E+00, .183E+04, .4E+00, .1895E+04. .5E+00, .197E+04, .6E+00, .203E+04, .7E+00, .213E+04, .8E+00, .221E+04, .85E+00, .25E+04, .9E+00, 0.1. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, K. V. Ø.O, Ø.Ø, Ø.V. V.Ø, Ø.O, V.Ø, Ø.O, Ø.V. CUNV2 = .366 E+01, 0.0, .3125 E+01, .1 E+00, .265 E+01, .2E+00, .2228 E+01, .3E+02, .195E+01, .4E400, .167E+01, .5E+00, .142E+01, .6E+00, .122E+01, .7E+00, .105E+01, .8E+00, .98E+00, .85E+00, .97E+00, .9E+00, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. DFLCT = 3.2, 5.8, 3.8, 3.8, 8.8, 5.8, 5.8, 5.8, 5.8, 5.3, 5.9, 5.8, 5.4, 0.0, 4.0, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3. 6.6. 3.4. 8.4. 4.4. 8.4. 6.3. 8.0. 8.0. 8.0. 0.8. 8.4. 1.0, 0.0, 8.2, 0.0, 9.0, 0.0, 0.0, 0.0, 0.0, 3.4. 0.0, 0.8, 0.0, 0.0, 0.0. DIAW = 0.0. DRAFT ENGINE = .12E+04, .161E+04, .13E+04, .1645E+04, .14E+04, .167E+04, +15E+04+ .1682E+04, .16E+04, .108E+04, .17E+04, .1675E+04, .18E+04, .1655E+04, .19E+04, .163E+04, .2E+04, .21E+04. .156E+04. .22E+04. .1515E+04. .16E+04, .23E+04, .147E+04, .24E+04, .142E+04, 0.0, 0.0, 0.0, 0.0, 0.0, Ø. 0. J. J. C. D. J. J. J. B. L. D. J. J. D. O. 0.0, 0.0, 3.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, J. J. J. D. J. C. J. J. J. J. J. S. S. J. J. EYEHGT = .55E+02. FD = .5 28 E+Ø1, .98 E+ØØ,

R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: M60A1, TERRAIN: CKK

FORDD = 0.0. GROUSH HPNET = .643E+Ø3. = 0.0, .9E+01, .1E+02, .12E+02, .15E+02, .2E+02, .4E+02, 0.0, HVALS TAPG = 1. 15 ID IDIESL = -1E + 01. = 13, IENGIN ICONST - 0. 3. 0. J. 0. 0. 0. 0. 0. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. = 12, ICONV1 ICONV2 = 12. IP = Ø, IPOWER IT ITCASE = 1. = 1, ITRAN = 0. IT VAR = Ø. LOCDIF LOCKUP = Ø, MAXIPR = 9. MAXL = 1. NAMBLY = 1. NCHAIN NCYL = .12E+Ø2. NE NG = .1E + 01.NFL = 2, NGR = 7, NHVALS NPAD = 1. 3. 3. 3. 3. 3. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 3. 3. 0. 2. = 9, NSVALS NVEH. NWHL = 4, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 5, 0, 0, 0, 0, 3, 3, 3, â., = Ø, NWR = .218E+96. PBF PBHT = .45E + 0/2. PFA = .92E+02. POWER U.O, U.U, 2.C, U.U, O.U, U.C. Q.O, U.O, 0.0, U. D. U. D. O. U. U. U. U.O. 0.0, B.L. D.D. 0.0, 0.0, 0.0, 0.0, 0.0, U. L. U.O. J.O. O.J. U.O. O.O. v.U. D.O. O.O. U.O. J.J. U.O. 1.0, 9.0, 9.0, 0.3, 0.9, 0.4, 0.9, 0.0, 0.0,

R-2058, VULUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: M60A1, TERRAIN: CKK PAGE D-6

2.2, 6.3, 5.6, 8.8, 5.8, 5.6, 9.6, 9.8, 6.8, 6.3, 6.3, 6.4, U. U. B. C. B. U. U. S. J. C. C. C. C. J. J. D. D. D. D. 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, d.0, bill U.O. O.U. C.O. B.B. O.D. B.O. W.O. O.O. U.O. O.O. O.O. O.O. J.J. U.O. U.U, J.C. U.U, O.O, O.D. O.U, U.O, O.O, U. V. O.O, O.O, J.U. U.J, O.U. W.D. S.O. U.J. U.D. U.J. U.J. K. K. O. Y. J. Z. O. C. O. O. J. O. O. J. O. J. D. O. O. O. J. O. A. 1.0, v.v, 0.2, v.0, D.v, 0.0, 0.0, 0.0, v.0, 0.9. 0.9. 0.0. 0.0. 0.0. 0.9. 0.9. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. w.3, Ø.W, Ø.K, Ø.Ø, Ø.Ø, Ø.Ø, Ø.Ø, Ø.Ø, Ø.Ø, U.U, D.D, C.O, D.O, D.O, Q.U, D.C, D.O, C.O, 5.5, 5.0, 5.2, 2.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 0.0, 0.1, 6.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.2. 0.0. U.O. = .1082E+04. QMA X RDIAM U.O. C.V. U.O. U.O. 0.0. 0.0. 0.0. 0.0. 0.0. REVM 0.0, J.0, V.V, 0.0, 0.V, 0.L, 0.0, 0.0, 0.0, RTMW = .25E+00, .1E+01, .2E+01, .3E+01, .4E+01, .5E+01, .6E+01, RMS .7E+Ø1, .8E+01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, U.C. U.O, 0.0, 0.0, W.O. = .155E+ 22, Ø.O, Ø.E, Ø.Ø, Ø.Ø, v.Ø, Ø.Ø, v.Ø, Ø.Ø, Ø.Ø, Ø.2, RW SAE = 0.0. SAI = 0.0. SI:CTH J.O. J.C. O.C. J.O. N.O. B.C. B.U. J.V. = .1 E+01, .5 E+01, .1E+02, .25 E+02, .5 E+02, .1 E+03, .2 E+03, SVALS .6E+03, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, .4E+Ø3. 2.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 4.0, 0.0, TCASE = .862E+00, .98E+00, TL = .167E+03. TPLY = 3.6, 4.8, 0.4, 0.0, 0.4, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: M60A1, TERRAIN: CKK

```
PAGE D-7
```

U. U. U. U. C. L. U. O. TPSI C. C. O. D. D. D. D. C. D. O. D. C. 0.0, 0.0, L.L. 0.0, 0.0. 0.0. TOIND = .9E+03. 8.0, 8.4, 8.2, 8.2, 0.8, 8.0, 8.0, 9.0, 8.0, TRANS = .3497E+01, .98E+00, .1255E+01, .98E+00, 0.0, 0.0, 0.0, 0.0, 0.0.0.0. VAA = 0.0. VDA. = 0.0. VES = 0.0. = .1 E+03, .1E+03, .12E+02, .6E+01, .4E+01, .4E+01, .4E+01, 8.0, VOOB 0.0. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, = .8E-01, .39E+00, .27E+00, .193E+01, .386E+01, .773E+01, VUOBS .3091E+02, .4636E+02, 0.0, 0.0, 0.0, .1545E+02. 0.0. VRIDE = .3525E+02, .34E+02, .2113E+02, .141E+02, .11E+02, .1075E+42, .105E+02, .1025E+02, .1E+02, 0.0, 0.0, U.3. 0.0. L.C. U.U. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. U. C. J.U. C.U. C.L. C.C. V.C. U.C. U.U. C.J. C.U. C.C. C.U. C.L. 0.0. 0.0. 0.0, 0.01 0.0, 0.0, 0.0, VSS = 0.0. VSSAXP = 0.0.WC = 0.0. WDAXP = 0.0. WLPTH U.U. 0.L. 0.C. 0.0. 0.0, 0.0. 0.0. 0.0. WD TH = .143E+03, WCHT 1.4, 6.0, 8.2, 8.0, 8.8, 8.4, 8.0, 8.0, 8.0, 6.0, = .87E+02. WI = 2.2. 6.0, 6.0, 8.2, 0.0, 0.0, 6.0, 0.0, 8.0, 0.0, 0.0, 0.0, 0.2. WEAT 2.0, 6.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0. WAFORD = 0.0. WT U. 0, U. U. U. U. U. O. U. U. D. O. U. U. O. O. O. O. O. O. WTE $WWAXP = \emptyset \cdot \emptyset \cdot$

