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Abstract

In this thesis we describe a number of contributions across the deeply interlinked domains

of ontology, text mining, and prognostic modelling. We explore and evaluate ontology

interoperability, and develop new methods for synonym expansion and negation detection

in biomedical text. In addition to evaluating these pieces of work individually, we use

them to form the basis of a text mining pipeline that can identify and phenotype patients

across a clinical text record, which is used to reveal hundreds of University Hospitals

Birmingham patients diagnosed with hypertrophic cardiomyopathy who are unknown

to the specialist clinic. The work culminates in the text mining results being used to

enable prognostic modelling of complication development in patients with hypertrophic

cardiomyopathy, finding that routine blood markers, in addition to already well known

variables, are powerful predictors.
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CHAPTER 1

INTRODUCTION

Every science produces information, and major tasks arise at the intersection between

the science of information and science producing information. This is particularly true of

biomedical science, whose data are particularly voluminous and are produced in multiple

contexts: for example, by literature, clinical practice, animal experimentation, and clini-

cal trials. Information is also produced in many modes: for example, strucured Electronic

Healthcare Record (EHR) data, imaging data, background knowledge in ontologies, and

clinical narrative text. These data are analysed, and the results in turn become informa-

tion, stored in databases and literature.

Importantly, these multi-modal data often concern the same entities, or entities that

are semantically linked. For example, a hospital’s EHR contains information, encoded into

various modalities, about patients that visit it. These include the diseases they suffer,

treatments they undergo, their socio-economic background, their genetics, and more. By

virtue of having this information about patients at the hospital, we also have information

about the entities associated with these patients; about the diseases, treatments, socio-

economic backgrounds, and genetics themselves. To integrate this information is to gain

the opportunity to create new knowledge that was not obtainable through analysis of

one source alone. In the biomedical, and particularly the medical field, this is important

because it can lead to direct impacts on patient outcomes.

EHRs are in ubiquitous use throughout all modern healthcare systems, both in primary
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and secondary care[24]. More recently, EHR data has become available to researchers

for both specific and general uses, as the potential value of the data they contain is

increasingly realised among clinical and research communities[153]. However, much of the

data generated by clinical practices are contained within unstructured resources. While

EHR systems contain structured information, medicine continues to be performed largely

via textual communication. Most information concerning the clinical practice is stored in

narratives, physician’s notes, MRI reports, paper-based prescriptions, and more[54, 127].

In this thesis, we explore several technologies along a pipeline for information extrac-

tion, integration, and analysis, with a focus on ontologies and biomedical text mining in

a medical setting. We describe, implement, and evaluate an ontology-based approach to

text-mining, and demonstrate that this can be used to enhance information stored in a

structured EHR system, and thereby enable analysis. In particular, we will explore the

following subjects. First, a literature review will discuss the major concepts and research

areas involved in the thesis: The Semantic Web and Computational Ontology, Healthcare

Data, Text Mining, Risk Modelling, and Hypertrophic Cardiomyopathy. We follow this

with an investigation into the biomedical ontology ecosystem and its methods of class

inclusion and re-use, exploring problems with Minimum Information to Reference an Ex-

ternal Ontology Term (MIREOT), and presenting an algorithm to automatically repair

them, with some analysis of root causes. We then present a method of leveraging ontology

term re-use and redundancy for the expansion of text mining vocabularies, showing that

the approach increases the recall of information extraction and retrieval tasks. We also

present a new method for detecting uncertainty and negation in text, and show in an

evaluation on multiple datasets that it out-performs current state-of-the-art methods.

These approaches and algorithms are then consolidated into a text mining pipeline

for patient phenotyping across a clinical text record. This is used to discover and pheno-

type HCM patients managed by the hospital, but unknown to the specialist clinic. Using

these data, in combination with structured healthcare information, we develop a prognos-

tic model to predict the likelihood of HCM patients developing heart failure and atrial
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fibrillation over a three year period.
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CHAPTER 2

LITERATURE REVIEW

2.1 The Semantic Web and Computational Ontology

Thn semantic web is a set of technologies, methodologies, and standards developed for

the purpose of enabling computable expression, transmission, and analysis of data over

the World Wide Web (WWW)[28]. It is defined in contradistinction to the syntactic

web, which makes up the WWW that humans interact with. Most often expressed with

HyperText Markup Language (HTML), the syntactic web is formulated from documents

that contain natural language and image content, alongside auxiliary components such as

navigation and interactive features. Importantly, the meaning of this content is derived

via offline consensus.

Since it is expressed with human language, the syntactic web inherits the problems of

human language. In this case, particularly, that its semantics are ephemeral, and meaning

is derived by a complex social and cultural process that cannot be explicitly defined in

a computable form. For example, the first paragraph of the Wikipedia article for heart

failure (HF) is as follows (with citation markers removed)[15]:

Heart failure (HF), also known as congestive heart failure (CHF) and con-
gestive cardiac failure (CCF), is when the heart is unable to pump sufficiently
to maintain blood flow to meet the body’s needs. Signs and symptoms of
heart failure commonly include shortness of breath, excessive tiredness, and
leg swelling. The shortness of breath is usually worse with exercise or while
lying down, and may wake the person at night. A limited ability to exercise is
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also a common feature. Chest pain, including angina, does not typically occur
due to heart failure.

This is an example of a piece of information as expressed by the syntactic web. As

humans read it, we are able to derive a large number of facts about the subject through

perception, inference, and deduction. We do this through an almost automatic cognitive

process, correlating and integrating the information given with information that we al-

ready know. Interestingly, the paragraph does not explicitly state that heart failure is a

disease. Had a reader not already heard of the condition, they would be able to infer this

information from the paragraph. This is because we would have heard of things like “ex-

cessive tiredness” and “shortness of breath,” and would match the description of HF with

our general idea of a disease as being when something is wrong in the body. Indeed, one

of the definitions for disease given by the Cambridge Dictionary defines it as “a condition

of a person, animal, or plant in which its body or structure is harmed because an organ

or part is unable to work as it usually does; an illness[2].”

A computer cannot easily do this. It does not know what the concepts described by

the words mean, and it does not have background knowledge to relate them to. It would

not, like a human, be able to look up the meaning of ‘disease’ in a dictionary, or look up

any of the citations given in the paragraph, because it would not understand the natural

language used in them. A text mining application could be created to extract information

from the article, but it would not (without semantic technologies) itself have any sense of

what a disease is: the creator would have to express this knowledge in the programming

logic, and interpret the meaning from its output.

The semantic web, on the other hand, necessarily expresses information in a com-

putable format, using the linked data paradigm. Data is provided in a structured for-

mulation, annotated with identifiers that express its semantics. By doing this, it makes

explicit what is implicit in natural language data, reducing ambiguity and providing a

reference point for computable understanding. DBPedia is a semantic web project, which

contains linked data mined from Wikipedia sidebars for structured information, convert-
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ing it into semantic data[21]. Figure 2.1 lists a selection of information concerning heart

failure in DBPedia[4].

dbo : i cd10
I50

dct : sub j e c t
dbc : O r g a n f a i l u r e
dbc : Aging−a s s o c i a t e d d i s e a s e s
dbc : H e a r t d i s e a s e s

rd f : type
dbo : Disease
wik idata : Q12136

Figure 2.1: A selection of triples from the Heart Failure DBPedia entry.

Each entry describes a relationship between the subject, heart failure, and an object.

For example, one relationship is rdf:type, wherein the subject is heart failure, and the

object is dbo:disease. dbo:disease is an identifier that links to another database entry,

and in turn is linked to every other database entry that contains a link to dbo:disease.

Importantly, we also specify what the relationship is; in this case rdf:type, meaning that

the subject is a type of the given object.

In the previous example we have shown that by looking at the DBPedia data, we can

link HF with other concepts that share the same relationship with ‘disease.’ But how can

the computer gain an understanding of what a disease is? To gain an implicit understand-

ing of what a disease is, we can further explore the database. By examining concepts that

are of the type dbo:disease, we would identify the things these linked concepts, in turn,

stand in relation with. For example, via the dct:subject relationship, we find transitive

connections to subjects such as organ failure and ageing.

Explicitly, we can examine relationships to sources that contain more structured in-

formation about diseases. The other rdf:type relationship associated with HF is a link to

another database, Wikidata[169]. The Wikidata entry contains an additional wealth of

information, expressed as relationships to other objects[3]. For example, we know from
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the has effect relationship, that diseases, albeit rarely, can cause dying, and that it is the

opposite of health. Moreover, all of the relationships and objects pertaining to disease,

are also in turn described by the knowledge as subjects in terms of their relationships

with other objects, that can be explored in exactly the same way.

Another external database link shown in Figure 2.1 is to a medical terminology. The

dbo:icd10 relationship states that the concept expressed by this database entry is seman-

tically equivalent to the ICD-10 code with the identifier I50. ICD-10[121] is a medical

terminology which is frequently used in practical medical environments to establish re-

lationships between patients and diseases. For example, databases describing patients

suffering heart failure might have a relationship with I50, which would in turn be linked

to the other sources of information we have concerning HF, including DBPedia and Wiki-

data.

This annotation of individuals bridges the gap between semantic web models defining

attributes of things and defining instances of things. Now, when we have a patient

annotated with this code I50, we can link to databases like Wikidata to automatically

understand that the patient has HF, and to come to an understanding of what it means

to have HF. In turn, the patient contributes to the total understanding of the disease in

the knowledge graph, contributing a phenotypic profile of someone who suffers HF: their

symptoms, their average blood pressure, imaging reports, outcomes, and more. This

example shows how, using the linked data paradigm, we can create linked networks of

information that define things with respect to their relationships with other things. In

the rest of this section, we will discuss the technologies that are used in the semantic web.

2.1.1 Resource Description Framework

The Resource Description Framework (RDF) is a method of modelling and describing

concepts[112]. An RDF model constructs a knowledge graph using a series of triples:

Subject The object being described.
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Predicate The property of the object being described.

Object The value assigned to the given predicate in relation to the subject being de-

scribed.

For the heart failure example in the introduction to this section, the Wikidata entry

expresses a relationship with the subject heart failure, the predicate opposite of and the

object health. Predicates and objects can also serve as subjects, and in this way the knowl-

edge graph elaborates on what it means for heart failure to be the opposite of health, by

building up relationships that define what each constituent part of the relationship means

- just as this relationship contributes to understanding of health, opposite of, and heart

failure. Figure 2.2 shows an example RDF graph, using some of the example relationships

described so far.

While the examples given so far use literal string representations of objects, they are

actually identified using Uniform Resource Identifiers (URIs). For example, the health

object is identified using https://www.wikidata.org/wiki/Q12147. In this case, the

URI resolves in a web browser to a page describing the object, but they do not necessarily

have to resolve anywhere: their function is as a unique identifier for the concept, that

can be referred to anywhere. They are also often shortened to identifiers, comprised

of a conventional name for the database and a unique code identifying the concept in

that database, e.g. wikidata:Q12136 for heart failure. Standard vocabularies, such as

Dublin Core[1], define predicates and objects widely used by convention throughout RDF

databases. Some of the standard relationships provide human-readable metadata, such

as the labels given in the previous examples.

2.1.2 Ontologies

RDF provides a framework for describing objects, while ontologies describe the kinds of

objects that can exist in a domain, and define a formal logic basis for their semantics.

Computational ontologies are inspired by the philosophical ontology: a consideration of
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Figure 2.2: An example knowledge graph built from triples that describe relationships
for heart failure and associated concepts in Wikidata and DBPedia. For ease of under-
standing, subjects and objects are given with their text labels. In reality, these concepts
would be identified by their unique URLs, and the labels would be specified using an
additional triple relationship.

things in the world, and how they relate to each other[74]. Computational ontologies

have a long history of study, growing from the tradition of analytic philosopy and for-

mal logic. Previous to RDF they mostly took the form of expert systems or Prolog

knowledgebases[144]. In their modern form, they have grown from an effort to extend

RDF models with formal semantics. These efforts began with RDF Schema (RDFS),

which defines a list of standard properties for RDF that together form the basis for an

ontological organisation of concepts modelled using the language[10]. Referring back to

the heart failure example, Wikidata uses one of these properties, rdfs:subclassOf to form

a class hierarchy, a subset of which is shown in Figure 2.3.

The RDFS specification defines the rdfs:subClassOf predicate as follows:

9



Figure 2.3: Part of the class hierarchy described by Wikidata for cardiovascular diseases.
Each directional relationship is formed from a triple that describes an rdfs:subClassOf
relationship.

“The property rdfs:subClassOf is an instance of rdf:Property that is used
to state that all the instances of one class are instances of another.”
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These relationships are transitive, meaning that if concept A is a subclass of concept B,

and concept B is a subclass of concept C, A is also a subclass of concept C. This transitive

property means that the subClassOf predicate can be used to formulate a hierarchy of

concepts, wherein all instances of objects are also instances of all objects their parent

concepts are instances of.

This logical formulation is an implementation of a syllogism: an argument that enables

a deductive inference. Aristotle and Porphyry relate an example[19]:

“All men are mortal; Socrates is a man, therefore Socrates is mortal.”

In the knowledge graph described by Figure 2.3, arguments of the same form can be

made through explication of subClassOf relationships: “heart failure is a disease; a disease

is a health problem, therefore heart failure is a health problem.” By leveraging semantic

relationships described using RDFS, automated reasoners can infer new knowledge from

the explicit information encoded in the knowledge graph, using rules such as syllogism.

Automated reasoners work by determining the logical consequence of every explicit as-

sertion in a knowledgebase. For RDFS, several automated reasoners exist, such as Jena,

RDFox, and GraphDB. Inferences for RDFS ontologies can be made using forward and

backward chaining rule-based reasoners, which are algorithms for solving propositional

logic formulae. GraphDB, for example, uses a forward-chaining reasoner to infer knowl-

edge from RDFS ontologies[91].

Extending some of the concepts from RDFS, The Web Ontology Language (OWL) is

a family of languages defined in terms of different subsets of description logics, which are

in turn a fragment of first order logic. While OWL ontologies are often still expressed in

RDF, the difference is that it uses a specification that expresses certain kinds of concepts

and relationships between concepts that constitute an ontology. The majority of biomed-

ical ontologies are now described with the Web Ontology Language (OWL)[170], while

instance data is still mostly expressed using non-OWL RDF. OWL Ontologies can also

be described in a number of other functionally equivalent languages, such as functional
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syntax, turtle[31], and JSON. The OBO file format is an ontology language heavily in-

spired by OWL, with a more idiomatic synax. Most of its constructs can be mapped to

OWL, and many ontology tools can work with both formats[162]. In addition, there are

some ontologies that don’t use the OWL specification, such as Prolog knowledgebases and

other RDF specifications. In a functional discussion of biomedical ontologies and their

composition, Hoehndorf et al. notes that, while an exact definition for computational

ontology is elusive, most share four features[72]:

• Classes and relations

• Domain vocabulary

• Metadata and descriptions

• Axioms and formal definitions

Artefacts with these features describe an understanding of a particular domain in a

form that can be leveraged by both humans and machines. The domain vocabulary,

metadata and decriptions provide human-readable and definable knowledge, while the

clases, relations, axioms, and formal definitions attach these syntactic constructs to for-

mal semantics, which can be understood with respect to their logical restrictions and

relationships with other concepts.

Manchester OWL Syntax is a human-readable format for description logic axioms.

The Manchester OWL Syntax formulation of an axiom for hypertension (HP:000822) is

shown in Figure 2.4. It defines hypertension in terms of its relationship to other qualities,

anatomical strctures, and temporal constructs.

Some medical terminologies, such as SNOMED and ICD, are not considered to be

ontologies because they do not provide axioms or formal logic definitions[37]. However,

they use a taxonomic structure and many of the metadata features of ontologies, so they

are often used in the same way and discussed in the same contexts.
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‘ has part ’ some
‘ i n c r ea s e d pres sure ’

and
‘ i n h e r e s in ’ some

blood
and

‘ pa r t o f ’ some ‘ blood v e s s e l ’
and

‘ has modi f i e r ’ some abnormal
and

‘ has modi f i e r ’ some chron i c

Figure 2.4: Axiom for hypertension (HP:000822) as defined by HPO, rendered in Manch-
ester OWL Syntax.

Automated Reasoners

Because OWL ontologies are expressed by description logics, automated reasoners can be

employed to evaluate all of the impliciations of the explicit assertions made in the ontology

to determine that it is consistent (contains no contradictions). They can be applied

to ontologies expressed in this family of languages through reduction of the problem of

ontology entailment in OWL to one of knowledgebase satisfiability, most of the time using

an analytic tableaux method. As well as consistency, automated reasoners also reveal

axioms and relationships between classes that are inferred from the explicitly asserted

axioms.

While many ontologies contain formal axiomatisations of their concepts, classification

is costly in terms of computational complexity. Particularly in time complexity: the

full OWL-DL language classification is NEXPTIME-complete. Different OWL language

profiles have different time complexity profiles. Of particular note is the EL fragment,

which is guaranteed to be classified in polynomial time. EL reasoners, such as ELK, are

frequently used for this reason. More expressive ontologies can also be classified using EL

reasoners, ignoring any axioms outside of the EL fragment[86]. Much of the previous work

into large-scale reasoning over ontologies has focused on the corpus of ontologies available

from BioPortal, since it is one of the largest collections of freely available ontologies[38].
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Modularisation techniques have discovered locality-based modules existing within ontolo-

gies and demonstrate that for most ontologies and types of query relatively small modules

can be found. Using these techniques can improve reasoner-based query performance[46].

One investigation found that the performance of certain reasoners over the set of BioPor-

tal ontologies can be reliably predicted. The same work performed an extensive evaluation

on the average classification time for each ontology[135].

Description Logic Queries

Reasoners also enable description logic queries. A complex class description, often de-

scribed using Manchester OWL Syntax, can be posed to the reasoner as a new class,

and the reasoner return any classes that have been inferred to satisfy that description, as

subclasses, superclasses, or equivalent classes. For example, the Manchester OWL Syntax

description of hypertension shown in Figure 2.4 contains several restrictions for what it

means for an entity, in this context a phenotype, to be hypertension. Other phenotypes

may share these components. For example, if we wanted to find other phenotypes that

involved ‘increased pressure’, we could pose the following equivalency query:

‘has part’ some ‘increased pressure’

This would, amongst the other subclasses of hypertension (which inherit its logical

definition), return Elevated pulmonary artery pressure (HP:0004890). Interestingly, this

condition is often known as ‘pulmonary hypertension’, which would then be a subclass of

hypertension. However, in HP this is not the case, perhaps due to a particular design or

expert decision. By using the description logic definitions, however, we are nevertheless

able to explore what these concepts share in terms of their fundamental definition.

Unsatisfiability

In OWL ontologies, an unsatisfiable class is one for which there cannot be an instance

while maintaining the consistency (non-contradiction) of the axioms in the ontology. For
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example, if our ontology contains the axioms:

1. Something that is a phenotype is disjoint from something that is a disease.

2. Hypertension is a disease.

3. Hypertension is a phenotype.

Our first axiom describes a restriction on what a particular thing can be: that any-

thing which is a disease, cannot also be a phenotype, and vice-versa. This is an extension

of the principle of non-contradiction: that a proposition cannot be both true and false

simultaneously. With the subsequent axioms, we describe what it means for something

to be hypertension. That is, that this entity is a disease, and also that it is a phenotype.

