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Abstract
The number of people diagnosed with diabetes continues to increase, especially 
among younger populations. Apart from genetic predisposition and lifestyle, 
there is increasing scientific and public concern that environmental agents may 
also contribute to diabetes. Food contamination by chemical substances that 
originate from packaging materials, or are the result of chemical reactions during 
food processing, is generally recognized as a worldwide problem with potential 
health hazards. Phthalates, bisphenol A (BPA) and acrylamide (AA) have been the 
focus of attention in recent years, due to the numerous adverse health effects 
associated with their exposure. This paper summarizes the available data about 
the association between phthalates, BPA and AA exposure and diabetes. 
Although their mechanism of action has not been fully clarified, in vitro, in vivo 
and epidemiological studies have made significant progress toward identifying 
the potential roles of phthalates, BPA and AA in diabetes development and 
progression. These chemicals interfere with multiple signaling pathways involved 
in glucose and lipid homeostasis and can aggravate the symptoms of diabetes. 
Especially concerning are the effects of exposure during early stages and the 
gestational period. Well-designed prospective studies are needed in order to 
better establish prevention strategies against the harmful effects of these food 
contaminants.

Key Words: Acrylamide; Bisphenol A; Phthalates; Endocrine disrupting chemicals; β-cell; 
Diabetes
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Core Tip: One of the most important steps in the prevention and control of diabetes and related disorders is 
the identification of potential risk factors. Phthalates, bisphenol A (BPA) and acrylamide (AA) are 
chemicals that are ubiquitously present in the environment and have the ability to act as contributing 
factors with adverse health effects. Human exposure to phthalates, BPA and AA mainly occurs through 
ingestion. This paper summarizes the available data about the association between phthalates, BPA and 
AA exposure and diabetes in order to examine the potential role of these contaminants in the development 
and progression of this complex disorder.

Citation: Milanović M, Milošević N, Milić N, Stojanoska MM, Petri E, Filipović JM. Food contaminants and 
potential risk of diabetes development: A narrative review. World J Diabetes 2023; 14(6): 705-723
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/705.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i6.705

INTRODUCTION
One of our basic human rights is “the right of everyone to have access to safe and nutritious food”[1]. 
According to the World Health Organization, more than 100 billion dollars is spent each year on 
medical expenses related to the consummation of unsafe food around the world[2]. Food contamination 
by chemical substances is generally recognized as an emerging worldwide challenge, with potential 
health hazards[3,4]. Moreover, diet has been identified as a main source of chemical intake[5]. 
Chemicals may enter the food chain via several pathways during cultivation, production, handling and 
processing, packaging, transportation and storage[4]. Numerous studies have confirmed the presence of 
a wide range of chemicals in drinking water, fruits, vegetables, cereals, meat and poultry, seafood, 
canned food, dairy products, baked goods, fast foods etc.[6-10]. For instance, humans are exposed daily 
to multiple chemicals, including environmental and processing contaminants, that may pose a threat to 
health even at very low concentrations[11]. The continuous ingestion of chemicals that migrate from 
food packaging, especially plastic packaging materials, or that are the result of chemical reactions 
during food processing, can lead to adverse health effects such as the development of diabetes.

Among the chemicals that originate from plastic packaging materials, endocrine disrupting chemicals 
(EDCs) have attracted public attention due to their possible harmful health effects[12]. The Endocrine 
Society classified EDCs as “a serious public health risk” and since then, data demonstrating their 
negative effects on human health has been constantly increasing. To date, more than 1400 chemicals 
have been identified as potential EDCs[13]. EDCs are xenobiotics that interfere with normal endocrine 
function, which consequently lead to adverse health outcomes[14-17]. Phthalic acid esters (PAEs) and 
bisphenol A (BPA) are well-known EDCs that are found practically “everywhere” in human societies, 
and have been the focus of scientific and public attention in recent years.

Among the chemical substances that are inadvertently generated during food preparation, 
acrylamide (AA) has raised public health concerns since it was first detected in 2002. Over the past 
twenty years, AA has been recognized as a “potential human carcinogen”, an emerging food 
contaminant and potential EDC[18,19]. Based on the above, exposure to PAEs, BPA and AA has been 
associated with a range of adverse health outcomes. Considering that ingestion is the main route of 
exposure, the objective of this paper is to review the current data concerning the links between PAEs, 
BPA and AA exposure and diabetes, in order to better understand the potential roles of these 
compounds in the development and progression of this complex disorder (Figure 1).

