

Final Remedial Investigation Report Hiteman Leather Company Site Remedial Investigation/Feasibility Study West Winfield, New York Work Assignment No.: 032-RICO-02CG

Volume I 🗉

Remedial Response, Enforcement Oversight and Non-time Critical Removal Activities at Sites of Release or Threatened Release of Hazardous Substances in EPA Region II

Final Remedial Investigation Report Hiteman Leather Company Site Remedial Investigation/Feasibility Study West Winfield, New York Work Assignment No.: 032-RICO-02CG

Volume I

Prepared for: U.S. Environmental Protection Agency 290 Broadway New York, New York 10007-1866

Prepared by: CDM Federal Programs Corporation 125 Maiden Lane - 5th Floor New York, New York 10038

EPA Work Assignment No.	: 032-RICO-02CG · II
EPA Region	: II (1996) (an ann an Air an Air an Airt
Contract No.	: 68-W-98-210
CDM Federal Programs Corporation	х
Document No.	: 3223-132-RR-FRIR-05291
Prepared by	: CDM
Site Manager	: Ms. Susan Schofield, P.G.
Telephone Number	: (203) 262-6633
EPA Remedial Project Manager	: Mr. Jack O'Dell
Telephone Number	: (212) 637-4256
Date Prepared	: February 8, 2005

. .

125 Maiden Lane, 5th Floor New York, New York 10038 tel: 212 785-9123 fax: 212 785-6114

February 8, 2005

Mr. Jack O'Dell Remedial Project Manager U.S. Environmental Protection Agency 290 Broadway - 20th Floor New York, NY 10007-1866

PROJECT:	RAC II Contract No.: 68-W-98-210 Work Assignment No.: 132-RICO-02CG
DOCUMENT NO .:	3223-132-RR-FRIR-05291

SUBJECT: Final Remedial Investigation Report Hiteman Leather Site

Dear Mr. O'Dell:

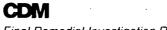
CDM Federal Programs Corporation (CDM) is pleased to submit the Final Remedial Investigation Report for the Hiteman Leather Site, West Winfield, New York. Comments were addressed as indicated in the Response to Comments letter dated February 24, 2004 and according to additional comments provided by EPA via email.

Please contact me at (212) 785-9123 or Susan Schofield at (203) 262-6633 if you have questions regarding this issue.

Sincerely,

CDM FEDERAL PROGRAMS CORPORATION

Jeanne Litwin, REM Technical Operations Manager


- cc: F. Rosado, EPA Region II (letter only) D. Butler, EPA Region II (letter only) R. Goltz/PSO File, CDM RAC II Document Control
- S. Schofield, CDM L. Campbell, CDM F. Tsang, CDM

Contents

Contents

Contents

	Executive S	ummary		•
	Section 1 In	troduction		· · · ·
	1.1	Purpose of F	Report	
	1.2		tion	
	1.3		· · · · · · · · · · · · · · · · · · ·	
			her Tanning Process	
			man Leather Waste Disposal Practices	
			prical Site Conceptual Model	
			ious Investigations and Regulatory Activity	
			1 NYSDOH Inspections	
`			2 NYSDEC Investigations	
			.3 EPA ERT Site Investigation	
•	1.4		nization	
	Section 2 S	udy Area Inv	vestigations	
	2.1	2	er and Sediment Investigations	
			tilla River Surface Water Sampling	
			dilla River Sediment Sampling	
			te Wetland Sediment Sampling	
	2.2		t Source Investigations	
			h Bank Front Lot Surface Soil Sampling	
			on Borings	
			Pit Excavation	
	2.3		Hydrogeological Investigations	
	. 2.0		Borings	
			1 Hiteman Leather Site Soil Borings	
			2 South Bank Front Lot Soil Borings	
			3 Crumb Trailer Park Soil Borings	
			4 Ferguson Fuels Soil Boring	
	۰.		5 Background Soil Borings	
	•		ing Borings	
•			echnical Borings	
			toring Well Installation	
		2.3.5 Monit	toring Well Development	2-10
			1 Existing Monitoring Well Redevelopment	
			2 New Monitoring Well Development	
			ndwater Sampling	
	· .		1 Monitoring Wells	
			2 Municipal Wells	
			3 Residential Wells	
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		otic Water Level Measurements	
			Fests	
			nuous Water Level Measurements	
l				
		∠.J. IV I°ump	• Test	..

Final Remedial Investigation Report

· .	2.4		
		2.4.1 Unadilla River Fish Tissue Sampling	
D.		2.4.2 Ecological Characterization and Wetland Delineation	2-15
		2.4.3 Baseline Ecological Risk Assessment Sampling	2-15
	2.5	$\partial \partial $	
	2.6	Cultural Resources Survey	2-16
	2.7	Surface Feature Survey	2-16
		Physical Characteristics of the Study Area	
ecno	3.1	Physical Characteristics of the Study Area Surface Features	3_1
	3.2		
	3.3		
	3.4		
,	3.5		
	0.0	3.5.1 Regional Geology	
		3.5.1.1 Bedrock Geology	
÷		3.5.1.2 Overburden Geology	
· ·		3.5.2 Site Geology	
•		3.5.2.1 Bedrock Geology	
		3.5.2.2 Glacio-Lacustrine Deposits	
		3.5.2.3 Glacial Outwash Deposits	
		3.5.2.4 Floodplain Deposits	
		3.5.2.5 Fill Material	
	3.6		
		3.6.1 Regional Hydrogeology	
	•	3.6.2 Site Hydrogeology	
		3.6.2.1 Bedrock Aquifer	3-9
		3.6.2.2 Glacio-Lacustrine Semi-Confining Unit	3-9
		3.6.2.3 Shallow Outwash Aquifer	3-10
	3.7·		
	3.8	Ecological Characterization	
		3.8.1 Site Setting	
		3.8:1.1 Eastern Area/Former Tannery Building Area	3-13
•		3.8.1,2 Central Area/Former Wastewater Lagoon Area	
		3.8.1.3 Western Area/Onsite Wetland Area	
		3.8.1.4 Southern Area/South Bank Front Lot Area	
		3.8.2 Ecological Characterization and Cover Types	
		3.8.2.1 Old-Field Community	
•		3.8.2.2 Wooded Areas	3-14
		3.8.2.3 Wetlands	3-14
		3.8.2.4 Urban/Disturbed Areas	
		3.8.2.5 Unadilla River	
		3.8.3 Terrestrial Wildlife Observed Onsite	
		3.8.4 Aquatic Wildlife Observed Onsite (Unadilla River)	3-15
		3.8.5 Threatened and Endangered Species	
		3.8.5.1 NYSDEC	

CDM Final Remedial Investigation Report

S

ii

,		·	3.8.5.2 USF&WS
			3.8.5.3 Presence of Threatened and Endangered Species and
• • • • •			Habitats of Special Concern
Section	4 Na	ture a	nd Extent of Contamination
4.	1 · ·	Appro	pach to the Evaluation of Contamination
		4.1.1	Selection of Regulatory Standards and Criteria (ARARs, TBCs) 4-1
			4.1.1.1 Surface Water Screening Standards and Criteria
			4.1.1.2 Sediment Screening Criteria
			4.1.1.3 Groundwater Screening Standards and Guidelines 4-3
			4.1.1.4 Soil Screening Criteria
			4.1.1.5 Fish Tissue Screening Criteria
-	•	4.1.2	Background Samples
			4.1.2.1 Unadilla River Surface Water, Sediment, and Fish Tissue
			Background
			4.1.2.2 Wetland Sediment Background
			4.1.2.3 Groundwater Background
			4.1.2.4 Soil Background
· .	-	4.1.3	Identification of Primary, Secondary, and Non-COPCs
4.2			e and Extent of Contamination in Site Media
•		4.2.1	Data Presentation
		4.2.2	Lagoon Test Pits
		4.2.3	Lagoon Soil Borings
			4.2.3.1 Primary COPCs in Lagoon Soil Borings4-74.2.3.2 Non-COPCs in Lagoon Soil Borings4-8
			4.2.3.2 Extent of Contamination in Lagoon Borings
		4.2.4	Building Soil Borings
• •		4.2.4	4.2.4.1 Primary COPCs in Building Soil Borings
			4.2.4.2 Non-COPCs in Building Soil Borings
			4.2.4.3 Extent of Contamination in Building Soil Borings
		4.2.5	Onsite Soil Borings
			4.2.5.1 Primary COPCs in Onsite Soil Borings
			4.2.5.2 Secondary COPCs in Onsite Soil Borings
			4.2.5.3 Non-COPCs in Onsite Soil Borings
			4.2.5.4 Extent of Contamination in Onsite Soil Borings
		4.2.6	Off Site Soil Borings
			4.2.6.1 Primary COPCs in Off Site Soil Borings
			4.2.6.2 Non-COPCs in Off Site Soil Borings
			4.2.6.3 Extent of Contamination in Off Site Soil Borings
•		4.2.7	South Bank Front Lot Surface Soils
*			4.2.7.1 Primary COPCs in South Bank Front Lot Surface Soils 4-17
			4.2.7.2 Non-COPCs in South Bank Front Lot Surface Soils
			4.2.7.3 Extent of Contamination in South Bank Front Lot Surface Soils 4-18
		4.2.8	Onsite Wetland Sediments
			4.2.8.1 Primary COPCs in Wetland Sediments
			4.2.8.2 Secondary COPCs in Wetland Sediments

Final Remedial Investigation Report

iii

	4:2.8.3 Non-COPCs in Wetland Sediments
	4.2.8.4 Extent of Contamination in Wetland Sediments
4.2.9	Unadilla River Sediments
	4.2.9.1 Primary COPCs in Unadilla River Sediments 4-21
	4.2.9.2 Secondary COPCs in Unadilla River Sediments 4-21
	4.2.9.3 Non-COPCs in Unadilla River Sediments
	4.2.9.4 Extent of Contamination in Unadilla River Sediments 4-22
4.2.10	Unadilla River Surface Water
4.2.11	Unadilla River Fish Tissue
	4.2.11.1 Secondary COPCs in Fish Tissue
	4.2.11.2 Non-COPCs in Fish Tissue
4.2.12	Monitoring Wells
	4.2.12.1 Primary COPCs in Monitoring Wells
	4.2.12.2 Secondary COPCs in Monitoring Wells
	4.2.12.3 Non-COPCs in Monitoring Wells 4-24
	4.2.12.4 Extent of Contamination in Monitoring Wells 4-25
4.2.13	Residential and Municipal Wells 4-26
4.2.14	Effects of Waste Disposal Practices on Site Media
4.2.15	Effects of Waste Disposal Practices on Off Site Media

Section 5 Contaminant Fate and Transport

5.1	Contaminants of Interest
5.2	Current Transport Conditions
	5.2.1 General Transport Mechanisms
•	5.2.2 Mobility of Metals
5.3	Physical-Chemical and Mobility Related Properties – Primary COPCs 5-5
	5.3.1 Factors Determining Contaminant Mobility
5.4	Discussion of Conceptual Models
	5.4.1 Summary of Historical Conditions and Comparison to Current
	Conditions
	5.4.2 Current Condition Conceptual Model
5.5	Conclusions Regarding the Fate and Transport of High and Medium Priority
	Contaminants
Section 6 R	isk Assessments
6.1	Human Health Risk Assessment
	6.1.1 Summary of Approach
	6.1.2 Summary of Site Risks
	6.1.2.1 Risks at the Hiteman Property Area
	6.1.2.2 Risks at the Crumb Trailer Park
	6.1.2.3 Risks at the Unadilla River
	6.1.3 Summary of Uncertainties

6.2Ecological Risk Assessments6-56.2.1Screening Level Ecological Risk Assessment6-56.2.2Baseline Ecological Risk Assessment6-6

Section 7	Summary and Conclusions
7.1	Sources of Contamination
7.2	Summary of Nature and Extent of Contamination
	7.2.1 Soils
•	7.2.1.1 Lagoon Soil Borings
	7.2.1.2 Building Soil Borings
	7.2.1.3 Onsite Soil Borings
	7.2.1.4 Off Site Soil Borings
	7.2.2 Onsite Wetland Sediment
	7.2.3 Unadilla River Sediment, Surface Water, and Fish Tissue
· .	7.2.4 Groundwater
×	7.2.5 Summary of Overall Nature and Extent of Primary COPCs
7.3	Summary of Fate and Transport
7.4	Conclusions
7.5	Recommendations

Section 8 References

Appendices

Appendix A	Historical Aerial Photographs
Appendix B	Field Change Request Forms
Appendix C	Data Usability Report
Appendix D	Unadilla River Surface Water Measurement Data
Appendix E	Soil Boring Logs
Appendix F	Monitoring Well Boring Logs and Completion Diagrams
Appendix G	Monitoring Well Development Forms
Appendix H	Low-flow Groundwater Sampling Forms
Appendix I	Wetland Delineation Report
Appendix J	Stage 1A Cultural Resources Survey
Appendix K	Screening Criteria Exceedence Tables
Appendix L	Full Data Tables
Appendix M	Fish Sample Chain of Custodies

List of Tables

- 1-1 Chronology of Events
- 1-2 Generic Chemicals Used in the Tannery Process
- 1-2a Summary of Previous NYSDEC and EPA Investigation
- 1-3 Chromium Analytical Results Soil and Sediment Samples, 1996 EPA ERT Site Investigation
- 1-4 Summary of TAL Metals in Soil and Sediment Samples, 1996 EPA ERT Site Investigation
- 1-5 Summary of Analytical Results for VOCs in Soil Samples, 1996 EPA ERT Site Investigation
- 1-6 Summary of SVOCs in Soil and Sediment Samples 1996 EPA ERT Site Investigation

- 1-7 Analytical Results of TAL Metals in Groundwater and Surface Water Samples
 1996 EPA ERT Site Investigation
 1-8 Total and Hexavalent Chromium Analytical Results in Groundwater Samples
- 1996 EPA ERT Site Investigation
- 1-9 Summary of Analytical Results of VOCs and SVOCs in Groundwater 1996 EPA ERT Site Investigation
- 2-1 RI Field Investigation Tasks
- 2-2 Summary of Unadilla River Surface Water Samples
- 2-3 Summary of Unadilla River Sediment Samples
- 2-4 Summary of Wetland Sediment Samples
- 2-5 Summary of Surface Soil Samples
- 2-6 Summary of Lagoon Boring Samples
- 2-7 Summary of Soil Boring Surface and Subsurface Soil Samples
- 2-8 Summary of Building Boring Subsurface Soil Samples
- 2-9 Summary of Geotechnical Boring Subsurface Soil Samples
- 2-10 Summary of Newly Installed Monitoring Wells
- 2-11 Final Turbidity Readings for Well Development
- 2-12 Summary of Groundwater Samples
- 2-13 Groundwater Level Elevation Data 2001
- 2-14 Groundwater Level Elevation Data 2002
- 2-15 Summary of Unadilla River Fish Tissue Samples
- 3-1 Average Monthly Climatic Data January 2001 June 2002

4-1A Explanation of Data Qualifiers and Screening Criteria Abbreviations

4-1 Surface Water Screening Standards and Criteria

- 4-2 River Sediment Screening Criteria
- 4-3 Wetland Sediment Screening Criteria
- 4-4 Groundwater Screening Standards and Guidelines
- 4-5 Subsurface Soil Screening Criteria
- 4-6 Surface Soil Screening Criteria
- 4-7 Fish Tissue Screening Criteria
- 4-8 Unadilla River Surface Water and Forage Fish Background Sample Detections
- 4-9 Unadilla River and Onsite Wetland Sediment Background Sample Detections
- 4-10 Upgradient Groundwater Sample Detections
- 4-11 Surface and Subsurface Soil Background Sample Detections
- 4-12 Lagoon Boring Surface and Subsurface Soil Statistical Data Results
- 4-13 Building Boring Subsurface Soil Statistical Data Results
- 4-14 Onsite Soil Boring Surface and Subsurface Soil Statistical Data Results
- 4-15 Off Site Soil Boring Surface and Subsurface Soil Statistical Data Results
- 4-16 South Bank Front Lot Surface Soil Statistical Data Results
- 4-17 Onsite Wetland Sediment Statistical Data Results
- 4-18 Unadilla River Sediment Statistical Data Results
- 4-19 Unadilla River Surface Water Statistical Data Results
- 4-20 Fish Tissue Statistical Data Results

CDM

Final Remedial Investigation Report

- 4-21 Shallow Groundwater Statistical Data Results
- 4-22 Deep Groundwater Statistical Data Results
- 5-1 Media Contamination Summary of Current Conditions
- 5-2 Field Measured Physical Factors Affecting Contaminant Fate and Transport
- 5-3 Fate and Transport Properties for Site Contaminants
- 5-4 Current Transport Media/Pathways

List of Figures

- 1-1 Site Location Map
- 1-2 Site Map
- 1-3 Historical Tanning Process-Wastewater Pathway
- 1-4 Historical Conceptual Site Model
- 1-5 Historical Conceptual Site Model
- 1-6 EPA ERT Soil and Sediment Sampling Locations 1996 Site Investigation
- 1-7 EPA ERT Monitoring Well Sampling Locations and Chromium Results, 1996 Site Investigation
- 2-1 Unadilla River Surface Water and Sediment Sampling Locations
- 2-2 Onsite Wetland and Background Sediment Sampling Locations
- 2-3 Surface Soil Sampling, Lagoon Boring, and Test Pit Locations
- 2-4 Onsite Building Boring and Soil Boring Locations
- 2-5 Offsite Soil Boring Locations
- 2-6 Geotechnical Soil Boring Locations
- 2-7 Monitoring Well Locations
- 2-8 Municipal and Residential Well Locations
- 2-9 Fish Tissue Sampling Locations
- 3-1 Soil Map
- 3-1a Flood Plain Map
- 3-2 Lithostratigraphic Cross Section A-A'
- 3-3 Lithostratigraphic Cross Section B-B'
- 3-4 Top of Bedrock Elevation Contour Map
- 3-5 Semi-Confining Layer Thickness Map
- 3-6 Hydrostratigraphic Cross Section A-A'
- 3-7 Hydrostratigraphic Cross Section B-B'
- 3-8 Bedrock Aquifer Potentiometric Surface Contour Map (07/2002)
- 3-9 Bedrock Aquifer Potentiometric Contour Map (10/2002)
- 3-10 Deep Aquifer Potentiometric Surface Contour Map (07/2002)
- 3-11 Deep Aquifer Potentiometric Surface Contour Map (10/2002)
- 3-12 Shallow Aquifer Water Table Contour Map (07/2002)
- 3-13 Shallow Aquifer Water Table Contour Map (10/2002)
- 3-14 Private Well Locations within 2 Miles South of Hiteman Leather
- 3-15 Private Well Locations within 3 Miles of Hiteman Leather

- 4-1 Summary of Lagoon Boring Results
- 4-2 Summary of Building Boring Results
- 4-3a Summary of Onsite Soil Boring Results
- 4-3b Summary of Onsite Soil Boring Results
- 4-4a Total Chromium Iso-Concentration Contours for Onsite Surface Soils
- 4-4b Total Chromium Iso-Concentration Contours for Onsite Subsurface Soils
- 4-5a Three Dimensional Distribution of Total Chromium in Onsite Subsurface Soil
- 4-5b Three Dimensional Distribution of Total Chromium in Onsite Subsurface Soil
- 4-6a Summary of Off Site Soil Boring Results
- 4-6b Summary of Off Site Soil Boring Results
- 4-7 Summary of South Bank Front Lot Surface Soil Results
- 4-8a Summary of Onsite Wetland Sediment Results
- 4-8b Summary of Onsite Wetland Sediment Results
- 4-9a Total Chromium Iso-Concentration Contours for Wetland Sediments (0-6 inches bgs)
- 4-9b Total Chromium Iso-Concentration Contours for Wetland Sediments (18-24 inches bgs)
- 4-10 Summary of Unadilla River Sediment Results
- 4-11a Summary of Shallow Monitoring Well Results
- 4-11b Summary of Deep Monitoring Well Results
- 4-12a Total Chromium Iso-Concentration Contours for Onsite Surface Soils and Onsite Wetland Surface Sediments
- 4-12b Total Chromium Iso-Concentration Contours for Onsite Subsurface Soils and Onsite Wetland Subsurface Sediments
- 5-1 Conceptual Site Model (circa 2003)

viii

Acronyms

	AD	Allerenal Land
	AD ARARs	Alluvial Land
		Applicable or Relevant and Appropriate Requirements All-Terrain-Vehicle
	ATV	
	bgs	below ground surface
	BKGD-SUR	Hiteman Backround Criteria for Inorganics - Surface Soil
	BKGD-SUBSUR	Hiteman Background Criteria for Inorganics - Subsurface Soil
	BOD	Biological Oxygen Demand
	CDM	CDM Federal Programs Corporation
	cfs	cubic feet per second
	CLP	Contract Laboratory Program
	COD	Chemical Oxygen Demand
	COPCs	Contaminants of Potential Concern
	CT	Central Tendency
	⁻ Cu	Cut and Fill Land
	DPW	Department of Public Works
	DQOs	Data Quality Objectives
	EPA	US Environmental Protection Agency
	EPAPDW-MCL	National Primary Drinking Water Standards
	EPASW-AFRESHCC	EPA Ambient Surface Water Criteria - Aquatic Life Chronic
		Freshwater
	EPASW-HHORG	EPA Ambient Surface Water Criteria - Human Health for
		Consumption of Organisms
	ERAGS	Ecological Risk Assessment Guidance for Superfund
,	ERT	Emergency Response Team
	EVS	Environmental Visualization System
	°F	Degrees Fahrenheit
	FCR	Field Change Request
	FID	Flame Ionization Detector
	ft	feet
	Fr	Fredon fine sandy loam
	gpm	gallons per minute
	HHRA	Human Health Risk Assessment
	HRS	Hazard Ranking System
	HSAs	
	IDW	Hollow Stem Augers Investigation-derived waste
		8
	in/yr	inches per year
	lb/d	pounds per day Manimum Conteminant Laugh
	MCL	Maximum Contaminant Levels
	mg/kg	milligrams per kilogram
	mg/L	milligrams per Liter
	msl	mean sea level
	NAD	North American Datum
	NAVD	North American Vertical Datum
	NPL	National Priorities List
	NTUs	Nephelometric Turbidity Units
	NYS	New York State
	NYSDEC	New York State Department of Environmental Conservation
	NYSDEC-RSCO	NYSDEC Recommended Soil Cleanup Objectives, adjusted for Site
		Total Organic Carbon average of 5.24%

CDM \\Nysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Acronyms.wpd

NYSDEC-GW-GA	NYSDEC Standards/Guidance for Class GA Groundwater, Human Water Source
NYSED-AC-LEL	NYS Sediment Criteria for Benthic Aquatic Life low effects level Inorganics
NYSED-AC-SEL	NYS Sediment Criteria for Benthic Aquatic, Severe-Effects Level
NYSED-HFW	NYS Sediment Criteria for Human Health Bioaccumulation
NISED-HFW	
NACOOLI	Freshwater
NYSDOH	New York State Department of Health
NYSDOH-DW-MCLS	NYSDOH Drinking Water Quality Standards, Maximum Contaminant
	Levels
NYSW-C-AC	NYS Standards and Guidance Values for Class C Surface Water,
	Aquatic Life
NYSW-C-HFC	NYS Standards and Guidance Values for Class C Surface Water,
DATA	Human Food Chain
PAHs	Polycyclic Aromatic Hydrocarbons
PAR	Pathway Analysis Report
PCBs	Polychlorinated Biphenyls
PID	Photoionization Detector
ppm	parts per million
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
RAC	Remedial Action Contract
RAGS	Risk Assessment Guidance for Superfund
RCRA	Resource Conservation and Recovery Act
redox	oxidation reduction potential
RI .	Remedial Investigation •
RI/FS	Remedial Investigation/Feasibility Study
RME	Reasonable Maximum Exposure
ROD	Record of Decision
RSCO'	Recommended Soil Cleanup Objectives
SI	Site Investigation
SLERA	Screening Level Ecological Risk Assessment
SVOCs	Semivolatile Organic Compounds
TAL	Target Analyte List
TBC	to be considered
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TDS	Total Dissolved Solids
TKN	Total Kjeldahl Nitrogen
TOC	Total Organic Carbon
TSS	Total Suspended Solids
µg/kg	micrograms per kilogram
μg/L	micrograms per Liter
UCL	Upper Confidence Limit
USEPA-FISH	USEPA Region 3 Risk-Based Fish Screening Criteria for Human Health
USF&WS	United States Fish and Wildlife Service
VOCs	Volatile Organic Compounds
XRF	X-ray Fluorescence
	A-ray muorescence

CDM \\Nysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Acronyms.wpd

Executive Summary Executive Summary

Executive Summary

Introduction

This report was prepared by CDM Federal Programs Corporation (CDM) for the U.S. Environmental Protection Agency (EPA), Region II, under the Response Action Contract (RAC II) program. The Remedial Investigation (RI) was conducted in accordance with applicable work plans and Quality Assurance Project Plans (QAPPs) prepared by CDM and approved by EPA. The overall purpose of this report is to define the nature and extent of Site-related contamination in surface water, sediment, wetland sediment, surface and subsurface soil, and groundwater in on-site as well as off-site areas.

Site Description

The Hiteman Leather Site (the Site) is a former tannery and leather manufacturing facility located in the Village of West Winfield at 173 South Street (i.e., Route 51) just south of the intersection of Route 51 with State highway Route 20. The Site is bordered to the north by commercial buildings and residences, to the east by South Street, to the south by a residential property and a small tributary to the Unadilla River with a wetland beyond, and to the west by the West Winfield Cemetery. Figures 1-1 and 1-2 show the Site location and Site feature map, respectively.

The Site covers approximately 14 acres and is traversed by 800 feet of the Unadilla River, with 10 acres along the northern bank of the river and 4 acres along the southern bank (see Figure 1-2). The 10-acre area north of the river is comprised of 6 contiguous parcels of land formerly owned by the Hiteman Leather Company. This area includes the foundation remains of the former tannery buildings and macadam parking lot, which front along South Street. Behind the former buildings and to the west is a 2-acre area where the three former wastewater lagoons (each approximately 50 feet wide by 350 feet long), now leveled and backfilled, were located. To the north and west of the former lagoon area is an undeveloped area of approximately 6 to 7 acres, which includes a 1.8-acre wetland along the western side of the Site and a small backfilled area along the eastern side of the Site (in front of the adjacent Village of West Winfield Department of Public Works [DPW] garage). The northern border of the site is fenced, with the exception of the backfilled area in front of the DPW garage. Two buildings still exist at the Site, including a metal storage shed that is used and maintained by the Village of West Winfield DPW and a small concrete shed, which is unused.

The 4-acre area south of the river is comprised of a 2-acre parcel fronting on South Street (i.e., an original part of the Hiteman Leather Co. property) and a landlocked 2acre parcel to the rear (owned by D. Castronover, NY). The southern part of the Site is not fenced, is low lying and thinly-wooded with a small open field area. It is undeveloped except for a small, inactive horse barn on the rear parcel.

Off-site areas where Hiteman Leather wastes were found include the Crumb Trailer Park (which overlies the former Village of West Winfield Dump ("Town Dump") on

Burrows Road and the Ferguson Fuels property (across from the former Hiteman Leather Railroad Depot), also on Burrows Road.

The tannery buildings were demolished in 1996 and in 1998, with the latter demolition leaving piles of loose brick and concrete debris, as well as other concrete remnants (e.g., building pillars, concrete dye tanks). Much of the loose brick and concrete debris was removed from the concrete foundation floor by EPA in May 2001 (during Field Activity 1) to facilitate sampling under the floor.

Geographically, the Site is located within the Unadilla River valley, the floor of which has relatively low topographic relief. West Winfield is located on the northern edge of the approximately one and one-half mile wide Unadilla River valley, which is oriented west southwest-east northeast and slopes slightly (approximately 0.28 percent slope) to the southwest in the vicinity of the Site. The river valley is bounded abruptly to the north and south by rolling hills with elevations between three and five hundred feet above the valley floor.

The topography of the Site is mostly flat, with a gentle southwestern slope from the northern and eastern portions of the Site toward the southwestern wetland area and the Unadilla River. The area once occupied by the former wastewater lagoons has no topographic expression other than small mounds and hummocks. The surface expression of a former channel leading from the northernmost lagoon to the wetlands, observed in historical aerial photographs, can be identified visually. Along the Unadilla River, the northern river bank drops steeply (between 6 and 8 feet) down to the river. Rip-rap has been placed along a section of this bank, as an erosion control measure. The 4-acre southern portion of the Site is level. Ground surface elevations range from approximately 1,170 to 1,180 feet above mean sea level (msl).

Site History

The West Winfield tannery was established on the northern bank of the Unadilla River in 1820 by a Mr. Adsit (Smith 1979). In 1910, after several changes in ownership, the name was changed to the Hiteman Leather Company and in 1922, the company was officially reorganized as a corporation (Hiteman Leather Company Inc.) with the name remaining unchanged until its closing in 1968. Under the Hiteman family, the tannery and tannery property experienced many changes over the years to expand business and increase production, including a major change during the early 1900s to incorporate chromium-based tanning into the process. The chrome-based process, in combination with mechanization, reduced the time to manufacture leather from years to months to weeks; however, the wastes generated were more toxic.

The inability to economically treat contaminated wastewater from the tannery forced the closing of the Hiteman Leather Company in 1968. The property and buildings were sold in 1969 to Erle Davis of Clinton, New York, who subsequently rented the buildings to various small businesses during the 1970s, including a cookie company and a tire company. The tannery buildings were no longer rented after 1982 and gradually deteriorated, resulting in their later demolition.

Several New York State investigations were conducted during the 1980s concerning the contamination at the Site. New York State Department of Environmental Conservation (NYSDEC) conducted an RI/FS from 1988 to 1992, which resulted in a 1992 Record of Decision (ROD) that referred the Site to EPA for further evaluation. In 1994, EPA performed some preliminary sampling at the Site and fenced the northern part of the Site to prevent unauthorized access, particularly to the deteriorating buildings. A Site Investigation (SI) was subsequently conducted by EPA's Emergency Response Team (ERT) in 1996. In 1999, the Site was listed on EPA's Superfund National Priorities List (NPL) and EPA contracted with CDM to complete an RI/FS to support the selection of a remedy for the Site.

CDM conducted a field investigation at the Hiteman Leather Site in 2001-2002 to acquire data for this RI. Field investigation activities included geological and hydrogeological investigations (including monitoring well installation) and environmental sampling. Environmental sampling included the collection of samples from surface water, fish tissue, sediment, wetland sediment, surface and subsurface soil, groundwater, residential wells, and public supply wells.

Associated activities included a surface features investigation (including site base map preparation), synoptic water level measurements, an ecological assessment and wetlands delineation, and a cultural resources survey.

In 2004, a variety of samples were collected to support a Baseline Ecological Risk Assessment (BERA), including biological samples, soil and sediment for toxicity tests, and additional downgradient Unadilla River surface water and sediment samples. //.

Geological and Hydrogeological Investigations Geology

The following stratigraphy was encountered in lithologic samples collected during the geological and hydrogeological investigation.

Bedrock

During the CDM RI drilling program, bedrock was encountered at depths ranging from 30 feet below the ground surface (bgs) in the Winfield cemetery to 66.5 feet bgs east of the Site. These data indicate that the top of the bedrock's surface has a slight easterly/southeasterly dip. The bedrock was described as a dark-gray, thin- to medium-bedded, fractured fine-grained micritic limestone with abundant chert nodules and few bryozoan and brachiopod fossils. Based on available published descriptions and the core descriptions, the bedrock underlying the Hiteman property has been assigned to the Moorehouse Member of the Onondaga Formation (CDM boring logs, Oliver 1954).

Glacio-Lacustrine Deposits

Glacio-lacustrine deposits were observed in all deep and bedrock monitoring well borings. These deposits consist of gray silty-clay with abundant dark gray clay seams

ES-3

and light gray silt seams. Thicknesses range from just over10 feet in the vicinity of the onsite wetland to over 30 feet northeast of the Site.

Glacial Outwash Deposits

The glacial outwash deposits observed onsite are variable in composition but are commonly described as light brown, coarse- to fine-grained gravel, some coarse- to fine-grained sand, little silt and cobbles were observed underlying the recent fluvial deposits throughout the Hiteman property. In the vicinity of the former wastewater lagoons, the outwash consists of black, medium- to coarse-grained gravel with varying amounts of cobbles and lesser amounts of fine to coarse sand. Thinner outwash deposits occur at the northern edge of the Site and southwest of the Site. Thicker deposits occur to the south and east, indicating a thickening of the unit to the south and east.

Floodplain Deposits

Recent fluvial sediments were identified as thin surficial deposits across the Site. Fluvial deposits consist of light-brown silt and clayey-silt with some medium to fine sand and a trace of fine gravel. The main distinguishing feature between the fluvial deposits and the fine-grained portions of the outwash deposits is that the outwash tends to contain cobbles and the fluvial deposits do not. The fluvial deposits range in thickness from 3.5 feet at MW-5D, at the southwest corner of the former wastewater lagoons, to 10 feet at MW-1S, at the northeast corner of the former facility building (NYSDEC 1992, CDM boring logs).

Fill Material

Artificial fill extends along the western margin of the Hiteman Leather Company parking lot and the margins of the public parking area north of the property. The fill consists of concrete, wood debris, and varying amounts of glass, bricks, ashes, tile flooring and other assorted materials.

Hydrogeology

Hydrogeologic data collected during the 1992 NYSDEC RI and the CDM RI field events indicate a highly complex hydrogeologic system governed by artesian conditions, seasonal variations, and the presence of natural and man-made surface water bodies. It is likely that several factors, including historic Site activities, have altered the natural flow of groundwater underlying the Site. The hydrogeology at the Site is characterized by the existence of three hydrologic units: a shallow glacial outwash aquifer, a glacio-lacustrine semi-confining unit, and an underlying bedrock aquifer.

Bedrock Aquifer

The limestone bedrock unit underlying the Site comprises the bedrock aquifer; groundwater flow in this unit is defined by joints and bedding planes, which were observed to be wider and more numerous near the bedrock surface. The bedrock aquifer is semi-confined by the glacio-lacustrine deposits, resulting in artesian conditions in wells completed in this unit. Therefore, groundwater in the bedrock aquifer beneath the Site has a dominant upward flow direction with a minor west/southwest component.

Glacio-Lacustrine Semi-Confining Unit

The glacio-lacustrine semi-confining unit overlies the bedrock aquifer. The finegrained glacio-lacustrine deposits create a leaky, semi-confining unit, separating the underlying bedrock aquifer from the shallow outwash aquifer above. Despite its lower permeability, the unit is water-producing. According to water level data in deep wells, the horizontal flow in this unit is to the southwest. In addition, there is an upward vertical gradient through this unit, suggesting a hydrological connection between this unit and the bedrock aquifer.

Shallow Outwash Aquifer

The shallow outwash aquifer unit overlies the glacio-lacustrine semi-confining unit and is composed of glacial outwash and fluvial sediments, and fill material. This aquifer is unconfined, and unlike the lower units, does not exhibit artesian conditions. Water table depths vary seasonally. Groundwater flow in the shallow aquifer is to the southwest.

Study Area Investigations

CDM conducted several study area investigations during three RI field activities (FA), and a Baseline Ecological Risk Assessment Field Activity (BERA FA), including surface water and sediment, contaminant source, geological/ hydrogeological, and ecological investigations. The following field activities occurred during these investigations:

Surface Water and Sediment Investigation

- Unadilla River surface water sampling (FA 1, FA 2, BERA FA)
- Unadilla River sediment sampling (FA 1, FA 2, BERA FA)
- Onsite Wetland sediment sampling (FA 1, FA 2)

Contaminant Source Investigation

- Lagoon Boring surface and subsurface soil sampling (FA 2)
- Test Pit Excavation (FA 2)
- South Bank Front Lot surface soil sampling (FA 3)

Geological/Hydrogeological Investigation

- Hiteman Leather Site Soil Boring surface and subsurface soil sampling (FA 2)
- Building Boring subsurface soil sampling (FA 2)
- South Bank Front Lot surface and subsurface soil sampling (FA 2, FA 3)
- Off-site Soil Boring surface and subsurface soil sampling (FA 2, FA 3)
- Off-site Background Soil Boring surface and subsurface soil sampling (FA 2)
- Geotechnical Soil Boring and subsurface soil sampling (FA 2)
- Existing Monitoring Well redevelopment and sampling (FA 1, FA 2)
- Monitoring Well installation, development, and sampling (FA 2)
- Municipal Well sampling (FA 1)
- Residential Well sampling (FA 2)

Synoptic Water Level Measurements (FA 1, FA 2, FA 3)

Ecological Investigation

- Unadilla River fish tissue sampling (FA 2)
- Ecological characterization and wetland delineation (FA 2)
- BERA Field Activities: Toxicity testing, biota tissue sampling (BERA FA)

In general, Target Compound List (TCL) organics and Target Analyte List (TAL) inorganics, including cyanide, were analyzed through EPA's Contract Laboratory Program (CLP); all other analyses were performed by CDM's subcontract laboratory. Sample analyses by matrix are listed as follows:

Onsite soil samples (with the exception of those collected at the South Bank Front Lot) - TCL organics, TAL inorganics, hexavalent chromium, grain size, pH, and total organic carbon (TOC). Select soil samples were also analyzed for Resource Conservation and Recovery Act (RCRA) metals following Toxicity Characteristic Leaching Procedure (TCLP) extraction.

Off-site and South Bank Front Lot soil samples - TAL inorganics, hexavalent chromium, grain size, pH, and TOC. Select soil samples were also analyzed for RCRA metals following TCLP extraction.

Sediment samples - TCL organics, TAL inorganics, hexavalent chromium, grain size, pH, and TOC.

Surface Water samples - TAL inorganics, hexavalent chromium, alkalinity, hardness, total dissolved solids (TDS) and total suspended solids (TSS); select samples were also analyzed for TCL organics.

Monitoring Well, Residential Well, and Municipal Supply Well samples - TCL organics (with low detection level volatile organic compound [LDL VOC]) analysis, hexavalent chromium, alkalinity, ammonia, total kjeldahl nitrogen (TKN), biological oxygen demand (BOD), chemical oxygen demand (COD), TSS, TDS, TOC, nitrate-nitrite, sulfate, and chloride.

 Geotechnical Boring soil samples - Atterburg limits, permeability, shear strength, and visual description of soil structures.

Fish tissue samples - TCL organics, TAL inorganics, and percent lipids.

Nature and Extent of Contamination

A three-step approach was used to evaluate the nature and extent of contamination at the Site. As a first step, EPA and New York State regulatory standards and criteria were selected to evaluate and screen detected constituents in the various sampled media. Second, results from background, or upgradient samples that were collected for each sampled media were evaluated and compared to data from environmental, or downgradient samples. The final step involved assigning compounds or analytes detected in Site media into three categories: primary contaminants of potential concern (COPCs), secondary COPCs, and non-COPCs. Nine primary COPCs were identified: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide. The characterization of Site conditions focuses on the extent and spatial distribution of primary COPCs within each media.

Lagoon Soil Borings

All nine primary COPCs were found in lagoon surface soil samples; nine other detected compounds or analytes were identified as non-COPCs. In the subsurface soil samples, all primary COPCs except mercury were detected.

During the CDM RI, the primary contaminants with the highest concentrations and the greatest number of detections were antimony, cadmium, and chromium. In general, the highest concentrations and greatest number of exceedances within lagoon soil samples collected during the CDM RI were detected in samples located on the eastern side of the former wastewater lagoons. The lowest concentrations were detected in samples collected from the western side of the former wastewater lagoons. Contaminant levels generally tended to decrease with depth. Because effluent probably most often flowed into the lagoon(s) from east to west, the pattern of contamination generally corresponds to the most likely historical waste management practices.

Building Soil Borings

A total of 13 subsurface soil samples were collected beneath the former tannery building at 5 boring locations, BSB-01 through BSB-05. Samples were collected from each boring location at the 0-2-foot interval (directly below the concrete foundation) and the 8-10-foot interval. Additional samples were collected if observed contamination was present. All nine primary COPCs were found in building boring soil samples.

Primary COPCs with the highest concentrations and the greatest number of detections during the CDM RI were cadmium, chromium, and lead. Contaminant concentrations of COPCs generally tended to decrease with depth, with the exception of hexavalent chromium levels, which were elevated at depth. The majority of cadmium, chromium, lead, and other primary COPC contamination appears to be concentrated in soils underlying the tannery's "tan house" operations within the former tannery building. The presence of elevated levels of primary COPCs in soils below the building foundation is a clear indication that process wastewater seeped underneath the former tannery.

Onsite Soil Borings

A total of 23 surface soil samples and 52 subsurface soil samples were collected from 22 onsite soil borings. Surface soil samples were collected at each boring from the 0-2-foot depth interval. Subsurface soil samples were collected from multiple depth intervals at each boring location ranging from the 2-4-foot interval to the 8-10-foot

ES-7

interval. All nine primary COPCs were found in both surface and subsurface soils from onsite soil borings.

The location of the most frequent exceedances of soil criteria by the primary COPCs in both surface and subsurface soil samples is southwest of the former building footprint, between the former building location and the river where the former sluiceway and underground storage tank (UST) were located. Other areas of elevated primary COPC contamination in surface and subsurface soil include the area directly south of the east wing of the building footprint adjacent to the concrete dye tanks, the west-central portions of the Site where former wastewater lagoon overflow was directed to the onsite wetland, the south side of the river where wastes were likely disposed, and the northwestern portion of the Site where waste materials reportedly were landfilled along the eastern bank of the onsite wetland.

South Bank Front Lot Surface Soils

Surface soil samples were collected at six locations within the South Bank Front Lot. Seven primary COPCs were found in South Bank Front Lot surface soil samples: antimony, arsenic, cadmium, total chromium, cyanide, lead, and nickel. Mercury and hexavalent chromium were not detected in any samples.

The majority and highest levels of primary COPCs are located along the bank of the Unadilla River. The distribution and type of contaminants detected in the South Bank Front Lot soils is consistent with the theory that Hiteman waste material was used to fill the area.

Onsite Wetland

Sediment samples were collected from two depths (0-6 inches and 18-24 inches) at 15 locations within the onsite wetland. Eight of the primary COPCs were found in wetland sediment samples: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, and nickel.

During the CDM RI, the highest concentrations of total chromium, hexavalent chromium, lead, and mercury were generally detected in samples collected from the surface interval in the southern portion of the wetland, especially around the eastern margin by the outfall from a weir box that directed overflow water into the onsite wetland. However, concentrations were highest in the deeper sample intervals in the northern portion of the wetland, primarily at the discharge from the ditch that also collected lagoon overflow.

Unadilla River Surface Water, Sediment, and Fish Tissue

Sediment samples were collected from 10 locations in the Unadilla River. Six of the primary COPCs were found in Unadilla River sediments. Five primary COPCs were detected at levels exceeding the most stringent screening criteria, the NYSED-AC-LEL, as well as upstream (background) concentrations. Cadmium levels did not exceed the most stringent screening criteria.

Primary COPCs are present in sediments adjacent to and downstream of the Site. With the exception of one sample location, all downstream concentrations exceeded those in the upstream (background) sample. The highest concentrations of primary contaminants during the CDM RI were found at the discharge from the "tan house" concrete dye tanks, approximately 2,500 feet downstream, and approximately 1.2 miles downstream. This suggests that impacted sediments are continuing to migrate downstream from the Site, and that contaminated sediments adjacent to the Site are acting as a source that continues to impact the downstream locations.

Surface water samples were collected from 10 locations in the Unadilla River. No contaminants identified as primary COPCs were detected at levels exceeding screening criteria.

Tissue samples of sport fish and top and bottom feeder forage fish were collected at five locations in the Unadilla River. No contaminants identified as primary COPCs were detected at levels exceeding fish tissue screening criteria for human health.

Off Site Soils

CDM collected a total of 14 surface and 38 subsurface soil samples at off site soil boring locations. Surface soil samples were collected at the 0-2 foot interval. Subsurface soil samples were collected at select intervals from 2-10 feet in 13 borings located at the Crumb Trailer Park and in one boring located at the Ferguson Fuels property. All nine primary COPCs were found in surface and subsurface soil samples at off site soil borings.

The highest levels of the majority of primary and secondary COPCs are found in the northwest corner of the trailer park. In general, during the CDM RI, the highest concentrations of antimony, arsenic, total and hexavalent chromium, cyanide, and lead were found in surface soils, while the highest concentrations of cadmium, mercury, and nickel were found within the subsurface soils. With the exception of two locations, chromium and other primary COPC concentrations tended to decrease with depth.

Monitoring Wells

Two rounds of groundwater samples were collected from monitoring wells located within and outside the Site boundary. In shallow monitoring wells, two primary COPCs were detected during Field Activity 1 and only one was detected during Field Activity 2. In deep monitoring wells, three primary COPCs were found during Field Activity 1 and four were found during Field Activity 2. No contaminants were detected in bedrock monitoring wells at levels above guidance or screening criteria.

The primary COPCs detected at concentrations that exceeded screening levels, total and hexavalent chromium, arsenic, lead, and nickel are all linked to the Site's historical waste management practices and have been detected in all media sampled at the Site. During Field Activity 1, primary COPCs were detected at levels above NYSDEC guidance and screening criteria in shallow wells located on the south side of the Site just north of the Unadilla River (MW-5S and MW-6S) and on the opposite side of the river in MW-8S. MW-5S and MW-6S are located adjacent to the former wastewater lagoons; MW-8S is located directly across the river from one of the most contaminated areas of the Site (the sluiceway and former UST). These detections are consistent with theories that contaminants in shallow groundwater were able to migrate to the south side of the river during periods of low flow in the river. However, total chromium was not detected above NYSDEC guidance and screening criteria during Field Activity 2, although hexavalent chromium was (in MW-15S). Contaminants were also detected in MW-11D, located between the former wastewater lagoons and the onsite wetland, during Field Activity 1, and in MW-13D located north of the former wastewater lagoons.

Residential Wells

While some residential wells are still in use in the Village, two residential wells were located south of the Site, and although neither well is directly in the groundwater flow path from the Site (which is to the southwest), sampling these wells provided the only opportunity to evaluate groundwater nearest to, and generally downgradient (i.e., to the south) from the Site.

No primary or secondary COPCs were identified in the two residential well samples. Lead was detected in the residential well located on Mill Street, at 3 times the EPA and New York State Department of Health Maximum Contaminant Levels (NYSDOH MCLs). This well is not located hydraulically downgradient of the Site. The lead in groundwater from this well might be due to leaching from old pipes associated with plumbing from the well.

Municipal Wells

CDM collected groundwater samples from the two municipal supply wells that supply the majority of drinking water to the Village of West Winfield. Both wells are located hydraulically upgradient (east/northeast) of the Site. No primary or secondary COPCs were detected in the municipal well samples at levels exceeding screening criteria.

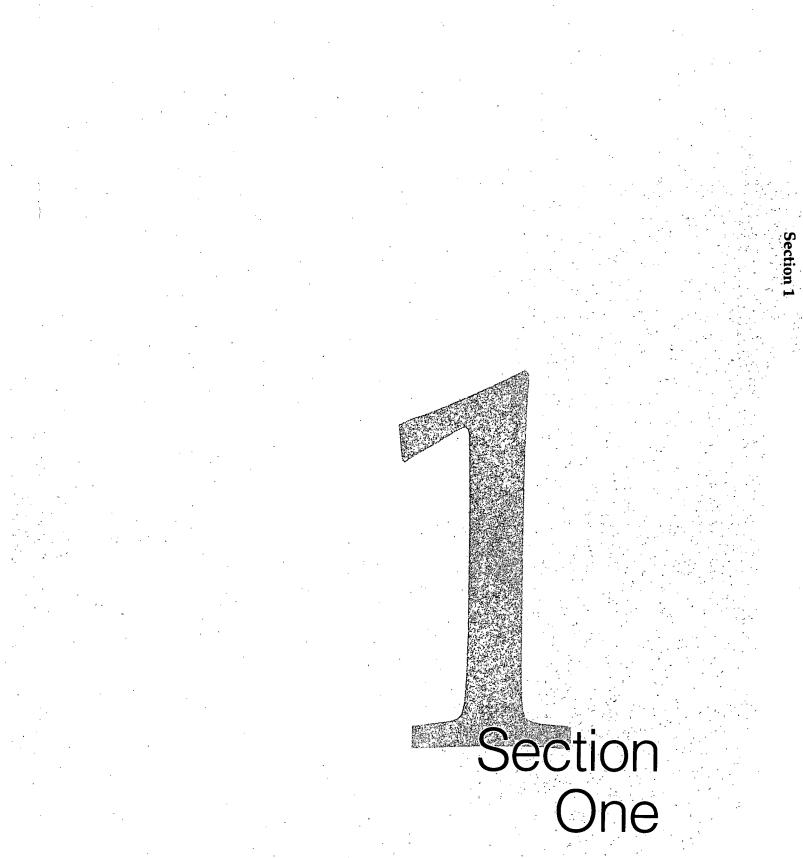
Ecological Characterization

Ecological communities identified on-site included old-field habitats, emergent wetlands, semi-maintained grass areas, and urban/disturbed areas. Wooded areas were limited to thin bands of trees and shrubs along the Site's boundaries, and isolated thin hedgerows within the interior of the Site.

The Site is separated from the Unadilla River and neighboring natural areas by a 10foot high chain-link fence. The presence of the fence limits the use of the Site as a habitat resource by large mammals. The Site is utilized as a habitat resource by smaller mammals. Avifauna utilize the Site as a habitat resource. During the ecological reconnaissance, several passerine species were observed on-site. No raptors, waterfowl, or wading birds were observed on the Site. No reptiles or amphibians were observed during the Site visit. The wetlands do not support adequate surface water resources to provide year-round habitat for fish. Predators were not observed on the Site, but it is possible that hawks, owls, shrews, mink, weasels, raccoon, skunk, and fox hunt in the fields and edge communities on the Site.

There are no known occurrences of rare or state-listed animals or plants, significant natural communities, or other significant habitats, federally-listed threatened or endangered species or habitats of special concern within a two mile radius of the Site. No known threatened and endangered species were observed on the Site.

Fate and Transport


The major contaminants at the Site, chromium and arsenic, will remain at levels above their respective criteria if no remedial action is performed. Chromium will tend to remain sorbed to oxides in the soils, and under oxidizing conditions will convert to the hexavalent and more toxic form. The transformed hexavalent chromium will be attenuated by its transport to off-site areas. Arsenic, being moderately mobile, will be slowly attenuated. Both contaminants are likely to remain at levels of concern.

Conclusions and Recommendations

The significant findings of the RI are as follows:

- The primary COPCs for Site media are: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide.
- Onsite surface and subsurface soils have been contaminated from Site waste disposal practices, primarily in the vicinity of the sluiceway, UST, concrete dye tanks, former wastewater lagoons, and overflow drainage.
- Off site surface and subsurface soils have been contaminated from Site waste disposal practices, primarily in the northwest and southwest sides of the Crumb Trailer Park.
- Sediments in the onsite wetland have been contaminated from Site waste disposal practices.
- Sediments in the Unadilla River have been contaminated from Site waste disposal practices.
- Groundwater has also been impacted from Site waste disposal practices. Although impacts are low, contaminants have been able to migrate through the semi-confining unit to the deep and bedrock monitoring wells, despite a present day upward vertical gradient.

The vertical extent of Site-related contamination has not been fully defined in onsite soils, onsite wetland sediments, and off site soils. CDM recommends that these data gaps be addressed as pre-design investigations.

• •

Section 1 Introduction

CDM Federal Programs Corporation (CDM) received Work Assignment 032-RICO-02CG under the Response Action Contract (RAC) to perform a Remedial Investigation/Feasibility Study (RI/FS), a Human Health Risk Assessment (HHRA), and a Screening Level Ecological Risk Assessment (SLERA) at the Hiteman Leather Site (the Site), located in West Winfield, New York for the Environmental Protection Agency (EPA). The purpose of this work assignment is to investigate the overall nature and extent of contamination at the Site.

1.1 Purpose of Report

The purpose of the Remedial Investigation (RI) Report is to present the results of the surface water and sediment investigations, geologic and hydrogeologic investigations, contaminant source investigations, cultural resources survey, and ecological investigation for the Site. The human health and ecological risk assessments will be submitted under separate cover. The goal of these investigations was to define the current nature and extent of surface water, sediment, soil, and groundwater, and fish tissue contamination at the Site and to define the hydrogeologic framework of the Site. Samples from each matrix were collected and analyzed during three Field Activities. Results of these analyses are compared with applicable New York and federal screening criteria and/or standards to determine the extent of contamination.

1.2 Site Description

The Hiteman Leather Site is a former tannery and leather manufacturing facility located in the Village of West Winfield at 173 South Street (i.e., Route 51) just south of the intersection of Route 51 with state highway Route 20. The Site is bordered to the north by commercial buildings and residences, to the east by South Street, to the south by a residential property and a small tributary to the Unadilla River with a wetland beyond, and to the west by the West Winfield Cemetery. Figures 1-1 and 1-2 show the Site location and Site feature map, respectively.

The Site covers approximately 14 acres and is traversed by 800 feet of the Unadilla River, with 10 acres along the northern bank of the river and 4 acres along the southern bank (see Figure 1-2). The 10-acre area north of the river is comprised of 6 contiguous parcels of land formerly owned by the Hiteman Leather Company. This area includes the foundation remains of the former tannery buildings and macadam parking lot, which front along South Street. Behind the former buildings and to the west is a 2-acre area where the three former wastewater lagoons (each approximately 50 feet wide by 350 feet long), now leveled and backfilled, were located. To the north and west of the former lagoon area is an undeveloped area of approximately 6 to 7 acres, which includes a 1.8-acre wetland along the western side of the Site and a small backfilled area along the eastern side of the Site (in front of the adjacent Village of West Winfield Department of Public Works [DPW] garage). The northern border of the site is fenced, with the exception of the backfilled area in front of the DPW garage. Two buildings still exist at the Site, including a metal storage shed that is used and

maintained by the Village of West Winfield DPW and a small concrete shed, which is unused.

The 4-acre area south of the river is comprised of a 2-acre parcel fronting on South Street (i.e., an original part of the Hiteman Leather Co. property) and a landlocked 2acre parcel to the rear (owned by D. Castronover, NY). The southern part of the Site is not fenced, is low lying and thinly-wooded with a small open field area. It is undeveloped except for a small, inactive horse barn on the rear parcel.

Off-site areas where Hiteman Leather wastes were found include the Crumb Trailer Park (which overlies the former Village of West Winfield Dump ("Town Dump") on Burrows Road and the Ferguson Fuels property (across from the former Hiteman Leather Railroad Depot), also on Burrows Road.

The tannery buildings were demolished in 1996 and in 1998, with the latter demolition leaving piles of loose brick and concrete debris; as well as other concrete remnants (e.g., building pillars, concrete dye tanks). Much of the loose brick and concrete debris was removed from the concrete foundation floor by EPA in May 2001 (during Field Activity 1) to facilitate sampling under the floor.

Geographically, the Site is located within the Unadilla River valley, the floor of which has relatively low topographic relief. West Winfield is located on the northern edge of the approximately one and one-half mile wide Unadilla River valley, which is oriented west southwest-east northeast and slopes slightly (approximately 0.28 percent slope) to the southwest in the vicinity of the Site. The river valley is bounded abruptly to the north and south by rolling hills with elevations between three and five hundred feet above the valley floor.

The topography of the Site is mostly flat, with a gentle southwestern slope from the northern and eastern portions of the Site toward the southwestern wetland area and the Unadilla River. The area once occupied by the former wastewater lagoons has no topographic expression other than small mounds and hummocks. A surface expression of a former channel leading from the northernmost lagoon to the wetlands, observed in historical aerial photographs, can be identified visually. Along the Unadilla River, the northern river bank drops steeply (between 6 and 8 feet) down to the river. Rip-rap has been placed along a section of this bank, as an erosion control measure. The 4-acre southern portion of the Site is level. Ground surface elevations range from approximately 1,170 to 1,180 feet above mean sea level (msl).

1.3 Site History

The West Winfield tannery was established on the northern bank of the Unadilla River in 1820 by a Mr. Adsit (Smith 1979). The tannery was sold in 1823 to Rufus Wheeler and became known as the Wheeler Tannery, which was subsequently sold to Ezra Beckwith in 1884. Beckwith was then in partnership with Henry and John Hiteman and operated the tannery under the name of Beckwith & Hiteman Brothers. The

Hiteman brothers acquired full interest in the tannery between 1891-1910, but continued to operate and expand under the name Beckwith & Hiteman Brothers. In 1910, the name was changed to the Hiteman Leather Company and in 1922, the company was officially reorganized as a corporation (Hiteman Leather Company Inc.) with the name remaining unchanged until its closing in 1968.

Under the Hiteman family, the tannery and tannery property experienced many changes over the years to expand business and increase production, including a major change during the early 1900s to incorporate chromium-tanning into the process. The chrome-based process, in combination with mechanization, reduced the time to manufacture leather from years, to months, to weeks; however, the wastes generated were more toxic.

In addition, the tannery acquired a railroad depot lot to facilitate shipping by rail and six adjacent properties were purchased in 1908, 1931, 1942, 1946, and 1962 that increased the tannery property to its current size. Of particular significance was the purchase of a 1.2-acre lot (immediately behind the tannery, to the west) in 1931 for the installation of two wastewater lagoons. The tannery underwent a major renovation, including the construction of a modern 3-story concrete and steel building for expansion and to replace and renovate much of the prior wooden structures.

In 1959, a fish kill occurred in the Unadilla River near the Site. A subsequent investigation concluded that the fish kill was attributed to the overflow of toxic substances from the two onsite wastewater lagoons. As a result, the lagoons were dredged and a third lagoon was added to increase capacity.

The inability to economically treat the wastewater from the tannery forced the closing of the Hiteman Leather Company in 1968. Shortly thereafter, the wastewater lagoons were backfilled and leveled. The property and buildings were sold in 1969 to Erle Davis of Clinton New York, who subsequently rented out the buildings to various small businesses during the 1970s, including a cookie company and a tire company. The tannery buildings were no longer rented after 1982 and gradually deteriorated, resulting in their later demolition.

Several New York State investigations were conducted during the 1980s concerning the contamination at the Site. New York State Department of Environmental Conservation (NYSDEC) conducted an RI/FS from 1988 to 1992, which resulted in a 1992 Record of Decision (ROD) that referred the Site to EPA for further evaluation.

In 1994, EPA performed some preliminary sampling at the Site and fenced the northern part of the Site to prevent unauthorized access, particularly to the deteriorating buildings. In 1996, EPA reinforced the northern bank of the Unadilla River with 500 feet of rip-rap to prevent erosion of the river bank and to limit the potential release of contaminants from the former wastewater lagoon area along the river. In 1996, the former tannery buildings were evaluated for structural soundness and it was concluded that, with the exception of the 1946 concrete and steel section of the building complex, all of the other attached structures, including the 97-foot tall brick stack and powerhouse, were structurally unsound. The evaluation also found asbestos pipe covering throughout the buildings and possibly in other materials (e.g., floor tiles). An asbestos removal was conducted at the Site and the structurally unsound building areas and the stack were demolished and removed by EPA. The 1946 building was left standing, however, since repair and possible reuse of the structure was possible. The building was subsequently demolished in 1998 by the estate of the deceased owner (Erle Davis), to salvage the steel. In 1999, the Site was listed on EPA's Superfund National Priorities List (NPL) and EPA subsequently contracted with CDM to complete an RI/FS to support the selection of a remedy for the Site. Table 1-1 shows the chronology of events at the Site.

1.3.1 Leather Tanning Process

Leather tanning is the process of making leather from animal hides and skins. "Leather tanning" is a general term for the numerous processing steps to make leather, with just one of the steps being the actual tanning step. The tanning process is based on the ability of animal hides and skins to absorb tannins (i.e., tannic acids from tree bark), as well as other chemical substances (e.g., chromium salts), that prevent the resulting leather from decaying, make it resistant to wetting, and keep it supple and durable. In general, the first steps in the tanning process involve trimming, soaking, fleshing, and de-hairing the hides. These steps are referred to as "beamhouse" operations (named after the use of a beam upon which the hides were scraped to remove excess flesh, fat, and any remaining hair). The next steps involved bating, pickling, tanning, wringing, splitting, coloring, and drying, with these steps being referred to as tan yard or "tan house" operations. Finishing processes included conditioning, staking, dry milling, buffing, spray finishing, and plating.

During the late 1800s, the reduced availability of tree bark and the increased need for leather production led to the development of the chromium, or "chrome-tanning" process (i.e., also called the "mineral-based" process, in contrast to the earlier tree-bark or "vegetable-based" chemical-tanning process). The chrome-tanning process, in combination with machinery-assisted procedures, reduced the time to process leather from years to months and to weeks. The use of chrome-tanning also expanded the line of leathers produced, including more-easily colored leathers - although certain types of leathers (the thicker leathers) were still produced by the tree bark-tanning process. The chrome-tanning process was introduced at the Hiteman Leather tannery as early as 1916 and by 1953, the tannery was reportedly making one third of its leather products from the tree bark-tanning process and two thirds from the chrome-tanning process.

While the change to the chromium-tanning process reduced the amount of time needed to process leather, a consequence of increased production was the creation of greater volumes of process waste. In addition, the waste tanning solutions and rinse

waters became much more toxic, containing metals and acids. Trivalent chromium salts, such as chromium sulfate, are the most toxic chemicals used in the chromium tanning process. Table 1-2 lists common process chemicals used in mineral-based (i.e., chromium-based) tanning.

1.3.2 Hiteman Leather Waste Disposal Practices

To handle the increasing volumes of wastewater, two wastewater lagoons were constructed in 1931 at the rear of the tannery. The lagoons have been identified as being "settling" lagoons, however, being unlined, they apparently also served an infiltration function. They appear to have been operated variously over the years, as evidenced by historical aerial photos (Appendix A). The former wastewater lagoons reportedly discharged to the Unadilla River and to the wetland area to the northwest of the lagoons (which ultimately drains to the Unadilla River). In 1884, the tannery produced an average of 600 calf skins per week, which by 1953, had risen to 3,500 calf skins per week and by 1960, production had risen to 500-1,200 calf skins per day. Due to the increase of production at the tannery, a third lagoon was constructed on-site in 1959. In 1964, it was reported that the tannery discharged over 180,000 gallons of wastewater per day from the tannery, beam house, dye house, as well as untreated sanitary waste to the Unadilla River. Figure 1-3 illustrates the various process areas in the facility and waste disposal routes. At that time, the following process materials and volumes were used daily: salt (1,930 pounds/day (lb/d)), lime (1,260 lb/d), chrome oxide (1,000 lb/d), sodium sulfide (520 lb/d), sulfuric acid (150 lb/d), caustic soda (54 lb/d), and dyes (25 lb/d) (EPA 1998).

Wastes generated at the Site not only included wastewater from hide processing activities, but also included sludge from the wastewater lagoons, discarded hides, hide scrapings and shavings, as well as sanitary sewage. Known and suspected disposal practices for these wastes are described below:

- Wastewater from the tanning and beam houses was discharged to the wastewater lagoons via a sluiceway. Wastewater flowed through the lagoons and discharged either into the Unadilla River or to the adjacent onsite wetland. In dredging the lagoons, wastewater was reportedly lowered by pumping through a fire hose to the adjacent low-lying areas. The lagoons and the possible discharge areas are shown on the historical areal photographs presented in Appendix A.
- Wastewater from the coloring process was discharged into two 6 x 10 x 4-foot concrete dye tanks, prior to being discharged to the Unadilla River.

Sludge from the bottom of the lagoons was periodically excavated (dredged) and reportedly deposited as berm material surrounding the lagoons. It also appears possible that dredged material from the lagoons may have been taken to other locations, however, there is no documentation to confirm this. Discarded hides, hide scrapings, hide shavings, and other tannery wastes are reported to have been disposed of at the former Town Dump, located on Burrows Road (underlying the current Crumb Trailer Park). Discarded hides have been found both near the former Hiteman Railroad Depot (i.e., on the current Ferguson Fuels property), on Burrows Road, as well as at the Hiteman Leather Site.

In addition, it was recently reported that waste materials from the Hiteman tannery may have been taken to the former "Fenton dump" on Stafford Road in East Winfield, NY, as well as to the former "Ludlow dump" (a current Superfund Site) in Paris, NY. However, follow up investigations on both matters could not corroborate the initial reports, or whether the possible disposals may have involved non-hazardous commercial refuse rather than hazardous wastes.

Untreated sewage is reported to have been discharged to the Unadilla River.

1.3.3 Historical Site Conceptual Model

Former waste disposal practices may have altered the natural vertical and horizontal flow of groundwater underlying the Site and surrounding areas. As illustrated on Figure 1-3 and in the historical conceptual model shown in Figure 1-4, water from the Unadilla River was diverted from the river into the facility through a process water intake, located up river of the Site. During periods of peak operations at the facility, the surface water flow within the river channel adjacent to the Site was significantly diminished. There are no facility records that quantify the amount of river water that was diverted into the facility to be used in the tannery process. Inside the facility, water became contaminated as it was mixed with wastes from the various steps of the tannery process. The resulting wastewater was discharged to the unlined lagoons via the unlined sluiceway on the southwest side of the building. Wastewater impounded within the lagoons was in direct hydraulic contact with the water-table aquifer. The wastewater was able to be in direct hydraulic contact due to the absence of a confining unit between the bottom of the lagoons and the water table. The contact would be even more evident during the wet periods when the water table was higher, resulting in no unsaturated zone between the bottom of the lagoon and the water table.

Due to the large volumes that were discharged into the lagoons, wastewater either overflowed onto surrounding areas or was pumped out and discharged to the north of the lagoons. In both cases, water eventually flowed into the onsite wetland, which discharged to the Unadilla River.

Within the Site, the predominant shallow groundwater flow direction is southwesterly toward the onsite wetland and Unadilla River, with water in the semi-confining unit and bedrock unit flowing in a westerly direction. The shallow aquifer receives much of its recharge from the underlying bedrock aquifer. Vertical groundwater flow within the aquifer system is generally upward, driven by the semi-confined nature of the

bedrock aquifer. However, when the former wastewater lagoons were full, the resulting hydraulic load produced a mounding effect in the water-table aquifer, resulting in downward and radially-directed flow beneath and surrounding the lagoons (Figures 1-4 and 1-5). The mounded wastewater exerted downward hydraulic pressure on the aquifer system and could periodically offset the natural upward gradient, facilitating downward migration of contaminants adjacent to the lagoons. This would have most likely occurred when the former wastewater lagoons were full and when the natural upward gradient was weak due to low head conditions in the bedrock aquifer.

The presence of mounded wastewater, exerting radially-directed hydraulic pressure on the aquifer system, would have facilitated contaminant migration from the lagoons, into areas of the water table aquifer otherwise unaffected by, or exposed to contaminant-laden process water. In addition, the diminished flow of the Unadilla River channel adjacent to the Site would have interrupted the river's natural hydrologic barrier effect for shallow groundwater flow, allowing contaminants to migrate from the lagoons, southerly, beyond the river channel.

1.3.4 Previous Investigations and Regulatory Activity

Several previous investigations have been conducted at the Site. NYS Department of Health (NYSDOH) conducted inspections in 1953 and 1960; NYSDEC began investigations in 1983 and conducted an RI/FS from 1988 to 1992. In 1996, the Site was referred to EPA for evaluation. A Site Investigation (SI) was conducted by EPA's Emergency Response Team (ERT). The following sections summarize analytical results from the investigations conducted by NYSDOH, NYSDEC, and the SI conducted by EPA.

1.3.4.1 NYSDOH Inspections

On November 11, 1953, the Water Pollution Control Section of the NYSDOH completed an Industrial Waste Survey of the Hiteman Leather Company Site. Wastewater effluent samples collected from two concrete dye tanks (derived from the coloring process) and the two wastewater lagoons (derived from the tan and beam houses) were collected during the inspection. Laboratory analyses of the samples indicated chromium at 23.0 parts per million (ppm) in effluent from the coloring process and chromium at 6.0 ppm in the wastewater lagoon overflow effluent. In addition, two water samples from the adjacent Unadilla River were collected and analyzed. Chromium was not detected in the sample collected upstream of the facility but was detected at 0.3 ppm in the downstream sample.

In May 1958, the Water Pollution Control Board held a conference due to continued release of untreated wastewater and sewage into the Unadilla River, and requested that the company submit final plans by July 1959 to abate the pollution to the river. However, the company was given permission to postpone action when the Village of West Winfield was also identified as a possible contributor to the pollution problem in the river.

In August 1959, a fish kill occurred in the Unadilla River near the Site. A New York State Pollution Unit investigation conducted the following day concluded that the fish kill was attributed to the overflow of toxic substances from the two wastewater lagoons. The two lagoons were observed to be half filled with settled solids, reducing the amount of wastewater the lagoons could hold and thereby reducing the retention time and allowing direct channeling of lagoon wastes into the river. Following this incident, the lagoons were dredged and a third wastewater lagoon was added. Dredge material was placed on the banks of the lagoons.

On October 11, 1960, the NYSDOH's Syracuse Regional Office conducted an inspection of the Hiteman Leather Company facility. Wastewater from the three lagoons was observed to discharge into the Unadilla River. According to the inspection report, a whitish discoloration was observed in the Unadilla River surface water and sludge deposits were noted in the streambed. Odors were also detected when the streambed was disturbed.

In 1967, NYSDOH determined that the Village of West Winfield was not a contributor to the pollution in the river, and therefore, the Hiteman Leather Co. was wholly responsible for the cost of constructing a wastewater treatment plant (then estimated at \$1 million). As a result, the company was forced to close in 1968. The facility was abandoned, the three wastewater lagoons were filled in, and the property was sold (NYSDEC 1987).

In 1996, the NYSDOH conducted an investigation at the Crumb Trailer Park in response to a report received by EPA that the tannery had disposed of tannery waste products at the former Town Dump, underlying the Crumb Trailer Park. Surface soil samples were collected during the NYSDOH's investigation of the Crumb Trailer Park.

1.3.4.2 NYSDEC Investigations

In October 1983, NYSDEC (Region 6) collected samples from the former Hiteman Leather Company plant. The results indicated that the soil samples taken from the bank of the Unadilla River directly below the former wastewater lagoon area contained elevated concentrations of chromium and nickel compared with background concentrations, as defined in Smith (1979). Soil samples taken from the "disposal area" contained arsenic, cadmium, chromium, and lead at concentrations at least 10 times greater than the background concentrations.

A Phase I investigation of the Site was conducted by Recra Research, Inc. (1985), to provide the information necessary to establish a potential risk score using the Hazard Ranking System (HRS). In 1985, the Site was added to the New York State (NYS) List of Inactive Hazardous Waste Disposal Sites.

An RI/FS was conducted from 1988 to 1992 by SAIC Engineering Inc., for the NYSDEC. The RI/FS included the installation and sampling of 24 monitoring wells, 10 piezometers, 13 soil borings, and the collection of 4 surface water, 20 surface soil, 8

wetland sediment, and 12 river sediment samples (NYSDEC 1992). Table 1-2a summarizes the activities performed as part of the NYSDEC RI/FS.

The subsurface investigation revealed that the Site is underlain by unconsolidated recent fluvial deposits and Pleistocene glacial deposits of variable thickness. Beneath the glacial deposits, thinly interbedded limestone and shale bedrock is encountered, likely part of the Middle Devonian Onondaga Formation. The glacial deposits consist of a sandy surficial outwash deposit, ranging in thickness from 1.5 feet on the northern edge of the Site to 22 feet in the former wastewater lagoon area underlain by a fine-grained glacio-lacustrine deposit, ranging in thickness from 9 feet on the southwestern side of the Site to 30 feet on the northeastern portion of the Site.

Fifteen shallow monitoring wells were installed within the surficial glacial outwash deposits and screened at the water table. Seven deep wells were screened at unknown depths in the underlying glacio-lacustrine unit and two bedrock wells were installed in the underlying Onondaga Formation to monitor the bedrock aquifer. After installation, the two bedrock wells south of the Unadilla River began flowing groundwater, indicating they were screened in an aquifer under artesian conditions. The hydrostatic head in these wells was measured at more than 11 feet above the ground surface. Based on these extreme conditions, SAIC concluded that Site contaminants could not have migrated into the bedrock aquifer and no further bedrock monitoring well installation was proposed.

Study results documented the presence of high levels of trivalent chromium in the former wastewater lagoon area soils and indicated contamination throughout the Site. Hexavalent chromium was also found in the soil at low concentrations (maximum concentration detected was 4.2 ppm). Other heavy metals, pesticides, polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), and semivolatile organic compounds (SVOCs) were also detected, at lower concentrations, throughout the Site in various environmental media. Based on the results of the RI/FS, NYSDEC subsequently referred the Site to EPA.

1.3.4.3 EPA ERT Site Investigation

Although the initial RI provided a general characterization of Site contaminants, a large portion of the analytical data was rejected because of quality assurance/quality control (QA/QC) protocol violations. The SI conducted by EPA's ERT in 1996 further defined the nature and extent of contamination at the Site. SI activities included the analysis of samples from soil, sediment, groundwater, and surface water (EPA 1997b). Table 1-2a summarizes the activities performed as part of the EPA ERT SI. The following sections summarize the SI results.

Summary of Soil and Sediment Sampling

During the SI, soil and sediment samples were collected from the locations shown on Figure 1-6. About 200 investigative samples were field-analyzed for chromium with an X-ray fluorescence (XRF) spectrometer and for total organic carbon (TOC). Approximately 10 percent of these samples were also submitted to a Contract

Laboratory Program (CLP) laboratory for analysis of Target Compound List (TCL) and Target Analyte List (TAL) parameters. These samples were also analyzed for total chromium, hexavalent chromium, and Resource Conservation and Recovery Act (RCRA) metals by the Toxicity Characteristic Leaching Procedure (TCLP). The analytical results are discussed below.

Chromium Results

A total of 236 soil samples (including QC samples) were collected for XRF analysis at 50 locations. Samples were collected at 2-foot intervals from depths ranging from the surface to 15 feet below ground surface (bgs); however, the majority of samples were collected from depths less than 8 feet bgs. Concentrations ranged from not detected (at a detection limit of 210 milligrams per kilogram [mg/kg]) to 75,000 mg/kg in sample Q-17-0, where "Q-17" designates the sampling location and "0" designates the depth bgs in feet. Of the 236 samples, 37 had chromium concentrations greater than 10,000 mg/kg; 115 had concentrations up to 10,000 mg/kg; and 84 had no detected chromium. Four sediment samples (including one duplicate sample) were collected from three Unadilla River locations for chromium analysis by XRF. The upstream location (UR-1) had no detectable chromium, and two had concentrations less than 10,000 mg/kg (UR-2 at 4,200 mg/kg and the duplicate of UR-3 at 270 J mg/kg). Soil and sediment samples with XRF chromium concentrations greater than 10,000 mg/kg are listed in Table 1-3; Table 1-3 shows that some sample locations had chromium concentrations greater than 10,000 mg/kg at multiple depths. Figure 1-6 presents the soil sampling locations; however, only the single sampling location is shown with no indication of the depth of the samples.

Thirty-one soil and sediment samples were collected for analysis of total chromium and 17 for analysis of hexavalent chromium by the CLP. These samples included three "reference" samples that, although not statistically suitable for use as background, can be used for semi-qualitative comparisons. The reference sampling locations are not shown on Figure 1-6. Concentrations of total chromium ranged from 7 mg/kg (sample C-14-2) to 50,000 mg/kg (sample T1-M20-C-5) with 12 samples, including 1 sediment sample, having concentrations greater than 1,000 mg/kg. Samples with total chromium concentrations greater than 1,000 mg/kg are listed in Table 1-3; sampling locations are shown on Figure 1-6. The 3 reference samples had total chromium concentrations of 16, 19, and 290 mg/kg. Of the 17 samples collected for hexavalent chromium analysis, only 1 sample (H-16-3.5) had detectable hexavalent chromium at a concentration of 4.3 mg/kg.

In general, the chromium soil results indicated three distinct areas of chromium contamination:

In the former wastewater lagoon area, surface and subsurface samples were collected primarily around the suspected edges of the lagoons. Consistent with lagoon closure practices, which simply involved filling to grade, the highest chromium concentrations were in subsurface soil at depths from 2 to 6 feet. However, almost all surface soil samples and subsurface soil samples collected from depths between 6 feet bgs and the termination of the borehole (usually 8 feet bgs) also had XRF chromium concentrations greater than 1,000 mg/kg. Because the samples collected near the suspected edges of the former wastewater lagoons had significantly elevated chromium concentrations, the actual boundaries of the former lagoon area may be further out than previously thought.

In the wetland area west of the former wastewater lagoons, surface and subsurface soil samples were collected from the central portion of the wetland. Surface soil samples collected from almost every sampling location had XRF _ chromium concentrations greater than 10,000 mg/kg. The fact that surface soil samples had significantly higher concentrations than subsurface soil samples is consistent with the former facility's reported practice of discharging wastewater to this area during periods of low flow in the Unadilla River. Chromium in subsurface soils was significantly less than surface soils, but was still elevated, ranging up to 8,000 mg/kg in samples do not correspond with higher concentrations in surface soil samples do not correspond with higher concentrations were in the central portion of the wetland, the lateral extent of chromium contamination within and potentially outside the wetland is not fully known.

In the area north of the former wastewater lagoons, the highest concentrations of chromium were found at the surface, similar to the wetland area. Chromium in this area was likely deposited by overland flow when the former lagoons occasionally overflowed. However, subsurface soil samples also had XRF chromium concentrations greater than 1,000 mg/kg.

Other smaller areas of chromium contamination also exist on the Site, including the sluiceway area between the lagoons and the process building. XRF and CLP samples collected at locations Sluiceway-1, Sluiceway-2, G-26, and F-28 indicate chromium contamination in this area is likely the result of leaks and spillage from the sluice that transported wastewater from the process building to the former lagoons. In addition, this contamination appears to extend down to the terminal samples collected from G-26 and F-28. In addition, elevated total chromium in sediment samples UR-2 and UR-3, located adjacent and downgradient, respectively, of the Site indicate prior discharges to surface water from the facility. Finally, soil samples collected south of the Unadilla River potentially indicate a larger area contaminated with lower concentrations (not detected to 1,300 mg/kg) of chromium.

TAL Inorganic and TCLP Results

A summary of metals detected in soil and sediment samples is provided in Table 1-4. During the SI, 23 onsite and 3 reference samples (including 2 sediment samples) were collected for TAL analysis. The SI report compared samples collected on site to the reference samples collected off site and concluded that mercury and lead were found at slightly higher concentrations on site. Concentrations of mercury in the reference

samples ranged from 0.08 to 0.19 mg/kg. Of the 23 samples, E-20-0 (2.1 mg/kg) and H-22-2 (1.1 mg/kg) appear elevated relative to the reference samples. Concentrations of lead in the three reference samples ranged from 22 to 43 mg/kg. The majority of onsite samples contained lead at less than 100 mg/kg; however, three samples, F-28-2 (200 mg/kg), T1-M20-C-5 (200 mg/kg), and Sluiceway-2 (280 mg/kg) equaled or exceeded 200 mg/kg. Other metals, including arsenic and cadmium, also appear to be elevated in some samples.

Seventeen samples (including QC samples) were collected for analysis of RCRA metals by TCLP. None of the samples exceeded regulatory levels. Silver and mercury were not detected in any TCLP extract. Chromium concentrations, which ranged up to 280 micrograms per liter (μ g/L) in sample -22-2, were more than one order of magnitude below the regulatory limit of 5,000 μ g/L. All other metal concentrations were at least two orders of magnitude lower than their respective regulatory limits.

TCL Organic Results

During the SI, 17 soil and sediment samples were collected for TCL VOC analysis; 19 samples (including 2 sediment samples) were collected for TCL SVOC and pesticide/PCB analysis. The SI results do not indicate significant, wide-spread organics contamination. However, several samples contained relatively high concentrations of VOCs or SVOCs, as detailed below.

VOCs were detected in five samples as listed in Table 1-5. In four of the samples, few VOCs were detected, concentrations were relatively low, and some of the VOCs detected are probably attributable to laboratory contamination. However, sample T1-M-20-C-5 contained 15 different VOCs with a total VOC concentration of 43 mg/kg. No unusual soil characteristics were noted at that sampling location and interval, which consisted of gravel and cobbles with intermixed sands. In addition, screening for organic vapors with a flame ionization detector (FID) yielded a maximum reading of 5 ppm at a depth of 5 feet bgs.

SVOCs were detected in eight samples as listed in Table 1-6, consisting primarily of polycyclic aromatic hydrocarbons (PAHs). Individual SVOC concentrations ranged from not detected to 25,000 micrograms per kilogram (μ g/kg) (phenanthrene) which was detected in sample F-28-2. Total SVOC concentrations ranged from 1,200 μ g/kg to 150,000 μ g/kg in sample F-28-2. According to the SI report, sample F-28-2 contained black asphaltic material that resembled roofing shingles.

No PCBs were detected, however, pesticides were detected in five samples. The highest pesticide concentrations were found in sample -22-2, with alpha and gamma chlordane at concentrations of 35 and 31 µg/kg, respectively. Other detected pesticides were below 10 µg/kg.

Summary of Surface Water Sampling

As part of the 1996 SI, surface water samples were collected at the same three locations as the sediment samples (Figure 1-6). All three samples were analyzed for TCL

organics and TAL metals (filtered and unfiltered). Sample UR-2, adjacent to the wetlands and west of the former wastewater lagoons, had the highest concentrations of metals in the filtered and unfiltered samples, as shown in Table 1-7. Chromium was not detected in samples UR-1 and UR-3 but was detected in UR-2 at 33 μ g/L (unfiltered) and 5.7 μ g/L (filtered). Eight other TAL metals were detected in surface water samples, including aluminum, barium, calcium, iron, magnesium, manganese, sodium, and zinc. Except for aluminum, concentrations of metals in unfiltered and filtered samples were similar, indicating that the majority of the analytes were in the dissolved fraction. Conversely, aluminum was only detected in the unfiltered samples, indicating that this analyte is associated with suspended particles.

According to the SI report, no sample exceeded federal maximum contaminant levels (MCL) or NYS surface water criteria. However, inorganic contaminant loading to surface water from the Site appears to have been occurring when the SI samples were collected. For the majority of analytes, concentrations are higher in UR-2 than in the other two samples. The pattern of higher concentrations coupled with elevated chromium in the co-located sediment sample, suggests that contamination from the Site was potentially discharging to the Unadilla River.

No TCL VOCs, SVOCs, pesticides, or PCBs were detected in the surface water samples.

Summary of Groundwater Sampling

During the 1996 SI, groundwater samples were collected from 21 existing Site wells which are shown on Figure 1-7. All samples were analyzed for unfiltered and filtered total chromium and unfiltered hexavalent chromium; four samples were analyzed for unfiltered and filtered TAL metals; and five samples were analyzed for unfiltered TCL organics. The results are discussed below.

Chromium Results

Total chromium was detected in 71 percent (15 of the 22 wells) of the unfiltered groundwater samples and in none of the filtered groundwater samples. The unfiltered chromium concentrations in shallow monitoring wells ranged from not detected to $1,000 \ \mu g/L$ in monitoring well MW-3S and in deep monitoring wells ranged from not detected to $690 \ \mu g/L$ in monitoring well MW-11D. Hexavalent chromium was not detected in any groundwater samples. Analytical results for chromium in groundwater are listed in Table 1-8.

According to the SI, the distribution of chromium in groundwater below the Site is anomalous. The highest concentrations of chromium in shallow groundwater were detected in monitoring wells that appear to be hydrogeologically upgradient of the Site. The two highest chromium concentrations in shallow monitoring wells are 210 and 1,000 mg/L in MW-12S and MW-3S, respectively. Further, in the two deep monitoring wells with the highest concentrations of chromium, MW-4D (300 μ g/L) and MW-11D (690 μ g/L), the respective shallow wells have a relatively low concentration of chromium.

Final Remedial Investigation Report

1-13

The SI report suggests several reasons for the anomalies, including water table mounding caused by the former wastewater lagoons, which could produce localized reversals of groundwater flow; the high density of the wastewater responsible for the contamination; an upward vertical gradient from the deeper aquifer to the shallow, water table aquifer; and opposing directions of groundwater flow in the upper and lower aquifers.

TAL Metals

Filtered and unfiltered groundwater samples for analysis of TAL metals were collected from monitoring wells MW-5S; MS-6S, MW-13D, and MW-14S. The analytical results for these samples are presented in Table 1-7. With the exception of chromium, the results do not indicate inorganic contamination of groundwater. No analytes except chromium exceed NYS groundwater standards or federal MCLs. However, the groundwater sample collected from MW-14S has consistently higher concentrations of inorganics relative to the other wells samples. Conversely, MW-14S is seemingly upgradient of the Site and should not be affected by groundwater contamination from the Site. In addition, as discussed below, MW-14S is the only monitoring well sampled that contained VOCs and SVOCs.

TCL Organics

Unfiltered groundwater samples were collected from monitoring wells MW-5S, MS-6S, MW-13D, and MW-14S for analysis of TCL organic parameters. No pesticides or PCBs were detected. Only monitoring well MW-14S contained VOCs and SVOCs, with 2 SVOCs at concentrations below 10 μ g/L and 12 VOCs at concentrations up to 130 μ g/L. None of the organic compounds detected exceed MCLs. The compounds detected and their concentrations are listed in Table 1-9.

Miscellaneous Results

During the SI, a structural evaluation of the facility buildings was performed. It concluded that, with the exception of the 1946 concrete and steel section of the building complex, all of the other attached structures, including the brick stack and powerhouse, were structurally unsound. The evaluation indicated that asbestos pipe covering was found throughout the buildings. Visible signs of erosion along the northern bank of the Unadilla were noted. River bank stabilization with rip-rap was recommended.

In 1996, an asbestos removal was conducted at the Site and the structurally unsound building areas and the stack were demolished. Approximately 500 feet of rip-rap was installed along the northern bank of the Unadilla River to stabilize the bank.

On May 15, 1996, NYSDOH collected five surface soil samples, including one background sample, at the Crumb Trailer Park. The samples were analyzed for metals. Chromium levels ranged from 30 to 303 μ g/gram. According to the NYSDOH, these levels were higher than expected to occur naturally in soil, but not high enough to be expected to cause health effects (NYSDOH 1996).

1-14

An HRS evaluation was conducted for the Site in August 1998. Based on the 1996 SI, the Site was assigned an HRS score of 50. The Hiteman Leather Site was proposed for the NPL in September 1998 and was subsequently listed on January 19, 1999.

1.4 Report Organization

The RI report is organized in the following manner with tables and figures presented after each section.

Section 1 Introduction, presents an overview of the Hiteman Leather Site, summarizes the Site history, and presents the results of previous Site investigations.

Section 2 Study Area Investigations, describes the methodology and sampling rationale for the various investigations conducted for the RI.

Section 3 Physical Characteristics of the Study Area, describes the physical attributes of the study area, including surface topography, meteorology, surface water hydrology, geology, and hydrogeology. Sections on demography, land use, and ecology describe the area's demographic and human and ecological receptors.

Section 4

4 Nature and Extent of Contamination, lists the surface water, sediment, soil, groundwater, and fish tissue screening criteria and/or standards against which Site data were screened to determine the extent of contamination and describes the type and extent of contamination determined to be present in each media at the Site.

Section 5

Contaminant Fate and Transport, evaluates the persistence and mobility in the environment of the various types of contamination identified, and summarizes the applicable fate and transport mechanisms for each media, based on physical characteristics.

Section 6

Status of Risk Assessment, summarizes the contents of the Human Health Risk Assessment and the Screening Level Ecological Risk Assessment

Section 7

Summary and Conclusions, summarizes the significant determinations of the RI.

Section 8 References.

Chronology of Events Hiteman Leather Site West Winfield, New York

Year	Event
1820	First record of tannery, owned by Mr. Adsit
1823	Rufus Wheeler purchased tannery; the tannery remained in the Wheeler family for 60 years
1884	Tannery bought by Henry and John Hiteman together with partner Ezra D. Beckwith; they expand the leather business, calling it Beckwith-Hiteman Brothers
1913	Tannery became known as Hiteman Leather Company
1922	Hiteman Leather Company was incorporated
1931	Property behind the tannery was purchased for the installation of two wastewater lagoons
1946	Modern factory building added to join the old plant along the north side at a cost of about \$200,000
1953	New York State Department of Health conducted an Industrial Waste Survey. Aqueous samples were collected from the concrete dye tanks, wastewater lagoons and Unadilla River. Chromium was detected in all samples at 23.0, 6.0 and 3.0 ppm, respectively.
1958	May - Meeting with Water Pollution Control Board; Hiteman agrees to retain the services of an engineer for the purpose of upgrading waste treatment facilities
	July - Permission given to postpone action until Village of West Winfield could decide on actions relative to village water pollution control; joint project with village was to be undertaken
1959	Third wastewater lagoon was added i.e., as a result of a fishkill in the Unadilla River attributed to run-off from the lagoons
1964	Morell Vrooman Engineers submit preliminary report on village sewer system and sewage treatment plant
1967	State Health officers conduct sampling for pollution by property owners of village; village judged not to be a polluter of area surface waters
1968	Hiteman Leather terminated operations after receiving citation from the New York Department of Health as a contributor of pollution to the Unadilla River; economics prevent Hiteman Leather from construction of an adequate waste treatment facility
1969	Earl Davis of Clinton, New York, purchased the Hiteman Leather property
1970s - 1982	The tannery buildings were rented to various small businesses (i.e. a cookie company, a tire company, etc.). The buildings were no longer rented after 1982 and gradually deteriorated, resulting in their later demolition.
1983	New York State Department of Environmental Conservation collected water and sediment samples from the Unadilla River; analytical results indicated elevated levels of chromium, copper, lead, mercury, nickel, selenium, silver, zinc, beryllium, antimony, arsenic, and cadmium

CDM

Page 1 of 2

\\Nysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Final RI Tables\FINTab1-1_chron_of_events.wpd

11

Chronology of Events Hiteman Leather Site West Winfield, New York

Year	Event
1984	Proposal to construct a senior citizens housing project was abandoned due to concerns regarding potential environmental and human health hazards associated with the Site
1985	Engineering investigations at inactive hazardous waste sites in the State of New York; Hiteman Leather Company, Village of West Winfield, Herkimer County, New York, site no. 622007, prepared for New York State Department of Conservation by Recra Research, Inc.
	The site receives a Hazard Ranking System score of 43.98
1986	New York State Department of Environmental Conservation conducted analysis of groundwater samples from the three village wells; analytical results do not indicate the presence of organics or metals except one sample that shows zinc at a concentration of 0.02 milligrams per liter
1987	The New York State Department of Environmental Conservation, Division of Solid and Hazardous Waste invited five firms to submit proposals for a remedial investigation and feasibility study for the Hiteman Leather Site
1988	GHR Engineering Associates, Inc., approved to conduct investigation
1992	Record of Decision filed by New York State Department of Environmental Conservation that referred the Hiteman Leather Site to EPA for further evaluation
1994	EPA fenced the northern area of the Hiteman Leather Site
1996	EPA reinforced the northern bank of the Unadilla River with 500 feet of rip rap to prevent erosion of the river bank and to limit the potential release of contaminants from the adjacent lagoon area along the river
	EPA also evaluated the former tannery buildings and discovered asbestos pipe coverings and that all structures except for the 1946 concrete and steel section of the building complex were unsound
	EPA performed asbestos removal and demolished all unsound structures
	New York State Department of Health conducted surface soil sampling at the Crumb Trailer Park in response to a report received by EPA during 1996 that tannery wastes had been disposed at the former Town Dump, now underlying the Crumb Trailer Park
1998	The 1946 concrete and steel building was demolished by the estate of the deceased owner
1999	Hiteman Leather Site listed on EPA's Superfund National Priorities List and EPA contracted with CDM to conduct RI/FS to support the selection of remedy for the site

Source:

SAIC Engineering, Inc., 1992. Remedial Investigation Report, Hiteman Leather Company, prepared for the New York State Department of Environmental Conservation, February.

Page 2 of 2

\\Nysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Final RI Tables\FINTab1-1_chron_of_events.wpd

Generic Chemicals Used in the Tannery Process Hiteman Leather Site West Winfield, New York

Process Chemical	Generic Tannery Process Chemicals
Diethylamine Sulfate	(CH ₃)2NH H ₂ SO ₄ (35 to 40%)
Leukanol HPS	Napthalene sulfonic acid - formaldehyde condensate
Orotan TV	
Tamol N	Neutral naphthalene sulfonic acid - formaldehyde condensate
Tamol L concentrate	
Indulin A	Alkaline lignin compound
Sodium citrate	Na ₃ C ₆ H ₅ O ₇ .5/2 H ₂ O
Oxalic acid	(COOH) ₂ .2H ₂ O
Sodium thiosulfate	Na ₂ S ₂ O ₃
Betasol Wetting Agent OT	Sodium dioctyl sulfo succinate (75% Aquaeous)
Oropon FS	95% (HN₄)₂SO + 5% enzymes
Oropon AB-SP	(HN₄)₂SO₄ + enzymes
Sodium sulfide	62% Na ₂ S
Sulfide ion	S ²⁻
Tanolin R	Basic chromic sulfate
Hydroxyacetic acid	СН₂ОНСООН
Sodium fulmate	HCOONa
Sodium acetate	CH₃COONa
Purex Quebracho	Tannin
Slaked lime	Ca(OH) ₂
Calcium formate	Ca(HCOO) ₂
D-1 Oil	Oil
Quebracho	Tannin
Lactic Acid (30%)	СН₃СНОНСООН
Gambade	
Koreon M	Chromic sulfate

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-2(tan-chems).wpd

Page 1 of 3

Generic Chemicals Used in the Tannery Process Hiteman Leather Site West Winfield, New York

Process Chemical	Generic Tannery Process Chemicals
Tanbark H	Tannin
Upper Tan	Tannin
Triton 770 concentrate	Alkylaryl polyether sulfate
Stoddard Solvent No. 510	Hydrocarbon
Kerosene	Hydrocarbon
Tergitol Anionic 4	
Tergitol Nonionic 7	-
Tergitol Anionic 08	$C_4H_9CHC_2H_5CH_2SO_4Na$
Tergitol Anionic NP14	
Tergitol Nonionic NP27	
Tergitol Anionic P28	(C ₈ H ₁₇) ₂ NaPO ₄
Tergitol Nonionic TMN	
Tergitol Nonionic NP35	
Tergitol Nonionic NPX	
Methocel	Methyl cellulose
G-942	Syntan
Quilon M	Organic chrome complex in isopropanol
Emulphor EL719	Polyeoxyethylated vegetable oil
Solidigen LT13	Cationic resinous fixing agent
Tanigan DNLA	Sulfonated dihydroxy diaryl sulfone - diphenoyl propane
Blancol	Sodium nahthalene sulfonate - formaldehyde
Maraton H	
Maraton B	
Tanak AA	Naphthalene sytan
Tanak CNS	Naphthalene sytan
Tanak A	Naphthalene sytan

CDM

Page 2 of 3

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-2(tan-chems).wpd

Generic Chemicals Used in the Tannery Process Hiteman Leather Site West Winfield, New York

Process Chemical	Generic Tannery Process Chemicals
Tanak DN	Naphthalene sytan
Tanak MRX	Naphthalene sytan
Suprak 57	Phenolic syntan
Suprak 58	Phenolic syntan
Suprak 59	Phenolic syntan
Sodium chloride	
Sterizol	
Sulfuric Acid	
Soda Ash	
Ammonium chloride	
Titanium dioxide	
Soyarich flour	
Semi-sol glue	
Chromic Oxide	

Source:

Maselli, J.W., et. al., Tannery Wastes, Pollution Sources and Methods of Treatment, New England Interstate Water Pollution Control Commission, June 1958.

Page 3 of 3

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-2(tan-chems).wpd

Table 1-2a

Summary of Previous NYSDEC and EPA Investigations Hiteman Leather Site West Winfield, New York

Year	Agency and Investigation	Previous Field Activities						
1988-1992	NYSDEC RI/FS	 Installed and sampled 24 monitoring wells (15 shallow, 7 deep, and 2 bedrock wells) Abandoned 2 bedrock monitoring wells Installed piezometers Advanced 13 soil borings Collected and analyzed 20 surface soil samples Collected and analyzed 4 surface water and 12 sediment samples from the Unadilla River Collected and analyzed 8 wetland sediment samples 						
1996	EPA ERT SI	 Advanced 50 soil borings (including 11 in the former lagoon area suspected edges, and 11 in the onsite wetland) to approximately 15 feet below ground surface Screened 236 surface soil, subsurface soil, and sediment samples for chromium via onsite XRF analysis Collected and analyzed 10% of XRF samples for laboratory analysis (including 21 soil samples and 2 sediment samples) Collected and analyzed groundwater samples from 21 existing monitoring wells (including filtered and unfiltered samples for inorganic analytes) 						

CDM

. X:\WA 032\RI\Final RI\Final RI Tables\FINTab1_2a_prev invest.wpd

Page 1 of 1

Chromium Analytical Results - Soil and Sediment Samples X-Ray Fluorescence Concentrations Greater than 10,000 mg/kg and Laboratory Concentrations Greater than 1,000 mg/kg 1996 EPA ERT Site Investigation **Hiteman Leather Site** West Winfield, New York

Sample Number	X-Ray Fluorescence Result (>10,000 mg/kg)	Laboratory Result (> 1,000 mg/kg)
050N-025W-0	71,000	
050N-125W-0	21,000	
100N-025W-0	32,000	
100N-025W-0 (duplicate)	34,000	
100N-075W-0	51,000	- .
100N-125W-0	37,000	
150N-025W-0	67,000	
150N-125W-0	52,000	· ·
F-28-2	15,000	4,700
G-10-0		12,000
G-10-2		4,700
G-26-0	44,000	
G-26-2	72,000	
G-26-4		3,500
G-26-6	21,000	
H-12-2	13,000	
H-14-4		3,800
H-20-4	36,000	
H-22-2		20,000
L-13-2	13,000	
L-13-4	11,000	
M-19-0	13,000	
M-19-2	13,000	
M-19-4	26,000	

CDM

Page 1 of 2

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-3(cr_in_soil).wpd

TABLE 1-3 (continued)

Chromium Analytical Results - Soil and Sediment Samples X-Ray Fluorescence Concentrations Greater than 10,000 mg/kg and Laboratory Concentrations Greater than 1,000 mg/kg 1996 EPA ERT Site Investigation Hiteman Leather Site West Winfield, New York

Sample Number	X-Ray Fluorescence Result (>10,000 mg/kg)	Laboratory Result (> 1,000 mg/kg)
M-22-2	37,000	15,000
M-22-4	36,000	
M-22-6	28,000	
M-22-6 (duplicate)	24,000	 * *
P-20-0	33,000	
P-20-2.5-A	46,000	
P-20-4	13,000	~-
P-20-6	26,000	
Q-10-0		45,000
Q-17-0	75,000	
Q-17-2	47,000	
Q-17-2 (duplicate)	43,000	
Q-17-4	15,000	
Q-20-0	25,000	
Q-20-0 (duplicate)	23,000	·
Q-20-2	60,000	
R-14-0	42,000	
S-20-0	22,000	
T1-M20-C-5	32,000	50,000
Sluiceway-1-0		1,100
Sluiceway-2-0		2,400
UR-2		6,700

Notes:

-- = Not analyzed

CDM

Page 2 of 2

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-3(cr_in_soil).wpd

Summary of TAL Metals in Soil and Sediment Samples 1996 EPA ERT Site Investigation Hiteman Leather Site West Winfield, New York

Analyte (mg/kg)	E-20-0'	F-28-2'	H-14-4'	O-23-2'	U-22-2'	T1-M-20-C-5'	Sluiceway-1	Sluiceway-2	UR-2
Aluminum	5,100	990	5,400	18,000	13,000	4,000	3,500	4,400	7,400
Arsenic	3.8	52	3.3	4.8	4.6	2.6	17	41	3.4
Barium	44	240	57	85	60	47	54	390	130
Beryllium	ND	0.46	ND	1.3	0.83	ND	0.79	1	ND
Cadmium	ND	ND	4.5	ND	ND	ND	0.85	0.98	2.7
Calcium	58,000	4,400	130,000	2,600	1,400	200,000	13,000	19,000	77,000
Chromium	45	4,700	3,800	23	19	50,000	1,100	2,400	6,700
Cobalt	4.7	3.6	3.9	16	16	ND	4.4	6	4.6
Copper	10	_50	17 .	22	23	60	65	34	21
Iron	12,000	40,000	12,000 -	34,000	30,000	5,500	12,000	20,000	16,000
Lead	• 44	200	99	19	18	200	78	280	93
Magnesium	2,600	. 140	2,700	4,500	4,000	3,200	1,200	1,300	3,300
Manganese	250	26	290	460	440	260	82	250	760_
Mercury	2.1	0.2	0.3	0.04	0.04	0.31	0.13	0.22	0.14
Nickel	12	6.6	10	45	39	7.4	14	16	14
Potassium	470	390	400	1,100	980	. ND	330	700	850
Selenium	ND .	2.1	ND	ND	ND	ND	0.71	1.1	· ND
Silver	ND	ND	ND	ND ·	ND	1	ND	ND	ND ·
Sodium	94	280	490	140	ND	1,500	230	160	470
Vanadium	10	22	19	28	23	82	16	18	30
Zinc	76	45	68	88	83		110	120	210

Page 1 of 2

Table T-4

Summary of TAL Metals in Soil and Sediment Samples 1996 EPA ERT Site Investigation Hiteman Leather Site West Winfield, New York

Analyte (mg/kg)	Building East-0'	Building East-2'	Building West-0'	Reference III-1	Reference III-2	Reference III-3
Aluminum -	2,300	15,000	1,600	9,800	9,600	9,800
Arsenic	2.3	4	2.1	7.7	7.7	5.9
Barium	17	59	12	50	69	81
Beryllium	ND	0.84	ND	0.77	0.9	0.65
Cadmium	ND	ND	ND	ND	0.8	ND_
Calcium	230,000	5,100	270,000	3,100	7,200	33,000
Chromium	13	21	12	16	19	290
Cobalt	0.89	. 13	1.5	9.3	9.2	7.6
Copper	9.7	19	8	13	16	70
Iron	5,700	29,000	5,900	23,000	23,000	19,000
Lead	37	20	46	22	32	43
Magnesium	6,800	4,300	9,200	2,400	2,600	3,800
Manganese	130	330	120	640	1,300	480
Mercury	ND	0.06	ND	0.08	0.13	0.19
Nickel	6.3	38	5.8	20	21	20
Potassium	ND	1,300	ND	110	1,200	1,100
Selenium	0.75	ND	0.71	ND	ND	0.61
Silver	ND	ND	ND	ND	ND	ND
Sodium	370	130	380	ŃD	ND	130
Vanadium	7.8	25	6.9	22	23	19
Zinc	39	86	46	83	100	120

CDM X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-4(met_in_soil).wpd

Page 2 of 2

Summary of Analytical Results for VOCs in Soil Samples 1996 EPA ERT Site Investigation Hiteman Leather Site West Winfield, New York

Compound	F-28-2'	H-14-4'	H-16-3.5'	U-22-2'	T1-M-20-C-5'
Acetone	ND	710	10	ND	340
2-Butanone	ND	100	ND	ND	81
Benzene	7	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	17
p&m - Xylene	ND	ND	ND	ND	4,300
o-Xylene	ND	ND ¹	ND	ND	8.8
Isopropylbenzene	ND	ND	ND	ND	510
n-Propylbenzene	ND	ND	ND	ND	4,200
1,3,5 - Trimethylbenzene	ND	ND	ND	ND	5,600
1,2,4 - Trimethylbenzene	ND	3.8	ND	ND	15,000
sec-Butylbenzene	ND	ND	ND	ND	120
1,3-Dichlorobenzene	ND	ND	ND	ND	6.2
p-lsopropyltoluene	ND	ND	ND	ND	3,100
1,4 Dichlorobenzene	ND	ND	ND	ND	4.3
n-Butylbenzene	ND	ND	ND	ND	210
Naphthalene	210	3.0	ND	3.7	210

Notes: Reported in micrograms per kilogram (µg/kg), dry weight ND = Not Detected

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-5(voc_in_soil).wpd

Page 1 of 1

Table T-6

Summary of SVOCs in Soil and Sediment Samples 1996 EPA ERT Site Investigation Hiteman Leather Site West Winfield, New York

Compound (ug/kg)	C-14-2	E-20-0	F-28-2	G-26-4	Sluiceway-1	Sluiceway-2	T1-M-20-C-5	UR-1
Naphthalene	ND	ND	11,000	1,200	ND	1,600 J	1,500 J	ND
4-chloro-3-methylphenol	ND	ND	ND	180 J	ND	ND	ND	ND
2-methylnaphthalene	ND	ND	2,500 J	140 J	ND	ND	ND	ND
Acenaphthylene	ND	ND	2,600 J	ND	ND	ND	ND	ND
Dibenzofuran	ND	ND	3,100 J	100 J	ND	ND	ND	ND
Phenanthrene	ND	ND	25,000	1,200	ND	ND	630 J	740J
Anthracene	ND	ND	5,300	[′] 340 J	ND	ND	ND	ND
Carbazole	ND	ND	3,600 J	140 J	ND	ND	ND	ND
Fluoranthene	220 J	610 ⁻ J	21,000	1,300	ND	ND	ND	1,300J
Pyrene	150 J	480 J	17,000	840	1100 J	ND	ND	1,100J
Benzo(a)anthracene	130 J	ND	10,000	490 J	ND	ND	ND	ND
Chrysene	130 J	300 J	9,800	520	1300 J	ND	ND	660J
Benzo(b)fluoranthene	110 J	ND	8,500	550	850 J	ND	ND	ND
Benzo (k)fluoranthene	140 J	ND	9,200	610	1000 J	ND	ND	ND
Benzo(a)pyrene	150 J	290 J	8,700	580	ND	ND	ND	410J
Indeno(1,2,3-cd)pyrene	80 J	ND	6,400	240 J	ND	ND	ND	ND
Dibenzo(a,h)anthracene	ND	ND	1,700 J	65 J	ND	ND	ND	ND
Benzo(g,h,i)perylene	80 J	ND	6,000	220 J	ND	ND	ND	ND
Total SVOCs	1,200	1,700	150,000	8,700	4,300	1;600	2,100	4,200

Notes:

All units in ug/kg

ND = Not Detected

J = Estimated value

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-6(svoc_in_soilsed).wpd

Page 1 of 1

Analytical Results of TAL Metals in Groundwater and Surface Water Samples 1996 EPA ERT Site Investigation Hiteman Leather Site West Winfield, New York

Sampling Location	Aluminum	Arsenic	Barium	Calcium	Chromium	Iron	Magnesium	Manganese	Nickel	Potassium	Sodium	Vanadium	Zinc
MW-13D	ND	ND	120	70,000	ND	ND	11,000	39	ŅD	ND	5,000	ND	ND
MW-13D	3,800	4.2	140	88,000	5:3	3,300	13,000	100	ND	2,800	5,100	7.5	5.8
MW-14S	ND	ND	89	110,000	ND	ND	9,900	1,100	ND	2,600	34,000	ND	ND
MW-14S	7800	7.0	130	110,000		9,400	12,000	1,200	13	4,600	35,000	16.0	34.0
MW-5S	. ND	3.2	82	96,000	ND	1,300	9,400	860	ND	ND	11,000	ND	ND
MW-5S	ND	4.7	90	98,000	ND	2,300	9,400	1,000	ND	ND	11,000	ND	ND;
MW-6S	ND	4.3	60	84,000	ND	1,000	9,800	220	ND	ND	9,000	ND	ND
MW-6S	110	3.2	56	80,000	ND	1,100	9,300	200	ND	NĎ	8,400	ND	ND
UR-1	ND	ND	31	70,000	ND	ND	6,700	8.8	ND	ND	4,600	ND	9.2
UR-1	77	ND	31 ³³⁵	70,000	ND	160	6,700	15	ND	ND	4,400	ND	ŇĎ
UR-2	ND	ND	54	100,000	5.7	32	5,800	37	ND	ND	13,000	ND	ND
ั ป ี่R-2	160	ND	53	96,000	33	210 -	5,700	51	ND	ND.	14,000	ND	ND
UR-3	ND	ND	31	71,000	ND	28	7,300	4.9	ND	ND	4,600	ND	14
UR-3	80	ND	30	69,000	ND	160	7,200	13	ND	ND	4,300	ND	ND

Notes:

Reported in micrograms per liter (µg/L)

ND = Not Detected

Shaded samples indicate unfiltered samples, unshaded samples indicate filtered samples UR samples are from the Unadilla River

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-7(metals_in_water).wpd

Page 1 of 1

.

Total and Hexavalent Chromium Analytical Results in Groundwater Samples 1996 EPA ERT Site Investigation Hiteman Leather Site West Winfield, New York

Sample Location	Chromium (Filtered)	Chromium (Unfiltered)	Hexavalent Chromium (Unfiltered)	
MW-1S	ND	54	ND	
MW-2S	ND	ND	ND	
MW-3S	ND	1,000	ND	
MW-4S	ND	ND	ND	
MW-4D	ND	300	ND	
MW-5S	ND	ND	ND	
MW-5D	ND	6.6	ND	
MW-6S	ND	17 .	ND	
MW-6S (Duplicate)	ND	ND	ND	
MW-6D	ND,	20	ND	
MW-7S	ND	150	ND	
MW-8S	ND	ND ·	ND	
MW-8S (Duplicate)	ND	ND	ND	
MW-9S	ND	ND	ND	
MW-9D	ND	76	ND	
MW-10D	ND	30	ND	
MW-11S	ND	32	ND	
MW-11D	ND	690	ND	
MW-12S	ND	210	ND	
MW-13S	ND	7.3	ND	
MW-13D	ND	5.3	ND	
MW-14S	ND	6.9	ND	
MW-15S	ND	· ND	ND	
MW-15S (DUP)	ND	8.9	ND	
UR-1	ND	ND	NA	
UR-2	5.7	33	NA	
UR-3	ND	ŇD	NA	

Notes:

Reported in micrograms per liter (µg/L) ND = Not Detected

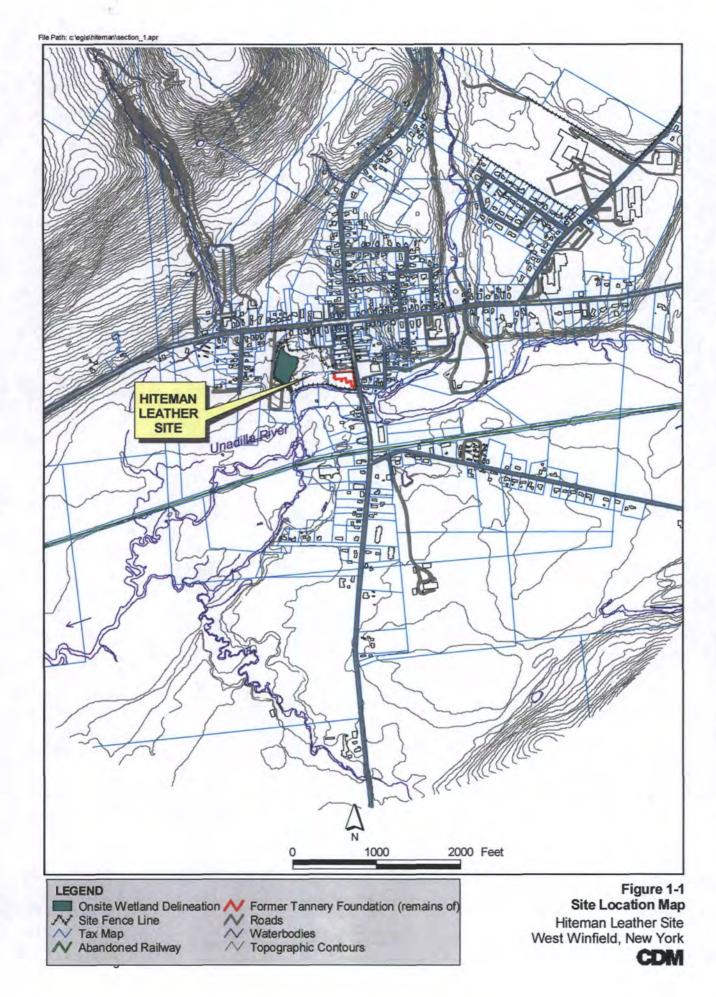
NA = Not Analyzed

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-8(cr_in_gw).wpd

Summary of Analytical Results of VOCs and SVOCs in Groundwater 1996 EPA ERT Site Investigation Hiteman Leather Site

West Winfield, New York

Compound	MW-14S
Acetone	39
Toluene	2.3
Ethylbenzene	39
p&m - Xylene	100
o-Xylene	3.1
Isopropylbenzene	15
n-Propylbenzene	20
1,3,5-Trimethlbenzene	43
1,2,4-Trimethylbenzene	130
sec-Butylbenzene	1.9
p-Isopropyltoluene	2.0
Naphthalene	9.1


Note:

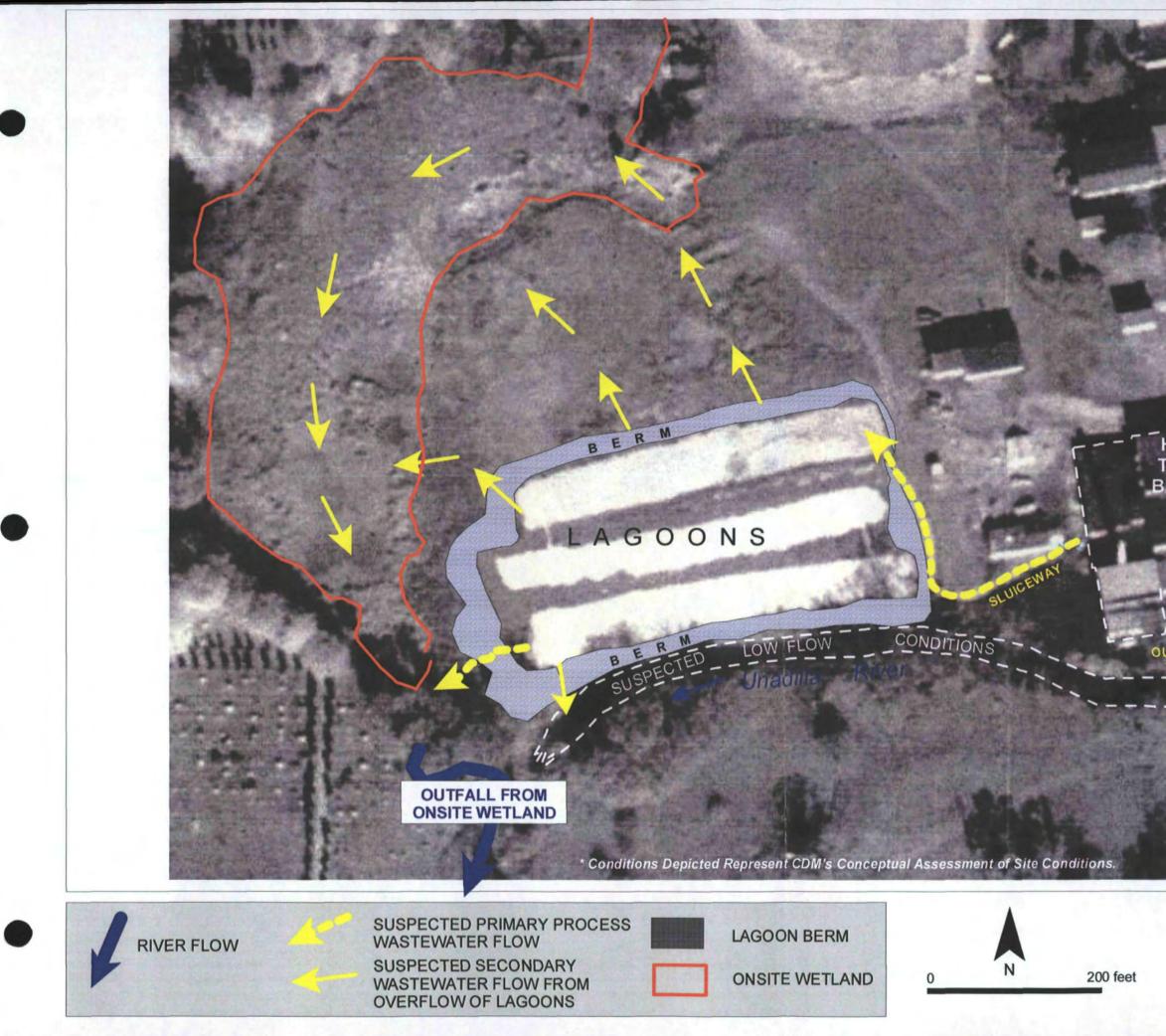
Results reported in micrograms per liter (µg/L)

CDM

Page 1 of 1

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab1-9(VOCs_SVOCs_in_gw).wpd

•

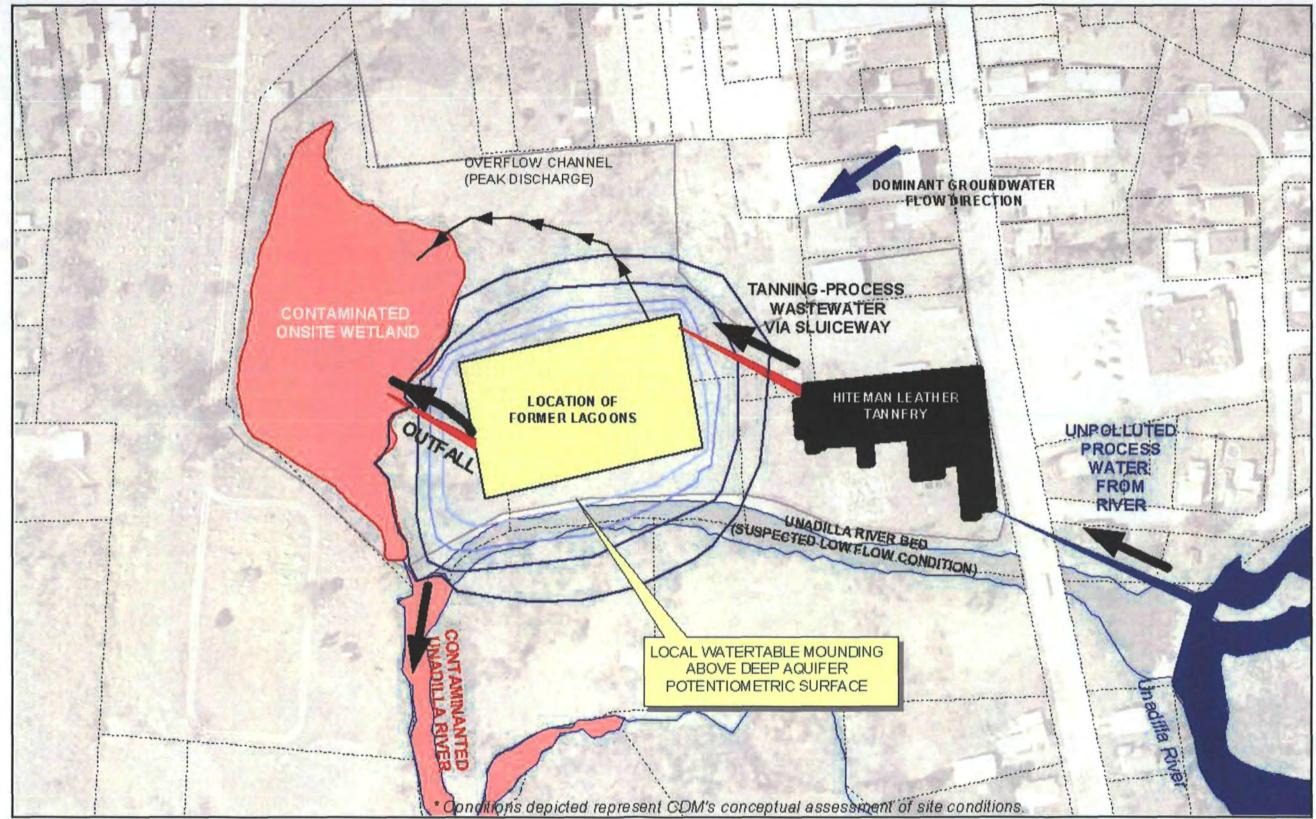


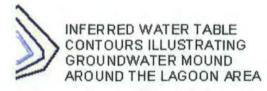
LEGEND Onsite Wetland Site Fence Line Tax Map Waterbodies Former Tannery Foundation (remains of) Roads

*Aerial photograph dated April 26, 2001

N 100 200 Feet

Figure 1-2 Site Map Hiteman Leather Site West Winfield, New York


HITEMAN TANNERY BUILDINGS (c.1965)


12 M

WATER DIRECTED FROM RIVER TO FACILITY

Figure 1-3 Historical Tanning Process-Wastewater Pathway Hiteman Leather Site West Winfield, New York

File Path : c:\egis \hile man \section_3.apr

SUSPECTED SITE-DERIVED CONTAMINANT FLOW DIRECTION OVERLAND FLOW

n

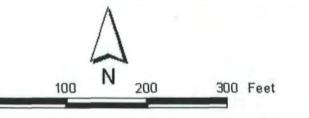


Figure 1-4 Historical Conceptual Site Model Hiteman Leather Site West Winfield, New York

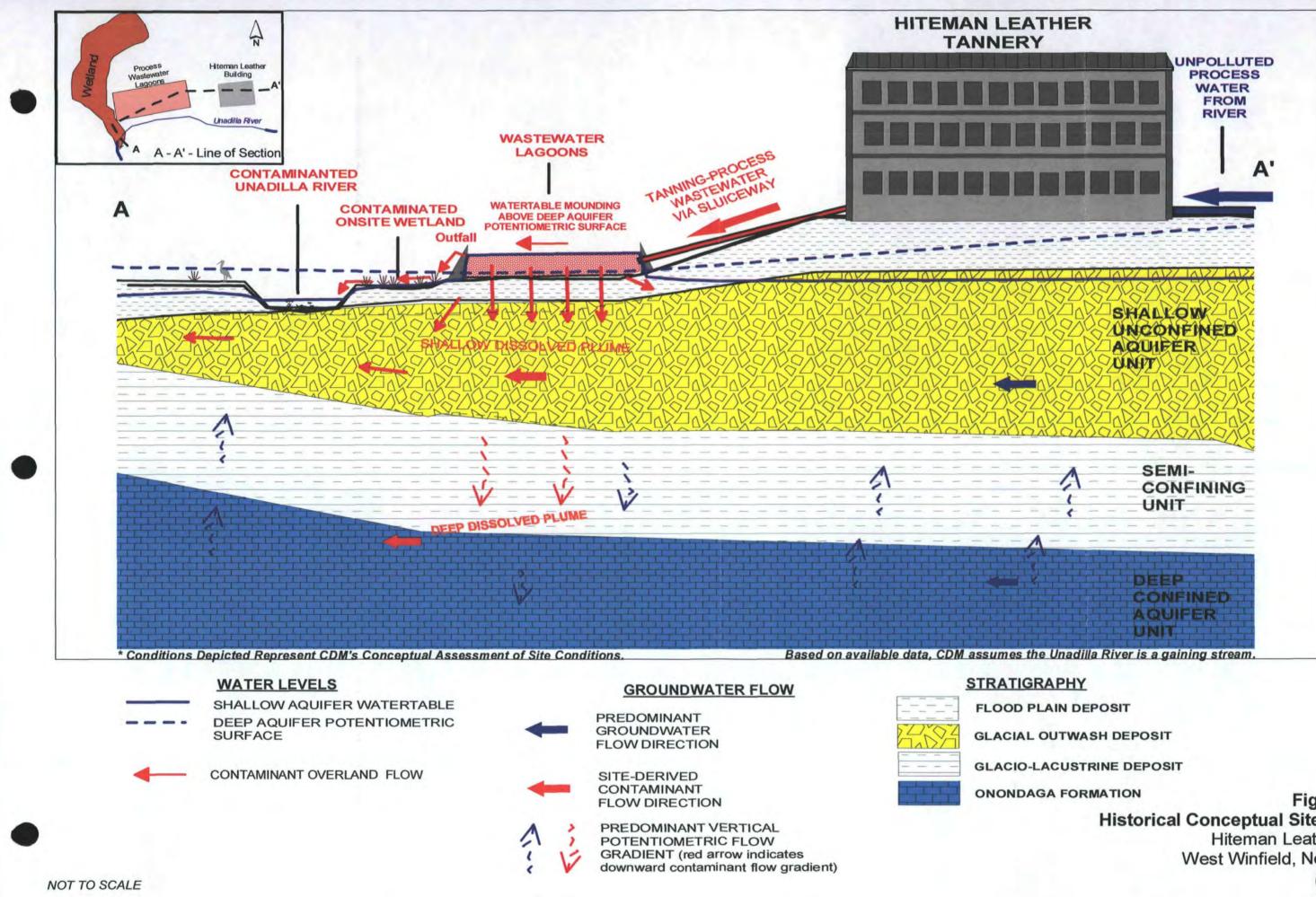
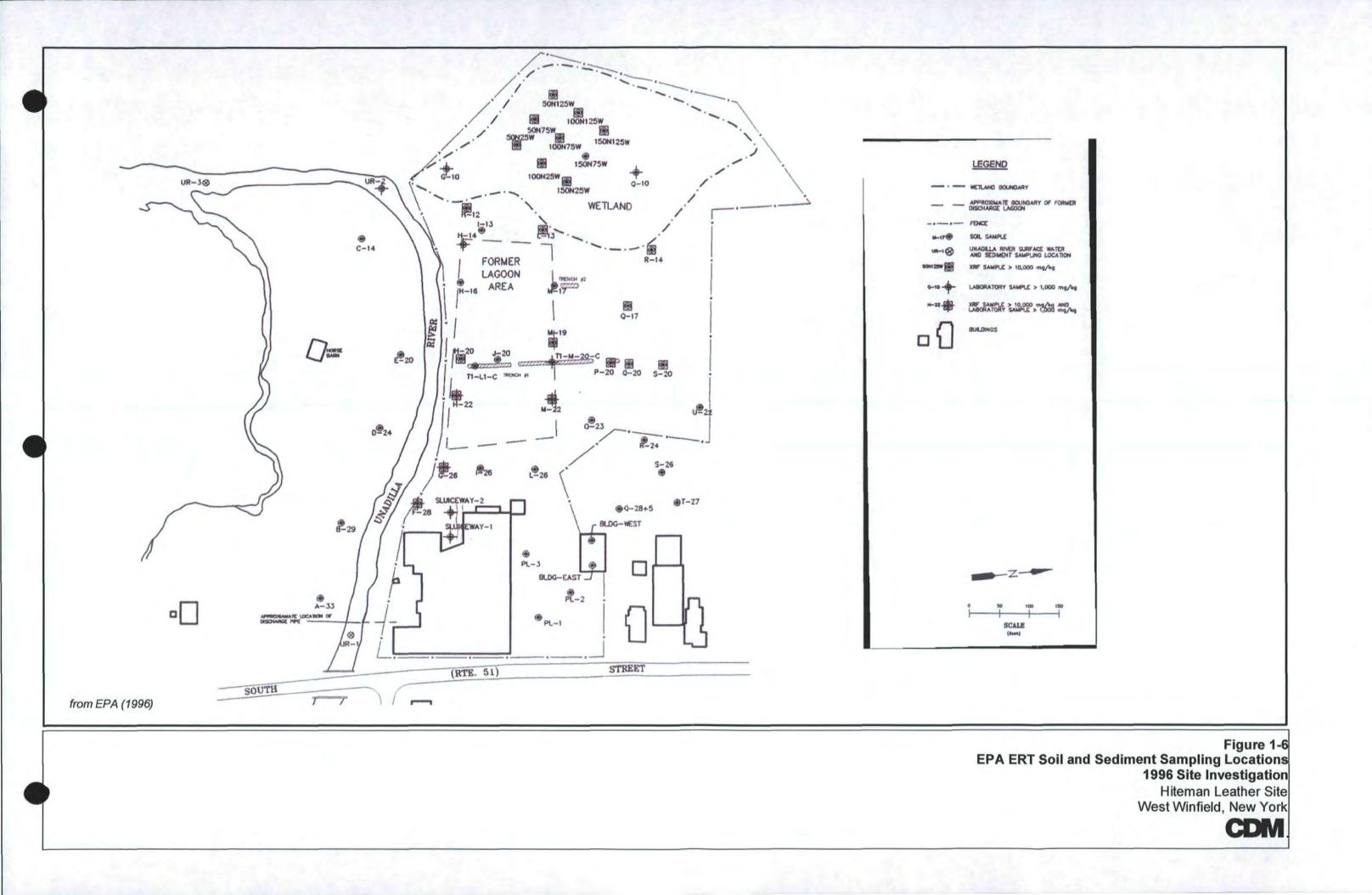
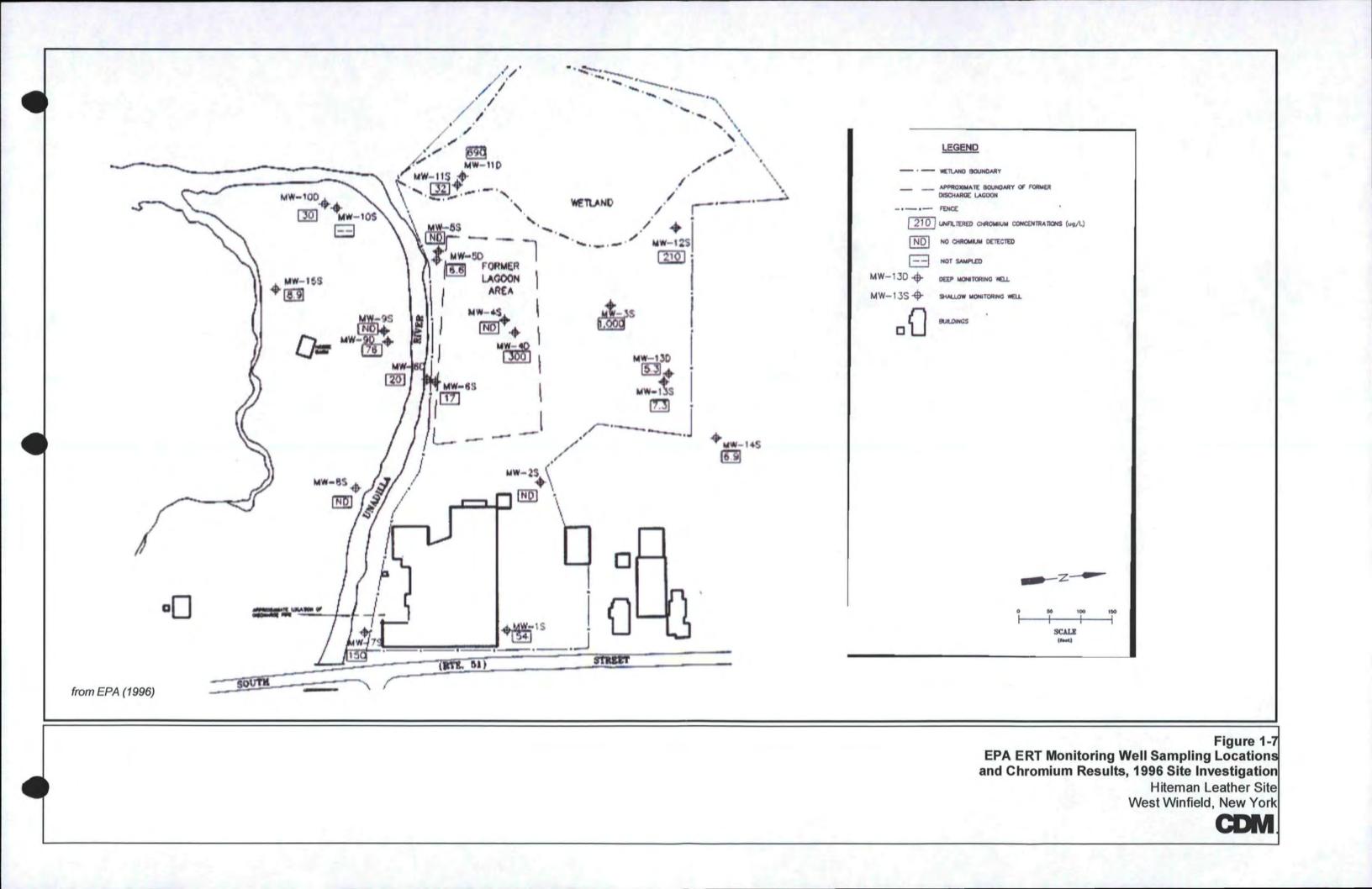




Figure 1-5 **Historical Conceptual Site Model Hiteman Leather Site** West Winfield, New York

Section Two

Section 2

Section 2 Study Area Investigations

CDM conducted field investigations at the Site during three Field Activities to acquire data for the RI. CDM's RI field activity tasks are summarized in Table 2-1. CDM's RI field investigation was designed to supplement, where appropriate, data obtained during the 1988-1992 NYSDEC RI/FS and the 1996 EPA ERT SI. Field activities conducted during these two previous investigations are summarized in Table 1-2a. The RI was conducted in accordance with the following EPA-approved project plans:

- Final RI/FS Work Plan Volume I and Volume II, dated September 11, 2000 (CDM 2000a)
- Final RI/FS Quality Assurance Project Plan (QAPP), dated December 8, 2000 (CDM 2000b)
- Draft Technical Memorandum dated October 22, 2001 (CDM 2001)
- Final QAPP Addendum pages dated March 31, 2002 (CDM 2002a)
- Letter to J. O'Dell (EPA), Regarding Additional Water Level Measurements dated July 15, 2002 (CDM 2002d)
- Letter to J. O'Dell (EPA), Regarding Additional Sampling Activities dated August 27, 2002 (CDM 2002e)

The deviations from the QAPP and QAPP Addendum during the field investigations were documented on Field Change Request (FCR) forms, which are presented in Appendix B. The forms describe the deviation to the QAPP, reason for the deviation, and the recommended modification. The deviations were discussed with the EPA remedial project manager, and were agreed upon by the CDM site manager, and the CDM field operations leader. The changes did not affect the representativeness, completeness, precision, or accuracy of the data collected in the field. With the exception of the changes documented on the FCRs, all procedures in the QAPP and QAPP Addenda were followed. The FCRs are discussed in this section, as appropriate.

All analytical data were reviewed to ensure that they met the project quality requirements for representativeness, completeness, precision, and accuracy. This review is documented in a Data Usability Report, presented in Appendix C.

2.1 Surface Water and Sediment Investigations

CDM conducted surface water and sediment investigations along the Unadilla River and a sediment investigation within the onsite wetland during Field Activities 1 and 2. Although previous investigations included analysis of surface water and sediment samples, analytical results were old, frequently failed QA/QC protocols, or were considered screening level data (e.g., XRF results). The following sections describe surface water and sediment samples that were collected to obtain a current record of contamination and for use in the risk assessments.

Section 2 Study Area Investigations

2.1.1 Unadilla River Surface Water Sampling

CDM collected surface water samples from 10 locations along the Unadilla River during Field Activity 1 and Field Activity 2. The samples were collected in order to determine the impact of Site contamination on the river and to define the nature and extent of contamination potentially migrating off site. Samples URSW-1 through URSW-6 were collected during Field Activity 1 in the vicinity of the Site. Sample locations are shown on Figure 2-1 and the rationale for the samples are summarized in Table 2-2. Samples URSW-7 through URSW-10 were collected during Field Activity 2, further downstream of the Site. Field Activity 2 sample locations were based on results of Field Activity 1 samples, in order to further delineate the downstream extent of Site-related contamination. To provide background data for use in the RI and HHRA, CDM collected one sample (URSW-1) from a location upstream of the Site that was anticipated to be free from Site impacts and Site-specific contamination. Results of Unadilla River surface water samples are discussed in Section 4.2.9.

During each field activity, the most downstream surface water sample was collected first, with the subsequent sampling progressing in an upstream direction to the final upstream sampling location. Surface water sample bottles were filled by immersing the entire container into the water just below the water surface with the opening in the sample container in an upstream direction. An effort was made to avoid disturbing the underlying sediments.

Surface water quality parameters such as dissolved oxygen, pH, temperature, turbidity, specific conductivity, and oxidation-reduction potential were measured at each location. In addition, water depth and flow velocity of the surface water were measured at each of the sampling locations to determine the fate and transport characteristics of Site-related contaminants. Appendix D provides surface water quality measurement data. Samples were collected in accordance with the QAPP.

A total of 12 surface water samples (including 2 duplicate samples, 1 per Field Activity) were collected and analyzed for full TCL organic parameters and for TAL metals and cyanide through the EPA CLP. All samples were also analyzed for hexavalent chromium and water quality parameters (total dissolved solids [TDS], total suspended solids [TSS], alkalinity, and hardness) by the CDM analytical laboratory subcontractor, Mitkem Corporation. All samples were analyzed using the most current EPA-approved methods.

2.1.2 Unadilla River Sediment Sampling

CDM collected sediment samples from 10 locations along the Unadilla River (colocated with surface water samples) during Field Activity 1 and Field Activity 2. Rationale for Unadilla River sediment samples are summarized in Table 2-3; locations are shown on Figure 2-1. Results of Unadilla River sediment samples are discussed in Section 4.2.9.

2-2

During each sampling event, the most downstream sediment sample was collected first, with subsequent sampling progressing in an upstream direction to the final upstream location. Unadilla River sediment samples were collected from areas of observed sedimentation at a depth of 0-6 inches using a stainless-steel spoon or trowel. At each location, the sediment sample was collected after the surface water sample. A total of 12 sediment samples (including 2 duplicate samples, 1 per Field Activity) were collected and analyzed for full TCL organic parameters and TAL metals and cyanide through the EPA CLP and for hexavalent chromium, TOC, pH, and grain size by the CDM analytical laboratory subcontractor. All samples were analyzed using the most current EPA-approved methods, in accordance with the QAPP.

2.1.3 Onsite Wetland Sediment Sampling

CDM collected surface and subsurface sediment samples during Field Activity 1 and Field Activity 2 from 15 locations within the onsite wetland and 2 locations in off site wetland areas. Wetland sediment samples were collected to determine the impact of Site contamination to the onsite wetland and to characterize the vertical and areal extent of contamination.

Sediment samples from locations WTSD-01 through WTSD-10 were collected during Field Activity 1 within the onsite wetland. Samples WTSD-11 and WTSD-12 were from off site locations that were anticipated to be free from Site impacts and Sitespecific contamination, in order to provide background data for use in the RI and RA. Sediment samples from locations WTSD-13 through WTSD-17 were collected during Field Activity 2 within the onsite wetland. Field Activity 2 sample locations were based on results of Field Activity 1 samples, to further characterize the vertical and areal extent of contamination in the eastern section of the wetland. During Field Activity 2, CDM also recollected the surface sediment sample at WTSD-04 due to rejected analytical results. Rationale for wetland sediment samples are summarized in Table 2-4; sample locations are shown on Figure 2-2. Results of wetland sediment samples are discussed in Section 4.2.8.

Wetland sediment sample locations were selected in areas where discharge from Site activities was most likely to have impacted the wetland. At each location, one surface sediment sample (0-6 inches bgs) and one subsurface sediment sample (18-24 inches bgs) were collected to determine the vertical extent of contamination. Surface sediment samples were collected using a stainless-steel spoon or trowel and the subsurface sediment samples were collected using a stainless-steel hand auger. Samples were collected in accordance with the QAPP.

A total of 37 surface and subsurface sediment samples (including 3 duplicate samples) were collected and analyzed for full TCL organic parameters and TAL metals and cyanide through the EPA CLP. Samples were also analyzed for hexavalent chromium, TOC, pH, and grain size by the CDM analytical laboratory subcontractor. All samples were analyzed using the most current EPA-approved methods.

2.2 Contaminant Source Investigations

CDM conducted a soil boring investigation and a test pit investigation within the former wastewater lagoon area during Field Activity 2, and a surface soil investigation in the South Bank Front Lot during Field Activity 3. No soil samples were previously collected from the South Bank Front Lot area.

2.2.1 South Bank Front Lot Surface Soil Sampling

CDM collected surface soil samples from six locations in the South Bank Front Lot (RSS-01 through RSS-07), located in the southern part of the Site, during Field Activity 3. Surface soil samples are summarized in Table 2-5 and shown on Figure 2-3. The lot is a wetland that was partially filled in with fill material that may have originated from the Site. Surface soil sampling activities were not originally planned; however, results from soil borings advanced on the lot during Field Activity 2 detected chromium within 0-2 feet bgs. As a result, soil samples were collected to determine the areal extent of Site-related contamination within surficial soils and to provide data for the HHRA. The six sample locations were spaced within the lot. The documentation and rationale for adding the surficial soil sampling activity is presented in FCR #8. The RSS surface soil samples were collected separately from the RSB soil samples associated with the first two feet of soil borings that were advanced within the lot. Results are discussed in Section 4.2.7.