While the contradiction here is apparent, it is important to note that we have not created

an inconsistency itself; as far as the ontology itself is concerned, there are models of the

ontology that satisfy all of the axioms: one in which there are no instances of hyperten-

sion. We have, however, created an unsatisfiable class. We have created a definition for

a kind of thing that cannot exist, and therefore its class description cannot be satisfied.

The ontology would become inconsistent if we created an instance of something that is

unsatisfiable. For example, if we were to annotate a patient with hypertension using

this ontology, the ontology would become inconsistent, we would be creating an inter-

pretation of the world wherein hypertension exists; this patient, with hypertension, has

something which is a disease, and is a phenotype, while our disjointness axiom excludes

this possibility.

An ontology is called incoherent if it contains any unsatisfiable classes. An inconsis-

tent ontology is one which cannot have any model: this is usually because it contains

an instance of an unsatisfiable class. There are some intentional uses of unsatisfiability,

most often these are deprecated classes, which have been retired and superceded, and

should not be used anymore, and should therefore no longer have instances. This can

happen because a term was found to be synonymous with another term, or because it

did not provide a good representation of the entity it attempts to describe. To do this, a

disjointness axiom is introduced between all deprecated classes, and owl:Thing, meaning
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that any instance cannot also be an instance of any of the deprecated classes. For exam-

ple, the class congenital neutropenia (HP:0005549) was made obsolete, and replaced by a

recommendation for annotators to use neutropenia (HP:0001875) with the modifier con-

genital onset (HP:0003577). Implicit unsatisfiable classes inferred by a disjointness axiom

or other object restriction are also functional examples of unsatisfiability. For example,

GO contains a disjointness axiom between whole membrane (GO:0098805) and membrane

region (GO:0098589). From this the reasoner creates an implicitly unsatisfiable class de-

scription, and any instance that satisfies that class description would make the ontology

inconsistent. For example, an annotation for a piece of experimental data that labels

something as both a chitosome membrane (GO:0030661) and also an annulate lamellae

(GO:0005642), would satisfy that inferred unsatisfiable class, making the ontology incon-

sistent. Otherwise, the existence of visible unsatisfiable classes in an ontology indicates

that the ontology is incoherent, and where this is not intentional it is conceptually equiva-

lent to the ontology being inconsistent. While we do not usually explicitly create instances

of classes in the ontology itself, when we annotate, access, and integrate data partaking

in unsatisfiable entities, we are acknowledging a model of the ontology wherein this entity

is realised. That is, we are using it in a way that necessitates its inconsistency. When an

ontology is inconsistent, we cannot infer anything useful from it, since any model of the

ontology must necessarily accept that A is equal to NOT A. According to the principle

of explosion, if this is the case then the truth value of any proposition is simultaneously

true and false, and any fact can be inferred[51].

Ontology development tools and build processes include methods for checking the

consistency, satisfiability, and coherency of ontologies. This is achieved by integration

of an automated reasoner, which can check for consistency and mark any unsatisfiable

classes. More recently, automated reasoners can provide explanations for why a class

is unsatisfiable, exposing the trail of axioms leading to the root cause of the inference.

There have been many efforts to develop tools to explain causes of unsatisfiability, based

on an understanding of class unsatisfiability in the context of the hitting set problem.

16



For example, Reiter’s Hitting Set Tree (HST) algorithm can obtain all justifications for

OWL entailments, and therefore the axioms involved in class unsatisfiability[85]. Using

the information from these algorithms, several pieces of software now exist to relay this

information in an understandable manner, conducive to human-aided resolution of the

logical inconsistency. These are often integrated directly into ontology development tools

such as Protégé. These tools have two limitations. First, that they cannot actually high-

light the true or ‘correct’ cause of the unsatisfiability, and that they cannot tractably

retrieve large numbers of explanations[84]. The running time for the HST algorithm, for

example, does not have a practical upper bound, and runs exponential to the size of the

conflicting sets of classes considered[98]. Furthermore, as ontologies become more com-

plex, the reasons for class unsatisfiability have become more complex, potentially spread

across a large number of concepts and obscured by unclear inference steps performed by

the automated reasoner.

Data Annotation

While ontologies describe the kinds of things in a domain, we can also link these descrip-

tions to data about instances of these things. By annotating an entity, we are saying that

it is an instance of the class. Although previous ontology examples have given the natural

language labels of ontology classes, they are actually uniquely identified by Internation-

alised Resource Identifiers (IRIs). This is the same method used by RDF datasets, and

therefore the components of RDF triples, can be linked to ontology classes via their IRI.

Non-RDF databases are also annotated using ontologies. This can take the form of

full IRI references, but more often they use a shortened term identifier, which can be

transformed to the full IRI with a series of string operations. OBO ontologies use a prefix

identifier for the ontology followed by a colon and then a numeric identifier. For example,

the term identifier (OBI:1110108) refers to a class with the full IRI

http://purl.obolibrary.org/obo/OBI 1110108 in the Ontology for Biomedical Investiga-

tions (OBI)[22]. Non-ontology terminologies, such as ICD or SNOMED also define term
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identifiers, and these are also used to annotate instance data. The identifiers are con-

structed taxonomically (each character represents one level of the hierarchy), and so more

specific or general annotations can more easily be chosen without knowledge of the taxo-

nomic structure being referenced.

Ontology Reuse and MIREOT

Referencing and extending classes from other biomedical ontologies is common practice.

We have previously discussed how ontologies create meaning for concepts by placing them

in the context of relationships with other concepts, and the relationships and restrictions

that they transitively inherit. When creating a description of a domain, more meaning

and more information can be encoded by defining a concept in relation to concepts in

other domains, as well as its own.

Upper level ontologies describe high-level or very general concepts, which are used

by more specific ontologies to place their terms into a common context. This enables

integration across domains. The Basic Formal Ontology (BFO) provides a metaphysical

basis for the description of biomedical concepts, starting with a fundamental distinction

between continuants and occurrents: essentially a distinction between material and tem-

poral objects[145]. The Open Biomedical Ontologies Foundry is a collection of ontologies

that use the same design principles, and they all use BFO as a base[160]. They also use

the Relation Ontology (RO), which defines standard object properties that can be used

to define relationships between objects[38]. Other ontologies outside of this collection also

make heavy use of BFO and RO, in a less strict fashion. Using these standard definitions

of high-level concepts and relationships allows for consistency between ontologies. These

high-level ontologies fulfill the same purpose for ontology objects that ontology objects

do for biomedical data: they describe a semantic equivalency between different instances

of the same thing.

There are other ontologies that exist to define general concepts that see heavy re-use

across domains. For example, the Units Ontology (UO) defines units of measurement
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across science, the Phenotype And Trait Ontology (PATO) defines traits and qualities,

and Uber-anatomy Ontology (UBERON) describes anatomy[58, 56, 113]. We have previ-

ously discussed the HPO class hypertension (HP:000822). HPO is an ontology that defines

phenotypes, but its formal descriptions define its classes in terms of their relationships

with different kinds of concepts. Figure 2.4 builds a logical definition for hypertension

with reference to different anotomical, temporal, and qualitative concepts. For exam-

ple, the increased pressure (PATO:0001576) comes from the PATO, while blood vessel

(UBERON:0000178) comes from UBERON.

If concepts in different domains define things in terms of the same qualities and con-

cepts, information can be integrated across domains. While HP defines human pheno-

types, the Mammalian Phenotype Ontology (MP) is used primarily for mice, and the

results of mice experiments are annotated using this ontology. While mice are similar to

humans, which is why they are widely used as a model organism, there are still substantial

differences in the conceptualisation of the human and mouse phenomes. While the class

for hypertension (MP:0000231) in MP happens to have the same label as the HP concept,

this is not guaranteed. Furthermore, there is no guarantee that classes with the same

labels are semantically equivalent. Previously we discussed that in the HP conceptualisa-

tion of the human phenome, the class Elevated pulmonary artery pressure (HP:0004890)

is used to describe what is normally known as pulmonary hypertension. Indeed, this is

the case in MP, with the class pulmonary hypertension (MP:0003548). However, because

the same ontologies are used to develop axiomatic descriptions of these concepts, these

can be used to come to an understanding of the functions they share, and their seman-

tic equivalence. The pulmonary hypertension and increased elevated pulmonary artery

pressure classes share a fundamental part of their axiomatisation, that links them to the

anatomy and qualities they concern, as shown in Figure 2.5. If an ontology was created

with all of the axioms from HP and MP, this axiom could be passed as a description logic

query that would be satisfied by both Elevated pulmonary artery pressure (HP:0004890)

and pulmonary hypertension (MP:0003548). Even though the ‘syntax’ that humans use
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to refer to and understand these concepts in the respective domains differs, we can use

their axioms to connect and integrate them, and in turn the entities that are annotated

with them.

‘ has part ’ some
‘ i n c r ea s e d pres sure ’

and
‘ i n h e r e s in ’ some

blood
and

p a r t o f some ‘ pulmonary artery ’
and

‘ has modi f i e r ’ some abnormal

Figure 2.5: Partial Manchester OWL Syntax axiom shared by Elevated pulmonary artery
pressure (HP:0004890) and pulmonary hypertension (MP:0003548).

Another definition for hypertension comes from the Disease Ontology (DO). hyperten-

sion (HP:000822) describes a phenotypic abnormality: “The presence of chronic increased

pressure in the systemic arterial system.” DO, on the other hand, defines hypertension

(DOID:10763) as a subclass of artery disease (DOID:0050828): “An artery disease charac-

terized by chronic elevated blood pressure in the arteries.” Hypertension is both a disease

and a phenotype, and an annotation to either DO or HP depends on the context of the

dataset.

Ontologies also exist along a continuum of specificity. While HP is a very general

ontology, which aims to define most phenotypes in the human phenome, there are other

ontologies which describe certain phenotypic sub-domains to a greater level of granularity.

The Hypertension Ontology (HTN) defines concepts in the domain of hypertension in a

more specific way. For example, it makes a distinction between elevated diastolic and

elevasted systolic phenotypes, which are perhaps relevant for studies that concern hyper-

tension particularly, but would potentially be too specific for phenotype studies concerning

the whole phenome. However, because it builds on concepts from other ontologies, the in-

formation it adds it can be related to other ontologies. It re-uses the hypertension classes

from HP and DOID as a base, and defines its more specific phenotypes and related entities
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with respect to them. Therefore, annotations using HTN can be related back to DOID

and HP, and vice-versa. In fact, HTN also includes an axiomatisation of the distinction

between the HP and DOID hypertension classes we explained earlier. In its re-use of

the DOID class, it has added an additional axiom, where hypertension refers to the HP

concept:

‘disease arises from feature’ some Hypertension

This additional ontology, then, gives us a greater understanding of the concepts than

we have from HP and DOID alone, because they tell us how the concepts in those ontolo-

gies relate to each other. Furthermore, the object property used to define the relationship,

‘disease arises from feature’ (RO:0004022) is defined in RO, providing more contextual

knowledge to automated reasoners. These examples show that through ontology re-use,

ontologies that describe different domains or the same domains in different contexts, can

still support integration of knowledge and information between them.

We have discussed a few ways that ontologies can make use of concepts defined else-

where, and given some of the reasons that this can be useful. There are, however, different

methodologies for concept re-use. Ontologies that re-use BFO, such as those contained

in the OBO Foundry, use the owl:imports closure, wherein one can provide a path to

another ontology to import into the current ontology, in its entirety, upon loading. This

method is often used when ontologies make heavy and general use of the concepts in the

sourced ontology. For example, BFO is often imported directly: it is a minimal ontology

with 36 concepts, which form the fundamental framework around which the ontologies

that use it are constructed. However, this is not always sensible or feasible. Even when

an ontology makes heavy use of another, only a subset of the sourced ontology is likely

to be relevant. Aside from a matter of cleanliness, it also becomes a performance issue.

Loading the ontology will take longer, especially since the ontologies are often downloaded

from the Internet, upon loading, and classification will take longer - as all of the concepts,

even those irrelevant to the concepts used will be evaluated. For phenotype ontologies

explicating on one or few descriptions from large general domain ontologies, creating a
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specific ontology for a particular sub-context, it does not make sense to import the entire

ontology. HTN expands upon the hypertension concepts in HP and DOID, but is not con-

cerned with any terms in those ontologies beside those directly related to hypertension.

To import the whole ontology would lead to unnecessary confusion and usability issues.

Besides problems of design and usability, it can quickly become impossible to work with

combined ontologies because of limited hardware resources and highly complex ontologies

being sourced. For several particularly large ontologies, it is already unfeasible to develop

them using desktop tools like Protégé alone. Particularly for application ontologies, such

as EFO[99], problems with its size are compounded by the large number of imports it

would have to make.

Within the biomedical ontology community, minimum information guidelines named

MIREOT (Minimum Information to Reference an External Ontology Term) were de-

veloped to support ontology reuse[38], specifically taking into account the needs of the

biomedical community. Using these methods avoid the overheads involved in importing

complete ontologies. Additionally, the explicit aim of the method is also to prevent incon-

sistency and unintended inferences by encouraging the reuse of classes that are already

well-defined and established within the domain, and many biomedical ontologies make

use of the MIREOT method to achieve these aims. According to the MIREOT system,

including a class from an external ontology requires:

Source ontology IRI The IRI of the ontology which contains the class being included.

Source class IRI The IRI of the class to import, as given in the external ontology.

Direct Superclass IRI The IRI of the direct superclass for the imported class in the

importing ontology.

This allows an ontology to include classes from an external ontology without import-

ing its axioms (this functionality is possible, but not frequently used) and thus its true

definition through its intensionally defined semantic makeup. While this allows ontologies

to reuse concepts, the inclusion of external classes without the inclusion of the axioms

which define and restrict them means that potential incoherencies and inconsistencies
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may arise between ontologies which reference each other. These could occur due to igno-

rance of the axioms which govern the class at the time of reference, or due to semantic

shift in the source ontology over time. For example, to use the class cell (GO:0005623)

in an ontology with the MIREOT method, it would suffice to use the class IRI from

GO (i.e., http://purl.obolibrary.org/obo/GO_0005623), and add the axiom that cell

(GO:0005623) is a subclass of cellular component (GO:0005575). MIREOT also allows

importing some additional axioms from the referenced ontology, and recursive inclusion of

parent classes. These features, however, are not always used. Axioms particularly are of-

ten discluded, to limit the amount of additional classes imported. Tools such as OntoFox

facilitate MIREOT-ing terms from other ontologies, providing the necessary information

in RDF/XML format for inclusion in an ontology. Another tool, Slimmer[65], constructs

a new ontology by extracting and linking classes from a series of other relevant ontologies,

as defined in a specification file.

More recently, several ontologies have been developed for specific applications that

primarily consist of classes that are imported from other ontologies, and are combined in

a new way suitable for the intended application, known as application ontologies. The

Experimental Factor Ontology (EFO)[100] references classes from more than 26 other

ontologies[142]. Originally developed to annotate data from gene expression experiments

in the ArrayExpress and Gene Expression Atlas databases[131, 122], it is now applied

to several additional domains, such as the annotation of disease to phenotype mappings

in literature[134]. Another application ontology, eNanoMapper (ENM), was constructed

by extracting classes relevant to the nanomaterials domain from many other ontologies,

using the Slimmer tool[65].

The use of MIREOT, however, introduces the potential for ontology interoperability

problems due to the exclusion or addition of axioms to ontologies between uses. Par-

ticularly, inconsistencies between class definitions may lead to unresolvable differences in

conceptualisation, in turn leading to unsatisfiable classes or inconsistent ontologies when

combined. This may be a problem both in the acute sense, that developers may acciden-
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tally build upon another concept in a contradictory way, and in the sense that subsequent

versions of the source ontology may re-axiomatise the subject class in a way which renders

its use in the sourcing ontology incompatible with it. These problems may lead to un-

satisfiable classes, and incoherent or inconsistent ontologies, when actually attempting to

use them in combination. An earlier investigation into the Experimental Factor Ontology

showed that the unchecked use of MIREOT had caused wide-spanning unsatisfiability and

inconsistency[142]. However, while it has been shown that application ontologies contain

interoperability problems with respect to their upper level ontologies, there is no analysis

of interoperability between the upper level ontologies themselves, nor a solution for the

resolution of inconsistencies.

Another issue with the MIREOT system is that ontologies which use it do not al-

ways include the required IRI of the source ontology when referencing a class, and thus

it is difficult both to identify that a class is an imported MIREOT class, and to dis-

cover the authoritative definition for a class - especially if it has been heavily reused via

MIREOT among the ontology corpus. For example, if we examine the chi square test

class in the Clusters of Orthologous Groups ontology (CAO)[94], we notice its IRI is

http://purl.obolibrary.org/obo/OBI 0200200. However, there is no assertion that identi-

fies which ontology the class is referenced from. While a human can easily recognize that

this IRI belongs to OBI[22], there is no provision for a computational reader to do this.

This class is referenced in several ontologies: CAO, OBCS[176], OBI, and STATO[12].

This presents a challenge in tracking imported ontologies back to their source, which is

necessary for the evaluation of maintained consistency after the use of MIREOT to import

classes.

Ontology Mapping and Alignment

While ontology re-use is encoruaged, either through full ontology inclusion or via MIREOT,

different ontologies may define terms that re-define concepts described in other ontologies.

Part of the reason for this is that ontologies describe different domains of interest, and
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The same is true of the hypertension (MP:0000231) exmaple given earlier: the HP class

defines the class in the context of the human phenome, and the MP class of the mice

phenome.

However, different ontologies may also define the same entities in the same context.

This is particularly true of medical terminologies like SNOMED and ICD. The reason

that these separate terminologies exist is political and historical. For example, the use of

SNOMED requires a licence to be purchased on a government level, and countries which

do not purchase the licence must use an alternative medical terminology, such as ICD.

Legacy reasons are also a cause, such as in the case of MIMIC-II, which uses ICD-9 for

diagnosis annotation, despite not being the current version of ICD[80].

The effect of this is that annotations of datasets may concern many of the same

concepts of interest, but refer to different ontology terms. For example, in one hospital

a patient could be annotated with the ICD-10 term hypertension (I10), while they would

be annotated with hypertension (DOID:10763) in another hospital. Despite both patients

suffering the same disease, it is not immediately obvious, especially to a computational

observer, that they do. In fact, hypertension can be found in HP, SNOMED, ICD-9,

ICD-10, and DOID, and other terminologies. The value of integrating these annotations

is the value of having more data, and more data increases the power of data mining and

analysis tasks. To do this, ontology mapping and alignment must be performed.

We previously discussed one method of integrating phenotypes across ontologies: via

their logical formulations. Projects such as PheonmeNET attempt to use the axioms in

phenotype ontologies, such as HP and MP, to create a new ontology which semantically

links the relevant phenotypes through anatomy and qualities. However, many ontologies

do not contain logical formulations, especially linking to the same external ontologies and

axiomatised in the same way.

Official mappings also exist between certain terminologies. These can either be in-

ternal or external. In OWL ontologies, database cross-references are often used for this

purpose. For example, the hypertension (DOID:10763) class contains cross-references to
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(EFO:0000537), (ICD10CM:I10), (ICD9CM:401-405.99), and more. External mapping

files are also published that describe links between terminology concepts. The NIH main-

tains an official mapping between ICD-9 and ICD-10, for example[6]. While manually

created mappings cover common terms, they are limited in coverage. Some projects, such

as MONDO, expand upon manual mappings by connecting concepts through intermedi-

ate database mappings. BioPortal also maintains a database of mappings sourced from

different databases, which can be automatically queried and traversed via its API. On-

tology alignment is also a major area of research, and is the subject of an annual event

for method development and evaluation[8]. Tools such as AgreementMaker have been

created to map ontologies on lexical and structural bases[41].

