
BitTorrent Sync: Network Investigation Methodology

Mark Scanlon*, Jason Farina*, M-Tahar Kechadi
UCD School of Computer Science and Informatics,

University College Dublin, Belfield, Dublin 4, Ireland
Email: mark.scanlon@ucd.ie, jason.farina@ucdconnect.ie, tahar.kechadi@ucd.ie

Abstract—The volume of personal information and data most
Internet users find themselves amassing is ever increasing and the
fast pace of the modern world results in most requiring instant
access to their files. Millions of these users turn to cloud based file
synchronisation services, such as Dropbox, Microsoft Skydrive,
Apple iCloud and Google Drive, to enable “always-on” access to
their most up-to-date data from any computer or mobile device
with an Internet connection. The prevalence of recent articles
covering various invasion of privacy issues and data protection
breaches in the media has caused many to review their online
security practices with their personal information. To provide
an alternative to cloud based file backup and synchronisation,
BitTorrent Inc. released an alternative cloudless file backup and
synchronisation service, named BitTorrent Sync to alpha testers
in April 2013. BitTorrent Sync’s popularity rose dramatically
throughout 2013, reaching over two million active users by the
end of the year. This paper outlines a number of scenarios where
the network investigation of the service may prove invaluable
as part of a digital forensic investigation. An investigation
methodology is proposed outlining the required steps involved
in retrieving digital evidence from the network and the results
from a proof of concept investigation are presented.

I. INTRODUCTION

Applications such as Evernote and Dropbox leverage the
decreasing cost of hard disk storage seen in Infrastructure
as a Service providers, e.g., Amazon S3, to provide data
storage on the cloud to home users and businesses alike. The
main advantage of services such as Dropbox, Google Drive,
Microsoft Skydive and Apple iCloud to the end user is that
their data is stored in a virtual extension of their local machine
with no direct user interaction required after installation. It is
also backed up by a fully distributed datacentre architecture
that would be completely outside the financial reach of the
average consumer. Their data is available anywhere with
Internet access and is usually machine agnostic so the same
data can be accessed on multiple devices without any need
to re-format partitions or wasting space by creating multiple
copies of the same file for each device. Some services such
as Dropbox, also have offline client applications that allow for
synchronisation of data to a local folder for offline access.

As Internet accessibility continues to become more com-
monplace and allows for increasingly faster access, it is not
unexpected that many utilities that are intended for general use
will be aided in the perpetration of some variety of cybercrime.
One attribute that is highly desirable by those contemplating
illegal activities is the notion of anonymity and data security,
especially the ability to keep data secure transfer secure from
inspection while in transit. BitTorrent Sync is a file replication
utility that would seem to serve exactly this function for the
user. Designed to be server agnostic, the protocol is built on

already popular and widespread technologies that would not
seem out of place in any network activity log.

Each of the aforementioned services can be categorised as
cloud synchronisation services. This means that while the data
is synchronised between user machines, a copy of the data
is also stored remotely in the cloud. In recent headline news,
much of this data is easily available to governmental agencies
without the need of a warrant or just cause. BitTorrent Sync
(also referred to as BTSync, BitSync and bsync) provides the
same synchronisation functionality (without the cloud storage
aspect) and provides a similar level of data availability. The
service has numerous desirable attributes for any Internet user
[1]:

1) Compatibility and Availability: Clients are built for
most common desktop and mobile operating systems, e.g.,
Windows, Mac OS, Linux, BSD, Android and iOS.

2) Synchronisation Options: Users can choose whether to
sync their content over a local network or over the Internet to
remote machines.

3) No Limitations or Cost: Most cloud synchronisation
services provide a free tier offering a small amount of storage
and subsequently charge when the user outgrows the available
space. BTSync eliminates these limitations and costs. The only
limitation to the volume of storage and speed of the service is
down to the limitations of the synchronised users machines.

4) Automated Backup: Like most competing products, once
the initial install and configuration is complete, the data con-
tained within specified folders is automatically synchronised
between machines.

5) Decentralised Technology: All data transmission and
synchronisation takes place solely in a Peer-to-Peer (P2P)
fashion, based on the BitTorrent file sharing protocol.

6) Encrypted Data Transmission: While synchronizing
data between computers, the data is encrypted using RSA
encryption. Under the BTSync API, developers can also en-
able remote file storage encryption [2]. This could result in
users storing their data on untrusted remote locations for the
purposes of redundancy and secure remote backup.

As a result of the above desirable attributes, BTSync has
grown to become a popular alternative to cloud synchronisation
services. The technology had grown to over one million users
by November 2013 and has doubled to two million users
by December 2013 [3]. The service will undoubtedly be of
interest to both law enforcement officers and digital forensics
investigators in future investigations. Like many other file
distribution technologies, this interest may be centred around



recovering evidence of the data itself, of the modification of
the data or of where the data is synchronised to.