R-2058, VOLUME I Sample output of program NRMM - Vehicle: M60A1, terrain: CKK

PAGE D-8

1

i

X3RCOF = .8E+00, \$∈ND R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: M60A1, TERRAIN: CKK

SAMPL	EUU	1 90 1	U۲	PRUG	KAM NK	MM - VI	EFICLE	• M6ØA	Ly IER	RAIN	CKK
NTU	ITUT	VM	AX	UP	L'EVEL	DOWN	VS EL	UP I	LEVEL	DOWN	GRADE
											7 1.00
2	1	21 .	200	18.81	21.15	24.35	21.20	18.81	21.15	24.35	5 1.00
3	1	15.	11	13.63	15.16	16.86	15.11	13.63	15.16	16.86	5 1.00

NTU	ITUT			LEVEL		VSEL		LEVEL		GRADE	AR EA	
· 1	1	27.07									0.0400	
- 2	1	21.20	18.81	21.15	24.35	21.20	18.81	21.15	24.35	1.00	J. # 800	
3	1	15.11	13.63	15.16	26.86	15.11	13.63	15.16	16.86	1.00	0.0800	
4	1	8.09	7.68	0.08	8.55	8.09	7.68	8.08	8.55	1.00	0.0.000	
5	1	0.00	0.00	0.00	0.00	0.00	0.00	3.88			0.0000	
6	1	23.86										
7								27.07			0.0000	
8	1					15.54					0.0200	
9	1				27.05						0.0.200	
10	1				19.17						0.0000	
11	1							16.78			0.0200	
.12	- 1		8.63			9.20					0.0100	
13												
	1		6.73								0.0100	
14		5.48	5.28			5.48					0.0100	
15	. 1		3.74		4.11		3.74				0.0000	
16		16.31									0.0200	
17								16.78			0.0900	
18	· 1										0-0000	
19	1										0.0000	
20	1	2.47			17.26			16.78				
21	1	27.07	27.07	27.07	27.07	27.07	27.07	27:87	27.07	1.00	0.9400	
22	1	21.13	21.13	21.13	21.13	21.13	21.13	21.13	21.13	1.00	0-0900	
23	1	11.00	11.00	11.00	11.00	11.00	11.20	11.00	11.00	1.00	0.0900	
24	1	10.50	10.50	10.50	10.50	10.50	10.50	10.50	10.50	1.00	0-0400	
25	1		10.00			-	10.00		10.00	1.00		
26	1		13.12			9.20	9.20	9.26	9.26	1.00		
27	1		12.90			9.26	9.26	9.26	9.26	1.00		
28	1	9.98		9.97		0.00	0.00	0.00	0.00	1.00		
29	1	9.26	9.26	9.26		9.26			9.26		0.0200	
30	1	5.37	5.17			5.37			5.59		0.0000	
31	1		13.12			8.58	8.58	8.58	8.58		0.0900	
32	1		10.11			8.58			8.58		0.0300	
33			8.50	9.06				0.00	0.00	1.00		
	1											
34			12.90				9.24		9.24	1.00		
35	1				42.13				9.24			
36	1							27.07				
37	. 1							27.07				
38	1			10.44				10.44		1.00		
39	1	8.34	8.23	8.34	8.46	8.34	8.23	8.34	8.46	1.00		
40	1	8.09	7.99	8.09	8.20	8.09	7.99	8.09	8.20		0.0000	
41	1	8.54	8.42	8 •54	8.66	8.54	8.42	8.54	8.66		0-0200	
42	1	576	5.72		5.81	5.76	5.72	5.75	5.81	1.00	0.0000	
43	1	3.61	3.61	3.61	3.61	3.61	3.61	3.61	3.61		0.3230	
44		27.07						27.07		1.00	0.0200	
45					23.48		23.48		23.48	1.00	0.0100	
46	1	10.90	10.90	10.90	10.90	10.90	18.90	10.90	10.90	1.00	0.0400	
47	1	21.20	18.81	21.15	24.35	21.20	18.81	21.15	24.35	1.00	0.0000	
48	1	20.97	18.81	21.15	23.48	20.97	18.81	21.15	23.48	1.00	3.9200	
49	1	10.90	16.90		10.90		10.90		10.90			
50	1	6.04	6.04	6.04	6.04	6.04	6.04	6.04	6.04	1.00	0.0000	

AR EA

PAGE D-10 R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: M63A1. TERRAIN: CKKRD \$CUNTRL DETAIL = 2, = 1, KSCEN **KVEH** = 1, KII1 = 0, KI12 = Ú, KII3 = 0, KII4 = 0. = Ø, KII5 KII6 = Ø, K117 = 0. KI I 8 = Ø, KII9 = 0,

KI I I Ø

KII11

KII12

KII13

KIII4

KII15

KII16 KII17

KMAP

KT PP KI VI

KIV2 KIV3

KI V4

KI V5

KIV6

KI V7

KIV8

KI V9

KIV1Ø

KI V11 KI V12

KI V13

KIV14 KIV15

KI V16

KIV17 KIV18

KI V19

KI V2Ø

KI V21

SEARCH

NTUX

\$END

= 0.

= 0,

= Ø,

= Ø,

= Ø,

= Ø, = Ø,

= Ø, = Ø,

= Ø,

= Ø, = Ø,

= Ø,

= Ø.

= Ø,

= Ø.

= Ø,

= Ø, = Ø,

= Ø,

= Ø, = Ø,

= Ø,

= 0,

= 0,

= Ø,

= 1,

= Ø,

= Ø,

= 0, = 0,

= Ø, = Ø,

= 2,

R-2058, VOLUME I Sample Output of Program NRMM - Vehicle: M60A1, Terrain: CKKrd

•		
\$SCENAR		
COHES	=	•5E-Ø1,
DCLMAX	Ξ	•2 E+00 •
GAMMA	=	.2E+00,
IOVER	=	9,
I S EA SN	=	3,
ISURF	=	1.
ISNOW	=	0,
LAC	=	1,
MAP	Ħ	11,
MAPG	=	1,
MONTH	=	1,
NOPP	Ξ	ΰ,
NSLIP	Ξ	0,
NTRAV	=	3.
NTUX	=	1,
PHI	=	-21E+02,
REACT	=	•5E+00,
RDFOG	=	.1E+Ø4,
SFTYPC	=	•9E+Ø2,
VBRAKE	=	•5E+Ø1,
VISMNV	Ξ	•2E+Ø1,
VLIM	=	.55E+02,
ZSNOW	=	.3E+Ø1.
\$END		

