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Editorial on the Research Topic

Adaptive Immunity in Pregnancy

One of the most remarkable features of reproductive biology is the fact that a healthy woman can
successfully carry her genetically disparate conceptus to full term, without immune rejection.

The juxtaposition of the placenta and decidua creates what is referred to as the ‘fetal-maternal
interface’, where placental trophoblasts of fetal origin and maternal uterine lymphocytes come into
close contact. Due to the presence of paternal class I HLA-C molecules on trophoblasts, the
conceptus can be considered to resemble a semi-allograft. Conceptus-derived and placental-derived
antigens act to both prime maternal T cells and render the conceptus potentially susceptible to
inflammatory effector activity or T cell-mediated attack. After presentation of paternal alloantigens
by maternal antigen presenting cells (APCs), the maternal alloantigen-specific T cells proliferate and
secrete cytokines, responsible for the activation of allograft rejection or tolerance mechanisms,
respectively promoting pregnancy failure or fetal survival.

Therefore, the quality and strength of the adaptive immune response is critical to healthy
pregnancy. There is accumulating information that imbalance in the numbers, phenotypes and
functional activity of T cell subsets can adversely impact fertility and pregnancy health.
Predominant Th1, Th17 and Th17/Th1 immunity and decreased Th2, Th17/Th2 and Treg cells
are associated with recurrent pregnancy loss (RPL) of fetuses with normal fetal chromosomal
content. Various subsets of T cells are essential for pregnancy tolerance and interact in networks
with innate immune cells to counteract inflammation and promote robust placental development.
In fact, immune cells that populate the decidua are specialized not only to minimize events that
might evoke conceptus attack, but also to foster placental development and function and to combat
infections during pregnancy.

In addition, T cells are commonly perturbed in late gestation disorders including preeclampsia,
fetal growth restriction and spontaneous preterm birth. There is some evidence that T cell
disturbances precede the onset of symptoms and contribute to disease pathophysiology through
events around the time of implantation and early placental development.

In this Research Topic we welcomed six original articles and four review articles, which discuss the
role of novel immunosuppressive cells and molecules regulating fetal tolerance and development.

During pregnancy, sex steroid hormones like estrogen, progesterone, hCG but also a
progesterone-induced mediator, the progesterone-induced blocking factor (PIBF), which conveys
some of the immunological effects of progesterone, suppress effector immune activation resulting in
successful pregnancy. Csabai et al. reports that the implantation rate is decreased in mice treated
with anti-PIBF antibody. In these anti-PIBF-treated mice, NK activity, IL-12A mRNA expression in
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CD8+ T cells and Th1 differentiation are increased, whereas the
expression of mRNA for IL-4 (a Th2-type cytokine) is decreased
in CD4+ T cells (Figure 1). Thus, PIBF plays an important role in
implantation by upregulating a Th2-type and downregulating
Th1-type immune responses.

As well as hormones, other molecules including the
prostaglandins (PG) can also regulate immune cells in pregnancy.
In particular Andrade et al. show that PGE2 also contributes to
immune tolerance, by inhibiting platelet aggregation and IL-5 and
IL-13productionby innate lymphoidcells (ILCs), andbysuppressing
neutrophil, NK cell and monocyte effector functions (Figure 1).

The role of Treg cells in pregnancy is extensively developed in
the Research Topic. Huang et al. reviewed the role of Treg in
normal pregnancy, in implantation failure, miscarriage,
endometriosis and preeclampsia. Krop et al. described not only
the role of well-known Foxp3+ Treg cells in pregnancy, and also
importantly the role of the lesser-known Foxp3- Treg cells, which
Frontiers in Immunology | www.frontiersin.org 25
include HLA-G Treg cells, Tr1 cells that secrete IL-10 and
TGF-b, Th3 cells that secrete TGF-b, IL-10, and IL-4, CD8+

Treg cells, NO-Treg cells, TIGIT+ Treg cells, and Vd1+gdT cells
(Figure 1). However, the relationship between these Foxp3- Treg
cells and pregnancy disorders remains to be clarified.

Morita et al. examine CD8+ T cells that are less well studied in
pregnancy, in particular clonally expanded CD8+ T cells, using
single cell analysis of T cell receptor b (TCRb) sequences.
Clonally expanded CD8+ T cells may be a surrogate marker for
fetal/paternal antigen-specific CD8+ T cells. The authors show
that clonal CD8+ T cells are more abundant in effector memory
CD8+ T cells (CD8+EM) and that there are more CD8+ EM cells
in the decidua than in the peripheral blood. The clonal CD8+ T
cells increase from early to late pregnancy, and PD-1 expression,
which suppresses cytotoxic activity, is low on clonal CD8+ T cells
in early pregnancy but high in late pregnancy. The clonal PD1-

CD8+ T cells increase in miscarriages with normal fetal
FIGURE 1 | Diagrammatic summary of critical elements of the adaptive immune response to pregnancy, that determine the balance between T cell tolerance and
T effector function, and influence the outcome of pregnancy and infant health. DC, dendritic cell; IDO, indoleamine-dioxygenase; MF, macrophage, PD1,
programmed death 1; PIBF, pregnancy-induced blocking factor; PMN-MDSC, polymorphonuclear myeloid-derived suppressor cell; PGE, prostaglandin E2; PGI,
prostaglandin I: Tr1, T regulatory 1; Th, T helper; TIGIT, T cell immunoglobulin and ITIM domain; Treg, regulatory T cell; uNK, uterine natural killer cell.
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karyotype (Figure 1). The percentage of clonal CD8+ T cells is
not different in preeclampsia compared to normal pregnancy,
but PD-1 expression is significantly decreased, suggesting an
increased cytotoxic activity against fetal antigens in preeclampsia.

Immune cells can not only act by inducing trophoblast
tolerance but can also affect the structure of trophoblast by
altering the glycan chains of trophoblast. Dendritic cell activity
is particularly important, and may be amplified if NK cells are
removed as demonstrated by Borowski et al. Thus, immune cells
can influence the placental glycade and could impact placental
and fetal development (Figure 1). The relationship between the
alteration of trophoblast glycan chains and immune cells in
miscarriage and preeclampsia is an interesting topic for
future clarification.

Non-immune cells can also regulate immune cells responsible
for immune tolerance in pregnancy. Gori et al. showed that
endometrial decidualization increases tolerogenic dendritic cells
named DC-10 cells, which secrete IL-10 and induce different
regulatory T cells (Treg cells), including HLA-G+ Treg cells, Tr1
cells and Th3 cells (Figure 1).

Recently, polymorphonuclear myeloid-derived suppressor
cells (PMN-MDSCs) have been found to increase in the
pregnant uterus and play an important role in maintaining
pregnancy. Li et al. show that the number of decidual PMN-
MDSCs decrease in patients with unexplained recurrent
pregnancy loss. PMN-MDSC apoptosis, increased by elevated
TRAIL and decreased by DcR2, could explain the decreased
number of PMN-MDSCs in unexplained recurrent pregnancy
loss (Figure 1). The interaction between PMN-MDSCs and
immune cells such as Treg cells, need to be investigated.

Van der Zwan et al. usedmass cytometry to analyze lymphocyte
subpopulations in the decidua and peripheral blood. Such analysis
could be helpful for the classification of immunocompetent cells
and to clarify the role of each of these cells in the decidua. This
promising technology, whichmay serve as a foundation for further
identification of immune subsets in healthy and complicated
pregnancy, is set to offer further advances in the future.

Finally, it is important to recognize that the maternal adaptive
immune response to pregnancy has consequences not only for
pregnancy outcome, but also for the health of the child after
birth. Albrecht et al. review emerging studies showing that
cellular immunity is transferred from mother to child not only
Frontiers in Immunology | www.frontiersin.org 36
through IgG transfer during pregnancy, but also by maternal
cellular immunity transmitted to the child through lactation after
birth. This article introduces the interesting possibility of
transferring immunity to the fetus by vaccination during pregnancy.

In summary, this collection of papers provide a snapshot of the
state of this field and provide new insight on the mechanisms and
significance of the adaptive immune response to maternal and
infant health. Collectively the work highlights the imperative to
further delineate the underlying mechanisms by which maternal
tolerance is generated andmediated, so that interventions toprotect
against immune-based pregnancy disorders arising from
compromise maternal tolerance can be advanced.
AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it
for publication.
ACKNOWLEDGMENTS

We thank the authors of the 10 publications of the Research
Topic for their high-quality work. We thank the Frontiers in
Immunology Editorial Office and the Editor for their support.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Piccinni, Robertson and Saito. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
October 2021 | Volume 12 | Article 770242

https://doi.org/10.3389/fimmu.2020.01316
https://doi.org/10.3389/fimmu.2020.01571
https://doi.org/10.3389/fimmu.2020.01345
https://doi.org/10.3389/fimmu.2020.571300
https://doi.org/10.3389/fimmu.2020.00555
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


ORIGINAL RESEARCH
published: 11 March 2020

doi: 10.3389/fimmu.2020.00349

Frontiers in Immunology | www.frontiersin.org 1 March 2020 | Volume 11 | Article 349

Edited by:

Marie-Pierre Piccinni,

University of Florence, Italy

Reviewed by:

Gerard Chaouat,

INSERM U976 Immunologie,

Dermatologie, Oncologie, France

Surendra Sharma,

Women & Infants Hospital of Rhode

Island, United States

*Correspondence:

Julia Szekeres-Bartho

Szekeres.julia@pte.hu

Specialty section:

This article was submitted to

Immunological Tolerance and

Regulation,

a section of the journal

Frontiers in Immunology

Received: 17 October 2019

Accepted: 13 February 2020

Published: 11 March 2020

Citation:

Csabai T, Pallinger E, Kovacs AF,

Miko E, Bognar Z and

Szekeres-Bartho J (2020) Altered

Immune Response and Implantation

Failure in Progesterone-Induced

Blocking Factor-Deficient Mice.

Front. Immunol. 11:349.

doi: 10.3389/fimmu.2020.00349

Altered Immune Response and
Implantation Failure in
Progesterone-Induced Blocking
Factor-Deficient Mice
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Julia Szekeres-Bartho 1,2,3,4*

1Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pecs University, Pecs,
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Pecs University, Pecs, Hungary, 4MTA-PTE Human Reproduction Research Group, Pecs, Hungary, 5Department of
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Earlier data suggest that progesterone-induced blocking factor (PIBF) is involved in

implantation. The present study therefore aims to investigate the consequences of

functional PIBF deficiency during the peri-implantation period. CD1 female mice were

injected intraperitoneally with 2 µg anti-PIBF monoclonal antibody on days 1.5 and 4.5

of pregnancy. The number of implantation sites and resorption rates were recorded on

day 10.5. PIBF+ decidual NK cells and B cells were detected by immunohistochemistry

or immunofluorescence. Decidual and peripheral NK activity was assessed by flow

cytometry. A prime PCR array was used for determining the differential expression

of genes involved in lymphocyte activation and Th1 or Th2 differentiation in CD4+

and CD8+ spleen cells from pregnant anti-PIBF-treated and control mice. Anti-PIBF

treatment in the peri-implantation period resulted in impaired implantation and increased

resorption rates in later pregnancy. The number of PIBF+ decidual NK cells decreased,

while both decidual and peripheral NK activity increased in the anti-PIBF-treated

mice. B cells were absent from the resorbed deciduas of anti-PIBF-treated mice. The

genes implicated in T cell activation were significantly downregulated in CD4+ and

increased in CD8+ of the anti-PIBF-treated animals. The gene for IL-4 was significantly

downregulated in CD4+ cells while that of IL-12A was upregulated in CD8+ cells of

anti-PIBF-treated animals. These data suggest that the lack of PIBF results in an impaired

T cell activation, together with Th1 differentiation and increased NK activity, resulting in

implantation failure.

Keywords: PIBF, decidual NK cells, T cell activation, B cells, implantation

INTRODUCTION

The success of embryo implantation depends on embryo quality as well as on the receptivity of the
maternal endometrium. The process starts with the attachment of the embryo to the endometrial
epithelium (1–6), followed by invasion to the decidua. Progesterone plays a central role in this
process (4, 6) via the nuclear progesterone receptor (PR) isoforms, PRA and PRB (7, 8). Studies on
PR knockout mice revealed that PRA is required for endometrial receptivity and decidualization
(9), and consequently, PRA-deficient mice are infertile (10, 11).
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The progesterone-induced blocking factor (PIBF) is a
progesterone-induced mediator which conveys some of the
immunological effects of progesterone. The Pibf1 gene contains a
progesterone response element (12), which is activated following
the engagement of PRA in the mouse uterus (13).

Earlier data suggest that PIBF is required for the establishment
and maintenance of pregnancy, both in humans and mice.
In the sera of pregnant women, PIBF concentrations increase
throughout gestation and drop before labor (14). During
spontaneous miscarriage or preterm delivery, serum PIBF
concentrations fall below the normal levels (15). Anti-PIBF
treatment or anti-progesterone treatment of pregnant mice
results in increased resorption rates, together with an inversion
of the Th1/Th2 cytokine balance (16). The latter is due to the fact
that PIBF induces an increased synthesis of Th2 cytokines both
in vitro (17) and in vivo (18). Recent data show that PIBF plays a
role in implantation in mice (13).

The decidual transformation of endometrial stromal cells is
a prerequisite for a successful implantation. Ablation of PRA but
not PRB expression in mice results in a uterine phenotype similar
to PRKO, indicating that PRA is the major isoform involved in
the regulation of uterine receptivity and decidualization in the
mouse (19). It is important to point out that, in humans, PRB is
also involved in decidualization (20).

In our hands, during a 6-day culture, PIBF induced the
decidual transformation of mouse endometrial stromal cells
(13). Furthermore, in the mouse endometrium, PIBF expression
significantly increased during the implantation window (13).

The immunological effects of PIBF play an important
role in establishing a favorable immunological milieu for the
developing fetus.

In spite of the presence of perforin and granzyme in their
cytoplasmic granules, the decidual NK cells are weakly cytotoxic.
High decidual NK activity might damage the fetus and result in
a failed pregnancy. PIBF inhibits the degranulation of NK cells
(21). Recently we demonstrated a high number ofmouse decidual
NK cells that contained PIBF in their cytoplasmic granules,
suggesting that the local presence of PIBF might be a factor in
the low decidual NK activity (22).

In the present study, we aimed to investigate the consequences
of anti-PIBF treatment of pregnant mice during the peri-
implantation period on reproductive performance as well as the
underlying mechanisms.

MATERIALS AND METHODS

Treatment of Mice
Eight- to 12-week-old CD1 female mice (Charles River,
Germany) were caged overnight with CD1 males in an
environment controlled for temperature, humidity, and light.
Sighting of the vaginal plug was considered as 0.5 day
of pregnancy.

Females were injected intraperitoneally with 2µg of anti-PIBF
monoclonal antibody (14) on days 1.5 and 4.5 of pregnancy.
The control mice were injected with 100 µl of PBS, among
the same conditions. On day 10.5 of pregnancy, the mice were
sacrificed, the number of implantation sites as well as resorption

rates was recorded, and spleens and deciduas were removed for
lymphocyte isolation.

All procedures were approved by the Animal Care Committee
of the University of Pecs.

Isolation of Decidual and Spleen
Lymphocytes
Isolated mouse deciduas were minced with scissors and
incubated for 30min with 10ml (1 mg/ml) of collagenase
(collagenase from Clostridium histolyticum, type IV, Sigma-
Aldrich, USA). The fragments were then passed through
a 70-µm mesh and washed with RPMI1640 (Gibco, Life
technologies, Scotland).

The pellet was resuspended in 10ml of fetal calf serum (FCS)-
free RPMI and filtered on a 40µm filter. The cell count was
adjusted to 1 × 106/ml in RPMI1640 (Gibco, Life technologies,
Scotland) +10% FCS (Gibco, Life Technologies, Scotland) + 1%
penicillin/streptomycin (Gibco, Life Technologies, Scotland).

Spleen cells were isolated by passing the spleen through a 100-
µm stainless steel mesh and centrifuging for 10min at 1,000
rpm. The pellet was resuspended in 10ml RPMI1640, filtered
on a 70-µm mesh and further on a 40-µm mesh, washed, and
resuspended in RPMI1640. The lymphocytes were isolated on
Ficoll-Paque gradient, washed, and resuspended in RPMI1640+
10% FCS+ 1% penicillin/streptomycin.

Immunohistochemistry
The implantation sites were isolated on day 10.5 of pregnancy,
fixed in 6% of buffered formalin, and then embedded in
paraffin. Five-micrometer paraffin sections were deparaffinized,
rehydrated, and revealed with DAKO Target Retrieval Solution
(S1699, Dako, Denmark) at pH 6.0 in a microwave oven.
Endogenous peroxidase activity was inhibited with 3%H2O2, and
non-specific antibody binding was blocked with 3% BSA.

The slides were than reacted with 1:25 diluted biotinylated
monoclonal anti-PIBF antibody produced in our laboratory (14)
or biotinylated mouse IgG2a either for 1 h at room temperature
or overnight at 4◦C. After incubation, the slides were washed for
3–5min and reacted with 1:100 diluted streptavidin-horseradish-
peroxidase (GEHealthcare, Little Chalfont, United Kingdom) for
30min in a humidified chamber. The reaction was developed
with diamino-benzidine (DAKO, Glostrup, Denmark). The
nuclei were counterstained with hematoxylin (DAKO, Glostrup,
Denmark) for 3min, and the slides were mounted.

Fluorescent Staining
For visualizing of the B cells, the sections were reacted overnight
at 4◦C with 1:30 diluted rat anti-mouse B220 IgG conjugated
with Alexa Fluor 647. The antibody was produced at the
Department of Immunology and Biotechnology, University
of Pécs, and was provided by Dr. Peter Balogh. The anti-
B220 IgG was purified from the supernatant of rat hybridoma
RA3-6B2 (obtained from ATCC) using Protein G affinity
chromatography. The purified antibody was dialyzed into 0.1M
NaHCO3 buffer and conjugated with Alexa Fluor 647 NHS dye
(ThermoFisher Scientific) as recommended by the vendor. The
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conjugated immunoglobulin was separated using Sephadex-G25
size exclusion chromatography.

For identifying of PIBF-positive decidual B cells, the sections
were reacted overnight at 4◦C with 1:25 diluted FITC-conjugated
anti-mouse PIBF antibody, together with the 1:30 diluted
Alexa647-conjugated anti-mouse B220. The nuclei were stained
with Hoechst33342 (Calbiochem, San Diego, CA, USA) for
5min, washed, and then mounted with Vectashield mounting
medium (Vector Laboratories, Peterborough, United Kingdom)
and examined with an Olympus FV-1000 laser scanning
confocal system.

NK Cytotoxicity Test
A flow cytometric assay was used for the determination of
the cytotoxic activity of peripheral and decidual natural killer
cells from the control and the anti-PIBF-treated pregnant mice.
The assay is based on the quantitative and the qualitative
flow cytometric analysis of cell damage on a single-cell level.
The mouse lymphoma cell line YAC-1 was used as the target
cell population. The target cells were pre-stained with PKH-67
(PKH67 Green Fluorescent Cell Linker Midi Kit for General
Cell Membrane Labeling, Sigma- Aldrich, USA), a lipophilic dye
that stably integrates into the cell membrane without disturbing
its surface marker expression. It, thus, permits the distinction
between target and effector cells. Freshly isolated peripheral
and decidual lymphocytes from pregnant mice served as the
effector cells. The target cells and the lymphocytes, at a ratio of
1:12.5, were centrifuged and incubated in RPMI1640 containing
10% FCS and 1% penicillin/streptomycin medium for 4 h at
37◦C and in 5% CO2. After incubation, the cell mixture was
centrifuged and stained with propidium iodide [PI, 50µg/ml
(Sigma-Aldrich, USA)]. PI staining allows the discrimination
between death and living target cells. Data analysis is performed
first by gating on PKH-67-positive target cells, followed by the
analysis of the PI-positive subpopulation killed (gating strategy
is shown in Figure 1). The percentage of cytotoxicity in the
PKH-67-gated cell population was calculated by subtracting
unspecific PI+ positive target cells (spontaneous cell death),
measured in appropriate controls without effector cells from the
experimental samples. Flow cytometric analysis was performed

on a FACS Calibur flow cytometer (BD Immunocytometry
Systems, Erembodegen, Belgium) equipped with the CellQuest
software program (BD Biosciences, San Diego, CA, USA) for data
acquisition and analysis.

Lymphocyte Activation and Th1 and Th2
Cell Differentiation
A prime PCR array from Bio-Rad was used for determining the
markers for T cell activation and Th1 or Th2 differentiation
in separated CD4+ and CD8+ spleen cells from anti-PIBF-
treated and control pregnant mice. The mice were sacrificed on
day 10.5 of pregnancy. The spleens were minced with scissors
and passed through a 70-µm cell strainer. The CD4+ and
CD8+ T cells were separated from splenic single-cell suspension
by magnetic separation with the Mini-MACS system (Miltenyi
Biotec Biotechnology Company, USA). Mouse Naive CD8a+
T Cell Isolation Kit (130-096-543) and mouse CD4+ T Cell
Isolation Kit (130-104-454) were applied for negative selection,
according to the manufacturer’s instructions. The collected cells
were washed, and the cell count was adjusted to 5 × 106. One
hundred thousand separated cells were fluorescently stained with
the anti-mouse CD4 or anti-mouse CD8 monoclonal antibodies
for checking of the separation efficiency. Cell debris and dead
cells were excluded from the analysis based on scatter signals
and propidium iodide fluorescence. For the stabilization of RNA,
separated CD4+ or CD8+ splenocytes were stored frozen in
RNAlater R©-ICE solution. Total RNAwas extracted from the cells
with the Qiagen RNeasy Mini Kit (Cat. No. 74104) according
to the supplier’s protocol. The RNA content of samples was
measured with Qubit 4 Fluorometer using the Qubit RNA
HS Assay Kit. The expression of 41 genes was determined
using a Bio-Rad prime PCR array (Immune response-Th1
and Th2 cell differentiation M384; Bio-Rad Laboratories, Inc.,
California, USA). Quantitative PCR reactions were carried out
on an ABI 7900 real-time PCR instrument according to the
manufacturer’s instructions.

Statistical Analysis
Data were analyzed by the Mann–Whitney U test and Student’s t
test. P ≤ 0.05 was considered as significant.

FIGURE 1 | Gating strategy for determining the number of the PKH-67-positive target cells killed (PI+). (A) Representative dot plot showing the PKH67 staining of

YAC target cells. PKH67-positive cells were gated and were used for further analysis. (B) Representative dot plot shows the red fluorescence of PKH67+ YAC cells

after PI staining. The percentage of PI+/PKH67+ YAC cells was defined as apoptotic cells.
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FIGURE 2 | Anti-PIBF treatment of pregnant mice in the peri-implantation

period results in decreased implantation and increased resorption rates. CD1

mice were injected with anti-PIBF monoclonal antibody at days 1.5 and 4.5 of

pregnancy. The controls were treated with PBS, among the same conditions.

The number of implantation sites (1st panel) and resorption rates (2nd panel)

were recorded on day 10.5. The implantation sites were significantly lower,

while the resorption rates significantly increased in the anti-PIBF-treated mice.

The columns represent the mean ± SEM of the results from 10

(anti-PIBF-treated) and 15 (control) mice. *P < 0.05.

RESULTS

Anti-PIBF Treatment in the
Peri-Implantation Period Results in
Impaired Implantation and Increased
Resorption Rates in Later Pregnancy
The mice were treated with anti-PIBF antibody at days 1.5 and
4.5 of pregnancy to render them functionally PIBF deficient
during the implantation window. The mice were sacrificed at
day 10.5. This enabled us to record not only the implantation
sites but also the resorption rate among the implanted embryos.
While the average number of implanted embryos was 6.5 in the
controls, in females treated with anti- PIBF antibody in the peri-
implantation period, the mean implantation sites decreased to
four (Figure 2). The unusually low 2% resorption rate in the
control group increased to 40% in the functionally PIBF-deficient
mice (Figure 2).

PIBF+ Large Granulated Cells Are
Depleted From the Deciduas of
Anti-PIBF-Treated Mice
In an earlier study, we demonstrated a high number of large
granulated cells—with a strong PIBF reactivity in the cytoplasmic
granules—in the deciduae of day 12.5 pregnant mice. These cells
were identified as members of the PAS+ DBA+ uterine NK cell
population. PIBF co-localized with perforin in the cytoplasmic
granules of the cells (22).

In the present study, we found a significantly decreased
number of PIBF+ NK cells in the day 10.5 deciduae of resorbed
embryos from anti-PIBF-treated mice compared to normal

FIGURE 3 | Immunohistochemical analysis of PIBF+ NK cells in normal and

resorbed deciduae from anti-PIBF-treated and control mice on day 10.5 of

pregnancy (×400).

FIGURE 4 | The number of PIBF+ NK cells in deciduas from anti-PIBF-treated

and control mice on day 10.5 of pregnancy. Compared to the normal deciduae

from the untreated controls, the number of PIBF+ NK cells is significantly

lower not only in the deciduae from both the normal and the resorbed fetuses

from anti-PIBF-treated animals but also in those of spontaneously resorbed

fetuses from control mice. The bars represent the mean ± SEM of 10

independent determinations. *P < 0.05.

deciduae from untreated mice (Figures 3, 4). The number of
PIBF+ granulated cells was also significantly lower in the
deciduae of normal embryos from the anti-PIBF-treated mice
and in those of spontaneously resorbed embryos from untreated
control mice (Figures 3, 4) than in the normal decidua of the
untreated mice. These data suggest that the decreased number
of PIBF+ decidual lymphocytes was associated with resorption
rather than with the lack of functional PIBF.

Cytotoxic Activity of Decidual and
Peripheral NK Cells From
Anti-PIBF-Treated and Control Mice
We determined the cytotoxic activity of decidual lymphocytes
and of spleen cells from anti-PIBF-treated and control mice
using a flow cytometric method. Both the decidual and the
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peripheral NK activity of the anti-PIBF-treated mice were
significantly (P < 0.05) increased compared to those of the
controls (Figure 5).

FIGURE 5 | Cytotoxic activity of decidual and peripheral lymphocytes from

anti-PIBF-treated and control mice on day 10.5 of pregnancy. The cytotoxic

activity of peripheral and decidual NK cells from control and anti-PIBF-treated

mice was determined by flow cytometric analysis of target cell damage on a

single-cell level. The target cells were labeled with PKH-67 and stained with

propidium iodide after 4 h of incubation with the lymphocytes to distinguish

apoptotic from non-apoptotic target cells. The bars represent the mean ±

SEM of at least six experiments. *P < 0.05.

B Cells Are Depleted From the Deciduas of
Anti-PIBF-Treated Embryos
The endometria of the control animals (Figure 6A) contained
decidual NK cells (Figure 6A—a,c) and a discrete layer of B cells
(Figure 6A—b,c) at the coriodecidual interface. While the NK
cells were still present (Figure 6B—a,c), the B cells disappeared
from the deciduas of the resorbed embryos from the anti-PIBF-
treated mice (Figure 6B—b,c).

Functional PIBF Deficiency in the
Peri-Implantation Period Results in
Impaired CD4+ T Cell Activation and Th1
Type Differentiation
Peripheral Th cell subsets from anti-PIBF-treated and control
mice were tested for the differential expression of 48 genes
using a prime PCR array. Twelve of these showed a significantly
higher or lower expression in the lymphocytes of anti-PIBF-
treated mice compared to the controls. When analyzing the
results, the differentially expressed genes were assigned to the
following groups: (1) genes involved in T cell activation, (2)
those involved in Th1 differentiation, and (3) those involved in
Th2 differentiation.

The genes implicated in T cell activation, e.g., members of
the CD3 complex (CD 247, CS3D, CS3E, CS3G, and IL2RG),
were significantly downregulated in the CD4+ spleen cells of
anti-PIBF-treated mice but significantly increased in the CD8+
cells of the same animals (Figure 7). In the anti-PIBF-treated
mice, the beta chain of the IL2R was downregulated in the

FIGURE 6 | Decidual B cells in control (A) and anti-PIBF-treated (B) mice. B cells were reacted with rat anti-mouse B220 IgG conjugated with Alexa Fluor 647 (red

fluorescence), and NK cells were reacted with fluorescein-conjugated DBA lectin (green fluorescence). (A) Decidua of an untreated mouse. NK cells (a,c) are present in

the decidua and B cells (b,c) are located at the choriodecidual interface. (B) Decidua of anti-PIBF-treated mouse. NK cells (a,c) are present, while B cells (b,c) are

absent. (a) NK cells, (b) B cells, and (c) merged (×200).
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FIGURE 7 | Differential expression of genes implicated in T cell activation in

splenic CD4+ and CD8+ T spleen cells of anti-PIBF-treated mice and

controls. Heatmap of the T cell activation-related mRNA expression of genes

in CD4+ and CD8+ splenocytes of anti-PIBF-treated and control mice. Clear

separations are seen between the anti-PIBF-treated and control animals and

also between the CD4+ and CD8+ cell types. Members of the CD3 complex

and co-stimulatory molecules were downregulated in CD4+ cells and

upregulated in CD8+ cells of anti-PIBF-treated mice. All of the results shown

were significantly (P < 0.05) different from the values of the controls. The

expression intensities were scaled on rows (genes) to Z scores to make them

weigh equally in the clustering. The colors of the heatmap are mapped linearly

to the Z scores (low expression in green and high expression in red).

CD4+ population, while in the CD8 population the alpha and
the gamma chain of the IL2R and the IL2 increased. The genes of
the co-stimulatory molecules were altered in a similar fashion.
Upon anti-PIBF treatment, the genes for CD4, CD28, CD40L,
and CD86were downregulated in the CD4 and upregulated in the
CD8 population (Figure 7). These data suggest that the absence
of PIBF inhibits the activation of CD4+ cells and facilitates that
of CD8+ T cells.

Among genes involved in the Th1/Th2 pathway, IL-4 was
significantly downregulated in CD4+ cells of the anti-PIBF-
treated mice. At the same time, IL-12 was upregulated in CD8+
cells of the anti-PIBF-treated animals (Figure 8).

DISCUSSION

Earlier we showed that PIBF induces the decidual transformation
of mouse endometrial stromal cells. Furthermore, PIBF
expression in the mouse endometrium is markedly increased
during the implantation window (13). These data suggest

that PIBF might play an active role in implantation. To
confirm this hypothesis, we neutralized the biological activity
of PIBF during the peri-implantation period in mice and
investigated the consequences of functional PIBF deficiency at
several levels.

The anti-PIBF treatment of pregnant mice at days 1.5 and
4.5 of pregnancy resulted in a significantly reduced number of
the implantation sites, and the implantations that took place
nevertheless must have been compromised as shown by the
high resorption rates. In an earlier study, anti-PIBF treatment
on day 8.5 of pregnancy increased the resorption rate to 40%
(23). The present data show that when administered in the
peri-implantation period, the anti-PIBF antibody also interferes
with implantation.

Several cell types, e.g., the peripheral pregnancy lymphocytes
(24), the embryo itself (25), the trophoblast (26), and the
endometrial cells (13), produce PIBF. In confirmed clinical
pregnancies, PIBF is detectable in the serum of IVF patients
14 days after embryo transfer (Hudic et al., manuscript in
preparation). A single embryo cannot produce such a high
amount of PIBF. It is more likely that the bulk of the PIBF is
produced by the maternal side in response to the presence of
the embryo.

We further investigated the underlying mechanisms of
implantation failure and pregnancy loss in functionally PIBF-
deficient mice.

Failed pregnancies are characterized by high peripheral NK
activity, both in humans and in mice (27–35).

Progesterone decreases the NK activity of peripheral
pregnancy lymphocytes in a concentration-dependent fashion
(36), and RU 486 (a progesterone receptor antagonist)
significantly augments the NK cell cytolytic activity in vitro (37).

Decidual NK cells constitute 60% of decidual lymphocytes
(38). Is spite of the availability of perforin and granzyme in their
cytotoxic granules (38), these cells have a very moderate cytotoxic
potential (39, 40) but secrete angiogenic factors and cytokines
(38). The dynamics of the appearance of uterine NK cells suggests
that one of their functions might be the control of placentation.

The low cytotoxic activity of decidual NK cells might be
due to the presence of PIBF in their cytoplasmic granules
(22). PIBF blocks the upregulation of perforin expression in
activated decidual lymphocytes and inhibits NK cell cytotoxicity
by blocking granule exocytosis (21, 41). Bogdan et al. (22)
demonstrated a high number of PIBF+ NK cells in the day 12.5
decidua of pregnant mice.

Here we show that anti-PIBF treatment during the peri-
implantation period results in the reduced presence of PIBF+
NK cells in the day 10.5 decidua, together with significantly
increased decidual and peripheral NK activity, compared to
the controls.

Anti-PIBF treatment of mid-pregnant mice has been shown
to boost both the peripheral NK activity and the resorption
rates. Increased resorption rates in anti-PIBF-treated mice were
corrected by simultaneous treatment of the mice with anti-NK
antibodies (23), suggesting that PIBF prevents pregnancy loss
in mice—at least partly—by blocking NK activity. Increased
decidual NK activity owing to the loss of PIBF+ decidual NK cells
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FIGURE 8 | Differential expression of genes involved in Th1/Th2 differentiation by spleen cells of control and anti-PIBF-treated mice. (A) IL12A mRNA is significantly

upregulated in CD8+ cells of anti-PIBF-treated mice. (B) IL-4 mRNA is significantly downregulated in CD4+ cells of anti-PIBF-treated mice. The bars represent the

mean ± SEM of four experiments. *P < 0.05.

could be one of the reasons for the increased resorption rates in
the anti-PIBF treated mice.

B cells constitute a minor population among decidual
lymphocytes, yet they might be important for the immunological
balance of the decidua. A recent study showed that the IL-33-
induced expression of PIBF1 by decidual B cells protects against
preterm labor both in humans and in mice (42).

In the present study, we detected a distinct layer of B cells
at the choriodecidual interface of control pregnant mice on day
10.5 of pregnancy. These cells were completely absent from
the deciduae of mice that had been treated with anti-PIBF
during the peri-implantation period. We could not detect PIBF
in the B cells on day 10.5 of pregnancy; however, PIBF+ B
cells were present in the late pregnancy deciduae of the control
mice (data not shown).

Taken together, it is conceivable that anti-PIBF treatment—by
depleting decidual B cells—will, at a later stage, put pregnancy at
risk due to the lack of PIBF-positive B cells (42).

Finally, we performed a gene array on the spleen cells of anti-
PIBF-treated and control mice in order to investigate whether
the absence of functional PIBF had an effect on T cell activation
and differentiation.

The T cell receptor is a complex of T cell receptor alpha
and beta chains and the CD3 proteins. Activation of CD4+ T
cells occurs through the simultaneous engagement of the T cell
receptor and a co-stimulatory molecule on the T cell by the
MHCII peptide and the co-stimulatory molecules on the APC.
In the absence of co-stimulation, T cell receptor signaling results
in anergy.

In addition to TCR alpha/beta, a whole set of cell surface
receptors are also engaged by their ligands on APCs, which
regulate Th differentiation. CD4 acts as a cellular adhesion
molecule that binds MHC class II and stabilizes the interaction
of T cells and APCs (43, 44). CD28 is a costimulatory receptor
on T cells, which binds CD80 and CD86 on activated APCs
(45). The TCR alpha/beta/CD3 complex provides the first signal

and CD28 the second signal for T cell activation. Both signals
are required for IL-2 production and T cell proliferation. CD40
ligand, expressed by activated T cells, binds to CD40 on APCs,
initiating a T cell-mediated immune response (46).

In this study, we found that members of the T cell receptor
CD3 complex were significantly downregulated on CD4+ T
cells of anti-PIBF-treated mice, while CD3D and IL2R B
and G were upregulated in CD8+ cells, suggesting that Th
cell activation is severely inhibited in the anti-PIBF-treated
pregnant mice.

IL-4 is the main cytokine driving Th2 cell differentiation. IL-4
is produced by various cell types, including mast cells, basophils,
eosinophils, NK cells, activated CD4+ T cells, and differentiated
Th2 cells (47).

Here we found that the gene for IL-4 was significantly
downregulated in CD4+ cells, while that of IL-12A was
upregulated in CD8+ cells of the anti-PIBF-treated mice.

There is now ample evidence that the recognition of paternal
antigens by the maternal immune system is not simply harmless
but absolutely necessary for the setting in of the mechanisms
that adapt the immune response to tolerate the fetus (48).
Following recognition of fetal antigens, the immune system
becomes activated, and this will result in the establishment
of regulatory mechanisms, e.g., a Th2 dominant immune
response (49, 50).

Neutralizing PIBF in the peri-implantation period abolishes
this mechanism right at the start. CD4+ T cell activation
is disturbed, T cells differentiate in the Th1 direction, and
as a result, implantation as well as ongoing pregnancies
is compromised.
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Over the last years, an increasing number of outbreaks of vaccine-preventable infectious
diseases has been reported. Besides elderly and immunocompromised individuals,
newborns and small infants are most susceptible to infections, as their immune system
is still immature. This vulnerability during infancy can be mitigated by the transplacental
transfer of pathogen-specific antibodies and other mediators of immunity from mother
to the fetus during pregnancy, followed postnatally by breast milk-derived immunity.
Since this largely antibody-mediated passive immunity can prevent the newborn from
infections, neonatal immunity depends strongly on the maternal concentration of
respective specific antibodies during pregnancy. If titers are low or wane rapidly after
birth, the protection transferred to the child may not be sufficient to prevent disease.
Moreover, emerging concepts propose that mothers may transfer active immunity to the
newborns via vertical transfer of pathogen-specific T cells. Overall, a promising strategy
to augment and prolong neonatal immunity is to vaccinate the mother before or during
pregnancy in order to boost maternal antibody concentrations or availability of specific
T cells. Hence, a large number of pre-and postconceptional vaccine trials have been
carried out to test and confirm this concept. We here highlight novel insights arising from
recent research endeavors on the influence of prenatal maternal vaccination against
pathogens that can pose a threat for newborns, such as measles, pertussis, rubella
and influenza A. We delineate pathways involved in the transfer of specific maternal
antibodies. We also discuss the consequences for children’s health and long-term
immunity resulting from an adjustment of prenatal vaccination regimes.

Keywords: maternal vaccination, measles, rubella, pertussis, influenza, FcRn, blunting, breastfeeding

EARLY LIFE IMMUNITY AND TIME WINDOWS PERMITTING
PATHOGEN THREATS FOR NEONATES

After birth and during their first months of life, human newborns are not yet equipped with a fully
matured immune system (1, 2). Hence, they are highly susceptible to infectious pathogens, such
as measles, pertussis, rubella, and influenza. These pathogens can cause a severe course of disease
in neonates and infants, which may even be fatal (3–5). The availability of safe and immunogenic
vaccines against infectious diseases, i.e., the combined measles-mumps and rubella vaccine, does
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not mitigate this threat to neonatal health, as the vaccines
contain living pathogen components; hence, their use is not
recommended to be administered to children under the age of
12 months. Similarly, the vaccination with the combined tetanus-
diphtheria-pertussis (Tdap) vaccine and the inactivated influenza
vaccines (IIV) is not recommended until 2 or 6 months of age,
respectively (6, 7). These restrictions to vaccination leave a pivotal
gap of neonatal immunity against these pathogens until routine
immunization can be administered (8).

This gap in immunity is – at least in part – covered
by the active, transplacental transfer of maternal pathogen-
specific antibodies. Mothers convey passive immunity to their
newborns through the transplacental transfer of antibodies,
hereby providing a shield for the infant from pathogen-
mediated diseases (1, 9). The amount of transferred antibodies
can differ between individuals and is mainly dependent on
maternal antibody concentrations (10, 11). Based on this
natural immunity mediated by the mother, maternal vaccination
strategies during pregnancy are vividly discussed. Such strategies
could increase maternal antibody concentrations, enhance the
levels of transplacental antibody transfer and, in consequence, the
degree of passive immunity for the neonate (12).

In the light of the recent outbreaks of vaccine-preventable
diseases such as measles even in countries with high vaccine
coverage, the topic of immunization has received significant
attention by medical professionals and the lay community.
Measles infection has caused more than 140,000 deaths
globally in 2018, most of them among children under five
years of age (13). Promoting the immunity of newborns via
maternal vaccination holds the potential to become an effective
and low-cost approach to prevent neonatal morbidity and
mortality caused by communicable diseases (14–16). In the
present article, we comprehensively discuss recent research
studies on maternal vaccination against common childhood
infections such as pertussis, influenza, measles, and rubella.
We further highlight pathways involved in the transplacental
transfer of antibodies as well as mechanisms through which
neonatal immunity can be improved irrespective of maternal
antibodies (Figure 1).

OBSERVATIONS FROM VACCINATION
STUDIES AGAINST TETANUS,
DIPHTHERIA AND PERTUSSIS DURING
PREGNANCY

A number of recent studies confirm that vaccination with the
combined tetanus, diphtheria, and acellular pertussis vaccine
(Tdap) can be recommended during pregnancy, since vaccine
trials carried out on a large scale and in various countries have
generally demonstrated its safety and immunogenicity in mothers
and their infants (Table 1). The World Health Organization
(WHO) reports a 96% reduction of death by neonatal tetanus
through implementation of recommended elimination practices
from 1988 to 2015, including the vaccination of pregnant
women (17). Similarly, the burden of diphtheria disease has been

reduced (18). Unfortunately, comparable achievements have not
been made with regard to pertussis elimination. Outbreaks
of whooping cough have recently been occurring worldwide,
exposing young infants to a particularly high risk of severe
infections. Thus, we here mainly discuss studies that focus on the
outcome of pertussis vaccination in pregnant women.

Amongst others, the authors of a recent study aimed to
evaluate the safety and immunogenicity of Tdap administration
during pregnancy in mothers and their infants and to assess
the possible interference of maternal antibodies with subsequent
infant immunizations (19). Apart from mild and self-limiting
local reactions at the vaccination site, no adverse events
caused by the immunization with Tdap were reported in
mothers and their infants. Anti-pertussis toxin (PT) antibodies,
which primarily mediate protection against Bordetella pertussis-
induced disease (20), and anti-pertactin (PRN) antibodies,
which convey protection by opsonization and subsequent
phagocytosis of Bordetella pertussis (21), were significantly
increased in mothers vaccinated with Tdap during pregnancy,
compared to the placebo group. Accordingly, both anti-PT
and anti-PRN were significantly higher at birth in infants
of vaccinated mothers. Irrespective of prenatal vaccination,
cord blood antibody titers exceeded maternal titers assessed
at delivery, indicating an active transplacental transport of
antibody. However, anti-PT and anti-PRN decreased quickly
until the age of 2 months.

The investigators also pointed out differences in anti-PRN
and anti-PT seroresponses following routine infant vaccinations
at 2 and 4 months of age with a combined tetanus, diphtheria,
pertussis, polio and Hib vaccine (19). After vaccination, infants
of placebo-receiving mothers showed a greater increase of anti-
PT levels compared to infants of Tdap-vaccinated mothers,
indicating an interference of maternal antibodies with the
child’s seroresponse to vaccination. Surprisingly, opposed to the
response to PT, an anti-PRN response was not mounted in
these infants, irrespective of maternal Tdap vaccination. This
is in contrast to a study focusing on infants’ response to Tdap
vaccination during early life, in which a significant seroresponse
to both PT and PRN was mounted (22). An explanation for the
ambiguity between the vaccination responses observed in these
two studies cannot be deduced from the respective articles, but
may be due to different cohort sizes, variations in the procedure
of specimen preparation or the different ELISA kits used to
determine antibody concentrations.

Another study focusing on the influence of maternal
vaccination with Tdap during the second trimester of pregnancy
(23) revealed that anti-PT IgG could be detected in 92% of infants
born to vaccinated mothers, whilst anti-PT IgG was undetectable
in infants of unvaccinated mothers. Although this study has
some limitations, for example the lack of initial maternal anti-
PT levels and the ELISA-based analysis allowing for detection
of antibody presence or absence only, but no concentrations, it
shows that maternal immunization with Tdap during the 2nd
trimester of pregnancy significantly increases the percentage of
seropositive newborns.

Not only immune responses of mother and child toward
Tdap immunization during pregnancy have been investigated,
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FIGURE 1 | Overview of maternal immunity and recommended vaccinations before, during and after pregnancy as well as consequences for maternal and children’s
health.

but also vaccine safety. By using information from different
national databases, Griffin et al. (24) identified a large
cohort of women who were eligible to receive governmental
funded Tdap vaccination between gestational week 28 and
38. Hospitalization for severe pregnancy complications was set
as the primary outcome and hospitalizations for less critical
pregnancy complications as secondary outcomes. Key finding of
this study was that the hazard ratio for primary or secondary
outcomes did not increase when Tdap was administered during
pregnancy. Intriguingly, the authors also report that Tdap
vaccination during pregnancy significantly reduced the risk for
hospitalization due to severe pre-eclampsia, as well as the risk
for antenatal bleeding and preterm labor and delivery. Upon
inspection of the studied population, these risk reductions might
be biased by the demographic characteristics that distinguish
vaccinated and unvaccinated women. Vaccinated women tended
to be European, have a higher income level and receive

care from an obstetrician. Since pregnancy complications as
well as mother and infant mortality are rather associated
with lower socioeconomic status and non-caucasian ethnicity
(25–27), it is tempting to assume that higher rates for primary
and secondary outcomes observed in this study may be
due to confounders.

Noteworthy, New Zealand had been facing a large pertussis
epidemic from 2011 to 2013. However, only 11.9% of the
individuals eligible to receive Tdap in the study by Griffin et al.
have been vaccinated. This example shows the urgent need for
further education of the population regarding the effectiveness of
immunization against pertussis.

Whilst the evidence for safety and immunogenicity of Tdap
is steadily increasing, Saul et al. also emphasized on the
effectiveness of maternal Tdap vaccination with regard to infant
hospitalization due to pertussis infection (28). The authors report
a 39% vaccine effectiveness (VE) to prevent pertussis infection
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TABLE 1 | Overview of studies and trials assessing safety, effectiveness and outcome of vaccinations with Tdap, IIV, and MMR during child-bearing years, pregnancy or
infancy in humans.

Aim of study Study design N References

Pathogens: C. tetani, C. diphtheriae, and B. pertussis

Assessment of immunity against vaccine preventable diseases Prospective, observational study 194 (1)

Safety and immunogenicity of Tdap matVac, interference of matAB Randomized double-blind controlled clinical trial 171 (19)

Effect of 2 doses of pertussis vaccine before 2 months of age Randomized non-blinded clinical trial 76 (22)

Assessment of B. pertussis titers in third trimester and newborns Observational, cross-sectional study 111 (23)

Maternal outcome upon Tdap matVac Retrospective observational study 68,550 (24)

Assess effectiveness of Tdap matVac Matched case-control study 234 (28)

VE in protecting newborns from pertussis infection Matched case-control study 88 (29)

Comparative analysis of Tdap matVac timepoint and AB yield in newborn Prospective study 81 (30)

Determination of optimal GW for Tdap matVac in third trimester Prospective study 154 (31)

Comparative analysis of Tdap matVac in second or third trimester Prospective observational study 335 (32)

Effect of Tdap booster dose between two pregnancies Prospective study 144 (72)

Comparative analysis of maternal and cord blood AB and proteins at term Observational study 16 (73)

Analysis of neutralizing antibodies in infants after vaccination against
diphtheria

Prospective study 44 (94)

Effect of matVac with Tdap and IIV on infant AB responses Prospective study 369 (95)

Influence of Tdap booster dose during pregnancy on infant’s matAB levels
and immune responses

Prospective controlled cohort study 99 (96)

Safety and immunogenicity of Tdap matVAc and effect on infant immune
responses

Randomized, double-blind, placebo-controlled trial 80 (97)

Pathogen: Influenza A

Assessment of safety and immunogenicity of seasonal trivalent IIV matVac Prospective, randomized, double-blind clinical trial 100 (40)

Risk assessment for neonatal birth defects after first trimester IIV exposure Observational study 425,944 (41)

Persistence of HAI titers and VE of IIV3 in subsequent influenza season in
women

Double-blind, randomized, placebo-controlled trial 479 (43)

Duration of infant protection upon IIV matVac Substudy of randomized, double-blind,
placebo-controlled clinical trial

322 (44)

Clinical effectiveness of IIV matVac; safety and immunogenicity of
pneumococcal vaccines

Prospective, controlled, blinded, randomized study 340 (45)

Risk assessment for infant hospitalization due to lower respiratory infection
after IIV matVac

Secondary analysis of randomized controlled trial 52 (46)

Effect of IIV matVac on risk for influenza in infants < 6 months of age Non-randomized, prospective, observational cohort
study

1169 (47)

Influence of IIV matVac on subsequent B. pertussis infection rates in
mothers

Retrospective testing of samples collected in
randomized controlled trial

3125 (48)

Effect of vitamin A supplementation on immune response to IIV matVac Prospective study 112 (70)

Investigation of sensitization to IIV antigens in utero Prospective observational study 126 (74)

Effect of maternal influenza vaccination on influenza-specific IgA levels in
breast milk

Prospective, blinded, controlled trial 340 (80)

Effect of cross-reactive cellular immunity on symptomatic influenza illness in
AB- naïve individuals

Prospective study 342 (90)

Pathogens: Measles, Mumps, and Rubella Virus

Repertoire of maternal anti-viral AB in newborns at birth Prospective study 78 (10)

Assessment of safety of MMR vaccination in adults Retrospective observational study 3175 (51)

Assessment of B cell impairment upon measles-associated
immunosuppression

Prospective observational study 29 (54)

Identification of measles infection long- term effects on immune system Prospective study 196 (55)

Association of maternal age and vaccination status with cord blood matAB Observational study 206 (57)

MatAB transfer in vaccinated or naturally immune mothers to preterm/term
infants

Prospective study 195 (58)

Quantification of AB against MMR and varicella zoster in mothers and
infants

Prospective observational study 138 (59)

Duration of presence of matAB to measles in infants Prospective study 207 (60)

(Continued)
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TABLE 1 | Continued

Aim of study Study design N References

Seronegativity in infants < 6 months and serologic response to measles
vaccine

Cross-sectional study 203 (61)

Prenatal fetal infection among women (re-) infected with rubella during
pregnancy

Prospective observational study 40 (62)

Detection of rubella-specific IgM in subclinical rubella reinfection in
pregnancy

Case report 8 (63)

Criteria for defining rubella reinfection Case report 5 (64)

Fetal infection after maternal rubella reinfection during pregnancy Case report 1 (65)

Seroepidemiology of anti-measles, -mumps and -rubella AB in pregnant
women and neonates

Prospective study 353 (71)

Assessment of transplacental transport of IgG immune complexes Prospective study 152 (75)

Immunogenicity of measles vaccine in infants < 12 months Cohort study 72 (92)

Studies on breast milk immunity

Assessment of gut microbiota bound by breast milk IgA Observational study 69 (81)

Effects of infections during pregnancy on colostrum IgA levels Cross- sectional study 900 (82)

matVac, maternal vaccination during pregnancy; Tdap, Tetanus, diphtheria, acellular pertussis vaccine; matAB, maternal antibody; VE, vaccine effectiveness; GW,
gestational week; AB, antibody; IIV(3), (trivalent) inactivated influenza vaccine; MMR, measles, mumps, rubella vaccine; HAI, hemagglutination inhibition assay.

for infants < 6 months and of 69% for infants younger than
3 months of age; the overall VE against hospitalization due
to severe pertussis infection was 94%. These results clearly
demonstrate that maternal Tdap vaccination is predominantly
effective in preventing severe cases of pertussis disease, with
maternal vaccination attenuating the intensity of the illness rather
than preventing it. Furthermore, the authors identified that
breastfeeding may have a protective effect on pertussis infection
of the infant. These findings are in line with a very similarly
set up of a study conducted in the same year (29). Here, the
authors found a 90.9% VE of maternal Tdap vaccination during
pregnancy in protecting infants < 3 months from laboratory
confirmed pertussis; yet, VE was calculated from a small
cohort. Also, apart from maternal vaccination, breastfeeding
was identified as the only other significant influence on infant
protection against pertussis. This effect could be observed not
only in mothers vaccinated during pregnancy, where maternal
IgA could be passed via the breast milk, but also in those who
had not been vaccinated against or in contact with pertussis
for the last 10 years. The authors suggest that this might be
attributed to other breast milk components which were not
further specified.

