AUTHOE TITLE

INSMITOTYON

SEONS AGENCY

POB DATE
CONTRAC?
NOTE

EDRS PRICE
DESCRIPTORS

Vietze, Peter M.; And Others
Tri-nnnual Report, Infant Competence project, July 31. 1974.

George Peabody coll. for Teachers, Nashville, Tern. Demonstration and research center for Early Education.
National Inst. of Education (DHEW), Washirgton, D. C.

31 Jul 74
NE-C-00-3-0260
c8p.; Not available ir hard copy due to marginal legibility of Appendix $B$ of original document

MF-\$0.83 Plus Postage. HC Not Available from EDRS. * Cognitive Development; Computer programs; Data Analysis; Data Collection; Infant Behavior; *Infants; *Interaction Erocess Analysis; *Longitudinal Studies; *Mothers; Observation; Oral Communication; *Parent Chila felationship; Research; Social Development

## ABSTPACT

This paper reports on a longitudinal study involving 48 mother-infant $\dot{4} y a d s$ that attempts to explore the role of the caregiver-infant interactional environment in determining cognitive functioning as related to an understanding of environmental contingencies. mise present report includes (1) a progress report to date $u f$ the longitudinal data collection of the origins of Infant Competence; (2) a description of the inter-observer reliabilities from the pilot study and the Eirst phase of the longitudinal study; (3) description of the data-reduction scheme and computer programs devised to organize the observational data; (4) preliminary results of the pilot observational study that examined the (a) effects of infant state, caretaking setting, and maternal proximity on vocal behavior of infarts and mothers; (b) patterns of maternal behavior in intervals antecedent and consequent to infant vocalizatior onsets: and (c) the temporal structure which characterized alternation of vocal activity between infants and mothers; and (5) a description of the sample for the longitudinal study. Appendices contain the observational code used, a computer program. written for the data (56 pages), and uaterials used in contacting parents. (Author/SB)

## 

* Documents acquired by EpIC include many informal unpublished * matorials not available from other sources. ERIC makes every effort * to obtain the best copy available. Nevertheless, items of marginal. * reproducibility are often encountered and this affects the quality * of the microfiche and hardcopy reproductions EPIC makes available * via the ERIC Document Reproduction Service (EDRS) EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDFS are the best that can be made from the original.


```
                                    US GEPARIMENIOFHEALIH
                    EDUGATION& WEGFAGE
    EDUGATIONS WELFARE
                        ECUCATION
```









TRI-ANNUAL RERORT, INFANT COMPETENCE PROJECT, July 31, 1074

Petor M. Vietze

With the Assistance of: Barbara Strain and Susan Falsey

量禺

<
0 2

$B$
B

MSTM MMEDLE

This research supported by the National Institute of Education, Contract No. NE-C-00-3-0260

2

```
Iri-Annual Report, Infant Competence Project, July 31, 1974
    Peter M. Vietze
```

The prosent report includes 1) a progress report to date of the longitudinal data collection oi the Origins of Infan: Competence; 2) a description of the inter-observer reliabilities from the pilot study and the first phase :l the longitudinal study; 3) description of the data-reduction scheme and computur programs devised to organize the observational data; 4) preliminary results of the pilot observational study; 5) a description of the sampla for the longitudinal study; 6) results of the proliminary data analyses obtained Erom the cxperimental procedures to assess learning and visual habituation.

1. Progress Report of the Longitudinal Study

Recruitment of the sample: In order to guarantee that data on 48 infants would be available by the end of the study, 54 families were successfully recruited to participate in the study by the beginning of June 1974. By the last week in June, data collection was complete for all 54 infants and mothers for the ifirst phase of the study. However, since completion of this phase, two families, one with a male infant and one with a female infant, have dropped out of the study as a result of their moving out of the area unexpectedly. Thus the sample remains at 52 with 27 females and 25 males. Phase I
A. Fixperimental Tasks By the middie of July all the experimental data had been collected, scored and punched on data cards. This was a little bit behind schedule partly as a result of the loss of one of the research assistants in the beginning of June. This data has been subjected to data analyses
to evaluate the pertomance of the sample as a whole an each of the experimental tasks. The rosults of these analyses will be presented elsewhere in this report. In addition, data reduction schemes are being axplored to summarize this experimental data for later inclusion in multi-variate data analyses. Some of the preliminary summary scores have becn included in a correlation matrix to explore the relationships between some of these measures and thr Bayley Scales variables. Although extreme efforts were made to obtain complete data from all infants in the experimental procedures, approximately $15 \%$ of the infants did not complete the laboratory tasks due to Eussiness. In every case, several attempts were made to obtain the data by rescheduling laboratory visits up to three times. Attempts to establish some systematic explanation for this subject attrition have not met with any success-ie. no factor which is obvious seems to account for some subjects "refusal to cooperate". It should be mentioned, however, that $15 \%$ attrition is extremely low for infants under 9 months-many experimental studies report rates as high as $50 \%$ and so we are not too displeased with this rate of missing data.
1). Bayley Testing As anticipated, there are no particular problems which we have encountered in administering the Bayley Scales. Mean D.Q. for the Montal Scale is 110.0 while that for the Motor Scale is 121.47 . In addition to the overall scale scores, the items have been clustered by what they are measuring into a social scale, auditory scale and a visual scale. Also, 5 scales used by Yarrow, Rubinstein, Pedersen, and Jankowski (1973) have be'n used to extract additional clusters: visual attention, visual reaching, gross motor, fine motor, and social. These will be used to establish some construct validity with previous work by Yarrow et. al. When responsiveness
measures are available rom the observational data, these subscales will be correlated with the measures of maternal responsiveness to evaluate the relationship betwern maternal style variables and infant performance measures.
C. Maternal Attitude Scale This self-report measure developed by

Cohber (Cohler, Weiss \& Grunebaum, 1970) was administered to all the mothers during one of their visits to the Infant Laboratory. The 233 items have been transfurred to data cards and computer scored by Cohler at the University of Chicago. There are 37 variables derived from this instrument including empirical, theoretical and factor based scores. Thus far, only the five factor based scores have been analyzed with the other data. A preliminary correlation matrix was computed which showed no significant correlations between MAS factor scores and the infant performance measures. This instrument will be administered again when the infant is a year old.
D. Observational Data As mentioned above, all the first phase data has been collected including the observational data. Prior to completion of the Phase I data collection, procedures to transfer the observation interaction data to the computer were initiated. The steps include: 1) decoding the audio tape on which the data is recorded using the Datamyte; 2) correcting machine and obscrver errors (as these can be detected) on a print-out from the computer terminal; 3) loading the data from paper-punch tape (produced when the audio tape is decoded) to the disk and magnetic tape storage systems of our PDP $11 / 40$ computer; 4) correcting all discernible errors on the disk version of the data; 5) transferring the corrected data to magnetic tape. By the end of July these steps had been completed for all 54 records collected between March and June. During this time, the computer programs which have been written to reduce and analyze the observational data were being revised.

To date these revisions are incomplete. The revisions came about as a result of our experience with the pilot study now completed. Since it was impossible to know exactly what variables might be useful, several extra data ruduction steps were included in the programs. Thest are being deleted and the program made more efficient. It is exptected that the revisions will be finished by ... the beginning of October and that the observational data will be ready to be run off then. Following this step, dependent variables derived from the initial analysis will be transferred to data cards and incorporated in the multi-variate analyses for the first phase.

## Phase IL Preparations

A. Experimental Tasks Beginning in May, the experimental procedures for Phase II were finalized. Pilot subjects tested using the previously used "string pulling" response were tested. However, due to unexplainable difficalties, a large number of pilot subjects tested did not complete the sessions due to fussiness. It was decided that a new apparatus and procedure would have to be developed. In consultation with Mr. Harold Stone, the Kennedy Center Apparatus technician, a response system was built in which the infant was able to push either of two levers in order to gain access to either a visual stimulus or an auditory stimulus. This apparatus was tested and proved to be an admirable improvement of the previous "string-pulling" apparatus. The levers are situated below a rear-projection display screen and fastened to an infant feeding table. The infant can operate either lever with a minimum of effort to provide contingent feedback. A picture of a 2 year old child which remains on the screen for 3.5 seconds and a 3.5 second segment of a bluegrass banjo music tape serve as the visual and auditory reinforcers respectively. The experimental design is similar to that used in Phase $I$.

Ater the subject is made comfortable in the feeding table, a one minute batelille period tollowed by a minute contingency, 2 minute baseline and another 4 minute coutinsency period ensuc. Observers monitor visual attention, non-distress and distress vocalizations and smiles. If the infant becomes fussy, the sussion is tominated and another attempt is made after the infant regains its composure. If necessary, the infant is scheduled for another lab sestion and another attempt is made. In all, three attempts are made to test the infant.
B. Habituation Pilot infants tested in June did not maintain sufficient attention to the checkerboard stimuli used during Phase $I$ and so it was decided that facial stimuli would be utilized in Phase II. Color photographs of a girl smiling and frowning were tested and proved to be attractive enough to infants to warrant their maintaining attention for up to 30 seconds initially. Pilot testing, also indicated that some infants looked for less than 10 seconcs and so the initial looking criterion was lowered to mean looking time of 8 seconds laken on two consecutive presentations. The same decrement criterion of a $50 \%$ reductior in looking time used in Phase $I$ was selected in order to maintain some continuity with the earlier assessment. Again, infants were held by their mothers during the habituation procedure in order to minimize fussing. A similar design was used in order to provide controls for fatigue. Thus, half the infants are being tested with the smiling face and half are being tested with the frowning face with the other stimulus used to test for recovery of attention. In addition, to insure that failure of recovery is not due to the similarity of the stimuli, an upside-down monochrome face is presented at the end of the series for two presentations. In order to provide positive evidence of true habituation, half of the subjects are shown the
initial stimultis for two extra trials following their reaching decrement eriterion before being presented the second stimulus.
C. Observation of Interaction Prior to the beginning of Phast TI, video … tapes of $6 \frac{1}{2}$ month old infants being fed and entertained by their mothers were made in order to revise the observational code. Initially, the observers attempted to code these tapes using the observational code as it was being used for Phase I. It became evident that two significant changes had taken place in the infant-mother interactions. First, many of the infants were, as expected, becoming mobile. Some crawled, some scooted, some dragged themselves around the room. Secondly, they scemed to be much more adept at handling objects in their immediate environs. They reached, grasped, threw, dropped, mouthed, and otherwise explored and played with objects and toys. In addition, their mothers, having observed this change, encouraged such interactions in various ways. In order to incorporate what we considered to be important changes in behavior, we modified the proximity code so that it was now possible for the infant to initiate proximity changes between itself and the mother. We also elaborated the codes dealing with interaction with objects by expanding the number of third digit codes to indicate the varieties of infant-motherobject transactions. These are presented in Appendix A and can be inserted in the observational manual according to the page numbers. After agreeing on the changes, the observers spent several weeks between the end of Phase I and the beginning of Phase II practicing with several pilot subjects. Once more, high reliability was established for both freque ncy and duration measures as both levels of these are utilized in data analysis.
D. Carey Scale of Infant Temperament In order to provide a maternal refort measure of how the infant deals with every-day occurrences and events, a questionnaire devised by a pediatrician, William Carey (1970) was incorporated
into the study. This questionnaire is based on an extensive interview usod in the New York Longitudinal Study of the last decades (Thomas, Choss, Birch, Korn, \& Hert:ig, 1963) and gives some indication of how the mother perceives her infant along several dimensions. The goal is to be able to classity the infants according to activity into "easy", "medium", or "difficult" infants. Lt is expected that this will give an indication of the match between infant temperament and maternal style. The questionnaire can be self administered and so we are asking the mothers to fill them out and return them by mail. By the end of July, only 4 infants had been completed on Phase Il data collection, It is expected that Phase II data collection will be completed by the end of October.

1I. Inter-observer Agrecment
Three criteria were selected for establishing inter-observer reliability of the observational data: 1) that adequate inter-observer agreement exist un each category in the observation system before data collection begins (Weick, 1968), with a minimum level of agreement set at 85 percent as suggested by Gellert (1955); 2) that checks be made on the maintenance of initial inter-observer agreement during data collection (Gewirtz \& Gewirtz, 1969; Patterson and Cobb, 1971; Reid, 1970); and 3) that reliability indices be established on scores which correspond to each form of the dependent variable (e.g. frequency of occurrence, duration, etc.) planned for use in the final data analyses (Frick and Semmel, 1974).

Initial data collection for reliability purposes was planned to continue until acceptable levels of agreement for each behavioral category on six dyads, three with male infants and three with female infants, were reached. Inter-observer agreement checks were made again at the mid-point and near the
and of data collection on the 24 dyads in the pilo: stady and throughout the data collection in Phase 1. For the in-process observation visits, both obscrvers collected data on the entire session for reliability purposes but only onc observer's data for each visit contributed to the final analyses. From wach of the pairs of observation records done to check raliability, five to lifteen minutes of continuous interaction from the initial, middla and final portions of each approximately 90 minute session. The segments were srlected to sample different caretaking settings. A total of 20-30 minutes from each observer's record contributed to the reliability check fur each observation session.

Since dependent variables in the form of overall duration of behaviors and antecedent-consequent relationships within $10-s e c o n d$ intervals were to $\because$ be used in data analyses, inter-observer agreement was established on the reliability data for both types of scores. First, to assess the reliability on duration of behavior categories, the records were divided into consecutive 1-minute segments. The duration of each category of maternal and infant behavior was summed per minute. This process was carried out on each observer's record. Pearson product-moment correlation coefficients were calculated between the two observers for each category, using the duration of the category, in seconds, for each l-minute interval.

Secondly, a standard percentage agreement index to assess agreement between observers in coding the presence or absence of behavioral categories in short consecutive time intervals was applied to the same portions of the reliability records described above. For this purpose, the records were divided into $10-s e c o n d$ intervals. A $10-s e c o n d$ interval unit was selected to correspond with the time period used to define antecedent and consequent behavioral events in data reduction and analyses (Level II) described in the
thet section of this report. Each $10-s e c o n d$ unit was scored in terms of whether the two observers agreed or disagreed on the common occurrence of each maternal and infant behavior category. The number of agreements wats totaled and divided by the sum of the number of agreements and the number of disagremente. Intervals in which the observers agreed that no instance of a category occurred did not contribute to the total number of agrements since this gives deceptively high agreement scores by inflating the actual Erequency of occurrence of the event (Bijou, Peterson, Harris, Allen, \& Johnston, 1969).