There are, however, problems that both automatic and manual mapping approaches

cannot easily overcome. It is a design choice for ICD and other medical terminologies

to pre-compose terms, while many other ontologies and terminologies prefer to post-

compose them. To use the example of the obsoleted term earlier, congenital neutropenia

(HP:0005549) was replaced, with instructions to annotate data using both neutropenia

(HP:0001875) and the modifier congenital onset (HP:0003577). This is pre-composition:

providing a minimal set of constituent terms in the terminology itself, then combining

these in the annotations to describe more complicated objects. ICD-10, on the other

hand, uses the term congenital agranulocytosis (D70.0) to cover the concept of congenital

neutropenia. To map this term to HPO would require two mappings. Post-composed

terms can also express even more complicated concepts, that would take three or more

concepts from several different ontologies to represent, such as Prolonged stay in weightless

environment, occurrence on farm (READ:YMBaG) from the Read Codes terminology[27].

The necessity for one-to-many and many-to-many mappings between biomedical termi-

nologies compounds the problems of complexity and volume affecting both manual and

automatic mapping methods. These difficulties are also part of the reason that legacy

coding systems continue to be used, and instance annotation environments haven’t been

integrated.
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Ontology Building and Access

Visual ontology construction can be performed using software such as Protégé, OBO-Edit,

and WebProtégé[44, 117, 164]. The previously mentioned Slimmer tool is also a method

of building ontologies using components from other ontologies. They can also be built

with scripting languages and libraries, such as OWLAPI for JVM languages[75].

Ontology repositories are web-based applications that enable access to ontology fea-

tures for both human and computational interaction. Most include both a web component

and a computational API. They also allow interaction with multiple ontologies at once,

such as via browsing database cross-references, and searching labels across many on-

tologies. Most ontology repositories only mediate access to the asserted or pre-inferred

contents of ontologies. The OntoQuery software also provides reasoner-based ontology

access over the Web[165], but limits itself to a small amount of ontologies per instance,

though reasoner performance was found to be similar to that of working with tools such

as Protégé.

AberOWL is a reasoner-based ontology access and analysis framework, which allows

users to work with the semantic features of ontologies[73], its axioms and formal defini-

tions, without the overhead of local classification and querying with a reasoner. It enables

ontology-based analysis both with tools provided through its interface, and by facilitating

ontology-based data access. It provides a web interface and an API which allow users to

browse and explore ontologies through a reasoner. It overcomes the previously discussed

difficulty of large-scale OWL reasoning by using the Elk reasoner[86], which only supports

the EL subset of OWL, ignoring any axioms falllng outside it. This guarantees reasoning

in polynomial time. Each ontology hosted by AberOWL is classified by Elk upon startup,

and querying is performed by converting a Manchester OWL Syntax query into an OWL

class expression using the OWL API[75]. Results may be returned from single ontologies

or from the entire set of ontologies which AberOWL hosts.
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2.2 Natural Language Processing

Finite state automata may be the philosophical and practical root of the field of natural

language processing (NLP) when considered as a sub-field of computer science. However,

it can also be considered as a sub-field of linguistics and information theory. In computer

science, NLP is the process of extracting structured information from text. In Jurafsky’s

Speech and Natural Language Processing, the modern tradition of computational NLP is

loosely split into ‘four paradigms,’ that span between 1970-2000+, each associated with

characteristic algorithms that were developed or popularised during the period[82].

• 1970–1983

– Stochastic modelling

– Hidden Markov Models

– Discourse Modelling

– Reference Resolution

• 1983–1994

– Finite State models

• 1994–1999

– Incorporation of probability into previous methods and models

• 2000+

– Machine Learning

– Training on public datasets, with syntactic, semantic, and pragmatic annota-

tions.

While machine learning remains popular in NLP, methods that were invented much

earlier continue to be used and improved. Previously unfeasible models and methods

can be made realistic with increasing computational power, combination with machine

learning methods, or through the availability of public datasets on which to train. Just
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as there are a multitide of methods and approaches to NLP, there are also many sub-

tasks. Of particular interest to us are those used for text mining. Text mining is the

task of extracting structured information from text. In a review of the field, Allahyari

et al. list several text mining sub-tasks, including Information Retrieval (IR), Information

Extraction (IE), sentiment analysis, and text summarisation[16]. In this thesis, we will

focus on information extraction: automatically extracting structured information from

text[18]. For example, the task of determining from a text document whether a particular

patient has hypertension, or determining from a piece of literature whether hypertension

is a symptom of heart failure. It is contrasted from IR, which is the task of finding relevant

documents given a set of criteria. For example, finding documents concerning patients

with heart failure.

IE tasks are usually implemented in the form of a series of components solving NLP

tasks along a pipeline towards the intended result. Allahyari et al. further delineate two

major tasks in IE: named entity recognition (NER, and also referred to as annotation)

and relation extraction. NER is the extraction of named entities of interest from a text

document (e.g. recognising a mention of hypertension in a clinical narrative)[16, 114]. The

relation extraction task builds on the results of the NER task, to identify relationships

between the entities involved. For example, whether a patient suffers from hypertension

or not. These tasks, in combination, consistute information extraction.

Before either NER or relation extraction take place, text is pre-processed. This in-

volves word-level transformations such stemming and lemmatisation, which obtain the

root of the word and the word in its uninflected form respectively. Uninformative or

common words are also removed (frequently called stop words). Words can then be trans-

formed into tokens, with multiple words describing single entities combined into single

tokens, and certain uninformative punctuation thrown away.

There are many frameworks for NLP and information extraction, which span many dif-

ferent approaches. General frameworks for NLP such as Stanford CoreNLP[102], nltk[96],

and GATE[42] include implementations of many of the sub-tasks involved in information
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extraction pipelines, such as NER. The relation extraction process, however, is usually

performed on an individual basis, or as part of an integrated pipeline. For medical data,

integrated pipelines such as CogStack combine the features of these lower level information

extraction libraries and extend them with tools for relation extraction, manual validation,

and querying[78].

2.2.1 Negation Detection

A major component of information extraction pipelines are algorithms that determine

the context of an entity. It is only with information concerning the context in which an

entity has been mentioned in text that the overall relationship between an object and

subject can be determined. This is a critical part of the relation extraction process. For

example, a mention of a disease in a clinical letter does not mean that a patient suffers

that disease; many clinical letters discuss a diagnostic process with respect to a disease.

A letter may, therefore, discuss a test being conducted to determine whether a patient

has a condition. The letter may also rule out the condition, or only mention that it is

present in a family member. There may also be a level of uncertainty expressed as to

whether a patient actually has a condition.

We will focus on negation detection algorithms. In the context of biomedicine, negation

detection algorithms determine whether a finding mentioned in a clinical text narrative

is stated as absent or present, usually using the sentence mentioning the concept as input

[114]. Algorithms for negation detection can be split between rule-based and machine-

learning approaches. In this thesis, we will consider rule-based approaches, because they

are explainable. To develop a tool that allows clinicians to validate and trust decision

procedures, the reasons for the decision need to be clear. This is both a practical and

an ethical concern. Furthermore, the performance of rule-based methods for negation in

comparison to machine-learning methods is unclear, but favours rule-based approaches

in the literature. Goryachev and Taggart et al. compared rule-based and trained ML

approaches directly, and found rule based approaches to outperform ML approaches in
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the considered contexts[59, 155]. Wu et al. found that ML models modestly outperformed

rule-based classifiers with out-of-context training, yielding further improvements with in-

context training[173]. However, this work compares several machine learning classifiers

with one particular implementation of NegEx that is not used in any of the previous

three studies that found superior rule-based performance, and does not consider it for

additional training in any context. Another ML negation work, Taylor and Harabagiu

evaluated several machine learning methods, but did not consider any rule-based methods,

even though the performance was similar to rule-based methods presented elsewhere in

the literature[158].

A popular rule-based approach to negation detection for clinical documents is NegEx,

which uses regular expressions to determine the negation of a concept in a sentence[32].

This was later generalised into ConText, which remains in frequent use today[64]. For ex-

ample, it is used for negation detection by CogStack[78]. Later work has built on ConText,

extending it using graph-based algorithms that determine negation through typed depen-

dency relationships generated by a dependency resolution task. DEEPEN[110] works in

this way, operating only upon concepts that NegEx determines to be negated. Other

dependency-based algorithms make no use of NegEx, such as NegBio, negation-detection,

and DepNeg[125, 55, 147].

Instead of specific lexical patterns, dependency-based approaches define grammatical

patterns to determine whether or not a concept is negated in a sentence. The hypoth-

esis is that grammatical patterns are more generalisable, and discernment is attuned to

grammatical nuance beyond the mere mention of a word, and training should therefore

transfer better to internal test sets, as well as to external data. As reported in the

papers that present these algorithms, dependency-based algorithms show an improved

precision over syntactic approaches. However, with the exception of negation-detection,

they require the development of specific grammatical rules, which is time-consuming and

does not generalise well. ConText rules are ignorant of grammatical relationships, and a

comparison showed that ConText maintains performance on a new datasets while others

31



do not[59]. Approaches such as SynNeg have attempted to extend ConText with more

specific grammatical rules, but showed only modest performance improvements[157].

2.2.2 Text Mining and Ontologies

As discussed previously, metadata are a common feature of biomedical ontologies. These

metadata include a wealth of natural language information, and this makes them a valu-

able resource for text mining[148]. Particularly, ontology classes are often associated with

labels, which can act as vocabularies for information retrieval and named entity recogni-

tion tasks.

Associating text with ontology terms is known as semantic annotation. Semantic anno-

tation enables integration with any other data annotated using the ontology, including in

other modalities (such as image data or structured data). It also enables integration with

the ontology structure itself, and this can be useful both during and following annotation.

The structure of the ontology can be used to automatically mine for concepts. For exam-

ple, in an information extraction experiment which aims to search literature for articles

concerning monogenic diseases, a vocabulary could be built using the subclasses of mono-

genic disease (DOID:0060340) in the Human Disease Ontology (DO)[136]. This would,

at the time of writing, yield 2,634 classes, and more than 7,552 labels and synonyms. In

addition to gaining labels for a large number of diseases, the annotation vocabulary also

provides additional power via the intermediate classes returned. For example, one of the

subclasses of monogenic disease is autosomal genetic disease (DOID:0050739); not only

would all articles concerning the individual autosomal genetic diseases be returned, but

also any articles mentioning this more general concept. Web-based ontology annotation

services, such as the NCBO Annotator and Skylark, support annotation of groups of on-

tology terms based on structural queries. The AberOWL ontology repository, in addition,

supports annotation of PubMed articles with classes satisfying a complex description ex-

pressed by description logic formulae (support has been removed in subsequent versions).

Following annotation, the structure of the ontology can be leveraged for ontology-based
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analysis. Techniques such as semantic similarity, semantic rule-mining, or relational ma-

chine learning can be used as an analytic method for entities described by text. This can

be an alternative to methods such as word embeddings or recurrent neural networks, which

can use text as a training examples for artificial intelligence tasks. Some methods, such

as Onto2Vec, learn word embeddings directly from ontology axioms and annotations[51].

Vocabulary Expansion

OWL ontologies define annotation properties that can be used to describe multiple natu-

ral language labels for a single concept. Open Biomedical Ontologies[160] define a series

of conventional annotation properties that can be used for the expression of labels and

synonyms in biomedical ontologies. These features are widely used in biomedical ontolo-

gies; as of 2017 the Human Phenotype Ontology (HP)[87] contained 14,328 synonyms for

11,813 classes[89]. Because such labels are associated with ontology terms, ontologies con-

stitute a controlled domain vocabulary. Their provision of vocabularies, and the standard

use of ontologies for data annotation, makes them an important resource for information

retrieval and named entity recognition tasks[148].

However, due to limitations in resources for expert curation of ontologies and the

sheer scale of their contents, synonym lists and labels obtainable from ontologies are

not exhaustive. Combined with the tendency for alternative descriptions of semantically

equivalent concepts in biomedical text[35], ontology labels are not always a good fit for

text corpora that discuss the same concepts[30]. By expanding the set of synonyms in

an ontology, particularly with synonyms that provide a better fit for text corpora, the

performance of natural language processing tasks that depend on them is necessarily

improved.

This potential is reflected by previous work in the field. One approach that used anal-

ysis of existing synonyms across ontology hierarchy to determine new synonyms reported

an increase in performance of a task retrieving articles from a literature repository[154].

Another rule-based synonym expansion approach to extending the Gene Ontology showed
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improved performance in named entity recognition tasks[50]. A combined machine-

learning and rule-based approach to learning new HP synonyms from manually annotated

PubMed abstracts improved performance of an annotation task over a gold standard text

corpus[95].

Outside of automated synonym generation, organised efforts have been made to man-

ually extend an ontology’s synonyms for a particular purpose. For example, HP was

expanded with layperson synonyms to enable its use in applications that interact directly

with patients[90].

Ontology-based annotation software such as OBO Annotator[60], ConceptMapper[60],

and the NCBO Annotator[81] contain routines to consider rule-based morphological and

positional transformations of terms to increase NER recall. Parameters that control the

use of these features have a strong influence on annotation performance[49]. Previous work

has also investigated synonym acquisition and derivation for the purposes of improving

the performance of lexical ontology matching and alignment tasks[126].

2.2.3 Classification and Survival Analysis

Classification and survival analysis are major tasks in statistics and machine learning.

They are both kinds of supervised learning task, wherein examples from labelled data are

used to create a model. In classification, the model attempts to categorise new observa-

tions, while in survival analysis, covariates are related to the amount of time that passes

before a particular event occurs. In this thesis, we are interested in these tasks in the

context of diagnostic and prognostic modelling. Classification is the task used for diag-

nostic modelling, which is prediction of the likelihood of a particular diagnosis or label.

Survival analysis is used for prognostic modeling, which is the prediction of the risk of a

particular outcome during a time period of interest. Though the research designs differ,

similar methods and frameworks are used for both. Henceforth, we will use prediction

models to refer to both tasks.

As well as predicting the likelihood of a diagnosis or outcome for unseen individuals,
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prediction models can identify independent risk factors. For example, a large review of

prediction models by the Stroke Risk in Atrial Fibrillation Working Group found that

prior stroke, advancing age, hypertension, and diabetes are reliable independent risk fac-

tors for stroke in atrial fibrillation patients[152]. Identification of risk factors for disease

and outcomes can be used to improve outcomes in several ways. They can inform public

health information, as in the case of warnings provided on cigarette packs[33]. They also

directly inform clinical practice. The European Society of Cardiology (ESC) and Eu-

ropean Society of Hypertension (ESH) jointly publish guidelines for the management of

arterial hypertension in clinical practice, uses information about risk factors for cardiovas-

cular disease and other diseases to suggest preventative and mediative treatments, such as

in the case of comorbid diabetes[172]. Prediction models can also be used to inform advice

against the use of traditional or folk treatments, such as aspirin for hypertension[43].

As well as informing guidelines, prediction models can also be used to construct tools

that are used directly in clinical practice. In the management of atrial fibrillation, the

CHA2DS2-VASc and HAS-BLED scores are used for decision making to support the pre-

vention of stroke[92]. Such tools are often provided in the form of a web-based calculator,

and can also be integrated into the EHR system.

Many different technologies and methods, across several domains of research are used

for predictive modelling. In this thesis, we will concentrate on linear regression models.

A linear regression determines a linear relationship between a dependent variables, and a

number of co-variates or predictors. Linear regression models are widely used for predic-

tion modelling with healthcare data because of their relative simplicity, interpretability,

and reproducibility. Regression models also produce beta-coefficients that describe likeli-

hood ratios, and can be used as evidence (though not alone) for causal relationships.

Tu discussed the advantages and disadvantages of using artificial neural networks over

regression models for medical outcomes, and found that while neural networks will more

easily discover non-linear relationships without advanced statistical knowledge, it is much

harder to actually recover any relationships between predictors and the outcome[163].
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Although some work reports that machine learning models outperform linear regression

models[139], a systematic review showed no overall improvement in performance[34]. Non-

linear regression models can also be used to model non-linear relationships, but are not

considered in this thesis.

Particularly, we will use Cox models[40]. Cox models are a special case of regression,

for which the dependent variable is the hazard function at a given time point, rather than

a probability of whether or not the event will happen. The Framingham CVD Risk Score

is a widely used example of a model produced with a Cox regression.

Bellazzi and Zupan, in a discussion of predictive data mining, delineate the following

tasks as a general pipeline for model development[23]:

1. Defining the problem, setting the goals

2. Data preparation

3. Modelling and evaluation

4. Construction of the target predictive model

5. Deployment and dissemination

Defining the problem involves determining the outcome of interest, and the methods to

be used. This involves identifying the dataset, doing background research on the domain

of interest. The data must then be acquired, and pre-processed. Depending on the

validation model, it may be split into training and test sets at this point. Analysis of bias

risk should also take place at this stage. Hayden et al. presented a QUality In Prognostic

Studies (QUIPS) tool, which recommends six domains for bias consideration[66]:

1. Study participation

2. Study attrition

3. Prognostic factor measurement

4. Outcome measurement

5. Study confounding

6. Statistical analysis and reporting
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As well as determining potential bias, these instruments also help the researcher to

determine whether the kind of data collected is actually useful or appropriate for the

purposes of the study. After this, the actual modelling is performed. In a discussion of

practical approaches to predictive model development, Steyerberg describes seven steps

for model development:

1. Data inspection

2. Specification

3. Estimation

4. Performance

5. Validation

6. Presentation

These steps encompass the modelling, evaluation, and target model construction steps

described by Bellazzi and Zupan. Data inspection involves some of the tasks mentioned

previously, especially around determining potential bias. Initial explorations using un-

supervised methods such as clustering and descriptive statistics may help to identify

outcomes of interest or hypotheses for research questions. It also includes analysis of data

missingness, dichotomising continuous predictors, and decisions on which predictors to

consider in the model.

Continuous predictors are often combined into dichotomous factors, because they are

more easily interpretable, and their effects on survival can easily be visualised as kaplan

meier curves. This can either be done based on background knowledge (e.g. categories

of BMI), equal frequency binning, or with respect to the outcome variable. Despite the

advantages in interpretability, categorising predictors necessarily damages resolution[17].

In practice, categorisation of variables has been shown to produce predictive models with

“poor predictive performance and poor clinical usefulness[17].”

Specification involves feature and model selection. This is often based on data avail-

able, and limits to the amount of events that can be used without overfitting. This is

usually framed in terms of Events Per Variables (EPV). Ten events per variables has been
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a long-time standard rule of thumb for prognostic models[124], but various simulation

studies have suggested different values as low as 5 EPV[124]. The number of events per

variable includes variables considered by any feature selection in the model itself, and

therefore pre-selection of features often takes place based on expert knowledge, or litera-

ture review. This limits the ability for models to discover new relationships, and certain

approaches such as Lasso have been used for feature selection[177]. Pre-selection can also

involve identifying highly correlated variables, since groups of highly correlated variables

will not be informative.

Model assumptions should also be tested. For example, in a proportional hazards

model, hazard proportions should remain constant throughout the period of interest.

This may not be the case for certain predictors; for example, a certain blood measurement

may represent a large short term risk, but a low long term risk. If this is the case, then

a multiplactive value applied to the increasing value of a covariate (a hazard ratio) does

not make sense, becuase it cannot capture both relationships.

