DOCUMENT RESOME

ED 210 192	SE 035 952
A UT HO R	Gabel, Dorothy L.
TITLE	Facilitating Problem Solving in High School Chemistry.
INSTITUTION	Indiana Univ., Bloomington. School of Education.
SPONS AGENCY	National Science Foundation, Washington, D.C.
REPORT NO	NSF-RISE-SED-79-20744
PUB DATE	20 Feb 81
NOTE	680p.: For related document, see ED 202 671. Not available in paper copy due to marginal legibility of original document. Pages 456-462 removed due to copyright restrictions.
EDRS PRICE	MF04 Plus Postage. PC Not Available from EDRS.
DESCRIPTORS	#Intitude Treatment Interaction: *Chemistry:

EDRS PRICEHrow Plus Postage. PC Not Available from EDRS.DESCRIPTORS*Aptitude Treatment Interaction; *Chemistry;
Cognitive Processes; High Schools; High School
Students; *Interviews; *Problem Solving; Science
Education; *Science Instruction; Scientific Concepts;
Secondary School Science; *Teaching Methods
*Science Education PesearchIDENTIFIEPS*Science Education Pesearch

ABSTRACT

The major purpose of this study was to determine whether certain types of instructional strategies (factcr-label method, use of analogies, use of diagrams, and proporticnality) were superior to others in teaching problem solving in four topics (mole concept, gas laws, stoichiometry, and molarity). Also of major interest was whether particular strategies would be more effective for students having different verbal-visual preferences, different levels of mathematics anxiety, and varying proportional reasoning ability. The design was a posttest only control group design. Subjects were 421 high school students drawn from 10 schools which ranged from rural/swall town to metropolitan settings. Among other things, it was found that students of high mathematics anxiety scored significantly lower than did students of low mathematics anxiety, and that students of high proportional reasoning ability scored higher than did students of low ability. Findings related to the artitude by treatment interaction indicate that students with high mathematics anxiety and an absence of another aptitude (visual preference or proportional reasoning ability) profited by instructional methods that contained supportive material that was not mathematical in nature. In a series of followup interviews, it was determined, among other findings, that students who did not understand the chemistry concepts were unsuccessful in problem solving and that students who were more successful used more organizing skills and used mneumonic notation. (SH)

FACILITATING PROBLEM SOLVING IN HIGH SCHOOL CHEMISTRY

é,

Dorothy L. Gabol School of Education Indiana University Bloomington, IN 47405

NSF Technical Report RISE SED79-20744

february 20, 1981

TABLE OF CONTENTS

IST OF FIGURES	v
APTITUDE BY TREATMENT INTERACTION STUDY	1
Background Information	1
Instructional Strategies	1
	2
Mathematics Anxiety	6
Mathematics Address Ability	Ğ
	8
Questions Studied	ğ
Methods and Procedures	9
	9 9
	9 1
MEASUICHEIL UI VOLULA VISUALI IICICICICACIONE	
	2
Measurement of rioporcional neasoning to any to the second	.3
Measurement of Problem Solving Ability	.4
Packet Evaluation	.9
	.9
Instructional Treatments	9
Hvpotheses	26
Statistical Analyses	10
	16
Hypotheses 4	16
Analysis of Questionnaires	56
Summary and Conclusions	58
Tables 4 - 100 6	51
INTERVIEW STUDY	93
Background Information	
Questions Studied	
Methods and Procedures) 5
Sample	95
Procedures	97
	00
	00
Interview Questions	01
	02
Interview Problems	03
	07
Hypotheses	07
Statistical Analyses	υö

ii

Page

TABLES OF CONTENTS, cont.

€₈ 8

	age
Results	<u>'10</u>
Hypothesis 2	218
Hypothesis 4	50 997
hypotnesis 5	25
Hypothesis 6	
Detailed Analysis of Structural Errors	98
Mole Structural Errors	98
Gas Laws Structural Errors	03
.Stoichiometry Structural Errors	07
Summary and Conclusions	12
	1
REFERENCES	23
APPENDICES	
Appendix A: Permission Forms	30
Appendix B: Aptitude Instruments and Item Analyses	38
Appendix C: Reviewer's Comments	66
Appendix D: Dependent Measures and Item Analyses	76
Appendix E: Questionnaires	07
Appendix F: Teacher's Guides	12
	23
	39 55
Appendix I: Schedule Forms 5 Appendix J: Protocol for Conducting Interviews 5	55 E0
Appendix K: Teacher Instructions for Interviews	20 65
Appendix L: Interview Questions, Problems, Answers	68 -
Appendix M: Coding Forms	80
Appendix N: Instructional Units and Tests	rate Cover

ŋ

1

iii

LIST OF FIGURES

Figure			Page	
1.	Memory structures and learning outcomes	•	3	
2.	Summary of design for aptitude x treatment interaction study	•	10	
3.	Schematic diagram for solving moles problems	•	23	
4.	Coding of dummy variables	•	41	
5.	ACS-NSTA Chemistry Achievement Test (ACSTOT): Visual Preference (VVQI) X Treatment (X1-X3) Interaction	•	72	
6.	Nontransfer Items Test (NTR): Proportional Reasoning (P) X Treatment (X1-X3) Interaction	•	79	
7.	Transfer Items Test (TR): Proportional Reasoning (P) X Treatment (X1-X3) Interaction	•	85	
8.	Moles Immediate Posttest (MOQT): Verbal Preference (VVQV) X Visual Preference (VVQI) X Treatment (X1-X3) Interaction.	•	92	
9.	Gas Laws Immediate Posttest (GLQT): Verbal Preference (VVQV) X Visual Preference (VVQI) X Treatment (X1-X3) Interaction	•	95	
10.	Stoichiometry Immediate Posttest (SQT): Verbal Preference (VVQV) X Visual Preference (VVQI) X Treatment (X1-X3) Interaction	•	98	
11.	Molarity Immediate Posttest (MLQT): Verbal Preference (VVQV) X Visual Preference (VVQI) X Treatment (X1-X3) Interaction	•	101	
12.	Stoichiometry Immediate Posttest (SQT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction	•	108	
13.	Moles Immediate Posttest (MOQT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction	•	111	
14.	Gas Laws Immediate Posttest (GLQT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction	•	114	

ΰ

iv

	LIST OF FIGURES, cont.	
re		Page
	Molarity Immediate Posttest (MLQT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction	117

16.	Decimal Subtest (DE): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction
17.	Nondecimal Subtest (NDE): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction, 130
18.	Molarity Delayed Posttest (MLT): Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment (X1-X3) Interaction
19.	Moles Delayed Posttest (MOT): Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment (X1-X3) Interaction
20.	Gas Laws Delayed Posttest (GLT): Verbal Preference (VVQV) & Proportional Reasoning (P) & Treatment (X1-X3) Interaction
21.	Stoichiometry Delayed Posttest (ST): Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment (X1-X3) Interaction
22.	Gas Laws Immediate Posttest (GLQT): Mathematics Anxiety (M) X Proportional Reasoning Ability (P) X Treatment (X1-X3) Interaction
23.	Moles Immediate Posttest (MOQT): Mathematics Anxiety (M) X Proportional Reasoning Ability (P) X Treatment (X1-X3) Interaction
24.	Stoichiometry Immediate Posttest (SQT): Mathematics Anxiety (M) X Proportional Reasoning Ability (P) X Treatment (X1-X3) Interaction
25.	Molarity Immediate Posttest (MLQT): Mathematics Anxiety (M) X Proportional Reasoning Ability (P) X Treatment (X1-X3) Interaction
26.	'Ideal sample versus real samples of students interviewed 196

*

Figure

15.

Q

v۰

One of the basic skills required of high school chemistry students is problem solving. Students frequently lack proficiency in this area yet little research has been conducted that examines strategies that might be used to improve students' problem solving skills. An even more basic area that has not been investigated is the identification and synthesis of those processes students use in solving chemistry problems.

/This project contained two major components. The first centered on instructional strategies that can be used in teaching students to solve chemistry problems to determine their relative effectiveness for different areas of chemistry. The second consisted of recording and analyzing students' thought processes while solving various types of chemistry problems. Each of these components will be considered separately in this report.

APTITUDE BY TREATMENT INTERACTION STUDY

The major purpose for conducting this study was to determine whether certain types of instructional strategies were superior to others in teaching high school students' problem solving in four topics integral to every chemistry course. These topics were the mole concept, the gas laws, stoichiometry, and molarity. In all four areas, the problems require similar algebraic and proportional reasoning skills. Also of major interest was whether particular strategies would be more effective for students having different verbal-visual preferences, different levels of mathematics anxiety, and varying proportional reasoning ability.

Background Information

Instructional Strategies

The effectiveness of four instructional strategies that are commonly used

Ð

in high school chemistry courses was compared. These were: the factor-label method, the use of analogies, the use of diagrams, and proportionality.

The use of these four strategies can be seen in relation to the summary of memory structures and learning outcomes presented by Gagne and White (197^8) . They posulated that four memory structures lead to knowledge stating and rule application as shown in Figure 1. In this research, rule application is of particular interest because it is made manifest in the problem solving ability of the students.

Of the four types of memory structures postulated by Gagne and White, two are directly related to the instructional strategies employed in this study. The memory structure entitled "images" is of particular importance because two of the teaching strategies used as treatments present to the student images that may aid his/her problem solving skills (rule application). These strategies are the use of analogies in which chemical species are compared to physical objects, and the use of diagrams that represent the steps in problem-solving processes. The other two strategies, the factor-label method and proportionality, are related to the memory structure called intellectual skills. These two methods attempt to instill in the student systemmatic procedures for problem solving. Once acquired by the student, each could be called an intellectual skill.

The major difference in the four strategies is that in the first two cases, emphasis is placed on the student's image forming capability. The student can then use this in conjunction with the intellectual skills that he formulates and that are not stressed in the instructional units. In the latter two cases, the acquisition of the intellectual skill is directly taught but without the aid of imaginal adjuncts.

Verbal-Visual Preference

As mentioned in the previous section, two of the instructional strategies involved the use of images. The work of Paivio (1969, 1971) has been the basis

for much of the renewed interest in mental imagery. In his review article (1969) and in his book (1971) he has shown that the imagery envoking ability of nouns was separate from the previously used idea of meaningfulness. His theory classifies nouns as either being 'abstract' (lacking in imagery envoking ability) or 'concrete' (high in imagery envoking ability). He posulates a dual coding model hypothesis of independent verbal and imaginal memory coding structures. His later experiments with Csapo (1973) tended to support his dual coding hypothesis.

Other theorists have discussed imagery to some extent. Bruner et al. (1966) tends to view imagery (iconic representation) as a more primitive state of thought than verbal processes. (symbolic representation). In their view, the imagery function diminishes as the verbal processes stabilize (age 7-8). Piaget (Piaget and Inhelder, 1971) takes a view more along the lines of Paivio's dual coding model. While Piaget suggests that the imagery ability of children goes through stages in somewhat a similar fashion to verbal ability, he indicates both modes of representation are available and used depending on the learning situation. Work by Forisha (1975) in which she measured the relationship between imagery ability and verbal ability and its change with age tended to support Piaget/Paivio theory of independent abilities instead of the Bruner theory.

The recent ACT model of cognition developed by Anderson (1976) tends to take a more propositional view of the representation of knowledge. While he states his model does not completely refute the dual coding hypothesis of Paivio he indicates that many of the results that have been found to support the dual coding hypothesis may be explained by a propositional network representation (p. 23, 394, 404).

A slightly different approach to the theory of cognition is taken by Munro and Rigney (1977). Their model, labeled schema theory, is less centralized, than the Anderson model and allow the flow of processing control to be determined by the interactions among the conceptual entities (schemata) that make up the model.

Imagery could be considered to be interactions among schemata at a deep level of processing.

Several studies by Holliday and his associates have looked at comparisons of imagery and verbal instructional strategies in science instruction. In three studies by Holliday (1975, 1976a,b) the results point towards the superiority of a dual presentation of verbal plus diagram techniques versus strictly verbal presentations. Other studies by Holliday and Harvey (1976) and Holliday, Brunner and Donais (1977) tend to support the dual coding model although ordinal interactions with verbal ability in some studies (Holliday, 1976; Holliday, Brunner and Donais, 1977) made direct interpretation difficult.

Earlier work by Weisberg (1970), Dwyer (1972), and Arnold and Dwyer (1975) also tends to support the claim that both adults and children learn scientific concepts better when pictures or images are presented. As with the previous studies, however, these experiments did not deal with problem solving.

Studies in which problem solving was the instruction being undertaken are less common in the literature. Ernest (1977), in her imagery review article, denotes only one page of thirty-five to the topic on imagery and problem solving.

Early work by Frandsen and Holder (1969) used a spatial relations test as ' the measure of imagery and then developed instruction for experimental versus noninstructional control groups. Significant gains were made by the instructed group over the control group, but only for low spatial ability students.

Dreistadt's (1969) use of 'visual pictorial analogies' produced significant results for students who had the analogies as compared to the control group. This is consistent with the results of Atkinson's (1975, Atkinson and Raugh, 1975) work with analogies and second language learning. Although the analogies used by Atkinson were not visual they were of a nature such that students using them usually produced an image of the foreign word in a visual situation. Atkinson uses the example (1975) of the Spanish work for duck pato (pronounced "pot-o"). The English 'keyword' is pot and the student is encouraged to visualize a duck

12

with a pot on its head. Strong results have been shown for this 'keyword' technique for both Spanish and Russian vocabulary.

Other studies in which an imagery component has seemed to make a difference are Shaver, Pierson, and Lang's (1974) work on syllogistic reasoning problems and their relationship to imagery and the computer-generated graphics experiments of Rigney and Lutz (1976). Shaver et al. showed that spatial type problems resulted in fewer errors and Rigney and Lutz's experiments indicated that verbal-graphical instruction was superior to verbal instruction on a chemistry concept.

In summary, the literature indicates that the use of techniques that allow mental imagery as an alternate method of coding are superior to strictly verbal techniques for many students. However, neither the dual coding hypothesis or the propositional network theories can completely explain all results.

Mathematics Auxiety

In the past few years there has been increased interest in mathematics anxiety. Auslander(1977), Blum (1977), Mitzman (1976), Sells (1978) and Tobias (1974) have shown that persons suffer from anxiety that is stimulated when they are in mathematical problem solving situations.

The relationship between mathematics anxiety and science achievement has been investigated for subject areas other than chemistry. Barnes (1977) has shown that mathematics anxiety is a predictor o. emester grades for lower division college physics students. Sherwood and Gabel (1980) found that it was a weak predictor of success in a basic science skill course for preservice elementary teachers. Because success in chemistry involves being able to solve mathematical problems, it is likely that mathematics anxiety and success in chemistry are positively correlated.

Proportional Reasoning Ability

Examination of the problems involved in chemistry shows that the great

majority of them require students to use proportional reasoning (Wheeler and Kass, 1977). Chemistry students, however, find these kinds of problems most difficult to solve. Data obtained in the study by Gabel and Sherwood, (1979) showed that not only the questions the students found most difficult were 56% problems, but that every problem involved proportional thinking. This finding, however, comes as no surprise because proportional reasoning according to Piaget (Inhelder and Piaget, 1958) is the most primary schema the characterizes the formal operational stage of development. Yet recent evidence indicate that at least 50% of high school students do not operate on the formal operational level (Chiapetta, 1976; DeCarcer, et.al., 1979; Karplus and Peterson, 1970; Lawson and Renner, 1974; Lovell, 1961; Lunger, 1965; Wollman and Karplus, 1974).

In the past few years there has been an increased interest by science educators in examining more closely reasons why students have difficulty using the proportionality schema (Karplus, karplus and Wollman, 1974; Wheeler and Kass, 1977) and in devising training programs that are effective in teaching the schema (Kurtz and Karplus, 1979; Wollman and Lawson, 1978). In the latter two studies favorable results were obtained with seventh graders and prealgebra ninth and tenth graders, but the improvements were made in relation to mathematics, not proportionality as applied to science.

The most comprehensive study of chemistry and proportionality has been reported by Wheeler and Kass (1977). They found that success in chemistry (particularly problem-solving) was dependent on students proportional reasoning ability and that frequently students used an additive approach to solving chemistry problems. In the conclusions of this study they suggested, as did Herron (1975), that the use of the factor-label method may aid students in overcoming this proportionality handicap in problem solving.

This study tested not only the effectiveness of the factor-label method for use in problem solving but three other methods as well. The two more

14

visual approaches (analogies and diagrams) might be considered more concrete than the verbal approaches and may be more effective for concrete learners (students with low proportional reasoning abi__ty). Although recent studies have shown that concrete methods of instruction enhance science achievement in general for both formal and concrete students (Gabel and Sherwood, 1980a,b; Gerson & Primrose, 1977; Goodstein and Howe, 1978; Renner and Paske, 1977; and Sheehan, 1970), specific application to problem solving in chemistry has not been addressed, and differential results are feasible.

The fourth method for teaching problem solving was using proportionality. On the surface it would apprear that this method would be most positively correlated with students' proportional reasoning ability.

Questions Studied in the Aptitude X Treatment Interaction Study

The following questions were addressed in this study:

1. Are there differences in chemistry problem solving ability as measured by scores on immediate and delayed posttests for the selected topics and on a final examination according to students' proportional reasoning ability?

2. Are there differences in chemistry problem solving ability as measured by scores on immediate and delayed posttests for the selected topics and on a final examination according to students' verbal-visual preference?

3. Are there differences in chemistry problem solving ability as measured by scores on immediate and delayed posttests for the selected topics and on a final examination according to students' level of mathematics anxiety?

4. Are there differences in chemistry problem solving ability as measured by scores on immediate and delayed posttests for the selected topics and on a final examination according to the teaching strategy employed?

5. Are there any interaction effects between the teaching strategy employed, students verbal-visual preference, students' mathematics anxiety level and students' proportional reasoning ability that result in differences in chemistry

15

problem solving ability as measured by scores on immediate and delayed posttests on each of the four topics and on a final examination?

6. Are there any differences in chemistry problem solving ability as measured by scores on the sum of transfer items of the posttests according to teaching strategy employed, students' verbal-visual preference, students' mathematics anxiety level, and students' proportional reasoning level.

7. Are there any differences in chemistry problem solving ability when the problems contain decimals, according to teaching strategy employed, students' verbal-visual preferences, students' mathematics anxiety level, and students' proportional reasoning level?

8. Are there any differences in chemistry problem solving ability as measured by the ACS-NSTA Chemistry Achievement Test according to the amount of notation students used in solving the problem?

9. Do students who solve a chemistry problem taught by different strategies vary in amount of the notation they use to solve the problem?

10. Are there any differences in the amount of time spent in completing a lesson on the gas laws or molarity where the teaching strategy is mismatched with the students' verbal-visual aptitude versus when it is matched?

11. Are there any differences in the time spent in completing a lesson on the gas laws or molarity when the teaching strategy is mismatched with the students' proportional reasoning ability?

Methods and Procedures

Experimental Design

1

The design used for this Aptitude by Treatment Interaction experiment was basically a "Posttest only Control Group Design" described by Campbell and Stanley (1963, p.25). Figure 2 summarizes the design. Sample

The minimum number of subjects that Cronbach and Snow (1977, p.46) recommended

ERIC Full Text Provided by ERIC

16

- Where: A = Aptitude measures (proportional reasoning test, mathematics anxiety test, and verbal-visual preference).
 - R = Random assignment of subjects to treatments.
 - WXYZ = The instructional treatments on the four chemistry topics (moles, gas laws, stoichiometry, and molarity. Subscripts indicate the four treatments, factor-label, analogies, diagrams, and proportionality).
 - $O_1 O_4$ = Immediate posttests given after each lesson. These scores were summed for the analysis.

17

- O_{c} = Delayed posttests.
- O_6 = ACS-NSTA Examination in High School Chemistry.

Figure 2. Summary of design for aptitude x treatment interaction study.

 $\{\cdot\}$

for aptitude by treatment interaction studies is 100 per treatment. Permission was obtained from ten teachers and their school corporation/principals in eight school corporations in central and southern Indiana to participate in the experiment. The school systems involved included a wide range of school types, i.e., nural/small towns, moderate size cities, suburban and inner city. Three schools could be considered to be rural/small town high schools (school population 1000 or less). These three schools represented approximately 24% of the total sample. Three schools were from moderate size cities (school population 1200-1800). These represented approximately 50% of the sample. One school was in a suburb of a major metropolitan area (school population approximately 1400). This school rapresented approximately 16% of the sample. The final school was an inner city school from the same metropolitan area as the previous school (school population over 2000). This school represented 10% of the sample.

From these schools, 609 students in first year chemistry classes were administered the aptitude measures. Due to schedule changes, absences, and missing data, 421 students completed the entire experiment. Individual permission from the student and/or parent was obtained before the commencement of the treatments. Copies of principal/school corporation forms, student permission forms, and Human Subjects Summary Safeguard Statements are included in Appendix A.

In addition to obtaining written consent from each school, the principal investigator had a conference with the principal in each of the eight schools. Its purpose was to describe the objectives of the experiment and clarify pror cedures that would be used.

Measurement of Verbal-Visual Preference

Students' verbal-visual preference was measured by a modification of the Paivio Individual Differences Questionnaire (IDQ). A factor analytic study recently reported by Paivio (1979) indicated a strong two factor solution for a

15

54 item subset (31 verbal, 25 imagery) of the 86 item questionnaire. Paivio's scoring method of producing a verbal and an imagery score for each person was followed. Because the instrument utilizes a true-false format, subjects were given one point of their verbal score when they agreed with the scoring key on a verbal item and one point on their imagery score for agreement. Items which did not agree were ignored.

While no direct measurement of reliability was reported by Paivio in the original development (1971, p. 495) or in the recent factor analytic study (1979), a shortened form (15 items) used by Richardson (1977) had a reliability of 0.93 using the test-retest method. Paivio did report a correlation of greater than 0.9 between the 54 item instrument and the longer 86 item instrument. Alpha reliability based on our data of the verbal scale was found be to .84 and of the visual scale .73.

The paper and pencil format of the test allowed adiminstration in a relatively short time span (approximately 20 minutes). Items were coded directly on optical scan coding sheets. Appendix B contains the modified IDQ and directions for administration. Students were administered this instrument during the first three weeks of school in seven of the eight schools. (The inner city school was not in session due to a labor dispute and the administration was delayed until the end of the semester.)

Measurement of Mathematics Anxiety

The Mathematics Anxiety Rating Scale was used to measure students' mathematics anxiety. This instrument is a 98 item self-rating scale in which students are asked to describe their anxieties as they currently exist. Each item on the scale represents a situation that may arouse anxiety within the subject. The subject decides the degree of anxiety aroused and marks the corresponding amount (not at all, a little, a fair amount, much, or very much) on the instrument. In order to facilitate scoring, students marked answers directly on optical scanning

19

sheets instead of on the copies of the instrument. A copy of the MARS which was developed by Suinn, is found in Appendix B.

Administration of the scale required approximately 20 minutes. Teachers selected their own preferred time of administration during the first semester. The alpha relability of the scale was found to be .97.

Measurement of Proportional Reasoning Ability

The proportional reasoning section of the Staver (1978) instrument offered a compromise between conducting Piagetian interviews with each student and administering a strictly paper and pencil instrument. The ideal situation would be to administer clinical interviews to the students. The number of subjects, however, did not make this approach practical. The video-tane format with a written response sheet was used in a modification of the Staver instrument. In order to increase the number of items, more tasks were added to the Staver instrument. These were the "two cylinder task" of Lawson's (1978) overall test of formal operations and the "disks task" developed by Wollman and Lawson (1978). The developers of these tasks indicated that they had strong content validity and the tasks were well suited to a video-tape presentation. Bady (1978) has indicated that multiple tasks are needed for Piagetian task tests.

Administration time for the instrument was approximately 30 minutes. Appendix B contains the written portion of the instrument and administration instructions. The test was administered during the same day that the verbal-visual questionnaire was given.

20

Measurement of Problem Solving Ability

Problem solving ability was measured in five different ways. These were by immediate posttests, delayed posttests, the ACS-NSTA Chemistry Achievement Test, transfer items from the delayed posttests, and decimal items from the immediate posttests. Each will be discussed separately.

<u>Immediate Posttests</u>. Students' immediate ability to solve numerical chemistry problems for each unit of instruction was measured by their scores on short tests given afer each lesson within a given unit. Each of the four units (moles, gas laws, stoichiometry and molarity) contained three or four lessons that took one to two days to complete. When a student completed a lesson, he was administered a multiple choice test of 4 - 6 items that contained problems similar to those taught in the lesson. Although the test questions for each treatment were identical, a short reminder of the treatment techniqué was printed at the top of the first page of each test. This was done in order to encourage students to learn to solve the problems by the method presented in their own booklets and to discourage exchanging booklets with their friends.

Due to the short length of these tests, their proximity of administration, and their similar domain of instruction, scores from tests on individual lesson's were summed to produce an immediate posttest score for each unit. The types of items on these immediate posttest were similar for all units in that two of the items on each of the tests were always the same in content but differed in that one problem presented data in decimals whereas the other did not.

All of the test items were critiqued by a chemist and two chemistry educators (not associated with the development) for accuracy and appropriateness for the unit. The chemical educator reviewers' comments are found in Appendix C Copies of the tests are found in Appendix D and in Appendix N inserted after

21

each instructional unit. An item analysis is found in Appendix D. Table 1 gives the reliability and composition of each of the unit posttests.

Delayed Posttests. Within two weeks after completing all lessons in a given unit, teachers administered the delayed posttests for each unit. This was a ten item multiple choice test that contained problems similar to those taught in the unit and in the immediate posttests. These items were also scrutinized by a chemist and chemistry educator.

On every test at least one transfer item was included. This was a problem that had never been presented in the instructional unit but the student should have been able to answer if he understood the material that had been presented. Table 2 gives the reliability of the delayed posttests. Copies of the unit tests are found in Appendix D. They occur also at the end of each unit in Appendix N. Item analysis are contained in Appendix D. Reviewers' comments on test items appear in Appendix C.

ACS-NSTA Chemistry Achievement Test. The ACS-NSTA Cooperative Examination, High School Chemistry Form 1975, Part I was administered by classroom teachers during the final month of the school year after all four instructional units had been completed. In several schools both the regular and scrambled version of the test were given to eliminate the possibility of cheating. This test is commonly given in schools as a final examination and measures facts, concepts, and problem solving skills. Part I of the 1975 examination was selected because it contained the largest number of items that were related to the problems taught in the instructional units. It contains 40 items and has an administration time of 40 minutes. The alpha reliability of the regular form was found to be .75 (n = 410) and the scrambled form .55 (n = 146). Ten of the 40 items were directly related to problems taught in the units. Reliability on the regular and scrambled form for a subtest consisting of these items were .67 and .33 respectively. Nonproblem items had reliability of .74 and .37 respectively. Copies of the instrument

Table 1

Description and Reliability Coefficients

of Immediate Posttests				
Unit	No. of Lessons	Total No. of Items	No. of Cases	Coefficient Alpha
Moles	4	21	498	.76
Gas Laws	3 ,	12	496.	.66
Stoichiometry	3	12	507	.73
Molarity	3		434	.75
Molarity	5			

23

16

I

3

	*		1	able 2		¢
		Desci	ription and	Reliability Coeff	icients	3
			of Del	ayed Posttests		۰ ــــــــــــــــــــــــــــــــــــ
	<u>Units</u>	To of	otal No. E Items	Transfer Items	No. of Cases	Coefficient Alpha
	Moles),	10	4,9	498	.69
	Gas Laws		10	3,6,10	496	.73
	Stoichiometry		10	5,9	507	.81
	Molarity	,	10	5,7,10	434	.71
						:
		. •				
•			•			
	κ γ πθ κ			• • • • • • •		;
	• • •					
	• • •					
	;			٠. ب		
	ı			N*	-	
	•		•		`	Ϋ́,
$\sum_{i=1}^{n}$						· · · ·
			,			x
·					•	٤
• • •						, ,
	\ .			,		
•••			, ,		•	
•		×	, ,		.	

ŧ

17

\$...

,

are not given in the appendix because of the confidential nature of the test but are available from the Examination Committee - ACS. An item analysis of each form of the instrument is fourd in Appendix D.

As a check to see if students were using the strategy taught (factorlabel, etc.) to solve the problems and also to examine their use of using units (mneumonic notation) students were asked to show their work for problem 12 (problem 29 on the scrambled version), a stoichiometry problem. Their responses were then coded as to whether students used the strategy taught and the degree of using notation (none, minimal, complete). Agreement of two raters on a samplempf the responses (n = 33) was 87.8%.

<u>Transfer Items Test.</u> Inserted in each of the delayed posttests was at least one transfer item. As mentioned previously, these items consisted of problems that were not directly taught in the instructional units. The units did contain enough information so that if students understood the concepts they should have been able to work the problems. As an independent check to verify that these items were truly transfer items, the tests and instructional units were sent to two chemistry educators. They were asked to identify any transfer items given in the tests. Agreement of one science educator was 90%. Agreement of the other was 80%. At least one of the two outside evaluators agreed with each item included as transfer items.

The ten transfer items from the four posttests were grouped together and treated as an additional dependent measure. The alpha reliability of this subtest was found to be .48 (n = 434). The non-transfer items (30) had a reliability of .81 (n = 435).

Decimal Items. One of the reasons students may have difficulty in solving chemistry problems is because of their inability to handle problems containing decimals. In order to test this hypothesis, the test following every lesson in each unit contained two problems that were identical in concept but differed in

ERIC Full Text Provided By ERIC

25

that one of the problems contained decimals and while the companion item contained whole numbers. These decimal items and their companion items formed two subtests across the four instructional units containing 13 items each. The alpha reliabilities of these subsets were .40 and .57 respectively (n = 421).

19

Packet Evaluation

At the end of the semester, students were asked to evaluate the instructional strategy and the materials that they used to learn to solve problems. Students * answered anonymously on the particular strategy they used. Questions were also included to determine how much contamination there was between the treatments. The questionnaires used are found in Appendix E.

Evaluation According to Time

After a presentation of the progress of this project at an NSI director's meeting in March, 1980, a suggestion was made that a comparison of the length of time it took students to complete units might be of interest. Students whose aptitudes were in opposition to the strategy with which they were taught to solve problems might take longer to complete the units than students for whom these matched.

By the time plans could be made to implement these, many teachers had completed the units. It was possible to have two teachers ask students to recored the time spent to complete the gas law lessons and three ceachers for molarity lessons. Students recorded the time when they began a lesson and the time at which they reached the supplementary practice problems. Some teachers also had students note whether they used a calculator to obtain the answers.

Instructional Treatments

During the fall semester of 1979-80 school year, the four instructional units according to each of the four teaching strategies were developed. Each unit consisted of a brief Teachers' Guide and Student Materials.

The Teachers' Guides (Appendix F) contain a list of prerequisite skills the students would need to have accomplished before beginning each lesson of the unit, the objectives of each lesson of the unit, and answers to the immediate posttests and to the delayed posttests.

Students ⁴ Guides contained three to four lessons each of which included an introduction, several self-programmed sections on the concepts to be learned, summary section with extra practice problems, and a sheet containing answers and solutions to the problems. These practice problems were not presented in the same order as the topics were introduced and were optional. The reason they were included was to try to control the amount of time students in each treatment spent studying the unit. If students finished the required material with extra time before the immediate posttest was to be administered they were directed to work on the extra practice problems. The Student Guides are found in Appendix N. Table 3 summarizes their content.

In addition to the Student Guide, students were given a Review Sheet that contained a brief summary of the method used to solve the problems and some .sample problems. These were to be used to study for the Unit Tests because teachers had collected their Student Guides. Copies are found in Appendix C.

Development of the units was a very time-consuming process. After the first draft of each unit was completed, the units were scrutinized by a chemist for chemistry errors, clarity of wording and overall suitability. Units were then revised taking into account the suggestions for improvement.

A final critique of the units was made by two chemistry educators." Their comments are found in Appendix C. They were asked to make judgements about the reasonal eness of the objectives, the adequateness of the prerequisite skills and coverage of the topics, the existence of chemistry errors and the matching of the instruction with the objectives. Chemistry errors discovered at this stage were sent to teachers via errata sheets.

20

	rubio d	
·	Instructional Units	5
	<u>د</u> او	
Unit	Lesson	Title
Mole Concept	1	The Mole as Number
Mole Concept	2	The Mole as Volume
Mole Concept	3	The Mole as Mass
Mole Concept	4	Mass, Volume and Particles
Gas Laws	1	Volume and Pressure
Gas Laws	2	Volume and Temperature
Gas Laws	3	Volume, Temperature and Pressure
Stoichiometry	:	Relationships from Equations
Stoichiometry	2	Mass Relationships
Stoichiometry	. 3	Volume Relationships
Molarity	, ^ 1	Definition of Molarity
Molarity	2	Diluting and Concentrating
Molarity	3	Acid-Base Reactions
-		

Table 3

o

Units were written using four different teaching strategies: the factor-label method, the use of analogies, the use of diagrams, and proportionality. Each method had some commonalities, but some major differences.

The focus of the factor-label method was on the importance of estimating methods to obtain correct answers by looking at the units of the given values. Students were shown how the units 'cancel out' in the calculations and how incorrect answers may be determined by looking at the units of the answer. A sample problem (from the mole as ideal gas volume unit) was: "If a sample 0_2 gas had a volume of 89.6 liters at STP, how many moes would be represented?" The factor-label method would indicate to the student that they should set up their factor (1 mole = 22.4 liters) so that the liters will cancel:

89.6 liters $0_2 \times \frac{1 \text{ mole}}{22.4 \text{ riters}} = 4 \text{ moles } 0_2$

The analogy method used common examples to help students understand the relationship needed to solve the problem. Examples used both the common examples and chemical examples to work the problems. The gas law problems' analogy was that of a shipping carton of fruit. No matter what size the fruit was the volume for a dozen fruit was always 3 pints. The problem, "Now many dozen of fruit would fit into a delivery box that had a volume of 54 pints?" was worked j diately before the 89.6 liters of 0₂ problem was shown. Mathematically the analogy problems were identical to the diagram problems:

 $\frac{89.6 \text{ liters } 0_2}{22.4 \text{ liters/mole}} = 4 \text{ moles } 0_2$

The diagrammatic method used the diagram (or sections of the diagram) pictured in Figure 3. Students were shown that certain steps (boxes on the diagram) must be taken in order to reach the desired answer. In some situations (in which multiplication was used) the diagrammatic and factor-label methods

2)

Figure 3. Schematic diagram for solving moles problems.

ERIC

were very similar. When division was indicated by the diagram, however, they differed in that the factor-label method used multiplication by a reciprocal rather than division. The gas law problem would be set up as:

$$\frac{89.6 \text{ liters } 0_2}{22.4 \text{ liters/mole}} = 4 \text{ moles } 0_2$$

The proportionality method us w' techniques of the form $\frac{A}{B} = \frac{C}{X}$ to help the students determine the value of X. While the fact that the units 'cancel out' to yield reasonable units for the answer was discussed, this was not emphasized. For the gas volume problem, the students were shown that the problem could be solved by the use of a simple proportion:

$$\frac{X}{89.6 \text{ liters } 0_2} = \frac{1 \text{ mole}}{22.4 \text{ liters}}$$
(X) (22.4 liters) = (89.6 liters 0_2) (1 mole)

$$X = \frac{(89.6 \text{ liters } 0_2) (1 \text{ mole})}{(22.4 \text{ liters})} = 4 \text{ moles } 0_2$$

While all the methods had differences, the canceling of units was carried out in all four types.

The instructional units were administered by teachers in their classrooms. Prior to their administration, a meeting was held which eight of the ten teachers participating in the study attended. (One teacher had another commitment and the other was on strike. Procedures were explained to them individually.) The purpose of the meeting was to give the teachers an overview of the project, describe differences in instructional strategies and discuss procedures to be used and appropriate follow-up activities that would be suitable. Every effort was made to try to form a partnership with the teachers in doing the study.

The following procedures were agreed upon:

1. Students would be assigned randomly to treatments by each teacher

ERIC Full Text Provided by ERIC

. \$.

dividing each of his classes into four convenient groupings. He would label these groups one through four. The numbers one to four were then drawn from a lot at a later date and the teachers notified which instructional strategy corresponded to which number.

2. Each instructional strategy would be color coded to facilitate distribution of the same strategy to the same students across the four units (13 lessons). The color coding was a follows: factor-label = yellow, analogies = blue, diagram = green, and proportionality = pink. Immediate posttests and review sheets were color coded in the same way.

3. Instructional units were to be used in the classroom. Individual lessons would be distributed at the beginning of the period. Students worked on these individually but they could consult other students using the same strategy (color) or could obtain help from their teacher. The lessons varied in length over the various topics and took between 40 minutes - two hours to complete. Because the length of periods varied greatly in the schools, in some cases students finished in one period whereas in others three periods were required. If students did not finish a lesson by the end of the class period, the booklets were collected and redistributed the next day. Booklets eventually were returned to the university.

4. Immediate posttests would be given when the students in the class were finished with the instructional booklets. All teachers permitted students to use hand calculators to work the problems. Tests were corrected by the teacher who then returned them to the investigator. Answers were then transferred to optical scanning sheets for data processing.

5. After students completed the lessons, the teachers in some instances desired to follow up these lessons with supplementary work. In these cases, teachers were asked to use the method of showing that the units cancel. This

32

was common to all four instructional strategies. Although there is no guarantee that teachers did this in every instance, every teacher was observed at least twice and some as many as four times while they were administering the units or taught their classes immediately following the units.

6. After all of the lessons in a given unit were completed (including the immediate posttests), teachers would give a review sheet to each student that corresponded to the instructional treatment assigned. The review sheet which contained a summary of the method and sample problems provided the student with a study guide to prepare for the delayed posttests that were to be administered within two weeks of completing the lessons. It was thought that these review sheets would encourage students to use the same method that they were taught in class but yet would be too sketchy to enable students to lear. a completely different method than the one to which they were assigned. Teachers corrected the delayed posttests and sent the test sheets to the university where answers were transferred to optical scanning sheets.

The teachers' use of the units was monitored by visits to their classrooms during and after the use of the booklets. Discussions were also held with the teachers during data collection visits and by phone to determine if any instructional problems had occurred with the content of the units or with the administrational procedures. Some minor typographical errors were found and corrected. Overall, the instruction was applied as outlined in the previous sections.

Hypotheses

The dependent variables referred to in hypotheses 1 - 63 are as follows: 1. The immediate posttests (QT) for each of the four instructional treatments: moles (MO), gas laws (GL), stoichiometry (S), and molarity (ML).

33

2. The delayed posttests (T) for each of the four instructional treatments listed in 1.

3. The ACS-NSTA Chemistry Achievement Test (ACSTOT).

4. The ACS-NSTA Problem Subtest (ACSPROB) and Nonproblem Subtest (ACSNPROB).

5. The Transfer Test made of 10 items from the delayed posttests (TRANST) and the remaining items (NTRANST).

6. The Decimal Test made of 13 items from the immediate posttests (DECMILQ) and the equivalent items (NDECMILQ).

Hypotheses tested in this aptitude by interaction study are as folkows:

1. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the aptitude of verbal or visual preference to the multiple linear regression equation.

2. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the aptitude of mathematics anxiety to the multiple regression equation with the variance due to verbal and visual preference removed.

3. There is no significant increase in the percentage of variance ac counted for in each dependent variable by the addition of the aptitude of proportional reasoning ability to the multiple linear regression equation with the variance due to verbal-visual preference and mathematics anxiety removed.

4. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of dummy variables coded for treatments, with the variance due to the three aptitude measures removed.

5. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of a dummy variable

34

coded For the f.ctor-label treatment with the variance due to the three . aptitude measures removed.

6. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of a dummy variable coded for the analogy treatment with the variance due to the aptitudes and previous treatment measures removed.

7. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of a dummy variable coded for the diagram treatment, with the variance due to the aptitudes and previous treatment measures removed.

8. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the combination of dummy variables coded for the proportionality treatment with the variance due to the aptitudes and previous treatments removed.

9. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the six variables representing the verbal or visual preference by treatments interaction with variance due to aptitudes and treatments removed.

If hypothesis nine is rejected, hypotheses ten through thirteen will be tested.

10. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference by factor-label treatment interaction with variance due to aptitudes and treatments removed.

11. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference by analogy treatment interaction

35

28a

with variance due to aptitudes, treatments and verbal or visual preference by previous treatment interaction removed.

28b

12. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference by diagrammatic treatment interaction with variance due to aptitudes, treatments and the other verbal or visual preference by treatment interactions removed.

13. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference by proportionality treatment interaction with variance due to aptitudes, treatments, and the other verbal or visual preference by treatment interactions removed.

14. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the three variables representing the mathematics anxiety score by treatments interaction with variance due to aptitudes, treatment, and verbal or visual preference by treatment interactions removed.

If hypothesis 14 is rejected, hypotheses 15 through 18 will be tested.

15. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety by factor-label treatment interaction with the variance due to aptitudes, treatments, and verbal or visual preference by treatment interactions and removed.

16. There is no significant increase in the percentage f variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety by analogy treatment interaction with variance due to aptitudes, treatments, verbal or visual preference by treatment interactions and the previous mathematics anxiety by treatment interactions

removed.

17. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety by diagrammatic treatment interaction with variance due to aptitudes, treatments, verbal or visual perference by 'treatment interactions, and mathematics anxiety by treatment interactions removed.

18. There is no significant increase in the percentage of variance accounted for in the dependent variable matrix by the addition of the variable representing the mathematics anxiety by proportionality treatment interaction with variance due to aptitudes, treatment, verbal or visual by treatment inter tion and mathematics anxiety by treatment interactions removed.

19. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the three variables representing the proportional reasoning ability by treatments interaction with variance due to aptitudes, treatments, verbal-visual preference by treatment interactions and mathematics anxiety by treatment interactions removed.

If hypothesis 19 is rejected, hypotheses 20 through 23 will be tested. .

20. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable accounted for in each dependent variable by the addition of the variable representing the proportional reasoning by the factor-label treatment interaction with the variance due to aptitudes, treatments, verbal or visual preference by treatment interactions and mathematics anxiety by treatment interactions removed.

37

21. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the proportional reasoning ability by analogy treatment interaction with variance due to aptitudes, treatments, verbal or visual by 'treatment interactions, mathematics anxiety by treatment interactions, and the previous proportional reasoning by factor-label treatment interaction 'removed.

30

22. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the proportional reasoning by the diagrammatic treatment interaction with variance due to aptitudes, treatments, verbal or visual by treatment interactions, mathematics anxiety by treatment interactions and previous proportional reasoning by treatment interactions removed.

23. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the proportional reasoning by proportionality treatment interaction with variance due to aptitudes treatments, verbal or visual by treatment interactions, mathematics anxiety by treatment interactions and proportional reasoning by treatment interactions removed.

24. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the three variables representing the verbal preference - visual preference by treatments interactions with the variance due to all previous aptitudes, treatments and interactions removed.

If hypothesis 24 is rejected, hypotheses 25 through 28 will be tested. 25. There is no significant increase in the percentage of variance

ERIC

accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference by factor-label treatment interaction with the variance due to all previous aptitudes, treatments and interactions removed.

31

26. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference by analogy treatment interaction with the variance due to all previous aptitudes, treatments and interactions removed.

27. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatments; and interactions removed.

28. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference by proportionality treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

29. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the six variables representing the verbal or visual preference - mathematics anxiety by treatments interaction with the variance due to all previous aptitudes, treatments and interactions removed.

If hypothesis 29 is rejected, hypotheses 30 through 33 will be tested.

30. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal and visual preference - mathematics anxiety by

factor-label treatment interaction with the variance due to all previous aptitudes, treatments and interactions removed.

31. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal and visual preference - mathematics anxiety by analogy treatment interation with the variance due to all previous aptitudes, treatments, and interactions removed.

32. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal and visual preference - mathematics anxiety by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatment, and interactions removed.

33. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal and visual preference - mathematics anxiety by proportionality treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

34. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the six variables representing the verbal or visual preference - proportional reasoning ability by treatments interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

If hypothesis 34 is rejected, hypotheses 35 through 38 will be tested.

35. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - proportional reasoning ability by factor-label treatment interaction with the variance due to all previous

4()

32

entitudes, treatments, and interactions removed.

0

36. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - proportional reasoning ability by analogy treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removes.

37. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - proportional reasoning ability by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatments and interactions removed.

38. There is no significant increase in the precentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - proportional reasoning ability by proportionality treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

39. There is no significant increase in the percentage of variance accounted for in each dependent variable by the add tion of the three variables representing the mathematics anxiety - proportional reasoning ability by treatments interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

If hypothesis 39 is rejected, hypotheses 40 through 43 will be tested.

41

40. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety - proportional reasoning ability by factor-label treatment int raction with the variance due to all previous aptitudes, treatments, and interactions removed.

41. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety - proportional reasoning ability by analogy treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

42. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety - proportional reasoning ability by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

43. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the mathematics anxiety - proportional reasoning ability by proportionality treatment interaction with the variance due to all previous aptitudes, treatments, and interaction removed.

44. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the three variables representing the verbal preference - visual preference - mathematics anixety by treatments interactions with the variance due to all previous aptitudes, treatments, and interactions removed.

If hypothesis 44 is rejected, hypotheses 45 through 48 will be tested.

45. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety by factor-label treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

42

46. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable répresenting the verbal preference - visual preference - mathematics anxiety by analogy treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

47. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

48. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety by proportionality treatment interaction with the variance removed due to all previous aptitudes, treatments, and interactions removed.

49. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the three variables representing the verbal preference - visual preference - proportional reasoning ability by treatments interactions with the variance due to all previous aptitudes, treatments, interactions removed.

If hypothesis 49 is rejected, hypotheses 50 through 53 will be tested.

50. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - proportional reasoning ability by factor-label treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

51. There is no si_{s} if icant increase in the percentage of variance

43

35

٠.

accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - proportional reasoning ability by analogy treatment interaction with the variance due to all previous aptitudes treatments, and interactions removed.

52. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - proportional reasoning ability by diagrammatic treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

53. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - proportional reasoning ability by proportionality treatment interaction with the variance due to all previous aptitudes, treatments, and interactions removed.

54. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of six variables representing the verbal or visual preference - mathematics anxiety - proportional reasoning ability by treatments interactions with the variance due to all previous aptitudes, treatments, and interactions removed.

If hypothesis 54 is rejected, hypotheses 55 through 58 will be tested.

55. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - mathematics =nxiety - proportional reasoning ability by factor-label treatment interaction with variance due to all previous aptitudes, treatments and interactions removed.

56. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable

44

representing the verbal or visual preference - mathematics anxiety - proportional reasoning ability by analogy treatment interaction with variance due to all previous aptitudes, treatments and interactions removed.

57. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - mathematics anxiety - proportic.: al reasoning ability by diagrammatic treatment interaction with variance due to all previous aptitudes, treatments, and interactions removed.

58. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal or visual preference - mathematics anxiety - proportional reasoning ability by proportionality treatment interaction with variance due to all previous aptitudes, treatments, and interactions removed.

59. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of three variables representing the verbal preference - visual preference - mathematics anxiety proportional reasoning ability by treatments interactions with the variance due to all previous aptitudes, treatments, and interactions removed.

If hypothesis 59 is rejected, hypotheses 60 through 63 will be tested.

60. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety proportional reasoning ability by factor-label treatment interaction with variance due to all previous aptitudes, treatments, and interactions removed.

61. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable

45

representing the verbal preference - visual preference - mathematics anxiety proportional reasoning ability by analogy treatment interaction with variance due to all previous aptitudes, treatments, and interactions removed.

62. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety proportional reasoning ability by diagrammatic treatment interaction with variance due to all previous aptitudes, treatments, and interactions removed.

63. There is no significant increase in the percentage of variance accounted for in each dependent variable by the addition of the variable representing the verbal preference - visual preference - mathematics anxiety proportional reasoning ability by proportionality treatment interaction with variance due to all previous aptitudes, treatments, and interactions removed.

64. There is no difference in achievement by chemistry students on problems that contain decimals as compared to equivalent problems that do not contain decimals.

65. There is no difference in achievement as measured by the ACS-NSTA Chemistry Achievement Test by chemistry students according to the amount of notation used in solving a specified problem.

66. There is no difference in the amount of notation used in solving a specified problem by chemistry students who solve problems when taught by different strategies.

67. There is no difference in the amount of time spent in completing lessons involving the gas laws or molarity by students whose verbal-visual aptitudes match the instructional strategy used in learning the lessons versus students whose aptitudes and strategies do not match.

68. There is no difference in the amount of time spent in completing lessons involving the gas laws or molarity by students whose proportional

38

reasoning ability matches the instructional strategy used in learning the lessons versus students whose aptitudes and strategies do not match.

In addition to the formal testing of these 68 hypotheses, a questionnaire was administered to students at the end of the school year to obtain their general reaction to the packets. The questionnaire contained nine questions that pertained to the usefulness of the materials and to whether there was any contamination of the treatments. Copies are found in Appendix E.

Statistical Analyses

Hypotheses 1 - 63 involved aptitude by treatment interactions that were analyzed using multiple linear regression techniques. As Cronbach and Snow (1977, p. 27) and Cohen and Cohen (1975, p. 229) have noted, classical analysis of variance techniques that 'block' on the aptitudes to produce groups that can be labeled 'low', 'medium', and 'high' on a particular aptitude result in the loss of both information and statistical power. The 'blocks' inevitably have unequal cell sizes producing independent variables that are not orthogonal.

The alternative to the use of ANOVA techniques is the use of multiple linear regression. 'Dummy' variables may be coded by the treatment effects and these used to produce interaction variables with the aptitudes. Several methods are available for this coding. Cohen and Cohen (1975, Chapter Five) present four methods: dummy, effects, contrasts, and nonsense coding. While the overall multiple R^2 and therefore the F value are always the same no matter what coding method is used, the three methods allow for different hypotheses to be tested within the types of treatment.

In effects coding, as Cohen and Cohen (1975, p. 194) pointed out, the method takes as its reference point all of the groups taken as an equally weighted aggregate. The null hypothesis under test is that the dependent variable mean for group i is equal to the mean of the means of the dependent variable of all the groups. This was the question under consideration for this research, therefore effects coding was used as the method for coding the treatment conditions. Figure 4 shows the coding diagram.

The four treatments can be fully represented by three dummy variables (X_1, X_2, X_3) representing the three degrees of freedom available. These dummy variables were used to represent the interactions of interest. If the

43

		Dummy Variables	
Treatment		,X ₂	X3
Factor-Label - TF	-1	-1	-1
Diagram - TD	0	1	0
Analogy - T _A	1	0	ر 0
Proportions - Tp	0	. 0	1

Figure 4. Coding of dummy variables.

• • •

3

ł

>

ţ.

49

ŧ

aptitude of Verbal Preference is represented by V, Visual Preference by I, and Mathematics Anxiety by M, the Proportional Reasoning Ability by P, the interactions produced were VI, VM, VP, IM, IP, MP, VIM, VIP, VMP, IMP, VIMP, VX_1 , VX₂, VX₃, IX₁, IX₂, IX₃, MX₁, MX₂, MX₃, VIX₁, V₁X₂, VIX₃, etc.

Variables for each dependent measure were entered into the regression equations in the following order:

Verbal and Visual Preference

Mathematics Anxiety

Proportional Reasoning Ability

Treatment

Verbal/Visual Preference by Treatment Interaction Mathematics Anxiety by Treatments Interactions Proportional Reasoning Ability by Treatments Interaction Verbal with Visual by Treatments Interaction Verbal or Visual with Mathematics Anxiety by Treatments Interaction Verbal or Visual with Proportional Reasoning by Treatment Interaction Proportional Reasoning with Mathematics Anxiety by Treatment Interactions Verbal with Visual with Mathematics Anxiety by Treatment Interactions Verbal with Visual with Mathematics Anxiety by Treatment Interactions Verbal with Visual with Mathematics Anxiety by Treatment Interactions Verbal with Visual with Proportional Reasoning by Treatment Interactions Verbal or Visual with Mathematics Anxiety with Proportional Reasoning by

Treatment Interactions Verbal with Visual with Mathematics Anxiety with Proportional Reasoning

by Treatment Interactions'

The order of entering the variables into the regression equation was based on "weakness" of the aptitude. The verbal and visual aptitudes were entered first (on an equal basis) because from a review of the literature they appeared to have the least construct validity. Mathematics anxiety ratings and proportional reasoning ability had increasing degrees of construct validity in the order stated.

50

By placing verbal preference, visual preference, and mathematics anxiety into the regression equation before proportional reasoning ability, any shared variance would be considered in the weaker constructs. This would have the proportional reasoning ability aptitude uncontaminated by the shared variance (Cohen and Cohen, 1975, p. 327).

This study utilized univariate multiple regression as an analytical tool rather than multivariate linear regression for the following reasons:

1. Four different chemistry topics were studied. Although some of these have similarities (involve moles) each has distinct characteristics. In particular the unit on gas laws contains concepts quite different from the other three units. Because the units were on different topics, it was of interest to determine if a particular strategy was particularly suited to a given chemistry topic.

Within the units, the two dependent variables, immediate posttest and delayed posttest, were analyzed separately because of the different nature of the tests. The immediate posttests were given immediately after students' studied each lesson and contained the strategy used at the top of each test page. The delayed posttests had no aids and included at least two transfer items.

2. A multivariate analysis would have been most complex to analyze and to interpret because of the 15 dependent variables involved.

3. Correlation for most of the dependent variables were modest ranging from .20 to .76.

In the instance where the correlation was likely to be the greatest (moles and stoichiometry). Robert Sherwood, a doctoral graduate assistant working on 'his project, analyzed the data in this manner for a doctoral dissertation study. Sherwood's (1980) results are consistent with those found using the univariate method.

51

In the same dissertation, factor analyses of several measures utilized in this study were made. Persons interested in the factor analysis of the verbal-visual preference item, the proportional reasoning ability test, and several of the measures of problem solving ability might consult this dissertation.

Hypotheses 64 - 68 were analyzed as follows:

Hypothesis 64. A t-test was used to determine the differences between the two sets of scores.

Hypothesis 65. A one way analysis of variance was used to determine differences in achievement according to whether students used mneumonic notation in problem solving. Differences between means were examined using the Scheffé procedure.

Hypothesis 66. A chi-square analysis was used to determine whether students classified according to strategy taught used no, some, or extensive notation in problem solving. \checkmark

Hypothesis 67. 2 x ^ analyses of variance were used to determine differences in time spent according to matched or mismatched strategies and verbal and visual aptitudes. Students were classified as having a visual method of instruction if they used the analogy or diagrammatic method. Students using the factor-label method or proportionality comprised the verbal methods group. Students with . scores less than 14 were considered low verbal; those equal or greater than 1 were classified high verbal. The cut off point for the imagery scores was 18. These numbers were selected because their use divided the students into two groups of approximately the same size.

Hypothesis 68. This hypothesis was tested using $2 \ge 2$ analyses of variance. Students were classified as high or low in proportional reasoning ability according to whether their score was less than 14 or equal to or greater than 14.

52

The proportional reasoning teaching strategy was singled out as the one that matched proportional reasoning ability. Students using the factor-label method, analogy method and diagrammatic method formed the non-proportional reasoning teaching strategy group.

Missing data for the aforementioned analyses was handled in the same way. If a single item on a test was left blank, a zero was used as the score. If one immediate posttest was missing, the grand mean was substituted. If more than two dependent measures were missing, the student was dropped from the study. In cases where the score on a dependent measure was replaced with the grand mean, the number of degrees of freedom was reduced by one.

. Analysis of the questionnaire was made informally by tabulating comments where possible and presenting data in terms of percentages.

Results

Results of the aptitude by treatment interaction study are summarized in Table 4. Appendix H gives summary tables of the multiple regression analyses. Results are given in terms of individual hypotheses. For all dependent variables a general regression equation and a main effects regression equation were calculated. Because these equations pertain to several hypotheses, they are not included with the information on the main effects (hypotheses 1 - 4) but appear with discussion of the first significant interaction effect. If there were no significant interactions, the tables appear after the discussion of those that were significant.

Hypothesis 1

Regression coefficients and the change in \mathbb{R}^2 for hypotheses one through three are given in Table 5. Examination of Table 4 shows that the verbal preference had no relationship to students performance on the dependent measures. In three instances visual preference was related. Students with high visual preference scoréd higher. However this accounted for only 1 or 2 percent of the variance.

Hypothesis 2

Students' mathematics anxiety was related to students' performance on all dependent measures. Table 4 shows that it was significant at the .01 level in almost every case. Table 5 shows that there was a negative relationship, that is, students who had a higher degree of mathematics anxiety had lower chemistry achievement. The percentage of variance for which mathematics anxiety accounted ranged from 1.0 to 4.7 percent, the latter referring to the Transfer Item Test. This seems reasonable as this dependent measure was the most difficult of those used in the study.

46

Hypothesis 3

Table 4 indicates that students' proportional reasoning ability was related to students' success on every department measure at the .01 level. From Table 5, one can see that as students' proportional reasoning ability increased, so did 'heir chemistry achievement. Proportional reasoning ability was more strongly related to performance than any other aptitude or aptitude interaction measured in the study. The percentage of the variance accounted for ranged from 3.0% to 18.7%. The greatest amount of variance accounted for was in the ACS-NSTA Test which is particularly complex, and requires formal reasoning skills for many questions.

47

Hypotheses 4 - 8

The particular strategy (treatment) that students used to learn how to solve the chemistry problems in the four units of instruction had a significant effect on achievement in a limited way as can be s en from Table 4. In only three cases was there a significant difference. Hese were for the Moles and Gas Laws Immediate Posttests and for the Gas Laws Delayed Posttest. Table 24 shows that students who were taught by the factor-label method scored significantly higher on the Moles Immediate Posttest and students who used the proportionality method scored significantly lower. All comparisons were made with the grand mean.

Table 71 shows that this is not the case with achievement on the Gas Laws Immediate Posttest. For this unit the proportionality method was the most effective whereas both the diagram and analogy methods were the least effective. This ... a reasonable finding because the gas laws are stated in terms of proportion and students were 1 kely to memorize the formulas according to the proportionality method. In this particular unit, the diagram was more complex than in the other three units and the analogy may have been easily forgotten. Table 89 shows that on the Gas Law Delayed Posttest a similar result is found although the mean of the diagram method is not statistically different from the grand mean.

ERIC Full Eact Provided by EFIC

Hypotheses 9 - 13

Although no verbal preference by treatment interaction was found on any dependent measure a visual preference x treatment interaction was found for achie ement as measured by the ACS-NSTA Examination in High School Chemistry. Results are found in Tables 6 - 11 and have been diagrammed in Figure 5. Students with low visual preference using the analogy treatment scored higher on this test.

These results were entirely unexpected. It was postulated that if a student had a high visual preference, then using a visual mode (analogies or diagrams) would produce superior results. The explanation may perhaps be that when students who did not have a visual preference were forced to use a visual presentation, this required them to pay a greater amount of attention to what they were doing and they therefore achieved more. Why this result is not consistent for all the other dependent measures is inexplicable.

Hypotheses 14 - 18

No significant differences were found for the mathematics anxiety by treatments interaction.

Hypotheses 19 - 23

The proportional reasoning ability by treatment interaction was shown to exist for the Nontransfer Items Test only. Results of this analysis are given in Tables 12 - 17 and are diagrammed in Figure 6. For the sake of comparing the Nontransfer Items Test results with the Trnasfer Items Test results, Tables 18 -22, for the Transfer Items Test are included. A diagram of the Transfer Items Test results is given in Figure 7.

For the Nontransfer Items Test, students with low proportional reasoning ability who used the diagrammatic method were the least successful, whereas students with high proportional reasoning ability who used the diagram were the most successful. Figure 7 shows that this did not hold for the students who used the diagrammatic method for the Transfer Items Test. From the diagram given in Figure 7

50

it is rather surprising that no significant difference existed for the factorlabel x treatment interaction. It may have been that there were in reality very few low proportional reasoning students who were assigned to the factorlabel method where the crossing actually occurred. Why an interaction occurs for the Nontransfer Items Test is not known except that possibly the diagrams were complex and required proportional reasoning ability.

Hypotheses 24 - 28

A verbal x visual x treatment interaction was found to be significant on the Moles Immediate Posttest. Tables 23 - 28 show the analysis and the results are shown picturially in Figure 8.' Students with low verbal preference and low visual preference scores and the analogy method did poorly on the test whereas those with low visual and verbal preferences using the proportionality method scored high. However, if students had a high verbal preference and low visual preference, the analogy treatment was best, and the proportionality treatment the worse.

Results of this same interaction are given for comparison sake for the other immediate posttests even though findings were not significant. Tables 29 - 30 and Figure 9 show that the trend is the same for the Gas Laws Immediate Posttest. For the Stoichiometry Immediate Posttest, the results given in Tables 31 and 32 and Figure 10, are not consistent with moles and the gas laws. For the low verbal, low visual students, the analogy treatment appears best. For the molarity unit, as shown in Tables 33 and 34 and Figure 11 the factor-label method appears superior, and the analogy method the poorest.

Because of such differing findings, generalization is difficult. At least for two units, however, for students of both low verbal preference and low visual preference, the proportionality approach appears superior. One wonders what actually characterizes students who have both a low verbal and low visual preference for learning. At the onset of the research, it was thought that these two approaches

57

were mutually exclusive. By what approach would this type of student prefer to learn? Do they have no preference for learning or are they lethargic? Because it is impossible from the research reported here to characterize these students, generalization about their approach to learning chemistry problem solving is unwarranted.

Hypotheses 29 - 33

Significant interaction effects were found for two dependent measures, the Stoichiometry Immediate Posttest and the Decimal Subtest, for the visual preference by mathematics anxiety by treatment interaction. No significant differences were found for verbal preference.Tables 39 - 40 and Figure 12 present the data. As shown in Figure 12 for students with low visual preference and low mathematics anxiety, the factor-label method was superior and the diagrammatic method inferior. However, this is not the case for low visual preference students who had high mathematics anxiety. For these students, the diagrammatic method was best and the factor-label the worse. For these same students the analogy method was also better than the other two but as students' visual preference increased these differences diminished and the analogy method became preferred.

Tables 41 - 42 and Figure 13 give this same information for the moles unit. Although the findings are not significant, trends are the same for the low visual and low mathematics anxiety students. For the low visual, high mathematics anxiety students, diagrammatic and analogies methods remained superior.

For the gas law unit shown in Tables 43 - 44 and Figure 14, little differences are seen. However, analogies remain superior for the low visual - low mathematics anxiety group and diagrams best for the low visual - high mathematics anxiety group.

Tables 45 and 46 and Figure 15 give the results of the analysis for the molarity unit. Although it appears from Figure 15 that results are significant, they were not. Why they were not cannot be explained at this time. For the low visual, high mathematics anxiety students, the diagrammatic method was still

superior. Other findings were not consistent with the trends for the other three units.

Results for the Decimal Subtest are given in Tables 47 - 52 and in Figure 16. Differences in achievement are most pronounced for the students who had low visual preference and high mathematics anxiety. For these students the preferred method of instruction was the use of diagrams. This was followed by the analogy method (not significant), the proportionality method was poorest although not significantly different from the mean. For students with low visual preference and low mathematics anxiety the reverse is true. The proportionality method was best (not significant) and the diagram method the poor_st.

For the sake of comparison, data was analyzed for the Nondecimal Subtest. This consisted of the same problem except that no decimals were given in the original problem. Data analysis is given in Tables 53 - 57 and in Figure 17. Although results were not significant, a trend indicates that the diagram method might be superior for low visual, high mathematics anxiety students. For low visual, low mathematics anxiety students the factor-label method produced the highest scores followed by the proportionality method.

The results of this aptitude x treatment interaction is fairly consistent over the two dependent measures where significance was found. In both cases, the major differences appear where students had high mathematics anxiety and low visual preference versus those with low mathematics anxiety and low visual preference. Means for the cases of high visual preference - high mathematics anxiety and high visual preference - low mathematics anxiety for the various strategies did not differ to any great extent. Moreover, students with high mathematics anxiety and low visual preference did best with strategies that were intended to be visual. A possible explanation for the reason why these strategies might be best for this type of student combines the explanation given for the visual preference by treatment interaction (Hypotheses 9 - 13) and the students high mathematics anxiety. As mentioned previously, it may be that when students who did not

59

prefer to learn by visual methods were required to do so, they paid more attention to what they were learning and consequently achieved more. This would be particularly true of the high mathematics anxiety student. The diagram method or the analogy method offered this student an additional mathematical terminology than would the more mathematical approaches (factor-label and proportionality). For the low mathematics anxiety student, the more mathematical and less visual approaches were more suitable. In fact, these students who did not have a high mathematics anxiety probably skimmed over the diagrams and analogies and therefore did poorly because they did not have factor-fabels or proportions on which to depend.

Hypotheses 34 - 38

These hypotheses pertained to the visual or verbal preference by proportional reasoning by treatment interactions. No significant differences were found for the visual preference interactions on any dependent measures. However, there was a verbal preference by proportional reasoning ability by treatment interaction for the Molarity Delayed Posttest scores. Tables 58 - 63 and Figure 18 give the results. For students with low verbal preference and low proportional reasoning ability, or high verbal preference and high proportional reasoning ability, the analogy approach was best. When either of these aptitudes was low, the analogy method was the worst approach. Tables 64 - 69 and Figures 19 - 21 give the results for the Delayed Posttests of the other three chemistry units. Examination of the figures shows that these results are not consistent across the other units and in fact no consistent trends are apparent in the other three units. Because no significant differences were found on other dependent measures, the result is unique to this one unit and one dependent measure. Why this particular analogy for this subject matter wrought these results is not known.

Hypotheses 39 - 44

A mathematics anxiety by proportional reasoning ability by treatment interaction was found for achievement on the Gas Laws Immediate Posttest. As with

52

6t) -

significant findings of other interactions that involved mathematics anxiety, major differences occurred with students of high and low mathematics anxiety and low values on the other aptitudes. Resluts are given in Tables 70 - 75 and in Figure 22. Students with low proportional reasoning ability and low mathematics anxiety did best with the factor-label and proportional method (not significant) and worse with the diagram method. For students of low proportional reasoning ability and high mathematics anxiety the analogy method was superior (followed by the diagram method - not significant). The poorest method was factor-label. These same results for the factor-label method were found for students of low visual preference and low mathematics anxiety, and somewhat similar results were found for the analogy treatment. Apparently students who have low mathematics anxiety and were low on the other aptitude found the factor-label method attractive, whereas it is not a good method for high anxiety students. Results for the other three units although not significant are included in order to make comparisons. They, are given in Tables 76 - 81 and in Figures 23 - 25. In every case, the factorlabel method was best for students of low mathematics anxiety and low proportional reasoning ability. For students of high mathematics anxiety and low proportional reasoning ability, the diagrammatic method appears to have had the advantage (not significant), and in two of the three other units, the factor-label method was the poorest (trend only). When students had a high mathematics anxiety and no compensating aptitude (high proportional reasoning ability or high visual preference) the more mathematical approaches (factor-label and proportionality) were not desirable. This is in agreement with results found for hypotheses 29 - 33. Hypotheses 45 - 63

No significant four way interactions were found. Tables 82 - 100 give the general regression equation, F tests for possible significant effects, and the main effects regression equation for analyses of dependent measures where no significant interaction effects were found.

61

Hypothesis 64

A significant difference between scores on the Decimal and Nondecimal Subtest was found as shown in Table 101. Students scored slightly better when the initial values given in the problems did not contain decimals. If teachers are interested in whether students understand how to solve a given problem, this might be achieved better if no decimals are included. This is not to say that at an intermediary point, a decimal will not be needed or that the answer will not be in decimal form. Although the means of the Decimal and Nondecimal Subtests are not drastically different, it must be recalled that most students used calculators in solving the problems and one might expect that this usage would obliterate any difference in scores.

Hypothesis 65

In order to test this hypothesis on the use of notation and achievement, students were asked to show their work in solving one of the stoichiometry problems on the ACS-NSTA Cooperative Examination administered at the end of the school year. Students' work was then classified into three categories: no notation, some notation, complete notation. Results of an analysis of variance and the Scheffe procedure are shown in Tables 102 and 103. The analyses indicate that a significant difference in achievement does exist according to the amount of notation used. Students using complete notation achieved higher scores on the test than students who used no and little notation.

Hypothesis 66

This hypothesis stipulated that there would be no differences in the amount of notation used according to the method students were taught to solve the chemistry problems. Data were analyzed using chi-square, and the results are given in Table 104. Although the results are not significant at the .05 level, means show that students who were assigned to the factor-label treatment more frequently used complete notation. This coupled with the results of hypothesis 65 indicates that if differences in aptitude are ignored, this method may be preferred over the

62

other three.

Hypotheses 67 and 68

These two/hypotheses pertain to the amount of time students spent studying a given unit according to whether the method used (treatment) matched or did not match their aptitudes. Hypothesis 67 dealt with verbal-visual preference and hypothesis 68 dealt with proportional reasoning ability.

4

To test the hypotheses a series of analyses of variance were run for individual lessons and for the total time for the gas laws and molarity units. Because there were no significant main or interaction effects for the total time and inconsistent ones for several of the individual lessons for the verbalvisual preference and verbal-visual treatments (hypothesis 67) no tables are presented. For the proportional reasoning ability and proportionality method, however, more consistent results were found. Time spent in learning four out of six of the individual lessons were significant at the .05 level. Total times had a probability level of .09 for the gas law unit and .07 for the molarity unit. Data are presented in Tables 105 - 108.

By comparing the Tables one can see that any significant findings are not uniform across the two units of instruction. For the molarity unit, there is a main effect in that students of high proportional reasoning ability completed the unit in a shorter period of time. This did not hold for the gas law unit where differences in time are not significant. For the gas law unit there is a significant interaction effect that does not exist for the molarity unit. The interaction was not anticipated. Students with high proportional reasoning ability spent more time when the proportionality method was used and low proportional reasoning students spent more time when they used nonproportionality methods (analory, diagram, factor-label). In the molarity analysis, although the interaction is not significant, low proportionality students spent most time with the proportionality method. This appears to be more reasonable.

The results of the above analyses must be interpreted extremely cautiously. The number of subjects per cell was quite low, and the treatments in some units took longer to complete than others. This was generally true of the proportionality and analogy methods.' It was for this reason that extra practice problems were included in the larger aptitude by treatment interaction study. For this analysis, times were recorded before students began the practice problems. Other complicating factors were that some students used calculators and others did not. There was' little control over whether students marked their times properly or spent part of this time talking to one another rather than working. These two hypotheses were added as a result of the NSF director's meeting in March, 1980 and therefore little planning could take place to collect data and have the necessary controls. As a result of the above plus the additional factors of only being able to collect this data from a limited number of teachers over a short time span near the end of the school year with no provision for students to mark the time in their booklets, makes the findings tenuous. The question remains an interesting one, and probably should be pursued in a more controlled manner than was possible in this study.

Analysis of Questionnaires

The questionnaires that were administered at the end of the school year (Appendix E) were analyzed by tallying data according to treatment and teacher. It was felt that responses were candid because students were not allowed to identify themselves. Results are given in Tables 109 - 111 in terms of the four treatments.

Table 109 which summarizes the more objective questions shows that students more frequently skipped over parts (or all) of the diagram and analogy methods than the factor-label or proportionality method (question 1). This was supported from student's answers to question 9, a free response item where students listed what they liked least. Many students said that the analogies were stupid or

64

insulting and the diagrams too complex, particularly for the gas law unit. In general skipping the reading was done more at the end of the year than at the beginning, except for the analogy unit where it seems quite uniform across units (question 2). In many cases, however, student: commented that they skipped only when they understood the sample problems. If they didn't they went back and used the diagram and analogies to help them understand the material.

57

Students in general found the method to which they were assigned quite useful (question 3). This was true to a greater extent for students assigned to the factor-label and proportionality method. Students used the method all or most of the time (question 4).

Questions 4 - 7 were included to determine the degree of contamination within the study. Considering that the study lasted the entire school year, the 10% contamination rate (shown in question 5) is not surprising. This does not include students who listed responses classified as "other" on the summary. For the most part these students said that they learned to work the problem by studying the sample problems in the packet or by using their ingenuity. These answers cannot be considered to represent students not using their own booklets.

When students answered question 6 on how they modified the methods, the majority mentioned that they combined or eliminated steps. The high percentage of students that did this for the proportion unit is not unexpected. The proportions took more space to write out and were longer units because of this. They could easily have been shortened but the investigators felt that all steps should be shown in the packets.

From question 7, it can be seen that sometimes students did borrow another student's packet. Many mentioned that they were curious to see what the other packets contained, and really didn't use the packet to learn a different method.

Question 8 gave students an opportunity to state what they liked most about using the packets. Results are listed in Table 110 according to the frequency of

response for 1% of the sample. Students most often mentioned that the packets were very explanatory, had answers (solutions) given, and were fast and easy.

The most common thing that students liked least was the length of the packets or the fact that there were too many. The next most common complaint was that they were monotonous and boring. This might be due to the fact that students frequently expressed a dislike for problems and felt that this was taking too much time from lab.

Although no data is summarized in this report according to classes or teachers, it was interesting to find variation in questions 8 and 9 according to teacher. Some students in particular classes said that this material was easy, students in other classes said it was too hard. In some classes, students complained that they didn't have enough time, whereas in another class this was never mentioned. In one particular set of classes where students complained that the material was boring, test scores were considerably below those reported by all other teachers. For this reason, even though more contamination of treatments was possible, by having all four treatments in each classroom the decision to design the study in this manner probably minimized these other effects over which no control was possible.

Summary and Conclusions

This aptitude by treatment interaction study has shown that the aptitudes of mathematics anxiety and proportional reasoning ability are related to students success in solving problems in high school chemistry. Students of high mathematics anxiety score significantly lower than students of low mathematics anxiety. Students of high proportional reasoning ability score higher than students of low proportional reasoning ability. Both of these findings are not surprising. Teachers are probably more aware of the relationship of proportional reasoning ability and success than the mathematics anxiety relationship. As teachers become more aware of the latter they will probably incorporate into their lessons teaching strategies that will reduce this anxiety.

63

Certain methods used in this study were less mathematical and more visual than others. These were the use of analogies and the use of diagrams. The more mathematical were the factor-label method and proportionality. The best method in general (main effect) for the moles unit where less contamination could be expected (used first in all classrooms) was the factor-label method 'and the worse method was proportionality. For the gas laws, however, in which the laws themselves are stated as proportions, the proportionality method was most effective and diagrams and analogies least effective. These results show that either the teaching strategies are subject matter specific or that the proportionality method becomes more effective over time (the gas laws were studied later in the school year in most instances).

Of more importance than the main effects in this study was the aptitude by treatment interaction findings. Of greatest interest are the results found for students of high mathematics anxiety and low scores on another aptitude. For students of this type, the less mathematical approaches frequently appear to be superior. It was found to be rather consistently true that the diagram method was superior for students of high mathematics anxiety and low visual preference for the immediate posttests for the four chemistry units (significant on trend in that direction). The same was true for the Decimal Subtest (significant) and Nondecimal Subtest (trend). For students having high mathematics anxiety and low proportional reasoning ability, the analogy method, the other less mathematical strategy, was best (significant) followed by the diagram method appeared to be somewhat better in two of the other three units on this same dependent measure.

These results seem to indicate that students with high mathematics anxiety and the absence of another aptitude (visual preference or proportional reasoning ability) profit by methods that contain supportive material that is not mathematical in nature. Analysis of the questionnaire substantiates this. Many students did

67

not use the analogies or diagrams but skipped to the sample problems. These students were likely to be the low mathematics anxious students. (There was no way to check on this because students answered questionnaires anonymously.) Many students commented that they found the diagram and analogies beneficial and particularly so when they didn't understand the sample problems. Several commented that that is when they used the analogies or diagrams. These were probably the more mathematics anxious students.

60

These findings indicate that it might be profitable for teachers to use supplemental, less mathematical approaches with high mathematics anxious students who also are deficient in proportional reasoning ability or have low visual preference. These methods might also be profitable for either students if they are used more directly, that is, taught to the student by the teacher rather than from a packet. Students would probably be less likely to tune out the teacher explaining the diagram and analogy and could obtain immediate clarification.

Two less important findings from the first phase of this study were the positive relationship between success and the use of notation in problem solving, and the significant difference between the Decimal and Nondecimal Subtests. Students should be encouraged to label their numbers if they expect to be successful. Teachers, if they are testing for the understanding of concepts, should avoid using decimals in test problems.

Hypothesis	Effect	MO QT	GL QT	S QT	Mil. QT	MO T	GL T	S T	ML T	ACS TOT	۲CS B ۱B	ACS NPROB	TR	NTR	DE	NDE
1	V or J				.01 ^b						,				.05 ^b	.05 ^b
2	М	.01 ^a	.01	.01	.01	.05	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01
3	Р	.01	.01	.01	.01	.01	.01	.01	.01	· .01	.01	.01	.01 [.]	.01	.01	.01
4 '	Treatments	.01					.05						c			
·5	P .	.01	.01				,									
6	А	-	.01		3		.01			*					•	
7	Ď		.05													
8	F	.05														`
9	V or I x Treatments									.05 ^b	<u>.</u> *	·				
10	V or I x D															
11	V or I x A									.01 ^b						
12	V or I x D		`											•		
13	VorTxF							-,								
. 14	M x Treatments													•		
15	МхР															
16	МхА														کی :	7 0
17	MxD															61
18	M x F	~														

Ú,

Summary of Results of Aptitude x Treatment Interaction State

Table 4

^

					Та	able 4	(cont	inued))		·					
		Summan	y of F	Results	s of A	Aptitud	le x Ti	eatme	nt Int	eractio	on Study	·				
Hypothesis	Effect	MO QT	GL QT	S QT	ML QT	MO T	GL T	S T	ML T	ACS TOT	ACS PROB	ACS NPROB	TR	NTR	DE	NDE
19	P x Treatments			_										.05		
20	РхF	•														(
21	РхА															
. 22	РхD													.05		
23	РхР						,									
24	V x 1 x Treatments	.01														
25	VxIxF									-						
26	VxIxA	.05														
27	VxIxD	.05								t						
28	VxIxP	-3						x								
29	V or I x M x Treatments			.05 ^b											.05 ^b	,
30	V or I x M x F			.01 ^b												
31	VorIxMxA			.05 ^b						ş	:					
32	VorIxMxD			.01 ^b							·				.01 ^b	
33	V or I x M x P															
34	Vor I x P x Treatments								.05 ^c							6
35	VorIxPxF															62

.

.

V or

ER

~

Ì,

V or I x P x A

.05^C

72

•

.

-

•

Table 4 (continued)

t

, u∓c

.

-

Summary of Results of Aptitude x Treatment Interaction Study

Hypothesis	Effect	MO ÇT	GL QT	S QT	ML QT	Mio T	GL T	S T	ML. T	ACS TOT	ACS PROB	ACS NPROB	TR	NIR	DE	NDE
37	V or I x P x D										۰					
38	V or I x P x P					-	-									•
39	M x P x Treatmen	ts	.05												•	
40	МхРхF		.05					•								
41	МхРхА		.05											٠		
42	мхРхD				•	•								•		
43 ·	МхРхР								,					-		
44	V x I x M x Treatments	-				_										
45	V x I x M X F	-		-		-										
46	V x I x M x A	9			1							: هر				
47	VxIxMxD															
48	V x I x M x P															
. 49	V x I x P x Treatments											•				
50	V x I x P x F				,											
51	V x I x P x A															
52	V x I x P x D			•										!	73	
53	V x I x P x P											-				03

.

Table 4 (continued)

Summary of R	esults of A	ptitude x	Treatment	Interaction	Study
--------------	-------------	-----------	-----------	-------------	-------

Hypot hesis	Effect	MO QT	GL QT	s qt	ML QT	Mio T	GL T	S T	MIL T	ACS TOT	ACS PROB	ACS NPROB	TR	NTR	DE	NDE
54 .	V or I x M x P x Treatments			۲. ۲.,							x					
55	V or I x M x P x	F														
56	VorIxMxPx	A														
57	VorIXMXPx	D										•				
58	V or I x M x P x	Р								-						
59	V x I x M x P x Treatments					1										
60	VxIxMxPx	F														
61	V x I x M x P x .	A														
62	VxIxMxPx	D														
63	V x I x M x P x	Р														

alevel of significance ^b I - Vishal ^C V - Verbal <u>Treatments</u> Factor-Label (F) Analogy (A) Diagrams (D) Proportionality (P)	Units Moles (MO) Gas Laws (GL) Stoichiometry (S) Molarity (ML) Aptitudes Verbal Visual	(V) (I)	Dependent Measures Immediate Posttest (Quiz Total) Delayed Posttest ACS-NSTA Examination in H.S. Chem. ACS-NSTA Problems Subtest ACS-NSTA Nonproblems Subtest Transfer Items Test Nontransfer Items Test Decimal Subtest	(ACSPROB) (ACSNPROB) (TR) (NTR) (DE)	~
•	Proportional Reasoning Mathematics Anxiety	(P) (M)	Nondecimal Súbtest	(NDE)	64

75

.

4

0 76

Main Effects Summary, Hypotheses 1 - 3

				Aptit	udes			
Dependent Measu: es	VV <u>B</u>	\sqrt{QV} $\triangle R^2$	V\ B	\sqrt{QI} ΔR^2	MARS B	STOT ΔR^2	PPI B	$rt \Delta R^2$
MOQT	0240	.0001	+.0392	.0022	0077	.0241	+.2006	.0744
GLQT	0249	.0006	+.0298	.0034	0051	.0202	+.0700	.0302
SQT	0140	.0004	+.0375	.0015	0076	.0244	+.1281	.0725
MLQT	0154	.0013	+.1122	.0223	0055	.0150	+.1583	.0623
MOT	+.0052	.0017	+.0269	.0036	0016	.0103	+.1735	.1125
GLT	0316	.0020	+.0220	.0019	0048	.0131	+.1305	.0664
ST 🔹	0317	.0005	0193	.0005	0090	.0356	+.1737	.0818
MLT	0068	.0000	+.0109	.0002	0061	.`0231	+.1460	.0595
actor	0197	.0002	0356	.0018	1026	.0302	+.5486	.1867
ACSPROB	+.0092	.0002	+.0293	.0021	0044	.0215	+.1966	.136 7
ACSNPROB	+.0069	.0009	+.0524	.0006	0073	.0236	+.3937	.1609
TR	0170	.0018	+.0039	.0017	0066	.0468	+.1745	.1378
NTR	0519	.0001	+.0318	.0014	0157	.0440	+.4770	.1455
DE	0130	.0003	+.0575	.0104	0051	.0223	+.1197	.0742
NDE	0271	.0023	+.0427	.0133	0048	.0364	+.0812	.0584
•			د.					
	metry (S	(V ning (M	VQV) VQI) ARSTOT) PRT)	Ti Do Ai Ai Ai Ti Ni D	elayed Post	osttest (test amination oblems Sul aproblems ems Test Items Test test	Subtest	(QT) (T) (ACSTOT) (ACSPROB) (ACSNPROB) (TR) (NTR) (DE) (NDE)

-

í.,

	Table 6
I	ACS-NSTA Chemistry Achievement Test (ACSTOT):
• <u>-</u> -•	General Regression Equation
ACSTOT =	0197(V)0356(I)10258(MARSTOT + .5486(PPRT)
	132.943(X3) - 45.975(X2) - 91.447(X1) + 5.200(VX2)
	+ 2.645(VX1) - 8.140(VX3) - 5.328(IX3) + 1.085(IX2)
	+ 5.292(IX1) + .5236(MX1)7576(MX3) + .2479(MX2)
	+ 6.907(PX2) + 3.655(PX1) - 8.789(PX3)1930(VIX1)
	+ .3486(VIX3)1975(VIX2)0165(VMX1)0261
	(VMR2) + .0466(VMR3)0327(IMR1) + .0328(IMR3)
,	00736 (IMX2)5980 (VPX2)0193 (VPX1) + .4938
	(VPX3)2216(IPX1) + .3426(IPX3)2694(IPX2)2228(IPX1)2228
	.0238(PMX1)0346(PMX2) + .04780(PMX3) + .00132
	(VINX1)00216(VINX3) + .00103(VINX2) + .00513
	(VIPX1) + .0258(VIPX2)0206(VIPX3) + .000372
	(VPMX1) + .00306(VPMX2)00279(VPMX3) + .00161
	(IPMX1) + .00139(IPMX2)00199(IPMX3)0000548
	(VIPMA1)000133(VIPMA2) + .000127(VIPMA3)
3	+ 14.225
Where	\overline{VVQV} (V) = 15.807 MARSTOT = 184.546
	\overline{WQI} (I) = 18.020 \overline{PPRT} = 12.614

L

ERIC. Prail lieue Provided by ERIC >

73

.

66

s

Me	ean = 17.969 S.D. =	= 5.368 Cases = 528	Max. $=$ 40
Predictor	Δ R ²	F	Sig.Level
MARSTUT	.03019	.03019/.001526 ^a = 19.78	.01
PPRT	18671 **	.18671/.001526 =122.35	.01
IX3 IX2 IX1	.00026 .01199 .00024 .01249	$\frac{.01249/_{3}}{.001526} = 2.73$.05
IX5	.00026	.00026/.001523 = .17	NS ^b
IX2	.01199	.01199/.001526 = 7.86	01
IX1	.00024	.00024/.001526 = .16	NS
INX1 INA.3 IMX2	.00750 .00008 .00020 .00778	$\frac{.00778/_{3}}{.001526} = 1.70$	NS
PMX1 PMX2 PMX3	.00144 .00022 .00717 .00883	$\frac{.00883/_{3}}{.001526} = 1.93$	Ivs

ACS-NSTA Chemistry Achievement Test (ACSTOT):

F Tests for Possible Significant Effects

^{a.} rror Term = (1 - .29786)/475 - 15 = .001526

^bNS = Nonsignificant

31)

Tab1	ę	9
------	---	---

ACS-NSTA Chemistry Achievement Test (ACSTOT):

Vi	sual X Treatment Intera	ction
Lffect	<u> </u>	<u>S.E.B.</u>
IX3	+.158	.103
IX2 🛥	287	.102
IX1	+.0417	.104
	$\frac{B_{\cdot 1}}{3} = \frac{.103 +102 + .}{3}$	
•	.0873 = .8 5	NS
	-	

Calculations for "Fourth" Effect

ø

ACS-NSTA Chemistry Achievement Test (ACSTOT):

*			
Visual Droforman	ANOT Y PL		• ·
Visual Preference	(VVQI) X Ireat	ment (X1-X3)	Interaction

Strategy	· Dummy Variables	Equation
Proportion	X3 = 1	ACSTOT = .1538I + 15.115
Analogy	× X2 = 1	ACSTOT =3384I + 24.289
)iagram 🔨	X1 = 1	ACSTOT =01941 + 17.912
Factor-Label	X3 = X2 = X1 = -1	ACSTOT = .06151 + 16.732
	· ·	`,

82

ACS-NSTA Chemistary Achievement Test (ACSTOT):

Substitution of Extreme Values for

VVQI (2 + 23)

vvqi _		TREATMENT		PREDICTED ACSTOT
2	.31	Р	15.115	15.42
23	3.54	Р	15.115	18.65
2	68	Â	24.289	~23.61
23	-7.78	A	24.289	16.51
2	04	لى ل	17.912	17.87
23	45	D	17.912	17.47
2	.12	F	16.732	16.85
23	1.41	F	16.732	18.15

ERIC

71

·?

	•	Tat	ole 12		•	~ `
Nontra	unsfer Iten	is Test (NTH	≀): Gen	eral Regi	ression Equ	uation
	•					
NTR =	0519(V)	+ .0318(I)	0157	(MARSTUT)) + .4770(1	PPRT)
۲	- 4.409(X2	2) + 2.844 ()	.1)5	345(X3) -	- 2°.000 (VX	2)
	+ .4392(V)	(5) + 1.569((VX1) #	.8 081(IX3	3)2881	(IX1)
	+ .4030(1)	2)0802	(NX1) -	.1650 (MX3	3) + .1201	(MX2)
	+ 1.233(PA	2) · 2.973	(Pλ1)) +	2.797 (PX3	3)0899	(VIX1)
	0677 (VI	EA3) + .0835	5(VIX2)	00836	(VMX1) + .(00685
	(VMX2) + .	.0111(VMX3)	+ .0047	0(INIX3)	+ .004U2(I	X1)
	00747()	INR2) + .109	99 (VPX2)	0461	(VPX1)	1811
	(VPX3) +	.1756(IPX1) [°]	2107	(IPX3) -	.0812(IPX	2)
4	+ .0195(PM	NA1)0140	(PMX2)	+ .00158	(PMX3)	000322
	(VIMX3) +	.000491(VI	AX1)	000245 (V	INX2) + .0	0204
	(VIPX1) -	00328 (VIP)	x2) + .0	133 (V IPX:	3)0002	49 (VPMX2)
	+ .000375	(VPM&1)(0002 <mark>9</mark> 3 (V	PMX3) +	.000846(IP	MX2) -
	.00101(IP	NI) + .000	242(IPM)	.3) + .000	0000575 (VI	PMX2)
	0000210	5(VIP NX 1) -	.000007	02 (V IPMX)	3) + 18.26	5
Where	\overline{VVQV} (\overline{V})	= 15.807		MARSIOT	= 184.54	6
		= 18.020		PPRT	= 12.61	4

ERIC Full Exc Provided by ERIC

Nontransfer Itesm Test (NTR): Jain Effects Regression Equation

`{

74

Equation: NTR = -.0158 (MARSTOT) + .482 (PPRT) + 18.935

9

Mean = 2	1.234 S.D. =	5.296 Cases = 436	Max. = 30
Predictor	$\triangle R^2$	F	Sig.Level
MARSTOT	.04400	.04400/.001891 ^a = 23.27	.01
PPKT	.14551	.14551/001891 = 76.95	.01
VX2 VX3 VX1	.00008 .00094 .00458 .00560	$\frac{.00560}{.001891} = .987$	NS ^b
PX2 PX1 PX3	.00209 .01138 .00222 .01569	$\frac{.01569/_{3}}{.001891} = 2.77$.05
PX2 .	.00209	.00209/.001891 = 1.11	NS
PX1	.01138	.01138/.001891 = 6.02	.05
РХЗ .	.00222	.00222/.001891 = 1.18	, NS
VIPX1 VIPX2 VIPX3	.00020 .00004 .00896 .00920	$\frac{.00920}{.001891}$ = 1.62	NS ·

Nontransfer Items Test (NTR): F Tests for Possible Significant Effects

 a_{Error} ferm = (1 - .27583)/383 = .001891

^bNS = Nonsignificant

Ta	ble	⁺ 15
----	-----	-----------------

Nontransfer Items Test (NTR): Calculations for "Fourth" Effect

	Proportional	Reasoning X Treatment	Interaction	
Effect		B		<u>S.E.B.</u>
PX2		+.0107		.0 8 97
PX1		+.201		.0957
PX3		114		.103

 $B_{4} = -\Sigma B_{1} = (.0107 + .261 - .1.4) = -.158$ S.E.B.₄ = $\Sigma \frac{S.E.B._{1}}{3} = .0897 + .0957 + .103 = .0961$ $t_{4} = \frac{B_{4}}{S.E.B._{4}} = \frac{-.158}{.0961} = -1.64$ NS

þ

Ż

Table 10	Table	16
----------	-------	----

Nontransfer Items Test (NTR):

Proportional Reasoning (P) X Treatment (X1-X3) Interaction

	2	· ·
Strategy	Dummy Variables	Equation
Proportion	X3 = 1	NTR = .2757P + 17.440
Analogy	X2 = 1	MTR = .4725P + 14.570
Diagram	X1 = 1	NTR = .7190P + 11.958
Factor-Label	$\lambda 3 = \lambda 2 = \mathbf{X}1 = -1$	WTR = .4382P + 16.514

Nontransfer Items Test (NTR):

Substitution of Lxtreme Values for

PPRT		TREATMEN	<u>r</u>	PREDICTEL NTR
1	.28	Р	17.440	17.72
21	5.79	, P	17.440	23.23
1	.47	А	14.570	15.04
21	9.92	А	14.570 -	24.49
1	.72	D	11.958	12.68
21_	15.10	b	11.958	27.06
l	,44	F.	16.514	16.95
21	9.20	F	16.514	25.72

ERIC

~

Table 18
Transfer Items fest (IR): General Regression Equation
,
TR =0170(V) + .00392(I)00656(MARSTOF) + .1745(PPRT)
+ 34.333(x3) - 19.197(x2) - 31.051(x1) + .3743(VX2)
- 2.165(VX3) + 2.634(VX1) - 1.458(IX3) + 1.870(IX1)
+ 1.396 ($I\lambda 2$) + .1540 (MX1)2790 (MX3) + .1804 (MX2)
+ .8381(PX2) + 1.039(PX1) - 1.839(PX3)1474(VIX1)
+ .0879(VIX3)0433(VIX2)0125(VMX1)00761
(VMX2) + .0177(VAX3) + .0128(IAX3)00983(IMX1) -
.0110(INA2) + .0514(VPX2)1344(VPX1) + .1106(VPX3)
)0691(IPX1) + .0711(IPX3)0774(IPX2)00442(PMX1)
0117(PNA2) + .0167(PNK3)000777(VINK3) + .000727
(VIMX1) + .000498(VIMX2) + .00760(VIPX1)000572(VIPX2)
00396 (VIPX3) \neq .000196 (VPMX2) + .000584 (VPMX1) -
.0000997(VPMX3) + .000742(IPMX2) + .000364(IPMX1) -
.0000749(IPMX3)0000191(VIPMX2)0000364(VIPMX1)
+ .0000416(VIPMA3) + 4.984
Where $VVQV$ (V) = 15.897 $M^{A}RSTOT = 184.545$
\overline{VVQI} (I) = 18.020 PPRT = 12.614
1

C

l

2.

EI

9.4

	Mean = 5.818	S.D. =	1.971	Cases = 435	Max.	= 10	
Predictor		ΔR^2	مر	F		C:	
MARSTOT		.04684	0468	4/.001901 ^a = 24.6			ig.Lev
PPKT .		.13779		9/.001901 = 72.4	-		·.01
VIPX1		.00046		•	FO I	¢	.01
VIPX2 VIPX3		.00562	.00926	$\frac{1}{3} = 1.62$		5	ns ^b
v IPAS f		.00318 .00926	.00190)1	1		
IIMX2		.00545	0077)/ ·	٥		·
TIMX1 TIMPX3		.00181 .00046	.00190	$\frac{2}{3} = 1.35$			NS
i g		.00772		· •			
							I
	Term = (12 Nonsignifican	7372)/382 =	.00190 1			· ·	, <u>, , , , , , , , , , , , , , , , , , </u>
		7372)/382 =	.001901			• <i>,</i>	, , <u>, </u>
		7372)/382 =	.001901				· ·
		7372)/382 =	.00190 1			· .	· · · · · · · · · · · · · · · · · · ·
^b NS = 1		7372)/382 =	.001901	}		· .	
^b NS = 1		7372)/382 = t					
^b NS = 1		7372)/382 = t		, , ,			
^b NS = 1	∜onsignifican	7372)/382 = t	1 		(
^b NS = 1	∜onsignifican	7372)/382 = t	1 	,			
^b NS = 1	₩ONSignifican	7372)/382 = t	1 	, -			
^b NS = 1	₩ONSignifican	7372)/382 = t		, -			r

.

82

Table 20

ERIC Pull Text Provided by ERIC

Transfer Items Test (TR):

Proportional Reasoning (P) X Treatment (X1-X3) Interaction

Strategy	Dummy Variables	Equation				
Proportion	X3 = 1	TR = .1064P + 4.318				
Analogy	.X2 = 1	TR = .1436P + 3.807				
Diagram	. X1 = 1	TR = .1936P + 3.354				
Factor-Label	$X3 = \lambda 2 = \lambda 1 = -1$	TR = .4684P + 2.823				
		<u>}</u>				

83

٤,

Transfer Items Test (TR): .

Substitution of Extreme Values for

	PPRT (1 →21)							
PPRT		TR	PREDICTED TR					
1	.11		Р	4.318	4.42			
21	2.23		Р	4.318	6.55			
1	.14		A	3.807	3.95			
21	3.02		А	3.807	6.82			
1	.19	· •	D-	3.354	× 3.55			
21	4.07	•	D	3.354	7.42			
1	. 47		F _	2.823	3.29			
21	9.84		F	2.823	12.66			
~								

ERIC.

S

ERIC

2

• :

Table 23
Moles Immediate Posttest (MOQT): General Regression Equation
MOQT =0240(V) + .0392(I)00765(MARSTOT) + .2006(PPRT) +
94.073 (X3) + 7.437 (X2) - 77.426 (X1)9334 (VX2) +
2.862(VX1) - 5.322(VX3) - 5.195(IX3)5553(IX2) +
4.721(IX1) + .3781(MX1)5833(MX3)0219(MX2) +
.7620(PX2)·+ 4.069(PX1) - 6.328(PX3)·1993(VIX1) +
.2767(VIX3) + .0623(VIX2)0141(VMX1) + .00625(VMX2) +
.0322(VMX3)0244(INX1) + .0327(IMX3) + .00139(IMX2) -
.0207(VPX2)1286(VPX1) + .3733(VPX3)2484(IPX1) +
3456(IPX3)0241(IPX2)0198(PMX1)00895(PMX2) +
.0434(PMX3) + .00108(VIMX1)00174(VIMX3)000355
(VIMX2) + .00987(VIPX1)000272(VIPX2)0195(VIPX3) +
.000699(VPMX1) + .000294(VPMX2)00256(VPMX3) + .00134
(IMPX1) + .000411(IMPX2)00242(IPMX3)0000612(VIPMX1)
00000984(VIPMX2) + .000139 (VIPMX3) + 15.653

5. 5 8

۰,

Where	\overline{VVQV} (\overline{V})	=	15.807	MARSTOT	=	184.546
	\overline{VVQI} (\overline{I})	=	18.020	PPRT	=	. 12.614

Table -24

Moles Immediate Posttest (MOQT): Main Effects Regression Equation

Equation: MOQT = -00675 (MARSTOT) + .197 (PPRT) - .887 (X3) + .0471 (X2) + .404 (X1) + 16.018

where $\overline{\text{MARSTOT}} = 184.56$ $\overline{\text{PPRT}} = 12.614$

Strategy	Dummy Variables	MOQT
Proportion	• X3 = 1	16.370 ^a
Analogy	$\dot{X2} = 1$	17.304
Diagram	X1 = 1 •	17.661
Factor-Label	$x_3 = x_2 \overset{\bullet}{\cancel{2}} x_1 = -1$	17.693 ^b

^aSignificantly lower than mean

^bSignificantly higher than mean

N	lean	= 17.191	S.D.	=	3.041	Cases	= 528	Max. =	21
Predict	tor		ΔR^2			F			Sig.Lev
MARSTO	ſ	11-	.02408		.02408	.0017107	^a = 14.08		.01
PPRT			.07441		.07441	/.0017107	' = 43.50		.01
X3			.02213	•			,		
X2			.00126	-	.02936	$\frac{9}{3} = 5.7$	2		.01
X1			.00597		.00171		-		.01
\geq			.02936			07			
									0
X3 ⁻		-	.02213		.02213	/.0017107	= 12.93	•	.01
X2		•	.00126		-100126	/.0017107	= 0.74		'NS ^l
						,	0./4	•	100 :
λ1		-	.00597			/.0017107	= 3.49		NS
VIX1			.01028		•	,			
VIX3			.00316		.02082	['] 3 = 4.0	6		.01
VIX2			.00738		.00171		•		.01
		•	.02082				,		
VIX1			.01028		.01028	/.0017107	= 6.01		.05
VIX3			.00316		.00316	/.0017107	= 1.85	,	NS
VIX2			.00738		.00738	/.0017107	= 4.31		.05
INX1			.00849			,			
DX3			.00849		.01214,	3 = 2.37			NS
LAX2					.001710	<u>.</u>			140
1.1.77			<u>.00001</u> .01214		•,				
		\$							
VPMX1			.00599		00652	,			
VPMX2			.00053		.00052/	3°= 1.27			NS
MPX3			<u>.00000</u> .00652		.001710	7			10
		•	.00652			1			
•									

Moles Immediate Posttest (MOQT): F Tests for Possible Significant Effects

 $\frac{1}{475-29}$ Error Term = (1-R full)/df full = $\frac{1-.23699}{475-29}$ = .001710

^bNS = Nonsignificant

ERIC Full Text Provided by ERIC

1

Table 26
Moles Inmediate Posttest (MAQT): Calculations for "Fourth" Effect
Factor*Ilabel Treatment Effect (Cohen and Cohen, 1975 p.193) &

$$t_g = \frac{-g \perp B_1}{\sqrt{3d^2 Y \cdot \hat{Y} - (\frac{g(2)}{Rg})^2 + 2 \cdot \frac{1}{R_1}}}$$
 df = n-k-1
 $\sqrt{3d^2 Y \cdot \hat{Y} = 3d^2 Y (1-R^2)} \frac{n}{n \cdot K \cdot 1} = 3.041^2 (1-.13011) \frac{528 \cdot 29}{528 \cdot 7 \cdot 1 \cdot 29} = 8.176$
 $t_4 = -4(-.887 + .0471 + .404)$
 $\sqrt{8.176 - (3)^2 + 12} + \frac{1}{136} + \frac{1}{136}$
 $t_4 = \frac{-4(\cdot -.887 + .0471 + .404)}{\sqrt{8.176(.08964)^2}} = 2.04$ Sig. at p <.05
 $\frac{1}{\sqrt{8.176(.08964)^2}} = 2.04$ Sig. at p <.05
 $\frac{1}{\sqrt{8.176(.08964)^2}} = 2.04$ Sig. at p <.05
 $\frac{1}{\sqrt{8.176(.08964)^2}} = 2.027 - 0.00959$
 $\sqrt{1X3} + .0235 - .0109$
 $\sqrt{1X2} - .0227 - .0107$
 $B_4 = -2 B_1 = -(-.0194 + .0235 - .0227) = .0186$
S.E.B. $4 = \frac{5x S.L.B._1}{3} = \frac{.00959 + .0109 + .0107}{3} = .0104$
 $t_4 = \frac{B_4}{S.E.B._4} = ..6186 = 1.79$ NS

c.