Results of the initial and in-process reliability checks are summarized in Table 1 for the pilut study and the Phase $I$ observations. The correlational index resulting in generally higher levels of agrement. Lowest levels of inter-observer agreement were recorded consistently for maternal and infant smile. Smile was a behavior with relatively low frequency of occurrence, which fact tends to reduce the percentage agreement index level (Frick and Semel, 1974). Also the occurence of a smile is a more subtle behavior to detect than the onset of auditory or tactile stimulation. Visual attention indices which represent attention of one member of the dyad to any part of the body of the other member, rather than eye-to-eye contact, were consistently high. In general, inter-observer agreement in natural settings seems to be more difficult to establish than in laboratory settings. Often, the recording of a particular maternal or infant behavior is largely dependent on the position of the observer relative to the subjects. It is impossible for two observers to have the same position and so the high reliabilities which are presented here are probably affected by the particular homes in which the checks were done. Often furniture arrangement and space in the setting made it difficult for the observers to find locations which gave equally clear unobstructed

чวиок $2 / \mathrm{I}$ 乙

views of the faces of the infant and mother.
III.

Data Reduction Scheme for Observational Data
Following editing of the observational records as described above (in Section 1), the corrected records are transferred to disk for processing. The following will present the scheme used for processing the observational data collected in the pilot study. Revisions of the computer program designed for this purpose, DYAD, will be presented in the next report as DYAD 1.

All data reduction operations were carried out for the unit behavior pattern, a configuration of simultaneously occurring behavior categories, as well as for the more molar unit of behavior category, a single behavior modality (vocalization, visual attention, smile, etc.) summed across all patterns which included the particular behavior modality. Corresponding to the three levels of data analysis, 1) effects of infant state and maternal proximity or infant-mother transactions, 2) antecedent and consequent behavior patterns to vocal behaviors between mother and infant, 3) temporal structure which characterizes the vocal transactions between mother and infant, three general strategies for reducing the continuously coded behavioral data are being carried out for each of the 52 records.
A. Level I Non-interactive Analyses For each maternal behavior pattern and each infant behavior pattern, the absolute frequency of occurrence, total duration, and average duration per occurrence is calculated. As each dyad's observation session varies in length, proportion scores are required for between dyad comparisons. Frequencies, durations, and proportions are reduced according to the caretaking setting, infant arousal state, and maternal proximity context conditions under which they occurred. As the naturally-occuring amount of time spent in each context condition varies for each dyad, dependent
variables in Level $I$ are proportion scores representing the duration of the behavior in a particular context relative to the total amount of session time spent in that context. Based on the matrices produced by this level of analysis, particular dependent variables are extracted and entered in analyses of variance in order to determine the effects of proximity, state, sex, or some other variable utilized as an independent variable on the behavior pattern of infant or mother.
B. Level II-Antecedent Consequent Analyses For each onset of an infant vocalization which occurred when the mother was in the same room with the infant, antecedent and consequent maternal behavior patterns are identified. An antecedent maternal pattern is identified as the first maternal behavior pattern which preceded the onset of the infant vocalization in the prior 10-second interval. A consequent maternal behavior pattern is identified as the first maternal pattern which followed each onset of an infant valization in the subsequent 10 -second intferval. A subset of antecedent maternal patterns is identified as continuing behavior, in that the maternal antecedent pattern continued into the 10 -second interval following the infant vocalization with no other maternal behavior initiated in the 10 -second consequent interval. For Level II analyses the dependent variable for antecedent maternal patterns (or consequent maternal patterns) was a proportion represented by the frequency with which each of the 10 mutually exclusive and exhaustive maternal behavior patterns occurred as an antecedent or consequent pattern relative to the total frequency of infant vocal states. In the same way, the infant's antecedent and consequent behavior patterns can be obtained given a particular maternal behavior or behavior pattern. Since the actual latency between either maternal antecedent to infant response or maternal
response to infant consequent behaviors are also obtained, an analyses of the learning potential in the naturalistic setting is possible by analyzing these latency scores. In addition, other infant and maternal responses can be chosen as the focal behavior pattern in order to determine the antecedent and consequent behaviors of the partner in eliciting and consequating particular responses.
C. Level III-Temnoral Structure of Infant-Mother Dialogues Level III data reduction is being carried out to allow a conditional probability analysis of the second-by-second alternation of activity between infants and mothers. This Level of analysis can be focused on several behavior patterns but will initially be carried out on vocal behaviors as these probably have the greatest significance for later development. Later, similar analyses will be conducted for visual regard of each other.

The inadequacies of a time independent analysis when applied to questions of complex interactive behavior (Collet and Semmel, 1973; Raush, 1965), especially dyadic vocal interactions (Jaffe and Feldstein, 1970), have been pointed out. Yet although continuously recorded and timed behavioral data can be unitized into consecutive fixed-time intervals of any length, there has been no consensus among investigators as to guidelines for selecting the most appropriate fixed-interval length. Collet and Semmel (1973) have suggested selection of a time interval such that "...the coded behavior applies to the entire interval (p. 6)." The internal digital clock on the Datamyte recorded times behavior changes and durations in units of l-second. A l-second unit, therefore was the fixed-time interval for which a distinct code could cover the 'entire interval'. To sample the interaction data using a fixed time interval greater than l-second would require making arbitrary decisions concerning the proportion of an interval which would have
to be filled by a certain behavior for that entire interval to be designatod as containing that behavior.

Thus, each observational record is divided into consecutive fixed-time intervals of 1 -second. Portions of each observational record in which maternal proximity is coded as Out of Room are not included in this reduction. For the remaining portions of the record, one of the following four mutually exclusive dyadic vocal states (for the infant, only non-distress vocalizations qualified) is assigned to each 1 -second unit: Simultaneous vocalization, Hother only vocalizing, Infant only focalizing, and Mutual silence. The sequence of states formed from this reduction fits the assumptions of a finite Markov process: (I) the number of steps in the sequence is finite, (2) the sequential transitions are discrete, and (3) the probability of a given event shrerds only on the last preceding event (Raush, 1973). The Markrs process describes "...a certain type of process that moves in a sequence of steps through a set of states... When the process is in state $\mathrm{s}_{\mathrm{i}}$ there is probability $P_{i j}$ that the next position will be state $s_{j}$. The matrix $P=\left(P_{i j}\right)$ is called the transition matrix. Its entries are non-negative and its rows have sum 1 (Kemeny and Snell, 1963, p. 128)." This transition matrix is a complete description of a first-order Markov process (Hertel, 1972).

A first order transition matrix is constructed for each dyad giviing the frequency with which a vocal state at time "t" moved in the next l-second interval (time "t+1") to any vocal state, including itself. From this matrix of transition frequencies, transition probabilities for each cell are derived by dividing the cell frequency by its corresponding row total. The dependent variables formed from Level III reduction, therefore are the conditional or transition probabilities represented.in the cells of the matrix constructed for each infant-mother dyad.

Following is a list of the 16 subroutines that make up the program DYAD and a brief description of what each does. The complete program may be found in Appendix B.

DYAD

Preliminary Subroutines

1. ZERSET - Zeros out arrays and matrices used for each subject.
2. SEP - separates the 2 or 3 digit code into 3 separate numbers. If it was a 2 digit code the 3 rd number is a 1.
3. [TOJ - takes a behavior pattern and returns a string that contains the categories present in the pattern

Level I
4-5. MATP, MATC - fills in matrices for frequency onsets and durations.
6. STATE - fills in matrices of state by proximity by behavior.
7. WR1 - prints matrices from MATP and MATC, calculates proportions and summaries.
8. WRA - prints matrices from STATE, calculates proportions and summaries.

Levels II and III
9. FILL - creates the matrix that holds 500 seconds of behaviors for mother and infant. (When FILL reaches 500 the following three subroutines operate).
10. IAC - creates antecedent-consequent matrices.
11. MAT - creates transition matrices.
12. REFILL - Zeros out 500 second matrix and resets initial values so next 500 seconds can be collected.
13. WR2 - prints antecedent-consequent matrices, calculates proportions.
14. WR3 - prints distributions of consequent latencies.

15-16. WR4, WR5 - prints transition matrices.
IV. Preliminary Results of the Pilot Observational Study: Early Diaglogues ": Much has been written in support of the notion that the early motherinfant interactional environment is the arena in which the infant learns (Lewis \& Goldberg, 1969; Gewirtz \& Gewirtz, 1969; Yarrow, 1963). The learning which apparently takes place as a result of the infant's experience with the primary caregiver (usually the mother) includes learning to control environmental events learning self-other differentiation, learning to talk, learning to walk, learning about objects presented by the caregiver, etc. The present study is an initial attempt to study the patterns of infant-mother interaction in order to understand the dimensions which might lead to a learning analysis of infant-mother interaction. The broader issue in which this research is embedded is whether the caregiver-infant interactional environment is an important determinant of cognitive functioning as this depends on the understanding of environmental contingencies. That is, does the infant learn which aspects of its environment it can come to control and does this learning relate to the way in which the infant subsequently negotiates its way in its one year old environment. The present study addressed itself to some of the variables which might affect the interactional behavior of 14 -week-old infants and their mothers: infant state, maternal proximity, and caretaking setting. In addition, the study was an attempt to develop some data analytic techniques to analyze interactional variables from a learning viewpoint. The study was focused on the vocal interactions of the infants and mothers as they occurred in the context of other behaviors.

A system for continuous, in-home observation of vocal communication patterns embedded in the social interactions was developed and utilized. This procedure was created to be methodologically consistent with a theoretical
model of the reciprocal, bidirectional nature of the infant-mother relationship. The purpose of the study was to examine the 1 ) effects of infant state, caretaking setting, and maternal proximity on vocal behavior of infants and mothers; 2) patterns of maternal behavior in intervals antecedent and consequent to infant vocalization onsets; and 3) the temporal structure which characterized alternation of vocal activity between infants and mothers. Twenty-four dyads, each composed of a 14 week old infant ( 12 males and 12 iemales) and its mother were observed for approximately 90 minutes during 1 waking period including dyadic and solitary play and several caretaking routines. Maternal and infant social behavior recorded as sequences of mutally-exclusive behavior patterns as well as changes in setting, maternal proximity, and infant state were continuously recorded and timed by 1 observer using a portable electro-mechanical keyboard recorder unit (Datamyte, Electro/ General). Visits were divided between 2 observers on whom high inter-observer reliabilities were established initially and during the data collection.

No overall sex of infant difference for frequency or duration of vocal behavior was found for infants or mothers. Vocal behavior of infants and mothers occurred most often when the infant was in an active state. Infants vocalized significantly less when being held than when mother was within arms' reach; amount of maternal vocalization did not differ between these two proximities. Infants also vocalized significantly more often when mother was absent than when being held, with females' solitary vocalizations co-occurring with contact with an object significantly more of ten than for males. No overall sex of infant differences were found for any infant or maternal nonvocal category.

For all dyads, maternal vocal and visual behavior was the most frequent $*$
behavioral pattern antecedent to the onset of infant vocalization, with maternal vocal and visual attention also the most frequent response to infant vocalizations. Males vocalized selectively in response to maternal vocal-visual-smile patterns. Moreover, mothers of males responded differentially to infant vocalization with physical play stimulation.

In order to understand the interactional nature of the vocal activity of the dvads, each observational record (when mother was in the room) was divided into consecutive 1 second intervals which were assigned to 1 of 4 dyadic vocal states. These included simultaneous vocalization, solitary mother vocalization, solitary infant vocalization, and mutual silence. This sequence of vocal states fits a finite, Markov process model and could be represented by a first-order transition probability matrix, or state transition diagram as suggested by Stern (1974). As illustrated in Figure 1 , transition probability values were quite similar for males and females, and, in fact, the values were strikingly similar for all 24 dyads suggesting a basic temporal rhythm which characterized alternation between vocal states.

Solitary maternal vocalizations dominated solitary infant vocalization by a ratio of 10 to $1(46.8 \%$ to $4.1 \%)$, with mutal silence and simultaneous vocalization occurring $39 \%$ and $9.6 \%$ of the time respectively. Twice as much infant vocalization occurred in simultaneous as in solitary vocal activity. Analyses of transition probability scores indicated mothers were significantly more likely to "break" mutual silences. In contrast to Lewis' (1972) findings, however, vocal initiations by infants as well as mothers were significantly more probable given the occurrence of the partner's vocalization in the preceding interval than if the partner was silent. Mothers were more likely to move from silence to simultaneous vocalization with their infants than were infant
to "join in" with their mothers. Furthermore, simultaneous episodes moved more often into solitary mother vocalization than into solitary infant vocalization $(F=37.04 ; \mathrm{dt}=21,22 ; \mathrm{P}<.001$ ).

These patterns are quite different from the standard temporal parameters for dialogues among older individuals (Jaffe \& Feldstein, 1970). Maternal "joining in" and prolonging simultaneous vocal episodes may have reflected efforts to stimulate prelinguistic sounds or to regulate vocally the degree of dyadic social cuntact as Stern (1974) suggests. Moreover, further analysis of the observational records indicated significantly more infant vocalization occurred when mother was out of the room than when she was holding the infant. This suggests that perhaps infant vocalization has an important function in addition to social participation. While laboratory investigations have found that maternal vocalization during infant vocalization has the effect of terminating the infant vocalization, a "suppression" of infant focalization effect, (Kagan \& Lewis, 1965; Webster, 1969) the present results did not support this notion.

The analyses of the data from the pilot study are not complete but they do indicate that the observational instrument and data reduction and analysis sc: $\quad$ s a productive one for explicating the fine-grain interactional behavior of mothers and infants. The pilot study suggests a unique and complex structure for early vocal exchanges and the usefulness of an observational methodology consistent with a bidirectional model of early social interaction. Data now being analyzed from the first phase of the longitudinal study will allow for interesting cross sectional comparison between 10 and 14 week old infants and their mothers when taken together with the pilot study brie£ly reported here. These comparisons probably will be possible by the first report of the second contract year.
$\because$ Description of the Sample for the Longitudinal Study
In order to maximize the changes for obtaining complete data on the desired sample size, $N=48$, a predominantly middle-class group was selected to participate in the study. Names of all families to be contacted were selected initially from birth records at the Tennessee State Department of Public Health according to the following criteria: all infants were firstborn, full-term singletons with birth weights between 5.5 and 9.5 pounds and were free of significant health complications as indicated on the birth record; parents of these infants were married, with each parent over 20 years of age and at least a high school graduate. All of the information contributing to these criteria is given on each birth record in Tennessee. As part of this research was to be conducted in the home, and additional selection factor involved geographic location. Families living at a distance greater than 20 miles from that part of central Nashville, Tennessee were excluded. In addition, as the initial contact with all parents was by telephone, families who met all other criteria but were without telephone service or who had unlisted phone numbers were not accessible for recruitment.