PAGE D-11

PAGE D-12 R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMN - VEHICLE: M60A1, TERRAIN: CKKRD \$VEHICLE ACD = .12E+Ø1. = .194E+03, 0.0, W.K. U.D. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ASHOE A VGC = Ø. 2. AXLSP 5.0, 5.0, J.C. 5.0, 0.0, 0.4. 0.6, 0.0, CD = .12E+01. CGH = .5425E+82, CGLAT = 0.0. ÚG R = .1195E+03.CID = .1791E+04. CL = .15E + 02. = .1875E+04, 0.0, .185E+04, .1E+00, .1825E+04, .2E+00, CONV1 .1815E+04. .3E+00, .183E+04, .4E+00, .1895E+04, .5E+00, .197E+04, .6E+00, .203E+04, .7E+00, .213E+04, .8E+00, .221E+04, .85E+00, .25E+04, .9E+00, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. CONV2 = .366 E+01, 0.0, .3125 E+01, .1 E+00, .265 E+01, .2 E+00, .2228 E+01, .3E+u0, .195E+01, .4E+00, .167E+01, .5E+00. .142E+01. .6E+00. .122E+01, .7E+00. .105E+01. .8E+00. .98E+00, .85E+00, .97E+00, .9E+00, W.O. 0.0, C.U. 0.0, 4.0, 0.0, 0.0, 0.0. U. C. U. U. U. U. Q. C. D. O. J. B. U. D. D. O. U. C. = U.L. U.W. U.W. U.L. 0.0, 0.0, U.U. 040, 0.0, U.D. U.U. 0.K. DFLCT U. U. V. V. U. L. U. U. U. U. U. U. Q. Q. Q. Q. U. U. U. 0.0, 0.0, 2.8, 0.9, 0.0, 0.0, = 3.8, 5.0, 6.8, 6.8, 6.0, 0.6, 0.8, 0.0, 0.0, 0.0, 0.4, 0.8, 0.8, DIAW 0.0. 0.0, 0.2, 0.0, 2.0, 0.0, 0.0, 0.0, DRAFT = 0.0. .1682E+04, .16E##4, .168E+04, .17E+04, .15E+Ø4. .1675E+04, .18E+04, .1655E+04, .19E+04, .163E+04, .2E+04, .16E+04, .21E+04, .156E+04, .22E+04, .1515E+04, .23E+04, .147E+04, .24E+04, .142E+04, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. 6.0. 0.0. 0.0. 0.0. 2.0. 0.0. 0.0. 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, x.0, 0.0, d.v, 0.0, 0.0, 0.4, U. U. U. U. K. C. U. U. J. U. J. U. J. U. J. U. J. U.O, U.D, K.C. U.O. B.O. J.C. O.D. D.G. U.U. 1.2, 1.3, 1.2, 1.L, 1.3, 1.9, 0.4, 0.6, 1.6, 1.6, 0.6, 0.6, 0.2, Q.0, G.O. W.K. G.W. Q.Q. Q.C. Q.Q. EYEHGT = .55E+02, FD = .508E+01. .98E+00.

ţ

R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: M6JA1, TERRAIN: CKKRD

FORDD = 0.0. U.U. U.O. 0.0, U.U. 0.0, 0.0, 0.0, 0.0. 0.0. = .643E+13. HPNE T HVALS = 0.0, .9E+01, .1E+02, .12E+02, .15E+02, .2E+02, .4E+02, 0.2,I A PG = 1. IB TD. = .1E + 01.IDIESL = 13. IENGIN = 12. ICONV1 = 12, ICONV2 IP IPOWER = Ø, IT ITCASE = 1. I TR AN = 1, ITVAR = 2. = 0, LUCDIF LOCKUP = Ø. = 9. MAXIPK MAXL = 1. NAMBLY = 1. NBOGIE NCHAIN NCYL = .12E+02. NE NG = .1E+01.NFL NGR = 2, NHVALS = 7. NPAD = 9. NSVALS NVEH NWHL NWR = 0. PBF = .218E+06, = .45E+02. PBHT PFA = .92E+Ø2. POWER 2.2. 4.0, 6.2. 4.3, 3.0, 0.0, 0.4, 0.4, 0.0, 0.0, v. J, V. C, V. B, Ø. J, J. J, Ø. C, J. D, Ø. O, Ø. O,

R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: MEDAL, TERRAIN: CKKRD

2.2. 4.9. 4.4. 6.9. 4.9. 4.4. 8.9. 4.4. 4.4. 4.4. U. U. V. J. 0.0. 0.0. J. U. 0.2. 0.0. 0.0. 0.0. 0.2. 4.4. 4.4. 4.2. 9.0. 6.6. 4.4. 8.4. 9.6. 0.9. 3.6. 6.2. 0.0, 0.6, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, U. 4. U. v. J. L. J. J. J. U. D. D. D. J. U. J. D. D. D. 3.0. 9.0. 8.0, 2.**0. 8.0. 3.0. 0.0. 8.0.** 8.0, 8.8, 8.0, 8.4. 8.0, 0.1, 0.2, 0.8, 0.0, 0.8, 8.0, 0.0, 0.0, J.J. J.J. J.J. J.J. J.J. S.J. S.C. J.J. S.C. J.J. 2.0, 0.0, 2.2, 0.0, 3.0, 0.2, 0.0, 0.0, 0.0, 3.0, 0.0, 0.2, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 6.0, 0.0, 0.0, 0.84 8.0, 0.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.0, 0.4, 0.2, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.8. 0.0. 0.0. = .1682E+84, OMA X RDIAM = .832E+03, J.Ø, C.B, 9.0, 3.0, V.B, V.S, 9.0, V.9, J.J, J.J, REVM J. J. O.L. O.J. J.O. G.O. J.J. J.O. D.O. U.O. RTMW 8.0. 0.1, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, = .25E + 00, .1E + 01, .2E + 01, .3E + 01, .4E + 01, .5E + 01, .6E + 01,**KMS** .7E+Ø1. .8E+01, U.J, 0.8. 0.0, 0.0, U.J, 0.0, 2.0, 0.0, 0.0, 2.0, 0.0, RW = Ø.Ø, SAE SAT = 0.0. - 2.2. 3.8. 3.8. 3.3. 3.3. 3.9. 3.9. 8.4. 5.8. 0.5. 5.5. 5.8. SECTH J. J. Ø. , J. L, J. J. J. J. J. O. O. O. J. J. D. = 0.2, U.0, U.9, 0.2, U.V, U.V, U.O, U.O, U.V, U.V, 0.4, U.V. U.E. SECTW = .1E+01, .5E+01, .1E+02, .25E+02, .5E+02, .1E+03, .2E+03, SVALS .4E+Ø3. .6E+03, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, TCASE = .862E+00. .98E+00. TL = .1 07 E+ Ø3 . TPLY R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: M&DA1, TERRAIN: CKKRD

2.0, 0.0, \$.2, 0.0, 0.0, 0.0; 0.0; 0.0, TPSI 8.6, 8.6, 8.8, 8.6, 8.8, 8.8, 8.8, 8.9, 8.9, 8.8, 2.2. 3.8, 9.8, 8.8, 8.8, 9.8, 9.4, 9.4, 4.4, 5.9, 8.9, 8.9, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0; TQIND = .9E+03. TRANS = .3497E+01, .98E+00, .1256E+01, .98E+00, 0.0, 0.0, 0.0, 0.0. 0.0. VÁA = 0.8. VDA = Ø.Ø. VFS = 0.0. VOOB = .1E+03, .1E+03, .12E+02, .6E+01, .4E+01, .0.0. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, VUOBS = .8 E-01, .39E+00, .37E+00, .193E+01, .386E+01, .773E+01, .3091E+02, .4636E+02, 0.0, 0.0, 0.0, .1545E+02. 0.0. VRIDE = .3525E+02, .34E+02, .2113E+02, .141E+02, .11E+02, .1075E+42, .105E+02, .1025E+02, .1E+02, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, = 0.0. VSS $VSSAXP = \emptyset \cdot \emptyset$. WC = 0.0, WDAXP = 0.0. WDPTH = J.E. U.W. J.O. 0.03 0.09 U.O. 0.09 0.09 0.09 0.09 0.09 0.09 WD TH = .143E+03, WGHT = .1 49E+06, 8.0, 8.8, 8.9, 8.8, 8.0, 8.0, 8.0, 9.5, 8.9, 8.0, 8.4, wI = .87E+02, - - 5.2, 5.6, 3.0, 5.2, 5.3, 5.9, 5.0, 5.6, 5.8, 5.8, 5.8, 5.2, WRAT WRFURD = $\emptyset \cdot \emptyset$. wТ 0.0, 0.0, J.L. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, $WWAXP = \emptyset_{\bullet}\emptyset_{\bullet}$