DIABETES
A century after the discovery of insulin, diabetes has been transformed from a fatal disorder into a 
chronic condition[20]. Today, the number of people diagnosed with diabetes continues to increase 
exponentially and it has been predicted that by 2045 more than 780 million people will have diabetes; 
with type 2 diabetes (T2D) representing approximately 90% of the total number of cases. It is believed 
that as many as half of the total number of cases remains undiagnosed, especially in low-income and 
middle-income countries[21] and that diabetes and its complications have resulted in more than 6.5 
million lost lives over the last year alone[21]. In the United States, it is estimated that the non-health 
costs of diabetes per person per year surpass the costs of heart diseases[22]. Therefore, recognition of 
potential risk factors is one of the most important steps in the establishment of efficient strategies for the 
prevention and control of diabetes and related diseases that will consequently reduce the burden on the 

https://www.wjgnet.com/1948-9358/full/v14/i6/705.htm
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Figure 1 Selected food contaminants are represented with their chemical structures as potential risk factors for diabetes development.

healthcare system and society.
Diabetes is a chronic disease, associated with a range of metabolic abnormalities. The clinical 

manifestations of diabetes includes increased serum glucose levels, which are a consequence of insulin 
deficiency and/or insulin resistance[23]. Type 1 diabetes (T1D) refers to a chronic autoimmune disease 
characterized by the loss of pancreatic β-cells, which leads to a total lack of insulin secretion and results 
in elevated blood glucose levels[24,25]. Although the development of T1D is associated with a genetic 
predisposition, environmental agents (single compounds or mixtures of compounds) can activate 
autoimmune mechanisms involved in the development of this multi-factorial disorder, through 
mechanisms that are not completely understood[26]. Insulin resistance is identified as a “key player” in 
the development and progression of T2D[27]. T2D is known as “adult-onset diabetes”, and develops as 
a result of increased insulin resistance to a level where overproduction of insulin can no longer cope 
with insulin insensitivity, leading to β-cell dysfunction[28]. In addition, several other non-
communicable disorders are associated with insulin resistance, such as obesity, metabolic syndrome, 
non-alcoholic fatty liver disease, polycystic ovary syndrome, cardiovascular disease and cancers[20]. 
However, there is a growing amount of data that also supports a role for food contaminants, such as 
PAEs, BPA and AA in the onset of diabetes and the development of related conditions.

PAES
Overview
PAEs are one of the most commonly used plasticizers and additives in a wide-range of products, such as 
food packaging, detergents, cosmetics, toys, medical tubing, blood-storage containers, and home 
furnishings. Due to the ability of phthalates to improve the mechanical properties of polymers (e.g., 
polyethylene, polyethylene terephthalate, polyvinyl acetate and polyvinyl chloride), it is predicted that 
approximately 500 million tons of PAEs will be produced worldwide by 2050[12,29-31]. Some of the 
most frequently used PAEs are dimethyl phthalate, diethyl phthalate (DEP), di-n-butyl phthalate (DBP), 
diisobutyl phthalate (DiBP), di-n-hexyl phthalate, bis (2-ethylhexyl) phthalate (DEHP), diisononyl 
phthalate, di-n-octyl phthalate and benzylbutyl phthalate[30,32]. Because of their large production 
volume and widespread applications, these PAEs are omnipresent contaminants[33]. Since PAEs are 
weakly bound to plastic polymers, they are easily released into the surrounding environment (i.e., in 
food, water, air, soil) during production, storage, use and disposal of plastic-based products[34]. 
Because of this, PAEs can be frequently detected in different biological and environmental matrices such 
as urine, blood, air, soil, sediment, food, surface water and even drinking water[35-40]. The bioaccumu-
lation and biodegradation potential of PAEs is dependent on their physico-chemical properties, which 
consequently determine their behavior and fate in the environment and their toxicity[41]. Phthalates are 
associated with negative effects on human health, including obesity, dyslipidaemia, T2D, impaired 
thyroid function, breast and uterine cancer, endometriosis and low birthweight[42-48]. Upon entering 
the food chain, the main route of humane exposure to phthalates is by ingestion. In the European Union, 
it is forbidden to use phthalate-containing materials for infant food and goods which contain high 
amounts of fats, such as dairy products. Moreover, since January 2022, plastic packaging for fruits and 
vegetables has been banned in France[49]. DEHP has been estimated as “safe” under 4.8 mg/kg body 
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weight per day (no-observed-adverse-effect level) while the tolerable daily intake (TDI) is 0.05 mg/kg 
body weight per day[50]. However, data concerning PAE contamination levels in different components 
of the human diet, especially with respect to vulnerable populations, remains scarce and limited. Hence, 
PAE-related health risks cannot be neglected even at the “safe dose” exposure levels defined by 
regulators. Considering that PAEs show additive effects, particular attention must also be given to the 
potential synergistic effects of mixtures of EDCs[51].