There is still ambiguity with regard to vaccination timepoint
recommendation by national health services. The National
Health Service (NHS) in the United Kingdom and the Advisory
Committee on Immunization Practices (ACIP) in the US suggest
two different vaccination schedules. While the NHS recommends
Tdap administration between 16 and 32 weeks of gestation
(30), the ACIP proposes that Tdap should be administered at
a later timepoint between 27 and 36 weeks of gestation (6).
Using cord blood concentrations of pertussis-specific IgG as a
read out parameter, one study reports highest levels if mothers
had been vaccinated with Tdap between 27 and <31 weeks of
gestation, as compared to vaccination at 31 weeks or later (31).
Another study suggested that the optimal timepoint for Tdap
administration is between 28 and 32 weeks of gestation, based

on higher cord blood anti-pertussis antibody concentrations
resulting from vaccination at this timepoint as compared to
later in gestation (32). Conversely, another study with a higher
number of participants reports that maternal Tdap vaccination
between gestational week 13 and 25 results in higher cord blood
anti-pertussis antibody concentrations than immunization after
26 weeks of gestation (33). A longer period of time between
vaccination and childbirth allows for a greater transfer window,
which may explain the observed higher cord blood titers. Re-
scheduling the recommended vaccination to an earlier timepoint
during pregnancy might therefore be beneficial, not only for
preterm neonates (33).

Taken together, Tdap immunization should be recommended
to each pregnant woman in every pregnancy, regardless of the
previous vaccination status. This will yield to high maternal
antibody concentrations toward the end of pregnancy, so that
antibodies can be transferred at greater extent to the fetus. Whilst
vaccination of the mother during the 2nd or 3rd trimester of
pregnancy is safe and efficacious, the best strategy to ensure
high neonatal anti-pertussis antibody concentrations seems to be
vaccination between gestational week 13 and 25. Besides maternal
vaccination, passive protection of the neonate via reduction of
pathogen exposure can result from a so-called cocooning effect,
achieved by vaccination of family members and caregivers of the
newborn (34, 35). By combining these protective techniques, the
risk for pertussis infection during the first months of life, until the
neonate has mounted humoral and cellular immunity against this
pathogen, can be reduced.

INSIGHTS FROM VACCINATION
STUDIES AGAINST INFLUENZA DURING
PREGNANCY

Apart from Tdap, vaccination against influenza using inactivated
influenza vaccines (IIV) is the only other recommended
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vaccination during pregnancy. Pregnant women are at
high risk for severe influenza disease outcomes due to
a multi-faceted failure to mount an anti-viral response.
As shown in basic science approaches, this less stringent
selective environment can promote the emergence of mutated
influenza variants which mediate increased viral pathogenicity
(36). The Robert Koch Institute, the governmental central
scientific institution safeguarding public health such as
the surveillance and prevention of infectious diseases in
Germany, recommends vaccination against influenza for all
pregnant women during the second and third trimester. For
women with increased morbidity risk or preexisting medical
conditions, vaccination is even recommended during the first
trimester (37). Similar recommendations have been made
by the ACIP in the United States (38), where vaccination
against influenza is recommend at any time during normally
progressing pregnancy.

These recommendations result from a wealth of studies
carried out worldwide on safety, immunogenicity and efficacy
of influenza vaccination during pregnancy. These studies have
clearly demonstrated the advantages of protecting mother and
infant from influenza disease, as extensively reviewed elsewhere
(14, 15, 39).

Moreover, independent studies (Table 1) have assessed
the impact of influenza vaccination on pregnancy outcomes
and confirmed that the risk for structural birth defects or
pregnancy complications is unaffected by maternal vaccination
against influenza (40, 41). On the contrary, the frequency
of infants born small for gestational age was lower among
vaccinated women and the overall birth weight was higher (42).
Immunogenicity analyses using hemagglutination inhibition
assay (HAI) revealed that the overall reactogenicity to the
inactivated influenza virus vaccine was similar between non-
pregnant and pregnant individuals (40). Here, it was also
reported that higher maternal age negatively correlates with
seroconversion and -protection, whilst data supporting this
observation have not been shown. However, another study
showing that HAI titers were likely to remain elevated one year
after immunization especially in women younger than 25 years of
age supports the link between maternal age and immunogenicity
to IIV (43).

Besides the maternal response to influenza vaccination during
pregnancy, the subsequent children’s outcome upon maternal
vaccination has also been the focus of a number of studies.
Here, an overall beneficial response could be identified, such
as a lower hospitalization rate and milder disease course of
infants < 6 months, not only related to influenza infection (44,
45), but also to all-cause lower respiratory tract infection (ALRI),
including diseases induced by pathogens such as B. pertussis,
respiratory syncytial virus (RSV) and rhinovirus (42, 46, 47).
This broad protection from lower respiratory tract infections
has been explained by an increased susceptibility to pathogens
affecting the airway system subsequent to an influenza infection,
from which neonates with maternally inherited passive immunity
against influenza are protected to a higher degree (46, 48).
However, large-scale studies are urgently needed to confirm this
suggestion. Once confirmed, such insights will likely increase

the vaccination compliance of pregnant women, which is still
surprisingly low (49).

VACCINES CONTRAINDICATED FOR
IMMUNIZATION DURING PREGNANCY

Unlike vaccinations against tetanus, diphtheria, pertussis and
influenza, which can be recommended during pregnancy, live
attenuated vaccines like the combined measles-mumps-rubella
(MMR) vaccine are contraindicated in pregnant women due
to the hypothetical risk of transplacental viral transmission
and infection of the fetus (50). However, observations from
prenatal MMR immunization administered during the first
trimester to women unaware of their pregnancy revealed that
the risk for adverse pregnancy outcomes such as spontaneous
abortion, hydrocephalus, vaginal bleeding and preterm birth is
not significantly increased compared to the general population.
Also, fetal infection has not been reported (51).

Resulting from the global rise of vaccine hesitancy, one of the
10 threats to global health (52), transmission of measles is rapidly
spreading, which poses a significant hazard to children’s health.
Besides common complications related to measles infection in
children, such as diarrhea, middle ear infection and pneumonia
(53), it has recently been identified that measles can obliterate
existing humoral immune memory against a repertoire of
pathogens (54, 55). The incomplete reconstitution of the naïve
B cell pool and the depletion of previously expanded B memory
clones account for this obliteration of immune memory (54).
Hence, the susceptibility toward subsequent infections is greatly
enhanced after measles infection, which strongly underpins
the urgency not only for vaccination of children, but also for
women with the intention to become pregnant. This will close
a vulnerable gap of neonatal susceptibility toward measles prior
to the recommended vaccination at the age of one year and allow
to achieve global measles elimination.

In Germany, immunization of adults with MMR is only
recommended for individuals with an incomplete or unclear
vaccination history (37). Since the age of women at the time of
giving birth to their first child has increased by approximately a
decade during the last 50 years (56), the window between routine
childhood vaccination and onset of pregnancy has also increased.
Hence, antibody concentrations might have waned substantially
at the time of pregnancy. It has been observed that a MMR
vaccination dose administered close to pregnancy induces higher
matAB levels in the offspring, irrespective of the total number
of vaccine doses given to the mother (57). In countries where
pathogens such as measles still circulate within the population
and hence, natural infections and boosting through recurrent
exposures to the wild-type pathogens are frequent, antibody
concentrations are higher compared to those mounted by
immunization (57). Vice versa, in highly vaccinated populations
with low pathogen circulation, antibody concentrations in
mothers and their children tend to be lower due to faster
decrease of vaccine-induced antibodies and a lack of natural
boosting through pathogen exposure (58–60). Gonçalves et al.
quantified this observation by measuring anti-measles-IgG in
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cord blood and found that in infants born to MMR-unvaccinated
mothers, who most likely gained their immunity through
natural infection, anti-measles-IgG reached 1849 mIU/ml, while
cord blood of infants born to MMR-vaccinated mothers only
contained 987 mIU/ml of anti-measles-IgG (57). It has been
suggested that immune responses toward measles may differ
if mounted by natural infection or by vaccination, because
different antibody subclasses may be induced and that infants of
vaccinated mothers lose passive acquired immunity at an earlier
age compared to naturally immune mothers (61).

Studies observing the impact on the neonate in case of
rubella reinfection during pregnancy (62–64) have reported that
rubella reinfection can occur both in naturally immune women
and in women immunized against rubella during childhood.
Noteworthy, immunized women are at greater risk for such
reinfection, which might be due to differences in the immune
response following vaccination or natural infection. The course
of rubella reinfection is mostly subclinical, but may have severe
consequences such as the congenital rubella syndrome (CRS),
though this has been described only in one case (65). Thus,
MMR booster doses can be recommended to women planning
to become pregnant in order to avoid serious illness of the child
if exposed to measles or rubella virus during gestation or during
the first months of life.

MECHANISMS OF TRANSFERRING
IMMUNITY TO THE NEWBORN:
TRANSPLACENTAL TRANSPORT OF
MATERNAL ANTIBODIES

The wealth of studies summarized so far highlights that maternal
antibodies against specific pathogens can be vertically transferred
to the fetus and subsequently protect the neonate from infections.
Thus, the mechanism of such vertical transfer is a key modulator
of neonatal immunity and shall be reviewed in the following.

Generally, the placenta poses a barrier which can – at least
partially – control and hinder the transmittance of harmful
substances from mother to fetus. Hence, a specific and active
transport mechanism is needed in order to transfer maternal
pathogen-specific antibodies to the fetus. In this respect, the
neonatal Fc-receptor (FcRn) plays a key role. It is, amongst
other tissues, expressed in placental syncytiotrophoblasts and
belongs to the Fcγ receptor family, which characteristically
binds the Fc fragment of IgG antibodies and promotes their
transport to body sites where specific immunity is needed
(66). The IgG binding characteristics of FcRn are highly pH-
dependent (67); in acidic environments, FcRn shows a much
higher affinity to IgG compared to the physiological pH of 7.4,
which is present in maternal and fetal blood. Thus, maternal
antibodies are unable to bind to FcRn at the apical side of the
syncytiotrophoblasts, which is bathed on maternal blood, but
need to be taken up by endocytosis (Figure 2). The amount
of antibody that can be transferred to the fetus depends on
the amount of FcRn expressed by syncytiotrophoblasts. If all
FcRn are engaged in IgG transport, additional IgG molecules

will be degraded in the lysosome, as they are not receptor-
bound. Thus, antibody transfer is a saturable process and will
stagnate once maternal antibody concentrations reach a certain
level, which has been defined as a total IgG of 15 g/L (68).
Transplacental IgG transport starts early in gestation (10, 69),
though still at low efficacy. With the continuation of pregnancy,
FcRn expression and transplacental transport increase, peaking
during the last four weeks of gestation (9). It is tempting to
speculate that the increased cell mass of the growing placenta
accounts for the mere increase in FcRn and related higher
antibody transport rate.

To date, research on factors influencing the FcRn expression
is scarce. In one study, the effect of vitamin A supplementation
during pregnancy on the immune response following maternal
influenza vaccination during pregnancy has been assessed. Here,
a possible influence of vitamin A on FcRn expression has been
proposed, but this aspect is still highly speculative and data are
based on a small sample size (70). Data on sex-specific differences
in placental FcRn expression is also currently lacking.

Interestingly, not all IgG subclasses are equally transferred,
as FcRn mainly transports IgG1, with decreasing efficacy for
IgG4, IgG3, and IgG2 (69). Structurally different antigens
have been shown to induce different IgG subclasses and thus,
are transferred in varying amounts. While protein antigens,
such as pertussis toxin and pertactin, tetanus toxin or the
measles virus elicit IgG1, polysaccharide antigens, as found
on the surfaces of bacteria like Haemophilus influenzae type
b or Neisseria meningitidis, induce IgG2 (2). Since the latter
subclass is being transported less efficiently, newborns might
lack specific immunity toward pathogens which mainly present
polysaccharide antigenic structures, such as most bacteria.

The most predictive factor of transplacental antibody transfer
is the level of maternal antibody (10). Higher gestational age,
recent maternal vaccinations, a balanced maternal nutritional
status and male gender of the newborn have been shown to
positively influence maternal antibody concentrations in the
infant (1, 71, 72).

Observations dating back some decades indicate that apart
from IgG being transported across the placenta as a single
molecule, it can also be transported as an IgG-immune complex
(IgG-IC) involving IgG and it’s respective antigen (73). In
this study, serum tetanus antigen reached nearly the same
levels in mother and infant at birth, suggesting an active
transfer of anti-tetanus IgG-IC. Active transfer could not be
observed for different pregnancy-related proteins such as alpha-
fetoprotein (AFP) and human chorionic gonadotropin (hCG), as
their concentrations highly differed between mother and child,
indicating a transmission by low-rate diffusion. More recently,
influenza-specific fetal IgM could be detected in cord blood upon
maternal influenza vaccination during pregnancy, suggesting that
anti-influenza IgG-IC had been transferred to the fetus, followed
by a fetal B- and T-cell immune response against influenza elicited
by the IC in utero (74). Together with the observation that IgE,
which plays a major role in allergy pathogenesis, can also be
transported via the placenta as an IgG-IgE-IC (75), these findings
have a great impact on understanding neonatal immunity and the
development of atopy in children.
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FIGURE 2 | Mechanisms of antibody transfer via placenta and breast tissue. Top: Circulating IgG antibody is taken up into the syncytiotrophoblast cell, where two
IgG molecules per FcRn bind at the inner membrane of the acidic endosome. Upon opening of the endosome at the basolateral side of the cell facing the fetal
circulation, FcRn releases the IgG molecules due to the increased pH and can then be recycled to perform another transport cycle. Bottom: The joining chain of the
dimeric IgA molecule is bound by the polymeric Ig-receptor (pIgR) and both are internalized via endocytosis. At the apical membrane, secretory IgA (sIgA) is being
released to the breast milk, as the secretory component of pIgR remains bound to the IgA antibody.

MECHANISMS OF TRANSFERRING
IMMUNITY TO THE NEWBORN:
TRANSFER OF MATERNAL ANTIBODIES
VIA BREASTMILK

Another substantial element of neonatal immunity is the intake of
breast milk, which contains a significant amount of secretory IgA.
Also, maternal immune cells, such as IgG-producing memory B
cells and CD4+ T cells, can be detected in breast milk (9, 76).

The dimeric IgA antibodies are produced by plasma cells in
the mammary gland as well as in other tissues associated with
mucosal surfaces. The epithelial cells of the mammary acini
transport the IgA molecules from the connective tissue to the
breast milk via transcytosis, involving the polymeric Ig receptor
(pIgR) (77, 78) (Figure 2). The two IgA subclasses present in
humans, IgA1 and IgA2, are distributed differently along mucosal
membranes, with IgA1 being mainly present in the respiratory
tract, saliva, serum and skin and IgA2 being the main secretory
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antibody of the intestine (79). In their seminal review, Hanson
and Winberg already concluded that breast milk IgA is not
absorbed by the infant’s gut, but rather coats the mucosal surface
of the intestine to protect it from pathogens (80).

Several studies have unveiled that the consumption of breast
milk by the neonate is beneficial to its health (Table 1). One
example is the enhanced transfer of influenza-specific and
neutralizing IgA to the neonate upon influenza vaccination
of the mother during pregnancy (81), which was associated
with a decreased number of respiratory illness of the infants
during the first six months of life. Whether this effect results
from the increased amount of specific breast milk IgA or from
the transplacental transfer of maternal influenza-specific IgG
remains to be elucidated. Cross-fostering may provide an answer
and considering the growing number of milk banks, such studies
may become feasible.

Another study recently highlighted a breast milk IgA-
mediated protection from necrotizing enterocolitis (NEC) in
preterm infants (82). The pathogenesis of NEC seems to be
mainly driven by an altered sIgA binding pattern of intestinal
bacteria in the newborn, since the proportion of IgA-bound
bacteria was much lower in infants developing NEC compared
to healthy newborns. Formula-fed infants were more likely to
develop NEC than breastfed infants, presumably due to the
absence of maternal IgA in formula alimentum.

Moreover, in women with respiratory tract infections during
pregnancy, the proportion of IgA1 in colostrum was higher,
while in women with gastrointestinal infections, levels of IgA2
were increased (83). These observations suggest that the mother’s
immune system seeks to shield the infant from the specific
pathogens of the surrounding environment. Similarly, as shown
in basic science models, maternal antibodies can potentially
retain microbial molecules and transmit them to the offspring via
the placenta and breastfeeding. Subsequently, the offspring are
able to avert an inflammatory response to microbial molecules
and allow colonization of intestinal microbes (84).

Overall, the beneficial effect of breastfeeding for infant’s
health seems to affect various mucosal membranes, such as
the respiratory and gastrointestinal tract, hereby protecting the
neonate from infections. Thus, the current recommendations
of the WHO to exclusively breastfeed an infant during its first
6 months of life (85) may indeed provide optimal starting
conditions for the child’s postnatal immunity.

MECHANISMS OF TRANSFERRING
IMMUNITY TO THE NEWBORN:
MATERNAL MICROCHIMERISM

Besides antibody-mediated immunity transferred during
pregnancy, it is also conceivable that pathogen-specific maternal
immune cells migrate to the unborn child. It is well known
that maternal immune cells can be transferred to the fetus via
the placenta (86), and also via breast milk (76). These cells can
then remain in the offspring until adulthood, as shown among
lymphoid and myeloid compartments of peripheral blood in
healthy adult women (87). Due to the low frequency of these cells

in the offspring, they are referred to as maternal microchimeric
cells and a considerable percentage of such cells are T cells, which
can be retained for a long period of time (88).

In general, upon infection, pathogen-specific CD8+ T cells
remain in peripheral tissues and act as sentinels. Upon antigen
re-encounter, they rapidly produce inflammatory cytokines and
thereby induce a state of alertness in the local environment and
recruit inflammatory cells. Thereby, a small number of pathogen-
specific T cells can provoke a fast and fulminant response (89, 90).
Interestingly, in the context of pregnancy, there is direct evidence
for such transfer of protective maternal T cells. In a human
infant with severe combined immunodeficiency suffering from
Epstein-Barr virus (EBV) infection, large numbers of maternal
CD8+ T cells could be detected. These cells were phenotypically
activated and secreted IFN-γ in response to EBV antigen. Other
hematopoietic cells were of offspring genotype, indicating that
the CD8+ T cells originated from mature maternal T cells and
not form transferred hematopoietic stem cells (91). Moreover,
high frequencies of pre-existing effector CD8+ T cells directed
against conserved core protein epitopes of influenza virus strains
correlate with a milder course of influenza infection caused by
other influenza virus strains, thus providing strong evidence for
a cross protective function of memory CD8+ T cells against
heterologous influenza strains (92). Based on these empirical
evidences, it is appealing to speculate that pathogen-specific
maternal microchimeric T cells also convey passive cellular
immunity to the offspring.

THE DOWNSIDE OF NEONATAL PASSIVE
IMMUNITY: MATERNAL ANTIBODIES
INTERFERE WITH THE INFANT’S
RESPONSE TO VACCINATION

Despite the significant health benefits resulting from maternal
vaccination during pregnancy for mother and infant, there is
also a downside to it. Many studies have demonstrated that
high levels of maternal antibodies in the infant hamper the
immune response required to mount humoral immunity upon
routine childhood vaccinations (68). This inhibitory effect of
maternal antibodies on the antibody generation by the infant’s
immune system, which is commonly referred to as “blunting,”
can affect neonatal immunity for up to more than one year of
age, depending on the level of maternal antibodies in the neonate
at birth. Interestingly, blunting occurs irrespective of the type
of vaccine applied, including measles, influenza and pertussis
vaccines (68).

The most common explanation for blunting involves a cross-
link between the B cell receptor (BCR) and the Fcγ receptor
FcγRIIB (68, 93), both expressed on the surface of B cells.
Each BCR has a unique affinity to a certain pathogen epitope,
which can also be recognized by specific maternal antibodies.
These again can be ligated to the FcγRIIB by their Fc fragment.
When the infant is being vaccinated, pathogen fragments enter
its circulation and can be bound both by BCR and maternal
antibodies at the same time, which leads to contradicting signals
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FIGURE 3 | Upon exposure of the neonate to vaccine antigens, the antigen is recognized by its specific B cell receptor (BCR). If maternal antibodies are present in
the child’s circulation, they bind to the vaccine antigen as well as to the Fc-receptor FcRIIB that is also expressed on B cells. Thus, a cross-link between BCR and
FcRIIB is formed, which inhibits antibody production of the B cell in response to antigen recognition.

within the B cell. While the BCR recognizes the new antigen
and emanates signals leading to plasma cell differentiation and
antibody production, FcγRIIB signalizes the presence of specific
antibody to this particular antigen and inhibits further antibody
production. In consequence, the stimulatory BCR signal is being
inhibited and no antibody production can be initiated by the
infant’s immune system (Figure 3).

Very recently, a large study has thoroughly addressed the topic
of blunting by maternal antibodies (94). Here, children’s antibody
responses to routine early life vaccinations against Hepatitis B,
tetanus, diphtheria, pertussis, polio, pneumococcus, rotavirus,
MMR, and meningococcus have been associated with maternal
vaccine responses using inactivated influenza vaccine or Tdap
during pregnancy. While maternal influenza vaccination did
not affect the infant’s vaccine responses, maternal immunization
with Tdap resulted in significantly lower vaccine responses to
specific (diphtheria and pertussis) and heterologous antigens
(polio and pneumococcus) in the child. This observation has
sparked the notion that maternal antibodies present in the
neonate bind to the diphtheria-toxin derived carrier protein of
the pneumococcal vaccine before the neonatal host can mount an
immune response against the heterologous antigens bound to the
carrier protein. Also, reduced blunting has been described upon
infant immunization with acellular as compared to the whole cell
pertussis vaccine (19). In order to support maternal vaccination
strategies, the consequence of Tdap-booster immunization at 13
or 15 months of age upon maternal Tdap vaccination during
pregnancy has been assessed. Here, Tdap booster doses overcame
an initially observed blunting effect caused by high maternal
antibody levels (95, 96).

Approaches seeking to bypass the process of blunting are
nowadays tested, such as alternative vaccination routes and
the simultaneous injection of antigen-specific IgM or agents

that stimulate the production of interferon-α along with the
vaccine (68). These adjuvants have been suggested to counteract
the inhibitory signal produced by FcγRIIB, thus leading to B
cell activation and antibody production following immunization
even in the presence of maternal antibodies. Additionally, as
reported by studies dating back two decades and more, maternal
antibodies do not interfere with T cell priming of the infant (97–
99). These observations support that sufficient protection can still
be reached at the time when maternal antibodies have completely
waned in the infant at an age of approximately 6 months, even
if the first vaccination did not trigger a significant humoral
immune response.

There is still ambiguity regarding the occurrence of a blunting
effect, as it was not confirmed in all studies assessing it (22).
Hence, future studies are required to confirm the underlying
mechanisms of blunting and T cell priming in order to ensure
highest efficacy of neonatal immunization. Clearly, blunting of
vaccine responses in infants might increase the susceptibility to
certain early life infections. Considering the advantages related
to maternally derived passive immunity for the neonate, blunting
however, has been described as an acceptable trade-off (94).

Noteworthy, a number of articles published in the 1980s
support that anti-idiotypic antibodies are also transferred from
the mother to the fetus via the placenta (100) and by breast
milk. Anti-idiotypic antibodies are directed against molecular
patterns (idiotypes) located close to the antigen-binding site of
pathogen-specific antibodies and are being elicited as part of
the regular immune response. A proportion of anti-idiotypic
antibodies carry an “internal image” of the antigen for which their
idiotype antibodies are specific. Thus, anti-idiotypic antibodies
are thought to stimulate B-cells in an antigen-independent
manner and subsequently lead to the production of antigen-
specific, idiotype-carrying antibodies with neutralizing ability
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(101–104). Low levels of maternally derived anti-idiotypic
antibodies have been shown to provide a significant priming
effect on the immune system of the neonate, protecting neonatal
mice from pathogen challenges (104). Conversely, a high dose
of maternally derived idiotype and anti-idiotypic antibodies,
acquired via transplacental transfer or breastfeeding, may yield
to the observed blunting effect. Hence, based on the immune
network theory by Jerne (105), complex regulatory mechanisms
involving idiotype and anti-idiotypic antibodies underlie the
infant’s vaccine responses. Strikingly, using monoclonal anti-
idiotypic antibodies as a vaccine to immunize against measles,
mumps and rubella, against which to date can only be vaccinated
later in life, could allow to induce protection already at birth. This
would overcome a major window of vulnerability and reduce the
burden of disease in young infants.

VACCINATION COMPLIANCE DURING
PREGNANCY

Despite all these evidences highlighting the benefit of
vaccinations during pregnancy for mother and child, poor
vaccination compliance among women during their reproductive
years is still an alarming clinical problem. This poor vaccination
compliance is the result of a number of factors, including the
neglect of healthcare providers to offer vaccination, limited
availability and high costs of vaccines, doubts of the effectiveness
of vaccinations, concerns about the safety of the vaccine for
mother and fetus (106, 107). Continuous accumulation of
evidence that vaccination strategies can yield to significant health
advantages for mother and child and the communication to
researchers, lay individuals and stake holders will hopefully
improve the vaccination compliance in the near future.

CONCLUSION

A wealth of published evidence strongly underpins that
vaccination during pregnancy is advantageous not only for
maternal health, but also for children’s well-being. Especially
maternal vaccination against tetanus, diphtheria, pertussis and

influenza has been convincingly demonstrated by a large number
of studies to be safe, immunogenic and to provide significant
immunity to the newborn. The latter could not only be confirmed
by the mere presence of maternally derived pathogen-specific
antibodies in newborns, but indeed a reduced risk for pertussis
and a broad protection from lower respiratory tract infections,
even beyond infection with the influenza virus. Noteworthy,
the downside of high levels of maternal antibodies against
pathogens, the induction of immunological blunting in the
infant, seems to dampen the neonatal response to early life
vaccinations and causes a threat to neonatal health. The reduced
risk for neonatal infections due to maternally derived immunity
however, clearly proves that blunting-related disadvantages are
outweighed by the advantages. This has been confirmed by a
recent study which reports that measles vaccination of infants
in the presence of maternal anti-measles antibody significantly
reduced overall infant mortality, compared to vaccinated infants
without maternal antibodies (108). Lastly, the poor vaccination
compliance is a challenge that must urgently be met, for example
by implementing maternal immunization platforms through
which education and communication of vaccination-related
benefits are facilitated and vaccines are routinely offered in order
to increase the willingness and subsequently the vaccination rate
of pregnant women.
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CD8+ T cells, the most abundant T cell subset in the decidua, play a critical role in

the maintenance of pregnancy. The majority of decidual CD8+ T cells have an effector

memory phenotype, while those in the peripheral blood display a naive phenotype. An

increased amount of highly differentiated CD8+ T cells in the decidua indicates local

antigen stimulation and expansion, albeit these CD8+ T cells are suppressed. In decidual

CD8+ T cells, co-inhibitory molecules such as PD-1, TIM-3, LAG-3, and CTLA-4 are

upregulated, reflecting the suppression of cytotoxicity. Previous studies established the

importance of the PD-1/PD-L1 interaction for feto-maternal tolerance. CD8+ T cells could

directly recognize fetal-specific antigens, such as HLA-C, expressed by trophoblasts.

However, although fetal-specific CD8+ T cells have been reported, their TCR repertoires

have not been identified. In this study, we analyzed the TCR repertoires of effector

memory CD8+ T cells (CD8+ EM cells) and naive CD8+ T cells (CD8+ N cells) in the

decidua and peripheral blood of women with normal or complicated pregnancy and

examined PD-1 expression at a single-cell level to verify whether antigen-specific CD8+

T cells accumulate in the decidua and to identify immunological differences related to the

suppression of antigen-specific CD8+ T cells between normal pregnancy, miscarriage,

and preeclampsia. We observed that some TCRβ repertoires, which might recognize fetal

or placental antigens, were clonally expanded. The population size of clonally expanded

CD8+ EM cells was higher in the decidua than in the peripheral blood. CD8+ EM

cells began to express PD-1 during the course of normal pregnancy. We found that

the total proportion of decidual CD8+ EM cells not expressing PD-1 was increased

both in miscarriage and in preeclampsia cases, although a different mechanism was

responsible for this increase. The amount of cytotoxic CD8+ EM cells increased in cases

of miscarriage, whereas the expression of PD-1 in clonally expanded CD8+ EM cells was

downregulated in preeclampsia cases. These results demonstrated that decidual CD8+

EM cells were able to recognize fetal-specific antigens at the feto-maternal interface and

could easily induce fetal rejection.
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INTRODUCTION

Immune tolerance to the “semi-allogeneic” fetus is particularly
important for successful pregnancy. Decidual CD4+ T cells,
CD8+ T cells, and NK cells are activated during pregnancy (1);
in particular, decidual CD4+ T cells are activated when an HLA-
C mismatch is present between the mother and the fetus (2).
Maternal regulatory T cells (Treg cells) play an important role
in the maintenance of pregnancy by preventing rejection (3, 4).
During pregnancy, CD8+ T cells become predominant among
decidual immune cells and play a major role in feto-maternal
tolerance. The main population among decidual CD8+ T cells
(dCD8+ T cells) is represented by effector memory CD8+ T
cells (CD8+ EM cells) that are thought to potentially induce fetal
rejection, while the predominant population among peripheral
CD8+ T cells (pCD8+ T cells) are naive CD8+ T cells (CD8+

N cells) (5). Previous studies revealed functional differences
between decidual and peripheral CD8+ T cells. Decidual CD8+

EM cells (dCD8+ EM cells) exhibit higher production of
interferon-γ (IFN-γ) and interleukin-4 (IL-4), as well as reduced
perforin and granzyme B expression, compared to peripheral
CD8+ EM cells (pCD8+ EM cells) (5, 6). dCD8+ EM cells
express higher levels of inhibitory checkpoint molecules such as
programmed cell death-1 (PD-1), T cell immunoglobulin mucin-
3 (TIM-3), lymphocyte-activation gene-3 (LAG-3), and cytotoxic
T lymphocyte associated protein-4 (CTLA-4) compared to
pCD8+ EM cells (6–8). A high PD-1 expression was reported
in decidual immune cells such as CD8+ T cells, regulatory T
cells (Treg cells), and NKT-like cells (7, 9, 10), and programmed
cell death ligand-1 (PD-L1) was found to be highly expressed in
extravillous trophoblasts (EVT), syncytiotrophoblasts (ST), and
other immune cells at the feto-maternal interface (11–15). The
blockade of the PD-1/PD-L1 pathway results in increased fetal
resorption in mice (16), suggesting that this axis is necessary
for immune tolerance in the decidua. Therefore, the cytotoxicity
of CD8+ T cells in the decidua is regulated so as to promote
immune tolerance against fetal antigens during pregnancy, albeit
these cells maintain a cytotoxic potential against virus-infected
cells (17).

Immunological differences have been reported between
normal pregnancy, miscarriage, and preeclampsia. Ramhorst
et al. demonstrated that in non-pregnant women undergoing
recurrent pregnancy loss, the proportion of effector memory
T cells in the peripheral blood is higher than in fertile non-
pregnant women (18). Several studies reported that miscarriage
and preeclampsia are associated with a decreased number of Treg
cells (4, 19–23). Interestingly, clonally expanded decidual Treg
cells are decreased in preeclampsia but not in miscarriage (24).
In light of this increasing evidence, successful pregnancy seems
to require an appropriate functional change in cytotoxic CD8+ T
cells as well as a correct balance between cytotoxic CD8+ T cells
and Treg cells.

Paternal antigen-specific tolerance is necessary for the
maintenance of allogeneic pregnancy (4). Previous studies have
identified fetal antigen-specific CD8+ T cells and Treg cells in
mice (25, 26). However, the detection of fetal antigen-specific
CD8+ T cells and Treg cells is technically difficult in humans,

because of the high diversity of CDR3 amino acid sequences
in TCRβ, with a lower boundary of 2 × 107 in young humans
(27). We have previously reported the existence of clonally
expanded Treg cells by performing single-cell DNA sequencing
of T cell receptor β (TCRβ) (24). The population size of
clonally expanded Treg cells that are able to recognize fetal
antigens at the feto-maternal interface is increased in the decidua,
but not in the peripheral blood (24). In serial pregnancies,
Treg cells expressing the same TCR clonotypes across different
pregnancies were observed in the decidua, suggesting that these
cells might recognize fetal antigens (24). The clonal population
of decidual effector Treg cells is less abundant in preeclampsia
than in normal late pregnancy, suggesting that paternal antigen-
specific tolerance mediated by Treg cells might be disturbed
in this condition (24). As CD8+ T cells can recognize fetal
antigens at the feto-maternal interface, we hypothesized that
antigens recognizing CD8+ T cells would be clonally expanded
in the decidua, but that their function would be suppressed
during human pregnancy. In addition, we postulated that the
maldistribution or functional alteration of antigen-specific CD8+

T cells could underlie pregnancy complications.
In this study, we analyzed the TCRβ repertoire of decidual

and peripheral CD8+ EM cells and CD8+ N cells in women
undergoing normal pregnancy and in cases of miscarriage or
preeclampsia. We further examined the expression of PD-1
in these cells, to clarify whether antigen-specific CD8+ T cells
accumulated in the decidua, and to identify the mechanisms
underlying their suppression during normal pregnancy,
miscarriage, and preeclampsia. If decidual CD8+ T cells
recognize fetal antigens, CD8+ T cells with the same TCRβ

repertoire should be clonally expanded, and express elevated
levels of PD-1 during normal pregnancy. Therefore, a difference
in the proportion of antigen-recognizing CD8+ cells or in
the expression of PD-1 should be observable between normal
pregnancy, miscarriage, and preeclampsia.

MATERIALS AND METHODS

Blood and Tissue Samples
Paired samples of peripheral blood mononuclear cells (PBMC)
and decidual tissues were collected from 10 cases of artificial
abortion in the 1st trimester (1st trimester normal pregnancy),
6 cases of miscarriage with normal fetal chromosomes in the 1st
trimester (1st trimester miscarriage), 9 cases of uncomplicated
pregnancy with delivery in the 3rd trimester (3rd trimester
normal pregnancy), and 9 preeclampsia cases with delivery in the
3rd trimester (3rd trimester preeclampsia). As a control group,
6 samples of peripheral blood from age-matched healthy donors
who had never been pregnant were collected. Written informed
consent was obtained from all women in accordance with a
protocol approved by the Ethical Review Board of the University
of Toyama (Rin-28- 144). In the artificial abortion cases, the
fetal heartbeat was confirmed before dilation and evacuation.
For miscarriage cases, the diagnosis was formulated when the
fetal heartbeat was lost or when the fetal heartbeat had not
been detected inside the gestational sac for at least 2 weeks.
In miscarriage cases, isolated chorionic villi were examined for

Frontiers in Immunology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 108231

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Morita et al. Clonally Expanded CTL in Pregnancy

TABLE 1 | Demographic and clinical characteristics.

Control 1st trimester 3rd trimester

No

pregnancy

history

Normal

pregnancy

Miscarriage with

normal fetal

chromosomes

Normal

pregnancy

Preeclampsia

(n = 6) (n = 10) (n = 6) (n = 9) (n = 9)

Maternal age (years)a 30 (25–35) 26 (22–39) 34 (26–41) 32 (22–36) 36.5 (28–41)

Body Mass Index (kg/m2)a NA 18.6 (16.7–21.2) 21.4 (16.4–27.6) 18.4 (17.7–24.9) 23.7 (17.6–26.0)

Graviditya 0 (0–0) 4 (1–7) 4 (3–7) 2 (1–3) 2 (1–5)

Paritya 2 (0–4) 0.5 (0–2) 1 (0–2) 0 (0–3)

Live birtha 2 (0–4) 0.5 (0–3) 1 (0–2) 0 (0–3)

Miscarriagea 0 (0–3) 2 (0–4) 0 (0–1) 0 (0–4)

Still Birth n (%) 0 (0.0) 0 (0.0) 2 (22.2) 0 (0.0)

Nullipara n (%) 3 (30.0) 3 (50.0) 4 (44.4) 6 (66.7)

Gestational week (weeks)a 8 (6–9) 8 (6–8) 38 (37–40) 35.5 (32–39)

Cesarean section (patient number) n (%) 5 (55.6) 5 (55.6)

aData are presented as median (range). NA: not available. Steel–Dwass test and Fisher’s exact test were used for continuous and categorical variables, respectively. No statistically

significant differences were observed between the groups.

fetal chromosomal karyotype by G-band staining, and only cases
with normal fetal chromosomes were enrolled. The diagnosis of
preeclampsia was based on the guidelines of the International
Society for the Study of Hypertension in Pregnancy (28). Both
the peripheral blood (10mL) and the decidual tissues were
obtained at dilation and evacuation, or after vaginal delivery or
elective cesarean section. First-trimester decidual samples were
derived from uterine content. Third-trimester decidual tissues
were macroscopically dissected from the maternal surface of the
placenta. The clinical and demographic characteristics of the
enrolled patients are summarized in Table 1.

Mononuclear Cell Isolation
Peripheral blood samples were layered on Ficoll Hypaque
gradients (LymphoprepTM; Alere Technologies, Norway)
for density gradient centrifugation (453 × g for 30min).
Mononuclear cells were isolated and washed twice with
phosphate-buffered saline (PBS). Decidual tissues were rinsed
thoroughly with PBS and minced into 1–2mm pieces by a pair
of scalpel blades in Dulbecco’s Modified Eagle Medium. Then,
the suspensions were filtered through a 32µm nylon mesh as
reported elsewhere (24). All samples were cryopreserved until
single-cell analysis.

Single-Cell Sorting
The following monoclonal antibodies were used for cell staining:
anti-CD3 (FITC; BD Biosciences, San Jose, CA, USA), anti-CD8
(APC; eBioscience, San Diego, CA, USA), anti-CD45RA (PE; BD
Biosciences), anti-CCR7 (PerCP/Cy 5.5; BioLegend, San Diego,
CA, USA), anti-PD-1 (PE/Cy7; BioLegend), and Fixable Viability
Dye (APC-Cy7; eBioscience). Both PBMC and decidual cells were
stained with anti-CD3, anti-CD8, anti-CD45RA, anti-CCR7, and
anti-PD-1 for 20min on ice and then incubated for 5min with
Fixable Viability Dye to exclude dead cells. After staining, the cells
were washed with PBS. Flow cytometric analysis and single cell

sorting were performed using a FACSAria II flow cytometer (BD
Biosciences). CD3+CD8+CD45RA+CCR7+ cells (naive CD8+

T cells; CD8+ N cells) and CD3+CD8+CD45RA−CCR7− cells
(effector memory CD8+ T cells; CD8+ EM cells) were single cell
sorted into 96-well PCR plates (Supplementary Figures 1A,B).
PD-1 expression in each cell was analyzed by the index sort
method (Supplementary Figure 1C) (29).

TCR Repertoire Analysis
TCR cDNAs were amplified from single cells using one-step
RT-PCR, as previously described (30). All primers are listed
in Supplementary Table 1. The contents of the PCR reaction
mixture are listed in Supplementary Table 2. For the one-step
RT-PCR, 5 µL of the RT-PCR mixture were added to each well
containing a single CD8+ T cell. The program for the one-step
RT-PCR was as follows: 40min at 45◦C for the RT reaction,
98◦C for 1min and 30 cycles of 98◦C for 10 s, 52◦C for 5 s,
72◦C for 1min. The amplification products were diluted 10-
fold and 2 µL of each were added to 18 µL of the second PCR
mixture. The PCR program for the second PCR cycle for TCRβ

was as follows: 98◦C for 1min and 35 cycles of 98◦C for 10 s,
52◦C for 5 s, 72◦C for 30 s. PCR products were electrophoresed
to confirm their amplification (Supplementary Figure 2A) and
then analyzed by direct sequencing. The TCR repertoire was
analyzed with the IMGT/V-QUEST tool (http://www.imgt.org/).
We defined CD8+ T cells in which the same TCRβ clonotype
was detected two or more times as clonally expanded populations
(clonal populations), and CD8+ T cells with a unique TCRβ

clonotype as unique populations (Supplementary Figure 2B).
The frequency of clonal populations and their PD-1 expression
were compared in all groups.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism version
8 (GraphPad Software, San Diego, CA, USA). The differences
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FIGURE 1 | Proportion of CD8+ EM and CD8+ N cells among total CD8+ T cells. The proportion of CD8+ EM cells among CD8+ T cells (A) and that of CD8+ N cells

among CD8+ T cells (B) are shown. Statistical analysis was performed using Wilcoxon matched-pairs single rank test (PBMC vs. decidua in each group); *p < 0.05;

**p < 0.01. Mann-Whitney U-test (control vs. 1st or 3rd trimester normal pregnancy, 1st vs. 3rd trimester normal pregnancy, 1st trimester normal pregnancy vs.

miscarriage, 3rd trimester normal pregnancy vs. preeclampsia);
†
p<0.05; ‡p<0.01.

between PBMC and decidua in each group were assessed using
the Wilcoxon matched-pairs single rank test. A Mann-Whitney
U test was performed to determine the differences between
PBMC or decidual samples of different groups via two-group
comparisons (control vs. 1st trimester or 3rd trimester normal
pregnancy, 1st trimester vs. 3rd trimester normal pregnancy, 1st
trimester normal pregnancy vs. miscarriage, and 3rd trimester
normal pregnancy vs. preeclampsia). p < 0.05 were considered
indicative of statistical significance (∗p < 0.05; ∗∗p < 0.01 in
Wilcoxon matched-pairs single rank test; †p < 0.05; †p < 0.01
in Mann-Whitney U test; NS, not significant).

RESULTS

CD8+ T Cell Phenotype in PBMC and
Decidua
To examine functional differences between peripheral
CD8+ T cells (pCD8+ T cells) and decidual CD8+

T cells (dCD8+ T cells), we compared the proportion of
effector memory CD8+ T cells (CD8+ EM cells) and naive CD8+

T cells (CD8+ N cells) in the PBMC and decidua. A significantly
higher number of CD8+ EM cells was observed in the decidua
compared to the PBMC throughout the pregnancy period in
normal pregnancy subjects, miscarriage cases, and preeclampsia
cases (Figure 1A). In contrast, CD8+ N cells were significantly
more abundant in the PBMC than in the decidua (Figure 1B).
Therefore, dCD8+ T cells showed a distinct phenotype compared
to pCD8+ T cells.

Clonal Populations of CD8+ T Cells
To verify our hypothesis that clonally expanded CD8+ T
cells accumulate in the decidua, we analyzed the TCRβ

clonotype of CD8+ T cells and their clonality ratio. As
shown in Figure 2A and Supplementary Figure 3A, clonally
expanded CD8+ T cell populations were observed both

in the peripheral and decidual CD8+ EM cells. However,
they were rarely detected in CD8+ N cells (Figure 2B,
Supplementary Figure 3B). The clonality ratios of pCD8+

EM and dCD8+ EM cells among CD8+ EM cells were similar
in early pregnant subjects, miscarriage cases, late pregnancy
subjects, and preeclampsia cases (Supplementary Figure 3A).
However, as shown in Figure 2A, the total amount
of clonally expanded CD8+ EM cells among CD8+ T
cells in the decidua was significantly higher than in the
peripheral blood.

The total proportion of clonally expanded dCD8+ EM cells
was significantly higher in miscarriage cases than in subjects
with normal early pregnancy (p < 0.05). On the other hand, this
population did not significantly differ between preeclampsia and
normal late pregnancy (Figure 2A). These results demonstrated
that dCD8+ EM cells are likely to recognize fetal or placental
antigens in the decidua and are clonally expanded. An increased
proportion of clonally expanded CD8+ EM cells was found to be
associated with miscarriage.

Common TCRβ Clonotype Between PBMC
and Decidua
In each subject the TCRβ clonotype of CD8+ T cells was
compared in paired PBMC and decidua to identify differential
immunological functions (Figure 3). One representative sample
of normal late pregnancy is shown in Figures 3A–C (case
number #2). The proportion of clonally expanded CD8+ EM cells
was comparable in PBMC and the decidua (Figure 3A). TCRβ

clonotypes of clonally expanded CD8+ T cells and/or TCRβ

clonotypes that are common to both pCD8+ T cells and dCD8+ T
cells are shown in a row (A to Q) in Figure 3B (the different color
density indicates the number of clones). Eight TCRβ clonotypes
were shared between pCD8+ EM cells and dCD8+ EM cells
(clonotypes A, B, C, D, I, N, O, and P in Figures 3B,C). Common
TCRβ clonotypes between pCD8+ EM cells and dCD8+ EM cells
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FIGURE 2 | Clonal populations of CD8+ EM and CD8+ N cells among total CD8+ T cells. Clonally expanded CD8+ EM cells (A) and CD8+ N cells (B) among CD8+ T

cells. Due to their small amount, CD8+ N cells could not be sorted in all samples. The number of cases analyzed in each group is shown under the horizontal axis.

Statistical analysis was performed in CD8+ EM cells (A) by using Wilcoxon matched-pairs single rank test (PBMC vs. decidua in each group); *p < 0.05; **p < 0.01.

Mann-Whitney U test (control vs. 1st or 3rd trimester normal pregnancy. 1st vs. 3rd trimester normal pregnancy, 1st trimester normal pregnancy vs. miscarriage, 3rd

trimester normal pregnancy vs. preeclampsia); †p < 0.05; NS not significant.

were detected in all groups (Figure 3D). We calculated the ratios
of pCD8+ EM cells and dCD8+ EM cells expressing common
TCRβ clonotypes among the total CD8+ EM cells analyzed in
each group. The ratios were comparable in all groups: 17.3%
in 1st trimester normal pregnancy, 14.2% in miscarriage, 14.5%
in 3rd trimester normal pregnancy, and 16.3% in preeclampsia
(see the numbers above the bars in Figure 3D). These findings
indicated that the immunological differences between normal
pregnancy, miscarriage, and preeclampsia did not depend on
the proportion of CD8+ EM cells expressing common TCRβ

clonotypes in PBMC and the decidua.

TCRβ Clonotype Comparison of the Serial
Pregnancies
If decidual CD8+ T cells recognize fetal antigens of paternal
origin, CD8+ T cells with the same TCRβ clonotypes should be
detected in different pregnancies of the same couple. To verify
this hypothesis, we examined the TCRβ clonotypes of peripheral
and decidual CD8+ EM cells in two pregnancies of the same
subject with normal early pregnancy (Figure 4A). As shown
in Figure 4B, the same TCRβ clonotypes were detected. Three
TCRβ clonotypes (clone E, I, and J in Figure 4B) were shared
by pCD8+ EM cell populations during the two pregnancies.
Twelve TCRβ clonotypes (clone F, L, M, N, O, R, S, T, U, V,
W, and X in Figure 4B) were found in dCD8+ EM cells from
both pregnancies. Three TCRβ clonotypes (clone B, F, and K
in Figure 4B) were shared between pCD8+ EM cells from the
former pregnancy and dCD8+ EM cells from the subsequent
pregnancy. Two TCRβ clonotypes (clone E and L in Figure 4B)
were shared by dCD8+ EM cells from the former pregnancy and
pCD8+ EM cells from the subsequent pregnancy; some clones
were expanded in both pregnancies. CD8+ EM cells exhibiting

the same TCRβ clonotypes in different pregnancies might be able
to recognize fetal antigens.