Parents of infants who met the above criteria were contacted in random order by telephone and the purposes and requirements of the study were introduced by a female. research assistant. The standard initial telephone contact procedure is included in Appendix C. Before further information was given, it was determined that the mother was the primary we $e^{k-d a y ~ c a r e t a k e r ~ a n d ~ t h a t ~}$ the family would be in the city for the next year. Eor parents who were intertsted in possible participation, a letter explaining the details of the study (see Appendix C) and what was required for participation was sent with the understanding that a second phone call a week later would be made to see

TABLE 2

|  | Total <br> Frequency | \% | High <br> Frequency | $\begin{gathered} \text { Ed.* } \\ \% \end{gathered}$ | Low Ed. Frequency | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Potential N | 213 |  | 148 |  | 65 |  |
| $\because$ ¢ phone | 44 | 21 | 27 | 18 | 17 | 26 |
| Sover contacted | 22 | 10 | 19 | 13 | 3 | 5 |
| Contacted by phone | 147 | 69 | 102 | 69 | 45 | 69 |
| mefused initial contact | 44 | 21 | 20 | 14 | 24 | 37 |
| Letter sent | 103 | 48 | 82 | 55 | 21 | 32 |
| Pefuster after letter | 49 | 23 | 37 | 25 | 12 | 18 |
| lacluder in study | 54 | 25 | 45 | 30 | 9 | 14 |

,oth parents education $\geqq 14$ years
i the tamily was still interested. At the time of the second phone call, if the family was interested in participating in the study, an initial appointment to conduct the observational session was made. Table 2 describes the number of potentially qualifying families selected and those which were located by telephone listing, contacted, sent the letter, and agreed or refused to participate. Since the data had to be collected as the infants were born, it was not possible to randomly select the sample from the population as a whole. However, as much as possible, the families who were included were randomly selected from the ones who were sent letters. The birth rate did not allow completely random selection at any one time. Families were contacted initially when the infant was 8 weeks old in order to allow ample time to recruit the sample for any one week and still see the mother and infant when the infant was $10-11$ weeks of age. Table 3 includes the characteristics of participating infants and parents, for infant's age at Phase $I$, birth weight of infant, weight at time of Phase I, mother's age and education and father's age and education. As can be seen from the data, there are no apparent difierences between males and females in the study, with the exception that the boys weighed significantly more than the girls at the beginning of the study ( $\mathrm{t}=3.06 ; \mathrm{df}=52 ; \mathrm{F}<.01$ ).

TABLE 3 - Characteristics of Sample

|  | Males |  |  | Females |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Range | S.D. | X | Range | S.D. |
| Infant Age in days | 75.78 | 69-84 | 4.22 | 75.33 | 69-84 | 4.03 |
| Birth Weight | 121.6 | 101-142 | 11.1 | 119 | 95-155 | 13.23 |
| Curent Weight | 209.6 | 130-256 | 25.6 | 188.7 | 126-224 | 23.68 |
| Morher's Age (years) | 26.26 | 24-32 | 2.44 | 25.59 | 21-31 | 2.78 |
| Mother's Education | 15.41 | 12-18 | 1.74 | 15.19 | 12-18 | 1.78 |
| Father's Age (years) | 28.44 | 24-42 | 4.41 | . 27.81 | 24-34 | 3.00 |
| Fathe:'s Education | 16.26 | 12-19 | 1.63 | 16.11 | $12 \cdot 18$ | 1.45 |

YI. This section is found under seperate cover.

25

## References

Bijou, S.W., Peterson, R.F., larris, F.R., Allen, E., f Johnston, M.S. Methodoloy, for experimental studies of young children in natural settings. The Psychological hecord, 1969, 19, 177-210.

Carey, W.B. A simplified method for measuring infant temperament. Journal of Pediatrics, 77: 188, 1970.

Cohler, B., Weiss, J., \& Grunebaum, H. Child-care attitudes and emotional disturbance among mothers of ;oung children. Genetic Psychology :fonogranhs, 82, 3-47, 1970.

Collet. L.S., \& Seumel, M.I. The analysis of sequential behavior in classrooms and social enviroments: Problems and proposed solutions. Techntwal Report 3.23, Gente for Innovation in Teaching the Handicapped, Indfana Uni* rattv, Boomincton, Indiana, 1973.

Frick, T., \& Semmel, J.I. Observational records: Observer agreement and reliabilities. Faper presented at the meeting of the American Educational Research Assuciation, Chicago, April 1974.

Gellert, E. Systematic obser:ation: A method in child study. Harvá.Educationd Seviex, 1955. 25, 179-195.
$\therefore$ fititz, H.B., \& Gewirtz, J.L. Caretaking settings, background events and behavior differences in four Israeli child-rearing environments: Some peeliminary trends. in B. F. Foss (Ed.), Determinants of infant behavior. Vol. '4. London: Methuen, 1969, 229-252.

Hertel, R.K. Application of stochastic process analyses to the study of peychotherapeutic procosses. Psychological Bulletin, 1972, 77, 421-430.
J.it, J., $\&$ Feldsisi, S. Rthms oE dialogue. New York: Academic Press, 3970.

Kagan, J. \& Lewis, $\because$. Studies of attention in the hunan infant. MerrillPalmer Quarterly, 1965, i1, 9j-127.

Remeny, J.G., \& Snell, J.L. Mathematical models in the social sciences. New Yort: Blascadel 1953.

Towis, $\%$. State as an infant-environment interaction: An analysis of mother-infant interaction as a function of sex. Merrill-Palmer Suarterly of Behavior and De:vleopment, 1972, 18, 95-121.

Lewts. M., a Goldbert, S. Perceptual-cognitive development in infancy: A generalized expectaicy model as a function of the mother-infant interaction ferril-falrer quarterly, 1969, 15, 81-100.

Patterson, G.R., \& Cobb, J.A. A dyadic analysis of "aggressive" behaviors. In J.P. Hill (Ed.), Minnesota Symposia on Child Psychology. Vol. 5. : Iinneapolis: University of Yinnesota Press, 1971. Pp. 72-129.

Raush, H.L. Interaction sequences. Journal of Personality and Social Psychology, 1965, 2, 487-499.

Raush, H.L. Process and change: A Markov model for interaction. Family Process, 1972, 13, 275-298.

Reid, J.B. Reliability assessment of observation data: A possible methodological problem. Child Development, 1970, 41, 1143-1150.

Stern, D.N. Mother and infant at play: The dyadic interaction involving facial, vocal, and gaze behavior. In M. Lewis \& L.A. Rosenblum (Eds.), The origins of behavior. Vol. 1. The effect of the infant on 1ts caretaker. New York: Wiley, 1974. Pp. 187-213.

Thomas, A., Chess, S., Birch, H.G., Hertzig, M.E., \& Korn, S. Behavioral individuality in early childhood. New York: New York University Press, 1963.

Webster, R.L. Selective suppression of infants' vocal responses by classes of phonemic stimulation. Developmental Psychology, 1969, 1, 410-414.

Weick, K.E. Systematic observational methods. In G. Lindzey \& E. Aronson (Eds.), The handibook of social psychology. Vol. 2. (2nd Ed.) Reading, Mass.: Addison-Wesley, 1968. Pp. 357-451.

Yarrow, L.J. Research in dimensions of early maternal care. MerrillPalmer Quarterly, 1963, 9, 101-114.

Marrow, L., Rubenstein, J., Dedersen, F., \& Jankowski, J. Dimensions of early stimulation and thelr differential effects on infant development. Merrill-palmer Ouarterly of Behavior and Development, 18, 3, 1972, 205-218.

APPENDIX A

## 6 1/2 Month 01d Revisjons of Interactional Code

## SETTING ( 6 month olds)

The Setting code is entered initially and whener a change occurs in the type of caretaking activity.

## NO CARETAKING,

Definition: This category indicates any type of interaction between mother and infant which does not involve any of the caretaking routines listed below or not interaction occurring between infant and caretaker. I feeding, himself, non-mother initiated $=$ coded no caretaking, not feeding

## FEEDING

Definition: Mother initiates feeding of the infant with breast, bottle, cup, spoon, or manually. Feeding begins with first mouthful infant eats and continues through any temporary breaks (getting more food, rearranging baby, etc.) and includes burping routines during or following feeding.

## ALL OTHER CARETAKING/PHYSICAL HEALTH NEEDS

Definition: Mother is (l) bathing, infant in tub, sink, or sponging infant's entire body, (2) changing infant's diaper, or (3) undressing or redressing infant, (4) grooming infant (cutting fingernails, combing hair), or (5) binding up of wounds (cleaning cuts, bandaging scrapes). Bathing begins with undressing and includes cleaning ears and nose, drying and redressing infant.

Definition: Mother is preparing infant for sleep: rocling, arranging crib covers, etc. This setting is defined by mother's behavior, not by cues of infant state. Infant may not necessarily go to sleep, but mother is attempting to put infant to sleep.

## INFANT RESPONSES DIRECTED TO OBJECTS

Infant is interacting with object if he is looking at the object, reaching for, mouthing, waving, banging or manipulating it alone or with mother. When infant is observed to be interacting with an object, one of 4 possible codes ( $0-3$ ) is used as a third digit to modify $a^{\prime \prime}$ oue of the ten 2 -digit infant behavior patterns which might accompany this interaction with object.

Coded as Objects (Examples)
Infant's or Mother's clothing,
jewelry
Pets
Mirror (images in mirror)
T.V.

Toys
Household items
Feeding utensils
Food (in other than feeding setting)

Not coded as Objects (Examples)
Undefined spaces, direction's Walls
Ceilings
Infant's or mother's body
part (hand, foot)
Food (during feeding setting)
A. Social Play

Definition: Infant is "playing socially with an object" if he is engaged in initiating or continuing a reciprocal activity with his mother which involves an object, i.e., handing object to mother (regardless of mother's reaction) reaching for object held by mother, rolling a ball back and forth to mother, mother and infant holding an object together. - (Infant does not have to be aware of mother's also interacting with object and him/her.) The 3rd digit coded for this behavior is a " 0 " which is used to modify any of the 2-digit patterns which might accompany this social play.

For example:
a. 6-4-0 Infant looks at Mother, vocalizes, and plays socially with an object.
b. 6-8-0 Infant smiles and plays socially with an obfect.
c. 6-9-0 Infant utters a distress vocalization and plays socially with an object.

Social play may be followed very quickly by solitary manipulation.

## B. Manipulation

Definition: Infant is "manipulating an object" if he is touching, holding, mouthing, banging, or waving object. (using hands, feet, or any body part) The 3rd digit code for this behavior is a 1.

For example:
a. 6-1-1 Infant vocalizes and manipulates an object.
b. 6-3-1 Infant looks at mother, smiles, and manipulates an object.
c. 6-5-1 Infant looks at mother, vocalizes, smiles, and manipulates an object.
C. Reach/Approach

Definition: Infant is "reaching for or approaching an object" if he attempts to get an object that is beyond arm's reach. This may inciucle stretching to reach an object, scooting
toward an object, crawling to an object, vic. The 3rd digit code for thly hehavior $1: s$ a 2 . Mosil lkely accompanied by visual attention to object.

For example:
a. 6-2-2 Infant looks at mother and reaches for or approaches an object.
b. 6-6-2 Infant reaches for or approaches an object. c. 6-7-2 Infant vocalizes, smiles, and reaches for or . approaches an object.

## D. Looking Oniy

Definition: Infant is "looking only" if he looks at an object and does not interact with it in any of the above ways, i.e., looking at a mobile without reaching for it. The 3rd digit code for this behavior is a 3.

For example:
a. 6-1-3 Infant vocalizes and only looks at an object.
b. 6-6-3 Infant only looks at an object.
c. 6-8-3 Infant smiles and only looks at an object.

Rules for Object Codes

1. The imanimate object must have definable bounds. Looking at surfaces, walls, ceilings, etc. is not coded.
2. Notice the distinction in coding between examples (a) and (b) below:
(a) If observer cannot judge whether an object held by mother or
mother herself is the focus of the infant's visual attention, code 6-2, infant looks at $M$ rather than $6-6-0$, infant looks at object.
(b) If infant is looking at both mother and object, i.e. peek-a-boo with a cloth, code a 6-2-3.
(c) If infant is manipulating an object, is looking at mother, and is not engaged in social play, code 6-2-1.
3. The infant may interact in different ways with 2 objects at the same time, i.e., reaching for one object while manipulating another." A hierarchy has been established to cover these situations. If an infant is engaged in social play code a 0 even if infant is stimultaneously manipulating, reaching for, or looking at another object, 1.e., a code takes precedence over a 1,2 , or 3 . If an infant is manipulating one object code a 1 even if infant is simultaneously reaching for or looking at another object, i.e., a 1 code takes precedence over a 2 or 3 . If an infant is reaching for or approaching an object code a 2 even if infant is simultaneously looking at another object, i.e., a 2 code takes precedence over a 3. Only if an infant is not doing anything else with an object except looking at it is
a 3 code used.
For example:
(a) If infant is engaging in social play with an object and is also manipulating another object, code the social interaction (0).
(b) If infant is manipulating one object and looking at another object, code the manipulation.

MATERNAL PROXIMITY TO INFANT
Maternal Proximity is entered Initially and again whenever the distance between mother and infant changes.

Definition: This code indicates the existence of one of four mutually exclusive and exhaustive categories of distance between mother and infant. Proximity is entered intially and only when a change in proximity is observed. If the proximity change results from movement by the infant, the . new proximity code will have a 6 as the 3rd digit.

Rules: $\quad$. If both mother and infant simultaneously move to cause a proximity change, code the infant as "initiating" this change (that is, use a 6 as the $3 r d$ digit).