PAEs and diabetes
Research status: As EDCs, PAEs have the ability to modulate the activity of multiple nuclear receptors, 
such as estrogen receptors (ERα and ERβ), androgen receptor (AR), peroxisome proliferator-activated 
receptors (PPARα and PPARγ), thyroid hormone receptors (TRα and TRβ) and the pregnane X receptor
[15,52,53]. In order to understand the connection between PAEs and diabetes, “the dose makes the 
poison” approach cannot be applied[54]. Although phthalate exposure or mixed exposure with BPA had 
no influence on T1D development in non-obese mice, a mixture of PAEs and BPA decreased the release 
of tumor necrosis factor α (TNFα), interleukins (IL-4, IL-6, IL-10) and interferon γ in splenocytes and 
pancreatic lymphocytes and caused impairment of the immune system[55]. A significant association 
between PAE exposure and diabetes was probably not observed, due to the use of PAEs in high doses. 
PAEs as EDCs show non-monotonic effects[56]. Estrogenic compounds in high doses trigger insulin 
secretion in β-cells, and thus postponed the development of diabetes in non-obese mice[57]. In contrast, 
administration of DEHP at low levels caused the onset of diabetes symptoms (decrease in serum insulin 
levels and liver glycogen and an increase in blood glucose levels) followed by thyroid and adreno-
cortical dysfunction in rats[58]. After oral intake, PAEs undergo two metabolic steps. Short-branched 
phthalates are hydrolysed into monoester metabolites (mPAEs) and extracted via urine; while after 
several biotransformation steps in the first phase, long-branched phthalates are conjugated in phase II 
and eliminated through urine and feces[59]. Therefore, mPAEs should be also considered in order to 
understand the association between exposure to PAEs and diabetes. Based on in vitro and in vivo 
studies, mPAEs are more potent at a molecular level compared to their parent diester compounds[60-
62]. PAEs and mPAEs have affinity for PPARs receptors, which are involved in complex mechanisms of 
regulation of glucose homeostasis, insulin sensitivity, differentiation of adipocyte and adipogenesis[63]. 
However, when the effects of BPA and three phthalate metabolites [monoisobutyl phthalate (MiBP), 
mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP)] were investigated in 
pancreatic β-cells at concentrations of 5-500 μM, BPA treatment resulted in a more significant decrease 
in cellular viability after 72 h of exposure. Although increased insulin secretion was observed for BPA, 
MEHP, and MnBP after 2 h of simultaneous exposure to chemicals and glucose, no effects on glucose 
promoted insulin secretion were obtained after exposure for 24-72 h[64]. In contrast, when rats were 
treated orally with DEHP throughout gestation and lactation, abnormalities in β-cell ultrastructure, 
together with a decrease in β-cell mass and insulin content in the pancreas were found. Also, in DEHP 
treated offspring, alterations in pancreas specific gene expression were observed and impairment in β-
cell development and function were reported[65]. Particularly, a decrease in the levels of pancreatic and 
duodenal homeobox-1 (Pdx-1) were observed in DEHP exposed rats of both sexes, as well as an increase 
in genes involved in endoplasmic reticulum stress, when compared to controls[65]. Considering the fact 
that Pdx-1 is involved in regulation of insulin gene expression, glucokinase, glucose transporter 2 
(GLUT2), islet amyloid polypeptide and somatostatin, Pdx-1 plays crucial roles in the development of β-
cells features and functions[66]. Therefore, this decrease in Pdx-1 activity is probably one of the 
principal mechanisms of DEHP-induced dysregulation of pancreatic β-cells[67]. DEHP exposed 
offspring had increased blood glucose levels and decreased pancreatic insulin levels and displayed 
changes in glucose tolerance and glucose stimulated insulin secretion. Despite this observed β-cell 
dysfunction and wide range of glucometabolic changes, DEHP exposure during the gestational period 
also induced epigenetic changes and led to inhibition of β-cell development[68]. Particularly, in both 
sexes a significant decrease in the levels of glucokinase mRNA was observed, which correlated with 
applied DEHP dose. Moreover, endoplasmic reticulum stress markers were increased, along with the 
concentrations of plasma membrane bound GLUT2 protein[68]. In addition, DiBP reduced fetal plasma 
insulin levels in offspring and decreased PPARα mRNA levels in the liver[69]. Additionally, gender and 
weight differences related to DEHP and diabetes development were seen in adulthood. Namely, DEHP 
exposed female offspring had lower birth weights, disturbed glucose tolerance, impaired insulin 
secretion and high blood glucose levels. DEHP exposed male offspring had increased serum insulin 
levels and lower birth weights at a significant level[65]. When compared to DBP, DEHP induced 
pancreatic dysfunction and inhibition of insulin secretion was more pronounced in the offspring of rats 
after in utero and lactational exposure to phthalates[70]. Relative to the effects of DEHP exposure in 
normal mice and male T2D mice in puberty, female T2D mice in puberty were more sensitive to DEHP. 
Namely, in DEHP exposed female T2D mice during puberty, higher levels of several parameters were 
detected such as insulin, C-peptide, fasting blood glucose levels, homeostatic model assessment of 
insulin resistance (HOMA-IR), low density lipoprotein, C-reactive protein and aspartate aminotrans-
ferase (AST). Also, DEHP triggered oxidative stress in terms of higher malondialdehyde (MDA) content 
and lower superoxide dismutase (SOD) and glutathione (GSH) peroxidase activity in the livers of both 
normal and T2D mice[71]. DEHP promoted increased body weight in normal adolescent mice. Increases 
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in fasting blood glucose levels and glycated hemoglobin A1c (HbA1c) were more pronounced in 
adolescent T2D mice in comparison with normal adolescent mice. Additionally, DEHP induced insulin 
secretion and insulin resistance in normal adolescent mice, inhibited glycogen synthesis in adolescent 
T2D mice, and caused a decrease in the serum-lecithin cholesterol acyltransferase and hepatic lipase 
levels. A reduction in insulin levels was found in DEHP-treated adolescent T2D mice[72]. In both DEHP 
treated groups, a decrease in the expression of insulin receptors (IR-β and IRS-1) and GLUT4 was 
detected. Hence, DEHP acts as a metabolic toxicant in T2D development through impairment of glucose 
and lipid metabolism, and disruption of β-cell function and development[72]. Additionally, metabolic 
toxicity and insulin resistance caused by DEHP were more pronounced in rat liver cells with insulin 
resistance compared to normal cells[73]. In both cell lines, DEHP promoted cell damage through 
increased lipid peroxidation, alanine transaminase and AST levels, caspase-3 levels as a marker of cell 
apoptosis, and downregulated levels of IR-β. DEHP triggered macrophage infiltration in rat adipose 
tissue and stimulated the production of TNFα and IL-1β, promoting inflammation, while impairing 
normal lipid metabolism[74].