CDM collected a total of seven samples (including one duplicate) from depths of 0-6 inches using a stainless-steel spoon or trowel. All samples were analyzed for TAL metals and cyanide through the EPA CLP and for hexavalent chromium, TOC, pH, and grain size by the CDM analytical laboratory subcontractor. All samples were analyzed using the most current EPA-approved methods, in accordance with the QAPP.

2.2.2 Lagoon Borings

CDM advanced three soil borings and collected surface and subsurface soil samples within the boundaries of the former wastewater lagoons during Field Activity 2. The number of lagoon borings was limited due to the availability of data obtained during the 1996 EPA ERT SI. Lagoon boring soil samples were collected to supplement existing data, and to confirm the nature, extent, and vertical distribution of subsurface contamination within the former wastewater lagoon area. LSB-1 was located on the eastern side, LSB-2 was located in the center, and LSB-3 was located on the western side of the former wastewater lagoon area. Lagoon boring locations are shown on Figure 2-3.

Lagoon soil borings were advanced using an all-terrain-vehicle (ATV) drill rig with 4.25-inch diameter hollow stem augers (HSAs). Continuous 3-inch diameter splitspoon samples were collected for lithologic description from ground surface to the point where visual contamination was no longer observed; the boring was terminated one full split-spoon below visual contamination. Resulting depths ranged from 16 - 20 feet bgs. Former wastewater lagoon material was comprised of a dark gray to black sludge-like material within sand and gravel fill material. This material was similar to that observed in previous lagoon borings. The material was observed at approximately 5 to 7 feet bgs and was 9 to 12 feet thick. Soil boring logs for the lagoon borings are provided in Appendix E. Rationale for surface and subsurface soil samples collected from lagoon borings are summarized in Table 2-6.

At each lagoon boring location, samples for laboratory analysis were collected at four intervals: one at the surface, one at the water table, one at the bottom of visual contamination, and one at the terminal depth of the boring, below visual contamination. The sample from the terminal depth of the boring was collected to determine whether soils below lagoon materials have been impacted. A total of 13 surface and subsurface soil samples (including 1 duplicate) were collected from lagoon borings for analysis of full TCL organic parameters and TAL metals and cyanide through the EPA CLP. All samples were also analyzed for hexavalent chromium, TOC, grain size, pH, and RCRA toxicity characteristics following TCLP extraction by CDM's subcontract laboratory. All samples were analyzed using the most current EPA-approved methods, in accordance with the QAPP. Results of lagoon boring soil samples are discussed in Section 4.2.3

2.2.3 Test Pit Excavation

Seven test pits were excavated during Field Activity 2 to accurately delineate the horizontal extent of the former wastewater lagoon boundaries; two on the west side (RTP-01 and RTP-02), three on the north side (RTP-03, RTP-04, and RTP-05), and two on the east side (RTP-06 and RTP-07). Test pit locations are shown on Figure 2-3.

Excavation of each test pit commenced from the inner portion of the estimated lagoon boundary, and proceeded laterally outward to the point where waste materials were no longer observed, and to a depth of approximately 6 feet bgs. Observations regarding vertical and horizontal extent of lagoon materials were recorded in Site logbooks. At each test pit, a distinct change in materials indicated the horizontal boundary of the lagoons. This point was marked in the field and surveyed by the CDM surveying subcontractor, as illustrated on Figure 2-3. No analytical samples were collected from the test pits. Observations from test pit excavations are discussed in Section 4.2.2. The test pits were excavated according to procedures outlined in the QAPP.

2.3 Geological/Hydrogeological Investigations

CDM conducted soil boring, geotechnical boring, monitoring well installation, groundwater sampling, and synoptic water level measurement activities during Field Activities 1, 2, and 3 to support geological and hydrogeological investigations at the Site.

2.3.1 Soil Borings

CDM advanced a total of 38 shallow soil borings at 5 areas located within and outside of Site boundaries during Field Activity 2 and Field Activity 3. Borings were advanced

to a depth of 10 feet bgs, in order to characterize soils above the water table. Samples of surface and subsurface soils were collected to determine the nature and extent of Site-related contamination. Soil borings were located at the following five areas: the main Hiteman Leather Site, the South Bank Front Lot, the Crumb Trailer Park, Ferguson Fuels, and the Winfield Memorial Park. Soil borings at the Winfield Memorial Park were considered background locations.

Unless otherwise noted, soil borings advanced during Field Activity 2 were advanced using either a truck-mounted or ATV drill rig equipped with 4.25-inch diameter HSAs and 3-inch diameter split spoons. Soil borings during Field Activity 3 were advanced with a geoprobe drill rig equipped with 4.25-inch diameter HSAs and 3-inch split spoons. Split spoons were collected continuously at each soil boring location, for lithologic logging by the CDM geologist. Samples for laboratory analysis were collected at a minimum of three intervals: one at the surface (0-2 feet), one just below the surface (2-4 feet), and one at the terminal depth of the boring (8-10 feet). A fourth contingency sample was collected at one of the remaining intervals if visual contamination or elevated photoionization detector (PID) readings were observed. All soil samples were collected using a stainless steel bowl and spoon. All soil borings were advanced and soil samples collected in accordance with the QAPP. Soil boring logs are provided in Appendix E. The following sections detail the rationale, locations, sampling activities, and observations for soil borings advanced at each of the five areas.

2.3.1.1 Hiteman Leather Site Soil Borings

A total of 18 soil borings (RSB-01 through RSB-17 and RSB-26) were advanced within the main Hiteman Leather property (north of the Unadilla River) during Field Activity 2. Onsite soil borings are shown on Figure 2-4. Samples were analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, and cyanide through the EPA CLP. Samples were also analyzed for hexavalent chromium, TOC, pH, and grain size by the CDM subcontract laboratory. Rationale for locations of soil borings and observations in surface and subsurface soil samples are summarized in Table 2-7. Results of Hiteman Leather Site soil boring soil samples are discussed in Section 4.2.5.

Soil borings were advanced to 10 feet bgs with the following exceptions: RSB-07 was advanced to 12 feet bgs in order to collect additional sample volume for analytical sample RSB-07-8-10 and RSB-13 was only advanced to 8 feet bgs due to auger refusal.

2.3.1.2 South Bank Front Lot Soil Borings

Four soil borings were advanced on the South Bank Front Lot (south of the Unadilla River). The lot is a wetland that was partially filled in with material that may have originated from the Site; soil borings were advanced to determine if any Site-related contamination was present within surface and subsurface soils. Two soil borings (RSB-18 and RSB-19) were advanced during Field Activity 2. Due to chromium detections in these two borings, two additional soil borings (RSB-48 and RSB-49) were

2-6

advanced during Field Activity 3. All four soil borings were advanced to 10 feet bgs. South Bank Front Lot soil borings are shown on Figure 2-4.

A total of 13 surface and subsurface soil samples (including 1 duplicate sample) were collected for laboratory analysis. All samples were analyzed for TAL metals and cyanide through the EPA CLP. Samples were also analyzed for hexavalent chromium, TOC, pH, and grain size by the CDM analytical laboratory subcontractor. Rationale for soil boring locations and observations in soil samples collected from the South Bank Front Lot soil borings are summarized in Table 2-7. Results are discussed in Section 4.2.7.

2.3.1.3 Crumb Trailer Park Soil Borings

A total of 13 soil borings were advanced at the Crumb Trailer Park, located on Burrows Road during Field Activity 2 and Field Activity 3. The property was formerly the Town Dump prior to development of the trailer park, and may have received wastes from the Hiteman Leather Site. Five soil borings were advanced during Field Activity 2 (RSB-21 through RSB-25) based on results of NYSDOH surface soil sampling. Eight additional soil borings were advanced during Field Activity 3 (RSB-40 through RSB-47) in order to determine the nature and extent of contamination throughout the trailer park. Rationale for soil boring locations and observations of soil samples are summarized in Table 2-7; Figure 2-5 shows the locations of the 13 borings. The results of the soil boring samples are discussed in Section 4.2.6.

At each soil boring location, 3-inch split spoon samples were collected continuously in order to determine soil lithology. Three samples were sent for laboratory analysis, from the 0-2 foot interval, the 2-4 foot interval, and the 8-10 foot interval. A fourth sample was sent for laboratory analysis if elevated PID readings were observed or if visible contamination or staining was apparent. All samples were analyzed for TAL metals and cyanide through the EPA CLP and for hexavalent chromium, pH, TOC, and grain size by CDM's subcontract laboratory.

RSB-21 through RSB-25 were located along the northen property line where hides were believed to be buried. At these borings, fill material, coal and brick fragments, as well as glass and wood pieces were observed. An extra sample was collected at RSB-22 at the 6-8 foot interval due to a sheen on the soil. RSB-40 through RSB-47 were positioned throughout the trailer park to determine the extent of the contamination. Throughout the trailer park, fill material, pieces of glass, and gravel were observed; hides were observed in RSB-43. Additional soil samples were collected at RSB-42, RSB-45, and RSB-47 at the 4-6 foot interval due to an elevated PID reading. Crumb Trailer Park boring logs are presented in Appendix E.

2.3.1.4 Ferguson Fuels Soil Boring

One soil boring (RSB-20) was advanced at the Ferguson Fuels property, located on Burrows Road during Field Activity 2 to confirm the presence and location of buried hides discovered during the installation of a water main and to determine whether soils were contaminated. The area is adjacent to the former Hiteman Railroad Depot, which may have received wastes from the Site. Hides were observed in RSB-20. Rationale and observations are summarized in Table 2-7. Figure 2-5 shows the location of the boring; the results of the soil boring samples are discussed in Section 4.2.6.

A total of three soil samples were collected from the soil boring. The samples were analyzed for TAL metals and cyanide through the EPA CLP. The samples were also analyzed for hexavalent chromium, pH, TOC, and grain size, by CDM's subcontract laboratory, Mitkem Corporation. All the samples were analyzed using the most current EPA-approved methods. The Ferguson Fuels soil boring log is presented in Appendix E.

2.3.1.5 Background Soil Borings

Two soil borings were advanced during Field Activity 2 at the Winfield Memorial Park, located approximately 1.5 miles east of the Site on Route 20, in order to provide data to develop background soil screening criteria for inorganic analytes.

Background soil borings were advanced using 3.5-inch diameter hand augers. Samples were collected at the 0-2 foot, 2-4 foot, and 4-6 foot intervals for laboratory analysis and lithological characterization. Samples were analyzed for TAL metals and cyanide through the EPA CLP. Rationale for locations and surface and subsurface soil samples are summarized in Table 2-7; sample locations are shown on Figure 2-5. Soil boring logs are presented in Appendix E. Background soil samples are discussed in Section 4.1.2.4.

2.3.2 Building Borings

CDM advanced soil borings and collected soil samples from five locations within the footprint of the former facility building during Field Activity 2. Building boring soil samples were collected to determine the nature and extent of soil contamination underlying the former building. Rationale for locations and observations of soil samples are summarized in Table 2-8, and shown on Figure 2-4. Results are discussed in Section 4.2.4.

At each soil boring location, a coring machine cored through the concrete foundation prior to advancing the soil boring. At each boring, a minimum of two soil samples were collected for laboratory analysis; one from the 0-2 foot interval below the concrete foundation and one from the 8-10 foot interval, at the terminal depth of the boring. A contingency sample was collected from a third interval if elevated PID readings or visual contamination were observed.

A total of 13 soil samples (including 1 duplicate sample) were collected from the 5 building borings. Contingency samples were collected at two locations; a sample from the 6-8 foot interval at BSB-02 was collected due to elevated PID readings and a sample from the 2-4 foot interval was collected at BSB-04 due to black staining. All

2-8

samples were analyzed for full TCL organic parameters and TAL metals and cyanide through the EPA CLP. The samples were also analyzed for hexavalent chromium, pH, TOC, and grain size, by CDM's subcontract laboratory.

Decayed wood, black staining, and a slight odor was observed in BSB-04, located in the southeast corner of the former facility. Decayed wood and concrete were observed in BSB-05. Building boring logs are presented in Appendix E.

2.3.3 Geotechnical Borings

Three geotechnical borings were drilled along the northern bank of the Unadilla River to provide information regarding the physical and mechanical engineering properties of the bank material, stratification, and thickness, in order to evaluate remedial alternatives for the FS. Subsurface soil samples from geotechnical borings are summarized in Table 2-9; geotechnical boring locations are shown on Figure 2-6. Geotechnical boring logs are presented in Appendix E. Results of geotechnical boring soil samples will be presented in the FS.

Geotechnical borings were advanced using HSA and mud rotary methods to the top of bedrock; rock cores were not obtained. In addition, 4-inch steel casing was installed into the clay layer to prevent migration of contaminants. These procedures differ from those outlined in the QAPP; FCR #6 details the changes to drilling procedures for the geotechnical borings. At each geotechnical boring location, continuous split spoon samples were collected for lithologic characterization. In addition, one Shelby Tube sample and up to four subsurface soil samples were collected per boring, for analysis by the drilling laboratory subcontractor. The Shelby Tube samples were analyzed for Atterberg limits, permeability, shear strength, and visual descriptions of soil structures. The remaining soil samples were analyzed for grain size distribution. With the exception of procedures outlined in FCR #6, all procedures in the QAPP were followed.

2.3.4 Monitoring Well Installation

CDM installed a total of 10 monitoring wells at 6 onsite and off site cluster locations. Three shallow wells were installed in glacial overburden material above a silty clay unit, and screened within the shallow unconfined water table aquifer. Four double-cased wells were installed in the bottom of the silty clay unit just above the bedrock, and screened within an area that is hydraulically connected to the confined bedrock aquifer. Three triple-cased bedrock wells were installed in the fractured limestone bedrock, and screened within the confined bedrock aquifer. Locations of new monitoring wells are shown on Figure 2-7. Well construction details and rationale for monitoring well locations are presented in Table 2-10.

In order to obtain lithologic information, continuous 2-inch diameter split spoons were collected at the deepest monitoring well at each well cluster. Lithologic information from the first well was used to determine screen intervals, and if necessary, outer casing depths for the remaining wells in the cluster. Rock cores from the limestone

2-9

bedrock section of the bedrock monitoring wells were obtained to determine fracture zones (see FCR #4 regarding the modifications to bedrock coring and monitoring well depths). All split spoons and rock cores were logged by the CDM geologist. Monitoring well boring logs and well construction diagrams are presented in Appendix F.

Shallow monitoring well borings were advanced using HSA drilling techniques; monitoring wells were installed through the HSAs. Deep monitoring well borings were advanced using mud rotary drilling. Bedrock monitoring well borings were advanced using mud rotary drilling techniques to the top of bedrock; air coring was used to obtain rock cores for lithologic description and air rotary drilling techniques were used to ream the borehole prior to well installation (see FCR # 3 for an explanation that details the change in drilling techniques for deep and bedrock monitoring wells). With this exception, monitoring wells were installed in accordance with the QAPP. No soil samples were collected from monitoring well soil borings.

2.3.5 Monitoring Well Development

CDM redeveloped the existing onsite monitoring wells during Field Activity 1 and developed the newly installed monitoring wells during Field Activity 2. The purpose of well development was to improve the hydraulic connection between the well and the aquifer, to clear the well screen of solid material, and to set the sand pack around the well screen in order to obtain groundwater samples that were representative of aquifer conditions.

All existing and newly installed monitoring wells were developed using a pump and surge method. Prior to installing development equipment, the total depth of the well and the water level depth were measured using a water level meter calibrated to 0.01 foot. The volume of water in both the well and the sand pack was calculated to determine one well volume. The porosity of the sand pack was assumed to be 30 percent.

2.3.5.1 Existing Monitoring Well Redevelopment

CDM redeveloped 19 of the 22 existing monitoring wells prior to groundwater sampling during Field Activity 1. Although the wells were developed in 1992, they had not been sampled since that time. Wells were redeveloped to insure the connectivity between the well and the aquifer and to clear the well and screen of settled material. Three wells were determined to be unusable and were not developed: MW-1 was not found and is believed to be buried; MW-9S contained several feet of silt/sludge; and MW-11D had a bent inner riser casing, preventing the insertion of the submersible pump. Well Redevelopment Forms for the existing monitoring wells are presented in Appendix G.

Existing monitoring wells were redeveloped using a pump and surge technique with a 2-inch diameter submersible pump. The screens at each monitoring well were developed in two to three-foot intervals from the bottom to the top of the screen. Each

interval was surged and then pumped while water quality parameters such as dissolved oxygen, oxidation-reduction potential, pH, temperature, conductivity, and turbidity were measured and recorded. Redevelopment moved to the next interval when water quality parameters stabilized to within 10 percent. This process was repeated until the entire screen was redeveloped; at least three well volumes were purged, or until the well was dry. In the cases where the well went dry (MW-9S and MW-13D), as much of the screen as possible was redeveloped.

Redevelopment was conducted in accordance with the QAPP, with the exception that the requirement that turbidity be below 50 nephelometric turbidity units (NTUs) was amended (see FCR #1). The wells historically had high turbidity levels, and as a result, this requirement was determined to be unrealistic. Final turbidity readings ranged from 14 NTUs in MW-2S to greater than 999 (the highest reading possible on the meter); 11 of the 19 wells developed had ending readings greater than 999 NTU. Table 2-11 summarizes the final parameters for all developed and redeveloped monitoring wells

2.3.5.2 New Monitoring Well Development

CDM developed the 10 new monitoring wells during Field Activity 2, prior to the second round of groundwater sampling. New Monitoring Well Development Sheets are presented in Appendix G.

New monitoring wells were developed with the same protocols for the existing wells, as described in Section 2.3.5.1. FCR #1 was also applied to the development of new wells. Final turbidity readings ranged from 10 NTUs in RMW-18S to greater than 999 (the highest reading possible on the meter) in RMW-9D and RMW-18D (Table 2-11). RMW-16D and RMW-16S went dry during development.

2.3.6 Groundwater Sampling

CDM collected two rounds of groundwater samples during the RI in order to define the current nature and extent of Site-related contamination in the underlying overburden and bedrock aquifers. The first round was collected during Field Activity 1, and included all available existing monitoring wells at the Site and two municipal town wells. The second round of groundwater samples, collected during Field Activity 2, included existing onsite monitoring wells sampled during the first round, new monitoring wells installed during Field Activity 2, and two residential wells. All monitoring wells were sampled using the low-flow purging and sampling technique for groundwater monitoring wells as described in the Site-Specific Groundwater Sampling Procedure entitled "Ground Water Sampling Procedure, Low Stress (Low Flow) Purging and Sampling", dated March 16, 1998 (CDM 2000b).

2.3.6.1 Monitoring Wells

CDM collected two rounds of groundwater samples from existing monitoring wells and one round from newly installed monitoring wells. All procedures specified in the QAPP were followed. Groundwater analytical results are discussed in Section 4.2.12.

Existing Monitoring Wells

During Field Activity 1, CDM collected the first round of groundwater samples from 19 of the 22 existing monitoring wells onsite. The three monitoring wells that were not sampled (MW-1, MW-9S, and MW-11D) are discussed in Section 2.3.5.1. Well locations are shown on Figure 2-7. Table 2-12 summarizes the groundwater samples collected from monitoring wells.

Groundwater samples from monitoring wells were collected at least one week after well redevelopment. Groundwater quality parameters such as dissolved oxygen, oxidation-reduction potential, pH, temperature, conductivity, and turbidity were measured in the field. These measurements were recorded on Low-Flow Sampling Forms, and are presented in Appendix H. The procedures in the QAPP were followed.

Twenty-three groundwater samples (including two duplicates) were collected during Field Activity 1 and analyzed for low detection limit VOCs, TCL SVOCs, pesticides/PCBs, and TAL metals and cyanide through the EPA CLP. Groundwater samples were also analyzed by the CDM laboratory subcontractor for hexavalent chromium and water quality parameters including alkalinity, ammonia, total kjeldahl nitrogen (TKN), biological oxygen demand (BOD), chemical oxygen demand (COD), TSS, TDS, TOC, nitrate-nitrite, sulfate, and chloride.

MW-11D

At the beginning of Field Activity 2, CDM collected a sample from MW-11D in order to confirm historical sample results that indicated contamination in the deeper portion of the overburden aquifer. This well was not sampled during Field Activity 1 because the inner riser casing was bent, which prevented sampling with a submersible pump. To determine whether to install a contingency deep overburden monitoring well downgradient of MW-11D, CDM collected a sample with a 3/4-inch disposable teflon bailer, which was small enough to be inserted past the bent portion of the well.

Two groundwater samples (including a duplicate) were collected from MW-11D at the beginning of Field Activity 2, and analyzed for TAL metals and cyanide through the CLP and for hexavalent chromium by the CDM laboratory subcontractor.

Existing and Newly Installed Monitoring Wells

CDM collected a second round of groundwater samples, including 10 new and 19 existing monitoring wells. Well locations are shown on Figure 2-7. Table 2-12 provides a summary of groundwater samples collected.

Groundwater samples from the new monitoring wells were collected a minimum of two weeks after well development. Groundwater quality parameters such as dissolved oxygen, oxidation-reduction potential, pH, temperature, conductivity, and turbidity were measured in the field. Thirty-two groundwater samples (including three duplicates) were collected during Field Activity 2 and analyzed for the same parameters as in Field Activity 1.

2.3.6.2 Municipal Wells

During Field Activity 1, CDM collected groundwater samples from two municipal wells in order to confirm the absence of Site-related contamination. The wells are located hydraulically upgradient of the Site (see Figure 2-8). Samples were collected through taps located prior to any water filter.

The municipal well samples were analyzed for the same parameters as the monitoring well samples. Groundwater quality parameters such as dissolved oxygen, oxidation-reduction potential, pH, temperature, conductivity, and turbidity were measured in the field. These measurements were recorded on Low-Flow Sampling Forms, and are presented in Appendix H. Table 2-12 summarizes the groundwater samples collected from municipal wells. Results of municipal well samples are discussed in Section 4.2.13.

2.3.6.3 Residential Wells

While some residential wells are still in use in the Village, two residential wells were located south of the Site, and although neither well is directly in the groundwater flow path from the Site (which is to the southwest), sampling these wells provided the only opportunity to evaluate groundwater nearest to, and generally downgradient (i.e., to the south) from the Site.

During Field Activity 2, CDM collected tap samples from the two residential wells south of the Unadilla River, for analysis of the same parameters as the monitoring well samples. Table 2-12 summarizes the groundwater samples collected from the two residential wells. Results of residential well samples are discussed in Section 4.2.13.

2.3.7 Synoptic Water Level Measurements

Synoptic water level measurements were collected from Site wells to develop equipotential maps for the shallow overburden and deep overburden water bearing zones. The data were used to determine horizontal and vertical flow gradients and were evaluated in combination with other surface and subsurface hydrogeologic ' information. Synoptic water level measurements are discussed in Section 3.6.2.

Six rounds of synoptic groundwater elevation measurements were conducted. Three rounds were conducted from existing monitoring wells in April, July, and November 2001, and three rounds were collected from existing and new monitoring wells in May, July, and October 2002.

Synoptic water level measurements from non-flowing monitoring wells were collected with an electronic water level indicator. Static water levels in the monitoring wells were measured to the nearest 0.01 foot from the surveyors mark, a groove filed into the top of the inner riser casing, which was surveyed by CDM's surveying

2-13

subcontractor. Flowing monitoring wells were unable to be measured during the first four water level events. However, during the water level measuring events in July and October 2002, CDM field staff used a device constructed to measure water levels from the flowing wells. The device consisted of either a 2-inch or 4-inch nominal diameter rubber plug which was set into the top of the inner riser casing, creating a water-tight seal. A 4 - 7-foot long, ½-inch diameter teflon tube extended from a hole drilled through the center of the rubber plug, which was also water-tight. The teflon tube extended vertically above the inner riser, held straight and connected to a rod. Water rose inside the teflon tube to the static water height, which was measured either from ground surface or from the outer casing. Groundwater elevation data are presented in Table 2-13 and Table 2-14.

2.3.8 Slug Tests

Slug tests were proposed in the work plan (CDM 2000a); the tests were contingent upon direction from EPA. The tests were not conducted because it was determined that data from slug tests in artesian wells would not be useful enough to justify the costs of increased water management associated with conducting the tests.

2.3.9 Continuous Water Level Measurements

Measurement of continuous water levels was proposed in the work plan (CDM 2000a); these measurements were intended to be done prior to an aquifer pump test, if EPA determined that a pump test was needed for the Site. A pump test was not conducted, so the continuous water level measurements were not done.

2.3.10 Pump Test

A 72-hour aquifer test was proposed in the work plan (CDM 2000a); the test was contingent upon direction from EPA. The aquifer test was not conducted because it was determined that data from a pump test in artesian wells would not be useful enough to justify the costs of increased water management associated with conducting the test.

2.4 Ecological Investigations

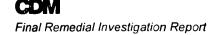
Several ecological investigations were conducted, including fish tissue sampling in the Unadilla River, ecological characterizations, and a wetland delineation, as described in the following sections.

2.4.1 Unadilla River Fish Tissue Sampling

Ten forage and three sport fish tissue samples were collected from five locations along the Unadilla River during Field Activity 2 in order to determine the impact of Site contamination on fish populations. Forage fish tissue samples were also used to support the ecological risk assessment, and sport fish tissue samples were used to support the human health risk assessment. One location upstream of the Site (URSF/URFF-1) was anticipated to be free from Site impacts and Site-specific contamination, to provide background data for the RI and RA. Two forage fish tissue samples were collected from each of the five locations. Sport fish samples were only collected from three sample locations (URSF-2, URSF-4, and URSF-5) due to the lack of fish species present in the river. Fish tissue sampling locations are presented in Figure 2-9; rationale for locations and samples are summarized in Table 2-15. Results of Unadilla River fish tissue samples are discussed in Section 4.2.11.

Fish were collected using a backpack electroshocker, dip nets, and fish traps. Samples were collected in accordance with the QAPP, with the exception that sport fish samples were only collected from three locations due to low sample availability. All samples were sent whole to the laboratory; forage fish samples were analyzed as whole-body samples and sport fish were filleted by the laboratory prior to analysis. Fish tissue samples were analyzed for full TCL organic parameters, full TAL metals, cyanide and percent lipids by the CDM analytical laboratory subcontractor, using the most current EPA-approved methods.

2.4.2 Ecological Characterization and Wetland Delineation


An ecological reconnaissance was conducted to characterize existing conditions in the immediate vicinity of the Site relative to the vegetative community structure, wildlife utilization, and sensitive ecological resources such as surface water and wetlands. The ecological reconnaissance consisted of a characterization of wildlife habitat/usage, a wetland delineation, and a determination of the occurrence or presence of endangered or special concern species.

The purpose of this field characterization was to identify ecological conditions of the area near the Site which are potentially affected by the migration of Site contaminants. The conditions of the study area were visually inspected. Observations on habitat conditions, wildlife utilization, and contaminant exposure pathways were made. The results of the ecological characterization are discussed in Section 3. The ecological reconnaissance was completed in accordance with EPA's *Ecological Risk Assessment Guidance for Superfund (ERAGS) Process for Designing and Conducting Ecological Risk Assessments*. The checklist for Ecological Assessments provided in the ERAGS document was completed and is provided in Appendix I. The wetland delineation report is also presented in Appendix I.

2.4.3 Baseline Ecological Risk Assessment Sampling

CDM conducted sampling activities in September 2004 to support the BERA and to provide information to help establish remedial priorities and serve as a scientific basis for regulatory and remedial actions for the Site. BERA activities included the following:

- Supplemental Unadilla River sediment and surface water sampling
- Unadilla River sediment toxicity testing
- Onsite wetland sediment toxicity testing
- Soil toxicity testing
- Onsite biota sampling (small mammal, earthworm and vegetation)
- Unadilla River biota sampling (crayfish)

The results of these activities will be discussed in the BERA Report, to be submitted under separate cover.

2.5 Control of Investigation-Derived Waste

Investigation-derived waste (IDW) was stored onsite within a locked, fenced compound. Liquid waste (e.g., purge water from wells) was stored in a 21,000-gallon Baker tank. Drilling mud and related cuttings were stored in two 6,000-gallon covered roll-off containers. Waste decontamination fluids (from personal and equipment decontamination), disposal material related to Site activities (e.g., used Tyvek coveralls and gloves), and all semi-solid wastes (e.g., drill cuttings) were drummed and stored in an onsite staging area. All IDW was sampled and disposed of by CDM's waste disposal subcontractor.

2.6 Cultural Resources Survey

In August 2001, the Stage 1A level Cultural Resources Survey was performed on and around the Site by the CDM subcontractor (JMA 2002). The Stage 1A survey is the initial level of a cultural resource investigation and requires a comprehensive documentary research designed to identify known or potential historical, architectural, and/or archaeological resources within the Site.

JMA evaluated the potential for any historical, architectural, or archaeological resources that might be impacted by the project activities and determined the probability that archaeological resources were present within the project area. All work was undertaken in accordance with the guidelines of the New York Archaeological Council's *Standards for Cultural Resources Investigations and the Curation of Archaeological Collections*, recommended for used by the New York State Office of Parks, Recreation, and Historic Preservation. The Stage 1A report was prepared in conformance with standard report format included in these guidelines and reflects contemporary organization and illustrative standards currently used in the field of professional cultural resource management. The Stage 1A Cultural Resource Survey, Hiteman Leather Site is attached as Appendix J.

2.7 Surface Feature Survey

Topographic surveying was performed at the Site by CDM's New York licensed surveying subcontractor. Surveyors conducted an aerial survey on April 26, 2001 and used conventional surveying techniques to map the Site. The horizontal datum for this survey was the North American Datum (NAD), 1983, revised 1986. The vertical datum was the North American Vertical Datum (NAVD), 1929.

Based on the survey, a topographic base map was created for the Site and the area within a one-mile radius, with a scale of one inch equals 250 feet, and a 5-foot contour interval. Property boundaries from tax maps and all physical features such as buildings, driveways, roads, railroads, woodlands, and creeks are identified on the map. The locations and elevations of all sampling points and existing monitoring wells were surveyed and are identified on the map. In addition, the survey provided

2-16

orthophotography for the Site map and the study area location map, at a scale of 1 inch equals 400 feet. All figures generated for this report are based on the orthophotography.

RI Field Investigation Tasks Hiteman Leather Site West Winfield, New York

Field Activity	Activity/Task	Dates
1	Surface Feature Survey	5/23/01 - 5/24/01
	Monitoring Well Redevelopment	4/30/01 - 5/04/01
	Unadilla River Surface Water Sampling	5/14/01 - 5/15/01
	Unadilla River Sediment Sampling	5/14/01 - 5/15/01
	Wetland Sediment Sampling	5/16/01 - 5/21/01
· · · · · ·	Groundwater Sampling - Existing Monitoring Wells and Municipal Wells	5/22/01 - 5/24/01
	Synoptic Water Level Measurements	4/30/01; 7/31/01
	Ecological Characterization and Wetland Delineation	5/23/01 - 5/24/01
	Cultural Resources Survey	5/22/01
	Building Demolition and Removal	5/14/01 - 5/18/01
·	IDW Sampling and Removal	5/30/01; 6/20/01
2	Additional Unadilla River Surface Water Sampling	11/06/01
	Additional Unadilla River Sediment Sampling	11/06/01
	Additional Wetland Sediment Sampling	11/05/01 - 11/07/01
	MW-11D Redevelopment and Sampling	11/08/01
	Fish Tissue Sampling	11/12/01 - 11/15/01
•	Soil Boring, Building Boring, and Lagoon Boring Sampling	4/01/02 - 4/22/02; 7/25/02
	Monitoring Well Installation and Development	4/03/02 - 5/10/02
e ⁴³	Test Pit Excavation	4/03/02
v	Geotechnical Boring Sampling	4/30/02 - 5/10/02
	Groundwater Sampling - New and Existing Monitoring Wells and Residential Wells	5/14/02 - 5/23/02
	Background Soil Boring Sampling	7/23/02
	Synoptic Water Level Measurements	11/08/01; 5/23/02; 7/25/02
	IDW Sampling and Removal	7/10/02; 7/24/02; 7/26/02
3	Additional Soil Boring Sampling	10/22/02 - 10/24/02
	Synoptic Water Level Measurements	10/24/02
	Surface Soil Sampling	10/23/02
	IDW Sampling and Removal	6/25/02; 10/25/02

CDM INysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Final RI Tables\FINTab2-1-RI field tasks.wpd

Summary of Unadilla River Surface Water Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
1.	URSW-1	05/15/01	Characterize upgradient background	MS/MSD
	URSW-2	05/15/01	Characterize outfall from concrete settling	
	URSW-7	05/15/01	tanks	Duplicate of URSW-2
	URSW-3	05/14/01	Characterize area adjacent to lagoons	
	ÙRSW-4	05/14/01	Characterize drainage from onsite wetland	
	URSW-5	05/14/01	Determine nature and extent of downstream contamination	
	URSW-6	05/15/01	Determine nature and extent of downstream contamination	
2	URSW-7	11/06/01	Determine nature and extent of downstream contamination	MS/MSD
	URSW-8	11/06/01	Determine nature and extent of	
	URSW-13	11/06/01	downstream contamination	Duplicate of URSW-8
	URSW-9	11/06/01	Determine nature and extent of downstream contamination	-
	URSW-10	11/06/01	Determine nature and extent of downstream contamination	

Notes:

All samples analyzed for VOC, SVOC, P/PCB, Metals, Cn, Cr⁺⁶, TDS, TSS, Alkalinity, and Hardness VOC - Volatile organic compounds

SVOC - Semivolatile organic compounds

P/PCB - Pesticides/Polychlorinated biphenyls

Cn - Cyanide Cr⁺⁶ - Hexavalent chromium

TDS - Total dissolved solids

TSS - Total suspended solids

MS/MSD - Matrix spike/matrix spike duplicate

Page 1 of 1

Summary of Unadilla River Sediment Samples **Hiteman Leather Site** West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
1	URSD-1	05/15/01	Characterize upgradient background	MS/MSD
	URSD-2	05/15/01	Characterize outfall from concrete	
Í .	URSD-7	05/15/01	settling.tanks	Duplicate of URSD-2
	URSD-3	05/14/01	Characterize area adjacent to lagoons	
	URSD-4	05/14/01	Characterize drainage from onsite wetland	
	URSD-5	05/14/01	Determine nature and extent of downstream contamination	· .
	URSD-6	05/15/01	Determine nature and extent of downstream contamination	
2	URSD-7	11/06/01	Determine nature and extent of downstream contamination	MS/MSD
	URSD-8	11/06/01	Determine nature and extent of	
	URSD-13	11/06/01	downstream contamination	Duplicate of URSD-8
	URSD-9	11/06/01	Determine nature and extent of downstream contamination	
	URSD-10	11/06/01	Determine nature and extent of downstream contamination	

Notes:

All samples analyzed for VOC, SVOC, P/PCB, Metals, Cn, Cr⁺⁶, pH, TOC, and grain size VOC - Volatile organic compounds

SVOC - Semivolatile organic compounds

P/PCB - Pesticides/Polychlorinated biphenyls

Cn - Cyanide

Cr⁺⁶ - Hexavalent chromium

TOC - Total organic carbon

MS/MSD - Matrix Spike/Matrix Spike Duplicate

CDM

Page 1 of 1

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab2-3-ok.wpd

Summary of Wetland Sediment Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
1	WTSD-01-0-6	05/16/01	Characterize nature and extent of contamination	
	WTSD-01-18-24	05/17/01	along northern boundary of the wetland	
	WTSD-02-0-6	05/16/01	Characterize nature and extent of contamination	MS/MSD
	WTSD-02-18-24	05/17/01	along western boundary of the wetland	
	WTSD-03-0-6	05/16/01	Characterize nature and extent of contamination	
	WTSD-03-18-24	05/17/01	in north/central area of the wetland	
	WTSD-04-0-6	05/16/01	Characterize nature and extent of contamination along northeastern boundary of the wetland	Re-sampled during FA2
	WTSD-04-18-24	05/17/01		
	WTSD-05-0-6	05/16/01	Characterize nature and extent of contamination	
	WTSD-05-18-24	05/17/01	in center of wetland	
	WTSD-06-0-6	05/18/01	Characterize nature and extent of contamination	
	WTSD-06-18-24	05/18/01	along western boundary of the wetland	
	WTSD-07-0-6	05/17/01	Characterize nature and extent of contamination	
	WTSD-07-18-24	05/17/01	in south/central area of the wetland	
	WTSD-08-0-6	05/16/01	Characterize nature and extent of contamination	
i	WTSD-08-18-24	05/17/01	along southeastern boundary of the wetland	· · · · · · · · · · · · · · · · · · ·
	WTSD-09-0-6	05/18/01	Characterize nature and extent of contamination	
	WTSD-09-18-24	05/18/01	in southern area of wetland	
	WTSD-10-0-6	05/18/01	Characterize nature and extent of contamination	
	WTSD-10-18-24	05/18/01	at drainage to Unadilla River	
	WTSD-13-18-24	05/18/01		Duplicate of WTSD-10-18- 24
	WTSD-11-0-6	05/18/01	Obtain background data for sediment samples	•
	WTSD-11-18-24	05/18/01		
	WTSD-12-0-6	05/21/01	Obtain background data for sediment samples	·
_	WTSD-12-18-24	05/21/01		

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab2-4-ok.wpd

Summary of Wetland Sediment Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
2	WTSD-04-0-6	11/05/01	Characterize nature and extent of contamination at the surficial interval at the WTSD-04 location sampled during FA 2.	Resampled due to rejected results
	WTSD-20-0-6	11/05/01		Duplicate of WTSD-04-0-6
	WTSD-13-0-6	11/07/01	Characterize nature and extent of contamination	
	WTSD-13-18-20	11/07/01	along the eastern edge of the wetland, where data gap existed from FA1 sample results	
	WTSD-14-0-6	11/07/01	Characterize nature and extent of contamination	
	WTSD-14-18-20	11/07/01	along the eastern edge of the wetland, where data gap existed from FA1 sample results	
	WTSD-15-0-6	11/07/01	Characterize nature and extent of contamination	
	WTSD-15-18-20	11/07/01	along the eastern edge of the wetland, where data gap existed from FA1 sample results	
	WTSD-16-0-6	11/07/01	Characterize nature and extent of contamination	
	WTSD-16-18-20	11/07/01	along the eastern edge of the wetland, where data gap existed from FA1 sample results	
	WTSD-17-0-6	11/07/01	Characterize nature and extent of contamination	,
	WTSD-17-18-20	11/07/01	along the eastern edge of the wetland, where data gap existed from FA1 sample results	

Notes:

All samples analyzed for VOC, SVOC, P/PCB, Metals, Cn, Cr⁺⁶, pH, TOC, and grain size

VOC - Volatile organic compounds

SVOC - Semivolatile organic compounds

P/PCB - Pesticides/Polychlorinated biphenyls

Cn - Cyanide

Cr⁺⁶ - Hexavalent chromium

TOC - Total organic carbon

MS/MSD - Matrix spike/matrix spike duplicate FA - Field Activity

Page 2 of 2

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab2-4-ok.wpd

Summary of Surface Soil Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
3	RSS-01	10/23/02	Characterization of the nature and extent of surface soil contamination in the northwestern section of the South Bank Front Lot	
	RSS-02	10/23/02	Characterization of the nature and extent of surface soil contamination in the northern section of the South Bank Front Lot	
	RSS-03	10/23/02	Characterization of the nature and extent of surface soil contamination	•
	RSS-10	10/23/02	in the northwest section of the South Bank Front Lot	Duplicate sample of RSS-03
	RSS-04	10/23/02	Characterization of the nature and extent of surface soil contamination in the southwestern section of the South Bank Front Lot	
	RSS-05	10/23/02	Characterization of the nature and extent of surface soil contamination in the southern section of the South Bank Front Lot	
	RSS-06	10/23/02	Characterization of the nature and extent of surface soil contamination in the southeastern section of the South Bank Front Lot	

Notes:

All samples analyzed for TAL metals, cyanide, hexavalent chromium, Total Organic Carbon, and grain size Cn - Cyanide

Cr⁺⁶ - Hexavalent chromium

TOC - Total organic carbon

MS/MSD - Matrix spike/matrix spike duplicate

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab2-5-ok.wpd

Page 1 of 1

Summary of Lagoon Boring Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments	
2	LSB-01-0-2	4/22/02	Characterize	MS/MSD	
	LSB-01-2-4	4/22/02	the nature and extent of soil	Water table at approximately 2 feet bgs	
	LSB-01-10-12	4/22/02	contamination in the eastern		
	LSB-01-18-20	4/22/02	section of the former	Bottom of lagoon material at approximately 17.5 feet bgs	
	LSB-35-18-20	4/22/02	wastewater lagoon area	Duplicate of LSB-01-18-20	
	LSB-02-02	4/11/02	Characterize the nature and		
×	LSB-02-4-6	4/11/02	extent of soil contamination in the central section of the former	extent of soil contamination in the central section of the	Water table at approximately 3 feet bgs
	LSB-02-14-16	4/11/02			
	LSB-02-16-18	4/11/02	wastewater lagoon area	Bottom of lagoon material at approximately 15 feet bgs	
	LSB-03-4-6	4/11/02	Characterize the nature and	Water table at approximately 3 feet bgs	
	LSB-04-4-6	4/11/02	extent of soil contamination	extent of soil contamination	Duplicate of LSB-03-4-6
	LSB-03-12-14	4/11/02	in the western section of the former	Bottom of lagoon material at approximately 10.5 feet bgs	
	LSB-03-14-16	4/11/02	wastewater lacoon area		

Notes:

All samples analyzed for Target Compound List and Target Analyte List, hexavalent chromium, Total Organic Carbon, pH, grain size, and Toxicity Characteristics Leachate Procedure

bgs = below ground surface

MS/MSD = Matrix Spike/Matrix Spike Duplicate

\\Nysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Final RI Tables\FINTab2-6_LSB sample summary.wpd

Summary of Soil Boring Surface and Subsurface Soil Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
2	HITEMAN LEAT	HER SITE S	OIL BORING SAMPLES	· · · · · · · · · · · · · · · · · · ·
	RSB-01-0-2	4/08/02	Characterize impacts	
	RSB-01-2-4	4/08/02	to soils near the UST	
-	RSB-30-2-4	4/08/02		Duplicate of RSB-01-0-2
	RSB-01-8-10	4/08/02		
	RSB-02 -0-2	4/08/02	Characterize impacts	
	RSB-02-2-4	4/08/02	to soils near the former sluiceway	· · · · · · · · · · · · · · · · · · ·
	RSB-02 -8-10	4/08/02		
	RSB-03 -0-2	4/05/02	Characterize impacts	
	RSB-03 -2-4	4/05/02	to soils near the discharge from the	
	RSB-03 -4-6	4/05/02	concrete setling tanks	Contingency sample collected due to elevated HNu reading (0.8 ppm)
	RSB-03 -8-10	4/05/02	· · · · · ·	
	RSB-04 -0-2	4/09/02	Characterize impacts	
	RSB-04 -2-4	4/09/02	to soils near the former sluiceway	
	RSB-04 -8-10	4/09/02		· · · · · · · · · · · · · · · · · · ·
	RSB-05 -0-2	4/10/02	Characterize impacts	
	RSB-05 -2-4	4/10/02	to soils related to overflow from the former wastewater	
	RSB-05 -8-10	4/10/02	lagoons	MS/MSD
	RSB-06 -0-2	4/10/02	Characterize impacts	· · · · · · · · · · · · · · · · · · ·
	RSB-06 -2-4	4/10/02	to soils related to overflow from the	
	RSB-06 -4-6	4/10/02	former wastewater lagoons	Contingency sample collected due to green material
	RSB-06 -8-10	4/10/02		
	RSB-07 -0-2	4/12/02	Characterize impacts to soils related to discharge through the	
	RSB-07 -2-4	4/12/02		MS/MSD
	RSB-07 -8-10	4/12/02	former weir box	
	RSB-07 -10-12	4/12/02		Extra sample collected due to low sample volume in 8-10 foot sample

CDM

Page 1 of 6

\\Nysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Final RI Tables\FINTab2-7_Summ of geotech samples.wpd

Summary of Soil Boring Surface and Subsurface Soil Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
2	RSB-08 -0-2	4/12/02	Confirm elevated	
	RSB-08 -2-4	4/12/02	chromium concentratons detected in SB-10	1
	RSB-08 -8-10	4/12/02		
	RSB-34-8-10	4/12/02	during the NYSDEC	Duplicate of RSB-08-8-10
	RSB-09 -0-2	4/10/02	Characterize material	
	RSB-09 -2-4	4/10/02	landfilled along the site's eastern	
	RSB-09 -8-10	4/10/02	embankment area	
	RSB-10 -0-2	4/09/02	Characterize material	
	RSB-10 -2-4	4/09/02	landfilled along the site's eastern	· · · · · · · · · · · · · · · · · · ·
	RSB-10 -8-10	4/09/02	embankment area	
	RSB-11 -0-2	4/09/02	Characterize material	
	RSB-11 -2-4	4/09/02	landfilled along the site's eastern	MS/MSD: Cr ⁺⁶ , pH, TOC, Grain Size
	RSB-11 -5-7	4/09/02	embankment area	Contingency sample collected due to black staining
	RSB-11 -8-10	4/09/02		
	RSB-12 -0-2	4/05/02	Characterize soils in	
	RSB-12 -0-2	4/05/02	an area of historic contamination	
	RSB-12 -2-4	4/05/02	Containing	
	RSB-12 -8-10	4/05/02		
	RSB-13 -0-2	4/05/02	Characterize soils in	
	RSB-13 -2-4	4/05/02	area where historic photos indicated past site activities	MS/MSD; no sample collected at 8- 10 foot interval due to refusal at 8 feet bgs
	RSB-14 -0-2	4/05/02	Characterize material	·
	RSB-14 -2-4	4/0502	landfilled along the site's eastern	
	RSB-14 -8-10	4/05/02	embankment area	
	RSB-15 -0-2	4/08/02	Confirm presence and location of buried hides discovered	
	RSB-15 -2-4	4/08/02		
	RSB-15 -4-6 ³	4/08/02	during the NYSDEC	Hide sample
	RSB-15 -8-10	4/08/02	RI	

CDM

\\Nysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Final RI Tables\FINTab2-7_Summ of geotech samples.wpd

Summary of Soil Boring Surface and Subsurface Soil Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
2	RSB-16 -0-2	4/09/02	Confirm presence and	
	RSB-16 -2-4	4/09/02	location of buried hides discovered	
	RSB-31-2-4	4/09/02	during the NYSDEC	Duplicate of RSB-16-2-4
	RSB-16 -8-10	4/09/02	RI	· · · · · · · · · · · · · · · · · · ·
{	RSB-17 -0-2	4/09/02	Characterize impacts	
	RSB-17 -2-4	4/09/02	to soils near the former sluiceway	MS/MSD
	RSB-17 -6-8	4/09/02		Contingency sample collected due to oily sheen
	RSB-17 -8-10	4/09/02		
	RSB-26-0-2	4/10/02	Characterize soils at	
	RSB-32-0-2	4/10/02	possible drainage way into the onsite wetland	Duplicate of RSB-26-0-2
	RSB-26-2-4	4/10/02	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	RSB-26-8-10	4/10/02		
2	SOUTHBANK F	RONT LOT S	OIL BORING SAMPLES	
	RSB-18 -0-2 ¹	4/22/02	Characterize soils at the southbank front	
	RSB-18 -2-4 ¹	4/22/02	lot, which had not previously been	
	RSB-18 -8-10 ¹	4/22/02	sampled	
	RSB-19 -0-2 ³	4/04/02	Characterize soils at	Hide sample
	RSB-19 -2-4 ¹	4/04/02	the southbank front lot, which had not	
	RSB-19 -8-10 ¹	4/04/02	previously been sampled	
3	RSB-48-0-2 1	10/24/02	Characterize soils at	
	RSB-48-2-4 1	10/24/02	the southbank front lot, due to chromium contamination detected in RSB-19 during Field Activity 2	· · · · · · · · · · · · · · · · · · ·
	RSB-48-8-10 ¹	10/24/02		
	RSB-49-0-2 1	10/24/02		
	RSB-49-2-4 1	10/24/02		
	RSB-49-8-10 ¹	10/24/02		-
	RSB-52-8-10 ¹	10/24/02		Duplicate of RSB-49-8-10

CDM

Summary of Soil Boring Surface and Subsurface Soil Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
2	FERGUSON FU	ELS SOIL B	ORING SAMPLES	· · · · · · · · · · · · · · · · · · ·
١	RSB-20 -0-2 1	4/05/02	Confirm presence and	· · ·
	RSB-20 -2-4 1	4/05/02	location of buried hides discovered	
•	RSB-20 -8-10 ¹	4/03/02	during excavation for the installation of a water line	
2	CRUMB TRAILE	R PARK SO	IL BORINGS	
	RSB-21-0-2 ¹	4/30/02	Characterize soils	
	RSB-21-2-4 ¹	4/03/02	along the northern side of the former	
	RSB-21-8-10 ¹	4/03/02	Town Dump, which	
	RSB-22 -0-2 ¹	4/03/02	had not previously been sampled	· · · · · · · · · · · · · · · · · · ·
	RSB-22-2-4 ¹	4/03/02		
	RSB-22-6-8 ¹	4/03/02		Contingency sample collected due to oily sheen
	RSB-22-8-10 ¹	4/03/02		
	RSB-23 -0-2 ¹	4/03/02		
	RSB-23-2-4 ¹	4/03/02		
	RSB-23-8-10 ¹	4/03/02		<u></u>
	RSB-24 -0-2 ¹	4/05/02		
	RSB-24 -2-4 1	4/05/02		MS/MSD
	RSB-24-8-10 ¹	4/05/02	-	
	RSB-25 -0-2 ¹	4/05/02		
	RSB-25 -2-4 ¹	4/05/02		
	RSB-25 -8-10 ¹	4/05/02		
3	RSB-40-0-2 ¹	10/22/02	Further characterize	
	RSB-40-2-4	10/22/02	soils within the former Town Dump, due to chromium contamination detected in samples	
	RSB-40-8-10 ¹	10/22/02		
	RSB-41-0-2 1	10/22/02		
	RSB-41-4-6 ¹	10/22/02	collected during Field Activity 2	Sample collected in place of 2-4 foot interval due to low sample volume
	RSB-41-8-10 ¹	10/22/02		

CDM

d.

Summary of Soil Boring Surface and Subsurface Soil Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
	RSB-42-0-2 ¹	10/23/02	Further characterize soils within the former Town Dump, due to chromium contamination detected in samples collected during Field Activity 2	ş
	RSB-42-2-4 ¹	10/23/02		
	RSB-42-4-6 1	10/23/02		Contingency sample collected due to elevated HNu reading (0.8 ppm) and slight odor
	RSB-42-8-10 ¹	10/23/02		
	RSB-43-0-2 ²	10/24/02		
	RSB-43-2-4 ¹	10/24/02		
	RSB-43-8-10 ¹	10/24/02		
	RSB-44-0-2 ¹	10/24/02		
	RSB-44-2-4 ¹	10/24/02		
	RSB-44-8-10 ¹	10/24/02		MS/MSD
	RSB-45-0-2 ¹	10/23/02		MS/MSD
	RSB-45-2-4 ¹	10/23/02		
	RSB-45-4-6 ¹	10/23/02		Contingency sample collected due to elevated HNu readings (0.5 ppm)
ļ	RSB-45-8-10 ¹	10/23/02		
•	RSB-46-0-2 1	10/23/02		
ļ	RSB-46-2-4 ²	10/23/02		·
-	RSB-46-8-10 ¹	10/23/02		
ļ	RSB-47-0-2 1	10/23/02		
ŀ	RSB-47-2-4 1	10/23/02		
	RSB-47-4-6 ¹	10/23/02		Contingency sample collected due to elevated HNu reading (1.2 ppm); no sample collected at 8-10 foot interval due to refusal at 8 feet bgs

CDM INysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Final RI Tables\FINTab2-7_Summ of geotech samples.wpd

Summary of Soil Boring Surface and Subsurface Soil Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
2	BACKGROUND	SOIL BORIN	IGS	· · · ·
	RSB-35-0-2 ¹	7/25/02	Obtain data to	
	RSB-35-2-4 ¹	7/25/02	calculate background soil screening criteria	
	RSB-35-4-6 ¹	7/25/02	for TAL metals	Sample collected at termination of boring
2	RSB-36-0-2 ¹	7/25/02	Obtain data to	
	RSB36-2-4 ¹	7/25/02	calculate background soil screening criteria	
	RSB36-4-6 ¹	7/25/02	for TAL metals	Sample collected at termination of boring
	RSB37-0-2 ¹	7/25/02		Duplicate of RSB36-0-2

Notes:

Samples analyzed for Target Compound List (TCL)/Target Analyte List (TAL), hexavalent chromium (Cr⁺⁶), Total Organic Carbon (TOC), pH, and grain size, unless noted as follows:

sample analyzed for TAL, hexavalent chromium, pH, TOC, and grain size

2 sample analyzed for TAL, hexavalent chromium, pH, and TOC only (no analysis for grain size due to low sample volume)

3 sample analyzed for total arsenic and total chromium only (hide sample)

MS/MSD = Matrix spike/matrix spike duplicate

UST = Underground storage tank

ppm = parts per million

bgs = below ground surface

NYSDEC RI = New York State Department of Environmental Conservation Remedial Investigation

Page 6 of 6

Summary of Building Boring Subsurface Soil Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Location Rationale	Comments
2	BSB-01-0-2	4/02/02	Characterize the nature and extent of subsurface soil beneath	MS/MSD-metals only
	BSB-01-8-10	4/02/02 .	the former building in the beam house area of the building	
	BSB-02-0-2	4/02/02	Characterize the nature and extent of subsurface soil beneath	
	BSB-02-6-8	4/02/02	the former building in the tanning, finishing, and drying area of the building	Contingency sample collected due to elevated PID reading
	BSB-02-8-10	4/02/02		
	BSB-03-0-2	4/03/02	Characterize the nature and extent of subsurface soil beneath	
• •	BSB-03-8-10	4/03/02	the former building in the finishing and drying area of the building	
	BSB-04-0-2	4/02/02	Characterize the nature and extent of subsurface soil beneath	
-	BSB-04-2-4	4/02/02	the former building in the southeastern addition of the building	Contingency sample collected due to observed black soil staining
	BSB-04-8-10	4/03/02		
	BSB-05-0-2	4/03/02	Characterize the nature and extent of subsurface soil beneath	
	BSB-07-0-2	4/03/02	the former building in the tanning, finishing, and drying area of the building	Duplicate of BSB-05-0-2
	BSB-05-8-10	4/03/02	<u> </u>	

Notes:

All samples analyzed for: Total Compound List/Target Analyte List, pH, Total Organic Carbon, and grain size MS/MSD - Matrix spike/matrix spike duplicate PID - Photoionization detector

Summary of Geotechnical Boring Subsurface Soil Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Analysis	Sample Location Rationale				
2	GTB01-2-4	05/08/02	Grain size	Characterize the physical and mechanical				
	GTB01-10-12	05/08/02		properties of the material, stratification, and thickness southwest of the former				
	GTB01-32-34	05/10/02	· · · · · · · · · · · · · · · · · · ·	wastewater lagoon area to evaluate remedial alternatives.				
	GTB01ST-34-36.5 (Shelby Tube)	05/10/02	Atterberg limits, shear strength, permeability, and visual descriptions of soil structures					
	GTB02-18-20	05/07/02	Grain size	Characterize the physical and mechanical				
	GTB02ST-30-32.5 (Shelby Tube)	05/08/02	Atterberg limits, shear strength, permeability, and visual descriptions of soil structures	properties of the material, stratification, and thickness at the south side of the former wastewater lagoon area to evaluate				
c	GTB02-34-36	05/08/02	Grain size	remedial alternatives.				
	GTB03-2-4	04/30/02		Characterize the physical and mechanical				
	GTB03-16-18	04/30/02		properties of the material, stratification, and thickness southeast of the former				
	GTB03-22-24	04/30/02		wastewater lagoon area to evaluate				
	GTB03ST-32-34.5 (Shelby Tube)	05/06/02	Atterberg limits, shear strength, permeability, and visual descriptions of soil structures	remedial alternatives.				
	GTB03-36-38	05/06/02	Grain size					

CDM

\\Nysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Final RI Tables\FINTab2-9_GSB sample summary.wpd

Page 1 of 1

Summary of Newly Installed Monitoring Wells Hiteman Leather Site West Winfield, New York

WELL		MO	NITORING	WELL CONSTRUC	TION DETAILS		DRILLING IN	FORMATI	NC	Rationale
D	12" Casing Depth	8" Casing Depth	Screen Interval	Stratigraphic Unit of Screen Interval	Hydrological Unit of Screen Interval	Total Boring Depth	Drilling Method	Start Date	End Date	
RMW-4B	28	43	56-66	Bedrock	Onondaga Limestone	- 67	mud and air rotary	4/22/2002	4/26/2002	Characterize groundwater in bedrock aquifer in the lagoon area
RMW-9D		28	36-46	Silty Clay	Glacio-Lacustrine Deposits	47	mud rotary	4/12/2002	4/16/2002	Replace MW-9D to characterize groundwater in the deep overburden aquifer south of the Unadilla River
RMW-11D		24	25-35	Silty Clay	Glacio-Lacustrine Deposits	35	mud rotary	4/11/2002	4/12/2002	Repace MW-11D to characterize groundwater in the deep overburden aquifer in the most downgradient well cluster
RMW-11B	28	39	56-66	Bedrock	Onondaga Limestone	66	mud and air rotary	4/9/2002	4/16/2002	Characterize groundwater in the bedrock aquifer in the most downgradient well cluster, and to serve as a sentinel bedrock well.
RMW-16S			7-17	Sand and Gravel	Glacial Outwash Deposits	18	hollow stem auger	4/23/2002	4/23/2002	Characterize shallow groundwater in the overburden aquifer upgradient of the Site
RMW-16D		36	55-65	Silty Clay	Glacio-Lacustrine Deposits	66	mud rotary	4/23/2002	4/26/2002	Characterize deep groundwater on the overburden aquifer upgradient of the Site
RMW-16B	38	70	76-86	Bedrock	Onondaga Limestone	90	mud and air rotary	4/27/2002	4/29/2002	Characterize groundwater in the bedrock aquifer upgradient of the Site
RMW-17S			14-24	Sand and Gravel	Glacial Outwash Deposits	29	hollow stem auger	4/5/2002	4/8/2002	Characterize groundwater at a possible source location upgradient of MW-8S
RMW-18S			3-13	Sand and Gravel	Glacial Outwash Deposits	14	hollow stem auger	4/29/2002	4/29/2002	
RMW-18D		15	19-29	Silty Clay	Glacio-Lacustrine Deposits	30	mud rotary	4/27/2002	4/28/2002	Characterize groundwater in the overburden aquifer downgradient of the Site.

Notes:

All measurements are feet below ground surface

CDM

Y:\hiteman\hitemanreports\RItab2-11.wpd

Page 1 of 1

Final Turbidity Readings for Well Development Hiteman Leather Site West Winfield, New York

Well ID	Turbidity (Nephthalometric Turbidity Units)
Existing Monitoring Wells	
MW-2S	14
MW-3S	110
MW-4S	>999
MW-4D	>999
MW-5S	>999
MW-5D	>999
<u>/</u> w-6S	>999
MW-6D	>999
MW-7S	890
MW-8S	35
MW-9S	>999
MW-105	50
MW-10D	>999
MW-11S	,>999
MW-12S	>999
MW-13S	670
MW-13D	.999
MW-14S	15
MW-15S	>999
Newly Installed Monitoring Wells	
RMW-4B	80
RMW-9D	>999
RMW-11B	172
RMW-11D	159
RMW-16S	212
RMW-16D	760
RMW-16B	78
RMW-17S	266
RMW-18S	10
RMW-18D	>999

CDM X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab2-11-ok.wpd

Summary of Groundwater Samples Hiteman Leather Site West Winfield, New York

	S	ample ID			
Well ID	Field Activity 1 (Round 1)	Field Activity 2 (Round 2)	Comments		
Existing We	lls		· · ·		
MW-2S	MW-2S-R1	MW-2S-R2	· · · · · · · · · · · · · · · · · · ·		
MW-3S	MW-3S-R1	MW-35-R2			
MW-4S	MW-4S-R1	MW-4S-R2	· · · · · · · · · · · · · · · · · · ·		
MW-4D	MW-4D-R1	MW-4D-R2	· · · · · · · · · · · · · · · · · · ·		
MW-5S	MW-5S-R1	MW-5S-R2			
	MW-17S-R1		Duplicate of MW-5S-R1		
MW-5D	MW-5D-R1	MW-5D-R2			
MW-6S	MW-6S-R1	MW-6S-R2			
MW-6D	MW-6D-R1	MW-6D-R2	· · · · · · · · · · · · · · · · · · ·		
MW-7S	MW-7S-R1	MW-7S-R2			
MW-8S	MW-8S-R1	MW-8S-R2			
		RMW-22	Duplicate of MW-8S-R2		
<u>MW-95</u>	MW-9S-R1	MW-9S-R2			
<u>MW-10S</u>	MW-10S-R1	MW-10S-R2			
MW-10D	MW-10D-R1	MW-10D-R2			
	MW-16D-R1		Duplicate of MW-10D-R1		
<u>MW-11S</u>	MW-11S-R1	MW-11S-R2	· · · · · · · · · · · · · · · · · · ·		
MW-12S	MW-12S-R1	MW-12S-R2			
<u>MW-135</u>	MW-13S-R1	MW-13S-R2			
MW-13D	MW-13D-R1	MW-13D-R2			
<u>MW-14S</u>	MW-14S-R1	<u>MW-14S-R2</u>			
MW-155	MW-15S-R1	MW-15S-R2	· · · · · · · · · · · · · · · · · · ·		
MW-11D	NS	MW-11D	Only analyzed for Metals, Cn, Cr ⁺⁶		
		MW-20	Duplicate of MW-11D		
Newly Install	ed Wells	r			
RMW-4B	NS ·	RMW-4B-R1			
RMW-9D	NS	RMW-9D-R1			
RMW-11D	NS	RMW-11D-R1			

Summary of Groundwater Samples Hiteman Leather Site West Winfield, New York

	Sa	imple ID					
Well ID	Field Activity 1 (Round 1)	Field Activity 2 (Round 2)	Comments				
RMW-11B	NS	RMW-11B-R1					
RMW-16S	NS	RMW-16S-R1					
RMW-16D	NS	RMW-16D-R1					
RMW-16B	NS	RMW-16B-R1	MS/MSD				
RMW-17S	W-17S NS RMW-17S-I						
RMW-18S	NS	RMW-18S-R1					
RMW-18D	NS	RMW-18D-R1					
`	<u> </u>	RMW-25	Duplicate of RMW-18D-R1				
Municipal Wel	ls .	· · · · · · · · · · · · · · · · · · ·					
Town Well 1	MUNI-1TAP	NS	MS/MSD				
Town Well 2	MUNI-2TAP	NS	<u> </u>				
Residential Wells							
371 Mill St.	NS	TAP-371MILL-GW					
123 South St.			MS/MSD				

Notes:

All samples analyzed for the following parameters unless otherwise noted: low detection limit (LDL) volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs),

pesticides/polychlorinated biphenyls (PCBs), metals, cyanide (Cn), hexavalent chromium (Cr⁺⁶),total dissolved solids (TDS), total suspended solids (TSS), biological oxygen demand (BOD), total kjeldahl nitrogen (TKN), total organic carbon (TOC), chemical oxygen demand (COD), nitrate/nitrite, alkalinity, chloride, sulfate, and ammonia

MS/MSD - Matrix spike/matrix spike duplicate

NS - Not sampled

Groundwater Level Elevation Data - 2001 Hiteman Leather Site West Winfield, New York

Well	Well 1	4	April 2001	J	uly 2001	November 2001		
ID	Elevation	DTW ²	Water Elevation ¹	DTW ²	Water Elevation	DTW ²	Water Elevation	
MW-2S	1186.52	13.46	1173.06	15.00	1171.52	16.18	1170.34	
MW-3S	1177.21	4.75	1172.46			7.05	1170.16	
MW-4S	1176.97	4.50	1172.47	5.69	1171.28	9.10	1167.87	
MW-4D	1177.28	flowing	>1177.28	TIC	1177.28	flowing	>1177.28	
MW-5S	1177.34	5.49	1171.85	6.49	1170.85	7.47	1169.87	
MW-5D	1176.78	flowing	>1176.78	0.0	1176.78	0.0	1176.78	
MW-6S	1177.29	5.80	1171.49	5.99	1171.30	7.10	1170.19	
MW-6D	1176.91	flowing	>1176.91	flowing	>1176.91	flowing	>1176.91	
MW-7S	1181.81	8.84	1172.97	10.20	1171.61	11.26	1170.55	
MW-8S	1177.29	4.83	1172.46	5.89	1171.40	6.26	1171.03	
MW-9S	1176.12	4.65	1171.47	5.61	1170.51	6.30	1169.82	
MW-9D	1176.01	flowing	>1176.01	flowing	>1175.13	flowing	>1176.01	
MW-10S	1175.24	4.39	1170.85	5.30	1169.94	6.20	1169.04	
MW-10D	1175.13	flowing	>1175.13	flowing	>1175.13	flowing	>1175.13	
<u>MW-11S</u>	1175.92	5.49	1170.43	5.57 <u>.</u>	1170.35	6.55	1169.37	
MW-11D	1176.92	5.75	1171.17	6.55	1170.37	7.50	1169.42	
MW-125	1181.44	8.74	1172.72	9.97	1171.47	11.14	1170.30	
MW-13S	1183.69	10.88	1172.81	12.14	1171.55	12.60	1171.09	
MW-13D	1183.72	flowing	>1183.72	2.22	1181.50	3.40	1180.32	
MW-14S	1185.23	12.56	1172.67			14.82	1170.41	
<u>MW-15S</u>	1175.23	4.58	1170.65	5.26	1169.97	5.42	1169.81	

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab2-13-ok.wpd

Page 1 of 2

Groundwater Level Elevation Data - 2001 Hiteman Leather Site West Winfield, New York

Notes:

ID = Identification

DTW = Depth to water

-- = Not applicable. Well not measured.

> = Indicates flowing artesian conditions (water level is greater than the top of the inner casing)

¹ Well elevation and water table elevations are reported as feet above mean sea level; well elevation measurements were made from top of the inner casing.

² Depth to water measurements are reported as feet below the top of the inner casing.

Groundwater Level Elevation Data - 2002 Hiteman Leather Site West Winfield, New York

Well	Well El	evation Measur	ements ¹	May	May 2002		July 2002		October 2002	
i D	Top of Inner Casing	Top of Outer Casing	Ground Surface	Water Level ²	Water Elevation ¹	Water Level ²	Water Elevation ¹	Water Level ²	Water Elevation ¹	
MW-2S	1186.52	1186.91	1184.45	12.85	1173.67	15.08	1171.44	13.03	1173.49	
MW-3S	1177 21	1177.34	1175.05	3.82	1173.39	5.95	1171.26	4.06	1173.15	
MW-4S	1176.97	1177.05	1175.05	3.56	1173.41	5.69	1171.28	6.67	1170.30	
MW-4D	1177.28	1177.24	1175.22	flowing	>1177.28	3.47 atic	1180.75	0.12 ags	1175.34	
MW-5S	1177.34	1177.44	1174.13	4.10	1173.24	6.48	1170.86	4.11	1173.23	
MW-5D	1176.78	1176.93	1174.13	flowing	>1176.78	1.03 atoc	1177.96	0.0 atoc	1176.93	
MW-6S	1177.29	1177.39	1174.75	4.12	1173.13	6.04	1171.25	4.29	1173.00	
MW-6D	1176.91	1177.02	1174.45	flowing	>1176.91	3.98 atic	1180.89	0.0 toc	1177.02	
MW-7S	1181.81	1181.85	1179.54	8.36	1173.45	10.22	1171.59	8.42	1173.39	
MW-8S	1177.29	1177.36	1174.66	4.20	1173.09	5.94	1171.35	4.35	1172.94	
MW-9S	1176.12	1176.20	1173.68	4.14	1171.98	5.55	1170.57	4.29	1171.83	
MW-10S	1175.24	1175.28	1172.56	3.90	1171.34	5.24	1170	4.15	1171.09	
MW-10D	1175.13	1175.07	1172.57	flowing	>1175.13	5.20 atic	1180.33	5.76 ags	1178.33	
MW-11S	1175.92	1176.62	1173.06	3.84	1172.08	5.55	1170.37	5.44	1170.48	
MW-11D	1176.92	1176.95	1173.33	NA	ŇA	NA	NA	0.60	1176.32	

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab2-14-ok.wpd

r,

Groundwater Level Elevation Data - 2002 Hiteman Leather Site West Winfield, New York

Well	Well El	evation Measur	ements ¹	May	May 2002		July 2002		tober 2002
ID	Top of Inner Casing	Top of Outer Casing	Ground Surface	Water Level ²	Water Elevation ¹	Water Level ²	Water Elevation ¹	Water Level ²	Water Elevation ¹
MW-12S	1181.44	1181.36	1177.85	. 7.47	1173.97	10.15	1171.29	8.40	1173.04
MW-13S	1183.69	1183.81	1181.20	10.03	1176.66	12.26	1171.43	1021	1173.48
MW-13D	1183.72	1183.78	1181.49	2.06	1181.66	3.10	1180.52	3.22	1180.50
MW-14S	1185.23	1185.61	1185.56	11.48	1173.75	13.73	1171.50	11.63	1173.60
MW-15S	1175.23	1175.27	1172.22	4.10	1171.13	5.19	1170.04	4.25	1170.98
RMW-4B	1175.13	1176.59	1175.09	flowing	>1175.13	5.81 ags	1180.90	6.73 ags	1181.82
RMW-9D	1175.42	1175.57	1173.90	flowing	>1173.96	4.43 Ags	1178.33	5.41 ags	1180.70
RMW-11D	1177.28	1177.42	1175.21	2.48	1174.80	4.16	1173.12	2.64	1174.64
RMW-11B	1176.62	1176.93	1175.29	flowing	>1176.61	5.13 ags	1180.42	5.41 ags	1180.70
RMW-16S	1183.74	1183.95	1181.86	9.77	1173.97	11.84	1171.90	10.38	1173.36
RMW-16D	1183.86	1184.03	1182.02	flowing	>1181.89	0.15	1183.71	0.20	1183.66
RMW-16B	1182.00	1182.48	1182.48	flowing	>1182.00	0.56 ags	1183.04	0.40 ags	1182.88
RMW-17S	1181.86	1182.00	1179.08	8.28	1173.58	10.33	1171.53	8.39	1173.47
RMW-18S	1173.92	1174.30	1174.30	3.22	1170.70	4.70	1169.22	3.58	1170.34
RMW-18D	1173.93	1174.23	1174.26	flowing	>1177.93	5.65 ags	1179.91	2.42 ags	1176.68

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab2-14-ok.wpd

Page 2 of 3

Groundwater Level Elevation Data - 2002 Hiteman Leather Site West Winfield, New York

Notes:

¹ measurements are in feet above mean sea level

² measurements are taken in feet below top of inner casing unless otherwise noted as follows:

ags = above ground surface

atic = above top of inner casing

ags = above top of outer casing

NA = measurement not taken

Water level measurements for flowing artesian wells were not collected in May 2002.

> = Indicates flowing artesian conditions (water level is greater than the top of the inner casing)

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab2-14-ok.wpd

Summary of Unadilla River Fish Tissue Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Species	Total Fish Weight (grams)	Fish Length (range in millimeters)	Number of Fish in Sample	Species Type	Sample Location Rationale	
.2	URFF-1-A	11/13/01	Minnow species	84	112-40	21	Forage Fish (Unknown Feeder)	Characterize upgradient background	
	URFF-1-B	11/13/01	Slimy Sculpin	108	112-40	42	Forage Fish (Bottom Feeder)		
	URFF-2-A	11/13/01	Blacknose Shiner	95	105-40	18	Forage Fish (Bottom Feeder)	Characterize outfall from concrete settling tanks	
· .	URFF-2-B	11/14/01	Slimy Sculpin	54	83-37	8	Forage Fish (Bottom Feeder)		
	URSF-2*	11/14/01	Brown Trout	16	126	1	Sport Fish		
	URFF-3-A	11/14/01	Blacknose Shiner	106	82-35	45	Forage Fish (Bottom Feeder)	Characterize area adjacent to lagoons	
	URFF-3-B	11/14/01	Slimy Sculpin	99	96-36	19	Forage Fish (Bottom Feeder)		
	URFF-4-A	11/14/01	Minnow species	64	167-135	2	Forage Fish	Characterize drainage	
	URFF-4-B	11/14/01	Northern Hog Sucker	77	146-73	9	Forage Fish (Bottom Feeder)	from onsite wetland	
	URSF-4*	11/14/01	Brown Trout	16	111-5	2	Sport Fish		
	URFF-5-A	11/13/01	Blacknose Shiner	108	85-36	.41	Forage Fish (Bottom Feeder)	Determine nature and extent of downstream contamination	

CDM YIMA 032) PILEing/ PILEing/ PI Tablog/EINITab2 15 finhs

Page 1 of 2

X:\WA 032\RI\Final RI\Final RI Tables\FINTab2-15_fishsamples wpd

Summary of Unadilla River Fish Tissue Samples Hiteman Leather Site West Winfield, New York

Field Activity	Sample ID	Date Collected	Sample Species	Total Fish Weight (grams)	Fish Length (range in millimeters)	Number of Fish in Sample	Species Type	Sample Location Rationale
2	URFF-5-B	11/13/01	Slimy Sculpin	95	93-33	28	Forage Fish (Bottom Feeder)	Determine nature and extent of downstream contamination
	URSF-5**	11/13/01	Largemouth Bass	34	85-69	4	Sport Fish	

Notes:

All samples analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides/polychlorinated biphenyls

(P/PCBs), metals, cyanide, and percent lipids, unless otherwise indicated, as follows:

* Samples analyzed for metals and percent lipids only, due to low sample volume

** Samples analyzed for VOCs, metals and percent lipids only, due to low sample volume

CDM.

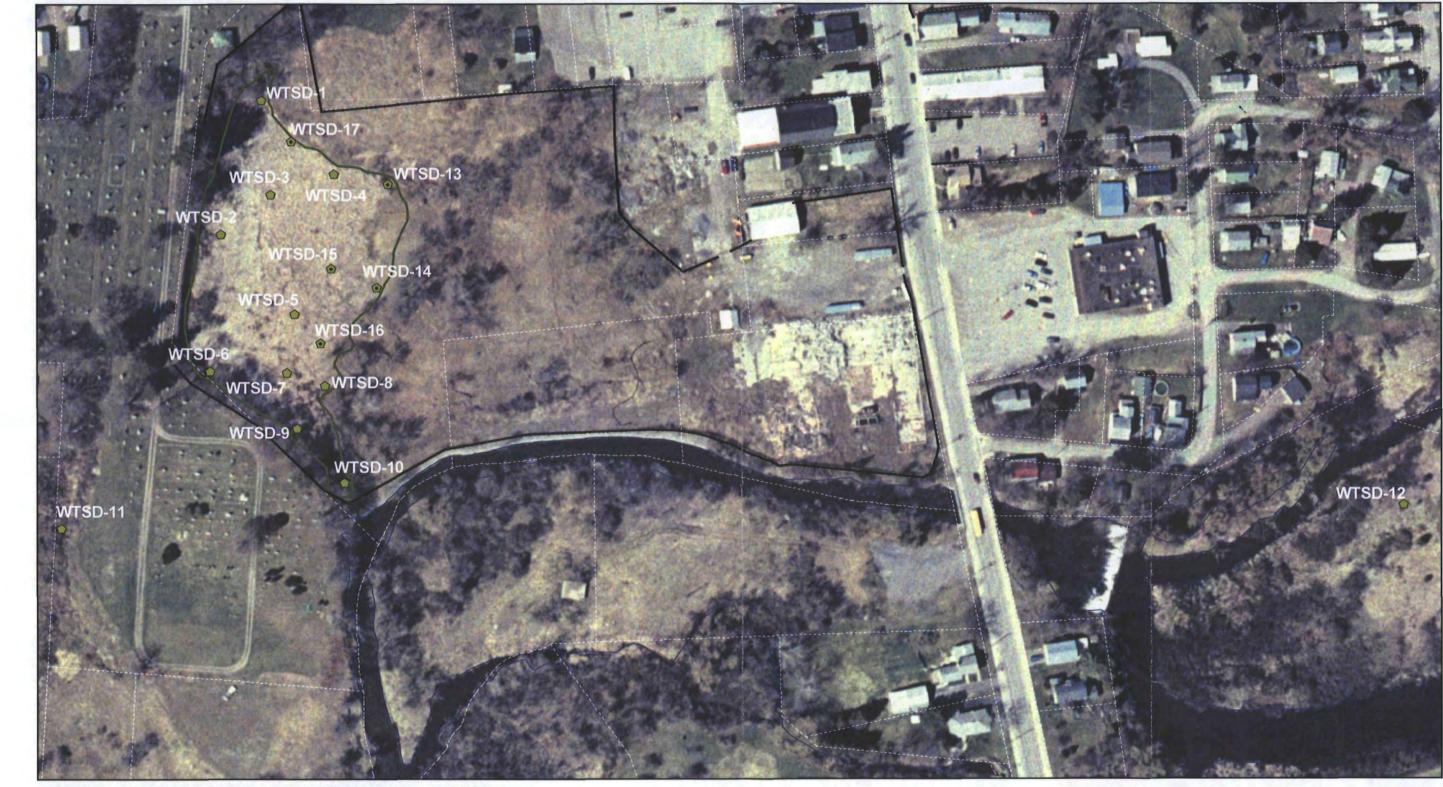
X:\WA 032\RI\Final RI\Final RI Tables\FINTab2-15_fishsamples.wpd

- ▲ Surface Water and Sediment Sample Location (Field Activity 2)
- Onsite Wetland

 Δ

1500

2000 Feet


N

1000

500

Figure 2-1 Unadilla River Surface Water and Sediment Sampling Locations Hiteman Leather Site West Winfield, New York

Sediment Samples were collected from the 0-6 and 18-24 inch intervals at each sampling location

LEGEND Wetland Sediment Sample Location (Field Activity 1) Wetland Sediment Sample Location (Field Activity 2)	*Aerial photograph dated April 26, 20	001	\triangle			Onsite V
Tax Map Boundary Fence Line Onsite Wetland	0	100	N 200	300	400 Feet	

Note: The 0-6 inch interval at location WTSD-4 was collected during Field Activity 2

Figure 2-2 Netland and Background Sediment Sampling Locations Hiteman Leather Site West Winfield, NJ

File Path: c:\egis\hiteman\section_2.apr		
RTP-		-
RTP-6	LSB-1 LSB-2	1
RTP-7	· · · · · · · · · · · · · · · · · · ·	1
LSB-	3 Unadilla River	-
	°RSS-01 RSS-02	
	SOUTH BANK FRONT LOT	1
	RSS-04 RSS-05	RSS
	A ADD Faet	
LEGEND Lagoon Boring Location (Field Activity 2) Test Pit Location Marking	*Aerial photograph dated April 26, 2001	ace So

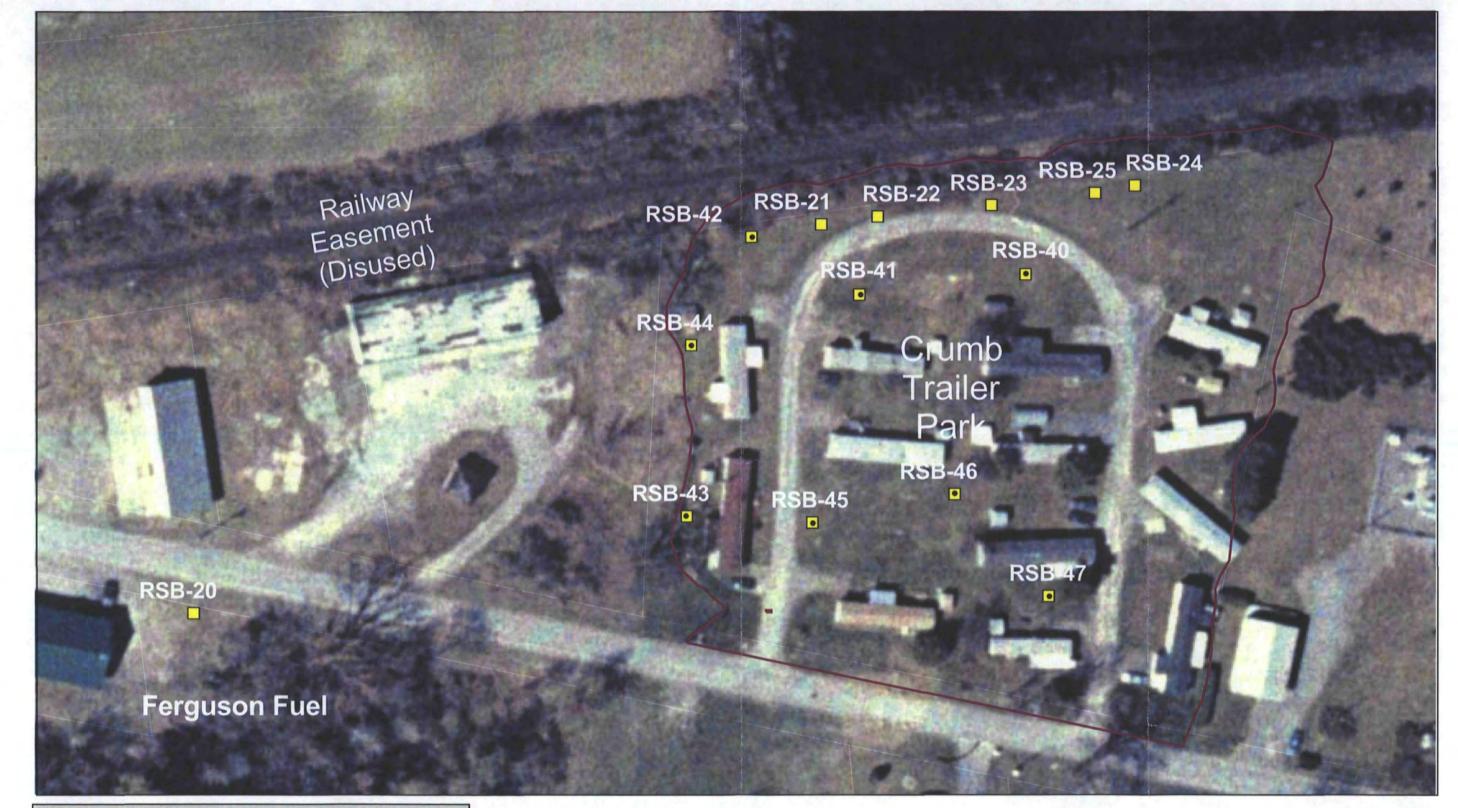
- Lagoon Boundary (Field Activity 2) Surface Soil Sample Location (Field Activity 3) •
- ~ Onsite Wetland Site Fence Line
- Concrete Foundation
- Tax Map Boundary

Ν 100 150 50

200 Feet

Figure 2-3 oil Sampling, Lagoon Boring, and Test Pit Locations Hiteman Leather Site West Winfield, New York

LEGEND

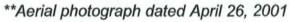

 Building Boring Location (Field Activity 2)
 Onsite Soil Boring Location (Field Activity 2)
 Onsite Soil Boring Location (Field Activity 3)
 Fence Line Concrete Foundation
 Onsite Wetland Tax Map Boundary

*Aerial photograph dated April 26, 2001

Ν 150 200 Feet 100 50

Figure 2-4 Onsite Building Boring and Soil Boring Locations Hiteman Leather Site West Winfield, New York

CDM

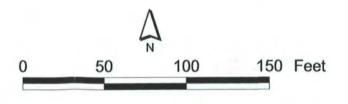
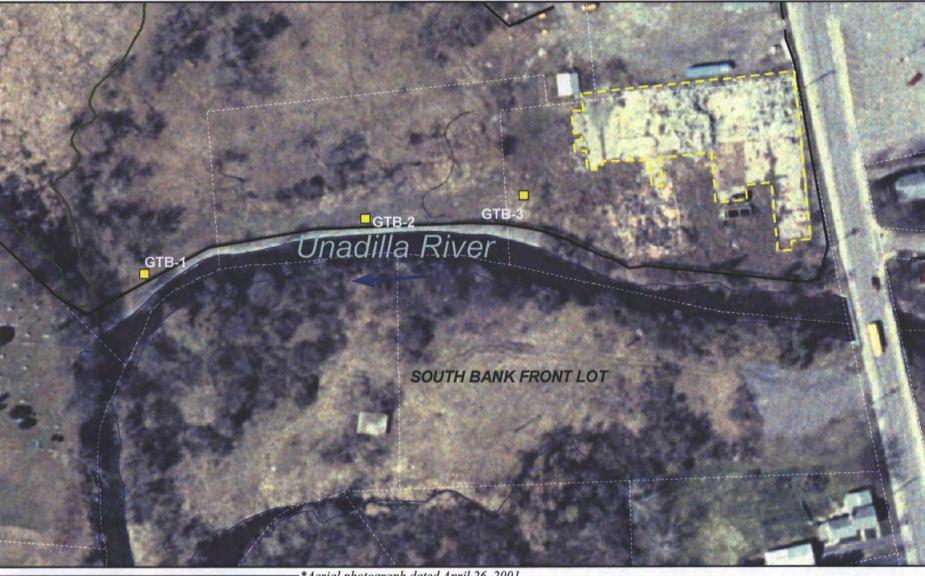


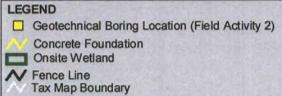
LEGEND

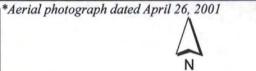
Off Site Soil Boring Location (Field Activity 2)
 Off Site Soil Boring Location (Field Activity 3)

- Estimated Extent of Former Town Dump*
- Tax Map Boundary

* Based on topographic break of slope and changes in ground vegetation color.


Figure 2-5 Offsite Soil Boring Locations Hiteman Leather Site West Winfiled, New York



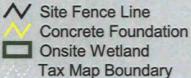
File Path: c:\egis\hiteman\section_2.apr


50

150 Feet

100

Figure 2-6 Geotechnical Soil Boring Locations Hiteman Leather Site West Winfield, New York



CDM

LEGEND

Municipal Supply Well Location (Field Activity 1) Residential Well Location (Field Activity 2)

500 Feet 0

Figure 2-8 Municipal and Residential Well Locations **Hiteman Leather Site** West Winfield, New York

100

200 Feet

- -

Concrete Foundation Onsite Wetland

Tax Map Boundary

URFF - Unadilla River Forage Fish URSF - Unadilla River Sport Fish

Section Three

Section 3

3.1 Surface Features

The Hiteman Leather Site is located within the northern portion of the Appalachian Upland physiographic province, and is traversed by the westward-flowing Unadilla River. The Site is bordered to the south by a residential property and a small tributary to the Unadilla River, with a wetland beyond, to the east by Route 51, and to the west by the West Winfield Cemetery. Residential areas are located north of the Site. The concrete foundation of the former tannery building is located on the eastern border of the Site, just north of the Unadilla River. Two buildings still exist at the Site, including a storage garage that is maintained and operated by the Village of West Winfield DPW and a small storage shed.

Topographic relief at the Site is generally flat, with a gentle southwestern slope from the northern and northeastern portions of the Site on the northern bank of the river toward the onsite wetland and Unadilla River. Ground surface elevations range from approximately 1,170 to 1,180 feet above msl. Rolling hills rise to the north and south, approximately 300-500 feet above the valley floor.

The southern portion of the Site, south of the river, is level. North of the river, the Site slopes gently from the northern portion of the Site towards the southwestern wetland area. However, a slightly steeper grade is observed at the location of the former tannery buildings on the eastern portion of the Site due to mounds of demolition debris resting above the original grade. The northern river bank drops steeply (between 6 and 8 feet) down to the river from grade; rip-rap has been deposited along the river bank as an erosion control measure which obscures this abrupt drop in elevation. The area once occupied by the former wastewater lagoons has no topographic expression other than small mounds and hummocks. The surface expression of a former channel leading from the northern lagoon to the wetlands, observed in historical aerial photographs, can be identified visually. The border between the onsite wetland and the cemetery is characterized by a steep embankment, which is continuous along the western portion of the wetland and is generally more than 10 feet higher than the wetland. The embankment is lined with a chainlink fence, which creates the western property boundary between the cemetery and the Site.

3.2 Meteorology

West Winfield is located in the central part of New York where the climate is defined as temperate continental. The following data was obtained for the town of Utica, New York, located approximately 20.5 miles north of West Winfield. According to the National Climatic Data Center, the national repository for National Weather Service Data, the town of Utica had prevailing winds from the north northeast, with an average maximum wind speed of 10.3 miles per hour in February. Average precipitation is 43.94 inches per year, 50 per cent of which falls from April to September. Thunderstorms occur on about 50 days each year, mostly in the summer. The average seasonal snowfall is 180 inches, falling on an average of 90 days during

the winter. The average temperatures range from 27 degrees Fahrenheit (° F) in winter to 68° F in the summer.

The Hiteman Leather Site is located within the Central New York climatic zone, according to data presented by a climatologist at the Northeast Regional Climate Center, Katheryn Vreeland. The Central Zone includes portions of Oneida, Herkimer, Madison, Otsego, and Montgomerie counties. Average monthly temperature and precipitation data for central New York are available for the years 1948-2002. The following averages are for the years 1961-1990 in Little Falls, NY located approximately 25 miles northeast of West Winfield (http://www.worldclimate.com) The warmest average temperatures are recorded in July, with average maximum and minimum temperatures of 79.9° F and 56.3° F, respectively. The coldest average temperatures are 26.8° F and 7.5° F, respectively. The month during which precipitation is normally greatest is June (mean of 4.3 inches) and the month in which precipitation is normally the smallest is February (mean of 2.3 inches). The mean annual precipitation is 41.6 inches.

Data for the period January 2001 to June 2002 were obtained from the National Climatic Data Center and are summarized in Table 3-1. In general, monthly temperature trends for the period January 2001 to June 2002 were similar to the normal long-term trends. For the period January 2001 to June 2002, the greatest precipitation was recorded in June 2001 (8.12 inches) and the least rainfall amount was measured in February 2002 (0.80 inch). The precipitation measured for the 18 month period from January 2001 to June 23, 2002 was 58.84 inches.

3.3 Surface Water Hydrology

The Unadilla River is one of several tributaries within the Susquehanna River Basin, a major drainage basin located within the southern tier of New York State and eastern Pennsylvania. The Susquehanna River eventually discharges into Chesapeake Bay. The headwaters of the Unadilla River originate approximately five miles northeast of the Site in Herkimer County, at the drainage basin watershed, the groundwater divide between the Susquehanna and Mohawk river basins. The Unadilla River flows to the south-southwest through Herkimer, Madison, Otsego, and Chenango Counties until its confluence with the Susquehanna River, approximately 50 miles south of the Site.

Within the Unadilla River drainage basin in the vicinity of the Site, surface drainage is characterized by a combination of trellis and dendritic drainage patterns. Tributary streams generally flow from the topographically high areas north and south of the valley towards the northeast to southwest-flowing Unadilla River.

Local surface water runoff flows towards the Unadilla River, which traverses the Hiteman Leather Company Site from the Route 51 bridge at the eastern edge of the Site to the outflow of the wetland area on the western side of the property. The river, at this point, turns and flows in a southerly direction towards the former Erie-Lackawanna Railroad tracks. The width of the river ranges from approximately 10 to

50 feet, with narrower reaches in the vicinity of the Site and wider reaches in slower moving areas upstream and downstream of the Site. Southwest of the Hiteman property, the Unadilla River branches into several stream channels characterized by a series of meanders (NYSDEC 1992).

In general, the river morphology is characterized by segmented riffle runs, quiescent runs, and pools. The bottom is generally characterized by large cobbles, gravels with silt, and detritus. A sediment shelf composed of gray silty material exists in the northern river bank in the western portion of the Site. This shelf extends approximately 12-18 inches horizontally from the river bank into the river, then drops abruptly to the river bottom (approximately 3 feet). Rip-rap has been placed on the bank to curb erosion.

The major tributary to the Unadilla River in the vicinity of the Site is North Winfield Creek. The creek, which originates in the Town of Litchfield approximately seven miles north of West Winfield, flows in a southerly direction towards the Unadilla River. The Unadilla River also receives recharge from the wetland area along the western portion of the Hiteman property and from drainage from Route 51 and the area north and east of the Unadilla River. Flow data for the Unadilla River at West Winfield are not available.

The surface water of the Unadilla River adjacent to the Hiteman property does not exhibit discoloration other than that associated with normal biologic and sedimentologic processes. Crayfish and trout have been observed in the river adjacent to the property.

The nearest gaging station is about 19.5 miles southwest of the Site, at West Berlin, New York. Average discharge at this station is 317 cubic feet per second (cfs) (NYSDEC 1992).

The Unadilla River in the Site area is classified as a "Class C(T)" stream (6 NYCRR 17, Ch 10, Section 931.4 §1006). This classification indicates that waters are suitable for fishing and all other uses except as a source of water supply for drinking, culinary, and food processing purposes, or for primary contact recreation. The (T) represents suitable conditions for trout propagation and fishing.

The Site is located in a 500-year flood plain (EPA 1997b). According to the Federal Emergency Management Agency's (FEMA) Hazard Information and Awareness interactive website (<u>http://www.esri.com/hazards/makemap.html</u>, 2003) approximately sixty percent of the Site is in the 100-year flood plain. This area includes the southern and western portion of the Site north of the river (including the wetland area) and all of the portion of the Site south of the river. The flood plain map is presented in Figure 3-1a.

3.4 Soils

According to the *Soil Survey of Southern Herkimer County, New York* (USDA 1975), four classified soil types are expected to occur onsite. Figure 3-1b presents the portion of the Soil Conservation Soil map that covers the Site vicinity. The following is a description of the soils expected in the Site area.

<u>Palmyra gravelly silt loam, 3 to 8 percent slopes (PIB)</u>- This soil is gently sloping and is found on glacial outwash terraces and kames. The soil type occupies the terrace on the eastern portion of the Site upon which the former facility buildings stood. Areas of this soil are irregular in shape and range from 5 to 40 acres. In a typical soil profile of Palmyra soils, the surface layer is nine inches, composed of dark brown gravelly silt loam. It is underlain by a layer of dark brown, very friable, neutral, gravelly, very fine sandy loam that is eight inches thick. From depths of about 17 to 27 inches, the subsoil is a dark brown, neutral, friable, gravelly silt loam. At a depth of about 27 inches it merges with a calcareous lower part of the subsoil that is a very friable, very dark brown, gravelly silt loam that is about nine inches thick. The substratum begins at about 36 inches, consisting of a very dark brown, calcareous, stratified gravel and sand that extends to depths of more than 60 inches.

<u>Cut and Fill Land (Cu)</u> - This consists of nearly level to steep areas of soil material recently disturbed by man. This soil is delineated on the western portion of the Site formerly occupied by the wastewater lagoons and the existing wetland area. The cut and fill soils have not been exposed or have not been in place long enough for profile development to take place.

<u>Alluvial Land (Ad)</u> - This is a nearly level area of unconsolidated alluvium, generally stratified, and varying widely in texture and drainage over short distances. The soil unit is mapped on the eastern portion of the South Bank Front Lot. Alluvium is deposited by streams and is subject to frequent changes through stream overflow. It is found in long, narrow areas on flood plains that range from about 3 to 20 acres. Alluvial land floods frequently and is poorly suited to farming.

<u>Fredon fine sandy loam (Fr)</u> - This is a level to nearly level soil on glacial outwash terraces. Individual areas are irregularly shaped and range from 3 to 20 acres. This soil is suited to most crops, pasture, and trees.

3.5 Geology

The regional and local geology are described below.

3.5.1 Regional Geology

The Hiteman Leather Site lies in the northern portion of the Appalachian Upland physiographic province, near the bedrock divide between the Appalachian Upland and the Mohawk Lowland physiographic provinces. Geology in the region consists of limestone bedrock and glacial overburden materials.

3.5.1.1 Bedrock Geology

The Site is located in a relatively thin outcrop belt of the Middle Devonian Onondaga Formation. The formation consists of a limestone-dominated succession which is approximately 60 feet thick at its type location in Onondaga County, approximately 50 miles west of the Site, and up to approximately 150 feet thick in eastern and western parts of the state (Friedman 1985). In general, the formation has a shallow stratigraphic dip of less than 10 degrees towards the south.

The limestones of the Onondaga Formation were deposited approximately 385 to 405 million years ago, during a westward-transgressing, shallow enclosed northeast-trending sea, which had a major connection to the open ocean to the southwest. (Lindemann and Friedman 1987). Coral-rich limestones were deposited in shallow water along the eastern and western margins of the sea, where reefs flourished and thicker accumulations of sediments took place. These coral-rich limestones are now exposed near Albany and along the Niagra Peninsula. Deposits in deeper parts of the sea, such as central New York, consist of a higher proportion of fine-grained clastic sediments, such as shales and fine sandstones, which are commonly interbedded within thinner fine-grained limestones (Oliver 1954 and 1976; Turner 1977; Mesolella 1978; Lindemann 1979; Williams 1980; Friedman 1985; Brett and Ver Straeten 1994; and Wolosz and Paquette 1995).

3.5.1.2 Overburden Geology

Overburden deposits overlie the Onondaga Formation limestones, and consist of glacial and flood plain deposits. Large volumes of sediment-laden water from the melting ice were generated and created the outwash deposits which consist of well stratified fine- to coarse-grained sand and gravel. The outwash deposits tend to become finer with distance from the ice border. The glacio-lacustrine deposits that formed in the ice-contact or pro-glacial lakes generally consist of laminated silt and clay. Post-glacial streams reworked the sediments in the low-lying areas, depositing sediments such as channel and overbank floodplain sand, gravels, and clays.

The region has been subject to several periods of glaciation during the Pleistocene. As a result, most of the regional glacial sediments were derived almost entirely from the most recent southward advance and northward retreat of the ice sheet during the Late Wisconsin-age glacial event, which began approximately 30,000 years ago and reached its maximum southerly extent approximately 20,000 years ago on Long Island. The retreating ice sheet deposited a series of recessional moraines, preglacial lake sediments, and outwash deposits in the valleys. Since the Pleistocene, glacial deposits have been moderately reworked and reshaped by streams to form the Recent fluvial valley floor deposits.

3.5.2 Site Geology

Site-specific geologic information was obtained during drilling activities for the NYSDEC RI and the CDM RI. Both bedrock and unconsolidated surficial deposits underlie the Site. Four types of unconsolidated deposits were encountered: glacio-lacustrine deposits, glacial outwash deposits, floodplain deposits, and fill material.

Lithologic information from soil borings and monitoring well borings from both field events were compiled to generate stratigraphic cross sections that illustrate subsurface geology at the Site and surrounding areas. Figure 3-2 illustrates a northeast-southwest trending cross section and Figure 3-3 illustrates a north-south trending cross section.

3.5.2.1 Bedrock Geology

During the NYSDEC RI drilling program, bedrock was encountered at eight locations (NYSDEC 1992); depths to bedrock ranged from approximately 43 feet bgs at monitoring well MW-13B, at the northern edge of the Site, to 50 feet bgs at MW-15B, an abandoned bedrock well (adjacent to MW-15S) located on the southern bank of the Unadilla River. During the CDM RI drilling program, bedrock was encountered at six locations at depths ranging from 30 feet bgs in RMW-18D, located west of the Site in the Winfield cemetery, to 66.5 feet bgs in RMW-16B, located east of the Site. These data indicate a slight easterly/southeasterly dip. Figure 3-4 illustrates the contour of the top of bedrock (NYSDEC 1992, CDM boring logs).

Bedrock cores were retrieved from four borings during the NYSDEC Rl (MW-6D, MW-10B, MW-13D, and MW-15B), and from RMW-11B during the CDM RI. The bedrock samples recovered from the cores indicate that the bedrock underlying the Hiteman property consists of a dark-gray, thin- to medium-bedded, fractured fine-grained micritic limestone with abundant chert nodules and few bryozoan and brachiopod fossils. Based on available published descriptions and the core descriptions, the bedrock underlying the Hiteman property has been assigned to the Moorehouse Member of the Onondaga Formation (NYSDEC 1992, CDM boring logs, Oliver 1954).

3.5.2.2 Glacio-Lacustrine Deposits

The glacio-lacustrine deposits were observed in all deep and bedrock monitoring well borings. The deposits consist of gray silty-clay with abundant dark gray clay seams and light gray silt seams. A thin layer of gray silt and sand mantles the bedrock over the northern portions of the Hiteman property. Thicknesses range from just over 10 feet at MW-11D in the vicinity of the onsite wetland, to over 30 feet northeast of the Site (RMW-16S). From the thinnest point at MW-11D, the unit tends to thicken to the northeast, southeast, and southwest; no lithologic information is available to the northwest. In general, the glacio-lacustrine deposits are thicker under the Unadilla River. Figure 3-5 illustrates the thickness of this unit. This unit is believed to be related to the finer-grained glacio-lacustrine sediments observed in the area (NYSDEC 1992, CDM boring logs).

3.5.2.3 Glacial Outwash Deposits

The glacial outwash deposits observed onsite are variable in composition but commonly described as light brown, coarse- to fine-grained gravel, some coarse- to fine-grained sand, little silt and cobbles were observed underlying the recent fluvial deposits throughout the Hiteman property. In the vicinity of the former wastewater lagoons the outwash consists of black, medium- to coarse-grained gravel with varying amounts of cobbles and lesser amounts of fine to coarse sand. Thinner outwash deposits occur at the northern edge of the Site (1.5 feet in NYSDEC soil boring SB-12) and southwest of the Site (approximately 7 feet at RMW-18D). Thicker deposits occur to the south (RMW-9D) and east (RMW-16D), indicating a thickening of the unit to the south and east (NYSDEC 1992).

3.5.2.4 Floodplain Deposits

Recent fluvial sediments were identified as thin surficial deposits across the Site. Fluvial deposits consist of light-brown silt and clayey-silt with some medium to fine sand and a trace of fine gravel. The main distinguishing feature between the fluvial deposits and the fine-grained portions of the outwash deposits is that the outwash tends to contain cobbles and the fluvial deposits do not. The fluvial deposits range in thickness from 3.5 feet at MW-5D, at the southwest corner of the former wastewater lagoons, to 10 feet at MW-1S, at the northeast corner of the former facility building (NYSDEC 1992, CDM boring logs).

3.5.2.5 Fill Material

Artificial fill extends along the western margin of the Hiteman Leather Company parking lot and the margins of the public parking area north of the property. The fill consists of concrete, wood debris, and varying amounts of glass, bricks, ashes, tile flooring and other assorted materials (NYSDEC 1992, CDM boring logs).

3.6 Hydrogeology

The regional and local hydrogeology are discussed in the following sections.

3.6.1 Regional Hydrogeology

MacNish and Randall (1982) describe the aquifers in the vicinity of the Site. The shallow aquifer underlying the Site is a northeast-southwest trending unconfined aquifer in the Unadilla River Valley. The aquifer is comprised of stratified outwash deposits greater than 40 feet in thickness. In the vicinity of the Site, the Unadilla River is primarily a 'gaining' surface water body; in this case, the vertical direction of groundwater flow in the shallow aquifer is upward into the river from the underlying bedrock aquifer as opposed to horizontal and downward due to the migration of infiltrated precipitation as groundwater toward the river. The Unadilla River is also fed by surface water runoff and tributaries. The northern extent of this aquifer underlies the southern portion of North Winfield Creek. The unconfined valley fill aquifer becomes a buried aquifer system approximately 4,000 feet southwest of the Site. Depth to the top of this buried aquifer is reported to be greater than 200 feet bgs and underlies a fine sand, silt, and/or clay confining unit.

Groundwater in the bedrock aquifer occurs primarily along bedding planes, fractures, and joints (secondary porosity features). Joints tend to be wider and more numerous near the bedrock surface due to a lower compressive stress, coupled with more frequent exposure to acidic surface-derived water which acts to dissolve the limestone, resulting in solution enlargement. In sandstone and shale units, the widths of the fractures and joints are typically 0.01 inch. In the limestone beds, which are slightly soluble in water, the joints and fractures may be enlarged to widths of 0.1 inch to several inches. Joints and fractures tend to become progressively narrower and more

Final Remedial Investigation Report

Section 3

Physical Characteristics of the Study Area

widely spaced with depth where bedding planes become the dominant anisotropy. In shale units, few openings exist at depths greater than 100 to 200 feet bgs; however, in sandstone and limestone units, fractures capable of yielding significant volumes of water may exist to depths of more than 500 feet bgs. The average yield of wells installed in bedrock aquifers in the Susquehanna River basin is approximately 8 gallons per minute (gpm) (MacNish and Randall 1982). The direction of groundwater flow in the bedrock aquifer is controlled by regional discharge points and locally by the orientation of the interconnected, water-bearing joints and fractures.

Glacial deposits are variable in grain size, from silt and clay in glacio-lacustrine deposits; sand, gravel, cobbles, and boulders in glacial outwash; and clay to bouldersize particles within glacial till deposits. Storage and transmission of groundwater in the unconsolidated deposits is dependent in part on the distribution of grain sizes. Hydraulic conductivity values (a coefficient of proportionality describing the rate that water can move through a permeable medium) are generally greatest in the coarsergrained, well-sorted glacial outwash deposits and recently-deposited fluvial sediments.

The regional direction of groundwater flow in the unconsolidated aquifer, based on topography and surface water elevations, is most likely towards the Unadilla River Valley, then southwest through the valley towards the Susquehanna River (NYSDEC 1992).

3.6.2 Site Hydrogeology

Hydrogeologic data collected during the NYSDEC RI and the CDM RI field events indicate a highly complex hydrogeologic system governed by artesian conditions, seasonal variations, well completion practices, and the presence of natural and manmade surface water bodies. It is likely that several factors, including historic Site activities, have altered the natural flow of groundwater underlying the Site. The hydrogeology at the Site is characterized by the existence of three hydrologic units: a shallow glacial outwash aquifer, a glacio-lacustrine semi-confining unit, and an underlying bedrock aquifer. The hydrogeologic characteristics of these three units are described in the following subsections.

Several monitoring wells have been installed and monitored during the field events for the CDM RI, as described in Section 2 of this report, and the NYSDEC RI. A total of 24 monitoring wells, 10 piezometers, and 3 surface water stations were established during the NYSDEC RI: 15 single-cased monitoring wells were installed in the shallow unconsolidated overburden aquifer (glacial outwash) and 7 single-cased monitoring wells were installed in the glacio-lacustrine deposits between the shallow unconsolidated aquifer and the bedrock aquifer. CDM installed a total of 10 monitoring wells, as described in Section 2 of this report: 3 single-cased monitoring wells in the shallow outwash aquifer, 4 double-cased monitoring wells in the glaciolacustrine semi-confining unit, and 3 triple-cased monitoring wells in the bedrock aquifer.

Groundwater elevation data collected from monitoring wells screened in the three hydrogeologic units were used to construct water table and piezometric surface contour maps. Contours were established by interpolation between data points, assuming homogeneous and isotropic aquifer conditions (aquifer properties do not vary with location or direction). Contour maps are referenced in the following subsections, as appropriate. In addition, groundwater elevation data from water level measurements collected in October 2002 and well screen information were added to the lithologic cross sections to create hydrostratigraphic cross sections that illustrate the variation in water table and piezometric surface elevations between the three aquifer units. Figure 3-6 presents the northeast/southwest trending hydrostratigraphic cross section.

3.6.2.1 Bedrock Aquifer

The limestone bedrock unit underlying the Site comprises the bedrock aquifer; groundwater flow in this unit is defined by joints and bedding planes, which were observed to be wider and more numerous near the bedrock surface. The bedrock aquifer is semi-confined by the glacio-lacustrine deposits, resulting in highly artesian conditions in wells completed in this unit. Therefore, the elevation of the piezometric surface in this aquifer is generally higher than the ground surface elevation, causing wells completed in the bedrock aquifer to flow freely when uncapped. During the NYSDEC RI, well casings were temporarily installed in two bedrock boreholes (MW-10B and MW-15B) located south of the river; artesian conditions were observed (water levels rose to approximately 11 feet above the ground surface). All three bedrock monitoring wells installed during the CDM RI exhibited artesian conditions, with water levels ranging from 0.4 to 6.73 feet above the ground surface.

There are currently three bedrock monitoring wells completed in the area of the Site: one upgradient of the Site to the east (RMW-16B), one in the former wastewater lagoon area (RMW-4B), and one at the edge of the onsite wetland, downgradent and west of the former wastewater lagoon area. According to water level measurements collected in July and October 2002, groundwater in the bedrock aquifer flows at a slight gradient to the west/southwest (Figure 3-6). Figures 3-8 and 3-9 illustrate groundwater flow during July and October 2002, respectively. Therefore, groundwater in the bedrock aquifer beneath the Site has a dominant upward flow direction with a minor west/southwest component. Groundwater from this aquifer largely recharges the shallow glacial outwash aquifer and replenishes surface water flow in the Unadilla River.

3.6.2.2 Glacio-Lacustrine Semi-Confining Unit

The glacio-lacustrine semi-confining unit overlies the bedrock aquifer. The finegrained glacio-lacustrine deposits create a leaky semi-confining unit, separating the underlying bedrock aquifer from the shallow outwash aquifer above. The term "leaky" is used to indicate that the glacio-lacustrine deposit probably transmits a small proportion of water between the aquifer units (NYSDEC 1992).

According to data collected during the NYSDEC RI, this unit is four to seven orders of magnitude less permeable than the shallow overburden aquifer. However, despite its lower permeability, the unit is water-producing, and likely serves to retard downward vertical groundwater flow. In fact, according to water level data in deep wells, there is an upward vertical gradient through this unit, suggesting a hydrological connection between this unit and the bedrock aquifer. This is supported by the following observations:

- The majority of monitoring wells in this unit are completed in the lower section of the unit; these wells are artesian.
- The potentiometric elevation measured for the semi-confining unit is higher than the water table elevation measured in the wells screened in the overlying shallow outwash aquifer.
- During CDM RI well installation, coring and air rotary drilling activities in the bedrock unit caused significant water level fluctuation in proximal deep wells screened in the glacio-lacustrine semi-confining unit.

Water level measurements collected in July and October 2002 indicate that there is a slight horizontal groundwater flow gradient to the southwest, as indicated by Figure 3-10 and Figure 3-11. However, an upward vertical gradient is the prominent flow direction in this unit, as indicated by head differences of up to 10 feet between wells screened in the shallow outwash aquifer and those in the deeper part of the glacio-lacustrine unit. Given the lower permeability, the glacio-lacustrine semi-confining unit acts as a leaky aquitard, confining and retarding the upward flow component in the underlying bedrock aquifer.

3.6.2.3 Shallow Outwash Aquifer

The shallow outwash aquifer unit overlies the glacio-lacustrine semi-confining unit and is composed of glacial outwash and fluvial sediments, and fill material. This aquifer is unconfined, and unlike the lower units, does not exhibit artesian conditions. Water table depths vary seasonally, but generally ranged from 3 to 18 feet bgs during 2001-2002. During periods of high precipitation, the aquifer recharges the Unadilla River and onsite wetland, which are at topographic lows in the Site. During periods of lower precipitation, this aquifer largely receives its recharge from the underlying bedrock aquifer, through leaky zones in the glacio-lacustrine semi-confining unit.

Six rounds of water level measurements were collected during the CDM RI in 2001-2002, as discussed in Section 2. Based on these data, general groundwater flow in the shallow aquifer is to the southwest. Figures 3-12 and 3-13 illustrate groundwater flow during July and October 2002, respectively.

The southwesterly-directed groundwater flow in the glacial outwash aquifer indicates that most of the recharge to this aquifer is derived from the underlying bedrock aquifer rather than the surrounding topography. In conditions of a largely downward

ⁱ 3-10

component of flow (lacking an underlying artesian source) the glacial outwash aquifer would be recharged from precipitation and the local flow direction at the Site would be south, toward the river. However, both the aquifer and the river are recharged dominantly by the bedrock aquifer. Thus the groundwater flow direction in both aquifers is to the southwest.

Zones in the glacial outwash aquifer that receive the most recharge are those overlying leaky zones in the glacial lacustrine semi-confining unit. Recharge to the glacial outwash aquifer appears as localized mounds in the water table elevation. The geometry of these mounds is likely to vary over time because the groundwater flow dynamics in the limestone aquifer are highly variable.

3.7 Population and Land Use

Based on the Census 2000, population estimates taken from the joint Oneida-Herkimer counties' website (http://www.oneidacounty.org/oneidacty/gov/ dept/planning/Census.html 2003), the population of Village of West Winfield was 862 in 2001, down from 871 in 1990.

The commercial business and government center of the Village of West Winfield is centered around the intersection of Routes 20 and 51 (approximately 450 feet north/northeast of the Hiteman property). This area is comprised of retail businesses, two small restaurants, gasoline and service stations, food stores, office space, the Village office, library, post office, fire company, and numerous residences and apartments. According to Village of West Winfield zoning maps, the Hiteman property is zoned "commercial".

The Village of West Winfield is currently supplied with potable water from two water supply wells located north of Route 20, but within the village limits. The wells are approximately 0.3 mile (1,700 feet) northeast of the Hiteman facility.

The Winfield Memorial Park, including a park and athletic field, are located approximately 1,200 feet east of the Hiteman Leather Company Site and south of Route 20. A water supply exploratory program was conducted in the park area in 1966.

The former Erie-Lackawanna Railroad right-of-way extends in an east-west direction approximately 0.15 mile (800 feet) south of the Hiteman building. Several small industrial businesses exist further south of the Agway on Route 51. Residential property and farm land occupies the area further to the south.

West of the Hiteman property is the West Winfield Cemetery, and beyond the cemetery is residential land and farm land. Southwest of the Hiteman property is a large wetland area associated with the Unadilla River.

As part of the research into current land uses, CDM located and mapped the addresses of private wells in the vicinity of the Site to identify any domestic water wells that

could be affected by Site-related contamination. As part of this effort, CDM contacted and received information from Herkimer County, Otsego County, Oneida County, and the Herkimer District Office of the NYSDOH.

Initially, CDM reviewed tax maps and, based on their proximity to the Site, defined areas of interest. Once these areas were defined, CDM contacted Herkimer, Otsego, and Oneida Counties for information regarding public and private wells in their counties that were close to the Site. Herkimer County provided CDM with a spreadsheet that contained the names and addresses of all property owners in the areas of interest and indicated whether the property had a public or private water well. This data was confirmed by the NYSDOH, which indicated the existence of only a few private wells near the Village of West Winfield.

Otsego County also provided the addresses of some additional private wells located just to the southwest of Herkimer County and the Site. These well locations were added to the Herkimer County spreadsheet. Data from Oneida County, the southeast corner of which is west of the Site, was not used, since it was determined, based on conversations with the County Planning Department, that few, if any, wells were located in the area closest to the Site.

Once all of the information was compiled, CDM edited the spreadsheet so it could be used with a Geographical Information System streets coverage map that was downloaded from the internet, to generate a map of all known private wells near the Site. County and municipality boundaries, stream locations, and railroad tracks in the area were also mapped. Radii of one-half mile, one mile, two miles, and three miles were also imposed onto the map.

Based upon CDM's mapping, it was determined that five private wells were located within the Village of West Winfield, less than 0.5 mile from the Site, two of them to the south of the Site. Two additional wells, to the south, are located within one mile. Approximately 20 wells were found within two miles further south and west of the Site. This information was submitted to EPA for review and consideration. Figures 3-14 and 3-15 show the wells identified within two and three miles, respectively, of the Site.

3.8 Ecological Characterization

The Site ecological characterization is presented below.

3.8.1 Site Setting

The Site is bounded by Route 51 to the east, commercial/residential areas to the north, a cemetery to the west, and a tributary to the Unadilla River and a residential property to the south.

On Site, the land slopes down slightly from northeast to southwest. Much of the Site has been disturbed due to past construction, grading, filling, earth-moving activities, and processing operations. During the ecological reconnaissance, discolored surface

soils, including green, blue, and white soils, were noted at the Site. Much of the Site is covered with herbaceous vegetation in both the uplands and wetlands.

The Site can be broadly divided geographically into four sections; the Eastern, Central, Western, and Southern Areas. These areas differ from one another by slight changes in elevation and past usages.

3.8.1.1 Eastern Area/Former Tannery Building Area

In the Eastern Area, located in the vicinity of the former tannery building, the land is highly disturbed and covered with the remnants and foundation of the former facility, a gravel roadway and parking areas, and construction debris.

3.8.1.2 Central Area/Former Wastewater Lagoon Area

The Central Area, located in the vicinity of the former wastewater lagoons, is predominantly a broad, flat plain covered with open fields. These fields can be classified as old-field habitat and disturbed areas. The fields located in the Central Area are at a slightly lower elevation than the Eastern Area. Portions of this area were used as the facility's wastewater lagoons. Along the Central Area's northern boundary, the land slopes upward approximately 10 to 15 feet. A dirt access road runs along the southern boundary of the Central Area.

3.8.1.3 Western Area/Onsite Wetland Area

The Western Area, located in the vicinity of the onsite wetland, is a predominantly flat, low area dominated by an emergent wetland. When the tannery was active, this wetland was fed by runoff from the wastewater lagoons. The wetland drains into the Unadilla River through a pipe located at the southern end of the wetland.

3.8.1.4 Southern Area/South Bank Front Lot Area

The Southern Area, located south of the Unadilla River, is a predominantly flat, lowlying, undeveloped area which consists of a mix of emergent and forested wetlands and bottom lands. This area drains into the Unadilla River and a tributary to the Unadilla River located along the southern border of the Site.

3.8.2 Ecological Characterization and Cover Types

Ecological communities identified onsite included old-field habitats, emergent wetlands, semi-maintained grass areas, and urban/disturbed areas. Wooded areas were limited to thin bands of trees and shrubs along the Site's boundaries, and isolated thin hedgerows in the interior of the Site.

3.8.2.1 Old-Field Community

Old-field communities were primarily located in the Site's Central Area where the former wastewater lagoons were located. Vegetation in the old fields included pioneer weed species such as teasel (*Dipascus sylvestris*), common burdock (*Arctium minus*), Queen Anne's lace (*Daucus carota*), wild madder (*Galium mollugo*), red-stemmed plantain (*Plantago rugelli*), Garlic mustard (*Alliaria petiolata*), Virginia creeper (*Parthenocissus quinquefoli*), grasses, Graminaceae Family, and small saplings.

The old-field habitat could be utilized as a habitat resource by insects, small mammals, amphibians, reptiles, passerine bird species, and as a feeding ground for raptors and other predators.

3.8.2.2 Wooded Areas

The wooded areas noted at the Site consist of thin wooded bands of trees and saplings located along fence rows, roadways, steep-sloped areas, and near the wetland boundary. The wooded areas are dominated by maples (*Acer sp.*), Quaking aspen (*Populus tremuloides*), willows (*Salix sp.*), and birch species (*Betula sp.*). These wooded areas are fragmented, thin, narrow edge communities that provide habitat for insects, reptiles, amphibians, small mammals, and birds. Predators such as raptors, fox, and mink could hunt along these edge communities.

3.8.2.3 Wetlands

Two wetland areas were delineated on Site; a 1.8 acre emergent wetlands and a small 0.03 acre depressional wetland located around an onsite monitoring well. Both wetlands are located in the Site's Western Area. For a more detailed description of the wetlands, refer to the wetland delineation report provided as Appendix I.

The large wetland is dominated by herbaceous vegetation, notably skunk cabbage (*Symplocarpus foetidus*), and common cattail (*Typha latifolia*). Scrub/shrub vegetation was generally limited to the perimeter of the wetland and included red-osier dogwood (*Cornus stolonifera*); honey suckles (*Lonicera* sp.); red maple (*Acer rubrum*) and saplings of small birch and willow trees.

No amphibians or reptiles were observed or heard in the wetlands, and there was no evidence of suitable year-round fish habitat. No invertebrates were observed during sediment sampling completed during the field investigation. Due to the lack of observed wetland fauna and high levels of contamination noted in the samples, the wetlands on Site may provide less desirable habitat when compared to wetlands located nearby and off site.

3.8.2.4 Urban/Disturbed Areas

Urban and disturbed areas were predominately located in the Site's Eastern Area. Vegetation in these areas was characteristic of plants of an urban environment and included: Virginia Creeper (*Parthenocissus quinquefolia*), Common mullein (*Verbascum thapsus*), grasses Gramineae Family, isolated birch and aspen trees, and willow shrubs. The habitat resources in this area are of low ecological value and would most likely be favored by species characteristic of an urban environment (e.g., rodents, feral cats, passerine bird species).

A semi-maintained grassy area was located in the northwest portion of the Site along the fence line. The dominant vegetation in this area included grasses and would be of low ecological value as a habitat resource.

3.8.2.5 Unadilla River

The Unadilla River traverses the Site and receives both surface water runoff and groundwater flow from the Hiteman Leather Site. The river flows adjacent to the Site from the Route 51 bridge to the wetlands at the western end of the Site. Riffles and small falls of approximately two feet in elevation are present near the bridge and at the western corner of the Site property. The remaining portion of the river adjacent to the Site, is approximately one to two feet deep and is a slow moving, linear pool with an algae-covered cobble rock bottom. Emergent vegetation was noted along the northern bank of the river, and forested wetlands, emergent wetlands, and bottom lands were observed on the southern side of the river.

The river and adjacent natural areas to the south provide valuable habitat for flora and fauna. However, these areas have also been subject to contamination via historic impacts to the river and off-site migration of contaminants from the Site.

3.8.3 Terrestrial Wildlife Observed Onsite

A 10-foot high chain-link fence along the northern bank of the Unadilla River limits the use of the Site as a habitat resource by large mammals such as white-tailed deer (*Odocoileus virginianus*). White-tailed deer are present outside the fenced Site area in the fields and wooded habitat near the river and residential areas. The Site is utilized as a habitat resource by smaller mammals including the eastern cottontail (*Sylvilagus floridanus*), gray squirrel (*Sciurus carolinensis*), and mice and vole species. During the field investigations, one burrow believed to be a ground hog (*Marmota monax*) burrow was observed on Site.

Avifauna utilize the Site as a habitat resource. During the ecological reconnaissance, several passerine species were observed at the Site. Observed species included redwinged blackbird (*Agelaius phoeniceus*), gray catbird (*Dumetella carolinensis*), American robin (*Turdus migratorius*), American crow (*Corvus brachyrhynchos*), and several unidentified sparrow species. No raptors, waterfowl, or wading birds were observed on the Site.

No reptiles or amphibians were observed during the Site visit. The wetlands do not support adequate surface water resources to provide year-round habitat for fish.

Predators were not observed on Site, but it is possible that hawks, owls, shrews, mink, weasels, raccoon, skunk, and fox hunt in the fields and edge communities on the Site.

3.8.4 Aquatic Wildlife Observed Onsite (Unadilla River)

During fish sampling activities completed in November of 2001 as part of the RI field investigation, forage, sport and crayfish were recovered from the Unadilla River. The following species were collected:

Sport Fish

Rock bass Ambloplites ruestris Largemouth bass Micropterus salmoides Brown trout Salmo trutta

<u>Forage Fish</u>

Blacknose shiner Notropis heterolepis Central stoneroller Campostoma anomalum Minnow sp. Pimephales sp. Red horse sp. Moxostoma sp. Testelated darter Etheostoma olmstedi Bluntnose minnow *Pimephales notatus* Longnose dace *Rhinichthys cataractae* Northern hog sucker *Hypentelium nigricans* Slimy sculpin *Cottus cognatus*

<u>Invertebrate</u>

Crayfish Astacidea

3.8.5 Threatened and Endangered Species

As part of the ecological characterization activities, requests were made to the NYSDEC and the United States Fish and Wildlife Service (USF&WS) for information on the presence of threatened and endangered species or habitats of special concern within a two-mile radius of the Hiteman Leather Site.

3.8.5.1 NYSDEC

In correspondences dated May 29, 2002, the NYSDEC reported that a review of their records for the Site, and surrounding two mile radius, indicated that there were no known occurrences of rare or state-listed animals or plants, significant natural communities, or other significant habitats, on or in the immediate vicinity of the Site.

3.8.5.2 USF&WS

In a phone conversation on May 29, 2002, Mr. Mike Skoll, USF&WS Wildlife Biologist, reported that review of USF&WS records indicated that there were no records of known occurrences of federally-listed threatened and endangered species or habitats of special concern within a two mile radius of the Site.

3.8.5.3 Presence of Threatened and Endangered Species and Habitats of Special Concern

During the ecological characterization, no known threatened and endangered species were observed at the Site.

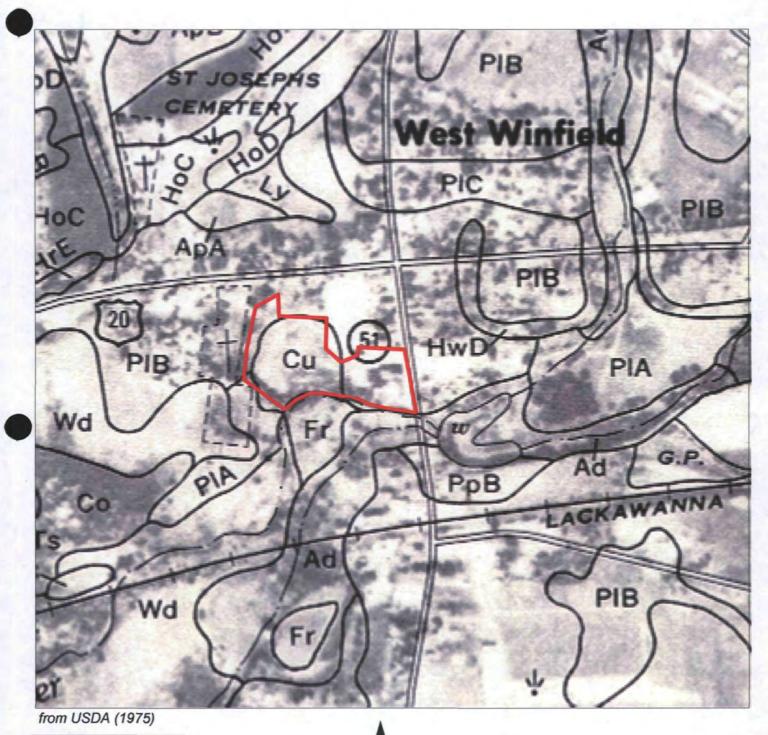
Table 3-1

Average Monthly Climatic Data January 2001 - June 2002 Hiteman Leather Site West Winfield, New York

Month/Year	Average Temperature (^o F)	Average Precipitation (inches)	Average Wind Speed (mph)
January 2001	22.9	0.98	7.6
February 2001	24.5	1.84	10.3
March 2001	27.8	4.51	8.8
April 2001	44.7	1.8	8.6
May 2001	57.6	2.22	9.0
June 2001	65.1	. 8.12	6.6
July 2001	66.6	2.36	6.6
August 2001	71.2	3.55	5.6
September 2001	60.1	4.16	6.0
October 2001	50.5	3.15	8.7
November 2001	. 44.4	2.80	8.6
December 2001	33.5	1.85	8.5
January 2002	30.3	1.91	8.9
February 2002	29.7	0.80	9.4
March 2002	33.4	2.62	10.0
April 2002	46.3	5.77	8.7
May 2002	51.8	7.04	9.1
June 1-13, 2002	63.8	3.36	6.8

Notes:

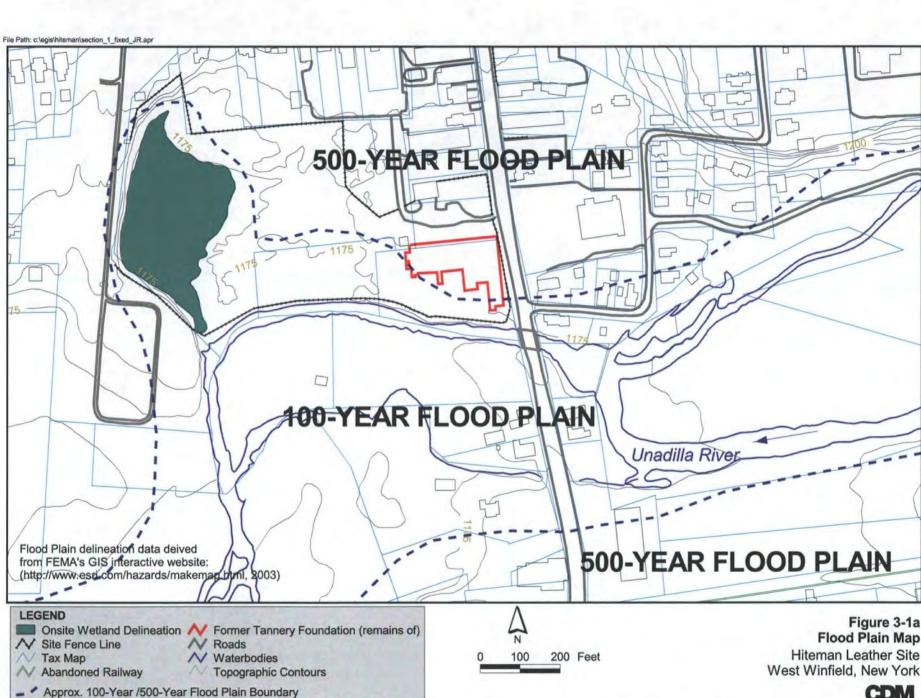
mph = miles per hour


[°]F = degrees farenheit

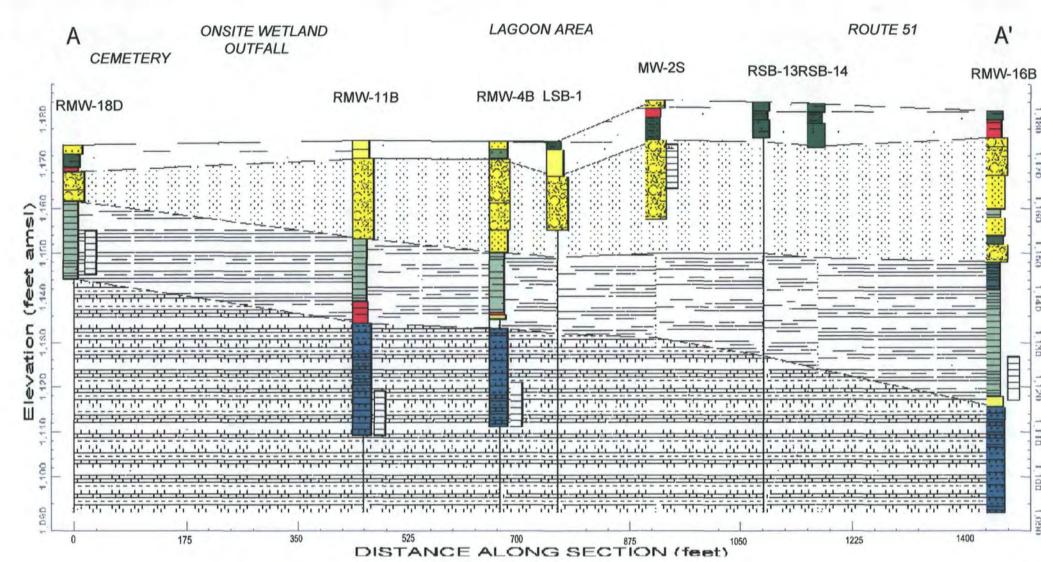
Source: National Climatic Data Center, National Weather Service Data, http://www.worldclimate.com.