While BTSync is based on the same technology as BitTor-
rent for the transfer of files, the intention of the application is
quite different. This results in a change of users’ behaviours, as
well as a necessary change in the assumptions an investigator
should make. BitTorrent is designed to be a one-to-many data
dissemination utility. The uploader usually does not care about
the identity of the downloader and a single seeder can deliver
data to a large number of unique peers over the life of the
torrent file. Data integrity and transfer speed take precedence
over privacy of data in transit. BTSync on the other hand, is
designed to be a secure data replication protocol for making
a faithful replica of a data set on a remote machine. Data
integrity is still highly prised but data privacy is now the top
priority and speed-through-dispersion is sacrificed as a result.
The files can only be read by users specifically given access
to the repository. The advertisement of data availability is
completely scalable by the owner with options ranging from
restricting access to known IP addresses through to registration
with a centralised tracker. Given the nature of the application,
users are much more likely to know the operator of the remote
site (this does not apply to secrets advertised online though that
could be a point of commonality that would not necessarily
have existed for pure BitTorrent clients).

A. Aim and Contribution of this Work

The aim of this work is to provide a reference for digital
investigators discovering the use of BitTorrent Sync in an
active investigation and for researchers working in the space.
Providing the digital investigator with an explanation and
methodology for investigating the service may aid in steering
the investigation in a new direction. The contribution of this
work firstly involves the formulation of a network investigation
methodology for BitTorrent Sync, outlined in Section V. This
methodology includes recommendations for the investigation
of a number of hypothetical scenarios where BTSync could be
used to aid in criminal or illicit activities. While the legitimate
usage of the system, e.g., backup and synchronisation, group
modification, data transfer between systems, etc., may be of
interest to an investigation, the technology may also be suitable
in the aid of a number of potential scenarios of interest such
as industrial espionage, copyright infringement, sharing of
illicit images of children, etc., outlined in greater detail in
Section II-C. This work also documents each of the observed
packets sent and received during regular operation of BTSync.
Finally, the results from a proof-of-concept digital forensic
investigation of the system are outlined in Section VI.

II. BACKGROUND

In order to gain an understanding of how BTSync func-
tions, one must first understand the technologies upon which
it is built. The application is a product built by BitTorrent
Inc. (the creators and maintainers of the popular file-sharing
protocol sharing the same time). As a result, the technologies
used by the regular BitTorrent protocol and BTSync are
developed using a similar premise. This section provides a
brief overview of the required background information and
outlined the key differences between the two applications.

TABLE I. BTSYNC PACKET BENCODING FIELDS

Key Explanation
d: Marks the start of a dictionary
l: List start, the start of a list of field:value pairs in an array. Lists are

terminated with an “e”
la: local Address IP:Port in Network-Byte Order
ea: External Address IP:Port in Network-Byte Order
m: Message Type Header, e.g., ping
peer: [Peer ID]
share: [Share ID]
nonce: 16-byte nonce for key exchange between peers negotiating data exchange
e: Marks the end of a dictionary or list

A. BitTorrent File Sharing Protocol

The BitTorrent protocol is designed to easily facilitate the
distribution of files to a large number of downloaders with
minimal load on the original file source [4]. This is achieved
through the downloaders uploading their completed parts of the
entire file to other downloaders. A BitTorrent swarm is made
up of both seeders (peers with complete copies of the content
shared in the swarm), and leechers (peers who are downloading
the content and may have none or some of the content). Due to
BitTorrent’s ease of use and minimal bandwidth requirements,
it lends itself as an ideal platform for the unauthorised distri-
bution of copyrighted material. The unauthorised distribution
of copyrighted material typically commences with a single
original source sharing large sized files to many downloaders.

1) Bencoding: Bencoding is a method of notation for
storing data in an array list. The main advantage of bencoding
is that it avoids the pitfalls of system-byte order requirements
(such as big-endian or little-endian), which can cause issues
for cross platform communication between applications. The
datagram packet can easily be converted to a human readable
UTF-8 encoded sequence of key:value pairs. Indicative
key:value pairings are presented in Table I.

The value for any pair is stored as a sequence of-bytes with
the exception of integer values. Associated with the integer
indicating keys, bencoding uses the lowercase “i” to indicate
the start of an integer value, which is also terminated with a
lowercase “e”.

2) Active Peer Discovery: Each BitTorrent client must be
able to identify a list of active peers in the same swarm who
have at least one piece of the content and is willing to share
it, i.e., identify a peer that has an available open connection
and has the bandwidth available to upload. By the nature of the
implementation of the protocol, any peer that wishes to partake
in a swarm must be able to communicate and share files with
other active peers. BitTorrent provides a number of methods
available for peer discovery. There are a number of methods
that a BitTorrent client can use in an attempt to discover new
peers who are in the swarm outlined below

1) Tracker Communication – BitTorrent trackers main-
tain a list of seeders and leechers for each BitTorrent
swarm they are currently supporting [5]. Each Bit-
Torrent client will contact the tracker intermittently
throughout the download of a particular piece of
content to report that they are still alive on the
network and to download a short list of new peers
on the network.

2) Peer Exchange (PEX) – As set out in the standard Bit-
Torrent specification, there is no intercommunication



between peers of different BitTorrent swarms besides
data transmission. Peer Exchange is a BitTorrent
Enhancement Proposal (BEP) whereby when two
peers are communicating (sharing the data referenced
by a torrent file), a subset of their respective peer lists
are shared during the communication.