PD-1 Expression in CD8+ T Cells
Finally, the expression of PD-1 was analyzed in CD8+ T
cells to identify immunological differences between normal
pregnancy, miscarriage, and preeclampsia. Most CD8+ N
cells were PD-1low/− cells, both in the PBMC and the
decidua (Supplementary Figure 4C). Among CD8+ EM cells,
the size of the PD-1low/− population was significantly lower
in the decidua than in PBMC (Supplementary Figure 4A). In
normal pregnancies, decidual PD-1low/− CD8+ EM cells were
significantly less abundant in late than in early pregnancy
(p < 0.05) (Supplementary Figure 4A). When we focused
on clonally expanded CD8+ EM cell populations, significant
differences in decidual PD-1 expression were observed between
normal pregnancy and preeclampsia cases during late pregnancy
(Figures 5A,B). The population size of PD-1high dCD8+ EM
cells was significantly lower in preeclampsia than in normal late
pregnancy (p< 0.05) (Figure 5A), indicating that the proportion
of PD-1low/− dCD8+ EM cells with high cytotoxic potential
was increased in the clonal population of preeclampsia cases
(Figure 5B). These findings indicated that dCD8+ EM cells had
a higher level of PD-1 expression compared to pCD8+ EM
cells, and that they begin to express PD-1 during pregnancy.
An increased number of PD-1low/− CD8+ EM cells would result
in miscarriage, whereas, on the contrary, the downregulation of
PD-1 in clonally expanded CD8+ EM cells would be associated
with preeclampsia.

DISCUSSION

This study is the first to analyze the TCRβ repertoire
and the expression of PD-1 in CD8+ T cells during
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FIGURE 3 | Comparison of TCRβ clonotype between PBMC and decidua. (A–C) A representative example of normal late pregnancy (case number #2). (A) Analysis of

the TCRβ repertoire in peripheral CD8+ EM cells (pCD8+ EM cells) and decidual CD8+ N cells (dCD8+ N cells). Each pie slice in color indicates the T-cell population

expressing the same clonotypic TCRβ. The numbers of CD8+ T cells expressing the same TCRβ are shown in the pie charts. The white slice in each pie chart

indicates the T cell population with unique TCR. The number in the center of the pie charts is the total number of analyzed T cells. The proportion of clonal cells was

calculated as follows: clonal population (%) = clonal CD8+ T cells/total CD8+ T cells analyzed. (B) The TCRβ clonotypes were compared between pCD8+ EM,

(Continued)
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FIGURE 3 | pCD8+ N dCD8+ EM, and dCD8+ N cells. TCRβ clonotypes of clonally expanded CD8+ T cells in PBMC or decidua and/or TCRβ clonotypes in common

between pCD8+ T and dCD8+ T cells are shown in a row (A to Q) (the color density reflects the number of clones). (C) Clones of clonally expanded CD8+ EM cells

and/or clones that were shared between pCD8+ EM and dCD8+ EM cells are shown. The number above or under each bar is the percentage of the CD8+ EM cells

with a particular TCR clone among total CD8+ EM cells with an identified TCRβ repertoire. (D) Comparison of the TCRβ clonotype between pCD8+ EM and dCD8+

EM cells in all cases. The blue bar indicates the CD8+ EM cell population with common TCRβ clonotype among total CD8+ EM cells with an identified TCRβ repertoire

in PBMC; the orange bar indicates the corresponding population in the decidua. The total number of pCD8+ EM and dCD8+ EM cells expressing common TCRβ

repertoires in all CD8+ EM cells of each group was calculated (the numbers above the bars in each group).

pregnancy. The most abundant population of clonally
expanded CD8+ EM cells was observed in the decidua.
The proportion of clonally expanded CD8+ EM cells
increased in cases of miscarriage, whereas PD-1 expression
was downregulated in clonally expanded CD8+ EM cells in
preeclampsia cases.

CD8+ T cells have a crucial role in immune tolerance at
the feto-maternal interface. Previous studies have examined
the distribution, phenotypes, gene, and cell surface protein
expression, as well as functional properties of CD8+ T cells in
both normal and complicated pregnancies (5, 7, 16, 17, 31, 32).
Local expansion of highly differentiated decidual CD8+ T cells
implies direct response to fetal-specific antigens. However, due to
CD8+ T cell heterogeneity, it is unclear whether these decidual
CD8+ T cells recognize fetal antigens. In recent studies, Zeng
et al. performed a transcriptional analysis of paired pCD8+ T
and dCD8+ T cell populations in the 1st trimester and revealed
differences in gene regulation (33). Powell et al. identified fetal
antigen-specific CD8+ T cells, both in the peripheral blood and
the decidua, using HY-specific dextramers in humans (6, 34).
The proportion of HY-specific CD8+ T cells was significantly
increased in the decidua and most of them were CD8+ EM
cells expressing the co-inhibitory molecule, PD-1 (6). These
findings support the notion that CD8+ T cells recognizing
fetal antigens exist but are functionally suppressed due to PD-
1 expression at the feto-maternal interface. However, although
minor populations of CD8+ T cells can be detected by the MHC-
multimer approach, the extent of diversity of antigen-specific
CD8+ T cells is still unclear. To our knowledge, this study is the
first to examine the TCRβ repertoire of CD8+ EM cells and CD8+

N cells during pregnancy at the single-cell level. We also analyzed
the clonotypes and PD-1 expression in these cells to identify
tolerogenic differences between normal pregnancy, miscarriage,
and preeclampsia.

Previous studies demonstrated that effector memory cells
are the major subset of decidual CD8+ T cells, whereas
naive cells predominate in the peripheral blood (5). Our
results were consistent with previous studies (Figure 1) (5);
we found that the proportion of CD8+ EM cells among
decidual CD8+ T cells neither differed between normal early
pregnancy and miscarriage, nor between normal late pregnancy
and preeclampsia (Figure 1A). These findings indicated that
pregnancy failure was not due to alterations in the proportion of
CD8+ EM cells in early or late pregnancy.

Clonally expanded CD8+ T cells were observed in the effector
memory subset but not in the naive subset (Figure 2), reflecting
previous TCR stimulation and CD8+ T cell differentiation.
A larger volume of clonally expanded CD8+ EM cells was

observed in the decidua than in PBMC, and in late pregnancy
compared to early pregnancy (Figure 2A). This suggested that
CD8+ EM cells were expanded by antigen stimulation at the
feto-maternal interface.

We observed common clonotypes between peripheral and
decidual CD8+ EM cells (Figures 3B–D), reflecting the presence
of effector memory T cell signatures in the systemic circulation.
The ratio of CD8+ EM cells with common TCRβ clonotype
was comparable in each group (Figure 3D), suggesting that
the immunological differences between normal pregnancy,
miscarriage, and preeclampsia did not depend on the proportion
of CD8+ EM cells expressing the same TCRβ clonotype in PBMC
and the decidua. CD8+ EM cells with common clonotypes in
PBMC and the decidua might react with microchimeric fetal cells
in the periphery (35–38).

If clonally expanded CD8+ EM cells recognize fetal antigens,
the same TCRβ clonotype should be detected in different
pregnancies of the same couple. Indeed, we found that some
clonotypes were maintained across different pregnancies of the
same patient (Figures 4B–D). Because of the high diversity of
the CDR3 amino acid sequence in TCRβ, with a lower boundary
of 2 × 107 in young humans (27), these clonotype matches are
unlikely to occur by chance. CD8+ EM cells with these TCR
clonotypes might recognize the same fetal or placental antigens.
In case of HLA-Cmismatch betweenmother and fetus, and in the
presence, in consecutive pregnancies, of the same paternal HLA-
C, this could be recognized by CD8+ EM cells with the same
TCRβ clonotype. Similarly, if the fetal sex of both pregnancies
is male, the CD8+ EM cells might be HY-specific. Further studies
are necessary to determine the antigens recognized by clonally
expanded CD8+ EM cells. Another question to be addressed is
whether clonally expanded CD8+ EM cells increase in parous
women. As shown in Supplementary Figure 5, no differences in
the size of clonally expanded CD8+ EM cell populations seemed
to occur between nullipara and parous women. These findings
suggested that the proportion of clonally expanded CD8+ EM
cells did not increase in subsequent pregnancies.

The proportion of decidual PD-1low/− CD8+ EM cells
was larger in normal early pregnancy than in normal late
pregnancy (Figure 5B); therefore, dCD8+ EM cells acquired
PD-1 expression during late pregnancy. Wang et al. reported
increased PD-1 expression in CD8+ T cells after co-culture with
trophoblasts (7), suggesting that cell-cell interactions may induce
PD-1 expression in CD8+ T cells at the feto-maternal interface.
Other studies proposed the existence of CD8+ regulatory T
cells with high PD-1 expression (39, 40). Therefore, the clonally
expanded PD-1high CD8+ EM cells detected in our study might
be regulatory cells.
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FIGURE 4 | Comparison of the TCRβ clonotype during normal early pregnancy in consecutive pregnancies of the same subject (case numbers #2 and #10, obtained

from the same patient). (A) Analysis of the TCRβ repertoire in pCD8+ EM and dCD8+ EM cells in different pregnancies of the same series. (B) TCRβ clonotype

comparison in different pregnancies of the same series. TCRβ clonotypes of clonally expanded CD8+ EM cells in PBMC or decidua and/or TCRβ clonotypes in

common between pCD8+ EM and dCD8+ EM cells are shown in a row (A to W, a to e) (the color density indicates the number of clones). Comparison of CD8+ EM

TCRβ clonotype between two different pregnancies in PBMC (C) and the decidua (D). The number above or under each bar is the percentage of CD8+ EM cells with

a particular TCR clone among total CD8+ EM cells with an identified TCRβ repertoire.
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FIGURE 5 | PD-1high and PD-1low/− CD8+ EM cell populations. (A) PD-1high CD8+ EM cells among clonally expanded CD8+ EM cells. (B) PD-1low/− CD8+ EM cells

among clonally expanded CD8+ EM cells. Statistical analysis was performed using Wilcoxon matched-pairs single rank test (PBMC vs. decidua in each group); **p <

0.01. Mann-Whitney U-test (1st vs. 3rd trimester normal pregnancy, 1st trimester normal pregnancy vs. miscarriage, 3rd trimester normal pregnancy vs.

preeclampsia); †p<0.05; ‡p<0.01; NS, not significant.

Clonally expanded CD8+ EM cells exhibited informative
differences between normal pregnancy, miscarriage, and
preeclampsia in terms of clonality and PD-1 expression. In
the 1st trimester, a significant increase in the proportion of
clonally expanded dCD8+ EM cells was observed in cases of
miscarriage compared to normal pregnancy. In early pregnancy,
most clonally expanded CD8+ EM cells were PD-1low/−.
This suggested that an increase in antigen specific PD-1low/−

cytotoxic CD8+ EM cells at the feto-maternal interface might
lead to miscarriage.

In contrast, in the 3rd trimester, the proportion of PD-
1low/− CD8+ EM cells among clonally expanded CD8+ EM
cells was significantly increased in preeclampsia cases compared
to normal pregnancy, despite a similar proportion of clonally
expanded CD8+ EM cells (Figures 2A, 5B). Remarkably, the
amount of PD-1low/− CD8+ EM cells with unique TCRs
did not differ between preeclampsia and normal pregnancy
(Supplementary Figure 4B). These data suggest that antigen-
specific CD8+ EM cells are less exhausted in preeclampsia.

We have previously reported that the total amount of decidual
effector Treg cells is decreased in cases of miscarriage, whereas
the size of clonal populations of decidual effector Treg cells is
comparable in normal early pregnancy and miscarriage cases
(24). On the other hand, the proportion of clonally expanded
effector Treg cells in the decidua is lower in preeclampsia
cases than in normal late pregnancy (24). Altogether, these
observations indicate that the reduced proportion of non-specific
decidual effector Treg cells and the increased proportion of
clonally expanded PD-1low/− cytotoxic dCD8+ T cells might
lead to miscarriage in early pregnancy. In contrast, the decreased
proportion of antigen-specific decidual effector Treg cells and
the decreased expression of PD-1 in clonally expanded dCD8+ T
cells might induce fetal rejection in preeclampsia. These results
suggested that, in preeclampsia, antigen-specific tolerance was

disrupted both in Treg cells and CD8+ T cells. This is in
good accord with the epidemiology of human preeclampsia. The
risk of preeclampsia increases in women at the first pregnancy
following a partner change and after pregnancy intervals of
more than 10 years (41–43). Increased risk of preeclampsia
has also been reported in association with long-term condom
usage and artificial insemination by donor, indicating that
insufficient paternal antigen-specific tolerance mediated by
seminal plasma priming may underlie preeclampsia (44–46).
Pregnancy following oocyte donation, in which the fetus is
completely allogeneic, associates with a significantly high risk of
preeclampsia (45, 47). These epidemiological data demonstrate
that the failure or lack of paternal antigen-specific tolerance
may be responsible for preeclampsia. In addition, Barton et al.
demonstrated that after the reencounter of fetal antigens by
fetal antigen-specific CD8+ T cells, PD-1 expression was more
effectively promoted in parous mice than virgin mice (48). The
exposure to fetal antigens could promote PD-1 expression in
CD8+ T cells, explaining the relatively high expression of PD-1 in
late normal pregnancy. These epidemiological and experimental
data suggest that the disruption of paternal antigen-specific
tolerance in preeclampsia possibly affects PD-1 expression
in CD8+ T cells, consistent with the PD-1 downregulation
that we observed in clonally expanded CD8+ EM cells of
preeclampsia cases.

Nevertheless, there are several limitations in this study.
First, we assumed that clonally expanded CD8+ T cells might
recognize fetal-specific antigens, but the target specificity of
TCRs from CD8+ T cells has not been assessed. Second,
although we assumed that clonally expanded dCD8+ EM
cells were cytotoxic, this assumption was not verified. Third,
we focused on PD-1 expression, while alterations of other
co-inhibitory molecules and cytokine expression have been
reported in miscarriage and preeclampsia. Extensive analysis of

Frontiers in Immunology | www.frontiersin.org 9 June 2020 | Volume 11 | Article 108238

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Morita et al. Clonally Expanded CTL in Pregnancy

these factors as well as the TCR repertoire may help understand
the immunological differences between normal pregnancy,
miscarriage, and preeclampsia. An additional limitation is that
the detrimental immune reactivity of CD8+ T cells observed
in miscarriage and preeclampsia may be partly due to different
timing of sample collection (at 6–8 gestational weeks in
miscarriage, and at 32–39 gestational weeks in preeclampsia),
albeit this problem cannot be overcome.

In conclusion, CD8+ EM cells might recognize some antigens
at the feto-maternal interface, which are clonally expanded in
the decidua. Clonally expanded dCD8+ EM cells expressed
PD-1 on their surface during late pregnancy, although most
of them did not express PD-1 during early pregnancy. The
total proportion of PD-1low/− clonally expanded CD8+ EM
cells increased in both miscarriage and preeclampsia cases, but
the mechanisms behind this phenomenon were distinct. In
miscarriage cases, the proportion of clonally expanded CD8+

EM cells increased. On the other hand, in preeclampsia, clonally
expanded dCD8+ EM cells exhibited low PD-1 expression.
Based on the results of this and our former study, we can
conclude that, in miscarriage, the total proportion of decidual
effector Treg cells decreased, while that of clonally expanded
dCD8+ EM cells increased. Moreover, in preeclampsia, the
proportion of clonally expanded decidual effector Treg cells
decreased and PD-1 expression was downregulated in the
clonally expanded dCD8+ EM cells. Thus, the recognition of
fetal antigens by clonally expanded Treg cells and CD8+ EM
cells would easily induce fetal rejection. In future studies, we
will attempt to clarify which antigens are recognized by clonally
expanded TCRβ.
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Not All About FoxP3
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In pregnancy, the semi-allogeneic fetus needs to be tolerated by the mother’s immune

system. Regulatory T cells (Tregs) play a prominent role in this process. Novel

technologies allow for in-depth phenotyping of previously unidentified immune cell

subsets, which has resulted in the appreciation of a vast heterogeneity of Treg subsets.

Similar to other immunological events, there appears to be great diversity within the Treg

population during pregnancy, both at the maternal-fetal interface as in the peripheral

blood. Different Treg subsets have distinct phenotypes and various ways of functioning.

Furthermore, the frequency of individual Treg subsets varies throughout gestation and is

altered in aberrant pregnancies. This suggests that distinct Treg subsets play a role at

different time points of gestation and that their role in maintaining healthy pregnancy is

crucial, as reflected for instance by their reduced frequency in women with recurrent

pregnancy loss. Since pregnancy is essential for the existence of mankind, multiple

immune regulatory mechanisms and cell types are likely at play to assure successful

pregnancy. Therefore, it is important to understand the complete microenvironment of

the decidua, preferably in the context of the whole immune cell repertoire of the pregnant

woman. So far, most studies have focused on a single mechanism or cell type, which

often is the FoxP3 positive regulatory T cell when studying immune regulation. In this

review, we instead focus on the contribution of FoxP3 negative Treg subsets to the

decidual microenvironment and their possible role in pregnancy complications. Their

phenotype, function, and effect in pregnancy are discussed.

Keywords: regulatory T (Treg) cells, pregnancy, preeclampsia, Tr1 regulatory cells, Th3 regulatory cells, HLA-G

Treg, immune tolerance, recurrent pregnancy loss (RPL)

PLACENTAL DEVELOPMENT AND IMMUNE EVASION BY
TROPHOBLASTS

The most striking feature of pregnancy is that a semi-allogeneic fetus is tolerated by the maternal
immune system. This is in sharp contrast with solid organ transplantation, where an allograft will
be rejected by the patient’s immune system unless the patient takes immunosuppressive drugs.
Since direct contact between maternal and fetal cells occurs at the maternal-fetal interface in the
placenta, it is thought that maternal immune cells in the placenta do not attack the fetal cells
(trophoblasts) because of the tolerogenic microenvironment created by regulatory T cells (Tregs)
and other immune cells.
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FIGURE 1 | Schematic overview of the maternal-fetal interface at different trimesters. (A) During first-trimester, the maternal immune cells in the decidua can come

into contact with fetal syncytiotrophoblasts, when around weeks 11–12 the maternal blood flow commences (B) a second maternal-fetal interface occurs. The

maternal immune cells in the periphery can come into contact with fetal syncytiotrophoblasts, while the maternal decidual immune cells are in contact with the fetal

extravillous trophoblasts. Indicating immunotolerance needs to adapt during the shift in gestation.

Trophoblast Development
The main function of the placenta is to provide oxygen and
nutrients to the developing fetus. In the first-trimester, nutrients
are mainly provided by uterine glands in a hypoxic environment
as no active maternal blood flow has been established yet. Once
active maternal blood flow in the placenta has commenced
around weeks 11–12 of gestation, oxygen and nutrients are
exchanged over a thin lining of fetal cells. Since the fetus is semi-
allogeneic, as it inherits both maternal and paternal antigens, the
fetal trophoblast cells may potentially be recognized as foreign
by maternal immune cells. Three main types of trophoblasts can
be distinguished: cytotrophoblasts (CTBs), syncytiotrophoblasts
(SCTs), and extravillous trophoblasts (EVTs). At the beginning
of the first trimester, the maternal-fetal interface consists of
the maternal parenchymal cells in the decidua and the fetal
SCTs (Figure 1A). Later in pregnancy, this interface is mainly
represented by maternal decidual cells and the EVTs (Figure 1B),
where a distinction is made between decidua basalis and decidua
parietalis. Importantly, a second maternal-fetal interface is
established when active maternal blood flow in the placenta
has commenced. The maternal peripheral blood then comes
into contact with the SCTs lining the fetal villi. From the
moment these maternal-fetal interfaces have been established,
it is of utmost importance for maternal immune cells to keep
the balance between tolerizing the semi-allogeneic fetus, and at

Abbreviations: Tregs, regulatory T cells; tTreg, thymic derived regulatory T
cell; pTreg, periphery induced regulatory T cell; EVTs, cytotrophoblasts (CTBs),
syncytiotrophoblasts (SCTs), and extravillous trophoblasts; HLA, human leukocyte
antigen; APCs, antigen presenting cells; KIR, killer-cell immunoglobulin-like
receptor; TCR, T cell receptor; IDO, indoleamine 2,3-dioxygenase; dNK, decidual
NK; RPL, recurrent pregnancy loss; PE, pre-eclampsia; SNPs, single nucleotide
polymorphisms; NK, natural killer; ILCs, innate lymphoid cell; DCs, dendritic
cells; DC-10, tolerogenic DCs; mTOR, mammalian target of rapamycin; NO, nitric
oxide; TGF-β, transforming growth factor-beta; IFN-γ, interferon gamma.

the same time maintaining the ability to form a robust immune
response against pathogens upon infection.

Mechanisms by Trophoblasts for Avoiding
and Modulating Immune Responses
The classical human leukocyte antigen (HLA) class I molecules
HLA-A, -B, and -C are normally present on virtually all nucleated
cells in the body and present intracellular antigens to surveilling
T cells. Non-classical HLA molecules are selectively present, and
have initially been described on trophoblasts in the placenta
(1) and later also in other tissues (2–4). HLA class II is
mainly expressed by antigen-presenting cells (APCs), including
dendritic cells (DCs), macrophages, and B cells. Since the fetus
inherits half of its genes from the father, it also inherits half of
the paternal HLA alleles, which can potentially be recognized as
foreign by the maternal immune system.

One way for the trophoblasts to evade recognition by the
maternal immune system is lack of the polymorphic HLA-A, -
B, and HLA class II molecules on their cell surface. Interestingly,
EVTs do express polymorphic classical HLA-C molecules. The
regular function of these molecules is to present a wide variety
of pathogen-associated peptides to surveilling CD8+ T cells (5).
Since HLA-C is polymorphic, its presence on trophoblasts can
possibly also lead to allorecognition of the inherited paternal
HLA-C by maternal T cells (6). EVTs may help to tip the local
maternal immune balance toward tolerance by their expression
of non-classical HLA-E and HLA-G (7), and possibly also HLA-F
(8). The mechanisms responsible for the presence or absence of
the specific HLA class I types on trophoblasts have not fully been
elucidated yet (5). Expression of HLA molecules on trophoblasts
allows them to escape natural killer (NK) cell recognition (9).
HLA-G was first described on CTBs and has been shown to
induce immune tolerance (10, 11) (described below). HLA-E also
has tolerogenic properties as it can bind to the NK cell receptor
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CD94/NKG2A upon which NK cell activity is inhibited (12).
SCTs, which are in direct contact with the maternal blood, do not
express any HLAmolecules (13), which would potentially render
them sensitive to NK cell-mediated killing (13). However, for NK
cells killing an activating ligand needs to be present on the target
cell, which is likely missing on trophoblasts (14).

Trophoblasts express several molecules that are thought to
dampen alloimmune reactivity, including PD-L1, PD-L2, CD200,
and FasL (15–19), some of which are differentially expressed
throughout gestation (17). Trophoblasts are also known to
produce soluble factors with an immune-modulatory action,
such as soluble HLA-G (sHLA-G), transforming growth factor-
beta (TGF-β), and indoleamine 2,3-dioxygenase (IDO). TGF-β is
known to have various functions andwill be extensively discussed
below. Since IDO causes local tryptophan deprivation (20), which
is an essential amino acid required for T cell activation, elevated
local IDO levels lead to inhibition of T cell activation. Recently,
the role of galectins in pregnancy has become more apparent,
as they were found to play an important role in suppressing the
maternal immune system (21). Galectins on human trophoblasts
modulate a number of regulatory mechanisms (22), such as
induction of T cell apoptosis (23) and induction of Treg cell
development (24).

Maternal Immune Cells in the Decidua
Not only the composition of fetal cells in the placenta but also
the composition of maternal immune cells changes throughout
gestation. Already before conception, as early as seminal plasma
exposure, activation and proliferation of fetus-specific maternal
T cells in uterine draining lymph nodes have been observed in
murine models (25). In humans, maternal APCs and CD8+ T
cells seem to get recruited to the ectocervix upon coitus, but
their specificity remains unknown (26). In the first trimester of
human pregnancy, maternal leukocytes account for 30–40% of all
cells in the decidua (27). During this period, the most prominent
immune cells are decidual NK (dNK) cells (∼60%), macrophages
(∼20%), and T cells (∼10%) (27–29). During gestation, dNK cell
frequencies decrease, macrophage frequencies remain relatively
stable, and T cell frequencies increase (29). Next to these main
immune cell populations, innate lymphoid cell (ILCs) other than
NK cells, DCs, B cells, NKT cells, granulocytes, and mast cells are
found in the decidua (30–32).

Despite the many mechanisms that trophoblasts have to evade
an alloimmune response, fetus specific immune recognition
has been observed in mice (33). Furthermore, fetus-specific
CD8+ T cells (34, 35) and inherited paternal antigen (IPA)-
specific antibodies are found in maternal peripheral blood during
pregnancy (36–38). Both HLA-C and HLA-E restricted CD8+

T cells, specific for viral and bacterial peptides, are present in
humans (39). However, maternal CD8+ T cells could recognize
the paternally inherited HLA-C from the fetus or fetal minor
histocompatibility antigens, and if not suppressed are likely to
attack the fetal trophoblasts (34, 35). Besides this, ∼30% of
pregnancies result in the formation of paternal HLA-specific IgG
antibodies (38, 40). Allo-antibodies directed against HLA-C of
the fetus do not necessarily appear to be detrimental to pregnancy
outcome (41), but some studies do show that they are associated
with spontaneous preterm deliveries and recurrent pregnancy

loss (RPL) (42, 43). Therefore, to inhibit the effect of maternal
immune components, it is thought that local immune regulation
is required to prevent anti-fetal immunity.

MATERNAL TREG CELLS DURING
GESTATION

To prevent a detrimental immune reaction against the fetus,
maternal immune cells need to be regulated. The level of both
FoxP3+ and Foxp3− Tregs is increased in the peripheral blood
of pregnant women compared to non-pregnant control women
(44, 45).While the proportion of total T cells in the decidua is low
during the first trimester (∼10%), of which 10-30% of the CD4+

T cells are Tregs (28, 29, 46, 47), later in pregnancy the proportion
of Tregs significantly increases in the decidua [(46); van der
Zwan et al. submitted]. In mice the importance of Tregs during
implantation and for maintenance of a healthy pregnancy is
evident. This was shown in murine studies by injecting abortion
prone mice with CD25+ Tregs from wild-type pregnant mice,
which led to a significantly increased litter size (48). Alternatively,
depleting CD25+ Tregs during the implantation period of non-
synergistically mated mice caused high fetal resorption (49).
Depleting Tregs in the mid-gestation phase in non-sterile mice
also resulted in high fetal resorption (50). In a systematic
review of 17 studies on human pregnancy, it has been shown
that the number and functionality of Tregs are diminished in
women experiencing RPL, both in the peripheral blood and
in the decidua, compared to control women (51). Similarly, in
women with pre-eclampsia decreased Treg frequencies in both
the periphery and the decidua and impairment in the signaling of
peripheral blood Tregs have been found (45, 52, 53).

Using extensive mass cytometry panels containing more than
38 immune cell markers, we have previously shown that there is
great heterogeneity in immune cell subsets among the different
trimesters (van der Zwan et al. submitted). Interestingly, five
Treg-like clusters were found to be differently distributed over the
three trimesters. This could be attributed to the developmental
changes in the placenta, causing a constant change in the possible
cell-cell interactions between immune cells and different EVT
subsets that seem to exist over different trimesters (54). Apart
from that, a deficit in Treg presence and functionality has been
observed in pregnancy complications such as PE, infertility,
and RPL (55). Such complications arise at different periods of
pregnancy, i.e., during implantation, <22–24 weeks of gestation
or throughout gestation (56, 57). Taken together, as both Treg
subsets and the initiation of complications can be prominent in a
particular time frame of gestation, it might be that disbalances
in different Treg subsets could play a role in the onset of
different complications. Therefore, it is important to investigate
the presence and functioning of the wide range of Treg subsets
present during pregnancy.

ADVANCES IN TREG IDENTIFICATION

Regulatory T cells were originally named suppressor cells (58).
Ideas and insights changed over time, and suppressor cells have
endured much debate. In 1983 it was shown in mice that both
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CD8 (Lyt-2+) and CD4 (Lyt-2−) suppressor cells were present
that expressed the I-J molecule (59). When the I-J molecule
turned out not to exist and suppressor cells could not be
identified in any other way, interest in these cells waned. The
arrival of novelmolecular technologies propelled new knowledge,
which made immunological tolerance become more evident and
revived interest in T suppressor cells, now referred to as Tregs
(60). In 2001, the FoxP3 gene was identified in scurfy mice and
later as a key transcription factor for Treg cell development
and function in both humans and mice (61, 62). Subsequently,
several FoxP3− Treg subsets were identified, as will be discussed
below. Initially, it was hypothesized that Tregs could only be
generated in the thymus (tTregs), but in the 2000s this concept
was challenged by studies showing that Tregs could be induced
from conventional T cells in the periphery (pTregs) (63, 64).
It is thought that tTregs and pTregs function in distinct ways,
recognize different types of antigens (autoantigens vs. foreign
antigens), and are needed in different immunological events such
as preventing T cell trafficking to an organ and preventing T cell
priming by APC, respectively (65).

Because tTregs and pTregs can have different roles, there is
a need for phenotypic markers to distinguish the two. While
Helios and Nrp-1 have been proposed as markers for tTregs
in mice (66, 67), it has been shown that Helios deficiency or
Nrp-1 deficiency does not impede tTreg development (65, 68).
Consequently, there is no consensus on which markers can
distinguish tTregs from pTregs (65, 69, 70). Helios is associated
with the promoter regions of apoptosis/cell survival genes, and
Helios deficient FoxP3+ Tregs show increased inflammatory
cytokine expression, which suggests the importance of Helios
in suppressing the production of effector cytokines (71). Even
though Nrp-1 is not essential for tTreg development, it seems to
increase Treg immunoregulatory properties, such as an increased
capacity for tumor infiltration (69, 72). When comparing Nrp-1
and Helios there is no consistent overlap in expression of these
markers (65). In humans, Helios is found on Tregs, but Nrp-
1 is not found on peripheral blood Tregs and can, therefore,
be excluded as tTreg marker (66, 73). More recently CNS1
has been suggested to distinguish between tTregs and pTregs.
However, since CNS1 is a FoxP3 enhancer, it is debatable whether
this marker distinguishes FoxP3− tTreg and pTreg populations
(74, 75).

Treg subsets are often identified by their co-signaling
molecules. Many Treg subsets express co-signaling molecules,
such as ICOS, PD-1, TIGIT, and TIM-3, which upon interaction
with their ligand can alter their function to either activation
or senescence (76–78). These co-signaling molecules, which
can be present on both FoxP3+ and FoxP3− Tregs, have
widely been discussed in several reviews (79–81). Similarly,
the heterogeneity within FoxP3+ Tregs, generally described as
CD4+CD25+CD127− in functional assays, has been extensively
reviewed elsewhere (82–87). However, the heterogeneity within
the FoxP3− compartment has not been elaborated on and will be
discussed here in the context of pregnancy. Besides co-signaling
molecules, several soluble factors affect the action of Tregs and
are produced by these cells to mediate their immune regulatory
effects. These will first be briefly reviewed.

SOLUBLE FACTORS

IL-10
IL-10 is an immunomodulatory cytokine that is produced by
many immune cells in the decidua, including most known
Treg subsets. It has an effect on trophoblasts and innate- and
adaptive immune cells within the decidua (88). Single nucleotide
polymorphisms (SNPs) in the promoter region of IL-10 correlate
with adverse pregnancy outcomes in humans (89). Next to that,
the administration of recombinant IL-10 or IL-10 producing B
cells to mice leads to reduced incidence of fetal resorption (90).
Concomitantly, IL-10 null mice in sterile cages showed normal
litter size, whereas administration of a danger signal in the form
of a low dose of LPS to these mice resulted in increased fetal
resorption (91, 92). These data suggest that IL-10 is an important
mediator of immune regulation during pregnancy. In human
pregnancy, decreased serum IL-10 levels or IL-10 production
by PBMCs are associated with the occurrence of PE and RPL
(93–98). This suggests that IL-10 producing immune cells are
important for maintaining an uncomplicated pregnancy.

IL-10 induces expression of HLA-G on trophoblasts,
which has direct and indirect immune suppressive effects
(described below) (99). IL-10, together with HLA-G, can
induce monocyte-derived DCs in vitro to differentiate into
tolerogenic DCs (DC-10) that have immunosuppressive
properties (100, 101). They exert their immunosuppressive
properties by the production of IL-10, expression of HLA-G,
and upregulation of inhibitory receptors for HLA-G (namely
ILT2, ILT3, and ILT4). Furthermore, these tolerogenic DCs
downregulate co-stimulatory molecules CD80 and CD86, as well
as HLA-DR (102–104). DC-10s induce Tregs by their expression
of ILT4 and by IL-10 production (105). Macrophages are also
regulated by IL-10 (106). It has been shown that IL-10 acts on
macrophages by controlling their metabolic pathways, causing
activation, proliferation, and inflammatory responses to be
inhibited (106, 107). Next to that, CD4+ T cell proliferation is
suppressed by IL-10, antigen-experienced specific CD4+ T cells
can be induced into an anergic state, and conventional T cells
can be induced to convert to Tregs (103, 108–110).

TGF-β
TGF-β is produced by and has an immunomodulatory effect on
multiple cell types present in the decidua (111–120). In the early
implantation phase, TGF-β is important for trophoblast invasion
in the endometrium (121, 122). In humans, TGF-β serum levels
are elevated in pregnant women compared to non-pregnant
women, and serum levels are higher in early pregnancy compared
to late pregnancy (123). However, women experiencing RPL
display a decrease in TGF-β serum levels compared to women
undergoing elective termination for non-medical reasons (124).
Interestingly, there are indications frommouse studies that TGF-
β induced Tregs could prevent spontaneous abortion, but this
effect needs to be elucidated further (111, 125).

TGF-β can inhibit NK cell and T cell activation and
proliferation by repressing the mammalian target of rapamycin
(mTOR) signaling pathway (126, 127), and similarly, suppress
activation of dNK cells (120). Since dNK cells are important
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contributors to angiogenesis at the maternal-fetal interface, their
cytotoxicity needs to be suppressed but they should still be able
to execute their role in angiogenesis. A balanced TGF-β level
may, therefore, be important to maintain correct functioning of
dNK cells (120). Furthermore, TGF-β can affect T cells directly by
inhibiting their proliferation and differentiation (128, 129), and
indirectly by its inhibitory effect on APCs. HLA-class II on APCs
is downregulated, activation of macrophages is downregulated,
and maturation of DCs is prevented by TGF-β (116, 130–134).
Next to that, the presence of TGF-β is needed for the induction
of several FoxP3+ and FoxP3− Treg subsets by APCs (135–138).

HLA-G
As discussed above, HLA-G was first described on trophoblasts
(1). Interestingly, also myeloid and lymphoid cells, such as the
below described FoxP3−HLA-G+ Treg, can express HLA-G and
secrete sHLA-G (139–141). HLA-G is oligomorphic and has
seven isoforms, of which some are membrane-bound (HLA-
G1 to -G4), and others are secreted as a soluble form (sHLA-
G5 to -G7) (142). Several polymorphisms in the untranslated
region (UTR) of theHLA-G gene have been associated with lower
sHLA-G levels in both blood and seminal plasma (143, 144).
In both PE and RPL, a reduction in serum sHLA-G levels has
been observed compared to healthy control women (145–148).
Together these observations highlight the possible importance of
(s)HLA-G during pregnancy.

(s)HLA-G exerts its immunoregulatory effects on a wide
variety of immune cells because of its interactions with
several inhibitory receptors, of which ILT2 seems to be most
prominent (149). Other receptors for (s)HLA-G are ILT4,
KIR2DL4, and CD8. The ITL2 receptor is expressed on
monocytes/macrophages, DCs, B cells, and some NK and T cells
(150), while the ILT4 receptor is mainly present on macrophages,
NK cells, and neutrophils (150, 151). Upon ILT2 or ILT4 binding
to HLA-G, NK cells and T cells receive a signal that leads
to inhibited killing capacity (152–154). In CD8+ T cells, this
inhibited killing capacity is reflected by the down-regulation
of granzyme B expression (155). KIR2DL4 has been identified
on dNK cells and some T cell subsets. Engagement of this
receptor with sHLA-G results in activation and secretion of
different types of cytokines and chemokines, but does not result
in direct cytotoxicity (156). Binding of sHLA-G with KIR2DL4
on NK cells results in the upregulation of a restricted set of
chemokines and cytokines that can promote vascular remodeling
(156). CD8 is not only expressed by cytotoxic T cells but also
by some NK cell subsets (79, 157). When sHLA-G binds to
CD8, this interaction inhibits cytotoxic activity and triggers FasL-
mediated apoptosis in both the CD8+ T cells and CD8+ NK
cells (158). Besides effector cells, APCs can also be affected by
HLA-G. For example, in concert with IL-10, HLA-G induces
DCs to differentiate into tolerogenic DC-10 cells (100, 101).
Additionally, macrophages obtain a tolerogenic phenotype upon
binding to HLA-G with their ILT2 or ILT4, and subsequently
show reduced expression of HLA class II, CD80, and CD86.
Such macrophages have been described to be similar to decidual
macrophages as they also express IDO (159). Together this
suggests that decidual macrophages are under the constant

influence of HLA-G, produced by either trophoblasts or HLA-
G+ Tregs.

FOXP3− REGULATORY T CELLS

FoxP3− HLA-G+ Tregs
In the lymphoid compartment, HLA-G expressing CD4+ and
CD8+ cells show reduced proliferation in response to allogeneic
and polyclonal stimuli (139). CD4+HLA-G+CD25−FoxP3−

Tregs (Figures 2, 5,Table 1) suppress T cell proliferation through
the expression of membrane-bound HLA-G1 and secretion of
IL-10 and sHLA-G5 in a reversible, cell-contact independent
and cell-contact dependent manner (139, 169). They have
functionally been compared to other Treg populations such as
FoxP3+ Tregs and Tr1 Tregs (discussed below), and represent a
population that is distinct from tTregs (169–171). Interestingly,
CD4+ and CD8+ T cells can also acquire a similar HLA-
G1+ phenotype in vitro through trogocytosis (160), meaning
the uptake of membrane fragments from another cell. Resting
and activated CD25+ T cells that acquire HLA-G1 expression
by trogocytosis differ functionally from the HLA-G+ tTregs,
and they do not secrete sHLA-G5 and IL-10. They have
been shown to exert their immune-suppressive capacity in a
cell-contact dependent manner only (160), and will not be
discussed further.

HLA-G+ tTregs accumulate at sites of inflammation to
regulate immune responses (172) and importantly, have also
been found in the decidua (141, 173). CD4+HLA-G+ Treg
frequencies are increased in peripheral blood throughout
pregnancy compared to non-pregnant controls (45, 141).
Interestingly, sHLA-G serum levels are also increased during
pregnancy, while these levels are decreased in complicated
pregnancies compared to healthy pregnancies (145–148).
However, it is unlikely that a direct correlation between
CD4+HLA-G+ Treg frequencies and serum sHLA-G levels
exists, since other cells (in the placenta) produce sHLA-G as
well. CD4+HLA-G+ Treg frequencies within the CD4+ T
cell compartment are even higher in the decidua compared
to those in peripheral blood (141, 173), suggesting a role
in local immune regulation. In women with PE, decidual
CD4+HLA-G+ Tregs are decreased, whereas in the peripheral
blood their numbers remain unchanged compared to healthy
control pregnancies (45, 173), indicating that in a healthy
pregnancy these cells are induced locally, but to a lesser extent
during PE.

Tr1 Treg
Tr1 Tregs (Figures 3, 5, Table 1) suppresses T cell proliferation
mainly through IL-10 and TGF-β production. They also produce
low amounts of IFN-γ, IL-5, and IL-2, and express granzyme B
(109, 112, 174). Next to cytokine production, they can suppress
other immune cells in a cell-contact dependent manner by
using their KIR receptors or ectoenzymes (161). Tr1 Tregs are
peripherally induced upon chronic antigen stimulation in the
presence of IL-10 (175). Both HLA-G and IL-10 provided by
APCs, like DC-10 cells, play a role in Tr1 Treg induction (103),
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FIGURE 2 | Main tolerogenic mechanisms of the FoxP3−HLA-G+ regulatory T cell. HLA-G+ regulatory T cells can suppress in a cell-contact dependent manner via

HLA-G1. It inhibits the killing capacity of T cells and NK cells, downregulates HLA class II, CD80, and CD86 in DCs and macrophages, and makes them tolerogenic by

inducing IDO production in macrophages and the induction of DCs to DC-10 cells. HLA-G+ regulatory T cells produce IL-10 and soluble HLA-G5 that helps to create

a tolerogenic decidual microenvironment. HLA, human leukocyte antigen; NK, natural killer cell; DC, dendritic cell; IDO, indoleamine 2,3-dioxygenase; IL-10,

interleukin-10; DC-10, tolerogenic DCs.

indicated by their reduced induction by DC-10s when anti-HLA-
G is added in vitro. Additionally, their induction is reverted when
agonistic anti-ILT4 antibodies are added, but not when agonistic
anti-ILT2 antibodies are added (103). Interestingly, EVTs are also
able to induce Tr1-like cells via HLA-G directly (119).

Recently, co-expression of CD49b and LAG-3 has been
described as phenotypic markers for Tr1 Tregs in mice and
humans (176). This observation is under debate since a
subsequent study only detected a small proportion of IL-10+

Tregs co-expressing CD49b and LAG3 (177). Due to their lack
of a clear phenotype, Tr1 Tregs are often described as Tr1-like
cells, as they have similar properties, such as IL-10 production.
Tr1 Tregs can express the co-signaling molecules PD-1, CTLA-4,
TIM-3, and ICOS (136, 177–179), and several other molecules
related to their function, including GARP, LAP, ectoenzyme
CD39, and CD73 (180), as well as KIRs and ILT receptors. FoxP3
is only transiently expressed by Tr1 Tregs. Since functional Tr1
Tregs are found in patients who have a mutation in the FoxP3
gene, FoxP3 appears not to be required for their development
(110, 174).

Tr1-like Tregs have been identified in peripheral blood and
various tissues (181), including the human decidua (119). These
Tregs express high levels of PD-1, express granzymes, and lack
FoxP3. They produce IL-10 and IFN-γ, and thereby may have
a similar suppressive mechanism as bona fide Tr1 Tregs (119).
Similar to Tr1 Treg, decidual Tr1-like Treg induction by EVTs
can be partially reverted when agonistic anti-HLA-G antibodies
are added, but not by anti-ILT2 (119). Tr1 Tregs are able to
selectively lyse APCs in a cell-contact dependent manner, but

not B and T cells (161). Lysis of APCs can cause amplification
of the tolerogenic process since decreased numbers of activated
APCs will generally lead to less activation of T cells. For this,
the Tr1 Treg needs HLA-class I recognition of the APC through
its KIR receptors, CD54/LFA-1 mediated adhesion, CD58/CD2
interaction, as well as CD155/CD226 ligation (161). Furthermore,
the Tr1 has been described to directly affect T cells by their
expression of ectoenzyme CD39 and CD73, which disrupts the
metabolic state of effector T cells (180).

Th3 Tregs
The main suppressive effects of Th3 Tregs (Figures 4, 5, Table 1)
are mediated by TGF-β production, in a cell-contact independent
manner (135). Phenotypically these cells are CD25− and FoxP3−,
they are thought to express Helios, and express LAP and GARP,
which can be used as surrogate markers for TGF-β production
(182, 183). Th3 cells also produce IL-10, but unlike Tr1 Tregs,
they produce this in conjunction with IL-4 (113, 184). Similar
to Tr1 Tregs, Th3 Tregs are peripherally induced upon antigen
stimulation (135). The mechanism underlying the induction
into either Th3- or Tr1 Treg remains poorly understood and is
thought to depend on their microenvironment during priming
(114, 185). Another question that remains to be answered is
whether Tr1 and Th3 Tregs truly represent different subsets or
differentiation states and whether they differ depending on the
microenvironment in which they reside.

With the limited markers identified so far, it is difficult
to phenotypically identify Th3 Tregs, which may explain the
limited number of articles describing the presence of the Th3
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FIGURE 3 | Main tolerogenic mechanisms of the Tr1 regulatory T cell. Tr1 regulatory T cells can in a cell-contact dependent manner lyse APCs via their KIR receptors

and disturb the metabolic state of T cells. They produce IL-10 and TGF-β that helps to create a tolerogenic decidual microenvironment. APC, antigen-presenting cell;
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FIGURE 4 | Main tolerogenic mechanisms of the Th3 regulatory T cell. Th3 regulatory T cells suppress in a cell-contact independent mechanism only by the

production of TGF-β, IL-10 and differ here from the Tr1 regulatory T cell by the production of IL-4. TGF-β, transforming growth factor-beta; IL, interleukin.

cell during pregnancy. Dimova et al. observed in paired decidua
and peripheral blood samples mRNA cytokine profiles similar to
Th3, the first description of a possible presence of Th3 cells in
the decidua (163). Importantly, no functional testing has been
performed for Th3-like cells from the decidua, and their presence
and role in pregnancy remains to be confirmed. Regardless,
Th3 Treg was first described to have an important role in
oral tolerance (182). Interestingly, exposure to semen through
oral sex has been proposed to be beneficial for subsequent
pregnancy outcomes in couples experiencing PE or RPL (186–
188), providing a possible mechanistic explanation for this effect.

Other Treg Populations
Besides FoxP3− HLA-G+, Tr1, and Th3 Tregs, other immune
regulatory T cell populations that have been described, albeit to
a lesser extent, include CD8+ Tregs, nitric oxide (NO) induced
FoxP3− Tregs, TIGIT+ Tregs, FoxP3dim Tregs, and γδ T cells
(Figure 5, Table 1).

CD8+ Tregs are increasingly being recognized, even though
they remain difficult to identify as there is no consensus on
their phenotype. Both FoxP3+ and FoxP3− CD8+ Tregs have
been described to have suppressive activities, indicating there
also is heterogeneity in the CD8+ Treg population (189). Shao
et al. showed that a CD8+ Treg subset can be activated by
trophoblast cells. This activation appears not to beHLA restricted
since their expansion is unaffected when cultured in the presence
of pan-HLA class I blocking antibodies (164). When cultured
with PBMCs, these CD8+ Tregs suppress the secretion of
immunoglobulins in a cell-contact dependent manner, as shown
using a trans-well system. While humoral immunity seemed to
be dampened, these CD8+ Tregs did not have any suppressive
effect on effector T cells. Phenotypically these cells can be
identified as being CD101+ and CD103+ (164). Even though in
a mixed lymphocyte reaction these CD8+ Tregs do not appear
to suppress CD4+ and CD8+ T cells, they could potentially be
important for preventing formation and suppressing production
of IPA-specific antibodies.
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TABLE 1 | Overview of FoxP3− immune regulating T cells discussed in this review, how they are induced or activated, their main suppressive mechanism and how they

function, their localization, animal models depletion assays, master genes for differentiation, and cell volume changes in complicated pregnancies.

Subset Induction/

activation

Suppressive

mechanism

Function Localization Depletion in

animal models

Master genes of

differentiation

Cell volume

changes in

complications

CD4+HLA-

G+ Treg

(139, 160)

Natural occurring

(139)

Secretion of

sHLA-G and IL-10

(139), and cell

interaction with

HLA-G (160)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10

Inhibition of

macrophages, NK cells

and T cell killing

Found in

peripheral blood

(45) and decidua

(141)

Has not been

performed

Not known Found to be

increased in

peripheral blood of

pre-eclampsia

patients (45)

Tr1-(like) Treg

(109, 119)

Via trogocytosis

(160)

Secretion of IL-10

and TGF-β, and

cell interaction

(136, 161)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10

Lysis of APCs,

disruption of metabolic

state of T cells

Found in

peripheral blood

and decidua (119)

Has not been

performed

Not known Has not been

described

Th3 Treg

(162)

By APC in an

IL-10 dominant

microenvironment

(110)

Secretion of TGF-β

and IL-10 (162)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10

Inhibition of NK cell and

T cells and APC

by TGF-β

Found in the

decidua (163)

Has not been

performed

Not known Has not been

described

CD8+ Treg

(59)

By APC in

presence of TGF-β

and IL-4

(113, 135)

Suppress the

secretion of

immunoglobulins

(164)

Prevent formation and

suppressing production

of IPA-specific

antibodies.

Found in

peripheral blood

(CD8+HLA-G+

Treg) (45) and

decidua (164)

Has not been

performed

Not known CD8+HLA-G+

Treg are increased

in peripheral blood

of pre-eclampsia

patients (45)

NO-Treg (165) CD101+CD103+

are induced by

trophoblasts (164)

Secretion of IL-10

(165, 166)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10.

Found in

peripheral blood

(165)

Has not been

performed

Not known Has not been

described

TIGIT+ Treg

(119)

Depends on nitric

oxide, p53, IL-2,

and OX-40 (165)

Secretion of IFNγ

and IL-2 (119)

Induction of IL-10

production by APCs.