Full Text Provided by ERIC

104

90

Moles Immediate Posttest (MOQT): «

Verbal Preference (VVQV) X Visual Preference (VVQI) X

Treatment (X1-X3) Interaction

Strategy	Dummy Variables	equation '
Proportion	$\lambda 3 = 1$ σ_{i1}	MOQT =658V390I+.0337VI+24.410
Analogy	X2 = 1	MOQT = .619V+.39410295VI+8.949
Diagram	XL = 1	MOQT = .241V+.243I0180VI+14.361
- Factor-Label	X3 = X2 = X1 = -1	MOQT =285V0738I+.0133VI+19.276

• 9

			· •	
Moles	Immediate	Posttest	(MOQT):	

91

Substitution of Extreme Values for

WOV	(1 + 30)) and	WOI	(2 + 23)
	(–	,		

-	<u>vvqv</u>	•		WQI	-	VI		TRI	EATME	NT	PREDICTED MOQT
	r	66	•	2	78	2	.07	-	Р	24.410	23.04
•	3 0	20		» 2	78	60	2.02		Р	24.410	5.91
	1		•	23	-8.97	23	.08		Р	24.410	14.80
	30	20		23	8 .9 7	690	23.25		Р	24.410	18.95
	1	.62		2	.79	2	06		Ar	8.949	10.30
•	30	18.57		2	.79	60	-1.77		A	8.949	26.54
	· 1 、	.62		-23	9.06	23	68		A	8.949	17.95
	30	18.57	• •	23	9.06	690	-20.36		A	8.94 9	16.23
	1	.24		2	.49	2	04	,	D	14.361	15.05
,	30	¥7.23		2 ເ	.49	• 60	-1.08	• `	D	14.361	21.00
	1 7	.24	•	23	5.59	23	41	•	D	. 14.361	19.78
	30	7.23		23	5.59	690	-12.42	v	D	14.361	' 14.76
	ຸ 1	28		2	15	2	.03		F	19.276	·18.87
	30	-8.55		2	`` . 15	60	.80		F	19.276	
ŧ	1	28	•	23	-1.70	ຸ 23໋	. 31		F	19.276	17.60
-	30	-8,55		23	-1.70	690	9.18	•	F	19.276	18.21
-		•				•				`	19

106

7

.8

Gas Laws Immediate Posttest (GLQT):

Verbal Preference (VVQV) X Visual Preference (VVQI) X

Treatment (X1-X3) Interaction

~~·	Strategy	Dummy Variables	Equation
	Proportion	X3 = 1	GLQT =2663V1378I+.0134VI+13.832
and the second sec	Analogy	X2 = 1	GLQT = .3623V+.2743I0190VI+4.606
	Diagram	X1 = 1	GLQT = .0362V00778I00121VI+10.525
	Factor-Label	X3 = X2 = X1 = -1	GLQT =1820V00908I+.00686VI+11.229
h			

4

 $\overline{\mathcal{F}}$

103

J

Ś

_93

Gas Laws Immediate Posttest (GLQT):

Substitution of Extreme Values for

VVQV $(1 \rightarrow 30)$ and VVQI $(2 \rightarrow 23)$

<u>v vqv</u>		VVQI		VI		TREATM	ENT	PREDICTED GLQT
1.	۰ 27	2	28	2	.03	🚔 P	13.832	13.32
30	-7.99 .	2	28	60	.80	Р	13.832	6.37
1	27	23	·3.17	23	.31	₽	13.832	10.70
30	-7.99	23	-3.17	690	9.25	/p	13.832	11.92
1	.36	2	.55	2	04	А	4.606	5.48
30	10.87	[ໍ] 2	.55	60	-1.14	Ā	4.606	14.88
1.	. 36	23	6.31	23	44	А	4.606	10.84
30	10.87	23	6.31	690·	-13.11	Ā	4.600	8.67
1	.04	2	02	2	00	D	10.525	10.54
30	1.09	2	02	60	07	D	10.525	· 11.52
1	.04	23	18	23	03	D	10.525	10.35
30	1.09	23	18	6.90	83	D	10.525	10.60
1	18	2	02	2	.01	F	11.229	11.04
30	-5.46	2	02	60	.41	F	11.229	6.16
1	18	23	21	23	.16	F	11 . 229	11.00
' 30 ^{***}	-5.46	23	21	690	4.73	F	11.229	10.29

110

:

✓ 2 Figure 9. Gas Laws Immediate Posttest (GLQT): Verbal Preference (VVQV) X Visual Preference (VVQI) X Treatment (X1-X3) Interaction

Stoicniometry Inmediate Posttest (SQT):

Verbal Preference (VVQV) λ Visual Preference (VVQI) X

Treatment (x1-X3) Interaction

Strategy	Dummy Variables	Iquation
Proportion	x3 = 1	SQ1 = +.0704V+.0795I00301VI+7.529
Analogy	$x^2 = 1$	SQT =211V128I+.00945VI+12.179
Diag ra m	λ1 = 1	SQT =110V0316I+.00435VI+10.379.
Factor-Label	$\lambda 3 = \lambda 2 = \lambda 1 = -1$	SQT = +.190V+.231I0108VI+5.605

Stoichiometry Immediate Posttest (SQT):

Substitution of Extreme Values for

VVQV $(1 \rightarrow 30)$ and VVQI $(2 \rightarrow 23)$

VVQV		VVQI		VI		TREATME	NT	PREDICTED SQT
1	.07	2	.16	2	01	P	7.529	7.75
30	2.11	2	.16	60	18	Р	7.529	9.62
1	.07	23	1.83	23	07	Р	7.529	9.36
30	- 2.11	23	- 1.83	690	2.08	P	7.529	9.39
1	21	2	20	2	.02	\ A	12.179	11.73
30	-6.33	2	26	60	.57	A	12,179	6.16
1	21	23	-2.94	23	.22	٨	12.179	9.24
30	-6.33	23	-2.94	690	6.52	_ A	12.179	9.43
1	11	2	06	2	.01	ับ	10.379	10.21
30	-3.30	2	06	60	.26	D	10.379	7.28
1	11	23	73	23	.10	'n	10.379	9.64
30	-3.30	23	73	690	3.00	D	10.379	∕~9.35
1	.19	2	.46	2	02	F	5.605	6.24
30	5.70	2	.46	60	65	_ F	5.605	11.12
1	. 19	23	5.31	23	25	F	5.605	10.86
30	5.70	23	5.31	690	-7.45	F	5.605	9.17

.°.

115

٩

✓ 2 Figure 10. Stoichiometry Immediate Posttest (SQT): Verbal Preference (VVQV) X Visual Preference (VVQI) X Treatment (X1-X3) Interaction

Molarity Immediate Posttest (MLQT):

99

Verbal Preference (VVQV) X Visual Preference (VVQI) X

Treatment (X1-X3) Interaction

Stragety	Dummy Variables	Equation
• Proportion	X3 = 1	MLQT = .1347V+.3183I00781VI+5.178
Analogy	X2 = 1	MLQT = .2689V+.3513I0133VI+4.448
Diagram	Xi = 1	MLQT =0614V+.0710I000360V1+11.228
Factor-Label	X3 = X2 = X1 = -3	1 MLQT =4059V2767I+.0214VI+16.968

Molarity Immediate Posttest (MLQT):

Substitution of Extreme Values for

VVQV (1+ 30) and VVQI (2+23)

vvqv		wq	[VI		TREATMENT	PREDICTED MLQT
1 _	.13	2	-•64	2	02	P 5.1	78 5.93
30	4.04	2	.64	60	47	P 5.1	7 8 9 .3 9
1	.13	23	7.32	23	18	P 5.1	78 12.45
30	4 .04	23	7.32	690	-5.39	P 5.1	78 11.15
1	.27	ŕ . 2	.70	2	03	A 4.4	48 5.39
30	8.07	2	.70	6 0	80	A 4.4	48 12.42
1	.27	23	8.08	23	31	A 4.4	48 12.49
3 0	8.07	23	8.08	690	-9.18	A 4.4	48 11.42
1	00	2	.14	2	00	D 11.2	28 11.31
30	-1.84	. 2	.14	6 0	02	D 11.2	28 9.51
1	06	23	1.63	23	01	D 11.2	28 12.79
30	-1.84	23	1.63	690	25	ับ 11.2	28 10.77
1	41	2	55	2	.04	F 16.9	68 16.05
30	-12.18	. 2	55	60	1.28	F 16.9	68 <u>5.</u> 52
1	41	23	-6.36	23	. 49	F 16.9	68 10.69
30	-12.18	23	-6.30	69 0	14.77	F 16.9	68 13.19

113

۰.,

Stoic	iometry Immediate Posttest (SQT): General Regression Equation
SQT =	0140(V) + .0375(I)00757(MARSTOT) + .1281(PPRT) +
	35.892(X3) - 27.270(X2) - 23.524(X1) + .8876(VX2)6725
	(VX1) - 1.498 (VX3) - 1.773 (IX3) + 1.146 (IX2) + 1.559 (IX1)
	+ 1431 (NX1)2327 (MX3) + .1380 (MX2) + 3.031 (PX2) + 1.158
	(PX1) - 3.296(PX3) + .00679(VIX1) + .0728(VIX3)0335
	(VIX2) + .000240(VMX1)00167(VMX2) + .0104(VMX3) -
	.00993(IMX1) + .0116(IMX3)00595(IMX2)1304(VPX2)
	+ .0623(VPX1) + .1508(VPX3)0926(IPX1) + .1539(IPX3)
-	1269(IPX2)00689(PMX1)0142(PMX2) + .0203(PMX3)
	+ .000181 (VIMX1)000522 (VIMX3) + .0000243 (VIMX2) - `
	.000746(VIPX1) + .00536(VIPX2)00702(VIPX3)000109
	(VPMX1) + .000373(VPMX2)000965(VPMX3) + .000590
	(IPMX1) + .000596(IMPX2)000976(IMPX3)0000114
•	(VIPMX1)0000125 (VIMPX2) + .0000469 (VIMPX2) + 8.704
• Where	\overline{VVQV} (\overline{V}) = 15.807 $\overline{MARSTOT}$ = 184.546
٠	\overline{VVQI} (\overline{I}) = 18.020 \overline{PPRT} = 12.614
	,

•

ERIC

Table 35

121

ł

Stoichiometry Inmediate Posttest (SQT): Main Effects Regression Equation

Equation: SQT = -.00545 (MARSTOT) + .152 (PPRT) + .8546

ľ22

53

Ta	ble	-37

Stoichiometry Immediate Posttest (SQT): F Tests for Possible Significant Effects

	4			
	Mean = 9.	.451 S.D. =	2.376 Cases = 528	Max. $= 12$
	Predictor	ΔR^2	. F	Sig.Level
	MARSTOT	.02436	.02436/.001774 ^a = 13.73	.01
	PPRT .	.07245	.07245/.001774 = 40.84	.01
۹. ب	IMX1 IMX3 IMX2	.01257 .00000 <u>.00799</u> .02056	$\frac{.02056}{.001774} = 3.86$.05
ł	INX1	.01257	.01257/.001774 = 7.08	.01
	_ <u>IMX3</u>	.00000		NS ^b
-	IMX2	.00799	.00799/.001774 = 4.5	.05
ĩ	VPMX1 VPMX2 VPMX3	.00627 .00170 .00075 .00872	$\frac{.00872/3}{.001774} = 1.64$	NS

^aError Term = (1-.18404)/475-15 = .001774

 $b_{NS} = Nonsignificant$

Effect	В	S.E.B.
INX1	00162	.000968
IMX 3	+.000663	.00100
IMX2	00223	.00103
•	162 + .00066300223 = .000968 + .00100	

¢

Stoichiometry Immediate Posttest (SQT): Calculations for "Fourth" Effect

Stoichiometry Immediate Posttest (SQT):

106

Visual Preference (VVQI) X Mathematics Anxiety (M) X

Treatment (X1-X3) Interaction

····- = ···	Strategy	Dummy Variables	Equation
	Proportion	X3 = 1	SQT =042510121M+.000401M+10.844
	Analogy	$\lambda 2 = 1$	SQT = .121100057M0008821M+9.177
	Diagram	X1 = 1	SQT = .387I+.0306M00190IM+2.981
	Factor-Label	X3 = X2 = X1 = -1	SQT =314I0482M+.00202IM+17.527

Stoichiometry Immediate Posttest (SQT):

Substitution of Extreme Values for

WQI (2 +23) and MARSION (101 +349)

WQT		MARSTO	ſ	IM	TREATMENT		PREDICTED SQT		
2	08	101	-1.22	202	.08	Р	10.844	9.62	
23	98	101	-1.22	2323	.93	Р	10.844	9.57	
2	08	- 349	-4.22	698	.28	р	10.844	6.82	
23	98	349	-4.22	80 27	3.21	Р	10.844	8.85	
2	.24	101	06	202	18	A	9.177	9.18	
23	2.78	101	06	2323	-2.05	А	9.177	9.85	
2	.24	349	20	698	62	А	9.177	8.60	
23	2.78	349	20	8027	-7.08	А	9.177	4.68	
2	.77	101	3.09	202	38	υ	2.981	6.46	
23	8.90	101	3.09	2323	-4.41	D	2.981	10.56	
2	.77	349	10.68	698	-1.33	υ	2.981	13.11	
23	8.90	349	10.68	8027	-15.25	v	2.981	7.31	
2	63	101	-4.87	202	.41	F	17.527	12.44	
23	-7.22	101	-4.87	2323	4.69	F	17.527	10.13	
2	63	349	-16.82	698	1.41	F	17.527	1.49	
23	-7.22	349	-16.82	⁻ 8027	16.21	F	17.527	9.70	

126

è

A.

ERIC 127

Figure 12. Stoichiometry Immediate Posttest (SQT): Visual Preference (VVQI) X Mathematics Anxiety (M) X Treatment (X1-X3) Interaction

128

4.

Ş

Moles Immediate Posttest (MOQT):

Visual Preference (VVQI) X Mathematics Anxiety (M) X $\,\,^{\circ}$

Treatment (X1-X3) Interaction

Strategy	Dummy Variables	Equation
Proportion	X3 = 1	MOQT =304510458M+.00234IM+22.354
Analogy	• X2 = 1	MOQT = .1100I+.0150M000992IM+15.971
Diagram	X1 = 1	MOQT = .4447I+.0377M00263IM+11.313
Factor-Label	X3 = X2 = X1 = -1	MOQT =092810376M+.001281M+21.592

Moles Immediate Posttest (MOQT):

Substitution of Extreme Values for

VVQI $(2 \rightarrow 23)$ and MARSTOT $(101 \rightarrow 349)$

.

WQI		MARSTOT IM TREATMENT			ENT	PREDICTED MOQT		
2	61	[`] 101	-4.63	202	.4?	Р	22.354	17.59
23	-7.00	` 101	-4.63	2323	5.44	Р	22.354	16.16
2	61	349	-15.98	698	1.63	Р	22.354	7.39
23	-7.00	349	-15.98	8027	18.78	Р	22.354	18.15
2	.22	101	1.52	202	20	А	15.971	17.51
23	2.53	. 101	1.52	2323	-2.30	·A	.15.971	17.71
2	.22	349	5.24	698	69	А	15.971	20.73
23	2.53	* 349	5.24	8027	-7.96	` A	15.971	15.77
2	. 89	101	3.81	20 2	53	D	11.313	15.48
23	10.23	101	3.81	2323	-6.11	D	11.313	19.24
2	.89	349	13.16	698	-1.84	D	11.313	23.52
23	10.23	349	13.16	S027	-21.11	D	11.313	13.59
2	19	101	-3.80	202	.26	F	21.592	17.87
23	-2.13	101	-3.80	2323	2.97	F	21.592	18.63
2	19	349	-13.12	698	.89	F	21.592	9.18
23	-2.13	349	-13.12	8027	16.27	F	21.592	16.61

, 2

/ Gas Laus Immediate Posttest (GLQT):

Visual Preference (VVQI) X Mathematics Anxiety (M) X

Treatment (X1-X3) Interaction

١

·	Stragegy	Dummy Variables	Equation
	Proportion	X3 = 1	GLQT = 200588100504M+.000043 IM+10.548
	Analogy	X2 = 1	GLQT =138910106M+,0002821M+12.282
-	Diagram	X1 = 1	GLQT = .0417I+.0124M000697IM+8.020
د	Factor-1 el	X3 = X2 = X1 = -1	GLQT =027710174M+.000364IM+11.562

Gas Laws Immediate Posttest (GLQT):

Substitution of Extreme Values for

VVQI (2+23) and MARSTOT (101+349)

VVQI		MARSTOT	.	IM TREATMENT				PREDICTED GLQT
ż	.01	101	51	202	.01	. P	10.548	10.06
2 3	.1/4	101	51	2323	.10	Р	10.548	10.27
2	/01	349	-1.76	698	.03	Р	10.548	8.83
2 3	.14	349	-1.76	8027	.35	Р	10.548	9.27
2	28	101	-1.07	202	.06	A	12.282	10 .9 9
2 3	-3.19	101	-1.07	2323	.66	A	12.282	8.67
2	28	34 9	-3.70	698	.20	Α	12.282	8.50
23	-3.19	349	-3.70	8027	2.26	A	12.282	7.65
2	.08	101 [.]	1.25	202	-14.08	D	8.020	9.22
23	.96	101	1.25	2 3 23	-1.62	D	8.020	8.61
2 •	.08	349	4.33	698	49	D	. 8.020	11.94
23	.96	349	4.33	8027	-5.59	ຸນ	8.020	7.71
2	06	101	-1.76	202	.07	F	11.562	9.82
23	64	101	-1.76	. 2 3 23	.85	F	11.562	10.01
2	.06	349	-6.07	698	.25	F	11.562	5. 69
2 3	64	349	-6.07	8027	2.92	·F	11.562	7.77

Molarity Immediate Posttest (MLQT):,

Visual Preference (VVQI) X Mathematics Anxiety (M) X

Treatment (X1-X3) Interaction

137

Strategy	Dummy Variables	Equation
Proportion	X3 = 1	MLQT =617510841M+.004401M+22.815
Analogy	X2 = 1	MLQT = .1973I00474M000308IM+9.577
Diagram	X1 = 1	MLQT = .7506I+.0628M00371IM-1.321
Factor-Label	X3 = X2 = X1 = -3	1 MLQT = .11881+.00378M0003111M+9.851

l'able 46

Molarity Immediate Posttest (MLQT):

Substitution of Extreme Values for

VVQI (2 + 23) and MARSTOT (101 + 349)

	WQI		MARSTO	T	IM		TREATM	ENT	PREDICTED MLQT
	2	-1.24	101	-8.49	[°] 202.	.89	Р	22.815	13.97
	23	-14.20	101	-8.49	2323	10.22	Р	22.815	10.31
Ş	2	-1.24	349	-29.35	698	3.07	Р	22.815	-4.70
	23	-14.20	349	-29.35	8027	35.32	Р	22.815	14.58
	2	. 39	101	48	202	06	A	9.577	9.43
	23	4.54	101	48	2323	72	А	9.577	12.92
	2.	.39	349	-1.65	698	21	A	9.577	8.10
	23	4.54	349	-1.65	8027	2.47	Å	9.577	9.99
	2 - 7	1.50	1 01	6.34	202	75	Ü	-1.321	5.77
2	23	17.26	101	6.34	2323	-8.62	D	-1.321	13.68
	2	1.50	349	21.92	698	-2.59	D	-1.321	19.51
2	23	17.26	349	21.92	8 0 27	-29.78	D	-1.321	8.08
	2	.24	101	. 38	202	06	F	9.851	10.41
2	23	2.73	101	. 38	2323	72	F	9.851	12.24
	2	.24	349	1.32	698	22	F	9.851	11.19
	3	2.73	. 349	1.32	8027	-2.50	F	9.851	11.41
			•						

133

Table	e 47
Decimal Subtest (DE): Ge	eneral Regression Equation
i01: =0130(V) + .0575(1)00513	5 (MARSTOT + .1197 (PPRT)
$-1.627(\lambda 2) - 20.657(\lambda 1) + 3$	51.359(x3) - 2.010(VX2) -
.4212(VX3) ⁺ + 1.391(VX1) - 1.	751(IX3) + 1.059(IX1) +
5485(LX2) + .0884(MA1)18	390 (MX3) + .0146 (MX2) +
.7302(Pλ2) + .0350(Pλ1) - 2.	808(PX3)0750(VIX1) +
.0176(VIX3) + .0882(VIX2) -	.00523 (VMX1) + .0108 (VMX2)
+ .00155(VMA3) + .0108(INA3)	00523(IMX1)00306(IMX2)
+ .0939 (VPx2)0512 (VPX1)	+ .0987(VPX3)00427(IPX1)
+ .1535(IPX3)0643(IPX2)	+ .00181(PMX1)00637(PMX2)
+ .0183 (PNL3) + .000317 (V INL	1)0000797(VINX3)000480
(VINX2) + .00301(VIPA1)0	0396(VIPX2)00475(VIPX3) +
.000125(VP+21)000373(VI	2)000598(VPMX3) +
.000447(IPMX2)0000116(IF	MX1)00101(IPMX3) + .0000156
(VIPAL2)0000117(VIPAL1)	+ .0000301(VIPMX3) + 9.397
Where \overline{VVQV} (V) = 15.807	$\overline{\text{MARSTOT}} = 184.546$
\overline{WQI} (I) = 18.020	PPPT = 12.614

Mean = 1	0.815 S.D.	= 1.903	Cases = 421	Max. = 13	•
Predictor	ΔR^2	•	F	Si	g.Level
WQI	.01035	.0103	35/.002120 ^a = 4.88		.05
MARSTOT	.02232	.0223 ∞	32/.002120 = 10.53		.01
PPRT	.07421	.07.42	21/.002120 = 35.00		.01
IMX3 IMX1 IMX2	.00004 .03 503 .0(294 .01901	.0190	$\frac{01/_3}{120} = 2.99$.05
IMX3	.00004	.000	04/.002120 = .02		NSb
DAX1	.01603	.016	03/.002120 = 7.56		.01
INX 2	.00294	۱.0Õ2	94/.002120 = 1.39	-	NS
IPMX2 IPMX1 IPMX3	.00577 .00432 .00657 .01666	.016	$\frac{66/_3}{120}$ = 2.62		NS

^aError Term = (1-.21969)/368 = .002120

^bNS = Nonsignificant

•

Decimal Subtest (DE): Calculations for "Fourth" Effect

Visual λ Math Anxiety λ Treatment Interaction					
Effect	В	S.E.B.			
IMX3	+.00172	.000966			
IMX1	00207	.000961			
IMX2	00128	.00108			

 $B_4 = -\Sigma B_1 = (.00172 - .00207 - .00128) = .00163$

$S.E.B4 = \Sigma \frac{S.E.B}{3}$	<u>·i</u> = <u>.0</u>	00966 +	<u>.000961 +</u> 3	.00108 =	.001002
$t_4 = \frac{B_4}{S.E.B4} =$	<u>.00163</u> .001002	= 1.63	`	NS	

Decimal Subtest (DE): Main Effects Regression Equation

Equation: DE = .0372 (VVQI) - .00421 (MARSTOT + .124 (PPRT) + 9.513

4

Decimal Subtest (DE):

Visual Preference (VVQI) X Mathematics Anxiety (M) X

Treatment	(X1-X3)	Interaction
-----------	---------	-------------

Strategy	Jummy Variables	Equation
Proportion	$\lambda 3 = 1$	DE =4260 I0583M+.00277 IM+19.679
Analogy	X2 = 1	DE = .4005I+.0250M00189IM+5.223
Diagram	$\lambda 1 = 1$	DE = .4778I+.0484M00270IM+2.277
Factor-Label	X3 = X2 = X1 = -1	DE =2222I0356M+.00116IM+15.634

Decimal Subtest (DE):

Substitution of Extreme Values for

WQI (2 +23) and MARSTOT (101 +349)

V VQI	*	MARSTOT		IM		TREATMEN	[PREDICTED DE
2	85	101	- 5.89	202	.56	Р	19 .6 79	13.50
23	-9.80	101	- 5.8 9	2323.	6.43	· P	19.679	10.43
2	85	, 349	- 20.35	6 98 _	1.93	Р	19.679	. 41
23	-9.80	349	- 20.35	8027	22.23	Р	19.679	11.77
2	.80	101	2.52	20 2 ⁻	38	, A	5.223	8.17
23 ·	9.21	101	2.52	2323	- 4.39	Α	5.223	12.5 7
2	· . 80	349	8.72	6 9 8	-1.32	А	5.223	13.43
23 .	9.21	34 9	8.72	8027	- 15.17	А	5.223	7 .8 0
2	.96	101	4.89	202	55	D	2,277	7.58
23	1 0. 99	101	4.8 9	2323	-6.27	. D	2.277	11.88
2	.96	349	16.89	698	-1.88	ט .	2.277	18.28
23	1 0. 9 9	349	16.89	8027	- 21.67	D	2.277	8.49
2	44	101	-3.60	202	. 23	۰F	15.634	11.83
23	-5.11	101	-3.60	2323	2.6 9	۶	15.634	9.62
2 🔨	44	34 9	• - 12.42	698	.81	F	15.634	3.57
23	- 5.11	·349	- 12.42	8 0 27	9.31	F	15.634	7.41
		• -	X					

•

RIC

,	Table 53
	Nondecimal Subtest (NDE): General Regression Equation
NDE =	0271(V) + .0427(I)00484(MARSTOT) + .0812(PPRT)
	- 16.238(X2) - 36.544(X1) + 33.824(X3) + .1191(VX2) -
	2.030(VX3) + 2.395(VX1) - 2.058(IX3) + 2.184(IX1) +
	.8566(IX2) + .1883(MX1)2163(MX3) + .1124(MX2) +
	.9716(PX2) + 2.420(PX1) - 2.627(PX3)1479(VIX1) +
	.1238 (VIX3)00758 (VIX2) + .0144 (VMX1)00279 (VMX2)
	0136(VMA3) + .0133(IMX3)0121(IMX1)00591(IMX2)
	+ .00599(VPX2)1803(VPX1) + .1637(VPX3)1466(IPX1)
	+ .1538(IPx3)0511(IPX2)0123(PxX1)00774(PtX2)
	+ .0170 (PMX3)000881 (VINX3). + .000888 (VIMX1) + .000154
	(VINX2) + .0111(VIPX1)000176(VIPX2)00964(VIPX3)
	+ .00105(VPMX1) + .000178(VPMX2)00118(VPMX3) + .000404
`	(IPMX2).+ .000816(IPMX1)00101(IPMX3)0000102(VIPMX2)
	0000686(VIPMX1) + .0000702(VIPMX3) + 10.838

Where \overline{VVQV} (V)	*	15.807 [°]	MARSTOT	*	184.546
\overline{VVQI} (1)	=	18.020	PPRT	ż	12.614

.(

Full Text Provided by ERIC

149

125

ì

Nondecimal Subtest (NDL): Main Effects Regression Equation

Equation: NDE = .0376 (VVQI) - .00450 (MARSTOT) + .0854 (PPRT)

150

+ 10.835

Nondecim	al Subtest (NDE):	F Tests for Possible Significant Effe	ects
«		<i>.</i>	_ ·
Mean =	11.322 S.D.	= 1.477 Cases = 428 Max. = 1.	<u>3</u>
		. ,	
Predictor	ΔR^2	• 	Sig. Level
VVQI	.01331	$.01331/.002140^a = 6.22$.05
MARSTOT	.03641	.03641/.002140 = 17.01	.01
PPRT	.05837	.05837/.002140 = 27.28	.01
VPMX1 VPMX2 VPMX3	.00883 .00105 .00132 .01120	$\frac{.01120/3}{.002140} = 1.74$	['] NS ^b
	.01200		* 9.2

^aError Term = (1 - .19738)/375 = .002140

^bNS = Nonsignificant

N.

127

ŗ

Nondecimal Subtest (NDE):

Visual Preference (VVQI) X Mathematics Articlety (M) X

Treatment (X1-X3) Interaction

Strategy	Dummy Variables	Equation
' Proportion	X3 = 1	NDE =0396I0143M+.000619IM+12.665
Analogy	$\ddot{x}2 = 1$	NDE = .0996I+.00126M000404IM+10.527
Diagram	X1 = 1	NDL = .2542I+.0227M00146IM+7.331
Factor-Label	X3 = X2 = X1 = -1	NDE =1437I0291M+.00124IM+15.2111

128

÷ 1

Nondecimal Subtest (NDE):

Substitution of Extreme Values for

VVQI	· ·	MARSTO	<u> </u>	MI		TREATMEN	<u>T</u>	PREDICTE NDE
2	08	101	-1.44	202	.13	Р	12.065	11.27
23	91	101	-1.44	2323	1.44	Р	12.665	11.75
2	08	349	-4.99	698	.43	Р	12.665	8.03
2∙3	91	349	-4.99	8027	4.97	Р	12,665	11.73
2	. 20	101	.13	202	08	' A	10.527	10.77
23	2.29	101	.13	2323	94	А	10.527	12.01
2	. 20	349	.44	· 698	28	Α	10 .52 7	10.88
2 3	2.29	349	.44	8027	-3.24	А	10.527	10.01
2	.51	101	2,29	202	29	D	7.331	9.84
23	-5.85	101	2.29	^ 2323	-3.39	D	7.331	12.08
2	.51	349	7.92	698	-1,02	D¢	7.331	14,75
23	5. 85	349	7.92	8027	-11.72	D.	7.331	9.38
2	29	101	-2.94	202	.25	F	15.211	12.23
23	-3.31	101	-2.94	2323	2.88	F	15.211	11.85
2	29	349	-10.16	` 698	.87	F	15.211	5.63
23	-3.31	349	-10.16	8027	9. 95	F	15.211-	11.70

5.

د;

Ta	ble	-58
----	-----	-----

Molarity Delayed Posttest (MLT): General Regression Equation

MLT =	00084(V) + .0109(I)00607(MARSTUT) + .1460(PPRT)
	+ 30.440(X3) + 2.662(X2) - 27.920(X1)4202(VX2) +
	1.320(VX1)8307(Vλ3)8477(IX3) + .0400(IX2) +
A	1.014(IX1) + .1153(MX1)2202(MX3) + .0498(MX2) -
	1.320(PX2) + 1.491(PXI) - 1.326(PX3)0482(VIX1)
	+ .00477(VIX3) + .00889(VIX2)00539(VMX1) -
	.000541(VMX2) + .00762(VMX3)00446(IMX1)'+ .u0791
	(IMX3)00278(IMX2) + .140(VPX2)0662(VPX1)
	+ .0118(VPX3)0407(IPX1) + .0201(IPX3) + .0424(IPX2)
	00621(PMX1) + .000580(PMX2) + :0125(PMX3) + .u00206
•	(VIMX1)000214(VIMX3) + .0000486(VIMX2) + .00145(VIPX1)
r	00517(VIPX2) + .00164(VIPX3) + .000283(VPMX1) -
	.000417(VPMX2)000393(VPMX3) + .000195(IPMX1) +
	.0000494(IPMX2)000416(IPMX3)00000718(VIPMX1) +
ډ	.000142(VIPMX2) + .00000970(VIPMX3) + 5.327

Where	\overline{VVQV} (\overline{V})	Ħ	15.807	•	MARSTOT	=	184.546
	\overline{WQI} (\overline{I})	=	18.020		PPRT	Ħ	12.614
				•	7		``

Molarity Delayed Posttest (MLT): Main Effects Regression Equation

Equation: MLT = -.00552 (MARSTOT) + .141 (PPRT) + 5.786

ņ

157

C

١.

Mean	= 6.197 S.D.	= 2.443 Cases = 481	Max. = 10
Predictor	$\wedge \mathbb{R}^2$. F	Sig.Level
MARSTOT	.02314	.02314/.002150 ^a = 10.80	.01
PPRT	.05945	.05945/.002150 = 27.65 _,	.01
VMX1 VMX2 VMX3	.00026 .00725 .00195 .00946	$\frac{.00946/_{3}}{.002150} = 1.47$	NS ^b
VPX2 VPX1 VPX3	.01149 .00566 .00022 .01737	$\frac{.01737/_{3}}{.002150} = 2.69$.05
VPX2	.01149	.01149/.002150 = 5.34	.05
VPX1	.00566	.00566/.002150 = 2.63	NS
VPX3	.00022	.00022/.002150 = 0.10	NS

Molarity Delayed Posttest (MLT): F Tests for Possible Significant Effects

 $a_{\text{Error Term}} = (1 - .17018)/427 - 41 = .002150$

b_{NS} = Nonsignificant

	rtional Reasoning X Tre	atment Interaction
fect	B [⊕]	<u>.</u> S.E.B.
PX 2	+.0147	.00699
<u>x</u> 1	0106	.00828
X 3	+.00268	.00838
$\cdot_4 = \Sigma \frac{\text{S.E.B.}_{i}}{3}$	$\frac{1470106 + .00268}{.00268} = \frac{.00699 + .00828 + .00828 + .00828}{.00788} =86$	

Ę,

wi

÷ .

ς.

Molarity Delayed Posttest (MLT):

Verbal Preference (VVQV) X Proportional Reasoning (P) X

Treatment (X1-X3) Interactions

	Strategy	Jummy Variables	Equation
•	Proportion	$\lambda 3 = 1$	MLT =0557V+.1052P+.00113VP+5.234
·•	Analogy	$\lambda 2 = 1$	MLT =2050V1379P+.0168VP+7.742
	Diagram	X1 = 1	MLT = .1350V+.4064P0119VP+1.201
	Factor-Label	$\lambda 3 = X2 = X1 = -1$	MLT = .0966V+.2096P00581VP+3.418
*		,	

160

4

`135

Molarity Delayed Posttest (MLT):

Substitution of Extreme Values for

VVQV $(1 \rightarrow 30)$ and PPRT $(1 \rightarrow 21)$

ww	-	PPRT	_	VP		TREATME		PREDICTE MLT
1	06	1	.11	. 1	.00	Р.,	5.234	5.29
30	-1.67	`1	.11	30	.03		5.234	3.70
[.] 1	06	21	2.21	21	.02	Р	5,234	7.41
30	-1.67	21	2.21	630	. 71 ·	· p	5.234	6.48
1	20	·1	14 '	. 1	.02	А	7.742	7.42
30	6.15	1	14	30	. 50	A	7.742	1.96
1	20	21	-2.90	21	.35	Ą	7.742	4.99
30	-6.15	21	-2.90	630	10.58	۶ A	7.742	∞9.28
1	.14	<u>1</u>	.41	1	01	D	1.201	1.73
3 0 ·	4.05	ر 1	.41	30	36	• D	1.201	5.30
1 ``	.14	21	8.53	21	25	D	1.201	9.62
30	4.05	21	8.53	630	-7.50	D	1.201	6.29
1	.10	1	.21	1	. .01	F	3.418	3.72
30	2.90	1	.21	30	17	F	3.418	6.3
1	.10	21	4.40	21	12	F	3.418	• 7.80
-30	2.90	21	4.40	630	-3.66	F	3.418	7.06

;

Figure 18. Molarity Delayed Posttest (MLT): Verbal Preference (VVQV) X Proportional Reasoning
 (P) X Treatment (XI-X3) Interactions

₹

.

ERIC

Moles Delayed Posttest (MOT):

Verbal Preference (VV(V) X Proportional Reasoning (P) X

Treatment (λ 1- λ 3) Interactions

, . 	Strategy	Dummy Variables	Equation
•	Proportion	л3 = , 1	MOT =0511V+.1038P+.00413VP+5.735
	Analogy	X2 = 1	MOT = .0666V+.2218P00329VP+3.916
· ~	Diagram ,	X1 = 1	NOT = .1330V+.3769P0102VP+2.443
•	Factor-Label	$x_3 = x_2 = x_1 = -1$	MOT = -: 1279V00737P+.00952VP+7.847

164 -

2

138

L I

Moles Delayed Posttest (MOT):

Substitution of Extreme Values for

VVQV (1+ 30) and PPRT (1+ 2

vvqv		P PRT	• •	VP		TREATME	NT	PREDICTED MOT
1	05	1	.10	-	.00	Р	5.735	5.79
30	-1.53	1	.10	30	.12	Р	5.735	4.43
1	05	21	2.18	21	.09	Р	5.735	7.95
30	-1.53	21	2.18	630	2.60	р	5.735	8.98
1	.67	1	.22	1	00	A	3.916	4.20
30	2.00	1	.22	30	10	A	3.916	6.04
1	.67	21	4.66	21	07	A	3.916	8.57
3 0	2.00	21	4.60	630	-2.07	Α	3.916	8.50
1	.13	1	.38	1	01	D	2.443 ,	2.94
30	3.99	1	. 38	`. 30	31	D	2.443	6.50
1	.13	21	7.51	21	21	D	2.443	10.28
3 0	3.99	21	7.91	-630	-6.43	D	2.443	7.92
1	13	1	01	1	.01	F	7.847	7.72
3 0	-3.84	1	01	30	. 29	F	7.847	4.29
1	13	21	- :15	21	.20	F	7.847	7.76
30	-3.84	21	15	630	6.00	F	7.847	9.85

Figure 19. Moles Delayed Posttest (MOT): Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment (X1-X3) Interactions

Gas Laws Delayed Posttest (GLT):

Verbal Preference (VVQV) \dot{x} Proportional Reasoning (P) X

Treatment (λ 1-X3) Interaction

* -*	Strategy	Dummy Variables	Equation
	Proportion	X3 = 1	GLT = .0309V+.0322P000770VP+6.624
	Analogy	$\lambda 2 = 1$	GLT =0425V+.1081P+.000556VP+5.520
P	Diagram	X1 = 1	GLT =0336V+.2519P00446VP+4.983
	Factor-Labe1	X3 = X2 = X1 = -1	GLT =0810V+.1301P+.00473VP+5.788

λ.

د

Cas Laws Delayed Posttest (GLT):

Substitution of Extreme Values for

WQV $(1 \rightarrow 30)$ and PPRT $(1 \rightarrow 21)$

wqv		PPR	[VP		TREATME	NT	PREDICTEL GLT
1	.03	1	.03	1	00	Р	6.624	6.69
30	.93	1	.03	30	02	Р	6.624	7.56
1	.03	21	.68	2 1	02	Р	6.624	7.31
30	.93	21	.68	630	49	Р	6.624	7.74
1	04	1	.11	1	.03	А	5.520	5.59
30	-1.28	1	:11	30	.02	А	5.520	4.37
1	•.04	21	2.27	21	.01	А	5.520	7.76
30	-1.28	21	2.27	630	.35	А	5.520	6.87
1	03	1	.25	1	00	D	4.983	5.20
30	-1.01	1	.25	30	13	D	4.983	4.09
1	03	21	5.29	21	09	D	4.983	10.15
30	-1.01	21	5.29	630	-2.81	D	4.983	6.46
1	08	1	.13	1	.00	F	5.788	5.84
30	-2.43	1	.13	30	.14	F	5.788	3.63
1	08	21	2.73	21	.10	F	5.788	8.54
30	-2.43	21	2.73	630	2.98	F	5.788	9.07
	- <u> </u>							
)	1					

t

. h

144

۱* ۲*

Table 68

Stoichiometry Delayed Posttest (Sf):

Verbal Preference (VVQV) X Proportional Reasoning (P) X

Treatment	(X1-X3)	Interactions
-----------	---------	--------------

Strategy	Jummy Variables	. Equation
Proportion	$\lambda 3 = 1$	ST = .1216V+.3184P0136VP+3.340
Analogy	X2 = 1	ST =0512V+.1663P+.00325VP+4.964
Diagram	$\chi 1 = 1$	ST =1471V+.1469P+.00460VP+5.965
Factor-Label	$\lambda 3 = \lambda 2 = \lambda 1 = -1$	ST =0503V+.0634P+.00561VP+5.656

172

-

Ľ

Ĵ

6

Stoichiometry Delayed Posttest (ST):

Substitution of Extreme Values for

VVQV $(1 \rightarrow 30)$ and PPRT $(1 \rightarrow 21)$

wq		PPRT		VP		TREATME	T	PREDICTED ST
1	.12	1	.32	1	01	Р	3.340	3.77
30	3.65	1	.32	30	41	Р	3.340	6.90
1	.12	21	6.69	21	29	, P	3.340	9.86
30	3.65	21	6.69	630	-8.57	Р	3.340	5.11
1	05	1	.17	1	.00	А	4.964	5.08
30	-1.54	1	.17	30	.10	А	4.964	3.69
1	05	21	3.49	21	.07	А	4.964	8.47
30	-1.54	21	3.49	630	2.05	A	4.964	8.97
1	15	1	.15	1	.00	D	5.965	5.97
30	-4.41	1	.15	30	. 14	D	5.965	1.84
1	15	21	3.08	21	.10	ע.	5.965	9.00
30	-4.41	21	3.08	630	• 2.90	D	5.965	7.53
1	05	1	.06	1	.01	F	5.656	5.67
30	-1.51	· 1	.06	30	.17	F	5.656	4.38
1	05	21	1.33	21	.12	F	5.650	7.05
30	-1.51	21	1.33	630	3.53	F	5.656	9.01
ı								

د

Stoichiometry Delayed Posttest (ST): Verbal Preference (VVQV) X Proportional Reasoning (P) X Treatment (X1-X3) Interactions Figure 21. 175

174 Full fact Provided by ERIC

- Table 70

Sas Laws Immediate Posttest (GLQT): General Regression Equation

GLQT = -.0249(V) + .0298(I) - .00506(MARSTOT) + .0700(PPRT) +

- 26.729(X3) 15.228(X2) 38.436(X1) + .8710(VX2) +
- .9977(VX1) 1.108(VX3) 1.421(IX3) + .3831(IX2) +
- 2.067(IX1) + .2475(MX1) .1699(MX3) .0582(MX2) +
- . 2.427 (PX2) + 1.788 (PX1) 1.335 (PX3) .0651 (VIX1) + .0657 (VIX3) .0322 (VIX2) .00970 (VMX1) .00133 (VMX2)
- + .00790 (VMX3) .0136 (IMX1) + .00922 (IMX3) .00145

(IMX2) - .1378(VPX2) - .0124(VPX1) + .0580(VPX3) -

.1016(IPX1) + .0755(IPX3) - .0922(IPX2) - .0126(PMX1)

-..0136(PMX2) + .0108(PMX3) + .000588('/IMX1) - .000447

(VIMX3) + .0000250(VIMX2) + .00158(VIPX1) + .00636(VIPX2)

- .00.?68(VIPX3) + .000412(VPMX1) + .000644(VPMX2) -

.000460(VPMX3) + .000728(IPMX1) + .000593(IPMX2) -

.000602(IPMX3) - .0000277(VIPMX1) - .0000308(VIPMX2)

+ .0000275(VIPMX3) + 10.115

Where	\overline{VVQV} (\overline{V})	æ	15.807	MARSTOT	=	184.546
	WQI (Ī)	=	18.020	PPRT	8	12.614

	-	Table 71	
Gas Laws I	mmediate Posttest (GLQT): Main Effects	Regression Equation
Equation:	GLQT =00460 (MA .379 (X2)	RSTOT) + .0780 (PPRT) 356 (X1) + 10.024) + .767 (X3) +
	Where MARSIOT =	184.546 PPRT =	= 12.614
			. /
	Strategy D	ummy Variables	GLQT
	Proportion	X3 = 1	10.926 ^b
	Analogy	X2 = 1	9.780 ^a
	Diagram	X1 = 1	9.803 ^a
	Factor-Label	X3 = X2 = X1 = -1	10.127

aSignificantly lower than mean

^bSignificantly higher than mean

.

ERIC

\$ T)

Iauro /a	Та	b	1	e	7	2
----------	----	---	---	---	---	---

Mean = 10	.188 S.D.	= 1.929 Cases = 515	Max. = 12
Predictor	ΔR^2	F	Sig.Level
MARSTOT	.02023	.02023/.001808 ^a = 11.19	.01
PPRT	.03016	.03016/.001808 = 16.68	.01
X3 X2 X1	.01914 .02459 .01155 .05528	$\frac{.05528/_{3}}{.001808} = 10.19$.01
(3	.01914	.01914/.001808 = 10.59	.01
(2	.02459	.02459/.001808 = 13.60	.01
CI	.01155	.01155/.001808 = 6.39	05
MX1 MX3 MX2	.00955 .00003 .00024 .00982	$\frac{.00982/_{3}}{.001808} = 1.81$	NS ^b
PMX1 PMX2 PMX3	.00466 .00906 .00046 .01418	$\frac{.01418/_{3}}{.001808} = 2.61$.05
PMX1	.00466	.00466/.001808 = 2.58	NS
PMX2	.00906	.00906/.001808 = 5.01	\$ 05
PMX3	°.00046	.00046/.001808 = .25	NŠ
V I PX1 V I PX2 V I PX3	.00499 .00233 .00200 .00932	$\frac{.00932/_3}{.001808} = 1.72$	NS

Gas Laws Immediate Posttest (GLQT): F Tests for Possible Significant Effects

 $a_{\text{Error Term}} = (1 - .18836)/462 - 13 = .001808$

 $b_{NS} = Nonsignificant$

ERIC Full Bast Provided by ERIC

150

T	ab	le	73
- 4	aυ	16	/ 3

1

Gas Laws Immediate Posttest (GLQT): Calculations for "Fourth" Effect

	actor-Label Toratme		
	•		
$t_{g} = \frac{-g \Sigma B_{i}}{\sqrt{\tilde{s}d^{2} Y - \hat{Y}} \left[\frac{(g-1)}{r,g}\right]}$	$\frac{1}{2} + \Sigma \frac{1}{n}$	$df = n \cdot k \cdot 1$	
$\tilde{s}d^2$ $Y-\hat{Y} = \tilde{s}d^2$ Y	$(1-R^2) \frac{n}{n-k-1} = 1$	$.929^2$ (110958) $\frac{515-13}{515-7-1-}$	= 3.367
$t_4 = -4(.767379 - \frac{(3)^2 + 1}{135})$.356) $21^{+} \frac{1}{136} + \frac{1}{136}$	-	
$t_4 = \underbrace{0.128}_{3.367 \ (.08964)}$	= .23	NS	
PPRI X MAR	STOT X Treatment Int	eraction	
Effect	В	S.E. B .	
PMX1	000493	.000666	
PMX2	00169	.000730	
PMX3	+.000426	.000832	
$B_4 = -\Sigma B_i = -(000)$	049300 1 69 + .000	426) = .00176	
		+ .000832 = .000743	
$t_4 = \frac{B_4}{S.E.B4} = \frac{.00}{.000}$	$\frac{176}{0743} = 2.37$	Sig. p < .05	
4			

ERIC THILE BALL PROVIDENCE

ſ

170

Gas Laws Immediate Posttest (GLQT):

Mathematics Arxiety (M) X Proportional Reasoning Ability (P)

X Treatment (X1-X3) Interaction

·	Strategy	Dummy Variables	Equation
/	Proportion	X3 = 1	GLQT =0115M0674P+.00059MP+12.570
	Analogy .	X2 = 1	GLQT = .0132M+.3437P00146MP+6.519
	Diag ra m	$X_{1} = 1$	GLQT = .0108M+.2815F .00088MP+6.311
	Factor-Label	X3 = X2 = X1 = -1	GLQT =0329M2772P+.00175MP+15.635

100

5

¢

Table 75 ·

Gas Laws Immediate Posttest (GLQT):

Substitution of Extreme Values for

MARSTOT	(101 + 349)	and PPRT	(1 + 21)

<u>)T</u>	PPRT	.	MP		TREATM	ENT	PREDICTED GLQT	`
-1.16	l	07	101	.06	Р	12.570	11.40	
-4.01	1	07	349	.21	Р	12.570	8.70	
-1.16	21	-1.42	- 2121	1.25	Р	12.570	11.24	
-4.01	21	-1.42	7 3 2 9	4.32	. P	12.570	1 1.47	
1.33	1	.34	101	15	A	6.519	8.05	
4.61	1	.34	349	51	А	6.519	10.96	
1.33	21	7.22	2121	-3.10	А	6.519	11.97	
4.61	21 .	7.22	7 3 2 9	-10.70	A	6.519	7.64	
1.09	1	.28	101	09	, , D	6.311	7.59	
3.77	1	.28	349	31	D	6.311	10.05	
1.09	21	5.91	2121	-1.87	D	6.31]	.1.45	
3.77	21	5.91	7 3 2 9	-6.45	• D	6.311	9.54	
-3.32	1	28	101	.18	F	15.635	12.21	
-11.48	· , 1	28	349	.61	F	15.635	4.49	
-3.32	21	-5.82	2121	3.71	F	15.635	10.20	
-11.48	21	-5.82	7329	12.83	, F	ا 15.635	11.16	
•	•		•					
	- -		1		•		a	٩
	-1.16 -4.01 -1.16 -4.01 1.33 4.61 1.33 4.61 1.09 3.77 1.09 3.77 -3.32 -11.48 -3.32	-1.16 1 -4.01 1 -1.16 21 -4.01 21 1.33 1 4.61 1 1.33 21 4.61 21 1.09 1 3.77 1 1.09 21 3.77 21 -3.32 1 -11.48 1 -3.32 21	-1.16 1 07 -4.01 1 07 -1.16 21 -1.42 -4.01 21 -1.42 -4.01 21 -1.42 -4.01 21 -1.42 1.33 1 $.34$ 4.61 2 $.34$ 1.33 21 7.22 4.61 21 7.22 4.61 21 7.22 4.61 21 7.22 1.09 1 $.28$ 3.77 1 $.28$ 1.09 21 5.91 3.77 21 5.91 3.77 21 5.91 -3.32 1 28 -11.48 1 28 -3.32 21 -5.82	-1.161 07 101 -4.01 1 07 349 -1.16 21 -1.42 2121 -4.01 21 -1.42 7329 1.33 1.34101 4.61 1.34349 1.33 21 7.22 2121 4.61 21 7.22 7329 1.09 1.28101 3.77 1.28349 1.09 21 5.91 2121 3.77 21 5.91 7329 -3.32 1 28 101 -11.48 1 28 349 -3.32 21 -5.82 2121	-1.161 07 101 $.06$ -4.01 1 07 349 21 -1.16 21 -1.42 2121 1.25 -4.01 21 -1.42 7329 4.32 1.33 1 $.34$ 101 15 4.61 1 $.34$ 349 51 1.33 21 7.22 2121 -3.10 4.61 21 7.22 7329 -10.70 1.09 1 $.28$ 101 09 3.77 1 $.28$ 349 31 1.09 21 5.91 2121 -1.87 3.77 21 5.91 7329 -6.45 -3.32 1 28 101 $.18$ -11.48 1 28 349 $.61$ -3.32 21 -5.82 7329 12.83	-1.161 07 101.06P -4.01 1 07 349 .21P -1.16 21 -1.42 2121 1.25 P -4.01 21 -1.42 7329 4.32 P 1.33 1 $.34$ 101 15 A 4.61 1 $.34$ 349 51 A 1.33 21 7.22 2121 -3.10 A 4.61 21 7.22 7329 -10.70 A 1.09 1 $.28$ 101 09 D 3.77 1 $.28$ 349 31 D 1.09 21 5.91 2121 -1.87 D 3.77 21 5.91 7329 -6.45 D -3.32 1 28 349 $.61$ F -3.32 21 -5.82 2121 3.71 F -11.48 1 28 7329 12.83 F	-1.161 07 101.06P12.570 -4.01 1 07 349.21P12.570 -1.16 21 -1.42 21211.25P12.570 -4.01 21 -1.42 7329 4.32 P12.570 1.33 1.34101 15 A6.519 4.61 1.34349 51 A6.519 1.33 21 7.22 2121 -3.10 A6.519 1.33 21 7.22 2121 -3.10 A6.519 1.33 21 7.22 7329 -10.70 A6.519 1.09 1.28101 09 D6.311 1.09 1.28349 31 D6.311 1.09 21 5.91 2121 -1.87 D 6.34 3.77 21 5.91 7329 -6.45 D 6.311 -3.32 1 28 349 $.61$ F 15.635 -11.48 1 28 349 $.61$ F 15.635 -11.48 21 -5.82 7329 12.83 F 15.635	T PPRT MP TREATMENT GLQT -1.16 1 07 101 .06 P 12.570 11.40 -4.01 1 07 349 .21 P 12.570 8.70 -1.16 21 -1.42 2121 1.25 P 12.570 11.24 -4.01 21 -1.42 7329 4.32 P 12.570 f1.47 1.33 1 .34 101 15 A 6.519 8.05 4.61 1 .34 349 51 A 6.519 10.96 1.33 21 7.22 2121 -3.10 A 6.519 10.96 1.35 21 7.22 7329 -10.70 A 6.519 11.97 4.61 21 7.22 7329 -10.70 A 6.519 7.64 1.09 1 .28 101 .09 D 6.311 9.54 <

٢

•_____ Þ

182,

Table 76 ·

Moles Immediate Posttest (MOQT):

Mathematics Anxiety (M) X Proportional Reasoning (P) X

	۰ ^۲ ۴	· · · · · · · · · · · · · · · · · · ·
Strategy	Dummy Variables	Equation
Proportion	, X3 = 1	MOQT =+.0110M+.4551P00118MP+11.124
Analogy	X2 = 1	MOQT =00686M+.1848P+.000303MP+16.406
Diagram	× X1 = 1	MOQT = .0162M+.5731P00211MP+12.097
Factor-Label	$X3 = \lambda 2 = \lambda 1 = -1$	MOQT =0520M3473P + .00298MP + 24.298

Treatment (X1-X3) Interaction

Table 77%

Moles Immediate Posttest (MOQT):

Substitution of Extreme Values for

MARSTOT $(101 \rightarrow 349)$ and PPRT $(1 - 349)$	+ ZI)	
--	-------	--

,	MARSTO	T	PPRT		MP		TREATMENT		PREDICTED MOQT
	101	1.11	1	.46	101	·12	Р	11.124	12.57
	349	3.84	· 1	.46	349	41	Р	11.124	15.01
	101	1.11	21	9.56	2121	-2.50	Р	11.124	19.29
	349	3.84	21	9.56	7329	. 8.65	` P	11.124	15.87
	101	69	1	.18	101	.03	A	16.406	15.93
	349	- 2.39	1	.18	349	.11	Α	16.406	14.30
	101	69	21	3.88	2121	.64	ΓÂ	16.406	20.24
	349	- 2.39	21	3.88	7329	2.22 '	А	16.406	20.11
	101	1.64	' 1	.57	101	21	D	12.097	14.09
	34 9	5.65	1	.57	349	74	D	12,097	17.59
	101	° 1.64	2,1	12.04	2121	-4.48	D.	12.097	21.29
	349	. 5.05	21	12.04	7329	-15.46	D	[^] 12.097	14.32
	101	-5.25	1	35	101	. 30	F	24.298	19.00
	349	-18.15	1	35	349	.04	F	24.298	6.84
	101	-5.25	• 21	-7.29	21 21	6.32	F	24.298	18.07
	349	-18.15	21	-7.29	7329	21.84	- F	24.298	20.70
							v		

1

•

Figure 23. Moles Immediate Posttest (MOQT): Mathematics Anxiety (M) X Proportional Reasoning (P) X Treatment (X1-X3) Interaction

à

11

ERIC Full Text Provided by ERIC

157

Stoichiometry Immediate Posttest (SQI):

Mathematics Anxiety (M) X Proportional Reasoning (P) X

Treatment (X1-X3) Interaction

•		•	
بر 	Strategy	Dummy Variables	Equation
	Proportion	X3 = 1	SQT =0143M0112P+.000790MP+19.159
	Analogy	X2 = 1	SQT = .00371M+.3375P00122MP+7.027
	Diagram	X1 = 1	SQT = .0120M+.3896P00123MP+5.025
•	Factor-Label	$x_3 = x_2 = x_1 = -$	1 SQT = -, 0318M2028P+,00162MP+14.422
			· · · · · · · · · · · · · · · · · · ·

Ta	b1e	79

Stoichiometry Immediate Posttest (TT):

Substitution of Lxtreme Values for

MARSTOT (101 + 349) and PPRT (1 + 21)

	MARSTO	ЭТТ	PPRT	· .	MP	•	TREATM	ENT	· PREDICTED SQT
•	10 1	-1.44 -	· 1	01	101	.08	, <u>P</u>	10.159	8.78
•	.349	-4.99	. 1	01	. 349	.28	Р	10.159	5.43
	101	-1.44	21	24-	2121	1.68	Р	10.159	· 10.51
	349	-4.99	, 21 -	24 .	7329	5.79	Р	10.159	10.72
	101	.37	1	.34	101	12	A X	7.027	7.62
	349	1.29	1	.34	349	43	А	7.027	8.23
	101	37	21	7.09	2121	-2.59	А	7.027	.11.90
	249	1.29	21	7.09	7329.	8.94	Α.	•7.027	6.47
	101	۱ (² 1	1	. 39	101	12	D	5025	6.50
•	349,	4,19	1	39	349	43	D	5.025	, 9.17
	101	1.21	21	8.18	2121	-2.61	ע	5.025	11.81
ŧ	349	4.19	21	8.18	7329	-9.01	D	5.025	8.38
	101	-3.21	1.	20-	101	.16	F	14.422	11.17
	34 9	-11.10	· 1	20	. 349	. 57	F	14.422	3.69
	101	-3.21	21	74. 26	• 2121	3.44	F	14.422	10.39
	349	-11.10	21	-4.26	7329	11.87	F	14.422	10.94

Molarity Immediate Posttest (MLQT):

160

Mathematics Anxiety (M) X Proportional Reasoning (P) X

Treatment $(\lambda_1 - \lambda_3)$ Interaction

Strategy	Jummy Variables	Equation
Proportion	X3 = 1	MLQT =00770M+.0984P+.000220MP+10.456
Analogy	X2 = 1	MLQT = - 0170M+.0918P+.000526MP+11.975
Diagram	X1 = 1	MLQT = .00966M+.4068P00110MP+7.074
Factor-Label	X3 = X2 = X1 = -1	MLQT =00721M+.0376P+.000435MP+11.515

192

ERIC

Molarity Immediate Posttest (MLQT):

Substitution of Lxtreme V lues for

MARSIOT (101+ 349) and PPRT (1+21)

		זיומת		MP '		TREATMENT		PRIDICTED
MARSTO	<u>, , , , , , , , , , , , , , , , , , , </u>	PPRT		· · · · · · · · · · · · · · · · · · ·		P		9.80
101	78	`1	.10	101	.02		10.456	
349	-2.69	• 1	.10	349	.08	- P	10.456	7.94
101	78	• 21	2.07	2121	.47	Р	10.456	12.21
. 349	-2.69	21	2.07	7329	1.61	Р	10.456	11.45
101	-1.72	1	.09	101	.05	А	11.975	10.40
349	-5.93	° 1	.09	349	.18	A	11.975	6.32
101	-1.72	21	1.93	2121	.1.12	А	. 11.975	13.30
349	-5.93	21	1.93	7 3 2 9	3.86	А	11.975	11.82
101	.98	1	.41	101	·.11	D	•7.074	8.35
349	3.37	1	.41	349	58	D	-7.074	10.47
101		21	8.54	2121	-2.33	D	7.074	14.26
349	3.37	21	8.54	7329	-8.06	· D	7.074	10.93
1 01	73	1	.04	101	.04	F	11.519	5 10.87
349		1	.04	349	.15	F	11.51	5 9.19
	-2.52	21	.79	2121	.92	F	11.51	5 12.50
101	73	21	.79	7329	3.19	F	11.51	5 12.98
349	-2.52	~	•13					

193

J

-. 161

Molarit	y Immediate Posttest (MLQT): General Regression Equation
	n
MLQT =	0154(V) + .1122(I)00553(MARSTOT) + .1583 (PPRT) +
	59.762(X3) + 17.0321(X2) - 64.208(X1) - 2.800(VX2) +
•	3.621(VX1) - 2.851(VX3) - 3.008(IX3)6169(IX2) +
	3.293(IX1) + .3453(MX1)3930(MX3)0440(MX2) -
•	1.545(PX2) + 4.101(PX1) - 5.923(PX3)1950(VIX1) -
	.1394(VIX3) + .1407(VIX2)0198(VMX1) + .0105(VMX2)
	+ .0210(VMX3)0192(IMX1) + .0207(IMX3) + .00117
	(IMX2) + .2311(VP\$2); * 2824(VPX1) + .3654(VPX3) -
ر	.2088(IPX1) + .2916(IPX3) + .0602(IPX2)0212
	(PMX1) + .00240(PMY2) + .0358(PMX3) + .00115(VIMX1)
	,00111 (VIMX3)000545 (VIMX2) + .0154 (VIPX1) -
	.0114(VIPX2)0181(VIPX3) + .00153(VPMX1)000763
	(VPMX2)00236(VPMX3) + .00121(IPMX1)0000512
	(IPMX2)00184(IPMX3)0000911(VIPMX1) + .0000390
•	(VIPMX2) + .600122(VIPMX3) + 8.477
4	•
Where -	$\overline{\text{VVQV}}$ ($\overline{\text{V}}$) = 15.807 $\overline{\text{MARSTOT}}$ = 184.546
	$\overline{\text{VVOI}}$ (I) = 18.020 $\overline{\text{PPRT}}$ = 12.614

e e e

19₆

Table 82

Table	83
-------	----

L

Molarity Immediate Posttest (MLQT): F Tests for Possible Significant Effects

M	ean	#	11.308	<u>S.</u> .	=	2.907	Cases	#	481	Max.	= 15
Predicto	<u>r</u>		Δ Ι	2.			<u> </u>		/		Sig.Level
WQI			• 022	231	•	.02231/	.002071 ^a =	10.	8Q [`]	-	.01
MARSTOT			.014	198.		.01498/	.002071 =	7.	23		.01
PPRT			.062	29 ·		.06229/	.002071 =	30.	0 8		.01
IMX1 IMX3 IMX2			.004 .009 .000	9 85 9 5 7		.01267/	3 = 2.04	•			NS ^b

^aErrőr lerm = (1-.18415)/427-33 = .002071

p

b_{MS} = Nonsignificant

197

ERIC

<u>_</u>165

	Moles	Delayed Posttest (MOT): General Regression Equation
	MU1' =	+.00524(V) + .0269(I)00164 (MARSTOT) + .1735(PPRT)
		+ 45.755(X3)' + 2.902(X2) - 64.483(X1) + 4.492(VX2) +
		2.041(VX1) - 2.193(VX3) - 2.221(IX3) - 1.048(IX2) +
		3.994(IX1) + .3392(MX1)2872(MX3)000665(MX2)
•		+ 1.141(PX2) + 3.440(PX1) - 2.879 (PX3)1448(VIX1)
		+ .0978(VIX3) + .0277(VIX2) .0113(VAA1)00212
		(VMX2) + .0148(VM 3)0218(IMX1) + .0145(IMX3) +
		.00452(INX2)1335(VPX2)0666(VPX1) + .1443
	-	(VPλ3)2167(IPλ1) + .1395(IPX3)00675(IPX2) -
		.0177(PMX1)00783(PMX2) + .0185(PMX3) + .000835
		(VINX1)000708(VINX3)000149(VINX2) + .0057
		(VIPX1) + .00391(VIPX2)00637(VIPX3) + .000346
		(VPMX1) + .000763(VPMX2)000997(VPMX3)00118
	,	(IPMX1)000143(IPMX2)000940(IPMX3)0000332
		(VIPAK1)0000243(VIPAK2) + .0000476(VIMPX3)
		+ 4.803
ŕ	14 1	M(0) = 15.907 $MAPSTOT = 184.546$

Where	WQV	(V)	Ξ	15.807	MARSTOT	=	184.546
	WQI	(Ī)	=	18.020	PPRT	=	12.614

٢

Table 86

Moles Delayed Posttest (MOT): Main Effects Regression Equation

Equation: MOT = -.00207 (MARSTOT) + .168 (PPRT) + 5.313

Table	87
-------	----

۲,

i

Mean = 7.	289 S.D. = 2.	112 Cases = 528 Max. = 1	.0
Predictor	ΔR^2	F	Sig,Level
MARSTOT	.01030	.01030/.001672 ^a = 6.16	.05
PPRT /	.11247	.11247/.001672 = 67.27	.01
VMX1 VMX2 VMX3	.00167 .00552 .00064* .00783	$\frac{.00783/_{3}}{.001672} \neq 1.56$	NS ^b
IMX1 IMX3 IMX2	.00655 .00250 .00002 .00907	$\frac{.00907/3}{.001672} = 1.81$	NS
VPMX1 VPMX2 VPMX3	.00098 .00382 .00076 .00556	$\frac{.00556/_{3}}{.001672} = 1.11$	NS .
IÝMKI IPMK2 IPMK3	.01011 .00173 .00089 .01273	$\frac{.01273/_{3}}{.001672} = 2.54$, NS

^aError Term = (1-.20907)/475-2 = .001672

^bNS = Nonsignificant

ERIC

201

0 1]

	1	Table 88
Gas	La	ws Delayed Posttest (GLT): General Regression Equation
GL T	z	0316(V) + .0220(I)00481 (MARSTOT) + .1305 (PPRT)
		- 34.787(X3) + .4779(X2) + 5.915(X1)6679(VX2) -
•	•	.00906(VX1) + 1.796(VX3) + 2.699(IX3) + .00131(IX2)
		516(IX1)0353(MX1) + .1410(MX3)000468(MX2)
		+ .1437 (PX2)3314 (PX1) + 2.831 (PX3) + .00585 (VIX1)
		1309 (VIX3) + .0199 (VIX2)00270 (VAX1) + .00607
		(VMX2)00585(VMX3) + .00245(IMX1)0117(IMX3)
	;	℃.000188(IMX2) + .0673(VPX2)0350(VPX1)1623
•		(VPX3) + .0259(IPX1) ~ .2122(IPX3)00927(IPX2)
		+ .1631 (PMX1)00189 (PMX2)0109 (PMX3) + .000120
		(VIMX1) + .000512(VIMX3)000247(VIMX2) + .00162
		(VIPX1)00237 (VIPX2) + .0112 (V1PX3) + .000395
		(VPMX1)000536(VPMX2) + .000575(VPMX3)0000946
·		(IPMX1) + .000105(IPMX2) + .000875(IPMX3)0000215
		(VIPMX1) + .0000225(VIPMX2)0000442(VIPMX3)
		+ 6.220
	-	

Where VVQ	(V) V	32	15.807	MARSTOT	=	184.546	
·	(Ī)	æ	18.020	PPRT	- ¥	12.614	

B

ERIC

202

		Table 89	-
Gas Laws D	elayed Posttest.	(GLT): Main Lfforts Reg	ression Equation
	•		
Equation:	GLT ≠00390 (MARSTOT) + .153 (PPRT) +)168 (λ1) + 6.095	.383 (X3) -
• •	Where MARSTOT	= 184.56 PPRT =	12.614
•	٠		• 🖌
• •	Strategy	Dummy Variables	GLT
•	Proportion	X3 = 1	7.683
•	Analogy , 🍾 .	$\mathbf{x}2 = 1$	6.831 ^a · ·
	Di a gram	$\lambda 1 = 1$	7.132 🧹
	Factor-Label	$X3 = \lambda 2 = X1 = -1$	7.554

۱

^aSignificantly lower than mean

.

٠

. 203.

C

170 -

•

)

Table	<u></u> ۳0
-------	------------

٠.

	4	· · · ·	
Mean = 6.942	S.D. = 2.523	Cases = 515 Max. = 16	
	з,	• • • • • • • • • • • • • • • • • • •	
I		• • •	`•
Predictor	ΔR^2	F	Sig.Level
MARSTOT	.01314	.01314/.001806 ^a = 7.27	.01
PPRT	.06643	.06643/.001806 = 36.78	.01
X3 X2 X1	.00019 .01621 .00151	$\frac{.01791/_3}{.001806} = 3.31$.05
····	.01791	• •	. ´
X3	.00019 ·	.00019/.001806 = .11	NSb
X2	.01621	.01621/.001806 = 8.98	.01
X1.	.00151	.00151/.001806 = .84	· NS
PX2 PX1 PX3	.00000 .00040 .00783	$\frac{.00822/_{3}}{.001806} = 1.52$	NS

 $a_{\text{Error. Term}} = (1 - .16555)/463 = 0.001806$

^bNS = Nonsignificant

Table 91.

Stoichiometry Delayed Posttest (ST): General Regression Equation
ST =0317(V)0193(I)00899 (MARSTOT) + .1737 (PPRT)
- 9.168(x3) + 1.300(X2) - 5.708(X1) - 1.801(VX2) +
.423 (VX1) + 1.046 (VX3) + .3059 (IX3) + .0381 (IX2) +
.682(IX1) + .0633(NX1)0343(NX3) + .0163(NX2) +
.9360 (PX2)2066 (PX1) + 1.741 (PX3)0435 (VIX1)
0533 (VIX3)0909 (VIX2)00617 (VNX1) + .00892
(VMX2)000308(V.IX3)00519(IMX1) + .00251(IMX3)
00151(INX2) + .0746(VPX2) + .00135(VPX1)148
(VPX3)0134(IPX1)0900(IPX3)0458(IPX2) -
.00128(PMX1)00685(PMX2)00135(PMX3) + .000416
(VIMX1)0000377(VIMX3)000452(VIMX2) + .00117
(VIPX1)00395 (VIPX2) + .00827 (VIPX3) + .000258 (VPMX1)
000334 (VPMX2) + .000295 (VPMX3) + .000198 (IPMX1) +
.000344(IPMX2) + .6 (IPMX3)0000197(VIPMX1) +
.0000184 (VIPMA2)0000207 (VIPMA3) + 6.989

Where	WQV	(V)	¥	15.807	MARSTOT	ŧ	184.546
·	WQI	(Ī)	=	18.020	PPRT	Ξ	12.614
•						-	_

•

Stoichiometry Delayed Posttest (ST): Main Effects Regression Equation

C #

Ξ,

•	Table	94
---	-------	----

Stoichiometry Delayed Posttest (ST): F Tests for Possible Significant Effects

Mean = 6.719	S.D. = 2.757	Cases = 528 Max. = 10	
Predictor	Δ R ²	<u>F</u>	Sig.Level
MARSTOT	.03557	.03557/.)01774 ^a = 20.05	.01
PPRT	.08180	.08180/.001774 = 46.11	.01
VX2 VX1 VX3	.00000 .00602 .00001 .00603	$\frac{.00603/_{3}}{.001774} = 1.13$	NS ^b

 $a_{\text{Error Term}} = (1 - .17158)/475 - 8 = .001774$

^bNS = Nonsignificant

ACS-NSTA Problems Subtest (ACSPROB):

General Regression Equation

ACSPROB	• + .00918(V) + .0293(I)004	436 (MARSTOT) + .1966 (PPRT)
	- 29.4124(X2) - 57.196(X1) +	129.818(X3) + 2.329(VX2)
	+ 1.151(VX1) - 7.938(VX3) + 3	3.363(IX1) + 1.093(IX2)
	- 6.139(IX3) + .3843(MX1) -	.7575 (MX3) ,+.1870 (MX2)
	+ 3.880(PX2) + 2.655(PX1) - 9	9.024(PX3)0862(VIX1)
	0947(VIX2) + .3895(VIX3)	0129(VMX1)0143(VMX2)
-	+ .4749(VNX3)0234(IMX1)	00749(IMX2) + .0369(IMX3)
	2809(VPX2)00385(VPX1)	+ .5565(VPX3)1716(IPX1)
	1652(IPX2) + .4365(IPX3)	0197(PMX1)0212(PMX2)
	+ .0513(PMX3) + .000918(VIMX	1) + .000594 (VINX2)00242
	(VIMX3) + .00274(VIPX1) + .0	123(VIPX2)0281(VIPX3)
	00156(VPMD.2) + .000487(VP	MX1)00329(\/PMX3) +
	.000915(IPMX2) + .00130(IPMX	1) ['] 00 25 7(IPMX3) -
	.0000469(VIPAA1)0000686(
	▲ + 2.495	
Where		MARSTOT = 184.546
	VVQI (I) 18.020	PPRT = 12.614

20э

ACS-NSTA Problem Subtest (ACSPROB): Main Effects Regression Equation

Equation: ACSPROB = -.00368 (MARSTOT) + .194 (PPRT) + 3.298

210

-

. .

Mean = 4.944	S.D. = 2.245		
Predictor	Δ R ²	F	Sig.Level
MARSTOI	.02154	$.02154/.002222^{a} = 9.69$.01
PPRT	.13670	.13670/.002222 = 61.52	.01
PMX1 PMX2 PMX3	.00005 .00054 .01409 .01462	$\frac{.01462/3}{.002222} = 2.19$	NSb
VIPX1 VIPX2 VIPX3	.01237 .00083 .00030 .01350	$\frac{.01350/_{3}}{.002222} = 2.03$	NS
VIPMX1 VIPMX2 VIPMX3	.00026 c00005 .01182 .01213	$\frac{.01213/_{3}}{.002222} = 1.82$	NS •
VPMX2 VPMX1 VPMX3	.00113 .00548 .00038 .00699	$\frac{.00699/3}{.002222} = 1.05$	NS .

ACS-NSTA Problems Subtest (ACSPROB): F Tests for Possible Significant Effects

^aLrror Term = (1-.28004)/324 = .002222

^bNS = Nonsignificant

ACS-NSTA Nonprobléms Subtest (ACSNPROB):

General Regression Equation

ACSNPROB = +.00693(V) + .0524(I) - .00731(MARSTOT) + .3937(PPRT) -3.4779(X2) - 71.362(X1) + 160.455(X3) + 1.812(VX2)+ 2.667(VX1) - 8.499(VX3) + 3.864(IX1) - 1.159(IX2) -6.968(IX3) + .5057(MX1) - .9678(NX3) + .0369(MX2)+ 1.884(PX2) + 2.679(PX1) - 9.341(PX3) - .1803(VIX1) - .0110 (VIX2) + .3824 (VIX3) - .0220 (VMX1) - .00858 (VMX2) + .0519(VMX3) - .0300(IMX1) + .00396(IMX2)+ .0450 ((MX3) - .2286 (VPX2) - .0232 (VPX1) + .4012 (VPX3) - .1442(IPX1) - .0214(IPX2) + .3919(IPX3) - .0228 (PNX1) - .00892 (PN2) + .0547 (PNX3) + .00156 (VINX1) + .0000553(VINX2) - .00252(VINX3) + .00422(VIPX1); + .00685(VIPX2) - .0173(VIPX3) + .00113(VPMX2) + .006660 (VFMX1) - .00254 (VFMX3) + .000109 (IFMX2) + .00143(IPMX1) - .00247(IPMX3) - .0000652(VIPMX1) - .0000341(VIPMX2) + .000123(VIPMX3) + 8.468 MARSTOT 184.546 15.807 Where VV(V (V) VVQI (I) 18.020 PPRT 12.614

ACS-NSTA Nonproblems Subtest (ACSNPROB): Main Effects Regression Equation

Equation: ACSNPROB = -.00706 (MARSTOT) + .398 (PPRT) + 10.250

· .		ŧ	υ
Mean = 13.454	S.D. = 4.243	Cases = 377	Max. = 30
Predictor	Δ R ²	F °	Sig.Lev
MARSTOT	.02361 .0	02361/.002205 ^a = 10.7	.01
PPRT	.16093	16093/.002205 = 72.9	.01
IX1 IX2 IX3	.01031	$\frac{1532}{3} = 2.32$. NSb
PMX1 PMX2 PMX3		$\frac{01476}{3} = 2.23$ $\frac{002205}{3}$	NS

ACS-NSTA Nonproblems Subtest (ACSNPROB): F Tests for Possible Significant Effects

 $a_{\text{Error Term}} = (1 - .28569)/324 = .002205$

^bNS = Nonsignificant

ERIC Afull Text Provided by ERIC

182

Table 101

Results of the

Decimal-Nondecimal Subtests Comparison

Test	n	<u>x</u>	S.D.	<u>S.E.</u>	<u>t</u>	p
Decimal .	421	10.81	1.90	.093	6.49	<.001
Nondecimal	421	11.31 '	1.48	.072	•••	
		8			d	

Full Taxt Provided by ERIC

:

j¹⁸³

Means on ACS-NSTA Exam

According to Notation Used

-	· · · · ·				•
	Notation	n	<u>x</u>	Scheffe p	
	Nane	315	16.62	-	\$
	Some	28	17.79	ہ 	,
	Complete	166	20.63	.05	

Analysis of Variance for

Amount of Notation Used

Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob
Between Groups	2	1744	872	32.95	<.0001
Within Groups	506	13394	26		
Total	508	15138			-
					·

.

Chi Square Analysis of Differences of Notation According to Strategy

•			Degree	of Notation	n		• •
Treatment		None	So	me	Complete	<u> </u>	
Factor-Label	-	7 1 a ·	. • (4	56 +		
Pactor-Laber	ţ	54.2 ^b	36	.1	42.7		
	2	22.5 ^C	14.	.3	33.7		¢
	` <u>]</u>	13.9 ^d	•	.8	11.0	° 0	
		80		8 °	43 [±]		
•	. 6	61.1	6.	-	32.8		
Analogy		25.4	28.		25 . 9 ·		•
AIRTOR.		15.7	1.		8.4		
· · · ·	•	82	1	LO		•	
		63.1	.7.		,29.2		
Diagram		26· .0	35.	.7	.22.9		
D7021	1	16.1	2.	.0	7.5	1	• ·
2		82		6	`	·	-
•		70.1	5.		24.8		•
Proportion	Ì	26.0	21.		17.5	· /	•
· • • • • • • • • • •		16:1	•. 1.	.2	· 5.7	(· •
. •		315		28 -	166 .		
,.	. (61.9	5.		32.6	•	
	•		Chi Square	12.03	•	*	, ,
	•	`. 、	df	6	•		
•	X +		V	11	-		•
	•		Significanc	ce ,06	• · ·		
Count		. <u>.</u>					
BRow percentage	e _*		2	· (`		

dTotal percentage

Means for Total Time Analysis of

Data for Proportional Reasoning Ability

-	Propor	Ability		
Treatments	Low	High	Row Total	
. `	63	60	61	
Non-	16	24	40 -	
Proportional	1004	1437	24 41	
1 topor crount	15	17	16	
	59	. 75	· 67	
*	· 6	` 6	12	
Proportional	355	450	805	
110por cassian	• 12	19	17	
	62 ^a	63	62	
Column	°_2D	30	52	
Total	1359 ^C	1187	3246	s
IV CAL	14 ^d	19	17	

- a Mean b Count

- Sum Standard Deviation

. **

Analysis of Variance for

Proportional Reasoning Total -

Time Analysis for Gas Laws

Source of Variation	Sum of Squares	DF	Mean Square	F	Significance of F
Main Effects	370	2	185	.69	.51
Treatment	354	1,	354	1.31	.26
PPRT	31	1	31	.116	.73
2-Way Interaction	800	1	800	2 .96	.09
Explained	1170	3	390	1.44	.24
Residual	12960	48	270		
Total	14131	51	277		

Means for Total Time Analysis of

Molarity Data for Proportional Reasoning Ability

P	oportional Reasoning	Ability
Low	High	Row Total
120	110	117
	23	35
		4085
		- 35
5,		
1/13	118	127
	c	8
	•	1019
	21	28
132 a	112	118
	28	43
		5104
35d	32	34
	Low 129 12 1547 37 143 3 430 36 1328 15b 1977c	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

a Mean b Count

Sum Standard Deviation d

Analysis of Variance for

Proportional Reasoning Total -

Time Analysis for Molarity

Source of Variation	Sum ôf Squares	DF	Mean Square	F	Significance of F
Main Effects	4607	2	2304	2.05	.14
Treatment	653	1	653	.58	.45
PPRT	3868	1	3868	3.43	.07
2-Way Interaction	73	1	73		.80
Explained	4681	3	1560	1.38	. 26
Residual	43927	39	1126		
Total	48609	42	1157		

2Ż2

189

¢

		U	

			Number				Percentage			
Item	Response	F	A	D	. <u>P</u>	F	A	D	P	
1	Never Skipped	55	46	27	52	45	~ 37	23	45	
-	Skipped part or all	65	71	88	55	53	57	75	48	
	Response not clear	3	7	2	8	, 2	6	2	7	
2	If skipped, more									
	toward end	28	18	32	23	23	15	27	20	
	More toward start	4	_ 4	6	4	3	3	5	3	
	Response not clear	9	4	10	7	7	3	9	б	
	No response	10	26	19	9	8	21	16	8	
	All four units	16	21	21	16	13	17	18	14	
	Didn't skip	56	51	29	56	46	41	25	49	
3	Yes	110	75	67	92 -	89	60	57	80	
	Undecided	0	3	0	1	0	2	0	1	
	No	13	32	35	20	11	26	30	17	
	No response	0	14	15	· 2	. 0	11	13	2	
4	All of the time (yes)	106	56	. 42	101	86	45	36	88	
	Part of the time	12	24	26	11	10	19	22	10	
	Undecided	0	1	0	0	0	1	0	0	
	Never (no)	4	36	45	3	3	29	38	3	
	No response	1	7	4	0	1	6	3	0	
5	Teacher	11	9	4	5	9	7	3	4	
	Another student	1	1	1	3	1	1	1	3	
	Textbook	2	1	2	0	2	1	2	0	
	Different packet	· 5	2	- 0	2	4	2	0	0 2 82	
	No response	98	89	74	94	80	72	63	82	
	Other	6	22	36	11	5	18	31	10	
6	None or blank	104	112	105	79	85	90	90	69	
	Left out details	10	7	5	30	8	6	4	26	
	Other	9	5	7	6	7	4	6	5	
7	Yes	11	11	6	7	ŷ 97	9	5 90	6 90	
	No	107	108	105	103	87	87			
	Sometimes	2	1	1	1	· 2	1	1	1 3	
	No response	3	4.	5	4	2	3	4	<u>з</u>	
		123	124	117	115	100	100	100	100	
		123	144	11/	112	100	TOO	100	100	

Summary of Questionnaire Data

".¥.

223

-

Responses to Questionnaire No. 8

<i>د</i>	1	1	Number		
Response Fac	tor-Label	Analogy	Diagram	Proportion	Total
Very explanatory	26	18	9	5	58
Answers given	12	7	11	11	41
Lisy and fast	6	14	9	7	36
Helped	Ì5 \	7	3	8	33
Self pacing/help	4	7	3	8	• • 22
Examples	9	-1	6	0	22
Step-by-step (logical)	7	1	3	6	17
Better than class (teacher)	2	. 5	7	2	16
Better than book	2	3	3	5	13
Practice problems	0	3 .	4	3	10
- •			-	2) 	٥
	-		. Le	-	
•		: '			
		224	1		

224

Table	111
TADTE	+ ++

•

	Number						
lesponse	Factor-Label	Analogy	Diagram	Proportion	Total		
foo long or too many	22	14	13	23	72		
oring (monotonous)	7	- 8	12	9	36		
lethod itself	. 0	20	6	0	26		
Confusing, complicated	6	5	6	7	, 24		
ests or quizzes	5	7	2	4	24		
lot enough time	3	7	5	5	20		
pved too fast	5	3	2	6	16		
roblems/math	3	2	4	4	13		
epetitious	2	4	0	. 4	10		
ot enough practice, review or explanation	2	2	1	2	7		
Keeping packets	θ	3	2	0	5		
foo hard	1	1	2	1	5		
foo easy	2	0	0	3	5		

Responses to Questionnaire No. 9

INTERVIEW STUDY

The second part of this investigation consisted of an interview study to determine the processes that students use in solving chemistry problems. This also provided a follow-up on the aptitude by treatment interaction study to see if students were using the teaching strategies (treatments) taught.

Background Information

The use of an interview technique to determine students' problem solving behavior has certain advantages over paper and pencil techniques. Much more information can be gathered in an unobtrusive manner about what students are actually thinking through the use of interviews. On the other hand, there are always the disadvantages of using a small sample size (interviewing students and analyzing the interviews is a time-consuming process) of possible inconsistency across interviews and among interviewers, and possible lack of reliability in the coding of the interviews.

The approach used in this study was one of having students think aloud . while solving the problems. In mathematics this approach which follows that used by Kilpatrick (1967) is fairly common. Kilpatrick tape-recorded students' solving problems out loud and then in order to trace the solution path, developed a coding scheme based on Polya's heuristics. This included examining whether students understood the problem, devised a plan for solving it, carried out the plan, and evaluated what had been done. Subsequent studies in mathematics have modified Kilpatricks' system by adding more specific process behavior (for example, Lucas, 1974; Kantowski, 1974; and, Days, 1977). At the present time, Kulm of Purdue University is synthesizing data of interviews made by 17 other investigators using a modification of a protocol developed by Smith (1977) which is somewhat content free.

Using an interview technique to determine students' problem solving processes

in science is not new. In the area of physics, work has been done by Towbridge and McDermott (1980) at the University of Washington and Clement (1979) at the University of Massachusetts. The techniques used by both investigators involved more integration than that used in the "think aloud" technique.

In the area of chemistry, Nurrenbern, (1979) studied high school students' behavior when solving stoichiometric limiting - reagent problems. She compared the processes used by formal and concrete students using the "think aloud" technique, and coded data according to a schema based on that of Days (1977). — Because of the similarity of this project to her dissertation study and in order to compare these results with hers and those available in mathematics education, the "think aloud" technique was used for this study. Data were coded using a modification of the Nurrenbern coding sheet.

Questions Studied

This interview study sought to answer the following questions:

1. Are there differences in the problem solving strategies used by students of different verbal-visual preference?

2. Are there differences in the problem solving strategies used by students of different proportional reasoning ability?

3. Are there differences in the problem solving strategies used by students who are successful problem solvers versus those classified as unsuccessful?

4. Are there differences in the problem solving strategies used by students who have been taught to solve problems according to different methods?

.5. Are there differences in the problem solving strategies of students who solve the problem correctly versus those who do not?

6. Are the number of questions a student answers correctly related to their verbal-visual preference, their proportional reasoning ability, whether

194

they are successful/unsuccessful in problem solving, the method used in learning to solve problems and the number of problems solved correctly?

Methods and Procedures

Sample

The major objective of this study was to compare processes students used who were successful problem solvers with those who were unsuccessful. Some criterion had to be selected on which success could be judged. There were two possible options. Success could be judged by outcomes on the problems students were asked to solve while being interviewed. The other alternative was to judge success on the basis of how well students performed on the immediate or delayed posttests administered for the aptitude by treatment interaction study. Because the success rate was so low on the problems students solved while thinking aloud, and because it was impossible to know this in advance of the interviews, the decision was made to base success or lack thereof on students' scores on the immediate and delayed posttests.

If this interview study had not followed the treatments in Part I of this study, there would have been no need to be concerned about other classifications for selection of students to be interviewed. Because this was not the case, an effort was made to select students for interviews who had various degrees of proportional reasoning ability and verbal-visual preferences. The ideal selection process would have been to include students in each of the categories shown in Figure 26. It was originally intended that eight successful and eight unsuccessful students in each cell for each of the four chemistry topics studied (moles, gas laws, stoichiometry, and molarity) be included in the study. This would have resulted in 64 students per topic or a total of 256 interviews.

In reality it was not feasible to obtain this distribution for several reasons. First, for some of the categories the number of students having the

Ideal Sample

Proportional Reasoning

Actual Samples .

	Lo	w	H	igh _	
	S	U	S	ប	
Visual	8	8	8	8	
	S	υ	S	U	
Verbal	8	8	8	8	

Moles Unit

		ortional W	. Reason Hij	ning zh	
Visual	S	U -	S	Ե	
	5	11	15	5	
Verbal	S	U ,	S.	บ	
	6	14	12	3	

Gas Laws Unit

	Prop I	ortiona .ow	1 Reaso	Reasoning\ High		
Visual	S	. U	s	ັບ		
	2	12	8	8		
Verbal	S	U	S	U		
-	9	10	9	6		

Molariny Unit

Stoichiometry Unit

	Propo Lo	rtiona l w	Reaso Hi	ning gh	-		ortional ow	l Reaso <u>/</u> Hi	ning Igh
Visual	S	<u>ບ</u>	S	U	Visual	S	υ,	S	ប
	8	7	11	7		5	8	10	7
Verbal	S	U	s	υ	Verbal	S	υ,	S	` บ
	3	13	12	5		10	, 5	7	3

Figure 26. Ideal sample versus real samples of students interviewed.

196

. 229,

Fig

. . desired characteristics was expected to be small. For example, most students who had high proportional reasoning ability were successful and those with low proportional reasoning ability unsuccessful. Second, an attempt was made not to interview any students a second time. (This happened in no more than 2% of the interviews.) These reasons, together with the fact that there were a limited number of students from whom to select, (had taken the original aptitude tests, obtained permission from their parents and wanted to participate) made it difficult to find students with the correct combination of aptitudes who were available during the times when interviews were conducted.

As the interviews progressed, another factor became evident. Some students who did very poorly on the tests were poor candidates for interviews because their reason for doing poorly was that they were absent from school frequently and had not had the appropriate instruction. An effort was made to avoid interviewing these types of students as the project progressed.

Because of the above considerations, the resulting number of students in each category was not equal. The actual distribution based on the delayed postgest scores is shown in Figure 26.

Procedures

The following procedures were used for the interview study:

1. After students had completed both the immediate and delayed posttests for each unit, results were obtained and selection of students made on the basis of their aptitude scores on the proportional reasoning test, the verbalvisual test and their availability during the time in which the interviewers would be in the school. (Student's completed a schedule form at the beginning of the semester'. A copy of this form is found in Appendix I).

2. Chemistry teachers were notified of which students were to be interviewed and informed students of the date, time and place.

3. Two to three interviewers went to the school for the interview. Two of these were doctoral students in science education, one a masters' degree student. Prior to their going for the first interview a detailed booklet as shown in Appendix J was prepared giving the interview protocol. This protocol was discussed in advance and although there were no formal training sessions, some of the earliest interviews were used as practice sessions. The results from these interviews were not analyzed.

4. Because teachers felt that calling these sessions "interview sessions" might not be well received by students, they were call "feedback sessions". A copy of the procedures as described to the teachers is given in Appendix K. These were slightly modified as follows:

a. Time. Each session lasted approximately 45 minutes, and was conducted, when possible, during study periods. It was necessary at times to have sessions after school and during class time (at the teacher's discretion).

b. Place. The session took place in a separate room away from the chemistry classroom.

c. Supportive materials. Audio-tapes and recorders were heeded to record the interview. Students were provided with a periodic table, unlined paper, and a pencil. Originally a calculator was provided. After the first few interviews a decision to disallow the use of a calculator was made. The calculator seemed to inhibit the student from using the "think aloud" technique. He/she pushed buttons instead. d. Selection of students. Students were selected as described above. In order to encourage participation, \$3.00 was paid to each student who participated in the interview. (In one school it was the desire of the principal not to pay students so this was not done. Because of this it

231

198

۲ĩ.)

was more difficult to get students to participate, particularly after school).

e. Initial instruction to the student. Prior to the feedback session, the students were given the following instructions:

1. The student was told that he/she would be solving problems like he/she had done in class.

2. The student was told that the session was private. The concept of complete privacy was emphasized. The student was insured that nothing said, nor the results of any problems, would be repeated to the teacher or to the classmates of the student.

3. The student was informed that the interviewer was primarily interested in how the problems were solved.

4. Each student was asked if he/she objected to being recorded, and was told that they would not be required to listen to the tape being replayed.

f. During the session the students used a "think aloud" technique.This technique was divided into three sections as follows:

1. Think-Aloud Warm-Up:

a. The student listened to a short tape of a person solving a problem aloud.

b. The student was taped while solving a think-aloud problem from Whimbey.

c. The student was informed of the importance of thinking aloud while solving the problems during the session.

2. Questions Section: Chemistry content questions were asked to establish students' knowledge of chemistry that was considered essential for solving the chemistry problems.

3. Problem Section: Three problems were presented to each student from a pool of items of each type that students tried to solve while thinking aloud. The interviewer prompted students with a general question such as, "What are you thinking now?" when the think aloud process broke down. No hints to the problem solving were given. The interviewers took notes on paper while the student thought aloud. According to other researchers this is supposed to stimulate the think aloud process.

Instruments

Aptitude Measures

The Proportional Reasoning Test and the Verbal-Visual Preference Test were used to classify the students according to their aptitudes.

Approximately half of the stulents who were interviewed for each of the four topics were considered low in proportional reasoning. The other half was considered high. For the moles unit, students scoring less than or equal to 13 were classified - low whereas students scoring above 13 were classified as high. For the gas laws and stoichiometry units, the cut off point was 11, and for molarity 12.

For the purposes of classification, the scoring of the Verbal-Visual Preference Test was modified to give students a single score. This was done by scoring one point for agreement with items that are imaginal in nature and also one point for disagreement with items that are verbal in nature. This new method is a transformation of the original method by the following function:

$VVP = EI_{C} - EV_{C} + V$

where VVP is the Verbal-Visual Preference score, I_C represents the number of imagery items scored 'correct' by the Paivio method, V_C represents the number of verbal items scored 'correct' by the Paivio method, and V is the total number of verbal items (a constant = 31) For a subject scoring 22 on the imagery scale and 17 on the verbal scale, the VVP score would be 22-17+31=36. This scoring method allowed for one continuous variable of scores ranging from 0 to 54. It assumes that there is a correlation between the imagery and verbal scores. The actual correlation was .29. This indicates that there is approximately 8% shared variance. Because this amount of variance is fairly low, the decision to use the combined scale was made. It made the selection of students for interviews less complicated than using separate imagery and verbal scores. Students with scores 1 - 34 for the Moles and Gas Laws Units and 1 - 33 for the Stoichiometry and Molarity Units were considered to have high verbal preference. The remaining students were considered to have a high visual or imagery preference.

Interview Questions

A series of questions that were asked in a fixed order were included in each interview immediately following the mathematics problem that the student solved aloud. The reasons for preceding the problems with questions was threefold. It allowed the investigator to determine whether students had the necessary prerequisite skills and a qualitative understanding of the concepts needed to solve the problem; it "tuned-in" the students to the subject matter at hand by reviewing the concepts needed; and, finally it probably set students a little more at ease during the interview since many more could answer the questions successfully than do the problems.

Students were given feedback on the answers to the questions and interviewers prompted them to elicit correct answers after a wrong response or prolonged silence. Answers to the questions were subsequently coded according to whether prompting was necessary to obtain a correct answer.

The umber of questions asked varied according to the unit. The moles with had six questions, gas laws unit seven questions, the stoichiometry unit four questions and the molarity unit five questions. The questions are found in

Appendix L.

234

Interview Problems

Each student was interviewed on how to solve three problems in a given unit. Problems became increasingly more difficult. The first problem was considered to be a one-step problem, the second problem was more complex containing two or more steps. The third problem involved transfer. It was similar to those problems on the delayed posttest that were judged to be transfer items.

Three similar but non-equivalent items were written for each of the above categories. They were considered to be similar in that they contained the same number of steps, and if a chemical equation was involved, the same equation. They were not equivalent in that they tested slightly different concepts, some of which may have been more difficult for the students. For example, the second set of problems used for the stoichiometry interviews were as follows: 2MM - Sodium carbonate (Na₂CO₃) reacts with hydrochloric acid (HCl) to form sodium chloride (Na₂l), water (H₂O), and carbon dioxide gas (CO₂) according to the reaction:

 $Na_2CO_3(aq)$ + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H₂O(1) + CO₂(g) How many grams of CO₂ would be produced from 146.0 grams of HCl reacting with sufficient Na₂CO₃?

2MV - Sodium carbonate (Na₂CO₃) reacts with hydrochloric acid (HCl) to form sodium chloride (NaCl), water (H₂O), and carbon dioxide (CO₂) according to the reaction:

 $Na_2CO_3(aq)$ + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H₂O(1) + CO₂(g) How many liters of CO₂ (measured at STP) would be produced from 146.0 grams of HCl reacting with sufficient Na₂CO₃?

202

2MP - Sodium carbonate (Na_2CO_3) reacts with hydrochloric acid (HC1) to form sodium chloride (NaCl), water (H₂O), and carbon dioxide gas (CO₂) according to the reaction:

 $Na_2CO_3(aq)$ + 2 HC1(aq) + 2 NaC1(aq) + H₂O(1) + CO₂(g) How many molecules of CO₂ would be produced from 146.0 grams of HC1 reacting with sufficient Na₂CO₃?

In every case, the same equation was used. The first problem is a mass-mass problem, the second is a volume-mass problem and the third is a particle-mass problem.

The problems were typed on individual 8" x 5" cards. The interviewers randomly selected 1 problem from each of the three sets of cards. These three problems were then presented individually by the interviewer to the student being interviewed.

This resulted in the distribution of problems at shown in Table 112. Problems are given in Appendix L.

Coding Protocol

The tapes were coded using a protocol adapted from one used by Nurrenbern (1979). The same general categories of reading/organizing, recall, production, strategy, structural errors, evaluation, comments about solution and executive errors were included. In addition, a section on the questions was added.

Some categories were modified slightly because it was felt that they were not suitable for the category. For example, under Reading/Organizing, the category "Says he does not understand the problem" was deleted because it was felt it would le 1 to spuriously high results - it did not indicate an organizing skill.

The production category was modified by organizing statements into those approaches thought to be systemmatic versus non-systemmatic. A "No answer

¥'

ERIC FullText Provided by E

T-L1-	112	
Table	112	

Unit		Problems							
		Set 1		2	Set 3				
	Problem Code No.	Times Used	Problem Code No.	Times Used	Problem Code No.	Times Used			
Moles	М	24	VM	23	VA	23			
	v	25	Mio	29	MA	24			
	Мо	25	MoV	22	VM	19			
Gas Laws	ТР	25	Фр	18	M-TV	20			
i i i i i i i i i i i i i i i i i i i	٦V	× 18	TPV	20	M+TV	21			
	- PV	21	PVT 3	26	MPV	23			
Stoichiometry	М	18	M	26 [°]	HH	22			
	V	27	MV	23	SS1	24			
	Р	21	MP	17	SS2	20			
Molarity	M1	18	MoD ,	25	WA	22			
	G	23	NoC	16	GA1	23			
	Mo	23	MV	23	GA2	19			

Distribution of Problems for Interviews

given" category was added to allow for cases in which students did not work enough of the problem to allow a judgement to be made on how the problem was being solved. Several categories under "production" were moved to "structural errors".

The "structural error" section used by Nurrenbern had been devised for her particular study of stoichiometry limiting-reagent problems. Because this was inappropriate for many of the problems that had to be coded in this study, it was revised to make this section more inclusive. This modification was used in the moles problems. After using this same schema for coding the problems in the gas laws, stoichiometry and molarity units, it was recognized that some data were being lost. Three new coding sheets for the structural errors for each of the remaining t pics (gas laws, stoichiometry, and molarity) were then devised.

Modifications were also made of the description of the coding form used by Nurrenbern. In some cases the description given was not comprehensive enough to cover the wide range of responses to be coded consistently by the same reviewer or by another reviewer. The general coding form, the structural errors coding form, and the coding form descriptions are given in Appendix M.