## HOLDS INFANT/PROVIDES MAJOR POSTURAL SUPPORT

Definition: Mother supports infant's weight either at some distance from her body or close to her body, using both hands and/ or her body.

Rules:

1. Includes mother's supporting an infant while holding Infant in seated position on her lap, supporting infant on her hip, or supine or prone on her outstretched arms.

- 2. Includes cuddling, cradling, throwing in air, or simple holding.

3. Includes providing major postural support to infant while infant is in bath tub, on couch, etc.

MOTHER WITHIN ARM'S REACH OF INFANT'
Definition: Mother is touching infant or part of infant's body, clothing, or covering of is located such that she can touch the infant by bending, stooping, or reaching out. Arm's reach refers to mother's arm's reach.

APPENDIX B

DYAD Computer Program

Written by Susan Falsey

| 1，1 VUG．11 | 11：の6：3 | ： 9 －－11：-74 | Pnct |
| :---: | :---: | :---: | :---: |


| C | 19AJuh VakIambl | Aidl arknr lani he |
| :---: | :---: | :---: |
| $i$ |  |  |
| $\stackrel{\rightharpoonup}{\circ}$ | 11ヵの以t | HEAMIJU， |
| し | －1LL！（ぐ） |  |
| $\checkmark$ |  |  |
| 6 | IHULII（1） |  |
| L |  |  |
| し |  |  |
| 6 |  |  |
| C | LLハざT（\％） |  |
| $i$ |  |  |
| 6 |  |  |
| 6 | L心以1（1c） | 1－h IUUL．JS M（）THER（1－3）A IMFMIII（4－6）TIMI |
| \％ |  |  |
| $\checkmark$ |  |  |
| 6 | 1！ルハご（2） |  |
| $c$ |  |  |
| $c$ |  |  |
| C |  | ULILCT（3－ulid，NO URJ．＇［Gisurt UisJ））$x$ |
| C | $16 \%$ \％lumis |  |
| C |  |  |
| $r$. |  |  |
| C | 「いた E゙のCい） |  |
| L | FiSEUIEAKY UF OUSET |  |
| C |  | SalMt．as IfREO bUT FUK UURATIUNS LN IACH CELL |
| L | KトKしり（15） |  |
| C |  |  |
| C | KUUR（1ゝ） | SAITE AS KFRLO WUT JURATIUIS |
| C |  | ¿AME AS LFRFA BUT UNLY 15 KUWS 15 CATEGORIES $X$ |
| $1:$ | FRLGIIFMCY GF CATEGOKY $X$ UHJLCT $X$ So Se fir P ORNSET |  |
| し |  |  |
| C | LHIAC（2016）HiduS 14 12X1：MATRLCES FOR M ANU ITFANT |  |
| し |  |  |
| L |  |  |
| $C$ | STRUAG OUI 1NTO AIJ ARRAY BECAUSL HIEXUAL．NUM． |  |
| C | UF GHSETS FUK MUTHER ANJ LNFAJI |  |
| $\because$ | MOTHER－－5 VOC．PATTERAN： 1 C＾IEGOKY VOC nivSe T |  |
| 1 | 1AFANT－－4VUC， 2 LKY PGIILRM， 1 V OC 1CRY |  |
| $r$ | CNTEGOIRY ONSETS |  |
| i | ALSU STRUNG OHT BECAHSE OF FASTEK COFPUTING TIMI． <br>  |  |
| $\checkmark$ |  |  |
| C | L．MIAC（2016） IMJUT（く，く10） | SAME AS ImIAC BUT HULIS LATEMCILS OF CUISSFUUEHTS |
| $C$ |  | HOLOS FOK BOTHER ANU LWFANI，SIAIE X HKOX X HEHAV |
| $c$ | U⿴JECT CROSS TAH LUAAILOMS |  |
| し | FUR HUTIIEM ANU IUJTAIS |  |
| （ | ， |  |
| C： |  | 7 COL． 6 FOK SIATE（ACT，WUDFT） X PROX（IN， |
| C |  | OUT，COMBINATLOH，TOTALS URIJEF LACH STATE |
| $\downarrow$ |  | AiJU 1 OVERALL Tilial |
| C | NOUT（7） | TOTALS FOR STATE $x$ rkux（IGINORES BEHAVIOR－OUJ） |
| C＇ | ICAT（2，40） | FUR MUTAEK AND INFAIST．． |
|  | SY GiS HOLUS BEHAVIOH COUES ASOOCIATED W／EACH UF THE 5 CATLGOKILS |  |
| 6 |  |  |
| C | 2（＂－I）$\times$（GCAT） X （ |  |



```
ドいい「いがいV.Jい.13
```




```
;MLL ','' -'/
```

11111 1） 1110

リリリ
11111 いい11
．1112

1015
JIl4
いう1！
（11r．
（1） $11 \%$
.191
い？，1
1．1． 1
！！！
1：1،号
15123
10．？：

10 2 a
（11）य．1 1の，？

1023 112．
vへSい い）（i）

10 5
i） 15

3）．34 ：1．14，

J．）${ }^{1}$
10.19 1115 5

い？
1.14 .1 （0） 41 RIC








Cー－SLT CいlいふTANTi
い1も $=1$ 1t
$1 C O L=3$
ICOL．$=U$
N゙にしい $=\Delta$
はCいL＝nKr．JL •ICUL
$J C A T=>$
NCAT：$=0$
KAlい）$=$ is
$A C 1=<$
$\cdot A A(i=4$
L［性S＝$=3$
IF（LLiNt 」 •E．」．力）GU $\mathrm{T}_{1}$ ） 1001












：－－REAU Ill CATLGUJYY NAMFS FRUM CAKUS




REAU（KAKDSisul）（FILE？（J）：J＝1•？U）



C．．．．WEULFIIJE FILE FUR ANTECEJLHT－COWSFIJUEWT CHAKI．•THEY AKE CLUSEU

UE゙FINL FILE 1（1U00．17．U．1．J0）


CALL＜I．NSH：

$\| .1<J=1$.
MIn（リ）＝！
（i） 11 ：
1！：4，
1144 1.14. ．＂＂． 1：4 $\therefore \cdots$ －j， ．11\％．1 ！；， 1 1．1－ ，）：

J．1 1 1

17ッ 1190 $\cdot 211: 7$

おロロタ
－•••••••
$10 n 1$

ノ1061
．） 11 ．？
$\therefore 11: 5$ $\therefore$ in＇t נטコ

J11．， 7
－1．．．
，11．
$11.1 / 1$
1） 71
．11／．
1．1：
$11 / 14$
－$\quad \vdots=10$
$11114=11$
$1 r \mathrm{~L}=11$
．11，NLI＝－3．1．
HLUN－－－リい














$\therefore$ J！ 0 1 $=1, J$

，；Förnir！（？1！）



6－－．JいL：
C．









31 （1！）3： $1=1 . i$

$\because$ LLハぶ1！＝いい」

NL．nSl $=1.1 \%$
（」）中」 $=1$ ，：
 （1．1．n．01（．J）$=110$ ．





1．－•－milur
$\therefore 1.14 .1 \quad 1=1.5$


$111401=1.1 \%$



C－．．．SAML AS AijuVE
（11）1 11 ！ 1113r J1．S3 い134 .1165 11350 1257

111313
0133 U140

0141
.1142
1143
1144

お1！＂

3140 1） 141
$114 \%$ （114．9 U1511 01」1 い1ち己 01： 3 111いい


CALL MnTS（HowSTEFII
CALL IACUJUM，ICAT）

C－－
$9213111101=10,115$





KFIKLU（KDLT）$=$ KHFE！J（KOLT）+1

Kう川R（KOL）$=$ N川JH（KUL）+ （NOW－ILAST（HT））

C－－．－I $\quad$ IO FOR BUTH MUIILK NNU IHFAMT
no 1uU I＝1，2
C－－m IGULX IC，WHICH M／I X SET／STATE／FROX／TLME TU．USL



C－．MUL AHICH SETTHGE，STATE，OK PKUXIMITY COI．
C－… WUL TUIML COL．FOK GIVEHKKOL


C－－NUN MOTSFIII TIME

C－．．．Challot（＂／＂InNICATES OMLY 1 USE［）
C̈－．．．ILASi（I＋ち）TIME OF LAST PI／I X URJECT CHANGE

 CAL．L MAIF（JT，L，HUL，KOLT，ICOLI，IKOW（1），NUW•LAST（NJ＋G），LAST（NJ＋G）．
1 ILAST（I＋」））
C－．．．JKOW HllLE $\dot{A}$ HTU HEH RUW IGIJOKING OMJLCTS

C－．．．BEHAVIOR KUW
JHOW＝1SIJM（1HMLU（I＋3）．1COL．ICOL）

1 ILAST（I＋3））

C… THKOHGH SUG HATC（STHCE WOHKIWG OH A HALI UK UACKGFOUHA CHAJGE

UN100 J＝1．5
IF゙（JHOLI）（I，J）） 10 U，IUn，
35 JKOW $=\operatorname{ISUM}(J, I C U L, I C O L)$
CalL MalC（J！，I，KUL，KULT，ICi）LI，JROW）

CALL MAIC（JI，IMUL，KOLT，ICULI JTKUW）

C－me RLStI JT＝ 2 AFTER 1 ST KUN THMSU LOUF SU WILL HUT THIPLE



```
14:י!:S% &
```

！！い

```
1．il JT＝¿
```







```
L－－．KLLOKU（1「＇今 A VALI：EHTKY）AND CULLELT IHO！U UNTIL MOTHEK
```



```
1．15 GO Tu（19．くふっかくひ），JHML
```





```
IIULは（11）＝ 12
以u 111 \(1=1.2\)
NJ \(=1\) sいr．（1．3．11）
LAST（idJ）\(=110 \%\)
111 LAST（ljJtn）＝juW
It．ASi（11）＝｜w小w
C－－．If LKLUU＝O－1，B BACK ANU REAO NEXT RECUKD
```



```
C－－．－OKIGIMALLY，H円U GO BACK，LILCOUE ILNHE，ANU CUMFLETL
```



```
1U2．NOW＝ITLMI
IRLDO \(=U\)
GU Tu 49
C－m－
```



```
L－．．－JT＝ 3 SO WILL INCLUCL ICOLI IN CNLL TG MATP（AS IN AUUVE）
\(1201 H=11-3\)
\(\mathrm{JT}=3\)
C．－．－CONVERT PKESEIIT KECOPV IHTO CAT。AKICAY JHOLO
C－m CHLLK It BEHAVLOR CHANGE
```



```
C－－．．IF HUT UEHAVIUK CHANGE，CHECK FOR OUJECT CHAFJ，
C－®．－：It WEITHEK， 1 TVS A REPEAT SO KENU．HEXT RECORU
```



```
C－．．－IT WAS AF UBJELT CHANGE SLT＝ 1 FOR latH．IUBJ，\＆CAT，IOR
C－．．－KST USEU LATEK FIJK CHANGIHG TIMES，SET SO CHANGE OHLY OHJFCT ONES
1\％6［0円J＝ 1
\(1013=1\)
\(K ゝ r=7\)
GO TU 245
C－－－－WAS A LLHAVIOK CHANGE CHAHGE FROM PKFVIOUS BEHAVLUK－USE．J W／
C－－ー－CATEGUKY \(X\) OHJECT CHAIIGE
```



```
1コロ Iかれ」＝1）
Iのに＝ 11
\(1+(1+H) 1-L(I I+2)\) ．NE．I S \()\) IUR \(=1\)
nらT \(=1\)
```




Frultere Provided bv Enc


```
#0rrmp.| vug.1s
14:90:35
2&-Jル!-/4 r^GL 1!
3217
j21;
」こ1!
3220
j2?1
J?22
12?3
J224
J25
J26
1227
1228
1229
12313
3.52
1232
1233
    1234
2.245
123n
J?4
1)3:4
3?3
3?+11
```

1212
121.3

1314
נ12 1216

```
    k=1
    IF (KST .EQ. 1) K=2
    LF(1|,LN. L) KST=Kうl + 3
    (1)<んこ1=l.K
    (1!) 1<17 11 = 1.3
    LASI(KSI) = |JJW
    2217 ^ST =KS1 + 1
    215KST = KST + S
```



```
        IrHLU(11+2)=13
        ILASI(IL+2)= inU#
```




```
        <10́ ILAS((I1)= Ni)w
            I|OLU(IL)= 12
```



```
        (u) TU 47
```




```
        2.S5 IPAGL = U
    C---- If JA%= =, NLL INFUFMATIU|I WILL BL PRINTEU
    C---- IF UHTIUH SFECCIFIEU- (j| TO THNT UPTIUN
```




```
    C--.- BLIIAVIOIK-UIJJECT X SLTTING. STATF, ANU PKOXIMIIY. NNALYSES BY.
    C-.-. BMTTE゙RH AND HY CATFFORY, NSW A SUMMARY ANALYSLS
```



```
    C---- WKN FRINTS CRUSS-TARS OF M-I BLHAVIUK-UBJECT X HRUX(IN-UUIT) X
    C--.- STATL(MUIET-ACTIVE), AHALYSES BY PATTLKPN ANO BY CATEGORY
    C---- JURATLONS
    O0,NOCBLL WRA(!JYAU,ALIOK,IYHE,OBJ,1CAT,TO\)
    IF {JAIA |UT. U\ GO TO $400
    C-.- WIR2 PRINTSGHATRICES OF A,IIECEULNT-CUNSEQUENT WEHAVIORS TO
    C-... VOCNL n:HJ CHY ONSETS. FIREOJERSIES AND COINSEDUEINI LAIENCIES,
    C---- NHINLYSES UY PAITEHA AHD CATEGURY
```



```
        IF (JAFM .GT. O) (i) TO 44]n
    C---- WR3 HKINTS UUT MATKIRESS UF UISTRLIJUILON OF LATEINLIES TO
    ヒ---- VOCCAL WWSE゙TS
    WOO3 CNLL WRS(OYAU,ACTOR,IYPE,OHJ,ICAT,OUT,TOT,MVOC,LT,NU:G,OUGI,OUGZ)
    C---. WRS PRINTS OUT THE. IRANSITLOH MATKICLS
    C---. ClUSL THE FILL FOR THE: OYAJ
    44.1U ENUFILF. MNG
    C--- WHILN FIINISIIEN PROCEDIJRES FOR ALL IJYAUS, WRS IS USLO TO FRINT
    C-..- TKNHSITION MATKIX COLLAPSEU OVER ALL UYAUS.
    C--.- ITKAN(1,1) SET TO -1 TU SET WIR: TU PRINT JUST 1 MATRIX
        ITKAN(I,1)= = 0
        CNLL Wi<S(DYAU,AUUM,NSTEP,St-XT,NS)
        CALL EXIT
        E:Jl