Potential mechanisms associated with diabetes: Although the mechanism of action of PAEs in diabetes 
has not been fully clarified, in vitro and in vivo studies have made significant progress toward 
identifying an association between PAE exposure and the development of diabetes. Interactions of PAEs 
with PPARs receptors impaired molecular signaling pathways (i.e., downregulated Pdx-1, activated JNK 
and caspase-3 expression, inhibited extracellular signal-regulated kinase (ERK)1/2, activated JAK/
STAT pathway, and affected neuropeptide Y expression) that have a significant role in the regulation of 
glucose and lipid homeostasis[65,68,71,74,75]. Therefore, PAEs induce mitochondrial dysfunction, 
inflammation and increased oxidative stress, while decreasing the levels of IRs and GLUTs. PAEs also 
promote β-cell dysfunction, apoptosis, impaired insulin sensitivity and glucose cell uptake, and 
consequently cause glucometabolic and lipid abnormalities (Figure 2). In addition to their role in the 
onset of diabetes, PAEs act as obesogenic and diabetogenic chemicals that can aggravate the symptoms 
of diabetes. Especially concerning is the fact that prenatal PAEs exposure is a potential risk factor for 
developing diabetes, and pre-clinical studies imply that women are most susceptible to the adverse 
effects of PAEs.

Epidemiologic evidence: The relationship between PAE exposure and potential risk for development of 
diabetes has mostly been examined by cross-sectional studies that differ in the race, gender and ages of 
study participants, sampling size, type of matrix, analytical techniques and kind of phthalates and/or 
metabolites used as analytes[76-82]. Because PAEs undergo quick metabolism and are excreted via urine 
as conjugated monoesters, evaluation of mPAEs concentrations in urine is most appropriate for 
assessment of possible correlations between PAE exposure and diabetes in humans[83]. Different types 
of PAEs have similar structures and mechanisms of action, and thus their negative effects may be 
additive[51]. Hence, the sum of phthalate metabolites should be considered as well during assessment 
of their negative effects[43]. The first evidence for the diabetogenic potential of PAEs in the human 
population was reported almost 15 years ago in a study where positive correlations were found between 
mPAE concentrations, abdominal obesity and insulin resistance in males[84]. Although urinary mPAEs 
concentrations were not associated with T1D at a significant level, in children with new-onset T1D, 
higher concentrations of MiBP were detected[76]. A high frequency of DEP and DEHP detection in 
urine was observed in healthy adults, the obese, and people with newly diagnosed T2D[34]. Higher 
urinary mPAEs levels, especially monomethylphthalate (MMP), MEP and MiBP, were related to a 
higher prevalence of T2D in both sexes[78,82]. Particularly, MEP and MMP were associated with insulin 
resistance, while MiBP was correlated with low insulin secretion[82]. Moreover, the association between 
mPAE concentrations and T2D was more pronounced in young individuals in comparison to older 
individuals. Interestingly, a positive correlation between specific urinary mPAEs and HbA1c levels was 
observed in individuals with a lower body mass index, while MEHP concentrations were positively 
related to fasting glucose levels in men and in the elderly[77]. Additionally, MEHP levels were 
associated with glucose serum levels in T2D patients and urinary MEP concentrations were positively 
correlated with HOMA-IR while in healthy participants, positive correlations were found between 
urinary MEP levels and triglyceride glucose index and triglyceride glucose-body mass index[43]. Both 
parameters have been proposed as indicators of T2D development in healthy normoglycemic 
participants[85]. It was found that higher concentrations of specific mPAEs were associated with 
increased oxidative stress and inflammation in diabetic patients in terms of MDA and TNFα levels, and 
decreased adiponectin levels[86]. Based on a non-targeted metabolomic study, differences in the serum 
levels of biomarkers of galactose, amino acids and pyrimidine metabolism were observed between T2D 
and control groups and mPAEs levels were mostly significantly associated with metabolic biomarkers 
serum concentrations[87].