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab3-1.wpd

Page 1 of 1


LEGEND Site Fence Line

Approx. 600 feet


Figure 3-1 Soil Map Hiteman Leather Site West Winfield, New York

•

VERTICAL SCALE EXAGGERATION APPROX. X 7

* Lithologic and lithostratigraphic surfaces are interpolated between data points

LITHOLOGY Clay **Clayey Silt** Silty Clay Silt Sandy Silt Clayey Sand Sand Sandy Gravel Sand and Gravel Limestone Bedrock

> STRATIGRAPHY Floodplain Deposits Glacial Outwash Deposits Glacio-Lacustrine Deposit **Onondaga Formation**

Well Screen

Cross Section Location Map

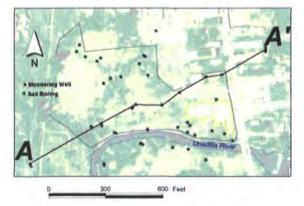
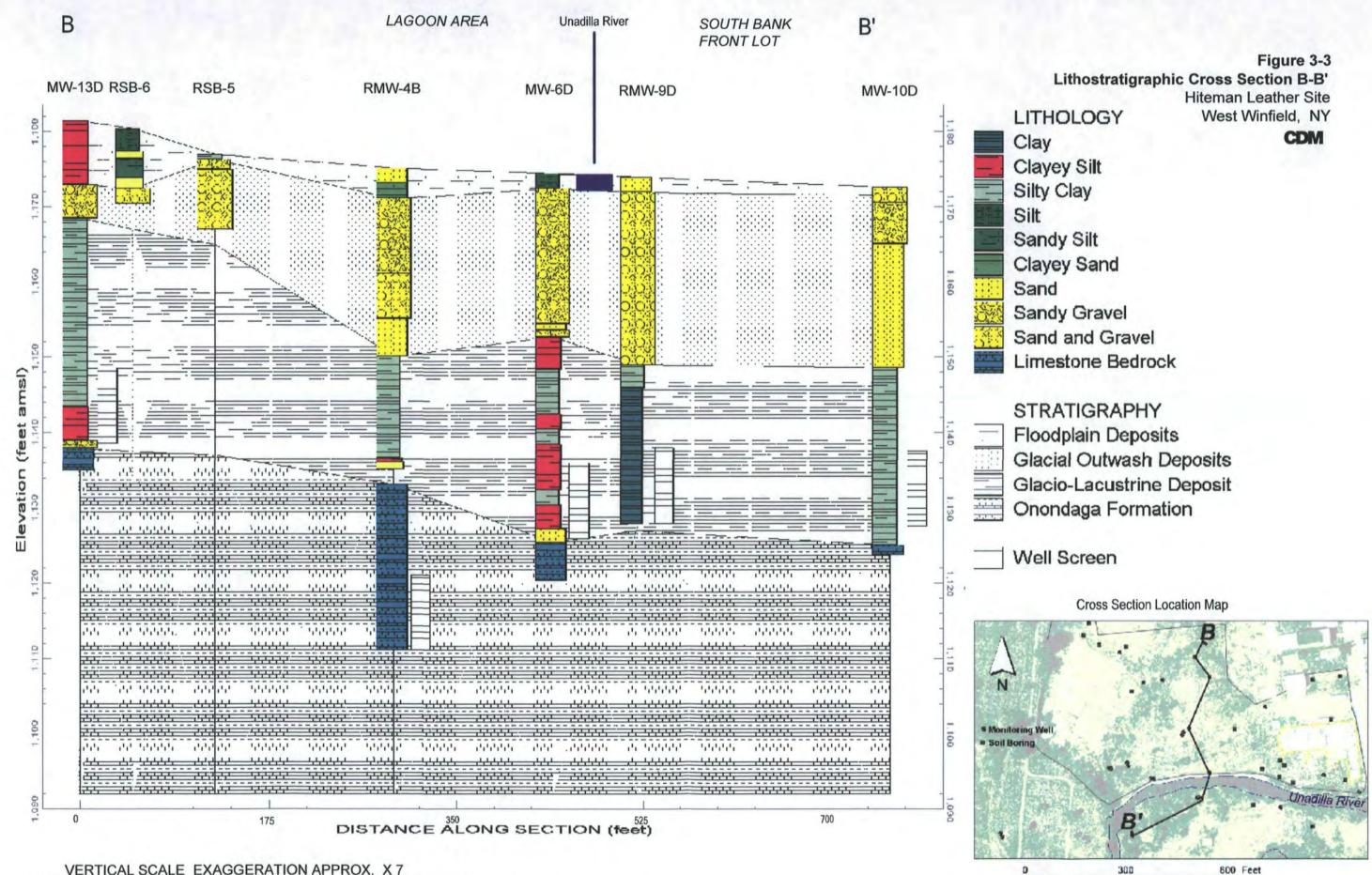
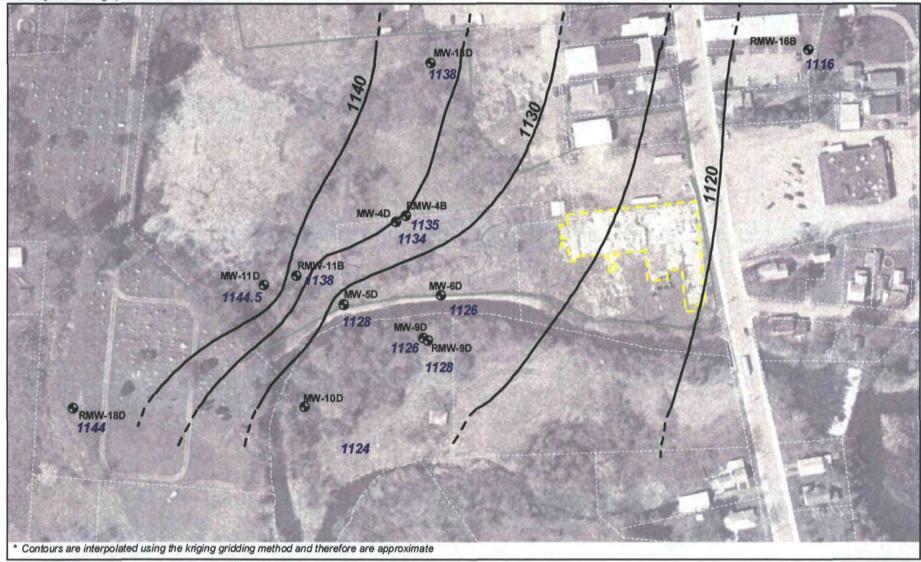




Figure 3-2 Lithostratigraphic Cross Section A-A' Hiteman Leather Site West Winfield, NY

VERTICAL SCALE EXAGGERATION APPROX. X 7 * Lithologic and lithostratigraphic surfaces are interpolated between data points

File Path: c:\egis\hiteman\section_3.apr

LEGEND

- Bedrock Monitoring wells 1144 Top of Bedrock Elevation (feet above msl)

- N Site Fence Line
 - Concrete Foundation

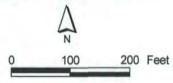
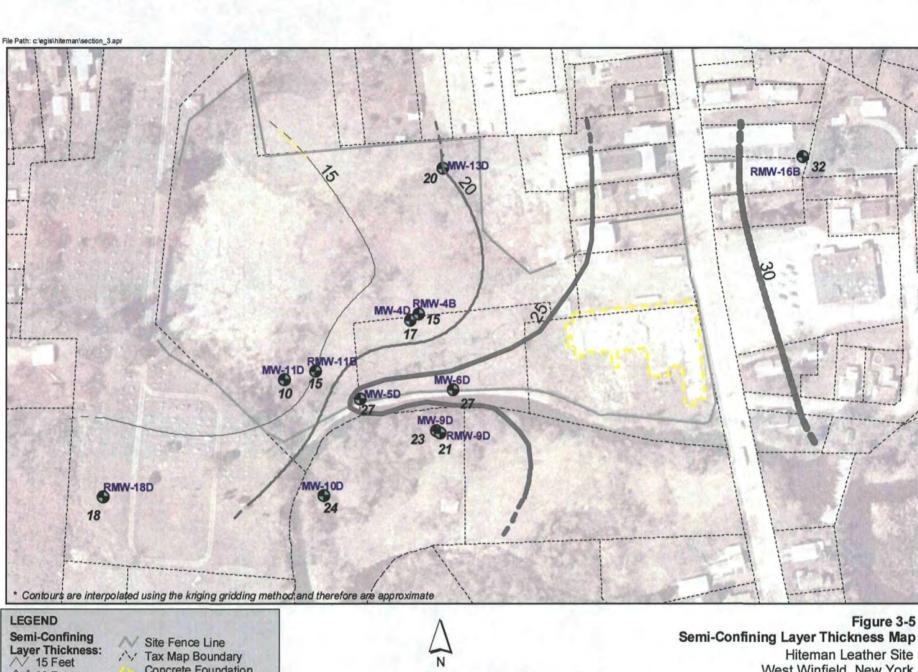



Figure 3-4 Top of Bedrock Elevation Contour Map Hiteman Leather Site West Winfield, New York

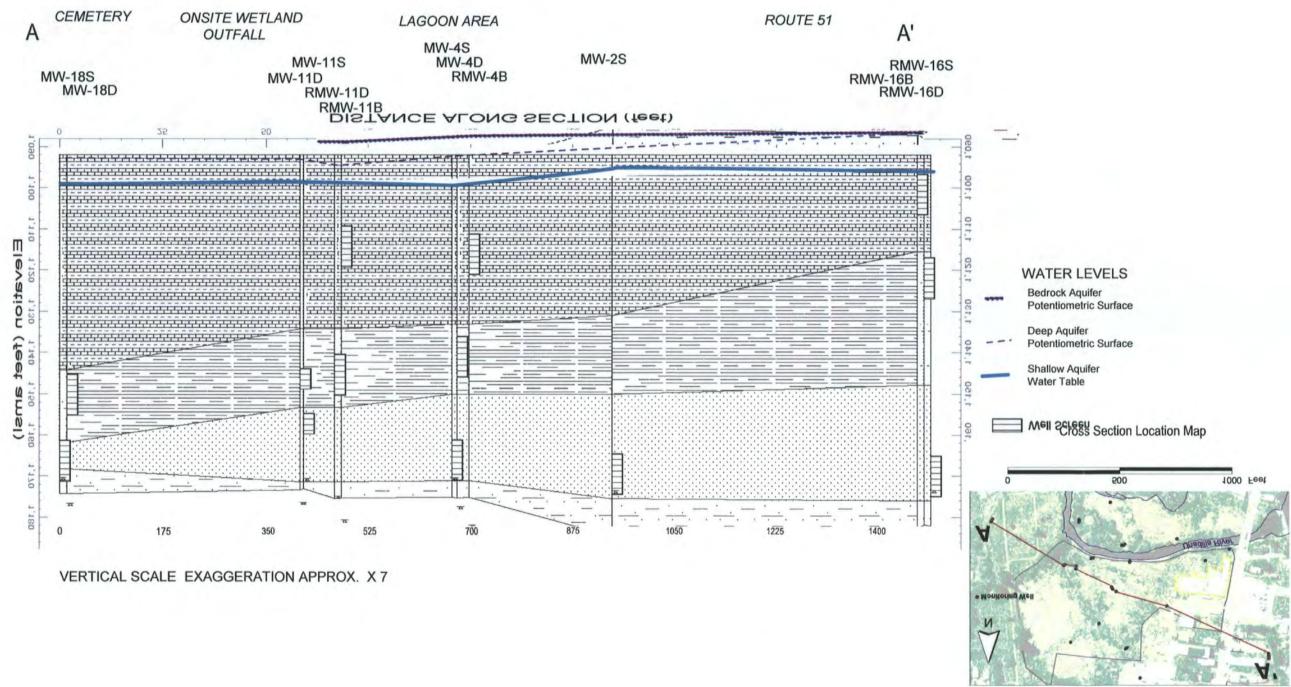
Ν

100

200 Feet

Concrete Foundation

Monitoring Well
 Semi-Confining Layer
 Thickness (feet)


N 20 Feet

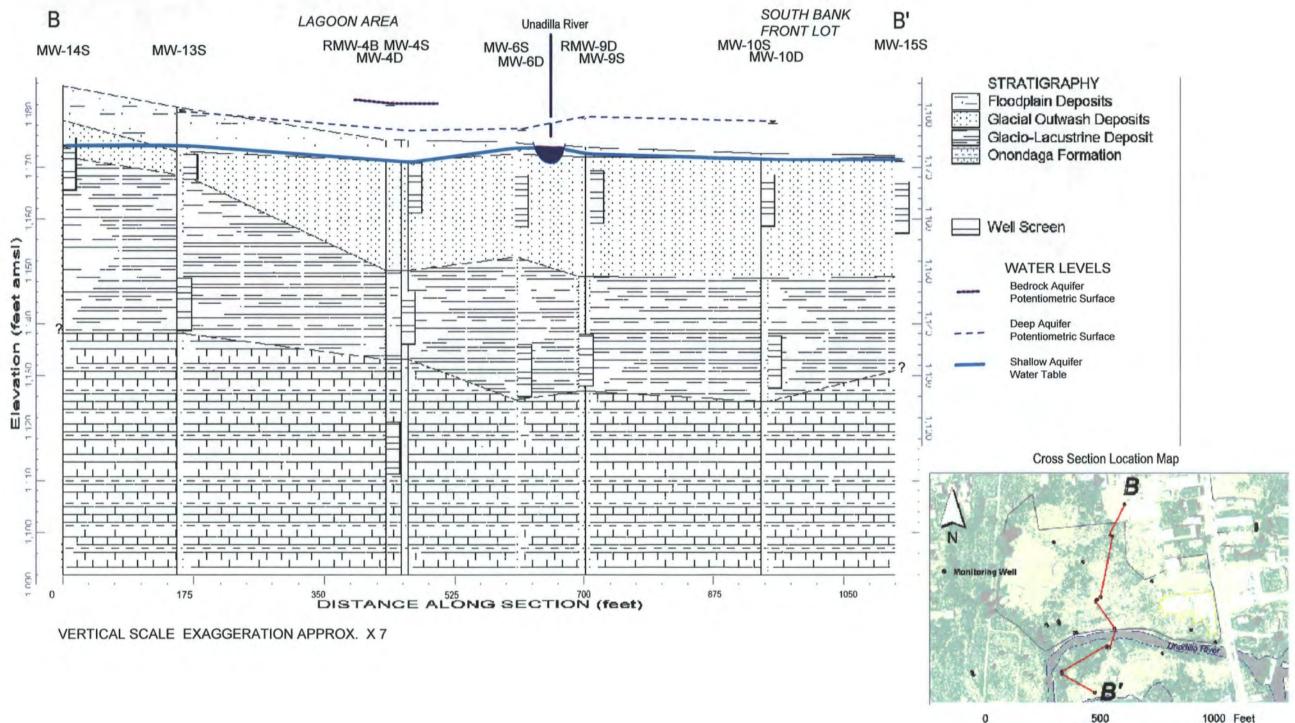
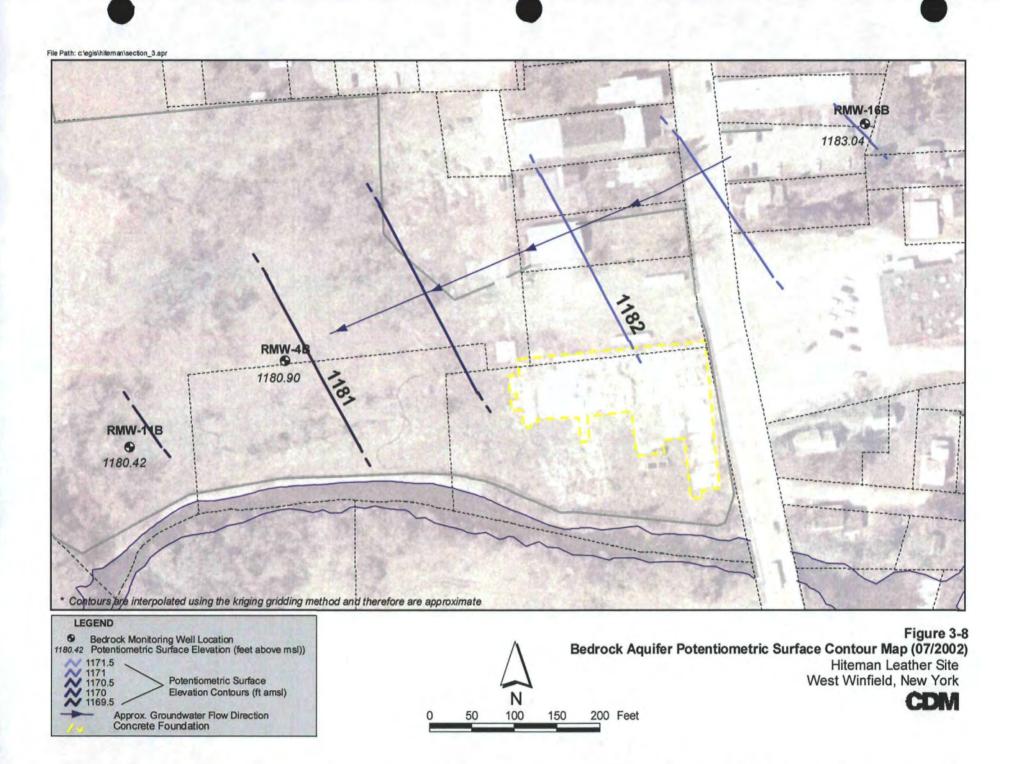
N 25 Feet

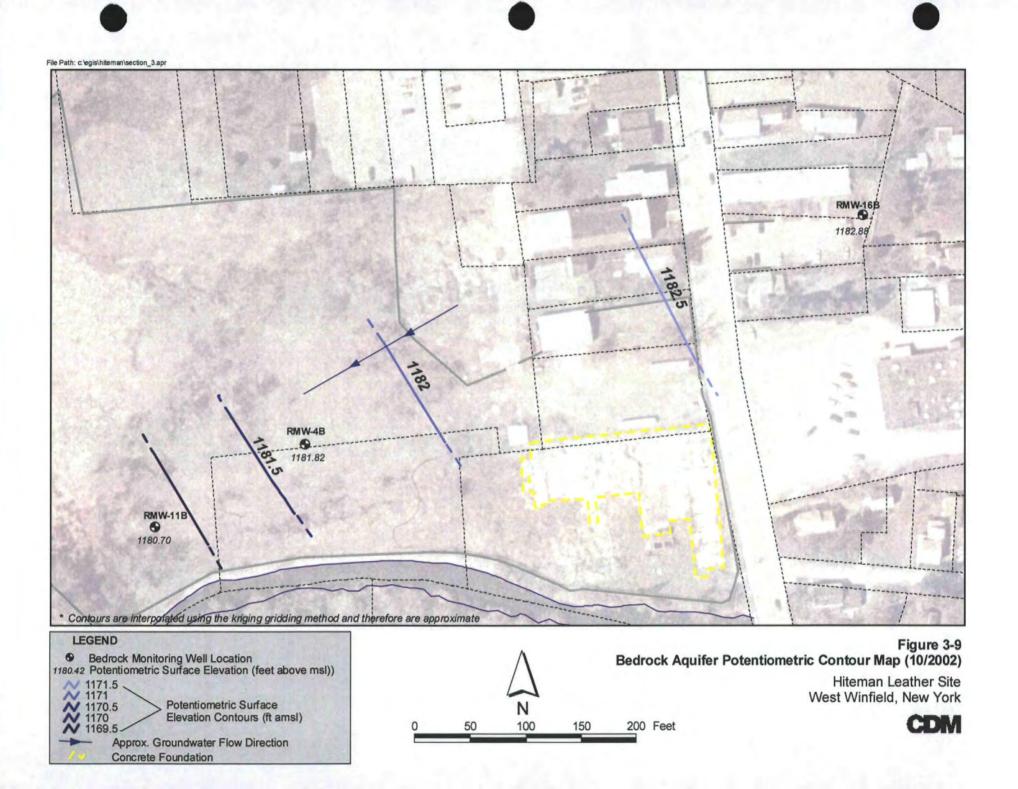
30 Feet

Hiteman Leather Site West Winfield, New York

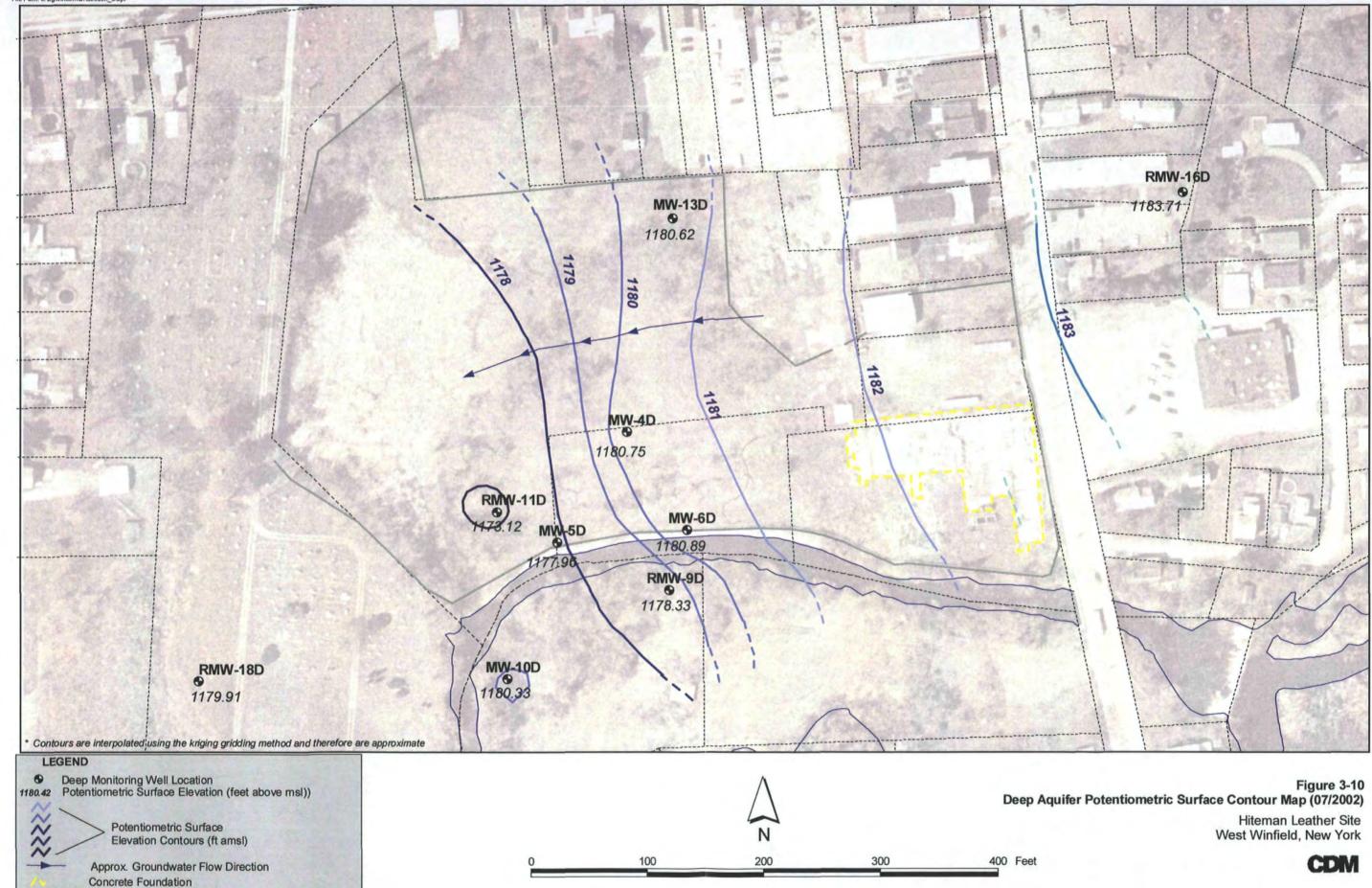
* Potentiometric surfaces, water table, and lithostratigraphic contacts are interpolated between data points

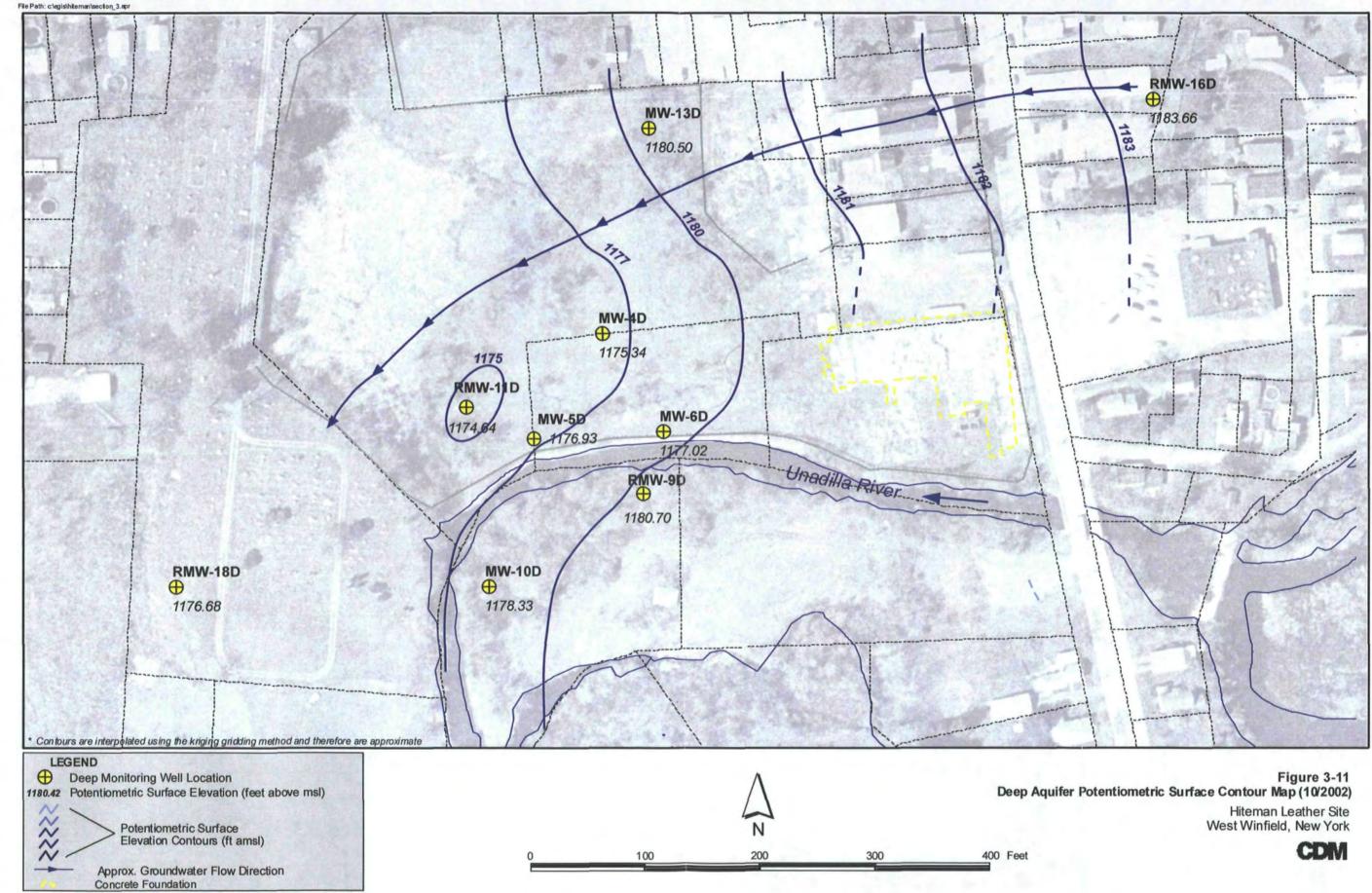
Figure 3-6 Hydrostratigraphic Cross Section A-A **Hiteman Leather Site** West Winfield, NY

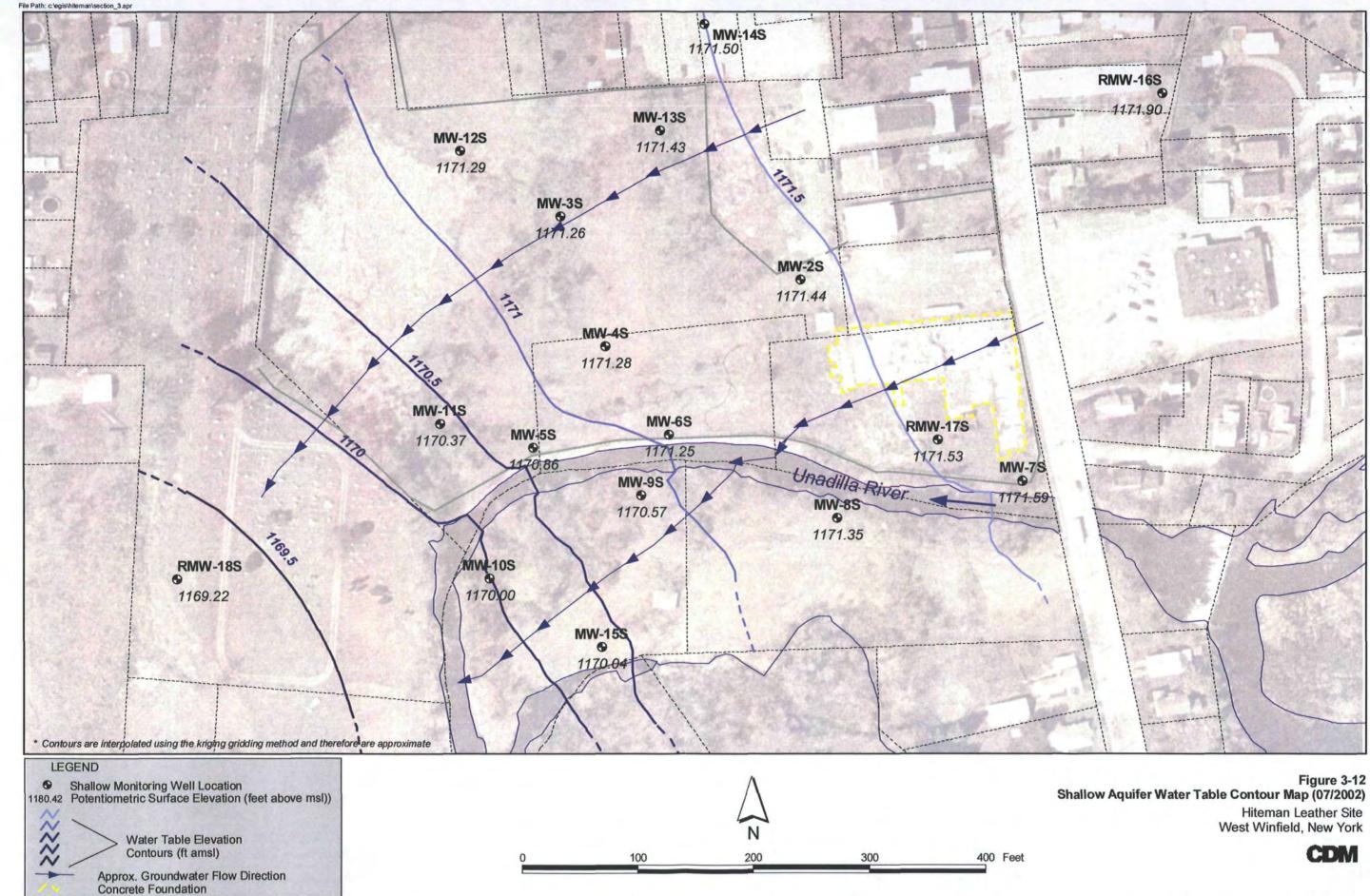



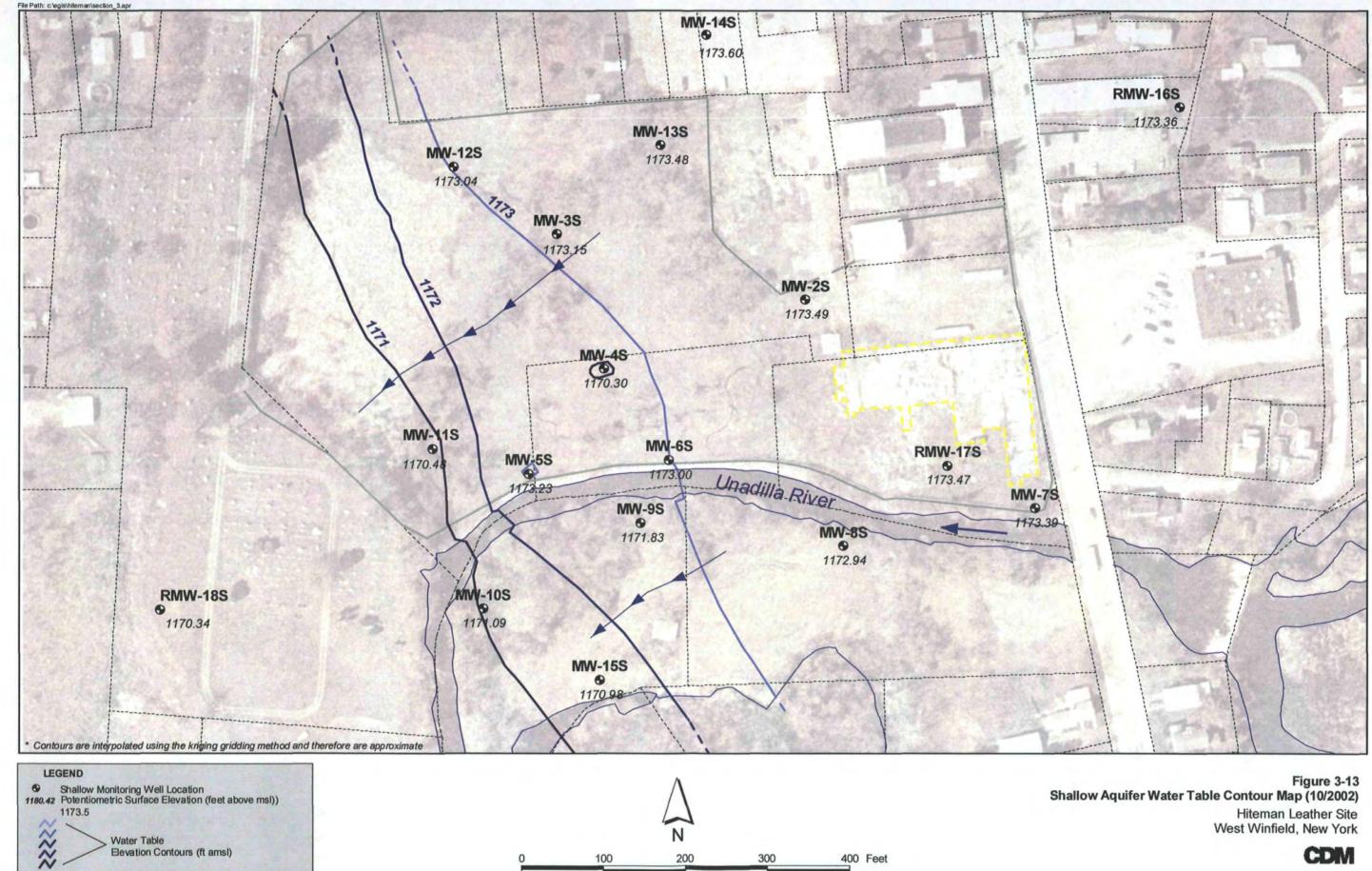

Figure 3-7 Hydrostratigraphic Cross Section B-B' Hiteman Leather Site West Winfield, NY CDM

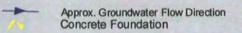
* Potentiometric surfaces, water table, and lithostratigraphic contacts are interpolated between data points

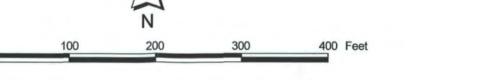

ts Depo Dep ion	
S	
ice	
ice	

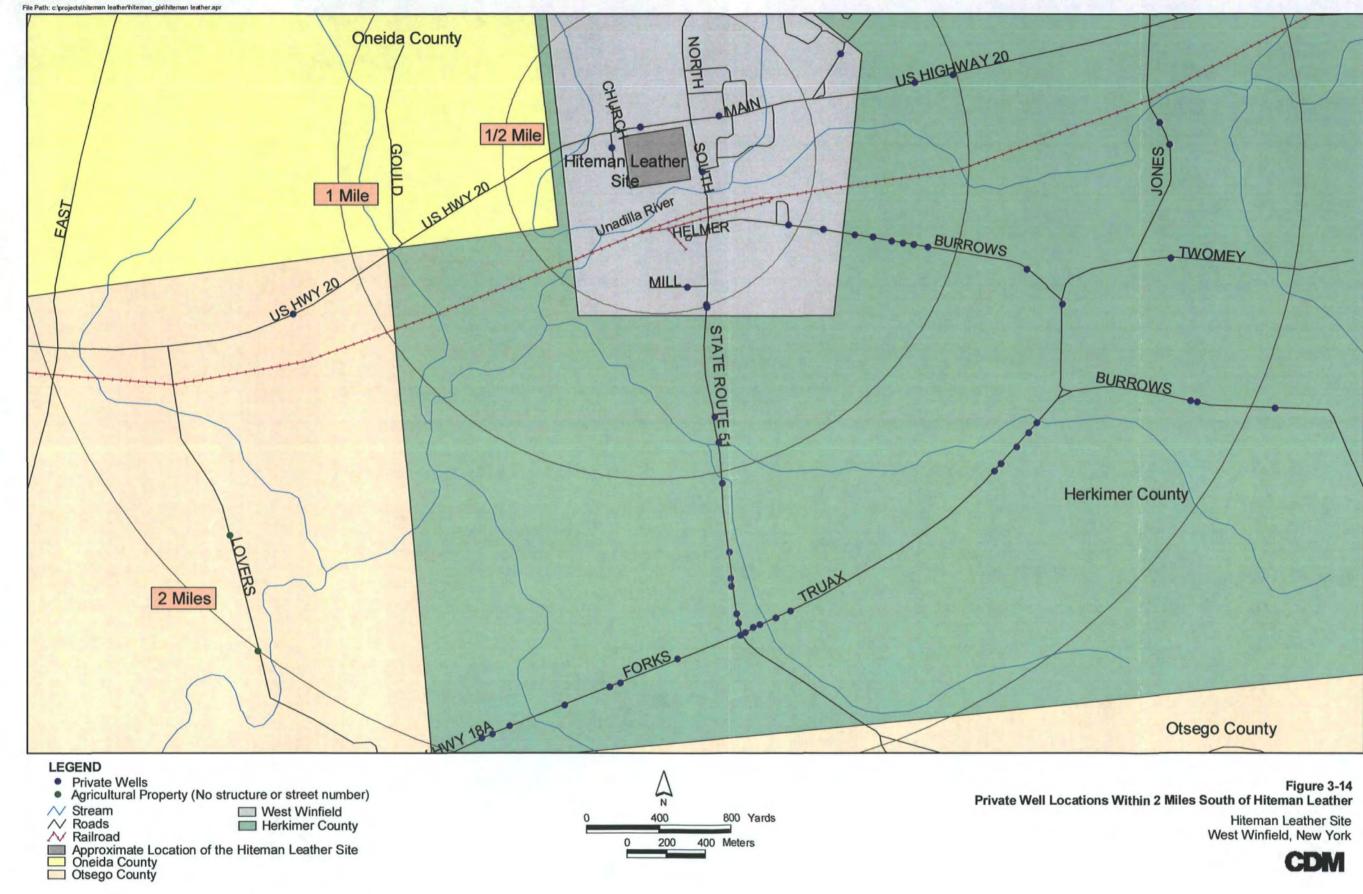

1000 Feet

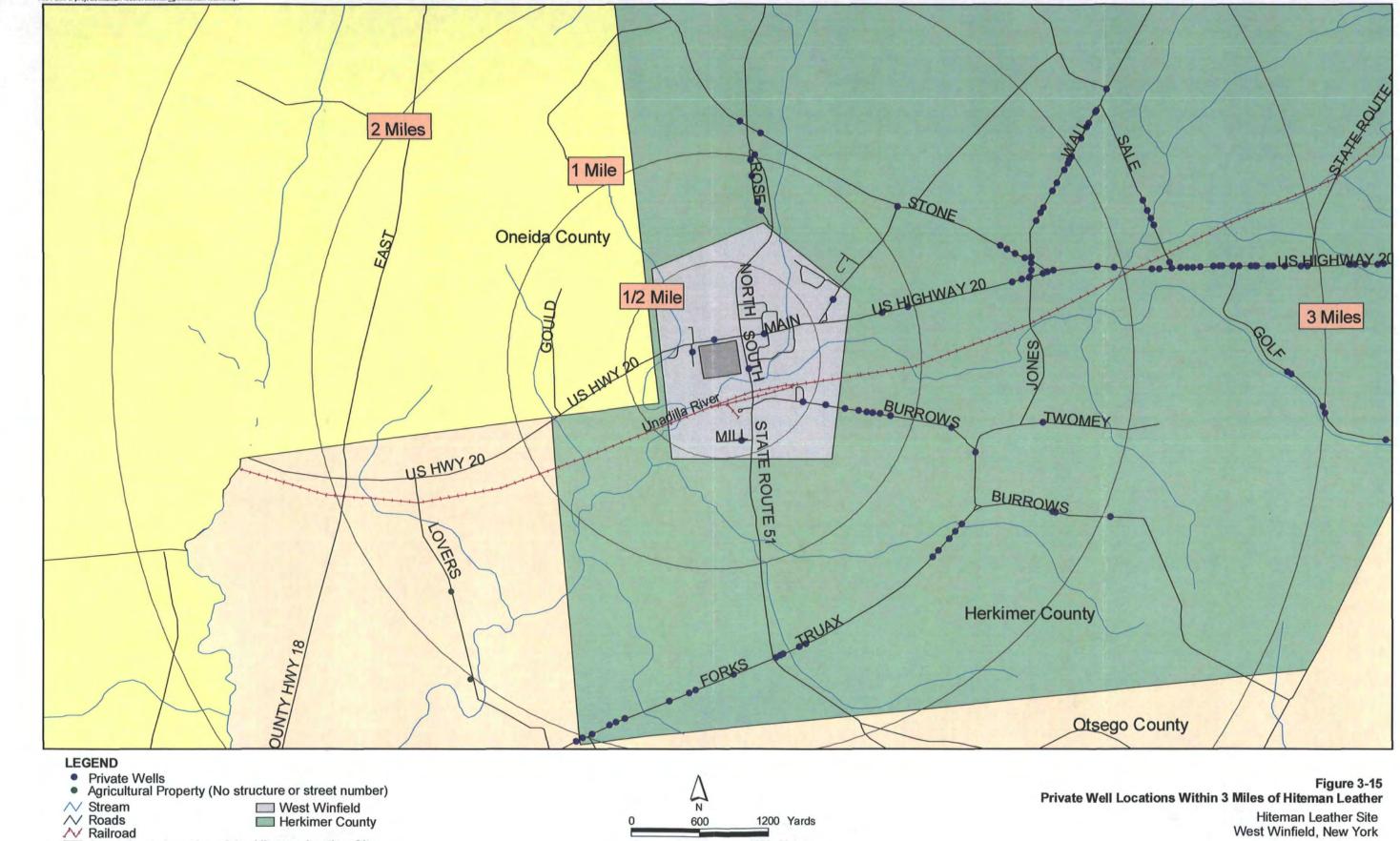












File Path: c:/projects/hiteman leather/hiteman_gis/hiteman leather.apr

1000 Meters

500

Approximate Location of the Hiteman Leather Site
 Oneida County
 Otsego County

Hiteman Leather Site West Winfield, New York

Section Four

Section 4 Nature and Extent of Contamination

This section documents the nature and extent of organic and inorganic contamination at the Hiteman Leather Site. Section 4.1 documents CDM's approach to the evaluation of analytical data, with the use of applicable screening levels and detected background chemical concentrations to characterize Site contamination. Section 4.2 documents the nature and extent of contamination by media and location. Where appropriate, data from previous investigations are included in the discussion of the nature and extent of contamination.

4.1 Approach to the Evaluation of Contamination

A three-step approach was used to evaluate the nature and extent of contamination at the Site. As a first step, EPA and New York State regulatory standards and criteria were selected to evaluate and screen detected constituents in the various sampled media. In the case where more than one type of standard or criteria existed, the lowest, or most stringent, value was used for screening purposes. All detected compounds or analytes that exceeded the most stringent regulatory standards and criteria were considered for further evaluation as contaminants of potential concern (COPCs). Secondly, results from background, or upgradient samples that were collected for each sampled media were evaluated and compared to data from environmental, or downgradient samples. In accordance with NYSDEC protocols, analytical data from background soil samples were used to calculate Site-specific background values for inorganic analytes for both surface and subsurface soil.

The final step involved assigning compounds or analytes detected in Site media into three categories: primary COPCs, secondary COPCs, and non-COPCs. Further information regarding the selection process for primary COPCs, secondary COPCs, and non-COPCs is presented in Section 4.1.3. The characterization of Site conditions emphasizes the extent and spatial distribution of primary COPCs in each media. Secondary COPCs are assessed on a more limited basis, and non-COPCs are only briefly noted. Only primary and secondary COPCs are illustrated on the data presentation figures. Note that primary, secondary, and non-COPCs documented in this report may subsequently be identified as COPCs in either the human health or ecological risk assessments, which assess the risk-based characteristics of the data more rigorously.

Further information regarding the selection of regulatory standards and criteria, background samples, and the selection of primary, secondary, and non-COPCs are presented below. Regulatory standard/criteria exceedance tables are provided in Appendix K, and a complete set of analytical data (TCL organic, TAL inorganic, and subcontract laboratory analyses) is provided in Appendix L.

4.1.1 Selection of Regulatory Standards and Criteria (ARARs, TBCs)

Regulatory standards and criteria were selected for each sampled matrix, and were approved by EPA. Whenever possible, established regulatory standards, known as

 \sim

chemical-specific applicable or relevant and appropriate requirements (ARARs), were used to screen data. This was the case for groundwater and surface water, where state and/or federal drinking water standards exist for many contaminants. In the absence of ARARs, regulatory guidance values, known as "to be considered," or "TBCs", were used to screen the data. This was the case for the sediment and soil data that have no established state or federal ARARs, but do have established quality criteria and guidelines. Background values, representative of conditions proximal to the Site which were not impacted by Site-related activities, were also used to screen data to supplement regulatory guidances. Background surface and subsurface soil samples were collected to calculate chemical-specific background concentrations for use in screening inorganic chemicals detected in soil. Background samples were also collected from other media as described in Section 4.1.2.

The regulatory standards, criteria, and guidelines used to screen the analytical data included:

Regulatory Standard or Criteria	<u>Status</u>
EPA Primary Drinking Water Standards, Maximum Contaminant Levels	ARAR
NYS Standards and Guidance for Class GA Groundwater	ARAR/TBC
NYSDOH Drinking Water Quality Standards	ARAR
EPA Ambient Water Quality Criteria for: a) Human Health, Consumption of Organism Only, and b) Aquatic Life, Chronic, Freshwater Continuous Consumption	TBC
NYSDEC Standards and Guidance for Class C(T) Surface Water Bodies for : a) Human Food Chain, and b) Aquatic Life	ARAR/TBC
NYSDEC Freshwater Sediment Criteria for: a) Human Health Bioaccumulation, and b) Aquatic Life (Low-Effects Level and Severe-Effects Level)	TBC
NYSDEC Recommended Soil Cleanup Objectives	TBC
Hiteman Leather Site-Specific Background for Surface Soil Inorganics	TBC
Hiteman Leather Site-Specific Background for Subsurface Soil Inorganics	TBC
EPA Region 3 Risk-Based Fish Screening Criteria	TBC
	4-2

Final Remedial Investigation Report

CDM

4.1.1.1 Surface Water Screening Standards and Criteria

Analytical results from all surface water samples collected from the Unadilla River were screened against New York State Standards and Guidance Values for Class C Surface Water for Human Food Chain (NYSW-C-HFC) and Aquatic Life (NYSW-C-AC). Surface water sample results were also screened against the EPA Ambient Water Quality Criteria for Human Health (Consumption of Organism Only) (EPASW-HHORG) and Aquatic Life (Chronic, Fresh water, Continuous Consumption) (EPASW-AFRESHCC). Surface water screening standards and criteria for organic and inorganic contaminants are presented in Table 4-1.

4.1.1.2 Sediment Screening Criteria

All sediment samples, including those collected in the Unadilla River and the onsite wetland, were screened against New York State Freshwater Sediment Criteria for Human Health Bioaccumulation (NYSED-HFW) and for Benthic Aquatic Life Chronic Toxicity (NYSED-AC). As required by NYSDEC Technical Guidance for Screening Contaminated Sediments, Site-specific TOC measurements were used to calculate organic screening criteria. Sediment criteria values in units of ug/grams of organic carbon were multiplied by the area-specific TOC values in units of grams of organic carbon per kilogram of sediment. Separate values were calculated based on area-specific averages of TOC measurements for the Unadilla River samples and the onsite wetland samples.

NYSED-AC criteria are divided into the low-effects level (LEL) and severe-effects level (SEL) values for inorganic analytes. The LEL indicates a level of sediment contamination that can be tolerated by the majority of benthic organisms, but will still cause toxicity to a few species; the SEL indicates the concentration at which pronounced disturbance of the sediment-dwelling community can be expected. Inorganic sediment results were screened against both the LEL and SEL criteria. Sediment criteria for Unadilla River wetland samples are presented in Table 4-2. Sediment criteria for onsite wetland samples are presented in Table 4-3.

4.1.1.3 Groundwater Screening Standards and Guidelines

All monitoring well, residential well, and municipal well samples were screened against EPA's National Primary Drinking Water Maximum Contaminant Levels (EPAPDW-MCLs), New York State Standards and Guidance Values for Class GA Groundwater (Human Water Source) (NYSDEC-GW-GA), and NYSDOH Drinking Water Quality Standards (NYSDOH-DW-MCLs). The groundwater screening standards and guidelines are presented in Table 4-4.

4.1.1.4 Soil Screening Criteria

All surface soil and subsurface soil data, including data from former wastewater lagoon borings, building borings, onsite soil borings, off-site soil borings, and surficial soil samples collected from the South Bank Front Lot were screened against New York State Recommended Soil Cleanup Objectives (NYSDEC-RSCO). Where applicable, Site-wide average soil TOC measurements were used to calculate screening values.

The RSCO values provided in the Technical and Administrative Guidance Memorandum (TAGM) #4046, are based on a soil TOC of 1%, however, the average Site-wide TOC was determined to be 5.24%. As recommended by TAGM #4046, the TOC adjusted values were calculated by multiplying the RSCO value by 5.24.

In accordance with NYSDEC guidelines, CDM used inorganic data from background soil samples (collected from two soil borings RSB-35 and RSB-36) to determine Site background values for inorganic soil sample results. Two separate sets of inorganic background values were calculated from this data: one set for surface soil samples and one set for subsurface soil samples. Surface soil background values were calculated by doubling the average of the two soil samples collected from 0-2 feet bgs; these surface background values were used for comparison to all surficial samples collected from former wastewater lagoon borings, South Bank Front Lot surface soils, onsite soil borings and offsite soil borings. The subsurface soil background values were calculated by doubling the average of the four subsurface soil sample results collected from 2-6 feet bgs (samples RSB-35-2-4, RSB-35-4-6, RSB-36-2-4, and RSB-36-4-6); these subsurface soil samples, including those collected from lagoon borings, building borings, onsite soil borings, and offsite soil borings. Surface and subsurface soil criteria are presented in Tables 4-5 and 4-6.

4.1.1.5 Fish Tissue Screening Criteria

Forage fish tissue and sport fish tissue samples were screened against the EPA Region 3 Risk-Based Fish Screening Criteria (USEPA-FISH). This criterion applies to humans only. Fish tissue screening criteria are presented in Table 4-7.

4.1.2 Background Samples

CDM collected upstream background samples for Unadilla River surface water, sediment, fish tissue, upstream wetland sediment samples, hydraulically upgradient groundwater samples, and background location soil samples. Background samples were analyzed for the same parameters as the investigation samples. Background environmental samples that were completely unimpacted by chemical contamination were difficult to obtain due to the widespread use of industrial and agricultural products. However, upon review, CDM determined that the background samples collected during Field Activity 1 and Field Activity 2 indicated that they were not impacted by Site-specific contamination. Therefore, the samples were appropriate for comparison purposes.

4.1.2.1 Unadilla River Surface Water, Sediment, and Fish Tissue Background

During Field Activity 1, one background surface water (URSW-1), and one co-located sediment sample (URSD-1) were collected at a location upstream of the Hiteman facility. During Field Activity 2, two background forage fish tissue samples (URFF-1-A and URFF-1-B) were collected at the same upstream location; lack of sufficient sport fish sample volume resulted in no background sample. Surface water and fish tissue background detections are presented in Table 4-8, Unadilla River sediment sample background detections are presented in Table 4-9.

CDM Final Remedial Investigation Report

4.1.2.2 Wetland Sediment Background

Two background sediment samples (WTSD-11 and WTSD-12) were collected from off site areas to be used as background samples for the onsite wetland. WTSD-11 was collected from a wetland area in the cemetery located to the south of the facility and WTSD-12 was collected from a wetland area in the Winfield Memorial Park, located to the west of the facility. Results for sediment samples collected as background for the onsite wetland are presented in Table 4-9.

4.1.2.3 Groundwater Background

During well redevelopment activities, hydraulically upgradient monitoring well MW-1 could not be located. Therefore, no background groundwater samples were collected during Field Activity 1. During Field Activity 2, CDM installed and sampled a hydraulically upgradient background monitoring well cluster (RMW-16B, RMW-16D, and RMW-16S), located east of the Site to the rear of the Village of West Winfield parking lot on South Street. Results for the three background groundwater wells are presented in Table 4-10.

4.1.2.4 Soil Background

CDM collected surface soil and subsurface soil samples from two background soil borings located topographically upgradient of the Site at the Winfield Memorial Park, for analysis of metals only. Analytical data from these samples were used to calculate site-specific background values for inorganic analytes in the surface soil (BKGD-SURF) and subsurface soil (BKGD-SUBSURF). These values were used for comparison against all surface and subsurface soil samples collected during the RI field activities. Results of surface and subsurface background samples are presented in Table 4-11.

4.1.3 Identification of Primary, Secondary, and Non-COPCs

Per EPA approval, CDM identified detected compounds or analytes in Site media into three groups: primary COPCs, secondary COPCs, and non-COPCs. Each group was designated, based on the following criteria: 1) association with site-related processes and waste disposal practices, 2) magnitude of exceedance of regulatory screening standards and criteria, and 3) frequency of exceedance of regulatory standards and criteria. In general, exceedance of background levels alone was not a selection criterion, but was used to support the selection. As a result of this evaluation, nine primary COPCs were identified: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide. These nine analytes were designated as primary COPCs for each Site media in which they were detected at levels exceeding the most stringent regulatory standard or criteria.

The remaining detected compounds or analytes in each Site media were designated as either secondary COPCs or non-COPCs. In general, secondary COPCs were contaminants in which only one or two of the decision-making criteria were met. Non-COPCs did not meet the criteria, but were still detected at levels exceeding the most stringent regulatory standard or criteria.

4.2 Nature and Extent of Contamination in Site Media

CDM collected samples from onsite and offsite surface and subsurface soils, the onsite wetland, Unadilla River surface water, sediment, and fish tissue, and groundwater in and around the Hiteman Leather Site to determine if Site-related contaminants have degraded the quality of these media.

The nature and extent of contamination in Site media are documented in the sections below. In each section, the nature of contamination is documented through the identification of primary COPCs, secondary COPCs, and non-COPCs. The extent of contamination is presented in the context of location-specific primary and secondary COPC exceedances as they relate to historical tannery-process activities.

4.2.1 Data Presentation

Statistical summary tables were generated for each sample media and area. These tables present summaries of all contaminants that exceed the most stringent screening standard and criteria values, and catagorize them into "primary COPC", "secondary COPC", and "non-COPC" classifications. The tables summarize the number of detections and exceedances, the range of detections, the location and result of the highest detection, screening standard/criteria, and exceedance quotient, by contaminant. This report focuses only on the exceedances of the most stringent standards and criteria for primary and secondary COPCs. The human health and ecological risk assessments will evaluate the risk from chemicals that exceed one or more standard or criteria.

As part of the evaluation process, box map figures for each matrix and area were created to present location-specific regulatory exceedances for primary and secondary COPCs. Planar-view contour maps and 3-dimensional block diagrams were also developed to illustrated the distribution of chromium contamination in specific areas.

Some of the analytical results were qualified as estimated during data validation review with a "J" qualifier. Data were estimated, and in some cases rejected, due to exceeded quality control criteria, including holding time exceedances and poor spike and surrogate recovery. The data that were estimated were determined to be usable. Rejected data were not used. An explanation of data validation qualifiers is presented in Table 4-1A. A complete discussion of data validation, data usability, and data quality objectives (DQOs) is included in Data Usability Reports for Field Activity 1 and Field Activity 2 (Appendix C).

4.2.2 Lagoon Test Pits

Since the former wastewater lagoon area had been sampled extensively during the NYSDEC RI, no analytical samples were collected from test pits. However, the areal extent of the lagoon area, as delineated by boundaries surveyed at each of the test pits, appears to be approximately 37,500 square feet. Depths to lagoon materials ranged from 3 to 4 feet bgs.

4.2.3 Lagoon Soil Borings

Soil samples were collected at select intervals in three lagoon borings. The three borings were located in the former wastewater lagoon area, after the boundary was delineated during the test pit excavation activity. The uppermost interval samples (0-2 feet bgs) were classified as surface soil samples and deeper interval samples (greater than 2 feet bgs) were classified as subsurface soil samples. All nine primary COPCs were found in lagoon boring surface soil samples; nine additional detected compounds or analytes were identified as non-COPCs. In the subsurface soil samples, all primary COPCs except mercury, were found; one organic compound and nine inorganic analytes were identified as non-COPCs. No secondary COPCs were identified for either surface or subsurface lagoon boring soil samples. Table 4-12 summarizes statistical data for all contaminants exceeding surface and subsurface soil screening criteria. Figure 4-1 illustrates the distribution of primary and secondary COPCs in the lagoon boring soils.

4.2.3.1 Primary COPCs in Lagoon Soil Borings

Nine primary COPCs were identified for surface soils in lagoon soil borings: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide. With the exception of mercury, the same contaminants were identified as primary COPCs in subsurface soils. Note that the NYSDEC-RSCO screening values for these contaminants, except cadmium, are more stringent than the Site-specific background screening criteria values. For these contaminants, concentrations that exceed the background screening criteria are more likely to indicate Site-related contamination than those that only exceed the NYSDEC-RSCO.

Arsenic was detected in all surface and subsurface soil samples at concentrations ranging from 0.98 mg/kg to 9.1 mg/kg. The highest levels in surface and subsurface soils were both detected in LSB-03 at 0-2 feet bgs and 4-6 feet bgs. Arsenic slightly exceeded the NYSDEC-RSCO in three samples, but did not exceed background values.

Antimony and cadmium concentrations, relative to screening criteria, are similar. The greatest exceedance of antimony, in sample LSB-03-0-2 at a concentration of 22.8 mg/kg, exceeded background by 33 times. The highest detection of cadmium, in sample LSB-03-0-2 at a concentration of 2.9 mg/kg, exceeded background by 32 times.

Total chromium was detected in all lagoon boring surface and subsurface soil samples at levels ranging from 5.4 mg/kg to 11,100 mg/kg; in general, the highest concentrations were detected in LSB-03 from 0-2 feet bgs (8,550 mg/kg) and 2-4 feet bgs (11,100 mg/kg). Surface soil samples exceeded NYSDEC-RSCO criteria by up to 855 times and exceeded the background screening value by up to 370 times. Subsurface soil samples exceeded NYSDEC-RSCO criteria by up to 1,110 times and the background screening value by up to 362 times. Hexavalent chromium was detected in three samples: LSB-01-0-2 at 6 mg/kg; LSB-01-2-4 at 6 mg/kg; and LSB-02-0-2 at 9 mg/kg. There is no soil screening value for hexavalent chromium.

Final Remedial Investigation Report

Lead was detected in all surface and subsurface soil samples, at levels ranging from 1.9 J mg/kg to 118 mg/kg. The highest levels of lead were reported in LSB-03 at 0-2 feet bgs (106 mg/kg) and 4-6 feet bgs (118 mg/kg). Lead concentrations exceeded background screening criteria by up to 5 times in all surface samples and by up to 6 times in two of the subsurface soil samples.

Mercury was detected in two surface soil samples; one sample slightly exceeded the NYSDEC-RSCO value. No detections were above background screening criteria.

Nickel was detected at levels ranging from 4.2 mg/kg to 33.8 mg/kg. Concentrations in surface and subsurface soil samples exceeded NYSDEC-RSCO by up to 3 times.

Cyanide was detected in all surface and in eight subsurface soil samples at levels ranging from 0.03 mg/kg to 1.2 mg/kg. The highest levels in both surface and subsurface soils were detected in LSB-03 at 0-2 feet bgs and 4-6 feet bgs. Cyanide was detected in all three surface and in two subsurface samples at levels up to 6 times the background screening value.

4.2.3.2 Non-COPCs in Lagoon Soil Boring Soils

The following nine inorganic analytes were identified as non-COPCs in the surface soils: barium, beryllium, copper, iron, selenium, silver, sodium, thallium, and zinc. One organic compound and nine inorganic analytes were identified as non-COPCs in the subsurface soils: pentachlorophenol, beryllium, calcium, copper, iron, magnesium, selenium, sodium, thallium, and zinc.

4.2.3.3 Extent of Contamination in Lagoon Soil Borings

In general, the highest concentrations and greatest number of exceedances in lagoon soil samples collected during the CDM RI were detected in samples collected from location LSB-03 (located on the eastern side of the former wastewater lagoons). The lowest concentrations were detected in samples collected from location LSB-01 (located on the western side of the former wastewater lagoons). Because effluent probably flowed into the lagoon(s) from east to west, the pattern of contamination generally corresponds to the most likely historical waste management practices. This is especially true for antimony, cadmium, and chromium, which were detected most often and at the highest concentrations.

Contaminant levels generally tended to decrease with depth. The primary contaminants with the highest concentrations and greatest number of detections were antimony, cadmium, and chromium. Cadmium was detected at concentrations above screening criteria in the terminal interval in all borings; chromium concentrations also exceeded respective criteria in the terminal interval in the eastern boring. In these areas, the vertical extent of contamination below observed lagoon materials is not known.

During the 1996 EPA ERT SI, surface and subsurface samples collected for onsite XRF analysis in and around the suspected edges of the lagoons indicated that the majority

of lagoon soils from 0 to 8 feet bgs contained chromium at levels over 1,000 mg/kg, with levels as high as 37,000 mg/kg. Confirmatory laboratory samples indicated chromium levels up to 50,000 mg/kg. The highest chromium concentrations were in subsurface soil at depths from 2 to 6 feet.

4.2.4 Building Soil Borings

A total of 12 subsurface soil samples plus a duplicate sample were collected beneath the former tannery building at five boring locations, BSB-01 through BSB-05. Samples were collected from each boring location at the 0-2-foot interval (directly below the concrete foundation) and the 8-10-foot interval. Additional samples were collected in BSB-02 (6-8 feet) and in BSB-04 (2-4 feet), as described in Section 2. All nine primary COPCs were found in building boring soil samples. Eleven detected compounds or analytes were identified as non-COPCs; no secondary contaminants were identified. Table 4-13 summarizes statistical data for all building boring COPCs. Figure 4-2 illustrates the distribution of primary contaminants in the building boring soils.

4.2.4.1 Primary COPCs in Building Soil Borings

All nine primary COPCs were found in building boring samples: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide. Note that the NYSDEC-RSCO screening values for these contaminants, except cadmium, are more stringent than the Site-specific background screening criteria values. For these contaminants, concentrations that exceed the background screening criteria are more likely to indicate Site-related contamination than those that only exceed the NYSDEC-RSCO.

Antimony was detected and exceeded background screening criteria in two building boring samples. Concentrations in the 0-2 foot intervals at BSB-02 and BSB-04 were 1.1 BJ mg/kg and 7 BJ mg/kg, respectively.

Arsenic was detected in 10 building boring samples, at levels ranging from 1 to 2 times NYSDEC-RSCO levels, but below background screening criteria levels. Concentrations ranged from 1.7 mg/kg to 9.9 mg/kg with the highest concentration reported in BSB-05 (0-2 feet).

Cadmium was detected in all 13 soil samples at levels ranging from 0.14 mg/kg to 0.77 mg/kg. All cadmium results exceeded background screening criteria, but did not exceed NYSDEC-RSCO screening criteria. In general, cadmium levels decreased with depth, with the highest cadmium levels at all locations detected in the first two feet. Levels in the 0-2-foot interval ranged from 4 to 8 times background screening criteria, with levels in the 8-10-foot interval ranging from 1 to 5 times. Elevated concentrations of cadmium were also detected in BSB-04 from 2-4 feet at 8 times background screening criteria.

Total chromium was detected in all 13 soil samples at levels ranging from 4.5 J mg/kg to 2,210 J mg/kg. Results from 11 of the 13 samples exceeded the NYSDEC-RSCO, and 10 exceeded the Site-specific background screening criteria for subsurface soil. The

Site-specific background screening criteria for chromium is over three times higher than the NYSDEC-RSCO. The highest levels of chromium were detected in BSB-04. Chromium levels in the 0-2-foot interval were 221 times the NYSDEC-RSCO screening criteria and 72 times background screening criteria; levels in the 8-10-foot interval were 40 times and 13 times NYSDEC-RSCO and background screening criteria, respectively. Elevated levels of chromium were also detected in BSB-02 (0-2 feet) and BSB-05 (8-10 feet). Hexavalent chromium was detected in BSB-02 (6-8-foot interval) and in BSB-05 (both the 0-2 and 8-10-foot intervals); results for all three samples were 4 J mg/kg. No soil screening criteria value is available for hexavalent chromium.

Lead was detected in all 13 soil samples at levels ranging from 2.6 mg/kg to 141 J mg/kg. Results from 5 of the 13 samples exceeded background screening criteria; no screening criteria is listed for NYSDEC-RSCO. The lead concentration in BSB-02 was detected at 7 times the background screening criteria. Lead concentrations in the remaining four samples, located in building borings BSB-01, BSB-02, and BSB-04, ranged from 1 to 2 times the background screening criteria.

Mercury and nickel were detected at levels ranging from 1 to 2 times NYSDEC-RSCO levels, but below background screening criteria. Mercury was detected in 8 of the 13 soil samples at levels ranging from 0.06 mg/kg to 0.23 mg/kg. Mercury levels exceeded screening criteria from samples at the 0-2-foot interval in BSB-01 and BSB-02. Nickel was detected in all 13 samples at levels ranging from 4.4 mg/kg to 30.7 J mg/kg. Results from five samples in each of the soil borings exceeded screening criteria, with the highest concentration in BSB-01 (0-2 feet).

Cyanide was detected in all samples at levels ranging from 0.07B mg/kg to 1 mg/kg. Concentrations exceeded background screening criteria in five samples at levels up to 5 times. The highest concentration was reported in the 0-2 foot interval at BSB-02.

4.2.4.2 Non-COPCs in Building Soil Borings

Eleven analytes were identified as non-COPCs for subsurface soil samples: barium, beryllium, calcium, copper, iron, magnesium, manganese, potassium, sodium, and zinc. Iron, zinc, beryllium exceeded screening criteria in 13, 11, and 10 samples, respectively.

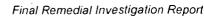
4.2.4.3 Extent of Contamination in Building Soil Borings

Contaminant concentrations of COPC inorganic chemicals generally tended to decrease with depth, with the exception of hexavalent chromium levels, which were elevated at depth. Primary COPCs with the highest concentrations and greatest number of detections during the CDM RI were cadmium, chromium, and lead. Arsenic, mercury, and nickel generally were present only in the 0-2-foot interval directly below the building foundation. These metals were detected at levels from 1 to 2 times NYSDEC-RSCO screening criteria but below background screening criteria. Cadmium, chromium, and lead were detected at the terminal interval at the majority of the soil borings; the vertical extent of chromium contamination in these locations is not defined.

CDM Final Remedial Investigation Report

The presence of elevated levels of primary COPCs in soils below the building foundation is a clear indicator of contamination associated with seepage of process wastewater underneath the former tannery. Cadmium, chromium, and lead were known to be used in tannery operations and were present in historical samples from wastewater discharging from the Site. The majority of cadmium, chromium, lead, and other primary COPC contamination appears to be concentrated in soils underlying "tan house" operations in the former tannery building (BSB-02, BSB-04, and BSB-05). BSB-02 is located in the center of "tan house" operations, BSB-04 is located in the southeast corner (approximately 50 feet from the Unadilla River), and BSB-05 is located in the southwest corner, by the coloring process concrete dye tanks.

Arsenic and nickel were detected in historic source samples, and are considered siterelated contaminants; however, because they were detected below background screening criteria, and only slightly above NYSDEC-RSCO criteria, arsenic, mercury, and nickel may not clearly indicate site-related contamination.


4.2.5 Onsite Soil Borings

A total of 22 surface soil samples, plus a duplicate and 52 subsurface soil samples were collected at 22 onsite soil borings, RSB-01 through RSB-19, RSB-26, RSB-48, and RSB-49. Surface soil samples were collected at each boring from the 0-2-foot depth interval. Subsurface soil samples were collected from multiple depth intervals at each boring location ranging from the 2-4-foot interval to the 8-10-foot interval. All nine primary COPCs were found in both surface and subsurface soils from onsite soil borings. In addition, four organic secondary COPCs were identified for both surface and subsurface soils and 15 in subsurface soils were identified as non-COPCs. Table 4-14 summarizes statistical data for all contaminants exceeding surface and subsurface soil screening criteria. Figure 4-3a and Figure 4-3b summarize results of primary and secondary COPCs in onsite soil boring samples.

4.2.5.1 Primary COPCs in Onsite Soil Borings

All nine primary COPCs were identified for both surface and subsurface soil samples as exceeding the soil screening criteria: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide. Note that the NYSDEC-RSCO screening values for these contaminants, except cadmium, are more stringent than the Site-specific background screening criteria values. For these contaminants, concentrations that exceed the background screening criteria are more likely to indicate Site-related contamination than those that only exceed the NYSDEC-RSCO.

Antimony exceedances were similar in both surface and subsurface soil. In onsite surface soil, antimony detections ranged from 1.3 BJ to 260 J mg/kg. Antimony was detected in 10 of 23 samples and all detections exceeded regulatory criteria. The maximum exceedance quotient for antimony was 377 times the background screening criteria at sampling location RSB-08-0-2. In subsurface soil, antimony detections ranged from 0.55 to 225 J mg/kg. Antimony was detected in 20 of 52 samples and exceeded regulatory criteria in 19 samples. The maximum exceedance quotient for

CDM

antimony was 363 times the background screening criteria at sampling location RSB-01-2-4 in the depth interval of 2-4 feet.

Arsenic detections ranged from 3.1 J to 41 mg/kg in surface soil. Arsenic was detected in all surface soil samples and 9 exceeded regulatory criteria. The maximum exceedance quotient for arsenic in surface soil was 5 times the NYSDEC-RSCO, at sampling location RSB-02-0-2. The extent and magnitude of arsenic in subsurface soil were very similar. Concentrations ranged from 1.4 to 45 mg/kg and were detected in all samples, with 13 exceeding regulatory criteria. The maximum exceedance quotient for arsenic in subsurface soil was 6 times the NYSDEC-RSCO at sampling location RSB-15-4-6 in the depth interval of 4-6 feet.

Cadmium detections ranged from 0.32 to 4.1 mg/kg in surface soil. Cadmium was detected in 21 of 23 samples and all exceeded regulatory criteria. The maximum exceedance quotient for cadmium was 46 times the background screening criteria value at sampling location RSB-17-0-2. In subsurface soil cadmium detections ranged from 0.15 to 11.8 J mg/kg. It was detected in 47 of 52 samples and all exceeded regulatory criteria. The maximum exceedance quotient for cadmium was 124 times the background screening criteria at sampling location RSB-16-2-4 in the depth interval of 2-4 feet.

Total chromium was detected in all surface and subsurface soil samples. Concentrations ranged from 5.2 J mg/kg to 75,800 mg/kg in surface soil and from 4.8 mg/kg to 74,600 J mg/kg in subsurface soil. Total chromium levels exceeded NYSDEC-RSCO criteria in 19 surface and 45 subsurface soil samples. Surface soil concentrations were detected to 7,380 times NYSDEC-RSCO and to 328 times background screening criteria at RSB-08. The highest subsurface soil result at RSB-01-2-4 exceeded NYSDEC-RSCO by 7,460 and background screening criteria by 243 times. Hexavalent chromium detections ranged from 6 to 36 J mg/kg in surface soil. It was detected in 3 of 23 samples. The highest detection was in sample RSB-02-0-2. In subsurface soil hexavalent chromium detections ranged from 4 to 86 mg/kg. It was detected in 8 of 52 samples. The highest detection was in sample RSB-06-4-6 in the depth interval of 4-6 feet. No screening value is available for hexavalent chromium.

Lead detections ranged from 5.8 to 319 mg/kg in surface soil. Lead was detected in all 23 surface soil samples collected and 20 exceeded regulatory criteria. The maximum exceedance quotient for lead was 14 times the background screening criteria at sampling location RSB-16-0-2. In subsurface soil, lead detections ranged from 2.5 to 849 mg/kg. Lead was detected in all 52 samples collected and 23 exceeded regulatory criteria. The maximum exceedance quotient for lead was 40 times the background screening criteria at sampling location RSB-15-2-4 in the depth interval of 2-4 feet.

Mercury detections ranged from 0.07 BJ to 0.8 mg/kg in surface soil. Mercury was detected in 17 of the 21 samples, and 14 exceeded the NYSDEC-RSCO. The maximum exceedance quotient for arsenic was 8 times the NYSDEC-RSCO at sampling location RSB-07-0-2. The extent and magnitude of mercury in subsurface soil were very

Final Remedial Investigation Report

CDM

similar. Its detections ranged from 0.05 BJ to 0.86 mg/kg and it was detected in 30 of the 47 samples that passed through data validation, exceeding regulatory criteria in 23 samples. The maximum exceedance quotient for mercury was 9 times the NYSDEC-RSCO screening criterion of 0.1 mg/kg, at sampling location RSB-15-2-4 in the depth interval of 2-4 feet.

Nickel was detected in all 23 samples, at concentrations ranging from 6.3 to 43.1 mg/kg in surface soil; concentrations exceeded regulatory criteria in 17 samples. The maximum exceedance quotient for nickel was 3 times the NYSDEC-RSCO screening criterion at sampling location RSB-01-0-2. In subsurface soil, nickel detections ranged from 4.3 to 60.8 J mg/kg. Nickel was detected in all samples collected and exceeded regulatory criteria in 26 samples. The maximum exceedance quotient for nickel in subsurface soil was 5 times the NYSDEC-RSCO screening criterion at RSB-16-2-4.

Cyanide detections ranged from 0.06 to 3.1 mg/kg in surface soil. Cyanide was detected in all 23 samples collected and 16 exceeded regulatory criteria. The maximum exceedance quotient for cyanide was 21 times the background screening criteria at sampling location RSB-01-0-2. In subsurface soil cyanide detections ranged from .03 to 6.8 J mg/kg. Cyanide was detected in 41 of 52 samples, with 19 exceeding regulatory criteria. The maximum exceedance quotient for cyanide was 34 times the background screening criteria at sampling location RSB-01-2-4 in the depth interval of 2-4 feet.

4.2.5.2 Secondary COPCs in Onsite Soil Borings

Four PAHs are identified as secondary COPCs in both onsite surface and subsurface soil: benzo(a)anthracene, benzo(a)pyrene, chrysene, and dibenz(a,h)anthracene. Detected values ranged from 43 J to 15,000 J ug/kg in surface soil and from 60 J to 8,400 ug/kg in subsurface soil. Benzo(a)anthracene, benzo(a)pyrene, and chrysene were detected in 13 to 14 of the 18 surface soil samples and in 19 to 21 of the 42 subsurface soil samples. Dibenz(a,h)anthracene was less frequently detected in 3 of the 18 surface soil samples and in 7 of the 42 subsurface soil ranged from 7 to 44 times the NYSDEC-RSCO screening criterion, with the maximum exceedances for all 4 PAHs found at RSB-07-0-2. Exceedance quotients in subsurface soil ranged from 7 to 25 times the NYSDEC-RSCO screening criterion. The maximum exceedances for benzo(a)anthracene, benzo(a)pyrene, and chrysene were found on the south side of the Unadilla River at RSB-16-2-4 in the depth interval of 2-4 feet, and the maximum exceedances for 2-4 feet.

4.2.5.3 Non-COPCs in Onsite Soil Borings

Fourteen analytes were identified as non-COPCs in surface soil. Of those, barium, beryllium, calcium, cobalt, copper, iron, selenium, sodium, vanadium, and zinc were detected in most or all 23 of the samples, whereas, thallium and silver were only detected in a few of the samples.

Fifteen analytes were identified as non-COPC exceedances in subsurface soil. Of those, barium, beryllium, calcium, cobalt, copper, iron, magnesium, manganese, sodium, and zinc were detected in most or all samples, whereas, selenium, thallium, and silver were only detected in a few to approximately one third of the samples. Two PAHs, benzo(b)fluoranthene and benzo(k)fluoranthene, were detected in approximately half of the samples.

4.2.5.4 Extent of Contamination in Onsite Soil Borings

Specific areas of the Site contain clusters of higher-magnitude detections of primary COPCs in both surface and subsurface soil, indicating locations where wastes probably were released more frequently or directly to the ground in conjunction with tannery waste disposal practices. The location of the most frequent exceedances of soil screening criteria by the primary COPCs in both surface and subsurface soil is southwest of the former building footprint, between the former building location and the river where the former sluiceway and underground storage tank (UST) were located. Other areas of elevated primary COPC contamination in surface and subsurface soil include the area directly south of the east wing of the building footprint adjacent to the concrete dye tanks, the west-central portions of the Site where lagoon overflow was directed to the onsite wetland, the south side of the river where wastes were apparently disposed, and the northwestern portion of the Site where waste materials likely were landfilled along the eastern bank of the onsite wetland.

Figure 4-4a presents an isoconcentration map of total chromium results in all surface soil samples. Surface soil results from lagoon boring, building boring, and South Bank Front Lot samples are included in the figure to complete the illustration. Figure 4-4b presents an isoconcentration map of the highest subsurface soil total chromium results in onsite soil borings; subsurface soil results from lagoon boring and building boring samples area are also included. Figures 4-5a and 4-5b present 3-dimensional models, generated by the Environmental Visualization System (EVS), of total chromium distribution in onsite soils at levels exceeding 100, 1,000, 2,500, 5,000 and 10,000 mg/kg. As shown in these figures, total chromium concentrations are most extensive in and below the areas of the former sluiceway and UST on the southwest side of the former building, the concrete dye tanks on the southeast side of the former building, and in the area of lagoon overflow to the north of the former wastewater lagoons. The highest detections, greater than 5,000 times NYSDEC-RSCO, and deepest extent of contamination are concentrated below the former sluiceway, around the UST, and along the drainage discharge path from lagoon overflow. According to the EVS model, the approximate volume of soil exceeding 100 mg/kg is approximately 110,000cubic yards and the approximate volume of soil exceeding 10,000 mg/kg is 600 cubic yards.

PAHs were found in surface and near surface soil in the west-central portion of the Site and on the south side of the river, respectively. Specific sources of PAHs observed in soils are unknown.

During the 1996 EPA ERT SI, soil samples collected in the area north of the former wastewater lagoons had XRF chromium concentrations up to 60,000 mg/kg, with the highest levels occurring at the surface.

4.2.6 Off Site Soil Borings

CDM collected a total of 14 surface and 38 subsurface soil samples at off site soil boring locations. Soil samples were collected at the 0-2 foot interval and at select intervals from 2-10 feet in 13 borings located at the Crumb Trailer Park and in one boring located at the Ferguson Fuels property. All nine primary COPCs were found in surface and subsurface soil samples at off site soil borings. Eleven compounds or analytes in surface soil samples and 12 in subsurface soil samples were identified as non-COPCs. No secondary COPCs were identified. Table 4-15 summarizes statistical data for all contaminants exceeding surface and subsurface soil screening criteria. Figures 4-6a and Figure 4-6b illustrate the distribution of primary COPCs in off site soils.

4.2.6.1 Primary COPCs in Off Site Soil Borings

All nine primary contaminants were identified during the CDM RI for both surface and subsurface soil samples: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide. NYSDEC-RSCO screening values for these contaminants, except cadmium, are more stringent than the Site-specific background screening criteria values. For these contaminants, concentrations that exceed the background screening criteria are more likely to indicate Site-related contamination than those that only exceed the NYSDEC-RSCO.

Antimony was detected in 5 surface and 10 subsurface soil samples; all detections exceeded background screening criteria at levels up to 14 times. Highest concentrations during the CDM RI were detected in surface soils at RSB-41 (9.9B mg/kg) and at the 2-4 foot interval at RSB-22 (5.8B mg/kg).

Arsenic was detected in all surface and subsurface soil samples and exceeded the NYSDEC-RSCO in 11 of the surface and 20 of the subsurface samples at levels up to 11 times. Concentrations also exceeded background values in 4 surface and 4 subsurface samples by 7 times and 1 time, respectively. Highest concentrations during the CDM RI were in surface soils in RSB-41 (80.9 mg/kg) and the 2-4 foot interval in RSB-21 (26.7 mg/kg).

Cadmium was detected in all surface and in 28 of 38 subsurface soil samples; concentrations in these samples exceeded background screening criteria up to 56 and 71 times, respectively. Concentrations in surface soils ranged from 0.19 B mg/kg to 5 mg/kg in surface soils and from 0.15 B mg/kg to 6.7 mg/kg in subsurface soils. The highest concentrations during the CDM RI were detected in the top six feet in borings in the northeast and southeast sections of the trailer park. Cadmium was also detected in the boring located at Ferguson Fuels at levels 2 to 5 times background screening criteria.

Final Remedial Investigation Report

Total chromium was detected in all surface and subsurface soil samples; concentrations in surficial soils ranged from 6.7 mg/kg to 1,430 mg/kg and in subsurface soils from 3.8 mg/kg to 1,190 J mg/kg. Total chromium concentrations exceeded background screening criteria in 13 surface and 20 subsurface soil samples, located primarily along the northern border and southwestern corner of the trailer park. The highest concentration in surface soils was found in RSB-41 at 143 times the NYSDEC₇RSCO and 62 times background screening criteria. The highest concentration in subsurface soils was found in RSB-21-2-4 at 119 times the NYSDEC-RSCO and 39 times background screening criteria. In general, the highest concentrations during the CDM RI were detected in soil borings RSB-22, RSB-41, RSB-42, and RSB-43, where concentrations exceeded background screening criteria at every interval. Total chromium was also detected in the surface soil at the soil boring located at Ferguson Fuels at 5 times the NYSDEC-RSCO. Hexavalent chromium was detected in 1 surface and 5 subsurface soil samples at levels ranging from 4 J mg/kg to 17 J mg/kg. The highest concentrations during the CDM RI were detected in the surface soil sample at RSB-22, and the subsurface soil detection at the same location and at the two soil borings directly to the west, RSB-21 and RSB-42.

Lead was detected in all surface and subsurface soil samples at levels ranging from 13.7 J mg/kg to 1,820 mg/kg in the surface and from 3.7 mg/kg to 1,490 mg/kg in the subsurface. The highest surface and subsurface soil lead concentrations were both found in RSB-43; the surface soil sample was 77 times background screening criteria and the 2-4-foot interval was 70 times background screening criteria.

Mercury was detected in 10 surface and 16 subsurface soil samples. Mercury concentrations in surface soils ranged from 0.09 mg/kg to1.1 mg/kg and exceeded background screening criteria in 8 samples. The highest surface concentration was detected at RSB-41, 11 times NYSDEC-RSCO. Subsurface concentrations ranged from 0.05 B mg/kg to 30.3 NJ mg/kg and exceeded background screening criteria in 9 samples. The highest mercury concentration in subsurface soils was detected at RSB-42-4-6, 303 times NYSDEC-RSCO.

Nickel was detected in all surface and subsurface soil samples. Nickel levels exceeded NYSDEC-RSCO values in 8 surface and 14 subsurface samples by 3 and 5 times, respectively. Nickel concentrations slightly exceeded background levels in 2 subsurface samples but no surface samples. Highest levels in subsurface soils were detected in RSB-41 from 4-6 feet bgs.

Cyanide was detected in all surface and all but one subsurface soil samples. Concentrations exceeded background screening values in 11 surface and 11 subsurface samples by up to 11 times. Concentrations ranged from 0.04 B mg/kg to 1.7 mg/kg with highest detections in RSB-21 and RSB-22.

4.2.6.2 Non-COPCs in Off Site Soil Borings

Eleven analytes were also detected in surface soil samples: barium, beryllium, calcium, copper, iron, manganese, selenium, silver, sodium, thallium, and zinc. Twelve

(barium, beryllium, calcium, copper, iron, magnesium, potassium, selenium, silver, sodium, thallium, and zinc) were detected in subsurface soils. These analytes are considered non-COPCs.

4.2.6.3 Extent of Contamination in Off Site Soil Borings

The highest levels of the majority of primary and secondary COPCs are found in the northwest corner of the trailer park in RSB-21, RSB-22, RSB-41, RSB-42, and RSB-44). In general, the highest concentrations of primary COPCs, antimony, arsenic, total and hexavalent chromium, cyanide and lead were found in surface soils during the CDM RI, where the highest concentrations of primary COPCs cadmium, mercury, and nickel were found in the subsurface soils. With the exception of RSB-21 and RSB-42, chromium and other primary COPC concentrations tended to decrease with depth. This distribution is consistent with landfill operation and closure (i.e., pushing materials to the rear and some mixing with cover soils).

4.2.7 South Bank Front Lot Surface Soils

Surface soil samples were collected at six locations in the South Bank Front Lot. Seven of the nine primary COPCs were found in surface soil samples. An additional nine detected analytes were identified as non-COPCs. Table 4-16 summarizes statistical data for all contaminants exceeding surface soil screening criteria. Figure 4-7 illustrates the distribution of primary COPCs.

4.2.7.1 Primary COPCs in South Bank Front Lot Surface Soils

Seven primary COPCs were found in South Bank Front Lot surface soil samples: antimony, arsenic, cadmium, total chromium, cyanide, lead, and nickel. Mercury and hexavalent chromium were not detected in any samples.

Antimony was detected in three surface soil samples at concentrations ranging from 0.64B mg/kg to 1.6 B mg/kg. Concentrations exceeded background screening criteria in RSS-01 (1.6 B mg/kg) and RSS-02 (0.75 B mg/kg).

Arsenic was detected in all of the samples collected with concentrations ranging from 5.3 mg/kg to 16.5 mg/kg. Five of the concentrations exceeded the RSCO of 7.5 mg/kg. The highest concentration was in RSS-06, which exceeded NYSDEC-RSCO criteria by 2 times.

Cadmium was detected in all of the soil samples at levels ranging from 0.18 B mg/kg to 0.92 B mg/kg. All cadmium results exceeded background screening criteria of 0.09 mg/kg, but none of the detected concentrations exceeded the NYSDEC-RSCO screening criteria of 1 mg/kg. The highest cadmium concentration was detected in RSS-03-DUP, which exceeded NYSDEC-RSCO by 10 times.

Chromium was detected in all of the soil samples at concentrations ranging from 104 mg/kg to 474 mg/kg. All chromium results exceeded both the NYSDEC-RSCO screening criteria of 10 mg/kg as well as the background screening criteria of 23.1

mg/kg. The highest chromium concentration was detected in RSS-01, which exceeded NYSDEC-RSCO by 47 times.

Cyanide was detected in all of the samples collected with concentrations ranging from 0.1 mg/kg to 0.26 mg/kg. Four of the concentrations exceeded the Site background criteria of 0.15 mg/kg. The highest concentration was in RSS-05, which exceeded background screening values by 2 times.

Lead was detected in all of the soil samples at concentrations ranging from 22.8 mg/kg to 189 mg/kg. Six of the seven lead results exceeded the background screening criteria of 23.5 mg/kg. The highest lead concentration was detected in RSS-03-DUP, which exceeded background screening value by 48 times. There is no NYSDEC-RSCO for lead.

Nickel was detected in all of the samples collected, with concentrations ranging from 8.8 B mg/kg to 21.3 J mg/kg. Six of the concentrations exceeded NYSDEC-RSCO of 13 mg/kg. The highest concentration was detected in RSS-03-DUP, which exceeded the lowest screening criteria by 2 times.

4.2.7.2 Non-COPCs in South Bank Front Lot Surface Soils

Nine analytes were consistently detected in all of the surface soil samples and identified as non-COPCs: barium, beryllium, copper, iron, magnesium, manganese, potassium, selenium, silver, and zinc. These analytes are ubiquitous in natural environments, were detected at concentrations minimally exceeded screening criteria, and were not suspected to be Site-related.

4.2.7.3 Extent of Contamination in South Bank Front Lot Surface Soils

The distribution and type of contaminants detected in the South Bank Front Lot soils are consistent with the premise that Hiteman waste material was used to fill the area. In addition, the contaminant detections in the South Bank Front Lot surface soils are consistent with onsite detections. The sporadic distribution of the primary contaminants is also consistent with random fill and disposal activities.

4.2.8 Onsite Wetland Sediments

Sediment samples were collected from two depths (0-6 inches and 18-24 inches) at 15 locations in the onsite wetland. Table 4-17 summarizes statistical data for all contaminants exceeding sediment screening criteria. Figures 4-8a and 4-8b illustrate the distribution of primary and secondary COPCs in the onsite wetland sediments.

4.2.8.1 Primary COPCs in Wetland Sediments

Eight of the primary COPCs were found in wetland sediment samples: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, and nickel. There are no NYSED-HFW screening values available for inorganic analytes. Therefore, the primary COPCs were screened against the NYSED-AC-LEL and NYSED-AC-SEL criteria.

Antimony was detected in 21 sediment samples at levels ranging from 2.1 mg/kg to 795 mg/kg. All of the samples exceeded the NYSED-AC-LEL screening criterion by up to 398 times; 10 of the samples exceeded the NYSED-AC-SEL by up to 32 times.

Arsenic was detected in all 32 sediment samples at levels ranging from 3.1 BJ mg/kg to 188 J mg/kg. Concentrations in 27 samples exceeded the NYSED-AC-LEL screening criterion by up to 31 times; 6 samples exceeded the NYSED-AC-SEL screening criterion by up to 6 times. The highest concentrations during the CDM RI were detected along the eastern border of the wetland with the highest concentration of 188 J mg/kg in the surface samples at WTSD-14.

Cadmium was detected in 22 of the 32 samples at concentrations ranging from 0.4 B to 6.2 J mg/kg. Nineteen detections were above the NYSED-AC-LEL screening criterion at levels up to 10 times; none of the samples exceeded the NYSED-AC-SEL.

Chromium was detected in all wetland sediment samples at levels ranging from 15.2 J mg/kg to 89,900 J mg/kg. Concentrations in 30 of the samples exceeded the NYSED-AC-LEL screening criterion by up to 3,458 times and 26 samples exceeded the NYSED-AC-SEL screening criterion by up to 82 times. The magnitude of total chromium exceedances was the greatest, when compared with the other primary COPCs. Figures 4-9a and 4-9b illustrate the distribution of chromium contamination in the onsite wetland. Hexavalent chromium was detected in 10 sediment samples at levels ranging from 19 J mg/kg to 160 J mg/kg. Hexavalent chromium concentrations exceeded the LEL by up to 6 times in 7 samples, primarily located along the eastern border of the wetland. Concentrations in both intervals at WTSD-17 slightly exceeded the SEL.

Lead was detected in all samples at levels ranging from 16.1 mg/kg to 316 J mg/kg, with the highest concentration in WTSD-01-0-6. Lead concentrations exceeded the LEL in 26 samples by up to 10 times and exceeded the SEL in 14 samples by up to 3 times.

Mercury and nickel were detected in the majority of sediment samples. Mercury concentrations ranged from 0.18 mg/kg to 0.82 J mg/kg, all of which exceeded the LEL. The highest levels of mercury were detected in WTSD-05-18-24 at 5 times the SEL. Mercury concentrations did not exceed the SEL.

Nickel was detected at levels from 8.3 BJ mg/kg to 37.3 J mg/kg, with the highest concentration at WTSD-07-18-24. Nickel concentrations exceeded the LEL by up to 2 times in 19 samples. Nickel concentrations did not exceeded the SEL.

4.2.8.2 Secondary COPCs in Wetland Sediments

Copper, alpha-chlordane and gamma-chlordane were identified as secondary COPCs for wetland sediments. Twenty-six detections were above the NYSED-AC-LEL screening criterion; one of the samples exceeded the NYSED-AC-SEL by six times.

Alpha- and gamma-chlordane were detected in all samples at levels up to 226 and 199 times the NYSED-HFW, respectively.

4.2.8.3 Non-COPCs in Wetland Sediments

Four inorganic analytes and 12 organic compounds were identified as non-COPCs, including several pesticides, one PCB Aroclor, and two metals; however, they either are not considered to be Site-derived contaminants or are not present at sufficient concentrations to have significantly impacted the wetland.

4.2.8.4 Extent of Contamination in Wetland Sediments

The highest concentrations during the CDM RI of total chromium, hexavalent chromium, lead, and mercury generally were detected in samples collected from the surface interval compared with the deeper interval across the lower portion of the wetland, especially around the eastern margin at sample location WTSD-14. WTSD-14 is located by the outfall from a weir box that directed overflow water into the onsite wetland. However, concentrations were highest in the deeper sample compared with the surface sample interval in the northern portion of the wetland, primarily centered around sample location WTSD-4, at the discharge from the ditch that also collected lagoon overflow. This areal and vertical distribution of contamination is best illustrated with the total chromium results.

Contaminant concentrations were generally greater in all surface samples compared with deeper samples, with the exception of chromium, lead, and mercury; concentrations of these contaminants were higher in the deeper samples in the area of the northern outfall. Variations in the vertical distribution of these analytes may have been controlled by a combination of chemical and biochemical factors such as pH, competitive sorption between metals, organic carbon quantity, and varying Kd. Variation in the head of water across the wetland above the water-sediment interface also may have influenced downward contaminant migration rates.

During the 1996 EPA ERT SI, surface and subsurface soil samples were collected from the central portion of the onsite wetland. Surface samples from almost every location had XRF chromium concentrations greater than 10,000 mg/kg, with concentrations up to 71,000 mg/kg. Chromium in subsurface soils was significantly less than surface soils, but was still elevated, ranging up to 8,000 mg/kg.

Historical evidence suggests process wastes were routinely discharged to the onsite wetland when the wastewater lagoons became full. Historical aerial photography suggests that most tannery wastes normally flowed out of the western side of the lagoons, into the eastern margin of the wetland. In addition, under occasional extreme conditions when the lagoon berms were unable to contain the tannery waste stream, process wastes overflowed from the lagoons and drained along a ditch trending northwestwards to an outfall near the northern apex of the onsite wetland. The approximate location for both of these process waste discharge routes is known.

4.2.9 Unadilla River Sediments

Sediment samples were collected from 10 locations in the Unadilla River. Six of the primary COPCs were found in Unadilla River sediments. Two organic contaminants were identified as secondary COPCs and eight organics and three inorganics were identified as non-COPCs. Table 4-18 summarizes statistical data for all contaminants exceeding sediment screening criteria. Figure 4-10 illustrates the distribution of primary and secondary COPCs in Unadilla River sediments.

4.2.9.1 Primary COPCs in Unadilla River Sediments

The primary COPCs antimony, arsenic, chromium, lead, mercury, and nickel were found in Unadilla River sediment samples. All five primary COPCs were detected at levels exceeding the most stringent screening criteria, the NYSED-AC-LEL, as well as upstream (background) concentrations. Cadmium levels did not exceed the most stringent screening criteria. Hexavalent chromium and cyanide were not detected in any Unadilla River sediment samples.

Antimony was detected in eight sediment samples, six of which were detected above the LEL; the highest concentration was located at URSD-5, 8 times the SEL. Arsenic was detected in all but one downstream location at levels ranging from 1.7 B mg/kg to 7.2 J mg/kg, and exceeded the LEL at URSD-5 by one time.

Chromium was detected in all downstream sediment samples at levels ranging from 10.9 mg/kg to 1,670 mg/kg. It was detected in 7 samples at levels up to 64 times the LEL, and in 4 samples at levels 15 times the SEL. Chromium was the only primary COPC to exceed the SEL. Chromium was also detected above the LEL in URSW-10, the most downgradient sample, located approximately 2 miles downstream.

Lead was detected in all sediment samples, with the highest concentration in URSD-6. Lead was detected at levels ranging from 6.1 J mg/kg to 58.3 mg/kg. Concentrations exceeded the LEL in three samples at levels up to two times. Mercury was detected in 6 samples at levels ranging from 0.09 BJ mg/kg to 0.25 BJ mg/kg, and exceeded the LEL in 4 samples: URSD-2, URSD-5, URSD-6, and URSD-1 (the upstream background location). Nickel was detected in all sediment samples at levels from 6.2 B mg/kg to 18.8 mg/kg; concentrations exceeded the LEL by one time at three locations (URSD-5, URSD-7, and URSD-8).

4.2.9.2 Secondary COPCs in Unadilla River Sediments

Two organic compounds, benzo(a) anthracene and gamma-chlordane, were identified as secondary COPCs. All secondary COPCs were detected at levels exceeding those in the upstream (background) sample. Benzo(a) anthracene was detected in 8 sediment samples; three exceeded the NYDEC Sediment Criteria for Human Food Chain, and two exceeded the LEL. The highest levels were found in URSD-2. Gamma-chlordane was detected at the highest magnitude above the LEL, at 245 times in URSD-9. Gamma chlordane was detected in only 2 samples downstream of the Site. However, based on Site historical data, it is unclear whether it can be attributed to Site operations. Further, due to the presence of large farms along the Unadilla, these values may be indicative of runoff from pesticide use at farms downstream of the Site.

4.2.9.3 Non-COPCs in Unadilla River Sediments

4-Methylphenol, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, endosulfan I, chrysene, beta-BHC, copper, iron, and manganese were detected at levels ranging from 1 to 5 times the NYDEC Sediment Criteria for Human Food Chain.

4.2.9.4 Extent of Contamination in Unadilla River Sediments

Primary COPCs are present in sediments adjacent to and downstream of the Site. With the exception of concentrations in URSD-3, all downstream concentrations exceeded those in the upstream sample. The highest concentrations of primary contaminants during the CDM RI were found at the discharge from the "tan house" concrete dye tanks (URSD-2), approximately 2,500 feet downstream (URSD-6), and approximately 1.2 miles downstream (URSD-9). The lowest concentrations were detected in URSD-3. This suggests that impacted sediments are continuing to migrate downstream from the Site, and that contaminated upstream sediments adjacent to the Site are acting as a source that continues to impact the downstream locations. The extent of chromium contamination in sediments downstream of URSD-10 is unknown at this time, as evidenced by the presence of total chromium in the most down-stream sample location.

4.2.10 Unadilla River Surface Water

Surface water samples were collected from 10 locations in the Unadilla River. No contaminants identified as primary COPCs were detected at levels exceeding sediment screening criteria. Aluminum, a secondary COPC, was detected at the four furthest downstream locations at levels ranging from one to two times screening criteria. Table 4-19 summarizes statistical data for all contaminants detected at levels above screening criteria. Although these downstream levels were greater than the aluminum level in the upstream background location, the absence of notable levels in the section of the river adjacent to and directly downstream of the facility indicate that elevated aluminum levels are not attributable to activities at the Hiteman Leather Site.

During the 1996 EPA ERT SI, the surface water sample adjacent to the wetlands and west of the former wastewater lagoons had the highest concentrations of metals in the filtered and unfiltered samples. Chromium was detected in this sample at 33 μ g/L (unfiltered) and 5.7 μ g/L (filtered). Eight other TAL metals were detected in surface water samples, including aluminum, barium, calcium, iron, magnesium, manganese, sodium, and zinc. Except for aluminum, concentrations of metals in unfiltered and filtered samples were similar, indicating that the majority of the analytes were in the dissolved fraction. Conversely, aluminum was only detected in the unfiltered samples, indicating that this analyte is associated with suspended particles.

4.2.11 Unadilla River Fish Tissue

Tissue samples of sport fish and top and bottom feeder forage fish were collected at five locations in the Unadilla River. No contaminants identified as primary COPCs were detected at levels exceeding fish tissue screening criteria for human health. Table 4-20 summarizes statistical data for all secondary COPCs and non-COPCs exceeding fish tissue screening criteria.

4.2.11.1 Secondary COPCs in Fish Tissue

Methylene chloride, identified as a secondary COPC, was detected in all downstream forage fish samples. No detections were found in sport fish samples. Concentrations were detected at up to twice the EPA Region 3 Risk-Based screening criteria in five samples. However, only three of these samples (URFF-2-A, URFF-3-B, and URFF-5-B) indicated levels above those in upstream (background) samples. Methylene chloride is not suspected to have been derived from tannery operations.

4.2.11.2 Non-COPCs in Fish Tissue

Benzene, aldrin, and heptachlor epoxide were detected at levels above screening criteria in forage fish samples but were identified as non-COPCs; no detections were found in sport fish samples. Aldrin was detected up to 40 times screening criteria at the two locations furthest downstream, and heptachlor epoxide was detected in URFF-3-A at 18 times screening criteria. Benzene was detected in one sample at the screening criteria, but below upstream (background) levels.

4.2.12 Monitoring Wells

Two rounds of groundwater samples were collected from monitoring wells located in and outside of the Site boundaries. In shallow monitoring wells, two primary COPCs were found during Field Activity 1 and only one during Field Activity 2. One organic compound was identified as a secondary COPC and six inorganic analytes were identified non-COPCs during both Field Activities. In deep monitoring wells, three primary COPCs were found during Field Activity 1 and four were found during Field Activity 2. No secondary COPCs and six non-COPCs were identified for deep monitoring wells during both Field Activities. No contaminants were detected in bedrock monitoring wells at levels above guidance or screening criteria. Tables 4-21 and 4-22 summarize statistical data for compounds and analytes exceeding groundwater standard screening levels in shallow and deep overburden monitoring wells, respectively. Figures 4-11a and 4-11b illustrate the distribution of primary and secondary COPCs in monitoring wells.

4.2.12.1 Primary COPCs in Monitoring Wells

Arsenic was detected above screening criteria in a few deep monitoring wells. During Field Activity 1, arsenic was detected in one deep monitoring well, MW-11D, at 12.5 μ g/L, just above its EPA MCL. During the second round of sampling, arsenic was detected above screening levels in two wells, MW-9D and MW-13D.

Total chromium was detected in 13 shallow and 6 deep monitoring wells. Concentrations exceeded NYSDEC guidance and screening standards by up to 12 times in 4 shallow monitoring well samples and by up to 6 times in 2 deep monitoring well samples. During Field Activity 1, concentrations in shallow wells ranged from 2.2 B μ g/L to 610 J μ g/L, with the highest concentrations detected in MW-5S, MW-8S, and MW-6S; however, concentrations did not exceed guidance or screening standards during Field Activity 2. Concentrations in deep wells ranged from 8.3 B μ g/L to 304 J μ g/L during Field Activity 1, with the highest concentration in MW-11D. During Field Activity 2, total chromium was detected at levels ranging from 1.5 B μ g/L to 184 $J \mu g/L$, with the highest concentration in MW-13D. Hexavalent chromium was detected at its screening level during Field Activity 2 in MW-15S, at a concentration of 0.05 mg/L (50 μ g/L). No primary COPCs were detected in bedrock monitoring wells at concentrations that exceeded screening levels. However, hexavalent chromium was detected in two samples below the NYSDEC guidance and screening criteria of 50 μ g/L. During Field Activity 2, hexavalent chromium was detected in well RMW-4B at a concentration of 30 μ g/L and in well RMW-11B at a concentration of 40 μ g/L.

Lead was only detected in deep monitoring wells. During Field Activity 1, lead was detected in only one deep monitoring well (MW-11D) at 19.5 μ g/L, just above the EPA MCL. During Field Activity 2, the highest concentration above the EPA MCL was detected in MW-13D at 176 μ g/L, 12 times its MCL.

Nickel was detected above screening criteria in shallow monitoring wells during Field Activity 1, and in deep monitoring wells during Field Activity 2. During Field Activity 1, nickel exceeded NYSDEC guidance and screening criteria in MW-5S at concentrations up to 477 μ g/L, 5 times its screening criteria. Nickel levels did not exceed criteria in any shallow wells during Field Activity 2, or in any deep wells during Field Activity 1. However, during Field Activity 2, nickel concentrations exceeded NYSDEC guidance and screening criteria in 2 deep monitoring wells, with the highest level at MW-13D (323 J μ g/L).

4.2.12.2 Secondary COPCs in Monitoring Wells

Bis(2-ethylhexyl)phthalate is the only secondary COPC identified for shallow monitoring wells; no secondary COPCs were identified for deep monitoring wells. During the first round of sampling, it was detected in MW-13S-R1 at a concentration of 48 μ g/L, which exceeded its screening level by almost 10 times. During the second round of sampling, it was detected in MW-8S-R2 at a concentration of 140D μ g/L, which exceeded its screening level by 28 times, and in MW-5S-R2 at a concentration of 6 μ g/L, which marginally exceeded its screening level.

4.2.12.3 Non-COPCs in Monitoring Wells

A total of six analytes were identified as non-COPCs for shallow monitoring wells: iron, magnesium, manganese, sodium, thallium, zinc. Nine analytes were identified as non-COPCs for deep monitoring wells during Field Activity 1 and 2, including antimony, beryllium, copper, iron, magnesium, manganese, sodium, thallium, and zinc. Overall, non-COPCs exceeded screening levels more frequently than either primary or secondary COPCs. The greatest exceedance was iron.

Sampling results from MW-13S indicated elevated concentrations of VOCs consistent with fuel compounds. Results were reported to the NYSDEC, who sampled the wells in October 2002.

4.2.12.4 Extent of Contamination in Monitoring Wells

Analytical results for primary COPCs in monitoring wells are relatively inconsistent between sampling rounds, with some results varying by up to an order of magnitude between sampling events. Although past waste management practices may have artificially changed groundwater flow patterns sufficiently to spread groundwater contamination over a broad area in different directions at the Site, significant quantities of fine-grained material (turbidity) in groundwater samples may also have influenced sample results. High turbidity is at least partly responsible for the inorganic concentrations that exceeded screening levels because exceedance samples typically had turbidity readings greater than 999 NTUs and inorganic concentrations are closely linked to turbidity.

The primary COPCs detected at concentrations that exceeded screening levels, total and hexavalent chromium, arsenic, lead, and nickel, are all linked to the Site's historical waste management practices and have been detected in all media sampled at the Site. During Field Activity 1, primary COPCs were detected at levels above NYSDEC guidance and screening criteria in shallow wells located on the south side of the Site just north of the Unadilla River (MW-5S and MW-6S) and on the south side of the river in MW-8S. MW-5S and MW-6S are located adjacent to the former wastewater lagoons; MW-8S is directly across the river from one of the most contaminated areas of the Site (the sluiceway and former UST). These detections are consistent with the premise that contaminants in shallow groundwater were able to migrate to the south side of the river during periods of low flow in the river. However, total chromium was not detected above NYSDEC guidance and screening criteria during Field Activity 2, although hexavalent chromium was (in MW-15S). Contaminants were also detected in MW-11D located downgradient between the former wastewater lagoons and the onsite wetland, during Field Activity 1 and in MW-13D located north of the former wastewater lagoons.

During the 1996 EPA ERT SI, groundwater samples were analyzed for unfiltered and filtered total chromium and unfiltered hexavalent chromium; four samples were analyzed for unfiltered and filtered TAL metals; and five samples were analyzed for unfiltered TCL organics. With the exception of chromium, no organic or inorganic analytes exceed NYS groundwater standards or federal MCLs. Total chromium was detected in 71 percent of the unfiltered groundwater samples and in none of the filtered groundwater samples. The unfiltered chromium concentrations in shallow monitoring wells ranged from not detected to $1,000 \mu g/L$ in monitoring well MW-3S and in deep monitoring wells ranged from not detected to an groundwater samples.

4.2.13 Residential and Municipal Wells

CDM collected groundwater samples from two municipal supply wells for the Village of West Winfield and from two private residential wells proximal to the Site. None of the wells are located hydraulically downgradient of the Site. No primary or secondary COPCs were identified for municipal or residential well samples.

One pesticide and nine metals were detected in municipal well samples, at levels below regulatory screening levels. Zinc was detected in town well #2 at 16.3 μ g/L, 3 times the NYSDOH MCL.

Two SVOCs and 10 metals were detected in residential well samples at levels below regulatory screening levels. Lead was detected in the residential well located at 371 Mill Street, at 3 times the EPA and NYSDOH MCLs. This well is not located hydraulically downgradient of the Site. The lead in groundwater from this well might be due to leaching from old pipes associated with plumbing from the well. However, because the lead detection was above EPA MCLs, the results were forwarded to NYSDEC. Zinc was detected in both residential wells at two and five times the NYSDOH MCL; zinc is not considered a COPC for the Site.

4.2.14 Effects of Waste Disposal Practices on Site Media

During the period that the facility was in operation, contaminated wastewater generated from the leather tanning process, containing chromium and other primary COPCs was disposed through a consistent series of steps, as discussed in Section 1.3.2 and illustrated in Figure 1-3. Consequently, soils, sediments, and groundwater that are in this path have been affected to varying degrees. The highest levels of primary COPC contamination exhibit a strong correlation to the pathway. The progressive waste disposal steps are summarized below with respect to related contamination in the affected matrices.

Contaminated wastewater was discharged to a series of floor drains inside the building. Wastewater appears to have seeped through cracks or holes in either the building foundation or floor drains, as evidenced by elevated levels of total chromium and other primary COPCs in building boring soil samples. The highest concentrations are found underlying "tan house" operations and the concrete dye tanks located in the southeast corner of the building. Contaminant concentrations generally tended to decrease with depth, with the exception of hexavalent chromium levels, which were elevated at depth.

Floor drains in the building flowed to the sluiceway and the outfall to the Unadilla River located on the southeast corner of the Site, adjacent to URSD-2. These areas contain some of the highest concentrations and deepest extent of primary COPCs detected during the CDM RI, especially total chromium, in surface and subsurface soils, as shown in Figures 4-4a and 4-4b. The highest subsurface soil total chromium concentrations on the entire Site are by the former UST. Contamination from these areas apparently migrated to the south side of the Unadilla River, as evidenced by low

CDM Final Remedial Investigation Report

levels of chromium in MW-8S. Sediment at the outfall from the building contained the highest levels of primary COPCs in the Unadilla River.

The sluiceway discharged to the west into a system of unlined, bermed wastewater lagoons. The eastern, western, and northern boundaries of the former wastewater lagoon area were surveyed from a series of test pits, and determined to be more extensive than previously found. As shown in Figure 4-4b, results from boring samples indicate that concentrations of COPCs in surface and subsurface soils are highest in the eastern end of the former wastewater lagoons and decrease to the west and with depth. This pattern is consistent with the westerly flow of wastewater through the series of lagoons. Contamination from the lagoons migrated to the shallow overburden aquifer, as evidenced by lower levels of chromium and nickel in monitoring wells located on the southern boundary of the former wastewater lagoon area (MW-5S and MW-6S). Elevated levels of primary COPCs also are present in a deep monitoring well directly across the river (RMW-9D).

During periods of high discharge, lagoon overflow reportedly flowed west to the onsite wetland and north/northwest through a low-lying area toward an apparently former weir (from two scattered remnants) located on the eastern side of the wetland. The weir directed overflow into the wetland. Overflow was also reportedly directed to the northern area of Site where it flowed overland to the northeastern side of the wetland. High levels of total chromium in subsurface soils occur in the overland flow path to the north of the former wastewater lagoons. The highest levels of total chromium contamination in surface soils are located at the drainage to the onsite wetland by the former weir box. Contamination from overland flow in these areas also reached the deep overburden aquifer, as evidenced by elevated levels of chromium and other primary COPCs in deep monitoring wells to the north and west of the former wastewater lagoon area (MW-13D and MW-11D, respectively).

The onsite wetland, in which wastewater from lagoon overflow was directed, contains the highest concentrations of total chromium on the Site, found during the CDM RI. In general, concentrations decreased in downstream areas of the wetland, and with depth. Two areas in the wetland are of particular importance. The first is the eastern side of the wetland, by the former weir. Here, the highest concentration of total chromium in surface sediments (0-6 inches bgs) is adjacent to the highest concentration in surface soils, clearly indicating a major flow pattern of contamination across the Site. Figure 4-12a illustrates this pattern with total chromium concentrations in onsite surface soils and wetland surface sediments. The second is at the northeast side of the onsite wetland, which contains the highest total chromium concentrations in the subsurface sediment (18-24 inches bgs). This location is due west of a northern-trending area of elevated total chromium concentrations in subsurface soil. This pattern may indicate a second major flow pattern of contamination that was directed to the north of the lagoons. Figure 4-12b illustrates this pattern with total chromium concentrations in onsite subsurface soils and wetland subsurface sediments.

Contaminants migrated south through the wetland and discharged to the Unadilla River. Once in the river, contaminants continued to migrate downstream and accumulated in depositional areas in the river bottom. This downstream migration is evidenced by elevated levels of primary COPCs in Unadilla River sediments adjacent to and downstream of the Site. Surface water and fish populations in the downstream portions of the river do not contain primary COPCs above human health screening criteria.

4.2.15 Effects of Waste Disposal Practices on Off Site Media

Contaminated soils were transported to the former Town Dump, currently the Crumb Trailer Park. Elevated levels of primary COPCs are found in surface and subsurface soils, with the highest levels concentrated in the northwestern and western borders of the trailer park. Concentrations in this area generally tended to decrease with depth. This distribution is consistent with landfill operation and closure (i.e., pushing materials to the rear and some mixing with cover soils). Contaminated soils from the Site were likely also transported to the South Bank Front Lot, located on the south side of the Unadilla River. Lower levels of total chromium and primary COPCs are found in the surface soils in this area, primarily along the river bank. The distribution and type of contaminants detected in the South Bank Front Lot soils are consistent with the premise that Hiteman waste material was used to fill the area.

Table 4-1A

Explanation of Data Qualifiers and Screening Criteria Abbreviations Hiteman Leather Site West Winfield, New York

Data Qualifiers

Organ	ic Qualifi	ers:
U	-	Compound was analyzed for but not detected. The associated numerical value is the sample quantitation limit.
J	-	Estimated data due to exceeded quality control criteria.
В	-	Analyte is found in the associated blank and in the sample.
E	-	Compound concentration exceeds the calibration range of the instrument for that specific analysis.
D	-	Compound is identified at a secondary dilution factor.
R	-	Data is rejected due to exceeded quality control criteria.
Inorga	nic Quali	fier <u>s:</u>
В	-	Reported value was obtained from a reading that was less than the Contract Required
		Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).
J	-	Estimated data due to exceeded quality control criteria.
υ	-	Analyte was analyzed for but not detected.
E	-	The reported value is estimated because of the presence of interference.
M	-	Duplicate injection precision not met.
N	-	Sample recovery is not within control limits.
S	-	The reported value was determined by the Method of Standard Additions (MSA).

- Post-digestion spike for furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- R Data is rejected.
 - Duplicate analysis not within control limits.
 - Correlation coefficient for the MSA is less than 0.995.

Screening Criteria Abbreviations

Soil Screening Criteria

NYSDEC-RSCO :	NYS Recommended Soil Cleanup Objectives, adjusted for Site TOC of 5.24%
BKGD-SURF :	Hiteman Background Criteria for Inorganics - Surface Soil
BKGD-SUBSURF :	Hiteman Background Criteria for Inorganics - Subsurface Soil

Sediment Screening Criteria

NYSED-HFW :	NYS Sediment Criteria for HH Bioaccumulation Freshwater - Sediment
NYSED-AC-LELW :	NYS Sediment Criteria for Benthic Aquatic Life, LEL for Inorganics (Onsite Wetland)
NYSED-AC-SELW :	NYS Sediment Criteria for Benthic Aquatic, SEL for Inorganics (Onsite Wetland)
NYSED-AC-LELR :	NYS Sediment Criteria for Benthic Aquatic Life, LEL for Inorganics (Unadilla River)
NYSED-AC-SELR :	NYS Sediment Criteria for Benthic Aquatic, SEL for Inorganics (Unadilla River)

Surface Water and Fish Tissue Screening Criteria

EPASW-AFRESHCC :	EPA Ambient Water Criteria - Aquatic Life Chronic Freshwater
EPASW-HHORG :	EPA Ambient Water Criteria - Human Health for Consumption of Organisms
NYSW-C-AC :	NYS Standards and Guidance Values for Class C Surface Water
NYSW-C-HFC :	NYS Standards and Guidance Values for Class C Surface Water H(FC)
USEPA-FISH:	USEPA Region 3 Risk-Based Fish Screening Criteria

Groundwater Regulatory Standards

EPAPDW-MCL :	National Primary Drinking Water Standards	
NYSDEC-GW-GA :	NYS Standards/Guidance for Class GA groundwater H(WS)	
NYSDOH-DW-MCLS :	NYS Department of Health Drinking Water Quality Standards	

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab4-1a.wpd

Surface Water Screening Standards and Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Contaminant		it EPA Ambient Water I Quality Criteria - Human Health - for Consumption of Organism Only (1)			EPA Ambient Water Quality Criteria - Aquatic Life - Chronic - Fresh water - CCC (1)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - H(FC) (2)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - A(C) (2)		
			Value	Note S/	G	Value	Note	S/G	Value	Note	S/G		Note	e S/G
Volatile Organi	c Compounds											N State		
71-55-6	1,1,1-Trichloroethane	ug/l	NL			NL			NL			NL		
79-34-5	1,1,2,2-Tetrachloroethane	ug/l	11		3	NL			NL			NL		
79-00-5	1,1,2-Trichloroethane	ug/I	NL			NL			NL			NL		
76-13-1	1,1,2-Tricholoro-1,2,2-trifluoroethane	ug/l	.42		3	NL			NL			NL		
75-34-3	1,1-Dichloroethane	ug/l	NL			NL			NL			NL		
75-35-4	1,1-Dichloroethene	ug/l	3.2		3	NL			NL			NL		
87-61-6	1,2,3-Trichlorobenzene	ug/l	NL			NL			NL			5	D	S
120-82-1	1,2,4-Trichlorobenzene	ug/l	940	. (3	NL			NL			. 5	D	S
96-12-8	1,2-Dibromo-3-chloropropane	ug/l	NL			· NL			NL			NL		I
106-93-4	1,2-Dibromoethane	ug/l	NL			NL			NL			NL		
95-50-1	1,2-Dichlorobenzene	ug/l	17000	(G	NL			NL			5	5 1	S
107-06-2	1,2-Dichloroethane	ug/l	99		<u>3</u>	NL			. NL			NL		T
78-87-5	1,2-Dichloropropane	ug/l	39		G	NL	-		NL			NL		
541-73-1	1,3-Dichlorobenzene	ug/l	2600		G	NL			NL			5	5 1	S
106-46-7	1,4-Dichlorobenzene	ug/l	2600		3	. NL			NL			5	5 1	S
78-93-3	2-Butanone	ug/l	NL			NL	_	-	NL			NL	_	
591-78-6	2-Hexanone	ug/l	NL		_	NL	-		NL			NL	-	1
108-10-1	4-Methyl-2-pentanone	ug/l	NL			NL	-		NL			NL.	-	1
67-64-1	Acetone	ug/l	NL		_	NL	-		NL			NL	1.	
71-43-2	Benzene	ug/l	71		G	NL	-		. 10		S	210)	G
74-97-5	Bromochloromethane	ug/l	NL			NL			NL		1	NI	_	
75-27-4	Bromodichloromethane	ug/l	46	3	G	NL	_		NL			• NI	-	1
75-25-2	Bromoform	ug/l	360		G	NL	_		NL		1	NI	_	
74-83-9	Bromomethane	ug/l	4000		G	NL			NL	_	1	NI		
75-15-0	Carbon Disulfide	ug/l	NL	_		NL	-		NL		1.	NI	-	1
56-23-5	Carbon Tetrachloride	ug/l	4.4	¥.	G	NI			NL		1	NI	1	1
108-90-7	Chlorobenzene	ug/l	21000		Ĝ	NI			400	,	S		5	S
75-00-3	Chloroethane	ug/l	NI	<u> </u> -		NI	_		NI			NI	-	1
67-66-3	Chloroform	ug/l	470		G	NI			NI		1	N		1

Page 1 of 7

Surface Water Screening Standards and Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Contaminant	Unit	EPA Ambient Water Quality Criteria - Human Health - for Consumption of Organism Only (1)			EPA Ambient Water Quality Criteria - Aquatic Life - Chronic - Fresh water - CCC (1)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - H(FC) (2)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - A(C) (2)		
			Value	Note	S/G	Value	Note	S/G	Value	Note	S/G		Note	S/G
74-87-3	Chloromethane	ug/I	NL			NL			· NL			NL		
156-59-2	cis-1,2-Dichloroethene	ug/l	NL			NL			NL	· · · ·		NL		
10061-01-5	cis-1,3-Dichloropropene	ug/l	1700		G	NL			NL			NL		
110-82-7	Cyclohexane	ug/l	NL			NL			NL			NL		
124-48-1	Dibromochloromethane	ug/l	. 34		G	NL		1	NL			NL		
75-71-8	Dichlorodifluoromethane	ug/l	. NL	L		NL			NL			NL		1
100-41-4	Ethylbenzene	ug/l	29000		G	NL			NL			. 17		G
98-82 - 8	Isopropylbenzene	ug/l	NL			NL			NL			2.6		G
79-20-9	Methyl Acetate	ug/l	NL			NL			NL		1	NL		
1634-04-4	Methyl Tert-Butyl Ether	ug/l	NL			NL			NL		ľ	NL	i	
108-87-2	Methylcyclohexane	ug/l	NL			NL			NL			NL		
75-09-2	Methylene Chloride	ug/l	1600		G	NL			200		S	NL		
100-42-5	Styrene	ug/l	. NL			NL			NL			NL		
127-18-4	Tetrachloroethene	ug/l	. 8.85		G	NL			1		Ģ	NL		
108-88-3	Toluene	ug/l	200000		G	NL			6000		S	100	1	G
156-60-5	trans-1,2-Dichloroethene	ug/l	140000		G	NL			NL			NL		
10061-02-6	trans-1,3-Dichloropropene	ug/l	1700		G	NL			NL			· · NL		
79-01-6	Trichloroethene	ug/l	- 81	1	G	NL		1	40		S	NL		
75-69-4	Trichlorofloromethane	ug/l	NL			NL			NL	1		NL	-	1
75-01-4	Vinyl Chloride	ug/l	525	;	G	NL	-		NL			NĽ	-	1
1330-20-7	Xylenes (total)	ug/l.	NL		1	NL	_	1	· NL			65	;	G
Semi-Volatile (Drganics			•	-	· · · · · · · · · · · · · · · · · · ·						· .		
92-52-4	1,1'-Biphenyl	ug/l	NL			NL		T	NL		T	NL		
95-94-3	1,2,4,5-Tetrachlorobenzene	ug/l	- 2.9)	G	NL		1	NL		1	NL	- ·	
108-60-1	2,2'-oxybis(1-Chloropropane)	ug/l	NL	-		NL	_		NL			NL	-	
95-95-4	2,4,5-Trichlorophenol	ug/l	9800		G	NL	_		NL			NL	-	1
88-06-2	2,4,6-Trichlorophenol	ug/l	6.5		G	NI	_	1.	NL			NL		1
120-83-2	2,4-Dichlorophenol	ug/l	790		G	NI		1	NL	<u> </u>	1	NL		1
105-67-9	2,4-Dimethylphenol	ug/l	2300	5	G	NI		1	1000	, · · · ·	S	NL		1-
51-28-5	2,4-Dinitrophenol	ug/l	14000		Ğ	NI.			400	_	S	NL		1

Page 2 of 7

Surface Water Screening Standards and Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Contaminant	Unit	EPA Ambient Water Quality Criteria - Human Health - for Consumption of Organism Only (1)			EPA Ambient Water Quality Criteria - Aquatic Life - Chronic - Fresh water - CCC (1)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - H(FC) (2)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - A(C) (2)		
			Value	Note	S/G	Value	Note	·S/G	Value	Note	S/G		Note	S/G
121-14-2	2,4-Dinitrotoluene	ug/l	9.1		G	NL			NL			NL		
606-20-2	2,6-Dinitrotoluene	ug/l	NL			NL			NL			NL		
91-58-7	2-Chloronaphthalene	ug/l	4300		G	NL	L		NL			NL	<u> </u>	L
95-57-8	2-Chlorophenol	ug/l	400	· .	G	<u>NL</u>			NL	L		NL		
91-57-6	2-Methylnaphthalene	ug/l	NL			NL			4.7		G	NL		L.
95-48-7	2-Methylphenol	ug/l	NL NL		<u> </u>	NL	L		NL			NL	<u> </u>	ļ
88-74-4	2-Nitroaniline	ug/l	NL	L	L	NL	<u> </u>		NL	L		NL	ļ	
88-75-5	2-Nitrophenol	ug/l	NL			NL		<u> </u>	NL			NL	<u> </u> .	
91-94-1	3,3'-Dichlorobenzidine	ug/l	0.077		G	· NL			NL			NL		
99-09-2	3-Nitroaniline	ug/l	NL			NL			NL	L		NL		
534-52-1	4,6-Dinitro-2-methylphenol	ug/l	765		G	NL		[NL			NL		
101-55-3	4-Bromophenyl-phenylether	ug/l	NL			NL			NL			NL		
59-50-7	4-Chloro-3-methylphenol	ug/l	NL			NL			NL			NL		
106-47-8	4-Chloroaniline	ug/l	NL			NL			NL			NL		
7005-72-3	4-Chlorophenyl-phenylether	ug/l	NL			NL			NL			NL		
106-44-5	4-Methylphenol	ug/l	NL			NL			NL			NL		
100-01-6	4-Nitroaniline	ug/l	NL		· ·	NL		T	NL			NL		
100-02-7	4-Nitrophenol	ug/l	NL			NI	-		NL			NL		
83-32-9	Acenaphthene	ug/l	. 2700		G	NL	-		NL			5.3	3	G
208-96-8	Acenaphthylene	ug/l	NL			NL	-		NL]	NL		
98-86-2	Acetophenone	ug/l	NL	_		NL	-		. NL			NL	-	
120-12-7	Anthracene	ug/l	110000)	G	NI	-		NL			3.8	3	G
1912-24-9	Atrazine	ug/l	NL	-		NI	_	T	NL	-		NL	-	Τ
100-52-7	Benzaldehyde	ug/L.	. NI	-		NI	-		NL		1	NL	-	<u> </u>
56-55-3	Benzo(a)anthracene	ug/l	0.049)	G	NI	_		, NL	-		- 0.03	3	Ġ
50-32-8	Benzo(a)pyrene	ug/l	0.049	3	G	NI	-	1	0.0012	2	G	NL	_	ŀ
205-99-2	Benzo(b)fluoranthene	ug/l	0.049	9	G	NI	_1		NL	_	1	NL	_	1
191-24-2	Benzo(g,h,i)perylene	ug/l	NI	_	1	NI	_	1	NL			· NL	_	·
207-08-9	Benzo(k)fluoranthene	ug/l	0.049		G	NI		<u> </u>	NL	_	1	ÎNL	_	—
111-91-1	bis(2-Chloroethoxy)methane	ug/l	NI	+	1-	NI	_		NL	1	1	NL	1	1

Page 3 of 7

Surface Water Screening Standards and Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Contaminant		EPA Ambient Water Quality Criteria - Human Health - for Consumption of Organism Only (1)			EPA Ambient Water Quality Criteria - Aquatic Life - Chronic - Fresh water - CCC (1)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - H(FC) (2)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - A(C) (2)			
			Value	Note		Value	Note	S/G	Value	Note	S/G		Note	S/G	
111-44-4	bis(2-Chloroethyl)ether	ug/l	1.4		G	. NL			NL			NL		: احــــــــــــــــــــــــــــــــــــ	
117-81-7	bis-(2-Ethylhexyl)phthalate	ug/l	5.9		G	. NL			NL			0.6		S	
85-68-7	Butylbenzylphthalate	ug/l	5200	•	G	NL			NL			NL		\square	
105-60-2	Caprolactam	ug/l	NL			NL		· · ·	NL			· NL		!	
86-74-8	Carbazole	ug/l			· ·	NL	L		<u> </u>			NL		ļ'	
218-01-9	Chrysene	ug/l	0.049		G	NL	<u> </u>		NL			NL			
53-70-3	Dibenz(a,h)anthracene	ug/l	0.049	•	G	NL	L		NL						
132-64-9	Dibenzofuran	ug/l				NL			. NL			NL		ļ'	
84-66-2	Diethylphthalate	ug/l	120000	·	G	NL			NL			. NL			
131-11-3	Dimethylphthalate	ug/l	290000		G	NL			- NL			: NL		·	
84-74-2	Di-n-butylphthalate	ug/l	12000		G	NL			NL		·	NL			
117-84-0	Di-n-octyl phthalate	ug/l	NL	·	·	NL			NL	<u> </u>		NL			
206-44-0	Fluoranthene	ug/l	. 370		G	NL			NL			NL			
86-73-7	Fluorene	ug/l	14000		G	NL			NL			0.54		G	
118-74-1	Hexachlorobenzene	ug/l	0.00077		G	NL			0.00003		S	NL			
87-68-3	Hexachlorobutadiene	ug/l	50		G	NL			0.01		S	1		S	
77-47-4	Hexachlorocyclopentadiene	ug/l	17000	-	G	. NL			NL NL			0.45		S	
67-72-1	Hexachloroethane	ug/ľ	8,9		G	NL		· · ·	0.6		S	NL		-	
193-39-5	Indeno(1,2,3-cd)pyrene	üg/l	0.049	T T	G	NL			NL			NL			
78-59-1	Isophorone	ug/l	2600		G	NL			Í NL			· NL			
91-20-3	Naphthalene	ug/l	NL			NL		1	NL			. 13		G	
98-95-3	Nitrobenzene	ug/l	1900		G	1 24 NL			NL		1.1	NL		1.	
621-64-7	N-Nitroso-di-n-propylamine	ug/l	1.4		G	NL			NL			NL		1	
86-30-6	N-Nitrosodiphenylamine	ug/l	16	5	G	NL			NL			- NL			
87-86-5	Pentachlorophenol	ug/l	. 8.2	2	G	14.9543167	'p	G	NL			14.95431669	p	S	
85-01-8	Phenanthrene	ug/l	NL			NL	-		NL		1	5	1	G	
108-95-2	Phenol	ug/l	460000),	G	NL	-	1	NL	-		NL		1	
129-00-0	Pyrene	ug/l	11000)	G	NL			NL			4.6	· ·	G	
Pesticides/PCE	Bs	_			<u> </u>	•			· · · · · · · · · · · · · · · · · · ·			·····			
72-54-8	4,4'-DDD	ug/l	0.00084	I I	G	NL	-		0.0000	3	S	NL		T	

Page 4 of 7

Surface Water Screening Standards and Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Contaminant	Unit	EPA Ambient Water Quality Criteria - Human Health - for Consumption of Organism Only (1)			EPA Ambient Water Quality Criteria - Aquatic Life - Chronic - Fresh water - CCC (1)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - H(FC) (2)			New York State Standards (S) and Guidance (G) Values for Class C Surface Water - A(C) (2)		
70.55.0			Value	Note		Value	Note	S/G	Value	Note			Note	S/G
72-55-9	4,4'-DDE	ug/i	0.00059		G	NL			0.000007		S	NL	\square	├ ───┤
50-29-3	4,4'-DDT	ug/l	0.00059		G	0.001	 	G	0.00001		S	NL	ŀ	┟───┤
309-00-2	Aldrin	ug/l	0.00014		G	NL	ļ	 	0.001	• A	S	NL		↓!
319-84-6	alpha-BHC	ug/l/	0.013	<u></u>	G	NL	-		0.002		S	NL	<u> </u> !	↓ !
5103-71-9	alpha-Chlordane	ug/l	0.0022		G	0.0043		G	0.00002		S	NL		
12674-11-2	Aroclor-1016	ug/l	0.00017		G	0.014		G	NL			NL		↓ <u> </u>
11104-28-2	Aroclor-1221	ug/l	0.00017		G	0.014		G	NL	 	 	NL	ļ!	 '
11141-16-5	Aroclor-1232	ug/l	0.00017		G	0.014		G	NL		ļ	NL	ļ!	ļ'
53469-21-9	Aroclor-1242	ug/l	0.00017		G	0.014		G	NL		ļ	NL		
12672-29-6	Aroclor-1248	ug/l	0.00017		G	0.014		G	NL		ļ	NL	-	ļ'
11097-69-1	Aroclor-1254	ug/l	0.00017		G	0.014		G	NL		L	• NL	· · · · · · · · · · · · · · · · · · ·	
11096-82-5	Aroclor-1260	ug/l	0.00017		G	0.014	-	G	NL			NL		<u> </u>
319-85-7	beta-BHC	ug/l	0.046		G	NL			0.007		S	NL NL	<u> </u>	
319-86-8	delta-BHC	ug/l	NL			NL			0.008		S	NL		
60-57-1	Dieldrin	ug/l	0.00014		G	0.056		G	0.000006	l	S	0.056		S
959-98-8	Endosulfan I	ug/l	240	/	G	0.056		G	NLNL		ŀ	NL		
33213-65-9	Endosulfan II	ug/l	240		G	0.056		G	NL			NL		
1031-07-8	Endosulfan sulfate	ug/l	240)	G	NL			NL			NL		
72-20-8	Endrin	_ ug/l	0.81		G	0.036	5	G	0.002		S	0.036	e la	S
7421-93-4	Endrin aldehyde	ug/l	0.81		G	NL			NL			. NL		
53494-70-5	Endrin ketone	ug/l	NL			NL	-		NL			. NL		
58-89-9	gamma-BHC (Lindane)	ug/l	0.063	<u>ا</u>	G	NL			0.008		S	NL		T
5103-74-2	gamma-Chlordane	ug/l	0.0022	? F	G	0.0043	BF	G	0.00002	F	S	NL		1
76-44-8	Heptachlor	ug/l	0.00021	, †-	G	0.0038	3	G	0.0002		S	NL		1
1024-57-3	Heptachlor epoxide	ug/l	0.00011	1	G	0.0038	3	G	0.0003		S	NL		1
72-43-5	Methoxychlor	ug/ł	NL		1	0.03	3	G	NL			0.03	;	S
8001-35-2	Toxaphene	ug/l	0.00075	5	G	0.0002	2	G	0.000006		S	0.005	;	S
Inorganic Anal	lytes									•	•			<u> </u>
7429-90-5	Aluminum	ug/l	NL			87	7	G	NL		1	100	<u>ار</u>	S
7440-36-0	Antimony	ug/l	4300	J	G	NL			NL.		1	NL	_	1

Page 5 of 7

۰.

Surface Water Screening Standards and Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Contaminant	Unit	Quality Cr Human Hea Consump	Human Health - for Aquatic Life - Guidance (G) Values G				is (S) and S (G) Values G C Surface fo		New York State Standards (S) and Guidance (G) Values for Class C Surface Water - A(C) (2)				
			Value	Note	S/G	Value	Note	S/G	Value	Note	S/G		Note	S/G
7440-38-2	Arsenic	ug/l	0.14		G	150		G	NL			150		S
7440-39-3	Barium	ug/l	NL			NL			NL			. NL		
7440-41-7	Beryllium	ug/l	NL			. NL			NL			11	В	S
7440-43-9	Cadmium	ug/l	NL			2.24	H,K	G	NL			2.09	H,K	S
7440-70-2	Calcium	ug/l	NL			. NL			NL			. NL		
7440-47-3	Chromium	ug/l	NL			74.1	H,K	G	. NL			74.1	H,K	S
18540-29-9	Chromium (hexavalent)	ug/l	NL		-	10.6	K	G	. NL			. 11	K	S
7440-48-4	Cobalt	ug/l	NL			NL			NL			· · 5		S
7440-50-8	Copper	: ug/l	NL			8.96	H,K	G	NL			. 8.96	H,K	S
57-12-5	Cyanide	ug/l	220000		G	5.2		G	9000		S	5.2		S
7439-89-6	lron	ug/l	NL			1000		G	NL			300		S
7439-92-1	Lead	ug/l	NL			2.52	H,K	G	NL			3.78	H,K	S
7439-95-4	Magnesium	ug/l	NL			NL		·	NL			NL		
7439-96-5	Manganese	ug/l	100		G	NL			NL			- NL		
7439-97-6	Mercury	ug/l	0.051		G	0.6545		G	0.0007		S	.0.77	K	S
7440-02-0	Nickel	ug/l	4600		G	52	H,K	G	NL			52	H,K	S
7440-09-7	Potassium	ug/l	NL			NL			NL			NL		
7782-49-2	Selenium	ug/l	11000		G	5	5	G	NL			4.6	3	S
7440-22-4	Silver	ug/l	. NL			NL		-	NL			· 0.1		S
7440-23-5	Sodium	ug/l	NL			NL			. NL		Τ	· NL	-	
7440-28-0	Thallium	ug/l	6.3		G	NL			· NL			3	3	S
7440-62-2	Vanadium	ug/l	NL		T	- NL			NL			14	1	S
7440-66-6	Zinc	ug/l	69000		G	118.1	H,K	G	· NL			82.6	H,K	S

Page 6 of 7

Surface Water Screening Standards and Crireria Hiteman Leather Site West Winfield, New York

Notes:

1. Source: EPA. April 1999. National Recommended Water Quality Criteria - Correction. EPA 822_Z-99-001

2. Source: NYSDEC. June 1998. TOGS 1.1.1. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Includes April 2000 Addendum values. H(FC) is for human (fish consumption) and A(C) is for aquatic life (chronic).

Note: NYSDEC classifies Unadilla River as Class C(T) (i.e., for trout propagation, fishing, primary and secondary contact recreation).

3. Hiteman Surface Water screening criteria is the lowest of the EPA and NYSDEC surface water quality values for fresh water that is not classified for use as drinking water.

A - Value applies to the sum of Aldrin and Dieldrin

B - 11 ug/L when the hardness is less than or equal to 75 ppm; 1,100 ug/L when hardness is greater than 75 ppm

C - Value applies to the sum of the PCB compounds

D - Value applies to the sum of 1,2,3-, 1,2,4- and 1,3,5-trichlorobenzene

F - Value applies to the sum of alpha- and gamma-Chlordane

G - Guidance Value

H - Hardness-dependent

100 : Hardness (ppm, or mg/L) assumed, based on default in EPA AWQC guidance

NYSDEC equations for Aquatic Life, Chronic, Fresh water (A(C))

Cadmium =0.85*EXP(0.7852*LN(hardness)-2.715)

Chromium =0.86*EXP(0.819*LN(hardness)+0.6848)

Copper =0.96*EXP(0.8545*LN(hardness)-1.702)

Lead. =(1.46203-(LN(hardness)*0.145712))*EXP(1.273*LN(hardness)-4.297)

Nickel =(0.997)*EXP(0.846*LN(hardness)+0.0584)

Zinc =EXP(0.85*LN(hardness)+0.5)

I - Value applies to the sum of 1,2-, 1,3-, and 1,4-dichlorobenzene

K - Value applies to the dissolved form of the metal (not total)

M - Value applies to total xylenes (sum of o-, m-, and p-xylene)

NL - No value listed

p - pH-dependent

7.8 : pH assumed, based on default used in EPA AWQC guidance.

S - Standard

G - Guidance

EPA equations for Aquatic Life, Chronic, Fresh water (CCC) Cadmium =0.85*EXP(0.7852*LN(hardness)-2.715) Chromium =0.86*EXP(0.819*LN(hardness)+0.6848) Copper =0.96*EXP(0.8545*LN(hardness)-1.702) Lead =(1.46203-(LN(hardness)*0.145712))*EXP(1.273*LN(hardness)-4.705) Nickel =(0.997)*EXP(0.846*LN(hardness)+0.0584) Zinc =0.986*EXP(0.8473*LN(hardness)+0.884)

Pentachlorophenol =EXP(1.005*(pH)-5.134)

River Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	New York S Sediment Crit Human He Bioaccumu	teria for ealth lation,	Benthic Aquatio Chronic Toxio	ria for : Life, city,	Chronic Toxi	ria for c Life, city,
			Freshwate	er (1)	Freshwater - NYSDEC LEL inorganics	for	Freshwater - NYSDEC SEL inorganics	for
Volatile Or	ganic Compounds	I	L					
71-55-6	1,1,1-Trichloroethane	ug/kg	NL		NL		NL	[
79-34-5	1,1,2,2-Tetrachloroethane	ug/kg	6.87	В	NL		NL	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	NL		NL		NL	
79-00-5	1,1,2-Trichloroethane	ug/kg	13.74	В	NL		.NL	
75-34-3	1,1-Dichloroethane	ug/kg	NL		NL		NL	
75-35-4	1,1-Dichloroethene	ug/kg	0.458	В	NL		NL	
87-61-6	1,2,3-Trichlorobenzene	ug/kg	NL		2083.9	B,E	2083.9	B,E
120-82-1	1,2,4-Trichlorobenzene	ug/kg.	NL		2083.9	B,E	2083.9	B,E
96-12-8	1,2-Dibromo-3-chloropropane	ug/kg	NL		NL		NL	[
106-93-4	1,2-Dibromoethane	ug/kg	NL		NL	· ·	NL	
95-50-1	1,2-Dichlorobenzene	ug/kg	NL		274.8	B,D	274.8	B,D
107-06-2	1,2-Dichloroethane	ug/kg	16.03	В	NL		NL	
78-87-5	1,2-Dichloropropane	ug/kg	NL NL		NL		NL	
541-73-1	1,3-Dichlorobenzene	ug/kg	NL		274.8	B D	274.8	B,D
106-46-7	1,4-Dichlorobenzene	ug/kg	NL		274.8	B,D	274.8	B,D
78-93-3	2-Butanone	ug/kg	NL		NL NL	[NL	[
591-78-6	2-Hexanone	ug/kg	NL		NL		NL	
108-10-1	4-Methyl-2-pentanone	ug/kg	NL		NL	[NL.	
67-64-1	Acetone	ug/kg	NL		NL		NL	
71-43-2	Benzene	ug/kg	13.74	Β	NL		NL	
74-97-5	Bromochloromethane	ug/kg	NL	······	NL		NL	
75-27-4	Bromodichloromethane	ug/kg	NL		NL	1	NL	
75-25-2	Bromoform	ug/kg	NL		NL	1	NL.	<u></u>
74-83-9	Bromomethane	ug/kg	NL		. NL	[NL	
75-15-0	Carbon Disulfide	ug/kg	· NL		NL		NL	1
56-23-5	Carbon Tetrachloride	ug/kg	13.74	В	NL	1	NL	1
108-90-7	Chlorobenzene	ug/kg	NL		80.15	В	80.15	В
75-00-3	Chloroethane	ug/kg	- NL		NL		NL	
67-66-3	Chloroform	ug/kg	NL	[NL		NL	
74-87-3	Chloromethane	ug/kg	NL	[NL		NL	
156-59-2	cis-1,2-Dichloroethene	ug/kg	NL		NL		NL	

.

