MC608A/B Electromagnetic Transmitter

Installation, Operation and Maintenance Manual

TM-100467, Rev P

Thank you for selecting a Flow Technology, Inc. product for your flow measurement application.

Virtually every major commercial, government, and scientific organization is making use of our products, expertise and extensive technical support. This is a culmination of years of refinement in our flow meter and calibrator designs, which has resulted in the technological leadership in the flow measurements field that we enjoy.

We are proud of our quality products, our courteous service and welcome you, as a valued customer, to our growing family.

Flow Technology Inc.

8930 South Beck Ave Suite #107 Tempe, AZ 85284

Tel: +1 480 240 3400 Fax: +1 480 240 3401 www.ftimeters.com

DATE	REVISION	ECO NUMBER	APPROVAL	
3/30/2015	Н	23714	R. Mann	
3/10/2016	J	24189	R. Mann	
4/21/2016	К	24255	255 R. Mann	
8/8/16	L	L 24436 R. Man		
10/3/17	М	24917	R. Mann	
11/1/17	Ν	24949 R. Mann		
5/11/18	Р	25160	R. Mann	

TM-100467 REVISIONS

The specifications contained in this manual are subject to change without notice and any user of these specifications should verify from the manufacturer that the specifications are currently in effect. Otherwise, the manufacturer assumes no responsibility for the use of specifications, which have been changed, and are no longer in effect.

SF-100834 Rev A

PUBLISHED BY FLOW TECHNOLOGY, INC. – March, 2016

Limited Warranty

Seller warrants that goods delivered hereunder will at delivery be free from defects in materials and workmanship and will conform to seller's operating specifications. Seller makes no other warranties, express or implied, and specifically makes NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Limitation of Liability

Seller's obligation under the warranty shall be limited to replacing or repairing at Seller's option, the defective goods within twelve (12) months from the date of shipment, or eighteen (18) months from the date of shipment for destination outside of the United States, provided that Buyer gives Seller proper notice of any defect or failure and satisfactory proof thereof. Defective goods must be returned to Seller's plant or to a designated Seller's service center for inspection. Buyer will prepay all freight charges to return any products to Seller's plant, or other facility designated by Seller. Seller will deliver replacements for defective goods to Buyer freight prepaid. The warranty on said replacements shall be limited to the unexpired portion of the original warranty. Goods returned to Seller for which Seller provides replacement under the above warranty shall become the property of the Seller.

The limited warranty does not apply to failures caused by mishandling or misapplication. Seller's warranty obligations shall not apply to any goods that (a) are normally consumed in operation or (b) have a normal life inherently shorter than the warranty period stated herein. In the event that goods are altered or repaired by the Buyer without prior written approval by the Seller, all warranties are void. Equipment and accessories not manufactured by Seller are warranted only to the extent of and by the original manufacturer's warranty. Repair or replacement goods furnished pursuant to the above warranty shall remain under warranty only for the unexpired portion of the original warranty period.

Should Seller fail to manufacture or deliver goods other than standard products appearing in Seller's catalog, Seller's exclusive liability and Buyer's exclusive remedy shall be release of the Buyer from the obligation to pay purchase price therefore.

THE FORGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES WHETHER ORAL, WRITTEN, EXPRESSED, IMPLIED OR STATUTORY. IMPLIED WARRANTIES OF FITNESS AND MERCHANTABILITY SHALL NOT APPLY SELLER'S WARRANTY OBLIGATIONS AND BUYER'S REMEDIES THEREUNDER (EXCEPT AS TO TITLE) ARE SOLELY AND EXCLUSIVELY AS STATED HEREIN. IN NO CASE WILL SELLER BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGE.

The total liability of Seller (including its subcontractors) on any claim whether in contract, tort (including negligence whether sole or concurrent) or otherwise, arising out of or connected with, or resulting from the manufacture, sales, delivery, resale, repair, replacement or use of any goods or the furnishing of any service hereunder shall not exceed the price allocable to the product or service or part thereof which gives rise to the claim.

TABLE OF CONTENTS

1	INTRO	DUCTION	8
	1.1 Sc	ope	8
	1.2 Pu	rpose	8
	1.3 De	scription	8
_			_
2		LLATION	
		spection	
		echanical Installation of the transmitter to the flow meter	
	2.2.1	Compact (mounted on flow meter)	
	2.2.2	Separate (remote mounted from flow meter)	
	2.2.3	Maximum cable length	
	2.2.4	Grounding	
	2.3 Ele	ectrical Installation	
	2.3.1	MC608A/B terminal locations	12
	2.3.2	Remote mounted converter, without empty pipe detector	15
	2.3.3	Powering the unit	17
	2.3.4	Wiring of Pulse Output	17
	2.3.5	Wiring of Frequency Output (only available on MC608A version)	19
	2.3.6	Wiring of 4 – 20mA Analog Output	19
	2.3.7	Wiring of RS485 Output (only available on MC608A version)	21
	2.3.8	Wiring of Programmable Output	21
	2.3.9	Wiring of Programmable Input	23
	2.3.10	Output Notes	23
_			
3		RAMMING THE MC608 CONVERTER	
		ogramming Overview	
		nverter Passwords	
		tivating MC608B	
	3.4 M	C608 Configuration via PC Using MC608 Programming Software	
	3.4.1	Initial Connection	
	3.4.2	Parameter Configuration	
	3.4.3	Read Configuration	
	3.4.4	Filter Configuration	28
	3.4.5	Data Logger	
	3.5 M	C608 Configuration via the Local Display	30
	3.5.1	Overview	30
	3.5.2	Data to be Displayed	32
	3.5.3	Options	33
	3.5.4	Counters	33
	3.5.5	Parameters	34
	3.5.6	I/O	35
	3.5.7	Other	36
	3.5.8	Memory	37

4	SPECIFICA	TIONS	38
5	TROUBLES	HOOTING	40
6	ALARM MI	ESSAGES	41
APPEN	DIX A	COOLANT FLOW METER TRANSMITTER (MC608P)	42
APPEN	DIX B	MODBUS INPUT REGISTERS - FUNCTION CODE 04	43
APPEN	DIX C	MODBUS HOLDING REGISTER FUNCTION CODES 03 & 16	44
APPEN	DIX D	VOLUME AND TIME BASE UNITS CHARTS	46
APPEN	DIX E	EXAMPLES	47

LIST OF FIGURES

Figure 1 – MC608A – Mains Powered Unit	9
Figure 2 – MC608B – Battery Powered Unit	9
Figure 3 – Remote mounting	10
Figure 4 – Cable length vs. conductivity	11
Figure 5- High voltage: 90 – 264 Vac (PCBA up to version 6-2)	12
Figure 6 – Low voltage: 12 – 24 VDC/Vac (PCBA up to version 6-2)	
Figure 7- Low and high voltage (PCBA version 6-3)	14
Figure 8- Low and high voltage (PCBA from version 6-4)	15
Figure 9 – Remote mounted wiring	
Figure 10 – Clean contact pulse output	17
Figure 11 – Active 5 – 20 VDC pulse output	18
Figure 12 – Active self-powered from version 6-3	18
Figure 13 – Frequency output	19
Figure 14 – Loop 4 – 20 mA output	19
Figure 15 – Active 4 – 20 mA output	20
Figure 16 – Active 4 – 20 mA output	20
Figure 17 – RS485 communication	21
Figure 18 – Clean contact programmable output	21
Figure 19 – Active 24 V self-powered programmable output	22
Figure 20 – Active 1-30V programmable output	22
Figure 21 – Programmable input	23
Figure 22 – Main Screen	25
Figure 23 – Parameters Screen	26
Figure 24 – Read Screen	27
Figure 25 – Filter Screen	28
Figure 26 – Data Logger Screen	29
Figure 27 – Chart Display Screen	30
Figure 28 – Display Overview	32

1 INTRODUCTION

1.1 Scope

This manual provides information and guidance for personnel responsible for the installation, operation, and maintenance of the MC608A/B Electromagnetic Flow Meter Transmitter supplied by Flow Technology, Inc.

1.2 Purpose

The contents of this manual are for general information and to describe the operational characteristics of the MC608A/B transmitter. This manual does not include instructions for special application or factory repair.

1.3 Description

An Electromagnetic Flow Meter works off the principal of Faraday's Law. In this application of the principal the flow meter creates an electromagnetic field perpendicular to the fluid flowing through the meter housing. An electromotive force (voltage) is generated in a conductive medium when it passed through a magnetic field. The voltage created is directly proportional to the density of the magnetic field and the velocity of the conductive medium. Since the conductive medium is the liquid whose flow is to be measured, and the length between the electrodes and the electromagnetic field strength is known, therefore the signal generated is proportional to the velocity of the liquid in the pipe.

In order for this technology to operate correctly the fluid to be measured does need to be conductive. The minimum fluid conductivity required is 5 μ S/cm for most fluids and 20 μ S/cm for DI water.

The electromagnetic flow meters are composed of:

The *sensor* that must be mounted between two portions of pipe by flanges, threaded joints, or triclamp fittings.

The *converter* which drives the sensor and displays or transmits data.

The MC 608A/B converter is provided in a cylindrical aluminum instrument enclosure and can be interfaced to all Flow Technology magnetic flow meters. It can be mounted directly on top of the flow meter or remote from the flow meter connected through a pair of cables, whose maximum length depends on the conductivity of the liquid.