In order to examine prospective evidence concerning the association of phthalates with T2D, cohort 
studies were performed. It was found that, among middle-aged women, T2D may be associated with 
phthalate exposure[88]. In utero, MEP exposure was associated with poor insulin secretion among 
pubescent boys, while increased leptin was observed among girls. In utero, and during the peripubertal 
period, DEHP exposure was associated with higher serum insulin-like growth factor-1, insulin 
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Figure 2 Schematic mechanisms of phthalates, bisphenol A and acrylamide role in diabetes development. PAEs: Phthalic acid esters; BPA: 
Bisphenol A; AA: Acrylamide.

secretion, and insulin resistance[89]. Moreover, in order to better investigate the link between specific 
phthalates and their metabolites with diabetes, several meta analyses were recently performed. DEHP 
exposure is mostly related to insulin resistance[90] and a positive correlation was found between 
phthalate metabolites and increased HOMA-IR[91],while the presence of MMP, MnBP, MiBP, mono-(3-
carboxypropyl) phthalate in urine were positively associated with risk of diabetes[92]. Results obtained 
from epidemiological studies provide additional evidence about the negative effects of phthalates on 
glucose and lipid metabolism.

BPA
Overview
BPA is one of the most well-known EDCs because of the numerous adverse health effects associated 
with its widespread application in different everyday products. BPA is used in the production of 
polycarbonate plastics and epoxy resins, and can be found in plastic containers and cans for food and 
beverages, numerous kitchen appliances and utensils, personal care products, toys, paints, electronics, 
sports equipment, medical devices, dental materials and thermal paper[93,94]. Because of its known 
reproductive toxicity and endocrine disruption potential, the use of BPA in baby bottles and toys is 
forbidden in the United States, Canada and the European Union[95]. However, despite continuous 
debate over more efficient measures to protect especially vulnerable populations from BPA exposure, 
BPA production and consumption is still increasing. It is expected that BPA commercial sales will 
exceed 30 billion USD in 2028[96]. Similarly, to PAEs, food can be contaminated with BPA during 
production, handling, packaging, and transportation[97]. BPA migration from container linings may be 
increased under high temperature, acid or basic conditions and even due to microwave exposure[95]. 
Hence, diet is recognized as a main source of BPA exposure, particularly the ingestion of BPA via 
canned foods[98]. Although the European Food Safety Authority has set a reduced TDI for BPA (0.04 ng 
of BPA per kg body weight per day), the daily intake of BPA through the diet is several times higher 
(0.17-0.95 μg of BPA per kg body weight per day)[99]. An extensive number of studies has documented 
the association between BPA exposure and increased oxidative stress, fertility disorders, obesity in 
children, adolescents and adults, metabolic disturbances and impaired pancreatic β-cell function, as well 
as cardiovascular diseases and even increased carcinogenicity[100-106].

