AOTHOR TITLE

INSTITOTION SPORS AGENCY REPORT NO POB DATE NOTE

EDES PRICE DESCRTPTORS

IDENTIPIFPS

Gabel. Dorothy L.
Facilitating Problem Solving in High School Chemistry. Indiana Univ., Bloomington. School of Education. National Science Poundation, Washington, D.C. NSF-RISE-SED-79-20744
20 Feb 81
680p.: For related document. see ED 202 671. Not available in paper copy due to marginal legibility of original document. Pages 456-462 removed due to copyright restrictions.

The major purpose of this study was to determine whether certain types of instructional strategies (factcr-label method, use of analogies, use of diagrans, and proporticnality) were superior to others in teaching problem solving in four topics (mole concept. gas laus, stoichiometrye and molarity). Also of major interest was whether particular strategies would be more ef ifctive for students having different verbal-visual preferences, different levels of mathematics anxiety, and varying proportional reasoning ability. The design was a posttest only control group design. Subjects were 421 high school students drawn from 10 schools which ranged fron rural/sanil town to metrofolitan settings. Among other things, it was found that students of high mathematics an miety scored significantly lower than did students cf low mathenatics anxiety, and that students of high proportional reasoning ability scored higher than did students of low ability. Findings related to the aftitude by treatment interaction indicate that students with high mathematics anxiety and an absence of another aptitude (visual preference or proportional reasoning abilit.y) profited by instructional methods that contained supportive material that was not mathematical in nature. In a series of follow up interviews, it was determined, among other findings, that students who did not understand the chemistry concepts were unsuccessful in problem solving and that students who were more successful used more orqanizing skills and used minumonic notation. (SH)

[^0]

FACILITATING PROBLEM SOLVING
 IN HIGH SCHOOL CHEMISTRY

Dorothy L. Gabdl School of tducation Indiana University Bloomington, IN 47405
NSF Technical Report RISE SED79-20744
"Fcbruary 20, 1981

3

TABLE OF CONTENTS

Page
LIST OF FIGURES iv
APTIIUDE BY TREATMENT INTERACTION STUDY 1
Background Information 1
Instructional Strategies 1
Verbal-Visual Preference 2
Mathematics Anxiety 6
Proportional Reasoning Ability 6
Questions Studied 8
Methods and Procedures 9
Experimental Design 9
Sample 9
Measurement of Verbah Visual Preference 11
Measurement of Matfomatics Anxiety 12
Measurcment of Proportional Reasoning Ability 13
Measurement of Problem Solving Ability 14
Packet Evaluation 19
Evaluation According to Time 19
Instructional Treatments 19
Hypotheses 26
Statistical Analyses 40 40
Results 46 46
Hypotheses 46 46
Analysis of questionnaires 56 56
Summary and Conclusions 58 58
Tables 4-100 61
INTERVIEN STUDY 193
Background Information 193
Questions Studied 194
Methods and Procedures 195
Sample 195
Procedures 197
Instruments 200
Aptitude Measures 200
Interview Questions 201
Interview Problems 202
Coding Protocol 203
Hypotheses 207
Statisțical Analyses 208

TABLES OF CONTENTS, cont.
Page
Result: 210
Hypothesis 1 210
Hypothesis 2 218
Hypothesis 3 256
Hypothesis 4 297
lhypothesis 5 325
Hypothesis 6 395
Detailed Analysis of Structural Errors 398
Mole Structural Errors 398
Gas, Laws Structural Errors 403
Stoichiometry Structural Errors 407
Molarity Structural Errors 412
Summary and Conclusions 417
REFERENCES 423
APPENDICES 430
Appendix A: Permission Forms 430
Appendix B: Aptitude Instruments and Item Analyses 438
Mpendix C: Reviewer's Comment. 460
Appendix D: Dependent Measures and Item Analyses 476
Appendix-E: Questionnaires 507
Appendix-F: Teacher's Guides 512
Appendix G: Student Sunmary Sheets 523
Appendix H: Summary Tables of Multiple Regression Analyses. 539
Appendix I: Schedule Forms 555
Appendix J: Protocol for Conducting Ïnterviews 558
Appendix K: Teacher Instructions for Interviews 565
Appendix L: Interview Questions, Problems, Answers 568
Appendix M: Coding Forms 580
Appendix N: Instructional Units and Tests

LIST OF FIGURES

Figure Page

1. Memory structures and learning outcomes 3
2. Summary of design for aptitude x treatment interaction study 10
3. Schematic diagram for solving moles problems 23
4. Coding of dumury variables 41
5. ACS-NSTA Chemistry Achievement Test (ACSTOT): Visual Preference (VVQI) X Treatment (X1-X3) Interaction 72
6. Nontransfer Items Test (NTR): Proportional Reasoning (P) X Treatment (X1-X3) Interaction 79
7. Transfer Items Test (TR): Propoptional Reasoning (P) X Treatment (X1-X3) Interactin 85
8. Moles Immediate Posttest (MUQT): Verbal Preference (VVQV) X Visual Preference (VVQI) X Treatment (X1-X3) Interaction. 92
9. Gas Laws Immediate Posttest (GLOT): Verbal Preference (VVQV) X Visual Preference (VVQI) X Treatment (X1-X3) Interaction 95
10. Stoichiometry Immediate Posttest (SQT): Verbal Preference (VVQ) X Visual Preference (WQI) X Treatment (XI-X3) Interaction 98
11. Molarity Immediate Posttest (MIQT): Verbal Preference (VQV) X Visual Preference (VQI) X Treatment (X1-X3) Interaction 101
12. Stoichiometry Immediate Posttest (SQT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (Xl-X3) Interaction 108
13. Moles Immediate Posttest (MOQT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction 111
14. Gas Laws Inmediate Posttest (GLQT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction 114

LISII UF FIGURES, cont.
ligure Page
15. Molarity Immediate Posttest (MLQI'): Visual l'reference (VVQI) X Mathematics Anxiety (M) X Treatment (XI-X3)' Interaction 117
16. Decimal Subtest (DE): Visual Preference (VVQI) X Matherhatics Anxiety (M) χ Treatment (X1-X3) Interaction 124
17. Nondecimal Subtest (NDI): Visual Preference (WQI) X Mathematics Anxicty (M) X Treatment (X1-X3) Interaction 130
18. Molarity Delayed Posttest (MLT): Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment (X1-X3) Interaction 137
19. Moles Delayed Posttest (MOT): Verbal Preference (VVQV) X Proportional Reasoning (P) X• Treatment (X1-X3) Interaction 140
20. Gas Laws Delayed Posttest (GLT): $\stackrel{\&}{V}$ erbal Preference (VQQV) X Proportional Reasoning (P) X Treatment ($\mathrm{X} 1-\mathrm{X} 3$) Interaction 143
21. Stoichiométry Delayed Posttest (ST): Verbal Preference (WQV) X Proyortional Reasoning (P) X Treatment (X1-X3) Interaction 146
22. Gas Laws Immediate Posttest (GLQT): Mathematics Anxiety (M) X Proportional Reasoning Ability (P) X Treatment (X1-X3) Interaction 153
23. Moles Immediate Posttest (MOQT): Mathematics Anxiety (M) X Proportional Reasoning Ability (P) X Treatment (X1-x3) Interaction 156
24. Stoichiometry Immediate Posttest (SQT): Mathematics Anxiety (M) X Proportional Reasoning Ability (P) X Treatment (X1-X3) Interaction 159
25. Molarity Immediate Posttest (MLOT): Máthematics Anxiety (M) X Proportional Reasoning Ability (P) X Treatment (X1-X3) Interaction 167
26. 'Ideal sample versus real samples of students interviewed 196

One of the basic shills required of high school chemstry students is problem solving. Students frequently lack proficiency in this area yet little research has been conducted that examines strategies that might be used to improve students' problem solving skills. An even more basic area that has not been investigated is the identification and synthesis of those processes students use in solving chemistry problems.

This project contained two major components. The first centered on instructional strategins that can be used in teaching students to solve chemistry problems to determine their relative effectiveness for different areas of chemistry. The second consisted of recording and analyzing students' thought processes while solving various types of chemistry problems. Lach of these conponents will be considered sepatately in this report.

APTITUNL BY TREATMENT INTERACTION STUUY
The major purpose for conducting this study was to determine whether certain types of instructional strategies were superior to others in teaching high school students'. problem solving in four topics integral to every chemistry course. These topics were the mole concept, the gas laws, stoichiometry, and molarity. In all four areas, the problems require similar algebraic and proportional reasoning skills. Also of major interest was whether particular stratcgics would be nore effective for students having different verbal-visual preferences, different levels of mathematics anxiety, and varying proportional reasoning ability,

- Background Information

Instructional Strategies

The effectiveness of four instructional strategies that are commonly used
in high school chemistry courses was compared. These were: the factor-label method, the use of analogies, the use of diagrams, and proportionality.

The use of these four strategies can be seen in relation to the summary of memory structures and leaming outcomes presented by Gagne and White (1978). They posulated that four memory structures lead to knowledge stating and rule application as shown in Figure 1. In this research, rule application is of particular interest because it is made manifest in the problem solving ability of the students.

Of the four types of memory structures postulated by Gagne and White, two are directly related to the instructional strategies employed in this study. -• The memory structure entitled "images" is of particular importance because two of the teaching strategies used as treatments present to the student images that may aid his/her problem solving skills (rule application). These strategies are the use of analogies in which chemical species are compared to physical objects, and the use of diagrams that represent the steps in problem-solving processes. The other two strategies, the factor-label method and proportionality, are related to the memory structure called intellectual skills. These two methods attempt to instill in the student systemmatic procedures for problem solving. Once acquired by the student, each could be called an intellectual skill.

The major difference in the four strategies is that in the first two casess, emphasis is placed on the student's image forming capability. The student can then use this in conjunction with the intel ctual skills that he formulates and that are not stressed in the instructional units. In the latter two cases, the acquisition of the intellectual skill is directly taught but without the aid of imaginal adjuncts.

Verbal-Visual Preference

As mentioned in the previous section, two of the instructional strategies involved the use of images. ith work of Paivio $(1969,1971)$ has been the basis

MEMORY STRICTURe:

PIRFOMANEIE OUTCOMe:

-

Figure 1... Memory structures and learning outcomes. (Modified from Gagne and White, 1978)
for much of the renewed interest in mental imagery. In his review article (1969) and in.his book (1971) he has shown that the imagery envoking ability of nouns was separate from the previously used idea of meaningfulness. His theory class"ifies nouns as either being 'abstract' (lacking in imagery envoking ability) or 'concrete' (high in imagery envoking ability). He posulates a dual coding model hypothesis of independent verbal and imaginal memory coding structures. His later experiments with Capo (1973) tended to support his dual coding hypothesis.

Other theorists have discussed imagery to some extent. Bruner. et al. (1900) tends to view imagery (iconic representation ${ }_{\lambda}$ as a more primitive state of thought than verbal processes. (symbolic representation). In their view, the imagery function diminishes as the verbal precesses stabilize (age 7-8). Piaget (Piaget and Inhelder, 1971) takes a view more along the lines of Paivio's dual coding model. While Piaget suggests that the imagery ability of children goes through stages in somewhat a similar fashion to verbal ability, he indicates both modes of representation are available and used depending on the learning situation. Work by Forısha (1975) in which she measured the relationship between imagery ability and verbal ability and its change with age tended to support Piaget/Paivio theory of independent abilities instead of the Pruner theory.
. The recent AC.T model of cognition developed by Anderson (1976) tends to take a more propositional view of the representation of knowledge. While he states his model does not completely refute the dual coding hypothesis of Paivio he indicates that many of the results that have been found to support the dual coding hypothesis may be explained by a própositional network repretentation (p. 23, 394, 404).

A slightly different approach to the theory of cognition is taken by Munro and Kigney (1977). Heir model, labeled schema theory, is less centralized, , than the Anderson model and allow the flow of processing control to be determined by the interactions among the conceptual entities (schemata) that make up the model.

Imagery could be considered to be interactions among schemata at a deep level of processing.

Several studics by lolliday and his associates have looked at comparisons of imagery and verbal instructional strategies. in science instruction. In three studieq by Holliday (1975 , l970a, b) the results foint towards the superiority of a dual presentation of verbal plus diagran techniques versus strictly verbal presentations. Other studies by Holliday and Harvey (1976) and Holliday, Brunner and Donais (1977) tend to support the dual coding model although ordinal interactions with verbal ability in some studies (Holliday, 1976; Hoiliday, Brunner and Donais, 1977) made direct interpretation difficult.

Earlier work by Weisberg (1970), Dwyer (1972)", and Arnold and Dwyer (1975) " also tends to support the claim that. both adults and children Iearn scientific concepts better when pictures or images are presented. As with the previous studies, however, these experiments did not deal with problem solving.

Studies in which probiem solving was the instruction being undertaken are less common in the literature. Ernest (1977), in her imagery review article, denotes only one page of tiairty-five to the topic on inagery and problem solving.

Early work by Frandsen and lolder (1969) used a spatial relations test as the measure of imagery and then developed instruction for experimental versus noninstructional control groups. Significant gains were made by the instructed group over the control group, but only for low spatial ability students.

Dreistadt's (1969) usé of 'visual pictorial analogies' produced significant results for students who had the analogies as compared to the control group. 'This is consistent with the results of Athinson's (1975; Atkinson and Raugh, 1975). work with analogies and second language learning. Although the aralogies used by Atkinson were not visual they were of a nature such that students using them usually produced an image of the foreign word in a visual situation. Atkinson uses the example (1975) of the Spanish work for duck pato (pronounced 'pot-o'1). The English 'keyword' is pot and the student is encouraged to visualize a duck
with a pot on its head. Strong resùlts have been shown for this 'keyiwred' technique for both Spanish and Russian rocabulary;

Other studies is which an imagery component has seemed to make a difference are Shaver, Pierson, and Lang's (1974) work on syllogistic reasoning problems and their rel:iionship to imagery and the computer-generated graphics experiments of Rigney and Lutz (1y70). Shaver et al. showed that spatial type problems resulted in fewer errors and Rigney and Lutz's experiments indicated that verbal-graphical instruction was superior to verbal instruction on a chemistry concept.

In summary, the literature indicates that the use of techniques that allow mental imagery as an alternate method of coding are superior to strictly verbal techniques for many students. However, neither the dual coding hypothesis ar the propositional network theories can completely explains all results. Mathematics Avxiety

In the past few years thefe has been increased interest in mathenatics anxiety. Ausiander (1977), Blum (1977), Mitzman (1976), Sells (1978) äd Tobias (1974) have shown that persons suffer from anxiety that is stimulated when they are in mathamatical problem solving situations.

The relationship between mathematics anxiety and scjence achievenent has been investigated for subject areas other than clemistry. Barnes (1977) has shown that mathematics anxiety is a predictor o. . emester grades for lower division college physics students. Sherwood and Cabel (1980) found that it was a weak predictor of success in a basic science skill course for preservice elementary teachers. Because success in chemistry involves being able to solve mathematical problems, it is likely that mathematics anxiety and success in chemistry are positively correlated.

Proportional Reasoning Ability

Examination of the prohlems involved in chemistry shows that the great
majority of them require students to use proportional reasoning (Wheeler and Kass, 1977). Chemistry students, however, find these kinds of problems most difficult to solve. Jata obtained in the study by Gabel and Sherwood, (1979) showed tiat not only the questions the students found most difficult were 56 \% problems, but that every problem involved proportional thinking. This finding, however, comes as no surprise because proportional reasoning according to Piaget (Inhelder and Piaget, 1958) is the most primary schena ther characterizes the formal operational stage of development. Yet recent evidence indicatc that at least 50% of high school students do not operate on the formal operational level (Chiapetta, 1976; DeCarcer, et.al., 1979; Karplus and Peterson, 1970; Lawson and Renner, 1974; Lovell, 1961; Lunger, 1965; Wollman and Karplus, 1974).

In the past few years there has been an increased interest by science educators in examining more closely reasons why students have difficulty using the•proportionality schema (karplus, harplus and Wollman, 1974; Wheeler and Kass, 1977) and in devising trainmg programs that are effective in teaching the schema (Kurtz and Karplus, 1979; Wollman and Lawson, 1978). In the latter two studies favorable results were obtained with seventh graders and prealgebra ninth and tenth graders, but the improvements were made in :elation to mathematics, nct proportionality as applied to science.
the most comprehensive s^{*} udy of chemistry and proportionality has been reported by Wheeler and Kass (1977). They found that success in chemistry (par, ticularly problem-solving) was dependent on students proportional reasoning ability and that freque itly students used an additive approach to solving chemistry problems. In the conclusions of this study they suggested, as did Herron (1975), that the use of the factor-label method may aid students in overcoming this proportionality handicap in problem solving.

This study tested not only the effectiveness of the factor-label method for use in problem solving but three other methods as well. The two more .
visual approaches (analogies and diagrams) might be considered more concrete than the verbal approaches and may be more effective for concrete learners (students with low proportional reasoning abi .ty). Although recent studies nave shown that concrete methuds of instruction enhance science achievement in general for both formal and concrete students (Gabel and Sherwood, 1980a,b; Gerson \& Primrose, 1977; Goodstein and Howe, 1978: Renner and Paske, 1977; and Sheehan, 1970), specific application to problem solving in chemistry has not been addressed, and differential results are fcasible.

The fourth method for teaching problem solving was using proportionality. On the surface it would apprear that this method would be most positivaly correlated with students' proportional reasoning ability.

Questions Studied in the Aptitude X Treatment Interaction Study
The following questions were addressed in this study:

1. Are there differences in chemistry problem solving ability as measured by scores on immediate and delayed posttests for the selected topics and on a final examination according to students' proportional reasoning ability?
2. Are there differences in chemistry problem solving ability as measured by scores on immediate and delayed posttests for the selected topics and on a final examination according to students' verbal-visual preference?
3. Are there differences in chemistry problem solving ability as measured by scores on immediate and delayed posttests for the selected topics and on a final examination according to students' level of mathematics anxiety?
4. Are there differences in chemistry problem solving abilıty as measured by scores on inmediate and delayed posttests for the selected topics and on a final examınation according to the teaching stratcgy employed?
5. Are there any interaction effects between the teaching strategy employed, students verbal-visual preference, students' mathematics anxiety level and students' proportional reasoning ability that result in differences in chemistry
problem solving ability as measured by scores on inmediate and delayed posttests on each of the four topics and on a final examination?
6. Are there any differences in chemistry problem solving ability as measured by scores on the sum of transfer items of the posttests according to teaching strategy empioyed, students' verbal-visual preference, students' mathematics anxiety level, and students' proportional reasoning level.
7. Are there any differences in chemistry problem solving ability when the problems contain dẹcimals, according to teaching strategy employed, students' verbal-visual preferences, students' mathematics anxiety level, and sludents' proportional reasöning level?
8. Are there any differences in chemistry problem solving ability as measured by the ACS-NSTA Chemistry Achievement Test according to the amount of notation students used in soiving the problem?
9. Lo students who solve a chemistry problem taught by different strategies var in amount of the notation they use to solve the problem?
10. Are there any differences in the amount of time spent in completing a lesson on the gas laws or molarity where the teaching strategy is mismatched with the students' verbal-visual aptitude versus when it is matched?
11. Are there any differences in the time. spent in completing a lesson on the gas law's or molarity when the teaching strategy is mismatched with the students' proportional reasoning ability?

Methods and Procedures

Experimental Design

The design used for this Aptitude by Treatment Interaction experiment was basically a 'Posttest only Control Group Design' described by Campbell and Stanley (1963, p.25). Figure 2 sumarizes the design.

Sample
The minimum number of subjects that (ronbach and Snow (1977, p.40) recommended

$A R \quad W_{1} O_{1} \mathrm{~K}_{2} \mathrm{O}_{2} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{~W}_{4} \mathrm{O}_{4} \quad \mathrm{O}_{5} \quad \mathrm{X}_{1} \mathrm{O}_{1} \mathrm{X}_{2} \mathrm{O}_{2} \mathrm{X}_{3} \mathrm{O}_{3}$
 $A R \quad W_{1} O_{1} W_{2} O_{2} \quad W_{3} O_{3} \quad W_{4} O_{4} \quad O_{5} \quad X_{1} O_{1} X_{2} O_{2} X_{3} O_{3} \quad O_{5} \quad Y_{1} O_{1} Y_{2} O_{2}$

Where: $A=$ Aptitude measures (proportional reasoning test, mathematics anxiety test, and verbal-visual preference).
$\mathrm{R}=$ Random assignment of subjects to treatments. WXYZ $=$ The instructional treatments on the four chemistry topics (moles, gas laws, stoichiometry, and molarity. Subscripts indicate the four treatments, factor-label, analogies, diagrams, and proportionality).
$\mathrm{O}_{1}-\mathrm{O}_{4}=$ Inmediate posttests given after each lesson. These scores were summed for the analysis.
$O_{5}=$ Delayed posttests.
$\mathrm{O}_{6}=$ ACS-NSTA Examination in High School Chemistry.

Figure 2. Summary of design for aptitude x treatment interaction study.
17
for aptitude by treatment interaction studies is 100 per treatment. Permission was obtained from ten teachers and their school corporation/principals in eight school corporations in central and southern Indiana to particapate in the experiment. The school systems involved included a wide range of school types, i.e., rural/small toms, moderatc size cities, suburban and inner city. Three schools could be considered to be rural/small town high schools (school population 1000 or less). These three schools represented approximately 24% of the total sampleThree schools were from moderate slze cities (school population 1200-1800). These represented approximately 50% of the sample. One school was in a suburb of a major metropolitan area (school population approximately 1400). This school represented approxinately 10% of the sample. The final school was an inner city school from the same metropolitan area as the previous school (schosl population over 2000). This school represented 10° of the sample.

From these schools, 609 students in first year chemistry classes were administered the aptitude measures. Due to schedule changes, absences, and missing data, 421 students completed the entire experiment Individual permission from the student and/or parent was obtained before the commencement of the treatments. Copies of principal/school corporation forms, student permission forms, and thman Subjects Summary Safeguard Statements are included in Appendix A.

In addition to obtaining written consent from each school, the principal investigator had a conference with the principal in cach of the eight schools. Its purpose was to describe the objectives of the experiment and clarify procedures that would be used.

Measurenent of Verbal-Visual Preference

Students' verbal-visual preference was measured by a modification of the Paivio Individual Differences (puestıonaire (IUQ). A factor analytic study recently reported by Paivio (1979) indicated a strong two factor solution for a

54 item subset (31 verbal, 25 imagery) of the 86 item questionnaire. Paivio's scoring method of producing a verbal and an imagery score for each person was followed. Because the instrument utilizes a true-false format, subjects were given one point of their verbal score when tiey agreed with the scoring key on a verbal item and one point on their imagery score for agreement. Items which did not agree were ignored.

While no direct measurement of reliability was reported by Paivio in the original development (1971, p. 495) or in the recent factor analytic study (1979), a shortened form (15 items) used by Richardson (1977) had a reliability of 0.93 using the test-retest method. Paivio did report a correlation of greater than 0.9 between the 54 item instrument and the longer 86 item instrument. Alpha reliability based on our data of the verbal scale was found be to .84 and of the visual scale . 73 .

The paper and pencil format of the test allowed adiminstration in a relatively short time span (approximately 20 minutes). Items were coded directly on optical scan coding sheets. Appendix Bcontains the modified IDQ and directions for administration. Students were administered this instrument during the first three weeks of school in seven of the eight schools. (The inner city school was not ir session due to a labor dispute and the administration was delayed until the end of tie semester.)

Measurement of Mathematics Anxiety
The Mathematics Anxiety Rating Scale was used to measure students' mathematics anxiety. This instrument is a 98 item self-rating scale in which students are asked to describe their anxieties as they currently exist. Each item on the scale represents a situation that may arouse anxiety within the subject. The subject decides the degrec of anxiety aroused and marks the corresponding anount (not at all, a little, a fair amount, much, or very much) on the instrment. In order to facilitate scoring, students marked answers directly on optical scanning
sheets instead of on the copies of the instrment. A copy of the MARS which was developed by Suinn, is found in Appendix B.

Administration of the scale required approximately 20 minutes. Teachers selected their owi preferred t ine of abministration during the first somester. The alpha relativilty of the scale was found to be .97 .

Measurement of Proportional Reasoning Ability
The proportional reasoning section of the Staver (1978) instrument offered a compromise between conducting Piagetian interviews with each student and administering a strictly paper and pencil instrument. The ideal situation would be to administer clinical interviews to the students. The number of subjects, however, did not make this approach practical. The video-tane format with a written response sheet was used in a nodification of the Staver instrument. In order to increase the number of items, more tasks were added to the Staver instrument. These were the "two cylinder task" of Lawson's (1978) overall test of formal operations and the "disks task" developed by Wollman and Lawson (1978). The developers of these tasks indicated that they had strong content validity and the tasks were well suited to a video-tape presentation. Bady (1978) has indicated that multiple tasks are needed for Piagetian task tests.

Staver (1978) included both reasoning tasks (Mr. Short-Mr. Tall and the Balance Beam) for a total of eleven questions. The addition of the two tasks allowed for ten additional numerical and reasoning questions making a total of 21 questions: The coefficient alpha reliability estimate was .85.

Administration time for the instrument was approximately 30 minutes. Appendix B contains the written portion of the instrumenc and administration instructions. The test was administered during the same day that the verbalvısual questionnaire was given.

Measurement of Problem Solving Ability

Problem solving ability was measured in five different ways. These were by immediate posttests, delayed posttests, the ACS-NSTA Chemistry Achievement Test, transfer items from the delayed posttests, and decimal items from the inmediate pusttests. Lach will be discussed separately.

Immediate Posttests. Students' immediate ability to solve numerical chemistry problems for each unit of instruction was measured by their scores on short tests given afer each lesson within a given unit. Each of the four units (moles, gas laws, stoichionetry and molarity) contained three or four lessons that took one to two days to complete. When a student cumpleted a lesson, he was administered a multiple choice test of 4-6 items that contained problems similar to those taught in the lesson. Although the test questions for each treatment were identical, a short reminder of the treatment technique was printed at the top of the first page of each test. This was done in order to encourage students to learn to solve the problems by the method presented in their own booklets and to discourage exchanging booklets with their friends.

Due to the short length of these tests, their proximity of administration, and their similar domain of instruction, scores from tests on individual lessons were summed to produce an immediate posttest score for each unit. The types of items on these inmediate posttest were similar for all units in that two of the items on each of the tests were always the same in content but differed in that one problem presented data in decimals whereas the other did not.

All of the test items were critiqued by a chemist and two chemistry educators (not associated with the development) for accuracy and appropriateness for the unit. The chemical educator reviewers' comments are found in Appendix C Copies of the tests are found in Appendix D and in Appendix N inserted after
each instructional wit. An item analysis is found in Appendix II. Table 1 gives the reliability and composition of each of the unit posttests.

Delayed Posttests. Within two weeks after completing all lessons in a given unit, teachers administered the delayed posttests for each unit. This was a ten item multiple choice test that containcis problems similar to those taught in the unit and in the inmediate posttests. These itens were also scrutinized by a chemist and chemistry educator.

On every test at least one transfer item was included. This was a problem that had never been presented in the instructional unit but the student should have been able to answer if he understood the material that had been presented.
Table 2 gives the reliability of the delayed posttests. Copies of the unit tests are found in Appendix D. They occur also at the end of each unit in Appendix N. Item analysis are contained in Appendix D. Reviewers' comments on test items appear in Appendix C.

ACS-NSTA Chemistry Achievement Test. The ACS-NSTA Cooperative Examination, High School Chemistry Form 1975, Part I was administered by classroom teachers during the final month of the school year after all four instructional units had been completed. In several sciools both the regular and scrambled version of the test were given to eliminate the possibility of cheating. This test is commonly given in schools as a final examination and measures facts, concepts, and problem solving skills. Part I of the 1975 examination was selected because it contained the largest number of items that were relațed to the problems taught in the instructional units. It contains 40 items and has an administration time of 40 minutes. The alpha reliability of the regular form was found to be .75 ($n=410$) and the scrambled form . 55 ($\mathrm{n}=146$). Ten of the 40 items were directly related to problems taught in the units. Reliability on the regular and scrambled form for a subtest consisting of these items were .67 and .33 respectively. Nonproblem items had reliability of .74 and .37 respectively. Copies of the instrument

Table 1
vescription and Reliability Coefficients
of Immediate Posttests

Unit	No. of Lessons	TotalNo. of ItemsNo. of Cases	Coefficient Alpha	
Moles	4	21	498	.76
Gas Laws	3	12	496	.66
Stoichiometry	3	12	507	.73
Molarity	3	15	434	.75

Table 2

Vescription and Reliability Coefficients of Velayed Posttests

units	Total No. of Items	$\begin{gathered} \text { Transfer } \\ \text { Items } \\ \hline \end{gathered}$	No. of Cases	Coefficient Alpha
Moles	10	4,9	498	. 69
Gas Laws	10	3,6,10	496	. 73
Stoichiometry	10	5,9	507	. 81
Molarity	10	5,7,10	434	. 71

2.4
are not given in the appendix because of the confidential nature of the test but are available from the Examination Conmittee - ACS. An item analysis of each form of the instrument is fourd in Appendjx D.

As a check to see if students were using the strategy taught (factor-label, etc.) to solve the problems and also to examine their use of using units (mneumonic notation) students were asked to show their work for problem 12 (problem 29 on the scrambled version), a stoichiometry problem. Their responses were then coded as to whether students used the strategy taught and the degree of using notation (none, mininlal, complete): Agreement of two raters in a samplenf the responses ($n=33$) was 87.8%.

Transfer Items Test.- Inserted in each of the delayed posttests was at least one transfer item. As mentioned previously, these items consisted of problems that were not directly taught in the instructional units. The units did contain enough information so that if students understood the concepts they should have been able to work the problems. As an independent check to verify that these items were truly transfer items, the tests and instructional units were sent to two chemistry educators. They were asked to identify any transfer items given in the tests: Agreement of one science educator was 90%. Agreement of the other was 80%. At least one of the two outside evaluators agreed with each item included as transfer items.

The ten transfer items from the four posttests were grouped together and treated as an additional dependent measure. The alpha reliability of this subtest was found to be . 48 ($\mathrm{n}=434$) : The non-transfer items (30) had a reliability of .81 ($n=435$):

Decimal Items. (he of the reasons students may have difficulty in solving chemistry problems is because of their inability to handle problems containing decimals. In order to test this hypothesis, the test following every lesson in each unit contained two problems that were identical in concept but differed in
that one of the prob'ams contained decimals and while the companion item contained whole numbers. These decimal items and their companion items formed two subtests across the four instructional units containing 13 items each. The alpha reliabilities of these subsets were .40 and .57 respectively ($n \stackrel{\circ}{=} 421$). Packet Evaluation

At the end of the semester, students were asked to evaluate the instructional strategy and the materials that they used to learn to solve problems. Students answered anonymously on the particular strategy they used. Questions were also included to determine how much contamination there was between the treatments. The questionnaires used are found in Appendix E. Evaluation According to Time

Niter a presentation of the progress of this project at an NSI dirertor's meeting in March, 1980, a suggestion was made that a comparison of the length of time it took students to complete units might be of interest. Students whose aptitudes were in opposition to the strategy with which they were taught to solve problems might take longer to complete the units than students for whom these matched.

By the time plans could be made to implement these, many teachers had completed the units. It was possible to have two teachers ask ${ }^{\text {situdents }}$ to recored the time spent to complete the gas law lessons and three ceachers for molarity lessons. Students recorded the time when they began a lesson and the time at which they reached the supplementary practice problems. Some teachers also had studerits note whether they used a calculator to obtain the answers.

Instructional Treatments

During the fall semester of 1979-80 school year, the four instructional tmits according to each of the four teaching strategies were developed. Each unit consisted of a brief` Teachers' Guide and Student Materials.

The Teacher's' Guides (Appendix F) contain a list of prerequisite skills the students would aced to have accomplished before beginning each lesson of the unit, the objectives of each lesson of the unit, and answers to the immediate posttests and to the delayed posttests.

Students Guides contained three to four lessons each of which included an introduction, several self-programed.sections on the concepts to be learned, summary section with extra practice problems, and a sheet containing answers and solutions to the problems. These practice problems were not presented in the same order as the topics were introduced and were optional. The reasen they were included was to try to control the amount of time students in each treatment spent studying the unit. If students finished the required material with extra time before tae immediate posttest was to be administered they were directed to work on the extra practice problems. The Student Guides are found in Appendix N. Table 3 sumarizes their content.

In addition to the Student Guide, students were given a Review Sheet that contained a brief summary of the method used to solve the problems and some sample problems. These were to be used to study for the Init Tests because teachers had collected their Student Guides. Copies are found in Appendix C.

Development of the unitswas a very time-consuming process. After the first draft of each unit was completed, the units were scrutinized by a chemist for chemistry errors, clarity of wording and overall suitability. Units were then revised taxing into accol.t the suggestions for improvement.

A final critique of the units was made by twr chemistry educators." Their corments are found in Appendix C . They were asked to make judgements about the reasona!i, mess of the objectives, the adequateness of the prerequisite jkills and coverage of the topics, the existence of chemistry errors and the matching of tie instruction with the objectives. Chemistry errors discovered at this stage were sent to teachers via errata sheets.

23

Units were written using four different teaching strategies: the factor-label metnod, the use of analogies, the use of diagrams, and proportionality. Each method had some commonalities, but some major differences.

The focus of the factor-label method was on the importance of estimating methods to oltain correct answers by looking at the units of the given values. Students were shoum how the units 'cancel out' in the calculations and how incorrect answers may be determined by looking at the units of the answer. A sample problem (froin the mole as ideal gas volume unit) was: "If a sanple 0_{2} gas had a volume of 89.0 liters at STP, how many moes would be represented?" The factor-label method would indicate to the student that they should set up their factor (1 mole $=22.4$ liters) so that the liters will cancel:
89.0 liters $0_{2} \times \frac{1 \text { mole }}{22.4 \text { Ftars }}=4$ moles 0_{2}

The analogy method used common examples to help students understand the relationship needed to solve the problem. Examples used both the common examples and chemical examples to work the problems. The gas law problems' analogy was that of a shipping carton of fruit. No matter what size the fruit was the volume for a dozen fruit was always 3 pints. The problem, 'How many dozen of fruit would fit into a delivery box that had a volume of 54 pints?" was worked ; viately before the 89.6 liters of 0_{2} problem was shown. Mathematically the analogy problems were identical to the diagram problems:
$\frac{89.6 \text { liters } 0_{2}}{22.4 \text { liters } / \text { mole }}=4$ moles 0_{2}

The diagramatic method used the diagram (or sections of the diagram) pictured in Figure 3. Students were shown that certain steps (boxes on the diagram) must be taken in order to reach the desired answer. In some situations (in which multiplication was used) the diagramatic and factor-1abel methods

Figure 3. Schenatic diagram for solving moles problems.
were very similar. When division was indicated by the diagram, however, they differed in that the factor-label method used multiplication by a reciprocal rather than division. The gas law problem would be set up as:

$$
\frac{89.6 \text { liters } 0_{2}}{22.4 \text { liters } / \mathrm{mole}}=4 \text { moles } 0_{2}
$$

The proportionality method us ?' techniques of the form $\frac{A}{B}=\frac{C}{X}$ to help the students determine the value of x. While the fact that the units 'cancel out' to yiel. 1 reasonable units for the answer was discussed, this was not emphasized. For the gas volume problem, the students were shown that the problem could be solved by the use of a simple proportion:

$$
\begin{aligned}
& \frac{X}{89.6 \text { liters } 0_{2}}=\frac{1 \text { mole }}{22.4 \text { liters }} \\
& \text { (X) }(22.4 \text { liters })=\left(89.6 \text { liters } 0_{2}\right)(1 \text { mole }) \\
& X=\frac{\left(89.6 \text { liters } 0_{2}\right)(1 \text { mole })}{(22.4 \text { liters })}=4 \text { moles } 0_{2}
\end{aligned}
$$

While all the methods had differences, the canceling of units was carried out in all four types.

The instructional units were administered by teachers in their classrooms. Prior to their administration, a meeting was held which eight of the ten teachers participating in the study attended. (One teacher had another conmitment and the other was on strike. Procedures were explained to them individually.) The purpose of the meeting was to give the teachers an overview of the project, describe differences in instructional strategies and discuss procedures to be used and appropriate follow-up activities that would be suitable. Every effort was made to try to form a partnership with the teachers in doing the study.

The following procedures were agreed upon:

1. Students would be assigned randomly to treatments by each seacher
dividing each of his classes into four convenient groupings. He would label these groups one through four. The numbers one to four were then drawn from a lot at a later date and the teachers notified which instructional strategy corresponded to which number.
2. tach instructional strategy would be color coded to facilitate distribution of the same strategy to the same students across the four units (13 lessons). The color coding was a follcws: factor-label $=$ yellow, analogies $=$ blue, diagram $=$ green, and proportionality $=$ pink. Immediate posttests and review sheets were color coded in the same way.
3. Instructional units were to be used in the classroom. Individual lessons would be distributed at the beginning of the period. Students worked on these individually but they could consult other students using the same strategy (color) or could obtain help from their teacher. The lessons varied in length over the various topics and took between 40 minutes - two hours to complete. Because the length of periods varied greatly in the schools, in some cases students finished in one period whereas in others three periods were required. If students did not finish a lesson by the end of the class period, the booklets were collected and redistributed the next day. Booklets eventually were returned to the university.
4. Immediate posttests would be given when the students in the class were finished with the instructional booklets. All teachers permitted students to use hand calculators to work the problems. Tests were corrected by the teacher who then returned them to the investigator. Answers were then transferred to optical scanning sheets for data processing.
5. After students completed the lessons, the teachers in some instances desired to fullow up these lessons with supplementary work. In these cases, teachers were asked to use the method of showing that the units cancel. This
was common to all four instructional strategies. Although there is no guarantee that teachers did this in every instance, every teacher was observed at least twice and some as many as four times while they were administering the units or taught their classes immediately following the units.
6. After all of the lessons in a given unit were completed (including the immediate posttests), teachers would give a review sheet to each student that corresponded to the instructional treatment assigned. The review sheet which contained a summary of the method and sample problems provided the student with a study guide to prepare for the delayed posttests that were to be administered within two weeks of completing the lessons. It was thought that these review sheets would encourage students to use the same method that they were taught in class but yet would be too sketchy to enable students to lear. a completely different method than the one to which they were assigned. Teachers corrected the delayed posttests and sent the test sheets to the university where answers were transferred to optical scanning sheets.

The teachers' use of the units was monitored by visits to their classrooms during and after the use of the booklets. Discussions were also held with the teachers during data collection visits and by phone to determine if any instructional problems had occurred with the content of the units or with the administrational procedures. Some minor typographical errors were found and corrected. Overall, the instruction was applied as outlined in the previous sections.

Hypotheses

The dependent variables referred to in hypotheses 1-63 are as follows:

1. The inmediate posttests (QT) for each of the four instructional treatments: moles (MO), gas laws (GL), stoichiometry (S), and molarity (ML).
2. The delayed posttests (T) for each of the four instructional treatments listed in 1.
3. The ACS-NSTA (hemistry Achievenent Test (ACSTOT).
4. The ACS-NSTA Problem Subtest (ACSPROB) and Nonproblem Subtest * * (ACSNPROB) .
5. The Transfer Test made of 10 items from the delayed posttests (TRANST) and the remaining items (NTRANST).
6. The Decimal Test made of 13 items from the immediate posttests (DECMILQ) and the equivalent items (NDECMILQ).

Hypotheses tested in this aptitude by interaction study are as fol\%óws:

1. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the aptitude of verbal or visual preference to the multiple linear regression equation.
2. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the aptitude of mathematics anxiety to the multiple regression equation with the variance due to verbal and visual preference removed.
3. There is no significant increase in the percentage of variance ac counted for in each dependent variable by the addition of the aptitude of proportional reasoning ability to the nultiple linear regression equation with the variance due to verbal-visual preference and mathematics anxiety removed.
4. There is no significant increase in the percentage of variance accounted for in cach dependent variable by the addition of dummy variables coded for treatments, with the variance due to the three aptitude measures removed.
5. There is no significant increase in the percentage of variance ac: counted for in each dependent variable by the addition of a dummy variable
coded for the f.ctor-label treatment with the variance due to the three aptitude measures removed.
6. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of a dummy variable coded for the analogy treatment with the variance due to the aptitudes and previous treatment measures removed.
7. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of a dunny variable . coded for the diagram treatment, with the variance due to the aptitudes and previous treatment measures removed.
8. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the combination dummy variables coded for the proportionality treatment with the variance due to the aptitudes and previous treatments removed.
9. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the six variables representing the verbal or visual preference by treatments interaction with variance due to aptitudes and treatments removed.

If hypothesis nine is rejected, hypotheses ten through thirteen will be tested.
10. Thet \mathfrak{i} is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference by factor-labei treatment interaction with variance due to aptitudes and treatments removed.
11. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference by analogy treatment interaction
with variance due to aptitudes, treatments and verbal or visual preference by previous treatment interaction removed.
12. There is no significant intrease in the percentage of variarce accounted for in eaci dependent variable by the addition of the variable representing the verbal or visual preference by diagrammatic treatment interaction with variance due to aptitudes; treatments and the other vefbal or visual preference by treatment interactions removed.
13. There is no significant increase in the percentage of variance accounted for in each dependent variable b.y the addition of the variable representing the verbal or visual preference by proportionality treatment interaction with variance due to aptitudes, treatments, and the other verbal or visual preference by treatment interactions removed.
14. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the three variables representing the mathematics anxiety score by treatments interaction with variance due to aptitudes, treatment, and verbal or visual preference by treatment interactions removed.

If hypothesis 14 is rejected, hypotheses 15 through 18 will be tested 15. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety by factor-label treatment interaction with the variance due to aptitudes, treatments, and verbal or visual preference by treatment interactions and removed.
16. There is no significant increase in the percentage f variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety by analogy treatment interaction with variance due to aptitudes, treatments, verbal or visual preference by treatment interactions and the previous mathenatics anxiety by treatment interactions

removed.

17. There is no signıficant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety by diagrammatic treatment interaction with variance due to aptitudes, treatments, verbal or visual perference by treatment interactions, and mathematics anxiety by treatment. interactions removed.
18. There is no significant increase in the percentage of variance accounted for in the dependert variable matrix by the addition of the variable representing the mathematics anxiety by proportionality treatment interaction with variance due to aptitudes, treatment, verbal or visual by treatment inter tion and mathematics anxiety by treatment interactions removed.
19. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the three variables representing the proportional reasoning ability by treatments interaction with variance due to aptitudes, treatments, verbal-visual preference by treatment interactions and mathematics arixiety by treatment interactions remoyed.

If hypothesis 19 is rejected, hypotheses 20 -through 23 will be tested. .
20. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable accounted for in each dependent variable by the addition of the variable representing the proportional reasoning by the factor-label treatment interaction with the variance due to aptitudes, treatments, verbal or visual preference by treatment intcractions and mathenatics anxicty by treatment interactions renoved.
21. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the proportional reasoning ability by analogy treatment interaction with variance due to aptitudes, treatments, verbal or visual by /treatment interactions, mathematics anxiety by treatment interactions, and the previous proportional reasoning by factor-label treatment interaction removed.
22. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the proportional reasoning rby the diagrammatic treatment interaction with variance due to aptitudes, treatments, verbal or visual by treatment interactions, mathematics anxiety by treatment interactions and previous proportional reasoning by treadment interactions removed.
23. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the proportional reasoning by proportionality treatment interaction with variance due to aptitudes treatments, verbal or visual by treatment interactions, mathematics anxiety by treatment interactions and proportional reasoning by treatment interactions removed.
24. There is no significant increase in the percentage of variance accounted for in each dependent variable by. the addition of the three variables representing the terbal preference - visual preference by treatments interactions with the variance due to all previous aptitudes, treatments and interactions removed

If hypothesis 24 is rejected, hypotheses, 25 through 28 will be tested. 25. There is no significant increase in the percentage of variance
accounted for in each dependent variable by the ad̈dition of the variable representing the verbal preference - visual preference by factor-1ajel treatment interaction with the variance due to all previous aptitudes, treatments and irteractions removed.
26. There is no significant increase in the perçentage of variance pccounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference by analogy treatment. interaction with the variance due to all previous aptitudes, treatments and interactions, removed.
27. There is nó significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal prefeience - visual preference by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatments; and interactions removed.
28. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference by proportionality treatment interaction with the variance due, to all previous aptitudes, treatments, and interactions removed.
29. There is no significant increase in the percentage of variance'. accounted for in each dependent variable by the addition of the six variables. representing the verbal or visual preference - mathemetics anxiety by treatments interaction with the variance due to all previous aptitudes, treatments and interactions removed.

If hypothesis 29 is rejected, hypotineses 30 through 33 will be tested.
30. There is no significant increase in the percentage of variance. accounted for in each dependent variable by the addition of the variable representing the verbal and visual preference - nathematics anxiety by
factor-label treatment interaction with the variance due to all previous aptitudes, treatments and interactions removed.
31. There is no significant ircrease in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal and visual preference - mathematics anxiety by analogy treatment interation with the variance due to all previous aptitudes, truatments, and interactions removed.
32. There is no significant increase in the percentage of variance accounted for in eachedendent variable the addition of the variable representing the verbal and visual preference - mathematics anxiety by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatment, and interactions removed.
33. There is no significant increase in the percentage of variance. accounted for in each dependent variable by the addition of the variable representing the verbal and visual preference - mathematics anxiety by ${ }^{\circ}$ proportionality treatment interaction with the variance due to all previous aptitudes, treatments; and interactions removed.
34. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the six variables representing the verbal or visual preference - proportional reasoning ability by treatments interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

If hypothesis 34 is rejected, hypotheses 35 through 38 will be tested.
35. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - proportional reasoning ability by factor-label treatment interaction with the variance due to all previous.

2 vtitudes, treatments, and interactions removed.
36. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable represerting the verbal or visual preference - proportional reasoning ability by analogy treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removes.
37. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - proportional reasoning ability by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatments and intèractions removed.
38. There is no significant increase in the \because rcentage of variance accounted for in each dependent variable by the addition of the vari.ble representing the verbal or visual preference - proportional reasoning ability by pro:ortionality treatment interaction with the variance due to all previous aptitudes, treatments, and int ractions removed.
39. There is no significant increase in the percentage of variance accoumted for in each dependent variable by the add:tion of the three variables representing the mathematics anxiety - proportional reasoning ability by treatments interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

If hypothesis 39 is rejected, hypotheses 4 J through 43 will be tested.
40. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxicty - proportional reasoning ability by factor-label treatment $1 n^{+}$. raction with the variance due to all previous aptitudes, treatments, and interactions removed.
41. There is no si wificant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety - proportional reasoning ability by analogy treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.
42.. There is no significant. increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety - proportional reasoning ability. by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.
43. There is no significant increase in the percentage of variance accounted, for in each dependent variable by the addition of the variable representing the mathematics anxiety - proportional reasoning ability by proportionality treatment interaction with the variance due to all previous aptitudes, treatments, and interaction removed.
44. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the three variables representing the verbal preference - visual preference - mathematics anixety by treatments interactions with the variance due to all previous aptitudes, treatments, and interactions removed.

If hypothesis 44 is rejected, hypotheses 45 through 48 will be tested.
45. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety by factor-1abel treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.
46. There is no significant increase in the percentage of variance accounted for in each dependent variable by the adrition of the variable representing the verbal preference - visual preference - mathematics anxiety by analogy treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.:
47. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety by diagrammatic treatment interactior with the variance due to all previous aptitudes, treatments, and interactions removed.
48. There is no significant increase in the percentage of variance accounted for in each dependent variablc by the addition of the variable representing the verbal preference - visual preference - mathematics anxicty by proportionality treatment interaction with the variance romoved due to all previous aptitudes, treatments, and interactions removed.
49. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the three variables representing the verbal preference - visual preference - proportional reasoning ability by treatments interactions with the variar $C f$ due to all previous aptitudes, treatments, interactions removed.

If hypothesis 49 is rejecied, hypotheses 50 through 53 will be tested.
50. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - proportional reasoning ability by factor-labcl treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.
51. There is no sisnificant increase in the percentage of variance
accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - proportional reasoning ability by analogy treatment interaction with the variance due to all previous aptitudes trgatments, and interactions removed.
52. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addıtion of the variable representing the verbal preference - visual preference - proportional reasoning ability by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.
53. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - proportional reásoning ability by proportionality treatment interaction with the variance due to all previous aptitudes, reatiments, and interactions removed.
34. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of six variables representing the verbal or visual preference - mathematics anxiety - proportional reasoning ability by treatments interactions with the variance due to all previous aptitudes, treatments, and interactions removed.

If hypothesis 54 is rejected, iypotheses 55 through 58 will be tested.
55. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - mathematics inxicty - proportional reasoning ability by factor-1abel treatment interaction with variance due to all previous aptitudes, treatments and interactions removed.
56. There is no significant increase in the percentage of variance accounted for in eaclr dependent variable by the addition of the variable

Frulliax prowisa bve Bac
representing the verbal or visual preference - mathematics anxiety - proportional reasoning ability by analogy treatment interaction with variance due to all previous aptitudes, treatments and interactions removed.
57. There is no significant increase in the percentage of variance accounted for in each deperident variable by the addition of the variable representing the verbal or visual preference - mathematics anxiety - proportic.:al reasoning ability by diagramatic treatment interaction with variance due to all previous aptitudes, treatments, and interactions remo:ed.
58. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - mathematics anxiety - proportional reasoning ability by proportionality treatment interaction with variance due to all previous aptitudes, treatinents, and interactions removed.
59. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of three variables representing the verbal preference - visual preference - mathematics anxiety proportional reasoning ability by treatments interactions with the variance due to all previous aptitudes, treatments, anc interactions removed.

If hypothesis 59 is rejected, hypotheses 60 through 63 will be tested.
60. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety proportional reasoning ability by factor-label treatment interaction with variance due to all previous aptitudes, treatments, and interactions removed.
61. There is no significant increase in the percentage of variance accounted for in each dependent vatiable by the addition of the variable
representing the verbal preference - visual preference - mathematics anxiety proportional reasoning ability hy analogy treatment interaction with variance due to all previous aptitudes, treatments, and interactions removed.
62. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety pronartional reasoning ability by diagramatic treatment interaction with variance due to.all previous aptitudes, treatments, and interactions removed.
63. There is no significant increase in the percentage of variance accounted for in each dependeit variable by the addition of the variable representi:g ine verbal preference - visual preference - mathematics anxiety proportional reasoning ability by proportionality treatment interaction with variance due to all previous aptitudes, treatments, and interactions removed.
64. There is no difference in achievement by chemistry students on problens that contain decimals ${ }^{\text {a }}$ as compared to equivalent pròblems that do not contain decimals.
65. There is no difference in achievement as measured by the ACS-NSTA Chemistry Achievement Test by chemistry students according to the amount of notation used in solving a specified problem.
66. There is no difference in the amount of notation used in solving a specified problem by chemistry students who solve problems when saught by different strategies.
67. There is no difference in the amount of time spent in completing lessons involving the gas laws or molarity by students whose verbal-visual aptitudes match the instructional strategy used in learning the lessons versus students whose aptitudes and strategies do not match. .
68. There is no difference in the amount of time spent in completing lessons involving the gas laws or molarity by students whose proportional
reasoning ability uatches the instructional strategy used in learning the lessons versus students whose aptitudes and strategies do not match.

In addition to the formal testing of these 68 hypotheses, a questionnaire was administered to students at the end of the school year to obtain their general reáction to the packets. The questionnaire contained nine questions that pertained to the usefulness of the materials and to whether there was any contamination of the treatments. Copies are found in Appendix E.

Statistical Analyses

Hypotheses 1-63 involved aptitude by treatment interactions that were analyzed using multiple linear regression techniques. As Cronbach and Snow (1977, p. 27) and Cohen and Cohen (1975, p. 229) have noted, classical analysis of variance techniques that 'block' on the aptitudes to produce groups that can be labeled 'low', 'medium', and 'high' on a particular aptitude result in the loss of both information and statistical power. The 'blocks' inevitably have unequal cell sizes producing independent variables that are not orthogonal.

The alternative to the use of ANONA techniques is the use of multiple linear regression. 'Dummy' variables may be coded by the treatment effects and these used to produce interaction variables with the aptitudes. Several methods are availaple for this coding. Cohen and Cohen (1975, Chapter Five) present four methods: dummy, effects, contrasts, and nonsense coding. While the overall multiple R^{2} and therefore the F value are always the same no matter what coding method is used, the three methods allow for different hypotheses to be tested within the types of treatment.

In effects coding, as Cohen and Cohen (1975, p. 194) pointed out, the method takes as its reference point all of the groups taken as an equally weighted aggregate. The null hypothesis under test is that the dependent variable mean for group i is equal to the mean of the means of the dependent variable of all the groups. This was the question under consideration for this research, therefore effects coding was used as the method for coding the treatment conditions. Figure 4 shows the coding diagram.

The four treatments can be fully represented by three dummy variables $\left(X_{1}, X_{2}, X_{3}\right)$ representing the three degrees of freedom available. These dumy variables were used to represent the interactions of interest. If the

Duminy Variables

Factor-Label - TF	-1	-1	-1
Diapram - TD	0	1	0
Analogy - TA	1	0	0
Proportions - TP	0	0	0

Figure 4. Coding of dumy variables.
aptitude of Verbal Preference is represented by V, Visual Preference by I, and Mathenatics Anxiety by M, the Proportional Reasoning Ability by P, the interactions produced were VI, VM, VP, IM, IP, MP, VIM, VIP, VMP, IMP, VIMP, VX $\mathrm{VX}_{2}, \mathrm{VX}_{3}, \mathrm{IX}_{1}, \mathrm{IX}_{2}, \mathrm{IX}_{3}, \mathrm{MX}_{1}, \mathrm{MX}_{2}, \mathrm{MX}_{3}, \mathrm{VIX}_{1}, \mathrm{VIX}_{2}, \mathrm{VIX}_{3}$, etc.

Variables for each dependent measure were entered into the regression : equations in the following order:

Verbal and Visual Preference
Mathematics Anxiety
Proportional Reasoning Ability
Treatment
Verbal/Visual Preference by Treatment Interaction
Mathematics Anxiety by Treatments Interactions
Proportional Reasoning Ability by Treatments Interaction
Verbal with Visual by Treatments Interaction
Verbal or Visual with Mathematics Anxiety by Treatments Interaction
Verbal or Visual with Proportional Reasoning by Treatment Interaction
Proportional Reasoning with Mathematics Anxiety by Treatment Interactions
Verbal with Visual with Mathematics Anxiety by Treatment Interactions
Verbal with Visual with Proportional Reasoning by Treatment Interactions
Verbal or Visual with Mathematics Anxiety with Proportional Reasoning by Treatment Interactions

Verbal with Visual with Mathematics Anxietv with Proportional Reasoning by Treatment Interactions

The order of entering the variables into the regression equation was based on "weakness" of the aptitude. The verbal and visual aptitudes were entered first (on an equal basis) because from a review of the literature they appeared to have the least constryct validity, Mathematics anxiety ratings and proportional reasoning ability had increasing degrees of construct validity in the order stated.

By placing verbal preference, visual preference, and mathematics anxiety into the regression equation before proportional reasoning ability, any shared variance would be considered in the weaker constructs. This would have the proportional reasoning ability aptitude uncontaminated by the shared variance (Cohen and Cohen, 1975, p. 527).

This study utilized univariate multiple regression as an analytical tool rather than milivariate linear regression for the following reasons:

1. Four different chemistry topics were studied. Although some of these have similarities (involve moles) each has distinct characteristics. In particular the unit on gas laws contains concepts quite different from the other three units. Because the units were on different topics, it was of interest to determine if a particular strategy was particularly suited to a given chemistry topic.

Within the units, the two dependent variables, immediate posttest and delayed posttest, were analyzed separately because of the different nature of the tests. The immediate posttests were 'given jumediately after students' studied each lesson and contained the strategy used at/the top of each test page. The delayed posttests had no aids and included at least two transfer items.
2. A multivariate analysis would have been most complex to analyze and to interpret because of the 15 dependent variables involved.
3. Correlation for most of the dependent variables were modest ranging from . 20 to .76 .

In the instance where the correlation was likely to be the greatest (moles and stoichiometry). Robert Sherwood, a doctoral graduate assistant working on this project, analyzed the data in this manner for a doctoral dissertation study. Sherwood's (1980) results are consistent with those found using the univariate method.

In the same dissertation, factor analyses of several measures utilized in this study were made. Persons interested in the factor analysis of the verbal-visual preference item, the proportional reasoning ability test, and several of the measures of problem solving ability might consult this disserration.

Hypotheses 64-68 were analyzed as follows:
Hypothesis 64. A t-test was used to determine the differences between the two sets of scores.

Hypothesis 65. A one way analysis of variance was used to determine differences in achievement according to whether students used meumonic notation in problem solving. Differences between means were examined using the Scheffé procedure.

Hypothesis 66. A chi-square analysis was used to determine whether students classified according to strategy taught used no, some, or extensive notation in problem solving.

Hypothesis 67, $2 x^{\wedge}$ analyses of variance, were used to determine differences in time spent according to matched or mismatched strategies and verbal and visual aptitudes. Students were classified as having a visual method of instruction if they used the analogy or diagrammatic method. Students using the factor-label method or proportionality comprised the verbal methods group. Students with - scores less than 14 were considered low verbal; those equal or greater than 1 were classified high verbal. The cut off point for the imagery scores was 18. These numbers were selected because their use divided the students into two groups of approximately the same size.

Hypothesis 68. This hypothesis was tested using 2×2 analyses of variance. 1 Students were classified as high or low in proportional reasoning ability according to whether their score was less than 14 or equal to or greater than 14.

The proportional reasoning teaching strategy was singled out as the one that matched proportional reasoning ability. Students using the factor-label method, analogy method and diagrammatic method formed the non-proportional reasoning teaching strategy group.

Missing data for the aforementioned analyses was handled in the same way. If a single item on a test was left blank, a zero was used as the score. If one immediate posttest was missing, the grand mean was substituted. If more than two dependent measures were missing, the student was dropped from the study. In cáses where the score on a dependent measure was replaced with the grand mean, the number of degrees of freedom was reduced by one.

Analysis of the questionnaire was made informally by tabulating comments where possible and presenting data in terms of percentages.

Results

Results of the aptitude by treatment-interaction study are summarized in Table 4. Appendix. H gives sumary tables o: the multiple regression analyses. Results are given in terms of individual hypotheses. For all dependent variables a general regression equation and a main effects regression equation were calculated. Because these equations pertain to several hypotheses, they are not included with the information on the main effects (hypotheses 1-4) but appear with discussion of the first significant interaction effect. If there were nq significant interactions, the tables appear after the discussion of those that were significant.

Hypothesis 1

if

Regression coefficients' and the change in R^{2} for hypotheses one tinrough three are given in Table 5. Examination of Table 4 shows that the verbal preference had no relationship to students performance on the dependent measures. In three instances visual preference was related. Students with high visual preference scored higher. However this accounted for only 1 or 2 percent of the variance.

Hypothesis 2

Students' mathematics anxiety was related to students' performance on all dependen't measures. Table 4 shows that it was significant at the .01 level in álmost every, Case. Table 5 shows that there was a negative relationship, that is, students whe had a higher degree of mathematics anxiety had 1 ower chemistry achievement. The percentage of variance for which mathenatics anxiety accounted ranged from 1.0 to 4.7 percent, the latter referring to the Transfer Item Test. This seems reasonable as this dependent measure was the most difficult of those used in the study.

Hypothesís 3

Table 4 indicates that students' proportional reasoning ability was related to students' success on every department measure at the . 01 level. From Table 5, one can see that as students' proportional reasoning ability increased, so did their chemistry achievement. Proportional reasoning ability was more strongly related to performance than any other aptitude or aptitude interaction measured in the study. The percentage of the variance accounted for ranged from 3.0% to 18.7\%. The greatest amount of variance accounted for was in the ACS-NSTA Test which is particularly complex, and requires formal rasoning skills for many questions.

Hypotheses 4-8
The particular strategy (treatment) that students used to learn how to solve the chemistry problems in the four units 0° instruction had a significant effect on achievement in a limited way as can be s in from Table 4. In only three cases was there a significant difference. nese were for the Mcles and Gas Laws Imnediate Posttests and for the Gas Laws Delayed Posttest. Table 24 shows that students who were taught by, the factor-1abel method scored significantly higher on the Moles Inmediate Posttest and students who used the proportionality method scored significantly lower. All comparisons were made with the grand ".2an.

Table 71 shows that this is not the case with achievement on the Gas Laws Immediate Posttest. For this unit the proportionality method was the most effective whereas both the diagram and analogy methods were the least effective. This .s a reasonable finding because the gas laws are stated in terms of proportion and students were 1^{\prime} kely to memorize the formulas according to the proporticnality method. In this particular unit, the diagram was more complex than in the other three units and the aralogy may have been casily forgotten. Table 89 shows that on the Gas Law Delayed Posttest a similar result is found although the mean of the diagram method is not statistically different from the grand mean.

Hypotheses 9-13

Although no verbal preference by treatment interaction was found on any dependent measure a visual preference x treatment interaction was found for achie ement as measured by the ACS-NSTA Examination in High School Chemistry. Results are found in Tables 6-11 and have been diagrammed in Figure 5. Students with low visual preference using the analogy treatment scored higher on this test.

These results were entirely unexpected. It was postulated that if a student had a high visual preference, then using a visual mode (analogies or diagrams) would produce superior results. The explanation may perhaps be that when students who did not háve a wisual preference were forced to use a visual presentation, this required them to pay a greater amount of attention to what they were doing and they therefore achieved more. Why this result is not consistent for all the other dependent measures is inexplicable.

Hypotheses 14 - 18
ivo significant differences were found for the mathematics anxiety by treatments interaction. Hypotheses 19-23

The proportional reasoning ability by treatment interaction was shown to exist for the Nontransfer Items Test only. Results of this inalysis are given in Tables 12-17 and are diagrammed in Figure 6. For the sake of comparing the Nontransfer Items Test results with the Trnasfer Items Test results, Tables 18 22, for the Transfer Items Test are included. A diagram of the Transfer Items Test results is given in Figure 7.

For the Nontransfer Items Test, students with low proportional reasoning ability who used the diagrammatic method were the least successful, whereas students with high proportional reasoning ability who used the diagram were the most successful. Figut - 7 shows that this did not hold for the students who used the diagramnatic method for the Transfer Items Test. From the diagram given in Figure 7
it is rather surprising that no significant difference existed for the factorlabel x treatment interaction. It may have been that there were in reality very few low proportional reasoning students who were assigned to the factorlabel method where the crossing actually occurred. Why an interaction occurs for the Nontransfer Items Test is not known except that possibly the diagrams were complex and required proportional ieasoning ability.

Hypotheses 24-28
A verbal x visual x treatment interaction was found to be significant on the Moles Immediate Posttest. Tables 23-28 show the analysis and the results are shown picturially in Figure 8.' Students with low verbal preference and low visual preference scores and the analogy method did poorly on the test whereas those with low visual and verbal preferences using the proportionality method scored high. However, if students had a high verbạl preference and low visual preference, the analogy treatment was best, and the proportionality treatment the worse.

Results of this same interaction are given for comparison sake for the other immediate posttests even though findings were not significant. Tables 29-30 and Figure 9 show that the trend is the same for the Gas Laws Immediate Posttest. For the Stoichiometry Immediate Posttest, the results given in Tables 31 and 32 and Figure 10, are not consistent with moles and the gas laws. For the low verbal, low visual students, the analogy treatment appears best. For the molarity unit, as shown in Tables 33 and 34 and Figure 11 the factor-1abel method appears superior, and the analogy method the poorest.

Because of such differing findings, generalization is difficult. At least for two units, however, for students of both low verbal preference and low visual preference, the proportionality approach appears superior. one wonders what actually characterizes students who have both a low verbal and low visual preference for learning. At the onset of the research, it was thought that these two approaches
were rutually exclusive. By what approach would this type of student prefer to learn? Do they have no preference for learning or are they lethargic? Bec uuse it is impossible from the research reported here to characterize these students, generalization about their approach to learning chemistry problem solving is unwairanted.