In the case of categorical variables, this can be done by examining the kaplan meier

curve for any crossover or drop-off. For continuous variables it is more complicated,

but schoenfield residuals can be assessed either visually or by summative statistics to

determine whether the variable has a relationship with time. In the cases of small or

insignificant time-dependent relationships, the effect can be ignored as long as it is noted

in the methodology as a potential source of bias. Otherwise, variables can be split into

time-dependent variables. Non-linear relationships can be transformed using logarithms

or fractional polynomials. Transformations can either be chosen manually, or determined

automatically with decision processes that measure the variable’s relations

The model will be fitted at this point, and initial performance can be reported. This

is known as the estimate. Feature selection can be performed inside the model by per-

formed in several ways, usually via backwards or frontwards stepwise elimination, which

remove uninformative variables while attempting to preserve any information gained from

relationships.
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Prediction models are evaluated in terms of their discrimination and calibration[151].

Discrimination is a measure of how well a predictive model can discern between patients

with or without a particular target outcome, while calibration is a measure of agreement

between observed and predicted risk. Calibration is also a good indicator of how much

the model is overfitting. Due to the tendency of predictive models to overfit, it is also rec-

ommended that studies report the estimated performance metrics adjusted for optimism,

as achieved by bootstrapping or a similar method.

The presentation of a model is an important component for scientific value. It is

vital that enough information about the study design, results, and validation is shared

to allow readers of the study to discern whether or not the study was well designed,

and whether the model performed well. Models must also be reconstructable if they are

to be used or externally validated. TRIPOD (Transparent Reporting of a multivariable

prediction model for Individual Prognosis Or Diagnosis) is a set of reporting guidelines

for prediction models[36]. It includes a checklist for model developers, to ensure that they

report the model they develop in such a way that they are reproducible. Several studies

have found, however, that a majority of prediction model publications do not meet these

standards[68, 25]. This problem also exists for machine learning models, because they

cannot easily be shared or re-implemented for external validation. Such studies warn

against the over-reporting of results, and TRIPOD notes that model reporting should

include discussions of model limitations.

2.3 Hypertrophic Cardiomyopathy

Hypertrophic Cardiomyopathy is a common inherited disease defined by otherwise unex-

plained thickening of the heart muscle, whose first modern description appeared in the

literature by in 1958[159]. First thought to be rare and untreatable, it is now known

to be a common disease, with a prevalence of around one in five hundred people[103],

which is highly treatable and whose patients mostly maintain their quality and longevity

39



of life[106]. Nevertheless, it has a strong public profile, because it is the most frequent

cause of sudden death in young adults[104], including elite atheletes[105], and can lead to

heart failure or stroke.

The major challenge of HCM is its heterogenous and complex presentation, geno-

type, and phenotype[171]. It is difficult to diagnose, treat, and manage, particularly for

non-specialists in the area[107]. The identification and treatment of HCM falls under

two primary schools of thought, one produced by the European Society of Cardiology

(ESC), and the American College of Cardiology Foundation/American Heart Association

(ACCF/AHA), and are known as the ESC guidelines[13] and ACCF/AHA guidelines[53]

respectively. In 2003, both organisations published a joint clinical consensus, although

both groups have since produced updates their own seperate guidelines.

Udelson James E. discussed a “trans-atlantic divergence” between the two guidelines’

approaches for reducing the risk of sudden death[166].

Since most patients with HCM do not suffer sudden death, and because it is the

least manageable of its complications, most predictive models have focused on predic-

tion of sudden death in HCM. These patients can then be prophylactically fitted with

implantable cardioverters/defibrillators (ICDs). There are two widely used risk scoring

systems derived from time-to-event prognostic models, the Enhanced American College of

Cardiology/American Heart Association Strategy (ACC/AHA), and the HCM risk-SCD

score[120].

However, sudden cardiac death is not the only cause of death in HCM; it can also lead

to cardiovascular death via the development of heart failure and stroke[108]. These causes

of mortality are included in a wider set of complications of the disease. Cardiomyopathy

UK describes the following complications of HCM[5] (descriptions quoted from relevant

ontologies).

Arrythmias “Any cardiac rhythm other than the normal sinus rhythm. Such a rhythm

may be either of sinus or ectopic origin and either regular or irregular. An arrhyth-

mia may be due to a disturbance in impulse formation or conduction or both[87].”
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(HP:0011675)

Atrial fibrillation “An atrial arrhythmia characterized by disorganized atrial ac-

tivity without discrete P waves on the surface EKG, but instead by an un-

dulating baseline or more sharply circumscribed atrial deflections of varying

amplitude an frequency ranging from 350 to 600 per minute[87].” (HP:0005110)

Ventricular tachycardia “A tachycardia originating in the ventricles character-

ized by rapid heart rate (over 100 beats per minute) and broad QRS complexes

(over 120 ms).[87]” (HP:004756)

Ventricular fibrillation “Uncontrolled contractions of muscles fibers in the left

ventricle not producing contraction of the left ventricle. Ventricular fibrilla-

tion usually begins with a ventricular premature contraction and a short run

of rapid ventricular tachycardia degenerating into uncoordinating ventricular

fibrillations.[87]” (HP:0001663)

Heart Failure “The presence of an abnormality of cardiac function that is responsible

for the failure of the heart to pump blood at a rate that is commensurate with the

needs of the tissues or a state in which abnormally elevated filling pressures are

required for the heart to do so. Heart failure is frequently related to a defect in

myocardial contraction[87].” (HP:001635)

Stroke “Sudden impairment of blood flow to a part of the brain due to occlusion or

rupture of an artery to the brain[87].” (HP:0001297)

Sudden cardiac death “The heart suddenly and unexpectedly stops beating resulting

in death within a short time period (generally within 1 h of symptom onset)[87].”

(HP:0001645)

Olivotto et al. explores the relationship between AF and HCM, finding a 22 per-

cent incidence of AF among HCM patients, and that these patients have a significantly

greater chance of HCM-related death due to heart failure[119]. They also showed a higher
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probability of combined HCM-related death, functional impairment, and stroke. Siontis

Konstantinos C. et al. also find a strong relationship between AF and mortality in HCM.

Meanwhile, heart failure itself is a leading cause of disability and death, with annual mor-

tality reported as high as 17.5%[168]. One study into heart failure in HCM found that

17% of patients developed heart feailure, with 20% of those patients dying[111].
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CHAPTER 3

UNMIREOT

3.1 Introduction

In the literature review we showed that the MIREOT system for referencing external

ontology terms enables large scale ontology integration and re-use. We also discussed that

the practice can lead to issues of interoperability that are hidden from automated reasoners

when considering MIREOT-ed classes without the context provided by the axioms defined

in the ontology being referenced. Particularly, we discussed a piece of previous work,

wherein problems of hidden unsatisfiability were revealed in the Experimental Factors

Ontology (EFO) when it was combined with the ontologies it references[142].

The extent to which this problem is shared by the rest of the biomedical ontology

ecosystem, however, is unknown. It is also unknown whether there are common roots

to any widespread unsatisfiability, and whether the unsatisfiability can be automatically

repaired. In this chapter, we provide a case-study on interoperability and unsatisfiability

between a core set of biomedical ontologies that encourage term re-use between them: the

OBO Foundry[160].

To achieve this, we extend the tool described by Slater et al. for the analysis of

interoperability in EFO, generalising it to reveal hidden contradictions in any combination

of OWL ontologies[142]. We then use the tool to evaluate the OBO Foundry for hidden

cases of inconsistency and unsatisfiability, reporting upon the sources of inconsistency and
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the most implicated axioms.

We then present a novel algorithm that uses unsatisfiability explanations to repair all

cases of hidden inconsistency in an ontology by iteratively removing the most implicated

axioms. The algorithm uses iterative random sampling of maximally general classes to

repair even very large ontologies with tens of thousands of unsatisfiable classes in a few

iterations. This approach works because unsatisfiability is transitively inheritable through

the subclass relation. For example, if a ‘disease’ class were unsatisfiable, so would all sub-

classes of disease specifying it be unsatisfiable. Moreover, if the cause of unsatisfiability

for the disease class was repaired, it would also repair that inherited cause of unsatisfia-

bility for all its subclasses. By grouping high level unsatisfiable terms, and removing their

most frequently implicated axioms, dependent groups of unsatisfiabile terms are repaired

without having to examine every class.

3.2 Materials and Methods

All non-deprecated and obtainable OBO ontologies were downloaded using the perma-

nent download links given by the OBO Foundry database at http://obofoundry.org/

registry/ontologies.yml. They were obtained on 28/03/2018, for a total of 132 on-

tologies.

We first worked with the OBO Foundry Core ontologies, listed in Figure 3.1 (excluding

the Protein Ontology (PRO), as it was unobtainable). These ontologies are judged as

satisfying the OBO Foundry principles, and are therefore tightly integrated, and are

heavily used throughout the rest of the OBO Foundry. We combined these ontologies

with all of the ontologies in their import closures. We then identified transitive ontology

imports, particularly finding that the Plant Ontology (PO) imports NCBI Taxon, while

DO includes another 8 ontologies. Since the combined consistency of these ontologies is

evaluated later in the experiment, we did not combine them into the OBO Foundry core.

Subsequently, we evaluated this combined meta-ontology for cases of unsatisfiability and
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their etiology.

BFO Basic Formal Ontology[145]

CHEBI Chemical Entities of Biological Interest[45]

DO Disease Ontology[136]

GO Gene Ontology[20]

OBI Ontology for Biomedical Investigations[22]

PATO Phenotypic Quality Ontology[56]

PO Plant Ontology[79]

XAO Xenopus Anatomy and Development Ontology[137]

ZFA Zebrafish Anatomy and Development Ontology[149]

Figure 3.1: Ontologies included in the OBO Foundry Core.

We then developed an algorithm for quickly identifying a small set of axioms that can

be removed from an ontology to solve all cases of unsatisfiability, using an understanding of

Reiter’s theory of system diagnosis, which has previously been used to develop algorithms

for unsatisfiability justification in the domain, and is also the basis of the naive HST algo-

rithm [85]. We apply this algorithm to the combined OBO Foundry Core meta-ontology,

creating a coherent version of it. We combine this coherent core variant iteratively with

every other ontology in the OBO Foundry individually, counting the unsatisfiable classes

revealed in each case. Following this, we apply the unsatifisability repair algorithm to

every ontology-core combination found to contain unsatisfiable classes, noting the axioms

removed and counting them. Using these results, we report on the most widely implicated

axioms causing unsatisfiability across the OBO Foundry, and evaluate some of the root

causes.
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3.2.1 Implementation and Experimental Setup

For all experiments, we use the OWLAPI 5.1.4[75]. To classify the ontologies and to re-

trieve unsatisfiability explanations, we use the Elk reasoner version 0.5.0-SNAPSHOT[86].

Elk supports the OWL 2 EL profile, a fragment of OWL that supports tractable

(i.e., polynomial-time) reasoning, but which lacks support for many logic operators. In

particular, OWL 2 EL does not support the use of negation in class descriptions or use

of the universal quantifier. The only type of axiom in OWL 2 EL that could result in an

explicit contradiction is the disjointness axiom. We also used Protégé to examine some of

the combined ontologies for particular cases of unsatisfiability[118].

3.3 Results

All tools described in this chapter, including those to obtain, merge, analyse, and re-

pair ontologies, are available at https://github.com/bio-ontology-research-group/

UNMIREOT.

3.3.1 Combining ontologies and detecting inconsistencies

The 9 core ontologies combined consist of 402,868 logical axioms and 207,105 class decla-

rations, of which 636 were unsatisfiable. Table 3.1 shows the distribution of unsatisfiable

classes. The source of the classes were determined using the IRI prefix, which are defined

for each ontology in the OBO Foundry metadata file.

Table 3.1: Unsatisfiable class counts in OBO Foundry

Ontology Unsatisfiable Class Count
CHEBI 37
GO 565
OBI 34

Upon combining the repaired version of the OBO Foundry core with each of the 130

ontologies in the OBO Foundry, we revealed unsatisfiable classes in 46 of them. The
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ten OBO Foundry ontologies with the most hidden unsatisfiable classes are listed in

Table 3.2. The total number of unsatisfiable classes was 343,381, while the total number

of unique unsatisfiable classes was 204,033. Of these, 8,891 were obsolete classes (and are

intentionally unsatisfiable).

Table 3.2: The ten ontologies with the most unsatisfiable classes in the OBO Foundry,
when combined with a repaired version of the merged core ontologies.

Ontology Name Unsatisfiable Class Count
MONDO[138] 97,340
UPHENO[88] 88,479
OMIT[76] 63,015
MOP[128] 57,355
RXNO[132] 57,330
HP[87] 46,031
MP[146] 43,762
OBA[48] 26,523
OAE[67] 20,566
NBO[57] 20,038

3.3.2 Ranking and repairing axioms

As described above, our investigations created extremely large combined ontologies, with

a great number of unsatisfiable classes. In the most prolific case, the MONARCH Disease

Ontology (MONDO) contained just short of 100,000 unsatisfiable classes. Reiter’s Hitting

Set Tree (HST) algorithm can be used to generate all explanations for any number of

unsatisfiable classes in an ontology. However, this algorithm runs exponential to the size

of the conflicting sets of classes considered, and does not have a practical upper bound

on running time[98].

Reiter’s general theory of system diagnosis has been used in discussions of unsatisfiabil-

ity justification for OWL ontologies, and also forms the basis of the naive HST algorithm.

It considers a series of conflict sets, which describe conflicting sets of components in a

malfunctioning system. In each conflict set, at least one component must be removed to

repair the conflict. A hitting set is a set of components that intersects every conflict set,
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and the hitting set problem is the task of computing all the minimally sized hitting sets

for all conflict sets in the system, and therefore the minimal sets of components that can

be removed to repair all malfunctioning components in the system [130]. Our problem can

be reduced to the hitting set problem, as we have a set of unsatisfiable classes, which each

have an unsatisfiability justification: a list of axioms, of which any one can be removed to

repair that case of unsatisfiability. To remove all cases of unsatisfiability, a hitting set of

axioms that intersect all unsatisfiable classes must be removed from the ontology. Since

we cannot exhaustively generate justifications for all unsatisfiable classes, we developed

an approach that makes use of the taxonomic structure of OWL ontologies to minimise

the number of justifications.

We created an algorithm that iteratively samples high-level ontology classes, whose

most implicated axioms can then be removed, solving causes of unsatisfiability for their

subclasses without directly querying them for justifications. The algorithm is shown in

Figure 3.2. It finds the group of unsatisfiable classes with the most asserted subclasses

in the ontology, and does not have an unsatisfiable superclass. This ensures that it

finds groups of general terms whose reasons for unsatisfiability account for a maximal

number of additional terms. We use direct, asserted axioms instead of transitively inferred

axioms because, as unsatisfiable classes, their inferences may be wrong. The effects of

a more specific class potentially having more direct subclasses than the more general

class is controlled by removal from consideration any classes that have an unsatisfiable

superclass in the set. By solving for groups of general axioms, instead of just one, we

make it more likely to find axioms that account for unsatisfiability shared across several

pathways of subclass inheritance. By iteratively performing this process, we solve all cases

of unsatisfiability by solving for groups of high level cases of unsatisfiability until there

are none left, leading to the identification and removal of a minimal set of maximally

implicated axioms.

Throughout execution of the algorithm, classes repaired by the removal of each axiom

are recorded, and then counted and summarised at the end. This enables its use by
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Data: o = Given ontology
Result: Minimal set of axioms required to repair ontology
Load and classify ontology o
x = unsatisfiable classes
while x > 0 do

y = x without leaf classes (zero subclasses in o)
if size(y) < size(x) then

y = y without classes which have a superclass in set y
z = group classes in y by total number of direct subclasses in o
x = max(z.key)

end
if size(x) > 25 then

x = randomly sample 25 classes from x
end
c = implicated axioms for each class in x
Count axioms in c, and remove the maximally implicated axiom from o
Reclassify ontology o

end

Figure 3.2: Algorithm for automatic repair of unsatisfiable classes in ontology.

ontology developers for identifying problematic axioms affecting groups of ontologies. It

also enables us to identify problematic axioms causing unsatisfiability across many groups

of ontologies.

3.3.3 Application to OBO Foundry

We applied the auto-repair algorithm first to the merged OBO Foundry core ontology,

finding that two axioms could be removed to solve all cases of unsatisfiability.

1. realizable entity (BFO:0000017) SubClassOf specifically dependent continuant (BFO:0000020)

with 599 implications.

2. molecular entity (CHEBI:23367) SubClassOf material entity (BFO:0000040) with

37 implications.

While this minimal set of two axioms were determined for removal based on maximal

implications for class unsatisfiability, the actual causes of class unsatisfiability derive

from violation of disjointness axioms, i.e. they are equivalent to or subclasses of two
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or more classes asserted to be disjoint. In fact, the removal of one such axiom actually

solves multiple disjointness violations. For the first and most prolific axiom, the classes

it accounts for each violate one or more of these three different disjointness axioms:

1. independent continuant (BFO:0000004) DisjointWith specifically dependent contin-

uant

(BFO:0000020)

2. DisjointClasses: independent continuant (BFO:0000004), specifically dependent con-

tinuant

(BFO:0000020), generically dependent continuant (BFO:0000031)

3. continuant (BFO:0000002) DisjointWith occurrent (BFO:0000003)

The second case is accounted for by two disjointness axioms:

1. independent continuant (BFO:0000004) DisjointWith specifically dependent contin-

uant (BFO:0000020)

2. DisjointClasses: independent continuant (BFO:0000004), specifically dependent con-

tinuant

(BFO:0000020), generically dependent continuant (BFO:0000031)

The two disjointness axioms shown for the second case are included in the three axioms

shown for the first set. In total, therefore, three disjointness axioms account for all cases

of hidden unsatisfiability throughout the OBO Foundry core ontology. Removing the sub-

class axioms is a more efficient and minimal route to solving the cases of unsatisfiability,

because they prevent terms from violating multiple disjointness axioms. For example, in

the case of removing the subclass relationship between molecular entity (CHEBI:22367)

and material entity (BFO:0000040). Some subclasses of molecular entity violate the first

disjointness axiom, and some violate the second. By removing the subclass axiom, how-

ever, molecular entities are no longer subclasses of material entity’s parent independent

continuant (BFO:0000004), which is a feature of both disjointness axioms.
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Table 3.3: Top ten axioms accounting for the most hidden cases of unsatisfiability across
OBO Foundry.

Axiom Class Count
miRNA target gene primary transcript (NCRO:0000001) SubClassOf
nc primary transcript (SO:0000483)

59,887

has role (RO:0000087) ObjectPropertyRange role (BFO:0000023) 57,335
processual entity (UBERON:0000000) SubClassOf occurrent
(BFO:0000003)

41,675

processual entity (UBERON:0000000) DisjointWith anatomical entity
(UBERON:0001062)

36,156

organ (UBERON:0000062) SubClassOf has 2D boundary (RO:0002002)
ObjectSomeValuesFrom anatomical surface (UBERON:0006984)

19,797

disposition (BFO:0000016) SubClassOf realizable entity (BFO:0000017) 13,167
obsolete disease (OBI:1110055) SubClassOf ObsoleteClass
(GO:ObsoleteClass)

8,880

continuant (BFO:0000002) DisjointWith occurrent (BFO:0000003) 8,237
steroid hormone (CHEBI:26764) SubClassOf steroid (CHEBI:35341) 4,242
molecular entity (CHEBI:23367) SubClassOf material entity
(BFO:0000040)

2,527

Among the wider set of OBO Foundry ontologies, we found that a set of only 55

axioms accounted for all 323,381 unsatisfiable classes. Of these, 28 involved a BFO class.