```

    MaT; , 1AL, RFFHLL, MAT\Gamma , FMTC, WK&&, WKA
    ```

```

    UMrIONS =/UN,/LK,/UH:Z
    MLOLK LEMGTH
    4ッ1,4. 3145 (014`2.⿱㇒木)*
    -465%. 6444 (041134)
    **C.mMIILLLK ----- CUURL**
        PHASE USE゙J FK&_E゙
    |tCLMINATIVLS OUb己L LJt73

```


\(.1: 1 . .: 1\) vil．．11


1111

11118
1.1 .1 .6

昭：＇
1．1．0．
\｜111
1）！！
们！
11111
j！il
；11
：i） 1
it） 14
J11 1
dill
Jח17
1010
301 ，
1102．
Uロ？
Ju？
309
1324
vors
Uniの
110.7

0nc：
Jin＂，
小い


С－－AKはんY引





IHAGL \(=U\)
（1） \(11=1,1\) ！ 1
UU \(1 \mathrm{~J}=1\), a
L，M1（J，1）＝U
IFルLU（．J．I）＝\(=1\)
1 L，JUR（U， 1\()=u\)
u（） \(2=1,2\)
KんへI（J）\(=0\)
Jトal（u）\(=\) oi
（0）\(\angle 1=1.240\)
2 JHHEU（J，1）＝1
1） \(\mathrm{S} I=1,2016\)
IYInC（I）\(=U\)
5 LIIAC（1）＝U
NO \＆ \(1=1.1\)
l！ 4 J \(=1,1\)
JTKAは（J， 1\()=1\)
LTKのは（J．I）＝11
＋1「バい」（Jリ）＝い
Uい ל J＝2，1J
KトKとい（J）\(=\mathbf{u}\)
\(\therefore\) のルUK（J）\(=\mathrm{U}\)
（1） \(4041=1.2\)
\(10404 \mathrm{~J}=1.210\)
4114 1110JT（11J）\(=0\)
KLTUI：IN
LIIU
UHTLUAS＝／UN，／CK，／UF：\(<\)
\begin{tabular}{|c|c|c|c|}
\hline MLOCK & \multicolumn{3}{|c|}{LEl．0「1} \\
\hline くヒKSET & こけく & \multicolumn{2}{|l|}{（UU1110）＊} \\
\hline － 2 by & 6494 & \multicolumn{2}{|l|}{（041134）} \\
\hline ＊＊Culva & & －Cu & Kビ＊ \\
\hline pras & & USEO & FKEE \\
\hline リとC゙L MK & TIVES & いU0゙く & 13678 \\
\hline Lxl心しい & みじら & ひ1ひ」4 & \(13<46\) \\
\hline  & & 01148 & 1／192 \\
\hline
\end{tabular}


3011
\(3176 ?\)
Jull 3
おいい！
コロロッ
よ！list
りひい 7
anuer Jnu＇， 0010

SUARKUUT1はE SEP（1COHL，11．12．13）





L－．． 1 SUBIRACILD FKOA IST LICIT FOK FRUFLK LJULA I ITU MRIRAYS


C－．．－It＝U UBJECT PrESEIT

\(11=1 C O L E / 100\)
I？＝ICOUヒ／10－11＊10
\(13=1\) ICUUE－（1Clut／in＊10）
1ヶ（11－5）10．6．5
\(511=11-1\)
1F（12 • EU．U） \(12=10\)
10 KETUKは
Eilll

BLOCK Lembly

＊C CNMFILEか－－－－－CURE＊＊
MHASE USEU FKEE
JLCLAFATIVES UUnट己 13018

いこSt．MILYY UUソ43 17 Y97
```

=1.1 [1..1| VIIt.. 13
1U:x7:51 20-J!.-74 トNG匕 1

```









```

19.3s

```


```

    uU 己゙う 1 = 1,WL゙N
    ```

```

    M+!l_u([`|l+ち)=0
    1J=11 - 1) * HCLATu
    Wl就 = 1mCA!?
    1.J=10+1
    ```

```

        In CONTAMGH
            w) lu - '
    C---- 1 FuK अKtstinCt &F Latloury
    ```

```

    M|OLL(IN:I+!)= =1:?
    J114
1,117
.101n
!j1%

```

```

        kl TUKI:
        L.ll:
    uHT,<br>s=/U|,/Lr./UH:c
MLOLA L.twGlH
jl0J 144 (1JUU44U)*
-mbif. 8U74 (US74c゙)

```

```

    M|ast uSE゙U FMEE
    utrLAKATIVES |l|SN 1S<4y
    上AE(.JTA!&LES U10%S 1.S<77
    MSSLM|Lly N1010 1/86,4
    ```

\(111!i\) 1016
10.15

1134
111115
はワ0っ
13：7
j）11ハ
Jin＂
（1）1 1
11111
J！i，
J！）
．jり14 ！n1い















ultanslun，1＾（3）lC（3）
\(1 \cap(1)=1: 2\)
\(1 A(2)=1 A\).
\(1 \cap(3)=1 \Lambda .3\)
\(I C(1)=1 し 1\)
\(1 C(2)=1 C \%\)
\(1 C(3)=1 C \%\) u（） \(\mathrm{zu} 1=1,11\) \(1 C O L=111-1)+111 \dot{c}+(1 \Lambda(1)+1)\)

 «LTUKid し！il

\begin{tabular}{|c|c|c|c|}
\hline K & \multicolumn{3}{|c|}{1 LI！ 1 T11} \\
\hline  & 100 & \multicolumn{2}{|l|}{（ひいひらぐ）＊} \\
\hline ちらち． & 3014 & \multicolumn{2}{|l|}{（0374＜4）} \\
\hline \multicolumn{4}{|l|}{＊＊C－M1）ILEK} \\
\hline \multicolumn{2}{|l|}{} & Uら！゙い & FMFE \\
\hline \multicolumn{2}{|l|}{MLCLAJハIVES} & UU心くて & 190／3 \\
\hline \multicolumn{2}{|l|}{ビイECJTABLLS} & U1131 & 13169 \\
\hline \(\therefore\) 引 111 & & U11．10 & 179411 \\
\hline
\end{tabular}



1011 \(\therefore\)

J01． 5
1004
J00～
コリ：！
1017
！いいい
！10！19
，1011 いけ11

\section*{こー－ー－}






UIflcivSlolv 1 a（3）
1 へ（1）＝1 N
\(1 \wedge(己)=1 \wedge 2\)
\(1 n(3)=\)［is
טO \(<\cup 1=1,1.1\)
ICOL \(=(11-1)+1110+(1 A(1)+2)\)


RE「いいい。
とかも

BLUCK LLNGTH
，1all 1 （uv（u0．su）＊

＊＊CUMPILLK－－－－－CURL＊＊
PrASF ustic FiREL

 njsl viluy Uluß＇t \(1 / 1070\)




UFTIONS =/ON./LH./UP: C
HLOCK LENGTH
SIATE 35 (UUISUE)* .bもis. उ4y4 (041154)
**CふMPILEK - - - - - CORE**
PHASE USED FKEE
UELCLARATIVLS UlUSH 13246 EAECUTAULES \(\| \perp 1 \Delta S 13117\)


14：07：33 Fis－J！ル：74 PAGt． 1






10． 5
11094

1！ni：
1110
11．1



3710
11111

111 ？
： 113
1114
（11）17
（1） 1 n

1017

101 ．
111.1

1．1は1）

102．1
110＂！！
.1123
\(102^{4}\)
\(110 \because\)
川＂：
1031
\(103^{3 \cdot 4}\)
\(117-1\)

Jn．in
u＇ \(11=1,7\)
1 wnuf（1）＝1
（0） \(14 \mathrm{~J}=1.11\)

（i） \(10 \mathrm{U}=1.7\)
\(4=I V+I\)

G－－．G GHLY U＇ICE HL

Lo CONILINUE

C－O．JUILT If Jリゴで＝vルUT（1）
ロー－ACTIVE～I！
r．－．－JUILI－UUT


1 • Juソ1（ 1 ）













こ．．．－ALSULJTL MUAAIIの寸＝TOTAL



と－．TIFic いUI＝ACI－UUT＋WUIEI－UUT



ひnく1
U \(\cap\) ？\(?\)
い1） 174

小け
（1）い1，
j•1． 57
（1）3．

1） \(1.3 \cdot 1\)

い小け」 は041

111．．
1ヶリッ
（1）1月．1
． \(104 \%\)

J） 14 J147 00415 0．04 4 01） unらl \(00 \%\) ？ お列 4
い0いて

ひのっッ （1）い。

いの＂，

0リファッ
0．1いい
11：1．
\(0.10=1\)
117．．，

1月㒵）
小りいい
．1 1．，


\(1 S 1=15+1\)
I？\(=1: 1\)


？ 1 ［MA「il（IJ）\(=u\)

（1）くう 「J \(=1,40\)



\(1 T=I .114(J T, \therefore, 1)\)
\(!T 1=1 \Gamma+1\)










（弓） 10 ＋ 1

 し「＂）
Gい Tu 4U
37 wl？IL（IJIJES，BS）
 1し．） 1





－－HRLはI TUIAL iURATIUA


Git lij



LV＝1sum（JJ．S．（i）

レーー TUTAL FOい．I小 UK UUT
い）リ1 J1＝2，？
\(x\)＝i！！U1（ \((v+J))\)


C－O－MWの I I IL


：ini．ts
いいい！

（J）J．＇
j） 711
ii） 71
107？
j073
0074
ij 075
リのだ，
\(\because\)－
リ077
\(100 \% 1 \%\) 10079 0089
ひロロ1

10 \％
208．3
00E4
コロも
nise
00：37
」が・
गinct
コ19い
J0：1
－1＂ッ
\(017 \div 3\)
10094
\(35^{\circ}\)
！）\(\cdots\)
（は1） 7
111：－
U0\％．
U1011
\(01 r 1\)
0116
： 1 1．；
il．
\(11: \cdot 1\)
\(11!10\)

C——．FNSM，I．ULUGA IS IIVIUF：）HY RUW TUTAL
44 xu＝内いいして）
（1）0 4 ذ 小J \(=1.1\)



is u（）ou lt \(=1,[2\)

1 的 \(=19(1,151,4,1)\)
\(1,1=16 A+3\)
WKIIL（L．ll，Fら，bか）（DMAMF（JJ），JJ＝！A，Nは）



（お） 7 U TII \(=1.3\)


\(I 01=I U+2\)
C－．．wHICH LELL TO HFGIN IiJ

と－－．－EHV CELL FUR KOW
C－－SHLIT ACCOKUIFO TU N＇NI．ŸSIS



GU TO 7 J


טO b1 JJ＝1．？
レ－－－I IV＝！！HICH GRUUF UF？
\(1 v=1 \operatorname{sur}(1 \mathrm{JJ} \cdot 3 \cdot 0)\)
uU ט1． \(1=1,2\)
AB＝IlUUT（K，IV＋JI＋BCNL）

ひい íc JJ．\(=3.6,3\)
\(x \|=\) In？




GO \(1 \cup 11\)

\(1,4 \quad 1,0\) 0：\(小=1,1\)
\(x^{\prime \prime}=\because\) いい（．J」）
```

1)1.1.\cdots V:|!.14
14:0:1:39
.11-NH:-M4 1/N1,t 4

```

11，1
1：． 1．1，

1111
1111
1116
111；
\(111:\)

117
\(111 n\)
1117

1113
1111
1120
1121
1122
3123 J） 1 ？ 4

コローに 112n 11．27
\(11 c^{\prime}\) ：
（1）\({ }^{\text {？}}\)
11.31

113？
j15
11．1．
小1．

113：－
J1． 37
J134：
1151
11：1
\(111 \cdot 1\)
（1） \(1 \%\)
\(.11+3\)


```

        い! JCOLN = JCGLN + 1
    ```
```

        い! JCOLN = JCGLN + 1
    ```


```

        EXX H!JULCT {U:%
    ```
        EXX H!JULCT {U:%
        70CいいT&|いル.
```

        70CいいT&|いル.
    ```


```

        ,0 culdTalut.
    ```
        ,0 culdTalut.
    Ö--- NLXI v!MLYS1;
```

    Ö--- NLXI v!MLYS1;
    ```








```

    L---- CAlLU:JIY ハ,NMLY:』JS
    ```
    L---- CAlLU:JIY ハ,NMLY:』JS
    L--.- F(j:i | ALH |゙L|AVJ|いR
```

    L--.- F(j:i | ALH |゙L|AVJ|いR
    ```












```

        (i) 34 N.J = 1,ICNT%
    ```
        (i) 34 N.J = 1,ICNT%
        LL=11+1
        LL=11+1
        IF(1)-1C.I(K,IL)) N4,35.84
        IF(1)-1C.I(K,IL)) N4,35.84
        | C.J|I||Ht.
        | C.J|I||Ht.
            ,0) lu (1
```

            ,0) lu (1
    ```


```

        C--m- . Lari; lHF- Lirtompr nuss
    ```
        C--m- . Lari; lHF- Lirtompr nuss
    ; 10) iNo .JJ=1.21
    ; 10) iNo .JJ=1.21
        IHO= lliu + 1
        IHO= lliu + 1
        LK=1K+1
        LK=1K+1
    M.,IMATH([K) = 14ATIJ(1R) + IHUUT(H,IKU)
    M.,IMATH([K) = 14ATIJ(1R) + IHUUT(H,IKU)
    .7 CいいT」ルご
```

    .7 CいいT」ルご
    ```


```

    % (o) I = 1.2ily
    ```
```

    % (o) I = 1.2ily
    ```




```

    (ふ) \.j I = L,`.)
    ```
```

    (ふ) \.j I = L,`.)
    ```


```

    G--.- I2= = FOK LITLUURY nisnL.YSIS
    ```
    G--.- I2= = FOK LITLUURY nisnL.YSIS
        1P= כ
        1P= כ
        ul 「U ',|
        ul 「U ',|
    :--- SWMAMMY SECT[UL, JJJJ]」
```