Page 1 of 6

River Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS	Chemical Name	Unit	New York		New York Sta Sediment Criter		New York Sta Sediment Criter	
Number		·	Sediment Crit					
{ 1			Human He		Benthic Aquatio		Benthic Aquatio	
-			Bioaccumu		Chronic Toxic		Chronic Toxic	
			Freshwate	er (1)	Freshwater -		Freshwater - N	
					NYSDEC LEL		NYSDEC SEL	
		-			inorganics (1)	inorganics (1)
10061-01-5	cis-1,3-Dichloropropene	ug/kg	NL		NL		· NL	
110-82-7	Cyclohexane	ug/kg	NL		Ϋ́ NL		· NL	
124-48-1	Dibromochloromethane	ug/kg	NL		- NL		• NL	
75-71-8	Dichlorodifluoromethane	ug/kg	NL		NL		NL	
100-41-4	Ethylbenzene	ug/kg	NL		549.6		549.6	
98-82-8	Isopropylbenzene	ug/kg	NL		274.8	B	274.8	В
79-20-9	Methyl Acetate	ug/kg	NL		NL		NL	
1634-04-4	Methyl Tert-Butyl Ether	ug/kg	NL		NL		NL.	
108-87-2	Methylcyclohexane	ug/kg	NL	·	NL		NL	
75-09-2	Methylene Chloride	ug/kg	NL		NL		NL	
100-42-5	Styrene	ug/kg	NL		NL		NL	
127-18-4	Tetrachloroethene	ug/kg	18.32	В	NL		NL	•
108-88-3	Toluene	ug/kg	NL		1122.1	В	1122.1	В
156-60-5	trans-1,2-Dichloroethene	ug/kg	NL		NL		NL	
10061-02-6	trans-1,3-Dichloropropene	ug/kg	NL		NL		NL	
79-01-6	Trichloroethene	ug/kg	45.8	В	NL		NL	
75-69-4	Trichlorofluoromethane	ug/kg	NL		NL		NL	
75-01-4	Vinyl Chloride	ug/kg	1.603	В	NL		NL	
1330-20-7	Xylenes (total)	ug/kg	NL		2106.8	B,F	2106.8	B,F
Semi-Volat	tile Organics	•						
92-52-4	1,1'Biphenyl	ug/kg	NL		NL		NL	
95-94-3	1,2,4,5-Tetrachlorobenzene	ug/kg	NL		NL		NL	
108-60-1	2,2'-oxybis(1-Chioropropane)	ug/kg	NL		NL		NL	
95-95-4	2,4,5-Trichlorophenol	ug/kg	NL		13.74	B,G	13.74	B,G
88-06-2	2,4,6-Trichlorophenol	· ug/kg	NL	· ·	13.74	B,G	13.74	B,G
120-83-2	2,4-Dichlorophenol	ug/kg	NL		13.74	B,G	13.74	B,G
105-67-9	2,4-Dimethylphenol	ug/kg	NL		11.45	B,J	11.45	B,J
51-28-5	2,4-Dinitrophenol	ug/kg	NL		11.45	B,J	11.45	B,J
121-14-2	2,4-Dinitrotoluene	ug/kg	NL	· · · · ·	. NL		NĿ	1
606-20-2	2,6-Dinitrotoluene	ug/kg	NL		NL		NL	
91-58-7	2-Chloronaphthalene	ug/kg	NL	I	. NL		NL	1
95-57-8	2-Chlorophenol	ug/kg	NL		13.74	B,G	13.74	B,G

Page 2 of 6

River Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS	Chemical Name	Unit	New York	State	New York St	ate	New York St	ate
Number			Sediment Crit	teria for	Sediment Criter	ia for	Sediment Criter	ria for
			Human He	alth	Benthic Aquation	: Life,	Benthic Aquation	c Life,
			Bioaccumu	lation,	Chronic Toxic	city,	Chronic Toxi	city,
}			Freshwate	ir (1)	Freshwater - v		Freshwater -	
				• •	NYSDEC LEL	for	NYSDEC SEL	. for
					inorganics (1)	inorganics	(1)
91-57-6	2-Methylnaphthalene	ug/kg	NL		778.6		778.6	
95-48-7	2-Methylphenol	ug/kg	NL		.11.45	B,J	11.45	B,J
88-74-4	2-Nitroaniline	ug/kg	· NL		· NL		NL	
88-75-5	2-Nitrophenol	ug/kg	NL		11.45	B,J	11.45	B,J
91-94-1	3,3'-Dichlorobenzidine	ug/kg	NL		. NL		NL	
99-09-2	3-Nitroaniline	ug/kg	NL		NL	1	NL	
534-52-1	4,6-Dinitro-2-methylphenol	ug/kg	NL		11.45	B,J	11.45	B,J_
101-55-3	4-Bromophenyl-phenylether	ug/kg	NL		NL		NL	
59-50-7	4-Chloro-3-methylphenol	ug/kg	NL		13.74	B,G	13.74	B,G
106-47-8	4-Chloroaniline	ug/kg	NL		NL		NL	
7005-72-3	4-Chlorophenyl-phenylether	ug/kg	NL		NL		NL	
106-44-5	4-Methylphenol	ug/kg	NL		11.45	B,J	11.45	B,J
100-01-6	4-Nitroaniline	ug/kg	NL		NL		NL	
100-02-7	4-Nitrophenol	ug/kg	NL		11.45	B,J	11.45	B,J
83-32-9	Acenaphthene	ug/kg	NL		3206	В	3206	В
208-96-8	Acenaphthylene	ug/kg	NL		NL		NL	
98-86-2	Acetophenone	ug/kg	NL		- NL		NL	
120-12-7	Anthracene	ug/kg	NL		2450.3	В	2450.3	В
1912-24-9	Atrazine	ug/kg	NL		NL		NL	
100-52-7	Benzaldehyde	ug/kg	NL		NL		NL	
56-55-3	Benzo(a)anthracene	ug/kg	29.77	В	274.8	В	274.8	В
50-32-8	Benzo(a)pyrene	ug/kg	29.77	В	NL		NL	
205-99-2	Benzo(b)fluoranthene	ug/kg	29.77	В	NL		NL	
191-24-2	Benzo(g,h,i)perylene	ug/kg	NL		NL		NL	
207-08-9	Benzo(k)fluoranthene	ug/kg	29.77	В·	NL	[. NL	.[
111-91-1	bis(2-Chloroethoxy)methane	ug/kg	NL		· NL		NL	
111-44-4	bis(2-Chloroethyl)ether	ug/kg	0.687	В	NL		NL	
117-81-7	bis(2-Ethylhexyl)phthalate	ug/kg	NL		4568.55	В	4568.55	В
85-68-7	Butyibenzyiphthalate	ug/kg	NL		NL		NL	
105-60-2	Caprolactam	ug/kg	NL		NL		NL	
86-74-8	Carbazole	ug/kg	NL		. NL		NL	
218-01-9	Chrysene	ug/kg	29.77	В	NL		NL	

Page 3 of 6

River Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	Human He Bioaccumu	Sediment Criteria for		New York State Sediment Criteria for Benthic Aquatic Life, Chronic Toxicity, Freshwater - with NYSDEC LEL for		ate Ta for Life, City, with for
	· · · · · · · · · · · · · · · · · · ·				inorganics (1)	inorganics (1)
53-70-3	Dibenz(a,h)anthracene	ug/kg	NL		NL NL		NL	
132-64-9	Dibenzofuran	ug/kg	NL		NL		NL	
84-66-2	Diethylphthalate	ug/kg	NL		NL		NL	
131-11-3	Dimethylphthalate	ug/kg	NL		NL		NL	
84-74-2	Di-n-butylphthalate	ug/kg	NL		NLNL		- NL	
117-84-0	Di-n-octyl phthalate	ug/kg	NĽ		NL		. NL	
206-44-0	Fluoranthene	ug/kg	NL		23358	8	23358	B ;
86-73-7	Fluorene	ug/kg	NL		183.2	В	183.2	В
118-74-1	Hexachlorobenzene	ug/kg	3.435	В	127553	в	127553	В
87-68-3	Hexachlorobutadiene	ug/kg	6.87	В	125.95	В	125.95	В
77-47-4	Hexachlorocyclopentadiene	ug/kg	NL		100.76	В	100.76	В
67-72-1	Hexachloroethane	ug/kg	NL		NL		NL	
193-39-5	Indeno(1,2,3-cd)pyrene	ug/kg	29.77	В	NL		NL	
78-59-1	Isophorone	ug/kg	NL		NL		NL	
91-20-3	Naphthalene	ug/kg	NL		687	В	687	в
98-95-3	Nitrobenzene	ug/kg	NL		NL		NL	
621-64-7	N-Nitroso-di-n-propylamine	ug/kg	NL		NL		NL	
86-30-6	N-Nitrosodiphenylamine	ug/kg	NL		NL		. NL	
87-86-5	Pentachlorophenol	ug/kg	NL		916	В	916	В
85-01-8	Phenanthrene	ug/kg	NL		2748	В	2748	В
108-95-2	Phenol	ug/kg	NL		11.45	B,J	11.45	B,J
129-00-0	Pyrene	ug/kg	NL		22006.9	В	22006.9	В
Pesticides	/PCBs	<u>-</u> L ⁻	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	·		*
72-54-8 *	4,4'-DDD	ug/kg	0.229	В	22.9	в	22.9	В
72-55-9	4.4'-DDE	ug/kg	0.229		NL	<u> </u>	NL	[
50-29-3	4,4'-DDT	ug/kg	0.229	В	NL	t	NL	
309-00-2	Aldrin	ug/kg	2.29		NL	1	NL	·
319-84-6	Alpha-BHC	ug/kg	1,374		1.374	B,L	1.374	B,L
5103-71-9	alpha-Chlordane	ug/kg	0.0229		0.687		0.687	B,C
	2 Aroclor-1016	ug/kg	0.01832		441.97		441.97	
	2 Arocior-1221	ug/kg	0.01832		441.97		441.97	
	5 Aroclor-1232	ug/kg	0.01832		441.97	<u> </u>	441.97	1

Page 4 of 6

River Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	Sediment Criteria for		New York State Sediment Criteria for Benthic Aquatic Life, Chronic Toxicity,			
			Freshwate	•	Freshwater - NYSDEC LEL	with for	Freshwater - NYSDEC SEL inorganics (with for
			 					. ,
	Aroclor-1242	ug/kg	0.01832		441.97		441.97	
	Aroclor-1248	ug/kg	0.01832		441.97		441.97	
	Aroclor-1254	ug/kg	0.01832		441.97		441.97	
	Aroclor-1260	ug/kg	0.01832		441.97		441.97	
	Beta-BHC	ug/kg	1.374		1.374		1.374	
	Delta-BHC	ug/kg	1.374		1.374	B,L	1.374	B;L
	Dieldrin	ug/kg	2.29	B,K	NL		NL	
	Endosulfan I	ug/kg	NL		0.687	_	0.687	
	Endosulfan II	_ug/kg_	NL		0.687	В	0.687	В
	Endosulfan sulfate	ug/kg	NĹ		NL		NL	L
	Endrin	ug/kg	18.32	В	91.6	В	91.6	B -
	Endrin aldehyde	ug/kg	NL		NL	L	NL	
	Endrin ketone	ug/kg	NL		NL	l	NL	
58-89-9	gamma-BHC (Lindane)	ug/kg	1.374		1.374		1.374	
	gamma-Chlordane	ug/kg	0.0229		0.0229		0.0229	
76-44-8	Heptachlor	ug/kg	0.01832		2.29		2.29	
	Heptachlor epoxide	ug/kg	0.01832	В	2.29	-	2.29	В
72-43-5	Methoxychlor	ug/kg	NL		13.74	1	13.74	
		ug/kg	0.458	В	0.229	В	0.229	В
Inorganic A	Analytes							
	Aluminum	mg/kg	NL		NL		NL	
<u> </u>	Antimony	mg/kg	NL		2		25	
	Arsenic	mg/kg	NL		6		33	
7440-39-3	Barium	mg/kg	NL		NL		NL	
	Beryllium	mg/kg	NL		NL		NL	
7440-43-9	Cadmium	mg/kg	NL		0.6		. 9	
7440-70-2	Calcium	mg/kg	NL	1	NL	1	NL	1
	Chromium	mg/kg	NL		26		110	
18540-29-9	Chromium (hexavalent)	mg/kg	NĽ	[26		110	<u> </u>
7440-48-4	Cobalt	mg/kg	NL	1	. NL	1	NL	1
7440-50-8	Copper	mg/kg		1	16		110	
57-12-5	Cyanide	mg/kg	NL		NL		NL	

CDM *Rltab4-1_through_7*

Page 5 of 6

River Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	New York State Sediment Criteria for Human Health Bioaccumulation, Freshwater (1)	New York State Sediment Criteria for Benthic Aquatic Life, Chronic Toxicity, Freshwater - with NYSDEC LEL for inorganics (1)	New York State Sediment Criteria for Benthic Aquatic Life, Chronic Toxicity, Freshwater - with NYSDEC SEL for inorganics (1)
7439-89-6	Iron	mg/kg	NL	20000	40000
7439-92-1	Lead	mg/kg	NL	31	110
7439-95-4	Magnesium (mg/kg	NL	NL	NL
7439-96-5	Manganese	mg/kg	NL	460	1110
7439-97-6	Mercury	mg/kg	NL	0.15	1.3
7440-02-0	Nickel	mg/kg	NL	16	50
7440-09-7	Potassium	mg/kg	NL	NL	NL
7782-49-2	Selenium	mg/kg	NL	NL	NL
7440-22-4	Silver	mg/kg	NL	1	2.2
7440-23-5	Sodium	mg/kg	NL	NL	NL
7440-28-0	Thallium	mg/kg	NL	NL	NL
7440-62-2	Vanadium	mg/kg	ŇL	NL	NL
7440-66-6	Zinc	mg/kg	NL	120	270

Notes:

1. NYSDEC. Technical Guidance for Screening Contaminated Sediments, Division of Fish, Wildlife and Marine Resources, January 25, 1999.

3. Hiteman Sediment Screening Criteria is the lowest of the NYS sediment criteria

NL - Chemical name not listed or screening value of this type not listed for the chemical

B Values are calculated based on a site average organic carbon content: 2.29

2.29 % OC

22.9 g OC/kg sediment

C Value applies to total Chlordane

D Value applies to total Dichlorobenzenes E Value applies to total Trichlorobenzenes

F Value applies to total Xylenes

G Value applies to total chlorinated Phenols

Value applies to total enformated i nem

H Value applies to total PCBs

J Value applies to total unchlorinated Phenols

K Value applies to sum of Aldrin and Dieldrin

L Value applies to total BHCs (hexachlorocyclohexanes)

M The criteria for total chromium will be applied to hexavalent chromium

OC Organic Carbon

Wetland Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS	Chemical Name	Unit	New York S	State	New York S	tate	New York	State
Number			Sedimer	nt	Sediment Crite	eria for	Sediment C	riteria
			👘 Criteria f	or	Benthic Aquat	ic Life,	for Bent	hic
			Human He	alth	Chronic Tox		Aquatic l	₋ife,
			Bioaccumul	ation	Freshwater -	with	Chronic To	xicity,
l i			, Freshwater (1) NYSDEC LEL for		Freshwater - wit			
				• •	inorganics	; (1)	NYSDEC S	EL for
						• •	inorganic	s (1)
Volatile O	rganic Compounds							
71-55-6	1,1,1-Trichloroethane	ug/kg	NL		NL		. <u>NL</u>	
79-34-5	1,1,2,2-Tetrachloroethane	ug/kg	33.15	В	· NL		NL	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	NL		NL		NL	
79-00-5	1,1,2-Trichloroethane	ug/kg	66.3	В	NL		NL	
75-34-3	1,1-Dichloroethane	ug/kg	NL.		NL		NL	
75-35-4	1,1-Dichloroethene	ug/kg	2.21	В	NL		NL	
87-61-6	1,2,3-Trichlorobenzene	ug/kg	NL		10055.5		10055.5	
120-82-1	1,2,4-Trichlorobenzene	ug/kg	NL NL		10055.5	B,E	10055.5	B,E
96-12-8	1,2-Dibromo-3-chloropropane	ug/kg	NL		NL		NL	
106-93-4	1,2-Dibromoethane	ug/kg	· NL		NL		NL	
95-50-1	1,2-Dichlorobenzene	ug/kg	NL		1326	B,D	1326	B,D
107-06-2	1,2-Dichloroethane	ug/kg	77.35	В	NL		NL	
78-87-5	1,2-Dichloropropane	ug/kg	NL		NL		NL	
541-73-1	1,3-Dichlorobenzene	ug/kg	NL		1326		1326	
106-46-7	1,4-Dichlorobenzene	ug/kg	NL		1326	B,D	1326	B,D
78-93-3	2-Butanone	ug/kg	NL		NL		NL	
591-78-6	2-Hexanone	ug/kg	NL		NL		<u>· NL</u>	
108-10-1	4-Methyl-2-pentanone	ug/kg	NL		. NĽ		NL	
67-64-1	Acetone	ug/kg			NL		NL	
71-43-2	Benzene	ug/kg	66.3	В	NL		NL	
74-97-5	Bromochloromethane	ug/kg	NL		NL		NL	
75-27-4	Bromodichloromethane	ug/kg	NL		NL		NL	
75-25-2	Bromoform	ug/kg	NL		NL		NL	
74-83-9	Bromomethane	ug/kg	NL		NL		NL	
75-15-0	Carbon Disulfide	ug/kg			NL		NL	
56-23-5	Carbon Tetrachloride	ug/kg		В	NL		NL	
108-90-7	Chlorobenzene	ug/kg			386.75	В	386.75	B

CDM *Rltab4-1_through_7* Page 1 of 7

)

Wetland Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS	Chemical Name	Unit	New York S	state	New York S	tate	New York	State
Number			Sedimer	nt	Sediment Crite	eria for	Sediment C	riteria
			Criteria f	or	Benthic Aquat	ic Life,	for Bent	hic
			Human He	alth	Chronic Tox	icity,	Aquatic I	ife,
			Bioaccumul	ation			Chronic To	
	· ·		, Freshwate	ər (1)	NYSDEC LE	Lfor	Freshwater	- with
					inorganics	(1)	NYSDEC S	EL for
						• •	inorganic	s (1)
75-00-3	Chloroethane	ug/kg	NL		NL		NL	
67-66-3	Chloroform	ug/kg	NL		NL		NL	
74-87-3	Chloromethane	ug/kg	NL		NL		NL	
	cis-1,2-Dichloroethene	ug/kg	· NL		NL NL		NL	
10061-01-	cis-1,3-Dichloropropene	ug/kg	NL		. NL		NL	
110-82-7	Cyclohexane	ug/kg	NĽ		NL	-	NL	
124-48-1	Dibromochloromethane	ug/kg	NL		NL		NL	
75-71-8	Dichlorodifluoromethane	· ug/kg	NL NL		. NL		NL	
100-41-4	Ethylbenzene	ug/kg	NL		2652	В	2652	
98-82-8	Isopropylbenzene	ug/kg	. NL		1326	В	1326	В
79-20-9	Methyl Acetate	ug/kg	NL		NL		NL	
1634-04-4	Methyl Tert-Butyl Ether	· ug/kg	NL		NL		NL	
108-87-2	Methylcyclohexane	ug/kg	NL		NL		NL	
75-09-2	Methylene Chloride	ug/kg	· NL		NL		· NL	
100-42-5	Styrene	ug/kg	NL		NL		. NL	
127-18-4	Tetrachloroethene	ug/kg	88.4	В	NL		NL	
108-88-3	Toluene	ug/kg	NL		5414.5	В	5414.5	В
	trans-1,2-Dichloroethene	ug/kg	NL		NL		NL	
10061-02-	trans-1,3-Dichloropropene	ug/kg	NL		NL		NL	
79-01-6	Trichloroethene	ug/kg	221	В	NL		NL	
75-69-4	Trichlorofluoromethane	ug/kg	NL		NL		NL	
75-01-4	Vinyl Chloride	ug/kg	7.735	В	NL		NL	
1330-20-7	Xylenes (total)	ug/kg	NL		10166	B,F	10166	B,F
Semi-Vola	atile Organics							- N
92-52-4	1,1'Biphenyl	ug/kg	NL		NL		NL	
95-94-3	1,2,4,5-Tetrachlorobenzene	ug/kg	NL	· .	NL		NL	[
108-60-1	2,2'-oxybis(1-Chloropropane)	ug/kg	NL		NL		NL	
95-95-4	2,4,5-Trichlorophenol	ug/kg	NL		66.3	B,G	66.3	B,G

CDM *Rltab4-1_through_7*

Page 2 of 7

Wetland Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS	Chemical Name	Unit	New York S	tate	New York S	tate	New York	State
Number			Sedimen	nt.	Sediment Crite	eria for	Sediment C	riteria
			Criteria fo	or :	Benthic Aquat	ic Life,	for Bent	hic
			Human Hea	alth	Chronic Tox	icity,	Aquatic I	_ife,
	•		Bioaccumul	ation	Freshwater -	with	Chronic To	xicity,
	·		, Freshwate	er (1)	NYSDEC LE	L for	Freshwater	- with
		ſ			inorganics	(1)	NYSDEC S	EL for
					-		inorganic	
88-06-2	2,4,6-Trichlorophenol	ug/kg	NL		66.3		66.3	
120-83-2	2,4-Dichlorophenol	ug/kg	NL		66.3		66.3	
105-67-9	2,4-Dimethylphenol	ug/kg	NL		55.25		55.25	
	2,4-Dinitrophenol	ug/kg	NL		55.25	B,J	55.25	B,J
121-14-2	2,4-Dinitrotoluene	ug/kg	NL		NL		NL	
606-20-2	2,6-Dinitrotoluene	ug/kg	NL		NL		NL	•
91-58-7	2-Chloronaphthalene	ug/kg	NL		NL		NL	. ·
	2-Chlorophenol	ug/kg	NL		66.3		66.3	
91-57-6	2-Methylnaphthalene	ug/kg	NL		3757		3757	
	2-Methylphenol	ug/kg	NL		55.25	B,J	55.25	B,J
88-74-4	2-Nitroaniline	ug/kg	NL		NL		NL	
88-75-5	2-Nitrophenol	ug/kg	NL		55.25	B,J	55.25	B,J
91-94-1	3,3'-Dichlorobenzidine	ug/kg	NL		NL		NL	
99-09-2	3-Nitroaniline	ug/kg	NL		NL		. NL	
	4,6-Dinitro-2-methylphenol	ug/kg	NL		. 55.25	B,J	55.25	B,J
	4-Bromophenyl-phenylether	ug/kg	NL		NL		NL	
59-50-7	4-Chloro-3-methylphenol	ug/kg	NL		66.3	B,G	66.3	B,G
106-47-8	4-Chloroaniline	ug/kg	NL		NL		NL	
7005-72-3	4-Chlorophenyl-phenylether	ug/kg	NL.		NL		NL	
106-44-5	4-Methylphenol	ug/kg	NL		55.25	B,J	55.25	B,J
100-01-6	4-Nitroaniline	ug/kg	NL		NL	· .	NL	
100-02-7	4-Nitrophenol	ug/kg	NL		55.25	B,J	55.25	B,J
83-32-9	Acenaphthene	ug/kg	NL		15470	В	15470	В
208-96-8	Acenaphthylene	ug/kg	NL		NL		NL	
98-86-2	Acetophenone	ug/kg	NL		NL		NL	
120-12-7	Anthracene	ug/kg	NL		11823.5	В	11823.5	В
1912-24-9	Atrazine	ug/kg	NL		NL		NL	
100-52-7	Benzaldehyde	ug/kg	NL		NL		NL	

CDM *Rltab4-1_through_*7

Page 3 of 7

Wetland Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS	Chemical Name	Unit	New York S	State	New York S	tate	New York State	
Number	· ·	}	Sedimer	nt 👘	Sediment Crite	eria for	Sediment C	riteria
			Criteria f	or	Benthic Aquat	ic Life,	for Bent	hic
			Human He	alth	Chronic Tox	icity,	Aquatic L	.ife,
		1	Bioaccumul	ation	Freshwater -	with	th Chronic Toxicity	
		}	, Freshwater (1) NYSDEC LEL for F		Freshwater - with			
	· · · ·				inorganics	(1)	NYSDEC S	EL for
L				•			inorganic	s (1)
56-55-3	Benzo(a)anthracene	ug/kg	143.65		, 1326	В	1326	В
50-32-8	Benzo(a)pyrene	ug/kg	143.65	В	NL		NL	_
205-99-2	Benzo(b)fluoranthene	ug/kg	143.65	В	NL		NL	
191-24-2	Benzo(g,h,i)perylene	ug/kg	NL		~ NL		NL	
207-08-9	Benzo(k)fluoranthene	ug/kg	143.65	В	NL		NL	
111-91-1	bis(2-Chloroethoxy)methane	ug/kg	NL		. NL		NL	
111-44-4	bis(2-Chloroethyl)ether	ug/kg	3.315	В	NL		NL	
117-81-7	bis(2-Ethylhexyl)phthalate	ug/kg	NL		22044.75	В	22044.75	В
85-68-7	Butylbenzylphthalate	ug/kg	NL		NL		NL	
105-60-2	Caprolactam	ug/kg	NL		NL		NL	
86-74-8	Carbazole	ug/kg	NL		NL		. NL	•
218-01-9	Chrysene	ug/kg	143.65	В	NL		NL NL	
53-70-3	Dibenz(a,h)anthracene	ug/kg	NLNL		NL		NL	
132-64-9	Dibenzofuran	ug/kg	NLNL		NL		NL	l
84-66-2	Diethylphthalate	ug/kg	NL		NL		NL	
131-11-3	Dimethylphthalate	ug/kg	NL		NL		NL	
84-74-2	Di-n-butylphthalate	ug/kg	NL		NL		NL	_
117-84-0	Di-n-octyl phthalate	ug/kg	NL	·	NL		NL	
206-44-0	Fluoranthene	ug/kg	NL NL		112710		112710	
86-73-7	Fluorene	ug/kg			884		884	
118-74-1	Hexachlorobenzene	ug/kg	16.575	В	615485	B	615485	В
87-68-3	Hexachlorobutadiene	ug/kg	33.15	В	607.75	В	607.75	В
77-47-4	Hexachlorocyclopentadiene	'ug/kg			486.2	В	486.2	В
67-72-1	Hexachloroethane	ug/kg			NL		NL	
193-39-5	Indeno(1,2,3-cd)pyrene	ug/kg	143.65	В	NL		NL	
78-59-1	Isophorone	ug/kg	NL		NL		NL	
91-20-3	Naphthalene	ug/kg	NL		3315	В	3315	В
98-95-3	Nitrobenzene	ug/kg	NL		NL		NL	

CDM

Page 4 of 7

Wetland Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS	Chemical Name	Unit	New York S	state	New York S	tate	New York	State
Number	,		Sedimer	nt	Sediment Crite	eria for	Sediment C	riteria
			Criteria f	or	Benthic Aquat	ic Life.	for Bent	hic
			Human He		Chronic Tox		Aquatic Life,	
1			Bioaccumul			• •	Chronic To	
			, Freshwater (1) NYSDEC LEL for		Freshwater - wit			
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		inorganics		NYSDEC S	EL for
						(.)	inorganic	s (1)
621-64-7	N-Nitroso-di-n-propylamine	ug/kg	NL		NL		NL	<u> </u>
	N-Nitrosodiphenylamine	ug/kg	NL		NL		NL	
87-86-5	Pentachlorophenol	ug/kg	NL		4420	В	4420	Β.
85-01-8	Phenanthrene	ug/kg	NL		13260	В	13260	В
108-95-2	Phenol	ug/kg	NL		55.25	B,J	55.25	B,J
129-00-0	Pyrene	ug/kg	NL		106190.5	В	106190.5	В
Pesticides	/PCBs							
72-54-8	4,4'-DDD	ug/kg	1.105	В	110.5	В	110.5	В
72-55-9	4,4'-DDE	ug/kg	1.105		NL		NL	
50-29-3	4,4'-DDT	ug/kg	1.105	В	NL	· ·	NL	
309-00-2	Aldrin	ug/kg	11.05		. NL		NL	
319-84-6	Alpha-BHC	ug/kg	6.63		6.63		6.63	
5103-71-9	alpha-Chlordane	ug/kg	0.1105		3.315		3.315	
12674-11-	Aroclor-1016	ug/kg	0.0884		2132.65		2132.65	
11104-28-	Aroclor-1221	ug/kg	0.0884	B,H	2132.65		2132.65	B,H
11141-16-	Aroclor-1232	ug/kg	0.0884		2132.65		2132.65	
	Aroclor-1242	ug/kg	0.0884		2132.65		2132.65	
	Aroclor-1248	ug/kg	0.0884		2132.65		2132.65	
	Aroclor-1254	ug/kg	0.0884		2132.65		2132.65	
	Aroclor-1260	ug/kg	0.0884	B,H	2132.65	B,H	2132.65	
	Beta-BHC	ug/kg			6.63		6.63	
319-86-8	Delta-BHC	ug/kg	6.63	B,L	6.63	B,L	6.63	B,L
60-57-1	Dieldrin	ug/kg	11.05	B,K	NL		NL	
959-98-8	Endosulfan I	ug/kg	NL		3.315		3.315	В
33213-65-	Endosulfan II	ug/kg	NL		3.315	В	3.315	В
1031-07-8	Endosulfan sulfate	ug/kg	NL		NL		NL	
72-20-8	Endrin	ug/kg	88.4	В	442	В	442	В
7421-93-4	Endrin aldehyde	ug/kg	NL		NL		NL	

CDM *Rltab4-1_through_7*

Page 5 of 7

Wetland Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS	Chemical Name	Unit			New York S	tate	New York	State
Number			Sedimer	nt .	Sediment Crite	eria for	Sediment C	riteria
			Criteria f	or	Benthic Aquat	ic Life,	for Bent	hic
			Human He	alth	Chronic Tox	icity,	Aquatic L	_ife,
			Bioaccumul	ation	Freshwater -	with	Chronic Toxic	
		1	, Freshwate	ər (1)	NYSDEC LE	L for	Freshwater	- with
				• •	inorganics	(1)	NYSDEC S	EL for
					, in the second s		inorganic	s (1)
53494-70-	Endrin ketone	ug/kg	NL		NL		NL	
58-89-9	gamma-BHC (Lindane)	ug/kg	6.63	B,L	6.63	B,L	6.63	
5103-74-2	gamma-Chlordane	ug/kg	0.1105	B,C	0.1105	B,C	0.1105	B,C
76-44-8	Heptachlor	ug/kg	0.0884	Β.	11.05		11.05	В
1024-57-3	Heptachlor epoxide	ug/kg	0.0884	В	11.05		11.05	
72-43-5	Methoxychlor	ug/kg	NL		66.3	В	66.3	
8001-35-2	Toxaphene	ug/kg	2.21	В	1.105	В	1.105	В
Inorganic	Analytes							
7429-90-5	Aluminum	mg/kg	NL .		NL		NL	
7440-36-0	Antimony	mg/kg	NL		. 2		25	
7440-38-2	Arsenic	mg/kg	NL		6		33	
7440-39-3		mg/kg	NL		NL		NL NL	
7440-41-7	Beryllium	mg/kg	NL		NL		NL	
7440-43-9	Cadmium	mg/kg	NL		0.6		9	
7440-70-2	Calcium	mg/kg	NL		NL		NL	
7440-47-3	Chromium	mg/kg	NL		26		110	
18540-29-	Chromium (hexavalent)	mg/kg	NL		26		110	
7440-48-4		mg/kg	NL		NL		NL	
7440-50-8	Copper	ˈmg/kg	NL		. 16		110	
57-12-5	Cyanide	mg/kg	NL		NL		NL	
7439-89-6		mg/kg	NL		20000		40000	
7439-92-1		mg/kg	NL		31		110	
7439-95-4	Magnesium	mg/kg	NL		NL		NL	
	Manganese	mg/kg	NL		460		1110	<u> </u>

CDM Rltab4-1_through_7

Page 6 of 7

Wetland Sediment Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	New York State Sediment Criteria for Human Health Bioaccumulation , Freshwater (1)	Benthic Aquatio Chronic Toxic Freshwater - N NYSDEC LEL	Sediment Criteria for Benthic Aquatic Life, Chronic Toxicity, Freshwater - with NYSDEC LEL for inorganics (1)		State riteria hic .ife, xicity, - with EL for s (1)
7439-97-6	Mercury	mg/kg	NL	0.15		1.3	
7440-02-0	Nickel	mg/kg	NL	16		50	•
7440-09-7	Potassium	mg/kg	NL ,	NL		NL	
7782-49-2	Selenium	mg/kg	NL	NL NL		NL	
7440-22-4	Silver	mg/kg	NL	1		2.2	
7440-23-5	Sodium	mg/kg	· NL	NL NL		NL	
7440-28-0	Thallium	mg/kg	NL	NL		NL	
7440-62-2	Vanadium	mg/kg	NL	NL		NL	v
7440-66-6	Zinc	mg/kg	NL	120		270	

Notes:

1. NYSDEC. Technical Guidance for Screening Contaminated Sediments, Division of Fish, Wildlife and Marine January 25, 1999.

NL - Chemical name not listed or screening value of this type not listed for the chemical

B Values are calculated based on a site average organic carbon content: 11.05 % OC 110.5 g OC/kg sediment

C Value applies to total Chlordane

D Value applies to total Dichlorobenzenes

E Value applies to total Trichlorobenzenes

F Value applies to total Xylenes

G Value applies to total chlorinated Phenols

H Value applies to total PCBs

J Value applies to total unchlorinated Phenols

K Value applies to sum of Aldrin and Dieldrin

L Value applies to total BHCs (hexachlorocyclohexanes)

M The criteria for total chromium will be applied to hexavalent chromium

OC Organic Carbon

Groundwater Screening Standards and Guidelines Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	Nationa Drinki Stanc	ng Wa	ater	New York Standards Guidance (G) Class GA Gro Human Wate (H(WS)	(S) an Values oundw er Sou	.d s for ater⊸	er Standards (
			Value	Note	G/S	Value	Note	G/S	Value	G/S
Volatile Organ	nic Compounds									
71-55-6	1,1,1-Trichloroethane	ug/l	200		S	5	PC	S	5	
79-34-5	1,1,2,2-Tetrachloroethane	ug/l	NL			5		S	5	S
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	NL			5	PC	S	NL	
79-00-5	1,1,2-Trichloroethane	ug/l	5		S	1		S	5	S
75-34-3	1,1-Dichloroethane	ug/l	NL			5		S	5	S
75-35-4	1,1-Dichloroethene	ug/l	7		S	5		S	5	
87-61-6	1,2,3-Trichlorobenzene	ug/l	NL			5	PC	S	5	
120-82-1	1,2,4-Trichlorobenzene	ug/l	70		⁻ S	5	PC	S	5	
96-12-8	1,2-Dibromo-3-chloropropane	ug/l	0.2		S	. 0.04		S	. 0.2	
106-93-4	1,2-Dibromoethane	ug/l	0.05		S	0.0006		S	0.05	
95-50-1	1,2-Dichlorobenzene	ug/l	600		S	3		S	5	
107-06-2	1,2-Dichloroethane	ug/I	5		S	0.6	{	S	5	
78-87-5	1,2-Dichloropropane	ug/l	5		S	1		S	. 5	
541-73-1	1,3-Dichlorobènzene	ug/l	NL			3		S	5	S
106-46-7	1,4-Dichlorobenzene	ug/l	75		S	3		S	5	S
78-93-3	2-Butanone	ug/l	NL			50		G	NL	
591-78-6	2-Hexanone	ug/I	NL			50	}	G	50	
108-10-1	4-Methyl-2-pentanone	ug/l	NL			NL			50	
67-64-1	Acetone	ug/l	. NL			. 50	1	G	50	
71-43-2	Benzene	ug/l	5		S	1		S	5	1
74-97-5	Bromochloromethane	ug/i	NL		Ι	5	PC	S	5	
75-27-4	Bromodichloromethane	ug/l	80	T	S	50	1	G	100	S
75-25-2	Bromoform	ug/l	80	T.	S	50		G	100	S
74-83-9	Bromomethane	ug/l	NL	1	1	5	PC	S	5	S
75-15-0	Carbon Disulfide	ug/l	NL		1	60	1	G	50	S
56-23-5	Carbon Tetrachloride	ug/l	5	1	S	5	,	S	5	S
108-90-7	Chlorobenzene	ug/l	100		S	5	PC	S	5	S
75-00-3	Chloroethane	ug/l	NL		1	5	PC	S	5	S
67-66-3	Chloroform	ug/l	80	T	S	7		S	100	S

CDM Rltab4-1_through_7

Page 1 of 7

. N

Groundwater Screening Standards and Guidelines Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	National Primary Drinking Water Standards (1)			Standards Guidance (G) Class GA Gro Human Wate (H(WS)	(S) an Value undw er Sou) (2)	d s for ater rce	NYSDOH Drinking Water Quality Standards (3)	
· · · · · · · · · · · · · · · · · · ·				Note	G/S	Value	Note		Value [,]	G/S
74-87-3	Chloromethane	ug/l	NL			5		. S	5	
156-59-2	cis-1,2-Dichloroethene	ug/l	70	L	S	5	PC	S	5	
10061-01-5	cis-1,3-Dichloropropene	ug/l	NL			0.4	J	S	5	S
110-82-7	Cyclohexane	ug/l	NL	l		NLNL		\square	NL	<u> </u>
124-48-1	Dibromochloromethane	ug/l	80	Т	S	50		G	100	
75-71-8	Dichlorodifluoromethane	ug/l	NLNL	L		5		S	5	
100-41-4	Ethylbenzene	ug/l	700	Ĺ	S	5	PC	S	5	
98-82-8	Isopropylbenzene	ug/l	NLNL			5	<u>PC</u>	S	5	S
79-20-9	Methyl Acetate	ug/l	NL			NL		· ·	NL	-
1634-04-4	Methyl Tert-Butyl Ether	ug/l	NL		}	10		G	50	S
108-87-2	Methylcyclohexane	ug/l	NL			NL			NL	
75-09-2	Methylene Chloride	ug/l	5		S	5		S	5	
100-42-5	Styrene	ug/l	100		S	5		S	5	
127-18-4	Tetrachloroethene	ug/l	5		S	. 5		S	5	
108-88-3	Toluene	ug/l	1000		S	5		S	5	
156-60-5	trans-1,2-Dichloroethene	ug/l	100		S	5	PC	S.	5	
10061-02-6	Trans-1,3-Dichloropropene	ug/l	NL		[0.4	J	S	5	
79-01-6	Trichloroethene	ug/l	5		S	5	PC	S	5	
75-69-4	Trichlorofluoromethane	ug/l	NL			5	PC	S	5	
75-01-4	Vinyl Chloride	ug/l	2		S	2		S	2	S
1330-20-7	Xylenes (total)	ug/l	10000		S	5	PC	S	. 5	S
Semi-Volatile	Organics									
92-52-4	1,1'Biphenyl	ug/l	NL			5	PC	S	NL	
95-94-3	1,2,4,5-Tetrachlorobenzene	ug/l	NL		1	5	PC	S	NL	
108-60-1	2,2'-oxybis(1-Chloropropane)	ug/l	NL		1	5	PC	S	NL	
95-95-4	2,4,5-Trichlorophenol	ug/i	NL			- NL		1	5	S
88-06-2	2,4,6-Trichlorophenol	ug/l	NL]	NL			5	S
120-83-2	2,4-Dichlorophenol	ug/l	NL			5	PC	S	NL	
105-67-9	2,4-Dimethylphenol	ug/l	NL		1	50		G	50	S
51-28-5	2,4-Dinitrophenol	ug/l	NL		1	10		G	NL	1

Rltab4-1_through_7

CDM

Page 2 of 7

Groundwater Screening Standards and Guidelines Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	Nationa Drinki Stanc	ng Wa	ater	New York Standards Guidance (G)' Class GA Gro Human Wate (H(WS)	(S) an Value: undw er Sou	nd Drinkin es for Water Qu water Standard urce		ng ality
			Value	Note	G/S		Note	G/S	Value	G/S
121-14-2	2,4-Dinitrotoluene	ug/l	NL		L	. 5	PC	S	50	
606-20-2	2,6-Dinitrotoluene	ug/l	NL			5	PC	S	50	
91-58-7	2-Chloronaphthalene	ug/l	NL			NL			5	-
95-57-8	2-Chlorophenol	ug/i	NL			NL			5	S
91-57-6	2-Methylnaphthalene	ug/l	NL			NL			- <u>NL</u>	
95-48-7	2-Methylphenol	ug/l	NL			NL			50	
88-74-4	2-Nitroaniline	ug/l	NL			5	PC	S	5	
88-75-5	2-Nitrophenol	ug/l	NL			NL			50	
91-94-1	3,3'-Dichlorobenzidine	ug/l	NL			5	PC	S	5	
99-09-2	3-Nitroaniline	ug/l	NL			5	ΡÇ	S	5	
534-52-1	4,6-Dinitro-2-methylphenol	ug/l	NL			NL			50	
101-55-3	4-Bromophenyl-phenylether	ug/l	NL			NL NL			50	
59-50-7	4-Chloro-3-methylphenol	ug/l	NL			NL			5	_
106-47-8	4-Chloroaniline	ug/l	NL			5	PC	S	5	
7005-72-3	4-Chlorophenyl-phenylether	ug/l	NL			NL			50	
106-44-5	4-Methylphenol	ug/l	NL			NL			50	
100-01-6	4-Nitroaniline	ug/l	NL			5	PC	S	5	_
100-02-7	4-Nitrophenol	ug/l	NL			NL			50	
83-32-9	Acenaphthene	ug/l	- NL			NL			50	
208-96-8	Acenaphthylene	ug/l	NL			NL			50	
98-86-2	Acetophenone	ug/l	NL			NL			50) S
120-12-7	Anthracene	ug/l	NL	1		50		G	50) .S
1912-24-9	Atrazine	ug/l	3		S	7.5		S	3	S
100-52-7	Benzaldehyde	ug/i	NL			NL			NL	1
56-55-3	Benzo(a)anthracene	ug/l	NL		1	0.002		G	50	
50-32-8	Benzo(a)pyrene	ug/l	0.2	1	S	ND		S	0.2	2 S
205-99-2	Benzo(b)fluoranthene	ug/l	NL			0.002	1	·G	50	S
191-24-2	Benzo(g,h,i)perylene	ug/l			1	NL			50	S
207-08-9	Benzo(k)fluoranthene	ug/l		1	1	0.002		G	50	
111-91-1	bis(2-Chloroethoxy)methane	ug/l	· NL		1	5	PC	s	5	_

Page 3 of 7

Groundwater Screening Standards and Guidelines Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	Nationa Drinkin Stand	ng Wa	ater	Standards (S) and Guidance (G)Values for Class GA Groundwater Human Water Source (H(WS)) (2)		r Standards (3		
			Value	Note	G/S	Value	Note	G/S	Value	G/S
111-44-4	bis(2-Chloroethyl)ether	ug/l	NĽ			1		S	5	S
117-81-7	bis(2-Ethylhexyl)phthalate	ug/l	6		S	5		S	6	S
85-68-7	Butylbenzylphthalate	ug/l	NL			50		G	50	S
105-60-2	Caprolactam	ug/l	NL			NL			NL	
86-74-8	Carbazole	ug/l	NL			NL			50	_
218-01-9.	Chrysene	ug/l	NL			0.002		G	50	
53-70-3	Dibenz(a,h)anthracene	ug/l	NL			NL			50	
132-64-9	Dibenzofuran	ug/l	NL			NL			- 50	1
84-66-2	Diethylphthalate	ug/l	NL			. 50		G	50	
131-11-3	Dimethylphthalate	ug/l	NL			50		G	50	S
84-74-2	Di-n-butylphthalate	ug/l	NL			50		S	NL	
117-84-0	Di-n-octyl phthalate	ug/I	NL			50		G	50	S
206-44-0	Fluoranthene	ug/I	NL			50		G	50	S
86-73-7	Fluorene	ug/l	NL			50		G	NL	
118-74-1	Hexachlorobenzene	ug/l	1 1		S	0.04		S	1	S
87-68-3	Hexachlorobutadiene	ug/l	NL			0.5		S	5	S
77-47-4	Hexachlorocyclopentadiene	ug/l	50		S	5	PC	S	5	S
67-72-1	Hexachloroethane	ug/l	NL		1	5	PC	S	5	S
193-39-5	Indeno(1,2,3-cd)pyrene	ug/l	NL			0.002	1	G	50	S
78-59-1	Isophorone	ug/l	NL			50		G	50	
91-20-3	Naphthalene	ug/l	NL			, NL		1	50	S
98-95-3	Nitrobenzene	ug/1	NL		1	0.4	-	S	5	S
621-64-7	N-Nitroso-di-n-propylamine	ug/i	NL		1	NL			50	S
86-30-6	N-Nitrosodiphenylamine	ug/i	NL		1	50		G	50	
87-86-5	Pentachlorophenol	ug/l	1	[S	NL			1	S
85-01-8	Phenanthrene	ug/l	NL			50		G	50	S
108-95-2	Phenol	ug/l				NL	1		50	S
129-00-0	Pyrene	ug/l				50	1	G	50	s
Pesticides/P	CBs				*	· · · · · · · · · · · · · · · · · · ·	· •	<u> </u>	·	<u> </u>
72-54-8	4,4'-DDD	ug/l) NL	.]	1	0.3	1	T S	5	s s

Groundwater Screening Standards and Guidelines Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	Drinki	National Primary Drinking Water Standards (1) Class GA Groundw Human Water Sou (H(WS)) (2)		(S) an Value: undw er Sou	d s for ater			
			Value	Note	G/S	Value	Note	G/S	Value	G/S
72-55-9	4,4'-DDE	ug/l	NL			0.2		S	NL	
50-29-3	4,4'-DDT	ug/I	NL			0.2		S	5	S
309-00-2	Aldrin	ug/l	NL	-	L	ND		S	5	S
319-84-6	Alpha-BHC	ug/l	NL			0.01		S	5	S
5103-71-9	alpha-Chlordane	ug/l		F	S	0.05	F	S	. 2	S
12674-11-2	Aroclor-1016	ug/l	0.5		S	0.09	С	S	0.5	S
11104-28-2	Aroclor-1221	ug/l	0.5		S	0.09	-	S	0.5	S
11141-16-5	Aroclor-1232	ug/l	0.5		S	0.09	С	S	0.5	S
53469-21-9	Aroclor-1242	ug/l	0.5		S	0.09	С	S	0.5	
12672-29-6	Aroclor-1248	ug/l	0.5		S	0.09	С	S	0.5	
11097-69-1	Aroclor-1254	ug/l	0.5		S	0.09	С	S	0.5	
11096-82-5	Aroclor-1260	ug/l	0.5	ŀ	S	0.09	С	S	0.5	
319-85-7	Beta-BHC	ug/l	NL		Γ	0.04		S	5	
319-86-8	Delta-BHC	ug/l	NL		Γ	0.04		S	5	S
60-57-1	Dieldrin	ug/l	NL	1		0.004		S	5	
959-98-8	Endosulfan I	ug/l	NL			NL			50	S
33213-65-9	Endosulfan II	ug/l	NL			NL			50	S
1031-07-8	Endosulfan sulfate	ug/l	NL.			NL		-	50	S
72-20-8	Endrin	ug/l	2		S	ND		S	2	S
7421-93-4	Endrin aldehyde	ug/l	NL			5	PC	S	5	S
53494-70-5	Endrin ketone	ug/l	NL			. 5	PC	S	NL	
58-89-9	gamma-BHC (Lindane)	ug/l	0.2		S	0.05		S	0.2	S
5103-74-2	gamma-Chlordane	ug/l	2	F	S	0.05	F	S	2	S
76-44-8	Heptachlor	ug/l	0.4		S	0.04	1	S	0.4	S
1024-57-3	Heptachlor epoxide	ug/l	0.2	1	S	0.03	1	S	0.2	S
72-43-5	Methoxychlor	ug/i	40	1	s	35		S	40	S
8001-35-2	Toxaphene	ug/l	3		s	0.06	T	S	3	S
Inorganic An		×	· · · · · · · · · · · · · · · · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · ·		• <u> </u>	•
7429-90-5	Aluminum	ug/l	NL			NL			NL	1.
7440-36-0	Antimony	ug/l	6	;}	S	3	1	S	. 6	S

CDM *Rltab4-1_through_7*

Groundwater Screening Standards and Guidelines Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	National Primary Drinking Water Standards (1)		New York State Standards (S) and Guidance (G)Values for Class GA Groundwater Human Water Source (H(WS)) (2)			NYSDOH Drinking Water Quality Standards (3)		
			Value	Note		Value	Note	G/S	Value	G/S
7440-38-2	Arsenic	ug/l	10		S	25	· 	S	50	S
7440-39-3	Barium	ug/l	2000		S	1000	· · · ·	S	2000	S
7440-41-7	Beryllium	ug/l	4	L	S	3		G	. 4	S
7440-43-9	Cadmium	ug/l	5		S	5		S	5	S
7440-70-2	Calcium	ug/l	. NL			NL			NL	
7440-47-3	Chromium	ug/l	100		S	50		S	100	S
18540-29-9	Chromium (hexavalent)	ug/l	NL			50		S		
7440-48-4	Cobalt	ug/l	NL			NL			NL	
7440-50-8	Copper	ug/l	1300	TT	S	200		S	1300	S
57-12-5	Cyanide	ug/l	200		S	200		S	200	
7439-89-6	Iron	ug/l	NL			NL			300	S
7439-92-1	Lead	ug/l	15	Π	S	25		S	15	S
7439-95-4	Magnesium	ug/l	NL			35000	· ·	G	NL	
7439-96-5	Manganese	ug/l	NL			NL	[300	
7439-97-6	Mercury	ug/l	2		S	0.7		S	2	S
7440-02-0	Nickel	ug/l	NL			100		S	NL	
7440-09-7	Potassium	ug/l	NL			NL			NL	ŀ
7782-49-2	Selenium	ug/l	50		S	10		S	50	S
7440-22-4	Silver	ug/l	NL	1		50	1	S	100	S
7440-23-5	Sodium	ug/l	NL		1	20000		S	NL	1
7440-28-0	Thallium	ug/l	2		S	0.5	1	G	2	S
7440-62-2	Vanadium	ug/l	NL			NL	1		NL	
7440-66-6	Zinc	ug/l	NL	1		2000		G	5	S

Groundwater Screening Standards and Guidance Hiteman Leather Site West Winfield, New York

Notes:

1. EPA National Primary Drinking Water Standards (web page), EPA 816-F-01-007, Summer 2002

2. NYSDEC. June 1998. TOGS 1.1.1. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Includes April 2000 Addendum values.

3. New York State Department of Health Drinking Water Standards

MCL - Maximum Contaminant Level

ND - The criteria for this compound is below any detection limit

TT - Treatment Technique

C - Value applies to the sum of the PCB compounds

D - Value applies to the sum of 1,2,3-, 1,2,4- and 1,3,5-trichlorobenzene

F - Value applies to the sum of alpha- and gamma-Chlordane

G - Guidance Value

J - Value applies to the sum of cis- and trans-1,3-dichloropropene

K - Value applies to the sum of 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene

L - Standard of 500 ug/L applies to the sum of manganese and iron in groundwater (based on aesthetics).

M - Value applies to total xylenes (sum of o-, m-, and p-xylene)

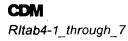
NL - No value listed

PC - Principal Organic Contaminant

S - Standard

T - Value applies to total trihalomethanes (bromodichloromethane, bromoform, chloroform, dibromochloromethane)

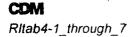
X - Value applies to the sum of phenolic compounds


Subsurface Soil Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number		Unit	NYSDEC R Adjusted fo TOC of 5.24	or Site	Hitema Backgroun Inorganic Subsurface (2)	nd for s in
	nic Compounds	·····	······			.
71-55-6	1,1,1-Trichloroethane	ug/kg	4,192		NL	
79-34-5	1,1,2,2-Tetrachloroethane	ug/kg	3,144		NL	
79-00-5	1,1,2-Trichloroethane	ug/kg	NL		NL	
76-13-1	1,1,2-Tricholoro-1,2,2-trifluoroethane	ug/kg		A,E,V	NL	
75-34-3	1,1-Dichloroethane	ug/kg	1,048		NL	
75-35-4	1,1-Dichloroethene	ug/kg	2,096		NL	L
87-61-6	1,2,3-Trichlorobenzene	ug/kg	NL		NL	[·
120-82-1	1,2,4-Trichlorobenzene	ug/kg		A,E,V	NL	L
96-12-8	1,2-Dibromo-3-chloropropane	ug/kg	NL	A	NL	L
106-93-4	1,2-Dibromoethane	ug/kg	NL		NL	
95-50-1	1,2-Dichlorobenzene	ug/kg	10,000		NL	L
107-06-2	1,2-Dichloroethane	ug/kg	524		NL	
78-87-5	1,2-Dichloropropane	ug/kg	NL		NL	
541-73-1	1,3-Dichlorobenzene	ug/kg	8,384		NL	
106-46-7	1,4-Dichlorobenzene	ug/kg		A,E,V	NL	
78-93-3	2-Butanone	ug/kg	1,572	A,E	NL	
591-78-6	2-Hexanone	ug/kg	NL	A	NL	
108-10-1	4-Methyl-2-pentanone	ug/kg	5,240		NL	
67-64-1	Acetone	ug/kg	1,048		NL	
71-43-2	Benzene	ug/kg	· 314	A,E	NL	
74-97-5	Bromochloromethane	ug/kg	NL	A	NL	
75-27-4	Bromodichloromethane	ug/kg	NL	A	NL	
75-25-2	Bromoform	ug/kg	· NL	A	NL	
74-83-9	Bromomethane	ug/kg	NL	A	NL	
75-15-0	Carbon Disulfide	ug/kg	10,000	A,E,V	NL	
56-23-5	Carbon Tetrachloride	ug/kg	3,144	A,E	NL	
108-90-7	Chlorobenzene	ug/kg	8,908	A,E	NL	
75-00-3	Chloroethane	ug/kg	9,956	A,E	NL	
67-66-3	Chloroform	ug/kg	1,572	A,E	NL	
74-87-3	Chloromethane	ug/kg	NL	A	NL	
156-59-2	cis-1,2-Dichloroethene	ug/kg	NL	A	NL	
10061-01-5	cis-1,3-Dichloropropene	ug/kg	NL	A	NL	
110-82-7	Cyclohexane	ug/kg	NL	A	NL	
124-48-1	Dibromochloromethane	ug/kg	NL	A	NL	
75-71-8	Dichlorodifluoromethane	ug/kg	NL	A	NL	
	Ethylbenzene	ug/kg	10,000		NL	
	Isopropylbenzene	ug/kg	NL	A	NL	
	Methyl Acetate	ug/kg	NL	A	NL	
	Methyl Tert-Butyl Ether	ug/kg	NL	A	NL	
	Methylcyclohexane	jug/kg	NL	A	NL	[
	Methylene Chloride	ug/kg	. 524	A,E	NL	[
	Styrene	ug/kg	NL	A	NL	{
	Tetrachloroethene	ug/kg	7,336	A,E	NL	{
	Toluene	ug/kg	7,860		NL	{
	trans-1,2-Dichloroethene	ug/kg	1,572	A,E	NL	
	trans -1,3-Dichloropropene	ug/kg		A	NL	

CDM *Rltab4-1_through_7*

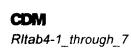
Subsurface Soil Screening Criteria Hiteman Leather Site West Winfield, New York


CAS Number		Unit	NYSDEC R Adjusted fo TOC of 5.24	r Site % (1)	Hiteman Background fo Inorganics in Subsurface So (2)		
79-01-6	Trichloroethene	ug/kg	3,668		NL		
75-69-4	Trichlorofluoromethane	ug/kg	NL	A	NL		
75-01-4	Vinyl Chloride	ug/kg	1,048	A,E	NL		
1330-20-7	Xylenes (Total)	ug/kg	6,288	A,E	NL		
	Organic Compounds						
92-52-4	1,1'-Biphenyl	ug/kg	NL	D	NL	L	
95-94-3	1,2,4,5-Tetrachlorobenzene	ug/kg	NL	D	NL		
108-60-1	2,2'-oxybis(1-Chloropropane)	; ug/kg	NL	D	NL		
95-95-4	2,4,5-Trichlorophenol	ug/kg	524	D,E	NL	······	
88-06-2	2,4,6-Trichlorophenol	ug/kg	NL	D	NL	··	
120-83-2	2,4-Dichlorophenol	ug/kg	2,096	D,E	NL		
105-67-9	2,4-Dimethylphenol	ug/kg	NL		NL		
51-28-5	2,4-Dinitrophenol	ug/kg	1,048	D,E D	NL NI		
121-14-2	2,4-Dinitrotoluene	ug/kg	NL		NL		
606-20-2	2,0-01111101010ene	ug/kg	5,240	D,E	NL		
91-58-7	2-Chloronaphthalene	ug/kg	NL	· D	NL		
95-57-8	2-Chlorophenol	ug/kg	4,192	D,E	NL		
91-57-6	2-Methylnaphthalene	ug/kg	50,000		NL NI	·	
95-48-7	2-Methylphenol	ug/kg	524	D,E	NL		
88-74-4	2-Nitroaniline	ug/kg	2,253	D,E	NL		
88-75-5	2-Nitrophenol	ug/kg	1,729	D,E	NL		
91-94-1	3,3'-Dichlorobenzidine	ug/kg	NL	D	NL		
99-09-2	3-Nitroaniline	ug/kg	2,620	D,E	NL		
534-52-1	4,6-Dinitro-2-methylphenol	ug/kg	NL	<u>D</u>	NL		
101-55-3	4-Bromophenyl-phenylether	ug/kg	NL 1.050	D	NL NL		
59-50-7	4-Chloro-3-methylphenol	ug/kg	1,258	D,E	NL		
106-47-8	4-Chloroaniline	ug/kg	1,153	D,E	NL		
7005-72-3	4-Chlorophenyl-phenylether	ug/kg	NL	D	NL		
106-44-5	4-Methylphenol	ug/kg	4,716	D,E	NL		
100-01-6	4-Nitroaniline	ug/kg	NL	D	<u> </u>		
100-02-7	4-Nitrophenol	ug/kg	524	D,E	NL		
83-32-9	Acenaphthene	ug/kg	50,000		NL		
	Acenaphthylene	ug/kg	50,000		NL		
98-86-2	Acetophenone	ug/kg	NL	D	NL		
120-12-7	Anthracene	ug/kg	50,000		NL		
	Atrazine	ug/kg	NL		NL		
	Benzaldehyde	ug/kg	NL	<u></u> D	NL		
	Benzo(a)anthracene	ug/kg	1,174	D,E	NL		
	Benzo(a)pyrene	ug/kg	320	D,E	NL		
	Benzo(b)fluoranthene	ug/kg	5,764	D,E	NL		
	Benzo(g,h,i)perylene	ug/kg	50,000		NL		
the second s	Benzo(k)fluoranthene	ug/kg	5,764	D,E	NL		
	bis(2-Chloroethoxy)methane	ug/kg	NL	D	NL		
	bis(2-Chloroethyl)ether	ug/kg	NL	D	NL		
	bis-(2-Ethylhexyl)phthalate	ug/kg	50,000		NL		
	Butylbenzylphthalate	ug/kg	50,000		NL		
105-60-2	Caprolactam	ug/kg	NL	D	NL		

Page 2 of 5

Subsurface Soil Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number		Unit	NYSDEC R Adjusted fo TOC of 5.24	r Site % (1)	Hitema Backgroun Inorganic Subsurface (2)	d for s in
86-74-8	Carbazole	ug/kg	NL	D	NL	
218-01-9	Chrysene	ug/kg	2,096		NL	
53-70-3	Dibenzo(a,h)anthracene	ug/kg	73	D,E	NL	
132-64-9	Dibenzofuran	ug/kg	32,488		NL	
84-66-2	Diethylphthalate	ug/kg	37,204		NL	
131-11-3	Dimethylphthalate	ug/kg	10,480		NL	
84-74-2	Di-n-butylphthalate	ug/kg	42,444		NL	
117-84-0	Di-n-octylphthalate	ug/kg	50,000		NL	
206-44-0	Fluoranthene	ug/kg	50,000		NL	
86-73-7	Fluorene	ug/kg	50,000		NL	
118-74-1	Hexachlorobenzene	ug/kg	2,148		NL	
87-68-3	Hexachlorobutadiene	ug/kg	NL.	D	NL	
77-47-4	Hexachlorocyclopentadiene	ug/kg	. NL	D	NL	
67-72-1	Hexachloroethane	ug/kg	NL	D	NL	
193-39-5	Indeno(1,2,3-cd)pyrene	ug/kg	16,768		NL	
78-59-1	Isophorone	ug/kg	23,056	D,E	NL	
91-20-3	Naphthalene	ug/kg	50,000		NL	
98-95-3	Nitrobenzene	ug/kg	1,048	D,E	NL	
621-64-7	N-Nitroso-di-n-propylamine	ug/kg	NL	D	NL	
86-30-6	N-Nitrosodiphenylamine	ug/kg	ŇL	Ď	NL	
87-86-5	Pentachlorophenol	ug/kg	5,240	D,E	NL	
85-01-8	Phenanthrene	ug/kg	50,000	D,E,S	NL	
108-95-2	Phenol	ug/kg	. 157	D,E	NL	
129-00-0	Pyrene	ug/kg	50,000	D,E,S	NL	
Pesticides/PC	CBs					
72-54-8	4,4'-DDD	ug/kg	10,000	E,F,P	NL	
72-55-9	4,4'-DDE	ug/kg	10,000	E,F,P	NL	
50-29-3	4,4'-DDT	ug/kg	10,000	E,F,P	NL	
	Aldrin	ug/kg	215	E,F	NL	
	alpha-BHC	ug/kg	576	E,F	NL	
	alpha-Chlordane	ug/kg	2,830	E,F	NL	
	Aroclor-1016	ug/kg	5,240	E	NL	
	Aroclor-1221	ug/kg	5,240	E	NL	
	Aroclor-1232	ug/kg	5,240	E	NL	
	Aroclor-1242	ug/kg	5,240	Ē	NL	
	Aroclor-1248	ug/kg	5,240	E	NL	
	Aroclor-1254	ug/kg	5,240	E	NL NL	
	Aroclor-1260	ug/kg	5,240	E	NL NL	
	beta-BHC	ug/kg	1,048	E,F	NL NL	<u> </u>
	delta-BHC	ug/kg	1,572	E,F		
		ug/kg	231	E,F	NL	
	Dieldrin Endoculfan I			E,F	NL NI	
	Endosulfan I	ug/kg	4,716		NL NI	
	Endosulfan II	ug/kg	4,716	E,F		
	Endosulfan Sulfate	ug/kg	5,240	E,F	NL	
	Endrin	ug/kg	524	E,F	NL	
	Endrin aldehyde	ug/kg	NL	F	NL	
53494-70-5	Endrin ketone	ug/kg	NL	F	NL	



Page 3 of 5

Subsurface Soil Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	NYSDEC R Adjusted for	Site	Hitema Backgroun	d for
· .			TOC of 5.24	% (1)	Inorganic Subsurface (2)	
58-89-9	gamma-BHC (Lindane)	ug/kg	.314	E,F	NL	
5103-74-2	gamma-Chlordane	ug/kg	2,830	E,F	NL	
76-44-8	Heptachlor	ug/kg	524	E,F	NL	
1024-57-3	Heptachlor epoxide	ug/kg	105	E,F	NL	
72-43-5	Methoxychlor	ug/kg	NL	F	NL	
8001-35-2	Toxaphene	ug/kg	NL	F	NL	
Inorganic Ana	alytes					
7429-90-5	Aluminum	mg/kg	NL	В	19,085	
7440-36-0	Antimony	mg/kg	NL	В	0.62	
7440-38-2	Arsenic	mg/kg	7.5	*	17.45	
7440-39-3	Barium	mg/kg	300	*	100.1	
7440-41-7	Beryllium	mg/kg	0.16	1 *	1.61	
7440-43-9	Cadmium	mg/kg	1	+	0.095	
7440-70-2	Calcium	mg/kg	NL	B	81,100	
7440-47-3	Chromium	mg/kg	10	•	30.7	
18540-29-9	Chromium (hexavalent)	mg/kg	NL		NL	
7440-48-4	Cobalt	mg/kg	30	*	13.6	
7440-50-8	Copper	mg/kg	25	*	28.8	
57-12-5	Cyanide	mg/kg	NL	· C	0.2	
7439-89-6	Iron	mg/kg	2,000	- +	40,150	
7439-92-1	Lead	mg/kg	NL	В	21.25	
7439-95-4	Magnesium	mg/kg	NL	B	6,610	
7439-96-5	Manganese	mg/kg	NL	B	717.5	
7439-97-6	Mercury	mg/kg	0.1		0.24	
	Nickel	mg/kg	13	*	42.3	
7440-09-7	Potassium	mg/kg	NL	В	1399	
	Selenium	mg/kg	2	*	0.86	
7440-22-4	Silver	. mg/kg	NL	В	0.335	
	Sodium	mg/kg	NL	В	224.4	
	Thallium	mg/kg	NL	В	0.7	
	Vanadium	mg/kg	150	*	36.6	<u> </u>
	Zinc	mg/kg	20	~~; †	105.1	·

Page 4 of 5

Subsurface Soil Screening Criteria Hiteman Leather Site West Winfield, New York

5.24 % OC

52 g OC/kg soil

Notes:

1. New York State Recommended Soil Cleanup Objectives (TAGM #4046, January 1994) 2. Site-specific background concentrations (x2): RSB-35-36-02-avg for surface soil and RSB-36-35-2-6-avg for subsurface soil

A Total VOCs <10,000 ug/kg

B Use site background

C Must be calculated on a site specific basis dependant upon site specific form of cyanide

D Total SVOCs <500,000 ug/kg, individual SVOCs <50,000 ug/kg

E Values are calculated based on a site average organic carbon content:

F Total Pesticides <10,000 ug/kg

P Value capped at the NYSDEC limit on total pesticides (10,000 ug/kg)

S Value capped at the NYSDEC limit on individual SVOCs (50,000 mg/kg)

V Value capped at the NYSDEC limit on total VOCs (10,000 mg/kg)

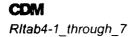
* Use this value or site background

OC - Organic Carbon

NL - Not Listed

Page 5 of 5

Surface Soil Screening Criteria Hiteman Leather Site West Winfield, New York


CAS Number	Chemical Name	Unit	NYSDEC F		Hitema Backgroun	
			TOC of 5.24		Inorganic	
,				•/•(1)	Surface So	
Volatile Orgar	nic Compounds		l	<u> </u>	L	
	1,1,1-Trichloroethane	ug/kg	4,192	A,E	NL	
79-34-5	1,1,2,2-Tetrachloroethane	ug/kg	3,144		NL	
79-00-5	1,1,2-Trichloroethane	ug/kg	NL		NL	···
76-13-1	1,1,2-Tricholoro-1,2,2-trifluoroethane	ug/kg	10,000	A,E,V	. NL	
75-34-3	1,1-Dichloroethane	ug/kg	1,048		NL	
75-35-4	1,1-Dichloroethene	ug/kg	2,096	A,E	NL	
87-61-6	1,2,3-Trichlorobenzene	ug/kg	NL	.Α	NL	
120-82-1	1,2,4-Trichlorobenzene	ug/kg	10,000	A,E,V	NL	•
96-12-8	1,2-Dibromo-3-chloropropane	ug/kg	NL	A	NL	
106-93-4	1,2-Dibromoethane	ug/kg	NL	A	NL	
95-50-1	1,2-Dichlorobenzene	ug/kg	10,000	A,E,V	NL	
107-06-2	1,2-Dichloroethane	ug/kg	524		NL	
78-87-5	1,2-Dichloropropane	ug/kg	NL	A,E	NL	·
541-73-1	1,3-Dichlorobenzene	ug/kg	8,384		NL	
	1,4-Dichlorobenzene	ug/kg	10,000		NL	<u> </u>
and the second se	2-Butanone	ug/kg	1,572		NL	
	2-Hexanone	ug/kg	NL	Â	NL	
	4-Methyl-2-pentanone	ug/kg	5,240	A,E	NL	
	Acetone	ug/kg	1,048		NL	
	Benzene	ug/kg	314		NL	
	Bromochloromethane	ug/kg	NL	A	NL	
	Bromodichloromethane	ug/kg	NL	A	NL	
	Bromoform	ug/kg	NL	A	NL	
	Bromomethane	ug/kg	NL	A	NL	
	Carbon Disulfide	ug/kg	10,000		NL	
56-23-5	Carbon Tetrachloride	ug/kg	3,144		NL	
	Chlorobenzene	ug/kg	8,908		NL	
	Chloroethane	ug/kg	9,956		NL	
	Chloroform	ug/kg	1,572	A,E	NL	
	Chloromethane	ug/kg	NL	A	NL	
	cis-1,2-Dichloroethene	ug/kg	NL	A	NL	
	cis-1,3-Dichloropropene	ug/kg	NL	A	NL	
	Cyclohexane	ug/kg	NL	A	NL	
	Dibromochloromethane	ug/kg	. NL	A	NL	<u></u>
	Dichlorodifluoromethane	ug/kg	NL	A	NL	,
	Ethylbenzene	ug/kg	10,000		NL	
	Isopropylbenzene	ug/kg	10,000 NL	A,L,V A	NL	
the second second second	Methyl Acetate	ug/kg	NL	A	NL	<u> </u>
	Methyl Tert-Butyl Ether	ug/kg	NL NL	A	NL NL	
	Methylcyclohexane	ug/kg	NL	A		
	Methylene Chloride		 524	A,E	NL NI	
		ug/kg			NL	
	Styrene	ug/kg	NL		NL	
	Tetrachloroethene	ug/kg	7,336	A,E	NL	
	Toluene	ug/kg	7,860	A,E	NL	
	trans-1,2-Dichloroethene	ug/kg	1,572	A,E	NL	
0061-02-6	rans-1,3-Dichloropropene	ug/kg ug/kg	NL 3,668	A	NL NL	

÷.

Page 1 of 5

Surface Soil Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number		Unit	NYSDEC R Adjusted fo TOC of 5.24	or Site I% (1)	Hiteman Background I Inorganics i Surface Soil (n
75-69-4	Trichlorofluoromethane	ug/kg	NL		NL	
75-01-4	Vinyl Chloride	ug/kg	1,048		NL	
1330-20-7	Xylenes (Total)	ug/kg	6,288	A,E	NL	
Semi-Volatile						<u> </u>
92-52-4	1,1'-Biphenyl	ug/kg	NL	D	NL	
95-94-3	1,2,4,5-Tetrachlorobenzene	ug/kg	NL	D	NL	
108-60-1	2,2'-oxybis(1-Chloropropane)	ug/kg	NL	D	NL	
95-95-4	2,4,5-Trichlorophenol	ug/kg	524	D,E	NL	<u>.</u>
88-06-2	2,4,6-Trichlorophenol	ug/kg	NL	D	NL	
120-83-2	2,4-Dichlorophenol	ug/kg	2,096	┢━━━━━╋	NL	
105-67-9	2,4-Dimethylphenol	ug/kg	NL	D	NL	
51-28-5	2,4-Dinitrophenol	ug/kg	1,048	D,E	NL	
121-14-2	2,4-Dinitrotoluene	ug/kg	NL	D	NL	
606-20-2	2,6-Dinitrotoluene	ug/kg	5,240	D,E	NL	
91-58-7	2-Chloronaphthalene	ug/kg	NL	D	NL	
95-57-8	2-Chlorophenol	ug/kg	4,192		NL	
91-57-6	2-Methylnaphthalene	ug/kg	50,000	D,E,S	NL	
95-48-7	2-Methylphenol	ug/kg	524	D,E	NL	
88-74-4	2-Nitroaniline	ug/kg	2,253	D,E	NL	
88-75-5	2-Nitrophenol	ug/kg	1,729	D,E	NL	
91-94-1	3,3'-Dichlorobenzidine	ug/kg	NL	D	NL	
99-09-2	3-Nitroaniline	ug/kg	2,620	D,E	NL	
534-52-1	4,6-Dinitro-2-methylphenol	ug/kg	NL	D	NL	
101-55-3	4-Bromophenyl-phenylether	ug/kg	NL	D	NL	
59-50-7	4-Chloro-3-methylphenol	ug/kg	1,258	D,E	NL	
106-47-8	4-Chloroaniline	ug/kg	1,153	D,E	NL	
7005-72-3	4-Chlorophenyl-phenylether	ug/kg	NL	D	NL	
106-44-5	4-Methylphenol	ug/kg	4,716	D,E	NL	
100-01-6	4-Nitroaniline	ug/kg	NL	,	NL	
100-02-7	4-Nitrophenol	_ ug/kg	524	D,E	NL	
83-32-9	Acenaphthene	ug/kg	50,000		NL	
208-96-8	Acenaphthylene	ug/kg	50,000		NL	<u> </u>
98-86-2	Acetophenone	ug/kg		D	NL	
······	Anthracene	ug/kg	50,000		NL	
1912-24-9	Atrazine	ug/kg		D, C, S	NL	
100-52-7	Benzaldehyde	ug/kg	NL	D	NL NL	
56-55-3	Benzo(a)anthracene	ug/kg	1,174	D,E	NL NL	
50-32-8	Benzo(a)pyrene	ug/kg	5 764	D,E	NL	
	Benzo(b)fluoranthene	ug/kg	5,764	D,E	NL NI	
	Benzo(g,h,i)perylene	ug/kg	50,000		NL NI	
	Benzo(k)fluoranthene	ug/kg	5,764	D,E	NL	
	bis(2-Chloroethoxy)methane	ug/kg	NL		NL	
	bis(2-Chloroethyl)ether	ug/kg	NL		NL	
	bis-(2-Ethylhexyl)phthalate	ug/kg	50,000		NL	
	Butylbenzylphthalate	ug/kg	50,000		NL	
	Caprolactam	ug/kg	NL	D	NL	
	Carbazole	ug/kg	NL	D	NL	
218-01-9	Chrysene	ug/kg	2,096	D,E	NL	

Page 2 of 5

Surface Soil Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	NYSDEC RSCO		Hitema	n
			Adjusted for Site TOC of 5.24% (1)		Background for Inorganics in	
53-70-3	Dibenzo(a,h)anthracene	ug/kg	73	D,E	NL	
132-64-9	Dibenzofuran	ug/kg	32,488	D,E	NL	
84-66-2	Diethylphthalate	ug/kg	37,204	D,E	NL	
131-11-3	Dimethylphthalate	ug/kg	10,480	D,E	NL	
84-74-2	Di-n-butylphthalate	ug/kg	42,444	D,E	NL	
117-84-0	Di-n-octylphthalate	ug/kg	50,000	D,E,S	NL	
206-44-0	Fluoranthene	ug/kg	50,000	D,E,S	NL	
86-73-7	Fluorene	ug/kg	50,000	D,E,S	NL	
118-74-1	Hexachlorobenzene	ug/kg	2,148		NL	
87-68-3	Hexachlorobutadiene	ug/kg	NL	D	NL.	
77-47-4	Hexachlorocyclopentadiene	ug/kg	NL	D	NL	
67-72-1	Hexachloroethane	ug/kg	NL	D	NL	
193-39-5	Indeno(1,2,3-cd)pyrene	ug/kg	16,768	D,E	NL	
78-59-1	Isophorone	ug/kg	23,056		NL	
91-20-3	Naphthalene	ug/kg	50,000		NL	
98-95-3	Nitrobenzene	ug/kg	1,048	D,E	NL	
621-64-7	N-Nitroso-di-n-propylamine	ug/kg	NL	, D	NL	
86-30-6	N-Nitrosodiphenylamine	ug/kg	NL	D	NL	
87-86-5	Pentachlorophenol	ug/kg	5,240	D,E	NL	
85-01-8	Phenanthrene	ug/kg	50,000		NL	
108-95-2	Phenol	ug/kg	157	D,E	NL	
129-00-0	Pyrene	ug/kg	50,000		NL	
Pesticides/PC		ug/kg	00,000	0,2,0		<u> </u>
72-54-8	4,4'-DDD	ug/kg	10,000	FFP	NL	
72-55-9	4,4'-DDE	ug/kg	10,000		NL	
50-29-3	4,4'-DDT	ug/kg	10,000		NL	
309-00-2	Aldrin	ug/kg	215	E,F	NL	
319-84-6	alpha-BHC	ug/kg	576	E,F	NL	
	alpha-Chlordane	ug/kg	2,830	E,F	NL	
	Aroclor-1016	ug/kg	5,240	<u> </u>	NL	
	Aroclor-1221	ug/kg	5,240	E	NL	
			the second s	E		
11141-16-5	Aroclor-1232	ug/kg	5,240	E		
53469-21-9	Aroclor-1242	ug/kg	5,240		NL	
	Aroclor-1248	ug/kg	5,240	Ę	NL	
the second se	Aroclor-1254	ug/kg	5,240	E	NL	
	Aroclor-1260	ug/kg	5,240	E	NL	
	beta-BHC	ug/kg	1,048	E,F	NL	
	delta-BHC	ug/kg	1,572	E,F	NL	
	Dieldrin	ug/kg	231	E,F	NL	
	Endosulfan I	ug/kg	4,716	E,F	NL	
	Endosulfan II	ug/kg	4,716	E,F	NL	
	Endosulfan Sulfate	ug/kg	5,240	E,F	NL	
	Endrin	ug/kg	524	E,F	NL	
	Endrin aldehyde	ug/kg	• NL	F	NL	
	Endrin ketone	ug/kg	NL	F	NL	
	gamma-BHC (Lindane)	ug/kg	314	E,F	NL	
	gamma-Chlordane	ug/kg	2,830	E,F	NL	
6-44-8	Heptachlor	ug/kg	524	Ê,F	NL.	

Page 3 of 5

Surface Soil Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	NYSDEC R		Hitema	
			Adjusted for		Backgroun	
[TOC of 5.24	% (1)	Inorganic	
					Surface So	il (2)
1024-57-3	Heptachlor epoxide	ug/kg	105	E,F	NL	
72-43-5	Methoxychlor	ug/kg	NL	F	NL	
8001-35-2	Toxaphene	ug/kg	NL	F	NL	
Inorganic Ana	alytes					
7429-90-5	Aluminum	mg/kg	NL	В	19,540	
7440-36-0	Antimony	mg/kg	NL	В	0.69	
7440-38-2	Arsenic	mg/kg	7.5	*	12.9	
7440-39-3	Barium	mg/kg	300	*	79.1	
7440-41-7	Beryllium	mg/kg	0.16	*	1.21	
7440-43-9	Cadmium	mg/kg	. 1	*	0.09	
7440-70-2	Calcium	mg/kg	NL	В	156,380	
7440-47-3	Chromium	mg/kg	10	+	23.1	
18540-29-9	Chromium (hexavalent)	mg/kg	NL		NL	
7440-48-4	Cobalt	mg/kg	30	*	13	
7440-50-8	Copper	mg/kg	25	*	25.1	
57-12-5	Cyanide	mg/kg	NL	C	0.15	
7439-89-6	Iron	mg/kg	2,000	*	33,650	
7439-92-1	Lead	mg/kg	NL	В	23.5	
7439-95-4	Magnesium	mg/kg	NL	В	13,130	
7439-96-5	Manganese	mg/kg	NL	В	699	
7439-97-6	Mercury	mg/kg	0.1		0.14	
7440-02-0	Nickel	mg/kg	13	*	35.4	
7440-09-7	Potassium	mg/kg	NL	В	1331	
7782-49-2	Selenium	mg/kg	2	*	0.98	
7440-22-4	Silver	mg/kg	NL	В	0.3	
7440-23-5	Sodium	mg/kg	NL	В	294.9	<u> </u>
7440-28-0	Thallium	mg/kg	NL	В	1.06	
7440-62-2	Vanadium	mg/kg	150	*	32.2	
7440-66-6	Zinc	mg/kg	20	*	98.4	

CDM

RItab4-1_through_7

Table 4-6 Surface Soil Screening Criteria Hiteman Leather Site West Winfield, New York

Notes:

 New York State Recommended Soil Cleanup Objectives (TAGM #4046, January 1994)
 Site-specific background concentrations (x2): RSB-35-36-02-avg for surface soil and RSB-36-35-2-6-avg for subsurface soil

A Total VOCs <10,000 ug/kg

B Use site background

C Must be calculated on a site specific basis dependant upon site specific form of cyanide

D Total SVOCs <500,000 ug/kg, individual SVOCs <50,000 ug/kg

E Values are calculated based on a site average organic carbon content:

F Total Pesticides <10,000 ug/kg

P Value capped at the NYSDEC limit on total pesticides (10,000 ug/kg)

S Value capped at the NYSDEC limit on individual SVOCs (50,000 mg/kg)

V Value capped at the NYSDEC limit on total VOCs (10,000 mg/kg)

* Use this value or site background

OC - Organic Carbon

NL - Not Listed

CDM Ritab4-1 through 7

Page 5 of 5

52.4 g OC/kg soil

5.24 % OC ·

Fish Tissue Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	USEPA Region 3	3 Risk	Hiteman Fish		
			-		Screening Criteria	ı (2	
			Criteria (1)	-		`	
Volatile Orga	nic Compounds	.					
71-55-6	1,1,1-Trichloroethane	ug/kg	379,000	N	379,000		
630-20-6	1,1,1,2-Tetrachloroethane	ug/kg	120	С	120		
79-34-5	1,1,2,2-Tetrachloroethane	ug/kg	100 (C	100		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	40,556,000	N	40,556,000	-	
79-00-5	1,1,2-Trichloroethane	ug/kg	60 (C	60		
75-34-3	1,1-Dichloroethane	ug/kg	135,000		135,000		
75-35-4	1,1-Dichloroethene	ug/kg	5 (С	5.0		
563-58-6	1,1-Dichloropropene	ug/kg	NL		NL		
96-18-4	1,2,3-Trichloropropane	ug/kg	1.6		1.6		
87-61-6	1,2,3-Trichlorobenzene	ug/kg	NL		NL		
120-82-1	1,2,4-Trichlorobenzene	ug/kg	13,500	N	13,500		
95-63-6	1,2,4-Trimethylbenzene	ug/kg	68,000		68,000		
96-12-8	1,2-Dibromo-3-chloropropane	ug/kg	20		2.0		
106-93-4	1,2-Dibromoethane	ug/kg	0.04		0.04		
95-50-1	1,2-Dichlorobenzene	ug/kg	122,000	۷	122,000		
107-06-2	1,2-Dichloroethane	ug/kg	30 0		30		
78-87-5	1,2-Dichloropropane	ug/kg	50 C	2	50		
108-67-8	1,3,5-Trimethylbenzene	ug/kg	68,000 N		68,000		
541-73-1	1,3-Dichlorobenzene	ug/kg	40,600 N	1	40,600		
142-28-9	1,3-Dichloropropane	ug/kg	' NL		NL		
106-46-7	1,4-Dichlorobenzene	ug/kg	· 100 C	>	100		
594-20-7	2,2-Dichloropropane	ug/kg	NL		NL		
78-93-3	2-Butanone	ug/kg	811,000 N	1	811,000		
95-49-8	2-Chlorotoluene	ug/kg	27,000 N		27,000		
591-78-6	2-Hexanone	ug/kg	54,100 N	1	54,100		
135-98-8	2-Phenylbutane	ug/kg	NL		NL		
106-43-4	4-Chlorotoluene	ug/kg	NL		NL		
108-10-1	4-Methyl-2-pentanone	ug/kg	110,000 N		110,000		
67-64-1	Acetone	ug/kg	135,000 N	1	135,000		
71-43-2	Benzene	ug/kg	60 C		60		
108-86-1	Bromobenzene	ug/kg	NL		NL		
74-97-5	Bromochloromethane	ug/kg	2 NL		NL		
75-27-4	Bromodichloromethane	ug/kg	50 C		50		
75-25-2	Bromoform	ug/kg	400 C	;	400		
74-83-9	Bromomethane	ug/kg	1,900 N		1,900		
75-15-0	Carbon Disulfide	ug/kg	135,000 N		135,000		
56-23-5	Carbon Tetrachloride	ug/kg	20 C		20		
08-90-7	Chlorobenzene	ug/kg	27,000 N		27,000		
75-00-3	Chloroethane	ug/kg	1,100 C		1,100		
67-66-3	Chloroform	ug/kg	13,500 N		13,500		
4-87-3	Chloromethane	ug/kg	200 C		200		
	cis-1,2-Dichloroethene	ug/kg	14,000 N		14,000		
0061-01-5	cis-1,3-Dichloropropene	ug/kg	30 C		30 ^		
10-82-7	Cyclohexane	ug/kg	NL		NL		
	Cymene	ug/kg	NL		NL		
24-48-1	Dibromochloromethane	ug/kg	40 C		40		
	Dichlorodifluoromethane	ug/kg	270,000 N	f	270,000		
00-41-4	Ethylbenzene	ug/kg	135,000 N		135,000		

CDM *Rltab4-1_through_7*

Fish Tissue Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	USEPA Region	3 Risk	Hiteman Fish		
			Based Fish Scre	ening	Screening Crite	ria (2)	
			Criteria (1))	,		
74-88-4	lodomethane	ug/kg	NL	<u> </u>	NL		
98-82-8	Isopropylbenzene	ug/kg	140,000	N	140,000		
79-20-9	Methyl Acetate	ug/kg	1,352,000	N	1,352,000		
1634-04-4	Methyl Tert-Butyl Ether	ug/kg	800	С	800		
108-87-2	Methylcyclohexane	ug/kg	NA		NA		
75-09-2	Methylene Chloride	ug/kg	400	С	400		
104-51-8	n-Butylbenzene	ug/kg	54,000		54,000		
103-65-1	n-Propylbenzene	ug/kg	54,000	N	54,000		
100-42-5	Styrene	ug/kg	270,000	N	270,000		
127-18-4	Tetrachloroethene	ug/kg	60	C	60		
108-88-3	Toluene	ug/kg	270,000	N	270,000		
98-06-6	tert-Butylbenzene	ug/kg	54,000	N	54,000		
156-60-5	trans-1,2-Dichloroethene	ug/kg	NL		NL		
10061-02-6	Trans-1,3-Dichloropropene	ug/kg	30	C,^	. 30	^	
79-01-6	Trichloroethene	ug/kg	8	C	8.0		
75-69-4	Trichlorofluoromethane	ug/kg	406,000	N	406,000		
108-05-4	Vinyl Acetate	ug/kg	1,400,000	N	1,400,000		
75-01-4	Vinyl Chloride	ug/kg	. 4	C	4.0		
1330-20-7	Xylenes (total)	ug/kg	2,704,000	N	2,704,000	-	
Semi-Volatile	Organics				······		
92-52-4	1,1'Biphenyl	ug/kg	NL	ſ	NL		
95-94-3	1,2,4,5-Tetrachlorobenzene	ug/kg	NL		NL		
108-60-1	2,2'-oxybis(1-Chloropropane)	ug/kg	NL		NL		
95-95-4	2,4,5-Trichlorophenol	ug/kg	135,000	N	135,000	_	
88-06-2	2,4,6-Trichlorophenol	ug/kg	300 (с	300		
120-83-2	2,4-Dichlorophenol	ug/kg	4,100	N	4,100		
105-67-9	2,4-Dimethylphenol	ug/kg	27,000	N	27,000		
51-28-5	2,4-Dinitrophenol	ug/kg	2,700	N.	2,700		
121-14-2	2,4-Dinitrotoluene	ug/kg	2,700	N	2,700		
606-20-2	2,6-Dinitrotoluene	ug/kg	1,400	N	1,400		
91-58-7	2-Chloronaphthalene	ug/kg	NL		NL		
95-57-8	2-Chlorophenol	ug/kg	6,800	V	6,800		
91-57-6	2-Methylnaphthalene	ug/kg	27,000	V	27,000		
	2-Methylphenol	ug/kg	67,600	V	67,600		
	2-Nitroaniline	ug/kg	NA		NA		
	2-Nitrophenol	ug/kg	NL		NL		
	3,3'-Dichlorobenzidine	ug/kg	70	2	7		
	3-Nitroaniline	ug/kg	NL		NL		
	4,6-Dinitro-2-methylphenol	ug/kg	1,400	1	1,400		
the second s	4-Bromophenyl-phenylether	ug/kg	NL		NL		
	4-Chloro-3-methylphenol	ug/kg	NL		NL		
	4-Chloroaniline	ug/kg	5,400	1 1	5,400		
	4-Chlorophenyl-phenylether	ug/kg		<u> </u>	NL		
	4-Methylphenol	ug/kg	6,800 N	, 	6,800		
	4-Nitroaniline	ug/kg	NL	·	0,000		
	4-Nitrophenol	ug/kg	10,800	;	10,800		
	Acenaphthene	ug/kg	81,100 N		81,100		
	Acenaphthylene	ug/kg	NL		NL		
	Acetophenone	ug/kg	135,000 N	<u></u>	135,000		

CDM

i

Fish Tissue Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	USEPA Region	3 Risk	Hiteman Fis	sh
			Based Fish Scr	eening	Screening Crite	eria (2)
	· · · ·		Criteria (1	I) -	_	• •
120-12-7	Anthracene	ug/kg	406,000		406,000	
1912-24-9	Atrazine	ug/kg	10	С	10	
100-52-7	Benzaldehyde	ug/kg	135,000	N	135,000	<u> </u>
56-55-3	Benzo(a)anthracene	ug/kg	4	·	4	<u> </u>
50-32-8	Benzo(a)pyrene	ug/kg	0.4	С	0	<u> </u>
205-99-2	Benzo(b)fluoranthene	ug/kg	4	С	4	
191-24-2	Benzo(g,h,i)perylene	ug/kg	NL		NL	<u> </u>
207-08-9	Benzo(k)fluoranthene	ug/kg	40	С	40	<u> </u>
111-91-1	bis(2-Chloroethoxy)methane	ug/kg	NL		NL	
111-44-4	bis(2-Chloroethyl)ether	ug/kg	3	С	3	
117-81-7	bis(2-Ethylhexyl)phthalate	ug/kg	2.3	С	2.3	<u> </u>
85-68-7	Butylbenzylphthalate	ug/kg	270,000	N	270,000	
105-60-2	Caprolactam	ug/kg	676,000	N	676,000	
86-74-8	Carbazole	ug/kg	200	С	200	
218-01-9	Chrysene	ug/kg	400	С	400	
53-70-3	Dibenz(a,h)anthracene	ug/kg	0.4	С	0.4	
132-64-9	Dibenzofuran	ug/kg	5,400	N	5,400	
84-66-2	Diethylphthalate	ug/kg	1,081,000	N	1,081,000	
131-11-3	Dimethylphthalate	ug/kg	13,519,000	N	13,519,000	
84-74-2	Di-n-butylphthalate	ug/kg	135,000	N	135,000	
117-84-0	Di-n-octyl phthalate	ug/kg	27,000		27,000	
206-44-0	Fluoranthene	ug/kg	54,100	N	54,100	·
86-73-7	Fluorene	ug/kg	54,100		54,100	
118-74-1	Hexachlorobenzene	ug/kg		С	2.0	
87-68-3	Hexachlorobutadiene	ug/kg	40	С	40	
77-47-4	Hexachlorocyclopentadiene	ug/kg	8,100	N	8,100	
67-72-1	Hexachloroethane	ug/kg	200	С	200	
193-39-5	Indeno(1,2,3-cd)pyrene	ug/kg	4	С	4.0	
78-59-1	Isophorone	ug/kg	3,300	С	3,300	
91-20-3	Naphthalene	ug/kg	27,000	N	27,000	
	Nitrobenzene	ug/kg	700	N	700	
621-64-7	N-Nitroso-di-n-propylamine	ug/kg	0.5	C	0.5	
	N-Nitrosodiphenylamine	ug/kg	600	С	600	
	Pentachlorophenol	ug/kg	30		30	
	Phenanthrene	ug/kg	NL		NL	
	Phenol	ug/kg	811,000	N T	811,000	
	Pyrene	ug/kg	40,600		40,600	
Pesticides/PCI						
and the second	4,4'-DDD	ug/kg	10	сТ	10.0	
	4,4'-DDE	ug/kg	9		9.0	*** <u>***</u>
	4,4'-DDT	ug/kg	9		9.0	
	Aldrin	ug/kg	0.19		0.2	
	Alpha-BHC	ug/kg	0.5		0.5	
	alpha-Chlordane	ug/kg		c, * 🕇	9.0	*
	Aroclor-1016	ug/kg		C, #	45.0	_
	Aroclor-1221	ug/kg		C, #	2.0	
	Aroclor-1232	ug/kg		C,#	2.01	
	Aroclor-1232	ug/kg		C,#	2.01	
3469-21-9		1 1 1 1 1 1 1 1 1 1 1	Z 11			

CDM Rltab4-1_through_7

Page 3 of 5

Fish Tissue Screening Criteria Hiteman Leather Site West Winfield, New York

CAS Number	Chemical Name	Unit	USEPA Region			
			Based Fish Sci	-	Screening Crite	ria (2
			Criteria (*			
11097-69-1	Aroclor-1254	ug/kg		C, #	2.0	
11096-82-5	Aroclor-1260	ug/kg		C, #	2.0	#
319-85-7	Beta-BHC	ug/kg	1.8		1.8	
319-86-8	Delta-BHC	ug/kg	NL		NL	
60-57-1	Dieldrin	ug/kg	0.2		0.2	
959-98-8	Endosulfan I	ug/kg	8,100	N	8,100	
33213-65-9	Endosulfan II	ug/kg	NL		. NL	
1031-07-8	Endosulfan sulfate	ug/kg	NL		NL	
72-20-8	Endrin	ug/kg	400	N	400	
7421-93-4	Endrin aldehyde	ug/kg	NL		NL	
53494-70-5	Endrin ketone	ug/kg	NL		NL	
58-89-9	gamma-BHC (Lindane)	ug/kg	2.4		2.4	
5103-74-2	gamma-Chlordane	ug/kg	9	C, *	9.0	*
76-44-8	Heptachlor	ug/kg	0.7	C	0.7	
1024-57-3	Heptachlor epoxide	ug/kg	0.3	С	0.3	
72-43-5	Methoxychlor	ug/kg	6,800	N	6,800	
8001-35-2	Toxaphene	ug/kg	3	С	3.0	
Inorganic Ana	lytes					
7429-90-5	Aluminum	mg/kg	1,352	N	1,352	
7440-36-0	Antimony	mg/kg	0.5	N	0.5	
7440-38-2	Arsenic	mg/kg	0.002	С	0.002	
7440-39-3	Barium	mg/kg	94.6	N	94.6	
7440-41-7	Beryllium	mg/kg	2.7	N	2.7	
7440-43-9	Cadmium	mg/kg	1.4	N	1.4	
7440-70-2	Calcium	mg/kg	NL		NL	
7440-47-3	Chromium	mg/kg	2,028	N,Z	2,028	
18540-29-9	Chromium (hexavalent)	mg/kg	4.1	N	4.1	
7440-48-4	Cobalt	mg/kg	27	N	27	
7440-50-8	Copper	mg/kg	54.1		54.1	
57-12-5	Cyanide	mg/kg	27	N	27	
7439-89-6	Iron	mg/kg	406	N	406	
7439-92-1	Lead	mg/kg	NL		NL	
	Magnesium	mg/kg	NL		NL	
	Manganese	mg/kg	189	N	189	
	Mercury	mg/kg	0.1		0.1	
7440-02-0	Nickel	mg/kg	27		27	
7440-09-7	Potassium	mg/kg	/ NL		NL	
7782-49-2	Selenium	mg/kg	6.8	N	6.8	
7440-22-4	Silver	mg/kg	6.8		6.8	
7440-23-5	Sodium	mg/kg	NL	<u></u>	0.0	
7440-23-5	Thallium	mg/kg	0.09	N	0.09	
	Vanadium	mg/kg	9.5		9.5	
	Zinc	mg/kg	406		406	

1

ł

CDM *Rltab4-1_through_7*

Page 4 of 5

Fish Tissue Screening Criteria Hiteman Leather Site West Winfield, New York

Notes:

1. EPA Region 3 Risk Based Fish Screening Criteria, http://www.epa.gov/reg3hwmd/risk/index.htm NA - Chemical name listed but no value available

NL - Chemical name not listed

N Based on noncarcinogenic effects

C Based on cancer risk

* Value applies to total chlordane

Value applies to total PCBs

^ Value applies to total 1,3-Dichloropropene

A 0.1 mg/kg is screening criteria value for methyl mercury, and it is assumed that all the mercury present in fish tissue is in the form of methyl mercury

Z Value based on trivalent chromium

Unadilla River Surface Water and Forage Fish Background Sample Detections **Hiteman Leather Site** West Winfield, New York

Surface Water

Chemical Name	URSW-1
Volatile Organic Compounds None Detected	
Semi-Volatile Organic Compounds	
bis(2-Ethylhexyl)phthalate	2 J
Pesticide/PCB Organic Compounds None Detected	
Inorganic Analytes	
Barium	33.7 B
Iron	110
Manganese	13.3 B
Potassium	1120 B
Cyanide	1.5 B

<u>Notes</u>: All units ug/l

Forage Fish		
Chemical Name	URFF-1-A	URFF-1-B
Volatile Organic Compounds	UNTERIA	UKITTIB
Acetone	1400 J	3400 J
Methylene Chloride	140 J	460 J
Semi-Volatile Organic Compounds		
None Detected		
Pesticide Organic Compounds		
None Detected		
PCBs		
None Detected		
Inorganic Analytes		
Aluminum	9.3 B	123
Antimony	0.38 B	0.24 B
Barium	2.5 B	2.2 B
Beryllium	0.009 B	0.0047 B
Cadmium	0.03 B	0.025 B
Calcium	10400	16300
Chromium (Total)	3.3 EJ	8.7 EJ
Cobalt	0.08 B	0.26 B
Copper .	1.4 B	1.2 B
lron	34.5	575
Lead	U	0.15 B
Magnesium	323 EJ	413 EJ
Manganese	3.2 EJ	12 EJ
Mercury	υ	0.089 B
Nickel	0.56 B	5.4
Potassium	2300 EJ	2770 EJ
Selenium	· 1.5 B	1.6
Sodium	953	1680
Vanadium	0.16 B	0.65 B
Zinc	28.5 EJ	32.6 ĘJ
Cyanide	7 U	2.5

Notes:

All organic compunds in ug/kg

All inorganic analytes in mg/kg No sport fish were caught in the background locations See Table 4-1A for an explanation of data qualifiers

Unadilla River and Onsite Wetland Sediment Background Sample Detections Hiteman Leather Site West Winfield, New York

Unemical Name URSD-1 WTSD-11-06 WTSD-11-16 WTSD-12-0.6 WTSD-12-0.6 Volatile Organic Compounds 27 1.1.2 Trichloro-1.2.2 trifluoroethane 27 U 48 U 17 U 64 22 U Carbon Disulfide 5 J 48 U 17 U 6 J 22 U Carbon Disulfide 5 J 77 J 17 U 6 J 22 U Adethy Acatac 57 J 17 U 24 J 22 U 4 Methy/Acata 35 J 17 U 8 J 22 U Semi-Volatile Organic Compounds 830 UU 353 UJ 800 J 300 J 500	.	Unadilla River		Onsite	Wetland	· .
1,1,2-Trichioro-1,2,2-triffuoroethane 27 UJ 48 UJ 17 U 54 UJ 22 U Carbon Disulfide 5 J 48 UJ 17 U 60 J 42 U Carbon Disulfide 5 J 77 J 17 U 16 J 5 J 22 U Carbon Disulfide 5 J 77 J 17 U 16 J 22 U 22 U 4-Methyl-2-pentanone 27 UJ 21 J 17 U 24 J 22 U 22 U Semi-Volatile Organic Compounds 83 U 890 UJ 530 UJ 1000 UJ 650 U 960 U Phenanthrene 88 J 890 UJ 530 UJ 340 J 650 U 960 U 530 UJ 87 J 83 J Perzene 830 UJ 890 UJ 530 UJ 360 UJ 860 U 960 UJ 530 UJ 860 U 960 UJ 530 UJ 860 U 960 UJ 530 UJ 260 J 650 U 960 UJ 530 UJ 260 U 650 U 9670 U 650 U 9670 U 650 U 9670 U 650 U 9670 U 530 UJ 200 J 650 U 9670 U 53 UJ 100 UJ 53 UJ 9670 U </th <th>Chemical Name</th> <th></th> <th>WTSD-11-0-6</th> <th></th> <th>WTSD-12-0-6</th> <th>WTSD-12-18-24</th>	Chemical Name		WTSD-11-0-6		WTSD-12-0-6	WTSD-12-18-24
Acetone 59 UJ 610 J 110 600 J 42 U Carbon Disulfide 5 J 77 J 17 U 16 J 22 U 2-Butanone 27 UJ 86 J 17 U 55 UJ 22 U 2-Butanone 27 UJ 86 J 17 U 24 J 22 U 4-Methyl-2pentanone 27 UJ 35 J 17 U 8 J 22 U Semi-Volatile Organic Compounds 830 UJ 890 UJ 530 UJ 1000 UJ 96 J 4-Methylphenol 89 J 890 UJ 530 UJ 1000 UJ 650 U Prene 120 J 130 J 530 UJ 1000 UJ 650 U Benzolaphtracene 830 UJ 890 UJ 530 UJ 200 J 650 U Chysene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzolaphtracene 630 UJ 890 UJ 530 UJ 200 J 650 U Benzolaphtracene 630 UJ 890 UJ 530 UJ 200 J 650 U Benzolaphtracene <	Volatile Organic Compounds]]		
Carbon Disulfide 5 J 48 UJ 17 U 6 J 5 J Mathyl Acetate 5 J 77 J 17 U 16 J 22 U 4-Mathyl-2-pentanone 27 UJ 86 J 17 U 24 J 22 U 4-Mathyl-2-pentanone 27 UJ 35 J 17 U 24 J 22 U Semi-Volatile Organic Compounds 830 UJ 530 UJ 1000 UJ 650 U Phenanthrene 88 J 890 UJ 530 UJ 340 J 650 U Phenanthrene 150 J 150 J 530 UJ 360 UJ 650 U Flooranthene 100 J 800 UJ 530 UJ 170 J 650 U Benzo(s)/invarithene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(s)/invarithene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(s)/invarithene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(s)/invarithene 830 UJ 890 UJ 53 UJ 10 UJ 5 J Benzo(s)	1,1,2-Trichloro-1,2,2-trifluoroethane	27 UJ	48 UJ	17 U	54 UJ	22 U
Methyl Acelate 5 J 77 J 17 U 16 J 22 U 2-Butanone 27 UJ 86 J 17 U 25 UJ 22 U 4-Methyl-2-pentanone 27 UJ 35 J 17 U 8 J 22 U Semi-Volatile Organic Compounds 830 UJ 530 UJ 1000 UJ 650 U Benzatdehylphenol 89 J 890 UJ 530 UJ 1000 UJ 650 U Phenanthrene 150 J 150 J 530 UJ 340 J 650 U Pyrene 120 J 130 J 530 UJ 170 J 650 U Benzo(a)Intracene 830 UJ 890 UJ 530 UJ 170 J 650 U Benzo(b)fluoranthene 100 J 890 UJ 530 UJ 200 J 650 U Benzo(b)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(Acetone	59 UJ	610 J	110	600 J	42 U
2-Buranne 27 UJ 86 J 17 U 55 UJ 22 U 4-Methyl-2-pentanone 27 UJ 21 J 17 U 24 J 22 U Semi-Volatile Organic Compounds 80 UJ 530 UJ 1000 UJ 96 J Benzatdehyde 830 UJ 890 UJ 530 UJ 1000 UJ 96 J A-Methylphenol 89 J 890 UJ 530 UJ 1000 UJ 650 U Phenanthrene 150 J 150 J 530 UJ 340 J 650 U Fluoranthene 130 J 530 UJ 170 J 85 J 650 U Fluoranthene 830 UJ 890 UJ 530 UJ 170 J 650 U Benzo(k)/luoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)/luoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)/luoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)/luoranthene 83 UJ 890 UJ 530 UJ 200 J 650 U Ben	Carbon Disulfide	5 J	48 UJ	17 U	6 J ·	5 J
4-Methyl-2-pentanone 27 UJ 21 J 17 U 8 J 22 U Semi-Volatile Organic Compounds 830 UJ 890 UJ 530 UJ 1000 UJ 96 J A-Methylphenol 88 J 890 UJ 530 UJ 1000 UJ 96 J Phenanthrene 88 J 890 UJ 530 UJ 1000 UJ 650 U Flooranthene 150 J 150 J 530 UJ 340 J 650 U Flooranthene 830 UJ 890 UJ 530 UJ 470 J 83 J Benzo(a)Intracene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)Ipticvanthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)Iptrene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)Iptrene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(A)Iptrene 83 UJ 890 UJ 530 UJ 200 J 650 U Benzo(A)Iptrene 83 UJ 89 UJ 530 UJ 200 J 650 U	Methyl Acetate	5 J	77 J	17 U	16 J	· 22 U
Toluene 27 UJ 35 J 17 U 8 J 22 U Semi-Volatile Organic Compounds 830 UJ 890 UJ 530 UJ 1000 UJ 96 J Admethylphenol 88 J 890 UJ 530 UJ 1000 UJ 650 U Floaranthrene 150 J 150 J 530 UJ 340 J 650 U Floaranthrene 120 J 130 J 530 UJ 470 J 83 J Benzolghanthracene 830 UJ 890 UJ 530 UJ 170 J 650 U Benzolghi/noranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzolghi/noranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzolghi/noranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzolghi/noranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzolghi/noranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzolghi/nordane 5.6 J 4.6 UJ 0.42 J 5.2 UJ 3.3	2-Butanone	-27 UJ	86 J	17 U	55 UJ	22 U .
Semi-Volatile Organic Compounds 830 UJ 890 UJ 530 UJ 1000 UJ 650 U Benzaldehyde 89 J 890 UJ 530 UJ 1000 UJ 650 U Henzahthene 88 J 890 UJ 530 UJ 1000 UJ 650 U Flooranthene 150 J 150 J 530 UJ 930 UJ 530 UJ 70 J 83 J Benzo(a)anthracene 830 UJ 890 UJ 530 UJ 200 J 650 U Chrysene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)filtexyliphthalate 100 J 890 UJ 530 UJ 200 J 650 U Benzo(b)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)pyrene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)pyrene 830 UJ 890 UJ 530 UJ 10 UJ 5 J ajaha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 3.3 U Adminum 6180 J 13400 J 17000 <t< td=""><td>4-Methyl-2-pentanone</td><td>27 UJ</td><td>21 J</td><td>17 U</td><td>24 J 🐳</td><td>22 U ·</td></t<>	4-Methyl-2-pentanone	27 UJ	21 J	17 U	24 J 🐳	22 U ·
Benzaldehyde 830 UJ 890 UJ 530 UJ 1000 UJ 66 J 4-Methylphenol 89 J 890 UJ 530 UJ 1000 UJ 650 U Fluoranthene 88 J 890 UJ 530 UJ 540 UJ 650 U Fluoranthene 150 J 150 J 530 UJ 700 J 650 U Fluoranthene 830 UJ 890 UJ 530 UJ 170 J 650 U Sid(2-Ethylhexyllphthalate 100 J 890 UJ 530 UJ 1000 UJ 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 100 UJ 5J Athomol (1,2,3-cdpyrene 830 UJ 890 UJ 530 UJ 100 UJ	Toluene	27 UJ	35 J	, ∍ 17 Ų	8 J	22 U
Benzaldehyde 830 UJ 890 UJ 530 UJ 1000 UJ 66 J 4-Methylphenol 89 J 890 UJ 530 UJ 1000 UJ 650 U Fluoranthene 88 J 890 UJ 530 UJ 540 UJ 650 U Fluoranthene 150 J 150 J 530 UJ 700 J 650 U Fluoranthene 830 UJ 890 UJ 530 UJ 170 J 650 U Sid(2-Ethylhexyllphthalate 100 J 890 UJ 530 UJ 1000 UJ 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)l/uoranthene 830 UJ 890 UJ 530 UJ 100 UJ 5J Athomol (1,2,3-cdpyrene 830 UJ 890 UJ 530 UJ 100 UJ	Semi-Volatile Organic Compound	5				
4-Methylphenol 89 J 890 UJ 530 UJ 1000 UJ 650 U Phenanthrene 150 J 150 J 530 UJ 530 UJ 540 J 650 U Pyrene 120 J 130 J 530 UJ 550 J 87 J Berzo(a)anthracene 830 UJ 890 UJ 530 UJ 170 J 650 U Chrysene 830 UJ 890 UJ 530 UJ 200 J 650 U Berzo(a)fuoranthene 100 J 890 UJ 530 UJ 200 J 650 U Berzo(a)fuoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Berzo(a)fuoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Berzo(a)fuoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Berzo(a)fuoranthene 830 UJ 890 UJ 530 UJ 100 UJ 53 Berzo(a)fuoranthene 830 UJ 890 UJ 530 UJ 100 UJ 50 Berzo(a)fuoranthene 830 UJ 890 UJ 530 UJ 100 UJ 50 Berzo(a)fuoranthene 4.6 UJ 0.42 J 52 UJ <t< td=""><td></td><td></td><td>890 UJ</td><td>530 UJ</td><td>1000 UJ</td><td>96 J</td></t<>			890 UJ	530 UJ	1000 UJ	96 J
Fluoranthene 150 J 150 J 150 J 150 J 130 J 530 UJ 470 J 87 J Pyrene 120 J 130 J 530 UJ 470 J 83 J Benzo(a)anthracene 830 UJ 890 UJ 530 UJ 100 J 650 U Chrysene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)Inoranthene 100 J 890 UJ 530 UJ 200 J 650 U Benzo(a)Inoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)Inoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)Inyrene 830 UJ 890 UJ 530 UJ 100 UJ 5 J Benzo(a)Inoranthene 8.3 UJ 8.9 UJ 5.3 UJ 10 UJ 5 J Bandhanchfordane 5.6 J 4.6 UJ 0.42 J 5.2 UJ 3.3 U Inorganic Analytes 12900 3.5 U 3.0 UJ 3.0 UJ 3.0 UJ Antimum 6180 J 13400 J 17000	4-Methylphenol	· 89 J	890 UJ	530 UJ	1000 UJ	650 U
Pyrene 120 J 130 J 530 UJ 470 J 83 J Benzo(a)anthracene 830 UJ 890 UJ 530 UJ 170 J 650 U Chrysene 830 UJ 890 UJ 530 UJ 230 J 650 U bis(2-Ethylhexyl)phthalate 100 J 890 UJ 530 UJ 200 J 650 U Benzo(k)flouranthene 830 UJ 890 UJ 530 UJ 240 J 650 U Benzo(k)flouranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)flouranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)flouranthene 830 UJ 890 UJ 530 UJ 100 UJ 5J Benzo(k)flouranthene 830 UJ 890 UJ 5.3 UJ 10 UJ 5J Athenone 8.3 UJ 89 UJ 5.3 UJ 10 UJ 5J ajpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 3.3 U Aresnic 3.7 RJ 10.8 J 15.4 2.2 BNJ 3.8 NJ	Phenanthrene	88 J	890 UJ	530 UJ	340 J	650 U
Pyrene 120 J 130 J 530 UJ 470 J 83 J Benzo(a)anthracene 830 UJ 890 UJ 530 UJ 170 J 650 U Chrysene 830 UJ 890 UJ 530 UJ 230 J 650 U Benzo(k)Itucranthene 100 J 890 UJ 530 UJ 200 J 650 U Benzo(k)Itucranthene 830 UJ 890 UJ 530 UJ 240 J 650 U Benzo(k)Itucranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)Itucranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)Itucranthene 830 UJ 890 UJ 530 UJ 100 UJ 5J Benzo(k)Itucranthene 830 UJ 890 UJ 530 UJ 100 UJ 5J Athonon 830 UJ 890 UJ 530 UJ 100 UJ 5J alpha-Chiordane 5.5 J 4.6 UJ 0.42 J 5.2 UJ 3.3 U Athimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ <tr< td=""><td>Fluoranthene</td><td>150 J</td><td>150 J</td><td>530 UJ</td><td>550 J</td><td>87 J</td></tr<>	Fluoranthene	150 J	150 J	530 UJ	550 J	87 J
Benzo(a)anthracene 830 UJ 890 UJ 530 UJ 170 J 650 U Chrysene 830 UJ 890 UJ 530 UJ 230 J 650 U Benzo(b)fluoranthene 100 J 890 UJ 530 UJ 200 J 650 U Benzo(b)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(b)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)pyrene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)pyrene 830 UJ 890 UJ 530 UJ 150 J 650 U Pestcide/PCB Organic Compounds 4.3 UJ 4.6 UJ 3.5 J 5.2 UJ 3.3 U Apha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 3.3 U agamma-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Artimony 12.8 BJ 13400 J 17000 9670 *J 12900 Antimony 12.8 BJ 18.4 J 1.1 B 10 10	Pyrene	120 J	130 J	530 UJ	470 J	83 J
bis(2-Ethylhexyl)phthalate 100 J 890 UJ 530 UJ 1000 UJ 650 U Benzo(k)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)fluoranthene 830 UJ 890 UJ 530 UJ 100 UJ 650 U Heptachlor 4.3 UJ 4.6 UJ 0.42 J 5.2 UJ 3.3 U 4.4 DDE ajpha-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Atiminum 6180 J 13400 J 17000 9670 *J 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ	Benzo(a)anthracene	830 UJ	890 UJ	530 UJ	170 J	650 U
Benzo(b)fluoranthene 100 J 890 UJ 530 UJ 200 J 650 U Benzo(k)fluoranthene 830 UJ 890 UJ 530 UJ 240 J 650 U Benzo(a)pyrene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(a)pyrene 830 UJ 890 UJ 530 UJ 200 J 650 U Pestcide/PCB Organic Compounds 4.3 UJ 4.6 UJ 0.42 J 5.2 UJ 3.3 U At-DDE 8.3 UJ 8.9 UJ 5.3 UJ 10 UJ 5 J ajpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 3.3 U Auminum 6180 J 12400 J 17000 9670 'J 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 55 BJ 181 J 174 101 BJ 120 Beryllium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Copper <td>Chrysene</td> <td>830 UJ</td> <td>890 UJ</td> <td>530 UJ</td> <td>230 J</td> <td>650 U</td>	Chrysene	830 UJ	890 UJ	530 UJ	230 J	650 U
Benzo(k)fluoranthene 830 UJ 890 UJ 530 UJ 240 J 650 U Benzo(k)fluoranthene 830 UJ 890 UJ 530 UJ 200 J 650 U Benzo(k)fluoranthene 830 UJ 890 UJ 530 UJ 150 J 650 U Pestcide/PCB Organic Compounds 4.3 UJ 4.6 UJ 0.42 J 5.2 UJ 3.3 U A/4-DDE 8.3 UJ 8.9 UJ 5.3 UJ 10 UJ 5 J alpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 4.8 J gamma-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 30.8 NJ Antimomy 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 55 BJ 181 J 174 101 BJ 120 Beryllium 0.46 UJ 0.82 BJ 1.1 B 0.83 BJ 1.1 B Cadmium 0.46 UJ 0.82 BJ 1.1 B 0.83 BJ 1.1 B	bis(2-Ethylhexyl)phthalate	100 J	890 UJ	. 530 UJ	1000 UJ	650 U
Benzo(a)pyrene 830 UJ 890 UJ 530 UJ 200 J 650 U Indeno(1,2,3-cd)pyrene 830 UJ 890 UJ 530 UJ 150 J 650 U Pestcide/PCB Organic Compounds 4.3 UJ 4.6 UJ 0.42 J 5.2 UJ 3.3 U 4,4'-DDE 8.3 UJ 8.9 UJ 5.3 UJ 10 UJ 5 J ajpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 3.3 U apama-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Inorganic Analytes - - - 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Copper 9.4 BJ	Benzo(b)fluoranthene	100 J	890 UJ	530 UJ	200 J	650 U
Benzo(a)pyrene 830 UJ 890 UJ 530 UJ 200 J 650 U Indeno(1,2,3-cd)pyrene 830 UJ 890 UJ 530 UJ 150 J 650 U Pestcide/PCB Organic Compounds 4.3 UJ 4.6 UJ 0.42 J 5.2 UJ 3.3 U 4,4'-DDE 8.3 UJ 8.9 UJ 5.3 UJ 10 UJ 5 J ajpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 3.3 U apama-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Inorganic Analytes - - - 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Copper 9.4 BJ	Benzo(k)fluoranthene	830 UJ	890 UJ	530 UJ	240 J	650 U
Pestcide/PCB Organic Compounds 4.3 UJ 4.6 UJ 0.42 J 5.2 UJ 3.3 U 4.4-DDE 8.3 UJ 8.9 UJ 5.3 UJ 10 UJ 5 J alpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 4.8 J gamma-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 4.8 J gamma-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Inorganic Analytes	Benzo(a)pyrene	830 UJ	890 UJ	530 UJ	200 J	650 U
Heptachlor 4.3 UJ 4.6 UJ 0.42 J 5.2 UJ 3.3 U 4,4-DDE 8.3 UJ 8.9 UJ 5.3 UJ 10 UJ 5 J alpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 4.8 J garma-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Inorganic Analytes 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Aluminum 6180 J 13400 J 17000 9670 *J 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 55 BJ 181 J 174 101 BJ 120 Beryllium 0.46 UJ 0.82 BJ 1.1 B 0.83 BJ 1.1 B Cadmium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 27.2 J 36.2 23 J 26.4 Iron 20.6 J	Indeno(1,2,3-cd)pyrene		890 UJ	530 UJ	150 J	650 U
Heptachlor 4.3 UJ 4.6 UJ 0.42 J 5.2 UJ 3.3 U 4,4-DDE 8.3 UJ 8.9 UJ 5.3 UJ 10 UJ 5 J alpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 4.8 J garma-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Inorganic Analytes 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Aluminum 6180 J 13400 J 17000 9670 *J 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 55 BJ 181 J 174 101 BJ 120 Beryllium 0.46 UJ 0.82 BJ 1.1 B 0.83 BJ 1.1 B Cadmium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 27.2 J 36.2 23 J 26.4 Iron 20.6 J	Pestcide/PCB Organic Compound	5				
4.4-DDE 8.3 UJ 8.9 UJ 5.3 UJ 10 UJ 5 J alpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 4.8 J gamma-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Inorganic Analytes			46 UJ	0.42 J	5.2 UJ	33 U
alpha-Chlordane 5.6 J 4.6 UJ 3.5 J 5.2 UJ 4.8 J gamma-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Inorganic Analytes 13400 J 17000 9670 J 12900 Aluminum 6180 J 13400 J 17000 9670 J 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barlum 55 BJ 181 J 174 101 BJ 120 Beryllium 0.46 UJ 0.62 BJ 1.1 B 0.83 BJ 1.1 B Cadmium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Coper 9.4 BJ 27.2 J 36.2 23 J 26.4 tron 12200 J 26700 *J 33700 * 20000 J 26700 Lead 20.6 J 34.4 J	4.4'-DDE					
gamma-Chlordane 4.8 J 2.5 J 2.7 UJ 5.2 UJ 3.3 U Inorganic Analytes 13400 J 17000 9670 *J 12900 Aluminum 6180 J 13400 J 17000 9670 *J 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 55 BJ 181 J 174 101 BJ 120 Beryllium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Cadmium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 22.7 Z J 33700 * 20000 J 26700 Lead 206 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Manganese 247 J 781 J				(·		
Aluminum 6180 J 13400 J 17000 9670 *J 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 55 BJ 181 J 174 101 BJ 120 Beryllium 0.46 UJ 0.82 BJ 1.1 B 0.83 BJ 1.1 B Cadmium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Copper 9.4 BJ 27.2 J 36.2 23 J 26.4 Iron 12200 J 26700 *J 33700 * 20000 J 26700 Lead 20.6 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Magnesium 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R <td>gamma-Chlordane</td> <td></td> <td></td> <td></td> <td></td> <td></td>	gamma-Chlordane					
Aluminum 6180 J 13400 J 17000 9670 *J 12900 Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 55 BJ 181 J 174 101 BJ 120 Beryllium 0.46 UJ 0.82 BJ 1.1 B 0.83 BJ 1.1 B Cadmium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Copper 9.4 BJ 27.2 J 36.2 23 J 26.4 Iron 12200 J 26700 *J 33700 * 20000 J 26700 Lead 20.6 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Magnesium 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R <td>Inorganic Analytes</td> <td></td> <td></td> <td>••</td> <td></td> <td></td>	Inorganic Analytes			••		
Antimony 12.8 BJ 25.6 BJ 32.4 22.2 BNJ 30.8 NJ Arsenic 3.7 BJ 10.8 J 15.8 8.1 J 10 Barium 55 BJ 181 J 174 101 BJ 120 Beryllium 0.46 UJ 0.82 BJ 1.1 B 0.83 BJ 1.1 B Cadmium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Copper 9.4 BJ 27.2 J 36.2 23 J 26.4 Iron 12200 J 26700 *J 33700 * 20000 J 26700 Lead 20.6 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Magnesium 3390 J 3550 J 4364 R 19.5 BJ 25.2 Marganese 247 J 781 J 898 720 J 576 Mercury 0.21 J 0.3 J		6180 J	13400 J	17000	9670 J	12900
Arsenic3.7 BJ10.8 J15.88.1 J10Barium55 BJ181 J174101 BJ120Beryllium0.46 UJ0.82 BJ1.1 B0.83 BJ1.1 BCadmium0.46 UJ0.63 BJ0.34 B0.59 UJ0.4 BChromium (Total)11.1 J41.6 J58.816.6 J19.9Cobalt5 BJ12.3 BJ15.7 B7.5 BJ9.9 BCopper9.4 BJ27.2 J36.223 J26.4tron12200 J26700 *J33700 *20000 J26700Lead20.6 J34.4 J17.139.5 NJ24.2 NJMagnesium3390 J3550 J43604890 J3490Magnese247 J781 J898720 J576Mercury0.21 J0.3 J0.250.2 BNJ0.17 BNJNickel12.9 BJ29 R36.4 R19.5 BJ25.2Potassium1.4 UJ4.2 J2 J1.2 BJ3 JSilver1.4 UJ0.53 UJ0.32 U0.59 UJ0.39 USodium727 BJ791 BEJ539 BEJ814 BJ590 BJThallium2.3 UJ2.7 BJ4.23.3 BJ2.5 BVanadium10.6 BJ24.9 BJ31.618.3 BJ29.2Zinc62.2 J120 J107121 J111						1
Barium55 BJ181 J174101 BJ120Beryllium0.46 UJ0.82 BJ1.1 B0.83 BJ1.1 BCadmium0.46 UJ0.63 BJ0.34 B0.59 UJ0.4 BChromium (Total)11.1 J41.6 J58.816.6 J19.9Cobalt5 BJ12.3 BJ15.7 B7.5 BJ9.9 BCopper9.4 BJ27.2 J36.223 J26.4Iron12200 J26700 *J33700 *20000 J26700Lead20.6 J34.4 J17.139.5 NJ24.2 NJMagnesium3390 J3550 J43604890 J3490Magnese247 J781 J898720 J576Mercury0.21 J0.3 J0.250.2 BNJ0.17 BNJNickel12.9 BJ29 R36.4 R19.5 BJ25.2Potassium712 BJ1430 BJ1400 B1050 BJ766 BSelenium1.4 UJ0.53 UJ0.32 U0.59 UJ0.39 USilver1.4 UJ0.53 UJ0.32 U0.59 UJ0.39 USodium727 BJ791 BEJ539 BEJ814 BJ590 BJThallium2.3 UJ2.7 BJ4.23.3 BJ2.5 BVanadium10.6 BJ24.9 BJ31.618.3 BJ29.2Zinc62.2 J120 J107121 J111	-					
Beryllium 0.46 UJ 0.82 BJ 1.1 B 0.83 BJ 1.1 B Cadmium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Copper 9.4 BJ 27.2 J 36.2 23 J 26.4 tron 12200 J 26700 *J 33700 * 20000 J 26700 Lead 20.6 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Magnese 247 J 781 J 898 720 J 576 Mercury 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Seleinium 1.4 UJ 0.53 UJ	Barium					
Cadmium 0.46 UJ 0.63 BJ 0.34 B 0.59 UJ 0.4 B Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Copper 9.4 BJ 27.2 J 36.2 23 J 26.4 tron 12200 J 26700 *J 33700 * 20000 J 26700 Lead 20.6 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Magnesium 3390 J 3550 J 4360 4890 J 576 Mercury 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Silver 1.4 UJ 0.53 UJ	Bervllium			1.1 B	0.83 BJ	
Chromium (Total) 11.1 J 41.6 J 58.8 16.6 J 19.9 Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Copper 9.4 BJ 27.2 J 36.2 23 J 26.4 tron 12200 J 26700 *J 33700 * 20000 J 26700 Lead 20.6 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Magnese 247 J 781 J 898 720 J 576 Mercury 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Silver 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ	•			0.34 B	0.59 UJ	
Cobalt 5 BJ 12.3 BJ 15.7 B 7.5 BJ 9.9 B Copper 9.4 BJ 27.2 J 36.2 23 J 26.4 tron 12200 J 26700 *J 33700 * 20000 J 26700 Lead 20.6 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Magnese 247 J 781 J 898 720 J 576 Mercury 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Storr 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6				58.8		
Copper 9.4 BJ 27.2 J 36.2 23 J 26.4 tron 12200 J 26700 *J 33700 * 20000 J 26700 Lead 20.6 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Magnese 247 J 781 J 898 720 J 576 Mercury 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 33 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 <td>Cobalt</td> <td></td> <td></td> <td>15.7 B</td> <td></td> <td></td>	Cobalt			15.7 B		
Iron12200 J26700 *J33700 *20000 J26700Lead20.6 J34.4 J17.139.5 NJ24.2 NJMagnesium3390 J3550 J43604890 J3490Manganese247 J781 J898720 J576Mercury0.21 J0.3 J0.250.2 BNJ0.17 BNJNickel12.9 BJ29 R36.4 R19.5 BJ25.2Potassium712 BJ1430 BJ1400 B1050 BJ766 BSelenium1.4 UJ4.2 J2 J1.2 BJ3 JSilver1.4 UJ0.53 UJ0.32 U0.59 UJ0.39 USodium727 BJ791 BEJ539 BEJ814 BJ590 BJThallium2.3 UJ2.7 BJ4.23.3 BJ2.5 BVanadium10.6 BJ24.9 BJ31.618.3 BJ29.2Zinc62.2 J120 J107121 J111		9.4 BJ				
Lead 20.6 J 34.4 J 17.1 39.5 NJ 24.2 NJ Magnesium 3390 J 3550 J 4360 4890 J 3490 Manganese 247 J 781 J 898 720 J 576 Mercury 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 4.2 J 2 J 1.2 BJ 3 J Silver 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 33 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111	Iron					
Magnesium 3390 J 3550 J 4360 4890 J 3490 Manganese 247 J 781 J 898 720 J 576 Mercury 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 4.2 J 2 J 1.2 BJ 3 J Silver 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111						
Manganese 247 J 781 J 898 720 J 576 Mercury 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 4.2 J 2 J 1.2 BJ 3 J Silver 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111						
Mercury 0.21 J 0.3 J 0.25 0.2 BNJ 0.17 BNJ Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 4.2 J 2 J 1.2 BJ 3 J Silver 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111		1				
Nickel 12.9 BJ 29 R 36.4 R 19.5 BJ 25.2 Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 4.2 J 2 J 1.2 BJ 3 J Silver 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111	Mercury					
Potassium 712 BJ 1430 BJ 1400 B 1050 BJ 766 B Selenium 1.4 UJ 4.2 J 2 J 1.2 BJ 3 J Silver 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111	Nickel	,				
Selenium 1.4 UJ 4.2 J 2 J 1.2 BJ 3 J Silver 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111			,			
Silver 1.4 UJ 0.53 UJ 0.32 U 0.59 UJ 0.39 U Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111						
Sodium 727 BJ 791 BEJ 539 BEJ 814 BJ 590 BJ Thallium 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111						
Thallium 2.3 UJ 2.7 BJ 4.2 3.3 BJ 2.5 B Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111						
Vanadium 10.6 BJ 24.9 BJ 31.6 18.3 BJ 29.2 Zinc 62.2 J 120 J 107 121 J 111						
Zinc 62.2 J 120 J 107 121 J 111				1		
	Cyanide	02.2 J 0.13 BNJ	1.3 J	0.48 B	0.58 BJ	0.42 B

Notes:

Hexavalent chromium was not detected in background sediment samples

Organic compounds are in ug/kg

Inorganic analytes are in mg/kg See Table 4-1A for an explanation of data qualifiers

All dectections are bolded.

CDM

Upgradient Groundwater Sample Detections Hiteman Leather Site West Winfield, New York

· · ·			Groun	dwate	۶r		
Chemical Name	RMW	•	RMW			RMW-16B	
	Shal	low	De	ep	Bedr	оск	
Volatile Organic Compounds			· ·	•			
None Detected			}		1		
Semi-Volatile Organic Compounds							
Caprolactam	0.7	J	10	U	10	·υ	
Pesticide/PCB Organic Compounds							
None Detected						•	
Inorganic Analytes							
Barium	110	в	110	в	51.5	в	
Chromium (Total)	0.8	Ū	3.3	В	0.8	Ū	
Iron	146		1450		17	U	
Magnesium	17200		15800		14700		
Manganese	61.4		45.4		5.8	В	
Nickel	2.7	В	3.1	B	2.5	в	
Potassium	2730	В	17.60	в	1780	В	
Selenium	3	В	2.2	υ	2.6	В	
Thallium	3.5	U	3.5	U	3.9	В	
Vanadium	0.7	U	2.1	В	0.7	U	
Zinc	4.9	В	7.9	В	4	В	
Cyanide	2.1	BJ	1.9	BJ	1.8	BJ	

Notes:

Hexavalent chromium was not detected in the upgradient groundwater samples All units in ug/l

Please refer to Table 4-1A for an explanation of data qualifers All Detections are bolded.

Surface and Subsurface Soil Background Sample Detections Hiteman Leather Site West Winfield, New York

		Surface Soi	1		Subsur	face Soil	
Chemical Name	RSB-35-0-2	RSB-36-0-2	RSB-36-0-2- DUP	RSB-35-2-4	RSB-35-4-6	RSB-36-2-∕	RSB-36-4-6
Inorganic Ana	alytes						
Aluminum	3340	16200	15800	12300	7140	11100	7630
Antimony	0.33 UJ	0.36 UJ		0.43 BJ	0.48 BJ	0.36 UJ	0.33 UJ
Arsenic	5.3	7.6	7 .7 [·]	10.2	8.5	8.7	7.5
Barium	24.8 B	54.3	53.8	72.3	39.7 B	53.2	35 B
Beryllium	0.32 B	0.89 B	0.85 B	1 B	0.61 B	0.96 B	0.65 B
Cadmium	0.04 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.04 U
Calcium	153000	-3380	3280	26200	70200	10200	55600
Chromium	5.7 J	17.4 J	17.3 J	18.8 J	11.4 J	17.8 J	13.4 J
Cobalt	3.2 B	9.8 B	10 B	8.6 B	5.5 B	7.3 B	5.8 B
Copper	11.9	13.2	13	13.7	15.3	14.7	13.9
Iron	9050	24600	24700	24600	18100	20600	16900
Lead	8.2	15.3	15.3	13.2	7.8	11.4	10.1
Magnesium	10600	2530	2560	3140	3550	2990	3540
Manganese	276	422	414	230	211	554	440
Mercury	0.05 U	0.11 BJ	0.08 BJ	0.16 J	0.09 B	0.15 J	0.08 BJ
Nickel	8.9 J	26.5 J	26.5 J .	25.4 J	16.6 J	23.9 J	18.7 J
Potassium	767 B	564 B	509 B	674 B	813 B	625 B	686 B
Selenium	0.59 U	0.67 B	1.3	0.74 U	0.78 UJ	0.67 B	0.6 U
Silver	0.14 U	0.16 U	0.16 U	0.18 U	0.19 U	0.16 U	0.14 U
Sodium	208 B	86.9 B	87.3 B	110 B	172 B	54.8 B	112 B
Thallium	0.53 U	0.94 R	1.4 R	1.3 R	0.7 U	1.5 R	1.1 R
Vanadium	9.1 B	23.1	22.4	22	16	19.2	16
Zinc	35.7	62.7	63.2	60.3	46.3	53.2	50.4
Cyanide	0.08 U	0.11 B	0.11 B	0.1 U	0.1 U	0.23 B	0.08 B

Notes:

All units in mg/kg Please refer to Table 4-1A for an explantion of data qualifiers.

All detections are bolded.

Lagoon Boring Surface and Subsurface Soil Statistical Data Results Hiteman Leather Site West Winfield, New York

Surface Soil

		· · ·						Screenin	g Criteria		
						NYSDEC-RSCO			,	BKGD-SURF	
COPC Designation	Contaminant	Range of Detection		# Hits/ Total Samples		Criteria	# of Exceedances/ # of Hits	Magnitude of Highest Exceedance	Criteria	# of Exceedances/ # of Hits	Magnitude of Highest Exceedance
Primary	Antimony	5.7 B - 22.8	mg/kg	2/3	LSB-03-0-2	NA	NA	NA	0.69	2/2	33
	Arsenic	5.7 - 8.2	mg/kg	3/3	LSB-03-0-2	7.5	1/3	1	12.9	0/3	NA
	Cadmium	.0.5 B - 2.9	mg/kg	3/3	LSB-03-0-2	1	2/3	3	0.09	3/3	32
	Chromium (Total)	1670 - 8550	mg/kg	3/3	LSB-03-0-2	· 10	3/3	855	23.1	3/3	370
	Chromium (Hexavalent)	6 - 9	mg/kg	2/3	LSB-02-0-2	NA NA	NA	NA	NA	NA	NA
1	Cyanide	0.2 B - 0.81	mg/kg	3/3	LSB-03-0-2	NA	NA	. NA	0.15	3/3	5
	Lead	33.5 - 106	mg/kg	3/3	LSB-03-0-2	NA	NA	NA	23.5	3/3	5
	Mercury	0.06 BJ - 0.11 B ·	mg/kg	2/3	LSB-01-0-2	0.1	1/2	1	0.14	~ 0/2	NA
	Nickel	18 - 33.8	mg/kg	3/3	LSB-01-0-2	13	3/3,	3	35.4	0/3	NA
Non-COPC	Barium	45.9 - 80	mg/kg	3/3	LSB-03-0-2	300	0/3	NA	79.1	1/3	1
	Beryllium	0.41 B - 0.71 B	mg/kg	3/3	LSB-01-0-2	0.16	· 3/3	4	1.21	0/3	NA
	Copper	16.6 - 34.8	mg/kg	3/3	LSB-03-0-2	25	1/3	1	25.1	1/3	NA
) ·	Iron	17900 - 27100	mg/kg	3/3	LSB-01-0-2	2000	3/3	14	33650	0/3	NA
	Selenium	0.73 B - 2.2	mg/kg	2/3	LSB-03-0-2	2	1/2	1	· 0.98	1/2	2
	Silver	0.6 B - 0.6 B	mg/kg	1/3	LSB-01-0-2	NA	NA	NA	0.3	1/1	2
	Sodium	124 B - 600 BJ	mg/kg	3/3	LSB-01-0-2	NA	NA	NA	294.9	1/3	2
	Thallium .	2.4 B - 2.4 B	mg/kg	1/3	LSB-01-0-2	NA	NA	NA	1.06	1/1	2
	Zinc	57 J - 84.3 J	mg/kg		LSB-03-0-2	20	3/3	4	98.4	0/3	NA

CDM

Lagoon Boring Surface and Subsurface Soil Statistical Data Results Hiteman Leather Site West Winfield, New York

Subsurface Soil

			T					Screening	g Criteria	Screening Criteria					
				# Hits/			NYSDEC-RSC	00		BKGD-SUBSUR	KF				
COPC	Contaminant	Range of Detect		Total	Location of		# of	Magnitude of		# of	Magnitude of				
Designation	Containmaint	Range of Detect	ion		Highest Hit	Criteria	Exceedances/ #	Highest	Criteria	Exceedances/ #	Highest				
_				Samples			of Hits	Exceedance		of Hits	Exceedance				
Primary*	Antimony	0.56 B - 29.8	mg/kg	3 / 11	LSB-03-4-6	NA	NA	NA	0.62	2/3	. 48				
	Arsenic	0.98 B - 9.1	mg/kg	11 / 11	LSB-03-4-6-DUP	7.5	2/11	1	17.45	0/11) NA				
	Cadmium	0.11 B - 2.8	mg/kg	9/11	LSB-03-4-6-DUP	1	1/9	3	0.095	9/9	29				
	Chromium (Total)	5.4 - 11100	mg/kg	11 / 11	LSB-03-4-6	10	5/11	1110	30.7	5/11	362				
	Chromium (Hexavalent)	6 - 6	mg/kg	1 / 11	LSB-01-2-4	NA	NA	NA NA	NA	NA	NA -				
	Cyanide	0.03 B - 1.2	mg/kg	8/11	LSB-03-4-6	NA	NA	NA	0.2	2/8	6				
	Lead	1.9 J - 118	mg/kg	11 / 11	LSB-03-4-6	NA	NA	NA	21.25	2/11	6				
	Nickel	4.2 B - 15.6	mg/kg	11 / 11	LSB-02-4-6	13	2/11	1	42.3						
Non-COPC	Beryllium	0.08 B - 0.48 B~	mg/kg	11 / 11	LSB-02-4-6	0.16	5/11	3 .	1.61	0/11	NA				
	Calcium	52500 J - 297000 J		11 / 11	LSB-02-14-16	NA	NA	- NA	81100	8/11	4				
	Copper	4.4 B - 29.2	mg/kg	11 / 11	LSB-03-4-6-DUP	25	2/11	1 [·]	28.8	2/11	1				
	Iron	4180 - 18300	mg/kg	11 / 11	LSB-03-4-6-DUP	2000	11/11	9	40150	0/11	NA				
	Magnesium	2240 - 9330	mg/kg	11 / 11	LSB-02-14-16	NA	NA	NA .	6610	2/11	1				
	Selenium	0.68 B - 1.9	mg/kg	3 / 11	LSB-03-4-6	2	0/3	NA	0.86	2/3	2				
	Sodium	141 B - 288 B	mg/kg	11 / 11	LSB-03-4-6	NA	NA	NA	224.4	4/11	1				
	Thallium	1 B - 1.1 B	mg/kg	3 / 11	LSB-03-4-6-DUP	NA NA	NA	NA	0.7	3/3	2				
	Zinc	13.6 J - 86.9 J	mg/kg	11 / 11	LSB-03-4-6-DUP	. 20	4/11	4	105.1	0/11	NA				
	Pentachlorophenol	440 J - 8000 J	ug/kg	4 / 11	LSB-01-2-4	5240	1/4	2	NA NA	NA -	NA				

Notes:

NYSDEC-RSCO : NYSDEC Recommended Soil Cleanup Objectives, adjusted for Site TOC of 5.24%

BKGD-SURF: Hiteman Background Criteria for Inorganics - Surface Soil

BKGD-SUBSURF: Hiteman Background Criteria for Inorganics - Subsurface Soil

ug/kg : micrograms per kilogram

mg/kg : milligrams per kilogram .

"Number of Exceedances" and "Magnitude of Highest Exceedance" are based on exceedances of the most stringent criteria, which is bolded There is no soil screening criteria for hexavalent chromium; however, it is considered a primary COPC.

NA: Not Available

Please refer to Table 4-1A for an explanation of data qualifiers.

*The Primary COPC mercury was not detected at levels exceeding any screening criteria.

CDM

Building Boring Subsurface Soil Statistical Data Results Hiteman Leather Site West Winfield, New York

	· ·							Screenin	g Criteria		
COPC		,		Location of	# Hits/		NYSDEC-RSC	:0		BKGD-SUBSU	RF
Designation	Contaminant	Range of Detectio	n	Highest Hit	Total		. # of	Magnitude of		# of	Magnitude of
Designation				nignest nit	Samples	Criteria	Exceedences/	Highest	Criteria	Exceedences/	Highest
							# of Hits	Exceedance		# of Hits	Exceedance
Primary	Antimony	1.1 BJ - 7 BJ n	ng/kg	BSB-04-0-2	2 / 13	NA	NA	NA	0.62	2/2	11
	Arsenic	1.7 В - 9.9 п	ng/kg	BSB-05-0-2-DUP	10 / 10	7.5	4/10	· 1	17.45	0/10	NA
	Cadmium	0.14 B - 0.77 B n	ng/kg	BSB-04-2-4	13 / 13	1	0/13	NA	0.095	13/13	8
	Chromium (Total)			BSB-04-0-2	13 / 13	. 10	11/13	· 221	30.7	9/11	72
	Chromium (Hexavalent)	4 J - 4 J n	ng/kg	BSB-05-0-2-DUP	3 / 13	NA	.NA	NA	NA	NA	NA
	Cyanide.	0.07 B - 1n	ng/kg	BSB-02-0-2	13 / 13	NA	NA	NA	0.2	5/13	5
	Lead	2.6 - 141 J n	ng/kg	BSB-02-0-2	13 / 13	NA	NA	NA	21.25	. 5/13	7
	Mercury			BSB-02-0-2	8/13	0.1	2/8	2	0.24	0/8	NA
	Nickel	4.4 B - 30.7 J n	ng/kg	BSB-01-0-2	13 / 13	13	5/13	2	42.3	0/13	NA
Non-COPC	Barium	8.5 B - 140 J n	ng/kg	BSB-02-0-2	13 / 13	300	0/13	NA	100.1	2/13	1
	Beryllium	0.13 B - 0.8 B n	ng/kg	BSB-03-0-2	13 / 13	0.16	10/13	5	1.61	0/13	NA
	Calcium	8210 J - 258000 J r	ng/kg	BSB-02-8-10	13 / 13	NA NA	NA	NA	81100	7/13	3
	Copper	4.5 B - 32.7 r	ng/kg	BSB-01-0-2	13 / 13	25	3/13	1	28.8	3/13	1
	Iron	4540 J - 23900 J r	ng/kg	BSB-04-2-4	13 / 13	2000	13/13	12	40150	0/13	NA
	Magnesium	2150 BJ - 29900 J r	ng/kg	BSB-05-0-2-DUP	13/13	NA NA	NA	NA	6610	4/13	5
	Manganese	114 J - 956 J r	mg/kg	BSB-02-0-2	13 / 13	NA NA	NA	NA	717.5	2/13	1
	Potassium			BSB-03-0-2	13 / 13	NA	NA	NA	1399	3/13	1
	Selenium			BSB-02-0-2	1./ 13	2	0/1	NA	0.86	1/1	. 1
	Sodium			BSB-04-0-2	13 / 13	NA	NA	NA	224.4	6/13	30
	Zinc	17.8 J - 219 J r	mg/kg	BSB-02-0-2	13 / 13	20	11/13	11 .	105.1	1/13	2

Notes:

BKGD-SUBSURF : Hiteman Background Criteria for Inorganics - Subsurface Soil

NYSDEC-RSCO : NYSDEC Recommended Soil Cleanup Objectives, adjusted for Site TOC of 5.24%

mg/kg = milligrams per kilogram

There is no soil screening criteria available for hexavalent chromium; however, it is considered a primary COPC.

NA = Not Available

Please refer to Table 4-1A for an explanation of data qualifiers.

"Number of Exceedances" and "Magnitude of Highest Exceedance" are based on exceedances of the most stringent criteria, which is bolded.

