
Performant HDF5

M. Scot Breitenfeld
The HDF Group



2

Talk Outline
• Foundations of HDF5

⏤Introduction to
§ HDF5 data model, software, and architecture
§ HDF5 programming model

⏤Overview of general best practices

• Overview of parallel HDF5
⏤Introduction to HDF5 parallel I/O
⏤New features, general best practices and methods which affect 

parallel performance



3

Why HDF5?

• Have you ever asked yourself:
⏤How do I organize and share my data?
⏤How can I use visualization and other tools with my data?
⏤What will happen to my data if I need to move my application to another system?
⏤How will I deal with one-file-per-processor in the exascale era?
⏤Do I need to be an “MPI I/O and Lustre, or Object Store, etc.” pro to do my research?

• HDF5 is an answer to the questions above and can hide all complexity so you can concentrate your 
research



4

What is HDF5?

• Hierarchical Data Format version 5 (HDF5)
1. An extensible data model

§ Uses structures for data organization and specification
2. Open source software (I/O library and tools)

§ Performs I/O on data organized according to the data model
§ Works with POSIX and other types of backing store: Object 

Stores (DAOS, AWS S3, AZURE, Ceph, etc.), memory 
hierarchies and other storage devices

3. Open file format (POSIX storage only)



5

HDF5 is like …



6

HDF5 is designed for…
• High volume and complex data

⏤HDF5 files of GBs sizes are common

• Every size and type of system (portable)
⏤Works on from embedded systems, desktops and laptops to exascale systems 

• Flexible, efficient storage and I/O
⏤Works for a variety of backing storage

• Enabling applications to evolve in their use of HDF5 and to accommodate new models
⏤Data can be added, removed and reorganized in the file

• Supporting long-term data preservation
⏤Petabytes of remote sensing data including data for long-term climate research in NASA archives now 



7

HDF5 Ecosystem

Fi
le

 F
or

m
at

Li
br

ar
y

D
at

a 
M

od
el

D
oc
um

en
ta
ti
on

…

Supports
…

To
ol
s



HDF5 Data model



9

HDF5 File

lat | lon | temp
----|-----|-----
12 |  23 |  3.1
15 |  24 |  4.2
17 |  21 |  3.6

An HDF5 file is a 
container that 
holds data objects.

Experiment Notes:

Serial Number: 99378920

Date: 3/13/09

Configuration: Standard 3



10

HDF5 Data Model

HDF5 Objects

Group –
Organize data objects

Link –
Organize data objects

Datatype –
Describes individual data elements

Dataspace –
Describes logical layout of the data elements

File

Dataset –
Organize and contain data elements

Attribute –
User-defined metadata



11

HDF5 Dataset

• HDF5 datasets organize and contain data elements
• HDF5 datatype describes individual data elements

• HDF5 dataspace describes the logical layout of the data elements

Integer: 32-bit, LE  

HDF5 Datatype

Multi-dimensional array of 
identically typed data elements

Specifications for single data
element and array dimensions

3

Rank

Dim[2] = 5

Dimensions

Dim[0] = 7
Dim[1] = 4

HDF5 Dataspace



12

HDF5 Dataspace 

Two roles:
(1) Spatial information for Datasets and Attributes
⏤Empty sets and scalar values 
⏤Multidimensional arrays

§ Rank and dimensions
⏤A permanent part of object definition

(2) Partial I/O: Dataspace and selection describe the application’s data buffer 
and data elements participating in I/O

Rank = 2
Dimensions = 4 x 6

Rank = 1
Dimension = 10



13

How to describe a subset in HDF5?

• Before writing and reading a subset of data, one must describe it 
to the HDF5 Library.

• The HDF5 APIs and documentation refer to a subset as a 
“selection,” for example “hyperslab selection.”

• If specified, HDF5 performs I/O on a selection only and not on 
all dataset elements.