The flow meter Ka and Kb coefficients are established during the factory flow meter calibration. These factors are normally programmed into the MC 608A/B converter at the factory prior to shipment, however the key pad of the converter allows the user to enter or modify these coefficients. This key pad also allows the user to set the full scale flow rate, define the scaled pulse output, adjust alarm set points, and adjust dosage volume.

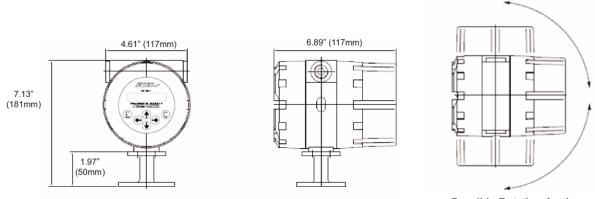
TM-100467. Rev P	MC608A/B/P Transmitter Manual	Page 8
11vi=100 4 07, 1€v1		i age o

The MC608 is available in two main versions:

MC608A – Mains powered 90...264Vac or 12/24 Vac/dc MC608B – Battery powered or 12/24Vac/dc

2 INSTALLATION

2.1 Inspection


Verify that all parts listed on the packing list are included with your shipment. Note that there may be more than one package for your shipment. Please check the factory set up sheet and verify the meter size, full scale flow rate, and analog/pulse output are set up as required.

2.2 Mechanical Installation of the transmitter to the flow meter

2.2.1 Compact (mounted on flow meter)

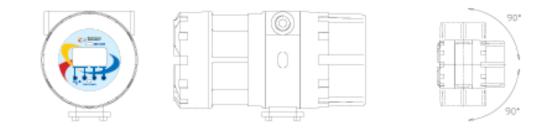

The MC 608A/B converter is supplied mounted directly to the flow meter junction box. In this configuration all interconnection wiring between the flow meter sensor and the converter have been completed at the factory. Upon flow meter installation, external wiring for power input and signal outputs will need to be completed. For optimum installation flexibility the converter display is capable of rotating up to 180°.

Figure 1 – MC608A – Mains Powered Unit

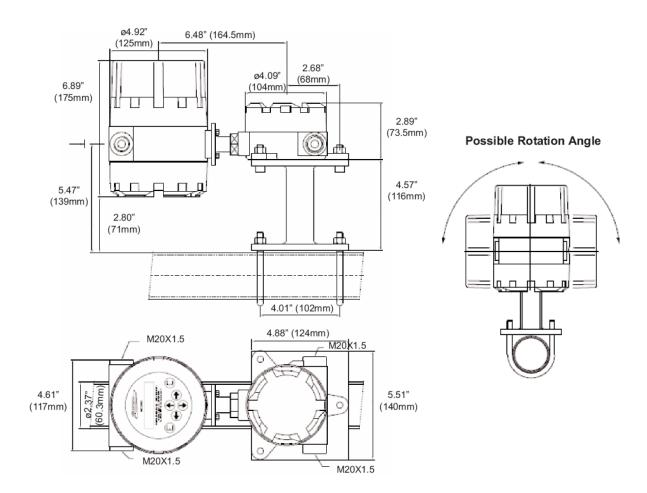
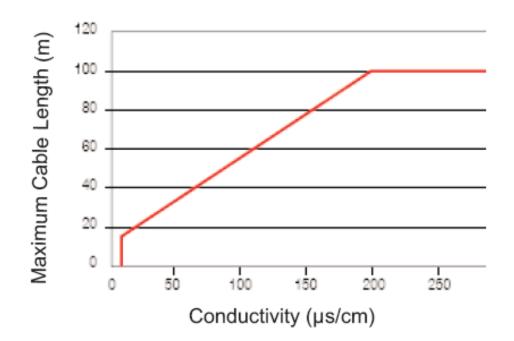

Possible Rotation Angle

Figure 2 – MC608B – Battery Powered Unit

2.2.2 Separate (remote mounted from flow meter)


The MC 608A and MC 608B converters can be mounted up to a maximum of 328 feet (100 meters) and 98 feet (30 meters) respectively from the flow meter, dependent on fluid conductivity. When supplied for remote mounting, the flow meter can optionally be purchased with various cable lengths for interconnection to the converter. This interconnection cable can be supplied attached to and resin sealed in the flow meter junction box or the cables can be supplied separately and attached and sealed in the field. For optimum installation flexibility the converter display is capable of rotating up to 180°.

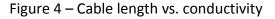


Figure 3 – Remote mounting

2.2.3 Maximum cable length

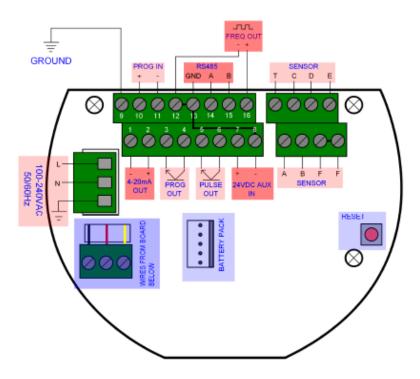
When the converter is to be mounted remote from the flow meter, the maximum cable distance is limited by the conductivity of the fluid to be measured. The maximum distance is 328 feet (100 meters). Below is a chart to determine maximum cable length based on the installation operating conditions.

2.2.4 Grounding

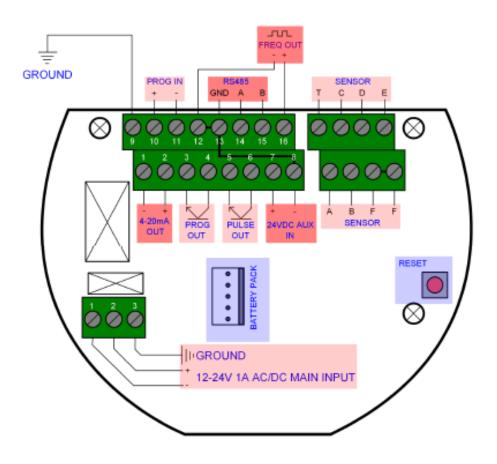
The sensor and converter must be properly grounded to earth potential for the system to operate correctly. Earth potential is the reference parameter for the flow meter and without proper grounding issues with zero offset, or flow indication at zero flow will occur. The sensors and converters all have earth grounding points that can be used to insure a direct contact with earth ground.

The Flow Technology electromagnetic flow meters are equipment with a third ground electrode that eliminates the need for grounding rings when installing the flow meter in insulating piping.

2.3 Electrical Installation


This section provides the professional installer with information for connecting the MC608A/B to the user's system.

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 11


WARNING: Verify that the power is off before connecting or servicing! Electrical connection of the device must be carried out by properly trained personnel!

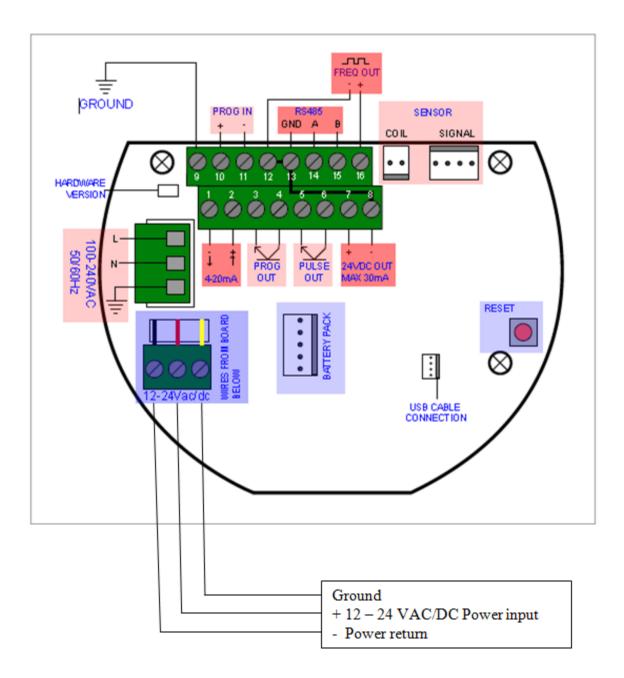

2.3.1 MC608A/B terminal locations

Figure 5- High voltage: 90 – 264 Vac (PCBA up to version 6-2)