Suppression of CD4+

effector T cells

Found in decidua

(119)

Has not been

performed

Not known Has not been

described

Vδ1+ γδ T cell

(167)

Unknown Secretion of IL-10

and TGF-β (115)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10

Inhibition of NK cell and

T cells and APC

by TGF-β

Found in

peripheral blood

and decidua (168)

Has not been

performed

Not known Decreased

amount in an

abortion prone

mice model (111)

Niedbala et al. described NO-induced Tregs (NO-
Tregs) in mice (165). These cells are characterized as
CD4+CD25+GITR+CD27+T-betlow, GATA3+, and FoxP3−,
and they are induced from CD4+CD25− T cells via p53, IL-2,
and OX-40 (165). Experimentally, the development of NO-Tregs
was induced when using adoptive transfer of CD4+CD25−

T cells into SCID mice, together with application of an NO
synthase inhibitor. NO-Tregs produce IL-4 and IL-10, but
no IL-2, TGF-β, or IFN-γ. Addition of antagonistic anti-IL4
antibodies led to reduced proliferation of NO-Tregs, whereas
blocking IL-10 blocked their suppressive effect on CD4+CD25−

cell differentiation (165, 166). These data suggest that NO-Tregs
suppress through IL-10, in a cell-contact independent manner.

While NO-Tregs has not yet been studied in the context of
pregnancy, NO appears to be involved in pregnancy with NO
levels fluctuating throughout the different gestational ages
and being lower during PE (190–193). It would, therefore,
be interesting to retrospectively study first-trimester blood
samples of women who develop PE, to test if NO levels are
already lower at this early time point of pregnancy, and to
study NO-Treg formation in these patients in comparison to
healthy controls.

Salvany-Celades et al. identified three types of functional
Tregs in the decidua, of which two subsets were negative
or low for FoxP3 (119). One of these is the PD-1high, Tr1-
like cell, which has been described above. The second is the
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FIGURE 5 | Overview of FoxP3− immune regulating T cells discussed in this review and their main tolerogenic mechanisms in pregnancy. All Tregs described in this

review can exert immunosuppressive properties in a cell-contact independent mechanism that together contributes to a tolerogenic decidual microenvironment. Next

to that, the HLA-G+ Treg, Tr1 Treg, and CD8+ Treg can exert their immunosuppressive properties in a cell-contact dependent mechanism.

TIGIT+ Treg that is characterized by TIGIT positivity, low
expression of CD25 and FoxP3, and intermediate expression
of PD-1. TIGIT+ Tregs express high levels of IFN-γ and IL-2,
and low levels of IL-10. TIGIT+ Tregs mainly suppress CD4+

effector T cells in proliferation assays, but not consistently
CD8+ effector T cells. Interestingly, TIGIT+ Tregs seem
to vary in their characteristics, depending on the trimester
in which they are encountered (119): first-trimester TIGIT+
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Tregs show an increased expression of IL-10 compared to
term TIGIT+ Tregs. This difference in trimesters could be
due to the microenvironment influencing their phenotype,
or because they truly represent different subsets. TIGIT has
been described to be expressed on multiple Treg subsets,
and it can bind CD155 on APCs, which thereby increases
their IL-10 production (194, 195). Binding of TIGIT induces
Tregs to produce IL-10 and fibrinogen-like protein 2 (Fgl2).
By usage of Fgl2 the Tregs obtain the capacity to suppress
Th1 and Th17 cells in vitro, but not Th2 cells (77, 195). It
would be interesting to determine the presence of TIGIT+

Tregs during pregnancy complications and to investigate their
possible role in providing a tolerogenic microenvironment in
successful pregnancies.

In the first-trimester decidua, γδT cells produce high amounts
of IL-10 and TGF-β (115, 196). As described above, these
cytokines are important for establishing an immune suppressive
microenvironment in the decidua. Transfer of uterine γδ T
cell culture supernatant, containing a high concentration of
TGF-β, into the uterus of mice before pregnancy prevents fetal
resorption (111). Terzieva et al. identified the TCR repertoire
from decidual γδ T cells and compared this to the repertoire
of γδ T cells in peripheral blood. In 1st and 3rd trimester
decidua they mostly found Vδ1+ TCR, whereas this particular
δ chain was hardly present in the peripheral blood (168). Vδ1+

T cells are described to have a tolerogenic effect (167, 197). The
possible role of γδ T cells in pregnancy is further suggested by
another study showing higher numbers of γδ T cells in peripheral
blood from women experiencing RPL compared to controls. The
specific presence of the Vδ1 chain was not investigated (198). It
would be interesting to determine the frequency and immune-
suppressive effect of Vδ1+ T cells in the decidua of women
experiencing RPL compared to women with elective termination
of pregnancy.

CONCLUDING REMARKS

In this review we have discussed several types of Tregs
that may contribute to a tolerogenic environment in
the decidua (Figure 5, Table 1) besides FoxP3+ Tregs.
Decidual Tregs seem to assist other cells in creating and
maintaining a microenvironment where inflammatory
signals are generally overruled by tolerogenic signals. Next
to Tregs, this tolerogenic microenvironment is established
and maintained by factors from paternal, maternal and
fetal origin. Paternal contribution to this tolerogenic
microenvironment comes early on from seminal fluid that
contains tolerogenic factors such as TGF-β and paternal
antigens for priming. Fetal trophoblasts contribute by their
expression of tolerogenic HLA-G and HLA-E molecules,
galectins, and PD-L1, and by their production of sHLA-G,
IDO, and TGF-β. Next to this, the maternal contribution in
maintaining a tolerogenic microenvironment in the decidua
is provided by the decidual immune cells, which do not have

an activated phenotype and produce IDO, TGF-β, IL-10,
and sHLA-G.

It remains to be elucidated which mechanisms exactly attract
Tregs to the decidua, if they are activated locally by APCs
in the decidua or in the lymph nodes, where they proliferate,
and if they are specific for fetal antigens. In mice, it has been
shown that fetus-specific Tregs are already detectable in the
uterine draining lymph nodes shortly after semen exposure and
that their numbers increase upon pregnancy (199). While this
could be similar in the human situation, in vitro fertilization
with donor semen, where there is no paternal semen exposure,
often results in a healthy uncomplicated pregnancy, albeit at
a lower rate than in naturally conceived pregnancies (200).
More information on the basic mechanisms of FoxP3− Tregs,
as well as how they are initiated, is needed to provide insight
in the deviations in frequencies or functionality of FoxP3− Treg
subsets in pregnancy complications. Likewise, from a therapeutic
point of view such basic mechanisms need to be clarified
before possible novel therapeutic strategies can be developed.
These therapies could be based on therapy designs similar to
those proposed for FoxP3+ Tregs, such as infusion of Tregs or
application of the cytokines needed for induction of specific Treg
subsets (201).

While it is clear that FoxP3+ Tregs play a role in maintaining
pregnancy, the relevance of the different types of FoxP3− Tregs
herein needs to be established. FoxP3− Tregs with proven
suppressive capacities are found in the decidua and are, therefore,
likely to contribute to the tolerogenic microenvironment.
However, studies such as depletion assays in mice need to be
performed to confirm whether they play a non-redundant role
in maintaining a healthy pregnancy. Since pregnancy is crucial
for the existence of mankind, it is not surprising that there
would be multiple mechanisms in play to establish a regulatory
microenvironment to maintain a healthy pregnancy. Pregnancy
complications for which no clear cause can be identified do
occur, and it is plausible that many of these are related to a
disbalance in maternal immune regulation. It would be helpful
to get a better understanding of the function of all regulatory
T cells present in the decidua, to be able to recognize their
relevance in healthy and complicated pregnancies. As such,
the use of multiple omics techniques to identify the decidual
microenvironment by a holistic approach could give insights in
the presence, frequency, and distribution of the different types
of Tregs in pregnancy [(32, 202, 203); van der Zwan et al.,
submitted]. It is important to note that the time point of sampling
is a crucial factor in such experiments, given the dynamic nature
of the placental microenvironment.
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Regulatory T cells (Tregs) are a specialized subset of T lymphocytes that function as

suppressive immune cells and inhibit various elements of immune response in vitro

and in vivo. While there are constraints on the number or function of Tregs which

can be exploited to evoke an effective anti-tumor response, sufficient expansion of

Tregs is essential for successful organ transplantation and for promoting tolerance of

self and foreign antigens. The immune-suppressive property of Tregs equips this T

lymphocyte subpopulation with a pivotal role in the establishment and maintenance of

maternal tolerance to fetal alloantigens, which is necessary for successful pregnancy.

Elevation in the level of pregnancy-related hormones including estrogen, progesterone

and human chorionic gonadotropin promotes the recruitment and expansion of

Tregs, directly implicating these cells in the regulation of fetal-maternal immune

tolerance. Current studies have provided evidence that a defect in the number or

function of Tregs contributes to the etiology of several reproductive diseases, such

as recurrent spontaneous abortion, endometriosis, and pre-eclampsia. In this review,

we provide insight into the underlying mechanism through which Tregs contribute

to pregnancy-related immune tolerance and demonstrate the association between

deficiencies in Tregs and the development of reproductive diseases.

Keywords: regulatory T cells, pregnancy, steroidogenesis, endometriosis, primary unexplained infertility, recurrent

spontaneous abortion, preeclampsia

INTRODUCTION

Regulatory T cells (Tregs), a key subset of T lymphocytes, play a critical role in regulating the
immune response and maintaining immune tolerance both in physiological and pathological
processes. Many studies have shown that Tregs are compromised in patients with autoimmune
diseases as well as in patients with graft-versus-host disease after receiving transplanted organs
(1), however, these cells are activated to promote tumor growth and progression, leading to the
failure of immunotherapies in cancer (2). Defects in the number of Tregs and their suppressive
activity are involved in the development of various systemic or organ-specific autoimmune diseases,
including thyroiditis (3), gastritis (4), type I diabetes (T1D) (5), systemic lupus erythematosus (SLE)
(6), multiple sclerosis (MS) (7), rheumatoid arthritis (RA) (8), and inflammatory bowel disease
(IBD) (9).
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During the course of pregnancy, the mother’s systemic
immune system is altered to tolerate the fetus, who expresses
paternal major histocompatibility complex antigens. Many
studies have supplied multiple lines of evidence that Tregs
possess specific characteristics for preventing the development of
a maternal immune response against the fetus and maintaining
fetal-maternal tolerance. First, the proportion of Tregs in
peripheral blood is significantly increased during pregnancy in
both women andmice, and there is a specific recruitment of Tregs
from maternal peripheral blood to the fetal-maternal interface,
leading to a higher proportion of Tregs in the placental decidua
than in the peripheral blood (10). Furthermore, a decreased
proportion of Tregs has been proposed to be associated with
pregnancy-related complication such as recurrent spontaneous
abortion and pre-eclampsia (11–13). Second, antibody-mediated
depletion of CD25+ Tregs has been shown to cause implantation
failure in allogeneic mated mice (14). Conversely, the adoptive
transfer of Tregs attenuates the high abortion rates in the well-
studied CBA/J×DBA/2J abortion-prone murine model (15).

Pregnancy is a physiological process greatly dependent
on immune tolerance, which is regulated by the number
of Tregs and their suppressive activity. This review of the
current literature describes the role played by Tregs in
regulating fetal-maternal immune tolerance. Furthermore, we
demonstrate the relationship between a deficiency of Tregs and
pregnancy-related complications, with the aim of identifying
the mechanisms through which Tregs maintain fetal-maternal
immune homeostasis, thus providing a potential target for
treating pregnancy-related complications.

Differentiation and Immunosuppressive
Function of Tregs
Tregs are divided into two populations, namely natural
regulatory T cells (nTregs) and inducible regulatory T cells
(iTregs). NTregs originate from the thymus in response to
self-antigens, whereas iTregs are peripherally induced from T
cells responsible for restraining immune responses to foreign
antigens, such as commensal bacteria, food antigens and allergens
(16, 17). The mechanism underlying how Tregs are generated
remains controversial. Although some studies have suggested
that Tregs are anergic to TCR (T cell receptor) stimulation in
vitro, the process involving the formation and selection of Tregs
in the thymus is highly dependent on the TCR rearrangement,
as evidenced by the observation that the development of Tregs is
abrogated in TCR transgenic mice with RAG-2 deficiency (18).
An increasing number of studies have suggested that Tregs are
positively selected from autoreactive T cells that express specific
TCR with the appropriate affinity for self-peptides (19–21).

Unlike other T helper cells, Tregs lack the capacity to secrete
specific cytokines, and it is therefore difficult to distinguish them
from other T helper cells. Foxp3 is the most specific Tregs
marker and is constitutively expressed in Tregs generated in
both the thymus and the periphery irrespective of the mode or
state of activation (22, 23). The Foxp3 gene contains 11 exons
and maintains a high degree of conservation between human
and mouse genes (24). Mice genetically deficient in Foxp3 lose

the ability to properly regulate Tregs activity and succumb to
a fatal and severe lymphoproliferative autoimmune syndrome
at 3–4 weeks of age (25). Similar to mice, humans carrying a
FOXP3 mutant gene develop an autoimmune syndrome named
IPEX (immune dysregulation, polyendocrinopathy, enteropathy,
X-linked syndrome) (26, 27). Beyond its role as an indispensable
factor required for the development of Tregs, continuous Foxp3
expression is required for the latter’s suppressive function.
Research has shown that Tregs isolated from Foxp3 deficient
mice lack suppressive function. However, transduction of Foxp3
endows CD4+CD25− T cells with the capacity to suppress the
proliferation of CD4+ T cells (28, 29).

The suppressive function of Tregs is achieved via two
mechanisms, namely a cell-contact dependent mechanism
involving the recognition of co-stimulated molecules that
directly suppress the expansion of effector T cells and a cell-
contact independent mechanism involving the secretion of
soluble cytokines that negatively regulate the immune response
(30) (Figure 1).

CELL-CONTACT DEPENDENT
MECHANISM

Cell-contact dependent suppressive activity is mediated via the
recognition of co-stimulated molecules. In this process, Tregs
function is highly dependent on the normal expression of
molecules located on Tregs, and a deficiency of key molecules
triggers the defective expansion and suppressive activity of Tregs,
leading to a disturbance of immune homeostasis. IL-2 receptor α

(IL-2Rα) and CTLA4 are the most important molecules involved
in cell-contact dependent mechanism.

Most Tregs abundantly express high-affinity IL-2 receptor
α (CD25) and IL-2/IL-2R signaling provides indispensable
signaling during the development and maturation of Tregs
both in the thymus and in the periphery. Furthermore, the
lack of the IL-2R cannot be compensated by other cytokine
receptors (31). IL-2, IL-2Rα, and IL-2Rβ deficient mice all die
from severe lymphoproliferation and autoimmune disease in
early life. In addition, neutralization of circulating IL-2 by anti–
IL-2 monoclonal antibodies inhibits Tregs proliferation and
triggers a wide range of organ specific autoimmune diseases
(32–35). IL-2-IL-2R signaling is essential for the development
and maturation of both Tregs and Teff cells, however, low dose
IL-2 is remarkably efficacious in promoting the expansion of
Tregs rather than Teff cells, which possibly results from the
higher affinity of IL-2R in Tregs (36). Based on the comparative
activity and different sensitivity for IL-2, the consumption
of IL-2 by Tregs has been shown to be a predominant
mechanism involved in suppressing the expansion and activity
of Teff cells and triggering Teff cell apoptosis due to IL2
deprivation (37, 38).

CTLA4, a key molecule constitutively expressed in Tregs,
is crucial for maintaining T cells homeostasis and tolerance
induction, and its expression is in part controlled by Foxp3
(39, 40). Mice deficient in CTLA4 become sick by 2 weeks
of age and moribund at 3–4 weeks of age, with diffuse and
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FIGURE 1 | The mechanisms underlying the suppressive function of Tregs. The suppressive function of Tregs is achieved via two mechanisms: cell-contact

dependent mechanism and cell-contact independent mechanism. Tregs express a high-affinity IL-2 receptor and can competitively bind to IL-2 with Teffs, which

induces IL-2 consumption and suppresses the development and expansion of Teffs. Both CD28 and CTLA4 interact with CD80/CD86 expressed on APCs. However,

the affinity of CD28 is lower than that of CTLA4. CD28 plays an important role in enhancing Teffs activation, while CTLA4 acts as an inhibitor by depriving ligands and

suppressing CD28 signaling. TGF-β and IL-10 are two classes of nonspecific cytokines secreted by Tregs and can promote Tregs expansion and suppressive activity

by binding to their receptors.

focal lymphocytic infiltration into various organs (41, 42).
Furthermore, specific deficiency of CTLA4 in Tregs results in
the spontaneous development of systemic lymphoproliferation,
multi-organ lymphocyte infiltrations, fatal T cell-mediated
autoimmune diseases, and hyperproduction of immunoglobulin
E in mice (43). CTLA-4-mediated suppressive regulation of T cell
response and upregulation of Tregs activation are predominantly
achieved by competition with CD28, a positive costimulatory
molecule that shares common ligands (CD80/CD86) with
CTLA4 (44, 45). CTLA4 possesses significantly higher affinity
in binding CD80/CD86 and CTLA4 rather than CD28 removes
costimulatory ligands CD80/CD86 from APCs by a process of
trans-endocytosis (46, 47). These properties equip CTLA4 with
the capacity to outcompete the ability of CD28 to serve as a
negative immune regulator (48, 49).

CELL-CONTACT INDEPENDENT
MECHANISM

In addition to the cell-contact dependent mechanism, Tregs also
exert suppressive activity in a cell-contact independent manner,

mainly through the secretion of inhibitory cytokines. Unlike
other T cells, Tregs fail to produce exclusive cytokines. However,
certain cytokines, such as TGF-β and IL-10, secreted by Tregs are
essential for the expansion and suppressive activity of Tregs.

Several lines of evidence suggest that the addition of TGF-β
enhances the conversion rate of native T cells into Tregs, and
that TGF-β secreted by Tregs plays a partial role in maintaining
suppressive properties by binding to the TGF-β receptor (50–
53). Administration of neutralizing antibodies specific for TGF-β
or specific deficiency of TGF-β expression in Tregs leads to a
limitation or even abrogation of Tregs’ suppressive activity (54,
55). Strong evidence that the role of TGF-β to maintain Foxp3
expression is supported by the observation that the expression of
Foxp3 is dramatically diminished in peripheral Tregs from TGF-
β
−/− mice and addition of TGF-β results in increased Foxp3

expression (52).
Unlike TGF-β, the function of IL-10 in Tregs seems to

be organ-specific. Recent studies have found that IL-10 and
IL-35 produced by intratumoral Tregs cooperatively share a
common BLIMP1 axis to promote the exhausted intratumoral
T cell state and anti-tumor immunity, implying IL-10 and
IL-35 contribute to maintaining immune tolerance (56, 57).
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IL-10 is recognized as a potent suppressor of macrophage
and T cell functions. Furthermore, IL-10 deficient mice are
growth retarded and suffer from chronic enterocolitis (58).
An increasing number of current studies have found that
IL-10 is expressed in Tregs and plays an auxiliary role in
promoting their expansion and function. IL-10+ Tregs are
mostly located in intestinal tissues and are essential for limiting
immune response-induced inflammation to the diverse intestinal
microbiota, which may provide a reasonable explanation as
to why IL-10 deficient mice or mice treated with anti-IL-
10 receptor blockers succumb to intestinal inflammation (59,
60). Although the Tregs-specific deficiency in IL-10 does
not result in severe systemic autoimmunity, it does lead
to immunological hyperreactivity at environmental interfaces,
resulting in conditions such as spontaneous colitis, lung
hyperreactivity, and skin hypersensitivity (61). Thus, while IL-
10 production by Treg cells is not necessary for the regulation
of systemic autoimmunity, it is essential for hindering excessive
immune responses at local environmental interfaces. The
suppressive activity of IL-10 is partly mediated via binding to IL-
10R to restrain the Th17-induced inflammatory response, which
plays a critical role in regulating intestinal homeostasis. This is
illustrated by the observation that mice with IL-10R deficient
Tregs produce high levels of IL-17 and are prone to developing
severe colitis (62, 63).

Regulation of Fetal-Maternal Tolerance
During Healthy Pregnancy
For decades, many studies have shown that successful pregnancy
depends on the homeostasis of fetal-maternal tolerance.
Furthermore, failure of the maternal immune system to establish
fetal-maternal tolerance is the predominant trigger in the
development of pregnancy-related complications. Consequently,
numerous therapeutic treatments aimed at suppressing the
maternal immune system are employed in clinics. However,
the effect of these therapies is not always apparent and is often
accompanied by various side effects. It is therefore important
to identify the cellular and molecular mechanisms responsible
for establishing fetal-maternal immune tolerance in healthy and
abnormal pregnancies to promote the development of targeted
therapeutic interventions. The immune suppressive property of
Tregs confers this cell population with a fundamental role in
establishing the fetal-maternal immune tolerance necessary for
successful pregnancy.

Some studies consider pregnancy to be a process of mutual
conversion between pro-inflammatory and anti-inflammatory
conditions (64), therefore dividing pregnancy status into three
distinct immunological states that correspond to different stages
of fetal development: first, a pro-inflammatory stage associated
with embryo implantation and placentation (65–67); second, an
anti-inflammatory-oriented stage associated with fetal growth
(68, 69); and third, a switch from an anti-inflammatory to a pro-
inflammatory stage necessary for the initiation of labor (70, 71).
Concurrent with the above stages is a dramatic change in the
number of Tregs during the course of pregnancy. Following

exposure of paternal alloantigens, circulating Tregs increase
rapidly during the early pregnancy stage and peak during the
second stage at which time trophoblast invasion of the maternal
decidua is maximal; then, Tregs gradually decrease when labor
begins (64). The change in the number of Tregs and crosstalk
with other immune cells play a critical role throughout the entire
course of pregnancy.

Tregs PRIMING AND IMPLANTATION

Embryo implantation is the initial stage of pregnancy
and involves apposition of the blastocyst and the uterine
endometrium followed by attachment and invasion of the
blastocyst into the endometrium, and reconstruction of
the decidua by the invasive trophectoderm (72). The wide
application of assisted reproductive technology, such as in vitro
fertilization-embryo transplantation (IVF-ET) and intrauterine
insemination (IUI), has enabled an analysis of earlier gestational
stages from oocyte fertilization to implantation in humans.
Adequate endometrial receptivity is considered a pivotal
precondition for successful embryo implantation. Endometrial
scratching before embryo transfer has been proposed as a clinical
treatment to increase uterine receptivity, and some studies
have demonstrated that endometrial scratching improves the
pregnancy outcome by triggering an inflammatory response
and enhancing angiogenesis at the implantation site, providing
indirect evidence for the role played by inflammation during
implantation (73–77).

Studies based on human and animal experiments have
demonstrated that the peri-implantation period is accompanied
with the activation and infiltration of various immune cells (78).
Uterine-specific natural killer (uNK) cells, macrophages (Mos),
and dendritic cells (DCs) are recruited at the implantation site
and exert prominent immune-regulatory effects during early
pregnancy. uNK cells are the most abundant immune cells
located in human decidua during early pregnancy, while Mos
and DCs serve as antigen-presenting cells that infiltrate into the
decidua. Crosstalk among these cells plays an essential role in
regulating trophoblast invasion and in promoting spiral artery
remodeling (79–81).

The role played by Tregs during implantation is unclear.
However, some studies have reported that a reduced number
of Tregs is associated with implantation failure. Mice with a
depletion of Tregs exhibit a significant defect in implantation,
which is reversed following an adoptive transfer of Tregs
(82). A study showed that compared with fertile women,
endometrial tissue from women with unexplained infertility
displayed a significant reduction Foxp3 mRNA expression, the
fate-determining transcription factor especially expressed in Treg
cells (83). Other evidence has also revealed a correlation between
the level of Tregs in peripheral blood and the implantation
rate. Women with implantation failure after IVF or artificial
insemination by donor sperm (AID) had a significantly decreased
percentage of Tregs compared with women with a successful
pregnancy (84, 85). Therefore, the presence of peripheral or local

Frontiers in Immunology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 102361

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Role of Tregs in Reproduction

Tregs may create a limited but necessary immunomodulatory
function during the course of implantation.

ENLARGEMENT OF Tregs FUNCTION AND
PREGNANCY MAINTENANCE

Successful implantation is followed by a phase of fetal growth
and development. The establishment of fetal-maternal immune
tolerance lays the foundation for this stage, with a shift from a
pro-inflammatory immune response to a Th2/Treg-predominant
anti-inflammatory immune tolerance (64). The proportion of
Tregs begins to rise and peaks at this stage, and a paucity of
Tregs could lead to pregnancy-related complications such as
spontaneous abortion. Tregs exert a strong immunosuppressive
function to maintain an anti-inflammatory environment and
protect the fetus from maternal immunological rejection.
Tregs can effectively suppress the expansion and activation
of effector T cells via a classic cell-contact mechanism or by
secreting suppressive cytokines as described previously. One
study described a class of functionally distinct Tregs with
expression of a co-inhibitory molecule TIGIT, which induces
selective suppression of Th1 and Th17 cells but not Th2 cells.
However, whether this Tregs subset is expanded and activated
during pregnancy is still unknown (86).

The pivotal role played by Tregs in fetal-maternal tolerance
raises several questions about the mechanisms responsible for
their expansion during pregnancy and underscores the need
for studies investigating these mechanisms. Previous studies
suggest that the activation and regulation of Tregs is primarily
impacted by antigen exposure and the dynamic changes of steroid
hormones that occur during pregnancy.

ANTIGEN-MEDIATED Tregs EXPANSION:
PATERNAL SPERM ANTIGEN AND FETAL
ANTIGEN

Investigators have proposed that exposure to male seminal
fluid delivered during mating elicits the expansion of maternal
Tregs, as evidenced by the increase in the number of Tregs
within the period of time subsequent to mating and before
embryo implantation (87, 88). Immune tolerance to the fetus
is necessary for successful pregnancy, and transmission of
seminal fluid seems to play a priming role prior to implantation
by promoting expansion of Tregs, thereby activating specific
tolerance to paternal alloantigens. Seminal fluid contains various
components, including a cellular fraction that contains sperm,
leukocytes and epithelial cells and a non-cellular fraction of
compounds such as TGF-β and prostaglandins. The cellular
and acellular fractions in semen both contain several antigens,
including classical class Ia, non-classical class Ib and minor
antigens such as H-Y antigen, which drive an antigen-dependent
expansion of Treg cells (89, 90). The non-cellular components
are also required to confer tolerance. As mentioned above,
TGF-β is a critical cytokine for Tregs proliferation. One study
found that intravaginal pre-treatment with TGF-β at mating

enhances successful pregnancy in vivo in a well-established
murine model (91). An in vitro experiment also indicated a
role for prostaglandins in upregulating Foxp3 expression and
enhancing Tregs function (92). Collectively, both sperm and
seminal plasma may contribute to driving an expansion of
Tregs and providing an immune-privileged environment that is
beneficial for subsequent embryo implantation.

Embryo implantation and fetal growth are the most important
stages during pregnancy. Some studies have proposed that the
implanted blastocyst should be considered a semi-allograft and
constant immunosuppression is required for a pregnancy to
be successful. Although a seemingly opposite pro-inflammatory
process is involved in both implantation and initiation of labor,
immunosuppression is an indispensable response to maintain
immune homeostasis during the fetal growth stage, and this
is highly dependent on the expansion and activation of Tregs
triggered by the fetal alloantigens (93). When Tregs are depleted,
fetal outcome is normal in syngeneic pregnancies rather than
allogeneic pregnancies, suggesting that Tregs suppress maternal
immune responses directed against fetal alloantigens rather than
male-specific minor histocompatibility antigens (94, 95). When
encountered with parental alloantigens presented by a fetus,
peripheral Tregs, generated extrathymically and induced by
non-self-antigens, serve as the predominant subset suppressing
immune response. The development of peripheral Tregs is
dependent on the expression of a Foxp3 enhancer CNS1, a
deficiency of which leads to an increased resorption of embryos
in mice (96).

STEROID HORMONE-MEDIATED Tregs
EXPANSION: ESTROGEN,
PROGESTERONE AND HUMAN
CHORIONIC GONADOTROPIN

Serum levels of the pregnancy-associated hormones such as
estrogen, progesterone, and human chorionic gonadotropin
(HCG) increase dramatically during pregnancy. These hormones
play an essential role in maintaining immune tolerance and in
supporting successful pregnancy. Currently, there is increasing
evidence that the mechanisms through which hormones
contribute to immune homeostasis during pregnancy are in
part due to the expansion of Tregs and their suppressive
activity (Figure 2).

Estrogen-based therapy has been reported to alleviate
symptoms associated with several autoimmune diseases,
such as collagen-induced arthritis (97), type1diabetes (98),
and autoimmune encephalomyelitis (99). Furthermore, the
mechanisms underlying these protective effects seem to
be associated with changes in immune cells and cytokines
(100–102). The number of Tregs in human peripheral blood
change continuously during the menstrual cycle and peak
before ovulation, which is concurrent with the change of
the concentration of estrogen, suggesting that estrogen may
be a powerful factor in promoting Tregs expansion (103).
Some studies have demonstrated that the proliferation and
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FIGURE 2 | Pregnancy-related hormones affect the expansion and migration of Tregs. The levels of various steroid hormones, such as estrogen, progesterone and

human chorionic gonadotropin, change dramatically during pregnancy. Estrogen and progesterone promote Tregs expansion and trigger the conversion of

CD4+CD25– T cells to Tregs separately by binding to estrogen and glucocorticoid receptors. The level of human chorionic gonadotropin (HCG), another essential

hormone for maintaining a healthy pregnancy, begins to increase after fertilization, peaks at the 11th week, and then gradually decreases until birth. HCG functions as

a regulator that not only upregulates the expansion of Tregs but also provokes migration of Tregs from the circulation to the decidua.

suppressive activity of human Tregs observed with estrogen
treatment is mediated through estrogen receptor α (104, 105).
In both in vivo and in vitro experiments, estrogen treatment
triggers the expansion of Tregs. Furthermore, the addition
of estrogen in combination with TCR stimulation enhances
Foxp3 mRNA expression in CD4+CD25−T cells in vitro,
suggesting that estrogen may potentially induce the conversion
of CD4+CD25−T cells to Tregs (106, 107).

Progesterone, which is mainly produced by the placenta
and is markedly elevated during pregnancy, functions as a
regulator that maintains homeostasis at the maternal-fetal
interface. Similar to estrogen, progesterone is considered to be
another important hormone that promotes the expansion of
Tregs and their suppressive capacity (107). The proportion of
Tregs and the conversion rate of CD4+CD25− T cells into
Tregs has been shown to increase significantly in the peripheral
blood, spleen, and inguinal lymph nodes of ovariectomized
mice after progesterone injection (108). Progesterone-mediated
immune tolerance is achieved by progesterone binding to
the glucocorticoid receptor rather than to the progesterone
receptor (109, 110). Progesterone promiscuously binds the
glucocorticoid receptor and promotes immune suppression by
inducing enrichment of Treg cells and triggering apoptosis of
effector T cells, which is based on the preferred sensibility in
effector T cells for glucocorticoid receptor-mediated T cells death
compared with that in Tregs (110, 111). Progesterone is also

present at high levels in human cord blood where it has been
reported to have an immune-suppressive function. Progesterone
drives a shift of native cord blood T cells into suppressive Tregs,
while impeding the conversion fromnative T cells into Th17 cells,
another potential pathway through which progesterone regulates
immune tolerance (112).

HCG is another hormone that is increased during pregnancy,
and is produced in the blastocyst after fertilization, reaching
its maximum level at the 11th week and then gradually
decreasing until birth (113). Khil et al. reported that HCG
prevents the development of autoimmune-mediated diabetes
in NOD mice by downregulating immune effector cells and
cytokines and simultaneously upregulating the proportion of
Tregs and the levels of TGF-β and IL-10, suggesting that HCG
is an effective regulator for immune tolerance (114). Increased
HCG during pregnancy provokes many Tregs-related responses
including (1) augmenting the number of Tregs, (2) increasing
their local and systemic suppressive function, (3) enhancing
attraction of circulating Tregs into decidua, and (4) increasing
the secretion of suppressive cytokines (115–117). HCG-mediated
expansion of Tregs is achieved in part by retaining DCs in an
immature state, leading to the generation of Tregs and a loss
of the capacity to activate a T cell-mediated immune response
(117, 118). In vitro migration assays further confirmed the
chemoattractant properties of HCG that promote migration of
Tregs from the periphery into the uterus, which is potentially
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mediated via binding to HCG/LH receptors located on
Tregs (116, 119).

DECLINE OF Tregs ACTIVITY AND LABOR

There is a decline in the number of Tregs as pregnancy progresses
into the third gestational period. The reduction in the number
of Tregs in late gestation may be a contributing factor for
the initiation of spontaneous labor. This is supported by the
finding that the proportion of Tregs in the decidua following
a spontaneous vaginal delivery is significantly lower than that
following an elective cesarean section (120). Shah et al. conducted
a longitudinal analysis from 20-weeks gestational age to labor and
observed a reduction in the number of activated Tregs (defined as
Tregs with HLA-DR+) and a significant shift toward a Th1/Th17
response with the onset of labor (121). Compared with women
undergoing spontaneous term labor, the proportion of activated
Tregs is significantly decreased in women in preterm labor
(122, 123). The change is similar to the reduction in activated
Tregs observed in patients who experience an acute rejection
after kidney transplantation, supporting that the reduction in
the proportion and activity of Tregs promotes the conversion
from an anti-inflammatory to a pro-inflammatory stage and plays
a critical role in initiating spontaneous labor. The mechanism
underlying the reduction in Tregs during labor remains an
enigma. The alteration in hormone levels and in the microbial
environment may be stimuli for activating an inflammatory
response, however, the specific molecular mechanisms needs to
be further investigated.

The level of Tregs progressively decreases after delivery.
However, there is a retention of “memory” Tregs with fetal
specificity, which retain the ability to generate a more effective
and accelerated suppressive response when re-exposed to the
same fetal antigens in subsequent pregnancies (124). The primary
pregnancy confers Tregs with a protective regulatory memory,
which may provide an immunological basis for protection
against complications such as pre-eclampsia in a subsequent
pregnancy (125, 126).

Dysfunction of Tregs in Reproductive
Diseases
Since it has been determined that Tregs maintain fetal-maternal
tolerance during the normal course of embryo implantation and
pregnancy, it is of interest to investigate whether systemic and
local maldistribution and dysfunction of Tregs play a role in
the etiology of infertility and pregnancy-related complications.
Increasing evidence suggests that a deficiency in the expansion
and function of Tregs as well as an abnormal expression of key
molecules are linked to pregnancy-related complications.

RECURRENT SPONTANEOUS ABORTION

Recurrent spontaneous abortion (RSA), defined as the loss of
three or more consecutive pregnancies, affects ∼1% of women
attempting to conceive (127, 128). RSA is a complex pregnancy-
related complication that is due to multiple factors including

chromosomal abnormalities, congenital or acquired anatomical
defects in the uterine fundus and cervix, and other endocrine
diseases such as PCOS, diabetes, thyroid disorders, and others
related to aberrant immune responses (128, 129). Increasing
evidences suggests that the proportion of various immune
cells and cytokines is altered in patients with RSA, supporting
that immune dysfunction may be a contributing factor to its
etiology (130, 131). Although there have been detailed guidelines
describing clinical interventions for managing women with RSA,
treatment based on immune rejection as a potential etiology
is controversial, because no definite cellular and molecular
mechanism has been discovered to date (17, 129).

The mechanisms through which Tregs contribute to RSA
primarily involve an imbalance of the Th1/Th2/Th17/Treg cells
paradigm and the abnormal proportion and activity of Tregs.
Dysregulation of T lymphocyte homeostasis is also involved in
the etiology of RSA. In peripheral blood from patients with RSA,
the balance between Th1 and Th2 cells is disrupted in favor of
Th1 cells, and the ratio of Th17/Treg cells is skewed toward
Th17 cells (132, 133). It is widely accepted that there is a close
interaction between the expansion of Tregs and the secretion
of IL-17. When IL-17 combines with the IL-17 receptor, Tregs
are upregulated. Conversely, Tregs suppress the proliferation
of Th17 cells and the secretion of IL-17 via cell-cell contact
and via Il-10/TGF-β-mediated effects (134, 135). However, this
suppressive function of Tregs is abrogated in patients with RSA
(134). Transfusion of Tregs into mice pretreated with IL-17
has been shown to significantly increase the expression of IL-
10 and TGF-β, two key cytokines that mediate the suppressive
activity of Tregs in decidua and lower the fetal resorption rates in
mice (136). Furthermore, insufficient generation of pregnancy-
induced Tregs triggers the accumulation of paternal alloantigen
specific Th1 cells and directly results in the failure to establish
appropriate maternal-fetal immune tolerance (137).

Numerous studies have also confirmed that the reduction in
the number of Tregs are involved in the pathogenesis of RSA
(Table 1). Sasaki et al. first reported the presence of Tregs in the
decidua and demonstrated the proportion of Tregs in decidua
from spontaneous abortions was significantly lower than that
in decidua from induced abortion (11). Other studies have also
demonstrated that the proportion of Tregs and the expression of
Foxp3 in both the decidua and peripheral blood from patients
with unexplained RSA patients are significantly lower than those
from women with normal pregnancies (13, 139). In addition
to the reduction in number, Lourdes et al. reported that the
suppressive function of Tregs is significantly impaired in RSA
as assessed by a co-culture technique with CD4+CD25−T cells
(103). Inadequate number of Tregs and downregulation of Treg
cell activity impair the anti-inflammatory environment, weaken
the immune tolerance against fetal rejection and thereby increase
the risk of RSA.

ENDOMETRIOSIS

Endometriosis is a benign gynecological disease affecting
∼6–10% women of childbearing age, and is characterized by
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TABLE 1 | The change of the proportion of Tregs in patients with recurrent

spontaneous abortion compared with normal pregnant women.

Proportion of Tregs References

Peripheral blood Decidua

↓ ↓ (11)

↓ ↓ (13)

↓ ↓ (138)

↓ ↓ (139)

↓ Not mentioned (132)

↓ Not mentioned (140)

Not mentioned ↓ (141)

↓ Not mentioned (142)

↓ ↓ (143)

↓: Decreased.

the implantation of endometrial tissues outside the uterus
(144). Chronic pelvic pain, dysmenorrhea and infertility
are the common symptoms occurring in patients with
endometriosis (145, 146). As multiple factors, including genetic
and environmental factors, contribute to the development
of endometriosis, the pathogenesis of endometriosis remains
uncertain. Many theories have been proposed to explain
how endometriosis develops, and one of the most widely
accepted is the retrograde menstruation theory. This theory
hypothesizes that fragments of endometrial tissue reflux to the
peritoneum through the fallopian tubes during menstruation
(147). However, this theory fails to explain why only a
few women develop endometriosis even though retrograde
menstruation is a common phenomenon occurring in most
women of childbearing age (148). Therefore, other studies have
postulated that a disturbed local and systemic immune response
may be responsible for the development and progression of
endometriosis (149–151).

An aberrant immune environment that includes alternative
activation of peritoneal macrophages (152), production of
various cytokines (153), and reduction in natural killer cell
cytotoxicity (154), all contribute to the survival and invasion
of ectopic endometrial tissue. Dysregulation in T lymphocyte
homeostasis is associated with the pathogenesis of endometriosis.
The Th1/Th2 balance is altered in local and systemic immune
conditions, such that there is skewing toward Th2 cells in
endometriotic lesions, but skewing toward Th1 cells in peripheral
blood (155).

A disturbance in Tregs activity may be a more prominent
mechanism involved in the etiology of endometriosis due
to their immune-suppressive function, derangement of which
could potentially promote the survival of ectopic endometrial
lesions. However, evidence regarding the change in the
proportion of Tregs in peripheral blood, peritoneal fluid, eutopic
endometrium, and ectopic endometrial tissues among patients
with endometriosis is inconsistent (Table 2). The discrepancy
may result from differences in patient selection, namely the
patients with early or advanced endometriosis. Most studies

TABLE 2 | The change of the proportion of Tregs in patients with endometriosis

compared with patients without endometriosis.

Proportion of Tregs in patients with endometriosis References

Peripheral

blood*

Peritoneal fluid* Ectopic

peritoneal

lesions#

Not mentioned Not mentioned ↑ (156)

Not mentioned ↑ Not mentioned (157)

↓ ↑ Not mentioned (158)

→ → Not mentioned (159)

→ Not mentioned Not mentioned (155)

→ → ↓ (160)

→ ↑ Not mentioned (161)

→ →(Early)

↑(Advanced)

Not mentioned (162)

↑: Increased, ↓: Decreased, →: Not changed.

*The proportion of Tregs in peripheral blood and peritoneal fluid in patients with

endometriosis is compared with patients without endometriosis. #The proportion of Tregs

in the ectopic peritoneal lesions in patients with endometriosis is compared with eutopic

endometrium in patients without endometriosis.

suggest the proportion of Tregs is significantly increased in
peritoneal fluid from women with endometriosis compared with
control women (157, 158, 161). One study reported that the
number of Tregs was increased in the peritoneal fluid and
decreased in the peripheral blood, and another study found
the number of Tregs was higher in peritoneal fluid than in
peripheral blood, both indicating that active translocation of
Tregs occurs from circulation to the local peritoneal cavity (158,
162). However, some studies failed to find any difference in
the proportion of Tregs in patients with endometriosis when
compared with women without endometriosis (159). To bypass
the confounding influence of interpatient variability, research
has been carried out in an established animal model with
endometriosis to identify abnormalities in the proportion of
Tregs. In a study of baboons with induced endometriosis, the
proportion of Tregs was decreased in peripheral circulation and
eutopic endometrium but increased in ectopic tissue, which is
consistent with Tregs’ local immunosuppressive activity Tregs
played (163). Tanaka et al. focused on the variation in resting and
activated Tregs and put forth a new concept that the proportion
of activated Tregs in the endometrioma rather than in the
peritoneal fluid or peripheral blood is decreased, which may be
temporal and associated with the angiogenesis and progression
of endometriosis (160). However, a study showed the proportion
of Tregs in ectopic endometrium was increased in patients
with endometriosis compared with eutopic endometrium (156).
Further research is required with an expanded sample size and
more detailed subgroup analysis to better determine the role
Tregs play in the pathogenesis of endometriosis.

Change in the proportion of Tregs appears to contribute to
the suppressed immune response against ectopic endometrial
tissue, permitting implantation of endometrial tissue in the
peritoneal cavity. Therefore, understanding the origin of local
Tregs production may be provide new insights that will aid
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in the development of targeted therapies for women with
endometriosis. The accumulation of Tregs in the peritoneal
cavity may not only be a result of active translocation
from the peripheral blood but may also be due to their
local induction (153). Higher levels of IL-10 and TGF-β,
two key cytokines responsible for regulating the proliferation
and activity of Tregs, were found in the peritoneal fluid
and serum of patients with endometriosis than in normal
controls (164, 165). Compared with serum levels, the level
of cytokines in peritoneal fluid was significantly higher
(165). Furthermore, IL-10 and TGF-β mRNA expression were
significantly higher in ectopic lesions than eutopic endometrium
from women with or without endometriosis, particularly in
cases of advanced endometriosis (166). These results suggest
Tregs and related cytokines maintain the local anti-inflammatory
environment and play a crucial role in the development
of endometriosis.

PREECLAMPSIA

Preeclampsia is a common pregnancy-related complication
that occurrs in 3–5% of pregnant women and can lead to
iatrogenic preterm birth and fetal growth restriction (167). The
precise etiology of preeclampsia remains unknown, although
insufficient formation of uterine spiral arteries, over-activated
inflammation, injured endothelial cells, and genetic factors have
all been implicated (168–171). Interestingly, preeclampsia seems
to be more common in primiparous than multiparous women,
whereas the protective effect is abrogated with the change of
partner. A meta-analysis compared the difference in the risk
of preeclampsia in women who were impregnated by donor or
partner sperm and found the risk was significantly increased
in conceptions resulting from donor sperm (172). Furthermore,
another study reported that prior and prolonged partner sperm
exposure before pregnancy is associated with a significant
reduction of the risk of preeclampsia (173). Taken together, these
observations suggest that paternal antigens and sperm exposure
induce an immune tolerance during the first pregnancy and offer
effective protection against the development of preeclampsia
with subsequent pregnancies, implying the adaptive immune
response with alloantigen specificity and immunological memory
is involved in the pathogenesis of preeclampsia (174).

An increasing body of evidence suggests that an inadequate
immune tolerance induced by Tregs-associated abnormalities
play a pivotal role in the etiology of preeclampsia. Several
studies have reported that, compared with normal pregnancy,
both the number of Tregs and the ratio of Tregs to Th17 cells
in peripheral blood are significantly reduced in preeclampsia
(175–177). The increased ratio of Th17/Treg cells has also
been confirmed by an analysis of Th17/Treg expression of
related transcription factors and the secretion of Th17/Treg-
related cytokines. Compared with healthy pregnant women,
a reduction in the expression of Treg-specific transcription
factor Foxp3 and an elevation in Th17-specific transcription
factor RORγt in patients with preeclampsia has been reported
(178). Furthermore, analysis of cytokine profiles have revealed

a significant decrease in IL-10, and a significant increase in
IL-17 levels in patients with preeclampsia (178, 179). Taken
together, these studies suggest that a shift occurs from Tregs
to Th17 cells in the development of preeclampsia, leading to
an abnormal immune state that triggers inflammation and an
impairment of immune tolerance. The mechanism underlying
the imbalance of Th17/Treg cells remains unclear. Eghbal-
Fard et al. suggested the upregulation of miRNA in patients
with preeclampsia may affect the differentiation and expansion
of Th17/Treg cells by regulating the expression of specific
transcription factors (178). In addition to the alteration in the
proportion of Tregs, the immunosuppressive activity of Tregs is
also altered in patients with preeclampsia. Darmochwal-Kolarz
et al. reported the proliferation of effector T lymphocytes in
patients with preeclampsia was significantly inhibited by Tregs
isolated from healthy pregnant women. However, the suppressive
response was lost if replaced with Tregs from patients with
preeclampsia (180).

The recruitment of Tregs from peripheral blood into decidua
and the local expansion of decidual Tregs are important
for maintaining fetal-maternal immune tolerance at the fetal-
maternal interface. It has been well-established that the
proportion of Tregs in decidua is decreased in preeclampsia
(181). Though the reduction of decidual Tregs may be associated
with an imbalance in systemic Tregs, local expansion may also
play an important role. TCR repertoire analysis of decidual
Tregs showed an insufficient clonal expansion of decidual Tregs
in preeclampsia compared with healthy pregnancy (182). In
normal pregnancy, induced rather than native Tregs are the
dominant Tregs subset located in the decidua and are clonally
expanded, while the expansive and suppressive capacity of
iTregs is significantly impaired in preeclampsia (183). The
local induction of Tregs depends on specific APCs within
the decidual microenvironment. A significant reduction in the
expression of HLA-G and ILT4 on decidual APCs is observed
in preeclampsia compared with normal pregnancy, providing a
possible clue to the lack of iTregs in preeclampsia (183). An
aberrant proportion and type of Tregs in the decidua disturb
the immune homeostasis during pregnancy and promote the
development of preeclampsia.

Tregs and Immune Therapy During
Pregnancy
Taken together, the above studies suggest that Tregs play a
prominent role in regulating fetal-maternal immune tolerance,
and a defect in the proportion and activity of Tregs is involved
in the development of RSA, endometriosis, and preeclampsia.
Thus, approaches designed to boost the proportion of Tregs
or strengthen their suppressive function may lead to promising
strategies for treating pregnancy-related diseases. Several Tregs-
based target therapies are entering into clinical trials, including
adoptive Treg cell therapy, Tregs-enhancing drugs, and low dose
IL-2 administration (184).

Administration of purified Tregs was firstly applied as
Tregs-based target therapy. With the development of immune
cell therapy, antigen-specific Tregs therapy was also proposed
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for treating autoimmune and graft-versus-host diseases. Phase
I/II clinical trials aimed to explore the curative effect, and
some have reported that Tregs administration alleviates clinical
symptoms induced by autoimmunity (184). Some research has
attempted to determine whether Tregs administration improves
pregnancy outcomes. Yin et al. and Wang et al. examined
the effectiveness of adoptive transfer of Tregs in preventing
spontaneous abortion in mice models (136, 185). Yin et al.
established an abortion-prone pregnancy mice model with
DBA/2J-mated pregnant CBA/J mice and performed adoptive
transfer of freshly isolated and in vitro expanded Tregs from
non-pregnant CBA/J mice. Wang et al. induced spontaneous
abortions by administration of IL-17 in a CBA/J × BALB/c
mouse model of normal pregnancy and performed adoptive
transfer of in vitro expanded Tregs purified from pregnant CBA/J
mice. These two studies demonstrated transfusion with in vitro
expanded Tregs promotes immune suppressive activity, increases
the secretion of suppressive cytokines and significantly reduces
the rate of spontaneous abortion.

Although Treg cell therapy has not been widely used in
clinical practice, clinical research has initiated several non-
specific immunotherapies partially regulating the proportion
and activity of Tregs for the treatment of pregnancy-related
diseases. Intravenous immunoglobulin G (IVIG) and paternal
or third-party lymphocyte immunization therapy have been
proposed for the treatment of patients with RSA due to the
potential immunomodulatory effects. Although the benefit for
these immunotherapies is controversial, a growing body of
evidence suggests that they may increase rates of live birth and
decrease rates of miscarriage (186–188). A variety of studies
and clinical trials have reported both IVIG and lymphocyte
immunization therapy correct the Tregs defect and rebalances
the Th17/Treg paradigm in peripheral blood. Compared with
a control group, the treatment triggers a shift toward Tregs in
the Th17/Treg balance by enhancing the expansion of Tregs,
promoting the secretion of suppressive cytokines, and inhibiting
Th17 cells proliferation (186, 188–192).