3) Distributed Hash Tables (DHT) – Many BitTorrent
clients, such as Vuze and µTorrent contain imple-
mentations of a common distributed hash table as
part of the standard client features. The common
DHT maintains a list of each active peer using the
corresponding clients and enables cross-swarm com-
munication between peers. Each known peer active in
swarms with DHT contributors is added to the DHT.
The mainline BitTorrent DHT protocol (also used by
BTSync), is based on the Kademlia protocol. Reg-
ular BitTorrent file-sharing users and BTSync users
contribute to the update and maintenance of the DHT.
The DHT provides an entirely decentralised approach
aiding in the discovery of new peers sharing particular
pieces of content. The Kademlia DHT structures its
ID space as a tree [6]. The distance between two
keys in the ID space is their “exclusive or” (xor).
Each user in the DHT generates a unique key that is
used for identification when connecting to the DHT.
The piece of the DHT that each peer stores is related
to this xor calculation, i.e., those peer IDs that are
closest to the key (e.g. a torrent’s info_hash) are
responsible for facilitating lookups for those keys.
The same DHT responsible for regular BitTorrent file-
sharing is also responsible for maintaining a lookup
for BTSync shared content. In this scenario, the key
used is based on the public read-only key generated
for each shared folder in BTSync.
While a DHTs decentralised nature results in a
much more resilient service compared to server based
tracker, it also results in it be vulnerable to certain
attacks, as outlined in greater details in Sit et. al’s
2002 paper [7].

4) Local Peer Discovery (LPD) – This is enabled by
checking the “Search LAN” option in most BitTorrent
client’s application preferences. When enabled the
application will announce its availability to potential
local peers using multicast packets. Once a client on
the network receives a multicast packet, that client
will check its current list of shares to see if a match
is found. Is a match it found, that peer will respond
to the origin of the request offering to synchronise
the content.

3) Downloading of Content through BitTorrent: To com-
mence the download of the content in a particular BitTorrent
swarm, a metadata .torrent file or a corresponding magnet
universal resource identifier (URI) must be acquired from a
BitTorrent indexing website. This file/URI is then opened
using a BitTorrent client, which proceeds to identify other
active peers sharing the specific content required. The client
application then attempts to connect to several active members
and downloads the content piece by piece. Each BitTorrent
swarm is built around a single piece of content which is
determined through a unique identifier based on a SHA-1
hash of the file information contained in this UTF-8 encoded

Fig. 1. Versions of Secrets Available for each Shared Folder

metadata file/URI, e.g., name, piece length, piece hash values,
length and path.

B. BitTorrent Sync

BTSync is a file replication utility created by BitTorrent
Inc. and released as a private alpha in April 2013 [1]. It is not
a cloud backup solution, nor necessarily intended as any form
of off-site storage. Any data transferred using BTSync resides
in whole files on at least one of the synchronised devices. This
makes the detection of data much simpler for digital forensic
purposes as there is no distributed file system, redundant data
block algorithms or need to contact a cloud storage provider to
get a list of all traffic to or from a container using discovered
credentials. The investigation remains an examination of the
local suspect machine. However, because BTSync uses DHT
to transfer data there is also no central authority to manage
authentication or log data access attempts. A suspect file found
on a system may have been downloaded from one or from 1000
sources and may have been uploaded to one or more recipients.
Additionally while the paid services offer up to 1TB of storage
(Amazon S3 paid storage plan) the free versions which are
much more popular with home users cap at approximately
10GB. BTSync is limited only by the size of the folder being
set as a share. Another concern for any investigation into
BTSync folders is that unless the system being examined is
the owner/originator of the folder being shared, it is quite
possible that any files present were downloaded without prior
knowledge of their content or nature. BTSync has no built in
content preview facility in its protocol, it blindly synchronises
from host to target without any selection process available to
the user. In fact, if the user were to delete a file from a read
only share, that file would be re-created the next time the folder
synchronised with the parent folder as long as the file was still
present on the original location.

1) Secrets: Secrets are the unique identifiers used by the
BTSync service to differentiate between shared folders. In
order for the 20-byte secrets to be human readable, they are
displayed using Base32 encoding [1]. BTSync facilitates the



generation of three categories of secrets for the sharing of data
contained within specific folders, as can be seen in Figure 1:

The first is a read/write or master secret. This secret is a
randomly generated key created by the client application on
the machine initialising any given shared folder (this is created
using /dev/random on *nix systems or CryptoApi on
Windows systems). Anyone with access to this secret is granted
both read and write access to the shared folder. For example,
each user using this secret is able to add files to be replicated
across all other member machines. Once this access is granted
for any client, it cannot be revoked without the creation of an
entirely new share (and thus starting afresh with shared nodes).
However, once a machine has download the shared content,
there is no method available to reliably remotely delete any
content. By default, if content is remotely deleted, this change
will be reflected on each member machine but the delete file
will be copied into the .SyncArchive folder and stored for
30 days before deletion. Depending on the version of BTSync
used to create the initial shared folder, this 20-byte generated
secret will be prepended with the character ‘A’ or ‘D’ to form
a 42-byte secret for distribution. As an added layer of security,
a user can opt not to use a 20-byte secret generated by BTSync
and can instead use their own base64 encoded secret that is
at least 40 characters in length. This allows users to include
both upper and lower case characters in their key (while the
default BTSync secrets are all uppercase).

The second is a read-only secret. This secret allows remote
hosts to partake in a one-way synchronisation of a folder
from those with read-write permissions. The 20-byte generated
secret is prepended with the character ‘B’ or ‘E’, depending
on version used.