TM-100467, Rev P

SF-100834 Rev A

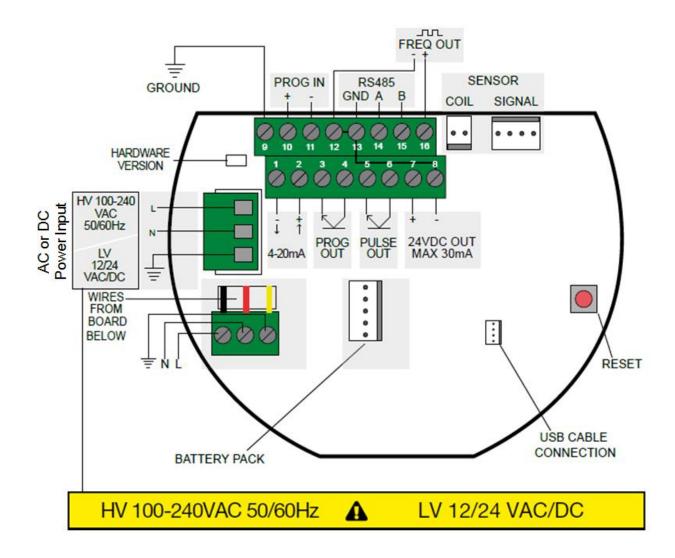
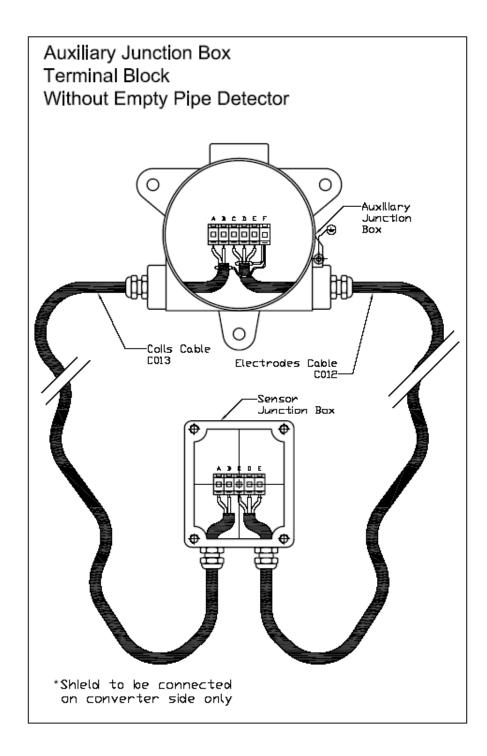


Figure 8- Low and high voltage (PCBA from version 6-4)


Note: Line (L) and Neutral (N) terminals are not polarity sensitive when used with DC power.

2.3.2 Remote mounted converter, without empty pipe detector

The remote mounted version of the MC 608A/B converter is supplied with an auxiliary junction box where cables, C012 and C013 from the flow meter junction box will need to be connected. The converter is normally supplied scaled for a specific flow meter. Please check the program sheet supplied with the equipment to ensure the converter is connected to the proper flow meter. Cables C012 and C013 are supplied with metal ends and identifying letters. Refer to the diagram below for correct terminal location.

TM-100467, Rev P MC608A/B/P Transmitter Manual Page 15
--

Figure 9 – Remote mounted wiring

2.3.3 Powering the unit

MC608A: 90 to 264 Vac, or 12 to 24 VAC/Vac MC608B: Battery powered by lithium battery pack, or 12 to 24 VDC

2.3.4 Wiring of **Pulse Output**

Clean contact (MC608A/B)

The device connected (PLC/external pulse meter) supplies its digital input with the required voltage to detect the pluses. The MC608 acts as a digital switch. (Maximum voltage: 30VDC, 50mA maximum current)

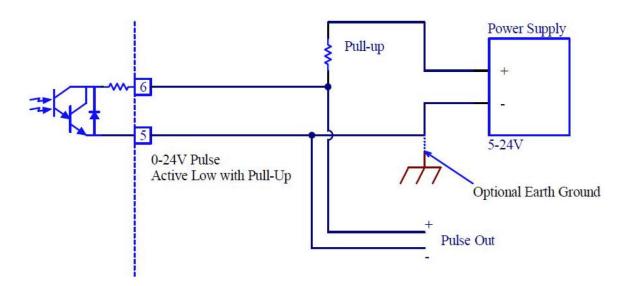
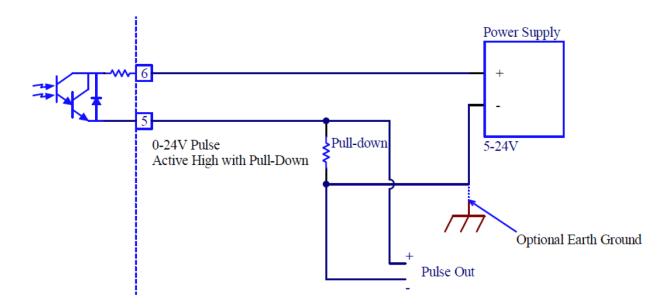
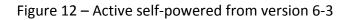
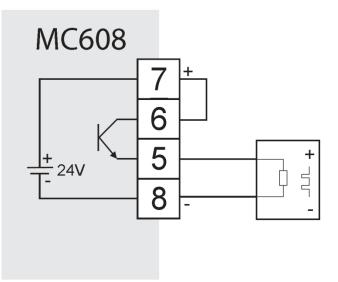



Figure 10 – Clean contact pulse output

Active 5-20 VDC (MC608A/B)


The device connected (PLC/external pulse meter) is a passive digital input that accepts the voltage supplied to it by the external supply system used. (Maximum voltage 5 - 30 VDC, maximum current 50mA)

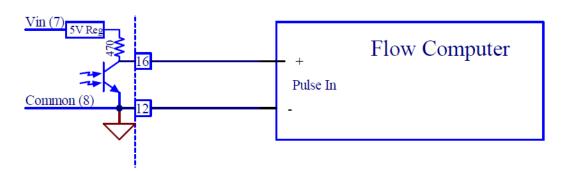
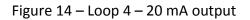

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 17
SE 100824 Bay A	•	

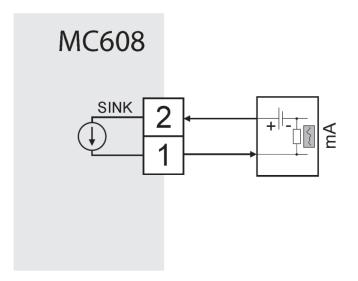
Active 24V self-powered (MC608A/B from version 6-3)

The device connected ((PLC/external pulse meter) is a passive digital input that accepts a 24V voltage level. It must not provide any additional voltage. The internal power supply 24 VDC is used to provide the necessary voltage. (Maximum voltage 24VDC, maximum current 30mA).

SF-100834 Rev A

2.3.5 Wiring of Frequency Output (only available on MC608A version)

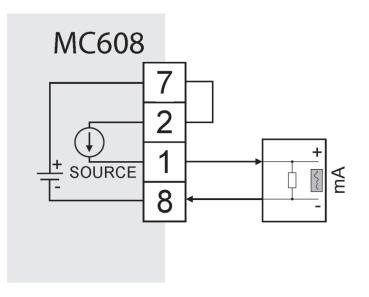



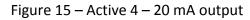

Figure 13 – Frequency output

2.3.6 Wiring of 4 – 20mA Analog Output

Loop powered (MC608 version 6-3 and later)

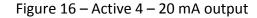
The connected 4-20mA receiver is a loop powered model, powering the current loop itself.

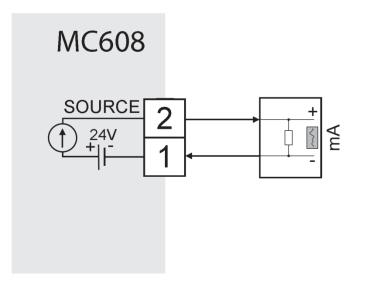




TM-100467,	Rev P
------------	-------

Active (MC608 version 6-3 and later)


The connected 4-20mA receiver is a passive milliamp-meter; the internal MC608 24 VDC power supply must be connected as shown. (24VDC loop voltage of 24 VDC, maximum impedance of 800 ohm)

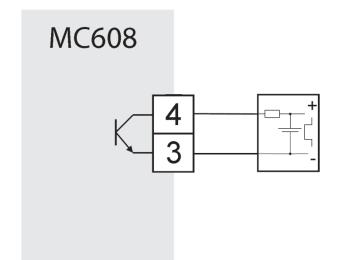


Active (MC608 version 6-1 and 6-2)


The connected 4-20mA receiver is a passive milliamp meter; the internal MC608 24 VDC power supply is internally connected. (24VDC loop voltage of 24 VDC, maximum impedance of 800 ohm.)

2.3.7 Wiring of **RS485 Output** (only available on MC608A version)

Figure 17 – RS485 communication

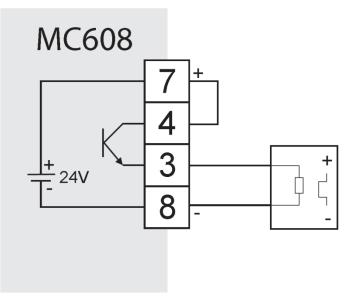

Note: The MC608 transmitter is not supplied with a PC to RS485 converter. If communication with the transmitter is require an aftermarket USB or RS232 to RS485 converter will be required.

2.3.8 Wiring of Programmable Output

Clean contact (MC608A/B)

The device connected provides its digital input with the required voltage to detect the logic level. The MC608 acts as a digital switch. (Maximum voltage: 30 VDC, 50mA maximum current)

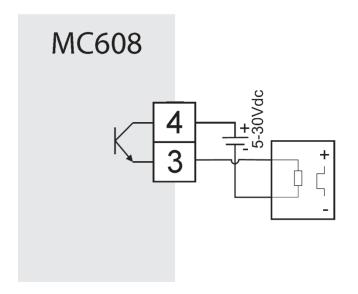
Figure 18 – Clean contact programmable output

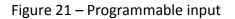


Active 24V self-powered (MC608 version 6-3 and later)

The device is connected to a passive input that accepts a digital voltage equal to 24 V. It must not provide any additional voltage.