BPA and diabetes
Research status: BPA is classified as a “weak estrogen” and “obesogen” due to its endocrine disruptive 
potential, which is mainly a result of the known ability of BPA to bind to nuclear receptors[15,107]. 
Acute and long-term effects of low BPA concentrations on the development of diabetes have been 
documented. Enhanced insulin synthesis was observed through the interaction of ERα with ERK2 in 
pancreatic β-cells[108]. Similar to 17β-estradiol, picomolar doses of BPA trigger Ca2+ signaling pathways 
leading to insulin secretion in pancreatic β-cells. In addition, BPA exposure may cause inhibition of the 
expression of Pdx-1 in pancreatic mice islets, resulting in a decrease in glucose promoted insulin 
secretion and ATP production. Moreover, microRNA expression and BPA induced insulin secretion 
dysfunction in pancreatic islets has also been studied. Particularly, BPA suppressed the expression of 
miR-338, resulting in down-regulation of Pdx-1[109]. The “inverted U-shaped dose-effect curve” 
corresponds to the impact of BPA on insulin secretion in β-cells and mitochondrial function[110]. It is 
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worth noting that more pronounced effects were exhibited by BPA binding to ERβ receptors. BPA as an 
insulinotropic pollutant affected β-cell function through inhibition of K(ATP) channel activity, which 
was observed in ERβ+ mice and human β-cells and islets[111,112]. In comparison with phthalate 
metabolites (MnBP, MiBP, and MEHP), BPA more strongly affected viability and insulin secretion in 
pancreatic β-cells[64]. However, in the same study, cytokine-induced cell death, a marker of T1D, was 
not affected. In spite of this, BPA was found to aggravate T1D in mice by disturbing Ca2+ signaling; 
indicating that BPA may cause insulin resistance via exacerbation of endoplasmic reticulum stress in 
pancreatic β-cells[113]. The diabetogenic potential of BPA has also been documented in insulinoma cell 
lines, where increased insulin secretion was observed together with decreased cell viability at 
nanomolar BPA levels[114,115]. BPA induced insulin hypersecretion was associated with enhanced β-
cell lymphoma 2 family members, caspases and mitochondrial stress, which led to apoptosis[114]. 
Additionally, apoptosis may be promoted through BPA induced formation of amyloid fibrils. In rat 
insulinoma cells, BPA at micromolar concentrations induced DNA damage via increased levels of the 
proteins p53 and p-Chk2, as well as increased production of reactive oxygen species and decreased GSH 
levels[116]. In pancreatic α-cells, which are responsible for glucagon secretion, BPA reduced the 
fluctuation of low glucose levels induced by Ca2+[117]. To date, there is no published data concerning 
the impact of BPA on other Langerhans islets cells (δ, γ, ε). Regarding the data about BPA’s role in 
autoimmune related disorders, such as T1D, the effects of low and high doses of BPA on T-cell 
immunity mechanisms have also been examined. Results show that at low doses, BPA acts as a 
promotor of diabetes, both through modulation of CD4+ T-cells and production of interferon γ, IL-6 and 
TNFα[118]. BPA effects were not sex-dependent, based on the experiments performed in non-obese 
diabetic mice models[119]. However, exposure to BPA during the prenatal stage is particularly 
dangerous, considering that BPA increased the risk for T1D development and metabolic disturbances in 
juvenile mice models and adult mice offspring, respectively[119,120]. Additionally, changes in gut 
microbiota and inflammation were recorded in juvenile mice[119,121]. Prenatal BPA exposure during 
the lactation period led to an increase in body weight in mice[122]. Even at “safe“ levels (below the 
predicted ‘no adverse effect’ concentration) prenatal BPA exposure led to a significant increase in body 
and liver weight, abnormalities in adipocytes in terms of mass, number and volume, as well as elevated 
serum leptin and insulin levels, together with a decrease in adiponectin and glucose tolerance in adult 
male offspring[120]. Also, BPA exposure during lactation induced body weight gain in mice[122]. In 
pregnant BPA exposed mice, insulin resistance, together with elevated levels of insulin, triglycerides, 
and leptin in plasma, as well as glucose intolerance were observed[123]. Prenatal BPA exposure had 
detrimental effects on β-cells in mice, in terms of cell growth, mass and proliferation[124]. Therefore, 
exposure during early stages and the gestational period may cause long-term vulnerability to metabolic 
diseases and the development of glucose intolerance as a collateral effect or through epigenetic modific-
ations[125,126].

Potential mechanisms associated with diabetes: The mechanisms of action of BPA are complex. Besides 
impairment of β-cell function, pre-clinical studies suggest that BPA is involved in the production of 
insulin resistance promoters, such as IL-6 and TNFα and inhibition of adiponektine in adipose tissue. In 
addition, BPA is associated with increased lipid peroxidation and pro-inflammatory cytokines in 
hepatocytes, as well as alterations in signaling pathways that generate reactive oxygen species, affect T-
cell immunity, leading to decreased insulin sensitivity in skeletal muscles and glucose tolerance in the 
liver (Figure 2)[127-134].

Epidemiologic evidence: Evidence for the diabetogenic effects of BPA could not be completed without 
biomonitoring studies. Considering that free BPA has higher affinity for nuclear receptors than 
glucuronide and sulfate conjugates, the adverse effects of BPA are still evaluated mostly by measuring 
total BPA levels in urine, as a matrix of choice, and are expressed as creatinine-adjusted mean BPA 
concentrations[135]. Most of these studies are cross-sectional, performed on a limited number of 
volunteers using spot urine BPA testing. Therefore, the long term effects of BPA could not be estimated. 
It has been reported that the presence of BPA in urine samples is positively associated with obesity in 
children, adolescents and adults, as well as with the promotion of obesity, especially the visceral type, 
increased metabolic risk through hyperinsulinemia, glucose intolerance, insulin resistance, elevated 
HbA1c and serum leptin levels and dyslipidemia[16,17,103,105,136-142]. Different research groups have 
reported a positive relationship between BPA levels and T2D[143-147]. It is worth noting that in some 
studies the obtained outcomes were independent of age, sex, ethnicity, body mass index, and serum 
cholesterol levels[104,148]. Furthermore, in a meta-analysis that included data from more than 41000 
participants, detected BPA concentrations in urine and serum were positively associated with a risk for 
T2D[149]. In a recently performed cohort study with 1990 participants, the U-shaped curve reflected an 
association between serum BPA concentrations and risk for T2D[141]. Individuals with increased BPA 
concentrations and increased diabetes genetic risk score had increased fasting plasma glucose levels and 
risk for T2D as well[141]. In a longitudinal cohort study performed on more than 2300 adults of both 
sexes, repeated measurements were conducted in order to investigate the association of urinary BPA 
levels with glucose homeostasis parameters. The obtained results imply that BPA correlated with 
compromised glucose homoeostasis in women but not in men before the development of diabetes[150]. 
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Prenatal BPA exposure was connected with an increased risk for lower birth weight, smaller size for 
gestational age as well as increased leptin and decreased adiponectin levels[151-154]. Significantly 
higher median urinary BPA levels were observed in children and adolescents with T1D when compared 
with healthy controls[102].