R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMN - VEHICLE: M60A1, TERRAIN: CKKRD

XBRCOF = .8 E+00. \$END R-2058, VOLUME 1 SAMPLE GUTPUT OF PROGRAM NRMM - VEHICLE: M60A1, TERRAIN: CKKRD

NTU	ITUT	V SEL	UP	DOWN	GRADE C	ISTANCE
1	11	24.84	22.64	27.50	3.00	.1000
2	12	19.12	14.65	27.50	7.00	-1100
· 3	12	19.12	14.65	27-50	7.00	.1200
4	12	7.30	6.47	8.37	3.00	.13ŵØ
5	13	18.45	13.88	27.50	3.00	-1400
6	10	11.47	7.25	27.50	15.00	.1500
7	15	15.53	13.88	17.62	3.00	.1600
8	13	18.45	13.88	27.50	3.00	-1700
9	14	11.12	9.54	13.35	3.00	.1800
10	14	12.71	8.28	27.34	15.00	.1900
11	14	11.68	7.42	27.33	15.00	-2660
12	14	17.62	17.62	17.62	3.00	-2100
13	14	22 385	19.63	27.34	3.00	-2200
14	14	3.94	3.49	4 •53	3-00	-2300

R-2058										i
SAMPLE	OUTPUT	OF	PROGRAM	NEAN	-	VEHICLE:	M151.	TERRAIN:	CKK	

PAGE D-18

\$CONTRL DE TATL = 2, KSCEN = 1, KVEH = 1, = KII1 0, KII2 = Ø, KII3 Ŧ ø, Ø, KII4 = = KII5 Ø, KII6 = 0, KII7 = e. KIIS 2 0. K119 = 0. **KII1**Ø = 0. 0. **KII11** = 0. **KII12** = KII13 = 0. KII14 = 0. KII15 = 0. KII16 = 0. KII17 = 0, KMAP = Ø, 0. KTPP = = KI VI 6, KI V2 Ξ Ø, = Ø. KI V3 = Ø, KIV4 Ξ KIV5 Ø, 2. KIV6 = = Ø, KI V7 KIV8 = 0, KIV9 = Ø, Ξ KI V12 Ø, = **KI V11** 0. KIV12 = Ø, KT V13 = Ø, KIV14 = 0, KI V15 = 0, = Ø, KIV16 = Ø, KI V17 KIV18 = 2. = Ø, KI V19 KIV2Ø = 0, KI V21 = Ø, NTUX = 1, SEARCH = 0,

\$ENÒ

R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NR#N - VEHICLE: N151, TERRAIN: CKK

\$SCENAR		
COHES	Ξ	.5E-01,
DCLMAX	Ξ	-2 E+00+
GAMMA	Ħ	.2E+00,
IOVER	=	9,
ISEASN	=	3,
ISURF	=	1.
ISNOW	Ξ	Ø,
LAC	=	1.
MAP	=	71.
MAPG	Ħ	1.
MONTH	=	1.
NOPP	=	Ø.
NSLIP	=	ø.
NTRAV	=	3,
NTUX	=	1,
PHI	=	.21E+02,
REACT	=	-5E+00,
RDFOG	Ξ	.1E+Ø4,
SFTYPC	=	.9E+02.
VBRAKE	=	.5E+01.
VISMNV	=	.2E+Ø1.
VLIM	Ξ	.55E+Ø2,
ZSNOW	=	.3E+Ø1,
\$END		

PAGE D-19

PAGE D-20 R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NAMN - VEHICLE: M151. TERRAIN: CKK \$VEHICLE ACD = .12E+Ø1, = J.9. 0.0, V.J. V.8. 4.0, 0.J. 9.9, 0.0, 0.0, 0.0, 0.0, 9.4. ASHOE J. 0, B. W. 0. 2, 0.0, U. 0, 0.0, 0.0, 0.0, AVGC = .12E + 03.AXLSP = .12E+01. CD CGH = .103E + 02.= 8.8. CGLAT CGR = .42E+02. CID = .1415E+03, = .91E+01. CL 0.0. = 0.2, 0.0, 0.0, 0.2; 0.0, 0.0, 0.0, 0.0, 0.4, 0.4, 0.4, 0.6, 0.4, CONV1 8.0, 0.0, 0.2, 0.9, 0.8, 0.0, 9.8, 0.0, 0.0, 2.2, 3.6, 8.8, 3.2, 0.8, 0.9, 2.9, 0.0, 3.2, 3.2, 3.3, 8.8, CONV2 8.0, 8.0, 0.3, 0.9, 8.0, 8.8, 8.8, 8.0, 8.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, = .131E+01, .114E+01, K.D. 8.0. 0.0, 0.0, 0.0. 0.0. 0.0. 0.0. DFLCT 1.0. C.D, K.L. 0.0, 0.9, 0.8, 0.0, 0.0, 0.0, 0.0, .131E+01, .114E+01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.8, 0.0, 0.0, 0.0, C. C. J.O, .1E+01, .1E+01, U.H. D.W, D.O, J.J. D.O. J. 0.J. 0.0. 6.0, 8.0, 8.0, 6.0, 8.0, 8.0, 6.0, 0.2. 0.0. 0.0. DIAW 0.0. DRAFT = 0.8. ENGINE = .8E+03, .115E+03, .12E+04, .115E+03, .16E+04, .115E+03, .2E+04. .115E+03, .24E±04, .112E+03, .28E+04, .108 E+03, .32E+04, .103E+03, .36E+04, .96E+02, .4E+04. -88E+Ø2+ 0.0, 0.0, 0.L, 0.0, 0.0, 0.8. S. 0, 0.0, 0.0, 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 2.8. 9.0, 2.8. 9.0, 9.0, 9.8, 4.0, 8.9, 8.9, 8. 2. 0.0, 0.9, 0.0, 9.9, 0.9, 8.9, 8.0, 8.0, 8.0, 0.0, 0.4, 8.0, 0.0, 8.8, 0.0, 0.0, 2.2, 0.0, 0.0, 0.0, 0.0. EYEHGT = .525E + 02, = .486E+£1. .9E+00, FU $FORDD = \emptyset \cdot \varrho$.