14

Describing elements for I/O: HDF5 Hyperslab

• Everything is “measured” in the number of elements; 0-based
• Example 1-dim:

⏤Start - starting location of a hyperslab (5)
⏤Block  - block size (3)

• Example 2-dim:
⏤Start - starting location of a hyperslab (1,1)
⏤Stride  - number of elements that separate each block (3,2)
⏤Count - number of blocks (2,6)
⏤Block  - block size (2,1)

• All other selections are built using set operations 



15

HDF5 Datatypes
• Describe individual data elements in an HDF5 dataset
• A wide range of datatypes is supported

⏤Atomic types: integer, floats 

⏤User-defined (e.g., 12-bit integer, 16-bit float)

⏤Enum

⏤References to HDF5 objects and selected elements of datasets

⏤Variable-length types (e.g., strings, vectors)

⏤Compound (similar to C’s structures or Fortran’s derived types)

⏤Array (similar to matrix)

⏤More complex types can be built from the types above

• HDF5 library provides predefined symbols to describe atomic datatypes

Extreme Scale Computing HDF5



16

HDF5 Dataset with Compound Datatype

uint16 char int32 2x3x2 array of float32
Compound
Datatype:

Dataspace:     Rank = 2
Dimensions = 5 x 3

3

5

VVV
V  V  V
V  V  V



17

How are data elements stored? (1/2)

Chunked

Chunked & 
Compressed

Better access time 
for subsets;  
extendible

Improves storage 
efficiency, 
transmission speed

Contiguous
(default)

Data elements 
stored physically 
adjacent to each 
other

Buffer in memory Data in the file



18

Compression and filters in HDF5

• GZIP and SZIP (free version is available from German Climate Computing Center)
• Other compression methods registered with The HDF Group at 

https://portal.hdfgroup.org/display/support/Contributions#Contributions-filters
⏤BZIP2, JPEG, LZF, BLOSC, MAFISC, LZ4, Bitshuffle, SZ and ZFP,  etc.

§ The listed above are available as dynamically loaded plugins

• Filters:
⏤Fletcher32 (checksum)
⏤Shuffle
⏤Scale+offset
⏤n-bit

https://www.mpg.de/dkrz_en
https://portal.hdfgroup.org/display/support/Contributions


19

How are data elements stored? (2/2)

External

Virtual

Data elements 
stored outside the 
HDF5 file, possibly 
in another file 
format
Data elements are 
stored in “source 
datasets,” using 
selections to map 

Compact
Data elements 
stored directly 
within object’s 
metadata

Buffer in memory Data in the file

Dataset
Object Header

Dataset
Object Header



20

HDF5 Attributes

• Attributes “decorate” HDF5 objects
• Contain user-defined metadata
• Similar to Key-Values:

⏤Have a unique name (for that object) and a value

• Analogous to a dataset
⏤ “Value” is described by a datatype and a dataspace

⏤Do not support partial I/O operations; nor can they be compressed or extended



21

HDF5 Groups and Links

lat | lon | temp
----|-----|-----
12 |  23 |  3.1
15 |  24 |  4.2
17 |  21 |  3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups and links 
organize data objects.

Every HDF5 file 
has a root group

Parameters
10;100;1000

Timestep
36,000



HDF5 software and architecture



23

HDF5 Software
HDF5 home page:  http://hdfgroup.org/HDF5/

⏤Latest releases: HDF5 1.8.22,1.10.9, 1.12.2, 1.13.1 (precursor to 1.14.0)
HDF5 source code:

⏤Available on GitHub: https://github.com/HDFGroup/hdf5
⏤Written in C and includes optional C++, Fortran, Java  APIs, and High-Level APIs
⏤Contains command-line utilities (h5dump, h5repack, h5diff, ..) and compile scripts

HDF5 pre-built binaries:
⏤Include C, C++, Fortran, Java, and High-Level libraries when possible.  Check 

./lib/libhdf5.settings file.
⏤Built with the SZIP and ZLIB external libraries

3rd party software:
• h5py (Python)
• http://h5cpp.org/ (Contemporary C++ including support for MPI I/O )

http://hdfgroup.org/HDF5/
https://github.com/HDFGroup/hdf5
http://h5cpp.org/


24

Useful Tools For New Users
h5dump

Tool to “dump” or display contents of HDF5 files

Scripts to compile applications:
h5cc, h5c++, h5fc (h5pcc, h5pfc – parallel variants)