Hypotheses $29-33$

Significant interaction effects were found for two dependent measures, the Stoichiometry Immediate Posttest and the Decimal Subtest, for the visual preference by mathematics anxiety by treatment interaction. No significant differences were found for verbal preference.Tables 39-40 and Figure 12 present the data. As shown in Figure 12 for students with low visual preference and low mathematics anxiety, the factor-label method was superior and the diagramatic method inferior. However, this is not the case for low visual preference students who had high mathematics anxiety. For these students, the diagrammatic method was best and 'the factor-label the worse.' For these same students the analogy method was also better than the other two but as students' visual preference increased these differences diminished and the analogy method became preferred.

Tables 41-42 and Figure 13 give this same information for the moles unit. Although the findings are not significant, trends are the same for the low visual and low mathematics anxicty students. For the low visual, high mathematics anxiety students, diagrammatic and analogies methods remained superior.

For the gas law unit shown in Tables 43-44 and Figure 14, little differences are seen. However, analogies remain superior for the low visual - low mathematics anxiety group and diagrams best for the low visual - high mathematics anxiety group.

Tables 45 and 46 and Figure 15 give the results of the analysis for the molarity unit: Although it appears from Figure 15 that results are significant, they were not. Why they were not cannot be explained at this time. For the low visual, high mathematics anxiety students, the diagrammatic method was still
superior. Other findings were not consistent with the trends for the other three units.

Results for the Decimal Subtest are given in Tables 47-52 and in Figure 16. Differences in achievement are most pronounced for the students who had low visual preference and high mathematics anxiety. For these students the preferred method of instruction was the use of diagrams. This was 'followed by the analogy method (not significant), the proportionality method was poorest although not significantly different from the mean. For students with low visual preference and low mathematics anxiety the reverse is true. The proportionality method was best (not significant) and the diagram method the poor-st.

For "he sake of comparison, data was analyzed for the Nondecimal Subtest. This consisted of the same problem except that no decimals were given in the original problem. Data analysis is given in Tables 53-57 and in Figure 17. Although results were not significant, a trend indicates that the diagram method might be superior for low visual, high mathematics anxiety students. For low visual, low mathematics anxiety students the factor-label method produced the highest scores followed by the proportionality method.

The results of this aptitude x treatment interaction is fairly consistent over the two dependent measures where significance was found. In both cases, the major differences appear where students had high mathematics anxiety and low visual preference versus those with low mathematics anxiety and low visual preference. Means for tine cases of high visual preference - high mathematics anxiety and high visual preference - low mathematics anxiety for the various strategies did not differ to any great extent. Moreover, students with high mathematics anxiety and low visual preference did best with strategies that were intended to be visual. A possible explanation for the reason why these strategies might be best for this type of student combines the explanation given for the visual preference by treatment interaction (lypotheses 9-13) and the students high mathematics anxiety. As mentioned previously, it may be that when students who did not
prefer to learn by visual methods were required to do so, they paid more attention to what they were learning and consequently achieved more. This would be particularly true of the high mathematics anxiety student. The diagram method or the analogy method offered this student an additional mathematical terminology than would the more mathematical approaches (factor-label and proportionality). For the low mathematics anxiety student, the more mathematical and less visual approaches were more suitable. 'In fact, these students who did not have a high mathematics anxiety probably skimied over the -diagrams and analogies and therefore did poorly because they did not have factor-\&abels or proportions on which to depend.

Hypotheses 34-38

These hypotheses pertained to the visual or verbal preference by proportional reasoning by treatment interactions. No significant differences were found for the visual preference interactions on any dependent meqsures. However, there was a verbal preference by proportional reasoning ability by treatment interaction for the Molarity Delayed Posttest scores. Tables 58-63 and Figure 18 give the results. For students with low verbal preference and low proportional reasoning ability, or high verbal preference and high proportional' reasoning ability, the analogy approach was best. When either of these aptitudes was low, the analogy method nas the worst approach. Tables 64-69 and Figures 19-21 give the results for the Delayed Posttests of the other three chemistry units. Examination of the figures shows that these results are not consistent across the other wits and in fact no consistent trends are apparent in the other three units. Because no significant differences were found on other dependent measures, the result is unique to this one unit and one dependent measure. Why this particular analogy for this subject matter wrought these results is not known.

Hypotheses 39-44
A mathematics anxiety by proportional reasoning ability by treatment interaction was found for achievement on the Gas Laws Immediate Posttest. As with
significant findings of other interactions that involved mathematics anxiety, major differences occurred with students of high and lqw mathematics anxiety and low values on the other aptitudes. ResJuts are given in Tables 70-75 and in Figure 22. Students with low proportional reasoning ability and low mathematics anxiety did best with the factor-label and proportional method (not significant) and worse with the diagram method. For students of low proportional reasoning ability and high mathematics anxiety the analogy method was superior (followed by the diagram method - not significant). The poorest method was factor-label. These same results for the factor-label method were found for students of low visual preference and low mathematics anxiety, and somewhat similar results were found for the analogy treatment. Apparently students who have low mathematics anxiety and were 10 w on the other aptitude found the factor-label method attractive, whereas it is not a good method for high anxiety students. Results for the other tnree unit̂s although not significanc are included in order to make comparisons. They. are given in Tables 76 - 81 and in Figures 23 : 25. In every case, the factorlabel method was best for students of low mathematics anxicty and low proportional reasoning ability. For students of high mathematics anxiety and $10 w$ proportional reasoning ability, the diagrammatic method appears to have had the advantage (not significant), and in two of the three other units, the factor-1abel method was the poorest (trend only). When students, had a high mathematics anxiety and no compensating aptitude (high proportional reasoning ability or high visual preference) the more mathematical approaches (factor-1abel and proportionality) were not desirable. This is in agreement with results found for hypotheses 29-33. Hypotheses 45-63

No significant four way interactions were found. Tables 82-100 give the general regression equation, F tests for possible significant effects, and the main effects regression equation for analyses of dependent measures where no significant interaction effects were found.

Hypothesis 64
A significant difference between scores on the Decimal and Nondecimal Subtest was found as shown in Table 101. Students scored slightly better when the initial values given in the problems did not contain decimals. If teachers are interested in whether students understand how to solve a given problem, this fright be achieved better if no decimals are included. This is not to say that at an intermediary point, a decimal will not be needed or that the answer will not be in decimal form. Although the means of the Decimal and Nondecimal Subtests are not drastically different, it must be recalled that most students used calculators in solving the problems and one might expect that this usage would obliterate any difference in scores.

Hypothes is 65:
In order to test this hypothesis on the use of notation and achievement, students were asked to show their work in solving one of the stoichiometry problems on the ACS-NSTA Cooperative Examination administered at the end of the school' year. Students' work was then classified into three categories: no notation, some notation, complete notation. Results of an analysis of variance and the Scheffé procedure are shown in Tables 102 and 103. The analyses indicate that a significant difference in achievement does exist according to the amount of notation used. Students using complete notation achieved higher scores on the test than students who used no and little notation. Hypothes is 66

This hypothesis stipulated that there would be no differences in the amount of notation used according to the method students were taught to solve the chemistry problems. Data were analyzed using chi-square, and the results are, given in Table 104. Although the results are not significant at the $: 05$ level, means show that students who were assigned to the factor-label treatment more frequently used complete notation. This coupled with the results of hypothesis 65 indicates that if differences in aptitude are ignored, this method may be preferred over the
other three.
Hypotheses 67 and 68
These two/hypotheses pertain to the amount of time students spent studying a given unit according to whether the method used (treatment) matched or did not match their aptitudes. Hypothesis 67 dealt with verbal-viṣual preference and hypothesis 68 dealt with proportional reasoning ability.

To test the hypotheses a series of analyses of variance were rum for individual lessons and for the total time for the gas laws and molarity units. Because there were no significant main or interaction effects for the total time and inconsistent ones for several of the individual lessons for the verbalvisual preference and verbal-visual treatments (hypothesis 67) no tables are presente.s. For the proportional reasoning ability and proportionality method, however, more consistent results were found. Time spent in learning four out of six of the individual lessons were significant at the .05 level. Total times had a probability level of .09 for the $g=s$ law unit and .07 for the molarity unit. Data are presented in Tables 105-108.

By comparing the Tables one can see that any significant findings are not uniform across the two units of instruction. For the molarity unit, there is a main effect in that students of high proportional reasoning ability completed the unit in a shorter period of time. This did not hold for the gas law unit where differences in time are not significant. For the gas law unit there is a significant interaction effect that does not exist for the molarity unit. The interáction was not anticipated. Students with high proportional reasoning ability spent more time when the proportionality method was used and low proportional reasoning students spent more tinc when they used nonproportionality methods (analooy, diagram, factor-label). In the molarity analysis, although the interaction is not significant, low proportionality students spent most time with the proportionality method. This appears to be more reasonable.

The, results of the above analyses must be interpreted extremely cautiously. The number of subjects per cell was quite low, and the treatments in some units took lunger to complete than others. This was generally true of the proportionality and analogy methods.' It was for this reason that extra practice problems were included in the larger aptitude by treatment intéraction study. For this analysis, times were recorded before students began the practice problems. Other complicating factors were that some students used calculators and others did not. There was' little control over whether students marked their times properly or spent part of this time talking to one another rather than working. These two hypotheses were added as a result of the NSF director's meeting in March, 1980 and therefore little planning could take place to collect data and have the necessary controls. As a result of the above plus the additional factors of only being able to collect this data from a limited number of teachers over a short time span near the end of the schọol year with no provision for students to mark the time in their booklets, makes the findings tenuous. The question remains an interesting one, and probably should be pursued in a more controlled manner than was possible in this study.

Analys is of Questionnaires

The questionnaires that were administered at the end of the school year (Appendix E) were aralyzed by tallying data according to treatment and teacher. It was felt that responses were candid because students were not allowed to identify themselves. Results are given in Tables 109-111 in terrms of the four treatments.

Table 109 which summarizes the mure objective questions shows that students more frequently skipped over parts (or all) of the diagram and analogy methods than the factor-label or proportionality method (question 1). This was supported from student's answers to question 9, a free response item where students listed what they liked least. Many students said that the analogies were stupid or

4
insulting and the diagrams too complex, particularly for the gas law unit. In general skipping the reading was done more at the end of the year than at the beginning, except for the analogy unit where it seems quite uniform across units (question 2). In many cases, however, students commented that they skipped only when they understood the sample problems. If they didn't they went back and used the diagram and analogies to help them understand the material.

Students in general found the method to which they were assigned quite useful (question 3). This was true to a greater extent for students assigned to the factor-label and proportionality method. Students used the method all or most of the time (question 4).

Questions 4-7 were included to determine the degree of contamination within the study. Considering that the study lasted the entire school year, the 10% contamination rate (shown in question 5) is not surprising. This does not include students who listed responses classified as "other" on the sumary. For the most part these students said that they learned to work the problem by studying the sample problems in the packet or by using their ingenuity. These answers cannot be considered to represent students not using their own booklets.

When students answered question 6 on how they modified the methods, the majority mentioned that they combined or eliminated steps. The high percentage of students that did this for the proportion unit is not unexpected. The proportions took more space to write out and were longer units because of this. They could easily have been shortened but the investigators felt that all steps should be shown in the packets.

From question 7 , it can be seen that sometimes students did borrow another student's packet. Many mentioned that they were curious to see whet the other packets contained, and really didn't use the packet to learn a different method.

Question 8 gave students an opportunity to state what they liked most about using the packets. Results are listed in Table 110 according to the frequency of
response for 1% of the sample. Students most often mentioned that the packets were very explanatory, had answers (solutions) given, and were fast and easy.

The most common thing that students liked least was the length of the packets or the fact that there were too many. The next most common complaint was that they were monotonous and boring. This might be due to the fact that students frequently expressed a dislike for problems and felt that this was taking too much time from lab.

Although no data is summarized in this report according to classes or teachers, it was interesting to find variation in questions 8 and 9 according to teacher. Some students insarticular classes said that this material was easy, students in other classes said it was too hard. In some classes, students complained that they didn't have enough time, whereas in another class this was never mentioned. In one particular set of classes where-students complained that the material was boring, test scores were considerably below those reported by all other teachers. For this reason, even though more contamination of treatments was possible, by having all four treatments in each classroom the decision to design the study in this manner probably minimiged these other effects over which no control was possible.

Summary and Conclusions

This aptitude by treatment interaction study has shown that the aptitudes of mathematics anxiety' and proportional reasoning ability are related to students success in solving problems in high school chemistry. Students of high mathematics anxicty score significantly lower than students of low mathematics anxiety. Students of high proportional reasoning ability score higher than students of low proportional reasoning ability. Both of these findings are not surprising. Teachers are probably more aware of the relationship of proportional reasoning ability and success than the mathematics anxiety relationship. As teachers become nore aware of the latter they will probably incorporate anto their lessons teaching strategies that will reduce this anxiety.

Certain methods used in this study wẹre less mathematical and more visual than others. These were the use of analogies and the use of diagrams. The more mathematical were the factor-label method and proportionality. The best method in general (main effect) for the moles unit where less contamination could be expected (used first in all classrooms) was the factor-label method 'and the worse, method was proportionality. For the gas laws, however, in which the laws themselves are stated as proportions, the proportionality method was most effective and diagrams and analogies least effective. These results show that either the teaching strategies are subject matter specific or that the proportionality method becomes more effective over time (the gas laws were studied later in the school year in most instances).

Of more importance than the main effects in this study was the aptitude by treatment interaetion findings. Of greatest interest are the results found for students of high mathematics anxiefy and low scores on another aptitude. For students of this type, the less mathematical approaches frequently appear to be superior. It was found to be rather consistently true that the diagram method was superior for students of high mathematics anxiety and low visual preference for the immediate posttests for the four chemistry units (significant on trend in that direction). The same was true for the Decimal Subtest (significant) and Nondecimal Subtest (trend). For students having high mathematics anxiety and low proportional reasoning ability, the analogy method, the other less mathematical śtrategy, wàs best (significant) followed by the diagram method for the Gas Laws Inmediate Posttest. Although not significant, the diagram method appeared to be somewhat better in two of the other three units on this same dependent measure.

These results seem to indicate that students with high mathematics anxiety and the absence of another aptitude (visual preference or proportional reasoning ability) profit by methods that contain supportive material that is not mathematical in nature. Analysis of the questionnaire substantiates this. Many students did
not use the analogies or diagrams but skipped to the sample problems. These students were likely to be the low mathematics anxious students. (There was a no way to check on this because students answered questionnaires anonymously.) Many students commented that they fourd the diagram and analogies beneficial and particularly so when they didn't understand the sample problems. Several commented that that is when they used the analogies or diagrams. These were probably the mote mathenatics anxious students.

These findings indicate that it might be profitable for teachers to use supplemental, less mathematical approaches with high mathematics anxious students who also are deficient in proportional reasoning ability or have low visual preference. These methods might also be profitable for either students if they are used more directly, that is, taught to the student by the teacher rather than from a packet. Students would probably be less likely to tune out the teacher explaining the diagram and analogy and/zould obtain immediate clarification.

Two less important findings from the first phase of this study were the positive relationship between success and the use of notation in problem solving, and the significant difference between the Decimal and Nondecimal Subtests. Students should be encouraged to label their numbers if they expect to be successful. Teachers, if they are testing for the inderstanding-of concepts, . should avoid using decimals in test problems.

Table 4

Summary of Results of Aptitude x Treatment Interact;on St. iv

Hypọthes is	Effect	$\begin{gathered} \mathrm{MO} \\ \mathrm{QT}^{*} \end{gathered}$	$\begin{aligned} & \mathrm{GL} \\ & \mathrm{QT} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{QT} \end{aligned}$	$\begin{aligned} & \mathrm{MiL} \\ & \mathrm{QT} \end{aligned}$	$\stackrel{\text { MO }}{\mathrm{T}}$	$\begin{aligned} & \mathrm{GL} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$	$\stackrel{\text { ML }}{\mathrm{T}}$	$\begin{aligned} & \text { ACS } \\ & \text { TOT } \end{aligned}$	$\begin{aligned} & \mathrm{CS} \\ & 1 \mathrm{BB} \end{aligned}$	$\begin{aligned} & \text { ACS } \\ & \text { NPROB } \end{aligned}$	TR	NTR	DE	NDE
1	V or I				$.01{ }^{\text {b }}$,				$.05^{\text {b }}$. $05^{\text {b }}$
2	M	$.01{ }^{\text {a }}$. 01	. 01	. 01	. 05	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01
3	P	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01
4	Treatments	. 01					. 05						-			
. 5	P	. 01	. 01													
0	A		. 01		。		. 01									
7	$1)$. 05													
8	F	. 05														
9	V or I x Treatments									$.05^{\text {b }}$:					
10	V or $\mathrm{I} \times \mathrm{D}$															
11	V or I \times A									$.01^{\text {b }}$						
12	V or $\mathrm{I} \times \mathrm{D}$													-		
13	V or $T \times F$							-								
14	$\mathrm{M} \times$ Treatnk-nis															
15	$\mathrm{M} \times \mathrm{P}$															
16	$\mathrm{M} \times \mathrm{A}$														$\stackrel{6}{4}$	m
17	$M \times 1$															-
18	$\mathrm{M} \times \mathrm{F}$															

Table 4 (continued)
Summary of Results of Aptitude x Treatment Interaction Study \approx

Table 4 (continued)
Summary of Results of Aptitude x Treatment Interaction Study

		MO	GL	S	ML	MO	GL	S	ML	ACS	ACS	ACS	TR	NTR	DE	NDE
Hypothes is	Effect	¢T	QT	QT	QT	T	T	T	T	TOT	PROB	NPROB				

Table 4 (continued)
Summary of Results of Aptitude x Treatment Interaction Study

Hypothes is	$\begin{array}{ll}\text { Effect } & \text { M0 } \\ \text { QT }\end{array}$	$\begin{aligned} & \text { GL } \\ & \mathbf{Q T} \end{aligned}$	$\begin{aligned} & S \\ & Q T \end{aligned}$	$\begin{aligned} & \mathrm{ML} \\ & \mathrm{QT} \end{aligned}$	$\begin{aligned} & \text { MO } \\ & \text { T } \end{aligned}$	$\begin{aligned} & \mathrm{GL} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{ML} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { ACS } \\ & \text { TOTT } \end{aligned}$	ACS PROB	$\begin{gathered} \text { ACS } \\ \text { NPROB } \end{gathered}$	TR	NTR	DE	NDE
54.	V or $\mathrm{I} \times \mathrm{Mx} \mathrm{Px}$ Treatments		'.												
55	V or $\mathrm{I} \times \mathrm{M} \times \mathrm{P} \times \mathrm{F}$														
56	V or I \times M \times P \times A														
57	V or I $\times \mathrm{Mx} \mathrm{P} \times \mathrm{D}$										-				
58	V or I XMXPX P														
59	V x I x M x P x Treatments				-										
60	$\mathrm{V} \times \mathrm{I} \times \mathrm{MxP} \mathrm{P} \mathrm{F}$														
61	$V \times I \times M \times P \times A$														
62	$\mathrm{V} \times \mathrm{I} \times \mathrm{M} \times \mathrm{P} \times \mathrm{D}$														
63	$\mathrm{V} \times \mathrm{I} \times \mathrm{MxP} \times \mathrm{P}$,									

alevel of significance
b_{I} - Vis'al
VV - Vescal

Treatments	
Factor-Label	(F)
Analogy	(A)
Diagrams	(D)
Proportionality (P)	

$\frac{\text { Units }}{\text { Moles }}$
Gas Laws (a)

Stoichiometry (S) Molarity (ML)
$\begin{array}{lr}\text { Aptitudes } \\ \text { Verbal } & \\ \text { Visual } & \text { (V) } \\ \text { Proportional Reasoning } & \text { (P) } \\ \text { Mathematics Anxiety } & \text { (M) }\end{array}$

Dependent Measures
Inmediate Posttest (Quiz Total) (QT)
Delayed Posttest (T)
ACS-NSTA Examination in H.S. Chem. (ACSTOT)
ACS-NSTA Problems Subtest (ACSPROB)
ACS-NSTA Nomproblems Subtest (ACSNPROB)
Transfer Items Test
(TR)
Nontransfer Items Test (NTR)
vecimal Subtest
(DE)
Nondecimal Súbtest (NDE)

Table 5
Main Effects Summary, Hypotheses 1 - 3`

Aptitudes

Table 6
ACS-NSTA Chemistry Achievement Test (ACSTOT):
General Regression tquation

```
ACSTOT = -.0197(V) - .0356(I) -. 10258(MARSTOT + . 5486(PPRT)
    132.943(X3) - 45.975(X2) - 91.447(X1) + 5.200(VX2)
    +2.045(VX1) - 8.140(VX3) - 5.328(IX3) + 1.085(IX2)
    +5.292(IN1) +.5236(NX1) - .7576 (MX3) + . 2479(MX2)
    +6.907(PX2) + 3.655(PX1) - 8.789(PX3) - . 1930 (VIX1)
    +. . 3486(VIX3) - .1975(VIX2) - .0165(VMX1) - .0261'`
    (MNX2) + .0460(VND3) - .0327(IMN1) + .0328(INX3)
    -.00736(DNX2) - .5980(VPX2) - .0193(VPX1) + .4938
    (VPX3) - .2216(IPX1) + .3426(IPX3) - . 2694(IPX2) -
    .0238(PAX1) - .0346(PRA2) +.04780(PNX3) + .00132
    (VIMN1) - .00216(VINN3) + .00103(VINX2) + .00513
    (VIPX1) + .0258(VIPX2) - . 0206 (VIPX3) + .000372
    (VPMX1) + .00506(VPMN2) - .00279(VPMX3) + .00161
    (IPNXX1) + .00139(IPNXX2) - .00199(IPMX3) - .0000548
    (VIPMAI) - .000133(VIPMX2) + .000127(VIPNX3)
    +14.225
Where
\begin{tabular}{lll}
\(\overline{\mathrm{WQV}}(\overline{\mathrm{V}})=15.807\) & \(\overline{\text { MARSTOT }}=184.546\) \\
\(\overline{\mathrm{WQI}}(\overline{\mathrm{I}})=18.020\) & \(\overline{\text { PPRT }}=12.614\)
\end{tabular}
```

Table 7
ACS-NSTA Chemistry Achievement Test (ACSTOT) :
Nain Effects Regression Equation

Bquation: $A C$ CSTOT $=-.0114($ MARSTOT $)+.552($ PPRT $)+13.819$
! \qquad

Table 8
AES-NSTA Chemistry Achievement Test (ACSTOT) :
F Tests for Possible Significant Effects
Mean $=17.969 \quad$ S.D. $=5.368 \quad$ Cases $=528 \quad$ Max. $=40$

Table 9
ACS-NSTA Chemistry Achievement Test (ACSTOT) :
D Calculations 'for "Fourth" Effect

Visual X Treatnent Interaction

Effect	B		S.E.B.	
IX3	+.158			.103
IX2	-.287		.	.102
IX1	+.0417		.104	

$$
\begin{aligned}
& \mathrm{B}_{4}=-\sum \mathrm{B}_{\mathrm{i}}=-(.158-.287+.0417)=.0873 \\
& \text { S.E.B.4 }=\sum \frac{\mathrm{S.E.B} \cdot \mathrm{i}}{3}=\frac{.103+. .102+.104}{3}=.103 \\
& \mathrm{t}_{4}=\frac{\mathrm{B}_{4}}{\text { S.E.B.4 }}=\frac{.0873}{.103}=.89 \% \text { NS }
\end{aligned}
$$

Table 10
ACS-NSTA Chemistry Achievement Test (ACSTOT) : Visual Preference (VQQI) X Treatnent (X1-ン3) Interaction

Table 11
ACS-NSTA Chemist; ${ }^{\prime \prime}$ Achievement Test (ACSTOT) :
Substitution of Extreme Values for

Figure 5. ACS-NSTA Chemistry Achievement Test (ACSTOT): Visual Preference (VVQI) X reeatment

Table 12
Nontransfer Itens Test (ivTK): General Regression Equation

NIR $=-.0519(\mathrm{~V})+.0318(\mathrm{I})-.0157$ (NARSTOT) $+.4770(\mathrm{PPRT})$
$-4.409(\lambda 2)+2.844(\lambda 1)-.5345(X 3)-2: 000(\mathrm{VX} 2)$

$+.4030(\mathrm{I} \lambda 2)-.0802(\mathrm{NX} 1)-.1650(\mathrm{NX} 3)+.1201(\mathrm{MX} 2)$
$+1.233\left(\mathrm{P}_{\wedge} 2\right) \cdot 2.973(\mathrm{P} 11)^{2}+2.797(\mathrm{PX} 3)-.0899$ (VIX1)

- . 0677 (VL^3) $+.0835(V I \lambda 2)-.00836($ VNX1 $)+.00685$
$($ VNX2 $)+.0111($ VMX3 $)+.00470(\operatorname{INX} 3)+.00402(\operatorname{INX1})$
$\therefore .00747($ INa2 $)+.1099(V P A 2)-.0461(V P X 1)-.1811$
$(\mathrm{VPX} 3)+.1750(\mathrm{IPX1})-.2107($ IPX3 $)-.0812($ IPX2 $)$
\bullet

```
    +.0195(PNX1) - .0140(PN^2 ) + .00158(PNX3) - .000322
(VINX3) + .000491(VINX1) - .000245(VINX2) + .00204
(VIPX1) - 00328(VIPǍ2) + .0133(VIPX3) - .000249 (VPNX2)
+.000375 (VPMA1) - . 000293 (VPMN3) + .000846(IPMN2) -
.00101 (IPANil) + .000242(IPNEX3) + .000000575(VIPMNi2)
-.0000216(VIPMX1) - .00000702(VIPMX3) + 18.265
```

Where $\overline{\operatorname{VVQV}}(\overline{\mathrm{V}})=15.807 \quad \overline{\text { MARSTMT }}=184.546$
$\overline{\text { WQI }}(\overline{\mathrm{I}})=18.020 \quad \overline{\text { PPRT }}=12.614$

Table 13
Nontransfer Itesm Test (NTK): iain Effects Regression Lquation
bquation: NTK $=-.0153($ (WRSTOT $)+.482($ PPRT $)+18.935$

Table 14
Nontransfer Items Test (NTR):` F Tests for Possible Significant Effects
Mean $=21.234 \quad$ S.D. $=5.296 \quad$ Cases $=436 \quad$ Max. $=30$

Predictor	$\Delta \mathrm{R}^{2}$	$\cdots \quad \mathrm{F}$	Sig.Level
MARSTOT	. 04400	.04400/.001891 ${ }^{\mathrm{a}}=23.27$. 01
PPRT	-. 14551	. $14551 \% 001891=76.95$. 01
vx2 vx3	. 0000084 ,	. $00560 / 3=.987$	$N S^{\text {b }}$
vx1	$-\frac{.00458}{.00560}$. 001891	
PX2 PX1	$\begin{array}{r} 00209 \\ .01138 \end{array}$	$\frac{.01569 / 3}{001891}=2.77$. 05
PX3	$\frac{.00222}{.01569}$		
PX2	. 00209	.00209/.001891 $=1.11$	NS
PXI	. 01138	. $01138 / .001891=6.02$. 05
P $\lambda 3$. 00222	$.00222 / .001891=1.18$	NS
VIPXI $V_{\text {IPX2 }}$. 00020	$.00920 / 3=1.62$	NS .
VIPX3 0	$\frac{.00896}{.00920}$		

${ }^{2}$ Error ${ }^{\text {'ferm }}=(1-.27583) / 383=.001891$
$\mathrm{b}_{\mathrm{NS}}=$ Nonsignificant

Table ${ }^{15}$
Nontransfer Items Test (NTR): Calculations for ''Fourth" Effect
Proportional Reasoning λ Treatment Interac ion

Table 16
Nontransfer Items Test (iNTR):
Proportianal Reasoning (P) X Treatment (X1-X3) Interaction

Strategy	Dummy Variables	Equation
Proportion	$x 3=1$	$\mathrm{iJTK}=.2757 \mathrm{P}+17.440$
Astalogy	$\lambda 2=1$	$N T R=.4725 P+14.570$
Diagram	x1 $=1$	STK $=.7190 \mathrm{P}+11.958$
Factor-Label	$\lambda 3=\lambda 2=X 1=-1$	iTTK $=.4382 \mathrm{P}+16.514$

Table 17
Nontransfer Items Test (NTR) :

$3 i$

Table 18

$$
\begin{aligned}
& \text { - Transior Items iest (ii): (emeral Regression dipation } \\
& \mathrm{TR}=-.0170(\mathrm{~V})+.00392(\mathrm{I})-.00656(\mathrm{MARSTOI})+.1745(\text { PPRT }) \\
& +34.333(\times 3)-19.197(X 2)-31.051(X 1)+.3743(\mathrm{VX} 2) \\
& -2.165(\mathrm{VX} 3)+2.634(\mathrm{VX1})-1.458(\mathrm{IX} 3)+1.870(\text { IX1 }) \\
& +1.396(\text { IN2 } 2)+.1540(\text { (NX1 })-.2790(\text { (NX3 })+.1804(\text { (NX2) } \\
& +.8381(\mathrm{PX} 2)+1.039(\mathrm{PX1})-1.839(\mathrm{PX} 3)-.1474(\mathrm{VIX1}) \\
& +.0879(\mathrm{VI} \lambda 3)-.0433(\mathrm{VIX} 2)-.0125(\mathrm{VNX} 1)-.00761 \\
& (\mathrm{MNX} 2)+.0177(\mathrm{VAR} 3)+.0128(\mathrm{DNX} 3)-.00983(\text { IMX1 })- \\
& .0110(\operatorname{In} \lambda 2)+.0514(\mathrm{VPX} 2)-.1344(\mathrm{VP} 121)+.1106(\mathrm{VPX} 3) \\
& \therefore \text {. } 7691(\text { IPY1 })+.0711(\text { IPA3 })-.0774(\text { IPX2 })-.00442 \text { (PMX1) } \\
& \text {-. } 0117(\text { PNA2 })+.0167(\text { PNX3 })-.000777(V I N X 3)+.000727 \\
& \text { (VIAX1) }+.000498 \text { (VIMA2) }+.00760 \text { (VIPXI) }-.000572 \text { (VIPX2) }
\end{aligned}
$$

$$
\begin{aligned}
& .0000997(\text { VPNLX } 3)+.000742(\text { IPMX2 })+.000364(\text { IPNX1 })- \\
& \text {.000749 (IPNA3) - . } 0000191 \text { (VIPMX2) - . } 0000364 \text { (VIPMX1) } \\
& +.0000416(\text { VIPMA } 3)+4.984
\end{aligned}
$$

Where $\overline{\mathrm{VVQV}}(\overline{\mathrm{V}})^{\circ}={ }^{\circ} 15.857$

$$
\overline{\mathrm{WQI}}(\overline{\mathrm{I}})=18.020
$$

$\overline{\mathrm{MARSTOT}}=184.545$
$\overline{\mathrm{PPRT}}=12.614$

Table 19
Transfer Items Test (TK): Main Effects Regression Equation

Equation: $T R=-.00016($ MARSTOT $)+.175($ PPRT $)+5.208$

Table 20
Transfer Items Test (TK): F Tests for Possible Significant Eefects

$$
\text { Mean }=5.818 \quad \text { S.D. }=1.971 \quad \text { Cases }=435 \quad \text { Max. }=10
$$

$\mathrm{a}_{\text {Lrror }}$ ferm $=(1-.27372) / 382=.001901$
$\mathrm{b}_{\mathrm{NS}}=$ Nonsignificant

Table 21
Transfer Items Test (TR):
Proportional Reasoning (P) χ Treatment ($\mathrm{X} 1-\mathrm{X} 3$) Interaction

Strategy	Dummy Variables	Equation
Proportion	$X 3=1$	$\mathrm{TR}=.1064 \mathrm{P}+4.318$
Analogy	. $\lambda 2=1$	$\mathrm{TR}=.1436 \mathrm{P}+3.807$
Diagram	$\cdots \quad \lambda 1=1$	$T \mathrm{R}=.1936 \mathrm{P}+3.354$
Factor-Label	$\chi 3=\lambda 2=\lambda 1=-1$.	$\mathrm{TR}=.4684 \mathrm{P}+2.823$

Table 22
Transfor Itens lest (TR): .
Substitution of Extreme Values for
PPRT ($1 \rightarrow 21$)

Figure 7. Transfer Items Test (TR): Proportional Reasoning (P) X Treatment (X1-X3) Interaction

Table 23
Moles Immediate Posttest (MOOT): General Regression Equation

MOQT $=-.0240(\mathrm{~V})+.0392(\mathrm{I})-.00765$ (MARSTOT) $+.2006($ PPRT $)+$ $94.073(X 3)+7.437(X 2)-77.426(X 1)-.9334(V X 2)+$
$2.862(\mathrm{VX1})-5.322(\mathrm{VX} 3)-5.195(\mathrm{IX} 2)-.5553(\mathrm{IX} 2)+$ $4.7 \angle 1(\mathrm{IX} 1)+.3781(\mathrm{MX1})-.5833(\mathrm{MX} 3)-.0219(\mathrm{MX} 2)+$.7620 (PX2) +4.069 (PX1) - 6.328 (PX3) - . 1993 (VIX1) + .2767 (VIX3) $+.0 .023($ VIX2 $)-.0141($ NAX1 $)+.00625($ VNX2 $)+$ $.0322(\mathrm{VNX} 3)-.0244(\operatorname{INX1})+.0327(\operatorname{IMX} 3)+.00139(\mathrm{mXX} 2)-$. 0207 (VPX2) - . 1286 (VPX1) + . 3733 (VPX3) - . 2484 (IPX1) + 3456 (IPX3) - . 0241 (IPX2) - . 0198 (PMX1) - . 00895 (PMX2) + .0434 (PMX3) +.00108 (VINX1) - . 00174 (VINX3) -.000355
(VIMX2) $+.00987($ VIPX1 $)-.000272($ VIPX2 $) ~-~ .0195(V I P X 3) ~+~$.000699 (VPMX1) +.000294 (VPMX2) $-.00256($ VPMX3 $)+.00134$ (INPX1) $+.000411($ IMPX2 $)-.00242($ IPMX3 $)-.0000612(V I P M X 1)$ - . 00000984 (VIPNX2) +.000139 (VIPMX3) +15.653

Where | $\overline{\mathrm{VVQ}}(\overline{\mathrm{V}})$ | $=15.307$ | $\overline{\mathrm{MARSTOT}}=184.546$ | |
| ---: | :--- | ---: | :--- |
| $\overline{\mathrm{WQQI}}(\overline{\mathrm{I}})$ | $=18.020$ | $\overline{\mathrm{PPRT}}$ | $=12.614$ |

$10 i$

Table - 24
Moles Immediate Posttest MOQT): Main Effects Regression Equation

Equation: HOQT $=-: 00675($ MARSTOT $)+. .197($ PPRT $)-.887(X 3)+$
Where $\overline{\text { MARSTOT }} \equiv 184.56 \quad \overline{\text { PPRT }}=12.614$

Strategy	Durmy Variables	MOQT
. Proportion	X3 $=1$	$16.370^{\text {a }}$
Analogy	$\mathrm{X}^{2}=1$	17.304
Dragram	$\mathrm{Xl}=1$	$17.66{ }^{\text { }}$
Factor-Label	$\mathrm{X} 3 \doteq \mathrm{X} 2$ \% $^{\text {¢ }} 10-1$	$17.693{ }^{\text {b }}$

asignificantly lower than mean
${ }^{\mathrm{b}}$ Significantly higher than mean

Table 25
Moles Inmediate Posttest (MOQT): F Tests for Possible Significant Lffects
Mean $=17.191 \quad$ S.D. $=3.041 \quad$ Cases $=528 \quad$ Max. $=21$

Table 26
Moles Immedinte Posttest (MOQT): Calculations for "Fourth" Effect

Factor ${ }^{\circ}$ Label Treatment Effect (Cohen and Cohen, 1975 p.193)

$$
\begin{align*}
& t_{g}=\frac{-g \sum B_{i}{ }^{-}}{\sqrt{\tilde{s_{d}{ }^{2} Y-\hat{Y} \frac{-(g-1)^{2}}{n g}+\sum \frac{1}{n_{i}}}} \quad d f=n-k-1 .} \quad \quad d \\
& \tilde{s} d^{2} Y-\hat{Y}=\tilde{s} d^{2} Y\left(1-R^{2}\right) \frac{n}{n-k-1}=3.041^{2} .(1-.13011) \frac{528-29}{528-7-1-29}=8.176 \\
& t_{4}=\frac{-4(-.887+.0471+.404)}{\sqrt{8.176-(3)^{2}+\frac{1}{135}+\frac{1}{136}+\frac{1}{136}}} \\
& t_{4}=\frac{1.744}{\sqrt{8.176(.08964)}}=2.04 \quad \text {. Sig. at } p<.05 \\
& \text { Verbal X,Visual X Tresatmenf Ifteraction } \\
& \mathrm{B}_{4}=-\sum \mathrm{B}_{\mathrm{i}}=-(-.0194+.0235-.0227)=.0186 \\
& \text { S.E.B. }_{4}=\frac{\sum_{6} \text { S.E.B. }_{i}}{3}=\frac{.00959+\frac{.0109+.0107}{3}}{}=.0104 \\
& t_{4}=\frac{\mathrm{B}_{4}}{\text { S.E.B.4 }}=\frac{.0186}{.0104}=1.79 \tag{NS}
\end{align*}
$$

Table 27
Noles lumediate lositest (MKOLI):
Verbal Preference (VVQV) X Visual Preference (WQI) X Treatment (X1-X3) Interaction

Strategy		Drmmy Variables	Equation		
	Proportion	$x 3=1$	MOQT $=$	$-.658 \mathrm{~V}-.3901$	+.0337VI+24.410
	Analogy	$\mathrm{X} 2=1$	MOQT $=$. $619 \mathrm{~V}+.394 \mathrm{I}$. $0295 \mathrm{VI}+8.949$
	Diagram ${ }^{\text {a }}$	$X 1=1$	MOQT $=$.241V+. 243	-.0180VI+14.361
	Factor-Labed	$\mathrm{x} 3=\mathrm{x} 2=\dot{\mathrm{x}} 1=$	MOQT $=$	-. $2851 \mathrm{~V}-.0738$	+ $+.0133 \mathrm{VI}+19.276$

Table 28

Moles Immediate Po'sttest (MOQT):
Substitution of Extreme, Values for
WVQ $(1+30)$ and WVQI $(2+23)$

Figure 8: Moles Immediate Posttest (MOQT): Verbal Preference' (WQQV) X Visual Preference (WQI) X
Treatment (XI-X3) Intexaction Treatment (X1-X3) Interaction

Table 29
Gas Laws Inmediate Posttest (GiQT):
Verbal Prefer ace (VVQV) \ddot{i} Visual Preference (VVQI) X
Treatment ($\times 1-\times 3$) Interaction

Strategy
Dumy Variables
Equation
Proportion

$$
\begin{aligned}
& \mathrm{X} 3=1 \\
& \mathrm{X} 2=1 \\
& \mathrm{X}=1 \\
& \mathrm{X}=1 \\
& \mathrm{X} 3=\mathrm{X} 2=\mathrm{X} 1=-1 \quad \mathrm{GLQT}=-.2663 \mathrm{~V}-.1378 \mathrm{I}+.0134 \mathrm{VI}+13.832 \\
& \mathrm{GIQT}=.3623 \mathrm{~V}+.2743 \mathrm{I}-.0190 \mathrm{VI}+4.606
\end{aligned} \quad \begin{aligned}
& \mathrm{GLQT}=.0362 \mathrm{~V}-.00778 \mathrm{I}-.00121 \mathrm{VI}+10.525 \\
& \mathrm{GLQT}=-.1820 \mathrm{~V}-.00908 \mathrm{I}+.00686 \mathrm{VI}+11.229
\end{aligned}
$$

Analogy
Diagram
Factor-Label

Table 30
(ias Laws Inmediate Posttest (GLOT):
Sibstitution of Extreme Values for VVQV $(1 \rightarrow 30)$ and .VVQI $(2 \rightarrow 23)$

VVQV		VVQI		VI		TREATMENT		PREDICTED GLQT
1	~ 27	2	-. 28	2	. 03	* P	13.832	13.32
3)	-7.99.	2	-. 28	60	. 80	P	13.832	6.37
1	-. 27	23	-3.17	23	. 31	H	13.832	10.70
30	-7.99	23	-3.17	690	9.25	p	13.832	11.92
1	. 36	2	. 55	2	-. 04	A	4.606	5.48
30	10.87	2	. 55	60	-1.14	A	4.606	14.88
1	. 36	23	6.31	23	-. 44	A	4.606	10.84
30	10.87	23	6.31	690.	-13.11	A	4.600	8.67
1	. 04	2	-. 02	2	-. 00	D)	10.525	10.54
30	1.09	2	-. 02	60	-. 07	D	10.525	11.52
1	. 04	23	-. 18	23	-. 03	D	10.525	10.35
30	1.09	23	-. 18	6.90	-. 83	D	10.525	10.60
1	-. 18	2	-. 02	2	. 01	F	11.229	11.04
30	-5.46	2	-. 02	60	. 41	F	11.229	6.16
1	-. 18	23	-. 21	23	. 16	F	11.229	11.00
830^{-2}	-5.46	23	-. 21	690	4.73	F	11.229	10.29

Table 31
Stoichiometry Irmediate Posttest (SQT):
Verbal Preference (VVQV) λ Visual Preference (VQQ) X Ireatment ($11-\mathrm{X} 3$) Interaction

Strategy	vummy Variables	Iquation
Proportion	$x 3=1$	SCYI $=+.0704 \mathrm{~V}+.0795 \mathrm{I}-.00301 \mathrm{VI}+7.529$
Analogy	$\therefore 2=1$	$\mathrm{SQT}=-.211 \mathrm{~V}-.128 \mathrm{I}+.00945 \mathrm{VI}+12.179$
viagram	$\lambda 1=1$	SQT $=-.110 \mathrm{~V}-.0316 \mathrm{I}+.00435 \mathrm{VI}+10.379$
Factor-Label	$\lambda \Sigma=\lambda 2=\lambda 1=-1$	$\mathrm{SQT}=+.190 \mathrm{~V}+.231 \mathrm{I}-.0108 \mathrm{VI}+5.605$

Table 32
Stoichiometry Immediate Posttest (SQT):
Substitution of lextreme Values for
VVQV $(1 \rightarrow 30)$ and VVQI $(2 \rightarrow 23)$

WVQ		VVQI		VI	TREATMENT			$\begin{gathered} \text { PREDICTED } \\ \text { SQT } \\ \hline \end{gathered}$
1	. 07	2	. 16	2	-. 01	P	7.529	7.75
30	2.11	2	. 16	60	-. 18	P	7.529	9.62
1	. 07	25	1.83	23	-. 07	P	7.529	9.36
30	2.11	23	1.83	690	-2.08	P	7.529	9.39
1	-. 21	2	-. 20	2	.02	A	12.179	11.73
30	-6.33	2	-. 26	60	. 57	A	12.179	6.16
1	-. 21	25	-2.94	23	. 22	Λ	12.179	9.24
30	-6.33	23	-2.94	690	6.52	\A	12.179	9.43
1	-. 11	2	-. 06	2	. 01	D	10.379	10.21
30	-3.30	2	-. 06	60	. 26	i)	10.379	7.28
1	-. 11	23	-. 73	23	. 10	!	10.379	9.64
30	-3.30	23	-. 73	690	3.00	D	10.379	入9.35
1	. 19	2	. 40	2	-. 12	F	5.605	6.24
30	5.70	2	. 46	60	-. 65	- F	5.605	11.12
1	. 19	23	5.51	23	-. 25	F	5.605	10.86
30	5.70	23	5.31	690	-7.45	F	5.605	9.17

 (VQQI) X Treatment (X1-X3) Interaction

Table 33

Molarity Immediate Posttest (MLQT):
Verbal Preference (VVQV) X Visual Preference (VVQI) X Treatment ($\mathrm{x} 1-\mathrm{x} 3$) Interaction

4 Proportion
Analogy
Diagram
Factor-Labe1
$\mathrm{x} 3=1$
$\mathrm{x} 2=1$
$X_{1}=1$
$X 3=. \chi 2=X 1=-1 \quad \mathrm{MLQT}=-.4059 \mathrm{~V}-.2767 \mathrm{I}+.0214 \mathrm{VI}+16.968$

Table 34

Molarity Immediate Posttest (MLQT):
Substitution of lixtreme Values for
VVQV $(1+30)$ and VVQI $(2+23)$

VVQV		VVQI		VI		TREATMENT		PREDICTED MLOT
1	. 13	2	. 64	2	-. 02	P	5.178	5.93
30	4.04	2	. 64	60	-. 47	P	5.178	9.39
1	. 13	23	7.32	23	-. 18	P	5.178	12.45
30	4.04	23	7.32	690	-5.39	P	5.178	11.15
1	. 27	\% 2	. 70	2	-. 03	A	4.448	5.39
30	8.07	2	. 70	60	-. 80	A	4.448	12.42
1	. 27	23	8.08	23	-. 31	A	4.448	12.49
30	8.07	23	8.08	690	-9.18	A	4.448	11.42
1	-. 00	2	. 14	2	-. 00	L	11.228	11.31
30	-1.84	2	. 14	60	-. 02	U	11.228	9.51
1	-. 06	23	1.63	23	-. 01	V	11.228	12.79
30.	-1.84	23	1.63	690	-. 25	i)	11.228	10.77
1	- -.41	2	-. 55	2	. 04	F	16.968	16.05
30	-12.18	2	-. 55	60	$1.28{ }^{\circ}$	F	16.968	5.52
1	-. 41	23	-6.36	23	. 49	F	16.968	10.69
30	-12.18	23	-6.30 ${ }^{\text {\% }}$	690	14.77	F	16.968	13.19

\qquad .

Figure 11. Molarity Immediate Posttest (MLQT): Verbäl Preference (VVQV) X Visual Preference (VVQI) X Treatment (X1-X3) Interaction

Table 35

Stoichionetry Immediate Posttest (SQT): General Regression Equation

```
SQT = -.0140(V) +.0375(I) - .00757.(MARSTOT) + . 1281(PPRT) +
    35.892(X3) - 27.270(X2) - 23.524(X1) + .8876(VX2) - . 6725
    (VX1) - 1.498(VX3) - 1.773(IX3) + 1.146(IX2) + 1.559(iX1)
    + 1431(NX1) - . 2327(MX3) +. .1380(MX2) +.3.031(PX2) + 1.158
    (PXI) - 3.296(PX3) + .00679(VIX1) + .0728(VIX3) - . 0335
    (VIX2) + .000240(VMX1) - . 00167(VNX2) + .0104 (VMX3) -
    .00993(IMX1) + .0116(INX3) - .00595(INX2) - . 1304 (VPX2)
    +.0623(VPX1) + .1508(VPX3) - .0926(IPX1) + . 1539(IPX3)
    - .1269(IPX2) - .00689(PMX1) - .0142(PMX2) + .0203 (PMX3)
    +.000181(VINX1) - .000522(VIMX3) + .0000243(VINX2) - -
    .000746(VIPX1) + . 00536 (VIPX2) -.00702 (VIPX3) - .000109
    (VPMX1) +.000373 (VPMX2) - .000965(VPMX3) +. .000590
    (IPNX1) + .000596(NPXZ2) - .000976(IMPX3) - .0000114
    (VIPMX1) - . 0000125 (VIMPX2) + .0000469 (VIMPXj) + 8.704
```

* Where $\overline{\mathrm{WQV}}(\overline{\mathrm{V}})=15.807 \quad \overline{\mathrm{MARSTOT}}=184.546$
$\overline{\mathrm{V} Q \mathrm{I}}(\overline{\mathrm{I}})=18.020 \quad \overline{\mathrm{PPRT}} \quad=12.614$

Table 36
Stoichiometry Inmediate Posttest (SQT): Main Effects Regression Equation

Equation: $\quad \mathrm{SQT}=-.00545$ (MARSTOT) +.152 (PPRT) +.8546

Table 37
Stoichiometry Immediate Posttest (SQT): F Tests for Possible Significant Effects

alirror Term $=(1-.18404) / 475-15=.001774$
$\mathrm{b}_{\mathrm{NS}}=$ Nonsignificant

Table 38
Stoichiometry Immediate Posttest (SQT): Calculations for "Fourth" Effect

Table 39
Stoichiometry Inmediate Posttest (SQT):
Visual Preference (VQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction

Strategy	Durmy Variables	Equation
Proportion	$\mathrm{X} 3=1$	$\mathrm{SQT}=-.0425 \mathrm{I}-.0121 \mathrm{M}+.00040 \mathrm{IM}+10.844$
Analogy	$\lambda 2=1$	$\mathrm{SQT}=.121 \mathrm{I}-.0005 \mathrm{M}-.000882 \mathrm{IM}+9.177$
Diagram	$\mathrm{X} 1=1$	$\mathrm{SQT}=.387 \mathrm{I}+.0306 \mathrm{M}-.00190 \mathrm{IM}+2.981$
Factor-Label	$\mathrm{X} 3=\mathrm{X} 2=\mathrm{X} 1=-1$	$\mathrm{SQT}=-.314 \mathrm{I}-.0482 \mathrm{M}+.00202 \mathrm{IM}+17.527$

Table 40

Stoichiometry Immediate Posttest (SQT):
Substitution of lixtreme Values for
WVQI $(2+23)$ and MARSTO! $(.01+349)$

WVC!		MARSTOT		IM		TREATMENT		$\begin{gathered} \text { PREDICTED } \\ \text { SQT } \\ \hline \end{gathered}$
2	-.08	101	-1.22	202	. 08	P	10.844	9.62
23	-. 98	101	-1.22	2323	. 93	P	10.844	9.57
2	-. 08	349	-4.22	698	. 28	p	10.844	6.82
23	-. 98	349	-4.22	8027	3.21	P	10.844	8.85
2	. 24	101	-. 06	202	-. 18	A	9.177°	9.18
23	2.78	101	-. 06	2323	-2.05	A	9.177	9.85
2	. 24	349	-. 20	698	-. 62	A	9.177	8.60
23	2.78	349	-. 20	8027	-7.08	A	9.177	4.68
2	. 77	101	3.09	202	-. 38	v	2.981	6.46
23	8.90	101	3.09	2323	-4.41	D	2.981	10.56
2	. 77	349	10.68	698	-1.33	D	2.981	13.11
23	8.90	349	10.68	8027	-15.25	D	2.981	7.31
2	-. 63	101	-4.87	202	. 41	F	17.527	12.44
23	-7.22	101	-4.87	2323	4.69	F	17.527	10.13
2	-. 63	349	-16.82	698	1.41	F	17.527	1.49
23	-7.22	349	-16.82	8027	16.21	F	17.527	9.70

Figure 12. Stoichiometry Immediate Posttest (SQT): Visual Preference (WQQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction

Table 41

Moles Imnediate Posttest (MOQT).
Visual Preference (VVQI) X Mathematics Anxiety (M) X *
Treatment ($\times 1-\lambda 3$) Interaction

Strategy
Dummy Variables Equation

Proportion	$X 3=1$	MOQT $=-.3045 \mathrm{I}-.04588+.00234 \mathrm{IM}+22.354$
Analogy	$\mathrm{X} 2=1$. MOQT $=.1100 \mathrm{I}+.0150 \mathrm{M}-.000992 \mathrm{I}+15.971$
Diagram	$\mathrm{Xl}=1$	MOQT $=.4447 \mathrm{I}+.0377 \mathrm{M}-.00263 \mathrm{IM}+11.313$
Factor-Labe?	$\mathrm{X} 3=$, $\mathrm{X} 2=\mathrm{X} 1=-1$	MOQT $=-.0928 \mathrm{I}-.0376 \mathrm{M}+.00128 \mathrm{I}+21.592$

Table 42
Moles Immediate Posttest (MOQT):
Substitution of bxtreme Values for VVQI $(2 \rightarrow 23)$ and MARSTOT $(101 \rightarrow 349)$

WVQI		MARSTOT		IM	TREATMENT			$\begin{aligned} & \text { PREDICTED } \\ & \text { MOQT } \end{aligned}$
2	-. 61	101	-4.63	202	. 47	P	22.354	17.59
23	-7.00	101	-4.6.3	2323	5.44	P	22.354	16.16
2	-. 61	349	-15.98	698	1.63	P	22.354	7.39
23	-7.00	349	-15.98	8027	18.78	P	22.354	18.15
2	. 22	101	1.52	202	-. 20	A	15.971	17.51
23	2.53	101	1.52	2323	-2.30	A	. 15.971	17.71
2	. 22	349	5.24	698	-. 69	A	15.971	20.73
23	2.53	349	5.24	8027	-7.96	A	15.971	15.77
2	. 89	101	3.81	202	-. 53	1)	11.313	15.48
23	10.23	101	3.81	2323	-6.11	D	11.313	19.24
2	. 89	349	13.16	698	-1.84	D	11.313	23.52
23	10.23	349	13.16	\$227	-21.11	D	11.313	13.59
2	-. 19	101	-3.80	202	. 26	F	21.592	17.87
23	-2.13	101	-3.80	2323	2.97	F	21.592	18.63
2	-. 19	349	-13.12	698	. 89	F	21.592	9.18
23	-2.13	349	-13.12	8027	16.27	F	21.592	16.61

Figure 13. Moles Immediate Posttest MOOT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction

Table 43 • • Gas La:.s Inmediate Posttest (GLOT):

Visual Preference (VVQI) X Mathematics Anxiety (A) X
Treatment ($\mathrm{X} 1-\lambda 3$) Interaction
-

Stragegy	Dummy Variables	Equation
Proportion	X3 $=1$	$\mathrm{GLQT}=\{00588 \mathrm{I}-.00504 \mathrm{M}+.000043 \mathrm{IM}+10.548$
Analogy	$x 2=1$	GLQT $=-.1388 \mathrm{I}-.010 \mathrm{CN}+.000282 \mathrm{IM}+12.282$
Diagram	$\mathrm{X} 1=1$	$\mathrm{GLQT}=.0417 \mathrm{I}+.0124 \mathrm{M}-.000697 \mathrm{IM}+8.020$
Factor-1 21	$\mathrm{X} 3=\mathrm{X} 2=\mathrm{X} 1=$	GLQT $=-.0277 \mathrm{I}-.0174 \mathrm{M}+.000364 \mathrm{M}+11.562$

Table 44

Gas Laws Inmediate Posttest (GLQT):
Substitution of Extreme Values for
VVQI $(2 \rightarrow 23)$ and MARSTOT $(101 \rightarrow 349)$

WQI		MARSTOT		IM		TREATMENT		$\begin{gathered} \text { PREDICTED } \\ \text { GLOT } \\ \hline \end{gathered}$
2	. 01	101	-. 51	202	. 01	P	10.548	10.06
23	. 14	101	$\therefore .51$	2323	. 10	P	10.548	10.29
2	101	349	-1.76	698	. 03	P	10.548	8.83
23	. 14	349	-1.76	8027	. 35	P	10.548	9.27
2	-.28	101	-1.07	202	. 00	A	12.282	10.99
23	-3.19	101	-1.07	2323	. 66	A	12.282	8.67
2	-. 28	349	-3.70	698	. 20	A	12.282	8.50
23	-3.19	349	-3.70	8027	2.26	A	12.282	7.65
2	. 08	101	1.25	202	-14.08	$1)$	8.020	9.22
23	. 96	101	1.25	2323	-1.62	D	8.020	8.61
2	. 08	349	4.33	698	-. 49	D	8.020	11.94
23	. 96	349	4.33	8027	-5.59	D	8.020	7.71
2	-. 06	101	-1.76	202	. 07	F	11.562	9.82
23	-. 64	101	-1.76	2323	. 85	F	11.562	10.01
2	. 06	349	-6.07	698	. 25	F	11.562	5.69
23	-. 64	349	-6.07	8027	2.92	. F	11.562	7.77

[^1]

Figure 14. Gas Laws Immediate Posttest (GloT): Visual Preference (WQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction

Table 45
Molarity Immediate Posttest (MLQT):
Visual Preference (WVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction

lable 46
Molarity Immediate Posttest (MLQT):
Substitution of lixtreme Values for
VVQI $(2+23)$ and MARSTOT $(101 \rightarrow 349)$

Figure 15. Molarity Immediate Posttest (MLOT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction

Table 47

- Decimal Subtest (Vi): General Regression Equation

```
m:= -.0130(V) + .0575(1) -.0051.3(MARSIOT + .1197(PINT)
    -1.627(\lambda2) - 20.657(.11) + 31.359(A3) - 2.010(VX2) -
        .4212(VX3) + 1.391 (VX1) - 1.751(IX3) + 1.059(IX1) +
        5485(LN2) +.0884(MN1) -. 1890(MN3) + .0146(MX2) +
        .7302(PX2) + .0350(PX1) - 2.808(PX3) - .0750(VIX1) +
        .0176(VLN3) + .0882 (VIX2) - .00523 (VMX1) + .0108 (VMX2)
        +.00155(VMA3) + .0108(INM3) - .00523(INX1) - .00306(IMN2)
        + .0939 (VPN2) - .0512(VPX1) + .0987(VPX3) - .00427(IPX1)
        +.1535(IPN3) - .0643(IPX2) + .00181(PNX1) - .00637(PMX2)
        +.0183(PNL33) + .000317(VING1) - .0000797 (VINX3) - .000480
        (VIMX2) + .00301(VIPA1) - .00396(VIPX2) - .00475(VIPX3) +
    ).00012b(VPNLl) -.000373(VLS2) - .000598(VPNR3) +
        .000447 (IPNX2) - .0000116 (IPMX1) - . 00101 (IPMX3) + .0000156
    (VIPRX2) - .0000117,(VIPNA1) + .0000301(VIPMX3) + 9.397
Where \overline{VV(V (V)}=15.807
    MARSTOT }=184.54
    VVQI (\overline{I})=18.020 }\overline{\mathrm{ PFTT }}=12.61
```


Table 48

Decimal Subtest (UE): F Tests for Possible Significant Effects
Mean $=10.815 \quad$ S.D. $=1.903^{\circ} \quad$ Cases $=421 \quad$ Max. $=13$

${ }^{2}$ Error Term $=(1-.21969) / 368=.002120$
$b_{\text {NS }}=$ Nonsignificant

Table 49

Decimal Subtest (i)i): Calculations for 'Fourth" Effect

$$
\begin{aligned}
& \text { - Visual } \lambda \text { Nath Anxiety } \lambda \text { Treatment Interaction } \\
& \mathrm{B}_{4}=-\sum \mathrm{B}_{\mathrm{i}}=(.00172-.00207-.00128)=.00163 \\
& \text { S.E.B. }_{4}=\frac{\Sigma \text { S.E.B. }_{i}}{3}=\frac{.000966+.000961+.00108}{3}=.001002 \\
& t_{4}=\frac{B_{4}}{\text { S.E.B. }_{4}}=\frac{.00163}{.001002}=1.63
\end{aligned}
$$

143

Table 50
Decimal Subtest (DE): Main Effects Regression Equation

Equation: DE $=.0372$ (VVQI) - . 00421 (MARSTOT + .124 (PPRT) $+9.5 i 3$

Table 51

Decimal Subtest (LIE):
Visual Preference (VQI) X Mathematics Anxiety (M) X Treatment ($\mathrm{X} 1-\mathrm{X} 3$) Interaction

Strategy	Lummy Variables	Equation
Proportion	$\lambda 3=1$	$\mathrm{DE}=-.4260 \mathrm{I}-.0583 \mathrm{M}+.00277 \mathrm{IM}+19.679$
Analogy	$\lambda 2=1$	$\mathrm{DE}=.4005 \mathrm{I}+.0250 \mathrm{M}-.00189 \mathrm{IM}+5.223$
Liagram	$\lambda 1=1$	$\mathrm{DE}=.4778 \mathrm{I}+.0484 \mathrm{M}-.00270 \mathrm{IM}+2.277$
Factor-Label	$\lambda 3=\lambda 2=\mathrm{X1}=-1$	$\mathrm{DE}=-.2222 \mathrm{I}-.0356 \mathrm{M}+.00116 \mathrm{IM}+15.634$

Table 52

Decimal Subtest (JE):
Substitution of Extreme Values for
WVI $(2+25)$ and, MARSTOT $(101+349)$

VVQI		MARSTOT		IM		TREATMENT		$\begin{gathered} \text { PREDICTED } \\ \text { DE } \end{gathered}$
2	-. 85	101	-5.89	202	. 56	P	19.679	13.50
23	-9.80	101	-5.89	2323.	0.43	- P	19.679	10.43
2	-. 85	349	-20.35	698.	1.93	P	19.679	. 41
23	-9.80	349	-20.35	8027	22.23	P	19.679	11.77
2	. 80	101	2.52	202	-. 38	A	5.223	8.17
23	9.21	101	2.52	2323	-4.39	A	5.223	12.57
2	. 80	349	8.72	698	-1.32	A	5.223	13.43
23	9.21	349	8.72	8027	-15.17	A	5.223	7.80
2	. 96	101	4.89	202	$\therefore 55$	D	2.277	7.58
23	10.99	101	4.89	2323	-6.27	D	2.277	11.88
2	. 96	349	16.89	698	-1.88	ป	2.277	18.28
23	10.99	349	16.89	8027	-21.67	D	2.277	8.49
2	-. 44	101	- -3.60	202	$.23$	-F	15.634	11.83
23	-5.11	101	-3.60	2323	2.69	F	15.634	9.62
2 "	-. 44	349	- 12.42	698	. 81	F	15.634	3.57
23	-5.11	. 349	-12.42	8027	9.31	F	15.634	7.41

Table 53

$$
\begin{aligned}
& \text { NOE }=-.0271(\mathrm{~V})+.0427(\mathrm{I})-.00484 \text { (MARSTOT) }+.0812(\text { PPRT }) \\
& -16.238(X 2)-36.544(\lambda 1)+33.824(X 3)+.1191(V X 2)- \\
& 2.030(\mathrm{VX} 3)+2.395(\mathrm{VX} 1)-2.058(\mathrm{~L} 3)+2.184(\mathrm{IX} 1)+ \\
& .8566(\mathrm{DN} 2)+.1883(\mathrm{NX} 1)-.2163(\mathrm{MN} 3)+.1124(\mathrm{MN} 2)+ \\
& .9716 \text { (PX2) }+2.420(\text { PX1 })-2.627 \text { (PX3) }-.1479(\text { VIX1 })+ \\
& .1238 \text { (VIX3) - . } 00758 \text { (VIA2) }+.0144 \text { (VMX1) - . } 00279 \text { (VNX2) } \\
& -.0136(\mathrm{M} A 3)^{\circ}+.0133(\operatorname{INX} 3)-.0121(\operatorname{INX} 1)-.00591(\operatorname{INX} 2) \\
& +.0 \cup 599 \text { (VPX2) - . } 1803 \text { (VPX1) + . } 1637 \text { (VPA3) - . } 1466 \text { (IPK1) }
\end{aligned}
$$

$$
\begin{aligned}
& +.0170(\text { PNX3 })-.000881(\text { VINX } 3) .+.000888(V I M X 1)+.000154 \\
& \text { (VDN2) }+.0111 \text { (VIPス1) - } 000176 \text { (VIP^2) - } 00964 \text { (VIPX3) } \\
& +.00105(\text { VPRX1 })+.000178(\text { VRALi2 })-.00118(V P R X 3)+.000404 \\
& \text { (IPMX2) }+ \text {. } 000816 \text { (IPNX1) - . } 00101 \text { (IPNX3) - . 0000102(VIPNX2) } \\
& -.0000686(\text { VIPMA1 })+.0000702(\text { VIPMAX })+10.838 \\
& \text { Where } \overline{\mathrm{WQV}}(\overline{\mathrm{~V}})=15.807^{\circ} \\
& \overline{\text { VVQI }}(\overline{\mathrm{I}})=18.020 \\
& \overline{\text { MARSTOT }}=184.546 \\
& \overline{\text { PPRT }}=12.614
\end{aligned}
$$

Table 54°

Nondecima1 Subtest (NUL): Main liffects Regression Equation

Equation: NJE $=.0376$ (VVQI) -.00450 (MARSTOT) +.0854 (PPRT)
$+10.835$
θ

0

Table 55

Nondecimal Subtest (NJE): F Tests for Possible Significant Effects

$$
\text { Mean }=11.322 \quad \text { S.D. }=1.477 \quad \text { Cases }=428 \quad \text { Max. }=13
$$

Predictor	ΔR^{2}		Sig. Level
WVQI	. 01331	. $01331 / .002140^{\mathrm{a}}=6.22$. 05
MARSTOT	. 03641	. $03641 / .002140=17.01$. 01
PPRT	. 05837	. $05837 / .002140=27.28$. 01
VPMXI VPMC2 VPax3	$\begin{aligned} & .00883 \\ & .00105 \\ & .00132 \\ & .01120 \end{aligned}$	$\frac{.01120 / 3}{.002140}=1.74$	NS ${ }^{\text {b }}$
${ }^{a_{\text {Error }}}$ $b_{\mathrm{NS}}=\mathrm{N}$	38)/375		

Table 56
Nondecimal Subtest (NDE):
Visual Preference (VVQ) X Mathematics Arfiety (M) X.
Treatment ($\lambda 1-\lambda 3$) Interaction

Strategy

Jummy Variables
Equation

Proportion	$\mathrm{X} 3=1$	$\mathrm{NJE}=-.0396 \mathrm{I}-.0143 \mathrm{M}+.000619 \mathrm{IM}+12.665$
Analogy	$\mathrm{X} 2=1$	$\mathrm{NJE}=.0996 \mathrm{I}+.00126 \mathrm{M}-.000404 \mathrm{IM}+10.527$
Diagram	$\mathrm{X} 1=1$	$\mathrm{NUE}=.2542 \mathrm{I}+.0227 \mathrm{M}-.00146 \mathrm{IM}+7.331$
Factor-Label	$\mathrm{X} 3=\mathrm{X} 2=\mathrm{X} 1=-1$	$\mathrm{NJE}=-.1437 \mathrm{I}-.0291 \mathrm{M}+.00124 \mathrm{IM}+15.2111$

Table 57
Nondecimal Subtest (NDE):
Substitution of Extreme Values for
WQI $(2 \rightarrow 23)$ and MARSTOT $(101+349)$

Figure 17. Nondecimal Subtest (NDE): Visual Preference (VQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction

Table 58
Molarity Delayed Posttest (NLT): General Regression Equation

```
MLT = -.00084 (V) +.010y(I) - .00607 (AARSTOT) +. . 1460 (PPRT)
    + 30.440(X3) + 2.662(X2) = 27.920(x1) - .4202(VX2) +
    1.320(VX1) - . 8307(V\3) - .8477 (IX3) + .0400(IX2) +
    1.014(IX1) + . 1153(MX1) - . 2202(NA3) + .0498(MX2) -
    1.320(PX2) + 1.491(PXI) - 1.326(PX3) -...0482(VIX1)
    + .00477 (VIX3) + .00889 (VIX2) - . 00539(VMX1) -
    .000541(VNX2) + .00762(VMA3) - .00446(nNX1)`+ .00791
    (INX3) - .00278(INXX2) + . 140(VPX2) - .0662(VPX1)
    +.0118(VPX3) + .0407(IPX1) + .0201(IPX3) + .0424 (IPX2)
    -.00621(PMX1) + .000580 (PMX2) + .0125(PMN3) + .v00206́
    (VIMX1) - .000214 (VIMX3) + .0000486(VIMX2) + . 00145(VIPX1)
    -.00517(VIPX2) + .00164(VIPX3) + .000283(VPMX1) -
    .000417(VPMX2) - .000393(VPMX3) + .000195(IPMX1) +
    .0000494(IPNX2) - .000416(IPMX3) - .00000718(VIPMX1) +
    .000142(VIPMX2) + .00000970 (VIPMX3) + 5.327
Where \overline{WVQV }(\overline{\textrm{V}})=15.807
\overline{MARSTOT}}=184.54
    \overline{WQI (\overline{I}}=18.020 . \overline{PPRT }=12.614
```

Table 59
Molarity Velayed Posttest (MLT): Main Effects Regression Equation

Equation: MLT $=-.00552$ (MARSTOT) +.141 (PPRT) +5.786

Table 60
Molarity Delayed Posttest (MLT): F Tests for Possible Significant Effects
Mean $=6.197$ S.D. $=2.4433^{\circ}$ Cases $=481$ Max. $=10$

Predictor	$\Delta \mathrm{R}^{2}$	F	Sig.Level
MARSTOT	. 02314	.02314/.002150 ${ }^{\text {a }}=10.80$. 01
PPRT	. 05945	. $05945 / .002150=27.65$,	. 01
VMXI vMX2	$\begin{aligned} & .00020 \\ & .00725 \end{aligned}$	$\underline{.00946 / 3}=1.47$	$N S^{\text {b }}$
vax3	$\frac{.00195}{.00946}$. 002150	
VPX2 VPX1	.01149 .00566	$\underline{.01737 / 3}=2.69$. 05
VPX3	$\frac{.00022}{11737}$. 002150	
VPX2	. 01149	.01149/.002150 $=5.34$. 05
VPXI	. 00566	. $00566 / .002150=2.63$	NS
vPX3	. 00022	$.00022 / .002150=0.10$	NS

$\mathrm{a}_{\text {Error }}$ Term $=(1-.17018) / 427-41=.002150$
$\mathbf{b}_{\mathrm{NS}}=$ Nonsignificant

Table 61
Molarity Delayed Posttest (MLT): Calculations for "Fourth" Fffect

$$
\begin{aligned}
& \text { Verbal } \lambda \text { Proportional Reasoning X Treatment Interaction } \\
& \text { VPX } 2 \text { +. } 0147 \text {. } 00699 \\
& \text { VPX } 1 \\
& -.0106 \\
& .00828 \\
& \text { VPX } 3 \\
& \text { +. } 00268 \\
& \text {. } 00838 \\
& \mathrm{~B}_{4} \bar{F}-\sum \mathrm{B}_{\mathrm{i}}=-(.0147-.0106+.00268)=-.00678 \\
& \text { S.E.B. }_{4}=\Sigma \frac{\text { S.E.B. }_{\mathrm{i}}}{3}=\frac{.00699+.00828+.00838}{3}=.00788 \\
& t_{4}=\frac{\mathrm{B}_{4}}{\text { S.E.B. }_{4}}=\frac{-.00678}{.00788}=-.86
\end{aligned}
$$

Table 62
Molarity Delayed Posttest (MLT):
Verbal Preference (WVQ) X Proportional Reasoning (P) X
Treatment ($\mathrm{X} 1-\times 3$) Interactions

Strategy	Lummy Variables	Equation
Proportion	$\lambda 3=1$	MLT $=-.0557 \mathrm{~V}+.1052 \mathrm{P}+.00113 \mathrm{VP}+5.234$
Analogy	$\lambda 2=1$	$\mathrm{MLT}=-.2050 \mathrm{~V}-.1379 \mathrm{P}+.0168 \mathrm{VP}+7.742$
Diagram	$\mathrm{X} 1=1$	$\mathrm{MLT}=.1350 \mathrm{~V}+.4064 \mathrm{P}-.0119 \mathrm{VP}+1.201$
Factor-Label	$\lambda 3=\mathrm{X} 2=\mathrm{X} 1=-1$	$\mathrm{MLT}=.0966 \mathrm{~V}+.2096 \mathrm{P}-.00581 \mathrm{VP}+3.418$

-

Table 63
Molarity Lelayed Posttest (MLT):
Sutstitution of Extreme Valuec for VVQV $(1 \rightarrow 30)$ and PPRT $(1 \rightarrow 21)$

Figure 18. Molarity Delayed Posttest (MLT): Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment (XI-X3) Interactions

Table 64
Noles belayed Posttest (NOT):
Verbal Preference (VQV) Proportional Reasoning (P) X.
Treatment ($\lambda 1-\lambda 3$) Interactions

Table 65
Moles Lelayed Posttest (MOT):
Substitution of Extreme Values for
WVQ. $(1+30)$ and PPRT $(1+2$.