Tregs-enhancing drugs are another type of Tregs-based target
therapy. Rapamycin (Sirolimus) is an mTOR inhibitor, which
acts as an immunosuppressive drug by selectively promoting
the expansion of Tregs and inducing differentiation of T helper
cells into Tregs. Royster et al. established a murine model
with conditional knockdown of Tregs induced by diphtheria
toxin. They found the deletion of Tregs decreased litter
sizes and triggered embryo implantation failure, effects that
were reversed after the treatment with rapamycin (193). A
multicenter, double-blind, phase II randomized clinical trial
administrated 2 mg/day of sirolimus for 2 days before embryo
transfer to patients receiving IVF-ET therapy and who had a
history of recurrent implantation failure. The study collected
blood samples and assessed the ratio of Th17/Treg cells
by flow cytometry 5–10 days prior to the initiation of an
IVF cycle. Only patients with a high ratio of Th17/Treg
cells were included in this trial. The trial reported that the
administration of sirolimus reversed the imbalance in the ratio

of Th17/Treg cells and significantly increased the rate of clinical
pregnancy and live birth compared with those in the control
group (194).

Taken together, some studies have demonstrated the
effectiveness of Tregs-based therapy in treating several
autoimmune diseases and cases of organ transplantation.
However, the methods cannot be directly applied for
pregnancy-related diseases because the dynamic change in
the immune state during pregnancy and the possibility of
fetal drug toxicity must be taken into account. Most of the
current treatments for pregnancy-related diseases focus on a
reduction in an overactive immune response with the use of
non-specific immunosuppressive therapy. This triggers the
simultaneous activation of numerous immune cells and makes
it difficult to control the dose and to evaluate the curative effect
because of individual heterogeneity. Therefore, more studies
should be conducted to further explore the effectiveness and
safety of Tregs-based target therapies for the treatment of
pregnancy-related diseases.

CONCLUSION AND FUTURE
PERSPECTIVE

Tregs are generally viewed as arising from a specific T cell
lineage generated in the thymus or induced in peripheral
organs. Being the most predominant immune-suppressive cells, a
tremendous amount of research has focused on determining the
molecular mechanisms responsible for inducing the expansion
of Tregs and their activity in the periphery and in specific
organs. This effort will provide new insights that will guide the
improvement of Tregs-based targeted immune therapy. In recent
years, increasing data has shown that the expansion of Tregs
is triggered after exposure to the fetal alloantigens and changes
dynamically over the course of pregnancy. Hormones such as
estradiol and progesterone as well as HCG are significantly
increased during pregnancy, and regulate the number and
function of Tregs to sustain a proper pregnancy-related immune
tolerance. Furthermore, various reproductive diseases such as
recurrent miscarriage, endometriosis and preeclampsia result
in part from the deficiency in the number and activity of
Tregs. Therefore, modulating the immune response by boosting
the number of Tregs and enhancing their activity may be a
potential therapeutic strategy for managing these pregnancy-
related complications.
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Myeloid-derived suppressor cells (MDSC), especially polymorphonuclear MDSC

(PMN-MDSC), accumulate in maternal-fetal interface during pregnancy and are involved

in the maintenance of immune tolerance. Decreased PMN-MDSC is associated with

pregnancy complications such as unexplained recurrent pregnancy loss (URPL). In

the present study we showed decreased PMN-MDSC in the URPL group compared

with the normal pregnancy (NP) group, and PMN-MDSC was the major subset of

MDSC in human decidua with potent immune suppression activity. We then performed

gene expression profile and found that human decidual PMN-MDSC in the NP and

URPL groups showed different gene and pathway signature, including apoptosis.

Apoptosis of decidual PMN-MDSC was mediated by TNF-related apoptosis–induced

ligand (TRAIL) in a Caspase 3 dependent manner. TRAIL was expressed in decidua

and upregulated in decidua of the URPL group. Notably, of all the membrane

TRAIL receptors, only DcR2 was down-regulated in PMN-MDSC in the URPL group.

In vitro experiment demonstrated that DcR2 blockade sensitized PMN-MDSC to

TRAIL-mediated apoptosis. Together, these data indicate that increased TRAIL and

reduced DcR2 on PMN-MDSC sensitize PMN-MDSC response to TRAIL-induced

apoptosis in the URPL group, which is responsible for decreased accumulation of

PMN-MDSC in URPL.

Keywords: polymorphonuclear myeloid-derived suppressor cell, TRAIL, TRAIL receptor, apoptosis, unexplained

recurrent pregnancy loss

INTRODUCTION

Recurrent pregnancy loss (RPL), defined as two or more failed pregnancies, occurs in 5%
pregnancies and about 50% of all RPL are idiopathic, which is defined as unexplained RPL (URPL)
(1, 2). The pathogenesis of URPL is poorly understood and maternal-fetal immune dysfunction
is considered to be one major cause. Maternal-fetal immune tolerance depends on intricate
interactions of the immune system (3), and recent reports indicate a role of myeloid-derived
suppressor cells (MDSC) in maintenance of maternal-fetal immune tolerance (4–6).

MDSC are recently identified as heterogeneous cell populations of myeloid origin with potent
immunosuppressive activity (7, 8). In human,MDSC are defined as HLA-DR−/lowCD11b+CD33+,
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and can be further categorized into two major subsets:
CD33brightCD14+CD15− monocytic MDSC (M-MDSC) and
CD33dimCD14−CD15+ polymorphonuclear MDSC (PMN-
MDSC) (8–10). Accumulation of MDSC occurs in a lot of
physiological and pathological conditions, such as cancer,
infection, autoimmune disorders, obesity, and pregnancy (7).
Immune suppressive activity is the hallmark of MDSC. The
most prominent immune regulatory factors of MDSC include
Arginase 1, reactive oxygen species (ROS), prostaglandin
E2, nitric oxide synthase, and immune checkpoints (11, 12).
In different contexts MDSC suppress the immune response
via different mechanisms (7). MDSC are involved in the
maintenance of immune tolerance of pregnancy by inhibiting
cytotoxic T cells activation, suppressing NK cells killing activities
and regulating regulatory T cells (5, 6, 13, 14). Decreased MDSC
has been associated with URPL and depletion of MDSC in
murine pregnancy model can lead to implantation failure or
embryo loss (6, 14, 15). Several studies have reported potential
mechanisms of MDSC expansion during pregnancy in healthy
women. Estrogen or progesterone can facilitate expansion and
activation of MDSC (15, 16). Fetal-derived factor HLA-G also
plays a role in PMN-MDSC accumulation via STAT3 pathway
stimulation (17). Moreover, CXCR2/CXCL1 axis, which is
also related to PMN-MDSC infiltration into tumor, promotes
PMN-MDSC recruitment to the decidual microenvironment
(18). Nevertheless, little is known about transcription features
and cell fate of MDSC in normal pregnancy (NP) and URPL.
Reagents targeting MDSC survival have been demonstrated to be
effective for cancer treatment in both murine models and human
participants (19–21). Understanding the cell fate of decidual
MDSC is critical for developing better therapeutic approaches
for pregnancy complications such as URPL.

In this study, we showed PMN-MDSC was the most abundant
MDSC subset in decidua and only PMN-MDSC, not M-
MDSC, decreased in decidua isolated from patients with URPL.
Furthermore, we found apoptosis of decidual PMN-MDSC was
activated in the URPL group. Increased TRAIL expression,
together with reduced DcR2 in decidual PMN-MDSC, played an
important role in excessive apoptosis of PMN-MDSC in URPL.

MATERIALS AND METHODS

Study Participants
From June 2018 to December 2019, a total of 33 women with
clinical NP and 23 women with URPL were enrolled in the study.
The demographic characteristics of participants in the URPL
group and the NP group are concluded in Supplemental Table 1.
The fetal heartbeat of the NP group was verified by ultrasound
before elective termination of pregnancy. Patients with URPL
were enrolled in the URPL group if they fitted the following
criteria: (1) two or more previous spontaneous abortions; (2)
absence of uterine malformation; (3) normal karyotype of
parents and abortus; and (4) absence of endocrine, metabolic,
autoimmune diseases, thrombophilia, or infection; (5) Fetal
heartbeat had ceased or never detected. Decidual tissues from 6
to 9 weeks were harvested immediately after surgery under sterile
conditions and washed in cold PBS to remove blood and fetal

tissues. Decidual tissues were frozen in liquid nitrogen for protein
or RNA extraction. For immunohistochemistry, decidual tissues
were fixed in formalin and embedded in paraffin for preservation.
Peripheral blood was collected from healthy non-pregnant
donors. The study was approved by the Human Research Ethics
Committee of Renji Hospital and written informed consent was
obtained from all participants.

Cell Isolation
Single-cell suspensions were obtained by homogenizing tissues in
PBS in the gentleMACS Dissociator (Miltenyi Biotec, Germany)
with gentleMACS program B and C. Cell suspensions were
strained through a 70-µm strainer and subsequently through
a 40-µm strainer. Afterwards, the cells were washed with
PBS and isolated using Ficoll density gradient (GE healthcare,
USA). Mononuclear cells were harvested from the interphase.
Cells were used immediately after isolation for phenotypic
characterization and functional analysis. For sorting of decidual
PMN-MDSC, decidual mononuclear cells were labeled with:
CD11b-APC (BioLegend, USA), HLA-DR-FITC (BioLegend,
USA) and CD15-PE (BD Bioscience, USA). PMN-MDSC were
sorted as CD11b+HLA-DR−CD15+ using FACS Aria II (BD
Bioscience, USA). In experiments involving survival analysis,
CD15 MicroBeads (Miltenyi Biotec, Germany) and MACS
sorting were used for separation of PMN-MDSC. To isolate
CD3+ T cells for T cell suppression assay, peripheral blood
mononuclear cells (PBMCs) of healthy donors were labeled with
CD3 MicroBeads (Miltenyi Biotec, Germany) and sorted. Purity
was >90% as confirmed by flow cytometry.

Analytical Flow Cytometry
Fc receptor blocking solution (BioLegend, USA) was added
prior to staining. The following antibodies were used in this
study: CD45-APC-H7 (BD Bioscience, USA), CD45-Percp-
Cy5.5 (BD Bioscience, USA), CD33-PE-Cy7 (BioLegend, USA),
CD11b-FITC (BioLegend, USA), CD11b-BV421 (BD Bioscience,
USA), CD11b-APC (BioLegend, USA), HLA-DR-BV421 (BD
Bioscience, USA), HLA-DR-FITC (BioLegend, USA), CD14-
PE (BD Bioscience, USA), CD15-APC (BD Bioscience, USA),
CD15-BV510 (BioLegend, USA), CD3-FTIC (BioLegend, USA),
IFN-γ-PE-Cy7 (BioLegend, USA), CD4-APC (BioLegend, USA),
CD8-PE (BioLegend, USA), CD16-PE (BD Bioscience, USA),
CD56-PE-Cy7 (BD Bioscience, USA), Fas-APC (BD Bioscience,
USA), CD261-APC (BioLegend, USA), CD262-PE (BioLegend,
USA), CD263-PE (eBioscience, USA), and CD264-PE (R&D
Systems, USA). FVD eFluor 780 (eBioscience, USA) was used
to identify dead cells for excluding them from the analysis. Flow
cytometry data were acquired with LSRFortessa (BD Bioscience,
USA) or Beckman Coulter FC500 (Beckman, USA), and were
analyzed using FlowJo software (BD Bioscience, USA). Positive
subpopulations were identified by comparing stained samples
with Fluorescence minus one (FMO) controls.

T Cell Suppression Assay
CD3+ cells were labeled with carboxyfluorescein diacetate
succinimidyl ester (CFSE) (BD Bioscience, USA) according to
the manufacturer’s instructions and cultured with PMN-MDSC
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isolated from decidual tissues at a ratio of 2:1 or 6:1 in 96-well
plates. CD3+ cells were stimulated with 10µg/mL pre-coated
anti-CD3 (OKT3, BioLegend, USA) and 1µg/mL soluble anti-
CD28 (CD28.2, BioLegend, USA). After 3.5 days of incubation,
cells were resuspended in PBS for flow cytometry. For T cell
secretion suppression assay, unlabeled CD3+ cells were used in
the T: MDSC cell co-culture system. After 3.5 days, leukocyte
activation cocktail with BD Golgiplug (BD Bioscience, USA) was
added into the culture system for 5 h. Afterwards, the cells were
harvested for the analysis of intracellular cytokine expression.
Cells were cultured at 37◦C in humidified air with 5% CO2

in RPMI 1640 (HyClone, USA) supplemented with 10% heat
inactivated fetal bovine serum (FBS) (Gibco, USA) and 1%
penicillin/streptomycin (Gibco, USA).

Gene Expression Profile Analysis
The Human Whole Genome OneArray HOA 7.1 (Phalanx
Biotech Group, China) was used to examine the whole-genome
expression profiles of sorted PMN-MDSC from three women of
the NP group and three women of the URPL group. Total RNA
was extracted using Trizol Reagent (Invitrogen, USA) according
to the manufacturer’s instructions. The RNA integrity number
(RIN) was 7–10. Cy5-labeled aRNA was hybridized and scanned
on a G2505C Agilent Microarray Scanner (Agilent Technologies,
USA) with Agilent 0.1 XDR software. Heatmap analysis was
performed using R and a fold change of >1.5 was considered
to be significant. Gene set enrichment analysis (GSEA) including
GO and KEGG pathway was carried out using GSEA 4.0.1 and
gene sets were obtained from the MSigDB database v7.0 (22, 23).
The complete data were deposited in NCBI Gene Expression
Omnibus with accession number GSE139180.

Survival Assay
PMN-MDSC isolated from decidual tissues of normal pregnancy
were cultured at 37◦C in humidified air with 5% CO2
in RPMI 1640 (HyClone, USA) supplemented with 10%
heat inactivated fetal bovine serum (FBS) (Gibco, USA), 1%
penicillin/streptomycin (Gibco, USA) and 5 ng/mL recombinant
GM-CSF (R&D Systems, USA). Decidual PMN-MDSC were
treated with FasL (10, 100 ng/mL, BioLegend, USA), TRAIL
(10, 100 ng/mL, Gibco, USA) or DR5 agonist Bioymifi (10,
50µM, Selleck, USA) for 24 h and then were collected. In some
experiments, PMN-MDSC were preincubated with anti-human
DcR2 Ab (10µg/mL, R&D Systems, USA) for 1 h before exposed
to TRAIL. Apoptosis of PMN-MDSC was tested using activated
Caspase-3-PE (BD Bioscience, USA) staining or Annexin V
Apoptosis Detection Kit (BD Bioscience, USA) according to the
manufacturer’s instructions.

Real-Time Quantitative RT-PCR
Total RNA was extracted from decidual tissues with TaKaRa
MiniBEST Universal RNA Extraction Kit (Takara, Japan)
according to the manufacturer’s instructions. Concentration of
RNA was measured by NanoDrop ND-1000 (Thermo Fisher
Scientific, USA). mRNA was synthesized into cDNA using
PrimeScript RT Reagent Kit (Takara, Japan). FasL, TRAIL
and GAPDH were amplified through qRT-PCR using SYBR

Premix Ex Taq II (Takara, Japan) with QuantStudio Dx Real-
Time Instrument (Life Technologies, USA). For clinical samples,
relative gene expression was calculated with 2−1CT method
normalized to GAPDH. The sequences of primers were listed in
Supplemental Table 2.

Western Blot
Decidual samples were homogenized, incubated with radio-
immuno precipitation assay (RIPA) lysis buffer (Thermo Fisher
Scientific, USA) with protease inhibitors (Sigma-Aldrich, USA)
for 30min on ice. Total protein extracts were obtained
after centrifuging at 12,000 g for 15min at 4◦C. Protein
concentrations were measured using a bicinchoninic acid
assay (BCA) assay kit (Beyotime Biotechnology, China). A
hundred microgram protein were loaded on 12% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to polyvinylidene difluoride (PVDF) membranes
(Sigma-Aldrich, USA). Membranes were blocked in 5% w/v
bovine serum albumin (BSA) for 1 h at room temperature.
Then membranes were incubated at 4◦C overnight with
the following primary antibodies: anti-TRAIL (Cell Signaling
Technology, USA, 1:1,000), anti-FasL (Absin, China, 1:500),
and anti-β-actin (Santa Cruz Biotechnology, USA, 1:1,000). β-
actin was used as the internal control. Then the blot was
incubated with the corresponding IRDye 800CW-conjugated
secondary antibody (LI-COR Biosciences, USA, 1:10,000) for
1 h at room temperature. Signals were detected using Odyssey
Infrared Imaging System (LI-COR Biosciences, USA) and the
blots were quantified using ImageJ (McMaster Biophotonics
Facility, Canada).

Immunohistochemistry
Immunohistochemistry was performed as previously described
(24). Four micrometer sections of formalin-fixed paraffin-
embedded decidual samples were incubated overnight with
anti-FasL antibody (1:200; Abcam, USA) and anti-TRAIL
antibody (1:200; Cell Signaling Technology, USA, 1:500) at 4◦C.
Monoclonal or polyclonal rabbit IgG served as the negative
control. Bright-field images were taken using Leica DM2500
(Leica, Germany). Images were randomly taken from each
section, and the average optic density was identified with ImageJ
(McMaster Biophotonics Facility, Canada).

Statistical Analysis
Results are presented as mean ± standard deviation (SD).
Unpaired Student’s t-test was used to analyze the differences
between the two groups. When the variances of the two groups
differed in F test, the Mann-Whitney U-test was used to
compare the two groups. Comparison among multiple groups
was carried out by one-way ANOVA followed by Tukey’s post-
hoc test. Correlations between parameters were evaluated using
Pearson correlation analysis. P-value < 0.05 was considered to
be statistically significant. All statistical analyses were performed
using GraphPad Prism 7 Software (GraphPad Software, USA).
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RESULTS

PMN-MDSC Was the Major Subset of
Decidual MDSC and Decreased in the
URPL Group
We used current consensual marker combinations for
characterization of MDSC subsets. PMN-MDSC were defined
as HLA-DR−/lowCD11b+CD33+CD15+CD14− and M-MDSC
were defined as HLA-DR−/lowCD11b+CD33+CD15−CD14+

(Figure 1A). We found that both CD33dimCD15+ PMN-
MDSC and CD33brightCD14+ M-MDSC existed in decidua
of early pregnancy. To determine the potential role of
MDSC in pathogenesis of URPL, we analyzed percentage
of MDSC subsets within the total CD45+ leukocytes of 23
patients with URPL and 33 women with normal pregnancy
using flow cytometry. Compared with M-MDSC, more
PMN-MDSC accumulated in decidua in both the NP group
and the URPL group (Figure 1B; P < 0.0001). Notably,
only decidual PMN-MDSC significantly decreased in the
URPL group compared with normal pregnancy (Figure 1B;
P = 0.001).

Decidual PMN-MDSC in Both the NP Group
and the URPL Group Had Suppressive
Activity
T cell suppression ability is a hallmark of MDSC and is
indispensable when defining MDSC. PMN-MDSC were isolated
from decidual tissues of the NP group and the URPL group
and then cocultured with purified CD3+ T cells at ratio of 1:2
or 1:6 in the presentence of anti-CD3/CD28 stimulation for
3.5 days. PMN-MDSC in both groups remarkably suppressed
proliferation of CD4+ T cells or CD8+ T cells (Figures 2A,B).
IFN-γ production was also suppressed by PMN-MDSC in both
the NP group (Figure 2C; P = 0.02) and the URPL group
(Figure 2C; P = 0.04). Altogether, these data indicated that
PMN-MDSC in both the NP group and URPL group exerted
potent suppression ability.

Decidual PMN-MDSC in the URPL vs. the
NP Groups Showed Different Gene and
Pathway Signature
To evaluate the potential role of PMN-MDSC in maintaining
the normal pregnancy, we performed whole-genome expression
profile analysis of decidual PMN-MDSC in the NP group and
the URPL group. The gene expression pattern of the decidual
PMN-MDSC was significantly different between the NP group
and the URPL group. Altogether, 423 differentially expressed
genes (DEG) exhibited a fold change of >1.5 with an adjusted
P-value of <0.05; 303 genes were upregulated and 120 genes
were down-regulated in the URPL group compared with the
NP group (Figures 3A,B). To elucidate functional features of
PMN-MDSC in NP and URPL, GSEA were performed. KEGG
gene sets and GO gene sets were used in the analysis. Of
note, toll-like receptor signal pathway, apoptosis, leukocyte
activation involved in inflammatory response and phagocytic
vesicle were significantly enriched in the URPL group while

extracellular matrix (ECM) receptor interaction, TGF-beta
signaling pathway, cell adhesion mediator activity and growth
factor binding were remarkably enriched in the NP group
(Figures 3C,D).

Decidual PMN-MDSC in URPL Underwent
More Apoptosis
To further examine whether decidual PMN-MDSC in the URPL
group experienced more apoptosis than that in the NP group, we
analyzed activated Caspase 3 expression in PMN-MDSC of the
two groups. There was significant difference in the proportion
of apoptotic cells in freshly isolated decidual PMN-MDSC of the
NP group and the URPL group (Figure 4A; P = 0.004). After
cultured in vitro for 24 h, activated Caspase3 expression was
also higher in PMN-MDSC of the URPL group (Figure 4A; P
= 0.002). Furthermore, the proportion of PMN-MDSC within
the total decidual CD45+ leukocytes was negatively correlated
with activated Caspase 3 expression in PMN-MDSC (Figure 4B;
Pearson r = −0.51, P = 0.031). The apoptosis of decidual PMN-
MDSC was also examined by Annexin V staining. For PMN-
MDSC which were freshly isolated or cultured for 24 h, the
percentage of Annexin V+ PMN-MDSC was higher in the URPL
group compared with the NP group (Figure 4C; P = 0.02, P
= 0.006). Activated Caspase 3 expression was of no difference
between the NP group and the URPL group for freshly isolated
decidual NK cells (Supplemental Figure 1) and decidual T cells
(Supplemental Figure 1). These data indicated that decidual
PMN-MDSC in the URPL group underwent more apoptosis than
that in the NP group.

Decidual FasL and TRAIL Expression Were
Increased in URPL
We determined the expression levels of FasL and TRAIL
in decidual tissues of the URPL and the NP group. qRT-
PCR results showed that mRNA level of FasL (Figure 5A;
P = 0.034) and TRAIL (Figure 5B; P = 0.008) significantly
increased in the URPL group. Western blot showed protein
levels of FasL (Figure 5C; P = 0.011) and TRAIL (Figure 5D;
P = 0.022) were remarkably upregulated in the URPL group.
Immunohistochemistry staining showed that in the NP group,
FasL expression was stronger in the glandular epithelial cells
than that in the decidual stromal cells (Figure 5E1); however,
in the URPL group, both glandular epithelial cells and decidual
stromal cells showed moderate FasL expression (Figure 5E2).
TRAIL was localized in both glandular epithelial cells and
decidual stromal cells (Figure 5F1,F2), and epithelial cells
showed stronger expression than stromal cells in the NP
group (Figure 5F1). FasL and TRAIL staining were stronger
in the URPL group (Figures 5E,F; P = 0.005, P < 0.0001).
Localization of glandular epithelial cells and decidual stromal
cells were determined by staining of cytokeratin 7 and vimentin
(Supplemental Figure 2), respectively. The negative control
stained with polyclonal or monoclonal rabbit IgG showed no
positive staining (Figure 5E3,F3).
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FIGURE 1 | Phenotypic characteristics and frequency of MDSC subsets of human decidual tissue in the normal pregnancy (NP) group and the unexplained

recurrent spontaneous abortion (URPL) group. (A) Representative flow cytometry showing gating strategy of PMN-MDSC (gated on HLA-DR−/lowCD11b+CD33+

CD15+CD14−) and M-MDSC (gated on HLA-DR−/lowCD11b+CD33+CD15−CD14+) in decidua. (B) Representative flow cytometry of decidual PMN-MDSC and

M-MDSC of the NP and the URPL group (left). Percentage of decidual PMN-MDSC and M-MDSC of NP (n = 33) and URPL (n = 23) (right) were analyzed (mean ±

SD, Mann-Whitney U-test). ***P < 0.001; ****P < 0.0001; ns, not significant. FMO, Fluorescent minus one.

Apoptosis of Decidual PMN-MDSC Was
Regulated by TRAIL and TRAIL-Rs
We then analyzed the expression of membrane receptors of
FasL and TRAIL on decidual PMN-MDSC. Decidual PMN-
MDSC in both the NP group and the URPL group showed
expression of Fas, DR4, DR5, DcR1, and DcR2 (Figure 6A). The
expression level of DR4 was rather low since the fluorescence
intensity was very close to the FMO control. PMN-MDSC of
the two groups did not differ in the expression of Fas, DR4,

DR5, or DcR1; however, DcR2 expression on PMN-MDSC was
significantly down-regulated in the URPL group (P= 0.016). We
next investigated whether decidual PMN-MDSC was sensitive to
FasL or TRAIL induced apoptosis. PMN-MDSC from the NP
group were treated with recombinant human FasL and TRAIL.
FasL could not induce apoptosis of decidual PMN-MDSC at the
concentration of both 10 and 100 ng/mL (Figure 6B). Notably,
decidual PMN-MDSC showed significantly higher apoptosis
(Figure 6B, P = 0.0006) after exposure to 100 ng/mL TRAIL.
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FIGURE 2 | Functional characteristics of decidual PMN-MDSC in the NP group and URPL group. (A) and (B) CD3/CD28-stimulated T cells were cocultured with

purified PMN-MDSC of the NP group and the URPL group from decidua of pregnancy between 6 and 9 weeks at a ratio of 2:1 or 6:1 for 3.5 days. The percentage of

proliferative CD4+ T cells or CD8+ T cells were analyzed (mean ± SD, one-way ANOVA, Tukey’s post-hoc test). (C) CD3/CD28-stimulated T cells were cocultured

with purified PMN-MDSC of the NP group and the URPL group from decidua of pregnancy between 6 and 9 weeks at a ratio of 2:1 for 3.5 days. Percentage of

IFN-γ-expressing T cells were analyzed (mean ± SD, one-way ANOVA, Tukey’s post-hoc test). n = 3; *P <0.05; ***P < 0.001; ****P < 0.0001; ns, not significant.
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FIGURE 3 | Differential expression genes and pathways in human decidual PMN-MDSC of the NP and the URPL group. (A) Heatmap showing differentially expressed

genes (DEGs). Rows in the heatmap represent DEGs. (B) The number and proportion of DEGs in PMN-MDSC that were upregulated or downregulated in the URPL

group (n = 3) vs. the NP group (n = 3). (C) GSEA analysis of KEGG gene sets including toll-like receptor signal pathway, apoptosis, ECM receptor interaction and

TGF-beta signaling pathway. (D) GSEA analysis of GO gene sets including leukocyte activation involved in leukocyte activation involved in inflammatory response,

phagocytic vesicle, cell adhesion mediator activity, and growth factor binding. Normalized enrichment score (NES) reflects the degree to which a gene set was

upregulated (positive NES) or downregulated (negative NES) in PMN-MDSC of URPL and false discovery rate (FDR) represents statistical significance of difference.

Moreover, exposure to 10 or 50µM DR5 agonist Bioymifi
induced a significantly high level of PMN-MDSC apoptosis than
TRAIL (P < 0.0001, P < 0.0001). To examine whether the
response to TRAIL-induced apoptosis was mediated by DcR2
expression, we detected the expression of activated Caspase 3
in decidual PMN-MDSC after exposure of anti-DcR2 Ab and
TRAIL for 24 h (Figure 6C). Notably, compared with isotype
control, DcR2 blockade significantly increased TRAIL-induced
apoptosis (P < 0.0001).

DISCUSSION

As an important regulator of the immune system, the role of
MDSC in pregnancy has been established in several studies
(5, 6, 13, 14). A certain number of MDSC take part in
maintaining immune tolerance during normal pregnancy and
a lack of MDSC can lead to pregnancy failure (14, 15).
Consistent with previous studies of our group and others
(5, 13), we found that PMN-MDSC was the major subset of
MDSC in human decidua since the percentage of PMN-MDSC

remarkably exceeded that of paired M-MDSC in both the NP
group and the URPL group. Also, only PMN-MDSC, but not
M-MDSC, decreased significantly in decidua of patients with
URPL compared with normal pregnancy. During pregnancy,
PMN-MDSC can facilitate maternal-fetal immune tolerance via
crosstalk with various immune cells. PMN-MDSC suppress T
cell proliferation via ROS or Arginase I and polarize CD4+ T
cells toward a Th2 cytokine response (4, 14, 15). PMN-MDSC
can also induce regulatory T cells in a TGF-beta dependent
manner (5). Moreover, PMN-MDSC can inhibit NK cytotoxicity
by inhibiting expression of perforin, granzyme B, and NKG2D
(6). We found that PMN-MDSC of both the NP group and the
URPL group potently suppressed T cell proliferation as well as
cytokine production, validating the immune regulatory ability of
decidual PMN-MDSC.

According to our whole-genome expression profile analysis,
genes upregulated in PMN-MDSC of the URPL group
significantly enriched in apoptosis compared with PMN-
MDSC of the NP group. Flow cytometry analysis further
validated that compared with PMN-MDSC in the NP group,
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FIGURE 4 | Apoptosis of decidual PMN-MDSC of NP and URPL. (A) After isolated from decidual tissues or cultured in vitro for 24 h, expression of activated Caspase

3 of decidual PMN-MDSC between the NP group (n = 9) and the URPL group (n = 9) were determined. (B) The correlation of activated Caspase 3 expression in

decidual PMN-MDSC with proportion of PMN-MDSC within the total decidual CD45+ leukocytes was analyzed (n = 18). (C) After isolated from decidual tissues or

cultured in vitro for 24 h, expression of Annexin V in PMN-MDSC between the NP group (n = 9) and the URPL group (n = 9) were analyzed. Mean ± SD, unpaired

Student’s t-test; *P < 0.05; **P < 0.01.
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FIGURE 5 | FasL and TRAIL expression in human decidual tissue of the NP and the URPL group. (A) and (B) Decidual FasL and TRAIL mRNA expression in the NP

group (n = 17) and the URPL group (n = 12) was quantified using 2−1CT method normalized to GAPDH. (C,D) Representative western blot results and statistical

analysis of FasL and TRAIL in the NP (n = 10) group and URPL (n = 10) group were shown. Relative protein amount was normalized to β-actin. Arrows indicate the

specific bands for each antibody. (E,F) Representative immunohistochemical staining image and quantification of the average optical density (AOD) of FasL and TRAIL

in the NP group (n = 10) (E1, F1) and the URPL group (n = 12) (E2, F2). Polyclonal or monoclonal rabbit IgG substituted primary antibodies in the negative control (E3,

F3) Original magnification, ×400; mean ± SD, unpaired Student’s t-test; *P < 0.05; **P < 0.01; ****P < 0.0001.
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FIGURE 6 | TRAIL and TRAIL-Rs mediated decidual PMN-MDSC apoptosis. (A) Representative flow cytometry of Fas, DR4, DR5, DcR1, and DcR2 expression of

decidual PMN-MDSC (left) and statistical analysis (right, n = 4–9, mean ± SD, Mann-Whitney U-test). (B) Decidual PMN-MDSC from the NP group were treated with

FasL (10, 100 ng/mL), TRAIL (10, 100 ng/mL), or DR5 agonist Bioymifi (10, 50µM) for 24 h (n = 6) and activated Caspase 3 expression was analyzed (mean ± SD,

one-way ANOVA, Tukey’s post-hoc test). (C) Decidual PMN-MDSC from the NP group were stimulated with TRAIL (100 ng/mL) in the presentence of 10µg/mL

anti-DcR2 Ab or isotype control for 24 h. Activated Caspase 3 was measured. Representative flow cytometry (left) and quantification (right) were shown (n = 6) (mean

± SD, one-way ANOVA, Tukey’s post-hoc test). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant. FMO, Fluorescent minus one.

PMN-MDSC in the URPL group underwent more apoptosis.
Mechanisms on MDSC apoptosis and survival have been
investigated in other microenvironments, however, the results
remain controversial. Cytotoxic T cells can induce MDSC
apoptosis via Fas/Fas ligand (FasL) signaling pathway while
resistance to Fas-mediated apoptosis contributes to the presence
of MDSC in tumor, and this effect is exclusive in MDSC since
other myeloid cells also express a similar level of Fas but do not
respond to FasL (25, 26). Interestingly, in another mouse model,
FasL deficiency leads to reducedMDSC and skewsMDSC toward
M-MDSC, indicating that PMN-MDSC decreases more after

FasL knockdown (27). Moreover, inflammation conditions can
protect MDSC from extrinsic-induced apoptosis (28). Tumor
necrosis factor (TNF)-related apoptosis induced ligand (TRAIL)
is another regulator of MDSC apoptosis via interacting with
membrane bound TRAIL receptors (TRAIL-Rs). TRAIL-R1
(DR4 or CD261) and TRAIL-R2 (DR5 or CD262) are two
death receptors, and ligation of TRAIL with either of them can
activate the apoptotic pathway. TRAIL-R3 (DcR1 or CD263) and
TRAIL-R4 (DcR2 or CD264) are two decoy receptors which bind
to TRAIL without further inducing apoptosis (29). In a murine
model, high expression of DR5 mediated TRAIL-induced effects,
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while in human, differently expressed DcR1 and DcR2 could
regulate cell fate of PMN-MDSC, indicating different apoptosis
mechanisms between species (19, 20). In primary HIV-infected
individuals, high TRAIL level is also associated with decreased
PMN-MDSC (30).

FasL and TRAIL are located in placenta as well as decidua, and
are important for immune privilege and successful pregnancy
since they can mediate apoptosis of cytotoxic T cells or other
immune cells with cell toxicity (31, 32). We found that in human
decidua both glandular epithelial cells and decidual stromal cells
expressed FasL and TRAIL. FasL and TRAIL levels were elevated
in the URPL group, which is in accordance with that excessive
FasL as well as TRAIL could also be involved in URPL (33–36).
Then we detected Fas and TRAIL-Rs levels of decidual PMN-
MDSC between the URPL and the NP group and only DcR2
expression was differentially expressed. Decidual PMN-MDSC
did not respond to FasL-mediated apoptosis. However, they were
sensitive to TRAIL-mediated apoptosis via Caspase-3 dependent
pathway. Interestingly, 100 ng/mL TRAIL only increased two
times apoptosis while DR5 agonist Bioymifi increased up to
four times apoptosis. Further in vitro blocking of DcR2 can
facilitate TRAIL-induced apoptosis in human decidual PMN-
MDSC, which is in line with a clinical trial showing that DR5
agonist selectively eliminated PMN-MDSC in cancer patients
and the effect is reversely correlated with DcR2 expression
level (20).

This is the first study focusing on decidual PMN-MDSC
survival during early human pregnancy. We found that the
apoptosis levels of two major decidual leukocytes, NK and T
cells, are similar in the NP and the URPL groups, implying
that PMN-MDSC apoptosis might not be the result of enhanced
apoptosis state in the URPL group. In addition, previous studies
mainly focused on disparity in MDSC number between the
NP and URPL groups. In the present study, although we
showed that PMN-MDSC in both NP and URPL groups exerted
potent immune suppressive function, the gene expression profile
indicated significantly different enriched biology pathways
between PMN-MDSC of the two groups. Genes upregulated
in the PMN-MDSC of the URPL group were enriched in
toll-like receptor signal pathway, leukocyte activation involved
in inflammatory response and phagocytic vesicle, indicating
that these cells experienced more inflammation than PMN-
MDSC in the NP group. The ECM receptor interaction, TGF-
beta signaling pathway, cell adhesion mediator activity and
growth factor binding were negatively enriched in PMN-
MDSC of the URPL group, indicating impaired interaction with
extracellular matrix and other cells, which is important for
cell recruitment and immune crosstalk. These issues remain be
further investigation.

In conclusion, we demonstrate that human decidual PMN-
MDSC in URPL are more sensitive to TRAIL-mediated apoptosis
signal pathway owing to elevated TRAIL and decreased DcR2
expression. This could be a mechanism of impaired viability
of decidual PMN-MDSC in URPL, however, the underlying
molecular pathways of decidual PMN-MDSC apoptosis needs
to be further elucidated. The observations presented in this
study provide a new insight into mechanisms of dysregulation
of PMN-MDSC in URPL, and therapeutic targeting on TRAIL-
induced apoptosis signaling may provide novel strategies for
URPL treatment.
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Immune cells [e. g., dendritic cells (DC) and natural killer (NK) cells] are critical players

during the pre-placentation stage for successful mammalian pregnancy. Proper placental

and fetal development relies on balanced DC-NK cell interactions regulating immune cell

homing, maternal vascular expansion, and trophoblast functions. Previously, we showed

that in vivo disruption of the uterine NK cell-DC balance interferes with the decidualization

process, with subsequent impact on placental and fetal development leading to fetal

growth restriction. Glycans are essential determinants of reproductive health and the

glycocode expressed in a particular compartment (e.g., placenta) is highly dependent on

the cell type and its developmental and pathological state. Here, we aimed to investigate

the maternal and placental glycovariation during the pre- and post-placentation period

associated with disruption of the NK cell-DC dynamics during early pregnancy. We

observed that depletion of NK cells was associated with significant increases of O- and N-

linked glycosylation and sialylation in the decidual vascular zone during the pre-placental

period, followed by downregulation of core 1 and poly-LacNAc extended O-glycans and

increased expression of branched N-glycans affecting mainly the placental giant cells and

spongiotrophoblasts of the junctional zone. On the other hand, expansion of DC induced

a milder increase of Tn antigen (truncated form of mucin-type O-glycans) and branched

N-glycan expression in the vascular zone, with only modest changes in the glycosylation

pattern during the post-placentation period. In both groups, this spatiotemporal variation

in the glycosylation pattern of the implantation site was accompanied by corresponding
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changes in galectin-1 expression. Our results show that pre- and post- placentation

implantation sites have a differential glycopattern upon disruption of the NK cell-DC

dynamics, suggesting that immune imbalance early in gestation impacts placentation

and fetal development by directly influencing the placental glycocode.

Keywords: dendritic cells, natural killer cells, implantation, glycoimmunology, placentation

INTRODUCTION

In hemochorial placentation, the placental trophoblasts have
direct contact to maternal immune cells. Thus, trophoblast cells
are exposed to allogenic immune responses by the mother.
Uterine immune responses must be regulated in a way that
allows access of the placenta to the maternal blood supply
but also prevents excess invasion of fetal cells and infections
(1). For successful pregnancy, maternal tolerance to the fetus
needs to be established, otherwise failure of the maternal
immune response to adapt correctly can lead to aberrant
immune activation, which is associated with preeclampsia and
miscarriage (2).

Highly specialized subpopulations of maternal leukocytes,
such as uterine NK (uNK) cells, infiltrate the murine decidua in
large numbers during the first half of pregnancy (3, 4). Through
expression of different factors (e.g., VEGF and IFN-γ), uNK
cells guide the remodeling of decidual spiral arteries increasing
the availability of maternal blood at the implantation site
and promoting trophoblast invasion (5–7). Another important
subpopulation of maternal leukocytes key for modulation of
local immunity and tolerance are uterine DC (uDC), which
increase in number during the pre-placentation period, reaching
a plateau in the post-placentation phase (8). These cells also
support vascular adaptations during pregnancy including vessel
permeability and blood flow to the implantation site through
the CXCL12/CXCR4 pathway (9–11). Recruitment of NK cells,
which is facilitated by DC, represents a mechanism to confine
the immunogenic potential of uDC. Thus, healthy dynamics
in the proportion of uNK cells and uDC during pregnancy
play a critical role not only in the regulation of angiogenesis
and decidualization (11, 12) but also in the placentation
process. Immune cell imbalance during early pregnancy, such
as expansion of DC or depletion of NK cells, has an effect on
the pre-placentation period and also on the placental phenotype
(13). For instance, implantation sites from NK cell depleted
dams showed decidual growth defects during early pregnancy,
indicated by a disrupted dynamics of decidua maturation (12).
Additionally, these mice exhibited vascular defects (i.e., narrow
lumens and cuffed appearance) in the central, proximal region of
the decidua basalis during the post-placentation period together
with increased accumulation of vascular- and tissue-associated
NK cells in the mesometrial lymphoid aggregate of pregnancy
(13). As a result from placental insufficiency, fetuses derived from
NK cell depleted dams suffer from intrauterine growth restriction
(IUGR) accompanied by an overall reduction of global DNA
methylation levels and epigenetic changes in the methylation
of specific hepatic gene promoters. Likewise, the expansion

of DC during early pregnancy also provoked decidual growth
defects on E5.5 (12) and changes in immune cell recruitment,
with increased numbers of perivascular DC at the mesometrial
decidua (MD) (11) and upregulation of IL-10 expressing NK cells
on E7.5 (14). Expansion of DC also led to significant changes
in placental morphology, with impaired vascular development of
the labyrinth and an increased accumulation of glycogen cells in
the junctional zone (13), but the effect on pregnancy outcomewas
milder as offspring derived from these pregnancies did not suffer
from IUGR and exhibited slight gene-specific epigenetic changes.

Glycans are sequences of carbohydrates that are added to
proteins and lipids to modulate their structure and function
(15). Two major types of glycosylation are observed: N-linked
glycosylation is the attachment of oligosaccharides to asparagine
or arginine side-chains, whereas O-linked glycosylation occurs
mainly at serine and threonine (Figure 1A). Glycans modify
proteins required for trophoblast function, and alterations
have been associated with pathological conditions. Thus,
aberrant N-glycosylation of integrin β1 in villous tissues, which
influences trophoblast invasion, was linked to early spontaneous
miscarriage in humans (16). Lectin histochemistry analyses
performed in human placentas revealed significant alterations of
carbohydrate metabolism (i.e., dysregulation of α-D-mannose,
GlcNAc, β-GalNAc, and α-Fucose) after the onset of different
types of hypertensive disorders and fetal growth restriction (17,
18); showing for instance alterations in the trophoblast and/or
endothelial cell glycophenotype of the pathological groups (17)
and an altered distribution of α2,3 and α2,6-linked sialic acid
in placentas from hypertensive disorders (18). More recently,
Tannetta et al. showed that preeclampsia is associated with
changes in the surface glycosylation of syncytiotrophoblast
derived extracellular vesicles (STBEVs), which are released
in increased numbers and exhibit a proinflammatory, anti-
angiogenic, and procoagulant activity. Indeed, STBEVs derived
from preeclamptic patients exhibited increased binding of
Sambucus nigra lectin and Ricinus communis agglutinin I,
which bind to α2,6-linked sialic acid and galactose or N-
acetylgalactosamine residues (19), whichmay be a link to changes
in vesicle-cell interactions affecting functions like cell targeting,
clearance, and immune activity. However, further investigation
is needed to determine whether and how different alterations in
glycosylation contribute to inappropriate maternal-fetal immune
responses and poor pregnancy outcomes. In this work, we
analyzed the effect of temporary changes within the DC or
NK cell pool during early pregnancy on the glycophenotype
during the pre- and post-placentation process, before the onset
of the IUGR disease phenotype. We show that pre- and post-
placentation implantations have a differential glycopattern where
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either NK cells were temporally ablated or DC were expanded.
Our data confirm that immune dysregulations early in gestation
have an impact on the placental glycocode, influencing the
placentation process itself and subsequently fetal development.

MATERIALS AND METHODS

Animals
All animals tissues used in this work were collected for previous
experiments assessing the role of NK cell—DC interactions
in the modulation of early pregnancy maternal adaptations,
placentation and fetal growth (11–13) in accordance with
guidelines for the care and use of laboratory research animals
promulgated by the Charité—Universitätsmedizin Berlin and
Regional Office for Health and Social Affairs. Animals were
purchased from Jaxmice R© and maintained on a 12L/12D cycle.
Five- to six-weeks old CD11c.DTR females were mated with
Balb/c males. The presence of a vaginal plug after cohabitation
was denoted as embryonic day (E) 0.5. Females were kept
in groups of 4–5 animals and injected (i.p.) on E4.5 with
anti asialo GM1 (WAKO, Cat.no. 986-10001, 2 mg/g BW) for
transient ablation of NK cells (aNK group, Figure 1B). For the
expansion of uterine DC (eDC group, Figure 1B), Balb/c-mated
CD11c.DTR females were treated with one daily injection of
human recombinant Fms-related tyrosine kinase 3 ligand (FL;
BioX cell, Cat.no. BE0098, 10 mg/mouse/day) from E0.5 to
E7.5. Control CD11c.DTR females received PBS supplemented
with rabbit normal serum (2 mg/g body weight i.p.). On E7.5
and 13.5, mice from the respective groups were sacrificed and
uterine tissue from the implantation sites (n = 5) was processed
for histological sectioning according to standard procedures.
Pregnancy outcomes for the different groups have been described
in our previous studies (11–13).

Immunofluorescence
We used a panel of lectins that recognize specific O-
glycan structures (Helix pomatia agglutinin (HPA; Tn-antigen),
Arachis hypogaea lectin (PNA; core 1), and Lycopersicon
esculentum lectin [LEA; core 2)]. In addition, we employed
Phaseolus vulgaris lectin (PHA-L), which specifically recognizes
β1,6GlcNAc-branched complex N-glycans. Finally, sialyation
was determined using the Maackia amurensis lectin (MAA)
and Sambucus nigra agglutinin (SNA-I) which bind to α2,3-
and α2,6-linked sialic acid, respectively (Figure 1A). Serial
cryosections of implantation sites were prepared at 8µm.
Briefly, slides were washed in TBS and blocked with Biotin
Blocking system (X0590, DAKO Corporation) for 20min in a
humid chamber at RT. Afterwards, slides were blocked with
Carbo-Free Blocking Solution (SP-5040, Vector Laboratories)
for 30min in a humid chamber at RT. Subsequently, slides
were incubated with biotinylated lectin (EY Laboratories)
diluted in Carbo-Free Blocking Solution for 16 h at 4◦C
in a humid chamber HPA (20 ng/ml; BA-3601-1), PHA-L
(20 ng/ml; BA-1801-2), or SNA-I (10 ng/ml; BA-6802-1). Lectin-
stained sections were then incubated with 2µg/ml Streptavidin-
Tetramethylrhodamine (S-870; Invitrogen) for 1 h in a humid
chamber at RT. Subsequently, slides were incubated with

FITC-labeled lectin (EY Laboratories) diluted in Carbo-Free
Blocking Solution for 2 h at RT PNA (20 ng/ml; F-2301-1),
LEA (20 ng/ml; F-7001-1), or MAA (20 ng/ml; F-7801-2). Nuclei
were counterstained with 4

′
,6-diamidino-2-phenylindole (DAPI)

for 5min at RT and mounted in Prolong Gold (P36930,
Invitrogen). Stainings of whole implantation sites were digitally
scanned by a high-resolution bright field and fluorescence slide
scanner (Pannoramic MIDI BF/FL, 3DHISTECH Ltd.), and
staining was evaluated on virtual slides using Pannoramic Viewer
1.15.4 (3DHISTECH Ltd.) by two examiners blinded to the
experimental group.

Galectin-1 Staining
Staining of 8µm cryo sections was performed by washing in
TBS, followed by blocking with Duale Endogenous Enzyme
Block (S2003, Dako) for 30min in a humid chamber at
RT. Afterwards, slides were blocked with Proteinblock (PHA-
70873, Dianova) for 20min. The primary antibody against
galectin-1 (1:400; GTX 101566, GeneTex) was incubated over
night at 4◦C. The slides were than washed and incubated
with HRP-conjugated secondary antibody (111-035-003; Jackson
ImmunoResearch) for 1 h at RT. The signal was detected
by incubation at RT with a 0.05% diaminobenzidine in
0.015% H2O2 substrate solution. After washing, nuclei were
counterstained with 0.1% Mayer’s hematoxylin followed by
a standard dehydration procedure and mounting in Entellan
(Merck Millipore).

Statistics
Data analysis was performed with GraphPad Prism 7 (GraphPad
Software, Inc.). Data are presented as mean ± SEM and
were analyzed with D’Agostino-Pearson omnibus normality test
followed by unpaired t-test or Mann-Whitney test. A p < 0.05
was considered as significant.

RESULTS

Dysregulation of the NK Cell or DC Pool
Changed the Distribution of O-Glycans,
Complex N-Glycans, and Sialylation in the
Mesometrial Decidua and Vascular Zone
During the Pre-placentation Period
In order to determine whether temporary ablation of NK cell
or expansion of DC during early pregnancy could influence
the glycophenotype of the implantation sites, we analyzed
implantation sites during the pre-placentation period (on E7.5)
focusing on the quantification within the mesometrial decidua
(MD) and vascular zone (VZ) (Figure 1B).