HDFView:
Java browser to view HDF5 file

https://portal.hdfgroup.org/display/HDFVIEW/HDFView

HDF5 Examples (C, Fortran, Java, Python, Matlab, ...)
https://portal.hdfgroup.org/display/HDF5/HDF5+Examples

https://portal.hdfgroup.org/display/HDFVIEW/HDFView
https://portal.hdfgroup.org/display/HDF5/HDF5+Examples


25

M
PI

I/O

HDF5 Library Architecture (1.12.0 +)
HDF5 API and language bindings

Virtual Object Layer (VOL) [1]

Pass-through VOL connectors 

Native Connector 

R
ES

T

D
AO

S

AD
IO

S

PO
SI

X

S3

H
D

FS…. ….
SW

M
R

VFDs

HDF5  Core 
Library

Terminal VOL 
connectors

AS
YN

C

C
AC

H
E

LO
G

 
BA

SE
D

….

[1] https://portal.hdfgroup.org/display/support/Registered+VOL+Connectors



HDF5 Programming model and API



27

The General HDF5 API

• C, FORTRAN, Java, and C++
• C routines begin with the prefix: H5

_ corresponds to the type of object the function acts on

⏤The language wrappers follow the same trend

• There are more than 300 APIs – but one can start with less than 50

Example Functions:
H5D : Dataset interface    e.g., H5Dread 
H5F : File interface e.g., H5Fopen
H5S : dataSpace interface e.g., H5Sclose



28

General Programming Paradigm
• Properties (H5P) of an 

object are optionally defined 
⏤Creation properties (e.g., 

use chunking storage)
⏤Access properties (e.g., 

using MPI I/O driver to 
access file)

• Object is opened or created
⏤Creation properties 

applied
⏤Access properties applied
⏤Supporting objects are 

defined (datatype, 
dataspace)

• Object is accessed possibly 
many times
⏤Access property can be 

changed

• Object is closed

H5Fcreate (H5Fopen)   create (open) File

H5Screate_simple/H5Screate         create dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread, H5Dwrite access Dataset

H5Dclose close Dataset

H5Sclose close dataSpace

H5Fclose close File



29

Memory considerations

• Open Objects
⏤Open objects use up memory. The amount of memory used may be 

substantial when many objects are left open. Application should: 
§ Delay opening of files and datasets as close to their actual use as is feasible. 
§ Close files and datasets as soon as their use is completed. 
§ If writing to a portion of a dataset in a loop, close the dataspace with each iteration, 

as this can cause a large temporary "memory leak.” 

• There are APIs to determine if objects are left open. 
H5Fget_obj_count will get the number of open objects in the file, 
and H5Fget_obj_ids will return a list of the open object identifiers. 

https://support.hdfgroup.org/HDF5/doc/RM/RM_H5F.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5F.html


General best practices



31

HDF5 Dataset I/O

• Issue large I/O requests 
⏤At least as large as the file system block size

• Avoid datatype conversion
⏤ Use the same data type in the file as in memory
⏤ If conversion is necessary, increase datatype conversion buffer size (default 1MB) 

with H5Pset_buffer()
• Avoid dataspace conversion 

⏤One dimensional buffer in memory to two-dimensional array in the file

Can break collective operations; check what mode was used 
H5Pget_mpio_actual_io_mode, and why 
H5Pget_mpio_no_collective_cause

https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html


32

HDF5 Dataset - Storage

• Use contiguous storage if no data will be added and compression is not used
⏤HDF5 will not cache data

• Use compact storage when working with small data (<64K)
⏤Data becomes part of HDF5 internal metadata and is cached (metadata cache)

• If you have binary files that you would like to convert to HDF5, consider external storage and use the 
h5repack tool

• Avoid data duplication to reduce file sizes
⏤Use links to point to datasets stored in the same or external HDF5 file
⏤Use VDS to point to data stored in other HDF5 datasets



33

HDF5 Dataset – Chunked Storage
• Chunking is required when using extendibility and/or compression and other filters