    :--- SWMAMMY SECT[UL, JJJJ]」
    ```




```

        HIIL=1SWM(S,7,U)
    ```
        HIIL=1SWM(S,7,U)
        M(リバい(1) = INUリ「(K,III+I) + INOUT(K,11I+4)
        M(リバい(1) = INUリ「(K,III+I) + INOUT(K,11I+4)
        nu|m(<) = I|U!|!(k,III+1)
        nu|m(<) = I|U!|!(k,III+1)
        K!llM(s)=1JUJl(K,[II+4)
```

        K!llM(s)=1JUJl(K,[II+4)
    ```


```

        K`|M(b) = I|U|ノ(K, 111+2)
    ```
        K`|M(b) = I|U|ノ(K, 111+2)
        k'UM(n) = I.|いいT(K,IIJ+כ)
```

        k'UM(n) = I.|いいT(K,IIJ+כ)
    ```


．） \(1+1\)

 ？ 11





wil LUG．IJ＝1．0



\(J J=u\)
Lu 110 ，ivs \(=2.4 .3\)
が1＝小川いに（JJJ）
نU 110 JUJ」 \(=1.3\)
」 \(=\) 」 」＋ 1





JJ＝u
un 124 JJJ \(=1.413\)
\(\left.x_{1}\right)=K_{\text {burin }}(\mathrm{JJJ})\)
U0 114 ，lJJJ \(=1.3\)
\(\jmath J=\longleftrightarrow \downarrow+1\)



WRIft（LlutS．120）

\(\rightarrow 0\) Cuilt Linut
に－ー．（）O FUK 1 MFA．JT
11.1 COWTIWUL

はETUKN
t．IN．
UHTIURS＝／UM，／LK，／UP： 2
\begin{tabular}{|c|c|c|c|}
\hline sluls & \multicolumn{3}{|c|}{} \\
\hline 小iへ & 2490 & \multicolumn{2}{|l|}{（ 011504 ）\({ }^{\text {（ }}\)} \\
\hline b＇s & \(04 こ 4\) & \multicolumn{2}{|l|}{（041134）} \\
\hline \multicolumn{4}{|l|}{＊Comillateis} \\
\hline min & & USE゙U & FKFE \\
\hline 111．CLA＇ & 1］Vビら & U入145 & \\
\hline L． \(1.6!1\) T & 3L6ら & 01503 & 12797 \\
\hline ms： & & UC？ 0 & 16 \\
\hline
\end{tabular}




111：1！
00.3

00114

リワワ
101ヵ，

3007

00n：s
10014
01111
01111

111

Un］ 3

3714
\(0101:\)

0016

小11\％
）\(\cap 1:\)

0017 0.92 .5

0021 บก？

31？？
3024 （1）入＂，
（1）いい
1） 1.1
 1 Uルぐ



 fUKi．













Cー．．－TOTAL HURATIOW
UHK＝トリUル（Iち）

し－．．．FLLL


JJUN（4）\(=\) KOUR（1）+ KIUR（2）+ KUUR（3）

JOUM（כ）＝KOUR（4）－KNUR（11）
C——— DU FUR MUTHAK MHO INFMMT
C－．．．－\(I A=1 U\) FUK PATTEKN NINALYSIS
C－O．－ \(\begin{aligned} & \text { IA }=1 \text { UUT AWKAY FUR CATEGORY LIMHATION SUMS }\end{aligned}\)
DD \(24 U J J=1.1 \mathrm{~L}\)
\(24 n\) IMAliv（JJ）\(=0\)
C－－．FILL LN WITH PATTEKN NAMES FIR MOTHEK OK LNFANI \(10300 \mathrm{JJ}=1.40\)
\(3 \|\) DIJAML（JJ）\(=\) トWALE（M．J．J）
C－－IHJLX IHTO मCTOK AKKNY
IS＝ISIJM（M，2，1）
\(1 \dot{L}=15+1\)
C－－．DO FUR FATTERHS THEN FUR CATEGURIES
170 5U0 J＝1，2
L－A－－INULX INTO TYPE ARHAY（VATTEKH UR CATEGORY）
\(I T=I S U M(J, \angle, 1)\)
\(I T 1=I T+1\)
 いう STJ L＝1．5 IPAGL＝ 1 PAGE +1

11111

」ワ，1

〕クロ
い． 11
19！
（11） 3
U11．44
（J）\({ }^{4}\)

11！
11） 3 H
（1）． 19.4
1114 11
．）．+1
\(1.14 ?\) ．174 ：11144 いばな

נ104i 11ח47
．104：1 したい

9゚ッリ

シのワ1 リのにい かつり；

1 1194
リ．）\({ }^{4} 1\) リ） 14

ひいいノ
\(11 \%\) ，
（1）：－
\(116 ., 1\)
．小＂＇］
\(11, \cdot{ }^{\prime}\)

1：1．）
：1．7．， 4
．1．，．， ： 1 ritio
＂．1．1

1 （TYML（JJ），JJ＝11，IT1）




（3）lu S14


（u） 1 u 514


（，）111 \＆ 14




（jir IU \＆I 4

 COM＇L．E 7 L HEMい！ 6


 whl化（1 Livt i，く17）








ョ：IU 3lt



（い） \(1 \cup \therefore 10\)

4；！！ntata JJ＝1，Ir（i）L \(\left.x_{i}\right)=K:(1 \ln (J J)\)



（．，Tu 11








\(\because \because 11.11\) VUo．19


1．1．，1
［11］＝ \(111+5\)


1111
1i． 72
1073
11194

U07ン
い176
\(\cup 0177\)
1）ソ \(7!\)
U074
（11） 1
Jool
jis？
1J083
10034
－ロはリ
コロ4n
コ107
いりまは
リリれ゙す
いりない
（1） 11
リl！。

19＋4
\(11:\)
\(11 \cdots\)
：1）リ7 1） \(0 \cdots\)
119．1
1911.1

1111
，ji！i：

01114 1114 11！！，

7）1！
.1117


\(K I=J_{1}+1\)



\(1 \eta 1=1 u+c\)

\(n 1=K L+(+1 \xi-1)\)

G）TU（340，30U．33U，32n，2）L

\(3 J_{1}=J_{1}+1\)



（i） 4 WLUL \(=\dot{C H} 116\)

\(J 1=山 11+1\)


G0）Tu ：Tu

s．e Ji：＝Ji＋ 1


C．．．．U』VIUL NESi UF NOW bY TUTAL RON DURATION
 \(1 . ?=\int い+1\)




r－a－UIVIUF LACH NHAKIO
J！＝J．+1




C゚－．－OF ULXT HUW



 3rall \(n l=n_{11}+1\)


111

1111
1111

1111

111 ．

111 ， 1111
\(111 \cdot\)
111
1117
111 ．
11！
\(11 \cdots\)
1．1
i i ．．
\(11<3\) 113.4

נ＂ 11
ノ12い
1127
\(11: 1\)
．11（＇）
11.19

1191
1） 13
リ1 1.2
01 ！
小 15
J 11.
J1：：
01：•
1113 ！
1114 11
1）］ \(1: 1\)
（1） 14. 011ヶ
（1） 1 ，
い1！。

1140



 u（）IU（xesい，サンツ）」


\(3111 \Lambda=7\)
 （J） \(200 \mathrm{Jt}=1, \mathrm{Cl}\)


（111 4us \(L=1.11\)


いコッい いル＝1いしの「タ
\(J K=\) Jい +1


はい 「い 4 」

しー－ー－ARKf．r（JK）

JL \(=\{601 \cdot(1,1140 \cdot 1) \mid\)



\(J K=J H+1\)
لL \(=\mathrm{Jl}\) ． 1

4，」 Cunrlonit

C゙－．．．SIARI FKOCE゙SS AGNIN．USING CATEGORILS
1） \(110 \mathrm{~J}=1 . \mathrm{IL}\)


（－．．－VOCNL（SRU KOW）
［ OUK（M，JL）＝IMATM（JL）
410 LFKLG（r，JL）＝JFREO（Mi．JL）
かり 10 いい
+79 IIL \(=1\) SUM（S．M16．0）






15 FORMAT（＇1 UYAU NU．＂，2A4／3A．2A4／／3X＇SUMRARY！！LSLRIFTIUR＇） NHIIL（LINES，16）





コリ 10 リJ \(=1,5\)
65
```

F゙irl|い! vuğ.ls
1+:10:1!

```

```

                J
    11147
.1114
|1"1
.11:14
11.11
|| !"
|1.S
iL i"
J1!%i
|!!n
.11ヶ%
.11`ふ
ノ!つソ
|1пl
|1:1
J1H%
U1n.t
.)14.4
ひしいい
11Gn

```



```

        x| = 小心|い"(1)
    ```

```

            |() &u JJ=1!')
    ```






```

        x| = nu|lm(1)
    C-.-- FRKUH, VOCAL UURATION-A-MRESFNT
            1;U 2こ リJ=1.h
    ```

```

            w<llc(ll|utS:<4) (xuUM(JJ), Ju=1,5)
    ```

```

            w゙RIIE(LINE゙S|こち)
            2H FOKMAT(1ג,77(:-'))
        buJ L゙川JP&||JE
            ME:TUKN
            ヒ|い)
    UHTIU:|S =/UNI/LK•/UH:`:
    MLUCK I.LIGTH
    ```

```

    -3.5+L. 3U74 (1137424,
    **CいMP1LEK ----- CURL**
        \muHnSt USEU rKEE.
    UlClaliarIVES OUñ天A 1367B
    LXL(JTH:3LES リ1JSS 12747
    ```

．1113







 いtsEハNVA110．JAL KECURU









\(1+L\) wn \(=1 C L+1 X=3111\)
1t（1）L（！W）1／，1／．15

\(151 x=I x-I F L)_{W}\)

17 （1）ぶは \(よ=1, 己\)



\(1 A=1 C L\)
（1）Pu K＝1，1x

C－－MATKIX
\(1 \Lambda=1 A+1\)




1t（1tL（1W）30．3U．40
311 （．JHMLI）30．35．40

C－－\(\quad\)－ 1 LI．
らち 1 CL \(=\) ILL．+ WSTEF
41 Kl．fukis
上．ll

\begin{tabular}{|c|c|c|}
\hline  & \multicolumn{2}{|r|}{Lehort} \\
\hline r1LL & くU1 & （uUGuz2）＊ \\
\hline としが。 & 13174 &  \\
\hline
\end{tabular}

iMASE ustu rkifs
 ExFCUTAHLES 111131 1.S16G AOSt M1LLY 11164 1//70


1011．

11）：
j0114 ） \(010^{\prime \prime}\)
laile． 1007
1000.

1）กa
001 1
7011．
い71？
いULS
U1114

0015
1） \(01 \%\)
0117
11118
114 1.9
－11 3.1
1122
נ॥ ！？
110？
Uli！
いいこっ
（＇）TU＋U
C－O－\(\quad{ }^{\prime}+1(J=?)\)
（i）いる

かいつ
ज1）：
リก2！
n）3n
1.1 il

11：1．）



4 H＝は－はडTEH．．

1t（1UUil）3．s．f
3 I3 \(=U\)
\(14=u\)
ゥ \(J=J+1\)

－1 1！1＝？
リnT！l \(=\) InAT（I，il）
su \(\operatorname{siL}=2\)
19．9TH＝［Minf（2，iN）
35 I药 \(=1\)

C－mar COiNVLR 1
4 11＝ \(1 J(1)\)
\(12=!(2)\)
\(1 r=111-1 \mid * 2+12\)

I4 4 I ．












C－O－CRENTE LICHUTU：MY FUR MIMI \(=1-\) VOCAL \(=2-\) IIU VOCAL



UUTU（35．40．4U，35．35．4：3．35．40．4U．40），MAIN

+0 ［J（J）\(=(1,11-1) * 2+1!12\)



IF 114 •IVE 12； \(33=11\)


\begin{tabular}{|c|c|c|}
\hline J11．1 &  & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 CHAl：CONVERSLOH IATO C．ATEGURILS． \\
 \\
 \\
 1 VICAL CATEGURY U，JSY T，I Li，y LATFI，UKY GIJLT
\end{tabular} \\
\hline リいい： & & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline 1013 & &  \\
\hline リ）」4 & \[
\begin{aligned}
& \mathrm{C}- \\
& \mathrm{C}-
\end{aligned}
\] & \begin{tabular}{l}
 \\
 baf Nij ARE LRIES
\end{tabular} \\
\hline 100\％ & &  \\
\hline Jolt， & &  \\
\hline 小u゙す & & \(1 \mathrm{SC}=1 \%\) \\
\hline Јu＂ & & \(1 \mathrm{HK}=12\) \\
\hline リワ．」！ & \[
\begin{aligned}
& C---- \\
& \because---- \\
& C---
\end{aligned}
\] & \begin{tabular}{l}
\(1, i, C=1, R\)＊\(H\) \\
 \\
 CuMrlf 「ti
\end{tabular} \\
\hline 1710 & & \begin{tabular}{l}
いU LU0 ！＝11．44！ \\
IOHUX USE！TU JHIICATL WHLTHER MOTHEK WAS UUT M－UIJT
\end{tabular} \\
\hline 11111 & &  \\
\hline 0016 &  & \begin{tabular}{l}
 \\
 \\
 Lul：1 F／L raRt OF Matricls
\end{tabular} \\
\hline 1111． 3 & (:---- &  \\
\hline 31114 & & u）サu J＝1．2 \\
\hline Ј＇1： & & 1F（J．tu・で）JJ \(=1\) \\
\hline ノ「」•• &  & \begin{tabular}{l}
\[
\text { InV }=1 \text { MAT }(J . N)
\] \\
 UEI MCTUAL HEHAVIUA COUL
\end{tabular} \\
\hline 111 1 & & IF（1MN Lis． 10 ）IPMUV \(=1\) \\
\hline 小い1．3 & & 1F（1MV ．ir． 161 IMV＝IMV－10 CHELK IF BEHAVIOR WAS A VUCAL OR A LRY（FOR IHAANT） \\
\hline 1） 01 & & 110 lu \(=1.0\) \\
\hline 小1）1 & &  \\
\hline 11．1 &  & \begin{tabular}{l}
COHT LNは宣 \\
 \\
If WD：MIAG UN dAFAivt aLSO SLT CHY TU \(:\)
\[
\text { KPIr }(J)=u
\]
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline （1）．1．1 & C－－－－ & \[
\begin{aligned}
& \text { IGRK }=1 \\
& \text { CHELH FUK WLXT STEP }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{（1） 11} & 30 & Colltivili \\
\hline & C－－－－－ & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & C－－－－ & SLT STLJ TO 1 \\
\hline \multirow[t]{3}{*}{（1）ら？} & & \(1=0\) ．\(=0\) ， \\
\hline & C－－－－ & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & C－－－－ &  \\
\hline \multirow[t]{2}{*}{105.3} & &  \\
\hline & \(\check{\sim}\) &  \\
\hline \multirow[t]{2}{*}{1054} & 10－35 & \begin{tabular}{l}
\[
\text { IASK }=U
\] \\