Figure 3.3 shows the top ten axioms ranked by the number of unique unsatisfiable classes

they are responsible for.

3.3.4 Inconsistency Analysis

The results of the algorithm show which axioms can be removed to solve cases of un-

satisfiability, and further analysis reveals which disjointness axioms are most frequently

violated. This alone, however, does not reveal the semantic misconception lying at the

root unsatisfiability. While 599 hidden unsatisfiable classes were repaired in OBO Foundry

core by removing the subclass axiom, realizable entity (BFO:0000017) SubClassOf specif-

ically dependent continuant (BFO:0000020), this does not mean that the axiom, or the

disjointness axioms it is associated with are themselves incorrect.

Instead, the errors occur through incorrect use of these terms by more specific classes.

87 of these 599 classes are MAP kinase activity (GO:0004707) and its subclasses. The
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disjointness axiom they violate is the fundamental BFO distinction between continuant

(BFO:0000002) and occurrent (BFO:0000003). A continuant is something that maintains

its identity over time, while an occurrent is a temporal event. They are usually used in

biomedical ontologies to distinguish between material entities and events or processes.

As shown in Figure 3.3, MAP kinase activity is a transitive subclass of continuant by

means of being a molecular function. It is also a subclass of part of a MAPK cascade,

which is a subclass of intracellular signal transduction. This class stands in an occurs in

relationship with intracellular. The object property occurs in contains a restriction of its

domain, asserting that something that occurs in something must be an occurrent.

So, MAPK cascade, a kind of intracellular signal transduction, is something that occurs

intracellular ly. Because MAP kinase activity is part of a MAPK cascade, it is also an

occurrent. The reason for this is that the part of (BFO:0000050) relationship must be

between two things of the same kind; its definition states “two distinct things cannot

be part of each other,” and this restriction is inferred by the classifier from a part of

relationship assertion. That MAP kinase activity must be both a continuant and an

occurrent is the source of its unsatisfiability.

In addition to the 87 classes that are accounted for by MAP kinase activity, in fact

all 599 unsatisfiable classes repaired by the realizable entity (BFO:0000017) SubClassOf

specifically dependent continuant (BFO:0000020) axiom are subclasses of the class de-

scription:

• molecular function AND occurs in SOME intracellular

This is fundamentally the same cause for unsatisfiability as MAP kinase activity:

that they are subclasses of continuant via molecular function, and occurrent via being

something or a part of something that occurs in intracellular. There are actually 1,306

total classes which are subclasses of occurs in some intracellular, but 707 of these are not

also subclasses of continuant, and are therefore not unsatisfiable.

These contradictions are not revealed by the automated reasoner used on the Gene

Ontology alone, because it imports occurs in (BFO:0000066) from the Relation Ontol-
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Figure 3.3: MAP Kinase unsatisfiability represented as a graph.

ogy via MIREOT, without its axioms. Particularly, the axiom that asserts its domain

must be a process (BFO:0000015) (a kind of occurrent), while the range must be an in-

dependent continuant (BFO:0000004). The contradiction is revealed when the ontologies

are combined and the imported class is therefore extended with its original axiomatic

restrictions.

The mistake in modelling itself is easy to make. The shared inheritance of continuant

and occurrent are hidden behind several layers of subclass and object property relation-

ships. Furthermore, in colloquial language, we might easily describe a relationship be-

tween a part and a whole of different classes. The problems could be fixed without any

destructive changes to the ontology by instead using the participates in (RO:0000056) or
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has participant (RO:0000057) instead of part of.

3.4 Discussion

We have shown that there is a high prevalence of hidden inconsistency throughout a major

biomedical ontology ecosystem, which includes widely used fundamental ontologies. We

also presented an algorithm that can repair incoherent ontologies by removing a small set

of axioms that resolve all cases of unsatisfiability. We demonstrated this across the OBO

Foundry, and found that relatively few axioms can be removed to resolve all unsatisfiable

classes.

While the algorithm removes a minimal set of axioms to make an ontology coherent,

it does not repair the root cause of the contradiction. In one case we showed that a large

number of unsatisfiable classes in the Gene Ontology were caused by a mistaken use of a

parthood relationship. This cause for unsatisfiability was complex, but would have been

revealed by an automated reasoner had the axioms of MIREOT-ed classes been included.

This indicates that the unconstrained use of MIREOT has introduced a new challenge for

ontology interoperability, which must now be addressed. The question remains, however,

of how best to balance the challenges of developing ontologies with the hardware resources

and tools available, while at the same time maintaining consistency and interoperability

between ontologies. Our results illustrate how the unMIREOT tool can be used to help

ontology developers identify problematic axioms in their ontologies, and explore them to

diagnose causes of contradiction.

One approach to preventing contradictions is the integration of unMIREOT with the

build process for biomedical ontologies. OBO uses a shared central build system which

can be configured to validate ontologies against scripts that check for problems. By using

a powerful build server to combine ontologies with the ontologies they refer to and check

for inconsistencies before release, developers would be able to continue to use MIREOT

while ensuring continuing compatibility. It is also possible that either the MIREOT or
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OBO guidelines should be revised. Including the axioms of referenced classes would allow

for local consistency checking with an automated reasoner. Because many axioms are

inherited, and restrictions are placed transitively, the axioms of an entire ontology or

at least a derived module would need to be imported. This could be recommended in

the case of small, high-level ontologies such as BFO and RO, which should not cause

performance or space issues. Without actually including the ontology in the imports

closure, however, it would not solve the problem of sourcing ontologies becoming out of

date with the ontologies they reference.

While we have shown that there are large clusters of unsatisfiability across the OBO

Foundry, it is unclear whether or to what extent these issues are affecting ontology-

based analysis techniques. Incorrect inferences could affect the results of gene enrichment

analysis, inter-ontology phenotype mapping, semantic simiarity tasks, or any analysis

that relies on ontology axiomatisation. We would like to explore this by implementing a

reference task, and comparing the performance before and after repair. We would also like

to investigate automatically determining sources of disagreement. While ontologies can be

repaired by the unMIREOT program, and examination of its output can help to identify

the root cause of unsatisfiability, this can still be a time consuming and complicated

process. It’s possible that algorithmic tools could be developed to aid ontology developers

in identifying the actual cause of the inconsistency, or instead to create a set of minimally

destructive axioms to remove from the ontologies.
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CHAPTER 4

VOCABULARY EXPANSION

4.1 Introduction

We have previously discussed that there is a lot of research in the area of extending

vocabularies for text mining, both with and without ontologies, and that extended vocab-

ularies can improve the performance of text mining tasks. We also discussed that through

concept re-use and sharing, particularly by means of the MIREOT system, ontologies

can extend knowledge and metadata concerning a term originally defined elsewhere, in

a linkable way: providing greater granularity to a class or description in a different con-

text. In addition, we showed that some ontologies repeat definitions for entities in similar

contexts, but with potentially different metadata.

No ontology-based approach to synonym expansion has attempted to use MIREOT-ed

classes or alternative class definitions to obtain more synonyms. We gave the example of

hypertension (HP:0000822), which is defined in the context of a phenotype, but is defined

as a disease elsewhere (DOID:10763). There are also more specific and granular defini-

tions of hypertension and related conditions available from the Hypertension Ontology

(HTN)[69]. Particularly, HTN uses MIREOT to import and extend the HP class hyper-

tension (HP:0000822), and adds extra information to it. For example, with the additional

label ‘hypertensive phenotype’: a label not available in HP. In addition, while it contains

the primary ‘hypertension’ label that HP defines, it does not include the additional syn-
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onyms defined by HP itself. Furthermore, the subtle distinctions between concepts that

biomedical ontologies capture do not necessarily matter for most text mining tasks, be-

cause they operate within a single context. In text-mining of electronic healthcare records,

for example, the hypertension phenotype and the hypertension disease are functionally

equivalent.

We hypothesise that because ontologies are constructed with different loci: different

contexts, domain experts, and source material, ontologies that share lexical concepts and

terms will contain different, but valid, synonyms for a particular context. By considering

all of these concept descriptions, we can gain a greater set of synonyms that will improve

the power of information retrieval and information extraction systems. In this chapter,

we describe a synonym expansion approach that combines lexical matching and semantic

equivalency to obtain new synonyms for biomedical concepts.

Lexical matching, mapping terms across ontologies via shared labels or metadata,

has seen previous investigation, and is one of the major techniques used in ontology

alignment[83]. It is this method by which strongly related classes with definitions in

different contexts can be found. For example, moving from the HP definition of the

hypertension phenotype, to the disease of hypertension in DO.

We have also shown that automated reasoners enable querying for class descriptions.

Ontologies that extend the same concepts do not necessarily share the same label; this can

happen due to the ontologies becoming out of sync, or due to limiting the copying of what

are seen as unnecessary details for a particular purpose. Equivalency queries, however,

can obtain these classes, as well as any other classes inferred as equivalent to the target

class, and then extract and consolidate their metadata. In the hypertension example

above, additional labels would be found from DO via lexical matching, while additional

examples would be found from the MIREOT class defined in the HTN ontology.

We present an algorithm that uses these two approaches to expand synonyms for

ontology terms. We implement them into a software tool, and evaluate it in several

ways. First, we extend synonyms for all non-obsolete phenotypes described by HP. We
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then manually validate the candidate synonyms for a random selection of the synonyms

selected from HP. We also use the subset of cardiovascular phenotypes to evaluate the

amount of information the expanded synonyms returns for a clinical text annotation task

and an information retrieval task over biomedical literature.

4.2 Materials and Methods

OWL ontologies use a number of conventional annotation properties to define labels and

synonyms. These span a range of confidence and degree of synonymy. In this chapter, we

consider frequently used annotation properties, summarised in Table 4.1. These are the

annotation properties consolidated into the ‘synonym’ property by the AberOWL API.

Another oboInOwl synonym, hasRelatedSynonym excluded, because the labels provided

by these synonyms are too loose.

We developed an algorithm using the AberOWL API to consider semantic and lexical

matches for a given list of classes, and output a list of synonyms for each. It makes use

of the name query and semantic query functions, documented at http://www.aber-owl.

net/docs/.

Using this algorithm, we performed an expansion of synonyms for all non-obselete

subclasses of Phenotypic abnormality (HP:0000118) in the Human Phenotype Ontology

(HP). We use this set of classes because it contains terms relevant for phenotyping patients

from text documents. The ontology was downloaded and expansion performed on the

21/04/2019.

To evaluate the performance of the algorithm, we randomly selected 500 classes from

the expanded version of HP for manual validation. Synonyms already asserted by HP were

removed from the set, because they were already assumed to be correct, and would not

contribute to measuring the performance of the synonym expansion algorithm. A clinical

expert (WB) marked each synonym as correct, incorrect, or ambiguous. The expert was

asked to answer correctly or incorrectly on the basis: “if a patient has synonym, would
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Table 4.1: Summary of conventionally used annotation properties considered in this
experiment. Definitions come from the description of the annotation properties in their
respective top-level ontologies.

Annotation Property Identifier Definition
label rdfs:label “a human-readable version of a

resource’s name[9].”
altLabel skos:core#altLabel “An alternative lexical label for a

resource[11].”
has exact synonym hasExactSynonym “An alias in which the alias ex-

hibits true synonymy[20].”
has narrow synonym hasNarrowSynonym “An alias in which the alias is

narrower than the primary class
name. Example: pyrimidine-
dimer repair by photolyase is a
narrow synonym of photoreactive
repair[20].”

has broad synonym hasBroadSynonym “An alias in which the alias is
broader than the primary class
name. Example: cell divi-
sion is a broad synonym of
cytokinesis[20].”

alternative term IAO 0000118 “An alternative name for a class
or property which means the
same thing as the preferred name
(semantically equivalent)[14].”

it also be true that they have original label?” Entries were marked as ambiguous if the

synonym was in a different language, or the validator otherwise did not have enough

knowledge of the phenotype to determine whether or not the synonym was correct.

We also investigated whether the expanded set of synonyms improved the power of

text mining tasks, by comparing the output of an information retrieval and an infor-

mation extraction task before and after its input vocabulary was expanded. We used

Stanford CoreNLP’s RegexNER annotator to annotate 1,000 randomly sampled entries

from the NOTEEVENTS table in MIMIC-III (MIMIC)[57]. MIMIC is a freely available

healthcare database, containing a variety of structured and unstructured information con-

cerning around 60,000 admissions to critical care services[80]. We annotated the sample

with all subclasses of Abnormality of the cardiovascular system (HP:0011025), comparing

the number of annotations before and after synonym expansion. This investigation was
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performed on 17/01/2020.

Using the same set of subclasses of Abnormality of the cardiovascular system (HP:0011025),

we compared the sum of article counts returned for a disjunctive query of all labels and

synonyms for each term, before and after synonym expansion. MEDLINE is a searchable

database of literature metadata in the life sciences, containing more than 25 million article

references[7]. MEDLINE was queried on the 27/01/2020.

The synonym expansion tool is available standalone, online at https://github.com/

reality/expand_terms, or as part of the Komenti semantic annotation tool, which is

available at http://github.com/reality/komenti [143].

All files described in the validation files (excluding the MIMIC-III data files), along

with the commands necessary to repeat the experiments are available at https://github.

com/reality/synonym_expansion_validation/ [129].

4.3 Results

The synonym expansion algorithm performs the following process, for each class provided

as input (in this context, ‘every ontology’ is every ontology contained in AberOWL):

1. Extract the labels and synonyms of any classes in any ontology with a label or

synonym that exactly matches a label or synonym of the input class.

2. Run an equivalency query against every ontology using the IRI of the input class,

extracting labels and synonyms for any classes returned.

3. Of the candidate synonyms produced by the first two steps, discard any that were:

• Defined in ontologies that were found to produce incorrect synonyms.

• Have the form of a term identifier.

• Contain the input class label as a substring.

Some ontologies include term identifiers as labels, and these are unhelpful for text-

mining applications (at least in this context). Therefore, candidate synonyms that con-
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tained a colon or underscore were removed. We also found that certain ontologies reliably

produced incorrect synonyms: GO-PLUS[71], MONDO[138], CCONT[52], and phenX[62].

Several of these ontologies are meta-ontologies automatically constructed from several on-

tologies using alignment methods, and it’s possible that errors in that process were the

cause of the incorrect synonyms. Certain annotation properties were also incorrectly de-

tailed by the AberOWL API as being labels, such as europe pmc and kegg compound; it

is unknown whether this is a fault of AberOWL or of the source ontologies. Candidate

synonyms defined by the problematic ontologies or matching the problematic annotation

properties are automatically removed.

4.3.1 Human Phenotype Ontology Expansion

We applied the vocabulary expansion algorithm to all 14,406 non-obsolete subclasses of

Phenotypic abnormality (HP:0000118) in HP. HP itself asserts 29,805 labels and syn-

onyms. The number of labels and synonyms following expansion was 54,765. Therefore,

the algorithm found 24,960 additional synonyms across HP.

For the term hypertension (HP:0000822), 40 unique synonyms were found by the

algorithm, across 7 source ontologies. 2 of these synonyms were asserted by HP itself.

The final number of synonyms was eventually reduced to 33, following the disclusion of

terms that contain the original ‘hypertension’ as a substring. The synonym sources are

shown in Table 4.2. These include several general phenotype ontologies, as well as domain

specific ontologies such as the Hypertension Ontology (HTN), and the Cigarette Smoke

Exposure Ontology (CSEO).

4.3.2 Evaluation

Table 4.3 summarises the results of the manual validation. The manual validation revealed

that many synonyms returned were actually given in non-English languages. While OWL

ontologies do allow for parameters that distinguish which language the property is in,
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Table 4.2: Source of the 40 synonyms found for the term ’hypertension’ per-ontology.

Ontology Number of Synonyms
CCTO[93] 9
CSEO[175] 9

DO[136] 8
HP[87] 2

HTN[69] 13
WHOFRE[115] 9

NCIT[141] 8

AberOWL does not index them. Therefore, it is not currently possible to distinguish

between English and non-English synonyms.

Through analysis of the false positives, we found that many were caused by errors in

the ontologies that synonyms were sourced from. Several synonyms for motor aphasia

(HP:0002427) were marked as incorrect. They were incorrect because they refer to dys-

phasia, for example “Broca Dysphasia.” Aphasia and dysphasia are different conditions:

the first refers to a partial loss of language, and the latter to a full loss of language. All of

these incorrect synonyms were sourced from Aphasia, Broca (MESH:D001039) in MESH.

Table 4.3: Metrics for clinical expert validation of 866 generated synonyms for 500 terms.
Synonyms already included in HP were not included in the validation. Synonyms were
marked ambiguous if not English, or if the validator did not have enough expertise to
confidently judge it.

Terms Total Synonyms TP FP Ambiguous Precision
500 866 613 59 195 0.912

The two text mining evaluations used labels and synonyms for all non-obsolete sub-

classes of Abnormality of the cardiovascular system (HP:0011025). HP asserts 2,205 labels

and synonyms for these classes, while the expanded set of labels numbers 5,336. The re-

sults are summarised in Table 4.4.
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Table 4.4: Amount of labels for Abnormality of the cardiovascular system (HP:0011025)
before and after synonym expansion, and results of the two text mining tasks using them
as vocabularies. MEDLINE results are the sum of the number of results returned by each
query.

Vocabulary Labels MIMIC-III Annotations MEDLINE Results
HP Labels 2,205 1,104 8,191,564
Expanded HP Labels 5,336 1,447 13,513,342

4.4 Discussion

We have demonstrated that AberOWL’s lexical search and semantic query functions can

be used to enrich ontology vocabularies by interpolating synonyms and labels from the

wider ontology ecosystem. In a hypertension example, we showed that very specific

disease-level ontologies can contribute additional vocabulary. In that case, the HTN

ontology contributed 13 new synonyms to the HP term. By automatically leveraging

these, as well as synonyms from other generalised terminologies, we can effectively enrich

vocabularies for biomedical terms.

A manual validation of a selection of expanded synonyms across HP showed a high

precision. However, it revealed that AberOWL cannot distinguish between the languages

of term labels, and therefore many non-English labels were returned as synonyms. Because

ontologies define the language of labels, this feature can be added, and then the algorithm

can be modified to permit only synonyms of the same language as the input. This could

also be controlled partially bydiscounting additional ontologies from results. For example,

WHOFRE is actually a non-ontology mapping of French vocabulary to UMLS. Analysis

of false positives also revealed errors in external ontologies. Ultimately, this approach will

inherit any such errors. This effect can be controlled by extending the list of discluded

ontologies, although this might reduce the number of true positive synonyms found. For

any uses where a reduced precision is not acceptable, candidate synonyms should be

checked by a domain expert.

We also showed that vocabularies expanded by our method increase the amount of

data returned by two information retrieval tasks. We have not, however, shown whether
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the extra information returned is actually useful or relevant for a particular purpose. We

can assume, from the manual validation, that some of the additional data returned are

incorrect, though most should be correct.

The most important potential limitation of the work is that it violates the notion

that the IRI of a concept uniquely identifies it, rather than its name. This is because

OWL ontologies do not follow the unique name assumption. Theoretically, false positives

could be generated by a lexical match on a homonym, which then has different synonyms

itself. We believe, however, that this effect should be limited in the case of highly specific

biomedical language. Furthermore, any error is mitigated in practice by dataset context

limitation. For example, synonyms from another context incorrectly associated with a

medical concept are unlikely to be found in clinical letters.