• I/O is always performed on a whole chunk
⏤ Make your chunks the “right” size

§ Goldilocks Principle: Not too big, nor too small

• Understand how chunking cache works https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5 and 
consider
⏤Do you access the same chunk often?
⏤What is the best chunk size (especially when using compression)?
⏤Do you need to adjust chunk cache size (1 MB default; can be set up per file or per dataset), H5Pset_chunk_cache()?
⏤H5Pset_chunk_cache sets raw data chunk cache parameters for a dataset

- H5Pset_chunk_cache (dapl, …);
⏤H5Pset_cache sets raw data chunk cache parameters for all datasets in a file

- H5Pset_cache (fapl, …);
• Investigate other parameters to control chunk cache

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5


34

Terminology

• DATA – “problem-size” data, e.g., large arrays
• METADATA – is an overloaded term
• In this presentation:

Metadata “=“ HDF5 metadata
⏤For each piece of application metadata, there are many associated pieces of HDF5 metadata
⏤There are also other sources of HDF5 metadata

§ Chunk indices, heaps to store group links and indices to look them up, object headers, etc.



35

General HDF5 Efficiency
• Faster HDF5 Performance: Metadata

⏤Use the “latest” file format features
§ H5Pset_libver_bounds()

⏤ Increase the size of metadata data structures
§ H5Pset_istore_k(), H5Pset_sym_k(), etc.

⏤Aggregate metadata into larger blocks
§ H5Pset_meta_block_size()

⏤Align objects in the file
§ H5Pset_alignment()

⏤Control metadata cache
⏤Paged allocation and page buffering

§ Aggregate and align metadata and small 
data, perform I/O in aligned pages

§ See File Space Management Documentation 
https://portal.hdfgroup.org/display/HDF5/File+Space
+Management

8/5/22 35

https://portal.hdfgroup.org/display/HDF5/File+Space+Management


Parallel I/O with HDF5



37

PHDF5 implementation layers

HDF5 LIBRARY

MPI I/O LIBRARY

HDF5 FILE ON PARALLEL FILE SYSTEM

DISK ARCHITECTURE AND LAYOUT OF DATA ON DISK

COMPUTE NODE COMPUTE NODE COMPUTE NODE

APPLICATION

INTERCONNECT NETWORK + I/O SERVERS



38

Types of Application I/O to Parallel File Systems



39

• Take advantage of high-performance parallel I/O while reducing 
complexity
⏤Use a well-defined high-level I/O layer instead of POSIX or MPI-IO
⏤Use only a single or a few shared files

§ “Friends don’t let friends use file-per-process!” 

• Maintained code base, performance and data portability
⏤Rely on HDF5 to optimize for underlying storage system

Why Parallel HDF5?



40

Parallel HDF5 (PHDF5) vs. Serial HDF5

• PHDF5 allows multiple MPI processes in an MPI 
application to perform I/O to a single HDF5 file

• PHDF5 uses a standard parallel I/O interface (MPI-IO)
• Portable to different platforms
• PHDF5 files ARE HDF5 files conforming to the HDF5 file 

format specification
• The PHDF5 API consists of:

⏤The standard HDF5 API
⏤A few extra knobs and calls
⏤A parallel “schema”

https://www.hdfgroup.org/HDF5/doc/H5.format.html


41

• PHDF5 opens a shared file with an MPI communicator
⏤Returns a file ID (as usual)
⏤All future access to the file via that file ID

• Different files can be opened via different communicators
• All processes must participate in collective PHDF5 APIs
• All HDF5 APIs that modify the HDF5 namespace and structural metadata are collective!

⏤File ops., group structure, dataset dimensions, object life-cycle, etc.

⏤Raw data operations can either be collective or independent
§ For collective, all processes must participate, but they don’t need to read/write data.

Parallel HDF5 Schema

https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html


42

Object Creation (Collective vs. Single Process)



43

CAUTION: Object Creation 
(Collective vs. Single Process)

• In sequential mode, HDF5 allocates chunks incrementally, i.e., when data is written to a chunk for the first 
time.
⏤ Chunk is also initialized with the default or user-provided fill value.

