
Transactional Memory

Contents of Lecture 9
Transactional Memory: HTM and STM
HTM in Blue Gene/Q, POWER8, EC12 and Intel Core 7-4770
STM with Clojure

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 1 / 44

jonasskeppstedt.net


TM: Transactional Memory

A transaction is a sequence of reads and writes which either occur
atomically or not at all
Consider the swish example:

With many more accounts than threads there is little risk of data races
Little risk is different from impossible

The idea with transactional memory is to take a chance without locks
If there are conflicting accesses then try again
What programmers need to use transactional memory is to identify:

the start of a transcation
the end of a transcation

Hardware or software implementation of detecting conflicts and
managing transactions

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 2 / 44

jonasskeppstedt.net


Using Transactional Memory

The programmer ”only” has to divide a program into transactions.
No need for programmer orchestration using locks etc.
Performance tuning is based on feedback and results in changing the
transactions — which will affect only performance and not correctness.
With too many conflicts and restarted transactions, the program will
be very slow
In C with gcc -fgnu-tm swish.c

__transaction_atomic {
from->balance -= amount;
to->balance += amount;

}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 3 / 44

jonasskeppstedt.net


C++

ISO/IEC TS 19841:2015 describes extensions to the C++
Programming Language that enable the specification of Transactional
Memory.
It is a ”non-normative extension” to C++ and may be included in ISO
C++ in the future
See: https://www.iso.org/standard/66343.html

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 4 / 44

jonasskeppstedt.net


Software TM, STM

Software defines the transactions (e.g. one loop iteration).
Transactions log accesses to shared data (each operation)
Before committing a transaction, it must check that no violations
happened
The main problems of STM are maintaining the logs and doing the
commit
Do all memory accesses have to be logged?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 5 / 44

jonasskeppstedt.net


Reducing the amount of logging

The programmer can annotate reads and writes as being to private (or
shared) data
The compiler can perform analysis to avoid some logging
The language may permit STM only for certain data type
For C/C++ STM is likely to be tough without programmer
annotations:

Stack accesses are trivial for the compiler
But which lists or trees are accessed by only one thread/transaction?

In Clojure, a certain kind of pointer, a ref, can only be modified in a
transaction

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 6 / 44

jonasskeppstedt.net


Experience from IBM Research at Austin in 2008

After spending two years implementing STM they wrote an article
with the title

Software Transactional Memory: why is it only a research toy?

Each shared access expands to tens of additional machine instructions
Reusing memory allocated and freed by malloc/free cannot always be
done since the STM system is not informed
Transactions using legacy code such as third-part libraries can require
serializing transactions
Debugging is complicated due to non-determinism

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 7 / 44

jonasskeppstedt.net


Hardware TM

Again, software defines the transactions (e.g. one loop iteration).
Hardware somehow buffers all writes locally
When a transaction has completed, hardware commits it
At commit, all local writes are transferred to the shared memory
Other processors listen to the commit and can detect that its
transaction has violated a dependency and needs to be restarted.
The conflict detection granularity typically is a cache block so false
sharing can create conflicts due to false sharing!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 8 / 44

jonasskeppstedt.net


Performance Programming for TM

Minimize violations: don’t write transactions that access shared
variables too much for too long.
On the other hand, making transactions too small introduces overhead.
Avoid buffer overflows. If a processor’s own buffer overflows, the
transactions must ”swap” the local writes to memory (of course not
making the data visible to others — just in order to get more storage).

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 9 / 44

jonasskeppstedt.net


Privatization in TM

All shared data must be accessed only in transactions.
It’s a data-race to let both non-transactions and transactions access
the same variable.
Sometimes, however, there is shared data that was accessed in
transactions but after a certain point it will only be accessed by one
thread.
Such data should be privatized in order to:

Avoid overhead of accesses in transactions.
Enable non-reversible actions in transactions — e.g. I/O

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 10 / 44

jonasskeppstedt.net


Transactional Memory vs locking

No deadlocks for TM but poor performance if there are many conflicts.
Data must be partitioned for good performance:

avoiding lock contention,
avoiding transaction conflicts

Critical section performance
full speed with locking — contention at synchronization only
contention can degrade performance anywhere during transaction

Debugging:
natural with locks
it can be more difficult to set break points in the middle of a
transaction — depending on the hardware support

Privatization:
trivial with locks
TM needs hardware support or performance penalty