False synonyms could also be removed on the basis of a corpus search: for example,

if a candidate synonym never or rarely appears in the same document as another label

for that term across a literature corpus, it’s possible that it refers to a different concept

from a disjoint context. This could also be performed by analysing the metadata of text

corpora: for example, if two terms are never or rarely associated with literature from the

same journals, the same field, or the same content tags, it’s possible they have different

meanings. However, the success of such approaches could be limited, since they are at odds

with the notion of consistent use of language within singular articles or contexts. We would

also like to investigate whether this could be achieved using word embeddings. We would

also like to explore database cross-references as a potential source for additional synonyms.

These cross-references establish a semantic link with entries in non-ontology databases. In

biomedicine, frequent mappings include DrugBank, UMLS, ICD, and SNOMED. These

associations provide further opportunity for vocabulary expansion. This functionality

could also be integrated into the AberOWL platform, by indexing non-ontology databases

and associating these with the cross-references, or otherwise making them accessible via

the API.

64



CHAPTER 5

NEGATION DETECTION

5.1 Introduction

We previously discussed that the use of context disambiguation tools, particularly nega-

tion detection, can improve the performance of information extraction tasks. Previous

approaches to negation detection include regular expression or hotspot based methods,

machine learning, and dependency resolution rules.

While dependency resolution methods have proven powerful, one of the limitations

of existing approaches, despite their ability to make use of the rich grammatical model

of a sentence, is that they use complicated grammatical rules requiring expertise and

development time, and do not generalise well. The inherent complexity and ambiguity

of human language leads to such a variety of grammatical models for sentences that

no satisfactory set of rules can be determined via manual training over a small set of

sentences.

We hypothesise that a more general rule-based approach to typed dependency nega-

tion detection will perform and generalise better than rule-based approaches. We propose

an algorithm that uses typed dependencies, but avoids defining specific patterns of de-

pendency. In this way, it should require minimal training, and provide consistent high

performance across medical datasets. The algorithm proposed by Gkotsis et al. is the

closest to the proposed algorithm, however it uses a graph pruning approach, removing
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subordinate clauses and irrelevant intermediate nodes, before employing what is essen-

tially a string search for negation vocabulary[55]. It reports itself as performing similarly

to ConText, with a slightly higher recall. In an independent investigation, Manimaran and

Velmurugan found that it performs extremely well, outperforming other popular methods,

when extended with a richer negation vocabulary[101].

In the proposed algorithm, we instead measure ‘dependency distance:’ the distance in

a typed dependency graph between a negated term and the target term, as the measure

of negation context. In this way, we mirror the generic and transferable ‘hotspot’ method

employed by NegEx and ConText, while extending it with the notion of grammatical

relatedness afforded by dependency modelling.

In this chapter, we present the negation algorithm, and evaluate its performance on two

medical corpora, in comparison with a number of different negation detection algorithms.

First, against the MIMIC-III critical care database[80], and then against clinical letters

mentioning HCM at University Hospitals Birmingham (UHB).

5.2 Materials and Methods

The negation algorithm is implemented in Groovy, and makes use of the Stanford CoreNLP

dependency resolver. It is available as part of the Komenti text-mining tool, at http://

github.com/reality/komenti. Evaluation text was annotated with Stanford CoreNLP’s

RegexNER, also using the Komenti tool. Annotation used all non-obsolete subclasses of

Phenotypic abnormality (HP:0000118) in HP as vocabulary.

5.2.1 Corpus Generation and Training

The MIMIC dataset was derived from the MIMIC-III critical care database. The text was

sampled from the NOTEEVENTS table. Entries were sampled randomly, and then split

into sentences. A random sentence was then selected. 500 randomly selected sentences

were used for training. Training involved annotating the 500 sentences with biomedi-
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cal concepts, running the negation algorithm against the set, and examining error cases

to identify additional negatory vocabulary not currently included in the software, and

identify any errors in the evaluation software, or counting algorithms. To ensure fair-

ness, extra vocabulary terms were also added to the other algorithms evaluated in this

experiment (if not already present). In the case of NegBio, only grammatical rules are

accepted. Therefore, for each of the two negatory words that were missing: deny and not

(surprisingly), a bi-directional rule was introduced. It’s possible that more finely tuned

rules could have been produced for better performance, but the only training considered

in this experiment is the addition of extra negatory words. The NOTEEVENTS table

was sampled again to obtain 7000 sentences for a test set. These were annoatated with

HPO terms using the Komenti tool, yielding 1,300 annotations. HPO query and sampling

were both performed on 28/12/2019.

In the case of the hospital validation (HCM), 5000 sentences were sampled from a

clinical text corpus of documents matching HCM keywords. The construction of this

corpus is explained in more detail in the next chapter. To sample the corpus, a file was

selected at random, and then one sentence randomly from that file, repeating the process

until there were 5,000 sentences. The sentences were annotated with HPO terms using

the Komenti tool, yielding 1,077 annotations. No training set was used for this dataset,

to test algorithm generalisability.

In both cases, during sentence selection, selection criteria were used to constrain the

text returned. This was for two purposes. First, to ensure that narrative text was re-

turned, rather than field-based, table-based, or irrelevant text. Second, to limit the

length of sentences to make it easier to perform manual validation. Sentences shorter

than 4 words and longer than 30 words were excluded, and sentences containing phrases

indicating field data were excluded. Sentences with indicators of nonsense (e.g. due to

scanned documents) were also removed.

These problems could be solved by additional pre-processing of the text, but this task

is not the subject of this investigation, and using shorter sentences should not advantage
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any particular algorithm (although the dependency parsing algorithms are more sensitive

to correct grammar). These parameters and pre-processing options were manually tuned,

and decided upon during the training phase. For simplicity, where a single concept was

mentioned multiple times in a single sentence, only one annotation was preserved, and

negated concepts were given priority. This is potentially a small source of error, but

should not favour any particular algorithm. The test code was designed to ask, in each

case, “is an instance of the word negated in this sentence.”

In both cases, all annotations were manually labelled with respect to their negation

status, determining whether the annotated concept was negated in the sentence. In the

case of ambiguity, the concept was marked as negated if the patient doesn’t have the

condition, and not negated if they do have the condition. This is because the purpose

of the negation detection algorithm, in this context, is the exclusion of concept mentions

from evidence of a patient having a condition if they do not have it. The negation labels

were checked by a clinical expert (WB).

5.2.2 Evaluation

In choosing negation algorithms to compare with, we found that many are not public

software. For reasons discussed in the introduction, we did not consider machine-learning

methods. The algorithms tested are NegEx, pyConTextNLP, negation-detection, NegBio,

and Komenti (the proposed algorithm). More information about the algorithms, including

version numbers and sources, are included in Table 9.1 (supplementary).

While these are all, in some sense, rule-based classifiers, we make a distinction be-

tween trigger based classifiers, and dependency-based classifiers. Trigger based classifiers

define a set of regular expression rules, that define a negatory construct. For example,

PyConTextNLP includes the following rule:

Comments : ’ ’

D i r e c t i on : forward
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Lex : without s i gn

Regex : without s i gn ( s )?

Type : DEFINITE NEGATED EXISTENCE

In the case that a Regex property is defined, the regular expression is used to match

a rule: in this case a grammatical form that expresses the text ‘ruling out’ a subject with

respect to a concept. In the case that this property is not defined, a definite match is

made using the Lex property. In both cases, the Direction property stipulates whether the

negatory construct (pattern or absolute phrase) should appear before or after the concept.

The algorithms also determine their own heuristic for how far the concept should be from

the negatory construct in the sentence.

Dependency-based algorithms instead use a small dictionary of negatory words, in

combination with a grammatical parser that produces a dependency graph model for

a sentence. An algorithm is applied to that graph to determine whether a negatory

construct applies to a particular concept. If an algorithm raised an error during processing

of a sentence, the result was taken to be false (i.e. the concept was not negated). This

happens in the case of NegBio, for example, when a parse tree cannot be constructed for

an input sentence.

We also sought to make a gold standard dataset with which to make future algorithm

comparisons. Therefore, we examined the errors of the three best-performing algorithms

by f-measure, and updated the manually annotated labels if incorrect. The results pre-

sented in this paper are those from the revised corpus.

The Linux command time was used to measure the execution time for each algorithm,

with the ‘real’ measurement taken. Within each dataset, every algorithm was evaluated

using the same machine, but two different machines were used for each dataset. There is

an exception in the case of NegBio for the MIMIC-III validation, which would not run on

the same hardware setup as the others, and therefore was evaluated on the same machine

as the HCM dataset.
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5.3 Results and Discussion

5.3.1 Algorithm

Algorithm 1 describes the algorithm that determines the negation of a concept in a sen-

tence. The dependency resolution algorithm produces a typed dependency graph, which

is passed to this algorithm as input. This graph is formed of nodes that represent word

tokens, and edges that represent their grammatical relationships. Together, they form

a grammatical model of the sentence. Each edge is labeled with a particular kind of

relationship, such as negation or adjectival noun modification. The edges also have a

direction, that define a governer and dependent for each relationship. For example, in

a noun modification relationship between the words light and touch, the governer would

be touch, and the dependent light, because the subject is the noun ‘touch’, while light

is its modifier. The graph can aso be thought of as a set of assertion triples: a governer

(subject), dependent (object), and relationship (predicate).

The basis of the algorithm is an attempt to find a transitive relationship between a

negation construct and a word of interest. Because the typed-dependency graph does not

support multi-word nodes, sentences are pre-processed to replace the concept of interest

with a single neutral word, such as ‘biscuit.’ The algorithm then identifies whether either

a negatory word or a word with a negatory dependent exists in the path to the root

grammatical relationship of the graph. A negation vocabulary is also used in addition

to negatory relationships, because the dependency resolution algorithm does not reliably

identify all negatory constructs with a negation dependency (for example, with the word

‘exclude’). Other sub-graphs are not explored, because these separate paths contain

negatory constructs that refer to other objects in the sentence, and it is therefore a useful

splitting factor. If a match is found, its distance from the target concept is then measured.

This relationship distance heuristic is used to eliminate unrelated negatory constructs that

refer to other words. The cut-off point for this parameter can be modified, but is set to

4. This value was manually chosen during algorithm development process.
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Data: S = A typed dependency graph of a sentence.
T = Tokenised form of the concept of interest
V = Vocabulary of negation words.
Result: True if the concept is negated in the sentence, False otherwise
x = node(T)
edges = getEdges(x)
negated = False
for e in edges do

if predicate(e) == neg then
negated = True

end
end
if negated then

return True
end
path = pathToRoot(x)
rDistance = 0
for node in path do

rDistance++
dependents = getDependents(node)
negated = False
if word(node) in V then

negated = True
end
for rel in dependents do

if word(rel) in V then
negated = True

end
if predicate(rel) == neg then

negated = True
end

end
if negated and rDistance < 4 then

return True
end

end
return False

Algorithm 1: Algorithm for determining the negation of a concept in a sentence.
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The algorithm also has a preprocessing step. If the sentence contains one of the words

in the negation vocabulary, followed by whitespace, followed by the concept of interest,

this is transformed into its own sentence with the word ‘excludes’ appearing directly before

the concept. This is because there is a tendency for the CoreNLP dependency resolution

algorithm to express such grammatical forms using negatory words other than ‘excludes’

as adjectival, rather than negatory, relationships.

5.3.2 Evaluation

We discovered during the training period that both the negation-detection and NegBio

algorithms were not properly able to handle parenthesised text, causing a lot of error.

This was easily fixed by transforming any parenthesised text into a new sentence (i.e. by

replacing each bracket with a period and a space). The sentence containing the concept

of interest is then chosen for negation analysis. This modification was implemented, and

the results from the modified algorithm are provided under the algorithm names negation-

detection (parfix) and NegBio (parfix).

Table 5.1 summarises the result metrics for both the HCM and MIMIC datasets. In

both cases, the best performing algorithm was Komenti, with respect to its f-measure.

However, it was outperformed in both precision and recall by other algorithms in both

corpora. In the case of MIMIC, the negation-detection (parfix) algorithm comes very close

by f-measure, though it suffers lower precision and recall than Komenti. For HCM, the

NegEx algorithm comes extremely close via f-measure, but has a slightly lower recall.

With respect to generalisability, the Komenti algorithm also has the smallest mag-

nitude of f-measure difference between the two corpora, of 0.019, closely followed by

negation-detection (parfix) at 0.024, and NegBio at 0.045. The NegEx and pyCon-

TextNLP algorithms performed much better on the HCM corpora, while NegBio per-

formed much worse.

Another important factor is running time. The quickest algorithm in both cases was

NegEx, finishing in less than 2 seconds. pyConText is also very quick, finishing in less
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Table 5.1: Performance comparison of negation algorithms on sentences sampled from
MIMIC and HCM datasets. The best performance for each metric in each dataset is
emphasised.

Corpus Algorithm Precision Recall F-measure Time
MIMIC

NegEx 0.674 0.948 0.788 0m1.699s
pyConTextNLP 0.467 0.948 0.626 0m55.739s
negation-detection 0.584 0.657 0.619 53m17.757s
negation-detection (parfix) 0.834 0.91 0.87 21m48.981s
NegBio 0.82 0.471 0.598 29m11.643s
NegBio (parfix) 0.88 0.665 0.757 42m57.643
Komenti 0.844 0.942 0.89 1m0.149s

HCM
NegEx 0.905 0.905 0.905 0m1.082s
pyConTextNLP 0.85 0.931 0.889 0m41.446s
negation-detection 0.898 0.889 0.894 4m19.412s
negation-detection (parfix) 0.898 0.889 0.894 4m10.124s
NegBio 0.678 0.611 0.643 39m4.309s
NegBio (parfix) 0.711 0.611 0.657 44m18.804s
Komenti 0.893 0.926 0.909 0m38.225s

than a minute in both cases. Komenti finished in just over a minute in the slower case.

While the HCM dataset was slightly smaller, its evaluation was performed on a much

more powerful machine. This is reflected in the difference between the running times

for negation-detection on the two sets. NegBio, however, remains slow, taking around 40

minutes in both cases. Upon investigation, we found that negation-detection makes use of

multiprocessing, while NegBio does not. It is also curious that in the case of MIMIC, the

parfix modification more than halved the running time of negation-detection, but actually

increased the running time of NegBio. This is surprising, because smaller sentences should

be quicker to parse, and perhaps suggests that the running time is linear with respect to

the number of sentences, rather than being dependent on complexity of grammar.

While most algorithms maintained their performance across corpora, Negex and py-

ConTextNLP (which use the same basic algorithm) showed much better performance

against HCM, and NegBio much poorer performance. In fact, NegBio maintained its

relatively poor recall, but lost its precision. The MIMIC dataset used a lot of sentences

in the form ‘not x,’ some of which were parenthesised (accounting for the increase in
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performance from the parfix variant), as well as sentences describing patients denying

symptoms. As described in the methods, we had to add a bi-directional rules to capture

the ‘not x’ and ‘denies x’ forms to NegBio during the training for MIMIC, because it

was not caught by default. We can surmise from its lack of generalisation to the HCM

dataset, that it contained negation forms that were neither caught by these additions,

nor its in-built grammatical rules. Overall, however, the language in the HCM dataset

was simpler. There were fewer run-on sentences containing many observations without

punctuation separating them, and we expect that this is the reason the NegEx algorithms

showed better performance over this corpora.

Our results show that in addition to trigger based algorithms, some dependency reso-

lution algorithms, specifically those which use general heuristics rather than grammatical

patterns, also generalise across datasets well. In addition, they perform well in situations

that NegEx algorithms do not. Nevertheless, a training phase is still necessary. Training

over MIMIC identified three additional negatory words to add to the vocabulary. This

process is relatively easy and quick when compared to the development of grammar rules,

however.

Some algorithm errors could also be mitigated by pre-processing. For example, by

transforming sentences that appear like fields or tables. This would, however, also be

part of an involved training process, and any changes would not necessarily generalise

well. This is evidenced by the relatively small difference in performance for parfix variants

over the HCM dataset compared with the dramatic improvements over MIMIC. Another

potential source of dataset bias is that certain phenotypes are over-expressed in medical

texts, and therefore the samples used in this experiment will be testing the negatory

language used around them much more than other phenotypes. A clear example of this is

pain, which accounts for 127 of the 1300 annotations in the MIMIC dataset. Meanwhile,

the HCM dataset were documents discussing HCM, which carries with it a standard set

of phenotypes and comorbidities.

The main source of error that remains for Komenti and negation-detection is the
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Figure 5.1: Two sentences concerning hypertension, with typed dependency annotations.

problem of whether the negation of intermediary phrases also negates the target noun.

For example, in the sentences about hypertension shown in Figure 5.1, the negatory

modifiers actually apply to intermediary nouns (and these are the direct objects of their

sentences). These nouns are ‘treatment’ and ‘signs’ respectively, and they are connected to

hypertension by a noun modification relationship. The grammatical relationship between

the negator and the concept of interest is the same, but they express very different things.

The first talks about treatment of hypertension, the negation of which does not indicate

that the patient does not have hypertension (rather the opposite), while the second talks

about signs of hypertension, which if negated also indicates there is no hypertension.

This difference can also depend on the verb used, and many other potential expressible

constructs.

This problem is not easily solved. The Komenti and negation-detection algorithms are

completely ignorant to this kind of relationship, while NegBio only understands codes for

the predicates themselves (so it could not tell the difference between a ‘sign’ and a ‘treat-

ment’). These algorithms could be modified to accept patterns of different intermediary

nouns, indicating whether or not its negation also negates the target concept, and indeed

these could be implemented using NegEx regular expressions. Alternatively, a simple

classifier could be trained using annotated texts to learn whether or not these negations

apply transitively. However, both of these approaches would introduce a complexity and
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necessity for training that betrays the purpose of a simple heuristic-based algorithm.

Nevertheless, this in combination with ambiguous and badly structured text (such as

tables and forms) are the primary source of error for the algorithms in this experiment.

In the next chapter, we will suggest a method for overcoming this source of error in a

practical system.

In the future, we would like to develop a method of automatically tuning the node

distance parameter. Its optimal setting potentially depends upon several features of the

free text the algorithm is employed upon, including the complexity and domain of the

language expressed. Moreover, heuristics within the individual sentences could be used

to tune the parameter: the length of the sentence, the total depth of the target concept

within the grammatical model, and the total number of noun class words in the sentence.

However, the aim of this work was to develop a base method for negation using co-reference

models; further development of heuristics that depend upon specific sentence structures

risk suffering a large number of edge cases and an inability to easily generalise.

Another limitation of the algorithm is that it currently does not support multi-word

negatory constructs. Figure 5.2 shows an example of such a rule in pyConTextNLP.

The Komenti cannot currently model this kind of relationship, as the grammatical tagger

does not recognise ‘can rule out’ as a negatory phrase (although it can recognise some

multi-word entities, or represent them as noun phrases), and the dictionary is matched

against each token (word) individually. While this has not proved to be a problem for

the investigation described, it would be a desirable feature for further improvement of

performance, and application to datasets where negation is expressed in more complex

ways. It should be possible using the entitymentions CoreNLP plugin, which allows for

the parsing of multi-word tokens.

In the introduction, an advantage of rule-based algorithms was given that they are

explainable. Furthermore, a distinction was made between trigger and dependency based

rule-based algorithms. In both cases, one can determine the reason a decision was made.