A limited number of studies have demonstrated BPA detection in adipose tissue, due to the invasive 
nature of the procedure and the complexity of the matrix. BPA was detected with high frequency (62%) 
in adipose tissue in children[155]. Moreover, obtained BPA levels in adipose tissue were much higher in 
children compared with adult women[156]. The levels of BPA in adipose tissue of adults were related to 
low GSH reductase activity and increased oxidized GSH, confirming that BPA triggers oxidative stress 
in human adipose tissue[157]. Regarding adipose tissue dysfunction, BPA serum levels were 
significantly higher in people with T2D in comparison with healthy controls; while a positive correlation 
with serum leptin levels, and a negative correlation with adiponectin was found in the group with 
diabetes, strongly suggesting that BPA may worsen diabetes and increase diabetes pathology[147].

AA
Overview
AA is an α,β-unsaturated carbonyl compound with electrophilic reactivity that has widespread applic-
ations in different industrial and laboratory processes[158]. In particular, AA is applied for the synthesis 
of polyacrylamide polymers used in water purification, sewage treatment, oil and sugar refinement, the 
production of soaps and cosmetics, varnishes, plastics, pesticides, adhesives, fibers, pharmaceuticals 
and textiles, and as a gel medium for electrophoresis methods in research laboratories[159-161]. AA is 
also found in cigarette smoke[162]. AA is the focus of scientific and public attention since 2002, when it 
was reported that it can be produced during the processing of certain foods. AA is formed as a result of 
a Milliard reaction when foods that contain asparagines and sugars are prepared at high temperatures 
(higher than 120 °C) under low moisture conditions[163-165]. More precisely, AA is formed during the 
browning of certain foods during frying, baking, grilling and roasting[159]. Hence, the main sources of 
AA in the diet are fried potatoes, breakfast cereals, cookies, crackers, crisps, bread, toast[166,167] and 
roasted coffee[168]. It is estimated that chronic average exposure to AA ranges from 0.5-1.9 μg/kg body 
weight per day in children, to 0.4-0.9 μg/kg body weight per day in adolescents, adults, and the elderly
[169].

During detoxification processes, the majority of AA is conjugated to GSH, while less is metabolized to 
a genotoxic epoxide derivate glycidamide (GA) by the enzyme cytochrome P450 2E1 (CYP2E1)[170]. 
Genotoxic GA is more reactive than AA, and can produce DNA and Hb adducts[171]. The TDI for AA 
neurotoxicity is 40 μg/kg/d, while TDIs for cancer are 2.6 and 16 μg/kg/d for AA and GA, respectively
[172]. Due to the adverse effects of AA on human health, the European Chemicals Agency ECHA has 
included AA on a list of candidate substances of very high concern that requires authorization from the 
European chemical regulation REACH (Registration, Evaluation, Authorization and Restriction of 
Chemicals)[159,173]. Several regulatory agencies provided different mitigation strategies for the 
prevention and reduction of AA formation in food[174-179].

AA and diabetes
Research status: Data about the association between low AA levels from diet and adverse health 
outcomes are still scarce and limited. To date, there have been only few attempts to investigate the 
impact of AA exposure on diabetes development. AA exposure disturbed the majority of redox status 
parameters in vitro in a β-cell line, Rin-5F, a validated β-cell model system[180]. Namely, AA exposure 
led to increased lipid peroxidation and nitric oxide (NO) production and a decrease in GSH content
[180]. In addition, AA treatment affected the activity of antioxidant enzymes SOD and catalase (CAT), 
and the detoxifiying enzyme GSH S-transferase (GST) in pancreatic β-cells[180]. Formation of AA-GSH 
conjugates during detoxification could lead to GSH depletion and stimulation of GST activity in AA-
exposed β-cells[180-182]. During metabolic processing, most AA is coupled to GSH via GST[158,183]. 
Elevated lipid peroxidation in pancreatic β-cells could be a result of GSH reduction[182]. AA exposure 
increased both the expression of inducible NO synthase (iNOS) and NO production in pancreatic β-cells, 
indicating induction of nitrosative stress[180]. Elevated iNOS and NO levels can cause β-cell 
dysfunction[184]. Decreased activity, but increased expression of SOD could be a consequence of the 
inactivation of redundant enzyme that is produced under conditions of high oxidative stress in AA-
exposed pancreatic β-cells[185,186]. Upon AA exposure, resulting elevated NO levels reduced CAT 
activity in pancreatic β-cells[180,187]. In vitro metabolomics analysis revealed AA-induced glycolysis 
and gluconeogenesis alleviation characterized by diminished levels of glycolitic intermediates and a 
decreased rate of the tricarboxylic acid cycle[188]. Taken together, in vitro studies suggest that AA 
induces oxidative stress toxicity in β- cells and alters glucose metabolism.