All of the tapes were coded three times, twice by the same rater and then checked by the principal investigator. Comments made by the interviewer during the interview as well as the sheet used by the student for calculation were used in the coding process. The rater, a doctoral student who was a former middle school science teacher, listened to an individual tape and coded it on the general coding sheet. Betwr a one and three weeks later, he listened to the tape again and coded it independently. The principal investigator then compared the two coding sheets while listening to the tape and made any appropriate additions or resolved conflicting codes. The reliability of the coding

Reliability of Coding of Interviews Using Kendall's Coefficient of Concordance

- General Form Categories	Noles Coefficient W P		Gas Laws Coefficient W P		Stoichiometry Coefficient W P		Molarity Coefficient W P	
-	.95	.00	.98	.00	.92	.00	[,] .93	.00
*Reading/Organizing	.93	.00	.97	.00	.98	.00	1.00	:0 0
Systemmatic Approach	.97	.00	.95	.00	1.00	.00	1.00	.00
Approach Taught		.00	.95	.00	.92	.00	1.00	.00
Arithmetic Algorithm	.93		. 80	.00	.90	.00	1.00	.00
Nonsystemmatic Approach	.95	.00	.97	.00	.90	.00	1.00	.00
No Answer Given	.82	.00	.97	.00	.95	.00	.97	.00
Algorithmic Only	.96	.00	• .90	.00	.95	.00	1.00	.00
Algorithmic/Reasoning Strategy	.95	.00	.74	.00	.87	.00	.91	.00
Random Trial and Error	.95	.00			.33	.45	-1.00 🦉	.00
Misinterprets Problem	.54 .	.03	1.00	.00		.43	1.00	.00
Disregards Information Given	.83	.00	.78	.00	.67 1.00	.00	.70	.01
Jisregards Information Generated	.49	.06	1.00	.00		.00	1.00	.00
Misapplies Information	.83	.00	.94	.00	.52	.09	1.00	.00
Needed Information Not Generated	.33	.46	.98	.00	.43	.00	.99	.00
*Fvaluation	.96	:00	.92	.00	.92		1.00	.00
*Comments About Solution	.92	.00	.99	.00	.99	.00	.85	.00
*Executive Errors	.95	.00	1.00	.00	.78	.00	1.00	.00
Problems Correct	1.00	.00	1.00	.00	.97	.00		.00
Problems Incorrect	.99	.00	1.00	.00	.98	.00	1.00	.00
Questions Correct	.98	.00	1.00	.00	1.00	.00	1.00	.00
- Questions Incorrect	, 98	.00	1.00	.00	1.00	.00	1.00	
Questions C1	´ . 95	.00	1.00	.00	.95	.00	. 33	.44
Questions C2	.92	.00	1.00	.00	.98	,.00	1.00	.00
Questions C3	1.00	.00	1.00	.00	1.00	.00	1.00	· .00
Questions C4	1.00	.00	1.00	.00	1.00	.00	1.00	.00
Structural Errors Sheet				-		• •		05
*Problem 1 Cl	x ¹	Х	1.00	.04	1.00	.04	.94	.05
*Problem 1 C2	· λ	X	1.00	.04	1.00	.04	1.00	.04
*Problem 2 C1	X	λ	.93	.05	.85	.08	.84	.09
*Problem 2 C2	X	X	1.00.	.04	1.00	.04	1.00	.04
*Problem 3 Cl	X	X	÷.96	.04	1.00	.04	.95	.05
AProblem 3 C2	X	x	.90	.06	1.00	.04	1.00	.04
*Rroblem 3 C3	· X	x	.92	.06	1.00	.04	1.00	.04
	л С	~		-				
~ ``	log J.							206
*Section is summed over several co	des.						ţ	ð
1Not applicable -							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>л</u> .
<u>IC</u>			•	1	• '		24	U

system between the three ratings (two by the one rater, one by the principal investigator) using Kendall's Coefficient of Concordance ranged from 3.3 to 1.00 only 4% had a probability level exceeding .05.

The original rater did not use the specially prepared structural error sheet because his background in chemistry was somewhat limited. These were coded by the principal investigator (a chemistry educator) and checked by an experienced chemistry teacher whose students participated in the study. Reliabilities ranged from .84 to 1.00.

A summary of the reliability of the coding of the interviews is found in Table 113.

Hypotheses

The following hypotheses were tested using data from the interviews: 1. There are no significant differences in chemistry problem solving strategies used by students having verbal or visual preferences for learning.

2. There are no significant differences in chemistry problem solving strategies used by students of high and low proportional reasoning ability.

3. There are no significant differences in chemistry problem solving strategies used by students considered successful problem solvers versus unsuccessful ones.

4. There are no significant differences in chemistry problem solving strategies used by students according to the method taught to solve the problems.

5. There are no significant differences in chemistry problem solving strategies used by students who solved the problem correctly versus those who did not.

6. There are no differences in the number of questions a student answers successfully according to verbal-visual preference, proportional reasoning ability, success in problem solving, the method taught in learning problem solving, and the number of problems solved correctly.

Statistical Analyses

Hypotheses one through five were analyzed using three different statistical methods. In cases where only frequencies were available, chi-square analyses were used. This method was used for the following: reading/organizing codes, mneumonic codes, production codes, strategy codes, and structural error codes.

In cases where data were summed for given categories, Kruskal-Wallis one way analyses of variance were used when the data were not normally distributed and three groups were present. (This was determined using the Kolmogorov-Smirnov goodness of fit test.) Mann-Whitney U Tests were used in cases where data were not normally distributed and only two groups were present. Data were summed for the following: reading/organizing, évaluation, comments about solution, executive ërrors, total number of questions correct, number of nonprompted questions correct, number of problems correct and for all categories previously analyzed using the chi-square when they were summed over problems. A summary of tests used for each analysis is given in Table 114.

x .	Tests o	f Significance Used Wi	th Interview Data /		
•	Verbal-Visual Preference P T	Proportional Reasoning Ability P T	Success/Unsuccess 3 Levels Test P T	Teaching Strategy P T	Problems Correct/ Incorrect P T
Reading/Organizing Rereads or Stating Mneumonics	3 3 · 3 3 3 3 3 3	3 3 3 3 3 3	2 2 2 2 2 2 2 2	2 2 2 2 2 2	3 2 3 2 3 2
Production Systemmatic Approach Taught Arithmetic Nonsystem No Answer	$ \begin{array}{c} 1 & 3 \\ 1 & 3 \\ 1 & 3 \\ 1 & 3 \\ 1 & 3 \\ 1 & 3 \\ 1 & 3 \end{array} $	$ \begin{array}{cccc} 1 & 3 \\ 1 & 3 \\ 1 & 3 \\ 1 & 3 \\ 1 & 3 \\ 1 & 3 \end{array} $	1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 2 1 2 1 2 1 2 1 2 1 2	1, 2 1 2 1 2 1 2 1 2 1 2 1 2
Strategy Algorithmic Alg/Reasoning Random T & E	1 3 1 3 1 3	1 3 1 3 1 3	1 2 1 2 1 2	1 2 1 2 1 2	1 2 1 2 1 2
Structural Error Misinterprets Disregards given Disrogards gen Misapplios Not generate	1 3 1 3 1 3 1 3 1 3 1 3	1 3 1 3 1 3 1 3 1 3 1 3	1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 2 1 2 1 2 1 2 1 2 1 2 1 2
Evaluation Comments about Solution Executive Errors Problems Correct Questions Correct Questions w/o Prompting	3 3 3 3 3 3 X 3 X 3 X 3 X 3	3 3 3 3 3 3 X 3 X 3 X 3 X 3	2 2 2 2 2 2 X 2 X 2 X 2 X 2 X 2	2 2 2 2 2 2 X 2 X 2 X 2 X 2 X 2	3 2 3 2 3 2 2 2 2 2
Section 1 Section 1 Section 2 Section 2 Section 3 Section 3 Section 3	1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	$ \begin{array}{c} 1 & 3 \\ 1 & 3 $	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

2

Tests of Significance Used With Interview Data

1 ...

.

1=Chi Square 2=Kruskal-Wallis 3=Mann Whitney % Inappropriate Analysis

ERIC[®]

243 .

٠,

Results

Hypothesis 1

There are no significant differences in chemistry problem solving strategies used by students having verbal or visual preferences for learning.

In order to test this hypothesis students were divided into two groups according to their scores on the modified Paivio verbal-visual preference test. These groupings are summarized in Table 115. Results of the analysis used to test the hypothesis for each of the four chemistry topics are summarized in Table 116. Tables 117-120 give more detailed information for analyses where significant differences were found.

Findings show that students' verbal or visual preferences as measured by the modified Paivio instrument were generally not related to their problem solving strategies. Table 117 indicates that visual students tended to show more overt signs of reading/organizing skills and reading/stating the problem than verbal students on the moles problem 3. There is little educational significance to this finding, however, as no significant differences were found. for the other moles problems or for problems from the other three units.

Similar results are found in Table 118. More visual students tended to use only algorithmic strategies rather than algorithmic/reasoning strategies, and they also had a greater tendency to misapply information. Results again hold for only the moles unit.

On the other hand, visual students made fewer errors in balancing equations as shown in Table 119- structural error 1 - 1. (Structural errors varied according to units so the fact that structural error 1 - 1 is not significant across the units has no bearing on these results.)

Table 120 shows that visual students also showed greater evidence for using the approach taught in their packet to solve the problems on molarity. This was not evident for problems in the other three units.

244

			mary of	.signifi	Cor	Lans	TCIDAL	12001	· Stoid	chiomet	~~~~~		Mola	rity	
Protocol Categories	Pla	Moles p20 p3C	Ta	Pl	12	P3	T	P1	P2	P3.	T	- P1	Mo1a P2	P3	T
Reading/Organizing		478 ^e .04 ^f			۰ <u>.</u>					,		l t			- •
Rereads or Stating ^g		482 .02					c			•			- -	•	
Mneumonics															
Production	-			•					•			1			-
Systemmatic		Y					-			,					7
Approach Taught													•		370 .02
Arithmetic	I						, ,								
Nonsystemmatic			•											,	
No Answer															
Strategy									•					•	
Algorithmic			483 .05												,
Alg/Reasoning		•			•	-				,					
Random T & E	ł										4			-	
Structural Error				ĺ			. ·								
Misinterprets			,				·								
Disregards given											2			l I	
Disregards gen	-		•							٠	~		•	а - сана на на	*
- Misapplies			540 s .01				• ,				-				č
Not generate		•											•		