R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NR&# + VEHICLE: M151, TERRAIN: CKK PAGE D-21

0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. = .7392E+02. HPNET = .1E-01, .4E+01, .8E+01, .12E+02, .16E+02, .2E+02, .4E+02, 0.0, HVALS U.O, 0.0, 0.0, 0.0, 8.0, 0.0, 0.0, 0.0. U. C. O.O. O.O. S.S. D.S. O.O. D.O. G.O. J.O. IAPG = Ø. IB ID IDLESL = .1E+01.IENGIN = 10. ICONST IC ONV1 = Ø. ICONV2 = 0, = 1, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, IP 4. TPOWER = 17. IT ITCASE = 0, ITRAN = 0. ITVAR = 2, LOCDIF = 0. LOCKUP = V. MAXIPR = 9. MAXL = 1. NAMBLY = 2, NBOGIE NC YL = .4E+Ø1. NENG = .1E+01.NFL = 0. 0. 4. 0. 0. 0. 4. 4. 4. 5. 9. 0. 0. 4. 4. 4. 0. 0. 0. 0. 4. 4. NGR = 4. NHVALS = 7, NPAD = 16, NSVALS NVEH NWHL = Ø, NWR PBF = .32E+04, PBHT = .2E+82. PF A = .225E+02. = 0.0, .2195E+04, .49E+01, .2185E+84, .75E+01, .205E+04, .1E+02, POWER .1815 E+04, .101E+02, 41205E+04, .12E+02, .118E+84, .155E+82# .1085E+04, .198E+02, .87E+03, .199E+02, .25E+02, .65E+03, /8E+02, .615E+03, .66E+Ø3. .33E+02, .56E+03, .331E+02, .42E+03, .4E+02, .385E+03, .45E+02. .355E+03, '.5E#02, .34E+03, .56E+02, 0.0. 0.0, 0.0, 0.9, 0.0, 0.0, 0.0, 6.0. 0.0. 0.0, 0.6, 0.8, 8.2, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.0, s.t, l.t, 0.0, 0.0, 9.23 8.0, 2.0, 0.0,

367

R-2058, VOLUNE I SAMPLE OUTPUT OF PROGRAM NRWM → VEHICLE: M151, TERRAIN: CKK PAGE D-22

2.4, 0.4, 2.0, 0.6, 0.0, 2.2, 0.0, 2.0, b.0, b.0, 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. J.J. O.V. C.L. O.O. V.O. O.O. D.O. O.O. D.O. D.O. C. C. G. J. C. Ø, D. C. J. J. D. G. G. D. J. D. D. G. G. D. J. D. C. 0.0, 0.0, 0.0, u.t. 2.t. 9.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 8.0, 0.0, 8.2, 8.0, 8.0, L.C, C.O, 0.0, 0.0, 1.9. 0.0, 2.8, 9.9, 0.0, b.2; 9.0, 6.9, 9.0. 2.9, 0.1, V.Y. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, u. L. O. V. O. C. V. L. D. V. O. O. C. L. V.O. O. V. J. D. J. B. L. 6. J. 6. 0. C. K. C. J. C. B. D. C. D. D. 6. 0, U. C. 0.0, 4.0, 0.4, 0.0, 0.0, 0.2. 0.0, 0.0, 0.0, U.9, U.V, O.V, O.O, U.0, U.V, 0.0, C.O, 0.0, 2. K, U.U. U.U. B.S. B.D. C.O. B.U. U.O. B.U. U.G. B.S. U.S. K.O. K.V. C.K. O.O. V.O. E.C. O.O. U.O. K.O. Q.Q. Q.U. U.U. Q.L. E.D. Q.Q. C.Q. Q.G. Q.U. Q.G. Q.Q. U.Q. U. G. U. O, X. L. U. J, U. O, G. O. O. O. O. O. O. O. O. 0.0. OMAX = .115E+03.RDIAM K.O. L.C. D.O. O.O. L.D. M.C. D.C. 0.0. 0.0. REVM = .72E+63, .72E+23, 4,6, 8.0, 8.0, 8.0, 6.0, 6.0, 8.0, 8.0, 8.0, 8.0, 3.0, K.S. C.O. 0.0, 0.0, 010, 0.0, 0.6, 0.0. W.Ø. RTMW U.U. U.U. U.O. O.L. L.U. D.O. B.C. 0.0. 0.6. = .25E+00, .1E+01, .2E+01, .3E+01, .4E+01, .5E+01, .6E+01, **KMS** .8E+01, 0.0, 0.0; 0.0, 0.0, 0.0, 0.0, .7E+01. K. C. Ø.Ø. Ø.Ø. Ø.Ø. Ø.Ø. = 0.4, 0.0, C.D. E.L. E.D, 0.0, 0.0, 0.4, C.D. 0.8, 0.0, 0.6, RW. J.C. D.U. C.K. J.U. D.O. U.C. D.O. U.O. SAE = 0.0, SAI = 0.2. SECTH 2.0. 2.0. 2.0. 2.0. 2.0. 0.0. 8.0. U. C. 0.2. SECIW U.U, U.D, D.C, U.D, D.D, D.D, D.D, D.D, D.D, U.D.

R-2058. VOLUME I SAMPLE OUTPUT OF PROGRAM NRNM - VEHICLE: M151, TERRAIN: CKK

SVALS

0.0.

PAGE D-23

= .1E+01, .2E+01, .3E+01, .4E+01, .5E+01, .6E+01, .7E+01, .8E+01. .9E+01, .1E+02, .11E+02, .12E+02, .13E+02, .15E+02, .2E+02, .#E+02, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0.0.0. TCASE = .1E+01, .1E+01,TL = .85E+02. TPL Y 8.8. 0.0. 2.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. TPSI 0.0. 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.0. 1.8. 8.0, 2.2. 2.8. 0.4. 0.4. 0.0, 0.0, .25E+02, .25E+02, 0.w, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. 1.0, 0.0, 0.0, 2.0, 2.0, 4.0, 0.0, 0.0, 2.2. 0.0. 0.0. TQIND = 0.0. 0.0, 0.0, 0.2, 0.0, 0.0, 0.2, 0.0, 0.0, U.U. O.U, O.E. O.O, O.G. O.L. O.O, O.O. TRANS = .5712E+01, .9E+00, .3179E+01, .9E+00, .1674E+01, .9E+00, .9E+00, 0.0. 0.0. 0.0, 0.0, 0.0, 0.0. .1E+01. U.C. 0.0. C.L. 0.0. 0.0, 0.05 0.05 0.0. 0.0. 0. 2. 0.0. 0.0. 0.0. 0.0. VAA = .66E + 02. VDA = .37E+02. VFS = 0.2. VOOP = .1E+03. .2E+02, .6E+01, .4E+01, .2E+01, .1E+01, .1E+01, 0.8, 0.0. 2.0, 8.0, 8.0, 8.4, 8.0, 8.0, 8.0, VOOBS = .15E+02, .15E+02, d15E+02, .15E+02, .15E+02, .15E+02, .15E+02, .15E+ 22, .15E+02, .15E+02, .15E+02, .15E+02, .15E+02, .15E+02, .15E+02, 0.0, 0.0, 0.0, J. 8, 8.2, 8.2, 8.8, 0.0, 0.0, 0.2 VELDE = .765E+02, .21E+02, .95E+01, .51E+01, .2E+01, .2E+01, .2E+81, .2E+01. .2E+01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, U.L, C.L. U.Q. 0.0, 8.84 A.O. C.O. 0.0, 0.0, 6.0, 0.6, 6.0, 9.0, 0.6, 0.0, 0.9, 0.0, 0.2. 0.0. 0.0. = 0.0. VSS VSSAXP = 2.2. WC = 0.0. = 0.0. WDAXP WDPTH 0-0. 0.2. 2.1. 0.0, 0.0, C.C. 0.0, U.D. WDTH = .64E+02. WGHT = .174E+24, .146E+04; 0.0; 0.0, 2.0, 0.0; 0.0; 0.0; 0.0; 0.0; 0.4;

PAGE D-24 R-2058, VOLUME I SANPLE OUTPUT OF PROGRAM NRAM - VEHICLE: M151, TERRAIN: CKK K.8, 0.0, K.L. W.0, N.9, 0.0\$ 0.0, 0.0, 9.0. 0.0. WI = .458E+02, WRAT 6.9. 0.6. 0.2. 0.0, 0.0, 0.8. 0.0, 0.0. WRFORD = 0.0. WT 0.0, 2.0, 0.0, 0.4, 2.0, 0.0, 0.0, 0.0. 8.2. WTE U.C. U.C. U.L. U.S. U.O. U.L. C.C. U.C. S.C. S.C. 0.2. WWAXP = 0.0. XBRCOF = .7E+00. \$END