The final option is an encrypted read-only secret. This se-
cret will enable remote machines to synchronise an encrypted
copy of the shared content. The remote machine only has read
access to the share. Using these encrypted read-only keys, it is
possible for two or more peers to agree on a reciprocal remote
backup agreement without ever needing to expose the content
of the folders being synced between them. This encryption
secret can only be generated with more recent version of
BTSync and will begin with the character ‘F’.

For each of the secret categories outlined above, the
generated secret will always map to that specific shared folder
of content with the specified level of access. However, the
user can also create a time sensitive variation for each of those
secret, as shown towards the bottom of Figure 1. This variation
involves specifying that joining that shared folder will only be
permissible for a period of 24 hours. After the 24 hour window,
the secret (irrespective of access type) will become invalid
but users who have already added this secret to their BTSync
installation will continue to have access to updates from shared
folder (and optionally the continued ability to add content to
the folder). Once added the secret recorded in sync.dat will
be the master secret (R/W) or read-only secret, not the 24 hour
secret received.

Each of the secret types outlined above need never neces-
sarily be shared publicly, i.e., any user can create a number
of secrets solely for his personal use across his different
machines. Depending on the level of access the user wishes
to give to a third-party, he can give the corresponding se-

cret to any other user through regular one-to-one commu-
nication methods (e-mail, instant messaging, social network-
ing, SMS, etc.). If public distribution is desirable, there are
a number of public online avenues for BTSync users to
share secrets with each other (e.g. www.btsynckeys.com,
http://www.reddit.com/r/btsecrets, among oth-
ers.)

C. Potential Scenarios Pertinent to Digital Forensic Investiga-
tion

1) Industrial Espionage: Many companies are aware of
the dangers of allowing BitTorrent traffic on their networks.
However, quite often corporate IT departments enforce a
blocking of the technology through protocol blocking rules
on their perimeter firewalls. This has the effect of cutting
off any BitTorrent clients installed on the LAN from the
outside world. In addition to Deep Packet Inspection (DPI)
to investigate the data portion of a network packet passing
the inspection point, basic blocking of known torrent tracker
sites using firewall rulesets can be used. BTSync does use
BitTorrent as the protocol for file transfer but once the transfer
session is established using the BTSync protocol all traffic is
encrypted using AES and may not be open to inspection by a
firewall. It also does not follow the current known patterns that
would identify an encrypted BitTorrent stream as the target-
source profile is different. Blocking t.usyncapp.com and
r.usyncapp.com will stop the tracker and relay options
from being used but BTSync can operate quite well without
those services. Local peer discovery can use multicast or
direct "known peer" configuration where a known IP:Port
combination is used to identify a specific machine allowed
to participate in the share. This specificity would negate the
issue of multicast packets usually not being routed beyond
the current network segment. A scenario where BTSync can
be used to transfer files within a LAN would be to transfer
data to a machine with lower security protocols in place such
as the capability to write to a USB device or perhaps even
unmonitored access to the Internet (and the BitTorrent protocol
) through a designated guest LAN.

2) Cloudless Backup: By synchronizing between two or
more machines accessible to the user, data can be stored in
multiple locations as a form of backup. The secondary copies
of a file would be stored using a read only key so that only
changes on the primary system will ever replicated. A feature
of BTSync that is enabled by default but can be disabled in the
configuration file, is the use of the .SyncArchive folder that
stores a copy of any file deleted or changed for a preset period
of time allowing for a form of file recovery or versioning.

3) Encrypted Remote P2P Backup: The BitTorrent Sync
API [2] adds the functionality to generate an “encryption
secret”. Through the use of encryption secrets, a BTSync
user has the ability to remotely store encrypted data, e.g.,
personal, sensitive or illegal, on one or more remote machines.
These remote machines do not have the ability to decrypt the
information stored. The data could then be securely wiped off
the original machine and easily recovered at a later stage.

4) Dead Drop: Due to BTSync’s intended use as a file
replication utility, it is assumed that a person receiving a copy
of a shared directory is aware of the contents of the folder. As a



result, no method was included to gather details of the contents
of a share before synchronisation. The API [2] introduced this
function but only a node configured correctly with an API key
will return a folder or file listing when queried.

5) Secure P2P Messaging: For example, the proof of
concept found at http://missiv.es/. The application
currently operates by saving messages to an “outbox” folder
that has a read only key shared to the person you want to
receive the message. They in turn send you a read only key
to their outbox. One to many can be achieved by sharing
the read only key with more than one person but no testing
has been done with synchronisation timing issues yet and key
management may become an issue as a new outbox would be
needed for each private conversation required.

6) Piracy: – BitTorrent, like any other P2P technology,
was designed for one-to-many distribution of large content
and has become almost synonymous with piracy. BTSync
was not necessarily intended to be a one-to-many distribution
utility. However, it does allow for a group of users to set
one another as “known peers” so that they can commu-
nicate directly through encrypted channels. Websites such
as http://bitsynckeys.com/ have examples of users
posting keys publicly and advertising the content as being
copyrighted material.

7) Serverless Website Hosting: – This involves the creation
of static websites served through a BTSync shared folder.
These websites could be directly viewed on each user’s local
machine. The local copies of the website could receive updates
from the webmaster automatically through the synchronisation
of the content associated with a read only secret.