WVOV		PPRT ${ }^{\text {a }}$		VP	TREATMENT			$\begin{aligned} & \text { PREDICTED } \\ & \text { MOT } \\ & \hline \end{aligned}$
1	-. 05	1	. 10	-	. 00	P	5.735	5.79
30	-1.5.3	1	. 10	30	. 12	P	5.735	4.43
1	-.0̀s	21	2.18	$\angle 1$. 09	P	5.735	7.95
30	-1.53	21	2.18	630	2.60	p	5.735	8.98
1	. 67	1	. 22	1	-. 00	A	3.916	4.20
30	2.03	1	. 22	30	-. 10	A	3.916	6.04
1	. 67	21	4.66	21	-. 07	A	3.916	8.57
30	2.00	21	4.60	630	-2.07	A	3.916	8.50
1	. 13	1	. 38	1	-. 01	D	2.443	2.94
30	3.99	1	. 38	30	-. 31	1)	2.443	6.50
1	. 13	21	7.81	21	-. 21	D	2.443	10.28
30	3.99	21	7.91	630	-6.43	D	2.443	7.92
1	-. 13	1	-. 01	1	. 01	F	7.847	7.72
30	-3.84	1	-. 01	30	. 29	F	7.847	4.29
1	-. 13	21	-:15	21	. 20	F	7.847	7.76
30	-3.84	21	-. 15	630	6.00	F	7.847	9.85

$16 ;$

Figure 19. Moles Delayed Posttest (MOT): Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment (X1-X3) Interactions

Table 66 Gas Laws Lelayed Posttest (GLT):

Verbal Preference (VVQV) ג Proportional Reasoning (P) X
Treatment ($\lambda 1-\mathrm{X} 3$) Interaction

Strategy	Dramy Variables	Equation
Proportion	$\lambda 3=1$	GLT $=.0309 \mathrm{~V}+.0322 \mathrm{P}-.000770 \mathrm{VP}+6.624$
Analogy	$\lambda 2=1$	$\mathrm{GLT}=-.04425 \mathrm{~V}+.1081 \mathrm{P}+.000556 \mathrm{VP}+5.520$
Diagram	$\mathrm{X} 1=1$	$\mathrm{GLT}=-.0336 \mathrm{~V}+.2519 \mathrm{P}-.00446 \mathrm{VP}+4.983$
Factor-Label	$\mathrm{X} 3=\mathrm{X} 2=\mathrm{Xl}=-1$	$\mathrm{GLT}=-.0810 \mathrm{~V}+.1301 \mathrm{P}+.00473 \mathrm{VP}+5.788$

Table 67
Cas Laws Delayed Posttest (GLT):
Substitution of Extreme values for
WVQ $(1 \rightarrow 30)$ and PPRT $(1 \rightarrow 21)$

WVV ($1 \rightarrow 30$) and PPRT ($1+21$)								
WVQ	.	PPRT		VP		TREATMENT		$\begin{gathered} \text { PREDICTED } \\ \text { GLT } \\ \hline \end{gathered}$
1	. 03	1	. 03	1	-. 00	P	6.624	6.69
30	. 93	1	. 03	30	-. 02	P	6.624	7.56
1	. 03	21	. 68	21	-. 02	P	6.624	7.31
30	. 93	21	. 68	630	-. 49	P	6.624	7.74
1	-. 04	1	. 11	1	. 0.3	A	5.520	5.59
30	-1.28	1	:11	30	. 02	A	5.520	4.37
1	. 14	21	2.27	21	. 01	A	5.520	7.76
30	-1.28	21	2.27	630	- . 35	A	5.520	6.87
1	-. 03	1	. 25	1	-. 00	D	4.983	5.20
30	-1.01	1	. 25	30	-. 13	D	4.983	4.09
1	-. 03	21	5.29	21	-. 09	D	4.983	10.15
30	-1.01	21	5.29	630	-2.81	1)	4.983	6.46
1	-. 08	1	. 13	1	. 00	F	5.788	5.84
30	-2.43	1	.13	30	. 14	F	5.788	3.63
1	-. 08	21	2.73	21	. 10	F	5.788	8.54
30	-2.43	21	2.73	630	2.98	F	5.788	9.07

\qquad

Figure 20. Gas Laws Deiayed Posttest (GLT): Verbal Preference (WVQ) X Proportional Reasoning (P) X Treatment (X1 X3) Interaction

Table 68
Stoichionetry Lelayed Posttest (SГ):
Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment ($\mathrm{Xl} 1-\mathrm{X} 3$) Interactions

172

Table 69
Stoichionetry Velayed Posttest (ST):
Substitution of Extreme Values for
VVQV $(1 \rightarrow 30)$ and PPRT $(1 \rightarrow 21)$

WWQ		PPRT		VP		PREDICTED		
1	.12	1	.32	1	-.01	P	3.340	3.77
30	3.65	1	.32	30	-.41	P	3.340	6.90
1	.12	21	6.69	21	-.29	P	3.340	9.86
30	3.65	21	6.69	630	-8.57	P	3.340	5.11
1	-.05	1	.17	1	.00	A	4.964	5.08
30	-1.54	1	.17	30	.10	A	4.964	3.69
1	-.05	21	3.49	21	.07	A	4.964	8.47
30	-1.54	21	3.49	630	2.05	A	4.964	8.97
1	-.15	1	.15	1	.00	D	5.965	5.97
30	-4.41	1	.15	30	.14	D	5.965	1.84
1	-.15	21	3.08	21	.10	V	5.965	9.00
30	-4.41	21	3.08	630	2.90	D	5.965	7.53
1	-.05	1	.06	1	.01	F	5.656	5.67
30	-1.51	1	.06	30	.17	F	5.656	4.38
1	-.05	21	1.33	21	.12	F	5.650	7.05
30	-1.51	21	1.33	630	3.53	F	5.656	9.01

Figure 21. Stoichiometry Delayed Posttest (ST): Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment (X1-X3) Interactions

- Table 70

7

```
GL_IT = -.0249(V) + .0298(I) - .00506(MARSTOT) + .0700(PPRT) +
    26.729(X3) - 15.228(X2) - 38.436(X1) + . 8710(VX2) +
        .9977(VX1) - 1.108(VX3) - 1.421(IN3) + . 3831(IX2) +
    2.067(IX1) * . 2475 (MX1) - . 1699(MX3) - .0582(MX2) +
    2.427(PX2) + 1.788(PX1) - 1.335(PX3) - .0651 (VIX1) +
    .0657 (VIX3) - . .0322 (VIX2) - . 00970 (VMX1) - .00133 (VMX2)
    +.00790(VMN3) - .0136(INX1) + .00922(INX3) - .00145
    (IMX2) - .1378(VPX2) - .0124(VPX1) + .0580(VPX3) -
        .1016(IPX1) + :0755(IPX3) - .0922(IPX2) - .0126(PMX1)
        --.0136(PMX2) + .0108(PMX3) + .000588 ('IMN1) - .000447
(VIMX3) + .0000250(VIMX2) + .00158(VIPX1) +..00636(VIPX2)
- .00.66(VIPX3) + .000412 (VPMX1) +. .000644 (VPMX2) -
.ñ0̂\́400(VPMX3) + .000728(IPMX1) + .000593(IPMX2) -
.000602(IPMX3) - .0000277(VIPMX1) - .0000308(VIPMX2)
+ .0000275 (VIPMX3) + 10.115
```

Where $\overline{\mathrm{VVQV}}(\overline{\mathrm{V}})=15.807 \quad \overline{\text { MARSTOT }}=184.546$
$\overline{\mathrm{WVQI}}(\overline{\mathrm{I}})=18.020 \quad \overline{\mathrm{PPRT}}=12.614$

Table 71
Cas Laws Immediate Posttest (GLQT): Main Effects Regression Equation

```
Equation: GLQT = -.00460 (MARSTOT) +. . 0780 (PPRT) + . 767 (X3)
            .379 (X2) - . }356\mathrm{ (XI) + 10.024
    Where }\overline{\mathrm{ MARSIOT }}=184.546 \overline{\mathrm{ PPRT }}=12.61
```

Strategy	Dummy Variables	\cdots
Proportion	$X 3=1$	
Analogy	$X 2=1$	10.926^{b}
Liagram	$X 1=1$	9.780^{a}
Factor-Label	$\lambda 3=X 2=\lambda 1=-1$	10.127

asignificantly lower than mean
${ }^{\mathrm{b}}$ Significantly higher than mean

Table 72
Gas Laws Immediate Posttest (GLQT): F Tests for Possible Significant Effects
$\overline{\text { Mean }=10.188} \quad$ S.D. $=1.929 \quad$ Cases $=515 \quad$ Max. $=12$

Table 73
Cas Laws Immediate Posttest (GLOI): Calculations for 'Fourth' Effect

Factor-Label T•satment

$$
\begin{aligned}
& t_{g}=\frac{-g \sum B_{i}}{\sqrt{\tilde{s} d^{2} Y-\hat{Y}\left[\frac{(g-1)^{2}}{r \cdot g}+\sum \frac{1}{n}\right]}} \quad d f=n-k-1 \\
& \\
& \quad \tilde{s} d^{2} Y-\hat{Y}={\tilde{s} d^{2} Y\left(1-R^{2}\right) \frac{n}{n-k-1}}=1.929^{2} \cdot(1-.10958) \frac{515-13}{515-7-1-13}=3.367
\end{aligned}
$$

$$
t_{4}=-4(.767-.379-.356)
$$

$$
3.367\left[{\frac{(3)^{2}}{135}}^{2} \frac{1}{121}^{+} \frac{1}{136}+\frac{1}{136}\right]
$$

$$
t_{4}=\frac{0.128}{\sqrt{3.567(.08964)}}=.23 \quad \text { NS }
$$

PPRI X MARSTUT λ Treatnent Interaction

Table 74

Gas Laws Immediate Posttest (GLQT):
Nathematics Anxiety (M) X Proportional Reasoning Ability (P)
X Treatment (X1-X3) Intesaction

Strategy
Proportion

Analogy
Diagram
$X 3=1$
$X 2=1$
$\chi 1=1$
$\mathrm{X} 3=\mathrm{X} 2=\mathrm{X} 1=\cdot-1$
GLQT $=-.0329 \mathrm{M}-.2772 \mathrm{P}+.00175 \mathrm{MP}+15.635$
Dumy'Variables
Equation
GLQT $=-.0115 \mathrm{M}-.0674 \mathrm{P}+.00059 \mathrm{MP}+12.570$
$\mathrm{GLQT}=.0132 \mathrm{M}+.3437 \mathrm{P}-.00146 \mathrm{MP}+6.519$
GLQT $=.0108 \mathrm{M}+.2815 \Gamma \quad .00088 \mathrm{MP}+6.31 \mathrm{I}$

Table 75 .
Gas Laws Immediate Posttest (GLQT):
Substitution of Lxtreme Values for
MARSTOT $(101+349)$ and PPRT $(1 \rightarrow 21)$

Figure 22. Gas Laws Immediate Posttest (GLQT) : Mathematics Anxiety (M) X Proportional Reasoning Ability (P) X Treatment (X1-X3) Interaction

Table 76 •
Moles Inmediate Posttest (MOQT):
Mathematics Anxiety (M) X Proportipnal Reasoning (P) X Treatment ($\mathrm{X} 1-\mathrm{X} 3$) Interaction

Strategy
Dummy Variables

$$
\begin{array}{lll}
\mathrm{X} 3=1 & & \mathrm{MOQT}=+.0110 \mathrm{M}+.455 \mathrm{PP}-.00118 \mathrm{MP}+11.124 \\
\mathrm{X} 2=1 & . & \mathrm{MOQT}=-.00686 \mathrm{~N}+.1848 \mathrm{P}+.000303 \mathrm{MP}+16.406
\end{array}
$$

$$
x 1=1
$$

$$
\mathrm{MOQT}=.0162 \mathrm{M}+.5731 \mathrm{P}-.00211 \mathrm{MP}+12.097
$$

$\chi 3=\lambda 2=\lambda 1=-1 \quad \mathrm{MOQT}=-.0520 \mathrm{M}-.3473 \mathrm{P}+.00298 \mathrm{MP}+24.298$

Table 77
Moles Immediate Posttest (MOQT):
Substitution of Extreme Values for
MARSTOT $(101 \rightarrow 349)$ and PPRT $(1 \rightarrow 21)$

Figure 23. Moles Immediate Posttest (MOQT): Mathematics Anxiety (M) X Proportional Reasoning (P) X Treatment (X1-X3) Interaction

Table 78
Stoichiometry Immediate Posttest (SQI): .
. Mathematics Anxiety (M) X Proportional Reasoning (P) X Treatment (X1-X3) Interaction

Strategy	Dummy Variables	Equation
Proportion	$\mathrm{X} 3=1$	SQT $=-.0143 \mathrm{M}-.0112 \mathrm{P}+.000790 \mathrm{MP}+10.159$
Analogy	$\mathrm{X} 2=1$	SQI $=.00371 \mathrm{M}+.3375 \mathrm{P}-.00122 \mathrm{MP}+7.027$
?		
Diagram	$X 1=1$	$\mathrm{SQT}=.0120 \mathrm{~N}+.3896 \mathrm{P}-.00123 \mathrm{MP}+5.025$
Factor-Label	$\mathrm{x} 3=\mathrm{X} 2=\mathrm{X} 1$	$\mathrm{SQT}=-.0318 \mathrm{M}-.2028 \mathrm{P}+.00162 \mathrm{MP}+14.422$

Table 79
Stoichiometry Inmediate Posttest (T) :
Substitution of Lxtreme Values for
NARSTOT $(101 \rightarrow 349)$ and PPRT $(1+21)$

Figure 24. Stoichionetry Innediate Posttest (SQT): Mathematics Anxiety (M) X Proportional Reasoning (P) X Treatment (X1-X3) Interaction.

Table 80
Molarity Immediate Posttest (MLQ(I):

- Mathematics Anxiety (ill) X Proportional Reasoning (P), X

Treatment (xi- $\mathrm{\lambda} 3$) Interaction

Table 81
Molarity Inmediate Posttest (MLQT):
Substitution of Lxtreme V iues for
MARSIOT $(101 \rightarrow 349)$ and PPRT $(1+21)$

MARSTOT		PPRT		NiP		TM	$\begin{aligned} & \text { PLULCTLI } \\ & \text { MLQT } \end{aligned}$		
101	-. 78		1	. 10	101	.02*	P	10.4.5	9.80
349	-2.69	1	. 10	$\bigcirc 349$. 08	P	10.456	7.94	
101	-. 78	- 21	2.07	2121	. 47	P	10.456	12.21	
349	-2.69	21	2.07	7329	1.61	P	10.456	11.45	
10	-1.72	1	. 09	101	. 05	A	11.975	10.40	
349	-5.93	- 1	. 09	349	. 18	A	11.975	6.32	
103	-1.72	21	1.93	2121	. 1.12	A	11.975	13.30	
349	-5.93	21	1.93	7329	3.86	A	11.975	11.82	
101	98	1	. 41	101	. 11	D	-7.074	8.35	
349	3.37	1	. 41	349	-. 38	D	-7.074	10.47	
101	. 98	21	8.54	2121	-2.33	1)	7.074	14.26	
349	3.37	21	8.54	7329	-8.06	1)	7.074	10.93	
101	-. 73	1	. 04	101	. 04	F	11.515	10.87	
349	-2.52	1	. 04	349	. 15	F	11.515	9.19	
101	-. 73	21	. 79	2121	. 92	F	11.515	12.50	
349	-2.52	21	. 79	7329	3.19	F	11.515	12.98	

Figure 25. Molarity Inmediate Posttest (MLQT): Mathematics Anxiety (M) X Proportional Reasoning (P) X Treatment (X1-X3) Interaction

Table 82
Molarity Immediate Posttest (MLQT): General Regression Equation

MLOT $=$	$-.0154(\mathrm{~V})+.1122(\mathrm{I})-.00553$ (MARSTOT) + . 1583 (PPRT) +
	$59.762(X 3)+17.0321(\mathrm{X} 2)-64.208(\mathrm{X} 1)-2.800(\mathrm{VX} 2)+$
-	3.621 (VX1) - 2.851 (VX3) - 3.008 (IX3) - .6169 (IX2) +
	3.293 (IX1) +.3453 (MX1) - . 3930 (MX3) - . 0440 (MX2)
	1.545 (PX2) + 4.101 (PX1) - 5.923 (PX3) - . 1950 (VIX1)
	. 1394 (VIX3) + . 1407 (VIX2) - . 0198 (VMX1) + . 0105 (VMX2)
6	. 2088 (IPX1) + . 2916 (IPX3) + . 0602 (IPX2) - . 0212
	$(\mathrm{PNX1})+.00240$ (PMP2 2$)+.0358$ (PMX3) +.00115 (VINX1)
	-. 001111 (VIMX3) - . 000545 (VIMX2) + . 0154 (VIPX1)
	. 0114 (VIPX2) - .0181(VIPX3) + . 00153 (VPMX1) - . 000763
	(VPMX2) - . 00236 (VPMCJ 3 + . 00121 (IPNX1) - . 0000512
	(IPMX2) - .00184(IPMX3) - . 0000911 (VIPMX1) + . 0000390
	(VIPMX2) + .C00122 (VIPMX3) +8.477
Where -	$\overline{\mathrm{VVQV}}(\overline{\mathrm{V}})=15.807^{\circ} \quad \overline{\text { MARSTOT }}=184.546$
	$\overline{\mathrm{WVQI}}(\overline{\mathrm{I}})=38.020 \quad \overline{\mathrm{PPRT}}=12.614$

Table 83
Molarity Immediate Posttest (MLOT): F Tests for Possible Significant Effects

$$
\text { Mean }=11.308 \quad \text { S.U. }=2.907 \quad \text { Cases }=481 \quad \text { Max. }=15
$$

Predictor	ΔR^{2}	F	Sig.Level
WQI	$\therefore 02231$. $02231 / .002071{ }^{a}=10.80$. 01
MARSTOT	.01498.	.01498/.002071 $=7.23$. 01
PPRT	. 06229	.06229/.002071 $=30.08$. 01
INX1 INX	.00225 .00985	$\underline{.01267 / 3}=2.04$	NSb
IMX2	$\frac{.00057}{.01267}$. 002071	

${ }^{\text {a }}$ Errór lerm $=(1-.18415) / 427-33=.002071$
bavs $=$ Nonsignificant

Table 84

- Molarity Immediate Posttest (MLQT): * Main Effects Regression Equation

Equation: MLQT $=.0964$ (VVQI) -.00481 (MARSTOT) ${ }^{+} .171$ (PPRT)

$$
+8.483
$$

Table 85
Moles velayed Posttest (MOT): General Regression Equation

```
MOT = +.00524(V)4+ .0260(I) - .00164 (MARSTOT) + . 1735 (PPRT)
    +45.755(X3) + 2.90%(X2) - 64.483(X1) + 4.492(VX2) +
    2.041(VN1) - 2.193(VX3) - <.221(IX3) - 1.048(IX2) +
    3.994(I\lambda1) + . 3392(Mnil) - . 2872(NXJ) - .000665(NX2)
    +.1.141(PÄ2) + 3.440(PX1) - 2.879 (PX3) - . 1448(VIX1)
    +.0978(VIX3) + .0277(VIX2) _.0113(V.X1) - .00212
    (MNX2) + .0148(MA3) - .0218(INAXi) + .0145(INX3) +
    .00452(IRA2) - .1335(VPX2) - .0666(VPX1) + . }144
    (VP\3) - . 2167(IPA1) + .1395(IPX3) - .00675(IP\2) -
    .0177(PMA1) - .00783(PMX2) + .0185(PMN3) + .000835
    (VINX1) - .000708(VINA3) - .000149(VINX2) + .0057
    (VIPA1) + .00391 (VIPX2) - .00637 (VIPX3) + .000346
    (VPMA1) + .000763(VPRCL2) - .000997 (VPND3) - .00118
    (IPNX1) - .000143(IPMX2) - .000940(IPPN3) - .0000332
    (VIPNA1) - .0000243(VIPALE2) + .0000476(VIMPX3)
    +4.803
```

Where $\overline{\mathrm{WQV}}(\overline{\mathrm{V}})=15.807 \quad \overline{\mathrm{MARSTOT}}=184.546$
$\overline{\mathrm{VQI}}(\overline{\mathrm{I}})=18.020 \quad \overline{\mathrm{PPRT}}=12.614$

Table 86
Moles Delayed Posttest (MOT): Main Effects Regression Equation

Equation: $\mathrm{MOT}=-.00207$ (MARSTOT) +.168 (PPRT) +5.313

Table 87
Moles Delayed Posttest (MOT): F Tests for Possible Significant Effects \qquad .
Mean $=7.289 \quad$ S.D. $=2.112 \quad$ Cases $=528 \quad$ Max. $=10$

${ }^{a_{\text {Error }}}$ Term $:=(1-.20907) / 475-2=.001672$
$\mathrm{b}_{\text {NS }}=$ Nonsignificant

Table 88

Gas Laws Delayed Posttest (GLT): General Regression Equation

$$
\begin{aligned}
\mathrm{GLT}= & -.0316(\mathrm{~V})+.0220(\mathrm{I})-.00481^{3}(\mathrm{MARSTOT})+.1305(\mathrm{PPRT}) \\
& -34.787(\mathrm{X} 3)+.4779(\mathrm{X} 2)+5.915(\mathrm{XX})-.6679(\mathrm{VX} 2)- \\
- & .00906(\mathrm{VX} 1)+1.796(\mathrm{VX} 3)+2.699(\mathrm{IX} 3)+.00131(\mathrm{IX} 2) \\
& -.516(\mathrm{IX} 1)-.0353(\mathrm{MX1})+.1410(\mathrm{MX} 3)-.000468(\mathrm{MX} 2) \\
& +.1437(\mathrm{PX} 2)-.3314(\mathrm{PX1})+2.831(\mathrm{PX} 3)+.00585(\mathrm{VIX1}) \\
& -.1309(\mathrm{VIX} 3)+.0199(\mathrm{VIX} 2)-.00270(\mathrm{VNX1})+.00607 \\
& (\mathrm{VMX} 2)-.00585(\mathrm{VNX} 3)+.00245(\mathrm{INXI})-.0117(\mathrm{INX} 3)
\end{aligned}
$$

$$
\rangle \cdot C 00188(\mathbb{M N X} 2)+.0673(\mathrm{VPX} 2)-.0350(\mathrm{VPX} 1)-.1623
$$

$$
(V P X 3)+.0259(I P X 1) \sim .2122(I P X 3)-.00927(I P X 2)
$$

$$
+.1631(\text { PNX1 })-.00189(\text { PMX2 })-.0109(\text { PNX3 })+.000120
$$

$$
(V I M X 1)+.000512(V I M X 3)-.000247(V I M X 2)+.00162
$$

$$
(\text { VIPX1 })-.00237(\text { VIPX2 })+.0112(\text { VIPX3 })+.000395
$$

$$
(\text { VPMX1 })-.000536(\text { VPMX2 })+.000575(\mathrm{VPMX} 3)-.0000946
$$

$$
(\operatorname{IPNX})^{\circ}+.000105(\operatorname{IPNX} 2)+.000875(\text { IPMX3; }-.0000215
$$

(VIPMOX1) +.0000225 (VIPNDX2) -.0000442 (VIPNX33)
$+6.220$

Where $\overline{\mathrm{VQV}}(\overline{\mathrm{V}})=15.807 \quad \overline{\mathrm{MARSTOT}}=184.546$
$\overline{\mathrm{VWQI}}(\overline{\mathrm{I}})=18.020 \quad \overline{\mathrm{PPRT}} \quad=12.614$

Table 89
Cas Laws velayed losttest. (GLT): Main Lffets kegression Lqualion

Equation: GLT $\doteq-.09390$ (MARSTOT) +.153 (PPRT) +.383 (XX)
$\because \quad .469(\lambda 2)-.168(\lambda 1)+6.035$
Where $\overline{\text { MARSTOT }}=184.56 \quad \overline{\text { PPRT }}=12.614$

Strategy	Dunmy Variables	GLT
Proportion	$\mathrm{X} 3=1{ }^{\text {c }}$	7.683
Analogy , \%	$\lambda 2=1$.	$6.831^{\text {a }}$
viagran	$\lambda 1=1 \quad \therefore \quad n$	7.132
Factor-Label	$X 3=\lambda 2=X 1=-1$	7.554

aSignificantly lower than mean

Table !o
Gas Laws Delayed Posttest (GLT): F Tests for Possible Significant Effects ${ }^{-}$-

Mean $=6.942$	S.D. $=2.523$	Cases $=515$	Max. $=16$

[^2]Table 91.
Gas Laws Delayed Posttest (i lT): Calculations : or 'Fourth" Effect

Factor-label Treatment
-.

$$
t_{4}=\frac{1.010}{\sqrt{5.81(.08964)}}=1.41
$$

NS
-

$$
\begin{aligned}
& t_{g}=\frac{-g E B_{i}}{\sqrt{\operatorname{sd}^{2} Y-\hat{Y} \frac{\Gamma(g-1)^{2}}{n g}+\sum \frac{1}{n_{i}}}} \quad \quad . \quad d f \pm n-k-1 \\
& \tilde{s}^{2}{ }_{Y-\hat{Y}}=\tilde{S d}^{2} Y(1-R)^{2} \frac{n}{n-k-1}=2.523^{2}(1-: 10140) \frac{515}{515-7-1}=5.81 \\
& t_{4}=\frac{-4(.385-.469-.168)^{\prime} \quad}{\sqrt{5.81-\frac{3)^{2}}{}+\frac{1}{125}+\frac{1}{136}+\frac{1}{230}}}
\end{aligned}
$$

Table 92
Stoichiometry Velayed Posţtest (ST):-General Regression Equation

$$
\begin{aligned}
& \text { ST }=-.0317(V)-.0193(\mathrm{I})-.00899 \text { (MARSTOT) }+.1737 \text { (PPRT) } \\
& -9.168(x 3)+1.300(\lambda 2)-5.708(x 1)-1.801(V X 2) \\
& .423(\text { VX1 })+1.046(V X 3)+.3059(\text { IX3 })+.0381(\text { IX2 })+ \\
& .682(\mathrm{IX} 1)+.0633(\mathrm{NX} 1)-.0343(\mathrm{MX} 3)+.0163(\mathrm{MX} 2)+ \\
& .9360 \text { (PX2) - . } 2066 \text { (PX1) }+1.741 \text { (PX3) - . } 0435 \text { (VIX1) } \\
& \text { - . } 0533 \text { (VIX3) - . } 0909 \text { (VIX2) - . } 00617 \text { (VNX1) + . } 00892
\end{aligned}
$$

$$
\begin{aligned}
& \text { - . } 00151 \text { (INX2) + .0746(VPA2) + . } 00135 \text { (VPX1) - . } 148 \\
& \text { (VPX3) -. } 0134(I P X 1)-.0900(I P X 3)-.0458(I P X 2)- \\
& \text {. } 00128 \text { (PAQ1) - . } 00685 \text { (PMN2) - . } 00135 \text { (PMX3) }+.000416
\end{aligned}
$$

$$
\begin{aligned}
& \text { (VIPX1) - . } 00395 \text { (VIPX2) + . } 00827 \text { (VIPX3) + . } 000258 \text { (VPMX1) } \\
& -.000334 \text { (VPMX2) }+.000295 \text { (VPNX3) }+.000198 \text { (IPMX1) + } \\
& \text {. } 000344 \text { (IPMX2) + . (4. . (IPMX3) - . } 0000197 \text { (VIPMX1) + } \\
& .0000184 \text { (VIPRA2) - . } 0000207 \text { (VIPMA3) }+6.989
\end{aligned}
$$

Wheye $\overline{\mathrm{WQV}}(\overline{\mathrm{V}})$	$=15.807$	$\overline{\text { MARSTOT }}$	$=184.546$
$\overline{\mathrm{WQI}}(\overline{\mathrm{I}})$	$=18.020$	$\overline{\mathrm{PPRT}}$	$=12.614$

Table 93
Stoichiometry velayed Posttest (ST): Main Effects Regression Lquation

Equation: $\mathrm{Si}^{\circ}=.00798$ (MAiSSTOT) + . 188 (PPRT) +6.927

Stoichiometry Delayed Posttest (ST): F Tests for Possible Significant Effects
Mean $=6.719 \quad$ S.D. $=2.757 \quad$ Cases $=528 \quad$ Max. $=10$

Predictor	$\Delta \mathrm{R}^{2}$	F	Sig.Level
MARSTOT	.03557	$.03557 / .201774^{\mathrm{a}}=20.05$.01
PPRT	.08180	$.08180 / .001774=46.11$.01
VX2	.00000		
VX1	.00602	$\frac{.00603 / 3}{}=1.13$	NS^{b}
VX3	$\frac{.00001}{.00603}$		

[^3]
Table 95

ACS-NSIA Problens Subtest (ACSPROB):
Ceneral liegression liquation

ACSPROB $=+.00918(\mathrm{~V})+.0293(\mathrm{I})-.00436$ (MARSTOTC) +.1966 (PPRT)
$-29.4124(\mathrm{X} 2)-57.196(\mathrm{Xl})+129.818(\mathrm{X} 3)+2.329(\mathrm{VX} 2)$
+1.151 (VX1) $-7.938(\mathrm{VX} 3)+3.363($ IX1 $)+1.093$ (IX2)
$-6.139(\mathrm{I} \lambda 3)+.3843(\mathrm{MN1})-.7575(\mathrm{MX} 3)+.1870(\mathrm{MX} 2)$
$+3.880($ PX2 $)+2.655($ PX1 $) \cdot 9.024($ PX3 $)-.0862(V I X 1)$

- . 0947 (VIX2) $+.3895(V I X 3)-.0129(V N X 1)-.0143(V N X 2)$
$+.4749(\mathrm{NNX} 3)-.0234(\mathrm{INX} 1)-.00749(\mathrm{IN} 2)+.0369(\mathrm{INX} 3)$
$.2809(\mathrm{VPX} 2)-.00385(\mathrm{VPX1})+.5565(\mathrm{VPX} 3)-.1716(\mathrm{IPX1})$
- . 1052 (IPX2) $+.4365(I P X 3)-.0197($ PMX1 $)-.0212(P M X 2)$
$+.0513($ PMA3 $)+.000918($ VIMX1 $)+.000594$ (VINX2 $^{-}-.00242$
(VINX3) $+.00274(V I P X 1)+.0123(V I P X 2)-.0281(V I P X 3)$
- . 00150 (VPRA22) + . 000487 (VPMXI) - . 00329 (VPMX3) +
.000915 (IPMNX2) + . 00130 (IPMX1) - . 00257 (IPMX3) -
$.0000469($ VIPMAX1 $)-.0000686(V I P N X 2)+.000174$ (VIPMX3)
$+2.495$

Where | VVQV (V) | 15.807 | $\overline{\text { MARSIOT }}=184.546$ |
| :--- | :--- | :--- |
| | $\overline{\text { WVQI }}(\overline{\mathrm{I}})$ | 18.020 |$\quad \overline{\text { PPRT }}=12.614$

Table 96

ACS-NSTA Problem Subtest (ACSPROB): Main Effects Regression Equation

Equation: $\mathrm{ACSPROB}=-.00368$ (MARSTOT) +.194 (PPRT) +3.298

ERIC

Table 97
ACS-NSTA Problems Subtest (ALSPIKOB): F Tests for Possible Significant Effects
Mean $=4.944 \quad$ S.1). $=2.245 \quad$ Cases $=377 \quad$ Max. $=10$

$\mathrm{a}_{\text {Lrror }}$ Term $=(1-.28004) / 324=.002222$
$\mathrm{b}_{\mathrm{NS}}=$ nönsignificant

Table 98
ACS-NSTA Nonprobléms Subtest (ACSNPROB):
General Regression Equation

```
ACSNPROB = +.00693(V) +.0524(I) - .00731 (NARSTOT) + . 3937(PPRT)
    - 3.4779(X2) - 71.362(X1) + 160.455(X3) + 1.812(VX2)
    +2.667(VX1) - 8.499(VX3) + 3.864(IX1) - 1.159(IX2)
    -6.968(IX3) + .5057(NX1) - .9678(NXX3) +.0369 (MX2)
    +1.884(PX2) + 2.679(PX1) - 9.341(PX3) -.1803(VIX1)
    - .0110(VIX2) + . }3824\mathrm{ (VIX3) - .0220(VNX1) - .00858
    (VMX2) + . 0519 (VMX3) - .0300(IMN1) + .00396 (INX2)
    +.0450((MX3) - . 2286 (VPX2) -. .0232(VPXI) + .4012
    (NPX3) - . 1442(IPX1) - .0214(IPX2) +. 3919(IPX3)
    -.0228(PNX1) =.00892(PNN2) +.0547(PNX3) +.00156
    (VINX1) + .0000553(VIMX2) - .00252(VIMX3) + . 00422
    (VIPX1); + .00685(VIP\2) - .0173 (VIPX3) + .00113(VPMX2)
    + .006060 (VPMO1) - . 00254 (VPMX3) + .000109 (IIMX2)
    +.00143(IPMA1)
    -.0000$41 (VIPMN2) + .000123(VIPMN3) + 8.468
    Where
```


Table 99

ACS-NSTA Nouproblems Subtest (ACSISPROB): Main Lffects Regression Lquation

Iquation: $\mathrm{ACSNPROB}=-.00706(\mathrm{MARSIOT})+.398($ PPRT $)+10.250$

213

Table 109
ACS-NSTA Nonproblems Subtest (ACSNPROB): F Tests for Possible Significant Effects
Mean $=13.454 \quad$ S.ע. $=4.243 \quad$ Cases $=377 \quad$ Max. $=30$

Predictor	$\Delta \mathrm{R}^{2}$	F	Sig.Level
MARSTOT	. 02361	.02361/.002205am 10.71	. 01
PPRT	.16093	. $16093 / .002205=72.98$. 01
IX1	. 00040	. $01532 / 3$	NS ${ }^{\text {b }}$
IX3	$\frac{.00401}{.01532}$. 002205	
PMX1 PM 20 Pax	.00103 .00340 .01033	$\frac{.01476 / 3}{.002205}=2.23$	NS
prai	$\frac{.01033}{.01476}$		

[^4]Table 101
Results of the
Decimal-Nondecimal Subtests Comparison

Test	n	$\overline{\mathrm{x}}$	S.D.	S.E.	t	p	
Decimal	421	10.81	1.90	.093			
Nondecimal	421	11.31	1.48	.072			
		.					

\downarrow

Table 102
Means on ACS-NSTA Exam
According to Notation Used

Notation	n	$\overline{\mathrm{x}}$	Scheffe p	
None	315	16.62	-	0
Some	28	17.79	-	
Complete	166	20.63	.05	

Table 103
Analysis of Variance for
Amount of Notation Used

Source	D.F.	Sum of Squares	Meān Squares	F Ratio	F Prob
Between Groups	2	1744	872	32.95	$<.0001$
Within Groups	506	13394			
Total	508	15138			

Table 104
Chi Squarre Analysis of Differences of Notation According to Strategy

[^5]Means for Total Time Analysis of Data for Proportional Reasoning Ability

[^6]

Table 107
Means for Total Time Analysis of Molarity Data for Proportional Reasoning Ability

Treatments	Proportional Reasoning Ability ${ }^{\circ}$		
	Low	High	Kow Total
	129	110	117
Non-	12	23	35
Proportional	1547	2538	4085
	37	34	35
	143	118	127
	14	5	8
Proportional	430	589	1019
Proportional	36.	21	28
	132a	112	118
	15b	28	43
Colum	1977c	3127	5104
Totai	35d	32	34

[^7]221

Table 108
Analysis of Variance for
Droportional Reasoning Total -
Tine Analysis for Molarity

Source of Variation	Sun of Squares	DF	Mean Square	F	Significance of F
Main Effects	4607	2	2304	2.05	.14
Treatment	653	1	653	.58	.45
PPRT	3868	1	3868	3.43	.07
2-Way Interaction	73	1	73	.66	.80
Explained	4681	3	1560	1.38	.26
Residual	43927	39	1126		
Total	48609	42	1157		

Table 109
Summary of Questionnaire Data

Item	Response	Number				Percentage				
		F	A	D	P	F	A	D	P	
1	Never Skipped	55	46	27	52	45	「 37	23	45	
	Skipped part or all	65	71	88	55	53	57	75	48	
	Response not clear	3	7	2	8	2	6	2	7	
2	If skipped, more toward end	28	18	32	23	23	15	27	20	
	More toward start	4	4	6	4	3	3	5	3	
	Response not clear	9	4	10	7	7	3	9	6	
	No response	10	26	19	9	8	21	16	8	
	All four units	16	21	21	16	13	17	18	14	
	Didn't skip	56	51	29	56	46	41	25	49	
3	Yes	110	75	67	92	89	60	57	80	
	Undecided	0	3	0	1	0	2	0	1	
	No	13	32	35	20	11	26	30	17	
	No response	0	14	15	-2	0	11	13	2	
4	All of the time (yes)	106	56	42	101	86	45	36	88	
	Part of the time	12	24	26	11	10	19	22	10	
	Undecided	0	1	0	0	0	1	0	0	
	Never (no)	4	36	45	3	3	29	38	3	
	No response	1	7	4	0	1	6	3	0	
5	Teacher	11	9	4	5	9	7	3	4	
	Another student	1	1	1	3	1	1	1	3	
	Textbook	2	1	2	0	2	1	2	0	
	Different packet	5	2	- 0	2	4	2	0	2	
	No response	98	89	74	94	80	72	63	82	
	Other	6	22	36	11	5	18	31	10	
6	None or blank	104	112	105	79	85	90	90	69	
	Left out details	10	5	5	30	8	6	4	26	
	Other	9	5	7	6	7	4	6	5	
7	Yes a	11	11	6	7	9	9	5	6	
	No	107	108	105	103	87	87	90	90	
	Sometimes	2	1	1	1	2	1	1	1	
	No response	3	4.	5	4	2	3	4	3	
		123	124	117	115	100	100	100	100	

Table 110

Table 111
Responses to Questionnaire No. 9

Response	Number				
	Factor-Label	Analogy	Diagram	Proportion	Total
Too long or too many	22	14	13	23	72
Boring (monotonous)	7	8	12	9	36
Method itself	0	20	6	0	26
Confusing, complicated	6	5	6	7	24
Tests or quizzes	5	7	2	4	24
Not enough time	3	7	5	5	20
Moved too fast	5	3	2	6	16
Problems/math	3	2	4	4	13
Repetitious	2	4	0	4	10
Not enough practice, review or explanation	2	2	1	2	7
Keeping packets	0	3	2	0	5
Too hard	1	1	2	1	5
Too easy	2	0	0	3	5

INTERVIEN STUDY

The second part of this investigation consisted of an interview study to detenmine the processes that students use in solving chemistry problems. This also provided a follow-up on the aptitude by ureatment interaction study to see if students were using the teaching strategies (treathents) taught.

Background Information

The use of an interview technique to determine students' problem solving behavior has certain advantages over paper and pencil techniques. Much more information can be gathered in an unobtrusive manner about what students are actually thinking through the use of interviews. On the other hand, there are always the disadvantages of using a small sample size (interviewing students and analyzing the interviews is a time-consuning process) of possible incont sistency across interviews and among interviewers, and possible lack of res liability in the coding of the interviews.

The approach used in this study was one of having students think aloud while solving the problems. In mathematics this approach which follows that used by Kilpatrick (1967) is fairly conmon. Kilpatrick tape-recorded students' solving problems out loud and then in order to trace the solution path, developed a coding scheme based on Polya's heuristics. This included examining whether students understnod the problem, devised a plan for solving it, carried out the plan, and evaluated what had been done. Subsequent studies in mathematics have modified Kilpatricks' system by adding more specific process behavior (for exauple, Lucas, 1974; Kantowski, 1974; and, Days, 1977). At the present time, Kulm of Purdue University is synthesizing data of interviews made by 17 other investigators using a modification of a protocol developed by Smith (1977) which is somerhat content free.
lising an interview technique to determine students' problem solving processes
in science is not ncw. In the area of physics, work has been done by Towbridge and Mclermott (1980) at the University of Washington and Clement (1979) at the University of Massachusetts. The techniques used by both investigators involved more intervehtion than that used in the "think aloud" technique.

In the area of chemistry, Nurrenbern, (1979) studied high school students' behavior when solving stoichiometric limiting - reagent problems. She compared the processes used by formal and concrete students using the "think aloud" technique, and coded data according to a schema based on that of Days (1977). Because of the similarity of this project to her dissertation study and in order to compare these results with hers and those available in mathematics education, the "think aloud" technique was used for this study. Data were coded using a modification of the Nurrenbern coding sheet.

Questions Studied

\qquad
This interview study sought to answer the folluwing questions:

1. Are there differences if the problem solving strategies used by students of different verbal-visual preference?
2. Are there differences in the problem solving strategies used by students of-different proportional reasoning ability?
3. Are there differences in the problem solving strategies used by students who are successful problem solvers versus those classified as unsuccessful?
4. Are there differences in the problem solving strategies used by students who have been taught to sっlve problens according to different methods?
5. Are there differences in the problem solving strategies of students who solve the problem correctly versus those who do not?.
6. Are the number of questions a student answers correctly related to their verbal-visual preferfnce, their proporthonal reasoning ability, whether
they are successful/unsuccessful in problem solving, the method used in learning to solve problems and the number of problems solved correctly? Methods and Procedures

Smple

The major objective of this study was to compare processes students used who were successful problem solvers with those who were unsuccessful. Some criterion had to be selected on which success could be judged. There were two possible options. Success could be judged by outcomes on the problems students were asked to solve while being interviewed. The other alternative was to judge success on the basis of how well students performed on the immediate or delayed posttests administered for the aptitude by treatment interaction study. Because the success rate was so low on the problems students solved while thinking aloud, and because it was impossible to know this in advance of the interviews, the decision was made to base success or lack thereof on students' scores on the inmediate and delayed posttests.

If this interview study had not followed the treatments in Part I of this stydy, there would have beer no need to be concerned about other classifications for selection of students to be interviewed. Because this was not the case; an effort was made to select students for interviews who had various degrees of proportional reasoning ability and verbal-visual preferences. The ideal selection process would have been to include students in each of the categories shown in Figure 26 . It was originally intended that eight successful and eight unsuccessful students in each cell for each of the four chemistry topics studied -(moles, gas laws, stoichiometry, and molarity) be included in the study. This would have resulted in 64 students per topic or a total of 256 interviews.

In reality it was not feasible to obtain this distribution for several reasons. First, for some of the categories the number of students having the -

Ideal Sample
Proportional Reasoning

Visual	Low		High	
	S	U	S	U
	8	8	8	8
	S	U	S	U
Verbal	8	8	8	8

Actual Samples.

Moles Unit
Proportional Reasoning

Low	High		
S	U	S	U
5	11	15	5
S	U	S	U
6	14	12	3

Stoichiometry Unit.

Visual	Stoichiometry Unit.			
	ProportionalLowReasoningHigh			
	S	U	S	U
Verbal	8	7	11	7
		U	S	U
		13	12	5

Gas Laws Unit

Visual	Proportional Reasoning \backslash Low High			
			S	U
	2	12	8	8
Verbal	S	U	S	U
		10	9	6

Figure 26 . Ideal sample versus real samples of students interviewed.
desired characteristics was expected to be small.' For example; most students who had high proportional reasoning ability were successful and those with low proportional reasoning ability unsuccessful. Second, an attempt was made not to interview any students a second time. (This happened in no more than 28 of the interviews.) These reasons, together with the fact that there were a limited number of students from whom to select, (had taken the original aptitude tests, obtained permission fram their parents and wanted to participate) made it difficult to find students with the correct combination of aptitudes who were available during the times when interviews were conducted.

As the interviews progressed, another factor became evident. Some students who did very poorly on the tests were poor candidates for interviews bécause their reason for doing poorly was that they were absent from school frequently and had not had the appropriate instruction. An effort was made to avoid in: terviewing these types of students as the project progressed.

Because of the above considerations, the resulting number of students in each category was not equal. The actual distribution based on the delayed posttest scores is shown in Figure 26 .

Procedures

The following procedures were used for the interview study:

1. After students had completed both the immediate and delayed posttests for each unit, results were obtained and selection of students made on the basis of their aptitude scores on the proportional reasoning test, the verbalvisual test and their availability curing the time in which the interviewers would be if the school. (Students completed a schedule form at the beginning of the semester: A copy of this form is found in Appendix I).
2. Chemistry teachers were notified of which students were to be ilterviewed and informed students of the date; time and place.
3. Iwo to three interviewers went to the school for the interview. Two of these were doctoral students in science education, one a masters' degree student. Prior to their going for the first interview a detailed booklet as shown in Appendix J was prepared giving the interview. protocol. This protocol was discussed in advance and although there were no formal training sessions, some of the earliest interviews were used as practice sessions. The results from these interviews were not analyzed.
4. Because teachers felt that calling these sessions "interview sessions" might not be well received by students, they were call "feedback sessions'". A copy of the procedures as described to the teachers is given in Appendix K . These were slightly modified as follows:
a. Time. Each session lasted approximately 45 minutes, and was conducted, when possible, during study periods. It was necessary át times to have sessions after school and during class time (at the teacher's discretion).
b. Place. The session took place in a separate room away from the chemistry classroom.
c. Supportive naterials. Audio-tapes and recorders were heeded to record the interview. .Students were provided with a periodic table, unlined paper; and a pencil. Originally a calculator was provided. After the first few interviews a decision to disallow the use of a calculator was made. The calculator seemed to inhibit the student from using the "think aloud" technique. He/she pushed buttons instead. d. Selection of students. Students were selected as described above. In order to encourage participation, $\$ 3.00$ was paid to each student who participated in the interview. (In one school it was the desire of the principal not to pay students so this was not done. Because of this it
was more difficult to get students to participate, particularly after school).
e. Initial instruction to the student. Prior to the feedback session, the students were given the following instructions:
5. The student was told that he/she would be solving problems like he/she had done in class.
6. The student was told that the.sessionmas private. The concept of complete privacy was emphasized. The student was insured that nothing said, nor the results of any problems, would be repeated to the teacher or to the classmates of the student.
7. The student was informed that the interviewer was primarily. interested in how the problems were solved.
8. Each student was asked if he/she objected to being recorded, and was told that they would not be required to listen to the tape being replayed.
f. During the session the students used a "think aloud" technique. This technique was divided into three sections as follows:
9. Think-Aloud Warm-Up:.
a. The student listened to a short tape of a person solving a problem aloud.
b. The student was taped while solving a think-aloud problem from Whimbey.
\dot{c}. The student was informed of the importance of thinking aloud while solving the problems during the session.
10. Questions.Section: Chemistry content questions were asked to establish students' knowledge of chemistry that was considered , essential for solving the chemistry problems.
11. Protlem Section: Three problems were presented to each student from a pool of items of each type that students tried to solve while thinking aloud. The interviewer prompted students with a general question such as, 'What are you thinking now?', when the think aloud process broke down. No hints to the problem solving were given. The interviewers took notes on paper while the student thought aloud. According to other researchers this is supposed to stimulate the think aloud process.

Instruments

Aptitude Neasures

The Proportional Reasoning Test and the Verbal-Visual Preference Test were used to classify the students according to their aptitudes.

Approximately half of the stulents who were interviewed for each of the four topics were considered low in proportional reasoning. The other half was considered high. For the moles unit, students scoring less than or equal to 13 were classified - low whereas stuxdents scoring above 13 were classified - as high. For the gas laws and stoichiometry units, the cut off point was 11, and for molarity 12.

For the purposes of classifiration, the scoring of the Verbal-Visual Preference Test was modified to give students a single score. This was done by scoring one point for agreement with items that, are imaginal in nature and also one point for disagreement with items that are verbal in nature. This new method is a transformation of the original method by the following function:

$$
\mathrm{VVP}=E \mathrm{I}_{\mathrm{c}}-\mathrm{EV}_{\mathrm{c}}+\mathrm{V}
$$

where VVP is the Verbal-Visual Preference score, I_{C} represents the number of imagery items scored 'correct' by the Paivio method, V_{c} represents the number of verbal items scored 'correct' by the Paivio method, and V is the total number of verbal items (a constant $=31$) For a subject scoring 22 on the imagery scale
and 17 on the verbal scale, the VVP score would be $22-17+31=36$. This scoring method allowed for one continuous variable of scores ranging from 0 to 54. It assumes that there is a correlation between the imagery and verbal scores. The actual correlation was .29 . This indicates that there is approximately 8% shared variance. Because this amount of variance is fairly low, the decision to use the combined scale was made. It made the selection of students for interviews less complicated than using separate imagery and verbal scores. Students with scores 1-34 for the Moles and Gas Laws Units and 1-33 for the Stoichiometry and Molarity Units were considered to have high verbal preference. The remaining students were considered to have a high visual or imagery preference.

Interview Questions

A series of questions that were asked in a fixed order were included in each interview immediately following the mathematics"problem that the student solved aloud. The reasons for preceding the problems with questions was threefold. It allowed the investigaton to determine whether students had the necessary prerequisite skills and a qualitative understanding of the concepts needed to solve the problem; it "tuned-in" the students to the subject matter at hand by reviewing the concepts needed; and, finally it probably set students a little more at ease during the interview since many more could arswer the questions successfully than do the problems.

Students were given feedback on the answers to the questions and interviewers prompted them to elicit correct answers after a wrong response or prolonged \leq sience. Answers to the ruestions were subsequently coded according to whether prompting was necessary to obtain a correct answer.

The moner of questions asked varied according to the unit. The moles liait had six questions, gas laws unit seven questions, the stoichiometry unit four questions and the molarity unit five questions. The questions are found in Appendix L,

Interview Problems

Each student was interviewed on how to solve three problems in a given unit. Problems became increasingly more difficult. The first problem was considered to be a one-step problem, the second problem was more complex containing two or móre steps. The third problem involved transfer. It was similar to those problems on the delayed posttest that were judged to be transfer items.

Three similar but non-equivalent items were written for each of the above categories. They were considered to be similar in that they containeu the same number of steps, and if a chemical equation was involved, the same equation. They were not equivalent in that they tested slightly different concepts, some of which may have been more difficult for the students: For example, the second set of problems used for the stoichiometry interviews were as follows: 2 MN - Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ reacts with hydrochloric acid (HCl) to form sodium chloride (NaCl), water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and carbon dioxide gas ${ }_{\text {s }}\left(\mathrm{CO}_{2}\right)$ according to the reaction:
$\left.\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)+\mathrm{CO}_{2}(\mathrm{~g}){ }^{(}\right)=$ How many grams of CO_{2} would be produced from 146.0 grams of HCl reacting with sufficient $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
2 N . - Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ reacts with hydrochloric acid (HCl) to form sodium chloride (NaCl), water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and carbon dioxide $\left(\mathrm{CO}_{2}\right)$ according to the reaction:
$\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}{ }^{,}+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)+\mathrm{CO}_{2}(\mathrm{~g})$ How many iiters of CO_{2} (measured at STP) would be produced from 146.0 , grams of HC1 reacting with sufficient $\mathrm{Na}_{2} \mathrm{CO}_{3}$?

2NP - Sodiun carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ reacts with hydrochloric acid (HC1) to form sodium chloride (NaCl), water ($\mathrm{H}_{2} \mathrm{O}$), and carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$ according to the reaction:
$\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)+\mathrm{CO}_{2}(\mathrm{~g})$
How many molecules of CO_{2} would be produced from 146.0 grams of $H C 1$ reacting with sufficient $\mathrm{Na}_{2} \mathrm{CO}_{3}$?

In every case, the same equation was used. The first problem is a mass-mass problem, the second is a volume-mass problem and the third is a particle-mass problem.

The problems were typed on individual $\xi^{\prime \prime} \times 5^{\prime \prime}$ cards. The interviewers randomly selected 1 problem. from each of the three sets of cards.- These three problems were then presented individally by the interviewer to the student being interviewed.

This resulted in the distribution of problens as shown in Table 112. Problens are given in Appendix L.

Coding Protocol

The tapes were coded using a protocol adapted from one used by ivurrenbern. (1979). The same general categories of reading/organizing, recall, production, strategy, structural errors, evaluation, comments about solution and executive errors were included. In addition, ‘a section on the questions was added.

Some categories were modified slightly because it was felt that they were not suitable for the category. For example, under Reading/Organizing, the category "Says he does not understand the problem" was deleted because it was felt it would le \ddagger to spuriously high results - it did not indicate an organizing skili.

The production category was modified by organizing statements into those approaches thought to be systemmatic versus non-systemmatic. A "No answer

Table 112
Distribution of Problems for Interviews

Unit	Problens					
	Set 1		Set 2		Set 3	
	Problem Code No.	Times Used	Problem Code No.	Times Used	Probjem Code ${ }^{+}$.io.	Times Used
Moles	M	24	VM	23	VA	23
	V	25	Mo	29	MA	24
	Mo	25	MoV	22	VM	19
Gas Laws	TP	25	Tp	18	M-TV	20
	IV	18	TPV	20	$\mathrm{M}+\mathrm{TV}$	21
	. PV	21	PVT	26	MPV	23
Stoichiometry	N	18	M	26	1H1	22
	V	27	MN	23	SS1	24
	P	21	MP	17	SS2	20
Molarity	M1	18	Mod	25	WA	22
	G	23	MoC	16	GA1	23
	Mo	23	N	23	GA2	19

given" category was added to allow for cases in which students did not work enough of the problem to allow a judgement to be made on how the proplem was being solved. Several categories under "production" were moved to "structural errors".

The "structural error" section used. by Nurrcnbern had been devised for her particular study of stöichiometry liaiting-reagent problems. Because this was inappropriate for many of the problems that had to be coded in this study, if was revised to make this section more inclusive. This modification was used in the meles problems. After using this same schema for coding the problems in the gas laws, stoichiometry and molarity units, it was recognized that some data were being lost. Three new coding sheets for the structural errors for each of the remaining thics (gas laws, stoichiometry, and molarity) were then devised.

Modifications were also made of the description of the coding form used by Nurrenbern. In some cases the description given was not comprehensive enough to cover the wide range of responses to be coded consistently by the sane reviewer or by another reviewer. The general coding form, the structural errors coding form, and the coding form descriptions are given in Appendix M.

All of the tapes were coded three times, twice by the same rater and then checked by the principal investigatori. Comments made b; the interviewer during the interview as well as the sheet used by the student for calculation were used in the coding process. The rater, a doctoral student who was a former middle school science teacher, listened to an individual tape and coded it on the general coding sheet. Betwr a one and three weeks later, he listened to the tape, again and coded it independently. The principal investigator then compared the two coding sheets while listening to the tape and made any appropriate additions or resolved conflicting codes. The reliability of the coding

Reliability of Coding of Interviews Using Kendall's Coefficient of Concordance

system between the three ratings (two by the one rater, one by the principal investigator) using Kgndall's Coefficient of Concordance ranged from 3.3 1.00 only 48 had a probability level exceeding .05:

The original rater did not use the specially prepared structural error sheet because his background in chemistry was somewhat limited. These were coded by the principal inves'tigator (a chemistry educator) and checked by an experienced chemistry teacher whose students participated in the study. Reliabilities ranged from 84 to 1.00 .

A sumary df the reliability of the coding of the interviews is found in Table 113.

Hypotheses

The following hypotheses were tested using data from the interviews:

1. There are no significant differences in chemistry problem solving strategies used by students having verbal or visual preferences for learring.
2. There are no signif; zant differences in chemistry problem solving strategies used by students of high and low proportional reasoning ability.
3. There are no significant differences in chemistry problem solving strategies used by students considered successful problem solvers versus unsuccessful ones.
4. There are no significant differences in chemistry problem solving strategies used by students according to the method taught to solve the problems.
5. There are no significant differences in chemistry problem solving strategies used by students who solved the problem correctly versus those who did not.
6. .There are no differences in the number of questions a student answers successfully according to verbal-visual preference , proportional' reasoning ability, success in problem solving, the method taught in learning problem solving, and the mmber of problems solved correctly.

Statistical Analyses

Hypotheses one through five were analyzed using three different statistical methods. In cases where only frequencies were available, chi-square analyses were used. This method was used for the following: reading/organizing codes, meumonic codes, production codes, strategy codes, and structural error codes.

In cases where data were summed for given categories, Kruskal-Wallis one way analyses of variance were used when the data were not normally' distributed and three groups were present. (This was detwmened'using the KolmogorovSmirnov goodness of fit test.) Mann-Whitney U Tests were used in cases where data were not nomally dictributed and only two groups were present. Data . were summed for the following: reading/organizing, évaluation, conments about solution, 'executive èrrors, total number of questions correct, number of nonprompted yuestions correct, number of problems correct and for all categories previously analyzed using the chi-square when they were summed over problems. A summary of tests used for each analysis is given in Table lí4.