R-2058, VOLUME I Sample Output of Program NR#& - Vehicle: M151, Tekrain: CKK

PAGE D-25

NTU	ITUT	VMAX	UP	LEVEL	D'OW N	VSEL	UP	LEVEL	DOWN (GRADE	AR EA	
1	1	37.15						37.15	-	1.00	9.0200	
2	1	37.15	37.15		37.15			37.15		1.00	020200	
3	1	37.15	37.15		37.15			47 - 15		1.00	0.0100	
4	1	33.26			36.79		30.03			1.00	0-0000	
5	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.0890	
6	1							37.15		3.50	0.0200	
7	1							37.15		7.50	0.0400	
8	1	30.91			87.15			37.15			0.0800	
9	1	-			23.66			37.15			0.0000	
10	1	0.00		37.15		0.00		37.15			0.0400	
11	1				37.15					1.00		
12	1	17.64			19-67			17.71		1.00	0.0100	
13	1							12.72		1.00	0-0900	
14	1	8.90	8.45	8.92	9.35	8.99	8.45		9.35	1.00	0.0000	
15	1	0.00	0	0.00			0.00	0.00	0.00	1.00	0.0400	
16	1	33.80						37.15		3.50		
17	1	31.04						37.15		7.50	3.0260	
18	1	29.41		37.15	37.15	29.41		37-10			0.0 1 00 0.0 1 00	
19 20	1	0.00			17.57			37.15			0.0400	
20	1				37.15					1.00	0.0830	
22	1	9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.50	1.00	0.0100	
23	1	2.00	2.100	2-00	2 4 8 10		2.00	2.00	2.00	1.00	0.0200	
24	1	2 .00	2.00	2.00			2.00	2.00	2.00	1.00	0.0200	
25	1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.00	0.0000	
26	1	24.73		24.73		24.73		24.73		1.00	0.9440	
27	1	24.73	24.73			24.73					0.0400	
28	ī				18.54			18.54		-		
29	1	0.00	0.00	0.00	0.00	8.40	0.00		0.00	1.00	0.0200	
30	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.0200	
31								24.52		1.00	0.0400	
32	1	22.96	22.83	22.95	23.11	22.96	22-83	22.95	23.11	1.00	0.0000	
33	1	18.36	18.36	18.3%	19.36	18.36	18.36	18.36	18.36	1.00	0.0.200	
34	1	24.72	24.72	24.72	24.72	24.72	24.72	24.72	24.72	1.00	0.0100	
35	1							24.72			0-0200	
36	1	37.15		37.15		37.15	37-15	37.15	37.15	1.00	0.0980	
37	1	37.14	37.14	37-14		37.14	37 - 14		37.14		0.0000	
38	1	0.00	ئە0- 0	0.00	0.00	0.00	6.00	0.00	0.60	-		
39	1	0.00	0.00	00.00	0166	0.00	0.00	0.00	0.00	1-00	0-0400	
4Ø	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6-60		0.0000	
41	1	0.00	0.00	0.00	0.00	0.00	8.80	Ø. Ø.Ø	0.00	1.00	0.9400	
42	1	0.00	0.00	0.00	8.00	0.00	0.00	0.00	0.00	1.00	0.0280	
43	1	0.00	0.00	0.00	9.00	0.00	6.08	0.00	0.00	1.00	0.000	
44								34-68			0.0000	
45								22.83		1.00	0.0600	
46								10.57			0.0200	
47								24.68			0.0400	
48 70											0.0800	
49 5 #					10.57				10.57		0.0200	
5 Ø	1	5 •8 4	5.84	5.84	5.84	5.84	5.84	5 • 84	5.84	1-74	0.0403	

R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: NISI, TERRAIN: CKKRD

DETAIL = 2, = 1, KSCEN = 1, **KVEH** = Ø. KIII KII2 = 0, KII3 = 2, = Ø. KII4 KI15 = Ø. = Ø, KII6 = Ø, KII7 KI L8 = Ø, KII9 = 0, = 0, KI J10 = Ø, KII11 = Ø. KII12 = Ø, **KII13 KI114** = 2, KII15 = Ø, **KII16** = Ø, **KI117** = Ø, KMAP = Ø. KTPP = 8. = 0. KI VI KIV2 = Ø, = Ø, KIV3 K1 V4 = Ø, KIV5 = 6. = 0, KIV6 = Ø, KIV7 = 0, KIV8 = 0. KIV9 = 0, KIV1Ø **KIV11** = 3. KI V12 = 8. = 0. KIV13 KIV14 = 0, = 0. KT V1.5 = 0. KIV16 KI V17 = 0. KIV18 = Ø, Ø. KIV19 = = 0, KI V2Ø = 0. **KIV21** = 1, NTUX SEARCH = Ø, \$END **\$SCENAR** COHES = .5E-Ø1, DCLMAX = .5 E+00. GAMMA = .2 E+00, IOVER = 9,

\$CONTRL

R-2058, VOLUME I SAMPLE GUTPUT OF PROGRAM NR#N - VEHICLE: M151, TERRAIN: CKKRD

= 3,

= 1.

ISEASN ISURF PAGE D-27

= Ø. ISNGW = 1. LAC MAP = 11. MAPG = 1. MONTH = 1. NOPP = Ø. NSLIP = 2. = 3, NTRAV NTUX = 1. PHI = .21E+02, REACT = .5E+00. RDFOG = .1E + 04.= .9 E+02, SETYPC **VBRAKE** = .5E+Ø1. VISMNV = .2E+01. = .55E+#2. VLIM ZSNCW = .3E+Ø1. \$END **\$VEHICLE** ACD = .12E+01. ASHOE = .12E#03. AVGC AXLSP 0.0. 0.0. 8.8. 8.8. 0.8. 8.8. 8.8. 8.8. 8.8. CD = .12E+01. CGH = .103E+02.= 2.2. CGLAT CGR = .42E+02. CID = .1415E+03. = .91E+01, CI ... 0.0. CONV1 0.0, 0.0, 2.2, 0.0, 0.0, 8.0, 0.0, 0.0, 0.0, 0. C. J. O. O. O. O. C. C. V. D. D. J. J. J. J. J. J. D. D. D. O. J. S. 2.8, 0.0, C.C. J.D. 0.0, 0.L. 0.0, 0.0, 0.0, 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. CONV2 DFLCT 2.2. 0.0. 0.0. 0.0. 0.0. 0.0. 0.2. 0.0. 2.0. 0.0. 2. 2. J.J. . 1 E+ 01, . 1 E+01, 0.0, 0.2, 2.0, J.D. 0.0, 0.0, 0.0, 0.0, 8.0. 8.8. 0.0, 8.8, 8.0, 0.8, 8.0, 8.0, 8.0,