• In the parallel case, chunks are always allocated when the dataset is created (not incrementally).
⏤The more ranks there are, the more chunks need to be allocated and 

initialized/written, which manifests itself as a slowdown



44

CAUTION: Object Creation 
(SEISM-IO, Blue Waters—NCSA)

Set HDF5 to never fill chunks (H5Pset_fill_time with H5D_FILL_TIME_NEVER) 



45

Collective vs. Independent Operations
• MPI Collective Operations:

⏤All processes of the communicator must participate, in the right 
order. E.g.,

Process1 Process2
call A(); call B(); call A(); call B();           …CORRECT

call A(); call B();                           call B(); call A();           …WRONG

• Collective I/O attempts to combine multiple smaller independent I/O ops into fewer larger ops; 
neither mode is preferable a priori



46

General HDF5 Programming Parallel Model for raw 
data I/O
• Distributed memory model: data is split among processes
• Each process defines selections in memory and in file (aka HDF5 hyperslabs) using H5Sselect_hyperslab
• The hyperslab parameters define the portion of the dataset to write to 

- Contiguous hyperslab, Regularly spaced data (column or row), Pattern, or Blocks

• Each process executes a write/read call using selections, which can be either collective or independent



47

Examples of irregular selection

Internally…
1. The HDF5 library creates an MPI datatype for each lower dimension in the 

selection
2. It then combines those types into one large structured MPI datatype

P0: MPI_Type_create_stuct

P1: MPI_Type_create_stuct

P2: MPI_Type_create_stuct



48

P0

P1

Example 1: Writing dataset by rows

P2

P3

Memory File



49

Example 1: Writing dataset by rows

count[0] = dimsf[0]/mpi_size
count[1] = dimsf[1];
offset[0] = mpi_rank * count[0];  /* = 2 */
offset[1] = 0;

count[0]

count[1]

offset[0]

offset[1]Process P1

Memory File



50

Example 1: Writing dataset by rows

71  /* 
72   * Each process defines dataset in memory and

* writes it to the hyperslab
73   * in the file.
74   */
75   count[0] = dimsf[0]/mpi_size;
76   count[1] = dimsf[1];
77   offset[0] = mpi_rank * count[0];
78   offset[1] = 0;
79   memspace = H5Screate_simple(RANK,count,NULL);
80
81  /*
82   * Select hyperslab in the file.
83   */
84   filespace = H5Dget_space(dset_id);
85   H5Sselect_hyperslab(filespace, 

H5S_SELECT_SET,offset,NULL,count,NULL);



51

C Example: Collective write and read
95  /*
96   * Create property list for collective dataset write.
97   */
98  plist_id = H5Pcreate(H5P_DATASET_XFER);

->99  H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);
100
101  status = H5Dwrite(dset_id, H5T_NATIVE_INT,
102                 memspace, filespace, plist_id, data);

103  /*
104   * Collective dataset read.
105   */
106

->107  status = H5Dread(dset_id, H5T_NATIVE_INT, 
108 memspace, filespace, plist_id, data);
109



52

Writing by rows: Output of h5dump
HDF5 "SDS_row.h5" {
GROUP "/" {

DATASET "IntArray" {
DATATYPE  H5T_STD_I32BE  
DATASPACE  SIMPLE { ( 8, 5 ) / ( 8, 5 ) } 
DATA {

10, 10, 10, 10, 10,
10, 10, 10, 10, 10,
11, 11, 11, 11, 11,
11, 11, 11, 11, 11,
12, 12, 12, 12, 12,
12, 12, 12, 12, 12,
13, 13, 13, 13, 13,
13, 13, 13, 13, 13

} 
} 

} 

}



General HDF5 Best Practices and Case Studies for Parallel 
Performance



54

PHDF5 Fundamentals – A Simple Problem

• Writing multiple 2D array variables over time:

ACROSS P processes arranged in a R x C process grid
FOREACH step 1 .. S

FOREACH count 1 .. A
CREATE a double ARRAY of size [X,Y] |  [R*X,C*Y] (Strong | Weak)
(WRITE | READ) the ARRAY (to | from) an HDF5 file



55

Fundamentals – Missing Information
• How are the array variables represented in HDF5?

⏤2D, 3D, 4D datasets
⏤Are the extents known a priori?
⏤How are the dimensions ordered?
⏤Groups?