Table 114
Tests of Simificance Used With Interview Data

1-Chi Square
2-Kruskal-Wallis
3Harne Whitney

- Inappropriate Analysis

240

Results

Hypothesis 1
There are no significant differences in chemistry problem solving
strategies used by students having verbal or visual preferences for learning.
In order to test this hypothesis students were divided into two groups according to their scores on the modified Paivio verbal-visual preference test. .These groupings are simmarized in Table 115. Results of the analysis used to test the hypothesis for each of the four chemistry topics are summarized in Table 116. Tables 117-120 give more detailed information for analyses where significant differences were found.

Findings show that students' verbal or visual preferences as measured by the modified Paivio instrument were generally not related to their problem solving strategies. Table 117 indicates that visual students tended to show. more overt signs of reading/organizing skills and reading/stating the problem than verbal students on the moles problem 3. There is lityle educational significance to this finding, however, as no significant differences were found. for the other moles problems or for problems from the other three units'.

Similar results are found in Table 118. More visual students tended to use only algorithmic strategies rather than algorithmic/reasoning strategies, and they also had a greater tendency to misapply information. Results again hold for only the moles unit.

On the other hand, visual students made fewer errors in balancing equations as shown in Table 19- structural error 1-1. (Structural errors varied according to units so the fact that structural error 1-1 is not significant acros's the units has no bearing on these results.)

Table 120 shows that visual students also showed greater evidence for x using the approach taught in their packet to solve the problems on molarity. This was not evident for problems in the other three units.

Table 116
Sumary of Sighificant Findings: Verbal-Visual Preference

Taile 116 (cont inued)
Summary of Significant Findings: Verbal-Visual Preference

	Moles					Gas Laws			¢	Stoichiometry			Molarity			
Protocol Categories	P1	P2	P3	1	P1	P2	P3	T		P2	P3	T	P1	P2	P3	T
*Evaluation																
*Comments about Silution					\checkmark					-						
**Executive Errors															*	
*Problems Correct	$\mathrm{x}^{\mathbf{i}}$	X	X		χ	X	X		X	X	X		X	X	X	
* Questions Correct	X	X	X		X	X	χ		X	X	X		X	χ	χ	
*Question w/o Prompting	X	X	χ		X	X	X			X	X		X	X	X	
Stractural Lrrors ${ }^{\text {¢ }}$																
Section ${ }^{\text {h }} 1-1$	X	X	X	..		X	X	X	$\begin{aligned} & 9.86 \\ & .02 \end{aligned}$	X	X	X		X	X	X
Section $1 \cdot 2$	X	X	X	X		X	X	X		x	X	X		X	X	X
Section 2-1	X	x	χ	X	i		X;	X	X			X	x		X	X
$r^{\text {Section } 2-2 ~}$	X	X	X	χ	X		X	X	χ		X	X	x		x	X
Section 3-1	X	X	X	X	${ }^{-} \mathrm{x}$	X		X	X	X		X	x	X		X
Section 3-2	X	X	χ	X	x	X		X	X	X		x	x	X		X
Section 3-3	X	X	X	X	X	X		X	X	X	.	X	x	x		x

*Category sum
${ }^{\text {a Problem }} 1$
${ }^{\text {b Problem } 2} \quad \mathrm{~g}_{\text {Sum of }}$ of rereads ar: restates subcategories
$c_{\text {Problem }} 3$
$\mathrm{d}_{\text {Sum of Problems }} 1,2 \in 3 \quad \mathrm{i}_{\text {Not meaningful }}$

Table 115
Distribution of Students According
to Verbal-Visual Preference

Unit ${ }^{\text {- }}$	Verbal			Visual		
	Range	X	N	Range	X	$\overline{\mathrm{N}}$
Moles	20-34	29.4	36	35-48	39.8	36
Gas Laws	24-34	29.0	34	35-48	39.6	30
Stoichiometry	16-33	27.7	33	34-44	37.9	33
Molarity	16-33	27.8	31	34-45	38.3	33

Table 117
Interview Data Analyses: Moles - Problem 3
Verbal-Visual Preference :
,

Total

24	32	13	3	72
33.3	44.4	18.1	4.2	100.0

49	22	1	72
68.1	30.6	1.4	100.0

Mann-Whitney U 478
Wilcoxon Rank Sum W 1144
$2 \quad-2.05$
Significance . . 04

Mann-Whitney 482
Wilcoxon Rank Sum W 1148
$Z \quad-2.30$
Significance . 02

[^8]$2 \overline{3}$

Table 118

Interview Data Analyses: Noles - Total Verbal-Visual Preference

$$
251
$$

Table 119
Interview Data Analyses: Stoichiometry - Problem 1; Verbal-Visual Preference

[^9]252

Table 120

Hypothesis 2
There are no significant differences in chemistry problem solving strategies used by students of high or low proportional reasoning ability.

In order to test this hypothesis students were divided into two groups according, to their proportional reasoning ability. The resulting groups are described in Table 121. Results of the analyses used to test the hypothesis are summarized in Table 122 and details for significant findings are found in Tables 123-155.

All results will be discussed in terms of the protocol categories across the four units.

Rereading or stating. Nolarity, problem 3 only, Table 149. Students with high proportional reasoning ability reread/stated more frequently.

Mneumonics. Gas Laws, problem 1 only, Table 131. Students with high proportional reasoning ability usedmeumonic notation more frequently.

Systembatic apmroach. Moles, problems 1, 2, total, and stoichiometry, problems 1, 2, 3; total, (Tables $135,138,140,142$). A11 tables indicate that high proportional reasoning students used a more systemmatic approach.

Nonsystemmatic approach. Stoichiometry, problem 2, (Table 138), and molarity, total, (Table 151). -Nonsystemmatic approaches were used by students of low proportional reasoning ability.

No answer given. Noles, total, (Table 126), and stoichiometry, problem 1, (Table 135). Low proportional reasoning students more frequently did not give an answer.

Algorithmic strategy. Gas Laws, problem 3, total (Tables 133, 134) and molarity, total, (Table 149). Low proportional reasoning students tended to use only algorithmic strategies.

Algorithmic/reasoning strategy. Moles, problems 2, 3, total, (Tables 124, 125, 127), gas laws, all analyses, (Tables $131,132,133,135)$, stoichiometry,

Table 121
Distribution of Students According
to Proportional Reasoning Ability (PPRT)

Unit	Low PPRT			High PPRT		
	Range	X	N	Range	X	N
Moles	6-13	10.0	36	14-21	17.4	35
Gas Laws	5-11	9.0	33	12-21	15.5	31
Stoichiometry	5-11	8.9	31	12-21	16.7	35
Molarity	6-12	9.3	29	13-21	16.3	35

$$
250
$$

Table 122
Summary of Signıficant Findıngs: Proportional Reasoning Abılity

Table 122 (cont inued)
Summary of Significant Findings: Proportional Reasoning Ability

Table 123

> Interview Data Analyses: Moles - Problem 'l Proportional Reasoning AEility,

Interview Data Analyses: Moles - Problem 2 Proportional Reasoning Ability

Proportional Reasoning Ability	,Systemmatic Approach				Algorithmic ReasoningStrategy		
	0 .	1	Total		0	- 1	Total
Low	11	25	36		30	6	36
	30.6	69.4	50.7		83.3	16.7	50.7
	78.6	43.9			63.8	25.0	1
	15.5	35.2			42.3	8.5	1
High	3	32	35		17	18	35
	8.6	- 91.4	49.3	-	48.6	51.4	49.3
	21.4	56.1			36.2	75.0	
	4.2	45.1			23.9	25.4	1
Total ${ }^{\text {a }}$	14	57	71		47	24	71
	19.7	80.3	100.0		66.2	33.8	100.0
	Chi Square		4.12			hi Square	8.09
	df		1		d	f	1
	Phi		. 28			Pi	. 37
*	Significance		. 94			Significance	. 004

Table 125

Interview Data Analyses: Moles - Problem 3
Proportional Reasoning Ability

Table 126

Interview Data Analyses: Moles - Total Proportional Reasoning Ability

Proportional Reasoning Ability	Systermatic Approach.					No Answer Given				
	0	1	2	3	Total	0	1	2	3	Tota?
Low	$6^{\text {a }}$	7	8	15	36	27	5	2	2	30
	16.7 ${ }^{\text {b }}$	19.4	22.2	41.7	50.7	75.0	13.9	5.6	5.6	50.7
	$85.7{ }^{\text {c }}$	87.5	40.0	41.7	$(30.9)^{\text {e }}$	45.0	71.4	100.0	100.0	(39.5)
	$8.5{ }^{\text {d }}$	9.9	11.3	21.1		38.0	7.0	2.8	2.8	
-	1	1	12	21	35	33	2	0	0	35
	2.9	2.9	34.3	60.0	49.3	94.3	5.7	0	0	49.3
High	14.3	12.5	60.0	58.3	(41.3)	55.0	28.6	0	0	(32.4)
	1.4	1.4	16.9	29.6		46.5	2.8	0	0	
Total	7	8	20	36	71	60	7	2	2	71
	9.9	11.3	28.2	50.7	100.0	84.5	9.9	2.8	2.8	100.0
	Mann-Whitney U 445 Wilcoxon Rank Sum 1445 2 -2.31 Significance .02					Mann-Whitney U . 755 Wilcoxon Rank Sum 1134 Z 2.29 Significance $\quad:$.02				

${ }^{\mathrm{a}}$ Count
${ }^{\text {b }}$ Row percentage
${ }^{\text {Con }}$ Colum percentage
Total percentage
eqkan rank

Table 127
Interview Juata Anaiyses: inoles - Total Proportional Reasoning Ability

Tab1c 128
Interview Data Analyses: Noles - Total Proportional Reasoning Ability

Proportional Reasoning Ability	Comments about Solution							Problems Correct				
	0	1	2	3	4	5	Total	$0 \cdot$	1	2	3	Total
Low	12	7	5	9	2	1	36	20	8	6	2	36
	33.3	19.4	13.9	25.0	5.6	- 2.8	50.7	55.6	22.2	16.7	5.6	50.7
	40.0	36.8	62.5	81.8	100.0	100.0	(42.0)	76.9	53.3	26.1	28.6	(27.7)
	16.9	9.9	7.0	12.7	2.8	1.4		28.2	11.3	8.5	2.8	
High	18	12	3	2	0	0	35	6	7	17	5	35
	51.4	34.3	8.6	5.7	0	0	49.3	17.1	20.0	48.6	14.3	49.3
	60.0	63.2	37.5	18.2	0	0	(29.9)	23.1	46.7	73.9	71.4	(44.6)
	25.4	16.9	4.2	2.8	0	0		8.5	9.9	23.9	7.0	
Total	30	19	8		2	1	71	26	15	23	7	71
	42.3	26.8	11.3	15.5	2.8	1.4	100.0	36.6	21.1	32.4	9.9	100.0
,	Mann-Whitney U 844							Mann-Whitney U 330				
)	Wilcoxon Rank Sum W 1											
¢	2 Significance				2.60			2				-3.62
,					. 009			Significance				. 0003

Table 129

Interview Data Analyses: Moles Total Proportional Reasoning Ability

267

Table 130
Interview Data Analyses: Moles - Total Proportional Reasoning Ability

$$
260
$$

Table 131
Interview Data Analyses: Gas Laws - Problem 1. Proportional Reasoning Ability
 Proportional Reasoning Ability

Table 133

- Interview Data Analyses: Gas Laws - Problem 3 Proportional Reasoning Ability

272

Interview Data Analyses: Gas Laws - Total
 Proportional Reasoning Ability

273
274

Table 135
Interview Data Analyses: Stoichiometry - Problem 1 Proportional Reasoning Ability

275

Table 136
Interview Lata Analyses: Stoichiometry - Problem 1 Proportional Reasoning Ability

ProportionaI Reasoning Ability	Algorithmic Reasoning Strategy			Comments About Solution			
	0	1	Total	0	1	2	Total
Low	\angle	2	31	${ }^{1} 8$	21	2	31
	93.5	6.5	47.0	$\because 5.8$	67.7	6.5	47.0
	61.7	10.5		24.2	67.7	100.0	(41.8)
	43.9	3.0		12.1	31.8	3.0	
High	18	17	35	25	10	0	35
	51.4	48.6	53.0	71.4	28.6	0	53.0
	38.3	89.5		75.8	32.3	0	(26.1)
	27.3	25.8		37.9	15.2	0	
Total	47	19	66	33	31	2	66
	71.2	23.8	100.0	50.0	47.0	3.0	100.0
	```Chi equare df Phi Significance```		12.25	Mann-Whitney U Wilcoxon Rank Sum W 2 Significance			800
			1				1296
			.40				3.77
			. 0005				. 0002

M 7


Table 138

## Interview Data Analyses: Stoichiometry - Problem 2 Proportional Reasoning Ability



273

Table 139
Interview Lata Analyses: Stoichiometry - Problem 2 Proportional Reasoning Ability


Table 140
Interview Data Analyses: Stoichiometry - Problem 3 Proportional Reasoning Ability



## arount

bow percentage
Column percentage
dotal percentage
Glean rank
${ }^{1}$ Cramer's V
281

Table 142
Interview Data Analyses: Stoichiometry - Tr.tal Proportional Reasoning Ability


Table 143
Interview Data Analyses: Stoichiometry - Total
Proportional Reasoning Ability


Table 144

## Interfiew Data Analyses: Stoichiometry - Total Proportional Reasoning Ability




## Table 146

## Interview Data Analyses: Molarity - Problem 1 Proportional Reasoning Ability

Proportional	Structural Error 1 ; ${ }_{8}$								
Reasoning Ability	0	1	3	4	6	7	8	9	Total ${ }^{\text {a }}$
Low	3	- 7	4	$0 \quad 11$	1	0	5	8	29
	10.3	${ }^{\prime} 24.1$	13.8	3.4	3.4	0	17.2	27.6	45.3
	42.9	87.5	100.0	100.0	-50.6	0	62.5	25.8	
	4.7	10.9	6.3	1.6	1.6	0	7.8	12.5	
High	'4	1	0	0	1	3	3	23	35
	11.4	2.9	0	0	2.9	8.6	8.6	65.7	54.7
	57.1.	12.5	0	0	50.0	100.0	37.5	74.2	
	6.3	-1.6	0	0	1.6	4.7	4.7	35.9	
Total	7	8	4	1	2	3	8	31	64
	10.9	12.5	6.3	1.6	3.1	4.7	12.5	48.4	100.0
:				$\underset{\mathrm{df}}{\mathrm{Chi}} \mathrm{Sq}$	re	$\begin{array}{r} 20.01 \\ \end{array}$	---		
	-			V		. 56			.
				Signif	ance	. 006			

28. 

Table 147
Interview עata Analyses: Molarity - Problem 1 Proportional Reasoning Ability


Table 148
Interview Data Analyses: , Molarity - Problem 2 Proportional Reasoning Ability

| Proportional |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Reasoning Ability |

Table 149
Interview Data Analyses: Molarity - Problem 3
Proportional Reasoning Ability.

- Proportional Reasoning Ability	Rercading/Stating Problem				Algorithmic ReasoningStrategy.			Conments About Solution		
	0	1	2	Total	0	-1.	Total	$0$	$\mathrm{I}$	Total
Low	14	14	1	29	26	3	29	10	19	29
	48.3	48.3	3.4	45.3	89.7	10.3	45.3	34.5	65.5	45.3
	58.3	42.4	14.3	(27.9)	54.2	18.8		32.3	57.6	(37.0)
	21.9	21.9	1.6		40.6	47		15.6	29.7	
High	10	19	0	35	- 22	13	35	21	14	35 54
	28.0	54.3	17.1	54.7	62.9	37.1	54.7	60.0	40.0	54.7 $(28.8)$
	41.7	57.6	85.7	(36.3)	$45.8{ }^{\circ}$	81.3		67.7	42.4	(28.8)
	15.6	29.7	9.4		34.4	20.3		32.8	21.9	
Total	24	33	7	64	48	16	64.	31	33	64
	37.5	51.6	10.9	100.0	75.0	25.0	100.0	48.4	51.6	100.0
-	375   Mann-Whitney U 375   Wilcoxon Rank Sum 810   $Z$ -1.99   Significance .05				```Chi Square df Phi Significance```		4.73	Mann-Whitney U 637   Wilcoxon Rank Sum 1072   $Z$ 2.02   Significance .04		
					1					
					. 31					
					. 03					

Table 150
Interview Data Analyses: Molarity - Problem 3
Proportional Reasoning Ability


Table 151
Interview Data Analyses: Molarity - Total Proportional Keasoning Ability


Table 152
Interview Data Analyses: Molarity - Total Proportional Reasoning Ability


Table 153
Interview lata Analyses: Molarity - Total Proportional Reasoning Ability


## Table 154

Interview llata Analyses: Molarity - Total. Proportional Keasoning Ability

$29 j$

# Interview Data Analyses: Molarity - Total 

Proportional Reasoning Ability

all analyses (Tables $136,138,140,142$ ), and molcrity, all analyses ${ }^{\circ}$ (Tables $145,148,149 ; 152$ ). Students with high proportional reasoning ability used algorithmic reasoning stratgies mbre frequently than low proportional reasoning students in solving problems.

Rardom trial and error. Moles, total (Table 127), stoichiometry, problem 2, toṭal (Tables 139, 143), and molarity, problem' 1 , total (Tables 145, 152). Low proportional reasoning students made a greater use of this strategy.

Disregards what is given in problem. Molarity, total (Table 153). Low proportional reasoning students more frequently didthis.

Conments about solution. Moles problems 1, 3, total (Tables 123, 125, 128), gas laws, problem 1 ,(Table 131), stoichiometry, all problems, total (Tables $136,139,141,143$ ), and molarity, problem 3, total (Tables 149, 153). Low proportional reasoning students made corments about the solution more, frequently.

Problems correct. Analyzed only for totals and significant for moles (Table 128), stoichiometry (Table 144), and molarity (Table 154). High proportional reasoning students got the problems correct more frequently.

Questions correct. Analyzed only for totals and significant for moles (Table129), stoichiometry (Table 144), and molarity (Table 154). High proportional reasoning students got more questions correct.

Questions without prompting correct. Analyzed only for totals and significant for moles•(Table 130), and molarity (Table 155). High proportionial reasoning students answered questions correctly without prompting more frequently.

Structural errors. Structural errors are analyzed according to each. chemistry unit.

1: Stoichiometry 1-1, Tablé 137. Students with high proportional reasoning ability more frequently remembered to balance the equation
in soiving a simple stoichiometry problem.
2. Stoichiometry 3-3, Ïable 141. A greater number of high proportional reasoning students attempted to solve the pru:, lems than low proportional reasoning students.
3. Molarity 1-1, Table 146. A greater number of high
' proportional reasoning students calculated and used molecular weights correctly in solying a simple nolarity problem than low proportional reasoning students.
4. Nolarity $1-2$, Table 147 . A greater number of high
proportional reasoning studentstused the definition of molarity und made mL , to L changes correctly than low proportional reasoning ability students.
5. Molarity 3-2, Table 150. A greater proportion of high proportional reasoning students realize, that an equation must be used and use the balanced equation correctiy when solving stoichiometry - molarity problems than low proportional reasoning sth. ents.
0. . Molarity $3-3$, Yable 150. More high proprotional reasoning 'students used the definition of molarity correctly in solving a complex molarity" problem tuan Lor: proportional reasoning students.

## Ihpothesis 3

There are no significanit differences in chemistry problem solving strategies used by students considered successfyl problem solvers yersus unsuccessful ones.

Three different metnods were used to judge whether students were considered successful or unsuccessful. Method one was based on dividing the - group of students interviewed for each part approximately in half according to their scores on the delayed posttest. Nethod two divided each group into approximately three equal parts based on this same test: Method three divided the group into two parts based on students'combined delayed and immediate post - $\because$ test scores. Because all three methods produced similar results, only method two is presented here. Tabic $1561_{i}$, ts the characteristics $\rho f$ the groups,

Table 157 gives a sumary of the findings and Tables 158-192 present more detail for analyses that produced significant findings.

Reading/organizing. woles, problem 1, total (Tabses 158,164 ). Results are not definitive. Stuadents of middle and high success tended to read and organize more. No significant differences in three other units.

Mneumonics. Moles, problem'1, 2 , total (Tabies $158,160,165$ ) and stoichiometry, problem 1 (Table 167). Successful students used meumonic notation more frequently.

Systemnatic production. Noles, all problems (Tables 158, 160, 162, 165), gas laws, total (Table 174), and stoichiometry, problem 1, 2, tutal (Tables $176,179,183$ ). Successful students used systenmatic approaches.

Arithmetic approacin. Noles, total (Table 166), stoichiometry, prohlems 1, 2, total (Tables 176, 179,183), and larity problem 3 (Table 189). Successful students used an aritrmetic approach.

Nonsystemmatic approach. Noles, problenls 1, 3, total. (Tables 159, 162, 166 ), stoichiometry, problems 1, 2, tuta' (Tables 177, 179, 184), and molarity, problem 3, total (Tabies 189, . In general, unsuccessful students were nonsystemmatic in their approach to problen solving.

No arswer giken. Moles, problems 2, 3, total (Tables $160,162,167$ ), and stoichiometry, problem 1 (Table 177). This was more prevalent among unsuccessfül students.

Algorithmic; reasoning strategy. Moles, all problems (Tables 159, 161, 163, 167), gas laws, all problems (lables $171,172,173,174$ ), stoichiometry, all problems (Tables $178,181,182,184$ ), and molarity, problem 3 (Table 189).


Kandom trial and error. Moles, problem 3, total, (Tables 163,168), and yolarity, problem 2, total (Tables 188,191 ). This strategy was used more by

Table 156
Distribution of Students According to Scores on Delayed Posttest

	Low			Middle			High		
Unit	Range	X	N	Range	X	N	Range	X	N
Moles	$1-5$	3.8	20	$6-8$	7.4	22	$9-10$	9.6	32
Gas Laws	$1-5$	3.8	19	$6-8$	7.0	25	$9-10$	9.8	20
Stoichiometry	$1-5$	3.1	21	$6-8$	7.2	24	$9-10$	9.4	21
Molarițy	$2-5$	3.9	15	$6-7$	6.7	24	$8-10$	8.8	16

Table 157
Sumbiary of Significant Findings: Magh, Nudule or Low Success on lest


Sumary of Significant Findings: High, Niddle or low Success on lests

Protocol Categories	Molcs				Cas Laws				Stoichionetry				Molarity			
	P1	P2	P3	T												
*Evaluation													$\therefore$			
${ }^{*}$ Conments about Solutior	$\begin{aligned} & 11.43 \\ & .003 \end{aligned}$	$\begin{gathered} .8 .10 \\ .02 \end{gathered}$	$\begin{aligned} & 10.31 \\ & .006 \end{aligned}$	$\begin{aligned} & 16.32 \\ & .0003 \end{aligned}$	,				15.49 .004	8.35 .02		14.13 .0009				
*Executive Errors						6.10 .05					11.42 .003	$\begin{aligned} & 10.78 \\ & .005 \end{aligned}$				
*Problems Correct	$\mathrm{X}^{1}$	X	-	$\begin{aligned} & 15.44 \\ & .0004 \end{aligned}$	X	X	X	$\begin{aligned} & 8.14 \\ & .02 \end{aligned}$	X	X	X	12.43 .002	X	X	X	$6.46$
*Questions Correct	$x$	X	X	$\begin{array}{r} 20.68 \\ <.0001 \end{array}$	X	X	X		x	X	X	9.11 .01	X	X	X	
* Question w/o Prompting   St fuctural Errors	X	X	X	$\begin{array}{r} 22.11 \\ <.0001 \end{array}$	X	X	X		X	X	X	6.19 .05	X	X	X	
Sectionh ${ }^{\text {- }} 1$	X	X	X	X		X	X	X		X	X	X		X	X	X
Sect ion 1-2	X	X	X	X		X	X	X	$\begin{aligned} & 18.45 \\ & .005 \end{aligned}$	X	X	X		X	X	X
Sect ion 2-1	X	X	$\chi$	X	X		X	X	X		X	X	X		X	X
Section $2 \cdot 2$	X	X	X	X	X		X	X		12.68 .05	X	X	x		X	X
Section 3-1	X	x	X	X	x	$x$		x	X	X		X	X	X		X
Section 3-2	X	X	X	$\lambda$	X	X	$\begin{aligned} & 28.53 \\ & .01 \end{aligned}$	X	X	X		X	X	X	$\begin{aligned} & 22.00 \\ & .005 \end{aligned}$	x
Sect ion 3-3	X	X	X	X	X	X		X	X		$\begin{aligned} & \times 3.54 \\ & .04 \\ & \hline \end{aligned}$	X	X	$x$	$\begin{aligned} & 18.07 \\ & .006 \\ & \hline \end{aligned}$	X

[^10]Table 158
Interview Data Analyses: Moles - Problem 1 High, Middle ${ }^{\circ}$ or Low Success on Tests


[^11]Table 159
Interview Data Analyses: Moles - Problem 1 High, Middle or Low Success on Tests


Table 160
Interview Data Analyses: Noles - Problem 2
High, Niddle or Low Success on Tests


Table lól
Interview Data Analyses: Moles - Problem 2 High, Middle or Low Súccess on Tests


Table
Interview Data Analyses: Moles - Problem 3 High, Middle or Low Success on Tests


Table 163
Interview Data Analyses: Moles - Problem 3 High, Middle or Low Success on Tests


## $31 \%$

Table 164
Interview Data Analyses: Moles - Total
High, Middle or Low Success on Tests

$3!4$

Tab: 165
Interview Data Analyses: Moles - Total High, Niddle or Low Success on Tests


## $31 ;$

Table 166
Interview Data Analyses: Moles - Total High, Middle or Low Success on Tests

Success on Tests	Arithmetic Approach					Nonsystemmatic Approach				
	0	1	2	3	Total	$\overline{0}$	1	2	3	Total
Low	7	6	5	2	20	8	7	3	2	20
	35.0	30.0	25.0	10.0	27.0	40.0	35.0	15.0	10.0	27.0
	30.4	60.0	27.8	8.7	(29.7)	15.4	53.8	50.0	66.7	(48.8)
	9.5	8.1	6.8	2.7		10.8	9.5	4.1	2.7	
Middle	9	2	5	6	22	16	4	2	0	$22^{\circ}$
	40.9	9.1	22.7	27.3	29.7	72.7	18.2	9.1	0	29.7
	39:1	20.0	21.8	26.1	(34.3)	30.8	30.8	33.3	0	(36.2)
	12.2	2.7	6.8	8.1		21.6	5.4	2.7	0	
-	7	2	8	15	32	28	2	1	1	32
High	21,9	6.3	25.0	46.9	43.2	87.5	6.3	3.1	3.1	43.2
	30.4	20.0	44.4	65.2	(44.6)	53.8	15.4	16.7	33.3	(31.3)
	9.5	2.7	10.8	20.3		37.8	2.7	1.4	1.4	
Total	23	10	18	23	74	52	13	6	3	74
	31.1	13.5	24.3	31.1	100.0	70.3	17.6	8.1	4.1	100.0
*		KW Ch	Square	7.12			KW	Square	12.80	
		df		6			df		6	
		Signi	cance	. 03			Sig	icance	. 002	:

Table 167
Interview Data Analyses: Moles - Total High, Middle or Low Success on Tests

Success on Tests	No Answer Given					Algorithmic Reasoning Strategy				
	0	1	2	3	Total	0	1	2	3	tal
Low	14	2	2	2	20	17	2	1	0	20
	70.0	10.0	10.0	10.0	27.0	85.0	10.0	5.0	0	27.0
	22.2	28.6	100.0	100.0	(43.6)	37.8	25.0	10.0	0	(27.4) =
	18.9	2.7	2.7	2.7		23.0	2.7	1.4	0	
Middle	18	4	0	0	22	16	- 2	3	1	22
	81.8	18.2	0	0	29.7	72.7	9.1	13.6	4.5	29.7
	28.6	57.1	0	0	(38.4)	35.6	25.0	30.0	9.1	(32.3)
	24.3	5.4	0	0		21.6	2.7	4.1	1.4	
High	31	1	0	0	32	12	4	6	10	
	96.9	3.1	0	0	43.2	37.5	12.5	18.8	31.3	43.2
	49.2	14.3	0	0	(33.1)	26.7	50.0	60.0	90.9	(47.3)
	41.9	1.4	0	0		16.2	5.4	8.1	13.5	
Total	63	7	2	2	74	45	8	10	11	74
	85.1	9.5	2.7	2.7	100.0	60.8	10.8	13.5	14.9	100.0
								Square	16.09	
		KW Chi	quare	7.82 6			df		16	
		Signifi	ance	. 02				icance	. 0003	

Table 168
Interview Data Analyoes: Moles - Total
High, Middle or Low Success on Tests

Success on Tests	Use of Random Trial and Error					Comments About Solution ${ }^{2}$ L ToI							
	0	1	2	3	Tota	0	1	2	3	4	5	Total	
Low	8	7	3	2	20	4	3	4	7	2	0		-
	40.0	35.0	15.0	10.0	27.0	20.0	15.0	20.0	35.0	10.0	0	27.0	
	15.7	50.0	60.0	50.0	(48.3)	12.9	15.8	50.0	53.8	100.0	0	(50.3)	
	10.8	9.5	4.1	2.7		5.4	4.1	5.4	9.5	2.7	0		
Niddle	15	5	2	0	22	7	7	3	4	0	1	22	
	68.2	22.7	9.1	0	29.7	31.8	31.8	13.6	18.2	0	4.5	29.7	
	29.4	35.7	40.0	0	(37.2)	22.6	36.8	37.5		0			
	20.3	6.8	2.7	0		9.5	9.5	4.1	5.4		1.4		
High	28	2	0	2	32	20	9	1	2	0	0		
	$8^{-.} .5$	0.3	0	0.3	43.2	62.5	28.1	3.1	6.3	0	0	43.2	
	54.9	14.3	0	50.0	(30.9)	64.5	47.4	12.5	15.4	0	0	(27.3)	
	$3-.8$	2.7	0	2.7		27.0	12.2	1.4	2.7	0	0		
Total	5168.9	14	5	4	74	31	19	8	13	2	1		
		18.9	6.8	5.4	100.0	41.9	25.7	10.8	17.6	2.7	1.4	100.0	
		kithi Square df Significance		$\begin{array}{r} 12.10 \\ 6 \\ .002 \end{array}$				$\begin{aligned} & \text { KW Chi Square } \\ & \text { df } \\ & \text { Significance } \end{aligned}$		$\begin{array}{r} 16.32 \\ 10 \\ .0003 \end{array}$			

$3!5$

Table 169
Interview Data Analyses: Moles - Total High, Misdle or Low Success on Tests

Success on Tests	Problems Correct					Questions Correct					
	0	1	2	3	Total	2	3	4	5	6	Total
-	12	5	3	0	20	2	6	6	4	2	20
	60.0	25.0	15.0	, 0	27.0	10.0	30.0	30.0	20.0	10.0	27.0
Low	44.4	31.3	13.0	0	(25.5)	50.0	85.7	50.0	23.5	5.9	(20.0)
	16.2	6.8	4.1	0		2.7	8.1	8.1	5.4	2.7	
Middle	9	6	6	1	22	0	0	4	7	11	22
	40.9	27.3	27.3	4.5	29.7	0	0	18.2	31.8	50.0	29.7
	33.3	37.5	26.1	12.5	(33.6)	0	0	33.3	41.2	32.4	(42.1)
	12.2	8.1	8.1	1.4		0	0	5.4	9.5	14.9	
High	6	5	14	7	32	2	1	2	6	21	32
	18.8	15.6	43.8	21.9	43.2	6.3	3.1	6.3	18.8	65.6	43.2
	$22.2$	31.3	60.9	87.5	(47.7)	50.0	14.3	16.7	35.3	61.8	(45.2)
	8.1	6.8	18.9	9.5		2.7	1.4	2.7	8.1	28.4	
Total	27	16	23	- 8	74	4	7	12	17	34	74
	36.5	21.6	31.1	10.8	100.0	5.4	9.5	16.2	23.0	45.9	100.0
		KW Ch	Square	15.44				KW Chi	Square	20.68	
		df		6						${ }^{8}$	
		Signi	cance	. 0004				Signif	cance	$<.0001$	

300

Table 170

> Interview Data Analyses: Moles - Total High, Middle or Low Success on Tests

$32 i$

Table 171
Interview Data Analyses: Gas Laws - Problem 1 High, Middle or Low Success on Tests


Chi Square	8.17
df	2
V	.30
Significance	.02

Table 172

## Interview Data Analyses: Gas Laws - Problem 2 <br> High, Middle or low Success on Tests


$3 \%$

Table
173
Interview Data Analyses: Gas Laws - Problem 3
High, Middle or Low Success on Tests


Table 174
Interview Data Analyses: Gas Laws - Total High, Niddle or Low Sulacess on Tests


Table 175


Table 176
Interview Data Analyses: Stóichionetry - Problem 1 High, Middle or Low Success on Tests


$$
32 . j
$$

Table
177
Interview Data Analyses: Stoichiometry - Problem 1
High, Middle or Low Success on Tests

$33!$

Table 178
Interview Jata Analyses: Stoichiometry - Problem 1 High, Middle or Low Success on Tests


Table 179
Interview Data Analyses: Stoichiometry - Problem 2
High, Midale or Low Success on Tests


333

Tabie 180
Interview Data Analyses: Stoichiometry - Problem 2
High, Middle or Low Success on Tests


Table 181
Interview Data Analyses: Stoicidiometry - Problem 2 High, Middle or Low. Success on Tests


Table 182
Interview Data Anaiyses: Stoichiometry - Problem 3 High, Middle or Low Success on Tests

Success on Tests	Algorithmic ReasoningStrategy			Executive Errors			Structural Error-3				
	0	1	Total	0	1	Total	0	1	2	3	Total
Low	20	1	21	21	0	21	12	2	3	4	21
	95.2	4.8	31.8	100.0	0	31.8	57.1	9.5	14.3	19.0	31.8
	35.7	10.0		34.4	0		31.6	18.2	30.0	57.1	
	30.3	1.5		31.8	0		18.2	3.0	4.5	6.1	
*	23	1	. 24	24	0	24	17	1	5	1	24
	95.8	4.2	36.4	100.0	0	36.4	70.8	4.2	20.8	4.2	36.4
Middle	41.1	10.0		39.3	0		44.7	9.1	50.0	14.3	
	34.8	1.5		36.4	0		25.8	1.5	7.6	1.5	
High	13	8	21	16	5	21	9	8	2	2	21
	61.9	38.1	31.8	76.2	23.8	31.8	42.9	38.1	9.5	9.5	31.8
	23.2	80.0		26.2	100.0		23.7	72.7	20.0	28.6	
	19.7	12.1		24.2	7.6		13.6	12.1	3.0	3.0	
Total	56	10	66	61	5	66	38	11	10	7	66
	84.8	15.2	100.0	92.4	7.6	100.0	57.6	16.7	15.2.	10.6	100.0
-	```Chi Square df V Significance```		12.61	KW Chi Square 11.42 df 2   Significance . 003				Chi Sq	are	13.54	
			2					df		6	
			. 44					V		. 32	
			. 002					Signif	cance	. 04	

330

Table 183
Interview Data Analyses: Stoichiometry Total High, Middle or Low Success on Tests


Table 184
Interview Data Analyses: Stoichiometry - Total.
High, Middle or Low Success on Tests

33.

Table 185
Interview i.ata Analyses: Stoichiometry - Total
High, Middle or Low Success on Tests


Table 186
Interview Dăta Analyses: Stoichionetry - Total * High, Middle or Low Success on Tests

Success on Tests	Problems Correct					Questions Correct			
	0	1	2	3	Total	0	1	l	Total
Low	13	7	0	1	${ }^{3} 21$	6	5	10	21
	61.9	33.3	0	4.8	31.8	28.6	23.8	47.6	31.8
	$32.5{ }^{\text {, }}$	43.8	0	25.0	(31.9) ${ }^{\text {. }}$	60.0	31.3	25.0	(28.1)
	19.7	10.6	0	1.5		9.1	7.6	15.2	
Middle	20	2	2	0	- 24	4	8	12	24
	83.3	8.3	8.3	0	36.4	16.7	33.3	50.0	36.4
	50.0	12.5	33.3	0	(26.1)	40.0	50.0	30.0	(30.3)
	30.3	3.0	3.0	0		6.1	12.1	18.2	
High	7	7	4	3	- 21	0	3	18	21
	33.3	33.3	19.0	14.3	31:8	0	14.3	85.7	31.8
	17,5	43.8	66.7	' 75.0	(43.5)	0	18.8	45.0	(42.5)
	10.6	10.6	6.1	4.5		0.	4.5	27.3	
Total		16		4	- 66	10	16	40	
	60.6.	24.2	9.1	6.1	100.0	15.2	24.2	- 60.6	100.0
-	KW Chi Square df Significance			12.43				Square ${ }^{\text {* }}$	9.11
									4
				. 002		:	Signi	cance	. 01

34

Table 187
Interview Data Analyses: Stoichiometry - Total High, Midale or Low Success on Tests

Success on
Tests


342

Table 188
Interview Data Analyses: Molarity - Problem 2 -High, Middle or Low Success on Tests

Success on

Low

Middle

High

Total
$16 \quad 0$

16
$0 \quad 29.1$

## lise of Random <br> Trial and Error

0	1	Total
13	2	15
86.7	13.3	27.3

$23.6 \quad 3.6$

17	7	24

70.8
29.2
43.6
$37.0 \quad 77.8$
$30.9 \quad 12.7$
34.8
29.1

0
$\begin{array}{rrr}46 & 9 & 55 \\ 83.6 & 16.4 & 100.0\end{array}$
Chi Square $\quad$. 11
$\mathrm{df} \quad 2$
$V$. 33
Significance . 05
$3^{4} ;$

Table 189

## Interview Data Analyses: Molarity - Prablem 3 High, Middle or Low Success on Tests



$$
344
$$

Table 190

## Interview Data Analyses: Molarity - Problem 3 High, Middle or Low Success on Tests


$t$
3.15

Table 191
Intervicw Data Analyses: Molarity - Total High, Middle or Low Success on Tests


Interview Data Analyses: Molarity - Total High, Niddle or Low Success on Tests

Success on Tests	Problems Correct				
	0	I	2	]	Total
Low	12	0	3	0	15
	80.0	0	20.0	0	27.3
	34.3	0	42.9	0	(24.6)
	21.8	0	5.5	0	
Middle	17	6	1	0	- 24
	70.8	25.0	4.2	0	43.6
	48.6	50.0	14.3	0	(25.3)
	30.9	10.9	. 1.8	0	
High	6	6	3	1	16
	37.5	37.5	18.8	6.3	29.1
	17.1	50.0	42.9	100.0	(35.3)
	10.9	10.9	5.5	1.8	
Total	35	12	7	, 1	55
	63.6	21.8	12.7	1.8	100.0
		KN Ch	Square	6.46	
		Us		6	
		Signi	cance	. 04	

unsuccess ful students solving mole problems and moderately successful students, on the molarity problems.

Comments about solutions. Moles, all problems (Tables 159, 161,.163, 108), and stoichiometry, problem 1, 2, total (Tables $177,180,185$ ). Unsuccessful students made more comments about the solution for the moles problems whereas moderately successful students made more comments on the stoichionetry problems.

Executive errors. Gas Laws, problem 2 (Table 172) and stoichiometry, problem 3, total (Tables 182, 185). Made more frequently by successful students. Unsuccessful students frequently did not solve the problems and therefore had less opportunities to make executive errors.

Problems correct. - Totals for each of four units (Tables 169, 175, 186, 192). Successful students got more problems correct:

Questions correct. Mbles (Table 169) and stoichiometry (Table 186). Successful students answered more quest ions correct on these two units.

Questions correct without prompting. Moles, (Table 170) and stoichiometry (Table 187). Successful students answered more questions correct without prompting.

Structural errors. Structural errors are analyzed according to each chemistry unit because there was a unique set of errors associated for each chemistry unit.

1. Gas Laws 3-2, Table 173. The major difference between low, middle and high success groups was that the first two groups more frequently did not attempt to start the problem. Successfuf students' (high group) most frequent error was to not set up a proportion or factor.
2. Stoichiometry 1-2, Table 178. Low success students more frequently failed to use the equation in solving a simple stoichiometrv roblem.
3. Stoichiometry 2-2,Table 181 . Low and moderately successful students more frequently failed to use the equation in solving stoichiometry problems than high success students.
4. Stoichiometry 3-3, Table 182. This stoichiometry problem was not solved correctly by many students of any category. High success students attempted the problem and used the equation correctly for determining the product. (The major reason for lack of success on this problem appeared to be st.dents' inability to determine the limiting reagent.)
5. Molarity 3-2, Table 190. Low success students did not realize that the balanced equation must be used more frequently than middle or high success students.
6. Molarity 3-3, Table 190. Low success students used the definition of molarity incorrectly more frequently. More middle success students did not get far enough to use the definition of molarity. Hypothes is 4

There are no significant differences in chemistry problem solving strategies used by students according to the method taught to solve the problems:

Data were analyzed according to the treatment (method taught) to which they were assigned. This information is summarized in Table 193. Results are summarized in Table 194 and more detailed information about significant findings are given in Tables $195 \cdot 217$.

Systematic approach. Stoichiometry, problem 2 (Table 208). Students wh.o used the factor-label methods and the proportion method displayed a more systemmatic approach more frequently than students who used the other two methods. Because the stoichiometry problems were quite complex this may have important educational implications:

Approach taught. Moles, all problems (Tables 195, 196, 197, 198), gas laws, all problems (Tables 200, 201, 202, 204; , stoichiometry, all problems (Ti')les 206, $208,210,212$ ), and molarity, all problems (Tables 214, 215, 216, 217). Students who were taught to use the factor-label method and proportionality more overtly used

Table 193
Distribution of Students According to Teaching Strategy


Table 194



Table 194 (continued)
Summary of Significant Findings: Tcacing Stratcgies

$d_{\text {Sum of }}$ Problems $1,2 \& 3 \quad i_{\text {Not meaningful }}$

$$
3:
$$

Table 195
Interview Data Analyses: Noles - Problem 1
Teaching Strategies

Teaching	${ }^{-}$. Apprcach Taught				Arithmetic Approach		
Strategy					0	1	Total
Factor-Label	9 a	11	20		13	7	20
	$45.0{ }^{\text {b }}$	55.0	27.0		65.0	35.0	27.0
	15.3	73.3			44.8	15.6	
	$12.2{ }^{\text {d }}$	-14.9:			17.6	9.5	
Analogy	17	0	17		5	12	17
	100.0	0	23.0		29.4	70:6	23.0
	28.8	0			17.2	26.7	
	23.0	0	,		6.8	16.2	
Diagram	24	0	24		4	20	24
	100.0	0	32.4		- 16.7	83.3	32.4
	40.7	0			13.8	44.4	
	32.4	0			5.4	27.0	
	9	4	13		7	6	13
Proportion	69.2	30.8	17.6		53.8	46.2	17.6
	15.3	26.7			24.1	13.3	
	12.2	5.4			9.5	8.1	
Total	. 59	15	74		29	45	74
	79.7	20.3	100.0		39.2	60.8	100.0
	Chi					hi Square	12.55
	df .		${ }_{5}^{3} \mathrm{f}$				3 42
	Sign					Significance	. 006

## ${ }^{2}$ Count

Table 196
Interview Data Analyses: Moles - Problem 2 Teaching Strategies


Table 197

## Interview Data Analyses; Moles - Problem 3 Teaching Strategies

Teaching Strategy	Approach Taught			Arithmetic Approach			Needed Infommation Not Generated					
				0	1	Total						
Factor Label	11	9	20				15	5	20	14	6	- 20
	55.0	45.0	27.0	75.0	25.0	27.0	70.0	30.0				
	18.6	60		33.3	17.2		22.2	54.5	-			
	14.9	12.2		20.3	6.8		18.9	8.1				
Analogy	17	0	17	11	6	17	15	2	17			
	100.0	0	23.0	64.7	35.3	23.0	88.2	11.8				
	28.2	0		24.4	20.7		23.8	18.2				
	23.0	0		14.9	8.1		20.3	2.7				
Diagram	24	0	24	8	16	24	24	0	24			
	100.0	0	32.4	33.3	66.7	32.4	100.0	0	-2.4			
	40.7	0		17.8	55.2		38.1	0				
	32.4	0		10.8	21.6		32.4	0				
Proporticn	-7	6	13	11	'2	13	10	3	13			
	53.8	46.2	17.6	84.6	15.4	17.6	76.9	23.1	17.6			
	1.9	40.0		24.4	6.9		15.9	27. ${ }^{\text {a }}$				
	9.5	8.1	.	14.9	2.7		13.5	4.1				
Total	59		74	45	29	74	63	11	74			
	79.7	20.3	100.0	60.8	39.2	100.0	85.1	14.9	100.0			
		uare	23.38		Square	12.49		Square	8.63			
	df		3	df		3	df		3			
	V		. 50	V		. 41	V		. 34			
	Sig	icance	< . 0001		ificance	. 006		ificance	. 03			

Table 198
Interview Data Analyses: Moes - Total
Teaching Strategies

Teaching Strategy	Approach Taught					Arithmetic Approach				
	0	1		3	Total	0	1	2	3	Total
Fac or-Label	$5{ }^{\text {a }}$	4	5	6	20	12	2	3	$j$	20
	$25.0{ }^{\text {b }}$	20.0	25.0	30.0	27.0	60.0	10.0	15.0	15.0	27.0
	$9.6{ }^{\text {c }}$	103.0	55.6	06.7	$(53.8){ }^{\text {e }}$	52.2	20.0	16.7	$15 . C$	(25.9)
	$6.8{ }^{\text {d }}$	5.4	6.8	8.1		16.2	2.7	4.1	4.1	
Analogy	17	0	0	0	17	4	2	6	j	17
	100.0	0	0	0	25.0	23.5	11.8	35.3	29.1	23.0
	32.7	0	0	0	(26.5)	17.4	20.0	33.3	21.7	(39.7)
	23.0	0	0	0		5.4	2.7	8.1	6.8	
Diagram	24	0	0	0	24	0	4	7	15	24
	100.0	0	0	0	32.4	0	16.7	29.2	54.2	32.4
	46.2	0	0	0	(26.5)	0	40.0	38.9	56.5	(51.3)
	32.4	0	0	0		0	5.4	9.5	17.0	
Proportion	6	0	4	3	13	7	2	2	+	13
	46.2	0	30.8	23.1	17.6	53.8	15.4	15.4	15.4	17.6
	11.5	0	44.4	33.3	(4, ${ }^{\text {a }}$ )	30.4	20.0	11.1	$8{ }^{-}$	(27.1)
	8.1	0	54	4.1		9.5	2.7	2.7	2.	
Total		4	$\mathcal{G}$	9	-4	23	10	18	23	74
	70.3	5.4	12.2	12.2	100.0	31.1	13.5	24.3	31.1	$100 . C$
		$\begin{aligned} & \mathrm{KW} \mathrm{Ch} \\ & \mathrm{df} \end{aligned}$	Square	$\begin{array}{r} 38.1 \\ 9 \end{array}$			KW Chi Square df Significance		20.480	
		Signi	ance	<.ccol					. 0001	

## ${ }^{\text {a Count }}$

$b_{\text {Row }}$ percentage ${ }^{\text {c Columin }}$ percentage dotal percent ige Gean rank

353

Table 199

## Interview Data Analyses: Moles - Total Teaching Strategies

Teaching Strategy	Vonsystemmatic Approach					Needed Information Not Generated			
	0	1	2	3	Total	0	1	2	Total
Factor-Label	16	2	2	0	20	9	9	2	20
	80.0	10.0	10.0	0	27.0	45.0	45.0	10.0	27.0
	30.8	15.4	33.3	0	(33.9)	17.0	52.9	50.0	(47.3)
	21.6	2.7	2.7	0		12.2	12.2	2.7	
Analogy	8	5	2	2	17	14	2	1	17
	47.1	29.4	11.8	11.8	23.0	82.4	11.8	5.9	23.0
	15.4	38.5	33.3	66.7	(46.5)	26.4	11.8	25.0	(33.8)
	10.8	6.8	2.7	2.7		18.9	2.7	1.1	
Diagram	16	6	2	0	24	22	2	0	24
	66.7	25.0	8.3	0	32.4	91.7	8.3	0	32.4
	30.8	46.2	33.3	0	(38.1)	41.5	11.8	0	(29.9)
	21.6	8.1	2.7	0		29.7	2.7	0	
Proportion	12	0	0	1	13	8	4	1	13
	92.3	0	0	7.7	17.6	61.5	30.8	7.7	17.6 $(41.3)$
	23.1	0	0	33.3	(30.1)	15.1	23.5	25.0	(41.3)
	16.2	0	0	1.4		10.8	5.4	1.4	
Total	52	13	6	3	74	53	17	4	74
	70.3	17.6	8.1	4.1	100.0	71.6	23.0	5.4	100.0
		KW Chi	Square	7.84		KW Chi Square df   Significance			
				9					6
		Signi	cance	. 05					5

Table 200

## Interview Data Analyses: Gas Laws - Problem 1 Teaching Strategies



Table 201
Inten'iew Data Analyses: Gas Laws - Problem 2
Teaching Strategies

Teaching Strategy	Approach Taugit			drithurtic Approach			Algorithmic Strategy			$\frac{\text { Algoritlumic Reasoning }}{0}$			
		1	Total	0	1	Total	0	1					
Facter-Label	1	13	14	14	0	14	9	5	14	6	8	14	*
	7.1	92.9	21.9	100.0	0	21.9	64.3	35.7	21.9	42.9	57.1	21.9	
	2.6	50.0		42.4	0		25.0	17.9		16.7	28.6		
	1.6	20.5		21.9	0		14.1	7.8		9.4	12.5		
Analog:	18	0	18	2	16	18	10	8	18	10	8	18	
	100.0	0	28.1	11.1	88.9	28.1	55.6	44.4	28.1	55.6	44.4		
	47.4	0		6.1	51.6		27.8	28.6		27.8	28.6		
	28.1	0		3.1	25.0		15.6	12.5		15.6			
Diagram	16	0	16	3	13	16	- 13	3	16	6	10	16	
	100.0	0	25.0	18.8	81.3	25.0	81.3	18.8	25.0	37.5	62.5		
	42.1	0		9.1	41.9		36.1	10.7		16.7	35.7		
	25.0	0		4.7	20.3		20.3	4.7		9.4	15.6		
Proportion	3	13	16	14	2	16	4	12	16	14	${ }_{12}{ }^{2}$	16	
	18.8	81.3	25.0	87.5	12.5	25.0	25.0	75.0	25.0	87.5	12.5	25.0	
	7.9	50.0		42.4	6.5		11.1	42.9		38.9	7.1		
	4.7	20.3		21.9	3.1		6.3	18.8	.	21.9	3.1		
Total	38	26	64	33	31	64	© 36	28	64	36	28	${ }^{64}$	
	38 59.4	40.6	10C. 0	516	48.4	100.0	56.3	43.8	100.0	56.3	43.8	100.0	
					Square	40.12	Chi' Square		10.78	${ }_{\text {df }}^{\text {Chi }}$ Square		9.66	
				df	Squa	3	$\mathrm{df}$		3			3 39	
							$\cdot \mathrm{V}$		. 41	Significance		. 39	
				Sigrificance $<.0001$			Sig	if icance	- . 01				

Table 202
Interview Data Analyses: Las Laws - Problem 3 Teaching Strategies

Teaching Strategy	Approach Taught			Aritinmetic Approach		
	0	1	Total	0	1	
Factor-Label	9	5	14	14	0	14
	64.3	35.7	21.9	100.0	0	21.9
	16.1	62.5		28.6	0	
	14.1	7.8		21.9	0	
Analogy	17	:	18	11	7.	18
	94.4	5.6	28.1	61.1	38.9	28.1
	30.4	12.5		22.4	40.7	
	20.6	1.6		17.2	10.9	
Diagram	16	ù	10́	10	6	16
	100.0	0	25.0	62.5	37.5	25.0
	28.0	0		20.4	40.0	
	25.0	0		15.6	9.4	
Proportion	14	2	16	14	5	16
	87.5	12.5	25.0	87.5	12.5	
	25.0	25.0		28.6	13.3	
	21.9	3.1		21.9	3.1	
Total	56	8	64	49	15	64
	87.5	12.5	100.0	70.6	23.7	100.0
		uare	9.98	Chi Squaredf		9.51
	df		3			3 38
	V		. 39	Significance		. 38
		icance	. 02			. ${ }^{2}$

Table 203
Interview Data Analyses: Gas Laws - Problem 3 Teaching Strategies


Table 204
Interview lata Analysés: vas Laws - Tuiai Teaching Strategies


Table 205
Interview Data Analyses: Gas Laws - Total Teaching Strategies.

Teaching Strategy	Algorithmic Strategy Only					Algorithmic Reasoning Strategy					$\frac{\text { Misapplies }}{0} \frac{\text { Info Generated }}{1} \frac{\text { Total }}{1}$			
	0	1	2	3	Total	0	I	2	3					
Factor Label					14	5	3	4	2	14	14	0	14	。
	${ }_{5}^{7}$	$1+\frac{2}{5}$	4 28.6	7.1	21.9	35.7	21.4	28.0	14.3	21.9	100.0	0	21.9	
	50.0	14.5	28.6	7.1	21.9 $(29.8)$	16.7	30.0	25.0	25.0	(35.6)	24.1	0	(29.5)	
	25.9	20.0	19.0	10.7 1.6	(29.8)	7.8	4.7	6.3	3.1		21.9	0		
	10.9	3.1	6.3											
	6	5	6	1	18	7	3	6	${ }^{2}$	18	1.	1	18	
Analogy	33.3	27.8	33.3	5.6	28.1	38.9	16.7	33.3	11.1	28.1 $(34.8)$	94.4 29	16.7	(31.3)	
	22.2	50.0	28.6	16.7	(33.1)	23.3	30.0	37.5	25.0	(34.8)	29.3 26.6	16.7 1.6		
	9.4	7.8	9.4	1.6		10.9	4.7	9.4	3.1		26.6	1.0		
Diagram			3	1	16	0	2	4	4	10	11	31 5		
	68.8	0.3	18.8	0.3	25.0	37.5	12.5	25.0	25.0	25.0	68.8	31.3	25.0	
	40.7	10.0	14.3	10.7	(24.5)	20.0	20.0	25.0	51.0	(37.5)	. 19.0	83.3 7	(39.5)	
	17.2	1.6	4.7	1.6		9.4	3.1	6.3	6.3		17.2	7.8		
Proportion			8	3		12	2	2	0	16	16	0	16	
	${ }_{18}{ }^{3}$	12.5	50.0	18.8	25.0	75.0	12.5	12.5	0	25.0	100.0.	0	25.0	
	11.1	20.0	38.1	50.0	(42.2)	40.0	20.0	12.5	0	(22.1)	27.6	0	(29.5)	
	4.7	3.1	12.5	4.7		18.8	3.1	3.1	0		25.0	0		
Total	27	10	21	6	64	30	10	16	8	04	58	9	${ }^{64}$	
	42.2	15.6	32.8	9.4	100.0	46.9	15.6	25.0	12.5	100.0	90.6	9.4	100.0	


kW Chi Square	8.63
df	9
Significance	.03


KW Chi Square	7.77
df	9
Significance	.05


KW Chi Square	12.23
df	3
Significance	.007

Table 206
Interview Data Analyses: ، Stoichiometry - Problem 1 Teaching Strategies


Table 207
Interview Data Analyses: Stoichiometry - Problem 1 Teaching Strategies.


Table 208
Interview Data Analyses: Stoichiometry - Problem 2 Teaching Strategies


Table 209
Interview Data Analyses: Stoichiometry - Problem 2 Teaching Strategies

Teaching Strategy	Nonsystemmatic Approach			- No Answer Given			
	0	1	Total	0	1.	Total	
Factor-Label	17	2	19	18	1	19	
	89.5	10.5	23.8	94.7	5.3	28.8	
	30.9	18.2		31.6	11.1		
	25.8	3.0		27.3	1.5		
Analogy	9	6	15	12	3	15	
	60.0	40.0	22.7	80.0	20.0	22.7	
	16.4	54.5		21.1	33.3		
	13.6	9.1		18.2	4.5		
Diagram	15	2	17	12	5	17	
	88.2	11.8	- 25.8	70.6	29.4	25.8	
	27.3	18.2		21.1	55.6		
	22.7	3.0		18.2	7.6		
Proportion	14	1	15	15	0	15	
	93.3	6.7	22.7	100.0	0	22.7	
	25.5	9.1		26.3	0		
	21.2	1.5		22.7	0		
Total	55	11	66	57	9	66	
	83.3	16.7	100.0	86.4	13.6	100.0	
$!$	Chi Squaredf		7.77			7.61 3	
			3 .34	d V		3 .34	
	Significance		. 05	Sign	ance	. 05	

Table 210
Interview Data Analyses: Stoichiometry - Problem 3
Teaching Strategies

Teaching Strategy		Approach Taught			Arithmetic Approach		
		0	1	Total	0	1	Total
Factor-Label		11	8	19	15	4	19
		57.9	42.1	28.8	78.9	21.1	28.8
		22.4	47.1		29.4	26.7	
		16.7	12.1		22.7	6.1	
Analogy		15	0	15	11	4	15
		100.0	0	22.7	73.3	26.7	22.7
		30.6	0		21.6	26.7	
		22.7	0	,	16.7	6.1	
Diagram		16	1	17	10	7	17
		94.1	5.9	25.8	58.8	41.2	25.8
		32.7	5.9 .		19.6	46.7	
		24.2	1.5		15.2	10.6	
Proportion	$\bullet$	7	8	15	15	0	15
		46.7	53.3	22.7	100.0 .	0	22.7
		14.3	47.1		29.4	0	
		10.0	12.1		22.7	0	
Total	:	49	17	66	51	, 15	66
		74.2	25.8	100.0	$77.3^{\circ}$	22.7	100.0
					Chi Square		
		$\stackrel{\mathrm{df}}{\mathrm{V}}$		3 51	$\stackrel{\mathrm{df}}{\mathrm{~V}}$		3 .34
		Sign	cance	. 0006	Signi	cance	. 05

37. 

Table 211

## Interview Data Analyses: Stoichiometry - Problem 3 Teaching Strategies



Table 212
Interview Data Analyses: Stoichiometry - Total Teaching Strategies


Table 213
Interview Data Analyses: Stoichionetry - Total Teaching Strategies


Interview Data Analyses: Nolarity - Problem 1 Teaching Strategies


37

Table 215
Interview Data Analyses: Molarity - Problem 2 Teaching Strategies


Table 216
Interview Data Analyses: Molarity - 'Problem - 3
Teaching Strategies


331

Table 217
Interview Data Analyses: Molarity - Total Teaching Strategies

the method taught than students taught by the diagram or the analogy methods. Students may have forgotten the diagram or used the analogies covertly. Arithmetic approach. Moles, all problens (Tables 195, 196, 197, 198), gas laws, all problens (Tables 200, 201, 202, 204), stoichiometry, all problems (Tables 206, 208, 210,212) and molarity, problems 2, 3, total(Tables 215, 216, 217). Students taught using the analogy and diagram methods used arithmetic instead of the approach taught.

Nonsystemmatic approach. Moles, total (Table 199), stoichiometry, all problens (Tables $06,209,211,213$ ), and molarity, problem 3 (Table 236). Students who used the analogy and diagrammatic methods were nonsystemmatic more frequently when solving moles problems. Students using the analogy method were nonsystemnatic more frequently soiving stoichianetry problems and for molarity problem 3.

No answer given. Stoichiometry, problems 1, 2 (Tables 207, 209). Students who used the diagramic method gave no answers more frequently.

Algorithmic strategy. Gas laws, problem 2, total (Tables 201, 205). Students taught the proportional method used an algorithmic strategy more frequently.

Algorithmic/reasoning strategy. Gas laws, problem 2, tocal (Tables 201, 205). This strategy was used primarily by students taught by the analogy method and least by students taught by the proportionality methods.

Randam trial and error. Stoichjometry, problem 3, total (Tables 211, 213). This strategy was used primarily by persons taught the analogy method.

Misapplies information. Gas laws, problem 3, total (Tables 203, 205). Students taught by the diagram method more frequently misapplied relevånt information generated in previous steps.

Does not generate. Moles, problem 3, total (Tables 197, 199). Students who used the factor-label method more frequently did not generate information from
$38:$
memory needed to solve the problem. The next most prevalent method was the proportionality method.

Conments about solution. Gas laws, probjem 3 (Table 203). Students who used the factor-label method commented about the solution most frequently, whereas students who used the proportionality method commented least frequently. typothesis 5

There are no significant differences in chemistry problem solving strategies used by students who solved the problem correctly versus those who did not.

Data wereanalyzed according to whether the student gave a correct answer to the problem. Table 218 gives information on the number of students getting . each problem correct. Table 219 summarizes the findings and Tables 220-282 give details when findings were significant.

Reading/organizing. Gas laws, problem 2 (Table 243). Generally students who got the problem correet used more of these skills. However, there was a group of students that used organizing skills frequently who missed the problems.

Rereads or states. Gas laws, problem? (Table 243) and stoichiometry, problem 2 (Table 456 ). Students who reread or restated the problem more frequently did not work the problem correctly.

Mneumonics. Gas laws, total (Table 250). In general, students who used meumonic notation were more likely to get the problem correct.

Systemmatic approach. Moles, problems 1, 3, total (Tables 220, 230, 234) stoichiometry, all problems (Tables $252,255,259,262$ ) and molarity, problems 1,3 , total (Tables $265,276,279$ ). Students who used a systenmatic approach more frequently got the problem correct.