In the case of trigger classifiers, such as NegEx, this is a matter of finding the trigger

76



Comments : ’ ’
D i r e c t i on : forward
Lex : can r u l e out
Regex : ’ ’
Type : DEFINITE NEGATED EXISTENCE

Figure 5.2: Example of a pyConTextNLP rule.

rule that applies and examining its application. In the case of heuristic classifiers, this is

somewhat simplified by there only being a heuristic rule, and a small number of negation

modifiers. However, a disadvantage in the case of both of these algorithms is that the data

model they operate upon, the grammatical reference graph, is not readily available after

the fact. The algorithm could be modified to output a sub-graph or graph annotation

that shows the reason with the decision was made. Such models could be presented in val-

idation applications, and even be used as part of tools enabling the reactive development

of corrective changes or rules.

We have shown that that the algorithm maintains performance over two datasets,

across two different dialects of English, and two different healthcare settings: critical care

and clinical noting. We have not, however, tested more than these environments, and

we have not tested whether the algorithm maintains performance across different kinds

of biomedical text such as literature, which may describe different or more complicated

kinds of negation.
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CHAPTER 6

PATIENT IDENTIFICATION AND PHENOTYPE
EXTRACTION

6.1 Introduction

In this chapter we consider the work presented in the previous two chapters as compo-

nents of a larger information extraction pipeline. We apply this pipeline to finding and

phenotyping HCM patients across a clinical text record. We hypothesise that by extract-

ing this information from the text record, we can come to a greater and more granular

understanding of the HCM cohort than is contained in the structured databases at the

hospital alone.

The synonym expansion algorithm is used in combination with expert advice to cre-

ate a vocabulary for named entity recognition. These phenotypes are then annotated in

text. We also create a variant of the negation algorithm that uses an uncertainty vo-

cabulary, allowing for detection of ambiguity or uncertainty. Using this in combination

with the previously described negation algorithm and presence of family-related work,

we tag mentions of phenotypes with additional contextual information. We hypothesise

that the use of several sentences and their associated classifications as input to document-

level classifications for a concept will overcome the precision limitations of sentence-level

classifications discussed in the previous chapter. Because concepts are mentioned several

times in text, and most are classified correctly, evidence for the correct outcome should
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outweigh small numbers of incorrect sentence-level classifications.

We then develop a classifier that uses all of these mentions and their associated rela-

tional context to classify patients with respect to the concepts. In this way, the pipeline

forms an information extraction tool that phenotypes patients across an entire clinical

document record. We evaluate the performance of the pipeline in several ways, both

manual and automatic.

6.2 Materials and Methods

This work was undertaken at the Queen Elizabeth Hospital site of University Hospitals

Birmingham NHS Foundation Trust (UHB) in the West Midlands, UK. There is a long

standing service for HCM patients at the site, which includes a specialist clinic and rare

disease registry that has been running for four years, since 2016. The documents were not

de-identified as this was a service improvement project, where the clinical expert involved

intends to follow up those individuals who have been lost to discharge. Only information

relating to the concepts of interest for each study was extracted, with the remainder

discarded. The hospital identification number was used to link documents belonging to

the same patient and associated data to the registry, and other databases for validation.

6.2.1 Concept Vocabulary

A list of words and phrases were developed by a cardiology and HCM specialist (WB) that

indicate hypertrophic cardiomyopathy, atrial fibrillation, or heart failure in text. These

terms were then linked to HPO terms, and the synonym expansion algorithm was used

to further extend the vocabulary.
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6.2.2 Corpus Generation

Documents were obtained from the UHB patient document management system (Open-

Text, formerly Documentum) on 02/06/2019. The entire clinical document record, around

22TB in size, is contained in a series of PDF files. The corpus includes primary and sec-

ondary care referrals, clinic letters, discharge summaries, and digital noting. PDFs with

words matching HCM keywords in the vocabulary were obtained. Only the most recent

document mentioning each HCM, AF, and HF was used for analysis of each concept.

6.2.3 Annotation and Classification Pipeline

The annotation and classification pipeline was developed using Groovy, using Stanford

CoreNLP[102]. The software used for the pipeline was a prototypal version of the Komenti

software, with different annotation logic than can be found in the current tool. The

current tool also does not yet include the exclusion matcher or overall status classification,

although these features will be added in the future. Komenti is available at http://

github.com/reality/komenti.

6.2.4 Training and Validation

A tool to validate results of the annotation was also developed, bundling a simple web

server and client developed in NodeJS into a single-page web application. A training set

of 300 patients was used over several iterations of the pipeline, using feedback from clin-

ical validation via the tool to improve vocabularies and exclusion criteria. The negation

vocabulary used was the one developed during the last chapter. The uncertainty vocab-

ulary was initially populated with an dictionary developed for topic modelling[63], and

was then curated during the training process. The exclusion vocabulary was developed

entirely within this training process.

In the case of the manual validation, metrics are measured with respect to the pipeline’s

overall ability to assign the nature of the patient’s relationship with the concept of interest:
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uncertainty, negation, family history, positive. Family history is the only classification that

is not mutually exclusive with the others, since it says something about the subject of the

sentence, rather than the existence of the concept with respect to the subject. Manual

validation results determined whether the algorithm had correctly assigned the status

(uncertain, negative, family history, positive) of the patient with respect to each of the

patients using the text provided. These results were used to inform modifications to the

vocabulary and classifier, and validation was performed iteratively until a high precision

and recall had been obtained on the training set.

As there is no single ground truth for diagnosis of phenotypes or conditions at the

hospital, and because we are seeking to find new patients unknown to the structured

data at the hospital, several methods of validation were used. These are summarised in

Table 6.1. Since the cut-off dates for automated ECG reports and ICD-10 codes occur

before the extraction date, patients for whom the extraction considered documents dated

after these respective cut-off dates were excluded from the validation.

Table 6.1: Summary of the methods and resources used for final validation of the infor-
mation extraction experiments.

Source Description Collection Date
Clinico-genomic
Registry

Used to collect data on all HCM patients at
the point of care in the specialist clinic since
2015.

02/06/2019

Manual Validation performed via our tool on a fur-
ther 300 patients not included in the training
set.

N/A

Automated
Electrocardio-
gram (ECG)
Reports

Atrial fibrillation results were evaluated
against a database of automated ECG re-
ports produced by the machines. The reports
contain a simple list of inferred conditions,
and simple presence of the string ‘atrial fib-
rillation’ was used to mark patients as posi-
tive for AF.

26/06/2018

Hospital
Episode Statis-
tics (HES)

A database of ICD-10 codes at the hospital
manually curated from letters describing in-
patient stays.

31/03/2019

Many clinical letters, particularly those in the Accident & Emergency department,
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exist only as scans of handwritten notes, marked forms, or screenshots of spreadsheets.

Reading these documents is not in the scope of this work, but the data they contain may

be reflected in ICD-10 codes or the rare disease registry, because they are formulated by

human curators. Otherwise, ECG machine read-outs and other test results may contain

phenotypes not discussed in the text record. Furthermore, we only analysed documents

which mentioned HCM, which may not represent the full set of documents that discuss

HF and AF. To ensure that we are measuring the ability of the pipeline to extract and

correctly classify the phenotypes expressed in the text, the validation only counts patients

for whom at least one mention of the concept being measured was found.

6.3 Results

6.3.1 Pipeline

Figure 6.1 describes the text extraction pipeline. Vocabulary construction takes place after

determining a target cohort, by working with a clinical specialist to determine words or

phrases that are indicative of the concepts of interest in the target corpus. This involves

a distinction between dependent terms and additional phenotypes: the first being a term

or terms that are necessary for a patient to be included in the dataset, and the latter

being additional phenotypes of interest for patients whose record mentions the dependent

concept. Vocabulary is also defined for annotation classification, defining words or phrases

that would make a sentence irrelevant, refer to a family member, negated, or uncertain.

The way these vocabularies are used is described in more detail in the next section.

After terms are defined, their labels are expanded by the algorithm defined by the

Vocabulary Expansion chapter. These are not validated at this stage. In the case of the

HCM investigation, the dependent concept is hypertrophic cardiomyopathy.

Following vocabulary construction, the clinical text record is searched for documents

that mention dependent terms, using simple string matching. These documents are then
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Figure 6.1: Flowchart and description of the pipeline to identify and phenotype patients
from a clinical text record.

processed, extracting hospital numbers which are then used to group documents belonging

to each patient. Then, the most recent document mentioning each concept of interest is

kept. The text is then extracted from the documents, and pre-processed with basic NLP

techniques, regular expressions, and other rule-based string manipulations. This extracted

and pre-processed text forms the corpus.

During annotation, the text is split into sentences, and annotated with the vocabulary

describing concepts of interest. In every case, the entire sentence is classified with respect

to whether the concept in that sentence is negated, uncertain, or irrelevant. If it’s con-

sidered irrelevant, it is thrown away. Sentences are also classified with respect to whether

they refer to a family member or a family history, rather than the patient themselves.

These sentence-level classifications are described in the next section, but they are used

to decide the patient’s overall status with respect to each phenotype. Only patients who

are found to have, or found to be uncertain with respect to the dependent concept, are

classified for other phenotypes.
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Following these initial classifications, a training phase is entered. A validation tool

(which is described later) is used by a researcher and a clinical expert together to measure

the performance of the algorithm on a small subet of patients classified by the system.

Feedback from this algorithm is used to inform modifications to the pipeline. Most of-

ten, this involves modifying the various vocabularies used as input for classifiers. It can,

however, also inform modifications to the pre-processing steps. The entire process is then

repeated with the changes, and continues to be repeated, until a suitable level of perfor-

mance has been reached. Then, the final extraction is completed, and a final validation

is performed both manually and against any databases. The manual validation does not

include patients who were validated during the training phase, while the automated vali-

dations do, because it is our intent to measure the success of the overall process (including

training) at phenotyping the population.

6.3.2 Annotation and Classification

Documents are split into sentences and annotated. Then, each sentence mentioning a

concept of interest is tagged using four sentence-level classifiers:

1. Irrelevance

2. Family History

3. Negation

4. Uncertainty

The negation algorithm is the one described by the chapter Negation Detection. The

uncertainty detection algorithm is a variant of the negation algorithm that instead uses

a vocabulary that detects uncertainty. The exact definition of uncertainty depends on

the problem definition, but in the case presented it is used to determine cases in which

you would not want to assume, from the content of the sentence, that the patient has the

condition. Ultimately, its purpose is disambugative: as a ‘softer’ rejection than negation.

The use of an extra classifier, instead of simply extending the vocabulary of the negation

84



detection algorithm, is because patients who are classified as uncertain may be viable for

additional follow-up. For example, hypertrophic cardiomyopathy is a frequently misdiag-

nosed disease, and patients for whom uncertainty is expressed about their condition may

warrant further investigation by a specialist.

The irrelevance and family history classifiers are based on simple string matching of

phrases in a vocabulary. In the case of the family history classifier, the aim is to identify

sentences in which a patient’s family or family history are mentioned (and therefore that

concepts in that sentence may refer to the family member, rather than the patient). The

reason that these are done using simple string matching, instead of using a more compli-

cated algorithm, is that they do not require the same level of discernment as uncertainty

or negation, and so that they can support multi-word phrases. The irrelevance classifier

is used as a pre-processing step to determine whether the sentence is worth classifying.

It is mostly used to remove templated text such as “assess dvt risk” or nonsense from

scanned text. It is also, however, used as a catch-all in case of negation or uncertainty

constructs that span multiple words. All of these are considered to be ‘unclassifiable’ or

irrelevant text.

In the case of irrelevance, the sentence is discarded and not classified by other sentence-

level classifiers. For family history, the sentence is still classified with respect to uncer-

tainty, negation, and irrelevance, because this can provide useful information. After all

sentences are classified, the patient’s status with respect to each concept is determined.

The patient’s family history status with respect to each concept is also decided, using

only the sentences referring to family history. Algorithm 2 describes the decision process.

If the concept was not mentioned at all, the result is null, and no predicate exists in the

results about the patient’s status with respect to the condition. This is because not men-

tioning a condition is semantically different to the text actually stating that the patient

does not have the condition. The sum of negated and uncertain sentences may exceed the

total sentence count because sentences may be simultaneously uncertain and negated.
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Data:
total mention count = Total number of sentences mentioning the concept in the
document.
uncertain sentences count = Total number of sentences mentioning the concept
classified as uncertain.
negated sentences count = Total number of sentences mentioning the concept
classified as negated.
Result: Affirmed if patient has the phenotype. Negated if it is ruled out.

Uncertain if it’s uncertain. No if all mentions are irrelevant. NULL if
it’s not mentioned.

if total mention count == irrelevant mention count then
return “No” ;

end
total mention count -= irrelevant mention count;
if total mention count > 0 then

if uncertain sentences count > 0 then
if negated sentences count + uncertain sentences count >=
total mention count then

return “Uncertain” ;
end

end
if negated sentences count > 0 then

if negated sentences count + uncertain sentences count >=
total mention count then

return “Negated” ;
end

end
return “Affirmed” ;

end
return NULL;

Algorithm 2: Algorithm for determining whether a patient has a particular pheno-
type on a document level. No is functionally equivalent to NULL, but is separated for
the purposes of evaluation. All counts do not include sentences that are classified as
family history.

Validation Tool

To allow clinicians and researchers to manually evaluate results, a web-based validation

tool was created. An example screenshot is shown in Figure 6.2. Because the correctness of

the different patient-level classifications are validated, it’s possible to measure from these

validations the performance both of the overall algorithm at finding patients, but also

the performance of the classifiers for uncertainty and negation. Patient-level comments

can also be provided by the validator to explain why an error was made, or to suggest an
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Figure 6.2: A screenshot of the validator tool used by researchers and clinicians to
evaluate the performance of the algorithm, both for training and final validation. Sentence
contents and ID numbers are synthesised. As evidence, sentences used by the algorithm
to derive the overall diagnosis for the phenotype are listed. The filename is also given,
and this forms a hyperlink to the PDF file itself, allowing the validator to consider the
overall context in which the classification was made, which they can use to discern the
ground truth.

upgrade to vocabularies.

6.3.3 Evaluation

Table 6.2 summarises the patients found and classified by the algorithm. 947 of the

patients found were unknown to the rare disease registry. Table 6.3 shows that the

prevalence of the comorbidities, HF and AF, was similar between the entire extracted set

of patients, and the registry alone.

Table 6.2: Break-down of the classifications made by the algorithm, including the num-
ber of patients found by the extraction pipeline that were not already known to the rare
disease registry.

Patients with HCM Keywords 3,120
Patients with only irrelevant HCM mentions 194
Individuals with uncertain HCM status 454
Individuals without HCM (explicitly excluded) 879
Individuals with HCM 1,787
Patients with HCM, unknown to registry 947

Table 6.4 show the results of the extraction evaluation. In all automated validations

(registry, HES, and ECG) a high recall is shown, though it is higher for HCM than for the

comorbidities. The results of the manual validation are further broken down in Table 6.5,

showing precision values for each condition, and for each classification endpoint. For the
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Table 6.3: The total number of patients determined by the extraction pipeline to have
AF and HF, and a comparison of each complication prevalence amongst the full set of
extracted patients, with its prevalence amongst the rare disease registry.

Complication Extraction Patients Extraction Prevalence Registry Prevalence
Atrial fibrillation 288 20% 21.65%
Heart failure 161 11.18% 13.59%

overall counts, patient and family classifications are combined. Several classifications,

such as family affirmation and uncertainty for HF and AF, had no occurrences, and so

no metrics could be calculated. Items with very small numbers of samples carry extreme

precision of 0 or 1, while in some cases precision was perfect even with a relatively large

number of samples (e.g. family negation for HCM).

Table 6.4: Evaluation metrics for the pipeline. Precision and recall for validation of
the pipeline results against multiple sources for each AF, HF, HCM, and overall. HES
figures for AF and HF are only given for patients who were were affirmed or uncertain
with respect to HCM, because only these patients were phenotyped. HF is not measured
against the registry, due to the registry only recording whether a patient has had a HF
admission. Precision is omitted for HES and ECG, as these are not a gold-standard
resources, meaning the values would be misleading. Likewise, recall is not given for the
manual validation, as it did not measure how many of true cases were found (since the
validation only considered accuracy of classifications made on patients the pipeline found
from the text), and the value would therefore be misleading.

Condition Validation Method Precision Recall
HCM

Registry 0.47 0.901
Manual 0.819 —
HES — 0.926

Atrial fibrillation
ECG — 0.993
Registry 0.793 0.87
Manual 0.917 —
HES — 0.777

Heart failure
Manual 1 —
HES — 0.556

Overall
Manual 0.854 —
HES — 0.796
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Table 6.5: Results of the manual validation for the HCM patient extraction. Overall
counts include family history sentence assertions.

Condition Classification TP FP Precision
HCM

Affirmed 104 23 0.819
Uncertain 24 5 0.792
Negated 33 4 0.879
Family (affirmed) 12 1 0.917
Family (uncertain) 5 0 1
Family (negated) 26 0 1

Atrial fibrillation
Affirmed 24 2 0.917
Uncertain 2 0 1
Negated 0 1 0
Family (affirmed) 0 0 —
Family (uncertain) 0 0 —
Family (negated) 2 0 1

Heart failure
Affirmed 12 0 1
Uncertain 3 2 0.6
Negated 3 0 1
Family (affirmed) 0 0 —
Family (uncertain) 0 0 —
Family (negated) 2 0 1

Overall
Affirmed 152 26 0.854
Uncertain 34 7 0.829
Negated 66 5 0.93
All 252 38 0.87

6.4 Discussion

We have described the development and implemention of a patient identificiation and

phenotyping pipeline, and applied it to the discovery and phenotyping of patients with

HCM at UHB. The automated validation shows a high recall for HCM, AF, and HF

against registry and ECG sources. The precision of HCM against the registry source is

low, at 0.47, because the pipeline discovered more patients than exist in these databases.

This is confirmed by the manual validation, which reveals high precision for the task of

affirming the three conditions. With the assumption that this precision holds for the entire

result set, the pipeline has effectively identified a large number of new patients currently
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unknown to the rare disease registry or HES, and patients known to the registry but

with important comorbidities unknown to it. These patients can be manually validated,

and brought into care at the rare disease clinic at the hospital - most deaths caused by

HCM are in the unmanaged population. In addition, prioritisation of patient treatment

is performed in part on the basis of important complications such as AF and HF, as they

vastly increase the chance of further complications and sudden death. Better knowledge

of patients with these complications enables for prioritisation of high-risk patients who

may have otherwise been missed.

Recall for the HES validation was lower than for the registry, and this is likely because

only letters mentioning HCM were evaluated. It is, however, especially low for HF, and

we wonder whether this is due to a coding error, or criteria for the use of the HF ICD code

that differ from explicit diagnosis (there are differing definitions of what constitutes heart

failure, for example, based on clinical presentation versus ejection fraction measurements).

For future work, we would like to consider the entire patient record. The evaluation could

have also been improved by matching document dates with the event dates provided in

the HES database.