\end{tabular} \\
\hline & C－－－ & SET A On \(C=\) VIS COUT NidU LATEMCY \(=\) TIME ISI H11 VISUAL \\
\hline 11ら5 & & IF（IVIS）+ ¢，45．40 \\
\hline 1170 & ＋1） & JHEH＝く＊） \\
\hline \multirow[t]{5}{*}{111.57} & & \(1=1\) ¢ S \\
\hline & と－－－－ & （FUK CUNSEJUEII JMLY）IF VISIJAL WAS LAST COFJE LNICKED BEFDKE \\
\hline & C－－－－ & OMSET（ \(1<=2\) ），EVEN IF HUT LISTED AS AlJTECEUENT，AIII A MONE \\
\hline & C &  \\
\hline & じー－－ & La aS LaTlidcy \\
\hline 1053 & & \begin{tabular}{l}
 \\
IF VISUAL BLFUIIE UR AFTER＞ 1 THEN THEKE WAS \(\cap\) UKLAK ARESET IBFK
\end{tabular} \\
\hline \multirow[t]{2}{*}{10.59} & & 1F（IVIS．GT．1）Iblen＝1 \\
\hline & C－－－＊ &  \\
\hline \multirow[t]{2}{*}{1060} & & LO IU＇JU \\
\hline & C & いうビ NGIVL \\
\hline 1061 & c－－ &  \\
\hline 1062 & （－－－－ & \begin{tabular}{l}
Indr（L）＝IHLIS \\
SET LATLIMCY OF A OR \(r=\) ABSOLUTE STLF VALUE I
\end{tabular} \\
\hline \multirow[t]{2}{*}{IRF．）} & & \(\operatorname{INHTL}\)（L）\(=1\) \\
\hline & C－－－－ & RLSLIK 10 ORIGJiraL TLML゙ \\
\hline \multirow[t]{2}{*}{10014} & &  \\
\hline & C－－－－ &  \\
\hline \multirow[t]{2}{*}{1：1：4} & じ & \begin{tabular}{l}
ISTEト \(=-1\) \\

\end{tabular} \\
\hline & し &  \\
\hline \multirow[t]{2}{*}{10，3is} & &  \\
\hline & に－－－－ & LF \(1 / 2>1 U, H\) DUUT S S SUBIRACT 10 IU CET CURKFCT CDIJE． \\
\hline inf． 7 & & IF（12．UT．1n） \(1 \%=12-10\) \\
\hline \multirow[t]{2}{*}{\(10 n \cdot 1\)} & 130 & COMI Lull． \\
\hline & \(C----\)
\(C---\) & \begin{tabular}{l}
Eill uF a C SEnROH for that oinset \\

\end{tabular} \\
\hline \multirow[t]{2}{*}{10.9} & &  \\
\hline & i． &  \\
\hline \multirow[t]{2}{*}{1011} & & IF（J．ビし。＜）MM＝MA＋O \\
\hline & C－ &  \\
\hline \multirow[t]{2}{*}{3771} & &  \\
\hline & C－－－ &  \\
\hline （17） & と－－－－ & \begin{tabular}{l}
IMI＝（idn－1）＊ivnc \\

\end{tabular} \\
\hline 1111： & & JRUW（1）\(=1\) Awr 11\()+1\) \\
\hline 1.174 & & \(1 C) L(1)=1\) AHT \(\left(c^{\prime}\right)+1\) \\
\hline
\end{tabular}
il！
\(\qquad\)

11．\(=0\)

vo ot \(1=1 . \dot{c}\)
C－－A ACR NLESS 10 ROW


（u） \(0 \rightarrow\) Li．\(=1.2\)
\(11=11+1\)

IAL（IL）＝MACR＋ICOL（LI）

LIM＝［MI＋LILIIL）






口つ UO ©S LL \(=1.2\)

LIF：\(=I\) CUL（LL）\(+I M I\)



－GO IU（I＜U，Lく1），J



aS KPAT（ل）＝ 1


\(1 \therefore\)－ \(1 C_{h} Y 1=1\)
C－O－MrİU－LLVEL UF ARKAY FOR VUCAL CAT JINSLT FUR MOIHER
C－O－It LHFM．T， \(1.3=\) LEVEL FUR VUG OUSET，IF WAS LRY ICHY＝ 1 SO GET
C－－IU L4 IH MATKIX

L－－．－IMI＝ALCESS TU PKUPFR＂MATRIX＂
\(I M I=(\cdots-1) * W A C\)
C－D．IJSE KOW AlVI，COL．CALTULATIOISS FROM LUOP 6́ 4
LIA \(=\) IAL（LL）\(+I M I\)
IMIALILIM）＝IMIAC（LI：r）＋1
\(7 \because \operatorname{LMIAC}(L L M)=\) LMIAC（LIM）＋1AMTL（2）
IF（1P！日全）78．73．76
C－m SAML AS（OO US LOU1
70 （山） \(17 \mathrm{LL}=1.2\)
\(L I F=1\) CUL（LL）\(+1 M I\)
IMIAC（LIM）＝IMIAC（LIM）＋1


C－O．－IHL N1HK ．WII C！HMT


（）：1•！vun．1く
\begin{tabular}{|c|c|c|c|}
\hline C & 13 － & \multicolumn{2}{|l|}{（110： 544 ）＊} \\
\hline Fhb． & 13074 & \multicolumn{2}{|l|}{（0．374＊4）} \\
\hline \multicolumn{4}{|l|}{＊＊（．）\％P I Ltr} \\
\hline \multicolumn{2}{|l|}{Pitist} & USt \({ }^{\text {a }}\) & fri \\
\hline ulclar & TIVLS & いunce & \(136 \% 13\) \\
\hline とAt゙い & 3lıj & 1 & 16049 \\
\hline دSt & & （11）3？ & 1710.1 \\
\hline
\end{tabular}








117
\(1 / 1\)
11.2
iis
\(11 \%\)
ก\％．
117 h
117
.1711
リノリ
13．11
0 01
「os？
i10． 5
314

1） 89
100
087
0）8



LO luU1 LL＝1，10
UO LUUI LBEH＝I，NICAT

LO LUUN JJ \(=1\) ，ilCATB
\(10=1!+1\)


－g lu luvl
C－－．－，I－ULI RUN




C－．．．CUNIIMLIL COLUMA
\(\cdots L=I S 1 J M(2 \cdot 1) C \cdot L L+L)+I R C T\)
A． \(1=1\) SHP（IMCATCILUEH＋1）


in \(\quad 1091\) しいITLIJUL
とー－ー－ \(\operatorname{sinuUI} \times\) COIJIIIUL CLLL
\(1 L=1 W C T+1\)
\(\therefore A=1\)


L゙ー－COLUPM IOTALS
W）\(\quad 10113=1,1 C A T K\)


（11）61U IIU \(=1.1 C 9 T C\)
Iul \(=1: 1: 1+1\)


C－．．．SUW TOINLS（LEAVIrJG NUT IST KHW－Vi－GUT）
ओ） \(6<0\) I15 \(=1\) ， CACC

\(101=113\)
HO L＜U IG＝＜，ICAIR
\(111=1 H 1+\) NCATC



IK＝NCAIR
）10ヶ．\(\quad[C=\) HCNTC

1RCOT＝11


```

            '+
                1114
    \because:14

```

```

:;!1"

```





```

    C---- आ|uLX IU "VUCふ!"
    1:A = 15111.(1.4.1)
    uU ru*ジ
    ```

```

    5?8 1+n = 1 (6, (%,4,1)
    C---- E|L しt S|A&S |!:い\ J|liFx
    J121 n,a+:! = 1% + S

```


```

        UU1. = .11)%
    ```

```

        1Y = 1こしN(1,く,1)
        LY1 = 1Y + 1
    ```




```

        C---- 」JJ」(NIIGUNY m|SET
    ```

```

            "\perp7 मF'=1
        C--- II:ULX I|,TU IY&& AKRNY SU "CATEGURY" D.,SLT
        IY=1ミいf.(ごでい)
    U13U
01.1
01.2
71\&?

```







```

    ,16 1Y = \S|%(1,2.1)
    1.1:1
11:`
11\because
11!+1
111.1
|1.
1145
11.5.4
\therefore10%
!:--- CHECKIHG ON IfIFAHT - W:AETIIEK VOCAL UN CKY LATEGUKY

```


```

        IF 1 1.LU. < .Alll. IJ.0T. NPAT + 1),JU 10 yyi.
    C---- VUCNL INHEX FINMM HAMFJ
        HA= L三H|:(1,4,1)
        (`) ru अザ\
    ```

```

        LV=U
    ```

```

        UUG = OUG,L
    ```

```

        IE = FWUC(I,1,J)
        :1A = \Stm([t:,4,1)
        Hi=1.a+.S
    ```

（1）： 1 い！いい

U14の ن14 1 J1！ 1

11119」 151 \(01: 1\) G1ヶジ
いいち

11 ל4」 1 が J15 0157 \(015:\)
\(015 \%\)
\(016,1)\)
i） 18.1

1102
011.8
（1） 124
010，
（lios
（1）1 1
i） 1.1
11］＇，
117 ．

1171
J172
J113
0174
［1）\(\%\) 117.




```

しー－ー Vにはハ。
（jn lu（isci，yc．j）1

```


```

し－－－－［．ロムT NRIAY

```

```

$1.1=\leq * 1 \mathrm{~K}$
l．$=3$＊IKC
い日 TU эSU

```

```

5•」 $1 \wedge=u$ $1+1=1 i c$

```

```

$530 \mathrm{JSUA}=\mathrm{HCCr}+1 \mathrm{HC}$

```

``` if \(3=3\)
```



```
jo bol II＝1，113
10nge＝1PaGt +1
IF（lp •\｜E U）（iの）TO \(9 y 3\)
```














```
勺3ヶ W！Ift（LIHES•⿰ 33 ）
うSz FORHAT（ FREWUENCY•）
GO TO \(\leftrightarrows\) U
h． 44 WRITE（IIIIISS，5S5）
b35 FORMATI AVERAGE LATEIICY＇I
joru bSu
らif，WKITL（LIME．S，さS7）
```




```
53A ICX \(=1 C-2\)
\(I C Y=I C-1\)
\(1 C L=I C * 1+2 U\)
\(1 C 2=I C L-21\)
L－－．FIflSin rif̈aulill
```







| Fl？1．A：Vur． 19 | 1＋： $1: 104$ | $\because い-J U-1 / 1$ | リハい。 |
| :---: | :---: | :---: | :---: |

． 171 .1111

11：911
$: 1: 11$
$\because 1 r 3$

1103
リ1 1.4

ก1（4．）
j1＇ir

ن11 7
＂1＂？ 11 1 い U1ヶた
$: 151$
$01 \%$
J193 J 114

1195 ： $1+6$
U1：7
$015 m$
1111．

## 120011

い2い1
い＂い2

いつกう
1） 2114
り2い：
いごに
．1？11\％
1213
りついこ
1） 211
$0 \geq 11$

1） 21
a311 $1 \because 14$


$1111=111+3$
C－．．．JCUL＝DSI CFLL UF KON

C゙ー．．．JCULI＝LMSi Ci．lL UF MOW
JCOLI＝JCOL＋（IC－？）
C－－SPLIT ALCORUIHG TO AUALYSIS



1 JCUL1）




（G）1U（50（3．06ח），J（）





$I A=1 a+1$
$13=1 \cdot 4+1$
と－－－トHLJUEIILY

C－－LATLidCy

Gol iv stu
$4+5 \mathrm{JJ}=\mathrm{u}$

（J） $3+\mathrm{C}=\mathrm{JCiL}, J C O L 1$
$\downharpoonleft 」=\downharpoonleft J+1$
$x 11=$ LMIAC（J）



6ロ lい לカu
らラぃ 」＝u
C－－PKUルURT1
$L=J C O L 1-1$
UO לث1 JJ＝JCUL，L
$J=J+1$
※u＝I＇1ハC（JJ）

$\left.x_{1}\right)=1$ 1八C（JCOLI）
 $x \cdot 1110(J+1)=x 1) /$ JSUN＊ 100 ．

C－－．－$\quad$ GU IU NLXT KいW
ヶ．．．）CGiJIIJUE



hun（i）iallidut


1．111．1．V11U．11
$14: 1: 114 \quad$ ：11－．114－14 11011

」．．．．
（1）！ 1
$1: 1 /$
」＂）以
1.313

』ン：＂
1
－1．），
コン！

1234

ノ い 」


1？？ 7
」？2． 3
リ？そ ン

リ？ 30
1） 231
$1 ? 32$
」2．3
$-13.34$
235
J23t．
」つふ7
いいい
11．2 3
．） 364


$L L=L .1+1$
3：4 JMMIL（LI）＝L．JAIIF（IUL，JJ）

1；11 2u：LL $=1$ it





ht？1F（1－＜

hil Lr $=<$

u ？12 $2=1$
u） 1 EUU $=1+15 C$


J．J＝ $1:$ UFI（LL．2＊TJRC！J）
J．$=1.3(1 / 1(L L \cdot 1 J K C, 0)$
（1） 0.4 Lル $=1$. Lいい
$J J=\bigcup J+1$
．Jin $=J!+1$