We first examined the O-glycans during the pre-placentation
period (Figure 1C). During normal gestation abundant
expression of core 1 O-glycans (PNA) compared to Tn antigen
(HPA) and core 2 O-glycans (LEA) in the MD was observed
(Figure 1C, left panel). Depletion of NK cells during early
pregnancy caused a decrease in core 1 O-glycans (PNA) and an
increase of Tn antigens (HPA) in this region. In contrast, the
expansion of DC during the pre-placentation period caused a
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FIGURE 1 | Influence of NK cell depletion and DC expansion on the glycophenotype of implantation sites during the pre-placentation period. (A) For analysis of the

glycophenotype, lectins were used to detect different types of glycosylation. O-glycan structures were recognized by Helix pomatia agglutinin (HPA; Tn-antigen),

Arachis hypogaea lectin (PNA; core 1), and Lycopersicon esculentum lectin (LEA; core 2). In addition, we employed Phaseolus vulgaris lectin (PHA-L), which

specifically recognizes β1-6GlcNAc-branched complex N-glycans. Finally, sialyation was determined using the Maackia amurensis lectin (MAA) and Sambucus nigra

agglutinin (SNA-I) which bind to α2,3- and α2,6-linked sialic acid, respectively. (B) Experimental design: pregnant CD11c.DTR females were injected (i.p.) on E4.5 with

anti asialo GM1 for transient ablation of NK cells. For the expansion of uterine DC, pregnant CD11c.DTR females were treated with one daily injection of FL (10

mg/mouse/day) from E0.5 to E7.5 as described in material and methods. Pre- (E7.5) and post-placentation (E13.5) period implantation sites were included in the

glycodynamics analysis. (C–E) Quantification of O-glycan (C), complex N-glycan (D), and sialylated glycan (E) mean fluorescence intensity (MFI) in the mesometrial

decidual (MD), and vascular zone (VZ) of implantation sites following NK cell ablation or DC expansion during the pre-placentation stage. In all figures, data shown are

mean ± S.E.M. and differences are denoted as *P < 0.05, **P < 0.01, and ***P < 0.001, as analyzed by Mann-Whitney U-test. AMD, antimesometrial decidua; Dec,

decidua; MD, mesometrial decidua; VZ, vascular zone; GC, giant cells; Jz, junctional zone; Lab, labyrinth.

slight increase in Tn antigens (HPA) and decreased expression
of core 1 (PNA) and core 2 O-glycans (LEA). Under normal
conditions, HPA reactive O-glycans were observed in the VZ
on E7.5. Of note, HPA-reactivity was significantly increased
in the VZ of the aNK and the eDC group compared to the
control group, with the aNK group showing the highest MFI.
No changes were observed in PNA reactive glycans. LEA
staining was increased in the VZ of the aNK group but not
in the eDC group compared to the control group (Figure 1C,

right panel). Next, we examined the distribution of complex
branched N-glycans (specifically MGAT5-modified) during the
pre-placentation period (Figure 1D). Glycans bound by PHA-L
were observed in the MD of all groups (Figure 1D, left panel),
with comparable mean fluorescence intensities (MFIs) of the
control and the aNK group. Notably, a significantly lower MFI
in the MD of the eDC group was observed compared to the
aNK group. Regarding the distribution of complex branched
N-glycans within the VZ, binding of PHA-L showed that
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staining intensity was significantly increased in the aNK and
the eDC group compared to the control group (Figure 1D,
right panel). As for the distribution pattern of sialylated
glycans in the MD, the control group and the aNK group
showed comparable MFIs but the eDC group displayed a
lower MAA MFI (Figure 1E, left panel). For SNA-I reactive
glycans, similar MFIs in the aNK and the eDC group were
observed at the MD during the pre-placentation period.
Staining intensity for α2,3-linked sialic acid (MAA) was
significantly increased in the VZ of the aNK group compared
to the control group, whereas SNA-I reactive glycans showed
a significant increase in the aNK and eDC dams (Figure 1E,
right panel).

Imbalance on NK or DC Cell Subsets
During Early Gestation Provokes Altered
O- and N-Glycosylation Patterns in the
Post-placentation Period
Taking into account that alterations of NK cell and DC relative
abundance were shown to influence the placentation process and
epigenetic programming in the offspring (13), we next examined
changes in the glycophenotype during the post-placentation
period (E13.5). Figure 2A (upper panel) shows the distribution
of O-glycans within the decidua and placenta. During normal
gestation Tn antigen (HPA) was only observable in the decidua
and on giant cells (GC). In contrast, core 1 (PNA, middle panels),
and core 2 O-glycans (LEA, bottom panels) were observed
in all layers of the implantation site (including decidua, GC,
junctional zone (Jz), and labyrinth). More Tn antigen (HPA)
was observed on GC trophoblast than in the decidua. Core 1
O-glycans (PNA) were abundantly expressed in all layers but
core 2 O-glycans (LEA) were more abundant on GC than in
the decidua. Depletion of NK cells during early pregnancy was
associated with decreased levels of core 1O-glycans (PNA) onGC
and Jz and reduced expression of core 2 O-glycans (LEA) on GC
(Figure 2A, middle and bottom panels). In contrast, expansion
of DC provoked an increase of Tn antigen (HPA) in the decidua
(Figure 2A, upper panel), accompanied by increased expression
of core 1 O-glycans (PNA) on GC but reduced expression in
the Jz (middle panels). When analyzing the complex branched
N-glycans (PHA-L, Figure 2B), we observed that during the
post-placentation period reactivity in the decidua is stronger
than in the placenta in undisturbed pregnancy. Expression of
branched, complex N-glycans (PHA-L) was increased in the
decidua and the Jz of the aNK group, but only in the labyrinth of
eDC placentas. Finally, analysis of sialyation showed that MAA-
reactive α2,3-linked sialic acid was detected on giant cells and
in the labyrinth under normal placentation (Figure 2C, upper
panel), accompanied with a strong expression of α2,6-linked
sialic acid (SNA-I, bottom panel) in the decidua. Compared to
controls, depletion of NK cells during early pregnancy provoked
a decrease of α2,3-sialylation in the decidua and the Jz and an
increase of α2,6-sialylation in the Jz, whereas placentas derived
from DC expanded dams showed a decrease of α2,6-sialylation
in the Jz.

Alteration of the Glycosylation Signature
During the Pre- and Post-placentation
Period is Accompanied by Changes on
Gal-1 Expression
Given its well-established role in the modulation of pregnancy
associated processes (20, 21), our next aim was to characterize
galectin-1 (gal-1) expression during the pre- (E7.5) and post-
(E13.5) placentation period. During the pre-placental period, we
observed reduced gal-1 expression on the mesometrial decidua
upon NK cell depletion compared to untreated dams (Figure 2D,
left panel), whereas MD expression of this lectin was not sensitive
to DC expansion. In contrast, both treated groups (aNK and
eDC) exhibited decreased levels of gal-1 expression in the VZ,
especially on endothelial cells during the pre-placentation period.
As pregnancy progressed to the post-placentation period, aNK
dams showed increased gal-1 expression within the decidua
and placental layers (including GC, Jz, and labyrinth) compared
to controls (Figure 2D, right panel). However, eDC placentas
showed decreased gal-1 levels on the GC and the labyrinth
on E13.5, suggesting that changes of gal-1 expression together
with an altered glycosylation signature could interfere with the
pregnancy protective functions of this lectin.

DISCUSSION

Changes in local immune cells dynamics (e.g., uNK cells and
DC) during early gestation lead to the development of placental
abnormalities and particularly upon NK cell depletion, fetal
growth restriction (11–13). Our study on gal-1-glycan circuits
in mice shows that changes in immune cell subset frequencies
during the pre-placentation period differentially alter the
placental glycophenotypes: placenta derived from NK depleted
dams displayed reduced expression of O-glycans and α2,3-
sialylation in placental layers accompanied by upregulation of
complex N-glycans (Figure 3). This does not seem to be the case
in placenta derived from expanded DC dams, which by contrast
displayed milder changes in the placental glycophenotype with a
modest reduction of core 1 O-glycosylation and α2,6-sialylation
specially in the junctional zone and only a slight increase of
N-glycans in the labyrinth.

Our study has limitations regarding the challenges of
studying diversity on glycopatterns and the lack of in
vitro experimentation, with specific consideration for
the technical difficulty to preserve glycan structure and
mimic the complex glycovariations in an in vitro setting.
Nevertheless, the results reported herein highlight the notion
that balanced innate immune cell dynamics at the maternal fetal
interface have a strong impact on the glycophenotype, thereby
influencing galectin-glycan interactions driving decidual and
placental functions.

Pre-placentation Impaired NK Cell-DC
Dynamic Alters Glycopatterns Within
the Maternal Vascular Decidua
During early gestation, NK cells and DC shape decidual adaption
to the developing embryo regulating angiogenesis and vascular
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FIGURE 2 | Placental glycocode dynamics upon NK cell depletion and DC expansion during early gestation. (A) Quantification of O-glycan distribution across decidua

and placenta layers on E13.5. Tn antigen was identified using the Helix pomatia agglutinin (HPA), core 1 and core 2 O-glycans were detected by Arachis hypogaea

lectin (PNA) and Lycopersicon esculentum lectin (LEA), respectively. (B) Expression patterns of complex N-glycans were detected by Phaseolus vulgaris lectin (PHA-L)

on E13.5. (C) Sialylation in the post-placentation period was characterized using Maackia amurensis lectin (MAA) and Sambucus nigra agglutinin (SNA-I) which bind

to α2,3- and α2,6-linked sialic acid, respectively. (D) Analysis of galectin-1 (gal-1) expression during the pre- (E7.5) and post-placentation (E13.5) period. In all panels,

bars show the MFI mean values and the corresponding S.E.M. Differences are noted as *P < 0.05, **P < 0.01, and ***P < 0.001 according to Mann-Whitney U-test.

MFI, mean fluorescence intensity; MD, mesometrial decidua; VZ, vascular zone; GC, giant cells; Jz, junctional zone; Lab, labyrinth.

FIGURE 3 | Overview of the placenta glycocode dynamics in poor pregnancy outcome caused by disrupted NK cell recruitment. Fetal growth restriction as a

consequence of NK cell depletion is associated with changes in O-glycan expression (↓ core 1 and core 2) in giant cells (GC). Junctional zone is characterized by

increased expression of branched N-glycans and changes in sialylation (↓ α 2, 3- and ↑ α 2, 6- linked sialic acid). Placentas derived from NK ablated dams are

characterized by an increased gal-1 expression.
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growth (11–13). We have previously shown that DC found
associated with the decidual vasculature co-express CXCR4
and impaired homing of CXCR4+DC altered decidual vascular
organization with impaired spiral artery remodeling later in
gestation (11). In this study, we further reveal that alterations on
the NK cell and DC pool dynamics during the pre-placentation
period affect the glycopattern of the vasculature at the feto-
maternal interface. In this regard, the VEGF system plays a
paramount role in uterine vascular permeability and angiogenesis
during implantation and decidualization (22, 23) and several
findings have highlighted the importance of glycosylation
for VEGFR2 functionality. For instance, VEGF-dependent
proliferation is influenced by heparan sulfate (24) and complex
branched N-glycans on the VEGFR2 are responsible for gal-
1/VEGF-like signaling to sustain angiogenesis (25). Sialylation
on VEGFR2 can also determine the signaling capacity of this
receptor through gal-1. Thus, α2,6- linked, but not α2,3-terminal
sialic acid inhibits binding of gal-1, which can also bind to
the VEGFR2 to activate alternative pro-angiogenic signaling
(25, 26). Additionally, exposure of endothelial cells to hypoxic
conditions leads to increased branching of β1,6 branched N-
glycan structures, and elongation of poly-LacNAc residues on
core 2 O-glycans (25). These examples highlight the versatility
of the endothelial glycome and its ability to adapt to cellular
physiology. Indeed, several of these changes in the glycosylation
pattern of the vascular zone during the pre-placentation period
were observed in the present study upon DC expansion or
NK cell ablation. Ablation of NK cells provoked an increase
of core 2 O-glycans, branched N-glycans, and α2,3-sialyation
compared to the control group, indicating the possibility of
hypoxic or inflammatory conditions and increased gal-1 binding.
These changes may occur to compensate the low gal-1 levels
due to reduced NK cell abundance in these implantation sites.
Expansion of DC, on the other hand, led to increased expression
of branched N-glycans and α2,6-linked sialic acid compared
to the control group; which despite not affecting the normal
VEGF/VEGFR2 signaling pathway may lead to lower gal-1
sensitivity of cells in the vascular zone of this group. The corollary
to these observations is that the decidual vascular glycocode
appears to be dependent on the concerted actions of NK cells
and DC, by virtue of their effect as modulators of VEGF/ gal-1
signaling pathways.

Thickness of the glycocalyx covering endothelial cells can
influence the access of leukocytes to adhesion receptors on the
endothelial cell surface. Pro-inflammatory cytokines, such as
TNF-α, can lead to disruption of the endothelial glycocalyx
and thus to an increase in leukocyte recruitment (27, 28). In
this context, immune cell imbalance (i.e., DC expansion or
NK cell depletion) during early pregnancy may influence the
cytokine profile at the implantation site, leading to altered
properties of the endothelial glycocalyx by directly influencing
the expression of glycosyltransferases. Indeed, our previous
studies have shown that expansion of DC was associated with a
significant upregulation of the CXCL12/CXCR4 pathway; which
has recently been shown to enhance megakaryocyte expression
of B4GalT1 (29), one of the main galactosyltransferases involved
in the synthesis of the LacNAc moieties present in core 2

O-glycans and complex N-glycans. In turn, since B4GalT1-
dependent galactosylation modulates β1 integrin function (29),
such cytokine-mediated changes in the endothelial glycocalyx
may further contribute to immune disbalance by provoking a
differential recruitment of leukocytes due to altered cell adhesion
properties. Indeed, DC expansion or NK cell depletion induced
several changes in the glycosylation pattern in the vascular
zone during the pre-placentation period, particularly in the
expression of Tn antigen. In addition, endothelial gal-1 has been
shown to reduce lymphocyte recruitment (30), further indicating
that in the aNK group, which showed reduced gal-1 staining
of endothelial cells, lymphocyte trafficking might be enhanced
compared to the control group.

Pre-placentation Manipulation of the
Relative NK Cell-DC Abundance Modifies
Gal-1 Binding Placental Glycophenotypes
Trophoblast glycodiversity is part of the trophoblast lineage
identity (31). Several pregnancy complications including
preeclampsia, IUGR, and miscarriages were associated with
specific differential glycosylation patterns after the onset of the
disease (16–19, 32). In a first effort to identify early glycosignals
that influence placental development upon disruption of
the NK cell-DC dynamics, we show here that changes in
trophoblast glycosylation patterns precede poor pregnancy
outcomes (e.g., IUGR). For instance, Tn antigen O-glycans
are exclusively expressed on the giant cell layer of the placenta
and to a lesser extent in the decidua during unchallenged
pregnancy. Both depletion of NK cells or expansion of DC in
absence of dangers signals increased Tn antigen expression in
the decidua. Since Tn antigen expression has been linked to
enhanced growth and invasion ability in cancer cells (33–35),
it is possible that increased decidual Tn antigen expression
would act to facilitate trophoblast invasion. In this regard,
trophoblast giant cells showed intense staining with LEA,
indicating increased expression of LacNAc core 2 O-glycans
during normal pregnancy. Giant cells in particular need to
acquire an invasive character to make contact to the maternal
arteries and replace the endothelial cell lining of the maternal
blood vessels to funnel blood into the placenta. Importantly, our
results further showed a down-regulation of core 2 O-glycans
on giant cells derived from NK ablated dams. As cell surface
mucin 1 (MUC1) carrying core 2 O-glycans is involved in
trophoblast migration and adhesion to uterine endothelial cells
(36–39), data suggests that changes in MUC1 core 2 O-glycans
pattern would interfere with the invasive properties of giant
cells in NK ablated placentas. This is in agreement with our
previous work showing that aNK mice had impaired spiral
artery remodeling and IUGR (13), indicating that a differential
glycosylation pattern in the post-placentation period results
in poor spiral artery remodeling. Moreover, expression of
core 1 O-glycans has also been detected on MUC1 in the
human placenta (40). In our study, staining of core 1 O-glycans
by PNA also revealed reduced expression on trophoblast
giant cells (aNK group) and trophoblasts in the junctional
zone (aNK and eDC group), which could further indicate
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alterations in mucin expression or glycosylation. Considering
that gal-1 is able to bind mucins on trophoblast cells and is
involved in the trophoblast invasion machinery (41, 42), the
increased gal-1 expression in aNK placenta may represent
an attempt to compensate reduced abundance of MUC1
binding partners.

Enhanced expression of N-acetylglucosaminyl transferase
V (GnTV) characterizes first trimester placentas in normal
gestation (43). GnTV generates β1-6-N-acetylglucosamine
branches in complex N-glycans, which are recognized by
gal-1. In this context, LacNAc motives are a glycan signature
of invasive trophoblast cells not only on their surface but
also on their secretion product HLA-G (31, 44, 51). The
significantly higher expression of complex, branched N-
glycans detected in the junctional zone of the aNK group
indicates that the middle connecting layer of the placenta
efficiently glycoadapts to the maternal environment giving
rise to trophoblast giant cells and glycogen cells that invade
and anchor the placenta to the decidua (45). In addition, we
observed a switch on sialylation from α 2,3-linked to α2,6-
linked sialic acid in the labyrinth of the aNK group. This
finding correlates with the reduced fetal vascular density in
the labyrinth upon NK depletion and with the inflammatory
status due to the increased NK cell density in the mesometrial
lymphoid aggregate of pregnancy (13). Interestingly, changes in
the glycosylation status predominantly affecting the placental
labyrinth and junctional zone have been reported in a rat
model of hyperglycemic placental dysfunction (46, 47);
suggesting that glycovariations in these layers induced by
adverse maternal environments may have direct impact on
placental function.

Our results further showed that increased α2,6 sialylation
can reduce gal-1 mediated angiogenesis (48), which is critical
for healthy placentation (49). Moreover, the inhibition of
gal-1 binding by sialylation at the position six of galactose
has been suggested to make T cells resistant to apoptosis (50)
and might contribute to uncontrolled maternal inflammation
during pregnancy complications (20, 49). Indeed, increased
α2,6 sialylation in STBEV surface has been associated
with human PE syndrome (19). Taken together, the results
reported here highlight the relevance of glycodynamics
during the pre- and post-placentation period that could be

helpful to the understanding of the pathogenesis of poor
pregnancy outcomes.
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Soledad Gori1, Elizabeth Soczewski1, Laura Fernández1, Esteban Grasso1,
Lucila Gallino1, Fatima Merech1, Ana Colado2, Mercedes Borge2, Claudia Pérez Leirós1,
Gabriela Salamone2 and Rosanna Ramhorst1*

1 CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales
(IQUIBICEN), Buenos Aires, Argentina, 2 Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional
de Medicina, Buenos Aires, Argentina

Decidualization is a process that involves phenotypic and functional changes of
endometrial stromal cells to sustain endometrial receptivity and the participation of
immunoregulatory factors to maintain immune homeostasis. In this context, tolerogenic
dendritic cells (DCs) can induce regulatory T cells, which are essential to manage
the pro- to anti-inflammatory transition during embryo implantation. Recently, Myeloid
Regulatory Cells (MRCs) were proposed as immunosuppressants and tolerance-inducer
cells, including the DC-10 subset. This novel and distinctive subset has the ability
to produce IL-10 and to induce type 1 regulatory T cells (Tr1) through an HLA-G
pathway. Here we focus on the impact of the decidualization process in conditioning
peripheral monocytes to MRCs and the DC-10 subset, and their ability to induce
regulatory T cells. An in vitro model of decidualization with the human endometrial
stromal cell line (HESC), decidualized by medroxyprogesterone and dibutyryl-cAMP
was used. Monocytes isolated from peripheral blood mononuclear cells from healthy
women were cultured with rhGM-CSF + rhIL-4 and then, the effect of conditioned
media from decidualized (Dec-CM) and non-decidualized cells (Non-dec-CM) was
tested on monocyte cultures. We found that Dec-CM inhibited the differentiation to
the CD1a+CD14− immature DC profile in a concentration-dependent manner. Dec-CM
also significantly increased the frequency of CD83+CD86low and HLA-DR+ cells in the
monocyte-derived culture. These markers, associated with the increased production of
IL-10, are consistent with a MRCs tolerogenic profile. Interestingly, Dec-CM treatment
displayed a higher expression of the characteristic markers of the tolerogenic DC-10
subset, HLA-G and ILT2/CD85j; while this modulation was not observed in cultures
treated with Non-dec-CM. Moreover, when monocyte cultures with Dec-CM were
challenged with LPS, they sustained a higher IL-10 production and prevented the
increase of CD83, CD86, IL-12p70, and TNF-α expression. Finally, the DC-10 subset
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was able to induce a CD4+HLA-G+ regulatory T cells subset. These results suggest
that the decidualization process might induce different subsets of MRCs, like DC-10,
able to induce regulatory T cells as a novel CD4+HLA-G+ subset which might play an
immunoregulatory role in embryo implantation.

Keywords: decidualization, DC-10, dendritic cells, immunomodulation, HLA-G, myeloid regulatory cells

INTRODUCTION

The maternal immune system was subjected to opposing
selective pressures over millions of years of evolution: on the
one hand it recognizes microbial pathogens and responds
to eliminate them, whereas on the other hand, it accepts
semi-allogeneic fetuses without ignoring its existence. Hence,
the embryo has an “immunoprivileged status” that allows
the establishment of early pregnancy by instructing immune
tolerance induction in the maternal immune system. Therefore,
the feto-maternal interface is characterized by dynamism:
the microenvironment changes as pregnancy progresses
accompanied by immunological phases with different profiles
(1). The changes of the maternal immune profile are strictly
controlled by complex regulatory mechanisms at decidualization,
implantation, and placentation.

Particularly, the decidualization program involves phenotypic
and functional changes of endometrial stromal cells and not
only sustains the endometrial receptivity, but also allows the
secretion of immunoregulatory factors which may condition
maternal leukocytes to a regulatory profile (2). This process is
unique and characteristic of endometrium and, in humans, it
is activated independently of the presence of the blastocyst (2,
3). In this context, even though myeloid dendritic cells (DCs)
are only 1–2% of decidual leukocytes, they initiate the adaptive
immunity and, therefore, they are crucial for the establishment
of immunological tolerance (1, 4). DCs in human decidua
represent a complex population and their number fluctuates
through different phases of the menstrual cycle and during
pregnancy (5–8). Interestingly, in the last few years, Myeloid
Regulatory Cells (MRCs) have been proposed as immune-
suppressors and tolerance-inducers including the DC-10 (9,
10). This novel subset represents tolerogenic DCs (Tol-DCs)
which notably spontaneously secrete large amounts of IL-10
and express different tolerogenic markers such as membrane-
HLA-G and its receptors immunoglobulin-like transcript (ILT)
2, ILT-3, and ILT-4 (11). In fact, DC-10 are able to induce T
cells anergy and type 1 regulatory T cells (Tr1) through the IL-
10-dependent ILT4/HLA-G pathway in vitro (11). Remarkably,
even though a single stimulation of allogeneic naïve T cells
with DC-10 is sufficient to generate allo-specific Tr1 cells, the
chronicity of allogeneic stimulation reinforces Tr1 induction
(12). Previous reports indicate a higher percentage of DC-10
into the human decidua compared to peripheral blood during
the first trimester of pregnancy; but, it is still unknown if these
cells are recruited to the decidua or induced in situ (6). Tol-
DCs also have the ability to induce regulatory T cells (Tregs,
CD4+FOXP3+), a critical role in pregnancy that was proven
using several in vivo and in vitro approaches in murine models

as well as in humans (13–17). Recently, T cell subsets, which do
not express FOXP3, with immunosuppressive ability based on
the increase in HLA-G expression and IL-10 production were
reported (8). The expression of HLA-G on T cells could be
induced by DCs (6, 18, 19). The frequency of CD4+HLA-G+ cells
in peripheral blood increases in healthy pregnant women, being
even more pronounced within the decidua (6, 18); however, it
is still unclear whether the decidualization program modulates
their induction.

Since T cells and DCs are critical to sustain homeostasis in
pregnancy, here we focused on the impact of the decidualization
process in conditioning peripheral monocytes to MRCs and,
particularly to the DC-10 subset. Finally, we investigated the
ability of DC-10 to induce different regulatory T cell subsets.

MATERIALS AND METHODS

Reagents
Endotoxin-free reagents and plastic materials were used in
all experiments. RPMI-1640, phosphate-buffered saline (PBS),
Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine
serum (FBS), and penicillin/streptomycin were purchased from
Gibco (Invitrogen, Argentina). Twenty-four-well flat bottom
polystyrene plates were purchased from Jet-biofil (AP Biotech,
Buenos Aires, Argentina) while 96-well U-bottom plates and
half-area 96-well ELISA were obtained from Greiner Bio
One (GBO, Buenos Aires, Argentina). Ficoll-Paque PLUS
and Percoll were obtained from GE Healthcare Life Sciences
(Embiotec, Buenos Aires, Argentina). Recombinant human IL-
4 and recombinant human granulocyte-macrophage colony-
stimulating factor (GM-CSF) were obtained from Miltenyi Biotec
(Lab Systems, Buenos Aires, Argentina). Lipopolysaccharide
(LPS) from Escherichia coli was purchased from Sigma-Aldrich
(Merck, Argentina).

Blood Samples
Buffy coats were obtained from fertile female volunteers,
defined as women who had two or more previous normal
pregnancies without any miscarriage in their clinical history,
were non-smokers, and who were not under pharmacological
treatment for at least 10 days before the day of sampling. The
Investigation and Ethics Committees of ‘Academia Nacional
de Medicina’ from CABA, Argentina have approved this
study. All research was performed in accordance with relevant
guidelines and regulations, and written informed consent for
the collection of samples and subsequent analyses was obtained
from all blood donors recruited by “Fundación Hemocentro
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Buenos Aires,” CABA, Argentina in accordance with the
Declaration of Helsinki.

Human Endometrial Stromal Cell Line
Culture
The human endometrial stromal cell (HESC) line was
maintained in DMEM-F12 supplemented with 10% FBS,
50 U/ml penicillin, 50 µg/ml streptomycin, and 2 mM
glutamine (20, 21) (complete medium). This cell line was
kindly provided by Dr. Gil Mor of Medical School, Yale
University, United States.

Decidualization: HESC cells were cultured in 24-well plates
until they reached 70% confluence with complete medium. Then,
they were treated with medroxyprogesterone (MPA) (10−7M)
and dibutyryl cAMP (db-cAMP) (2.5 × 10−3M) for 8 days
(Dec), changing half of the culture media and renewing the
stimuli every 48 h. The decidualization process was confirmed
by the evaluation of decidual markers and cell viability, as
previously described (22). Non-decidualized (Non-dec) cells
were cultured simultaneously in similar conditions in absence of
decidualization stimuli.

After 8 days of culture, Non-dec and Dec-HESC cells
were washed three times and cultured in RPMI 1640
medium supplemented with 10% of heat inactivated FBS,
50 U/ml penicillin, and 50 µg/ml streptomycin (DC complete
medium) for an additional 48 h and Conditioned Media (CM)
were collected.

Dendritic Cells Differentiation
Peripheral blood mononuclear cells (PBMC) were isolated from
buffy coats by Ficoll-Paque PLUS density gradient centrifugation
(1.077 g/mL). Monocytes were isolated by centrifugation on a
discontinuous Percoll gradient with modifications of a previously
described method (23, 24). Briefly, PBMC were suspended in
Ca2+, Mg2+-free Tyrode’s solution supplemented with 0.2%
EDTA and incubated for 45 min at 37◦C. During this incubation,
the osmolarity of the medium was gradually increased from
290 to 360 osmol/l by addition of NaCl. Two different
Percoll fractions were layered in polypropylene tubes: 50%
at the bottom followed by 40%. PBMC (40 × 106/ml) were
layered at the top and they were centrifuged at 620 g for
50 min at 4◦C. Monocytes were recovered at the interface,
washed, and the purity and viability were checked by flow
cytometry analysis and trypan blue exclusion, respectively. The
purity and the viability accepted in all cases were >85% and
>95%, respectively.

To obtain immature DC (Media-treated cells), monocytes
(1 × 106/ml) were cultured in DC complete medium with
30 ng/ml IL-4 and 30 ng/ml GM-CSF in 96-well U-bottom
plates for at least 5 days. The expression of CD1a/CD14 was
measured to confirm the differentiation to immature DC as
previously described (25). In parallel, monocytes were also
cultured in DC complete medium with IL-4 + GM-CSF in
presence of HESC-CM (Non-dec-CM or Dec-CM). On the
last day, cell supernatants were collected, and the phenotype
was analyzed by flow cytometry. In some cases, on day 5,

the cells were treated with LPS 0.2 µg/ml for 18 h if was
required for the assays.

All experiments were performed independently using different
donor monocytes (N is indicated in the legend of each figure).

Endocytosis Assay of FITC-OVA
At day 6 of differentiation, monocyte-derived cells were
suspended at 2 × 106 cells/ml in fresh medium. FITC-
Ovalbumin (FITC-OVA) was added at a final concentration of
100 µg/ml and cells were incubated for 25 min at 37◦C. In
parallel, a control was incubated on ice to determine unspecific
binding. Cells were washed two times with ice-cold 2% FBS/PBS
and fixed with 1% paraformaldehyde. The FITC-OVA uptake
was then evaluated by flow cytometry as we have previously
described (26).

Mixed Lymphocyte Reaction
Monocytes (5 × 104 cells/100 µl) were differentiated in
presence or absence of 1:2 dilution HESC-CM for 6 days. The
obtained monocyte-derived cells were then suspended in DC
complete medium with 2.5 × 105 freshly isolated allogeneic
lymphocytes (DC/lymphocyte ratio = 1/5) and cultured for
5 days more as we have previously described (25). The
monocytes and lymphocytes used for mixed lymphocyte reaction
(MLR) were isolated by centrifugation on a discontinuous
Percoll gradient described above, reaching a purity >90 and
>95%, respectively. At the last day of MLR, we evaluated the
expression of different markers on T cells by flow cytometry
and their cytokine production profile was evaluated in cell
supernatants by ELISA.

Flow Cytometry
Cells were washed with PBS supplemented with 2% FBS/PBS and
FITC-, APC- and PE-conjugated mAbs directed to CD1a, CD14,
CD86, HLA-DR, CD83, CD4, CD25 (BD Biosciences), ILT-
2/CD85j, and HLA-G (BioLegend, San Diego, CA, United States)
or the corresponding isotype controls were added at saturating
concentrations for 30 min at 4◦C. Then, two additional washes
were performed, and cells were fixed with 1% paraformaldehyde.
Stained cells were acquired using an FACS Calibur and
FACSAria II cytometers and results were analyzed using
FlowJo 7.6 Software.

Measurement of Cytokines by ELISA
Cytokines were evaluated in cell supernatants using commercial
kits: IL-10, IL-12p70, TNF-α, and IFN-γ (BD Biosciences),
according to the manufacturer’s recommendations.

Statistical Analysis
GraphPad Prism (GraphPad Software Inc., San Diego, CA,
United States) was used to perform all statistical tests.
Statistical significance was determined using the non-
parametric Friedman test with Dunn’s multiple comparisons
post-test. Statistical significance was defined as p < 0.05
and exact p-values and comparisons were indicated in
each graph.
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RESULTS

Decidualized Cells Inhibit Monocyte
Differentiation to CD1a+CD14−

Immature DC Profile in a
Concentration-Dependent Manner
Considering that endometrial stromal cells change their
secretome during the decidualization process, including
the production of immunoregulators, we evaluated the
influence of conditioned media (CM) of decidualized (Dec)
and non-decidualized (Non-dec) HESC cells on immature
DC differentiation. Monocytes were cultured to differentiate
into immature DC with GM-CSF + IL-4 in absence (Media)
or presence of different dilutions of Non-dec or Dec-CM for
5 days. As Figure 1A shows, Dec-CM inhibited monocyte
differentiation to CD1a+CD14− immature DC profile in a
concentration-dependent manner. On the other hand, this effect
was also accompanied by a persistence of CD1a−CD14+ cells
(Figure 1B). Figure 1C shows representative dotplots of the

immunostaining of DC differentiated in the absence or presence
of CM from endometrial cells before and after decidualization.

Altogether, the present results suggest that CM from
endometrial cells, after decidualization, interfere with DC
differentiation while it increases the frequency of CD1a−CD14+.

Decidualized Cells Induce a Myeloid
Regulatory Cells-Profile on
Monocyte-Derived Cultures
To characterize the phenotype of monocyte-derived cells
acquired after the treatment with Dec-CM, we tested
activation/maturation markers as HLA-DR, CD86, and
CD83 expressions. We observed that monocyte-derived cells
cultured with Dec-CM showed a higher expression of HLA-DR
(Figures 2A,B,D) compared with culture medium. In fact, it
also increased the expression of the maturation marker CD83
(Figures 2C,E). Surprisingly, Dec-CM increased the frequency
of CD83+CD86low while it diminished the frequency of the
CD86high population (Figures 2C,E). In line with its mature

FIGURE 1 | Decidualized cells inhibit monocyte differentiation to immature DC in a concentration-dependent manner. Monocytes were cultured to differentiate to
immature DC in absence (Media) or presence of different dilutions of Non-dec or Dec-CM for 5 days. Then, the CD1a/CD14 expression was evaluated by flow
cytometry. (A,B) Mean ± SEM of positive cells from at least eight experiments are shown. Dotted lines represent the mean of positive cells of Media-treated culture.
(C) Representative experiment of 1:2 dilution of CM is shown. The statistical test used is the Friedman test with Dunn’s multiple comparisons post-test. p-values and
comparisons were indicated in graph; p-values without lines indicate comparisons with dotted lines (Media).
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phenotype, monocyte-derived cells differentiated with Dec-CM
displayed significantly lower endocytic ability in an ovalbumin
(OVA)-FITC uptake assay (Figures 2F,G).

When the cytokine secretion profile was evaluated, we
observed that monocyte-derived cells differentiated in the
presence of CM from HESC cells, either decidualized or not,
secreted significantly higher levels of IL-10 compared to the
culture medium, while IL-12 secretion was not modulated
(Figures 3A,B). Notably, Dec-CM did not induce the production
of TNF-α by monocyte-derived cells as Non-dec-CM did,
highlighting the ability of Dec-CM to induce a different cytokine
profile in these cultures (Figure 3C).

Altogether, the present results suggest that endometrial
stromal cells, after decidualization, might induce an
immunosuppressive regulatory phenotype on monocytes
like the MRCs.

Decidualized Cells Prevent LPS-Induced
Maturation of Monocyte-Derived Cells
Next, to confirm the maturation state and the activation of
monocyte-derived cells differentiated in the presence of Dec-
CM, we challenged them with LPS for 16 h and cytokine profile
production and the activation/maturation marker’s expression
were assessed. As shown in Figure 3D, upon activation with
LPS, Dec-CM cultures sustained higher IL-10 production while
it prevented the increase of IL-12p70 and TNF-α secretion
compared to culture medium-treated cells (Figures 3E,F).
Moreover, in the presence of Dec-CM, significant increase of
IL-10 and decrease of TNF-α expression in comparison with
Non-dec-CM were observed, highlighting the effect of the
decidualization treatment. On the other hand, the expression
of activation/maturation markers in monocyte-derived cells,
cultured or not, with HESC-CM and challenged with LPS
was determined. Dec-CM treatment significantly prevented the
increase in the frequency of HLA-DRhigh, CD83+CD86+, and
CD86high subsets observed with LPS treatment (Figures 4A–E).
Notably, a tendency to prevent the increase in the frequency
of these subsets was also observed in Non-dec-CM cultures
compared to the culture medium, reaching significance in the
CD86high subset (Figure 4E).

The present results indicate that, once decidualized,
endometrial stromal cells might not only induce a phenotype
like MRCs on monocyte-derived cells but also condition their
functional status.

Decidualized Cells Favor a Higher
Expression of the Characteristic
Tolerogenic DC-10 Subset Markers on
Myeloid Cells, HLA-G and ILT-2/CD85j
Based on the results shown above and considering that DC-
10 spontaneously produce high amounts of IL-10 and increase
tolerogenic markers, we next evaluated the ability of Dec-CM to
induce tolerogenic markers on monocyte-derived cells. HLA-G
expression was significantly increased in Dec-CM-treated cells
compared to Non-dec-CM-treated cells. The increase of HLA-G
expression was observed in both frequency and MFI parameters

(Figures 5A,B,D). As expected, the expression of the HLA-
G receptor, ILT-2/CD85j, was increased on monocyte-derived
cells cultured in the presence of Dec-CM, compared to culture
medium-treated cells (Figures 5C,E) suggesting that endometrial
stromal cells might induce differentiation into the DC-10 subset
compatible with a tolerogenic microenvironment only after
decidualization. Interestingly, both DC-10-tolerogenic markers
were not increased in those cultures treated with Non-dec-CM,
highlighting the specificity of the decidualization process.

Decidualized Cells Condition
Monocyte-Derived Cells to an
Immunosuppressive and Tolerogenic
Profile After Allogeneic Stimulation:
CD4+HLA-G+ T Cells Induction
As described above, the DC-10 subset induced regulatory T cells
with suppressor function through the IL-10-dependent HLA-G
pathway. Taking into account the higher expression of HLA-
G and ILT-2 markers in Dec-CM cultures, we evaluated the
ability of these conditioned monocyte-derived cells to induce a
tolerogenic and suppressor response after allogeneic stimulation
in the mixed lymphocyte reaction (MLR). Hence, monocyte-
derived cells that had been differentiated in the presence or
absence of HESC-CM for 6 days were cultured with allogeneic
lymphocytes for 5 days more. On the last day of MLR,
we evaluated the expression of different markers on T cells
by flow cytometry and their cytokine production profile by
ELISA. An anti-inflammatory microenvironment characterized
by higher IL-10 and lower IFN-γ production was observed in
cultures treated with either HESC-CM, compared to medium
cultures (Figures 6A,B). These results suggest the induction
of suppressor and regulatory profiles on T cells in both MLR
cultures, although the IL-10:IFN-γ ratio was significantly higher
only in Dec-CM cultures (Figure 6C). In parallel, we evaluated
the expression of the activation marker CD25, on allogeneic
lymphocytes in these MLR cultures. We observed a significant
decrease in the frequency of CD4+CD25+ cells in Dec-CM-
cultures (Figures 7A,B), suggesting that monocyte-derived cells
differentiated with CM of decidualized cells inhibited allogeneic
CD4+ T cells activation. Finally, a significant increase in the
frequency of CD4+HLA-G+ cells was observed in Dec-CM-
cultures compared with Non-dec-CM-cultures, indicating a
specific effect of decidualization (Figures 7C,D).

The present results suggest that HESC cells condition
the monocyte-derived cells to an immunosuppressive
profile accompanied by a decrease in the frequency of allo-
activated T cells. Particularly Dec-CM-treated cells displayed
a higher IL-10:IFN-γ ratio production and an increase in the
CD4+HLAG+ T cells subset.

DISCUSSION

For many years, it was assumed that decidualized cells
had a structural, passive role during embryo implantation,
only associated with morphological changes of stromal cells.
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FIGURE 2 | Decidualized cells induce an MRC-profile on monocyte-derived cultures with higher frequency of CD83+CD86low and HLA-DRhigh cells. Monocytes
were cultured to differentiate to immature DC in absence (Media) or presence of 1:2 dilution of Non-dec or Dec-CM for 5 days. (A–E) After differentiation, the
expression of HLA-DR, CD86, and CD83 was measured by flow cytometry. Representative experiments are shown in panels (A–C) and the mean ± SEM of positive
cells or MFI from five to eight experiments is shown in panels (D,E). (F,G) On day 6, cells were washed and stimulated with OVA-FITC in fresh medium for 25 min at
37◦C and the endocytic ability was evaluated by flow cytometry. Cells incubated with FITC-OVA in ice were used as negative control. The mean ± SEM of MFI from
seven experiments is shown in panel (F) and the representative experiment is shown in panel (G). The statistical test used is the Friedman test with Dunn’s multiple
comparisons post-test. Exact p-values and comparisons are indicated in the graph.
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FIGURE 3 | Decidualized cells induce IL-10++ secretion on monocyte-derived cells and prevent the increase of IL-12p70 and TNF-α secretion upon maturation with
LPS. Monocytes were cultured to differentiate to immature DC in absence (Media) or presence of 1:2 dilution of Non-dec or Dec-CM for 5 days and then, cells were
stimulated (D–F) or not (A–C) with LPS 0.2 µg/ml for 18 h. The secretion of IL-10, IL-12 and TNF-α was evaluated by ELISA. Bars represent the mean ± SEM of
four to eight experiments. Dotted lines represent the mean of Media-treatment without LPS. The statistical test used is the Friedman test with Dunn’s multiple
comparisons post-test. Exact p-values and comparisons are indicated in the graph.

Nowadays, evidence indicates that the decidualization program
conditions the endometrium for receptivity as well as for local
leukocyte profiling (1, 27, 28). In fact, defects in decidualization
could condition future pregnancies as observed in women with
severe preeclampsia (29).

Here, we provide new experimental evidence on the
decidualization program as a conditioning factor for the
differentiation of maternal monocytes to a unique and
special subset of Tol-DC, the DC-10, thus contributing to
the establishment of tolerogenic and immune suppressor milieu
by regulatory T cells induction. Our conclusions are based
on several observations. First, Dec-CM inhibited monocyte
differentiation to a classical CD1a+CD14− immature DC profile
in a concentration-dependent manner. Instead, CM induced a
particular MRC-profile with a mature state and a higher IL-10
production on monocyte-derived cells. Moreover, Dec-CM
prevented the increase of co-stimulatory molecules expression
and pro-inflammatory cytokines production induced by LPS-
stimulation. Finally, monocyte-derived cells differentiated
in the presence of Dec-CM, expressed a higher level of

DC-10-tolerogenic markers, HLA-G and ILT-2/CD85j, resulting
in an immune suppressor and tolerogenic response with a higher
IL-10:IFN-γ ratio and an increased frequency of regulatory
CD4+HLAG+ T cells.

Stromal cells are non-hematopoietic cells; however, they
have the ability to mediate anti-inflammatory effects through
targeting natural killer cells, monocyte/macrophages, DCs and
inducing Tregs (30–32). The mechanisms involve cell contact
and the production of soluble factors, including Indoleamine
2,3-dioxygenase (IDO), TGF-β, IL-10, PGE2, and nitric oxide
among other chemokines and cytokines (30–32). In this
sense, the endometrium suffers regular cycles of menstruation,
repair, proliferation, and differentiation under hormonal control.
Endometrial leukocytes and derived-mediators play important
roles not only in the decidualization and embryo implantation
but also as local regulators in menstrual tissue breakdown
and endometrial repair (33). It was reported that during
the pre-decidualized phase the endometrium switches from a
pro-inflammatory to an anti-inflammatory microenvironment
(33). In this line, we observed that monocyte-derived cells
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FIGURE 4 | Decidualized cells prevent LPS-induced maturation of monocyte-derived cells. Monocytes were cultured to differentiate to immature DC in absence
(Media) or presence of 1:2 dilution of Non-dec or Dec-CM for 5 days and then, cells were stimulated with LPS 0.2 µg/ml for 18 h. The expression of HLA-DR (A,C),
CD83, and CD86 (B,D,E) was evaluated by flow cytometry. Representative experiments are shown in panels (A,B) and the mean ± SEM of positive cells from five to
seven experiments is shown in panels (C–E). Dotted lines represent the mean of positive cells of Media-treatment without LPS. The statistical test used is the
Friedman test with Dunn’s multiple comparisons post-test. Exact p-values and comparisons are indicated in the graph.

differentiated in presence of Non-dec-CM also acquired some
features similar to those observed in Dec-CM cultures such
as HLA-DR expression, IL-12 production, and CD4+CD25+
frequency with higher IL-10 and lower IFN-γ production
after MLR. Therefore, Non-dec-CM might induce an anti-
inflammatory profile on DC, though it is not as marked as the one
induced by Dec-CM. Thus, we might infer that DC would begin

to acquire characteristics associated with an anti-inflammatory
profile during the pre-decidualization phase, reaching a more
robust tolerogenic profile during the decidualization process.

Here, we demonstrated that monocyte-derived cells
differentiated in the presence of Dec-CM exhibit a particular
CD83+CD86low mature status with high expression of HLA-
DR and spontaneous production of high amounts of IL-10.
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FIGURE 5 | Decidualized cells favor a higher expression of the characteristic tolerogenic DC-10 subset markers on myeloid cells, HLA-G and ILT-2/CD85j.
Monocytes were cultured to differentiate to immature DC in absence (Media) or presence of 1:2 dilution of Non-dec or Dec-CM for 5 days and the expression of
HLA-G and ILT2/CD85j was evaluated by flow cytometry. Representative experiments are shown in panels (A–C) and the mean ± SEM of positive cells or MFI from
six to ten experiments is shown in panels (D,E). The statistical test used is the Friedman test with Dunn’s multiple comparisons post-test. Exact p-values and
comparisons are indicated in the graph.

FIGURE 6 | Decidualized cells condition monocyte-derived cells to an immunosuppressive profile after allogeneic stimulation. Monocyte-derived cells (5 × 104

cells/100 µl) that had been differentiated in presence or absence of 1:2 dilution of Non-Dec or Dec-CM for 6 days were suspended in DC complete medium and
co-cultured with allogeneic lymphocytes for 5 days more (DC/lymphocyte ratio = 1/5). On the last day of MLR, the IL-10 and IFN-γ secretion was evaluated by
ELISA. Bars represent the mean ± SEM of six experiments (A,B) and scatter dot-plots represent the mean ± SEM of the IL-10:IFN-γ ratio production (C). The
statistical test used is the Friedman test with Dunn’s multiple comparisons post-test. Exact p-values and comparisons are indicated in the graph.

Accordingly, in the last few years, Gregori et al. characterized a
subset of Tol-DC, the DC-10 subset, which can be differentiated
in vitro from monocytes with GM-CSF + IL-4 and IL-10
(11). DC-10 are CD1a−CD14+ and display a mature myeloid

phenotype (CD83+CD86+ and HLA-DRhigh) even in the absence
of activation stimuli. Moreover, they secrete spontaneously high
levels of IL-10 and express the tolerogenic markers HLA-G,
ILT-2, ILT-3, and ILT-4. This phenotype turns them into
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FIGURE 7 | Decidualized cells condition monocyte-derived cells to an immunosuppressive and tolerogenic profile with induction of CD4+HLA-G+ T cells after
allogeneic stimulation. Monocyte-derived cells (5 × 104 cells/100 µl) that had been differentiated in presence or absence of 1:2 dilution of Non-Dec or Dec-CM for
6 days were suspended in DC complete medium and co-cultured with allogeneic lymphocytes for 5 days more (DC/lymphocyte ratio = 1/5). On the last day of MLR,
the expression of CD4, CD25, and HLA-G was evaluated by flow cytometry, gating on lymphocytes. Representative dot plots are shown in panels (A,C). Bars
represent the mean ± SEM of positive cells from four experiments (B,D). The statistical test used is the Friedman test with Dunn’s multiple comparisons post-test.
Exact p-values and comparisons are indicated in the graph.

potent inducers of Tr1 in vitro through the IL-10-dependent
ILT-4/HLA-G pathway (11).

Although DC-10 share some similarities with other
tolerogenic antigen-presenting cells, they represent a unique
subset of Tol-DC that is phenotypically and functionally stable
(34). Upon activation, DC-10 maintain their phenotype and their
cytokine secretion profile with high IL-10 and low IL-12/TNF-α
production. In accordance, here we showed that Dec-CM
prevented the maturation of DC by LPS, inhibited IL-12 and
TNF-α production, and increased even more the secretion of
IL-10. The presence of DC-10 was recently reported in first
trimester decidua and peripheral blood (6). However, it is still
unclear if the increased frequency of DC-10 observed in the
decidua is due to: (a) a higher recruitment from peripheral
blood, (b) an increased conversion of resident decidual DCs into
DC-10, or (c) if the decidual microenvironment promotes the de
novo induction of DC-10 from monocytes recruited. Regarding
the aforementioned frequency and based on the results presented

here, we propose that the novo induction of DC-10 could be
occurring within human decidua and independently of the
blastocyst presence.

The frequency of DCs in human endometrium reaches its
highest level during the implantation window (35) and it is
associated to their ability to release soluble factors that improve
the endometrial receptivity (36, 37). In this context, previous
work performed in mice provided strong evidence of the
indispensability of DCs in decidua formation and implantation
(38, 39). IL-10 promotes the expression of several tolerogenic
molecules in human DCs and in other antigen-presenting cells,
including IL-10 itself, hemo-oxygenase (HO-1), ILT-3, and ILT-
4 as well as another important mediator of immune tolerance in
pregnancy, the HLA-G. This atypical MHC class I molecule, is
one of the ILT-2/ILT-4 ligands with potent immunosuppressive
properties (40).

In accordance with these observations, in our in vitro model
of immune-decidual interaction, we demonstrated that Dec-CM
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was able to induce HLA-G and increased ILT-2 expression
on monocyte-derived cells. Interestingly, these DC-10-
tolerogenic markers were not increased at all by Non-dec-
CM treatment. It has been reported that the continuous
ligation of ILT-2 on immature DC during differentiation
maintains CD14 expression, inhibits the acquisition of
CD1a expression and prevents the activation with LPS
(41, 42). In fact, ligation through ILT-2 may preferentially
induce and/or interact with Tregs that maintain T-cell
unresponsiveness (42). Considering that the decidualization
process increased IL-10 production by stromal cells (43),
which induces the expression of IL-10, HLA-G and ILT-
4 on DC-10 (11), and that HLA-G itself is able to
up-regulate the expression of ILT-2 and ILT-4 (44), we
suggest that Dec-CM induces a positive regulatory loop
between IL-10 and these tolerogenic markers in monocyte-
derived cultures.