The internal power supply 24 VDC is used to provide the necessary voltage. (Voltage 24V, maximum current 30mA)


Figure 19 – Active 24 V self-powered programmable output


Active 5-30V (MC608A/B)

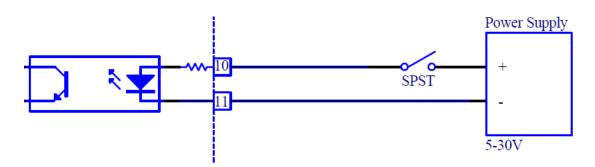

The connected device is a passive digital input that accepts the voltage level provided by the external power supply. (Voltage 5-30V, maximum current 50mA)

Figure 20 – Active 1-30V programmable output

2.3.9 Wiring of **Programmable Input**

2.3.10 Output Notes

- 1) Connect only one output at a time with internal power supply. The maximum current on terminals 7 and 8 is 30 mA.
- 2) The battery powered MC608B is only equipped with a pulse output and the 4-20mA output in loop power mode.

3 PROGRAMMING THE MC608 CONVERTER

3.1 Programming Overview

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 23
------------------	-------------------------------	---------

The configuration of the MC608 can be performed in three different ways:

- 1. Through the 4 push buttons located on the front mask of the converter, accessed by unscrewing the front panel glass
- 2. Via PC through the RS485 MODBUS output and the configuration software program supplied by FTI. A USB or RS232 to RS485 converter is not supplied with the MC608 converter.
- 3. Via PC through the IrDA port located on the front of the converter on top of the display and the configuration software program.

3.2 Converter Passwords

The converter is built with three different levels of protection. Passwords can be modified.

Level I: 608111 Level II: 709222 Level III: 231042

3.3 Activating MC608B

Under normal operation the MC608B is operating in "sleep mode". Sleep mode conserves battery life while continuing to functionally operate the unit.

To wake the unit for programming or reading the values on the display, swipe the supplied magnet (black plastic housing in conduit opening) vertically on the front mask near the word "activate".

3.4 MC608 Configuration via PC Using MC608 Programming Software

3.4.1 Initial Connection

Use a USB adapter for direct communication to a PC or an IrDA interface unit. Install the MC608 software and connect the unit to the PC and turn it on with the magnet (for MC608B), select RS485 or IrDA communication and press on the CONNECT button (see below screen shot of the MC608 program).

Figure	22 –	Main	Screen
--------	------	------	--------

		-		-		AS		a office	
	-	-	-	~					
			0					>	
ARAMETERS	READ	FILTERS	DataLog	CHART				CONVERTER	
CONNECTION			TECHNICAL UN	ITS		Alarms		Model	
O IrDA	-		Flow Rate tin	e unit	/m 👻	Min Row Rate Alarm	5 %		
485 485	CONN	IECT	Flow Rate Vo		gal 👻	Max. How Rate Alar	m 125 %	FW 1.00	HW _
Comunication			Counters Vol		gal v	LCD		Converter ID	ZCB1320
comunication			L/O	ans:	gai	Contrast		Serial Number	2001320
Slave ID		1	Pulses volum	e TU	ml *		anna Yaaraa	1	02/09/20
Protocol	ModBus	•	Pulses volum	5	100 ml	Light -		1	1
COM PORT	COM7	•	Pulse width		1 ms	Timeout	30 sec	SENSOR	
BaudRate	9600	-	FS frequency		1000 Hz	DataLogger	600		
			Mode AUX3	Disable			600 sec	Diameter	Empty Pipe
			Ing.Prog	Disable	¥	4s	16m	50 mm	
			Various					Notes	
			Language Co	nv. Er	iglish ×	WRITE	E Param.		20
			Auto Power (NF	180 =	READ	Param.	Sensor ID	ZAW1112
									тх 📿
									RX

With the MC608 correctly connected the configuration parameters can now be read and modified. There are 5 menu screens:

- 1. PARAMETERS
- 2. READ
- 3. FILTERS
- 4. DATALog
- 5. CHART

3.4.2 Parameter Configuration

E-Link 2.11			
Settings Info		0	- 2 - 35 - m
	and the second second		a contraction
	0		5
ARAMETERS READ FILT	TERS DataLog CHART		CONVERTER
CONNECTION	TECHNICAL UNITS	Alarms	Model
		Min Flow Rate Alarm 5 %	MC 608B
DISCONNECT		Max. Flow Rate Alarm 125 %	FW 1.00 HW -
485			1
Comunication	Counters Volume gal •		Converter ID ZCB1320
Slave ID	1 I/O Pulses volume TU ml 🔻	Contrast	Serial Number
Protocol ModBus	Pulses volume 100 ml	Light	1 02/09/20
COM PORT COM7		Timeout 30 sec	SENSOR
	Pulse width 10 ms	DataLogger	MUT 1100/J
BaudRate 9600	FS frequency 10000 Hz	600 sec	Diameter Empty Pipe
	Mode AUX3 Disable •	4s 16m	50 mm
	Ing.Prog Disable -		Notes
	Language Conv. English •	WRITE Param.	20
	Auto Power Off 180 \$	READ Param.	
			Sensor ID ZAW1112
			тх 📿
			RX ()
CONNECTED	COM7 9600	0	

Figure 23 – Parameters Screen

Technical units define:

- The time base of measurement (seconds, minutes, hours, days)
- Flow Rate Volume defines the volumetric rate units of measure (Gals, Liters, Cubic meters, barrels etc.)
- Counters Volume defines the volumetric unit of measure for the counters/totalizers.

The I/O section defines:

- Pulses volume TU unit of measure for the pulse & frequency outputs.
- Pulse volume defines the volume per unit pulse.
- Pulse width
- FS Frequency defined the output frequency corresponding to full scale flow rate. The maximum frequency 10,000Hz.
- Mode AUX3 programmable output used for high/low alarm or reverse flow.
- Ing. Prog. programmable input used for reset of partial totals.

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 26

The Alarm section defines:

- Min Flow Rate Alarm. Defines the % of full scale flow such that if the flow rate falls below this set point an alarm will be activated.
- Max Flow Rate Alarm. Defines the % of full scale flow such that if the flow rate exceeds this set point an alarm will be activated.

The LCD section defines:

- Display contrast
- Backlight intensity
- How long the display will remain active.

The DataLogger section defines:

• The logging interval. This can be set from 4 seconds to 16 minutes.

3.4.3 Read Configuration

Settings Info				
			P C	12 30
PARAMETERS READ	FILTERS DataLog CHART			CONVERTER
				Model MC 608B
		19.7598	gal/m	FW 1.00 HW - Converter ID ZCB1320 Setial Number Setial Number 1 02/09/20
		0.0%		SENSOR
	0		0 gal/m	MUT 1100/J
COUNTERS	100,400,00	PARTIAL	3 587 38 gal	Diameter Empty Pipe 50 mm Notes
TOT-	182,489.90 gal	ZERO Parz -	0,007.00	20
	-16,014.08 gal	Fdiz-	-8.15 gal	Sensor ID ZAW1112
				TX 😡

Figure 24 – Read Screen

On the "READ" configuration Tab the user can view the instantaneous flow rate and view the counters/totalizers. Only the "PARTIAL" totals can be reset to zero by pressing the respective zero button.

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 27
SF-100834 Rev A		

3.4.4 Filter Configuration

Settings Info	
0	
ARAMETERS READ FILTERS DataLog CHART	CONVERTER Model MC 608B
PEAK CUT Filter DEFAULT 2% 5 95%	FW 1.00 HW - Converter ID ZCB1320 Serial Number Serial Number 1 02/09/20
CUT OFF WRITE Filter READ Filter	SENSOR MUT 1100/J Diameter Empty Pipe
ByPASS 3% 10 95%	Notes 20 Sensor ID ZAW1112
	TX O RX O

Figure 25 – Filter Screen

The following filters can be configured:

- Damping. Increasing damping increases the stability of the displayed value through ٠ increased averaging; the larger the number the higher the damping.
- Peak Cut: A peak cut off value can be set as a percentage of the full scale flow rate. If there are peaks in the flow rate measurement, their value will be limited to the value expressed. For example, by setting the value at 10%, any instantaneous spikes greater than 10% of the full scale value will be limited not to exceed the 10% value.
- Low Flow Cut Off. A low flow cut off value can be set as a percentage of the full scale flow rate. If the actual flow rate of the liquid is less than the low flow cut off value, then the instrument will display 0.
- Filter Bypass. Enter a value as percentage of full scale so that any instantaneous step changes greater than the set value will bypass the digital filter and display the actual flow. The filter bypass can be useful to speed the response of the meter to large changes in flow rate such as opening or closing valves and starting pumps.

For example, in the case that this parameter has a value of 50%

TM-100467, Rev P MC608A/B/P Transmitter Manual		Page 28
SE 100824 Pov A		

IF: The flow rate varies 50% more than the previous value. THEN: The flow rate shown will reflect the actual step change

IF: The flow step change is less than 50% of the full scale value THEN: The digital filter will be applied and the flow rate shown will slowly reach the actual value.