CDM

Onsite Soil Boring Surface and Subsurface Soil Statistical Data Results Hiteman Leather Site West Winfield, New York

Surface Soil

								Screenin	g Criteria		
				(# Hits/		NYSDEC-RSCC)		BKGD-SURF	
COPC Designation	Contaminant	Range of Detection		Location of Highest Hit	Total Samples	Criteria	# of Exceedences/ # of Hits	Magnitude of Highest Exceedance	Criteria	# of Exceedences/ # of Hits	Magnitude of Highest Exceedance
Primary	Antimony	1.3 BJ - 260 J	mg/kg	RSB-08-0-2	10 / 23	NA	NA	NA	0,69	10/10	377
[Arsenic	3.1 J - 41		RSB-02-0-2	14 / 14	7.5	9/14	5	12.9	5/14	3
	Cadmium .	0.32 B - 4.1		RSB-17-0-2	21 / 23	1	8/21	4 ·	0.09	21/21	46
1	Chromium (Total)	5.2 J - 75800 J	mg/kg	RSB-08-0-2	23 / 23	10	19/23	7580	23.1	16/23	3281
	Chromium (Hexavalent)	6 - 36 J	mg/kg	RSB-02-0-2	3/23	NA	NA	NA	NA	ŅA	NA
	Cyanide	0.06 B - 3.1	mg/kg	RSB-01-0-2	23 / 23	NA	NA	NA	0.15	16/23	21
Į –	Lead	5.8 J - 319	mg/kg	RSB-16-0-2	23 / 23	NA		NA	23.5	20/23	14
	Mercury .	0.07 BJ - 0.8	mg/kg	RSB-07-0-2	17 / 21	0.1	14/17	8	0,14	13/17	6
	Nickel	<u>6.3 B - 43.1</u>	_mg/kg	RSB-01-0-2	23 / 23	13	17/23	3	35.4	、 2/23	1
Secondary	Benzo(a)anthracene	43 J - 15000 J	ug/kg	RSB-07-0-2	13 / 18	1174	5/13	13	NA	NA	NA
	Benzo(a)pyrene	45 J - 14000 J	ug/kg	RSB-07-0-2	13 / 18	320	6/13	44	NA NA	NA	NA.
1	Chrysene	44 J - 14000 J	ug/kg	RSB-07-0-2	14 / 18	2096	4/14	7	NA NA	NA	NA
	Dibenz(a,h)anthracene	53 J - 2300 J	ug/kg	RSB-07-0-2	3/18	73	2/3	32	NA NA	NA	NA
Non-COPC	Benzo(b)fluoranthene	37 J - 13000 J	ug/kg	RSB-07-0-2	14 / 18	5764	1/14	2	NA	NA	NA .
1	Benzo(k)fluoranthene	130 J - 9300 J	ug/kg	RSB-07-0-2	12 / 18	5764	1/12	2.	NA	NA	NA
1	Barium	51.8 B - 400	mg/kg	RSB-04-0-2	23 / 23	300	1/23	1	79.1	14/23	5
	Beryllium	0.21 B - 0.84	mg/kg	RSB-01-0-2	22 / 23	0.16	22/22	[.] 5	1.21	0/22	NA
	Calcium	5250 - 16500 J	mg/kg		23 / 23	NA NA	NA	NA	156380	3/23	2
	Cobalt	2.3 B - 23.8	mg/kg	RSB-01-0-2	23 / 23	30	0/23	NA ·	13		2
1	Copper	17.8 - 123	mg/kg		22 / 22	25		5	25.1		5
	Iron	5360 J · - 128000	mg/kg		23 / 23	2000		64	33650		4
	Selenium	0.56 B - 8.1	mg/kg		18 / 23	2	8/18	4	0.98		8
	Silver	0.36 B 0.36 B	mg/kg		1 / 23	NA NA		. NA	0.3	ľ	1
1	Sodium	150 B - 718 BJ	mg/kg		21 / 23) NA		NA .	294,9		2
1	Thallium	1.2 B - 17.2 J		RSB-08-0-2	4 / 23	NA NA		NA	1.06		16
I ·	Vanadium	98 - 57.1 J		RSB-08-0-2	23 / 23	150	1	NA	32.2		2
	Zinc	28.2 - 248	mg/kg	RSB-01-0-2	23 / 23	20	23/23	12	98.4	3/23	12

Onsite Soil Boring Surface and Subsurface Soil Statistical Data Results Hiteman Leather Site West Winfield, New York

Subsurface Soil

ſ									Screenin	g Criteria		
			~ /			# Hits/		NYSDEC-RSCC)		BKGD-SUBSUR	F
COPC Designation	Contaminant	Ran	ge of Detectior	1 -	Location of Highest Hit		Criteria	# of Exceedences/ # of Hits	Magnitude of Highest Exceedance	Criteria	# of Exceedences/ # of Hits	Magnitude of Highest Exceedance
Primary *	Antimony	0.55 B	225 J	mg/kg	RSB-01-2-4	. 20 / 52	NA	NA	·NA	0.62	19/20	363
· ·	Arsenic	1.4 B	- 45	mg/kg	RSB-15-4-6	34 / 34	7.5	13/34	6	.17.45	6/34	43
	Cadmium	0.15 B	~ 11.8 J		RSB-16-2-4-DUP	47 / 52	1	11/47	12	0.095	47/47	124
1	Chromium (Total)	4.8	- 74600 J		RSB-01-2-4	53 / 53	10	45/53	7460	30.7	31/53	2430
í	Chromium (Hexavalent)	4	- 86		RSB-06-4-6	· 8 / 52	NA	NA	NA	NA	NA	NA
	Cyanide	0.03 B	- 6.8 J		RSB-01-2-4	41 / 52	NA	NA	NA	0.2	19/41	34
]	Lead	2.5	- 849	mg/kg	RSB-15-2-4	52 / 52	NA	NA	NA	21.25	23/52	40
	Mercury	0.05 BJ	- 0.86	mg/kg		30 / 47	0.1	23/30	9	0.24	12/30	4
l	Nickel	4.3 B	- 60.8 J		RSB-16-2-4-DUP	52 / 52	13	26/52	5	42.3	1/52	1
Secondary	Benzo(a)anthracene	68 J	- 8200	' ug/kg	RSB-16-2-4-DUP	19 / 43	1174	8/19	7	NA	NA	NA
	Benzo(a)pyrene	60 J	- 8000	ug/kg	RSB-16-2-4-DUP	20 / 42	320	11/20	25	NA	NA NA	NA
1	Chrysene	86 J	- 8400	ug/kg	RSB-16-2-4-DUP	21 / 43	2096	6/21	• 4	NA NA	NA	NA
	Dibenz(a,h)anthracene	91 J	- 1400 J	ug/kg	RSB-09-2-4	7/42	73	7/7	19	NA	NA	_NA
Non-COPC	Benzo(b)fluoranthene	59 J	- 7900	ug/kg	RSB-16-2-4-DUP	19/42	5764	1/19	1	NA	NA	NA
1	Benzo(k)fluoranthene	50 J	- 6300	ug/kg	RSB-16-2-4-DUP	17 / 42	5764	1/17	1	NA	NA	NA
r.	Barium	9 B	- 667	mg/kg	RSB-15-2-4	52 / 52	300	1/52	2	100.1	10/52	7
	Beryllium	0.08 B	- 1.5	mg/kg	RSB-16-2-4	51 / 52	0.16	42/51	9	1.61	0/51	NA
	Calcium	1510 J	- 249000 J	mg/kg	RSB-6-8-10	52 / 52	· NA	NA	NA	81100	29/52	3
	Cobalt	0.7 B	- 49.5	mg/kg	RSB-16-2-4-DUP	52 / 52	30	1/52	2	13.6	5/52	4
	Copper	3.8 B	- 426	mg/kg	RSB-16-2-4	49 / 49	25	17/49	17	28.8	16/17	15
	Iron	4080	- 189000 J	mg/kg	RSB-16-2-4-DUP	52 / 52	2000	52/52	95	40150	2/52	5
-	Magnesium	885 B	- 20700	mg/kg	RSB-07-2-4	52 / 52	NA	NA	NA	6610	7/52	3
	Manganese	73.2 J	- 1090	mg/kg	RSB-04-2-4	52 / 52	NA NA	NA NA	NA	717.5	5 1/52	2
	Selenium	0.5 B	- 8 J	mg/kg	RSB-16-2-4-DUP	29 / 52	2	8/29	4	0.86	22/29	9
ł	Silver	0.21 BJ	- 2.1	mg/kg	RSB-07-10-12	5/52	NA	NA .	NA	0.33	5 4/5	6
1	Sodium	135 B	- 1040 B	·mg/kg	RSB-16-2-4-DUP	49 / 52	NA	NA	NA	224.4	16/49	5
Į	Thallium	1.1 B	17.1 J	mg/kg	RSB-01-2-4	6 / 52	NA	NA	NA	0.7	6/6	24
	Zinc	13.3 J	- 723 J	mg/kg	RSB-16-2-4-DUP	52 / 52	20	47/52	36	105.1	1 14/47	7

Notes:

NYSDEC-RSCO : NYSDEC Recommended Soil Cleanup Objectives, adjusted for Site TOC of 5.24%

BKGD-SURF : Hiteman Background Criteria for Inorganics - Surface Soil

BKGD-SUBSURF: Hiteman Background Criteria for Inorganics - Subsurface Soil

mg/kg : milligrams per kilogram

ug/kg : micrograms per kilogram

There is no soil screening criteria for hexavalent chromium; however, it is considered a primary COPC.

NA : Not Available

Please refer to Table 4-1A for an explanation of data qualifiers.

"Number of Exceedances" and "Magnitude of Highest Exceedance" are based on exceedances of the most stringent criteria, which is bolded.

Off Site Soil Boring Surface and Subsurface Soil Statistical Data Results Hiteman Leather Site West Winfield, New York

Surface Soil

		· · · · · · · · · · · · · · · · · · ·						Screenii	ng Criteria		
					# Hits/		NYSDEC-RSC	:0		BKGD-SURF	
COPC Designation	Contaminant	Range of Detection	on	Location of Highest Hit	Total Samples	Criteria	# of Exceedances/ # of Hits	Magnitude of Highest Exceedance	Criteria	# of Exceedances/ # of Hits	Magnitude of Highest Exceedance
Primary	Antimony	. 1 BJ - 9.9 B	mg/kg	RSB-41-0-2	5/14	NA	NA	NA	0.69	5/5	. 14
	Arsenic	2.7 - 80.9	mg/kg	RSB-41-0-2	11 / 11	7.5	. 4/11	11	12.9	4/11	6
	Cadmium	0.19 B - 5	mg/kg	RSB-43-0-2	14 / 14	1	5/14	5	0.09	14/14	56
	Chromium (Total)	6.7 - 1430	mg/kg	RSB-41-0-2	14 / 14	10	13/14	143	23.1	8/14	62
	Chromium (Hexavalent)	17 J - 17 J	mg/kg	RSB-22-0-2	1 / 14	NA	NA	NA	`NA	NA	NA
ł	Cyanide	0.08 B - 1.7	mg/kg	RSB-22-0-2	14 / 14	NA	NA	NA	0.15	11/14	11
- ·	Lead	13.7 J - 1820 *	mg/kg	RSB-43-0-2	14 / 14	NA	NA	NA	23.5	10/14	77 ·
	Mercury	0.09 - 1.1	mg/kg	RSB-41-0-2	10 / 10	0.1	9/10	11	0.14	8/10	8
	Nickel	6.7 B - 33.6	mg/kg	RSB-43-0-2	14 / 14	13	. 8/14	3	35.4	0/14	NA
Non-COPC	Barium	12.5 B - 349	_mg/kg	RSB-43-0-2	14 / 14	300	1/14	1 ·	79.1	5/14	4
	Beryllium	0.14 B - 0.56 B	mg/kg	RSB-48-0-2	14 / 14	0.16	13/14	3	1.21	0/14	NA
1	Calcium	3940 J - 276000 EJ	mg/kg	RSB-40-0-2	14 / 14	NA NA	NA	NA	156380	2/14	2
	Copper	7.1 * - 634 * .	mg/kg	RSB-43-0-2	14 / 14	25	6/14	25	25.1	6/14	25
1	Iron	5330 EJ - 47400 *	ˈmg/kg	RSB-43-0-2	14 / 14	2000	14/14	24	33650	2/14	1
1	Manganese	179 - 820	mg/kg	RSB-45-0-2	14 / 14	ŅA	NA	NA	699	2/14	1
	Selenium	0.59 B - 16	mg/kg	RSB-22-0-2	8 / 14	2	2/8	8	0.98	7/8	16
	Silver	0.33 B - 4	mg/kg	RSB-45-0-2	8/14	NA	- NA	NA ·	0.3	8/8	13
1	Sodium	96 B - 975 B	mg/kg	RSB-22-0-2	11 / 14	NA NA	NA	NA	294.9	. 2/11	3
	Thallium	1.6 B - 3.2	mg/kg	RSB-43-0-2	2/14	NA	NA	NA	1.06	2/2	3
	Zinc	31.4 J - 1170 *	mg/kg	RSB-43-0-2	14 / 14	20	14/14	59	98.4	6/14	12

Off Site Soil Boring Surface and Subsurface Soil Statistical Data Results Hiteman Leather Site West Winfield, New York

Subsurface Soil

										Screenir	ng Criteria		
1							# Hits/		NYSDEC-RSC	0		BKGD-SUBSU	RF
COPC Designation	Contaminant	Ran	ige of Det	ectio	n	Location of Highest Hit	Total Samples	Criteria	# of Exceedances/ # of Hits	Magnitude of Highest Exceedance	Criteria	# of Exceedances/ # of Hits	Magnitude of Highest Exceedance
Primary	Antimony	0.65 B	- 5.8	BJ	mg/kg	RSB-22-2-4	10 / 38	NA	NA	NA	0.62	10/10	9
	Arsenic	2.1	- 26.7			RSB-21-2-4	30/30	7.5	11/30	4	17.45	3/30	. 2
	Cadmium	0.15 B	- 6.7		mg/kg	RSB-45-2-4	28 / 38	1	9/28	7	0.095	28/28	71 [°]
	Chromium (Total)	3.8	- 1190	J	mg/kg	RSB-21-2-4	38 / 38	10	20/38	119	30.7	11/38	39
1. ·	Chromium (Hexavalent)	4 J	- 15	J	mg/kg	RSB-22-2-4	5/38	NA	NA	NA	. NA	NA	NA
	Cyanide	0.04 B	- 1.5		mg/kg	RSB-21-2-4	37 / 38	NA	NA	NA	0.2	11/37	8
	Lead	3.7	- 1490	*	mg/kg	RSB-43-2-4	38 / 38	NA	NA	NA	21.25	19/38	70
	Mercury	0.05 B	- 30.3	N*J	mg/kg	RSB-42-4-6	16 / 21	0.1	9/16	303	0.24	8/16	126
	Nickel	4.6 B	- 68.8	J	mg/kg	RSB-41-4-6	38 / 38	13	14/38	5	42.3	3/38	2
Non-COPC	Barium	12.3 B	- 2600		mg/kg	RSB-45-2-4	31 / 31	300	3/31	9	100.1	8/31	26
	Beryllium	0.11 B	- 0.05	В	mg/kg	RSB-48-2-4	29/31	0.16	26/29	3	1.61	0/29	NA
	Calcium	21600 EJ	- 242000)	· mg/kg	RSB-49-8-10	31 / 31	NA NA	NA	NA	81100	· 23/31	3
	Copper	4.5 B*	- 643	J	mg/kg	RSB-41-4-6	31 / 31	25	11/31	26	28.8	11/31	22
	Iron	4950	- 95700	*	mg/kg	RSB-42-4-6	31 / 31	2000	31/31	48	40150	5/31	3
1	Magnesium	2050	- 17400		mg/kg	RSB-44-8-10	31 / 31	NA	NA	NA	6610	4/31	3
	Potassium	298 BE	- 1410	J	mg/kg	RSB-41-4-6	31 / 31	NA	NA	- NA	1399	1/31	1
	Selenium	0.513 BJ	- 9.1		mg/kg	RSB-21-2-4	9/31	2	8/9	5	0.86	9/9	11
	Silver	0.29 B	- 3.6		mg/kg	RSB-41-4-6	14 / 31	NA NA	' NA	NA	0.335	11/14	11
	Sodium	103 B	- 2110		mg/kg	RSB-22-2-4	28/31	NA	NA	NA	224.4	9/28	9
	Thallium	. 1 B	- 6.6	•	mg/kg	RSB-42-4-6	6/31	NA	NA	NA	0.7	6/6	9
	Zinc	20.4 J	- 5000	*	mg/kg	RSB-42-4-6	31 / 31	20	31/31	250	105.1	11/31	48

Notes:

NYSDEC-RSCO : NYSDEC Recommended Soil Cleanup Objectives, adjusted for Site TOC of 5.24%

BKGD-SURF : Hiteman Background Criteria for Inorganics - Surface Soil

BKGD-SUBSUR : Hiteman Background Criteria for Inorganics - Subsurface Soil

mg/kg : milligrams per kilogram

There is no soil screening criteria for hexavalent chromium; however, it is considered a primary COPC.

NA: Not Available

Please refer to Table 4-1A for explaination of data qualifiers.

"Number of Exceedances" and "Magnitude of Highest Exceedance" are based on exceedances of the most stringent criteria, which is bolded.

CDM

South Bank Front Lot Surface Soil Statistical Data Results Hiteman Leather Site West Winfield, New York

					1				Screenin	g Criteria		
	· ·							NYSDEC-RSC	0	_	BKGD-SURF	
COPC Designation	Contaminant	Ran ,	ge of Detect	ion	Location of Highest Hit	# Hits/ Total Samples	Criteria	# of Exceedences/ # of Hits	Magnitude of Highest Exceedance	Criteria	# of Exceedences/ # of Hits	Magnitude of Highest Exceedance
Primary *	Antimony	0.64 B	- 1.6 B	mg/kg	RSS-01	3/7	NA	NA	NA	0.69	2/3	2
l i	Arsenic	5.3	- 16.5	mg/kg	RSS-06	7/7	7.5	5/7	2	12.9	1/7	1
ľ	Cadmium	0.18 B	- 0.92 B	mg/kg	RSS-03-Dup	7/7	1	0/7	NA	0.09	7/7	10
	Chromium (Total)	104	- 474		RSS-01	7/7	10	7/7	47	23.1	7/7	21
	Cyanide	-0.1 B	- 0.26 B	mg/kg	RSS-05	7/7	NA	NA	NA NA	0.15	4/7	2
1	Lead	22.8	- 189		RSS-03-Dup	7/7	NA	NA	NA	23.5	6/7	8
	Nickel	8.8 B	- 21.3 J	mg/kg	RSS-03-Dup	7/7	13	6/7	2	35.4	0/7	NA
Non-COPC	Barium	55.2 B	- 216	mg/kg	RSS-03-Dup	717	300	0/7	NA	79.1	5/7	3
ļ	Beryllium	0.2 B	- 0.7 B	mg/kg	RSS-03	7/7	0.16	7/7	4	1.21	0/7	NA
]	Copper	14.3 J	- 28.7 J	mg/kg	RSS-03-Dup	7/7	25	1/7	1	25.1	1/7	1
	Iron	9630 EJ	- 24700 EJ	mg/kg	RSS-03-Dup	7/7	2000	7/7	12	33650	0/7	· NA
	Manganese	281	- 1360	mg/kg	RSS-03-Dup	7/7	NA	NA	NA	699	3/7	2
	Potassium	681 B	- 1480 B		RSS-03-Dup		NA	NA	NA	1331	2/7	1
	Selenium	1.2 B	- 3.2	mg/kg			2	1/7	2	0.98	7/7	3
	Silver	0.54 B	- 2.3 B	mg/kg	RSS-03-Dup	7/7	NA	NA	NA	0.3	7/7	8
	Zinc	66.2	- 329		RSS-03-Dup	7/7	20	7/7	16	98.4	6/7	3

Notes:

BKGD-SURF : Hiteman Background Criteria for Inorganics - Surface Soil

NYSDEC-RSCO : NYSDEC Recommended Soil Cleanup Objectives, adjusted for Site TOC of 5.24%

mg/kg : milligrams per kilogram

NA: Not Available

SB = Use Site Background

Please refer to Table 4-1A for an explanation of data qualifiers.

* The Primary COPCs hexavalent chromium and mercury were not detected in Southbank Front Lot soil samples at levels exceeding any screening criteria. soil samples at levels exceeding any screening criteria.

"Number of Exceedances" and "Magnitude of Highest Exceedance" are based on exceedances of the most stringent criteria, which is bolded.

CDM

Onsite Wetland Sediment Statistical Data Results Hiteman Leather Site West Winfield, New York

									_		Screening Criteri	a			
				· ·		Ì		NYSED-HFW	_		NYSED-AC-LELV	~	_	NYSED-AC-SEL	.w
COPC Designation	Contaminant	Range of Detec	tion	Location of Highest Hit	# Hit Tota Samp	ai	Criteria	# of Exceedances/ # of Hits	Magnitude of Highest Exceedance	Criteria	# of Exceedances/ # of Hits	Magnitude of Highest Exceedance	Criteria	6/32 0/22 26/32 2/10 14/32 0/28 0/29 1/32 NA NA NA NA NA NA NA NA NA NA NA NA NA	Magnitude of Highest Exceedance
Primary*	Antimony	2.1 J - 795 J	ma/ka	WTSD-14-0-6	21/3	32	NA	NA	NA	2	21/21	398	25	10/21	32
· · · ·	Arsenic	3.1 BJ - 188 J	mg/kg	WTSD-14-0-6	32/3	32	NA	NA	NA	6	27/32	31	33	6/32	6
1	Cadmium	0.4 B - 6.2 J	mg/kg	WTSD-09-0-6	22 / 3	32	NA	NA	NA	0.6	19/22	10	9	0/22	NA
	Chromium (Total)	15.2 J - 89900 J	mg/kg	WTSD-14-0-6	32/3	32	NA	NA	NA	26	30/32	3458	110	26/32	82
	Chromium (Hexavalent)	19 J - 160 J	mg/kg	WTSD-17-0-6	10 / 3	32	NA	NA	NA	. 26	• 7/10	6	110	2/10	1
	Lead	16.1 - 316 J	mg/kg	WTSD-01-0-6	32/3	32	. NA	NA	NA	31	-26/32	10	110		3
	Mercury	0.18 - 0.82 J	mg/kg	WTSD-05-18-24	28/3	32	NA	NA	NA	0,15	28/28	5	1.3		NA
1	Nickel	8.3 BJ - 37.3 J	mg/kg	WTSD-07-18-24	29 / 2	29	NA	NA	NA	16		2	50		NA
Secondary	Copper	9.8 J - 635 J	mg/kg	WTSD-06-0-6	32 / 3	32	NA	NA	NA	16	26/32	40	. 110		6
T i	alpha-Chlordane	0.44 J - 25 NJ	ug/kg `	WTSD-13-0-6	15/3	32	0.1105	15/15	226	3.315		8	NA NA		NA
	gamma-Chlordane	1.9 J - 22 NJ	ug/kg	WTSD-04-18-24	13 / 3	32 (0.1105	13/13	199	0.1105		199	NA		NA
Non-COPC	4'4'-DDD	5.9 J - 15 J	ug/kg	WTSD-04-18-24	3/3	32	1.105		14	110.5		NA	110.5		NA
	4,4'-DDE	2.3 J - 38 J	ug/kg	WTSD-10-18-24-DUP	6/3	32	1.105	6/6	34	NA		NA	NA NA	f	NA
	4.4'-DDT	4.8 J - 73 J	ug/kg	WTSD-09-0-6	2.1 3	32	1.105		66	NA NA		NA	NA		NA I
	4-Methylphenol	250 J - 250 J	ug/kg	WTSD-06-0-6	1/3		NA	NA	NA	55,25		1/1	NA		NA
	Arocior-1254	130 J - 130 J	·ug/kg	WTSD-02-18-24	1/:	32	0.0884	· 1/1	1471	2132.65		NA	NA		. NA
	Benzo(a)anthracene	45 J - 210 J	ug/kg	WTSD-01-0-6	5/:	32	143.65		1	1326	0/5	NA	NA	1	NA
	Benzo(a)pyrene	20 J - 260 J	ug/kg	WT.SD-01-0-6	9/:	32	143.65	2/9	2	NA NA		NA	. NA		· NA
	Benzo(b)fluoranthene	35 J - 430 J			10 / 3	32	143.65		3	NA NA		NA	NA NA		NA
	Benzo(k)fluoranthene	39 J - 220 J		WTSD-01-0-6	7/:		143.65		2	NA	1	NA	NA	1	NA
1	Chrysene	41 J - 240 J		WTSD-01-0-6	91:		143.65		2	. NA	· · · · · · · · · · · · · · · · · · ·	NA NA	NA NA		NA .
	Heptachlor	0.23 J - 0.23 J		WTSD-09-18-24	1/:		0.0884		3	11.0		NA '	NA		NA
- ·	Indeno(1,2,3-cd)pyrene	36 J - 180 J		WTSD-1-0-6		32	143.65		1	N/		NA	NA NA		NA
l l	Iron	4110 J - 91300 J		WTSD-04-0-6		32	NA NA		NA	20000	· •	5	40000		2
1	Manganese	82.7 J - 5880 J		WTSD-04-0-6		32	NA NA		NA	460		13	1110		5
1	Silver	0.4 J - 2.7 BJ		WTSD-06-0-6		32	NA		NA	1 .	3/10	3	2.2		1
	Zinc	72.9 J - 1190 J	mg/kg	WTSD-01-0-6	32 /	32	NA	NA	NA	120	17/32	10	270	8/32	4

Notes:

NYSED-HFW : NYS Sediment Criteria for Human Health Bioaccumulation Freshwater - Sediment NYSED-AC-LELW : NYS Sediment Wetland for Benthic Aquatic Life, LEL for Inorganics

NYSED-AC-SELW : NYS Sediment Wetland for Benthic Aquatic, SEL for Inorganics

mg/kg : milligrams per kilogram

ug/kg : micrograms per kilogram

NA : Not Available

Please refer to Table 4-1A for an explanation of data qualifiers.

*Please note that the criteria listed for organic compounds are not considered LEL thresholds. They are sediment criteria developed for the protection of benthic aquatic life.

* The primary COPC cyanide was not detected at levels exceeding any Screening Criteria.

"Number of Exceedances" and "Magnitude of Highest Exceedance" are based on exceedances of the most stringent criteria, which is bolded.

Unadilla River Sediment Statistical Data Results Hiteman Leather Site West Winfield, New York

									Screening Crite	eria			•
СОРС			Location of	# Hits/		NYSED-HF	W		NYSED-AC-LE	LR*		NYSED-AC-S	ELR
Designation	Contaminant	Range of Detection	Highest Hit	Total		#of	Magnitude of		# of	Magnitude of		# of	Magnitude of
Designation			nynestnit	Samples	Criteria	Exceedances/	Highest	Criteria	Exceedances/	Highest	Criteria	Exceedances/	Highest
						# of Hits	Exceedance		# of Hits	Exceedance		# of Hits	Exceedance
Primary**	Antimony	0.99 BJ - 15 BJ mg/kg	URSD-5	8/11	NA	NA	NA	2	6/8	8	25	0/8	NA
	Arsenic	1.7 B - 7.2 J mg/kg	URSD-5	10 / 11	NA	NA	NA	6	1/10	1	33	.0/10	NA
	Chromium (Total)	10.9 J - 1670 mg/kg	URSD-2	11 / 11	NA	NA	NA	26	7/11	64	110	4/11	15
	Lead	6.1 J - 58.3 mg/kg	URSD-6	11 / 11	NA	NA	NA	31	3/11	2	110	0/11	NA
	Mercury	0.09 BJ - 0.25 BJ mg/kg	URSD-5	6 / 11	NA	NA	NA	0.15	· 4/6	2	1.3	0/6	NA
	Nickel	6.2 B - 18.8 mg/kg	URSD-7	11 / 11	NA	NA	NA	16	4/11	1	50	0/11	NA
Secondary	Benzo(a)anthracene	62 J - 450 J ug/kg	URSD-2	8/11	143.65	3/8	3	274.8	1/8	2	NA	NA	NA
	gamma-Chlordane	1.1 J - 5.6 J ug/kg	URSD-9	2/11	0.1105	1/2	51	0.0229	2/2	245	NA	NA	NA
Non-COPC	4-Methylphenoi	79 J-79 J ug/kg	URSD-4	1 / 11	NA	NA	NA	11.45	1/1	7 -	NA	NA	NA
	Benzo(a)pyrene	64 J - 520 ug/kg	URSD-2-DUP	8/11	143.65	4/8	4	NA NA	NA	NA	· NA	NA	NA
	Benzo(b)fluoranthene	67 J - 760 J ug/kg	URSD-2-DUP	8 / 11	143.65	6/8	5	NA	NA	NA	NA NA	NA	NĄ
	Benzo(k)fluoranthene	62 J - 150 J ug/kg	URSD-5	3 / 11	143.65	1/3	1.	NA NA	NA	NA	NA NA	NA	NA
	Indeno(1,2,3-cd)pyrene	40 J - 280 J ug/kg	URSD-2-DUP	7/11	143.65	3/7 ·	2	NA	NA	NA	NA NA	NA	NA
	Endosulfan i	0.71 J - 0.71 J ug/kg	URSD-2	1/11	NA NA	NA	NA	0.687	1/1	1	NA	NA	NA
	Chrysene	79 J - 540 ug/kg	URSD-2	8 / 11	143.65	6/8	4	NA	NA	NA ·	NA	NA	NA
	beta-BHC	4.3 J - 11 ug/kg	URSD-2-DUP	3 / 11	6.63	1/3	2	1.374	3/3	8	NA NA	NA	NA
· ·	Copper	4.6 B - 22.7 mg/kg	URSD-2-DUP	7/7	NA NA	NA	. NA	16	3/7	1	110	0/7	NA
1	Iron	7140 - 20200 mg/kg	URSD-6	11 / 11	NA	NA	NA	20000	1/11	1	40000	0/11	NA
	Manganese	82.7 - 559 J mg/kg	URSD-5	11 / 11	NA	NA	NA	460	1/11	1	1110	0/11	NA

Notes:

NYSED-HFW : NYS Sediment Criteria for Human Health Bioaccumulation Freshwater - Sediment

NYSED-AC-LELR :NYS Sediment River for Benthic Aquatic Life, LEL for Inorganics

NYSED-AC-SELR : NYS Sediment River for Benthic Aquatic Life, SEL for Inorganics

ug/kg : micrograms per kilogram

mg/kg : milligrams per kilogram

NA : Not Available

Please refer to Table 4-1A for an explanation of data qualifiers.

*Please note that the criteria listed for organic compounds are not considered LEL thresholds. They are sediment criteria developed for the protection of benthic aquatic life.

** The primary COPCs hexavalent chromium and cadmium were not detected at levels exceeding any screening criteria.

"Number of Exceedances" and "Magnitude of Highest Exceedance" are based on exceedances of the most stringent criteria, which is bolded.

Unadilla River Surface Water Statistical Data Results Hiteman Leather Site West Winfield, New York

						Screening	Criteria		# of	Magnitude of
COPC Designation	Contaminant	Range of Detection	# Hits/ Total	Location of Highest Hit	EPASW- HHORG	EPASW- AFRESHCC	NYSW-C- HFC	NYSW-C- AC	Exceedances/ # of Hits	Highest Exceedance
Secondary	Aluminum	21.9 B - 150 B ug/l	9/11	URSW-10	0	87	0	100	5/9	. 2
Non-COPC	bis(2-Ethylhexyl)phthalate	3 J - 3 J ug/l	1 / 11	URSW-2	5.9	0	0	0.6	1/1	5
	Tetrachloroethene	6J-6J ug/l	1/11	URSW-10	8.85	0	1	0	1/1	6

Notes:

EPASW-AFRESHCC : EPA Ambient Water Criteria - Aquatic Life Chronic Freshwater

EPASW-HHORG : EPA Ambient Water Criteria - Human Health for Consumption of Organisms

NYSW-C-AC : NYS Standards and Guidance Values for Class C Surface Water

NYSW-C-HEC : NYS Standards and Guidance Values for Class C Surface Water H(FC)

ug/I : micrograms per liter

"Number of Exceedances" and "Magnitude of Highest Exceedances" are based on exceedances of the most stringent criteria, which is bolded.

NA : Not Available

Please refer to Table 4-1A for an explanation of data qualifiers.

No primary COPCs were detected at levels exceeding any screening criteria.

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\RItab4-19

Page 1 of 1

Fish Tissue Statistical Data Results Hiteman Leather Site West Winfield, New York

Forage Fish

CORC			Hiller (Total	Leastien of		Screening Criteria	a
COPC Designation	Contaminant	Range of Detection	# Hits / Total Samples	Location of Highest Hit	USEPA-FISH	# of Exceedances/ # of Hits	Magnitude of Exceedance
Secondary	Methylene Chloride	· 210 - 900 J ug/kg	8/8	URFF-3-B	400	5/8	2
Non-COPC	Benzene	4 J - 62 ug/kg	3/8	URFF-4-B	60	1/3	1
	Aldrin	5.7 JN - 7.6 J ug/kg	2/8	URFF-5-A	0.19	2/2	40
	Heptachlor epoxide	5.5 J - 5.5 J ug/kg	1/8	URFF-3-A	0.3	. 1/1.	18

Notes:

USEPA-FISH: USEPA Region 3 Risk-Based Fish Screening Criteria for Human Health ug/kg : micrograms per kilogram

No results from the sport fish tissue samples exceeded the screening criteria. No primary COPCs were detected at levels exceeding any screening criteria. Please refer to Table 4-1A for an explanation of data qualifiers.

CDM

Shallow Groundwater Statistical Data Results Hiteman Leather Site West Winfield, New York

Shallow Overburden Monitoring Wells - Field Activity 1

COPC					Location of	#		eening Crit		# of	Magnitude of
Designation	Contaminant	Range	of Detectior	n	Highest Hit	Hits/Total Samples	EPAPDW- MCL	NYSDEC- GW-GA	NYSDOH- DW-MCLS		Highest Exceedance
Primary	Chromium (Total) Nickel	2.2 B - 1.3 B -		~	MW-5S MW-8S	13 / 15 14 / 15	100 NA	-		4/13 7/14	12 5
Secondary	bis(2-Ethylhexyl)phthalate	2 J -	48 i	Jg/I	MW-135	4 / 15	6	5	6	1/4	10
Non-COPC	Iron	349 * -	10100 *J L	Jg/l	MW-5S	13 / 13	NA	NA	300	13/13	34
	Magnesium	7370 -	62200 ι	ug/l	MW-8S	15 / 15	NA	35000	NA	1/15	2
	Manganese	3.1 B -	1550 ι	ug/l	MW-5S	15 / 15	NA	NA	300	9/15	5
	Sodium	10300 -	60200 i	Jg/l	MW-14S	14 / 14	NA	20000	NA	6/14	. 3
	Thallium	3.3 B -	3.9 B ι	ug/l	MW-8S	4 / 15	2	0.5	2	4/4	8
ł	Zinc	4.6 B*J -	19.6 B ι	ug/l	MW-5S	6 / 15	NA	2000	5	5/6	4

Shallow Overburden Monitoring Wells - Field Activity 2

СОРС	· · · · · · · · · · · · · · · · · · ·				Location of	#			eening Crit		# of	Magnitude of
Designation	Contaminant	Range	of Detect	ion	Highest Hit	Hits/T Samp		EPAPDW- MCL		NYSDOH- DW-MCLS	Exceedances/ , # of Hits	Highest Exceedance
Primary**	Chromium (Hexavalent)	30 -	50	mg/l	MW-15S-R2	8 /	16	NA	50	NA	1/8	1
Secondary	bis(2-Ethylhexyl)phthalate	6J-	140 D	ug/l	MW-8S-R2	2 /	16	6	5	6	2/2	28
Non-COPC	Iron	26.6 B -	8710	ug/l	MW-12S-R2	13 /	16	NA	NA	300	11/13	29
	Magnesium	6970 -	137000	ug/l	RMW-17S-R1	16 /	16	. NA	35000	. NA	2/16	4
	Manganese	1.6 B -	1960	ug/l	MW-14S-R2	15 /	16	NA	NA	300	- 10/15	7
	Sodium	6860 -	86100	ug/l	RMW-17S-R1	16 /	16	NA	20000	NA	8/16	4
	Thallium	4 B -	6 B	ug/l	MW-15S-R2	41	16	2	0.5	2	4/4	12
L	Zinc	1.8 B -	57.7	ug/l	MW-12S-R2	10 /	16	NA	2000	5	4/10	12

Notes:

EPAPDW-MCL : EPA Primary Drinking Water Standards

NYSDEC-GW-GA : NYSDEC Standards/Guidance for Class GA groundwater H(WS)

NYSDOH-DW-MCLS : NYSDOH Drinking Water Quality Standards

ug/l = micrograms per liter

mg/l = milligrams per liter

NA = Not Available

"Number of Exceedances" and "Magnitude of Highest Exceedance" are based on exceedances of the most stringent criteria, which is bolded.

*The primary COPCs arsenic, antimony, cadmium, hexavalent chromium, cyanide, lead and mercury were not detected at levels exceeding any screening criteria during Field Activity 1.

**The primary COPCs arsenic, antimony, cadmium, total chromium, cyanide, lead, mercury, and nickel were not detected at levels exceeding any screeing critetria during Field Activity 2.

Please refer to Table 4-1A for an explanation of data qualifiers.

CDM

Deep Groundwater Statistical Data Results Hiteman Leather Site West Winfield, New York

Deep Overburden Monitoring Wells - Field Activity 1

COPC				Leasting of	# Hits/	Scr	eening Cri	teria	# of	Magnitude	
Designation	Contaminant	Range of Detect	tion	Location of Highest Hit	Total Samples	EPAPDW- MCL	NYSDEC- GW-GA	NYSDOH- DW-MCLS	Exceedances/ # of Hits	of Highest Exceedance	
Primary *	Arsenic	3.1 B - 12.5	ug/l	MW-11D	5/8	10	25	50	2/5	1	
	Chromium (Total)	8.3 B - 304 J	ug/l	MW-11D-DUP	5/8	100	50	100	. 2/5	6	
	Lead	18.2 - 19.5	ug/l	MW-11D-DUP	2/8	15	.25	15	2/2	1	
Non-COPC	Antimony	3.3 B - 6.9 B	ug/l	MW-13D	3/8	6	3	6	3/3	2	
	Iron	151 - 41200 J	ug/l	MW-11D-DUP	8/8	NA	NA	300	7/8	137	
	Magnesium	12400 - 40500 J	ug/l	MW-11D-DUP	8/8	NA	35000	NA	2/8	1	
	Manganese	7.8 B - 799 J	ug/l	MW-11D-DUP	8/8	NA	NA	300	2/8	3 .	
	Thallium	3 B - 5.4 B	ug/l	MW-13D	3/8	2	0.5	. 2	3/3	11'	
	Zinc	5.1 B - 126 J	ug/l	MW-11D-DUP	6/8	NA	2000	5	6/6	_25	

Deep Overburden Monitoring Wells - Field Activity 2

COPC				Location of	# Hits/	Scr	eening Cri	teria	# of	Magnitude
Designation	Contaminant	Range of Detect	ion	Highest Hit	Total	EPAPDW-	NYSDEC-	NYSDOH-	Exceedances/	of Highest
Designation		:		nighest nit	Samples.	MCL	GW-GA	DW-MCLS	# of Hits	Exceedance
Primary **	Arsenic	3.3 B - 184 J	ug/l	MW-13D-R2	6/8	10	25	50	2/6	18
	Chromium (Total)	1.5 B - 185 J	ug/i	MW-13D-R2	6/8	100	50	100	2/6	4
	Lead	6.3 J - 176 J	ug/l	MW-13D-R2	3/8	15	25	15	2/3	12
	Nickel	4.3 B - 323 J	ug/I	MW-13D-R2	6/8	NA	100	• NA	2/6	3
Non-COPC	Beryllium	0.3 B - 9.7 J	ug/l	MW-13D-R2	3/8	4	3	4	2/3	3
	Copper	2.9 B - 452 J	ug/l	MW-13D-R2	6/8	1300	200	1300	1/6	2
	Iron	43.9 B - 293000 J	ug/l	MW-13D-R2	8/8	NA	ŅA	300	7/8	977
	Magnesium	8180 - 491000 J	ug/ì	MW-13D-R2	. 8/8	NA NA	35000	NA	2/8	14
1	Manganese	6.2 B - 9230 J	ug/l	MW-13D-R2	8/8	NA	NA	300	3/8	31
	Zinc	4.8 B - 760 J	ug/l	MW-13D-R2	6/8	NA	2000	5	5/6	152

Notes:

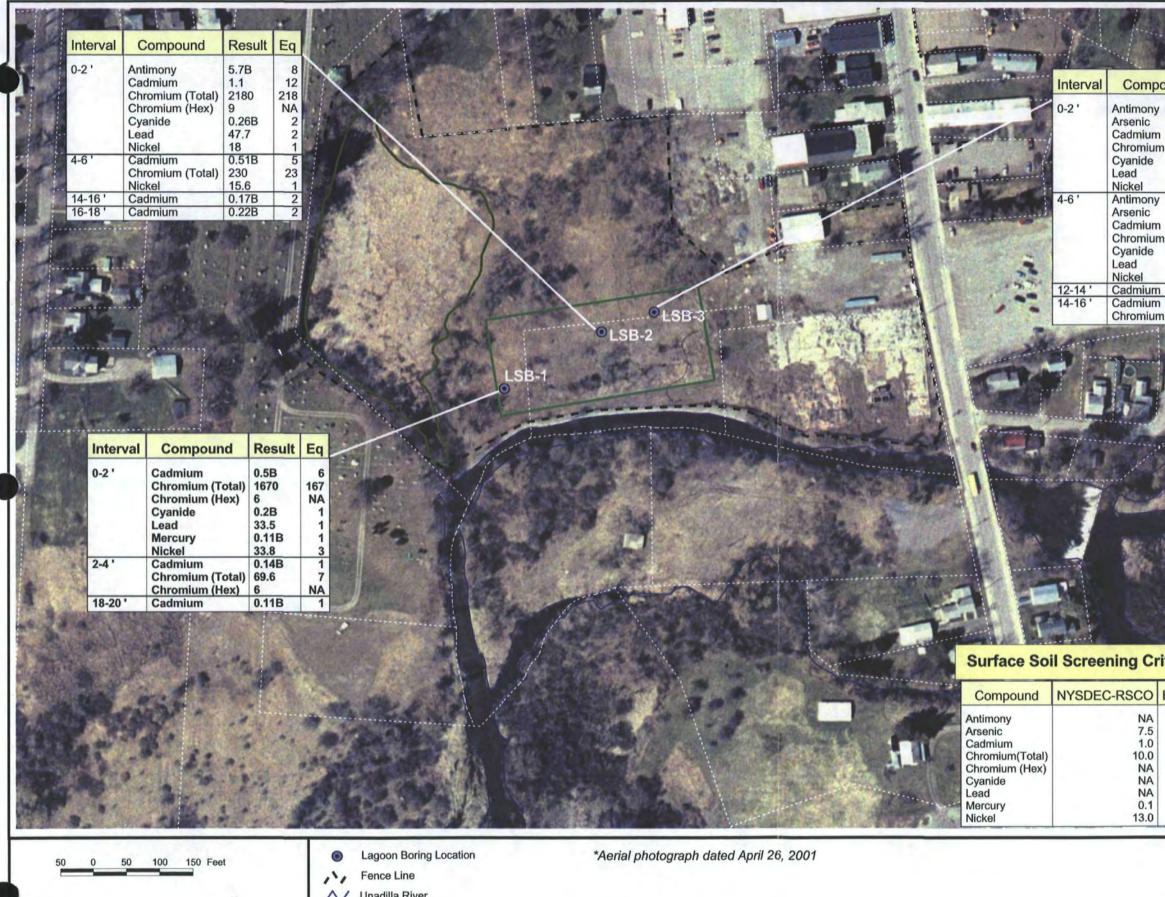
CDM

EPAPDW-MCL : EPA Primary Drinking Water Standards

NYSDEC-GW-GA : NYSDEC Standards/Guidance for Class GA groundwater H(WS)

NYSDOH-DW-MCLS : NYSDOH Drinking Water Quality Standards

ug/l = micrograms per liter


NA = Not Available

"Number of Exceedances" and "Magnitude of Highest Exceedance" are based on exceedances of the most stringent criteria, which is bolded.

*The primary COPCs antimony, cadmium, hexavalent chromium, cyanide, mercury, and nickel were not detected at levels exceeding any screening criteria during Field Activity 1.

**The primary COPCs antimony, cadmium, hexavalent chromium, cyanide, and mercury were not detected at levels exceeding

C:\EG/S\Hiteman\figure-4-1 hitemanfixed 020805.ap

CDM

iuary,	2000		

1.1	Felice Line
\sim	Unadilla River
	Onsite Wetland
	Assumed Lagoon Boundary

Notes: NA = Not Available

All values are reported in mg/kg

Eq = exceedance quotient based on the most stringent screening criteria; value is rounded to the nearest whole number No secondary COPCs were designated for lagoon boring soils

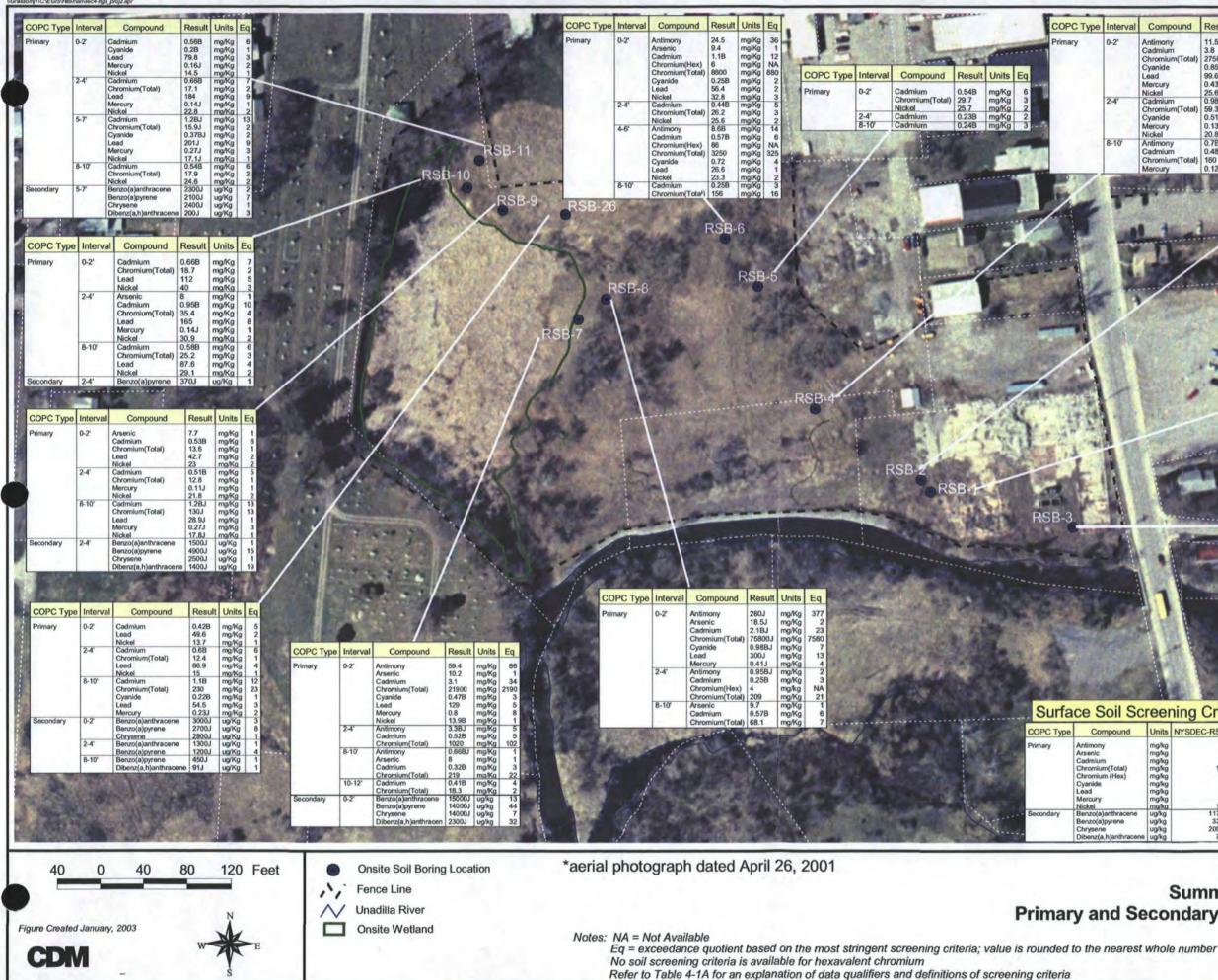
Refer to Table 4-1A for an explanation of data qualifiers and definitions of screening criteria

bound	Result	Eq		100 M	
y m m (Total) y	22.8 8.2 2.9 8550 0.81 106 19.8 29.8	33 1 32 855 5 5 2 48			
n m (Total)	9 2.8 11100 1.2 118 14.6 0.2B	1 29 1110 6 1	8		The second
n m m (Total)	0.23B 74.3	2 2 7	-		
riteria		Subo	Surface S	oil Screening C	Criteria
BKGD	E.BLID.	-	compound	NYSDEC-RSCO	BKGD
0.69 12.90 0.09 23.10 NA 0.15 23.50 0.14 35.40		Ant Ars Cao Chi Chi Chi Cya Lea	timony venic dmium romium(Total) romium (Hex) anide ad rcury	NA 7.5 1.0 10.0 NA NA NA 0.1 13.0	0.620 17.450 0.095 30.700 NA 0.200 21.250 0.240 42.300

Figure 4-1 Summary of Lagoon Boring Results Primary COPCs Above Screening Criteria **Hiteman Leather Site** West Winfield, NY

CDM

All values are reported in mg/kg


Eq = exceedance quotient based on the most stringent screening criteria; value is rounded to the nearest whole number No secondary COPCs were designated for building boring soils Refer to Table 4-1A for an explanation of data qualifiers and definitions of screening criteria

-	-	100.24			
	-				7
S. S. C.		<u></u>	-		S
and the state of the state of the	Contract of the American	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			14888		1
COPC Type	Interval	Compound	Result	Units	Eq
	Interval 0-2'	Cadmium	Result 0.54B 47.2J	mg/Kg	6
			0.54B	mg/Kg mg/Kg	65
COPC Type Primary		Cadmium Chromium(Total)	0.54B 47.2J	mg/Kg	6

СОРС Туре	Interval	Compound	Result	Units	Eq
Primary	0-2'	Antimony	7BJ	mg/Kg	11
		Cadmium	0.41BJ	mg/Kg	4
		Chromium(Total)	2210J	mg/Kg	221
		Cyanide	0.35BJ	mg/Kg	2
		Lead	32.9J	mg/Kg	2
	2-4'	Arsenic	7.8	mg/Kg	1
		Cadmium	0.77B	mg/Kg	8
		Chromium(Total)	59J	mg/Kg	6
		Nickel	18.4J	mg/Kg	1
	8-10'	Cadmium	0.29B	mg/Kg	3
		Chromium(Total)	399	mg/Kg	40
		Lead	24.8J	mg/Kg	1

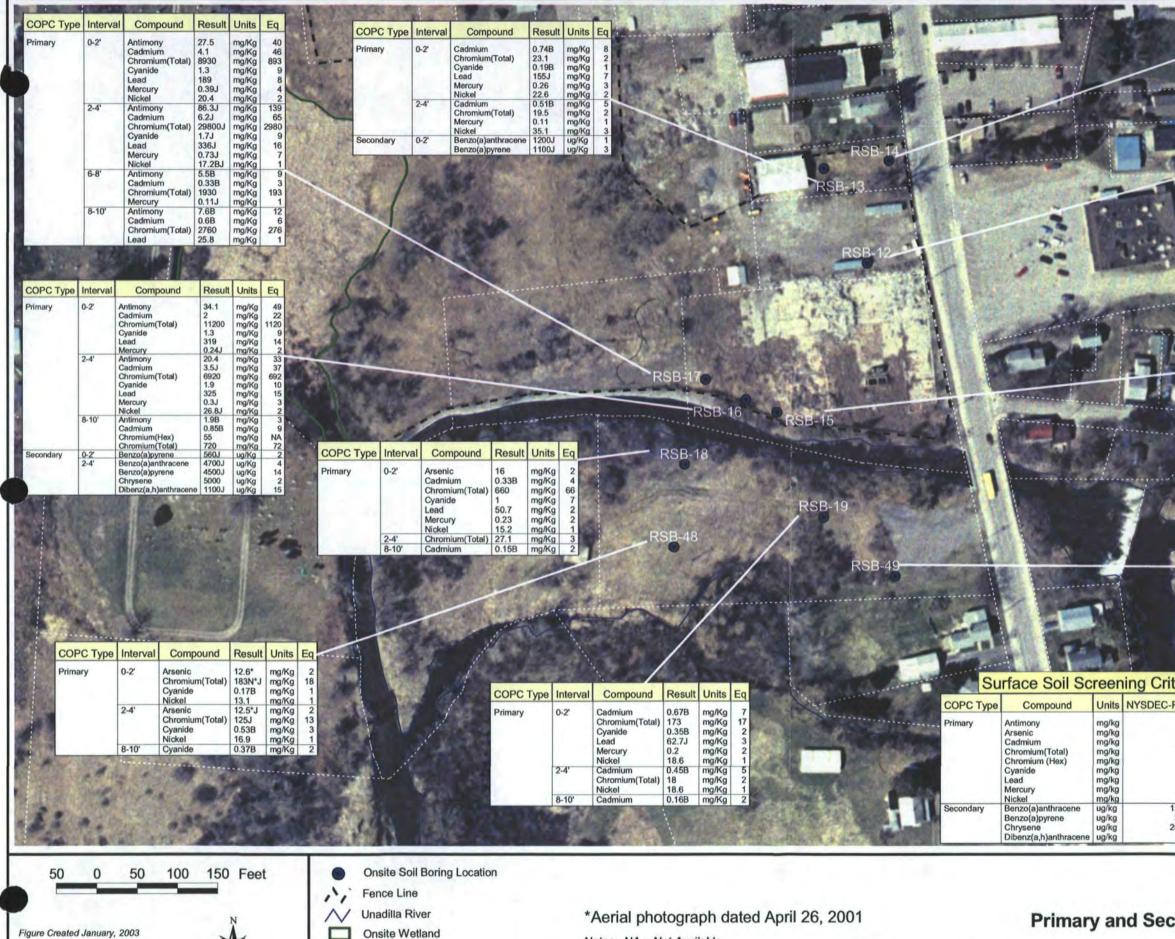
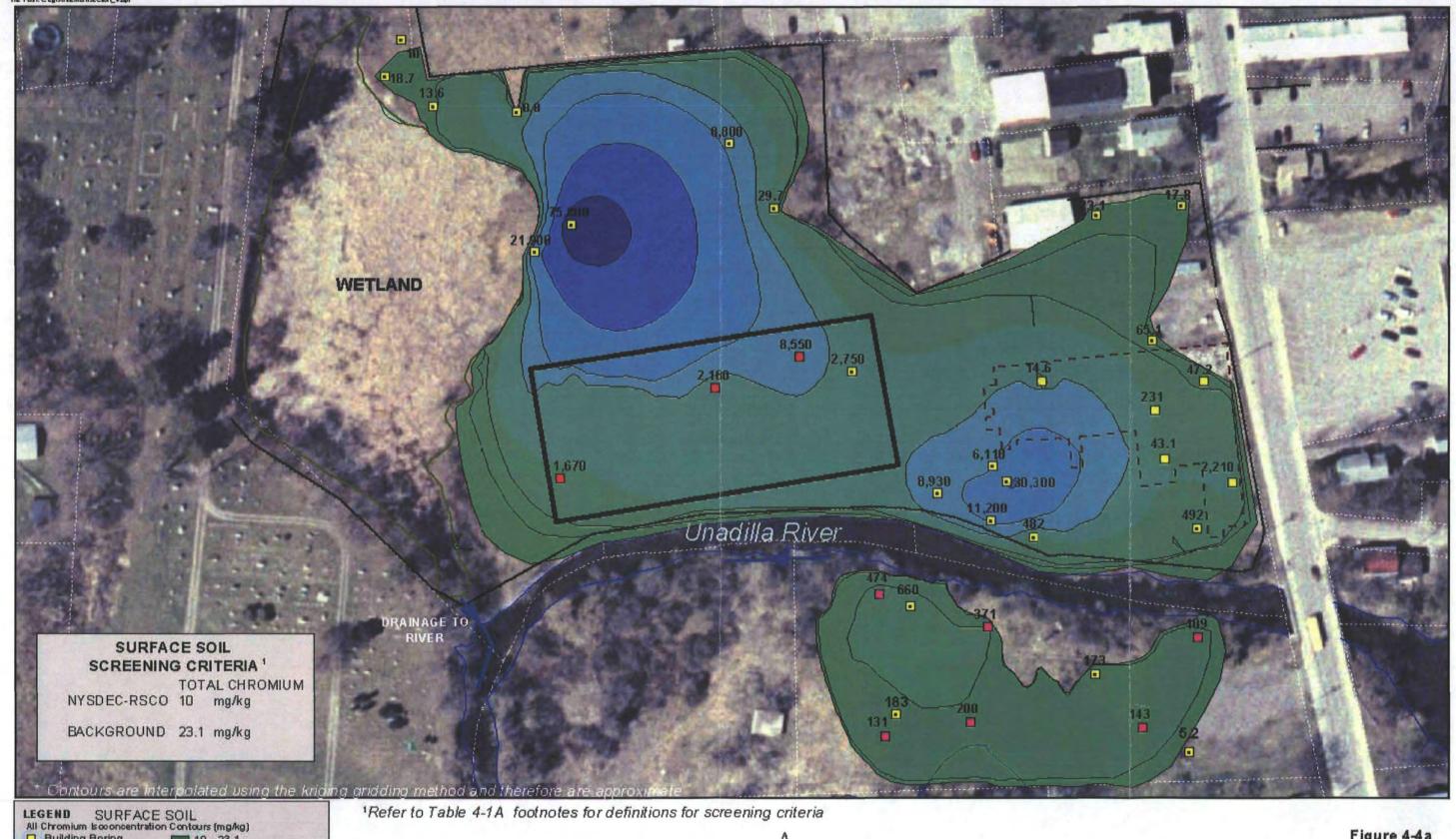

	MORE AND			
	Subsurface S			
ОРС Туре	Compound	Units	NYSDEC-RSCO	BKGD
imary	Antimony Arsenic Cadmium Chromium(Total) Chromium (Hex) Cyanide Lead Mercury Nickel	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	NA 7.5 1.0 10.0 NA NA 0.1 13.0	0.620 17.450 0.095 30.700 NA 0.200 21.250 0.240 42.300

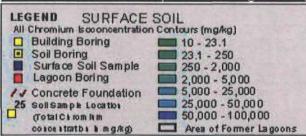
Figure 4-2 **Summary of Building Boring Results** Primary COPCs Above Screening Criteria **Hiteman Leather Site** West Winfield, NY

ompound	Result	Units	Eq	COPC Type	e Interva	al Compound	Result	Units	Eq
mony	11.5B	mg/Kg	17	Primary	0-2'	Antimony	17.2J	mg/Kg	25
mium	3.8	mg/Kg	42			Arsenic	41	mg/Kg	5
omium(Total)	2750	mg/Kg	275			Cadmium	3	mg/Kg	33
nide	0.85	mg/Kg	6			Chromium(Hex)	36J	mg/Kg	NA
d	99.6 0.43J	mg/Kg	4			Chromium(Total)		mg/Kg	611
cury	0.43J 25.6	mg/Kg	4			Cyanide	0.99	mg/Kg	
mium	0.98B	mg/Kg mg/Kg	10			Lead Mercury	0.46	mg/Kg mg/Kg	7
omium(Total)	59.3	mg/Kg	6			Nickel	16.5	mg/Kg	1
nide	0.51B	mg/Kg	3		2-4'	Antimony	3.3BJ	mg/Kg	5
cury	0.13J	mg/Kg	1			Arsenic	25	mg/Kg	3
el	20.8	mg/Kg	2	1		Cadmium	0.56B	mg/Kg	6
mony	0.7B	mg/Kg	1			Chromium(Hex)	13J	mg/Kg	NA
mium	0.48B	mg/Kg	5	1.00	1	Chromium(Total)	1350	mg/Kg	135
omium(Total)	160	mg/Kg	16		1	Cyanide	0.34B	mg/Kg	2
cury	0.12J	mg/Kg	1			Lead	45	mg/Kg	2
1	A DOMESTIC				8-10'	Antimony	0.23 7.9BJ	mg/Kg mg/Kg	13
2000 30	6. Der 1				0-10	Cadmium	0.61B	mg/Kg	6
120	11/10/10	3	/			Chromium(Total)		mg/Kg	302
		1000	/	A		Cyanide	0.43B	mg/Kg	2
Section in	S. 1. 10	5-1		8		Lead	29.6	mg/Kg	1
1500	all the second	1				Mercury	0.39	mg/Kg	4
	7	- 7		0000	1		0.0		-
A PARTY	1	1000		COPC Type	Interval	Compound	Result	Units	Eq
Call Series			100	Primary	0-2'	Antimony	84.8J	mg/Kg	123
			100			Arsenic	36.5	mg/Kg	5
		1.1	1			Cadmium Cheenium(Total)	2.3	mg/Kg	26
	Add Long	ALC:	1000			Chromium(Total) Cyanide	30300	mg/Kg mg/Kg	3030 21
and the second	1000	1		1		Lead	125	mg/Kg	5
	P Property		-			Mercury	0.24J	mg/Kg	2
I BARATE	3 2 2	No. The	-		2-4'	Nickel	43.1	mg/Kg mg/Kg	3000
STOR OF	en total	1- F- 4	-		2-4	Antimony Arsenic	225J 32.5J	mg/Kg mg/Kg	363
EL MARTIN	1000	140.13	1			Cadmium	2.2J	mg/Kg	23
A CHANNEL	1000	L LINES				Chromium(Total)	74600J	mg/Kg	7460
10 M. M.	70	1.12				Cyanide	6.8J	mg/Kg	34
a tool	1 200 -	24012				Lead Mercury	210J 0.46J	mg/Kg mg/Kg	10
28. 12	1000	CANCE.	N Part			Nickel	30.2J	mg/Kg mg/Kg	2
S 103.70	1	100			8-10'	Antimony	45.4J	mg/Kg	73
10312	12537	1000	No.	1		Arsenic	32	mg/Kg	4
and the second	1 in	Charles .	1000	1		Cadmium Chromium(Total)	1.1B 16900	mg/Kg	12 1690
N. C. C.	17 all	- All				Chromium(Total) Chromium(Hex)	16900 31J	mg/Kg mg/Kg	1690 NA
A. S. Cal	Contraction of	(Carlow)	- Selection			Cyanide	3.4	mg/Kg	17
COLUMN A	Calif	14	A. Martin			Lead	70.1	mg/Kg	3
	2-3		-1			Mercury	0.3	mg/Kg	3
1			1	Secondary	0-2'	Nickel Dibenz(a,h)anthracene	38.4 79J	mg/Kg ug/Kg	3
and the second	A Com	-	-						-
	1	100	1	COPC Type	Interval	Compound	Result	Units	Eq
ALL PROPERTY.	191		4	Primary	0-2'	Antimony	1.6BJ	mg/Kg	2
and the second	THE OWNER		- 10 F			Cadmium	0.6B	mg/Kg	7
COMMUN.						Chromium(Total)	492	mg/Kg	49
The Day						Cyanide Lead	0.62 202J	mg/Kg mg/Kg	4 9
		-	and and			Mercury	0.18	mg/Kg	2
A DOLLAR OF	1000	700	-	1	2-4'	Antimony	1.6BJ	mg/Kg	2
IN THE OWNER WAS		and the second	and the second second	4				mg/Kg	2
610 mm	-	and the second se	No. of Concession, Name			Arsenic	15.9		4
1	*****					Cadmium	0.4B	mg/Kg	
1.00						Cadmium Chromium(Hex)	0.4B 5J	mg/Kg mg/Kg	NA
		•	1			Cadmium Chromium(Hex) Chromium(Total)	0.4B 5J 565	mg/Kg mg/Kg mg/Kg	NA 57
		n	7			Cadmium Chromium(Hex)	0.4B 5J	mg/Kg mg/Kg	NA 57 5
		n li	1		4-6'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony	0.4B 5J 565 0.93 31.8 11BJ	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	NA 57 5 1 18
			1		4-6'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic	0.4B 5J 565 0.93 31.8 11BJ 15.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	NA 57 5 1 18 2
			7		4-6'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	NA 57 5 1 18 2 6
		-	7		4-6'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex)	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	NA 57 5 1 18 2 6 NA
		-	/		4-6'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B	rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg	NA 57 5 1 18 2 6
			1		4-6'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56	rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg	NA 57 5 1 18 2 6 NA 410 21 3
						Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Mercury	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.18J	rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg	NA 57 5 1 18 2 6 NA 410 21 3 2
		-	1		4-6' 8-10'	Cadmium Chromium(Total) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Total) Cyanide Lead Mercury Cadmium	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.18J 0.288	rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg	NA 57 5 1 18 2 6 NA 410 21 3 2 3
				Secondary	8-10'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Mercury Cadmium Cahromium(Total)	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.18J 0.28B 36.2	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	NA 57 5 1 18 2 6 NA 410 21 3 2 3 4
1			7	Secondary		Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Mercury Cadmium Chromium(Total) Benzo(a)anthracene	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.18J 0.288	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg gg/Kg gg/Kg	NA 57 5 1 18 2 6 NA 410 21 3 2 3 4 3
				Secondary	8-10'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Mercury Cadmium Chromium(Total) Benzo(a)anthracene Benzo(a)pyrene Chrysene	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.18J 0.28B 36.2 3800J 3400J 420U	rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg	NA 57 5 1 18 2 6 NA 410 21 3 2 3 4 3 11 2
			7	Secondary	8-10' 2-4'	Cadmium Chromium(Total) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Total) Cyanide Lead Mercury Cadmium(Total) Chromium(Total) Benzo(a)anthracene Benzo(a)prene Chrysene	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.18J 0.28B 36.2 3800J 3400J 4200J 610J	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg	NA 57 5 1 8 2 6 NA 410 21 3 2 3 4 3 11 2 8
					8-10' 2-4' 4-6'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Mercury Cadmium(Total) Chromium(Total) Benzo(a)anthracene Benzo(a)pyrene Chrysene Dibenz(a,h)anthracene Benzo(a)pyrene	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.18J 0.28B 36.2 3800J 3400J 4200J 610J 620J	rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg rg/kg	NA 57 5 1 18 2 6 NA 410 21 3 2 3 4 3 11 2 8
ening	Crite		S		8-10' 2-4' 4-6'	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Mercury Cadmium(Total) Chromium(Total) Benzo(a)anthracene Benzo(a)pyrene Chrysene Dibenz(a,h)anthracene Benzo(a)pyrene	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.18J 0.28B 36.2 3800J 3400J 4200J 610J 620J	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg	NA 57 5 1 18 2 6 NA 410 21 3 2 3 4 4 3 11 2 8 2
		1	1.11	ubsurfa	8-10' 2-4' 4-6' Ce S	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Tetal) Cyanide Lead Mercury Cadmium Cohornium(Total) Chromium(Total) Benzo(a)prene Chrosnene Dibenz(a).hanthracene Benzo(a)prene Chissene	0.48 545 565 0.93 31.8 11BJ 15.9 0.558 7J 4100 4.2 56 0.18J 0.288 36.2 38000 34000 42001 620J 620J	reka reka reka reka reka reka reka reka	NA 57 5 1 1 18 2 6 NA 410 21 3 3 2 3 3 11 2 8 2 2 7 18 2 18 2 18 2 18 2 19 19 2 19 19 19 19 19 20 21 19 21 20 19 21 20 19 21 20 21 20 21 20 21 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20
its NYSDE	C-RSCO	BKGD	c	Ubsurfa	8-10' 2-4' 4-6' Ce S Comport	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Tetal) Cyanide Lead Mercury Cadmium Coloriting Chromium(Total) Chromium(Total) Chromium(Total) Benzo(a)anthracene Benzo(a)prene Chrosnene Dibenz(a, h)anthracene Benzo(a)prene Chrosnene Dibenz(a, h)anthracene Benzo(a) prene	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.18J 0.28B 36.2 3800J 3400J 4200J 610J 620J	Regassing to the second	NA 57 5 1 18 2 6 NA 410 21 3 3 4 4 10 21 3 3 4 3 111 2 8 2 7 7 8 2 6 8 7 7 5 5 1 1 8 2 6 8 7 8 7 5 7 5 1 1 8 2 6 8 7 8 7 7 5 7 5 7 7 5 7 7 5 7 7 7 7 7 7
nits NYSDE	C-RSCO	BKGD		UDSUITA	8-10' 2-4' Ce S Compou timony	Cadmium Chromium(Hex) Chromium(Totai) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Totai) Cyanide Chromium(Totai) Cyanide Mercury Cadmium Chromium(Totai) Benzo(a)anthracene Benzo(a)pyrene Chrysene Diberz(a,h)anthracene Benzo(a)pyrene Chrysene Diberz(a,h)anthracene Benzo(a)pyrene Chrysene Diberz(a,h)anthracene Benzo(a)pyrene	0.48 5J 565 0.93 31.8 11BJ 15.9 0.558 7J 0.558 7J 4100 4.2 56 0.18J 0.288 36.2 3800J 4200J 620J ing C SDEC-RS	raka makag m	NA 57 5 1 18 2 6 NA 410 21 3 3 3 4 4 3 3 11 1 2 8 2 3 3 3 11 1 2 8 2 0 6 C D 0.62
its NYSDE	C-RSCO NA 7.50	0.69 0.69	P P	UDSUIFA	8-10' 2-4' 4-6' Ce S Comport timony senic	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Tetal) Cyanide Lead Mercury Cadmium Chromium(Total) Chromium(Total) Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Diberz(a,h)anthracene Benzo(a)pyrene Diberz(a,h)anthracene Benzo(a)pyrene	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.55B 7J 4100 4.2 56 0.28B 36.2 3800J 4200J 620J 620J 620J	reaks reaks	NA 57 5 1 188 2 6 NA 410 21 3 3 4 4 3 3 111 2 8 2 7 12 8 2 0.62 7.45
nits NYSDE	C-RSCO NA 7.50 1.00	0 BKGD 0.69 12.90 0.09	P	UDSUIFA	8-10' 2-4' 4-6' CCE So Comport timony senic dmium	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Mercury Cadmium Cadmium Chromium(Total) Benzo(a)pyrene Benzo(a)pyrene Dibenz(a)pyrene Dibenz(a)pyrene Dibenz(a)pyrene Dibenz(a)pyrene	0.48 5J 565 0.93 31.8 11BJ 15.9 0.558 7J 4100 4.2 56 0.18J 0.28B 36.2 3800J 3400J 4200J 62	reaks reat reat reat reat reat reat reat reat	NA 57 5 1 1 18 2 6 NA 410 21 3 2 2 3 3 4 4 10 21 3 2 3 3 4 4 10 21 3 2 2 3 6 NA 410 0 6 0 21 3 2 0 6 0 11 2 11 2 6 0 0 11 2 1 2 0 6 0 0 11 2 1 2 0 6 0 0 11 1 1 2 0 0 0 1 1 1 1 1 1 1 1 1 1
its NYSDE	C-RSCO NA 7.50	0 BKGD 0.69 12.90 0 0.09 23.10	P	UDSUIFA COPC Type rimary Ant Can Ch	8-10' 2-4' 4-6' CCE S Comport timony senic dmium comfum(Tot	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Mercury Cadmium Cohromium(Total) Benzo(a)pyrene Diberz(a)pyrene Diberz(a)pyrene Diberz(a)pyrene Diberz(a)pyrene Diberz(a)pyrene Diberz(a)pyrene Diberz(a)pyrene Diberz(a)pyrene	0.48 5J 565 0.93 31.8 11BJ 15.9 0.558 7J 4100 4.2 56 0.18J 0.28B 36.2 3800J 3400J 4200J 62	reaks reat reat reat reat reat reat reat reat	NA 57 5 1 188 2 6 NA 410 21 3 3 4 4 3 3 111 2 8 2 7 12 8 2 0.62 7.45
its NYSDE kg kg kg kg kg kg kg kg	C-RSCO NA 7.50 10.00 NA NA	BKGD 0.69 0.09 0.09 0.23.10 NA 0.15	P	UDSURFa COPC Type timary Ant Art Ca Ch Ch Ch	8-10' 2-4' 4-6' CCE So Compou- timony senic dmium romium(Tot romium(He anide	Cadmium Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Total) Cyanide Lead Mercury Cadmium(Total) Chromium(Total) Benzo(a)aprene Chrysene Dibenz(a)aprene Chrysene Benzo(a)pyrene Chrysene Benzo(a)pyrene OII SCREEN mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.48 5J 565 0.93 31.8 11BJ 15.9 0.558 7J 4100 4.2 56 0.18J 0.28B 36.2 3800J 3400J 4200J 62	жа ка	NA 57 5 1 1 18 2 6 NA 4 10 21 3 3 4 4 10 21 3 3 4 4 10 21 3 3 2 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7
its NYSDE kg kg kg kg kg kg kg kg kg	C-RSCO NA 7.50 1.00 10.00 NA NA	BKGD 0 0.69 0 12.90 0 0.09 0 23.10 A NA 0.15 23.50	P	Ubsurfa OPC Type rimary Ant Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	8-10' 2-4' CCE S Comport timony senic dmium Tornium(Tot romium(Tot romium(Tot anide ad	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Tetal) Cyanide Lead Mercury Cadmium Cohromium(Total) Cyanide Lead Mercury Cadmium Cohromium(Total) Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Chrosnene Dibenz(a,h)anthracene Benzo(a)prene Dibenz(a,h)anthracene Benzo(a)prene Dibenz(a,h)anthracene Benzo(a)prene Dibenz(a,h)anthracene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)	0.4B 5J 565 0.93 31.8 11BJ 115.9 0.558 7J 4100 4.2 56 0.18J 0.28B	reaks maks maks maks maks maks maks maks m	NA 57 5 1 18 2 6 6 NA 4 10 21 3 3 4 4 3 3 11 1 2 8 2 8 2 7 16 0 6 0 0 2 1 2 1 3 3 4 4 0 0 2 1 3 2 2 3 3 4 4 10 2 11 3 2 2 6 6 0 0 2 1 1 2 1 3 2 3 2 3 3 4 4 10 2 11 2 1 3 2 3 2 3 3 1 1 2 1 2 1 3 2 3 2
its NYSDE kg kg kg kg kg kg kg kg	C-RSCO NA 7.50 1.00 10.00 NA NA NA 0.10	BKGD 0.69 0.23.10 0.05 0.23.10 0.05 0.23.10 0.05 0.15 0.15 0.014	P	UDSURFA	8-10' 2-4' 4-6' CCE S Comport timony senic dmium romium(He anide ad roury	Cadmium Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Total) Cyanide Lead Mercury Cadmium Chromium(Total) Benzo(a)aprene Dibenz(a).hanthracene Benzo(a)pyrene Chysene Dibenz(a).hanthracene Benzo(a)pyrene OII Screen Dibenz(a).hanthracene Benzo(a)pyrene OII Screen Mercury Marka mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.48 5J 565 0.93 31.8 11BJ 15.9 0.558 7J 4100 4.2 56 0.18J 0.288 36.2 38000 4200 610J 620J 610J 620J	renkig menkag me	NA 57 5 1 1 18 2 6 NA 410 21 3 3 3 11 2 3 3 3 11 2 3 3 3 11 2 5 5 6 0 8 0 6 0 7 4 5 0 0 0 0 7 7 5 5 1 1 1 8 2 6 0 8 0 1 1 1 8 2 6 0 8 0 1 1 1 8 2 6 0 1 1 1 8 2 6 0 1 1 1 1 8 2 6 0 1 1 1 1 8 2 6 0 1 1 1 1 8 2 6 0 1 1 1 1 8 2 6 0 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1
its NYSDE Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag	C-RSCO NA 7.50 10.00 10.00 NA NA 0.10 13.00	BKGD 0 0.69 0 12.90 0 23.10 0 23.10 0 23.10 0 23.50 0 0.14 0 0.14 0 0.14 0 0.14 0 0.15 0 0.14 0 0.14 0 0.5 0 0.05 0 0.	P	Ubsurfa COPC Type rimary Ant Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	8-10' 2-4' 4-6' CC S Compou timony senic dmium roomium(Hes anide ad rcury kel	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Total) Cyanide Lead Mercury Cadmium Chromium(Total) Cyanide Lead Mercury Cadmium Chromium(Total) Benzo(a)pyrene Chrysene Diberz(a,h)anthracene Chrysene Diberz(a,h)anthracene Chrysene Chrysene Diberz(a,h)anthracene Chrysene Diberz(a,h)anthracene Chrysene Diberz(a,h)anthracene Chrysene C	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.558 7J 4100 4.2 56 0.18J 36.2 3800J 4200J 620J 620J 620J 620J 620J	maka maka maka maka maka maka maka maka	NA 57 5 1 1 18 2 6 NA 410 21 3 3 4 3 11 2 2 3 3 4 4 3 11 2 2 8 2 6 NA 410 21 1 3 2 2 3 4 4 10 2 1 3 4 4 10 2 1 3 4 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 2 1 2
ening http://www.	C-RSCO NA 7.50 10.00 10.00 NA NA 0.10 13.00 1174.00	BKGD 0 0.69 0 12.90 0 23.10 0 23.10 0 23.10 0 0.15 0 0.14 0 0.14 0 35.40 0 NA	P	Ubsurfa OPC Type rimary An Ca Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch	8-10' 2-4' CCE S Comport timony senic dmium romium(He anide ad dmium romium(He anide ad arcury kel nzo(a)anthr	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Mercury Cadmium Chromium(Total) Benzo(a)pyrene Chrysene Diberz(a)pyrene OII Screen Diberz(a)pyrene OII Screen OII Screen Marka mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.48 5J 565 0.93 31.8 11BJ 15.9 0.558 7J 4100 4.2 56 0.18J 0.288 36.2 3800J 3400J 4200J 620J ing C 5DEC-RS	makes makes </td <td>NA 57 5 1 1 18 2 6 NA 410 21 3 3 2 3 3 4 4 10 21 3 3 2 3 3 11 2 8 3 3 11 2 8 3 3 11 2 8 6 NA 410 21 3 3 2 3 3 4 3 11 2 8 6 NA 410 21 3 3 3 4 3 11 2 8 6 NA 410 2 1 3 3 3 1 1 2 8 6 NA 410 2 1 3 3 3 1 1 1 2 8 6 NA 410 2 1 3 1 2 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8</td>	NA 57 5 1 1 18 2 6 NA 410 21 3 3 2 3 3 4 4 10 21 3 3 2 3 3 11 2 8 3 3 11 2 8 3 3 11 2 8 6 NA 410 21 3 3 2 3 3 4 3 11 2 8 6 NA 410 21 3 3 3 4 3 11 2 8 6 NA 410 2 1 3 3 3 1 1 2 8 6 NA 410 2 1 3 3 3 1 1 1 2 8 6 NA 410 2 1 3 1 2 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
its NYSDE /kg /kg /kg /kg /kg /kg /kg /kg	C-RSCO NA 7.50 10.00 10.00 NA NA 0.10 13.00	BKGD 0 BKGD 0 12.90 0 23.10 0 23.10 0 0.4 0 0.15 2 23.50 0 0.14 0 0.14 0 NA 0 NA 0 NA	C P	Ubsurfa OPC Type fimary An Ch Ch econdary Ber Ber Ch	8-10' 2-4' 4-6' CC S Compou timony senic dmium roomium(Hes anide ad rcury kel	Cadmium Chromium(Hex) Chromium(Total) Cyanide Lead Antimony Arsenic Cadmium Chromium(Tetal) Chromium(Total) Cyanide Lead Mercury Cadmium Cohromium(Total) Cyanide Lead Mercury Cadmium Cohromium(Total) Benzo(a)prene Diberz(a)prene Di	0.4B 5J 565 0.93 31.8 11BJ 15.9 0.558 7J 4100 4.2 56 0.18J 0.558 36.2 3800J 4200J 620J 620J 620J 5DEC-RS 11 117 32	maka maka maka maka maka maka maka maka	NA 57 5 1 1 18 2 6 NA 410 21 3 3 4 3 11 2 2 3 3 4 4 3 11 2 2 8 2 6 NA 410 21 1 3 2 2 3 4 4 10 2 1 3 4 4 10 2 1 3 4 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 3 4 3 11 2 2 3 3 4 4 10 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 2 1 2

Figure 4-3a Summary of Onsite Soil Boring Results Primary and Secondary COPCs Above Screening Criteria Hiteman Leather Site West Winfield, NY

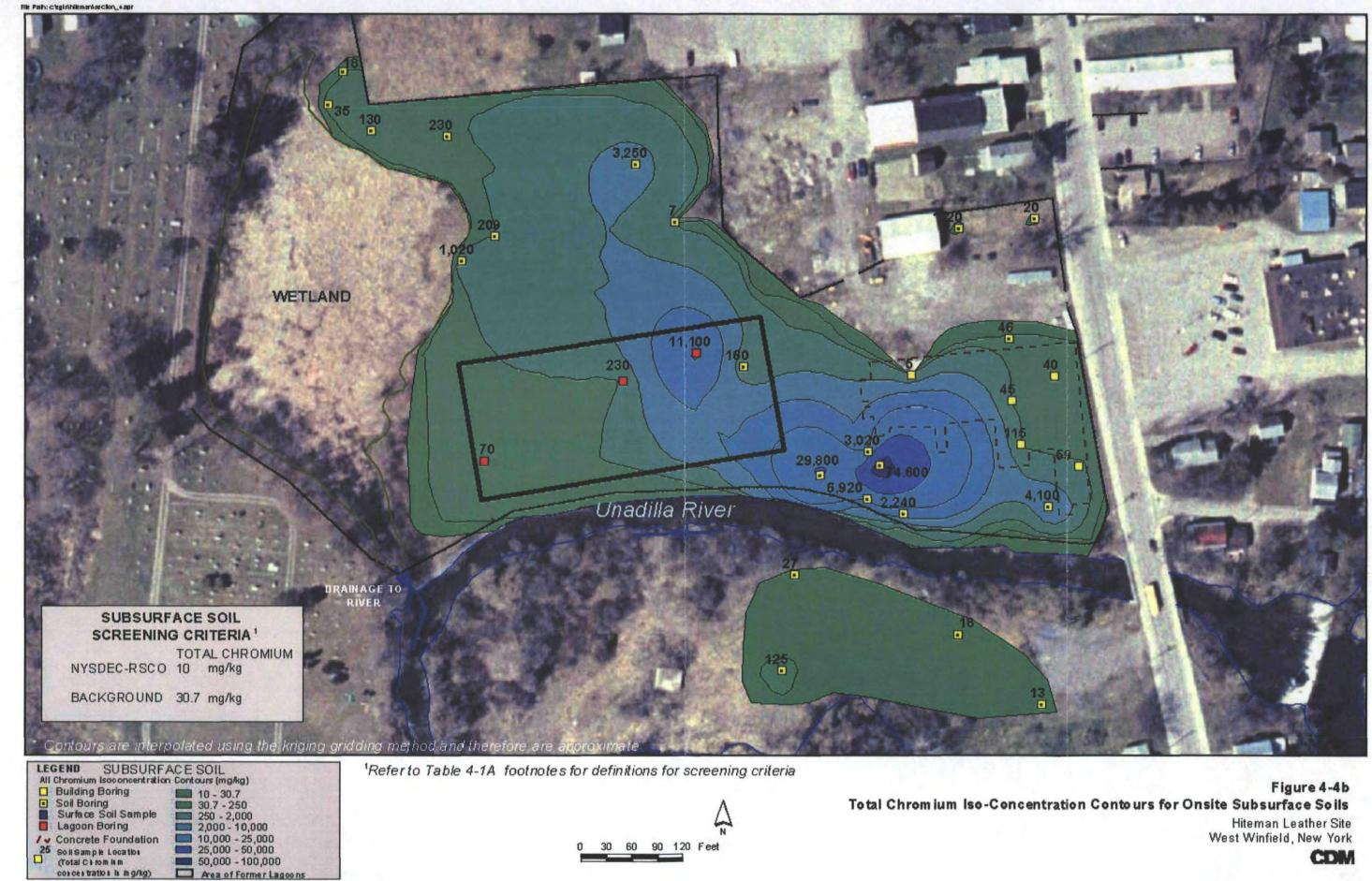
Notes: NA = Not Available

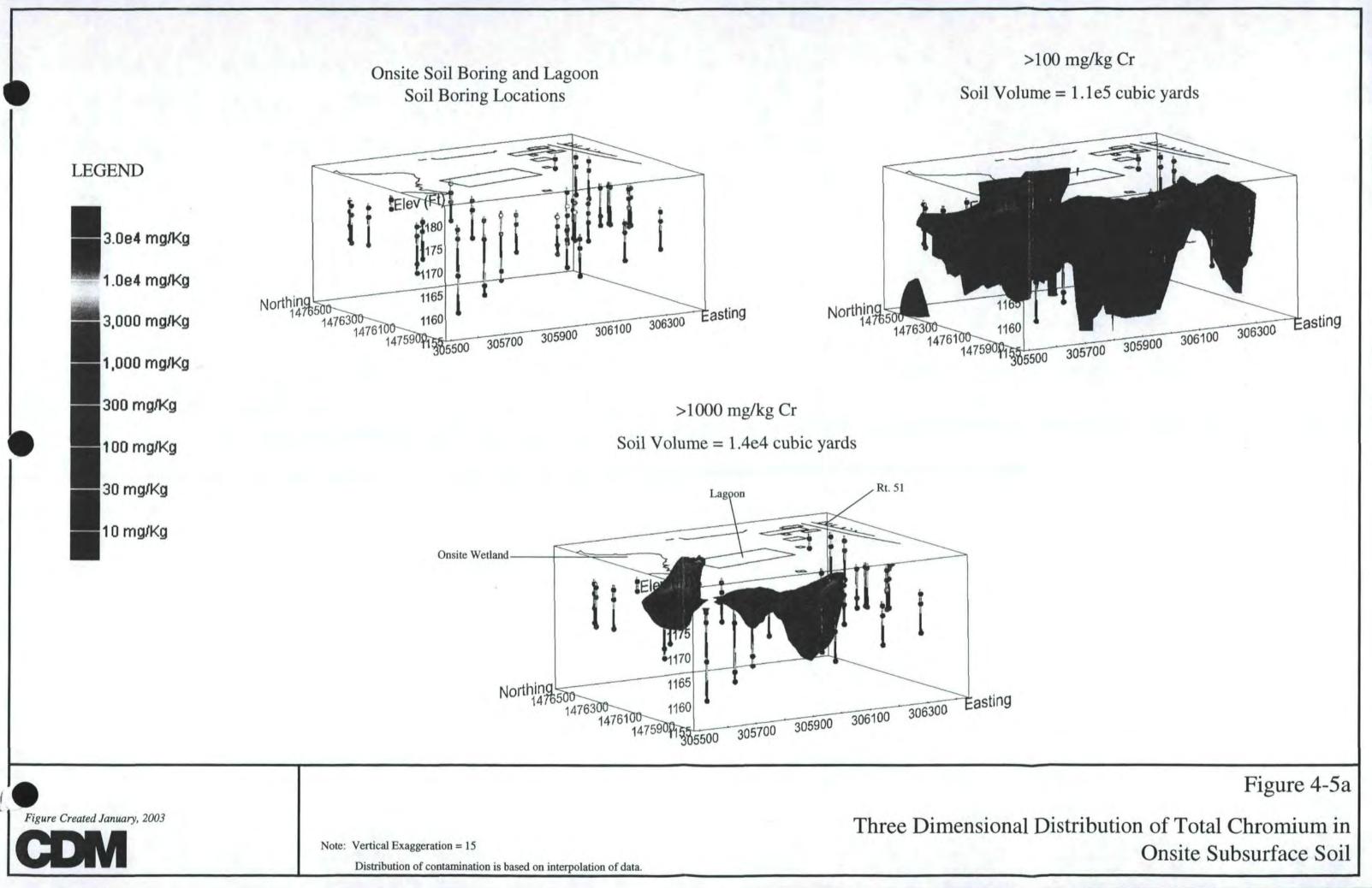

CDM


Figure 4-3b **Summary of Onsite Soil Boring Results** Primary and Secondary COPCs Above Screening Criteria **Hiteman Leather Site** Eq = exceedance quotient based on the most stringent screening criteria; value is rounded to the nearest whole number West Winfield, NY No soil screening criteria is available for hexavalent chromium

Refer to Table 4-1A for an explanation of data qualifiers and definitions of screening criteria

Cardon and		1.00	COPC Typ	be Interva	Compo	bund	Result	Units	Eq
Con I	1000								
-		T	Primary	0-2'	Cadmium		0.57B	mg/Kg	6
		1			Chromiun	n(Total)	17.8	mg/Kg	2
	1.19	RINT			Lead		54.2 21.4	mg/Kg	22
		States of		2-4'	Nickel Cadmium		0.66B	mg/Kg mg/Kg	7
	106	1.1		24	Chromium		19.6	mg/Kg	2
	100	100-11			Nickel	1.0.0.)	33.3	mg/Kg	23
	And and	100		8-10'	Cadmium		0.59B	mg/Kg	6
and the second	1				Chromium		15.2	mg/Kg	2
and the second second	2-2-2-	in the second second	_		Nickel		34.3	mg/Kg	3
			COPC Type	e Interval	Compo	und	Result	Units	Eq
			Primary	0-2'	Cadmium		0.32B	mg/Kg	4
1000	1000	Suma in			Chromium(1	fotal)	65.1	mg/Kg	7
A. S. Car					Cyanide		0.32B	mg/Kg	2 4
100		THE R. L			Lead		84.4J 0.6	mg/Kg	6
1000		1.272		2-4'	Mercury Cadmium		0.6 0.38B	mg/Kg mg/Kg	6
1000	100			6-4	Chromium(1	Total)	45.9	mg/Kg	5
					Lead	oranj	45.7J	mg/Kg	2
1.18	Columb 1	100			Mercury	ercury		mg/Kg	23
		THE R.			Nickel		20 0.43B	mg/Kg	2
	4 8			8-10'	Cadmium			mg/Kg	5
and a lot					Chromium(Total) Lead		30.7	mg/Kg mg/Kg	3
25 72	1 A	Canada San			Mercury		0.24	mg/Kg	2
Sertile	194	1			Nickel		21.6	mg/Kg	2
a de la compañía de		1 1 1	Secondary	0-2'	Benzo(a)ant	Benzo(a)anthracene		ug/Kg	2
a Trans		and a second			Benzo(a)pyr		3300J	ug/Kg	10
				0.101	Chrysene	h	3700J	ug/Kg	2
				8-10'	Benzo(a)ant Benzo(a)pyr		1500J 1300J	ug/Kg ug/Kg	1 4
0_			СОРС Туре	e Interval	Compo	und	Result	Units	Eq
10.0	Section 2	-	Primary		Antimony		1.3BJ	mg/Kg	2
10 M	1000		rinnary		Antimony Arsenic		1.3BJ 19.5	mg/Kg	23
1000		1-1			Cadmium		0.33B	mg/Kg	4
1000	1868	Constant and			Chromium(H	ex)	9J	mg/Kg	
	6.4.8	1			Chromium(T		482	mg/Kg	48
100	1	1000 20			Lead		29.7	mg/Kg	1
Sec. 1	die.	1			Antimony		10.7BJ	mg/Kg	17
A DECK	1.00				Arsenic Cadmium		19.7 1B	mg/Kg mg/Kg	3 11
-					Chromium(H	ex)	13J	mg/Kg	
100	the second	Sec. 1			Chromium(T		2240	mg/Kg	224
	10				Cyanide Lead		1.3	mg/Kg	7
	12	All Street					849	mg/Kg	40
	100	5 al 1			Mercury		0.86	mg/Kg	9
-	Contraction of the				Nickel	_	25.6	mg/Kg	2
-	and the second second	1000			Arsenic Chromium(Total)		45 693	mg/Kg mg/Kg	69
		100			Cadmium	otary	0.17B	mg/Kg	2
		a state	Secondary		Benzo(a)anthracene		5800J	ug/Kg	5
	100	30.00	States and states	Sec. 1		A	1000		-
50	10.2	1000	СОРС Тур	e Interval	Compo	und	Result	Units	Eq
and the		13-24	Primary	0-2'	Cyanide		0.35B	mg/Kg	2
100		1000		2-4'	Arsenic		11.2*	mg/Kg	1
1					Cadmium		0.2B	mg/Kg	2
					Chromium	(Total)	13.4J	mg/Kg	1
					Cyanide		0.37B	mg/Kg	2
					Lead		24.6J	mg/Kg	1
		-			Nickel		17.5	mg/Kg	1 2
	14			8 10			0.350	malla	1
			COLUMN T	8-10'	Cyanide		0.35B	mg/Kg	
				AS*	Cyanide				
teria			Subsurf	AS*	Cyanide	enin			
teria RSCO	BKGD	COPC		AS*	Cyanide	1		teria	
RSCO	BKGD 0.69		Type C Antimo	ace Sc Compound	Cyanide Dil Scre Units mg/kg	1	ig Cri	teria	(GD 0.62
RSCO NA 7.50	BKGD 0.69 12.90	COPC	Type C Antime Arseni	ace So	Cyanide Dil Scre Units mg/kg mg/kg	1	ig Cri	teria	(GD 0.62
RSCO NA 7.50 1.00	BKGD 0.69 12.90 0.09	COPC	Type C Antime Arseni Cadmi	ace Sc Compound	Cyanide Dil Scre Units mg/kg mg/kg	1	ig Cri	CO BH	(GD 0.62 17.45 0.10
RSCO NA 7.50 1.00 10.00	BKGD 0.69 12.90 0.09 23.10	COPC	Type C Antime Arseni Cadmi Chrom	ace Sc Compound ony ic lum nium(Total)	Cyanide bil Scre Units mg/kg mg/kg mg/kg mg/kg	1	ig Cri	teria CO BH NA 7.50 1.00 0.00 3	(GD 0.62 17.45 0.10 30.70
RSCO NA 7.50 1.00 10.00 NA	BKGD 0.69 12.90 0.09 23.10 NA	COPC	Type C Antime Arseni Cadmi Chrom Chrom	ace Sc Compound ony ic ic ium nium(Total) nium(Hex)	Cyanide bil Scree Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1	ig Cri	teria CO BH NA 7.50 1.00 0.00 NA	(GD 0.62 17.45 0.10 30.70 NA
RSCO NA 7.50 1.00 10.00 NA NA	BKGD 0.69 12.90 0.09 23.10 NA 0.15	COPC	Type C Antimo Arseni Cadmi Chrorr Chrorr Cyanic	ace Sc Compound ony ic ic ium nium(Total) nium(Hex)	Cyanide Dil Scree Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1	ig Cri	teria CO BH NA 7.50 1 1.00 0.00 3 NA NA	(GD 0.62 17.45 0.10 30.70 NA 0.20
RSCO NA 7.50 1.00 10.00 NA NA NA	BKGD 0.69 12.90 0.09 23.10 NA 0.15 23.50	COPC	Type C Antimo Arseni Cadmi Chrom Chrom Cyania Lead	ace Sc Compound ony ic ium nium(Total) nium(Hex) de	Cyanide	1	DEC-RS	teria CO Bł NA 7.50 1 1.00 0.00 3 NA NA NA 2	(GD 0.62 17.45 0.10 0.70 NA 0.20 21.25
RSCO NA 7.50 1.00 10.00 NA NA	BKGD 0.69 12.90 0.09 23.10 NA 0.15 23.50 0.14 35.40	COPC	Type C Antimo Arseni Cadmi Chrorr Chrorr Cyanic	ace So compound ony ic ium nium(Total) nium(Hex) de	Cyanide bil Scree Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1	ig Cri DEC-RS	teria CO BK NA 1.00 0.00 NA NA NA NA NA 2.10	(GD 0.62 17.45 0.10 30.70 NA 0.20
RSCO NA 7.50 1.00 10.00 NA NA NA 0.10 13.00 1174.00	BKGD 0.69 12.90 0.09 23.10 NA 0.15 23.50 0.14 35.40 NA	COPC	Type C Antimo Arseni Cadmi Chrorr Cyanic Lead Mercu Nickel	ace So compound ony ic ium nium(Total) nium(Hex) de	Cyanide Dil Scre Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1	ig Cri DEC-RS	teria CO BK NA 1.00 0.00 3.00 3.00 4	(GD 0.62 17.45 0.10 00.70 NA 0.20 21.25 0.24 12.30 NA
RSCO NA 7.50 1.00 10.00 NA NA 0.10 <u>13.00</u> 1174.00 320.00	BKGD 0.69 12.90 0.09 23.10 NA 0.15 23.50 0.14 35.40 NA NA	COPC Primary	Type C Antimy Arseni Cadmi Chrom Chrom Chrom Cyanic Lead Mercu Nickel Benzo Benzo	ace So <u>Compound</u> ony ic ium nium(Total) nium(Hex) de ry (a)anthracen (a)pyrene	Cyanide bil Scree Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg	1	10 0EC-RS 10 11 11 11 320	teria NA NA 1.00 0.00 NA NA NA NA NA NA 2.10 4.00 0.00 4.00 0.00	(GD 0.62 17.45 0.10 30.70 NA 0.20 21.25 0.24 12.30 NA NA
RSCO NA 7.50 1.00 10.00 NA NA NA 0.10 13.00 1174.00	BKGD 0.69 12.90 0.09 23.10 NA 0.15 23.50 0.14 35.40 NA	COPC Primary	Type C Antimo Arseni Chrom Chrom Chrom Cyania Lead Mercu Nickel Iry Benzo Chryse	ace So <u>Compound</u> ony ic ium nium(Total) nium(Hex) de ry (a)anthracen (a)pyrene	Cyanide Dil Scree Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg	1	10 DEC-RS 10 11 11 11 11 20 2009	teria NA NA 1.00 0.00 NA NA NA NA NA NA 2.10 4.00 0.00 4.00 0.00	(GD 0.62 17.45 0.10 00.70 NA 0.20 21.25 0.24 12.30 NA





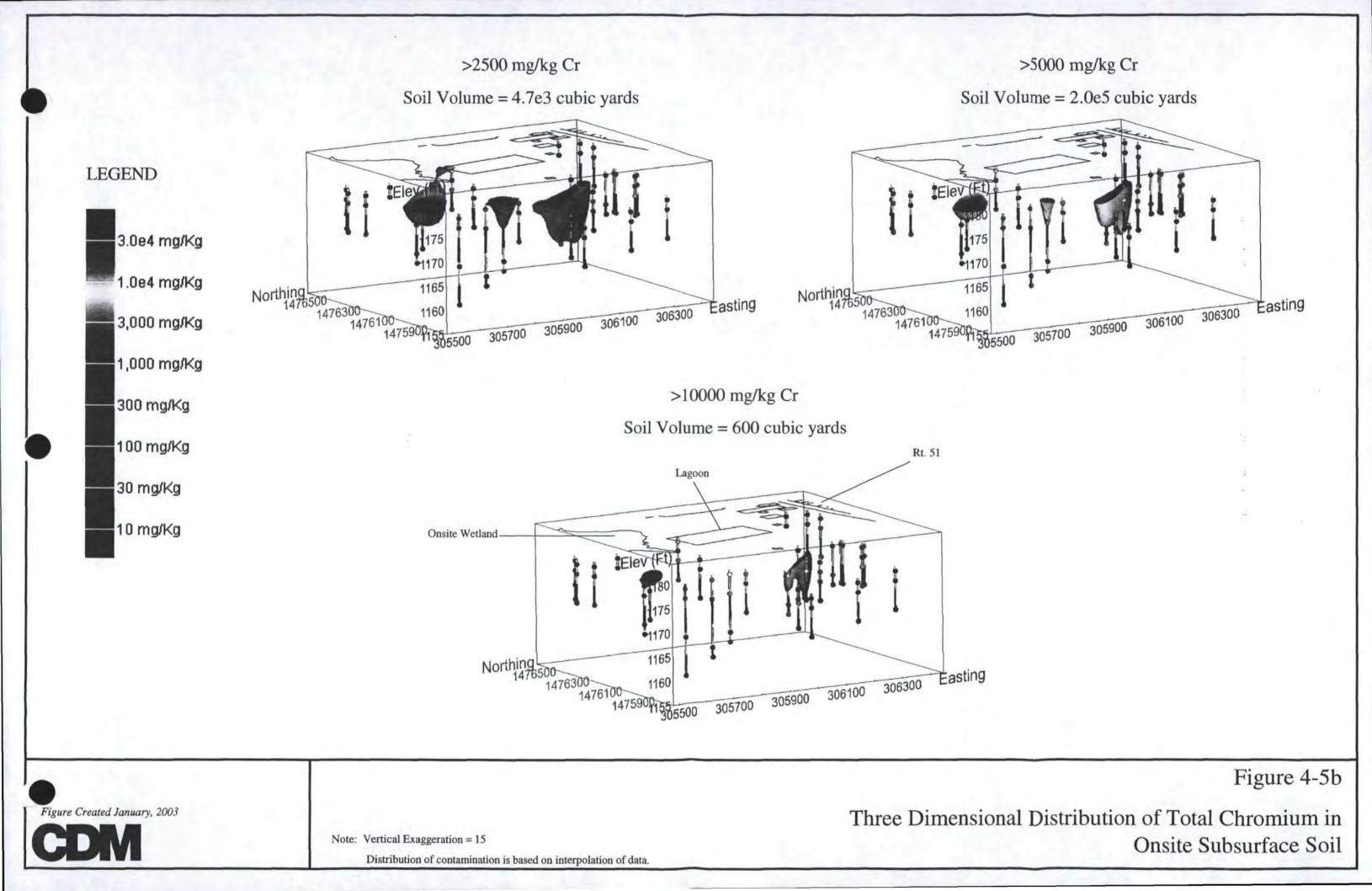

Contraction Total Chromium Iso-0 50 100 150 200 Feet

Figure 4-4a
Total Chromium Iso-Concentration Contours for Onsite Surface Soils
Hiteman Leather Site
West Winfield, New York

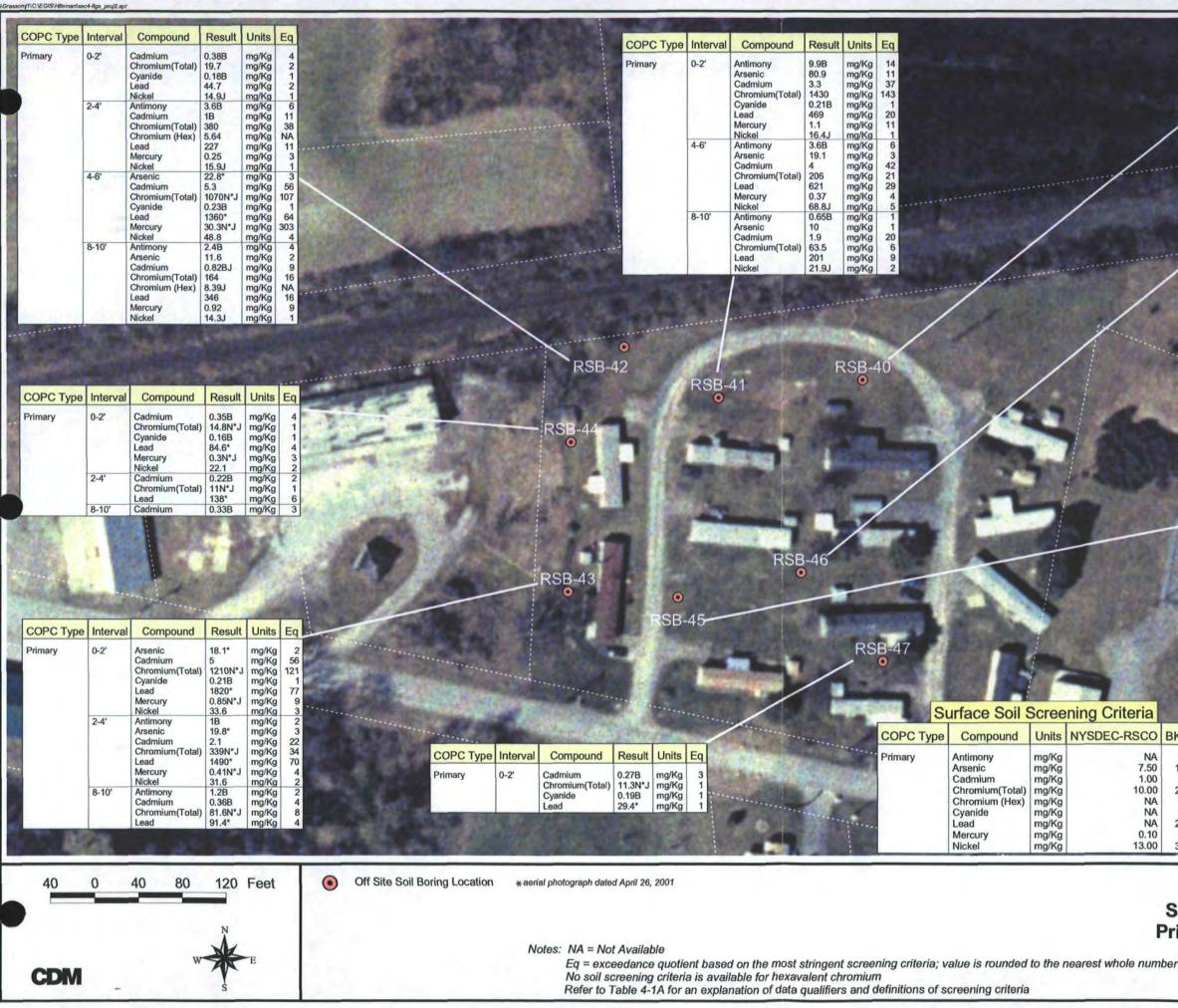
rassom/1\C:\EGIS\Hiteman\se	c4-figs_proj2.apr	a shales	and the second	S. 85. 14.2		1	P.72-1	Ser Min Ma	Constant and	10.00 He	FRAM IN	Mar Ball	1	LODGE D.	-	A PORT	1
COPC T	ype Interva	Compound R	esult Units Eq														1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Primary	0-2' 2-4'	Antimony 3. Cadmium 1. Chromium(Total) 88 Cyanide 0. Lead 27 Mercury 0. Nickel 17 Antimony 5. Arsenic 2. Cadmium 2. Chromium(Total) 17	IBJ mg/Kg 4 8 mg/Kg 20 66J mg/Kg 87 74 mg/Kg 5 6J mg/Kg 9 24 mg/Kg 1 4BJ mg/Kg 9 6.7 mg/Kg 4				COPC Typ Primary	2-4' Cadmium	Ind Result Units 0.29B mg/Kg 0.38B mg/Kg 0.38B mg/Kg 0.19B mg/Kg	3 2 4 2			COPC Ty Primary	0-2' C C 2-4' C	Cadmium Chromium(Total) Cyanide Aercury Cadmium	Result Units 0.43B mg/Kg 10.5 mg/Kg 0.17B mg/Kg 0.13 mg/Kg 0.15B mg/Kg	Eq 5 1 1 1 2
	8-10'	Mercury 0. Nickel 4' Cadmium 0. Chromium(Total) 17 Chromium (Hex) 4. Cyanide 0.	rdJ mg/Kg 18 34 mg/Kg 3 .6J mg/Kg 3 74B mg/Kg 8 '.1J mg/Kg 2		- M.									8-10' C	Cadmium	0.16B mg/Kg	2
							RSB	-21		• • RS 68-25	5B-24		COPC Type Inte	erval Compo	ound Result	Units Eq	
C	opc_type Ir	nterval Compoun	d Result Units Ec					RSB-22			GR LA		Primary 0-2		n(Total) 0.54B 27.9 0.34B	mg/Kg 6 mg/Kg 3 mg/Kg 2	
Pr	mary 0	2' Antimony Cadmium Chromium(To		COPC Type Primary	0-2'	Antimony Arsenic	ResultUni7.2BJmg/l45.7mg/l	(g 10	E	100		12	2-4 ⁴ 8-10		0.16 13.9 0.25B 0.21B	mg/Kg 2 mg/Kg 1 mg/Kg 3 mg/Kg 2	
A STATE		Lead Mercury 4' Cadmium 10' Cadmium	145J mg/Kg 6 0.2 mg/Kg 2 0.19B mg/Kg 2 0.23B mg/Kg 2			Cadmium Chromium(Total) Chromium (Hex) Cvanide	2.2 mg/l 1160J mg/l 17J mg/l 1.7 mg/l	(g 24 (g 116 (g NA	A DECEMBER				357	44		Ser.	
			No. and				428J mg/l	(g) 18	1		L						
1			A	3		Lead Mercury Nickel Antimony Arsenic Cadmium Chromium (Total) Chromium (Hex) Cyanide Lead Mercury Nickel Antimony	0.49 mg/l 18.6J mg/l 5.8BJ mg/l 5.8BJ mg/l 5.8BJ mg/l 15.8BJ mg/l 11.1 mg/l 15.3 mg/l 15.4 mg/l 15.5 mg/l 15.4 mg/l 1.2 mg/l 1.2 mg/l 1.2 mg/l 2.3BJ mg/l 2.2 mg/l 172.J mg/l 0.74 mg/l 27.0 mg/l 0.21B mg/l 22.6J mg/l	(g 1 (g 33 (g 46 (g NA						1			
a ser	·····		a start			Cyanide Lead Mercury Nickel	1.2 mg/l 1280J mg/l 0.55 mg/l 31.1J mg/l	(9 6 (9 60 (9 6) (9 6)	-	COPC Type	1	Screening Crit				Units NYSDI	Criteria EC-RSCO BKGD
	RSB	20	ALL.	*****		Antimony Arsenic Cadmium Chromium(Total) Chromium (Hex)	2.3BJ mg/l 11.3 mg/l 2.2 mg/l 172J mg/l 4.1 mg/l	Kg 4 Kg 2 Kg 23 Kg 17 Kg NA		Primary	Antimony Arsenic Cadmium	mg/Kg mg/Kg mg/Kg	NA 0.69 7.50 12.90 1.00 0.09	Primary	Antimony Arsenic Cadmium	mg/Kg mg/Kg mg/Kg mg/Kg	
	•				8-10'	Cvanide	0.74 mg/l 270J mg/l 22J mg/l 0.21B mg/l 22.6J mg/l	(g 4 (g 13) (g 2) (g 2)	1		Chromium (Hex) Cyanide Lead Mercury	mg/Kg mg/Kg mg/Kg mg/Kg	NA NA NA 0.15 NA 23.50		Chromium(Total) Chromium (Hex) Cyanide Lead Mercury	mg/Kg mg/Kg mg/Kg mg/Kg	NA 0.620 7.500 17.450 1.000 0.095 10.000 30.700 NA NA NA 0.200 NA 21.250 0.100 0.240 13.000 42.300
	2.00	1072 1050				Lead	22.6J mg/l	(g 1		-	Nickel	mg/Kg	0.10 0.14 13.00 35.40		Nickel	mg/Kg	13.000 42.300

40 80 120 Feet Off Site Soil Boring Location

40

0

Figure Created January, 2003

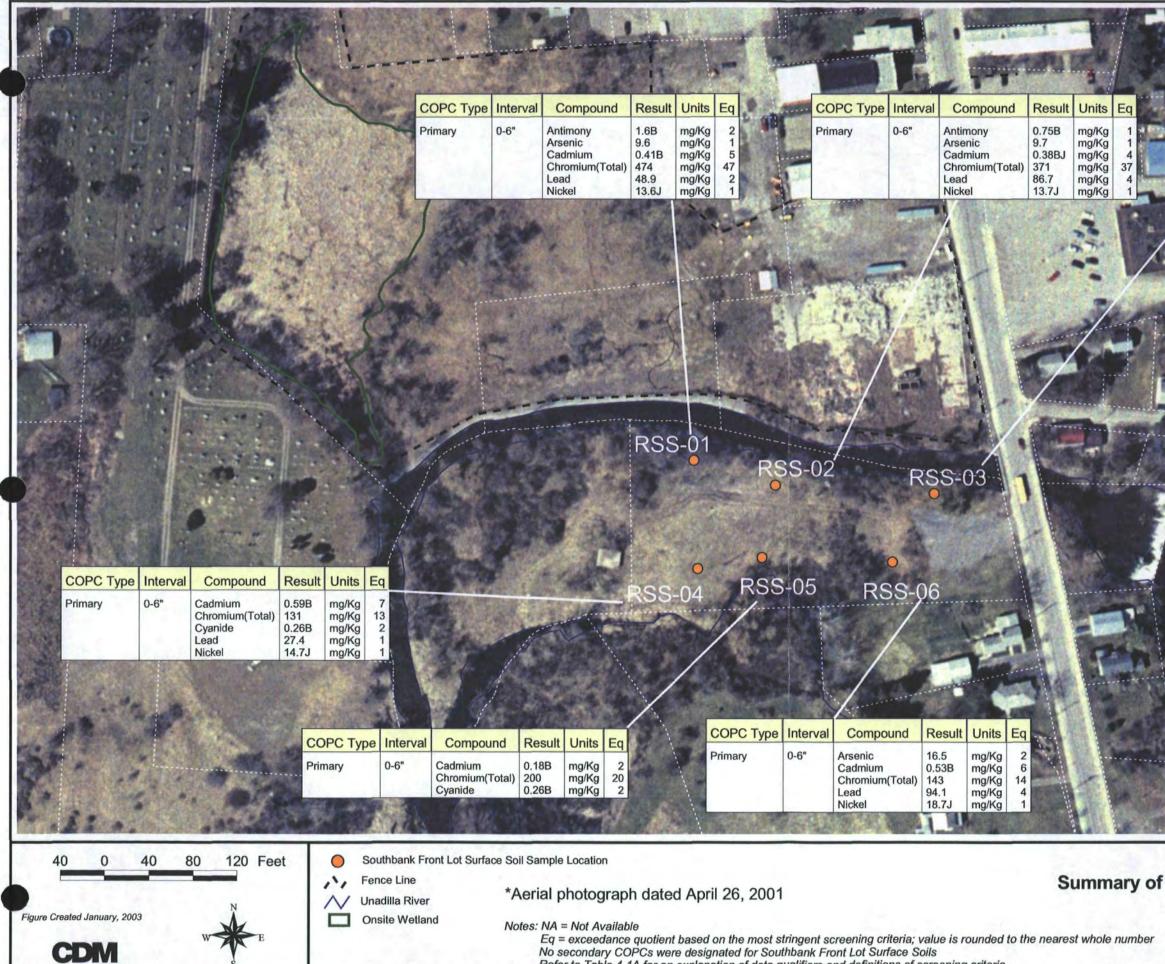

CDM

* Aerial photograph dated April 26, 2001

Notes: NA = Not Available

Eq = exceedance quotient based on the most stringent screening criteria; value is rounded to the nearest whole number No soil screening criteria is available for hexavalent chromium Refer to Table 4-1A for an explanation of data qualifiers and definitions of screening criteria

Figure 4-6a Summary of Off Site Soil Boring Results Primary COPCs Above Screeing Criteria Hiteman Leather Site West Winfield, NY


rimary 0-2' Cadmium 0.19B mg/Kg 2	СОРС Туре	Interval	Compound	Result	Units	Eq
	Primary	0-2'	Cadmium	0.19B	mg/Kg	2

COPC Type	Interval	Compound	Result	Units	Eq
Primary	0-2'	Cadmium	0.25B	mg/Kg	3
		Chromium(Total)	19.5N*J	mg/Kg	2
		Cyanide	0.19B	mg/Kg	1
		Lead	39.7*	mg/Kg	2

СОРС Туре	Interval	Compound	Result	Units	Eq
Primary	0-2'	Antimony	2.7B	mg/Kg	4
		Arsenic	14.5	mg/Kg	2
		Cadmium	1.5J	mg/Kg	17
		Chromium(Total)	106	mg/Kg	11
	1	Cyanide	0.19B	mg/Kg	1
		Lead	818	mg/Kg	35
	() () () () () () () () () ()	Mercury	0.42	mg/Kg	4
		Nickel	26J	mg/Kg	2
	2-4'	Antimony	5.2B	mg/Kg	8
		Arsenic	11.4*	mg/Kg	2
		Cadmium	6.7	mg/Kg	71
		Chromium(Total)	102N*J	mg/Kg	10
		Cyanide	0.23B	mg/Kg	1
		Lead	570*	mg/Kg	27
		Mercury	1N*J	mg/Kg	10
		Nickel	44.3	mg/Kg	3
	4-6'	Cadmium	0.21B	mg/Kg	2
		Chromium(Total)	12.9N*J	mg/Kg	1
		Lead	57.3*	mg/Kg	3
		Nickel	38.4	mg/Kg	3
	8-10'	Cadmium	0.31B	mg/Kg	3
		Chromium(Total)	10.3N*J	mg/Kg	1
	No.	Lead	62.4*	mg/Kg	3

Subsurface Soil Screening Criteria								
BKGD	СОРС Туре	Compound	Units	NYSDEC-RSCO	BKGD			
0.69	Primary	Antimony	mg/Kg	NA	0.620			
12.90		Arsenic	mg/Kg	7.500	17.450			
0.09		Cadmium	mg/Kg	1.000	0.095			
23.10		Chromium(Total)	mg/Kg	10.000	30,700			
NA		Chromium (Hex)	mg/Kg	NA	NA			
0.15		Cyanide	mg/Kg	NA	0.200			
23.50		Lead	mg/Kg	NA	21.250			
0.14		Mercury	mg/Kg	0.100	0.240			
35.40		Nickel	mg/Kg	13.000	42.300			

Figure 4-6b Summary of Off Site Soil Boring Results **Primary COPCs Above Screening Criteria Hiteman Leather Site** West Winfield, NY

Refer to Table 4-1A for an explanation of data qualifiers and definitions of screening criteria

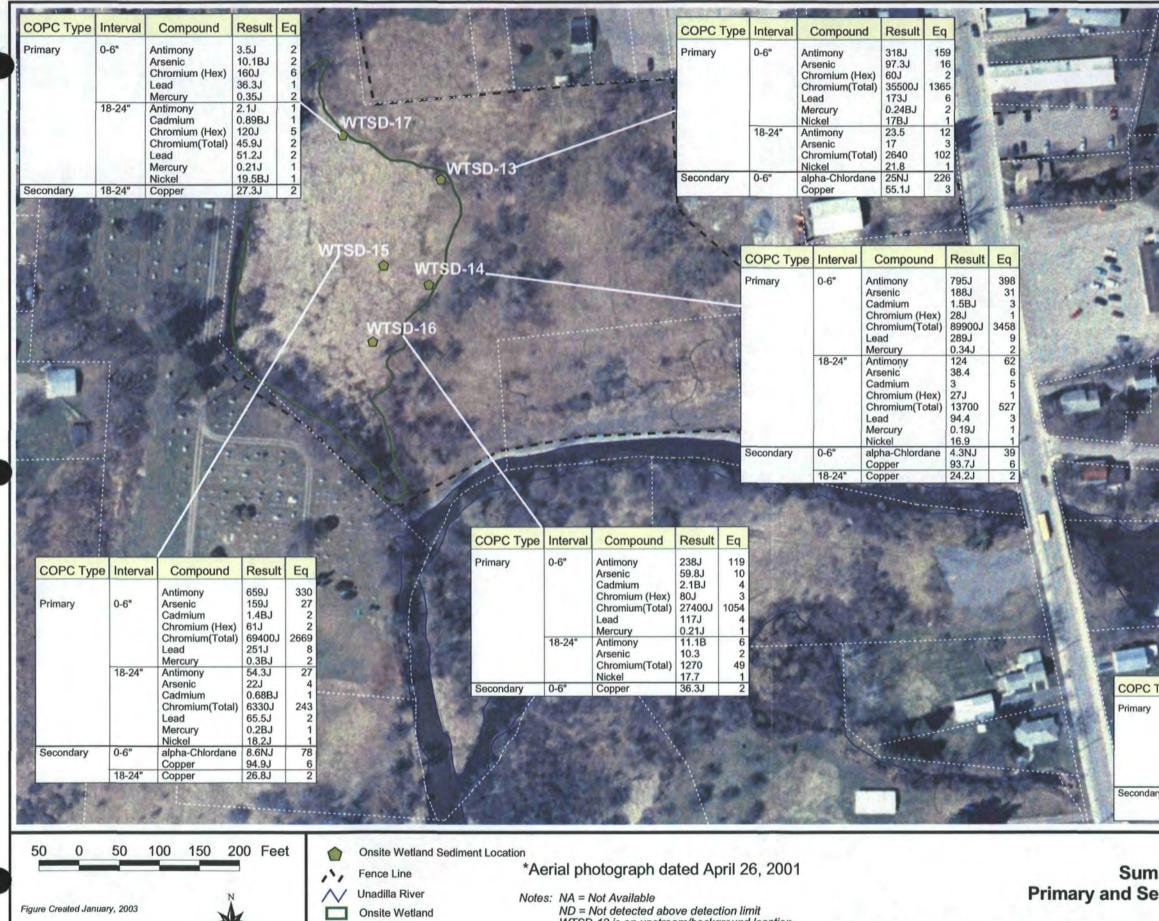
Part of the local division of the local divi	100	-			-
			Y.		
		-	A Same		
COPCT		Compa	und Desuit	Linite	Fa
COPC T		Compou	S		
Primary	0-6"	Arsenic Cadmium Chromium(Cyanide Lead Nickel	Total) 9.6 0.92B 109 0.23B 189 21.3J	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	1 8 10 2 7 1
	1			1	
	Aller				
	1	÷	11.0		
-		and the		and the second	
0			Cart C	See.	
R.L.		per les		and the second	
	A State of the	- 13	-	- 53	7.53
	1 25/20		Carlos Sin		
	The second				
	100 - 200	1	and the second	30	
-	The start	1 Berge	- AL		
1000	100	3480		PPP .	
0.0					
		A Nor		200	int.
	In such that	Press of			11-
	Second Second	100		1.2	
			- 0 "		
15 1			ening Crite		
OPC Type	Compound		NYSDEC-R		KGD
rimary	Antimony Arsenic	mg/Kg mg/Kg		NA 7.5	0.69 12.90
	Cadmium Chromium(Tota			1.0 10.0	0.09 23.10
	Cyanide Lead	mg/Kg mg/Kg		NA	0.15 23.50
_	Nickel	mg/Kg		13.0	35.40
		1540	F	igure	4-7

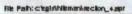
Summary of Southbank Front Lot Surface Soil Results **Primary COPCs Above Screening Criteria Hiteman Leather Site** West Winfield, NY

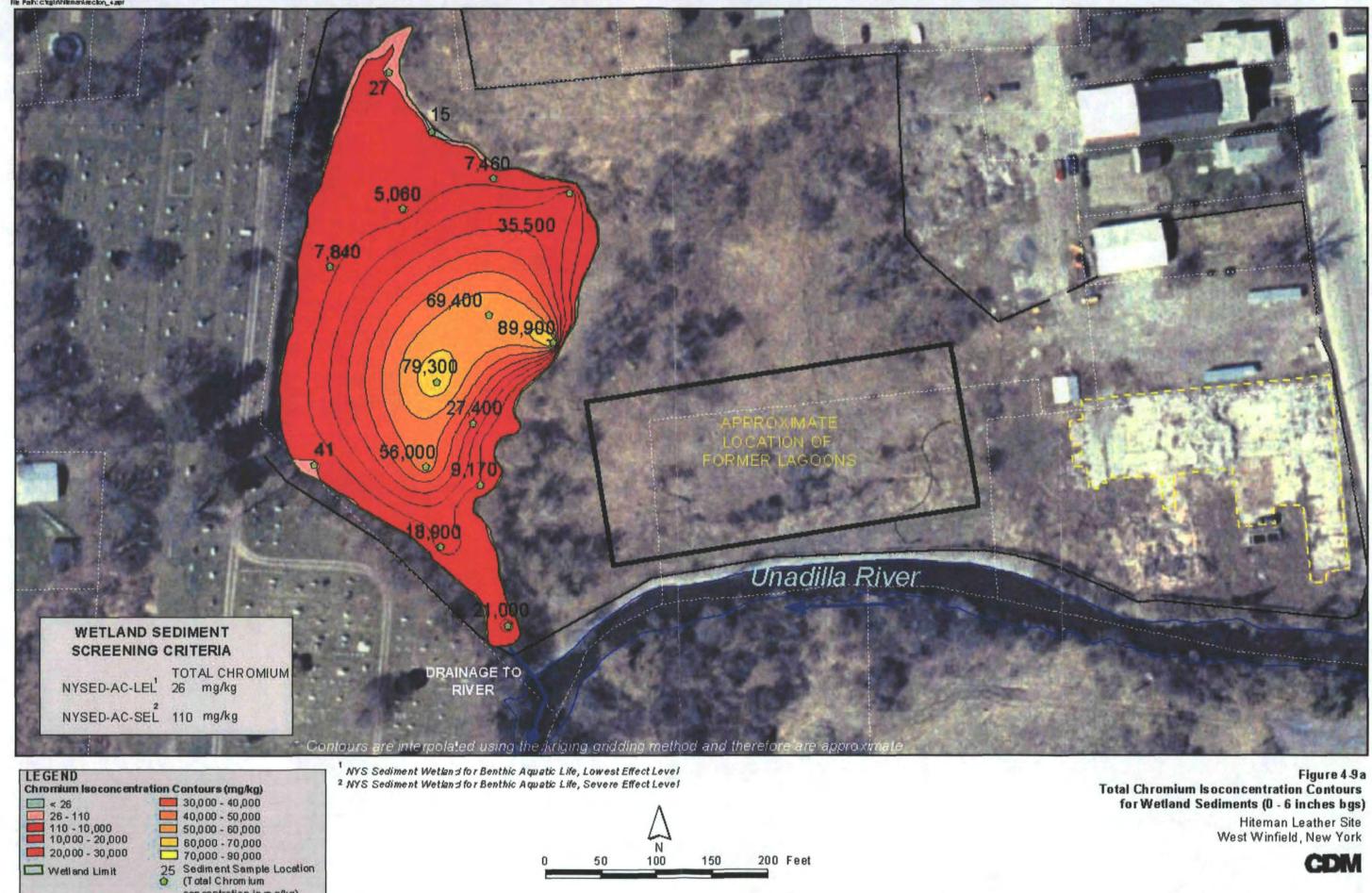
\Grassomj1\C:\EGIS\Hiteman\sec4-figs_proj1.apr

and the second division of the second divisio		-	-					1000	And Party of Concession, Name					-		-					_
COPC Type	Interval	Compound	Result I	Eq	COPC Type	Interval C	ompound	Result Eq	And an other Designation of the local division of the local divisi	COPC Type	Interval	Compound	Result Eq								1.
Primary	0-6"	Arsenic Chromium(Total)	17.3J 7840J 3	302	Primary			7.3BJ 1 5060J 195	F	Primary	0-6"	Antimony Arsenic	13.3BJ 7 10.3J 2				СОРС Тур		Compound	Result	Eq
1.00		Mercury	65.5J 0.49J	23		Lea		91.5J 3 0.52BJ 3				Cadmium Chromium(Total)				4 31	Primary	0-6"	Antimony Arsenic	54.2BJ 16.5J	27
	18-24"	Antimony	16.5BJ 19.9BJ	1 10			imony	20.4BJ 1 30 15	1			Lead Mercury	316J 10 0.52J 3	-	1=			18-24"	Chromium(Total) Lead Arsenic) 7460J 47.2J 12.3J	287
100		Chromium(Total) Lead	41J	83	-11	Mer	rcury	259 10 0.2J 1	Sec. St.		18-24"	Nickel Antimony	25.5BJ 2 23.6 12		-			10-24	Cadmium Chromium(Total)	0.77BJ	1 2392
econdary		Nickel	0.35J 25.4J 17.7BJ	221	Secondary	0-6" Cop		22.1 1 21.9BJ 1				Arsenic Chromium(Total) Mercury	6.4 1 37.3 1 0.2J 1	Kar .	1. 20		8		Lead Mercury	218J 0.73J	75
		Copper	23.2J	1	0					Secondary	0-6"	Nickel Copper	26.1 2 42J 3		State of		Secondary	0-6"	Nickel alpha-Chlordane		1 226
ОРС Туре	Interval	Compound	Result	Eq			De la constante	NE	the second	Coolineary		Sel la la			The sea	510	15	18-24"	Copper alpha-Chlordane	26.9BJ 22J 81.6J	199
imary	0-6"	Antimony Arsenic	106J	17 18		9		N	WTSD	1.200	1		Value	dan in			Station .	1000	Copper	01.00	5
		Cadmium Chromium(Total)	4.4J 41.2J	72			114 11					「「「「	113	10	Sec. 4		СОРС Тур	e Interval	Compound	Result	Eq
	10.048	Lead Mercury	77.3J 0.26J	22	1	1	100		X	a the	al un	Star Ball	and the set	A 1	Bras.	and the second	Primary	0-6"	Arsenic	16.5J	3
		Antimony Arsenic Mercury	19.6B 6.7 0.19			1				12	A Starting	Berte	1.10	23.	1	L and			Cadmium Chromium(Total) Lead	2.3BJ 79300J 307J	4 3050
					CORE LOS		L'	11 23	WTSD-3	0	200	A Page of			1993	BAR .	1	18-24"	Mercury Cadmium	0.66J 4.2J	4
2			and the second		0				0 W	TSD-4	1	The second	1				-		Chromium(Total) Lead	23500J 146J	904 5
OPC Type	Interval 0-6"	Compound Arsenic	Result I	2		10.		WISD-2	1	14521	10	18 C	Sec.	a des	K - L	5 3	-	1	Mercury Nickel	0.82J 18.6BJ	5
intery		Cadmium Chromium(Total)	1.6BJ	3	-		de la la la			Jacob La	1	An.		A Gal	Section.		Secondary		alpha-Chlordane Copper alpha-Chlordane	75.8J	163
		Lead Mercury	208J 0.77J	75		1.	1. 11		杨秋日路。	1	1.23				AL PAY		Contraction of		Copper	42.3J	3
		Arsenic	20BJ 7.1J	10			AND THE		WTSD-5	The of			and it is		and and the	1 3	СОРС Тур	e Interval	Compound	Result	Eq
		Chromium(Total)	0.94BJ 5270J 46.9J	203				all Barrie	0	6	1. P. 1		SPECIAL CONTRACT				Primary	0-6"	Arsenic Cadmium	6.5J 3.4J	1
		Mercury	0.27J 37.3J	22	G ROOM	-		WTSD-6	1	De	And a	-	The second	70 1 272	1	in the second	1		Chromium(Tota Lead		353
condary		alpha-Chlordane Copper	47.6J	199 3			-	1130-0	0	(Mr. Co	145-5-5A	10 10		12	Valia	1	18-24"	Mercury Antimony	0.41J 21.6BJ	3
	2.2.2.2	alpha-Chlordane Copper	2J 22.8J	18			11	V.	VTSD-7	WTSD-	8	1	-	A. T.	A				Cadmium Chromium(Tota		2 73
OPC Type	Interval	Compound	Result	Ea			-				Carlos .	2 Barris	the BUTT	1	1-1-2	S. F. TAN			Lead Mercury Nickel	40.5J 0.38J 16.8BJ	1 3
	0-6"	Antimony		13					NTSD-9	1.42	10.00				and the second second	and the second	Secondary	0-6" 18-24"	Copper	26.8J 30.9J	2
		Arsenic Cadmium	10.8J 0.63BJ	2 1						WTSD	-10	1					The state		copper		-
			ND 41.6J	2		20 1				•	1	S. A.	11-52-11		6. 2	180					
		Lead Mercury Nickel	34.4J 0.3J 29R			- wtsi	D-11 COP	C Type Interva	al Compound	Result Eq	Primary	Type Interval	Compound Arsenic	6.9BJ	Eq	Wotla	nd Sodim	ant Sero	ening Crit	oria	
	18-24"	Antimony Arsenic	32.4	16 3			Prima	ry 0-6"	Arsenic Cadmium	7.9J 1 6.2J 10	1	0-0	Cadmium Chromium(Tot	5J (al) 21000J	808						X.
		Chromium (Hex)	0.34B ND		14 84				Lead	18900J 727 252J 8			Lead Mercury	223J 0.59J	7 COPC			D-HFW NY	SED-AC-LEL		
		Lead	58.8 17.1 0.25				200	18-24"	Nickel	0.46J 3 20.6BJ 1 24.5 12		18-24"	Arsenic Cadmium	7.7J 5.6J	1 Primary 9	Antimon Arsenic Cadmiu		NA	2.000 6.000 0.600		25.000
condary	0-6"	Mercury Nickel alpha-Chlordane	36.4R		as the second	T		10-24	Arsenic Chromium(Total)	18.2 3	2		Chromium(Tot Lead Mercury	200J 0.8J	6	Chromiu	m(Total)	NA	26.000 26.000	1	9.00 10.00 10.00
contraity		Copper	27.2J	2	· 1000	10 States	Secon	ndary 0-6"		0.18 1	Second	ary 0-6"	Nickel alpha-Chlorda	17.3BJ	1 52 1	Lead Mercury Nickel		NA NA	31.000 0.150 16.000		10.00 1.30 50.00
	18-24"	alpha-Chlordane Copper	3.5J 36.2	³² 2			5.	18-24"	alpha-Chlordane	51J 3 0.44J 4		18-24"	Copper alpha-Chlorda	41.6J ne 4.9NJ	3 Second	ary Copper alpha-C	lordane	NA 0.1105	16.000 3.315	1	10.00
		Heptachlor	0.42J	5	And the				Heptachlor	0.23J 3			Copper	49.5J	3	Heptach		0.0884	11.050		11.05
50	0 5	0 100 1	50 Feet	t 🕥 Onsite We	tland Sediment Sam	npling Location	'n									100	1.003		Fi	gure 4	4-8
	-			, Fence Line				otograph d	ated April 26,	2001					Summ	ary of C	Insite W	etland	Sedimen	t Res	ult
ure Created Jan			N	V Unadilla Ri			IA = Not Avai						Pr	imary a	and Sec	ondary	COPCs /	Above S	Screenin	g Crit	eri
ure created Jan	idary, 2003	11	NK.	Onsite We	tland	И	VTSD-11 is a	ected above del	karound location									Hite	eman Lea		
		vv	Z D					in apour our in sur	sed on the most s planation of data q plor values are rep		and the second second	and a second second			- 1				West Win		- B. B. B.

Grassomj1\C:\EGIS\Hiteman\sec4-figs_proj1.apr



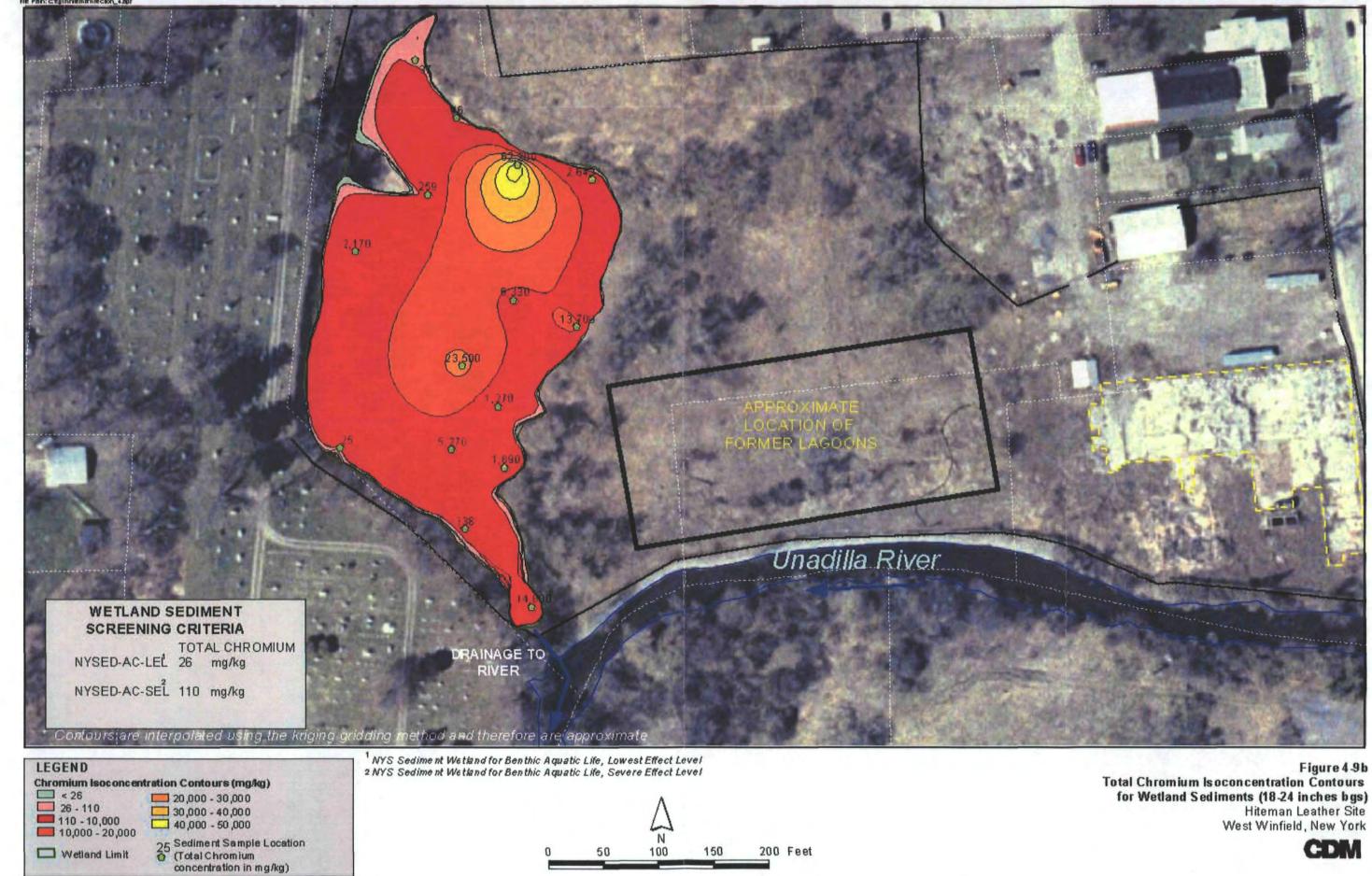

Figure 4-8b **Summary of Onsite Wetland Sediment Results** Primary and Secondary COPCs Above Screening Criteria **Hiteman Leather Site** WTSD-12 is an upstream/background location Eq = exceedance quotient based on the most stringent screening criteria; value is rounded to the nearest whole number Refer to Table 4-1A for an explanation of data qualifiers and definitions of screening criteria West Winfield, NY

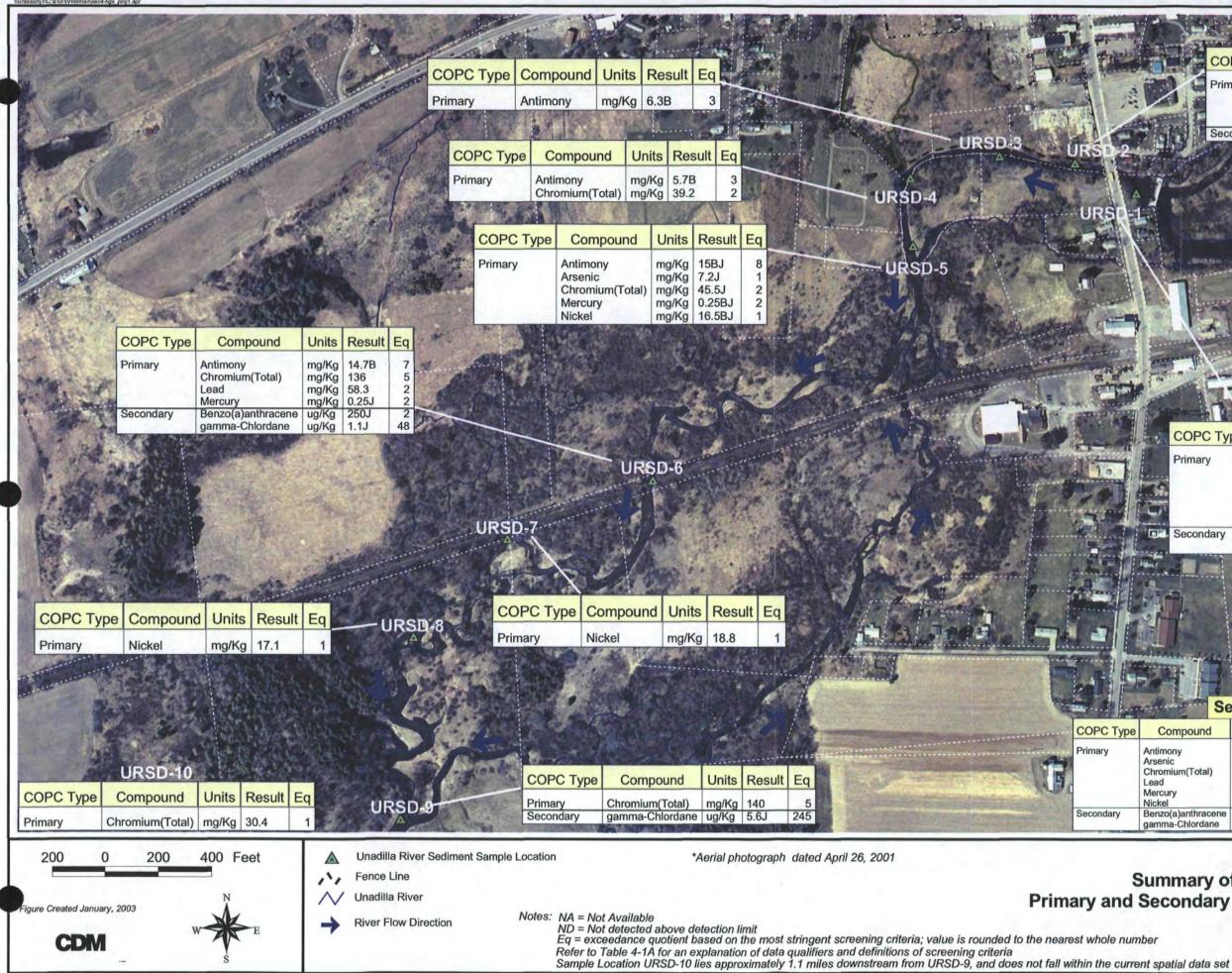

alpha-Chlordane and Heptachlor values are reported in ug/kg. All other values are reported in mg/kg.