8) Malicious Software Distribution: – Due to the lack of
any trust level being associated with any publicly shared secret,
the synchronised files may contain infected executables.

For each of the above scenarios, an added dimension can be
created by the BTSync user: time. Due to the ability to create
“throw away” or temporary secrets for any piece of content,
the timeframe where evidence may be recovered from remote
sharing peers might be very short.

III. RELATED WORK

This paper is focused on the network communication
protocol employed by BTSync and the investigation thereof.
The work presented as part of this paper builds upon the
work of Farina et al. [8], which outlines the forensic analysis
of the BTSync client application on a host machine. This
paper outlines the procedures for identifying a current or
previous install of the BTSync application and the extraction
of secrets from gain physical access to a machines hard drive
and performing a regular digital forensic investigation on its
image. At the time of publication, there are no other academic
publications focusing on BTSync. However, seeing as BTSync
shares a number of attributes and functionalities with cloud
synchronisation services, e.g., Dropbox, Google Drive, etc.,
and is largely based on the BitTorrent protocol, this section
outlines a number of related case studies and investigative
techniques for these technologies.

A. BitTorrent Forensics

Numerous investigations have been made into identifying
the peer information of those involved in BitTorrent swarms.
Most of these publications focus on the investigation of the
unauthorised distributed of copyrighted material [9], [10] and
[11]. Depending on the focus of the investigation, peer infor-
mation may be recorded for a particular piece of material under
investigation or a larger landscape view of the peer activity
across numerous pieces of content.

B. Client-side synchronisation Tool Forensics

Forensics of cloud storage utilities can prove challenging,
as presented by Chung et al. in their 2012 paper [12]. The
difficulty arises because, unless complete local synchroni-
sation has been performed, the data can be stored across
various distributed locations. For example, it may only re-
side in temporary local files, volatile storage (such as the
system’s RAM) or dispersed across multiple datacentres of
the service provider’s cloud storage facility. Any digital foren-
sic examination of these systems must pay particular atten-
tion to the method of access, usually the Internet browser
connecting to the service provider’s storage access page
(https://www.dropbox.com/login for Dropbox for example).
This temporary access serves to highlight the importance of
live forensic techniques when investigating a suspect machine
as a “pull out the plug” anti-forensic technique would not
only lose access to any currently opened documents but may
also lose any currently stored sessions or other authentication
tokens that are stored in RAM.

In 2013, Martini and Choo published the results of a cloud
storage forensics investigation on the ownCloud service from
both the perspective of the client and the server elements of the
service [13]. They found that artefacts were found on both the
client machine and on the server facilitating the identification
of files stored by different users. The module client application
was found to store authentication and file metadata relating to
files stored on the device itself and on files only stored on
the server. Using the client artefacts, the authors were able to
decrypt the associated files stored on the server instance.

IV. BITTORRENT SYNC NETWORK PROTOCOL ANALYSIS

Unless configured otherwise through application options
or the configuration files, BTSync will attempt to contact
the server at t.usyncapp.com. The DNS request resolves
to three IP addresses: 54.225.100.8, 54.225.92.50
and 54.225.196.38. These three IP addresses are servers
hosted on Amazon’s EC2 cloud service. This is the BTSync
tracker server, which facilitates peer discovery for clients
looking to synchronise data. One peer request message is sent
for each share stored on the local machine and the act of
requesting a peer lookup also serves to register the requesting
client as a source for that share.

Packets sent from the client to the tracker server contain
registration details and get_peers message requests (when
a new share is created it registers the share with the tracker
using a get_peers packet). A get_peers packet takes the
form of:



TABLE II. SAMPLE TRACKER PACKET

BSYNC The Header that signifies the start of BTSync data
0x00 Null
d Start of the dictionary of key:value pairs
2:la Local Address Label identifier which consists of 6-bytes, the first 4 are

IP, the last two are Port
2:ea 6-byte External IP:Port pair
6: Local IP:Port pair
1:m Message label identifier
x: x Length message type value
4:peer Local peer label
20: Local PeerID
5:share Local ShareID label
20: The 20 character ShareID is the SHA1 of the secret used and can be found

in the .SyncID file contained in the share as well as the name of the
corresponding SQLite 3 database file in the .Sync folder.

BSYNC[00]
d2:la6:[6-byte IP/Port]
1:m9:get_peers
4:peer20:[20-byte peerID]
5:share20:[20-byte ShareID] e
(where the observed keys are defined in Table II)

This packet is sent to the tracker server once a second
and a separate packet is sent for each share present on the
local machine. It is noteworthy that, even when a new share
is created, the first packet advertising that share to the server
uses a message type of get_peers.

The receiving server will respond to the Client with a
similar packet in the form:
BSYNC[00]
d2:ea6:[external IP:Port of the requesting
peer]
1:m:5:peers[PEER LIST]
5:share20:[20-byte shareID]
4:time:i[unix timestamp] e

The response containing the peer list will always contain
at least the originating peer information and as a result will
never be empty. The peer list takes the form of:
1:l
d1:a6:[6-byte external IP:Port]
2:la6:[6-byte local IP:Port]
1:p20:[20-byte PeerID] e

For each peer that has contacted the tracker advertising
the relevant ShareID will be included as an entry in the list
returned following the format above.