- Measurement Average. This option increases the stability of the reading by enlarging the actual measurement filter.
- 3.4.5 Data Logger

The data logger that was configured on the PARAMETERS tab displays: Date, time, counter, instantaneous flow rate, temperature and battery condition.

					-		-	8			200 M
			10000				C X				
			-	-	-				-60	10-1X	
				0							
AR	AMETERS	READ FIL	TERS Dat	taLog (CHART						CONVERTER
Ē	Row	Data	Flow gal/m	Cnt+ gal	Cnt- gal	Alim V	°C PCB	Error	*		Model
	0	1/1/0001 12:00:00 AM	0	0	0	0	0	0	=	START	MC 608B
	1	1/1/0001 12:00:00 AM	0	0	0	0	0	0		0	MC 008B
	2	1/1/0001 12:00:00 AM	0	0	0	0	0	0		END	FW 1.00 HW -
	3	1/1/0001 12:00:00 AM	0	0	0	0	0	0		183	Converter ID ZCB1320
	4	1/1/0001 12:00:00 AM	0	0	0	0	0	0			LODIGLU
	5	1/1/0001 12:00:00 AM	0	0	0	0	0	0		Get Last Log	Serial Number
	6	1/1/0001 12:00:00 AM	0	0	0	0	0	0	3		1 02/09/20
	7	1/1/0001 12:00:00 AM	0	0	0	0	0	0			
	8	1/1/0001 12:00:00 AM	0	0	0	0	0	0		READ Log	SENSOR
	9	1/1/0001 12:00:00 AM	0	0	0	0	0	0			MUT 1100/J
	10	1/1/0001 12:00:00 AM	0	0	0	0	0	0			Diameter Empty Pipe
	11	1/1/0001 12:00:00 AM	0	0	0	0	0	0		SAVE CSV	
	12	1/1/0001 12:00:00 AM	0	0	0	0	0	0			50 mm
	13	1/1/0001 12:00:00 AM	0	0	0	0	0	0			Notes
	14	1/1/0001 12:00:00 AM	0	0	0	0	0	0			20
	15	1/1/0001 12:00:00 AM	0	0	0	0	0	0		Reset DataLog	
	16	1/1/0001 12:00:00 AM	0	0	0	0	0	0	-		Sensor ID ZAW1112
	1//	<u> </u>				14					
											TX () RX ()

Figure 26 – Data Logger Screen

To read and download the data from the memory of the flow meter select the START and END row to read the data. The "Get Last Log" will load the last available log.

Press the READ Log button to download the data,

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 29
SE 100834 Pov A		

Press SAVE CSV to save the data to your PC in CSV format.

Press "Reset Data Log" button to erase the memory of the converter.

After reading the data, the data is displayed graphically by going to the CHART tab, see picture below:

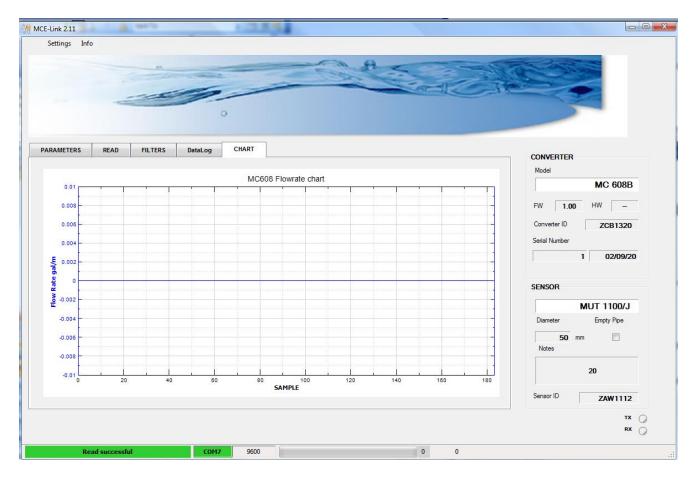


Figure 27 – Chart Display Screen

3.5 MC608 Configuration via the Local Display

3.5.1 Overview

The MC608 can be configured using the 4 push buttons located on the front mask of the converter: To access unscrew the front cover.

The programming menu is simply accessed by pressing the Menu button. The menu has been divided into the following groups:

• Options

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 30
05 40000 4 5		

- Counters •
- Parameters
- I/0
- Others
- Memory ٠

Follow the chart below for an overview of the available functions.

OPTIONS

Technical units

- Flow rate units
- Flow rate time base.
- Counters module
- Pulses unit
- Specific weight
- Temperature unit

Measurement frequency

Measuring time

Display

- LCD backlight lev
- · Backlight off
- LCD contrast

View options

· Last row Full scale flow

Language

COUNTERS

T+ P+ (set zero) T-P- (set zero)

PARAMETERS

Ka setu p Diameter Setup Filters setup

- · Flow cut off
- Damping
- Bypass
- Peak cut

 Measure average Line frequency Zero calibration

- Flow rate alarms
 - MAX flow th.
- MIN flow th. Empty Pipe th.

1/0

Pulses OUT

- Pulse quantity
- Pulses time ON
- Reverse flow rate
- · Pulses out enable Frequency output
 - Full scale freq.
- Frequency output enable Program. output
 - Enabled/disabled
 - Reverse Flow
 - · MAX flow th.
 - MIN flow th.
 - MAX/MIN flow th.
 - Batching
 - Excitation failure
- Empty Pipe
 - Enabled/disabled
 - Zeroing p+
 - Zeroing p-
- Zeroing p+/p-Batching
- Progr. output logics

OTHERS

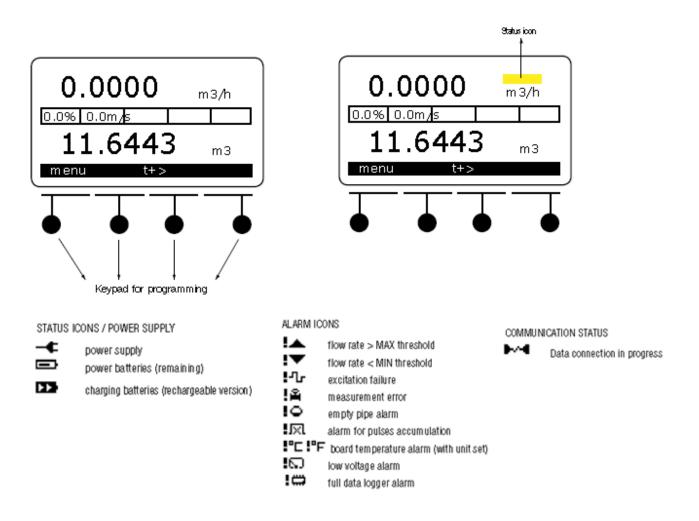
- System info Tim e/Date Reserved Graph Simulation Communications
 - Baud rate RS485
 - MODBUS address
 - Data connection

MEMORY

Load user copy Save user copy Factory settings Data logger

- · Show last row
- Full erase

 LOG range Password setup


SF-100834 Rev A

- Program, in put

3.5.2 Data to be Displayed

- The display is divided into 3 mil areas.
- The top area shows the symbols for status information, together with the indication on the duration of the battery (MC608B), or power indication (MC608A), as well as the alarm symbols and instantaneous reading of the flow rate.
- The central area shows a linear graph of the flow rate shown in percentage on the full scale flow rate.
- The area at the bottom can be selected by the customer and the possible options are:
 - T+ total positive counter
 - P+ partial positive counter
 - T- total negative counter
 - P- partial negative counter
 - Date and time
- To select the required value simply click on the button corresponding to the arrow and make your selection, or select Menu > Options > View > Options > Last row.

Figure 28 – Display Overview

SF-100834 Rev A

3.5.3 Options

3.5.3.1 Technical Units

- Flow rate volume: Select the volume technical unit for the instantaneous flow rate
- Flow time base: Select the time base for the instantaneous flow rate.
- Counter volume: Select the volume technical unit for the counters
- Pulse volume: Select the volume unit for the pulses.
- 3.5.3.2 Measurement Frequency
 - Measuring time. If operating in battery powered mode, select the measuring time of the system between 16 and 120 seconds.

Note: The factory setting is 32 seconds. Any reduction of the factor will affect battery life when using MC608B in battery mode.

- 3.5.3.3 Display
 - LCD Backlight Level. Increase or decrease the level of the backlight.
 - Backlight off. Increase or decrease shut off time of the backlight of the display.
 - LCD contrast. Modify the contrast of the display.

Note: Any modification of the display can affect battery life when using the MC608B in battery mode.

- 3.5.3.4 View Options
 - Defines the default display information with selection between:
 - T+ total positive counter
 - P+ partial positive counter
 - T- total negative counter
 - P- Partial negative counter
 - o Date & time
- 3.5.3.5 Language
 - The following languages may be selected:
 - o English
 - o Spanish
 - Portuguese
 - o Italian

3.5.4 Counters

Four different counters are available in the MC608 converter. Two positive counters, and two negative counters. Only partial counters can be set to zero.

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 33
------------------	-------------------------------	---------

3.5.5 Parameters

3.5.5.1 Ka Setup

• KA is the main calibration factor of the flow meter – this location allows the user to modify the calibration factor if required.

Note: Only authorized personnel should change the Ka factor. The Ka factor must be the same as the flow meter sensor. Check the Ka factor on the flow meter name plate.