PAGE D-28 R-2058. VOLUME I SAMPLE OUTPUT OF PROGRAM NRMP - VEFICLE: M151. TERRAIN: CKKRD 2-2, 0.0, 0.0, DIAW e.3, 0.0, 0.0, 0.0, 0.0, 0.e, 0.0, e.0, 0.0, 6.6. CRAFT = 0.0. ENGINE = .8 E+03, .115 E+03, .12E+04, .115 E+03, .16 E+04, .115 E+03, .115E+03, .24E#04, .112E+03, .28E+04+ .2E+04. .108E+03, .32E+04, .103E+03, .36E+04, .9#E+02, .4E+04, .44E+04, .8E+42, 8.4, 0.0; 10.10, 0.0, .88E+02. 8.4, 8.8, 8.8, 8.2, 8.8, 8.6, 8.9, 8.8, 8.8, 2.9, 8.8, 8.8, 8.4, 2.0, 8.0, 2.2, 9.0, 0.0, 9.0, 0.0, 0.0, 0.0, 6.0, 0.0, 6.0, 6.4, 6.3, 6.6, 6.6, 6.6, 0.0, 0.0, 6.0, 6.0, C. C. D. D. D. C. D. C. C. C. C. C. D. C. C. C. C. D. D. D. D. C. 4, v.0. EYEHGT = .525E+02, FD = .486E+01, .9E+60, FORDD = 0.2. GROUSH = 0.2, 0.0, 0.0, 8.2, 4.2, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 2.9, 0.0, 2.6, 0.0, 0.0, 0.2. 0.0, 0.0. = .7392E+02, HPNET = .1E-11, .4E+11, .8E+01, .12E+02, .16E+02, .2E+02, .4E+02, .4 HVALS W. W, R. J, W. G, W. C, BIB, W. U, M. O, 0.0. IAPG = 0, IB ID IDIESL = .1E+01.= 10, IENGIN ICONST ICONV1 = Ø, ICONV2 = Ø. IP **IPOWER** = 17. = 0, 0, 1. 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1T ITCASE = Ø, TTRAN = 0. = 0, ITVAR = 0. LOCDIF LOCKUP = 0. = 9, MAXIPK = 1. MAXL NAMBLY = 2. NBOGIE - - 0, 0, 2, 0, 0, 0, 4, 0, 4, 0, 6, 0, 0, 0, 0, 0, 0, 0, 4, 4, NCHAIN = .4 E+01 . NCYL NENG = _1E+ø1. NEL = 4, NGR NHVALS = 7,

374

ţ

R-2058, VOLUNE I SAMPLE OUTPUT OF PROGRAM NRM# - VEHICLE: N151, TERRAIN: CKKRD

PAGE D-29

	= Ø = 1	-		Ø,	2		0.	B	*	e ;	Ø	ن ا	2.	Ø	, 1	b .,	Ö.,	Ø	Ø		0.	0,	Ø,	Ø,	Ø,	4.
				a			a	a		0	()		4	a	ö	(a	a	a		a	a	a	ø,	13	a
		-	2 .	Ľ,			0.	Ø	9	H ,	Ð	4	ω.	0			0.,		7 10		0 📰	0	0 1	Ø,	0,	K.
	= Ø																									
BF		3 2	E + i	04,																						
BHT :	= .	2 E	+Ø	2.																						
FA	= .	2 2	5 E-	+ Ø2																						
						F+	04	•	. 4	9E	+0	1.		211	856	+10	4	- 7	15 E	+0	1.	. 26	35 E	+Ø4	• •	1 E+07
	181																									
•																			12.		071	= 40	2	.19	or .	a 2
																					0/1			+ 1 3	7641	029
66E+Ø3.																										
		3 3																			2.	• 31	35E	+Ø3	9	
45E+02.																		E#2								
		31	E + 1	03,	2	.0		2.1	Ø		.0	4	2.1		0.	Ø,	Ø	.4,	ø	.0		0.0	, <i>1</i>	.0,	0.1	ð 🐉
.0. 0.0																										
																			i	Ø.,	a .	0.0		0.0	. a	9.0
.0.0.0																				***			- #	~ ~ ~ ~ !		
																		a. a		23	<i>(</i> 34	a .		1.1 54		4
																		0.0	•	Ð.	0.	10 • 1	0.	6.0	, Ø	• ,# #'
.0. 0.0	, Ø	• Ø	• 1	Ø•Ø	,	Ø.	Ø ,	9	. 2	#	Ø.	0,	ø.	. Ø) í K	• 0	,									
	e	• l	, 1	0.0		ø.	Ø,	#	Ą	1	0.	Ø,	e.	Ø	, 6	-0	ý	0.0		0.	0.	Ø. (),	0.0	, Ø.	
.0.0.0																										
																		a_a		Ø.,	Ø.	0.0		0.0	. a.	
.0. 0.0																							· •			
. 0. 0. 0.																		a: a		73		. امد		108 - 506	a	6
																		0.0	#			¥/ • 1	•	0.0	0	• % #
.0. 0.0																							_			-
																		0.0		0.1	0.	<i>1</i> .	0,	Ø.ø,	r Ø.	• # •
.0. 0.0	Ø.	. 6	• 1	ö •Ø		Ø.,	Ú ,	е.	, R	4	ø.	0,0	2.	ø,	0	.0	,									
	E.	. 2	• 1	0.8		2.	Ø,	2.	. 2	\$	Ø .	Ø,	ø.	Ø,	Û	.0		Ø Ø		2.	Ø,	2.2	,	0.0	, Ø.	. 2. j
. 0. 10. 0																										
																		aa		Ø . I	7.	0.0		0.0	0.	- 4
.0. 0.0																										
• ₩ ₽ ₩ 4 ₩																		a a			4	in a	x	a a	12	a
																		0 • 0		19 e 1	0 🐒	10 • X		0.01	200	ы Ж. у
. 3, 0.0																										
	Ø	. 0	. (0.0		0.	Ø,	Ø.	. Ø		Ø .	Ø .	Ø.	0.	1	•Ø,	•	01 Ø		0.	8.	Ø . i),	Ø.Ø,	, Ø.	• A •
	, Ø	. Ø	• 4	ð .Ø	,	Ø.	ø,	Ø	8		Ø .	Ũ ,	Ø.	Ø,	, Z	.0	•									
																		0.0		8.1	0.	0.0	5.	0.0	, <u>1</u>	. 4 .
.0. 0.0			•		-		•			-				-			-		-		•		-	1		
																				α	χ.	a . a	1.	0.0	, a	0.
/a /- m																		U 4 U	1	2 + I	,	10 + K	* *	U + U (- : 34
.0.0.0																		a ~		л -	2	a ^		14 1-	~	a
			-		-		•					-		-			-	0.0		0.1	Ø 🗶	0.0		0.0	. 0.	5 5 4
0.0.0																						_	_			
																		ø.ø		0.1	ð.	6.6		0.0.	, Ø.	• A .
0.0.0	Ø	. 6.	, k	0.0	,	Ø.	Ø,	0.	4	è 1	0.	60	ø.	0,	6	.0	,									
	2	. 6	. 1	0.5		Ø .	0.	ø.	.e	, ,	0.	Ø.	ø.	0.	e	.0		0.0		6.	Ø,	10-2	5.	0.0	. 0.	4.
0, 0.0																			-		-		-			
																		a. . 4		<i>3</i> . 1	h -	a . 2		0.0.	<u>a</u> .	a :
a a n																		U XA U	1	ا ب ل		1. 4 1				
.0.0.0																		a			· a	r: -		~ ~		
	e.		• 1	0.0	•	0.	ປຸ	Ø.	Ø	÷ 1	0.	6	Ø	0.	0	• Ø :	r (0-0	,	0.1	0 .	v • 2	•	Ø•Ø,	0	× % #
.Ø.																										
1AX =	: .1	11	5E+	+ Ø3																						
						1 4	C	0.0		a 1	0	a	a.	0	a		2	aL	0	Ø.	i))	α.	đ	a a		0.0