• What order is the data written, and is the data read the same way?
• What’s the storage layout?

⏤How many physical files?
⏤Contiguous or chunked, etc.
⏤ Is the data compressible?

• What’s the file system or data store?
• Collective vs. independent MPI-IO



56

One Kind of Performance Hurdle 

• HDF5 has a complex-looking interface
• Complexity does not necessarily mean difficult to use
• Users may require such complexity to achieve their goals

• Goal: Self-describing share-friendly data layout
•Tuning performance and efficiency with the 
constraint of using a standardized file format 
(netCDF, CGNS, etc.)

• Goal: Fastest I/O possible
•Tuning for check-points by minimizing metadata, 
large write blocks. 

• The complexity of the HDF5 workflow and underlying 
hardware may make the HDF5 tasks unavoidably 
complex.



57

Other Sources of Performance Variability
● Hardware
● System configuration and activity of other users

● HDF5 property (H5P) lists

○ Nearly 180 APIs

○ Controls storage properties for HDF5 objects

○ Controls in-flight HDF5 behavior

○ About 100 H5Pset_* functions

■ ≤ p1 * … * p100 combinations!

■ How many are tested?

○ What does H5P_DEFAULT mean?

○ What is the effect of using H5P_DEFAULT?

https://portal.hdfgroup.org/display/HDF5/Property+Lists

https://portal.hdfgroup.org/display/HDF5/Property+Lists


58

Back to earlier example – Application Model

● Good or bad news:

○ There are several different ways to handle the data in HDF5, for example:

■ Many 2D datasets or attributes

■ A few 3D datasets

■ A 4D dataset

○ There are many ways to use HDF5 properties

■ Chunking

■ Data alignment 

■ Metadata block size

■ Collective/Independent I/O

○ Ideally, performance would be more or less the same

○ HDF5 I/O1 test explores the HDF5 parameter space

1 https://github.com/HDFGroup/hdf5-iotest

https://github.com/HDFGroup/hdf5-iotest


59

HDF5 Parameter Space

59



60

IO Pattern Model
Step based IO Pattern



61

IO Pattern Model
Array based IO Pattern



62

Performance as a function of HDF5 parameter space

62

 0.1

 1

 10

 100

 1000Rank 2
Rank 3
Rank 4

time
step

chunked
contiguous

fill-false
fill-true

def. align
align

def. metadata
metadata

latest
earliest

collective
independent

more scalable less scalable

Av
er

ag
e T

ot
al

 T
im

e (
s)

• Summit, weak 
scaling ( 42 to 2688) 

• Best had:
• four rank array 

(layout)
• chunked
• no fill values
• default alignment
• independent I/O 



63

Parameter Space Mitigation

● Log-based VOL

● To store write data contiguously in the file, 
like time logs

○ Multi-dimensional arrays are flattened into 1D 
dataset objects

○ Write data is appended one after another in 
files

○ Keeps files conforming with HDF5 format

○ Makes use of native VOL to manage HDF 
objects

● https://github.com/DataLib-ECP/vol-log-based

Variable 1

P0 P1 P2 P0 P1 P2

P0 P0

Variable 2

P1 P1 P2 P2

P0
P0 P2P1P1 P2

Canonical layout in file

Log layout in file

https://github.com/DataLib-ECP/vol-log-based


64

Parameter Space Mitigation

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100  105  110  115  120  125  130  135  140  145  150  155  160  165  170  175  180  185  190
 0.1

 1

 10

 100

 1000RANK 2
RANK 3
RANK 4

TIME
STEP

CHUNKED
CONTIGUOUS

FILL--FALSE
FILL--TRUE

DEF. ALIGN
ALIGN

DEF. METADATA
METADATA

LATEST
EARLIEST

COLLECTIVE
INDEPENDENT

NATIVE-VOL

LOG-VOL

Av
er

ag
e T

ot
al

 T
im

e (
s)

Total time (read and 
write) for all elements 
in the HDFspace set 
for Cori on 512 ranks 



65

Features: Asynchronous I/O

○ Allows asynchronous operations for HDF5 applications:
○ Applications use the _async versions for the H5 APIs

○ Return “request tokens” to applications to track I/O tasks.