Arithmetic approach. Moles, all problems, (Tables 220, 225, 230, 234), and molarity, problem 1 (Table $2 € 5$ ). Students who got the problem correct more frequently used an arithmetic approach.

```
\(0 *\)
\(-\)
Table 218
Distribution of Students According to Success on Problems
```

$a$

	Problem 1		Prablem 2		Problem 3		
	Correct	Incorrect		Correct	Incorrect	Correct	Incorrect
Moles	39	35	35	39	12	62	
Gas Laws	29	35	17	47	2	62	
Stoichiometry	18	48	17	49	5	61	
Molarity	19	45	8	56	10	54	

Table 219
Sumary of Significant Find:ngs: Problem Solved Correctly


Table 219 (cont inucd)
Sumnary of Signtficant Findings: Problem Solved Correctly

Protocol Categories	Moles					Gas kaws				Stoichiometry				Molarity			
	P1	P2	P3	T													
*Evaluation							$\begin{aligned} & 33 \\ & .002 \end{aligned}$			-	1				209 .04		
*Comnents about Solution	$\begin{aligned} & 1022 \\ & .0001 \end{aligned}$	$\begin{aligned} & 962 \\ & .0002 \end{aligned}$	$\begin{aligned} & 522 \\ & .01 \end{aligned}$	$\begin{array}{r} 22.75 \\ <.0001 \end{array}$	$\begin{aligned} & 676 \\ & .003 \end{aligned}$	$\begin{array}{r} .510 \\ .02 \end{array}$			648 .0004		$\begin{gathered} 227 \\ .03 \end{gathered}$	$\begin{array}{r} 22.60 \\ .0001 \end{array}$	$\begin{gathered} 553 \\ .02 \end{gathered}$		$\begin{aligned} & 435 \\ & .0004 \end{aligned}$	$\begin{aligned} & 13.77 \\ & .003 \end{aligned}$	
* Executive Errors	$\begin{array}{\|c} 780 \\ .02 \end{array}$	$\begin{gathered} 770 \\ .03 \end{gathered}$			$\begin{aligned} & 682 \\ & .0002 \end{aligned}$	$\begin{aligned} & 561 \\ & .002 \end{aligned}$		$\begin{aligned} & 9.40 \\ & .02 \end{aligned}$									
* Problems Correct	$\lambda^{1}$	X	$\lambda$	$\lambda$.	X	X	$\chi$	X	X	X	X	$\chi$	X	X	X	X	
*Questions Correct	$\begin{aligned} & 406 \\ & .002 \end{aligned}$	471 .02	$\begin{aligned} & 234 \\ & .03 \end{aligned}$	$\begin{aligned} & 13.24 \\ & .004 \end{aligned}$			14 .02						271 .001	78 .002	$\begin{aligned} & 12:! \\ & .005 \end{aligned}$	$\begin{aligned} & 19.23 \\ & .0002 \end{aligned}$	
*Question w/o Prompting	$\begin{aligned} & 320 \\ & .0001 \end{aligned}$	$\begin{aligned} & 360 \\ & .0004 \end{aligned}$	$\begin{aligned} & 140 \\ & .0005^{\circ} \end{aligned}$	$\begin{array}{r} 23.65 \\ <.0001 \end{array}$	$\begin{aligned} & 307 \\ & .004 \end{aligned}$			$\begin{aligned} & 9.73 \\ & .02 \end{aligned}$	283 .03	204 .001	62 .02	14.70 .002	279 .02	109 .02		10.17 .04	
Structural Errors				.													
Section ${ }^{\text {h }}$-1	X	X	$\chi$	X	11.4 .02	X	X	X	32.92 $\therefore .0001$	X	X	X	24.64 .0009	X	X	X	
Section 1-2	X	X	X	X	$\begin{array}{r} 29.75 \\ <.0001 \end{array}$	X	$x$	X	26.30 $<.0001$	$\lambda$	X	X	39.49 $<.0001$	X	X	X	
Section 2-1	X	X	X	X	X		$x$	X	X	$\begin{array}{r} 12.40 \\ .002 \end{array}$	X	X	X	$\begin{aligned} & 25.68 \\ & .0003 \end{aligned}$	X	$\chi$	
Section 2-2	X	X	X	X	X	$\begin{array}{r} 29.76 \\ <.0001 \end{array}$	X	X	X	$\begin{array}{r} 42.81 \\ .<.0001 \end{array}$	X	X	X	$\begin{aligned} & 13.36 \\ & .04 \end{aligned}$	X	X	-
Section 3:1	X	X	X	X	X	X		X	X	$\chi$		X	X	X	$\begin{aligned} & 20.17 \\ & .01 \end{aligned}$	X	
Section 3-2	X	X	$\chi^{\square}$	X	X	X	$\begin{aligned} & 19.96 \\ & .006 \end{aligned}$	X	X	X		X	X	X	$\begin{array}{r} 38.72 \\ <.0001 \end{array}$	X	
Section 3-3	X	X	X	X	X	X		X	X	$\chi$	$\begin{array}{r} 27.05 \\ \times .0001 \\ \hline \end{array}$	X	X	X	$\begin{array}{r} 30.29 \\ <.0001 \\ \hline \end{array}$	X	

${ }^{\text {a Category }}$ sum
${ }^{2}$ Problem 1
$b_{\text {Problem }} 2$
${ }^{\text {CPróblem }} 3$
$\sim^{\mathrm{d}}{ }^{\text {sum of Problems } 1,2 \& 3}$
$\mathbf{e}_{\text {Statistic }}$
$\mathbf{f}_{\text {Probability }}$ level
${ }^{s_{S u m}}$ of rereads and restates subcategories
${ }^{h_{\text {Section }}}$ an supplementary coding sheet
${ }^{\mathbf{i}_{\text {Not }}}$ meaningful

Table 220
Interview Datd Analyses: Moles - Problem 1
Problem Solved Correctly

Problems Correct	Systematic Approach			Arithmetic Approach			Nonsystemmatic Approach		
	0	1	Total	0	I	Total	0	1	Total
No	$14^{\text {a }}$	21	35	22	13	35	27	8	35
	$40.0{ }^{\text {b }}$	60.0	47.3	62.9	37.1	47.3	77.1	22.9	47.3
	$100.0{ }^{\text {c }}$	35.0		75.9	28.9		40.9	100.0	a
	-18.9 ${ }^{\text {d }}$	28.4		29.7	17.6		36.5	10.8	a
Yes	0	39	39	7	32	39	39	0	39
	0	100.0	52.7	17.9	84.1	52.7	100.0	0	52.7
	0	65.0		24.1	71.1		59.1	0	
	0	52.7		9.5	43.2		52.7	0	-
Total	14	60	74	29	45	74	66	8	74
	18.9	81.1	100.0	39.2	60.8	100.0	89.2	10.8	100.0
	(hi Square		$16.72{ }^{\text { }}$	Chi Square		13.78	Chi Squaredf		
				df		1			
	Phi			Phi		. 460	Phi		. 307
	Significance <. 0001			Significance		. 0002	Sig	ficance	. 005

[^12]$39 i$

Table 221
Interview Data Analyses: Moles - Problem I Problem Solved Correctly


Table 222
Interview Data Analyses: Moles - Problem 1
Problem Solved Correctly

Problems Correct	Conments About Solution						Executive Errors		
	0	1	2	3	Total		0	1	Tota
No	$16^{\text {a }}$	15	3	1	35		30	5	35
	$45.7{ }^{\text {b }}$	$+2.9$	8.6	2.9	47.3		85.7	14.5	47.3
	$30.2{ }^{\text {c }}$	88.2	100.0	100.0	$(47.2)^{e}$		43.5	100.0	(40.3)
	$216^{\text {d }}$	20.3	1.4	1.4			40.5	6.8	
Yes		2	0	0	39	\%	39	0	39
	94.9	5.1	$\bigcirc 0$	0	52.7		100.0	0	52.7
	6 C .8	11.8	0	0	(28.8)		56.5	0	(35.0)
	50.0	2.7	, 0	0			52.7	0	
Total	53	17		1	74		- 69	5	74
	71.6	25.0	4.1	1.4	100.0		93.2	6.8	100.0
		Mann-Whitney U			1022		Manr.	Mitney U	U 780
							Wilc	on Rark	Sum W 1410
		Significance					2		2.43
							Sign	ficance	. 02

acount
Row percentage Column percentage Total percentage
Mean iank

Table 223 :
Interview Data Analyses: Moles - Problem 1 Problems Solved Carrectly


Table 224
Interview Data Analyses: Noles - Problem 1
Problents Solved Correctly

Problems Correct	Questions Correct Without Prampting							
	0		2	3	4	-	$-6$	10tal
No	2	. 4	12	6	6	5	$\cdots 0$	- 35
	5.7	11.4	34.3	17.1	17.1	143	0	47.3
	66.7	100.0	75.0	46.2	42.9	27.8	0	(27.2)
	2.7.	5.4	16.2	8.1	8.1	6.8	0	
Yes	- 1	0	4	7	8	13	5	39
	2.6	0	10.3	17.9	20.5	33.3	15.4	52.7
	33.3	0	25.0	53.8	57.1	72.2	100.0	(46.8)
	1.4	0	5.4	9.5	10.8	17.6	8.1	
Total	3	4	16	- 13	14	'18	6	74
	4.1	5.4	21.6	17.6	18.9	24.3	8.1	100.0
	-	Mann-Whitney U Wilcoxon Rank Sum W Z				$\begin{aligned} & 320 \\ & 950 \end{aligned}$		
						-3.99		
			Signi	cance		. 0001 .		

Table 225
Interview iata Analyses: Moles - Problem 2 Probleni Solved Correctly


390

Table 226

## Interview Data Analyses: Molos - Problem 2 Problem Solved Correstly



Table 227
Interview Data Analyses: Moles - Problem 2 Problem Solved Correctly


393

Table 228

Interviel Data Analyses: Moles - Problem 2
Problems Solved Correctly


Table 229
Interview Data Analyses: Moles - Problem 2
Problems Solved Correctly


## Table 230

## Interview Data Analyses: Moles - Problem 3 Problem Solved Correctly

Problems Correct	Systemmatic Approach				Arithmetic Approach		
	0	1	Total	.	0	1	Total
No	30	32	62		43	319	62
	48.4	51.6	83.8		69.4	430.6	83.8
	100.0	72.7			95.6	$6 \quad 65.5$	
	40.5	43.2			58.1	$1 \quad 25.7$	
Yes	0	12	12		2	210	12
	0	100.0	16.2		16.7	7.83 .3	16.2
	0	27.3			4.4	434.5	
	0	16.2			2.7	713.5	
Total	30	44	74		45	$5 \quad 29$	74
	40.5	59.5	100.0		60.8	$8 \quad 39.2$	100.0
	Chi Square		7.86		$\begin{aligned} & \text { Chi Square } \end{aligned}$		9.61
			1				1
	Phi		. 36			Phi	. 40
	Significance		. 005			Significance	. 002

401

Table 231
Interview vata Analyses: Moles - Problem 3 Problem Solved Correctly


$$
4!16
$$

1
Table 232
Interview Data Analyses: Moles - Problem 3
Problems Solved Correctly

40.3

Table 233

## Intervíew Data Analyses: Moles - Prodiem 3 Problems Solved Correctly



Table 234

## Interview Data Analyses: Moles - Total Problem Solved Correctly

Problems Correct	Systemmatic Approach					Arithmetic Approach				
	0	1	2	3	Total	0	1	2	3	Total
0	6	4	7	10	27	14	5	5	3	27
	22.2	14.8	25.9	37.0	36.5	51.9	18.5	18.5	11.1	36.5
	85.7	50.0	33.3	26.3	(29.9)	60.9	50.0	27.8	13.0	(26.4)
	8.1	5.4	9.5	13.5		18.9	6.8	6.8	4.1	
1	1	3	7	5	16	5	3	6	2	16
	6.3	18.8	43.8	31.3	21.6	31.3	18.8	37.5	12.5	21.6
	14.3	37.5	33.3	13.2	(31.1)	21.7	30.0	33.3	8.7	(32.9)
	1.4	4.1	9.5	6.8	.	6.8	4.1	8.1	2.7	
2	0	1	7	15	23	4	1	7	11	23
	0	4.3	30.4	65.2	31.1	17.4	4.3	30.4	47.8	31.1
	0	12.5	33.3	39.5	(14.6)	17.4	10.0	38.9	47.8	(46.4)
	0	1.4	9.5	20.3		5.4	1.4	9.5	14.9	
3	0	0	0	8	8	0	1	0	7	8
	0	0	0	100.0	10.8	0	12.5	0	87.5	10.8
	0	0	0	21.1	(55.5)	0	10.0	0	30.4	(58.7)
	0	0	0	10.8		0	1.4	0	9.5	
Total	7	8	21	38	74	23	10	18	2.3	74
	9.5	10.8	28.4	51.4	100.0	31.1	13.5	24.3	31.1	100.0
		KW Chi df	Square	$\begin{array}{r} 15.37 \\ 9 \end{array}$			KW Ch df	Square	21.29 9	
		Signif	cance	. 001			Signif	ance	. 0001	

Table 235

## Interview Data Analyses: Moles - Total Problem Solved Correctly



Table 236
Interview Data Analyses: Moles - Total Problem Solved Correctly


Table 237
Interview Data Analyses: Moles - Total Problem Solved Correctly


Table 238

## Interview Data Analyses:- Noles - Total Problems Solved Correctly

Problems Correct	Questions Correct					
	2	3	4	5	6	Total
0	3	4	8	6	6	27
	11.1	- 14.8	29.6	22.2	22.2	36.5
	75.0	57.1	66.7	35.3	17.6	(26.5)
	4.1	5.4	10.8	3.1	8.1	
1	1	2	1	3	9	16
	6.3	12.5	6.3	18.8	56.3	21.6
	25.0	28.6	8.3	17.6	26.5	(40.6)
	1.4	2.7	1.4	4.1	12.2	
2	0	1	3	5	14	23
	0	4.3	13.0	21.7	60.9	31.1
	- 0	14.3	25.0	29.4	41.2	(44.6)
	0	1.4	4.1	6.8	18.9	
3	0	0	0	3	5	8
	0	9	0	37.5	62.5	10.8
	0	0	0	17.6	14.7	(47.9)
	0	0	0	4.1	6.8	
Total	4	7	12	17	34	74
	5.4	9.5	16.2	23.0	43.9	100.0
	KW Chi Square df Significance			13.24		

Table 239

## Interview Data Analyses: Moles - Total Problems Solved Correctly


$4 i v$

Table 240
Intervievf Data Analyses: Gas Laws - Problem 1 Problem Solved Correctly


Table 241
Interview Data Añalyses: Gas Laws - Problem 1 Problem Solved Correctly


Table 242
Interview Data Analyses: Gas Laws - Problem 1 Problem Solved Correctly

${ }^{2}$ Count
$\mathrm{b}_{\text {Row }}$ percentage
${ }^{\text {chalum percentage }}$
dotal percentage
framer's V

413

Table 243
Interview Data Analyses: Gas Laws - Problem 2 Problem Solved Correctly


Table 244
Interview Data Analyses: Gas Laws - Problem 2
Problem Solved Correctly

Problem Correct	Comments about Solution				Executive Errors		
	0	$\frac{1}{1}$	2	3	0	1	2
No			1	47	28	19	47
	34 723	25.5	2.1	73.4	59.6	40.4	73.4
	72.3 66.7	25.5 100.0	100.0	(34.9)	62.2	100.0	(35.9)
	53.1	18.8	1.6		43.8	29.7	
Yes			0	17	17	0	17
	17	0	0	26.6	100.0	0	26.6
	100.0	0	0	26.6 $(26.0)$	37.8	0	(23.0)
	33.3	0	0	(26.0)	26.6	0	
	26.6	0	0			0	
Total			1		45	19	${ }_{6}^{64}$
	$\begin{array}{r} 51 \\ 79.7 \end{array}$	$\begin{array}{r} 12 \\ 18.8 \end{array}$	1.6	100.0	70.3	29.7	100.0
	Mann-Whitney U Wilcoxon Rank Sum W z			510	Mann-Whitney U Wilcoxon Rank Sum		561
				442	Wilc	Rank Su	3.10
				$\begin{array}{r} 2.40 \\ .02 \end{array}$	Significance		. 002
	Significance						

415

Table 245
Interview Data Analyses: Gas Laws - Problem 2 Problem Solved Correctly

Problems	Structural Prror 2						
Correct	0	1	2	3	4	5	Total
	5	3	2	20	6	11	
	10.6	6.4	4.3	42.6	12.8	23.4	73.4
No	100.0	100.0	100.0	100.0	100.0	39.3	
	7.8	4.7	3.1	31.3	9.4	17.2	
	0	. 0	0	0	0	17	17
	0	0	0	0	0	100.0	26.6
Yes	0	0	0	0	0	60.7	
	0	0	0	0	0	26.6	
Total	5	3	2	20	6	28	1004
	7.8	4.7	3.1	31.3	9.4	43.8	100.0
			Chi Square 29.76   df 5   V .68   Signıficance $<.0001$				

410

Table 246
Interview Data Analyses: Gas Laws - Problem 3 Problem Solved Correctly

Problens Correct	Algorithmic ReasoningStrategy			$\begin{gathered} \text { Misinterprets } \\ \text { Problem } \end{gathered}$			Evaluation Sum		
				0	1	Total	0	1	To1 3
No				61	1	62	60	2	- 62
	52	10	62	98.4	1.6	96.9	96.8	3.2	96.9
	83.9	16.1	96.9	98.4	100.0		98.4	66.7	(32.0)
	100.0	83.3		96.8	100.0 1.6		93.8	3.1	
	81.3	15.6		95.3	1.6				
Yes						2	1	1	2
	0	1002	2	100.8	0	3.1	50.0	50.0	3.1
	0	100.0	3.1	100.0	0		1.6	33.3	(47.0)
	0	16.7		3.2	0		1.6	1.6	
	0	3.1		3.1	0		1.6		
Total	52	12	64	63	1	64	${ }_{95}^{61}$	3 4	$\begin{array}{r} 64 \\ 100.0 \end{array}$
	81.3	18.8	100.0	98.4	1.6	100.0	95.3	4.7	
	Chi Square			Chi Square		7.37	$\begin{array}{lr} \text { Nann-Whitney U } & 33 \\ \text { Wilcoxon Rank Sum W } 94 \end{array}$		
			4.29			1			
	df		. 37	Phi		. 02	Significance		
	Sign	icance	. 04	Significance		. 007			. 002

417

Table 248
Interview Data Analyses: Gas Laws - Problem 3
Problem Solved Correctly


Interview Data Analyses: Gas Laws - Problem 3 Problem Solved Correctly


Table 250

## Interview Data Analyses: Gas Laws - Total Problem Solved Correctly


$461)$

Table 251
Interview Data Analyses: Gas Laws - Total Problem Solved Correctly

Problems	Executive Errors					Questions Correct Without Prompting						
Correct	0	1	2	3	Total	0	1	. . 2	3			Iotal
0		10	5	2	$: 32$	3	5	12	11	${ }_{3} 1$		32
	46.9	31.3	15.6	6.3	'50.0	2.4	15.6	37.5	34.4	--3.1		-50.0
	-39.5	52.6	100.0	100.0	(37.5)	100.0 .	62.5	-3. 2	42.3	12.5		(26.1)
	23.4	15.6	7.8	3.1		4.7	7.8	18.8	17.2	1.6		
1	10	8	0	0	18	0	1	5	8			
	55.6	44.4	0	0	28.1	0	5.6	27.8	44.4	22.2	(	28.1
	26.3	42.1	0	0	(32.2)	0	12.5	26.3	30.8	50.0		(39.0)
	15.6	12.5	0	0		0	1.6	7.8	12.5			
2			0	0	12	0	2	2	6	2		12
	11	1	0		18.8	0	16.7	16.7	50.0	16.7		18.8
	91.7	8.3	0	0	18.8 (21.9)	0	25.0	10.5	23.1	25.0		(36.6)
	28.9	5.3	0	0	(21.9)	0	3.1	3.1	9.4	3.1		
	17.2	1.6	0	0		0	3.1					
3					2	0	0	0	1	1		2
	2	0	0	0	3.1	0	0	0	50.0	50.0		3.1
	100.0	0	0	0	(19.5)	0	0	0	3.8	12.5		(52.0)
	5.3 +3.1	0	0	0		0	0	0	1.6	1.6		
Total			5	2	, 64	3	8	19	46	8 12		
	59.4	29.7	7.8	3.1	100.0	4.7	12.5	29.7	40.6	12.5		
	KW Chi Square df   Significance			$\begin{array}{r} 9.40 \\ 9 \\ .02 \end{array}$				KW Chi Square df Significance		$\begin{array}{r} 9.73 \\ 12 \\ .02 \end{array}$		

Table 252
Interview Data Analyses: Stoichiometry - Problem 1
Problem Solved Correctly

Problems Correct	Systemmatic Approach			Algorithmic ReasoningStrategy			$\frac{\text { Comments About Solution }}{0}$			
	0	1	Total	0	1	Total				
No	18	30	48	41	7	48	17	30	1	48,
	37.5	62.5	72.7	85.4	14.6	72.7	35.4	62.5	2.1	72.7
	94.7	63.8		87.2	36.8		51.5	96.8	50.0	(38.0)
	27.3	45.5		62.1	10.6		25.8	45.5	1.5	
Yes	1	17	18	6	12	18	16	1	1	18
	5.6	94.4	27.3	33.3	66.7	27.3 .	88.9	5.6	5.6	27.3
	5.3	36.2		12.8	63.2		48.5	3.2	50.0	(21.5)
	1.5	25.8		9.1	18.2	-	24.2	1.5	1.5	
Total	19	47	66	47	19	66	-33	31	2	66
	28.8	71.2	100.0	71.2	28.8	100.0	50.0	47.0	3.0	100.0
			* 5.05		Square	14.87	Mann-Whitney U Wilcoxon Rank Sum $z$ Significance			648
	df		1	df		1				386
	Phi		. 31	Phi		. 51				3.54
	Sig	cance	. 02	Sign	ificance	. 0001				. 0004

422

Table 253

## Interview Data Analyses: Stoichiametry - Problem 1 Problem Solved Correctly



Table 254
Interview Data Analyses: Stoichiometry - Problem 1 Problem Solved Correctly


Table 255

- Interview Data Analyses: Stoichiometry - Problem 2 Problem Solved correctly

Problems Correct	Kereading/Stating Problem			2. Systemmatic Approach			. Igoritimic Reasoning Strateg:		
	0 1	- 2	Total	0	-1	Tota1	0	1	Total
No	: $24-24$	1	49	20	29	49	42	7	49
	$49.0 \quad 49.0$	2.0	74.2	40.8	59.2	74.2	85.7	14.3	74.2
	$64.9 \quad 85.7$	100.0	(35.9)	100.0	63.0		91.3	35.0	
	36.430 .4	1.5		30.3	43.9		03.0	10.6	
Yes	$13 \quad 4$	0	17	0	17	17	4	13	17
	76.5 23.5	0	25.8	0	100.0	25.8	23.5	70.5	25.8
	$35.1 \quad 14.3$	0	(20.6)	0	37.0		8.7	65.0	
	19.76	0	(20.0)	0	25.8		6.1	19.7	
Total	$37 \quad 28$	1	00	20	40	60	to	20	66
	56.1 42.4	1.5	100.0	30.3	09.7	100.0	09.7	30.3	100.0
	Sann-Whitney U	533		Chi Square		8.12	Chi Square		20.26
	df.	453		df		39	df		
	Phi	1.9		V		. 39	Phi		- 59
	Significance	. 0		Significance		. 004	Sign	cance	<.0001

Table 256
Interview bata Analyses: Stoichiometry - Problem 2
Problem Solved Correctly


Table 257
Interview Data Anlyses: Stoichiometry - Problem 2 Problem Solved Correctly


423

Table 258
Interviek Data Analyses: Stoichiometry - Problem 2 Problem Solved Correctly


Table 259
Interview Data Analyses: Stoichiometry - Problem 3 Problem Solved Correctly

Problems Correct	Systemmatic Approach			Algorithmic ReasoningStrategy			Comments About Solution		
	0	,	Iotal	0	1	Total	0		
. .	34	27	61	55	6	61	19	42	
	55.7	44.3	92.4	90.2	9.8	92.4	31.1	68.9	
N	100.0	84.4		98.2	60.0		82.6	97.7 (34	
	51.5	40.9		83.3	9.1		28.8	63.6	
Yes	0	5	7.6	1	4	5	4	1	5
	0	100.0		20.0	80.0	7.6	80.0	20.0	$\begin{gathered} 7.6 \\ (18.6) \end{gathered}$
	0	15.6		1.8	40.0		17.4	2.3 (18	
	0	7.6		1.5	6.1		6.1	1.5 +	
Total		32	66	56	10	66	23.	- 43	6
	51.5	48.5	100.0	84.8	15.2	100.0	34.8	65.2100	
	Chi Sq		3.73		are	12.66	Nann-Whit	ney U	227
	- $\mathrm{df}^{\text {i }}$		$\begin{array}{r}1 \\ \hline\end{array}$	df		1	Wilcoxon	Rank Sum W	93
	Phi		. 29	Phi		0.52	$\underset{\text { z }}{ }$		. 07
	Signi	ance	. 05		cance	. 0004	Signific	nce	. 03

Table 260

## Interview Data Analyses: Stoichiometry - Problem 3 Problem Solved Correctly



Table 261

## Interview Data Analyses: Stoichiometry - Problem 3 Problem Solved Correctly

Troblens Correct	Structural Error - 3				
	0	1	, 2	3	Total
No	38	6	10	7	61
	62.3	9.8	16.4	11.5	92.4
	100.0	54.5	100.0	100.0	
	57.6	9.1	15.2	10.6	
Yes	0	5	0	0	5
	0	100.0	0	0	7.6
	0	45.5	0	0	
	0	7.6	0	0	
Total	38	11	10	- 7	$\begin{array}{r} 66 \\ 100.0 \end{array}$
	57.6	16.7	15.2	10.6	
		Chi	Square	27.05	
		df		3	
		V		. 64	
		Sign	ificance	. 0001	

Table 262
Interview Data Analyses: Stoichiometry - Total Problem Solved Correctly

Problems	Systematic Approach						No Answer Given					,	
Correct	0	1	2	3	Total		0	1	2	3	Total		
	14	8	6	12	40		25	7	4	4	40		
	35.0	20.0	15.0	30.0	60.6		62.5	17.5	10.0	10.0	-60.6		
0	93.3	100.0	50.0	38.7	(26.4)		53.2	70.0	100.0	80.0	(39.2)		
	21.2	12.1	9.1	18.2			37.9	10.6	6.1	6.1			
	1.	0	4	11	16		14	1	0	1	16		
	6.3	0	25.0	68.8	24.2		87.5	6.3	0	6.3	24.2		
	6.7	0	33.3	35.5	(42.9)	,	29.8	10.0	0	20.0	(26.8)		
	1.5	0	6.1	16.7		-	21.2	1.5	0	1.5			
2 ,	0	0	2	4	6		4	2	0	0			
	0	0.	33.3.	66.7	9.1		66.7	33.3	0	0	${ }^{9.1}{ }^{\circ}$		
	0	$\times$	16.7	12.9	(43.8)		8.5	20.0	0	0	(21.5)		
	0	0	3.0	6.1			6.1	3.0	0	0			
3	0	0	0	4	4		4	. 0	0	0	4		
	0	0	0	100.0	6.1		100.0	0	0	0	6.1		
	0	0	0	12.9	(51.0)		8.5	0	0	0	(21.5)		
	0	0	0	6.1			6.1	0	0	0			
Total	15	8	12	31	66		47	10		5	${ }^{\cdot} 66$		
	22.7	12.1	18.2	$4 \% .0$	100.0		71.2	15.2	6.1	7.6	100.0		
,		KW. Ch	Şquare	16.38				KW Ch	Square	12.8			
		df						df					
		Signi	cance	. 001				Sign	icance	. 00			

Table 263
Interview Data Analyses': Stoichiometry - Total Problem Solved Correctly

Problems	Algorithmic Strategy Only					Conments Åbout Solution						
Correct	0	1	2	3	Totai	0	1	2	3		Iotal	
correct	16	11	6	7	40	3	8	- 8	21	${ }^{1}$	40	
	40.0	27.5	15.0	17.5	60.6	7.5	20.0	20.0	52.5	0	60.6	
	53.3	78.6	50.0	70.0	(34.8)	25.0	40.0	66.7	100.0	0	(41.6)	
	24.2	16.7	9.1	10.6		4.5	12.1	12.1	, 31.8	0		
1	5	3	5	3	16	3	8	4	0	1.	16	
	31.3	18.8	31.3	18.8	24.2	18.8	50.0	25.0	0	6.3	24.2	
	16.7	$21.4{ }^{\text {- }}$	41.7	30.0	(39.2)	25.0	40.0	33.3	0	100.0	(26.2)	
	7.6	4.5	7.6	4.5		4.5	12.1	6.1	0	1.5		
2	5	0	1	0	6	3	3	0	0	0	6	
	83.3	0	16.7	0	.9.1	50.8	50.0	0	0	0	9.1	
	16.7	0	8.3	0	(21.3)	25.0	15.0	0	0	0	(14.5)	
	7.6	0	1.5	0		4.5	4.5	0	0	0		
3	4	0	0	0	4	3	1	0	0	0	4	
	100.0	0	- 0	0	-6.1	75.0	25.0	0	0	0	${ }^{6.1}$	
	13.3	0	0	0	$(15,5)$	25.0	5.0	0	0	0	(10.5)	
	6.1	0	0	0		4.5	1.5	0	0	0		
Total						12	20	12	21	1	66	
	$\begin{array}{r} 30 \\ 45.5 \end{array}$	$21.2$	$18.2$	15.2	100.0	18.2	30.3	18.2	31.8	1.5	100.0	
1.	KN Chi Square df Significance		$\begin{array}{r} 8.49 \\ 9 \\ .04 \end{array}$				KW Chi Square df Significance		$\begin{array}{r} 22.60 \\ 6 \\ .0001 \end{array}$			

Table 264
Interview Data Analyses: Stoichiometry - Total Problem Solved Correctly


Table $265^{\circ}$
Interview Data Analyses: Molarity - Problem 1
Problem Solved Correctly

Problems Correct	Systemmatic Approach			Arithmetic Approach			$\begin{aligned} & \text { Algorithmic Strategy } \\ & \text { Only } \end{aligned}$		
	0	1	Total	0	1	Total	0	1	
No			45	23	22	45	19	26	45
	15	30	45	51.1	48.9	70.3	42.2	57.8	70.3
	33.3	66.7	70.3	85.2	59.5		52.8	92.9	
	100.0	61.2		85	34.4		29.7	40.6	
	23.4	46.9							
Yes		19	19	4	15	19	17	2	19
	0	100.0	29.7	21.1	78.9	29.7	89.5	10.5	29.7
	0	38.8		14.8	40.5		47.2	7.1	
	0	29.7		6.3	23.4		26.6	3.1	
Total				27	37	64	36	28	64
	$23.4$	$76.6$	$100.0$	42.2	57.8	100.0	56.3	43.8	100.0
	Chi Square			Chi Square		3.79			. 10.28
	df	- 1		df		1	df		1
	Phi	. 36		Phi		. 28	Phi		. 43
	Sign	ance $\quad .01$		Significance		. 05		ance	. 001

Table 266
Interview Data Analyses: Molarity - Problem 1
Problem Solved Correctly

Problems Correct	Algorithmic Reasoning Strategy				Nisapplies InformationGenerated				Comments About Solution			
	0				0	-1		Total	0			
No									27	18		45
	42	3	45		34	11		705	60.0	40.0		70.3
	93.3	6.7	$70.3{ }^{\text {3 }}$		75.6	24.4		70.5	60.4	90.0		(35.3)
	95.5	15.0			64.2	100.0			42.2	28.1		
	65.6	4.7			53.1	17.2				28.1		
Yes	2	17	19		19	0		19	17	2		19
	10.5	89.5	29.7		100.0	0		29.7	89.5	10.5		29.7
	4.5	85.0			35.8	0			38.6	10.0		(25.9)
	3.1	26.6			29.7	0	.		26.6	3.1		
Total	44	20	64		53	11		64	44	20		64
	68.8	31.3	100.0	,	82.8	17.2		100.0	68.8	31.3		100
	Chi Square df		38.87		Chi Square 4.02				$\begin{array}{ll} \text { Mann-Whitney U } & 553 \\ \text { Wi1 coxon Rank Sum W } & 491 \end{array}$			
			1						Z .		Sum	$\begin{aligned} & \\ & \\ & \\ & 2.301 \end{aligned}$
	Phi		. 82				. 30					2.30
	Sign	ance	<. 0001		Significance				Significance		,	

Table 267
Interview Data Analyses: Molarity - Problem 1
Problem Solved Correctly


Table 268

## Interview Data Analyses: Molarity - Problem 1 Problem Solved Correctly



Table 269
Interview Data Analyses: Molarity - Problem 1 Problem Solved Correctly


Table 2"0
Interview Data Analyses: Molarity - Problem 2 Problem Solved Correctly


Table 271
Interview Data Analyses: Molarity - Problem 2
Problem Solved Correctly


Table 272

4.0

Table 273
Interview Data Analyses: Molarity - Problem 2.
Problem Solved Correctly


450

Table 274
Interviçw Data Analyses: Molarity - Problem 3 Problem Solyed Correctly


451

Table 275
Interview Data Analyses: Molarity - Problem 3
Problem Solved Correctly

Problems Correct	Structural Error - 2						Structural Error - 3				
	0	1	2	3	4	Total	0	1	2	3	Total
No	18	13	5	13	5	54	35	3	8	8	54
	33.3	24.1	9.5	24.1	9.3	84.4	64.8	5.6	14.8	14.8	84.4
	100.0	100.0	33.3	100.0	100.0		100.0	100.0	100.0	44.4	
	28.1	20.3	7.8	20.3	7.8		54.1	4.7	12.5	12.5	
Yes	0	0	10	0	0	10	0	0	0	10	10
	0	0	100.0	0	0	15.6	0	0	0	100.0	15.6
	0	0	66 ;	0	0		0	0	0	55.6	
	0	0	15.6	0	0		0	0	0	15.6	
Total		13	15	13	5	64	35	3	8	18	64
	28.1	20.3	23.4	20.3	7.8	100.0	54.7	4.7	12.5	28.1	100.0
		Chi Square df			38.72			```Chi Square df V Significance```		30.29	
					4					3	
					. 78						
		Significance			<. 0001			Significance		<.000	

452

Table 276
Interview Data Analyses: Molarity - Problem 3 Problem Solved Correctly


$$
45
$$

## Table 277

## Interview Data Analyses: Molarity - Problem 3 Problem Solved Correctly


45.1

## Table 278

## Interview Data Analyses: Molarity - Problerr 3 Problem Solved Correctly

Problems	Evaluation Sum			Comments About Solution		
Correct	0	1	Total	0		
No	50	4	54	21	33	54
	92.6	7.4	84.4	38.9	61.1	84.4 $(35.6)$
	87.7	57.1	(31.4)	67.7	100.0	
	78.1	6.3		32.8	51.6	
Yes	7	3	10	10	0	10
	70.0	30.0	15.6	100.0	0	15.6
	12.3	42.9	(38.6)	32.3	0	(16.0)
	10.9	4.7		15.6	0	
Total	57	7	64	31	33	64
	89.1	10.9	100.0	48.4	51.6	100.0
	Mann-Whitney U 209			Mann-Whitney U		435
	Wilcoxon kank Sum W 386					160
	$\begin{array}{lr}Z & -2.09 \\ \text { Significance } & .04\end{array}$			$Z$		3.52 0004
				Significance		. 0004

Table 279
Interview Data Analyses: Molarity - Total Problem Solved Correctly


Table 280
Interview Data Analyses: Molarity - Total Problem Solved Correctly


Table 281
Interview Data Analyses: Molarity - Total
Problem Solved Correctly


450

Table 282
Interview Data Analyses: Nolarity - Total Problem Solved Correctly:

Problems Correct	Questions Correct					Questions Correct Without Promptinr ${ }^{\text {a }}$ - Total						
	0	1	2	5	Total	0	1				1	
0	5	23	7	4	39	3	7	15	11	2	1	39
	12.8	59.0	1.4. 9	10.3	60.9	7.7	17.9	38.5	28.2	5.1	2.6	60.9
	83.3	92.0	31.8	36.4	(25.3)	100.0	100.0	60.0	68.8	25.0	20.0	(27.0)
	7.8	35.9	10.9	6.3		4.7	10.9	23.4	17.2	3.1	1.6	
1	1	2	10	2	15	0	0	7	2	5	1	
	6.7	13.3	66.7	13.3	23.4	0	0	46.7	13.3	33.3	6.7	23.4
	16.?	8.0	45.5	18.2	(39.0)	0	0	28.0	12.5	62.5	20.0	'(39.2)
	1.6	3.1	15.6	3.1		0	0	10.9	3.1	7.8	1.6	
2	0	0	$t$	4	8	0	0	2	3	1	2	
	0	0	50.0	50.0	12.5	0	0	25.0	37.5	12.5	25.0	12.5
	0	0	18.2	56.4	(50.8)	0	0	8.0	18.8	12.5	40.0	(44.5)
	0	0	0.3	6.3		0	0	3.1	4.7	1.6	3.1	
3	0	0	1	1	2	0	0	1	0	0	1	2
	0	0	30.0	50.0	3.1	0	0	50.0	0	0	50.0	3.1
	0	0	4.5	9.1	(50.8)	0	0	4.0	0	0	20.0	(42.5)
	0	0	1.6	1.6		0	0	1.6	0	0	1.6	
Total	5	25	22	11	64	3	7	25	16	8	5	64
	9.4	39.1	34.4	17.2	100.0	4.7	10.9	39.1	25.0	12.5	7.8	
	KW Chi Square 19.23 df 9   Significance . 0002							KW Chi Square 10.07   df 15   Significance .02				

Nonsystematic approach. Moles, problem 1, total (Tables 220, 235), and molarity, total (Table 279). This approach was used by students getting the problem incorrect.

No answer given. Moles, problem 1 (Table 221), stoichiometry, total. (Table 262), and molarity, problem 3, total (Tables 276, 280). Students not giving an answer got the problem incorrect.

Algorithmic strategy. Moles, problem 2, total (Tables 225, 235), stoichiometry, total (Table 263), and molarity, problems 1, 2, total (Tables 265, 271, 280 ). For moles, this strategy was used nost for students getting two or three problems correct, for stoichiometry and molarity for students with one problem correct.

Algorithmic/reasoning strategy. Moles, all problems (Tables 221, 225, 231, 236), gas laws, problem 1, 3, total (Tables $240,246,250$ ), stoichiometry, all problems (Tables $252,255,259,264$ ), and molarity, all problems (Tables 266, $270,276,281$ ). This strategy predominated for successful problem solvers.
f Random trial and error. Moles, problem 1 (Table 221), and stoichiometry, problem 2 (Table 256). This strategy was used more frequently by students who got the problem incorrect.

Misinterprets the problem. Gas laws, problem 3 (Table 246). An insufficient number of subjects were analyzed to make a judgement about the results.

Disregards information generated. Moles, problem 2 (Table 226). Students who missed the problem did this more frequently.

Misapplies information. Molarity, problem 1 (Table 266). Students who missed the problem did this more frequently.

Does not generate information. Moles, problem 2, total (Tables 226, 236). Students who missed the problem did this more frequently.

Evaluation. Gas laws, problem 3 (Table 246) and molarity, problem 3 (Table 278 ). Used more frequently by students who got the problem correct.

Comments about solution. Moles, all problems (Tables 222, 227, 231, 236), gas laws, problems 1, 2 (Tables 240,244 ), stoichiometry, all problems \{Tables $252,256,259,263$ ), and molarity, problems 1, 3, total (Tables 266, 278, 281). Students solving the problems incorrectly more frequently made comments about the solution.

Executive errors. Moles, problems 1, 2 (Tables 222, 227), and gas laws, problems 1, 2, total (Tables 240, 244, 251). Students who missed the problems máde more executive errors.

Questions correct. Moles, all problems (lables 223, 228, 232, 238), gas laws, problem 3 (Table 248), and molarity, all problems (Tables 267, 271, 277, 282). If students answered the questions correct, they more frequently got the problem correct.

Questions correct without prompting. Moles, all problems (Tables 224, 229, 233, 239), g laws, problem 1, total (Tables 241, 251), stoichiometry, all problems (Tables 253: 257, 260, 264), and molarity, problems 1, 2, total (Tables 267, 271, 282). If the student got the questions correct without prompting, they were more likely to get the problem correct.

## Structural errors.

1. Gas Laws 1-1, Table 242. Students who got the problem correct made no errors. Students who got the problem incorrect more frequently forgot to change to Kelvin temperature rather than making an error in the conversion.
2. Gas Laws 1-2, Table 242. Aniong students who got the problem incorrect. the major error was to use the factor or proportion incorrectly. This error was more prevalent than forgetting to change to Kelvin temperature.
3. Gas Laws $2-2$, Table 245. Students who did not work the problem correctly failed to set up the factor or proportion correctly. More made this .error than those associated with Kelvin temperature conversion.
4. Gas Laws 3-2, Table 249. Students who did not get the problem correct frequently failed to convert tle moles to volume and also did nut set up a façtor or proportion.
5. Stoichiometry 1-1, Table 254. The major error committed by students getting the problem wrong was failure to recognize the need to balance the equation before working the problem: This was followed by balancing the equation incorrectly.
6. Stoichiometry 2-1, 「able 254. Students who solved the problem incorrectly failed to use the equation.
7. Stoichıometry 2-2, Table 256. Students who solved the problem incorrectly failed to use the equation.
8. Stoichiometry 3-3, Table 261. The error consisted primarily of not using the equation correctly for determining the product.

Molarity 1-1, Table 268. In the first step of the molarity problem, an equal number of students failed to calculate the molecular weight as calculated it correctly. Of students who missed the problem, more students calculated the molecular weight correctly than ard not.

Molarity 2-1, Table 272. Students who missed the problem more frequently used the volume change incorrectly than failed to realize that a change occurred.

Molarity 2 - 2, Table 273. One major error existed, $25 \%$ of the students did not use the definition of molarity correctly. Thirty-two percent used the definition correctly and made the mL-L conversion correctly. These students did not use the volume change properly.

Molari :y 3-1, Table 274. Of those missing the problem, more failed to caiculate the molecular weight than eithex calculated it correctly or incorrectly.

Molarity 3-2, Table 275. In solving the molarity-stoichicmetry problems, students frequently realized that a balanced equation must be - used but either were unable to use it or used it incorrectly.

Molarity 3-3, Table 275. Of students who missed the problem equal numbers used the definition of molarity correctly as incorrectly.

A special note should be made concerning the chi-square analyses and their interpretation for the first five hypotheses. A very loose inter ${ }^{\text {4 }}$ pretation has been given to these data because of the coding system used. A more appropriate analysis (that time did not permit) would be to reclassify erfors into single categories and analyze data in this manner. This has been done to some extent in the Detailed Analysis of Structural Errors that follows although no additional chi-square analyses were performed. The appropriate categories for the analyses are given in Tables 290, 293 and 296.

## Hypothesis 6

There are no differences in the number of questions a student answers successfully according to verbal-visual preference, proportional reasoning ability, success in problem solving, the method taught in learning problem solve ing, and the number of problems solved correctly.

Data collected 'o test this hypothesis have been included in the summary charts (Tables $116,122,157,194,2 i 9$ ). The number of questions answered correct! and the number of questions answered correctly without prompting were analyzed in terms of the other categories listed in the hypothesis. Results are summarized in Tables 283 and 284.

More detail cl information about the significant findings are found in Tables 129, 130, 144, 154, 155, 169, 170, 186, 187, 238, 239, 251, 264 and 282. Results show that neither the teaching strategy nor students' verbal-visual preference made any difference as to the number of questions and weed correctly wit! or without prompting. Answering the questions correctly related to proportional reasoning ability except for the gas 1 , questions. This is an interesting finding because the gas law questions were more quaidative in nature whereas the $q u$ stions from the other units more quantitative.

Table 283
Surmary of lindings of
"Answers (quest ions Correctly"

	Moles   P	Gas Jaws   P	Stoichiometry   Analysis	Molarity   P
Verbal-Visual Preference	-	-	-	-
Proportional Reasoning		-		
Ability	.005	-	.03	.001
Success on Tests	$<.0001$	-	.01	-
Teaching Strategies	-	-	-	-
Problem"Solved Correctly	.004	-	.	-

Table 284
Summary of Findings for "Answers Questions Correctly Without Prompting"


Success on the tests and solving the problem correctly was also dependent on the number oi questiıns a student answered successfully. The exception to this was the gas law problems where the questions were more conceptual rather than quantitative.

Detailed Analysis of Structural Errors
Because of the importance of the structural error section, more detailed analyses were performed. lor the moles interviews, a lis,ting of the types of errors the students made in solving the problems was formulated. This was done before tapes from the other units were analyzed. Because this yieided interesting information, special structural error coding sheets unique to each of the other units were drawn up and used in their subsequent analyses.

Moles Structural Errors. $\Lambda$ summary of the results of students' responses to questions asked students at the beginning of the interviews and a summary of the errors made are given in Tables 285-287. As stated previously, the purpose of incluting questions was to test students' knowledge of facts and concepts thought to be essential to solve the prohlen. Although the percentenges of students answering correctly improved with prompting, fit was rather discouraging to find the initial percentages so low. (See lable 285).

Une might argue that the reason that the initial response was poor was that the instruction was insufficient. This was probably not the case. Teachers commented that by using the packets they felt that there was much more thorough unstruction than has been previously given. Students generally obtained very high scores on the immediate posttests indicating that they had at least memorized the facts and concepts at one point in time. For some reason these concepts have not been thoroughly understood and/or are not retained by the students. Even though correct answers were supplied to students who missed the quesitions, this was probably not very useful in helping them solve the problems because they did not undersitand the concepts involved. The difference in findings in

Table 285
Moles Questions:
Summary of Results

Question		ct	$\begin{gathered} \text { Correct } \\ \mathrm{N} \\ \hline \end{gathered}$	Without	$\underset{q}{\text { Prompting }}$
1	67	91	38		51

is $\mathrm{Ca}(\mathrm{OH})_{2}$. How many atoms of each
element are present in a molecule of
calcium hydroxide?

2 If you had a mole of something, $48: 65$

5
12
what would that mean to you?

3 How many particles are in'one mole? $\quad 68 \quad 92 \quad 64$
4 What volume would one mole of a ideal $\begin{array}{lllll}64 & 8 \mathrm{c} & 58 & 78\end{array}$ gas occupy at STP?

5 How would you determine the mass of one $\begin{array}{llll}51 & 69 & 34\end{array}$ mole of iron?

0 How would you determine the mass of one $\begin{array}{cccc}68 & 92 & 54 & 73\end{array}$ mole of ammonia ( $\mathrm{NL}_{3}$ )?

Table 286
Moles: Analyses of Problems


Table 287
Moles':

## Structural Errors

(PPKT $=13.42$ )
I. Wrong operation used but correct concepts

3 Nultiply volume $\times 22.4$ instead of dividing
1 Multiplies atomic masses instead of adding
1 Divides mol. wt. by moles instead of multiplying
1 Divides 22.4 liters by liters instead of reverse
1 Divides $6.02 \times 10^{23}$ molecules by number of particles - instead of reverse
II. Conceptual, confused about meaning of mole

1 linds moles and calls it grans
2 linds moles and calls it liters
2 linds moles and calls it molecules
1 Leaves answers in moles instead of converting to mass
1 Leaves lanswers in moles of atoms rather than number of atoms
III. Use wrong conversion factor + conceptual

10 Use mol. wt. instead of 22.41
4 Find the mass instead of volume
2 finds volume instead of mass but calls it grams
2 Multipiy mass x 22.41
2 Jivides mol. wt. into liters
1 Divides mol. Wt. by 22.4
4 Multiply mass by $6.02 \times 10^{23}$
2 Multiply volume by $0.02 \times 10^{23}$
4 use mol. wt. instead of $6.02 \times 10^{23}$
IV. Leaves out mores

1 linds atoms in formula anstead of atoms in moles present
1 Converts grams to moleçules without mole conversion
b. Miscellaneous

1 linds molecules instead of atoms
1 linds total mass rather than mass of part
2 Confusced by additional information in problem (STP)

Tables 283 and 284 are slight indicating that giving students the answer made little difference in.their solving problems correctly.

Table 282 breaks the errors down in terms of the types of problems students solved in each set. Problems $1 M, 1 M 0$, and $1 V$ differed from one another in that they involved moles as mass, molecules, and volume. Students had been given (in the question section) the prerequisite facts to . Hswer these problems correctly. Many errors were made even though they had the information within minues beforehand. The smallest numbers of errors were made in changing moles to mass rather chan to molecules or to volume. Apparently, students perceive the mole as mass rather than a volume or a number. Equal emphasis had been given to all thre parameters in the instruction.

The second set of problems involved two conversions. One of these used division to change from mass, molecules, or volume to moles; the other involved multiplication to shange from moles to molecules, volume, or mass. Results indicate that more errors were made with the division concept than with multiplication. In this case the largest numbers of errors were made with the mass concept. The reason for this was probably we to the fact that the volumes given were multiples of 22.4 and the number of molecules given were multiples of $6.02 \times 10^{23}$. This may have cued students sufficiently to enable them to see that division was needed to solve the problems. More evidence for this stems from the fact that more students got the molecules-volume problem correct than the ones involving mass.

Problems in the third set each involved transfer. Students had to tell the number of atoms or the mass of atoms after they solved the problem in terms of molecules. Students had not encountered problems of this nature before but should have been able to work the problems correctly if they had inderstood all the problems up to this time, From lable 286 it can be seen that very few
students got these problems correct. As in the case with the second set of problems, a largc: proportion of students missed the mass to mole conversion than the volume to mole conversion. Once students got this far they usually did not know hot to proceed.

In table 287 the errors that students made in solving the moles prohlems were surmarized according to five categories. In some cases, students used a wrong operation. Large numbers of students showed complete lack of the meaning of the mole (categories II and III) as is shown when students did not knqw what they had solved for or used the wrong conversion factors.

Gas Laws Structural Errors. A summary of the prerequisite questions that students answered correctly and the summary of the structural code results are given in Tables 288 to 290. The questions that were asked in this unit were more conceptual (qualitative) than quantitative. ( Two other questions that shound have been asked but were not because of lack of foresight were as follow: (1) low many liters of a gas were equal to 250 mL ? and (2) what is the meaning of STP?) As with the questions for moles, many stidents needed prompting to get them correct. Once a student answered the first question correct or was given the correct answer, this acted as. a cue for questions two and three. Question four was included to determine if students really understood the gas law concept or had only memorized the result. From the law percentage getting the answer correct, it appears that few students really thought about the concept correctly. Most probably memorized the results.
lable 28! giver the percentage of students who got the problem correct for each of the three problem categorics; and the number of students who made structural errors as they appeared on the coding sheets. As can be expected as the problems become more complex, fewer students were able to solve them. Problem 3 was a combination gas law a،d mole problem that required students to synthesize what they had learned in the gas law unit with that learned in the moles unit.

Table 288
Gas law (questions:
Summary of Results

## question

Corrrit

1 What would happen to the volume of a
6195
42
66
gas sample if the pressure on the
saniple was increased and the
temperature held constant?

2
What would happen to the volume of a
64100
52
81
gas sample if the temperature was
increased and the pressure held
constant?

3 What would happen to the temperature $\begin{array}{lllll}59 & 92 & 49 & 77\end{array}$
of a gas sample if the pressure on
the sample was decreased aind the
volume held constant?

4 What would happen to the pressure of a $\begin{array}{lllll}19 & 30 & 11 & 17\end{array}$ gas sample if the temperature and the volume were both inc-cased?

Table 289

## Cas Law Problems:

Structural Cole Results
$(\mathrm{PPRT}=12.14)$


Cas Law lroblems:
Description and Summary of Structural Coding

a hased on all cases.
Hemaning: 's based on those who got that far (except where mdicated).
, CBased on cases 111 which.a change was required.

It was a transfer item and only $3 \%$ of the students solved it correctly. " Because of the coding system, several structural errors were grouped together on the original coding sheets. These were ungrouped and added together to produce the results found in Table 290.

For problems in category 1, the major error was that students did not set up a correct factor or proportion. Eighteen (18\%) percent of the students who attempted it did not remember to change to Kelvin temperature.

Similar results are foind for the second set of problems. Students gencrally converted temperatures to Kelvin correctly. The major error made was in setting up the proportions. For problens in group 3 which involved changing moles to volume as one, of the first steps, many students said the problem just couldn't be done and procceded no further. Thirty-seven ( $37 \%$ ) percent of those who proceeded did not convert moles to volume and seventy-one (71\%) percent did not set up a factor or a proportion.

Because of $t_{\text {ime }}$ restrictions, no further analysis of the tapes were made to deternine just what students do in the calculation when they get the problem wrong. The coding; sheet only determined what they failed to do when they were incorrect. A nor $\dot{\phi}$ detailed analysis of the tapes should reveal particufiar error, students made and where the confusion in concept development lies. In addition to the above, chi- square analysis using the same categories as given in Table 290 would be appropriate. These 'should replace those given previounly for each or the first five hypotheses for structural errors.

Stoichiometry Structural Errors. Tables 291-293 summarize the data for structural errors for the stoichiometry problems. Table 291 gives the results of how dents responded to the questions that tested background information needed to solve the problems. Six of the questions were. identical to those asked in/the 'Moles Problem' interviews (Table 285). The percentages show only a shight increase indicating that even though these

Stoichiometry Questions:
Summary of Results


5 - How would you determine the mass of $40 \quad 70 \quad 31$ one mole of iron?

- How would you determine the mass of
$02 \quad 94 \quad 50$ one mole of ammonia $\left(\mathrm{NH}_{3}\right)$ ?

7 How would you go about balancing the $\begin{array}{lllllll} & 04 & 97 & 54 & & \text { ' } & 82\end{array}$ following equation:
$\mathrm{NaCl}_{(\mathrm{aq})}+-\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})}$

Table 292
Stoichiometry Problems:
Structural Code Results

$$
\left(P_{P}^{\prime} R_{i}^{\prime}=12.82\right)
$$

Problem

	Nistribution			Correct	
Iroblem	M	V	1 '	N	s.0
1	18	27	21	18	27

MM MV MP
$26 \quad 23 \quad 17$

N	$\%$
17	26

Iroblem
111 SS1 SS2

3
$22 \quad 24 \quad 20$
$N:$
$\begin{array}{lllllll}\mathrm{A} & \mathrm{N} & \mathrm{B} & \mathrm{N} & \mathrm{C} & \mathrm{N}\end{array}$
$\begin{array}{rrrrrr}C & 6 & 0 & \because 30 & 0 & 38 \\ 1 & 28 & 1 & 3 & 1 & 11 \\ 2 & 32 & 2 & 5 & 2 & 10 \\ & & 3 & 28 & 3 & 7\end{array}$

Table 293
Stoichiometry irohloms:
:
Problem Category
abased on all cases.
bemaining $\%$ 's based on those who got that far (except where indicated).
concepts were reviewed and used in this unit, there wats no substantial gain in hnowledpes. The new question what was concemed with balancing an equation wa: answered correctly by ninety-aven (97q) percent of the students when prompted.

Table 292 gives the percentage of students who got the problems correct according to categories. The first problems that involved two steps (changing from mass, volume, or particles of one substance to moles of another) was apparently as difficult for students to solve as problems in the second set that involved three steps (changing from mass, volume, or particles of one substance to mass, volume, or particles of another). The reason why this may have been as easy was because in the problems of set 1 , students were given an unbalanced equation that they had to balance before proceeding whereas the problems in set 2 contained balanced equations. This is verified by examining Table 293 that shows the major reason for students missing the problems in set 1 was failure to use a balanced equation. In the problems of set 2 , many students did not overtly check to determine if the equation was properly balanced. However, in this set of problems, a much larger percentage of students used the equation incorrectly.

Problems from set 3 were transfer problems that involved finding the limiting reagent. Only eight ( $8 \%$ ) percent of the students who attempted the problem gov it correct. lorty-live $(45 \%)$, percent did not get beyond checking to see if the equation was balanced. The major difficulty in solving the problem was in determining the excess or the 1 imbuing reagent.

The same comments concerning further analysis that were made for the gas law problems can be made for the stoichiometry problems. Time did not permit an analysis of errors that students who missed the problem made nor the reanalysis of data using chi-square with the categories used in Table 293.

Molarity Structural Errors. Results of the questions asked in the 'Molarity Problem" interviews and the structural errors are given in Tables 294-296. In the question section, one question concerning the $\mathrm{L}-\mathrm{mL}$ conversion was asked that should have been asked in the "Gas Law Problem" interview. With prompting ninety-twc ( $92 \%$ ) percent were able to make the conversion. Questions 1 and 2 on the determination of the masses of moles had been asked during both the 'Moles Problems" and "Stoichiometry Problems" interviews. The percentage of students
 than previously. Apparently this conversion was used so frequently hat by the end of the school year when the interviews took place, eighty-eight (88\%) and ninety-eight ( $98 \%$ ) percent of the students interviewed could do this when prompted.

$$
A_{5}
$$

Question 4 on "define molarity in your own words" most frequently brought the memorized response 'moles per liter". This answer was accepted as correct even though students did not specify 'liter of solution".

To test whether students had simply memorized the definition of molarity or really understood it, question 5 on 'how would you make up one liter of a two molar sodium chloride solution" was included. (only eight (8\%) percent of the students interviewed were able to answer this without prompting. liven with prompting, only twenty-seven ( $27 \%$ ) percent gave a correct answer. An answer was considered to be correct if students said that 2 moles or approximately 116 g of sodium chloride were dissolved in 1000 mL or 1 liter of water instead of solution. Most students had no understanding of the physical meaning of molarity.

Table 295 shows the percentage of students getting the problems in each category correct. Problems in the first set involved the direct application of the definition of molarity as molarity = moles/liters. Thirty ( $30 \%$ ) percent of the students were able to solve this type of problem. From liable a lo it am be: seen that thirty-three ( $33 \%$ ) percent of the students who attempted the problem

Table 294
Molarity Questions:
Summary of Results


484

Table 295
Molarity Problems:
Structural Code Results

$$
(\mathrm{PPKT}=13.36)
$$

 48.5

Molarity Irohlcus:
Nescription and Summary of Structural Coding

Problem	Category		N	$\frac{8}{8}$
1	A	Doesn'trget this far	7	$11^{\text {a }}$
		loesn't calculate molecular weight	8	$14{ }^{\text {b }}$
	- ${ }^{\text {a }}$	Calculates molecular weight incorrectly	5	9
		Calculates molecular weight correctly	43	75
		uses molccular weight incorrectly	11	19
		uses molecular weight correctly	34	60
	B	Doesn't get this far	10	$16^{\text {a }}$
		Doesn't use definition of molarity	2	$4^{6}$
		Uses definition of molarity incorrectly	21	39
		Uses definition of molarity correctly	26	48
		Lrror in ml-L conversion	18	33
		Changes mL-L drrectly	27	50
.	$\Lambda$		11	$17^{\text {a }}$
		keali a $\times$, llat volume change	,	(1)
		liants to use vofune chamge	8	15
		Uses volume change correctly	13	24
		Uses volume change incorrectly	25	46
		Doesn't get final volume	5	9
	B	Doesn't get this far	6	${ }_{3}{ }^{\text {a }}$
		Docsn't ise definition of molarity	2	$3{ }^{\text {b }}$
		Uses definition of molarity incorrectly	14	24
		uses definition of molarity correctly	38	66
		Lrror in mL-L conversion	8	14
		Both definition and mL-L change correct	26	45
3	$\wedge$	Doesn't get this far	20	$31^{\text {a }}$
		loesn't calculate molecular weight	10	$23^{\text {b }}$
		Calculates molecular weight incorrectly	4	9
		Calculates molecular weight correctly	26	59
		lises molecular weight incorrectly	6	14
		Uses molecular weight correctly	22	50
	B		18	
$\infty$		Realizes equation must be used	13	$28{ }^{\text {b }}$
		Uses ba:anced equation correctly	28	61
		uses balanced equetion incorrectly	13	28
	.	voesn't realize equation must be used	5	11
	C	Doesn't get this far	35	$55^{\text {a }}$
		'oesn't use definition of molarity	3	$10^{\text {b }}$
		uses definition of molarity incorrectly	8	28
		Uses definition of molarity correctly	18	62

[^13]made a mL-L conversion error, and thirty-nine (39\%) percent used the definition of molarity inzorectly. Nineteen ( $19 \%$ ) percent of the students who attermpted to work the problen did not oinse the nolecular weight to find moles properly.

The second set of problems involved changing the volume of solution by either diluting it or concentrating it by boiling. Only thirteen (138) percent of the students could handle this kind of problem even though most students coůld do problems of this nature inmediately after instruction. The major error made was that students did not use the volume change correctly. (Instead of finding moles first and dividing by the total volume students frequently added or subtracted the volumes before working with the given molarity.) Knowing that such a large percentage of students did not have the conceptual knowledge of what molarity is (from responses to question 5) this comes as no surp"ise.

Froblems in set 3 were transfer problems that involved the concept of nolarity applied in a stoichiometry problem. A slightly greater percentage of students got this problem correct thar, got the problem from set 2 correct. It was probably the same students who understood the concepts. Fifty-five ( $55 \%$ ) percent of the students did not understand the problem sufficiently to even use the definition of molarity. Sixty-one ( $61 \%$ ) percent of those who got that far (forty-four (44\%) percent of original students) used the balanced equation correctly. Once students so the number of moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$, many could not proceed to use the moles with the liters to find the molarity.

Comments made previously about further' analysis of the tapes of the "(jas Law Problem" and "Stoichiometry Prcblems" interviews apply herc. Further analyses are needed to determine specific conceptual errors that students made while attempting to solve the problems.

Results of this interview study must be seen in relation to the aptitude by treatment interaction study as well as the findings of a similar stuay by it Nurrenbern.

The interview study was concerned with six hypotheses. In addition, structural errors students made while solving problems from four chemistry umits were identified.

Of the six hypothese: :ested, two were related to aptitudes measured in the aptitude by treatment interaction siudy. These were the verbal-visual preference and the proportional reasoning ability of studerts. Because of lack of time and because it was not anticipated that mathematics anxiety would have significant interaction, data were not analyzed according to students' mathematics anxicty. An inalysis of this data would be appropriate and might yield. useful results.

Of the two aptitudes for which interview data were analyzed, the one of most interest was students' proportional reasoning ability. Results for verbalvisual preference were very sparse as they were in the case for the aptitude by treatment interaction study. Findings from the interviews corroborate those found in the other stidy.

The reason why the proportional reasoning ability is of interest is because the study doue by Nurrenbern compared students' problem solving skills according to whether they were classified as concrete or formal operational. Because proportional reasoning ability is onc of the schema that comprises the formal operational stage, there would probably be a high correlation hetween students classified as formal and their proportional reasoning ability.

In all the comparisons between the resu'ts obtained, it must be remembered that Nurrenbern's study was concerned only with stoichiometry limiting reagent
problems which less than $1 \%$ of the students interviewed weire able to work eorrectly.

Nurrenbern's classification system was modified in part in this study but enough similarity remains to make some comparisons. One generii category that was used in both studies was reading/organizing skills. . In Nurrenbern's study formal students were found to read and organize more frequëntly. 'Thip was particularly true for rereading and using memonic notation. In this study similar results were found for rereading and use of memonic notation. Although there were no significant differences for every problem, where differences occurred, they always favored the high proportional reasoning students. Comparisuns with the general category 'Reading/organizing' are inappropriatè as all subcategories were not identical.

Nurrenbern also found that formal operational students used evaluation techniques more frequently than concrete operational students. - She also made the comment that noither group used evaluation techniques to any great extent. In this study, no differences be'tween high and low proportional reasoning ability students werr found for evaluation techniques. • Very few students evaluated their solutions to the problems.

As in the Nurrenbern study, it was found that few students used recall techniques. The number cif statements coded for recall was so Irw in this stüdy that the data were not analyzed.

In the area of the type of approach and reasoning that students used to solve the problems, results of the two studies are in accord. In the Nurrenbean study, no significant differences wore found for fomal and concrete thinkers, however, when algorithmic/reasoning strategies, were used, they were used by formal operational students. In this study, students with high proportional reasoning ability were found to use a systemmatic approach and algorithmic/ reasoning strategies more frequently than low proportional reasoning students
on a large number of the problems. Nurrenberh comments that the results in her study, might not have been significant because of the difficulty of the problems. She found as did we, that many formal students actually go about solving the problems relying strictly on algorithms.
 to make. The reason for this is that the problems in this study were for the most part easier than those in the Nurrenbern study. The only comparable problem was the third stoichiometry problem which was a limiting-reagent problem. $\cdot$ Even for , this problem, however, a balanced equation was given. The major structural error foumd for this problen was that students fail to use the equation for determining the excess to solve it. More detailed analysis of the structural errors were presented in the Results section.

In this study, inlike the Nurrenbern stuxly, instruction on problem solving Wals combrolled through the use of the pachets devised for the aptitude by treatment interaction study. This has ics advantages and disadvantages. The major* advantage was that a minimum amount of instruction was insured by.knowing that students comple the booklets. However, there is the disadvantage in that it might be argued that the instrućtion was ins̉ufficient and not typical of what a student would normally receive. .Teachers in the study felt it was sufficient, and if not, could supplement it with additional work. Because students learned by using the four different strategies, it was of interest to determine if this had any efficit or. students' problem solving techniques.

Results indic̣ated few differences in students' problem techniques ${ }^{\circ}$ according
 method and proportionality tended to be more systemmatic in their upproach and more overtly used the approach taught. This was to be expected as these methods lend themselves to overt expression. An interesting finding, although found anly on one gas law problem, was that students taughic by analogies used algorithmic/
reasoning strategies more frequently than by the proportionality method.- This finding is offset by the finding that the analogy method also produced the greatest use of random trial and error for a stoichionetry problem.

In no instance did one method produce nore structural errors than another. 'thas indical ing that as' lar an presenting the meryorat, all methods were exprat rent. Major conclusions in this stady concering the appropriate nethods for teaching the various chemistry topics should be made from the aptitude by treatment interaction study where data were analyzed in much greater detail according to students' aptitudes.

1. The major reason for conducting the interview stidy was to compare students who were successful problem solvers with those who were not. Results have been presented for students defined successful according to test scores (Hypothesis 3) and according to success on the problem solved during the interview (Iypothesis 5). specific results are given in the Remblte section. Hocursion here is lamited to conmonality of the findings. For students classificd as successful and for students who got the problem correct, the use of reading and organizing skills was more frequent. This was true for different problems, however, and was not consistent across all problems. The use of mneumonic notation was much more prevalent and consistent across problems $f=:$ successful students and those who got the problem correct. Two other common characteristic across nost problems for both of these groups were their more fiequent use of systemmatic approaches and theic use of algorithuic/reasoning strategies. This is not to say that more students in these classification used reasoning strategies more frequently than. -algorithmics. This was not the casc. They used reasoning strategies more than nonsuccessful students or students who got the problem incorrect.