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 11 / 44

jonasskeppstedt.net


Tom Knight: inventor of transactional memory

Studied partly at MIT from age 14
Built network interface to the 6th computer connected to ARPANET
Registered first .com address: symbolics.com
Worked on Ethernet and Lisp at MIT
Worked for Thinking Machines
Founder of the scientific field synthetic biology
Published a paper 1986 about transactional memory for Lisp
So: suitable that we use Clojure for transactional memory
1986 was also the year when Michel Dubois published the paper on
Weak ordering

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 12 / 44

jonasskeppstedt.net


Sun’s Rock processor

Sun was founded 1982 and pioneered the workstation market (and
later created Java)
Rock was the first implementation of transactional memory
Presented at the main computer architecture conference, ISCA, in
2009
One of the authors, Anders Landin, was a D-student at LTH (and then
went to SICS to participate in research on cache-only memory
architectures, COMA, in the DDM project)
In the 2008 financial crises many of Sun’s customers went out of
business
Oracle bought Sun
It was produced as prototypes but canceled by Larry Ellison

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 13 / 44

jonasskeppstedt.net


The IBM Blue Gene/P supercomputer

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 14 / 44

jonasskeppstedt.net


The IBM Blue Gene/P supercomputer

USD 1.3 million per rack
16 cores and SMT-4, clocked at 1.6 GHz
The IBM Blue Gene/P supercomputer was the first commercial
machine that implemented transactional memory in hardware.
Recall that superscalar processors don’t allow speculative instructions
to modify memory.
In Blue Gene/P they are allowed to write to the cache by also writing
a version tag.
With the version tag, aborted transactions can be rolled back.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 15 / 44

jonasskeppstedt.net


The IBM Blue Gene/P basic design

Each chip has 16 cores with four hardware threads
Each core has a 16 KB L1 cache
All cores share a 32 MB L2 cache
Speculative writes are saved in the L2 cache
They become visible after a successful commit

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 16 / 44

jonasskeppstedt.net


Conflict detection in the L2 cache

Conflicts are detected the cache coherence protocol and L2 caches
A thread stores its version of a cache block in the L2 cache
Accesses are marked as reads or writes, and speculative or not
For speculative accesses it is in addition marked which other threads
have accessed a block
Two modes: either short or long transactions — but not both
The normal granularity is 64 bytes
Cache block and cache line are the same

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 17 / 44

jonasskeppstedt.net


Short transactions

As we will see below, transactions can be non-speculative
This slide applies to speculative transactions
At an L1 cache load, the L2 cache is informed (otherwise it cannot
detect conflicts)
At an L1 cache store, that L1 cache block is removed from the L1
cache, and in this case moved to the L2 cache since it was just
modified
After a store, a subsequent load gets an L1 cache misse
This is expected to work OK for short transactions which do not reuse
speculative data very much

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 18 / 44

jonasskeppstedt.net


Long transactions

Long running transactions can use the L1 cache for speculative state
In order to make the L2 cache know about an initial access to such
shared state, the entire L1 cache is invalidated at the start of a
transaction
Note that multiple hardware threads can save different versions of
some data in the L1 cache
This is done by using a trick with the TLB: different virtual to physical
address translations are used for different transactions so the data
looks different to the L1 cache
TLB = translation lookaside buffer invented for IBM 360 in the 1960s
For long running transactions which reuse data, invalidating the L1
cache at start is expected to be OK

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 19 / 44

jonasskeppstedt.net


Runtime support

Transactions must be single-entry and single-exit
No exceptions in transactions are allowed
The stack pointer and three other registers must always be saved and
passed to the kernel since it needs them if a transaction fails

a pointer used for the GOT (global offset table) table for position
independent code
the instruction address for the register restore code
a copy of the time base register (see timebase.c in Tresorit which is
used for very accurate timing)

Thus, a system call (expensive thing) is involved.
Which other registers need to be saved/restored are determined by the
compiler

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 20 / 44

jonasskeppstedt.net


Abort and retry

If there is a conflict the kernel is invoked
The kernel uses the saved time base register value to determine which
of two transactions is the oldest
The age is used as a priority to decide which transaction should abort
The older transaction is normally selected to survive

it has probably done more work already

The cancelled transaction is retried

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 21 / 44

jonasskeppstedt.net


Irrevocable transactions

After too many retries the runtime system switches transaction mode
to irrevocable
Irrevocable transactions cannot fail (unless they crash of course)
An irrevocable transaction starts with taking the irrevocable token
which is a global lock
A completed irrevocable transaction may at runtime be marked as
problematic (meaning the instruction address of the transaction).
Problematic transactions switch to irrevocable after first failure