A. Local Peer Discovery

When the option to search LAN is enabled the application
will start sending out multicast packets to port 3838 across the
LAN. The multicast packets are BTSync bencoded packets
with the following format and the keys are further explained
in Table III:
BSYNC[00]
d1:m4:ping4:peer20:[20-byte Peer ID]
4:port[i Integer e]
5:share32:[32-byte content ShareID] e

Once a peer receives a multicast message that contains a
ShareID that it possesses the peer responds with the content:

TABLE III. MULTICAST PING PACKET

BSYNC The BTSync Header
0x00 Null
d Start of the dictionary of key:value pairs
1:m Message label identifier
4:PING The message type
4:peer Local peer label
20: PeerID of the multicasting Peer
5:share Local ShareID label
32: Hash function of the secret found in the .SyncID file (This also

corresponds to the SQLite 3 database filename in the .Sync folder)

BSYNC[00]
d1:m4:ping4:peer20:[20-byte PeerID]
4:port[i Integer e]
5:share20:[20-byte ShareID] e
The keys have the same definitions as those shown in Table
III with the only exception being that the ShareID does not
have the additional 12-bytes present in the received packet
and that the ShareID is the ShareID local to the responding
machine and stored in the local .SyncID file.

B. BTSync Relay Server

When BTSync finds that it needs to communicate directly
between two firewalled peers, the application may make use
of a relay server. This relay server option is available if the
“Use Relay Server if available” option is enabled in the con-
figuration. The relay server is contacted by a DNS request sent
out for r.usyncapp.com, which resolves to the following
IP addresses: 67.215.229.106 and 67.215.231.242.

These are the IP addresses of the relay servers contactable
on remote port 3000. Each peer contacts the relay server
using an outbound connection that should bypass any firewall
rule preventing unauthorised inbound connections. Once the
server handshake has taken place, the negotiation to set up a
secure connection between the two peers begins. The following
sequence of events is observable:

1) : Peer contacts the relay server to initiate contact with
the remote peer.
BSYNC[80][20-byte remote peerID]
d1:m4:ping4:peer20:[20-byte local peerID]
5:share32:[32-byte shareID] e

2) : The relay server responds to the peer using the remote
server peer ID as the message header.
BSYNC[80][remote peerID]
d1:m4:ping4:peer20:[remote peer ID]
5:share32:[32-byte ShareID] e

3) : The peer contacts the relay with a hashmap of the
share to indicate which parts are required.
BSYNC[80][remote peerID][non-bencoded data
including a hashmap] e

4) : The server responds to the peer with a hashmap of
the remote share to conclude the exchange of data availability.
BSYNC[80][remote peerID][non-bencoded data
including hashmap] e

5) : The peer contacts the server to arrange transfer of the
data and to supply the nonce for encrypted traffic and provide
a status ID.



BSYNC[80][remote peerID][non-bencoded data
including hashmap request]
d5:nonce16:[nonce]5:share32:[share ID]
3:sid16:[sid value] e

6) : The relay contacts the peer to confirm file part
availability
BSYNC[80][remote peerID][non-bencoded
data] e

7) : The relay server Confirms the SID status and supplies
the remote nonce to complete the bridge for encrypted data
transfer
BSYNC[80][remote peerID]d5:nonce16:[nonce
data]3:sid2:OK e

8) : Encrypted bidirectional traffic transfer commences
with the relay server acting as the router delivering packets
to each peer.

C. BTSync Data Transfer

The transfer of data during a BTSync synchronisation
operates in a similar fashion as a regular BitTorrent download
as described in Section II-A3 above. A unique magnet URI
is created for each file contained within the shared folder and
this is used for requesting chunks of the entire file from known
peers sharing this content.

D. Differentiation from Regular BitTorrent Traffic

While much of the network topology of BTSync is shared
with regular BitTorrent, the request and response packets differ
from those employed by regular BitTorrent file-sharing traffic.
The most obvious addition is the BSYNC header attached
to each datagram transmitted on the network. Besides that
addition, the active peer list that is returned also contains
additional information over the regular BitTorrent file-sharing
protocol: namely the inclusion of the local IP:port address pairs
for each peer. From an investigative perspective, this extra
information could prove useful in identifying the particular
machine involved in the BTSync network as opposed to merely
resolving the WAN IP address back to a router with potentially
hundreds of LAN users. The local DHCP records could be used
to resolve the MAC address (and often the hostname) of the
individual machine identified during the network investigation.

In addition to the regular BitTorrent peer discovery meth-
ods outline in Section II-A2 above, BTSync also allows the
user to manually add known IP addresses to the local cache
of peers. BTSync facilitates this through the option to add
“Predefined Hosts” to the configuration or application options.
These are hardcoded IP address and port entries that are
saved in order of preference. BTSync will contact these peers
directly, without any requirement for a multicast (LPD) or
sending a get_peer request to an online tracker.

V. INVESTIGATION METHODOLOGY

This section outlines a reproducible methodology for the
network investigation methodology. Depending on which of
the scenarios outlined above, the methodology may branch
according to what the desired outcome will be. Figure 2
outlines the five steps involved in the investigative process
(each of these steps are described in greater detail below).