•,

Ž46

 Table 116
 Summary of Significant Findings: Verbal-Visual Preference

245

13

FUIL Fox Provided by ERIC

			oles	liniary of	giiiii		Laws	VCIDA	il-Visual P	Sto	ichiome	try		Mol	arity		
Protocol Categories	P1	P2	P3	_1_	P1	P2	P3	- T	 Pr	P2	P3	T	P1	-P2	P3	Ţ	
*Evaluation							_					•		_			
~~~~~										•							
*Comments about Solution					~					••			Ì				
*Executive Errors		•													¢		
*Executive Errors ,							• •				~				÷		
*Problems Correct	xi	х	х		x	х	х		x	х	х		x	х	х		
					ŕ					•				<u>ہ</u>			
*Questions Correct	X	х	х		X	х	X		X	X	X		x	X	Х		
*Question w/o Prompting	x	х	. _х		x	х	х		x	х	х		x	x	х		
Structural Lrrors				,					•				•				
Section ^h 1 - 1	x	x	х			х	x	, x	9.86	х	х	x		х	х	x	
									.02								·
Section 1 - 2	x	X	X	х		х	х	χ		x	х	х		, <b>X</b>	Х,	X	
Section 2 - 1	x	x	х	x			Х÷	х	X		x	[^] x	x		x	x	
		~	л	A			A -	A	~		X						
*Section 2 - 2	x	x	х	х	x		х	х	´ x		х	х	Х		X	х	
Constant 7 1		v	х	v	- x	v		x	x	x		x	x	х		х	
Section 3 - 1	х	х	X	x	^	х			^	~		~		л		Λ	
Section 3 - 2	x	x	х	х	x	х		х	x	х		x	x	Х		х	_
						•						v	v	х		х	
Section 3 - 3	х	х	X	x	x	х		X	X	Х		Х	x			~	
*Category sum	ـــــــــــــــــــــــــــــــــــــ	eS	tatisti	.c	_ <b>i</b> ,												<u> </u>
^a Problem 1		fP	robabil	ity leve	el			•		-		,					
bproblem 2		\$ _S	umofi	ereads a	arl resta	tes sub	categor	ies									
^C Problem 3		-			lementary											£	
dSum of Problems 1, 2	<b>&amp; 3</b>		ot mear	• -		_			•								
247	• -	•••															Ĩ

Table 116 (continued)

•~

ņ

- ء

, 212

ja,

# Distribution of Students According

# to Verbal-Visual Preference

	•		Verbal		Visual	Visual						
Unit ·		Range	X	N	Range X	Ň						
Moles		20-34	29.4	36	35-48 39.8	36						
Gas Laws		24-34	29.0	34	35-48 39.6	30						
Stoichiometry		16 - 33	27.7	33	34-44 37.9	33						
Molarity		16 - 33	27.8	31	34-45 38.3	33						
	•						12					

243



سته - "⊥ در

Table	117	
-------	-----	--

ı,7

250

Verbal-	R	eading/O	rganizing	Skills	\$	Rer	eading/S	stating	Problem_
Visual		1	2	3	Total	0		2	January Total
Verbal	- 15 ^a 41.7 ^b 62.5 ^c 20.8 ^d	17 47.2 53.1 23.6	2 5.6 15.4 2.8	2 5.6 66.7 2.8	36 50.0 (31.8) ^e	29 80.6 59.2 40.3	7 19.4 31.8 9.7	0 0 0 0	36 50.0 (31.9)
Visual	9 25.0 37.5 12.5	15 41.7 46.9 20.8	11 30.6 84.6 15.3	1 2.8 33.3 1.4	36 50.0 (41.2)	20 55.6 40.8 27.8	15 41.7 68.2 20.8	1 2.8 100.0 1.4	36 50.0 (41.1)
Total	24 33.3	32 44.4	13 18.1	3 4.2	72 100.0	49 68.1	22 30.6	`1 1.4	72 100.0
		Mann-Wh Wilcoxor Z Signific	n Rank Su	41 m W 114 -2.0		Wilco Z	Whitney xon Rank ficançe		482 1148 2.30 .02

Interview Data Analyses: 'Moles - Problem 3 Verbal-Visual Preference

a_{Count} ^bRow percentage ^cColumn percentage dTotal percentage ^eMean rank

£

	· A	lgorithmi		ov Only		. Mi	sapplies Inf Generat	ed
Verbal- Visual 7		· 1	Z	. 3	Total	, 0	1	Total
Verbal	14 38.9 66.7 19.4	10 27.8 58.8 13.9	5 13.9 26.3 6.9	7 19.4 . 46.7 9.7	36 50.0 (31.9)	3 100. 54. 50.	5 0	36 50.0 (33.5)
Visual	7 19.4 33.3 9.7	7 19.4 41.2 9.7	14 38.9 73.7 19.4	8 22.2 53.3 11.1	36 50.0 (41.1)	3 83. 45. 41.	5 100.0	36 50.0 (39.5)
Total	21 29.2	17 23.6	19 26.4	15 20.8	72 100.0	6 91.	6 6 7 8.3	. 72 100.0
. · ·	Ma . Wi . Z	nn-Whitne lcoxon Ra gnificanc	ink Sum W	483 1149 1.92 .05		'Wi] Z	nn-Whitney U Lcoxon Rank S gnificance	540 Sum W 1206 -2.54 .01

1

<

¢

#### Interview Data Analyses: Moles - Total Verbal-Visual Preference

251

t

ERIC[®]

ζ

٩.

ľab	le	113
	-	

Interview Data Analyses: Stoichiometry - Problem 1 Verbal-Visual Preference

Verbal-	<u></u>	Structu	ral Error	1 - 1				
Visual (	0	1	2	3	Total			<u> </u>
Verbal	0 ^a 0 ^b 0 ^c 0 ^d	7 21.2 30.4 10.6	10 30.3 76.9 15.2	16 48.5 57.1 24.2	33 50 :0		- 7	
Visual	2 6.1 100.0 3.0	16 48.5 69.6 24.2	3 9.1 23.1 4.5	12 36.4 42.9 18.2	33 50.0	-	4	
Total	2 ± 3,0	23 34.8	13 19.7 (	.28 42.4	* 66 100.0		, 	*
• •		Chi Šq df V Signif	uare icance	9.86 39 ^f .02	•			-
aCount ^b Row percent ^C Column perce dTotal perce fCramer's V	centage entage			j	:	, <b>.</b>	· · · ·	
•	٢		Ċ.	252	4 		·. <b>·</b> .	

#### Tab1e 120

6.0

ه.

#### Interview Data Analyses: Molarity - Total Verbal-Visual Preference "

Verbal-		Approa	ch Taught			_	
Visual	0	1	2	3	Total		
	26	2	` 0 [`]	3	31		<b>L</b>
ŧ.	83.9	6.5	\0	9.7	48.4		-
17 .1 .1	59.1	25.0	( <del>-</del>	. 50.0	(28.0)		
Verbal	^{59.1} 40.6	3.1	ă	4.7	(20.0)	-	
	40.0	2.1	U V	7./		-1	
•	18	6	6	3	3 <b>3</b>		
* ,	54.5	18.2	18.2	9.1	51.6		
Visual	40.9	75.0	100.0	50.0	(36.8)		
VISHAI	28.1	9.4	9.4	4.7		*	
•	2012					•	
Total	44	8	6	\ 6	. 64		
IUCAL	68.8	12.5	9.4	9.4	100.0		
							<i>•</i> •
	М	ann-Whit	neyU -	370	)		
			Rank Sum				•
•	Z			-2.31	, ,		
	S	ignifica	nce	.02			

250

\$

#### Hypothesis 2

There are no significant differences in chemistry problem solving strategies used by students of high or low proportional reasoning ability.

In order to test this hypothesis students were divided into two groups according to their proportional reasoning ability. The resulting groups are described in Table 121. Results of the analyses used to test the hypothesis are summarized in Table 122 and details for significant findings are found in Tables 123-155.

All results will be discussed in terms of the protocol categories across the four units.

Rereading or stating. Molarity, problem 3 only, Table 149. Students with high proportional reasoning ability reread/stated more frequently.

<u>Mneumonics</u>. Gas Laws, problem 1 only, Table 131. Students with high proportional reasoning ability used mneumonic notation more frequently.

<u>Systemmatic approach.</u> Moles, problems 1, 2, total, and stoichiometry, problems 1, 2, 3, total, (Tables 135,138,140,142 ). All tables indicate that high proportional reasoning students used a more systemmatic approach.

<u>Nonsystemmatic approach</u>. Stoichiometry, problem 2, (Table 138), and molarity, total, (Table 151). Nonsystemmatic approaches were used by students of low proportional reasoning ability.

No answer given. Moles, total, (Table 126), and stoichiometry, problem 1, (Table 135). Low proportional reasoning students more frequently did not give an answer.

Algorithmic strategy. Gas Laws, problem 3, total (Tables 133, 134) and molarity, total, (Table 149). Low proportional reasoning students tended to use only algorithmic strategies.

Algorithmic/reasoning strategy. Moles, problems 2, 3, total, (Tables 124, 125, 127), gas laws, all analyses, (Tables 131, 132, 133, 135), stoichiometry,

- 218

۰,

# Distribution of Students According

# to Proportional Reasoning Ability (PPRT)

	, Lov	PPRT			igh PPR	<b>Г</b> (	
Unit .	Range	X	N	Range	X	N	÷
Moles	6-13	10.0	36	14-21	- 17.4	35	
Gas Laws	5-11	9.0	<b>3</b> 3	12-21	15.5	31	
Stoichiometry	5-11	8.9	31	12-21	16.7	35	
Molarity	6-12	9.3	29	13-21	16.3	35	

255



219

C

			Summar	y or 51g	nificant	Gas	Laws		nal Reaso	Stoid	chiomet	ту		Mola		1
Protocol Categories	p.a	P2 ^b	P3 ^C	Td	P1	P2	P3	T	P1	P2	P3		P1	P2	P3	<u>T</u>
*Reading/Organizing	<u></u>							*				-	-			
Rereads or Stating ⁸			•	_		,		•	-				•		375 ^e .05 ^f .	
Mneumonics				\$	374 .008								ž			•
Production														• ,		
Systemmatic	6.90 .009	4.12 .04	·	445 .02			-	2	6.21 .01	7.51 .006	5.00 .03	314 .002				·
Approach Taught			•				*			,				-	-	
Arithmetic	,	z			1	`,			• '		•		<i>.</i> .	ŗ		•
Nonsystemmatic						•	•	•		4.87 ' .03	•	<b>P</b> 5	•	- ,	•	°623 .05
No Answer				755 .02			1		<b>4.2</b> 9 04			,	• -		٠	۴
Strategy				,												662
Algorithmic							5.31 .02	671 .02				F		•		.03
Alg/Reasoning	•	8.09 .004	4.91 .03	412 .004	3.96 .05	3.94 .05	5.58 .02	314 .005	12.25	10.01 .002	8.33 .004	300 .0002	16.79 <.0001	7.59	4.73 .03	229 <0001
Random T & E				771	.	•		•		5.61 .02	1	670 .05	4.77	-		645 .02
Structural Error			e			i.				•		. '		-		
Misinterprets				,	-					-	•	•				
Disregards given				ر ء												624 .02
Disregards gen		~ '	• • •	,			•				÷:		,			
Misapplies													,		•	
Not generate		v								٠.	,	•	ł,	74	-	2

Table 122 Table Significant Findings: Proportional Reasoning Ability

C

250

220

	<del>、 .</del>	M	oles	ry of Sig	in Li Calif	Gas	Laws		nal Reaso	Stoich	iometry				arity	_
- Protocol Categories	P1	P2	P3	T .	P1	, P2 ,	P3	Т	· P1	P2	P3	Г	P1	P2	P3	<u>T</u>
valuation		1 1		•				<b>"</b>	·		÷ ;	• *			1	
Comments about Sclution	761 .05		827 .008	844 .009	632 .03	-	•		800 .0002	702 .02		845 .0001			637 .04	675 .02
xecutive Errors			, <b>s</b>			-	•	•		-		-		•	ł	
Problems, Correct	xi	X	, <b>x</b>	330 .0003	٠x	х	X	\$	x	X	X	391 .03	x	X	X	237 <.0001
Questions Correct	x	X	x	402 .005	<b>- X</b>	X	X		x	x	x	404 .04	x	X	X	236 .0001
, Question w/o Prompting	x	x	з х	.,272 <.0001	x	۰X ُ	x		x	X	X		x	X	x	240 .0002
Structural Errors														`		
Section ^h 1 - 1	x	X	X	X		X	· X	X	9.98 .02	X	. <b>X</b>	X	20.01	X	X	x
Section 1 - 2	- X	x	x	, х		X	x́	X		X ,	X,	X.	26.89 .0002	X	X	X
Section $a^2 - 1$	x	`, <b>x</b>	x	x	x		x	X	x		X	X	<b>X</b> .		X	X
Section 2 - 2	x	x	Ý	x	x		x	, <b>X</b>	x		X	x	x	۱	X	x
Section 3 - 1	x	x	X	x	x	x	•	<b>.</b> X	x	x		x	x	X	۱	× X
Section 3 - 2	x	X	x	x	x	x		X	x	x		x	x	~ X	12.93 .01	X
Section 3 - 3	x	x	x	X	x	x		X	x	x	13.44 .004	x	X	X	9.28 .03	X
*Category sum	l	+	eS	tatistic	↓•											
² Problem 1			f _P	robabilit	y level											
^b Problem 2			8S	um of rer	eads and	l restat	es sub	categori	es							,
^C Problem 3			hS	ection on	supplem	mentary	coding	sheet								
dSum of Problems 1, 2	2 & 3		'i _N	ot meanin	gful											

Table 122 (continued)

2

ι.

١.

4

259

253

ERIC Pruil Text Provided by ERIC

	1.4	•	*						
Propo	rtional	Syste	mmatic Ap	proach		Comments	about	Solution	
	ning Ability	0	1.	Total	0	1	2	3	Total
, ,		12 ^a	24	36	23	9	3	1	56
	Low ,	33.3 ^b ∗85.7 ^c	66.7 42.1	50.7	63.9 44.2	25.0 • 60.0	8.3 100.0	2.8 . 100.0	*50.7 (39.7)
	·	16.9 ^d	33.8		32.4	. 12.7	4.2	1.4	•
		2	33	, 35	- 29	6.	0	0	°.35
<i>.</i> .	High	5.7 14.3	94.3 57.9	49.3	82.9 55.8	17.1 40.0	0 0	0	49.3 (32 <b>.2)</b>
. ?		2.8	46.5	2	40.8	8.5	. 0	<b>4</b>	
	Total	14	57	71	. 52	15 <b>%</b> -		1:4	71
		19.7	80.3	100.0.	73.2	21.1 .	4.2	1.4	1 <b>0</b> 0.0
÷	, . ,	Chi Squ	ia <b>re</b> 6	.90		Mann-Whi Wilcoxor	itney U [.] Rank S	761 um W 1128	•
	•	df Phi Šignifi	cance	.35 009	-	Z		1.96	•

Interview Data Analyses: Moles - Problem 1 Proportional Reasoning Ability

ي ، ك

Table 123

^aCount ^bRow percentage ^CColumn percentage ^dTotal percentage

	Suctor	matic Ap		Algor	ithmic Rea Strategy		
Proportional Reasoning Ability	, <u></u>		Total	0	1	Total	
Low .	11 30.6 78.6	²⁵ 69.4 43.9	36 50.7	30 83.3 63.8	6 16.7 25.0	36 50.7	
High	15.5 3 8.6 21.4 4.2	35.2 32 91.4 56.1 45.1	35 49.3	42.3 17 48.6 36.2 23.9	8.5 18 51.4 75.0 25.4	35 49.3	
Total	14 19.7	57 80.3	71 100.0	47 . 66.2	23.4 24 33.8	71 100.0	
2	df Phi	Square ificance	4.12 1 .28 .94	df Phi	Square ificance	8.09 1 .37 .004	

0

#### Interview Data Analyses: Moles - Problem 2 Proportional Reasoning Ability

Full Text Provided by ERIC

1

;

Proportional		thmic Re Strategy			, C	Comments a	bout Solut		
Reasoning Ability	0	1	Total		0	1	2	Total	
Ĺow	31 86.1 59.6 43.7	5 13.9 26.3 7.0	36 50.7	1	16 44.4 38.1 22.5	18 50.0 66.7 25.4	2 5.6 100.0 2.8	36 50.7 (41.5)	
High	21 60.0 40.4 29.6	14 40.0 73.7 19.7	35 49.3	,	26 74.3 61.9 36.6	9 25.7 33.3 12.7	0 0 0 0	35 49.3 (30.4)	
Total	52 73.2	19 26.8	71 100.0		42 59.2	27 38.0	2 2.8	71 100 <b>-</b> 0	
, ,	Chi Squ df Phi Signif:		4.91 1 .29 .03	•		Mann-Whitr Wilcoxon H Z Significar	Rank Sum W	827 1063 2.64 .008	

#### Interview Data Analyses: Moles - Problem 3 Proportional Reasoning Ability

ERIC.

١

Tab	le	126

Proportional		System	natic Ap	proach		No Answer Given						
Reasoning Ability	0	1	2	3	Total	0	1	2	3	Tota?		
	6 ^a	7	8	15	- 36 -	27	5	2	2	35		
	16.7b	19.4	22.2	41.7	50.7	75.0	13.9	5.6	5.6	50.7		
Low	85.7 ^C	87.5	40.0	41.7	(30.9) ^e	45.0	71.4	100.0	100.0	(39.5		
	8.5 ^d	9 <b>.</b> 9	11.3	21.1		38.0	7.0	2.8	2.8			
~~ ·	1	1	12	21	<b>3</b> 5	33	2	0	0	35		
	2.9	2.9	34.3	60.0	49.3	94.3	5.7	0	0	49.3		
High	14.3	12.5	60.0	58.3	(41.3)	5 <b>5.</b> 0	28.6	0	0	(32.4		
	1.4	1.4	16.9	29.6	•	46.5	2.8	0	0			
Total	7	8	20	36	71	60	7	2	2	- 71		
	9.9	11.3	28.2	50.7	100.0	84.5	9.9	2 2.8	2.8	100 <b>.0</b>		
			nitney U		45			-Whitney		755		
			on Rank	Sum W 14				oxon Ran	k Sum W 1			
		Z Signif:		-2.	31 02		Z	ificance		2.29 .02		

Interview Data Analyses: Moles - Total Proportional Reasoning Ability æ

^aCount ^bRow percentage ^CColumn percentage ^dTotal percentage ^eMean rank



_

Proportional	Alo	orithmic	Reasonii	ng Strate	egy		se of Ran	udom Tria	1 and	Error
Reasoning Ability	0		2	3	Total	0	1	2	5	Total
¥4_	28	3 8 3	1	4	36 50.7	21 58.3	8 22.2	5 13.9	2 5.6	36 50.7
Low	77.8 65.1 _39.4	8,3 37.5 4.2	$2.8 \\ 11.1 \\ 1.4$	36.4 5.6	(30.0)	42.9 29.6	61.5 11.3	100.0 7.0	50.0 2.8	(39.9)
-	15 42.9	5 ^{``} 14.3	8 22.9	7 20.0	35 49.3	28 80.0	5 14.3	0	2 5.7	35 49.3
High	34.9 21.1	62.5 7.0	88.9 11.3	63.6 9.9	(42.2)	57.1 39.4	38.5 7.0	0 0	50.0 2.8	(32.0)
Total	43 60.6	8 11.3	9 12.7	11. 15.5	71 100.0	49 69.0	13 18.3	5 7.0	4 5.6	71 100.0
		Mann-Whi Wilcoxon Z Signific	n Rank Su	41 Im W 147 -2.8 .00	77 35	•		hitney U on Rank S icance		771 1119 1.99 .05



Table	128
Table	128

oportional			Comment	ts about	: Soluti		Problems Correct					
asoning Ability	0	1	2	3	4	5	Total	0.	1	2	3	Total
	12			9	2	1	36	20	. 8	6	2	36
	12 33.3	19.4	5 13.9	2 <b>5</b> .0	5.6	• 2.8	50.7	55.6	22.2	16.7	5.6	50.7
Low	40.0	36.8	62.5	81.8	100.0	100.0	(42.0)	76.9	53.3	26.1	28.6	(27.7)
LOW	16.9	9.9	7.0	12.7	2.8	1.4	(42.0)	28.2	11.3	8.5	2.8	(2.0.)
	10.9	5.5	7.0	16.1	2.0	<b>1</b> 11			`			
	18	12	3	2	0	0	35	6	7	17	5	35
	51.4	34.3	8.6	5.7	Ō	0	49.3	17.1	20.0	48.6	14.3	49.3
High	60.0	63.2	37.5	18.2	. 0	0	(29.9)	23.1	46.7	73.9	71.4	(44.6)
<b>0</b>	25.4	16.9	4.2	2.8	0	0		8.5	9.9	23,9	7.0	
										`	<u>.</u>	_
Total	30	19	8	11	2	1	71	26	15	23	ⁱ 7	71
	42.3	26.8	11.3	15.5	2.8	1.4	100.0	36.6	21.1	32.4	<b>.</b> 9.9	100.0
		Ma	nn-Whit	nev II	84	4			Man	n-Whitne	v İl	3 <b>3</b> 0
				Rank Sun						coxon Ra		
4 2		Z			2.6				Z		· · · · · · · · · · · · · · · · · · ·	-3.62
\$, ,			gnifica	ice	.00				Sig	nificanc	e `	.0003

**2**65

ERIC Full Text Provided by ERIC Interview Data Analyses: Moles - Total Proportional Reasoning Ability

266

Table 12	9
----------	---

Interview Data Analyses: Moles Total • Proportional Reasoning Ability

e

oportional			Question	s Correct			
easoning Ability	2	3	4	5	6	Total	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>
	4	6	8	5	13	36	د
	11.i	16.7	22.2	13.9	36.1	50.7	
Low ,	100.0	85.7	66.7	33.3	39.4	(29.7)	
	5.6	8.5	11.3	7.0	18.3	•	
	0	1	4	10	20	35	· •
	Δ	2.9	11.4	28.6	57.1	49.3	3
High	. 0	14.3	33.3	66.7	60.6	(42.5)	
1	Ö	1.4	5.6	14.1	28.2	* *	
Total	4	7	12	15	33	71	
10001	5.6	9.9	16.9	· 21.1	46.5	100.0	
•		Wil Z	n-Whitney coxon Rar nificance	nk Sum W -	402 1488 2.79 .005		. ~



Table .	130
---------	-----

Proportional Leasoning Ability	P	1	Questions 2	Correct	Without	Prompting 5	<u> </u>	Total	
	3 8.3	3 8.3	13 36.1	6 16.7	6 16.7	5 13.9	• 0 0	36 50.7	•
Low	100.0 4.2	75.0 4.2	81.3 18.3	50.0 8.5	46.2 8.5	29.4 7.0	0 0	(26.1)	
High	0	1 2.9 25.0	3 8.6 18.8	6 17.1 50.0	7 20.0 53.8	12 34.3 70.6	6 17.1 100.0	35 49.3 (46.2)	ι
ngn	0	1.4	4.2	8.5	9.9	16.9	, 8.5	•	
Total	3 4.2	`4 5∖6	16 22.5	12 16.9	13 18.3	17 23.9	6 8.5	71 100.0	
				Wilcox Z	hitney U con Rank : ficance	Sum W 10	.19	, <b>:</b>	
					26>				I
	ı		. \						

~

~

Interview Data Analyses: Moles - Total Proportional Reasoning Ability



٦

.

Tal	b1e	1	31
1 (2)			

momenti con al	lise of	Mneumonic	Notation	Algorith	mic Reasonin	g Strategy	Commen	ts about s	
roportional Leasoning Ability	0	1	Total	0	1	Total	0	1	Total
		2	33	24	9	33	21	12	3.
	33.3	66.7	51.6	72.7	27.3	51.6	63.6	36.4	51.
I m.	33.3 84.6	43.1	(28.3)	63.2	. 34.6		43.8	75.0	(36.
Low	17.2	45.1 34.4	(20.5)	37.5	14.1		32.8	18.8	
	2	29	<b>31</b>	14	17	31	27	4	3
-	2 6.5	93.5	48.4	45.2	54.8	48.4	87.1	12.9	48.
High	15.4	56.9	(36.9)	36.8	65.4	¢	56.3	25.0	(28.
nıgn	3.1	45.3	(30.5)	21.9	26.0		42.2	6.3	
Total	13	51	64	38	26	64	48	16	6
IULAI	20.3	79.7	100.0	59.4	40.6	100.0	75.0	25.0	100.
	Mann-Wh	itney U	374		Square 3.9	96	Mann-W	hitney U	63 Kunn W 88
		on Rank Sur	n W 1145	df		1		on Rank S	
	Z		-2.65	Phi		28	Z	••	2.1
		cance	.008	Sigr	ificance .	05	Signi	licance	.0
					,				

# Interview Data Analyses: Gas Laws - Problem 1 Proportional Reasoning Ability

\$

260

270

.

۰,

Proportional	Algori	thmia Reason	ing Strategy Total			
Reasoning Ability	. 0	1	Total			
-	*23	10	33			
•	_69.7	30.3	51.6	٠.		
Low	63.9	35.7	-		,	
1.0m	35.9	15.6			,	· •
	13	18	31		9	
٠	41.9	58.1	48.4			· · •
High	36.1	64.3	•	•		
<b></b>	20.3	28.1				
		• •	۰۰ ۲. ۸			
Total	36	28	64			
	. 56.3	43.8	100.0			
- °		Chi Square	3.94		•	
		.df	1		• 2	
		Phi Significance	.28 .05			
		orginitie				Ň
			1,			
•						
		271				
<b>6</b>	-	he i L		٣.		
			t,			
			ì		, ,	
_						
- -						
	•					
		1				
	`					

Interview Data Analyses: Gas Laws - Problem 2 Proportional Reasoning Ability

١

ERIC Pruli Text Provided by ERIC

Interview Data Analyses: Gas Laws - Problem 3 Proportional Reasoning Ability

Proportional	Algorit	hmic Strat	tegy Only		nic Reasoni	ng Strateg
Reasoning Ability	0	<u> </u>	lotal	0	<u>1</u>	Total
			77	. 71	2	33
ł	24	9	, 33	· 31	6	
	72.7 -	27 <b>.</b> 3	51.6	93.9	6.1	51.6
Low	44.4	90.0		59.6	16.7	
	37.5	14.1		48.4	3.1	
	J . J	74 ° 7				
	70	1	31	- 21	10	31
	30	ב ₇		67 <b>.</b> 7	32.3	,31 48.4
	96.8	3.2	48.4			TV.T
High	55.6	10.0		40.4	83.3	
-	46.9	1.0		32.8	15.6	
<b>P</b> -+- <b>1</b>	<b>F</b> A	10	61	52	12	64
Total \	54	10	64 بتر 100.0		18.8	100.0
	84.4	. 15.6	100.0	81.3	10.0	, ,
	Chi 4	Square	5.31	Chi	Square	5.58 ·
	df	-4	1	df	•	1
1		1	.33	' Phi		. 34
ł	Phi	· • • •				.02
i i	Sign	ificance	.02	Sigi	nificance	• 0 4
1					,	
ł						• 

-

ĺ,

Proportional		Algor	ithmic St	rategy Or	ly	Al	gorithmic	Reasoning	strateg	^{cy}	
Reasoning Ability	0	1	2	3	Total	0		2	3	Total	
	10	6	11	6	33	20	6	6	1	33	•
	30.3	18.2	33.3	18.2	51.6	60.6	/18.2	18.2	3.0	51.6	
Low	37.0	60.0	52.4	100.0	(37.3)	66.7	/ 60.0	37.5	12.5	(26.5)	
	15.6	9.4	17.2	9.4	•	31.3	9,64	9.4	1.6		
	17	4	10	0	31	10	4	10	7	31	
	54.8	12.9	32.3	0	48.4	32.3	12.9	32.3	22.6	48.4	
High	63.0	40.0	47.6	Ō	(27.4)	33.3	40.0	62.5	87.5	(38.9)	
	26.6	6.3	15.6	0		15.6	6.3	15.6	10.9	-	-
	27	10	21	6	<i>*</i> 64	30	10	16	8	. 64	
Total	42.2	15.6	32.8	9.4	100.0	46.9	15.6	25.0	12.5	100.0	•
<b>^</b>		Mann-Whit		671			lann-Whitn		314		
•	1	Wilcoxon	Rank Sum			W	ilcoxon R	ank Sum W			
		Z Significa		2.28 · .02		4	Significan		-2.84		

**1**.

#### Interview Data Analyses: Gas Laws - Total Proportional Reasoning Ability

273

FRIC

--- 1 .

•

233

Descentional	System	matic Ap	nroach	No	Answer (	
Proportional Reasoning Ability	0	1	Total	0	1	Total
Low	14 45.2 73.7 21.2	17 54.8 36.2 25.8	31 47.0	24 77.4 41.4 36.4	7 22.6 87.5 10.6	31 47.0
High	5 14.3 26.3 7.6	30 <b>85.</b> 7 6 <b>3.</b> 8 45.5	35 53.0	34 97.1 58.6 51.5	1 2.9 12.5 1.5	35 53.0
Total	19 23.8	47 7 <b>1</b> .2	66 100.0	58 87.9	8 12.1	66 . 100.0
	Chi So df Phi Signi	quare ficance ⁱ	6.21 1 .34 .01	' df Phi	Square ificance	*4.29 1 .30 .04

Interview Data Analyses: Stoichiometry - Problem 1 Proportional Reasoning Ability





ł

						<u></u>	
Proportional		ithmic Re Strategy		Com	ments Al	o <mark>out So</mark> 1	
Reasoning Ability	0	1	Total	0	1	2	Total
Low	93.5 61.7 43.9	2 6.5 10.5 3.0	31 47.0	8 25.8 24.2 12.1	21 67.7 67.7 31.8	2 6.5 100.0 3.0	31 47.0 (41.8)
High –	18 51.4 38.3 27.3	17 48.6 89.5 25.8	35 53.0	25 71.4 75.8 37.9	10 28.6 32.3 15.2	0 0 0 0	35 53.0 (26.1)
Total	47 71.2	19 23.8	66 100.0	33 50.0	31 47.0	2 3.0	66 100.0
、 " 、 "	df Phi	<b>S</b> quare	12.25 1 .46 .0005	Wilco Z	Whitney xon Ranl ficance		800 1296 3.77 .0002
	\$						

, i

Interview Data Analyses: Stoichiometry - Problem 1 Proportional Reasoning Ability



Table 137
-----------

Interview Data Analyses:	: Stoichiometry - Problem 1
Proportional	Reasoning Ability

ŧ

	•				- 1	al Error	Structura		Proprotional
				Total	3	2	1	0	Reasoning Ability
				31	18	3	8	2	
		,		47.0	58.1	9.7	25.8	v.5	
<b>*</b> ,					64.3	23.1	34.8	100.0	Low
۰ د	e		đ		27.3	4.5	12.1	3.0	
$\backslash$		•		35	10	10	1 5	0	
				53,0		10	15	C	
				5.7,0	28.6	28.6	42.9	0	
					35.7	76.9	65.2	0	High
		, •			15.2	15.2	22.7	0	
		•		66	28	13	23	2	Total
L				100.0	42.4	19.7	34.8	3.0	IVLAI
		,			9.98	uare.	Chi Sq		
					-				4
			, a 1		.02	icance	Signif		
	·		, م ا		3 .39		df Phi		



Table 138
-----------

Proportional	Svet	emmatic A	pproach	·Nonsv		ic Approach	Algorithmic Reasoning Strategy			
Reasoning Ability	0		Total	0	<u> </u>	Total	0		Total	
Low	15 48.4 75.0 22.7	16 51.6 34.8 24.2	31 47.0	22 .71.0 40.0 33.3	9 29.0 81.8 13.6	31 47.0	28 90.3 60.9 42.4	3 9.7 15.0 4.5	31 47.0	
High	5 · 14.3 25.0 7.6	30 85.7 65.2 45.5	35 53.0	33 94.3 50.0 50.0	2 5.7 18.2 3.0	35 53.0	18 51.4 39.1 27.3	17 48.6 85.0 25.8	<b>35</b> 53 <b>.0</b>	
Total	20 30.3	46 69.7	66 100.0	55 83.3	11 16.7	66 100.0	46 69.7 °	20 30.3	66 100.0⊥	
'n	df Phi	Square ificance	7.51 1 .37 .006	Chi So df Phi Signit	quare ficance	4.87 1 .31 .03	df Phi	Square hificance	10. <b>01</b> 1 .42 .002	

# Interview Data Analyses: Stoichiometry - Problem 2 Proportional Reasoning Ability

275 1.

Interview Data Analyses: Stoichiometry - Problem 2 Proportional Reasoning Ability

Proportional	Us Tr	se of Rar ial and l	Error			Comments Al	bout Solu	tion .
Reasoning Ability	0	1	Total		<u> </u>	1	2	Total
Fom	20 64.5 38.5 30.3	11 35.5 78.6 16.7	31 47.0		11 35.5 31.4 16.7	20 64.5 69.0 30.3	0 0 0 0	31 47.0 (38.6)
High	32 91.4 61.5 48.5	3 8.6 21.4 4.5	· 35 53.0	٠ ٩	24 68.6 68.6 36.4	9 25.7 31.0 13.6	2 5.7 100.0 3.0	35 53.0 (28.9)
Total	- 52 78.8	<b>14</b> 21.2	66 100.0	•	35 53.0	29 43.9	2 3.0	66 100.0
	Chi Sq df Phi Signif		5,61 1 .33 .02			Mann-Whitn Wilcoxon R Z Significán	ank Sum W	702 1198 2.34 .02

.

0

<u>Syste</u> 0 · 21 67.7 61.8	I 10 32.3	Total 31	0	<u> </u>	Strategy 1	Total
0 · 21 67.7	<u>1</u>	Total 31	<i>p</i>		1	Total
67.7				31	0	
<b>UI.O</b>	31.3	47.0		100.0 55.4	0 0 0	31 47.0
31.8 13	15.2 22	35 53.0		47.0 25 71.4	0 10 28.6	- 35 53.0
38.2 19.7	6 <b>8.8</b> 33.3			37.9	15.2	
34 51.5	32 48.5	66 100.0		84.8	15.2	100.0
df Phi		.00 1 .30 .03	٥	df Phi		8.33 1 .40 .004
	13 37.1 38.2 19.7 34 51.5 Chi Squ df Phi	13       22         37.1       62.9         38.2       68.8         19.7       33.3         34       32         51.5       48.5         Chi Square       5         df       5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 $22$ $35$ $25$ $37.1$ $62.9$ $53.0$ $71.4$ $38.2$ $68.8$ $44.6$ $19.7$ $33.3$ $37.9$ $34$ $32$ $66$ $56$ $51.5$ $48.5$ $100.0$ $84.8$ Chi Square $5.00$ Chi Square $df$ 1 $df$ Phi.30PhiSignificance.03Significance	31.8 $15.2$ $10.4$ $13$ $22$ $35$ $25$ $10$ $37.1$ $62.9$ $53.0$ $71.4$ $28.6$ $38.2$ $68.8$ $44.6$ $100.0$ $19.7$ $33.3$ $37.9$ $15.2$ $34$ $32$ $66$ $56$ $10$ $51.5$ $48.5$ $100.0$ $84.8$ $15.2$ Chi Square $5.00$ Chi Squaredfdf1dfPhiPhi.30Phi

?

Interview Data Analyses: Stoichiometry - Problem 3 Proportional Reasoning Ability

2311



ø

Proportional	Commen	ts About S	Solution '	e	Structural Error - 3							
Reasoning Ability	0	1	Total -	0	1	2	3	Total				
1	, ra		31	22	0	4	• 5	31				
- -	5a 16.1 ^b	20	47.0	71.0	· 0	12.9	16.1	47.0				
· · ·	10.10	83.9	(39.7) ^e	57.9	0	40.0	71.4					
Low	21.7C	60.5	(39.7)*		-		7.6					
	⊼.6d	39.4	•	33.3	0	6.1	7.0					
	18	17	35	16	1	6	2	35				
ł.		48.6	53.0	45.7	51.4	- 17.1	5.7	53.0				
· · · ·	51.4			42.1	100.0	60.0	28.6					
High	78.3	39.5	(28.0)				' 3.0	•				
.•	27.3	25.8	, ,	24.2	. 16.7	9.1	3.0	•				
Total	23	43	66	38	11	10	7	66				
10001	34.8	65.2	100.0	57.6	16.7	15.2	10.6 .	100.0				
	Mann-W	itney U	734		Chi Sq	uare	·13.44					
		on Rank Su			df	•	3					
	Z	II Natin Su	2.98		v		.45f	•				
				`	•	icance	.004					
	Signifi	cance	.003		STRULT	Traite	••••					

#### Interview Data Analyses: Stoichiometry - Problem 3 "Proportional Reasoning Ability

Table 141

ŝ

^aCount ^bRow percentage ^cColumn percentage ^dTotal percentage ^gMean rank ^fCramer's V

281

•



1

Interview Data Analys	es: Sto:	ichiometry	- Total
Proportional R	easoning	Ability	

roportional		Systemmat	ic Appr	oach		<b>.</b> •	Algorithmi	ic keasor	ning Strat	egy
easoning Abi	lity $\overline{0}$	1	2	3	Total 🕈	<u>· 0</u>	1	2	3	Total
Low	12 38.7 80.0	12.9 50.0	6 19.4 50.0	9 29.0 29.0	31 47.0 (26.1)	28 90.3 62.2	1 3.2 33.3	6.5 25.0	000000000000000000000000000000000000000	31 '47.0 (25.7)
,	18.2	, 6.1 , 4	9.1	13.6 22	35	42.4	1.5 2	3.0 6	0 10 28.6	, 35 53.0
High	8.6 20.0 4.5	50.0	17.1 50.0 9.1	62.9 71.0 33.3	53.0 (40.0)	37.8 25.8	5.7 66.7 3.0	17.1 75.0 9.1	28.0 100.0 15.2	(40 <b>.4</b> )
Total	15 22.7	8 12.1 ~	12 18.2	31 47.0	66 100.0	45 6 <b>8.</b> 2	3 4.5	8 12.1	10 15.2	<b>66</b> 100 <b>.0</b>
	W: Z	ann-Whitney ilcoxon Ran ignificance	k Sum W	314 810 -3.13 .002			Mann-Wh Wilcoxor Z Signifi	n Rank Su	30( um W 796 -3.78 .0002	5 8

, 252



Χ.

Interview Dat	a Analyses:	Stoichiometry	r - Total
		ning Ability	

Proportional	u.	Use	of Ran	lom Tri	al <b>a</b> nd I	Error			C	omments	About S	olution	<u>``</u>
Reasoning Abili	ty –	0	1	2	3	Total	•	0	1	2	3	4	Total
······						31			9	5،	16	1	31
· · · · · · · · · · · · · · · · · · ·		17	5	4	5			0 0	29.0	16.1	51.6	3.2	47.0
		.8	16.1	12.9	16.1	47.0		0	45.0	41.7	76.2	100.0	(43.3)
' Low		.5	45.5	66.7	83.3	(37.6)		0	43.0 13 <b>.</b> 6	7.6	24.2	1.5	(,,,,,,,
•	25	.8	7.6	6.1	7.6			U	13.0	/.0	67.6	1.5	•
		26	6	2	1	35		12	11	7	5	0	35
		.3	17.1	5.7	2.9	53.0		34.3	31.4	20.0	14.3	0	5 <b>3.0</b>
Ui ab		•5	54.5	33.3	16.7	(29.8)		100.0	55:0	58.3	23.8	0	(24.9)
High		.4	9,1	30	1.5	(23.0)		18.2	16.7	10.6	7.6	Ō	. "
· ·	59	.4	3.1	J.U	1.5			10.0	1017			-	
Tatal		43	11	6	ს	66		12	20	12	21	` 1	- 66
Total		.2	16.7	9.1	9.1	100.0		18.2	30.3	18.2	31.8	• 1.5	100.0
	05	• =	10.7		2.12	*****		•	••••	-			
• \		Мат	un-Whitn	evl	670	0			Mann -	Whitney	U	845	
			lcoxon R					•	Wilco	xon Ranl	k Sum W	1341	0
		Z			1.9				Z	•		4.03	
	$\mathbf{i}$		nifican	C A	.0.					ficance		.0001	
-		515	snirican		• • •								
					-								
		$\mathbf{i}$											
		`	$\overline{}$						•				
						•	•						
	•			-				4					•
	•										•	•	
		• `		~		د			•				•
												- ,	
				•									
					$\mathbf{X}$							•	
•			ĸ		$\sim$								
r			4										
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
						<u>حم</u>	U			•			
0							、						

Table	144
	TLL

Proportional		Pre	oblems Co	rrect			Questions Correct					
Reasoning Ability	0	<u> </u>	2	. 3	Total	2	3	4	Total			
	. 22	9	, 0	0	31	· 5	· 12	14	31			
	71.0	29.0	Ō	Ō	47.0	16.1	38.7	45.2	47.0			
Low 1	55.0	56.3	Ō	Ò	(28.6)	50.0	75.0	35.0	· (29.0)			
•	33.3	13.6	0	Ũ		7.6	18.2	21.2				
•	18	7	·6	4	35	5	4	26	、 35 -			
ъ	51.4	20.0	17.1	11.4	53.0	14.3	11.4	74.3	53.0			
High	45.0	43.8	100.0	100.0	(37.8)	50.0	25.0	65.0	(37.4)			
	27.3	10.6	9.1	6.1	(7.6	6.1	39.4				
Total	40	16	6	4	66	· 10	16	40	66			
	60.6	24.2	9.1	6.1	100.0	15.2	24.2	60.6	, 100.0			
		nn-Whitne		391			Whitney U)4 -			
	Wi:	Icoxon Ra	ank Sum I	887 -2,22		Wilco	oxon Rank Sum W 900 -2.03					
	Sig	gnificano	ce	.03		2 Signi	ficance)4			

Interview Data Analyses: Stoichiometry - Total Proportional Reasoning Ability

Interview Data Analyses: Molarity - Problem 1 · Proportional Reasoning Ability

Proportional	Algoi	ithmic Re Strategy		•	Use of Random Trial and Error				
Reasoning Ability	0	.1	Total		0	1	Total		
Low	28 96.6 63.6 43.8	- 1 3.4 5.0 1.6	29 45.3	· · ·	22 75.9 39.3 34.4	7 24.1 87.5 10.9	29 45.3	•	
High	16 45.7 36.4 25.0	19 54.3 95.0 29.7	35 54.7	•	34 97.1 60.7 53.1	1 2.9 12.5 1.6	35 54.7	•	
Total	44° 68.8	20 31.3	64 100.0		56 87.5	8 12.5	64 100.0		
	df Phi	Square ificance	16.79 1 .54 <.0001		df Phi	Square ificance	4.77 1 .32 .Q3		

Proportional				Structu	ral Erro	r <u>1 – </u> †	4			
Reasoning Ability	0	1	3	4	6	7	. 8	9	Total	
	3	• 7	. 4	· 1	1	0	5	8	29°	
	10.3	24.1	13.8	^o 3.4	3.4	Õ	17.2	27.6	45 <u>/</u> 3	
Low	42.9	87.5	100.0	100.0	· 50.Ø	Õ	62.5	25.8		
	4.7	10.9	6.3	1.6	1.6	Ō	7.8	12.5	•	,
·									۰ په ۲	
	' 4	1	0	0	1	3	. 3	23	35	
	11.4	2.9	΄ Ο	0	• 2.9	8,6	8.6	05.7	54.7	s.
High	57.1,	12.5	0	0	50.0	100.0	37.5	74.2	•	
-	6.3	-1.6	0	0	1.6	4.7	4.7	35.9		,
т. 1	7	0	4	1	2	3	. 8	31	64	
Total	10.9	8 12.5	6.3	1.6	3.1	4.7	12.5	48.4	100.0	
	10.3	12.3	0.5	1.0	J.1			····,		
	-			Chi Sq	uare	20.01		,		
,				— df		7	· ·	1	1	
	-			٧′.		.56				
r.				Signif	icance	.006	•			

Interview Data Analyses: Molarity - Problem 1 Proportional Reasoning Ability

· · .

28.7

T-L	10	147	
Tab	Te	14/	

<i>l</i> :								· · · · · · · · · · · · · · · · · · ·
Proportional	· · · ·	·		tural Erro 6	<u>r - 2</u>	8	9	Total
Reasoning Ability	0	1	2	0		······		
Low	6 20.7 60.0	0 0 0	5 17.2 71.4	12 41.4 85.7	2 6.9 50.0	3 10.3 11.5	1 3.4 100.0	29 45.3
1.0W ,	9.4	0	7.8	- 18.8 . j . 2	3. 1 2	4.7 23	1.6 ′0	35
Higu	4 11.4 40.0 6.3	5.7 100.0 3.1	5.7 28.6 3.1	5.7 1473 3.1	5.7 50.0 3.1	65.7 88.5 35.9	0 0 0	54.7
Total	• 10 15.6	2 3.1	7 · 10.9	14 21.9	4 . 6.3	26 40.6	1 1.6	64 100.0
•	67 , , , , , , , , , , , , , , , , , , ,	`.	df V	i Squar e gnificance	· 26.89 6 .65 .0002		•	• / •
			1	· · ·	•		€	·
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			. * 1. *	·	•	-	<i>.</i> ,
• • •	•			, ,	•	,	, ,	•••
•*	1 A		· [°] 2	87 - /	•			•

Interview Data Analyses: Molarity - Problem 1 Proportional Reasoning Ability

ERIC Full Text Provided by ERIC

/	Proportional Reason	ning Ability	o
Proportional	Algorithmic Reasoning Strategy		
Proportional Reasoning Ability	0 1 Total		
' Low	27 2 29 93.1 6.9 45.3 56.3 12.5 42.2 3.1	۳۵۵ / ! *د	a -
High	21 14 35 60.0 40.0 54.7 43.8 87.5 32.8 21.9	*	•
Total	48 16 64 75.0 25.0 100.0	¢	·
· · · · · · · · · · · · · · · · · · ·	Chi Square 7.59 df 1 Phi .38 Significance .006		
	;	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	293		1
			ن ب ۲

Interview Data Analyses: Molarity - Problem 2 Proportional Reasoning Ability

Full Foxt Provided by EFIC

• Proportional	Rei	reading/Sta	ating Pro	blem	Algori	thmic Rea Strategy	•	Conmen	ts About	Solution	بر بر
Reasoning Abilit	v = 0	1	2	Total	0		Total	0	1	Total	
Low	14 48.3 58.3 21.9	14 48.3 42.4 21.9	1 3.4 14.3 1.6	29 45.3 (27.9)	25 89.7 54.2 40.6	3 10.3 18.8 4 7	29 45 .3	10 34.5 32.3 15.6	19 65.5 57.6 29.7	29 45.3 (37.0)	Ť
- High	10 28.0 41.7 15.6	19 54.3 57.6 29.7	6 17.1 85.7 9.4	35 54.7 (36.3)	22 62.9 45.8 34.4	13 37.1 81.3 20.3	35 54.7	21 60.0 67.7 32.8	14 40.0 42.4 21.9	35 54.7 (28.8)	
Total	24 37.5	33 - 51.0	7 10.9	64 100.0	48 ⁻ 75.0	16 25.0	64 100.0	31 - 48.4	33 51.6	64 100.0	
• •	Wil Z	n-Whitney toxon Rank nificance	Sum W 8 -1⊾.	575 510 99 05	df Phi	Square ificance	4.73 1 .31 .03	Mann-Wi Wilcoxo Z Signif:	nitney U on Rank Su icance	637 m W 1072 2.02 .04	,

• •

Interview Data Analyses: Molarity - Problem 3 Proportional Reasoning Ability

248

280 l

Tab	1e	150	
-----	-----------	-----	--

Proportional			Structur	al Error	- 2			Struct	ural Err	or - 3	· · · · · · · · · · · · · · · · · · ·	
Reasoning Abil	ity 0	1	2	3	4	Total	0	1	2	3	Total	· ·
	12	2	. 4	7	4	· 29	16	0	7	۰ 6	. 29	
c	12 . 41.4	6.9	13.8	24.1	13.8	45.3	55.2	Õ	24.1	20.7	45.3	
	66.7	15.4	<i>⊭</i> 26.7	53.8	80.0		45.7	0	87.5	33.3		
Low	18.8	3.1	6.3	10.9	6.3	,	25.0	Õ	10.9	9.4		
	6	11	11	6	1	→ 35	19	3	1	12	35	, ,
	6 17.1	í. 31.4	31.4	17.1	2.9	54.7	54.3	8.6	2.9	34.3	54.7	
High	33.3	84.6	73.3	46.2	20.0		54.3	100.0	12.5	66.7	_	
indan °	9.4	17.2	17.2	9.4	1.6		29.7	4.7	1.6	18.8		
Total	18	13	15	13	. 5	64	35	3	8	18	64	
lotai	28.1	20.3	23.4	20.3	7.8	100.0	54.7	4.7	12:5	28.1	100.0 -	•
		Chi Sc	uare	12.93				Chi S	quare .	9.28	•	• .
		df		4				df	•	3		
		df V		.45				V		. 38		
,		Signi	ficance	.01		•		Signi	ficance	.03		
		•		ι.								x.
		•										

٠,

Interview Data Analyses: Molarity - Problem 3 Proportional Reasoning Ability

ś

249

¥

'n.

0

Full Text Provided by ERIC

293

Table 151

Interview Dat	a Analyses:	Molarity	- Total
Propor	tional Reas	soning Abili	ity

Proportional		Nonsyste	mmatic A	pproach			Algorithm	nic Strat	tegy Onl	y	8	
Reasoning Ab	ility 0	1	2	3	Total	~ 0	1	2		Total		
Low	17 58.6 37.8 26.6	7 24.1 58.3 10.9	3 10.3 60.0 4.7	. 2 .6.9 100.0 3.1	29 45.3 (36.5)	6 20.7 33.3 '9,4	7 24.1 35.0 10.9	11 37.9 55.0 17.2	5 17.2 83.3 7.8	29 45.3 (37.8)	45	
High	28 80.0 62.2 43.8	5 14.3 41.7 7.8	2 5.7 40.0 3.1	0 0 0 0	35 54.7 (29.2)	12 34.3 66.7 18.8	13 37.1 ú5.0 20.3	9 25.7 45.0 14.1	1 2.9 16.7 1.6	35 54.7 (28.1)	· · · ·	
Total	45 70.3	· 12 18.8	5 7.8	2 3.1	64 100.0	18 28.1	20 31.3	20 31.3	6 9.4	64 100.0		
	• . .)	Wilcox Z	Mitney U kon Rank ficanc e) 62 Sum W 105 1.9 .0	8 5		Mann-W Wilcox Z Signif	hitney U on Rank icanc e	Sum W	662 · 1097 2.18 .03	•	*
		%	¢				•	<u>S</u>	\sim			

250

•

٩

294

i

Table	152
-------	-----

ť,

Interview Data Analyses: Molarity - Total
Proportional Reasoning Ability
¢ ^t

			gorithmic		a Strateg		U	ise of Ra	ndom Tri	al and E	rror
Proportional Reasoning Ab	ility			2	3	Total °	0	1	2	3	Total
										· ·	
		25	3	0	1	29	16	8	3	° 2	29
	•	86.2	10.3	0	3.4	45.3	55.2	27.6	10.3	6.9	45.3
Low		67.6	· 27.3	Õ	11.1	(22.9)	36.4	57.1	75.0	100.0	(37 .3)
TOM	• .	39.1	4.7	Ŭ,	1.6	()4	25.0	12.5	4.7	3.1	0
	•	12	8	7	8	35	28	6	1	0	35
•		34.3	22.9	20.0	22.9	54.7	80.0	17.1	2.9	0	54.7
High		32.4	72.7	100.0	88.9	¥40.5)	63.6	42.9	25.0	0	(28.6)
тцян		18.8	12.5	10.9	12.5	. •	43.8	9.4	1.6.	0	e
	•	37	11	7	9	64	44	14	4	۰ 2	64
Total		57.8	17.2	10.9	14.1	100.0	68.8	21.9	6.3	3.1	100 `.0
	Ð		Mann-Whit		229 nW 664			ann-Whitn ilcoxon F		645 W 1080	· •
			Wilcoxon	Kank Sub		•	7			2.28	
ų		ø	2 Significa	ance	-4.20 <.0001		S	ignificar	nce	.02	

А,

Interview	Data	Analy	yses:	Mola	rity	-	Total
Pro	porti	onal	Reasor	ning	Abili	ty	

Proportional .	Disrea	gards Ind	Eormatio	n Given		Comments	s About Sol	ution		
Reasoning Ability	0	1	2	Total	0	1 .	2	3	Total	<u> </u>
Low	 ✓ 20 69.0 38.5 31.3 	7 [°] 24.1 70.0 10.9	2 6.9 100.0 3.1	29 45.3 (36.5)	5 17.2 27.8 7.8	11 37.9 40.7 17.2	10 34.5 71.4 15.6	10.3 60.0 4.7	29 45.3 (38.3)	
High	32 91.4 61.5 50.0	3 8.6 30.0 4.7	0 0 0 0	35 54.7 (29.2)	13 37.1 72.2 20.3	16 45.7 59.3 25.0	4 11.4 28.6 6.3	2 5.7 40.0 3.1	35 54.7 ™ (27.7)	
Total	52 81.3	10 15.6	2 3.1	64 100.0	18 28.1	27 42.2	14 . 21.9	5 7.8	64 100.0	`, •
•	Wilco Z	-Whitney oxon Rani ificance	k Sum W	624 1059 2.33 .02	بہ •	Mann-Wh Wilcoxo Z Signific	n Rank Sum	675 W1110 2.40 .02	-	

S

297

٢

296

Full Text Provided by ERIC

•

•

.

Interview	Data Anal	.yses: M	olarity -	Total '	
Pro	oportional	Reasoni	ing Ability	•	
		ر			

roportion	าลไ		Proble	ems Corr	ect	-	_	Quest	ions Cor	rect	•
easoning	Ability	0	1	2	3	Total	0	1	2	3	Total
*	/	26	• 2	1	0	29	17 5	17	5 17.2	2 6.9	29. 45,3
Low	,	89. 7 66.7	6.9 13.3	3.4 12.5	0 0	45.3 (23.2)	17.2 83.3	58.6 68 U	22.7	18.2 3.1	(23.1)
		40.6	3.1	1.6	- 0		. 7.8	26.6			c
	•	13	13	7 20.0	2 5.7	35 54.7	1 2.9	8 22.9	17 48.6	9 25.7	
High	3	37.1 33.3 20.3	37.1 86.7 20.3	87.5 10.9	100.Q 3.1	(40.2)	16.7 1.6	32.0 12.5	77.3 26. 9 *	81.8	(40.3)
Total		· 39 60.9	1 5 23.4	- 8 12.5	2 3.1	.64 100.0	6 9.4	25 39.1	22 • 34.4	11 17.2	64 100 .0
-	•	· Wi Z	nn-Whitney lcoxon Ran lgnificance	uk Suan W	237 672 -4.18 <.0001	-		Mann-Whi Wilcoxon Z Signific	Rank Su	23 uan W 67 -3.8 .000	71 37
•	-			a - 2		L	·	`	÷		<u> </u>

295

. •

Tabl	e 15	55
------	------	----

٦.

Interview Data Analyses:	Molarity Total
Proportional Reaso	ning Ability

	• •	•					£	· •	
	Proportional	پ 	Questions	Correct W		rompting			
	Reasoning Ability	· 0	1	Z,	3.	4	× 5	Total	
		. 3	6:	. 13	5	· 2	0	- 29	. ·
	, · ·	10.3	20.7	44.8	17.2	6.9	0	45.3	•
d ;	Low t	100.0	85.7	52.0	^{•.} 31.5	25.0	0	. (23.3)	
•	* *	· 4.7	9.4	20.3	7.8	3.1	0		
۰.	· · · · · ·	0	1	12	11	. 6	5	* 35	
	*	··· () .	2.9	34.3 [.]	31.4	17.1	14.3	54.7 -	
	High	n n	14.3	48.0\+	68.8	75.0	100.0	(40.1)	
1		Ō	1.6		17.2	9.4	7.8		-
	Total	. 3	7	25	• 16 ⁴	. 8	5	64	
		4.7	. 10.9	39.1	25.0	12.5	7.8	100.0'	
	* • · ·		•	Mann-Whitn	ley U	240	-	· •	•
				Wilcoxon R	lank Sum				
	•			Z		-3.75		•	• •
	م ھ			Significan	ce	. 0002	• '		• •
	-		Ŧ	•	•	•			

÷ť

299

ł

all analyses (Tables 136, 138, 140, 142), and molerity, all analyses (Tables 145, 148, 149, 152). Students with high proportional reasoning ability used algorithmic reasoning stratgies more frequently than low proportional reasoning students in solving problems.

Rardom trial and error. Moles, total (Table 127), stoichiometry, problem 2, total (Tables 139, 143), and molarity, problem 1, total (Tables 145, 152). Low proportional reasoning students made a greater use of this strategy.

Disregards what is given in problem. Molarity, total (Table 153). Low proportional reasoning students more frequently didthis.

<u>Comments about solution</u>. Moles, problems 1, 3, total (Tables 123, 125, 128), gas laws, problem 1, (Table 131), stoichiometry, all problems, total (Tables 136, 139, 141, 143), and molarity, problem 3, total (Tables 149, 153). Low proportional reasoning students made comments about the solution more, frequently.

Problems correct. Analyzed only for totals and significant for moles (Table 128), stoichiometry (Table 144), and molarity (Table 154). High proportional reasoning students got the problems correct more frequently.

Questions correct. Analyzed only for totals and significant for moles (Table 129), stoichiometry (Table 144), and molarity (Table 154). High proportional reasoning students got more questions correct.

Questions without prompting correct. Analyzed only for totals and significant for moles (Table 130), and molarity (Table 155). High proportional reasoning students answered questions correctly without prompting more frequently.

Structural errors. Structural errors are analyzed according to each chemistry unit.

1. Stoichiometry 1 - 1, Table 137. Students with high proportional reasoning ability more frequently remembered to balance the equation

255---

SUU

in solving a simple stoichiometry problem.

2. Stoichiometry 3 - 3, Table 141. A greater number of high proportional reasoning students attempted to solve the proplems than low proportional reasoning students.

3. Molarity 1 - 1, Table 146. A greater number of high proportional reasoning students calculated and used molecular weights correctly in solving a simple molarity problem than low proportional reasoning students.

4. Molarity 1 - 2, Table 147. A greater number of high proportional reasoning students used the definition of molarity and made mL to L changes correctly than low proportional reasoning ability students.

5. Molarity 3 - 2, Table 150. A greater proportion of high proportional reasoning students realize that an equation must be used and use the balanced equation correctly when solving stoichiometry - molarity problems than low proportional reasoning stu ents.

Molarity 3 - 3, Table 150. More high proprotional reasoning students used the definition of molarity correctly in solving a complex molarity problem than low proportional reasoning students.
 Hypothesis 3

There are no significant differences in chemistry problem solving strategies used by students considered successful problem solvers versus unsuccessful ones.

Three different methods were used to judge whether students were considered successful or unsuccessful. Method one was based on dividing the group of students interviewed for each part approximately in half according to their scores on the delayed posttest. Method two divided each group into approximately three equal parts based on this same test. Method three divided the group into two parts based on students combined delayed and immediate posttest scores. Because all three methods produced similar results, only method two is presented here. Table 156 lists the characteristics of the groups,

Table 157 gives a summary of the findings and Tables 158-192 present more detail for analyses that produced significant findings.

Reading/organizing. Moles, problem 1, total (Tables 158, 164). Results are not definitive. Students of middle and high success tended to read and organize more. No significant differences in three other units.

<u>Mneumonics</u>. Moles, problem 1, 2, total (Tables 158, 160,165) and stoichiometry, problem 1 (Table 167). Successful students used mneumonic notation more frequently.

Systemmatic production. Moles, all problems (Tables 158, 160, 162, 165), gas laws, total (Table 174), and stoichiometry, problem 1, 2, total (Tables 176, 179, 183). Successful students used systemmatic approaches.

Arithmetic approach. Moles, total (Table 166), stoichiometry, problems 1, 2, total (Tables 176, 179,183), and rolarity problem 3 (Table 189). Successful students used an arithmetic approach.

Nonsystemmatic approach. Moles, problems 1, 3, total. (Tables 159, 162, 166), stoichiometry, problems 1, 2, tota' (Tables 177, 179, 184), and molarity, problem 3, total (Tables 189, In general, unsuccessful students were nonsystemmatic in their approach to problem solving.

No answer given. Moles, problems 2, 3, total (Tables 160, 162, 167), and Stoichiometry, problem 1 (Table 177). This was more prevalent among unsuccessful students.

Algorithmic/reasoning strategy. Moles, all problems (Tables 159, 161, 163, 167), gas laws, all problems (Tables 171, 172, 173, 174), stoichiometry, all problems (Tables 178, 181, 182, 184), and molarity, problem 3 (Table 189).

Random trial and error. Moles, problem 3, total, (Tables 163,168), and molarity, problem 2, total (Tables 188, 191). This strategy was used more by

302

Distribution of Students According

to Scores on Delayed Posttest

•

		Low		М	liddle			High			
Unit '	Range	X	N	Range	X	N	Range	·X ·	N		
Moles	1-5	3.8	20	6-8	7.4	22	9-10	9.6	32		
Gas Laws	1-5	3.8	19	6-8 [·]	7.0	25	9-10	9.8	20		
Stoichiometry	1-5	3.1	21	6-8	7.2	24	9-10	9.4	21		
Molariţy	2-5	3.9	15	6-7	6.7	24	· 8-1 0	8.8	16		
-									۰ <u> </u>		

		÷	Moles			(ias	Laws				hiomet	ry	-		arity	
Protocol Caregories	- pla	p2b	- p3C	Td	PÌ	P2	P3	Ť	P1	P2	P3 ·	Ť	P1	P2	P3	Ť
Reading/Organizing	11.04 ^e .004 f	2		7.17 .03												
Rereads or Stating									•							
Mneumonics	9.83 .007	6.19 .05		10.47 .005					5.85 .05		**					
Production		.05	•								*					
Systemmatic	11.21 .004	12.15 .002	10.5/ .005	17.25				7.57 .02	12.78 .002	9.83 .007		9.44 .009				
Approach Taught			•									•				
Arithmetic			•	7.12 .03					7,62 .02	6.46 .04		6.95 .03			6.92 .03	
Nonsystemmatic	6.20 .05		9.44 .009	12.80 .002				•	6.64 04	6.99 .03		6.30 .04			6.08 .05	6.61 .04
No Answer 💡		11.42 .003	6.20 .05	7.82					6.77 .03							
<u>Strategy</u> Algorithmic																
Alg/Reasoning	9.06 .01	15:04 0005	, 16.84 .0002	16.09 .0003	8.17 .02	9.58 .008		15.37 .0005	16.49 .0003	19.30 .0001	12.61	21.55			11.28 .0 04	•
Random T & E			9.44	12.10							•			6.11 .05		6.44 .04
Structural Error			.009	.002											مۇر.	
Misinterprets															-	
Disregards given																
Disregards gen																
Misapplies																
Not generate													e .			

Table 157 Summary of Significant Findings: High, Middle or Low Success on Tests -

•

	_		Moles				Laws				chiomet				arity	
rotocol Categories	P1	P2	P3	T	P1	P2	P3	Τ	P1	P2	P3	T	P1	P2	P3	T
Evaluation													يکر.			
Comments about Solution	11.43 .003	-8.10 .02	10.31 .006	16.32 .000 3	<i>,</i>				15.49 .004	8. 35 .02		14.13 .0009			•	
Executive Errors	-					6.10 .05				•	11.42 .003	10.78 .005	-			
Problems Correct	, X ¹	X	- X	15.44 .0004	x	x	X	8.14 .02	x	x	x	12 .43 .002	x	X	X	6.46 .04
Questions Correct	x	X	x	20.68 <.0001	x	x	x		x	x	x	9.11 .01	X	x	x	
Question W/o Prompting	x	x	x	22.11 < .0001	x	X	X		. ×	x	x	6.19 .05	x	x	X	
Stfuctural Errors								•. \					-			
Section ^h l • 1	x	X	x	X		X	x	x	į .	X	X	X		X	X	X
Section 1 - 2	x	x	x	X		x	x	x	18.45 .00 5	X	x	x		X	x	x
Section 2 - 1	x	x	X	x	x		x	x	x		X	x	x		X	X
Section 2 • 2	x	x	x	x	x		x	x	X	12.68 .05	x	x	x		x	X
Section 3 - 1	x	x	x	x	x	x		x	x	x		x	x	x		x
Section 3 - 2	x	x	x	X	x	x	28.53 .01	x	x	x		x	x	x	22.00 .005	x
Section 3 - 3	x	x	x	x	x	x		x	x	X	~ 13. 54 .04	X	x	X	18.07 .006	x
*Category sum	·		^e Stati	stic	.				·			• • •				•
^a Problem 1			fproba	bilıty le	vel											
^b Problem 2			gsum o	f rereads	and re	states	subcateg	ori es								
^C Problem 3			hSecti	on on sup	plement	ary cod	ing shee	et								
d _{Sum} of Problems 1,	2 6 3	,	i _N ot π	waningful											307	

Table 157 (continued) Summary of Significant Findings: High, Middle or Low Success on lests

ERICION

260

£

Table 1	58
---------	----

c

· 						Mineranov	Use of nics Nota	ation	System	mmatic Appr	roach
access on		Reading,	/organiz	ing Skill 3	Total		<u> </u>	Total	0	1	Total
ests	0	<u> </u>	6	<u> </u>	10001	<u> </u>					
	9	-	n	0	20	17	3	20	8	12	20
	15^{a}_{b}	5	2		27.0	85.0	15.0	27.0	40.0	60.0	27 .0
	65.0 ^b	25.0	10.0	0	(27.6) ^e	39.5	9.7	(27.5)	57.1	20.0	
Low	44.8 ^C	16.1	16 7	0	(27.0) -	JZ.J JZ.J		(2)	10.8	16.2	
• •	17.6 ^d	6.8	2.7	0		23.0	4.1		* ~ ••		
•		-	-		22	17	9	22	5	17	2 2
	4	10	6	2	22	13		29.7	22.7	77.3	29.7
	18.2	-45.5	27.3	9.1	29.7	59.1	40.9	(37.1)	35.7	28.3	
Midd1e	13.8	32.3	50.0	100.0	(48.0)	30.2	29.0	(31.1)	6.8	23.0	
	5.4	13.5	8.1	2.7		17.6	12.2		0.0		
-			,				10	20	1	31	32.
	12	16	4	0	32	13	19	32	3.1	96.9	43.2
	37.5	50.0	12.5	0	43.2	40.6	59.4	43.2		51.7	
High	41.4	51.6	33.3	0	(36.4)	30.2	61.3	(44.0)	7.1	41.9	
	16.2	21.6	5.4	0		17.6	25.7		1.4	41.3	
• .		* -		►	7.4	A 7	- 31	74	14	60	74
Total	29	31	12	· 2	74	43 59 1	41.9	100.0	18.9	81.1	100.0
	39.2	41.9	16.2	2.7	100.0	58.1	41.9	100.0	£ U • J	~ • • •	
				1 04		KW (hi	i Square	9.83		Square	11.21
		Chi Şqua	are I.	1.04	·	df	- Symmery	2	df		2,
	df			6		Simit	ficance	.007	V	•	.39f
	Sig	mificanc	ce	.004		OTRUT.	COMMANY		Sign	nificance	.004

Interview Data Analyses: Moles - Problem 1 High, Middle°or Low Success on Tests

aCount

. .

bRow percentage Column percentage dTotal percentage Mean rank furamer's V

390

Ŭ

•j

Interview Data Analyses: Moles - Problem 1 High, Middle or Low Success on Tests

Success on	Nonsys	tennatio	Approach		thmic Re trategy	easoning		Comments	About	Solution	
Tests	· <u>· · · · · · · · · · · · · · · · · · </u>	1	Total	0	1	Tctal	0	1	2	3	Total
Low	15 • 75.0 22.7	5 25.0 62.5	20 27.0	17 85.0 [,] 29.3	3 15.0 18.8	- 20 27.0	10 50.0 18.9		3 15.0 100.0	0 0 0	20 27.0 (46.0)
	20.3	6.8		23.0	. 4.1		13.5	9.5	4.1	0	
Middle	20 90.9 30.3 27.0	2 9.1 25.0 2.7	22 29.7	21 95.5 36.2 28.4	1 4.5 6.3 1.4	22 29.7	14 63.6 26.4 18.9	7 31.8 41.2 9.5	0 0 0 0	1 4.5 100.0 1.4	22 29.7 (40.3
High	·31 96.9 47.0 41.9	1 3.1 12.5 1.4	32 43.2	20 62.5 34.5 27.0	12 37.5 75.0 16.2	32 43.2	29 90.6 54.7 39.2	3 9.4 17.6 4.1	0 0 0 0	0 0 0 0	<u>32</u> 43.2 (30 .3
Total	66 89.2	8 10.8	74 100.0	58 78.4	16 21.6	74 100.0	53 71.6	17 23.0	3 4.1	1 4.1	74 100.0
	Chi Sq df V Signif	uare icance	6.20 2 .29 .05	Chi Sq df V Signif	uare icance	9.06 2 .35 .01	×	df	i Squar ticance	6	

٠.

300

- ..

	Marchan	Use of onic Nota	tion	Syste	emmatic Ar	proach	No	Answer G	iven	
Success on Tests	<u>1-11 IC CAIN</u>	1	Total	0	1	Total	0		Total	
	i									
	14	6	20	9	11	20	16	4	20	
	70.0	30.0	27.0	45.0	55.0	27.0	80.0	20.0	27.0	
Low	38.9	15.8	(29.6)	64.3	18.3	•	22.9	100 .0		
100	18.9	8.1	(12.2	14.9		21.6	5.4		
	10.5	011		_						
	11	11	22	2	20	22	22	0	22	
	50.0	50.0	29.7	9.1	90.9	29.7	100.0	0	29.7	
Middle	30.6	28.9	(37.0)	14.3	33.3		31.4	0		
	14.9	14.9	(0)	2.7	27.0		29.7	0		
	14.0	1100		-			•			
	11	21	32	3	29	32	32	0	32 43.2	-
-	34.4	65.6	43.2	9.4	90.6	43.2	100.0	0	43.2	.
High	30.6	55.3	(42.8)	21.4	48.3		45.7	0		
nrgu	14.9	28.4	(+=)	4.1	39.2		43.2	0		
	7415	2011		-						
• Total	36	38	74	14	. 60	74	70	4	74	
IVIGI	48.6	51.4	100.0	18.9	81.1	100.0	94.6	5.4	100.0	
	40.0	510.								
	KW Ch	ni Square	6.19	Chi f	Square	12.15		quare	11.42	
•	df		2	df	•	2	df	•	2	
		ificance	.05	V		.4Ö	V	•	. 39	
			-	Sign	ificance	.002	Signi	ficance	.003	

Interview Data Analyses: Moles - Problem 2 High, Middle or Low Success on Tests

3111

Tal	ble	- 1ó	1
			_

٠.

Success on		thmic Re Strategy	asonmk	Ca	omments Ab		tion		
Tests	-0-	1	Total	0	1	2	Total		
<u> </u>	19	1	20	9,	10	1	20		
•		5.0	27.0	45. ⁰	50.0	5.0	27.0		
•	95.0		2/.0	18.0	50.0	25.0	(45.3)		
Low	38.8 25.7	4.0 1.4		12.2	13.5	1.4			-
	23.1.	1.7							
	14	6	22	14	6	2	22		
	16	° 27.3	29.7	63.6	27.3	9.1	29.7		
	72.7		29.7	28.0	30.0	50.0	(39.3)		
Middle	32.7	24.0		18.9	8.1	2.7			
	21.6	8.1		(10.5	0.1				
	14	10	77	27	· 4	1	32		
*	14	18	32	- 84.4.	12.5	3.1	43.2		
	43.8	56.3	43.2	54.0	20.0	25.0	(31.3)	٥	
High	28.6	72.0		36.5	5.4	1.4	()		
	18.9	24.3		30.3	5.4	1			
-	10	25	74	50	20	4	[^] 74		
, Total	49	25		67.6	27.0	5.4	100.0		- 1
	66.2	33.8	, 100.0	07.0	27.0				_
-	Ch: Ca		15.04	h	W Chi Squ	are 8.1	LŐ		_
	Chi Sq	luare	2		lf		4		
-	df V		.45	ç	 Significan	.ce)2		
		••••••		· · ·					
	Signii	icance	.0005						

Interview Data Analyses: Moles - Problem 2 High, Middle or Low Success on Tests

ŋ

Interview Data Analyses: Moles - Problem 3 High, Middle or Low Success on Tests

Success on	Svst	temmatic'	Approach	Nonsys	temmatic	c Approach		Answer G	
ſests	0.	1	Total	0	1	Total	0	1	Total
-	14	6	20	`11	9 ·	20	15	5	20
	70,0	-30.0	27.0	55.0	45.0	27.0	75.0	25.0	27.0
Low	46.7	13.6		19.0	56.3		22.7	62.5	
	18.9	8.1	•	14.9	12.2	-	20.3	6.8	
	- 8	14	22	18	4	22	20	2	22
	36.4	63.6	29.7	81.8	18.2	29.7	90.9	9.1	2 9 .7
Middle	26.7	31.8		31.0	25.0		30.3	25.0	
MIGUIE	10.8	18.9	- - 12	24.3	5.4		27.0	2.7	
•	8	24	32	29	3	32	31	1'	32
	25.0	75.0	43.2	90.6	9.4	43.2	96.9	3.1	43.2
Li ah	26.7	54.5		50.0	18.8		47.0	12.5 [.]	
High	10.8	32.4		39.2	4.1		41.9	1.4	° ,
Total	3 0	44	74	58	16	74	• 66	8	∍ 7 4
IOCAL	40.5	59.5	100.0	78.4	21.6	100.0	89.2	10.8	. 100.0
	Chi Squ	uare	10.57	Chi So	uare	9.44	Chi S	Square	6.20
			2	df		2	df		2
	df V		.38	v		. 36	v		.29
	Signif	icance	.005	Signi	ficance	.009	Signi	ificance	.05

ERIC Full Text Provided by ERIC.

•				1				· _		
Success of		thmic Re trategy	asoning	Random	Use of Trial a	nd Error		omnents Abc	ut Solu	tion
Tests	<u>, </u>	1	Total	0	1	Total	0	<u></u>	2 ;	Total
' low	20 100.0 37.0 27.0	0 -0 0 0	20 27.0	11 55.0 19.0 14.9	9 45.0 .56.3 12.2	20 27.0	6 30.0 14.0 8.1	13 65.0 44.8 17.6	1 5.0 50.0 1.4	20 27.0 (48.0)
G Middle	18 81.8 33.3 24.3	4 18.2 20.0 5.4	22 29.7	18 81.8 31.0 24.3	4 18.2 25.0 5.4	22 29.7	1; 59.1 30.2 17.6	8 36.4 27.6 10.8	1- 4.5 50.0 1.4	22 . 29.7 (37.4)
High	16 50.0 29.6 21.6	16 50.0+ 80.0 21.6	`32 43.2	29 - 90.6 50.0 39.2	3 9.4 18.8 4.1	32 43.2	24 75.0 55.8 32.4	8 25.0 27.6 10:8	0 0 0 0	32 43.2 (31.0)
Total	54 73.0	20 27.0	74 100.0	58 78.4	16 21.6	74 10 0.0	43 58.1	- 29 39.2	2 2.7	74 100.0
v	Chi Squa df V Sìgnific		16.84 2 .48 .0002	df V	Square	9.44 2 .36 .009		KW Chi Squ df Significa	~ ~	10.31 4 .006-

Interview Data Analyses: Moles - Problem 3 High, Middle or Low Success on Tests

Tal	ble	164

È	•	-		Rea	ding/Orga	nizing Sk	ills				•
Success on Tests		-0	1		3	4	5	7	Total.		
Low	Q ,	5 25.0 50.0	5 25.0 62.5	4 20.0 23.5 5.4	1 5.0 5.9 1.4	4 20.0 33.3 5.4	1 5.0 12.5 1.4	0 0 0 0	20 27.0 (27.7)		
Middle	×	6.8 0 0 0	6.8 2 9.1 25.0 2.7	5.4 6 27.3 35.3 8.1	4 18.2 23.5 5.4	6 27.3 50.0 8.1	4 18.2 50.0 5.4	0 0 0 0	22 29.7 (45.1)		
High	 I	5 15.6 50.0 6.8	1 3.1 12.5 1.4	7 21.9 41.2 9.5	12 37.5 70.6 16.2	2 6.3 16.7 2.7	3 9.4 37.5 4.1	2 6.3 100.0 2.7	32 43.2 (38.4)		1 7 8 7 7 7 7 7 8
Total		, 10 13.5	- 8 10.8	17 23.0	17 23.0	12 16.2	8 10.8	2.7	74 ∼ -100.0		•
, , , ,	•			di	V Çhi Squa E ignificano		17 12 03				. •
										.	
			•			Υ.	· ·				*

Tab	19	165

uccess o	n	Use of N	Ineumonia	Notation	1		System	atic App	roach	
ests	<u> </u>	1	2	3		0	1	2	3	Total
•						-	r	` 6	4	20
-	12	4	2	2	20	5	5	70.0	20.0	27.0
	60.0	20.0	10.0	10.0	27.0	25.0	25.0	30.0		
Low	48.0	26.7	14.3	10.0	(25.6)	71.4	62.5	28.6	10.5	(22.8)
~	16.2	5.4	2.7	2.7		6.8	6.8	8.1	5.4	
•	7	5	4	6	22	1	2	8	11	2 2
				27.3	29.7	4.5	9.1	36.4	50 0	29.7
	31.8	- 22.7	18.2	30.0	(37,9)	14.3	25.0	38.1	28.9	(38.4)
Middle	28.0	33.3	28.6		(37,3)	. 1.4	2.7	10.8	14.9	
	9.5	6.8	5.4	. 8.1	•	1.4	2.1	10.0		
	4	6	- 8 -	12	32	. 1	- 1	· 7	23	32
	6	6 10 ô		37.5	43.2	3.1	· 3.1	21.9	71.9	43.2
	4 18.8	18.8 405.0	25.0		(44.7)	14.3		33,3	60.5	(46.1)
High	24.0	40.0	57.1	60.0	(44./)	1.4	1.4	9.5	31.1	
	8.1	8.1	-10.8	16.2		- 1.4	1.4	5.5		
Total	25	15	14	20	74	7	8	´ 21	`` 38	74
iutai	, 33.8	20.3	18.9	27.0	100.0	§ 9.5	10.8	28.4	51.4	100 .0
•	,	•		• .		. 1	. KW Ch	i Square	17.25	
		KW Chi S	quare	10.47	-		df	L Oquure	6	
		df		6				ficance		-
		Signífic	ance	.005			Signi	Licance		

ť

Table 166

Success on		Arithm	etic App	roach	45	Nonsystemmatic Approach							
rests	0	1	2	3	Total	0	1	2	3	Total			
	7	6	5	2	20	8	7	• 3	2	20			
	35.0	30.0	25.0	10.0	27.0	40.0	35.0	15.0	10.0	27.0			
Low	30.4	60.0	27.8	8.7	(29.7)	15.4	53.8	50.0	66.7	(48.8)			
	9.5	8.1	6.8	2.7		10.8	9.5	4.1	2.7	·			
	9	2	5	6	22	16	4	2	0	22			
	40.9	9.1	22.7	27.3	29.7	72.7	18.2	9.1	0	29.7			
Midd1e	39.1	20.0	21.8	26.1	(34.3)	30.8	30.8	33.3	0	(36.2)			
	12.2	2.7	6.8	8.1	-	21.6	5.4	2.7	0				
~	7	2	8	15	32	28	2	1	1	32			
٥	21,9	6.3	25.0	46.9	43.2	87.5	6.3	3.1	3.1	43.2			
High	30.4	20.0	44.4	65.2	(44.6)	53.8	15.4	16.7	33.3	(31.3)			
	9.5	2.7	10.8	20.3		37.8	2.7	1.4	1.4	•			
Total	23	10	18	23	74	52	13	6	3	74			
•		13.5	24.3	31.1	100.0	70.3	17.6	8.1	4.1	100.0			
۲		KW Chi	Square	7.12	,		KW Ch	i Square	12.80				
•	• •	df	•	6			df	-	6				
			icance	.03				ficance	.002	ş			

310

.

Interview Data Analyses: Moles - Total High, Middle or Low Success on Tests

Success on	•	No A	nswer G	iven		Algorithmic Reasoning Strategy						
Tests	0	1	2	3	Total	0	1	2	3	Total		
					20	17	2	1	0	20		
	14	2	2	2	20	17		5.0	0 0	27.0		
× .	70.0	10.0	10.0	10.0	27.0	85.0	10.0		0	(27.4)		
Low	22.2	28.6	100.0	100.0	(43.6)	37.8	25.0	10.0	0	(2/1)		
	18.9	2.7	2.7	2.7		23.0	2.7	1.4	. 0			
	10	4	- 0	0	22	16	· 2	3	1	22		
	18	4		0	29.7	72.7	9.1	13.6	4.5	29.7		
	81.8	18.2	0	0	(38.4)	35.6	25.0	30.0	9.1	(32 .3)		
- Middle	28.6	57.1	0	0	(30.4)	21.6	2.7	4.1	1.4			
	24.3	5.4	0	U		21.0	L • /					
	31	. 1	0	0	32	12	4	6	10	32		
	96.9	3.1	Õ	Ō	43.2	37.5	12.5	18.8	31.3	4.3.2		
111 . 1-	49.2	14.3	Õ	0	(33.1)	26.7	50.0	60.0	90.9	(47.3)		
High		14.3	0	Õ	(001-)	16.2	5.4	8.1	13.5			
	41.9	1.4	0	U								
T 4 - 1	63	7	2	2	74	45	8	10	11	74		
Total	85.1	9.5	2 2.7	2 2.7	100.0	60.8	10.8	13.5	14.9	100.0		
	05.1	9.5	2 • I 2	, ,	10000				1 (00	•		
		KW Chi	Souare	7.82				ni Square	16.09			
				6			df		6	e		
		Signifi	cance	.02			Sign	ificance	.0003			
		df Signifi	cance					ificance	.0003			

1

ل

0	lise	of Randon	n Trial a	nd Erroi	c			Commen	ts Abou	t <u>Soluti</u>	on		
Success on Tests	030	1	2	3	Total	0	1	2	3	4	5	Total	
	8	7	3	2	20	4	3	4	7	2	0 0	20 27.0	
	40.0	35.0	15.0	10.0	27.0	20.0	15.0	20.0	35.0	10.0	0	(50.3)	
Low	15.7	50.0	60.0	50.0	(48.3)	12.9	15.8	50.0	53.8 9.5	100.0 2.7	0	(30.3)	
	10.8	9.5	4.1	2.7		5.4	4.1	5.4	9.5	2.7	0		
	1.5	c	2	0	22	7	7	3	4	0	1	22	
	15 68.2	5 22.7	9.1	0 0	29.7	31.8	31.8	13.6	18.2	0	4.5	29.7	
Midd le	29.4	35.7	40.0	Ő	(37.2)	22.6	36.8	37.5	30.8	0	100.0	(40.8)	
Midule	20.3	6.8	2.7	Õ	()	9.5	9.5	4.1	5.4	0	1.4		
	20.5	0.0					-		2	0	0	* 2	
	28	2	0	2	32	20	9	1	2	0	0 0	32 43.2	
	87.5 -	6.3	0	6.3	43.2	62.5	28.1	3.1	6.3	0 0	0	(27.3)	
High	54.9	14.3	0	50.0	(30.9)	64.5	47.4	12.5	15.4	0	0	(27.3)	
U	37.8	2.7	0	2.7		27.0	12.2	1.4	2.7	0	0		
T 1	-1	14	5	4	74	31	19	8	13	2	1	74	
Total	51 68.9	14 18.9	6.8	5.4	100.0	41.9	25.7	10.8	17.6	2.7	1.4	100.0	
	••••			12 10				KW Chi	Square	16.3	2		
		KN Chi	Square	12.10 6				df	oquare	10			
		df	icance	.002					icance	.000			
	ł	Signii	Italice	.001				0				-	•
													319

Interview Data Analyses: Moles - Total High, Middle or Low Success on Tests

31 3

ERIC Pruil Bext Provided by ERIC

1

271

Tab1	.c]	169

Success on		Prob	lems Cor	rect			Q	uestions	Correct		
Tests	0	1	2	3	Total	2	3	4	5	6	Total
•	12	5	3	0	20	2	6	6	4	2	20
	60.0	25.0	15.0		27.0	10.0	30.0	30.0	20.0	10.0	27.0
Low	44.4	31.3	13.0	,0 0	(25.5)	50.0	85.7	50.0	23.5	5.9	(20.0)
	16.2	6.8	4.1	0	()	2.7	8.1	8.1	5.4	2.7	
	9	6	6	1	22	0	0	4	7	11	22
	40.9	27.3	27.3	4.5	29.7	Ō	Ō	18.2	31.8	50.0	29.7
fidd1e	33.3	37.5	26.1	12.5	(33.6)	Ō	Ō	33.3	41.2	32.4	(42.1)
110010	12.2	8.1	8.1	1.4	(0010)	Ō	Ō	5.4	9.5	14.9	
•	6	5	14	7	32	2-	1	2	6	21	32
	18.8	15.6	43.8	21.9	43.2	6.3	3.1^{-1}	6.3	18.8	65.6	43.2
High	22.2	31.3	60.9	87.5	(47.7)	50.0	14.3	16.7	35.3	61.8	(45.2)
ngn	8.1	6.8	18.9	9.5	((,,,,))	2.7	1.4	2.7	8.1	28.4	
[otal	27	1 6	23	~ 8	74	4	7	12	17	34	74
IULAI	36.5	21.6	31.1	10.8	100.0	5.4	9.5	16.2	23.0	45.9	100.0
		KW Chi	Square	15.44				KW Chi	Square	20.68	
		df		6				df	-	8	
			Eicance	.0004					icance	<.0001	

Interview Data Analyses: Moles - Total High, Middle or Low Success on Tests

Success on			uesticns	Correct	WITHOUT	Promptin		Total
Tests	0	1	2	3	4	5	6	Total
	1	2	10	3	3	1	0	20
	5.0	10.0	50.0	15.0	15.0	5.0	0	27.0
Low	33.3	50.0	62.5	23.1	21.4	5.6	0	(22.4)
	1.4	2.7	13.5	4.1	4.1	1.4	0	
	1	0	5	8	4	4	0	22
	1 4.5	Õ	22.7	36.4	18.2	18.2	0	29.7
Middle	33.3	· 0	31.3	61.5	28.6	22.2	0	(33.3)
Michie	1.4	0	- 6.8	10.8	5.4	。 5.4	0	
	1	2	. 1	2	7	13	6	32
	3.1	6.3	3.1	6.3	21.9	40.6	18.8	43.2
High	33.3	50.0	6.3	15.4	50.0	72.2	100.0	(49.9)
nig.	1.4	2.7	1.4	2.7	9.5	17.6	8.1	
Total	3	4	16	13	14	· 18	6	74
	4.1	5.4	21.6	17.6	18.9	24.3	8.1	100.0
				Square	22.11			
			df		12			
			Signif	ficance ·	< .0001			

÷

Table	171
IGUIU	

. •

Interview	Data Analyses:	Gas Laws - Problem 1
High	, Middle or Low	Success on Tests

uccess on ests	Algorit 0	hmic Reasoni	ng Strategy Tctal		
			19		
	15 78.9		29.7		
_		21.1 15.4	23.1		
Low	39.5	15,4			
	23.4	6.3			-1
	16	9	25		S
	64.0	36.0	39.1		
AG 111-	42.1	34.6	57.1		
Middle	25.0	14.1			
	23:0	14.1		•	
-	7	13	20		
	· 3 5.0	65.0	31.3		
High	18.4	50.0			
шgn	10.4	20.0			
	1015				
Total	38	26	64		
Iotai	59.4	40.0	100.0		
	(Chi Square	8.17		
	(df	2		
		1	. 36		
		Significance	.02		
	1	-			

Success on `	Algorit	unic Reasoniu	ng Strategy		Executiv	e Errors	
Tests	0	1	Total	0	1	2	Total
	11	8	19	14	4	1	19
	57.9	42.1	29.7	73.7	21.1	5.3	29.7
Low	30.6	28.6		27.5	33.3	100.0	(33.1)
	,17.2	12.5 ·		21.9	, 6.3	1.6	
	19	6	25	21	4	0	25
	76.0	24.0	39.1	84.0	16.0	0	39.1
Middle	52.8	21.4		41.2	33.3	0	(37.1)
	29.7	9.4		32.8	6.3	0	
	6	14	21)	16	4	0	` 20
	30.0	70.0	31.3	80.0	20.0	0	31.3
High	16.7	50.0		31.4	33.3	0	(26.2)
	9.4	21.9		25.0	6.3	0	
Total	36	28	64	51	12	1	64
10002	56.3	43.8	100.0	79.7	18.8	1.6	100.0
		ni Square	9.58		Kw Chi S	quare 6.	
	d	f	2		df		4
	V		. 39		Signific	ance .	05
	S	ignific a nce	.008				

-

.

Interview Data Analyses: Gas Laws - Problem 2 High, Middle or Low Success on Tests

32 -

Success on	Algorith	mic Reasoning	strategy			Sti	ructural	Error 2	2			m 1
Tests		1	Total		1	2	3	4	7	8	9	Total
	10	1	19	9	0	1	0	4	1	1	3	19
	18 94.7	5.3	29.7	47.4	Õ	5.3	0	21.1	5.3	5.3	15.8	27 .7
1		8.3	23.1	34.6	Õ	11.1	Ō	30.8	16.7	33.3	60.0	
Low	34.6	1.6		14.1	ñ	1.6	0	6.3	1.6	1.6	4.7	
	28.1	1.0		1411								
	24	1	25	13	1	0	1	5	1	2	2	25
	96.0	• 4.0	25 39 . 1	52.0	4.0	0 0	4.0	20.0	4.0	8.0	8.0	39.1
Widle	• 46.2	8.3	5014	50.0 ⇒		0	100.0	38.5	16.7	66.7	40.0	
Middle		1.6		20.3	1.6	0	1.6	7.8	1.6	3.1	3.1	
•	37.5	1.0		2010								
	10	10	20	4	0	S	0	4	4	0	0	20
		50.0	31.3	20.0	Ō	40.0	0	20.0	20.0	0	0	31.3
11: _L	50.0 19.2	83.3	51.5	15.4	. 0	88.9	0	30.8	66.7	0	0 0	
High		15.6		6.3	Ō	12.5	0	6.3	6.3	0	0	
	15.6	13.0		010	•							
T-+-1	52	12	64	26	1	9	1	13 20.3	6	3 4.7	5	64
Total	81.3	18.8	100.0	40.6	1.6	14.1	1.6	20.3	9.4	4.7	7.8	100.0
	01.5	10.0	100.0									
	-T-	i Square	18.66			Chi	Square	28.				
			~ 2			df	•		14			
			. 54			, V			47			
	Śi	gnificance	.0001			Sig	nificanc	e .	01			

Interview Data Analyses: Gas Laws - Problem 3 High, Middle or Low Success on Tests

Table 173

و ر

3..5

324

ERIC Pruil Text Provided by E

Table 1	L74
---------	-----

ч,

ĺ

Full feat Provided by ERIC

Interview Data	Analyses: Gas	Laws - Total
High, Middle	or Low Subcess	on Tests

Success on		System	matic Appr	roach		Algorithmic Reasoning Strategy						
ests	0	I	2	3	Total	0	1	2	3	Total		
	3	2	9	5	19	. 11	3	. 5	0	19		
	15.8	10.5	47.4	26.3	29.7	57.9	15.8	26.3	0	29.7		
T	75.0	50.0	26.5	22.7	(27.2)	36.7	30.0	31.3	0	`(27.3) _\		
Low	4.7	3.1	14.1	7.8	()	17.2	4.7	7.8	0	·		
	1	2	16 `	6	25	16	3	5	1	25		
	4.0	8.0	64.0	24.0	39.1	64.0	12.0	20.0	4.0	39.1		
Middle	25.0	50.0	47.1	27.3	(29.8)	53.3	30.0	31.3	· 12.5	(26.3)		
	1.6	3.1	25.0	9.4		25.0	4.7	7.8	1.6			
	0	0	9	11	. 20	3	4	6	7	_ 20		
•		Õ	45.0	55.0	31.3	15.0	20.0	30.0	35.0	31.3		
High	Õ	Ō	26.5	50.0	(40.9)	10.0	40.0	37 .5	87.5	(45.1)		
irgi	0 0 .0	0	14.1	17.2	•	4.7	6.3	9.4	10.9			
Total	4	4	34	22	64	30	- 10	16	, 8	64		
IULAI	- 6.3	6.3	53.1	34.4	100.0	46.9	15.6	. 25.0	12.5	100.0 "		
		KW C	hi Square	7.57			Ƙ₩ Ch	i Square	15.37	•		
	-	df		6			df		6			
	:		ificance	.02			Signi	ficance	.0005	:		
	*			s.		• \						
ດປ						1						
26												

Success on (ເ ^{ຜ່}	•• \			
fests	,0,	· 1	blems Corr 2	3	Total		
	15 <i>·</i>	2	. 2	0	19	1	-
•	78.9	10.5	10.5	0	29.7		- ,
Low	46.9	11.1 。	16.7	0	(27.9)		
LOW ·	23.4	3.1	3.1	• 0 🖡			
	9.	12	1	0	25		
	36.0	48.0	16.0	Ō	ʻ 39.1		• •
Middle	28.1	66.7	33.3	_ 0	(32.2)		
Muure	. 14.1	18.8	6.3	0			` · ·
ø	8	1	· 6	2	20	, ? ,	•
	40.0	20.0	6 30.0	10.0	31.3	•	, .
· • • • •	40.0 25.0 ℃	22.2	50°.0	100.0	(37.3)		•
High	12.5	6.3	9.4	\$ 3.1		•	
Total	32	18	- 12 -	2	64		
ICCUI	50.0	28.1	18.8	3.1 .	100.0	'n	
		KW Ch	i' Square	8.14	• 、		•
		df	r oquuro	6		;	•
			ficance	.02	/		

·s_323

Materview Data Analyses: Gas Laws - Total

3

٢,

Success on	Manan	Use of onic Not	ation		Svet	temmatic)	Annroach	Arithmetic Approach			
Tests			Total		0		Total	0	1	Total	
	9	12	21		8	13	21	15	6	21	
•	42.9	57.1	31.8		38.1	61.9	31.8	71.4	28.6	31.8	
Lw ·	34.6	30.0	(32.4)		42.1	27.7		36.6	24.0		
	13.6	18.2	(- ,) ²		12.1	19.7		22.7	9.1		
	13	11	24		11	13	24	18	6	24	
	54.2	45.8	36.4		45.8	54.2	36.4	75.0	25.0	36.4	
Middle	50.0	27.5	(28.6)	-	57.9	27.7		43.9	24.0		
	'19.7	16.7	(/		16.7	19.7		27.3	9.1		
î	4	17	21		0	21	21	Q	13	2]	
	19.0	81.0	31.8		, Ŏ	100.0	31.8	J8.1	61.9	31.8	
High	15.4	42.5	(40.2)		. 0	14.7		19.5	52.0		
	6.1	25.8	(,,		0	31.8		12.1	19.7		
Total	26	40	66		19	47	66	41	25	• 66	
	39.4	60.6	100.0		28.8	71.2	100.0 .	62.1	37.9	100.0	
	KW Chi	Scuare	5.85		Chi S	Square	12.78	Chi	Square	7.62	
df			2		df	-	` 2	· df		2	
	Signifi	cance	.05		V		.44	V		.34	
,	·				Signi	ificance	.002	Sign	ific a nce	.02	

Interview Data Analyses: Stoichiometry - Problem 1 High, Middle or Low Success on Tests

32)

Success op	Nonsystemmatic Approach			No /	No Answer Given			Comments About Solution			
Tests	$\frac{10113}{0}$	1	Total	0	1	Total	0	1	2 ·	Total	••••
	15	- <u>-</u>		19	2	21	7	14	0	21	
•	15	5	21 31.8	90.5	9.5	31.8	33.3	. 66.7	0	31.8	
	71.4	28.6	21.0	32.8	25.0	51.0	21.2	45.2	0	(38.3)	
.OW	27.3	54.5					10.6	21.2	Ō		
	22.7	9.1		28.8	3.0		10.0	21.2	Ū	•	
	19	· 5	24	18	6	24	* 8	14	2	24	
				75.0	25.0	36.4	33.3	58.3	8.3	36.4	
e: 111 -	79.2	20.8	36.4	31.0	75.0	3011	24.2	45.2	100.0	(39.7)	
4idd1e	34.5	45.5					12.1	21.2	3.0		
	28.8	7.6		27.3	9.1 ~		12,1	21,0	010		
	.21	0 '	21	21	0	21	18	3	0	21	
	100 0	0	31.8	100.0	Õ	31.8	85.7	14.3	0	31.8	
r• 1	100.0		51.0	36.2	Ő	0110	54.5	9.7	0	(21.6)	
High	38.2	0 0		31.8	0 0		27.3	4.5	0		
	31.8	0		51.0	U						_ J
Cetal	55	11	66	58	8	66	33	31	2	66	
Tctal	83.3	16.7.	100.0	87.9	12.1	100.0-	- 50.0	47.0	3.0	100.0	
	03.3	10.7.	100.0	07.5	1011	10000					
	Chi 9	Square	6.64	′ Chi	Chi Square 6.77		KW C	Thi Square	15.	15.49	
	df	Addie C	2	df	•	2	df			4	
	V		.32	v		.32	Sigr	nificance	.00	04	
		v .52 Significance .04		Sim	ificance	.03	8				
	STâu	in realice	•04	orgi	TTTCMICC						

;

Interview Data Analyses: Stoichiometry - Problem 1 High, Middle or Low Success on Tests

Table 177

331

280

331)

Table 1	7	8
---------	---	---

	Algor	ithmic Re			Charles	unal Emm	om . ?	
Success on		Strat	egy		Struct	ural Err	$\frac{\text{or} - 2}{3}$	Total
Tests	0	1	Total	0	_	2	3	IULAL
	18	3	21	1	11	0	9	21
	85.7	14.3	31.8	4.8	52.4	0	42.9	51.8
Low	38.3	15.8		11.1	34.4	0	42.9	
	27.3	4.5		1.5	16.7	0	13.6	•
-	21	3	24	8	7	. 3	6	24
	87.5	12.5	36.4	33.3	29.2	12.5	25.0	36.4
Middle	44.7	15.8	5014	88.9	21.9	75.0	28.6	
, v	31.8	4.5		12.1	10.6	4.5	9.1	٠
	8	13	21	0	- 14	1	6	21
N	38.1	61.9	31.8	0	66.7	4.8	28.6	31.8
High	17.0	68.4		· 0	43.8	25.0	28.0	
ur gu	12.1	19.7 `		Ĵ	21.2	1.5	9.1	
Total	47	19	66 -	9	. 32	4	21	6Ъ
locar	71.2	28.8	100.0	13.6	48.5	6.1	31.8	100.0
	Chi S	ouare	16.4 9		Chi Squ	are	18.45	
-	df		2		df	•	6	-
	V í		.50		V		.37	
	Simi	ficance	.0003		Signifi	cance	.005	

Interview Data Analyses: Stoichiometry - Problem 1 High, Middle or Low Success on Tests

332

З

Interview Data Analyses:	Stoichiometry - Problem 2
High, Middle or L	ow Success on Tests

~ -

Success on	Syste	emmatic A	pproach		metic App	proach		Nonsystemmatic Approach 0 1 Total		
Tests	0	1	Total	0	1	Total	0		10141	
				17	4	21	17	4	21	
	8	13	21	17	-	31.8	81.0	19.0	31.8	
	38.1	61.9	31.8	81.0	19.0	51.6	30.9	36.4		
Low	40.0	28.3		35.4	22.2					
	12.1	19.7		25.8	6.1	,	25.8	. 6.1		
	11	- 13	24	20	4	24	17	7	24	
			36.4	83.3	16.7	36.4	70.8	29.2	36.4	
	45.8	54.2	50.4	41.7	22.2		30.9	63.6		
Middle	55.0	28.3			-		25.8	10.6		
1	16.7	19.7		30.3	0.1		25.0	1000		
	1	20	21	11	10	_ 21	21	0	21	
	1 0	95.2	; 31.8	52.4	47.6	31.8	100.0	0	31.8	
•.• •	4.8		1 21.0	22.9	55.6		38.2	0		
High	5.0	43.5	i.	16.7	15.2		31.8	0		
	1.5	30.3		10.7	13.2		5110	-		
Total	20	46	66	48	18	6 6	55	· 11	66	
IULAI	30.3	69.7	100.0	72.7	27.3	100.0	83.3	16.7	100.0	
	Chi Ca		9.83	(hi	Square	6.46	Chi	Square	6.99	
	Chi Sq	luare		df	quare	2	df		2	
	df		2	V		.31	Ĩ.		.32	
	V		.38	•	: [:	.04	•	ificance	.03	
	Signif	ficance	.007	Sign	ificance	•04	21 8 1	111cance	.05	
						15				

÷.

Interview Data Analyses: Stoichiometry - Problem 2 High, Middle or Low Success on Tests

	Algoria	thmic Re			
Success on	•	Strateg	y	Comments About Solution	
Tests	0	1	Total	0 1 2 Total	
	10	7	·		
	18	3	21 *		
	85.7	14.3	31.8	61.9 38.1 0 31.8	
Low	39.1	15.0		37.1 27.6 0 (30.2)	
	27.3	-4.5		19.7 12.1 0	
		_		7 16 1 24	
	21	3	24		
	87.5	12.5	36.4	29.2 66.7 4.2 36.4	
Middle	45.7	15.0		* 20.0 55.2 \ 50.0 (41.3)	
	31.8	4.5		10.6 24.2 1.5	
	· 7	14	21		
	33.3	66.7	31.8	71.4 23.8 4.8 31.8	
		70.0	51.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
High	15.2			22.7 7.6 1.5	
	10.6	21.2			
Total	46	20	66	35 29 2 66	
lotur	69.7	30.3	100.0	53.0 43.9 3 0 100.0	
	Chi Squ	uare	19.30	KW Chi Square 8.35	
	df		2		
	Phi		.54	Significance 0.02	
	Signif	icance	.0001	*	
	0.9.11			÷	
				i	
	<u> </u>				

331

٠,

Success on		Structu	ral Erro	or - 2		
Tests	0	1	2	3	Total	
	5	6	- 5	5	21	~
	23.8	28.6	23.8	23.8	31.8	
	38.5	26.1	41.7	27.8		
	7.6	9.1	7.0	7.6		
	7.	4	4	9	24	
	29.2	16.7	16.7	37.5	36.4	
Middle	53.8	17.4	33.3	50.0		
Mildure	10.6	6.1	6.ŀ	13.6		
	20.0	. ,	•••-			
	. 1	13	3	4	21	
	4.8	61.9	14.3	19.0	31.8	
High	· 4.8 7.7	56.5	25.0	22.2		
••••	1.5	19.7	4.5	6.1		
Total	13	23	12	18	66	
Total	19.7	34.8	18.2	27.3	100.0	
	1.2.1	5-7.0	10.2	27.00		
		Chi So	quare	12.68		
		df		6		
		V		.31		
		Signi	ficance	.05		
		-				

Interview Data Analyses: Stoic'.iometry - Problem 2 High, Middle or Low Success on Tests

	Algo		Reasoning					<u></u>			
Success on		Strateg	У	Executive Errors				Structural Error - 3			
Tests	0	1	Toțal	0	1	Total	0	1	2	3	Total
•	•	1	21	21	0	21	10	2	7		21
	20	1	21	21	0	21	12	2	3	4	21
	95.2	4.8	31.8	100.0	0	31.8	57.1	9.5	14.3	19.0	31.8
Low	35.7	10.0		34.4	0		31.6		30 .0	57.1	
•	30.3	1.5		31.8	0		18.2	3.0	4.5	6.1	
*		. .						1	-		
	23	1	· 24	24	0	24	17	1	5	1	24
	95.8	4.2	36.4	100.0	0	36.4	70.8	4.2	20.8	4.2	3 6.4
Middle.	41.1	10.0		39.3	. 0		44.7	9.1	50.0	14.3	
- •	34.8	1.5		36.4	0		25.8	1.5	. 7.6	1.5	
	13	8	21	16	5	21	9	8	• 2	2	21
	61.9	38.1	31.8	76.2	23.8	31.8	42.9	38.1	9.5	9.5	3 1.8
High	23.2	80.0		26.2	100.0		23.7	72.7	20.0	28.6	
	19.7	12.1		24.2	7.6		13.6	12.1	3.0	3.0	
Total	56	10	66	61	5	66	38	11	10	7	66
·	84.8	15.2	100.0	92.4	7.6	100.0	57.6	16.7	15.2 ·	10.6	100.0
Chi Square		uare	12.61	KW Ch:	i Square	11.42		Chi Sq	u are	13.5	4
	df		2	df	•	2		df			6 ·
	v		.44		ficance	.003		v		.3	2
4	Signif	icance	.002	- Guine	200100				icance	.0	
	organit.		.002					OTRUIT	LCAILC	.0	.
											-

e

Interview Data Analyses: Stoichiometry - Problem 3 High, Middle or Low Success on Tests

Table 182

ERIC Full foxt Provided by ERIC 333

,

Table	183
-------	-----

Interview Data Analyses: Stoichiometry - Total High, Middle or Low Success on Tests

		Suct off	matic App	roach			Arithm	etic Ap	proach_		
Success o	n <u>0</u>	- System	2	3	Total	0	1	2	3	Total	
Tests											
-	6	3	4	8	21	- 14	3	1	3	21	•
	28.6	14.3	19.0	38.1	31.8	66.7	14.3	4.8	14.3	31.8	
Low	40.0	37.5	33.3	25.8	(30.1)	7 35.9	30.0	33.3	21.4	(30.6)	
	9.1	4.5	6.1	12.1		21.2	4.5	1.5	4.5		
,	0		2	9	24	17	4	0	3	24	
	9	4 16.7	2 8.3	37.5	30.4	70.8	16.7	0	12.5	36.4	
	37.5		16.7	29.0	(27.8)	43.6	40.0	0	21.4	(29.0)	
Middle	60.0	50.0	3.0	13.6	(27.0)	25.8	6.1	0	4.5	•	
	13.6	6.1	3.0	10.0		2010					
	0	1	6	14	21	8	3	2	8	21	
	0 、0	1 4.8	28.6	60.7	31.8	38.1	14.3	9.5	38.1	31.8	
*** _1.		12.5	50.0	45.2	(43.4)	20.5	30.0	66.7	57.1	(41.5)	_
High	0 0	12.5	9.1	21.2	(1011)	12.1	4.5	3.0	12.1		-
•	<u>ل</u>	1.5	5.1	61.0						*	
	15	8	12	31	66	39	1 0 ⁻	3	14 ⁻	66	
Total	22.7	8 12.1	18.2	47.0	100.0	59.1	15.2	4.5	21.2	100.0	
	22.1	16.1	10.5	.,						•	
		KW Chi	i Square	9.44				Square	6.95	۰.	
		df		6			df		6		
	1		ficance	.009			Signif	icance	.03		
		016111		• • • •							

2

•

ŗ

÷

Table	184	

Interview Data Analyses: Stoichiometry - Total High, Middle or Low Success on Tests

Success on	N		matic	Approach				Algorith	mic Reaso	ning St	rategy
Tests	0	1	2	3	Total		0		2	3	Total
Low	14 (66.7 29.8 21.2	3 14.3 30.0 4.5	1 4.8 25.0 1.5	3 14.3 60.0 4.5	Ž1 31.8 (35.5)	·,	18 85.7 40.0 27.3	0 0 0	2 9.5 25.0 3.0	1 4.8 10.0 1.5	21 [°] 31. 8 (27.6)
Middle	14 58.3 29.8 21.2	5 20.8 50.0 7.6	3 12.5 75.0 4.5	2 8.3 40.0 3.0	24 36.4 (37.7)		21 87.5 46.7 31.8	0 0 0 0	2 8.3 125.0 3.0	1 4.2 10.0 1.5	24 36.4 (27.1)
High	19 90.5 40.4 28.8	2 9.5 20.0 3.0	0 0 0 0	0 0 0 0	21 31.8 (26.7)		6 28.6 13.3 9.1	3 14.3 100.0 4.5	4 19.0 50.0 6.1	8 8 80.0 12.1	21 31.8 (46.7)
Total	47 71.2	10 15.2	4 6.1	5 7.6	66 100.0		45 68.2	3 4.5	8 12.1	10 15.2	66 100 .0
	df	Chi Squ nifican		5.30 6 .04		F.		df	hi Square ificance	21:5 (<.000	5

ι

Full Text Provided by ERIC

Table 1	.85
---------	-----

Interview Lata Analyses:	Stoichiometry - Total
High, Middle or Low	Success on Tests

13

ζ

Success on		Commen	ts About	Soluti	.on	,		Ι	xecutive	Errors	<u>```</u>		*	
Tests	Ō	I	2	<u> </u>	4	Total	0	1	2:	3	Total			
	3	6	7	5	0	21 -	19	2	0	0	21		•	
	14.3	28.6	33.3	23.8	Ŭ	31.8	90.5	9.5	0	0	31.8			
I au i	25.0	30.0	58.3	23.8	Õ	(33.3)	34.5	25.0	0 .	0	(31.0)		۵	
Low	4.5	9.1	10.6	7.0	0	(0000)	28.8	3.0	. 0	0	1			
`	3	4	1	15	1	24	23	1	0	Ó	24			
\backslash	12.5	16.7	4.2	62.5	4.2	36.4	95.8	4.2	0	0	36.4			
Middle	25.0	20.0	8.3	71.4	100.0	(43.3)	41.8	12.5	0	0	(29.3)			
MIGUIE	4,5	6.1	1.5	22.7	1.5		34.8	1.5	0	0	1			
	6	10	4	1	0	21	13	5	2	Í	21		Ś	
	28.6	47.0	19.0	4.8	- Õ	31.8	б 1. 9	23.8	9.5	4.8	31.8	5		
High 🔪	50.0	50.0	33.3	4.8	Ū	(22.5)	23.6	62.5	100.0	100.0	(40.8)			
ingi /	9.1	15.2	6.1	1.5	Ŭ		19.7	7.6	3.0	1.5				
Total	× 12	20	12	21	1	66	55	8_	2	1	60			
lotai	18,2	30.3	18.2	31,8	1.5	100.0	83.3	12.1	3.0	1.5	100.0	^		
		KW Ch	i Square	14.2	13 8			df	i Square	10.78				
		Signi	ficance	.00	0 9			Signi	ficance	.005	•			
								1		ł				

1

288

.<mark>34</mark>∂

330 -

4

ERIC FullText Provided by ERIC

Ĩ

_1

Interview Data Analyses: Stoichiometry - Total * High, Middle or Low Success on Tests

0 13 61.9 32.5	Pro 1 7 33.3	0 0 0	orrect 3	Total	0	Questions 1	Correct	Total
13 61.9	1	2_	3	<u>Total</u>	0	1	_ 2 ,	Total
13 61.9	-	0	、 1	w ·				
61.9	-	0	· 1)	<u>.</u> •		10	
61.9	33.3		T	· 21 ·	6	5	10	21
	0010	۰ 0	4.8	31.8	28.6	23.8	47.6	31.8
JU • J	43.8	0	25.0	(31.9)	60.0	31.3	25.0	(28.1)
19.7	10.6	Û	1.5	•	9.1	7.6	15.2	
20	2	2	0	24	4	8	12	24
27.2	2 Z				16.7	33.3	50.0	· 36.4
			0 0			50.0.	30.0	(30 .3)
30.0 30.3	3.0	3.0	0	(2002)	6.1	12.1	18.2	
7	7	·	3	· 21	0	3	18	21
•					0	14.3	85.7 ′	31.8
					0	18.8	45.0	(42.5)
10.6	43.8 10 .6	~ 6.1	4.5		0 .	4.5	27,.3	0
40	•	6	Δ	• 66	. 10	16	40	6 6 -
	24.2	9.1	6.1	100.0	15.2	24.2	- 60.6	100.0
t.	WW CL: C-		12 13			KW Chi	i Sauare"	9.11
		lnare	.'	د				4
		ince	.002		•	Signi	ficance	.01
1 853 3 1	19.7 20 33.3 50.0 30.3 7 33.3 17.5 10.6 40 60.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.7 10.6 0 20 2 2 83.3 8.3 8.3 50.0 12.5 33.3 30.3 3.0 3.0 7 7 4 33.3 33.3 19.0 17.5 43.8 66.7 10.6 10.6 6.1 40 16 6 60.6 24.2 9.1 KW Chi Square	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.7 10.6 0 1.5 20 2 2 0 24 83.3 8.3 8.3 0 36.4 50.0 12.5 33.3 0 (26.1) 30.3 3.0 3.0 0 0 7 7 4 3 21 33.3 19.0 14.3 31:8 17.5 43.8 66.7 75.0 (43.5) 10.6 10.6 6.1 4.5 40 16 6 4 66 60.6 24.2 9.1 6.1 100.0 KW Chi Square 12.43 df b 5 5	19.7 10.6 0 1.5 9.1 20 2 2 0 24 4 83.3 8.3 8.3 0 36.4 16.7 50.0 12.5 33.3 0 (26.1) 40.0 30.3 3.0 3.0 0 6.1 40.0 33.3 33.3 19.0 14.3 31.8 0 17.5 43.8 66.7 75.0 (43.5) 0 10.6 10.6 6.1 4.5 0 0 40 16 6 4 66 10 60.6 24.2 9.1 6.1 100.0 15.2 KW Chi Square 12.43 df 6 6 10	19.7 10.6 0 1.5 9.1 7.6 20 2 2 0 24 4 8 83.3 8.3 8.3 0 36.4 16.7 33.3 50.0 12.5 33.3 0 (26.1) 40.0 50.0 30.3 3.0 3.0 0 6.1 12.1 7 7 4 3 21 0 3 33.3 33.3 19.0 14.3 31.8 0 14.3 17.5 43.8 66.7 75.0 (43.5) 0 18.8 10.6 10.6 6.1 4.5 0 4.5 40 16 6 4 66 10 16 60.6 24.2 9.1 6.1 100.0 15.2 24.2 KWChiSquare 42.43 KWChi df df b b df df df	32.3 43.3 0 23.6 (01.6) 9.1 7.6 15.2 20 2 2 0 24 4 8 12 83.3 8.3 8.3 0 36.4 16.7 33.3 50.0 50.0 12.5 33.3 0 (26.1) 40.0 50.0 30.0 30.3 3.0 0 (26.1) 40.0 50.0 30.0 30.3 3.0 0 (26.1) 40.0 50.0 30.0 33.3 33.3 19.0 14.3 31.8 0 14.3 85.7 17.5 43.8 66.7 75.0 (43.5) 0 18.8 45.0 10.6 6.1 4.5 0 15.2 24.2 60.6 40 16 6 4 66 10 16 40 60.6 24.2 9.1 6.1 100.0 15.2 24.2 60.6 <

34i

.-

Interview Data Analyses: Stoichiometry -	Total
High, Midale or Low Success on Tests	

13

Success on	Questions Correct Without Prompting						
Tests	0	1	2	5	4	Total	
	2	5	\ S	4	5	21	ê
	9.5	23.8	23.8	19.0	23.8	31.8	
Low	50.0	50.0	26.3	16.0	62.5	(31.9)	
	3.0	7.6	7.6	6.1	7.6		•
	. 1	٨	11	.8	0	24	
-	1	· 4			0	36.4	
	4.2	16.7	45.8	.33.3	0	(28.0)	
	25.0	40.0	57.9	- 32.Q'	0	(20.0)	
Middle	1.5	6.1	16.7	12.1	0	,	
	1	• 1	3	13	3-	21	
۹	4:8	4.8	14.3	61.9	14.3	31.8	
High	25.0	10.0	15.8	52.0	37.5	(41.4)	
nt gn	1.5	<u>,</u> 1.5	4.5	19.7	4.5		•
,	4	10	19	25	8	66	
Total	6,1	15.2	28.8	37.9	12.1	100.0	
ļ , , ,	,		Chi Squar			· .	
	*	df Sig	nificance		8 15 —	9	

.

ů (

٢

•

Ĵ

•

V

Interview Data Analyses: Molarity - Problem 2 High, Middle or Low Success on Tests ç

· ·		ise of Ra	ndom			
Success on		ial and l	Total			
Tests	0	1	Total			
,	13	2	15		·	
		-	27.3			
~	86.7	13.3	27.5			
Low	28.3	22.2				
	23.6	3.6		•	-	
	. 7	. 7	24			
	17					
	70.8	29.2	43.6			
Middle	37.0	77.8				
	30.9	12,7				
	- 16	0	. 16			
	100.0	, Ū	29.1			
77: 1	34.8	0		•		
High		0				
1	29.1	U				
Total	46	`9	55			
IULAI	83.6	16.4	100.0		*	
	0.0.0	1011	10010			
•	Chi S	quare	ι.11 ·			
	df V	-	2			
	V		.33			
'、	Signi	ficance	.05			
	8					
(

ERIC."

Iddic Ivy	Tab1	e	189
-----------	------	---	-----

	-		Hig	gh, Middle of	r Low Succ	cess on Tests		1		5
Success on		hmetic Ap	nroach	Nonsyst	temmatic A	Approach		hmic Rea Strategy		
Tests		I I	Total	0	1	Total	•0	1	Total	_
-	9 60.0	6 40.0	15 27.3	14 93.3	1 6.7	15 27.3	11 73.3	4 26.7	15 27.3	
Low	25.0 16.4	31.6 10.9		29.2 25.5	14.3 1.8	-	26.2 20.0	30.8 7.3	-	
Middle	20 83.3 .55.6 36.4	4 16.7 21.1 7.3	24 43.6	18 75.0 37.5 32.7	6 25.0 85.7 10.9	24 43.6	23 95.8 54.8 41.8	1 4.2 7.7. 1.8	24 43.6	
High	43.8 19.4 12.7	- 9 56.3 47.4 16.4	16 29.1	16 100.0 33.3 29.1	0 0 0 0	16 29.1	8 50.0 19.0 14.5	8 50.0 61.5 14.5	16 29 . 1	

Interview Data Analyses: Molarity - Problem 3

344

55

100.0

2

.45

.004

11.28

13

23.6

Table 190	190]	le	ab	T
-----------	-----	---	----	----	---

Success on		Structur	al Erro	r - 2				Structu	ral Erro		
Tests	0	1	2	3	4	Total	0	1	2	3	Total
	5	0	4	2	4	15	6	0	5	4	15
	33.3	0	26.7	13.3	26.7	27.3	40.0	0	33.3	26.7	27.3
t		0	30.8	18.2	80.0	25	20.0	0	62.5	28.6	
Low	31.3 9.1	0	7.3	3.6	7.3		10.9	0	9.1	7.3	
	7 ``		ว	5	1	24	19	2	1	2	24
		9	2 8.3	20.8	4.2	43.6	79.2	8.3	4.2	8.3	43.6
	29.2	37.5		45.5	20.0	73.0	63.3	66.7	12.5	14.3	
Middle	43.8	90.0	15.4		1.8		34.5	3.6	1.8	3.6	
	12.7	16.4	3.6	9.1	1.0		71.7	5.0	2.00		
		1	7	Λ	0	16	5	1	2	8	1 6
	4	1	7	4 25 0	0 0	29.1	31.3	6.3	12.5	50.0	29.1
	25.0	6.3	43.8	25.0		29.1	16.7	33:3	25.0	57.1	
High -	25.0	10.0	53.8	. 36.4	0		9.1	1.8	3.6	14.5	
-	7.3	1.8	12.7	7.3	0		9.1	1.0	5.0	.	
T - 4 - 1	16	10	13	11	5	55	30	3	8	14	55
Total	16 29.1	18.2	23.6	20.0	9.1	100.0	54.5	5.5	14.5	25.5	100 .0
		. Chi Sq	1270	22.00			Chi	Square	18.07		7
		df	uate	22.00			df	•	6		
		V		.45			v		.40		
		Signif	icance	.005			Sip	nificance			
		Signii	Trance	.005							

Interview Data Analyses: Molarity - Problem 3 High, Middle or Low Success on Tests

1

\$

345

.,

Ta	ble	191	
		-	

Interview Data Analyses: Molarity - Total High, Middle or Low Success on Tests

Success on		Nonsystem	matic Ap	p roa ch		Us	se of Ran	dom Tria		
Tests	0	1	2	3	Total	0	1	2	3	Total
	0		1	0	15	9	5	1	0	15
4	9	5	1			60.0	33.3	6.7	õ	27.3
	60.0	33.3	6.7	0	27.3				0	(30.2)
Low	23.7	45.5	25.0		(29.8)	23.7	38.5	50.0	-	(30.2)
	16.4	9.1	1.8	0		16.4	9.1	1.8	0	
	14	5	3	2	24	14	. 7	1	2	24
6	58.3	20.8	12.5	8.3	43.6	58.3	29.2	4.2	8.3	43.6
M: 111 -		45.5	75.0	100.0 -		368	53.8	50.0	100.0	(31.2)
Middle	36.8				(51.5)	25.5	12.7	1.8 .	3.6	:
	25.5	9.1	5.5	3.6		23.5	16.1	1.0 .	5.0	
<i>(</i>	15	1	0	· · 0	16	15	1	0	0	16
	93.8	6.3	0	0	29 .1	93.8	6.3	0	0	29.1
Hig h	39.5	9.1	Ō	0	(21.0)	39.5	7.7	0	0	(21.1)
in gu	27.3	1.8	Õ	Õ	()	27.3	1.8	0	0	
	6/.J	1.0	U	Ŭ					•	
Total	38	11	4	2	. 55	38	13	2	2	55
	69.1	20.0	7.3	3.6	100.0	69.1	23.0	3.5	3.6	100.0
		1	<i>i</i>	/ 1			in Chi	Square	,6.44	
		KW Chi Squa	a re 6.					Juare	-	
		df `		6		1	df	•• _	6	
		Significand	:e .!	04			Signif	icance	.04	

	Prob	lems Cor	rect			
0	1	2	5	Toțal		
12	0	3	: 0	15		
			Ō			
21.8	0	5.5	0			
17	6	1	0	- 24		
			0	43.6		1
			0	(25.3)		
30.9	10.9	. 1.8	0	• -	,	
6	6	3	1	16		
			6.3			•
						1
10.9	10.9	5.5	1.8	•		1
35	12	7	、 1	55	_	
63.6	21.8	12.7	1.8	100.0	-	'n
	KW Chi	Square	6.46			
			6			
		ficance	.04			1 •
	12 80.0 34.3 21.8 17 70.8 48.6 30.9 6 37.5 17.1 10.9 35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Interview Data Analyses: Molarity - Total High, Middle or Low Success on Tests

341

7

ť,

unsuccessful students solving mole problems and moderately successful students on the molarity problems.

<u>Comments about solutions</u>. Moles, all problems (Tables 159, 161, 163, 168), and stoichiometry, problem 1, 2, total (Tables 177,180,185). Unsuccessful students made more comments about the solution for the moles problems whereas moderately successful students made more comments on the stoichiometry problems.

<u>Executive errors</u>. Gas Laws, problem 2 (Table 172) and stoichiometry, problem 3, total (Tables 182, 185). Made more frequently by successful students. Unsuccessful students frequently did not solve the problems and therefore had less opportunities to make executive errors.

Problems correct. *Totals for each of four units (Tables 169, 175, 186, 192). Successful students got more problems correct:

Questions correct. Moles (Table 169) and stoichiometry (Table 186). Successful students answered more questions correct on these two units.

Questions correct without prompting. Moles. (Table 170) and stoichiometry (Table 187). Successful students answered more questions correct without prompting.

<u>Structural errors</u>. Structural errors are analyzed according to each chemistry unit because there was a unique set of errors associated for each chemistry unit.

1. Gas Laws 3 - 2, Table 173. The major difference between low, middle and high success groups was that the first two groups more frequently did not attempt to start the problem. Successful students' (high group) most frequent error was to not set up a proportion or factor.

2. Stoichiometry 1 - 2, Table 178. Low success students more frequently failed to use the equation in solving a simple stoichiometry problem.

3. Stoichiometry 2 - 2, Table 181 . Low and moderately successful students more frequently failed to use the equation in solving stoichiometry problems than high success students.

4. Stoichiometry 3 - 3, Table 182. This stoichiometry problem was not solved correctly by many students of any category. High success students attempted the problem and used the equation correctly for determining the product. (The major reason for lack of success on this problem appeared to be st_dents' inability to determine the limiting reagent.)

5. Molarity 3 - 2, Table 190. Low success students did not realize that the balanced equation must be used more frequently than middle or high success students.

6. Molarity 3 - 3, Table 190. Low success students used the definition of molarity incorrectly more frequently. More middle success students did not get far enough to use the definition of molarity.

Hypothesis 4

There are no significant differences in chemistry problem solving strategies used by students according to the method taught to solve the problems.

Data were analyzed according to the treatment (method taught) to which they were assigned. This information is summarized in Table 193. Results are summarized in Table 194 and more detailed information about significant findings are given in Tables 195 217.

<u>Systemmatic approach</u>. Stoichiometry, problem 2 (Table 208). Students who used the factor-label methods and the proportion method displayed a more systemmatic approach more frequently than students who used the other two methods. Because the stoichiometry problems were quite complex this may have important educational implications.

Approach taught. Moles, all problems (Tables 195, 196, 197, 198), gas laws, all problems (Tables 200, 201, 202, 204), stoichiometry, all problems (Tables 206, 208, 210, 212), and molarity, all problems (Tables 214, 215, 216, 217). Students who were taught to use the factor-label method and proportionality more overtly used

297

.

Distribution of Students According

to Teaching Strategy

		Strategy									
Unit	Factor-Label N	Analogy N	Diag ram N	Proportion N							
Moles	20	17	24	13							
Gas Laws	14	18	16	16							
Stoichiometry	19	15	17	. 17							
Molarity	15	19	19	11							

ERIC

\$

350

			les			Gas		· · · · · · · · · · · · · · · · · · ·		Stoich			•		rity	
Protocol Categories	Pla	P2 ^b	P3C	Td	<u>P1</u>	P2	P3	<u>T</u>	<u>P1</u>	P2	P3	T		P2	P3	T
*Reading/Organizing											*				:	
Reizads or Stating ^g																
Mneumonics																
Production																
Systemmatic	×					•				13.08 ^e .005 f				-		
Approach Taught	26.24	31.92 <.0001/	23.38 <.0001			50.05 <.0001	9.98 .02	53.58 <.0001	⁻ 31.96 <.0001	36.85 <.0001	17.34 .0006	35.43 <.0001	22.78 <0001	24.09 <0001	26.03 <0001	
Arithmetic	12.55	21.28 .0001	12.49 .006	20.49 .0001	37.51 <.0001	40.12 <.0001	9.51 .02	36.34 <0001	13.58 .004	10.58 .01	7.87 .05	12.85 .005		14.38 .002	8.09 .04	14.69 .002
Nonsystemmatic				7.84 .05			•	•	7.77 .05	7.77 .05	12.87 .005	11.36 .01			7.70 .05	
No Answer					1				7.70	7.61 .05		,			c	
Strategy		2														
Algorithmic		4			·	10.78 .01		8.63 .03							-	
• Alg/Reasoning						9.66 ,02		7.77 .05						×		
Random T & E											10.61 .01	~9.81 .02				
Structural Error											.01					
Misinterprets																
Disregards given									1							
Disregards gen																5
Misapplies							9.23 .03	12.23 .007								• •
Not generate	¥		8.63 .03	12.96 .005				·	`						•	

 Table 194

 Summary of Significant Findings:
 leaching Strategies

5

۰.

t

352

1.

			oles	Summar	01/318	Gas	Laws		aching St	Stoich	iometr	y		Mola	rity	
Protocol Categories	P1	P?	P3		P1	P2	P3	T	P1	P2	P3	T	P1	P2	P3 -	<u> </u>
	<u> </u>								Ţ							
*Evaluation									1							-
	1													L		•
*Comments about Solution							9.23					•				
							.03									,
*Executive Errors																
2.0000000000000000000000000000000000000										4						
*Problems Correct	xi	X	х		λ	X	Х		x	Х	X		X	X	х	
Problems correct				١		•										
•••	x	х	X		x	Х	х		x	х	X		x	Х	Х	
*Questions Correct		л	~					r	1.	-			-			
		x	х	1	y	х	Х		X	Х	х		x	Х	X	
*Question w/o Prompting	X	л	л ,		· ·	~	~		•				1			
Structural Errors					'											
Section ^h 1 - 1	x	х	X	х		х	Х	Х		Х	Х	۲X)	1	X	Х	X
Section 1 - 1				,				ì								
	x	х	х	Х		х	x	х		х	Х	Х		х	Х	X
Section 1 - 2		Λ	~				,						•			
	v	х	х	х	X		x	х	x		Х	х	x		х	Х
Section 2 - 1	X	•	~	~												
,				v	x		х	х	x		х	х	x		х	х
Section 2 - 2	X	X	X	X	1		л	~								
								х	x	х		х	x	х		х
Section 3 - 1	X	X	X	X	X	X		X		~		Λ				
			,							X.		x	X	х		x
Section 3 - 2	X	Х	Х	Х	X	X		X	x	X.		~	^	A		~
												v	x	Х		X
Section 3 - 3	X	Х	λ	x	x	Х		X	X	Х		X		х		A
									- I							
*Category sum		eg	Statisti	c				4		1, 1	•					
^a Problem 1		f	Probabil	ity lev	el ,		•	- ,								
			-		rnd_ re sta	**** C11	hcatego	ies								
^b Problem 2	V															
^C Problem 3		h	Section	on supp	lementary	y codin	g sheet						<u> </u>			
d _{Sum} of Problems 1, 2	2 8 3	i,	Not mear	ningful									~			
									-,				,		0.	54
·- 1																าง

ERIC PullText Provided by ERIC

1

Table 194 (continued) ant Findings : Teaching Strategies

ን

eaching	- Ap	prcach Tau	ught		Arithmetic Approach					
trategy	0		Total			1	Total			
	ga	11	20		13	7	20			
*	45.0 ^b	55.0	27.0		65.0	35.0	27.0			
	15.3 ^C	73.3	27.0,		44.8	15.6				
ctor-Label	12.2 ^d	-14.9		,	17.6	9.5				
•	12.2	-14.2	,	·	17.0 \$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
i	17	0	17		. 5	12	17			
	100.0	Ó	23.0		29.4	70:6	23.0			
	28.8	Ō			17.2	26.7				
nalogy	23.0	ŏ	· 9		6.8	16.2				
	_	-	(_			
	24	0	24	r	4	20	24			
,	100.0	· 0	32.4		· 16.7	83.3	32.4			
, ·	40.7	0	`		13.8	44.4				
iagram	32.4	0	•		5.4	27.0				
	_		17	د	-	. 6				
	• 9	<u>4</u> 30.8	13		7	46.2	17.6			
	69.2	30.8	17.6		53.8	40.2	1/•0			
roportion	15.3	26.7			24.1					
	12.2	5.4			9.5	8.1				
- 4 - 1	59	15	74		29	45	74			
otal	79.7	20.3	100.0		39.2	60.8	100.0			
	13.1	20.5	100.0				,			
	Chi Squar	re	26.24			Squafe	12.55			
	df V		35		` df	*	3			
	V		³ f √59 ^f		. V		.42			
	Significa	ance	<.0001		Sign	ificance	.006			

Interview Data Analyses: Moles - Problem 1 Teaching Strategies

Total percentage Cramer's V 0

•

355

ï

Table 1	96
---------	----

٢.

eaching	· An	proach Taugh	t		· ·	metic Appr	Approach 1 Total		
trategy			Total		0		IVLAI		
		12	20		15	ŕ 5	Ź0		
	8	12			75.0	25.0	27.0		
•	40.0	60.0	27.0.		45.5	12.2	•		
actor-Label	14.5	63.2			20.3	6.8			
4	10.8	16.2			20 . J	0.0			
	17	0	17		6	11	*17		
	17	· 0	23.0		35.3	64.7	23,0		
	100 .p 🦯	-	23.0		18.2	26.8			
nalogy ²	30.9	0			8.1	14.9			
	23.0	0			0.1	2			
	24	0	24 ·		3 .	21	24		
٥		0	32.4		12.5	87.5	32.4		
•	100.0	0	J L • T •		9.1	51.2	•		
Diagram	43.6	•		`	4.1	28.4			
-	32.4	0				-			
	4	7	13	-	9.	4	13		
-	6		17.6		69.2	30.8	17.6		
	46.2	53.8	1/.0		27:3	9.8			
Proportion	∝ 10.9	36.8			12.2	5.4			
•	8.1	9.5			_ 10,0				
		19	74		33	41	74		
Total	, 55		100.0	٠	44.6	55.4	100.0		
	74.3	25.7	100.0	4					
	Chi Squ	aro 31	1.92		' Chi S	quare	21.28		
			3		. áf	-	3		
	df	1	-		Ī.	•	. 54		
-	V Signifi	<u>\</u>	.66 9001	. · · ·	Simi	ficance	.0001		

Interview Data Analyses: Moles - Problem 2 Teaching Strategies

2

2

	•				•	- •				
Teaching		roach Tau		Arith	metic Ap			d Inform Generat	ed	
Strategy	<u></u>	$\frac{1}{1}$	Total	0	1	Total	0	1	Total	
				, ,	5	20	14	6	20	
	11	9	20	15	25.0	27.0	70.0	30.0	27.0	ļ
Factor-	55.0	45.0	27.0	75.0		27.0	22.2	54.5		
Labe1	18.6	60.0		33.3	17.2		18.9	8.1	-	
	14.9	12.2		20.3	6.8		10.9	0.1		
	17	0	17	11	6	17	15	2	17	
	100.0	0 0	23.0	64.7	35.3	23.0	88.2	11.8	23.0	
•	28.2	0	2010	24.4	20.7		23.8	18.2	X.	
Analogy	23.0	0		14.9	8.1		20.3	2.7		
· •	24	0	24	8	16	24	24	0	24	
۸	100.0	Õ	32.4	33.3	66.7	32.4	100.0	0	32.4	
. .	40.7	Ŭ		17.8	55.2	•	38.1	0		
Diagram	32.4	0		10.8	21.6		32.4	0		
	-	4	17	11	`2	13	10	3	. 13	
×	»	6	13		15.4	17.6	76.9	23.1	17.6	
	53.8	46.2	17.6	84.6	6.9	1/.0	15.9	27.3		
Proportion	1.9	40.0		24.4	2.7		13.5	4.1	,	
-	9.5	8.1	•	14.9	2.1		13.5	7.4		
Tetal	59	15	74	45	29	74	63	11	74	
Total	79.7	20.3	100.0	60.8	39.2	100.0	85.1	14.9	100.0	
	Chi	Square	23.38	Chi	Square	12.49	Chi	Square	8.63	
,	df	Cycles C	3	df		3	df		3	
	V		.56	v~		.41	v		.34	
l	•	ificance	< .0001		nificance		Sig	nificance	e .03	
<u>i</u>	orgn	2 - 1 - U - U					•			

١

Interview Data Analyses: Moles - Problem 3 Teaching Strategies

.

357

•

Table 19

,

۸

1

1

1

а

Teaching		Appr	oach Tau	ught			Arithmetic Approach						
Strategy	0		2	3	Total	. 0	1	2	3	Total			
	5 ^a 25.0 ^b 9.6 ^c	4	- 5	6	20	12	2	3	5	20			
	25 0 b	4 20.0	25.0	30.0	27.0	60.0	10.0	15.0	15.0	27.0			
P 1-1-1	23.0 0 4 C	103.0	55.6	66.7	(53.8) ^e	52.2	20.0	16.7	15.0	(25.9)			
Fac or-Label	9.6 c 6.8 d	5.4	55.0 6.8	8.1	()	16.2	2.7	4.1	4.1				
	0.0	J.4	0.0	U # #									
	17	0	0	0	17	4	2	6	5	17			
	100.0	0 0	Õ	Õ	23.0	23.5	11.8	35.3	29.4	23.0			
Analogy	32.7	0	Õ	Ũ	(26.5)	17.4	20.0	33.3	21.7	(39.7)			
	23.0	Ő	0	0		5.4	2.7	8.1	6.8				
ų		-	•					_	1-	24			
	24	0	0	0	24	0	4	7	15				
	100.0	0	0	Ú	32.4	0	16.7	29.2	54.2	32.4			
Diagram	46.2	0	0	Û	(26.5)	0	40.0	38.9	56.5	(51.3)			
	32.4	0	0	U	,	0	5.4	9.5	17.0				
•		^	4	3	13	7	2	2	2	13			
	6	0	4 70 9	23.1	17.6	53.8	15.4	15.4	15.4	17.6			
	46.2	0	30.8	23.1 33.3	(47.2)	30.4	20.0	11.1	8.7	(27.1)			
Proportion	11.5	0	44.4	55.5 4.1	(*****)	9.5	2.7	2.7	2				
·	8.1	0	54	4.1		2.3	2						
Total	52	4	9	9	-4	23	10	18	23	74			
IULAI	70.3	5.4	12.2	12.2	100.0	31.1	13.5	24.3	31.1	100.0			
	10.5	J • T											
		1011 (7) *	Con-	38.10		-	KW Chi S	Square	20.49				
			Square				df	mun v	20 . 43				
		df Simifi	icono-	9 1001. >			Signifi	cance	.0001				
		Signifi		· .(UUI									
aCount					\								
bRow percenta	age												
Column perce					``								
d _{Total} perce	nt ige		1		x	353							
Mean rank	1				1	000							
0													

Interview Data Analyses: Moles - Total Teaching Strategies

Teaching		Nonsyst	emmatic A	pproach			ed Inform		t Generated
Strategy	0	1	2	3	Total	0	1	2	Total
	16	2	. 2	0	20	9	9	2	20
	80.0	10.0	10.0	Ō	27.0	45.0	45.0	10.0	27.0
Factor-Label	30.8	15.4	33.3	0	(33.9)	17.0	52.9	50.0	(47.3)
ructor most	21.6	2.7	2.7	0		12.2	12.2	2.7	
	8	5	2	2	17	14	2	1	17
	47.1	29.4	11.8	11.8	23.0	82.4	11.8	5.9	23.0
Analogy	15.4	38.5	33.3	66.7	(46.5)	26.4	11.8	25.0	(33.8)
Allalogy	10.8	5.8	2.7	2.7	(,	18.9	2.7	1.4	
	16	6	2	0	⁻ 24	22	2	0	24
	66.7	25.0	8.3	Õ	32.4	91.7	8.3	0	32.4
Diagram	30.8	46.2	33.3	Õ	(38.1)	41.5	11.8	0	(29.9)
Diagram	21.6	8.1	2.7	Ő	()	29.7	2.7	0	
	12	0	0	1	13	8	4	1	13 •
	92.3	0	0	7.7	17.6	61.5	30.8	7.7	17.6
Proportion	23.1	0	0	33.3	(30.1)	15.1	23.5	25.0	(41.3)
Froporcion	16.2	0	õ	1.4	()	10.8	5.4	1.4	
	- 52	13	6	3	74	53	17	4	74
Total	70.3	17.6	8.1	4.1	100.0	71.6	23.0	5.4	100.0
		df	i Square ficance	7.84 9 .05		C	(W Chi Squ lf Significa		2.96 6 005

4

٢

Interview Data Analyses: Moles - Total Teaching Strategies

.

Teaching		Approach Taugh	t	Ar	ithmetic App	roach
Strategy	0	1	Total	0	1	Total
	1	13	14	13	1	14
	7.1	92.9	21.9	92.9	7.1	21.9