Analysis of the structural errors for both of these groups had some similarities. Students of low success or who missed gas law problem 3 failed
to set up a factor correctly. They alsd failed to use the equation in solving stoichionctry problems 1 and 2. For molarity problem 3, low success students fa:led to perceive the need for using the equation whereas those getting the problem incorrect were unable to use the equation correctly. On this same problem, low success students didn't use the definition of molarity correctly.

From both the structural errors students mide and from the indings reSated to Hypothesis 6, it is apparent that one of the major reasons students do not solve problems correctly is that they do not understand the prerequisite facts and concepts. In the Results section considerable discussion is given to the structural errors made for each unit of chemistry. For this reason, the remarks here will be bricf. Beciuse of lack of time, the analysis of the tapes was not as conprehensive as it might have been. l:or the moles unit, no special coding sheet was devised for structural errors, but the specific errors that students made were recorded and synthesized into a coherent list. For the other three units, the special sheet was levised that listed what students failed to do but did not provide for obtaining the specific errors that students made. A canalysis of the tapes would provide this use : 11 information.

Four general conclusions and recommendations can be drawn from this interview study.

1. If students do not understand the chemistry concepts (as is evident from low success on prerequisite questions and structural error analysis) even if answers to prerequisite questions are given, students will not be successoful in solving chemintry prohlcme.
2. Different types of errors are made by different students. It is very hard to classify them. These different types of errors require different types of remediation. Sonctines it is a matter of understanding the concept, other times its the arthmetic (particularly the division ccacept) and frequently students fail to memorize the necessary facts (such as 1 mole $=22.4 \mathrm{~L}$ at STP or contains $6.02 \times 10^{23}$ particles).
3. Students who are successful generally use more organizing skills and use meunonic not ion. Students should be encouraged to use these skills in solving p - bblens .
4. It would be very useful for individual teachers to determine specific errors that individual students make so that remediation might take place. This might be acomplished by recording on atalio tape stadents actually solving problens. If this is not possible, temehers should detenuinc onrough a short test, if students have the necessary prerequisite skills for solving problems and if they do not, provide the necessary instruction.


Anderson, J. R. Language memory and thought. Hillsdale, NJ: Lawrence Erlbaum Associates, 1976.

Arnold, T. C., and Dryer, F. M. Realism in Visuaiized Instruction. Perceptual and Motor Skills, 1975, 40, 369-370.

Atkinson, R. C. Mnemotechnics in second language learning. American Psychologist, August, 1975, 821-828.

Atkinson, R., \& Raugh, M. An application of the nmemonic keyword method to the acquisition of a Russian vocabulary. Journal of Experimental fsychology, ${ }^{\circ} 1975,104,126-133$.

Auslander, s. Tcachmg word problems in the college.- Unpublished manuscript, 1977. (Available from Wesleyan University, Middletown, Conn.).

3ady, R. J. Methodological issues in formal operations research: What does it mean to be formal. Science Education, 1978, 62, 233-240.
Barnes: B. Scores in a Piaget-type of questionnaire versus semester grades for lower dimension college physics students. American Journal of Physics, 1977, 45, 841-847.

Blum, L. A bricf description of the Mills Program to combat math anxiety. Unpublished manuscript, 1977 (Available from Mills College, Oakland, (ia.).

Bruncr, I. S., Olver, R. R. and Greenfield, P. M. Studies in Cognitive Growth, New York: Wiley, 1966.
Campbell, D., \& Stanley, J. Experimental and quasi-experimental designs for rescarch. Chicago: Rand-McNally, 1963.

Chiappetta, E. L. A review of Piagetian studies relevant to science instruction at the secondary and college level. Science Education, 1976, 60, 253-261.

Clement, J. American Association of Physics Teachers Announcer, 1979, 9.
Cohen, J., \& Cohen, P. Applied multiple regression/correlation analysis for the behavioral sciences. Hillsdale, N :Lawrence Erlbaum Associates, 1975. Cronbach, L., \& Snow, R. Aptitudes and instructional methods. New York: Irvington, 1977.
bays, II. (: The ellect of problem structare an the processes used by concrete and formal - operational students to solve verbal mathematics iroblems. Unpublished doctoral dissertation, Purdue University, 1977.
LeCarcer, I., Gabel, D., \& Staver, J. Inplications of Piagetian research for high school science teaching: A review of the literature. Science. Education, 1978, 62; 571-584.
Dreistadt, R. The use of analcgies and incubation in obtaining insights in creative problem solving. The Journal of PSychology, 1969, 71, 159-175. Dwyer, $\mathfrak{F}$. M. The effect of overt responses in improving visually programued science instruction. Journal of Research in Science 'leaching, 1972, 9, 47-55.
Ernest, C. H. Imagery ability and cognıtion, a critical review. Journal of Mental Imagery, 1977, 2, 181-216
Examinations Committee-ACS. ACS-NSTA High School Chemistry Exam. Tampa, FL: University of South Florida, 1975,
Frandsen, A., \& Holder, J. Spatial visualization in solving complex verbal problems. The Journal of Psychology, 1969, 73, 229-233.
Forisha, B. C. Mental imagery and verbal processes: A developmental study. Developmental Psychology, 1975, 11, 259-267.
Gabel, D. \& Sherwood, R. The ACS-NSTA chemistry achievenent exam: Beyond test results. Journal of Chefical Education, 1979, 56, 813-814.

Gabel, I., 4 Sherwood, R. The effect of student manipulation of molecular models on chemistry achievenent according to Piagetian level. Juurnal of Rescarch in Seience Teaching, 1980a, 17, 75-82.
Cabel, D., $\mathbb{4}$ sherwood, R. The elfect of using analogies on chemistry achievement according to Piagetian level. Science Education, 1980b, 64, 709-716.
Gagne, R., \& White, R. Memory structures and learning outcomes. Review of Educational Research, 1978, 48, 187-222.

Gerson, R., \& Primrose, R. Resülts of a remedial laboratory program based on a Piagetian model for engineering and science freshmen. American Journal of Physics, 1977,-45, 649-651.

Goodstein, M., \& Howe, A. The use of concrete methods in secondary chemistry instruction. Journal of Rescarch in Science Teaching, 1978, 15, 361-366.
Ik.rron, I. II. Piaget for (hemists. Jommal of hemical lducation, 1975, 52, 140-150.

Holliday, W. G. The effects of verbal and adjunct pictorial-verbal information in science instruction. Journal of Research in Science Teaching, 1975, 12, 77-83.

Holliday, W. G. Conceptualizing and evaluating learner aptitudes related to instructional stimuli in science education. Journal of Research in Science Teaching, 1976a, 13, 101-109.

Holliday, W. (i. Teachang verbal chains t:ing flow diagrams and texts. AV Connmication Reviow, a.)70h, 24, 6.5-77.
Holliday, W. (i., Brwmer, i.., $q_{\text {l }}$ lonais, l:. Differential cognitive and affective responses to flow diagrams in science. Journal of Research in Science Teaching, 1977, 14, 129-138.

Holliday, W., $\mathcal{G}$ Itrrvey D. Adjunct labeled drawings in teaching physics to jumior high school students. Journal of Research in Science Teaching, 1976, 13, - 37-43.

Kantowski, E. L. Processes involved in mathematical problem solving. Inpublished doctoral dissertation, University. of (icorgia, 1974.

Karplus, R., karplus, L. \& Wollman, W. Intellectual development beyond elementary school IV: Ratio, thr influence of cognitive style. School Science and Mathematics, 1974, 74, 476-482.

Karplus, R., \& Peterson, R. Intellectual development beyond elementary school II: Ratio, a ${ }^{\text {anchey }}$. School Science and Mathematics, December, 1970, 813-820.
Kilpatrick,-J. Analyzing the solution of work problems in mathematics:
An exploratory study. Unpublished doctoral dissertation, Stanford University, 1967.
Kurtz, B., \& Karplus, R. Intellectual development beyond elementary school VII: Teaching for proportional reasoning. School Science and Mathematics, - 1979, 74, 387-398.

Lawson, A. E. The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching, 1978, 15, 11-24.
Ln"son, A. E., \& Renner, J. W. A quantitative analysis and its $m$ mlications for curriculum. Science Education, 1974, 58, 454-459.
Lonell, K. A follow-up study of Inhelder's and Piaget's: The growth of logich thinking. British Journal of Psychology, 1961, 52, 149.
Lucas, J. R. The teaching of heuristic problem-solving strategies in elementary calculus. Journal for Research in Mathematics Education, 1974, 5 (1), 36-46.
Lunger, E . A. Problems of formal reasoning in test situations in European research in cognitive development, edited by P. Mussen, Monograph of the Society for Research in Cognitive Development, 1965, 30, 19-41.
Marks, D. F. Visual imagery differences in the rec.all of pictures. British Journal of Psychology, 1973, 64, 17-24.

Mitzman, B. Secking a cure for mathophobia. American Education, 1976, 12, 76-79.

Murno, A. $\mathbb{G}$ Rigncy, J. W. A Schema theory account of some cognitive processes in complex learning. Technical Report No. 81, Behavioral Technology Laboratories, U. of Southern California, 1977. (ERIC Document Reproduction Service No. ED 142 992).

Nunnally, J. C. Psychomecric Theory. New York:McGraw-Hill, 1978.
Nurrenbern, S. C. Problem solving behaviors of concrete and formal operational high school chemistry students when solving chemistry problems requiring Piagetian formal reasoning skills. Unpublished doctoral dissertation, Purdue University, 1979.

Paivio, A. Personal communication by Robert Sherwood, Apri1, 1979.
Paivio, A. Mental imagery in associative learning and memory. Psychological Review, 1969, 76, 241-263.

Paivio, A. Imagery and verbal process. New York:Holt, Rinehart, \& Winston, 1971.
Paivio, A., \& Csapo, K. Picture superiority in free recall; Imagery or dual coding? Cognitive Psychology, 1973, 5, 176-206.

Piaget, J., \& Inhelder, B. Mental imagery in the child. New York:Basic Books, 1971.
Renner, J., \& Paske, W. Comparing two forms of instruction in college physics. Anerican Journal of Physics, 1977, 45, 851-859.

Richardson, A. Verbalizer-visualizer: A cognitive style dimension. Journal of Mental Imagery, 1977, 1, 109-120.

Rigney, J., \& Lutz, K. Iffect of graphic analogies of concepts in chemistry on learning and attitude. Journal of Educational Psychology, 1976, 68, 305-311.

Sells, L. Mathematics--a critical filter. The Science Teacher, 1978, 45, 112-114.

Suinn, R. M., "Edic, C. A., and Nicoletti, I.S. The MARS, a measure of math anxicty: Psychonctric datia. Journal of Clinical Psychology, 1972, 28,

Shaver, P., Pierson, L., \& Lang, S. Converging evidence for the functional significance of imagery ${ }^{\text {in }}$ in problem solving. Cognition, 1974, 3, 359-375. theehan, D. J. The effectiveness of concretc and formal instructional procedures with concrete and fomal operationall students. Unpulbished doctoral dis sertation, State University of New York at Albany, 1970. Dissertacion Abstracts 2748-A.
Sherwood, R. D. The effect of selected instructional strategies on the problem solving ability of high school chemistry students as related to their proportional reasoning ability and verbal-visual preference, Unpublished doctoral dissertation, Indiana University, 1980.
Sherwood, R. D. \& Gabel, D. L. Basic science skills for prospective elementary teachers. Science Education, 1980, 64, 195-201.
Smith, P. Research in problem solving processes. Symposiun presented at the annual meeting of the National Council of Tcachers of Mathematics, Cincirnati, 1977.
Staver, J. The development and construct validation of a group administered test of Piaget's formal thought. ' An unpublished doctoral dissertation, Indiana University, 1978.
Tobias, S. Overcoming math anxiety. New York:W.W. Norton and Company, Inc., 1978.
Towbridge, ע. E. \& Mcllermott, L. C. Investigation of student understanding of the concept of velocity in one dimension. American Journal of 'Physics, 1980, 48, 1020-1028.
Wadsworth, B. J. Piaget's theory of cognitive development. New York:IJavid McKay, 1971.
Weisberg, J. S. The use of visual advance organizers for learning earth science, concepts. Journal of Research in Science Teaching, 1970, 1, 161-165. Wheeler, A., G Kass, H. Proportiona: reasoning in introductory high school chemistry. Paper presented' at the National Association for Research in Science Teaching convention, 1977.

Wollman, W., and Karplus, R. Intellectual development beyond elementary school. V: Ilsing, rat io in differing tasks. School Science and Mathemitics. 1974, 76, 595011.
Wollman, W., \& Lawson, A. The influences of instruction on proportional reasoning in seventh graders. Journal of Research in Sciençe Teaching, 1978, 15, 227-232.

APPENDIX A

Parmission Forms
School Corporation.• . . . . . . . . . 431
Individual Ṣtudent . . . . . . . . . . . 432
University Human Subjects . . . . . . . 433

The problem solving research we are conducting in high schools in Indiand has recently been funded by the National Science lioundation. One of their requirenents is that we obtain written approval for participation in the project from a school authority who has followed any necessary procedures in the school system:

We are, therefore, asking you to give us the needed written approval.

I have been supplied with the purposes, content, and benefits of the NS: supported project "liacilitat ing l'rohlem Solvin!! in ligh Sehoul (hemistry' and have fiven my appoval for participation.

## Signature

Title

School

May 31, 1979

## Dear Student and Parent:






 ( $56 \%$ of the questions).

This was one of the reasons that motivated us to try tu find methods of helping students solve chemistry problems more succe:sifully. What we would like to do is try out these methods as suphlementini (o) regular instruction on problem solving. All students will receive their nomill instruction. The supplementary methods that are alternative straterices tiat have heen used by other teachers should strengthen the students problem :oolvini: skills. The supplementary methods will be contained in staly paide:; that students will use in learning eight chemistry concéple involving probler...: Each study guide is one class period in length.

In order to measure the success of the supplement.ny instruction tor particular types of st mentent, stadents receiving: the instruction wild i.





 a student may withdriw from the program at any thene lidease feef free tw contact us at 312-337-8658 about the procedures.

Sincerely,

Botolliy (iallo. 1
Robert Sherwerd
Science l:ducation, Ladian: University
$\qquad$ I would like to participate i: illis progrim
$\qquad$ I am tul willin; to particlpate in this proprall
 $\qquad$
l'arent's sighalure $\square$
(il under lif)

GRANT NUMBER (IF KNOWN). $\qquad$
Dorothy 1
PRINCIPAL INVESTIGATORS

$\cdots$

Ruble D. Sherwood $\qquad$ .


STATUS. INFACULITY INETUUENT II OTHER (specify)
If student, name of faculty sponsor br. Dorothy L. (ails:


DEPARTMENT: Science Education
DATE


CAMPUS ADDRESS. LAtucalion Bldg., Km. 204
CAMPUS PHONE $337^{\circ}-6858$
PROPOSED FUNDING:
 $\qquad$

INSTRUCTIONS: In the spaces below (use additional sheets where necessary):
Check appropriate boxes for sumect population involved if it includes. in' minors, LI fetuses or abortuses, [] pregnant females. II mentally retarded, [.] mentally disabled, [] prisoners. It any of the above are used, state the necessity for doing so under item 1 .

1. Belly describe the purpose and nature of the proposed research State what, it any, benefit is to be gained by the subject(s), what information is to be added to the general body of knowledge as a result of this research, and where the research will be conducted. (This includes research training grants Each project should be treated separately.)

Stuachl guide:; using; font methods of problem solving (two visual and two verbal) will be prepared and used in instruction tor eight elomistry topics by fol high :c howl : Loment:, whore randomly assigned to treatments. Problem



 regression techniques.

Lt is: anticipated that from this : Lady preferred methods of teaching: problem solving to dillobent type. of high school : Latent: wall be mate known. The re:, :rall will low compacted within a 60 mile radian: of ladi.mapolis, in public high school:..
 eslablished and accepled techriuques


```
 b. Admatmastratiom of verbal vismill lest (20 min.)
 c. Administration of malh allxioly Lesl (20 min.)
 d. NST^-ACS Clmonistry Achievémenl Lesl
 (40 min.)
 e. 8 sludy guides of instruclion (1 period e.mh)
 a,b,c. These are all written, moltiple chovice type tests found in the
 current laterature that.will be adminishored at Lhe on:atL of,
 sclowl.
```



```
 Lcochurs.
 e. Prohlem solving, instrüclion booklets-similai Lo Lhose mamy Leachers
 would prepare themselves.
```

3. State any polential risks - physical, psychological, socia!, legal, or other - connected with the proposed procedures and state means (including confidentiahty safeguards) of protectung against or minmizing potential risks and an assessment of their likely effectiveness. If you consisher the subject to be "it nsk," in what respect do the potential benefits to the subject or contributions'to the general body of knowleofge quiweigh the risks?

None - noiling ${ }^{\text {bout }}$ of ordinary.
4. Informed Consent
A. Shate how you will oblain documentation of "Iformed consent Ansv er even if you consider subjects - not at risk. Do not use "inapplicable."

Students and pticrats will be asked to sign a written consent form. - Perinission of aproporiate school officials will be obtained before school selection.

## A

B. Il you consider the subject to be "at risk." state exactly what you tell him or her in lay languige io ohtain informed çonsént per tems 1.7 relative to each procedure wherenn he or she is "al risk "This must be a lorm that is given or read to the subject particularly for this purpose. PLEASE ATTACH. COPY OF FORM.

DA PAUL H. GEBHARD
Chairperson of IUB Commitlee for the Protection of Human Subjects Institute for Sex Research Morrison Hall 416
-3- .
506

## DEFIIIIIONS

SCIENTIFIC RESEARCH is a Iormal invesligation de'...!ned to develop or conitibute to generalizable knowledge
HUMAN SUBJECT is a person about whom an investigator (protessional or sludent) conducling scientific research oblains (1) dala through intervention or interaction with the person, or (2) identifiable privale information.

SUBJECT AT. RISK means any individual who may be exposed to the possibility of injury, including physical, psychological, or social injury, as a consequence of participation as a subject in any research, development, or reidted activity which departs from the apmlitation of those established and accepled methods necessary to meet his or her needs, or which increases the ordinary risks of daily life. including the recognized risks inherent in a chosen occupation or fiela of service.

INFORMED CONSENT means the knowing consent of an individual or his or her legally authorized representative, so situated as to be able to excrcise free power of choice withoul undice indicement or any clement of 'orce. fraud. deceit, duress. or any other form of constrant or coercion * The bisicic elements of infurmalion necossary to such consonl include.
 any morendures which are expermental The explanation must be in timyerigo understandablu by the subject.
(2) A description of any attendant discomforts and risks reasonably to be expected and safeguards io be used:
(3) A deiscription of any benefits reasonably to be expected;
(4) A disclosure of any appropriate alternative procedures that might be advantageous for the subject;
(5) An offer to answer any inquiries concerning the procedures;
(6) An instruclion that the person is free to withdraw his, or her consent and to discontinue parlicipalion in the project or activily at any time without prejudice fo the subject; and
(7) With respect to biomedical or behavioral research which may result in physical injury, an explanation as to whether compensaion and medical treatment is available if physical injury occurs and, it so, what il censists of or where further information may be oblained

 wilt be given them at the conclusion of the experment Deception, il used, must be a part of the experimental design ant not a mieans of obtanning subjecis' participation

DEFINITIONS liken from The Institutional Guide to OHEW Poicy on Protecion of Human Subincts, DifEW Putination No (Niti) 72.102. December 1.1971, and the Federal Rogisfor. Vol 43. No 214. November 3. 1978 it of fuithrinforinalion consult tho Manual for Members of insifutional Aeview Boards which is avathble from the IUB Committee or the Office of Research and Gradurto Development
:

Date

AGENCY GRANT NUMBER (IF KNOWN):
As the signature below tesilfies, the principal investigators) is pledged to contorin to the following precepts:

As one engaged in investigation utilizing human subjects, I acknowlodge the rights ind welfare of the human subject or patient involved.
l acknowledge my responsibility as an investigator to secure the informed consent of the subject by explaining the procedures, in so far as possible, and by describing the risks as weighed against the potential benefits of the investigation.

I am in agreement with the Indiana University Statement of Principles Regarding the Use of Human Subjects in Research. I understand that in research a fundamental distinction must be recognized between research in which the aim is essentially therapeutic for a patient, and research, the essential object of which is purely scientific and without therapeutic value to the person subjected to the research.

II there is reason for me to deviate from these precepts, I will seek prior approval in writing from the Bloomington Campus Committee for the Protection of Human Subjects.

TYPED NAME (S)
Durotliy L. label Roblorl 1). Sherwood Principal Inventigator(a) or Project Du vector

SIGNATURES): $\qquad$ DATE: $\qquad$
D FORMS COMPLETED (ALL spaces filled in)
[u- FORMS SIGNED (ALL signature spaces)
■ COPY OF PROPOSAL ATTACHED
[-LETTER OF INFORMED CONSENT ATTACHED

This protocol for use of human subjects has been reviewed and approved by the Indiana University Bloomington Campus Committee for the Protection of Human Subjects. DATE
APPENDIX B
Aptitude Inctruments and Item Analyses
Proportional Reasoning Test ..... 439
Proportianal Reasoning Test ..... 446Administration Directions
Proportional Reasoning Test Item Analysis. ..... 447
Verbal-Visual Preference Test. ..... 448
Verbal-Visual Preference Test Administration Directions ..... 454
Verbal-Visual Preference Test
Item Analysis. ..... 455
Mathematics Anxiety Test ..... 456
Mathematics Anxiety TestAdministration Directions463
Mathematics Anxiety Test Item Analysis. . ..... 464

## General Directions

This is a cist of certain understandings, skills and abilities that you have gradually developed. The total nuaber of correct answers that you mark will be your ssore. Wrong answers will not be counted ayeinst your seore. iny to angwer all the questions. If a question seems too hard, alate the best guess you can.

Use the special pencil to mark your unswers on the separate answer sheet. Do not mark on the test booklet. Ench question bas only one best answer. Mark only one answer for each question. To chatge an answer, erase your first aark completely. Use the scratch paper provided.

Problem tasks for you to solve will be preseated on the television screen. When you are told to bagin, watch the television screan carefully. Then answer the quastions in the booklet comnected with the demonstrated task. Stop when you see the word "STOP" below the question you just answered. Wait tor further directions from the parson giving the test.

STOP. DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO. en

## .. Directions: Part I - III

Carefully watch the TV acreen as the problea task is presented.
Thes read each question cärefully and decide which one of the four possible answers is che correct or best one.

Look on your answar sheet to find the rou of boxes which has the game nuaber as the question. In this row, mark the box having the aame letter as the answer you have chosen.

## Example

A closed figure having all four aides qqual is a
A) triangle
B) rectangle
C) square
D) parallelogra

The correct answer to this question is lettered $C$, so you should mark box $C$ if this question vere on the test.

STÓP. DO NOT tuRe teis page until you are told to.


Meet Mr. Short

1. What is the relation between the two paper clip chains?
A) 5 small paper clips laid end-to-end are the same length as 3 big pepper clips laid end-to-end.
b) 3 small paper clips laid end-to-end are the same length as 5 big paper clips laid end-to-end.
C) the big and the small paper clips are the same length.
D) not sure.
2. Mr. Short is 6 big paper clips tall. Mr. Tall is 9 big paper clips tall. Mr. Short is also 10 small paper clips teal. What is 'r. Tall's height in small paper clips?
A) 12
B) 13
C) 15
D) 16
3. Which method is most like the one you used to find the answer in question i?
A) estimated guess
B) addition and/or subtraction
C) addition and/or subtraction along with multiplication and/or division
D) multiplication and/or division.

STOP. DO NOT GO ON UNTIL TOLD TO.

4. No weight is hung on e1ther side of the center point (fulcrum). What will be the position of the beam?
A) The right end will tilt down.
B) The bean will be batanced.
C) The left and will tilt down.
D) Not sure.
5. Weight is placed on one side of the bean. Can you rebalance the beam?
A) Yes. Add weight on the side opposite the first weight.
B) Yes. Add weight on the same side as the first weight.
C) No.
D) Not sure:
6. A 10 gran weight is placed at point 6 on the left aide of the bean. How can the bean be balanced?
A) Hang a 6 gran weight at point 10 on the right side of the beam.
B) Hang a 10 gram weaght at point 10 on the right side of the beam.
C) Hang a 20 gran weight at point 6 on the right side of the beam.
D) Not sure.
7. Which reason best matches the reason for your answer to question 6 ?
A) $10 \times 6=6 \times 10$.
B). Left sida: $10+6=$ Risht side: $6+10$.
C) Lighter. weight must be placed farther from the center.
D) None of the above.
8. An 8 gran weight is placed at point 6 on the left side of the beam. Where should you place 12 grame of weight to balance the beam?
A) at point 7 on the right side
B) at point 4 on the right side
C) at point 2 on the right side
D) at point 1 on the laft side
9. Which reason best matches the reason for your answer to question 8 ?
d) $8+6=14,2+X=14, \quad X=2$.
B) $8 \times 6=48,12 \times x=48, x=4$.
C) Heavier weights, aust be placed closer to the center.
D) None of the above.

GO ON TO THi MEXT PAGE.

10. A 4 gram weight is placed at point 2. A 6 gram weight is placed at point 4. Both weights are on the left side of the beam. Where should you place an 8 gram weight on the right side to balance the beam?
A) at point 2
B) at point 4
C) at point 6
D) at point 8
11. Which reason best matches the reason for your answer to question 10 ?
d) $(4 \times 2)+(6 \times 4)=8 \times$, then $\times=4$.
B) Heavier weights must be placed closer to the center.
C) $(4+2)+(6+4)=8+X$, then $X=8$.

- D) None of the above.

STOP. LO NOT GO UN UNTIL TOLD TO.

Part II

12. What is the relationship between the number of tifns made by the small disk compared to the number of turns made by the darge disk?
A) The small disk turns seven times when the large disk turns fivetimes.
B) They both turn the same number of times.
C) The small disk turns five times when the large disk turns seven times.
-D) Not sure.
13. If the small disk turned 14 times how many times weuld the large disk turn?
A) 7
B) 10
C) 12
D) 16
14. Which method is most like the one you used to find the answer in question 13 ?
A) estimated guess
B) àddition and/or subtraction
C) addition and/or subtraction along with multiplication and/or division
D) multiplication and/or division
15. If the large disk turned $26 / 7^{\circ}$ times, how many times would the small disk turn?
A) 3
B) $46 / 7$
C) 4
D) $53 / 5$
16. "Which method is most like the one you used to find the answer in question 15.
A) estimated guess
B) addition and/or subtraction
C) addition and/or subtraction along with multiplication and/or division
D) multiplication and/or division

STOP. DO NOT GO ON UNTIL TOLD TO.

Part III

17. What is the relationship between the height of water in the two cylinders?
A) the water rises sax units in the wider cyitider and four units A) in the narrower cylinder.
B) the water rises four units in the wider cylinder and six units in the narrower cylinder.
C) the water rises the same in boti, the wide and narrow cylinders.:
D) Not sure.
18. Suppose that a new sample of water ros six units in the wide cylinder. How far would it rise in the narrow cylinder?
A) 4
B) 6
C) 8
b)
19. Whicfin method is most like the one you used to find the answer in quest fion 18?
A) estimated guess
B) addition and/or subtraction
C) addition and/or subtraction along with multiplication and/or division
D) multiplication and/or division
20. Suppose a new sample of water rose ten units in the nartow cylinder. How far would it rise in the wide cylinder?
A) $62 / 3$
B) 8
C) $91 / 2$
D) 15
21. Which method is most like the one you used to find the ${ }_{\dot{p}}$ answer in question 20?
A) estimated guess
B) addition and/or subtraction
C) addition and/or subtraction along wich multiplication and/or division
D) multiplication and/or division

PYRT is a threc part tost which attompt: to measime the prosence of the Piagetian ment.il schema of propurtionit reasuning. Instructions to be read aloud to the subjects arm in capital letcers. Instructions only [or the examiner arc in ragular type.

1. Have students seated in the examination room. After making introductory remarks, say: I WII.L NOW IIAND UUT AIL TESTING MATERIALS. DO NOT OPEN YOUR TEST POOKLET UNTII. TOLD TO. YOU SHOULD EACH llavt: a tilist bOOKI.ET, ANSWI:R SHIFiti, A \#2 LEAD PENCIL, AND SCRATCH PAPER.
2. Distribute the test booklets, answer sheets, pencils, and scratch paper.
3. Have the students write their name at the top of the name grid and fill in the name grid.
4. Say: READ SILFNTLY THE GEANERAL DIRHCTIONS WIIIIE I READ THEM Aloun. After reading the directions, say: ARE TIIERE ANY QUESTIONS?
5. Say: TURN TO THE NEXT PAGF: AND RLiAD THF DIRECTIONS FOR PARTS I-IV SILENTLY WHILE 1 RFAD THEiS, MOUD. After reiding the directions, say: ARE THERE ANY QUESTIONS?
6. Play the example demonstration on the $T V$ monitor and have the subjects answer the example question.
7. Say: REMEMBLR: THIS LS AN UNTIMED TISST. WORK QUICF:IY AND DO THE BEST YOU CIN. YOU ARE WOT PENALIZED FOR GUESSING.
8. Say: NOW YOU ARF, READY FOR PART 1. CAREFULLY WATCII THE TV MONITOR AS THI: PROBLIM TASK IS PRESENTED.
9. Play tie Part $I$ task. Then say: TURN THE: PACE AiND BEGIN.
10. When all students have completed qucstions $1-3$, play the second section of the Lask for Part I. Then say: TURN TIIE PAGE AND ANSWER QUESTIONS 4 THROUCH 11 TILEN STOP.
11. When all students hiave answered question 11 , pliy we Part IL task on the TV monitor. Then say: TURN Tllt: PAGi ANI BEGLN. STOP AT THE END OF C'ART 11 WIEN YOU SEEE THE WORD STOP.
12. When all students have finished Part if, play lort fli and say:

13. Either collort all tost materials from itulents isi they finish or cojlect them when ill students irt donc.

## Item Analysis Proportidnal Reasoning Test



## Verbal-Visual Test

INSTRUCTIONS

The atatements on the folitowing pages repreaent ways of thinkingi studying and proble nolving, which are true for some people and not for others. Read each statement and decide. whether or not it is true with respect to yourself, then indicate your answer on the reparate answer sheet.

## 4

If you agree with the statement or decide that it does dederibe you, answer TRUE by marking iu the circle below the letter A. If you diagree with the statement or feel that it is not descriptive of you, anower PALSE by markfor in the circle below the refter A. Answer the statements as carefully and honestly as you can. The otatements are not designed to asseas' the goodness or badness of the way you think. They are attempts to discaver the methods of thinking you constatently use in various eituations. There are no right of-wrong aniswars.

In marking your answers on the answer wheet, be sure thet the number that you ara answering, is the same aw the number on the answer gheet.

Answer every statement either true (A), or false (B), even if you are not completely' sure of your answer. If there are any questions, please raise your hand.

1. I have no difficulty in expressing myself verbally.
2. Listening to someone recount his experiences does not usually arouse mental pictures of the incidents 'being described.
3. When reading fiction I usually form a mental picture of a scene or room that has been described.
4. Essay writing is difficult for me.
5. By using mental pictures of the elements of a problem, I am often able to arrive at a solution.
6. I enjoy being able to rephrase my thoughts in many ways for variety' take When both writing and freaking.
7. I tel jokes and stories poorer thai most people.
8. I enjoy doing work that requires the use of words.
9. My day dreams are sometimes no vivid I feel as though I actually experience the scene.
10. I often use mental pictures to solve problems.
11. Ifind it difficult to find enough syrinnyms or siternate forms of a
word when writing.
12. I have difficulty expressing myself in writing.
13. My knowledge att use of grammar needs improvement.
-14. I would rather work with ideas than words.
14. I enjoy learning now words and incorporating them. Into wy vocabulary.
15. I do not have a vivid imagination.
16. I can easily picture moving objects in my mind.
17. I can foll mental pictures to inmost any word.
18. I have only vague visual impressions of scenes have experienced.
19. I can easily think of synonyms for words.
20. I think that most people think in terms of mental pictures whether they
are completely aware of it or not.

$$
520
$$

22. I am able to express my thoughts clearly.
23. I consider myself a fast reader.
24. I have a large vocabulary.
25. I find it easy to visualize the faces of people $I$ know.
26. My marks have been hampered by inefficient reading.
27. It bothers me when I see a word used improperly.
28. I am fluent at writing essays and reports.
29. I can close my eyea and casily picture a acene 1 have experienced.
30. When someone describes something that happens to him, I sometimes find myself vividly imagining the events that happened.
31. When 1 hear or read a word, a stream of other words often comes to mind.
32. I read rather slowly.
33. I an usually able to say what $I$ mean $i n$ my first draft of an essay or letter.
34. I never use mental pictures or images when trying to solve problems:
35. Studying the use and meaning of words has become habit with me.
36. I speak or write what comes into my head without worrying greatly about my choice of words.
37. I find it difficult to form a mental picture of anything.
38. Hy dreams are extremely vivid.
39. I have better than average fluencéy in using words.
40. I read a great deal.
41. I aid continually aware of sentence structure.
42. My thinking often consists of mental pictures or images.
43. I do not form a mental picture of people or plocen when reading of them.
44. I often have difficulty in explaining things to others.
45. My daydred are rather indistinct and hazy.
46. I often enjoy the use of mental pictures to reminisce.
47. I often une mential images or pictures to help me remember things.
48. When remembering a scene $I$ use verbal descriptions rather than mental pictures.
49. I take great pains to express myself with precision and accuracy in both verbal speech and written work.
50. I have difficulty p=oducing associations for words.
51. I otten have ideas that I have trouble expressing in worda.
52. Just before falling ssicep I often find myself picturing events that have happened.
53. I am a good story celler.
54. I spend vary litcle time attempting to increase my vocabulary.
```
Modified Verbal-Visual Questi`nnaire
Directions for Administration
```

VVQ is a series of agree-disagree statements which attempts to measure subjects preference for either verbal (low score) or visual (high score) encoding of information. Instructions to be read aloud to subjects are in capitilletters. Instructions only for the examiner are in regular type.

1. Have students seated in the examination room. After making introductory remarks, say: I WI LL NOW HAND OUT Alt. TESTING materials. do not open your test booklef tintil told to. you ShOULD EACH HAVF a TEST BOOKLE?, ANSWER SHEET, AND A \#2 LEAD .- PENCIL.
2. Dtstribute the test booklets, answer sheets, and peacils.
3. Have the students write their name at the top of the name grid and fill in the name grid.
4. Say: read silently the instructions hhile i read them aloud. After reading the instructions say: ARE THERE ANY QUESTIONS?
5. If no questions, have the students turn the page and begin. Collect materials as students finisli.
teen Analysi; Verbab-ilinus: Preicerence : is:

$\because=30:$



PAGES 45́6-462 "MATHEMATICS ANXIETY RATING SCALE (MARS)" REMOVED DUE TO COPYRIGHT RESTRICTIONS.

Directions for Administration: Mathematics Anxiety Rating Scale (MARS).

1. Pass out Answer Sheets, ard have students fill in the name section (Last, First, Middle Initial).
2. Please have the students f 111 in the $K$ sertion under Special Codes with your number code (listed below). (See Sample)
3. Pass out the test booklets and have the students read the instructions on top. Please do not have them write on the test booklet.
4. The instructions at the top of the page have the phrase "you are frightened by it nowdays." By "frightened" we mean "do not 1ike to do it at all" or "become anxious or upset when doing it."
5. While theri are several items, it should only take about 25 minutes to complete the test.

Item Analysis Marhematics Anxiety Tost

"ERIC

Itcm Analysis Mathomatics Anxicty Test (continued)

$N=553$ 523

APPENDIX C


The reviewers evaluated the quizzes and tests at the same time as they evaluated the instructional units. Overall directions for reviewing are given in Appendix A.

Questions ( $Q$ ) and Responses ( $R$ ) for Moles Quizzes and Tests.
I. Quizzes: (On each quiz, two items may measure the same objective. One item will involve decimals whereas the other uses whole numbers. We thought we would check to see if there are any differences.)
(Q) a: If there are any quiz items that do not matech the stated objectives, please list the number of the item.
(R1) 0.K.
(R2) None.
(Q) b. If there are any quiz items with content errors, please note item and frror.
(R1) 0.K.
(R2) None.
II. Test
(Q) a, Do you think the test adequately samples the objectives of the unit?
(R1) For the length of the test, it is fine. I think there are same common misconceptions or errors which aren't checked by any of the items, but the ohjectives are simmled.
(R2) Much more than adequate--coverage is excellent.
(Q)

Fach test contains one-or more items that we consider to be transfer items. Please select any you consider to be in this category.
(R1) (Note: Response has been summarized because of length) I'm not sure that any of them are but I'm reasonably confident that items 4 and 9 are the ones you have in mind. Other transfer items are possible that might be better.
(R2) \#4, 9 .

## REVIENERS COMENTS ON DEPENDENT MEASURES

The reviewers evaluated the quizzes and tests at the same time as they cvaluated the instructional units. Overall directions for reviewing are given in Appendix A.

Questions (Q) and Responses (R) for Cas laws Quizzes and Test.

1. Quizzes' (On each quiz, two items may measure the same objective. One item will involve decimals whereas the other uses whole numbers. We thought we would check to see if there are any differences).
(Q) a. If there are any quiz items that do not match the stated objectives, please list the number of the item.
(R1) No response.
(R2) None.
(Q) b. If there are any quiz items with content errors, please note them and the error.
(R1) No response.
(R2) None.
II. Test
(Q) a. Do you think the test adequately samples the objectives of the unit?
(R1) Yes.
(K2) Yes, there is excellient coverage of the objectives.
(O) b. Each test contains one or more items that we consider to be transfer items. Please select any you consider to be in this category.
(R1) I like 33 because they now need to use the same logic to deriva' a relationship showing $P$ related to $T$ with $V$ constant. They may simply say $\mathrm{P}_{1} \mathrm{~K}_{3}=\mathrm{P}_{2} \mathrm{~K}_{3}$
canceling the $V_{1}$ and $V_{2}$, in which $T_{1}$ case little or no transfer is involved. \#iv and \#10 involve transfer of concepts from the mole unit to this unit.
(R2) $\$ 6$ and $\# 10$.

## REVIEWERS COMMENTS ON

 DEPENDENT MEASURESThe reviewers evaluated the quizzes and tests at the same time as they evaluated the instructional units. Overall directions for reviewing are given in Appendix A.

Questions ( $Q$ ) and Responses ( R ) for Stoichiometry" Quizzes and Test.
I. Quizzes (On each quiz, two items may measure the same objectiv́e. One item will involve decimals whereas the other uses whole numbers. We thought we would check to see if there are any differences).
(Q) a. If there are any quiz items that do not match the stated objectives, please list the number of the item.
(R1) No response.
(R2) `None.
(Q) b. If there are any quiz items with content errors, please note them and the error:
(R1) S-I-QP-1, "4 doesn't exactly have an error but mentioning STP for the $\mathrm{CO}_{2}$ but not indicating T and $P$ for the other gases could be misleading. Are only two choices intended? Where is the correct answer?
(R2) S-I-QP-1, question 4. Only two of the four alternatives are listed and the correct one is not among them ( $A, B$ listed; C, D not shown). (Note: This error was corrected before student use.)
II. 1 est
(Q) a. Io you think the test adequately samples the objectives of the unit?
(R1) Yes, -
(R2) No response.
(Q) b. Each test contains one or more items that we consider to be transfer items. Please select any..you consider to be in this category.
(R1) \#5 and \#9 (I predict students wili do poorly on them).
( K 2 ) $\# 5,9,10$.

The reviewers evaluated the quizzes and tests at the same time as they. evaluated the instructional units. Overall diroctions for reviewing are given in Appendix $A$.

Questions (Q) änd Kesponses (R). for Molarity Quizzes and Test.
I. Quizzes (On each quiz, two items may measure the same abjective. One item will involve decimals whereas the other uses whole numbers. We thought we would check to see if there are any differences).
(Q) a. If there are any, quiz items that do not match the stated cbjectives, please list the number of the item.
(R1) - No response.
(R2) None.
(Q) b. If there are any quiz items with content errors, please note them and the error.
(R1) No response.
(R2) None.
II. Test
(Q) a. Do you think the test adequately samples the objectives of the unit?
(R1) Best you can do with 10 items but you covered a lot of material.
(R2) Yes.
(Q) b. Pach test contains one or more items that we consider to be 'transfer items. Please 'select any you consider to be in this category.
(R1) \#5, \#7 and possibly \#10. I expect the reasoning involved is different than what is used elsewhere in the unit but the skills seem to be the same.
(R2) \#5 and \#10. i selected \#10 because different information is given to do the calculation compared to the objective $\$ 2$ stated in lesson 3.

Note: In all cases where I chose items as transfer ones, I still feel that they match objectives reaschably well. I really liked the instructional materials. They were well plamed and executed and the quizzes and unit tests are solid (face) measures of the material and transfer.

INSTMUCTIONS To Reviewers): Please read through the materials and answer the following questions. We are particularly interested in your comments on the content, rather than the method.

Questions ( $Q$ ) and Responses ( $R$ ): MOLES UNIT
I. TEANIER'S GUIDE
(Q) a. Are the objectives reasonable for the topic:
(R1) They look 0.K. to me.
(R2) Yes.
(i) b. Are the prerequisite skills adequate?
(R1) Well, they need to be able to read, write, and all that, but otherwise they look 0.K.
(R2) Yes.
II. Instructional Materials
$(Q)$ a. Is there adequate coverdge of the topic?
(R1) No response.
(R2) Yes, very well done with many analogies within common experience (bricks) as the mole concept is developed.
(Q) b. Are any errors in chemistry present?
(R1) A few places, where there may be confusion. I have indieated these (Lesson I).
(R2) I found none:
$(Q)$ c. Does the unit appear to be matched with the objectives?
(R1) Yes.
(R2) tost definitely!

## UNIT REVIEWIR'S COMMENTS

ON INSTRUCTION

INSTRUCTIONS (To Reviewers): Please reud through the materials and answer the following questions. We are particularly interested in your comments on the content, rather than the method.

Questions (Q) and Responses (R): GAS LAWS UNIT

## I. TEACHER'S GUIDE

(Q) a. Are the objectives reasonable for the topic?
(R1) Yes.
(R2) Yes.
(Q) b. Are the prerequisite skills adequate?
(R1) Yes.
(R2) Yes. Although some students (even in chemistry) will need to learn how to calculate ${ }^{\circ} \mathrm{K}$ from ${ }^{\circ} \mathrm{C}$ and vice versa, this is easily taught.

## II. Instrućtional Materials

$(Q)$ a. Is there adequate coverage of the topic?
(R1) Depends on your point of view. The focus is on getting answers to problems rather than understanding the beha ior of gases. I would prefer the latter but $\mathrm{e}^{\mathrm{v}}$. t the former is dictated by the purposes of the 1 search.
(R2) Yes, again, more than adequate - excellent. I really like the style.
(Q) b. Are any errors in chenistry present?
(R1) . Sice Lesson 2.
(R2) A possible error exists; not in the chemistry, but in the definition of proportion in Lesson 1. $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{k}=$ $\mathrm{P}_{2} \mathrm{~V}_{2} \quad \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ is a proportion, but, at least, most high school students won't know that it is or isn't, because $P_{1} V_{1}-P_{2} V_{2}$ can be $\frac{P_{1} V_{1}}{1}=\frac{P_{2} V_{2}}{1}$.
A proportion is the equality of 2 Ratios. However, in your lesscia 1 you never makn this clear how $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ is the equality $\mathrm{u}_{\mathrm{i}}$ two ratios. Most students will simply view it as the equality of
products. You could use $\frac{P_{1}}{P_{2}}=\frac{V_{2}}{V_{1}}$ but this presents a transition problem to the combined gas law lesson. $\frac{P_{1}}{\mathrm{P}_{2}}=\frac{V_{2}}{V_{1}}$, however, is the
clear statement of the equality of 2 ratios that students will recognize as such. In sum, what 1 am saying is that in lesson 1, you may not be teaching them by the proportional method, although you view it as such.
(Q) c. Does the unit appear to be matched with the objectives?
(R1) Yes.
(R2) Well matched.

UNIT REVIENER'S COMENTS aN INSTRICTION

INSTRUCTIONS (To Reviewers): Please read through the materials and answer the following questions. We are particularly interested in your comments on the content, rather than the method. .

Questions ( $Q$ ) and Responses (R): STOICHIOMETRY UNIT

1. TEACHER'S GIIDE
(Q) a. Are the objectives reasonable for the topic?
(R1) Yes.
(R2) Yes, they remind me of my years at NCHS.
(Q) b. Are the prerequisite skills adequate?
(R1) Yes.
(R2) Yes, although you list a prercquisite skill the ability to balance equations, you don't'emphasize it in the unit.
2. Instructional Materials
(Q) a. Is there coverage of the topic?
(R1) Yes. (Too much?)
(R2) Excellent coverage.
(Q) b. Are any errors in chemistry present?
(R1) I didn't find any.
(R2) S-III-P-2. The equation $3 H_{2}+2 \mathrm{~N}_{2} \rightarrow 2 \mathrm{NH}_{3}$ is not balanced: (A simple typo error.)
(Q) c. Does the unit appear to match with the objectives?
(R1) Yes.
(R2) Very well matched; no loose ends hanging.

USİT REVIENER'S COMENTS
ON INSTRUCTION

INSTRUCTIONS (To Reviewers): Please read through the materials and answer the following questions. We are particularly interested in your couments on the content, rather than the method.

Questions ( $Q$ ) and Responses ( R ): MOLARITY UNIT
I. TEACHER'S GUIDE
$(Q)$ a. Are the objectives reasonable for the topic?
(R1) Yes.
(R2) Yes, quite reasonable expectations.
(Q) b. Are the prerequisites skills adequate?
(R1) Lesson 2, they nast know what a mole is and how to convert from mass to moles. (Other units cover this, of course).
(R2) Yes, you have considered what they should know before attempting the unit.
II. Instructional Materials
(Q) a. Is there adequate coverage of the topic?
(R1) No response.
(R2) Again, the instructional materials are excellently done.
$(Q)$ b. Are any errors in chemistry present?
(R1) Yes, see comments on lessons.
(R2) I found none, except for a misspelled word on Mo-1-P-6 in the problem: Cobolt should be Cobalt.
$(Q)$ c. Does the unit appear to be matched with the objectives?
(R1) Yes.
(R2) Well matched.

## APPENDIX D

Dependent Measures and Item Analyses
Moles Immediate and Delayed Posttests ..... 477
Gas Laws Immediate and Delayed Posttests ..... 484
Stoichiometry Immédiate and Delayed Posttests ..... 489
Molarity Immediate and Delayed Posttests ..... 496
ACS-NSTA Chemistry Achievement Test Regular ..... 501
ACS-NSTA Chemistry Achievement Test Scrambled ..... 504

Please answer the following questions by circling the correct answer. In order to get full credit you must show your wonk for question 6 . Remenber, 1 mole $=6.02 \times 10^{23}$ particles and that these problems are very similar to the use of dozen. Example, how many dozen oranges would be represented by 24 oranges?


24 oranges
$=2$ dozen
12 oranges/dozen

1. Carton tetrachloride has the formula $\mathrm{OCl}_{4}$. How many moles of chlorine atoms (C1) are in 3 moles of carbon tet rachloride?
a. 3 moles
b. $6.02 \times 10^{23}$ moles
c. 12 moles
d. $24.08 \times 10^{23}$ moles
2. How many atoms of aluminum (Al) are present in 3 moles of aluminum?
a. $2.00 \times 10^{23}$ atoms
b. $6.02 \times 10^{23}$ atoms
c. $9.03 \times 10^{23}$ atoms
d. $18.06 \times 10^{23}$ atoms
3. How many moles of calcium hydrcxide $\mathrm{Ca}(\mathrm{OH})_{2}$ correspond to $12.04 \times 10^{23}$ molecules of $\mathrm{Ca}(\mathrm{OH})_{2}$ ?
a. 0.5 mole
b. 2.0 moles
c. $3.01 \times 10^{23}$ moles
d. $24.12 \times 10^{23}$ moles
4. How many atoms of aluminum (Al) are present in 2.3 moles of A1?
a. $0.382 \times 10^{23}$ atoms
b. $2.62 \times 10^{23}$ atoms
c. $13.85 \times 10^{23}$ atoms
d. $27.70 \times 10^{23}$ atoms
5. How many atoms of chlorine (Cl) are present in 4.0 moles of carbon tet rachloride $\left(\mathrm{CCl}_{4}\right)$ ?
a. $1.51 \times 10^{23}$ atoms
b. $6.02 \times 10^{23}$ atoms
c. $24.08 \times 10^{23}$ atons
d. $96.32 \times 10^{23}$ atoms
 of calcium fluoride $\mathrm{CaF}_{2}$ ? (You must show your work to get full credit? )
a. 3
b. 6
c. 18
d. 36

Name: $\qquad$

- Period or
small group

Please answer the following questions by circling the correct answer. In order to get full credit for question four you must show your work.

These problems are very similar to problems like that of the packing carton. Example: How many dozens of fruit can be stored in a box of 69 pints if each dozen has a volume of 3 pints?

69 pirits $=23$ dozen
3 pints/dozen
Remenber, just as.in this example where 1 dozen $=3$ pints for gases 1 mole $=22.4$ liters at STP.

1. A sanple of helium He contains 2 moles. How" many liters would this
gas occupy at STP?
a. 0.089 liter
b. 2.0 liters
c. 11.2 liters
d. 44.8 liters
2. How many moles are represented by 70 liters of fluorine gas ( $\mathrm{F}_{2}$ ) at STP?
a. 0.32 mole
b. 3.125 moles
c. 70 moles
d. 1589 moles
3. How many liters would 6.32 moles of oxygen gas ( $\mathrm{O}_{2}$ ) occupy at STP?
a. 0.282 liter
b. 3.54 liters
c. 141.6 liters
d. 283.1 liters

4
4. A sample of cartion dioxide gas $\left(\mathrm{CO}_{2}\right)$ neisured at Sil occupicd 126.5 liters. How many moles of $\mathrm{C}_{2}$ were present in this sample? (Show your work!)
it. 0.177 mole
c. 379.5 moles
b. 5.65 moles
d. 2833.6 moles

Mases $\qquad$

```
MOLe III - QA - I
```

```
MOLe III - QA - I
```

Period or Small Eroupi $\qquad$

Please ansuer the following questions by circling the cozrect
anewer. You gust show your work, in order to recfeve iull credit for quection 5. These problems are very sishler to the situation; of driens of fruit. Exemple: If a dosen apples werghod 6000 gram how much vould 4 dozens applas walgh2
c dgan epplés x 6000 grane e 24,000 grans epples-

Atomic masses you may wish to uset
$\mathrm{Ca}=40.1$
$c=12.0$
$0=16$
Ma $=23.0$
$\mathrm{Xz}=\mathbf{8 . 8}$
18=79.9
$2 n=65.4$

1. How meny greme of nodium (Ma) corzespond to m moles of Me?
a. 0.13 grem
'b. 7.67 greme
c. 69.0 grams
d. 32.0 grems
2. How many moles of krypton (xy) ges corzespond to 167.6 grane of Kry
e. 0.5 mole
b. 2.0 moles
c. 83.8 moles
d. 335.2 moles
3. How much does 4.5 moles of codium (ma) veigh?
a. $\quad 0.20$ gram
b.
c. 10
d. 23.0 grams
d. 103.5 grams
4. A somple of calcium carbonate ( $\mathrm{CaCO}_{3}$ ) eontains $\mathbf{3 . 6}$ moles. How much would this semple velgh?
a. 27. grams
b. 244.8 grama
c. 360.4 grams
5. 446.4 grams
6. How many moles of sinc bromide (znerg) qorrespond to 200 grame of 2nler .

a.	0.69 mole
b.	0.89 mole
c.	1.13 moles
d. 1.38 moles	

548
$\qquad$

Please answer the following questions by circling the correct answer. Remember, these problems maybe solved by using a method similar to the one Used with fruit. Example: How much volume would 24 oranges occupy if each dozen orange occupies 3 pints? (See diagram). To get full credit for question six, you must show your work.

$\frac{24 \text { oranges }}{12 \text { oranges/dozen }}=2$ dozen
2 dozen $\times \frac{3 \text { pints }}{\text { dozen }}=6$ pints
You may need the following atomic masses: Ne =20.2 $\mathrm{Cu}=63.5 \quad \mathrm{~K}=39.1 \quad \mathrm{~N}=14.0$ $0=16.0 \quad C=12.0 \quad H=1.0$

1. What volume would $18.06 \times 10^{23}$ atoms of neon gas (Ne) occupy ac STPT
a. 3.0 lItters
b. 7.47 liters
c. 67.2 liters
d. 404.5 liters

2: What would be the mess of one atom of copper (Cu)?
a. $0.0026 \times 10^{-25} \mathrm{grem}$
b. $10.5^{\prime \prime} \times 10^{-23} \mathrm{grem}$
c. $63.5 \times 10^{-23} \mathrm{gram}$
d. $382.3 \times 10^{-23} \mathrm{grm}$
3. What volume would $34.3 \times 10^{23}$ atoms of neon (Me) sccupy et STP?

- 3.93 liters
b. 127.6 liters
c. 1348.5 liters
d. 4625.3 liters

4. How many moles correspond to 303.3 grams of potassium nitrate $\left(\mathrm{KNO}_{3}\right)$ ?
. 0.33 mole
b. 2.35 violas
c. $\mathbf{3 . 0 0}$ moles
d. 4.39 moles
5. How many molecules of carbon dioxide ( $\mathrm{CO}_{2}$ ) are present in a sample of $\mathrm{CO}_{2}$ that has e volume of 40.3 lIters et STP7

- 5455 molecules
bs $9.2 \times 10^{21}$ molecules
c. $3.35 \times 10^{23}$ molecules
d. $10.8 \times 10^{23}$ molecules

6. A sample of athene gas $\left(C_{2} H_{6}\right)$ has mass of 60 grams. Whet volume would this gas occupy at STP? (be sure to show your workl)
b. 44.8 liters
c. 00.4 liters
d. 103.4 liters
e. 11.2 liters
$\qquad$
Poricil or smell group:

## mole test

Plasse enswar the follwolng giestions by gircling the corract answar. Constants end atomic, masses thet you will need are listed below.

1 mole - $6.02 \times 10^{23}$ perticles 1 mole -22.411 ters at sTP
Carben (c) - $12.0 \quad$ Uydrogen $(M)=1.0$
sulfur (s) - $32.1 \quad$ onygen ( 0 - 16.0
2 inc (2n) - 65.4
Follum (Mo) - 4.0
Xonon (Xe) - 131.3

1. Kuw meny moles of neon gee (ma) corroagond to $18.06 \times 10^{23}$ atoms of neon?
A. 0.33 mole
B. 1.24 moles
C. 3.0 moles
2. 100.7 moles
3. How meny molas of zinc (2in) correspend to 163.5 grams of $2 n 7$
A. 0.40 mola
B. 2.50 moles
C. 1422 moles
o. 10382 moles
4. How many moleculae of mathane $\left(\mathrm{CH}_{4}\right)$ are present In a sample of mathone thet contalins 5.0 moles?
5. $0.63^{\prime} \times 10^{23}$ molecules
B. $1.20 \times 10^{23}$ molecuies
c. $3.01 \times 10^{23}$ coleculas
6. $30 . i \times 10^{23}$ moleculas
7. How mefi would the onyon atom melth In a sample of $\mathrm{CO}_{2}$ wich contalnod 4.0 molas 7
A. grams
B. 6h grons
C. 128 grams
8. 176 grams
9. Hom meny moles corraspond to 16 lliere of axyean ges at $5 T P$,
A. p.71 mole
B. 1.4 moles
c. 2.0 moles
D. 358.4 mole
10. How much would e semp:is of helkuegrs the) weligh, if at STP Its volume was 75.4 Hers2 -
A. 0.07 gram
11. 1.14 grems
C. 14.0 grams
D. 313.6 grams
12. A sample of hyérogen sulfide $\left(\mathrm{H}_{2} \mathrm{~s}\right)$. has a mass of $\mathbf{6 8 . 2} \mathrm{grams}$. How many moleculas of $\mathrm{H}_{2} \mathrm{~S}$ ere present in this sample? -
A. $6.90 \times 10^{23}$ molecules
13. $12.04 \times 10^{23}$ molecules
C. $12.50 \times 10^{23}$ moleculee
D. $410.6 \times 10^{23}$ molecules
14. A sample of atheme gas $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ hes a voluma of 100.8 liters at STP. Hew many molecules of athene are prexent in thensample?
A. $1.34 \times 10^{23}$ molecules
B. $27.1 \times 10^{23}$.moleculas
C. $202.2 \times 10^{23}$ molecules
0 . $375.1 \times 10^{23}$ molecules
15. A semple of sulfup dionlé $\left(80_{2}\right)$ nas emess of 128.2 grams. How meny atomi of onygen (0) ere presen! In ehis semple?
A. $3.02 \times 10^{23}$-tom
B. $12.04 \times 10^{23}$ atoms
C. $16.04 \times 10^{23}$ atoms
D. $24.00 \times 10^{23}$ stoms
16. Mow much would $3.03 \times 10^{23}$ atoms of xanon yes (for) weight
A. 87.5 grams
B. 90.5 grams
b. 1185.6 grams
c. 197.0 grams

Item Analysis for Moles
Inmediate and Delayed Posttest


Name: $\qquad$
Period or small group: $\qquad$

$$
5-2+0-2
$$ .

Please answer the following questions by circling, the correct answer. To get full credit for question four you must show your work. These problems are easily solved by, predicting the factors. Example:

## Problem:

- $\therefore$. The $t$ ime to take a trip by car is inversely related to the speed of the car. The faster the car travels the less time it takes to complete the trip. Suppose' that a trip.takes 3 hours at $45 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. How long would the trip take at $55 \mathrm{~m} . \mathrm{p} . \mathrm{h} . ?$

3 hours $\times \frac{45 \text { mop.h. }}{5.5 \mathrm{mpf.h}}=2.45$ hours

1. A sample of gas has a volume of 1500 ml at 900 mm Hg pressure. What volume would this gas occupy at $\$ 200 \mathrm{~mm} \cdot \mathrm{Hg}$ ?
A. 720 ml .
B. 1125 ml
C. 3600 ml
-.D. 6000 ml
2. What would be the volume of a sample of gas at 800 mm Hg pressure, if at 300 mm Hg pressure the volume was 600 ml 7
A. 225 ml
B. 400 ml
C. 1600 ml -
D. 1833 ml
3. A sample of gas has a pressure of 632 mm Hg and a volume of 492 ml . What would be the pressure of this sample of gas, if the volume became 856 ml ?
A. 363 mm Hg
B. 666 mm Hg
C. 996 mm Hg
D. 1100 mm Hg .
4. What would be the pressure of a sample of gas of 1000 ml volume, if at 1400 ml volume the pressure was 500 mm Hg ? (Show your work).
A. $\quad 357 \mathrm{~mm} \mathrm{Hg}$
B. 480 mm Hg
C. 700 mm Hg
D. 2800 mm Hg
$\qquad$ Gas Laws II-QF-1

Plase a iwer the following questions by circling the correct answer. To get full credit for question four, you must show your work. Remember to set up your factors based upon your prediction of what should happen The relationship between the temperature and volume is a direct one. Another direct relationship is the one between the cost of objects and the number you buy. Example: If chewing gum is 73 c for 3 packages, how much will 9 packages cost?

$$
73 ¢ \times \frac{9 \text { packages }}{3 \text { packages }}=219 ¢ \text { or } \$ 2.19
$$

1. A sample of gas has a volume of 625 ml at $27^{\circ} \mathrm{C}$. What would be the volume at $55^{\circ} \mathrm{C}$ ?
A. 307 ml
B. 572 ml
C. 683 ml
D. 1273 ml
2. What would be the Celsius temperature of a sample of gas of 350 ml volume, if at 400 ml volume, the temperature was $46{ }^{\circ} \mathrm{C}$ ?
A. $6^{\circ} \mathrm{C}$
B. $40^{\circ} \mathrm{C}$
C. $53^{\circ} \mathrm{C}$
3. $237^{\circ} \mathrm{C}$
4. What would be the volume of a sample of gas at $63.4^{\circ} \mathrm{C}$, if at $121.2^{\circ} \mathrm{C}$, its volume was 457 ml ?
A. 238.5 ml
B. 329.9 ml
C. 534.3 ml
D. 871.7 ml
5. A sample of gas has a volume of 275 ml at $-10^{\circ} \mathrm{C}$. What would be the temperature at 520 ml volume?
A. $-272^{\circ} \mathrm{C}$
B. $-254^{\circ} \mathrm{C}$
C. $-134^{\circ} \mathrm{C}$
D. $224^{\circ} \mathrm{C}$
$\qquad$
(Please answer the following questions by circling the correct answer. To get fuel credit for question four you must show your work. Remember to set up your factors based upon your prediction of what should happen. The relationship between the volume or pressure and temperature is a direct relationship, while the relationship between pressure and volume is an inverse relationship.

An example of a problem using both a direct and an inverse relationship might be: How much would a truck driver be paid if he got $\$ 10.00$ per hour for a trip of 275 miles if he averaged 55 miles per hour? 5
275 mi les $\times \frac{1 \text { hour }}{55 \text { miles }} \times \frac{10 \text { dollars }}{1 \text { hour }}=50$ dollars

1. A sample of gas has a volume of 400 ml at 600 mm Hg and $-73 . \mathrm{C}$. What would be the volume at 1500 mm Hg and $27^{\circ} \mathrm{C}$ ?
A. 107 mil
B. 240 ml
C. 433 ml
D. 1500 ml
2. A sample of gas has a pressure of 600 mm Hg at $0^{\circ} \mathrm{C}$ and 900 ml . What would be the pressure at $273^{\circ} \mathrm{C}$ and 300 ml ?
A. 100 mm Hg
B. 400 mm Hg
C. 900 mm Hg
D. 3600 mm Hg
3. What would be the Celsius temperature of a sample of gas at 500 mm Hg and 500 ml , if at $57^{\circ} \mathrm{C}$ the pressure was 1000 mm Hg and 1500 ml volume?
A. $-218^{\circ} \mathrm{C}$
B. $-53{ }^{\circ} \mathrm{C}$
C. $55^{\circ} \mathrm{C}$
D. $222^{\circ} \mathrm{C}$
4. A sample of gas has a volume of 632.4 ml at $25.3^{\circ} \mathrm{C}$ and 784.6 mm Hg . What would be the volume at $51.6^{\circ} \mathrm{C}$ and 954.2 mm Mg ?
A. 477.9 ml
B. 565.8 ml
C. 753.8 ml
D. 1060.5 ml

## Item Analysis for Gas Laws

Immediate and Delayed Posttest


* Correct answer

Period or small group: $\qquad$

Please answer the following questions by circling the correct answer.