In vitro experiments have demonstrated that DCs isolated
from the decidua (45) are poor stimulators of allogeneic
lymphocytes. Accordingly, here we showed for the first time
that allogeneic lymphocytes co-cultured with monocytes-derived
cells conditioned by Dec-CM treatment are hypo-responsive
with significantly decreased CD25+ expression, particularly
on the CD4+ subset. Indeed, a significantly higher IL-
10/IFN-γ ratio was observed in these cultures, suggesting
the induction of a regulatory T-cell profile. In this sense,
new subsets of regulatory T cells have emerged, defined
by the expression of the HLA-G cell surface; CD4+ and
CD8+ HLA-G+ T cells. They were identified in peripheral
blood of healthy volunteers as small subsets but were able
to suppress immune responses in vitro involving IL-10 and
HLA-G as suppressive mechanisms (46–48). According to
our results, high IL-10 and low IFN-γ secretion mediated
by CD4+HLA-G+ T cells was previously reported by other
authors and, therefore, the ability of this small regulatory
T cell subset to promotion of an anti-inflammatory or
antiproliferative cytokine milieu has been suggested (46–48).
Here, we showed that Dec-CM induced the differentiation
of regulatory HLA-G+ T cells in monocytes-derived cell
cultures while Non-dec CM was unable to induce this
particular subset of regulatory CD4+ T cells, highlighting
characteristic properties of the decidualization process. It was
demonstrated that CD4+ T cells might acquire the HLA-
G molecule from decidual DCs through the trogocytosis
process (18). In fact, it was proposed that DC-10-derived
extracellular vesicles also contain soluble HLA-G (sHLA-
G) and T cells can acquire HLA-G (49). Although we
demonstrated the presence of CD4+HLA-G+ T cells on MLR
cultures performed with total lymphocytes, we observed a
low frequency of this subpopulation, suggesting that their
physiological relevance would be based on suppressive capacity
through the production of high levels of IL-10 and sHLA-
G. However, more functional studies should be performed to
address this issue.

Here we also observed an increase in the non-CD4+HLA−+
cells after the MLR cultures. In this sense, a higher frequency of
CD8+HLA-G+ T cells cells in the peripheral blood of healthy
pregnant compared to non-pregnant women, was recently
reported (50). Taking into account that there are few studies
on HLA-G+ T cell subsets in the context of pregnancy, and
are even less focused on CD8+HLA-G+, it would be interesting
to perform functional studies to characterize this unexplored
regulatory subset (6, 18, 50).

Considering the present results, we suggest that decidual
regulatory HLA-G+ T cells could be induced locally by DC-
10 which were previously differentiated in the pre-implantation
period by soluble factors released by decidualized cells. However,
we cannot exclude that the HLA-G+ T cells could also be
recruited toward the decidua from the periphery. Finally, even
though we demonstrated that, through soluble factors, the
decidualized cells induce DC-10 and condition the T cell profile
toward a tolerogenic one by the induction of regulatory T cells, it
still remains to be defined whether these mechanisms operate in
the human decidua in vivo and how they cooperate in promoting
and maintaining feto-maternal tolerance.
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During healthy pregnancy, a balanced microenvironment at the maternal-fetal interface
with coordinated interaction between various immune cells is necessary to maintain
immunological tolerance. While specific decidual immune cell subsets have been
investigated, a system-wide unbiased approach is lacking. Here, mass cytometry was
applied for data-driven, in-depth immune profiling of the total leukocyte population
isolated from first, second, and third trimester decidua, as well as maternal peripheral
blood at time of delivery. The maternal-fetal interface showed a unique composition
of immune cells, different from peripheral blood, with significant differences between
early and term pregnancy samples. Profiling revealed substantial heterogeneity in the
decidual lymphoid and myeloid cell lineages that shape gestational-specific immune
networks and putative differentiation trajectories over time during gestation. Uncovering
the overall complexity at the maternal-fetal interface throughout pregnancy resulted in a
human atlas that may serve as a foundation upon which comprehension of the immune
microenvironment and alterations thereof in pregnancy complications can be built.

Keywords: immune profiling, human atlas, pregnancy, placenta, decidua, peripheral blood

INTRODUCTION

Preserving immunological tolerance toward the semi-allogeneic fetus during pregnancy while
providing protection against environmental pathogens relies on intricately regulated local and
systemic immune adaptations. Direct contact between the mother and the fetus exists at the
decidua basalis, located at the implantation site, and at the decidua parietalis that is part of the
membranes which line the uterine cavity and surround the fetus. Fetal extravillous trophoblasts
(EVT) migrate into the maternal decidua early during pregnancy (1), and express HLA-C, -G, -E,
and -F but lack expression of the classical HLA-A and -B antigens, rendering them in part invisible
to natural killer (NK) cells and the large majority of maternal allogeneic CD8+ T cells (2–4).
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In concert, alterations in both the maternal innate and adaptive
immune compartment occur, where NK and innate lymphoid
cells (ILC) prevail in early pregnancy, while T cell proportions
increase over the course of gestation (5, 6). Antigen-presenting
cell (APC) numbers remain relatively constant throughout
pregnancy while B cells have been described as a sparse
population (5–8).

The fetus can be immunologically recognized as maternal
NK cells may bind to fetal HLA-C and HLA-G, and fetal-
specific CD8+ and CD4+ T cells have been observed in
maternal peripheral blood and decidua (9–12). As such, aberrant
regulation of the maternal immune system has been suggested
to play a role in pregnancy complications, such as pre-eclampsia
(13, 14), recurrent miscarriages (15, 16), preterm birth (17–19),
and fetal growth restrictions (20).

A better understanding of the immune system at the
maternal-fetal interface during a healthy pregnancy may drive
the systematic investigation of major pregnancy complications.
Most work in the field of reproductive immunology has
focused on individual subsets of decidual immune cells while a
comprehensive, system-wide approach that visualizes all decidual
immune cell lineages at different time points during pregnancy
is lacking. High-dimensional single-cell technologies such as
mass cytometry (21) allow an in-depth and unbiased data-
driven analysis of the composition of the immune system at
the maternal-fetal interface. In the current study, we applied
two mass cytometry antibody panels, one to detect heterogeneity
within all major immune cell lineages while the other with a
focus on T cell-specific markers, to determine the composition
of the maternal immune compartment in first, second, and third
(term) trimester decidual samples as well as maternal PBMC
(mPBMC) at the time of delivery. Our results provide an immune
atlas of the maternal-fetal interface in healthy pregnancy, which
may serve as a foundation for improved understanding of
pregnancy complications.

MATERIALS AND METHODS

Human Decidual and Blood Samples
De-identified 1st and 2nd trimester human decidual material
(1st trimester, gestational age of 6–13 weeks, n = 12; 2nd
trimester, 14–18 weeks, n = 6) was obtained from women
undergoing elective pregnancy termination. The gestational age
was determined by ultrasonography and the tissue obtained by
vacuum aspiration. Paired 3rd trimester (term) decidua basalis,
decidua parietalis, and heparinized mPBMC were obtained from
healthy women after uncomplicated pregnancy (gestational age
>38 weeks, n = 9) delivered by elective cesarean section or
uncomplicated spontaneous vaginal delivery at Leiden University
Medical Center (LUMC). Non-pregnant PBMC control samples
were obtained from healthy females (n = 4). The clinical
characteristics of the subjects are shown in Table 1. All samples
were obtained after informed consent and the study was carried
out in accordance with the guidelines issued by the Medical
Ethics Committee of the LUMC (protocols P08.087 and P11.196),
and in accordance with the Declaration of Helsinki.

Isolation of Lymphocytes From Decidual
and PBMC Samples
Decidual leukocytes were isolated as previously described, with
some adjustments (22). For isolation of 1st and 2nd trimester
decidual leukocytes, villous and decidual tissues from elective
pregnancy terminations were macroscopically identified and
separated. Decidua basalis and parietalis from term pregnancy
were macroscopically dissected by scraping the basalis membrane
from the placenta and by removing the amnion and delicately
scraping the decidua parietalis from the chorion. Decidual
tissues were washed with PBS, minced, and resuspended in
Accutase cell detachment solution (prewarmed to 37◦C; Gibco
Life technologies). Subsequently, tissues were transferred to a
C tube, homogenized on a gentleMACS dissociator (Miltenyi
Biotec Ltd.) and incubated for 60 min in a water bath (37◦C,
gently shaking), at 30 min spinning the C tubes once more.
After digestion, released cell suspensions were filtered through
250 and 70 µm sieves (Sigma-Aldrich; Miltenyi Biotec Ltd.)
and washed with RPMI 1640 (Life technologies). Next, the
cell suspensions were dissolved in 20 ml of 1.023 g/ml Percoll
(GE Healthcare) and layered on a Percoll gradient (10 ml
1.080 g/ml; 15 ml 1.053 g/ml) for density gradient centrifugation
(25 min, 2000 rpm). Leukocytes were isolated from the 1.080–
1.053 g/ml and the 1.053–1.023 g/ml interface, washed twice with
RPMI, and left overnight at 4◦C. Peripheral blood leukocytes
were isolated from freshly drawn heparin anticoagulated blood
using Ficoll (GE Healthcare) density gradient centrifugation
(20 min, 2000 rpm) and left overnight at 4◦C. The next day, cell
suspensions were incubated with Benzonase Nuclease (Sigma-
Aldrich; 20U/mL) for 5 min, washed, counted, and stained with
antibodies for either mass cytometry or flow cytometry. To
account for cell processing variation, the effects of enzymatic
digestion and gentleMACS dissociation on cell surface protein
markers in peripheral blood and decidual cell suspensions has
extensively been validated in our laboratory and by others (23).

Mass Cytometry Antibody Staining and
Data Acquisition
Antibodies used for mass cytometry are listed in Supplementary
Tables 1, 2. Primary metal-conjugated antibodies were purchased
from Fluidigm or purified antibodies were conjugated with metal
reporters by using a MaxPar X8 Antibody Labeling kit (Fluidigm)
according to manufacturer’s instructions. After conjugation,
antibodies were diluted to 200 µl in antibody stabilization buffer
(Candor Biosciences), supplemented with 0.05% sodium azide.
Both antibody panels have previously been validated (24, 25),
and in this study tested on both peripheral blood and decidual
samples. Antibody staining and data acquisition were carried out
as previously described (26, 27). In short, cells from decidual
and peripheral blood samples were incubated with 1 mL of 1:500
diluted 500 µM Cell-ID Intercalator-103Rh (Fluidigm) for 15 min
at room temperature (RT), washed, and incubated with human Fc
blocking antibody (Biolegend) for 10 min at RT. Cell suspensions
were thereafter stained with a mix of metal-conjugated antibodies
for 45 min at RT. After washing, cells were incubated with
125 nM Cell-ID Intercalator-Ir (Fluidigm) in MaxPar Fix and
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TABLE 1 | Patient characteristics1.

1st trimester 2nd trimester 3rd trimester NP PBMC

Demographics

Maternal age (years; mean ± SD) Unknown Unknown 32.8 ± 4.3 30.5 ± 3.1

Body mass index (BMI; mean ± SD) Unknown Unknown 25.4 ± 3.9 22.1 ± 0.4

Gravity (median, IQR) 2 Unknown Unknown 2 (1, 2) 0

Parity (% nulliparous) Unknown Unknown 46 100

Pregnancy parameters

Gestational age (weeks; mean ± SD) 9.2 ± 2.1 15.5 ± 1.2 39.1 ± 0.8 NA

Placenta weight (kg; mean ± SD) NA NA 564.5 ± 87.3 NA

Mode of delivery Elective abortion Elective abortion Spontaneous + C-section NA

Sex of child (%) M 53.8%/ F 46.2% M 9.1%/ F 90.9% M 53.8%/ F 46.2% NA

Experiment inclusions

General CyTOF panel n = 12 n = 6 n = 9 n = 4

T cell CyTOF panel n = 11 n = 5 n = 8 n = 4

FACS panel n = 3 n = 4 n = 4 NA

1All pregnancies were considered healthy as determined by demographics, pregnancy parameters, attending gynecologists/research nurses, and the absence of
membrane discoloration and infarctions in the placenta. 2 IQR, interquartile range.

Perm buffer (Fluidigm) and left overnight at 4◦C. Prior to data
acquisition, cell pellets were diluted in distilled water containing
1:10 diluted EQ Four Element Calibration Beads (Fluidigm),
and cells were acquired by a Helios mass cytometer (Fluidigm).
After acquisition, data was normalized using the EQ beads with
passport P13H2302 reference. To account for technical variation,
a PBMC reference sample from a healthy donor was included
for both the general and the T cell panel at ten intervals during
20 staining batches and 18 CyTOF acquisition runs over a time
period of 7 months.

Mass Cytometry Data Analysis
For each data file, live single CD45+ immune cells were selected
by gating in Cytobank (Supplementary Figure S1A). The gating
strategy utilized the parameters residual, event length, width,
and center to gate out debris and doublets. In addition, dead
cells and normalization beads were excluded. Next, the files were
subjected to sample-tagging, hyperbolic-arcsinh-transformation
with cofactor 5 and dimensionality reduction in Cytosplore (28).
Pair-wise Jensen-Shannon (JS) divergences were calculated for
the individual samples within each tissue group, analyzed in a
collective t-SNE, where low JS distances were indicative of high
similarities between the samples within a group.

All data were pooled per panel and a five-level HSNE analysis
was performed with default parameters (perplexity 30; iterations
1,000), where the major immune cell lineages were identified
by automatic clustering (Figure 1B and Supplementary Figures
S1D, S2C). No influence of the mode of delivery on clustering
of term decidual samples was observed in our analyses and
a previous report by Tilburgs et al. (29) similarly confirmed
no influence of mode of delivery and other clinical variables
on decidual cell types in term pregnancy. All HSNE, t-SNE,
and Gaussian mean-shift clustering-derived cell clusters were
generated in Cytosplore. A cluster is defined as a population of
at least 100 cells with the same phenotype. Exported FCS files for
all identified individual clusters were subjected to the CytoFast

workflow in R (30). Hierarchical clustering of the heatmaps was
created with Euclidean correction and average linkage, and the
median intensity values of markers were visualized. The number
of cells in each immune cluster were determined for each sample
and cluster frequencies and sample frequencies were calculated.
Sample frequencies were visualized in boxplots and sample
t-SNE plots. Violin plots, PCA plots and correlation network
analysis were generated in R. Diffusion maps were generated in
R using the “destiny” package (31). Within the CD4+ T cell
compartment, CD4+ TN cells together with the CD4+ TRORA
cluster and Treg-like T cell clusters branched off completely and
were omitted from the final CD4+ T cell diffusion map. Within
the CD8+ T cell compartment, CD27- CD69-, CD27+CD69-
TN , and CD27INTCD69INTCD127+CCR6+ clusters branched
off completely and were omitted from the final diffusion map. For
the global test, incorporated within the Cytofast workflow, the
absolute correlation distance with average linkage for hierarchical
clustering was used. The branches colored in black show the
significant multiplicity-corrected p-values.

Flow Cytometry
Antibodies for flow cytometric analysis are listed in
Supplementary Table 3. For surface staining, cells were stained
for 30 min at 4◦C in PBS 1% FCS. For intracellular staining,
cells were fixed and permeabilized using the FOXP3 staining
buffer kit (eBioscience). Acquisition and analysis were performed
on an LSR-II (BD Biosciences) using FACS Diva software. In
addition, HSNE and t-SNE analysis of flow cytometric data was
performed using Cytosplore. Co-expression of FOXP3, HELIOS,
CTLA-4, CD39, ICOS, and TIGIT was confirmed by manual
gating and HSNE analysis.

Statistical Analyses
Results are shown as median with interquartile range and
the boxplots depict the 10–90 percentile. To determine
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A

B C

D

FIGURE 1 | Identification of major immune cell lineages at the maternal-fetal interface. (A) Experimental setup. First (6–13 weeks of gestation), second
(14–18 weeks) and third trimester (term; >38 weeks; basalis and parietalis) decidual samples along with maternal peripheral blood mononuclear cells (mPBMC) and
non-pregnant PBMC (NP PBMC) were analyzed. (B) First-level HSNE visualization of the major immune cell lineages derived from decidua and peripheral blood.
Colors top left indicate tissue type (1st trimester n = 12; 2nd trimester n = 6; term basalis and parietalis n = 9; mPBMC n = 9; NP PBMC n = 4); colors bottom left
indicate major immune cell types (CD8M, CD8 memory T cells; CD8N, CD8 naïve T cells; CD4M, CD4 memory T cells; CD4N, CD4 naïve T cells; ILC, innate
lymphoid cells); colors for plots on the right indicate the arcSinh5-transformed expression values of the specified markers where every dot represents a landmark.
Memory and naïve clusters were distinguished based on CD45RO and CD45RA expression. (C) t-SNE visualization of the separation between decidual and
peripheral blood samples (as percentage of CD45+ cells). Every dot represents a single sample. (D) Major immune cell lineages (as percentage of CD45+ cells)
throughout gestation and within mPBMC and NP PBMC. Boxplots depict the 10–90 percentile and the Kruskal-Wallis with Dunn’s test for multiple comparisons was
applied. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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TABLE 2 | Total number of cells and samples analyzed.

Panel # of Decidual samples CD4+ T cells CD8+ T cells B cells Myeloid cells ILC/NK cells TCRγδ cells

General panel 36 1,136,799 1,082,234 72,414 2,390,451 3,841,125 114,875

T cell panel 32 818,800 707,147 73,579 2,087,932 3,556,369 96,640

Trimester Total # of samples General panel T cell panel Overlap (#, %)

1st Basalis 14 12 11 9; 64%

2nd Basalis 7 6 5 4; 57%

3rd Basalis 9 9 8 8; 89%

3rd Parietalis 9 9 8 8; 89%

mPBMC 9 9 8 8; 89%

NP PBMC 4 4 4 4; 100%

differences among more than two unpaired groups, a non-
parametric Kruskal-Wallis test with Dunn’s multiple comparison
post-test was applied where significance was assessed by
controlling for false discovery at 5% (FDR). P-values < 0.05
were considered to denote statistically significant differences.
Statistical analyses were performed in GraphPad Prism version
8.0 and R version 3.5.1.

RESULTS

The Maternal-Fetal Interface Harbors a
Unique Immune Cell Composition
We analyzed first, second, and third trimester decidual samples
along with mPBMC taken at the time of delivery and PBMC
of non-pregnant age-matched women (NP PBMC) as a control
(Table 1). A general mass cytometry panel comprising 39
antibodies (Supplementary Table 1) was used to provide a broad
coverage of the myeloid and lymphoid immune compartments.
For in-depth profiling of the T cell compartment, a second
panel comprising 37 antibodies (Supplementary Table 2) was
applied. After data acquisition (Table 2), live, single CD45+
cells were selected for downstream analysis (Supplementary
Figure S1A and Figure 1A). Conventional cell populations
were verified by manual gating and have previously been
validated (27). To allow systematic comparison of samples, the
data obtained with the general panel (49 samples; 19 × 106

CD45+ cells) and the data obtained with the T cell panel
(44 samples; 17 × 106 CD45+ cells) were pooled separately
and analyzed with hierarchical stochastic neighbor embedding
(HSNE) and t-distributed stochastic neighbour embedding (t-
SNE) in Cytosplore (28, 32). Comparison of the absolute
numbers and percentages of CD45+ cells and correlations
thereof showed a similar pattern in the general and T cell panel
(Supplementary Figures S1B,C).

At several timepoints during the acquisition timeline a PBMC
reference sample was included, which corroborated reproducible
staining and acquisition among different sets of experiments
(Supplementary Figures S2A,B). Clustering of technical PBMC
reference samples together with the experimental decidual
samples (for each panel separately) using Cytosplore revealed
that reference samples clustered tightly together and that
variation between decidual samples was much greater than

between reference samples (Supplementary Figures S3, S4). This
demonstrated that only a limited amount of variation is explained
by staining inconsistencies between batches.

At the overview level, the HSNE landmarks depicted the
global data heterogeneity and marker expression profiles in both
panels and identified the major immune cell subsets of myeloid
cells, ILC, CD4+ T cells, CD8+ T cells (including the TCRγδ

lineage), and B cells (Figure 1B and Supplementary Figure S1D).
Subsequently, t-SNE analysis based on cell frequencies separated
the samples of 1st and 2nd trimester from samples of term
basalis and parietalis, and peripheral blood, indicative of distinct
immune profiles (Figure 1C and Supplementary Figure S1E).
Cell frequencies of the major immune cell lineages confirmed ILC
as being the predominant cell type in 1st trimester, decreasing
toward the end of pregnancy, and contrasting the dynamics of T
cells. This analysis also validated that the number of myeloid cells
remains relatively constant throughout gestation, while B cells are
hardly present (Figure 1D and Supplementary Figure S1F) (6).

Early Pregnancy Reveals a
Heterogeneous Group of Myeloid Cells
With High HLA-DR Expression
Next, for each antibody panel, the data from all decidual samples
were pooled and HSNE analysis was performed on every lineage
individually. Within the myeloid cell lineage (Supplementary
Figure S2C), the second hierarchical level revealed six large
subpopulations that could be discriminated based on differential
expression of CD14, CD11c, CD11b, HLA-DR, CD16, and
CD15 (Supplementary Figures S2D,E). Subsequently, Gaussian
mean-shift clustering was applied and quantified with Cytofast
(30), revealing 16 phenotypically distinct myeloid cell clusters
(Figure 2A). Here, HSNE overview plots showed the individual
markers that contributed to the separation into distinct clusters
(Figure 2B). Next, we determined which myeloid cell clusters
were differentially present in 1st and 2nd trimester, term basalis,
and term parietalis samples to uncover dynamics throughout
pregnancy (Figure 2C). Only cell clusters with significant
differences (false discovery rate (FDR) <5%) between the
groups are shown.

Notably, early pregnancy (1st and 2nd trimester) was
characterized by the presence of a heterogeneous group of
myeloid cells with high HLA-DR expression. CD163+HLA-
DR+ cells, also expressing intermediate levels of CD56 and
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A B

C D

FIGURE 2 | The myeloid compartment is highly diverse in early pregnancy. (A) Heatmap showing the median arcSinh5-transformed marker expression values for the
16 identified myeloid clusters within the general panel (36 samples; 2,390,451 cells). Cluster IDs and cluster frequencies are displayed at the bottom of the heatmap.
(B) First-level HSNE embedding of the arcSinh5-transformed expression values of the indicated markers (note these are the same plots as in Supplementary
Figure S2E). (C) Boxplots of sample frequencies, divided per trimester, of the cell clusters plotted as a fraction of total myeloid cells. The Kruskal-Wallis with Dunn’s
test for multiple comparisons was performed and only clusters with significant differences (false discovery rate (FDR) < 5%) between the groups are shown.
(D) Unsupervised principal component analysis (PCA) of the sample frequencies (as percentage of total myeloid cells), where the gestational age groups are depicted
along the first two components. The centroid of each group is indicated in gray. MDSC, myeloid-derived suppressor cells; dMP, decidual mononuclear phagocytes;
Mϕ, macrophage. *P < 0.05; **P < 0.01; ***P < 0.001.

CD7 (cluster “Other CD56+CD163+”), were observed in the
1st and 2nd trimester (Figure 2C), and may represent myeloid-
like NK cell progenitors or a distinct monocyte/dendritic cell
population. Furthermore, cell clusters of decidual mononuclear
phagocytes (dMP), namely dMP1, dMP2, dMP5, and dMP6,
expressing various combinations of CD14, CD11b, CD11c,
CCR6, CD38, and CD69 were more prominent in 1st and 2nd
trimester decidua compared to term decidua. The immune-
regulatory CD163+ M2 macrophage (Mϕ) subtype was present
in early pregnancy and term decidua parietalis, but hardly in
term decidua basalis. In addition, CD11chighCD14-CD16- Mo-
DC were predominantly abundant in 1st trimester. Moreover,

CCR6+CD45RA+CD38- dMP cell clusters with low HLA-DR
expression (dMP3 and dMP4) were dominantly present in term
decidua basalis while the largest population of CD15+CD16+
granulocytes was found in both term decidua basalis and
parietalis (Figure 2C). Finally, a clear separation between
early and late pregnancy samples in unsupervised principal
component analysis (PCA; Figure 2D) was driven by an
abundance of granulocytes in late pregnancy and supported by
a previously unrecognized diverse composition of myeloid cells
in early pregnancy. Together, these results reveal substantial
changes in the composition of the myeloid compartment
during gestation.
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Dynamic Changes in the Composition of
the ILC Compartment During Pregnancy
A similar analysis of the ILC compartment (CD3-CD7+)
confirmed its well-described cellular composition in decidua
(33–36). The general panel classified 14 clusters with high
expression of CD56 and lack of CD16 (Supplementary
Figure S5A). Early pregnancy was characterized by activated
CD161+CD122+NKp46+CD69+ NK cells (NK2, NK3, NK5,
NK7, NK8, NK13), tissue-resident CD69+CD103+ cell clusters
(NK4, NK5, K7) and ILC3 (Supplementary Figures S5A,B),
coupled to the expression of CD39 and TIM-3 (Supplementary
Figures S5C–E) (37). Toward the end of pregnancy, NK cells
displayed a less activated phenotype with lower expression of
CD161, CD122, NKp46, and CD103, and higher expression of
CD45RA and CD16 (mostly in term basalis; Supplementary
Figure S5B). Tissue-resident-like ILC were not only observed
in 1st trimester (dIC6; decidual ILC Cluster), but also in small
numbers in term samples (dIC1) along with the expression of
TIGIT (Supplementary Figures S5C,D). In addition, expression
of the co-inhibitory receptors TIM-3 and CD39 was observed
in both early and term parietalis samples. NK2, NK3, and NK5
clusters resembled a phenotype similar to the intermediate innate
subset described in fetal intestine that can differentiate into ILC3
and NK cells (25).

In summary, high proportions of activated ILC are present
early in pregnancy alternated by dissimilar, smaller proportions
of ILC cell clusters in term pregnancy, where the largest
separation was observed between 1st trimester and term basalis
(Supplementary Figure S5F).

The Decidua Harbors NKT-Like TCRγδ T
Cells
Substantial phenotypic diversity was observed within decidual
TCRγδ cells where seven cell clusters were identified within
the general panel (Supplementary Figures S6A,B). The most
prominent cell clusters were CD161+KLRG1+ TCRγδEM,

present throughout gestation, and CD69+ TCRγδEMRA that were
dominant in term basalis. Remarkably, NKT-like populations of
TCRγδ cells expressing CD56 and CD11c were also observed.
TEMRA, with high expression of CD45RA, and TEM cell clusters
persisted in early pregnancy while cells co-expressing CD45RA
and CD45RO and positive for CD27, CD5, and CD69 increased
in term parietalis (Supplementary Figures S6A,C). Even though
differences throughout gestation were existent, close clustering
between the three different trimesters was observed in a PCA
(Supplementary Figure S6D). In summary, these results display
heterogeneity and the presence of NKT-like populations within
the TCRγδ compartment.

CD4+ T Cell Characterization Reveals
Unexplored Diversity Within Memory and
Regulatory Phenotypes
In the CD4+ T cell lineage 17 cell clusters were identified: one
naïve (N; CD45RA+CCR7+), two terminally differentiated
(TEMRA; CD45RA+CCR7−), one central-memory
(CM; CD45RO+CCR7+), seven effector-memory (EM;

CD45RO+CCR7−), one CD45RA+RO+ and five memory
regulatory-like T cell (Treg-like; CD25+CD127−) clusters
(Figures 3A,B). Early in pregnancy, natural-killer-like CD4+
T cells (NKT-like) exist that express CD56, CD11c, CD161,
CD122, NKp46, and CD38 (Supplementary Figure S7A and
Figure 3C). Expression of CD127 and CCR6 occurred toward the
end of pregnancy (T2EM), consistent with the early pregnancy-
associated T4EM cluster that lacked expression of these markers.
At term, CD4+CD7-CD161+ TEM cells expressing CD27
and CCR6 (T2EM) were observed in term basalis, whereas
CD4+CD7+CD161- TEM cells expressing CD38 and ICOS,
and lacking CCR6 (T7EM) were predominantly present in term
parietalis (Figure 3C). Furthermore, CD4+ TEM cells showed
co-expression of PD-1 and ICOS, at lower levels than the
Treg-like population, and lack of TIGIT and CD39.

Considerable heterogeneity within the Treg-like compartment
was uncovered, where CD25+CD127- cell clusters expressed
high levels of co-inhibitory (PD-1, CD39, TIGIT) and stimulatory
(ICOS, CD38, CD28, CD27) receptors, including co-expression
thereof (Figures 3A,B). When investigating the Treg-like
compartment in more detail, previously unrecognized
heterogeneity was observed with respect to the expression
of the Treg-associated markers TIM-3, CCR8, and CCR4
(Supplementary Figure S7B) (38–40). Tr1 cells, identified
by co-expression of LAG-3 and CD49b (41), were absent in
decidual CD4+ T cells (Supplementary Figure S7B), but
were observed in mPBMC (data not shown). Quantification
of the presence of these CD25+ cell clusters in the gestational
age groups revealed that T4REG (HLA-DR-CD69-PD-1-)
and T3REG (CCR4+CD38+) were more frequent in early
pregnancy and lower in term basalis, whereas the largest
Treg-like population, T2REG (ICOS+PD-1+TIGIT+CD39+),
was significantly increased in term parietalis (Figure 3C).
Furthermore, T5REG (CCR6+ICOS+TIGIT+PD-1-CD39-) was
significantly increased in term decidua basalis and parietalis,
while virtually absent in early pregnancy. By aligning cells
from these five Treg-like clusters along a two-dimensional
diffusion map (31), putative differentiation and/or plasticity
trajectories were observed between cell clusters T2REG, T3REG,
T4REG, and T5REG. T1REG, the smallest Treg-like cluster,
was distinct owing to the lack of CD7 and CD27 expression
(Supplementary Figure S7C).

To further evaluate the Treg-like phenotypes,
intracellular expression of FOXP3, HELIOS, and CTLA-4
in CD4+CD25+CD127- and CD127+ T cells was assessed
by flow cytometry in decidual samples (Supplementary
Table 3). Co-expression of FOXP3, HELIOS, CTLA-4,
CD39, ICOS, and TIGIT was observed in HSNE analysis
of flow cytometry data, confirming a valid regulatory T
cell phenotype (Figure 3D). In addition, differential co-
expression of these markers was observed in several cell clusters,
where not all CD4+CD25+CD39+ICOS+ cells expressed
FOXP3 and/or HELIOS. This indicates that the Treg-like
CD25+CD127- populations detected by mass cytometry
represent a heterogeneous group of Treg and Treg-like cells at
the maternal-fetal interface (Figure 3D). Flow cytometry data
revealed an increase in CD4+CD25+CD127+ T cells, known
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FIGURE 3 | In-depth characterization of the heterogeneity within the CD4+ T cell compartment. (A) Heatmap showing the marker expression values for the 17
identified CD4+ T cell clusters within the T cell panel (32 samples; 818,800 cells). Cluster IDs and cluster frequencies are displayed at the bottom of the heatmap.
(B) First-level HSNE embedding of the expression values of the indicated markers. (C) Boxplots of sample frequencies, divided per trimester, of the clusters plotted
as a fraction of total CD4+ T cells. The Kruskal-Wallis with Dunn’s test for multiple comparisons was performed. (D) HSNE embedding of the expression values of
the indicated markers, measured by flow cytometry and gated within CD3+CD4+ T cells. CD4+CD25+CD127- clusters are circled in orange; CD4+CD25+CD127+
clusters are circled in blue. 1st (n = 3), 2nd (n = 4) and term decidua (n = 4). (E) Boxplots depicting the CD25+CD127- (upper panel) and CD25+CD127+ (lower
panel) populations as percentage of CD4+ T cells. (F) PCA of the sample frequencies (as percentage of total CD4+ T cells) where the gestational age groups are
depicted along the first two components. The centroid of each group is indicated in gray. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.005.
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FIGURE 4 | Trajectory analysis of effector and memory decidual CD4+ T cells. (A) Visualization of terminally differentiated (EMRA) and effector-memory (EM) CD4+ T
cell clusters in a diffusion map along two components. Each color in the left panel represents a cluster of cells. In the right panel, cells within the 1st trimester, 2nd
trimester and term decidua basalis and parietalis are portrayed. (B) ArcSinh5-transformed expression values of the specified markers in the diffusion map.

to be activated effector CD4+ T cells (42), and regulatory-like
CD4+CD25+CD127- T cells toward the end of pregnancy, with
this increase being most apparent in term parietalis (Figure 3E
and Supplementary Figure S7D). Overall, the data uncovered
distinct memory and regulatory-like CD4+ T cell populations at
different locations throughout pregnancy, where clear separation
is revealed between early and term pregnancy, as well as between
term basalis and parietalis (Figure 3F).

Next, diffusion mapping was used to distinguish prospective
relationships among the different types of memory CD4+ T cell
clusters. Two-dimensional diffusion plots revealed a split into two
branches with T4EM , lacking CD127 expression, at the center of
the split (Figure 4A). Gradients of protein expression between
cells were observed rather than discrete cell clusters (Figure 4B).
The branch that expanded along diffusion component 2 (DC2)
consisted of CD7+CD161+ and CD161- TEM cells that were
CD127+ and CD27+. TCM was projected at the end of this
trajectory branch. The second branch along DC1 consisted
of the CD7-CD161+ clusters that showed CD127 expression,

including one cluster (T3EM) that lacked CD27 expression. The
two EMRA clusters separated out from the EM clusters based
on their expression of CD45RA and lack of CD27 expression.
These results suggest putative differentiation states between the
identified EM CD4+ T cell clusters throughout pregnancy.

Decidual CD8+ T Cells Co-express
Inhibitory and Stimulatory Receptors
We next investigated the heterogeneity within the CD8+ T cell
compartment where 20 CD8+ T cell clusters were characterized,
namely one naïve, seven TEMRA, five EM, and seven clusters co-
expressing CD45RA and CD45RO, a phenotype that is associated
with proliferation (Figures 5A,B). Four of these clusters revealed
significant differences between the decidual samples (Figure 5C).
The tissue-resident memory (TRM) CD8+ T cell cluster
T4RORA (CD69+CD103+CD38+CD161+PD-1+CD39+) was
more frequent in early pregnancy, while T5EMRA (CD69high) and
T6RORA (CD127+CCR6+CD38+CD69+) were more abundant
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FIGURE 5 | In-depth characterization of the heterogeneity within the CD8+ T cell compartment. (A) Heatmap showing the marker expression values for the 20
identified CD8+ T cell clusters within the T cell panel (32 samples; 707,147 cells). Cluster IDs and cluster frequencies are displayed at the bottom of the heatmap.
(B) First-level HSNE embedding of the expression values of the indicated markers. (C) Boxplots of sample frequencies, divided per trimester, of the clusters plotted
as a fraction of total CD8+ T cells. The Kruskal-Wallis with Dunn’s test for multiple comparisons was performed. (D) PCA of the sample frequencies (as percentage of
total CD8+ T cells) where the gestational age groups are depicted along the first two components. The centroid of each group is indicated in gray. (E) Visualization of
TEMRA, TRORA, and TEM CD8+ T cell clusters in a diffusion map along two components. Each color in the left panel represents a cluster of cells. In the right panel,
cells within the 1st trimester, 2nd trimester and term decidua basalis and parietalis are portrayed. (F) ArcSinh5-transformed expression values of the specified
markers in the diffusion map. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.005.
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in term samples. Also, T4EMRA (CD127+CCR6+) was increased
in term basalis. In addition, a trend for a higher presence of
NKT1-like cells in the 1st trimester, a gradual increase in NKT3-
like and T5RORA cells from 1st trimester to term, and higher
numbers of T2RORA in 1st trimester and term basalis were
observed (Figure 5C and Supplementary Figure S8A). High
levels of CD27 were observed in several effector and effector-
memory cell clusters (e.g., T5EMRA, T5RORA, T6RORA).

Where our recent work demonstrated a mixed gene expression
signature of activation and dysfunction in bulk memory decidual
CD8+ T cells (43), mass cytometry at the single-cell level
revealed the expression of inhibitory and stimulatory receptors
to be intertwined (Figure 5A). This co-expression of inhibitory
(CD39, PD-1, TIGIT) and stimulatory (ICOS, CD69, CD27)
receptors was verified by flow cytometry and mainly observed
in term basalis and parietalis (Supplementary Figure S8B).
Interestingly, the TEMRA and TCM clusters within the CD8+ T
cell compartment contrasted the frequencies of these populations
within the CD4+ T cell compartment with a higher percentage
of TEMRA and lower percentage of TCM within the CD8+ T
cells (Supplementary Figure S8C). In general, the differences
in marker expression in the CD8+ T cell compartment were
more subtle when compared to the CD4+ T cells. Consequently,
the PCA showed a less clear separation between early and late
pregnancy with term parietalis being more similar to 1st and 2nd
trimester samples than term basalis (Figure 5D).

In a two-dimensional diffusion plot analysis, two branches
were observed with the CD38- clusters (T5EMRA, T5RORA) at
the center of the split. Here, the CD38+CD69+ TEMRA and
TEM clusters expanded along DC1, while the TRM cells and
CD127+CCR6+ TEM cells expanded along DC2 (Figures 5E,F).
Furthermore, along DC2 cell clusters T5EMRA, T5RORA, and
T6RORA with lower expression of CD45RO and PD-1 and high
expression of CD69, were absent in early pregnancy and appeared
in term pregnancy, as observed in Figure 5C (Figure 5E;
dashed circle). These potential differentiation trajectories suggest
a phenotypic continuum and thereby possible plasticity between
specific CD8+ T cell clusters.

In summary, these data show that a group of CD8+
T cells displays co-expression of inhibitory and stimulatory
receptors at the protein level, and suggest that in this group
several differentiation trajectories coupled to distinct functions
throughout gestation may be at play. Whereas CD8+ NKT cells
are present in early and late pregnancy, there are hardly any
CM CD8+ T cells.

B Cells Are Mainly Present Early in
Pregnancy
Although the number of B cells was low, nine CD20+ B
cell clusters with variable expression of CD38, CD27, and
IgM were identified within the general panel (Supplementary
Figure S9A). Interestingly, most B cells were detected in the 1st
trimester (Supplementary Figure S9B). CD20 was also included
in the T cell panel (as exclusion marker) and showed to be
useful in detecting CD39 expression on several B cell clusters
(Supplementary Figure S9C).

Correlation Analysis Reveals
Gestational-Specific Immune Networks
To conflate the 77 identified immune cell clusters within
the general panel and visualize relationships between them, a
correlation network analysis was performed using the sample
frequencies. This analysis demonstrated that 73% of clusters
were strongly correlated with each other (Spearman rank >0.7;
Figure 6A). Subsequently, multivariate associations between
individual and groups of clusters were detected by applying
a multinomial logistic regression model with the global test
(Figure 6B) (30, 44). Four networks were revealed in which
colored nodes highlight the significance of individual cell clusters
in one of the four gestational age groups. Cell clusters in network
1 consisted of myeloid cells, CD4+ T cells, CD8+ T cells, and
B cells, and did not reveal significant gestational specificity.
Network 2 revealed a correlation between NKT-like, B cell, and
NK cell clusters (including tissue-resident-like phenotypes), most
of which were significantly abundant in the 1st trimester. This
may reflect unappreciated interactions between NK cells and
NKT-like cells early in pregnancy. Network 3 is characterized by
clusters predominantly present in term basalis and included a
correlation between innate immune cells such as NK cell clusters,
dMP3 and granulocytes, and adaptive immune cells including
TN , TEM and Treg-like CD4+ clusters, CD8+ TRORA cells, and
TCRγδEMRA cells. Interestingly, a different network of clusters
was observed in term parietalis (network 4), where CD4+ and
CD8+ TN cells, CD4+CD127+CD161- TCM cells, CD4+ Treg-
like clusters, CD8+ TEM and NKT-like cells, and TCRγδ cells
were correlated. These results underline that distinct immune
cell interactions in basalis versus parietalis contribute to the
microenvironment in term pregnancy. Thus, three of the four
networks correlated with either gestational age or tissue location.

DISCUSSION

To better understand the maternal immune landscape during
healthy pregnancy, we performed mass cytometry analysis of
immune cells isolated from decidua throughout the three
trimesters of pregnancy and compared this to term mPBMC.
This provided an unbiased, data-driven overview of all decidual
immune cell populations throughout pregnancy. Previously
described decidual immune cell subsets (5, 33, 45, 46) and the
kinetics of the major immune cell lineages during gestation (5, 6,
47) were validated in the current study. Moreover, we observed
unprecedented immune cell heterogeneity in the decidua.

By implementing replicate PBMC control samples along
with the experimental decidual samples, we demonstrated
that the identified decidual immune cell clusters described
here displayed much greater phenotypic diversity than
what could be explained by staining inconsistencies and
that batch effects are therefore minimal. It should be noted
that 11 (tissue-specific) out of 52 unique markers of both
antibody panels combined displayed no or hardly any
expression in the internal control PBMC reference samples
and could, therefore, not be assessed for staining consistency
during batch analysis.
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FIGURE 6 | Relationships between identified cell clusters from all major immune cell lineages. (A) Correlation network plot showing Spearman coefficients higher
than 0.7 for relationships between the decidual immune cell clusters from the general panel. Every circle depicts an immune cell cluster, with colors corresponding to
statistically significant contributions of clusters to 1st trimester, term decidua basalis or parietalis, as calculated by the global test (44). Higher correlation corresponds
to greater proximity of cell clusters. (B) Multivariate associations between cell clusters detected by a multinomial logistic regression model with the global test. The
top panel shows hierarchical clustering of absolute correlation distances, where the branches in black indicate significant multiplicity-corrected p-values. The bottom
panel shows the corresponding p-values of immune cell clusters associated with 1st trimester (green), 2nd trimester (yellow), term decidua basalis (light blue), and
parietalis (dark blue).
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Distinct clusters of dMP were detected in early pregnancy,
suggestive of an essential role for antigen presentation and
thereby interaction with other immune cells at the initiation
of pregnancy. Furthermore, the presence of different dMP cell
clusters in term basalis and parietalis may reflect distinct local
antigen presentation and function. Proportions of the dMP cells
decrease over gestation accompanied by an influx of granulocytes
at time of parturition, in line with the observed increase in the
numbers of circulating neutrophils during pregnancy (48). ILC
that play an important role in early pregnancy by facilitating
spiral artery remodeling and trophoblast invasion, may in small
proportions preserve their function (e.g., play a role in the
clearance of infections) in term pregnancy where they display a
less activated phenotype with the expression of inhibitory and
tissue-residency receptors.

Most studies on decidual Treg have thus far focused
on CD4+FOXP3+ T cells (16, 49, 50). Our present mass
and flow cytometry data confirmed the presence of other,
recently described, FOXP3low/− decidual Treg subtypes (51).
Furthermore, we observed additional heterogeneity, with co-
expression of inhibitory and stimulatory receptors and clusters
lacking expression of FOXP3 and/or HELIOS, revealing a mixed
population of Treg and Treg-like cells. It supports the hypothesis
that both natural (nTreg) and induced Treg (iTreg) play a
role, where bright expression of CD25 is not a prerequisite for
Treg function. A decrease in FOXP3 and HELIOS expression
toward term suggests a decline of nTreg and increase of
iTreg throughout gestation (51). These Treg populations are
induced, among others, by EVT and decidual Mϕ (51), and may
therefore have distinct cellular targets, which likely include the
formerly unexplored heterogeneous group of memory CD4+ T
cells. Evidence exists that 1st trimester decidual CD4+ T cells
have transcriptional profiles compatible with antigen-induced
activation and proliferation (52). Moreover, decidual CD4+ T
cells isolated from term decidua showed fetal antigen-specific
responses that were enhanced upon depletion of CD25+CD127-
Treg (12). Presence of paternal antigen-specific Treg in the
decidua has been suggested (29), and clonal expansion of both
decidual Treg (53) and memory CD4+ T cells by locally
presented antigens is suggested by preliminary data from our
laboratory showing a restricted CDR3 length distribution of the
TCRVβ repertoire in term decidual CD4+ T cells compared to
peripheral CD4+ T cells (data not shown). The observed increase
in activated CD4+ T cells may be counteracted by an increase in
Treg in term parietalis to secure success of pregnancy. Evidently,
functional assays are necessary to further explore the co-existence
of effector memory CD4+ T cells with nTreg and iTreg, especially
in the context of complicated pregnancies (54). Treg may also be
essential in the regulation of distinct CD4+ and CD8+ NKT-
like clusters in early pregnancy, as suggested by the increased
percentages of NKT cells observed in women with unexplained
recurrent spontaneous abortions (55).

Recent research on fetal-specificity (12), virus-specificity (56),
and cross-reactivity of decidual CD8+ T cells with HLA-C
(57), complemented by the herein described co-expression of
inhibitory and stimulatory receptors, emphasizes the dual role of
CD8+ T cells in both tolerance and immunity. Co-expression

of CD45RO/RA in several clusters hints at local proliferative
potential, and interactions with APC and Treg may be essential
to control CD8+ T cells at the maternal-fetal interface.
Furthermore, recently addressed contributions of TCRγδ T cells
to transplantation outcomes and their role in HIV controllers
(58, 59) advocate for an unexplored functional role of TCRγδ

T cell subsets in early and term pregnancy, which requires
further exploration. B cell clusters expressing CD39, a marker
involved in the activation of B cells to suppress T cells (60),
might resemble regulatory B cells. Alterations in B cell function
in early pregnancy has been suggested to play a role in recurrent
miscarriages, where a higher incidence of anti-HLA-C antibodies
was observed in women with recurrent miscarriage (61).

Diffusion mapping revealed putative differentiation
trajectories of effector, memory, and regulatory T cells
throughout gestation, emphasizing the dynamic state and
conceivable plasticity of decidual T cells in response to
environmental cues. It should be kept in mind, however,
that the cell phenotype trajectories may partly be influenced
by recruitment of immune cells into the tissue as gestation
progresses. In both the CD4+ and CD8+ compartment an
increase in activated effector T cell phenotypes toward the
end of pregnancy suggests an inflammatory state required for
parturition. Subsequently, combining all identified immune
cell clusters in a correlation network analysis demonstrated
that the local immune landscape as a whole, and not isolated
cell subsets, develops as an integrated system throughout
gestation. Co-expression of inhibitory and stimulatory receptors
in this system is prominent and needs to be finely balanced
to ensure a successful pregnancy. The prominent connection
between myeloid cells and T cells (network 1) at any time
point during pregnancy reflects their bi-directional interactions
both in a contact-dependent manner and through cytokine
excretion. The connection between NKT-like cells and NK
cells specifically in the first trimester (network 2) needs
further exploration. Differences in immune cell networks and
their prospective functions observed between term basalis
(network 3) and parietalis (network 4) suggest possible distinct
antigen availability and presentation at these two placental
locations. More regulatory phenotypes were observed in
the parietalis with increased percentages of Treg, M2 Mϕ,
and TRM CD8+ T cells. This observation may be in line
with findings of a single cell analysis of separate placental
compartments (62), showing that the basal plate (including
the basalis) contains more activated T cells and less resting T
cells compared to the chorioamniotic membranes (including
the parietalis). The abundant density of lymphatic vessels
in the region adjacent to the chorionic membrane, which is
attached to the parietalis, suggests that antigen presentation
and activation need to be carefully controlled at this site (63).
Term basalis consistently showed cell clusters with higher
expression of CCR6, a receptor involved in chemotaxis. The
influx of immune cells might therefore be more common
in term basalis.

This study has its limitations. First, in human pregnancy
studies the unavailability of uncomplicated decidual samples
between 24 and 37 weeks of gestation results in a gap in
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our knowledge and understanding of the complete second
trimester. Second, mass cytometry identifies phenotypic
diversity based on preselected markers and provides little
insight into the functionality of identified cell clusters. Here,
we investigated the T cells in depth, but additional myeloid
and B cell-specific markers are necessary to explore the
complexity within these lineages. Although the rationale
for defining a cluster is the presence of at least 100 cells
with the same phenotype, further research needs to be
performed to confirm if the identified subclusters represent
true, functionally distinct, subpopulations. It is plausible
that some of the phenotypically distinct cell clusters are
differentiation stages between cell populations, as suggested
by our diffusion mapping data. Therefore, the results from
the current study should be considered as a basis for
subsequent investigations. Future studies constituting a
validation cohort with additional healthy decidual samples
and including samples from complicated pregnancies will
provide comprehensive insight into generalizable differences
between healthy and complicated pregnancy. Although
decidual and peripheral blood immune cells clustered
completely separate in t-SNE analyses, trafficking of cells
between these two entities almost certainly occurs (64, 65).
In pregnancy complications both systems should be studied
in parallel as the occurrence of certain cell subsets in the
blood, possibly precursors, may predict what takes place
locally in the decidua and thereby serve as biomarkers to
predict complications.

In the field of reproductive immunology, a shift toward
systems biology with a focus on interactions between cell
types and away from studying isolated cell populations is
required. This ecosystem where not only maternal immune
cells but also EVT, decidual stromal cells, endothelial cells,
and micro-organisms are coordinated with each other
needs to be explored in more depth, and in relation to
pregnancy complications presenting a more heterogeneous
microenvironment than expected. In this context, single-cell
RNA sequencing has revealed potential cell-cell interactions
at the maternal-fetal interface (37). Future studies will benefit
from combining mass cytometry data and RNA sequencing
to cross-validate transcriptional activity and protein levels
of singular cells, and from incorporating imaging CyTOF
to define the cellular anatomical locations. Furthermore, the
generation of trophoblast organoids as a model for maternal-fetal
interactions (66), development of a placenta-on-a-chip (67), and
interconnectivity analysis of multiple biological systems such as
metabolomics and transcriptomics (37, 68) will further enhance
our understanding of the placenta and the cellular interactions
within this ecosystem.