PAGE D-30 R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMM - VEHICLE: M151, TERRAIN: CKKRD £.0, 2.0, E.0, C.4, L.D, D.Q, 0.0, 0.0. 0.2. REVM 0.0, 2.0, 0.0, 0.4, 010, 0.0, 0.0, 6.0. 0.2. RIMW 0.0. K. D, E. D, U. D, D. E, 2.8, D. E, U. E, 0. 4. KMS 1 = .25E+00, .1E+01, .3E+01, .3E+01, .4E+01, .5E+01, .6E+01, .8E+01, 0.6, 0.4, 0.0, 0.0, 0.0, 0.0, .7E+01. W. C, Ø.O, Ø.Ø, Ø.D, Ø.Ø, RW £.0. 0.0. 0.2. J.0. 0.0. 0.2. 0.0. 6.0. SAE = 0.0. SAI = 0.20 SECTH 2. v. K. L. C. D. C. J. C. D. U. C. D. C. 0.0. 0.2. SECTW 6.0, v.t, 8.0, 0.8, 0.8, 0.0, 0.0, 0.0, 9.0, 0.0. = .1E+01. .2E+01. .3E+01. .4E+01. .5E+01. .6E+01. .7E+01. SVALS .9E+01, .1E+02, .11E+02, .12E+02, .13E+02, .8E+01. .15E+02. .2E+02, .4E+02, 3.4, 6.0, 8.0, 8.0, 8.0, 0.0, 0.0, 2.0. 0.0. = _1E+Ø1, _1E+Ø1, TCASE TL = .85E+02. TPLY w.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. 0.0. TPSI 2.0. 2.0. 0.0. 0.0. 2.0. 0.0. 0.0. 3.8. 0.0. 0.0. 1.0. 0.0. 0.1. 2.0. 0.0. 0.0. 8.8. 0.0, .25E+#2, .25E+#2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, U.O. C.U. O.O. D.C. C.O. D.C. O.O. K. . . K. K. D.D. D.D. = 0.C. TQIND J.O. O.D. U.L. O.O. U.O. U.L. O.O. O.O. J. U. U. O. O. C. O. U. D. O. O. L. O. Q. O. O. = .5712E+01, .9E+00, 43179E+01, .9E+00, .1674E+01, .9E+03, TRANS .1E+01. .9E+00, 0.0, 0.0, 0.0, 0.0, 0.0, L.C. D.O. C.U, C.L, O.U, C.D, D.D, D.O, D.D, D.D, D.C. J.L. 1.9. 0.0, K.L. 0.0, 0.0, 0.0, N.H. 0.0, N.G. 0.2, 0.0, 0.0, 0.0, 0.0, = .66E+02. VAA = .37E+02. VDA = Ø.K. VFS = .1E+03, .2E+02, .6E+01, .4E+01, .2E+01, .1E+01, .1E+01, 0.0, VOOB 2.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 3.0.

R-2058, VOLUME I SAMPLE OUTPUT OF PROGRAM NRMN - VEHICLE: M151, TERRAIN: CKKRD

= .15E+02, .15E+02, .15E+02, .15E+02, .15E+02, .15E+02, .15E+02, 15E+02, 15E+02, 15E+02, 15E+02, -15E+02, -15E+02, -15E+02, -15E+02, -15E+02, 0.0, 0.0, 0.0. 8.0. 6.0. 8.2. 0.0. 6.0. 0.0. = .765E+02, .21E+02, .95E+01, .51E+01, .2E+01, .2E+01, .2E+01, .2E+01, .2E+01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, L. L. L. U. O. U. O. C. U. O. U. O. U. O. D. O. J. U. O. D. D. D. C. L. J. U. Ø. U. Ø. L. Ø. U. J. U. J. D. L. Ø. U. J. Ø. Ø. Ø. 0.0, 0.0, 0.0, = 0.2. = Ø. Ø. = 0.6. = 0.8. 0.0, 0.0, 0.0, 0.0, 0.0, 0.6, 0.0, 2.0, = .64E+02. 0.2. = .458E+02,

WR AT 0.0. 0.0, 0.0, 0.0, 0.2, 2.2, 0.0, 0.0, WRFCRD = $\emptyset \cdot \theta$.

WT 0.0. 2.0. 0.0. 0.0. 2.0. 0.0. 0.0. 0.0. 6.0. WIF

0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0.

WWAX	P =	6.2.				
XBRC	DF =	•7 E+øi	8.	•		
\$END						
NTU	LTUT	VSEL	UP	DOWN	GRADE	DISTANCE
1	11	54.94	54.87	55.00	3.00	.1000
2	12	40.00	40.00	40.00	7.00	.1100
3	12	49.62	45.19	55.00	7.00	.1200
4	12	25.00	25.00	25.00	3.00	.1300
5	13	35.80	35.80	35 .80	3.00	-1400
6	13	32.24	29.32	35.80	15.00	.1500
7	13	7.30	7.30	7.30	3.00	.1600
8	13	35.80	35.80	35.80	3.00	-1.700
9	14	35.39	34.99	35.80	3.00	-1800
10	14	28.22	23.29	35.80	15.00	.1900
11	14	28.00	22.99	35.80	25.00	.2000
1:2	14	7.3.0	7.30	7.30	3.00	.2100
13	14	21.00	21.00	21.00	3.00	.2200
14	14	9.00	9.00	9 .00		-2300

377

VOOBS

VRIDE

VSS VSSAXP

WC

WDAXP WDPTH

WDTH

WGHT

WI

APPENDIX E

POSSIBLE STOPS IN PROGRAM NRMM

The program NRMM can terminate execution prior to normal completion for several reasons. In most such cases, an octal number is available to indicate at which of the STOPs the program halted. R-2058, VOLUME I Possible STOPs in Program NRMM

NUMBER	LOCATION	REASON FOR STOP
1	SCN	User erroneously specified control variable DETAIL.
2	VEH	Towed track elements indicated in vehicle data are not permitted.
3	VPP	Printer plot of tractive effort vs. speed has been produced because either user specified DETAIL = 5 level of output or the tractive effort vs. speed curve fit error has been exceeded.
4	LINEAR	Interpolation routine LINEAR requires powertrain data to be inserted in ascending order of magnitude.
5	LINEAR	A calculated point is outside the bounds of the array to be interpolated. (Check powertrain data for errors.)
б	IV3	Terrain soil value, IST, does not conform to the soil types addressed in the Model. (Check terrain data.)
7	IV3	For tracked vehicles, slipperiness scenario variable NSLIP is outside the range used (0-6). (Check scenario data.)
10	IV3	Same as 7 except for non-CH soil type.
11	IV3	Same as 7 except for wheeled vehicles.
12	TFORCF	Soil type variable IST has erroneous value. Relationships for modifying the drawbar pull curve at 20% slip vs. soil type are available only for fine grained, coarse grained and muskeg soils. (Trace passage of variable IST and its value through the program.)

379

Page E-2

12503	
REPORT NUMBER 2. GOVT ACCESSION N 12503	READ INSTRUCTIONS
	0. 3. RECIPIENT'S CATALOG NUMBER
. TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
NATO REFERENCE MOBILITY MODEL, EDITION I	
USERS GUIDE, VOLUME I	Final 6. performing org. report number
	SIT-DL-79-9-2058
. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(4)
M. Peter Jurkat	
Peter M. Brady, Jr.	DAAK30-77-C-0027
Peter W. Haley Performing organization name and address	10. PROGRAM ELEMENT, PROJECT, TASK
Stevens Institute of Technology, Davidson Lab	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Castle Point Station, Hoboken, NJ 07030	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
US Army Tank-Automotive Rsch & Dev Command	OCT 1979
DRDTA-ZSA	200
Warren, 11 48090 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING
<i>i</i>	SCHEDULE
7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different	from Report)
IB. SUPPLEMENTARY NOTES Includes: Operational Modules; App A: Program L Files; App C: Terrain Input Files; App D: Sampl Possible STOP's In Program.	
	ber)
9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers	
19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Mobility Vehicle Performance	
19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Mobility Vehicle Performance Mobility Modeling Terrain	
19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Mobility Vehicle Performance	
19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Mobility Vehicle Performance Mobility Modeling Terrain	

EDITION OF I NOV 65 IS OBSOLETE DD FORM 1473

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)