Factor-Label	2.6	50.0	نه ه له منه	40.6	3.1	
actor-Laber	1.6	20.3		20.3	1.6	,
	1.0	20.5		2010		
	18	0	18	1	17	18
1	100.0	Ő	28.1	5.6	. 94.4	28.1
Analogy	47.4	õ		3.1	53.1	
VIALOGY	28.1	0 0		1.6	26.6	
	20.1	Ũ				
	16	0	16	4	12	16
	100.0	Õ	25.0	25.0	75.0	25.0
	42.1	0	2310	12.5	37.5	
Di agra m	25.0	Õ		6.3	18.8	
•	23.0	U				٤
	3	13	16	14	2	16
	18.8	81.3	25.0	87.5	12.5	25.0
monortion	7.9	50.0	2010	43.8	6.3	
Proportion	4.7	20.3		21.9	3.1	
ð	4./	20.5				
To ta l	38	26	64	32	32	64
IUCAL	59.4	40.6	100.0	50.0	50.0	100.0
	55.4	,		1	-	
		Chi Square	50.05	C	hi Square	37.51
			3		lf	3
		df V	.888	V	1	.76
		Significance	<.0001	Ś	Significance	<.0001

Interview Data Analyses: Gas Laws - Problem 1 Teaching Strategies

•

Table 200

(

۰ n

Table 20	1
----------	---

eaching	Appa	roach Ta	ught	Arith	metic A	pproach		thmic S	trategy	Algorit	tlmic Re	asoning Total
trategy	0	1	Total	0	1	Total	. 0	1	Total			10 tal
	1	13	14	14	0	14	9	5	14	6	8	14
	7.1	92.9	21.9	100.0	0	21.9	64.3	35.7	21.9	42.9	57.1	21.9
Factor-Label	2.6	50.0	0210	42.4	Ō		25.0	17.9		16.7	28.6	
	1.6	20.3		21.9	0		14.1	7.8		9.4	12,5	
•			10	2	16	18	10	8	18	10	8	18
	18	0	18	2	16 88.9	28.1	55.6	44.4	28.1	55.6	44.4	28.1
A	100.0	0	28.1	11.1	51.6	20.1	27.8	28.6	2012	27.8	28.6	
Analogy	47.4	0		6.1			15.6	12.5		15.6	12.5	
	28.1	0		3.1	25.0		13.0	12.5		2000		
	16	0	16	3	13	16	· 13	3	16	6	10	16
	100.0	0	25.0	18.8	81.3	25.0	81.3	18.8	25.0	37.5	62.5	25.0
Diagram	42.1	0	23.0	9.1	41.9		36.1	10.7		16.7	35.7	
Diagian	25.0	0		4.7	20.3		20.3	4.7		9.4	15.6	
	23.0	0			20.0							1.(
	3	13	16	14	2	16	4	12	16	14	2	16
	18.8	81.3	25.0	87.5	12.5	25.0	25.0	75.0	25.0	87.5	12.5	25.0
Proportion	7.9	50.0	2010	42.4	6.5		11.1	42.9		38.9	7.1	
roporcion	4.7	20.3		21.9	3.1		6.3	18.8	4	21.9	3.1	
T . 1	-	24	<i>(</i>)	77	31	64	⁰ 36	28	64	36	28	64
Total	38	26	64	53		100.0	56.3	43.8	100.0	56.3	43.8	100.0
	59.4	40.6	100.0	51 6	48.4	100.0	20.2	45.0	100.0			
	i						a .'	, Carran -	10 70	Ch	i Square	9.66
		i Square	50.05		i Squar	e 40.12	Chi	Square	10.78 3	df		3
	df		3	df		3	df			V	•	.39
	V		.88	V		.79	• V	• • • • • • • •	.41	V Ci	gnifican	-
	Sig	mifican	ce<.0001	Sig	gnifica	nce < 0001	Sig	nificanc	e .01	- 21	RUTTICON	

Interview Data Analyses: Gas Laws - Problem 2 Teaching Strategies

~ ^

362 ş

1

· ·.

Teaching	Annr	oach Tau	oht	Arit	hmetic App	roach
Strategy	- 0	1	Total	0	1	Total
				1.4	0	14
~	9	5	14	• 14	0	21.9
	64.3	35.7	21.9	10 0.0	0	21.9
Factor-Label	16.1	62.5		28.6	0	
ractor moet	14.1	7.8		21.9	0	
	17	1	18	11	7.	18
	94.4	5.6	28.1	61.1	38.9	28.1
	30.4	12.5	2012	22.4	46.7	
Analogy	30.4 26.6	1.6		17.2	10.9	
	20.0	1.0		_ , , , _		
	16	Û	16	10	б	16
		, O	25.0	62.5	37.5	25.0
	100.0	0	23.0	20.4	40.0	
Diagram	28.0	0 0		15.6	9.4	
	25.0	U		1510	211	
	14	2	16	14	2	16
, _	87.5	12.5	25.0	87.5	12.5	25.0
°		25.0	23.0	28.6 -		
Proportion	25.0	3.1		21.9	3.1	
,	21.9	5.1				
	56	8	64	49	15	64
Total	87.5	12.5	100.0	70.0	25.4	100.0
	8/.3	16.3	100.0	,		
	(hi	Square	9.98	Chi	Square	9.51
	df	oquare	3	df	•	3
	V		. 39	v v		.38
		ificance	.02	-	nificance	.02

٠.

٠,

Interview Data Analyses: Gas Laws - Problem 3 Teaching Strategies

.

365

~

Table	203
-------	-----

--

•

•

		T- Compet	ion Constant		Comments a	bout Solut	ion	
Teaching		Informat.	ion Generated Total		1	2	Total	
<u>Strategy</u>	0							_
	14	0	14	1	10	3	14	
	100.0	Õ	21.9	7.1	71.4	21:4	21.9	
Restant tabal	23.7	Õ		6.7	22 .7	60.0	(40.6)	
Factor-Label	21.9	Ŭ		1.6		4.7		
	21.7	v		P • • •				
	17	1	18	5	12	1	18	
	94.4	5.6	28.1	27.8	66.7	5.6	28.1	
Sec. 1	28.8	20.0		33.3		20.0	(30.7)	
Analogy	26.0	1.6		7.8		1.6		
	20.0	1.0						
	12	4	16	7	9	υ	16	
	75.0	25.0	25.0	43.8	56.3	0	25.0	
D .	20.3	80.0		46.7		0	(24.6)	
Diagram	18.8	6.3		10.9		0		
	10.0	0.5						
	16	0	16	2	13	1	16	
	100.0	0 0	25.0	12.5		6.3	25.0	
-	27.1	0	23.0	13.3		20.0	(35.3)	
Proportion	25.0	Ċ		3.1		1.6		
	23.0	U	}					
1	59	5	64	15	44	5	64	
Total	92.2	7.8	100.0	23.4		7.8	100.0	
	56.6	/.0	100.0					F
	Chi	Square	9.23		KW C	hi Square 🤅	9.23	
		Square	3	o	df		6	
	df V		. 38		Sign	ificanc e	.03	
		ificance	.03		•			
	5181			,			•	

ŧ

ø

Interview Data Analyses: Gas Laws - Problem 3 Teaching Strategies

Tab1e 204

Teaching		Approa	ch Taugh	t			Arith	metic A		Total
Strategy	0	-1	2	3	Total	0	1	2	3	10121
		- 1	9	4	14	13	1	0	0	14
	0	1	9 64.3	28.6	21.9	92.9	7.1	0	0	21.9
Factor-Label	0	7.1	50.0	66.7	(52.1)	43.3	33.3*	0	0	(16.7)
ractor-Laber	0	$\begin{array}{c} 16.7 \\ 1.6 \end{array}$	14.1	6.3	(52.1)	20.3	1.6	0	0	
	0	1.0	14.1	0.5						
	17	1	0	0	18	1	1	9	7	18
	17	5.6	0	ð	28.1	5.6	5.6	50.0	58.9	28.1
	94.4	16.7	0	0	(18.6)	3.3	33.3	50.0	53.8	(46.4)
Analogy	50.0 26.6	1.6	0	Ŭ	(1010)	1.6	1.6	14.1	10.9	
Mialogy	20.0	1.0	U	Ū						
	16	0	e	0	16	3	1	6	6	16
		0	0	0 0	25.0	18.8	6.3	37.5	57.5	25.0
Diagram	100.0 47.1	0	Ő	Ũ	(17.5)	· 10.0	33.3	33.3	16.2	(42.6)
Diagian		0	0 0	งั	()	4.7	` 1.6	9.4	9.4	
	25.0	0	U	Ŭ						
	1	4	9	2	16	13	0	3	0	16
	1 6.3	25.0	59.3	12.5	25.0	81.3	0	18.8	0	25.0
Proportion	2.9	66.7	50.0	33.3	(46.0)	43.3	0	16.7	0	(20.6)
11000101000	1.6	6.3	14.1	3.1		20.3	Q	4.7	0	
	1.0	0.5	1				-		_	
Total	34	6	18	6	64	30	3	18	13	64
10002	53.1	9.4	28.1	9.4	100.0	46.9	4.7	28.1	20.3	100.0
	55.1	2.1								
		,	KW Chi So	ularo 5	5.58		KW	Chi Squ	uare 36	5.34
			KW Chi So 1f	quare J.	9	,	df			9
			n Significa	mca (0001		Si	gnifica	nce <.(0001

Interview Data Analyse's: Jas Laws - Total Teaching Strategies

1

365

ę

Table	205
-------	-----

.

Teaching		Alcorith	mic Stra	ategy On	ly ·		orithmic	Reason		tegy	Misappli	ies Info	Generated Total	•
Strategy _	-0	1	2	3	Total	0	1	2	3	Total		1	10041	
Factor- Label	7 50.0 25.9 10.9	2 14.3 20.0 3.1	4 28.6 19.0 6.3	1 7.1 16.7 1.6	14 21.9 (29.8)	5 35.7 16.7 7.8	3 21.4 30.0 4.7	4 28.6 25.0 6.3	2 14.3 25.0 3.1	14 21.9 (35.6)	14 100.0 24.1 21.9	0 0 0 0	14 21.9 (29.5)	
Analogy	6 33.3 22.2 9.4	5 27.8 50.0 7.8	6 33.3 28.6 9.4	1 5.6 16.7 1.6	18 28.1 (33.1)	7 38.9 23.3 10.9	3 16.7 30.0 4.7	6 33.3 37.5 9.4	2 11.1 25.0 3.1	18 28.1 (34.8)	17 94.4 29.3 26.6	1 5.6 16.7 1.6	18 28.1 (31.3)	
Diagram	11 68.3 40.7 17.2	1 0.5 10.0 1.6	3 18.8 14.3 4.7	1 6.3 10.7 1.6	16 25.0 (24.5)	0 37.5 20.0 19.4	2 12.5 20.0 3.1	4 25.0 25.0 6.3	4 25.0 50.0 6.3	16 25.0 (37.5)	11 68.8 ,19.0 17.2	5 31.3 83.3 7.8	16 25.0 (39.5)	
Proportion	3 18.8 11.1 4.7	2 12.5 20.0 3.1	8 50.0 38.1 12.5	3 18.8 50.0 4.7	16 25.0 (42.2)	12 75.0 40.0 18.8	2 12.5 20.0 3.1	2 12.5 12.5 3.1	0 0 0 - 0	16 25.0 (22.1)	16 100.0 27.6 25.0	0 0 0 0	16 25.0 (29.5)	
Total	27 42.2	10 15.6	21 32.8	6 9.4	64 100.0	30 46.9	10 15.6	16 25.0	8 12.5	64 100.0	5 8 90.6	6 9.4	64 100.0	
		df	hi Squan Nificance	9			df	/Chi Squ gnifica		.77 9 .05	df	V Chi Squ E Ignifican	3	

Interview Data Analyses: Gas Laws - Total Teaching Strategies

311

9

ø

÷ 367

Teaching	Ann	roach Taugl	nt.		Arith	metic App	proach		emmatic A	pproacn	
Strategy			Total		0	1	Total	0	1	Total	
		11	19		, 14	5	19	17	2	19	
,	8	11			73.7	26.3	28.8	89.5	10.5	28.8	
1	42.1	57.9	28 .8 "		34.1	20.0		30.9	18.2		
Factor-Label	18.2	50.0			34.1 21 2		٠	25.8	3.0		
	12.1	16.7			21.2	7.6		23.0	5.0		
1	15	0	15		6	9	15	9	· 6	15	
ĺ			22.7		40.0	60.0	22.7	60.0	40.0	22.7	
\	100.0	0	22.1		14.6	36.0		16.4	54.5		
Analogy	34.1	* 0			9.1	13.6		13.6	9.1		
	22.7	0	•		9.1	13.0		10.00		•	
	17	0	17		7	<i>'</i> 10	17	15 ·	2	17	
		0	25.8	f	41.2	58.8	25.8	88.2	11.8	25.8	•
	100.0	0	23.0		17.1	40.0		27.3	18.2		
Diagram	38.6	0			10.6	15.2		22.7	3.0		
	25.8	U			10.0	10			-		
-	1 4	11	. 15		14	1	15	14	1	15	
		73.3	22.7		93.3	6.7	22.7	93.3	6.7	22.7	
_	26.7	50.0	22		34.1	4.0		25.5	9.1	¢	
Proportion	9.1 6.1				21.2	1.5		21.2	1.5		
	0.1	16.7									
	44	22	66		41	25	66	55	11	66	
Total	66.7	33.3	100.0		62.1	37.9	100.0	83.3	16.7	100.0	
	00.7	55.5	100.0		•-•-						
	Chi \Squ	uare 3	31.96		Chi Sq	uare	13.58	Chi Sq	uare	7.77	
	df		•3		df		3	df	4	3	
	v		.69		v		.45	V		.34	
	Signif	icance <	.0001		Signif	icance	.004	Signif	icance	- . 05	

Interview Data Analyses: Stoichiometry - Problem 1 Teaching Strategies Ø

Table 206

1

__

6

Interview	Data Anal	yses:	Stoichiometry	-	Problem 1
	Teachin	ig Stra	tegies-		

Teaching	<u>. `o</u> .	Answer Giv						
Stragegy	0							
	18	· 1	1 9	-				
	94.	5.3	28.8					•
Factor-Label	31.0	12.5						*
Tactor most	27.3	1.5		,				
	15	. 0	15	•			1 '	
•	100.0	Õ	, 15 22.7					•
Analogy	25.9	Ō						
Maiogy	22	Ō		•				
	12	5	17		10			ζ.
	70.6	29.4	25.8					
Diagram	20.7	62.5		يواهمي				
Diagram	18.2	7.6						
	13	2	15				, J	
	13 86.7	13.3	22.7					
Proportion `	22.1	25.0						
	19.7	3.0						•
Total	58	8	66		•			
Iotai	87.9	12.1	100.0			~		
	Chi Sc	mare	7.70					
	df		3					
	df V	,	. 34		•			
		ficance	.05					

.

Table 20

Interview Data Analyses: Stoichiometry - Problem 2 Teaching Strategies

Teaching Strategy	Systemmatic Approach			Approach Taught			Arithmetic Approach		
	0		Total	0		Total	0	1	Tota
	3	16	19	7	12	• 19 ·	15	4	1
<u></u>	15.8	84.2	28.8	36.8	63.2	28.8	78.9	21.1	2 8.
- 1 1	15.0	34.8		18.4	42.9		31.3	22.2	
Factor-Label	4.5	24.2		10.6	18.2		22.7	6.1	
L	9	6	15	15	0	15	9	6	
ar Fr	60.0	40.0	22.7	100.0	Ó	22.7	60.0	40.0	, 2 2
	45.0	13.0	.	39.5	Ő		18.8	33.3	
nalogy	13.6	9.1		22.7	0		13.6	9.1	
	7	10	17	15	2	17	9	8	
	41.2	58.8	25.8	88.2	11.8	25.8	52.9	47.1	25
	35.0	21.7		39.5	7.1		18.8	44.4	
Diagram	10.6	15.2		22.7	3.0		13.6	12.1	
	1	14	` 15	1	14	15	15	0	_
	6.7	93.3	22.7	6.7	93.3	22.7	100.0	0	2
	5.0	30.4	_ · ·	2.6	50.0		31.3	0	
Proportion	1.5	21.2		1.5	21.2		22.7	0	
	20	46	· · 60	38	28	66	48	18	
Total	30.3	69.7	100.0	57.6	42.4	100.0	72.7	27.3	10
ír	Chi Square		13.08	Chi So	luare	36.85	Chi Square		10
	df		3	df	•	3	df		
27	df V Significance		.44	V `	.75		∖V Significance		
			.005	Significance		< .0001			

. . .

37

Table 209

٩

eaching	Nonsystemmatic Approach_			No Answer Given			
Strategy			Total	0	1	Total	
		- 1	10	° 18	1	19	
-	17	2	19	94.7	5.3	28.8	
	89.5	10.5	22.8			20.0	
actor-Label	30.9	18.2		31.6	11.1		
	25.8	3.0		27.3	1.5		
	9	6	15	12	3	15	
	60.0	40.0	22.7	80.0	20.0	22.7	
	16.4	54.5		21.1	33.3		
nalogy	13.6	9.1		18.2	4.5		
	15.0	211					
	`15	2	17	12	5	17	
	88.2	11.8	25.8	70.6	29.4	25.8	
i o amom	27.3	18.2	-	21.1	55.6		
iagram	22.7	3.0		18.2	7.6		
		_		15	0	15	
	14	1	15	15	0		
· ·	93.3	6.7	22.7	100.0	0	22.7	
oportion	25.5	9.1		26.3	0		
- r	21.2	1.5		22.7	0		
	55	11	66	. 57	9	66	
otal	83.3	16.7	100.0	86.4	13.6	100.0	
	0010						
	Chi Sq uar e		7.77	Chi Square		7.61	
	df	-	3	df		3	
1	v		.34	V		.34	
ł	Sign	ificance	.05	` Signi	ficance	.05	

/

Interview Data Analyses: Stoichiometry - Problem 2 Teaching Strategies

ب ب

Interview Data Analyses: Stoichiometry - Problem 3 Teaching Strategies

Teaching	ADD	Approach Taught				Arithmetic Approach			
Strategy	0	1	Total		0	1	Total	`	
	11	8	19		15	4	, 19	٠	
	57.9	42.1	28.8		78.9	21.1	28.8		
	22.4	47.1	20.0		29.4	26.7	2010		
Factor-Label	16.7	12.1			22.7	6.1			
	10.7	16.1				011	÷	•	
	15	0	15		11	4	15		
	100.0	Ō	22.7		73.3	26.7	22.7		
Analogy	30.6	Ō			21.6	26.7			
Analogy	22.7	0			16.7	6.1			
						_	• • • •	·	
Diagram	16	1	17		10	7	· 17		
	94.1	5.9	25.8		58.8	41.2	25.8	•	
	32.7	5.9		•	19.6	46.7			
	24.2	1.5			15.2	10.6			
P roportion	7	8	15		15 ,	. 0	15	~	
	46.7	53.3	22.7		100.0	0	22.7 -		
	14.3	47 .1			29.4	0	•		
	۵ 10.6	.12.1			22.7	0			
Total	. 49	17	66		51 .	. 15	66		
	74.2	25.8	100.0		77 .3 °	22.7	100.0		
	/ + • •	2010	20000						
	Chi S	quare	17.34		Chi Sq	uare	7.87		
	d f V	•	3	,	df V		3		
			.51		•		.'34		
	· Signi	ficance	.0006		Signif	icance	.05		
	i i						1		
		•		375					
				010					

ERIC Full Text Provided by ERIC

e

IGOIC	Table	211
-------	-------	-----

٠,				· · · · ·					
Teaching •	Nonsys	temmalic	Approach	Tri	Use of Random Trial and Error				
Strategy	0	<u> </u>	<u>Total</u>	0		Total			<u> </u>
	18 .	1	19	. 17	2	19			
	94.7	5.3	28.8	89.5	10.5	28.8			
Feater Ishal	32.7	9.1		33.3	13.3				
Factor-Label	27.3	. 1.5		25.8	3.0				
•	8	7	° 15	7	8	15			
-	53.3	46.7	22.7	46.7	53.3	22.7			
Analom	14.5	63.6		13.7	53.3				
Analogy	12.1	10.6		10.6	12.1			•	
	15	2	17	14	3	17			
	88.2	11.8	25:8	82.4	17.6	25.8			
Diagram	27.3	18.2		27.5	20.0				
Diagram ·	22.7	3.0		21.2	4.5				•
	. 14	1	15	. 13	2	ĺ5			
	93.3	6.7	22.7	86.7	13.3	· 22.7			
Proport 10n	25.5	9.1		25.5	13.3				
rioportion	21.2	1.5		19.7	3.0				
To ta l	55	11	. 66	、 51	15	66			
IULAI	83.3	16.7	100.0	77.3	22.7	100.0	*		
	Chi S	quare	12.87		Square	10.61			
,	df	•	3	dť	X	3			,
	v		.44	V		.40			
	Sioni	ficance	.005	Sig	nificance	e.01	•		

374

Interview Data Analyses: Stoichiometry - Problem 3 Teaching Strategies

۵

•

ø

ERIC

Teaching		Арр	roach Tau	ght	,		Arit	hmetic.Ap		
Strategy	0	1	2	3	Total	0	1	2	3	Total
·	•7	1	3	8	19	12	4	0	. 3	19
	36.8	5.3	15.8	42.1	28.8	63.2	21.1	0	15.8	28.8
Factor-Label	18.4	20.0	42.9	50.0	(41.4)	30.8	40.0	0	21.4	(31.4)
ractor - Laber	10.6	1.5	4.5	12.1	· · ·	18.2	6.1	0	4.5	
^	15	0	0	0	15	6	3	2	4	15
	100.0	Õ	0	Ō	15 22.7	40.0	20.0	13.3	26.7.	22.7
Malom	. 39.5	Ō	Ō	Ō	(19.5)	15.‡	30.0	6 6. 7	28.6	(39.6)
Analogy	22.7	0	0	0	. ,	9.1	4.5	3.0	6.1	-
	15	1.	1	0 .	17 ₁	7	2	1	. 7	° ∕ 17
	88.2	5.9	5.9	į 0	25.8	41.2	11.8	5.9	41.2	25.8
Diagram	39.5	20.0	14.3	Û	(22.4)	17.9	20.0	33.3	50.0	(41.0)
Diagi 4	22.7	1.5	1.5	0	l l	10.6	3.0	1.5	10.6	
	1	3	3	8	1 5 [·]	. 14	1	0	Ó O	15
	6.7	20.0	20.0	53.3	22.7	93.3	6.7	0	0	22.7
P roportion	2.6	60.0	42.9	50.0	(50.1)	35.9	10.0	0	0	(21 .6)
Proporcion	1.5	4.5	4.5.	12.1	•	21.2	1.5	- 0	0	
Total	38	5	7	16	6 6	39	10	3	14	66
Iotal	57.6	7.6	10.6	24.2	100.0	.59.1	15.2	4.5	21.2	100.0
		KW CH	ni Square	35.4	43		KW Cł	ni Square	12.85	
		df			9		df	٥	9	
			ficance	< .00	01		Signi	ificance	.005	

æ

۵

Interview Data Analyses: Stoichiometry - Total · · · Teaching Strategies

Table 212

Table	213	Ŋ
-------	-----	---

.

0

•			· · · · ·	mmach	•	F	Use of Ra	ndom Tri	al and Er	ror	
Teaching		Nonsyste	emmatic A	<u>sproacn</u>	Total	0	1	2	3	Total	
Strategy	0		<u> </u>		10001	P					
•	16	, 1	2	Ο	19	14	1	4	0	19	•
- •	16		·10.5	0	28.8	73.7	5.3	21.1	0	28.8	ŧ
J	84.2	5.3		0	(29.2)	32.6	9.1	66.7	0	(30.9)	
actor-Label	34.0	10.0	50.0		(20.2) ,	21.2	1.5	6.1	0		
-	24.2	1.5	3.0	0		21.2	110	•••	,		
			-		1 5	5	`4	2	4	15	
	6	3	2	4	15			13.3	26.7	22.7	
	40.0	20.0	13.3	26.7	22.7	33.3	26.7		66.7	(45.0)	
an al a mr	12.8	30.0	5,0.0	SO.0	(45.1)	11.6	36.4	33.3		(43.0)	
nalogy	9.1	4.5	3.0	6.1		7.6	6.1	3.0	. 6.1		
	3.1	T • J	2.3						_	. 7	
	1 -	7	0	1	17	13	3	0	1	17	
	13	3		5.0	25.8	76.5	17.6	0	5.9	25.8	,
	76.5	17.6	U			30.2	27.3	0	16.7	(29.2)	
Di a gram	27.7	30.0	0	20.0	(51.4)		4.5	0 0	1.5	. ,	
	19.7	4.5	0	1.5		19.7	4.3	ç	1.5		,
						. 11	• 3	0	1	15	
	12	3	0	0	15	· 11			6.7	22.7	
	80.0	20.0	0	0	22.7	73.3	20.0	0			
	25.5	30.0	U	0	(29.7)	25.6	27.3	0	16.7	(30.2)	
Proportion		4.5	õ	Ū		16.7	4.5	0	1.5		
•	18.2	4.5	U,	Ũ					•		
		10	,1	5	66	43	11	6	6	66	
Total	47	10	4	7.6	100.0	65.2	16.7	9.1	9.1	100.0	
	71.2	15.2	6.1	2.0	100.0	0012					
							KW (hi	Square	ગ.81		
		KW Chi	Square	11.30				Auto	9		
		df	-	9			df		. 02	•	
		Simif	Ficance	.01			Signit	icance	.02		

Interview Data Analyses: Stoichiometry - Total Teaching Strategies

ERIC 373

-

377

1

ţ

Interview Data Analyses: Molarity - Problem 1 Teaching Strategies

Teaching ,	Appr	oach Taugh	t		
Strategy	0	1	Total		/
,	7	8 -	15	¢ ·	
`	46.7	53.3	23.4		
		55.5 66.7	-3.4		
Factor-Label	13.5				
	10.9	12.5			
	· 19	0	19		
· -	100.0	0	29.7		
Analogy	36.5	Ō			
Alaiogy	29.7	Ō		<i>.</i> 3	
•	19	0	19		
•	100.0	0	29.7		
Diagram	36.5	0			
	29.7	0			
	0				
	7	4	11		
	63.6	36.4	17.2		
Proportion	13.5	33.3 -			
	10.9	6.3			
		•			
Total	52	12	64		
-	81.3	18.8	100.0		
、	Chi So df V Signi:	•	2.78 3 .60 0001		

Table 2	15
---------	----

Teaching Strategy	Appi	roach Taug	nt Total	<u>Arithmetic Approac</u>				
Juacey	V			;;	_	15		
•	8	7	15	. 10	5	15		
	53.3	46.7	23.4	66.7	33.3	• 23.4		
,Factor-	15.7	53.8		34.5	14.3			
Label	12.5	10.9		15.6	7.8	`		
				,	、 17	19		
	19	0 0	19	6	13	29.7		
• •	100.0	0 ~	29.7	31.6	68.4	29.1		
Analogy	37.3	0		20.7	37.1 20.3			
	29.7	. 0		9.4	20.5			
		ň	10	4	15	19		
	19	Ŭ	19. 20. 7	21.1	78.9	29.7		
	100.0	· Û	29.7	13.8	42.9	2000		
Diagram	37.3	0 0 ·		6.3	23.4			
	29.7	0		015				
	5	6	· 11	9	2	11		
	45.5	54.5	17.2	81.8	18.2	17.2		
	43.5 9.8	46.2	1/.0	- 31.0	5.7			
Proportion	7.8	9.4		14.1	3.1	0		
	7.0	5.4	,	,				
T 1	51	13	64 ,	29	35	64		
Total ·	79.7	20.3	100.0	45.3	54. 7	100.0		
				•		- , , ,		
	Chi S	Square	24.09		Square	14.63		
	df .	-	3	df		3.		
	V •	-	.61	. V		.48		
	Signi	iiicance	<.0001	Sigr	nificance	.002		

•

Interview Data Analyses: Molarity - Problem 2 Teaching Strategies

Table 216

Teaching	App	roach Ta	ught	Arit	nmetic /	pp1h	Nonsy	stemmatic	Approach Total	·
Strategy		·	Total	0	1	Total	<u>, 0</u>	<u>I</u>	10 ca1	
	6	9	°15	. 13	2	15	15	0	15	
	[•] 40.0	60.0	23.4	86.7	13.3	23.4	- 10 0.0	. 0.	23.4	· ·
÷	11.8	69.2		29.5	10.0		27.3	° 0		
Factor-Label	9.4	14.1	,	20.3	3.1		23.4	0		S
•	19 、	• 0	19	11	8	19	13	6	19	
	100.0	0	29.7	57.9	42.1	29:7	68.4	31.6	29.7	
	37.3	0		25.0°	40.0		23.6	66.7	-	
Analogy ,	29.7	0		17.2	12.5		20.3	9.4	·	
	19	0	19	10	9	19	17	2	19	
	100.0	Ū	29.7	52.6	47.4	29.7	89.5	10.5	29.7	
	37.3	Ō		22.7	45.0		30.9	22.2	~	
Diagram	29.7	Ō		15.6	14.1	·	26.6	3.1		
	;	4	11	10	1	11	10	1	11	
	63.6	36.4	17.2	90.9	9.1	17.2	90.9	9.1	17.2	. ``
Description	13.7	30.8	_, , ,	22.7	5.0		18.2	11.1		
Proportion	10.9	6.3		15.6	1.6		• 15.6	1.6		•
T -	51	13	64	- 44	20	64	55	. 9	64	
Total	79.7	20.3	100.0	68.8	31. 5	100.0	85.9	14.1	100.0	
	Chi Sq	uare	26.03	Chi So	uare	8.09	• Chi	i Square	7.70	
	df .		3	df	•	3	df		3	•
4	V		.64	V		.35	V		.35	"
	Signif	icance <	< .0001	Signif	icance	.04	Sig	gnificance	.05	
		,	,	-					,	38
						Tr				
						,			-	•

Interview Data Analyses: Molarity - Problem - 3 Teaching Strategies

3:51)

ERIC Full Text Provided by ERIC

Table 217	
-----------	--

Interview	Data	Analyses:	Molarity	٠	Total
		aching Stra			

To ach ing			angeh To	ught				Arith	netic Ap	proach		R
Teaching Strategy	.	App1	oach Ta		Total		0	1	2	3	Total	
Factor- Label	4 26.7 9.1 6.3	4 26.7 50.0 6.3	1 6.7 16.7 1.6	6 40.0 100.0 9.4	15 23.4 (47.2)	- 3	8/ 3.3 8.1 2.5	2 13.3 22.2 3.1	4 26.7 21.1 6.3	1 6.7 6.7 1.6	15 23.4 (23.8)	
Analogy	19 100.0 43.2 29.7	0 0 0 0	0 0 0 0	0 0 0	19 . 29.7 (22.5)	2	5 6.3 3.8 7.8	-0 0 0 0 0	8 42.1 42.1 12.5	6 `31.6 40.0 9.4	19 29.7 (37.7)	4
Diagram	19 100.0 *43.2 29.7	, 0 , 0 , - 0		0 0 0 0	19 29.7 (22.5)	•	2 0.5 9.5 3.1	4 21.1 44.4 - 6 .3	5 26.3 26.3 7.8	8 42.1 53.3 12.5	19 29.7 (41.2)	
Proportion	$2 \\ 18.2 \\ 4.5 \\ 3.1$	4 36.4 50.0 6.3	5 45.5 83.3 7.8	0 0.* 0 0	11 17.2 (47.0)	2	6 4.5 8.6 9.4	3 27.3 33.3 4.7	2 18.2 10.5 3.1	0 0 0 0	11 17.2 (20.4)	、 、
Total ·	44 6848	8 12.5	6 9.4	5 9.1	64 100.0	3	21 2.8	9 • 14.1	19 29.7	15 23.4	64 100.0	· ·
		df	Square	. 9	<i>,</i>			df	i Square Ficance	/14.69 9 .002		·
``.`	•	<i>3</i> ,	•	/ •	۲.							· · · · · · · · · · · · · · · · · · ·

352

380

٤.

the method taught than students taught by the diagram or the analogy methods. Students may have forgotten the diagram or used the analogies covertly.

<u>Arithmetic approach</u>. Moles, all problems (Tables 195, 196, 197, 198), gas laws, all problems (Tables 200, 201, 202, 204), stoichiometry, all problems (Tables 206, 208, 210,212) and molarity, problems 2, 3, total(Tables 215, 216, 217). Students taught using the analogy and diagram methods used arithmetic instead of the approach taught.

Nonsystemmatic approach. Moles, total (Table 199), stoichiometry, all problems (Tables 206, 209, 211, 213), and molarity, problem 3 (Table 236). Students who used the analogy and diagrammatic methods were nonsystemmatic more frequently when solving moles problems. Students using the analogy method were nonsystemmatic more frequently solving stoichiometry problems and for molarity problem 3.

No answer given. Stoichiometry, problems 1, 2 (Tables 207, 209). Students who used the diagramic method gave no answers more frequently.

Algorithmic strategy. Gas laws, problem 2, total (Tables 201, 205). Students taught the proportional method used an algorithmic strategy more frequently.

Algorithmic/reasoning strategy. Gas laws, problem 2, total (Tables 201, 205). This strategy was used primarily by students taught by the analogy method and least by students taught by the proportionality methods.

Random trial and error. Stoichiometry, problem 3, total (Tables 211, 213). This strategy was used primarily by persons taught the analogy method.

<u>Misapplies information</u>. Gas laws, problem 3, total (Tables 203, 205). Students taught by the diagram method more frequently misapplied relevant information generated in previous steps.

Does not generate. Moles, problem 3, total (Tables 197, 199). Students who used the factor-label method more frequently did not generate information from

memory needed to solve the problem. The next most prevalent method was the proportionality method.

<u>Comments about solution</u>. Gas laws, problem 3 (Table 203). Students who used the factor-label method commented about the solution most frequently, whereas students who used the proportionality method commented least frequently. Hypothesis 5

There are no significant differences in chemistry problem solving strategies used by students who solved the problem correctly versus those who did not.

Data were analyzed according to whether the student gave a correct answer to the problem. Table 218 gives information on the number of students getting each problem correct. Table 219 summarizes the findings and Tables 220-282 give details when findings were significant.

<u>Reading/organizing</u>. Gas laws, problem 2 (Table 243). Generally students who got the problem correct used more of these skills. However, there was a group of students that used organizing skills frequently who missed the problems.

<u>Rereads or states</u>. Gas laws, problem 2 (Table 243) and stoichiometry, problem 2 (Table 256). Students who reread or restated the problem more frequently did not work the problem correctly.

Mneumonics. Gas laws, total (Table 250). In general, students who used mneumonic notation were more likely to get the problem correct.

Systemmatic approach. Moles, problems 1, 3, total (Tables 220, 230, 234) stoichiometry, all problems (Tables 252, 255, 259, 262) and molarity, problems 1, 3, total (Tables 265, 276, 279). Students who used a systemmatic approach more frequently got the problem correct.

Arithmetic approach. Moles, all problems, (Tables 220, 225, 230, 234), and molarity, problem 1 (Table 265). Students who got the problem correct more frequently used an arithmetic approach.

325

e

1

Table 218

Distribution of Students According

to Success on Problems

	Prob1	em 1	\ Probl	.em 2	Problem 3		
Unit	Correct	Incorrect	Correct	Incorrect	Correct	Incorrect	
Moles	39	35	35	39	12	62	
Gas Laws	29	35 -	」 17	47	2	62	
Stoichiometry	18	48	17	49	5	61	
Molarity	19	45	8	56	10	54	
					,		

326

(

Q

- :

380

		NO.				Gas	Laws		Problem Solved Correctly Stoichiometry					Molarity			
Protocol Categories	pla	P2 ^b	p3C	Td	P1	P2	P3	Г	P1	P2	P3	T	P1	P2	P3	Т	
Reading/Organizing						518 ^e .05 ^f									0	•	
Rereads or Statings						512 .03				533 .05				-			
Mneumonics		-						8.01 .05	•				-	L.			
rodúction																	
Systemmatic	16.72 <.0001		7.86 .005	15.37 .001	_				5.05 .02	5.12 .004	3.73 .05	16.38 .001	6.52 .01		8.35 .004	14.68 .002	
Approach Taught																	
Arithmetic	13.78	8.19 .004	9.61 .002	21 [.] .29 .0001									3.79 .05				
Nonsystemmatic	7.76		3	8.99 .03								٠			*	9.95 .02	
No Answer	3.92 .05											12.86 .005			4.53 .03	8.70 .03	
itrategy									-								
Algorithmic		5.51 .02		12.15 .007		*						8.49 .04	10.28	3.94 .05		19.12 .0003	
Alg/Reasoning	8.21 .004	18.24 <.0001	19.74 <.0001	41.02 <.0001	8.55 .004		4.29 .04	13.67 .003	14.87 .0001	20.26 50001	12.66 .0004	3 ⁻ .54 0001	38.87 <0001	15.43 .0001	3 0.97 <.0001	44.84 <.0001	
Random T & E	6.59 .01	4							~	4.57 .03							
tructural Error													.				
Misinterprets							7.37 .01										
Disregards given										•							
Disregards gen		3.98 .05									•		-				
Misapplies				•									4.02				
Not generate		4.84 .03		10.14 .02													

Table 219

Ø

.

,•

ERIC ^Afull East Provided by ERIC

387

383

•

۲

•

۰.

s

	· · ·	Moles					ficant Findings: Problem Cas Kaws			II SOLVED	Molarity						
,	Protocol Categories	, P1	P2	P3	T	. P1	P2	P3	T	P1	Stoich P2	P3	T	P1	P2	P3	T
	*Evaluation		-	_				33 .002								209 .04	
	*Comments about Solutio	n 1022 .0001	962 .0002	522 .01	22.75 <.0001	676 .003	`510 .02			648 .0004	648 .0001	227 .03	22.60	\$53 .02		435 .0004	13.77 .003
	* Executive Errors	780 .02	770 .03			682 .0002	561 .002		9.40 .02								
•	* Problems Correct	λ ⁱ	x	у	λ,	X	X	X	x	x	X	X	X	x	X	X	Χ.
	*Questions Correct	406 .002	471	2 34 .03	13.24 .004			14 .02		•				271 .001	78 .002	12:' .005	19.23 .0002
	*Question w/o Prompting	320 .0061	360 .0004	140 .0005	23.65 <.0001	307 .004	•		9.73 .02	283 .03	204 .001	62 .02	14.70 .002	279 .02	109 .02		10.17 .02
	<u>Structural Errors</u> Section ^h 1 - 1	x	x	x	x	11.4 .02	x	x	x	32.92 ≤.0001	x	x	x	24.64	X	x	x
	Section 1 - 2	x	x	X	x	29.75 <.0001	x	x	x	26.30 <.0001	λ	x	×.	39.49 <.0001	х	x	X
	Section 2 - 1	x	x	x	x	x		x	x	x	12.40 .002	x	x	x	25.68 .0003	x	x
	Section 2 - 2	x	x	x	x	x	2 9.76 <.0001	Х	x	X	42.81 .<.0001	x	x	x	13.36 .04	X	X
	Section 3 - 1	x	x	x	х	x	X		x	• X	X,		X	X	х	20.17 .01	x
	Section 3 - 2	x	x	x	x	x	х	19.96 .006	x	x	X		x	x	. x	38. 72 <.0001	x
	Section 3 - 3	x	x	x	X	x	x		X	x	X	27.0 <.000	5 X	x	X	30.29 <.0001	X
	*Category sum		e	Statist	ic												
	Problem 1		f	Probabi	lity lev	el				•	•						
	^b Problem 2		8	Sum of	rereads	and rest	ates sul	bc ate go:	ries								
	^C Problem 3		, h	Section	on supp	lementar	y codin	g sheet									
35.	C dSum of Problems 1,	2 & 3	i	Not mea	ningful									`			
))))	.)		-														
e IC		•															

Table 219 (continued)

.

.

٨

.

ΰ

328

Problems	System	matic Ap	oproach	Arith	metic_App	oroach	Nonsystemmatic Approach				
Correct	0	1	Total	0	î	Total	0	1	Total		
No .	14 ^{a} 40.0 ^b 100.0 ^c - 18.9 ^d	21 60.0 35.0 28.4	35 47.3	22 62.9 75.9 29.7	13 37.1 28.9 17.6	35 47.3	27 77.1 40.9 36.5	8 22.9 100.0 10.8	35 47.3		
Yes	0 0 0 0	39 100.0 65.0 52.7	39 52.7	7 17.9 24.1 9.5	32 82.1 71.1 43.2	39 52.7	39 100.0 59.1 52. ^{.7}	, 0 0 0 0	39 52.7		
Total	14 18.9	60 81.1	74 100.0	29 39.2	45 60.8	74 100.0	66 89.2	8 10.8	74 100.0		
·	df Phi	Square ificance	16.72 1 .510 <.0001	df Phi	Square	13.78 1 .460 .0002	df Phi	ficance	7.76 1 .307 .005		

. مەرب

Interview Data Analyses: Moles - Problem 1 Problem Solved Correctly

aCount ^bRow percentage ^CColumn percentage dTotal percentage

? -

Table 2	21
---------	----

5

i		o Answer	Given	Algori	thmic Reas Strategy	soning		lse of Ran rial and H	Error
Problems Correct	·	• 1	Total	-0	1	Total	0	1	Total
No	30 85.7 43.5 40.5	5 14.3 100.0 6.8	35 47.3	33 94.3 56.9 44.6	2 5.7 12.5 2.7	35 47.3	26 74.3 40.6 35.1	9 25.7 90.0 12.2	35 47.3
Yes	39 100.0 56.5 52.7	0 0 0 0	39 52.7	25 64.1 43.1 33.8	14 35.9 87.5 18.9	39 52.7	38 97.4 59.4 51.4	1 2.6 10.0 1.4	39 52.7
Total	69 93.2	5 6.8	74 100.0	58 78.4	16 21.ć	74 100.0	64 86.5	10 13.5	74 100.0
	Chi Sq df Phi Signif	juare ficance	3.92 1 .284 .05	df Phi	Square nificance	8.21 1 .366 .004	df Phi	Square ificance	6.59 1 .338 .01

Interview Data Analyses: Moles - Problem i Problem Solved Correctly

4

Table	222
-------	-----

く

11

Interview Data Analyses: Moles - Problem 1 Problem Solved Correctly

Problems	•	Commen	ts About S			Errors			
Correct		1	2	3 -	Total		0	1	Tota1
No ·	16 ^a 45.7 ^b 30.2 ^c 21 6 ^d	15 42.9 88.2 20.3	3 8.6 100.0 1.4	1 2.9 100.0 1.4	35 47.3 (47.2) e		30 85.7 43.5 40.5	5 14.5 100.0 6.8	35 47.3 (40.3)
Yes	37 94.9 6°.8 50.0	2 5.1 11.8 2.7	♥ 0 0 , 0 .	0 0 0	39 52.7 (28.8)	*i	39 100.0 56.5 52.7	0 0 0 0	39 52.7 (35.0)
Total	53 71.6	17 23.0	、 3 4.1	1 1.4	74 100.0		. 69 93.2	5 6.8	74 100.0
		Wilco: Z	Whitney U xon Rank S ficance		67	•	Wilco Z	Whitney U xon Rank ficance	J 780 Sum W 1410 2.43 .02

^aCount ^bRow percentage ^CColumn percentage ^dTotal percentage ^eMean rank

J

• `

Table 223 '.

Interview Data Analyses: Moles - Problem 1 , Problems Solved Correctly

Problems	• •	Que	estions (ι
Correct	2	3	4	5	6	Total			<u>. </u>	·	•	
		r	9 '	8	10	35			-			
	3	5				47.3						. ,
	8.6	14.3	25.7	22.9	28.6		(•
No	75.0	71.4	75.0	47.1	29.4	(29.6)	\mathbf{X}		•			
	4.1	6.8	12.2	10.8	13.5					•		
	· 1	n	7	9	24	39						
	1 A	5 1	נ יי	•	61.5	52.7						
*	2.6	5.1	7.7	23.1		(44.6)						- #
Yes	25.0	28.6	25.0	52.9	70.6	. (44.0)						
	1.4	2.7	4.1	12.2	32.4				-	,		
- · · ·		7	12 [°]	17	34	.74	•		, h			
To ta l	4	0 / .	16 2	23.0	45.9	100.0 -						
	5.4	9 . 5 ′	16.2	23.0	73.2	100.0				,		
	,	Mann	-Whitney	, U	406			-				
•		Wilc	oxon Ran	uk Sum W								
		Z			-3.18							
			ificance		.002			*				
		- -				•					-1	۲
					د						<u> </u>	

394

ł

Interview Data Analyses: Moles - Problem 1 Problems Solved Correctly ,*

.

>

٦

Problems	-		e								
Correct	0	<u> </u>	stions C 2	3	4	5	- 6	Total			<u> </u>
									٠		-
	2	· 4 ·	12	6	6	5	. 0	 ▲ 35 	F		
	5.7	11.4	34.3	17.1	17.1	14 3	0	47.3		•	
No	66.7	100.0	75.0	• 46.2	42.9	27.8	- 0	, (27.2)			
	2.7,	5.4	16.2	8.1	8.1	6.8	0	r			
•	,	•••							•	_	
	. 1	· n	4	7	8	13	5	39		•	• /
3	2.6	· 0	10.3	17.9	20.5	33.3	15.4	52.7			
		. 0	25.0	53.8	57.1	72.2	100.0	(46.8)	•	-	
Yes	33.3	0			10.8	17.6	8.1	(40.0)	1		•
	1.4	. 0	5.4	9.5	10.0	1/.0	0.1				
,	· _		· 10	. 17	14	(10	. 6	74			
Total	3	4	16	13	14	·18	-				,
	4.1	5.4	21.6	17.6	18.9	24.3	8.1	100.0			
	•	•		a 1		700		•			•
•		•		hitney		320	· .		•		
	•		Wilcox	on Rank	Sum W	950	•	•		,	
	•		Z			-3.99			-		
	·	•	Signif	Eicance		.0001.					
	•		,				•			۲.	

Problems		hmetic A	pproach		Algor Strate	gy On	1y	Algorithmic Reasoning Strategy 0 1 Total			
Correct	-0	<u> </u>	Total	U		1.2	<u> </u>		^		
No	 24 61.5 72.7 32.4	15 38.5 36.6 20.3	39 52.7	15 38.5 38.5 20.3	61 68	24 .5 .6 .4	39 52.7	35 89.7 71.4 47.3	4 10.3 16.0 5.4	39 52 _7	
Yes ,	9 25.7 27.3 12.2	26 74.3 63.4 35.1	35 47.3	24 68.6 61.5 32.4	31	11 .4 .4 .9	35 47.3	14 40.0 28.6 18.9	21 60.0 84.0 28.4	35 35 47.3	
Total	33 44.6	41 55.4	74 100.0	39 52.7		35 7.3	74 . 100.0	49 66.2	25 33.8	74 100.0	
¢	Chi Squ df Phi Signifi	icance	8.19 1 .30 .004	• df Phi	Square nifica		5.55 1 .30 .02	df Phi	Square ificance	18.24 1 .52 <.0001	

Interview Data Analyses: Moles - Problem 2 Problem Solved Correctly

390

.

Table 440	Tat	ble	226
-----------	-----	-----	-----

ç

Interview Data Analyses: Moles - Problem 2 Problem Solved Correctly

Problems		isregards rmation (; Generated		Needed Information Not Generated		
Correct		1	Total	-	- 0	1	Total
	33 84.6 48.5 44.g	6 15.4 100.0 8.1	39 52.7	£	30 76.9 46.9 40.5	9 23.1 90.0 12.2	39 52.7
Yes	35 100.0 51.5 47.3	。0 0 0 0	35 47.3		34 97.1 53.1 ↓ 45.9	1 2.9 10.0 1.4	35 47.3
Total	68 91.9	6 8.1	74 190.0		. 64 86.5	$10 \\ 13.5$	74 100.0
•	Chi Sq df Fhi Signif	uare , Ticance	3.98 1 .28 .05		df Phi	quare ficance	4.84 1 .29 .03

397

<u>,</u>

ė,

5-1

٥

ŝ

Ta	b le	227

,

roblems	C	omments A	bout Solu	tion	<u>E</u>	xecutive Er	rors
Correct	0	1	2	Total	0	1	Total
No	19 48.7 38.0	~ 16 41.0 80.0	4 10.3 100.0	39 52.7 (44.7)	87.2 49.3 45.9	5 12.8 100.0 6.8	39 52.7 (39.7)
Yes	25.7 31 88.6 62.0 41.9	21:6 4 11.4 20.0 5.4	5.4 0 0 0	35 47.3 (29.5)	43.3 35 100.0 50.7 47.3	✓ 0 ✓ 0 0 0 0	35 47.3 (35.0)
Total		20 27.0	4 5.4	74 100.0	69 93.2	5 6.8	74 100.0
	Wil Z	n-Whitney coxon Rank nificance	sum W	962 1035 3.70 0002	Wilcox Z	hitney U on Rank Sur icance	770 m W 1225 2.18 .03

Interview Data Analyses: Moles - Problem 2 Problem Solved Correctly

393

,

0

c

Interview Data Analyses:	Moles - Problem 2
Problems Solved	
,	

Problems			Questio	ons Correc	:t			
Correct	2	3	4	5	6	Total		
	4 -	~ 5	8	8	14	39		
•	10.3	12.8	20.5	20.5	35.9	52.?		
No	10.5	71.4	66.7	47.1	41.2	(32.1)		
.vO	5.4	6.8	10.8	10.8	18.9	()		
e	5.4	0.0	1010	100-				
	0	2	4	9	20	35		
	Ő	5.7	33.3	25.7	57.1	47.3		
Yes	Õ	28.6	11.4	52.9	58.8	(43.5)		
105	Ō	2.7	5.4	12.2	27.0	-	+	
T1	4	7	12	17	34	74		
Total	5.4	9.5	16.2	23.0	45.9	100.0		
	5.4	•						
		Mai	nn-Whitne	y U	471			
			lcoxon Ra		1524			
		Z	gnificanc		-2.43			

/

.~

٠

r

Table 229

Problems Correct	0	1	tions Cor	3	4	5	6	Total	
	3	4	12	5	8	6	1	39	
	7.7	10.3	30.8	12.8	20.5	15.4	2.6	52.7	
No	100.0	100.0	75.0	38.5	57.1	33.3	[°] 16.7	(29.2)	
	4.1	5.4	~16.2	6.8	10.8	8.1	1.4		
•	0	0	- 4	8	6	12	5	35	
	0	Ő	11.4	22.9	17.1	34.3	14.3	47.3	
Yes	Ő	Õ	25.0	61.5	42.9	66.7	83.3	(46.7)	
105	Ő	Õ	5.4	10.8	8.1	16.2	6.8		
Total	3	4	16 [·]	13	14	18	35	74	
IULAL	4.1	₹ 5.4	21.6	17.6	18.9	24.3	47.3	100.0	
			Marin-W	hitney U	l	360			
				on Rank		1634			
			Z	,		-3.55			
				icance		.0004			

Interview Data Analyses: Moles - Problem 2 Problems Solved Correctly

i UFF

_

ъ

.

Problems	Svet	emmatic App	Arit	hmetic App	roach		
Correct	- 0		Total	÷ 0	1	Total	
	30	32	62	43	19	62	
	48.4	51.6	83.8	69.4	30.6	83.8	
N1-		72.7	00.0	95.6	65.5		
No	100.0 40.5	43.2		58.1	25.7		
	10.0						
	0	12	12	2	10	12	
	0 0	100.0	16.2	16.7	83.3	16.2	
Yes	0	27.3		4.4	34.5	1	
105	Ő	16.2		2.7	13.5		
M A 1	30	44	74	45	29	74	
Total	40.5	59.5	100.0	60.8	39.2	100.0	
	Chi S	quare	7.86 -	Chi S	Equare	9.61	
	df	quare	1	df	•	1	
	Phi		. 36	Phi		.40	
		ficance	.005		ificance	.002	

Interview Data Analyses: Moles - Problem 3 Problem Solved Correctly

Table Lat	Table	231
-----------	-------	-----

Problems	Reas	Algorithmi oning Stra	ic itegy	Con	ments Abo	ut Solutio	on
Correct	<u> </u>	1	Total	0	1	2	Total
No	52 83.9 96.3 70.3	10 16.1 50.0 13.5	62 83.8	32 51.6 74.4 43.2	28 45.2 96.6 37.8	2 3.2 100.0 2.7	62 83.8 (39.9)
Yes	2 16.7 3.7 2.7	10 83.3 50.0 13.5	12 16.2	11 91.7 25.6 14.9	1 8.3 3.4 1.4	0 0 0 0	12 16.2 (25.0)
Total	54 73.0	20 27.0	74 100.0	43 58.1	29 3 9 .2	2.7	74 100.0
	Chi Squ df Phi Signifi		19.74 1 .56 .0001	Wilc Z	n-Whitney coxon Rank nificance	k Sum W	522 300 .55 .01

Interview Data Analyses: Moles - Problem 3 Problem Solved Correctly

40%

Ļ

L

Interview Data Analyses: Moles - Problem 3 Problems Solved Correctly

Problems			Question	s Correct				
Correct	2	- 3	4	5	6	Total		
	4	7	12	13	26	62		
	6.5	11.3	19.4	21.0	41.9	83.8		
Va	100.0	100.0	100.0	76.5	76.5	(35.3)		
No	5.4	· 100.0	16.2	17.6	35.1	(0000)		
	3.4	5.5	10.2	17.0	5011	ъ	.	
	0	0	0	4	8	12		
	0	0	Ũ	33.3	66.7	16.2		
Vec		0	· Õ	23.5	23.5	(49.0)		
Yes	0 0	0	0	5.4	10.8	(1010)		
	U	U	U	5.4	10.0		•	
Total	4	7	12	17	34	74		
Iotai	5.4	9.5	16.2	23.0	45.9	100.0		
	5.4		-				1	,
			Mann-Whitr		234			
			Wilcoxon F	Cank Sum W	588			
ډ			Ζ		-2.15			
			Significar	nce	.03			

o

•

Table 233	Ta	b1e	233
-----------	----	-----	-----

roblems	· · · · · · · · · · · · · · · · · · ·		Questions	Correct W		Inpenig	6	Tota1	
Correct	0	1	2	. 3	4		6	IUtal	
	7	4	16	13	12	8	6	62	
	3	4 6 E	25.8	21.0	19.4	12.9	9.7	83.8	
	4.8	6.5		100.0	85.7	44.4	100.0	(33.8)	
io 👘	.100.0	100.0	100.0			10.8	8.1	(0000)	
	- 4.1	5.4	21.6	17.6	16.2	10.0	0.1		
,	0	0	0	0	2	10	0	12	
•	0	0 0	0	0	16.7	83.3	Ō	16.2	
	0			0	14.3	55.6	Õ	(56.8)	
les	0	0	0		2.7	13.5	Õ	(5010)	
	0	0	0	0	2.1	13	v		
	7	٨	16	13	14	18	6	74	
Total	3	4	21.6	17.6	18.9	24.3	8.1	100.0	
	4.1	5.4	21.0	1/.0	10.5	24.0	0.12		
			Wil Z	n-Whitney L coxon Rank	Sum W 68 -3.4	2 7			
	`		Sig	nificance	.000	5			

Interview Data Analyses: Moles - Problem 3 Problems Solved Correctly

401

,

Problems		Syste	annatic A	pproach			Arith	metic Ap	proach	
Correct		<u> </u>	2	3	Total	0	1	2	3	Total
C	6	. 4	7	10	27	14	5	5	3	27
	22.2	14.8	25.9	37.0	36.5	51.9	18.5	18.5	11.1	36.5
0	85.7	50.0	33.3	26.3	(29.9)	60.9	50.0	27.8	13.0	(26.4)
. 0	8.1	5.4	9.5	13.5	()	18.9	6.8	6.8	4.1	()
	0.1	3.4	2.3	10.0		1010	••••	••••		
	1	-3	7	5	16	5	3	6	2	16
	<u>76.3</u>	18.8	43.8	31.3	21.6	31.3	18.8	37.5	12.5	21.6
1	14.3	37.5	33.3	13.2	(31.1)	21.7	30.0	33.3	8.7	(32.9)
-	1.4	4.1	9.5	6.8	、 、	6.8	4.1	8.1	2.7	
	1.1		0.0	- ••••		1			· · ·	
	0	1	7	15	23	4	1	7	11	23
	. 0	4.3	30.4	65.2	31.1	17.4	4.3	30.4	47.8	31.1
2.	Ő	12.5	33.3	39.5	(44.6)	17.4	10.0	38.9	47.8	(46.4)
-	Õ	1.4	9.5	20.3	()	5.4	1.4	9.5	14.9	```
	Ū	-; ·						-		
	0	0	0	8	8	0	1	0	7	8
	, Õ	Õ	ŏ	100.0	10.8	0	12.5	0	87.5	10.8
3	Ō	Õ	0	21.1	(55.5)	0	10.0	0	30.4	(58.7)
-	. 0 0	Õ	õ	10.8		0	1.4	0	9.5	• •
	-	-								
Total	7	8	21	38	· 74	23	10	18	23	74
1	9.5	10.8	28.4	51.4	100.0	31.1	13.5	24.3	31.1	100.0
								-	•	
		KW Chi	Square	15.37			KW Chi	Square	2 1.29	
		df		9			df	- 1	9	
		Signif	icance	.001			Signif	icance	.0001	

Interview Data Analyses: Moles - Total Problem Solved Correctly

. '

.

c

,-1

Interview			-	Total
	Solved Co			

.

Problems		Nonevete	amatic *	Approach		Algorithmic Strategy Only					
Correct	-0	1	2	3	Total	0	1	2	3	Total	
<u> </u>							F	8	8	27	
	15	7	3	2	27	6	5 19 E		29.6	36.5	
	55.6	25.9	11.1	7.4	36.5	22.2	18.5	29.6		(42.6)	
0	28.8	53.8	50.0	66.7	(43.0)	28.6	27.8	40.0	5 3. 3	(+4.0)	
	20.3	9.5	4.1	2.7		8.1	6.8	10.8	10.8		
	10	n	7	- 1	16	1	5	6	4	16	
\ -	10	2	3 18 8	1 67	21.6	6.3	31.3	37.5	25.0	21.6	
х х.	62.5	12.5	18.8	6.3 33 3	(41.3)	4.8	27.8	30.0	26.7	(45.5)	
$\gamma = 1$	19.2	15.4	50.0	33.3	(41.3)	4.8	6.8	8.1	5.4		
	13.5	2.7	4.1	1.4		7.44	0.0	L			
7			~	0	23	8	7	5	3	2 3	
	19	4	0	0		34.8	30.4	21.7	13.0	31.1	
`	82.6	17.4	0	0 0	31.1	34.8 38.1	38.9	25.0	20.0	(32.6)	
, 2	36.5	30.8	0		(32.2)	10.8	9.5	6.8	4.1	()	
۶.	25.7	5.4	0	Ũ.		10.0	3.3	0.0		¢	
<i>i</i>	8	0	0	0	8	6	1	1	0	8	
Ĭ.		0	0	0	10.8	75.0	12.5	12.5	0	10.8	
-	100.0	0	0	0	(26.5)	28.6	5.6	5.0	0	· (18.3)	
3	15.4 10.8	0	0	0	()	8.1	1.4	1.4	0		
, ,		·	-	÷	<u> </u>		10	20	15	74	
Total	52	13	6	3	74	21	18	20	20.3	100.0	
	70.3	17.6	8.1	4.1	100.0	28.4	24.3	27.0	20.3	100.0	
- 1		KW Chri	Sallaro	8.99			KW Chi	i Square	12.		
	•	df	Marc	9.99	\$		df			9 .	
ţ		ar Signifi	icance	.03	*		Signii	ficançe		007	
	ι					•					
	1 1	•									

403

ŧ

		+oni+hmic	Reasonir	o. Strate	Needed Information Not Generated				
Problems	<u>AI</u> 0	goriumuc 1	2	3	Total	0	1	2	Total
Correct	<u> </u>	<u> </u>						-	27
-	25	1	1	0	27	15	- 9		27
	92.6	3.7	3.7	0	36.5	55.6	33.3	11.1	36.5 (43.7)
0	55.6	12.5	10.0	0	(25.3)	28.3	52.9	75.0	(+011)
•	33.8	1.4	1.4,	0	a	20.3	12.2	4.1	_
	17	7	0	0	16	10	5	1	16
	13	. 3	0	0	21.6	62.5	31.3	6.3	21.6
1	81.3		0	0	(28.0)	18.9	29.4	25.0	(49.8)
1.	28.9	37.5	0	0	(2000)	13.5	6.8	1.4	
	17.6	4.1	U	U	¢				ŀ
	-	3	8	5	23	20	3	0	23
	7			21.7	31.1	87.0	13.0	0	31.1
•	30.4	13.0	34.8	45.5	(48.8)	37.7	17.6	<u>`</u> 0	(31.6)
. 2	15.6	37.5	80.0	43.J 6.8	(1010)	27.0	4.1	0	
** *	9.5	4.1	10.8	0.0					
	0	1	1	6.	8	8	0	0	8
	0	12.5	12.5	75.0	10.8	100.0	0	0	10.8
3	0	12.5	10.0	54.5	(65.3)	15.1	0	0	(27.0)
3	0	12.5	1,4	8.1	•	10.8	0	0	-
	U	7.4	Tia						
C + 1	45	8	10	11	74	53	17	5	74
Total	45 60.8	10.8	13.5	14.9	100.0	71.6	23.0	5.4	100.0
•	00.0	10.0	10.0				17.1	The Course	no 10 14
		KW Chi	Square	41.02	•		KN C	uni squa	re 10.14 6
\$		df	- oquar o	9			df	.: .:	-
•		Cianif	icance <	.0001			Sigi	nificanc	e .02

Interview Data Analyses: Moles - Total Problem Solved Correctly

b

Table 236

υ

Table 237

Interview Data	a Analyse:	s: Moles	-	Total	
Problem	Solved C	orrectly			

۱

¢

U

٠

Problems			Comments	About So	<u>lution</u>		Total		
Correct	0	Ī	2	3					
	5	. 6	5	9	1	1	27		
	18.5	22.2	18.5	33.3	[•] 3.7	3.7	36.5		
0	$-\frac{10.3}{16.1}$	31.6	62.5-	69.2	50.0	100.0	(49.3)		ŭ
V	6.8	8.1	6.8	~ ~ ~	1.4	1.4			
	0.0	0.1				_	14		
	6	3	2	4	1	0	16		
	37.5	18.8	12.5	25.0	6.3	0	21.6		
1	19.4	15.8	25.0	30.8	50.0	0	(41.3)	د	
T	· 13•4	4.1	2.7	5.4	1.4	0			
	8.1	4.T	2						,
	12	10	1	0	0	0	23		~
•	12	43.5	4.3	Ō	0	0	31.1		
	52.2		12.5	Õ	0	0	(28.5)		\$
2	38.7	52.6	1.4	Õ	0	0	•		
	16.2	13.5	1.4	v					
	0	0	0	0	0	0	8		
	8		0	Õ	Ō	0	10.8		
	100.0	0	0	0 0	Ō	0	(16.0)		
3	25.8	0	· 0	Ŭ	Ō	0			
, -	10.8	Q		J	v			-	
		10	. 8	Í 13	- 2	1	74		
Total	· 31	19		17.6	2.7	1.4 ,	100.0		
· -	41.9	25.7	10.8	1/.0					
	`								
			KW Ch	i Square	22.76	5			
,			df ·		1	5			
- 0			Simi	ficance					
	v		Orgin	TTOMICO					
,	4	<u>-</u>				405 -			· + .
·		-							

ERIC Fulltaxt Provided by ERIC

3

Problems		Ques	tions Co	rrect		•	- *		
Correct	2	3	4	5	6	Total			<u> </u>
	3	- 4	8 .	6	6	27			
	11.1	· 14.8	29.6	22.2	22.2	36.5 <	•		
•	75.0	57.1	66.7	35.3	17.6	(26.5)			
۔ 0	4.1	5.4	10.8	3.1	8.1	(_	•	
	1	2	1	3	9	16			
	6.3	12.5	6.3	18.8	56.3	21.6		•	
1	25.0	28.6		- 17.6	26.5	(40.6)		•	
· · · _	1.4	2.7	1.4	4.1	12.2				-
	0	1	3	5	14	23			
	Ō	4.3	13.0	21.7	60.9	31.1			
2	* 0	14.3	25.0	29.4	41.2	(44.6)			,
2	Ő	1.4	4.1	6.8	18.9			2	
	0	0	0	3	5	8			
	Ō	Ď	Ō	37.5	62.5	10.8			
3	Ō	Ō	0	17.6	14.7	(47.9)		•	
3	Ö	Ő	° Ö	4.1	6.8				
Total	4	7	12	17	34	74			,
5 S	5.4	9.5	16.2	23.0	45.9	100.0		2	
		df	ni Square	e 13.2 .0	12		.`		

Interview Data Analyses: Moles - Total Problems Solved Correctly

Interview Data Analyses: Moles - Total Problems Solved Correctly

Problems	•		Questions		Without	Prompt	ing 6	Total
Correct	0	1	. 2	3	4			10001
s	2	4	10	4	5	2	0	27
	-	14.8	37.0	14.8	18.5	7.4	Ó	36.5
•	• 7.4		62.5	30.8	35.7	11.1	Ō	(23.6)
0	66.7	100.0	13.5	5.4	6.8	2.7	Ō	
	2.7	5.4	13.5	3.7	0.0		·	
ł	1	0	4	3	3	4	· 1	16
		0	25.0	18.8	18.8	25.0	6.3	¹ 21.6
•	, 6.3	0	25.0 ⁻	23.1	21.4	22.2	16.7	(37.1)
1	33.3	0	5.4	4.1	4.1	5.4	.1.4	
0	1.4	U	5.4	4.1	7.1	0.,		
۰ ۰		· 0	2	. 6	5	5	5	23
,	0		8.7	26.1	21.7	21.7	21.7	31.1
_	· 0	0	12.5	46.2	35.7	27.8	. 83.3	(47.1)
2	0	0		40.2	6.8	6.8	6.8	()
•	0	0	2.7	~0•I	0.0	0.0		• *
			0	0	1	7	0	8
9	• 0	, () ()	0	0	12.5	87.5	0	.10.8
_	· 0	0		۰۸	7.1	38.9	Ō	(57.5)
3	- 0	0	ч () ()	0	1.4	9.5	Õ	
•	0	U	U	Ŭ	1.4	2.5		
. `	7	4	· 16	13	14	18	6	. 74
Total	3 4.1	4 F 4	21.6	17.6	18.9	24.3	8.1	
	4.1	5.4	* 21.0	1/.0	10.0			•
			KW Chi	Square	· 23.65			·
-			df		18		•	
	•		Signifi	cance ·	< .0001		• •	

410

Tal	ble	240	
-----	-----	-----	--

roblem brrect '	Algo	rithmic Re Strategy	easoning	Comments about Solution				Executive Errors			
	• 0	1	Total	0		Total		0	<u>I</u>	Total	
No	27 77.1 71.1 42.2	8 22.9 30.8 12.5	35 54.7	21 60.0 43.8 32.8	14 40.0 87.5 21.9	35 54.7 (37.3)		23 65.7 44.2 35.9	12 34.3 100.0 18.8	35 54.7 (37.5)	
Yés	11 37.9 28.9 17.2	18 62.1 69.2 28.1	29 45.3	27 93.1 56.3 42.2	2 6.9 12.5 • 3.1	29 45.3 (26.7)	·,	29 100.0 55.8 45.3	0 0 0 0	29 45.3 (26.5)	
Total	, 38 59 . 4	26 40.6	64 100.00	48 75.0	16 25.0	64 100.0	D	52 81.3	12 18.8	64 100.0.	
· · · · ·	Chi Square df Phi Significance		8.55 1 .40 .004	Mann W Wilcox Z Signif	hitney'U on Rank S	676 um W 774 3.02 .003		Wilcox Z	hitney U on Rank Su ficance	682 m W 768 3.47 .0005	
	- 0		7 '	•	-						

Interview/Data Analyses: Gas Laws - Problem 1 Problem Solved Correctly

ъ

.

Interview Data Analyses: Gas Laws - Problem 1 Problem Solved Correctly

Prob lems								
Correct	0	1	2	3	4	Total		
	3	5	14	11	2	35		
	8.6	14.3	40.0	31.4	2 5.7	54.7		5
No	100.0	62.5	73.7	42.3	25.0	(26.8)		
	4.7	7.8	21.9	17.2	3.1	•		
	0	٦	5	15	6	29		
a j	0	3 10.3	5 17.2	51.7	20.7	45.3		
Yes	, 0 , 0	37.5	26.3	57.7	75.0	(39.4)		
	, 0 °	4.7	7.8	23.4	9.4			
	7	8	19	. 26	8	64		
Total	3 4.7	12.5	29.7	40.6	12.5	100.0		
	· · ·	Wil Z	n-Whitney coxon Rank nificance	cSumW 1 −2	307 143 .84 004			
-				x				
				۰،		Δ	12	
	•					.1	1 W	
	_							

ERIC Pruil Text Provided by ERIC

		C+	ctural E	rror 1			Structural Error 2					
Problem	-0	<u>1</u>	$\frac{2}{2}$	$\frac{1101}{3}$	4	Total	0	1	2	3	Total	
No	1a 2.9b 100.0c 1.6d	57.9	8 22.9 100.0 12.5	1 2.9 100.0 1.6	14 40.0 40.0 21.9	35 54.7	5 14.3 100.0 7.8	1 2.9 100.0 1.6	17 48.6 100.0 26.6	12 34.3 29.3 18.8	35 54.7	
Yes	0 0 0 0	8 27.6 42.1 12.5	0 0 0 0	0 0 0 0	21 72.4 60.0 32.8	29 45.3	0 0 0 0	0 0 0	0 0 0 0	29 100.0 70.7 45.3	29 45.3	
Total	1 1.6	19 29.7	8 12.5	1 1.6	35 54.7	64 100.0	5 7.8	1 1.6	17 26.6	41 64.1	64 100.0	
	Chi Square 11.4 df 4 V .42f Significance .02						Chi Square 29.75 df 3 V .68 Significance <.0001				3 68	

Interview Data Analyses: Gas Laws - Problem 1 Problem Solved Correctly

^aCount ^bRow percentage ^cColumn percentage ^dTotal percentage fCramer's V

٠.,

•

. ...

Problems		Reading	/Organi	zing Sk	Rereading/Stating Problem						
Correct	0	1	2	3	4	Total	0	1	2	Total	
	5	· 24	16	2	. 0	47	30	17	0	47	
		51.1	34.0	4.3	, U O	73.4	63.8	36.2	0	73.4	
	10.6					(35.0)	65.2	100.0	0	(34.9)	
No	55.6	68.6	94.1	100.0	0	(33.0)	46.9	26.6	Ō	(
	7.8	37.5	25.0	3.1	0		40.9	20.0	U		
	4	11	1	0	1	17	16	0	- 1	17	
			- L	0	5.9	26.6	94.1	Ō	5.9	26.6	
	23.5	64.7	5.9	-			34.8	Õ	100.0	(25.9)	
Yes	44.4	31.4	5.9	0	100.0	(25.5)				(2010)	
	6.3	17.2	1.6	0	1.6		25.0	0	1.6		
T-+-1	0	35	17	2	1	64	46	17	1	64	
Total	_ 9		17	2 3.1			71.9	26.6	1.6	100.0	
	14.1	54.7	26.6	3.1	1.6	100.0	/1.5	20.0	1.0	100.0	
			, 		F10		Man	n-Whitne	v 11	512	
			hitney		518		Mann-Whitney U 512 Wilcoxon Rank Sum W 440				
	Wilcoxon Rank Sum W 434										
		Z			1.99		Z 2.19				
		Signif	ficance		.05		Significance .03				
				્	/						

Interview Data Analyses: Gas Laws - Problem 2 Problem Solved Correctly

Tab1e 243

414

2 × 14

Table	244
-------	-----

1 1		 1	have Calu	Exe	Executive Errors			
Problem		comments al	<u> 2001 2010</u>			1	2	
Correct	0	<u>i</u>	6	J				
No	34 72.3 66.7 53.1	12 25.5 100.0 18.8	1 2.1 100.0 1.6	47 73.4 (34.9)	28 59.6 62.2 43.8	19 40.4 100.0 29.7	47 73.4 (35.9)	
Yes	17 100.0 33.3 26.6	0 0 0 0	0 0 0 0	17 26.6 (26.0)	17 100.0 37.8 26.6	0 0 0 0	17 26.6 (23.0)	
Total	51 . 79.7	12 18.8	1 1.6	64 100.0	45 70.3	19 29.7	6 4 100.0	
	Wil Z	n-Whitney Looxon Ranl gnificance	k Sunn W 2	510 442 2.40 .02	Wilcox Z	hitney U on Rank Sur icance	561 m W 391 3.10 .002	

•

Interview Data Analyses: Gas Laws - Problem 2 Problem Solved Correctly

Problems			Struc	tural Err	or 2			
orrect	0	1	2	3	4	5	Total	
	5	3	2	20	6	11	47	
	10.6	6.4	4.3	42.0	12.8	23.4	73.4	
NT-	100.0	100.0	100.0	100.0	100.0	39.3		
No	7.8	4.7	3.1	31.3	9.4	17.2		
	0	۵۵	0	0	0	17	17	
	0	ů	Ö	Õ	Ō	100.0	26.6	
Vee	0	0 -	Õ	Õ	Ō	60.7		
Yes	0	0	Ŭ,	Ō	0	26.6		
· 	5	3	2	20	. 6	28	64	,
Total	7.8	4.7	2 3.1	31.3	9.4	43.8	100.0	
			Chi Sq df V Signif		29.76 5 .68 .0001			

.

Interview Data Analyses: Gas Laws - Problem 2 Problem Solved Correctly

410

•

٠

		thmic Rea trategy	asoning	М	isinterpret Problem			Evaluation Sum		
Problems Correct		1	Total	0	1	Total	-0	I	101	
No	52 83.9 100.0 81.3	10 16.1 83.3 15.6	62 96.9	61 98.4 96.8 95.3	1 1.6 100.0 1.6	62 96.9	60 96.8 98.4 93.8	2 3.2 66.7 3.1	62 96.9 (32.0)	
Yes	0 0 0 0	2 100.0 16.7 3.1	2 3.1	2 100.0 3.2 3.1	0 0 0 0	2 3.1	1 50.0 1.6 1.6	1 50.0 33.3 1.6	2 3.1 (47.0)	
Total	52 81.3	12 18.8	64 100.0	63 98.4	°1 1.6	64 100.0	61 95.3	3 4.7	6 4 100.0	
, ,	Chi Sq df Phi Signif	luare ficance	4.29 1 .37 .04	df Ph		7.37 1 .02 .007	Wilc Z	n-Whitney coxon Rank nificance	U 33 Sum W 94 -3.06 .002	

Interview Data Analyses: Gas Laws - Problem 3 Problem Solved Correctly

•

1.1

Interview Data Analyses: G	as Laws - Problem 3
Problem Solved Cor	

Problems		Question	s Correct	
Correct	2	3	4	Total
	5	43	14	62
	8.1	69.4	22.6	96.9
No	100 .0	100.0	87.5	(31.7)
	7.8	67.2	21.9	
	0	0	2	2
	Ō	Ō	100.0	3. 1
Yes	Ō	0	12.5	(56.5)
100	0	. 0	3.1	•
Total	5	43	16	64
	5 7.8	67.2	25.0	100.0
	Wil Z	n-Whitney coxon Rank nificance	U 14 Sum W 113 -2.24 .02	

ì

..

ς.

ð

Problems				Stru	ctural E	rror 2				
Correct	0		2	3	4	7	8	9	Total	
	26	1	0	1	13	4	3	5	62	
	26		9	1 4	21.0	6.5	4.8	8.1	96.9	
	41.9	1,6	14.5	1.6			100.0	100.0	5015	
No	100.0	100.0	100.0	100.0	100.0	66.7				
	40.6	1.6	14.1	1.6	20.3	6.3	4.7	7.8	•	•
	0	0	0	0	0	2	, 0	Ø	2	
	0	0	0	Ő	Ő	100.0	Ō	0	. 3.1 -	
			0-		·· • 0	33.3	· 0	Õ		
Yes	.∽ O	0		0		3.1	Ő	Ő		
	0	0	0	0	0	5.1	U	U		
Total	26	1	Q	` 1	13	6	3	5	64	
10181	40.6	1.6	9 14.1	1.6	20.3	9.4	3 4.7	7.8	100.0	
				Chi Squa	re	19 .96				
				df		7				
				ν.		.59				
				Signific	ance	.006				

Interview Data Analyses: Gas Laws - Problem 3 Problem Solved Correctly

	Use of Mr	neumonic N	otation	A1	Algorithmic Reasoning Strategy				
0	1	2	3	Total	-0	1	, 2	3	Total
6	3	13	10	32	19	7	4	2	32
									50.
									(26.
- 9 .4-	- 4.7	20.3	15.6		29.7	10.9	6.3	3.1	L
Û	2	11	5	18	9	1	7	1	18
									28.1
0									(31.9
Ö	3.1	17.2	7.8	(32.0)	14.1	1.6	10.9	1.6	(
1	2	4	ς	12	2	2	5	3	12
									18.8
									. (43.
1.6	3.1	6.3	7.8	(33.7)	3.1	3.1	7.8	4.7	
Ο	1	0	1	2	0	0	- 0	2	2
									3.1
									(60.5
Õ	1.6	Õ	1.6	(20.0)	0	0	0	3.1	•
7	8	28	21	64	. 30	10	16	8	64
10.9	12.5	43.8	32.8	100.0	46.9	15.6	25.0	12.5	100.0
	KW CI	ni Souare	8.01			KW	Chi Sau	are 13.	67
		IT coloure			•				9 1
		ificance					nifican	ce .0	03
	0 6 18.8 85.7 9.4 0 0 0 0 0 0 0 0 1 8.3 14:3 1.6 0 0 0 0 7	$ \begin{array}{r} 0 & 1 \\ 6 & 3 \\ 18.8 & 9.4 \\ 85.7 & 37.5 \\ 9.4 & -4.7 \\ 0 & 2 \\ 0 & 11.1 \\ 0 & 25.0 \\ 0 & 11.1 \\ 0 & 25.0 \\ 0 & 3.1 \\ 1 & 2 \\ 8.3 & 16.7 \\ 14.3 & 25.0 \\ 1.6 & 3.1 \\ 0 & 1 \\ 0 & 50.0 \\ 0 & 12.5 \\ 0 & 1.6 \\ 7 & 8 \\ 10.9 & 12.5 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Interview Data Analyses: Gas Laws - Total Problem Solved Correctly

Table 250

ERIC Full Text Provided by ERIC 420)

Table 25

1:

••

,

ERIC Pruit level Provided To

Interview	Data	Analyses	Gas :: Gas	Laws	-	Total
Pi	roblen	a Solved	Correct	tly		

÷

.

roblems		Execut	tive Ern	rors			Questions	Correct Wi	thout Pro	ompting	Total
orrect	<u> </u>	1	2	3	Total	0		2	3	4	local
					·/ 32 ·	-	5	12	11	1	32
	15	10	5	2		•			34.4		
	46.9	31.3	15.6	6.3	50.0	9,4	15.6		42.3	12.5	(26.1)
0	39.5	52.6	100.0	100.0	(37.5)	100.0,	62.5	· _3.2		1.6	(2011)
·	23.4	15.6	7.8	3.1	7	4.7	7.8	, 18.8	17.2	1.0	•
		_	_	•	10 .	0	·i	5	8	4	· 18
	10	8	0	0	18	0		27.8	44.4	22.2 9	28.1
	55.6	44.4	0	0	28.1	· 0	5.6	26.3	30.8	50.0	(39.0)
1	26.3	42.1	0	0	(32.2)	-	12.5		12.5	6.3	(0000)
-	15.6	12.5	0	0		0	1.6	7.8	14.5	0.5	
		-	•	0	12	`	2	2	6	2	12
	11	1	0	Û			16.7	16.7	50.0	16.7	18.8
	91.7	8.3	0	0	18.8	0		10.5	23.1	25.0	(36.6)
2 [.]	28.9	5.3	Ō	0	(21.9)	. 0	25.0	3.1	9.4	3.1	()
	17.2	1.6	0	0		. 0	3.1	3.1	3.4	5.1	
			0		2	٥	0	0	1	1	2
	2	0	0	0	2	0	0	Ō	50.0	50.0	3.1
	100.0	0	0	0	3.1	0 0 0	0	ŏ	3.8	12.5	(52.0)
3	5.3	0	0	0	(19.5)		0	0	1.6	1.6	· · ·
	" 3.1	0	0	0		0	Ū	0	1.0	1	
m 1	70	10	c	2	, 64	3	8	19	26	8	64
Total	38	19	5 7.8	3.1	100.0	3 4.7	8 12.5	29.7	40.6	12.5	100.0
	59.4	29.7	7.8	3.1	100.0	4./					
	1	KW Chi S	Souare	9.40		•		KW Chi So	uare !	9.73	
		df	June V					df		12 ,	
			canco	9 .02	.'			Significa	ance	.02	
		Signifi	Lance	.02				-			

421

.

٢

Interview	Data Analyses:	Stoichiometry -	Problem 1
	Problem Solv	ed Correctly	

							•		1-	
Problems	Syste	matic A	pproach	Algor	strateg	Commences About Solution				
Correct	0	1	Total	0	1	Total	0	<u> </u>	Total	
No	18 37.5 94.7 27.3	30 62.5 63.8 45.5	48 72.7	41 85.4 87.2 62.1	7 14.6 36.8 10.6	48 72.7	17 35.4 51.5 25.8	30 62.5 96.8 45.5	1 2.1 50.0 1.5	48 72.7 (38.0)
Yes	1 5.6 5.3 1.5	17 94.4 36.2 25.8	18 27.3	6 33.3 12.8 9.1	12 · 66.7 63.2 18.2	18 27.3 。	16 88.9 48.5 24.2	1 5.6 3.2 • 1.5	1 5.6 50.0 1.5	18 27.3 (21.5)
Total	19 28.8	47 71.2	66 100.0	47 71.2	19 2 8 .8	66 100.0	33 50.0	31 47.0	2 3.0	66 100.0
	df Phi	Gquare	≪5.05 1 .31 .02	df Phi	Square ' ificance	14.87 1 .51 .0001	Wilc Z	-Whitney oxon Ran ificance	k Sum W	648 386 3.54 .0004

.

. .

1 422

Ċ.

— - **.**

ð

Interview Data Analyses: Stoichiometry - Problem 1 Problem Solved Correctly

Problems		Question	is correct	Without H	TOILDLING	Total	
Correct	0	1	4	- 3		IULAI	· · · · · ·
	2	10	15	19	2	48	
	4.2	20.8	31.3	39.6	4.2	72.7	
N	50.0	100.0	78.9	76.0	25.0	(30.4)	
No			22.7	28.8	3.0		
	3.0	15.2	26.1	20.0	5.0		
	2	0	Δ	6	6	18 .	
	2 11.1	· 0	22.2	33.3	33.3	27.3	
_ !	11.1		21.1	24.0	75.0	(41.8)	
Yes	50.0	0				(+1.0)	
1	3.0	0,	6.1	9.1	9.1	•	
h 1	4	10	19 .	25	8	66	
Total		15.2	28.8	37.9	12.1	100.0	
	6.1	15.4	20.0	57.5	10.1	10010	
		, Mon	n-Whitney	п.	283,		
-	· ·	Mail Mail	coxon Rani		752		•
te.			COXOII NAIL		.24		
•		· Z	• • •				
		Sig	nificance		.03		

.

ీ

57.-

Ĵ

Problems		Structu	ral Error	- 2	Structural Error - 1						
orrect	0	1		3	Total	0	1	2	3	Total	
•	9	14	1	21	48	2	7	11	28	48	
- ح ت	18.8	29.2	8.3	43.8	72.7	4.2	14.6	22.9	58.3	72.7	
N.	100.0	43.8	100.0	100.0		100.0	30.4	84.6	100.0		
No	13.6	21.2	6.1	31.8		3.0	10.6	16.7	42.4		
	15.0		•••=					_	•		
	0	18	0	0	18	· 0	<u> </u>	• 2	0	18	
•	õ	100.0	ð Ì	0	27.3	٥	88.9	11.1	0	. 27.3	
Yes	õ	56.3	0	0		~ O	6 9.6	15.4	0		
163	õ	27.3 -	0	0		0	24.2	3.0	0		
	-			21		2	23	13	28	66	
Total	9	32	4	21	100.0	3.0	· 34.8	19.7	42.4	100.0	
	13.6	48.5	6.1	31.8	100.0	2.0	34.0	13.7	46.4		
	·	· Chi So	112 rA	26.30			Chi S	Square	32.92		
•			lavite	20.50			٦f	•	3		
		df V		.63			v		.71		
		Sionid	ficance 🧳	.< .0001			Sign	ficance	< 0001		

٠.

Interview Data Analyses: Stoichiometry - Problem 1 Problem Solved Correctly

Table 254

424

425.

Table :	255
---------	-----

Interview Data Analy	ses: S	toichiometry	-	Problem 2	
		Correctly			

Problems	Rer	eading/S	tating 1		· Svs	temmatic		Algorithmic Reasoning Strategy		
Correct	$\frac{101}{0}$	1	2	Total		1	Total	0	1	Total
	•	·							7	1
	* 24	24	1	49	20	29	49	42	/	49
/	49.0	49.0	2.0	74.2	40.8	59.2	74.2	85.7	14.3	74.2
No	64.9	85.7	100.0	(35.9)	100.0	63.0		91.3	35.0	
1	36.4	36.4	1.5		30.3	43.9		63.0	10.6	
	- 13	4	0	17	, 0	17	17	4	13	17
	76.5	23.5	0	25.8	Ű	100.0	25.8	23.5	76.5	25.8
Vez	35.1	14.3	0	(20.6)	Ő	37.0	2010	8.7	65.0	
Yes	19.7	6.1	0	(20.0)	0	25.8	,	6.1	19.7	
			_		ĩ			1.	20	66
Total	37	28	1	66	20	46	66	40	20	
	56.1	42.4	1.5	100.0	30.3	69.7	100.0	69.7	30.3	100.0
	Mann-Whitney U		U 53:	3	Chi S	quare	8.12	Chi S	quare	20.26
	df	,	45	3	. df	-	1	df		1
	Phi		1.9		V		. 39	Phi	*	. 59
		ficance	.0		Signi	ficance	.004	Sign	ficance	<.0001

FRIC

٩.

Tab	le	256

Problems		use of all and			Con	ments A	bout Sol	ution		Stru	ctural Er			
Correct	• 0			Total	U	I	2	Total	0	1	2	3	Total	
No	35 71.4 67.3 53.0	28 100 21	.0	49 74.2	19 38.8 54.3 28.8	28 57.1 96.6 42.4	2 4.1 100.0 3.0	49 -74.2 (38.2)	13 26.5 100.0 19.7	6 12.2 26.1 9.1	12 24.5 100.0 18.2	18 36.7 100.0 27.3	49 74.2	
Yes	17 100.0 32.7 25.8	۰.	0 0 0 0	17 25.8	6 94.1 45.7 24.2	1 5.9 3.4 1.5	0 0 0 0	17 25.8 (19.9)	0 0 0	17 100.0 73.9 25.8	0 0 0 0	0 () 0 0	17 25.8	
Total	52 78.8	21	14 . 2	66 100.0	35 53.0	29 43 . 9	2 3.0	66 100.0	13 19.7	23 34.8	12 18.2	18 27.3	66 100.0	
	Chi S df Phi Signı	quare ficance	е	4.57 .1 .30 .03	Wi10 2	-Wnitne coxon Ra nificane	ink Sum	648 W 338 3.88 .0001		df V	Square ificance	42.81 3 80 .0001		

2

Interview Data Analyses: Stoichiometry - Problem 2 Problem Solved Correctly

427

Υ.

364

423

ţ

Table 257	1e 257
------------------	--------

Problems		S	structural E		
Correct		0	· 1	2 .	Total
		2	19 ,	28	49
-		4.1	38.8	57.1	74.2
No		100.0	55.9	. 93.3	
		3.0	28.8	42.4	
	7	0	15	2	17
		Ō	88,72	11.8	25.8
Yes		0	44.1	6.7	
100		0	22.7	3.0	
Total		2	34	· 30 .	66
	;	2 3.0	· 51.5	45.5	100.0
ı			Chi Square	12.40	
			df	. 2	í
,			V	.43 nce .002	
			Significar	1 ce .002	

Interview Data Anlyses: Stoichiometry - Problem 2 Problem Solved Correctly

423

1 :

Table 258	
-----------	--

۰.

Problems		Questio	ns Correct	Without P	rompting			
Correct	0		2	3	4	Total		
· · ·	4	10	16	15	4	49		
	8.2	20.4	32.7	30.6	8.2	74.2		
No	100.0	100.0	84.2	60.0	50.0	(29.2)		
	6.1	15.2	24.2	22.7	6.1		•	
	0	0	3	^ن 10 [ً]	4	17		*
	Ö	õ	17.6	58.8	23.5	25.8		<u>`</u>
Yes	ŏ	Ō	15.8	40.0	50.0	(46.0)		
103	Ő	• 0	4.5	15.2	6.1	r -		
Total	4	10	19	25	8	6 6		
IVtai	6.1	15.2	28.8	37.9	12.1	100.0		,
			Whitney U con Rank S	204 um W 782			-	,
			COIL KALLK S	-3.25	•		در	
		Z Signi	ficance	.001	<i>c</i>			

.

Interview Data Analyses: Stoichiometry - Problem 2 Problem Solved Correctly

400

5

.

.

~

з

٤

	•		•-						
Problems		emmatic A	hpproach	Algon	ithmic F Strates	Reasoning y	Comment	ts About	Solution
Correct	0	1	Total	0	1	Total	0	1	Total
• •	34 55.7 100.0	27 44.3 84.4	61 92.4	55 90.2 98.2	6 9.8 60.0	61 92.4	19 31.1 82.6	42 68.9 97.7	61 92.4 (34.7)
No ,	51.5	40.9		83.3	9.1		28.8	63.6	
•	0 0	5 100.0	5 7.6	1 20.0	4 80.0 40.0	5 7.6	4 80.0 17.4	1 20.0 2.3	5 7.6 (18.6)
Yes	0 _0	15.6 7.6		1.8 1.5	40.0	-	6.1	1.5	1
Total	34 51.5	32 48.5	66 100.0	56 84.8	10 15.2	. 66 100.0	23 • 34.8	43 65.2	66 100.0
	Chi Sq df Phi Signif	١	3.73 1 .29 .05	Chi S df Phi Signi	quare ficance	12.66 1 .52 .0004	Mann-Wh Wilcoxo Z Signifi	n Rank S	227 Sum W 93 .07 .03
	• •								ι

Interview Data Analyses: Stoichiometry - Problem 3 Problem Solved Correctly

.

.

Problems	-	Questi	ons Correc	t Without	Promptin	g
<u>Ćorrect</u>	0	I	2 3	3	4	Total
	4	10	18	24	5	61
	6.6	16.4	29.5	39.3	8.2	92.4
No	100.0	100.0	94.7	96.0	62.5	(32.0)
•••	6.1		27.3	36.4	7.6	
	0	0-	1	1	3	5
~	Ō	Ō	20.0 /	20.0	60.0	7.6
Yes	Ō	Ō	5.3	4.0	37.5	(51.5)
, 	Ō	0	1.5	1.5	4.5	7
Total	4	10	19	25	8	66
5	6.1	15.2	28.8	37.9	12.1	100.0
			nitney U Mank Sum	62 W 257	,	
		Z		-2.28		
,		. Signif:	icance	.02		

Interview Data Analyses: Stoichiometry - Problem 3 Problem Solved Correctly

Froblems		Struct	ural Erro	r - 3	
Correct	0	1	2	3	Total
	38	6	10	7	61
	62.3	9.8	16.4	11.5	92.4
No	100.0	54.5	100.0	100.0	
140	57.6	9.1	15.2	10.6	
~	· 0	5	0	0	5 7.6
	Ő	100.0	Ō	0	7.6
Vee	0 0	45.5	0	0	
Yes	Ő	7.6	0	0	
Tetal	38	11	10	· 7	66
Total	57.6	16.7	15.2	10.6	100.0
		Chi So	Mare	27.05	
•		df V	•	3	
				.64	
		Signi	ficance <	.0001	

Interview Data Analyses: Stoichiometry - Problem 3 Problem Solved Correctly

ŋ,

Table 262	
-----------	--

Problems		System	matic App	roach				No	Answer Gi	iven		<i>c</i>
Correct	0	1	2	3	Total		0	1	2	3	Total	
	. 14	8	6	12	- 40		25	7	4	4	40	
	35.0	20.0	15.0	30.0	60.6		62.5	17.5	10.0	10.0	. 60.6	
0	93.3	100.0	50.0	38.7	(26.4)		53.2	70.0	100.Ö	80.0	(39.2)	
U	21.2	12.1	9.1	18.2	(2011)		37.9	. 10.6		6.1	•	
	<u> </u>	16.1	5.1	Ť								
	1.	0	4	11	16		14	1	0	1	16	
\backslash	6.3	Ō	25.0	68.8	24.2		87.5	6.3	0	6.3	24.2	
1	6.7	0	33.3	35.5	(42.9)		29.8	10.0	0	20.0	(26.8)	
	1.5	0	6.1	16.7	•	•	21.2	1.5	0	1.5		
	0	0	2	4	6		4	2	0	0	6	
	0	0	33.3.	66.7	9.1		66.7	33.3	0.	0	9.1	-
2	- 0	* 0 0	16.7	12.9	(43.8)		8.5	20.0	0	0	(21.5)	
• \	- 0	0	3.0	6.1	(12.00)		6.1	3.0	0	0		
X	Ū	Ū	5.0	•••	1							
\setminus	0	0	0	4	4		4	`• O	0	0	4	
	Ō	0	0	100.0	6.1		100.0	0	0 0	0	6.1	
3	Ō	0	0	12.9	(51.0)		8.5	0		0	(21.5)	
	0	0	0	6.1	•		6.1	0	0	0		
T -	15	8	12	31	66	•	47	10	<u>،</u> 4	5	66	ĩ
Total	22.7	8 12.1	18.2	47.0	100.0		71.2	15.2	6.1	7.6	100.0	·
,		KW (Thi	Sauaro	16.38				KW Ch	i Square	12.8	6	•
,		df	, Șquare	9				df			9	
		Simil	Ficance	.001					ficance	.00	5	

۰.

Interview Data Analyses: Stoichiometry - Total Problem Solved Correctly ١

4

- ERIC

L

435g

Table 2	63
---------	----

Toblems		Algorithmic	Stratem	z Onlv		Comments About Solution						
orrect	0		2	3	Total	0	1	2	3	4	Total	
						7	o	0	21	,	40	
•	16	11	6	17	40	3 7.5	8 20.0	8 20.0	52.5	ŏ	60.6	
	40.0	27.5	15.0	17.5	60.6		40.0	- 66.7	100.0	Ō	(41.6)	
0	53.3	78.6	50.0	70.0	(34.8)	25.0 4.5	12.1	12.1	,31.8	.0	()	
	24.2	16.7	9.1	10.6		4.5	14.1	16.1	,01.0			
	F	7	5'	3	16	3	8	4	0	1	16	
	5	3 18.8	31.3	18.8	24.2	18.8	50.0	25.0	0	6.3	24.2	
-	31.3	21.4	41.7	30.0	(39.2)	25.0	40.0	33.3	0	100.0	(26.2)	
1	• 16.7	4.5	7.6	4.5	(39.2)	4.5	12.1	6.1	0	1.5		
	7.6	4.5	7.0	7.5	•	/						
	5	0	1	0,	6	3	3	° 0	0	0	6	
	83 .3	0	16.7	Ŏ	.9.1	50.8	50.0	- 0	0	0	9.1	
2		0 -	8.3	Ő	(21.3)	25.0	- 15.0	0	0	0	(14.5)	
2	16.7	0	1.5	Ő	(21.7)	4.5	4.5	0	0	0		
م د	7.6	U	1.5	v								1
	4	0	· 0	< 0	4	. 3	1	0	0	. 0	4	
	100.0	Ő	۰Ö	Ō	•6.1	75.0	25.0	0	0	0	.6.1	
3	13.3	Ő	, Ö	Ō	(15,5)	25.0	5.0	0	0	0	(10.5)	
. .	6.1	0 0	Í Ö	Ō	()	4.5	1.5	Ō	۰0	0		
	0.1	Ū	•	-			*					
Fat a 1	- 30	14	12	· 10	66	12	20 -	12	21	1	66	
Fotal	45.5	21.2	18.2	15.2	-100.0	18.2	30.3	18.2	31.8	1.5	100.0	
	1010									·.		
1.		KW Chi Squar	e 8.	.49		•		Chi Square			I	
		if	-	9		•	df			6		
		Significance		.04			Sig	gnificance	.000	71	i I	

Interview Data Analyses: Stoichiometry - Total Problem Solved Correctly

Table 2	64
---------	----

Interview	Data Analyses:	Stoichiometry	-	Total
	Problem Solved	Correctly		

۰.

Ę,

	egy Total	ng Strate	Reasoni: 2	rithmic	$\frac{Algo}{0}$	- <u>m + 1</u>	ompting	hout Pr	rect Wit	stions Con		Problems
	10141			<u> </u>	0	Total	4	3	2	1	0	Correct
-	40	0	3	1	36	40	1	12	15	- 10	?	
	60 .6	0	7.5	-2.5	90.0	60.6	2.5	30.0	37.5	25.0	5.0	•
	(25.8)	0	37.5	33.3	80.0	(26.9)	12.5	48.0	78.9	100.0	50.0	0
		0	4.5	1.5	54.5	(2002)	1.5	18.2	22.7	15.2		v
	*				0.00		1.5	10.2	66.1	15.2	3.0	
	16	3	3	2 ໍ	8	16	4	· 9	1	0	2	
	24.2	18.8	18.8	12.5	50.0	24.2	25.0	56.3	6 7	Õ	12.5	
· · ·	(38.8)	30.0	37.5	66.7	17.8	(43.3)	50.0	36.0	5.3	0 0	50.0	1
		4.5	4.5	3.0	12.1	()	6.1	13.6	1.5	0	3.0	*
	k.						0.1	13.0	1.5	0	3.0	
	6	4	1	0	1,	6	0	. 4	2	0	0	
	9.1	65.7	.6.7	0	16.7	9.1	Õ	66.7	33.3	0	0	
	(53.6)	40.0	.12.5	0	2.2	(38.7)	Õ	16.0	10.5	0	ρ	2
	•	6.1	1.5	0	1.5	(001))	Õ	6.1	3.U	0	0	-
					、		Ū	0.1	5.0	U	U	
	4	3	1	0	0	`4 .	3	0	ĺ	0	0	
	6.1	75.0	25.0	0	0	6.1	75.0	Õ	25.0	0	0	
	(59.3)	30.0	12.5	0	0	(52.9)	37.5	Õ	5.3	Ő	0 0	3
	•	4.5	1.5	0	· 0	()	4.5	0 0	1.5	0	0	5
								v	1.0	Ŭ	U	
	66	10 ·	8	3	45	66	8	25	· 19	10	4	Total
	100.0	15.2	12.1	4.5	68.2	100.0	, 12.1	37.9	28.8	15.2	6.1	IUtal
							;	••••		13.2	0.1	
		31.54	Square	KW Chi)	14.70	Square	KW Chi		
		9		df				9	•	df		
1		<.0001	cance	Signifi			2	.00	icance			
- 1				-						0		

430

٥

433-ERIC . .

Table 265'

						\$	Algor	ithmic S	trategy
Problems	Svst	emmatic A	pproach		metic Ap	proach	~	Only .	Total
Correct	0	1	Total	0	1	Total	0	1	10141
No	15 33.3 10C.0	30 66.7 61.2 46.9	45 70.3	23 51.1 85.2 35.9	22 48.9 59.5 34.4	45 70.3	19 42.2 52.8 29.7	26 57.8 92.9 40.6	45 70.3
Yes	23.4 0 0 0 0	40.9 19 100.0 38.8 29.7	19 29.7	4 21.1 14.8 6.3	15 78.9 40.5 23.4	19 29.7	17 89.5 47.2 26.6	2 10.5 7.1 3.1	19 29.7
Total	15 23.4	49 76.6	64 100.0	27 42.2	37 57.8	64 100.0	36 56.3	28 43.8	64 100.0
	Chi Squ df Phi Signif		.52 1 .36 .01	Chi So df Phi Signi:	quare ficance	3.79 1 .28 .05	Chi So df Phi Signi:	quare ficance	10.28 1 .43 .001
Ň									

Interview Data Analyses: Molarity - Problem 1 Problem Solved Correctly

440 --

ERIC Full Text Provided by ERIC ٠,

å

Problems		thmic Re Strategy	easoning		Misapp	lies Infor Generated		Comments	About	
Correct		1	Total		Q	1	Total	0	<u> </u>	Total
No	42 93.3 95.5 65.6	3 6.7 15.0 4.7	45 70.3 ^x		34 75.6 64.2 53.1	11 24.4 100.0 17.2	45 70.3	27 60.0 61.4 42.2	18 40.0 90.0 28.1	45 70.3 (35.3)
Yes	2 10.5 4.5 3.1	17 89.5 85.0 26.6	19 - 29.7		19 100.0 35.8 29.7	0 0 0 0	19 29.7	17 89.5 38.6 26.6	2 10.5 10.0 3.1	19 29.7 (25.9)
Total	44 68.8	20 31.3	64 100.0	ŕ	53 82.8	11 17.2	64 100.0	44 68.8	20 31.3	64 10050
_ ·	Chi Squ df Phi Signif		38.87 1 .82 <.0001	df 1 Wilco Phi 30 Z		Mann-Whit Wilcoxon Z Significa	Rank S	553 Sum W 493 2.30 .02		

Interview Data Analyses: Molarity - Problem 1 Problem Solved Correctly

ł

ί,

14

441

í

Ľ

۰.

1.

Table	267

¢

٦

Problems		Questio	ns Corre	ct	1			Questions		<u><u> </u></u>	5	Total
Correct	2	3	- 4	5	Total	0		2	<u>_</u>			
No	5 11.1 83.3 7.8	24 53.3 96.0 37.5	10 22.2 45.5 15.6	6 13.3 54.5 9.4	45 70.3 (27.8)	3 6.7 100.0 4.7	7 15.6 100.0 10.9	17 37.8 68.0 26.6	12 26.7 75.0 18.8	4 ,8.9 50.0 6.3	2 4.4 40.0 3.1	45 70.3 (29.2)
Yes	1 5.3 16.7 1.6	1 5.3 4.0 1.6	12 63.2	5 26,3 45.5 7.8	19 [.] 29.7 (43.6)	0 0 0	0 0 0 0	8 42.1 32.0 12.5	4 21.1 25.0 6.3	4 21.1 50.0 6.3	3 15.8 60.0 4.7	19 29.7 (40.3)
Total	6 9.4	25 39.1	22 34.4	11 17.2	64 100.0	3 4.7	7 10.9	25 39.1	16 25.0	8 12.5	5 7.8	64 100.0
		Mann-W Wilcox Z Signif	hitney b on Rank S icance	Sum W -3	217 827 .26 001			Wilcox Z	hitney U on Rank icance	Sum W 76	6	

Interview Data Analyses: Molarity - Problem 1 Problem Solved Correctly

24

443

ERI

Problems	Structural Error - 1											
Correct	0	1	3	4	6	7	8	9	Total			
	-	8	A	1	7	r	8	13	45			
	15.6	17.8	4 8.9	2.2	1.1	4.4	17.8	28.9	70.3			
No	100.0	100.0	100.0	100.0	100.0	66.7	100.0	41.9				
140	10.9	12.5	6.3	1.6	3.1	3.1	12.5	20.3				
	10.4	10.0										
	0	0	0	0	0	1	0	18	` 19			
	Ō	Ō	0	0	0	5.3	0	94.7	29.7			
Yes	Ō	Ō	0	0	0	33.3	0	58.1				
	Ō	Ō	0	0	0	1.6	0	28.1				
	-			1	7	• 3	8	31	64			
Total	· · · ·	8	4	1	2	4.7	12.5	48.4	100.0			
-	10.9	12.5	6.3	1.6	3.1	4. /	12.5	40.4	100.0			
			1	Chi 3	Square	24.64						
				df	oquer o	7						
				v		.62						
					ificance	.0009	÷ ,					

.

Ē

Interview Data Analyses: Molarity - Problem 1 Problem Solved Correctly

441

Table 269

Interview Data Analyses: Molarity - Problem 1 Problem Solved Correctly

Problems			St	ructural E	rror - 2				
Correct	0	1	2	6	7	8	9	Total	
			7		4	7	1	45	
	10	2	- 7	14	8.9	, 15.6	2.2	70.3	
	22.2	4.4	-15.6	31.1		26.9	100.0		
No	100.0	100.0	100.0	100.0	100.0				
	15.6	3.1	10.9	21.9	6.3	10.9	1.6		
	0	·* 0	- 0	0	0	19	· 0	19	
	0	··· 0		0	0 0	100.0	Ő	29.7	
	0	0	0	0		73.1	- Ŭ		
Yes	0	0	'O	U	0		-		
	0	0	0	0	0	29.7	0		
	, 10	2	7	14	4	26	1	64	
Total	10		10 0		6.3	40.6	1.6	100.0	
	15.6	3.1	10.9	21.9	<i>/</i> 0.5	40.0	1.0		
				Chi Squar	re 39	9.49			
	1		-	df		6			
				V		.78			
	۰ ۲			•		0001			
		,		Significa	alice				

445

3

ť

Table 2	270	
---------	-----	--

٢.

Interview	Data Analyses:	Molarity -	Problem 2
	Problem Solved		

Problems	A Str	lgorithmi ategy Onl	c y	Reas	ategy		
Correct	0	1	Total	0	1	Total	
.4	24	32	56	47	9	56	
	42.9	57.1	87.5	83.9	16.1	87.5	
No	77.4	97.0		97.9	56.3		
···	· 37.5	50.0		73.4	14.1		,
ŀ	. 7	1	8	1	7	8	
r.	87.5	12.5	12.5	12.5	87.5	12.5	r
Yes	22.6	3.0			43.8		
105	10.9	1.6		1.6	10.9		
Total	31 ,	33	. 64	48	16	64	
1000	48.4	51.6	100.0	75 0	25.0	100.0	
	Chi Sq	uare 3	5.94	Chi	Square	15.43	•
,	df		1	df		1	
	Phi		.29	Phi		.54	
,		icance	.05	Sig	nificance	.0001	
		1	,				,

C

÷

Problems		Questi	ions Corr	ect				Qu	estions (orrect W	ithout I	TOUDU	ug Tetal	
Correct	-2	3	4	5	Total		0		<u>2</u>	3	4		Total	
	-		<u> </u>				z	7	23	14	7	2	56 ·	
	6	25	18	/	56			12 5	41.1	25.0	12.5	3.6	87.5	
	10.7	44.6	32.1	12.5	87.5		5.4	12.5			87.5	40.0	(30.5)	
No	100.0	100.0	81.8	63.6	(29.9)	-	100.0	100.0	92.0	87.5			(30.0)	•
	9.4	39.1	28.1	10.9			4.7	10.9	35.9	21.9	10.9	3.1		
1		<i></i>										_	•	
	0	• •	4	4	8		0	0	2	<i>,</i> 2	1	3	8	
	0	0		50.0	12.5		Ő	Ō	25.0	25.0	12.5	·37.5	12.5	
	U	0	50.0				0	ů 0	8.0	12.5	12.5	60.0	(46.8)	
Yes	0	0	18.2	36.4	(50.8)		0	0	3.1	3.1	1.6	4.7	. ,	
	0	Ó	6.3	6.3			0	U	5.1	3.1	1.0			
				` 11			7	· ź	25	16.	8	5	64	
Total	6	25	22	11	64			10 0		25.0	12.5	7.8	100.0	
	9.4	39.1	34.4	17.2	100.0		4.7	10.9	39.1	23.0	12.5	1,0	100.0	
		_		_	_		•		Mann -W	hi tne y U		109		
1			hitney U		8					on Rank S		374		
		Wilcox	on Rank S	Sum W 4/)					WIICOX	UII NAIIK C		.42		
	•	Z		-3.1	3				4					
		Signif	icance	.00	2				Signif	icance		.02		

Interview Data Analyses: Molarity - Problem 2 Problem Solved Correctly

Table 271

Table 272	able	272	
-----------	------	-----	--

Interview Data Analyses: Molarity - Problem 2 Problem Solved Correctly

Problems	lems Structural Error - 1										
Correct	0	. 1	2	4	- 5		8	Iotal			
			0	4	21	ໍ 5	4	56			
	11	. 1	8	6	24	-	1.8^{-1}	87.5			
	19.6	1.8	14.3	10.7	42.9	8.9		07.5			
No	100.0	100.0	100.0	46.2		, 100.0	100.0				
	17.2	1.6	12.5	9.4	37.5	7.8	1.6				
	0	- 0	0	7	1	0	0	- 8			
	•	ŏ	Ö	87.5	12.5	Ó	0	12.5			
	0	•	0	53.8	4.0	Ō	Ō	0			
Yes	0	. 0			1.6	Õ	Ö				
	0	0	0	10.9	1.0	U	Ū	'			
Total	11	۳ 1	8	13	25	5	1	64			
IUCAL	17.2	1.6	12.5	20.3	39.1	7.8	1.6	100.0			
			Chi So	uare	25.68						
			df	•	6			3			
			v		.63						
			•	ficance	.0003			*)			

440

[7

							_			
Pueblane			÷.							
Problems Correct	0	1	2	6	al Error - 7	8	9	Total		
	6	· 2*	14	4	4	18	8	56		
	10.7	3.6	25.0	7.1	7.1	32.1	14.3	87.5		
N-	10.7	100.0	100.0	100.0	100.0	69.2	100.0	•		ŧ
No	9.4	3.1	21.9	6.3	6.3	28.1	12.5			÷
•	0	0	0	0	0	8	0	8		`
i .	0	0	0	0	Õ	100.0	0	12.5		•
•	0	0	0	, 0	· 0	30.8	Ō			
Yes	0	0	· 0	0	Õ	12.5	Õ			•
	Ũ	Ŭ	-	3			•			
Total	6	2	14 ·	4	4	26	8	64		
IVEAL	9.4	. 3.1	21.9	6.3	6.3	40.6	12.5	100.0	•	
		*	Ch	i Square	13.36	,	•			e.
			df		6		£			
•	,		v		.46			•		•
•			Si	gnificanc	.04					•
	×		•				e			
1	•									•

Interview Data Analyses: Molarity - Problem 2 Problem Solved Correctly

. 450

Table	274	

Interview	Data Analyses:	Molarity	-	Problem 3
- •	Problem Solved	Correctly		

ζ.

•5

Problems	Structural Error - 1											
Correct	0	1	3	4	5	6	<u>, 7</u>	8	9	Total		
No	20 37.0 100.0 31.3	10 18.5 100.0 15.6	, 5 9.3 83.3 7.8	* 2 3.7 100.0 3.1	1 1.9 50.0 1.6	2 3.7 100.0 3.1	2 3.7 100.0 3.1	2 3.7 100.0 ² 3.1	10 18.5 55.6 15.6	54 -84 .4		
Yes	0.0000000000000000000000000000000000000	6 0 0 0	1 10.0 16.7 1.6	-`0 0 4 0 0	1 10.0 50.0 1.6	0 0 0 0	0 0 0 0	0 0 0 0	8 80.0 44.4 12.5	. ³ 10 15.6		
Total	20 31.3	10 15.6	6 9.4	· 3.1	2 3.1	2 3.1	. 2 3.1	2 3.1	18 28.1	- 64 100.0		
	•			df V	Square'	20.1 .5 .0	8 56	×,		•		

		•	•							<u> </u>		
Problems		 Struc	ctural Er	ror - 2			Structural Error - 3					
Correct	0		2	3	4	Total	0	T	2	3	Total	
No	18 33.3 100.0 28.1	13 24.1 100.0 20.3	5 9.3 33.3 7.8	13 24.1 100.0 20.3	5 9.3 100.0 7.8	54 84.4	35 64.8 100.0 54.7	3 5.6 100.0 4.7	8 14.8 100.0 12.5	8 14.8 44.4 12.5	54 84 .4	
Yes	0 0 0 0	0 0 0 0	10 100.0 66 7 15.6	0 0 0 0	0 0 0	10 15.6	0 0 0 0	0 0 0 0	0 0 0 0	10 100.0 55.6 15.6	10 15.6	
Total	18 28.1	13 20.3	15 23.4	13 20.3	5 7.8	64 100.0	35 54.7	3 4.7	8 12.5	18 28.1	64 100.0	
	Chi Square df V Significance			38.72 4 .78 <.0001			df V	Square nificance	30.2 .6 < .000	3 69		

Interview Data Analyses: Molarity - Problem 3 Problem Solved Correctly

452

١

٠,

â

			1	Algorithmic Reasoning						
Problems	Syste	mmatic Ap	proach	Ň	Answer (<u>iven</u>	Strategy			
Correct	-0		Total	0	1_	Total	0		Total	
<u>correct</u>							;			
	30	24	54	32	22	54	- 48	6	54	
				59.3	40.7	84.4	88,9	11.1	84.4	
	55.6	44.4	84.4			04.4	100.0	37.5		
No	100.0	70.6		76.2	100.0					
	46.9	37.5		50.0	34.4		75.0	9.4		
	•	10	10	10	0	10	0	10	10	
	0	10	10				0 0	100.0	15.6	
	0	100.0	15.6	100.0	0	15.6		62.5	1010	
Yes	0	29.4		23.8	0		0			
100	Ō	15.6	•	15.6	0		0	15.6		
		~.	64	42	22	64	48	16	64	
Total	30	34	64				75.0	25.0	100.0	
	46.9	53.1	100.0	65.6	34.4	100.0	/5.0	23.0	100.0	
	Chi Con		8.35	Chi S	ouare	4.53	Chi S	quare	30.97	
		lare	1	df	4	1	df	•	1	
	df		1 In			71	Phi		.74	
	Phi		.40	Phi		.31		fiendo	<.0001	
	Signif	icance	.004	Signi	ficance	.03	Signi	ficance	~.0001	

Interview Data Analyses: Molarity - Problem 3 Problem Solved Correctly

455

Table	277
-------	-----

Problems		Questions Correct							
Correct	2	3	4	5	Total				
	6	24	17	7	54				
	11.1	44.4	31,5	13.0	84.4				
No	100.0	96.0	77.3	63.6	(29.9)				
No	9.4	37.5	26.6	10.9	•				
	0	1	5	4	10				
	Ō	10.0	50.0	40.0	15.6				
Yes		4.0	22.7	36.4	(46.8)				
165	0 0	1 (7.8	6.3					
Total	6	25	22	- 11	64				
IUtal	9.4	39.1	34.4	17.2	100.0				
		Mann-Wh Wilcoxo Z Signif:	nitney U on Rank Su icance	127 mW 467 -2.79 .009	7 9				

Interview Data Analyses: Molarity - Problem 3 Problem Solved Correctly

.

Table 278

Problems	Fv	aluation Su	m	Comments About Solution					
Correct	0	1	Total	0	1	Total			
Wheel						F A			
	50	4	54	21	33	54			
	92.6	7.4	84.4	38.9	61.1	84.4			
No	87.7	57.1	(31.4)	67.7	100.0	(35.6)			
NU	78.1	6.3		32.8	51.6				
	70.1	0.0							
	7	3	10	10 ·	. 0	10			
	70.0	30.0	15.6	100.0	0	15.6			
No	12.3	42.9	(38.6)	32.3	0	(16.0)			
Yes	12.3	4.7	(30.0)	15.6	Û				
	10.9	 • /							
T • 1	F7	7	64	31	33	64			
Total	. 57	10.9	100.0	48.4	51.6	100.0			
	89.1	10.9	100.0						
	Mann life	ni tney U	209	Mann-Wh	itney U	435			
	Maini-Wi Wilcows	on kank Sum			n Rank Sum I	W 160			
			-2.09	Z		3.52			
	Z		.04	Signifi	cance	.0004			
	Signif	Icance	.04	018.111					

- -

Interview Data Analyses: Molarity - Problem 3 Problem Solved Correctly

450

`

. •

(

0 1 2 3 Total 0 1 2 3 Total Correct 0 1 2 3 Total 0 1 2 3 10 0 100.0 100.0 47.4 46.4 (27.0) 48.9 83.3 100.0 100.0 100.0 66.7 33.3 23.4 15.6 7.8 5.1 60 0 0 0 10 5 15 13 2 0 0 23.4 100.0 100.0 100.0 (37.3) 1 0 0 10 5 15 13 2 0 0 23.4 34.4 15.6 7.8 3.1 1 0 0 52.6 17.9 (34.8) 28.9 16.7 0 0 24.3 1 0 0 0 100.0 12.5 100.0 0 0 10 2 0 0 0 28.6 (50.5) 17.8 0 0 0 2	Problems	Systemmatic Approach					Nonsystemmatic Approach					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	1	2		Total	0	1	2	3	Total	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							22	10	ς	2	39	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8				39					60.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.5					50.4					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	100.0			46.4	(27.0)					(3/11)	
$1 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$			14.1	14.1	20.3	•	_ 34.4	15.0	/.0	3.1		
$1 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$		0	0	10	5	15	13	2	0	0	15	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								13.3		0	23.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					33.3					0	(26.8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1					(34.0)		3.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	0	15.0	. /.0		20.3	5.+	-	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			n	٥	8	8	8	0	0	0.	8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0	0	12.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0	0	(23.0)	
0 0 0 12.3 1100 0 0 0 3 0 0 0 2 2 2 0	2					(30.3)			0	0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	U	U	12.5			• • •				
3		0	0	٥	2	2	2	0			2	
3 0 0 0 7.1 (50.5) 4.4 0 0 0 (2 3 0 0 0 3.1 3.1 0 0 0 (2 Total 8 9 19 28 64 $\frac{45}{12}$ $\frac{12}{5}$ $\frac{2}{7}$ 3.1 10								0	0		3.1	
Total 8 9 19 28 64 45 12 5 2 10^{-10} 7 8 3 1 10	_							0	0	0	(23.0)	
Total 8 9 19 28 64 45 12 5 2 78 3 1 10	3 ,		0			(30.3)	3.1	0	0	0		
Total 8 9 19 20 04 70 70 71 10		U	U	0								
	Total	Q	Q	19	28	64	45	. 12	5	2	64	
								18.8	7.8	3.1	100.0	
		14.5	1411									
KW Chi Square 14.68 KW Chi Square 9.95		Kk Chi Square			14.68							
df g										.9		
Significance .002 Significance .02				Ficance				Signi	ficance	.02		

Interview Data Analyses: Molarity - Total Problem Solved Correctly

Table 279

450

N,

.

1

457

Interview Data Analyses: Molarity - Total Problem Solved Correctly

Problems	No Answer Given					Algorithmic Strategy Only						
Correct	0		2	Total		. 0		2	3	Total		
	10	15	5	39		. 5	11	18	5	39		
	19 48.7			60 . 9		12.8	28.2	46.2	12.8	60.9		
o ′		38.5	12.8			27.8	55.0	90.0	83.3	(39.5)		
0 (52.8	65.2	100.0	(35.4)	L.		17 .2	28.1	7.8	(00.0)		
	29.7	23.4	7.8		ĩ	7.8	1/.4	20.1	/.0			
	7	8	`. O	15	•	5	7	2	1	15		
-	46.7	53.3	, Ö	23.4		33.3	46.7	13.3	6.7	23.4		
1	19.4	34.8	Ň Õ	(34.2)		27.8	35.0	10.0	16.7	(27.0)		
-	10.9	12.5	Ū,	(0710)		7.8	10.9	3.1	1.6	-		
	10.5	10.0	v									
	8	0	0	8		۵	2	0	0	8		
	100.0	Õ	Ō	12.5		75.0	25.0	0	0	12.5		
2	22.2	Õ	Ō	(18.5)		33.3	10.0	0	0	(14.3)		
. –	12.5	Ō	Ō	(9.4	, 3.1	0	0			
		-					· · ·		_	-		
	2	0	0	2		2 -	0	0	0	<u>2</u>		
	100.0	0	0	3.1		100.0	0	0	0	3.1		
3	5.6	0	0	(18.5)		11.1	0	0	0	(9.5)		
	3.1	0	Û			3.1	. 0	0	0			
Total	36	23	5	64		18	20	20	6	64		
IULAI	56.3	35.9	7.8	100.0		28.1	31.3	31.3	9.4	100.0		
	20.2	33.3	/.0	100.0						-		
	KW (Chi Squar	re` 8.7	0			KW Chi	Square	19.19			
	df			6			df	-	6			
		nificance		-			Signif	icance	.0003			

TODIO BUI	Tab1	e 2	81
-----------	------	-----	----

٩.

Problems	Algorithmic Reasoning Strategy						Commen	Total		
Correct .	0	1	2	3	Total	0	1	2	3	IULAL
	34	5	0	0	- 39	9	13	12	5	39
	87.2	12.8	Ō	0	60.9	23.1	33.3	30.8	12.8	60.9
0	91.9	45.5	Õ	Ō	(22.1)	50.0	48.1	85.7	100.0	(37 .0)
U	53.1	7.8	ŏ	Õ	()	14.1	20.3	18.8	7.8	•
	3	6	5	1	15	1	12	2	0	15
	20.0	40.0	33.3	6.7	23.4	6.7	80.0	13.3	0	23.4
1	8.1	54.5	71.4	11.1	(42.3)	5.6	44.4	14.3	0	(33.2)
1	4.7	9.4	7.8	1.6	()	1.6	18.8	3.1	0	
	œ	. 0	2	6	8	6	2	0	0	8
	0	0	25.0	75.0	12.5	75.0	25.0	0	0	12.5
•	0	0	28.6	66.7	(58.0)	33.3	7.4	0	0	15.1
2	0	0	3.1	9.4	(30.0)	9.4	3.1	0	0	
	0	0	0	2	2	2	0	0	0	2
	0	-	0	100.0	3.1	100.0	Ō	0	0	3.1 9.5
-	0	• 0	0	22.2	(60.0)	11.1	Ō	0	0	9 .5
3	0 0	0 0	0	3.1	(00.0)	3.1	Ő	Ō	0	
	37	11	7	9	64	18	27	14	5	64
Total	57.8	11 17.2	10.9	14.1	100.0	28.1	42.2	21.9	7.8	100.0
	df	Chi Squar nificance		9			KW Chi df Signifi	•	13.77 9 .003	!

t

Interview Data Analyses: Molarity - Total Problem Solved Correctly

.

- 11

Table	282
-------	-----

.

•

Problems		Ques	tions C	orrect			Ques	tions Cor	rect With	out Prom	ptin ^c	Total
Correct			2	3	Total	0	1	<u> </u>		4		
					70	7	7	15	• 11	2	ì	39
L	5	23	7	4	39	3			28.2	5.1	2.6	60.9
	12.8	59.0	17.9	10.3	60.9	7.7	17.9	38.5		25.0	20.0	(27.0)
0	83.3	92.0	51.8	36.4	(25.3)	100.0	100.0	60.0	68.8	3.1	1.6	(27.00)
	7.8	5.9	10.9	6.3		4.7	10.9	23.4	17.2	5.1	1.0	
	_		• •			0	٥	7	ُ 2	5	1	15
	1	2	10	2	15	0	0	46.7	13.3	33.3	6.7	23.4
_	6.7	13.3	66.7	13.3	23.4	0	0		12.5	62.5	20.0	(39.2)
1	16.7	8,0	45.5	18.2	(39.0)	0	0	28.0	3.1	7.8	1.6	(0000)
	1.6	- 3.1	15.6	3.1		0	0'	10.9	3.1	7.0	1.0	
	•	0			0	. 0	0	2	3	1	2	8
	0	• 0	4	4	8	. 0	· 0	25.0	37.5	12.5	25.0	12.5
•	0 0	0	50.0	50.0	12.5		0	0 0	10 0	12.5	40.0	(44.5)
2		0	18.2	36.4	(50.8)	0			4.7	1.6	3.1	、
	0	0	6.3	6.3		0	0	3.1	4./	1.0	•••-	
	0	0	1	1	⁻ 2	0	0	1	0	0	1	2
	0	0	1		3.1	0	0	50.0	0	0	50.0	3.1
3	0	0	50.0	50.0		0	0, 0	4.0	Ō	0	20.0	(42.5)
3	0	0	4.5	9.1	(50.8)	0	0	1.6	Ō	Ō	1.6	
	0	0	1.6	1.6		0	U	1.0	Ū	-		
	5	25	22	11	64	3	7	25	16	8	5 7.8	64
Total	9.4	39.1	34.4	17.2	100.0	3 4.7	10.9	39.1	25.0	12.5	7.8	100.0
	9.4	33.1	J4 • 4	1/ • 4	100.0							
		KW Ch	i Squar	e 19.2	3				hi Square	10.07		
		df	is organis		9			df		15		
			ficance	.000	2			Sign	ificance	.02		

Interview Data Analyses: Molarity - Total Problem Solved Correctly

Ŷ

Î,

Ę

.

Ň

461 g

<u>Nonsystemmatic approach</u>. Moles, problem 1, total (Tables 220, 235), and molarity, total (Table 279). This approach was used by students getting the problem incorrect.

<u>No answer given</u>. Moles, problem 1 (Table 221), stoichiometry, total (Table 262), and molarity, problem 3, total (Tables 276, 280). Students not giving an answer got the problem incorrect.

Algorithmic strategy. Moles, problem 2, total (Tables 225, 235), stoichiometry, total (Table 263), and molarity, problems 1, 2, total (Tables 265, 271, 280). For moles, this strategy was used most for students getting two or three problems correct, for stoichiometry and molarity for students with one problem correct.

Algorithmic/reasoning strategy. Moles, all problems (Tables 221, 225, 231, 236), gas laws, problem 1, 3, total (Tables 240, 246, 250), stoichiometry, all problems (Tables 252, 255, 259, 264), and molarity, all problems (Tables 266, 270, 276, 281). This strategy predominated for successful problem solvers.

Random trial and error. Moles, problem 1 (Table 221), and stoichiometry, problem 2 (Table 256). This strategy was used more frequently by students who got the problem incorrect.

<u>Misinterprets the problem</u>. Gas laws, problem 3 (Table 246). An insufficient number of subjects were analyzed to make a judgement about the results.

Disregards information generated. Moles, problem 2 (Table 226). Students who missed the problem did this more frequently.

<u>Misapplies information</u>. Molarity, problem 1 (Table 266). Students who missed the problem did this more frequently.

Does not generate information. Moles, problem 2, total (Tables 226, 236). Students who missed the problem did this more frequently.

Evaluation. Gas laws, problem 3 (Table 246) and molarity, problem 3 (Table 278). Used more frequently by students who got the problem correct.

462

Comments about solution. Moles, all problems (Tables 222, 227, 231, 236), gas laws, problems 1, 2 (Tables 240, 244), stoichiometry, all problems (Tables 252, 256, 259, 263), and molarity, problems 1, 3, total (Tables 266, 278, 281). Students solving the problems incorrectly more frequently made comments about the solution.

392

Executive errors. Moles, problems 1, 2 (Tables 222, 227), and gas laws, problems 1, 2, total (Tables 240, 244, 251). Students who missed the problems made more executive errors.

Questions correct. Moles, all problems (Tables 223, 228, 232, 238), gas laws, problem 3 (Table 248), and molarity, all problems (Tables 267, 271, 277, 282). If students answered the questions correct, they more frequently got the problem correct.

Questions correct without prompting. Moles, all problems (Tables 224, 229, 233, 239), get laws, problem 1, total (Tables 241, 251), stoichiometry, all problems (Tables 253, 257, 260, 264), and molarity, problems 1, 2, total (Tables 267, 271, 282). If the student got the questions correct without prompting, they were more likely to get the problem correct.

Structural errors.

1. Gas Laws 1 - 1, Table 242. Students who got the problem correct made no errors. Students who got the problem incorrect more frequently forgot to change to Kelvin temperature rather than making an error in the conversion.

2. Gas Laws 1 - 2, Table 242. Among students who got the problem incorrect the major error was to use the factor or proportion incorrectly. This error was more prevalent than forgetting to change to Kelvin temperature.

3. Gas Laws 2 - 2, Table 245. Students who did not work the problem correctly failed to set up the factor or proportion correctly. More made this error than those associated with Kelvin temperature conversion.

4. Gas Laws 3 - 2, Table 249. Students who did not get the problem correct frequently failed to convert the moles to volume and also did not set up a factor or proportion.

5. Stoichiometry 1 - 1, Table 254. The major error committed by students getting the problem wrong was failure to recognize the need to balance the equation before working the problem. This was followed by balancing the equation incorrectly.

6. Stoichiometry 2 - 1, Table 254. Students who solved the problem incorrectly failed to use the equation.

7. Stoichiometry 2 - 2, Table 256. Students who solved the problem incorrectly failed to use the equation.

8. Stoichiometry 3 - 3, Table 261. The error consisted primarily of not using the equation correctly for determining the product.

Molarity 1 - 1, Table 268. In the first step of the molarity problem, an equal number of students failed to calculate the molecular weight as calculated it correctly. Of students who missed the problem, more students calculated the molecular weight correctly than aid not.

Molarity 2 - 1, Table 272. Students who missed the problem more frequently used the volume change incorrectly than failed to realize that a change occurred.

Molarity 2 - 2, Table 273. One major error existed, 25% of the students did not use the definition of molarity correctly. Thirty-two percent used the definition correctly and made the mL-L conversion correctly. These students did not use the volume change properly.

Molarity 3 - 1, Table 274. Of those missing the problem, more failed to calculate the molecular weight than either calculated it correctly or incorrectly.

Molarity 3 - 2, Table 275. In solving the molarity-stoichicmetry problems, students frequently realized that a balanced equation must be . used but either were unable to use it or used it incorrectly.

Molarity 3 - 3, Table 275. Of students who missed the problem equal numbers used the definition of molarity correctly as incorrectly.

A special note should be made concerning the chi-square analyses and their interpretation for the first five hypotheses. A very loose interpretation has been given to these data because of the coding system used. A more appropriate analysis (that time did not permit) would be to reclassify errors into single categories and analyze data in this manner. This has been done to some extent in the Detailed Analysis of Structural Errors that follows although no additional chi-square analyses were performed. The appropriate categories for the analyses are given in Tables 290, 293 and 296. 395

Hypothesis 6

There are no differences in the number of questions a student answers successfull, according to verbal-visual preference, proportional reasoning ability, success in problem solving, the method taught in learning problem solv ng, and the number of problems solved correctly.

Data collected 'o test this hypothesis have been included in the summary charts (Table: 116, 122, 157, 194, 219). The number of questions answered correctl/ and the number of questions answered correctly without prompting were analyzed in terms of the other categories listed in the hypothesis. Results are summarized in Tables 283 and 284.

More detailed information about the significant findings are found in Tables 129, 130, 144, 154, 155, 169, 170, 186, 187, 238, 239, 251, 264 and 282. Results show that neither the teaching strategy nor students' verbal-visual preference made any difference as to the number of questions an wered correctly with or without prompting. Answering the questions correctly was related to proportional reasoning ability except for the gas 1. Justions. This is an interesting finding because the gas law questions were more qualitative in nature whereas the qu stions from the other units more quantitative.

;

Summary of Findings of

"Answers Questions Correctly"

Analysis	Moles P	Gas Laws P	Stoichiometry P	Molarity P
Verbal-Visual Preference	' -	-	-	-
Proportional Reasoning		•		
Ability	.005	-	.03	.001
Success on Tests	<.0001	-	.01	-
Teaching Strategies	-	-	-	-
Problem Solved Correctly	.004	-		.0002

ł

j.

Summary of Findings for

"Answers Questions Correctly Without Prompting"

					-
Analysis	Moles P	Gas Laws	Stoichiometry P	Molarity P	•
Verbal-Visual Preference	-	-	-		
Proportional Reasoning					•
Ability	<.0001	-	.04	.002	
Success on Tests	<.0001	-	.05	} -	
Teaching Strategies	-	-		-	
Problem Solved Correctly	<.0001	.02	.002	. 0.?	**
÷ ¢					· ·

463

4

5

service.

Success on the tests and solving the problem correctly was also dependent on the number of questions a student answered successfully. The exception to this was the gas law problems where the questions were more conceptual rather than quantitative.

Detailed Analysis of Structural Errors

Because of the importance of the structural error section, more detailed analyses were performed. For the moles interviews, a listing of the types of errors the students made in solving the problems was formulated. This was done before tapes from the other units were analyzed. Because this yielded interesting information, special structural error coding sheets unique to each of the other units were drawn up and used in their subsequent analyses.

Moles Structural Errors. A summary of the results of students' responses to questions asked students at the beginning of the interviews and a summary of the errors made are given in Tables 285 - 287. As stated previously, the purpose of including questions was to test students' knowledge of facts and concepts thought to be essential to solve the problem. Although the percentages of students answering correctly improved with prompting, (it was rather discouraging to find the initial percentages so low. (See Table 285).

One might argue that the reason that the initial response was poor was that the instruction was insufficient. This was probably not the case. Teachers commented that by using the packets they felt that there was much more thorough instruction than has been previously given. Students generally obtained very high scores on the immediate posttests indicating that they had at least memorized the facts and concepts at one point in time. For some reason these concepts have not been thoroughly understood and/or are not retained by the students. Even though correct answers were supplied to students who missed the questions, this was probably not very useful in helping them solve the problems because they did not understand the concepts involved. The difference in findings in

Moles Questions:

uestion	,	Cor N	rect	Correct N	Without	Prompting %
1	The formula for calcium hydroxide	67	91	38	-	51 -
	is $Ca(OH)_2$. How many atoms of each element are present in a molecule of			•		
	calcium hydroxide?					
2	If you had a mole of something,	48	۰ ₃ 65	5		12
•	what would that mean to you?		-			
3	Now many particles are in one mole?	68	92	64		8 6
4	What volume would one mole of a ideal	64	8 ს	58	,	78
-	gas occupy at STP?					
5	How would you determine the mass of one	51	69	34		4 6
5	mole of iron?	•		~		
6	Now would you determine the mass of one	68	92 Ø	54		73
	mole of animonia (NI ₅)?		U			

.

ø

Table	286
-------	-----

0

Problem» Sumber	N	RNo.	Skill				Err				
1M	24 =	16	Moles Mass				Х М—	Ma	5	5	
1Mo	, ⁻ 25	12	Moles				м —	- Mo	9		
1V	25	. 11	Noles Volume				м —	V	10		
		*									
	74	39	(53%)								
2MMo	29	11	Mass \longrightarrow Molecules	Ma	÷ M	9	X M	Mo	4		
2MoV	22	14	Molecules —— Volume	Мо	М	5	М	V	3		
2VM	23	10	Volume Mass	V	М	4	М	Ma			
			,								
	74	35	(47%)			3					
3MA	24	. 3	Mass> Atoms	Ma	ŧ M	7) M	K Mo)	Мо	A
3VA	2 3	3	Volume Atoms	v	М	8	М	Мо)	Мо	Α
3VM	19	4	Volume Mass Atoms	v	М	0	М	Ma	i 1	Ma (Mol)	Ma (At
	66	10	(15%)								

Moles: Analyses of Problems

,

,

400

J

Tab1e 287

Moles':

Structural Errors

(PPRT = 13.42)Wrong operation used but correct concepts I. Multiply volume x 22.4 instead of dividing 3 Multiplies atomic masses instead of adding 1 Divides mol. wt. by moles instead of multiplying 1 Divides 22.4 liters by liters instead of reverse Divides 6.02×10^{23} molecules by number of particles 1 1 instead of reverse Conceptual, confused about meaning of mole II. Finds moles and calls it grams 1 Finds moles and calls it liters 2 Finds moles and calls it molecules 2 Leaves answers in moles instead of converting to mass 1 Leaves answers in moles of atoms rather than number of atoms 1 ц́і. Use wrong conversion factor + conceptual Use mol. wt. instead of 22.4 1 10 Find the mass instead of volume 4 kinds volume instead of mass but calls it grams 2 2 Multiply mass x 22.4 1 2 Divides mol. wt. into liters Divides mol. wt. by 22.4 1 Multiply mass by 6.02×10^{23} 4 Multiply volume by 6.02×10^{23} 2 Use mol. wt. instead of 6.02×10^{23} IV. Leaves out moses Finds atoms in formula instead of atoms in moles present 1 Converts grams to molecules without mole conversion 1 Miscellaneous ۱. Finds molecules instead of atoms 1 Finds total mass rather than mass of part 1 Confused by additional information in problem (STP) 2

Tables 283 and 284 are slight indicating that giving students the answer made little difference in their solving problems correctly.

Table 282 breaks the errors down in terms of the types of problems students solved in each set. Problems 1M,1Mo, and 1V differed from one another in that they involved moles as mass, molecules, and volume. Students had been given (in the question section) the prerequisite facts to answer these problems correctly. Many errors were made even though they had the information within minues beforehand. The smallest numbers of errors were made in changing moles to mass rather than to molecules or to volume. Apparently, students perceive the mole as mass rather than a volume or a number. Equal emphasis had been given to all three parameters in the instruction.

The second set of problems involved two conversions. One of these used division to change from mass, molecules, or volume to moles; the other involved multiplication to change from moles to molecules, volume, or mass. Results indicate that more errors were made with the division concept than with multiplication. In this case the largest numbers of errors were made with the mass concept. The reason for this was probably use to the fact that the volumes given were multiples of 22.4 and the number of molecules given were multiples of 6.02×10^{23} . This may have cued students sufficiently to enable them to see that division was needed to solve the problems. More evidence for this stems from the fact that more students got the molecules-volume problem correct than the ones involving mass.