Taken together, mass cytometry enabled us to visualize
the complex and dynamic network of decidual immune
cell populations at the maternal-fetal interface, where during
uncomplicated pregnancy coordinated interaction is vital for
a successful outcome. The immune atlas as presented here
may serve as a foundation for further identification and
functional analyses of immune subsets in healthy versus
complicated pregnancies.
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FIGURE S1 | Identification of major immune cell lineages at the maternal-fetal
interface using the T cell panel. (A) Gating strategy to select single, live CD45+
cells for downstream analysis. (B) Comparison of the absolute numbers and
percentages of CD45+ cells measured by the general and the T cell panel. (C)
Correlation plots of CD45+ cells measured by the general and T cell panel within
the three trimesters, maternal peripheral blood mononuclear cells (mPBMC) and
non-pregnant control samples (NP PBMC). (D) First-level HSNE visualization of
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the major immune cell lineages derived from decidua and peripheral blood. Colors
top left indicate tissue type (1st trimester n = 11; 2nd trimester n = 5; term basalis
and parietalis n = 8; mPBMC n = 8; NP PBMC n = 4); colors bottom left indicate
major immune cell types (CD8M, CD8 memory T cells; CD8N, CD8 naïve T cells;
CD4M, CD4 memory T cells; CD4N, CD4 naïve T cells); colors for plots on the
right indicate the arcSinh5-transformed expression values of the specified markers
where every dot represents a landmark. Memory and naïve clusters were
distinguished based on CD45RO and CD45RA expression. (E) t-SNE visualization
of the separation between decidual and peripheral blood samples (as percentage
of CD45+ cells); every dot represents a single sample. (F) Major immune cell
lineages (as percentage of CD45+ cells) throughout gestation and within mPBMC
and NP PBMC. Boxplots depict the 10–90 percentile and the Kruskal-Wallis with
Dunn’s test for multiple comparisons was applied. ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001.

FIGURE S2 | t-SNE visualization of PBMC reference samples and partitioning of
the myeloid cell compartment into subpopulations. Cell frequencies (as
percentage of CD45+ cells) are plotted where every dot represents a single
sample within the general panel (A) and within the T cell panel (B). The gray arrow
indicates the PBMC reference control samples clustering together. (C) HSNE
overview (first) level embedding of all decidual samples with identification of the
major immune cell lineages based on lineage marker expression. (D) Second-level
HSNE embedding of the myeloid cells subdivided into six major subpopulations.
(E) Second-level HSNE arcSinh5-transformed expression values of the specified
markers where every dot represents a landmark.

FIGURE S3 | Analysis of staining fluctuations between batches for the general
CyTOF antibody panel. Nine replicate control samples from the same blood donor
stained with the general CyTOF panel measured throughout the 7-month study
period. (A) A t-SNE embedding showing the collective CD45+ cells (14.5 × 104

cells) from nine replicate control samples and 20 experimental decidual samples.
Colored dots represent single cells from replicate samples and gray represents
experimental samples. (B) Same t-SNE embedding as in panel A, colored for each
replicate sample. (C) A t-SNE plot showing 25 cluster partitions in different colors.
(D) Composition of the cell clusters in the individual samples (n = 29) represented
in horizontal bars where the size of the colored segments represents the
proportion of cells as a percentage of total CD45. (E) Heat map showing the
median ArcSinh5-transformed marker expression values of the clusters identified
in C and hierarchical clustering thereof. (F) Graph depicting the standard deviation
in cell cluster frequencies between the technical replicate control samples (black
circles) and the experimental decidual samples (red triangles). Noticeable is
differential abundance of cluster 21 and 22 within CD4+ T cells, due to minor
fluctuations in the expression of CD127, CD27, and CCR7.

FIGURE S4 | Analysis of staining fluctuations between batches for the T cell
CyTOF antibody panel. Ten replicate control samples from the same blood donor
stained with the T cell CyTOF panel measured throughout the 7-month study
period. (A) A t-SNE embedding showing the collective CD45+ cells (11.5 × 104

cells) from 10 replicate control samples and 13 experimental decidual samples.
Colored dots represent single cells from replicate samples and gray represents
experimental samples. (B) Same t-SNE embedding as in panel A, colored for each
replicate sample. (C) A t-SNE plot showing 20 cluster partitions in different colors.
(D) Composition of the cell clusters in the individual samples (n = 23) represented
in horizontal bars where the size of the colored segments represents the
proportion of cells as a percentage of total CD45. (E) Heat map showing the
median ArcSinh5-transformed marker expression values of the clusters identified
in C and hierarchical clustering thereof. (F) Graph depicting the standard deviation
in cell cluster frequencies between the technical replicate control samples (black
circles) and the experimental decidual samples (red triangles). Noticeable is
differential abundance of cluster 18 and 19 within CD4+ T cells, due to minor
fluctuations in the expression of CD127, CD38, and CCR7.

FIGURE S5 | Characterization of the innate lymphoid compartment. (A) Heatmap
showing the marker expression values for the 14 identified NK and ILC clusters.
Cluster IDs and cluster frequencies are displayed at the bottom of the heatmap.
(B) Violin plots depicting expression values of indicated markers
(arcSinh5-transformed) in the four tissue groups. (C) Heatmap showing the
marker expression values for ILC clusters (CD3-CD7+) within the T cell panel.
Only clusters expressing the co-inhibitory receptors CD39, TIM-3, TIGIT are
depicted here. (D) Boxplots of sample frequencies, divided per trimester, of the
clusters plotted as a fraction of total ILC. The Kruskal-Wallis with Dunn’s test for
multiple comparisons was performed. (E) Cluster frequencies (as percentage of
total ILC) of the depicted clusters. (F) PCA of the sample frequencies (as
percentage of total ILC) where the gestational age groups are depicted along the
first two components. The centroid of each group is indicated in gray. ∗P ≤ 0.05;
∗∗P ≤ 0.01; ∗∗∗P ≤ 0.005.

FIGURE S6 | Characterization of TCRγδ T cells. (A) Heatmap showing the marker
expression values for the seven identified TCRγδ cell clusters within the general
panel (36 samples; 114,875 cells). Cluster IDs and cluster frequencies are
displayed at the bottom of the heatmap. (B) First-level HSNE embedding of the
expression values of the indicated markers. (C) Boxplots of sample frequencies,
divided per trimester, of the clusters plotted as a fraction of total TCRγδ cells. The
Kruskal-Wallis with Dunn’s test for multiple comparisons was performed. (D) PCA
of the sample frequencies (as percentage of total TCRγδ cells) where the
gestational age groups are depicted along the first two components. The centroid
of each group is indicated in gray. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.005.

FIGURE S7 | In-depth characterization of the CD4+ Treg-like compartment where
CD25+CD127- and CD25+CD127+ CD4+ T cells increase throughout gestation.
(A) CD4+ NKT-like cell cluster identified within the general panel. (B) In-depth
analysis of the regulatory-like CD4+ T cell (Treg-like) compartment, where the
heatmap shows the marker expression values for the additional identified CD4+
Treg-like cell clusters within the T cell panel. Cluster IDs and cluster frequencies
are displayed at the bottom of the heatmap. (C) Visualization of the five CD4+
Treg-like clusters, shown in Figure 3A, in a diffusion map along two components.
Each color in the left panel represents a cluster of cells. In the right top panel, cells
within the 1st trimester, 2nd trimester, and term decidua basalis and parietalis are
portrayed. The bottom panel shows expression values of the specified markers in
the diffusion map. (D) t-SNE embedding of the arcSinh-transformed expression
values of CD127 and CD25 as observed in the three trimesters, measured by flow
cytometry and gated within CD3+CD4+ T cells. CD4+CD25+CD127- clusters
are circled in orange; CD4+CD25+CD127+ clusters are circled in blue.

FIGURE S8 | Characterization of the CD8+ T cell compartment, including CD8+
NKT-like cells. (A) Heatmap showing the marker expression values of CD8+
NKT-like cell clusters identified within the general panel. (B) Fourth-level HSNE
arcSinh5-transformed expression values of the specified markers, measured by
flow cytometry and gated within CD3+CD8+ T cells. Colors in the left plot
indicate tissue type (1st n = 3; 2nd n = 4; term basalis and parietalis n = 4). (C) Pie
charts depicting the contribution of major subpopulations to the CD4+ and CD8+
T cell compartments.

FIGURE S9 | Characterization of B cells. (A) Heatmap showing the marker
expression values for the nine identified B cell clusters within the general panel (36
samples; 72,414 cells). (B) Percentage of CD20+ B cells in each trimester. (C)
ArcSinh5-transformed expression values of the specified markers. ∗P ≤ 0.05;
∗∗P ≤ 0.01; ∗∗∗P ≤ 0.005.

TABLE S1 | General CyTOF antibody panel1.

TABLE S2 | T cell-specific CyTOF antibody panel1.

TABLE S3 | Flow cytometry antibody panel1.
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Eduardo Pérez-Campos

perezcampos@prodigy.net.mx

Specialty section:
This article was submitted to

Immunological Tolerance
and Regulation,

a section of the journal
Frontiers in Immunology

Received: 24 April 2020
Accepted: 19 October 2020

Published: 19 November 2020

Citation:
Mayoral AndradeG, VásquezMartı́nez G,
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Juárez Autonomous University of Oaxaca, Oaxaca, Mexico, 4 Department of Biochemistry, School of Medicine, UNAM,
Mexico City, México, 5 School of Medicine, Branch at National Institute of Genomic Medicine, Mexico City, Mexico

It is generally understood that the entry of semen into the female reproductive tract
provokes molecular and cellular changes facilitating conception and pregnancy. We show
a broader picture of the participation of prostaglandins in the fertilization, implantation and
maintenance of the embryo. A large number of cells and molecules are related to signaling
networks, which regulate tolerance to implantation and maintenance of the embryo and
fetus. In this work, many of those cells and molecules are analyzed. We focus on platelets,
polymorphonuclear leukocytes, and group 2 innate lymphoid cells involved in embryo
tolerance in order to have a wider view of how prostaglandins participate. The
combination of platelets and neutrophil extracellular traps (Nets), uterine innate
lymphoid cells (uILC), Treg cells, NK cells, and sex hormones have an important
function in immunological tolerance. In both animals and humans, the functions of
these cells can be regulated by prostaglandins and soluble factors in seminal plasma to
achieve an immunological balance, which maintains fetal-maternal tolerance.
Prostaglandins, such as PGI2 and PGE2, play an important role in the suppression of
the previously mentioned cells. PGI2 inhibits platelet aggregation, in addition to IL-5 and
IL-13 expression in ILC2, and PGE2 inhibits some neutrophil functions, such as
chemotaxis and migration processes, leukotriene B4 (LTB4) biosynthesis, ROS
production, and the formation of extracellular traps, which could help prevent
trophoblast injury and fetal loss. The implications are related to fertility in female when
seminal fluid is deposited in the vagina or uterus.
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INTRODUCTION

Prostaglandins (PGs) belong to a subclass of eicosanoids known as
prostanoids, these are comprised of C20 atoms, including a
cyclopentane ring. PGs are hormone-like chemical messengers
which act as autacoids (1) through prostanoid receptors (G
protein-coupled receptors) and their variants or isoforms such as
E1-4,DP1-2, FP,TP, and IP (1, 2).Themainprecursor of eicosanoids is
arachidonic acid (AA), this is releasedby the actionofphospholipases
A2 (PLA2) and C (PLC) (3), AA is then converted into different
metabolites through the COX, LOX, and CYP450 pathways (4). The
importance of prostaglandins becomes evident when ovulation and
fertilization are affected, e.g., as cyclooxygenase (COX) is inhibited by
aspirin or indomethacin (5).

PGs have a significant role in maternal immune tolerance and
the conception process. We consider prostaglandins in seminal
fluid as key in modulating responses in different types of cells
participating in fetal-maternal tolerance.

The balance of the immune response in maintaining fetal-
maternal tolerance is due to a complex network of soluble
molecules and cells, such as macrophages, and dendric, decidual,
and NK cells. In Table 1, cells and biological processes are
summarized. Moreover, many molecules are released by these
cells and have a fundamental role in the tolerance process. Table
2 summarizes the most important of these.

The molecules are released through macro-, micro-, and
nanovesicles, including exosomes from placenta cells,
syncytiotrophoblasts, denudated syncytiotrophoblasts, and
extravillous trophoblasts. All are part of the complex
intercommunication between the foetus and the mother. These
vesicles transport immunomodulatory proteins such as Fas ligand,
TRAIL, CD274, CD276, HLA-G5, Syncytin-1, hCG, glycodelin,
galectin-1 (107), whichmaymaintain fetal-maternal tolerance, and
may even be related to recurrent early miscarriage (108).

The accumulated evidence indicates that when sexual
intercourse occurs and seminal fluid is deposited in the female
reproductive tract, the prostaglandins in the seminal fluid, i.e.,
PGE2, PGE1, PGE3, and PGF2 (109), initiate a signaling cascade
toward the woman’s innate immune cells. The cells mentioned in
Table 1, such as platelets, polymorphonuclear leukocytes, and
Group 2 innate lymphoid cells participate in the physiological
mechanisms in embryo tolerance and implantation, allowing
successful fertilization.
PREIMPLANTATION, IMPLANTATION,
AND DECIDUALIZATION

Implantation begins by apposition and adhesion of the embryo to
the luminal epithelium of the endometrium. Following its invasion
toward the stromal bed, the union of the embryo to the luminal
epithelium transforms the underlying stromal fibroblasts into
secretory cells of the epithelioid type, or decidualization (110).
Through different molecules such as IL-1b, steroid hormones,
insulin-like growth-factor-binding protein-1 (IGFBP-1) and
Frontiers in Immunology | www.frontiersin.org 2127
prostaglandin-endoperoxide synthase-2 (PTGS-2), the
decidualized cells regulate this stage with the invasion of embryos,
and the formation of the placenta (110).

Prostaglandins participate in each stage of the interaction of the
embryo with the endometrium, for example in preimplantation,
implantation (apposition, adhesion/attachment, invasion/
penetration) and decidualization; as well as affecting many other
cells andmolecules. PGs have a complex role in each of these stages,
e.g., the essential role of prostaglandin E2 (PGE2) in the oocyte is to
enhance the cumulus expansion inovulation for spermpenetration,
to regulate extracellular matrices disassembly (111), and also,
importantly, to participate during transport and embryo
implantation (112).
PROSTAGLANDIN SIGNALING BY
SEMINAL FLUID AND FERTILIZATION

Preceding evidence shows that sperm induces immunosuppression
against hapten-modified self and alloantigens, including cytotoxic T-
cell in mice responses (113). Also, seminal plasma contains high
concentrations of prostaglandins, key molecules in the regulation of
sexual intercourse signaling (114). The female immune response
tolerates seminal plasma and supplies cytokines and prostaglandins,
which are synthesized in the male accessory glands. In addition, it
causes molecular and cellular changes in the endometrium. This
facilitates the development and implantation of the embryo when
prostaglandins, cytokines and hormones bind to receptors in target
cells in the cervix and uterus (115).

The prostaglandins present in seminal fluid have a role in
immune modulation. They regulate the pathways that may
exacerbate inflammation in the female reproductive tract
during physiological processes such as ovulation, implantation,
and parturition (116), e.g., ejaculation or the spermatozoa induce
an inflammatory response in the endometrium in the
preimplantation period after mating, in which IL-1 (alpha and
beta), and TNF-alpha participate (117).

Seminal plasma derived from the male accessory sex glands
performs a fundamental function in fertilization in animals. The
components of seminal plasma participate in the transport and
survival of viable sperm and the elimination of non-viable sperm
from the uterus (118). In the quail species, the cloacal gland
produces prostaglandin F2a (PGF2a), which contributes to
successful fertilization and acts as a natural mechanism for the
protection of sperm from rejection or death by the female
reproductive tract (119). Seminal fluid factors exert significant
effects on the female reproductive tract, as shown by Shahnazi
et al. (120). Also, in the uterine tissues ofmice that were pairedwith
mice without seminal vesicles, implantation rates, enzyme cytosolic
PGE synthase (cPGES), microsomal PGE synthase (mPGES) and
receptors EP2 and EP4 involved in the signaling pathway of PGE2,
were all significantly low (120). In addition, 19-hydroxy PGE and
19-hydroxyPGFare regulators of spermmotility, and its effectsmay
be mediated by the content of ATP in sperm (121). Prostaglandins
such as PGE-1 are potent stimulators of adenylate cyclase in various
November 2020 | Volume 11 | Article 555414
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TABLE 1 | Cells related to maternal-fetal tolerance and implantation.
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cellular systems (122). An increase in adenylate cyclase activity and
subsequent entry into cAMP levels may also be involved. PGs
stimulate the fertilization capacity of human sperm by facilitating
the transport of calcium through their plasma membrane (123).

The amplification of effects by microparticles from epididymal
fluid (epididymosomes) and prostasomes could lead to the
activation of many genes and the expression of related molecules,
as reported in humans and mice, some species of cows, pigs and
sheep(123, 124).More specifically, signalingmayaffect the enzymes
of the cyclooxygenase pathway and other molecules related to the
metabolism of arachidonic acid, e.g., Cytochrome P450 in
blastocyst implantation (125), and prostaglandin D2 in the
maintenance of pregnancy through Th1/Th2 and T-cytotoxic
(Tc) 2 cells balance (126, 127).

The change induced by seminal plasma in a porcine uterus
makes conception and pregnancy possible (128), it also reduces
embryonic mortality in pigs and other livestock (129). In
addition, seminal plasma possesses potent immunosuppressive
activity caused by immune-deviating soluble factors, inducing
tolerance, with molecules, such as Transforming growth factor-b
(TGFB) and prostaglandin E (PGE).
EFFECTS OF PROSTAGLANDINS AND
RELATED MOLECULES ON INNATE
IMMUNITY AND FEMALE REPRODUCTIVE
TRACT CELLS

Cells of the innate immune response are modulated by
prostaglandins (130), among them, are the following:

1. M1 macrophages (Mø1) which produce proinflammatory
cytokines (TNFa, IL-6, IL-12, IL-23, and IL-1b), M2
macrophages(Mø2) which produce IL-10 and TGFb
(transforming growth factor b) and have anti-inflammatory
and immune down-regulating properties. Both are regulated by
prostaglandins in pregnancy (9) (Table 1).

2. Dendritic cells (DCs) have several subclasses, e.g., CD103+,
myeloid, plasmacytoid, the latter are related to the production
of high IFNa levels. In infertile patients with endometriosis,
CD4+, CD25+, and CD103+ dendritic cells are increased in
peritoneal fluid (131), dendritic cells CD103+ have a relevant
role in implantation (132); in addition, CD103+ dendritic cells
are regulated by prostaglandin D2 in different disorders (133).

3. Endothelial cells have innate and immune tolerogenic function
(134). In patients with preeclampsia (PE), in the presence of
vascular endothelial growth factor (VEGF), these cells increase
levels of prostacyclin (135). In the pathogenesis of PE, VEGF
(VEGF-A) participates in the proliferation, migration and
angiogenesis of endothelial cells, and works through the
receptors VEGFR-1 (or Flt-1) and VEGFR-2. In PE this
increases the release of FMS-like tyrosine kinase-1 (sFlt-1)
and blocks free VEGF to protect the fetus from toxicity (136).

4. Neutrophils (PMN) are regulated by cytokines and
prostaglandins (137). The aspirin (ASA) is used for prevention
of preeclampsia in high-risk patients (138, 139). ASA triggers
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TABLE 2 | Principal soluble molecules acting in implantation (apposition/adhesion/invasion) to maintain fetal-maternal tolerance.

ed molecules Author
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rafts by the expansion of
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Padmanabhan et al. (32)
Vrtačnik et al. (33)
Lin et al. (34)

y in suppressing T cell

nic acid (AA) induce
ic pathway for PGE2.

Rahimipour et al. (35)
Pan et al. (36)
Falchi and Scaramuzzi, (37)

) mediates the
Consumption of IL-4
g apoptosis. Increases
secretion of IL-13 and
te-derived dendritic cells.
factor (M-CSF) and

lony-stimulating factor (GM-

ergistic inhibition effects on

Rahimipour et al. (35)
Kyurkchiev et al. (38)
Svensson et al. (39)
Fujisaki et al. (40)

lantation.
e activity of dendritic cells.
tion of PG (PGE and 6-

ulates implantation
.

Cole, 2020. (41).
Szmidt et al. (42)
Bansal et al. (43)
Schumacher et al. (44)
North et al. (45)

ecretion and stimulates LH Mumtaz et al. (46)
Francis et al. (47)
Skorupskaite et al. (48)
Pinilla et al. (49)

lantation and parturition,
s.
ome reaction, and

Harper, 1989. (50)
Tieman, 2008. (51)
Roudebush, 2001. (52)

ry cytokines such as IL-6,
r (CSF-1), granulocyte-
SF), interleukin 1-alpha,

r-alpha (TNF alpha) has
r mating in mice.
ortant for pregnancy. The
rtility, recurrent miscarriage,
ition of the generation of
nce. Local IL-6 insufficiency
us abortion.
cells, in decidualized
ulated by cystatins CST7

De et al. (53)
Ochoa-Bernal et al. (54)
Cork et al. (55)
Prins et al. (56)
Baston-Buest et al. (57)
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Effects Soluble molecule Biological process Steroid hormones and relat

Attachment and
implantation

Oestrogen Regulation of oestrogen receptors b/IL-24 (ERb/IL‐24) signal
pathways. Induces the recruitment of macrophages and DCs.

Promotes the conversion of peripheral Treg
organs. Prolongs the survivals of H-Y skin g
Tregs, suppression of CD3(+) CD8(+) effecto
toward Th2 cytokines.

17b-oestradiol (E2) Promotes uterine blood flow, myometrial growth stimulates
breast growth and later promotes cervical softening and
expression of myometrial receptors. Expansion and activation
of monocytic-myeloid-derived suppressor cells (M‐MDSCs)
through signal transducer and activator of transcription
(STAT)‐3.

E2‐treated MDSCs have a stronger capabili
responses.
17b-oestradiol, FSH, oxytocin, and arachido
receptors and enzymes through the synthet

Progesterone (P4) Stimulates the activity of some specific enzyme matrix
metalloproteinases and adhesion molecules. Inhibits antibody
production and suppresses T-cell activation and cytotoxicity
and modifies the activity of natural killer cells; influences B cells
and induces secretion of protective asymmetric antibodies.

Progesterone-induced blocking factor (PIBF
immunomodulatory effects of progesterone.
increases and the number of cells undergoi
secretion of IL-10, IL-27, causes increased
decreased secretion of IL-23 by the monoc
Upregulates macrophage-colony-stimulating
downregulates granulocyte-macrophage co
CSF).
Progesterone and prostaglandin E have syn
T-cell mitogenesis.

Chorionic
gonadotropin (CG)

hCG is comprised of 4 molecules, one produced by
villous syncytiotrophoblastic cells, another hyperglycosylated
hCG produced by cytotrophoblast cells, the free beta subunit,
and hCG produced by anterior pituitary gonadotropic cells.
Stimulates P4 production by the corpus luteum, facilitating
trophoblast invasion, and promoting angiogenesis.

It is a pleiotropic molecule that mediates im
Upregulation of indoleamine 2,3-dioxygenas
hCG may have a biological role in the regula
keto-PGF1) synthesis in trophoblasts.
In particular, the hyperglycosylated form stim
through the invasion of cytotrophoblast cells

Neuropeptide
kisspeptin (KP)

Kisspeptins participate in reproduction. Regulates trophoblast
cell invasion alongside tumor necrosis factor a.

KP is a regulator of Gonadotropin (GnRH) s
secretion and LH pulse frequency.
KP-10 moderates trophoblast invasion
and regulating implantation.

Platelet-Activating
Factor (PAF)

Platelet-activating factor is an acetylated
Glycerophospholipid, releasing histamine from platelets, which
increase vascular permeability.

PAF is related to processes of ovulation, im
and is regulated by ovarian steroid hormone
PAF is associated with sperm motility, acros
fertilization.

Cytokine mediators of
implantation and
decidualization

IL-6 IL-6 is a cytokine with functions in immunity, metabolism and
tissue regeneration. It is
produced in the endometrial epithelium and stromal cells
during implantation.

Variation in the expression of pro-inflammat
CSF-1, macrophage colony-stimulating fact
macrophage colony-stimulating factor (GM-
interleukin 1-beta, and tumor necrosis facto
been reported in the uterus immediately afte
Changes in the bioavailability of IL-6 are imp
increase of IL6 is related to unexplained infe
preeclampsia and preterm delivery and inhib
CD4 + regulatory T cells in pregnancy tolera
could also contribute to recurrent spontane
IL6 activate cathepsin S (CTSS) in dendritic
endometrial stromal cells, this process is reg
and CST3.
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TABLE 2 | Continued

olecules Author

(uPAR) is upregulated
-kinase–protein kinase

PGE2 production and

Szmidt et al. (42)
Liu et al. (58)
Zheng et al. (59)
Horita et al. (60)

leukaemia inhibitory
bunit expression.

Viganò et al. (61)
Hambartsoumian, 1998.
(62)
Fouladi-Nashta et al. (63)

y in epithelial and

ion, its production
2.

Cork et al. (55)
Marwood et al. (64)
von Rango et al. (65)

enic factors to placental

(VEGF), Placenta

ted by PGE (2).

Manaster et al. (15)
Kopcow and Karumanchi,
2007. (66)
Joshi et al. (67)

dNK with low cytotoxic
activity by inhibiting

lating KIR2DL1,

Yang et al. (14)

ion. Ai et al. (68)
Wang et al. (69)
Moghani-Ghoroghi et al.
(70)

t, especially the aVb3,
egulated b3 subunit

d is associated with
cant reduction of
ion failure (RIF) and

rovide interaction

Achache and Revel, 2006.
(71)
Foulk et al. (72)
Yang et al. (73)
Lu et al. (74)

p21 inhibiting mucin 1
ling, which improves
el on endometrial cells
.
staglandin synthesis.

Carlomagno et al. (75)
Voiculescu et al. (76)
Gimeno et al. (77)

plantation. Xiong et al. (78)
Xiong et al. (79)

n endometrial stromal

-derived growth factor
s of gestation.

Schwenke et al. (80)
Jaber and Kan, 1998. (81)
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Leukaemia inhibitory
factor (LIF)

It is a member of the interleukin-6 family of cytokines.
Upregulation of poFUT1, promotes trophoblast cell migration,
invasion and differentiation at the fetal-maternal interface
through activating the Janus kinase/signal transducers and
fetal transcription
(JAK/STAT) and a mitogen-activated protein kinase (MAPK)
signaling pathway.

Urokinase-type plasminogen activator receptor
by LIF, also it is mediated by phosphoinositide-
B/Akt (PI3K/AKT) signaling pathway.
LIF participates in placentation by up-regulating
PGE2 receptor expression.

IL-1 Acts on blastocysts, syncytiotrophoblasts and endometrial
glands.

Stimulates endometrial secretion of endometria
factor (LIF), prostaglandin E2, and integrin b3 s

IL-11 IL-11 regulates endometrial epithelial cell increasing adhesion
to fibronectin and collagen IV, similar to IL-6.

IL-11 decreases TNFa in a dose-dependent w
stromal cells, in endometria, through gp130.
IL-11 production is maximal during decidualizat
depends on steroid hormones, relaxin and PGE

IL-15 Promotes the differentiation of the local eNK cells toward dNK
cells.

Decidual NK cells secrete cytokines and angiog
vascular remodeling and differentiation.
IFN-g, IP-10, vascular endothelial growth factor
growth factor (PlGF).
Suppression of IL-15-activated NK cell is media

IL-24 Regulates the function of eNK and pNK through the Janus
kinase (JAK)/STAT3 pathway.

Contributes in differentiation to CD56brightCD16
activity, high immunomodulation and angiogeni
CD16, Granzyme B and perforin, IFN‐g, upregu
KIR3DL, TGF‐b, IL‐10, and IL‐8.

Cytokine-like protein 1
(Cytl1)

Regulation of embryo implantation. It is an ovarian hormone-
dependent protein expressed in the endometrium that
stimulates the secretion of LIF and heparin-binding epidermal
growth factor (HB-EGF). Induces endometrial cell proliferation.

Releases LIF, HB-EGF, and IL-1, in decidualiza

Implantation and
decidualization

Cellular Adhesion
Molecules (CAMs)

Adhesion molecules include integrins, cadherins, selectins,
and the immunoglobulin superfamily.

Numerous integrins interact with the trophoblas
with its ligand osteopontin. HOXA 10 and IL-1
expression in the receptive endometrium.
The absence of L-selectin and its Meca-79 liga
recurrent implantation failure (RIF), also, a signifi
HOXA-10 and E-cadherin in recurrent implanta
recurrent miscarriage (RM).
ICAM-1, VCAM-1, NCAM, CD44, and CD49d p
between the embryo and maternal cells.

Melatonin Melatonin is an indoleamine acting as an antioxidant, free
radical scavenger, and it promotes embryo development in
different species

A positive feedback loop among p53, p38, and
and activating LIF is realized by melatonin signa
adhesion proteins, present at the membrane le
and the blastocyst, in the pre-implantation stag
Melatonin is associated with the inhibition of pr

Calcitonin (CT) It is a peptide hormone which regulates calcium homeostasis Promotes endometrial receptivity and embryo i

Platelet-derived growth
factor (PDGF-BB)

Decidualized endometrial stromal cells migrate upon exposure
to PDGF-BB.

Involvement of ERK1/2 and PI3K/Akt signaling
cell chemotaxis.
Both epidermal growth factor (EGF) and platele
(PDGF) participate in implantation in the first da
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TABLE 2 | Continued

nd related molecules Author

ed endometrial stromal cells to the Schwenke et al. (80)
Haimovici and Anderson,
1993. (82)

ual cell production. TIMP-2
-1 by MMP-3.

Liu et al. (58)
Coppock et al. (83)

GF increase the level of the
ppressor found in decidual cells at
level of HB-EGF is related to

Schwenke et al. (80)
González et al. (84)
Ozbilgin et al. (85)

itory factor, and homeobox A10 are

horionic gonadotrophin (hCG)
nti-inflammatory activity in human

Xiong et al. (79)
Macdonald et al. (86)

thelial cells is crucial for the
oblasts. Surfactant proteins SP-A
n, trophoblast invasion and placental

Agostinis et al. (87)
Madhukran et al. (88)

lloproteinases 1 and 2 (TIMP-1,
MMP-2 activity. Activates MAPK

Liu et al. (58)
Liu et al. (89)

xtracellular matrix under
itions. It is capable of degrading
rocess, matrix metalloproteinase
ding protein-1 (IGFBP-1) activity is
actor (LIF) and colony-stimulating

Liu et al. (58)
Ortega et al. (90)
Herrler et al. (91)

ic activity of matrix
, MMP-9) is due to GnRH-II

Wu et al. (92)

ors essential for fetal development
U/ml in embryos which were
on culture media gave a 65%
levels of sHLA-G. The HLA-G -725
risk for recurrent miscarriage.

Sojka et al. (12)
Roussev and Coulam, (93)

ses. Bakela and Athanassakis,
(94)
Zavazava and Krönke,
1996. (95)

IL‐10, and inhibits phosphorylation
s in the pathways of TCR signaling in

Bakela and Athanassakis,
2018. (95)
Athanassakis and
Vassiliadis, 2003. (96)
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Platelet-derived growth
factor (PDGF-AA)

Secreted by the trophoblast cell line AC-1M88 and by first
trimester villous explants. Trigger endometrial stromal cell
chemotaxis.

Participates in attracting decidualiz
implantation site.
Modulates early post-implantation.

Tissue inhibitor of
MMP (TIMP)

Endogenous inhibitor of MMP activity in tissues. Inhibits trophoblast invasion. Decid
attenuates the proteolysis of IGFB

Heparin-binding
epidermal growth
factor (HB-EGF)

HB-EGF has a function in implantation, decidualization and
placenta development. Promotes differentiation of trophoblast
cells to the invasive phenotype. Stimulates the migration of
decidualized endometrial stromal cells.

Endometrial stromal cells with HB-
tetraspanin CD82, a metastasis su
the implantation site. A decreased
pregnancy complications.

Lipoxins These are derived from arachidonic acid, an w-6 fatty acid.
They exert their anti-inflammatory
effects through binding to high-affinity
G protein-coupled lipoxin receptors.

Lipoxins, calcitonin, leukaemia inhi
essential in implantation.
Lipoxin A4 is regulated by human
during early pregnancy and it has
endometrium and decidua tissue.

Complement
components and their
receptors (C1q, gC1q,
a4b1 integrin)

It is produced at the fetal-maternal interface by macrophages,
decidual endothelial cells and invading trophoblasts.

Synthesis of C1q by decidual endo
replacement by endovascular trop
and SP-D play a role in implantatio
development.

Protein O-
fructosyltransferase 1
(poFUT1)

Favors trophoblast cell migration and invasion at the fetal-
maternal interface.

Increases Tissue inhibitors of meta
TIMP-2) expression further inhibite
and PI3K/Akt signaling pathways.

Matrix
metalloproteinase
(MMP-2) -2

Implicated in the remodeling of the extracellular matrix (ECM)
during the trophoblast invasion process.

Synthesis and degradation of the e
physiological and pathological con
collagen. During the implantation p
(MMP)/insulin-like growth factor bi
stimulated by leukaemia inhibitory
factor (CSF).

Gonadotropin-
releasing hormone
type II (GnRH-II)
agonist

Promotes cell motility of human decidual endometrial stromal
cells through the GnRH-IR by phosphorylation of ERK1/2 and
JNK in decidual endometrial stromal cells.

Increased expression and proteoly
metalloproteinase-2 and -9 (MMP-

Immune tolerance Human leukocyte
antigen G (HLA-G)

Promotes proliferation and cytokine production by uNK cells. Secretion of growth-promoting fac
by uNK cells. Levels of sHLA-G ≥ 2
selected for transfer after IVF base
pregnancy rate compared with low
promoter polymorphism has a hig

Soluble MHC class I
(sMHC‐I)

sMHC-I induces apoptosis by stimulating expression of CD95-
L and regulates the Fas/FasL system.

sHLAs downregulates T-cell respo

Soluble MHC class II
(sMHC‐II)

It has important immunoregulatory properties, stimulates
proliferation of CD25− CD4+, CD25+ CD8+ and CD25+ CD4
+ cell, as well as inhibits CD25− CD8+ cells.

sMHC‐II decreases IL‐2, increases
of ZAP‐70, particularly LAT protein
CD4+ cells.
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transcellular biosynthesis of eicosanoids by acetylation of PGHS-
2. Eicosanoids correspond to 15R-epimers of lipoxins (ATL) and
are potent inhibitors of leukotriene B4-mediated neutrophils
(140). Considering that preeclampsia is associated with
increased proinflammatory, antiangiogenic and PMN-
endothelial cell adhesion, Gil-Villa et al. (141) shows that PMN
adhesion in patients with preeclampsia is reduced by Aspirin-
triggered lipoxin (ATL) when aspirin is used.

5. Natural killer and innate lymphoid cells (ILC). According to the
cytokine profile and transcription factor, ILCs are divided into
two groups, cytotoxic and “helper”-ILC (17). The cytotoxic ILC
group is represented by Natural Killer (NK). The “helper”-ILC
in humans has three subclasses, ILC1 with two subsets,
producing IFNg; ILC2 produces IL-5, IL-13, and IL-4; and
ILC3 releases IL-17 and IL-22. The NK cells in a decidua
(dNK) microenvironment are around 50% to 70% of the total
of lymphoid cells in decidual tissue. They have CD56bright

CD16− KIR+ CD9+, and activate the NK receptor phenotype,
participatewith cytokines, whichmediate newvessel formation,
aid in the renovation of existing tissues and placentation
through the release of VEGF, stromal-derived factor-1 (SDF-
1) and IFN-g-inducing protein 10 (9). In stromal tissue, the
decidual stromal cells (DSCs) participate in the induction of
maternal tolerance, physically concur and have a regulatory
mechanism in dNK, and CD14+ myelomonocytic cells, and
induce regulatory Treg. Also, DSCs inhibit dendritic cells
through prostaglandin E2 (PGE2) and Indoleamine 2,3-
dioxygenase (IDO), this inhibition favors the maintenance of
the pregnancy (18).

In the normal eutopic endometrium, the Mø2 together with the
Tregs predominate, providing an anti-inflammatory environment
for the implantation of the embryo, while in endometriosis, they can
cause infertility. TheMø1 provide a pro-inflammatory environment
which affects embryo implantation, the dendritic cells (DC) do not
increase in endometrial tissue, also the Treg is dysregulated.
Therefore, DC does not eliminate the cellular debris which could
migrate to the peritoneal cavity and grow in ectopic sites, developing
as endometriosis. On the other hand, Treg and NK have abnormal
behavior, the first favors a pro-inflammatory state and the second is
less cytotoxic which impacts embryo implantation (142). COX2 and
PGE2are related to the pathogenesis of endometriosis.Ahigh level of
COX-2 due to various factors such as estrogens, hypoxia and
environmental pollutants could suppress apoptosis and increase
cell proliferation through PGE2 and its receptors EP2, and EP4 in
endometriosis (143). In addition, experimental studies with
intralesional injections of ASA, in rabbits with peritoneal
endometriosis, eliminate endometriotic lesions (144).
PROSTAGLANDINS IN IMPLANTATION
AND MAINTENANCE OF GESTATION

The generation of prostaglandins and expression of receptors in a
mouse uterus has demonstrated their importance during
implantation and decidualization (145). In mice, PGE2 levels
increase from the 2-cell embryo stage to the blastocyst,
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demonstrating the importance of PGE2 in early development
(112). PGE2 also plays a significant role in peri-implantation in a
mouse uterus through the expression of EP2 and EP4 receptors,
which increase cAMP levels during the implantation and
decidualization processes. EP4 induces the activation of VEGF
(growth factor vascular endothelial), increasing vascular
permeability of the endometrium (146), implantation and
decidualization, together with PGF2 (132).

Inadequate production of prostaglandins in mice, and
possibly in humans, may explain some cases of infertility
(147). Low concentrations of PGE2, PGF and PGI2 cause
failure in ovulation, fertilization, implantation, and
decidualization (133). In mice, prostacyclin (PGI2) is the
primary prostaglandin at the implantation site. It participates
in implantation and decidualization through the peroxisome
proliferator-activated receptor (PPAR-d) and the RXRa
signaling pathway in the uterus (148).

As an example, PGF2a is used in fertilization procedures, in
addition to GnRH, to pre-synchronize ovulation before applying
for a resynchronization program in cows in dairy herds with
acceptable pregnancy outcomes (149).
PROSTAGLANDINS IN MATERNAL
IMMUNE TOLERANCE

When intercourse occurs, endothelial cells release IL-8, IL-1,
INF-a, and TNF-a to recruit immune cells (150). Neutrophils
are mobilized in the oviduct in female mammals in response to
the presence of sperm (151). This process may also induce a state
of unresponsiveness by the presence of anti-inflammatory
cytokines, such as IL-4, IL-10, IL-13, and TGF-b (152) Figure 1.

In order to prevent a compromised systemic maternal
immune response, local immune regulation in the fetal-
maternal interface is very important. This is achieved by
several mechanisms. One of these is local immunoregulation
at the fetal-maternal interface, e.g., Human amniotic
membrane-derived mesenchymal stem cells (hAM-MSCs)
release factors such as indoleamine 2,3 dioxygenase (IDO),
TGF-b, prostaglandin E2 (PGE2), and others inducing
immunomodulatory effects (153).

PGs release or regulate different kinds of cells, such asTolerogenic
dendritic cells (tol-DCs), Mø1 andMø2macrophages, Decidual NK
cells (dNK) (CD56brightCD16-), Decidual stromal cells (DSCs),
Endometrial stromal cells, Tregs (CD4+CD25+FOXP3+), and
Decidual CD8+EM cells (CD45RA−CCR7−) (Table 1).

Prostaglandin E (PGE), specifically, induces T-helper type 3
(Th3) and T-regulatory 1 cells (Tr1), as shown by Lewis´ rat and
mouse test (154, 155). PGE2 secretion by human deciduous cells
in the first trimester of pregnancy blocks the activation of
maternal leukocytes in the decidua and inhibits IL-2
production and its receptor (156).

Other cells assisting in the decidualization of endometrial
stromal cells (ESCs) and pregnancy maintenance are decidual
natural killer (dNK) cells (157) and CD14+ cells for Treg
induction and immunosuppression (158). Also, Treg and Breg
Frontiers in Immunology | www.frontiersin.org 9134
may contribute to the regulation of type 1 and 2-like T helper
anti-fetal immune mechanisms during human pregnancy (159)
(Table 1).
PLATELETS

It is evident that platelets may be important in tolerance
mechanisms. Platelet activity is inhibited post-coitus, and this
inhibition depends on prostaglandins (160). Seminal fluid has
factors that favor clot formation, similar to peripheral blood, such
as Factor VIII: Ag, FVIII: C and Von Willebrand factor (vWF), in
addition to other factors (161). vWF (162), fibronectin (163), and
vitronectin (164) are proteins that favor platelet adhesion (165).
This implies that inhibition of platelet aggregation by PGI2 could be
a compensatory mechanism for pro-adhesive molecules.

Using amousemodel, Etulain et al. (166) found that platelets act
through P-selectin glycoprotein ligand-1 (PSGL-1), and directly
affect neutrophil extracellular traps (NETosis). Platelet P-selectin is
crucial for neutrophil recruitment (167). Furthermore, NETs cause
the recruitment and activation of platelets and induce procoagulant
activity due to the expression of histones H3 and H4, toll-like
receptor 2 (TLR2) and TLR4 platelets. NETs present a surface for
the activation of coagulation factor XII (168) in order to promote
thrombosis as a mechanism of rejection (169).

Platelets cause a decrease in the formation of extracellular traps
when preincubated with PGI2, followed by stimulation with
lipopolysaccharide (LPS), arachidonic acid, and a synthetic
diacylated lipopeptide (Pam3SCK4). This highlights the
physiological role of PGI2 in platelet modulation (170).
Prostaglandins may also inhibit the function of neutrophils by
increasing levels of cyclic adenosine monophosphate (cAMP) (171).

The interaction of PMN-platelets releases products of
arachidonic acid serving as precursors of neutrophil eicosanoids
(172). In polymorphonuclear neutrophils (PMN), PGE2modulates
their response through the expression of EP2 and EP4
receptors (173).

In addition, other mechanisms of maternal immune tolerance are
mediated by placental trophoblast derived microvesicles (MVs) and
maternal thrombocyte-derived MVs. These bind to circulating
peripheral T lymphocytes through P-selectin (CD62P)–PSGL-1
(CD162) interaction induces STAT3 phosphorylation in T cells (174).

The above mentioned may explain why platelet aggregation is
inhibited post-intercourse and has a possible reduction in the
formation of NETs to protect the embryo. It is possible that the
release of extracellular traps may contribute to trophoblast lesions.

Many other cells mentioned above participate through high
complexity fetal-maternal interface interaction to induce a
tolerance stage, which protects the embryo (175).
POLYMORPHONUCLEAR CELLS

In mammalian species, PMNs are implicated in endometrial
remodeling as being receptive to oocyte implantation. Human
neutrophils exposed to progesterone and estriol hormones
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promote the establishment of maternal tolerance through the
induction of CD4+ T cells (176).

In humans, during coitus, sperm is deposited into the female
reproductive tract (FRT). Neutrophils are then recruited for the
elimination of excess sperm through phagocytosis (177).

However, bovine seminal plasma is shown to reduce the ability of
PMNstophagocytizebull sperm.Furthermore, equine seminal plasma
is reported to contain factors that reduce the binding of neutrophils to
sperm, avoiding the formation of NETs (178). In humans, when
granulocytes are exposed to the seminal plasma, the respiratoryburst is
inhibited (179). These mechanisms allow more of the healthy motile
sperm to reach the oviduct, which makes it clear that seminal plasma
contains factors that modulate the response of PMN.

In addition, PGE2 can exert anti-inflammatory action on
neutrophils and other innate immune cells such as macrophages,
natural killer cells, dendritic cells, andmonocytes (180, 181). Also, it
inhibits theproductionof IFN-a inplasmacytoiddendritic cells and
the production of IL-12 in myeloid dendritic cells.

Finally, polymorphonuclear leukocytes contribute to preterm
labor by activating prostaglandin production from human fetal
membranes (182).
Frontiers in Immunology | www.frontiersin.org 10135
GROUP 2 INNATE LYMPHOID CELLS

Specific ILC2s (Group 2 innate lymphoid cells) and uterine innate
lymphoid cells (uILCs, uILC1, uILC2, and uILC3) (183) in the
uterus are regulated by PGD2, PGE2, PGI2, and sex hormones, in
particular, oestrogen (151, 184). Together, these may play a role in
the balance between immunity and tolerance at the beginning of
placenta formationand couldbe related to pregnancy loss, as shown
in mice (185). Some studies show that ILC2 is the most abundant
subset in the human fetal-maternal interface during premature and
full-term pregnancies, in which its presence is regulated by sex
hormones (e.g., oestrogen) (186). PGI2 decreases the proliferation
of ILC2 and significantly inhibits the expression of IL-5 and IL-13
induced by IL-33 (187).

The production of PGE2 could also suppress the function of
neutrophils and uILCs, a particular cell, similar to ILC2, through its
EP2 and EP4 receptors in both healthy humans andmouse models
(188, 189). PGE2 inhibits the expression of GATA-3, as well as the
production of type 2 cytokines (IL-5 and IL-13) (144). These effects
aremediated by the actionof theEP2andEP4prostanoid receptors,
which are specifically expressed in ILC2 (151, 190).
FIGURE 1 | Schematic representation of the signaling in the maternal immune response that begins with the deposition of seminal fluid in the female reproductive
tract during intercourse. The seminal fluid start an immune signaling pathways mediated by PGE2 and PGI2 in the functions of endothelial cells, platelets, neutrophils,
ILC2, lymphocytes, macrophages, natural killer, dendritic cells and monocytes during oocyte fertilization and early implantation. In addition, the molecules released by
these cells like interleukins, HCG, IDO, and LXA4 have a fundamental role in this tolerance process. PGE2, prostaglandin E2; PG12, prostaglandin I2; PGF2,
prostaglandin F2; TGFb, transforming growth factor beta; IL-1, interleukin-1; IL-2, interleukin-2; IL-4, interleukin-4; IL-5, interleukin-5; IL-8, interleukin-8; IL-10,
interleukin-10; IL-13, interleukin-13; TNF-a, tumor necrosis factor-alpha; INF-a, interferón alpha; Ca+, calcio; cAMP, cyclic adenosine monophosphate; NET´s,
neutrophil extracellular traps; IDO, indoleamine-2,3-dioxygenase; DCs, mature dendritic cells; APCs, tolerogenic antigen presenting cells; Treg, regulatory T cells; Teff,
effector T cells; GATA-3, GATA-3 transcription factor; EP2, prostaglandin E2 receptor 2; EP4, prostaglandin E2 receptor 4; ILC2, group 2 innate lymphoid cells;
Breg, regulatory B cells; HCG, human chorionic gonadotropin; LXA4, Lipoxin A4.
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In addition, Group 1ILCs, uNK cells, and uILC3s significantly
increase in abortion in mice. They also have a lower proportion
of uILC2s (183).
DISCUSSION

Of the hundreds of molecules released with cells in the
preimplantation, implantation, and decidualization processes;
prostaglandins are integrated into each of these stages by
seminal fluid, even until parturition. In particular, some of these
molecules are found to be related to infertility and abortions, such
as PGE2, PGF, and PGI2, which, in turn, are related to ovulation,
fertilization, implantation, and decidualization (133). Increased
levels of IL6 are also related to unexplained infertility, recurrent
miscarriage, and pre-eclampsia among other disorders (9), e.g., in
humans, cases of placental insufficiency, manifesting as
intrauterine fetal growth restriction, are observed where the level
of melatonin, a molecule with pleiotropic effects that regulates
inflammatory processes (191), is decreased (192). Melatonin
inhibits prostaglandin synthesis and is a potent inducer of
uterine contractility (54, 193), in addition, there is evidence that
in fish, melatonin is produced in the granulosa cells and is a critical
factor for ovulation (194). Likewise, in women, it increases
progesterone and regulates the corpus luteum (195). Also in a
recent clinical trial, melatonin is shown to improve intrafollicular
oxidative balance and gives a slight increase in the rate of human
live births (196). Another example is Polish landrace gilts treated
with pregnant mare serum gonadotropin (PMSG) and human
chorionic gonadotropin (hCG) (PMSG/hCG-induced). Treatment
with exogenous progesterone increases pregnancy success through
the expression of genes responsible for vascular function and
PGE2 synthesis (197). Therefore, the administration of inhibitors
of prostaglandin synthesis, e.g., PGE2, must be carefully
considered due to the multiple mechanisms of female fertility in
which they participate (111).

Also, the mechanism of control over the rate of gene
transcription or transcriptional regulation is altered in genes
involved in chronic endometritis and the inflammatory response
(IL-11, CCL4), growth factors (IGFBP1), and apoptotic proteins
(BCL2, BAX, CASP8) in infertile patients (198).

Another mechanism of transcriptional regulation is that of
Uterine Vascular Endothelial Growth Factor (UVEGF), in which
PGE2 regulates vascular development through receptors EP2
and EP4.
Frontiers in Immunology | www.frontiersin.org 11136
CONCLUSIONS

To maintain fetal-maternal tolerance in the process of
implantation (apposition/adhesion/invasion), a whole network of
cells and molecules regulate different factors and responses
according to the stage of pregnancy. Among the most highly
studied cells and molecules are tolerogenic dendritic cells (tol-
DCs), M1 and M2 macrophages, Decidual NK cells (dNK)
(CD56brightCD16−), Decidual stromal cells (DSCs), Endometrial
stromal cells, Tregs (CD4+ CD25+ FOXP3+) and Decidual CD8+

EM cells (CD45RA− CCR7−), progesterone, oestrogen, Leukaemia
inhibitory factor (LIF), Indoleamine-2,3-dioxygenase (IDO), and
melatonin. Within this complex network, prostaglandins,
specifically, PGD2, PGF2a, and PGE2, are important modulators
and regulators in maintaining maternal-fetal tolerance, as we
deduced. Nevertheless, other cells such as platelets, uILCs, and
polymorphonuclear leukocyte/Nets require more research.
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