1. A gas sample has volume of 200 ml at 800 mm Hg . What would be the volume at 400 mm Hg if there is no temperature change?
A. $\quad 100 \mathrm{ml}$
B. 400 ml
C. 1600 ml
2. 6400 ml
3. A gas sample has a volume of 300 ml at $52^{\circ} \mathrm{C}$. What would be the Calsius temperature of this sample if the volume was increased to 900 ml ? Assume no pressure change.
A. $-165^{\circ} \mathrm{C}$
B. $702{ }^{\circ} \mathrm{C}$
C. $975^{\circ} \mathrm{C}$
D. $1148{ }^{\circ} \mathrm{C}$
4. A gas sample has a pressure of 500 mm Hg at $-73^{\circ} \mathrm{C}$. Assuming that the volume stays constant, what would be the Celsius temperature of this sample at 250 mm Hg ?
A. $-173^{\circ} \mathrm{C}$
B. $-146^{\circ} \mathrm{C}$
C. $-36.5 \circ \mathrm{C}$
D. $100^{\circ} \mathrm{C}$
5. A gas sample has a volume of 900 ml at $0^{\circ} \mathrm{C}$ and 250 mm Mg . If the volume becomes 300 ml and the temperature $273^{\circ} \mathrm{C}$, what would be the pressure?
A. 42 mm Hg
6. $\quad 167 \mathrm{~mm} \mathrm{Hg}$
C. $375 \mathrm{~mm} \mathbf{~ H g}$
7. 1500 mm Mg
8. A gas sample has a volume of 326.5 ml at 635.2 mm Hg . Assuming no temperature change, what would be the volume at 947.6 mm Mg ?
A. 218.9 ml
9. 487.1 ml
C. 1843.5 ml
D. 1909.3 ml
10. The pressure of a gas is directly related to the number of molecules of the gas. If a gas sample contalined $12 \times 10^{23}$ molecules at a pressure of $i 500 \mathrm{~mm} \mathrm{Hg}$, what would be the pressure if the number of molecules was increased to $18 \times 10^{23}$ molecules? Assume no volume or temperature change.
A. 1000 mm Hg
11. 2250 mm Hg
C. $0.001 \times 10^{23} \mathrm{~mm} \mathrm{Hg}$
12. $2.25 \times 10^{23} \mathrm{~mm} \mathrm{Hg}$
13. A gas sample has a volume of 500 ml at 800 mm Hg and -230 C . What would be the Celsius temperature if the pressure was changed to 1000 mm Hg and the volume to 200 ml ?
A. -1480 C
14. $11.5^{\circ} \mathrm{C}$
C. $125^{\circ} \mathrm{C}$
15. $781^{\circ} \mathrm{C}$
16. What would be the volume of ass sample at 150 mm Hg and $177^{\circ} \mathrm{C}$, if at 700 min Hg and $77^{\circ} \mathrm{C}$ the volume was 150 ml
A. 207 ml
B. 250 ml
C. 4500 ml
D. 8045 ml
17. A gas sample has a volume of 600 ml at $27^{\circ} \mathrm{C}$. What mould be the volume of this sample at $127^{\circ} \mathrm{C}$ ?
A. 140 ml
B. 495 ml
C. 880 ml
D. 3104 ml
18. What volime would $f$ i:e moles of a gas oceupy at $27^{\circ} \mathrm{C}$ and 760 mm ? 4760 inm Hg - 1 atmosphere).
A. 22.4 liters
19. 102 liters
C. 123 liters
D. 284 liters

Perlod or small group: $\qquad$
Please answer the following questions by circling the correct answer. To get full credit for question 4 you must show your work. The relationships for particles, moles, and volume may be summarized by:


1. When the compound potassium chlorate $\left(\mathrm{KClO}_{3}\right)$ is heated it breaks down into potassium chloride ( KCl ) and oxygen gas $\left(\mathrm{O}_{2}\right)$. This is represented by the equation $2 \mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{KCl}\left(\mathrm{sl}^{\longrightarrow}+3 \mathrm{O}_{2}(\mathrm{~g})\right.$. How many moles of $\mathrm{O}_{2}$ would be formed from 6 moles of $\mathrm{KCHO}_{3}$ ?
A. 4 moles
B. 6 moles
C. 9 moles
D. 12 moles
2. Carbon monoxide gas will burn (react with $\mathrm{O}_{2}$ ) to form carbion dioxide gas according to the reaction $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})^{\circ}$ How many liters of $\mathrm{CO}_{2}$ would be formed at STP from 18 liters of ozygeh and excess carbon monoxide?
A. 9 liters
B. 18 liters
C. 22.4 liters
D. 36 liters
3. Propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ will react with oxygen gas $\left(\mathrm{O}_{2}\right)$ to form carbon dioxide $\left(\mathrm{CO}_{2}\right)$ gas and water vapor $\left(\mathrm{H}_{2} \mathrm{O}\right)$. This is represented by the equation $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$. How many molecules of oxygen will be needed to react completely with $5 \times 10^{23}$ molecules of propane?
A. 5 molecules
B. 25 molecules
C. $1 \times 10^{23}$ nolecules
D. $25 \times 10^{23}$ molecules
4. How many liters of $\mathrm{CO}_{2}$ gas would be produced at STP if 24.3 liters of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacted with excess oxygen according to the reaction $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$ + $\left.5 \mathrm{O}_{2}^{(\mathrm{g})} \longrightarrow 3 \mathrm{CO}_{2} \mathrm{~g}\right)+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})^{?}$
A. 3.0 liters
B. 8.1 liters 0
C. 22.4 liters
5. 72.911 店

Period or small group: $\qquad$

Please answer the following questions by cirfling the correct answer.
To get full credit for question four you must show your worh.


1. White phosphorus $\left(\mathrm{P}_{4}\right)$ reacts with oxygen gas $\left(\mathrm{O}_{2}\right)$ to form $\mathrm{P}_{4} \mathrm{O}_{6}$ (s). The balanced reaction is $\mathrm{P}_{4}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{P}_{4} \mathrm{O}_{6}(\mathrm{~s})$. How many grams of $\mathrm{P}_{4} \mathrm{O}_{6}$ would be produced if 96.0 grams of $\mathrm{O}_{2}$ react with excess $\mathrm{P}_{4}$ ?
A. 47.0 grams
B. 106.7 grams
C. 220.0 grams
2. 960.0 grams
3. Sodium metal ( Na ) reacts with water ( $\mathrm{H}_{2} \mathrm{O}$ ) to form sodium hydroxide ( NaOH ) and hydrogen gas, $\left(\mathrm{H}_{2}\right)$. The balanced equation is: $2 \mathrm{Na}(\mathrm{s})$ \& $2 \mathrm{H}_{2} \mathrm{O}(\ell)$ $\longrightarrow 2 \mathrm{NaOM}(\mathrm{aq}) ~ \& \mathrm{H}_{2}(\mathrm{~g})$. How many grams of sodium would be needed to produce 67.2 liters of $\mathrm{H}_{2}$ (meat ured at STP) if the sodium reacts with excess water?
A. 34.5 grams
4. . 134.3 grams
C. 138.0 grams
D. 276.0 grams
5. Sodium nitrate $\left(\mathrm{NaNO}_{3}\right)$ can be decomposed into sodium nitrite ( $\mathrm{NaNO}_{2}$ ) and oxygen gas $\left(\mathrm{O}_{2}\right)$. The balanced equation $\mathrm{is} 2 \mathrm{NaNO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{NaNO}_{2}(\mathrm{~s})$ * $0_{2}(\mathrm{~g})$. How many molecules of oxygen gas can be produced from 85.0 grams of $\mathrm{HaNO}_{3}$ ?
A. $3.01 \times 10^{23}$ molecules
6. $6.02 \times 10^{23}$ molecules
C. $12.04 \times 10^{23}$ molecules
7. $256 \times 1023$ molecules
8. Sulfur ( $\mathrm{S}_{\delta}$ ) reacts with oxygen gas $\left(\mathrm{O}_{2}\right)$ to form sulfur dioxide ( $\mathrm{SO}_{2}$ ). The balanced equation is $\mathrm{S}_{8}(\mathrm{~s})+8 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{c}^{\prime} 8 \mathrm{SO}_{2}(\mathrm{~g})$. How many grams of $\mathrm{SO}_{2}$ would be formed when $\mathbf{7 2 . 5}$ grams of $\boldsymbol{s}_{8}$ reacts with exress oxyzen.
A. 18.1 grams
9. 144.9 grains
10. 580.0 jr.mis
U. '158.2 yrims

## Period or Small Group

Please answer the following questions by circling the correct answer. To get
full credit for question four you must show your work.


1. White phosphorous ( $\mathrm{P}_{4}$ ) reacts with chlorine gas ( $\mathrm{Cl}_{2}$ ) co form $\mathrm{PCl}_{3}(\mathrm{~s})$. Whe balanced equation is $\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{PCl}_{3(\mathrm{~s})}$. Ho: many molecules of $\mathrm{PCl}_{3}$ world be formed from 67.2 literg of $\mathrm{Cl}_{2}$ (neasured at STP) and ercess $\mathrm{P}_{4}$ ?
A. $1.00 \times 10^{23}$ molecules
B. $401 \times 10^{23}$ molecules
c. $12.04 \times 10^{23}$ molecules
D. $27.09 \times 10^{23}$ molecules

Use the following reaction for questions 2,3 , and :.
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{SO}_{2(\mathrm{R})} \rightarrow \mathrm{SCO}_{2(\mathrm{~B})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
7. If the gates tre meanured at STP. how many litert of carhon atoxide (CO2) would be formed from 20 liters of $\mathrm{O}_{2}$ and excess $\mathrm{C}_{3} \mathrm{H}_{\mathrm{h}}$ ?
A. 2.1 1iters .
B. 12.0 1iters
C. 33.3 liters
D. 100 liters
3. How many grams of water would be formed fram 112 liters of $\dot{C}_{\mathbf{j}} \mathrm{H}_{8}$ ( measured at STP) and excase $\mathrm{O}_{2}$ ?
A. 22.5 grama
B. 90.0 grams
C. $360 . L^{\text {grams }}$
D. 448.0 nrams
4. How many molecules of carhon dioxide would be formed if 84.5 iftera of $\mathrm{C}_{3} \mathrm{H}_{8}$ (meaaurad at ST?) racted with excess $\mathrm{O}_{2}$ ?
d. $0.53 \times 10^{23}$ molecules
B. $4.8 \times 10^{23}$ molecules
c. $7.6 \times 10^{23}$ molecules
D. $68.1 \times 10^{23}$ molecules
$N$ ame :
Perlod or small group: $\qquad$

Please answer the following questions by circling the correct answer. You may need the following atomic masses and constants:

$$
\begin{array}{ll}
C=12.0 & H=1.0 \quad N=14.0 \quad 0=16.0 \\
\text { Fe }=55.9 & 1 \text { mole }=22.4 \text { liters at } S T P=6.02 \times 10^{23} \text { par.ficles }
\end{array}
$$

The following balanced equation may be used for questions one through six.

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

1. How many moles of nitrous oxide (NO) will be produced when 10.0 moles - of oxygen gas $\left(\mathrm{O}_{2}\right)$ reacts with sufficlent ammonia gas $\left(\mathrm{NH}_{3}\right)$ ?
A. 4.0 moles
B. 8.0 moles
C. 10.0 moles
2. 12.5 moles
3. How many grams of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ will be produced when 34.0 grams of ammonia $\left(\mathrm{NH}_{3}\right)$ reacts with.sufficient oxygen gas ( $\mathrm{O}_{2}$ )?
A. 3.0 grams
B. 24.0 grams
C. 51.0 grams
D. 54.0 grams
4. How many molecules of oxygen gas $\left(\mathrm{O}_{2}\right)$ are necessary to react completely, with 56.0 liters of ammonia $\left(\mathrm{NH}_{3}\right)$ measured at STP?
A. $3.01 \times 10^{23}$ molecules
B. $12.04 \times 10^{23}$ molecules
C. $15.05 \times 10^{23}$ molecules
D. $18.81 \times 10^{23}$ molecuic:
5. How many grams of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ will be produced when $18.06 \times 10^{23}$ molecules of nitrous oxlde (NO) are produced?
A. 36.0 grams
B. 54.0 grams
C. 81.0 grams
D. 325.1 grams
6. How many liters of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ will be formed when 44.8 liters of ammonia $\left(\mathrm{NH}_{3}\right)$ are mixed with 134.3 ilters of $\mathrm{O}_{2}$ at STP?
A. 29.9 liters
B. 67.2 liters
C. 80.6 liters
D. 537.6 liters
7. How many liters of nitrous oxide (NO) will be prodaced when 67.2 liters of oxygen gas $\left(\mathrm{O}_{2}\right)$ react with sufficlent ammonla, $\left(\mathrm{NH}_{3}\right)$ ?
A. 3.75 liters
B. 53.8 liters
C. 84.0 liters
D. 104.4 liters

Use the following balanced reactions for questions seven through ten.

$$
\mathrm{Fe}_{2} \mathrm{O} 3(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

7. How many grams of iron ( Fe ) will be produced from 3.0 moles of iron ( 111 ) oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ reacting with sufficient CO
A. 6.0 grams
B. 9.32 grams
C. 83.9 grms
D. 335.4 grams
8. How many grams of iron (Fe) will be produced when 78.4 liters of carbon monoxide (CO), measured at STP, reacts with sufficient $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ?
A. 111.8 grams
B. 130.4 grams
C. 195.7 grams
C. 293.5 grams
9. Some of one of the reactants ( CO or $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ) will be left over after 319.6 grams of iron (III) oxide ( $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ) are mixed with $19 \overline{6.0}$ grams of CO . Which reactant is it and how much will be left?
A. 28.0 grams CO
B. 113.6 grams $\mathrm{Fe}_{2} \mathrm{O}_{3}$
C. 168.0 grams CO
D. $372.2 \mathrm{Fe}_{2} \mathrm{O}_{3}$.
10. How many atoms of fe would be produced when $12.04 \times 10^{23}$ molecules of $C O$ react with sufficlent $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ?
A. $8.03 \times 10^{23}$ atoms
B. $16.06 \times 10^{23}$ atoms
C. $18.06 \times 10^{23}$ atoms
D. $24.08 \times 10^{23}$ atoms

Item Analysis for Stoichiometry
Immediate and Delayed Posttest

Measure-Item		Response Percentage					
		A	B	C.	D	Blank	
Quiz 1	1	6.0	4.0	86.9*	2.7	0	
Quiz 1	2	5.5	10.6	. 4	83.2*	0	
Quiz 1	3	2.0	4.4	5.5	87.8**	0	
Quiz 1	4	2.2	5.7	3.3	86.3*	2.2	
Quiz 2	1	3.5	5.7	84.9*	3.5	. 7	
Quiz 2	2	8.4	12.8	$68.4 *$	8.0	. 6	
Quiz 2	3	60.8*	14.4	17.2	4.9	. 9	
Quiz 2	- 4	10.6	60.8*	13.3	9.9	3.7	-
Quiz 3	1	1.8	4.2	$88.7 *$	4.2	. 2	
Quiz 3	2	6.4	$78.8{ }^{\text {* }}$	8.0	5.1	. 7	
Quiz 3	3	6.4	6.8	73.7*	12.0	. 2	
Quiz 3	'4	2.6	6.6	8.6	79.2*	2.2	
Test	1	8.4	82.9*	2.9	4.4	. 2	
Test	2	8.2	8.0	22.1	59.3*	1.1	
Test	3	4.6	11.9	13.1	68.6*	. 6	
Test	4	7.1	12.2	70.3*	8.4	. 7	
'lest	5	7.3	75.7*	7.9	4.9	2.9	
Test	6	5.3	78.1*	11.1	2.7	1.3	
Test	7	9.1	5.3	17.0	$65.9 *$	1.3	
Test	8	9.7	65.2*	11.5	11.0	1.3	
Test*	9	36.1 *	27.9	18.6	11.3	4.6	
Test	10	64.4*	13.3	7.5	10.9	2.4	

[^14]Period or small group: $\qquad$

Please answer the following questions by circling the correct answer. In order to get full credit for question five, you must show your work. Remember to use proportions when you can to work the problems.

Example: How many gallons of gas could a person purchase for $\$ 5.00$ if the gas is $\$ 1.10$ per gallon?

$$
\begin{aligned}
& \frac{x}{\$ 5.00}=\frac{1 \text { gallon }}{\$ 1.10}(x)(\$ 1.10)=(\$ 5.00)(1 \text { gallon }) \\
& x=\frac{(\$ 5.00)(1 \text { gallon })}{(\$ 1.10)}=4.55 \text { gallons }
\end{aligned}
$$

All of the following questions deal with the substance potassium chloride (KCl) which has a molecular mass of 74.6 grams per mole.

1. What would be the molarity of a solution made by dissolving 6.0 moles of potassium chloride (KCI) in enough water to make 3.0 liters of solution?
A. 0.5 M
2. 2.0 M
C. 3.0 M
D. 6.0 M
3. What would be the molarity of d solution made by dissolving 149.2 grams of KCI_in enough water to make 1200 ml of solution?
A. 0.42 M
B. -0.60 M
c. 1.67 M
D. 2.40 M
4. Mow many grams of KCI would be present in 1600 ml of a 0.50 M KCl solution?
A. 23.3 grams
5. 59.7 grams
C. 93.3 grams
6. 238.7 grams
7. What wru.d be the molarity of a solution made ty dissolving 0.45 moles of KCl in mough , dater to make 1400 ml of solution?
a. 0.32 M
8. 3.1 M
C. 28.0 M
D. $\quad 35.7 \mathrm{M}$
9. How many milliters of $\rightarrow 1.6 \mathrm{II} \mathrm{KCl}$ solution would contain li fig grams of KC1?
A. 8.0 ml
B. 125 ml
C. 320 ml
D. 3125 ml

Period or small group: $\qquad$

Please answer the following questions by circling the correct answer. To get full credit for question flve, you must show your work. Remember to set up proportions whenever possible to help solve the problems.

Example: A jet can travel 500 ml les per hour. How many hours would a trip of $\mathbf{2 5 0 0}$ miles take?

$$
\begin{aligned}
& \frac{x}{2500 \text { miles }}=\frac{1 \text { hour }}{500 \text { miles }}(x)(500 \text { miles })=(2500 \mathrm{miles}) \text { ( } 1 \text { hour) } \\
& x=\frac{(2500 \text {.mikes })(1 \text { hour })}{(500 \mathrm{mjhes})}=5 \text { hours }
\end{aligned}
$$

1. What would be the molarity of a solution made by boiling off 500 ml of water from 2500 ml of a 2.0 M NaCl solution?
A. $\quad 0.40 \mathrm{M}$
B. 0.625 M
C. 1.67 M
D. 2.50 M
2. What would be the molarity of a solution made by adding 1.0 liter of water to 2.0 liters of a 3.0 M NaCl solution?
A. 0.22 M
B. 0.50 M
C. 2.0 M
D. $\quad 6.0 \mathrm{M}$
3. How namy millilitrer, of water must be added to 750 ml of a 1.25 M NaCl solution to reduce the melarity to 0.50 M ?
A. 217 ml .
B. 1125 ml
C. 2583 ml
D. 2625 ml
'4. What would be the molarity of a solution made by adding 850 ml of water to 1400 ml of a 2.6 M NaCl solution?
A. 0.62 M
в. 0.83 M
C. 1.62 M
D. 6.62 M
4. How many milliliters of water must be boiled away from 1200 ml of 1.6 M NaCl to produce a 2.0 M NaCl solution?
A. 160 ml
B. 240 ml
r. 533 ml
D. 2160 ml
$\qquad$
Period or small group: $\qquad$
$\qquad$

Please answer the lolluwing quastions by cilling the correct answer. To get full credit for question five, you must show your work. Remember to set up proportions when working the problems. Example:
. A trucker cạn by dieseï fuel for $\$ 1.10$ per gallon. How much noney would it take for a trucker to fill up a 50 gallon tank?

$$
\begin{aligned}
& \frac{x}{50 \text { gallons }}=\frac{\$ 1.10}{1 \text { gallon }}(x)(1 \text { gal } \\
& x=\frac{(50 \text { gallons })(\$ 1.10)}{(1 \text { gallon })}=\$ 55.00
\end{aligned}
$$

guestions one throlyh four deal with the following balanced reaction:

$$
\begin{aligned}
& 2 \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{Mg}_{\mathrm{g}}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow \mathrm{MgCl}_{2(i a)} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(1) \\
& \text { Molecular Hasses. } 111.1=36.5: \mathrm{Mg}_{\mathrm{I}}(\mathrm{OH})_{2}=58.3 ; \mathrm{MgCl}_{2}=95.3, \mathrm{H}_{2} \mathrm{O}=18.0 \text {. }
\end{aligned}
$$

1. How itany moles of magnesium chloride $\left(\mathrm{MaCl}_{2}\right)$ would be produced when 2.0 liters of 1.0 M hydrohtoric acid (HC1) reacts wi.th a suificient anoounc of maynesium hydroxide $\mathrm{Mg}(\mathrm{OH})_{2}{ }^{\text {? }}$
A. C. Cole
B. 1.0 mole
C. 2.0 minles
D. 4.0 moles
 complecrly wath 500 ml of a 1.20 M hydrochloric acid (HCl) solution?
A. 17.5 ifans

日. 70.0 yrams
C. 194.3 gr.mats
0. 279.8 grams
3. What would be the molarity of 1500 ml of nmancium chloride ( $\mathrm{mg} \mathrm{Cl} \mathrm{I}_{2}$ ) pulition fonm. then 1200 ml of $\mathbf{t} 4.0 \mathrm{Mh}$ harohbloric acid solution reacts wifh sutficirel magnesium his roxive $\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)$ ?
A. $\quad 0.10 \mathrm{~m}$
B. 1.6 M
i $\quad 3.2 \mathrm{M}$
0. 6.4 H

 arount of magnesiun hydroxide $\mathrm{Mg}_{\mathrm{g}}(\mathrm{OH})_{2}^{7}$
-. 0.32 nowl.
B. 0.65 mole
i. $\quad 1.30 \cdots 10$,
D. 2.;0 moles




A. $\quad 2 . i 4$ licors
t. 20.2 liters
i. in.jliturs
!. .. 1 liturs

Parlod or Small Group:


Please answer the following quastions by circling the correct answaf.
You mey noed the following molecular ansses and constents.
$\mathrm{MCl}=58.5 \quad \mathrm{CH}_{3} \mathrm{OH}=32.0 \quad \mathrm{Li}_{2} \mathrm{CO}_{3}=73.8 \quad \underset{\sim}{\mathrm{HMO}_{3}}=63.0$
$\mathrm{LImO}_{3}=6.9 \quad \mathrm{CO}_{2}-44.0 \quad \mathrm{H}_{2} \mathrm{O}=18.0$
1 mole-22.h liters at ste $\quad 1$ mole- $6.02 \times 10^{23}$ particlas
I.a that would be the molerity of a solution made by dissolving 2.5 moles of MaCl In enough weter to form 1.5 IIters of solutiont
A. 0.60 n
0. 1.67 N
t. 3.75 n
0.6 .00 m
2. What volume of e $2.0 \mathrm{M} \mathrm{LH}_{2} \mathrm{mO}_{3}$ solution mould contain 37.9 greas of $\mathrm{H}_{2} \mathrm{HO}_{3}$ ?
A. 275 ml
B. 910 ml
c. 1306 ml
D. 3440 ml
3. What volume of mater must be edded to 500 ml , of 1.75 M Matil solution to reduce the molarlty to 1.25 m ?
A. 200 ml
e. 594 ml
C. 700 ml
D. $2300 \mathrm{ml}^{\circ}$
4. What would be the molarity of 2.0 itters of -4.0 M MaCl solution after 800 ml of the solution is boiled off?
A. 0.15 m
B. 1.67 m
c. 6.67 M
0. 10.0 n
5. How many molecules of methyl alcohol $\mathrm{CH}_{3} \mathrm{OM}$ would be in 1500 ml of - $2.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{OH}^{2}$ solutiont
A. $2.01 \times 10^{23}$ molecules
8. $4.52 \times 10^{23}$ moleculas
c. $0.03 \times 10^{-35}$ misculas

- $18.06 \times 10^{23}$ molecules

Probleme sin through ten ded with tha following batenced equation.
$\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{~s})}-2 \mathrm{mNO}_{3(\mathrm{aq})} \longrightarrow 2 \mathrm{LMO}_{3(\mathrm{sq})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(1)}$
6. Now any grams of $\mathrm{CO}_{2}$ mould te formed from 2.0 it iters of -1.4 M $\mathrm{NHO}_{3}$ solution sesctilig with sufficient $\mathrm{LI}_{2} \mathrm{CO}_{3}$ ?
A. 31.4 grams
3. 61.6 grams
C. 125.8 grams
0. 246.4 grans
7. Wut would te the molarity of the LiNo, solution formed when 73.8 gramt of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and 750 ml of $4.0 \mathrm{M} \mathrm{H}_{3}$ are ${ }^{3}$ miaed 7
A. 0.67 M
0. 2.67 m
C. 5.13 M
0. 7.11 M

8 How many moles of $\mathrm{H}_{2} \mathrm{O}$ would be formed when 1.5 Iitars of 3.0 Mmon rascts with sufficient $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{7}$
A. 8.0 grams
e. 18.0 grams
A. 8.0 grams
0. 162.0 grans
C. 40.5 grams
9. Hkw nany litars of $\mathrm{CO}_{2}$, measurad at STP. would be formed irom 200 ml of * 8.0 M MNO solution reacting with ufficient $\mathrm{Li}_{2} \mathrm{CO}_{3}$ ?
a 179 Hiters

- 28.0 liters
C 117 liters

0. 48.0 litera

10 that mould be the melarity of the $\mathrm{MmO}_{3}$ thet reatied with sufficiant $\mathrm{Hi}_{2} \mathrm{CO}_{3}$ to produce 54.0 grams of $\mathrm{H}_{2} \mathrm{O}^{3}$ if the solution hed. votume of 1.5 liters?
A. 0.25 M
3. 0.44 N
C. 100 n
0. 4.00 M

Item Analysis for Molarity
Immediate and Delayed Posttest

Measure-Item		Response Percentage				
		A	B	C	D	Blank
-						
Quiz 1	1	. 7	94.7*	. 6	. 7	0
Quiz 1	2	4.2	3.8	76.1*	12.2	. 4
Quiz 1	3	17.5	65.2*	4.0	9.3	. 9
Quiz 1	4	83.2*	6.6	4.0	2.4	. 6
Quiz 1	5	14.8	51.6*	20.3	8.4	1.6
Quiz 2	1	9.3	0.4	3.8	73.5*	. 4
Quiz 2	2	1.5	4.4	59.7*	27.9	0
Quiz 2	3	7.3	69.9*	4.7	10.0	1.6
Quiz 2	4	6.0	6.8	68.4 *	11.1	1.1
Quiz 2	5	8.8	73.2*	4.9	4.2	2.4
Quiz 3	$i$	2.9	65.7*	12.4	2.9	0
Quiz 3	2	69.0*	8.4	4.0	2.2	. 4
Quiz 3	3	3.7	54.0*	20.3	5.7	. 4
Quiz 3	4	61.7*	14.1	5.8	2.2	. 2
Quiz 3	5	2.7	71.9*	2.9	2.2	1.3
lest	1	2.7	60.8*	16.8	3.5	. 2
Test	2	$50.6 \times$	11.0	12.4	9.1	. 9
Test	3	37.8*	5.7	36.5	3.5	. 6
Test	4.	3.5	11.1	36.7*	31.9	. 7
Test	5	2.4	7.7	5.3	68.1*	. 7
Test	6	4.6	65.7*	5.3	7.9	. 7
-Test	7	17.5	36.3*	20.4	7.7	2.2
Test	8	6.6	5.9	64.2*	3.1	. 7
Cest	9	$61.0 *$	11.5	7.9	3.1	. 7
Test	10	7.7	12.2	8.4	53.1*	2.4

[^15]562

Reqular





[^16]

$\qquad$
teachier $\qquad$

INSTRUCTIONS: Please answer the following questions about the instructional packet.

1. When you were using the proportion (pink) packet, did you study all of the steps in the sample problems, or did you skip parts to linish more quichly? $\qquad$ Caments:

- 

2. If yes, did you do this for all four packets, or more so towards the end of the year? $\qquad$ -
Comments:
3. If you used the proportion method, did you find it helpful? $\qquad$ Catments:
4. You were assigned the proportion packet in solving problems. Did you actually use the proportion method? $\qquad$ -
Comments:
5. If you used another method instcad of proportions, hov; did you learn the other method? $\qquad$ -
(1. If you used the proportion method but modified it some, how did you modify it:
$\qquad$ -
6. Did you ever borrow another person's pachet of a different color, to learn how to do the problems? $\qquad$ .
$\therefore$ What did you like most about using these packets? Comment - :
7. What did you like least about using these packets? (conments:

SCHOOL
TEACHER

INSTRUCTIONS: Please answer the following questions about the instructional packets.

1. When you were using the factor-label (yellow) packet, did you study all of the e steps in the sample problems or did you skip parts to finish more quickly? $\qquad$ Comments:
2. If yes, did you do this for all four packets, or more so towards the end of the year? $\qquad$ Camments:
3. If you used the factor-label method, did you find it helpful? $\qquad$ Camments:
4. You were assigned the factor-label packet in solving problems. Did you actually use the factor-label method? $\qquad$ Comments:
5. If you used another method instead of factor-label, how did you learn the other method? $\qquad$ -

0 . If you used the factor-label method but modified it some, how did you modify it?
$\qquad$
?. Did you ever borrow another person's packet of a different color, to lean hot: to do the problems? $\qquad$ -
8. What did you like most about using these packets? Comments:
9. What dut you like last about usung these packets" Comment : : :

TEACHER $\qquad$
INSTRUCTIONS: Please answer the following questions about the instructional packets.

1. When you were using the diagram (green) packet, did you really use the diagram or did you skip to the sample problems? $\qquad$ . Comnents:
2. If yes, did you do this for all four packets, or more so towards the end of the year?
Comments:
3. If you used the diagrams, did you find them helpful? $\qquad$ Corments:
4. You were assigned the diagram packet in solving problems. Did you actually use the diagrams? Comments:
5. If you used another method instead of diagrams, how did you learn the other . method? $\qquad$ -.
6. If you used the diagram method but modified it some, how did you modify it?
$\qquad$
7. Did you ever borrow another person's packet of a different color, to learn how to do the problems? $\qquad$ -
8. What did you like most about using these packets? Conments:
9. What did you like least about using these packets? Comments:

SCHOOL $\qquad$
TEACIER $\qquad$

INSTRUCTIONS: Please answer the following questions about the instructional packets.

1. When you were using thó arkalogy (blue) packet, did you really use the analogies or did you skip to the sample problems? $\qquad$
Comments:
2. If yes, did you do this for all four packets, or more so towards the end of the year? $\qquad$ Comments:
3. If you used the adeiogies, did you find them helpful?
 Comments:
4. You were assigned sibe analogy packet in solving problems. Did you actually use the analogies? $\qquad$ Comments:
5. If you used another method instead of analogies, how did you learn the other method? ' $\qquad$
6. If you used the analogy method but modified it sume, how did you modify it?
$\qquad$ -
7. Did you ever borrow another person's packet of a different color, to learn how to do the problems? $\qquad$ -
8. What did you like most about using these packets? Comments: $\qquad$
9. What did you like ieast about using these packets? Comments :

## APPENIIX F

Teacher's Guides
Moles . . . . . . . . . . . . . . . . . 513
Culs inaws . . . . . . . . . . . . . . . . 516
Stoichiometry . . . . . . . . . . . . . 518
Molarity . . . . . . . . . . . . . . . . 520

## Mn.I. Tlinclllle's (d川ll.

Lesson 1 - Mole as lurticjes

Prerequisite skills:

1. Students should be $\mathfrak{a b l e}$ to use scientific notation to represent large and small numbers and in simple mathematical manipulations.
2. Students should knc, the difference between elements and compounds. Objectives:

Upon completion of the lesson the stadent should be able to:

1. Inefine the tern mole in tems of the number of particles of a pure compond or crlcmint.
$\therefore$ Calculate the muither of particles of a substance, fiven the munder

2. Calculate the number of moles of a substance, given the number of particles and the correct chemical formula.
*Lesson 2 - The Nole as Nass
Prerequisite skills:
3. Completion of first lesson.
4. Stadents should be able to read a table of atomic masses or a periodic table.
5. Stuments shomblar able to detomine the atomic or molecular mass


(h:jectives:
Upon completion of the lasom the stadent vionad be alite to:
6. Define the mole in tems of the mass of an element or pure compound.
7. Calculate the mass in grmas of one mole of an clement or compound given the correct chenical formula and a chart of atomic masses.
8. Calculate the mass in grams of a given number of noles of a substance, given the correct chemical fommala, and a chart of atcmic masses.
9. Calculate the mander of moles of a given mass of a :ubstance, piven the correct chemical formula, and a chart of atomic masses.
*hesson 3 may be used before lession 2

Lesson 3 - The Nole as Volume
Prerequisite skills: same as first lessón.
Objectives:

- Upon completion of the lesson the student should be able to:


2. Calculatce the vollame of all ideal gas at stry, given the mumber of moles of the gas.
3. Calculate the moles of an ideal gas given $\therefore \therefore$ - volume at STP.

Lesson 4 - Combination Problems
Prerequisite skills: same as first three lessons with addition of successful completion of the objectives of the first three lessons. Ojectives:

Upon completion of the lesson the student should be able to:

1. Given the correct chemical formula, a table of atomic masses, and any one of the following characteristics, calculate any of the other characteristics; mass in grams, moles, particles, and volume at SIT if the substunce is a gas.



Lesson 1

1. (:
2. 11
3. B
.i. 11
4. $:$
j. $\Lambda$.
5. C
6. B

- 

Lesson 2 .

1. V
2. B
3. 4) 
1. :
2. B
3. 6
$\square$
i
4. $B^{\circ}$

Lesson 3

1. C
2. B
3. 1
4. C

- Lesson 4

1. C
2. $B$
3. B
4. $\because$
b. 11
5. B

## Lesson 1--Pressure and Volume (Boyle's Law)

## Prerequisite skills: .

1. Students should know that gases are composed $0^{\circ}$ atoms or molecules that act as independent particles.
2. Students should know in a qualitative way that as the pressure of a gas increases, the volume decreases. \{
Objectives: Upon completion of the lesson, the student should be able to:
3. Predict the effect on a sample of gas if a volume or pressure change is made on the gas at cons want temperature.
4. Calculate the new volume of a gas given archange in pressure at constant' temperature.
5. Calculate the new pressure of a gas given a change in volume at constant temperature.
-Lesson 2--Volume' and Temperature (Charles is Law)
Prerequisiteskilla: Same as Lesson 1 , plus:
6. Convert a temperature in degrees Celsius to degrees Kelvin and vice versa.
7. "Students should know in a qualitative way that as the temperature of a gas. .increases, so does the volume.
Objectives: 'Upon completion of the lesson, the student should be able to:
8. Predict the effect on a sample of gas if a volume or temperature change is made ont the gas at constants pressure.
9. Calculate the new volume of a gas given a change in Celsius temperature of constant pressure.
10. Calculi f te the new Celsius temperature of a gas given a change in volume at constant pressure.

Lesson 3--Combined Gas Law
Prerequisite skills: Same as, Lessons 1 and 2.
Objectives: Upon completion of the lesson, the, student should be able to:

1. Predict the effect of a change of temperature, pressure, and volume on a sample of gas.
2. Calculate the $1 a w$ volume of a gas given a change in pressure and temperature.
3. Calculate the new pressure of a gas given a change in volume and temperature.
4. Calculate the new Celsius temperature of a gas given a change in volume and pressure.

LESSON 1: Particles-Particles, Moles-Moles, Volume-Volume
Prerequisite Skills:

1. Students should have completed the unit on moles.
2.: Students should be able to balance simple chemical equations given the reactant and products.
objectives: After completion of the lesson the student should be able to:
2. Calculate the number of particles produced or which react when given a balanced chemical equation and the number of particles that react or are produced.

- 2: Cálculate the moles produced or which react when given a balanced chemical equation and the number of moles that react or are produced.

3. Calculate the volume at STP of gaseous products or reactants given a balanced chemical equal $i$ on and the gaseous volume of either the reactant's or products.

$\omega$

LESSON 2: 'Mass-Mass, Mass-Volume, Mass-Pafticles
Prerequisite skills:

1. Same as daỳ one.
2. Lesson 1 of this unit.

Objectives: . After completion of the lesson the student should be able to:

1. Calculate the moles , gaseous volume, or number pf particles of a chemital reaction given a balanced chemical equation, and the mass of either a reactant or product.

LESSON 3: Volume-Mass, Volume-Volyme, Volume-Particles'

## Prerequisite Skills:

1. Same as day one.
2. Lesson 2 of this unit.

Objectives:

1. Calculate the mass, gaseous volume, or number of particles in a chemical reaction given a balanced equation and the gaseous volume of either on reactants or products.

Answer Key.
STOICHIOMETRY

Lesson 1
I: C
2. D.
3. D
4. $D$

Lesson 2

1. C :
2. C
3. A
4. B

Lesson 3

1. C
2. $B$
3. C
4. D

TEST

1. 8
2. $D$
3. D
4. C
5. B
6. B
7. D
8. $B$
9. $A$

ERIC

10. $A$

## MOLARITY - TEACHERS GUIDE

LESSON ONE: BASIC MOLARITY CALCULATIONS
Prerequisite Skills:

1. Student should be able to convert milliliters to liters and vice versa.
2. Student should be able to define the terms: solute, solvent and solution.

Objectives:
The student , should oe able to:

1. Calculate the molarity given the moles of solute and volume of solute ion.
2. Calculate the molarity given the mass of solute and volume of solution.
3. Calculate the moles of solute given the molarity and volume of solution.
 -solution.
b. Calculate the volume of solution containing a specific nidus of . Solute given the molarity.

LESSON TWO: OHLUTION AND CONCENTRATION PROBLEMS
Prerequisite Skills:

1. Same as Lesson One.
2. Completion of Lesson One.

Objectives: 4

The student should be able to:

1. Calculate the new molarity when a solution of known molarity is diluted with a given volume of water.
2. Calculate the volume of water that must be added to a solution of known molarity to produce a solution of desired molarity.
3. Calculate the new molarity when a solution of known molarity is concentrated by boiling off a given volume of water.
4. Calculate the volume of water that must be boiled off from a solution of known molarity to produce a solution of desired molarity\%.
lesson three: molarity and stoichiometry.
Prerequisite Skills:

- 1. Sames as Lessons One and Two.

2. Completion of Stoichiometry Lessons.

Objectives:
The student should be able to: $\qquad$

- 1. Calculate the moles or mass of a reactant or product given the chemical reaction, molarity and volume of one of the reactants or products.

2. Calculate the molarity of a reactant or product solution given the chemical reaction, initial reactant or prestact meslority, initial volume and final volume of solution.
3. Calculate the volume of gas produced in a chemical reaction, at STP, given the chemical reaction, reactant molarity and reactant volume.

MOLARITY - QUIZ ANE TEST KEY

LESSON I

1. B
2. C
3. 8
4. $A$
b. B

LESSON 11

1. D
2. 6
3. B

- 4. C

3. B

## LESSON III

I. B
2. $A$
3. B
4. $A$
5. B

- TEST

1. B
2. $A$
3. $A$
4. C
5. D
6. B
7. B
8. 
9. $A$
10. D

APM:NIIX (i

Stuklent Sumbiry Sheets


Gas Laws. . . . . . . . . . . . . . . . 528
Stọichiometry . . . . . . . . . . . . . 532
Malarity . . . . . . . . . . . . . 536

REVEIW SHEET ON MOLES
Think of an analogy when solving a problem:
Compare number of particles in adozen to that of a mole. Compare volume of a dozen to volume of a mole. Compare mass of a dozen to mass of a mole.
eg. 1 dozen $=12$ objects $\quad 1$ mole $=6.02 \times 10^{23}$ particles
1 dozen $=3 \mathrm{cu} . f \mathrm{ft} \quad 1$ mole $=\mathbf{2 2 . 4}$ ilters ${ }^{\prime}$
I dozen oranges a different $\mid$ mole $=$ at. wt. or mole. wt. In grams mass than 1 dozen lemons
eg. What is the volume of 5 dozen oranges if the volume of 1 dozen $=3 \mathrm{cu}$. ft .

$$
5 \text { dgzen oranges } \times \frac{3 \mathrm{cu} . \mathrm{ft} .}{1 \text { dosem }}=15 \mathrm{cu} . \mathrm{ft} \text {. oranges }
$$

Renenber: 1 note $=22.41$ and 1 mole $=6.02 \times 10^{23}$ parithles.

Problem: How many liters of $\mathrm{CO}_{2}$ do $\mathbf{5}$ moles occupy?
Solution:

1. Compare this to volume of aumber of dozen.
2. Set up problem using analogy.

$$
5 \text { dozen } \times \frac{3 \mathrm{cu} . \mathrm{ft}}{1 \text { dozen }}=15 \mathrm{cu} . \mathrm{ft} .
$$

3. Substitute chemicals.

$$
5 \text { moles } \mathrm{CO}_{2} \times \frac{22.4 \mathrm{i}}{1 \text { mole }}=112.01 \mathrm{CO}_{2}
$$

Problem: What is the mars of $3.01 \times 10^{23}$ molecules of $\mathrm{CO}_{2}$ ?
Note: Because moles are not given, this is a two step problem.

1. Compare to mass and particles in a dozen.
$\frac{3,600 \text { particles }}{12 \text { particles } / \text { dozen }}=300$ dozen $\frac{3.01 \times 10^{23} \text { mol =cules } \mathrm{CO}_{2}}{6.02 \times 10^{23} \text { molecules } / \mathrm{mole}}=15 \mathrm{~mole} \mathrm{CO}_{2}$

## REVIEW SHEET ON MOLES

When given a relationship, factors can be set up. Set up the factor so the units cancel.
eg. $12 \mathrm{in} .=1 \mathrm{rl}$.
factor $\frac{12 \mathrm{in} .}{1 \mathrm{ft} .} \frac{1 \mathrm{ft} .}{12 \mathrm{in} .}$
Hew hliny in. are there in $100 \mathrm{rt} . ?$
100 it. $x$ appropriate factor so ulits cancel .
$100 \mathrm{ft} . \times \frac{12 \mathrm{in}_{\mathrm{o}}}{1 \mathrm{ft}_{\mathrm{t}}}=1200 \mathrm{ft}$.

Remember: Relationship
1 mole $=22.41^{\circ}$
1 mole $=6.02 \times 10^{23}$ particles
Factor
$\frac{1 \text { mole }}{22.41}$ or $\frac{22.41}{1 \text { mole }}$
$\frac{1 \text { mole }}{6.02 \times 10^{23} \text { particles }}$ or
$\frac{6.02 \times \frac{10^{23} \text { particles }}{1 \mathrm{~mole}}}{\frac{1}{}}$

Problem: How many liters of $\mathrm{CO}_{2}$ do 5 moles occupy?

1. Write down the original relationship 6 multiply by factor. Cancel units. 5 motes $\mathrm{CO}_{2} \times \frac{22.4 \mathrm{1}}{1 \text { mete }}=112.01 \mathrm{CO}_{2}$

Problem: What is the mass of $3.01 \times 10^{23}$ molecules of $\mathrm{CO}_{2}$ ?

1. Write down first relationship converting to moles. $3.01 \times 10^{23}$ molquiles $\mathrm{CO}_{2} \times \frac{1 \text { mole }}{6.02 \times 10^{23} \text { molectles }}=.50$ moles $\mathrm{CO}_{2}$
2. Use answer obtained in step 1 for step 2 using new factor. .50 mole $\mathrm{CO}_{2} \times \frac{44 \mathrm{~g}}{1 \text {.1.le }}=22 \mathrm{~g} \mathrm{CO}_{2}$

## REVIEW SHEET ON MOLES

Set up problem so that unknown is in upper left of proportion, and other values are placed in correct places according to units. eg. If 3 pencils cost 154 , what is the cost of 10 pencils?

$x(\cos t)$	15t	Remenber:	-
10 pencils	3 penclis		
		1 mole	
		1 mole	

Problem: How many liters of $\mathrm{CO}_{2}$ do 5 moles occupy?

1. Set up proportion.
$\frac{x}{5 \text { moles }}=\frac{22.4 \text {. }}{1 \text { mole }}$
2. Cross multiply $\varepsilon$ solve.

X . 1 mole $=5$ moles $\cdot 22.4 \mathrm{I}$

$$
x=112.01
$$

Problem: What is the mass of $3.01 \times 10^{23}$ molecules of $\mathrm{CO}_{2}$ ?

1. Note that this is a two-step problem because moles are not given.
2. Set up first proportion by changing to molej, ceoss multiply, and solve.
$\frac{\times}{3.01 \times 10^{23} \text { molecules } \mathrm{CO}_{2}}=\frac{1 \text { mole }}{6.02 \times 10^{23} \text { molecules }}$
$\times \cdot 6.02 \times 10^{23}$ molecules $=1$ mole $\cdot 3.01 \times 10^{23}$ molecules $\mathrm{CO}_{2}$
$x=\frac{1 \text { mole } \cdot 3.01 \times 10^{23} \text { molecules } \mathrm{CO}_{2}}{6.02 \times 10^{25} \text { molecules }}=.50$ mole CO ${ }_{2}$
3. Set up second proportion using answer from the first. Cross multiply and solve.
$\frac{x}{.50 \text { nole } \mathrm{CO}_{2}}=\frac{44 \mathrm{~g}}{1 \mathrm{mote}}$
$X$ - 1 mole $=44 \mathrm{~g}$-. 50 mole $\mathrm{CO}_{2}$
$x=\frac{44 \mathrm{~g} \cdot .50 \mathrm{~mole}}{1 \text { mole }}=22 \mathrm{~g} \mathrm{CO}_{2}$


Problem: How many liters off $\mathrm{CO}_{2}$ do 5 moles occupy?
Solution:
d. Locate moles and volume on chart.
2. Use relationship for volume.
3. Set up problem.

$$
5 \text { notes } \mathrm{CO}_{2} \times \frac{22.41}{1 \text { mote }}=112.0 .1 \mathrm{CO}_{2}
$$

Problem: What's the mass of $3.01 \times 10^{23}$ molecules of $\mathrm{CO}_{2}$ ?

1. Locate molecules and mass on chart.-.

2: Note two relationships that must be used.
3. Set up problem in two steps.
$3.01 \times 10^{23}$ molecories $\mathrm{CO}_{2}=.5$ mole $\mathrm{CO}_{2}$
$6.02 \times 10^{23}$ molsectes $/$ mole

$$
.5 \text { mole } \mathrm{CO}_{2} \times \frac{(12+32) \mathrm{g} \mathrm{CO}}{2}-22 \mathrm{~g} \mathrm{CO}_{2}
$$

## REVIEW SHEET ON GAS LAWS

Think of an analogy or example when solving a problem. The balloon example is particularly good when thinking about gases.

## Example:

The balloon below is being cooled and the pressure on it is being increased. What should happen to the volume?


In gas law problems you must determine if the relationship is direct er Inverse. . (Pressure-Temperature = direct; Pressure-Volume = Inverse).

If direct, set up so that an increase in one variable produces an increase in the other, and vice-versa.

If inverse, set up so that an increase in one variable produces a ${ }^{2}$ decrease in the other, and vice-versa.

Problem:
If 500 ml of a gas at $27^{\circ} \mathrm{C}$ and 1000 mm Hg is cooled to $-127^{\circ} \mathrm{C}$ and subjected to a pressure of 2000 mm Hg , what would be the new volume?

Solution:

1. Determine the change in the variables

$$
\begin{aligned}
& \text { Temperature } 27^{\circ} \mathrm{C} \rightarrow-127^{\circ} \mathrm{C} \begin{array}{l}
\text { or } 273^{\circ}+27^{\circ} \mathrm{K} \rightarrow 273^{\circ} \\
\text { or } 300^{\circ} \mathrm{K}
\end{array} \xrightarrow{ }+\begin{array}{l}
(-1270) \\
1460^{\circ} \mathrm{K}
\end{array}
\end{aligned}
$$

2. Think of the example above to predict the new volume for each of the factors.

Set up the factors so as to increase or decrease the volume appropriately. and do arithmetic.
$500 \mathrm{ml} \times \frac{1460 \mathrm{~K}}{300^{\circ \mathrm{K}}} \times \quad \times \frac{1000 \mathrm{~mm} \mathrm{Hg}}{2000 \mathrm{mil} \mathrm{Hq}}<\ldots \ldots=122 \mathrm{ml}$ $\left.\begin{array}{l}\text { The temperature decreases } \\ \text { which causes a decrease }\end{array}\right)\binom{$ The pressure increases which }{ causes a decrease ill volume. }

## qEVIEW SHEET ON GAS LAWS

When given a relationship, factor", con be ret up. int if the factor so that the units cancel.

$$
\text { e.q. } 12 \mathrm{in} .=1 \mathrm{ft} . \quad \text { factor } \frac{12 \mathrm{in}, \text { or } \frac{1 \mathrm{ft}}{1 \mathrm{ft}_{0}}}{12 \mathrm{in} .}
$$

How many inches are there in $100 \mathrm{ft} . ?$
$100 \mathrm{ft} . \times$ appropriate factor so units cancel.
$100 \mathrm{ft} \times \frac{12 \mathrm{in} .}{1 \mathrm{it}}=1200 \mathrm{ft}$.
In gas law problems you must determine if the relationship is direct or inverse. (Pressure-Temperature $=$ direct; Pressure-Volume $=\mathbf{i n v e r s e ) . ~}$

If direct, set up so that an increase in one variable produce's an in- . crease in the other, and vice-versa.

If inverse, set up so that an increase in one variable produces a decrease in the other, and vice-versa.

Problem:
If 500 ml of a gas at $27^{\circ} \mathrm{C}$ and 1000 mm Hy is heated to $127^{\circ} \mathrm{C}$ and subjected to a pressure of 2000 mm Hg , what would be the new volume?

Solution:
1.- Determine the change in the variables. . Temperature $27^{\circ} \mathrm{C}>127^{\circ} \mathrm{C}$ or $273^{\circ}+27^{\circ} \rightarrow 273^{\circ}+1: 7^{\circ}$ $3000 \mathrm{~K} \rightarrow 400^{\circ} \mathrm{K}$ Pressure $1000 \mathrm{~mm} \mathrm{Hg} \rightarrow 2000 \mathrm{~mm} . \mathrm{Hg}$
2. Set up factors, so as to Increase or decrease volume appropriately and do arithmetic.
$500 \mathrm{ml} \times \frac{4009 \mathrm{~K}}{3000 \mathrm{~K}} \quad \times \frac{1000 \mathrm{~nm} \cdot \mathrm{Hy}}{2000}=333 \mathrm{ml}$
$\left(\begin{array}{c}\text { Temperature increases so } \\ \text { volume increases (direct) } \\ \text { larger temperature on top. }\end{array}\right)$
$\left.\begin{array}{l}\text { Pressure increases so } \\ \text { volume decreases, (inverse) } \\ \text { so smallest pressure on top. }\end{array}\right)$

## review sheet on gas laws

Set up the problem so that you work with a proportion.
eq. 'f 3 pencils cost 15 s , what is the cost of 10 pencils?

$$
\begin{gathered}
\frac{x(\text { cost })}{10 \cdot \text { pencils }}=\frac{15 s}{3 \text { pencils }} \\
3 x=15 \epsilon \cdot 10 \\
3 x=150 \epsilon \\
x=50 s
\end{gathered}
$$

Because volume is directly related to temperature and inversely related to pressure, the following equation can be used to solve problems involving volume, pressure, and temperature.

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{F_{2} V_{2}}{T_{2}}
$$

Problem:
If 500 ml of a gas at $27^{\circ} \mathrm{C}$ and 1000 mm Hg is heated to $127^{\circ} \mathrm{C}$ and subjected to a pressure of .2000 mm Hg , what would its new volume be?

Solution:

1. Writs formula $\frac{P_{1} V_{1}}{-T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$.
2. Substitute values in the equation.

$$
\begin{equation*}
\frac{(1000 \mathrm{~mm} \mathrm{Hg})(500 \mathrm{ml})}{\left(27+273^{\circ} \mathrm{K}\right)}=\frac{(2000 \mathrm{~mm} \mathrm{Hg})\left(\mathrm{V}_{2}\right)}{\left(127+273^{\circ} \mathrm{K}\right)} \tag{0}
\end{equation*}
$$

3. Solve by cross multiplication:
```
". \((1000 \mathrm{~mm} \mathrm{Hg})(500 \mathrm{ml})\left(400^{\circ} \mathrm{K}\right)=(2000 \mathrm{~mm} \mathrm{Hg})\left(300^{\circ} \mathrm{K}\right)\left(\mathrm{V}_{2}\right)\)
\(\underline{(1000 \mathrm{mp}} \mathrm{HI})(500 \mathrm{ml})\) (50.49 K\()=V_{2}\)
 \(\begin{array}{cc}(2000 m i n) \\ 2 & (3000 \\ 3\end{array}\)
 1
\(333 \mathrm{ml}=\frac{1000 \mathrm{ml}}{3}=V_{2}\)
```



Problen:
If 500 ml of a gas at $27^{\circ} \mathrm{C}$ and 1000 mm Mg is heated to $127^{\circ} \mathrm{C}$ and subjected to a pressure of 2000 mm Hg , what would the new volume be?

Solution:

1. Note what is given: Volume: 500 ml

Temperature: $27^{\circ} \mathrm{C}=127^{\circ} \mathrm{C}$
Pressure: 1000 mm Hg - 2.000 mm Hg
2. Note what you are calcualting: New volume.
3. Note how one other yariable changes: Temperature increases.
4. Note what this does to volume: diract so lncreases
5. Set up rat lo to increase - largest number on top.
$\frac{127+273}{27+275}-\frac{4000 \mathrm{~K}}{3000 \mathrm{~K}}$
6. Only one ratlo set-up, so now set up the other ratio.
7. Note that the other variable, pressure; incraases.
8. Mote what this does to volume: Inverse so decreases.
9. Set up ratio to decrease - smallest number on top.

1000 mm Hq
2000 ming
10. Work out problem.
$500 \mathrm{ml} \times 4009 \times 1000^{\prime} \mathrm{m} / \mathrm{mq}=333 \mathrm{ml}$ $300 \%$ 200

## REVIEW SHEET ON STOICHIOMETRY



Problem:
How'many grams of $\mathrm{H}_{2} \mathrm{O}$ will be produced when 32.0 grams of $\mathrm{CH}_{4}$ reacts with excess $\mathrm{O}_{2}$ according to the reaction:

Solus lon:
1.: Find moles $\mathrm{CH}_{4}: \frac{32.0 \mathrm{gr} \text { mons } \mathrm{CH}_{4}}{16.0 \mathrm{gr} / \mathrm{ms} / \mathrm{mole}^{2}}=2.0 \mathrm{~mol}^{2} \mathrm{CH}_{4}$
2. Find moles $\mathrm{H}_{2} \mathrm{O}: 2.0$ moles $\mathrm{CH}_{4}: \frac{2 \text { moles } \mathrm{H}_{2} \mathrm{O}}{1 \text { mole } \mathrm{CNH}_{4}}-4.0$ moles $\mathrm{H}_{2} \mathrm{O}$
3. Find grams $\mathrm{H}_{2} \mathrm{O}$ : $4.0 \mathrm{mqfes} \mathrm{H}_{2} \mathrm{O} \times 18.0$ grams $=72.0$ grams $\mathrm{H}_{2} \mathrm{O}$

1. mole

Problem:
How many molecules of $\mathrm{CO}_{2}$ would be found $\mathrm{df}, 100.8$ liters of $\mathrm{O}_{2}$ (measured at STP) reacted with excess $\mathrm{CH}_{4}$ by the above reaction.

Solution using moles-moles method:

1. Find moles $\mathrm{O}_{2}$ : 10p.8 alters $\mathrm{O}_{2}=4.5 \mathrm{~mol}$ es $\mathrm{O}_{2}$ 22.4 liters/mole
2. Find moles $\mathrm{CO}_{2}: 4.5$ mole $\mathrm{O}_{2} \times \frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{2 \mathrm{molem}}=2.25$ moles $\mathrm{CO}_{2}$
3. Find molecules $\mathrm{CO}_{2}: 2.25$ moths $\mathrm{CO}_{2} \times 6.02 \times 1023 \frac{\text { molecules }}{1 \text { mote }}:$ $13.5 \times 10^{23}$ molecules $\mathrm{CO}_{2}$

## REVIEW SHEFT ON STOICAIOMETAY

Whink of en enelisay when solving e problem:
Compare number of perticles In e dozen to that of emole.
Compert volume of dozen to volume of mole.
Compere mess of dozen to mass of e mole.
Compere "trading relationships" to belenced equation coeffictents.
9.

eg. Whet is the volume of 5 dozen oranges if the volume of 1 dozen e 3 cu . ft. 7

Numamber: 1 mole $=22.41$ and 1 mole $06.02 \times 10^{23}$ particlas.

## Problem:

How many graws of $\mathrm{H}_{2} \mathrm{O}$ will be produced when 32.0 grams of $\mathrm{CH}_{4}$ reacts with excess $\mathrm{O}_{2}$ eceording to the reaction:

This probltm is simblit to the sltuetion in which eiteder wants to know how tieny grems of opanges he/she con obteln for 2400 grome of lemons if hishe knows thet 1 dozen lemons mivy be treded for 2 dozen oranges end, the wolghts of doten ltaons and orangas are 1200 and 1500 grant respectively.

SOLUTIONS
Fírult Exmale

- Chenlizery Example

1. 2400 gratis leuns -2 dos. Imo TUW acem/rosen
2. 2 doz. ${ }^{6} 1$ gons $\times \frac{2}{1}$ gronges

- 4oz'. oranges

3. 4dor. orenges $\times \frac{1500 \text { grams }}{\text { doren }}$

- 6000 grems oranges

Problem:
hew peny molecules of $\mathrm{CO}_{2}$ would be formpd if 100.8 IItirs of $\mathrm{O}_{2}$ (measurad et STP) raected with excass CHh by the above react lon.

This problem is similor to the situition in which e trader mants to know holl meny individual oranges he/she cen obteln for 9 pints of lemons if 3 pints of Prult iere aqual to one dosif.

SOLUTIONS
Prult Example

1. 2pre lentens - 3 dra. Iamons pt./dar.
2. 3 doz. 1 cyerts $\times \frac{2 \text { uranges }}{1 \text { Ipmen }}$

- 6 doz. oranges

3. 6 dat. orangas $\times \frac{12}{12 .}$.

- 72 or anges

Chemistry Exampde
100.8 II tuts $0_{2} \cdot 4.5$ moles $0_{2}$ 22.4 Tlicers/mote
4.5 molation $\times \frac{1}{2 n o l e \mathrm{CO}_{2}}=2.25$ moles $\mathrm{CO}_{2}$
2.25 motrs $\mathrm{CO}_{2} \times \frac{6.02 \times 10^{23} \text { moleculas }}{\text { mone }}$

- $13.5 \times 10^{23}$ molecules $\mathrm{CO}_{2}$


## REVIEW SHEET OK STOICHIOMETRY

Sat up problem so' this unknown is in upper left of proportion, and other values are placed in correct places according fo units.-
eg. If 3 pencil! cost 15 s . what, is the cost of 10 pencils? $\frac{x}{10}$ pencel)


1 male - 22.41

Remember to use the silence equation coefficients to set up proportions when converting from miles $x$ to moles $y$.

Problem:
Now many gram of $\mathrm{H}_{2} \mathrm{O}^{\circ}$ will be procučed when 32.0 grams of $\mathrm{CH}_{4}$ reacts with excess $\mathrm{O}_{2}$ tecirding th the. reectient.
 jolutlow:

(x) ( 16.0 grams) a ( 32.0 proms $\mathrm{CH}_{4}$ ) ( 1 mole)

2. Find moles $\mathrm{H}_{2} \mathrm{O}$ from equation: $\frac{\mathrm{N}_{\mathrm{o}}}{2.0 \mathrm{moles} \mathrm{CH}} \frac{2 \mathrm{moles} \mathrm{H}_{2} \mathrm{O}}{1 \text { mole } \mathrm{CM}}$

$$
\text { (x) (1 mole C yin } \left.) \text { ( } 2.0 \text { moles } \mathrm{CH}_{4} \text { ) (2 moles } \mathrm{H}_{2} \mathrm{O}\right)
$$



( $x$ ) ( 1 mole) ( $4.0 \mathrm{moles} \mathrm{H}_{2} 0$ ) ( 10.0 grams)
$x-\left(4.0\right.$ males Hr o) (13.0 grams) $0=72.0$ grams $\mathrm{H}_{2} \mathrm{O}$
(1 , ye)
Problem:
How many molecules of $\mathrm{CO}_{2}$ would be formed if 100.8 liters of $\mathrm{O}_{2}$ (measured -at STP) masted with excess $\mathrm{CH}_{4}$ by the above reaction.

Solution:

$(x)(22.4$ lIters) * (160.8 Alters) (1 mole)


(x) (2 moles $0_{2}$ ) ( $4.5^{\prime}$ moles $\mathrm{O}_{2}$ ) ( $\left(1\right.$ mole $\mathrm{CO}_{2}$ )

3. Flint nomerules $\mathrm{CO}_{2}$ from molas: $\frac{2.25 \mathrm{molen} \mathrm{CO}_{2}}{2.02 \times 10^{23} \text { molecules }}$
$(4)$ ( 1 infin) $4\left(2.25\right.$ moles $(02)\left(0.02 \times 10^{23}\right.$ malaculea)


## HVIIW HII H 1..IMBH18


so the units. .anc.



100 ft. $\times \frac{12}{12} \frac{i n}{1!}=1200$ it.

Hemember . iofistiotatiop
Factur
1 mole
22.41
$1 \mathrm{~m} \cdot \mathrm{I} \cdot$
6.0. $\times 10^{73}$ нaiticlio.

$$
\frac{1, n n+1}{2.4} 11 \frac{22.41}{1 m 01 e}
$$

 - inverting f. xu ri.l . . To molf. .

## Problem:

 excess $\mathrm{O}_{2}$ aciording in the senction.

$c=12.0 . \quad H-1.0 . \quad 0=16.0$.
Solution:

1. i, at up moles/gran th4 fattor: $\frac{1}{16.0} \frac{\text { mole }}{\text { gins }}$
2. Set up moles rom equation factor: 2 moles $\mathrm{H}_{2} \mathrm{O}$
3. Snt ug quans/mola $\mathrm{H}_{2} \mathrm{O}$ tartor $\frac{18.0 \text { grams }}{1 \text { mole }}$
4. Holitplyint factors by quat duantity.

## Problem:

How many moleculas of $\mathrm{CO}_{2}$ would be found if 100.8 Itiers if $\mathrm{C}_{2}$ (neasured at STP) reacted with excess $\mathrm{CH}_{4}$ by the above reactiont.

Q Murnin.
1.
2. Sat up mole. from equation fat or: $\frac{1 \text { mole } \mathrm{col}_{2}}{2 \mathrm{moles} \mathrm{O}_{2}}$
3. Set vo molacules/mole $\mathrm{CO}_{2}$ factor: $\frac{6.02 \times 10^{23} \text { molecules }}{\text { role }}$
4. Milifply factors by given qualitity:
$\therefore 100.8$ lisers $0_{2} \times \frac{1}{22.1 \text { inteter }}$
$\frac{1 \text { mott } \mathrm{CO}_{2}}{2 \text { mile4 }} \frac{\mathrm{U}_{2}}{}$
$\frac{6.02 \times 10^{23} \text { mole ules }}{1 \text { moti }}$ - 13.1. $10^{23}$ malaculen t.01?

Period or small group: $\qquad$

Please answer the following questions by circling the correct answer. In order to get full credit for question five, you must show your work. Remember to set up factors whenever possible to help solve the problems.

Example: A jet can travel 500 miles per hour, how many hours would a trip of 2500 miles take?

2500 mikes $\times \frac{1 \text { hour }}{500 \text { mikes }}=5$ hours

1. What would br the minlarity of a solution made iv boiling off 500 ml

A. 0.40 M
B. 0.625 M
C. 1.67 M
D. 2.50 M
2. What would be the nolarity of a solution made by adding 1.0 liter of water io 2.0 liters of a 3.0 M NaCl solution?
A. 0.22 M
B. 0.50 M
C. 2.0 M
D. 6.0 M
3. How many milliliters of water must be added to 750 ml of a 1.25 M NaCl solution to riduce the molarity to 0.50 M ?
A. 217 ml
B. $\quad 1125 \mathrm{ml}$
(. $2,83 \mathrm{ml}$
D. 2625 ml
4. What would lav the melarily of o solution made by adding 850 ml of

A. 0.62 M
B. 0.83 M
C. $\quad 1.62 \mathrm{M}$
D. 6.62 M
5. How many milliliters of water must be boiled away from 1200 ml of 1.6 M NaCl to produce a $2.0 \mathrm{M} \mathrm{Nąl}$ solution?
A. 160 ml
B. 240 ml
6. 5!3 $\quad 1$
D. $\quad 2,60 \mathrm{ml}$

Mame:
Ma-I $|l-0|=1$

Perlod or smill group $\qquad$
'Please enamp the following questions by circilng the cerpect enswar. In order to get full eredit for question flve, you mast show your wepk.