Fig. 2. Steps Involved in Performing a BTSync Network Investigation

A. Identification of Content

Depending on the scenario that motivates the BTSync
network investigation, there are a number of avenues that the
forensic investigator may find secrets (and corresponding hash
values) needed for investigation:

1) Web Discovery: – As soon as BTSync was re-
leased as a public alpha, publicly accessible sharing
secrets started to appear online. Two “subreddits” ap-
peared on Reddit [14] and numerous websites and blogs
were created to set up an online “dead drop” se-
cret share, for example http://www.12char.com and
http://www.btsynckeys.com. It is also feasible that
an investigator could come across an online community that
shares secrets in a private forum for the purposes of trading
data and material without 3rd party involvement.

2) Local Discovery: – An investigator could, in the course
of an investigation find evidence of BTSync having been
used to transfer material to the suspect machine. This could
be that BTSync installed and the folder listed in the list of
shares stored in the configuration file , webUI or the BTSync
hidden .Sync folder. BTSync log files (/.sync/sync.log) , or,
if BTSync is not present (uninstalled) there could still be
.SyncID files remaining in folders that were synchronised
from remote peers. A hexdump of the .SyncID file or,
more conveniently, the names of the db files found in the
.Sync folder will give the SHA1 encoded share ID that the
investigator needs to find other peers actively sharing that
content

3) LAN traffic: – Many companies configure their edge
firewalls to block torrent traffic for the general users. If
the company uses torrent for some other business purpose
it will usually be accounted for and allowed from or to a
particular server or subnet. However, BTSync allows for all
external communicate beyond the LAN to be turned off (in
the configuration file or in the settings dialogue the options
for “Use DHT”, “Use Tracker” and “Use Relay Server” can
be disabled) leaving only the settings for LAN discovery or
known peers. A security review of the router logs may find
active torrent traffic within the LAN or system admins may
discover evidence of torrent applications run.



B. Identification of Lookup Hash

Requesting a list of peers through any of the peer discovery
methods outlined above requires a unique lookup hash. This
hash is used by the tracker, DHT, PEX and LPD in the
association of know peers to a particular piece of content.

C. Crawl the Network to Identify Peer Information

Each of the peer discovery methods outlined above should
be queried for a list of known active nodes sharing that content.
Due to the user configurable nature over which services
are enabled in the BTSync client, to ensure complete node
enumeration/identification, the results from each of the peer
discovery methods should be combined to form the final result
of collected information.

D. Downloading and Verification of Content

Depending on the scenario being investigated, it may be
necessary to download a copy of the content stored remotely
for investigation or verification. In order to accomplish this,
a regular BitTorrent download can be started for each of the
files contained within the shared folder. If the investigation’s
goal is to attempt to recreate content deliberately deleted off a
suspect’s machine, the data can only be entirely recovered if
there is a complete copy of the data stored remotely. However,
this does not mean that any single node needs to have 100%
of the content. The original data can be recombined so long
as a complete copy exists split among the distributed nodes
actively sharing the content.

E. Digital Evidence Bag

Once the required information is gathered, the resulting
data and all associated metadata (peer information, file sizes,
hash values, etc.) should be gathered together into a suitable
digital evidence bag. For verifiable reproduction of the results
achieved, a copy of the network stream created during the
investigation should be stored as part of this digital evidence
bag, as outlined in detail by Scanlon et al. [15].

VI. PROOF OF CONCEPT

In order to begin proof of concept testing for the investi-
gation methodology, a bespoke BTSync crawling application
was first designed and developed. This application was built to
emulate regular BTSync client usage, as outlined above, and
recorded the necessary results for analysis.

A. Investigation Overview

To demonstrate the functionality of the application, an
investigation was conducted on a known publicly accessible
BTSync secret. One of the public BTSync online secret sharing
sites was used (http://www.bitsynckeys.com/)
to acquire a secret likely to have active peers sharing
the corresponding content. The secret selected was
advertised with the description “45 GB Movie
Collection [Movies] [R]” and the read-only
secret BKV273YUFMWILMESLRDVLI5NHMWO3OCS7
was supplied. It is important to note that there is no certainty
that the description accurately advertises the content within the
share. There is no method of verifying any of the containing

Fig. 3. Daily Snapshot Comparison for Investigated Secret (Public IP
Addresses Partially Redacted)

shared content until the syncing process begins and temporary
files are created in the shared folder. Even at that point, the
user can merely see the filenames of the content once the
download/synchronisation process has begun.

B. Results

As part of the peer identification process a number of active
peers were returned to the investigative application. These
peers were recorded for later analysis. During the first snapshot
taken for this investigation, 21 peers were identified as sharing
the specific content and 20 were identified on the second. A
snapshot accounts for all of the peers identified sharing the
specific content at the same instance in time.

Two peers (differentiated by PeerID) of particular interest
are listed as the second and third last peers in both tables
in Figure 3 (highlighted in red). Comparing their peer ID
and local IP:Port address pairing, it is clear that these two
peers are referring to the same individual node. Between the
two snapshots taken of this shared content, their IP address
changed from one IP address range to another. However,
both of these IP address ranges are associated with the ISP
“Telefonica” in the same postal zip code in Berlin, Germany
(data gathered from Maxmind [16]). This information indicates
an ISP level IP address reallocation sometime between the
two snapshots as opposed to the use of a VPN or other IP
address masking system. The two peers share the same external
IP address but have different external ports and local IP:port
pairs indicating that the BTSync install on these nodes are



Fig. 4. Geolocation of Discovered IP Addresses

accessing the Internet through a router employing Network
Address Translation (NAT).