I円1AC（J．i）＝1，MAlい（JJ）

614 CO川11HJ
7）じい．111な！」t はとIUパ」
E゙！！い
WHIC：S＝／JH，／Cir，／UP：

| 1）した」く | L．l．jovll |  |  |
| :---: | :---: | :---: | :---: |
| Nはく | $\because 1>7$ | （い1く7」さ）＊ |  |
| －小f bre | 心U／4 | $(1157424)$ |  |
|  |  |  |  |
| ，1r SE． |  | U $\because$ F＇ | r． |
| i，C．CLIPATIVES |  |  | 1，5070 |
|  |  | U1がS | 12427 |
| $\because 丁 S L$ n＋1L Y |  | $11 \mathrm{Clro4}$ | 10376 |


an＇sic）





C－．．－OURTIUNS，RIEADS AIJL SU＇S，ANU UIVES SUMMARY MATRICES
C－．．－HATTERH GHSETS ．．．． HUFS THIS F UK MOTHFK ANII LNF NHT








UI：HENSTHN AH（2），SA（＜）

DATA 厶 M，SM／MEAN＇，＇，SI＇，＇
$\operatorname{ISIM}(I \pi \cdot 0 H, K 0)=118-1): 58+K 0$

C－．．－SCATK $\in$ ROWS（S CATFGUKIES＋ 1 TOTAL）
${ }_{\text {HCATK }}=6$

${ }_{\mathrm{N}} \mathrm{C}=12$
と．．．．MUTHEK MAS 与 VOCAL OHSEG PATTERIJS

C－－．OF THL PAIK $J L=\dot{C}$
（：－－－BO FUir muther and Infant DO 3SU0 J $=1.2$
L－－－IF US INFANT JL TO IHUEX MOTHEK NAMLS
c．．．．IF UUT TLMPORAKY AKRAY FUR holfing uf to a＂MATKILES＂
jo sous m＝1，1656
Su：n IAATN（F）＝ 0 IPAGL＝IPAGL +1
C．－．．IHULX INTO ACTOR ARKAY（MOTHER OR INFANT）
IS $=\operatorname{ISUM}(J, 2.1)$
$1 \leq 1=I s+1$
C．．．－PKINT HLADING－CT（1）＝TKAYY（FUR BOTHEK），（2）＝CKY（INFANT）
 IMSETS＇，（IF PKOX $=1$ ，MOTHLK WAS OUT OF ROUN AT ONSE1） $1 /$


 WHIte（LIVES．3007）
30.17 FORMAT（4x．95（＇－1））

C－O－$N=$ MIMGER UF RECOKDS IH II．OK I．FALE $\mathrm{n}=\operatorname{NUM}(\mathrm{N})$

110i． 1 s
14：7！：リ1

いい $5!=!!!=1,1!$





？（JトA）（1） $1=1$ • $\therefore 1$
1727
13.5
$113 ?$

11） 43
$103:$
1リ5．
，
10.37
$1: 1.30$
11.57

111；！ 3
$1: 14+1$
1011.
$1.1+5$
1
i 114～

194！

7！
$1: 1 i^{7}$
$111 \cdot$
$1.11 \cdot 1$
： $1 \cdot 11$
， $1 \mathrm{H} \cdot 1$
$1: 1 ヶ \%$

111！：
J＂，




$\therefore 11 \cdots$

10i.n
11) r .1
1.) 0 ?
111.
$1.1 r, 4$
17ッ)
ining
is. 1
1.1., 4
1.11 .9

1? 7
1.171

1072
1973
11) 74

1!) 75
1:77
1.177

117
137,
, 1, 1
. . i! 1
$\because!$
11.15
31.11

1. 1
1.):1.,
17.21
1.1:
1.1.
! ! • 1





## J！

119．3 3 1034 $1!919$
$11 \%$

1097

1913
.1149

1100 UlUl 1］ 12
.1103

0104

J） 45 い1） $\checkmark 107$

1104
． 117
」11

1111
J1］？
） 11
J 114 ．1117 111.
$: 11 i$ $\therefore 110$

1114 11：3！！
1111

1） 1.2 ？




$\operatorname{lin}=1514,(1,4,1)$
（a）lu xumi
C－－
$30 \cdot 95114=1514(3,4,1)$
C－－－Linj UF NかME Li：lEX
30はS id！$=1+A+3$

OUG＝UULZ
C．．．．SKIF FAITERKS SECTIOM AJJ GU TO PRIATIFG
り1 10 \｛1も0
こ－－－JJ」」REUULAK トんTTEKN UJSET

د11，0 01月＝आいい
C－－IHUEX IHTO ivalll UF PMTTERIN UNISti
1t．＝MJUL（J．1J）



Sili In＝APAT＊MisC



！ 11311 ［I $=1.6$
LFAGL $=1 P$ NGE +1






$1 C L=101$
1F（11．とい．こ）1CL＝TCL－13
C－O．MRIWT MAMLYSLS MEAUI＇IG
しの 10（31：っ，S104），11
31い？ARITLII．IVFS． 31031

u儿 1：slú








JSIN $=I K+M C+I K C$

AJN＝Jiしい
1．－－－111 ：H＋UR EALH ROW
（い）sロくり1！＝1．1！
11.1
$11 \ddot{\prime}$
1131
11.1

1152
11 ；
1154
1135
$115 n$
1147
1.30

ノ 1 す ； 140

1141
$11 \cdot{ }^{\prime}$

11！ 114！

1149
111413 $1 i+7$
－，：

3164
11•••
$.11 \cdot$
11 ，


$1.1=11+3$

．JCuL $=15011111$ ilC，1K（1）＋ 1
C－m JGULI＝LMSI ClIL UF（NOW

arいL＝ル」は1－1



د111 $\mathrm{K} \times=0$
$t \times 2=1$

$1 \%=0$




$311 ; 1<=1 \%+1$

C－… ${ }^{\circ}$ l．a．d
L－．．－；u ut lulillatliid

s！$=$－N1（ $\because$ ）





し－ー－CULLLLT JU 15
1．1 s：）lu（．3117，3129），JU

314 Un 311\％JJ＝JCいL．JCOL． 1
$1 n=1 n+1$


in lu $31 \ll$

：－－－niv $=$ i（Un 「U「AL


Un $=u$


$J n=J n+1$









```
トいい!|..| Jul,.1.1
```





```
    C--.- JJ LATEGURY ANMLYSIS
```



```
    <13? UU $134 JJ=1.<0
```



```
    C---- L_NSI &OW OF NAOESS= "TOTAL"
    1Nat (0) 1334 JJ=1,4
```



```
    C--- GO TU CATLOURY A!HALYCDS
```



```
    C---- 10 S|ms
```






```
    g1 in L上N|=?**小C
        1< = < 
        G0 TU 313:4
    C--.- MUl|ENK UHLY NAS 1 SUN
        S1%% LEND= Nas:
```



```
    C-\ldots.. L:ItM|T- FOK CRY SIIIS।
    21,4 ll0 11b* LL = 1,||W
    11.j+1がA!は(LL)= 1.4a7i|(LL+I!LRC)
```



```
        32.J CO:.0T1HN!E
    &--. GU TO SWFM|T
        ssma C!O!TTHNUL
            ME゙「UR,J
            E&H1
        *H!r!utS COL.IEしj:
        AmS , Suler
        UNTIMH=/UN,/LK,/UP:2
```




11．1．1
よいい。
（1）16！ 1． 1114 ．1011：＂ julte i． 1147





KたIUK゙は
$\dot{C} \cdot \mathrm{~L} \mathrm{~L}$


```
BEOCK LENGTII
*N4 6%7 (1.こ.346)*
**C.^A1LLIM - - - - CuKL**
    MHASE: USFO Fliff.
```



```
LaElIITABlLE.s Jugi,3 1.34.37
mo!itullqy U1S!] 1/こっり
```







じー－－






$k=2$

C－O－CHELK IF TO PRINT UNY TRMW MAT：



C－－KUW IいIn．

（1） $4 \cup 10.5=1, L$



C－－「OLUil，IOTハLう
（1） 4 uca $1=1, K$
（は） 4 Uぐい $=1$ ，L




（11） $405011=1.5$
LPAGE＝1rabt＋ 1





（：－－－
i．－－－－
Aw HRII：MATRIX THIOUGH WI：4，CH COMPUTE NII THEM USE W1く 4

$$
+11 \text { jo wis1IL(LII.t.S.4+131) }
$$



む！TU 4 いち！
40 （1）WRITL（LII，ES．403 4 ）iNSTEP



＋7＋O WRIIL（LITAS． 4041 ）lSIFr
 1u F KUN 1，1）



おいな
1） C 5．
は1 $1 \%$
110．61
ग门s
11：10
1）？！！
！ $04{ }^{\circ}$
01149
1） 44

1） 040
j1146
1．147 7
1．198
111．4
11150 いいら1
u052
0055 1054 リ！！ ひり5月 1） 057 บ0） 1 ． 10 － ．）リnい
nOG1 1）リッ？
：10 1.5
11164

110ヶい ．）11i． 1 Jobs

いい TU 4いちい



（J） $\operatorname{sus} \sin 1=1 . \%$
ui） $\operatorname{sil} \sin =1, L$
么パル（1．J）＝1 TにM！（I．J）

uU 3ust $=1, n$



wo Susi： $1=1, \ldots$
：川 susn J＝1，k


！，「）「U 4Oちい


1（；トRUM 1／＇）

（10）4U4． $1=1 . \dot{x}$
$1111404 \mathrm{~J}=1, \mathrm{~K}$




Ke $\boldsymbol{T}$ UKか。
2こも COH丁口NいE
1PAGL＝1PASE＋1
C－－．－PRLHI HLAUING FOK CUILaHSLU MATRIX



s．＇1＇ 1

ari seu $I=1, K$
いの f¿U J $=1, k$
$3 ? 3: 3 F \times r(1, J)=S E X T(I, J) / V ;$

ハヒTいいい。
L：HU
『ハر！【はLS C゙ALLLい：
いくは

－LGOK I．F．NGTH
vis 1025（0114002）＊
－b＇bub．ひU74（U37424）
－＊C．）Mr」LFH－－－－－CURE＊＊
IMASF LSEU FREE
LILCLAKATIVIS Jutid己 1367 B

Ajヶi Aply Ulost 173 sis

APPFNDIXC

First Phone Contact:
Your Name
Peabody Collepe
!) . Vietze
Infant Laboratory
Kennedy Center
Dr. Vtetze has been involved with infant research in Nashville for the past
three years. We understand you have a son (or daughter).
Dr. Vietze is presently involved in a study of how babies learn about their environment in their first year of life. I'd like to tell you briefly now what the study involves and, if you are still interested, I'd like to send you a letter explaining about it in more detail. We are seeing each baby at 3 ages: when (he, she) is $21 / 2,61 / 2$ and $121 / 2$ months old. At each age, we see the baby three times: once in the home and twice in our infant laboratory. We would 1 ike you to know about this study in moro detail and would like to send you a letter explaining more about it, if you think you might be interested in participating. We would like to call back next week after you have a chance to read the letter, get your reaction to it, and answer any questions you may have. Then, if you are still interested, set up an appointment.

MIND OUT:
Do you plan to be in Nashville during the next year? Are vou planning to work during this time?
Check Address!
ihrorr lirrail.

 researeh profect. maring the past three vears several hundred famidies Gfl: धombs infante have partirepated in infant resoarch programs sponsored
 - omponent of the lohn $\because$. Cnnodv conter. This research is supported by frobudy Gollope ind be hoth fuderal and sitate frants.

Bucants the "frst your of life is an extremely important one, a vear Raticel be rapld krowth and mathy developmental changes, we have focused our attention on the young infant. Untit relatively recently we krew very litele about than धoung: !abies could do. ln fact, many persons still believe that mewhrn babion camot see and do not learn. However, our researeh and that of other: aromb the countre is showing that even very young infints are :ansitive alld responsive to changes in their world and are rapable at learnins. Here at the fennedy Center we have been looking at arlv ltarning, attentional, dad socio-emotional processes in young bibices.

The purpose of this research program is to examine the relationship betwerd a cluster of fmportant moasures: infant learning and attention in the laboratory; infant behavior in the home setting; infant sensory-motor develofment; and parents' fleas and beliefs about young children. We are especially interested in how these relationships change during the first U uir of life. We are interested in working with normal, healthy infant: and their mothers. In this study, wo are interested in first born infants whost mather; are and will he the primary wookday caretaker for the foteth (1) the study. Because this is a longitudinal studv, se need neople who $\because$ onect to be in inshwille for the next cleven months.

1t You agree $\mathrm{l}_{\mathrm{o}}$ br a fanily in our study, we would like to see your haby when he or she is $21 / 2$ monthis old, $61 / 2$ months old, and $121 / 2$ months old. At each age we would like to come to your home to observe Uour baby in the normal home environment. He are interested in observing $\because$ hath, a feeding, and some playtime. We would like to watch your baby for 90 minutes at it ime when onlv the Hother and baby would be there. Also, at each age we would like you to bring your haby to the Peabody Infant laboratory twice--about a week apart. During these visits we will do three things. First, we will show your baby some pictures and watch $t$ : ae how much he looks at them. Second, we will give your baby the opportmity $t$, make a response (turning his lead, pulling a string)

Par:4 :
which will cause somethlng interesting to happen (a mobile will turn, il pleture will appear on a sereen). We will recosd llo amount of time the babs looks at the object, his vocalizations and smiles, and the momber of thes fie responds. Third, we bill measure your baby's sensorimotor develupment with a scale that has been developed for this purpose. Also we will ask vou to complete a short muestomaire for parents durime your visit to the infant hab. Each visit should take from one to two lours.

Beratuse this study is funded by a grant from the National lnstitute of Fducation, the Opatment of Health, liducation, and Welfare requires that we obtain writton consent from the parents of babies who participate in our study. If you agree to participate, we will be bringing a consent form to your home on our first visit.

We will be contacting you within the next week or two to answer any questions vou may have and to find out if you would be willing to help us in thls important and excitin!, research project. If you lave any immediate questions, please feel free to contate us here at peabody. The number Is 327-8237 and Donna Burns, Hary Lou Ashe, or 1 will be happy to answer vour questions.


VV/pws,

Second Phone Contact:

Your Name
Peabody College
Infant Laboratory
llave you received our letter yet... and, have you had a chance to read it and think about it?

Do you think you would be interested in helping us out with our study? Any questions?

We need to schedule you for the first visit - that will be the visit in your home where an observer will come to your home to see the baby for an hour and a haif. We want to include a feeding, a bath, and some playtime, but won't interrupt your normal routine.

What day would be best for your? What time?
We '11. call you on that day to confirm the time...
We'd also like to set up the first lab visit at this time. Best day? Time?