Gestions one through four teel wish the following baloned reestion:

$$
\therefore 2 \operatorname{McI}(0 q) * N_{7}(O N)_{2(n)} \rightarrow 2 N_{2} C I_{2}(a)+2(1)
$$



 amount of megnes lum hylroutida $H_{1}(0)_{2}{ }^{7}$
A. 0.5 mole
0. 1.0 mole
C. 2.0 moles
0. 4.0 moles
 completely with 500 ml of 1.20 m hytrechlorle ald (Well solusiont
A.
17.5 grems
B. 70.0 gram
C. 194.3 gram

- 279.0 grami

3. What wauld the the molarity of lsocmi of magnolum ehlorlde (Mifiz) solution fermed whan 1200 mi of 4.0 M hyirechlorle asld colution

A. $\quad 0.10 \mathrm{M}$
B. 1.6 M
C. $3.2 M$
0.6 .4 H
4. Now many melos of megnesium chloride ( $\mathrm{H}_{\mathrm{f}}^{\mathrm{c}} \mathrm{l}_{\mathrm{g}}$ ) would se proluced when 1800 ml of 0.36 M hydrechloric ocid (mit Peacts wish sufficiont

A.
0.12 mole
5. 0.65 mele
c. 1.30 moles
D. 2.50 moles
6. Sodium cartenote ( $\mathrm{Ma}_{2} \mathrm{CO}_{3}$ ) will reat with hyliechieric acid (MCI) to form sodium shleride (NaCi), waser ( $\mathrm{H}_{2} \mathrm{O}$ ) and carmen dioxide $\left(\mathrm{CO}_{2}\right)$. How meny liters of $\mathrm{CO}_{2}$ (nasured of ffp ) will th preduced when 300 ml of 6.0 M Mel peocts mith suffítent MagCOt 1 Reastient $\mathrm{Ma}_{2} \mathrm{CO}_{3}$ (s) $\rightarrow 2 \mathrm{MEl}\left(\mathrm{oal} \longrightarrow 2 \mathrm{MACl}(\mathrm{Oq}) \bullet \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \cdot \mathrm{CO}_{2}(\mathrm{~g})\right.$
A. 2.24 lisers
7. 20.2 lisers
C. 74.7 IIters
D. 224 Ilters

Perlod or small group: $\qquad$

Please answer the following questions by circling the correct answer. In order to get full credit for question five you must show your work. Try to think of the analogy of soup as you work the problens. Example: What would be the dozarity of a soup made by adding 5 dozen pleces of corn in enough soup to make 2 ilters?
$\frac{5 \text { dozen corn }}{2 \text { Ilters }} \cdot \frac{2.5 \text { dozen }}{\text { Ilter }} \cdot 2.5$ dozarity

All of the following questions deal with the substance potassium chiorlde (KC1) which has molecular mess of 74.6 grass per mole.

1. What would be the molerliy of a solution made by dissolving 6.0 moles of potasium chlorlde (uCi) in mough water to meke 3.0 Ilters of solutiont
A. 0.5 m
2. 2.0 n
C. 3.0 M
3. 6.0 M
4. Whet would be the molarity of a solualon made by dissofiving 149.2 grams of KCI In enough meter to make 1200 ml of solutiont
A. 0.42 n
. 0.60 m
5. 1.67 n
6. 2.40 n
7. Now many grami of KCI would be present In 1600 ol of e 0.50 M KCl solution?
A. 23.3 grams

- 59.7 grams
C. 93.3 grams

0. 238.7 grams
1. What would be the molerity of solution made by dissolving 0.45 molas of KCI In enough meter to make 1400 ml of solutions
A. 0.32 m
B. 3.1 M
C. 28.0 A
D. 35.7 M
2. How many milliters of 1.6 M xit solution mould conteln 14.9 grams of KCIT
A. 8.0 ml
3. 125 ml
'. 220 ml
D. 3125 ml
$i$

## APPENDIX H

Sumpary Tables of Multipic Regression Analyses

SUッMAのY TA日LE


DEEEMOENT VAMIABEE. GLOT

SIUMADYソTM4LE


SリルMARYTAALE


## cepancent yafiatle. MEs



CEOANEEAT VAMIARLE..
MCT



SU*MAのr TABLE



## çefngeat vaigachto. <br> i

- ACSTCT

SUMAR Retis TAOLE

 effengeat veriacli.. acsp




SUMMARYTABLE
 - OEPEACEAT VACLIABLE.. TAANSt


S I M M A Y TAMLE


SJ:AMARYYABLF



APPENDIX I

Schedule Forms .


School
Chem. Teacher
. DIRECTIONS: Place an $X$ in the apace below designating when you have time for a'feedback session on problem solving. This should be done during your study hall, freeperiod, and or after school. Piease Indicate as many of 'these times as you have avallable, although you will juat be intiaryiewed'one time every few E, .hs.

## sCREDULE:

FRIOD	X
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
After school	

FFEDBACK: We would like to find out how you go about solving problems. Each student who participates in the feedback sessions will be paid 3.00 per session. These sessions in no way will be used to evaluate you. The discussion in the feedback session will he confidential. Your teacher will not be informed of what you do in thefe sessions. "We would appreciate your help.

Pleane return thin farm to your teacher.

Name $\qquad$
School $\qquad$
Chem. Teacher $\qquad$

DIRECTIONS: Place an $X$ in the space below designating when you have time for a feedback session on problem solving. This should be done during your study hall, free period, and or after school. Please indicate as many of these times as you have available, although you will just be interviewed one time every few months.

SCHEDULE:

PERIOD
1.    2.    3.    4.    Home Room    Activities    5.    6.    After School

FI.,DBACK: We would like to find out how you go about solving problems. These sessions in no way will be used to evaluate you. The discussion in the the feedback session will be confidential. Your teacher will not be informed of what you do in these sessions, We would appreciate your help.

Please return this form to your instiwetor.

APPENDIX J

Protocol for Conducting Interviews

INTERVIENING PROTOCOL

Equipment Check

## EXUIPET:

TAPE RECORDER (WITH MICROPHONE)
EXTENSION CORD
tape (blank)
hHimbey tape paper
\& TWO CHAIRS PENCILS
TABLE RESPONSE SHEET
OPERATION CHECKS:

1. TAPE RECORDER HORKING?

2i TAPE REMOUND?
3. VOLUME CONTROLS SET?
(StART TAPE:, INTRODUCTION: MY NAME IS MR./MS. $\qquad$ FROM INDIANA UNIVERSITY, 1 AM PART OF a group of science educators that is trying to help students learn TO SOLVE CHEMISTRY PROBLEMS, IF YOU HAVE NO OBJEETIONS, I WIL TAPE OUR CONVERSATIMN. YOU WILL NOT BE REQUIRED TO LISTEN TO THE TAPE, THIS FEEDBACK SESSION is to see how you go about solving chemistry problens, this is not a test and is forally private. I will not be reporting back to your teacher on how well YOU vO. THEY.WILL NOT HEAR THE.TAPE,

WHIMBEY TAPF.

1, V1 GOING TO PLAY'A TAPE FOR YOU TO SHOW YOU HOW 1 WOUD LIKE FOR YOU TO SOLVE the probleys and answer ouestions, the person in/the tape will read the problem $\therefore$ LOUD ARD ALSO SOLVE IT ALOOD. ALL THOUGHTS CONCERNING THE PROBLEM SHOULD BE YOKEN ALOLD: THIS WAY, I WILL KNOW. WHAT YOU ARE THINKING AND, THEREFORE, BE A:LE TO HELP YOU,
$\therefore$ Lfil's I. IStln to scmeone thinking aloud. (stup/recorder) (play tape and.give -SIUDENI WHIMBEY PROBLEM,

## CARD 3

## PROBLEM'

IF THE CIRCLE BELOW IS TALLER THAN THE SQUARE AND THE CROSS IS SHORTER THAi THE SQuARE, PUT A "K" IN THE CIRCLE, HOWEVER, IF THIS IS NOT THE CASE, PUT A "T" IN THE SECOND TALLEST FIGURE,

CARE 4
(start recorder.) now Let's practice this think-aloud technique, I would LIN. for you to solve the following probley aloin. first read it, then speak YOUR THOUGHTS AS YOU SOLVE IT. YOU MAY DO YOUR FIGURING ON A PIECE OF PAPER, BUT TELL IE WHAT YOU ARE THINKING WHILE YOU WRITE, HERE, IS THE PROBLEM:
L. D:

## PRORLLH

harvey owes sam $\$ 27.00$. sam owes fred $\$ 6.00$ and albert $\$ 15.30$. IF, With SAM'S PERMISSION, HARVEY PAYS OFF SAM'S DEBT TO ALBERT, HOW MUCH DOES harvey still owe sam?

## CAs: E

## QUESTIONS

Now that you have the idea, le's try some chemistry duestions, remember, let me hear you thinking as you ar iwer. (ask the questions on the following card.) (should give the student thr. ANSWER If he/she does not know) (PROXIPT IN CASE OF , SILENCE)

## (OUESTIONS)

EACH UNIT HAS A DIFFERENT SET OF QUESTIONS. THEY ARE TO BE ATTACHED TO THIS CARD AS NEEDED.

Catu 8
NOV LET'S TRY SOME PROBLEMS, YOU MAY USE PENCIL, PAPER, AND AN ATOMIC MASS TAULE, IF YOU NEED IT. ON ALL OF THE FOLLOWING PROBLEMS YOU CAN DO YOUR Figuring on a sheet of paper, but tell me wht you are thinking while you hinte.
here is the first probley, remember to read it aloud, and think alold dUfing your probley solving, I woul like to hear all your thoughts relating iu the froulem. (while student is solving tie probley, you should be writing 0 O THE PCSPONSE SHEET) (ONLY PROMPT THINK-ALOUD PROCESS-N ASSISTANCE) (cive first problem, select at random) (different problem sets are used for EACH UNIT)

NOW LET'; . RY ANOTH:R PROBLEM. (GIVE SECOND PROBLEM, SELECT AT RANDOM)

NOW LET'S TRY A THIRD PROBLEM. (GIVE A THIRD PROBLEM, SELECT ÁT RANDOM).
(IF METIOO WAS HOT EVIDENT, I.E. D, F, A, OR P, ASK THE STUDENT WHIICH METHOD HE/SHE USED, HAVE THEM SHOW YOU. THE METHOD.)
(sifow ME HOW YOU USED THIS METHOD ON PROBLEM ONE.)
(AD) 10
"HWiK YOU FOR YOUR IIELP, DO YOU IHIVE ANY COMMEINTS ABOUT THIS SESSION?
(:STOP TAPE)
III ORIDLR FOR US TO PAY YOU FJR THIS SESSION, PLEASE SIGN AND DATE THIS FORM,

APPENDIX $k$

Teacher Instructions for Interviews

## Fealback Session Procedures

Time:

Where:

Supportive Materials:

Selection of students:

Each session will last approximately 45 minutes, and will be conducted where possible during study periods. It may be necessary at times to have sessions after school or during class time.
l? e session will take place in a separate room away from the chenistry classroom.

Audio tape and recorder will be needed to record the interview. The student will be provided with a calculator, periodic chart, unlined paper, and a pencil.

From the tests administered at the beginning of the school year, the students will be classified according to the diagram below:

Proportional Reasoning


Sixteen students from each of the four groups will participate in a session following each of the four instructional units. Selection of the students from each group will be made on the basis of their success or failure on the immediate post test and on the instructional strategy used. Eight students who were able to solve the problems and eight who were not will be used. In order to encourage participation, $\$ 3.00$ will be paid the student for each session.

## Initinl

Instruction (1) $1 / x$. student:
frior to the feedback session the students will be given the following instructions:

1. The student will be told that he/she will be solving problems like he/she had done irt class.
2. The student will be told that the session will be private. The concept of complete privacy should be emphasized. The student is to be insured that nothing said, nor the results of any problems, will be repeated to the teacher or classmates of the student.
3. The student will be informed that the interviewer will be primarily interested in how the problems are solved. 4. Fach student will be asked if he/sle objects to heing audiorecorded, and will be told that they will not lee required to listen to the tape being replayed.

The Session: The students will use a Think-Aloud Technique. This technique will be divided into three sections as follows:

1. Think-Aloud Warm-up
a) The stuxdent listens to a short tape of a person solving a problem alowl.
b) The student is tapel while solving a think-aloud roblem from Whimbey.
c) The student is informed of the importance of ${ }^{\circ}$ thinking aloud while solving the problems during the session.
2. Questions Section: Chemistry content questions will be asked to establish background and set the tone for the session. A typical question might be as follows:

In the molecuie $\mathrm{H}_{2} \mathrm{SO}_{4}$, how many atoms of each element are present?

The interviewer will respond to the question when appropriate.
3. Problem Section: ${ }^{\circ}$ Two problems will be presented to the student (from a pool of three items of each type) to be solved by thinking aloud. The interviewer will prompt the student with a ge.eral question such as, "What are you thinking now?" only when the think aloud process breaks down. No hints to the problem solving will be given. The intervicker will take notes on paper while the student is thinking aloud. It has been shown that this will stimulate the think-aloud process. Examples of the problens are as follows:
a. One step - How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are present in 90 grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ ?
b. Two step - What is the mass of 80 liters of neon gas?

Post Session: The tapes will be coded according to the attached form.

## APPENDIX L

Interview Questions, Problems, Answers
Moles. ..... 569
Gas Laws ..... 571
Stoichiometry ..... 573
Molarity ..... 577

Q1. The formula for calcium hydroxide is $\mathrm{Ca}(\mathrm{OH})_{2}$. (SHOW STUDENT CARD).
How many atoms of each element are present in a molecule of calcium hydroxide?
Expected Response (E.R.) - 1 calcium, 2 oxygen, 2 hydrogen
Q2. If you had a mole of something, what would that mean to you?
E.R. - A mole represents a certain number of particles, volume, and mass of a substance.

Q3. How many particles are in one mole?
E.R. - $6.02 \times 10^{23}$ particles

Q4. What volume would one mole of an ideal gas occupy at STP?
E.R. - 22.4 liters

Q5. llow would you determine the nass of one mole of iron?
E.R. - Look up the atomic mass in a table of atomic masses.

Q6. How would you determine the mass of one mole of ammonia ( $\mathrm{NH}_{3}$ )? (SHDW STUDENT CARD)
E.R. - Look up atomic mass of nitrogen ( N ); and hydrogen (il) in atomic mass table. Add up one nitrogen (N), and 3 hydrogen (II) to get mass of 1 mole.

## Moles Problems

IM How much would 3 moles of carbon dioxide ( $\mathrm{CO}_{2}$ ) weigh?
What would be the volunce of 3 moles of carbon dioxide $\left(\mathrm{C}_{2}\right)$ gas at STP?
1Mo. How many molecules of carbon dioxide ( $\mathrm{CO}_{2}$ ) are present in 3 moles of carbon dioxide?

2VI A sample of methane $\left(\mathrm{ClH}_{4}\right)$ has a volume of 44.8 liters at STP. What would be the mass of this sample?
2Mo A sample of methane ( $\mathrm{CH}_{4}$ ) has a mass of 32 grams. How many molecules are in this sample?
2 MoV A sample of methane (Cl4) contains $12.04 \times 10^{23}$ molecules. What volume would this gas occupy at STP?

3VA A sample of hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ has a volume of 67.2 liters at STP. How many hydrogen atoms are present in this sample?
3 MA A sample of hydrogen sulfide ( $\mathrm{IH}_{2} \mathrm{~S}$ ) has a mass of 102.3 grams. Ilow many hydrogen atoms are present in this sample?
3MM A sample of hydrogen sulfide ( $\mathrm{ILS}_{\mathrm{L}}$ ) has a volume of 07.2 liters at STP. What would be the mass of the hydrogen atoms in this sample?

## Moles Answers

$\mathrm{IM} \cdot 12+2(16)=44 \mathrm{grams} / \mathrm{molc} \quad 3 \mathrm{moles} \mathrm{CO} \times 44 \mathrm{grams} / \mathrm{mole}=132 \mathrm{grams} \mathrm{CO}_{2}$
. IV 3 moles $\mathrm{CO}_{2} \times 22.4$ liters $/ \mathrm{mole}=67.2$ liters
1 Mo 3 moles $\mathrm{CO}_{2} \times 6.02 \times 10^{23}$ molecules $/$ mole $=18.06 \times 10^{23}$ molecules
$2 \mathrm{M} \frac{44.8 \text { liters }}{22.4 \text { liters/mole }}=2$ moles $\times(12+4(1))=32$ grams

2MMo in $12+4(1)=16$ grams/mole $\frac{32 \text { grans }}{16 \text { grams/mole }}=$
2 moles $\times 6.02 \times 10^{23}$ molecules $/$ moles $=12.04 \times 10^{23}$ molecules
$2 \mathrm{MoV} \frac{12.04 \times 10^{23} \text { moleculés }}{6.02 \times 10^{25} \text { molccules } / \text { mole }}=2$ noles $\times 22.4 \mathrm{liters} / \mathrm{mole}=$
44.8 liters
$3 \mathrm{VA} \frac{67.2 \text { liters }}{22.4 \text { liters/molc }}=3$ moles $\|_{2} \mathrm{~S} \times \frac{2 \text { moles } \|}{1 \text { mole } H_{2} \mathrm{~S}}$.
6 moles $\mathrm{H} \times 6.02 \times 10^{23}$ atoms $/ \mathrm{mole}=36.12 \times 10^{23}$ atoms

3 MA $2(1)+32.1=34.1$ grams $/ \mathrm{mole}$
102.3 grams $\mathrm{H}_{2} \mathrm{~S}=$
34.1 grams/mole

3 moles $\mathrm{H}_{2} \mathrm{~S} \times \frac{2 \text { moles } \mathrm{H}}{1 \text { mole } \mathrm{H}_{2} \mathrm{~S}}=6$ moles $\mathrm{H}_{2} \mathrm{~S} \times 6.02 \times 10^{23}$ atoms $/ \mathrm{mole}=$ $36.12 \times 10^{23}$ atoms II
$3 \mathrm{VM} \frac{67.2 \text { liters } \mathrm{H}_{2} \mathrm{~S}}{22.4 \text { liters } / \mathrm{mole}}=3$ moles $\mathrm{H}_{2} \mathrm{~S} \times \frac{2 \text { moles } \mathrm{II}}{1 \text { mole } \mathrm{I}_{2} \mathrm{~S}}=$ 6 moles $\mathrm{H} \times 1.0 \frac{\text { grams }}{\text { mole }}=6.0$ grams H

Q1. What would happen to the volume of a gas sample if the pressure on the ample was increased and the temperature held constant?

Expected Respanse (E.R.) - Volume would decrease.

Q2. What would happen to the volume of a gas sample if the temperature on the sample was.increased and the pressure held constant?
E.K. - Volume would increase.

Q3. What would happen to the temperature of a gas sample if the pressure on the sample was decreased and the volume heldiconstant?
E.R. - Temperature will decrease.

Q4. What would happen to the pressure of a gas sanple if the tenmerature and the volume were both increased?
E.R. - Can't tell, depends on the percentage for each effect.

Gas• Laws Problems
1TP A sample of gas has a pressure of 600 mm Hg at $27^{\circ} \mathrm{C}$. What pressure would this sample have at $127^{\circ} \mathrm{C}$ ? Assume no volume change.
17V A sample of gas has a volume of 600 ml at $27^{\circ} \mathrm{C}$. What volume would this gas occupy at $127^{\circ} \mathrm{C}$ ? Assume no pressure change.
IPV A sample of gas has a volume of 500 ml at 700 mm lig pressure. What volume would this gas,occupy at 350 mm Hg pressure? Assume no temperature change.
2 TVP A sample of gas has a pressure of 400 mm Hg with a volume of 600 ml and $-73^{\circ} \mathrm{C}$ temperature. What would be the pressure if the volume became 300 ml and the temperature $27^{\circ} \mathrm{C}$ ?
2TPV A sample of gas has a volume of 600 ml at 400 mm llg pressure and $-73^{\circ} \mathrm{C}$ temperature. What would be the volume if the pressure became 1200 mm Hg - and the temperature $27^{\circ} \mathrm{C}$ ?

2 PVT A sample of gas has a temperature of $-73^{\circ} \mathrm{C}$ at 400 mm lig pressure and 600 ml volume. What would be the Celsius temperature of the sample if the pressure became 1200 mm Hg and the volume 300 ml ?
3M-TV What volume would 3 moles of a gas occupy at $-136.5^{\circ} \mathrm{C}$ and 760 mm Hg ? $3 \mathrm{M}+\mathrm{TV}$ What volume would 3 moles of a gas occupy at $273^{\circ} \mathrm{C}$ and 760 mm Hg ?
3 MIV Wat volune would 3 molẹs of a gas occupy at $0^{\circ} \mathrm{C}$ and 1520 mm Ig ?

Gas Laws Answers

$1 \mathrm{VV} \quad 600 \mathrm{ml} \times\left(\frac{273}{273}+127^{\circ} \mathrm{K}\right)=\frac{2}{300 \mathrm{ml} \times \frac{400}{300}}=800 \mathrm{ml}$
1PV $\quad 500 \mathrm{ml} \times \frac{2}{200 \mathrm{~mm} \mathrm{Hg}} \frac{250 \mathrm{mg}}{350 \mathrm{mg}}=1000 \mathrm{ml}$
2TVP $400 \mathrm{~mm} \mathrm{Hg} \times \frac{600 \mathrm{ml}}{300 \mathrm{~mL}} \times\left(\frac{273+27^{\circ} \mathrm{K}}{273+-73^{\mathrm{K}} \mathrm{K}}\right)=400 \mathrm{~mm} \mathrm{Hg} \times \frac{2}{\mathrm{I}} \times \frac{300}{200}=1200 \mathrm{~mm} \mathrm{Hg}$ 2TPV $\quad 600 \mathrm{ml} \times \frac{400 \mathrm{~mm} \mathrm{Hg}}{1200 \mathrm{~mm} \mathrm{Hg}} \times\left(\frac{273+27^{\circ} \mathrm{K}}{273+-73^{\circ} \mathrm{K}}\right)=600 \mathrm{ml} \times \frac{1}{3} \times \frac{300^{\circ} \mathrm{K}}{200^{\circ} \mathrm{K}}=300 \mathrm{ml}$ 2PVT $273^{\circ}+\left(-73^{\circ} \mathrm{C}\right) \times \frac{1200 \mathrm{~mm} \mathrm{Hg}}{400 \mathrm{~mm} \mathrm{Ig}} \times \frac{300 \mathrm{ml}}{600 \mathrm{mI}}=200^{\circ} \mathrm{K} \times \frac{3}{1} \times \frac{1}{2}=300^{\circ} \mathrm{K}$ $300^{\circ} K-273=27^{\circ}(:$

3 M-TV 3 moles $\times \frac{22.4 \text { liters }}{\text { moles }} \quad x \frac{-136.5+273}{273}=3 \times 22.4$ iters $\times \frac{136.5}{273}=$
33.6 liters
$3 \mathrm{M}+\mathrm{TV} \quad 3$ moles $\times \frac{22.4 \text { liters }}{\text { moles }} \times \frac{273+273}{2730 \mathrm{~K}}=3 \times .22 .4$ liters $\times \frac{546}{273}=$
134.4 liters

3MPV 3 moles $\times \frac{22.4 \text { liters }}{\text { moles }} \times \frac{760 \mathrm{~mm} \mathrm{Hg}}{1520 \mathrm{~mm} \mathrm{Ig}}=33.6$ 1iters

Q1. The formula for calcium hydroxide is $\mathrm{Ca}(\mathrm{OH})_{2}$. (Show Student Card) How many atoms of each element are present in a molecule of calcium hydroxide?

Expected Response (E.R.) - 1 callcium, 2 oxygen, 2 hydrogen.
Q2. If you had a mole of something, what would that mean to you?
E.R. - A mole represents a certain number of particles, volume, and mass of a substance.

Q3. Ikw many particles are in one mole?
E.R. - $6.02 \times 10^{23}$ particles. .

Q4. What volume would one mole of an ideal gas occupy at SIT?
E.R. - 22.4 liters.

Q5. How would you determine the mass of one mole of iron?
E.R. - Look up the atomic-mass in a Table of Atomic Masses.

Qo. How would you determine the mass of one mole of ammia $\left(\mathrm{NH}_{3}\right)$ ?
(Show Student Card)
E.R. - Look up atomic hass of nitrogen_(N), and Hydrogen (II) in Atomic Mass Table. Add up one nitrogen (N), 3 hydrogen (II) to get mass of 1 mole.
Q7. Ihow would you go about balance ing, the following equation:
$\mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{I}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{HCl}_{(\mathrm{aq})}$
1..R. - Iwo II are neceled on right to balance two Il on 1 cft . Two Cl are needed on lelt to balance two Cl on right. (ther elenents balance.

Stoichiometry Problems
1 M Propane gas ( $\mathrm{C}_{3} \mathrm{H}_{8}$ ) burns (reacts with $\mathrm{O}_{2}$ ) to form carbon dioxide ( $\mathrm{CO}_{2}$ ) and water vapor $\left(\mathrm{H}_{2} \mathrm{O}\right)$ actording to the reaction:
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
How many moles of $\mathrm{CO}_{2}$ would be formed from 3 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacting with sufficient $\mathrm{O}_{2}$ ?

Stoichiometry Problems continued:

1 V Propanc gas ( $\mathrm{C}_{3} \mathrm{ll}_{8}$ ) burns (reacts with $\mathrm{O}_{2}$ ) to fom carbon dioxide ( $\mathrm{CO}_{2}$ ) and water vapor ( $\mathrm{H}_{2} \mathrm{O}$ ) according to the reaction:

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}){ }^{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \text { liters of } \mathrm{CO} \text { (measured at } \mathrm{gTo} \text { would he }
\end{aligned}
$$

How many liters of $\mathrm{CO}_{2}$ (measured, at STP ) would be formed from 67.2 liters of $\mathrm{C}_{3} \mathrm{H}_{8}$ (measured at STP) reacting with sufficient $\mathrm{O}_{2}$ ?

1 P
Propane gas ( $\mathrm{C}_{3} \mathrm{Il}_{8}$ ) burns (reacts with $\mathrm{O}_{2}$ ) to form carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and water vapo: $\left(\mathrm{H}_{2} \mathrm{O}\right)$ according to the reaction:

$$
\left.\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)
$$

How many molecules of $\mathrm{CO}_{2}$ would be formed from $18.06 \times 10^{23}$ molecules of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacting with sufficient $\mathrm{O}_{2}$ ?

2 MM . Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ reacts with hydrochloric acid ( HCl ) to form sodium chloride ( NaCl ), water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$. according to the reaction:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{C}(1)+\mathrm{CO}_{2}(\mathrm{~g})
$$

How many grams of $\mathrm{CO}_{2}$ would be produced from 146.0 grams of HCl reacting with sufficient $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ?

2 MN Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{5}\right)$ reacts with hydrochloric acid (IICl) to form sodium chloride ( NaCl ), water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and carbon dioxide $\left(\mathrm{CO}_{2}\right)$ according to the reaction:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)+\mathrm{CO}_{2}(\mathrm{~g})
$$

How many liters of $\mathrm{CO}_{2}$ (measured at STP) would be produced from 146.0 grams of HCl reacting with sufficient $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ?

2 MP. Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ reacts with hydrochloric acid (IKC1) to form sodium chloride ( NaCl ); water ( $\mathrm{H}_{2} \mathrm{O}$ ), and carbon dioxide gaб $\left(\mathrm{CO}_{2}\right)$ according to the reaction:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{lKC1}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)+\mathrm{CO}_{2}(\mathrm{~g})
$$

How many molecules of $\mathrm{CO}_{2}$ would be produced from 146.0 grams of HCl react ing with sufficient $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ?

3 Hf " Silver nitrate ( AgNO S ) reacts with hydrogen sulfide gas ( H 2 S ) to form silver sulfide $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$ and nitric acid $\left(\mathrm{HNO}_{3}\right)$ according to the reaction:

$$
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{INO}_{3}(\mathrm{aq})
$$

How many. grams of $\mathbb{N N O}_{3}$ would be formed from combining 255 grans $\mathrm{AgNO}_{3}$ with 17 grams $\mathrm{H}_{2} \mathrm{~S}$ ?

657

Stoichianetry Problems continued:

3:SS 1 Silver nitrate ( AgNO ) reacts with hydrogen sulfide gas ( $\mathrm{H}_{2} \mathrm{~S}$ ) to form silver sulfide ( $\mathrm{Ag}_{2} \mathrm{~S}$ ) and nitric acid $\left(\mathrm{HNO}_{3}\right)$ according to the reaction:

$$
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{INO}_{3}(\mathrm{aq})
$$

How many grams of $\mathrm{Ag}_{2} \mathrm{~S}$ would be formed frcm combining 170 grams of $\mathrm{AgNO}_{3}$ and 170 grams $\mathrm{F}_{2} \mathrm{~S}$ ?

3 SS 2 Silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ reacts with hydrogen sulfide gas ( $\mathrm{H}_{2} \mathrm{~S}$ ) to form silver sulfide $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$ and nitric acid $\left(\mathrm{HNO}_{3}\right)$ according to the reaction:

$$
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq})
$$

How many grams of $\mathrm{Ag}_{2} \mathrm{~S}$ would be formod from combining 340 grams of $\mathrm{AgNO}_{3}$ and 51 grams $\mathrm{H}_{2}^{2}$ ?

## Stoichiometry Answers

$1 \mathrm{M} \quad \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \quad 3$ moles $\mathrm{CH} \times \frac{3 \text { moles } \mathrm{CO}_{2}}{1 \text { mole } \mathrm{C}_{3} \mathrm{H}_{8}}=9$ moles $\mathrm{CO}_{2}$

2 MM Equation balanced. $\frac{146.0 \text { grams }}{36.5 \mathrm{Hr} \cdot \mathrm{ml} / \mathrm{mole}}=4.0$ moles $\mathrm{HCl} \times \frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{2 \mathrm{moles} \mathrm{HCl}}=$
2.0 moles $\mathrm{CO}_{2} 2.0$ moles $\mathrm{CO}_{2} \times 44 \frac{\text { grams }}{\text { mole }}=88.0$ grams $\mathrm{CO}_{2}$

2 MV Equation balanced. $\frac{146.0 \text { grams } \mathrm{HCl}}{36.5 \text { grams } / \mathrm{mole}}=4.0$ 酉oles $\mathrm{HCl} \times \frac{1 \text { mole } \mathrm{CO}_{2}}{2 \text { mole } \mathrm{HCI}}=$
2.0 moles $\mathrm{CO}_{2} \times 22.4 \frac{\text { liters }}{\text { not }}=44.8$ liters $\mathrm{CO}_{2}$

2 MP Equation balanced. $\frac{146.0 \text { grams } \mathrm{HCl}}{36.5 \mathrm{grams} / \mathrm{mole}}=4.0$ moles $\mathrm{HCl} \times \frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{2 \mathrm{moles} \mathrm{HCl}}=$
2.0 moles $\mathrm{CO}_{2} \times 6.02 \times 10^{23} \frac{\text { molecules }}{\text { mole }}=12.04 \times 10^{23}$ molecules $\mathrm{CO}_{2}$

3 HFl Equation balanced. $\frac{255 \text { grams } \mathrm{AGNO}_{3}}{170 \cdot \mathrm{grams} / \mathrm{mole}^{2}}=1.5$ moles $\mathrm{AgNO}_{3}$
$\frac{17 \text { grams } \mathrm{H}_{2} \mathrm{~S}}{34 \text { grams } / \mathrm{mole}}=0.5$ mole $\mathrm{H}_{2} \mathrm{~S} \quad \mathrm{H}_{2} \mathrm{~S}$ is limiting reagent
0.5 mole $\mathrm{H}_{2} \mathrm{~S} \times \frac{2 \text { mole } \mathrm{HNO}_{3}=1.0 \text { mole } \mathrm{HNO}_{3} \times 63 \frac{\text { grams }}{\text { mole }}=63 \text { grans } \mathrm{HNO}_{3} \text {. } \mathrm{H}_{2} \mathrm{~S}}{1 \text { mole }}$

3 SS $1 \frac{170 \text { grams } \mathrm{AgNO}_{3}}{170 \text { grams;inote }}=1.0$ mole $\mathrm{K}_{\mathrm{g}} \mathrm{NO}_{3} \quad \frac{170 \text { grams } \mathrm{H}_{2} \mathrm{~S}}{37 \mathrm{grims} / \mathrm{nk} / \mathrm{L}}=5.0$ mole $\mathrm{H}_{2} \mathrm{~S}$
$\mathrm{KgNO}_{3}$ limiting reagent 1.0 nolo $\mathrm{AgNO}_{3} \times \frac{1 \text { mole } \mathrm{Ag}_{2} \mathrm{~S}}{2 \text { moles } \mathrm{AgNO}_{3}}=0.5 \mathrm{~mole} \mathrm{Kg}_{2} \mathrm{~S}$
0.5 mole $\mathrm{Ag}_{2} \mathrm{~S} \times 248 \frac{\text { grams }}{\text { mole }}=124$ grams $\mathrm{Ag}_{2} \mathrm{~S}$
$3 \mathrm{SS} 2 \frac{340 \text { grams } \mathrm{AgNO}_{3}}{170 \text { grams } / \mathrm{mole}}=2.0$ moles $\mathrm{AgNO}_{3} \frac{51 \text { grams } \mathrm{H}_{2} \mathrm{~S}}{34 \text { grams } / \mathrm{mole}}=1.5 \mathrm{moles} \mathrm{H}_{2} \mathrm{~S}$
$\mathrm{AgNO}_{3} 1$ limiting reagent $2.0 \mathrm{moles} \mathrm{AgNO}_{3} \times 1$ mole $\mathrm{Ag}_{2} \mathrm{~S}=1.0 \mathrm{~mole} \mathrm{Ag}, \mathrm{S}$
1.0 mole $\mathrm{Ag}_{2} \mathrm{~S} \times 248 \underset{\text { grams }}{\text { mole }}=248$ grans $\mathrm{Ag}_{2} \mathrm{~S}^{2 \text { moles } \mathrm{AgNO}_{3}}$
1.0 mole $\mathrm{Ag}_{2} \mathrm{~S} \times 248 \underset{\text { grams }}{\text { grope }}=248$ grans $\mathrm{Ag}_{2} \mathrm{~S}$

## Molarity Questions

Q1. How would you' determine the mass of one mole of iron?
Expected Response (E.R.) - Look up the atomic mass in a Table of Atomic Masses.
Q2. Iow would you determine the mass of one nole of anmonia $\left(\mathrm{NH}_{3}\right)$ ?
(Show Student Card)
E. H. - Look up atomic mass of $N$, and II in atomic mass table. Ndd up onc N and 3 H to get inass of one mole.

Q3. How many milliliters are equal to 2.5 liters?
E.R. - 2500 nl

Q4. Define molarity in your own words.
E.R. - The moles of material dissolved per liter of solution. Moles/liter (accepted).

Q5. How would you make up one liter of a two molar sodium chioride solution?
E.R. - Determine molecular mass of NaCl , weigh out the equivalent of 2 moles ( 2 molecular masses) of NaCl . Dissolve material in enough water to make one liter of solution.

## Molarity Problcms

$1 \mathrm{Ml} \quad$ How many ml of a 0.5 M potassium fluoride (KF) solution would contain 116.2 grams of KF ?
$1 \mathrm{G} \quad$ How hany grams of potassium fluoride ( KF ) are present in 4000 ml of a 0.5 M solution of KF ?

1 No What would be the molarity of a solution made by dissolving 116.2 grams of potassium fluoride (KF) in enough water to form 4000 ml of solut ion?

- $2 \mathrm{Mol}^{\text {" What }}$ would be the molarity of a solution made by adding 500 ml of water to 1500 ml of a 3.0 M LiCl solution?
2 MOC What would be the molarity of a sclution made by boiling off 500 ml of water from 2000 ml of a 2.25 M LiCl solution?
2 MoV liow many ml of water must be added to 15.00 ml of a 3.0 M Lill
3 WA Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ reacts with phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ to produce sodium phosphate $\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$, water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$ according to the balancod reaction:
$3 \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+2 \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} \longrightarrow 2 \mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{O}_{(1)}+3 \mathrm{CO}_{2}(\mathrm{~g})$ What world be the molarity of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution that reacted with sufficient $\mathrm{Na}_{2} \mathrm{CO} \mathrm{C}_{3}$ to produce 54.0 grams of $\mathrm{H}_{2} \mathrm{O}$ if the solution had a volume of 0.5 liters?

$$
G_{i, 1}
$$

Molarity Problems continued:

3 GA 1 Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ reacts with phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ to produce sodium phosphate $\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$, water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and carbon dioxide gas. $\left(\mathrm{CO}_{2}\right)$ according to the balanced reaction:
$3 \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+2 \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} \longrightarrow 2 \mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{O}_{(1)}+3 \mathrm{CO}_{2(\mathrm{~g})}$
What would be the molarity of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution that reacted with sufficient $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to produce 132.0 grams of $\mathrm{CO}_{2}$ if the solution had a volume if 0.5 liters?

3 ( $\wedge 2$ Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ reacts with phosphoric acid ( $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ to produce solium phosphate $\left(\mathrm{Na}_{3} \mathrm{IO}_{4}\right)$, water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$ according to the balanced reaction:
$3 \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+2 \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} \longrightarrow 2 \mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}+3 \mathrm{H}_{2}{ }^{\mathrm{O}}(1)+3 \mathrm{CO}_{2}(\mathrm{~g})$
What would be the molarity of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution that reacted with sufficient $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to produce 264 g of $\mathrm{CO}_{2}$ if the solution had a volume of 0.5 liters?

## Molarity Answers

$1 \mathrm{Ml} \quad 116.2 \mathrm{~g} / 58.1 \mathrm{~g} / \mathrm{mole}=2.0$ moles $\quad 0.5 \mathrm{M}=0.5 \mathrm{moles} / 1$ inter 2.0 moles $/ 0.5^{\circ}$ moles $/ 1$ liter $=4.0$ liters $=4000 \mathrm{~mL}$.

16
C. $5 \mathrm{M}=0.5 \mathrm{moles} /$ liter $\times 4.01=2.0$ moles
2.0 moles $\times 58.1$ grams $/$ mole $=116.2$ grams
$1 \mathrm{Mo} \quad \mathrm{K} 39.1 \quad 116.2 \mathrm{~g} / 58.1 \mathrm{~g} /$ mole $=2.0 \mathrm{moles} \quad 2.0 \mathrm{moles} / 4.01=0.5 \mathrm{M}$ F $\frac{19.0}{58.1}$
$2 \mathrm{MoD} 3.0 \mathrm{M}=3.0$ moles $/ 1 \mathrm{iter} \times 1.51=4.5 \mathrm{moles}$
4.5 moles /2.0 1 liters $=2.25 \mathrm{M}$
$2 \mathrm{MoC} \quad 2.25 \mathrm{M}^{2}=2.25 \mathrm{moles} / \mathrm{liter} \times 2.01=\underset{4}{4.50 \mathrm{moles}}$ 4.50 moles $/ 1.5$ liters $=3.0 \mathrm{M}$
$2 \mathrm{MoV} 3.0 \mathrm{M}=3.0 \cdot$ moles $/$ liter $\times 1.51=4.5$ moles $4.5 \mathrm{moles} \times 1 \mathrm{liter} / 2.25=$ 2.0 liters 2.0 liters -1.5 liters $=0.5$ liters $.5 \mathrm{~L}=500 \mathrm{~mL}$

3 WA $\quad 54 \mathrm{grams} / 18 \mathrm{grams} / \mathrm{mole}=3$ moles $\mathrm{H}_{2} \mathrm{O}$ 3 moles $\mathrm{H}_{2} \mathrm{O} \times 2$ moles $\mathrm{H}_{3} \mathrm{PO}_{4} / 3$ moles $\mathrm{H}_{2} \mathrm{O}=2$ moles $\mathrm{H}_{3} \mathrm{PO}_{4}$ 2 moles $\mathrm{H}_{3} \mathrm{PO}_{4} / 0.51=4.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$

3 GA 1 132/ grams $\mathrm{CO}_{2} / 44$ grams $/$ mole $=3$ moles $\mathrm{C}_{2} \mathrm{O}_{2}$ 3 moles $\mathrm{CO}_{2} \times 2$ moles $\mathrm{H}_{3} \mathrm{HO}_{4} / 3$ moles $\mathrm{CO}_{2}=2$ moles $\mathrm{H}_{3} \mathrm{PO}_{4}$ 2 moles $\mathrm{H}_{3} \mathrm{PO}_{4} / .51=4.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
$3 \mathrm{GA} 2264 \mathrm{~g} \mathrm{CO}_{2} / 44 \mathrm{~g} / \mathrm{mole}=6 \mathrm{~mole} \mathrm{CO} 2{ }^{0}$ 6 mole $\mathrm{CO}_{2} \times 2$ mole $\mathrm{H}_{3} \mathrm{PO}_{4} / 3$ mole $\mathrm{CO}_{2}=4$ mole $\mathrm{H}_{3} \mathrm{PO}_{4}$

4 mole $\mathrm{H}_{3} \mathrm{PO}_{4}!.5$ liter $=8 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$

APPENDIX M

Coding Forms
General . . . . . . . . . . . . . . . . . . 581
Gas Laws. . . . . . . . . . . . . . . . . . 586
Stoichianetry . . . . . . . . . . . . . . . 590
Molarity. . . . . . . . . . . . . . . . . . 594


This coding system is an adaptation of that system used by Days (1977) for problem solving strategies in mathematics and Nurrenbern (1979) in chemistry.
A. Reading/Organizing. Processes a subject uses to aid in understanding what the problem is asking or processes used to represent the problem in a form that will aid in finding a solution.

1. Rereads problem. Subject reads all or part of the problem statement more than one time or the subject reports that.he is rereading.
2. Restates problem. Wbject rephrases or paraphrases the problem statement in more familiar terms.
3. Performs explorat.ory manipulations. Subject performs sane manipulations with given data without having a real plan or a clear cut reason for doing son the subject is not testing a formulated hypcthesis.
4. Uses mnemonic notation. Subject uses symbols or notation that calls to mind the variables they represent: atomic symbol.s, - molecular formulas, chenical equation.
5. Iraws a diagram. Subject draws a figure or diagram to depict the situation or conditions ás stated in the problem.
6. Makes a list. Subject puts certain data into a list in order to aid him in solving the problem.
7. Other organizing procedures.
B. Recall. Processes used to recall information from memory.
8. Recalls a related concept. Subject recalls a related concept or related formula to be used in solving the problem.
9. Recalls a related problem. Subject says he remembers having or solving a problem like the present one. Subject may recial-1 something or some activity from class.
10. Uses method of related problem. Subject applies method used to solve a previous problem to the problem being solved. Subject must 'say he is using the method of a related problem, e.g.,' "I will solve this problem the same way I solved that problem ahout the cow and pig."
C. Iroduction. Processes used to carry out the plans and obtain results. Considered to be systenatic ff subject uses ?cme organized mode of proceeding.
11. Approach taught. Subject uses either proportionality, diagrams, factor-label method, or analogies. This can be evident from either the conments made while solving the problem, or from the sheet the student uses, or from the questions asked.
12. Arithmetic algorithm. Subject doesn't use the method taught but uses some arithmetic algorithm, that is, some procedure that is memorized other than the one taught.
13. Bright idea. Subject, after some thought, indicates that he has just gotten an insight into, the problem or an idea to follow. "Ah ha!" "Oh, I get it!" "Oh, I got an idea!" 'Ah, now I sec!"
14. Uses successive approximation. Subject tries onè value and then uses the result obtained to get value to try next.
15. Estimates. Subject indicates that he is making an estimate ${ }^{-}$ or estimates of the magnitude of the solution or parts of solution.
16. Guesses/selects solution on irrelevant basis. Subject gives a solution which was derived in an arbitrary manner or based on superficial information. Wild guess. Combine numbers together without any reason to get solution.
17. Does not conplete problem. Doesn't proceed enough to determine the methorl.
18. Strategy. Dominant sequence or sequences of processes used while attempting to solve a problcm (there could be more than one strategy used in solving the same problem).
19. Algorithmic. Subject attempts to solve problem using algorithms or algorithmic forms. Does this from rote. (Wrong algorithms may be used.)
20. Algorithmif/Reasoning. Subject uses reasoning and an algorithm(s) or algorithmic form(s) to obtain solution to the problem. (Can have incorrect reasoning or arithmetic error.)
21. Random trial-and-error'. Subject makes a sequence of random guesses about the solution to the problem without using any type of system or the information from previous guesses. Anything not categorized as the other two strategies.
E. Structural Errors.
22. Misinterprets problem. It is indicated in some way that the student has misread, misinterpreted, or disregarded a critical part of the problem.
23. Disregards relevant information given in problem. Subject fails to use all necessary informat ion given in his solution attempt.
24. Disregards relevant information generated during previous steps. Subject proceeds to a solution without considering information he produced which is necessary to solve the problem. E.g., a subject may balance an equation and then ignore it in further solution steps.
25. Misapplies relevant information generated during previous steps. Subject uses information he has generated in an inappropriate way. E.g., a subject may conclude that substance $X$ is in excess and then base further calculation on that substance instead of substance $Y$ which would be the limiting reagent and determinor of subsequent products.
26. Does not generate needed information from memory. Student does not recall needed information such as in converting volume to moles, does not rcall $22.41 / \mathrm{mole}$.
27. Misapplies conversion factor. Student uses wrong conversigp factor. E.g., in changing moles to volume, uses $6.02 \times 10^{23}$ molecules. (Include one that should be used.)
28. Other structural errors.
29. Livaluat ion. Processes used in the checking phase of problem solving. Checking can occur after an intermediate or final result.
30. Routine check of manipulations. Subject goes back and briefly checks his operations or counting.
31. Checksthat solution satisfies the conditions. Subject serbstitutes the final or intermediate solution back into the problem aind assures himself that all the conditions are met.
32. Checks solution by retracing steps. , Subject repeats, after deriving a solution, the operations or part of the operations he performed to derive the solution.
33. Derives solution by another method: Subject, after obtaining a solution using one method, tries to use a different method or procedure to reach the solution (more formal than 28).
34. Is the result (s) reasciable? Subject compares his solution against his experience and the real world.
35. Compares solution with general known results. Subject compares his solution with what is conmonly known to determine if contradictions exist.
36. Changes approach. Subject changes strategy he is using to solve the problem, e.g., did algorithmic to trial-and-error change or vice versa.
G. Comments about solution. Not considered to be processes.
37. Questions existence of solution. Subject asks if there is a soluiion to the problem or states that he does not think the solution exists.
38. Questions uniqueness of solution. Subject makes a direct statement referring to the possibility of more than one solution.
39. Questions necessity/relevance of information. Subject comments about' some of the information given and its relevance to the situation.
40. Expresses uncertainty about finál solution. Subject expresses cioubt about the solution he has found.
41. Says he doesn't know how to solve the problem. This is checked even if after saying he doesn't know, the subject goes on and finds a solution.
42. Says the problem is difficult.
H. Executive Error. (To be tallied)
43. Counting/Arithmetic operations. Subject makes arithmetical error while solving problem.
I. Questions
44. Answérs question partially without prompting. Prompting defined as help. Subject answers part of question on his/her own and then gets stuck. Prompting may cause answer to be completed.
45. Needs prompting to answer successfully. Subject is able to answer the question, but needs initial prompting.
46. Answers question completely without prampting. Subject needs no prompting to answer question.
47. Does not answer question at all. Subject either does not attempt question or does not answer any part of it (with or without prompting).
J. Interviewer's comments. 'The interviewer will record such coninents as, "Student seemed nervois", "Student not sure of himself"', or 'Not persistent". The interviewer will also record any additional structural errors not noted on the checklist as well as arly unique events which occurred such as interruptions by school announcements.

## PROBLLM

1. . 0 Doesn't get this far.

1 Kelvin temperature not required
2 Fails to change to Kelvin't emperature
3 Makes error in calculating Kelvin temperature
4 Converts to Kelvin temperature correctly
0 Doesn't get this far

1. Voesn't set up factor or proportion

2 Inverts a factor or sets up wrong proportion
3 Sets up problem correctly
2. $\quad \dot{0}$ Doesn't get this far

1 Kelvin temperature not required
2 Fails to change to Kelvin temperature (beginning)
3 Fails to change from Kelvin temperature (end)
42 and 3
5 Makes error in calculating Kelvin temperature
6 Converts all Kelvin temperatures correctly
7 3 and 5
8 Othes
0 loosn't get this far
1 Uoesn't set up factor or proportion
2 Disregards one of the conditions
3 Inverts a factor or sets up wron proportion
4,2 and 3
5 Correct set up (regandless of Kelvin temperature)
3. . 0 Doesn't get this far

1 Kelvin temperature not required
2 Fails to change to Kelvin temperature
3 . Makes error in calculating Kelvin temperature
4 Converts to Kelvin temperature correctly
0 Doesn't get this far
1 /Pails to convert moles to volume
2 boesñ't set upenactor or proportion
3 Inverts a fagtor or sets up wrong proportion
4 1and 2
$5 \quad 1$ and 3
() 2 and 3

7 Sets up pro, 1 am correctly
$\left|\begin{array}{ll}8 & \text { Converts to } \\ 9 & 2 \text { and } 8\end{array}\right|$ iters incorrectly

1 Confused about STP

GAS LAWS
Description of Special Coding lorn, ",
Problem 1
0 Doesn't get this far. Says he doesn't know how to do problem. . Just doesn't begin.

1 Kelvin temperature not required. Problem does ${ }^{\dagger}$.t call for conversion.
2 Fails to change to Kelvin temperature. Actually works problem' or ${ }^{\text {- }}$ sets up problem to work without using Kelvin temperaturè.

3 Makes error in calculating Kelvin temperature. Uses wrong constant, subtracts instead of adding, makes math error, etc.

4 Converts to Kelvin temperate ire correctly. Gets correct answer.


Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.

1) Doesn't set up factor or proportion. Does something else or sets up incorrectly (except for inverting, then use 2), uses some other method.

2 Inverts a factor or sets up a wrong proportion. The major error is the inversion of numbers. Otherwise it would qualify for 3. Process is correct.
$\$$ Sets up problem correctly. Can be errors in arithmetic, etc. previous to this. Basic structure or process is correct (e.g. does problem in liters or uses wrong temperature or copies wrong number.):


Doesn't get this far. Says he doesn't know how to do problem. . Just doesn't begin.

1 Kelvin temperature not required. Problem doesn't call for conversion. Fails to change to Kelvin temperature (beginning). Actually works problem or sets up problem to work without using Kelvin temperature. $\frac{\text { Fails to change from Kelvin temperature (end). Forgets to change back }}{\text { to Celsius at the end of the problem. }}$ 2 and 3 Both errors mari.

5 Makes error in calculating Kelvin temperature. Adds wrong constant, subtracts, subtracts instead of adding, makes math error, etc. (If an error in any temperature conversion occurs, use this category.)

6 Converts all Kelvin temperatures correctly. Gets all answers correct.
73 and 5 Both errors occur.
8. Other Sets up first temperature correctly but doesn't proceed - far enough to get to final conversion.

0 boesn't get this far. Says he doesn't know how fo do problem. Just doesn't begin.

1 Docsn't set up factor or proportion. Does something else or sets up incorrectly (except for inverting, then use 3), uses some other method.

2 Disregards one of the conditions. Only sets up using one of the conditions, e.g. the problem calls for temperature and pressure change, student only uses the temperature change. Use this category also if student realizes both changes but only sets up one change. (lither he can't set up both, or forgets one.)

3 Inverts a factor or sets up wrong proportion. The major error is the inversion of numbers. Otherwise it would qualify for 5 . Process is correct.

42 and 3 Both errors made.
5 Correct set un (regardless of Kelvin temperature). Can be error in arithmetic, etc. previous to this, Basic structure or process is correct (e.g. does problem in liters or uses wrong temperature
or copies wrong number.)

Problem 5
() Doesn't get this far. Says he doesri't know how to do problem. Just doesn't begin.

1 Kelvin temperature not required. Problem doesn't call for conversion.
2 Fails to change to Kelvin temperature. Actually works problem or sets up problem to work without using Kelvin. temperature.
3 Makes error in calculating Kelvin temperature. Yeses wrong constant; subtracts instead of adding, makes math error, etc.
4. Converts to Kelvin temperature correctly. Gets correct answer.

0 . Doesn't get this far. Says he doesn't know how to do problem.
1 Eails to convert moles to volume. Does the problem or sets up problem without changing to volume. Also use this category if he realizes he should change but doesn't do it - forgets cr doesn't know how. If he does it incorrectly, use 8.

2 Doesn't set up a factor or proportion. Does something else or sets up incorrectly (except for inverting, then use 3), uses some other method.

3 Inverts a factor or sets up wrong proportion. The major error is the inversion of numbers. Otherwise it would qualify for 7. Process is correct.

41 and 2 Both crrors nade.
$5 \quad 1$ and 3 lkoth crors: made.
62 and 3 . Both errors made.
7 Sets up problem correctly. Can be errors in arithmetic, etc. previous to this. Basic structure or process is correct (c.g. does problem in liters or uses wrong temperature or copies wrong number.)

8 ' Converts to liters incorrectly. Uses $6.02 \times 10^{23}$ or some other
92 and 8 Both errors made.

1 Confused about STP. Doesn't associate 22.4 liters with STP, etc.

STOICHIOMETRY PROBLEMS

## PROBLBM

1. 
2. 0 Doesn't get this far

1 Checks to see that equation is balanced
2 Does not check to see that equation is balanced
0 Doesn't get this far
1 Uses equation correctly in solving problem
2 Uses equation incorrectly in solving problem
3 Does not use equation in solving problam
3. 0 . Ioesn't get this far

1 Checks to see that equation is balanced
2 Does not check to see that equation is balanced
0 Dresn't get this far
1 Uses equation correctly for determining excess
2 Uses equation incorrectly for determining excess
3. Does not use equation for determining excess

0 Doesn't et this far
1 Uses equation correctly for determining product
2 Uses equation incorrectly for determining product
3 Does not use equation for determining product

## STOICHIOMETRY

Description of Special Coding Form

## Problem 1

0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.

1 Balances equation correctly. All coefficients corrrect.
2 Balances equation incorrectly. Equation not entirely correct. Does not matter if incorrect coefficients are never used.

3 Does not attempt to balance equation. Uses än unbalanced equation. Does not see need for balancing equation. Student starts the " problem.

0 joesn't get this far. Says he doesn't know how to do problem. . Just doesn't begin.

1 Uses equation correctly in solving problem. Sets up with ratios corresponding to how he balanced the equation.

2 Uses equation incorrectly in solving problem. Uses the wrong coefficients or inverts them, etc. (except for errors that occur in balancing only). Interprets coefficients as grams.

3 Doesn't use the equation in solving problem. Uses some other method or forgets about coefficients. Student starts the problem.

## Problem 2

0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.

1 Checks to see that equation is balanced. Overtly says he is checking the equation.
2 Does not check to see that equation is balancer. It is not apparent from tape or sheet that equation was checked.

0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.

1 Uses equation correcily in solving problem. Sets up with ratios
2 Uses equidion incorrectly in solving problem. Uses wrong coefficients or inverts $\uparrow$ tem, etc. Interprets coefficients as grams.
3., Does not use equation in solving problem. Uses some other method

## Problem 3

0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.

1 Checks to see that equation is balanced. Overtly says he is. checking the equation.

2 boes not check to see that equation is balanced. It is not apparent from tape prishet that equation was checked.

0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.

1 Uses equation correctly for determining excess. Uses the coefficients correctly.

2 Uses equation incosiectly for determining excess. Makes some error but still uses equation. Interprets coefficients as grams.

3 Does not use equation for determining excess. Uses some other method or forgets about coefficients. Student starts the problem.

0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
1 Uses equation correctly for detemining product. Uses the coefficients
2 Uses the equation incorrectly for determining product. Makes some error but still uses equation. Interprets coefficients as grams.

3 Does not use.equation for determining product. Uses some other method or forgets about cnefficients. Student starts the problem.

MOIARITY PROBLIMS

## PROBLLA

1. 0 . Doesn't get this far

1 Hoesn't calculate molecular weight
2 Calculates molecular weight incorrectly
3 Calculates molezular weight correctly
4 Uses molecular weight incorrectly
0 Doesn't get this far
1 Doesn't use definition of molarity
2 Uses definition of molarity incorrectly
3 Uses definition of molarity correctly
4 Error in mL-L conversion
2. 0 Doesn't get this far'
-1 Realizes that volume changes
2 Fails to use volume change

- 31 and 2

4 Uses volume change correctly
0 Doesn't get this far . $5 \quad 1$ and 4
1 Doesn't use-definition of molárity $6 \quad 2$ and 4
2 Uses definition of molarity incorrectly
${ }_{6} 3$ Uses definition on molarity correctly
4 Error in mL-L conversion
9 . 2 and 3

5 Uses molecular weight correct ${ }^{1 .}$
62 and 4
72 and 5
83 and 4
93 and 5
$5 \quad 1$ and 4
$6 \quad 2$ and 4
7 and 4
8 Both definition and mL-L change correct
9 Changes ml -L or vice versa correctly

8 Both definition and mb-L change correct
3. 0 Doesn't get this far . 5 Uses molecular weight correctly

1 Doesn't calculate molecular weight' . 62 and 4
2. Calculates molecular weight incorrectly

3 Calculates molecular weight correctly

- 4 Uses molecular weight incorrectly

72 and 5
$8 \quad 3$ and 4

0 Joesn't get this far
1 Realizes cquation nust lie usal
2 Uses balamied equation correctly
3 Uses balanced equation incorractly
4 Doesn't realize equation must be used
0 Doesn't get this far
1 Doesu't use definition of molarity
2 Uses definition of molarity incorrectly
3 Uses definition of molarity correctly

5 Uses volume change incorrectly
6 Works with vcl.change correctly, stops
7 Doesn't get final volume
8 Ot,ser

MOIARITY
Description of Special Coding Form

Problem 1
0 Doess't get this far. Says he doesn't know how to do problem. Just doesn't begin.

1 Voesn't alculate molecular weight. Uses something else. Assume student gets this far.
2 Calculates molecular weight incorrectly. Makes an error in adding, uses wrong numbers. Do not mark for correct molecular weight of wrong substance.

3 Calculates molecular weight correctly. Gets correct weight even if substance is not proper one.

4 Uses molecular weight incorrectly. Makes irror (other than arithmetic). May use molecular weight of wrong substance.
5 Uses molecular weight correctly.' Use molecular weight to find moles or grams. Disregard aritmetic errors.

62 and 4 Both errors made.
$7 \quad 2$ and 5
83 and 4
93 and 5 Problem correct except for arithmetic errors.

0 . Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
: Doesn't use definition of molarity. Uses something else. Assume student gets this far.

2 Uses definition of molarity incorrectly. Inverts termis or does
something else using molarity.

3 Uses definition of molarity correctly. Process correct. Disregard arithmetic errors.

4 Error in $m \mathrm{~L}$ - L conversion. Makes error, include decimal but not arithmetic. Fails to make the $m \mathrm{~L}-1$ change.

51 and 4 Makes both errors.
62 and 4 Makes both errors.
73 and 4

8 Both definition and mL - L change correct. Problem essentially correct except for arichmetic errors.

9 Changes mL - L or vice versa correctly.

## Problem 2

0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
. 1 Realizes that volume changes. Makes statement or infers it changes.
2 Fails to use volume change. Doesn't incorporate, it in the problem may not realize that it changes.

31 and 2
4 Uses volumê change correctiy. Correct prócess. Disregard arithmetic errors.

5 Uses volume change ircorrectly. Invertsmambers, adds, divides, etc.
6 Works with volume change correctly and stops. Gets only part way.
7 Doesn't get final volume. Forgets last step in adding or sultracting
volumes.
8 Uther
0 Loesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.

1 Doesn't use definition of molarity. Uses something else. Ássume student gets this far. .

2 Uses definition of molarity incorrectly. Inverts terms or does sonething clse using molirity. Should be marked if in part of prollem, definition is used incorratly.

3 Uses definition of molarity correctly. Process correct. Nisregard arithmetic errors. Should be marked if in part of problem; definition is used correctly.

4 Error in mL - L converstion. Makes error, include decimal but not arithmet $C$. Fails to make the $m L-L$ change.
5. 1 and 4 Makes both errors.

62 and 4 Makes both errors.
73 and 4
8 Both definition and mL - L change correct.
92 and $3^{\circ}$ For different parts of the problem.

0 Doesn't get this.far. Says he doesn't know how to do problem. ${ }^{\circ}$ Just doesn't begin.

1 Hoesn't calculate molecular 'weight. Uses something else. Assume student gets this far.

2 Calculates molecular weight incorrectly. Makes an orror in ideling, uses wrong numbers. Do not mark for correct molecular weight of wrong substance.
3. Calculates molecular weight correctly. Gets correct weight even if substance is not proper one.

4 Uses molecular weight incorrectly. Makes error (other than arithmetic): May use molecular weight of wrong substance.
5. Uses molecular weight correctly. Uses molecular weight to find moles or grams. Disregard arithmetic errors.

62 and 4 Both errors made.
7 and 5
83 and 4 ,
93 and 5 lroblem correct except for arithnetic errors.

0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.

1 Realizes equation must be used. Mahes a statement that the equation is required.

2 Uses balanced equation correctly. Uses correct ratios.
3 Uses balanced equation incorrectly. Uses wrong ratios, wrong substances, grams instead of moles, etc.

4 Doesn't realize equation must be used. Works problem without reference to equation.

0 boesn't get this far. Says he doesn't know how to do problen. Just doesn't begin.

1 Doesn't use definition of molarity. Uses something else. Assume student gets this far.

2 Uses definition of molarity incorrectly. Inverts terms or does something else using molaríty.

3 Uses definition of molarity correctly. Process correct. Disregard arithmetic errors.



[^0]:    

    * Feproductions supplied by EDRS are the best that can be made * - from the original document.

[^1]:    134

[^2]:    ${ }^{\text {a }}$ Error. Term $=(1-.16555) / 463=0.001806$
    $\mathrm{b}_{\mathrm{NS}}=$ Nonsignificant

[^3]:    ${ }^{2}$ Error Term $=(1-.17158) / 475-8=.001774$
    $\mathrm{b}_{\mathrm{NS}}=$ Nonsignificant

[^4]:    ${ }^{a}$ Error $\operatorname{Term}=(1-.28569) / 324=.002205$
    $b_{\text {NS }}=$ Nonsignificant

[^5]:    ${ }^{6}$ Count
    Row percentage ${ }^{\text {Con Colum }}$ percentage Total percentage

[^6]:    ${ }^{a}$ Mean
    b Count
    ${ }^{c}$ Sum
    Standard Deviation

[^7]:    ${ }_{b}^{a}$ Mean
    ${ }^{b}$ Count
    c Sum
    Standard Deviation

[^8]:    Count
    ${ }^{\mathrm{b}}$ Row percentage
    ${ }^{C}$ Column percentage
    Total percentage
    Q Mean rank

[^9]:    ${ }^{\text {a Count }}$
    $b_{\text {Row }}$ percentage
    ${ }^{\text {c Col }}$ Cum percentage
    ${ }^{\mathrm{d}}$ Total percentage
    $\mathrm{f}^{\text {Cramer's }} \mathrm{V}$

[^10]:    *Category sum
    ${ }^{2}$ Problem 1
    $b_{\text {Problem }} 2$
    $C_{\text {Problem }} 3$
    eStatistic
    frobabilaty level
    Ssum of rerears and restates subcategories
    ${ }^{\text {h}}$ Section on supplementary coding sheot
    $\mathrm{d}_{\text {SLu }}$ of Problems $1,2 \leqslant 3, i_{\text {sot meaningful }}$

[^11]:    aCount
    brow percentage
    Coluan percentage
    Total percer.tage
    Glean rank
    Cramer's -

[^12]:    ${ }^{\text {a Count }}$
    $\mathrm{b}_{\text {Row percentage }}$
    ${ }^{\text {C }}$ Column percentage
    Total percentage

[^13]:    ${ }^{\mathrm{a}}$ Bascui on all cases.
    Remaining :'s based on those who got that far (except where indicated)

[^14]:    * Correct answer

[^15]:    * Correct answer

[^16]:    咨