Problems in the third set each involved transfer. Students had to tell the number of atoms or the mass of atoms after they solved the problem in terms of molecules. Students had not encountered problems of this nature before but should have been able to work the problems correctly if they had understood all the problems up to this time. From Table 286 it can be seen that very few

473

students got these problems correct. As in the case with the second set of problems, a large. proportion of students missed the mass to mole conversion than the volume to mole conversion. Once students got this far they usually did not know hot to proceed.

In Table 287 the errors that students made in solving the moles problems were summarized according to five categories. In some cases, students used a wrong operation. Large numbers of students showed complete lack of the meaning of the mole (categories II and III) as is shown when students did not know what they had solved for or used the wrong conversion factors.

<u>Gas Laws Structural Errors</u>. A summary of the prerequisite questions that students answered correctly and the summary of the structural code results are given in Tables 288 to 290. The questions that were asked in this unit were more conceptual (qualitative) than quantitative. (Two other questions that should have been asked but were not because of lack of foresight were as follows: (1) how muny liters of a gas were equal to 250 mL? and (2) What is the meaning of STP?) As with the questions for moles, many students needed prompting to get them correct. Once a student answered the first question correct or was given the correct answer, this acted as a cue for questions two and three. Question four was included to determine if students really understood the gas law concept or had only memorized the result. From the law percentage getting the answer correct, it appears that few students really thought about the concept correctly. Most probably memorized the results.

Table 289 gives the percentage of students who got the problem correct for each of the three problem categories and the number of students who made structural errors as they appeared on the coding sheets. As can be expected as the problems become more complex, fewer students were able to solve them. Problem 3 was a combination gas law and mole problem that required students to synthesize what they had learned in the gas law unit with that learned in the moles unit.

47:

٠,

Gas Law Questions:

uestion	·	Corr N	°°Ct °	Correct	Without Prompting
1	What would happen to the volume of a	61	95	42.	66
	gas sample if the pressure on the				
	sample was increased and the		•		
	temperature held constant?				
2	What would happen to the volume of a	64	100	52	81
	gas sample if the temperature was				
	increased and the pressure held				
	constant?				د :
3	What would happen to the temperature	59	92	49	77
	of a gas sample if the pressure on				
	the sample was decreased and the		•		
	volume held constant?				
4	What would happen to the pressure of a	19	30	11	17
	gas sample if the temperature and the		,		
	volume were both increased?				, ,

9

475

.

.

Ô

404

••••

.

Gas Law Problems:

				Struc	tural (ode I	Results						
			r	((PPRT =	12.14	4)						
Problem	Di TP	P ro bler stribu TV	n		Cori N	ect		Δ	ctural N	Error B	Coding N	•	
1	25	18	21		29	45		0 1 2 3 4	1 19 8 1 35	0 1 2 3	5 1 17 41		
Problem	TVP	TPV	PVI	•	N	0 Ú		Α	N	В	·N		
2	18	20	20		17	27		0 1 2 3 4 5 6 7 8	4 - 2 4 2 6 43 2 1	0 1 2 3 4 5	5 3 2 , 20 6 28	•	
Problem	M-TV	M+TV	MPV		1.	0 ~0		А	N	В	N;	Ć	N
3		21	23		2	3		0 1 2 3 4	29 10 4 1 20	0 1 2 3 4 5 6 7 8 9	- 26 1 9 1 13 - 6 3 5	1	
				.		- • • - •						•	

Gas Law Problems:

Description and Summary of Structural Coding

Problem	Category	· · · · · · · · · · · · · · · · · · ·	N	0 0
1	А	Doesn't get this far	1	2 ^a
+	Λ	Kelvin temperature not required	19	30^{b}
		Fails to change to Kelvin temperature	8	18 ^C
		Makes error in calculating Kelvin temperature	1	- 2
		Converts to Kelvin temperature correctly	35	80
	в.	Doesn't get this far	5	8^{a}_{b}
	-	Doesn't set up factor or proportion	1	2 ^D
•		Inverts a factor or sets up wrong proportion	17	29
د ۴		Sets up problem correctly	41	69
· 2	• .1	Doesn't get this far	4	- 6 <mark>a</mark> 7 ^b
,	*	Fails to change to Kelvin temperature (beginning)	4	70
Ň		Fails to change to Kelvin temperature (end)	8	13
		Makes error in calculating Kelvin temperature	8	13
		Converts all kelvin temperatures correctly	43	70
	В	Doesn't get this far	5	85
		Doesn't set up factor or porportion	3	5
		Disregards one of the conditions	8. •	14
		Inverts a factor or sets up wrong proportion	26 ·	43
	•	Correct set up (regardless of Kelvin temperature)	. 28. , .	47
3	Α	Doesn't get this far	29 c	5 45 ^a
		Kelvin temperature not required	10	29 ^D
		lails to change to Kelvin temperature	4	16/
	•	Makes error in calculating kelvin temperature	1 /	4
	•	Converts to Kelvin temperature correctly	20	8 ⁄0
	В	poesn't get this far	26	41^{a}_{b}
		Fails to convert moles to volume	14 .	37 ^b
	•	Doesn't set up /a factor or proportion	27	71
•		Inverts a factor or sets up wrong proportion	1	3
		Sets up problem correctly	6	16
•		(onverts to liters incorrectly	8	21
	` С	Confused about STP	11	17

^aBased on all cases. ^bRemaining % 's based on those who got that far (except where indicated). ^cBased on cases in which a change was required.

It was a transfer item and only 3% of the students solved it correctly.

Because of the coding system, several structural errors were grouped together on the original coding sheets. These were ungrouped and added together to produce the results found in Table 290.

For problems in category 1, the major error was that students did not set up a correct factor or proportion. Eighteen (18%) percent of the students who attempted it did not remember to change to Kelvin temperature.

Similar results are found for the second set of problems. Students generally converted temperatures to Kelvin correctly. The major error made was in setting up the proportions. For problems in group 3 which involved changing moles to volume as one of the first steps, many students said the problem just couldn't be done and proceeded no further. Thirty-seven (37%) percent of those who proceeded did not convert moles to volume and seventy-one (71%) percent did not set up a factor or a proportion.

Because of time restrictions, no further analysis of the tapes were made to determine just what students do in the calculation when they get the problem wrong. The coding sheet only determined what they failed to do when they were incorrect. A more detailed analysis of the tapes should reveal particular errors students made and where the confusion in concept development lies. In addition to the above, chi-square analysis using the same categories as given in Table 290 would be appropriate. These should replace those given previously for each of the first five hypotheses for structural errors.

Stoichiometry Structural Errors. Tables 291 - 293 summarize the data for structural errors for the stoichiometry problems. Table 291 gives the results of how dents responded to the questions that tested back ground information needed to solve the problems. Six of the questions were identical to those asked in the 'Moles Problem' interviews (Table 285). The percentages show only a slight increase indicating that even though these

Stoichiometry Questions:

estion	Correct Correct Withou N % N		Without	Prompting		
1	The formula for calcium hydroxide	61	92	32		48.
	is Ca(OII) ₂ . How many atoms of each		•		į	1
	element are present in a molecule of					
	calcium hydroxide?		, s .,			
2	If you had a mole of something, what	' 45	68 ·	12		18
	would that mean to you?					,
جر 3	How many particles are in one mole?	64	97	59	,	89
4	What volume would one mole of an ideal	58	88	52		79
	gas occupy at STP?			L.		
5	How would you determine the mass of	40	70	31	•	47
	one mole of iron?				•	*,
6	Now would you determine the mass of	62	94	50		76
•	one mole of ammonia (NI_3) ?		,		-	
7	How would you go about balancing the	64	9 7	54	• ' o	82
~	following equation:				•	
	$\operatorname{NaC1}(\operatorname{aq}) \xrightarrow{+ H_2SO_4}(\operatorname{aq}) \xrightarrow{- Na_2SO_4}(\operatorname{aq})$	+ / ^I	IC1 (aq))	• .	

408

٥

Stoichiometry Problems:

			Structu	ural (Code Resu	<u>lts</u>		,	<u>-</u>		-
			(Pl	PRT =	12.82)			0			
				Cor N	rect z\$	Stri A	: Ictu ral	Error (oding N		
18	27	21	•	18	27	0 1 2 3	2 23 13 28	0 1 2 3	9 32 4 21		
M	MV	MP		N	8	А	N	В	N		
26	23	17		17	26	0 1 2	2 34 30	0 1 2 3	13 23 12 18		
101	SSI	SS2	5 #	N	0 U	Α	N	В	N	С	N
22	24	20		5	8	ť 1 2	6 28 32	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $	⁵ 30, 3 5 28	0 1 2 3	38 11 10 7
	різ М 18 М М 26 ІП	Distribu M V 18 27 MM MV 26 23	 18 27 21 MM MV MP 26 23 17 HH SS1 SS2 	(Pl Problem Distribution M V P 18 27 21 MM MV MP 26 23 17 HH SS1 SS2	(PPRT = Problem Distribution M V P 18 27 21 18 MM MV MP N 26 23 17 17 HI SS1 SS2 N	$(PPRT = 12.82)$ $\begin{array}{c} Problem\\ Distribution\\ M & V & P\\ 18 & 27 & 21\\ \hline 18 & 27 & 21\\ \hline 18 & 27\\ $	Problem Distribution Correct Structor M V P N 5_1 A 18 27 21 18 27 0 18 27 21 18 27 0 18 27 21 18 27 0 18 27 21 18 27 0 1 2 3 3 3 3 MM MV MP N % A 26 23 17 17 26 0 11 2 . . A 20 111 	$(PPRT = 12.82)$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(PPRT = 12.82)$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	(PPRT = 12.82) $(PPRT = 12.82)$ $(Problem = 1)$ $(PRT = 12.82)$ $(Problem = 1)$ $(PRT = 12.82)$ $(Problem = 1)$ $($	$(PPRT = 12.82)$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$

ş

Stoichiometry Problems:

roblem	Category		<u>N</u> ~	, , , , , , , , , , , , , , , , , , ,
1	A	boesn't get this far	2	3 ¹¹
T		Balances equation correctly	23	36 ^b
		Balances equation incorrectly	13	20
		Does not attempt to balance equation	28	44
	В	Doesn't get this far	9	14 ^a
	• •	Uses equation correctly in solving problem :	32	56 ^b
	-	Uses equation incorrectly in solving problem	4	7
•		Does not use equation in solving problem .	21	37
L			2	3 ^a
·2	Α	Doesn't get this far	2.	53 ^b
		Checks to see that equation is balanced	34 30	550 47
•		bes not check to see that equation is balanced	.50	
	2	Doesn't get this far	13	20 ^a
	D-	uses equation correctly in solving problem	23	43 ^b
		Uses equation incorrectly in solving problem	12	23
•		Does not use equation in solving problem	18	34
			<i>c</i>	ga
3	А	Doesn't get this far	6	47 ^b
		Checks to see that equation is balanced	28	53 (
	0	Does not check to see that equation is balanced	32	-
	В	Doesn't get this far	30	45 ^a
_	ų	lises equation correctly for determining excess	3	8 ^b
•		uses equation incorrectly for determining excess	5	14
		Does not use equation or determining excess	2,	78
	С	Doesn't get this far	38	58a
	v	Uses equation correctly for determining product	11/	3.20
		Uses equation incorrectly for determining product	16	36)
		poes not use equation for determining product	×	'S
			•	

^abased on all cases. ^bRemaining %'s based on those who got that far (except where indicated).

ERIC Autilitiest Provided by ERIC

ø

451

concepts were reviewed and used in this unit, there was no substantial gain in knowledge. The new question which was concerned with balancing an equation was answered correctly by ninety-soven (97%) percent of the students when prompted.

Table 292 gives the percentage of students who got the problems correct according to categories. The first problems that involved two steps (changing from mass, volume, or particles of one substance to moles of another) was apparently as difficult for students to solve as problems in the second set that involved three steps (changing from mass, volume, or particles of one substance to mass, volume, or particles of another). The reason why this may have been as easy was because in the problems of set 1, students were given an unbalanced equation that they had to balance before proceeding whereas the problems in set 2 contained balanced equations. This is verified by examining Table 293 that shows the major reason for students missing the problems in set 1 was failure to use a balanced equation. In the problems of set 2, many students did not overtly check to determine if the equation was properly balanced. However, in this set of problems, a much larger percentage of students used the equation incorrectly.

Problems from set 3 were transfer problems that involved finding the limiting reagent. Only eight (8%) percent of the students who attempted the problem got it correct. Forty-five (45%) percent did not get beyond checking to see if the equation was balanced. The major difficulty in solving the problem was in determining the excess or the limiting reagent.

The same comments concerning further analysis that were made for the gas law problems can be made for the stoichiometry problems. Time did not permit an analysis of errors that students who missed the problem made nor the reanalysis of data using chi-square with the categories used in Table 293.

482

Molarity Structural Errors. "Results of the questions asked in the 'Molarity Problem' interviews and the structural errors are given in Tables 294-296. In the question section, one question concerning the L-mL conversion was asked that should have been asked in the "Gas Law Problem" interview. With prompting ninety-two (92%) percent were able to make the conversion. Questions 1 and 2 on the determination of the masses of moles had been asked during both the 'Moles Problems' and 'Stoichiometry Problems' interviews. The percentage of students who answered these questions correct was approximately ten (10%) percent higher than previously. Apparently this conversion was used so frequently that by the end of the school year when the interviews took place, eighty-eight (88%) and ninety-eight (98%) percent of the students interviewed could do this when prompted.

112

Question 4 on "define molarity in your own words" most frequently brought the memorized response "moles per liter". This answer was accepted as correct even though students did not specify "liter of solution".

To test whether students had simply memorized the definition of molarity or really understood it, question 5 on "how would you make up one liter of a two molar sodium chloride solution" was included. Only eight (8%) percent of the students interviewed were able to answer this without prompting. Even with prompting, only twenty-seven (27%) percent gave a correct answer. An answer was considered to be correct if students said that 2 moles or approximately 116 g of sodium chloride were dissolved in 1000 mL or 1 liter of water instead of solution. Most students had no understanding of the physical meaning of molarity.

Table 295 shows the percentage of students getting the problems in each category correct. Problems in the first set involved the direct application of the definition of molarity as molarity = moles/liters. Thirty (30%) percent of the students were able to solve this type of problem. From Table 296 it can be seen that thirty-three (33%) percent of the students who attempted the problem

48:

413

Molarity Questions:

A.6

FUIL TEXT Provided by ERIC

Summary of Results

Question		Cor: N	rect	Correct N	Without	Prompting %
1	How would you determine the mass of	56	88	38	•	59
	one mole or iron?			/	•	
2	How would you determine the mass	63	98	54		84
	of one mole of ammonia (NH3)?			•	<i>•</i>	
3	How many milliliters are equal to	59	92	40		63
	2.5 liters?		-			
4	Define molarity in your own words.	35	5 5	25		39
5	low would you make up one liter of a	17	27	5		8
د •	two molar sodium chloride solution?			•		τ,
	¢					

484

;

y

٨

Molarity Problems:

Structural Code Results

·				(PPRT =	= 13.36)						
P røblem	Pr Dist ML	roblem tributi G	on MO	Cọ: N	rrect	• A	ctural N	Error Co B	oding N	,	
1	18		23	19	30	0 1 2 3 4 5 6 7 8	° 4 1 - 2 3	U 1 2 3 4 5 6 7 8 9	10 2 7 - 14 - 4 26		
Problem	MOD	MOC	MOV	N	••••*	A	31 N	, ^B .	1 N		•
2	25	16 -	23		13	0 1 2 3 4 5 6 7	J1 1 8 13 25 5	0 1 2 3 4 5 6 7 8 9	6 ,2 14 - - 4 4 26 8	·	
Problem	WA	GA	GA	N	o Ó	Α	N	B	N	С	N
3	22	23	19 ¢	10	16 ,	0 1 2 3 4 5 6 7 8 9	20 10 - 6 2 2 2 2 2 2 2 2 2 18	0 1 2 4	18 13 15 13 5	0 1 2 3	35 1 8 18

414

١

ERIC.

raole 296

Molarity Problems:

Description and Summary of Structural Coding

1	· A			
		Doesn't get this far	7	11 <mark>a</mark>
		Doesn't calculate molecular weight	8	14 ⁰
	•	Calculates molecular weight incorrectly	5	9
		Calculates molecular weight correctly	43	75
		Uses molecular weight incorrectly	11	19
		uses molecular weight correctly	34	60
	Ъ	Doesn't get this far	10	- 16
		Doesn't use definition of molarity	2	4
		Uses definition of molarity incorrectly	21	39
		Uses definition of molarity correctly	26	48
		Error in mL-L conversion	18	33
		Changes mL-L Conversion	27	50
	٨	boosn't get this far		17
		Realizes that volume changes	1	2
	-	Fails to use volume change	8	15
•			13	24
		Uses volume change correctly		
		Uses volume change incorrectly	25	46
		Doesn't get final volume	5	9
	В	Doesn't get this far	6	9
		Doesn't use definition of molarity	2	3
		Uses definition of molarity incorrectly	14	24
		uses definition of molarity correctly	38	66
	•	Error in mL-L conversion	8	14
		Both definition and mL-L change correct	26	45
3	Λ	Doesn't get this far	20	31
		Doesn't calculate molecular weight	10	23
		Calculates molecular weight incorrectly	4	9
		Calculates molecular weight correctly	26	59
		Uses molecular weight incorrectly	6	14
	6		22	50
		Uses molecular weight correctly	-	
	В	Doesn't get this far	18	28
r 69		Realizes equation must be used	13	28
	•	Uses balanced equation correctly	28	61
		uses balanced equation incorrectly	13	28
		Doesn't realize equation must be used	. 5	11
	С	Doesn't get this far	35	55
		'wesn't use definition of molarity	3	10
		Uses definition of molarity incorrectly	8	28
		Uses definition of molarity correctly	18	62

^aBased on all cases. ^bRemaining %'s based on those who got that far (except where indicated)

RIC

A side of

made a mL-L conversion error, and thirty-nine (39%) percent used the definition of molarity incorrectly. Nineteen (19%) percent of the students who attempted to work the problem did not use the molecular weight to find moles properly.

The second set of problems involved changing the volume of solution by either diluting it or concentrating it by boiling. Only thirteen (13%) percent of the students could handle this kind of problem even though most students could do problems of this nature immediately after instruction. The major error made was that students did not use the volume change correctly. (Instead of finding moles first and dividing by the total volume students frequently added or subtracted the volumes before working with the given molarity.) Knowing that such a large percentage of students did not have the conceptual knowledge of what molarity is (from responses to question 5) this comes as no surp ise.

Problems in set 3 were transfer problems that involved the concept of molarity applied in a stoichiometry problem. A slightly greater percentage of students got this problem correct than got the problem from set 2 correct. It was probably the same students who understood the concepts. Fifty-five (55%) percent of the students did not understand the problem sufficiently to even use the definition of molarity. Sixty-one (61%) percent of those who got that far (forty-four (44%) percent of original students) used the balanced equation correctly. Once students go the number of moles of H_3PO_4 , many could not proceed to use the moles with the liters to find the molarity.

Comments made previously about further analysis of the tapes of the "Gas Law Problem" and "Stoichiometry Problems" interviews apply here. Further analyses are needed to determine specific conceptual errors that students made while attempting to solve the problems.

487

416

æ

Summary and Conclusions

Results of this interview study must be seen in relation to the aptitude by treatment interaction study as well as the findings of a similar study by ... Nurrenbern.

The interview study was concerned with six hypotheses. In addition, structural errors students made while solving problems from four chemistry units were identified.

Of the six hypotheses tested, two were related to aptitudes measured in the aptitude by treatment interaction study. These were the verbal-visual preference and the proportional reasoning ability of students. Because of lack of time and because it was not anticipated that mathematics anxiety would have significant interaction, data were not analyzed according to students' mathematics anxiety. An analysis of this data would be appropriate and might yield useful results.

Of the two aptitudes for which interview data were analyzed, the one of most interest was students' proportional reasoning ability. Results for verbalvisual preference were very sparse as they were in the case for the aptitude by treatment interaction study. Findings from the interviews corroborate those found in the other study.

The reason why the proportional reasoning ability is of interest is because the study done by Nurrenbern compared students' problem solving skills according to whether they were classified as concrete or formal operational. Because proportional reasoning ability is one of the schema that comprises the formal operational stage, there would probably be a high correlation between students classified as formal and their proportional reasoning ability.

In all the comparisons between the results obtained, it must be remembered that Nurrenbern's study was concerned only with stoichiometry limiting reagent

417

problems which less than 1% of the students interviewed were able to work correctly.

Nurrenbern's classification system was modified in part in this study but enough similarity remains to make some comparisons. One general category that was used in both studies was reading/organizing skills. In Nurrenbern's study formal students were found to read and organize more frequently.' This was particularly true for rereading and using mnemonic notation. In this study similar results were found for rereading and use of mnemonic notation. Although there were no significant differences for every problem, where differences occurred, they always favored the high proportional reasoning students. Comparisons with the general category "Reading/organizing" are inappropriate as all subcategories were not identical.

Nurrenbern also found that formal operational students used evaluation techniques more frequently than concrete operational students. She also made the comment that paither group used evaluation techniques to any great extent. In this study, no differences between high and low proportional reasoning ability , students were found for evaluation techniques. Very few students evaluated their solutions to the problems.

As in the Nurrenbern study, it was found that few students used recall techniques. The number of statements coded for recall was so low in this study that the data were not analyzed.

In the area of the type of approach and reasoning that students used to solve the problems, results of the two studies are in accord. In the Nurrenbern study, no significant differences were found for formal and concrete thinkers, however, when algorithmic/reasoning strategies were used, they were used by formal operational students. In this study, students with high proportional reasoning ability were found to use a systemmatic approach and algorithmic/ reasoning strategies more frequently than low proportional reasoning students

483

on a large number of the problems. Nurrenberh comments that the results in her study might not have been significant because of the difficulty of the problems. She found as did we, that many formal students actually go about solving the problems relying strictly on algorithms.

A comparison of the structural errors made in the two stadies is impossible to make. The reason for this is that the problems in this study were for the most part easier than those in the Nurrenbern study. The only comparable problem was the third stoichiometry problem which was a limiting-reagent problem. Even for this problem, however, a balanced equation was given. The major structural error found for this problem was that students fail to use the equation for determining the excess to solve it. More detailed analysis of the structural errors were presented in the Results section.

In this study, unlike the Nurrenbern study, instruction on problem solving was controlled through the use of the packets devised for the aptitude by treatment interaction study. This has its advantages and disadvantages. The major advantage was that a minimum amount of instruction was insured by knowing that students completed the booklets. However, there is the disadvantage in that it might be argued that the instruction was insufficient and not typical of what a student would normally receive. Teachers in the study felt it was sufficient, and if not, could supplement it with additional work. Because students learned by using the four different strategies, it was of interest to determine if this had any efficient on students' problem solving techniques.

Results indicated few differences in students' problem techniques according to method taught. Statents who learned to solve problems by the factor label method and proportionality tended to be more systemmatic in their approach and more overtly used the approach taught. This was to be expected as these methods lend themselves to overt expression. An interesting finding, although found only on one gas law problem, was that students taught by analogies used algorithmic/

49.

reasoning strategies more frequently than by the proportionality method. This finding is offset by the finding that the analogy method also produced the greatest use of random trial and error for a stoichiometry problem.

420

In no instance did one method produce more structural errors than another. Thus indicating that as far as presenting the menerical, all methods were equivalent. Major conclusions in this study concerning the appropriate methods for teaching the various chemistry topics should be made from the aptitude by treatment interaction study where data were analyzed in much greater detail according to students aptitudes.

The major reason for conducting the interview study was to compare students who were successful problem solvers with those who were not. Results have been presented for students defined successful according to test scores (Hypothesis 3) and according to success on the problem solved during the interview (Hypothesis 5). Specific results are given in the Results section. Discussion here is limited to commonality of the findings. For students classified as successful and for students who got the problem correct, the use of reading and organizing skills was more frequent. This was true for different problems, however, and was not consistent across all problems. The use of mneumonic notation was much more prevalent and consistent across problems for successful students and those who got the problem correct. Two other common characteristic across most problems for both of these groups were their more frequent use of systemmatic approaches and their use of algorithmic/reasoning strategies. This is not to say that more students in these classification used reasoning strategies more frequently than algorithmics. This was not the case. They used reasoning strategies more than nonsuccessful students or students who got the problem incorrect,

Analysis of the structural errors for both of these groups had some similarities. Students of low success or who missed gas law problem 3 failed

to set up a factor correctly. They also failed to use the equation in solving stoichiometry problems 1 and 2. For molarity problem 3, low success students failed to perceive the need for using the equation whereas those getting the problem incorrect were unable to use the equation correctly. On this same problem, low success students didn't use the definition of molarity correctly.

From both the structural errors students made and from the lindings related to Hypothesis 6, it is apparent that one of the major reasons students do not solve problems correctly is that they do not understand the prerequisite facts and concepts. In the Results section considerable discussion is given to the structural errors made for each unit of chemistry. For this reason, the remarks here will be brief. Because of lack of time, the analysis of the tapes was not as comprehensive as it might have been. For the moles unit, no special coding sheet was devised for structural errors, but the specific errors that students made were recorded and synthesized into a coherent list. For the other three units, the special sheet was devised that listed what students failed to do but did not provide for obtaining the specific errors that students made. A cenalysis of the tapes would provide this use if information.

Four general conclusions and recommendations can be drawn from this interview study.

1. If students do not understand the chemistry concepts (as is evident from low success on prerequisite questions and structural error analysis) even if answers to prerequisite questions are given, students will not be successful in solving chemistry problems.

2. Different types of errors are made by different students. It is very hard to classify them. These different types of errors require different types of remediation. Sometimes it is a matter of understanding the concept, other times its the arthmetic (particularly the division concept) and frequently students fail to memorize the necessary facts (such as 1 mole = 22.4 L at STP or contains 6.02×10^{23} particles).

421

3. Students who are successful generally use more organizing skills and use mneumonic not ion. Students should be encouraged to use these skills in solving problems.

4. It would be very useful for individual teachers to determine specific errors that individual students make so that remediation might take place. This might be accomplished by recording on audio tape students actually solving problems. If this is not possible, teachers should determine **G**rough a short test, if students have the necessary prerequisite skills for solving problems and if they do not, provide the necessary instruction. -

493

REFERENCES

- Anderson, J. R. Language memory and thought. Hillsdale, NJ: Lawrence Erlbaum Associates, 1976.
- Arnold, T. C., and Dwyer, F. M. Realism in Visualized Instruction. <u>Perceptual</u> and Motor Skills, 1975, 40, 369-370.
- Atkinson, R. C. Mnemotechnics in second language learning. <u>American Psychologist</u>, August, 1975, 821-828.
- Atkinson, R., & Raugh, M. An application of the mnemonic keyword method to the acquisition of a Russian vocabulary. Journal of Experimental Psychology, 1975, 104, 126-133.
- Auslander, S. Teaching word problems in the college. Unpublished manuscript, 1977. (Available from Wesleyan University, Middletown, Conn.).
- Bady, R. J. Methodological issues in formal operations research: What does it mean to be formal. <u>Science Education</u>, 1978, 62, 233-240.
- Barnes B. Scores in a Piaget-type of questionnaire versus semester grades for lower dimension college physics students. <u>American Journal of Physics</u>, 1977, 45, 841-847.
- Blum, L. A brief description of the Mills Program to combat math anxiety. Unpublished manuscript,1977 (Available from Mills College, Oakland, Ca.).
- Bruner, J. S., Olver, R. R. and Greenfield, P. M. <u>Studies in Cognitive</u> Growth, New York: Wiley, 1966.
- Campbell, D., & Stanley, J. Experimental and quasi-experimental designs for research. Chicago: Rand-McNally, 1963.
- Chiappetta, E. L. A review of Piagetian studies relevant to science instruction at the secondary and college level. Science Education, 1976, 60, 253-261.

494

Clement, J. American Association of Physics Teachers Announcer, 1979, 9. Cohen, J., & Cohen, P. Applied multiple regression/correlation analysis for

the behavioral sciences. Hillsdale, NJ:Lawrence Erlbaum Associates, 1975. Cronbach, L., & Snow, R. <u>Aptitudes and instructional methods</u>. New York: Irvington, 1977.

- Days, H. C. The effect of problem structure on the processes used by concrete and formal - operational students to solve verbal mathematics problems. Unpublished doctoral dissertation, Purdue University, 1977.
- DeCarcer, I., Gabel, D., & Staver, J. Implications of Piagetian research for high school science teaching: A review of the literature. <u>Science</u> Education, 1978, 62, 571-584.
- Dreistadt, R. The use of analogies and incubation in obtaining insights in creative problem solving. <u>The Journal of Psychology</u>, 1969, <u>71</u>, 159-175.
- Dwyer, F. M. The effect of overt responses in improving visually programmed science instruction. <u>Journal of Research in Science Teaching</u>, 1972, <u>9</u>, 47-55.
- Ernest, C. H. Imagery ability and cognition, a critical review. Journal of Mental Imagery, 1977, 2, 181-216
- Examinations Committee-ACS. ACS-NSTA High School Chemistry Exam. Tampa, FL: University of South Florida, 1975.
- Frandsen, A., & Holder, J. Spatial visualization in solving complex verbal problems. The Journal of Psychology, 1969, 73, 229-233.
- Forisha, B. C. Mental imagery and verbal processes: A developmental study. Developmental <u>Psychology</u>, 1975, <u>11</u>, 259-267.
- Gabel, D., & Sherwood, R. The ACS-NSTA chemistry achievement exam: Beyond test results. Journal of Chemical Education, 1979, 56, 813-814.

495

- Gabel, D., & Sherwood, R. The effect of student manipulation of molecular models on chemistry achievement according to Piagetian level. Journal of Research in Science Teaching, 1980a, 17, 75-82.
- Cabel, D., & Sherwood, R. The effect of using analogies on chemistry achievement according to Piagetian level. <u>Science Education</u>, 1980b, <u>64</u>, 709-716.
- Gagne, R., & White, R. Memory structures and learning outcomes. <u>Review of</u> Educational Research, 1978, 48, 187-222.
- Gerson, R., & Primrose, R. Results of a remedial laboratory program based on a Piagetian model for engineering and science freshmen. <u>American Journal of</u> <u>Physics, 1977, 45, 649-651</u>.
- Goodstein, M., & Howe, A. The use of concrete methods in secondary chemistry instruction. Journal of Research in Science Teaching, 1978, 15, 361-366.
- . Merron, J. D. Piaget for chemists. Journal of Chemical Education, 1975, 52, 146-150.
 - Holliday, W. G. The effects of verbal and adjunct pictorial-verbal information in science instruction. Journal of Research in Science Teaching, 1975, 12, 77-83.
 - Holliday, W. G. Conceptualizing and evaluating learner aptitudes related to instructional stimuli in science education. <u>Journal of Research in Science</u> <u>Teaching</u>, 1976a, 13, 101-109.
 - Holliday, W. G. Teaching verbal chains using flow diagrams and texts. <u>AV</u> Communication Review, 1976b, 24, 63-77.
 - Holliday, W. G., Brunner, L., & Donais, H. Differential cognitive and affective responses to flow diagrams in science. <u>Journal of Research in Science</u> <u>Teaching</u>, 1977, 14, 129-138.
 - Holliday, W., & Harvey D. Adjunct labeled drawings in teaching physics to junior high school students. <u>Journal of Research in Science Teaching</u>, 1976, <u>13</u>, - 37-43.

493

- Kantowski, E. L. Processes involved in mathematical problem solving. Unpublished doctoral dissertation, University of Georgia, 1974.
- Karplus, R., Karplus, E. & Wollman, W. Intellectual development beyond elementary school IV: Ratio, the influence of cognitive style. <u>School Science and</u> Mathematics, 1974, 74, 476-482.
- Karplus, R., & Peterson, R. Intellectual development beyond elementary school II: Ratio, Survey. School Science and Mathematics, December, 1970, 813-820.
- Kilpatrick, J. Analyzing the solution of work problems in mathematics: An exploratory study. Unpublished doctoral dissertation, Stanford University, 1967.
- Kurtz, B., & Karplus, R. Intellectual development beyond elementary school VII: Teaching for proportional reasoning. <u>School Science and Mathematics</u>, - 1979, 74, 387-398.
- Lawson, A. E. The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching, 1978, 15, 11-24.
- Luncon, A. E., & Renner, J. W. A quantitative analysis and its implications for curriculum. Science Education, 1974, 58, 454-459.
- Lonell, K. A follow-up study of Inhelder's and Piaget's: The growth of logical thinking. British Journal of Psychology, 1961, 52, 149.
- Lucas, J. R. The teaching of heuristic problem-solving strategies in elementary calculus. Journal for Research in Mathematics Education, 1974, <u>5</u> (1), 36-46.
- Lunger, E. A. Problems of formal reasoning in test situations in European research in cognitive development, edited by P. Mussen, Monograph of the Society for Research in Cognitive Development, 1965, <u>30</u>, 19-41.
- Marks, D. F. Visual imagery differences in the recall of pictures. British Journal of Psychology, 1973, <u>64</u>, 17-24.

Mitzman, B. Seeking a cure for mathophobia. American Education, 1976, 12, 76-79.

 Murno, A. & Rigney, J. W. A Schema theory account of some cognitive processes in complex learning. <u>Technical Report No. 81</u>, <u>Behavioral Technology</u> <u>Laboratories</u>, <u>U. of Southern California</u>, 1977. (ERIC Document Reproduction Service No. ED 142 992).

Nunnally, J. C. Psychomecric Theory. New York: McGraw-Hill, 1978.

- Nurrenbern, S. C. Problem solving behaviors of concrete and formal operational high school chemistry students when solving chemistry problems requiring Piagetian formal reasoning skills. Unpublished doctoral dissertation, Purdue University, 1979.
- Paivio, A. Personal communication by Robert Sherwood, April, 1979.
- Paivio, A. Mental imagery in associative learning and memory. <u>Psychological</u> -<u>Review</u>, 1969, 76, 241-263.

Paivio, A. Imagery and verbal process. New York: Holt, Rinehart, & Winston, 1971.

- Paivio, A., & Csapo, K. Picture superiority in free recall; Imagery or dual coding? Cognitive Psychology, 1973, 5, 176-206.
- Piaget, J., & Inhelder, B. Mental imagery in the child. New York:Basic Books, 1971.Renner, J., & Paske, W. Comparing two forms of instruction in college physics.American Journal of Physics, 1977, 45, 851-859.
- Richardson, A. Verbalizer-visualizer: A cognitive style dimension. Journal of Mental Imagery, 1977, 1, 109-126.
- Rigney, J., & Lutz., K. Effect of graphic analogies of concepts in chemistry on learning and attitude. <u>Journal of Educational Psychology</u>, 1976, <u>68</u>, 305-311.
- Sells, L. Mathematics--a critical filter. <u>The Science Teacher</u>, 1978, <u>45</u>, 112-114.
- Suinn, R. M., Edie, C. A., and Nicoletti, I.S. The MARS, a measure of math anxiety: Psychometric data. Journal of Clinical Psychology, 1972, 28, 373-375. 493

Shaver, P., Pierson, L., & Lang, S. Converging evidence for the functional

significance of imagery in problem solving. <u>Cognition</u>, 1974, <u>3</u>, 359-375.
Cheehan, D. J. The effectiveness of concrete and formal instructional procedures with concrete and formal operational students. Unpublished doctoral dis sertation, State University of New York at Albany, 1970. Dissertation

Abstracts 2748-A.

- Sherwood, R. D. The effect of selected instructional strategies on the problem solving ability of high school chemistry students as related to their proportional reasoning ability and verbal-visual preference, Unpublished doctoral dissertation, Indiana University, 1980.
- Sherwood, R. D. & Gabel, D. L. Basic science skills for prospective elementary teachers. Science Education, 1980, 64, 195-201.
- Smith, P. Research in problem solving processes. Symposium presented at the annual meeting of the National Council of Teachers of Mathematics, Cincirnati, 1977.
- Staver, J. The development and construct validation of a group administered test of Piaget's formal thought. An unpublished doctoral dissertation, Indiana University, 1978.

Tobias, S. Overcoming math anxiety. New York: W.W. Norton and Company, Inc., 1978.

Towbridge, J. E. & McDermott, L. C. Investigation of student understanding of the concept of velocity in one dimension. <u>American Journal of Physics</u>, 1980, 48, 1020-1028.

- Wadsworth, B. J. <u>Piaget's theory of cognitive development</u>. New York: David McKay, 1971.
- Weisberg, J. S. The use of visual advance organizers for learning earth science concepts. Journal of Research in Science Teaching, 1970, <u>1</u>, 161-165.

Wheeler, A., & Kass, H. Proportional reasoning in introductory high school chemistry. Paper presented at the National Association for Research in Science Teaching convention, 1977.

490

Wollman, W., and Karplus, R. Intellectual development beyond elementary school V: Using ratio in differing tasks. <u>School Science and Mathematics</u>. 1974, 76, 595 611.

١,

000

Wollman, W., & Lawson, A. The influences of instruction on proportional reasoning in seventh graders. <u>Journal of Research in Science Teaching</u>, 1978, <u>15</u>, 227-232.

APPENDIX A

4.1

Permission Forms

School Corp												
Individual	Student.	•	•	•	•	•	•	•	•	•	•	43 2
University												

501

ERIC

INDIANA UNIVERSITY

School of Education

INDIANA UNIVERSITY at Bloomington INDIANA UNIVERSITY. PURDUE UNIVERSITY at Indianapolis

The problem solving research we are conducting in high schools in Indiana has recently been funded by the National Science Foundation. One of their requirements is that we obtain written approval for participation in the project from a school authority who has followed any necessary procedures in the school system.

We are, therefore, asking you to give us the needed written approval.

I have been supplied with the purposes, content, and benefits of the NSE supported project "Facilitating Problem Solving in High School (hemistry" and have given my approval for participation.

Signature

Title

Schoo1

EDUCATION BUILDING, 3RD AND JORDAN, BLOOMINGTON, INDIANA 47401 IEL NO 812 337-5213

INDIANA DONIVERSITY

School & Education 🛰 activity Rm. 204 LIND ALLO INDIANA 17101 REOOMINGTO

111 No #1 337-8659

May 31, 1979

Dear Student and Parent:

From our past experience in teaching high school chemistry (16 years combined experience) we have found that an integral part of chemistry in which most students have difficulty is problem solving. Last year we examined the questions (and how students answered them) on a national chemistry exam commonly given in schools in this area. We found that the questions students found most difficult were those involving problem solving (56% of the questions).

This was one of the reasons that motivated us to try to find methods of helping students solve chemistry problems more successfully. What we would like to do is try out these methods as supplementary to regular instruction on problem solving. All students will receive their normal instruction. The supplementary methods that are alternative strategies that have been used by other teachers should strengthen the students' problem solving skills. The supplementary methods will be contained in study guides that students will use in learning eight chemistry concepts involving problems. Each study guide is one class period in length.

In order to measure the success of the supplementary instruction for particular types of students, students receiving the instruction will be expected to complete ghort tests on their ability to use proportions (30 min.), their preference for leaning through visual or verbal methods (20 min.) and their attitude toward using math (20 min.). Tests will be administered in September. All results will be kept confidential, and will have no bearing on the students grade. If a student would be interested in hi /ieown test results, these will be available on an individual basis. Of course, a student may withdraw from the program at any time. Please feel free to contact us at 812-337-8658 about the procedures.

Sincerely,

Dorothy Gabel Robert Sherwood Science Education, Indiana University-

I would like to participate in this program

I am not willing to participate in this program

Studee.'s signature

Parent's signature (if under 18)

433 . Indiana University / Bloomington Campus Committee for the Protection of Human Subjects SUMMARY SAFEGUARD STATEMENT to be completed by All Investigators Utilizing Human Subjects in Research PROJECT TITLE: <u>Facilitating Problem Solving in High School Chemi</u> **GRANT NUMBER (IF KNOWN)** PRINCIPAL INVESTIGATOR(S): Dorothy L. Gabel (typed name) Robert D. Sherwood ____(typed name) STATUS. IN FACULTY IN STUDENT 1 OTHER (specify) If student, name of faculty sponsor Dr. Dorothy L. Gabel (typed name) Signature DEPARTMENT: Science Education DATE _ 5/5/1 CAMPUS ADDRESS, Education Bldg., Rm. 204 CAMPUS PHONE 337-6858 **PROPOSED FUNDING:** GEXTERNAL AGENCY/NAME NSE * IU/TYPE Spencer UNFUNDED/TYPE

INSTRUCTIONS: In the spaces below (use additional sheets where necessary):

Check appropriate boxes for subject population involved if it includes. In minors, [1] fetuses or abortuses, [1] pregnant females, [1] mentally retarded, [1] mentally disabled, [1] prisoners. If any of the above are used, state the necessity for doing so under item 1.

 Brefly describe the purpose and nature of the proposed research. State what, if any, benefit is to be gained by the subject(s), what information is to be added to the general body of knowledge as a result of this research, and where the research will be conducted. (This includes research training grants. Each project should be treated separately.)

Student guides using four methods of problem solving (two visual and two verbal) will be prepared and used in instruction for eight chemistry topics by 600 high school studeats who are randomly assigned to treatments. Problem solving skills resulting from the four methods and measured by short and long term treats will be compared for students of varying proportional reasoning ability and different visual-verbal preferences. Data for this aptitude by treatment interaction study will be analyzed using multiple regression techniques.

It is anticipated that from this study preferred methods of teaching problem solving to different types of high school students will be made known. The research will be conducted within a 60 mile radius of Indianapolis in public high schools.

-1-

2. List all procedures to be used on human subjects with a description of those you consider beyond already established and accepted techniques.

	د مربع المربع	
a. •	Administration of proportional reason	ing test (30 mm.)
ь.	Administration of verbal visual test	× (20 min.)
.с.	Administration of math auxiety test \sim	(20 min.)
d,	NSTA-ACS Chemistry Achievement test	(40 min.)
~	9 attacks and have after manual to a (1 at a t	1 I X I I I I I I I I I I I I I I I I I

- c. 8 study guides of instruction (1 period each)
- a,b,c. These are all written, multiple thore type tests found in the current literature that will be administered at the onset of, school,
 - d. A rational written chemistry exam commonly administered by chemistry teachers.
 - e. Problem solving instruction booklets-similar to those many teachers would prepare themselves.

3. State any potential risks - physical, psychological, social, legal, or other - connected with the proposed procedures and state means (including confidentiality safeguards) of protecting against or minimizing potential risks and an assessment of their likely effectiveness. If you consider the subject to be "at nsk," in what respect do the potential benefits to the subject or contributions to the general body of knowledge ... Youtweigh the risks?

504

None - nothing out of ordinary.

4. Informed Consent

A. State how you will obtain documentation of informed consent. Answer even if you consider subjects not at risk. Do not use "inapplicable."

Students and parents will be asked to sign a written consent form. * Permission of approportate school officials will be obtained before school selection.

B. If you consider the subject to be "at risk," state exactly what you tell him or her in lay language to obtain informed consent per items 1-7 relative to each procedure wherein he or she is "at risk." This must be a form that is given or read to the subject particularly for this purpose. PLEASE ATTACH. COPY OF FORM.

RETURN COMPLETED FORMS TO:

DR PAUL H. GEBHARD Chairperson of IUB Committee for the Protection of Human Subjects Institute for Sex Research Morrison Hall 416

506

SCIENTIFIC RESEARCH is a formal investigation designed to develop or contribute to generalizable knowledge

HUMAN SUBJECT is a person about whom an investigator (professional or student) conducting scientific research obtains (1) data through intervention or interaction with the person, or (2) identifiable private information.

SUBJECT AT RISK means any individual who may be exposed to the possibility of injury, including physical, psychological, or social injury, as a consequence of participation as a subject in any research, development, or related activity which departs from the application of those established and accepted methods necessary to meet his or her needs, or which increases the ordinary risks of daily life, including the recognized risks inherent in a chosen occupation or field of service.

INFORMED CONSENT means the knowing consent of an individual or his or her legally authorized representative, so situated as to be able to exercise free power of choice without undue inducement or any element of force, fraud, deceit, duress, or any other form of constraint or coercion.* The basic elements of information necessary to such consent include.

- (1) A fair explanation of the procedures to be followed, and their purposes, including identification of any procedures which are experimental. The explanation must be in language understandable by the subject.
- (2) A description of any attendant discomforts and risks reasonably to be expected and safeguards to be used;
- (3) A description of any benefits reasonably to be expected;
- (4) A disclosure of any appropriate alternative procedures that might be advantageous for the subject;
- (5) An offer to answer any inquiries concerning the procedures;
- (6) An instruction that the person is free to withdraw his or her consent and to discontinue participation in the project or activity at any time without prejudice to the subject; and
- (7) With respect to biomedical or behavioral research which may result in physical injury, an explanation as to whether compensation and medical treatment is available if physical injury occurs and, if so, what it consists of or where further information may be obtained

*Deception may be used as part of an experiment if the sought for data can be obtained in to other way. In obtaining informed consent the subjects should be tokt that the experiment cannot be fully described in advance lest their responses the altered, but that a departition will be given them at the conclusion of the experiment. Deception, if used, must be a part of the experimental design and not a means of obtaining subjects' participation.

DEFINITIONS taken from The Institutional Guide to DHEW Policy on Protection of Human Subjects, DHEW Putdivision No (NiH) 72-102. December 1, 1971, and the Federal Register, Vol. 43, No. 214, November 3, 1978. For further information consult the Manual for Members of Institutional Review Boards which is available from the IUB Committee or the Office of Research and Graduate Development.

5U;

COMMUTTEE APPROVAL			COMPLETED USE ONLY
2		ty / l'ioomington Campus	1
3	Committee for the P	Protection of Human Subjects	3
Requires approval by Campus Contmittee prior to project initiation	DOCUMENTATION C	OF REVIEW AND APPROVAL of	4 5 6
□ yes □ no Date	Research Project	Utilizing Human Subjects	8
PROJECT TITL	E: Facilitating Problem	Solving in High School Chemistry	·
AGENCY GRAM	IT NUMBER (IF KNOWN):	۵ 	
As the signatur	e below testifies, the principal inv	stigator(s) is piedged to conform to the fullo	wing procapts:
	ne engaged in investigation utilizin re of the human subject or patient	g human subjects, I acknowlodge the rights involved.	ind
s the s		Investigator to secure the informed consen res, in so far as possible, and by describing penefits of the investigation.	
Use tincti peut	of Human Subjects in Research. on must be recognized between	niversity Statement of Principles Regarding I understand that in research a fundamental research in which the aim is essentially the essential object of which is purely scientific a subjected to the research.	dıs. Əra-
		om these precepts, I will seek prior approva Committee for the Protection of Human Subje	
	Robert D. Shei		
SIGNATURE(S	: _ North Delice_	Activité (16 and DATE: 1	
CHECK LIST F	OR PRINCIPAL INVESTIGATOR:	G FORMS COMPLETED (ALL spaces fille	d in)
			5)
	· · ·	G-LETTER OF INFORMED CONSENT AT	TACHED
	ol for use of human subjects has n Campus Committee for the Prot	been reviewed and approved by the Indiana ection of Human Subjects.	University
			·

-5-

0
FRIC
LIVIC
Full Text Provided by ERIC

APPENDIX B

Aptitude Instruments and Item Analyses
Proportional Reasoning Test
Proportional Reasoning Test 446 Administration Directions
Proportional Reasoning Test Item Analysis
Verbal-Visual Preference Test
Verbal-Visual Preference Test Administration Directions 454
Verbal-Visual Preference Test Item Analysis
Mathematics Anxiety Test 456
Mathematics Anxiety Test Administration Directions
Mathematics Anxiety Test Item Analysis

, ,

Proportional Reasoning Test

General Directions

 e^{γ}

This is a just of certain understandings, skills and abilities that you have gradually developed. The total number of correct answers that you mark will be your store. Wrong answers will not be counted against your store. Try to answer all the questions. If a question seems too hard, make the best guess you can.

Use the special pencil to mark your unswers on the separate answer sheet. Do not mark on the test booklet. Each question has only one best answer. Mark only one answer for each question. To change an answer, erase your first mark completely. Use the scratch paper provided.

Problem tasks for you to solve will be presented on the television screen. When you are told to begin, watch the television screen carefully. Then answer the questions in the booklet connected with the demonstrated task. Stop when you see the word "STOP" below the question you just answered. Wait for further directions from the person giving the test.

STOP. DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO ...

Directions: Part I - III

Carefully watch the TV screen as the problem task is presented.

;

Then read each question carefully and decide which one of the four possible answers is the correct or best one.

Look on your answer sheet to find the row of boxes which has - the same number as the question. In this row, mark the box having the same letter as the answer you have chosen.

Example

A closed figure having all four sides equal is a

- A) triangle
- B) rectangle
- C) square
- D) parallelogram

The correct answer to this question is lettered C, so you should mark box C if this question were on the test.

STOP. DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO.

440

Meet Mr. Short

1. What is the relation between the two paper clip chains?

- A) 5 small paper clips laid end-to-end are the same length as 3 big paper clips laid end-to-end.
- B) 3 small paper clips laid end-to-end are the same length as 5 big paper clips laid end-to-end.
- C) the big and the small paper clips are the same length.
- D) not sure.
- 2. Mr. Short is 6 big paper clips tall. Mr. Tall is 9 big paper clips tall. Mr. Short is also 10 small paper clips tall. What is '.T. Tall's height in small paper clips?
 - A) 12

PART I

- B) 13
- C) 15
 - D) 16
- 3. Which method is most like the one you used to find the answer in question A) estimated guess
 - B) addition and/or subtraction
 - C) addition and/or subtraction along with sultiplication and/or division
 - D) multiplication and/or division -

STOP. DO NOT GO ON UNTIL TOLD TO.

11 10	9 [4 442 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
·		
	4.	No weight is hung on either side of the center point (fulcrum)What
		will be the position of the beam?
		A) The right end will tilt down.B) The beam will be balanced.
		C) The left end will tilt down.
	٩	D) Not sure.
	ş.	Weight is placed on one side of the beam. Can you rebalance the beam?
		 A) Yes. Add weight on the side opposite the first weight. B) Yes. Add weight on the same side as the first weight.
		C) No.
		D) Not sure.
	6.	A 10 gram weight is placed at point 6 on the left side of the beam.
		How can the beam be balanced?
		A) Hang a 6 gram weight at point 10 on the right side of the beam. B) Hang a 10 gram weight at point 10 on the right side of the beam.
		C) Hang a 20 gram weight at point 6 on the right side of the beam.
		D) Not sure.
	7.	Which reason best matches the reason for your answer to question 6?
		 A) 10 x 6 = 6 x 10. B) Left sida: 10 + 6 = Right side: 6 + 10.
		C) Lighter weight must be placed farther from the center.
		D) None of the above
	8.	An 8 gram weight is placed at point 6 on the left side of the beam.
		Where should you place 12 grams of weight to balance the beam?
دي		A) at point 7 on the right side
		 B) at point 4 on the right side C) at point 2 on the right side
		D) at point 1 on the left side
	9.	Which reason best matches the reason for your answer to question 8?
		A) 8 + 6 = 14, 2 + X = 14, X = 2.
		B) $8 \times 6 = 48$, $12 \times X = 48$, $X = 4$.
		C) Heavier weights must be placed closer to the center.

GO ON TO THE NEXT PAGE.

10. A 4 gram weight is placed at point 2. A 6 gram weight is placed at point 4. Both weights are on the left side of the beam. Where should you place an 8 gram weight on the right side to balance the beam?

- A) at point 2
- B) at point 4C) at point 6
- C) at point 6
- D) at point 8

11. Which reason best matches the reason for your answer to question 10?

- A) $(4 \times 2) + (6 \times 4) = 8X$, then X = 4.
- B) Heavier weights must be placed closer to the center.
- C) (4 + 2) + (6 + 4) = 8 + X, then X = 8.
- D) None of the above.

STOP. DO NOT GO UN UNTIL TOLD TO.

- 12. What is the relationship between the number of turns made by the small disk compared to the number of turns made by the large disk?
 - A) The small disk turns seven times when the large disk turns five times.
 - B) They both turn the same number of times.
 - C) The small disk turns five times when the large disk turns seven times.
 - •D) Not sure.
- 13. If the <u>small</u> disk turned 14 times, how many times would the <u>large</u> disk turn?
 - A) 7
 - **B)** 10
 - C) 12
 - D) 16
- 14. Which method is most like the one you used to find the answer in question 13?
 - A) estimated guess
 - B) addition and/or subtraction
 - C) addition and/or subtraction along with multiplication and/or division
 - D) multiplication and/or division
- 15. If the <u>large</u> disk turned 2 6/7 times, how many times would the <u>small</u> disk turn?
 - A) 3
 - B) 4 6/7
 - C) 4
 - D) 5 3/5
- 16. Which method is most like the one you used to find the answer in question 15.
 - A) estimated guess '
 - B) addition and/or subtraction
 - C) addition and/or subtraction along with multiplication and/or division
 - D) multiplication and/or division

STOP. DO NOT GO ON UNTIL TOLD TO.

515

444

cylinders? A) the water rises six units in the wider cylinder and four units in the narrower cylinder. B) the water rises four units in the wider cylinder and six units in the narrower cylinder. C) the water rises the same in both the wide and narrow cylinders. D) Not sure. 18. Suppose that a new sample of water ros six units in the wide cylinder. How far would it rise in the narrow cylinder? A) 4 B) 6 C) D) 19. Which method is most like the one you used to find the answer in quest ion 18? A) estimated guess addition and/or subtraction B) 1.

17. What is the relationship between the height of water in the two

- C) addition and/or subtraction along with multiplication and/or division
- D) •multiplication and/or division

20. Suppose a new sample of water rose ten units in the <u>marrow</u>
cylinder. How far would it rise in the <u>wide</u> cylinder?
A) 6 2/3

- **B)** 8
- C) 9 1/2
- D) 15
- 21. Which method is most like the one you used to find the answer in question 20?
 - A) estimated guess
 - B) addition and/or subtraction
 - C) addition and/or subtraction along wich multiplication and/or division
 - D) multiplication and/or division

STOP. THIS IS THE END OF THE TEST.

Piagetian Proportional Reasoning Test

Directions for Administration

PPRT is a three part test which attempts to measure the presence of the Piagetian meutal schema of proportional reasoning. Instructions to be read aloud to the subjects are in capital letters. Instructions only for the examiner are in regular type.

- Have students seated in the examination room. After making introductory remarks, say: I WILL NOW HAND OUT ALL TESTING MATERIALS. DO NOT OPEN YOUR TEST BOOKLET UNTIL TOLD TO. YOU SHOULD EACH HAVE A DEST BOOKLET, ANSWER SHEET, A #2 LEAD PENCIL, AND SCRATCH PAPER.
- 2. Distribute the test booklets, answer sheets, pencils, and scratch paper.
 - Have the students write their name at the top of the name grid and fill in the name grid.
 - 4. Say: READ SILENTLY THE GENERAL DIRECTIONS WHILE I READ THEM ALOUD. After reading the directions, say: ARE THERE ANY QUESTIONS?
 - 5. Say: TURN TO THE NEXT PAGE AND READ THE DIRECTIONS FOR PARTS I-IV SILENTLY WHILE 1 READ THEM. ALOUD. After reading the directions, say: ARE THERE ANY QUESTIONS?
 - 6. Play the example demonstration on the TV monitor and have the subjects answer the example question.
 - 7. Say: REMEMBER: THIS IS AN UNTIMED TEST. WORK QUICKLY AND DO THE BEST YOU CAN. YOU ARE NOT PENALIZED FOR GUESSING.
 - 8. Say: NOW YOU ARE READY FOR PART 1. CAREFULLY WATCH THE TV MONITOR AS THE PROBLEM TASK IS PRESENTED.
 - 9. Play the Part I task. Then say: TURN THE PAGE AND BEGIN.
 - When all students have completed questions 1-3, play the second section of the task for Part I. Then say: TURN THE PAGE AND ANSWER QUESTIONS 4 THROUGH 11 THEN STOP.
 - 11. When all students have answered question]1, play the Part II task on the TV monitor. Then say: TURN THE PAGE AND BEGIN. STOP AT THE END OF PART II WHEN YOU SEE THE WORD STOP.
 - 12. When all students have finished Part II, play Part III and say: TURN THE PAGE AND BEGIN. STOP WHEN YOU HAVE COMPLETED PART HIL.
 - 13. Either collect all test materials from students as they finish or collect them when all students are dong.

517

		Respo	nse Percent. C	age		
Item	٨	B *	C	D	Blank	_
1	98.0*	. 8	. 6	.6		
2	1.2	17.7	79.4*	1.8		
3	4.6	26.8	16.9	51.4*	.4	
4	2.6	97.2*	0.2			1
5	95.4*	2.4	2.0	.2		
6	88.3*	7.1	1.4	3.2		
7	36.7*	23.4	30.0	9.5	. 4	
8	4.6	56.2*	38.Í	1.0	• • 2	-
9	18.5	42.9*	29.0	9.3	.4	
10	6.0	41.7*	~ 20.6,	31.2	.6	
11	38.5*	8.1	30.4	22.6	.4	
12	99.0*	.6	.2	.2	¥	
13	1.2	84.1*	13.7	2.0	、	
14	3.8	27.6	, 11. 1	57.3*.	,	,
15	16.7	38.3	34.3*	10.3	. 4	,
16	31.2	23.2	15.9	29.2*	.6	ĺ
17	3.2	95.4*	1.0	.2	. 2	
18	4.0	1.6	49.0	45.2*	.2	
19	7. 7	41.7	12.1	38.1*	.4 ,	÷
20	44.2*	47.0	3.2	5.0	•6) , , , , , , , , , , , , , , , , , , ,
21	13.5	13.5	13.5 .	33.7*	1.6	· -

513

Item Analysis Proportignal Reasoning Test

N=504 *Correct Answer

447

:

Verbal-Visual Test

INSTRUCTIONS

The statements on the following pages represent ways of thinking, studying and problem solving, which are true for some people and not for others. Read each statement and decide whether or not it is true with respect to yourself, then indicate your answer on the separate answer sheet.

If you agree with the statement or decide that it does describe you, answer TRUE by marking in the circle below the letter A. If you disagree with the statement or feel that it is not descriptive of you, answer PALSE by marking in the circle below the letter B. Answer the statements as carefully and honestly as you can. The statements are not designed to assess the goodness or badness of the way you think. They are attempts to discover the methods of thinking you consistently use in various situations. There are no right or wrong answers.

In marking your answers on the answer sheet, be sure that the number that you are answering is the same as the number on the answer sheet.

Answer every statement wither true (A), or false (B), even if you are not completely sure of your answer. If there are any questions, please raise your hand.

i. I have no difficulty in expressing myself verbally.

- 2. Listening to someone recount his experiences does not usually arouse mental pictures of the incidents being described.
- 3. When reading fiction I usually form a mental picture of a acene or room that has been described.
- 4. Essay writing is difficult for me.
- 5. By using mental pictures of the elements of a problem, I am often able to arrive at a solution.
- 6. I enjoy being able to rephrase my thoughts in many ways for variety's sake when both writing and speaking.
- 7. I tell jokes and stories poorer than most people.
- 8. I enjoy doing work that requires the use of words.
- 9. My day dreams are sometimes so vivid I feel as though I actually experience the scene.
- 10. I often use mental pictures to solve problems.
- 11. I find it difficult to find enough synonyms or .lternate forms of a word when writing.
- 12. I have difficulty expressing myself in writing.
- 13. My knowledge and use of grammar needs improvement.
- .14. I would rather work with ideas than words.
- 15. I enjoy learning new words and incorporating them into my vocabulary.
- 16. I do not have a vivid imagination.
- 17. I can easily picture moving objects in my mind.
- 18. I can four mental pictures to almost any word.
- 19. I have only vague visual impressions of scenes thave experienced.
- 20. I can easily think of synonyms for words.
- 21. I think that most people think in terms of mental pictures whether they are completely aware of it or not.

520

-3-

22. I am able to express my thoughts clearly.

23. I consider myself a fast reader.

ê

24.	I have a large vocabulary.
25.	I find it easy to visualize the faces of people I know.
26.	My marks have been hampered by inefficient reading.
27.	It bothers me when I see a word used improperly.
28.	I am fluent at writing essays and reports.
29.	I can close my eyes and easily picture a scene I have experienced.
30.	When someone describes something that happens to him, I sometimes find myself vividly imagining the events that happened.
31.	When I hear or read a word, a stream of other words often comes to mind.
32.	I read rather slowly.
33.	I am usually able to say what I mean in my first draft of an essay or letter.
34.	I never use mental pictures or images when trying to solve problems.
35.	Studying the use and meaning of words has become a habit with me.
. 36.	I speak or write what comes into my head without worrying greatly about my choice of words.
37.	I find it difficult to form a mental picture of anything.
38.	My dreams are extremely vivid.
39.	I have better than average fluency in using words.
40.	I read a great deal.
41.	I am continually aware of sentence structure.
42.	. My thinking often consists of mental pictures or images.
43.	I do not form a mental picture of people or places when reading of them.
44.	I often have difficulty in explaining things to others.
45.	My daydreeus are rather indistinct and hazy.

451/452

46. I often enjoy the use of mental pictures to reminisce.

- 47. I often use mental images or pictures to help me remember things.
- 48. When remembering a scene I use verbal descriptions rather than mental pictures.
- 49. I take great pains to express myself with precision and accuracy in both verbal speech and written work.

50. I have difficulty producing associations for words.

51. I often have ideas that I have trouble expressing in words.

52. Just before falling asleep I often find myself picturing events that have happened.

522

53. I am a good story teller.

54. I spend very little time attempting to increase my vocabulary.

453 /454

Modified Verbal-Visual Questimnaire

4

Directions for Administration

VVQ is a series of agree-disagree statements which attempts to measure ° subjects preference for either verbal (low score) or visual (high score) encoding of information. Instructions to be read aloud to subjects are in capital letters. Instructions only for the examiner are in regular type.

1. Have students seated in the examination room. After making introductory remarks, say: I WILL NOW HAND OUT ALL TESTING MATERIALS. DO NOT OPEN YOUR TEST BOOKLET UNTIL TOLD TO. YOU SHOULD EACH HAVE A TEST BOOKLET, ANSWER SHEET, AND A #2 LEAD PENCIL.

2. Distribute the test booklets, answer sheets, and pencils.

- Have the students write their name at the top of the name grid
 and fill in the name grid.
- 4. Say: READ SILENTLY THE INSTRUCTIONS WHILE I READ THEM ALOUD. After reading the instructions say: ARE THERE ANY QUESTIONS?
- 5. If no questions, have the students turn the page and begin. Collect materials as students finish.

 $(\mathbf{x}_{i})_{i \in I}$

			Response Percent		•
i:va	-type*	•	<u>, </u>	3	c
	- 5.		56.3	43.3*	
2	98 V1		15.3	84.7*	
3	VI	~	93.8*	0.2	
4	Vi Ve		52.0+	47.8	
s	Vi Vi		ói.7*	38.1	.2
5	v. Ve		69.6	30.0*	
7	Ve		29.8*	70.2	
8	Ve		43.8	55.2*	
9	Vi		61.7*	38.3	**
ó	Vi		66.3*	33.7	
1	Ve		44.8*	55.2	
2	Ve		36.9*	63.1	
3	Ve		74.4*	25.4	.2
	Ve		77.6*	22.4	
5	Ve		73.6	26.2*	.2
6	VI		14.1	85.9*	
7	VI		84.7*	15.3	
8	-1		59.5*	40.5	
9	Vi		16.3	83.74	
0	٧e		49.4	50.6*	
1	¥1		89.5*	10.3	
2	Ve		33.4	44.5*	
3	72		48.2	51.8*	
4	Ve		46.6	53.4*	
5	17	•	86.5*	13.5	• • •
16	V.e		24.8*	75.2	
7	٧e		35.0	45.0*	
ò	Ve		30.8	- 63. 6*	
:9	VI		92.1*	7.7	• ·2 ¹
30	V1	ţ	81.9*	17.9	.2
31	Væ	٠	46.6	53-2*	.2
32	Te		27.0*	72.8	.2
33	Ve		56.5	43.1*	. 4
34	¥1		8.9	90.3*	•
35	Ve		22.4	77.2*	
36	۲e		39.9*	59.9	.2
37	, VI		2.6	97.2*	
38	<u>` 7:</u>		71.0*	23.3	• 2
39	Ve		55.+		• 2
0	¥∎.		49.4	50.0*	.6
•1	Ve		29.0	71.6*	
•2	71		ô0. \$*	19.0	. 2
•3	VI		7.5	92.3*	-2 🕔
• •	Ve		31.5*	97.7	<i>.</i> D
5	¥1	;	22.2	77.6* _	• •
60	71		90.9 *	3.7	• •
•7	¥1		90.1*	9.3	د. 1.0
-5	Vi		13.5	80.6*	
-9	Ve.		35.9	63.5*	6
50	74	<u>-</u>	30.3*	66.3	.3 .ð
51	Ve		53.4*	43.9	
52	71		87.34	11. 3	.3 1.2
53	Ve		30.2	43.2*	1.5
34 -	Ve		-8.0*	43.3	ه، ل

1-

%=301 * "Correct" Ansier for maximum visual score =* V1 for Visual Items (23), Ve for Visual Items (31)

524

×

,

č

PAGES 436-462 "MATHEMATICS ANXIETY RATING SCALE (MARS)" REMOVED DUE TO COPYRIGHT RESTRICTIONS.

525

÷

Directions for Administration: Mathematics Anxiety Rating Scale (MARS).

-0

- 1. Pass out Answer Sheets, and have students fill in the <u>name</u> section (Last, First, Middle Initial).
- 2. Please have the students fill in the <u>K</u> section under Special Codes with your number code (listed below). (See Sample)
- 3. Pass out the test booklets and have the students read the instructions on top. Please do not have them write on the test booklet.
- 4. The instructions at the top of the page have the phrase "you are frightened by it nowdays." By "frightened" we mean "do not like to do it at all" or "become anxious or upset when doing it."

5.

While there are several items, it should only take about 20 minutes to complete the test.

Item Analysis Mathematics Anxiety Test

ltem	* *	B	c	1	Blank		
		10	9	2	8		
1	58 76	30 37	15	2 9 - 7	3		
2	. 30	35	18		4		
3	- 36 36 33 89	30 37 35 40 8	9 15 18 18 2	7	4		
1 2 3 4 5 6 7 8 9 10	89		2		1 2 3 4 3 6 1 1 0 12 1 3 4		
6	53 50	30 27 27 37 29 30 26 28 5	11 ' 15 15	5	3		
7	50	2/	15	, 5 , 4	4		
1	50 29	37	24	7	. 3		
9	50	29	12 17 14	7 8	3		
10	38	30	. 17	8	0		
12	60	26	11	2 2	1		
13	61	28	8	1	ō		
14	92	5	1 23	12	12		
15	26	27	10	5	1		
16	60	24	10	5	3		
17	62 53	20 28 22 29 17	13	12 5 5 3 4			
18	55 61	22	11		2		
19	61 - 47 70	29	13	8	4		
20 .	70	17	9 7	2	1		
22 ,	67 71	24	7	1 1			
11 12 13 14 15 16 17 18 19 20 21 22 23 23 24 25	71	- 16	6 8	8 2 1 3 - 2 3 4 3 5 0 3 14	2 1 4 2 3 4		
24	64	24	6	3	3		
25	67	22 · 28	* 9	Ă.			
26 27 28 29	55 50 67	31	14	3	2		
27	50	20	4	3	· 4		
20	50	30	73	5	2		
30	86	10	13	U I	ĩ		
30 31 32 33	56 19 33 31 51	30 29	10	14	9		
32	19	29	22	9	6		
33	33	30 32	20	9 10	7		
34	51	·2 31	22 20 11	4	2		
35	60	24	9 6	4	3		
34 35 36 37	72	18	6	2 1	2		
38	60 72 77	- 15 - 18	6 4	1	2		
38 · 39	74	7 18	4 15	8	2 4 2 0 1 9 6 7 2 3 2 1 2 4 5 2 17		
40	40	· · · · 33 33	16	7	5		
41	39 57 17	33 27	16 11 27 17	7 3 12 4	2		
42	3/ 17	27 27	27	12	17		
43	41	35	17	4	2		
44 45	44	29	13 72	、 8 、 4	5		
	53	30	. 72	-	_		
46 47 48	53 77 69 49	17 23 34 37 42 30 38 25 21 23 32 , 37 23 23	4 6 13 16 18 21 17 26 7 6 16 16 14 10 5	1 2 5 7 7 12 14 3 3 7 5 3 2	1 1 2 3 8 4 6 22 1 1 1 1		
48	69	23	13	ž	2		
49	49	34 37	16	5	3		
49 50 51 52 53 54 55 56 57 58 59 60	40 • 25 39 26	42	18	7	8		
51	. 23	30	21	7	4		
36 53	26	38	17	22	77		
54	12	25	26	14 T	1		
55	12 69 67 42 63 63 69	21	. 4	3	i		
56	67	23	- 0 16	7	1		
57	42	32	14	- 5	2		
58	42	, 3/ 71	10	3	1		
59	63	4J 22	Ś.	2	1		

464

ž

0

527

. .

ERIC

•	Response Percentage								
Item	<u> </u>	B	С	D	Blan				
61	16	34	26	14	10				
62	59	25	10	Ä					
63	48	32	14		2				
64	50	30	13	2	1				
65	47	32	15	Ă	2				
66, 67 ·	. 39 .	31	18	8 3	2 2 1 2 5 0				
57 .	80	15	5	Õ	័				
58	14	12	, 5 3	ĭ	ň				
69	83	13	4		0 0 0				
70 🖛	69	. 22	7	1 2	ň				
71	58 ,	28	ģ	3	2				
72	16	38	24	13	10				
73	40	34	13	9 .	4				
74	20	32	23	12	14				
75	19	24	23	14	21				
76	18	23	18	15	26				
77	38	38	26	10					
78	34	31	19	10	· 6				
79	14	24	23	18	21				
10	81	10	6	2	-î				
1	55	25	12	2 5	ž				
12	33	39	16	. 9	1 3 3				
13	53	28	- <u>12</u>	4					
14	12	32	29	16	≠ 12 .				
15	26	26	22	12	14				
6	38	32	19	8	19				
17	52	30	12	0					
8	47	30	15	7 -	1				
19	52	26	14	6	2				
20	52 53	28	13	4	1				
01	18	30	24	15	12				
2	54	24	15	13	13				
3	68	20	9	5 2	1				
4	35	37	20	6	2				
5	. 50	29	12	7	1 2 1 13 2 1 2 3 5 1 2				
K	33-	36	18	8	5 F				
16)7	62	25	10	2	5				
8	65	≠ 21	8	£	1				

Item Analysis Mathematics Anxiety Test (continued)

N = 553

465

523 /

•_

APPENDIX C

Reviewer's Comments

Dependent Measures.	•	•	•	•	΄.	•	•	•	•	•	•	467
Instruction												

1

~ ;

REVIEWERS COMMENTS ON DEPENDENT MEASURES

The reviewers evaluated the quizzes and tests at the same time as they evaluated the instructional units. Overall directions for reviewing are given in Appendix A.

Questions (Q) and Responses (R) for Moles Quizzes and Tests.

- I. Quizzes: (On each quiz, two items may measure the same objective. One item will involve decimals whereas the other uses whole numbers. We thought we would check to see if there are any differences.)
 - (Q) a. If there are any quiz items that do not match the stated objectives, please list the number of the item.
 - (R1) O.K.
 - (R2) None.
 - (Q) b. If there are any quiz items with content errors, please note item and error.
 - (R1) 0.K.
 - (R2) None.

II. Test

- (Q) a. Do you think the test adequately samples the objectives of the unit?
 - (R1) For the length of the test, it is fine. I think there are some common misconceptions or errors which aren't checked by any of the items, but the objectives are sampled.
 - (R2) Much more than adequate--coverage is excellent.
- (Q) b. Each test contains one or more items that we consider to be transfer items. Please select any you consider to be in this category.
 - (R) (Note: Response has been summarized because of length) I'm not sure that any of them are but I'm reasonably confident that items 4 and 9 are the ones you have in mind. Other transfer items are possible that might be better.

(R2) #4, 9.

REVIEWERS COMMENTS ON DEPENDENT MEASURES

The reviewers evaluated the quizzes and tests at the same time as they evaluated the instructional units. Overall directions for reviewing are given in Appendix A.

Questions (Q) and Responses (R) for Cas Laws Quizzes and Test.

- I. Quizzes (On each quiz, two items may measure the same objective., One item will involve decimals whereas the other uses whole numbers. We thought we would check to see if there are any the differences).
 - (Q) a. If there are any quiz items that do not match the stated objectives, please list the number of the item.
 - (R1) No response.
 - (R2) None.
 - (Q) b. If there are any quiz items with content errors, please note them and the error.
 - (R1) No response.
 - (R2) None.
- II. Test
 - (Q) a. Do you think the test adequately samples the objectives of the unit?
 - (R1) Yes.
 - (R2) Yes, there is excellent coverage of the objectives.

(Q) b.

Each test contains one or more items that we consider to be transfer items. Please select any you consider to be in this category.

(R1) I like #3 because they now need to use the same logic to derive a relationship showing P related to T with V constant. They may simply say $P_1 V_1 = P_2 V_2$.

canceling the V₁ and V₂, in which T_1 T_2 case little or no transfer is involved. # \dot{v} and #10 involve transfer of concepts from the mole unit to this unit.

531

(R2) #6 and #10.

REVIEWERS COMMENTS ON DEPENDENT MEASURES

The reviewers evaluated the quizzes and tests at the same time as they evaluated the instructional units. Overall directions for reviewing are given in Appendix A.

Questions (Q) and Responses (R) for Stoichiometry Quizzes and Test.

- Quizzes (On each quiz, two items may measure the same objective. One item will involve decimals whereas the other uses whole numbers. We thought we would check to see if there are any differences).
 - (Q) a. If there are any quiz items that do not match the stated objectives, please list the number of the item.
 - (R1) No response.
 - (R2) Nonc.
 - (Q) b. If there are any quiz items with content errors, please note them and the error.
 - (R1) S-I-QP-1, #4 doesn't exactly have an error but mentioning SIP for the CO₂ but not indicating T and P for the other gases could be misleading. Are only two choices intended? Where is the correct answer?
 - (R2) S-I-QP-1, question 4. Only two of the four alternatives are listed and the correct one is not among them (A, B listed; C, D not shown).
 (Note: This error was corrected before student use.)

II. lest

- (Q) a. Do you think the test adequately samples the objectives of the unit?
 - (R1) Yes, -
 - (R2) No response.
- (Q) b. Each test contains one or more items that we consider to be transfer items. Please select any you consider to be in this category.
 - (R1) #5 and #9 (I predict students will do poorly on them).
 - (R2) #5, 9, 10.

REVIEWERS COMMENTS ON DEPENDENT MEASURES

The reviewers evaluated the quizzes and tests at the same time as they evaluated the instructional units. Overall directions for reviewing are given in Appendix A.

Questions (Q) and Responses (R) for Molarity Quizzes and Test.

- Quizzes (On each quiz, two items may measure the same objective. One item will involve decimals whereas the other uses whole numbers. We thought we would check to see if there are any differences).
 - (Q) a. If there are any quiz items that do not match the stated objectives, please list the number of the item.
 - (R1) No response.
 - (R2) None.
 - (Q) b. If there are any quiz items with content errors, please note them and the error.
 - (R1) No response.
 - (R2) None.

(R2) Yes.

L

II. Test

- ...(Q) a.
- a. Do you think the test adequately samples the objectives of the unit?
 - (R1) Best you can do with 10 items but you covered a lot of material.
 - (Q) b. Each test contains one or more items that we consider to be /transfer items. Please select any you consider to be in this category.
 - (R1) #5, #7 and possibly #10. I expect the reasoning involved is different than what is used elsewhere in the unit but the skills seem to be the same.
 - (R2) #5 and #10. I selected #10 because different information is given to do the calculation compared to the objective #2 stated in lesson 3.

Note: In all cases where I chose items as transfer ones, I still feel that they match objectives reasonably well. I really liked the instructional materials. They were well planned and executed and the quizzes and unit tests are solid (face) measures of the material and transfer.

533

UNIT REVIEWER'S COMMENTS ON INSTRUCTION

INSTRUCTIONS (To Reviewers): Please read through the materials and answer the following questions. We are particularly interested in your comments on the content, rather than the method.

Questions (Q) and Responses (R) > MOLES UNIT

I. TEALHER'S GUIDE

(Q) a. Are the objectives reasonable for the topic:

(R1) They look O.K. to me.

(R2) Yes.

(.) b. Are the prerequisite skills adequate?

- (R1) Well, they need to be able to read, write, and all that, but otherwise they look 0.K.
- (R2) Yes.

Instructional Materials

- (Q) a. Is there adequate coverage of the topic?
 - (R1) No response.
 - (R2) Yes, very well done with many analogies within common experience (bricks) as the mole concept is developed.

(Q) b. Are any errors in chemistry present?

- (R1) A few places where there may be confusion. I have indicated these (Lesson I).
- (R2) I found none.
- (Q) c. Does the unit appear to be matched with the objectives?

(R1) Yes.

(R2) fost definitely!

UNIT REVIEWER'S COMMENTS ON INSTRUCTION

INSTRUCTIONS (To Reviewers): Please read through the materials and answer the following questions. We are particularly interested in your comments on the content, rather than the method.

Questions (Q) and Responses (R): GAS-LAWS UNIT

1. TEACHER'S GUIDE

(Q) a. Are the objectives reasonable for the topic?

- (R1) Yes.
- (R2) Yes.

(Q) b. Are the prerequisite skills adequate?

- (R1) Yes.
- (R2) Yes. Although some students (even in chemistry) will need to learn how to calculate ^oK from ^oC and vice versa, this is easily taught.
- II. Instructional Materials

(Q) a. Is there adequate coverage of the topic?

- (R1) Depends on your point of view. The focus is on getting answers to problems rather than understanding the behavior of gases. I would prefer the latter but evolution the former is dictated by the purposes of the issearch.
- (R2) Yes, again, more than adequate excellent. I really like the style.

(Q) b. Are any errors in chemistry present?

(R1) See Lesson 2.

(R2) A possible error exists, not in the chemistry, but in the definition of proportion in Lesson 1. $P_1V_1 = k =$ P_2V_2 $P_1V_1 = P_2V_2$ is a proportion, but, at least, most high school students won't know that it is or isn't, because $P_1V_1 - P_2V_2$ can be $P_1V_1 = P_2V_2$.

A proportion is the equality of 2 Ratios. However, in your lesson 1 you never make this clear how $P_1V_1 = P_2V_2$ is the equality of two ratios. Most students will simply view it as the equality of products. You could use $P_1 = V_2$ but this $\frac{P_1}{P_2} = \frac{V_2}{V_1}$

presents a transition problem to the combined gas law lesson. $\frac{P_1}{P_2} = V_2$, however, is the $\frac{P_1}{P_2} = V_1$

clear statement of the equality of 2 ratios that students will recognize as such. In sum, what I am saying is that in lesson 1, you may not be teaching them by the proportional method, although you view it as such.

(Q) c. Does the unit appear to be matched with the objectives?

(R1) Yes.

(R2) Well matched.

(^r

UNIT REVIEWER'S COMMENTS ON INSTRUCTION

INSTRUCTIONS (To Reviewers): Please read through the materials and answer the following questions. We are particularly interested in your comments on the content, rather than the method.

Questions (Q) and Responses (R): STOICHIOMETRY UNIT

- I. TEACHER'S OUTDE
 - (Q) a. Are the objectives reasonable for the topic?
 - (R1) Yes.
 - (R2) Yes, they remind me of my years at NCHS.
 - (Q) b. Are the prerequisite skills adequate?
 - (R1) Yes.
 - (R2) Yes, although you list a prercquisite skill the ability to balance equations, you don't emphasize it in the unit.
- II. Instructional Materials
 - (Q) a. Is there coverage of the topic?
 - (R1) Yes. (Too much?)
 - (R2) Excellent coverage.
 - (Q) b. Are any errors in chemistry present?
 - (R1) I didn't find any.
 - (R2) S-III-P-2 The equation 3H₂ + 2N₂ → 2NH₃ is not balanced! (A simple type error.)
 - (Q) c. Does the unit appear to match with the objectives?
 - (R1) Yes.
 - (R2) Very well matched; no loose ends hanging.

UNIT REVIEWER'S COMMENTS ON INSTRUCTION

INSTRUCTIONS (To Reviewers): Please read through the materials and answer the following questions. We are particularly interested in your comments on the content, rather than the method.

Questions (Q) and Responses (R): MOLARITY UNIT

I. TEACHER'S GUIDE

(Q) a. Are the objectives reasonable for the topic?

(R1) Yes.

(R2) Yes, quite reasonable expectations.

(Q) b. Are the prerequisites skills adequate?

- (R1) Lesson 2, they nust know what a mole is and how to convert from mass to moles.
 (Other units cover this, of course).
- (R2) Yes, you have considered what they should know before attempting the unit.

II. Instructional Materials

(Q) a. Is there adequate coverage of the topic?

- (R1) No response.
- (R2) Again, the instructional materials are excellently done.
- (Q) b. Are any errors in chemistry present?
 - (R1) Yes, see comments on lessons.
 - (R2) I found none, except for a misspelled word on Mo-1-P-6 in the problem: Cobolt should be Cobalt.

- (Q) c. Does the unit appear to be matched with the objectives?
 - (R1) Yes.
 - (R2) Well matched.

APPENDIX D

ς,

530

٤.

Dependent Measures and Item Analyses

Moles Immediate and Delayed Posttests 477	
Gas Laws Immediate and Delayed Posttests 484	,
Stoichiometry Immediate and Delayed Posttests)
Molarity Immediate and Delayed Posttests 496)
ACS-NSTA Chemistry Achievement Test Regular	L
ACS-NSTA Chemistry Achievement Test Scrambled	4 ^{`'}

Name

Small group

Please answer the following questions by circling the correct answer. In order to get full credit you <u>must</u> show your work for question 6. Remember, 1 mole = 6.02×10^{23} particles and that these problems are very similar to the use of dozen. Example, how many dozen oranges would be represented by 24 oranges?

24 oranges = 2 dozen 12 oranges/dozen

 Carbon tetrachloride has the formula OCl₄. How many moles of chlorine atoms (Cl) are in 3 moles of carbon tetrachloride?

a. 3 moles

b. 6.02×10^{23} moles

c. 12 moles

d. 24.08×10^{23} moles

2. How many atoms of aluminum (Al) are present in 3 moles of aluminum?

- a. 2.00 x 10²³ atoms
- b. 6.02×10^{23} atoms
- c. 9.03×10^{23} atoms

d. 18.06 x 10²³ atoms

3. How many moles of calcium hydroxide $Ca(OH)_2$ correspond to 12.04 x 10²³ molecules of Ca $(OH)_2$?

a. 0.5 mole

b. 2.0 moles

c. 3.01×10^{23} moles d. 24.12×10^{23} moles

540

Moles I - QA - 2 478

4. How many atoms of aluminum (A1) are present in 2.3 moles of A1?

- a. 0.382×10^{23} atoms
- b. 2.62×10^{23} atoms
- c. 13.85 x 10^{23} atoms
- d. 27.70×10^{23} atoms
- 5. How many <u>atoms</u> of chlorine (Cl) are present in 4.0 moles of carbon tetrachloride (CCl₄)?
 - a. 1.51×10^{23} atoms
 - b. 6.02×10^{23} atoms
 - c. 24.08 x 10^{23} atoms.
 - d. 96.32 x 10²³ atoms

6. Now many moles of fluorine atoms (1) correspond to 18.06 x 10^{23} molecules of calcium fluoride CaF₂? (You must show your work to get full credit?)

a. 3

b. 6

c. 18

d. 36

Moles II - QA - 1

470

Period or		
small group		

Please answer the following questions by circling the correct answer. In order to get full credit for question four you must show your work.

These problems are very similar to problems like that of the packing carton. Example: How many dozens of fruit can be stored in a box of 69 pints if each dozen has a volume of 3 pints?

69 pints -= 23 dozen 3 pints/dozen

Remember, just as in this example where 1 dozen = 3 pints for gases 1 mole = 22.4 liters at STP.

1. A sample of helium He contains 2 moles. How many liters would this

gas occupy at STP?

0.089 liter a. 2.0 liters b. 11.2 liters с. ٦d. 44.8 liters

Name :

2. How many moles are represented by 70 liters of fluorine gas (F_2) at STP?

0.32 mole a. b. 3.125 moles 70 moles с. 1589 moles d.

3. How many liters would 6.32 moles of oxygen gas (0_2) occupy at STP?

0.282 liter a. 3.54 liters b. 141.6 1iters с. 283,1 liters d.

A sample of carbon dioxide gas (CO_2) measured at STP occupied 126.5 liters. How many moles of CO_2 were present in this sample? (Show your work!)

a.	0.177 mole	
b.	5.65 moles	_

379.5 moles c. d. 2833.6 moles

Hole III - QA - 1

Name:_				
Period	or	Small	group:	

Please answer the following questions by circling the correct answer. You must show your work, in order to receive full credit for queetion 5. These problems are vary similar to the situation, of dowens of fruit. Exemple: If a dozen apples weighed 6000 grams how much would 4 dozens apples weigh?

1

4 doren epplés X <u>6000 grams</u> = 24,000 grams epplesdoren

Atomic massas you may	wish to use:	-
Ca = 40.1	c = 12.0	0 = 16
Na = 23.0	Kr = \$3.\$	\$r" = 79.
Zn = 65.4		c

1. How many grams of sodium (Na) correspond to 3 acles of Na?

۹.	0.13	grem
Ъ.	7.67	grems
c.	69.0	grums grems
d.	32.0	grems

)

1