COPC T	ype Interval	Compound	Result	Eq
Primary	0-6"	Antimony	22.2BNJ	11
r minary	0-0	Arsenic	8.1J	1
Level N		Cadmium	ND	o
Contract of the second s		Chromium (Hex)	ND	0
5-10		Chromium(Total)	16.6J	Ő
		Lead	39.5NJ	1
Conception of the local division of the loca		Mercury	0.2BNJ	1
		Nickel	19.5BJ	1
- A	18-24"	Antimony	30.8NJ	15
1000		Arsenic	10	1
		Cadmium	0.4B	2
	1.1.1.2	Chromium (Hex)	ND	0
		Chromium(Total)	19.9	0
- ES		Lead	24.2NJ	0
A DESCRIPTION OF THE OWNER OF THE		Mercury	0.17BNJ	1
	and the first of	Nickel	25.2	2
Secondary	0-6"	alpha-Chlordane	ND	0
		Copper	23J	1
		Heptachlor	ND	0
and the second	18-24"	alpha-Chlordane	4.8J	43
and the second s		Copper	26.4	2
		Heptachlor	ND	0

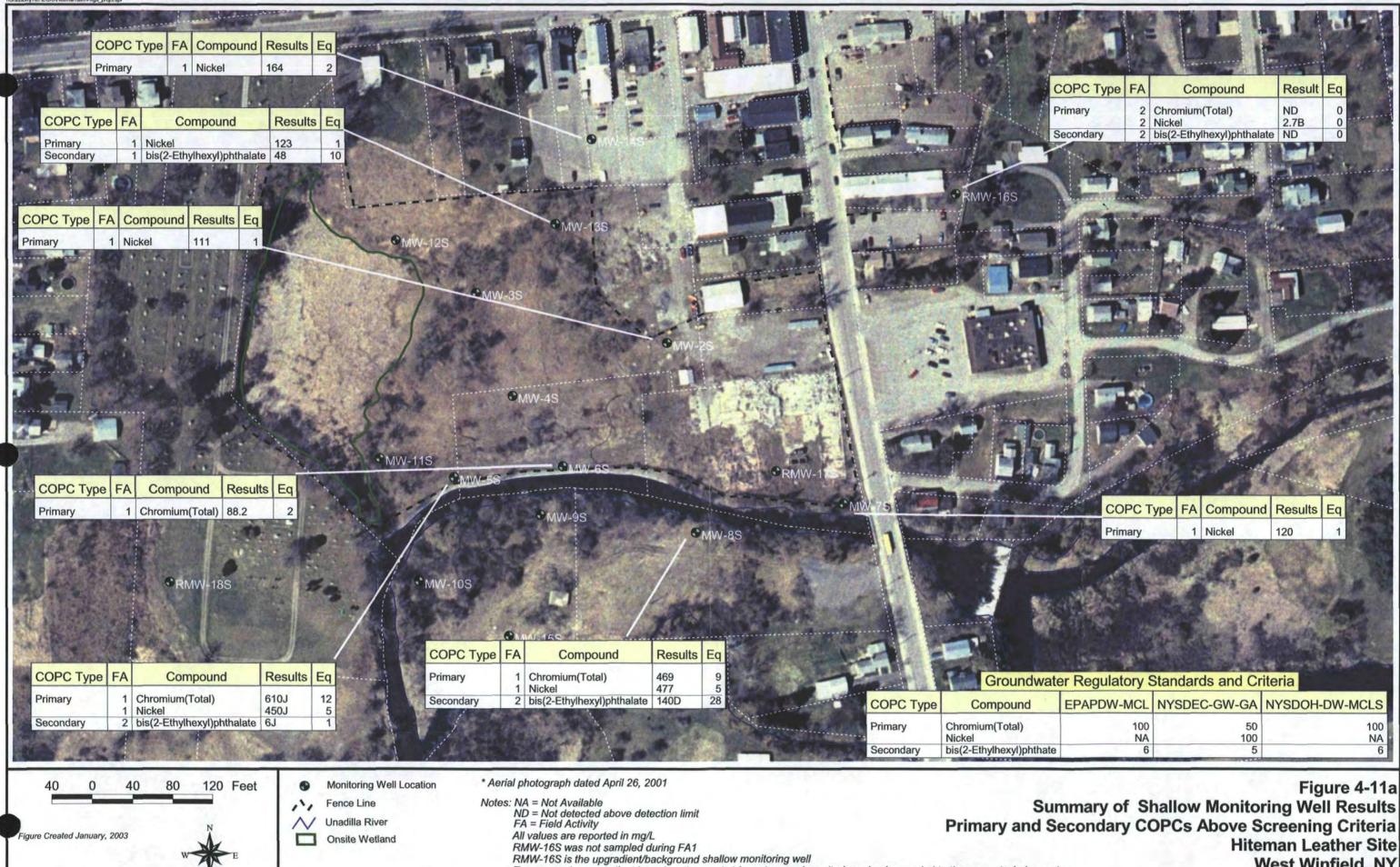
WTSD-12

	Wetland Sediment Screening Criteria									
Туре	Compound	NYSED-HFW	NYSED-AC-LEL	NYSED-AC-SEL						
	Antimony	NA	2.000	25.000						
	Arsenic	NA	6.000	33.000						
	Cadmium	NA	0.600	9.000						
	Chromium(Total)	NA	26.000	110.000						
	Chromium (Hex)	NA	26.000	110.000						
	Lead	NA	31.000	110.000						
	Mercury	NA	0.150	1.300						
_	Nickel	NA	16.000	50.000						
гу	Copper	NA	16.000	110.000						
	alpha-Chlordane	0.1105	3.315	3.315						
	Heptachlor	0.0884	11.050	11.050						




concentration in m g/kg)

Wetland Limit

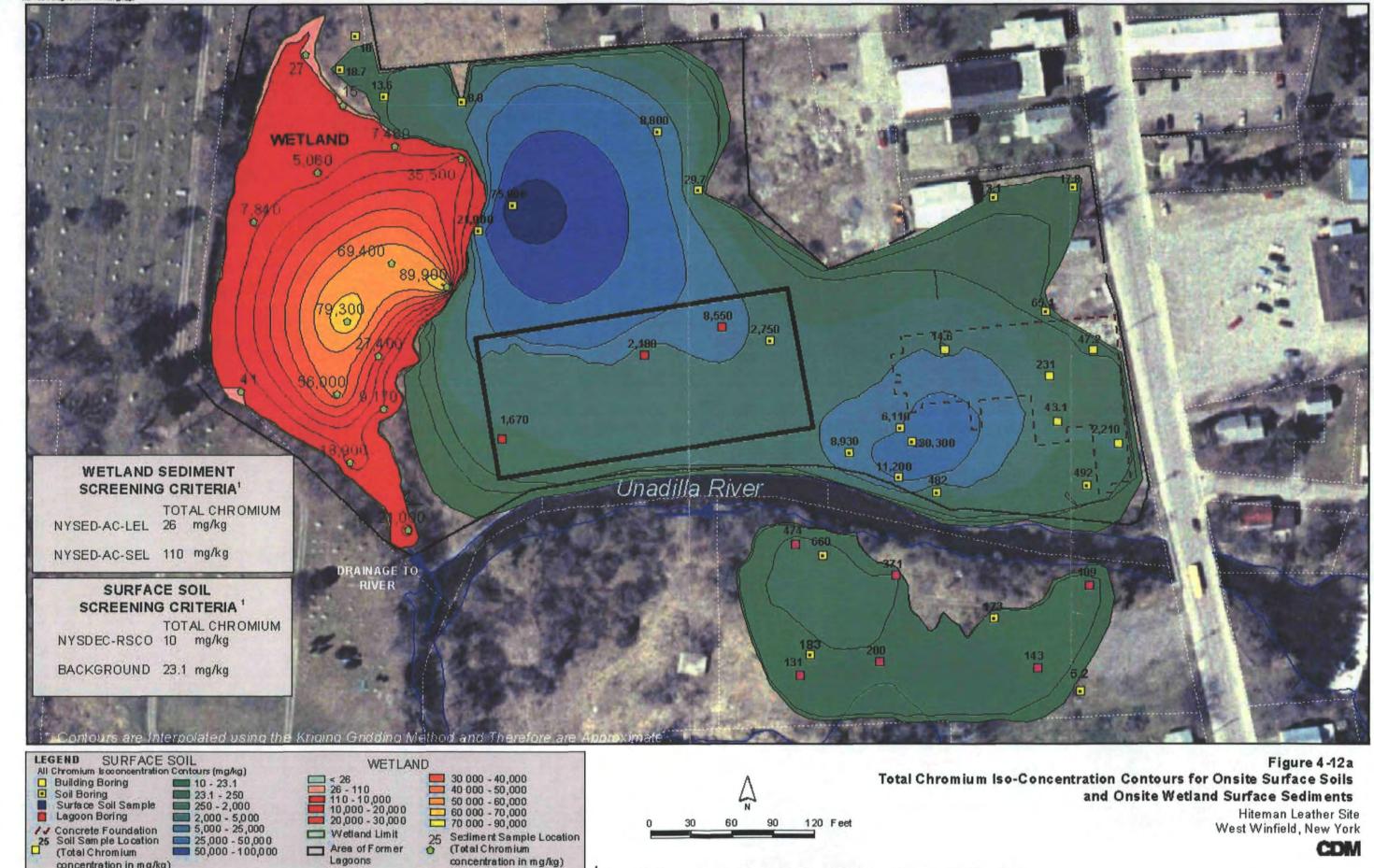


COI Prim Secc		Compou Antimony Chromium(To Lead		Units mg/Kg	Result 8.1B	Eq 4
		Chromium(To	tall		8.1B	4
Seco	and a		nal)	mg/Kg mg/Kg	1670 53.1	64 2
	ondary	Mercury Benzo(a)anth	racene	mg/Kg ug/Kg	0.23J 450J	2
A Bar S	WTSDHO	A seal and		3		1
	P.		1		and the second	
	See to		-		in preserve	
	C. CAMPA	CALL DATE	1.1.4			
dename of	ALC: NOT	6				
1						
	1	Hent	-	and the second	la a a a a a a a a a a a a a a a a a a	
	and the		- Later		-	14
The	A STATE		10	2 51		
			- 10-			
Section 1	\	9	Sec.	9	100	
COPC Typ	be Co	ompound	Units	Result	t Eq I	
Primary	Antim		mg/kg	12.8BJ		
		ic nium(Total)	mg/kg mg/kg	3.7BJ 11.1J	0	w.
	Lead Mercu	rv	mg/kg mg/kg	20.6J 0.21J	0	132
Secondary	Nickel	12	mg/kg	12.9BJ ND	0	
Secondary		(a)anthracene a-Chlordane	ug/kg ug/kg	4.8J	3 43	
	12 m	-		2 100		
9	1215	83.5				
pres 1					AL AL	
	and a	alla le la la				
		2				
		A BALL	1-12B	13.52	1910	
Se	diment	Screenin	g Crit	eria		50
mpound	Units NY	SED-HFW N	YSED-A	C-LEL	NYSED-A	C-SE
c c	mg/kg mg/kg	NA		2.0000 6.0000		25.000 33.000
ium(Total)	mg/kg mg/kg	NA NA		6.0000		10.000
ry I	mg/kg mg/kg	NA		0.1500 6.0000		1.300
, y		143.6500		4.8000		274.800

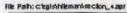
Primary and Secondary COPCs Above Screening Criteria **Hiteman Leather Site** West Winfield, NY

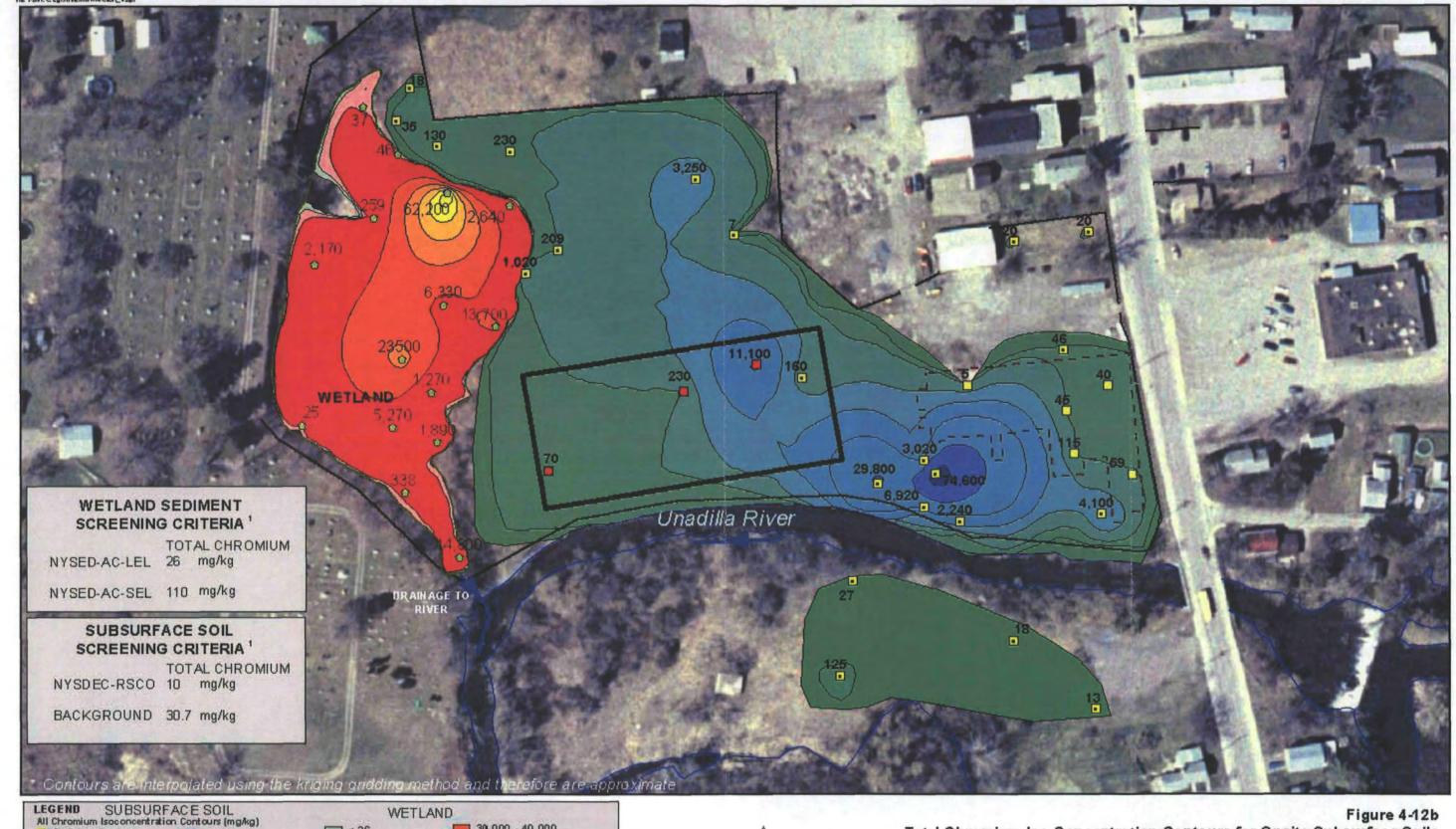
Eq = exceedance quotient based on the most stringent screening criteria; value is rounded to the nearest whole number Refer to Table 4-1A for an explanation of data qualifiers and definitions of screening criteria

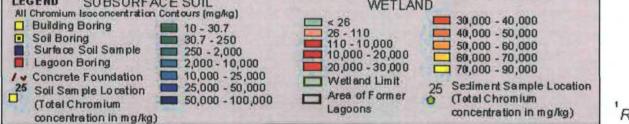
West Winfield, NY

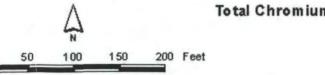


_		_	-		
			THE		
	COPC Ty	pe FA	Compour	nd Result	Eq
	Primary	2222	Arsenic Chromium(Te Lead Nickel	otal) ND 3.3B ND 3.1B	
1	W-16D				
		6			~
					Z
Contraction of the					
	10		JRA		2
					30
		SIG			1
Va	ater Regulatory				A CAR
1)	EPAPDW-MCL 10 100 15 NA	NYSDE	C-GW-GA 25 50 25	NYSDOH-I	50 100 15
	NA	0.4077	100		NA


Figure 4-11b Summary of Deep Monitoring Well Results Primary COPCs Above Screening Criteria **Hiteman Leather Site** West Winfield, NY


His Pain: c'egishhismanisection_sapr


concentration in mg/kg)



Refer to Table 4-1A footnotes for definitions for screening criteria

Refer to Table 4-1A footnotes for definitions for screening criteria

Figure 4-12b Total Chromium Iso-Concentration Contours for Onsite Subsurface Soils and Onsite Wetland Subsurface Sediments Hiteman Leather Site West Winfield, New York

Section Five

Section 5

Section 5 Contaminant Fate and Transport

This section examines the chemical and physical processes that affect the fate and transport of contaminants in the soils, sediments, groundwater, and surface water at the Hiteman Site and impacted areas. The focus will be on the primary COPCs discharged at the Site, as described in Section 4. An understanding of the fate and transport of contaminants aids the evaluation of current and future potential exposure risks and the evaluation of remedial technologies in the feasibility study. This section provides the following:

- A listing of the contaminants of interest at the Site
- A summary of the relevant physical-chemical and mobility-related properties of the primary COPCs, as needed for describing their fate and transport
- A listing of potential transport pathways as presented or identified in the Site conceptual model, and a description of the conceptual model for current transport conditions
- Discussion and summary of conclusions from this fate and transport evaluation

5.1 Contaminants of Interest

Section 4 identified a total of nine primary COPCs, as shown in Table 5-1. The primary COPCs consist of eight metals, antimony, arsenic, cadmium, total chromium, hexavalent chromium, lead, mercury, and nickel, and cyanide. Table 5-1 summarizes the discussions and evaluations presented in Section 4, which focuses on comparing concentrations measured in different media and locations to state and federal standards and criteria, as well as background or upgradient/upstream concentrations. Table 5-1 provides an indication of which primary COPCs are likely to be of greater concern, based on the level of exceedances and the spread of contamination. The table also helps show the current conditions in terms of contaminant transport pathways. The following paragraphs describe the basis for assigning the level of concern to each of the primary COPCs, based on the evaluation in Section 4.

<u>Total chromium</u> is of significant concern in the fate and transport assessment because of the high concentrations, relative to screening criteria and background concentrations, measured in the Site soil and sediment. Chromium was discharged in large quantities from the manufacturing operations historically, and thus the residual total chromium concentrations are the highest of any of the primary COPCs. There is also the concern that geochemical changes, while unlikely, could cause conversion of trivalent chromium to hexavalent chromium, a more toxic and mobile form of this metal COPC. This COPC is considered to be of high priority.

<u>Hexavalent chromium</u> is also of concern due to its mobility in the dissolved phase and its toxicity. Hexavalent chromium is not considered to be as much a concern as total chromium since it was sporadically detected, and at much lower concentrations. Hexavalent chromium was detected in bedrock groundwater at levels below standards and screening criteria. Therefore some concern exists with respect to the potential

threat to water supply wells; however, hexavalent chromium has not been detected in residential/private or municipal water supply wells nearby. Because of the potential threat and the significantly high concentrations of trivalent/total chromium in most impacted media onsite and off site, hexavalent chromium is considered to be of high priority.

<u>Arsenic</u> – Arsenic is a known component of tannery processes, and its drinking water standard has been lowered recently due to increased concern about its toxicity and health impacts. Arsenic is found in onsite and off site soils, deep (confining layer) monitoring wells, and sediments, including wetland and river sediments, at concentrations that are high enough to trigger its selection as a primary COPC for those media. Arsenic is considered to be of medium priority.

<u>Antimony</u> – Antimony was detected at relatively high concentrations in RI soils and sediment samples. However, antimony was not detected above screening criteria in Unadilla River surface water, sediment or fish tissue, or in groundwater. Its potential for migration is thus shown to be limited based on the evaluation of RI and SI data. It is considered to be of low priority.

<u>Cadmium</u> – This metal was not detected at levels exceeding screening level criteria in Unadilla River surface water, sediment or fish tissue, or in groundwater. Its potential for migration is thus shown to be limited, based on the evaluation of RI and SI data. It is considered to be of low priority.

<u>Lead</u> – Although lead was measured at concentrations in soils above background, the concentrations in wetland and stream sediments were just above background. Site impacts are evident in the onsite and off site soils, but definitive impact to wetlands and the river could be difficult to demonstrate. In addition, lead was not selected as a primary COPC for the river water and fish tissue, or for shallow groundwater and bedrock groundwater. Lead is considered, therefore, to be of low priority.

<u>Mercury</u> – This COPC was found below background concentrations in lagoon and building area soils, but above background in soils onsite (north of the river), South Bank Front Lot soils, and offsite soils. However, it was not detected at levels exceeding screening criteria in lagoon subsurface soils, South Bank Front Lot surface soils, or in groundwater. Mercury is, therefore, assigned a low priority for fate and transport assessment.

<u>Nickel</u> – Below background concentrations were detected in soils in most locations, including lagoon, building area, South Bank Front Lot, and off site subsurface samples. Where it was measured above background concentrations, nickel was not significantly above those levels. Although it appears as a primary COPC for shallow and deep groundwater units, this designation was based on exceedances at only one or two monitoring wells. Nickel was not detected at levels exceeding screening criteria in Unadilla River surface water, fish tissue, or bedrock groundwater, which is the only water supply aquifer unit under evaluation in the Site vicinity. Because the exceedances are not extensive or significant, nickel was assigned a low priority.

<u>Cyanide</u> – It is not known whether the detected cyanide is in a free and/or bioavailable form. Determining this is essential for evaluation of its fate and transport, and the significance of the sampling results for pathway-risk assessment purposes. To be conservative, it is recommend that cyanide remain a primary COPC, but that it be designated as a lower concern for fate and transport evaluation purposes at this time. In general, its concentrations are relatively low and significantly above background concentrations only in onsite and off site soils. It does not exhibit a high degree of mobility or transport in wetland sediments, river sediments, the river water, fish tissue, or groundwater. It is designated as a low priority COPC even though its form is not known.

Based on Section 4 and the discussion above, the ranking of primary COPCs for evaluation and discussion is summarized below:

- High priority total and hexavalent chromium
- Medium priority –arsenic
- Low priority antimony, cadmium, lead, mercury, and nickel
- Low priority, but need further information cyanide

<u>Organic contaminants</u> appear only as secondary COPCs in Section 4, and will, therefore, not be evaluated for their fate and transport characteristics.

5.2 Current Transport Conditions

This section discussed the potential transport mechanisms and pathways that may transport contaminated soils, sediments, and water toward possible receptors.

5.2.1 General Transport Mechanisms

The major processes that affect the transport, or mobility, of the primary COPCs in soils and groundwater are advection, dissolution/precipitation, adsorption, and bioaccumulation and bioconcentration. The following discussion applies to the COPC metals, noting that further evaluation of cyanide requires additional information on its form(s) in the environment at the Site.

<u>Advection</u>. The physical transport of adsorbed or precipitated metals is with groundwater flow, stormwater runoff, river/stream flow, or wind blown dust. The rate of transport, on average, is equal to the flow rate of the water or wind. Dispersion and subsequent related dilution of concentrations occurs and is directly related to the advective flow rate.

<u>Dissolution/precipitation</u>. Whether a chemical is transported in a dissolved state in infiltrating water or precipitated out of solution depends on the solubility of that chemical in water, and competition or interference with other chemicals being

transported. Most metals are relatively insoluble, but metal solubility is highly dependent upon oxidation/reduction (redox) conditions and pH, which are discussed further below.

<u>Adsorption</u>. Metals become mobilized in surface soils by forming solutes, which may react with surfaces of soil solids, especially clays, and create chemical bonds between the soil particle's surface and metal ions. Most clay minerals have an excess of imbalanced negative charges in their crystal lattice. Adsorptive processes in soils thus favor the adsorption of cations. Divalent cations are usually more strongly adsorbed than monovalent ions. Attenuation of metals through adsorption varies from those that are weakly attenuated, such as sodium, potassium, and magnesium; those that are moderately attenuated, including iron; and those that are strongly adsorbed, such as lead, cadmium, and mercury.

<u>Bioaccumulation and bioconcentration.</u> Some chemicals, such as lead and mercury, tend to bioaccumulate or bioconcentrate in animal or plant tissue. In fact, plant uptake is sometimes used as a remedial strategy to remove these contaminants from soils and sediments. Bioaccumulation represents an uptake and buildup rate in a species that ingests or uptakes the contaminant that is faster than its elimination rate. This can be a concern for higher-level biota, including the human population, for contaminants such as mercury. However, given the relatively low concentrations of COPC primary metals that would be subject to bioaccumulation, bioaccumulation/bioconcentration is not considered a factor of significant concern for this fate and transport evaluation.

5.2.2 Mobility of Metals

A variety of factors affect the mobility of metals in soil-water systems, including: the presence of water (e.g., soil moisture content); the presence of other complexing chemicals in solution; the pH and redox potential, which affect the speciation of all metals and complexing agents; the temperature; and soil properties, such as cation exchange capacity, the presence of hydrous oxides of iron and magnesium, the amount of organic matter present in the soil, and the distribution of soil particles. Table 5-2 summarizes the field readings of pH, TOC, and redox potential in the media and locations sampled.

The pH of soils and groundwater affects the hydrolysis rate, partitioning equilibrium, and contaminant solubility. Soil pH values collected during the RI varied from 5.5 to 11. Groundwater pH values ranged from 5.6 to 9.2. Surface water pH values ranged from 5.6 to 8.

Redox potential determines the chemical species that predominate and, therefore, the mobility and fate in the environment. High redox potential values favor the existence of oxidized species, whereas, low redox favors reduced species and those compounds without oxygen or multiple bonds. The Site redox values in surface water ranged from about -0.05 to 62 millivolts (mV), indicating low but oxidizing conditions. The groundwater redox values had a much wider range, from -433 to 223 mV. In general, these pH and redox ranges indicate that the primary COPC metals should be relatively

immobile in surface water. This is confirmed by the presence of metals on sediments but not in appreciable concentrations in the water column.

In groundwater, the conditions range from reducing to oxidizing, indicative of a range of metals mobility. This is demonstrated by the presence of mobile hexavalent chromium in at least some of the groundwater samples, as well as a greater distribution of arsenic than some of the other metal COPCs.

High organic content in soil increases contaminant absorption and hinders the movement of contaminants through the soil. Most areas of the Site contain native or reworked soils and sediments. The TOC values ranged from 2,400 to 211,000 mg/kg (0.24 to 21.1 percent) in the surface soils, wetland sediments, and subsurface soils. An average value of 5.24 percent was selected for the contaminant criteria calculations performed in support of the Section 4 evaluation of COPCs. This is a relatively high value, which is indicative of strong sorption capacity.

In a study of metals retention in soils, the relative mobility of several metals in various soil types was assessed (EPA 1987). The study indicated that hexavalent chromium, mercury, and nickel are among the most mobile, while cadmium, lead, and trivalent chromium are among the least mobile. For the metals studied, mobility varies with location and media, although the order of mobility was generally:

Most Mobile - Cr(6) > Hg > Ni > As > Cd > Pb > Cr(3) -- Least Mobile

Antimony is not included in this sequence but is assumed to fall in the middle portion of the sequence, based on its distribution onsite and off site.

The above order was based on the anticipated speciation of the chemicals in fresh water, general solubility patterns, and general soil sorption patterns. Guidelines used to assign metals to this mobility sequence were:

- Metals whose predominant species in freshwater are anions (e.g., arsenic), which are only minimally retarded in soils, are among the most mobile.
- Metals that are fairly strongly sorbed to most soils under normal environmental conditions (i.e., pH 6 to 8 near neutral redox potential) are among the least mobile.
- Metals whose predominant freshwater species are cations, especially divalent heavy metals (i.e., lead), are subject to sorption via cation exchange, and are thus among the least mobile

5.3 Physical-Chemical and Mobility Related Properties – Primary COPCs

This section presents the physical-chemical and mobility related properties of the primary metals COPCs. This information was used to help evaluate the priority for concern, in terms of fate and transport potential. Table 5-1 lists all of the primary

COPCs and the location-media combinations in which they exceeded regulatory criteria or background concentrations. Section 5.1, Contaminants of Interest, concluded with a priority listing of the COPCs, as shown below.

- High priority total and hexavalent chromium
- Medium priority arsenic
- Low priority antimony, cadmium, lead, mercury, and nickel
- Low priority, but needs further information cyanide

Table 5-3 provides information on the fate and transport properties of the primary COPC metals.

5.3.1 Factors Determining Contaminant Mobility

Metal solubility is important because it affects the behavior of the metal, determining whether it will form a solute, and thereby allowing it to be mobile under aqueous conditions. If insoluble, it will show tendencies to precipitate and sorb to particulate material.

The persistence of metals depends on the leaching rates from soils, the groundwater flow rate in saturated sediments and rock, and individual metal properties. The persistence of metals is complicated by processes such as precipitation and dissolution, which are dependent upon pH, the presence of certain ions or complexing agents, and concentrations of the metals in solution. The COPC metals will be strongly affected by adsorption onto solid-phase organic matter and metal oxides/hydroxides, particularly of iron and manganese. Because the Site has high concentrations of iron, and perhaps manganese, this latter effect could be significant. The possible presence of carbonates in the soil, sediments, and bedrock also has an influence on the retention of COPC metals (Deutsche 1997).

The following paragraphs describe the mobility of the primary metals COPCs. More information is provided for the high priority (total/trivalent and hexavalent chromium) and medium priority (arsenic) COPC metals. Brief descriptions are presented for the low priority COPC metals (antimony, cadmium, lead, mercury, and nickel). Cyanide is not discussed in this section.

<u>High priority – Total chromium and hexavalent chromium.</u> Deutsche (1997) provides an indication of contaminant mobility findings from several research and field investigation studies. He says: "In the range of natural groundwater pH (6.5 to 8.5) under reducing to slightly oxidizing redox potential, cationic and neutral species of trivalent chromium ... dominate with the solid Cr (OH)₃ over a large portion of the pH/[redox] region. Under more oxidizing conditions, the hexavalent anionic species ... are dominant." He also indicates that trivalent chromium can complex "with organic acids and water-soluble organic matter thereby enhancing the mobility of chromium." Deutsche also says, "Oxidation-reduction processes play a major role in affecting the mobility of chromium because it is relatively mobile as hexavalent

chromium and immobile as trivalent chromium." He summarizes the important processes controlling chromium mobility as follows:

"... the movement of hexavalent chromium contamination in the subsurface will be initially retarded by adsorption reactions with exchangeable sites on clay minerals and specific adsorption sites on metal oxide and oxyhydroxides. Other anions in solutions will compete for these adsorption sites. If the adsorption capacity is consumed by a high degree of contamination, hexavalent chromium will be mobile. Under typical subsurface conditions with slightly reduced Eh (<250 mV), hexavalent chromium will be reduced to trivalent chromium, which will precipitate as the insoluble mineral $Cr(OH)_3$ or $(Fe,Cr)(OH)_3$. The rate of reduction will be dependent on the pH of the environment and the presence of reductants such as organic matter, Fe^{+2} , and sulfide. If the oxidizing capacity of the chromium will be relatively stable and mobile. Oxidized manganese minerals may also enhance the stability of hexavalent chromium in the environment."

Throughout all of the media at the Site and in off site areas, geochemical conditions appear to be typical as per Deutsch's description above, and therefore trivalent chromium is the predominant species. The presence of hexavalent chromium at elevated concentrations in bedrock groundwater samples may be the result of different geochemical conditions in the aquifer. The reasons for the difference are not fully known at this time.

<u>Medium priority -- Arsenic</u>. Arsenic is generally mobile and is known to volatilize when biological activity or highly reducing conditions produce arsine or methylarsines. Iron oxide, pH, and, redox control the extent of soil sorption. At high redox levels, arsenate predominates and has low mobility. As the pH increases and the redox level decreases, arsenite predominates and is more subject to leaching. Deutsche (1997) summarizes the geochemical mobility of arsenic as follows:

"... the mobility of arsenic under oxidizing conditions is primarily affected by the adsorption of As(V) onto metal oxyhydroxides surfaces. If the appreciable adsorption capacity of these surfaces is not surpassed, then arsenic movement will be strongly retarded because of the high affinity of these surfaces for As(V). Under reducing conditions, the dominant arsenic redox species will be As(III), which is not as strongly adsorbed. Furthermore, the primary adsorbing solids may not be stable if the redox potential is low enough. As a consequence, arsenic is expected to be much more mobile under reducing conditions. This mobility may be significantly reduced if arsenic sulfide minerals become saturated and precipitate."

Conditions in the Site media indicate that arsenic may be somewhat mobile in some areas/media, but relatively retarded in others. This is supported by the identification of arsenic as a primary COPC in several of the media sampled, and the general sequence of mobility presented in Section 5.2.2.

Lów Priority - Lead. Lead is virtually immobile in all but sandy soils. Its predominant fate in the environment is sorption to soils and sediments. The adsorption of lead is pH dependent, decreasing with decreasing pH. Below pH 7, lead becomes progressively more mobile. Above pH 6, lead is adsorbed to clays or forms lead carbonate, an insoluble compound. In natural water, lead concentrations decrease over time; sorption of lead to both sediments and suspended particulates is the favored process with clay, hydrous metal oxides, and organic matter influencing this sorption. At the Site and vicinity, the values of pH are generally above 6 but there are some readings as low as 5.5, indicating that lead will most likely tend toward low, or very low, mobility.

<u>Other Low Priority COPCs</u>. The remaining metal COPCs are expected to be somewhat more mobile than lead, but less than hexavalent chromium. Because their concentrations and spatial distribution are more limited than chromium and arsenic, the mobility of cadmium, mercury, and nickel is relatively low, compared to potential mobility under different geochemical conditions. It is also possible that the original discharges of these COPCs may have been significantly lower than for chromium and arsenic, and thus their residual concentrations would also be lower.

5.4 Discussion of Conceptual Models5.4.1 Summary of Historical Conditions and Comparison to Current Conditions

Section 1 included discussion of a conceptual model of historical conditions at the Site and surrounding area. That model demonstrates how contaminant discharges may have caused the COPC concentrations that have been documented at the Site.

During operations, major changes occurred in the Site's hydraulic/hydrologic conditions, which caused contaminant pathways to differ significantly from what is observed today. These changes include:

The wastewater lagoons were taken out of operation in 1968. When in operation, the lagoons could have raised the water table high enough to hydraulically drive contaminants downward through the shallow outwash unit and into the semi-confining lacustrine (clay-silt) layer. The head may have been sufficient to push contaminated water into the bedrock aquifer layer. Currently, the bedrock aquifer has artesian heads that cause bedrock groundwater levels to rise above the ground surface. Upward groundwater flow, through the confining layer, has probably prevailed since the lagoons were taken out of operation and drained.

During plant operations, the discharged wastewater probably had sufficient concentrations of contaminants and other constituents to make the wastewater significantly denser than fresh groundwater and surface water. The density difference could have promoted downward migration of the contaminated wastewater, as well as lateral flow, directed according to the slope of the contact, along the confining layer and the shallow outwash unit. Following plant shutdown, any dense liquids that may have existed would have mixed and dispersed into the ambient groundwater. Currently, the highest measured groundwater concentrations do not appear to indicate density differences, and so this mechanism, if it existed in the past, no longer exists and has probably not been an important factor for decades.

During plant operations, unknown quantities of discharged materials reached the lagoons, wetland, and the river, and also seeped into the groundwater. Although the mass of discharged COPCs has not been estimated, it is presumed that it greatly exceeds the residual COPC mass currently found in soils, sediments, and water in the onsite and off site areas.

When the plant was running, it is assumed that at times the river was mostly diverted for process water purposes. This was important to historical contaminant transport for two major reasons – transport into the South Bank area was not blocked hydraulically by the river, and transport into the wastewater lagoons and wetland areas was enhanced because of the relatively higher flows. This probably led to high water levels in the lagoons and a somewhat to significantly higher water table in the wetland discharge zone. Both overland and groundwater/subsurface flow would have thus been possible from north to south, allowing contaminated water to flow into the South Bank area in the groundwater. Overflows and surface runoff in this direction could also have occurred. Following plant shutdown, the river was maintained in its natural banks, forming a hydraulic barrier again, because the river likely acts as a "drain" for shallow outwash groundwater and upwelling artesian-induced flows. This river hydraulic barrier exists today.

Another feature of plant operations was the presence of two "outfalls" – the first one at the building area where "tanning tank" discharges occurred, and the second one at the outlet from the wetland area. The building area outfall ceased operations when the plant was shut down. The wetland outfall may have continued during storm runoff events and possibly during seasonal or climatically wet conditions. However, the magnitude of outflow from the wetland outfall is likely to have dropped significantly when river diversions were stopped and plant discharges ceased.

5.4.2 Current Condition Conceptual Model

The current conditions conceptual model starts from the historical conditions version, and focuses on the likely pathways for contaminant transport under prevailing hydrologic and hydraulic conditions. In general, the conceptual model of current conditions shows that there are active transport pathways, but it is assumed that most of the contaminant mass is not migrating. Current transport pathways are depicted in Figure 5-1.

Media-location combinations were evaluated for the likelihood of contaminant migration, and priorities were assigned, as listed in Table 5-4. Some of the primary COPCs, based on the media and locations in which they occur, may represent risks to biota and human health. However, most of the surface and subsurface contamination is probably not being transported at rates that would represent a serious concern. Exceptions may exist, most notably the potential for river sediment transport and the possibility that hexavalent chromium may be migrating in bedrock groundwater.

Several of the location-media combinations still contain residual contamination that resulted from the original direct discharge of process wastewater, or indirect transport of the source contaminants. These locations/media include the former wastewater lagoon area surface and subsurface soils, the building area subsurface soils, onsite and off site surficial and subsurface soils, South Bank area surficial soils, wetland sediments, and river sediments. In general, the RI has determined that "hot spot" zones probably exist, supported by an evaluation of historical operating methods and structures. The sampling and analysis has shown a general trend of decreasing soil/sediment concentrations with depth, although some exceptions exist.

Some of the primary COPCs are dissolved in groundwater, which may transport contamination from one area and media to another. However, based on prior filtered and unfiltered sampling and analysis efforts (ERT 1996), and a correlation between turbidity and metals concentrations in the RI groundwater sampling results, it is likely that the high solids content influenced the RI sample concentrations for groundwater. Therefore, the transport of primary COPCs in shallow and deep groundwater may not be a significant transport mechanism.

COPCs were not found in the river water at concentrations of any concern, and the same is the case for fish tissue samples. This is an indication that partitioning from the contaminated sediments is not occurring at a significant rate. Discharge of contaminated groundwater and surface runoff is not happening at a high enough contaminant-loading rate to trigger violations in the water column or fish tissue. Either the river flow causes enough dilution to reduce concentrations below criteria, or the discharges to the river are already at low concentrations due to lack of partitioning into the groundwater and surface runoff.

The river continues to transport COPC-contaminated sediments downstream, and it is likely that some amount of COPC-contaminated sediment continues to be transported into the river from onsite areas, both north and south of the river. Such soil-to-river transport would be expected to occur during storm runoff events and during high water periods. Although the impact on the river water and fish tissue appears to be insignificant, benthic communities may be impacted. Separating the effects of current and recent sediment transport from historically caused transport could be very difficult.

Runoff from the onsite and building areas could be continuing to transport primary COPCs into the onsite wetlands. The wetland is in a low area, which may be acting as

a hydraulic "bowl" trapping sediments, including contaminated sediments from storm runoff.

Soil/glacial sediment and soil-water concentrations generally decrease with depth, with some few exceptions. This could be the result of high concentrations existing in the shallow unit historically, as well as the natural upwelling of artesian pressuredriven groundwater flow, which has been the case since discharges and lagoon loadings were halted. This upward flow may have partially removed COPC metals contaminants from the confining clay-silt layer. Additionally, the concentration gradient may reflect the mixing of lower-concentration bedrock groundwater with higher concentrations in the shallower zones, as the groundwater from the bedrock aquifer migrates upwards. In effect, the groundwater flow system is helping to isolate the shallow contaminated sediments and groundwater from the regional water supply aquifer, and the upward flow may be acting, however slowly, to partially flush out the clay-silt layer.

Groundwater in the bedrock aquifer is under artesian pressure, which causes significant upward gradient throughout the area of interest. This upward gradient limits the threat of encroaching shallow contamination, and indicates that residual contaminants in the bedrock groundwater are the most likely source of continuing concentrations of COPCs in the aquifer. The bedrock aquifer has a different rechargedischarge pattern than shallow outwash unit. With the limited number of bedrock monitoring wells, it is difficult to evaluate the hydraulic influence of the river on bedrock groundwater flow patterns, and it is not possible at this time to determine whether contaminated bedrock groundwater could threaten any nearby private wells. This is because the groundwater flow pattern in the bedrock aquifer cannot be mapped over a wide enough area at this time.

The potential threat from the migration of bedrock groundwater from the Site is based solely on hexavalent chromium, which has been measured in bedrock groundwater at concentrations that are just below action levels. The hexavalent chromium is the most mobile form, and may not be associated with suspended solids in the samples. Therefore, this form of chromium may be able to migrate relatively effectively in the groundwater flow system.

Groundwater in the shallow outwash unit has a relatively flat gradient, which can be indicative of high hydraulic conductivity or low flow rate. Some transport of dissolved contaminants may be occurring, but this transport pathway is not likely to increase the concentrations in surface or subsurface soils. In addition, it is possible that the dissolved readings from RI sampling may be somewhat skewed toward higher concentrations due to high turbidity and suspended solids, which may be carrying most or all of the contamination measured in the groundwater samples.

Overall, it appears that there are location-media combinations that have some high concentrations of total chromium, and in some of these combinations other COPCs are at high enough concentrations to trigger some concern. However, "natural" transport

of any significance is probably not occurring in the groundwater flow system or along with the surface water column. The only potentially significant "natural" means of transport are through river sediment transport and runoff/wash-off from onsite and off site COPC contaminated soils. It is possible that hexavalent chromium may represent a threat to bedrock groundwater supplies, but the concentrations are currently below standards.

5.5 Conclusions Regarding the Fate and Transport of High and Medium Priority Contaminants

This section summarizes the fate and transport of the high priority (total/trivalent and hexavalent chromium) and medium priority (arsenic) COPC metals.

Fate and Transport of Chromium

Chromium detected at the Hiteman Site is mainly in the trivalent form. Trivalent chromium has low solubility and reactivity and, therefore, will be chemically complexed or physically adsorbed, resulting in its retardation. Other factors such as pH, temperature, and the presence of manganese dioxide and oxidizing conditions may favor its conversion to hexavalent chromium.

The highest detections of total chromium, mainly trivalent chromium, found in the building boring samples, were mainly observed in the 0-2 foot intervals. The chromium discharged under the former building from process waste seepage have remained sorbed onto the surface soils. This is compatible with the low mobility of trivalent chromium and the insoluble nature of chromium oxides, the main species found in soils.

Hexavalent chromium, being highly mobile, was found at elevated concentrations in the deeper building boring soils at 6-8 feet and 8-10 feet. However, the soils in this area were disturbed and this most likely redistributed the contaminants, changing the vertical concentration profiles. The horizontal chromium distribution in the building boring area was irregular, with clusters of elevated concentrations. This may be due to more frequent disposal in those areas and also may be a function of the disturbed soils.

In the former wastewater lagoon areas, total (trivalent) chromium concentrations decrease from east to west in the surface soil (0-2 feet) samples (8,550 mg/kg to 1,670 mg/kg). Process wastewater entered the lagoons in the same east to westerly direction. This indicates that there is adsorption of chromium on the lagoon soils which have high ferrous iron and a high organic content (20,500 mg/kg to 78,700 mg/kg). These two factors, the presence of iron oxides and high organic content, are thought to facilitate sorption of chromium to soil.

The wetland sediments showed some of the highest levels of total chromium at the Site. In particular, the eastern boundary of the wetland areas show higher levels of chromium from overflow of process wastewater discharged from the former

wastewater lagoons. The subsurface concentrations were also elevated. The high levels in the subsurface may be a result of variations in the water head which flushed contaminants down into the deeper sediments. Detections of hexavalent chromium did not directly correlate with the total chromium detections, so conclusions on the transformation in oxidation states cannot be made.

Historical deposition of chromium is shown along the bends of the Unadilla River. This explains the high levels at SD-2, the location nearest to the tannery building, and its non-detection in SD-3 and -4. Locations SD-3 and -4 in the Unadilla River were dry historically due to diversion of the river flow path. Higher concentrations downstream are indicative of historical flows into the river from the wetland sediments.

All sampled areas had elevated chromium levels. Section 5.4.2 explained how contaminated media, such as the former wastewater lagoon area surface and subsurface soils, the building area subsurface soils, onsite and off site surficial and subsurface soils, South Bank Front Lot area surficial soils, wetland sediments, and river sediments, are reflective of historical practices and transport pathways. Chromium levels typically decreased with depth; the generally higher levels of chromium in the upper areas of the soils and sediment are consistent with its tendency to sorb and its lack of mobility.

Physical mixing and advective flow in the former wastewater lagoons aided the transport of chromium across the lagoons. The diversion of the river and its flooding of the lagoon provided the mechanism for chromium transport into site soils and subsequently into the wetland sediments.

The fate of chromium in the Site soils and sediment is continued sorption onto the sediments and soils throughout the Site. Areas of high chromium content, especially in the wetland sediments and river sediments, will remain at high levels. These areas may act a source of continued contamination if transformation occurs to the more mobile hexavalent chromium and if transport occurs along the pathways shown in Figure 5-1. A significant portion of contamination remains sorbed to river sediments and smaller amounts of chromium may be transported via advective flows.

Fate and Transport of Arsenic

In soils, arsenic typically exists as the arsenate (As(V)) or the arsenite (As (III)). The chemical species is dependent on soil pH and redox potential. The fate of arsenic is affected by the iron content, and to some extent, the manganese content of the soil. Under oxidizing conditions, arsenic will remain sorbed to iron and manganese oxides in the soil. Whereas, under reducing conditions, such as exist in sediments or under flooding conditions, absorbed arsenic may be released and available for transport. Microbial action can also effect release of arsenic through reductive dissolution.

In the aqueous matrix, arsenic adsorption is the main controlling factor. The Kd value reflects the level of adsorption, and is affected by pH, temperature, and the arsenic oxidation state.

Elevated arsenic levels above criteria were mainly found in the onsite and off site soils, wetland and river sediments, and in the groundwater. The highest levels of arsenic were found in the wetland sediments, and are likely to remain elevated due to its low mobility and the relatively high levels in the surface (0-6 inches) areas of the sediment. The lower depths of the sediment also show arsenic contamination. The detections of arsenic in the groundwater, in areas below the highly contaminated wetland sediments, indicate that arsenic may exist in a more soluble form in the wetland sediment and nearby areas and facilitate its movement into the groundwater or the upward gradient of the groundwater may be flushing some contaminants out of the sediments.

Arsenic concentrations have not changed significantly when compared to the historical soil and sediment data. This indicates that arsenic has a low to moderate mobility at this area of the Site and that the current levels in onsite and off site soils will decrease slowly.

Summary

The major contaminants at the Site, chromium and arsenic, will remain at levels above their respective criteria if no remedial action is performed. Chromium will tend to remain sorbed to oxides in the soils, and under oxidizing conditions will convert to the hexavalent and more toxic form. The transformed hexavalent chromium will be attenuated by its transport to off site areas. Arsenic, being moderately mobile, will be slowly attenuated. Both contaminants are likely to remain at levels of concern.

CLIVI Final Remedial Investigation Report

Media Contamination - Summary of Current Conditions Hiteman Leather Site West Winfield, New York

Report Section	4.	2.2	4.2.3	4.	.2.4	4	.2.5	4.2.6	4.2.7	4.2.9	4.2.8	4.2.10		4.2.11	
Location	Lag	joon	Building	On	-Site	Off	-Site	South Bank	Wetland	River	River	Fish		Groundwate	er
Media	Surface Soil	Subsurface Soil	Subsurface Soil	Surface Soil	Subsurface Soil	Surface Soil	Subsurface Soil	Surface Soil	Sediment	Sediment	Water	Tissue	Shallow Outwash	Deep Lacustrine	Bedrock
COPC															
Antimony	>>BKGD	>>BKGD	>BKGD	>>>BKGD	>>>BKGD	>>BKGD	>BKGD	>BKGD	>>>	NS & ND	NS & ND	NS & ND	NS & ND	NS	NS & ND
Arsenic	<bkgd></bkgd>	<bkgd></bkgd>	<bkgd></bkgd>	>		>>	>	>	>>	>	NS & ND	NS&ND	NS	>>	NS & ND
Cadmium		>>	>BKGD<	>>	>>>	>>	>>	>	· >	NS & ND	NS&ND	NS&ND	NS & ND	NS	NS & ND
Total Chromium	>>>		>>>	>>>>	>>>>	>>>	>>>	, >>	>>>>	>>	NS&ND	NS & ND	>>	>	NS & ND
Hexavalent Chromium**	9 mg/kg NA	6 mg/kg NA	4 mg/kg NA	36 mg/kg NA	86 mg/kg NA	17 mg/kg NA	15 mg/kg NA	NS	>	NS & ND	NS & ND	NS & ND	NS	NS	. NS
Cyanide	>BKGD	>BKGD	>BKGD	>>BKGD	>>BKGD	>>BKGD	>BKGD	>BKGD	NS & ND	NS&ND	NS & ND	NS & ND	NS	NS	NS & ND
Lead	>BKGD	>BKGD	>BKGD	>>BKGD	>>BKGD	>>BKGD	>>BKGD	>BKGD	>	>	NS&ND	NS & ND	NS	>>	ŃS & ND
Mercury	<bkgd></bkgd>	NS	<bkgd< td=""><td>></td><td>></td><td>>></td><td>>>></td><td>NS</td><td>· ></td><td>> ****</td><td>NS & ND</td><td>NS & ND</td><td>NS</td><td>NS & ND</td><td>NS&ND</td></bkgd<>	>	>	>>	>>>	NS	· >	> ****	NS & ND	NS & ND	NS	NS & ND	NS&ND
Nickel	<bkgd></bkgd>	<bkgd></bkgd>	<bkgd< td=""><td>></td><td>></td><td><bkgd></bkgd></td><td>></td><td><bkgd></bkgd></td><td>></td><td>></td><td>NS&ND</td><td>NS & ND</td><td>></td><td>>.</td><td>NS & ND</td></bkgd<>	>	>	<bkgd></bkgd>	>	<bkgd></bkgd>	>	>	NS&ND	NS & ND	>	>.	NS & ND

BKGD = Background NA = Criterion Not Available

NS = Not Selected as primary COPC ND = Not Detected Above Background and Above Criterion within 10X

>> Above Background and Above Criterion within 100X
 >>> Above Background and Above Criterion within 1000X

>>>> Above Background and Above Criterion within 10,000X

*No Background Values presented.

**Hexavalent Chromium Concentrations are Maximum Values for the Locations/Media.

***Criteria only for Benthic Aquatic Life.

****Found in Background/Upstream Sample.

<BKGD> Less than Background but Above Criteria >BKGD< Above Background but Less than Criteria >BKGD Above Background but No Other Criterion

CDM

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\Table 5-1 media contamination

>

Field Measured Physical Factors Affecting Contaminant Fate and Transport Hiteman Leather Site West Winfield, New York

Media	рН	тос	Redox Potential (mV)		
Soil	5.5-11.0	2,400-211,000 (mg/kg)	۹ NA		
Groundwater	5.6-9.17	10-250 (mg/l)	-433-223		
Unadilla River Surface Water	5.64-7.97	NA	-0.046-62		

Notes:

TOC -	total organic carbon
redox -	oxidation reduction
mg/kg -	milligram/kilogram
mg/l-	milligrams/liter
mV-	millivolts
NA-	Not Available

CD

X:\WA 032\RI\Final RI\Final RI Tables\FinalRI tables (unchanged from draft)\tab52.wpd

Page 1 of 1

Fate and Transport Properties for Site Contaminants Hiteman Leather Site West Winfield, New York

CONTAMINANT	• •	Molec. Weight Densit (g/mole) (g/cm³		Water Solubility at 25 ^º C (mg/l)	Vapor Pressure at 25 ^º C (mm Hg)	Henry's Law Constant (atm-m ^3/mol)	Кос	log Kow	Kd Ri (cc/gm)	Adsorption	Volatilization from Water	Mobility
TAL Inorganics	2				÷			,			· · · · ·	
Chromium	.'	52	7.2	Insoluble	· NA	NA ·	No data	No data	1.5E+01 6.0E	-02 High	NA	Low
lexavalent chromium		52 -				NA	1 1 A				NA	Moderate
Arsenic 🤤		75	4.7	Insoluble	NA	NA	No data	No data	3.0E+01 1.2E	+03 High	NA	Low
Antimony		121.8	6.7	Insoluble	NA	NA	No data	No data	4.5E+01 1.8E	+03 High	NA	Low
Cadmium	-	112.4	8.65	Insoluble	' NA	. NA	No data	No data	7.5E+01 3.0E	+03 High	NA	Low
_ead		207 11.34 (@ 20ºC	Insoluble	NA	NA	No data	No data	2.9E+00 1.2E	+02 High	NA	Low
Mercury .		200.6	13.5	0.28 umoles/L	2.00E-03	No data	No data	5.95	3.2E+02 1.3E	+04 High	High	Low
Mercuric (II) Chloride		271.5	5.4	6.9E+04	1 [136.2 ⁰ C)	No data	No data	No data	NA NA	High	NA .	Low
Mercuric (II) Sulfide		232.7	7.7	Insolubie	No data	No data	No data	No data	NA NA	High	NA	Low
Nickel	2.5	59	8.9	Insoluble	NA	NA	No data	No data	7.9E+01 3:2E	+03 High	NĂ	Low
VARIABLES					· · · · ·		NOTATION		•			

Fraction Organic Carbon, foc = Soil Bulk Density, Rho_b = Effective Porosity, Eta_e =	5.000% 2 5%	gm/cc	·	Koc = Soil Organic Carbon/Water Partition Coefficient, cc/gm Kow = n-Octanol/Water Partition Coefficient, dimensionless Kd = Soil/Water Partition Coefficient [= Koc X foc for organics], cc/gm Rf = Retardation Factor = 1 + (Rho_b X Kd / Eta_e), dimensionless
Adsorption is Volatilization from Water is	"Low" "High" "Moderate" "Low" "High" "Moderate"	if Kd < if Kd > if Kd is in-between if H < if H > if H is in-between	0.5 2 1.0E-07 1.0E-03	g/mole grams per mole g/cm ³ grams per cubic centimeter mg/l milligrams per liter mm Hg milliliter of mercury atm-m ^3/mol atmosphere per mole per cubic meter
Mobility is	"High" "Low" "Moderate"	if Rf < if Rf > if Rf is in-between	1.0E+01 1.0E+03	

Notes:

1 The Kd values for inorganics are based information provided in the EPA Soil Screening Guidance Document (EPA, 1994). The Kd values for barium, beryllium, cadmium, copper, mercury, nickel, and zinc were developed by EPA using an equilibrium geochemical speciation model (MINTEQ2), assuming a certain pore-water chemistry. The values for arsenic, chromium (6+); selenium, and thallium were based on empirical, pH-dependent relationships developed by EPA. Other physical properties were obtained from the Agency for Toxic Substances and Disease Registry (ATSDR)'s Toxicological Profiles.

g/mole = grams per mole

mg/l = milligrams per liter 🦳

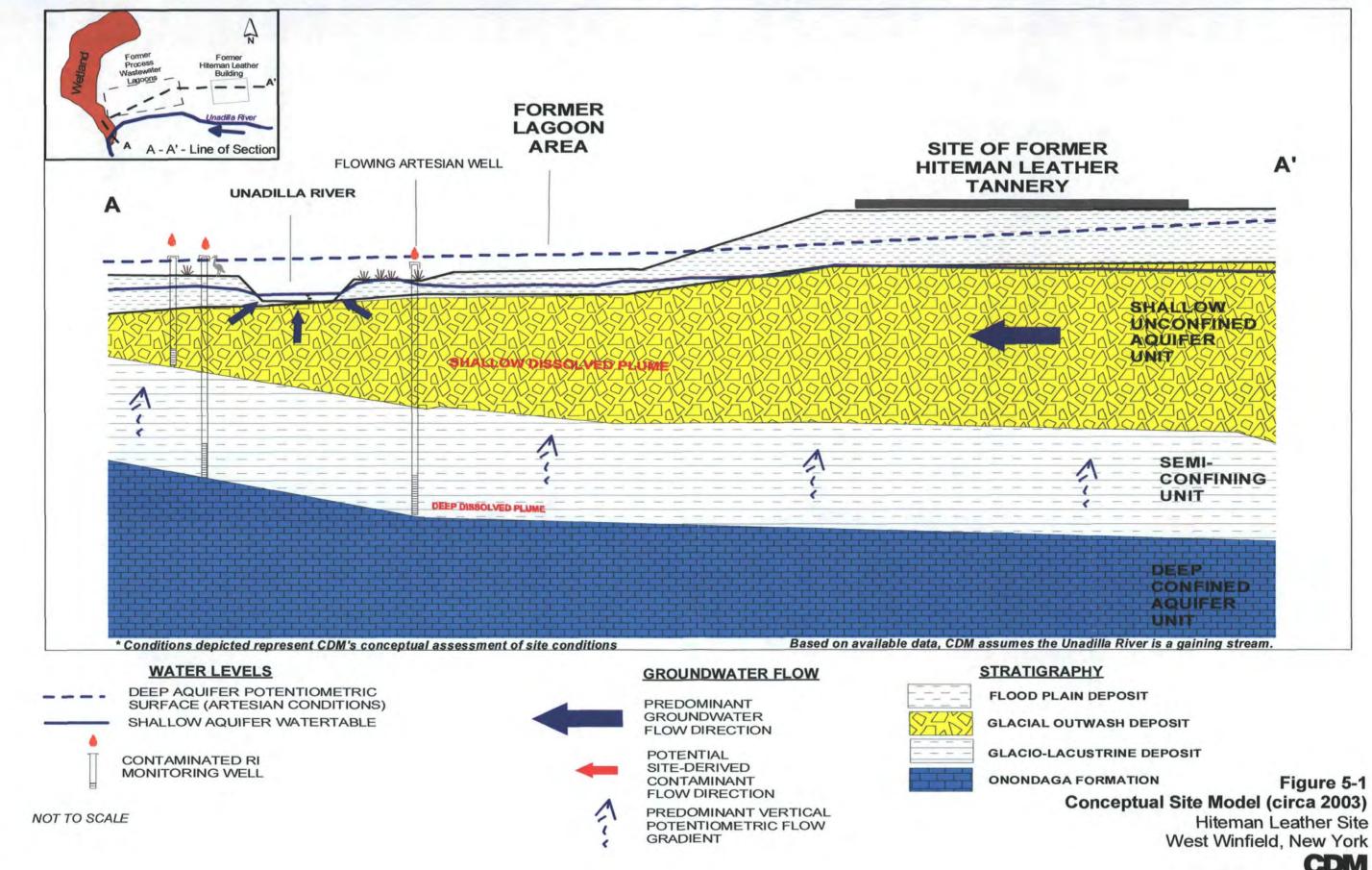
mm HG = millimeters of mercury

cc/gm = per gram

Current Transport Media/Pathways Hiteman Leather Site West Winfield, New York

Pathway/Media	Potantially Affected Organisms and Other Media/Pathways	Discussion
River Sediment	Benthic	Uncontrolled transport. Contaminated sediments probably extend downstream beyond sample locations.
Wetland Sediments	Benthic	Potential washoff and transport to river.
Surficial Soils Off Site	Human Health	Potentially uncontrolled access.
Surficial Soils - Onsite, Lagoon, South Bank Front Lot	Human Access, and Downgradient Media/Pathways	Potentially uncontrolled access. Potential for erosion and runoff to wetland and river.
Bedrock Groundwater	Human Ingestion	Hexavalent chromium near drinking water limit onsite. Potential for transport to water supply wells nearby.
Subsurface Soils Building, Lagoon, Onsite, Off Site	N/A - See Discussion Column	Significant transport unlikely.
River Water Column	N/A - See Discussion Column	Below all criteria.
Groundwater - Shallow	N/A - See Discussion Column	Transport not likely or signifcant for most COPCs.
Groundwater - Deep	N/A - See Discussion Column	Not discharging directly to surface media/pathways. Unlikely to reach water supplies, but potentially a residual source to bedrock aquifer.

Notes:


N/A = Not Applicable

COPC = Contaminant of Potential Concern

CDM

\\Nysvr2\rac_ii\Community Project Files\WA 032\RI\Final RI\Final RI Tables\FINTab5-4_current transport

Page 1 of 1

CDM

Section Six

.

ection 6

Section 6 Risk Assessments

6.1 Human Health Risk Assessment

The results of the HHRA are summarized below.

6.1.1 Summary of Approach

In the HHRA, contaminants in various media at the Site were quantitatively evaluated for potential health threats to the following receptors:

Hiteman Property Area

- Current/Future Workers.
- Current/Future Trespassers
- Future Residents
- Future Recreational Users
- Future Construction Workers

Crumb Trailer Park

- Current/Future Residents
- Future Construction Workers

Unadilla River

Current/Future Recreational Users

The estimates of cancer risk and noncancer health hazard, and the greatest chemical contributors to these estimates were identified.

Chemicals of potential concern were selected based on criteria outlined in the RAGS (EPA 1989), primarily through comparison to risk-based screening levels. The chemicals of potential concern evaluated in the risk assessment were primarily inorganics and volatile organic compounds. The essential nutrients (i.e., calcium, magnesium, potassium, and sodium) were not quantitatively addressed as their potential toxicity is significantly lower than other inorganics at the Site, and most existing toxicological data pertain to dietary intake.

Exposure routes and human receptor groups were identified and quantitative estimates of the magnitude, frequency, and duration of exposure were made. Exposure points were estimated using the minimum of the 95 percent upper confidence limit (UCL) and the maximum concentration. Chronic daily intakes were calculated based on the reasonable maximum exposure (RME) scenario (the highest exposure reasonably expected to occur at a site). The intent is to estimate a conservative exposure case that is still within the range of possible exposures. Central tendency (CT) exposure assumptions were also developed, which reflect more typical exposures.

In the toxicity assessment, current toxicological human health data (i.e., reference doses and slope factors) were obtained from various sources and were utilized in the order as specified by RAGS (EPA 1989).

Risk characterization involved integrating the exposure and toxicity assessments into quantitative expressions of risks/health effects. Specifically, chronic daily intakes were compared with concentrations known or suspected to present health risks or hazards.

In general, the EPA recommends target values or ranges (i.e., cancer risk of 10^{-6} to 10^{-4} or hazard index of one) as threshold values for potential human health impacts (EPA 1989). These target values aid in determining whether additional response action is necessary at the site.

6.1.2 Summary of Site Risks

This section presents a summary of the carcinogenic risks and noncarcinogenic hazards for exposures to contaminants in various media at the Hiteman Leather Site that were quantitatively evaluated for potential health threats.

6.1.2.1 Risks at the Hiteman Property Area

<u>Risks to Workers</u>

Risks associated with workers at the Hiteman Property were estimated for adult workers, and based on exposure to contaminants in surface soil via dermal contact, incidental ingestion and through inhalation of fugitive dust from surface soil. The total estimated cancer risk for workers at the Hiteman property is within the range of 10^{-6} to 10^{-4} for both RME (5 x 10^{-5}) and CT exposures (4 x 10^{-6}). Cancer risks from the surface soil on the Hiteman property are predominately due to the presence of benzo(a)pyrene and dibenzo(a,h)anthracene.

The total hazard index for workers exposed to surface soil at the Hiteman property is below the threshold of 1 for both RME (0.5) and CT exposures (0.2), indicating that noncancer health effects are not expected to occur from the exposures to subsurface soil at the Hiteman property.

Risks to Trespassers

Risks associated with trespassers at the Hiteman Property were estimated for adolescents (12 to 18 years), based on potential exposure to contaminants in both the surface soil on the property as well as the sediment located in the wetland area. Estimated cancer risks for the trespasser were within the range of 10^{-6} to 10^{-4} for the RME (3 x 10^{-5}) and CT scenarios (8 x 10^{-6}). The cancer risk for the trespasser predominately comes from the arsenic in wetland sediment.

The total hazard index for adolescent (12 to 18 years) trespassers exposed to surface soil and wetland sediment at the Hiteman property exceeds the threshold of 1 for RME (3) and CT (0.7). This indicates that noncancer health effects could occur from exposures to the wetland sediment at the Hiteman property, primarily due to

incidental ingestion and dermal contact of antimony. Exposure to elevated concentrations of antimony may alter the levels of blood glucose and cholesterol.

Risks to Residents

The highest estimated risks were associated with hypothetical future residential use of the Hiteman Property. Risks as a future residential area were estimated for adults and children (0 to 6 years), based on potential exposure to contaminants through dermal contact and ingestion of surface soil, wetland sediment, and groundwater. Inhalation was also considered for surface soil and groundwater vapors. The cancer risks for adult residents exceeded the range of 10^{-6} to 10^{-4} for RME (6×10^{-4}) and were at the upper end of the range for the CT scenario (1×10^{-4}). The cancer risks for child residents exceeded the range of 10^{-6} to 10^{-4} for both the RME (6×10^{-4}) and CT scenarios (3×10^{-4}). Cancer risks for adult and child residents are predominantly due to the presence of arsenic in both groundwater and wetland sediment.

The total hazard index for adult residents exceeds the threshold of 1 for both RME (20) and CT exposures (10). The total hazard index for child residents exceeds the threshold of 1 for both RME (80) and CT exposures (40). These hazard indices are primarily due to the presence of antimony and arsenic in sediment and iron and manganese in groundwater. Exposure to elevated concentrations of these inorganics may alter the levels of blood glucose and cholesterol, and adversely affect the gastrointestinal tract, nervous system, liver, and skin.

Risks to Recreational Users

Risks associated with the Hiteman Property as a future recreational area were estimated for adults and children (0 to 6 years), based on dermal contact, ingestion, and inhalation of surface soil and dermal contact and ingestion of wetland sediment. The cancer risks for adult recreational users are within the range of 10^{-6} to 10^{-4} for RME (1 x 10^{-4}) and CT scenarios (2 x 10^{-5}). The cancer risks for child (0 to 6 years) recreational user are just above the range of 10^{-6} to 10^{-4} for RME (2 x 10^{-4}) and within the range for the CT scenario (4 x 10^{-5}). Cancer risks for both adult and child recreational user are predominantly due to the presence of arsenic in the wetland sediment.

The total hazard index for adult recreational users exceeds the threshold of 1 for RME (2) but not CT exposures (0.6). The total hazard index for child recreational user exceeds the threshold of 1 for both RME (20) and CT exposures (5). These hazard indices are primarily due to the presence of antimony. Exposure to elevated concentrations of antimony may alter the levels of blood glucose and cholesterol.

Risks to Construction Workers

Risks associated with the Hiteman Property for adult construction workers, and based on exposure to contaminants through dermal contact and incidental ingestion of soil and through inhalation of fugitive dust generated by construction activities. The total estimated cancer risk for construction workers are at the low end of the range of 10^{-6} to 10^{-4} (2 x 10^{-6}). The total hazard index for construction workers exposed to subsurface soil at the Hiteman property is 5, primarily from inhalation of manganese in dust, which can adversely affect the nervous system.

6.1.2.2 Risks at the Crumb Trailer Park

Risks to Residents

Risks associated with soil at the Crumb Trailer Park were estimated for adult and child (0 to 6 years) residents, based on potential exposure to contaminants through dermal contact, ingestion and inhalation of dust from vehicle traffic on the unpaved road. The cancer risks for adult residents are within the range of 10^{-6} to 10^{-4} for both RME (8 x 10^{-5}) and CT scenario (2 x 10^{-5}) as well as for child residents RME (1 x 10^{-4}) and CT scenario (6 x 10^{-5}). Cancer risks for residents are predominantly due to the presence of arsenic in the surface soil.

The total hazard index for adult residents exposed to surface soil at the Crumb Trailer Park is 7 for the RME and 5 for the CT scenario. The total hazard index for child residents also exceeds the threshold of 1 for both RME (40) and CT exposures (10). These hazard indices are primarily due to the presence of manganese, aluminum, and arsenic in surface soil. Inhalation risks are overestimated for current conditions because they are based on a model that does not account for the presence of gravel on the unpaved road.

Risks to Construction Workers

Risks associated with the Crumb Trailer Park were estimated for adult construction workers, based on exposure to contaminants in subsurface soil via dermal contact, incidental ingestion and through inhalation of fugitive dust from the soil. The total estimated cancer risk for construction workers at the Crumb Trailer Park is below the range of 10^{-6} to 10^{-4} (7 x 10^{-7}).

The total hazard index for construction workers exposed to subsurface soil at the Crumb Trailer Park is 5, primarily due to inhalation of manganese which can adversely affect the nervous system.

6.1.2.3 Risks at the Unadilla River

Risks to Recreational Users

Risks associated with recreational activities at the Unadilla River were estimated for adults and adolescents (12 to 18 years), and based on incidental ingestion and dermal contact with sediment and surface water. Total excess lifetime cancer risk for adult recreational users within the range of 10^{-6} to 10^{-4} for RME (1 x 10^{-5}) and CT exposures (3 x 10^{-6}). The total excess lifetime cancer risk for adolescent recreational were also within the range for the RME (2 x 10^{-6}) and CT scenarios (1 x 10^{-6}). Cancer risks for adult and adolescent recreational users were primarily associated with exposure to arsenic and benzo(a)pyrene in the sediment.

Total noncancer HI for recreational adults and adolescents was 0.1 for the RME scenario and 0.04 for the CT exposure scenario. These HIs are well below the

threshold of 1, indicating that noncancer health effects are not expected to occur from exposures to sediment and surface water at the Unadilla River. The estimated cancer risks for adolescents was 0.1 for the RME scenario and 0.04 for the CT exposure scenario. These HIs are well below the threshold of 1, indicating that noncancer health effects are not expected to occur from exposures to sediment and surface water at the Unadilla River.

6.1.3 Summary of Uncertainties

As in any risk assessment, the estimates of potential health threats (carcinogenic risks and noncarcinogenic health effects) for the Site have associated uncertainties. In general, the main areas of uncertainty include the following:

- Environmental data
- Exposure parameter assumptions
- Toxicological data
- Risk characterization

As a result of the uncertainties, the risk assessment should not be construed as presenting absolute risks or hazards. Rather, it is a conservative analysis intended to indicate the potential for adverse impacts to occur based on reasonable maximum and central tendency exposures.

6.2 Ecological Risk Assessments

CDM conducted an abbreviated SLERA for the Hiteman Leather Site, which was submitted to EPA on June 19, 2003. The SLERA was streamlined, per discussion with the EPA Remedial Project Manager and EPA's Biological Technical Assistance Group, to omit specific Site receptors and their respective measurement endpoints. It was determined that a full SLERA evaluation was unnecessary, due to the Site's widespread and elevated contamination, in light of the obvious need for a Baseline Ecological Risk Assessment (BERA). The draft BERA is being conducted by CDM and will be submitted to EPA under separate cover. Receptor selection and subsequent evaluation were included as the first step of the BERA, Step 3 of the Ecological Risk Assessment Guidance for Superfund (ERAGS) process.

6.2.1 Screening Level Ecological Risk Assessment

The following text is taken from Section 3.3, Risk Summary, of the SLERA.

Contaminants of potential ecological concern are present in each media that were assessed. Chemicals found in Site surface soils, sediments, and surface water indicate the potential for adverse risks to aquatic and terrestrial receptors. Contaminants of potential ecological concern include both organic and inorganic chemicals. Contaminants of potential concern are found at the highest concentration and more frequently in Site surface soils and sediments, although Site-derived contaminants also are found in river sediments downstream of the Site.

Metal COPCs show the greatest number and greatest magnitude of screening value exceedances. In Site soils maximum concentrations of chromium and mercury generate the highest hazard quotient (HQ) values, exceeding their screening values by 189,500 and 1,568 times, respectively. Several organic compounds also generated high hazard quotients. PAHs detected in Site soils exceeded the screening criteria by 56 to 250 times. Metals were detected at lower concentrations in the offsite trailer park soils but still exceeded the screening values. Chromium and mercury detected in offsite soils exceeded their screening values by 3,575 and 2,156 times, respectively.

Maximum antimony, arsenic, chromium, and copper concentrations in Site wetland samples exceeded screening values by a magnitude of 397, 31, 3,475 and 39 times, respectively. Chromium concentrations in site sediment are higher than in Site soils, but generate a lower HQ because the sediment screening value for chromium is higher than the soil screening value. Concentrations of several pesticides detected in the onsite sediments also indicate the potential for risk.

Concentrations of chromium in Unadilla River sediments indicate the potential for risk to aquatic receptors when compared with screening values. Maximum chromium concentrations in the river sediment exceeded the LEL screening value for benthic receptors by 64 times. Chromium concentrations also exceeded the SEL screening value, indicating the potential for severe risk to aquatic receptors. The other Site-related metals indicated the potential for risk, slightly exceeding the screening criteria and generating HQ values between 1 and 2. Gamma-chlordane detected in the river sediments exceeded the wildlife bioaccumulation value by 62 times.

In summary, contaminant concentrations in Site soil and sediment and in offsite sediment exceed screening values by large margins and indicate significant potential for risk. The exact nature of this risk is unknown and additional data such as metal speciation and bioavailability are needed to confirm the exact level of risk and to develop preliminary remediation goals.

6.2.2 Baseline Ecological Risk Assessment

Based on results of the SLERA, CDM is currently conducting a BERA. CDM conducted BERA field activities in September 2004, to provide information to help establish remedial priorities and serve as a scientific basis for regulatory and remedial actions for the Site. BERA activities are described in Section 2.4.3. Results of these sampling activities will be discussed in the BERA, to be submitted under separate cover.

Section

Section Seven

Section 7 Summary and Conclusions

This section provides a summary of the major findings of the RI. The conclusions drawn from the various investigations that were conducted concerning the nature and extent of contamination in Site media (onsite and off site surface and subsurface soil, onsite wetland, groundwater, and Unadilla River surface water, sediment, and fish tissue) and the fate and transport of contaminants are discussed below.

7.1 Sources of Contamination

Poor waste management practices and the disposal of contaminated tannery wastewater and other solid wastes into unlined wastewater lagoons, the onsite wetland, and onsite and off site soils have resulted in the contamination of onsite and off site soils, sediments in the onsite wetland and Unadilla River, and groundwater. Evaluation of samples collected from all media indicate concentrations of contaminants, primarily inorganics, that exceed applicable screening criteria. The primary Site-specific COPCs are antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide.

Contaminant patterns appear to be heavily influenced by the original processes and waste disposal practices that were in place during Site operations. Approximately 35 years after operations ceased, contamination from the Site continues to be released to the environment. Contaminated surface and subsurface soils in the former wastewater lagoon area and sediments in the onsite wetland currently act as sources of contamination to other media.

7.2 Summary of Nature and Extent of Contamination

A summary of the nature and extent of contamination delineated in the Site media is provided in the following sections.

7.2.1 Soils

Site-related contamination is present in surficial and subsurface soils located in the former wastewater lagoons, beneath the former facility, and in disposal areas located both onsite and off site.

7.2.1.1 Lagoon Soil Borings

The primary COPCs with the highest concentrations and greatest number of detections in lagoon soils during the CDM RI were antimony, cadmium, and chromium. The highest concentrations were located in the eastern-most boring at the inlet to the former wastewater lagoons. Contaminant levels generally tended to decrease with depth. However, cadmium and chromium were still detected at concentrations above screening criteria in the terminal interval of lagoon borings, indicating that the vertical extent of contamination beyond the depth of the lagoon soil borings is not known.

7-1

7.2.1.2 Building Soil Borings

During the CDM RI, the primary contaminants with the highest concentrations and greatest number of detections in soils underlying the former facility were cadmium, chromium, and lead. Arsenic, mercury, and nickel were also detected but were generally present only in the 0-2-foot interval directly below the building foundation; concentrations were detected at levels from 1 to 2 times NYSDEC-RSCO screening criteria, but below background screening criteria.

Contaminant concentrations generally tended to decrease with depth, with the exception of hexavalent chromium levels, which were elevated at depth. Cadmium, chromium, and lead were detected at the terminal interval at the majority of the soil borings, indicating that the vertical extent of chromium contamination in these locations is not defined.

7.2.1.3 Onsite Soil Borings

All primary COPCs were detected in onsite surface and subsurface soil samples. Screening criteria exceedances of inorganic chemicals were widespread across the Site, indicating that wastewater was in direct contact with many soil areas. Specific areas of the Site contain clusters of higher-magnitude inorganic chemical exceedances in both surface and subsurface soils indicating locations where inorganics might have been released more frequently or directly in conjunction with the handling and conveyance of the tannery processing/waste streams.

The most frequent occurrence of screening level exceedances of primary COPCs in both surface and subsurface soils was noted to the southwest of the former building footprint, between the former building location and the river where the former sluiceway and UST were located. Total chromium concentrations are most extensive in and below the areas of the former sluiceway and UST on the southwest side of the former building, in the area of the concrete dye tanks on the southeast side of the former building, and in the area of the former wastewater lagoon overflow to the north of the former lagoons. During the CDM RI, the highest concentrations and deepest extent of contamination are concentrated below the former sluiceway, around the UST, and along the drainage discharge path from lagoon overflow.

Other areas of elevated inorganic COPC contamination in surface and subsurface soil include the west-central portions of the Site where lagoon overflow was directed to the onsite wetland, the south side of the river where fill material was reportedly disposed, and the northwestern portion of the Site where waste materials reportedly were landfilled along the eastern bank of the onsite wetland.

7.2.1.4 Off Site Soil Borings

The highest levels of primary COPCs are found in the northwest corner of the Crumb Trailer Park in RSB-21, RSB-22, RSB-41, RSB-42, and RSB-44. In general, surface soils contained higher concentrations of antimony, arsenic, total and hexavalent chromium, cyanide and lead, whereas subsurface soils generally contained higher concentrations of cadmium, mercury, and nickel. Chromium and other primary COPC

concentrations tended to decrease with depth, with the exception of RSB-21 and RSB-42, which increased with depth.

7.2.2 Onsite Wetland Sediment

The isoconcentration contours of chromium shown in Figures 4-9a and 4-9b indicate that the highest CDM RI concentrations of chromium in the 0-6 inch interval are located on the eastern side of the wetland, near the outfall from a reported weir box particularly around WTSD-14. The highest CDM RI concentrations of chromium in the 18-24 inch interval are located on the northeast edge of the wetland, near the outfall from a drainage ditch on the north side of the property. It is likely that these sample locations closely correspond to the two historic outfall points. At least three other primary COPCs, hexavalent chromium, lead, and mercury, have similar distributions, at much lower concentrations above their screening criteria.

Contaminant concentrations were generally greater in all surface sediment samples compared with deeper samples, with the exception of chromium, lead, and mercury; concentrations of these contaminants were higher in the deeper samples in the area of the northern outfall. Variations in the vertical distribution of these analytes may have been controlled by a combination of chemical and biochemical factors such as pH, competitive sorption between metals, organic carbon quantity, varying Kd, etc. Variation in the head of water across the wetland above the water-sediment interface also may have influenced downward contaminant migration rates.

7.2.3 Unadilla River Sediment, Surface Water, and Fish Tissue

The primary COPCs, antimony, arsenic, total chromium, lead, mercury, and nickel, are present in Unadilla River sediments adjacent to and downstream of the Site. With the exception of URSD-3, all downstream concentrations exceeded the upstream (background) sample. During the CDM RI, the highest concentrations of primary COPCs were found at the discharge from the "tan house" concrete dye tanks (URSD-2), approximately 2,500 feet downstream (URSD-6), and approximately 1.2 miles downstream (URSD-9). The lowest concentrations were detected in URSD-3. This suggests that impacted sediments are continuing to migrate downstream from the Site, and that contaminated upstream sediments adjacent to the Site are acting as a source that continues to impact the downstream locations. The downstream extent of chromium contamination in Unadilla River sediments is unknown at this time.

No primary COPCs were detected in Unadilla River surface water samples at levels exceeding screening criteria. Aluminum, a secondary COPC, was detected at the four furthest downstream locations at levels ranging from one to two times screening criteria. Although these downstream levels were greater than the aluminum level in the upstream background location, the absence of notable levels in the section of the river adjacent and directly downstream of the facility indicate that elevated aluminum levels are not be attributable to activities at the Hiteman Leather Site.

7-3

No primary COPCs were detected in fish tissue samples from the Unadilla River at levels exceeding human health fish tissue screening criteria. Methylene chloride, identified as a secondary COPC, was detected in all downstream forage fish samples. No detections were found in sport fish samples. Concentrations were detected at up to twice the USEPA Region 3 Risk-Based screening criteria in five samples.

7.2.4 Groundwater

Total chromium, hexavalent chromium, and nickel are the only primary COPCs detected in the shallow overburden monitoring wells. Total chromium and nickel exceeded their screening levels in samples collected during the first round of sampling, whereas, hexavalent chromium was detected at a concentration that exceeded screening criteria during the second round of sampling.

The primary COPCs arsenic, chromium, lead, and nickel exceeded groundwater quality standard screening levels in deep overburden monitoring well samples. During the first round of sampling, the COPCs were detected in only one well and during the second round of sampling they were detected at concentrations above screening levels in only two wells. No primary COPCs were detected in groundwater at concentrations that exceeded screening levels from bedrock monitoring wells; however, it should be noted that hexavalent chromium was detected below screening criteria levels in both downgradient bedrock monitoring wells.

Analytical results for primary COPCs in monitoring wells are relatively inconsistent between sampling rounds with some results varying by up to an order of magnitude between sampling events and in samples collected from monitoring wells in opposing hydrogeologic directions of the Site (i.e., hydraulically upgradient versus downgradient from the Site). Although past waste management practices may have artificially changed groundwater flow patterns sufficiently to spread groundwater contamination over a broad area in different directions from the Site, significant quantities of fine-grained material (turbidity) in groundwater samples may also have influenced sample results. It is suspected that high turbidity may be partly responsible for the inorganic exceedances. These elevated concentrations were detected in samples from wells where turbidity readings were greater than 999 NTUs. Therefore, future monitoring well sampling should include the collection of filtered groundwater samples for comparison purposes.

7.2.5 Summary of Overall Nature and Extent of Primary COPCs

Wastewater from the former tannery process included several chemicals, including the primary COPCs antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide. Total chromium levels outrank all other primary COPCs in screening criteria exceedances in all Site matrices.

During tannery operations, large amounts of contaminated wastewater were discharged to the wastewater lagoons. As a result of this process, surface and subsurface soils in the vicinity of the sluiceway, former UST, former wastewater

lagoons, and overflow drainage areas north of the lagoons have been contaminated with elevated levels of primary COPCs. Soils underneath the former building also have been affected, indicating that contaminants migrated through the concrete structure, or through cracks, holes, or drains. Site-derived wastes that were transported and disposed at the Crumb Trailer Park (formerly the Town Dump) and the South Bank Front Lot have impacted surface and subsurface soils in those areas. However, the vertical extent of soil contamination in some of the most contaminated onsite and offsite areas has not been documented below 10 feet bgs.

Sediments in the wetland have been heavily impacted by site disposal practices. The majority of wastewater from the former lagoons eventually flowed through the onsite wetland, which drained into the Unadilla River at the southwest corner of the Site. Total chromium levels in the wetland indicate high levels, particularly in the areas of the two discharges from lagoon wastewater, on the eastern and northeastern borders of the wetland. However, the vertical extent of contamination has not been documented below the top two feet of sediments.

Sediments in the Unadilla River have also been impacted by Site disposal practices. Discharges to the Unadilla River were located on the southeast side of the Site by the concrete dye tanks, and on the southwest side of the Site at the discharge from the onsite wetland. During the CDM RI, the highest concentrations of primary COPCs are located at the discharge from the concrete dye tanks, and at locations downstream from the Site. Concentrations of primary COPCs in Unadilla River sediments are not found to be decreasing with distance from the Site, but rather peak and taper off in three areas. Primary COPCs are found in the furthest downstream sediment sample, indicating that the downstream extent of site-related contamination has not been documented. Spread of contaminated sediments probably occurs during storm events.

Unadilla River surface water samples indicate that Site contaminants have not heavily impacted this matrix, although low levels exist. Unadilla River fish tissue samples indicate that Site contaminants have not heavily impacted human health pathways, although impacts to ecological pathways will be evaluated in the BERA.

Groundwater in the shallow aquifer, the semi-confining unit and bedrock unit has been affected by Site contaminants, primarily total chromium. Shallow groundwater wells contain elevated levels of total chromium in the vicinity of the former wastewater lagoons, overflow areas, and sluiceway. Deep groundwater wells contain elevated levels of total chromium downgradient of the lagoons, by the onsite wetland, and north of the wastewater lagoons in the area of overflow drainage. Although total chromium concentrations in bedrock monitoring wells are below guidance and screening criteria, the presence of chromium at depth indicates that contamination has been able to migrate downward, despite the current upward vertical gradient.

7.3 Summary of Fate and Transport

The major contaminants at the Site, chromium and arsenic, will remain at levels above their respective criteria if no remedial action is performed. Chromium will tend to remain sorbed to oxides in the soils, and under oxidizing conditions will convert to the hexavalent and more toxic form. The transformed hexavalent chromium will be attenuated by its transport to off site areas. Arsenic, being moderately mobile, will be slowly attenuated. Both contaminants are likely to remain at levels of concern; however, contaminants are not mobile in non-oxidizing conditions.

7.4 Conclusions

The significant findings of the RI are as follows:

- The primary COPCs for Site media are: antimony, arsenic, cadmium, total and hexavalent chromium, lead, mercury, nickel, and cyanide.
- Onsite surface and subsurface soils have been contaminated from Site waste disposal practices, primarily in the vicinity of the sluiceway, UST, concrete dye tanks, former wastewater lagoons, and overflow drainage.
- Off site surface and subsurface soils have been contaminated from Site waste disposal practices, primarily in the northwest and southwest sides of the Crumb Trailer Park.
- Sediments in the onsite wetland have been contaminated from Site waste disposal practices.
- Sediments in the Unadilla River have been contaminated from Site waste disposal practices. The downstream extent of impacted sediments will be discussed in the BERA.
- Groundwater has also been impacted from Site waste disposal practices.
 Although impacts are low, contaminants have migrated through the semiconfining unit to the deep and bedrock monitoring wells, despite a present-day upward vertical gradient.

7.5 Recommendations

The vertical extent of Site-related contamination has not been fully defined in onsite soils, onsite wetland sediments, and off site soils. CDM recommends that these data gaps be addressed as pre-design investigations.

7-6

Section Eight

Section 8

Section 8 References

Brett, C.E., and Ver Straeten, C.A. 1994. Stratigraphy and Facies Relationships of the Eifelian Onondaga (Middle Devonian) *in* Western and West Central New York State, in Brett, C.E. and Scatterday, J. (Eds.), New York State Geological Association (NYSGA) Field Trip Guidebook, 66th Annual Meeting, University of Rochester, pp. 221-269.

CDM Federal Programs Corporation (CDM). 2000a. Final RI/FS Work Plan, Volume I and Volume II, Hiteman Leather Site, West Winfield, New York. September 11.

CDM. 2000b. Final RI/FS Quality Assurance Project Plan (QAPP), Hiteman Leather Site, West Winfield, New York. December 8.

CDM. 2001. Draft Technical Memorandum, Hiteman Leather Site, West Winfield, New York. October 19.

CDM. 2002a. Final QAPP Addendum Pages, Hiteman Leather Site, West Winfield, New York. March 31.

CDM. 2002b. Telephone conversation between J. Rollino (TAMS) and representative from NYSDEC. May 29.

CDM. 2002c. Telephone conversation between J. Rollino (TAMS) and M. Skoll (Wildlife Biologist, US Fish and Wildlife Service. May 29.

CDM. 2002d. Letter to J. O'Dell (EPA Region 2), Regarding Additional Water Level Measurements. Hiteman Leather Site, West Winfield, New York. July 15.

CDM. 2002e. Letter to J. O'Dell (EPA Region 2), Regarding Additional Sampling Activities. Hiteman Leather Site, West Winfield, New York. August 27.

CDM. 2003. Telephone conversation between J. Bass (CDM) and M.E. Ucekay (Village Clerk, Village of West Winfield, NY). January 27.

Deutsche, W.J. 1997. Groundwater Geochemistry, Fundamentals and Applications to Contamination. Lewis Publishers, Boca Raton, FL and New York, NY.

Friedman, G.M. 1985. Devonian Reefs in New York: *Northeastern Geology*, V.7, pp.65-73.

John Milner Associates, Inc. (JMA). 2002. Stage 1A Cultural Resources Survey for the Hiteman Leather Tannery Site. West Winfield, Herkimer County, New York.

8-1

Lindemann, R.H. 1979. Stratigraphy and Depositional History of the Onondaga Limestone in Eastern New York, *in* Friedman, G.M., NYSGA, Field Trip Guidebook, 51st Annual Meeting, Troy, pp. 351-387.

Lindemann, R.H. and Feldman, H.R. 1987. Paleography and Brachiopod Paleoecology of the Onondaga Limestone in Eastern New York, NYSGA, Field Trip Guidebook, 59th Annual Meeting, New Paltz.

Macnish, R.D. and Randall, A.D. 1982. Stratified Drift Aquifers in Susquehana River Basin, New York State Department of Environmental Conservation (NYSDEC), Bulletin 75, p. 68.

Mesolella, K.J. 1978. Paleogeography of Some Silurian and Devonian Reef Trends, Central Appalachian Basin: *American Association of Professional Geologists*, V. 53, pp. 1035-1042.

National Climatic Data Center, National Weather Service Data, http://www.worldclimate.com.

New York Archaeological Council. 1994. *Standards for Cultural Resources Investigations and the Curation of Archeological Collections*. New York State Office of Parks, Recreation, and Historic Preservation, Waterford.

New York State Department of Environmental Conservation (NYSDEC). 1987. "The New York River Study, Phase I: Recreation (Draft)."

NYSDEC. 1992. Remedial Investigation Report, Volume 1 - Text, Hiteman Leather Company Site. Prepared by SAIC Engineering, Inc. February.

NYSDEC. 1994. Technical and Administrative Guidance Memorandum (TAGM) #4046, Determination of Soil Cleanup Objectives and Cleanup Levels. January 24.

NYSDEC. 1999. Technical Guidance for Screening Contaminated Sediments. January 25.

New York State Department of Health. 1996. Letter from C.J. Canavan (NYSDOH) to Mr. and Mrs. Fred Crumb (Owners, Crumb Trailer Park), Re: Soil Sample Results at the Crumb Trailer Park. July 19.

Oliver, W.A. 1954. Stratigraphy of the Onondaga Limestone (Devonian) in Central New York: *Geological Society of America*, V.65, pp. 621-652.

Oliver, W.A., 1976. Noncystimorph Colonial Rugose Corals of the Onesquethaw and Lower Cazenovia Stages (Lower and Middle Devonian) in New York and Adjacent Areas: USGS Professional Paper, No. 869, p.156.

Oneida-Herkimer Counties website,

http://www.oneidacounty/oneidacty/gov/dept/planning/Census.html2003.

Recra Research, Inc. 1985. "Engineering Investigations at Inactive Hazardous Waste Sites in the State of New York Phase I Investigations, Hiteman Leather Company, Village of West Winfield, Herkimer County, New York, Site #622007." Prepared for NYSDEC Division of Solid and Hazardous Waste.

Smith, T.W. 1979. *Intimate History of Winfield*. Heritage Press, Richfield Springs, New York.

Turner, D.A. 1977. Diagenetic Patterns of Surface and Subsurface Samples from the Bioherm Facies of the Edgecliff Member of the Onondaga Formation (Middle Devonian) of New York State, Unpublished Masters Thesis, Rensselaer Polytech Inst., Troy, New York, p. 188.

U.S. Department of Agriculture. 1975. Soil Survey of Herkimer County, New York.

U.S. Environmental Protection Agency (EPA). 1987. Groundwater Issue, *Behavior of Metals in Soil*. Washington, D.C. EPA/540/S-92/018.

EPA. 1989a. Region II CERCLA Quality Assurance Manual, Final Copy.

EPA. 1989b. Risk Assessment Guidance for Superfund: Human Health Evaluation Manual Part A. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington DC. EPA/540/1-89/002. OSWER Directive 9285.701A. NTIS PB90-155581.

EPA. 1997a. Ecological Risk Assessment Guidance for Superfund (ERAGS): Process for Designing and Conducting Ecological Risk Assessments (Interim Final, EPA/540-R-97-006. June.

EPA. 1997b. Site Investigation, Final Report, Hiteman Leather, West Winfield, New York. Submitted by Environmental Response Team. March.

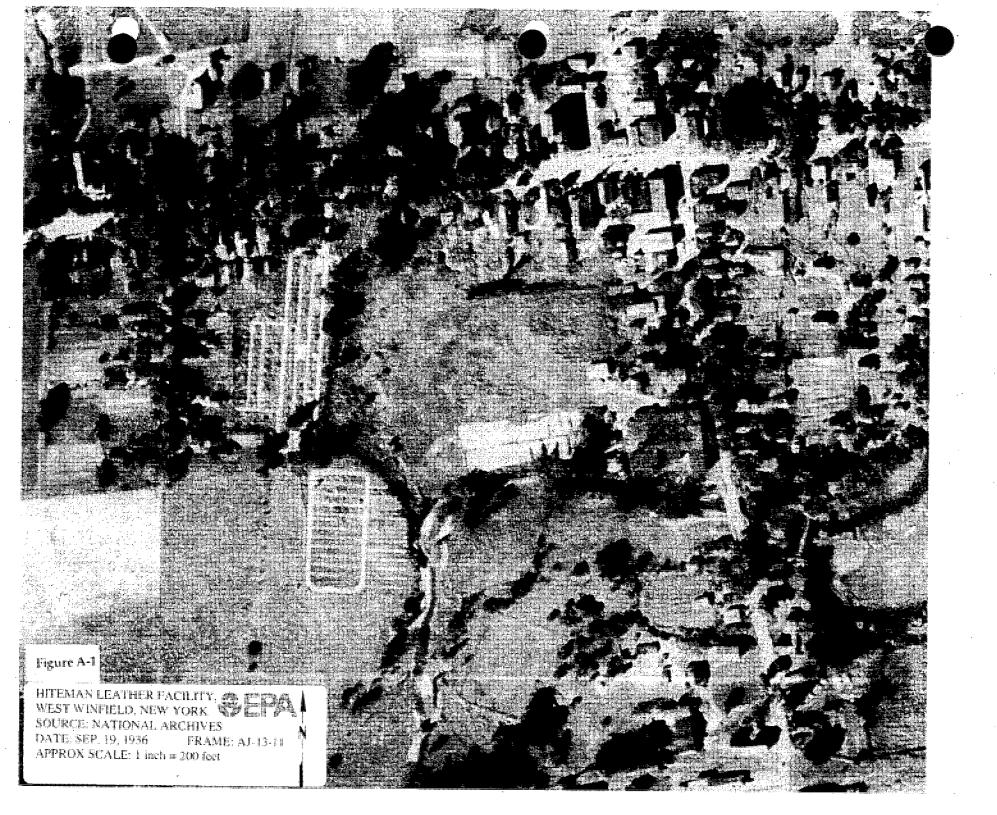
EPA. 1998. Final Hazard Ranking System Evaluation, Hiteman Leather Company West Winfield, Herkimer County, New York (Report No.: 8003-463; Contract No. 68-W9-0051). August .

West Winfield Village Zoning Commission. 1972. Zoning Map, Village of West Winfield, New York. Prepared by Russel D. Barklay & Associates. September.

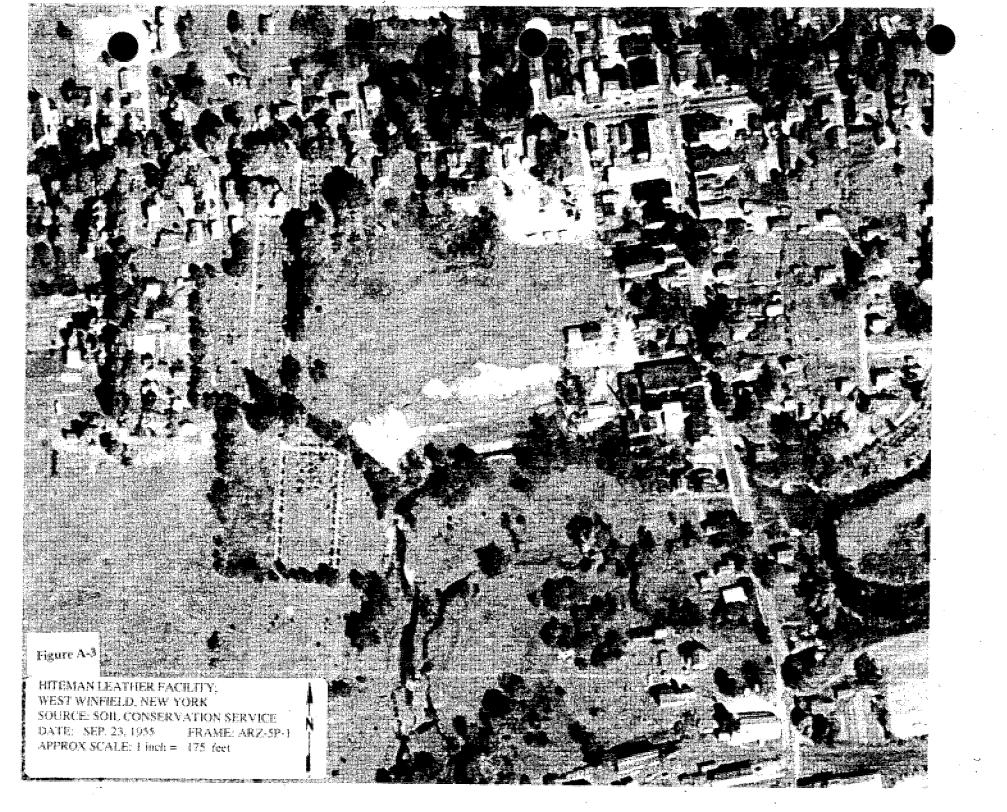
Williams, L.A. 1980. Community Succession in Devonian Patch Reefs (Onodaga Formation, New York)-Physical and Biotic Controls, *Journal of Sedimentary Petrology*, V.50, pp. 11169-1186.

Wolosz, T.H. and Paquette, D.E. 1995. Middle Devonian Temperate Water Bioherms of Western New York State (Edgecliff Member, Onodaga Formation) in Garver, J.J. and Smith, J.A. (editors), Field Trips for the 67th Annual Meeting of the New York State Geological Association, pp. 227-250.

Final Remedial Investigation Report


Appendix A

Appendix A


APPENDIX A

ſ

HISTORICAL AERIAL PHOTOGRAPHS

Appendix B

Appendix B

APPENDIX B

FIELD CHANGE REQUEST FORMS

REQUEST NO:	<u> </u>	· · · · · · · · · · · · · · · · · · ·	DATE:	05-2-01	
		· .			
FCR TITLE:	Modification to Well R	edevelonmen	t Procedure	-	

DESCRIPTION: Turbidity readings in monitoring wells redeveloped during this phase of the field investigation to date have been very high. Data has recently been found that indicates that the monitoring wells have historically had high turbidity readings. As a result, the requirement that turbidity readings be below 50 NTU is not a realistic goal. In order to redevelop the monitoring wells sufficiently and efficiently, the current well redevelopment will be modified to eliminate this requirement for well redevelopment criteria

REASON FOR DEVIATION: Due to current high turbidity readings and historical data regarding turbidity levels in the monitoring wells, the requirement that turbidity readings be below 50 NTU is not a realistic goal. In order to redevelop the monitoring wells sufficiently and efficiently, this will no longer be a requirement to determine the completion of well redevelopment.

RECOMMENDED MODIFICATION: Eliminate the requirement that turbidity levels be below 50 NTU. Stabilization of all other water quality parameters (pH, conductivity, temperature) will still be required to determine redevelopment criteria.

Signatures:	CDM Federal FTL LAG Cumpter		5-2-01
.	Aisa Campbell	Date	5 2. 0
	TAMS RI Task Manager		5/2/01
	Andrew Leung	Date	
	CDM Federal SM _ Mela / Mela	2	12/01
	Pamela Philip	Date	5/2/-1
Distribution:	Jack O'Dell, EPA Project Manager		•
	Pam Philip, CDM Federal SM		
	Andrew Leung, TAMS RI Task Manager		
	Lisa Campbell, CDM Federal FTL		
	Jennifer Oxford, CDM Federal RQAC		•
	Field Team		
· · · ·	Project File		

** TOTAL PAGE.02 **

REQUEST NO:

Project File

DATE: 05-15-01

FCR TITLE: Modification to Decontamination Procedure

DESCRIPTION: <u>The methanol/hexane rinse step described in the decontamination procedures in the</u> OAPP will be replaced with an acetone rinse.

RECOMMENDED MODIFICATION: <u>Replace the methanol/hexane decontamination rinse step</u> with acctone rinse.

Signatures:	CDM Federal FTL (Loc Curred)	<u>5.1561</u> Date
	TAMS RI Task Manager	5/10/2001
•	CDM Federal SM Quella CUL	$\int \frac{\partial P}{\partial r}$
	Pamela Philip	Date
Distribution:	Jack O'Dell, EPA Project Manager Pam Philip, CDM Federal SM Andrew Leung, TAMS RI Task Manager Lisa Campbell, CDM Federal FTL Jennifer Oxford, CDM Federal RQAC	
	Field Team	

 REQUEST NO:
 3
 DATE:
 04-08-02

 FCR TITLE:
 Modification of Drilling Method for Bedrock and Deep Overburden Monitoring Wells

DESCRIPTION: _____ The drilling method for bedrock and deep overburden monitoring wells will be changed from hollow stem auger/air rotary to mud rotary.

REASON FOR DEVIATION: A shallow clay layer was discovered during drilling of the first bedrock monitoring well, MW-11B. The clay layer was encountered at a depth of 22 feet bgs, and is at least 8 feet in thickness. The lateral extent of the clay layer is unknown. In order to prevent the migration of contaminants to underlying units, carbon-steel casing will need to be installed at each location that the clay layer is encountered. At each bedrock monitoring well in which the clay layer is encountered, 12inch diameter steel casing will need to be set into the clay layer (approximately 30 feet bgs); 8-inch diameter steel casing will still need to be set into bedrock, as originally planned. At each deep overburden monitoring well in which the clay layer is encountered, 8-inch diameter steel casing will need to be set into the clay layer (approximately 30 feet bgs). The current drilling methods of air rotary and hollow-stem auger are not appropriate for installation of 12-inch diameter steel casing. Mud rotary drilling will also be used for the installation of 8-inch casing for consistency and cost purposes. As a result, mud rotary drilling methods will now be used for drilling bedrock monitoring wells and deep overburden monitoring wells located in areas where the clay layer is encountered.

RECOMMENDED MODIFICATION: Use mud rotary drilling methods for drilling bedrock and deep overburden monitoring wells located in areas where the clay layer is encountered.

Signatures:	CDM FTL	Mar Mipor	910100
	-	Lisa Campbell	Date
т.	CDM SM	mila O Plulip	4/8/02
		Pamela Philip	Date
Distribution:	Jack O'Dell	, EPA Project Manager	· · · ·

Pam Philip, CDM Federal SM Andrew Leung, TAMS RI Task Manager Lisa Campbell, CDM Federal FTL Jennifer Oxford, CDM Federal RQAC Field Team Project File

 REQUEST NO:
 4
 DATE:
 04-15-02

FCR TITLE: Modification to Bedrock Coring Depth and Bedrock Monitoring Well Depth

DESCRIPTION: Bedrock monitoring wells will be cored and installed in the first 10 feet of heavily fractured areas, instead of 50 feet below the top of bedrock, as described in the QAPP

REASON FOR DEVIATION: ______Fractures from 48-66' bgs in the borehole for MW-11B, were found to produce substantial amounts of water and coring rates were extremely slow in the hard bedrock. Upon consultation with EPA and the CDM Project Manager, it was determined that it was not necessary to install bedrock monitoring wells 50' into the bedrock, but that coring and installation would be terminated after encountering the first 10 feet of heavily fractured areas. The depth to which each bedrock well is cored will be based on visual observations of fractures in the core, keeping in mind that the screened zone must be below the zone of influence at the contact with the overburden. ______

RECOMMENDED MODIFICATION: <u>Core and install bedrock monitoring wells after</u>

encountering the first 10 feet of heavily fractured areas.

CDM FTL

Signatures:

lise (i	omport
	Lisa Campbell
2°]	4

1-15-02

υ	a	te	

CDM SM _____ Pamela Phili

Distribution:

Jack O'Dell, EPA Project Manager Pam Philip, CDM Federal SM Andrew Leung, TAMS RI Task Manager Lisa Campbell, CDM Federal FTL Jennifer Oxford, CDM Federal RQAC Field Team

REQUEST NO: _____5____

DATE: <u>04-26-02</u>

FCR TITLE: <u>Modification to Bedrock Drilling at RMW-16B</u>

DESCRIPTION: The bedrock portion of the borehole for RMW-16B will not be cored; it will be drilled using air drilling with a down hole hammer.

REASON FOR DEVIATION: ______ Due to the observations of water in nearby wells being affected during coring and air rotary drilling at the two recently installed bedrock wells. Corky raised concerns about the effect the coring and air rotary drilling at RMW-16D would have on the Village of West Winfield town water well #3. L. Cambpell and M. Adams checked out the Village of West Winfield town water well #3, located approximately 2/10 mile east of the site and RMW-16B. According to well construction and boring logs, the town water well #3 is constructed of 8-inch diameter stainless steel, with a total depth of 45 feet bgs. The well is screened from 33-45 feet bgs (12 feet) with 40-slot stainless steel screen. Boring logs from the well installation indicate that the well is screened in the overburden gravels and sands. Sand with silt and clay layers were encountered at 48 feet bgs. Nearby test borings were drilled to 59 and 120 feet bgs, in which silt and clay were encountered from 49.5 to 59 feet bgs. In the 120-foot boring, clay was observed from 49.5 to 120 feet bgs; bedrock was not encountered. Although it appears that the town well #3 is screened at depths shallow enough to not be affected by air coring at RMW-16B, precautions will be taken to ensure that the well is not affected.

RECOMMENDED MODIFICATION: <u>As a result, the following precautions will be taken:</u> <u>1. RMW-16B will not be cored due to the increased air pressure that is introduced into fractures within</u> <u>the bedrock formation during air coring.</u> Instead, the bedrock portion of the borehole will be drilled <u>using air rotary methods, which introduces air into the formation at a much lesser pressure.</u>

1

2. CDM personnel will be stationed at the town well #3 during air rotary drilling at RMW-16B. If any change in water level or air is observed, CDM personnel will immediately radio the drill crew and

Pamela Philip

2

drilling will be stopped, after which the CDM Project Manager will be contacted.

Signatures:

CDM FTL ta (Lisa Campbell N. deal

4-74-0

4-26-0

Date

Date

Distribution:

CDM SM

Jack O'Dell, EPA Project Manager Pam Philip, CDM Federal SM Andrew Leung, TAMS RI Task Manager Lisa Campbell, CDM Federal FTL Jeniffer Oxford, CDM Federal RQAC Field Team Project File

 REQUEST NO:
 6
 DATE:
 04-26-02

FCR TITLE: Modifications to Geotechnical Borings

DESCRIPTION: _____The following changes will be made to the geotechnical borings :

1. All geotechnical borings will be cased with 4-inch steel casing into the clay layer.

2. The drilling method will be changed from hollow stem auger/air rotary to mud rotary.

3. Geotechnical borings will be terminated at bedrock; no bedrock coring will be done.

REASON FOR DEVIATION: <u>Rationale for the above changes are as follows, respectively:</u>

1. A shallow clay layer was discovered during drilling of the first bedrock monitoring well, MW-11B. The clay layer was encountered at a depth of 22 feet bgs, and is at least 8 feet in thickness. The lateral extent of the clay layer is unknown. In order to prevent the migration of contaminants to underlying units, carbon- steel casing will need to be installed at geotechnical borings at each location that the clay layer is encountered.

2. In order to be able to drill through the carbon-steel casing, mud rotary drilling methods are required.
3! Due to the observations made during recent coring activities in the area (that imply that the bedrock and lower clay layers are hydrologically connected), further coring at geotechnical borings would likely impact the recently installed and soon to be developed monitoring wells.

RECOMMENDED MODIFICATION: Make changes to the geotechnical borings as described

above.

Signatures:

CDM FTL Lisa Campbell

4-26-02

Date

CDM SM Pamela Philip

2

4 <u>26-07</u> Date

Distribution:

Jack O'Dell, EPA Project Manager Pam Philip, CDM Federal SM Andrew Leung, TAMS RI Task Manager Lisa Campbell, CDM Federal FTL Jennifer Oxford, CDM Federal RQAC Field Team Project File

Appendix C

Appendix (

APPENDIX C

DATA USABILITY REPORT

--

.

.

· · · · ·

HITEMAN LEATHER SITE DATA USABILITY ASSESSMENT

SUMMARY

Soil, sediment, surface water and groundwater samples were collected and analyzed in accordance with the Final Quality Assurance Project Plan (QAPP) for the Hiteman Leather Superfund site (CDM 2000). Table 1 contains a data quality assessment summary.

There were some deviations from the sampling procedures defined in the QAPP. All deviations were initiated by field change requests and submitted to EPA. Field changes and their potential affect on data quality are discussed in Field Change Requests section below.

Results from 17 semi-volatile and pesticide samples are considered to be biased low due to exceeded holding time. Hexavalent chromium results should be considered biased low due to consistent low spike recoveries. Some data were rejected due to holding time, blank contamination, poor matrix spike recovery and low instrument response.

Aluminum, iron, sodium, thallium, mercury, acetone, bis(2-ethylhexyl)phthalate, caprolactam, chloroform and methylene chloride were detected above reporting limit in field, trip and/or method blanks. Of these:

Acetone, bis(2-ethylhexyl)phthalate and methylene chloride are generally viewed as common laboratory contaminants and are not contaminants of concern at the Hiteman Leather Site. The concentration level of acetone in some field blanks indicates that the sampling equipment was not adequately rinsed after acetone solvent wash.

- Aluminum, iron, magnesium, sodium, caprolactam and chloroform concentrations in the blanks were not detected at sufficient levels to affect data usage as relates to comparison to action level criteria.
- The concentration of thallium and mercury detected in the blanks is at sufficient levels to influence sample concentrations when compared to action level criteria.

The soil, sediment, surface water and groundwater sample data are usable as reported with the data validation qualifiers added.

FIELD CHANGE REQUESTS

Six field change requests (FCRs) were prepared and submitted to EPA for the Hiteman Leather Site.

#1 05/02/01 - Modification to Well Redevelopment Procedure: Turbidity readings in monitoring wells redeveloped during this phase of the field investigation to date have been very high.

1

Data has recently been found that indicated that the monitoring wells have historically had high turbidity readings. As a result, the requirement that turbidity readings be below 50 NTU is not a realistic goal. In order to redevelop the monitoring wells sufficiently and efficiently, the current well development will be modified to eliminate this requirement for well redevelopment criteria.

This FCR did not impact sample data quality since water quality sampling parameters were met prior to sample collection. Turbidity levels were minimized during sampling through the use of low stress sampling procedures.

#2 05/15/01 - Modification to Decontamination Procedure: The methanol/hexane rinse step described in the decontamination procedures in the QAPP will be replaced with an acetone rinse.

This FCR did not impact sample quality for the identification and measurement of site contaminant of concern. There was however some acetone contamination detected in the field rinse blanks and to a lesser extent some samples. The potential impact to the sample data quality has been addressed through data validation.

#3 04/08/02 - Modification of Drilling Method for Bedrock and Deep Overburden Monitoring Wells: The drilling method for bedrock and deep overburden monitoring wells will be changed from hollow stem auger/air rotary to mud rotary.

This FCR was enacted due to detection of a shallow clay layer. The change in drilling procedure allows for drilling a wider diameter bore hole. This will allow drillers to case off the boring where the clay layer is encountered impeding potential downward movement of contaminants along the well casing through the clay.

#4 04/15/02 - Modification to Bedrock Coring Depth and Bedrock Monitoring Well Depth: Bedrock monitoring wells will be cored and installed in the first 10 feet of heavily fractured areas, instead of 50 feet below the top of bedrock, as described in the QAPP.

This FCR did not impact sample quality and will enhance monitoring well recharge rates.

#5 04/26/02 - Modification to Bedrock Drilling at RMW-16B: The bedrock portion of the borehole for RMW-16B will not be cored; it will be drilled using air drilling with down hole hammer.

This FCR did not impact sample quality and was enacted to limit potential affect of drilling activities on nearby town well.

#6 04/26/02 - Modifications to Geotechnical Borings: 1) All geotechnical borings will be cased with 4-inch steel casing into the clay layer. 2) The drilling method will be changed from hollow stem auger/air rotary to mud rotary. 3) Geotechnical borings will be terminated at bedrock; no bedrock coring will be done.

2

This FCR did not impact sample quality and is in effect a combination of FCRs 4 and 5 with the addition of eliminating additional bedrock geotechnical borings.

DATA COMPLETENESS

No field samples were lost due to shipping. Some data were rejected due to holding time, blank contamination, poor matrix spike recovery and low instrument response. The total number of sample data rejected by data validation is 324 or 1.0% of the data. This represents a completeness of 99% which exceeds the data quality objective (DQO) of 90% completeness cited in the QAPP for the sampling event.

<u>METHODS</u>

Samples were analyzed using the following methods as listed in the QAPP:

- EPA CLP Statement of Work (SOW) OLM04.2 for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and pesticides and polychlorinated biphenyls (PCBs)
- EPA CLP SOW ILM04.2 for TAL metals and cyanide
- EPA CLP SOW OLC02.1 and OLC03.2: groundwater VOCs
- Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846 (SW) 7196A: water hexavalent chromium
- Methods for Chemical Analysis of Water and Wastes (EPA) 310.1: water alkalinity
- EPA 350.1: water ammonia
- EPA 405.1: water biochemical oxygen demand (BOD)
- EPA 410.1: water chemical oxygen demand (COD)
- EPA 325.3: water chloride
- EPA 353.2: water nitrate/nitrite (NO_3/NO_2)
- EPA 375.3: water sulfate
- EPA 160.1: water total dissolved solids (TDS)
- EPA 160.2: water total suspended solids (TSS)
- EPA 351.4: water total kjeldahl nitrogen (TKN)
- EPA 415.1: water total organic carbon (TOC)
- EPA 130.2: water Hardness
- SW 3060A followed by SW7196A: soil hexavalent chromium
- SW 9045C: soil pH
- Lloyd Kahn method: soil TOC
- American Society of Testing and Materials (ASTM) method D421: soil grain size distribution
- Toxicity Characteristic Leaching Procedure (TCLP) Methods
- SW 1311: TCLP extraction procedure
- SW 9012B: cyanide (CN)
- SW 8270C: SVOCs
- SW 8260 B: VOCs
- SW 8151A: herbicides

- SW 8082: PCBs
- SW 8081A: pesticides
- SW 7470A: metals analysis by graphite furnace (GF)
- SW 6010B: metals analysis by inductively coupled argon plasma (ICP)

The VOC, SVOC, pesticide/PCB, TAL metals, and cyanide data were subsequently validated by EPA according to EPA Region 2 methodologies. The remaining general chemistry parameters were validated by CDM according to CDM Federal Programs Corporation SOP CDM-029A, dated July 2001, a modification of USEPA National Functional Guidelines for Inorganic Data Review, February 1994. The data validation narratives indicate that the sample analyses generally met the QC criteria cited in the methods. Results associated with quality control (QC) outliers were appropriately qualified by data validators.

ACCURACY

To assess analytical accuracy, CDM reviewed holding time, organic surrogates and matrix spike/matrix spike duplicate (MS/MSD) results reported by the laboratory. The data validator qualified sample data related to samples extracted or analyzed outside holding time or with spike recoveries outside QC criteria as required by EPA Region 2.

Several arsenic, chromium and mercury results were rejected "R" by data validation due to low spike recovery of batch QC samples. The remaining MS/MSD recovery data was within QC limits.

Spike recoveries for hexavalent chromium were either below QC limits or at the lower end of the QC limit range. Several hexavalent chromium results were qualified estimated "J" by data validation. Hexavalent chromium results should be considered biased low due to the low spike recoveries.

The extraction holding time for semi-volatile, pesticide and PCB analyses was exceeded for 17 samples. The sample results were qualified as estimated "J", additionally non-detect results were rejected "R" in samples RSB-16-8-10 and RSB-10-0-2. The semi-volatile and pesticide data are considered to be biased low for these samples. Due to their stability, PCB results for these samples are not considered biased low.

Field sampling accuracy was attained through strict adherence to the approved QAPP and by using EPA approved analytical methods for sample analyses. Based on this, the data should represent as near as possible the actual field conditions at the time of sampling.

PRECISION

The analytical precision was determined by reviewing MS/MSD and laboratory duplicate results. All laboratory duplicate data were within QC limits indicating good analytical precision.

Field sampling precision was evaluated using the field duplicate results. Attachment 1 reports the field duplicate data and relative percent difference (RPD) results for the soil and sediment samples.

4

Attachment 2 reports field duplicate data results and RPD results for the groundwater and surface water samples. RPD results are not calculated for compounds not detected in either duplicate pair. The duplicate samples were collected in the same manner as the original samples but were collected in separate, individual containers, given separate sample identifiers and treated as individual samples by the laboratory.

For the purpose of data evaluation:

An RPD of less than 100% indicates good precision for field duplicate soil samples.

An RPD of less than 50% indicates good precision for field duplicate water samples.

Result pairs greater than five times the reporting limit are the best indicators of precision.

Soil and sediment sampling precision between the field duplicate pairs was good with 90% of all calculable result pairs having an RPD of less than 100%.

Water sampling precision between field duplicate pairs was reasonable with 76% of all calculable result pairs having an RPD of less than 50. It is important to note that all unqualified result pairs reported above the reporting limit had RPDs less than 50.

With the exception of the sediment duplicate pair for manganese from sample URSD-7, all duplicate result pairs which have RPD results greater than 100 for soil or 50 for water are either below reporting limits or have been qualified as estimated by data validation.

All duplicate pairs greater than five times the reporting limit, with the exception of URSD-7 manganese duplicate pair, have RPDs less then the lower acceptance values of 100 for soil and 50 for water.

The sampling and analysis precision for this phase of the investigation is good and does not indicate any limitation on data usage.

BLANK CONTAMINATION

Attachment 3 contains the results of the field and trip blank samples. Data validators qualified data as required by EPA Region 2 Guidelines. The identification of contaminants above contract required detection limits in the field blank samples indicates potential cross contamination of samples and cause some false positive hits in sample results.

Aluminum, iron, sodium, thallium, mercury, acetone, bis(2-ethylhexyl)phthalate, caprolactam, chloroform and methylene chloride were detected above reporting limit. Acetone, bis(2-ethylhexyl)phthalate and methylene chloride are common laboratory contaminants. Aluminum, iron, sodium, caprolactam and chloroform concentrations in the blanks were not detected at sufficient levels to affect data usage. The concentration of thallium and mercury detected in the blanks is at sufficient levels to influence sample concentrations when compared to action level criteria.

5

The following is a summary of contaminants reported in field, trip and/or method blank samples by matrix type:

Groundwater sample blanks:

Aluminum (maximum blank detection of 83.5 ug/l), iron (maximum blank detection of 112 ug/l) and sodium (maximum blank detection of 578000 ug/l) were detected above contract required detection limits (CRDL) in some field blanks. Cyanide, aluminum, barium, calcium, chromium, iron, magnesium, manganese, nickel, potasium, selenium, sodium, zinc, chloroform, methylene chloride, benzaldehyde and bis(2-ethylhexyl)phthalate were detected below CRDLs in field, trip and/or method blanks.

Of the contaminants detected above CRDL:

Aluminum was detected in 32 of 46 samples with results ranging from 7 ug/l to 39100 ug/l. Iron was detected in 48 of 56 samples with results ranging from 26.6 ug/l to 293000 ug/l. Sodium was detected in 55 of 55 samples with results ranging from 4450 ug/l to 86100 ug/l.

Sediment sample blanks:

Mercury (maximum blank detection of 0.6 ug/l), acetone (maximum blank detection of 12 ug/l) and bis(2-ethylhexyl)phthalate (maximum blank detection of 12 ug/l) were detected above CRDLs in some field blanks. Cyanide, aluminum, calcium, cobalt, iron, potasium, sodium, thallium, zinc, 4-chloro-3-methyphenol, bis(2-ethylhexyl)phthalate, butylbenzylphthalate, di-n-octylphthalate and acetone were detected below CRDLs in field, trip and/or method blanks.

Of the contaminants detected above CRDL:

Mercury was detected in 39 of 48 samples with results ranging from 0.09 mg/kg to 0.82 mg/kg.

Acetone was detected in 17 of 48 samples with results ranging from 70 ug/kg to 3600 ug/kg. Bis(2-ethylhexyl)phthalate was detected in 13 of 48 samples with results ranging from 56 ug/kg to 330 ug/kg.

Soil sample blanks:

Iron (maximum blank detection of 401 ug/l), magnesium (maximum blank detection of 182 ug/l), thallium (maximum blank detection of 11.2 ug/l), bis(2-ethylhexyl)phthalate (maximum blank detection of 26 ug/l), caprolactam (maximum blank detection of 13 ug/l), acetone (maximum blank detection of 310 ug/l), chloroform (maximum blank detection of 36 ug/l) and methylene chloride (maximum blank detection of 40 ug/l) were detected above CRDLs in some field blanks. Cyanide, aluminum, antimony, barium, beryllium, calcium, chromium, iron, lead, manganese, nickel, potasium, silver, sodium, vanadium, zinc, acetophenone, benzaldehyde, bis(2-ethylhexyl)phthalate, caprolactam, di-n-octylphthalate, diethylphthalate, 1,2-dichloroethane, acetone, bromodichloromethane, chloroform, methylene chloride and methycyclohexane were detected below CRDLs in field, trip and/or method blanks.

Of the contaminants detected above CRDL:

- Iron was detected in 161 of 161 samples with results ranging from 4080 mg/kg to 189000 mg/kg.
- Magnesium was detected in 161 of 161 samples with results ranging from 105 mg/kg to 29900 mg/kg.

Thallium was detected in 22 of 156 samples with results ranging from 1 mg/kg to 17.2 mg/kg.

Bis(2-ethylhexyl)phthalate was detected in 9 of 89 samples with results ranging from 90 ug/kg to 2100 ug/kg.

Caprolactam was detected in 17 of 87 samples with results ranging from 40 ug/kg to 550 ug/kg.

Acetone was detected in 7 of 89 samples with results ranging from 3 ug/kg to 340 ug/kg, Chloroform was not detected in any samples.

Methylene chloride was detected in 2 of 89 samples with results ranging from 150 ug/kg to 180 ug/kg.

Five thallium results were rejected "R" by data validation due to blank contamination.

Surface water sample blanks:

There are no field blank samples associated with surface water samples since they are collected directly into sample containers. Acetone, methylene chloride and bis(2-ethylhexyl)phthalate were detected below CRDLs in trip and/or method blanks.

REPRESENTATIVENESS AND COMPARABILITY

Representativeness and comparability are achieved by using EPA approved sampling procedures and analytical methodologies. By following approved QAPP procedures for groundwater, surface water, sediment, and soil sampling during these, and any future sampling events, results representative of environmental conditions at the time of sampling should be obtained. Similarly, reasonable comparability of analytical results for these, and any future sampling events, were, and can be, achieved if the approved EPA analytical methods and standardized reporting units are employed.

Data Qualifiers Hiteman Leather Superfund Site West Winfield, New York

Orga	nic Qua	lifiers:
Ú	-	Compound was analyzed for but not detected. The associated numerical value is
		the sample quantitation limit.
J	-	Estimated data due to exceeded quality control criteria.
В	- '	Analyte is found in the associated blank and in the sample.
E	-	Compound concentration exceeds the calibration range of the instrument for that specific analysis.
D	-	Compound is identified at a secondary dilution factor.
R	- .	Data is rejected due to exceeded quality control criteria.
1		
Inorg	<u>ganic Qu</u>	<u>alifiers:</u>
1		
В	-	Reported value was obtained from a reading that was less than the Contract
		Required Detection Limit (CRDL) but greater than or equal to the Instrument
• •		Detection Limit (IDL).
J	-	Estimated data due to exceeded quality control criteria.
U		Analyte was analyzed for but not detected.
E	-	The reported value is estimated because of the presence of interference.
М	-	Duplicate injection precision not met.
Ν	-	Sample recovery is not within control limits.
S		The reported value was determined by the Method of Standard Additions (MSA).
W	-	Post-digestion spike for furnace AA analysis is out of control limits (85-115%),
		while sample absorbance is less than 50% of spike absorbance.
R	-	Data is rejected.
*	-	Duplicate analysis not within control limits.
+	-	Correlation coefficient for the MSA is less than 0.995.

Table 1 Hiteman Leather Site Data Quality Assessment Summary

QC Sample Type	Assessment of Results	Effect on Data Quality
Laboratory QC		
Method Blanks (See QAPP Table 4-2 for detection limits.)	Analytes were detected in Metals, VOC & BNA method blanks. Summarized in Blank Contamination section.	Some sample results were qualified "U" for laboratory blank contamination.
Matrix Spikes (See QAPP Table 6-1 for accuracy limits.)	Arsenic had some very low matrix spike recoveries. Aluminum and copper had one very low ICP serial dilution recovery. Chromium and mercury had one low spike recovery. Hexavalent chromium had some low matrix spike recoveries.	Arsenic results were rejected in 40 samples. Aluminum results were rejected in 7 samples, and copper results rejected in 4 samples. Chromium and mercury results qualified as estimated, undetermined bias. Hexavalent chromium data qualified as estimated, biased low.
Surrogate Spikes (See methods for QC limits.)	One sample had surrogate recoveries outside QC limits (organic data).	Non-detect results for this sample were rejected.
Laboratory Control Samples (See QAPP Table 6-1 for recovery limits.)	All laboratory control samples were within QC limits.	No adverse affect.
Matrix Spike Duplicates (See QAPP Table 6-1 for RPD limits.)	All matrix spike duplicates were within QC limits.	No adverse affect.
Laboratory Duplicates (See QAPP Table 6-1 for precision limits.)	All laboratory duplicates were within QC limits.	No adverse affect.
Sample Integrity (See QC Table 4-1 for holding times.)		Semi-volatile organic and pesticide results qualified as estimated, biased low. Non-detect data results rejected in 2 of the samples due to excessive exceedance.

Table 1 Hiteman Leather Site Data Quality Assessment Summary

QC Sample Type	Assessment of Results	Effect on Data Quality		
Field QC		· · ·		
Field Rinsate Blanks (See QAPP Table 4-2 for detection limits.)	Analytes were detected in Metals, VOC & BNA method blanks. Summarized in Blank Contamination section.	Affected analytes qualified as non-detect "U".		
Rinsate Water Blank (See QAPP Table 4-2 for detection limits.)	Several metals and some VOC and BNA contaminants were detected.	Affected analytes qualified as non-detect "U" Thallium results rejected "R" in 5 samples.		
Field Duplicates (See QAPP Table 6-1 for precision limits.)	RPDs found outside of project limits are summarized in Precision section of this report.	Affected data results have been qualified as estimated.		