- 3.5.5.2 Diameter Setup
 - This location allows the user to set the diameter of the flow meter.
- 3.5.5.3 Filter Setup
 - Flow cutoff. A low flow cut off value can be set as a percentage of the full scale flow rate. If the actual flow rate of the liquid is less than the low flow cut off value, then the instrument will display 0.
 - Damping. Increasing damping increases the stability of the displayed value through increased averaging; the larger the number the higher the damping.
 - Peak Cut: A peak cut off value can be set as a percentage of the full scale flow rate. If there are peaks in the flow rate measurement, their value will be limited to the value expressed. For example, by setting the value at 10%, any instantaneous spikes greater than 10% of the full scale value will be limited not to exceed the 10% value.
 - Filter Bypass. Enter a value as percentage of full scale so that any instantaneous step changes greater than the set value will bypass the digital filter and display the actual flow. The filter bypass can be useful to speed the response of the meter to large changes in flow rate such as opening or closing valves and starting pumps.

For example, in the case that this parameter has a value of 50%

IF: The flow rate varies 50% more than the previous value. THEN: The flow rate shown will reflect the actual step change

IF: The flow step change is less than 50% of the full scale value THEN: The digital filter will be applied and the flow rate shown will slowly reach the actual value.

- Measurement Average. This option increases the stability of the reading by enlarging the actual measurement filter. To increase the stability, increase the value in this sub-menu.
- 3.5.5.4 Sensor Offset
 - Displays the zero offset of the flow meter

|--|

- 3.5.5.5 Zero Finder
 - This setting is used to perform the instrument zero calibration. Before performing the zero calibration ensure that:
 - The sensor is full of liquid
 - The liquid is perfectly stationary
 - \circ The sensor has the correct electrical ground
- 3.5.5.6 Flow Rate Alarms
 - Max flow: Set the maximum value of the flow rate as a percentage of the full scale value. The factor default setting is "disabled". The max flow threshold by be set from 5% to 200% of the full scale value. Setting this parameter to 200% disables this function.
 - Min flow: Set the minimum value of the flow rate as a percentage of the full scale value. The factor default setting is "disabled". The min flow threshold by be set from 1% to 5% of the full scale value. Setting this parameter to 1% disables this function

3.5.6 I/O

- 3.5.6.1 Pulse Out
 - Pulse Quantity

Define the pulse significance i.e. volume / unit pulse. Note: pulse volume and duration settings differ between transmitter models MC608A and MC608B

- MC608A (powered version) Parameter calculation.

Vp = volume per pulse expressed in liters Tp = Pulse width expressed in seconds Q = flow rate in liters / second

For a given pulse width (Tp): Vp > Qmax*2Tp For a given volume per pulse (Vp): Tp < Vp/2Qmax

- MC608B (battery version) Parameter calculation.

For a given pulse width (Tp): Vp > Qmax*20Tp For a given volume per pulse (Vp): Tp < Vp/20Qmax

- Pulse time on
 - Select the "on" time duration of the pulse on a range between 1 and 1999 ms.
- Reverse flow (off/on)

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 35
------------------	-------------------------------	---------

• Acting on this function, in the case of negative flow, the pulses will be enabled/disabled.

Note: High pulse output frequencies and "on" times longer than 100 ms will adversely affect battery life.

- 3.5.6.2 Frequency Output
 - Full scale frequency: Set the maximum frequency corresponding to the full scale flow rate value. The selectable range is 100Hz to 10KHz.
- 3.5.6.3 Program Output
 - The programmable status output can be set to:
 Enable/disable

 - Reverse flow
 - Max flow alarm
 - \circ Min flow alarm
 - \circ Batching
 - \circ Excitation failure
 - \circ Empty Pipe
- 3.5.6.4 Program Input
 - The programmable input can be set to:
 - \circ External partial positive total zeroing
 - $_{\odot}$ External partial negative total zeroing
 - $\ensuremath{\circ}$ External partial positive and negative total
- 3.5.7 Other
- 3.5.7.1 System Info
 - Displays the system information. These values cannot be modified by the end user
- 3.5.7.2 Time/Date
 - Shows the date, time, motherboard temperature, battery condition for the MC608B battery powered unit.
- 3.5.7.3 Graph
 - Displays the graph of measured flow rate.
- 3.5.7.4 Simulation
 - The MC608 has a built in flow simulator to verify and adjust the pulse output to any connected device.

Note: When using the flow simulation, the counters will not increase in value.

TM-100467, Rev P	MC608A/B/P Transmitter Manual	Page 36

- 3.5.7.5 Communication
 - Baud rate. Allows the adjustment of the RS485 baud-rate between the range 2400 and 115,700 bps.
 - MODBUS address. Allows the adjustment of the MODBUS communication address between 1 and 255.
- 3.5.8 Memory
- 3.5.8.1 Load User Copy
 - Allows to load customized settings
- 3.5.8.2 Save User Copy
 - Allows to save customized settings
- 3.5.8.3 Load Factory Settings
 - Allows to load factory settings
- 3.5.8.4 Data Logger
 - Show last row: Displays last information logged. Date, time, counter, instantaneous flow rate, temperature, battery condition.
- 3.5.8.5 Full Erase
 - Erases the memory of the converter
- 3.5.8.6 Log Interval
 - Defines logging interval. 1 minute minimum / maximum 120 minutes

4 SPECIFICATIONS

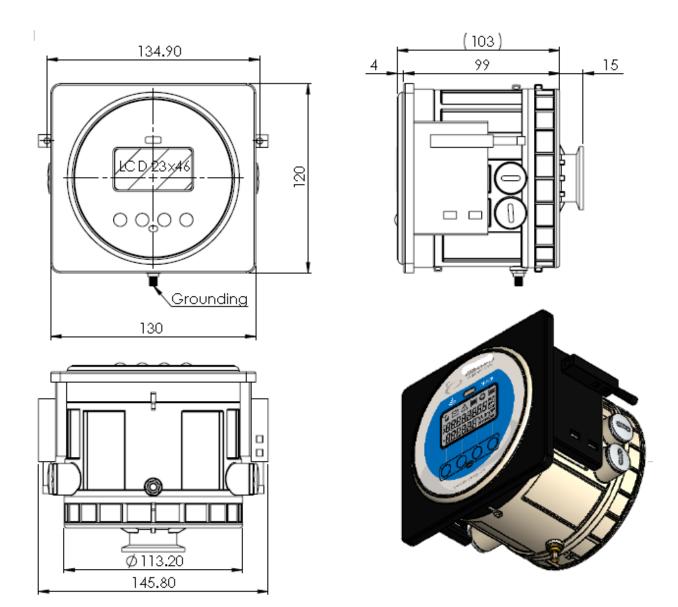
Parameter	Specification
Converter Installation	Compact or remote versions
	 MC608A up to 100 meters from sensor
	 MC608B up to 30 meters from sensor
Converter Case	Aluminum epoxy painted IP68 rated to 1.5 meters, with front
	window in toughened glass. Note: Coolant version (MC608P) is
	IP66 rated.
Electrical Connections	Cable glands, plastic, M20x1.5
Connection Cables	Supplied by FTI
Power Supply	MC608A
	• 90264Vac
	• 12/24 Vac/dc
	MC608B
	Battery powered supply or 12/24Vac/dc
	 Expected life T=0/50°C – Internal battery pack 3-6 years;
	internal and external battery pack 6-10 years
Inputs / Outputs	 Active analog 4-20mA
	• Digital pulse output maximum 1000Hz duty cycle max 50%
	Programmable digital output
	 Digital pulse output active frequency 010kHz (requires
	external 24VDC)
	 All outputs are optically isolated
	 Pulse output maximum capacity +/- 30VDC 50mA
Serial Communication	MODBUS RTU interface on RS485
	IrDA interface for communicating with laptop or hand held
	device.
Temperature Range	Ambient: -20°C to 80°C (-4°F to 176°F)
	Storage: -30°C to 80°C (-22°F to 176°F)
Accuracy	0.20% of reading value (over calibrated range)
Repeatability	0.10% of reading value
Sampling Frequency	Programmable 5, 3, 1, 1/15, 1/30, 1/60, 1/120, 1/240, 1/480 Hz
Measuring Stability Time	3 seconds
Display	 Graphic LCD – 128x64 pixels, 50x25mm visual area
	Programmable backlighting
	• Simultaneous display of rate, totals, status flags
	Programmable display content

SF-100834 Rev A

Parameter	Specification
Programming	 With push buttons on display PCB By PC with dedicated software via RS485 MODBUS RTU communication protocol. By Irda interface with laptop or hand held device
Units of Measure	 Settable for individual counters, flow indication and pulse o/p USgal, bbl, oz, gal, ft3, in3, m3,hl, dal, l, dl, cl, ml
Reference Time	Selectable time units: s, m, h, days
Process Data Logger	4MB flash memory, 200,000 lines of data (one line includes: instant flow, 2 counters, date, time, PCB temperature).
Diagnostic Data Logger	64Kb EEPROM, 2000 lines of data (one line includes: date, time, PCB temperature, error codes, user actions with changes made). Not programmable and tamper/reset proof.
Electrical Conductivity	5uS/cm, 20uS/cm minimum for DI water
Recommended Velocity	-10 to 10 m/s
Approvals	 MC 608 A/B meets all the requirements established by the EC directives. Electromagnetic compatibility: Directive 2004/108/EC, Harmonized standards EN 61326-1:2006; EN 55011:2009; EN61000-3 (2/3); EN 61000-4 (2/3/4/5/6/8/11) Low voltage directive: Directive 2006/95/EC