In rats, AA exposure led to increased blood glucose levels and the development of histopathological 
changes in the islets[189]. In addition, a decreased β-cell and increased α-cell number was observed in 
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rats upon exposure to AA[190,191]. A similar pattern of islets remodeling characterized by α-cell 
expansion and β-cell reduction was detected in islets of both diabetic rats and humans[192-197]. These 
data are in line with the putative prodiabetic properties of AA. AA exposure altered expression of 
gluconeogenic enzymes in rats and mice, indicating the potential of AA to impair gluconeogenesis[189,
198]. Furthermore, AA affected the level of metabolites involved in the pentose phosphate pathway
[199]. The pentose phosphate pathway is a significant component of glucose metabolism related to the 
development of T2D[200]. Taken together, these data demonstrate AA-induced disruption of glucose 
homeostasis. In addition, AA was shown to affect insulin-regulated IRS/PI3K/Akt/Foxo1 signaling 
pathways in rats[189]. Furthermore, AA exposure induced the expression of iNOS in rat pancreatic 
islets[180]. Increased iNOS expression impairs normal β-cell function and insulin secretion, and has 
been detected in both T1D and T2D[184]. In both in vitro and in vivo model systems, AA treatments 
reduced the expression of CYP2E1 in pancreatic β-cells[180]. CYP2E1 catalyzes biotransformation of AA 
to the genotoxic epoxide GA[170]. Reduction of CYP2E1 expression could be a protective mechanism in 
β-cells, in order to prevent the formation of the more toxic GA[180]. In addition, it has been shown that 
AA aggravates the diabetic condition in rodents[198,201,202]. Namely, AA worsens the histopatho-
logical features of liver and kidney lesions, blood biochemical parameters and redox status in diabetic 
rodents[198,201,202]. Diabetics are particularly vulnerable individuals, and more susceptible to environ-
mental contaminants than the general population[186,198,203,204]. Collectively, in vivo studies in 
rodents indicate that AA exposure induces remodeling of pancreatic islets, impairs glucose metabolism 
and aggravates the overall diabetic state.

Potential mechanisms associated with diabetes: Based on the limited number of performed in vitro and 
in vivo studies, oxidative stress is the principle mechanism of AA-induced toxicity in pancreatic β-cells
[180]. AA related impairment of both pentose phosphate pathway and insulin-regulated signaling is 
responsible for glucose metabolism disruption and development and aggravation of diabetes (Figure 2)
[189,198,199].

Epidemiological evidence: Several epidemiological studies have revealed an association between AA 
intake and disorders of glucose metabolism[160,205,206]. In a Chinese adult population, a correlation 
between AA exposure and fasting plasma glucose levels was observed[160]. In line with these findings, 
data from the United States National Health and Nutrition Examination Survey (NHANES) 2003-2006 
showed a significant correlation between high fasting plasma glucose levels and the concentration of 
HbGA adducts in the general adult population in the United States[205]. This study also reported that 
AA alters metabolic syndrome biomarkers[205]. Another NHANES study, 2003-2004, reported an 
association between AA exposure, decreased blood insulin levels and insulin resistance[206]. 
Subsequent NHANES surveys, 2005-2006 and 2013-2016, further confirmed these data and showed that 
Hb-AA adducts (HbAA) are linearly and inversely associated with the risk of diabetes development, 
whereas HbGA/HbAA nonlinearly and positively correlates with the prevalence of diabetes, indicating 
that HbAA and HbGA/HbAA are significantly associated with diabetes[169]. An association between 
HBAA adducts and AA intake was also detected in an adult Japanese population[207]. In addition, 
there is a link between prenatal dietary exposure to AA and the prevalence of obesity[208]. A large 
prospective study revealed a positive correlation between consumption of french fries and the risk for 
development of T2D in women[209]. French fries contain a high AA content: a standard portion 
contains approximately 30 μg of AA[165], indicating a significant contribution of AA to the deve-
lopment of T2D. These findings have been further confirmed by two prospective cohort studies, which 
showed an association between a high intake of ultra-processed foods and the risk of T2D[210,211]. 
Further epidemiological studies in other populations are required in order to confirm and elucidate the 
roles of AA exposure in the development of diabetes.

CONCLUSION
This paper summarizes important data, providing greater understanding of the diabetogenic effects of 
some PAEs and their metabolites, as well as BPA and AA. Risk assessment of these contaminants in 
mixtures of EDCs and the exact level of exposure associated with diabetes development over time 
remained unanswered. The effects of decreased exposure to phthalates, BPA, and AA through 
avoidance of specific packaging materials, or chemical reactions during food processing on glucose 
metabolism should also be addressed. Therefore, further prospective, well-designed studies with 
multiple measurements and longer follow-up, together with experimental studies, are required to 
completely understand the underlying mechanisms and confirm the causal association between PAEs, 
BPA, AA and diabetes outcomes. Diabetes is associated with serious complications, such as 
cardiovascular disease and stroke, chronic kidney disease, liver disease, neuropathy, retinopathy etc. 
Therefore, more effective prevention and treatment strategies are necessary. New strategies that 
advocate reduced exposure to food contaminants, while promoting increased physical activity and 
healthier nutritional choices, may be crucial for the prevention or delay of diabetes progression.
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