1

ATTACHMENT 1 SOIL AND SEDIMENT SAMPLE DUPLICATE PAIR DATA AND RELATIVE PERCENT DIFFERENCES

Hiteman Leather Soil Sediment Duplicates for Data Usability

٦

	·		Sample Code	BSB-05-0-2	3SB-05-0-2-DUP	
			•	2-0-00-0-2	BSB-05-0-2-DOP	RPD
			Sample Name	4/2/2000		RPU
			Sample Date	4/3/2002	4/3/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft	0 to 2 ft	·····
r .	od (Group Description) Volatile Organic Compounds - OLI	104 2				
1-VOA-s				4011	00	
75-71-8	Dictilorodinacionemane	OLM04-2-V	ug/kg	10 U	25 R	NC
74-87-3	Chloromethane	OLM04-2-V	ug/kg	10 0	25 UJ	NC
75-01-4	Vinyl Chloride	OLM04-2-V	ug/kg	25 U	10 U	NC
74-83-9	Bromomethane	OLM04-2-V	ug/kg	10 U	25 U	NC
75-00-3	Chloroethane	OLM04-2-V	ug/kg	10 U	25 U	ŅC
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/kg	3 J	10 J	107.69
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/kg	10 U	25 U	NC
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/kg	10 U	25 U	NC
67-64-1	Acetone	OLM04-2-V	ug/kg	10 UJ	25 UJ	NC
75-15-0	Carbon Disulfide	OLM04-2-V	ug/kg	10 U	25 U	NC
79-20-9	Methyl Acetate	OLM04-2-V	ug/kg	10 U	25 UJ	NC
75-09-2	Methylene Chloride	OLM04-2-V	ug/kg	48 UJ	150 J	NC
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/kg	10 U	25 U	NC
1634-04-4		OLM04-2-V	ug/kg	10 U	25 U	NC
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/kg	10 U	25 U	NC
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/kg	10 U	25 U	NC
78-93-3	2-Butanone	OLM04-2-V	ug/kg	10 U		NC
67-66-3 ⁻	Chloroform	OLM04-2-V	ug/kg	10 U	25 U	NC
71-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/kg	10,0	25 U	NC
110-82-7	Cyclohexane	OLM04-2-V	ug/kg	10 U	25 U	NC
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/kg	10 U	25 U	NC
71-43-2	Benzene	OLM04-2-V	ug/kg	10 U	25 U	NC
107-06-2	1,2-Dichloroethane	OLM04-2-V	ug/kg	10 U	25 U	NC
79-01-6	Trichloroethene	OLM04-2-V	ug/kg	10 U	25 U	NC
108-87-2	Metylcyclohexane	OLM04-2-V	ug/kg	10 U	25 U	NC
78-87-5	1,2-Dichloropropane	OLM04-2-V	ug/kg	10 U	25 U	NC
75-27-4	Bromodichloromethane	OLM04-2-V	ug/kg	10 U	25 U	NC
10061-01-	5 cis-1,3-Dichloropropene	OLM04-2-V	ug/kg	10 U	25 U	NC
108-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/kg	10 U	25 U	NC
108-88-3	Toluene	OLM04-2-V	ug/kg	10 U	25 U	NC
10061-02-	6 trans-1,3-Dichloropropene	OLM04-2-V	ug/kg	10 U	· 25 U	NC
79-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/kg	10 U	25 U	NC
127-18-4	Tetrachloroethene	OLM04-2-V	ug/kg	10 U	25 U	NC
591-78-6	2-Hexanone	OLM04-2-V	ug/kg	25 U	/	NC
124-48-1	Dibromochloromethane	OLM04-2-V	ug/kg	10 U		NC
106-93-4	1.2-Dibromoethane	OLM04-2-V	ug/kg	10 U		NC
108-90-7	Chlorobenzene	OLM04-2-V	ug/kg	10 U	1 1	NC .
100-41-4	Ethylbenzene	OLM04-2-V	ug/kg	10 U	25 U	NC .
1330-20-7	-	OLM04-2-V	ug/kg	100	25 U	NC
100-42-5	Styrene	OLM04-2-V	ug/kg	10 U		NC
75-25-2	Bromoform	OLM04-2-V	ug/kg	10 U		NC
75-25-2 98-82-8	Isopropylbenzene	OLM04-2-V		10 U		NC
98-82-8 79-34-5	1,1,2,2-Tetrachloroethane	OLM04-2-V	ug/kg	100		NC
			ug/kg	100		NC I
541-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/kg			
106-46-7 95-50-1	1,4-Dichlorobenzene	OLM04-2-V	ug/kg	10 U 10 U	1 1	NC I
	1,2-Dichlorobenzene		ug/kg			NC
96-12-8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/kg	10 R		NC
120-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/kg	10 U	25 U	NC

RPD = Relative Percent Difference NC = Not Calculable

٢

1/22/2003 Page2

	· ,		Sample Code	BSB-05-0-2 E	SB-05-0-2-DUP	
			Sample Name		BSB-07-0-2	RPD
			Sample Date	4/3/2002	4/3/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft	0 to 2 ft	
2-SV-1-5	Semi-Volatile Organics -page 1	- OLM04.2			· ·	, , , , , , , , , , , , , , , , , , , ,
100-52-7	Benzaldehyde	OLM04-2-SV	ug/kg	. 380 UJ	150 J	NC
108-95-2	Phenol	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC ·
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/kg	380 UJ	.530 UJ	NC
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC /
95-48-7	2-Methylphenol	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
98-86-2	Acetophenone	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
106-44-5	4-Methylphenol	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
67-72-1	Hexachloroethane	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
98-95-3	Nitrobenzene	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
78-59-1	Isophorone	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
11,1-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/kg	380 UJ	ຸ 530 ບຸ -	NC
120-83-2	2.4-Dichlorophenol	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
91-20-3	Naphthalene	OLM04-2-SV	ug/kg	380 UJ		NC ·
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/kg	` 380 UJ	530 UJ	NC
105-60-2	Caprolactam	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
59-50-7	4-Chioro-3-methylphenol	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
38-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/kg	960 UJ	1300 UJ	NC
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
38-74-4	2-Nitroaniline	OLM04-2-SV	ug/kg	960 U J	1300 UJ	NC J
31-11-3	Dimethylphthalate	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
60 6-20 -2	2,6-Dinitrotoluene	OLM04-2-SV	ug/kg	380 UJ		NC
208-96-8	Acenaphthylene	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC
9-09-2	3-Nitroaniline	OLM04-2-SV	ug/kg	960 UJ	1300 UJ	NC I
3-32-9	Acenaphthene	OLM04-2-SV	ug/kg	380 UJ	530 UJ	NC

1/22/2003 Page3

			Sample		Ē	3SB-05-0	-2 8	3SB-05-0-2-DL	JP			
			Sample	e Name	ĺ			BSB-07-0-2		1	RPD	
			Sample	e Date	i ·	4/3/2002	2	4/3/2002				
Cas Rn	Chemical Name	Analytic Method	Unit \\ I	Depth		0 to 2 ft		0 to 2 ft	•••••	1 · ·		
-SV-2-5	Semi-Volatile Organics -page 2 - C	DLM04.2					Т		T	1		٦
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/kg		· .	960	UU	1300	UJ	NC		
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/kg	•	l.	960	UU	1300	UJ.	NC		
132-64-9	Dibenzofuran	OLM04-2-SV	ug/kg		1	380	UJ	530	บม	NC .		ł
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/kg		, ⁻	380)UJ	530	UJ	NC		
84-66-2	Diethylphthalate	OLM04-2-SV	ug/kg	н.) ·	380	UJ.	- 530	บม	INC	;	
86-73-7	Fluorene	OLM04-2-SV	ug/kg			380	UJ .	530	UJ	NC		
7005-72-3	4-Chlorophenyi-phenylether	OLM04-2-SV	ug/kg			380	UJ	530	UJ	NC ·		
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/kg			960	UJ.	. 1300	UJ	NC	•	
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/kg			960	UÚ.	1300	UJ	NĊ		
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/kg			. 380	UJ	. 530	UJ	NC		
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/kg			380	UJ	530	UJ	NC		
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/kg			380	บม	- 530	UJ	NC		
1912-24-9	Atrazine	OLM04-2-SV	ug/kg			380	υJ		UJ	NC .		1
87-86-5	Pentachiorophenol	OLM04-2-SV	ug/kgʻ			960	UJ	1300	UJ	NC		
85-01-8	Phenanthrene	OLM04-2-SV	ug/kg			. 380	UJ	530	UJ	NC		
120-12-7	Anthracene	OLM04-2-SV	ug/kg		•	380	UJ	530	UJ	NC	•	
86-74-8	Carbazole	OLM04-2-SV	ug/kg	· · ·		380	υJ	530	UJ	NC		
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/kg	۰ ۰		380	UJ	530	IJ	NC		
206-44-0	Fluoranthene	OLM04-2-SV	ug/kg			380	UJ	- 530	UJ	NC :	*	
129-00-0	Pyrene	OLM04-2-SV	ug/kg			380	UJ	530	UJ	NC -		
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/kg			380	UJ	-	UJ	NC		
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/kg		•		UJ	530		NC		
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/kg				ΟJ	530		NC		
218-01-9	Chrysene	OLM04-2-SV	ug/kg			380	UΠ	530	IJ	NC	· ·	
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/kg			470	UJ	530	UJ	NC		
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/kg	[380		530		NC		
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/kg			. 380	UJ	530	UJ	NC .		
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/kg			380	1 1	530	•	NC		1
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/kg	1		380	2 1	530	-	NC		
193-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/kg			380		530		NC		
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/kg			380		- 530		NC		
191-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/kg	:		380	UJ	530	υJ	NC		1

1/22/2003 Page4

ĥ

- 1			Sample Code	BSB-05-0-2 E	SB-05-0-2-DUP	
	1	•	Sample Name	· .	BSB-07-0-2	RPD
	and the second		Sample Date	4/3/2002	4/3/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft	0 to 2 ft	
4-P/PCBs-s	Pestcide/PCB Organics - OLM04.2					
319-84-6	alpha-BHC	OLM04-2-PP	ug/kg	2 UJ		NC
319-85-7	beta-BHC	OLM04-2-PP	ug/kg	2 UJ	2.8 UJ	NC
319-86-8	delta-BHC	OLM04-2-PP	ug/kg	2 UJ	2.8 UJ	NC
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/kg	2 UJ	2.8 UJ	NC
76-44-8	Heptachlor	OLM04-2-PP	ug/kg	. 2 UJ	2.8 UJ	NC
309-00-2	Aldrin	OLM04-2-PP	ug/kg	2 UJ	2.8 UJ	NC I
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/kg	2 UJ	2.8 UJ	NC
959-98-8	Endosulfan I	OLM04-2-PP	ug/kg	2 UJ	2.8 UJ	NC
60-57-1	Dieldrin	OLM04-2-PP	ug/kg	3.8 UJ	5.4 UJ	NC
72-55-9	4,4'-DDE	OLM04-2-PP	ug/kg	3.8 UJ	5.4 UJ	NC
72-20-8	Endrin	OLM04-2-PP	ug/kg	3.8 UJ	5.4 UJ	NC
33213-65-9	Endosulfan II	OLM04-2-PP	ug/kg	3.8 UJ	5.4 UJ	NC ···
72-54-8	4,4'-DDD	OLM04-2-PP	ug/kg	∴ 3.8 UJ	5.4 UJ	NC
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/kg	3.8 UJ	5.4 UJ	NC
50-29-3	4,4'-DDT	OLM04-2-PP	ug/kg	3.8 UJ	5.4 UJ	NC
72-43-5	Methoxychlor	OLM04-2-PP	ug/kg	20 UJ	28 UJ	NC
53494-70-5	Endrin ketone	OLM04-2-PP	ug/kg	3.8 UJ	5.4 UJ	NC
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/kg	3.8 UJ	5.4 UJ	NC
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/kg	2 UJ	2.8 UJ	NC
5103-74-2	gamma-Chiordane	OLM04-2-PP	ug/kg	2 UJ	2.8 UJ	NC
8001-35-2	Toxaphene	OLM04-2-PP	ug/kg	200 UJ	280 UJ	NC
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/kg	38 UJ	54 UJ	NC
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/kg	. 77 UJ	110 UJ	NC
	Aroclor-1232	OLM04-2-PP	ug/kg	38 UJ		NC
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/kg	38 UJ		NC
12672-29-6	Aroclor-1248	OLM04-2-PP	ug/kg	38 UJ		NC
	Aroclor-1254	OLM04-2-PP	ug/kg	38 UJ		NC
	Aroclor-1260	OLM04-2-PP	ug/kg	38 UJ		NC

			Sample Code	BSB-05-0-	2 8	3SB-05-0-2-DU	Ρ		
		•	Sample Name	}		BSB-07-0-2			RPD
			Sample Date	4/3/2002		4/3/2002		1	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft		0 to 2 ft			
5-Inorg-s	Inorganic Analytes - ILM04.1	· · · · · · · · · · · · · · · · · · ·				1			
7429-90-5	Aluminum	ILM04-1-M	mg/kg	5400		4860			10.53
7440-36-0	Antimony	ILM04-1-M	mg/kg	0.87	UJ	0.83	UJ	NC	
7440-38-2	Arsenic	ILM04-1-M	mg/kg	12.2	R	. 9.9			20.81
7440-39-3	Barium	ILM04-1-M	mg/kg	37.6	в	28.3	В	1	28.22
7440-41-7	Beryllium	ILM04-1-M	mg/kg	0.3	B	0.28	В		6.90
7440-43-9	Cadmium	ILM04-1-M	mg/kg	0.46	в	0.5	Β,		8.33
7440-70-2	Calcium	ILM04-1-M	mg/kg	95700	J	119000	J ·		21.70
7440-47-3	Chromium	ILM04-1-M	mg/kg	43.1		43.6	J		1.15
7440-48-4	Cobalt	ILM04-1-M	mg/kg	. 4.5	в	4.2	В		6.90
7440-50-8	Copper	ILM04-1-M	mg/kg	30		23.8			23.05
7439-89-6	Iron	ILM04-1-M	· mg/kg	13400		11300	J	1	17.00
7439-92-1	Lead	ILM04-1-M	mg/kg	9.4	J	10	J.	· ·	6.19
7439-95-4	Magnesium	ILM04-1-M	mg/kg	21600		29900			32.23
7439-96-5	Manganese	ILM04-1-M	mg/kg	381		344	J	1	10.21
7439-97-6	Mercury	ILM04-1-M	mg/kg	0.08	в	0.07			13.33
7440-02-0	Nickel	ILM04-1-M	mg/kg	12.4		12.4	J	· ·	0.00
7440-09-7	Potassium	ILM04-1-M	mg/kg	1210		1400		ł	14.56
7782-49-2	Selenium	ILM04-1-M	mg/kg		υ	0.96	-	NC	
7440-22-4	Silver	ILM04-1-M	mg/kg	0.2	3	0.19	-	NC	
7440-23-5	Sodium	ILM04-1-M	mg/kg	206		245			17,29
7440-28-0	Thallium	ILM04-1-M	mg/kg	1.3	υ	1.2	-	NC	
7440-62-2	Vanadium	ILM04-1-M	mg/kg	· 11		9.7	-	1	12.56
7440-66-6	Zinc	ILM04-1-M	mg/kg	73	-	61.1		1	17.75
57-12-5	Cyanide	ILM04-1-CN	mg/kg	• 0.15	в	0.34	в	1	77.55

Hiteman Leather Soil Sediment Duplicates for Data Usability

[······································	······	Sample Code	LSB-03-4-6	LSB-03-4-6-DUP	
	· · · · · · · · · · · · · · · · · · ·		Sample Name	1 1	LSB-04-4-6	RPD
		•	Sample Date	4/11/2002	4/11/2002	
Cas Rn	Chemical Name	Analytic Method	•	4 to 6 ft	4 to 6 ft	
(Group Code)	(Group Description)	· · · · · · · · · · · · · · · · · · ·	· · · · ·			
1-VOA-s	Volatile Organic Compounds - OLM04.2					
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/kg	18 UJ	18 UJ	NC
74-87-3	Chloromethane	OLM04-2-V	ug/kg	18 UJ	18 UJ	NC
75-01-4	Vinyl Chloride	OLM04-2-V	ug/kg	18 UJ	18 UJ	NC
74-83-9	Bromomethane	OLM04-2-V	ug/kg	18U	18 U	NC
75-00-3	Chloroethane	OLM04-2-V	ug/kg	18 UJ	18 UJ	NC
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/kg	18 U	5 J	NC
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/kg	18 U	18 U	NC
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/kg	18U	18 U	NC
67-64-1	Acetone	OLM04-2-V	ug/kg	48U	34 U	NC
75-15-0	Carbon Disulfide	OLM04-2-V	ug/kg	18 U	18 U	NC
79-20-9	Methyl Acetate	OLM04-2-V	ug/kg	18 U	18 U	NC
75-09-2	Methylene Chloride	OLM04-2-V	ug/kg	28 U	43 U	NC
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/kg	18 U	18 U	NC ·
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/kg	18 UJ	18 UJ	NC
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/kg	18 U	18 U	NC
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/kg	18 U	18 U	NC
78-93-3	2-Butanone	OLM04-2-V	ug/kg	18 UJ	18 UJ	NC
67-66-3	Chloroform	OLM04-2-V	ug/kg	18 U	18 U	NC
71-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/kg	18 U	18 U	NC
110-82-7	Cyclohexane	OLM04-2-V	.ug/kg	18 U	18 U	NC
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/kg	18 U	18 U	NC
71-43-2	Benzene	OLM04-2-V	ug/kg	18 U	18 U	NC
107-06-2	1,2-Dichloroethane	OLM04-2-V	ug/kg	18 U	18 U	NC .
79-01-6	Trichloroethene	OLM04-2-V	ug/kg	18 U	18 U	NC
108-87-2	Metylcyclohexane	OLM04-2-V	ug/kg	180	. 18 U	NC .
78-87-5	1,2-Dichloropropane	OLM04-2-V	ug/kg	18 U	18 U	NC
75-27-4	Bromodichloromethane	OLM04-2-V	ug/kg	18 U	18 U	NC L
10061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/kg	18 U		NC I
108-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/kg	18 U		
108-88-3	Toluene	OLM04-2-V	ug/kg	18 U	18 U	NC
10061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/kg	18 U	18 U	NC
79-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/kg	18 U	1 1	NC
127-18-4	Tetrachloroethene	OLM04-2-V	ug/kg	18 U		NC
591-78-6	2-Hexanone	OLM04-2-V	ug/kg	18U		
124-48-1	Dibromochloromethane	OLM04-2-V	ug/kg	18 U		
106-93-4	1,2-Dibromoethane	OLM04-2-V	ug/kg	18U		NC
108-90-7	Chiorobenzene	OLM04-2-V	ug/kg	18 U		NC
100-41-4	Ethylbenzene	OLM04-2-V	ug/kg	18 U		NC
1330-20-7	Xylenes (total)	OLM04-2-V	ug/kg	18 U		NC
100-42-5	Styrene	OLM04-2-V	ug/kg	-18 U		NC
75-25-2	Bromoform	OLM04-2-V	ug/kg	18 U		NC
98-82-8	Isopropylbenzene	OLM04-2-V	ug/kg	18 U		NC
79-34-5	1,1,2,2-Tetrachloroethane	OLM04-2-V	ug/kg	18 U		NC
541-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/kg	18 U		
06-46-7	1.4-Dichlorobenzene	OLM04-2-V	ug/kg	18 U		
95-50-1	1,2-Dichlorobenzene	OLM04-2-V	ug/kg	18 U		10
96-12-8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/kg	18 U		
120-82-1	1.2.4-Trichlorobenzene	OLM04-2-V	ug/kg	18 U		
			-39			·

Hiteman Leather Soil Sediment Duplicates for Data Usability

· · · ·			Sample Code	LSB-03-4-6	LSB-03-4-6-DUP	
			Sample Name	-	LSB-04-4-6	RPD
		1	Sample Date	4/11/2002	4/11/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	4 to 6 ft	4 to 6 ft	
2-SV-1-s	Semi-Volatile Organics -page 1 - OLM04.2					
100-52-7	Benzaldehyde	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
108-95-2	Phenol	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
11-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
5-57-8	2-Chlorophenol	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
5-48-7	2-Methyphenol	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
08-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
8-86-2	Acetophenone	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
06-44-5	4-Methylphenol	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
21-64-7	N-Nitroso-di-n-propytamine	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
7-72-1	Hexachloroethane	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
8-95-3	Nitrobenzene	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
8-59-1	Isophorone	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
8-75-5	2-Nitrophenøl	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
05-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
11-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
20-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
1-20-3	Naphthalene	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC 1
06-47-8 🦯 📩	4-Chloroaniline	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
7-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
05-60-2	Caprolactam	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
9-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/kg	380 UJ		NC
1-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/kg	380 UJ		NC
7-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/kg	380 UJ		NC
8-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
5-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/kg	950 UJ	1300 UJ	NC
2-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
1-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/kg	380 UJ	520 UJ	NC
8-74-4	2-Nitroaniline	OLM04-2-SV	ug/kg	950 UJ		NC
31-11-3	Dimethylphthalate	OLM04-2-SV	ug/kg	380 UJ	+ +-	NC
06-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/kg	380 UJ		NC
08-96-8	Acenaphthylene	OLM04-2-SV	ug/kg	380 UJ		NC
9-09-2	3-Nitroaniline	OLM04-2-SV	ug/kg	950 UJ	1300 UJ	NC
3-32-9	Acenaphthene	OLM04-2-SV	ug/kg	380 UJ	- 520 UJ	NC

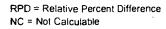
Hiteman Leather Soil Sediment Duplicates for Data Usability

			Sample Code	LSB-03-4-6	LSB-03-4-6-DUP		· · · · · · · · · · · · · · · · · · ·
		•	Sample Name		LSB-04-4-6		RPD
	· .		Sample Date	4/11/2002	4/11/2002		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	4 to 6 ft	4 to 6 ft		
3-\$V-2-s	Semi-Volatile Organics -page 2 - OLM04.2						·
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/kg	950 UJ	1300	UJ NC	
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/kg	950 UJ	1300	UJ NC	
132-64-9	Dibenzofuran	OLM04-2-SV	ug/kg	380 UJ	520	UJ NC	ł
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/kg	380 UJ	520	JN NC	
84-66-2	Diethylphthalate	OLM04-2-SV	ug/kg 🕓	380 UJ	520	лі ис	•
86-73-7	Fluorene	OLM04-2-SV	ug/kg	380 UJ	520	JN NC	
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/kg	380 UJ	520	JJ NC	
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/kg	950 UJ	1300	JU NC	
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/kg	950 UJ	1300	JJ NC	
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/kg	380 UJ	520	JJ NC	
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/kg	380 UJ	. 520	JN NC	
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/kg	380 UJ	520		
1912-24-9	Atrazine	OLM04-2-SV	ug/kg	380 UJ	520	JJ NC	
87-86-5	Pentachiorophenol	OLM04-2-SV	ug/kg	950 UJ	1300		1
85-01-8	Phenanthrene	OLM04-2-SV	ug/kg	380 UJ	520	_	1
120-12-7	Anthracene	OLM04-2-SV	ug/kg	380 UJ	520 1		'
86-74-8	Carbazole	OLM04-2-SV	ug/kg	380 UJ	520 (1
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/kg	380 UJ	520 1		. <u> </u>
206-44-0	Fluoranthene	OLM04-2-SV	ug/kg	380 UJ	520 1	-	
129-00-0	Рутеле	OLM04-2-SV	ug/kg	380 UJ	520 L		
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/kg	380 UJ	520 JU	IJ NC	
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/kg	380 UJ	520 1	IN NC	
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/kg	380 UJ	520 (· · · ·
218-01-9	Chrysene	OLM04-2-SV	ug/kg	380 UJ	520 L	IJ NC	
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/kg	380 UJ	520 L	JU NC	1
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/kg	380 UJ	520 U	J NC	
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/kg	380 UJ	, 520 L	IJ NC	
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/kg	380 UJ	520 L	J NC	
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/kg .	380 UJ	520 L		
193-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/kg	380 UJ	520 U	J NC	
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/kg	380 UJ	520 0		
191-24-2	Benzo(g,h,i)perviene	OLM04-2-SV	ug/kg	380 UJ	520		1

Hiteman Leather Soil Sediment Duplicates for Data Usability

			Sample Code	LSB-03-4-6	LSB-03-4-6-DUP	
•.	·		Sample Name	1 ·	LSB-04-4-6	RPD
			Sample Date	4/11/2002	4/11/2002	· ·
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	4 to 6 ft	4 to 6 ft	
4-P/PCBs-s	Pestcide/PCB Organics - OLM04.2					· ·
319-84-6	alpha-BHC	OLM04-2-PP	ug/kg	2 U J	2.7 UJ	NC
319-85-7	beta-BHC	OLM04-2-PP	ug/kg	2 UJ	2.7 UJ	NC 1
319-86-8	delta-BHC	OLM04-2-PP	ug/kg	2 UJ	2.7 UJ	NC
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/kg	2 U J	2.7 UJ	NC
76-44-8	Heptachlor	OLM04-2-PP	ug/kg	2 UJ	2.7 UJ	NC .
309-00-2	Aldrin	OLM04-2-PP	ug/kg	2 U J	2.7 UJ	NC
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/kg	2 UJ	2.7 UJ	NC
959-98-8	Endosulfan I	OLM04-2-PP	ug/kg	2 UJ	2.7 UJ	NC
60-57-1	Dieldrin	OLM04-2-PP	ug/kg	3.8 UJ	5.2 UJ	NC
72-55-9	4 4 -DDE	OLM04-2-PP	ug/kg	3.8 UJ	5.2 UJ	NC .
72-20-8	Endrin	OLM04-2-PP	ug/kg	3.8 UJ	5.2 UJ	NC
33213-65-9	Endosulfan II	OLM04-2-PP	ug/kg	3.8 UJ	5.2 UJ	NC
72-54-8	4,4'-DDD	OLM04-2-PP	ug/kg	3.8 UJ	5.2 UJ	NC
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/kg	3.8 UJ	.5.2 UJ	NC
50-29-3	4,4'-DDT	OLM04-2-PP	ug/kg	3.8 UJ	5.2 UJ	NC
72-43-5	Methoxychlor	OLM04-2-PP	ug/kg	20 UJ	27 UJ	NC
53494-70-5	Endrin ketone	OLM04-2-PP	ug/kg	3.8 UJ	5.2 UJ	NC
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/kg	3.8 UJ	5.2 UJ	NC
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/kg	2 UJ	. 2.7 UJ	NC
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/kg	2 UJ	2.7 UJ	INC
8001-35-2	Toxaphene	OLM04-2-PP	ug/kg	200 UJ	270 UJ	NC
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/kg	38 UJ	52 UJ	NC
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/kg	77 UJ	100 UJ	NC
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/kg	38 UJ	52 UJ	NC
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/kg	38 UJ	52 UJ	NC
2672-29-6	Aroclor-1248	OLM04-2-PP	ug/kg	38 UJ	52 UJ	NC
1097-69-1	Aroclor-1254	OLM04-2-PP	ug/kg	38 UJ	52 UJ	NC
1096-82-5	Arocior-1260	OLM04-2-PP	ug/kg	. 38 UJ	52 UJ	NC.

			Sample Code	LSB-0	3-4-6	LSB-03-4-6-DUP		
			Sample Name	·		LSB-04-4-6	RPD	
			Sample Date	4/11/2	2002	4/11/2002		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	4 to 6	5 ft	4 to 6 ft		
5-Inorg-s	Inorganic Analytes - ILM04.1							
7429-90-5	Aluminum	ILM04-1-M	mg/kg	6360	1	7060	10.43	
7440-36-0	Antimony	ILM04-1-M	mg/kg	29.8		27.6	7.67	
7440-38-2	Arsenic	łLM04-1-M	mg/kg	9		9.1	1.10	
7440-39-3	Barium	ILM04-1-M	mg/kg	74.2	ļ !	72.4	2.46	
7440-41-7	Beryllium	ILM04-1-M	mg/kg	0.34	B⊦	0.35 B	2.90	
7440-43-9	Cadmium	ILM04-1-M	mg/kg	2.8	·	2.8	0.00	
7440-70-2	Calcium	ILM04-1-M	mg/kg	67300	J	52500 J	24.71	
7440-47-3	Chromium	ILM04-1-M	mg/kg	11100		10200	8.45	
7440-48-4	Cobalt	ILM04-1-M	mg/kg	5.6	в	, 6.1 B	8.55	
7440-50-8	Copper	ILM04-1-M	mg/kg	29.2		29.2	0.00	
7439-89-6	Iron	ILM04-1-M	mg/kg	14200		18300	25.23	
7439-92-1	Lead	ILM04-1-M	mg/kg	118		113	4.33	
7439-95-4	Magnesium	ILM04-1-M	mg/kg	2330		. 2240	3.94	
7439-96-5	Manganese	ILM04-1-M	mg/kg	349		347	0.57	
7439-97-6	Mercury	ILM04-1-M	mg/kg	0.07	υJ	0.1 BJ	35.29	
7440-02-0	Nickel	ILM04-1-M	mg/kg	13		14.6	11.59	
7440-09-7	Potassium	ILM04-1-M	mg/kg	633	в	614 B	3.05	
7782-49-2	Selenium	ILM04-1-M	mg/kg	1.9		1.8	5.41	
7440-22-4	Silver	ILM04-1-M	mg/kg	0.16	υ	0.15 U	NC	
7440-23-5	Sodium	ILM04-1-M	mg/kg	288	в	256 B	11.76	
7440-28-0	Thallium	ILM04-1-M	mg/kg	1	в	1.1 B	9.52	
7440-62-2	Vanadium	ILM04-1-M	mg/kg	19		20.6	8.08	
7440-66-6	Zinc	ILM04-1-M	mg/kg	82.8	J·	86.9 J	4.83	
57-12-5	Cyanide	ILM04-1-CN	mg/kg	1.2	1	1.1	8.70	


1/22/2003

Hiteman Leather Soil Sediment Duplicates for Data Usability

Page11

			Sample Code	LSB-01-18-20	LSB-01-18-20-DUP	
	· · · ·		Sample Name		LSB-35-18-20	RPD
			Sample Date	4/22/2002	4/22/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	18 to 20 ft	18 to 20 ft	
Group Code)	(Group Description)					
-VOA-s	Volatile Organic Compounds - OLM04.2					
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/kg	10 UJ	10 UJ II	NC
4-87-3	Chloromethane	OLM04-2-V	ug/kg	10 U	10 U	NC
75-01-4	Vinyl Chloride	OLM04-2-V	ug/kg	10 U	1010 1	NC
74-83-9	Bromomethane	OLM04-2-V	ug/kg	10 U		NC
75-00-3	Chloroethane	OLM04-2-V	ug/kg	10 U		NC
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/kg	3 J	3 J	0.00
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/kg	10 U		NC
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/kg	10 U		1C
57-64-1	Acetone	OLM04-2-V	ug/kg	5 J	6 J	18.18
5-15-0	Carbon Disulfide	OLM04-2-V	ug/kg	10 U		1C
9-20-9	Methyl Acetate	OLM04-2-V	ug/kg	10 U		1C
75-09-2	Methylene Chloride	OLM04-2-V	ug/kg	10 UJ		10 10
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/kg	10 U		10 10
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/kg	10 UJ		4C
75-34-3	1.1-Dichloroethane	OLM04-2-V	ug/kg	100		VC
56-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/kg	10 U		10 10
78-93-3	2-Butanone	OLM04-2-V	ug/kg	10 U		
67-66-3	Chloroform	OLM04-2-V	ug/kg	10 U		
1-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/kg	10 U		IC
10-82-7	Cyclohexane	OLM04-2-V	ug/kg	10 U		
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/kg	10 U		
71-43-2	Benzene	OLM04-2-V	ug/kg	10 U		IC ·
07-06-2	1,2-Dichloroethane	OLM04-2-V	ug/kg	10 U	1 1	
'9-01-6	Trichloroethene	OLM04-2-V	ug/kg	10 U		
		OLM04-2-V	• •	10 U		IC IC
08-87-2	Metylcyclohexane		ug/kg	100		
8-87-5	1,2-Dichloropropane	OLM04-2-V	ug/kg	100		
5-27-4	Bromodichloromethane	OLM04-2-V	ug/kg			IC IC
0061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/kg	· 10 U		
08-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/kg	1010	1-1	
08-88-3	Toluene	OLM04-2-V	ug/kg	10 U		
0061-02-6	trans-1,3-Dichloropropene		ug/kg	10 U		
9-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/kg	10 U	1 1	
27-18-4	Tetrachloroethene	OLM04-2-V	ug/kg	10 U	L 1'	IC
91-78-6	2-Hexanone	OLM04-2-V	ug/kg	10 U		IC .
24-48-1	Dibromochloromethane	OLM04-2-V	ug/kg	10 U		IC
06-93-4	1,2-Dibromoethane	OLM04-2-V	ug/kg	10 0		C
08-90-7	Chlorobenzene	OLM04-2-V	ug/kg	10 U	10 U N	
00-41-4	Ethylbenzene	OLM04-2-V	ug/kg	· 10 U	10 U N	
330-20-7	Xylenes (total)	OLM04-2-V	ug/kg	10 U	10 U N	
00-42-5	Styrene	OLM04-2-V	ug/kg	10 U	10 U N	
5-25-2	Bromoform	OLM04-2-V	ug/kg	10 U	10 U N	C ,
8-82-8	Isopropylbenzene	OLM04-2-V	ug/kg	10 U	10 U N	
9-34-5	1,1,2,2-Tetrachloroethane		ug/kg	10 U	10 U N	С
41-73-1	1,3-Dichlorobenzene		ug/kg	10 U	10 U N	С
06-46-7	1,4-Dichlorobenzene		ug/kg	10 U	10 U N	
5-50-1	1,2-Dichlorobenzene		ug/kg	10 U	10 U N	
6-12-8	1,2-Dibromo-3-chloropropane		ug/kg	10 U	10 U N	
20-82-1	1.2.4-Trichlorobenzene		ug/kg	10 U	10 U N	

.

			Sample Code	LSB-01-18-20	LSB-01-18-20-DUP	
			Sample Name		LSB-35-18-20	RPD
			Sample Date	4/22/2002	4/22/2002	· ·
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	18 to 20 ft	18 to 20 ft	
2-SV-1-s	Semi-Volatile Organics -page 1 - OLM04.2					
100-52-7	Benzaldehyde	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
108-95-2	Phenol	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC .
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
95-48-7	2-Methylphenol	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
98-86-2	Acetophenone	OLM04-2-SV	ug/kg	40 J	370 UJ	NC .
106-44-5	4-Methylphenol	OLM04-2-SV	ug/kg	360 UJ		NC
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/kg	360 UJ		NC
67-72-1	Hexachloroethane	OLM04-2-SV	ug/kg	360 UJ		NC
98-95-3	Nitrobenzene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
78-59-1	Isophorone	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC ·
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
91-20-3	Naphthalene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
37-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
05-60-2	Caprolactam	OLM04-2-SV	ug/kg	72 J	77 J	6.71
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
1-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
7-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
8-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
5-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/kg	910 UJ	930 UJ	NC
2-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/kg	360 U J	370 UJ	NC
8-74-4	2-Nitroaniline	OLM04-2-SV	ug/kg	910 UJ	LU 056	NC
31-11-3	Dimethylphthalate	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
06-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
08-96-8	Acenaphthylene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
9-09-2	3-Nitroaniline	OLM04-2-SV	ug/kg	910 UJ		NC
3-32-9	Acenaphthene	OLM04-2-SV	ug/kg	360101		NC

RPD = Relative Percent Difference NC = Not Calculable

4

i

Hiteman Leather Soil Sediment Duplicates for Data Usability

	· · · ·		Sample Code	LSB-01-18-20	LSB-01-18-20-DUP	1
			Sample Name		LSB-35-18-20	RPD
			Sample Date	4/22/2002	4/22/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	18 to 20 ft	18 to 20 ft	
3-SV-2-5	Semi-Volatile Organics -page 2 - OLM04.2					
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/kg	910 UJ	930 UJ	NC
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/kg	910 UJ	930 UJ	NC
132-64-9	Dibenzofuran	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
84-66-2	Diethylphthalate	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
86-73-7	Fluorene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/kg	910 UJ	930 UJ	NC
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/kg	910 UJ	930 UJ	NC
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/kĝ	360 UJ	370 UJ	NC
118-74-1	Hexachiorobenzene	OLM04-2-SV	ug/kg	360 UJ	370 U J	NC
1912-24-9	Atrazine	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
87-86-5	Pentachlorophenol	OLM04-2-SV	ug/kg	1900 J	440 J	124.7
85-01-8	Phenanthrene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
120-12-7	Anthracene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
36-74-8	Carbazole	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
34-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/kg ·	360 UJ	370 UJ	NC
206-44-0	Fluoranthene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC .
129-00-0	Pyrene	OLM04-2-SV	ug/kg	360 UJ	. 370 UJ	NC
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/kg	360 UJ		NC
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/kg	360 UJ		NC
218-01-9	Chrysene	OLM04-2-SV	ug/kg ′	_ 360 UJ		NC
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/kg	360 UJ		NC
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NÇ
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/kg	360 UJ		NC
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/kg	360 UJ		NC
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/kg	360 UJ	•.• = •	NC
93-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/kg	360 UJ		NC
91-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/kg	360 UJ	370 UJ	NC

RPD = Relative Percent Difference NC = Not Calculable

50-193

	······································		Sample Code			
· •	:	•	Sample Name		LSB-35-18-20	RPD
	1		Sample Date	4/22/2002	4/22/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	18 to 20 ft	18 to 20 ft	
4-P/PCBs-s	Pestcide/PCB Organics - OLM04.2					
319-84-6	alpha-BHC	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC
319-85-7	beta-BHC	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	
319-86-8	delta-BHC	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC
58- 89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/kg	1.9 UJ	1.9JUJ	NC
76-44-8	Heptachlor	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC
309- 00-2	Aldrin	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC
959-98-8	Endosulfan I	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC
60-57-1	Dieldrin	OLM04-2-PP	ug/kg	3.6 UJ	. 3.7 UJ	NC
72-55-9	4,4'-DDE	OLM04-2-PP	ug/kg	3.6 UJ	3.7 UJ	NC I
72-20-8	Endrin	OLM04-2-PP	ug/kg	3.6 UJ	3.7 UJ	NC
33213-65-9	Endosulfan II	OLM04-2-PP	ug/kg	3.6 UJ	3.7 UJ	NC
72-54-8	4.4'-DDD	OLM04-2-PP	ug/kg	3.6 UJ	3.7 UJ	NC
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/kg	3.6 UJ	3.7 UJ	NC
50-29-3	4,4'-DDT	OLM04-2-PP	ug/kg	3.6 UJ	3.7 UJ	NC
72-43-5	Methoxychlor	OLM04-2-PP	ug/kg	19 UJ	19 UJ	NC
53494-70-5	Endrin ketone	OLM04-2-PP	ug/kg	3.6 UJ	3.7. UJ	NC
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/kg	3.6 UJ	3.7 UJ	NC []
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC
8001-35-2	Toxaphene	OLM04-2-PP	ug/kg	190 UJ	190 UJ	NC
12674-11-2	Arocior-1016	OLM04-2-PP	ug/kg	36 UJ	37 UJ	NC
1104-28-2	Aroclor-1221	OLM04-2-PP	ug/kg	73 UJ	75 UJ	NC
1141-16-5	Arocior-1232	OLM04-2-PP	ug/kg	36 UJ	37 UJ	NC
3469-21-9	Aroclor-1242	OLM04-2-PP	ug/kg	36 UJ		NC
2672-29-6	Aroclor-1248	OLM04-2-PP	ug/kg	36 UJ	37 UJ	NC
1097-69-1	Aroclor-1254		ug/kg	36 UJ		NC
1096-82-5	Arocior-1260		ug/kg	36 UJ	37 UJ	NC 🖢

RPD = Relative Percent Difference NC = Not Calculable

. . .

ł

			Sample Code	LSB-01-18-2	LSB-01-18-20-DUP	1	
			Sample Name		LSB-35-18-20	i R	PD
			Sample Date	4/22/2002	4/22/2002	1	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	18 to 20 ft	18 to 20 ft	j .	
5-Inorg-s	Inorganic Analytes - ILM04.1					T	
7429-90-5	Aluminum	ILM04-1-M	mg/kg	1740	1430	1.1	19.56
7440-36-0	Antimony	ILM04-1-M	mg/kg	0.87 UJ	UJ 83.0	NC 1	
7440-38-2	Arsenic	ILM04-1-M	mg/kg	3.7	1,7 B	Í .	74.07
7440-39-3	Barium	ILM04-1-M	mg/kg	8.3 B	7.9 B		4.94
7440-41-7	Beryllium	ILM04-1-M	mg/kg	0.15 B	0.12 B		22.22
7440-43-9	Cadmium	ILM04-1-M	mg/kg	0.11B	0.11 U	NC	
7440-70-2	Calcium	ILM04-1-M	mg/kg	182000 J	190000 J] '	4.30
7440-47-3	Chromium	ILM04-1-M	mg/kg	· 8.1	5.7.		34.78
7440-48-4	Cobalt	ILM04-1-M	mg/kg	0.27 U	0.26 U	NC	
7440-50-8	Copper	ILM04-1-M	mg/kg	5.9 J	4.4 B	1	29,13
7439-89-6	Iron	ILM04-1-M	mg/kg	4800	4180	1	13.81
7439-92-1	Lead	ILM04-1-M	mg/kg	2.9	1.9 J	1	41.67
7439-95-4	Magnesium	ILM04-1-M	mg/kg	6110 J	5160 J		16.86
7439-96-5	Manganese	ILM04-1-M	mg/kg	183 J	164 J		10.95
7439-97-6	Mercury	ILM04-1-M	mg/kg	0.06 U	0.05 U	NC	
7440-02-0	Nickel	ILM04-1-M	mg/kg	5.4 B	4.2 B	l	25.00
7440-09-7	Potassium	ILM04-1-M	mg/kg	369 B	366 B		0.82
7782-49-2	Selenium	1LM04-1-M	mg/kg	0.5 U	0.48 UJ	NC	
7440-22-4	Silver	ILM04-1-M	mg/kg	0.25 U	0.24 U	NC	
7440-23-5	Sodium	ILM04-1-M	mg/kg "	203 BJ	239 BJ		16.29
7440-28-0	Thallium	ILM04-1-M	mg/kg	0.8 U	0.76 U	NC	
7440-62-2	Vanadium	ILM04-1-M	mg/kg	4.7 B	3.6 B	ŧ.	26.51
7440-66-6	Zinc	ILM04-1-M	mg/kg	14.7	13.9		5.59
57-12-5	Cyanide	ILM04-1-CN	mg/kg	0.06 B	0.04 U	NC	

Hiteman Leather Soil Sediment Duplicates for Data Usability

			Sample Code	RSB-01-2-4	RSB-01-2-4-DUP	1	
		·	Sample Name		RSB-30-2-4	RPD	
			Sample Date	4/8/2002	4/8/2002		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	2 to 4 ft	2 to 4 ft		
(Group Code)	(Group Description)						
1-VOA-s	Volatile Organic Compounds - OLM04.2						
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/kg	21 U	26 U	NC	
74-87-3	Chloromethane	OLM04-2-V	ug/kg	21 U	26 U	NC	
75-01-4	Vinyl Chloride	OLM04-2-V	ug/kg	21 U	26 U	NC	
74-83-9	Bromomethane	OLM04-2-V.	ug/kg	21 U	26 U	NC	
75-00-3	Chloroethane	OLM04-2-V	ug/kg	21 U		NC	
2 5-69-4	Trichlorofluoromethane	OLM04-2-V	ug/kg	11 J	. 7 J	44.44	
5-35-4	1,1-Dichloroethene	OLM04-2-V	ug/kg	21 U	26 U	NC .	
6-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/kg	21 U	26 U	NC	
7-64-1	Acetone	OLM04-2-V	ug/kg	21 UJ		NC	
5-15-0	Carbon Disulfide	OLM04-2-V	ug/kg	21 U	· · · · · · · · · · · · · · · · · · ·	NC	
9-20-9	Methyl Acetate	OLM04-2-V	ug/kg	21 U		NC	
5-09-2	Methylene Chloride	OLM04-2-V	ug/kg	48 UJ		NC	
56-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/kg	21 U		NC	
634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/kg	21 U		NC	
5-34-3	1,1-Dichloroethane	OLM04-2-V	ug/kg	21 U		NC	
56-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/kg	21 U		NC	
8-93-3	2-Butanone	OLM04-2-V	ug/kg	21 UJ		NC	
7-66-3	Chloroform	OLM04-2-V	ug/kg	21 U		NC	
1-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/kg	21 U		NC	
10-82-7	Cyclohexane	OLM04-2-V	ug/kg	21 U		NC	
6-23-5	Carbon Tetrachloride	OLM04-2-V	ug/kg	21 U		NC	
1-43-2	Benzene	OLM04-2-V	ug/kg	21 U		NC	
07-06-2	1,2-Dichloroethane	OLM04-2-V	ug/kg	21 U		NC	
9-01-6	Trichloroethene	OLM04-2-V	ug/kg	21 U		NC	
08-87-2		OLM04-2-V		21 U		NC	
8-87-5	Metylcyclohexane	OLM04-2-V	ug/kg	2110		NC	
5-27-4	1,2-Dichloropropane	OLM04-2-V	ug/kg ·	210		NC .	
	Bromodichloromethane		ug/kg	210		NC .	
0061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/kg	210		NC	
08-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/kg	1 1			
08-88-3	Toluene	OLM04-2-V	ug/kg	4 J		NC	
0061-02-6	trans-1,3-Dichloropropene		ug/kg	21 U	· · · · · · · · · · · · · · · · · · ·	NC	
9-00-5	1,1,2-Trichloroethane		ug/kg	21 U		NC	
27-18-4	Tetrachloroethene	OLM04-2-V	ug/kg	21 U		NC	
91-78-6	2-Hexanone		ug/kg	21 UJ		NC	
24-48-1	Dibromochloromethane		ug/kg	21 U		NC	
06-93-4	1,2-Dibromoethane		ug/kg	21 U		NC	
08-90-7	Chlorobenzene		ug/kg	21 U	1 1	NC	
00-41-4	Ethylbenzene		ug/kg	21 U		NC	
330-20-7	Xylenes (total)		ug/kg	2[J		NC	
0-42-5	Styrene		ug/kg	21 U		NC	
5-25-2	Bromoform		ug/kg	21 U		NC	
3-82-8	lsopropylbenzene		ug/kg	21 U		NC	
-34-5	1,1,2,2-Tetrachloroethane		ug/kg	21 U		NC	
1-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/kg	21 U		NC	
6-46-7	1,4-Dichlorobenzene		ug/kg	21 U	1 1	NC	
5-50-1	1,2-Dichlorobenzene	OLM04-2-V	ug/kg	21 U		NC	
5-12-8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/kg	21 U		NC	
20-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/kg	21 U	26 U I	NC	

RPD = Relative Percent Difference NC = Not Calculable

i,

.

1/22/2003

Hiteman Leather Soil Sediment Duplicates for Data Usability

Page17

	<u> </u>		Sample Code	RSB-01-2-4	RSB-01-2-4-DUP	,
	· · · · ·		Sample Name	1.30-01-2-4	RSB-30-2-4	RPD
		•	Sample Date	4/8/2002	4/8/2002	N D
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	2 to 4 ft	2 to 4 ft	
2-SV-1-s	Semi-Volatile Organics -page 1 - OLM04.2	r waryne metriod	Onic a Depui	<u> </u>		
100-52-7	Benzaldehyde	OLM04-2-SV	ug/kg	1500 UJ	53 J	NC
108-95-2	Phenol	OLM04-2-SV	ug/kg	150 J	1 1	NC
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/kg	1500 UJ		NC
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/kg	1500 UJ		NC
95-48-7	2-Methylphenol	OLM04-2-SV	ug/kg	1500 UJ]]	NC ·
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/kg	1500IUJ		NC
98-86-2	Acetophenone	OLM04-2-SV	ug/kg	1500 UJ	1 1	NC
106-44-5	4-Methylphenol	OLM04-2-SV	ug/kg	620 J	110 J	139.73
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/kg	1500 UJ	480 UJ I	NC
67-72-1	Hexachioroethane	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
98-95-3	Nitrobenzene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ I	NC
78-59-1	Isophorone	OLM04-2-SV	ug/kg	1500 UJ	480 UJ I	NC
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/kg	1500 UJ :	480 UJ I	NC
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/kg	1500 UJ	480 UJ I	NC
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/kg	1500 UJ	480 UJ I	NC
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/kg	1500 UJ	480 UJ I	NC
91-20-3	Naphthalene	OLM04-2-SV	ug/kg	5600 J	1500 J	115.4
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/kg	1500 UJ	480 UJ 1	NC .
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ N	NC
105-60-2	Caprolactam	OLM04-2-SV	ug/kg	1500 UJ	56 J 🗈	NC
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/kg	1200 J	340 J	111.69
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/kg	160 J	480 UJ N	NC
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/kg	1500 UJ	. 480 UJ N	NC
88-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/kg	1500 UJ	480 UJ M	NC
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/kg	3800 UJ	1200 UJ N	NC,
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/kg	1500 UJ	480 UJ N	1C
91-58-7	2-Chloronaphthaiene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ N	1C
38-74-4	2-Nitroaniline	OLM04-2-SV	ug/kg	3800 UJ	1200 UJ N	NC
131-11-3	Dimethylphthalate	OLM04-2-SV	ug/kg	1500 UJ	480 UJ N	1C
606-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ N	1C
20 8-96-8	Acenaphthylene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ N	NC .
99-09-2	3-Nitroaniline	OLM04-2-SV	ug/kg	3800 UJ	1200 UJ N	1C
33-32-9	Acenaphthene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ N	1C

.

	2		Sample Code	RSB-01-2-4	RSB-01-2-4-DUP	
			Sample Name	1	RSB-30-2-4	. RPD
		×	Sample Date	4/8/2002	4/8/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	2 to 4 ft	2 to 4 ft	· ·
3-SV-2-s	Semi-Volatile Organics -page 2 - OLM04.2					
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/kg	3800 UJ	1200 UJ	
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/kg	3800 UJ	1200 UJ	NC
32-64-9	Dibenzofuran	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
21-14-2	2,4-Dinitratoluene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
84-66-2	Diethylphthalate	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
86-73-7	Fluorene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/kg	3800 UJ	1200 UJ	NC
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/kg	3800 UJ	1200 UJ	NC I
36-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC I
01-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
18-74-1	Hexachlorobenzene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
912-24-9	Atrazine	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
37-86-5	Pentachiorophenol	OLM04-2-SV	ug/kg	3800 UJ	1200 UJ	NC
35-01-8	Phenanthrene	OLM04-2-SV	ug/kg	710 J	180 J	119.10
20-12-7	Anthracene	OLM04-2-SV	ug/kg	170 J	65 J	89.36
36-74-8	Carbazole	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
34-74-2	Di-n-butyiphthalate	OLM04-2-SV	ug/kg	1500 UJ	480)UJ	NC .
206-44-0	Fluoranthene	OLM04-2-SV	ug/kg	630 J	180 J	111.11
29-00-0	Pyrene	OLM04-2-SV	ug/kg	540 J	150 J	113.04
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
1-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC .
6-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/kg	330 J	. 96 J	109.86
18-01-9	Chrysene	OLM04-2-SV	ug/kg	390 J	130 J	100.00
17-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
17-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC I
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/kg	290 J	110 J	90.00
07-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/kg	230 J	87 J	90.22
0-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/kg	290 J	100 J	97.44
93-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/kg	1500 UJ	1 1	NC
3-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/kg	1500 UJ	480 UJ	NC
91-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/kg	1500 UJ		NC

1/22/2003 Page19

			Sample Code	RSB-01-2-4	RSB-01-2-4-DUP	
•			Sample Name		RSB-30-2-4	RPD
			Sample Date	4/8/2002	4/8/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	2 to 4 ft	2 to 4 ft	
4-P/PCBs-s	Pestcide/PCB Organics - OLM04.2					
319-84-6	aipha-BHC	OLM04-2-PP	ug/kg	3.9 UJ	3.9 UJ	NC
319-85-7	beta-BHC	OLM04-2-PP	ug/kg	3.9 UJ	3.9 UJ	NC
319-86-8	delta-BHC	OLM04-2-PP	ug/kg	3.9 UJ	3.9 UJ	NC ·
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/kg	3.9 UJ	3.9 UJ	NC ·
76-44-8	Heptachlor	OLM04-2-PP	ug/kg	3.9 UJ	3.9 UJ	NC
309-00-2	Aldrin	OLM04-2-PP	ug/kg	3.9 UJ	· 3.9 UJ	ŅC
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/kg	3.9 UJ	3.9 UJ	NC
959-98-8	Endosulfan I	OLM04-2-PP	ug/kg	3.9 UJ	. 3.9 UJ	NC
60-57-1	Dieldrin	OLM04-2-PP	ug/kg	7.5 UJ	7.5 UJ	NC
72-55-9	4,4'-DDE	OLM04-2-PP	ug/kg	7.5 UJ	7.5 UJ	NC .
72-20-8	. Endrin	OLM04-2-PP	ug/kg	7.5 UJ	7.5 UJ	NC
33213-65-9	Endosulfan II	OLM04-2-PP	ug/kg	7.5 UJ	7.5 UJ	NC
72-54-8	4,4'-DDD	OLM04-2-PP	ug/kg	7.5 UJ	7.5 UJ	NC
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/kg	7.5 UJ	7.5 UJ	NÇ
50-29-3	4,4'-DDT	OLM04-2-PP	ug/kg	7.5 UJ	7.5 UJ	NC
72-43-5	Methoxychlor	OLM04-2-PP	ug/kg	39 UJ	39 UJ	NC
53494-70-5	Endrin ketone	OLM04-2-PP	ug/kg	7.5 UJ	7.5 UJ	NC '
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/kg	7.5 UJ	7.5 UJ	NC
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/kg	3.9 UJ		NC
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/kg	3.9 UJ	3.9 UJ	NC
8001-35-2	Toxaphene	OLM04-2-PP	ug/kg	390 UJ	390 UJ	NC
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/kg	75 UJ	75 UJ	NC
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/kg	150 UJ	150 UJ	NC
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/kg	75 UJ	75 UJ	NC
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/kg	75 UJ	75 UJ	NC
12672-29-6	Aroclor-1248	OLM04-2-PP	ug/kg	75 UJ	75 UJ	NC
1097-69-1	Arocior-1254	OLM04-2-PP	ug/kg	75 UJ	75 UJ	NC
11096-82-5	Aroclor-1260	OLM04-2-PP	ug/kg	75 UJ	75 UJ	

,		· · · · · · · · · · · · · · · · · · ·	Sample Code	RSB-01-2	4 RSB-01-2-4-DUP		
			Sample Name	1	RSB-30-2-4	1	RPD
			Sample Date	4/8/2002	4/8/2002		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	2 to 4 ft	2 to 4 ft		
5-Inorg-s	Inorganic Analytes - ILM04.1						
7429-90-5	Aluminum	ILM04-1-M	mg/kg	11700 J	9390		21.91
7440-36-0	Antimony	ILM04-1-M	mg/kg	225 J	192	J	15.83
7440-38-2	Arsenic	ILM04-1-M	mg/kg	32.5 J	28.1		14.52
7440-39-3	Barium	ILM04-1-M	mg/kg	161 J	168		4.26
7440-41-7	Beryllium	ILM04-1-M	mg/kg	0.5 B.	0.45	в	10.53
7440-43-9	Cadmium	₩.M04-1-M	mg/kg	2.2 J	1.7	в	25.64
7440-70-2	Calcium	ILM04-1-M	mg/kg	148000 J	123000		18.45
7440-47-3	Chromium	ILM04-1-M	mg/kg	74600 J	65900		12.38
7440-48-4	Cobalt	ILM04-1-M	mg/kg	25.6 J	22.2		14.23
7440-50-8	Copper	ILM04-1-M	mg/kg	123 J	145		16.42
7439-89-6	Iron	ILM04-1-M	mg/kg	15600 J	16900		8.00
7439-92-1	Lead	ILM04-1-M	mg/kġ	210 J	203		3.39
7439-95-4	Magnesium	ILM04-1-M	mg/kg	1420 BJ	1270	в	11.15
7439-96-5	Manganese	ILM04-1-M	mg/kg	204 J	175	J	15.30
7439-97-6	Mercury	ILM04-1-M	mg/kg	0.46 J	0.38		19.05
7440-02-0	Nickel	ILM04-1-M	mg/kg	30.2 J	25.4		17.27
7440-09-7	Potassium	ILM04-1-M	mg/kg	193 BJ	254	в	27.29
7782-49-2	Selenium	ILM04-1-M	mg/kg	5.2 J	5.2		Ó.00
7440-22-4	Silver	ILM04-1-M	mg/kg	0.2 UJ	0.191	J NC	
7440-23-5	Sodium	ILM04-1-M	mg/kg	757 BJ	626	з ,	18.94
7440-28-0	Thallium	ILM04-1-M	mg/kg	17.1 J	14.8		14.42
7440-62-2	Vanadium	ILM04-1-M	mg/kg	24.5 J	26.6		8.22
7440-66-6	Zinc	ILM04-1-M	mg/kg	268 J	230		15.26
57-12-5	Cyanide	ILM04-1-CN	mg/kg	6.8 J	6.1		10.85

ą

Hiteman Leather Soil Sediment Duplicates for Data Usability

	,	· . · ·	Sample Code Sample Name Sample Date		RSB-16-2-4-DUP RSB-31-2-4 4/9/2002	RPD
Cao Da	Chamical Nama	Appletic Mothod	•			
Cas Rn	Chemical Name	Analytic Method	Unit w Depth	2 to 4 ft	2 to 4 ft	·····
(Group Code)	(Group Description)		•			
1-VOA-s	Volatile Organic Compounds - OLM04.2	OLANDA 2 M		16 U	12 U	
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/kg		1 1	NC
74-87-3	Chloromethane	OLM04-2-V	ug/kg	16 U 16 U		NC
75-01-4	Vinyl Chloride	OLM04-2-V	ug/kg			
74-83-9	Bromomethane	OLM04-2-V	ug/kg	16 U		NC
75-00-3	Chioroethane	OLM04-2-V	ug/kg	16 U		NC
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/kg	5 J		85.71
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/kg	16 U		NC .
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/kg	16 U		NC
67-64-1	Acetone	OLM04-2-V	ug/kg	79 UJ		NC ·
75-15-0	Carbon Disulfide	OLM04-2-V	ug/kg	16 U		NC I
79-20-9	Methyl Acetate	OLM04-2-V	ug/kg	16 U 20 UJ	1 1	
75-09-2	Methylene Chloride	OLM04-2-V	ug/kg	20 UJ 16 U		
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/kg			NÇ
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/kg	16 U 16 U		
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/kg	16 U		
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/kg			
78-93-3	2-Butanone	OLM04-2-V	ug/kg	16 U 16 U	, j.	NC
67-66-3	Chloroform	OLM04-2-V	ug/kg	16 U 16 U		
71-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/kg			
110-82-7		OLM04-2-V	ug/kg			
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/kg	16 U		
71-43-2	Benzene	OLM04-2-V	ug/kg	16 U	1 1	
107-06-2	1,2-Dichloroethane	OLM04-2-V	ug/kg	16 U	• • • •	10
79-01-6	Trichloroethene	OLM04-2-V	ug/kg	16 U		
108-87-2	Metylcyclohexane	OLM04-2-V	ug/kg	16 U		NC
78-87-5	1,2-Dichloropropane	OLM04-2-V	ug/kg	16 U		10
75-27-4	Bromodichloromethane	OLM04-2-V	ug/kg	16 U	1 1	10
10061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/kg	16 U		1C .
108-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/kg	16 U		1C
108-88-3	Toluene	OLM04-2-V	ug/kg	16 U		10
10061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/kg	16 U		10
79-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/kg	16 U		1C
127-18-4	Tetrachloroethene	OLM04-2-V	ug/kg	16 U	1 1	1C
591-78-6	2-Hexanone	OLM04-2-V	ug/kg	16 U	1 1	10
124-48-1	Dibromochloromethane	OLM04-2-V	ug/kg	16 U		IC
106-93-4	1,2-Dibromoethane	OLM04-2-V	ug/kg	16 U		IC I
108-90-7	Chlorobenzene	OLM04-2-V	ug/kg	16 U		IC I
100-41-4	Ethylbenzene	OLM04-2-V	ug/kg	16 U		IC
1330-20-7	Xylenes (total)	OLM04-2-V	ug/kg	16 U		IC I
100-42-5	Styrene	OLM04-2-V	ug/kg	16 U		IC
75-25-2	Bromoform	OLM04-2-V	ug/kg	16 U	12 U N	
98-82-8	Isopropylbenzene	OLM04-2-V	ug/kg	16 U		IC
79-34-5	1,1,2,2-Tetrachloroethane	OLM04-2-V	ug/kg	16 U	12 U N	
541-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/kg	16 U	12 U N	
106-46-7.	1,4-Dichlorobenzene	OLM04-2-V	ug/kg	16 U	12 U N	
95-50-1	1,2-Dichlorobenzene	OLM04-2-V	ug/kg	16 U	12 U N	
96-12 - 8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/kg	16 U	12 U N	IC I
120-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/kg	16 U		IC

 $\cdot j$

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	····· · · ···.	Sample Code	RSB-16-2-4	RSB-16-2-4-DUP	· · ·
			Sample Name		RSB-31-2-4	RPD
			Sample Date	4/9/2002	4/9/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	. 2 to 4 ft	2 to 4 ft	and the second
2-SV-1-s	Semi-Volatile Organics -page 1 - OLM04.2		····			
100-52-7	Benzaldehyde	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
108-95-2	Phenol	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
95-48-7	2-Methylphenol	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
98-86-2	Acetophenone	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
106-44-5	4-Methylphenol	OLM04-2-SV	ug/kg	1600 J	1400 J	13.33
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/kg	4900 U		NC
67-72-1	Hexachloroethane	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
98-95-3	Nitrobenzene	OLM04-2-SV	ug/kg	4900 U		NC
78-59-1	Isophorone	OLM04-2-SV	ug/kg	4900 U		NC
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/kg	4900 U	4900 U	NC ·
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/kg	4900 U	4900 U	NC ·
11,1-91-1`	bis(2-Chloroethoxy)methane	OLM04-2-SV `	ug/kg	4900 U		NC
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/kg	4900 U	4900 U	NC .
91-20-3	Naphthalene	OLM04-2-SV	ug/kg	1500 J	. 1900 J	23.53
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/kg	4900 U		NC
37-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/kg	4900 U		NC
105-60-2	Caprolactam	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/kg	640 J	550 J	15.13
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/kg	4900 U	860 J	NC
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
38-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/kg	12000 U	12000 U	NC
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
38-74-4	2-Nitroaniline	OLM04-2-SV	ug/kg	12000 U	12000 U	NC
31-11-3	Dimethylphthalate	OLM04-2-SV	ug/kg	4900 U	4900 U	NC
506-20-2	2.6-Dinitrotoluene	OLM04-2-SV	ug/kg	4900 U	4900 U	
208-96-8	Acenaphthylene	OLM04-2-SV	ug/kg	4900 U	. –	NC
9-09-2	3-Nitroaniline		ug/kg	12000 U	-	NC
33-32-9	Acenaphthene		ug/kg	4900 U		NC

Hiteman Leather Soil Sediment Duplicates for Data Usability.

			Sample Code	RSB-16	-2-4	RSB-16-2-4-DUP	T	
			Sample Name		•	RSB-31-2-4	1	RPD
	· · · ·		Sample Date	4/9/20	02	4/9/2002	{	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	2 to 4	ft	2 to 4 ft		
3-SV-2-s	Semi-Volatile Organics -page 2 - OLM04.2						+	
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/kg	12000	υ	12000 U	NC	
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/kg	12000	υ	12000 U	NC	
132-64-9	Dibenzofuran	OLM04-2-SV	ug/kg	4900	U	4900 U	NC	•
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/kg	4900	υ	4900 U	NC	
84-66-2	Diethylphthalate	OLM04-2-SV	ug/kg	4900	υ	4900 U	NC	
86-73-7	Fluorene	OLM04-2-SV	ug/kg	4900	U	750 J	NC	
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/kg	4900	U	4900 U	NC	
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/kg	12000	U	12000 U	NC	
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/kg	12000	υ	12000 U	NC	
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/kg	4900	υ	4900 U	NC	
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/kg	4900	υ	- 4900 U	NC	
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/kg	4900	υ	4900 U	NC	
1912-24-9	Atrazine	OLM04-2-SV	ug/kg	4900	υ	4900 U	NC	
87-86-5	Pentachlorophenoi	OLM04-2-SV	ug/kg	12000	υ	12000 U	NC	
85-01 - 8	Phenanthrene	OLM04-2-SV	ug/kg	4500	J	7600		51.24
120-12-7	Anthracene	OLM04-2-SV	ug/kg	810	ù	1600 J	1	65.56
86-74-8	Carbazole	OLM04-2-SV	ug/kg	4900	υ	790 J	NC	
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/kg	4900	υ	4900 U	NC	
206-44-0	Fluoranthene	OLM04-2-SV	ug/kg	. 7900	- i	13000	1	48.80
129-00-0	Pyrene	OLM04-2-SV	ug/kg	7300		12000		48.70
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/kg	4900	υ	4900 U	NC	
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/kg	4900	υ	.4900 U	NC	•
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/kg	4700	J	8200	Į	54.26
218-01-9	Chrysene	OLM04-2-SV	ug/kg	5000		8400	·	50.75
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/kg	4900	υΪ	4900 U	NC	
17-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/kg	4900	υ	4900 U	ÍNC -	
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/kg	4700	J	7900		50.79
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/kg	3600	J	6300		54.55
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/kg	4500	J	8000		56.00
93-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/kg	2700	J	4300 J	}	45.71
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/kg	1100	J	U 066	1	10.53
191-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/kg	2500	J	3600 J	1	36.07

RPD = Relative Percent Difference NC = Not Calculable

,

			Sample Code	RSB-16-2-4	RSB-16-2-4-DUP	
			Sample Name		RSB-31-2-4	RPD
	х Т		Sample Date	4/9/2002	4/9/2002	•
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	2 to 4 ft	2 to 4 ft	
4-P/PCBs-s	Pestcide/PCB Organics - OLM04.2					
319-84-6	alpha-BHC	OLM04-2-PP	ug/kg	2.6 U	2.5 U	NC
319-85-7	beta-BHC	OLM04-2-PP	ug/kg	2.6 U	2.5 U	NC
319-86-8	delta-BHC	OLM04-2-PP	ug/kg	2.6 U	2.5 U	NC
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/kg	2.6 U	2.5 U	NC
76-44-8	Heptachlor	OLM04-2-PP	ug/kg	2.6 U	- 2.5 U	NC
309-00-2	Aldrin	OLM04-2-PP	ug/kg	2.6 U	2.5 U	NC
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/kg	2.6 U	2.5 U	NC
959-98-8	Endosulfan I	OLM04-2-PP	ug/kg	2.6 U	2.5 U	NC
60-57-1	Dieldrin	OLM04-2-PP	ug/kg	5 U	4.9 U	NC
72-55-9	4,4'-DDE	OLM04-2-PP	ug/kg	5 U	4.9 U	NC
72-20-8	Endrin	OLM04-2-PP	ug/kg	5.3 NJ	4.9 U	NC
33213-65-9	Endosulfan II	OLM04-2-PP	ug/kg	7.6	4.9 U	NC
72-54-8	4,4'-DDD	OLM04-2-PP	ug/kg	5 U	4.9 U	NC
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/kg	5 U	4.9 U	NC
50-29-3	4,4'-DDT	OLM04-2-PP	ug/kg	. 5 U	4.9 U	NC
72-43-5	Methoxychlor	OLM04-2-PP	ug/kg	38 J	47 J	21.18
53494-70-5	Endrin ketone	OLM04-2-PP	ug/kg	11 NJ	16 J	37.04
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/kg	5 U	4.9 U	NC
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/kg	2.6 U	2.5 U	NC
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/kg	2.6 U	2.5 U	NC
8001-35-2	Toxaphene	OLM04-2-PP	ug/kg	260 U	250 U	vc I
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/kg	50 U	49 U I	VC
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/kg	100 U	100 U	NC
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/kg	50 U	49 U I	NC
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/kg	50 U	49 U I	NC I
2672-29-6	Arocior-1248	OLM04-2-PP	ug/kg	50 U	49 0 1	
1097-69-1	Aroclor-1254	OLM04-2-PP	ug/kg	50 U		NC S
1096-82-5	Aroclor-1260	OLM04-2-PP	ug/kg	50 U		NC I

RPD = Relative Percent Difference NC = Not Calculable

Į.

ļ

1/22/2003 Page25

		· · ·	Sample Code	RSB-16-2-4	RSB-16-2-4-DUP	T	
			Sample Name		RSB-31-2-4		RPD
	· · · · ·	•	Sample Date	4/9/2002	4/9/2002	1.	
Cas Rn	Chemical Name	Analytic Method	Unit.\\ Depth	2 to 4 ft	2 to 4 ft		,
5-Inorg-s	Inorganic Analytes - ILM04.1		· ·				
7429-90-5	Aluminum	ILM04-1-M	mg/kg	11700	.8410		32.72
7440-36-0	Antimony	ILM04-1-M	mg/kg	20.4	18.2		11.40
7440-38-2	Arsenic	ILM04-1-M	mg/kg	49 R	- 42.7 R		13.74
7440-39-3	Barium	ILM04-1-M	mg/kg '	219	247	1	12.02
7440-41-7	Beryllium	ILM04-1-M	mg/kg	1.5	1.1 B		30.77
7440-43-9	Cadmium	ILM04-1-M	mg/kg	3.5 J	11.8 J		108.50
7440-70-2	Calcium	ILM04-1-M	mg/kg	44500 J	41700 J		6.50
7440-47-3	Chromium	ILM04-1-M	mg/kg ˈ	6920	5910		15.74
7440-48-4	Cobalt	ILM04-1-M	mg/kg	25.3	49.5		64.71
7440-50-8	Copper	ILM04-1-M	mg/kg	426	412		3.34
439-89-6	Iron	ILM04-1-M	mg/kg	54300 J	189000 J		110.73
439-92-1	Lead	ILM04-1-M	mg/kg	325	417		24.80
439-95-4	Magnesium	ILM04-1-M	mg/kg	1000 B .	885 B		12.20
439-96-5	Manganese	ILM04-1-M	mg/kg	195 J	610 J		103.11
439-97-6	Mercury	ILM04-1-M	mg/kg	0.3 J	0.46 J	1 .	42.11
440-02-0	Nickel	ILM04-1-M	mg/kg	26.8 J	60.8 J		77.63
440-09-7	Potassium	ILM04-1-M	mg/kg	520 B	430 B		18.95
782-49-2	Selenium	ILM04-1-M	mg/kg	4.8 J	·· 8 J		50.00
440-22-4	Silver	ILM04-1-M	mg/kg	0.14 U	0.14 U	NC	
440-23-5	Sodium	ILM04-1-M	mg/kg	364 B	1040 B	1	96.30
440-28-0	Thallium	ILM04-1-M	mg/kg	0.62 U	0.64 U	NC	
440-62-2	Vanadium	ILM04-1-M	mg/kg	12.4 B	11.5 B		7.53
440-66-6	Zinc	ILM04-1-M	mg/kg	189 J	723 J		117.11
7-12-5	Cyanide	ILM04-1-CN	mg/kg	1.9	. 2.1		10.00

1/22/2003 Page26

			Sample Code	RSB-26-0-2	RSB-26-0-2-DUP	
	·.		Sample Name		RSB-32-0-2	RPD
) · · ·		Sample Date	4/10/2002	4/10/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft	0 to 2 ft	
	(Group Description)					
1-VOA-s	Volatile Organic Compounds - OLM04.2			· }		
75 , 71-8	Dichlorodifluoromethane	OLM04-2-V	ug/kg	10 U	10 U	NC
74-87-3	Chloromethane	OLM04-2-V	ug/kg	· 10 U	10 U	NC
75-01-4	Vinyt Chloride	OLM04-2-V	ug/kg	10 U	10 U	NC
74-83-9	Bromomethane	OLM04-2-V	ug/kg	10 U	10 U	NC .
75-00-3	Chloroethane	OLM04-2-V	ug/kg	10 U	10 U	NC
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/kg	10 U	2 J	NC
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/kg	10 U	10 U	NC
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/kg	10 U	10 U	NC ·
67-64-1	Acetone	OLM04-2-V	ug/kg	10 UJ	10 UJ	NC
75-15-0	Carbon Disulfide	OLM04-2-V	ug/kg	10 U	10 U	NC
79-20-9	Methyl Acetate	OLM04-2-V	ug/kg	10JU J	. 10 U	NC
75-09-2	Methylene Chloride	OLM04-2-V	ug/kg	13 UJ	23 UJ	NC
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/kg	10 U		NC
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/kg	10 U		NC
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/kg	10 U	10 U	NC
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/kg	10 U		NC
78-93-3	2-Butanone	OLM04-2-V	ug/kg	10 U		NC
57-66-3	Chloroform	OLM04-2-V	ug/kg	10 U	I 1	NC
71-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/kg	10 U	-	NC
110-82-7	Cyclohexane	OLM04-2-V	ug/kg	100		NC
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/kg	10 U		NC
71-43-2	Benzene	OLM04-2-V	ug/kg	10 U		NC
107-06-2	1,2-Dichloroethane	OLM04-2-V	ug/kg	10 U		NC
				100		NC
79-01-6	Trichloroethene	OLM04-2-V	ug/kg	10 U		
108-87-2	Metylcyclohexane	OLM04-2-V	ug/kg	10 U		
78-87-5	1,2-Dichloropropane	OLM04-2-V	ug/kg	4 1		
75-27-4	Bromodichloromethane	OLM04-2-V	ug/kg	10 U		
10061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/kg	10 U	1 1	NC
08-10-1	4-Methyi-2-pentanone	OLM04-2-V	ug/kg	10 U		NC
08-88-3	Toluene	OLM04-2-V	ug/kg	10 U	1 1	NC
0061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/kg	10 U		NC
9-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/kg	10 U		NC
27-18-4	Tetrachloroethene	OLM04-2-V	ug/kg	10 U		NC
591-78-6	2-Hexanone	OLM04-2-V	ug/kg	10 U		NC
24-48-1	Dibromochloromethane	OLM04-2-V	ug/kg	10 U	1 1	NC ·
06-93-4	1,2-Dibromoethane	OLM04-2-V	ug/kg	10 U		NC
08-90-7	Chlorobenzene		ug/kg	10 U		NC
00-41-4	Ethylbenzene	OLM04-2-V	ug/kg	10 U		NC
330-20-7	Xylenes (total)	OLM04-2-V	ug/kg	10 U		NC
00-42-5	Styrene	OLM04-2-V	ug/kg	10 U	10 U I	NC I
5-25-2	Bromoform	OLM04-2-V	ug/kg	10 U	10 U II	NC I
8-82-8	Isopropylbenzene		ug/kg	10 U		NC DV
9-34-5	1,1,2,2-Tetrachloroethane		ug/kg	10 U		NC DI
41-73-1	1,3-Dichlorobenzene		ug/kg	10 U		NC .
06-46-7	1,4-Dichlorobenzene		ug/kg	10 U		NC
	1.2-Dichlorobenzene		ug/kg	10 U	1 1	
	1.2-Dibromo-3-chloropropane		ug/kg	10 R		
	1,2,4-Trichlorobenzene		ug/kg	10 U		ic l

RPD = Relative Percent Difference NC = Not Calculable . .

Hiteman Leather Soil Sediment Duplicates for Data Usability

	· ·	· · · ·	Sample Code	RSB-26-0-2	RSB-26-0-2-DUP	
	· · · · · · · · · · · · · · · · · · ·		Sample Name		RSB-32-0-2	RPD
			Sample Date	4/10/2002	4/10/2002	
Cas Rn [.]	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft	0 to 2 ft	
2-5V-1-5	Semi-Volatile Organics -page 1 - OLM04.2		······			
100-52-7	Benzaldehyde	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
108-95-2	Phenol	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
95-57-8	2-Chiorophenol	OLM04-2-SV	ug/kg	3600 UJ		NC :
95-48-7	2-Methylphenol	OLM04-2-SV	ug/kg	3600 UJ	· 11000 UJ	NC
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
98-86-2	Acetophenone	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
106-44-5	4-Methylphenol	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
67-72-1	Hexachloroethane	OLM04-2-SV	ug/kg	3600 UJ	、11000 UJ	NC
98-95-3	Nitrobenzene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
78-59-1	Isophorone	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/kg	3600 UJ	. 11000 UJ	NC
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/kg ·	3600 UJ	11000 UJ	NC
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/kg	3600 01	11000 UJ	NC
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
91-20-3	Naphthalene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
37-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
105-60-2	Caprolactam	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC .
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/kg	3600 UJ	. 11000 UJ	NC
38-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/kg	LU 0006	28000 UJ	NC
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/kg	. 3600 UJ	11000 UJ	NC
38-74-4	2-Nitroaniline	OLM04-2-SV	ug/kg	LU 0006	28000 UJ	NC
131-11-3	Dimethylphthalate	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC ·
606-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
208-96-8	Acenaphthylene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC
99-09-2	3-Nitroaniline	OLM04-2-SV	ug/kg	LU 0006	28000 UJ	NC
33-32-9	Acenaphthene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC

			Sample Code	RSB-26-0-2	RSB-26-0-2-DUP	<u> </u>	
	1 · · · · · · · · · · · · · · · · · · ·		Sample Name		RSB-32-0-2]	RPD
			Sample Date	4/10/2002	4/10/2002		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft	0 to 2 ft		
3-SV-2-s	Semi-Volatile Organics -page 2 - OLM04.2				· · ·		
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/kg	9000 UJ	28000 UJ	NC	
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/kg	9000 UJ	28000 UJ	NC	}
132-64-9	Dibenzofuran	OLM04-2-SV	ug/kg	3600 UJ	. 1400 J	NC	
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	
84-66-2	Diethylphthalate	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	
86-73-7	Fluorene	OLM04-2-SV	ug/kg	570 J	2900 J		134.29
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/kg	3600 UJ	11000 ÚJ	NC	
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/kg	9000 UJ	28000 UJ	NC	
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/kg	9000 UJ	28000 UJ	NC	·
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ugi/kg	3600 UJ	11000 UJ	NC	11
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	1
18-74-1	Hexachlorobenzene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	
1912-24-9	Atrazine	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	11
87-86-5	Pentachlorophenol	OLM04-2-SV	ug/kg	9000 UJ	28000 UJ	NC	
35-01-8	Phenanthrene	OLM04-2-SV	ug/kg	3700 J	13000 J		111.38
120-12-7	Anthracene	OLM04-2-SV	ug/kg	770 J	2600 J		108.61
36-74-8	Carbazole	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	
34-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	11
206-44-0	Fluoranthene	.OLM04-2-SV	ug/kg	5500 J	13000 J		81.08
29-00-0	Pyrene	OLM04-2-SV	ug/kg	4300 J	9300 J		73.53
5-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	
6-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/kg	3000 J	6500 J		73.68
218-01-9	Chrysene	OLM04-2-SV	ug/kg	2900 J	6000 J		69.66
17-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	
17-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/kg	3600 (UJ	11000 UJ	NC	[1
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/kg	2000 J	4300 J		73.02
07-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/kg	3000 J	5100 J		51.85
0-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/kg	2700 J	5000 J		59.74
93-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/kg	1600 J	3000 J		60.87
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/kg	3600 UJ	11000 UJ	NC	
91-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/kg	1500 J	11000 UJ		

Hiteman Leather Soil Sediment Duplicates for Data Usability

	······································		Sample Code	RSB-26-0-2	RSB-26-0-2-DUP		
			Sample Name		RSB-32-0-2) F	RPD
			Sample Date	4/10/2002	4/10/2002		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft	0 to 2 ft		
4-P/PCBs-s	Pestcide/PCB Organics - OLM04.2						
319-84-6	alpha-BHC	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC	
319-85-7	beta-BHC	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC	
319-86-8	delta-BHC	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC	
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC	
76-44-8	Heptachlor	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC	
309-00-2	Aldrin	OLM04-2-PP	ug/kg	1.9 ÙJ	1.9 UJ	NC	
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC	
959-98-8	Endosulfan I	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC	
60- 57-1	Dieldrin	OLM04-2-PP	ug/kg	4.4 NJ	3.8 UJ	NC	
72-55-9	4.4-DDE	OLM04-2-PP	ug/kg	3.6 UJ	3.8 UJ	NC	
72-20-8	Endrin	OLM04-2-PP	ug/kg	3.6 UJ	3.8 UJ	NC	
33213-65-9	Endosulfan II	OLM04-2-PP	ug/kg	3.6 UJ	3.8 UJ	NC	
72-54-8	4,4'-DDD	OLM04-2-PP	ug/kg	3.6 UJ	· 3.8 UJ	NC	
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/kg	3.6 UJ	3.8 UJ	NC	
50-29-3	4,4'-DDT	OLM04-2-PP	ug/kg	6.6 J	3.8 UJ	NC	
72-43-5	Methoxychlor	OLM04-2-PP	ug/kg	19 UJ	19 UJ	NC	
53494-70-5	Endrin ketone	OLM04-2-PP	ug/kg	14 J	9.6 J		37.2
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/kg	3.6 UJ	3.8 UJ	NC	
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC	
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/kg	1.9 UJ	1.9 UJ	NC	•
8001-35-2	Toxaphene	OLM04-2-PP	ug/kg	190 UJ	190 UJ	NC	
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/kg	36 UJ	38 UJ	NC	
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/kg	74 UJ	77 UJ	NC	
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/kg	36 UJ	38 UJ	NC	
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/kg	36 UJ	38 UJ	NC	
2672-29-6	Aroclor-1248	OLM04-2-PP	ug/kg	36 UJ	38 UJ	NC	
1097-69-1	Aroclor-1254	OLM04-2-PP	ug/kg	36 UJ	38 UJ	NC	
1096-82-5	Aroclor-1260	OLM04-2-PP	ug/kg	36 UJ	. 38 UJ	NC	

1/22/2003
Page30

······			Sample Code	RSB-26-0-2	RSB-26-0-2-DUP	
		, .	Sample Name		RSB-32-0-2	RPD
			Sample Date	4/10/2002	4/10/2002	
Cás Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft	0 to 2 ft	
5-Inorg-s	Inorganic Analytes - ILM04.1					
7429-90-5	Aluminum	ILM04-1-M	mg/kg	4840	4990	3.05
7440-36-0	, Antimony	ILM04-1-M	mg/kg	0.46 U	0.45 U	NC
7440-38-2	Arsenic	ILM04-1-M	mg/kg	3.8	4.4 R	NC
7440-39-3	Barium	ILM04-1-M	mg/kg	38.1 B	36.7 B	3.74
7440-41-7	Beryllium	ILM04-1-M	mg/kg	0.26 B	0.29 B	10.91
7440-43-9	Cadmium	ILM04-1-M	mg/kg	0.42 B	0.47 B	11.24
7440-70-2	Calcium	ILM04-1-M	mg/kg	145000 J	151000 J	4.05
7440-47-3	Chromium	ILM04-1-M	mg/kg	8.8	8.6	2.30
7440-48-4	Cobalt	ILM04-1-M	mg/kg	4.6 B	4.5 B	2.20
7440-50-8	Copper	ILM04-1-M	mg/kg	12.8	12.6	1.57
7439-89-6	Iron	ILM04-1-M	mg/kg	11800	11300	4.33
7439-92-1	Lead	ILM04-1-M	mg/kg	49.6	- 34.4	36.19
7439-95-4	Magnesium	ILM04-1-M	mg/kg	5550	7880	34 70
7439-96-5	Manganese	ILM04-1-M	mg/kg	272	359	27.58
7439-97-6	Mercury	ILM04-1-M	mg/kg	0.05 UJ	0.12 J	NC
7440-02-0	Nickel	ILM04-1-M	mg/kg	13.7	13.5	1.47
7440-09-7	Potassium	ILM04-1-M	mg/kg	774 B	895 B	14.50
7782-49-2	Selenium	ILM04-1-M	mg/kg	0.59 B	0.43 U	NC
7440-22-4	Silver	ILM04-1-M	mg/kg	0.1 U	0.1 U	NC
7440-23-5	Sodium	ILM04-1-M	mg/kg	169 B	171 B	1.18
7440-28-0	Thallium	ILM04-1-M	mg/kg	0.46 U	0.45 U	NC
7440-62-2	Vanadium	ILM04-1-M	mg/kg	11.9	11.3	5.17
7440-66-6	Zinc	ILM04-1-M	mg/kg	63 J	51.7 J	19.70
57-12-5	Cvanide	. ILM04-1-CN	mg/kg	0.09 B	0.08 B	11.76

Hiteman Leather Soil Sediment Duplicates for Data Usability

Cas Rn	Chemical Name	Analytic Method	Sample Code Sample Name Sample Date Unit \\ Depth	RSB-08-8-10 4/12/2002 8 to 10 ft	RSB-08-8-10-DUP RSB-34-8-10 4/12/2002 8 to 10 ft	RPD
(Group Code)	(Group Description)					
1-VOA-s	Volatile Organic Compounds - OLM04.2					
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/kg	12 R	, ,	NC
74-87-3	Chloromethane	OLM04-2-V	ug/kg	12 UJ		NC
75-01-4	Vinyl Chloride	OLM04-2-V	ug/kg	12 U		NC
74-83-9	Bromomethane	OLM04-2-V	ug/kg	12 U	1	NC
75-00-3	Chloroethane	OLM04-2-V	ug/kg	12 U		NC
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/kg	12 U		NC
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/kg	12 U		NC
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/kg	12 U		NC
57-64-1	Acetone	OLM04-2-V	ug/kg	12 UJ		NC
75-15-0	Carbon Disulfide	OLM04-2-V	ug/kg	12 U		NC
79-20-9	Methyl Acetate	OLM04-2-V	ug/kg	12 UJ		NC
75-09-2	Methylene Chloride	OLM04-2-V	ug/kg	57 UJ		NC
56-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/kg	12 U		NC
634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/kg '	1 J		NC
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/kg	12 U	1 1	NC
56-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/kg	12 U	, i	NC
8-93-3	2-Butanone	OLM04-2-V	ug/kg	12 UJ		NC
7-66-3	Chloroform	OLM04-2-V	ug/kg	12 U		NC
1-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/kg	12 U		NC
10-82-7	Cyclohexane	OLM04-2-V	ug/kg	12 U		NC
6-23-5	Carbon Tetrachloride	OLM04-2-V	ug/kg	12 U		NC
1-43-2	Benzene	OLM04-2-V	ug/kg	12 U 12 U		NC NC
07-06-2 '9-01-6	1,2-Dichloroethane	OLM04-2-V	ug/kg	12 U		
	Trichloroethene	OLM04-2-V	ug/kg			NC ,
08-87-2	Metylcyclohexane	OLM04-2-V	ug/kg	12 U 12 U		NC NC
8-87-5	1,2-Dichloropropane		ug/kg	12 U		NC
5-27-4	Bromodichloromethane	OLM04-2-V	ug/kg			NC NC
0061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/kg	12 U		
08-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/kg	12 U		NC
08-88-3	Toluene	OLM04-2-V	ug/kg	12 U	- 1	NC
0061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/kg	12 U		NC
9-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/kg	12 U	, ,	NC
27-18-4	Tetrachloroethene	OLM04-2-V	ug/kg	12 U		
91-78-6	2-Hexanone	OLM04-2-V	ug/kg	12 U		
24-48-1	Dibromochloromethane	OLM04-2-V	ug/kg	12 U		
06-93-4	1,2-Dibromoethane	OLM04-2-V	ug/kg	12 U		
08-90-7	Chlorobenzene	OLM04-2-V	ug/kg	12 U		
00-41-4	Ethylbenzene	OLM04-2-V	ug/kg	12 U	1 1	NC
330-20-7	Xylenes (total)	OLM04-2-V	ug/kg	12 U		NC
00-42-5	Styrene	OLM04-2-V	ug/kg	12 U		NC
5-25-2	Bromoform	OLM04-2-V	ug/kg	12 U		NC
	Isopropylbenzene		ug/kg	12 U		NC ·
9-34-5	1,1,2,2-Tetrachloroethane	•	ug/kg	12 U		NC
41-73-1	1,3-Dichlorobenzene		ug/kg	12 U		NC
06-46-7	1,4-Dichlorobenzene	OLM04-2-V	ug/kg	12 U		NC
5-50-1	1,2-Dichlorobenzene		ug/kg	12 U		NC
6-1 2-8	1,2-Dibromo-3-chloropropane		ug/kg	12 U		NC
20-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/kg	12 U	13 U I	NC

1/22/2003	
Page32	

		· · ·	Sample Code	RSB-08-8-10	RSB-08-8-10-DUP	1 <u> </u>		-
			Sample Name		RSB-34-8-10		RPD	
	•		Sample Date	4/12/2002	4/12/2002			<u> </u>
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	8 to 10 ft	8 to 10 ft	i .		
2-SV-1-s	Semi-Volatile Organics -page 1 - OLM04.2							-T
100-52-7	Benzaldehyde	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
108-95-2	Phenol	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
95-57-8	2-Chlorophenoi	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
95-48-7	2-Methylphenol	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
98-86-2	Acetophenone	OLM04-2-5V	ug/kg	380 UJ	370 UJ	NC		
106-44-5	4-Methylphenol	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		1
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
67-72-1	Hexachloroethane	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC -		
98-95-3	Nitrobenzene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
78-59-1	Isophorone	OLM04-2-SV	uġ/kg	380 UJ	370 UJ	NC		
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		1
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
91-20-3	Naphthalene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		11
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		11
105-60-2	Caprolactam	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
59-50-7	4-Chioro-3-methylphenol	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/kg	380[UJ	370 UJ (NC		
77-47-4	Hexachiorocyclopentadiene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC .		
88-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/kg	960 U J	920 UJ	NC		
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC		•
88-74-4	2-Nitroaniline	OLM04-2-SV	ug/kg	960 UJ	920 UJ	NC		
131-11-3	Dimethylphthalate	OLM04-2-SV	ug/kg	380 UJ		NC		
606-20-2	2.6-Dinitrotoluene	OLM04-2-SV	ug/kg	380 UJ		NC		
208-96-8	Acenaphthylene	OLM04-2-SV	ug/kg	380 UJ		NC		
99-09-2	3-Nitroaniline	OLM04-2-SV	ug/kg	960 UJ		NC		
63-32-9	Acenaphthene	OLM04-2-SV	ug/kg	380 UJ	370 UJ			11

ł

Hiteman Leather Soil Sediment Duplicates for Data Usability

			Sample Code	RSB-08-8-10	RSB-08-8-10-DUP	
			Sample Name		RSB-34-8-10	RPD
			Sample Date	4/12/2002	4/12/2002	•
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	8 to 10 ft	8 to 10 ft	
3-SV-2-s	Semi-Volatile Organics -page 2 - OLM04.2					
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/kg	960 UJ	920 UJ	-
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/kg	960 UJ	920 UJ	NC
132-64-9	Dibenzofuran	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC
84-66-2	Diethylphthalate	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC
86-73-7	Fluorene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/kg	960 UJ	920 UJ	NC
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/kg	960 UJ	920 UJ	NC
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/kg	380 UJ		NC
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/kg	380 UJ		NC
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	
1912-24-9	Atrazine	OLM04-2-SV	ug/kg	380 UJ	370 UJ	
87 -8 6-5	Pentachlorophenol	OLM04-2-SV	ug/kg	960 UJ	920 UJ	
85-01-8	Phenanthrene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	
120-12-7	Anthracene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	
86-74-8	Carbazole	OLM04-2-SV	ug/kg	380 UJ	370 UJ	
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/kg	380 UJ	370 UJ	
206-44-0	Fluoranthene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	-
129-00-0	Pyrene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	
35-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/kg	380 UJ	370 UJ	
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/kg	380 UJ	370 UJ	
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC
218-01-9	Chrysene	OLM04-2-SV	ug/kg	380 UJ		NC
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/kg	380 UJ		NC
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/kg	380 UJ		NC
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/kg	380 UJ		NC
50-32 - 8	Benzo(a)pyrene	OLM04-2-SV	ug/kg	380 UJ		NC
93-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/kg	380 UJ		NC
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/kg	380 UJ		NC
91-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/kg	380 UJ	370 UJ	NC

RPD = Relative Percent Difference

NC = Not Calculable

,

			Sample Code	RSB-08-8-10	RSB-08-8-10-DUP	
1			Sample Name		RSB-34-8-10	RPD
	1	•	Sample Date	4/12/2002	4/12/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	8 to 10 ft	8 to 10 ft	
4-P/PCBs-s	Pestcide/PCB Organics - OLM04.2					1
319-84-6	alpha-BHC	OLM04-2-PP	ug/kg	2 UJ	1.9 UJ	NC ·
31,9-85-7	beta-BHC	OLM04-2-PP	ug/kg	2 U J	1.9 UJ	NC
319-86-8	deita-BHC	OLM04-2-PP	ug/kg	2 UJ	1.9 UJ	NC
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/kg	2 UJ	1.9 UJ	NC
76-44-8	Heptachlor	OLM04-2-PP	ug/kg	2 UJ	1.9 UJ	NC .
309-00-2	Aldrin	OLM04-2-PP	ug/kg	2 UJ	1.9 UJ	NC
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/kg	2 U J	1.9 UJ	NC
959-98-8	Endosulfan I	OLM04-2-PP	ug/kg	2 UJ	1.9 UJ	NC
60-57-1	Dieldrin	OLM04-2-PP	ug/kg	3.8 UJ	3.6 UJ	NC
72-55-9	4,4'-DDE	OLM04-2-PP	ug/kg	3.8 UJ	3.6 UJ	NC
72-20-8	Endrin	OLM04-2-PP	ug/kg	3.8 UJ	3.6 UJ	NC
33213-65-9	Endosulfan II	OLM04-2-PP	ug/kg	3.8 UJ	3.6 UJ	NC
72-54-8	4,4'-DDD	OLM04-2-PP	ug/kg	3.8 UJ	3.6 UJ	NC
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/kg	3.8 UJ	3.6 UJ	NC
50 -29 -3	4,4'-DDT	OLM04-2-PP	ug/kg	3.8 UJ	3.6 UJ	
72-43-5	Methoxychlor	OLM04-2-PP	ug/kg	20 UJ	19 UJ	
53494-70-5	Endrin ketone	OLM04-2-PP	ug/kg	3.8 UJ	3.6 UJ	NC
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/kg	3.8 UJ	3.6 UJ	NC
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/kg	2 UJ	1.9 UJ	NC
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/kg	2 UJ	1.9 UJ	NC
8001-35-2	Toxaphene	OLM04-2-PP	ug/kg	200 UJ	190 UJ	NC
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/kg	38 UJ	36 UJ	NC
11,104-28-2	Aroclor-1221	OLM04-2-PP	ug/kg	78 UJ	· 74 UJ	NC
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/kg	38 UJ	36 UJ	NC
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/kg	38 UJ	36 UJ	NC
12672-29-6	Arocior-1248	OLM04-2-PP	ug/kg	38 UJ	36 U J	NC .
11097-69-1	Aroclor-1254	OLM04-2-PP	ug/kg	38 UJ	36 UJ	NC
11096-82-5	Aroclor-1260	OLM04-2-PP	ug/kg	38 UJ	36 UJ	NC

1/22/2003 Page35

			Sample Code	RSB-08-8-10	RSB-08-8-10-DUP	
	х х		Sample Name		RSB-34-8-10	RPD
	•		Sample Date	4/12/2002	4/12/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	8 to 10 ft	8 to 10 ft	
5-Inorg-s	Inorganic Analytes - ILM04.1					
7429-90-5	Aluminum	ILM04-1-M	mg/kg	3850	3160	19.69
7440-36-0	Antimony	ILM04-1-M	mg/kg	0.45 UJ	0.48 U	NC
7440-38-2	Arsenic	ILM04-1-M	mg/kg	9.7	7.1	30.95
7440-39-3	Barium	ILM04-1-M	mg/kg	23.3 B	22 B	5.74
7440-41-7	Beryllium	ILM04-1-M	mg/kg	0.21 B	0.18 B	15.38
7440-43-9	Cadmium	ILM04-1-M	mg/kg	0.57 B	0.32 B	56.18
7440-70-2	Calcium	(ILM04-1-M	mg/kg	114000 J	176000 J	42.76
7440-47-3	Chromium	ILM04-1-M	mg/kg	68.1	132	63.87
7440-48-4	Cobalt	ILM04-1-M	mg/kg	3.3 B	2.8 B	16.39
7440-50-8	Copper	ILM04-1-M	mg/kg	14.8	7.9	60.79
7439-89-6	Iron	ILM04-1-M	·mg/kg	14100	10900	25.60
7439-92-1	Lead	ILM04-1-M	mg/kg	8.9 J	4.4	67.67
7439-95-4	Magnesium	ILM04-1-M	mg/kg	9320 J	4780 J	64.40
7439-96-5	Manganese	ILM04-1-M	mg/kg	241	210	13.75
7439-97-6	Mercury	ILM04-1-M	mg/kg	0.05 U	0.05 UJ	NC
7440-02-0	Nickel	ILM04-1-M	mg/kg	11.7	10.2	13.70
7440-09-7	Potassium	ILM04-1-M	mg/kg	661 B	685 B	3.57
7782-49-2	Selenium	ILM04-1-M	mg/kg	0.7 B	0.45 U	NC
7440-22 -4	Silver	ILM04-1-M	mg/kg	0.1 U	0.11 U	NC
7440-23-5	Sodium	ILM04-1-M	mg/kg	216 B	154 B	33.51
7440-28-0	Thallium	ILM04-1-M	mg/kg	0.45 U	0.48 U	NC
7440-62-2	Vanadium	ILM04-1-M	mg/kg	8:1 B	7.3 B	10.39
440-66-6	Zinc	ILM04-1-M	mg/kg	82 J	, 27.9 J	98.45
57-12-5	Cvanide	ILM04-1-CN	mg/kg	0.03 B	0.03 U	NC

Hiteman Leather Soil Sediment Duplicates for Data Usability

			Sample Code	URSD-7	URSD-7-DUP	
	1		Sample Name		URSD-13	RPD
			Sample Date	11/6/2001	11/6/2001	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	· · · · · · · · · · · · · · · · · · ·
(Group Code)						
1-VOA-s	Volatile Organic Compounds - OLM04.2					
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/kg	14 U	16 U	NC
74-87-3	Chloromethane	OLM04-2-V	ug/kg	14 U	· 16 U	NC
75-01-4	Vinyl Chloride	OLM04-2-V	ug/kg	14 U	16 U	NC
74-83-9	Bromomethane	OLM04-2-V	ug/kg	_ 14 U	16 U	NC
75-00-3	Chloroethane	OLM04-2-V	ug/kg	14 U	16 U	NC
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/kg	14 U	16 U	NC
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/kg	14 U	16 U	NC
76-13-1	1,1,2-Trichloro-1,2,2-trilluoroethane	OLM04-2-V	ug/kg	14 U	16 U	NC
57-64-1	Acetone	OLM04-2-V	ug/kg	41 U	70	NC
75-15-0	Carbon Disulfide	OLM04-2-V	ug/kg	14 U	16 U	NC
79-20-9	Methyl Acetate	OLM04-2-V	ug/kg	14 U	16 U	NC
75-09-2	Methylene Chloride	OLM04-2-V	ug/kg	14 U	16 U	NC
56-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/kg	14 U	16 U	NC
634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/kg	14 U	16 U	NC
5-34-3	1,1-Dichloroethane	OLM04-2-V	ug/kg	14 U	16 U	NC
56- 59- 2	cis-1,2-Dichloroethene	OLM04-2-V	ug/kg	14 U	16 U	NC
8-93-3	2-Butanone	OLM04-2-V	ug/kg	4 J	17	123.81
7-66-3	Chloroform	OLM04-2-V	ug/kg	14 U	16 U	NC
1-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/kg	14 U	16 U	NC
10-82-7	Cyclohexane	OLM04-2-V	ug/kg	14 U	16 U	NC
6-23-5	Carbon Tetrachloride	OLM04-2-V	ug/kg	14 U	16 U	NC
1-43-2	Benzene	OLM04-2-V	ug/kg	14 U	16 U	NC
07-06-2	1,2-Dichloroethane	OLM04-2-V	ug/kg	14 U	16 U	NC
9-01-6	Trichloroethene	OLM04-2-V	ug/kg	14 U	16 U	NC
08-87-2	Metylcyclohexane	OLM04-2-V	ug/kg	14 U	16 U	NC
8-87-5	1,2-Dichloropropane	OLM04-2-V	ug/kg	14 U	16 U	NĊ
5-27-4	Bromodichloromethane	OLM04-2-V	ug/kg	14 U	16 U	NC
0061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/kg	14 U	16 U	NC
08-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/kg	14 UJ	16 UJ	NC
08-88-3	Toluene	OLM04-2-V	ug/kg	2 J	16 U	NC
0061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/kg	14 U	16 U	NC
9-00-5	1,1,2-Trichloroethane		ug/kg	14 U	16 U	NC
27-18-4	Tetrachloroethene	OLM04-2-V	ug/kg	14 U	16 U	NC
91-78-6	2-Hexanone	OLM04-2-V	ug/kg	14 U	16 U .	NC
24-48-1	Dibromochloromethane		ug/kg	14 U		NC
06-93-4	1.2-Dibromoethane	OLM04-2-V	ug/kg	14 U	16 U	NC
08-90 - 7	Chlorobenzene		ug/kg	14 U		NC
00-41-4	Ethylbenzene		ug/kg	14 U	16 U	NC
330-20-7	Xylenes (total)		ug/kg	14 U		NC
)0-42-5	Styrene		ug/kg	14 U		NC
5-25-2	Bromoform		ug/kg	14 U		NC
-23-2 3-82-8	Isopropylbenzene		ug/kg	14 U		NC
-02-0 -34-5	1,1,2,2-Tetrachloroethane		ug/kg	14 U		NC
-34-5 11-73-1	1.3-Dichlorobenzene			14 U		NC
	,		ug/kg	14 U		
06-46-7	1,4-Dichlorobenzene 1.2-Dichlorobenzene		ug/kg		1 1	NC
5-50-1			ug/kg	14 U	1 1	NC
5-12-8	1,2-Dibromo-3-chloropropane		ug/kg	14 U		NC
20-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/kg	14 U	16 U	NC

			Sample Code	URSD-7	URSD-7-DUP	
			Sample Name		URSD-13	RPD
		•	Sample Date	11/6/2001	11/6/2001	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	
2-SV-1-s	Semi-Volatile Organics -page 1 - OLM04.2	· · ·				
100-52-7	Benzaldehyde	OLM04-2-SV	ug/kg /	55 J	14 J	118.84
108-95-2	Phenol	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
95-48-7	2-Methylphenol	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/kg	460 UJ.	460 UJ	NC
9 8-8 6-2	Acetophenone	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
106-44-5	4-Methylphenol	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC [·]
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/kg	460 UJ	(460 ໃນ (NC
57-72-1	Hexachloroethane	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
98-95-3	Nitrobenzene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
78-59-1	Isophorone	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
38-75-5	2-Nitrophenol	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
20-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
91-20-3	Naphthalene	OLM04-2-SV	ug/kg	. 460 UJ	460 UJ	NC
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
37-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
05-60-2	Caprolactam	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
5 9-5 0-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
7-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
3 8-0 6-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/kg	1200 UJ	1200 UJ	NC
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
8-74-4	2-Nitroaniline	OLM04-2-SV	ug/kg	1200 UJ		NC
31-11-3	Dimethylphthalate	OLM04-2-SV	ug/kg	460 UJ		NC
606-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/kg	460 UJ		NC
08-96-8	Acenaphthylene	OLM04-2-SV	ug/kg	460 UJ	.460 UJ	NC
99-09-2	3-Nitroaniline	OLM04-2-SV	ug/kg	1200 UJ	1200 UJ	NC
33-32-9	Acenaphthene	OLM04-2-SV	ug/kg	460 UJ	460 UJ I	NC

1/22/2003 Pagé38

		· · · · · · · · · · · · · · · · · · ·	Sample Code	URSD-7	URSD-7-DUP	1
••			Sample Name		URSD-13	RPD
			Sample Date	11/6/2001	11/6/2001	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	
3-SV-2-s	, Semi-Volatile Organics -page 2 - OLM04.2					
51-28-5	t 2,4-Dinitrophenol	OLM04-2-SV	ug/kg	1200 UJ	1200 UJ	NC
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/kg	1200 UJ	1200 UJ	NC I
132-64-9	Dibenzofuran	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC ·
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
84-66-2	Diethylphthalate	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
86-73-7	Fluorene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
7005-72-3	4-Chlorophenyi-phenylether	OLM04-2-SV	ug/kg	460 UJ		NC
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/kg	1200 UJ	1200 UJ	NC
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/kg	1200 UJ	1200 UJ	NC
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
1912-24-9	Atrazine	OLM04-2-SV	ug/kg	460 UJ		NC
87-86-5	Pentachlorophenoi	OLM04-2-SV	ug/kg	1200 UJ	1200 UJ	NC
85-01-8	Phenanthrene	OLM04-2-SV	ug/kg	460 UJ		NC
120-12 - 7	Anthracene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
86-74-8	Carbazole	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
206-44-0	Fluoranthene	OLM04-2-SV	ug/kg	460 UJ	21 J	NC
129-00-0	Pyrene	OLM04-2-SV	ug/kg	460 UJ	19 J	NC ·
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/kg	460 UJ	. 460 UJ	NC
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	'ug/kg	460 UJ	460 UJ	NC
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
218-01-9	Chrysene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
11:7-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/kg	460 UJ	460 UJ	NC
207-08-9	Benzo(k)fluoranthene		ug/kg	460 UJ	460 UJ	NC
50-32-8	Benzo(a)pyrene		ug/kg	460 UJ		NC
93-39-5	Indeno(1,2,3-cd)pyrene		ug/kg	460 UJ		NC
53-70-3	Dibenz(a,h)anthracene		ug/kg	460 UJ	460 UJ	NC (
91-24-2	Benzo(g,h,i)perviene		ug/kg	460 UJ	460 UJ	

			Sample Code	URSD-7	URSD-7-DUP	
			Sample Name		URSD-13	RPD
	•	•	Sample Date	11/6/2001	11/6/2001	ł .
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	
4-P/PCBs-s	Pestcide/PCB Organics - OLM04.2					
319-84-6	alpha-BHC	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC .
319-85-7	beta-BHC	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC
319-86-8	delta-BHC	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC .
76-44-8	Heptachlor	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC ···
309-00-2	Aldrin	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC I
959-98-8	Endosulfan I	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC
60-57-1	Dieldrin	OLM04-2-PP	ug/kg	4.6 UJ	4.6 UJ	NC
72-55-9	4,4'-DDE	OLM04-2-PP	ug/kg	4.6 UJ	4.6 UJ	NC
72-20-8	Endrin	OLM04-2-PP	ug/kg	4.6 UJ	4.6 UJ	NC
33213-65-9	Endosulfan II	OLM04-2-PP	ug/kg	4.6 UJ	4.6 ÚJ	NC
72-54-8	4,4'-DDD	OLM04-2-PP	ug/kg	4.6 UJ	4.6 UJ	NC I
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/kg	4.6 UJ	4.6 UJ	NC
50-29-3	4,4'-DDT	OLM04-2-PP	ug/kg	4.6 UJ	4.6 ŲJ	NC
72-43-5	Methoxychlor	OLM04-2-PP	ug/kg	24 UJ	24 UJ	NC
53494-70-5	Endrin ketone	OLM04-2-PP	ug/kg	4.6 UJ	4.6 UJ	NC
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/kg	4.6 UJ	4.6 UJ	NC
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/kg	2.4 UJ	2.4 UJ	NC ·
8001-35-2	Toxaphene	OLM04-2-PP	ug/kg	240 UJ	240 UJ	NC
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/kg	46 UJ	46 UJ	NC
11104-28-2	Arociór-1221	OLM04-2-PP	ug/kg	94 UJ	• 93 UJ	NC
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/kg	46 UJ	46 UJ	NC
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/kg	46 UJ	46 UJ	NC
12672-29-6	Aroclor-1248	OLM04-2-PP	ug/kg	46 UJ	46 UJ.	NC
11097-69-1	Aroclor-1254	OLM04-2-PP	ug/kg	46 UJ	46 UJ	NC
11096-82-5	Aroclor-1260	OLM04-2-PP	ug/kg	46 UJ	46 UJ	NC

/22/2003	
Page40	

	· · · · · · · · · · · · · · · · · · ·		Sample Code	URSD-7	URSD-7-DUP	
		,	Sample Name		URSD-13	RPD
			Sample Date	11/6/2001	11/6/2001	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	
5-Inorg-s	Inorganic Analytes - ILM04.1					
7429-90-5	Aluminum	ILM04-1-M	mg/kg	8130	6330	24.90
7440-36-0	Antimony	ILM04-1-M	mg/kg	0.66 UJ	0.8 UJ	NC
7440-38-2	Arsenic	LM04-1-M	mg/kg	3.5	2.8 B	22.22
7440-39-3	Barium	ILM04-1-M	mg/kg	54.6	69.2	23.59
7440-41-7	Beryllium	ILM04-1-M	mg/kg	0.45 B	0.29 B	43.24
7440-43-9	Cadmium	ILM04-1-M	mg/kg	0.11 U	0.13 U	NC .
7440-70-2	Calcium	ILM04-1-M	mg/kg	7850 J	129000 J	177.06
7440-47-3	Chromium	ILM04-1-M	mg/kg	13.4	10.9 J	20.58
7440-48-4	Cobalt	ILM04-1-M	mg/kg	6 B	5.5 B	8.70
7440-50-8	. Copper	ILM04-1-M	mg/kg	14.7 R	13 R	NC
7439-89-6	Iron	ILM04-1-M	mg/kg	13900	17200	21.22
7439-92-1	Lead	ILM04-1-M	mg/kg	9.6 J	6.7 J	35.58
7439-95-4	Magnesium	ILM04-1-M	mg/kg	3130 J	6150 J	65.09
7439-96-5	Manganese	ILM04-1-M	mg/kg	82.7	278	108.29
7439-97-6	Mercury	ILM04-1-M	mg/kg	0.07 U	U 80.0	NC ·
7440-02-0	Nickel	ILM04-1-M	mg/k g	18.8	17.7	6.03
7440-09-7	Potassium	ILM04-1-M	mg/kg	673 B	1350 B	66.93
7782-49-2	Selenium .	ILM04-1-M	mg/kg	0.58 U	1.8	NC
7440-22-4	Silver	ILM04-1-M	mg/kg	0.24 U		NC
7440-23-5	Sodium	ILM04-1-M	mg/kg	432 B	462 B	6.71
7440-28-0	Thallium	ILM04-1-M	mg/kg	0.93 U	1.1 U	NC
7440-62-2	Vanadium	ILM04-1-M	mg/kg	15.3	11.7 B	26.67
7440-66-6	Zinc	ILM04-1-M	mg/kg	65.9	50.6	26.27
57-12-5	Cvanide	ILM04-1-CN	mg/kg	0.24 B	0.15 U	NC

1/22/2003

Hiteman Leather Soil Sediment Duplicates for Data Usability

Page41

			Sample Code Sample Name	WTSD-04-0-6	WTSD-04-0-6-DUP WTSD-20-0-6		RPD
			Sample Date	· 11/5/2001 ·	11/5/2001		RFD
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch		
Group Code)	(Group Description)	Analytic Method	Onit w Deptit			<u> </u>	T
-VOA-s	Volatile Organic Compounds - OLM04.2						
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/kg	110 UJ	120 UJ	NC	
4-87-3	Chloromethane	OLM04-2-V	ug/kg	110 UJ	13 J	NC	
75-01-4	Vinyl Chloride	OLM04-2-V	ug/kg	110 UJ		NC	1
74-83-9	Bromomethane	OLM04-2-V	ug/kg	110 UJ	120 UJ		
75-00-3	Chloroethane	OLM04-2-V	ug/kg	110 UJ		NC	
'5-69-4	Trichlorofluoromethane	OLM04-2-V	ug/kg	110 UJ		NC	
5-35-4	1,1-Dichloroethene	OLM04-2-V	ug/kg	110 UJ		NC	-
6-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ÓLM04-2-V	ug/kg	110 UJ		NC	
7-64-1	Acetone	OLM04-2-V	ug/kg	.310 UJ		NC	1
5-15-0	Carbon Disulfide	OLM04-2-V	ug/kg	150 J		NC	
9-20-9	Methyl Acetate	OLM04-2-V	ug/kg	110 UJ		NC	·
5-09-2	Methylene Chloride	OLM04-2-V	ug/kg	110 UJ		NC	{
56-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/kg	110 UJ		NC	
634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/kg	110 UJ		NC	· · · · ·
5-34-3	1,1-Dichloroethane	OLM04-2-V	ug/kg	110 UJ		NC	
56-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/kg	110 UJ		NC	
8-93-3	2-Butanone	OLM04-2-V	ug/kg	23 J	440 J		180.13
7-66-3	Chloroform	OLM04-2-V	ug/kg	110 UJ		NC	
1-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/kg	110 UJ		NC	
10-82-7	Cyclohexane	OLM04-2-V	ug/kg	110 UJ		NC .	
6-23-5	Carbon Tetrachloride	OLM04-2-V	ug/kg	110 UJ		NC	{
1-43-2	Benzene	OLM04-2-V	ug/kg	110 UJ		NC	
07-06-2	1,2-Dichloroethane	OLM04-2-V,	ug/kg	110 UJ		NC	1
9-01-6	Trichloroethene	OLM04-2-V	ug/kg	110 UJ	1 1	NC	
08-87-2	Metylcyclohexane	OLM04-2-V	ug/kg	110 UJ		NC	
8-87-5	1,2-Dichloropropane	OLM04-2-V	ug/kg	110 UJ		NC	
5-27-4	Bromodichloromethane	OLM04-2-V	ug/kg	110 UJ		NC	
0061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/kg	110 UJ		NC	
08-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/kg	110 UJ		NC	
08-88-3	Toluene	OLM04-2-V	ug/kg	110 UJ		NC	
0061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/kg	110 UJ		NC	
9-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/kg	110 UJ		NC	
27-18-4	Tetrachloroethene	OLM04-2-V	ug/kg	110 UJ		NC	
91-78-6	2-Hexanone	OLM04-2-V	ug/kg	110 UJ		NC	
24-48-1	Dibromochloromethane	OLM04-2-V	ug/kg	110 UJ		NC	,
06-93-4	1,2-Dibromoethane		ug/kg	110 UJ		NC	
08-90-7	Chlorobenzene	OLM04-2-V	ug/kg	110 UJ		NC	
0 0-41-4	Ethylbenzene		ug/kg	110 UJ		NC	
330-20-7	Xyienes (total)		ug/kg	110 UJ		NC	·
00-42-5	Styrene		ug/kg	110 UJ		NC	1
5-25-2	Bromoform	OLM04-2-V	ug/kg	110 UJ	120 UJ		
8-82-8	Isopropylbenzene		ug/kg	110 UJ	120 UJ		
9-34-5	1,1,2,2-Tetrachloroethane		ug/kg	110 UJ	120 UJ		
41-73-1	1,3-Dichlorobenzene		ug/kg	110 UJ		NC	
06-46-7	1,4-Dichlorobenzene		ug/kg	110 UJ		NC	
5-50-1	1.2-Dichlorobenzene		ug/kg	110 UJ		NC	
6-12-8	1,2-Dibromo-3-chloropropane		ug/kg	110 UJ		NC	
20-82-1	1.2.4-Trichlorobenzene		ug/kg	110 UJ	120 UJ		

1/22/2003 Page42

			Sample Code	WTSD-04-0-6	WTSD-04-0-6-DUP	
	1 1		Sample Name	, j	WTSD-20-0-6	RPD
			Sample Date	11/5/2001	11/5/2001	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	
2-SV-1-s	Semi-Volatile Organics -page 1 - OLM04.2					
100-52-7	Benzaldehyde	OLM04-2-SV	ug/kg	150 J	L 26	46.91
108-95-2	Phenol	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
95-48-7	2-Methylphenol	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
98-86-2	Acetophenone	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
106-44-5	4-Methylphenol	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
521-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
57-72-1	Hexachloroethane	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
98-95-3	Nitrobenzene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
8-59-1	isophorone	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
8-75-5	2-Nitrophenoi	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
05-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NĊ
11-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
20-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
1-20-3	Naphthalene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
06-47-8	4-Chloroaniline	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
7-68-3	Hexachlorobutadiene	OLM04-2-SV	.ug/kg	2200 UJ	2200 UJ	NC
05-60-2	Caprolactam	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
9-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
1-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
7-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
8-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ I	NC .
5-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/kg	5500 UJ	5500 UJ	NC
2-52-4	1,1'-Biphenyl	OĽM04-2-SV	ug/kg	2200 UJ.	2200 UJ	NC
1-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ I	NC .
8-74-4	2-Nitroaniline	OLM04-2-SV	ug/kg	5500 UJ	5500 UJ	NC 🦢
31-11-3	Dimethylphthalate		ug/kg	2200 UJ	2200 UJ I	NC DV
06-20-2	2,6-Dinitrotoluene		ug/kg	2200 UJ	2200 UJ I	
08-96-8	Acenaphthylene		ug/kg	2200 UJ	2200 UJ I	NC
9-09-2	3-Nitroaniline	•	ug/kg	5500 UJ	5500 UJ I	NC DI
3-32-9	Acenaphthene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ I	NC DI

ł

1/22/2003

Hiteman Leather Soil Sediment Duplicates for Data Usability

Page43

	· · · · · · · · · · · · · · · · · · ·	•	Sample Code	WTSD-04-0-6	WTSD-04-0-6-DUP	
			Sample Name		WTSD-20-0-6	RPD
		- A	Sample Date	11/5/2001	11/5/2001	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	
3-SV-2-s	Semi-Volatile Organics -page 2 - OLM04.2					
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/kg	5500 UJ	5500 UJ	NC
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/kg	5500 UJ	5500 UJ	NC
132-64-9	Dibenzofuran	OLM04-2-SV	uġ/kg	2200 UJ	2200 UJ	NC
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
84-66-2	Diethylphthalate	OLM04-2-SV	ug/kg	72 J	2200 UJ	NC
86-73-7	Fluorene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/kg	5500 UJ	5500 UJ	NC
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/kg	5500 UJ	5500 UJ	NC
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
1912-24-9	Atrazine	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC `
87-86-5	Pentachlorophenol	OLM04-2-SV	ug/kg	5500 UJ	5500 UJ	NC .
85-01-8	Phenanthrene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
120-12-7	Anthracene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
86-74-8	Carbazole	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
84-74-2	Di-n-butylphthalate	. OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
206-44-0	Fluoranthene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
129-00-0	Pyrene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
35-68-7	Butyibenzyiphthalate	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC .
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
218-01-9	Chrysene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/kg	2200 UJ		NC
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/kg	2200 UJ	. 2200 UJ	NC
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
93-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/kg	2200 UJ	2200 UJ	NC
91-24-2	Benzo(g,h,i)perviene	OLM04-2-SV	ug/kg	2200 UJ	· 2200 UJ	NC

1/22/2003 Page44

į

17		······································	Sample Code	WTSD-04-0-6				
			Sample Name		WTSD-20-0-6		RPD	
			Sample Date	11/5/2001	11/5/2001	1		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	<u> </u>		
4-P/PCBs-s	Pestcide/PCB Organics - OLM04.2							
319-84-6	alpha-BHC	OLM04-2-PP	ug/kg	11 UJ	11 UJ	1		İ.
319-85-7	beta-BHC	OLM04-2-PP	ug/kg	11 UJ	11 UJ			Ĺ
319-86-8	delta-BHC	OLM04-2-PP	ug/kg	11 UJ	11 UJ			
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/kg	11 UJ	11 UJ			
76-44-8	Heptachlor	OLM04-2-PP	ug/kg	11 UJ	11 UJ			
309-00-2	Aldrin	OLM04-2-PP	ug/kg	11 UJ	11 UJ	1 .		
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/kg	11 UJ	11 UJ			
959-98-8	Endosulfan I	OLM04-2-PP	ug/kg	11 UJ	. 11 UJ	NC		
60-57-1	Dieldrin	OLM04-2-PP	ug/kg	· 22 UJ	22 UJ			
72-55-9	4,4'-DDE	OLM04-2-PP	ug/kg	22 UJ	22 UJ			
72-20-8	Endrin	OLM04-2-PP	ug/kg	22 UJ	22 UJ			
33213-65-9	Endosulfan II	OLM04-2-PP	ug/kg	22 UJ	22 UJ			
72-54-8	4,4'-DDD	OLM04-2-PP	ug/kg	22 UJ				•
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/kg	22 UJ	22 UJ	NC		
50-29-3	4,4 -DDT	OLM04-2-PP	ug/kg	22 UJ	22 UJ	NC		
72-43-5	Methoxychlor	OLM04-2-PP	ug/kg	110 UJ	110 UJ	NC		
53494-70-5	Endrin ketone	OLM04-2-PP	ug/kg	22 UJ	22 UJ	NC		
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/kg	22 UJ	22 UJ	NC		
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/kg	25 J	17 J		38.10	
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/kg	16 J	12 J		28.57	
8001-35-2	Toxaphene	OLM04-2-PP	ug/kg ,	1100 UJ	1100 UJ	NC		
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/kg	220 UJ	220 UJ	NC		
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/kg	450 UJ	450 UJ	NC		
11141-16-5	Arocior-1232	OLM04-2-PP	ug/kg	220 UJ	220 UJ	NC	~	
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/kg	220 UJ	220 UJ			
12672-29-6	Aroclor-1248	OLM04-2-PP	ug/kg	220 UJ	220 UJ	NC	l	
11097-69-1	Aroclor-1254	OLM04-2-PP	ug/kg	220 UJ	220 UJ			
11096-82-5	Aroclor-1260	OLM04-2-PP	ug/kg	220 UJ	220 UJ	NC		

Ň

1/22/2003 Page45

				Sample Code	WTSD-04-0-6	WTSD-04-0-6-DUP	
			,	Sample Name		WTSD-20-0-6	RPD
				Sample Date	11/5/2001	11/5/2001	
Cas Rn	Chemical Name	<i>'</i>	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	l.
5-Inorg-s	Inorganic Analyte	s - ILM04.1					
7429-90-5	Aluminum		ILM04-1-M	mg/kg	847 J	943 J	10.7
7440-36-0	Antimony		ILM04-1-M	mg/kg	. 47.2 BJ	54.2 BJ	13.8
7440-38-2	Arsenic	•	ILM04-1-M	mg/kg	16.3 J	16.5 J	1.2
7440-39-3	Barium	•	ILM04-1-M	mg/kg	410 J	400 J	2.4
440-41-7	Beryllium		ILM04-1-M	mg/kg	8.7 J	9.7 J	10.8
7440-43-9	Cadmium		ILM04-1-M	mg/kg	0.54 UJ	0.61 UJ	NC
440-70-2	Calcium		ILM04-1-M	mg/kg	132000 J	160000 J	19.1
440-47-3	Chromium	•	ILM04-1-M	mg/kg	6690 J	7460 J	10.8
440-48-4	Cobalt		ILM04-1-M	mg/kg	4.2 BJ	3.6 BJ	15.3
440-50-8	Copper		ILM04-1-M	mg/kg	24.6 BJ	26:9 BJ	8.9
439-89-6	Iron		. ILM04-1-M	mg/kg	91300 J	88500 J	3.1
439-92-1	Lead		ILM04-1-M	mg/kg	38.6 J	47.2 J	20.05
439-95-4	Magnesium		ILM04-1-M	mg/kg	919 BJ	1010 BJ	9.4
439-96-5	Manganese	• •	ILM04-1-M	mg/kg	5880 J	5860 J	0.34
439-97-6	Mercury		ILM04-1-M	mg/kg	0.34 UJ	0.38 UJ	NC
440-02-0	Nickel		ILM04-1-M	mg/kg	9.5 BJ	10.6 BJ	10.9
440-09-7	Potassium		ILM04-1-M	mg/kg	581 BJ	630 BJ	8.0
782-49-2	Selenium		ILM04-1-M	mg/kg	3 UJ	3.3 UJ	NC
440-22-4	Silver		ILM04-1-M	mg/kg	,1.2 UJ		NC
440-23-5	Sodium		ILM04-1-M	mg/kg	840 BJ	1010 BJ	18.38
440-28-0	Thallium		ILM04-1-M	mg/kg	4.7 UJ	5.3 UJ	1
440-62-2	Vanadium		ILM04-1-M	mg/kg	1.5 UJ	1.7 UJ	NC
440-66-6	Zinc		ILM04-1-M	mg/kg ·	536 J	527 J	1.69
57-12-5	Cyanide		ILM04-1-CN	mg/kg	0.64 UJ	· 0.72 UJ	NC

			Sample Code	BSB-05-0-2	BSB-05-0-2-DUP	· · · · · · · · · · · · · · · · · · ·
	t	•	Sample Name	030-03-0-2	BSB-07-0-2	
			· · /	4/3/2002	4/3/2002	RPD
0 . D.		المحالية المحالية المحالية المحالية	Sample Date			RPD
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 2 ft	0 to 2 ft	
(Group Code)	(Group Description)					
6WetChem-s	Created by SUPER on 08/03/2001					
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	4 U	4 J	
pН	рН	SW9045C	S.U.	11	11	_ 0.00
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	52800	87200	49.14
•			1			
Grain Size	Created by SUPER on 9/6/2002			V		
Grain-4	No. 4 Sieve	ASTM-D421	%	53	67	23.33
Grain-10	No. 10 Sieve	ASTM-D421	%	13	8.8	38.53
Grain-20	No. 20 Sieve	ASTM-D421	%	10	6.9	36.69
Grain-40	No. 40 Sieve	ASTM-D421	%	7.8	5.5	34.59
Grain-60	No. 60 Sieve	ASTM-D421	%	4.6	3. 3	32.91
Grain-120	No. 120 Sieve	ASTM-D421	%		х	1.
Grain-140	No. 140 Sieve	ASTM-D421	%	5.1	3.8	29.21
Grain-200	No. 200 Sieve	ASTM-D421	%	1.4	1	33.33
Grain-270	No. 270 Sieve	ASTM-D421	%			
Grain-325	No. 325 Sieve	ASTM-D421	%			
Grain-400	No. 400 Sieve	ASTM-D421	%		· []	
HexChr-s	Created by SUPER on 08/22/2001	·	,			
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	4 U	4 J	NC

RPD = Relative Percent Difference NC = Not Calculable

- 1

í

1/22/2003 Page1

Hiteman Leather Soil Sediment Duplicates for Data Usability

7440-47-3H	Chromium (+6)	SW7196A	mg/kg	6	U		7 U	NC	
HexChr-s	Created by SUPER on 08/22/2001	~							
Grain-400	No. 400 Sieve	ASTM-D421	%						
Grain-325	No. 325 Sieve	ASTM-D421	%				1		1
Grain-270	No. 270 Sieve	ASTM-D421	%						
Grain-200	No. 200 Sieve	ASTM-D421	%	1.1		2	4		74.29
Grain-140	No. 140 Sieve	ASTM-D421	%	3.6		7		· ·	72.57
Grain-120	No. 120 Sieve	ASTM-D421	%	1. A					
Grain-60	No. 60 Sieve	ASTM-D421	%	2.9			6		69.66
Grain-40	No. 40 Sieve	ASTM-D421	%	• 4.3		8	.5		65.63
Grain-20	No. 20 Sieve	ASTM-D421	%	5.2		1 1	0		63.16
Grain-10	No. 10 Sieve	ASTM-D421	%	3.2		6	.4		66.67
Grain-4	No. 4 Sieve	ASTM-D421	%	76		5	52		37.50
Grain Size	Created by SUPER on 9/6/2002								.
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	73100		7870	ю		7.38
pН	рН	SW9045C	S.U. (7.7		7	.8	ŀ	1.29
7440-47-3H	Chromium (+6)	SW7196A	mg/kg		υ		1	NC	·
6WetChem-s	Created by SUPER on 08/03/2001								
(Group Code)	(Group Description)						T		
Cas Rn	Chemical Name	Analytic Method		4 to 6	ft	4 to 6 ft		1	
1			Sample Date	4/11/20	002	4/11/2002			RPD
			Sample Name			LSB-04-4-6			
			Sample Code	LSB-03	4-6	LSB-03-4-6-DL	P	<u> </u>	
	·	. <u>.</u> .	Tor Data Usabi						

Hiteman Leather Soil Sediment Duplicates for Data Usability

				,		
	· · · · · · · · · · · · · · · · · · ·		Sample Code	LSB-01-18-20	LSB-01-18-20-DUP	·····
	1 .		Sample Name		LSB-35-18-20	
	· .		Sample Date	4/22/2002	4/22/2002	RPD
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	18 to 20 ft	18 to 20 ft	
(Group Code)	(Group Description)					1
6WetChem-s	Created by SUPER on 08/03/2001				· · ·	
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	. 4∪	4 U	NC
pН	pH	SW9045C	S.U.	8.3	8.3	0.00
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	56000	65000	14.88
Grain Size	Created by SUPER on 9/6/2002					
Grain-4	No. 4 Sieve	ASTM-D421	%	79	73	7.89
Grain-10	No. 10 Sieve	ASTM-D421	%	8.7	8.1	7.14
Grain-20	No. 20 Sieve	ASTM-D421	%	6	8	28.57
Grain-40	No. 40 Sieve	ASTM-D421	%	3	4.4	37.84
Grain-60	No. 60 Sieve	ASTM-D421	%	0.9	1.5	50.00
Grain-120	No. 120 Sieve	ASTM-D421	%		i i i	
Grain-140	No. 140 Sieve	ASTM-D421	%	1	· 2	66.67
Grain-200	No. 200 Sieve	ASTM-D421	%	0.4	0.6	40.00
Grain-270 🦿	No. 270 Sieve	ASTM-D421	%			
Grain-325	No. 325 Sieve	ASTM-D421	%			
Grain-400	No. 400 Sieve	ASTM-D421	%			
HexChr-s	Created by SUPER on 08/22/2001					
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	4 U	4 U	NC

RPD = Relative Percent Difference NC = Not Calculable

1

Hiteman Leather Soil Sediment Duplicates for Data Usability

			Sample Code	RSB-01	-2-4	RSB-01-2-4-DUP			
		•	Sample Name			RSB-30-2-4		1	
	· · · · ·		Sample Date	4/8/20	02	4/8/2002		1	RPD
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	2 to 4	ft	2 to 4 ft		1	
(Group Code)	(Group Description)					,			
6WetChem-s	Created by SUPER on 08/03/2001							l	
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	14	UJ	7	UJ	NC	
pН	pH	SW9045C	S.U.	7.2		7.2		ĺ	0.00
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	49600		111000		1	76.46
						1 1 1 1 N			
Grain Size	Created by SUPER on 9/6/2002					•			
Grain-4	No. 4 Sieve	ASTM-D421	%	9.4		5.8		1	47.37
Grain-10	No. 10 Sieve	ASTM-D421	%	8		6.1			26.95
Grain-20	No. 20 Sieve	ASTM-D421	%	15		15			0.00
Grain-40	No. 40 Sieve	ASTM-D421	%	13		13			0.00
Grain-60	No. 60 Sieve	ASTM-D421	%	9.2		10	ÍÍ	l	8.33
Grain-120	No. 120 Sieve	ASTM-D421	%	·				1	
Grain-140	No. 140 Sieve	ASTM-D421	%	17		18			5.71
Grain-200	No. 200 Sieve	ASTM-D421	%	6.2		7			12.12
Grain-270	No. 270 Sieve	ASTM-D421	%					• .	
Grain-325	No. 325 Sieve	ASTM-D421	%						
Grain-400	No. 400 Sieve	ASTM-D421	%						
1									·
HexChr-s	Created by SUPER on 08/22/2001								
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	14	UJ	7	UJ	NC	

Hiteman Leather Soil Sediment Duplicates for Data Usability

			Sample Code	RSB-16-2-4	RSB-16-2-4-DUP	
			· · · · · · · · · · · · · · · · · · ·			
	i		Sample Name		RSB-31-2-4	
			Sample Date	4/9/2002	4/9/2002	RPD
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	2 to 4 ft	2 to 4 ft	
(Group Code)						
6WetChem-s	Created by SUPER on 08/03/2001		1	1		
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	14 U		JINC
рH	pH	SW9045C	S.U.	5.6	5.5	1.80
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	76700	72700	5.35
Grain Size	Created by SUPER on 9/6/2002					
Grain-4	No. 4 Sieve	ASTM-D421	%	24	6.9	110.68
Grain-10	No. 10 Sieve	ASTM-D421	%	12	14	15.38
Grain-20	No. 20 Sieve	ASTM-D421	%	15	18	18.18
Grain-40	No. 40 Sieve	ASTM-D421	%	12	15	22.22
Grain-60	No. 60 Sieve	ASTM-D421	%	9.3	11	16.75
Grain-120	No. 120 Sieve	ASTM-D421	%		1 1	
Grain-140	No. 140 Sieve	ASTM-D421	%	12	15	22.22
Grain-200	No. 200 Sieve	ASTM-D421	%	3.6	4.5	22.22
Grain-270	No. 270 Sieve	ASTM-D421	%			
Grain-325	No. 325 Sieve	ASTM-D421	%			
Grain-400	No. 400 Sieve	ASTM-D421	%			
HexChr-s	Created by SUPER on 08/22/2001					
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	14 U	r 7 L	NC I

		Sc	Hitemán Leath bil Sediment Dup for Data Usabi	licates			1/22/2003 Page6
Cas Rn	Chemical Name	Analytic Method	Sample Code Sample Name Sample Date Unit \\ Depth	RSB-26-0-2 4/10/2002 0 to 2 ft	RSB-32-0-2	RPD	
(Group Code)	(Group Description)	Analytic Method	Unit (CDepti)	010211	01021		4
6WetChem-s	Created by SUPER on 08/03/2001		· · · ·				
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	4 U	4	JNC	
рH	pH	SW9045C	S.U.	8.3	8.1	2.44	
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	44100	40200	9.25	
Grain Size	Created by SUPER on 9/6/2002	· · · ·					
Grain-4	No. 4 Sieve	ASTM-D421	%	25	34	30.51	
Grain-10	No. 10 Sieve	ASTM-D421	%	_ 20	19	5.13	
Grain-20	No. 20 Sieve	ASTM-D421	%	[,] 24	20	18.18]
Grain-40	No: 40 Sieve	ASTM-D421	%	13	10	26:09	
Grain-60	No. 60 Sieve	ASTM-D421	%	5.1	4.3	17.02	
Grain-120	No. 120 Sieve	ASTM-D421	%			**	· ·
Grain-140	No. 140 Sieve	ASTM-D421	%	5	4.5	10.53	
Grain-200	No. 200 Sieve	ASTM-D421	%	1.6	1.7	6.06	
Grain-270	No. 270 Sieve	ASTM-D421	%		ŀ		
Ġrain-325	No. 325 Sieve	ASTM-D421	%		· ·		
Grain-400	No. 400 Sieve	ASTM-D421	% . *				
HexChr-s	Created by SUPER on 08/22/2001		* · · [
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	4 U	4	INC .	

RPD = Relative Percent Difference NC = Not Calculable

1_

	· · · · · · · · · · · · · · · · · · ·		Sample Code	RSB-08-8-10	RSB-08-8-10-DUP	
		· · · ·	Sample Name		RSB-34-8-10	
			Sample Date	4/12/2002	4/12/2002	RPD
Cas Rn	Chemical Name	Analytic Method		8 to 10 ft	8 to 10 ft	
(Group Code)	(Group Description)					
6WetChem-s	Created by SUPER on 08/03/2001			· · .		
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	4 U	4 U	NC
рН ;	рН	SW9045C	S.U.	8	8	0.00
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	2400	38600	176.59
Grain Size	Created by SUPER on 9/6/2002			**		
Grain-4	No. 4 Sieve	ASTM-D421	%.	. 47	64	30.63
Grain-10	No. 10 Sieve	ASTM-D421	%	21	. 14	40.00
Grain-20	No. 20 Sieve	ASTM-D421	%	13	. 9.4	32.14
Grain-40	No. 40 Sieve	ASTM-D421	%	6	3.9	42.42
Grain-60	No. 60 Sieve	ASTM-D421	%	2.9	2	36.73
Grain-120	No. 120 Sieve	ASTM-D421	%			
Grain-140	No. 140 Sieve	ASTM-D421	%	3.4	2.3	38.60
Grain-200	No. 200 Sieve	ASTM-D421	%	1	0.7	35.29
Grain-270	No. 270 Sieve	ASTM-D421	%			
Grain-325	No. 325 Sieve	ASTM-D421	%			1 - 1
Grain-400	No. 400 Sieve	ASTM-D421	%			
HexChr-s	Created by SUPER on 08/22/2001				·	
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	4 U	4 U	NC

1/22/2003 Page7

	• •	Hiteman Leat	her			
	Sc	al Sediment Dur	olicates			
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	· ·	Sample Code		URSD-7-DUP		
		Sample Name		URSD-13		
· · · /		Sample Date	11/6/2001	11/6/2001	RPD	
Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(Group Description)				· ·	· · ·	
Created by SUPER on 08/03/2001		1997 - A.				
Chromium (+6)	SW7196A	mg/kg	11 UJ	6.6 UJ	NC	
pH ·	SW9045C	S.U.	· 8.1	8	1.24	
Total Organic Carbon	Lloyd Kahn	mg/kg	20700 U	- 38800	60.84	
Created by SUPER on 9/6/2002	•					
	ASTM-D421	.%				
,			8. C			
	•		49	16.09	101.12	
No. 60 Sieve	ASTM-D421		9.93	8.24	18.60	
No. 120 Sieve	ASTM-D421	%	10.27	8.09	23.75	
No. 140 Sieve	ASTM-D421	%	· · ·			
No. 200 Sieve	ASTM-D421	%	9.02	9.19	1.87	
No. 270 Sieve	ASTM-D421	%	4.72	7.94	50.87	
No. 325 Sieve	ASTM-D421	%	2.68	5.52	69.27	
No. 400 Sieve	ASTM-D421	%	3.17	5.48	53.41	
Created by SUPER on 08/22/2001						
Chromium (+6)	SW7196A	mg/kg	11 UJ	6.6 UJ	NC	
	(Group Description) Created by SUPER on 08/03/2001 Chromium (+6) pH Total Organic Carbon Created by SUPER on 9/6/2002 No. 4 Sieve No. 10 Sieve No. 20 Sieve No. 40 Sieve No. 40 Sieve No. 120 Sieve No. 120 Sieve No. 140 Sieve No. 200 Sieve No. 270 Sieve No. 325 Sieve No. 400 Sieve Created by SUPER on 08/22/2001	Chemical NameAnalytic Method(Group Description)Created by SUPER on 08/03/2001Chromium (+6)SW7196ApHSW9045CTotal Organic CarbonLloyd KahnCreated by SUPER on 9/6/2002No. 4 SieveNo. 4 SieveASTM-D421No. 10 SieveASTM-D421No. 20 SieveASTM-D421No. 60 SieveASTM-D421No. 120 SieveASTM-D421No. 120 SieveASTM-D421No. 120 SieveASTM-D421No. 120 SieveASTM-D421No. 140 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 210 SieveASTM-D421No. 225 SieveASTM-D421No. 400 SieveASTM-D421No. 400 SieveASTM-D421Created by SUPER on 08/22/2001V	Soil Sediment Dug for Data UsabSample Code Sample Name Sample DateChemical NameAnalytic MethodUnit \\ Depth(Group Description) Created by SUPER on 08/03/2001Chromium (+6)SW7196Amg/kgpHSW9045CS.U.Total Organic CarbonLloyd Kahnmg/kgCreated by SUPER on 9/6/2002No. 4 SieveASTM-D421%No. 10 SieveASTM-D421%No. 20 SieveASTM-D421%No. 60 SieveASTM-D421%No. 120 SieveASTM-D421%No. 140 SieveASTM-D421%No. 200 SieveASTM-D421%No. 270 SieveASTM-D421%No. 270 SieveASTM-D421%No. 400 SieveASTM-D421%Super Colspan <td colsp<="" td=""><td>Chemical NameSample Date11/6/2001Chemical NameAnalytic MethodUnit \\ Depth0 to 6 inch(Group Description)Created by SUPER on 08/03/20010 to 6 inchChromium (+6)SW7196Amg/kg11pHSW9045CS.U.8.1Total Organic CarbonLloyd Kahnmg/kg20700Vo. 4 SieveASTM-D421%9No. 10 SieveASTM-D421%49No. 40 SieveASTM-D421%9.93No. 60 SieveASTM-D421%10.27No. 120 SieveASTM-D421%9.93No. 120 SieveASTM-D421%9.02No. 200 SieveASTM-D421%9.02No. 200 SieveASTM-D421%9.02No. 200 SieveASTM-D421%9.02No. 200 SieveASTM-D421%3.17No. 200 SieveASTM-D421%3.17No. 200 SieveASTM-D421%3.17No. 400 SieveASTM-D421%3.17</td><td>Soil Sediment Duplicates for Data UsabilitySample CodeURSD-7URSD-7-DUPSample NameURSD-13Sample Date11/6/200111/6/200111/6/2001Chemical NameAnalytic MethodUnit \\ Depth0 to 6 inch0 to 6 inch0 to 6 inch(Group Description)SW7196ACreated by SUPER on 08/03/2001Chromium (+6)SW7196ApHSW9045CS.U.8.1Total Organic CarbonLloyd Kahnmg/kg20700Created by SUPER on 9/6/2002No. 4 SieveASTM-D421No. 10 SieveASTM-D421No. 40 SieveASTM-D421No. 40 SieveASTM-D421No. 102 SieveASTM-D421No. 103 SieveASTM-D421No. 103 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 325 SieveASTM-D421No. 325 SieveASTM-D421No. 400 /td></td>	<td>Chemical NameSample Date11/6/2001Chemical NameAnalytic MethodUnit \\ Depth0 to 6 inch(Group Description)Created by SUPER on 08/03/20010 to 6 inchChromium (+6)SW7196Amg/kg11pHSW9045CS.U.8.1Total Organic CarbonLloyd Kahnmg/kg20700Vo. 4 SieveASTM-D421%9No. 10 SieveASTM-D421%49No. 40 SieveASTM-D421%9.93No. 60 SieveASTM-D421%10.27No. 120 SieveASTM-D421%9.93No. 120 SieveASTM-D421%9.02No. 200 SieveASTM-D421%9.02No. 200 SieveASTM-D421%9.02No. 200 SieveASTM-D421%9.02No. 200 SieveASTM-D421%3.17No. 200 SieveASTM-D421%3.17No. 200 SieveASTM-D421%3.17No. 400 SieveASTM-D421%3.17</td> <td>Soil Sediment Duplicates for Data UsabilitySample CodeURSD-7URSD-7-DUPSample NameURSD-13Sample Date11/6/200111/6/200111/6/2001Chemical NameAnalytic MethodUnit \\ Depth0 to 6 inch0 to 6 inch0 to 6 inch(Group Description)SW7196ACreated by SUPER on 08/03/2001Chromium (+6)SW7196ApHSW9045CS.U.8.1Total Organic CarbonLloyd Kahnmg/kg20700Created by SUPER on 9/6/2002No. 4 SieveASTM-D421No. 10 SieveASTM-D421No. 40 SieveASTM-D421No. 40 SieveASTM-D421No. 102 SieveASTM-D421No. 103 SieveASTM-D421No. 103 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 325 SieveASTM-D421No. 325 SieveASTM-D421No. 400 /td>	Chemical NameSample Date11/6/2001Chemical NameAnalytic MethodUnit \\ Depth0 to 6 inch(Group Description)Created by SUPER on 08/03/20010 to 6 inchChromium (+6)SW7196Amg/kg11pHSW9045CS.U.8.1Total Organic CarbonLloyd Kahnmg/kg20700Vo. 4 SieveASTM-D421%9No. 10 SieveASTM-D421%49No. 40 SieveASTM-D421%9.93No. 60 SieveASTM-D421%10.27No. 120 SieveASTM-D421%9.93No. 120 SieveASTM-D421%9.02No. 200 SieveASTM-D421%9.02No. 200 SieveASTM-D421%9.02No. 200 SieveASTM-D421%9.02No. 200 SieveASTM-D421%3.17No. 200 SieveASTM-D421%3.17No. 200 SieveASTM-D421%3.17No. 400 SieveASTM-D421%3.17	Soil Sediment Duplicates for Data UsabilitySample CodeURSD-7URSD-7-DUPSample NameURSD-13Sample Date11/6/200111/6/200111/6/2001Chemical NameAnalytic MethodUnit \\ Depth0 to 6 inch0 to 6 inch0 to 6 inch(Group Description)SW7196ACreated by SUPER on 08/03/2001Chromium (+6)SW7196ApHSW9045CS.U.8.1Total Organic CarbonLloyd Kahnmg/kg20700Created by SUPER on 9/6/2002No. 4 SieveASTM-D421No. 10 SieveASTM-D421No. 40 SieveASTM-D421No. 40 SieveASTM-D421No. 102 SieveASTM-D421No. 103 SieveASTM-D421No. 103 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 200 SieveASTM-D421No. 325 SieveASTM-D421No. 325 SieveASTM-D421No. 400

440-47-3H	Chromium (+6)	SW7196A	mg/kg	500 U	5 UJ	NC
lexChr-s	Created by SUPER on 08/22/2001	•	· · · ·			
Grain-400	No. 400 Sieve	ASTM-D421	%	1.64	2.09	24.13
Grain-325	No. 325 Sieve	ASTM-D421	%	3.17	3.54	11.03
Grain-270	No. 270 Sieve	ASTM-D421	%	8.5	8.2	3.59
Grain-200	No. 200 Sieve	ASTM-D421	%	17.81	13.99	24.03
Grain-140	No. 140 Sieve	ASTM-D421	%			· · ·
Grain-120	No. 120 Sieve	ASTM-D421	%	23.64	18.49	24.45
Grain-60	No. 60 Sieve	ASTM-D421	%	14.12	10.3	31.29
Grain-40 👘 👘	No. 40 Sieve	ASTM-D421	%	18.12	29.56	47.99
Grain-20	No. 20 Sieve	ASTM-D421	%			
Grain-10	No. 10 Sieve	ASTM-D421	%			
Grain-4	No. 4 Sieve	ASTM-D421	%			
Grain Size	Created by SUPER on 9/6/2002					
FOC	Total Organic Carbon	Lloyd Kahn	mg/kg	175000 J	278000	'45.47
bH '	pH	SW9045C	S.U.	7.1	7.6	6.80
7440-47-3H	Chromium (+6)	SW7196A	mg/kg	500 U	5 UJ	
6WetChem-s	Created by SUPER on 08/03/2001	0				
(Group Code)	(Group Description)		· ·			
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	0 to 6 inch	0 to 6 inch	
			Sample Date	11/5/2001	11/5/2001	RPD
			Sample Name		WTSD-20-0-6	
			Sample Code	WTSD-04-0-6	WTSD-04-0-6-DUP	

RPD = Relative Percent Difference NC = Not Calculable

1/22/2003 Page9

	· · · · · · · · · · · · · · · · · · ·		Sample Code	RSB-49-8-10	RSB-52-8-10		RSS-03	RSS-10	
			Sample Name	MB0NL2	MB0NH2	RPD	MB0NG6	MB0NH1	RPD
			Sample Date	10/24/2002	10/24/2002		10/23/2002	10/23/2002	ļļ
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	.8 to 10 ft	8 to 10 ft		to	to	
5-Inorg-s	Inorganic Analytes - ILM04.1								
7429-90-5	Aluminum	ILM04-1-M	mg/kg	1830	2160	16.54	7940	8990	12.40
7440-36-0	Antimony	ILM04-1-M	mg/kg	0.75 U	0.76 U	NC	0.64 B	. 0.6 U	
7440-38-2	Arsenic	ILM04-1-M	mg/kg	3.5	4.5 J	25.00	7,9	9.6	19.43
7440-39-3	Barium	ILM04-1-M	mg/kg	12.3 B	14.3 B	15.04	209	216	3.29
7440-41-7	Beryllium	ILM04-1-M	mg/kg	0.23 B	1	9.09	0.7 B	0.57 B	20.47
7440-43-9	Cadmium	ILM04-1-M	mg/kg	0.09 U	0.09 U	NC ·	0.76 B	0.92 B	19.05
7440-70-2	Calcium	ILM04-1-M	mg/kg	253000	240000	5.27	12600 J	14600 J	14.71
7440-47-3	Chromium	ILM04-1-M	mg/kg	4.9 J	5.1 J	4.00	104	· 109	4,69
7440-48-4	Cobalt	ILM04-1-M	mg/kg	2.2 B	2.5 B	12.77	8.1 B	9.3 B	13,79
7440-50-8	Copper	ILM04-1-M	mg/kg	9.2 R	44.7 J	NC	22.2 J	28.7 J	25.54
7439-89-6	Iron	ILM04-1-M	mg/kg	5330	6070	12.98	18700 J	24700 J	27.65
7439-92-1	Lead	ILM04-1-M	mg/kg	6.5 J	7.6	15.60	175	189	7.69
7439-95-4	Magnesium	ILM04-1-M	mg/kg	4850	6220	24.75	2920	3000	2.70
7439-96-5	Manganese	ILM04-1-M	mg/kg	180	242	29.38	1210	1360	11.67
7439-97-6	Mercury	ILM04-1-M	mg/kg	0.1 R	0.1 R	0.00	0.24 R	0.24 R	NC ·
7440-02-0	Nickel	ILM04-1-M	mg/kg	. 9.1	7.5 B	19.28	16.9 J	21.3 J	23.04
7440-09-7	Potassium	1LM04-1-M	mg/kg	542 B	447 B	19.21	1360 B	1480 B	8.45
7782-49-2	Selenium	ILM04-1-M	mg/kg	0.64 U	0.65 UJ	NC	1.4 B	3.2	78.26
7440-22-4	Silver	ILM04-1-M	mg/kg	0.24 U	0.24 U	NC	0.81 B	2.3 B	95.82
7440-23-5	Sodium	ILM04-1-M	mg/kg	164 B	103 B	45.69	112 B	164 B	37.68
7440-28-0	Thallium	ILM04-1-M	mg/kg	0.67 U	I I	NC	20	2.1 U	NC
7440-62-2	Vanadium	ILM04-1-M	mg/kg	5.6 B	5.4 B	3.64	18	22.2	20.90
7440-66-6	Zinc	ILM04-1-M	mg/kg	33.8	36.8	8.50	252	329	26.51
57-12-5	Cyanide	ILM04-1-CN	mg/kg	0.35 B		64.15		1 1	

1/22/2003 Page 1

ATTACHMENT 2 GROUNDWATER AND SURFACE WATER SAMPLE DUPLICATE PAIR DATA AND RELATIVE PERCENT DIFFERENCES

Hiteman Leather Groundwater Surface Water Duplicates for Data Usability

1/22/2003 Page1

<u></u>			Sample Code Sample Name	MW-8S-R2	MW-8S-R2-DUP RMW-22	RPD
· ·			Sample Date	5/21/2002	5/21/2002	1 1
Cas Rn	Chemical Name (Group Description)	Analytic Method	Unit \\		h	· · · · · ·
(Group Code) 1-LCVOANew	50 Analytes Method Code OLC03-2-V					
	-			0.5 U	0.5 U	NC
75-71-8	Dichlorodifluoromethane	OLC03-2-V	ug/l			
74-87-3	Chloromethane	OLC03-2-V	ug/l	. 0.5 U	0.89	56.12
75-01-4	Vinyl Chloride	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
74-83-9	Bromomethane	OLC03-2-V	ug/l	0.5	0.5 U	NC
75-00-3	Chloroethane	OLC03-2-V	ug/l	0.5	0.5 U	NC
75-69-4	Trichlorofluoromethane	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
75-35-4	1,1-Dichloroethene	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
57-64-1	Acetone	OLC03-2-V	ug/i	510	50	NC
75-15-0	Carbon Disulfide	OLC03-2-V	ug/l	0.5 U	· 0.5 U	NC
79-20-9	Methyl Acetate	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
75-09-2	Methylene Chloride	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
56-60-5	trans-1,2-Dichloroethene	OLC03-2-V	ug/i	0.5 U	0.5 U	NC .
634-04-4	Methyl Tert-Butyl Ether	OLC03-2-V	ug/i	0.5 U	0.5 U	NC
5-34-3	1,1-Dichloroethane	OLC03-2-V	ug/i	0.5 U	0.5 U	NC .
56-59-2	cis-1,2-Dichloroethene	OLC03-2-V	ug/l	0.5 U	0:5 U	NC
8-93-3	2-Butanone	OLC03-2-V	ug/l	50	5 U	NC
4-97-5	Bromochloromethane	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
7-66-3	Chloroform	OLC03-2-V	ug/i	0.5 U	0.5 U	NC
1-55-6	1,1,1-Trichloroethane	OLC03-2-V	ug/l	0.5 U		NC
10-82-7	Cyclohexane	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
6-23-5	Carbon Tetrachloride	OLC03-2-V	ug/l	0.5 U		NC
1-43-2	Benzene	OLC03-2-V	ug/l	0.5 UJ		NC
07-06-2	1.2-Dichloroethane	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
9-01-6	Tnchloroethene	OLC03-2-V	ug/i	0.5 U		NC
08-87-2	Metylcyclohexane	OLC03-2-V	ug/l	0.5 U		NC
8-87-5	1,2-Dichloropropane	OLC03-2-V	ug/l	0.5 U		NC
5-27-4	Bromodichloromethane	OLC03-2-V	ug/l	0.5 U		NC
0061-01-5	cis-1,3-Dichloropropene	OLC03-2-V	ug/l	0.5 UJ	0.5 UJ.	NC
08-10-1	4-Methyl-2-pentanone	OLC03-2-V	ug/l	5 U	5 U	NC
08-88-3	Toluene	OLC03-2-V	ug/l	0.5 U	0.5 UJ	NC
0061-02-6	trans-1,3-Dichloropropene	OLC03-2-V	ug/l	0.5 UJ	, 0.5 UJ	NC
9-00-5	1,1,2-Trichloroethane	OLC03-2-V	ug/i	0.5 UJ	0.5 UJ	NC
27-18-4	Tetrachloroethene	OLC03-2-V	ug/i	0.5 U	0.5 UJ	NC
91-78-6	2-Hexanone	OLC03-2-V	ug/l	5 UJ		NC
24-48-1	Dibromochloromethane	OLC03-2-V	ug/l	0.5 U	1 1	NC
06-93-4	1,2-Dibromoethane	OLC03-2-V	ug/l	0.5 U		NC
8-90-7	Chlorobenzene	OLC03-2-V	ug/l	0.5 U		NC
0-41-4	Ethylbenzene	OLC03-2-V	ug/l	0.5 U	- 1 1	NC
330-20-7	Xylenes (total)	OLC03-2-V	ug/i	0.5		NC
0-42-5	Styrene	OLC03-2-V	ug/l	0.50	0.5 UJ	
-25-2	Bromoform	OLC03-2-V	ug/i	0.510		NC
-82-8	Isopropylbenzene	OLC03-2-V	ug/i	0.5 U	0.5 UJ	
~34-5	1,1,2,2-Tetrachloroethane	OLC03-2-V	ug/l	0.5 U		NC
	1.3-Dichlorobenzene	OLC03-2-V		0.50		NC
	1,4-Dichlorobenzene		ug/l			
6-46-7		OLC03-2-V	ug/i	0.5		
5-50-1	1,2-Dichlorobenzene	OLC03-2-V	ug/i	0.5		
5-12-8	1,2-Dibromo-3-chloropropane	OLC03-2-V	ug/l	0.5 U		
20-82-1	1,2,4-Trichlorobenzene	OLC03-2-V	ug/i	0.5 U		NC
7-61-6	1,2,3-Trichlorobenzene	OLC03-2-V	ug/1	0.5	0.5 U	NC

Hiteman Leather Groundwater Surface Water Duplicates for Data Usability

			Sample Code	MW-8S-R2	MW-8S-R2-DUP	ł
			Sample Name		RMW-22	RPD
•			Sample Date	5/21/2002	5/21/2002	1
Cas Rn	Chemical Name	Analytic Method	Unit \\			
2-SV-1-w	Created by SUPER on 08/03/2001					
100-52-7	Benzaldehyde	OLM04-2-SV	ug/l	10 U	10 U	NC
108-95-2	Phenol	OLM04-2-SV	ug/l	10 U	10 U	NC
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/l	10 U	10 U	NC
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/l	10 U	10 U	NC
35-48-7	2-Methylphenol	OLM04-2-SV	ug/i	10 U	10 U	NC
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/l	10 UJ	10 UJ	NC
98-86-2	Acetophenone	OLM04-2-SV	ug/l	10 U	, 10 U	NC
106-44-5	4-Methylphenol	OLM04-2-SV	ug/i	10 U	10 U	NC
64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/l	10 U	· · 10 U	NC
57-72-1	Hexachloroethane	OLM04-2-SV	ug/l	10 U	10 U	INC
98-95-3	Nitrobenzene	OLM04-2-SV	ug/l	10 U	10 U	NC
' 8-59-1	Isophorone	OLM04-2-SV	ug/l	10 U	10 U	NC
8-75-5	2-Nitrophenol	OLM04-2-SV	ug/l	- 10 U	10 U	NC
05-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/l	10 U	10 U	NC
11-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/l	10 U	10 U	NC
20-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/l	10 U		NC
1-20-3	Naphthalene	OLM04-2-SV	ug/l	10 U		NC
06-47-8	4-Chloroaniline	OLM04-2-SV	ug/l	10 U		NC
7-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/l	10 U		NC
05-60-2	Caprolactam	OLM04-2-SV	ug/l	10 U		NC
9-50-7	4-Chloro-3-methylphenol	OL M04-2- SV	ug/l	10 U		NC
1-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/l	10 U	0.8 J	NC 👘
7-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/l ·	10 U	10 U	NC
8-06-2	2,4,6-Trichlorophenol	0LM04-2-SV	ug/l	10 U	10 U	NC I
5-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/l	25 U	25 U	NC
2-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/l	10 U	10 U	NC
1-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/l	10 U	10 U	NC
8-74-4	2-Nitroaniline	OLM04-2-SV	ug/l	25 U	25 U	NC
31-11-3	Dimethylphthalate	OLM04-2-SV	ug/i	10 U	10 U	NC
06-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/l	10 U	10 U	NC
08-96-8	Acenaphthylene	OLM04-2-SV	ug/i	1010	· 10 U	NC
9-09-2	3-Nitroaniline	OLM04-2-SV	ug/i	25 U		NC
3-32-9	Acenaphthene	OLM04-2-SV	ug/l	10 0		NC

)

RPD = Relative Percent Difference NC = Not Calculable

.