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 22 / 44

jonasskeppstedt.net


Evaluation

IBM used the STAMP benchmarks from Stanford
See https://github.com/kozyraki/stamp

STAMP is available with transactions, OpenMP directives, and as
single-threaded C/C++ codes
IBM compared the Blue Gene HTM with:

single thread execution
manually optimized OpenMP
manually marked numerous reads and writes as non-shared for STM

When evaluating something, the numbers are of practical interest (is it
worth buying/producing/etc something?) but it is the explanations to
why we see the numbers that matters — this is equally for important
for research papers as for MSc theses
Don’t write: ”we saw X was Y % better for Z benchmarks but we did
not have time to figure out why” — its translation is ”we could not
figure out why” :)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 23 / 44

jonasskeppstedt.net


L1 cache misses

Many more L1 cache misses in TM code
Instruction path lengths = number of executed instructions

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 24 / 44

jonasskeppstedt.net


Single thread slowdown

L1 cache misses penalize BG /Q Short
OpenMP sometimes better due to better register allocation, i.e. luck

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 25 / 44

jonasskeppstedt.net


Speedups: sometimes good but none very efficient

XXX
Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 26 / 44

jonasskeppstedt.net


Power 2.07 supports Transactional Memory

The Power architecture has supported TM since version 2.07,
published May 10, 2013.
Our POWER8 supports this
Every memory access is either transactional or non-transactional.
New instructions include (the . suffix means they set the condition
codes in CR0):

tbegin.
tend.
tabort.
tsuspend. leave the transaction
tresume. return to the transaction
treclaim. used by kernel at context switches
trechkpt. used by kernel to copy certain registers

Memory accesses executed between the tbegin. and tend. are
transactional and all other are non-transactional.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 27 / 44

jonasskeppstedt.net


Overview

The bit TDOOMED is set to 0 by tbegin. and to 1 at a failure.
Most registers (but not CR0 which returns success/fail) are saved at a
tbegin. and are restored at a transaction failure.
A failure handler is run at a transaction failure.
A transaction can fail either due to itself or due to another transaction.
It fails by itself (called self-induced) if:

It executes tabort.
It has a too deep transaction nesting level at a new tbegin..
It has a too large footprint (written too much data).
It executes a disallowed instruction — such as doze, sleep and dcbi.

The failure handler should either retry the transaction or do the
operation without a transaction (i.e. with locks).
There is no guarantee of any progress or fairness by the hardware.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 28 / 44

jonasskeppstedt.net


Nested transactions

Transactions can be nested.
A tend. with field A=1 ends all transactions of the thread and with
A=0 only ends the most recently started.
A failure of a nested transaction terminates all transactions!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 29 / 44

jonasskeppstedt.net


Conflicts

A transaction conflicts with another transaction or a non-transactional
access if they access the same cache block (i.e. memory block) and at
least one is a store.
At least one of two conflicting transactions fail, i.e. are aborted.
Note the cache block granularity: since the cache block size is not
defined by the architecture, software must be written accordingly.
The reason for transaction failure is provided in a register.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 30 / 44

jonasskeppstedt.net


Transaction execution states

There are three states:
Non-transactional: the normal state before any transaction is started.
Transactional: execution between a tbegin. and a tend..
Suspended: execution by the same thread but as a temporary escape of
the transactional state. This is execution between a tsuspend. and a
tresume.

The purpose of the suspended state is for instance
Inter-thread communication: cannot be rolled back!
Other stores which should not be rolled back such as for debugging.
Accesses to non-cachable memory.

Code in suspended state should be careful when accessing
transactionally modified data.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 31 / 44

jonasskeppstedt.net


Suspend confusions

x = 0;
tbegin
x = 1;
tsuspend
x += 1
tresume
tend

The += stores 2 and kills the transaction so x goes from 0 to 2.
This is non-intuitive since it x ”never” was 1
IBM manual about using the processor suspended state:

Accessing storage locations in Suspended state that have been accessed
transactionally has the potential to create apparant storage paradoxes.
It must be used with care.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 32 / 44

jonasskeppstedt.net


POWER8 TM

POWER8 implements the POWER 2.07 architecture specification
As in BG/Q the L2 cache is used for speculative state
The L1 data cache is 64 KB and the L1 instruction cache is 32 KB
The cache block size is 128 bytes in all caches
All caches are 8-way associative
All up to 8 hardware threads in a core share the same L1 and L2
caches
Each core has its own L2 512 KB cache
The L3 cache is 8 MB and there is one per chip, i.e. one in
power.cs.lth.se