C. Churn Rate

While the example investigation outlined as part of this
paper focuses on a single secret over a 24 hour window,
the low churn rate of just 7% remains interesting. Most P2P
networks experience a high turnover of peers [17]; following
the assumption that most users are active on the network while
downloading some content and disconnect upon completion.
BTSync is designed to be a tool that functions in a similar
manner to cloud file synchronisation services like Dropbox
or Google Drive. These tools largely operate on an “install
and forget” approach whereby synchronisation and updating
between the cloud and potentially multiple client machines
does not require any direct user input. BTSync uses a similar
approach and as a result, low churn rates would be expected.

D. Geolocation

Figure 4 shows the geographic distribution of the peers
identified as part of the investigation. While the total number
of peers identified with this proof of concept investigation is
quite low, the data remains consistent with regular BitTorrent
investigative results [10] with North America and Europe being
the most popular continents involved.

VII. CONCLUSION

This paper documented the protocol used in BitTorrent
Sync during the discovery of peers and the synchronisation
of data. While BTSync is not necessarily intended to replace
BitTorrent as a file dissemination utility, it will likely be used
for this purpose. This is already facilitated though websites
providing shared secrets, e.g., Reddit [14], etc., as a form
of dead-drop. The developers describe the tool as an end-
to-end encrypted method of transferring files without the use
of a third party staging area, which ensures that the content
and personal details remain hidden from unauthorised access.
Analysis of the network communication procedure produced
unique identifiable information on peers including their unique
PeerID, their external and local IP addresses and port numbers.
In combination with traditional digital forensic methods, once

a secret is identified, it is possible to discover other nodes on
the network who are also sharing this data. Deleted data from a
local shared folder could be downloaded from the network and
recombined for forensic investigation. From an investigative
perspective, the decentralised nature of BTSync will always
leave an avenue of gathering information and identifying nodes
sharing particular content open to the forensic investigator.

REFERENCES

[1] BitTorrent Inc. (2013) Bittorrent sync user manual. [Online]. Available:
http://www.bittorrent.com/help/manual/

[2] ——. (2013) BitTorrent Sync Developer API. [Online]. Available:
http://www.bittorrent.com/sync/developers/api

[3] ——. (2013) BitTorrent Sync Article. [Online]. Available: http://blog.
bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/

[4] B. Cohen. (2008) The BitTorrent Protocol Specification. [Online].
Available: http://bittorrent.org/beps/bep_0003.html/

[5] ——, “Incentives build robustness in bittorrent,” in Proceedings of the
Workshop on Economics of Peer-to-Peer systems, vol. 6, 2003, pp. 68–
72.

[6] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek, “Comparing
the Performance of Distributed Hash Tables under Churn,” in Peer-to-
Peer Systems III. Springer, 2005, pp. 87–99.

[7] E. Sit and R. Morris, “Security Considerations for Peer-to-Peer Dis-
tributed Hash Tables,” in Peer-to-Peer Systems. Springer, 2002, pp.
261–269.

[8] J. Farina, M. Scanlon, and M.-T. Kechadi, “BitTorrent Sync: First
Impressions and Forensic Implications,” in Digital Forensic Research
Workshop EU (DFRWS EU 2014), May 2014.

[9] R. Layton and P. Watters, “Investigation into the extent of infringing
content on BitTorrent networks,” Internet Commerce Security Labora-
tory, 2010.

[10] M. Scanlon, A. Hannaway, and M.-T. Kechadi, “A Week in the Life
of the Most Popular BitTorrent Swarms,” 5th Annual Symposium on
Information Assurance (ASIA’10), 2010.

[11] S. Le Blond, A. Legout, F. Lefessant, W. Dabbous, and M. A. Kaafar,
“Spying the World from your Laptop: Identifying and Profiling Content
Providers and Big Downloaders in BitTorrent,” in Proceedings of the
3rd USENIX conference on Large-scale exploits and emergent threats:
botnets, spyware, worms, and more. USENIX Association, 2010, pp.
4–4.

[12] H. Chung, J. Park, S. Lee, and C. Kang, “Digital Forensic Investigation
of Cloud Storage Services,” Digital Investigation, vol. 9, no. 2, pp. 81
– 95, 2012.

[13] B. Martini and K.-K. R. Choo, “Cloud storage forensics: ownCloud as
a case study,” Digital Investigation, vol. 10, no. 4, pp. 287 – 299, 2013.

[14] Reddit. (2014) Btsecrets. http://www.reddit.com/r/btsecrets.
[15] M. Scanlon and T. Kechadi, “Digital Evidence Bag Selection for P2P

Network Investigation,” in Future Information Technology. Springer,
2014, pp. 307–314.

[16] M. Inc. (2014, Jul.) Geolite country database. [Online]. Available:
http://www.maxmind.com

[17] O. Herrera and T. Znati, “Modeling churn in P2P networks,” in
Simulation Symposium, 2007. ANSS’07. 40th Annual. IEEE, 2007,
pp. 33–40.