2. Now many moles of krypton (Kr) ges correspond to 167.6 grams of Kr?

- a. 0.5 mole
 b. 2.0 moles
- c. 83.8 moles d. 335.2 moles

3. Now much does 4.5 moles of eodium (Na) weigh?

۸.	0.20 gram
b.	-5.10 grams
c.	23.0 grams
d.	103.5 grams

 A semple of calcium carbonate (CaCO₃) contains 3.6 moles. How much would this semple weigh?

- a. 27.8 grams b. 244.8 grams c. 360.4 grams
- d. 446.4 grams

5. How many moles of sinc bromide (2nBr2) correspond to 200 grams of 2nBr2.

a. 0.69 mole b. 0.89 mole c. 1.13 moles d. 1.38 moles

480

۶.

Period or Samll Group ____

Moles IV-0A-1

Please answer the following questions by circling the correct answer. Remember, these problems maybe solved by using a method similar to the one used with fruit. Example: How much volume would 24 oranges occupy if each dozen orange occupies 3 pints? (See diagram). To get full credit for question six, you must show your work.

Name

3 pints

24 oranges = 2 dozen 12 oranges/dozen

You may need the following atomic masses: Ne = 20.2 Cu = 63.5 K = 39.1 N = 14.0 O = 16.0 C = 12.0 H = 1.0

1. What volume would 18.06 x 10²³ atoms of neon gas (Ne) occupy at STP?

- a. 3.0 liters b. 7.47 liters
- c. 67.2 liters d. 404.5 liters
- 2. What would be the mass of one etom of copper (Cu)?
 - a. 0.0026 x 10⁻²³ gram b. 10.5[°]x 10⁻²³ gram c. 63.5 x 10⁻²³ gram d. 382.3 x 10⁻²³ gram
- 3. What volume would 34.3 x 10^{23} etoms of neon (Ne) uccupy at STP?
 - a. 3.93 liters b. 127.6 liters
 - c. 1348.5 liters d. 4625.3 liters

4. How many moles correspond to 303.3 grams of potassium nitrate (KNO3)?

- e. 0.33 mole b. 2.35 moles d. 4.39 moles d. 4.39 moles
- c. j.00 moles d. 4.39 moles
- 5. How many molecules of cerbon diaxide (CO) are present in a sample of $\rm CO_2$ that has a volume of 40.3 liters at STP?
 - a. 5435 molecules b: 9.2 x 10²¹ molecules
 - 3.35 x 10²³ molecules d. 10.8 x 10²³ molecules
- 6. A sample of ethene ges (C₂H₆) has a mass of 60 grams. What volume would this ges occupy at STP? (Be sure to show your workl)

a. 11.2 liters b. 44.8 liters c. 80.4 liters d. 103.4 liters 54.4

Holes-T-I

. 482

. S

١

Pariod or small group:

		NOLE TEST
	Please answer the follwoing q	Mestions by circling the correct answer.
	Constants and atomic-masses that y	ou will need are listed below.
-7	1 mole = 6.02×10^{23} particles	1 mole = 22.4 liters at STP
	Carbon (c) = 12.0	Hydrogen (H) = 1.0
	Sulfur (S) = 32.1	Oxygen (0) = 16.0
	Zinc (Zn) = 65.4	Hellum (He) = 4.0 Xenon (Xe) = 131.3
	I. Huw many moles of neon gee (Ne)) correspond to 18.06 x 10 ²³ etams of neon?
	A. 0.j3 mole	8. 1.24 moles
	C. 3.0 moles	0. 108.7 moles
•	2. How many moles of zinc (2m ²) con	rrespond to 163.5 grams of Zn?
ν.	A. 0.40 mole	8. 2.50 moles
	C. 1422 moles	-0. 10382 moles
	3. How many molecules of methane : contains 5.0 moles?	(CH ₆) are present in a sample of methane that
	4. 0.83 x 10 ²³ molecules	8. 1.20 x 10 ²³ molecules
	C. 3.01 x 10 ²³ molecules	D. 30.1 x 10 ²³ molecules
	4. How much would the oxygen atom 6.0 moles?	a weigh in a sample of CO2 which contained
-	A. 8 grams	8. 64 grams
	C. 128 grams	0. 176 grams
	5. How many moles correspond to 1	6 litere of oxygen ges at STP?
	A. p.71 mole	B. 1.4 moles
	C. 2.0 moles	D, 358.4 mola
	6. How much would e sample of hel 78.4 Hears2	tum gas (he) weigh, if at STP its volume was
	A. 0.07 gram	8. 1.14 grans
I	C. 14.0 grams	D. 313.6 grams
	7. A sample of hydrogen sulfide (molecules of H ₂ S ere present i	
;	A. 6.30 x 10 ²³ molecules	8. 12.04 x 10 ²³ motocules
	C. 12.40 x 10 ²³ molecules	D. 410.6 x 10^{23} molecules
	 A sample of ethane gas (C2Hg) many molecules of ethane are p 	has a volume of 100.8 liters at STP. How . pregent in the sample?
	A. 1.34 x 10 ²³ molecules	8. 27.1 × 10 ²³ molecules
	C. 282.2 x 10 ²³ molecules	0. 375.1 x 10 ²³ molecules'
	9. A sample of sulfur dioxide (So atoms of oxygen (0) are prese	0 ₂) has a mass of 128.2 grams. How many of in this sample?
	A. 3.02 x 10 ²³ etoms	8. 12.04 x 10 ²³ atoms
	C. 16.04×10^{23} atoms	D. 24.08 x 10 ²³ atoms
	10. How much would 3.03×10^{23} at	oms of xenon yas (ke) weigh?
	A. 87.5 grams	8. 98.5 grams
,	C. 197.0 grams	U. 1185.6 grams

Item Analysis for Moles

Immediate and Delayed Posttest

		- •				
	*	·	<u> </u>	esponse Percenta	age	· ·
easure-	Item	Ā	В	C	D	Blank
· · · · ·			<u> </u>		~	•
uiz 1	1	10.6	3.3	66.6*	17.9	9
uiz 1	2	1.3	2.4	1.3	94.2*	.5
uiz 1	3	3.5	86.9*	2.9	.4.9	1.1
uiz 1	4	5.5	3.5	87.8*	.9	1.3
uiz 1	5	2.7	3.1	52.2	39.4*	1.5
uiz 1	6 -	38.1	46.2*	4.7	4.4	3.1
uiz 2	1	1.5	.4	1.6	95.8*	.2
uiz 2	2	4.4	92 . 1* ′	.4	2.0	:4
uiz 2	3	4.4	2.5	89.0*	3.1	
uiz 2	4	2.5	92.0*	.9	2.2	·2 · . 1.5
uiz 3	1	1.8	2.4	94.7*	.4	.2
uiz 3	2.	3.5	93.2*	1.6	.9	.2
uiz 3	3,	2.0	1.5	· 1.6	94.2*	.2
uiz 3	4	4.7	4.2	87.4*	2.7	.4
uiz 3	5	3.6	73.0*	15.3	5.5	2.0
uiz 4	Í.	8.0	2.5		-1.8	<u>`</u> — 0 –
uiz 4	2	3.1	54.4*	23.2	17.0	.9
uiz 4	3	5. 1 [·]	89.6*	1.6	2.4	0
uiz 4	4	3.6	5.1	79.7*	9.5	.5
uiz 4	5 -	1.8	4.2	11.5	80.5*	
ui7 4	6	4.7	80.7*	5.5	4.7	2 -
est	1	.9	.7	95.4*	2.5	.2
	2	1.8	93.1*	2.0	2.2	.7
est	3	6.2	1.8 :	9.3	82.3*	.2
est	4	8.4	15.3 .	52.2*	22.6	1.1
est '	5	75.0*	6.6	2,2 /	15.1	.9
est	6	2.5	7.1	77.9*.	10.8	1.5
est	7	3.1	70.6*	7.5	17.7	.7
est	8	5.3	82.3*	4.6	4.4	3.3
est	9.	<i>i</i> 9.1	37.4	7.5	42.3*	3.5
	.0	4.6	3.8	58.6*	6.9	25.7

* Correct answers

ERIC

5 F

. Gas Laws I-QF-1

G

Period or small group:

Name :

Please answer the following questions by circling the correct answer. To get full credit for question four you must show your work. These problems are easily solved by predicting the factors. Example:

Problem: The time to take a trip by car is inversely related to the speed of the car. The faster the car travels the <u>less</u> time it takes to complete the trip. Suppose that a trip takes 3 hours at 45 m.p.h. How long would the trip take at 55 m.p.h.?

- 3 hours x $\frac{45 \text{ m}_{p} p \cdot h}{55 \text{ m}_{p} p \cdot h}$ = 2.45 hours
- 1. A sample of gas has a volume of 1500 ml at 900 mm Hg pressure. What volume would this gas occupy at 1200 mm Hg?

A. 720 ml B.

2. What would be the volume of a sample of gas at 800 mm Hg pressure, if at 300 mm Hg pressure the volume was 600 ml?

1125 ml

Α.	225 ml	•		•	Β.	`400 m1	
с.	1600 m1	~	-		D.	1833 ml	

3. A sample of gas has a pressure of 632 mm Hg and a volume of 492 ml. What would be the pressure of this sample of gas, if the volume became 856 ml?

A. 363 mm Hg B. 666 mm Hg

C. 996 mm Hg D. 1100 mm Hg

4. What would be the pressure of a sample of gas of 1000 ml volume, if at 1400 ml volume the pressure was 500 mm Hg? (Show your work).

547

A. 357 mm Hg. _ _ _ Bi 480_mm Hg.

C. 700 mm Hg

D. 2800 mm Hg

ERIC

Name ______ Small Group _____ Gas Laws II-QF-1 Please a swer the following questions by circling the correct answer. To get full credit for question four, you must show your work. Remember to set up your factors based upon your prediction of what should happen The relationship between the temperature and volume is a direct one. Another direct relationship is the one between the cost of objects and the number you buy. Example: If chewing gum is 73¢ for 3 packages, how much will 9 packages cost?

Period or

485

٩,

73¢ x <u>9 packages</u> = 219¢ or \$2.19 3 packages

1. A sample of gas has a volume of 625 ml at 27° C. What would be the volume at 55° C?

Α.	307 ml	B. ,	572.ml
c.	683 m1	D.	1273 ml

2. What would be the Celsius temperature of a sample of gas of 350 ml volume, if at 400 ml volume, the temperature was 46° C?

Α.	6°C	N	Β.	40 ⁰ C

- c. 53°C 9. 237°C
- 3. What would be the volume of a sample of gas at 63.4°C, if at 121.2°c, its volume was 457 ml?

A. 238.5 ml B. 309.9 ml

C. 534.3 ml D. 871.7 ml

4. A sample of gas has a volume of 275 ml at -10^oC. What would be the temperature at 520 ml volume?

A. -272°C B. -254°C

C. -134°C D. 224°C

486 Gas Laws III-QF-1

Per + o, small group:

Nam

Please answer the following questions by circling the correct answer. To get full credit for question four you must show your work. Remember to set up your factors based upon your prediction of what should happen. The relationship between the volume or pressure and temperature is a direct relationship, while the relationship between pressure and yolume is an inverse relationship.

An example of a problem using <u>both</u> a direct and an **inverse relationship** might be: How much would a truck driver be paid if he got \$10.00 per hour for a trip of 275 miles if he averaged 55 miles per hour?

275 miles x <u>1 hour</u> x <u>10 dollars</u> = 50 dollars 55 miles <u>1 hour</u>

 A sample of gas has a volume of 400 ml at 600 mm Hg and -73 C. What would be the volume at 1500 mm Hg and 27°C?

 A. | 107 ml
 B. 240 ml

 C. 433 ml
 D. 1500 ml

A sample of gas has a pressure of 600 mm Hg at 0°C and 900 ml. What would be the pressure at 273°C and 300 ml?

A. 100 mm Hg B. 400 mm Hg

D. 3600 mm Hg

3. What would be the Celsius temperature of a sample of gas at 500 mm Hg and 500 ml, if at 57°C the pressure was 1000 mm Hg and 1500 ml volume?

 A. -218°C
 B. -53%C

 c. \$5°C
 D. 222°C

900 mm Hg

с.

4. A sample of gas has a volume of 632.4 ml at 25.3°C and 784.6 mm Hg. What would be the volume at 51.6°C and 954.2 mm Hg?

Α.	477.9 ml	\ B.	565.8 ml
c.	7 \$3.8 m1	\ D.	1060.5 ml
		1	

Item Analysis for Gas Laws

Immediate and Delayed Posttest

		Response Percentage				
Measure-	Item	Ā	В	С	<u>d</u>	Blank
۶						
Quiz 1	1	1.3	94.34*	.7	.2	.4
Quiz 1	2	80.3*	1.8	14.0	.5	.2
Quiz 1	3	92.1*	1.5	.2	2.7	.4
Quiz 1	4	12.0	4	82.8*	1.3	4
Quiz 2	1	.5	5.5	88.0*	3.1	0
Quiz 2	2	83.6*	8.0	3.3	2.0	.2
Quiz 2	3	4.7	79.6*	8.9	.4	2.5
Quiz 2	4	2.2	2.9	6.6	84.7*	.5
Quiz 3	1	4.2	83.0*	1.6	7.3	· .2
Quiz 3	2	2.7	9.1	10.0	74.1*	.4
Quiz 3	3	69.3*	. 6.4	10.8	9.5	.4
Quiz 3	4	7.8	77.2*	5.7	4.0	1.6
•		••••			2.0	0
Test	1	21.2	69.0*	3.3	2.9	0
Test	1 2 3	7.1	73.4*	12.8	2.9	
Test		77.2*	4.0	6.2	8.8	2
Test	4	8.2	10.2	11.1	66.4*	.4
Test	5	67.7*	25.2	2.0	1.3	.2
Test	6	28.5	62.0*	2.0	3.3	.4 .2 .5 .5
Test	7	70.4*	3.8	13.9	7.5	.5
Test	8	12.4	7.1	73.4*	2.7	.4 .2
Test	9	5.7	12.2	74.6*	3.6	.2
Test	10	8.6	25.0	45.1*	14.6	2.9

* Correct answer

Gas	Laws	-T-	1

Mama	•	
7 6 1 1 9		

Period or small group:

Please answer the following questions by circling the correct answer.

 A gas sample has a volume of 200 ml at 800 mm Hg. What would be the volume at 400 mm Hg if there is no temperature Change?

A. 100 ml	8.	400 ml
-----------	----	--------

C. 1600 ml 0. 6400 ml

 A gas sample has a volume of 300 ml at 52°C. What would be the Celsius temperature of this sample if the volume was increased to 900 ml? Assume no pressure change.

Α.	-165°C	8.	702 ⁰ C

c. 975°C D. 1148°C

3. A gas sample has a pressure of 500 mm Hg at -73° C. Assuming that the volume stays constant, what would be the Celsius temperature of this sample at 250 mm Hg?

Α.	-173°C	8.	-146°C	
с.	-36.500	ł	D.	100 ⁰ C

4. A gas sample has a volume of 900 ml at 0°C and 250 mm Hg. If the volume becomes 300 ml and the temperature 273°C, what would be the pressure?

Α.	42 mm Hg	8. 167 mm Hg
с.	375 mm Hg	0. 1500 mm Hg

5. A gas sample has a volume of 326.5 ml at 635.2 mm Hg. Assuming no temperature change, what would be the volume at 947.6 mm Hg?

Α.	218.9 ml	В.	487.1 ml
с.	1843.5 ml	0.	1909.3 ml

6. The pressure of a gas is directly related to the number of molecules of the gas. If a gas sample contained 12×10^{23} molecules at a pressure of 1500 mm Hg, what would be the pressure if the number of molecules was increased to 18 \times 10²³ molecules? Assume no volume or temperature change.

A.	1000 mm Hg	8. 2250 mm Hg

- C. 0.001 × 10²³ mm Hg D. 2.25 × 10²³ mm Hg
- 7. A gas sample has a volume of 500 ml at 800 mm Hg and -23°C. What would be the Celsius temperature if the pressure was changed to 1000 mm Hg and the volume to 200 ml?

A.	-14800	8.	11.5%
c.	125°C	0.	78 1 ⁰ C

8. What would be the volume of a gas sample at 150 mm Hg and 177°C, if at 700 mm Hg and 77°C the volume was 750 m17

A. 207 ml	8.	250 mi	
-----------	----	--------	--

C. 4500 ml D. 8045 ml

9. A gas sample has a volume of 660 mi at 27°C. What would be the volume of this sample at 127°C?

A.	140 ml	8.	495 mi
с.	880 m1	Ο.	3104 ml

 What volume would five moles of a gas occupy at 27°C and 760 mm Hg? (760 mm Hg = 1 atmosphere).

551

C. 123 liters D. 284 liters

Name:	·	S-1-QD-1
Period or small group:		

Please answer the following questions by circling the correct answer. To get full credit for question 4 you must show your work. The relationships for particles, moles, and volume may be summarized by:

1. When the compound potassium chlorate (KCl0₃) is heated it breaks down into potassium chloride (KCl) and oxygen gas (0_2) . This is represented by the equation 2 KCl0_{3(s)} \longrightarrow 2 KCl_(s) + 30_2 (g), How many moles of 0_2 would be formed from 6 moles of KCl0₃?

A. 4 moles B. 6 moles

C. 9 moles D. 12 moles

2. Carbon monoxide gas will burn (react with 0_2) to form carbon dioxide gas according to the reaction 2 CO(g) + 0_2 (g) \longrightarrow 2 CO₂ (g). How many liters of CO₂ would be formed at STP from 18 liters of oxygen and excess carbon monoxide?

A. 9 liters B. 18 liters

C. 22.4 liters D. 36 liters

3. Propane gas (C₃H₈) will react with oxygen gas (O₂) to form carbon dioxide(CO₂)gas and water vapor (H₂O). This is represented by the equation $C_3H_8 + 5 O_2 \longrightarrow 3 CO_2 + 4 H_2O$. How many molecules of oxygen will be needed to react completely with 5 x 10²³ molecules of propane?

A. 5 moleculesB. 25 moleculesC. 1 x 1023 moleculesD. 25 x 1023 molecules

How many liters of CO₂ gas would be produced at STP if 24.3 liters of C₃H₈ reacted with excess oxygen according to the reaction C₃H₈ (g) + $5 \ O_2$ (a) $\longrightarrow 3 \ CO_2$ 'g} + $4 \ H_2O$ (g)?

Full foxt Provided by ERIC

 A. 3.0 liters
 B. 8.1 liters

 C. 22.4 liters
 D. 72.9 liters

æ

Period or small group:

Name :

Please answer the following questions by circling the correct answer.

To get full credit for question four you must show your work.

1. White phosphorus (P4) reacts with oxygen gas (0_2) to form P406 f_{S}). The balanced reaction is P4 (s) + 3 O_2 (g) ----> P406 (s). How many grams of P406 would be produced if 96.0 grams of 02 react with excess P4?

Α.	47.0	grams	B. 106.7 grams	

0. 960.0 grams C. 220.0 grams

2. Sodium metal (Na) reacts with water (H2O) to form sodium hydroxide (NaOH) and hydrogen gas, (H₂). The <u>balanced</u> equation is: 2 Na (s) + 2 H₂O (p) -> 2 NaOH (aq) + H2 (g). How many grams of sodium would be needed to produce 67.2 liters of H_2 (measured at STP) if the sodium reacts with excess water?

Α.	34.5	grams	8. 13	4.3 gri	ams

D. 276.0 grams C. 138.0 grams

3. Sodium nitrate (NaNO3) can be decomposed into sodium nitrite (NaNO2) and oxygen gas (0₂). The balanced equation is 2 NaNO₃ (s) \longrightarrow 2 NaNO₂ (s) + θ_2 (g). How many molecules of oxygen gas can be produced from 85.0 grams of NaN03?

A.	3.01 x 1023 modecules	8.	6.02×10^{23} molecules
с.	12.04×10^{23} molecules	٥.	256 x 1023 molecules

4. Sulfur (Sg) reacts with oxygen gas (02) to form sulfur dioxide (S02). The balanced equation is Sg (s) + 8 02 (g) \rightarrow 8 S02 (g). How many grams of SO2 would be formed when 72.5 grams of Sg reacts with excess oxygen.

553

A. 18.1 grams -8. 144.8 grams U. 1158.2 grams

C. 580.0 grams

ł

S-III-0D-1
491

Period or Small Group

Name

*r (

Please answer the following questions by circling the correct answer. To get full credit for question four you must show your work.

N ame :	
Period or small group:	

٤

E

S-T-1

۰.

	Please answer the following ques	tions by circling the correct answer.
You	<u>may</u> need the following atomic mas	ses and constants:
	C = 12.0 H = 1.0 N =	14.0 0 = 16.0
	Fe = 55.9 1 mole = 22.4 li	ters at STP = 6.02×10^{23} particles
The	following <u>balanced</u> equation may b	e used for questions one through six.
	$4 \text{ NH}_3 (g) + 5 0_2 (g) \longrightarrow 4$	NO (g) + 6 H ₂ O (g) .
	How many moles of nitrous oxide of oxygen gas (02) reacts with s	(NO) will be produced when 10.0 moles ufficient ammonia gas (NH3)?
	A. 4.0 moles	B. 8.0 moles
	C. 10.0 moles	D. 12.5 moles
2.	How many grams of water (H ₂ 0) wi (NH3) reacts with sufficient oxy	ll be produced when 34.0 grams of ammonia gen gas (02)?
	A. 3.0 grams	B. 24.0 grams
	C. 51.0 grams	D. 54.0 grams
3.	How many molecules of oxygen gas with 56.0 liters of ammonia (NH3	(O ₂) are necessary to react completely ,) measured at STP?
	A. 3.01×10^{23} molecules	B. 12.04 x 10 ²³ molecules
	C. 15.05 x 10 ²³ molecules	D. 18.81 x 10^{23} molecule:
4.	How many grams of water (H2O) wi of nitrous oxide (NO) are produc	11 be produced when 18.06×10^{23} molecules ed?
	A. 36.0 grams	B. 54.0 grams
	C. 81.0 grams	D. 325.1 grams
5.	How many liters of water (H ₂ 0) w (NH ₃) are mixed with 134.3 liter	ill be formed when 44.8 liters of ammonia
•	A. 29.9 liters	B. 67.2 liters
	C. 80.6 liters	D. 537.6 liters

555

.

6. How many liters of mitrous oxide (NO) will be produced when 67.2 liters of oxygen gas (0_2) react with sufficient ammonia (NH₃)?

Α.	3.75 liters	B. 53.8 liters
c.	84.0 liters	D. 104.4 liters

Use the following balanced reactions for questions seven through ten.

Fe₂0₃ (s) + 3 CO (g) \longrightarrow 2 Fe (s) + 3 CO₂ (g)

7. How many grams of iron (Fe) will be produced from 3.0 moles of iron (III) oxide (Fe₂0₃)reacting with sufficient CO?

Α.	6.0 grams	8.	9.32 grams
c.	83.9 grms	D.	335.4 grams

8. How many grams of iron (Fe) will be produced when 78.4 liters of carbon monoxide (CO), measured at STP, reacts with sufficient Fe203?

Α.	111.8 gr am s	Β.	130.4 grams
с.	195.7 grams	D.	293.5 grams

9. Some of one of the reactants (CO or Fe₂O₃) will be <u>left</u> over after 319.6 grams of iron (III) oxide (Fe₂O₃) are mixed with 196.0 grams of CO. Which reactant is it and how much will be left?

 A. 28.0 grams C0
 B. 113.6 grams Fe203

 C. 168.0 grams C0
 D. 372.9 Fe203

10. How many atoms of Fe would be produced when 12.04×10^{23} molecules of CO react with sufficient Fe₂O₃?

Α.	8.03 x 10^{23} atoms	Β.	16.06×10^{23} atoms
c.	18.06×10^{23} atoms	D.	24.08×10^{23} atoms

Item Analysis for Stoichiometry

Immediate and Delayed Posttest

			sponse Percenta		
Measure-Item	Ā	В	C .	D	Blank
					•
Quiz 1 1	. 6.0	4.0 、	86.9*	2.7	0
Quiz 1 2 .	- 5.5	10.6	.4	83.2*	0
Quiz 1 3	2.0	4.4	5.5	87.8*	0
Quiz 1 4	2.2	5.7	3.3	86.3*	2.2
Quiz 2 1	3.5	5.7	84.9*	3.5	.7
Quiz 2 2	8.4	12.8	68.4*	8.0	.6
Quiz 2 3	60.8*	14 4	17.2	4.9	.9
Quiz 2 4	10.6.	60.8*	13.3	9.9	3₊7
(man n +		••••		• ,	-
Quiz 3 1	1.8	4.2	88.7*	4.2	.2
Quiz 3 2	6.4	78.8*	8.0	- 5.1	· .7
Quiz 3 3	6.4	6.8	73.7*	12.0	. 2.2
Quiz 3 4	2.6	6.6	8.6	79.2*	• 2.2
4		*			
Test 1	8.4	82.9*	2.9	4.4	.2
Test 1 Test 2	8.2	8.0	22.1	59.3*	, 1.1
Test 3	4.6	11.9	13.1	68.6*	• ·.6
Test 4	7.1	12.2	70.3*	8.4	.7
Test 5	7.3	75.7*	7.9	4.9	2.9
Test 0	5.3	78.1*	11.1	2.7	1.3
Test 7	9.1	5.3	17.0	65.9*	1.3
Test 8	9.7	65.2*	11.5	11.0	1.3
Test' 9	36.1*	27.9	18.6	11.3	4.6
Test 10	64.4*	13.3	7.5	10.9	2.4

* Correct answer

•

Period or small group:

Name:

Please answer the following questions by circling the correct answer. In order to get full credit for question five, you must show your work. Remember to use proportions when you can to work the problems. Example: How many gallons of gas could a person purchase for \$5.00

if the gas is \$1.10 per gallon?

 $\frac{x}{\$5.00} = \frac{1 \text{ gallon}}{\$1.10}$ (x)(\$1.10) = (\$5.00)(1 gallon) x = (\$5.00)(1 gallon) = 4.55 gallons (\$1.10)

All of the following questions deal with the substance potassium chloride (KC1) which has a molecular mass of 74-6 grams per mole.

 What would be the molarity of a solution made by dissolving 6.0 moles of potassium chloride (KCl) in enough water to make 3.0 liters of solution?

Α.	0.5 M	,	8.	2.0 M
c.	3.0 M		D.	6.0 M

 What would be the molarity of a solution made by dissolving 149.2 grams of KC1_in enough water to make 1200 ml of solution?

Α.	0.42 M	8 0.60 M
٤.	1.67 M	 D. 2.40 M

. . . .

A

3. How many grams of KCl would be present in 1600 ml of a 0.50 M KCl solution?

1. 23.3 grams B. 59.7 gra	мs
---------------------------	----

C. 93.3 grams D. 238.7 grams

4. What would be the molarity of a solution made by dissolving 0.45 moles of KC1 in enough later to make 1400 ml of solution?

Α.	0.32 M	8.	3.1 M

C. 28.0 M Dr 35.7 M

5. How many milliters of a 1.6 N KCl solution would contain 14.9 grams of KCl?

Α.	8.0 ml	8.	125 mi
с.	320 ml	ο.	3125 ml

497 Mo-11-0P-1

Period or small group:

Name

Please answer the following questions by circling the correct answer. To get full credit for question five, you must show your work. Remember to set up proportions whenever possible to help solve the problems.

Example: A jet can travel 500 miles per hour. How many hours would a trip of 2500 miles take?

> (x) (500 miles) = (2500 miles) (1 hour) 1 hour 2500 miles 500 miles x = (2500 .mines)(1 hour)5 hours (500 mj. es)

1. What would be the molarity of a solution made by boiling off 500 ml of water from 2500 ml of a 2.0 M NaCl solution?

0.625 M Β. 0.40 M Α. D. 2.50 M 1.67 M С.

2. What would be the molarity of a solution made by adding 1.0 liter of water to 2.0 liters of a 3.0 M Nacl solution?

Α.	0.22 M	8.	0.50 M
с.	2.0 M	Ď.,	6.0 M

How many milliliters of water must be added to 750 ml of a 1.25 M NaCl 3. solution to reduce the molarity to 0.50 M?

Α.	217 ml.	,	•	Β.	1125 ml
С.	2583 ml			D.	2625 ml

۱4.

Α.

What would be the molarity of a solution made by adding 850 ml of water to 1400 ml of a 2.6 M NaCl solution?

B. 0.83 M A. 0.62 M 6.62 M D. 1.62 M С.

550

How many milliliters of water must be boiled away from 1200 ml of 5. 1.6 M NaCl to produce a 2.0 M NaCl solution?

240 ml

2160 ml

Β.

D.

٢.

533 ml

160 ml

Mo-111-QP-1 Name: 498 Period or small group: Please answer the following questions by circling the correct answer. To get full credit for question five, you must show your work. Remember to set up proportions when working the problems. Example: A trucker can by diesel fuel for \$1.10 per gallon. How much money would it take for a trucker to fill up a 50 gallon tank? (x)(l gallon) = (50 gallons)(\$1.10)\$1.10 gallon 50 gallons 1 \$55.00 x = (50 gallons)(\$1.10) =(1 gallon) Questions one through four deal with the following balanced reaction: $2 HCl_{(aq)} + Mg(OH)_{2(aq)} \rightarrow HgCl_{2(aq)} + 2 H_{2}O(1)$ Molecular Hasses MC1 = 36.5; Mg(OH)₂ = 58.3; MgCl₂ = 95.3, H₂O = 18.01. How many moles of magnesium chloride (MgCl2) would be produced when 2.0 liters of 1.0 M hydrochloric acid (HCl) reacts with a sufficient amount of magnesium hydroxide Mg(OH),7 2 1 C.5 mole 1.0 mole Α. ί. 2.0 moles D. 4.0 moles 2. How many drams of magnesium hydroxide $(Hq(OH)_2)$ are needed to react completely with 500 ml of a 1.20 M hydrochloric acid (HC1) solution? 8. 70.0 grams Α, 17.5 grams с. 194.3 grams 0. 279.8 grams 3.1 What would be the molarity of 1500ml of magnesium chloride (MgCl2) subition formel when 1200 ml of a 4.0 M hydrochlonic acid solution reacts with sufficient magnesium hydroxide (Mg(OH)2)? 0.10 M B. 1.6 M ۸. ί 3.2 M 0, 6.4 11 4. How many moles of magnesium chloride (MgCl2) would be produced when 1600 ml of 0.36 H hydrochloric acid (HCl) reacts with a sufficient amount of magnesium hydroxide Mg(OH),7 0.32 mole 8. 0.65 nole M . D. 2.50 moles 1,30 moles £ . So if the core of the $(h_2(h_1))$ with react with equivalent or is and (h_1) to f rm $dotum = n Herride (NaCl), water (H=0) and carbon dioxide (LO_), W How damy litert of CO_ improved at STP will be produced when 300 ml$ of b. O. H. HCl courts with sufficient No26017 Reaction. Na2COP(5) $2 HC1_{(a_{1})} \longrightarrow 2 HaC1_{(a_{1})} + H_2O_{(1)} + CO_{2}_{(a_{1})}$ 2.24 liters 3. 20.2 liters . λ. 74.7 Liters ċ.

λ. Γ.Γ

ERIC.

499 Ho-T-I

•

0

Period or Small Group:_____

-	•	*				
-	Please answer the	following guest	tions b	y circling	the correct answel	•
Y	may need the follo					
		1.0H = 32.0		= 73.8	HNO ₃ = 63.0	•
		3 = 44.0	- z 3 H,0 =		· ` .	-
	LINO ₃ = 68.9 GO	•	•		10 ²³ particias	
/						v
1.0	What would be the of MaCl in enough	molarity of a water to form	solutie 1.5 11	on made by d ters of solu	dissolving 2.5 mole ution?	5
	A_ 0.60 H		8 . 1	.67 M		٠
	t. 3.75 M		0. 6			
> 2 .	What volume of e 2 Li ₂ NO ₃ 7	2.0 M L12 ^{NO} 3 50	lution	would conta	ain 37.9 grams of -	. 4
·	A. 275 ml		8. 9	10 ml		
	c. 1306 ml		0. 3	640 ml		
3.	What volume of wa to reduce the mol-	ter must be add arity to 1.25M1	led to ?	500 ml of 1	.75 M Natl solutio	n Ť
, 1	A. 200 ml		8. 5	i94 ml	-	
•	C. 700 ml	-	0. 2	300 ml´	~ <i>i</i> *	
۹.	What would be the after 800 ml of t	molarity of 2. The solution is	.0 lite boiled	rs of a 4.0 I off7	H NaCl solution	
•	A. 0.15 M		8. 1	1. 67 H		
.1 *	t. 6.67 M		0. 1	IO.0 M		
5	How many molecule a 2.0 M CH ₃ 0H sol	is of methyl ali lution?				-
•	A. 2.01 x 10 ²³			6.52 × 10 ²³		
	C. 8.03_# 1023	mlaculas	0	18.06 × 10 ²³	molecules	
1	Frubiens six thre	owyh sen deal w	ith th	e following	belanced equation	•
	Li2C03(s) + 2H	NO _{3 (aq)}	► 2LIN	⁰ 3(aq) + ^{CO}	$2(g) + H_2^0(1)$	
	. How many grams of HND, solution rea	FCO, would be acting with suf	formed ficien	from 2.0 + t Ll ₂ C0 ₃ ?	lters of a 1.4 M	
•	- A. '31.4 grams	•	₿.	61.6 grams	ı	
	C. 125.8 grams		0.	246.4 grams		
• 7.	that would be the of Li ₂ CO ₃ and 750	molarity of the	he LiNQ NG. are	solution	forwed when 73.8 g	rams
• * •	A. 0.67 H	6		1.67 M	-	
	c 5.33 H	_	0. 7	7.11 M		
. 8	-	H_0 would be include i	formed	when 1.5 li	tars of 3.0 M HNO	1
•	A. 8.0 grams	· · ·) ·	8 . 1	18.0 grams	•	
	C. 40.5 grams		0.	162.0 grams	•	
9.	How many liters of # 8.0 M HNO	of CO ₂ , measure colution reacti	d et S' ng witi	TP, would be h sufficient	formed from 200 / LLi ₂ C0 ₃ 7	nl
•	A 179 liters			28.0 liters	÷	
	c 717 liters	•	D. 4	448.0 liters	۹	•
N - 10	What would be, the Li_CO_ to produce votume of 1.5 li	maiarity of t 54.0 grams of ters?	ne HNO H ₂ 0	3 that react	ted with suffician iution had a	L -
	A. 0.25 M		8.	0.44 M	•	
	C1 00 M		0.	4.00 M		

561

ERIC.

Item Analysis for Molarity

Immediate and Delayed Posttest

			R			
Measure	-Item	A	В	esponse Percent	D	Blank
			*			
Quiz 1	1	.7	94.7*	.6	.7	0
Quiz 1	2	4.2	3.8	76.1*	12.2	.4
Quiz 1	3	17.5	65.2*	4.0	9.3	.9
Quiz 1	4	83.2*	6.6	4.0	2.4	.6
Quiz 1	5	14.8	51.6*	20.3	8.4	1.6
Quiz 2	1	07	6 4	7.0	77 F 📥	
	1	9.3	6.4	3.8	73.5*	.4 0
	2 3	1.5	4.4	59.7*	27.9	
Quiz 2	5 4	7.3	69.9*	4.7	10.0	1.6
Quiz 2		6.0	6.8	68.4*	11.1	1.1
Quiz 2	5	8.8	73.2*	4.9	4.2	2.4
Quiz 3	i	2.9	65.7*	12.4	2.9	0
Quiz 3	2	69.0*	8.4	4.0	2.2	.4
Quiz 3	3	3.7	54.0*	20.3	5.7	.4
Quiz 3	4	61.7*	14.1	5.8	2.2	.2
Quiz 3	5	5.7	71.9*	2.9	2.2	1.3
lest	1	2.7	60.8*	16.8	3.5	.2
Test	2	50.6×	11.0	12.4	9.1	.2
Test	3	37.8*	5.7	.36.5	3.5	.9 .6
Test	4∙	3,5	11.1	36.7*	31.9	.0
Test		2.4	7.7	5.3	68.1*	.7
Test	5 6 7	4.6	65.7*	5.3	7.9	.7
Test		17.5	36.3*	20.4	7.7	2.2
Test	8	6.6	5.9	64.2 *	3.1	.7
	9	61.0*	11.5	7.9	3.1	.7
Test Test	10	7.7	12.2	8.4	53.1*	2.4

* Correct answer

TTEM ANALYSIS	1	TEM	ANAL	YSIS
---------------	---	-----	------	------

👌 🕤 Regular

- - -

		N			Regular						**************************************	
1.0.04		•	F					PERCENT	CURRECT		DOUBLY	
ITEM NO+		Å	đ	c ,	U \	Ε		ПЪЪЕН ТНІНО	FOMES ININD	BLANK	MARKED	
			0 2 5	p=13	R=\16	2=	• 0 0	38	44	5	0	
1		R40 ●G U# 68.61	R=25 D= 11.44	n= 9,49	D=\ 9.45		•90					
2	•	R=09	R=09	2=16	R= .24 *	₽ ≈ -	••03	99	70	1	0	
		D= 3.16	0= 7.30	n= .7.54	D= A1.2/	ŋ=	• 49				_	
3		H=13	R=26	R =31	R= \₀>0 ●3 D= 69↓d3	R= - N=	•03 •24	73	40	5	0	
		D= 3.41	0= 7.06	D= 18.25	· · ·		-	67	44	4	1	
4		R=03 D= 19.22	२= .25 °G D= 53.53	p=11 D= 17.52	R=21 D= 8.52	0= 5=	•00 •00	67	••	•	• -	
-		R= _44 +6	R=19	R=24	R=18	R= -	• • 96	88	41	5	0	
5		D= 65.45	D= 9.00	n= 16.30	D= 7,79	0=	•24					
6		R= =,15	R= .25 ●	R=06	R=10	-	05	55	38	3	0	
•	•	D= 7.30	D= 50.61	D= 15.82	D= 25.30	D ≃ ,	<u>,24</u>		74	3	0	
7		R=20 D= 20.44	R=11 D= 5.60	R≂ .30 ⊕G D≖ 47.69 '	R=00 + D= 25.55	0= 0=	•00 •00	66	34	5	v	
			-		R=06	R=	-•00	55	18	8	0	
8		R= .37 ●G D= 35.04	9= - .05 D= 22.14	R¥ =,26 N≖ 23,36	D = 17.27	0=	•24		-		•	
9		H=03	R= - .07 ∖	R=27	R= .32 €5		.04	73	40	3	0	
		D= 7.06	0= 6.0A	D= 28.55	0= 57.+2	n=	•49		_		•	
. 10		R=17	R=10	R= .39 €G	R=23 D= 10.95	0= 0=	-•05 •24	76	33	6	0	
		D= 13,14	D= 51.90	n= 52,31		-	• 20	45	14	3	0	
11		R=09 D= ⁻¹ 0.17	R=13 D= 27.49	₽≕11 D= 13.03	לב = 5 ● 0# 27.38	.∩= ,∩=	• 0 0		•			
12		R= .43 •	R= -	8=21	R=15	R=	• 0 0	57	16	53	0	
· · 12		n= 34,79	D= 36.98	n= 15.57	D= 7.06.	D=	•00			_	_	
13	۰.	R=20	R= .46 ●G	p= -,26	R='18 D= 7.06	0= 0=	•19 •24	4 1	39	7	0	
		D = 10.46	0= 64.95	0= 15.57	-			10	. .	6	0	
14		$R_{\pm} = .23$ $D_{\pm} 16.55$	₽= - .14 D= 24.09	R= -,17 n= 14,36	R≡ .45 €G D= 43.31	₽= 0=	00					•
		Rz •.14	R=09	₽ ≈ _ 34 ●G	R=22	R* -	•00	65	59	5	0	
15		D= 8,76	D= 27.49	N= 47.20	0= 15.33	N#	• 0 0		-			
16	,	R=04	R=03	R= .16 •	R=04	0= 0	-• v 5 • 24	38	25	5	0	
		0 = 21.17	D= 30.90	U= 54°50	D= 17.03			42	53	13	°	;
17		R= -,19 D= 9,73	R=19 D= 9.73	R= _38 +6 N= 71.29	R=12 D= 6.08	03 8=	• 1 () • 0 ()	85		• •	, F	•
560		08 7013			-						· 5	6
560 ERIC											•	-
Full Text Provided by ERIC			,			1						
				•		1						

564

vi		*	-	ITEM AVALYSIS	5		•				
			. ,	Regular		-	•	•	•	•	
•	• •		•	,		•			-	DOUBLY	
ITEM	T	F		•		_	UPPER THIRD	CORRECT LOWER THIND	BLANS	MARKED	
NO+ -	Å	8	¢,	D		E	UPPER THINK	Lower		-	
,										0	
	R=15	R=27	R=07	R= .34.43	R. #	• 0 0	. 75	32	. 6	Ū.	
18 .	D= 5.60	D= 29.44	D= 10.95	0= 52.00	D=	•00				•	
, D			24 44	R=14	Q =	05	77	37	4	0	
.19	R=14	R= -+16	R= .36 €G N= 56.69	$D = B \cdot 7 \circ$	n=	.24					
	D = 15.00	D= .44	11- 10-07	•••••		_	b 4	33	1.0	0	
34	R=02	R#28 *G	R# =,17	R=22	R3	05	54	55	••		
20	D= 28.71	D= 48.91	n= 13.63	D= 6.08	0=	+24			_	•	3
		A- - A7	R*06	R= .19 •	R=	•00	43	26	7	0	
21	R=05 D= 13.38	R=07 D= 10.22	n = 41.61	D= 33.09	ŋ=	.00					
	08 13430		•		2=	05	67	33	6	O	
72	R∎ .30 +6	7=18	R= .02	R =16 D = 11.44	0= 0	•73					
• -	D= 49.88	D= 23.60	n= 12.90 ,	02 11.44	Ū		, ,	33	11	0	
	R= =.03	R= .18° *	Q≠ 02 ,	R= -1J	85	04	49		••		
1 23	D= 15.82	0= 37.94	n= 25.79	0= 17.52	0=	.24			3	D	
			R=10	R= .03	R≠	.00	44	22	16	U	
24	• 27 • 0= 32,12	R=18 D= 26.76	n= 11.19	D= 26.03	0 <i>=</i>	• 0 0			ů		
	NE JETE		• • •			.00	51	28	9	0	
. 25	R= .24 +	R=17	R=10	R=01 D= 20.19	R= 0*	-				•	
•	D='38.69	D= 15.82	n = 23.11		.,	•		36	17	0	
• /	R= -,27	R=21	R= _39 €G	R=J6	8=		78	, 30	• •	•	
26	D= 9.25	D= 12.90	n= 59.12	D= 14.35	D*	• 24					
				R=05	03	07	43	25	17	0	
27	R=04	R= +27 ♥ D= 33+58	R=04 D= 21.17	D= 15.02		.49				ν.	
	D= 24.82	0= JJ.36	0 610-				30	15	22	ò	
28	R= .14 •	R= .12	R=12	R =0/	0× 8≍	_	50	• •		د	
60	D= 21.41	D= 38.69	n= 26.28	D= 8.03	0-	• • • •			27	0	
		R=12	R=07	R=13	₿3	•00	Ĵ	15	~ '	Ū	
, 29	R= •36 ● D= 29•93 /	D = 14.84	D= 32.60	D= 16.06	D=	• • • • • •				• .	
	D3 29440 ,	-		R= .04	63	==+07	⁻ 65	44	20	0	
30	R= -+08	R= -10	R# .20 ● ,D# 53.04	D= 18.00'	D.			•			
•	D= 11.44	D = 12.17	,0	-	_		•6	16	23	0	
31	R=01	R= -14	R#10	Rz 35 •	ية 10	_		•			
	D= 13.87	D= 25.04	D= 50.83	Dz 25.35	0		•		20	0	
•	0	R= .44 •G	R=20	R =14	R		88	42	20	•	
32	R=71 D= 8.03	D= 64.72	•U= 11.00	D = 10.71	01	•00		,		•	-
			AB 04	R=0*	, Q ¹	= - •05.	+2	19	35	0	
33	R= =.07	R# •25 * D# 28•71	₽= ,=,06 D= 28,95 \	0W 11.19	- B	. .24				9	ž
	- D= 25.38	0- 60011		- in the second s	-	-) - + +	4 0	27	39	• i	502
34	R= -,10	R= .0?	R= .01	R= .17 •		=06 = .73	••	<u> </u>	-	•	
<u>.</u>	D= 8.52	D= 14.60	n= 35.04- °	0= 31.03	U	- •••					
	- 7			- •							

565.

Full Post Provided by ERIC

566 -

	-		•	ITEM ANALYS	IS					
		•		Regular					•	0
ITEM NO+	T A	F B	c A	D		ε	PERCENT C UPPER THIRD	ORRECT LOWER THIND	BLANG	MÅSKED JONGFA
. 35	R# .33 •	R=	R= -,03 D= 4],12	R=12 D= 17.52	₽= D=	-•07 •49	45	16	28	0
, 36	D = 26.52 ·	D= 7.54	p =13 n = 12.17	R=05 D= 20.92	0= 0	• 00	61	24	32	0,
37	D= 20.19 R= .21 *	D= 38,93 R= .01	n=08 n= 28.22	R= .02 D= 20.20	* R= D=	•00	34	16	33 [°]	0
* 34	D= 22.63 P=12	D = 14.84 R = .37 + G	p= .01	R=09 D= 25.06	0= 6=	•00	55	25	39	0 -
39	D= 15.09 T=17	D = +0.63 $R = \frac{1}{37} + 6$	n= 9,73 p= -,10 n= 9,98	R=07 D= 9.73	D= 5=	-• 15 • 24	77	41	36	0
40	D = 11.19 R =11	0= 60.10 R=05	n= .32 *6 n= 46,23	R=07 D= 12.90	Q Z	-•05	66	31	• 36	0
	0= 19 . 46 `	D= 12.41	KJJFR-HICHARN	SON RELIABILIT	TY =	•75 2:89			J	•
				IN RELTABILITY	=	•74 2•98		•		
-			4				. •			

ŧ

-

Ê

ITEM	ANALYSIS	
S	crambled	

~

570

ŧ,

	•	· .		Scrambled	•		*		
ITEM NO+	T, A	F R	ç	D	£	PERCENT LIPPER THIAD	CURRECT LOWER THIRD	BLANK	MARKED DOUBLY
						•	•	• •	•
· 1	8= .19 • '	R=17	R=09	R=03	R= •00	. 95	81	0	0.
•	D= 86.99	0= 6.85	D= 3.42	D= 2.74	D= •00				
-	R=14	R=23	R= .39 +6	R=20	R= •00	90	46	0 .	0
- <u> </u>	D=-10,96	D= 14.3A	n= 65,75	D= 8.40	ŋ= •00		-		
	,		•	R=10	P= •00	53	31	0	0
· 3	R∗ .38 +G D= 51.37	R=10 D= 10.27	R ⁼ 29 N= 32.88	0= 5.48	D= •00	•			
					R= •00	63	51	1	0
• • •	R=20	R=28 D= 12.33	p≖ _31 ⊕G n≖ 63_01	R=00 D= 12.33	n= .00			-	
	D= 11.64	U= 12+33		0- 1000	· · · · ·	-			0
' 's	R=03	R= -+17	₽ = , 38 +6	R=26	R= •00	74	27	1	v
	D= 8.22	D= 55.60	0= 49,32	0= 19+18	D= •00				
6	• R= •.15	R=10	R=04	R= .31 +	R= +08	39	6	0	0
: •	D= 18,49	D= 45.89	0= 11.64	D= 23.29	05 .68	-			0
_ `		-		R=03	8= .00	49	- 39	. 0	0
7	R= .11 + D= 42.47	R=01 D= 26.03	R#11	D= 10.96	D≂ +00				
•						. 75	29	. 1	0
8	R=12	R=28	p=20 D= 13.70	R= .46 ♥G D= 52.74	R= •70 D⊒ •00	. / 5	27	* .	
	D= 13.01	D= 19.86	0-13+14		0 000			•	0
9	R=06	R=06	R= -,34	R= .38 *3	R= +10	68 .	27	0	v
	0= 6.85	D= 5+48	D= 41.78	D= 45.21	D= •68				
10	R= -,17	R= .29 +G	R=08	a=12	R= •00	64	36	2	0
14	D= 19.18	D= 47.26	D= 21.23	0 = 10.96	0= •00			J	
			o z 03	R= .08 =	- R= •00	30	17	0	0
11	R=12 D= 9.59	R=02 D= 50.00	R= .03 N= 15.75	D= 24.65	D= +00				
	UB 7,57	~			,	26	18	1	- 0
12	R= -,13	R= +15	R=09	R= .09 ● D= 21.23	R= .00 D= 100	20	••	-	
	0= 16.44	0= 19.86	D= 41.78			• -	•	1	r 0
13	R= .20 +	R= -+21	R=03	R=00	R= +10 D= +00	39	16	1	
	0= 28.77	0= 12.33	n= >1.92	D= 36.30	D= •00		•		•
14	R= +.18	R=12	β = -,15	R= ,33 *G	R= +00	68	31	1	0
• •	D= 6.85	D= 18.45	D= 23.97	D= 50.00	n= .00	•			•
	0- 01	R= .0?	p= -,12	R= .08 *	R= +00	. 23	21	0	1
15	R= .01 D= 15.75	D= 30.82	· D= 25.03	D= 26.71	D= +00				
•		.	R= .02 +	R=01	R= +00	~ +1	35	1	ຸ ວໍ
16	R=05 D= 33.56	A= .05 · D= 17.12	R= .02 + D= 36.30	D = 12.33	D= .00	- -	• -		۲.
	/ J3020	_				47	35	2	504 °
17	R= .12 +	R= −.10	p=01 D= 34.25	R=06 D= 15.07	R= +00 D= +00	• 1	37	-	, +-
	- D= 38,36	D= 10.96	V- 34.63	0- 13.4.					

560

ERIC Full Text Provided by ERIC

\$-

...

ITEM AMALYSIS Scrambled

	TEM NO+	۲ ۸	F B	c	υ		٤ ,	UPPER THIND	CORRECT LOWER THIRD	HLANK	DOUBLY MARKED
	18	Rz06'	R= -,2]	R=04	R= .23 *	9 =	• 0 0	67	3Ť	C	O
	10	D= 7.53	D= 20.55	D= 19.10	D= 52.74	D=	•00				
	19	R= .10 +	R=00°	R=12	R= .02	R =	•00	31	17	0	Ô
	17	D= 26.71	D= 37.67	D= 23.29	D= 12.33	j=	<u> </u>				
	20	R=03	R= .23 *	R=13	R =11	8ª	07	55 .	30 '	0	0
		D= 15.07	D= 43.84	0= 12.33	D = 27.40	Ŋ=	1 • 37				•
	21	R=04	R=20	R= -,43	R= .50 *G	Q≡	•00	74	36	0	0
	••	D= 4.79	D= 7.53	Ŋ≢ 19,86	D= 67.81	ŋ=	.00		1		
	22	R= •.13	R=07	Ω= .16 ●	R=05	Q =	• 0 0	Þ2	48	1	0
		D= 6.16	D= 13.01	n≈ 54 . 11	D= 20.03	÷د	•^0 _	-			
			_		R =10	2=	•10	49	• 61	2	0
	23	- R=20 D= 6.65	R=14 D= 13.01	. R= .27 •G D= 73.97	D= 4.11		•68	•			
	•	,		R= .04 •	R= .02	R≢	• 9 0	20	19	0 _	0
	24	R= .06 D= 25.34	R=12 D= 26.71	0= 20.55	D= 27.40	ŋ≃	# 00				
	• •		R=17	R= -,19	<u> </u>	R =	• 0 0	35	13	1	0
	25	R= .01 D= 36.30	0= 28.77	n= 13.70	D= 20.55	0*	<u>•</u> 10		٢		
•	· ·	R= .02	R=16	R= .18 •	R=14	R=	• 00	12	50	0	0
	26	D= 16.44	D= 0.85	n= 54,79	D= \$1.45	U=	• 9 0				
		R= .01	A= .33 +6	R=25	R=21	R3	• 0 0	52 Å	50	2	0
	? 7	D= 6.85	D= 63.70	n= 18.49	0= 9+59	0"	.00				
	28	R=31	R= •.23	a=04	R= .51 *G	₽=	•00	12,	13	3	0
	27	D= 26.71	D= 17.12	D= 16.44	D= 37.07	0=	÷00			_	•
	29	R=15	R= •.22	e≡ -,21	R= .48 •G	R #	•00	54	16	8	0
	2 •	D= 7.53	D= 12.33	D= 35,62	D= 39.04	ŋ≠	.00		- •		• '
•	30	R= .08	R=19	R#03	R= +1/ +	R=	•00	29	· 22	6	0
		D= 17.81	D= 34.25	D= 19.86	D= 23.97	0=	•00			•	0
	31	R=02	R= •09 •	P=07	R=00	R≊ D=	•00 •00	>1	45	•	•
•		D= 11.64	D= 44,52	n= 25.34	D= 15.75	-0		÷.	24	A	0
	32	R=12	R= •24 *	R=03	R=11 D= 6.16	1)= 5=		⇒0	29	A	-
		D= 25.34	D= 40.41	D# 22.60				35	16	10	0 cm
571-	33 -	R=17	R= •00	Ω= .21 ● D= 27.40	R=01 D= 48.63	£≊ ∏=		33	10		. 5722
0/1-	-	D= 11.64	D= 5.48					23	17	10	
	34	R=00-	R= +•03	<pre></pre>	R= .03 ♥ D= 71.23	R= 0=		23	••	• •	·
ERIC		D= 15.75	D= 24.66	N= 31031	V 116-						•
					,		•				
						•					

.

۹ _

	ut jam	-	-	ITEM ANALYSIS Scrambled					· ·			
ITEM NO+	T A	ີ - ເຊິ່ , - ອີ	· c	D		ε	y 1	PERCEN UPPER THIRD	CURRECT	тагар	BLAN<	DOUBLY
35	Ri14 Di 10.96	R= •04 D= 21•23:		R= .02 D= 22.60	R= N=	•03 •68		39	3	2	9	0 ″
36	· R=05 0= 17.12	R= * .20 * 0= 34.25	p=04	R#/09 D# 22.00	9= 0=	•00 •00		45	5	8	10	0
37	R= .41 *6 D= 63.70	R=73 D= 13.01	D= 10,27	R=10 D= 7.53	ς= 0=	•00	•	86 • • 26 -		.3	15	0
·* 3A	R# .18 * ² D= 19.86	D= 31.51	Ô= 23.97	R= .16 D= 13.70 R= .10 +	Q= D= Q=	•00 •		~ 31		:5	15	0 / _
39	R=09 D= 7.53 -	R=13 0= 19.19	R= .12 D= 74.93 R= .02	D= 78.08 R= .21 *	8= U=	cο. όα.		27	1	11	11	0
. 40	R=19 D= 12.33	R=01 D= 25.34	n= 35,62	D= 19.18	D =	•00 •55	,			-	-	
* 2	, , , , , , , , , , , , , , , , , , ,	- - -	SPEARMAN-BROWN	OF MEASURE TEN		2,89 •63			•	•	<u>,</u> ,	
·. •	•		STANDARD ERROR	OF MEASUREMENT	Τ =	2.63		• •	•		-	

Full Text Provided by ERIC

SCH	508
	CHER
INST	TRUCTIONS: Please answer the following questions about the instructional packets.
1.	When you were using the proportion (pink) packet, did you study all of the steps in the sample problems, or did you skip parts to finish more quickly?
2.	If yes, did you do this for all four packets, or more so towards the end of the year? Comments:
3.	If you used the proportion method, did you find it helpful? Comments:
4.	You were assigned the proportion packet in solving problems. Did you actually use the proportion method? Comments:
5.	If you used another method instead of proportions, how did you learn the other method?
¢.	If you used the proportion method but modified it some, how did you modify it:
7.	Did you ever borrow another person's packet of a different color, to learn how to do the problems?
ε.	What did you like most about using these packets?
9.	What did you like least about using these packets? Comments:

573

ERIC

-

•	•	
SCH	100L	509
TEA	ACHER	Ň
INS	STRUCTIONS: Please answer the following questions about the instructionar	packets.
1. ø	When you were using the factor-label (yellow) packet, did you study all steps in the sample problems or did you skip parts to finish more quickl	of ?he y?
	Comments:	
2.	If yes, did you do this for all four packets, or more so towards the end	l of
	the year? Comments:	
3.	If you used the factor-label method, did you find it helpful?	
	· · · ·	
4.	You were assigned the factor-label packet in solving problems. Did you use the factor-label method?	a ct ually
	Comments:	-
5.	If you used another method instead of factor-label, how_did you_learn the method?	he other
ΰ.	If you used the factor-label method but modified it some, how did you me	
		ĩ
7.	Did you ever borrow another person's packet of a different color, to le how to do the problems?	0.: n
8.	What did you like most about using these packets? Comments:	
9.	What did you like least about using these packets? Comments:	•

ې

SCHOOL _		_
TEACHER	n	-

INSTRUCTIONS: Please answer the following questions about the instructional packets.

- 1. When you were using the diagram (green) packet, did you really use the diagram or did you skip to the sample problems? ______. Comments:
- If yes, did you do this for all four packets, or more so towards the end of the year?______. Comments:
- 4. You were assigned the diagram packet in solving problems. Did you actually use the diagrams? ______. Comments:
- 5. If you used another method instead of diagrams, how did you learn the other . method?
- 6. If you used the diagram method but modified it some, how did you modify it?
- 7. Did you ever borrow another person's packet of a different color, to learn how to do the problems?
- 8. What did you like most about using these packets? Comments:
- 9. What did you like least about using these packets? Comments:

573

510

-	511
scho I'eac	10ER
INSI	RUCTIONS: Please answer the following questions about the instructional packet
1.	When you were using the analogy (blue) packet, did you really use the analogies or did you skip to the sample problems?
2.	If yes, did you do this for all four packets, or more so towards the end of / the year? Comments:
3.	If you used the analogies, did you find them helpful? Comments:
4.	You were assigned the analogy packet in solving problems. Did you actually us the analogies? Comments: If you used another method instead of analogies, how did you learn the other method?
6.	
	• If you used the analogy method but modified it some, how did you modify it?
υ.	If you used the analogy method but modified it some, how did you modify it?
7.	If you used the analogy method but modified it some, how did you modify it?
	If you used the analogy method but modified it some, how did you modify it? Did you ever borrow another person's packet of a different color, to learn how to do the problems?
7.	If you used the analogy method but modified it some, how did you modify it? Did you ever borrow another person's packet of a different color, to learn how to do the problems? What did you like most about using these packets?
7.	If you used the analogy method but modified it some, how did you modify it? Did you ever borrow another person's packet of a different color, to learn how to do the problems? What did you like most about using these packets? Comments:
7. 8.	If you used the analogy method but modified it some, how did you modify it? Did you ever borrow another person's packet of a different color, to learn how to do the problems? What did you like most about using these packets? Comments:

FUITBALE Provided by ERIC

•	T	'ea	cho	er	's	G	Jic	les	5		٠	Ŧ			
Moles		•	•	•	•	•	•	•	•	•	•	•	•	•	513
Gas Laws.		•	•	•	•	•	•	•	•	•	•	•	•	•	516
Stoichiomet	ry	•	•	•	•	•	•	•	•	•*	•	•	•	•	518
Molarity.		•	•	•	•	•	•	•	•	•	•	•	•	•	520

ţ

APPENDIX F

÷.,8

Lesson 1 - Mole as Particles

Prerequisite skills:

1. Students should be able to use scientific notation to represent large and small numbers and in simple mathematical manipulations.

2. Students should knc the difference between elements and compounds. Objectives:

upon completion of the lesson the student should be able to:

- 1. Define the term mole in terms of the number of particles of a pure compound or element.
- 2. Calculate the number of particles of a substance, given the number of notes, of the substance and the correct chemical formula.
- 3. Calculate the number of moles of a substance, given the number of particles and the correct chemical formula.

*Lesson 2 - The Mole as Mass

Prerequisite skills:

- 1. Completion of first lesson.
- 2. Students should be able to read a table of atomic masses or a periodic table.
- 3. Students should be able to determine the atomic or molecular mass of an element or compound. (These should be taught as a relative weight not as the weight of one mole).

Objectives :

Upon completion of the lesson the student should be able to:

- 1. Define the mole in terms of the mass of an element or pure compound.
- 2. Calculate the mass in grmas of one mole of an element or compound given the correct chemical formula and a chart of atomic masses.
- 3. Calculate the mass in grams of a given number of moles of a substance, given the correct chemical formula, and a chart of atomic masses.
- 4. Calculate the number of moles of a given mass of a substance, given the correct chemical formula, and a chart of atomic masses.

581

*Lesson 3 may be used before Lesson 2

ERIC Full East Provided by ERIC Lesson 3 - The Mole as Volume

Prerequisite skills: same as first lesson.

Objectives:

Upon completion of the lesson the student should be able to:

1. Define the term note in terms of the volume of an ideal gas at STP.

- 2. Calculate the volume of an ideal gas at STP, given the number of moles of the gas.
- 3. Calculate the moles of an ideal gas given dr volume at STP.

Lesson 4 - Combination Problems

Prerequisite skills: same as first three lessons with addition of successful completion of the objectives of the first three lessons.

Objectives:

Upon completion of the lesson the student should be able to:

1. Given the correct chemical formula, a table of atomic masses, and any one of the following characteristics, calculate any of the other characteristics; mass in grams, moles, particles, and volume at SIP if the substance is a gas.

515

ą

			• •	$\sqrt{1}$			
			~ .	X		- `	•
		Moles Keys	5		<u> </u>	a. ´	
•			-		-	\$	
Lesson 1		• {		Test			
1. C	•				•		, •*
2. D		·		2. B	-		
, 3. В				3. 0		بي ج	4
4. C			٤.	4. C			
5. D			• •	5. Λ΄	•	. –	ы. ·
- 6. B		•	•	.6. C			•
Lesson 2		-		7. B			c
1. D	•			8. B	•		
	·•			9. D			
2. B 3. C	٥	•		10. ₂ C		e.	
4. B							
Lesson 3						67	
1. C •			۰,				
2. B			`				
3. D	•				٩		
4. C		~		t			
" Lesson 4	·						
1. C ·		٦.		•			-
2. B							
3. B		-		æ1	*	•	
4. C							
5. D							

۵

6. B

٤.

Lesson 1--Pressure and Volume (Boyle's Law)

Prerequisite skills:

- Students should know that gases are composed of atoms or molecules that act as independent particles.
- 2. Students should know in a qualitative way that as the pressure of a gas increases, the volume decreases. <

Objectives: Upon completion of the lesson, the student should be able to:

- 1. Predict the effect on a sample of gas if a volume or pressure change is made on the gas at constant temperature.
- 2. Calculate the new volume of a gas given an change in pressure at constant temperature.
- 3. Calculate the new pressure of a gas given a change in volume at constant temperature.

~Lesson 2--Volume and Temperature (Charle's Law)

Prerequisite skills: Same as Lesson 1 / plus:

1. Convert a temperature in degrees Celsius to degrees Kelvin and vice versa.

2. "Students should know in a qualitative way that as the temperature of a gas . increases, so does the volume.

Objectives: Upon completion of the lesson, the student should be able to:

- 1. Predict the effect on a sample of gas if a volume or temperature change is made on the gas at constant pressure.
- 2. Calculate the new volume of a gas given a change in Celsius temperature of constant pressure.
- 3. Calculate the new Celsius temperature of a gas given a change in volume at constant pressure.

Lesson 3--Combined Gas Law

Prerequisite skills: Same as Lessons 1 and 2.

Objectives: Upon completion of the lesson, the student should be able to:

- 1. Predict the effect of a change of temperature, pressure, and volume on a sample of gas.
- 2. Calculate the new volume of a gas given a change in pressure and temperature.
- 3. Calculate the new pressure of a gas given a change in volume and temperature.
- 4. Calculate the new Celsius temperature of a gas given a change in volume and more pressure.

584

STOICHIOMETRY TEACHER'S GUIDE

518

LESSON 1: Particles-Particles, Moles-Moles, Volume-Volume

Prerequisite Skills:

1. Students should have completed the unit on moles.

2. Students should be able to balance simple chemical equations given the reactanct and products.

Objectives: After completion of the lesson the student should be able to:

1. Calculate the number of particles produced or which react when given a balanced chemical equation and the number of particles that react or are produced.

 Calculate the moles produced or which react when given a balanced chemical equation and the number of moles that react or are produced.

3. Calculate the volume at STP of gaseous products or reactants given a balanced chemical equation and the gaseous volume of either the reactants or products.

LESSON 2: 'Mass-Mass, Mass-Volume, Mass-Pafticles

Prerequisite Skills:

1. Same as day one.

2. Lesson | of this unit.

Objectives: After completion of the lesson the student should be able to:

1. Calculate the moles, gaseous volume, or number of particles of a chemical reaction given a balanced chemical equation, and the mass of either a reactant or product.

LESSON 3: Volume-Mass, Volume-Volume, Volume-Particles

Prerequisite Skills:

1. Same as day one.

2. Lesson 2 of this unit.

Objectives:

 Calculate the mass, gaseous volume, or number of particles in a chemical reaction given a balanced equation and the gaseous volume of either on reactants or products.

Answer Key

Quizzes and Test

.1

							, `	٠					
Lesson	1 -		•	,					- ,				•
v, c		2								"1	٠		
· 2. D	<i>6</i> ,	•• •	<i>.</i>		ŧ	·	-				-		
.3. D		5	•		-		:					Ð	٠

4. D

Lesson 2

1. C

3. A 4. B

Lesson 3

2. B

3. C · · ·

TEST

Г. В 2. D 3. D

4. C 5. B 6. B 7. D

8. B

9. A

10. A

MOLARITY - TEACHER'S GUIDE

LESSON ONE: BASIC MOLARITY CALCULATIONS

Prerequisite Skills:

- Student should be able to convert milliliters to liters and vice versa.
- 2. Student should be able to define the terms: solute, solvent and solution.

Objectives:

- The student should be able to:
- 1. Calculate the molarity given the moles of solute and volume of solution.
- 2. Calculate the molarity given the mass of solute and volume of solution.
- Calculate the moles of solute given the molarity and volume of solution.
- 4. Calculate the mass of solute-given the molarity and volume of solution.
- 5. Calculate the volume of solution containing a specific mass of solute given the molarity.

LESSON TWO: DILUTION AND CONCENTRATION PROBLEMS

Prerequisite Skills:

- 1. Same as Lesson One.
- 2. Completion of Lesson One.

Objectives:

The student should be able to:

1. Calculate the new molarity when a solution of known molarity is diluted with a given volume of water.

. Ge

2. Calculate the volume of water that must be added to a solution of known molarity to produce a solution of desired molarity.

- Calculate the new molarity when a solution of known molarity is concentrated by boiling off a given volume of water.
- Calculate the volume of water that must be boiled off from a solution of known molarity to produce a solution of desired molarity.

LESSON THREE: MOLARITY AND STOICHIOMETRY

Prerequisite Skills:

- 1. Sames as Lessons One and Two.
 - 2. Completion of Stoichiometry Lessons.

Objectives:

The student should be able to:

- Calculate the moles or mass of a reactant or product given the chemical reaction, molarity and volume of one of the reactants or products.
- Calculate the molarity of a reactant or product solution given the chemical reaction, initial reactant or product molarity, initial volume and final volume of solution.

3. Calculate the volume of gas produced in a chemical reaction, at STP, given the chemical reaction, reactant molarity and reactant volume.

MOLARITY - QUIZ AND TEST KEY

111

LES	SON	1					LE	SSON
1.	B					•	١.	B
2.	C	n					2.	Α
3.	8			٢	,		3.	B
4.	A	¢			~		4.	Α
5.	в	-					5.	B
LES	SON	11					~ TE	ST
1.	D			,			1.	B
2.	C						2.	Α
3.	B						3.	Α
4.	C						4.	С
5.	B				• '		. 5.	D
						•	6.	В
	-						7.	B.
			•				8.	C
							9۰	A
							10.	D

APPENDIX G

د

Student Summary Sheets

Moles	•	•	•	•	•	•	•	•	•	•	•	•	•	524 ·
Gas Laws	•	•	•	•	•	•	•	•	•	•	•	•	•	52 8
Stoichiometry	•	•	•	•	•	•	•	•	•	•	•	•	•	532
Molarity	•						•		•	•	•	•	•	5 3 6

523

REVEIW SHEET ON MOLES

Think of an analogy when solving a problem: Compare number of particles in adozen to that of a mole. Compare volume of a dozen to volume of a mole. Compare mass of a dozen to mass of a mole. $1 \text{ mole} = 6.02 \times 10^{23} \text{ particles}$ eg. 1 dozen = 12 objects 1 mole = 22.4 liters * 1 dozen = 3 cu. ft.1 dozen oranges = a different - 1 mole = at. wt. or mole. wt. in grams mass than 1 dozen lemons eg. What is the volume of 5 dozen oranges if the volume of 1 dozen = 3 cu. ft. 5 dozen oranges x <u>3 cu. ft.</u> = 15 cu. ft. oranges 1 dozen Remember: 1 mole = 22.4 1 and 1 mole = 6.02×10^{23} particles. ' Problem: How many liters of CO₂ do 5 moles occupy? Solution: 1. Compare this to volume of a number of dozen. Set up problem using analogy. 5 dozen x <u>3 cu. ft.</u> = 15 cu. ft. 1 dozen 3. Substitute chemicals. 5 moles $CO_2 \times \frac{22.4}{1} = 112.0 \ 1 \ CO_2$ 1 mole Problem: What is the mass of 3.01×10^{23} molecules of CO_2 ? Note: Because moles are not given, this is a two step problem. 1. Compare to mass and particles in a dozen. 3.01 x 10^{23} molycules $CO_2 = 15$ mole CO_2 3,600 particles = 300 dozen 6.02 x 10²³ molecules/mole 12 particles/dozen

REVIEW SHEET ON MOLES

¥

ER

When given a relationship, facto	rs can be set up. Set up the factor
so the units cancel.	<u>12 in. or 1 ft.</u>
eg. 12 in. = 1 ft.	factor 1 ft. 12 in.
How many in, are there in 100 ft.?	
100 It. x appropriate factor so	units cancel
100 ft. x $\frac{12 \text{ in.}}{1 \text{ ft.}}$ = 1200 ft.	- 1
Remember: Relationship	Factor
1 mole = 22.4 1	1 mole or 22.4 1 22.4 1 1 mole
$1 \text{ mole} = 6.02 \times 10^{23} \text{ particles}$	
	$\frac{1 \text{ mole}}{6.02 \times 10^{23} \text{ particles}}$ or
¢	6.02 x 10 ²³ particles 1 mole
Problem: How many liters of CO2 do 5	5 moles occupy?
	ationship & multiply by factor. Cancel units.
5 models CO2 x <u>22.4 1</u> = 112. 1 mete	.0 1 CO ₂
Problem: What is the mass of 3.01 x	10 ²³ molecules of CO ₂ ?
1. Write down first relationsh	ip <u>converting</u> to moles.
3.01 x 10 ²³ mojecules CO ₂ x	$\frac{1 \text{ mole}}{6.02 \times 10^{23} \text{ molecules}} = .50 \text{ moles } CO_2$
2. Use answer obtained in step	l for step 2 using new factor.
.50 mole C02 x <u>44 g</u> = 22 g ו אכיופ	CO2

526 Moles-RP-1

REVIEW SHEET ON MOLES

Set up problem so that unknown is in upper left of proportion, and other values are placed in correct places according to units. eg. If 3 pencils cost 15¢, what is the cost of 10 pencils? $\frac{x (cost)}{10 \text{ pencils}} = \frac{15¢}{3 \text{ pencils}} \qquad \frac{\text{Remember}:}{1 \text{ mole} = 22.4 \text{ l}}$ $1 \text{ mole} = 6.02 \times 10^{23} \text{ particles}$

Problem: How many liters of CO2 do 5 moles occupy?

1. Set up proportion.

$$\frac{x}{5 \text{ moles}} = \frac{22.4 \text{ f}}{1 \text{ mole}}$$

2. Cross multiply & solve.

X - 1 mole = 5 moles - 22.4 1

x = 112.01

Problem: What is the mass of 3.01 x 10^{23} molecules of CO_2 ?

- 1. Note that this is a two-step problem because moles are not given.
- 2. Set up first proportion by changing to moles, cross multiply, and solve.

 $\frac{x}{3.01 \times 10^{23} \text{ molecules } CO_2} = \frac{1 \text{ mole}}{6.02 \times 10^{23} \text{ molecules}}$ $x - 6.02 \times 10^{23} \text{ molecules} = 1 \text{ mole} + 3.01 \times 10^{23} \text{ molecules } CO_2$ $x = \frac{1 \text{ mole} + 3.01 \times 10^{23} \text{ molecules } CO_2}{6.02 \times 10^{23} \text{ molecules } CO_2} = .50 \text{ mole } CO_2$

3. Set up second proportion using answer from the first. Cross multiply and solve.

$$\frac{x}{50 \text{ mole } CO_2} = \frac{44 \text{ g}}{1 \text{ mole}}$$

$$x = 1 \text{ mole} = 44 \text{ g} \cdot .50 \text{ mole } CO_2$$

$$x = \frac{44 \text{ g}}{1 \text{ mole}} = 22 \text{ g} CO_2$$

REVIEW SHEET ON MOLES

Gas Laws-RA-1

REVIEW SHEET ON GAS LAWS

Think of an analogy or example when solving a problem. The balloon example is particularly good when thinking about gases.

Example:

The balloon below is being cooled and the pressure on it is being increased. What should happen to the volume?

In gas law problems you must determine if the relationship is direct or " inverse. (Pressure-Temperature = direct; Pressure-Volume = inverse).

If direct, set up so that an increase in one variable produces an increase in the other, and vice-versa.

If inverse, set up so that an increase in one variable produces a¹decrease in the other, and vice-versa.

Problem:

if 500 ml of a gas at 27° C and 1000 mm Hg is cooled to -127° C and subjected to a pressure of 2000 mm Hg, what would be the new volume?

Solution:

1. Determine the change in the variables: Temperature $27^{\circ}C \rightarrow -127^{\circ}C$ or $273^{\circ} + 27^{\circ}K \rightarrow 273^{\circ} + (-127^{\circ})$ or $300^{\circ}K \rightarrow -146^{\circ}K$

- 2. Think of the example above to predict the new volume for each of the factors.
- Set up the factors so as to increase or decrease the volume appropriately, and do arithmetic.

× 1000 mm Hg 2000 mii Hg 500 ml 1469 **۴..** 3000K The pressure increases which The temperature decreases causes a decrease in volume. which causes a decrease In volume. 598

= 122 ml

529

Gas Laws-RF-1

2

REVIEW SHEET ON GAS LAWS

When given a relationship, factors can be set up. Set up the factor so that the units cancel.

How many inches are there in 100 ft.?

100 ft. x appropriate factor so units cancel.

100 fr. x 12 in. = 1200 ft.

In gas law problems you must determine if the relationship is direct or inverse. (Pressure-Temperature = direct; Pressure-Volume = inverse).

If direct, set up so that an increase in one variable produces an increase in the other, and vice-versa.

If inverse, set up so that an increase in one variable produces a decrease in the other, and vice-versa.

Problem:

If 500 ml of a gas at 27°C and 1000 mm Hy is heated to 127°C and subjected to a pressure of 2000 mm Hg, what would be the new volume?

Solution:

1.º Determine the change in the variables. Temperature 27°C → 127°C or 273° + 27° → 273° + 127° 300°K -> 400°K Pressure 1000 mm Hg 🛶 2000 mm Hg

Set up factors so as to increase or decrease volume appropriately and .2. do arithmetic.

Gas Laws-RP-1

REVIEW SHEET ON GAS LAWS

Set up the problem so that you work with a proportion. e.g. 'f 3 pencils cost 15¢, what is the cost of 10 pencils? $\frac{x(\cos t)}{10 \text{ pencils}} = \frac{15c}{3 \text{ pencils}}$ 3x = 15c + 103x = 150cx = 50cBecause volume is directly related to temperature and inversely related to pressure, the following equation can be used to solve problems involving volume, pressure, and temperature. $\frac{\mathsf{P}_1 \mathsf{V}_1}{\mathsf{T}_1} = \frac{\mathsf{F}_2 \mathsf{V}_2}{\mathsf{T}_2}$ Problem: If 500 ml of a gas at 27°C and 1000 mm Hg is heated to 127°C and subjected to a pressure of 2000 mm Hg, what would its new volume be? Solution: 1. Write formula $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ Substitute values in the equation. 2. $\frac{(1000 \text{ mm Hg}) (500 \text{ m1})}{(27 + 273^{\circ}\text{K})} = \frac{(2000 \text{ mm Hg}) (V_2)}{(127 + 273^{\circ}\text{K})}$ 6 Solve by cross multiplication: 3. $(1000 \text{ mm Hg}) (500 \text{ ml}) (400^{\circ}\text{K}) = (2000 \text{ mm Hg}) (300^{\circ}\text{K}) (V_2)$ (1000 mp Hg) (500 m1) (1000 %) (2000 mp Hg) (3009x) 2 3 $333 \text{ ml} = 1000 \text{ ml} = \text{V}_2$

, , ,

c

Problem:

If 500 ml of a gas at 27° C and 1000 mm Hg is heated to 127° C and subjected to a pressure of 2000 mm Hg, what would the new volume be?

Solution:

1. Note what is given: Volume: 500 ml * Temperature: 27°C - 127°C Pressure: 1000 mm Hg - 2000 mm Hg Note what you are calcualting: New volume. 2. Note how one other variable changes: Temperature increases. Note what this does to volume: direct so increases 3. ~4. Set up ratio to increase - largest number on top. . 5. 127 + 273 400°K 3000K 27 + 273 6. Only one ratio set-up, so now set up the other ratio. Note that the other variable, pressure, increases. 7.

8. Note what this does to volume: inverse so decreases.

9. Set up ratio to decrease - smallest number on top.

1000 mm Hg

2000 mm Hg

10. Work out problem.

500 ml x 4009K x 1000' nm Hg = 333 ml 300'X 2000 mg Hg -599-

REVIEW SHEET ON STOICHIOMETRY

Problem:

How many grams of H2O will be produced when 32.0 grams of CH4 reacts with excess O_2 according to the reaction:

 CH_4 (g) + 2 0₂ (g) \longrightarrow CO₂ (g) + 2 H₂O (g). Atomic masses; C= 12.0, H= 1.0, O= 16.0.

Solution:

1. Find moles CH4: $\frac{32.0 \text{ grains CH4}}{16.0 \text{ grains/mole}} = 2.0 \text{ moles CH4}$ 2. Find moles H₂0: 2.0 moles CH4 $\times \frac{2 \text{ moles H}_{20}}{1 \text{ moles H}_{20}} = 4.0 \text{ moles H}_{20}$ 3. Find grams H₂0: 4.0 moles H₂0 $\times \frac{18.0 \text{ grams}}{1 \text{ mole}} = 72.0 \text{ grams H}_{20}$

Problem:

How many molecules of CO₂ would be found $-1f_1100_8$ liters of O₂ (measured at STP) reacted with excess CH₄ by the above reaction.

Solution using moles-moles method: 1. Find moles 02: <u>109.8 liters 02</u> = 4.5 moles 02 22.4 liters/mole

2. Find moles CO₂: 4.5 moles $O_2 \times \frac{1 \text{ mole } CO_2}{2 \text{ moles } O_2} = 2.25 \text{ moles } CO_2$

3. Find molecules CO2: 2.25 motes CO2 x 6.02 x 10²³ molecules

13.5 x 1023 molecules CO2

600

REVIEW SHEET ON STOTCHIOHETRY

Think of an analogy when solving a problem:

Compare number of perticies in a dozen to that of a mole. Compare volume of a dozen to volume of a mole. Compare wess of a dozen to wass of a mole. Compare "trading relationships" to belanced equation coefficients.

I dozen = 12 Gujects

,

1 mole = 22.4 liters 1 dozen = 3 cu. ft.

I mole = et. wt. or mole. wt. in grams l dozen orenges - a different mass than I dozen lemons

1.mole = 6.20 x 10²³ perticles

Whet is the volume of 5 dozen oranges if the volume of 1 dozen = 3 cu. ft.?

Remember: 1 mole = 22.4 1 end 1 mole = 6.02×10^{23} particles.

Problem:

Fruit Example

How many grams of H₂O will be produced when 32.0 grams of CH4 reacts with excess O2 eccording to the reaction:

 $\begin{array}{c} CH4 \ (g) \ + \ 2 \ 0_2 \ (g) \ \hline \hline \\ C \ = \ 12.0, \ H \ = \ 1.0, \ 0 \ = \ 16.0. \end{array}$

This problem is similar to the situation in which e trader wants to know how many grams of oranges he/she can obtain for 2400 grams of lemons if he/she knows that I dozen lemons may be traded for 2 dozen oranges and the weights of a dozen lemons and oranges are 1200 and 1500 gramm 'respectively.

SOLUTIONS

2400 grants lemons = 2 doz. lemons 1200 grants/dozen 1.

. 2. 2 doz. 1900hs x 2 prenges

- 4 doz. oranges

3. 4 dof. orenges x 1500 grams dogen

32.0 grants CH4 = 2.0 moles CH4 16.0 grants/mole

2.0 moles CH4 x 2 moles H20 = 4.0 moles H20' THOTE CH

Chemistry Example

72.0 grams H₂O 4.0 mojes H20'x 18. 0 gram

- 6000 grams oranges

Problem: ow-many molecules of CO2 would be formed if 100.8 liters of O2 (measured at STP) reacted with excess CH4 by the above reaction.

This problem is similar to the situation in which a trader wants to know hold many individual oranges he/she can obtain for 9 pints of lemons if 3 pints of fruit ere equal to one dozen.

SOLUTIONS

Chemistry Example Fruit Example $100.8 11 \pm 61 \le 02 = 4.5 moles 02 = 22.4 11 \pm 5 moles 02$ 1. <u>9 pr. lenions</u> = 3 doz. lenions 3 pr./doz.

601

2. 3 doz. 1 denerfs x 2 oranges Ismon

= 6 doz. oranges

12 3. 6 duz. oranges x

72 or anges

4.5 mojers .05 x 1 mple CO2 = 2.25 moles CO2 र ल्ह्रान्ड ग्रह

2.25 motes CO2 x 6.02 x 1023 molecules mode

- 13.5 x 10²³ molecules CO₂

· 602

11.1

1. <u>11.</u> 1. 11.

REVERVE HEEL IN EVERALISED OF

When given i islationship, herei evit et an the to 118.

so the units cancel.

eq.

$$12 \text{ m}_{1} \approx 1 \text{ ft}_{2}$$
 for $12 \text{ m}_{2} \approx 1 \text{ ft}_{1}$

How many in, are thought the f .7

100 ft, x appropriate factor so smith cancel

10

109 ft. x $\frac{12}{1} \frac{in}{f_{\perp}} = 1200$ ft.

Remember, Relationship

1 mote or 22.4 1 27.4 1 1 mol 1 mole - 22.41

$$\frac{1}{6.02} = \frac{10^{-2}}{10^{-2}} \frac{10^{-2}}{$$

Remember to and the balanced equation scretca cont and up the test whereas converting f. so mel 5 e to moles y

Problem:

How many grans of Hy0 will be produced when 32.0 grans of CH4 rearis with excess 02 according to the reaction.

Factor

$$CH_{1}(q) + 2 n_{2}(q) \xrightarrow{(q)} CO_{2}(q) + 2 H_{2}O(q), Algorithmeters:$$

Salution:

1. Set up moles/gram CH4 factor: 1 mole 16.0 grams

- 2. Set up moles rom equation factor: 2 moles H20 MOLE TH
- 18.0 grams 3. Set up grams/mole H2O fartor

4. Hulitplying factors by given quantity-

Problem:

Now many molecules of CO_2 would be found if 100.8 liters of C_2 (measured at STP) reacted with excess CHL by the above reaction.

Solution. 1. Set up acker/liters 02 lactor -

- 2. Sat up mole, from equation factor: | mole (02 2 moles 02
- 3. Set up molecules/mole CO2 factor: $\frac{6.02 \times 10^{23} \text{ molecules}}{1 \text{ mole}}$

Builtiply factors by given quantity: 4

$$\sim$$
 100.8 lights 02 x 1 mote x 1 mote 22.0 lights 2 male ules 2.0 lights 2 male ules 1 mote

603

-13.5 - 10²³ molecules 102

Name :	Mo-11-QF-1
Period or small group:	

536

Please answer the following questions by circling the correct answer. In order to get full credit for question five, you must show your work. Remember to set up factors whenever possible to help solve the problems. Example: A jet can travel 500 miles per hour, how many hours would a

- trip of 2540 miles take?
 - 2500 miles × <u>1 hour</u> = 5 hours 500 miles
- What would be the molarity of a solution made by boiling off 500 ml of water from 2500 ml of a 2.0 M NuCl solution?

Α.	0.40 M	В.	0.625 M
с.	1.67 M	D.	2.50 M

2. What would be the molarity of a solution made by adding 1.0 liter of water to 2.0 liters of a 3.0 M NaCl solution?

Α.	0.22 M	Β.	0.50 M
c.	2.0 M	D.	6.0 M

3. How many milliliters of water must be added to 750 ml of a 1.25 M NaCl solution to reduce the molarity to 0.50 M?

۸.	217 ml	8.	1125 ml
ι.	2583 ml	D.	2625 ml

 What would be the molarity of a solution made by adding 850 ml of water to 1400 ml of a 2.6 M NaCl solution?

А.	0.62 M	D.	0.83 M
С.	1.62 M	D.	6.62 M

5. How many milliliters of water must be boiled away from 1200 ml of 1.6 M NaCl to produce a 2.0 M NaCl solution?

Α.	160 ml	8.	240 ml
(.	533 ml	D.	2160 ml

Mo-1 i i -QD-1

Berlod	OP.	a maii	arous:		

'Please ensuer the following questions by circling the correct ensuer. In order to get full credit for question five, you must show your work.

Questions one through four deal with the following balanced reaction:

$$\sim 2 \text{ HCl}_{(aq)} + \text{Hg}(OH)_{2(eq)} \longrightarrow \text{HgCl}_{2(aq)} + 2 \text{HgO}(1)$$

Molecular Messes: HCl = 36.5; Mg(OH)2 = 50.3 ; MgCl2 = 95.3 ; M20 = 18.0

1. How many moles of magnesium chloride (MgCl₂) would be produced when 2.0 liters of 1.0 N hydrochloric acid (NCl) reacts with a sufficient amount of magnesium hydroxide $\rm Mg(OM)_2^2$

A.	0.5 mole	8. 1.0 mole
.C.	2.0 moles	0. 4.0 moles

 How many grams of magnesium hydroxide (Hg(OH)₂) are needed to react completely with 500 ml of e 1.20 H hydrochloric acid (HCl) solution?

۸.	17.5 erans	8.	70.0 grams

C. 194.3 gramo D. 279.	.u gram)
------------------------	---------	---

 What would be the molarity of 1500ml of magnesium chloride (MgCi2) solution formed when 1200 ml of a 4.0 M hydrochloric acid solution reacts with sufficient magnesium hydrocide (Mg(OH)2)?

۸.	0.10 M	-	B. 1.6 H
c.	3.2 #		D. 6.4 M

4. How many moles of magnesium chloride (NgCl₂) would be produced when 1800 ml of 0.36 M hydrochloric ocid (NCl) reacts with a sufficient amount of magnesium hydroxide Ng(OH)₂?

A. 0.32 mole 8. 0.65 m	ele
------------------------	-----

C. 1.30 moles D. 2.50 moles

- 5. Sodium carbonate ($Ma_2(O_3)$ will react with hydrochloric acid (HCl) to form sodium chloride (MaCl), water (H₂O) and carbon dioxide (CO₂). How many liters of CO₂ (measured at STP) will be produced when 300 ml of 6.0 M HCl reacts with sufficient Ma_2CO_37 Reaction: Ma_2CO_3 (s) +2 HCl_(aq) \longrightarrow 2 HaCl_(aq) + H₂O₍₁₎ + CO₂(g)
 - A. 2.24 liters B. 20.2 liters
 - C. 74.7 liters D. 224 liters

Period or small group:

Name :

Please answer the following questions by circling the correct answer. In order to get full credit for question five you must show your work. Try to think of the analogy of soup as you work the problems. Example: What would be the dozarity of a soup made by adding 5 dozen pieces of corn in enough soup to make 2 liters?

2.5 dozen 5 dozen corn 2 liters = 2.5 dozarity llter

(KI	Cl) which has a molecular men	s of 74.6 grams per mole.
١.	What would be the molerity of potassium chloride (KCl) solution?	of a solution made by dissolving 6.0 moles in anough water to make 3.0 liters of
	A. 0.5 M	B. 2.0 M
	C. 3.0 M	0. 6.0 M
2.	Whet would be the molarity of KCI in enough water to a	of a solution made by dissolving 149.2 gram weke 1200 ml of solution?
	A. 0.42 M	8. 0.60 M
	C. 1.67 M	D. 2.40 M
3.	Now many grams of KC1 would solution?	j be present in 1600 ml of e 0.50 M KCl
	A. 23.3 grams	8. 59.7 grams
	C. 93.3 grams	D. 238.7 grams
4.	What would be the molarity of KCI in enough water to f	of a solution made by dissolving D.45 moles make 1400 ml of solution?
	A. 0.32 M	8. 3.1 M
	C. 28.0 A	D. 35.7 M

All of the following questions deal with the substance potassium chloride

5. How many milliters of a 1.6 M KCI solution would contain 14.9 grams of KC17

606

۸.	8.0 ml	8,	125 ml
' .	320 ml	D.	3125 ml

C. 28.0 A

APPENDIX H

Summary Tables of Multiple Regression Analyses

60,7

. . * 20 × 23 2 10 HULTI PLE c . DEPENDENT VANJABLE .. HOQT

.

.

•

SUMMARY TABLE

۰. <u>ب</u>

-	STEP	V 14 IABLE ENTERED REHOVED	F TO ENTER OR REMOVE	SIGNIFICANCE	MULTIPLE R	R SQUARE	R SOUARE CHANGE	SIMPLE R	OVENALL F	SIGNIFICANCE
-	1	VADA	. 23975	.425	, 30790	.00006	.00006	00790	• 5 9 3 8 8	
	2	YVQI	1,15496	.283	.04751	00226	.0219	.04245	• 37340	• 553
:	z	MARSTOT PPRT	j2.95994	.000	.16229	.02634	.02408	14776	4.72492	.003
•	3	X3	43,27938	6	. 11742	.100/5	.07441	.27691	14.64946	.000
	· • •	, x2	16.00505	.000	.35054	12288	.02213	15062	11.11105	.000
	-	x1	.04870	•825	.352_4	12414	.00126	-,04548		
-	5	v×2	3,56925	.059	.36071	13011	.00597	00504	,	
	•	VA1	3.07748	.080	.36349	<u>13213</u>	.00201	02649	t. 27455	.000
•		VX3	•72142 •15735	-396	.36535	•13350	.00138	01233		
		143		.692	• 16583	<u>•13383</u>	.00033	14211		
		1×2	1.58714	.944	.36643	.13427	.00044	:>530		
+		171	.25179	-20A	.36944	<u>e</u> 13649	• • • • • • • • • • • • • • • • • • • •	05072		
	6	MX1	.03160	.596	.37008	.13696	.00047	01001		
	-	MAJ	00216	.859	.37058	+13733	.00037	00499	5.10253	
		MX2	,23622	.963	.37062	+13736	.00003	13835	•	
	7	PX2		.627 .410	.37116 .37128	.137/6	.00040	03964	·	
• •		PX1	1,43229	.232	.47719	+13785	.00009	04013	4.47920	
		PX3	72071	.394	37880	14228	.00443	.01415		
ł		vIX1	4.10122	•043	.39213	<u>•15377</u>	.00122	13\$70		
-		VIX3	4.56405	.033	.39614	15693	.01028	02214 +.14276	. *•51300	
		V1X2	4,45832	.035	.40534	16430	.00738	•.03650		
	9 .	VHX1	1.87869	•171	•41241	17008	.00578	00848	4.05153	000
, •		ANX5	. \$ 9,558	.344	.41565	17277	.00269	01060	2002123	000
`. <u>.</u>		VMX3	، 03259	•857	.41603	17308	.00031	•.13163		
•	-	_ IMX1	6, 47710			.18157	00849	•.01457	•	•
		1MX3	2.07306	•150	.43037	18522	.00364	14006		
		1HX2		•933	.43038	18523	.00001	04569		
	10	¥\$\$\$	1.40254							,
			3:68886	:237	:\$338\$: 19333	:88234	I:83717	3.81373	.000
•		VPX3	2.73664	.099	.44737	.20014	.00421	12983	-	
		[PX] [PX]	3.02+39		. \$5314	.20534	.0051-	.00050		
			.59197	.442	.45335	.20553	.00019	14248		-
	11	1 P x2 P x1	1.69013	.194	.45634	.20824	.00271	04701		
	• 1	PMX2	1,68331	.195	.46237	.213/9	.00554	.00+62	3.62101	000
-		PMX3	.01076	.917	.46242	21344	.00005	03/12		•••••
	12	VINXI	•54877	.459 -		21472	.00088	13+30	•	
	••	VINIS	.06801	•794	.46362	•21494	.00023	02214	J.39466	.000
· :		VINXZ	.03748	.547	.46414	•21543	.00048	13393		
•••	13	VIPX1	1.62213	.203	.*6694	•21453	.00260	02862		
-	••	VIPAZ	03618	.549	46696	•21805	.0000Z	02167	J.18021	
		VIPX3	,54432 1,31488	•461	.46710	.21818	.00012	03856		······································
-	14	VPHX1		.252	.46936	•22030	.00212	-,1325+		
		VPMX2	4.16533	042	.47570	•22629	.00599	01114	ż.93391	.000
		VPMXJ	.14914	.701	.47625	.22641	.00053	02149		1
		IPHX1	.00924	.923	.47625	-22695	.00000	=.12/87		ý
		IPHA2	- 1.55709	.213	.47921	•22964	.00282	00861		
		IPHX3	•67123 •56441	.413	.47990	.23031	.00067	04437		. –
J	15	VIPMAL	1.64397	•453	.48085	•23122	.00091	13845	· · ·	_
	0	VIPMAZ	.02196	.200 50A.	.44107	+23143	.00021	02711	2.03725	
FR	<u>XIC</u>	TANAI CANAIV	2,86036	.091	. 48208 . 48682	.23240	.00097	•.03351		<u>-</u>
Full Text P				• • • •	• ~•••	• 23699	.00459	13212		609
3,	<u> </u>	08								00-
	<u> </u>						•			

DEPENDENT VARIABLE. GLAT

· · ·

SUWMARY TABLE

MULTIPLE REGNESHIN

. .

STEP	VAR ENTERED	REHOVED	F TO ENTER OF REMOVE	STONIFICANCE	HULTIPLE A A	SQUARE	R SOULRE CHANGE	SIMPLĘ R	OVERALL F	SIGNIFICANCE
· · ·	VVQV		.79827	.37>	.02356	.00076	.00055	02355	1.00398	.367
•	VVQI .		1,72253	.190	.06250	•09391	.00335	.04851		
2	NARSTOT		<u>10.59443</u>	.901	.15537	.02414	.02023	13131	4.21334	.006
3	PPRT /		16.26515	• 90 1	.23302	•05430	.03016	.19540	1.35098	.000
4	х3 /		28,48915	0	.27100	.073*4	.01914	.13915	8.91363	0
	x2 /		7.47057	. 104	.31310	.09803	.02459	06.167		
	x1		6.57608	.011	.33103	.10958	.01155	06103		
· • • •	SXV			.459	.33181	.11010	.00051	0>190	••96235	0
	≫ ∀X1		,29970	•584	.33337	•11114	.00104	06251	_	
	VX3		.06088	- +805	, 3 3353	.11124	.90211	.13223	· -	•
	1x3			.#43	, 33551	•11257	.00133	·15619		
	IXZ		.14928	. 699	.33660	.11330	.00073	06971	•	
-	1×1		.43941	.504	.33775	+11407	.00078	07231		_
6.	MX1		4.61575		.35151	+12303	.10955	03702	4.40187	000
	MX3		.00000	. 999	.35166	12366	.0003	.14374		
	MXS		.13646	.712	.35200	.12390	.00024	05178	•	,
	PX2			.558	.353+8	.12495	.00105	-,0 <u>5</u> 121	3.87866	
	PX1		2.09297	.149	.35634	.12678	.00203	-+0+777		
	PX3"		1.49078	.224	.35998	.12959	00260	,11572		-
	VIX1		1.31461	. 252	. 36625	.13416	.00457	-,07599	3.69002	000
	VIX3		2,37449	.124	.36798	.13541	.00125	.12624		
	VIX2		3.56601	. 169	37634	14163	.00422	05322		
•	VHX1		.07524	•784	.37641	.14168	.00005	04303	2.97838	
	VHX2	• •••• • • • • • • • • • • • • • • • • •	.05508	.799	.37656	14100	.00011	04034		
	VMA3		.09779	.767	.37688	.14204	.00724	.13709		
	. 1481	.		414	.38114	.14527	.00323	-,05096		
	1473	-** -	.00825	.92A	.36142	14548	.00021	.13616		
	IMX2		.56033	,454	.38270	.14646	.00098	00347		•
1.					.38458	14790		04432		
· · · · · · · · · · · · · · · · · · ·	YPX1		.20722	.649	.38521	.14838	.00049	03407		
	VPX3		1,12398	4.290	.38736	.15005	.00166	.1050	Υ.	
			1.77674		.38904		.00134	00195	× .	
	晓		.09328	.183 .760	.39012	.15138 .15220	.00081	.10685	• -	•
_	1942		1,10549	. ?94	.39251	•15414	.00195	05748		
11	PHA1	•		.459	.39850	.15880	.00466	03079	<.60904	.000
•1	PHAZ		5, 33955	.021	•40971	.16786	.00906	05267		•••••
	P#X3.		.24138	.409	.41026	.16832	.00046	.12125		
12	VINXI	١	.029A3	.463	.41057	.16556	.00025	05726	2.43805	
	VINX3	-	.00355	.951	•41136	.16922	.00065	.12701		
-	VIMX2		.81169	. 364	.41309	.17064	.00142	06096		
13	VIPX1		5,26624	. 027	. 41908	.17563	.00499	07055	2.40371	.000
• 3	VIPX2.	• •	.34825	.534	•42195	•17796	.00233	05459		
	VIPX3	•	1,14792	.285	•42421	.17995	.00200	.10009		
· · · 1.	VPHX1	•						-		
	YPHX2			.574	. 42423	•17997	.00001	04047	2.16035	.000
	-VPMX3		.07489	.779	• • 2477	+18043	.00046	04687		
LO	19431	•	.14667	.681	+2493	.18057	.00013	+11455		<u>54</u>
U	1PHX2		1.82324	+17A	42908	•18411	.00354	04725		
	1PHX3		.47648	.491	+2967	•18461	.00050	00061		F -
15	VIPHX1		.45708	.495	+43062	+18543	.00082	.11097	_	.000 61
-3	VIPHX2	•	- •78250	.377	.43293	+18742	.00199	05957	2.06192	*000 OT
0	VIPAAC VIPAK3	4	.49368 .25742	.487 .412	•43349 •43401	•187¥1	.00049	05995 .10384		
						.18836				

DEPENDENT VARIABLE .. SQT

1

ŧ

4

• :

SUMMARY TARLE

MULTIPLE

RECALSSION

0

. . .

. . . .

SIEP	VARIABLE ENTERED _REMOVED	F TO STER OR REMOVE	SIGNIFICANCE	MULTIPLE R	R SQUAHE	R SQUARE CHANGE	SIMPLĘ R	OVĘRALL F	SIGNIFICANCE
1	VVQV	.03552	.451	.02053	•000+2	.00042	.02053	.\$0404	.604
•	AA01 -	.74764	` - 375	.04390	00192	.00150	.04.303	1	
2	MARSTOT	13,11081	.000	.16212	.02628	.02436	-,15442	4.71446	.003
3	PPRT (42.04282	0	,31472	.09A73	.07245	,29334	14.32350	.000
4	x3	.93172		.32261	+10404	.00534	0/>33	₩.75023	000
	x2	.61150	. 434	.32459	10536	00128	06\$77	-	
	x1	。.01252	.911	.32462	.10535	.00002	-,05393		
. 5	VX2	. 11243	.738	, 32355	.10579	.00060	0/189	4.77094	
	VX1	.19197	.661	.32562	.10603	.70004	05854		
	£XV	.21288	. 645	. 32643	10676	.00053	00517	-	
	143	.05291	. 402	, 32643	.106>6	.00000	07320	-	
	142	.63890	.424	, 32787	.107>0	.00094	07242		
	141	e10208	.749	.32814	.10767	.00018	-,05050		k
é.	й л 1	2,25583		.33347	.11121	. 10353	04045	4.07059	000
-	MX3	.19113		.33349	.11141	.00001	00178	4641434	
	MA2	1.05532	• 305	33622	.11395		00516		
7	p12			.33800	+11424	.00183 .00120	05179	J 67423	
•	PÅ1	1.88764	•170			-	03146	·	
	PX3	.00342	• 1 / 1		11771	.00367		,	
	VIX1			.34339	•11792	.00001	07194		
• • - • •				.34421	•118*8		05627	. .j. 14756 .	• ¥00
	vIA2	.19130	. 462	.34421	•11848	.00000	00452		
•	VMA1	1.20846	.272	.34726	•12059	.00210	07079		
•• 7 -	VMX2	.01638	.895	.34796	-12108	.00049	0><56	¢•97434	• • • • • • • • • • • • • • • • • • • •
	VMA2	1,11991	•2	.34859	+12151	00044	07144		'
			•3	.34994	•12246	.00095	06321		۰.
	_1MA1	2.80853		• 36747			04896		
	IMX3	.43893	.508	.36747	•13504	.00000	06299		•
. •	IWXS	4.65235	+031	37819	•14303	.00799	07509		· ·
1.	VPX2	• 05848 • 35619		• 37869 • 38344	.14340	.00038	05414	2.58465	.000
			-551		:14703	.0038 .00362	05*14	*******	
	VPA3	•01197	.913	.38344	•14703	.00000	06520		
	IPAI	2.25307	134	.38703	.14979	.00276	03789		
	IPA3	.01601	. 199	.38744	.15011	.00032	00498		
1.0	1645	.63120	+410	.38895	.15129	.00117	05190		•
11	PMA1	.51862	.472	,39140	•15321	.00222		2.47205	900.
	PHAZ	2,16195	.140	J9561	•15691	.00300	03816	7441549	
	PMX3	.46022	.494	.39661	15730	.00079	06245		
12	VIMX1	.93527	. 334	.39715	•15774	.00043	05265	Z.31291	
	VIMX3	.14443	.695	.39870	.158¥6	.00122	04231	E+31641	.000
	VIMX2	.39560	.430	.39955	.15964	.00068	07479		
13	VIPX1	1.53795	.215	.39998	•15998	.00034	04495	·	
	VIPX2	1.85827	.173	.40563	•16453	.00455	04976	P+ 519.44	
	VIPX3	.06329	#01	.*0576	.16404	.00011	00112		1
14	VPMX1	3.91172	.049	41341	+17091	.00627	04544	3	***
	VPHX2	.59848	.440	•41547	17201	.00170	00052	₹•15716	_ •000
	VPMX3	.21375	.444	•*1636	•17336		08450		
	IPMX1	1.95532	.163			.00075			ý
	IPHX2	2.48336	•103	•42261	•17860	.00524	03607		
	IPHX3	.64724		. 2645	+18200	.00340	06128		N
15	VIPHAL	.08768	.414	• 1735	+18314		06204		
-	VIPHX2		.767	+42796	+18315	.00000	-,05046	2.01025	.000
	VIPHX3	.05464	•415	.42799	+18314	.00003	05#74	•	
VIC	612	.50001	•488	.42899	•18404	.00086	00 652		6
N # N #									

1 1 1

77

SJHHARY TABLE.

:

• -			•••					3	-	P
STEF	VARIARLE ENTEREC REPOVEC	F IC Enter Cr Refove	SIGNIFICANCE	MULTIPLE R	R SQUAPE	R SQUAPE CHANGE	SIMPLE R	}	OVERALL F	SI GNIFICÁKGE
	•	.03667	. 349	.03628	.00132	.00132	.03629	•	5.77147	.003
1	8827 8761	10.8555	. 301	.15371	.02363	.02231	.15347		•	_
2	PIPSTCT	7.41909	.007	.19650	.03861	.01458	11943		6.37245	· 0 00
3	FFFT.	32.51035	0	.31766	.10051	.06229	.28569		13.32734	· .000
	. 33	2.24745	.072	.33411	.11163	.01072	10927		£.57832	.000
•	. #J X2	.58107	.446	.33529	.11238	.00075	07740			<i></i>
		.25604	.613	.33595	11286	.00048	05021		•	•
	. X1	.8(531	.353	•33792	.11419	.00133	05654		4.75056	.000
5	¥#2	•50262		.33957	.11531	.00112	05189			
× •	V#1	.00369	. 952	.33959	.11532	.00001	09602	/		
	Ax3 -		· • • • • • • • • • • • • • • • • • • •	.34172	.11677	.00145	09749		• 1	
	113	.31342			-11699	.00022	06574			
• -	122	.08342			.11702	.00002	C4807			
•	III '	.01307	.909		.11706	.00004	05526	. ·	3.87206	.000
•	1x4	.0\$575	.813	•34214		.00033	10621			
	MK3	.62400	.854	•34262	.11739		08306			
_	244	.33035	• 566	.34353	.11802	.00063 .00042	05784		3.39234	.000
7	F32	.03133	. 860	.34415	.11844		02671		- 30 376 371	1000
•	F#1	2.21854	.132	.35028	.12270	.00426				/
	P13	.10533	. 746	.35057	.12290	.00020	10194		3.06777	.000
	¥ 1# 1	.24677	. 620	.35125	.12338	.00048	051-29		3100777	
•	V1I3	1.16884	. 280	.35729	.12759	.00421	09037			
	¥1±2 ·	.56578	.451	.35872	.12868	.00109	05149		2.70555	00
•	VPXI	.16555	. 684	.35940	•12917	.00049	06363		2.16333	
	A+X5	.0111é '	. 916	.36003	.12962	.00045	10324			
	A+23	- 1.35923	.244	.36214	.13115	.00153				-
		2.73764	.099	.36523	.13340	.00225				·
	1823	5.456C2	•020	.37848	•14325	.00985		-		
	1782	.25523	.585	.37923	.14382	.00057				
10	VFX2	.34044	.560	• 37957	+14407	.00026			. 2.34562	
	VFX1	2.84126	• 093	.38351	.14708	.00301	03707			•
	VFX3	1.57956	.209	.38851	.15094	.00386	- :08626			•
	15=1	. C 7365	.780	.38874	. 151 12	.00018	02578		•	X
	jaca -	.21174	.602	.38907	15136	.00026				
	1=#2	.31546	.575	.38984	.15198	.00060				•
11	P=#1	2.03352	155	.39249	.15405	.00207			2.21924	.000
••	P=12	. 6 6 2 3 5	.348	39556	.15647	.00242				
	P>x3	. 1(375	.747	.39581	.15667	.00023				
12	VIPEL	1.61632	• 20+	.39662	-15731	.00064			2.15505	000
••	VIME3	2.55148	.111	.40512	.16412					
	v1+42	.G0702	. 933	.40513	.16413	.00001				
13	VIPXL	.16331	. 686	.40685	.16553	.00149			2.07030	.020
	v1##2	2.02613	.155	.41042	.16544					
	V[31]	. 58632	.444	.41178	.14956					•
14	VF*41 ~	.36900	. 544	.41406	.17145				1.86539	.001
14			.898		.17145				AUCU / 84	••••
	Azazz Azazz	• C1648		•41406		.00036				
	• -	.14011	.669	. \$1449	.17181					615
4 4	15>41	•CC236	• 961	.41496	.17219	.00039			,	· @ 197
14	18#82	1.40483 '	.236	.41863	.17525				•	010
	1****3	.02857	.865	.41869	.17530				, dana -	.001
19	vippx1	3.35418	.068	.42081	+17709	.00178			·473*'	• • • •
0		•31548	.572	.42445	.18016	•00307		•	YA.	
Full Text Provided	~+{PP43	2.0404	•149	.42,413	.18415	.00399	08822		M.	
				•	•					
Full Text Provided I	by ERIC				-		•			

CEPENCENT VARIABLE .. ¥C1

" "UNNARY TABLE

. .

-

.

.

	STEF	VARIABLE ENTEREC REPOVEC	F TC Enter or remove	SIGNIFICANCE	MULTIPLE R	R SQUARE	R SQUARE CHANGE	SIMPLE R	OVERALL F	SIGNIFICANCE
•	1	VVCV	.25626	-613	.04164	.QC1 73	.00173	.04164	1.41714	.243
	•	VVCI	1.51854	.167.	.07328	.00537	.00364	.06989		
	2.	MARSTET	5.46316	.020	-12518	.01567	.01030	10340	2.78055	.040
	3.		67.4685C	0	.35797	.12514	.11247	.35347	19.21717	000 .
	4	X3	1.35919	.237	.36742	•13500	.00685	08601	11.69411	.000
		¥2 : ¥1	•3341C	. 564	.36857	.135 85	.30085	06892		
	5	V X2	.09821 .1(554	• 754	.36880	-13601	.00016	06803	4 43444	• • •
		VXI	.00387	• 745 • 950	•36881 •36 930	-136 02	.00001 .00005	06347	ć.47611	.000
		VX3	.00315		.3039+	13607	.00005	06325		•
		1x3	.11423	.736	.37048	.137 26	.00114	08135 09062		
		1 × 2	2.01812	.156	.37402	.13989	.00263	07738		-
,		1×1	50737	.477	.37515	.14074	.00085	07066		
	6	NX1	.50745	.477	.37612	.14147	.00073	06266	5.25515	.000
		Px3	44212	. 506	.37691	-14206	.00059	08073	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		¥x2	.05336	.760	.37712	.14222	.00016	06316		
	7	PX2	.55227	. 458	.37729		.00013	06063	4.68350	.000
	•	P×1	3.02526	.083	.38591	.14892	.00657	04128		
		PX3	.OEG76	.776	.38608	.14906	.00014	08186		•
		A 1X1-	.0000.	.999	.38655	.14942	.00036	06505	4.05457	.000
-		V 1x3	.26184	.609	.38741	.15008	.00066	08555		
		·V 1x2	•C2C24	. 887	.38745	.15012	.00003	07039		
	9	VPX1	. 3.62234	.058	.38960	.15179	.00167	06070	3.57368	.000
		VMX2	3.97180	- + 047	.39663	•15731	.00552	06524	-	
		VPX3	•17CEE	• 6 8 0	.39744	.15796	.00064	08096		
-	·• ·	IMXI	5.0(555	.026	.40560	- 164 51	.00655	07016	•	
		INX3 .	1.26414	.261	.40367	. 167ul	.00250	08538		
		1+X2	.01325	.908	.40879	.16703	.00000	07276		
	<u> 10 </u>	VFX2	- 6EBC1	. 407	.41011	.16819	•	05744	3.16987	•000 ·
	~J.	-VPX1	1.74125	.188	.41575	•17285	.01	04955		-
•		VPX3	, •\$7383	. 324	.41886	•17545	.00∠60	07553		
		1FX1	1.674C3	.196	-4198J	.176 23	-00078	04879		
		IFX3	.35455	.530	.42181	•17792	.00169	08333		
	้ห	IFX2 ' PFX1	.26376	.348	.42355	.17939	.00147	06574		
	**	PPX2	.36357	.547	.42357	.17941	.03002	03855	2.96150	.000
		PPX3	.86238 .4487C	.353	.42665		.00262	,05937		
	12	TXNIV	. 28865	.503 .346	•42752 •42766	+18278	.00075	08215	•	•••
	••	V IMX3	.CC175	.967	.42887	.18289 .18393	.00011 .00104	06555	2.80244	.000
-		V LPX2	1.5(4 4	.168	.43256	•18711	.00318	08617 07462		
•	13	V IFX1	.01. 5	.893	.43277	-18729	.90018	05327	2.61278	.000
		VIPx2	.02240	.881	.43285	.15736	.00007	06138	2001010	
		V IPX3	.61545	.432	.43 405	.18840	.00104	07716		÷ .
•	14	V FHX 1	3.00612	. 084	³ .43518	.18938	.00098	05127	3 64144	
		VF#x2	4.05905	.043	.43954	.193 20	.00382	06237	2.54166	.000
		VPMX3 .	.39111	.532	.44041	.19396	.00076	08115	٩.	
		IPHXI.	7.37344	.007 +	.45175	.204.08	.01011	05080		54
		IPNX2	.63111	427	,45366	.205 61	.00173	- 06560		
	• •	IPPX3	•535CC	.465	.45464	.20669	.00089	08501		•
	- 15	VIPHX1	.96770	• 326	•45598	.20791	.00122	05750	2.41456	.000
Г	DIC	VIPHX2	.2684E	• 605	.45601	.20794	.00003	06864		
E	RIC	v 199x3	•67476	, 412	. ,45724	• 209 0 7	.00112	08398	k ¹	^
Full	Text Provided by ERIC	04/0		•	ĩ				۰ ۰	6
Q	· · ·	616				•				• •
- X										

617

GLT DEPENDENT VARIABLE ..

SIN MARY TABLE

..........

۲,

-	·	•	5 1) M M	AWT IN	ΗLΕ		•		
STEP	VARIABLE ENTERED REMOVED	F TO ENTER OR REMOVE	SIGNIFICANCE	MULTIPLE R	H SQUARE	R SOUARE CHANGE	SIMPLE R	OVERALL F	SIGNIFICANC
	VADA	1.50069	.204	.04495	.002U1	.0201	04+85	1.00720	.366
T	/ vv01	.94040	. 323	.96250	• 0U392	.00191	. UZ371		633
2	MARSTOT	6.83225	.009	.13052	.01705	.0131 4	10116	2,95653	.032 .000
ŝ	PPRT	36,96659	.0034	.28895	•08349	, 16643	.27351	11.61512 0.17320	••••
	χJ	4.10631	•043	.28928	.08368	.00019	.01259	•.1/3c0	_ •
	x2 .	6.62578	.010	.31695	.09989	.01621	10330	•	
•	x1	.85206	.156	.31844	+10140	.00151	06233 09778	4.75774	0
	54V	.00451	.927	.31944	•10140	.00000	0/252		
	VX1	2.92807	• 054	.32072	.10256	.00146	.02504		
	vX3	2.95647	•084	.32675	•106/4	.00390	.00053		
	143	.87110	• 351	.32737	.10750	.00074			
	175	.16722	•683	.32727	•10750 •110/99	.00260			
	141	1.45096	• .227	.33190	•11016	•	00475	3.85836	
	MA1	.00014	.991	.33190	11016		.01125		-
	443	.01241	.911	.33191 .33249	\$11055		10440		
	MYS.	.21324	.444	.33249	•11055	• • • •	07329	3,51146	. 000.
7	PA2	.24942	.618	.33309	.11075				
	PA1	1.47243	.724	.34464	•11877	.00782	· · · ·		
	PX3	4.39411	• n 37 • 735	,34543	.11932			3.05059.	
• • • • • • • • • • •	_ VIX1	, 11451 _ • 36737	•545	.34603	+11974	•	.02115		
	v1x3	.16785	6482	.34647	12004				
	- VIX2			.34650				2.51683	000 _
<u>٩_</u>			454 .	.34733					*
	VMXZ . VMX3	.27974	.597	. 34775	.12075				
	INXI .	.07341	.787	.34852	.12147				
∎	1#X3	2.29747	.13n	35571			•00395	,	•
-	1475	.05127		,35586	.12604	.00011	10089	,	
1.	VPX2			.35961				2,29507	000_
	VPX1	.22010	.639	, 30365	13256				
	VPX3	.03340	.855	,36399		• • • • • • • • • • • • • • • • • • • •		- -	
		1.1.9627	.293	.36505 .36505	•13324 •13344	.00078	05792		
	PA1 PA3	.50239	.474						
•	1PX2	3.64076	.056	.37400	.13988			2.17504	.000
41	PHX1	.11314	.737	.37446	•14022				
	PHA2	2.45032	•114	.37793					
	PHX3	1.49570	.223	38144				2.02863	000
12	VIMAL	.311#3	•577	.34196					
	VINX3	200963	052	.38200 .38232					
•	VIMX2	.13514	.713	.36242		-		1.95956	.000
13	VIPXI	1.53918	.215	.38591					
÷	VIPX2 VIPX3	.29100 1.97869	•160	.39040			· · · · · · •		-
•			.945	. 39387				1.85478	.001
14	VPMX1 VPMX2	€00472 •30334	.582	.39457	15593	.00079	04144		
	Abux 3	1.72513	.190	.39864					~
	IPMX1	1.27540	.259	.39924			-,00415		6.
	IPMX2	1,29644	.255.	.40333			04/38		U.
	IPHAS	.45620	.500	. 49435			02246		
15	V[PMX]	.26793	.605		.16485	.00135	04284	1.76271	.001
0 7	VIPMX2	,15045	.498	.40604		.00002	50000, +	•	
ĬĊ	VIPME3	.37766	.539	.40488					

Full Text Provided by ERIC

DEPENDENT VANTABLE ... ST

SUMMARY TABLE

MULTIPLE

. . .

.

1

850-20010

•	STEP	. VADIABLE ENTERED REMOVED	F TO ENTER OR REHOVE	STGNIFICANCE	HILTIPLE A	R SUJARE	R SHUARE CHANGE	SIMPLE R	OVERALL F	SIGNIFICANCE
	ι Υ	VVUV.	.10976	.741	.02192	•000*8	.00048	02192	.25393	.776
- 1	•	ILVV	.25523	.614	.03102	.00097	.00049	02/52		1
Ξ.	· ,	MARSTOT	19.34656	.000	.19115	•03654	03557	18232	6.62348	.000
	3	PPAT	48.52555	0	.34401	+11934	.08180	.30438	11.54996	,000
	3	- x3	•00379	.951	.34435	•11857	.00023	01/29	10.39703	.000
	-	¥2.	1.01205	.315	34513	.11912	00054	.01083		
							.00366	05018		
-	-	X1 VX2	2.16994	.141	. 15039	•12278		.00430	0. 00525	.000
		v~2 vX1	1.04875	• 30.5	.35039	•12278	.00000	07233		
	,	v^1 v£3	4.09717	. 944	.35898	.12840	.00602	02523		
-	~	-	.00753	.•31	.35899	•12880	.00001	01329	ډ	
•	· -	143	.04230	. 403	.35999	12959	.00079			
		145	.29092	.590	.36005	12964	.00005	.01293		*
•	_	IXI	1.31095	•253	.36312	.13186	.00221	04672	5	000
-	. 6	MAI	.13708	.711	. 36524	•13340	,00154	06016	5.11006	000
		MX3	.60120	.439	.36533	+13347	.00007	01403		•
		42	2,64580	.104	.37139	•13793	.00446	•.00501		
_	7	DV5	. 73080	• 793	.37351	•13951	.00158	.0.311B	4.36396	000
-		P Å1	.29330	.584	.37379	•1397 <u>2</u>	.00020	03010		
•		pX3	. 35455	.55?	,37459	•14032	.00060	02215		
_	A	IAIV .	.06698	•796	.37548	14099	. , , 00067		3.77650	
		VIA3	.01457	.904	.37565	•14112	.00013	01874		-
-		• SXIV	.09744	.755	.37587	.14128	.00017	.01414		•
	•.	VMA1	.00121	.972	.37597	.14136		08531	3.06813	
-	inije agget age f	VHX2	1,24641	.265	.37693	.14208	.00072	00468		
	-	VMX3	.62183	.431	.37812	.14297	.00090	+.02/02	Ŧ	•
		1421	× .01564	.901	.37862	14335	.00038			
		1843	.04030	.841	.37877	•14347	.00012	+.01155		
		. IHX2	1,99069	•159	· J8324	.14687	.00340	•.00527		
	10	VPX2			.38331	•14692		.02882	2.58519	
			.20151	•654	.38350	.14707	.00015	05470		
	•	VPA3	.62786	429	.38523	14890	.00133	0.3234		-
	• •••• ··					-		ī		•
- •		IPA1 🐒	.82281	.365	• 30851	15074	.00254	03112 02020	•	-
	•	IPA3	.21421	.644	.38889	•15124	.00030			
	••	IPA2 ¥	.04408	.834	.38897	•15131	.00008	.03265 03880	2.41969	.000
	11	PMA1 ·····	.90361	• 142	,38928	+15154	.00023			
		PMA2	.07803	•754	, 39051	• •15250	.00096	.01219		• •
,		PMX3	1.14944	.284	.39305	• 15449	.00198	02158		. 000 .
	15	VINI	.60226	.439	.3931+	+15456	.00007	0/821	2.26693	_ ••••
		VIMX3	.43930	.505	.39567	.156>5	.00199	02235		•
•	• -	VIMK2	.23945	• 425	.39619	•15697	.00041	00214		
	14	VIPX1	1.15979	. 282	. 19639	•15711	.00014	05013	2.19606	.000
		VIPX2	.23371	• 429	.39662	15731	.00019	.03332		
		VIPX3	3.43864	• 164	40405	.16325	.00594	02065		A a a a
	14	VPMX1	.25280	.60H	• 40574	•16493	.00138	00/66	2.00945	.000
1*		VPMX2	.01973	• AAA	.40625	.16504	.00041	.01231		
		VPMX3	.2249+	• 636	+40716	16574	.00074	03750		Ś
		IPMX1	.02444	f •474		.16542	00004	04264		
		I MAS	2.84806	.090	+1241	+17042	.00460	.01249		
•		IPAA3	.24108	.624	•41332	+17043		-,02085		•
	Q 15	VIP4X1 . 🕫	,19096	.662	.41400	•17140	.00056	-,06429	1.89195	000