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 33 / 44

jonasskeppstedt.net


Other HTM implementations

Intel’s Transactional Synchronization Extensions (TSX) were used in
some Haswell processors in 2013
In 2014 a bug was detected and TSX was disabled with a microcode
update on these chips
TSX is a software API and the hardware details are not public
Some Skylake processors support it
Both AMD and ARM also have HTM
IBM mainframes (updated but in production since 1952!) also
implement HTM, such as EC12
EC12 has 6 cores clocked at 5.5 GHz

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 34 / 44

jonasskeppstedt.net


Comparing BG/Q, POWER8, EC12 and Intel Core 7-4770

In 2015 IBM Research in Tokyo and Austin compared these on STAMP
Some ”TM unfriendly” parts of STAMP were fixed
The number of used retries were tuned to each machine
All machines detect conflicts using the cache coherence protocol

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 35 / 44

jonasskeppstedt.net


Differences

On BG/Q programmers cannot write code to handle failed transactions
On BG/Q system calls are used to begin and commit transactions
The other machines use normal machine instructions
EC12 has the largest cache lines, 256 bytes, and highest risk for false
conflicts
EC12 uses also the L1 cache to detect conflicts (i.e. in addition to the
L2 cache)
Intel uses also the L1 cache to detect conflicts in addition to other
resources
When the transaction capacity is exceeded, the transaction is aborted
The transaction capacity of Intel is not public but experiments
revealed it to be 4 MB for reads and 22 KB for writes
POWER8 has a combined transaction capacity of 8 KB only

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 36 / 44

jonasskeppstedt.net


Differences

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 37 / 44

jonasskeppstedt.net


Evaluation

CPU cores SMT clock
Intel Core 7-4770 4 2 3.4 GHz
IBM EC12 16 1 5.5 GHz
IBM BG/Q 16 4 1.6 GHz
IBM POWER8 6 8 4.1 GHz

The POWER8 is available with 6 to 12 cores
To make comparisons fair, only four cores where used in any machine
The performance metric is speedup over single thread for the same
machine
Thus no comparison in execution of IBM vs Intel since the machines
are so different
The purpose is to understand what to improve in future TM
implementations

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 38 / 44

jonasskeppstedt.net


4 core speedups vs itself

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 39 / 44

jonasskeppstedt.net


Transaction failures — remarks

Intel performs hardware prefetching which are counted as transaction
accesses
This causes a higher number of data conflicts than the IBM machines
This is significant for kmeans-low
The IBM researchers disabled hardware prefetch on Intel to verify this
Then informed Intel which confirmed the findings
POWER8 had more capacity failures so the capacity should be
increased
The zEC12 suffers from mysterious transaction aborts that degrade its
performance
The failure codes where not documented and happened in odd
situations
This is a better explanation than saying ”did not do it due to lack of
time”!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 40 / 44

jonasskeppstedt.net


Transaction failures

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 41 / 44

jonasskeppstedt.net


Clojure

Clojure is a Lisp language with support for software transactional
memory
To use STM you need to use a special type, called ref
This has the advantage that only such objects need to be logged

(def start-balance 1000)
(defrecord account [balance])
(def pointer (ref (->account start-balance)))

(println (deref pointer))
(println @pointer) ; @ means deref

(update @pointer :balance + 5)

(println @pointer) ; prints 1000

This creates a new object with balance 1005
But does not modify pointer

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 42 / 44

jonasskeppstedt.net


ref-set

ref-set is used to modify a ref

(def start-balance 1000)
(defrecord account [balance])
(def pointer (ref (->account start-balance)))

(println (deref pointer))
(println @pointer) ; @ means deref

(ref-set pointer (update @pointer :balance + 5))

(println @pointer)

This does not work
We can only modify a ref in a transaction

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 43 / 44

jonasskeppstedt.net


dosync

The following works

(def start-balance 1000)
(defrecord account [balance])
(def pointer (ref (->account start-balance)))

(println @pointer)

(dosync (ref-set pointer (update @pointer :balance + 5))
(ref-set pointer (update @pointer :balance + 6))
(ref-set pointer (update @pointer :balance + 7)))

(println @pointer)

The balance becomes 1018

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 9 2023 44 / 44

jonasskeppstedt.net