Hiteman Leather
Groundwater Surface Water
Duplicates for Data Usability

			Sample Code	MW-8S-R2	MW-8S-R2-DUP	
			Sample Name		RMW-22	RPD ,
			Sample Date	5/21/2002	5/21/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\			
3-SV-2-w	Created by SUPER on 08/03/2001					· · ·
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/i	25 U	25 U	NC
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/l	25 U	25 U	NC
132-64-9	Dibenzofuran	OLM04-2-SV	ug/l	10 U		NC
121-14-2	2.4-Dinitrotoluene	OLM04-2-SV	ug/l	10 U	10 U	NC
84-66-2	Diethylphthalate	OLM04-2-SV	ug/l	0.6 J	10 U	NC .
86-73-7	Fluorene	OLM04-2-SV	ug/l	10 U ·	10 U	NC
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/l	10 U	10 U	NC
100-01-6 '	4-Nitroaniline	OLM04-2-SV	ug/l	25 U	[-	NC
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/l	25 U	· 25 U	NC
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/l	10 U	10 U	NC
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/l	10 U -	10 U	NC ·
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/i	10 UJ	10 UJ	NC
1912-24-9	Atrazine	OLM04-2-SV	ug/l	10 U	10 U	NC
87-86-5	Pentachiorophenol	OLM04-2-SV	ug/i	25 UJ	25 UJ	NC
85-01-8	Phenanthrene	OLM04-2-5V	ug/l	10 U		NC
120-12-7	Anthracene	OLM04-2-SV	ug/l	10 U		NC
86-74-8	Carbazole	OLM04-2-SV	ug/l	10 U	10 U	NC
34-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/l	10 U	10 U	NC
206-44-0	Fluoranthene	OĿM04-2-SV	ug/i	10 U		NC
29-00-0	Pyrene	OLM04-2-SV	ug/l	10 U		NC
35-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/l	.10 U		NC
)1 -94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/l	10 U		NC
6-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/l	10 U		NC
18-01-9	Chrysene	OLM04-2-SV	ug/l	10 U	10 U	NC.
17-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/l	140 D		NC
17-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/l	10 U		NC .
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/l	10 U	- 10 U	NC
207- 08- 9	Benzo(k)fluoranthene	OLM04-2-SV	ug/I	. 10 U	10 U	NC
50- 32-8	Benzo(a)pyrene	OLM04-2-SV	ug/l	10 U	10 U	NC
193-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/l	10 U	10 U	NC
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/l	10 U	10 U -	NC
191-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/l	10 U	10 U	NC

Hiteman Leather Groundwater Surface Water Duplicates for Data Usability

1

1/22/2003 Page4

				~		
			Sample Code	MW-8S-R2	MW-8S-R2-DUP	
	1		Sample Name		RMW-22	RPD
			Sample Date	5/21/2002	5/21/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\		·	
-P/PCBs-w	Created by SUPER on 08/03/2001	,				·
19-84-6	' alpha-BHC	OLM04-2-PP	ug/l	0.05 U	0.05 U	_
19-85-7	beta-BHC	OLM04-2-PP	ug/l	0.05JU	0.05 U	
19-86-8	delta-BHC	OLM04-2-PP	ug/l	0.05 U	0.05 U	
8-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/i	0.05 U	0.05 U	
6-44-8	Heptachlor	OLM04-2-PP	ug/l	0.05 U	0.05 U	
09-00-2	Aldrin	OLM04-2-PP	ug/l	0.05 U	0.05 U	
024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/l	0.05 U	0.05 U	1
59-98-8	Endosulfan I	OLM04-2-PP	ug/l	0.05 U	0.05 U	
0-57-1	Dieldrin	OLM04-2-PP	ug/l	0.1 U	0.1 U	
2-55-9	4,4-DDE	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC
2-20-8	Endrin	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC
3213-65-9	Endosulfan II	OLM04-2-PP	ug/l	0.1 U	0.1 U	
2-54-8	4,4'-DDD	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC
031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/i	0.1 U	0.1 U	NC
0-29-3	4,4'-DDT	OLM04-2-PP	ug/l	0.1 U	0.1	NC
2-43-5	Methoxychlor	OLM04-2-PP	ug/l	0.5 U	0.5 U	NC
3494-70-5	Endrin ketone	OLM04-2-PP	ug/i	0.1 U	0.1 U	NC
421-93-4	Endrin aldehyde	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC .
103-71-9	alpha-Chlordane	OLM04-2-PP	ug/l	0.05 U	. 0.05 U	NC
103-74-2	gamma-Chlordane	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC ·
001-35-2	Toxaphene	OLM04-2-PP	ug/l	5 U	· 5U	NC
2674-11-2	Aroclor-1016	OLM04-2-PP	ug/l	1 U	່ 1U	NC
1104-28-2	Aroclor-1221	OLM04-2-PP	ug/l	20	2 U	NC
1141-16-5	Aroclor-1232	OLM04-2-PP	ug/l	110	10	NC
3469-21-9	Aroclor-1242	OLM04-2-PP	ug/l	10	110	NC
2672-29-6	Arocior-1248	OLM04-2-PP	ug/i	1111	10	NC
				1.0	-	NC
1097-69-1	Aroclor-1254	OLM04-2-PP	ug/l		10	
096-82-5	Aroclor-1260	OLM04-2-PP	ug/l	1 U	1 U	NC ·

Hiteman Leather
Groundwater Surface Water
Duplicates for Data Usability

·		·	Sample Code Sample Name Sample Date	MW-8S-R2	MW-8S-R2-DUP RMW-22 5/21/2002	RPD
Cas Rn	Chemical Name	Analytic Method	Unit \\	-		
5-Inorg-w	Created by SUPER on 08/03/2001					
7429-90-5	Aluminum	ILM04-1-M	ug/i	18.5 U	58 B	NC
7440-36-0	Antimony	ILM04-1-M	ug/l	3. 8 U	3.8 ∪	NC
7440-38-2	Arsenic	ILM04-1-M	ug/l	30	· 3U	NC
7440-39-3	Barium	1LM04-1-M	ug/i	18.4 B	18.3 B	0.54
7440-41-7	Beryllium	ILM04-1-M	ug/l	0.3 U	0.3 U	NC ·
7440-43-9	Cadmium	ILM04-1-M	ug/l	0.5 U	· 0.5 U ·	NC
440-70-2	Calcium	ILM04-1-M	ug/l	128000	128000	0.00
440-47-3	Chromium	ILM04-1-M	ug/i	0.8 ∪	0.8 U	NC
440-48-4	Cobalt	ILM04-1-M	ug/ł	1.2 U	1.2 U	NC
440-50-8	Copper	ILM04-1-M	ug/l	1.4 U	1.4 U	NC
439-89-6	Iron	ILM04-1-M	ug/l	26.6 B	34.8 B	26.71
439-92-1	Lead	ILM04-1-M	ug/l	2.8 U	2.8 ∪	NC
439-95-4	Magnesium	ILM04-1-M	ug/l	38700	38900	0.52
439-96-5	Manganese	ILM04-1-M	ug/l	32.7	32.8	· 0.31
439-97-6	Mercury	ILM04-1-M	ug/l	0.1 U	0.1 U	NC
440-02-0	Nickel	ILM04-1-M	ug/l	1.7 U	1.7 U	NC
440-09-7	Potassium	ILM04-1-M	ug/l	2700 B	2680 B	0.74
782-49-2	Selenium	1LM04-1-M	ug/l	2.2 U	2.2 U	NC
440-22-4	Silver	ILM04-1-M	ug/l	1.1 U	1.1 U	NC
440-23-5	Sodium	, ILM04-1-M	ug/l	20700	20300	1.95
440-28-0	Thallium	/ ILM04-1-M	ug/l	3.5 U	3.5 U	NC
440-62-2	Vanadium	ILM04-1-M	ug/l	0.7 U	0.7 U	NC
440-66-6	Zinc	ILM04-1-M	ug/i	1.4 U	- 1.4 U	NC
7-12-5	Cvanide	ILM04-1-CN	ug/l	1.6 B	1.5 B	6.45

		Hiteman Leat Groundwater Surfa Duplicates for Data	ce Water			1/22/2003 Page6
6 D-			Sample Code Sample Name Sample Date Unit \\	RMW-18D-R1 5/23/2002	RMW-18D-R1-DUP RMW-25 5/23/2002	RPD
Cas Rn (Group Code)	Chemical Name (Group Description)	Analytic Method		·····	+	
1-LCVOANew	50 Analytes Method Code OLC03-2-V					
75-71-8	Dichlorodifluoromethane	OLC03-2-V	ug/l	0.5 U	0.5	JNC
74-87-3	Chloromethane	OLC03-2-V	ug/i	0.5 U	0.51	
75-01-4	Vinyl Chloride	OLC03-2-V	ug/l	0.5 U	0.51	
74-83-9	Bromomethane	OLC03-2-V	· ug/l	0.5 U	0.51	
75-00-3	Chloroethane	OLC03-2-V	ug/i	0.5	0.5	1 1
75-69-4	Trichlorofluoromethane	OLC03-2-V	ug/i	0.5 U	0.51	
75-35-4	1.1-Dichloroethene	OLC03-2-V	ug/i	0.5 U	0.51	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLC03-2-V	ug/l	0.5 U	0.5 0	
67-64-1	Acetone	OLC03-2-V	-	50	51	
75-15-0	Carbon Disulfide	OLC03-2-V OLC03-2-V	ug/l	0.5 U	0.51	1 1
75-15-0 79-20-9		OLC03-2-V	ug/l	0.5 U	1	
79-20-9 75-0 9 -2	Methyl Acetate	OLC03-2-V	ug/l	0.5 U	0.51	
	Methylene Chloride		ug/l	0.5 U	0.5 L	
156-60-5 1634-04-4	trans-1,2-Dichloroethene	OLC03-2-V	ug/l		0.5 L	
	Methyl Tert-Butyl Ether	OLC03-2-V	ug/l	0.5 U	0.5 L	
75-34-3	1,1-Dichloroethane	OLC03-2-V	ug/i	0.5 U	0.5 L	
156-59-2	cis-1,2-Dichloroethene	OLC03-2-V	ug/i	0.5 U	0.5 U	1
78-93-3	2-Butanone	OLC03-2-V	ug/l	5 U	51.	
74-97-5	Bromochloromethane	OLC03-2-V	ug/l	0.5 U	0.5 U	
67-66-3	Chloroform	OLC03-2-V	ug/i	0.5 U	0.5 L	1 1
71-55-6	1,1,1-Trichloroethane	OLC03-2-V	ug/i	0.5 U	0.5 U	I NC
110-82-7	Cyclohexane	OLC03-2-V	ug/i	0.5 U	0.5 U	NC I
56-23-5	Carbon Tetrachloride	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
1-43-2	Benzene	OLC03-2-V	ug/i	0.5 UJ	[•] 0.5 U	JNC
07-06-2	1,2-Dichloroethane	OLC03-2-V	ug/i	0.5 U	0.5 U	
9-01-6	Trichloroethene	OLC03-2-V	ug/i	0.5 U	0.5 U	NC ·
08-87-2	Metylcyclohexane	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
8-87-5	1,2-Dichloropropane	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
5-27-4	Bromodichloromethane	OLC03-2-V	ug/i	0.5 U	0.5 U	
0061-01-5	cis-1,3-Dichloropropene	OLC03-2-V	ug/l	0.5 U	0.5 U	
08-10-1	4-Methyl-2-pentanone	OLC03-2-V	ug/i	50	50	
08-88-3	Toluene	OLC03-2-V	ug/l	0.510	0.5 U	
0061-02-6	trans-1,3-Dichloropropene	OLC03-2-V	ug/l	0.5 U	0.5 U	
9-00-5	1,1,2-Trichloroethane	OLC03-2-V	- (0.5 U	0.5 U	1 1
27-18-4		OLC03-2-V	ug/i	0.5 U		4 1
-	Tetrachloroethene	OLC03-2-V	ug/i	0.510 510	0.5 U	
91-78-6	2-Hexanone		ug/l	0.5 U	50	
24-48-1	Dibromochloromethane	OLC03-2-V	ug/l		0.5 U	NC
06-93-4	1,2-Dibromoethane	OLC03-2-V	ug/l	0.5 U	0.5 U	1 1
08-90-7	Chlorobenzene	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
00-41-4	Ethylbenzene	OLC03-2-V	ug/l	0.5 U	0.5 U	
330-20-7	Xylenes (total)	OLC03-2-V	ug/i	0.5 U	0.5 U	
00-42-5	Styrene	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
5-25-2	Bromoform	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
8-82-8	isopropylbenzene	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
9-34-5	1,1,2,2-Tetrachloroethane	OLC03-2-V	ug/l	0.5 U	0.5 U	NC
41-73-1	1,3-Dichlorobenzene	OLC03-2-V	ug/i	0.5 U	0.5 U	NC
06-46-7	1,4-Dichlorobenzene	OLC03-2-V	ug/I	0.5 U	0.5 U	NC
5-50-1	1,2-Dichlorobenzene	OLC03-2-V	ug/i	0.5 U	0,5 U	NC
6-12-8	1,2-Dibromo-3-chloropropane	OLC03-2-V	ug/i	0.5 U	0.5 U	NC
20-82-1	1,2,4-Trichlorobenzene		ug/l	0.5 U	0.5 U	NC
-61-6	1,2,3-Trichlorobenzene		ug/l	0.5 UJ	0.5 U.	

RPD = Relative Percent Difference NC = Not Calculable

1

Hiteman Leather						
Groundwater Surface Water						
Duplicates for Data Usability						

. L	······································		Sample Code Sample Name Sample Date	RMW-18D-R1 5/23/2002	RMW-18D-R1-DUP RMW-25 5/23/2002	RPD
Cas Rn	Chemical Name	Analytic Method	Unit \\			
2-SV-1-w	Created by SUPER on 08/03/2001					·····
100-52-7	Benzaldehyde	OLM04-2-SV	ug/l	10 U	10 U	NC ·
108-95-2	Phenol	OLM04-2-SV	ug/l	10 U	10 U	
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/l	10 U	10 U	NC
95- 57-8	2-Chlorophenol	OLM04-2-SV	ug/l	10 U	10 U	NC
95-48-7	2-Methylphenol	OLM04-2-SV	ug/l	10 U	10 U	NC
108-60 -1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/i	10 U	10 U	NC
98-86-2	Acetophenone	OLM04-2-SV	ug/t	10 U	10 U	NC .
106-44-5	4-Methylphenol	OLM04-2-SV	ug/l	10 U	10 U	NC
621 -64 -7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/l	10 U	10 U	NC
67-72-1	Hexachloroethane	OLM04-2-SV	ug/i	10 U	10 U	NC
98-95-3	Nitrobenzene	OLM04-2-SV	ug/l	10 U	10 U	NC
78-5 9-1	Isophorone	OLM04-2-SV	ug/l	10 U	10 U	NC
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/l	10 U	10 U	NC
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/l	10 U	10 U	NC
11 1-91-1 .	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/l	10 U	10 U	NC
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/l	10 U	10 U	NC
91-20-3	Naphthalene	OLM04-2-SV	ug/l	.10 U	10 U	NC
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/l	10 U	10 U	NC
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/l	10 U	10 U	NC
105-60-2	Caprolactam	OLM04-2-SV	ug/l	10 U	· 10 U	NC
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/l	. 10 U	10 U	NC
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/l	10 j U	10 U	NC
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/l	10 U		NC
88-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/l	10 U	10 U	NC I
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/l .	25 U	ີ 25 ປ	NC
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/l	10 U		NC
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/l	10 U		NC:
38-74-4	2-Nitroaniline	OLM04-2-SV	ug/i	25 U	25 U	NC
31-11-3	Dimethylphthalate	OLM04-2-SV	ug/l	10 U	10 U	NC
606-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/l	10 U	10 U	NC
208-96-8	Acenaphthylene	OLM04-2-SV	ug/l	10 Ú	· 10 U	NC
9-09-2	3-Nitroaniline	OLM04-2-SV	ug/l	25 U	25 U	NC
3-32-9	Acenaphthene	OLM04-2-SV	ug/l	10 U	10 U	NC

Groundwater Surface Water Duplicates for Data Usability

Hiteman Leather

	l		Sample Code	RMW-18D-R1	RMW-18D-R1-DUP	
			Sample Name		RMW-25	RPD
			Sample Date	5/23/2002	5/23/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\			
3-SV-2-w	Created by SUPER on 08/03/2001					
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/i	25 U		NC
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/l	25 U	25 U	NC ·
132-64-9	Dibenzofuran	OLM04-2-SV	ug/l	10 U	10 U	NC
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/l	· 10 U	10 U	NC
84-66-2	Diethylphthalate	OLM04-2-SV	ug/l	10 U		NC
86-73-7	Fluorene	OLM04-2-SV	ug/i	10 U	· 10 U	NC
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/l	10 U		NC
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/i	25 U		NC
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/l	25 U		NC
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/l	_10 U		NC
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/l	10 U		NC
118-7,4-1	Hexachlorobenzene	OLM04-2-SV	ug/i	10 U		NC
1912-24-9	Atrazine	OLM04-2-SV	ug/l	10 U		NC
87-86-5	Pentachiorophenol	OLM04-2-SV	ug/i	. 25 U		NC
85-01-8	Phenanthrene	OLM04-2-SV	ug/l	10 U		NÇ
120-12-7	Anthracene	OLM04-2-SV	ug/l	10 U .	10 U 1	NC
86-74-8	Carbazole	OLM04-2-SV	ug/i	. 10 U	10 U	NC
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/l	10 U	10 U	NC
206-44-0	Fluoranthene	OLM04-2-SV	ug/l	10 U	10 U	NC
129-00-0	Pyrene	OLM04-2-SV	ug/l	10 U	10 U	NC
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/l	10 U	10 U	NC
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/l (10 U	10 U	NC (
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/l	10 U	10 U	NC
218-01-9	Chrysene	OLM04-2-SV	ug/i	10 U	10 U	NC
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/i	10 U	10 U	NC I
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/l	10 U	10 U II	NC
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/l	10 U	10 U I	NC '~
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/i	10 U	10 0 1	VC
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/i	10 U	- 10 U I	NC V
193-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/l	10 U	10 0 1	NC T
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/l	10 U	10 U II	
191-24-2	Benzo(g.h,i)perylene	OLM04-2-SV	ug/l	10 U		NC

Hiteman Leather Groundwater Surface Water Duplicates for Data Usability

1/22/2003 Page9

)

	и		Sample Code	RMW-18D-R1	RMW-18D-R1-DUP	
			Sample Name		RMW-25	RPD
			Sample Date	5/23/2002	5/23/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\			
-P/PCBs-w	Created by SUPER on 08/03/2001					
19-84-6	alpha-BHC	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC
19-85-7	beta-BHC	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC
19-86-8	delta-BHC	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC -
8-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC
6-44-8	Heptachlor	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC -
09-00-2	Aldrin	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC
024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC
59-98-8	Endosulfan I	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC
60-57-1	Dieldrin	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC
2-55- 9 . ·	4,4'-DDE	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC
2-20-8	Endrin	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC
3213-65-9	Endosulfan II	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC .
2-54-8	4,4'-DDD	OLM04-2-PP	ug/l	0.1 Ú	0.1 U	NC
031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC
0-29-3	4,4'-DDT	OLM04-2-PP	ug/l	0.1 U	0.1 U	NC
′2-43-5 ·	Methoxychlor	OLM04-2-PP	ug/l	0.5 U	0.5 U	NC
3494-70-5	Endrin ketone	OLM04-2-PP	ug/i	0.1 U	0.1 U	NC
421-93-4	Endrin aldehyde	OLM04-2-PP	ug/l	0.1 U	. 0.1 U	NC
5103-71-9	aipha-Chlordane	OLM04-2-PP	ug/l	0.05 U	0.05 U	NC
103-74-2	gamma-Chlordane	OLM04-2-PP	ug/i	0.05 U	0.05 U	NC
001-35-2	Toxaphene	OLM04-2-PP	ug/l	5 U	501	NC
2674-11-2	Aroclor-1016	OLM04-2-PP	ug/l	1	1 U I	NC
1104-28-2	Aroclor-1221	OLM04-2-PP	ug/l	2 U	20	NC
1141-16-5	Aroclor-1232	OLM04-2-PP	ug/i	1 U		NC
3469-21-9	Aroclor-1242	OLM04-2-PP	ug/l	10	1 U	NC .
2672-29-6	Aroclor-1248	OLM04-2-PP	ug/l	1 U	1 U	NC .
1097-69-1	Aroclor-1254	OLM04-2-PP	ug/i	1 U .	1/0 /1	NC
1096-82-5	Aroclor-1260	OLM04-2-PP	ug/l	1 U		NC .

1/22/2003 Page10

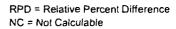
[· · · · · ·	Sample Code	RMW-18D-R1	RMW-18D-R1-DUP	
· · ·			Sample Name		RMW-25	RPD
			Sample Date	5/23/2002	5/23/2002	•
Cas Rn	, Chemical Name	Analytic Method	Unit \\		*	
5-Inorg-w	Created by SUPER on 08/03/2001					
7429-90-5	Aluminum	ILM04-1-M	ug/l	1310 R	2830 R	NC .
7440-36-0	Antimony	ILM04-1-M	ug/l	3.8 U	3.8 U	NC
7440-38-2	Arsenic	ILM04-1-M	ug/l	3 U	3 U	NC
7440-39-3	Barium	ILM04-1-M	ug/l	79.5 B	· 89.8 B	12.17
7440-41-7	Beryllium	ILM04-1-M	ug/i	0.3 U	0.3 ປ	NC
7440-43-9	Cadmium	ILM04-1-M	ug/l	0.5 U	0.5 U	NC
7440-70-2	Calcium	ILM04-1-M	ug/l	95700	150000	44.20
7440-47-3	Chromium	ILM04-1-M	ug/l	12.8	15.8	20.98
7440-48-4	Cobalt	ILM04-1-M	ug/i	1.2 U	1.6 B	NC
7440-50-8	Copper	ILM04-1-M	ug/l	2.9 B	8 B	93.58
7439-89-6	Iron	ILM04-1-M	ug/i	1830 J	5680 J	102.53
7439-92-1	Lead	ILM04-1-M	ug/l	2.8 UJ	2.8 UJ	NC
7439-95-4	Magnesium	ILM04-1-M	ug/l	16300 J	23200 J	34.94
7439-96-5	Manganese	ILM04-1-M	ug/l	58.6 J	187 J	104.56
7439-97-6	Mercury	ILM04-1-M	. ug/l	0.1 U 🧳	0.1 U	NC
7440-02-0	Nickel	ILM04-1-M	ug/l	11.3 B	15.4 B	30.71
7440-09-7	Potassium	LM04-1-M	ug/l	2290 B	2800 B	20.04
7782-49-2	Selenium	LM04-1-M	ug/l	3.2 BJ	2.2 U	NC
7440-22-4	Silver	ILM04-1-M	ug/l	1.10	1.1 U	NC
7440-23-5	Sodium	ILM04-1-M	ug/l	7060 J	7300 J	3.34
7440-28-0	Thallium	ILM04-1-M	ug/l	3.5 U	3.5 U	NC
7440-62-2	Vanadium	ILM04-1-M	ug/l	2.3 B	6.5 B	95.45
7440-66-6	Zinc	ILM04-1-M	ug/l	6 B	15.7 B	89.40
57-12-5	Cyanide	ILM04-1-CN	ug/l	1.8 BJ	2.1 BJ	15.38

RPD = Relative Percent Difference NC = Not Calculable

.1

1/22/2003 Page1

			Sample Code	MW-8S-R2	MW-8S-R2-DUP	
			Sample Name		RMW-22	RPD
	·		Sample Date	5/21/2002	5/21/2002	
Cas Rn	Chemical Name	Analytic Method	Unit			
(Group Code)	(Group Description)				· ·	
6-WetChem	Created by SUPER on 9/6/2002					
CACO3-A	Alkalinity as CaCO3	MCAWW310-1	mg/l	220	240	8.70
САСОА-Н 🦾	Hardness as CaCO3	SM2340B	mg/l	Not analyzed	Not analyzed	· ·
BOD	Biochemical Oxygen Demand	MCAWW405-1	mg/i	9	10	10.53
COD	Chemical Oxygen Demand	SM5220D	mg/l	30 U	30 U	NC
тос	Total Organic Carbon	MCAWW415-1	mg/l	18	18	0.00
7440-47-3H	Chromium (+6)	SW7196A	mg/l	0.03 U	0.03 U	NC 1
CL	Chloride	MCAWW325-3	mg/l	42	42	0.00
NH3	Nitrogen, Ammonia	MCAWW350-1	mg/l	0.4	0.4	0.00
NO3/NO2	Nitrogen, Nitrate-Nitrite	MCAWW353-2	mg/l	10 U	10 U	NC
TKN	Nitrogen, Total Kjeldahl	MCAWW351-	mg/l '	0.5 U	2.2	125.93
SO4	Sulfate	MCAWW375-	ˈmɡ/l	310	290	6.67
TDS	Total Dissolved Solids	MCAWW160-1	mg/l	620	620	0.00
TSS	Total Suspended Solids	MCAWW160-2	mg/l	15	10 0	NC
ъH	pH	SW9045C	S.U.	Not analyzed	Not analyzed	· ·


RPD = Relative Percent Difference NC = Not Calculable

1/22/2003 Page2

	······································		Sample Code	1		RMW-18D-R				
	· · ·		Sample Name	1		RMW-2	-		RP	טי
*			Sample Date	5/23/2002		5/23/200)2		1	
Cas Rn	Chemical Name	Analytic Method	Unit \\						· ·	
(Group Code)	(Group Description)			1				{		(
6-WetChem	Created by SUPER on 9/6/2002				1					
CACÓ3-A	Alkalinity as CaCO3	MCAWW310-1	mg/l	230	1	1 .*	260	2	12.24	1
CACOA-H	Hardness as CaCO3	SM2340B	mg/l .	Not analyzed	1 .	Not analyzed		· /		
BOD	Biochemical Oxygen Demand	MCAWW405-1	mg/l	3].]	3	U I	NC	
COD	Chemical Oxygen Demand	SM5220D .	mg/i	30	U		30	lu	NC .	
тос	Total Organic Carbon	MCAWW415-1	mg/l	10			12	:	18.18	3
7440-47-3H	Chromium (+6)	SW7196A	mg/i	0.03	υ		0.03	U	NC	1
CL	Chloride	MCAWW325-3	mg/l	່ 🔪 11		÷	11	1	0.00	
NH3	Nitrogen, Ammonia	MCAWW350-1	mg/l	0.6			0.5		18.18	
NO3/NO2	Nitrogen, Nitrate-Nitrite	MCAWW353-2	mg/l	1.7			1.7	{	0.00	ıl.
TKN	Nitrogen, Total Kjeldahl	MCAWW351-	mg/l	1.9		1 .	2		5.13	
504	Sulfate	MCAWW375-	mg/l	. 93			95	1	2.13	
TDS	Total Dissolved Solids	MCAWW160-1	mg/l	320			300		6.45	
rss	Total Suspended Solids	MCAWW160-2	mg/l	69		1	59	Í	15.63	
pH	pH	SW9045C	-	Not analyzed		Not analyzed		Į.		

RPD = Relative Percent Difference NC = Not Calculable

			Sample Code Sample Name	MW-11D	-	MW-11 MW-			R	
			Sample Date	11/8/2001		11/8/	2001			
Cas Rn	Chemical Name	Analytic Method	Unit \\							
(Group Code)	(Group Description)		•					T	1	
6-WetChem	Created by SUPER on 9/6/2002			•				1 -	ļ	
CACO3-A	Alkalinity as CaCO3	MCAWW310-1	mg/l	Analyzed for Chi	rom-6	Only		• ·		
CACOA-H	Hardness as CaCO3	SM2340B	mg/l	1				1	1	
BOD	Biochemical Oxygen Demand	MCAWW405-1	mg/l					ļ	1	
COD	Chemical Oxygen Demand	SM5220D	mg/l		I			Í.	1	
тос	Total Organic Carbon	MCAWW415-1	mg/i		Į		•		1	
7440-47-3H	Chromium (+6)	SW7196A	mg/l	0.02	սյ		0.02	UJ	NC	
CL	Chloride	MCAWW325-3	mg/i						1	
NH3	Nitrogen, Ammonia	MCAWW350-1	mg/l							
NO3/NO2	Nitrogen, Nitrate-Nitrite	MCAWW353-2	mg/i	•			-	{ · }	1	Í
TKN	Nitrogen, Total Kjeldahl	MCAWW351-	mg/l						}	
SO4	Sulfate	MCAWW375-	mg/l							
TDS .	Total Dissolved Solids	MCAWW160-1	mg/l					l I	1	
TSS	Total Suspended Solids	MCAWW160-2	mg/l		[•		J	
ъH	pH	SW9045C	S.U.							

Sample Code URSW-8 URSW-8-DUP Sample Name URSW-13 RPD Sample Date 11/6/2001 11/6/2001 Cas Rn Chemical Name Analytic Method Unit \\ (Group Code) (Group Description) 6-WetChem Not analyzed Created by SUPER on 9/6/2002 Not analyzed MCAWW310-1 CACO3-A Alkalinity as CaCO3 mg/l 300 300 0.00 CAC0A-H mg/l Hardness as CaCO3 SM2340B 270 270 0.00 BOD Biochemical Oxygen Demand MCAWW405-1 Not analyzed mg/l Not analyzed COD Chemical Oxygen Demand SM5220D mg/l Not analyzed Not analyzed тос Total Organic Carbon MCAWW415-1 Not analyzed Not analyzed mg/l 7440-47-3H SW7196A mg/l 0.02 U 0.02 U NC Chromium (+6) CL MCAWW325-3 Chloride mg/l Not analyzed Not analyzed NH3 Nitrogen, Ammonia MCAWW350-1 mg/i Not analyzed Not analyzed NO3/NO2 MCAWW353-2 Not analyzed Nitrogen, Nitrate-Nitrite mg/l Not analyzed MCAWW351-TKN Nitrogen, Total Kjeldahl Not analyzed Not analyzed mg/l MCAWW375-**SO4** mg/i Not analyzed Sulfate Not analyzed TDS Total Dissolved Solids MCAWW 160-1 mg/l 330 330 0.00 TSS 10 U **Total Suspended Solids** MCAWW160-2 mg/l 11 NC SW9045C S.U. pН pН Not analyzed Not analyzed

RPD = Relative Percent Difference NC = Not Calculable

ATTACHMENT 3 FIELD BLANK AND TRIP BLANK SAMPLE DATA

· · ·	· · · · · · · · · · · · · · · · · · ·		Sample Code Sample Name		FB-110501-SD	FB-110601-SD	FB-110701-MW	FB-110701-SD
	· · · · · · · · · ·	•	Sample Date	11/5/2001	11/5/2001	11/6/2001	11/7/2001	11/7/2001
Cas Rn	Chemical Name	Analytic Method	Unit \\			4		<u> </u>
(Group Code)	(Group Description)			1)) .		1.
1-VOA-w	Created by SUPER on 08/03/2001							
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/l	Analyzed for	Not Analyzed	Not Analyzed	Analyzed for	Not Analyzed
74-87-3	Chloromethane	OLM04-2-V	ug/l	Chrom-6 Only	for VOCs	for VOCs	Chrom-6 Only	for VOCs
75-01-4	Vinyl Chloride	OLM04-2-V	ug/ł					
74-83-9	Bromomethane	OLM04-2-V	ug/l		} . }			
75-00-3	Chloroethane	OLM04-2-V	ug/l					
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/l					
75-35-4	1 1-Dichloroethene	OLM04-2-V	ug/l	,				
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/l					
67-64-1	Acetone	OLM04-2-V	ug/l					
75-15-0	Carbon Disulfide	OLM04-2-V	ug/l					
79-20-9	Methyl Acetate	OLM04-2-V	ug/i		1		1 1	
75-09-2	Methylene Chloride	OLM04-2-V	ug/l	•				
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/l					
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/l					
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/l	•			ľ	
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/l	1	1			
78-93-3	2-Butanone	OLM04-2-V	ug/l					
67-66-3	Chloroform	OLM04-2-V	ug/l					
71-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/l					
110-82-7	Cyclohexane	OLM04-2-V	ug/i	1 1				
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/i		· ·			
71-43-2	Benzene	OLM04-2-V	ug/ł				1	1
107-06-2	1,2-Dichloroethane	OLM04-2-V	ug/l					
79-01-6	Trichloroethene	OLM04-2-V	ug/l					
108-87-2	Metylcyclohexane	OLM04-2-V	ug/l	1 1	. L			
78-87-5	1,2-Dichloropropane	OLM04-2-V	ug/l					
75-27-4	Bromodichloromethane	OLM04-2-V	ug/l		1			
10061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/l					
108-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/l				1. 1	
108-88-3	Toluene	OLM04-2-V	ug/l	1				
10061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/l	1			·	
79-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/l		1			
127-18-4	Tetrachloroethene	OLM04-2-V	ug/i					
591-78-6	2-Hexanone	QLM04-2-V	ug/l	1				
124-48-1	Dibromochloromethane	OLM04-2-V	ug/l		1			
106-93-4	1,2-Dibromoethane	OLM04-2-V	ug/i					
108-90-7	Chlorobenzene	OLM04-2-V	ug/l					

٠.

 $\overline{\ }$

1/22/2003 Page1

.

	······································		Sample Code	FB-110501-MW	FB-110501-SD	FB-110601-SD	FB-110701-MW	FB-110701-SD
			Sample Name			1		
			Sample Date	11/5/2001	11/5/2001	11/6/2001	11/7/2001	11/7/2001
<u>Cas Rn</u>	Chemical Name	Analytic Method				· · · · · · · · · · · · · · · · · · ·		
00-41-4	Ethylbenzene	OLM04-2-V	ug/l					
330-20-7	Xylenes (total)	OLM04-2-V	ug/i			1		
00-42-5	Styrene	OLM04-2-V	ug/l					
5-25-2	Bromoform	OLM04-2-V	ug/l		· ·			
98-82-8	Isopropylbenzene	OLM04-2-V	ug/l					1
'9-34-5	1,1,2,2-Tetrachloroethane	OLM04-2-V	ug/l					
541-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/ł		{	\$ i		
106-46-7	1,4-Dichlorobenzene	OLM04-2-V	ug/l					
95-50-1	1,2-Dichlorobenzene	OLM04-2-V	ug/l				· · ·	
96-12-8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/l	· · ·				
120-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/l					
2-SV-1 <i>-</i> w	Created by SUPER on 08/03/200	1				· ·].]	
100-52-7	Benzaldehyde	OLM04-2-SV	ug/l		11U	10 U		110
108-95-2	Phenol	OLM04-2-SV	ug/l		110	10 U		11
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/l		11 U	10 U		111
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/l		1110	10 U		11
95-48-7	2-Methylphenol	OLM04-2-SV	ug/l		11 U	10 U		11
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/l		11 U	10 U		11
98-86-2	Acetophenone	OLM04-2-SV	ug/l		110	10/0		110
106-44-5	4-Methylphenol	OLM04-2-SV	ug/i		11 U	10 U		110
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/i		110	10 U		11
67-72-1	Hexachloroethane	OLM04-2-SV	ug/l		110	10 U		111
98-95-3	Nitrobenzene	OLM04-2-SV	ug/l		11 U	10 U		11
78-59-1	Isophorone	OLM04-2-SV	ug/l		110	10 U	1	1 11
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/l		110	10 U		11
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/l		110	10 U		11
111-9 1-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/l		110	10 U		11
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/l		110	1010		.11
91-20-3	Naphthalene	OLM04-2-SV	ug/l		110	10 U		11
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/l		110	10 U		11
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/l		110	10 U		11
105-60-2	Caprolactam	OLM04-2-SV	ug/l		110	10 U		11
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/l		110	0.4		1 11
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/l		110	1		11
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/l		11 U.	1 1		11
88-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/i		110			11
95-95-4	2,4,5-Trichlorophenol		ug/ł		27 U	25 U		27
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/l		11 U	10 U		11

	· · · · · · · · · · · · · · · · · · ·		Sample Code	FB-110501-MW	FB-110501-SD	FB-110601-SD	FB-110701-MW	FB-110701-SD
			Sample Name					
0			Sample Date	11/5/2001	11/5/2001	11/6/2001	11/7/2001	11/7/2001
Cas Rn	Chemical Name							· · · · · · · · · · · · · · · · · · ·
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/ł		11 U	10 U		11 U
88-74-4	2-Nitroaniline	OLM04-2-SV	ug/l		27 U	· 25 U		27 U
131-11-3	Dimethylphthalate	OLM04-2-SV	ug/l		11	10 U		11 U
606-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/l		11 U	. 10 U	1	11 U
208-96-8	Acenaphthylene	OLM04-2-SV	ug/l		11 U	10 U	· ·	. 11 U
99-09-2	3-Nitroaniline	OLM04-2-SV	ug/l	{ {	27 U	25 U	{ . {	· 27 U
83-32-9	Acenaphthene	OLM04-2-SV	ug/l		11 U	10 U		11 U
3-SV-2-w	Created by SUPER on 08/03/2001							
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/i		27 U	25 U		27 UJ
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/i	} }	27 U	25 U		27 Ú
132-64-9	Dibenzofuran	OLM04-2-SV	ug/l		11 U	10 U		11 U
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/i) ·]	11)	10 U	1 . 1	11U
84-66-2	Diethylphthalate	OLM04-2-SV	ug/l		11 U	10 U		11 U
86-73-7	Fluorene	OLM04-2-SV	ug/l		11 U	10 U		11 U
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/l		11 U	10 U		11 U
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/i		27 U	25 U	} }	27 U
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/l	1 1	27 U	25 U	1	27 U.
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/L.		110	10 U		11 U
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/l		11 U	10 U		11 U
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/l	1 1	11 U	10U	1. 1	110
1912-24-9	Atrazine	OLM04-2-SV	ug/l		11 UJ			11 U
87-86-5	Pentachlorophenol	OLM04-2-SV	ug/l		27 U	25 U		27 U
85-01-8	Phenanthrene	OLM04-2-SV	ug/l		110	10 U		11 U
120-12-7	Anthracene	OLM04-2-SV	ug/l		11 U	10 U		11 U
86-74-8	Carbazole	OLM04-2-SV	ug/l		110	10 U		110
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/l		110	10 U		11 U
206-44-0	Fluoranthene	OLM04-2-SV	ug/l		110	10 U	1. 1	110
129-00-0	Pyrene	OLM04-2-SV	ug/l		110	10 U		.11 U
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/l	· · ·	110	10 U		0.2 J
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/l		110	1010		110
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/l		110	10 U		110
218-01-9	Chrysene	OLM04-2-SV	ug/l		110	10 U		11/U
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/l		0.9 J	11		12
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/l		11 U.	1 1	1 1	0.3 J
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/l		110	10 U		110
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/l		110	(10 U	1	110
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/l		110	10 U		11/U
193-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/i		11 U	10 U		110

		х. Т	Sample Code	FB-110501-MW	FB-110501-SD	FB-110601-SD	FB-110701-MW	FB-110701-SD
			Sample Name					
0 0		· · · · · · · ·	Sample Date	11/5/2001	11/5/2001	11/6/2001	11/7/2001	11/7/2001
Cas Rn	Chemical Name	Analytic Method				40101	ļ	
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/l		11 U	10 U		11 U
191-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/l		11 U	10 U		11 U
4-P/PCBs-w	Created by SUPER on 08/03/2001		•					
319-84-6	alpha-BHC	OLM04-2-PP	ug/l		0.05 U	0.05 U		0.05 U
319-85-7	beta-BHC	OLM04-2-PP	ug/l		0.05 U	0.05 U		0.05 U
319-86-8	delta-BHC	OLM04-2-PP	ug/l	· · ·	0.05 U	0.05 U		0.05 U
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/l		0.05 U	0.05 U		0.05 U
76-44-8	Heptachlor	OLM04-2-PP	ug/l		0.05 U	0.05 U		0.05 U
309-00-2	Aldrin	OLM04-2-PP	ug/l		0.05 U	0.05 U		0.05 U
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/l		0.05 U	0.05 U		0.05 U
959-98-8	Endosulfan I	OLM04-2-PP	ug/i		0.05 U	0.05 U		0.05 U
60-57-1	Dieldrin	OLM04-2-PP	ug/l		0.1	0.1 U		0.1
72-55-9	4,4'-DDE	OLM04-2-PP	ug/l		0.1U	0.1 U		0.1
72-20-8	Endrin	OLM04-2-PP	ug/l		0.1 U	0.1 U		0.1 U
33213-65-9	Endosulfan II	OLM04-2-PP	√ug/l		0.1 U	0.1 U		0.1 U
72-54-8	4,4'-DDD	OLM04-2-PP	ug/l		0.1 U	0.1 U		0.1 U
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/l		0.1 U	0.1 U		· 0.1 U
50-29-3	4,4'-DDT	OLM04-2-PP	ug/ł		0.1	0.1 U		0.1 U
72-43-5	Methoxychlor	OLM04-2-PP	ug/l	1 . 1	0.5 U	0.5 U		0.5 L
53494-70-5	Endrin ketone	OLM04-2-PP	ug/l		0.1 U	0.1 U		0.1 L
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/l	1 1	0.1	0.1 U		0.1
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/l		0.05 U	0.05 U		0.05
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/l		0.05 U	0.05 U		· 0.05 L
8001-35-2	Toxaphene	OLM04-2-PP	ug/l		50	· 5U		51
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/l		10	1 U		1
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/I		2 U	20		21
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/ł		10	1		1
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/l		10	10		1
12672-29-6	Aroclor-1248	OLM04-2-PP	ug/ł	· •	10	10		1
11097-69-1	Arocior-1254	OLM04-2-PP	ug/l		· 1 U	10	· · ·	1
11096-82-5	Aroclor-1260	OLM04-2-PP	ug/l		1 U	1 U		10
5-Inorg-w	Created by SUPER on 08/03/2001							
7429-90-5	Aluminum	ILM04-1-M	ug/l	j i	106 B	98.7 B		74.6 8
7440-36-0	Antimony	ILM04-1-M	ug/l	4	2.5 U	2.5 U		2.5
7440-38-2	Arsenic	ILM04-1-M	ug/l		1.8 U	1.8 U		1.8 U
7440-39-3	Barium	ILM04-1-M	ug/l	1	1.2 U	1.80 1.2U		1.2
7440-39-3	Beryllium	ILM04-1-M	ug/l		0.3 U	0.3 U		0.3 L

¢,

	· · · · · · · · · · · · · · · · · · ·				Sample Code	FB-110501-MW	FB-110501-SD	FB-110601-SD	FB-110701-MW	FB-110701-SD
ł					Sample Name		1			
1					Sample Date	11/5/2001	11/5/2001	11/6/2001	11/7/2001	11/7/2001
Cas Rn	Chemical Name			Analytic Method	Unit \\					
7440-43-9	Cadmium			ILM04-1-M	ug/l		0.4 U	0.4 U		0.4 U
7440-70-2	Calcium		-	ILM04-1-M	ug/l		460 U	460 U		460 U
7440-47-3	Chromium			ILM04-1-M	ug/I		0.5 U	0.5 U		0.5 U
7440-48-4	Cobalt			1LM04-1-M	ug/l		10	1 U		. 1 U
7440-50-8	Copper			ILM04-1-M	ug/I		1.5 U	1.5 U		1.5 U
7439-89-6	Iron			ILM04-1-M	ug/l	·	19.4 U	19.4 U		19.4 U
7439-92-1	Lead			ILM04-1-M	ug/l		1.9 UJ	1.9 UJ	[1.9 U
7439-95-4	Magnesium			ILM04-1-M	ug/l		34.4 U	34,4 U		34.4 U
7439-96-5	Manganese			1LM04-1-M	ug/)		1.5 U	1.5 U	} }	1.5 UJ
7439-97-6	Mercury	. •	· ·	ILM04-1-M	ug/l		0.1 U	0.1 U		0.1 UJ
7440-02-0	Nickel			ILM04-1-M	ug/l		0.9 U	0.9 U		0.9 U
7440-09-7	Potassium			ILM04-1-M	ug/l	1	135 B	160 B		127 B
7782-49-2	Selenium			ILM04-1-M	ug/l	•	2.2 U	2.2 U		2.2 UJ
7440-22-4	Silver			ILM04-1-M	ug/l	2	0.9 U	0.9 U		. 0.9 U
7440-23-5	Sodium			ILM04-1-M	ug/i	· .	819 B	806 B		461 B
7440-28-0	Thallium			ILM04-1-M	ug/l		3.5 U	3.5 U		3.5 U
7440-62-2	Vanadium	•		ILM04-1-M	ug/l	· ·	1.1 U	1.1 U		1.1
7440-66-6	Zinc			ILM04-1-M	ug/l	1	8.5 U	8.5 U		8.5 U
57-12-5	Cyanide			ILM04-1-CN	ug/l		1.9 U	2.1 B		1,9 U

· · · · · · · · · · · · · · · · · · ·		·	Sample Code Sample Name	FB-110801-MV	v	FB-040202-SB	FB-040302-SB	FB-040402-SB
			Sample Date	11/8/2001		4/2/2002	4/3/2002	4/4/2002
Cas Rn	Chemical Name	Analytic Method	•					
(Group Code)	(Group Description)							
1-VOA-w	Created by SUPER on 08/03/2001				1			
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/i	Analyzed for		10 UJ	10 UJ	10 UJ
74-87-3	Chloromethane	OLM04-2-V	ug/i	Metals and		10 U	10 U	10 U
75-01-4	Vinyl Chloride	OLM04-2-V	ug/l	Chrom-6 only		10 U	10 U	. 10 U
74-83-9	Bromomethane	OLM04-2-V	ug/l			10 U	10 U	. 10 U
75-00-3	Chloroethane	OLM04-2-V	ug/l			10 U	10 U	10 U
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/l			10 UJ	10 UJ	10 UJ
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/l			10 U	10 U	10 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/l			10 U	10 U	10 0
67-64-1	Acetone	OLM04-2-V	ug/l			57 J	34 J	310 JD
75-15-0	Carbon Disulfide	OLM04-2-V	ug/l			10 U	10 U	10 U
79-20-9	Methyl Acetate	OLM04-2-V	ug/ł			10 U	10 U	10 U
75-09-2	Methylene Chloride	OLM04-2-V	ug/l			1 J	1 J	1.J
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/i			10 U	10 U	10 U
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/l			10 U	10 U	10 U
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/l			10	10 U	100
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/l			10 U	10 U	10 U
78-93-3	2-Butanone	OLM04-2-V	ug/l			10 UJ	10 UJ	· 10 UJ
67-66-3	Chloroform	OLM04-2-V	ug/l		Į –	36	35	33
71-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/l			10 U	10 U	10 U
110-82-7	Cyclohexane	OLM04-2-V	ug/l			10 U	10 U	10 U
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/l			10 U	10 U	1010
71-43-2	Benzene	OLM04-2-V	ug/l	· ·		10 U	10 U	10 U
107-06-2	1.2-Dichloroethane	OLM04-2-V	ug/l			10 U	10 U	10 0
79-01-6	Trichloroethene	OLM04-2-V	ug/l			10 U	10 U	1010
108-87-2	Metylcyclohexane	OLM04-2-V	ug/l			10 U	10 U	10 U
78-87-5	1,2-Dichloropropane	OLM04-2-V	ug/l		l l	10 U	10 U	10 U
75-27-4	Bromodichloromethane	OLM04-2-V	ug/l			5 J	5 J	5 J
10061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/l			10 U	10 U	10 U
108-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/l			10 U	10 U	10 U
108-88-3	Toluene	OLM04-2-V	ug/l			1010	10 U	10 U
10061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/l		Ľ	10 U	10 U	10 U
79-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/l			10 U	10 U	10 U
127-18-4	Tetrachloroethene	OLM04-2-V	ug/l	-	1	10 U	10 U	10 U
591-78-6	2-Hexanone	OLM04-2-V	ug/l			10 UJ		10 U.
124-48-1	Dibromochloromethane	OLM04-2-V	ug/l			1010	10 03	10 U
106-93-4	1,2-Dibromoethane	OLM04-2-V	ug/l	and the second		10 U	10 U	10 U
108-90-7	Chlorobenzene	OLM04-2-V	ug/i		ļ	10 U	100	100

1/22/2003 Page6

 \mathbf{i}

	· · · · · · · · · · · · · · · · · · ·	- <u></u>	Sample Code	FB-110801-MW	Т	FB-040202-S	B T	FB-04030	2-SB	FE	3-040402-S	ΒĪ
	· · · ·	· · · · · · · ·	Sample Name		1		· {	-		1		
			Sample Date	11/8/2001		4/2/2002		4/3/200	2		4/4/2002	
Cas Rn	Chemical Name	Analytic Method	Unit \\	-			[[
100-41-4	Ethylbenzene	OLM04-2-V	ug/l		T	10	U		10 U	1	10	Ū
1330-20-7	Xylenes (total)	OLM04-2-V	ug/l		ł	10	υ		10 U		10	υ
100-42-5	Styrene	OLM04-2-V	ug/l			10	υ	•	10 U	1	10	υ
75-25-2	Bromoform -	OLM04-2-V	ug/l			10	υ		10 U	1	10	υ
98-82-8	Isopropylbenzene	OLM04-2-V	ug/l			10	υ		10 U	1	10	υ
79-34-5	1,1,2,2-Tetrachloroethane	OLM04-2-V	ug/l			- 10	υ		10 U		10	υ
541-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/l		ł	. 10		1	10 U		10	υ
106-46-7	1,4-Dichlorobenzene	OLM04-2-V	ug/l			10	υ		10 U		10	U
95-50-1	1,2-Dichlorobenzene	OLM04-2-V	ug/l		1	10	υ·		10 U	1	10	
96-12-8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/l		.	. 10	R		10 R		10	R
120-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/l		Í	10	υ		10 U		10	υ
2-SV-1-w	Created by SUPER on 08/03/2001									·		
100-52-7	Benzaldehyde	OLM04-2-SV	ug/l			· 10	UJ		10 U.	ı.	10	UJ
108-95-2	Phenol	OLM04-2-5V	ug/l		- {	10	บง		10U	(. 10	U
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/l			10	UJ		10 U		10	υ
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/l		- 1	10	UJ		10 U		10	υ
95-48-7	2-Methylphenol	OLM04-2-SV	ug/l			10	UJ	.	10 U		10	υ
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/i		1	10	UJ	· ·	10 U		10	U
98-86-2	Acetophenone	OLM04-2-SV	ug/i			10	UJ	· ·	10 U		10	U
106-44-5	4-Methylphenol	OLM04-2-SV	ug/l			10	UJ		10 U		10	U
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/l		.	- 10	UJ	· ·	10 U		10	U
67-72-1	Hexachloroethane	OLM04-2-SV	ug/l			10	UJ		10U		10	U
98-95-3	Nitrobenzene	OLM04-2-SV	ug/i			10	UJ		10 U	1.	-10	U
78-59-1	Isophorone	OLM04-2-SV	ug/l			10	UJ	1	10 U		10	υ
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/l			10	ใบม	ł	10 U		10	U.
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/l			10	UJ	· · ·	10 U	1	10	U
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/l	· ·		10	UJ		10 U		10	U U
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/l			10	UJ		10 0		10	U I
91-20-3	Naphthalene	OLM04-2-SV	ug/l			10	UJ		10 0		10	υ]υ
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/l			10	UJ		10 0		10	υ
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/l			10	UJ	{	10 0	1.	- 10	υ
105-60-2	Caprolactam	OLM04-2-SV	ug/l	1 1		2	J		13		10	υ
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/l		1		UJ		10 U	·	10	υ
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/l)		10	UJ	}	100		10	νU
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/l	1		10	UJ		10 U		10	υ
88-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/ſ	{ {		10	luj	1	100	ł	10	οlu
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/l	i. I		26	UJ		25 U		25	50
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/l	· · ·	•	10	UJ	1	10 0		10	νU

·····	· · · · · · · · · · · · · · · · · · ·		Sample Code	FB-110801-MW	FB-040202-SB	FB-040302-SB	FB-040402-SB
			Sample Name				
			Sample Date	11/8/2001	4/2/2002	4/3/2002	4/4/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\				
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/l		10 U.		10 U
88-74-4	2-Nitroaniline	OLM04-2-SV	ug/l		26 U.		25 U
131-11-3	Dimethylphthalate	OLM04-2-SV	ug/i		10 U.		10 U
606-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/t		10 U.		10 U
208-96-8	Acenaphthylene	OLM04-2-SV	ug/l		10 U.		10 U
99-09-2	3-Nitroaniline	OLM04-2-SV	ug/l	· · · · · ·	26 U.		25 U
83-32-9	Acenaphthene	OLM04-2-SV	ug/l		10 U.	10 U	10 U
3-SV-2-w	Created by SUPER on 08/03/20	01					
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/i		26 U.	ม 25 ป	· 25 U
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/l		26 U	J 25 U	25 U
132-64-9	Dibenzofuran	OLM04-2-SV	ug/l		10 U.	J 10 U	10 U
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/l		10 U	J 10 U	10 U
84-66-2	Diethylphthalate	OLM04-2-SV	ug/l		10 U	J 10 U	10 U
86-73-7	Fluorene	OLM04-2-SV	ug/l		10 U	J 10 U	10 U
7005-72-3	4-Chlorophenyl-phenylether	· OLM04-2-SV	ug/l		10 U	J 10 U	10 U
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/l		26 U	J 25 U	25 U
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/l		26 U		25 U
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/l		10 U		10 U
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/l		10 U	J 10 U	10 U
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/l		1010		10 U
1912-24-9	Atrazine	OLM04-2-SV	ug/l		10 U		10 U
87-86-5	Pentachlorophenol	OLM04-2-SV	ug/l		26 U		25 U
85-01-8	Phenanthrene	OLM04-2-SV	ug/l		10 U		10 U
120-12-7	Anthracene	OLM04-2-SV	ug/l	1	10 U		10 U
86-74-8	Carbazole	OLM04-2-SV	ug/l		10 U		10 U
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/i		10 U	J 10 U	10 U
206-44-0	Fluoranthene	OLM04-2-SV	ug/l		10 U		10 U
129-00-0	Pyrene	OLM04-2-SV	ug/l		10 U		10 U
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/l		10 0		100
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/i		10 U	1 1	10 U
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/l	· ·	10 U		10 U
218-01-9	Chrysene	OLM04-2-SV	ug/l		10 U		10 U
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/l		4 J	16	7 J
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/t		10 0		10 U
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/l		10 1	1 1	10 U
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/ł		10 L		10 0
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/i	1	101		10 U
193-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/l	.	10 L		10 U

1/22/2003 Page8

			Sample Code	FB-110801-MW	FB-040202-SB	FB-040302-SB	FB-040402-SB
			Sample Name				
			Sample Date	11/8/2001	4/2/2002	4/3/2002	4/4/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\				•
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/l		10 UJ	10 U	10 U
191-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/l		_ 10 UJ	10 U	10 U
4-P/PCBs-w	Created by SUPER on 08/03/2001						
319-84-6	alpha-BHC	OLM04-2-PP	ug/l	{	0.05 UJ	0.05 U	0.05 U
319-85-7	beta-BHC	OLM04-2-PP	ug/l		0.05 UJ	0.05 U	0.05 U
319-86-8	delta-BHC	OLM04-2-PP	ug/l		0.05 UJ	0.05 U	0.05 U
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/l		0.05 UJ	0.05 U	0.05 U .
76-44-8	Heptachlor	OLM04-2-PP	ug/l		0.05 UJ	0.05 U	0.05 U
309-00-2	Aldrin	OLM04-2-PP	ug/l		0.05 UJ	0.05 U	0.05 U
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/l		0.05 UJ	0.05 U	0.05 U
959-98-8	Endosulfan I	OLM04-2-PP	ug/i	1	0.05 UJ	0.05 U	0.05 U
60-57-1	Dieldrin	OLM04-2-PP	ug/l		0.1 UJ	0.1 U	0.1U
72-55-9	4,4'-DDE	OLM04-2-PP	ug/l		0.1 UJ	0.1 U	0.1 U
72-20-8	Endrin	OLM04-2-PP	ug/l		0.1 UJ	0.1 U	0.1 U
33213-65-9	Endosulfan II	OLM04-2-PP	ug/l	·	0.1 UJ	0.1 U	0.1 U
72-54-8	4,4'-DDD	OLM04-2-PP	ug/l		0.1 UJ	0.1 U	0.1 U
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/l		0.1 UJ	0.1 U	<u>ט</u> 0.1
50-29-3	4,4'-DDT	OLM04-2-PP	ug/l		0.1 UJ	0.1U	0.1 U
72-43-5	Methoxychlor	OLM04-2-PP	ug/l		0.5 UJ	0.5 U	0.5 U
53494-70-5	Endrin ketone	OLM04-2-PP	ug/l		0.1 UJ	0.1 U	0.1 U
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/l		0.1 UJ	0.1	0.1 U
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/l		0.05 UJ	· 0.05 U	0.05 U
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/l	•	0.05 UJ	0.05 U	0.05 U
8001-35-2	Toxaphene	OLM04-2-PP	ug/l		5 U J	5 U	5 U
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/l		·] · 1]UJ	10	10
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/l		2 U J	20	20
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/l		1 1 1	10	10
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/l	· · ·	1 UJ	10	10
12672-29-6	Aroclor-1248	OLM04-2-PP	ug/l		1 UJ	10	1 · 1 U
11097-69-1	Aroclor-1254	OLM04-2-PP	ug/l		101	10	10
11096-82-5	Aroclor-1260	OLM04-2-PP	ug/l		0.018 UJ	1 U	· 1U
5-Inorg-w	Created by SUPER on 08/03/2001						
7429-90-5	Aluminum	`ILM04-1-M	ug/l	76.5 B	19.6 U	25.9 B	27.2 B
7440-36-0	Antimony	ILM04-1-M	ug/l	2.5 U	1	2.7 B	2.2 U
7440-38-2	Arsenic	ILM04-1-M	ug/l	1.8 U		2 U	2 U
7440-39-3	Barium	ILM04-1-M	ug/l	1.2 U		0.74 B	0.67 B
7440-41-7	Beryllium	ILM04-1-M	ug/l	·0.3 U		0.2 U	0.2 U

. .

.

Field Blanks for Data Usability

· ·			Sample Code	FB-110801-MW	FB-040202-SB	FB-040302-SB	FB-040402-SB
			Sample Name				
			Sample Date	11/8/2001	4/2/2002	4/3/2002	4/4/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\				
7440-43-9	Cadmium	ILM04-1-M	ug/l	0.4 U	0.4 U	. 0.4 U	0.4 U
7440-70-2	. Calcium	ILM04-1-M	ug/l	460 U	21 B	229 B	228 B
7440-47-3	Chromium	ILM04-1-M	ug/i	0.5 U	0.5 U	0.5 U	0.5
7440-48-4	Cobalt	ILM04-1-M	ug/l	1 U	0.7 U	0.7 U	0.7 U
7440-50-8	Copper	ILM04-1-M	ug/I	1.5 U	1 U	· 1U	10
7439-89-6	Iron	ILM04-1-M	ug/l	19.4 U	. 17.4 B	220	119
7439-92-1	Lead	ILM04-1-M	ug/l	1.9 U	1.1 U	1.1 U	1.1 U
7439-95-4	Magnesium	ILM04-1-M	ug/l	34.4 U	68.3 B	84.8 B	83 B
7439-96-5	Manganese	ILM04-1-M	ug/l	1.5 UJ	1.1 B	4 B	2 B
7439-97-6	Mercury	ILM04-1-M	ug/l	0.1 UJ	0.1 U	0.1 U	0.1U
7440-02-0	Nickel	ILM04-1-M	ug/l	0.9 U	0.9 U	0.9 U	U 9.0
7440-09-7	Potassium	ILM04-1-M	ug/l	139 B	132 U	132 U	_ 132 U
7782-49-2	Selenium	ILM04-1-M	ug/l	2.2 UJ	2.1 U	2.1 U	2.1 U
7440-22-4	Silver	ILM04-1-M	ug/l	0.9 U	0.78 B	1 B	0.54 B
7440-23-5	Sodium	ILM04-1-M	ug/l	781 B	158 U	250 B	196 B
7440-28-0	Thallium	ILM04-1-M	ug/l	3.5 U	2.2 U	2.2 U	2.2 U
7440-62-2	Van a dium	ILM04-1-M	ug/l	1.1 U	0.4 U	0.4 U	0.4 U
7440-66-6	Zinc	ILM04-1-M	ug/l	8.5 U	10.9 B	8.1 B	1.6 U
57-12-5	Cyanide	ILM04-1-CN	ug/l	1.9 U	2.1 B	3.3 B	2.9 B

<u></u>		· · · ·	Sample Code	FB-040502-SB	FB-040802-EN2	FB-040802-SB	FB-040802-TAP2	FB-040902-SB
			Sample Name					
	· · ·		Sample Date	4/5/2002	4/8/2002	4/8/2002	4/8/2002	4/10/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\					
(Group Code)	(Group Description)							
1-VOA-w	Created by SUPER on 08/03/2001		ĺ					
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/l	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
74-87-3	Chloromethane	OLM04-2-V	ug/l	· 10 U	10 UJ	10 UJ	10 UJ	10 UJ
75-01-4	Vinyl Chloride	OLM04-2-V	ug/i	10 U	10 U	10 U	. 10 U	10 U
74-83-9	Bromomelhane	OLM04-2-V	ug/l	10 년 .	10 U	10 U	10 U	10 U
75-00-3	Chloroethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/l	10 UJ	10 U	10 U	10 U	10 U
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U.	10 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/l	10 U.	10 U	10 U	10 U	10 U
67-64-1	Acetone	OLM04-2-V	ug/l	5 J	10	24	16	18
75-15-0	Carbon Disulfide	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
79-20-9	Methyl Acetate	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
75-09-2	Methylene Chloride	OLM04-2-V	ug/l	10 U	17	40 J	46 J	37 J
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	· 10 U
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U ⁻	· 10 U
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
78-93-3	2-Butanone	OLM04-2-V	ug/ł	10 UJ	10 U	10 U	10 U	10 U
67-66-3	Chloroform	OLM04-2-V	ug/l	31	36	10 U	4 J	10 U ·
71-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
110-82-7	Cyclohexane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	. 10 U
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
71-43-2	Benzene	OLM04-2-V	ug/l	10 U	10 U	10 U	100	10 U
107-06-2	1.2-Dichloroethane	OLM04-2-V	ug/l	10 U	1010	10 U	100	10 U
79-01-6	Trichloroethene	OLM04-2-V .	ug/l	10 U	10 U	10 U	10 U	10 U
108-87-2	Metylcyclohexane	OLM04-2-V	ug/i	10 U	10 U	10 U	10 U	10 U
78-87-5	1.2-Dichloropropane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
75-27-4	Bromodichloromethane	OLM04-2-V	ug/l	5 J	5 J	10 U	2 J	10 U
10061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	1010
108-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
108-88-3	Toluene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
10061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
79-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
127-18-4	Tetrachloroethene	OLM04-2-V	ug/i	10 U	10 U	10 U	10 U	10 U
591-78-6	2-Hexanone	OLM04-2-V	ug/l-^	10 UJ		10 U	10 U	10 U
124-48-1	Dibromochloromethane	OLM04-2-V	ug/l	10 0	10 U	10 U	10 U	10 U
106-93-4	1,2-Dibromoethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
108-90-7	Chlorobenzene	OLM04-2-V	ug/i	10 U	10 U	10 U	10 U	10 U

:

	· · · · · · · · · · · · · · · · · · ·		Sample Code	FB-040502-SB	FB-040802-EN2	FB-040802-SB	FB-040802-TAP2	FB-040902-SB
		·	Sample Name	1/7/0000			41010000	444.0400.000
Car Da	Objectional Name		Sample Date	4/5/2002	4/8/2002	4/8/2002	4/8/2002	4/10/2002
Cas Rn	Chemical Name	Analytic Method		40111		40111		40111
100-41-4 1330-20-7		OLM04-2-V	ug/l	1010	10 U	10 U	10 U	10 U
100-42-5	Xylenes (total)	OLM04-2-V	ug/i	10 U	10 U	10 U	10 U	10 U
	Styrene Deserver	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
75-25-2	Bromoform	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
98-82-8	Isopropylbenzene	OLM04-2-V	ug/i	10 U	10 U	10 U	10 U	10 U
79-34-5	1,1,2,2-Tetrachloroethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
541-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/l	100	10 U	10 U	10 U	10 U
106-46-7	1,4-Dichlorobenzene	OLM04-2-V	ug/ł	10 U	10 U	10 U	10 U	10 U
95-50-1	1,2-Dichlorobenzene	OLM04-2-V	ug/l	10 U	10 U	10 U	- 10 U	10 U
96-12-8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/l	10 R	10 R	10 R	10 R	10 R
120-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U	10 U
2-SV-1-w	Created by SUPER on 08/03/200)1						
100-52-7	Benzaldehyde	OLM04-2-SV	ug/l	10 U	· ·	6 J	10 U	12 U
108-95-2	Phenol	OLM04-2-SV	ug/l	10 U	· ·	10 U	10 R	12 U
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/l	. 10 U		10 U	10 R	12 U
95-48-7	2-Methylphenol	`OLM04-2-SV	ug/ì	10 U	}	10 U	10 R	12 U
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/l	10 UJ	· ·	10 U	10 U	12 U
98-86-2	Acetophenone	OLM04-2-SV	ug/l	10 U		3 J	10 U	- 12 U
106-44-5	4-Methylphenol	OLM04-2-SV	ug/l	10 U		10 U	10 R	12 U
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
67-72-1	Hexachloroethane	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
98-95-3	Nitrobenzene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
78-59-1	Isophorone	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/l	10 U		10 U	10 R	12 U
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/i	10 U		10 U	10 R	12 U
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/i	10 U		10 U	10 U	12 U
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/i	10 U		10 U	10 R	12 U
91-20-3	Naphthalene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/l	10 U		1010	100	12 U
105-60-2	Caprolactam	OLM04-2-SV	ug/l	5 J		10 U	10 U	12 U
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/l	10		10 U	10 O	120
91-57-6	2-Methylnaphthalene	OLM04-2-SV	-	1010		1010		12 U
77-47-4			. ug/i	10 U			100	12 U
88-06-2	Hexachlorocyclopentadiene	OLM04-2-SV	ug/l			10 U	1 1	1 1
95-95-4	2,4,6-Trichlorophenol	OLM04-2-SV	ug/i	10 U		10 U	10 R	12 U
	2,4,5-Trichlorophenol	OLM04-2-SV	ug/l	25 Ų		25 U	25 R	29 U
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U

۰.

			Sample Code	FB-040502-SB	FB-040802-EN2	FB-040802-SB	FB-040802-TAP2	FB-040902-SB
		5. 5	Sample Name					
			Sample Date	4/5/2002	4/8/2002	4/8/2002	4/8/2002	4/10/2002
Cas Rn	Chemical Name	Analytic Method	Unit.\\			· ·		F
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
88-74-4	2-Nitroaniline	OLM04-2-SV	ug/l	25 U		25 U	25 U	29 U
131-11-3	Dimethylphthalate	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
606-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/ł	10 U		10 U	10 U	12 U
208-96-8	Acenaphthylene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
99-09-2	3-Nitroaniline	OLM04-2-SV	ug/i	25 U		25 ∪	25 U	29 U
83-32-9	Acenaphthene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
Į			-					
3-SV-2-w	Created by SUPER on 08/03/2001				1	1 1		
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/l	25 UJ		25 U	25 R	29 U
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/l	25 U		25 U	25 R	29 U
132-64-9	Dibenzofuran	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/l	10 U	[[10 U	10 U	12 U
84-66-2	Diethylphthalate	OLM04-2-SV	ug/l	10 U		3 J	10 U	12 U
86-73-7	Fluorene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/l	25 U		🗠 25 U	25 U	· 29 U
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/l	25 U		25 U	25 R	29 U
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/l	10 U	1 1	10 U	10 U	12 U
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
1912-24-9	Atrazine	OLM04-2-SV	ug/l	10 0	• .	10 U	10 U	12 U
87-86-5	Pentachlorophenol	OLM04-2-SV	ug/l	25 U		25 U	25 R	29 U
85-01-8	Phenanthrene	OLM04-2-SV	ug/i	10 U		10 U	10 U	12 U
120-12-7	Anthracene	OLM04-2-SV	ug/l	10 U		- 10 U	10 U	12 U
86-74-8	Carbazole	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U ⁻
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/l	10 U		1 1 J	10 U	12 U
206-44-0	Fluoranthene	OLM04-2-SV	ug/l	1010		10 U	10 U	12 U
129-00-0	Pyrene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/l	1010	{ { .	10 U	10 U	12 U
218-01-9	Chrysene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/l	11	1	11	11.1	9 J
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/l	10 0	1	1010	10 U	12 U
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U '
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
193-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U

	· ·		Sample Code Sample Name	FB-040502-SB	FB-040802-EN2	FB-040802-SB	FB-040802-TAP2	FB-040902-SB
			Sample Date	4/5/2002	4/8/2002	4/8/2002	4/8/2002	4/10/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\					
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
191-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/l	10 U		10 U	10 U	12 U
4-P/PCBs-w	Created by SUPER on 08/03/2001							
319-84-6	alpha-BHC	OLM04-2-PP	ug/l	0.05 U		0.05 U	0.05 U	0.05 U
319-85-7	beta-BHC	OLM04-2-PP	ug/l	0.05 U		0.05 U	0.05 U	0.05 U
319-86-8	delta-BHC	OLM04-2-PP	ug/l	0.05 U		0.05 U	0.05 U	0.05 U
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/l	0.05 U		~ 0.05 U	0.05 U	0.05 U
76-44-8	Heptachlor	OLM04-2-PP	ug/l	0.05 U		0.05 U	0.05 U	0.05 U
309-00-2	Aldrin	OLM04-2-PP	ug/l	0.05 U	{	0.05 U	0.05 U	0.05 U
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/i	0.05 U		0.05 U	0.05 U	0.05 U
959-98-8	Endosulfan I	OLM04-2-PP	ug/l	0.05 U		0.05 U	0.05 U	0.05 U
60-57-1	Dieldrin	OLM04-2-PP	ug/l	0.1 U	1	0.1	0.1 U	0.1 U
72-55-9	4,4'-DDE	OLM04-2-PP	ug/l	0.1 U		0.1 U	0.1 U	0.1 U
72-20-8	Endrin	OLM04-2-PP	ug/l	0.1 U		0.1 U	0.1 U	0.1 U
33213-65-9	Endosulfan II	OLM04-2-PP	ug/i	0.1 U	· · · ·	0.1 U	0.1 U	0.1 U
72-54-8	4,4'-DDD	OLM04-2-PP	ug/l	0.1 U	1	0.1 U	0.1 U	0.1 U
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/l	0.1 U	1	0.1 U	0.1 U	0.1 U
50-29-3	4,4'-DDT	OLM04-2-PP	ug/l	0.1 U		0.1 U	0.1 U	0.1 U
72-43-5	Methoxychlor	OLM04-2-PP	ug/l	0.5 U		0.5 U	0.5 U	0.5 U
53494-70-5	Endrin ketone	OLM04-2-PP	ug/l	0.1 U		0.1 U	0.1 U	0.1 U
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/l	0.1 U		0.1 U	0.1 U	0.1
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/l	0.05 U		0.05 U	0.05 U	0.05 U
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/l	0.05 U		C 0.05 U	0.05 U	0.05
8001-35-2	Toxaphene	OLM04-2-PP	ug/l	50		50	50	510
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/l	1		10	10	1
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/l	20		20	20	21
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/l	10		110	10	1 11
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/i	110		111	10	111
12672-29-6	Aroclor-1248	OLM04-2-PP	ug/ł			10	10	1
11097-69-1	Aroclor-1254	OLM04-2-PP	ug/l	10		10	10	1
11096-82-5	Aroclor-1260	OLM04-2-PP	ug/l	1U	1	10	1 U	1
5-Inorg-w	Created by SUPER on 08/03/2001	I.						
7429-90-5	Aluminum	ILM04-1-M	ug/i	46.2 B		20.6 B	· 19.6 U	26.4
7440-36-0	Antimony	ILM04-1-M	ug/l	2.2 U		2.2 U	2.2 U	2.6
7440-38-2	Arsenic	ILM04-1-M	ug/i	2.2 U 2 U		2.20	2.20	2.0
7440-39-3	Barium	ILM04-1-M		1 B		0.5 B	43.7 B	2.8
7440-39-3	Beryllium	ILM04-1-M	ug/i ug/i	0.2 U		0.5 B	43.7 B 0.2 U	0.2 1

1/22/2003 Page14

. •

ſ <u> </u>	·····		Sample Code	FB-040502-SB	FB-040802-EN2	FB-040802-SB	FB-040802-TAP2	FB-040902-SB
			Sample Name		. · · · ·			
4		•	Sample Date	4/5/2002	4/8/2002	4/8/2002	4/8/2002	4/10/2002
Cas Rn	Chemical Name	Analytic Method	I Unit W		·			
7440-43-9	Cadmium	ILM04-1-M	ug/l	0.4 U	· · ·	0.4 U	0.4 U	0.4 U
7440-70-2	Calcium	ILM04-1-M	ug/i	225 B		19.4 U	92300	81.1 B
7440-47-3	Chromium	ILM04-1-M	ug/l	0.5 U		0.5 U	0.5 ∪	0.5 U
7440-48-4	Cobalt	ILM04-1-M	ug/l	0.7 U		0.7 U	0.7 U	0.7 U
7440-50-8	Copper	1LM04-1-M	ug/i	· 1U		10	10	10
7439-89-6	Iron	ILM04-1-M	ug/l	63.6 B		9.5 U	9.5 U	23.5 B
7439-92-1	Lead	ILM04-1-M	ug/l	1.2 B		1.1 U	1.1 U	1.1 U
7439-95-4	Magnesium	ILM04-1-M	ug/l	132 B		63.4 B	9770	76.8 B
7439-96-5	Manganese	ILM04-1-M	ug/l	1.8 B		0.3 U	0.51 B	0.8 B
7439-97-6	Mercury	ILM04-1-M	ug/l	0.1 U		0.1 U	0.1 U	. 0.1 U
7440-02-0	Nickel	ILM04-1-M	ug/i	0.9 U		0.9 U	0.9 U	0.9 U
7440-09-7	Potassium	ILM04-1-M	ug/l	132 U		132 U	3070 B	132 U
7782-49-2	Selenium	ILM04-1-M	ug/l	2.1 U		2.1 U	2.1 U	2.1 U
7440-22-4	Silver	ILM04-1-M	ug/l	0.5 U		0.5 U	0.5 U	0.5 U
7440-23-5	Sodium	ILM04-1-M	ug/l	158 U	. •	158 U	9030	158 U
7440-28-0	Thallium	ILM04-1-M	ug/l	2.2 U		2.2 U	2.2 U	2.2 U
7440-62-2	Vanadium	ILM04-1-M	ug/l	0.4 U		0.4 U	0.4 U	0.4 U
7440-66-6	Zinc	ILM04-1-M	ug/l	1.6 U		1.6 U	5.8 B	2.9 B
57-12-5	Cyanide	ILM04-1-CN	ug/l	1.2 B		2.6 B	2 B	0.6 U

Field Blanks for Data Usability

	·		Sample Code	FB-041002-SB	FB-041102-SB	FB-041202-SB	FB-042202-SB
			Sample Name				· i
			Sample Date	4/10/2002	4/11/2002	4/12/2002	4/22/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\				· · · · · · · · · · · · · · · · · · ·
(Group Code)	(Group Description)						
1-VOA-w	Created by SUPER on 08/03/2001						
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/i	10 UJ	10 UJ	10 UJ	10 U
74-87-3	Chloromethane	OLM04-2-V	ug/i	10 UJ	10 UJ	10 UJ	10 U
75-01-4	Vinyl Chloride	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
74-83-9	Bromomethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
75-00-3	Chloroethane	OLM04-2-V	ug/i	10 U	10 U	10 U	10 U
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/l	10 U	10 U	10 U	, 10 U
67-64-1	Acetone	OLM04-2-V	ug/l	16	4 J	3 J	10 UJ
75-15-0	Carbon Disulfide	OLM04-2-V	ug/l	10 U	· 10 U	10 U	10 U
79-20-9	Methyl Acetate	OLM04-2-V	ug/l	10U	10 U	10 U	10 U
75-09-2	Methylene Chloride	OLM04-2-V	ug/l	31 J	17	7 J	10 U
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/l	10 U	10 U	10 U	. 10 U
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
75-34-3	1 1-Dichloroethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
78-93-3	2-Butanone	OLM04-2-V	ug/l	10 U	10 U	10 U	_ 10 U
67-66-3	Chloroform	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
71-55-6 ·	1,1,1-Trichloroethane	OLM04-2-V	ug/i	10 U	10 U	10 U	10 U
110-82-7	Cyclohexane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/l	· 10 U	10 U	10 U	10 U
71-43-2	Benzene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
107-06-2	1,2-Dichloroethane	OLM04-2-V	ug/l	-10 U	10 U	5 J	10 U
79-01-6	Trichloroethene	, OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
108-87-2	Metylcyclohexane	OLM04-2-V	ug/l	- 10 U	10 U	10 U	2 J
78-87-5	1,2-Dichloropropane	-OLM04-2-V	ug/t	10 U	10 U.	10 U	10 U
75-27-4	Bromodichloromethane	OLM04-2-V	ug/l	10 U	100	10 U	10 0
10061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/ł	10 U	10 U	10 U	10 U
108-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/l	10 U	10 UJ	10 UJ	10 U
108-88-3	Toluene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
10061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
79-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/l	10 U .	10 U	10 U	10 U
127-18-4	Tetrachloroethene	OLM04-2-V	ug/l	10 U	10 U	1010	10 U
591-78-6	2-Hexanone	OLM04-2-V	ug/l	10 U	10 UJ		10 U
124-48-1	Dibromochloromethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
106-93-4	1,2-Dibromoethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
108-90-7	Chlorobenzene	OLM04-2-V	ug/i	10 U	10 U	10 U	10 U

١,

			Sample Code	FB-041002-SB	FB-041102-SB	FB-041202-SB	FB-042202-SB
			Sample Name				
			Sample Date	4/10/2002	4/11/2002	4/12/2002	· 4/22/2002
Cas Rn	Chemical Name	Analytic Method	the second se			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
100-41-4	Ethylbenzene		- ug/1	10 U	10 U	10 U	100
1330-20-7	Xylenes (total)	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
100-42-5	Styrene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
75-25-2	Bromoform	OLM04-2-V	ug/l	10 U	10 U	10 U] 10 U
98-82-8	Isopropylbenzene	OLM04-2-V	ug/i	10 U	10 U	· 10 U	10 U
79-34-5	1,1,2,2-Tetrachloroethane	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
541-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
106-46-7	1,4-Dichlorobenzene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
95-50-1	1,2-Dichlorobenzene	OLM04-2-V	ug/i	10 U	10 U	10 U	10 U
96-12-8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/ł	10 R	10 R	10 R	10 R
120-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/l	10 U	10 U	10 U	10 U
2-SV-1-w	Created by SUPER on 08/03/200	: 1					
100-52-7	Benzaldehyde	OLM04-2-SV	ug/i	11 U	10 UJ	10 U	10 U
108-95-2	Phenol	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
95-48-7	2-Methylphenol	OLM04-2-SV	ug/l	11 U	. 10 U	10 U	10 U
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	· ug/ł	. 11 U	10 UJ	10 U	10 UJ
98-86-2	Acetophenone	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
106-44-5	4-Methylphenol	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
67-72-1	Hexachloroethane	OLM04-2-SV	ug/I	11 U	10 U) 10 <u> </u> U	10 U
98-95-3	Nitrobenzene	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
78-59-1	Isophorone	OLM04-2-SV	ug/l	, 11 U.	10 U	10 U	10 U
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/l	11 U	- 10 U	10 U	10 U
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
91-20-3	Naphthalene	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/i	11 U	10 U	10 U	10 U
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/l	11U	10 U	10 U	10 U
105-60-2	Caprolactam	OLM04-2-SV	ug/i	11 U	4 J	4 J	- 3 J
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 U
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/l	11U	10 U	-10 U	10 U
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 UJ
88-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/l	. 11 U.	10 U	10 U	10 U
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/l	26 U	25 U	25 U	25 U
92-52-4	1,1'-Biphenyi	OLM04-2-SV	ug/i	11 U	10 U	10 U	10 U

Field Blanks for Data Usability

	· · · · · · · · ·		Sample Code	FB-041002-SB	FB-041102-SB	FB-041202-SB	FB-042202-SB
			Sample Name				
			Sample Date	4/10/2002	4/11/2002	4/12/2002	4/22/2002
Cas Rn	Chemical Name	Analytic Method	and the second se				
91-58-7	2-Chloronaphthalene	OLM04-2-SV	ug/i	11 U	. 10 U	10 U	10 U
88-74-4	2-Nitroaniline	OLM04-2-SV	ug/I	26 U	25 UJ	25 U	25 U
131-11-3	Dimethylphthalate	OLM04-2-SV	ug/i	· 11 U	10 U	10 U	10 U
606-20-2	2,6-Dinitrotoluene	OLM04-2-SV	ug/i	11 U	10 U	10 U	10 L
208-96-8	Acenaphthylene	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 L
99-09-2	3-Nitroaniline	OLM04-2-SV	ug/l	26 U	25 U	25 U	. 25 เ
83-32-9	Acenaphthene	OLM04-2-SV	ug/l	. 11 U	10 U	. 10 U	10 L
3-SV-2-w	Created by SUPER on 08/03/20	01					
51-28-5	2,4-Dinitrophenol	OLM04-2-SV	ug/l	26)U	25 UJ	25 U	25 เ
100-02-7	4-Nitrophenol	OLM04-2-SV	ug/l	26 U	25 U	25 U	25 เ
132-64-9	Dibenzofuran	OLM04-2-SV	ug/l	11 U	10 U	10 U	10 1
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV	ug/l	1 1 U	10 U	10 U	10
84-66-2	Diethylphthalate	OLM04-2-SV	ug/l	11U	10 U	10 U	2
86-73-7	Fluorene	OLM04-2-SV	ug/l	11U	100	1010	10
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV	ug/l	11 U	10 U	10 U	10
100-01-6	4-Nitroaniline	OLM04-2-SV	ug/l	26 U	25 U	25 U	25
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV	ug/l	26 U	25 U	25 U	25
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV	ug/l	110	10 U	10	10
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV	ug/l	11 U	10	10 U	10
118-74-1	Hexachlorobenzene	OLM04-2-SV	ug/i	11 U	10 U	10 U	-10
1912-24-9	Atrazine	OLM04-2-SV	ug/l	11 U	10 U	1010	10
87-86-5	Pentachlorophenol	OLM04-2-SV	ug/l	26 U	25 U	25 U	25
85-01-8	Phenanthrene	OLM04-2-SV	ug/l	11 U	10 U	1010	10
120-12-7	Anthracene	OLM04-2-SV	ug/l	11 U	10 U	10 U	10
86-74-8	Carbazole	OLM04-2-SV	ug/l	11 U	10 U	10 U	10
84-74-2	Di-n-butylphthalate	OLM04-2-SV	ug/l	1110	10 U	10 U	10
206-44-0	Fluoranthene	OLM04-2-SV	ug/l	11 U	10 U	10 U	10
129-00-0	Pyrene	OLM04-2-SV	ug/l	11 U	10 U	10 U	10
85-68-7	Butylbenzylphthalate	OLM04-2-SV	ug/l	11 U	10 U	1010	10
91-94-1	3.3'-Dichlorobenzidine	OLM04-2-SV	ug/t	11 U	10 U	10 U	10
56-55-3	Benzo(a)anthracene	OLM04-2-SV	ug/i	110	10 U	10 U	10
218-01-9	Chrysene	OLM04-2-SV	ug/l	11 U	10 U	10 0	10
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV	ug/l	110	51	2 J	26
117-84-0	Di-n-octylphthalate	OLM04-2-SV	ug/l	110	10 U	10 U	10
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV	ug/i	110	10 U	10 0	10
205-99-2	Benzo(k)fluoranthene	OLM04-2-SV		110	10 U	1010	10
150-32-8		OLM04-2-SV OLM04-2-SV	ug/l	110	1010	1010	10
193-39-5	Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	OLM04-2-SV OLM04-2-SV	ug/l ug/l	110	10 U	1010	10

Sample Code FB-041002-SB FB-041102-SB FB-041202-SB FB-042202-SB Sample Name 4/11/2002 Sample Date 4/10/2002 4/12/2002 4/22/2002 Cas Rn Chemical Name Analytic Method Unit \\ 53-70-3 Dibenz(a,h)anthracene 1010 OLM04-2-SV 11 U 10 U ug/l 10U 191-24-2 10 U Benzo(g,h,i)perylene OLM04-2-SV ug/I 11 U 10 U 10 U 4-P/PCBs-w Created by SUPER on 08/03/2001 319-84-6 alpha-BHC OLM04-2-PP 0.053U 0.052 U 0.053U 0.05 U ug/l 319-85-7 0.052 U 0.05 U beta-BHC 0.053 U 0.053U OLM04-2-PP ug/l 0.052 U 0.05U 319-86-8 0.053U 0.053U delta-BHC OLM04-2-PP ug/l 0.053 U 0.05U 58-89-9 0.052 U 0.053U gamma-BHC (Lindane) OLM04-2-PP ug/i 0.05 U 0.053U 0.052U 76-44-8 Heptachlor OLM04-2-PP ug/l 0.053U 309-00-2 0.052 U 0.053U 0.05 UJ Aldrin OLM04-2-PP ug/l 0.053 U 0.05U 1024-57-3 Heptachlor epoxide OLM04-2-PP 0.053U 0.052U 0.053 U ug/l 0.052U 0.05U 959-98-8 Endosulfan I OLM04-2-PP 0.053U 0.053U ug/l 0.1 U 0.1U 60-57-1 Dieldrin 0.11U 0.11 U OLM04-2-PP ug/l 72-55-9 4,4'-DDE OLM04-2-PP 0.11U 0.1U 0.11 0.1 UJ ug/l 72-20-8 Endrin 0.11U 0.1U 0.11U 0.1U OLM04-2-PP ug/l 0.1U 33213-65-9 Endosulfan II OLM04-2-PP ug/l 0.11 U 0.11 U 0.1U 0.1 U 72-54-8 4.4'-DDD OLM04-2-PP 0.11U 0.11U 0.1 U ug/l 1031-07-8 Endosulfan sulfate 0.1U 0.110 OLM04-2-PP 0.11 U 0.1U ug/l 0.1U 50-29-3 4,4'-DDT OLM04-2-PP 0.11 U 0.11 U 0.1 U ug/l 72-43-5 0.53U 0.52 U 0.53U 0.5U Methoxychlor OLM04-2-PP ug/l 0.1 53494-70-5 Endrin ketone OLM04-2-PP 0.11U 0.1U 0.11U ug/l 7421-93-4 Endrin aldehyde 0.11U 0.1U 0.11U 0.1U OLM04-2-PP ua/l 5103-71-9 alpha-Chlordane 0.053U 0.052 U 0.053U 0.05U OLM04-2-PP ug/l 5103-74-2 0.053U 0.052U 0.053U 0.05U gamma-Chlordane OLM04-2-PP ug/l 8001-35-2 OLM04-2-PP 5.3U 5.2U 5.3LU Toxaphene 5IU ug/l 12674-11-2 Aroclor-1016 OLM04-2-PP 1.1U 110 1.1U 1lu ug/l 11104-28-2 2.1U Aroclor-1221 OLM04-2-PP ug/l 2.1U 2.1U 2IU 11141-16-5 Aroclor-1232 1.1 U 1.1U OLM04-2-PP 11U ug/l 53469-21-9 Aroclor-1242 OLM04-2-PP ug/l 1.1 U 11U 1.1U 1**1**U 12672-29-6 Aroclor-1248 1.1U 1.1U OLM04-2-PP ug/l 11U 11097-69-1 1.1U Aroclor-1254 OLM04-2-PP ug/ł 1.1U 1lu 1**I**U 11096-82-5 1lu 1.1U Aroclor-1260 1.1U **1**1Ú OLM04-2-PP ug/l Created by SUPER on 08/03/2001 5-Inorg-w 7429-90-5 Aluminum ILM04-1-M 39.2 B 45.6 B 141 B 51.3 B ug/l 7440-36-0 2.2 U 2.2 U 2.2 U Antimony ILM04-1-M ug/l 3.8U 7440-38-2 Arsenic ILM04-1-M ug/l 210 210 210 310 2.8 B 0.88 B 1.6 B 7440-39-3 Barium ILM04-1-M 0.89 B ug/l 7440-41-7 0.2 U 0.2 U 0.2 U 0.3 U Beryllium ILM04-1-M ug/l

Field Blanks for Data Usability

						•	
			Sample Code	FB-041002-SB	FB-041102-SB	FB-041202-SB	FB-042202-SB
			Sample Name			· · · ·	
			Sample Date	4/10/2002	4/11/2002	4/12/2002	4/22/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\				
7440-43-9	Cadmium	ILM04-1-M	ug/l	0.4 U	0.4 U	0.4 U	0.5 U
7440-70-2	Calcium	ILM04-1-M <	ug/l	286 B	360 B	984 B	233 B
7440-47-3	Chromium	ILM04-1-M	ug/l	2 B	0.76 B	2.7 B	0.8 U
7440-48-4	Cobalt	ILM04-1-M	ug/l	0.7 ט	0.7 U	0.7 U	1.2 U
7440-50-8	Copper	ILM04-1-M	ug/l	1 U	1 U	1 U	1.4 U
7439-89-6	Iron	1LM04-1-M	ug/l	105	128	401	64.4 B
7439-92-1	Lead	. ILM04-1-M	ug/l	1.1 U	1.1 U	1.1 U	2.8 UJ
7439-95-4	Magnesium	ILM04-1-M	ug/l	86.5 B	99.1 B	, 182 B	24.8 U
7439-96-5	Manganese	ILM04-1-M	ug/l	2 B	1.8 B	9.7 B	1.6 B
7439-97-6	Mercury	ILM04-1-M	ug/l	0.1 U	0.1 U	0.1 U	0.1 U
7440-02-0	Nickel	1LM04-1-M	ug/l	0.9 U	0.9 U	U 9.0	1.7 U
7440-09-7	-Potassium	ILM04-1-M	ug/l	132 U	132 U	132 U	143 B
7782-49-2	Selenium	ILM04-1-M	ug/l	2.1 U	2.1 U	2.1 U	2.2 U.
7440-22-4	Silver	ILM04-1-M	ug/l	0.5 U	0.5	0.5	1.1U
7440-23-5	Sodium	ILM04-1-M	ug/l	158 U	205 B	158 U	622 B
7440-28-0	Thallium	1LM04-1-M	ug/i	· 2.2 U	2.2 U	2.2 U	3.5 U
7440-62-2	Vanadium	ILM04-1-M	ug/l	0.4 U	0.4 U	0.4 U	0.7 U
7440-66-6	Zinc	ILM04-1-M	ug/l	3.1 B	3.1 B	6 B	2.3 B
57-12-5	Cyanide	ILM04-1-CN	ug/l	0.66 B	U 0.0	0.78 B	0.7 U

r			Sample Code	FB-072502
			Sample Name	
			Sample Date	7/25/2002
Cas Rn	Chemical Name	Analytic Method		
(Group Code)	(Group Description)			
1-VOA-w	Created by SUPER on 08/03/2001			
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/l	Analyzed for
74-87-3	Chloromethane	OLM04-2-V	ug/l	Metals only
75-01-4	Vinyl Chloride	OLM04-2-V	ug/l	
74-83-9	Bromomethane	OLM04-2-V	ug/l	
75-00-3	Chloroethane	OLM04-2-V	ug/l	
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/i	1 . [
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/l	· ·
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ÖLM04-2-V	ug/i	1
67-64-1	Acetone	OLM04-2-V	ug/l	
75-15-0	Carbon Disulfide	OLM04-2-V	ug/l	} }
79-20-9	Methyl Acetate	OLM04-2-V	ug/l	
75-09-2	Methylene Chloride	OLM04-2-V	ug/l	
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/l	
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/l	
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/l	
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/i	
78-93-3	2-Butanone	OLM04-2-V	ug/l	
67-66-3	Chloroform	OLM04-2-V	ug/l -	
71-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/l	1
110-82-7	Cyclohexane	OLM04-2-V	ug/l	
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/l	{ }
71-43-2	Benzene	OLM04-2-V	ug/l	
107-06-2	1,2-Dichloroethane	OLM04-2-V	ug/l	1 1
79-01-6	Trichloroethene	OLM04-2-V	ug/l	
108-87-2	Metylcyclohexane	OLM04-2-V	ug/l	
78-87-5	1,2-Dichloropropane	OLM04-2-V	ug/i	
75-27-4	Bromodichloromethane	OLM04-2-V	ug/l	1
10061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/l	
108-10-1	4-Methyl-2-pentanone	OLM04-2-V	ug/l	
108-88-3	Toluene	OLM04-2-V	່ ug/l	{ · · }
10061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/l	
79-00-5	1,1,2-Trichloroethane	OLM04-2-V	ug/l	(
127-18-4	Tetrachloroethene	OLM04-2-V	ug/l	
591-78-6	2-Hexanone	OLM04-2-V	ug/l	1
124-48-1	Dibromochloromethane	OLM04-2-V	ug/l	1
106-93-4	1,2-Dibromoethane	OLM04-2-V	ug/l	
108-90-7	Chlorobenzene	OLM04-2-V	ug/l	

			Sample Code	FB-072502
		· ·	Sample Name	
			Sample Date	7/25/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\	
100-41-4	Ethylbenzene	OLM04-2-V	ug/l	
1330-20-7	Xylenes (total)	OLM04-2-V	ug/l	
100-42-5	Styrene	OLM04-2-V	ug/l	
75-25-2	Bromoform	OLM04-2-V	ug/l	
98-82-8	Isopropylbenzene	OLM04-2-V	ug/I	
79- 3 4-5	1,1,2,2-Tetrachloroethane	OLM04-2-V	ug/l	
541-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/l	
106-46-7	1,4-Dichlorobenzene	OLM04-2-V	ug/l	
95-50-1	1,2-Dichlorobenzene	OLM04-2-V	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/l	
120-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/l	
2-SV-1 <i>-</i> w	Created by SUPER on 08/03/2007	1		
100-52-7	Benzaldehyde	OLM04-2-SV	ug/l	
108-95-2	Phenol	OLM04-2-SV	ug/l	
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/l	
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/l	
95-48-7	2-Methylphenol	OLM04-2-SV	ug/l	
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/l	
98-86-2	Acetophenone	OLM04-2-SV	ug/l	
106-44-5	4-Methylphenol	OLM04-2-SV	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/l	
67-72-1	Hexachloroethane	OLM04-2-SV	ug/l	
98-95-3	Nitrobenzene	OLM04-2-SV	ug/i	
78-59-1	Isophorone	OLM04-2-SV	ug/l	
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/l	
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/l	-
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/i	
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/l	
91-20-3	Naphthalene	OLM04-2-SV	ug/l	
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/l	
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/l	
105-60-2	Caprolactam	OLM04-2-SV	ug/l	
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/l	
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/l	
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/l	
88-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/l	
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV	ug/l	
92-52-4	1,1'-Biphenyl	OLM04-2-SV	ug/l	ļ

		Sample Name	
· ·		Sample Date	7/25/2002
Chemical Name	Analytic Method	Unit \\	
2-Chloronaphthalene	OLM04-2-SV	ug/l	
2-Nitroaniline	OLM04-2-SV	ug/l	
Dimethylphthalate	OLM04-2-SV	ug/l	· · ·]
2,6-Dinitrotoluene	OLM04-2-SV	ug/l	
Acenaphthylene	OLM04-2-SV	ug/l	
3-Nitroaniline	OLM04-2-SV	ug/l	
Acenaphthene	OLM04-2-SV	ug/l	
Created by SUPER on 08/03/2001	-		
2,4-Dinitrophenol	OLM04-2-SV	ug/I.	
4-Nitrophenol	OLM04-2-SV	ug/l	
Dibenzofuran	OLM04-2-SV	ug/l	
2.4-Dinitrotoluene	OLM04-2-SV	ug/l	
Diethylphthalate	OLM04-2-SV	ug/l	
Fluorene	OLM04-2-SV	·ug/l	
4-Chlorophenyl-phenylether	OLM04-2-SV	ug/l	
	OLM04-2-SV	ug/l	
	OLM04-2-SV	• .	
· · · ·	OLM04-2-SV	-	
	OLM04-2-SV		
		•	
		•	
•		•	
		.	
	-	•	
		+	
		•	· .
		•	
	-		
•			
	-		
-		-	· ·
		. •	
		•	
	+ · ·	•	[
	2-Nitroaniline Dimethylphthalate 2,6-Dinitrotoluene Acenaphthylene 3-Nitroaniline Acenaphthene Created by SUPER on 08/03/2001 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate	2-NitroanilineOLM04-2-SVDimethylphthalateOLM04-2-SV2.6-DinitrotolueneOLM04-2-SVAcenaphthyleneOLM04-2-SV3-NitroanilineOLM04-2-SVAcenaphtheneOLM04-2-SVAcenaphtheneOLM04-2-SVAcenaphtheneOLM04-2-SV2.4-DinitrophenolOLM04-2-SV2.4-DinitrophenolOLM04-2-SVDibenzofuranOLM04-2-SV2.4-DinitrotolueneOLM04-2-SVDiethylphthalateOLM04-2-SVPiethylphthalateOLM04-2-SV4-Chlorophenyl-phenyletherOLM04-2-SV4-Chlorophenyl-phenyletherOLM04-2-SV4-Stromophenyl-phenyletherOLM04-2-SV4-Somophenyl-phenyletherOLM04-2-SV4-Stromophenyl-phenyletherOLM04-2-SV4-Bromophenyl-phenyletherOLM04-2-SV4-Bromophenyl-phenyletherOLM04-2-SVHexachlorobenzeneOLM04-2-SVAtrazineOLM04-2-SVPentachlorophenolOLM04-2-SVPhenanthreneOLM04-2-SVAnthraceneOLM04-2-SVDi-n-butylphthalateOLM04-2-SVPiuorantheneOLM04-2-SVButylbenzylphthalateOLM04-2-SVBenzo(a)anthraceneOLM04-2-SVbis(2-Ethylhexyl)phthalateOLM04-2-SVDi-n-octylphthalateOLM04-2-SVDi-n-octylphthalateOLM04-2-SVBenzo(b)fluorantheneOLM04-2-SVBenzo(b)fluorantheneOLM04-2-SVBenzo(k)fluorantheneOLM04-2-SVBenzo(k)fluorantheneOLM04-2-SV<	2-NitroanilineOLM04-2-SVug/lDimethylphthalateOLM04-2-SVug/l2.6-DinitrotolueneOLM04-2-SVug/lAcenaphthyleneOLM04-2-SVug/l3-NitroanilineOLM04-2-SVug/lAcenaphtheneOLM04-2-SVug/l2.4-DinitrophenolOLM04-2-SVug/l4-NitrophenolOLM04-2-SVug/l2.4-DinitrophenolOLM04-2-SVug/l2.4-DinitrophenolOLM04-2-SVug/l2.4-DinitrophenolOLM04-2-SVug/l2.4-DinitrotolueneOLM04-2-SVug/l2.4-Dinitrophenyl-phenyletherOLM04-2-SVug/l4-Chlorophenyl-phenyletherOLM04-2-SVug/l4-Chlorophenyl-phenyletherOLM04-2-SVug/l4-Stromophenyl-phenyletherOLM04-2-SVug/l4-Bromophenyl-phenyletherOLM04-2-SVug/l4-Bromophenyl-phenyletherOLM04-2-SVug/l4-Bromophenyl-phenyletherOLM04-2-SVug/l4-trazineOLM04-2-SVug/lAtrazineOLM04-2-SVug/lPhenanthreneOLM04-2-SVug/lPhenanthreneOLM04-2-SVug/lDi-n-butylphthalateOLM04-2-SVug/lDi-n-butylphthalateOLM04-2-SVug/lButybenzylphthalateOLM04-2-SVug/lButybenzylphthalateOLM04-2-SVug/lBenzo(a)anthraceneOLM04-2-SVug/lBenzo(a)anthraceneOLM04-2-SVug/lBenzo(b)fluorantheneOLM04-2-SVug/l

			Sample Code	FB-072502
			.Sample Name	
			Sample Date	7/25/2002
Cas Rn	Chemical Name	Analytic Method		
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/l	
191-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/l	
4-P/PCBs-w	Created by SUPER on 08/03/2001		• •	
319-84-6	alpha-BHC	OLM04-2-PP	ug/l	
319-85-7	beta-BHC	OLM04-2-PP	ug/l	
319-86-8	delta-BHC	OLM04-2-PP	ug/l	
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/l	
76-44-8	Heptachlor	OLM04-2-PP	ug/l	
309-00-2	Aldrin	OLM04-2-PP	ug/l	
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/i	
959-98-8	Endosulfan I	OLM04-2-PP	ug/l	
60-57-1	Dieldrin	OLM04-2-PP	ug/l	
72-55-9	4,4'-DDE	OLM04-2-PP	ug/l	
72-20-8	Endrin	OLM04-2-PP	ug/I	
33213-65-9	Endosulfan II	OLM04-2-PP	ug/l	
72-54-8	4,4'-DDD	OLM04-2-PP	ug/i	
1031-07-8	Endosulfan sulfate	OLM04-2-PP.	ug/ł	
50-29-3	4,4'-DDT	OLM04-2-PP	ug/l	
72-43-5	Methoxychlor	OLM04-2-PP	ug/l	
53494-70-5	Endrin ketone	OLM04-2-PP	ug/l	
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/l	
5103-71-9	alpha-Chiordane	OLM04-2-PP	ug/l	
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/l	
8001-35-2	Toxaphene	OLM04-2-PP	ug/l	
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/l	
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/l	
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/l	
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/l	
12672-29-6	Aroclor-1248	OLM04-2-PP	ug/l	
11097-69-1	Aroclor-1254	OLM04-2-PP	ug/l	
11096-82-5	Aroclor-1260	OLM04-2-PP	ug/l	
5-Inorg-w	Created by SUPER on 08/03/2001			
7429-90-5	Aluminum	ILM04-1-M	ug/l	57.7 L
7440-36-0	Antimony	ILM04-1-M	ug/l	1.6 L
7440-38-2	Arsenic	ILM04-1-M	ug/l	1.3
7440-39-3	Barium	ILM04-1-M	ug/l	1.7 6
7440-41-7	Beryllium	ILM04-1-M	ug/l	0.77 E

				Sample Code	FB-072502
	÷	· · ·	•	Sample Name	
	. •		,	Sample Date	7/25/2002
Cas Rn	Chemical Name		Analytic Method	Unit \\	
7440-43-9	Cadmium	· · ·	ILM04-1-M	ug/l	0.20
7440-70-2	Calcium	· .	ILM04-1-M	ug/l	11.2 U
7440-47-3	Chromium		ILM04-1-M	ug/i	0.6
7440-48-4	Cobalt		ILM04-1-M	ug/l	0.4 U
7440-50-8	Copper		ILM04-1-M	ug/l	0.6
7439-89-6	Iron		ILM04-1-M	ug/i	8.7 U
7439-92-1	Lead		ILM04-1-M	ug/l	0.73 B
7439-95-4	Magnesium		ILM04-1-M	ug/l	60
7439-96-5	Manganese		ILM04-1-M	ug/l	0.5 U
7439-97-6	Mercury		ILM04-1-M	ug/l	0.1
7440-02-0	Nickel		ILM04-1-M	ug/l	0.92 B
7440-09-7	Potassium	~	ILM04-1-M	ug/l	24.2 U
7782-49-2	Selenium		ILM04-1-M	ug/l	2.9.0
7440-22-4	Silver		ILM04-1-M	ug/l	0.7 U
7440-23-5	Sodium		ILM04-1-M	ug/l	152 U
7440-28-0	Thallium		ILM04-1-M	-	2.6 U
7440-62-2	Vanadium		ILM04-1-M	ug/l	-
7440-66-6	Zinc		ILM04-1-M	ug/i	0.66 B
57-12-5	Cyanide		ILM04-1-M	ug/l ug/l	0.7 U 1.5 U

, 	······································		Sample Code	TB-051402	TB-051502	TB-051602	TB-052102	TB-052202	TB-052302
			Sample Name						
			Sample Date	5/14/2002	5/15/2002	5/16/2002	5/21/2002	5/22/2002	5/23/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\					·····	
(Group Code)	(Group Description)								
1-LCVOANew	50 Analytes Method Code OLC03-2-V								
75-71-8	Dichlorodifluoromethane	OLC03-2-V	ug/l	0.5 U					
74-87-3	Chloromethane	OLC03-2-V	ug/l	0.5 U					
75-01-4	Vinyl Chloride	OLC03-2-V	ug/l	0.5 U					
74-83-9	Bromomethane	OLC03-2-V	ug/l	0.5 U					
75-00-3	Chloroethane	OLC03-2-V	ug/l	0.5 U					
75-69-4	Trichlorofluoromethane	OLC03-2-V	ug/I	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 U	, 0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLC03-2-V	ug/l	0.5 U					
67-64-1	Acetone	OLC03-2-V	ug/l	· 5U	5 ບ	5 U	5 U	50	5 U
75-15-0	Carbon Disulfide	OLC03-2-V	ug/l	0.5 U					
79-20-9	Methyl Acetate	OLC03-2-V	ug/l	0.5 R	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	OLC03-2-V	ug/i	0.5 U	0.17 J	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	OLC03-2-V	ug/l	0.5 U					
1634-04-4	Methyl Tert-Butyl Ether	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
75-34-3	1,1-Dichloroethane	OLC03-2-V	ug/l	0.5 U					
156-59-2	cis-1,2-Dichloroethene	OLC03-2-V	ug/i	0.5 U					
78-93-3	2-Butanone	OLC03-2-V	ug/l	5 U	5 U	5 U	5 U	5 U	5 U
74-97-5	Bromochloromethane	OLC03-2-V	ug/l	0.5 U					
67-66-3	Chloroform	OLC03-2-V	ug/ł	0.5 U	0.5 U	0.5 U	0.64 J	0.45 J	0.5 U
71-55-6	1,1,1-Trichloroethane	OLC03-2-V	ug/l	0.5 U					
110-82-7	Cyclohexane	OLC03-2-V	ug/l	0.5 U					
56-23-5	Carbon Tetrachloride	OLC03-2-V	ug/i	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	OLC03-2-V	ug/i	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ
107-06-2	1,2-Dichloroethane	OLC03-2-V	ug/l	0.5 U					
79-01-6	Trichloroethene	OLC03-2-V	ug/i	0.5 U					
108-87-2	Metylcyclohexane	OLC03-2-V	∖ug/l	0.5 U	0.5	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	OLC03-2-V	ug/l	0.5 U					
75-27-4	Bromodichloromethane	OLC03-2-V	ug/l	0.5 U					
10061-01-5	cis-1,3-Dichloropropene	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	OLC03-2-V	ug/l	5 U	5 U	5 U	5 U	5 U	5 U
108-88-3	Toluene	OLC03-2-V	ug/l	0.5 U					
10061-02-6	trans-1,3-Dichloropropene	OLC03-2-V	ug/i	0.5U	0.5 U				
79-00-5	1,1,2-Trichloroethane	OLC03-2-V	ug/l	0.5 U					
127-18-4	Tetrachloroethene	OLC03-2-V	ug/l	0.5 U					
591-78-6	2-Hexanone	OLC03-2-V	ug/l	5 U	50	5 U	5 U	5 UJ	5 ບ ງ
124-48-1	Dibromochloromethane	OLC03-2-V	ug/l	0.5 U					
106-93-4	1,2-Dibromoethane	OLC03-2-V	ug/l	0.5 U					

	· · · · · · · · · · · · · · · · · · ·		Sample Code	TB-051402	TB-051502	TB-051602	TB-052102	TB-052202	TB-052302
			Sample Name						
	·		Sample Date	5/14/2002	5/15/2002	5/16/2002	5/21/2002	5/22/2002	5/23/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\						
108-90-7	Chlorobenzene	OLC03-2-V	ug/l	0.5 U					
100-41-4	Ethylbenzene	OLC03-2-V	ug/l	0.5 U ·	0.5 U				
1330-20-7	Xylenes (total)	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	. 0.5 U
100-42-5	Styrene	OLC03-2-V	ug/l	0.5 U					
75-25-2	Bromoform	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
98-82-8	Isopropylbenzene	OLC03-2-V	ug/l	0.5 U					
79-34-5	1,1,2,2-Tetrachloroethane	OLC03-2-V	ug/l	0.5LU	0.5 U				
541-73-1	1,3-Dichlorobenzene	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	OLC03-2-V	ug/l	0.5 UJ		0.5 U	0.5 R	0.5 U	0.5 U

			Sample Code	TB-110601-SW
			Sample Name	
0 -			Sample Date	11/6/2001
Cas Rn	Chemical Name	Analytic Method	Unit \\	
(Group Code)	(Group Description)			
1-VOA-w	Created by SUPER on 08/03/2001			
75-71-8	Dichlorodifluoromethane	OLM04-2-V	ug/l	10 U
74-87-3	Chloromethane	OLM04-2-V	ug/l	10 U
75-01-4	Vinyl Chloride	OLM04-2-V	ug/l	10 U
74-83-9	Bromomethane	OLM04-2-V	ug/i	10 U
75-00-3	Chloroethane	OLM04-2-V	ug/l	10 U
75-69-4	Trichlorofluoromethane	OLM04-2-V	ug/l	10 0
75-35-4	1,1-Dichloroethene	OLM04-2-V	ug/l	10 0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLM04-2-V	ug/i	10 0
67-64-1	Acetone	OLM04-2-V	ug/l	32
75-15-0	Carbon Disulfide	OLM04-2-V	ug/i	10 U
79-20-9	Methyl Acetate	OLM04-2-V	ug/l	10 U
75-09-2	Methylene Chloride	OLM04-2-V	ug/l	10 U
156-60-5	trans-1,2-Dichloroethene	OLM04-2-V	ug/l	- 10 U
1634-04-4	Methyl Tert-Butyl Ether	OLM04-2-V	ug/l	10 0
75-34-3	1,1-Dichloroethane	OLM04-2-V	ug/l	10 U
156-59-2	cis-1,2-Dichloroethene	OLM04-2-V	ug/l	10 0
78-93-3	2-Butanone	OLM04-2-V	ug/l	10 U
6 7-66- 3	Chloroform	OLM04-2-V	ug/i	10 U
71-55-6	1,1,1-Trichloroethane	OLM04-2-V	ug/l	10 U
110-82-7	Cyclohexane	OLM04-2-V	ug/l	10 U
56-23-5	Carbon Tetrachloride	OLM04-2-V	ug/l	10 U
71-43-2	Benzene	OLM04-2-V	ug/i	10 0
107-06-2	1,2-Dichloroethane	OLM04-2-V	ug/i	-
79-01-6	Trichloroethene	OLM04-2-V	ug/i	10 U
108-87-2	Metylcyclohexane	OLM04-2-V	-	10 U
78-87-5	1,2-Dichloropropane	OLM04-2-V	ug/i	10 U
75-27-4	Bromodichloromethane	OLM04-2-V	ug/l	10 U
10061-01-5	cis-1,3-Dichloropropene	OLM04-2-V	ug/t .	10 U
108-10-1	4-Methyl-2-pentanone		ug/l	10 U
108-88-3	Toluene	OLM04-2-V	ug/l.	. 10 U
10061-02-6	trans-1,3-Dichloropropene	OLM04-2-V	ug/l	3 J
79-00-5	1,1,2-Trichloroethane		ug/l	10 U
127-18-4	Tetrachloroethene	OLM04-2-V	ug/t	10 U
591-78-6	2-Hexanone	OLM04-2-V	ug/l	10 U
124-48-1	Dibromochloromethane	OLM04-2-V	ug/l	10 U
106-93-4	1,2-Dibromoethane	OLM04-2-V	ug/l	10 U
108-93-4		OLM04-2-V	ug/l	10 U
100-30-1	Chlorobenzene	OLM04-2-V	ug/i	10 U

	······································		Sample Code	TB-110601-SW	ĺ
			Sample Name		
			Sample Date	11/6/2001	
Cas Rn	Chemical Name	Analytic Method	Unit \\		
100-41-4	Ethylbenzene	OLM04-2-V	ug/l	10 U	
1330-20-7	Xylenes (total)	OLM04-2-V	ug/l	10 U	
100-42-5	Styrene	OLM04-2-V	ug/l	10 U	
75-25-2 -	Bromoform	OLM04-2-V	ug/l	10 U	Ĺ
98-82-8	Isopropylbenzene	OLM04-2-V	ug/l	· 10 U	
79-34-5	1,1,2,2-Tetrachloroethane	OLM04-2-V	ug/l	10 U	
541-73-1	1,3-Dichlorobenzene	OLM04-2-V	ug/l	10 U	ļ
106-46-7	1,4-Dichlorobenzene	OLM04-2-V	ug/l	10 U	
95-50-1	1,2-Dichlorobenzene	OLM04-2-V	ug/l	10 U	
96-12-8	1,2-Dibromo-3-chloropropane	OLM04-2-V	ug/l	10 U	
120-82-1	1,2,4-Trichlorobenzene	OLM04-2-V	ug/i	10 U	

			Sample Code	FB102202-SB	FB102402-SB	WB101702	FB102302-SB	FB102302-SS
			Sample Name	MB0NG0	MB0NG2	MB0NL3	MB0NG1	MB0NG3
	· .		Sample Date	10/22/2002	10/24/2002	10/23/2002	10/23/2002	10/23/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	to	to	to	to	to
5-Inorg-w	Inorganic Analytes - ILM0							1
7429-90-5	Aluminum	ILM04-1-M	ug/l	10.4 U	47.3 B	16.3 B	10.4 U	10.4 U
7440-36-0	Antimony	1LM04-1-M	ug/l	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U
7440-38-2	Arsenic	ILM04-1-M	ug/l	2.9 U	2.9 U	3.2 BJ	2.9 U	· 2.9 U
7440-39-3	Barium	ILM04-1-M	ug/l	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
7440-41-7	Beryllium	ILM04-1-M	ug/l	0.1 U	0.35 B	0.33 B	0.1 U	0.1 U
7440-43-9	Cadmium	ILM04-1-M	ug/l	0.4 U	0.4 U	0.4U	••• 0.4 U	0.4 U
7440-70-2	Calcium	ILM04-1-M	ug/l	110 B	478 B	148 B	121 B	43.5 B
7440-47-3	Chromium	1LM04-1-M	ug/l ″	0.9U	0.9 U	U 0.9	0.9 U	0.9 U
7440-48-4	Cobalt	ILM04-1-M	ug/l	1 U	10	10	10	10
7440-50-8	Copper	ILM04-1-M	ug/l	1.5 B	1.3 U	1.3 U	1.5 B	1.3 U
7439-89-6	Iron	ILM04-1-M	ug/l	32.7 B	63.4 B	18.1 U	32 B	18.1 U
7439-92-1	Lead	ILM04-1-M	ug/l	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U
7439-95-4	Magnesium	ILM04-1-M	ug/l	7.5U	63.9 B	51.1 B	9.8 B	16.2 B
7439-96-5	Manganese.	ILM04-1-M	ug/l	2.3 B	0.3 U	0.3 U	0.72 B	0.3 U
7439-97-6	Mercury	ILM04-1-M	ug/l	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
7440-02-0	Nickel	ILM04-1-M	ug/l	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
7440-09-7	Potassium	ILM04-1-M	ug/l	27 B	37.7 B	16.6 U	41.3 B	41.1 B
7782-49-2	Selenium	1LM04-1-M	ug/l	3 UJ	3 UJ	3 01	3 U J	30
7440-22-4	Silver	ILM04-1-M	ug/l	1.3 B	1.1U	1.1 U	. 1.1 U	1.1 B
7440-23-5	Sodium	ILM04-1-M	ug/l	473 U	473 U	473 U	473 U	473 U
7440-28-0	Thallium	ILM04-1-M	ug/i	3.1 U	3.10	3.1U	3.1 U	3.1 U
7440-62-2	Vanadium	ILM04-1-M	ug/l	10	10	110	10	10
7440-66-6	Zinc	ILM04-1-M	ug/l	1.6 U	11.9 B	9.2 B	1.6 U	1.6 U
57-12-5	Cvanide	ILM04-1-CN	ug/l	2.4 B	3.3 B	3 B	2.4 B	2 B

r		Sample	Codel	FB-051402-GW	FB-051502-GW	FB-051602-GW	FB-052102-GW	FB-052202-GW	FB-052302-GW
•	• .	Sample		FD-031402-GW	FB-031302-044	10-031002-011	10-032102-011	10032202 000	
		Sample		5/14/2002	5/15/2002	5/16/2002	5/21/2002	5/22/2002	5/23/2002
Cas Rn	Chemical Name	Analytic Method Unit \\	Date	511412002	011312002		GENEGGE	5122.2002	
(Group Code)	(Group Description)								
1 LCVOANew	50 Analytes Method Code OLC03-2-V		- 1						
75-71-8	Dichlorodifluoromethane	OLC03-2-V ug/l		0.5 U	- 0.5U	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	OLC03-2-V ug/l	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	OLC03-2-V ug/l		0.5 U	0.5 ປ	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	OLC03-2-V ug/l]	0.5 U	0.5] U	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	OLC03-2-V ug/l	 	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	· 0.5 U
75-35-4	1,1-Dichloroethene	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	OLC03-2-V ug/l	· ·	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	OLC03-2-V ug/l		5 U	5 U	5 U	5 U	50	5 U
75-15-0	Carbon Disulfide	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	OLC03-2-V ug/i		0.5 R	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	OLC03-2-V ug/l		0.5 U	0.21 J	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1.2-Dichloroethene	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl-Tert-Butyl Ether	OLC03-2-V ug/l	1	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
75-34-3	1,1-Dichloroethane	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
156-59-2	cis-1,2-Dichloroethene	OLC03-2-V ug/ł		0.5 U	0.5 U	0.5 U	0.5 U	0.5U	0.5 U
78-93-3	2-Butanone	OLC03-2-V ug/l		5 U	5 U	. 5 U	5 U	5 U	5 U
74-97-5	Bromochloromethane	OLC03-2-V ug/ł		0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U
67-66-3	Chloroform	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.46 J	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
110-82-7	Cyclohexane	OLC03-2-V ug/l	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5
56-23-5	Carbon Tetrachloride	OLC03-2-V ug/i		0.5 U	0.5 U		0.5 U ^r	0.5 U	0.5 U
71-43-2	Benzene	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U.	0.5 U
107-06-2	1,2-Dichloroethane	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	OLC03-2-V ug/l		0.5 U	0.5 ປ	0.5 U	0.5 U	0.5 U	0.5 U
108-87-2	Metylcyclohexane	OLC03-2-V ug/l		0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	OLC03-2-V ug/I		0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U
75-27-4	Bromodichloromethane	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 UJ	0.5U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	OLC03-2-V ug/l		5 U	5 U	5 U	5 U	5 U	5 U
108-88-3	Toluene	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	OLC03-2-V ug/l		0.5 U	0.5 U		0.5 U	0.5 U	
79-00-5	1,1,2-Trichloroethane	OLC03-2-V ug/l		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
591-78-6	2-Hexanone	OLC03-2-V ug/l		50	50	5 U	5 U	5 U.	
124-48-1	Dibromochloromethane,	OLC03-2-V ug/l		0.5 U	0.5 U	·0.5 U	0.5 U	0.5 U	
106-93-4	1,2-Dibromoethane	OLC03-2-V ug/l		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

	· · · ·	····	Sample Code	FB-051402-GW	FB-051502-GW	F8-051602-GW	FB-052102-GW	FB-052202-GW	FB-052302-G
			Sample Name	· .	. '				
	-		Sample Date	5/14/2002	5/15/2002	5/16/2002	5/21/2002	5/22/2002	5/23/2002
Cas Rn	Chemical Name	Analytic Method							
108-90-7	Chlorobenzene	OLC03-2-V	'ug/l	0.5 U	0.5				
100-41-4	Ethylbenzene	OLC03-2-V	ug/l	0.5 U	0.5U	0.5 U	0.5 U	0.5 U	0.5
1330-20-7	Xylenes (total)	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5 U	, 0.5 UJ	0.5 U	0.5
100-42-5	Styrene	OLC03-2-V	ug/l	0.5 U	0.5				
75-25-2	Bromoform	OLC03-2-V	ug/l	• 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.
98-82-8	Isopropylbenzene	OLC03-2-V	ug/l	0.5 U	0.5 U	0.5U	0.5 U	0.5 U	0.5
79-34-5	1,1,2,2-Tetrachloroethane	OLC03-2-V	ug/l	0.5 U	0.				
541-73-1	1,3-Dichlorobenzene	OLC03-2-V	ug/l	0.5 U	0.9				
106-46-7	1,4-Dichlorobenzene	OLC03-2-V	ug/ł	0.5 U	0.5 U	0.5 U	0.5U.	0.5 U	0.
95-50-1	1,2-Dichlorobenzene	OLC03-2-V	ug/i	0.5 U	0.				
96-12-8	1,2-Dibromo-3-chloropropane	OLC03-2-V	ug/l	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.
120-82-1	 1,2,4-Trichlorobenzene 	OLC03-2-V	ug/l	0.5 U	0.				
87-61-6	1,2,3-Trichlorobenzene	OLC03-2-V	ug/l	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.
2-SV-1-w	Created by SUPER on 08/03/2001			· ·	х 				
100-52-7	Benzaldehyde	OLM04-2-SV	ug/l	10 U	10 U	0.9 J	10 U	10 U	1
108-95-2	Phenol	OLM04-2-SV	ug/l	10 U	1				
111-44-4	bis(2-Chloroethyl)ether	OLM04-2-SV	ug/i	. 10 U	10 U	10 U	10	10 U	1
95-57-8	2-Chlorophenol	OLM04-2-SV	ug/l	. 10 U	10 U	10 U	10 U	10 U	1
95-48-7	2-Methylphenol	OLM04-2-SV	ug/l	. 10 U	10 U	10 U	10 U	10 U	1
108-60-1	2,2'-oxybis(1-Chloropropane)	OLM04-2-SV	ug/l ·	10 U	10 UJ	10 UJ	10 UJ	10 U	1
98-86-2	Acetophenone	OLM04-2-SV	ug/l	10 U	1				
106-44-5	4-Methylphenol	OLM04-2-SV	ug/l	· 10 U	10 U	10 U	10 U	10 U	1
621-64-7	N-Nitroso-di-n-propylamine	OLM04-2-SV	ug/l	10/0	10 U	10 U	10 U	100	1
67-72-1	Hexachloroethane	OLM04-2-SV	ug/l	10 U	1				
98-95-3	Nitrobenzene	OLM04-2-SV	ug/l	10 U	1				
78-59-1	Isophorone	OLM04-2-SV	ug/l ·	10 U	1				
88-75-5	2-Nitrophenol	OLM04-2-SV	ug/ł	10 U	1 1				
105-67-9	2,4-Dimethylphenol	OLM04-2-SV	ug/l	10 U	10 U	10 U	10 U	100	1
111-91-1	bis(2-Chloroethoxy)methane	OLM04-2-SV	ug/l	10 U	1				
120-83-2	2,4-Dichlorophenol	OLM04-2-SV	ug/l	10 U	10 U	10 U	. 10 U	10 U	1
91-20-3	Naphthalene	OLM04-2-SV	ug/l	10 U	1				
106-47-8	4-Chloroaniline	OLM04-2-SV	ug/l	10 U		10 U	100	10 U	
87-68-3	Hexachlorobutadiene	OLM04-2-SV	ug/l	10 U		10 U	10 U	10 U	
105-60-2	Caprolactam	OLM04-2-SV	ug/l	1010	10 U	10 U	10/U	10 U	1
59-50-7	4-Chloro-3-methylphenol	OLM04-2-SV	ug/l	10 U	-	10 U	10 U	10 U	1
91-57-6	2-Methylnaphthalene	OLM04-2-SV	ug/l	10 U		10 U	10 U	1010	1
77-47-4	Hexachlorocyclopentadiene	OLM04-2-SV	ug/l	10 U		10 U	10 U	10 U	
88-06-2	2,4,6-Trichlorophenol	OLM04-2-SV	ug/l	10 U		1010	10 U	10 U	

1/22/2003 Page2

		Sample Code	FB-051402-GW	FB-051502-GW	FB-051602-GW	FB-052102-GW	FB-052202-GW	FB-052302-GW
		Sample Name					·	ļ
· ·		Sample Date	5/14/2002	5/15/2002	5/16/2002	5/21/2002	5/22/2002	5/23/2002
Cas Rn	Chemical Name	Analytic Method Unit \\			·		·	
95-95-4	2,4,5-Trichlorophenol	OLM04-2-SV ug/I	25 U	25 U	25 U	25 U	25 U	25 U
92-52-4	1,1'-Biphenyl	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
91-58-7	2-Chloronaphthalene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
88-74-4	2-Nitroaniline	OLM04-2-SV ug/l	25 U -	25 U	25 U	25 Ú	25 U	25 U
131-11-3	Dimethylphthalate	OLM04-2-SV ug/I	10 U	10 U	10 U	10 U	10 U	10 U
606-20-2	2,6-Dinitrotoluene	OLM04-2-SV ug/i	10 U	10 U	10 U	10 0	10 U	10 U
208-96-8	Acenaphthylene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
99-09-2	3-Nitroaniline	OLM04-2-SV ug/i	25 U	25 ∪	25 U	25 U	25 U	25 U
83-32-9	Acenaphthene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U [·]
3-\$V-2-₩	Created by SUPER on 08/03/2001	· · ·						
51-28-5	2,4-Dinitrophenol	OLM04-2-SV ug/l	25 U	25 U	25 U	25 U	25 U	25 U
100-02-7	4-Nitrophenol	OLM04-2-SV ug/l	25 U	25 U	25 U	25 U	25 U	25 U
132-64-9	Dibenzofuran	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
121-14-2	2,4-Dinitrotoluene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U ·	10 U	10 U
84-66-2	Diethylphthalate	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
86-73-7	Fluorene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
7005-72-3	4-Chlorophenyl-phenylether	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
100-01-6	4-Nitroaniline	OLM04-2-SV ug/i	25 U	25 U	25 U	25 U	25 U	25 U
534-52-1	4,6-Dinitro-2-methylphenol	OLM04-2-SV ug/l	25 U	25 U	25 U	25 U	25 U	25 U
86-30-6	N-Nitrosodiphenylamine	OLM04-2-SV ug/i	10 U	10 U	10 U	10 U	10 U	10 U
101-55-3	4-Bromophenyl-phenylether	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
118-74-1	Hexachlorobenzene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U.	1.0 U	10 U
1912-24-9	Atrazine	OLM04-2-SV ug/l	10 U ⁻	10 U	. 10 U	10U	10 U	10 U
87-86-5	Pentachlorophenol	OLM04-2-SV ug/l	25 U	25 UJ	25 UJ	25 UJ	25 U	25 Ü
85-01-8 ·	Phenanthrene	OLM04-2-SV ug/l	10 U	-10 U	10 U	10 U	10 U	10 U
120-12-7	Anthracene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
86-74-8	Carbazole	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
84-74-2	Di-n-butylphthalate	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
206-44-0	Fluoranthene	OLM04-2-SV ug/l	. 10 U	10 U	10 U	10 U	10 U	10 U
129-00-0	Pyrene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
85-68-7	Butylbenzylphthalate	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	· 10 U	10 U
91-94-1	3,3'-Dichlorobenzidine	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	· 10 U
56-55-3	Benzo(a)anthracene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
218-01-9	Chrysene	OLM04-2-SV ug/l	.10 U	10 U	10 U	10 U	10 U	10 U
117-81-7	bis(2-Ethylhexyl)phthalate	OLM04-2-SV ug/l	. 0.7 J	10 U	0.5 J	U.8 J	1 J	. 0.9 J
117-84-0	Di-n-octylphthalate	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
205-99-2	Benzo(b)fluoranthene	OLM04-2-SV ug/l	10 U	10 U	10 U	10 U	10 U	10 U
207-08-9	Benzo(k)fluoranthene	OLM04-2-SV · ug/l	10 U	10 U	10 U	10 U	10 U	10 U

			Sample Code	FB-051402-GW	FB-051502-GW	FB-051602-GW	FB-052102-GW	FB-052202-GW	FB-052302-G
			Sample Name					· · · · ·	1
			Sample Date	5/14/2002	5/15/2002	5/16/2002	5/21/2002	5/22/2002	5/23/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\						l
50-32-8	Benzo(a)pyrene	OLM04-2-SV	ug/l	10 U	10				
193-39-5	Indeno(1,2,3-cd)pyrene	OLM04-2-SV	ug/l	10 U	10				
53-70-3	Dibenz(a,h)anthracene	OLM04-2-SV	ug/ł	_ 10 U	10 U	10 U	10 U	10 U	10
191-24-2	Benzo(g,h,i)perylene	OLM04-2-SV	ug/l	10 U	10				
4-P/PCBs-w	Created by SUPER on 08/03/2001								
319-84-6	alpha-BHC	OLM04-2-PP	ug/l	0.05 U	0.05				
319-85-7	beta-BHC	OLM04-2-PP	ug/l	0.05 U	0.05				
319-86-8	delta-BHC	OLM04-2-PP	ug/l	0.05 U	0.05				
58-89-9	gamma-BHC (Lindane)	OLM04-2-PP	ug/l	0.05 U	0.05				
76-44-8	Heptachlor	OLM04-2-PP	ug/l	0.05 U	0.05				
309-00-2	Aldrin	OLM04-2-PP	ug/l	0.05 U	0.05				
1024-57-3	Heptachlor epoxide	OLM04-2-PP	ug/l	0.05 U	0.05				
959-98-8	Endosulfan I	OLM04-2-PP	ug/l	0.05 U	0.05				
60-57-1	Dieldrin	OLM04-2-PP	ug/l	0.1 U	0.1				
72-55-9	4,4'-DDE	OLM04-2-PP	ug/l	0.1 U	0.1	0.1 U	0.1 U	0.1 U	0.1
72-20-8	Endrin	OLM04-2-PP	ug/l	0.1	0.1	0.1	0.1 U	0.1U	0.1
33213-65-9	Endosulfan II	OLM04-2-PP	ug/l	0.1U	0.1 U	0.1 U	0.1 U	0.1 U	0.1
72-54-8	4,4'-DDD	OLM04-2-PP	ug/l	0.1 U	0.1				
1031-07-8	Endosulfan sulfate	OLM04-2-PP	ug/l	0.1 U	0.1				
50-29-3	4,4'-DDT	OLM04-2-PP	_ug/l	0.1	0.1U	0.1	0.1	0.1 U	0.1
72-43-5	Methoxychlor	OLM04-2-PP	ug/ł	0.5 U	0.5				
53494-70-5	Endrin ketone	OLM04-2-PP	ug/i	0.1 U	0.110	0.1 U	0.1 U	0.110	0.1
7421-93-4	Endrin aldehyde	OLM04-2-PP	ug/l	0.110	0.1 U	0.10	0.1 U	0.1 U	0.1
5103-71-9	alpha-Chlordane	OLM04-2-PP	ug/l	0.05 U	0.05				
5103-74-2	gamma-Chlordane	OLM04-2-PP	ug/l	0.05 U	0.05				
8001-35-2	Toxaphene	OLM04-2-PP	ug/l	50	5.0	50	50	50	10.0
12674-11-2	Aroclor-1016	OLM04-2-PP	ug/l	10	10	10	· 1U	10	
11104-28-2	Aroclor-1221	OLM04-2-PP	ug/l	2 U	210	2 U	20	20	
11141-16-5	Aroclor-1232	OLM04-2-PP	ug/l	10	10	10	10	10	
53469-21-9	Aroclor-1242	OLM04-2-PP	ug/l	· 1U	10	110	10	10	1 1
12672-29-6	Aroclor-1248	OLM04-2-PP	ug/l	10	10	10	10	10	
11097-69-1	Aroclor-1254	OLM04-2-PP	ug/l	10	10	10	10	10	4
11096-82-5	Aroclor-1254	OLM04-2-PP	ug/l	10	10	10	10	10	1 4
		CLW07-2-1 F	~ 3 .,						
5-Inorg-w	Created by SUPER on 08/03/2001.								
7429-90-5	Aluminum	ILM04-1-M	ug/l	83.5 B	· 79.9 B	18.5	26 B	239 R	293
7440-36-0	Antimony	ILM04-1-M	ug/l	3.8 U	3.0				
7440-38-2	Arsenic	ILM04-1-M	ug/l	30	30	30	30	30	

1/22/2003 Page4

[Sample Code	FB-051402-GW	FB-051502-GW	FB-051602-GW	FB-052102-GW	FB-052202-GW	FB-052302-GW
			Sample Name						
	· ·		Sample Date	5/14/2002	5/15/2002	5/16/2002	5/21/2002	5/22/2002	5/23/2002
Cas Rn	Chemical Name	Analytic Method	Unit \\					l	
7440-39-3	Barium	ILM04-1-M	ug/l	0.4 U	0.4 U	0.4 U	0.4 U	1.2 B	1:2 B
7440-41-7	Beryllium	ILM04-1-M	ug/l	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
7440-43-9	Cadmium	ILM04-1-M	ug/l	0.5 U	· 0.5 U	0.5U	0.5 U	0.5 U	0.5 U
7440-70-2	Calcium	ILM04-1-M	ug/l	334 B	95.7 U	95.7 U	95.7 U	1240 B	1390 B
7440-47-3	Chromium	1LM04-1-M	ug/l	0.8 U	0.8 U	U 8.0	0.8 U	2.7 B	1.8 B
7440-48-4	Cobalt	ILM04-1-M	uġ/l	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
7440-50-8	Copper	ILM04-1-M	ug/l	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
7439-89-6	Iron	ILM04-1-M	ug/l	23.5 B	17 U	17 U	17 U	79.7 B	91.2 B
7439-92-1	Lead	ILM04-1-M	ug/l	2.8 U	2.8 U	2.8 U	2.8 U	2.8 UJ	2.8 U.
7439-95-4	Magnesium	ILM04-1-M	ug/i	42.9 B	24.8 U	24.8 U	24.8 U	153 B	194 B
7439-96-5	Manganese	ILM04-1-M	ug/l	0.72 B	0.4 U	0.4 U	0.4 U	3 B	3 B
7439-97-6	Mercury	ILM04-1-M	ug/i	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	· 0.1 U
7440-02-0	Nickel	ILM04-1-M	ug/l	1.7 U	1.7 U	1.7 U	1.7 U	2 B	1.7 Ŭ
7440-09-7	Potassium	ILM04-1-M	ug/l	56.6 B	48.4 B	48.3 B	56.4 B	220 B	227 B
7782-49-2	Selenium	ILM04-1-M	ug/ł	2.2 U	2.2 UJ	2.2 U	2.2 ∪	2.7 B	2.2 U
7440-22-4	Silver	ILM04-1-M	ug/l	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
7440-23-5	Sodium	ILM04-1-M	ug/I	461 B	378 B	302 U	302 U	902 B	768 B
7440-28-0	Thallium	ILM04-1-M	ug/l	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U
7440-62-2	Vanadium	ILM04-1-M	ug/l	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
7440-66-6	Zinc	ILM04-1-M	ug/l	1.4 U ⁻	1.4 U	1.7 B	1.4 U	10.6 B	10.3 B
57-12-5	Cyanide	ILM04-1-CN	ug/l	1.2 B	1.9 B	0.7 U	1.2 B	1.8 BJ	2 B.