5 TROUBLESHOOTING

Symptom	Possible Remedies
Converter is showing a flow rate with no flow.	1) Check if the sensor and liquid are
	correctly grounded.2) Check that the sensor is full of fluid.
	3) Electrical conductivity of the fluid is too
	low or is not compatible with the material
	used for the sensor electrodes.
	 4) Perform manual zero finder. (Menu –
	Parameters, sub menu – zero finder)
	5) Check value of low flow cut off.
Flow Reading is highly unstable.	1) Check if the sensor and liquid are
Flow Reduling is highly difstable.	correctly grounded.
	2) There is air in the pipe. Avoid bubbles by
	selecting a more suitable position for the
	sensor.
	3) Set filters as follows:
	 Set Damping to 150
	Reduce Peak Cut filter
	 Increase Bypass filter
External pulse totalizer shows results different	1) Test the output with the internal flow
from what is expected.	simulator and the converter pulse counter
	system simulating a flow rate with System
	– Simulator.
The display is off and does not turn on.	 Check to insure supply voltage is available.
	2) Check that supply voltage matches the
	name plate on the converter.
	3) If the unit is a MC608B battery powered
	unit, check the battery life and replace as needed.
Liquid is flowing in pipe, but there is no	1) Reduce the low flow cut off filter (factory
display,	setting is 2% of the full scale)


SF-100834 Rev A

6 ALARM MESSAGES

Alarm Message	Possible Cause and Solutions
Excitation failure	1) Incorrect cable connections.
! ∿	2) Sensor damaged. Damaged lining or
	electrodes. Possible infiltration of liquid
	inside the sensor.
	3) Converter damaged.
	Recommend performing a test on the
	sensor circuit between coils A – B: 50 – 250 Ohm.
Measurement error	1) Empty pipe
1 A	2) Air bubbles within the liquid
	3) Incorrect electrical grounding
	Check for correct installation of sensor.
	With pipe full between a or B and ground >
	100MOhm.
Empty Pipe	1) Empty pipe detection
! 0	This message is displayed with sensors that
	have 4 electrodes. Indicates the alarm of
	empty pipe, or partially empty.
	If the alarm is indicating the pipe is
	partially full when you are sure it is full, go
	to: Main Manue Desenatore Frents Ding Th
	Main Menu, Parameters, Empty Pipe Th. Move the slide bar toward the "F" and
	press "test". The alarm should be
	removed.
Pulse accumulation	1) Pulse frequency incorrect
BACON	Change the volume and/or pulse duration
	settings.
Supply voltage	1) Supply voltage out of operating range
la l	2) Converter damaged
	Check the power supply network.
Data logger full	1) Data logger memory full
	Download the data to a PC and erase the
	memory of the converter.

Appendix A Coolant Flow Meter Transmitter (MC608P)

The EL4000 series coolant meters have a unique transmitter configuration and enclosure. The flow meter and transmitter come prewired with six meters of cable and a cable interconnection a short distance from the flow meter. The transmitter enclosure is light weight plastic which can be panel or wall mounted. The wiring and programming of the coolant transmitter (MC608P) is the same as the MC608A version defined in this manual. Dimensional information for the transmitter housing is provided below.

Appendix B Modbus Input Registers - Function Code 04

FC04 Read Input Registers (read-only variables)

	MODBUS ADDRESS		Data Type	Description	DATA TYPE	Access (Read/Write)
3:0001	0000	4	FLOAT	Instantaneous measurement fluid velocity in m/s	m/s	R
3:0003	0002	4	FLOAT	Instantaneous measurement flow rate in m ³ /s	m³/s	R
3:0005	0004	4	FLOAT	Instantaneous measurement flow rate in kg/s	kg/s	R
3:0007	0006	4	FLOAT	Counter total positive in m ³	m ³	R
3:0009	0008	4	FLOAT	Counter total negative in m ³	m ³	R
3:0011	0010	4	FLOAT	Counter partial positive in m ³	m³	R
3:0013	0012	4		Counter partial negative in m ³	m ³	R
3:0015	0014	4	FLOAT	Specific weight set for mass counters in kg/m ³	kg/m ³	R
3:0017	0016	4		Counter total positive in kg	kg	R
3:0019	0018	4	FLOAT	Counter total negative in kg	kg	R
3:0021	0020	4	FLOAT	Counter partial positive in kg	kg	R
3:0023	0022	4	FLOAT	Counter partial negative in kg	kg	R
3:0025	0024	2	INT16	Index volume unit current flow rate	See volume units table	R
3:0026	0025	2	INT16	Index volume unit current time flow rate	See time units table	R
3:0027	0026	4	FLOAT	Measure instantaneous fluid flow in the units set	Reg-0024 / reg-0025	R
3:0029	0028	2	INT16	Index volume unit counter current set	See volume units table	R
3:0030	0029	4	FLOAT	Counter total positive in the current volume unit	reg-0028	R
3:0032	0031	4	FLOAT	Counter total negative in the current volume unit	reg-0028	R
3:0034	0033	4	FLOAT	Counter partial positive in the current volume unit	reg-0028	R
3:0036	0035	4	FLOAT	Counter partial negative in the current volume unit	reg-0028	R
3:0038	0037	4	FLOAT	Pulse volume in m ³	m ³	R
3:0040	0039	2	INT16	Pulse volume in the current volume unit	See volume units table	R
3:0041	0040	4	FLOAT	Pulse volume in the set volume unit	reg-0039	R
3:0043	0042	4	FLOAT	PCB temperature	°C/°F	R
3:0047	0046	2	INT16	Sampling Frequency	0: Continuous * 1: Battery * 2: Any 3: Continuous 4: Seconds	R
3:0048	0047	2	INT16	Current year	ΥY	R
3:0049	0048	2	INT16	Current month	ММ	R
3:0050	0049	2	INT16	Current day	DD	R
3:0051	0050	2	INT16	Hours	hh	R
3:0052	0051	2	INT16	Minutes	mm	R
3:0054	0053	4	FLOAT	Full scale (FS) in the current volume unit *	reg-0024/reg-0025	R
3:0056	0055	4	FLOAT	Actual flow rate % on the FS *	%	R

(*)FW version 3.00 and later

Appendix C Modbus Holding Register Function Codes 03 & 16

FC03 – Read Holding Register

FC16 – Write Holding Register

MODBUS REGISTER			Data Type	Description	DATA TYPE	Access (Read/Write) CMD16 (*)
4:1002	1001	2	UINT	Firmware version FW	0207hex=2.07	R
4:1003	1002	2	UINT	Hardware version HW	0501hex=5.01	R
4:1004	1003	2	UINT	Baudrate (TIA-485)	Default 9600	R
4:1005	1004	2	BYTE	Device Modbus 1-255	Default 1	R
4:1006	1005	2	BOOL	Format FLOAT on Modbus	0=FLOAT (default) 1=Reverse FLOAT	R/W
4:1011	1010	2	BYTE	Reserved	Reserved	R/W
4:1012	1011	2	UINT	Reserved	Reserved	R/W
4:1020	1019	8	ASCII	Converter model	8 digits - ex.: "MC 608B"	R
4:1024	1023	10	ASCII	Converter's part number	Factory value (9 digits)	R
4:1029	1028	4	ULONG	Converter's serial number	Progressive production number	R
4:1031	1030	12	UINT	Coupled sensor model	12 digits - ex.: "MUT1100J"	R
4:1037	1036	10	ASCII	Sensor's part number	Factory value (9 digits)	R
4:1042	1041	2	UINT	Coupled sensor's diameter	Diameter (1 - 4000) mm	R
4:1043	1042	2	BYTE	Empty pipe	1=available; 0=not available	R
4:1045	1044	20	BYTE	Note	Internal references	R
4:1055	1054	4	FLOAT	Full scale m ³ /h	Referent value alarms/display	R/W
4:1061	1060	2	BYTE	Percentage back light level display 0 - 100 %		R/W
4:1062	1061	2	BYTE	Time-out back light display	0 - 30 second >30 always on	R/W
4:1063	1062	2	BYTE	LCD contrast	24 - 50	R/W
4:1064	1063	2	BYTE	Language display	0=English 1=Italian 2=Spanish 3=Portuguese 4=French *	R/W
4:1065	5 1064 2 BYTE Set las		BYTE	Set last line of the display	0=Total positive counters; 1=Partial positive counters; 2= Total negative counters; 3=Partial negative counters; 4=Date; * 5 = Exp; *	R/W
4:1066	1065	2	BYTE	Flow rate volume	See volume units table	R/W
4:1067	1066	2	BYTE	Time base flow rate time	See time units table	R/W
4:1068	1067	2	BYTE	Totalizers volume	See volume units table	R/W
4:1069	1068	2	UINT	Liquid specific weight value *	kg/m ³	R/W
4:1070	1069	2	BYTE	Temperature units * 0 = °C 1 = °F		R/W
4:1071	1070	2	BYTE	Visualized pulses on display	See volume units table	R/W
4:1072	1071	4	FLOAT	Pulse volume in ml Value X 0.1 * Value		R/W
4:1074	1073	2	UINT	Pulses time ON	(value +1) x 0.5 mS * 1 - 1999 mS (def 10)	R/W