Г	DIC	v1P412	.04652	.769	+1407	+17146	.00006	.01542		
E	KIU	VIPH620	.07124	.791	.41422	+17154	.00012	03348		0.0.1
Full	Text Provided by ERIC	620 (-	• •			<u>6</u> 21 ·····
									•	

........ CEPENCENT JAFIABLE.. PLT

;

0

SJAHARY TABLE

• •

		- ,	K K C Z	ARY TA	BLE			•		
STEF	VARIABLE - ENTEREC REPOVED	F 1G Enter or Kenove	SIGNIFICANCE	MULTIPLE R	R SQUARE	R SQUARE	SIMPLE R	OVERALL F	SIGNIFICANCE	2
1	VYCV	• • • • • • • • • • • • • • • • • • • •	. 985	.00364	.00001	.00001	.00364	.05645	. 945	
	VVCI	.1(655	.744	.01538	.00024	.90322	.01536	•••••	• • • • •	
2	PAPSICT	°11.27534	.001	.15290	.02338	.02314	14926	* 3.75E23	.010	
-3-4-	PPAT	30.75042	Ū	.29780	08283	.05945	.25367	10.72456	.000	-
-4	X 2	.94561	.330	.25663	.08799	.00516	07420	6.63631	.000	
	X2	.04792	.827	.29665	.08800	.00001	64037			
• •	X1	. 82037	.363	.29933	.08960	.00160	07244		•	
5	VX2	-3552E	.549	.30007	.09004	.00044	04517	3.91218	.000 .	*
•	VX1	.21014	.647	.30075	.09045	.00041	08034			
:	¥73	1.10121	.295	.30431	.09261	.00216	C3796	0		
	1x3	.04615	. 330	.30432	.09261	.00000	07619			
	122 -	2.70664	.105	.51039	.09634	.00373	04999			•
'e –	1×1	1.06285	. 303	.31369	.09840	.00206	07225			,
. 6	Px1	1.58686	.208	.31568	.09965	.001.25	06438	3.31 522	.000	
	PX3	.00001	998	.31634	.10007	.00042	06629		-	
•	**2	1.46138	227	.32078	10290	.00283	04719		• •	
7	Px2	.02053	. 886	.32212	.10376	.90086	02755	3.00960	.000	
	PX1	3.43101	.065	.33205	.11025	.006 49	04349			
	P23	.16C7C	.689	.33251	.11057	.00031	07216			
* . 8	V1X1	1.31276	. 252	.33696	.11355	.00298	08292	2.67794	.000	
	EXIV	.31857	. 573	.33760	.11398	.00043	~,08869			•
	VIX2	.11278	. 737	.33793	•11419	.000 22	05314		,	
۰ <u>ب</u>	VPX1	.75260	.370	.33832	.11446	.00026	07626	2.43987	.000	
	VPX2	4.75005	.029	.34887	.12171	.00725	05945		••••	· ·
:	VPX3 0	.77215	.380	.35165	.12366	.00195	08298			۰.
	1Px1		.812	.35281	.124 48	.00082	06317		•	
•	1843	2.86203	.091	.36240	.13133	.006 86	06428			
	- 1PX2	.11317	.737	.36270	.13155	.00022	05485			
10	VFX2	-4.40550	.036	.37821	.14304	.01149	01793	2.33202	.000	
	.VPX1	1.65230	.199	.38562	.14870	.00566	05660			
	VPX3	.1(192	. 750	.38591	.14893	.00022	07978			
· +- =	1Fx1					1			• •	
	IPX3	.28381	• 394	.38595	.14896	.00003				
	1 = x 2	.(((3	• 796	.38623	.14917	00022	07209			•
11	P>41	1.07826	. 300	.38888	.15123	.00,206	03118			
••	2**2	.24374	• • • 22 *	. 38893	.15127	.00004	03796	2.19748	.000	
	Pwx2	.63577 2.C5C23	• 426	.38917	.15145	.00018	03710	•		
12	¥ I*x1	.02653	.153	.39417	.155 37	.00392	06274			
•	v1+x3	.CCÇ75	.870	.39514	.15613	.00076	07761	2.05249	•000	
	· V1#X2	.53306	• 97#	-39564	-15653	.00039	05075			y
13	VIFX1	.03556		. 39693	.15755	.00102	06610			
	V IPX2	1.3(544	• 851 • 253	.39693	.15755	.00000	06093	1.96420	.000	
	VIPX3	1.95350		.39815	.15853	.00097	02120	•		
14			.163	.40284	.16728	.00375	01844	•		
•••	VP*X2 622	.75210	. 386	.40285	.16229	.00001	05476	° 1.79659	.001	
•	VPPX3	.71144	. 399	.40617	•16497	.00268	03589	- ,		10
	1F#X1	1.21163	.272	£41003	.16812	.00315	07540		۲	5 23
	1##X2	.05751	. 755	.41013	.16820	-00008	04103		•	220
	[F#X]			\$41106	-16897	.00077	03951		· ·	•
15	V1PP(1 .	.5(C32	.480	.41223	.16994	.00097	06009			
15	VIPPAZ		. 865	.41223	.16994	.00000	05814	1.68400	.003	
ERIC	VIPP13		. 809	.41248	.170 14	.00021	03821			
LIV		.01825	. 893	• 41253	•1701 8	•00004	07208		•	
Pull lext Provided by ERIC	<u>,</u>									

* * * * * * * * * * * * * * * CEPENCENT VARIABLE ..

2

SUNHATE TABLE

1

.

* * * *

•

P.

.........

| 5
- 6 | | 1 | | S U М Я, | ATE TABI | E | _ | | | | |
|----------|-----------------------|-----------------------------|------------------------------|----------------|------------------------------|------------------|--------------------|---------------------|---|----------------------|--------|
| | STEP | VARIABLE
ENTEREC REMOVED | F TĆ
Enter gr remove | SIGNIFICANCE | ALTOPIE R R | SQUARE | R SQUARE
CHANGE | SIMPLE R | OVERALL F | SIGNIFICANCE | |
| - | 1. | *** | •C(C43 | .984 | .01712 | .0,0015 | .00015 | .01212 | . 61641 | 4.00 | |
| - | | VVCI | .\$4358 | .332 | .04405 | .00194 | .00179 | .04405 | .51061 | •600 | |
| | 2 | PARSTCT | 16.34464 | . 300 | .17925 | .03213 | .03019 | 16996 | *. 75857 | 0.01 | |
| - { - | 3 | PFAT | 125.00850 | 0 | :46781 | .21885 | .18571 | .45540 | 36.63036 | .001 | |
| | 4 | X2 | 55826 . | .455 | .46805 | .21907 | .00023 | .01144 | 20.94803 | •000
•0 00 | |
| 6 | | *2 | .C5176 | .820 | | .21938 | .90030 | 00854 | | ••••• | • |
| • | | ¥1 | .3518C | • 5 32 | •46900 | .21996 | .00059 | 02221 | | • | |
| | 5 | VX2 | 3.57972 | .059 | .47184 | .22264 | . 00267 | .01165 | 12.33560 | .000 | |
| | | VX1 | .75384 | .373 | •47276 | •22351 | .00987 | 00417 | | | |
| | | 4X3
1X3 | 2.245EC | .135 | •47+67 | .225 31 | .90181 | .01117 | | | |
| | | 1×2 · | 2.37685 | .128 | •47495 | .22558 | .00026 | .01373 | | | |
| i | | IX1 ' | 7.92663 | .005 | .48740 | •23756 | .01199 | 02103 | | | |
| : | 6 | PX1 | .15577 | .690 | .48765 | •2 37 8 0 | .00024 | 02468 | | | |
| | | PX3 | •CC143 | .970 | .43768 | .23783 | •00003 | 03032 | 9.97625 | .000 | |
| i | ` . | PX2 | .00102 | .975 | « . 48759 - | .23784 | .00001 | .01657 | ` | | |
| | 7 | Fx2 | ▲ .11888 | •730 | .48787 | .23802 | .00018 | 01514 | | | |
| | • | Px1 | .61131 | .435 | .49328 | .24333 | .00531 | .01717 | 8.72953 | .000 | |
| | | PX3 | .25394 | .588 | • 49409 - | .24472 | .00139 | .00377 | • | • | |
| | • • • • | VIX1 | •55671 -
•65381 | • 328 | .49612 | .24614 | .00142 | •022úð ₋ | | | |
| • | - | V IX3 | •C1839 | • 405 | .49708 | -24708 | .00095 | 00755 | 7.53560 | .000 | |
| | | ¥ 1×2 | .04734 | • 892
• 828 | | v24718 | .00009 | .01207 | | | |
| | 9 | VPX1 | 1.00973 | .315 | •49724 | .24725 | .00007 | .00195 | | ·· · | |
| | | VFX2 | .03232 | .857 | .49924
.49971 | .24924 | .00200 | 01285 | 6.19342 | • 0 00 | |
| | | VPX3 | .17121 | .679 | .50012 | •24971
•25012 | .00047 | .00725 | | | |
| | | I#X1_ | 4.6CC21 | 032 | .50756 | .25762 | | | | • •• ••• •• • | \sim |
| | , | 1Px3 > | .00593 | .921 | .50764 | .25770 | .00750
.00008 | 03792 | | • | |
| , - | | . 12×2 | .12555 | .712 | .50784 | .25790 | | .01599 | | | |
| | 10 | VPX2 | .67022 | .413 | .50937 | .25946 | .00156 | 02787 | | | |
| | | VFX1 | 2.92331 | .088 | .51154 | .26167 | .00221 | •03269
•C1010 | 5.32644 | •000 | • |
| | | VPX3 | 1.55768 | .158 | .51587 | .26612 | .00445 | .02333 | | • | |
| | - 4 . | IFXI | 1 .C1C53 | •917 | .51652 | .26680 | | | | | |
| | | 1Px3 | 1.16203 | 282 | •51631 | .26964 | .09068
.00184 | •00021
•02667 | | | |
| | | IFX2 | .50747 | .931 | .51832 | .268 65 | .00001 | .00912 | | | |
| | 11 | FMX1 | 3.02894 | . 082 | .51971 | .270 10 | .00144 | 00711 | 5.02617 | .000 | |
| | | PFX2 | .18148 ` | •670 | .51992 | .27032 | .00022 | .01124 | 2000011 | • • • • | |
| | | PPX3 | 4.86014 | .028 | • 52677 | .27749 | .00717 | .02958 | | - | |
| | 12 | VINX1 | •€ \$C4£ | • 4 2 0 | .52685 | .27757 | .00008 | 02055 | 4.82096 | .000 | |
| | | V 1FAJ | 1.76223 | .185 | .53205 | .28308 | .00551 | .01120 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | |
| • | 12 | V1×X2 | .35285 | .531 | •53259 | .28365 | .00058 | 00443 | | | |
| | 13 | VIPA1 | 1.10634 | .293 | .53375 | .28489 | .00123 | .00617 | 4.50153 | .000 | |
| | | VIPX2
VIPX3 | •47873 | .489 🤟 | .53448 | •28567 | .00079 | .02547 | | | |
| ¢ | | - | .0(545 | •941 | • 53449 | .28563 | • •00001 | •02556 | | • | |
| | 14 . | Y FMX1 | 2.91743 | .088 | • 53 93 7 | .28984 | .00416 | 00272 | 4.07552 | .000 | |
| | | VFF12 | 1.75521 | .186 | | .290 54 | .00100 | .02836 | | | |
| | • | . VPX3 | •8356C | .361 | .54042 | •2 92 06 | .00122 | .02645 | | | Un |
| | | IPMX1 | 1.51306 | .219 | .54208 | .29385 | .00179 | 01608 | | | 548 |
| | | IPAX2 (* | .42628 | .514 | •54279 | .29463 | .00078 | .00096 | | | 00 |
| | 15 | IFMX3
VIPMX1 | .02217 | | .54284 | .79467 | .00005 | .03127 | | | |
| | 0 | VIPPA2 | .4568 | .498 | .54366 | .24557 | .00090 | 01100 | 3.87515 | ·002 ~~~ | : |
| Г | RĬC | VIDUYS . | 1.40138
.84C53 | .237
.360 | • 5 4 463
84 8 7 7 | -29662 | .00105 | .01865 | • | °°6 25 | ٠ |
| | | 624 | • 5 7 5 7 3 | • 3 0 4 | .54577 | •297 <i>8</i> 6 | .00124 | .02484 | | − · • - | |
| Ful | Text Provided by ERIC | U A X | | | | | | • | , | | |

. ACSR PEL E..

-SJANAAY JABLE

MULTIPLE REGRESSION

| STEP | VARI
ENTEREC | IABLE
R ["CVEC | F TU
Enter Ch Remove | SIGNIFICANCE | MULTIPLE R | P SCUARE | R TUUAR E
CHANGE | SINPLE | CVERALL F | SIGNIFICANCE |
|-------------------------|------------------|-------------------|-----------------------------|-----------------------|-------------------|------------------|----------------------|---------------------|-----------|--------------|
| | VVČV | | .16101 | .688 | .UJU89 | .00095 | .00055 | .03049 | .29524 | .745 |
| 5 cz j | VVCI | | .23309 | .630 | .03970 | .00158 | .20062 | .03335 | | |
| 1 . 2 | PARSICT | | 9.03457 | | .15870 | .02517 | .02361 | .15545 | 3.21251 | • 323 |
| 3 | PPRT | | , 73.55E3E . | .400 | .43142 | .18512 | .15093 | .42135 | 21.25766 | •000 · |
| | X2 | | .19326 | .550 | .43144 | .18614 | .00002 | .01959 | 12.41805 | 0 |
| | XI + | | .25718 | .612 | .43144 | .18614 | . 00000 | .02178 | | |
| . • | X 2 | | 2.05832 | | .43065 | .19066 | .00451 | .05893 | | _ |
| 1 ⁻ 5 | VXZ " | | 2.02397 | .106 | •+3831 | •19212 | •001 46 ^s | .03744 | 7.34343 | · 0 |
| · | V×1 | | .35927 | .549 | .43886 | •19260 | •0.0048 | .03097 | | |
| | VX3 · | | 1.54873 | .214 | .44049 | .19403 | .00143 | +05363 | , | |
| -' | IX1 | ·· • · | .00052 | • 782 | .44094 | .19442 | •00040 | .01781 | | • |
| <u> </u> | 1×2 | | £.66218 | .010 | .45314 | .20534 | .01051 | .00471 | | , |
| , | 1×3 | | 1.84314 | .175 | .45755 | > 209 35 | •00401 | , 105 P37
+01557 | 5.91328 | . 500 |
| • | #X1 | | .06954 | .792 | .457/0 | .20949 | .00014 | .06265 | 20 | |
| | ¥X3 | | •CC07C | • • 979 | .45771 | •2095)
•20951 | .00001
.00001 | .01297 | | |
| _ | MX2 | ¢ | •CC626 | .937 | .45772
.45813 | .20988 | .00037 | .02934 | 5.11577 | 0 |
| . 7 | FX2 | | .14627 | •7 <i>3</i> 2
•951 | .45913 | .21080 | .00091 | .03720 | | |
| - | - PX1 | | .01536
1.51531 | .219 | .+6275 | .21413 | .00334 | .06177 | | |
| 2.
18 | PX3
V IX1 | | .02461 | .375 | .46280 | .21418 | .00005 | .03905 | 4.35553 | .000 |
| · · · · · | · v1x2 | | .01131 - | .915 | .46302 | 21439 | .00021 | .02704 | | |
| - | v 1×3 | | .15113 | .698 | .46 339 | .21473 | .00034 | .05427 | | |
| . 9 | VYX1 | • | .58390 | .445 | .46435 | .21562 | .00389 | .03212 | 3.50350 | .000 |
| ້ (, ष | VFX2 | | .22285 | .637 | .46446 | .21572 | .00010 | .03222 | | |
| | VPX3 | | .13154 | .717 | .46474 | •21598 | •0007t | .05407 | | |
| | IPX1 | | 1.56605 | .212 - | •46806 | -21908 | .00310 | .00740 | | |
| | I≥x2Ū | | .33806 | .561 | .46894 | .21990 | .00095 | .00233 | | |
| _ | 1#X3 | | .00070 | .979 | .46894 | .21990 | .00000 | .05464 | - 3.08301 | .000 |
| 10 | VFX2 | | .86663 | . 353 | .47243 | .22319 | .00329 | .04463
.04065 | , JIOGJUL | 1000 |
| | VPX1 | | 2.80330 | .052 | .47076
.48150 | •22730
•23184 | .00411
.00455 | .04055 | 1 | , |
| \ · -· | VFX3 | · • · · · | - <u></u> 1.63811
.35096 | . 201 | -48375 | .23401 | .00217 | .03334 | · • • • • | |
| \backslash | IFX1
IPX2 | | .02256 | .361 | .48399 | .23425 | .00023 | | k | |
| \backslash | IPX3 | | .15557 | . 693 | 48435 | .23460 | .00035 | .06461 | \$ | `. |
| i \'n | PPX1 | • • | 3.22533 | .073 | .48542 | .23563 | .00103 | .02871 | 3.04356 | 0 |
| \ * • | PPX2 | • | .C662 | .796 | .48890 | .23903 | 00340 | .02525 | , | |
| ,
, | PPX3 | | 4.66455 | .031 | .49935 | .24936 | .01033 | .06961 | • | • |
| | VIPX1 | | 1.22706 | .269 | .49935 | 24936 | •00000 | 02801 | 3.01722 | .000 |
| | VIPX2 | • | •37900 ⁻ | .539 | .50738 | ,25744 | .00808 | .01927 | | , |
| • | \ V 1PX 3 | | 3.11533 | .07s | .51407 | .26427 | •00Å 8 <u>2</u> | •05039 | | |
| 13 | V IPX L | - | 3,16764 | .076 | .51906 | .26942 | .00515 | .03922 | 2.88250 | AL 0 ' |
| | VYPX2 | | .04353 | .334 | .51589 | •27029 | .00096 | .03673 | | |
| 14 | V 19x3 6 | 26 | .45340 | 166. | .520843 | .27129 | .00099 | . 36 3 3 5 | | |
| 14 | VPHX2 U
VPMX3 | | 1.0151C | .179 | .52105 | .27149 | •00021 | .03992 | 2+63824 | ° 627 |
| , | VPPXA
VPPX3 | | 2.2585C
.18567 | .134 | .52813 | .27892 | • 00743 | •02841 | | _ <u>v</u> |
| | IPHX2 | | .44227 | • 6 6 7
• 5 3 6 | ·.52926
.53054 | .25012
.25143 | .00120
.00136 | .06119
.01319 | | 61 |
| | IFMX1 | • | .66854 | .414 | .53106 | .28202 | •00055 | .01964 | | · · |
| с., | IPPX3 | | .61455 | .434 | .53233 | .28337 | .00135 | .06767 | | |
| 1 H | VIPHX1 | | .67655 | .411 | .53291 | .28399 | .00062 | .02376 | 2.45202 | • 000 - |
| EDI | -VIPHX2 | | .11056 | .740 | .53293 | 128402 | × • 00002 | .02924 | 2 | |
| ERIC | V IPPX3 | • _ , | .75£36 | .384 | .53450 | .28569 | .00167 | .05978 | • | 4 |
| Full Text Provided by I | RIC | \ | | | • | | 1 | - | • | |

CORRECTION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR SUCCESSION

ι,

÷

SUNNARY TABLE

١

. .

·· ,

| STEP | VARIABLE
ENTEREC REPOVED | F TC.
Enter ca reguve | SIGNIFICANCE | PULTIPLE R | R SGUARE | R SCJARE
Change | SIMPLER | OVERALL F | SIGNIFICANCE |
|----------------------------|-----------------------------|--------------------------|-----------------|---------------------|------------------|--------------------|---|-----------|---------------------------------------|
| 1 | *** | •CCleE | . 965 | .01394 | .00019 | .00019 | .01394 | .43016 - | .651 |
| 2 | VVCI . | 78746 | .375 | .04791 | .00230 | .00210 | .04795 | , | • |
| 2 | PAPSTCT ~ | 8. 221 <i>2</i> 7 | . 004 | 15439 | .02384 | .02154 | 14420 | 3.03607 | .029 |
| 3 | PPRT | 60.57855 | .000 | .40067 | .16054 | .13670 | .39233 | 17.78551 | .000 |
| 4 | X2 | .02005 | .887 · | .40216 | .16173 | .00119 | ·02071 | 10.5397-7 | • • • |
| , • | XJ | 1.66024 | .198 | .40811 | .16655 | .00482- | 05855 | • | |
| | X3 | .C3158 | * . 85 4 | .40820 | .16663 | .00007 | 04339 | | • |
| 5 | VX2 | .14575 | .681 | .41009 | .16815 | .00155 | 00020 | 6.04314 | . 0 |
| | V×1 | 77545 | .378 | .41623 | .17224 | .00507 | 02113 | | |
| | XX3 | .05338 | ໍ . 76ວ | •41630 | . 17330 | 1.00006 | 02439 | | a a a a a a a a a a a a a a a a a a a |
| • | [x] / | .\$43èC | .332 ` | .41657 | .17353 - | erccc. ha | 05179 | | · · · · · · · · · · · · · · · · · · · |
| • | 1 * 2 | 1.06432. | .303 | .42116 | .17738 | .30385 | 02544 | | |
| | 1×3 | .23715 | .627 . | .42180 | .17792 | 1.00054 | ,-,04620 | | -7 |
| 🌢 🕔 | | .10255 | . 749 | •42263 | .17861 | .00070 | 07516 | . 5.07233 | •000 |
| | PX3 . | 1.30742 | .254 | .42818 | .18334 | .00473 | 05 🖣 96 | | 1 |
| | PX2 | .27587 | . 600 | .42891 | 18396 | • JCO63 | 03645 | | |
| 7 | fx2 | .02311 | . 879 | .42916 | .18418 | .03021 | 00342 | 4.35941 | 0 |
| | PX1 | 1.24655 | .265 | •4306ŀ | .1,8543 | .00125 | 05446 | | ••• |
| | _ PX3 | 1.27277 | .260 | .43396 | .16532 | .02299 | 04197 | | |
| | VIX1 | .00300 | . 756 | .43660 | .19062 | .33230 | 01077 | 3.94135 | .000 |
| • | VIX2 | 1.02660 | .309 | .44227 | .19560 | .00499 | .00179 | • | |
| | ¥1X3 | .50538 | .478 | .44357 | .19675 | .00115 | 02063 | | - |
| 9 | VPX1 | .00699 | . 933 | .44443 | .19751 | .00076 | 03815 | 3.30338 | •000 |
| | VYX2 - | • 2 E O 4 3 | . 597 | .44694 | • 1 99 75 | .00224 | 01156 | | |
| | VPX3 | 1.01597 | . 314 | •44981 | .20233 | .00297 | 03977 | | |
| | EPX1 | 3.14555 | 077 | .45746 | .20927 | .00694 | 07418 | , | |
| - | [PX2 | . €(CG∠ | . 996 | .45755 | .20935 | .00007 | 04247 | • | • ~ |
| | 1PX2 | .27822 | . 59.8 | 45823 | .20998 | .000£3 | 06406 / | | |
| 10 | VPX2 | .CC012 | . 991 | .45835 | • • 2 10 09 | .00011 | .01682 | 2.84083 | .000 📈 🗸 |
| | VPX1 | 3.02576 | .150 | • 46190 | .21336 | .00327 | 02836 | | · · · · · · · · · · · · · · · · · · · |
| • • | VFX3 | 1.36286 | • 244 | .46729 | -21836 | .00500 | 01814 | . , • | |
| | [PX1 | .32866 | <i>,</i> 567, | .46761 | .21866 | .00030 | " – | • | |
| | -[FX 2 | +155C1 | . 694 | •46763 | •21868 | •0C00Z | 00615 | | |
| • • | IPX3 | .67£16 | .411 | .46928 | . 2 20 23 | .00155 | 03919 | | |
| 11 | PPA1 . | .81790 | . 366 | .46934 | .22028 | -00005 | 07010 | 2.01223 | 0 1 |
| | PPX2 | .31465 | . 575 | • 46992 | .22082 | .00054 | 01868 | | Nf |
| | PPX3 | 6.21632 | •013 | .48462 | .23485 | .01403 | 05236 | | • |
| 12 | VIMX1 | •OE231- | • 774 | .48533 | .23555 | .00069 | 03218 | 2.60530 | •000 |
| | V [#x2 | .06586 | • 792 | | .23560 | .03005 | 01112 | | • |
| •• | A : | ****** | e -= H1 | • .48455 | . 7 34 7 7 | .0113 | ^3040 | 1 | |
| 13 | VIPK1 | 5.25619 | -• 022 | .49910 | .24910 | .01237 | 02193 | 2.58465 | .000 🗰 |
| • | V IPX2 | .11930 | . 730 | • 49993 | .24993 | .00083 | .01933 | | |
| | VIPX3 | •13455 · | .714 | .50024 | .25024 | .00030 | 01189 | 1 | |
| 14 | V PMX 2 | 1.0003 | . 318 | •50137 [°] | .25137 | .00113 | .00580 | 2.44212 | .000 |
| | VPPX1 | 3.55458 | • 946 | .50681 | .25685 | .03548 | 04611 | | |
| | VPPX3 | .C4CSC | - 840 | .50718 | .25724 | .00038 | 02970 | 8
1 | · 10 |
| | 1 F#X2 | .02004 | .888 | .50836 | .25843 | .00119 | 02198 | | 550 |
| | 1 <i>\$</i> #x <u>1</u> | 3.37503 | . 067 | .51758 | .26789 | .00946 | 07037 | | |
| • • | IFMX3 | .G0658 | . 935 | .51760 | .26791 | .00001 | 05170 | | |
| N | V IPAX1 | 1.24054 | .266 | .51785 | .26817 | .00026 | 04282 | 2.42350 | .000 |
| CDIC | VIPMX2 | 1.58088 | .210 | .51790 | .26822 | .00005 | .00725 | | |
| ERIC | VIPHX3 t | 523 | . 022 | .52918 | .2800 | .01182 | 02553 | | c o o í |
| Full Text Provided by ERIC | | | | | 1.5 | | ∼ <u>-</u> | · • | 629 |

| | ********* MÜLTIP | LE REGRESSION |
^v |
|--------------------|------------------|---------------|------------------|
| DEPENCENT VARIABLE | PANST | | |

SUMMARY TABLE

| STEP | VAI
ENTEREC | RTABËE
R EPCVED | <pre></pre> | | SIGNIFICANCE | MULTIPLE R | P SQUAPE | SQIJAP E
CHANGE | SIMPLE D | OVERALL F | SIGNIFICANC | .e |
|----------------------------|------------------|--------------------|-------------|--------|--------------|----------------|--------------------------|--------------------|---------------------|-----------|-------------|--------|
| ้า | VVCV | | 1.1 | 5743 | .283 | .04270 | .00182 | .001 92 | 04270 | .76070 | .468 | |
| | VVCI | | .1 | 73097 | • • 393 | .05924 | .00351 | . 701 69 | ·72P 98 | • | • | |
| • 2 | MARSTOT | | 21.2 | 25885 | .000 | .22439 | .050 35 | 04. R4 | 20213 | 7,61720 | •000 | • |
| 3 | PPRT | | 72.9 | 7811 | .000 | ,43379 | .18914 | | .40175 | 24,91150 | .007 | |
| ʻ 4 | X3 ` | | | 2891 | .865 | .43439 | .18867 | | 02949 | 14.40626 | 0 | • |
| | X2 | | •9 | 23385 | • 334 | .43700 | 19297 | .10227 | 04837 | • | | |
| - | X1 | | | 04306 | . 336 | .43709 | .19105 | .00004 | 03893 | | | |
| <u>5</u> | VX2 | - 1 | | 52269 | .218 | .43979 | 19341 | .00236 | 02503 | 4.04711 |) O | |
| | VX3 | - | .9 | 95248 | • 330 | .44011 | .19370 | .00029 | 00994 | | • | ` |
| | - VX1 | | | 1705 | .121 | .44394 ~ | .19708 | .00338 | 04497 | | | |
| | _1X3 | · • | .3 | 34152 | .548 | | .19736 | .00028 | 02914 | | | |
| - | 1X1 | | | 82291 | .365 | .44579 | .1997) | .00136 | 04125 | | | |
| | 1×2 | | | 16585 | •745 | .44602 | . 19893 | .00020 | 04696 | | | ` |
| • | PX1 | | | 38525 | .347 | .44735 | .20013 | .00119 | 05349 | 6.59109 | ົ້າວວ | |
| • | MX3 | • | | 55230 | . 406 | .44874 | .20137 | .00124 | 01939 | | | |
| | PX2 | | | 14982 | . 823 | {.44885 | - 20146 | .00010 | 04899 | | Ł | |
| 7 | PX2 . | | | 36353 | • 244 | 15246 | . 20472 | .00325 | 05933 | 5.68561 | 0 | |
| | ₽X1 | r | | 34484 | . 359 | .45355 | .20571 | .00097 | 037 39 - | | | - |
| | PX3 | | .4 | \$3451 | •510 | .45447 | .20654 | .00083 | 05672 | | | |
| 8 | VIXI | | 0 | 06324- | • 955 | .45575 | .20771 | .07116 | 04652 | 5.02413 | .000 | |
| | A 1 X 3 | | 1.7 | 76123 | .185 | .45992 | .21153 | .00382 | 01317 | • | | |
| | A1X5 | | | 0007 | . 993 | .45992° | .21153 | .00000 | 02537 | | | |
| 9 | V=X1 | | | C000 | . 1.000 | .45997 | .21158 | .00005 | 06340 | 3 96247 | • 000 | |
| | VMX2 | | | 15852 | •690 | .45998 | •211 - 58 | •0000 | 03057 | | | |
| e | VPX3 | | | 8760 | - 5 | .46086 | .21239 | .00092 | 00504 | _ | | |
| | 1#X3 | | | 20825 | 648 | 46099 | .21251 | .00011 | 02079 | | | |
| | IPX1 | | | 36135 | • 548 | .46109 | .21769 | <.00009 | ° − •05672 ~ | | · | |
| | IPX2 | | 1.0 |) 4563 | .307 | . +6327 | .21462 | .00202 | +.04722 | | | |
| 10 . | | | | 15242 | 153 | •46691 | .21801 | .00339 | 02909 | 3.36581 | 000 | |
| | VPX1 | , | | 7446 | .196 | •47Q02 | .22092 | .00291 | 04792 | | 5 | • |
| | VPX3 | | | 18799 | .767 | +47003 | .22093 | .00001 | - •037 20 | _ | | • |
| | _1#X1 | | | 3185 | | 47045 | . 221 32 | .00039 | 04181 | | | |
| | JoPX3 | | | E464 | •408 | .47178 | •25228 | •00175 | ∽.05 862 | | | |
| •• | TFX 2 | | | 4111 | .839 | .47187 | •22266 | 00008 | -,05684 | | _ | |
| ال | | | | 36210 | • 244 | .47340 | • 2 24 11 | .00145 | 04432 | 3.12552 | 0 | - |
| • | PPX2 | • | | 5040 | . 532 | •47472 | .22536 | .00125 | 06085 | | | |
| | - PMX3 | | | 1338 | . 737 | • 47 496 | • 2 2 5 5 8 ⁱ | .00022 | 04715 | • | | a (|
| 12 | V IMX3 | | | 5955 | .212 | .47539 | .22600 | .00041 | | 3.07556 | . 000 | |
| • | V IPX1 | | ∠.0 | 5651 | .152 | .48474 | •22600
•23497 | .20898 | 06474 | 2001274 | • • • • • • | |
| 13 | VIMX2 | | 1.5 | 3558 | .216 | .48780 | .23794 | .00297 | 02983 | | | 1
1 |
| - 12 | VIPX1 | - | 4 | 7940 | . 489 | .48826 | •23840 | .00946 | 04972 | 2.98604 | 0 | , |
| | VIPX2
VIPX3 | | | 3002 | • 2+3 | .49399 | .74407 | .00562 | ~ +02782 | | | |
| · | • | | | \$413 | • 1 99 | .49720 | .24721 | .2031B | 73973 | | • • | / |
| 14 | A SAXS | 630 | | 8081 | • 209 | •50604 | •25609 | .00587 | 03698 | . 2.94281 | う | ` |
| | | 000 | | 6653 - | • 5,24 | | .26049 | .20441 | 06174 | • | • | |
| ì | VPMX3 | * | | 6086 | .185 | .51455 | .26477 | .00429 | 03509 | | | ទទ |
| - • • • • • | _ [PMX2 | • | | C444 | • 046 | .51982 | • 270 22 | .00545 | 05695 | | | 531 |
| / | [PPX1 | | | C192 | . 479 | .52150 | .27203 | .00181 | 04957 | | | 0.74 |
| • 4 | IPPX3
VIPPX2 | | | 24105 | . 624. | .52200 | .27248 | .00046 | 04936 | | | |
| · | VIPPX2
VIPPX1 | | | 6018 | .689 | .52232 | .27281 | .00033 | 03419 | 2,76964 | •000 | |
| CDIC | | | | 6162 | .548 | •52251 | .27302 | .00021 | 06348 | | | |
| ERIC | V LPMX3 | | •••• | 6833 | . 544 | .52318 | .27372 | •00070 | 03783 | | • | |
| Full Text Provided by ERIC | | | | | | | | • | | | - | |

֥•

DEPENDENT VARIABLE.. NTRANST

SHMMARY TABLE

.

ŗ.

2

ç

| STEC | ENTERS | AR LABLE
D' REMOVEN | F TO
ENTER OR REMOVE | SIGNIFICANCE | HULTIPLE R | R SQUARE | R SOUSRE
CHANGE | SIMPLÉ A | | OVERALL F | SIGNIFICANCE | |
|----------------|------------------|------------------------|-------------------------|--------------|------------------|------------------|--------------------|-------------------------|----|--------------------|--------------|------|
| 1 | naga
Tran | | .12926 | .719 | .00799 | •000"s | .00005 | J0/99 | | .31870 | . 727 | - |
| 2 | HARSTO | • | •h ;974 | .435 | .03834 | +001+7 | .00:41 | • 33453 | • | | | |
| 3 | PPRT | · • | 19.91455 | .000 | .21324 | +04547 | .04400 | -'.20187 | | ×.85993 ' | +000 | |
| | 1 x2 | • | 77.52274 | 0 | •437n2 | +19099 | .14551 | .41046 | | 22.43699 | .000 | |
| • | xī | | 1.48283 | • 22 • | • • • 4657 | •19952 | .10453 | 07046 | | 15.39656 | .000 | |
| | x3 | | .46893 | . 494 | .44817 | .2006 | .06134 | 08731 | | | | |
| 5 | VA2 | | .1n503 | .746 | .44839 | -20105 | .00020 | 07749 | | | | |
| 7 | VA3 | | .99787
.01695 | +341 | .44869/ | •20114 | .00,08 | =.08492 | • | Ø.85569 | .000 | - |
| | VAL | | 3.95398 | . 94 | .44953 | -20203 | .00:94 | 08050 | | | | |
| | 143 | | .7 <u>2</u> 977 | • 047 | .45459 | -20655 | .00458 | 11019 | | | | |
| | 171 | | 2.46011 | | .45631· | .20842 | .00156 | 03395 | | | | |
| • | - 172 | | 1.95061 | •11A | •45902 | -210/0 | .00248 | 09191 | | | | |
| 6 | MA1 | | 1.09243 | -163 | .46295 | 21433 | .00363 | 09782 | | | • | |
| | MA3 | • | . 32368 | .297 | .46293 | .21435 | .00002 | 47036 | | 1.51633 | .000 | |
| | HAZ | | · 2.99085 | •57 n | • 46633 | +21747 | . 1.0311 | 0/436 | | - | | |
| 7 | PAZ | | .01413 | .044 | 47224 | -22301 | .00355 | - 10307 | | | • • • | |
| • | PA1 | | 7.42557 | .905 | .47445 | •22510 | .00209 | 06316 | | 6.85474 | .000 | |
| | PA3 | | 1.21164 | • 007 | .48627 | -23645 | .01138 | 05134 | | - | | |
| A | V1X1 | • | 1.55545 | •272
•213 | .48856 | .23869 | .00222 | 00335 | | | | |
| | VIX3 | | 0u193 | .965 | •49142
•49145 | • 24149 | .09279 | 11359 | | >. 99474 | .000 | |
| | VIXZ | | 27848 | .59A | • 49195 | •241>3
•24204 | .00004 | 00+52 | | | | |
| 9 | VIX1 | | .56021 | • 455 | • 49242 | •24243 | .00051 | -,08769
11558 | | | | |
| • | VNXZ | ĩ, | .15450 | .694 | • 49315 | 24319 | .00072 | 10308 | | 4.73057 | -000 | |
| | V1123 | • | .04655 | . 429 | .49320 | •24325 | | - | | | | |
| | 143 | | .1.12A3 (| .669 | •49327 | •24323 | .00005
.00006 | 04/62
08559 | | | | |
| | INAL | | .79913 | - 591 | •49468 | -244/1 | .00140 | 09471 | | | | |
| | THAS | · | . 44538 | .505 | .49552 | +24554 | .00053 | 11218 | | | | |
| 10 | VPXZ | | .07180 | .789 | .49575 | +24577 | .00024 | 05290 | | 3.92139 | .000 | |
| • | VPX1 | · · · · | •13714 | •711 | 49721 | -24722 | .00145 | 07.030 | • | | -, ••••• | |
| | VP×3 | | .02237 | .491 | .49724 | 24725 | .00103 | 00413 | | | | |
| | 1PX1 | | ,72876 | .394 | .49777 | 247/8 | .00053 | 05869 | | | | |
| · , | IPX3 | | .00000 | .040 | .49793 | .24773 | 00015 | 08740 | | | - | |
| | INYS | | .95042 | .357 | 49952 | .24952 | .00159 | - 00055 | * | | | |
| | PHX1 | | .05738 | | +9958 | 24958 | | 05442 | | 3.62724 | | |
| | PHXZ | | 1.31839 | .252 | .50210 | .25211 | .00252 | -,08186 | | | | |
| | PHX3 | • | .03455 | .453 | .50217 | •25217 | .00006 | 08643 | | • | | |
| 12 | VIMXJ | | - 67207 | +413 | . >0358 | .25359 | - | - | | 1 | •• | |
| | VIMX1 | | .67207
.41333 | .364 | .50455 | +25457 | .00142 | 0 <i>42</i> 46
12081 | | 3.38417 | .000 | |
| 1 | VIMX2 | | .35088 | .554 | .20521 | -25523 | .10065 | - 14 047 | , | | | |
| 13 | VIPA1 | | .33840 | .561 | .50541 | .25544 | .00020 | 10+61 | | 3.27740 | .000 | |
| | VIPX2 | | .30799 | . 579 | .50545 | .255+8 | .0004 | 5382 | | | | |
| 1. | VIPX3 | -* • | 4.77491 | . 129 | •21424 | .25444 | .00896 | 00020 | | | | |
| 14 | VPMX2 | • | .4135# | 521 | .51618 | • 2664 \$ | .00200 | 0/096 | •• | 2.99926 | .000 | |
| | VPMX1 | | -07617 | .937 | .51731 | 26701 | .00117 | 08673 | | E. 77760 | | |
| | VF'MX3 | | . 45860 | . 355 | .51913 | .26949 | .00188 | 47437 | | | e | л |
| | IFMX2 | | 1.51529 | 219 | .52010 | .27057 | .00108 | 04544 | | | Č. | 523 |
| | IPHX1 | N | 2.53925 | · •115 | .52505 | -2750B | .00511 | 05382 | | | | J |
| 15 | IPMX3 | | .03651 | .A49 | .52512 | +27575 | .00007 | 07054 | | | | |
| 47 | VIPMX2
VIPMX1 | - | .0002- | . 994 | .>2514 | .27577 | .00002 | | | 2.80545 | .000 | |
| 0 | VIP4X3 | , | .01766 | | .2520 | .27583 | .00006 | 0¥261 | | | | ζ. |
| 2IC | < | 632 | -00146 | .07à | .52520 | .27583 | .00000 | 07552 | | | | |
| | | 000 | | N. | | | | - | | | 633 | |
| romaba by EniC | | | | `` | | | - | | | - | UU | -, . |

ŀ

* * * * * * * * * * * MULTIPLE CECHILO ENT VARIABLE ... CEP

2

ю. .

SJHMARY TABLE

| - | STEP | ENTERED | R FYCVED | F TO
ENTER OF REMOVE | SIGNIFICANCE | MULTIPLE R | P SQUARE | P SOUAPE
CHANGE | SIMPLE R | OVEPALL F | SIGNIFICANCE | |
|-----|----------|------------|----------------|----------------------------|--------------|------------------|------------------|--------------------|------------------|-----------|--------------|--|
| • | 1 | VVQV | | .04533 | .932 | .01677 | .00029 | .00028 | .01677 | 2.24620 | .107 | |
| | • | V-VC1 | | 4.37363 | .037 | .10312 | .01063 | .01035 | .10260 | 4 77/67 | 0.03 | |
| | 2 | MAPSTOT | | 9.62448 | - 002 | .18153 | .03295 | .02232 | 14095 | 4.73652 | • 003 | _ ` |
| - | 3 | PPRT | | 34.57895 | .000 | .32736 | .10717 | .07421 | .30401 | 12,48319 | •000 | |
| | -4 | ¥2 | | 1.47397 | .225 | .34542 | .11932 | .01215
.00049 | 10845 | 9.32796 | 0 | • |
| | | X1 | | .CC038
1.93535 | .984 | .34612 | .11097 | | 07957 | | | |
| | 5 | *3
VX2 | | | .176 | .35170 | .12349 | .00389
.00160 | 11857
~.08522 | 4.80779 | 0 | |
| | > | VX3 | | 2.77086
,57 6 95 | •097
•448 | .35396
.36098 | •12529
•13031 | .00502 | 12309 | 4.0-114 | v | |
| • | | VX1. | | 1.56797 | .211 | .36585 | | •00354 | 09208 | | | 1 |
| | | IX3 | • | .55064 | | .36761 | •13514 | •00129 | 12496 | | | |
| | | 1×3
1×1 | | .0001 | .998 | .36763 | .13515 | .00007 | 08641 | | | |
| | | 1×2 | | .05730 | .810 | .36780 | • 136,29 | .00012 | - 1049? | | 1 | 1 |
| | · 🖌 | MX1 | | 1.90625 | .168 | .36920 | .13557 | .00029 | 07256 | 4.23629 | . 202 | |
| , | • | PX3 | | .35960 | .528 | -37290 | .13905 | .00349 | 11540 | | | |
| | | HX2 | - | 2.17783 | .141 | ·37904 | .14367 | .00462 | 11719 | | | • |
| | 7 | PX2 | | •4 C3 72 | .526 | .37988 | .14431 | .00064 | 08951 | 3.85525 | 0 | |
| | • | PX1 | • | 3.80754 | .052 | .39292 | .15439 | .01008 | +.05194 | | • | • |
| | • | PX3 | · . | .03118 | .860 | .39301 | | .00007 | 11063 | ** | 2 | |
| 1 | 8 | VIXI | | .17575 | .673 | .39552 | .15644 | .00199 | 09974 | 3.48030 | .000 | |
| | | VIX3 | | .67840 | · .÷11 | .39580 | .15665 | .000222 | 12696 | | •••• | |
| • | | VINZ | | 2.22187 | .137 | .40167 | .16134 | .07468 | 09727 | | | |
| • | 9 | VMX1 | | .25651 | .613 | .40195 | .16156 | .00022 | 09126 | 3.12040 | . 202 | |
| • | | VMX2 | | 1.10959 | .293 | .40403 | .163 24 | .00168 | 09508 | | | |
| | | VPX3 | | .07913 | .779 | .40403 | .16324 | 00000 | 12431 | , | | |
| | • | IMX 3 | | 3.16631 | .076 | .40409 | .16329 | 00004 | 12106 | | | |
| | | TPXI | • | 4.61546 | .032 | .42346 | .17932 | +01603 | 08429 | | - • | |
| | | IMX2 | • | 1.41104 | .236 | .42692 | .18776 | .00294 | 11731 | | | - |
| | 10 | VPX 2 | | .05930 | .807 | .42699 | .18232 | .00005 | -,06482- | 2.64718 | .000 | 、 · |
| | | VPX1 | •••• | - 1.62636 | · 203 | .43016 | .185 04 | .00272 | 07030 | ; - | | |
| | | VPX3 | | .77093 | .380 | .43129 | .18601 | .00098 | 11186 | | • | |
| | . | IPX1 | | 02753 | .866 | .43145 | .19615 | .00014 | 06163 | | | |
| | | 1 P X 3 | - · | 1.37590 | .241 | •43471 | 18897 | •002 82 | 11653 | • | | - |
| | | [PX 2 | | •0 53 73 | .817 | .43484 | 1,8905 | .00011 | 08855 | ** | `. | |
| | _ 11 | PMX 1. |) ! | .04792 | .827 | .43487 | .18911 | .00003 | 04702 | 2.44284 | .000 | |
| | | PPX2 | | .45307 | .481 | .43534 | .18952 | .00040 | -+09894 | | | |
| | | PMX 3 | | .67032 | .413 | .43696 | .19093 | .00147 | 11166 | • - | | |
| | 12 | VIMXI | | .08116 - | .776 | .43789 | .19175 | .00082 | 10370 | 2.31518 | .000 | |
| • | | V14X3 | | 1.74474 | .187 | .44016 | .19374 | .001 99 | 12879 | , | | 4 |
| , | | A1485 | • | 1.04329 | .308 | .44266 | .19595 | .00221 | 10013 | | | |
| | 13 | VIPX1 | - | .11404 | ,736 | .44283 | •1 % 10 | .00015 | 07905 | 2,15251 | •001 | • |
| | | VIPX2 | | .44315 | .504 | . 44 364 | .196.81 | •00072 | 04805 | | * | |
| 4 | • | V PX3 | | .14198 | .707 | .44398 | .19712 | .00030 | 11659 | | | : |
| ю., | 14 | VPMX1 | , | .46680 | .495 | .44831 | .20099 | .003 97 | 07292 | 2.11785 | • 000 | |
| 6=1 | | VP4X2 | | .24634 | .620 | .44833 | .20100 | .00001 | 07519 | | , | |
| | | VPMX3 | | .10554 | .745 | •44936 | .20192 | .00092 | 11859 | , | · · | 635 |
| | | 1PMX 2 | 634 | 6.00181 | .015 | •45573 | .20769 | .00577 | 10039 | • | ~ , | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| | | | UU T_ | .35398 | .552 | .46044 | -21201 | .00432 | 06102 | | | |
| | 16 | IPNX3 | | 3.11525 | .078 | .46752 | -21854 | .00657 | 11782 | | | • |
| | 15 | V 19422 | | .05913 | .753 | .46831 | .21932 | .00074 | 08021 | 1.99247 | .000 . | ÷ |
| | | V[PMX] | | .035o2
.17521 | .850 | .46832 | .21932 | .00000 | 08631 | | . | t |
| | | V [P443 | | .1/7/1 | .676 | •46871. | .21969 | .00037 | 12399 | | • | |

ACECHILO Ð

· · ·

۱.

| SUNNARY TASLE | s | | ж | м | | R | Y | T | 4 | 5 | L | F | |
|---------------|---|--|---|---|--|---|---|---|---|---|---|---|--|
|---------------|---|--|---|---|--|---|---|---|---|---|---|---|--|

Ł

15

A 4

3.8

NJLII

| STEP | VARIABL
Entered Re | É
PCVED | F TO
Enter or renove | SIGNIFICANCE | MULTIPLE R | P SQUARE | P SQUARF
CHANGE | STMPLE P | OVERALL F | SIGNIFICANCE |
|----------------------------|-----------------------|------------|-------------------------|----------------|---------------------------------------|------------------|--------------------|------------------|-------------|----------------|
| - 1 | v vc v | | 2.55854 | .110 | .04434 | .00734 | .00734 | 04834 | 3.37477 | . 035 |
| • | VV91 | | 5.74856 | .017 | .12513 | .01565 | .01331 | .09862 | | .000 |
| · 2 | MAPSTOT | | 16.28379 | .000 | .22310 | .05236 | .03641 | ~.16941 | 7.7144 | .000 |
| : 3 | PPRT | | 21.75425 | 0 | .33230 | .11742 | .05837 | .2A129 . | 13,12695 | .000 |
| 4 | X 2 | -7 | 1.13414 | .288 | .33 401 | .11157 | .00114 | 03729 | 7.67128 | .907 |
| | X1 · | | .00415 | . 949 | .33446 | .11197 | .00030 | 00157 | | |
| • | X3 · | | .70850 | .400 | .33669 | .11336 | .00150 | .01547 | 4.10417 | . 000 |
| 5 | ۷۷2 ۰ | | .02644 | .871 | .33 634 | .11346 | .00010 | 02989 | 4.1.0411 | |
| ' | V X 3 | | .0C103 | .974 . | | .11349 | •00002 | .01733 | | 2 |
| | * V×1 * | | .01433 | .905 | • • • • • • • • • • • • • • • • • • • | . 1357 | .0009 | •00291
•01356 | • | |
| • | - IX3 - | | .01252 | .911 | .33724 | .11373 | .00016 | 00516 | | |
| | 1X1 | | .03652 | | .33724 | .11373 | .00000 | 03477 | | 1 |
| | 1*2 | | •2039 | .654 | .33788 | .11416 | .00043
.00375 | .00930 | 3, 43954 | •000 · |
| • 6 | MX1 | | 1.13864 | .287 | .34338 | .11791
.11802 | .00011 | .02979 | | ·• - · · · · |
| | NX3 | • | .07583 | .783 | •34354 | • | .00007 | 01862 | | |
| _ | P×2 | | .03230 | .857 | .34364 | .11809 | .00005 | 02960 | 3.02051 | .000 |
| 7 | PX2 | | .43440 | .510 | .34371 | .11814 | .00511 | .00940 | | |
| <u>د</u> ه | PX1 | | 1.83451 | .176 | .35106 | .17337 | .02027 | .00957 | 1 | |
| | PX3 . | | .03459 | .853 | .35116 | .12454 | .00122 | 00405 | 2.71116 | .000 |
| . 8 | V1×1 | | .0005 | .994 | .3529J
.35323 | ,12475 | .00021 | | • • • • • • | ••• |
| | V1×3 | | .02368 | 878 | .35828 | .1 29 37 | .00362 | 03965 | _ | |
| | VIX2
VMX3 | | 1.68055 | •196
•272 | .36093 | .1 30 27 | .00190 | .02360 | 2.34985 | .000 |
| • | V#X2 | | 1.20931 | | :36098 | ., | .00004 | | • • • | - , , , , |
| | VMKL. | | .00872 | .419 | .36321 | .13192 | .00161 | .01076 | • | |
| , | · INK3 | | •65406
•14855 | .700 | :.36483 | | .00115 | | | |
| | IMX1 | | .24964 | 618 - | 36911 | | 00314 | | | |
| | TMX 2 | • | 2.47179 | .117 | .37624 | | .00532 | | | .000 |
| 10 | VPX2 | | .06921 | .793 | .37860 | | .00178 | | 2.28148 | |
| | VPX1 | | 1.92873 | 166 | 38700 | | | | | |
| | VPX3 | | .63264 | .427 | , .39191 | | .00382 | | | |
| | IPX 1 | | 3.18766 | .075 | .39971 | | .00618 | | - | • · • • |
| • | 1PX3 | | 2.27797 | .132 | •40450 | | | | | |
| | [P X 2 | | .57679 | .448 | .40601 | | | | 2,14036 | .000 |
| 11 | PMX 1 | | .41675 | .519 | .40935 | | .00272 | | | · ··· |
| | PHX 2 | | 4E700 - | .486 | 41084 | | | | , | |
| | PPX3 | | .CCC07 | * . 993 | .41084 | | | | 1 00077 | .001 |
| 12 | V 14X3 | | .08472 | .771 | .41111 | | | | 1.99077 | • 0.01 |
| | V14×1 | | - • 42050 | .61.7 | •41292 | | | | | |
| - | V [4X2 | | .06707 | .796 | .41310 | | | | 1.82665 | •001 |
| 13 | | _ | .09310 | .760 | .41365
.41613 | | | | 100 002 | |
| | VIPX2 | • | 1.50488 | • 221 | .41955 | | | | | |
| | VIPX3 ` | | .94945 | .330 | .42896 | | | | 1.83261 | .001 |
| 14 | | | 4.00327 | .906 | .43018 | | | | | |
| i
L | VP4X2 | | .01406 | . 366 | .43172 | | | | | |
| • | VP4X3 | | .81901
2.03591 | .154 | .4348 | | | | , | S
S |
| | [PMX2 | | - 1.16195 | .282 | .43813 | | | | | 554 |
| | IPMX1 | | .001.54 | .965 | .4381 | | | | | |
| | [PMX3] | 2 | .07277 | .787 | .4383 | | | | 1.77345 | .001 |
| 1 | VIPHX2
VIPHX1 | | 2.05662 | .152 | .4402 | | | 700701 | , | |
| EDIC | VIPHX3 | 636 | 1.64586 | .197 | .4442 | | .0035 | .01379 | - | , |
| Full Text Provided by ERIC | , V ĮENAJ - | 030 | ~ | , , , | | | , « | ĩ | | -637 |
| ······ | | | | | • • | | | . • | | - - · · |

APPENDIX I

• -

Ę,

ŗ

555

Schedule Forms

ŕ,

ŵ Name School Chem. Teacher

556

DIRECTIONS: Place an X in the space below designating when you have time for a feedback session on problem solving. This should be done during your study hall, free period, and or after school. Please indicate as many of these times as you have available, although you will just be interviewed one time every few not chose

SCHEDULE :

| PERIOD | X |
|--------------|---|
| 1. | |
| 2. | |
| . 3. | |
| 4. | |
| 5. | , |
| 6. | |
| 7. | |
| . 8. | |
| 9. | 1 |
| After School | |

FEEDBACK: We would like to find out how you go about solving problems. Each student who participates in the feedback sessions will be paid 3.00 per session. These sessions in <u>no way</u> will be used to evaluate you. The discussion in the feedback session will be confidential. Your teacher will not be informed of what you do in these sessions. We would appreciate your help.

Please return this form to your teacher.

| Name | |
|---------------|---|
| School | |
| Chem. Teacher | · |

557

DIRECTIONS: Place an X in the space below designating when you have time for a feedback session on problem solving. This should be done during your study hall, free period, and or after school. Please indicate as many of these times as you have available, although you will just be interviewed one time every few months.

SCHEDULE :

FL'DBACK: We would like to find out how you go about solving problems. These sessions in <u>no way</u> will be used to evaluate you. The discussion in the the feedback session will be confidential. Your teacher will not be informed of what you do in these sessions. We would appreciate your help.

Please return this form to your instructor.

Ł

ERIC

Protocol for Conducting Interviews

· 641

÷.

INTERVIEWING PROTOCOL Equipment Check EQUIPMENT: SET-UP: TAPE RECORDER (WITH MICROPHONE) EXTENSION CORD A. WITH TABLE TAPE RECORDER TAPE . (BLANK) 0 WHIMBEY TAPE PAPER [7] 5 TWO CHAIRS PENCILS Ł **RESPONSE SHEET** TABLE 11 OPERATION CHECKS: B. WITH STUDENT - TAPE CHAIRS RECORDER 1. TAPE RECORDER WORKING? 1 ំំំទ 2: TAPE REWOUND? 3. VOLUME CONTROLS SET? 111118 11 11 41 4 · I] 1 121 27

·.,

CARD 1

(START TAPE,) INTRODUCTION: MY NAME IS MR./MS._____FROM INDIANA UNIVERSITY, I AM PART OF A GROUP OF SCIENCE EDUCATORS THAT IS TRYING TO HELP STUDENTS LEARN TO SOLVE CHEMISTRY PROBLEMS. IF YOU HAVE NO OBJECTIONS, I WILL TAPE OUR CONVER-SATION. YOU WILL NOT BE REQUIRED TO LISTEN TO THE TAPE. THIS FEEDBACK SESSION IS TO SEE HOW YOU GO ABOUT SOLVING CHEMISTRY PROBLEMS. THIS IS NOT A TEST AND IS FOFALLY PRIVATE. I WILL NOT BE REPORTING BACK TO YOUR TEACHER ON HOW WELL YOU DO. THEY WILL NOT HEAR THE TAPE.

(and 2 -

WHIMBEY TAPE

1, VI GOING TO PLAY A TAPE FOR YOU TO SHOW YOU HOW I WOULD LIKE FOR YOU TO SOLVE THE PROBLEMS AND ANSWER QUESTIONS. THE PERSON IN THE TAPE WILL READ THE PROBLEM FLOUD AND ALSO SOLVE IT ALOUD. ALL THOUGHTS CONCERNING THE PROBLEM SHOULD BE SPOKEN ALOUD. THIS WAY, I WILL KNOW WHAT YOU ARE THINKING AND, THEREFORE, BE ABLE TO HELP YOU,

LET'S LESTLN TO SOMEONE THINKING ALOUD, (STUP/RECORDER) (PLAY TAPE AND GIVE

643

CARD 3

PROBLEM

IF THE CIRCLE BELOW IS TALLER THAN THE SQUARE AND THE CROSS IS SHORTER THAN THE SQUARE, PUT A "K" IN THE CIRCLE. HOWEVER, IF THIS IS NOT THE CASE, PUT A "T" IN THE SECOND TALLEST FIGURE.

561

CARU 4

(START RECORDER.) NOW LET'S PRACTICE THIS THINK-ALOUD TECHNIQUE. I WOULD LINE FOR YOU TO SOLVE THE FOLLOWING PROBLEM ALOUD. FIRST READ IT, THEN SPEAK YOUR THOUGHTS AS YOU SOLVE IT. YOU MAY DO YOUR FIGURING ON A PIECE OF PAPER, BUT TELL ME WHAT YOU ARE THINKING WHILE YOU WRITE. HERE IS THE PROBLEM: (D]

PROBLIM

HARVEY OWES SAM \$27.00. SAM OWES FRED \$6.00 AND ALBERT \$15.30. IF, WITH SAM'S PERMISSION, HARVEY PAYS OFF SAM'S DEBT TO ALBERT, HOW MUCH DOES HARVEY STILL OWE SAM?

CARE E

QUESTIONS

NOW THAT YOU HAVE THE IDEA, LET'S TRY SOME CHEMISTRY QUESTIONS. REMEMBER, LET ME HEAR YOU THINKING AS YOU AN SWER. (ASK THE QUESTIONS ON THE FOLLOWING CARD.) (SHOULD GIVE THE STUDENT THE ANSWER IF HE/SHE DOES NOT KNOW) (PROMPT IN CASE OF SILENCE)

CARD 7

(QUESTIONS)

EACH UNIT HAS A DIFFERENT SET OF QUESTIONS. THEY ARE TO BE ATTACHED TO THIS CARD AS NEEDED.

(AKU 8

NOW LET'S TRY SOME PROBLEMS. YOU MAY USE PENCIL, PAPER, AND AN ATOMIC MASS TABLE, IF YOU NEED IT. ON ALL OF THE FOLLOWING PROBLEMS YOU CAN DO YOUR FIGURING ON A SHEET OF PAPER, BUT TELL ME WHAT YOU ARE THINKING WHILE YOU WILTE.

HERE IS THE FIRST PROBLEM. REMEMBER TO READ IT ALOUD, AND THINK ALOUD DURING YOUR PROBLEM SOLVING. I WOULD LIKE TO HEAR ALL YOUR THOUGHTS RELATING TO THE PROBLEM. (WHILE STUDENT IS SOLVING THE PROBLEM, YOU SHOULD BE WRITING ON THE PESPONSE SHEET) (ONLY PROMPT THINK-ALOUD PROCESS---NO_ASSISTANCE) (GIVE FIRST PROBLEM, SELECT AT RANDOM) (DIFFERENT PROBLEM SETS ARE USED FOR EACH UNIT)

NOW LET'S RY ANOTHER PROBLEM, (GIVE SECOND PROBLEM, SELECT AT RANDOM)

NOW LET'S TRY A THIRD PROBLEM. (GIVE A THIRD PROBLEM, SELECT AT RANDOM)

(IF METHOD WAS NOT EVIDENT, I.E. D, F, A, OR P, ASK THE STUDENT WHICH METHOD HE/SHE USED. HAVE THEM SHOW YOU THE METHOD.)

(SHOW ME HOW YOU USED THIS METHOD ON PROBLEM ONE.)

CARD 10 .

HWER YOU FOR YOUR HELP. DO YOU HAVE ANY COMMENTS ABOUT THIS SESSION?

IN ORDER FOR US TO PAY YOU FOR THIS SESSION, PLEASE SIGN AND DATE THIS FORM.

APPENDIX K

 i_{ij}

Teacher Instructions for Interviews

645

Feedback Session Procedures

Time:

Each session will last approximately 45 minutes, and will be conducted where possible during study periods. It may be necessary at times to have sessions after school or during class time.

Where: I've session will take place in a separate room away from the chemistry classroom.

Supportive Materials:

Audio tape and recorder will be needed to record the interview. The student will be provided with a calculator, periodic chart, unlined paper, and a pencil.

Selection of students:

From the tests administered at the beginning of the school year, the students will be classified according to the diagram below:

Proportional Reasoning

Sixteen students from each of the four groups will participate in a session following each of the four instructional units. Selection of the students from each group will be made on the basis of their success or failure on the immediate post test and on the instructional strategy used. Eight students who were able to solve the problems and eight who were not will be used. In order to encourage participation, \$3.00 will be paid the student for each session.

Initial Instruction to the student:

Prior to the feedback session the students will be given the following instructions: 1. The student will be told that he/she will be solving problems like he/she had done in class. 2. The student will be told that the session will be private. The concept of complete privacy should be emphasized. The student is to be insured that nothing said, nor the results of any problems, will be repeated to the teacher or classmates of the student. The student will be informed that the interviewer will be primarily interested in how the problems are solved.
 Hach student will be asked if he/she objects to being audiorecorded, and will be told that they will not be required to listen to the tape being replayed.

The Session:

The students will use a Think-Aloud Technique. This technique will be divided into three sections as follows: 1. Think-Aloud Warm-up

- a) The student listens to a short tape of a person solving a problem aloud.
- b) The student is taped while solving a think-aloud problem from Whimbey.
 - c) The student is informed of the importance of thinking aloud while solving the problems during the session.
- 2. Questions Section: Chemistry content questions will be asked to establish background and set the tone for the session. A typical question might be as follows:

In the molecule H_2SO_4 , how many atoms of each element are present?

The interviewer will respond to the question when appropriate.

- 3. Problem Section: Two problems will be presented to the student (from a pool of three items of each type) to be solved by thinking aloud. The interviewer will prompt the student with a general question such as, "What are you thinking now?" only when the think aloud process breaks down. No hints to the problem solving will be given. The interviewer will take notes on paper while the student is thinking aloud. It has been shown that this will stimulate the think-aloud process. Examples of the problems are as follows:
 - a. One step How many moles of H_2SO_4 are present in 90 grams of H_2SO_4 ?

b. Two step - What is the mass of 80 liters of neon gas?

Post Session:

on: The tapes will be coded according to the attached form.

ERIC

Gint

APPENDIX L

Interview Questions, Problems, Answers

| Moles | ••• | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 569 |
|--------------|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|
| Gas Laws | •• | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 571 |
| Stoichiometr | y. | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 573 |
| Molarity | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 577 |

Moles Questions

- Q1. The formula for calcium hydroxide is Ca(OH)₂. (SHOW STUDENT CARD). How many atoms of each element are present in a molecule of calcium hydroxide? Expected Response (E.R.) - 1 calcium, 2 oxygen, 2 hydrogen
- 02. If you had a mole of something, what would that mean to you?

E.R. - A mole represents a certain number of particles, volume, and mass of a substance.

Q3. How many particles are in one mole?

E.R. - 6.02×10^{23} particles

Q4. What volume would one mole of an ideal gas occupy at STP?

E.R. - 22.4 liters

Q5. How would you determine the mass of one mole of iron?

E.R. - Look up the atomic mass in a table of atomic masses.

Q6. How would you determine the mass of one mole of ammonia (NH3)? (SHOW STUDENT CARD)

E.R. - Look up atomic mass of nitrogen (N), and hydrogen (II) in atomic mass table. Add up one nitrogen (N), and 3 hydrogen (II) to get mass of 1 mole.

Moles Problems

- 1M How much would 3 moles of carbon dioxide (CO₂) weigh?
- 1V What would be the volume of 3 moles of carbon dioxide (CO_2) gas at STP?
- 1Mo. How many molecules of carbon dioxide (CO₂) are present in 3 moles of carbon dioxide?
- 2VM A sample of methane (CH₄) has a volume of 44.8 liters at STP. What would be the mass of this sample?
- 2MMo A sample of methane (CH₄) has a mass of 32 grams. How many molecules are in this sample?
- 2MoV A sample of methane (CH4) contains 12.04×10^{23} molecules. What volume would this gas occupy at STP?
- 3VA A sample of hydrogen sulfide (H_2S) has a volume of 67.2 liters at STP. How many hydrogen atoms are present in this sample?

3MA A sample of hydrogen sulfide (H₂S) has a mass of 102.3 grams. How many hydrogen atoms are present in this sample?

3VM A sample of hydrogen sulfide $(l_{b}S)$ has a volume of 67.2 liters at SIP. What would be the mass of the hydrogen atoms in this sample?

Moles Answers

| 1M · | 12 + 2(16) = 44 grams/mole 3 moles CO ₂ x 44 grams/mole = 132 grams CO ₂ |
|---------------|---|
| 、 1V | 3 moles CO ₂ x 22.4 liters/mole = 67.2 liters |
| 1Mo | 3 moles $CO_2 \times 6.02 \times 10^{23}$ molecules/mole = 18.06 x 10^{23} molecules |
| 2VM | $\frac{44.8 \text{ liters}}{22.4 \text{ liters/mole}} = 2 \text{ moles x } (12 + 4(1)) = 32 \text{ grams}$ |
| 2 MM o | $\frac{12 + 4(1) = 16 \text{ grams/mole}}{\frac{32 \text{ grams}}{16 \text{ grams/mole}}} =$ |
| | 2 moles x 6.02 x 10^{23} molecules/moles = 12.04 x 10^{23} molecules |
| 2Mo V | $\frac{12.04 \times 10^{23} \text{ molecules}}{0.02 \times 10^{25} \text{ molecules/mole}} = 2 \text{ moles x 22.4 liters/mole} =$ |
| o | 44.8 liters |
| 3VA | $\frac{67.2 \text{ liters}}{22.4 \text{ liters/mole}} = 3 \text{ moles } H_2S \times \frac{2 \text{ moles } H}{1 \text{ mole } H_2S} =$ |
| | 6 moles H x 6.02 x 10^{23} atoms/mole = 36.12 x 10^{23} atoms |
| 3MA | 2 (1) + 32.1 = 34.1 grams/mole $\frac{102.3 \text{ grams H}_2\text{S}}{34.1 \text{ grams/mole}}$ |
| э | 3 moles $H_2S \propto \frac{2 \text{ moles } H}{1 \text{ mole } H_2S}$ = 6 moles $H_2S \propto 6.02 \times 10^{23}$ atoms/mole = |
| | 36.12×10^{23} atoms II |
| 3VM | $\frac{67.2 \text{ liters } H_2S}{22.4 \text{ liters/mole}} = 3 \text{ moles } H_2S \times 2 \text{ moles } H_2 = \frac{1}{1 \text{ mole } H_2S}$ |
| | 6 moles H x 1.0 grams = 6.0 grams H
mole |

Gas Laws Questions

Q1. What would happen to the volume of a gas sample if the pressure on the sample was increased and the temperature held constant?

Expected Response (E.R.) - Volume would decrease.

Q2. What would happen to the volume of a gas sample if the temperature on the sample was increased and the pressure held constant?

E.R. - Volume would increase.

Q3. What would happen to the temperature of a gas sample if the pressure on the sample was decreased and the volume held; constant?

E.R. - Temperature will decrease.

Q4. What would happen to the pressure of a gas sample if the temperature and the volume were both increased?

E.R. - Can't tell, depends on the percentage for each effect.

Gas Laws Problems

- 1TP A sample of gas has a pressure of 600 mm Hg at 27°C. What pressure would this sample have at 127°C? Assume no volume change.
- 11V A sample of gas has a volume of 600 ml at 27°C. What volume would this gas occupy at 127°C? Assume no pressure change.
- 1PV A sample of gas has a volume of 500 ml at 700 mm Hg pressure. What volume would this gas occupy at 350 mm Hg pressure? Assume no temperature change.
- 2TVP A sample of gas has a pressure of 400 mm Hg with a volume of 600 ml and -73°C temperature. What would be the pressure if the volume became 300 ml and the temperature 27°C?
- 2TPV A sample of gas has a volume of 600 ml at 400 mm Hg pressure and -73°C temperature. What would be the volume if the pressure became 1200 mm Hg Sand the temperature 27°C?
- 2 PVT A sample of gas has a temperature of -73°C at 400 mm Hg pressure and 600 ml volume. What would be the Celsius temperature of the sample if the pressure became 1200 mm Hg and the volume 300 ml?
- 3M-TV What volume would 3 moles of a gas occupy at -136.5°C and 760 mm Hg?

3M+TV What volume would 3 moles of a gas occupy at 273°C and 760 mm Hg?

3MPV What volume would 3 moles of a gas occupy at 0°C and 1520 mm lig?

57Ì

Gas Laws Answers

11P 600 mm/lg
$$x \left(\frac{273 + 127^{\circ}K}{273 + 27^{\circ}K}\right) = 607 \text{ mm} \log x 400 = 800 \text{ mm} \log x 1 = 100 \text{ mm} \log x 1 = 1000 \text{ mm$$

3MPV 3 moles x $\frac{22.4 \text{ liters}}{\text{moles}}$ x $\frac{760 \text{ mm Hg}}{1520 \text{ mm Hg}}$ = 33.6 liters

655

Q1. The formula for calcium hydroxide is Ca(OH)₂. (Show Student Card) How/many atoms of each element are present in a molecule of calcium hydroxide? Expected Response (E.R.) - 1 calcium, 2 oxygen, 2 hydrogen.
Q2. If you had a mole of something, what would that mean to you?

E.R. - A mole represents a certain number of particles, volume, and mass of a substance.

Q3. How many particles are in one mole?

E.R. - 6.02 x 10²³ particles.

Q4. What volume would one mole of an ideal gas occupy at STP?

E.R. - 22.4 liters.

Q5. How would you determine the mass of one mole of iron?

E.R. - Look up the atomic mass in a Table of Atomic Masses.

- Q6. How would you determine the mass of one mole of ammonia (NHz)? (Show Student Card)
 - E.R. Look up atomic mass of nitrogen (N), and Hydrogen (II) in Atomic Mass Table. Add up one nitrogen (N), 3 hydrogen (II) to get mass of 1 mole.

07. How would you go about balancing the following equation:

 $NaC1_{(aq)} + H_2SO_4_{(aq)} \rightarrow Na_2SO_4_{(aq)} + HC1_{(aq)}$

L.R. - Two H are needed on right to balance two H on left. Two Cl are needed on left to balance two Cl on right. Other elements balance.

Stoichiometry Problems

1 M Propane gas (C_3H_8) burns (reacts with O_2) to form carbon dioxide (CO_2) and water vapor (H_2O) according to the reaction:

How many moles of CO_2 would be formed from 3 moles of C_3H_8 reacting with sufficient O_2 ?

 $C_{3}H_{8(g)} + O_{2(g)} \longrightarrow CO_{2(g)} + H_{2}O_{(g)}$

Stoichiometry Problems continued:

1

1 V, Propane gas $(C_3 I_8)$ burns (reacts with O_2) to form carbon dioxide (CO_2) and water vapor (H_2O) according to the reaction:

$$C_{3}H_{8}(g) + O_{2}(g) \longrightarrow CO_{2}(g) / + H_{2}O(g)$$

How many liters of CO₂ (measured at STP) would be formed from 67.2 liters of C_3H_8 (measured at STP) reacting with sufficient O_2 ?

Propane gas (C_3H_8) burns (reacts with O_2) to form carbon dioxide (CO_2) and water vapo: (H_2O) according to the reaction:

$$C_{3}H_{8}(g) + O_{2}(g) \longrightarrow CO_{2}(g) + H_{2}O_{(g)}$$

How many molecules of CO₂ would be formed from 18.06 x 10^{23} molecules of C₃H₈ reacting with sufficient O₂?

2 MM Sodium carbonate (Na_2CO_3) reacts with hydrochloric acid (HCl) to form sodium chloride (NaCl), water (H_2O) , and carbon dioxide gas (CO_2) according to the reaction:

$$Na_2CO_3(aq) + 2 HC1(aq) \rightarrow 2 NaC1(aq) + H_2C(1) + CO_2(g)$$

How many grams of CO₂ would be produced from 146.0 grams of HCl reacting with sufficient Na₂CO₃?

2 MV Sodium carbonate (Na₂CO₅) reacts with hydrochloric acid (HCl) to form sodium chloride (NaCl), water (H₂O), and carbon dioxide (CO₂) according to the reaction:

 $\operatorname{Na}_2\operatorname{CO}_3(\operatorname{aq}) + 2 \operatorname{HC1}(\operatorname{aq}) \rightarrow 2 \operatorname{NaC1}(\operatorname{aq}) + \operatorname{H}_2O(1) + \operatorname{CO}_2(g)$

How many liters of CO_2 (measured at STP) would be produced from 146.0 grams of HCl reacting with sufficient Na₂CO₃?

2 MP Sodium carbonate (Na2CO3) reacts with hydrochloric acid (HC1) to form sodium chloride (NaCl), water (H2O), and carbon dioxide gas (CO₂) according to the reaction:

$$Na_2CO_3(aq) + 2 IK1 (aq) \rightarrow 2 NaC1(aq) + H_2O(1) + CO_2(g)$$

How many molecules of CO_2 would be produced from 146.0 grams of HCl reacting with sufficient Na_2CO_3 ?

3 H Silver nitrate (AgNO3) reacts with hydrogen sulfide gas (H2S) to form silver sulfide (Ag₂S) and nitric acid (HNO₃) according to the reaction:

 $2\Lambda g NO_3(aq) + H_2S(g) \longrightarrow Ag_2S(s) + 2 I NO_3(aq)$

How many grams of $1NO_3$ would be formed from combining 255 grams AgNO₃ with 17 grams H_2S ?

Stoichigmetry Problems continued:

3 SS 1 Silver nitrate (AgNO3) reacts with hydrogen sulfide gas (H_2S) to form silver sulfide (Ag_2S) and nitric acid (HNO_3) according to the reaction:

 $2 \operatorname{AgNO}_{3}(aq) + \operatorname{H}_{2}S(g) \longrightarrow \operatorname{Ag}_{2}S(s) + 2 \operatorname{INO}_{3}(aq)$

How many grams of Ag_2S would be formed from combining 170 grams of $AgNO_3$ and 170 grams I_2S ?

3 SS 2 Silver nitrate (AgNO₃) reacts with hydrogen sulfide gas (H_2S) to form silver sulfide (Ag_2S) and nitric acid (HNO_3) according to the reaction:

2 AgNO₃ (aq) + H₂S(g) \rightarrow Ag₂S(s) + 2 HNO₃ (aq)

How many grams of Ag_2S would be for nod from combining 340 grams of $AgNO_3$ and 51 grams $H_2S?$

Stoichiometry Answers

| 1 M | $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4 H_2O$ 3 moles C H x 3 moles CO_2
$1 \text{ mole } C_3H_8$ = 9 moles CO_2 |
|--------------|--|
| °1 ₽ | $C_{3}H_{8} + 5 O_{2} \rightarrow 3 CO_{2} + 4 H_{2}O_{18.06 \times 10^{23}}$ molecules $C_{3}H_{8} \times 3$ moles $CO_{2} =$ |
| | 54.18 x 10^{23} molecules CO_2 |
| 1 V | $C_{3}H_{8} + 5 O_{2} \rightarrow 3 CO_{2} + 4 H_{2}O = 67.2 \text{ liters } C_{3}H_{8} \times \frac{3 \text{ liters } CO_{2}}{1 \text{ liter } C_{3}H_{8}} = 201.6 \text{ liters } CO_{2}$ |
| 2 M M | Equation balanced. $\frac{146.0 \text{ grams HC1}}{36.5 \text{ grams/mole}} = 4.0 \text{ moles HC1 x 1 mole CO}_2 = \frac{2 \text{ moles HC1}}{2 \text{ moles HC1}} = \frac{146.0 \text{ grams HC1}}{2 \text{ moles HC1}} = 146.0 \text{ grams $ |
| | 2.0 moles CO_2 2.0 moles $CO_2 \times 44 \frac{\text{grams}}{\text{mole}} = 88.0 \text{ grams } CO_2$ |
| 2 MV | Equation balanced. <u>146.0 grams HC1</u> = 4.0 moles HC1 x 1 mole CO ₂ =
<u>36.5 grams/mole</u> = $\frac{146.0 \text{ grams HC1}}{2 \text{ mole HC1}}$ |
| `. | 2.0 moles $CO_2 \times 22.4$ <u>liters</u> = 44.8 liters CO_2 |
| 2 MP | Equation balanced. <u>146.0 grams HC1</u> = 4.0 moles HC1 x 1 mole CO_2 = <u>36.5 grams/mole</u> = <u>2 moles HC1</u> |
| | 2.0 moles CO ₂ x 6.02 x 10^{23} molecules = 12.04 x 10^{23} molecules CO ₂ |
| 3 HH | Equation balanced. $\frac{255 \text{ grams } AGNO_3}{170 \text{ grams/mole}} = 1.5 \text{ moles } AgNO_3$ |
| | $\frac{17 \text{ grams H}_2\text{S}}{34 \text{ grams/mole}} = 0.5 \text{ mole H}_2\text{S} \text{ H}_2\text{S} \text{ is limiting reagent}$ |
| | 0.5 mole H ₂ S x 2 mole HNO ₃ = 1.0 mole HNO ₃ x 63 grams = 63 grams HNO ₃
$\frac{1 \text{ mole H}_2S}{1 \text{ mole H}_2S}$ |
| 3 SS 1 | $\frac{170 \text{ grams } \text{AgNO}_3}{170 \text{ grams / mole}} = 1.0 \text{ mole } \text{AgNO}_3 \qquad \frac{170 \text{ grams } \text{H}_2\text{S}}{34 \text{ grams / mole}} = 5.0 \text{ mole } \text{H}_2\text{S}$ |
| | AgNO ₃ limiting reagent 1.0 mole AgNO ₃ x 1 mole Ag ₂ S = 0.5 mole Ag ₂ S $\frac{1}{2 \text{ moles AgNO_3}} = 0.5 \text{ mole Ag}_2S$ |
| | 0.5 mole Ag ₂ S x 248 grams = 124 grams Ag ₂ S mole |
| 3 SS 2 | $\frac{340 \text{ grams AgNO_3}}{170 \text{ grams/mole}} = 2.0 \text{ moles AgNO_3} \qquad \frac{51 \text{ grams H}_2\text{S}}{34 \text{ grams/mole}} = 1.5 \text{ moles H}_2\text{S}$ |
| | AgNO ₃ limiting reagent 2.0 moles AgNO ₃ x 1 mole Ag ₂ S = 1.0 mole Ag ₇ S |
| | 1.0 mole $Ag_2S \ge 248$ grams = 248 grams Ag_2S^2 moles Ag_NO_3
653 |

Molarity Questions

| Q1. | How would you determine the mass of one mole of iron? |
|------------|---|
| | Expected Response (E.R.) - Look up the atomic mass in a Table of Atomic Masses. |
| Q2. | How would you determine the mass of one mole of ammonia (NHz)?
(Show Student Card) |
| | E.R., - Look up atomic mass of N, and II in atomic mass table. Add up one
N and 3 H to get mass of one mole. |
| Q3. | How many milliliters are equal to 2.5 liters? |
| | E.R 2500 ml |
| Q4. | Define molarity in your own words. |
| | E.R The moles of material dissolved per liter of solution Moles/liter (accepted). |
| Q5. | How would you make up one liter of a two molar sodium chloride solution? |
| | E.R Determine molecular mass of NaCl, weigh out the equivalent of 2
moles (2 molecular masses) of NaCl. Dissolve material in enough
water to make one liter of solution. |
| | Molarity Problems |
| 1 M1 | How many ml of a 0.5 M potassium fluoride (KF) solution would contain 116.2 grams of KF? |
| 1 G | How many grams of potassium fluoride (KF) are present in 4000 ml of a 0.5 M solution of KF? |
| 1 Mo | What would be the molarity of a solution made by dissolving 116.2 grams of potassium fluoride (KF) in enough water to form 4000 ml of solution? |
| ° 2 Mol |) What would be the molarity of a solution made by adding 500 ml of water to 1500 ml of a 3.0 M LiCl solution? |
| 2 Mo | What would be the molarity of a solution made by boiling off 500 ml of water, from 2000 ml of a 2.25 M LiCl solution? |
| 2 Mol | / How many ml of water must be added to 1500 ml of a 3.0 M LiU
solution in order for the molarity to become 2.25 M? |
| 3 WA | Sodium carbonate (Na ₂ CO ₃) reacts with phosphoric acid (H ₃ PO ₄) to
produce sodium phosphate (Na ₃ PO ₄), water (H ₂ O), and carbon dioxide
gas (CO ₂) according to the balanced reaction: |

 $3 \operatorname{Na_2CO_3(s)} + 2 \operatorname{H_3PO_4(aq)} \longrightarrow 2 \operatorname{Na_3PO_4(aq)} + 3 \operatorname{H_2O(1)} + 3 \operatorname{CO_2(g)}$

What would be the molarity of the H3PO4 solution that reacted with sufficient Na₂CO₃to produce 54.0 grams of H₂O if the solution had a volume of 0.5 liters?

660

\$77

Molarity Problems continued:

3 GA 1 Sodium carbonate (Na₂CO₃) reacts with phosphoric acid (H₃PO₄) to produce sodium phosphate (Na₃PO₄), water (H₂O), and carbon dioxide gas (CO₂) according to the <u>balanced</u> reaction:

$$3 \operatorname{Na_2CO_3(s)} + 2 \operatorname{H_3PO_4(aq)} \longrightarrow 2 \operatorname{Na_3PO_4(aq)} + 3 \operatorname{H_2O_{(1)}} + 3 \operatorname{CO_2(g)}$$

What would be the molarity of the H_3PO_4 solution that reacted with sufficient Na_2CO_3 to produce 132.0 grams of CO_2 if the solution had a volume of 0.5 liters?

3 GA 2 Sodium carbonate (Na₂CO₃) reacts with phosphoric acid (H₃PO₄) to produce solium phosphate (Na₃PO₄), water (H₂O), and carbon dioxide gas (CO₂) according to the <u>balanced</u> reaction:

$$3 \operatorname{Na_2CO_3(s)} + 2 \operatorname{H_3PO_4(aq)} \xrightarrow{2} 2 \operatorname{Na_3PO_4(aq)} + 3 \operatorname{H_2O_{(1)}} + 3 \operatorname{CO_2(g)}$$

What would be the molarity of the H_3PO_4 solution that reacted with sufficient Na₂CO₃ to produce 264g of CO₂ if the solution had a volume of 0.5 liters?

661

ð

Molarity Answers

| 1 M1 | 116.2 g/58.1 g/mole = 2.0 moles 0.5M = 0.5 moles/liter |
|--------|---|
| | 2.0 moles/0.5° moles/liter = 4.0 liters = 4000 mL |
| 16 | C.5 M = 0.5 moles/liter x 4.0 1 = 2.0 moles |
| | 2.0 moles x 58.1 grams/mole = 116.2 grams |
| 1 Mo | K 39.1 116.2 g/58.1 g/mole = 2.0 moles 2.0 moles/4.0 1 = 0.5 M
F $\frac{19.0}{58.1}$ |
| 2 MoD | 3.0 M = 3.0 moles/liter x 1.5 1 = 4.5 moles |
| | 4.5 moles/2.0 liters = 2.25 M |
| 2 MoC | 2.25 M = 2.25 moles/liter x 2.0 1 = 4.50 moles |
| | 4.50 moles/1.5 liters = 3.0 M |
| 2 MoV | 3.0 M = 3.0 moles/liter x 1.5 1 = 4.5 moles 4.5 moles x 1 liter/ 2.25 |
| _ | 2.0 liters 2.0 liters - 1.5 liters = 0.5 liters .5L = 500 mL |
| 3 WA | 54 grams/18 grams/mole = 3 moles H ₂ O |
| | 3 moles $H_2O \propto 2$ moles $H_3PO_4/3$ moles $H_2O = 2$ moles H_3PO_4 |
| | 2 moles $H_3PO_4/0.5 = 4.0 M H_3PO_4$ |
| 3 GA 1 | $132/\text{grams CO}_2/44 \text{ grams/mole} = 3 \text{ moles CO}_2$ |
| | 3 moles $CO_2 \times 2$ moles $H_3PO_4/3$ moles $CO_2 = 2$ moles H_3PO_4 |
| | 2 moles $H_3PO_4/.51 = 4.0 \text{ M} H_3PO_4$ |
| 3 GA 2 | $264g CO_2/44 g/mole = 6 mole CO_2^{\theta}$ |
| | 6 mole $CO_2 \times 2$ mole H ₃ PO ₄ /3 mole $CO_2 = 4$ mole H ₃ PO ₄ |
| | 4 mole $H_3PO_4/.5$ liter = 8 M H_3PO_4 |
| | |

662

.

•

579

ł

APPENDIX M

Coding Forms

| General | ٠ | • | • | • | • | • | • | • | • | • | • | •` | • | • | • | 581 | |
|---------------|---|---|---|---|---|---|---|---|---|---|---|----|---|---|---|--------------|--|
| Gas Laws | • | • | • | • | • | • | , | • | • | • | • | • | • | • | • | 5 8 6 | |
| Stoichiometry | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 590 | |
| Molarity | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 594 | |

J

1

660

Ś

| Teach
Unit
Treat
/ Probl | ment VVQ | /Unsuccess
r '
f Interview | Interviewe
Date of Co
Coder |
|-----------------------------------|---|--|-----------------------------------|
| /P1001 | ¥ | blems | د |
| | Reading/Grgenizing | Structurel Errors | |
| P ROBLEMS | Rereads problem or parts of problem | Hisinterprets problem . | • |
| Correct | Restates problem in own words | Disregards relevant info | rmation given |
| Incorrect | Performs exploratory manipuletions Uses mnemonic notation | Disregards relevant info
generated in previous st | eps |
| Counter Number | Draws a diagram | Misapplies relevant info
genersted in previous st | |
| Lounter Number | | Does not generate needed | 1 information |
| ·· | Recuil | Hisapplies// | Conversion |
| 2 | Recalls a related concept | | Other |
| | Recalls a releted problem | | Other |
| 3 | | | Other |
| | Uses a method of releted problem | · · · · · · · · · · · · · · · · · · · | Other |
| | Production | Evaluation | |
| ~ i | Systemmatic Approach | | letions |
| | Approach taught
Arithmetic elgorithm | Routing check of manipu
Checks that the solutio
Cônditions | |
| , | | Checks solution by Tetr | ACINE STEDS |
| | Nonsystematic approach | Derives solution by and | |
| | Bright idea | | |
| , | Use successive epproximation | Is the result(s) reeson | |
| | Estimates | Compares solution with
results | general known |
| | usses/selects solution on
irrelevant basis | thunges upproach | |
| | No answer given | Comments About Solution | |
| | | Questions existence of | solution |
| • | Strategy | Questions uniqueness of | |
| | Algorithmic only | | |
| | Algorithmic/reasoning strateg
Random trial and error | information | |
| | | solution | o |
| | - · · | Says he doesn't know h
problem | ow to kolve |
| | • | Seys the problem 1s di | fficult |
| | • | Executive Brrors t | allies total |
| | QUES | STIONS Computing/arithmetic | |
| QUESTIONS | Answers qu | estion partially without prompting | |
| CORRECT | Needs pros | pting to answer successfully | |
| Incorrect | Answers qu | estion completely without promptin | 1 |
| Counter Number | | nswer question at all . | - |
| <u> </u> | | MENTS | |
| <u> </u> | | | |
| <u>4</u> <u>8</u> | | ······································ | |
| | | | |
| | | | |
| | | • | |

.

÷

DESCRIPTION OF CODING FORM

This coding system is an adaptation of that system used by Days (1977) for problem solving strategies in mathematics and Nurrenbern (1979) in chemistry.

- A. Reading/Organizing. Processes a subject uses to aid in understanding what the problem is asking or processes used to represent the problem in a form that will aid in finding a solution.
 - 1. Rereads problem. Subject reads all or part of the problem statement more than one time or the subject reports that he is rereading.
 - 2. Restates problem. Wubject rephrases or paraphrases the problem statement in more familiar terms.
 - 3. Performs exploratory manipulations. Subject performs some manipulations with given data without having a real plan or a clear cut reason for doing so; the subject is not testing a formulated hypothesis.
 - 4. Uses mnemonic notation. Subject uses symbols or notation that calls to mind the variables they represent: atomic symbols, ...molecular formulas, chemical equation.
 - 5. Draws a diagram. Subject draws a figure or diagram to depict the situation or conditions as stated in the problem.
 - 6. Makes a list. Subject puts certain data into a list in order to aid him in solving the problem.
 - 7. Other organizing procedures.
- B. Recall. Processes used to recall information from memory.
 - 8. Recalls a related concept. Subject recalls a related concept or related formula to be used in solving the problem.
 - 9. Recalls a related problem. Subject says he remembers having or solving a problem like the present one. Subject may recall something or some activity from class.
 - 10. Uses method of related problem. Subject applies method used to solve a previous problem to the problem being solved. Subject must say he is using the method of a related problem, e.g., "I will solve this problem the same way I solved that problem about the cow and pig."
- C. Production. Processes used to carry out the plans and obtain results. Considered to be systematic iff subject uses some organized mode of proceeding.

- 11. Approach taught. Subject uses either proportionality, diagrams, factor-label method, or analogies. This can be evident from either the comments made while solving the problem, or from the sheet the student uses, or from the questions asked.
- 12. Arithmetic algorithm. Subject doesn't use the method taught but uses some arithmetic algorithm, that is, some procedure that is memorized other than the one taught.
- 13. Bright idea. Subject, after some thought, indicates that he has just gotten an insight into the problem or an idea to follow. "Ah ha!" "Oh, I get it!" "Oh, I got an idea!" "Ah, now I see!"
- 14. Uses successive approximation. Subject tries one value and then uses the result obtained to get value to try next.
- 15. Estimates. Subject indicates that he is making an estimate or estimates of the magnitude of the solution or parts of solution.
- 16. Guesses/selects solution on irrelevant basis. Subject gives a solution which was derived in an arbitrary manner or based on superficial information. Wild guess. Combine numbers together without any reason to get solution.
- 17. Does not complete problem. Doesn't proceed enough to determine the method.
- 1). Strategy. Dominant sequence or sequences of processes used while attempting to solve a problem (there could be more than one strategy used in solving the same problem).
 - 18. Algorithmic. Subject attempts to solve problem using algorithms or algorithmic forms. Does this from rote. (Wrong algorithms may be used.)
 - 19. Algorithmic/Reasoning. Subject uses reasoning and an algorithm(s) or algorithmic form(s) to obtain solution to the problem. (Can have incorrect reasoning or arithmetic error.)
 - 20. Random trial-and-error. Subject makes a sequence of random guesses about the solution to the problem without using any type of system or the information from previous guesses. Any-thing not categorized as the other two strategies.
- E. Structural Errors.
 - 21. Misinterprets problem. It is indicated in some way that the student has misread, misinterpreted, or disregarded a critical part of the problem.
 - 22. Disregards relevant information given in problem. Subject fails to use all necessary information given in his solution attempt.

583

-2-

66.;

- 23. Disregards relevant information generated during previous steps. Subject proceeds to a solution without considering information he produced which is necessary to solve the problem. E.g., a subject may balance an equation and then ignore it in further solution steps.
- 24. Misapplies relevant information generated during previous steps. Subject uses information he has generated in an inappropriate way. E.g., a subject may conclude that substance X is in excess and then base further calculation on that substance instead of substance Y which would be the limiting reagent and determinor of subsequent products.
- 25. Does not generate needed information from memory. Student does not recall needed information such as in converting volume to moles, does not recall 22.4 1/mole.
- 26. Misapplies conversion factor. Student uses wrong conversion factor. E.g., in changing moles to volume, uses 6.02×10^{23} molecules. (Include one that should be used.)
- 27. Other structural errors.
- F. Evaluation. Processes used in the checking phase of problem solving. Checking can occur after an intermediate or final result.
 - 28. Routine check of manipulations. Subject goes back and briefly checks his operations or counting.
 - 29. Checks that solution satisfies the conditions. Subject substitutes the final or intermediate solution back into the problem and assures himself that all the conditions are met.
 - 30. Checks solution by retracing steps. Subject repeats, after deriving a solution, the operations or part of the operations he performed to derive the solution.
 - 31. Derives solution by another method. Subject, after obtaining a solution using one method, tries to use a different method or procedure to reach the solution (more formal than 28).
 - 32. Is the result(s) reasonable? Subject compares his solution against his experience and the real world.
 - 33. Compares solution with general known results. Subject compares his solution with what is commonly known to determine if con-tradictions exist.
 - 34. Changes approach. Subject changes strategy he is using to solve the problem, e.g., did algorithmic to trial-and-error change or vice versa.
- G. Comments about solution. Not considered to be processes.
 - 35. Questions existence of solution. Subject asks if there is a solution to the problem or states that he does not think the solution exists.

-3-

584

- 30. Questions uniqueness of solution. Subject makes a direct statement referring to the possibility of more than one solution.
- 37. Questions necessity/relevance of information. Subject comments about some of the information given and its relevance to the situation.
- 38. Expresses uncertainty about final solution. Subject expresses doubt about the solution he has found.
- 39. Says he doesn't know how to solve the problem. This is checked even if after saying he doesn't know, the subject goes on and finds a solution.
- 40. Says the problem is difficult.
- H. Executive Error. (To be tallied)
 - 41. Counting/Arithmetic operations. Subject makes arithmetical error while solving problem.
- I. Questions
 - 42. Answers question partially without prompting. Prompting defined as help. Subject answers part of question on his/her own and then gets stuck. Prompting may cause answer to be completed.
 - 43. Needs prompting to answer successfully. Subject is able to answer the question, but needs initial prompting.
 - 44. Answers question completely without prompting. Subject needs no prompting to answer question.
 - 45. Does not answer question at all. Subject either does not attempt question or does not answer any part of it (with or without prompting).
- J. Interviewer's comments, The interviewer will record such comments as, "Student seemed nervous", "Student not sure of himself", or "Not persistent". The interviewer will also record any additional structural errors not noted on the checklist as well as any unique events which occurred such as interruptions by school announcements.

· 585

Student Number

GAS LAW PROBLEMS

PROBLEM

1.

0

- Doesn't get this far ,
- Kelvin temperature not required, 1
- Z Fails to change to Kelvin^{*}temperature
- Makes error in calculating Kelvin temperature Converts to Kelvin temperature correctly
- Doesn't get this far A
- Doesn't set up factor or proportion 1
- Inverts a factor or sets up wrong proportion 2 3 Sets up problem correctly

2.

Doesn't get this far 0 ľ Kelvin temperature not required 2 Fails to change to Kelvin temperature (beginning) 3 Fails to change from Kelvin temperature (end) 4 2 and 3 5

- Makes error in calculating Kelvin temperature 6 Converts all Kelvin temperatures correctly 3 and 5
 - Other

7

8

0

3

4

5

3

4 5

6

Doesn't get this far

1 Doesn't set up factor or proportion 2

- Disregards one of the conditions,
- Inverts a factor or sets up wrong proportion 2 and 3
- Correct set up (regardless of Kelvin temperature)
- 0 Doesn't get this far 1 Kelvin temperature not required 2 Fails to change to Kelvin temperature 3 Makes error in calculating Kelvin temperature Converts to Kelvin temperature correctly

0 Doesn't get this far

- / Fails to convert moles to volume 1
 - Doesn't set up a factor or proportion
 - Inverts a factor or sets up wrong proportion
 - 1 and 2
 - 1 and 3
 - 2 and 3
- Sets up problem correctly 7
- Converts to liters incorrectly 8
- 9 2 and 8

Confused about STP

GAS LAWS

Description of Special Coding Form

| Problem | |
|----------------|---|
| 0 | Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin. |
| 1 | Kelvin temperature not required. Problem doesn't call for conversion. |
| 2 | Fails to change to Kelvin temperature. Actually works problem or sets up problem to work without using Kelvin temperature. |
| 3 | Makes error in calculating Kelvin temperature. Uses wrong constant,
subtracts instead of adding, makes math error, etc. |
| 4 | Converts to Kelvin temperature correctly. Gets correct answer. |
| | <u> </u> |
| 0 | Doesn't get this far. Says he doesn't know how to do problem.
Just doesn't begin. |
| 1; | Doesn't set up factor or proportion. Does something else or sets
up incorrectly (except for inverting, then use 2), uses some
other method. |
| ? | Inverts a factor or sets up a wrong proportion. The major error is
the inversion of numbers. Otherwise it would qualify for 3.
Process is correct. |
| x | Sets up problem correctly. Can be errors in arithmetic, etc.
previous to this. Basic structure or process is correct
(e.g. does problem in liters or uses wrong temperature or
copies wrong number.) |
| ? | • / |
| Problem | 2 |
| ġ | Doesn't get this far. Says he doesn't know how to do problem.
Just doesn't begin. |
| ,
1 | Kelvin temperature not required. Problem doesn't call for conversion. |
| . 2 | Fails to change to Kelvin temperature (beginning). Actually works |
| - | problem or sets up problem to work without using Kelvin temperature. |
| 3 | Fails to change from Kelvin temperature (end). Forgets to change back to Celsius at the end of the problem. |
| 4 | 2 and 3 Both errors made. |
| | • |
| | |
| ٦. | |

67.0

Į.

Ti

J

- Gas Laws 2
 - 5 <u>Makes error in calculating Kelvin temperature</u>. Adds wrong constant, subtracts, subtracts instead of adding, makes math error, etc. (If an error in any temperature conversion occurs, use this category.)
 - 6 Converts all Kelvin temperatures correctly. Gets all answers correct.
 - 3 and 5 Both errors occur.
 - 8 Other Sets up first temperature correctly but doesn't proceed
 - 0 <u>Doesn't get this far.</u>) Says he doesn't know how to do problem. Just doesn't begin.
 - 1 <u>Doesn't set up factor or proportion</u>. Does something else or sets up incorrectly (except for inverting, then use 3), uses some other method.
 - 2 Disregards one of the conditions. Only sets up using one of the conditions, e.g. the problem calls for temperature and pressure change, student only uses the temperature change. Use this category also if student realizes both changes but only sets up one change. (Either he can't set up both, or forgets one.)
 - 3 Inverts a factor or sets up wrong proportion. The major error is the inversion of numbers. Otherwise it would qualify for 5. Process is correct.

4 2 and 3 Both errors made.

5 <u>Correct set up (regardless of Kelvin temperature)</u>. Can be error in arithmetic, etc. previous to this. Basic structure or process is correct (e.g. does problem in liters or uses wrong temperature or copies wrong number.)

Problem 3

- 0 <u>Doesn't get this far.</u> Says he doesn't know how to do problem. Just doesn't begin.
- 1 Kelvin temperature not required. Problem doesn't call for conversion.
- 2 Fails to change to Kelvin temperature. Actually works problem or sets up problem to work without using Kelvin.temperature.
- 3 <u>Makes error in calculating Kelvin temperature</u>. Uses wrong constant, subtracts instead of adding, makes math error, etc.

671

4. Converts to Kelvin temperature correctly. Gets correct answer.

- 0 . Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
- 1 Fails to convert moles to volume. Does the problem or sets up problem without changing to volume. Also use this category if he realizes he should change but doesn't do it - forgets cr doesn't know how. If he does it incorrectly, use 8.
- 2 Doesn't set up a factor or proportion. Does something else or sets up incorrectly (except for inverting, then use 3), uses some other method.
- 3 Inverts a factor er sets up wrong proportion. The major error is the inversion of numbers. Otherwise it would qualify for 7. Process is correct.
- 4 1 and 2 Both errors made.
- 5 1 and 3 Both errors made.
- 6 2 and 3 Both errors made.
- 7 Sets up problem correctly. Can be errors in arithmetic, etc. previous to this. Basic structure or process is correct (e.g. does problem in liters or uses wrong temperature or copies wrong number.)
- 8 <u>Converts to liters incorrectly.</u> Uses 6.02 x 10²³ or some other incorrect procedure.
- 9 2 and 8 Both errors made.
- 1 Confused about STP. Doesn't associate 22.4 liters with STP, etc.

STOICHICMETRY PROBLEMS

PROBLEM

1.

0 Doesn't get this far

- 1 Balances equation correctly
- 2 Balances equation incorrectly
- 3 Does not attempt to balance equation
- 0 Doesn't get this far
- 1 Uses equation correctly in solving problem
- 2 Uses equation incorrectly in solving problem
- 3 Does not use balanced equation in solving problem
- 2.

3.

0

- Doesn't get this far
- 1 Checks to see that equation is balanced
- 2 Does not check to see that equation is balanced
- 0 Doesn't get this far
- 1 Uses equation correctly in solving problem
- 2 Uses equation incorrectly in solving problem
- 3 Does not use equation in solving problem
- 0 Doesn't get this far

1 Checks to see that equation is balanced

- 2 Does not check to see that equation is balanced
- 0 Doesn't get this far
- 1 Uses equation correctly for determining excess
- 2 Uses equation incorrectly for determining excess
- 3. Does not use equation for determining excess
- 0 Doesn't et this far
- 1 Uses equation correctly for determining product
- 2 Uses equation incorrectly for determining product
- 3 Does not use equation for determining product

STOICHICMETRY

Description of Special Coding Form

Problem 1

- 0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
- 1 Balances equation correctly. All coefficients correct.
 - 2 Balances equation incorrectly. Equation not entirely correct. Does not matter if incorrect coefficients are never used.
 - 3 <u>Does not attempt to balance equation</u>. Uses an unbalanced equation. Does not see need for balancing equation. Student starts the " problem.
 - 0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
 - 1 Uses equation correctly in solving problem. Sets up with ratios corresponding to how he balanced the equation.
 - 2 Uses equation incorrectly in solving problem. Uses the wrong coefficients or inverts them, etc. (except for errors that occur in balancing only). Interprets coefficients as grams.
 - 3 Doesn't use the equation in solving problem. Uses some other method or forgets about coefficients. Student starts the problem.

Problem 2

- 0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
- 1 Checks to see that equation is balanced. Overtly says he is checking the equation.
- 2 Does not check to see that equation is balance. It is not apparent from tape or sheet that equation was checked.
- 0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.

674

Stoichiometry - 2

1 Uses equation correctly in solving problem. Sets up with ratios corresponding to those in equation.

592

- 2 Uses equation incorrectly in solving problem. Uses wrong coefficients or inverts them, etc. Interprets coefficients as grams.
- 3. Does not use equation in solving problem. Uses some other method or forgets about coefficients.

Problem 3

- O Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
- 1 <u>Checks to see that equation is balanced</u>. Overtly says he is <u>checking the equation</u>.
- 2 <u>Does not check to see that equation is balanced.</u> It is not apparent from tape of sheet that equation was checked.
- 0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
- 1 Uses equation correctly for determining excess. Uses the coefficients correctly.
- 2 Uses equation incorrectly for determining excess. Makes some error but still uses equation. Interprets coefficients as grams.
- 3 Does not use equation for determining excess. Uses some other method or forgets about coefficients. Student starts the problem.
- 0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
- 1 Uses equation correctly for determining product. Uses the coefficients correctly.
 - 2 Uses the equation incorrectly for determining product. Makes some error but still uses equation. Interprets coefficients as grams.
 - 3 Does not use equation for determining product. Uses some other method or forgets about coefficients. Student starts the problem.

Student Number

593

MOLARITY PROBLEMS

PROBLEM

Uses molecular weight correct' 5 . Doesn't get this far 1. 0 2 and 4 Doesn't calculate molecular weight 6 1 2 and 5 Calculates molecular weight incorrectly 7 2 3 and 4 Calculates molecular weight correctly 8 3 3 and 5 9 4 Uses molecular weight incorrectly 1 and 4 5 0 Doesn't get this far 2 and 4 Doesn't use definition of molarity 6 1 3 and 4 7 Uses definition of molarity incorrectly 2 Both definition and mL-L change correct 8 Uses definition of molarity correctly 3 Changes mL-L or vice versa correctly 9 4 Error in mL-L conversion Uses volume change incorrectly Doesn't get this far 5 2. 0 Works with vol.change correctly, stops Realizes that volume changes 6 -1 7 Doesn't get final volume 2 Fails to use volume change 3 1 and 2 8 Other Uses volume change correctly 4 Doesn't get this far . 5 1 and 4 0 2 and 4 Doesn't use definition of molarity 6 1 2 Uses definition of molarity incorrectly 7 3 and 4 Both definition and mL-L change correct Uses definition on molarity correctly 8 .3 Q 2 and 3 Error in mL-L conversion Uses molecular weight correctly Doesn't get this far 5 3. 0 2 and 4 Doesn't calculate molecular weight . 6 1 2 and 5 7 2 Calculates molecular weight incorrectly 3 and 4 Ĵ Calculates molecular weight correctly 8 3 and 5 Uses molecular weight incorrectly 4 Û locsn't get this far Realizes equation must be used 1 Uses balanced equation correctly Uses balanced equation incorrectly Doesn't realize equation must be used 4 Doesn't get this far 0 Doesn't use definition of molarity 1 Uses definition of molarity incorrectly 2

576

3 Uses definition of molarity correctly

MOLARITY

Description of Special Coding Form

Problem 1

- 0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
- 1 Doesn't alculate molecular weight. Uses something else. Assume student gets this far.
- 2 <u>Calculates molecular weight incorrectly</u>. Makes an error in adding, uses wrong numbers. Do not mark for correct molecular weight of wrong substance.
- 3 <u>Calculates molecular weight correctly.</u> Gets correct weight even if substance is not proper one.
- 4 Uses molecular weight incorrectly. Makes error (other than arithmetic). May use molecular weight of wrong substance.
- 5 Uses molecular weight correctly. Uses molecular weight to find moles or grams. Disregard antimetic errors.
- 6 2 and 4 Both errors made.
- 7 2 and 5
- 8 3 and 4

Ţ

9 3 and 5 Problem correct except for arithmetic errors.

- 0 <u>Doesn't get this far.</u> Says he doesn't know how to do problem. Just doesn't begin.
 - <u>Doesn't use definition of molarity.</u> Uses something else. Assume student gets this far.
- 2 Uses definition of molarity incorrectly. Inverts terms or does something else using molarity.
- 3 Uses definition of molarity correctly. Process correct. Disregard arithmetic errors.
- 4 <u>Error in mL L conversion</u>. Makes error, include decimal but not arithmetic. Fails to make the mL - L change.
- 5 1 and 4 Makes both errors.
- 6 2 and 4 Makes both errors.

7 <u>3 and 4</u>

Molarity

- 8 Both definition and mL L change correct. Problem essentially correct except for arithmetic errors.
- 9 Changes mL L or vice versa correctly.

Problem 2

- 0 Doesn't get this far. Says he doesn't know how to do problem. Just doesn't begin.
- 1 Realizes that volume changes. Makes statement or infers it changes.
- 2 Fails to use volume change. Doesn't incorporate it in the problem may not realize that it changes.
- 3 1 and 2
- 4 <u>Uses volumé change correctly.</u> Correct prócess. Disregard arithmetic errors.
- 5 Uses volume change incorrectly. Inverts_mumbers, adds, divides, etc.
- 6 Works with volume change correctly and stops. Gets only part way.
- 7 <u>Doesn't get final volume</u>. Forgets last step in adding or subtracting volumes.
- 8 Other
- 0 <u>Doesn't get this far.</u> Says he doesn't know how to do problem. Just doesn't begin.
- 1 Doesn't use definition of molarity. Uses something else. Assume student gets this far.
- 2 <u>Uses definition of molarity incorrectly</u>. Inverts terms or does something clse using molarity. Should be marked if in part of problem, definition is used incorrectly.
- 3 Uses definition of mularity correctly. Process correct. Disregard arithmetic errors. Should be marked if in part of problem; definition is used correctly.
- 4 <u>Error in mL L converstion</u>. Makes error, include decimal but not arithmet.c. Fails to make the mL - L change.
- 5 1 and 4 Makes both errors.
- 6 2 and 4 Makes both errors.
- 7 3 and 4
- 8 Both definition and mL L change correct.
- 9 2 and 3° For different parts of the problem.

Problem 3

Molarity -

0 <u>Doesn't get this far.</u> Says he doesn't know how to do problem.

596

- 1 <u>Doesn't calculate molecular/weight.</u> Uses something else. Assume student gets this far.
- 2 <u>Calculates molecular weight incorrectly</u>. Makes an error in adding, uses wrong numbers. Do not mark for correct molecular weight of wrong substance.
- 3 <u>Calculates molecular weight correctly.</u> Gets correct weight even if substance is not proper one.
- 4 <u>Uses molecular weight incorrectly</u>. Makes error (other than arithmetic). May use molecular weight of wrong substance.
- 5 <u>Uses molecular weight correctly</u>. Uses molecular weight to find moles or grams. Disregard arithmetic errors.
- 6 2 and 4 Both errors made.
- 7 $2 \text{ and } \tilde{S}$
- 8 3 and 4,
- 9 3 and 5 Problem correct except for arithmetic errors.
- 0 <u>Doesn't get this far.</u> Says he doesn't know how to do problem. Just doesn't begin.
- 1 <u>Realizes equation must be used.</u> Makes a statement that the equation is required.
- 2 Uses balanced equation correctly. Uses correct ratios.
- 3 <u>Uses balanced equation incorrectly.</u> Uses wrong ratios, wrong substances, grams instead of moles, etc.
- 4 <u>Doesn't realize equation must be used</u>. Works problem without reference to equation.
- 0 <u>Doesn't get this far.</u> Says he doesn't know how to do problem. Just doesn't begin.
- 1 <u>Doesn't use definition of molarity</u>. Uses something else. Assume student gets this far.
- 2 Uses definition of molarity incorrectly. Inverts terms or does something else using molarity.
- 3 Uses definition of molarity correctly. Process correct. Disregard arithmetic errors.

APPENDIX N

Instructional Units and Tests

51

Under Separate Cover

.

631