○ Requires a VOL (async or DAOS) which supports asynchronous I/O, 

otherwise defaults to synchronous I/O.

Sync

Async



66

Asynchronous HDF5 Operations VOL Connector

● Implemented as a pass-through VOL connector 
w/background threads, using Argobots

● Transparent from the application, no major code 
changes

● Execute I/O operations in the background thread
● Lightweight and low overhead for all I/O 

operations
● No need to launch and maintain extra server 

processes

○ More details in PDSW Paper:
○ https://sc19.supercomputing.org/proceedings/workshops/workshop_files/ws_pdsw109s2-file1.pdf

https://github.com/hpc-io/vol-async

On Summit

https://sc19.supercomputing.org/proceedings/workshops/workshop_files/ws_pdsw109s2-file1.pdf
https://github.com/hpc-io/vol-async


67

DAOS VOL Connector
• HDF5 VOL connector for I/O to Distributed Asynchronous Object 

Storage (DAOS)

• Set to be deployed at ANL.
• Minimal code changes needed to use, enable via environment 

variables or through HDF5 APIs.
• HDF5 tools are supported

⏤h5dump, h5ls, h5diff, h5repack, h5copy, etc.

• Supports async I/O

https://github.com/HDFGroup/vol-daos

https://github.com/HDFGroup/vol-daos


68

VPIC – explicit async (ANL testbed)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

16 16(async) 32 32(async) 64 64(async) 128 128(async)

Ti
m

e (
s)

Number of Processes

eparticle
iparticle
ehydro
ihydro
fields



69

Subfiling
• Subfiling is a compromise between file-per-process (fpp) and a single shared 

file (ssf)
⏤Use the Subfiling VFD, H5Pset_fapl_subfiling(…);
⏤Multiple files organized as a Software RAID-0 Implementation

i. Configurable “stripe-depth” and “stripe-set size”
ii. A default “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB
iv. The resulting collection can be read using subfiling, or fused together 

using the utility script h5fuse.sh into a single HDF5 file. 

⏤ Use environment variables to control 
§ Number of I/O concentrators per node
§ Number of I/O concentrator helper threads

• Benefits
⏤ Better use of parallel I/O subsystem
⏤ Reduces the complexity of fpp
⏤ Reduced locking and contention issues to improve performance at larger processor 

counts over ssf
⏤ Available in HDF5 1.13.2



70

Subfiling

a. I/O Concentrators are implemented as independent threads attached to a normal HDF5 process. 
b. MPI is utilized for communicating between HDF5 processes and the set of I/O Concentrators.
c. Because of (b), applications need to use MPI_Init_thread to initialize the MPI library.
d. Currently does not support collective I/O



71

Subfiling

(CGNS[1] benchmark_hdf5)
• Parallel runs on Cori from 

256 to 2048 cores.
• The default settings for 

Subfiling were used, one 
subfile per node.

• Files size ranged from 
1.7GiB to 14GiB

71

 0

 100

 200

 300

 400

 500

 600

256 512 1024 2048

To
ta

l T
im

e (
s)

Number of Processes

HDF5 (independent)
HDF5 (collective)
HDF5 -- SUBFILING (independent)

CGNS Benchmark_hdf5, weak scaling

[1] CGNS = Computational Fluid Dynamics (CFD) General Notation System, cgns.org



72

Other ”usually” useful settings

• Hint that metadata access is done collectively
⏤H5Pset_coll_metadata_write, H5Pset_all_coll_metadata_ops

• A property on an access property list
• If set on the file access property list, then all metadata read operations will be required to be 

collective
• Can be set on individual object property list 
• When set, MPI rank 0 will issue the read for a metadata entry to the file system and broadcast to all 

other ranks



HDF-FORUM – https://forum.hdfgroup.org/

HDF Helpdesk – help@hdfgroup.org

Call the Doctor – Weekly HDF Clinic
https://zoom.us/meeting/register/tJwvf--gpjsqEtV0NSexRspn0NUjcNhZFmFb

Need Help?

https://forum.hdfgroup.org/
mailto:help@hdfgroup.org


THANK YOU!
Questions & Comments?