TM-100467, Rev P

MC608A/B/P Transmitter Manual

Page 44

4:1077	1076	2	BYTE	Pulses/frequency output Mode *	0= Out pulses + Out Freq : PWM 1 = Only frequency Out	R/W
4:1078	1077	2	BYTE	Enable pulses also with negative flow *	0 = Off 1= On	R/W
4:1081	1080	2	BYTE	Programmable input setup	0=Disabled 1=Set zero P- 2=Set zero P+ 3=Set zero P+ e P-	R/W
4:1082	1081	2	BYTE	Programmable output setup	0=Disabled 1=Reverse flow 2= Max flow threshold 3= Min flow threshold 4= Max/min threshold 5= Dosage * 6 = Excitation failure * 7 = Empty pipe alarm *	R/W
4:1083	1082	2	UINT	Frequency out full scale	100 - 10000 Hz	R/W
4:1084	1083	2	BYTE	Programmable output logic *	0 = Norm. Open 1 = Norm. Closed	R/W
4:1085	1084	4	FLOAT	Dosage volume *	1 - 1000000 (TU Counters)	R/W
4:1101	1100	2	UINT	Damping Filter (average number of samples visualized) **	5 - 500 1 - 500 *	R/W
4:1102	1101	2	BYTE	Percentage cut-off	0 - 50 % FS (def 2%)	R/W
4:1103	1102	2	BYTE	Percentage by-pass filter	2 - 95 % FS (def 10%)	R/W
4:1104	1103	2	BYTE	Percentage peak-cut	1 - 25 % FS (def 5%)	R/W
4:1105	1104	2	BYTE	Line frequency 50hz/60Hz	50Hz , 60Hz	R/W
4:1106	1105	2	UINT	Average filter	1 - **Damping	R/W
4:1111	1110	2	BYTE	Flow rate alarm (MAX) on the FS	5% - 100% *(MIN + 5%) - 100% 255 = OFF	R/W
4:1112	1111	2	BYTE	Flow rate alarm (MIN) on the FS	1% - (MAX – 5%) *0% - (MAX – 5%) 255 = OFF	R/W
4:1132	1131	2	BYTE	Datalogger sampling frequency	Value (1 - 240) x 4 sec * 1 - 120 minutes	R/W

(*) FW version 3.00 and later

FS = Full scale

Appendix D Volume and Time Base Units Charts

Volume Units	1	2	3	4	5	6	7	8	9	10	11	12	13
volume onits	ml	cl	dl	-	dal	hl	m³	MI	in ³	ft ³	gal	bbl	OZ

Time a Unite	1	2	3	4
Time Units	/s	/min	/h	/GG

TM-100467, Rev P

Appendix E Examples

Address 1005 - FLOAT ON MODBUS FORMAT

This setting inverts the order of the two words making up the 32-bit FLOAT and allows you to read and write data as FLOAT or FLOAT reverse

Address 1005=03EDh Reading required description

Query chart

		register wo	rd 03EDhex	data count word 0001hex		CRC 16 v	word
address	function	function data start data start data BYTE		data BYTE count	CRC LOW	CRC HI	
		address HI	address LOW	count HI	LOW		
Device ID (1-255)	03	03h	EDh	00	1	CRC1	.6

Read response explanation

Response example chart

	_	data BYTE	0	0AFhex word value	CRC 16 word	
address	function	count	data BYTE HI	data BYTE LOW	CRC LOW	CRC HI
Device ID	03	2	00	0=FLOAT 1=FLOAT reverse	CRC	16

Write request description Query chart

		registe 03EI			ount word D1hex		register	00AFhex word value	CRC 1	6 word
address	function	data start address HI	data start address LOW	data BYTE count HI	data BYTE count LOW	data BYTE count	data BYTE HI	data BYTE LOW	CRC LOW	CRC HI
Device ID (1-255)	16	03h	EDh	00	01h	2h	00	0=FLOAT 1=FLOAT reverse	CR	C16

Write response explanation

Response example chart

		register wo	ord 03EDhex	data count wo	ord 0001hex	CRC 1	.6 word
address	function	data start address HI	data start address LOW	data BYTE count HI	data BYTE count LOW	CRC LOW	CRC HI
Device ID	16	03h EDh		00	01h	CR	C16

Example R/W BYTE Register

Address 1010 – AUTOMATIC POWER OFF TIME (batteries) This value represents the time (in seconds) of the automatic power-off, exclusively for the version with battery power supply

Address 1010=03F2h Read request description

Query chart

		register wo	ord 03F2hex	data count	t word 0001hex	CRC 16	word
address	function	data start	data start	data BYTE	data BYTE count	CRC LOW	CRC HI
		address HI	address LOW	count HI	LOW		
Device ID (1-255)	03	03h	F2h	00	1	CRC	16

Write request description

Response example chart

addross	function	data BYTE	3YTE register 03F2hex word value CR		CRC 16	C 16 word	
auuress	dress function		data BYTE HI data BYTE LOW		CRC LOW	CRC HI	
Device ID	03	2	00	20 - 240 s	CRC	16	

Write request description

Query chart

		registe 03F2			ount word D1hex		•	3F2hex word alue	CRC 16	word
address	function	data	data	data	data	data BYTE				
address	Tunction	start	start	BYTE	BYTE	count	data	data BYTE	CRC	CRC HI
		address	address	count	count		BYTE HI	LOW	LOW	CIVE III
		HI	LOW	HI	LOW					
Device ID (1-255)	16	03h	F2h	00	01h	2h	00	20 - 240 s	CRC	216

Write request description

Response example chart

		register wo	ord 03F2hex	data count wo	ord 0001hex	CRC 16	o word
address	function	data start address HI	data start address LOW	data BYTE count HI	data BYTE count LOW	CRC LOW	CRC HI
Device ID	16	03h	F2h	00	01h	CRO	216

Example R/W Unit Register

Address 1041 – SETTING THE COUPLED SENSOR DIAMETER

This value indicates the diameter of the coupled sensor in mm

Address 1041=0411hRead request description

Query chart

		register wo	rd 0411hex	data coun	t word 0001hex	CRC 16	5 word
address	function	data start	data start	data BYTE	data BYTE count	CRC	CRC HI
		address HI	address LOW	count HI	LOW	LOW	
Device ID (1-255)	03	04h	11h	00	1	CRO	C16

Read request description

Response example chart

address		function data BYTE count		register 0411hex word value		data BYTE HI data BYTE LOW		vord CRC HI
Device ID	03	2		1 - 4000 mm		6		

Write request description

Query chart

		registe 0411	r word Lhex		unt word)1hex		-	111hex word alue	CRC 16	word
address	function	data	data	data	data	data BYTE				
auuress	Tunction	start	start	BYTE	BYTE	count	data	data BYTE	CRC LOW	CRC HI
		address	address	count	count		BYTE HI	LOW		
		HI	LOW	HI	LOW					
Device ID (1-255)	16	04h	11h	00	01h	2h	1 - 4000 mm		CRC16	

Write request description

Response example chart

		register wo	ord 0411hex	data count wo	ord 0001hex	CRC 16	5 word
address	function	data start address HI	data start address LOW	data BYTE count HI	data BYTE count LOW	CRC LOW	CRC HI
Device ID	16	04h 11h		00	01h	CRO	C16

Example R/W FLOAT Register

Address 1054 – FULL SCALE m³/h

The purpose of this function is to set the FS full scale (always expressed in m^3/h), to which all the settings relative to the latter will make reference.

Address 1054=041EhRead request description

Query chart

		register wo	ord 041Ehex	data coun	t word 0001hex	CRC 16 word	
address	function	data start	data start	data BYTE	data BYTE count	CRC	CRC HI
		address HI	address LOW	count HI	LOW	LOW	
Device ID (1-255)	03	04h	1Eh	00	2	CRO	216

Read request description Response example chart

address	function	data BYTE	register 041 val		register 04: va	1Fhex word ue	CRC 16 word	
auuress	Tunction	count	data BYTE HI	data BYTE LOW	data BYTE HI	data BYTE LOW	CRC LOW	CRC HI
Device ID	03	4	word LOW word HI (FLOAT reverse)		word HI word LOW (FLOAT reverse)		CRC16	

Write request description

Query chart

address	function	data start address HI	data start address LOW	data BYTE count HI	data BYTE count LOW	BYTE coun t	data BYTE HI	data BYTE LOW	data BYTE HI	data BYTE LOW	CRC LO W	CRC HI
Device ID (1-255)	16	04h	1Eh	00	02h	4h	word LOW word HI (FLOAT reverse)		word LC	word HI /ord LOW (FLOAT reverse)		C16

Write request description Response example chart

address	function	register word 041Ehex		data count word 0002hex		CRC 16 word	
		data start address HI	data start address LOW	data BYTE count HI	data BYTE count LOW	CRC LOW	CRC HI
Device ID	16	04h	1Eh	00	02h	CRC16	