There are, however, limitations of the evaluation. During the training phase the ir-

relevancy vocabulary was expanded with phrases that the uncertainty and negation algo-

rithms could not correctly classify. For example, the phrase ‘ruled out’ can’t be captured,

because it spans multiple words. By adding it to the irrelevancy vocabulary, sentences in-

cluding such phrases were excluded from further classification. Because they are labelled,

this is not a problem for the given recall or precision metrics (errors in this algorithm are

counted in the overall metrics). However, because the pipeline is designed to use irrele-

vancy classification as a pre-processing step, ‘irrelevant’ sentences are deleted, and aren’t

considered in the manual validation. While this would not affect the precision of the

given metrics, it means there is no evaluation of the precision of the irrelevancy classifier,

affecting the unmeasured recall of the negation and uncertainty classifiers (patients who

should be classified as uncertain or negated are considered irrelevant). Another problem
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with the manual validation is that the correctness of classifications are binary, and no

information is returned about what the correct classification is, or what the reason for the

error is. For example, we cannot tell whether a false positive affirmation is because the

sentences do not refer to the concept in question, or because they should be classified as

uncertain or negated. This is also true for family classifications. As another example, we

cannot tell whether the one false positive for affirmitive family history in HCM is because

the sentences don’t refer to a family member, don’t refer to HCM, or because they say

there is no family history. This kind of increased resolution in the evaluation would al-

low for better feedback for algorithm improvement during the training phase, and would

also allow for the calculation of meaningful recall statistics for each classification. These

problems were found during the evaluation stage of the project, and we plan to modify

the pipeline and evaluation process to account for them.

Nevertheless, while the results of the manual validation cannot speak to the recall of

the classifiers, they do show that sentence based disambiguative classifiers with a simple

count-based decision procedure are highly precise for labelling the overall status of a

patient’s relationship with a condition. The manual precision for HCM is substantially

lower than for AF and HF, which we expect is because unlike the other comorbidities, it is

a complex disease with a complex presentation, and is therefore discussed in more depth

and diagnosed less frequently. While all of the classifiers perform well, the uncertainty

classifier has slightly lower precision. During the training phase, we noticed that many

false positives were caused by the seed vocabulary (re-used from a standard vocabulary

for topic modelling) being unsuited for medical language, because the clinical narrative

explored used a lot of hedging. For example, the sentence “the test suggests the patient

has atrial fibrillation,” would be classified as uncertain, but in most cases the validating

clinician would mark these patients as affirmed. While these cases were excluded in the

training set, it’s possible that this did not solve additional errors of the same kind in

the test set. It’s possible that creating a new uncertainty vocabulary from scratch may

improve performance.
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A clinical expert (WB) reviewed the false negative results of the pipeline with respect

to the rare disease registry, and found that the majority of these patients were actually

genotype positive, but negative for the phenotype of HCM. These patients are usually

tested on account of a family history of having the disease, and then followed up every

few years by the specialist clinic to monitor for development of any clinical presentation of

the disease. There is some uncertainty as to whether these patients actually have HCM.

While we have identified greater recall for the two comorbidities amongst the rare

disease registry for two comorbidities, the registry includes more than 170 variables de-

scribing social history, imaging, experimental results, comorbidities, and outcomes for

patients. As future work, we would like to extend the pipeline to capture these additional

phenotypes. While the system could easily be extended to capture additional qualitiative

phenotypes, it would require additional work to capture quantitative ones. These include

important measurements such as left atrial volume, weight, or heart reate. There are also

practical problems with validating such a large number of phenotypes for a large number

of patients.

The aim of this experiment was to identify the current, or most recent known status

of a patient. While HCM is a life-long condition, AF, HF, and other conditions may

come and go. The current pipeline could be used to determine the patient’s status at a

particular time by generating a corpus with a particular cut-off date. For future work,

we would like to update the algorithm to determine a patient’s status at different time

points. This would offer additional information about a patient’s history.
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CHAPTER 7

COMPLICATION PREDICTION

7.1 Introduction

As discussed in the Literature Review, most patients with HCM do not develop com-

plications, and their life expectancies are not seriously affected. The patients at risk of

complications, therefore, must be prioritised by the clinics that manage their condition.

This is currently performed by clinicians, and the ACCF/AHA guidelines recommend

that patients under 60 should undergo “comprehensive clinical assessments on an annual

basis for risk stratification and evolution of symptoms[53].”

Prevention of sudden cardiac death is the foremost consideration for HCM, and most

work around outcome prediction has focused on it. In the introduction we discussed

two such risk calculation models based on time-to-event modelling that are used in clin-

ical practice. However, HCM may also cause a number of other complications. These

complications affect quality of life and increase the likelihood of progression to end-stage

symptoms, including death. Earlier we discussed that certain lifestyle and prophylactic

interventions can prevent the development and progression of these complications. There-

fore, prioritisation of HCM patients based not only on the likelihood of sudden death in

the medium term, but on the likelihood of developing complications, could constitute an

important development in care.

In this chapter, we consider the development of two prognostic models for the devel-
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opment of complications over a three year period in HCM patients. To do this, we will

use the text mining pipeline described in the previous chapter to overcome limitations

in the data reported in the rare disease registry. By identifying additional complication

outcomes and assigning them dates, we will enable the construction of multivariable Cox

regression models to predict the likelihood for development of AF or HF in HCM patients.

We further hypothesise that the integration of the rare disease registry with structured

data from other modalities, will uncover informative relationships between complication

development and additional variables not captured in the registry itself.

7.2 Materials & Methods

The experiment consists of combining clinical data from multiple sources, organised by pa-

tient visits, identifying outcomes through a combination of specialist registry information

and NLP-mined concepts. Using HF and AF outcomes, and time until their occurrence

as events, we then construct two different time-to-event models based on the clinical data

recorded at the time of each patient’s first visit, to identify predictors associated with later

development of those complications. The overall process is summarised in Figure 7.1.

All pre-processing, data integration, and modelling was performed using R. In the con-

text of the time-to-event analysis, ‘survival probability’ is used to refer to the probability

of the patient not experiencing the event at the given time-point.

The data was formulated from a combination of multi-modal data acquired from the

UHB secondary care trust. They are described in Table 7.1. Patients in these datasets

were linked with a pseudo-anonymous identifier, and other identifying information such

as names and addresses were not provided.

The rare disease registry contains two tables, one describing the patient (one row per

patient), and the other describing visits (one row per visit). There were 3,301 visits for

1,043 patients.

A combination of variables from the registry and NLP complications were used to
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Figure 7.1: Summary of dataset construction and analysis pipeline. First, data from
multiple sources are organised by patient visit. Outcome variables are then constructed
using a combination of information recorded in the specialist registry and text-mined
phenotypes. These values are then converted into time-to-event values, using 36 months
as a cut-off, and only the first visit for each patient is then retained. After further pre-
processing to remove variables and patients with high missingness, two separate datasets
are created, one with AF as an outcome, and the other with a HF outcome; patients
presenting with the relevant outcome are removed (as these patients cannot then undergo
the event). These two datasets are then used to construct two separate time-to-event
models, involving features selection, model construction, and model evaluation.

construct outcomes for analysis. The complications considered were atrial fibrillation and

heart failure, because these were the comorbidities chosen for extraction in the previous

chapter, on the basis of their importance in management of HCM. The registry records

whether patients have AF, but it is missing cases (as was shown in the previous chapter),

and is missing most information concerning when the patients developed it (making it

unsuitable for time-to-event analysis). Its only information about HF is whether the

patient has had a HF admission. While this is suitable to assume the patient has HF,

it will not include all patients with HF, since many are managed through outpatient

care only. Therefore, to construct our outcome variables, the AF and HF data in the

visit table of the registry are extended with information from the text mining chapter
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Table 7.1: Summary of data sources used for complication prediction modelling. All
variables are considered as predictors, except for heart failure and atrial fibrillation, which
is constructed through a combination of information from visit details and extracted
complications (although heart failure is used as a predictor in the atrial fibrillation model,
and atrial fibrillation is considered as a predictor in the heart failure model).

Name Source Description
Visit Details Rare Disease Registry Includes temporal comorbidity information,

measurements and qualitative judgements on
investigations performed on a particular visit
to the clinic.

Patient Details Rare Disease Registry Patient background and comorbidity infor-
mation particularly relevant to the condition.

Patient Demo-
graphics

EHR Basic demographics and social history.

Blood Results EHR Continuous measurements from routine
blood tests taken at the hospital.

Extracted Com-
plications

NLP Heart failure, atrial fibrillation, and when
they were first diagnosed.

results. Diagnoses described by the NLP dataset are linked to the next visit recorded in

the registry following it, updating that record to add complication cases where they are

not present, and thereby providing a timeline for development of the complication.

These dates are then transformed into time-to-event values, measured in months, up

to a maximum of three years (36 months), after which the outcome is right-blinded, and

represents the number of months between the initial visit and the visit at which they

developed the complication. This value was chosen on the basis of an evaluation of the

distribution of months until complication development or final visit, which is shown in the

results section. If they did not develop the complication, the time-to-event is the amount

of months until their final visit. As described in the previous chapter, the NLP pipeline

currently only uses the most recent HCM-related document mentioning the complication,

and therefore time-to-event may be somewhat over-estimated in the model. While this

is not optimal, we will find that most time-to-event values still fall within the 3 year

period of interest, and this is because the rare disease registry has only been running for

four years (although patients treated before it was established have been imported), and

patients are usually followed up at intervals of at least a year. Therefore, we can treat the
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NLP-derived outcomes in the same way as a blinded follow-up, which may often occur

after the actual development of the clinical feature.

It is of note that many of the measurements could in some cases be considered time-

dependent variables. For example, creatinine and other blood tests might normally be

considered as time-dependent variables, especially in short term studies[161]. The visit

details also encode information that changes over time. However, we expect that the

proportional risk should stay constant with respect to the follow-up times considered in

this study. We will examine the final model for adherence to the assumptions of the

model. Creating a model with time-dependent variables could be considered as future

work, in a more descriptive model that might be better suited for finding predictors that

operate in a much shorter term or acute sense, or modelling responses to treatment.

The first visit was then selected for each patient, and then joined with the patient

details table. These were then joined with the demographic information from the EHR,

and also joined with the latest blood results that occurred at most two days after the date

of the visit.

Patients who only had one visit were removed, as they could not be followed up.

Variables with more than 50% missingness were removed, and patients with more miss-

ing variables than visits in the dataset were removed. Imputation was performed on the

rest of the variables using bag impute, and highly correlated variables (above 0.75) were

removed. Some approaches consider large amounts of missingness using multiple imputa-

tion, however removing predictors with a lot of missingness also helped for the purposes

of reducing the dimensionality of the dataset. This led to 104 variables (including AF

and HF), which are listed in Table 9.2 (in supplementary materials). When factors were

flattened into dummy variables, this yielded 199 variables.

A dataset was then created for AF and HF separately. In the AF dataset, all patients

who presented with AF were removed. For HF, all patients presenting with HF were

removed. The relevant outcome was also removed as a predictor. This left 652 observa-

tions with 90 events for AF and 671 events with 35 events for HF. After this, variables
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with no variance were removed, leading to 203 variables each. Missing variables were

then imputed using bag impute. Variables with no variance were again removed, along

with highly correlated variables above a cut-off of 0.75. This resulted in 187 variables

considered for AF, and 124 variables considered for HF.

Feature selection was then performed using recursive feature elimination with a ran-

dom forest model, after downsampling each dataset with respect to the outcome variable

(events), and validating with 5-fold cross validation. We built a multivariable Cox regres-

sion model using the top 18 variables for AF, and the top 7 for HF, based on a relatively

low events per variable setting of 5.

After the feature selection, we used general additive models to identify non-linear re-

lationships. In the case of a non-linear relationship, we explored natural logarithms and

fractional polynomial transformations for better representations of the variable. All mod-

els were fitted using the Cox proportional hazards model. This method was chosen due

to its ability to create risk scoring models, and for its interpretability. It is also in com-

mon use for prognostic modelling in medicine, and therefore is relatively well understood

within the clinical community.

For the multivariable model, backwards stepwise elimination was used to select the

most informative variables for the final model. Backwards stepwise elimination starts with

all variables selected in the model, iteratively removing those with the least information

content, measuring whether or not its removal affects overall model performance beyond

a certain threshold, adding it back if so. Schoenfeld residuals were used to check the

proportional hazards assumption in the final model (these results are available in the

supplementary material). Discrimination of the model is reported using concordance.

Bootstrapping with n=1000 was used to estimate optimism, which we then use to provide

an adjusted concordance. A calibration plot is provided, along with calibration slope

statistic.
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7.3 Results

7.3.1 Outcome Identification

Figure 7.2 shows the share of patients presenting with and developing complications before

and after the dataset was extended with the NLP information. Only patients who did

not present with the complication can be used, as patients who did present with the

condition cannot then develop it. In the case of atrial fibrillation, 63 additional patients

were found to present with the condition and 59 more developing the condition. In heart

failure, 30 more were found presenting with the condition, and 36 more patients were

found developing the condition. This shows that we have both reduced potential bias in

the model by excluding patients who presented with the condition but were improperly

reported in the registry, and found more developing events after the initial visit to be

predicted. As we discovered in the previous chapter, the registry prevalence of AF is

21.65% (taken from undated entries associated with the patient rather than a visit, that

were excluded in this investigation), and in the combined number of patients presenting

with and developing AF, we have a prevalence of 20.23%, implying (with the high precision

of the manual evaluation described by the previous chapter) that we have reasonably

approximated the true situation.

After identifying the additional outcomes, we examined the distribution of time-to-

event values (if not developing a complication, the time is the time until their final visit).

These are shown in Figure 7.3. While the rare disease registry has only been running for

four years, patients managed by the hospital previous to the registry have subsequently

been imported. The figure also shows the time-to-event distribution after right-blinding

to a period of 3 years (36 months).
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Figure 7.2: Comparison of number of patients presenting with and developing each
complication both before extension with NLP information (left) and afterwards (right).
The left graph shows the number of patients who developed AF or HF after their initial
visit, according only to the visit details available in the structured data registry. On the
right is the number of patients who developed HF and AF after their initial visit, when
the registry data were extended with the AF and HF phenotype information mined from
the clinical letters. The remainder of the experiments in this chapter use the constructed
outcome variables represented by the right side of the figure.

7.3.2 Feature Selection

The results are summarised in Figure 7.4. Peak performance is found for atrial fibrillation

at 100 variables, and heart failure at 50 variables. However, the number of events for

atrial fibrillation and heart failure in our final dataset are 90 and 35, respectively. For the

multivariable model, we aim to limit overfitting, and so limit the EPV to 5. Therefore, we

will use the top 18 variables for the AF model, and 7 for the HF model. These variables

are described in Table 9.3 (in supplementary materials).

7.3.3 Hazard Models

Atrial Fibrillation

The covariate values and p-values are summarised in Table 7.2. Backwards stepwise

regression chose three variables for the model: age, LAVolume, and EGFR. We also
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Figure 7.3: To identify a fixed time-to-event value to use for the study, we examined
the distribution of months until either development of the outcome complication, or a
patient’s final visit to the specialist clinic, for both AF and HF: what can be considered
the total duration of the study relevant to complication development for that patient.
On the left, we see that the duration of study for the majority of patients falls within 36
months, or three years, for both outcomes. Therefore, we used 36 months as the maximal
time point in the study, right-blinding patients beyond that point, meaning that patients
who did not develop the relevant complication within 36 months, were recorded as not
experiencing the event.

manually included BILI, because it was only removed by the stepwise regression on a

borderline basis, and increased the discriminative power of the model. This indicates

that the information criteria cut-off used as a parameter for the stepwise elimination

was too coarse. EGFR is the most powerful independent predictor, but all predictors

were highly significant independent predictors. Table 7.3 shows the evaluation metrics for

the test, including discrimination and the likelihood ratio test, with applicable metrics

adjusted for optimism through bootstrapping.

A calibration plot is shown in Figure 7.5. It shows some over-estimation of risk for

high-risk patients, and some under-estimation of risk for medium-risk patients, but overall

a good fit.
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Figure 7.4: Plot of repeated feature elimination performance using Random Forest, for
WillGetAtrialFibrillation and WillGetHeartFailure, measured by the accuracy statistic.
Graph is cut off beyond 100 variables considered, since peak performance was found in
the maximal case at 100.

Table 7.2: Multivariate coefficient values for atrial fibrillation model.

Name Likelihood Ratio .95 CI p
Age 1.0402 1.0235-1.0571 1.65e-06
LAVolume 1.0152 1.0096-1.0208 1.08e-07
log(EGFR) 0.2945 0.1855-0.4676 2.19e-07
BILI 1.0491 1.0259-1.0728 2.67e-05

Table 7.3: Metrics for multivariable AF model

Name Value Optimism Adjusted Value
Baseline Survival 0.8042181 — —
c-index 0.799 0.00499 0.794
Calibration slope 1 0.1027 0.8973
Likelihood ratio 95.37 on 4 df, p=<2e-16 — —

Heart Failure

The backwards stepwise regression for HF selected MCV and BNP. Due to the borderline

exclusion of EOSINS and Age, we chose to manually include these variables in the predic-

tion model, as manual evaluation indicated that overall model performance was negatively

affected by the removal of these variables. This indicates that the information criteria
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Figure 7.5: Calibration plot for the multivariable prediction model for development of
AF.

cut-off used as a parameter for the stepwise elimination was too coarse. The model is

summarised in Table 7.4, with metrics given in Table 7.5. There is some overfitting, as

shown by the calibration slope shrinkage, but overall this did not make a substantial dif-

ference to the concordance of the model. The calibration plot for the HF model is shown

in Figure 7.6. Since HF is a relatively rare complication, in comparison to AF, all survival

probabilities are quite high. The fit overall is quite good, with some over-estimation of

risk for patients with actual higher risk.

Table 7.4: Multivariate coefficient values for heart failure model.

Name Likelihood Ratio .95 CI p
MCV 1.07305 1.004-1.1468 0.0375
EOSINS 0.01630 1.545e-05-17.1921 0.2464
log(Age) 2.21779 0.6524-7.5394 0.2020
I((BNP/1000)̂-1) 0.79380 0.6456-0.9761 0.0285
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Table 7.5: Metrics for multivariable model for heart failure model

Name Value Optimism Adjusted Value
Baseline Survival 0.9687578 — —
c-index 0.723 0.022 0.701
Calibration slope 1 0.1689 0.8311
Likelihood ratio 27.14 on 4 df, p=1.862e-05 — —

Figure 7.6: Calibration plot for the multivariable HF prediction model. Only val-
ues above 50% survival probability are shown, because all estimated and actual survival
probabilities were above this.

7.4 Discussion

We have shown that using data extracted via our text mining pipeline, we can enable the

development of predictive models that would not have been possible using the rare disease

registry or structured EHR alone. Both models show a reasonable performance, with the

discriminative power of the AF model being much higher. This is likely down to the fact

that the incidence of HF was much lower, and therefore there was less data to train on.

Both models were adjusted for optimism, and discrimination was not heavily affected by

the shrinkage in either case. Investigation of the calibration plots showed that, in both

cases, patients with a high actual risk had an over-estimated predicted risk. We believe
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this to be an acceptable error in this context, because recall must be chosen over precision

in detecting life-threatening complications.

The recursive feature elimination indicated that a higher performance may be achieved

through the investigation of more variables. It’s unknown whether this is due to over-

fitting of the feature selection, or whether there are other relationships. Without more

observations, we cannot explore these additional variables without risking overfitting or

multiple testing issues. However, investigation of more complicated variable interactions

may have enabled the weaker predictors, especially those eliminated by the backward

stepwise elimination to contribute more substantially to the predictions. Nevertheless,

both models identified powerful independent predictors of complication development over

a three year period.

Hijazi et al. reviewed known biomarkers in Atrial Fibrillation, listing low Glomerular

Filtration Rate (eGFR/GFR) as being associated with prevalence of atrial fibrillation[70].

They also note a more general relationship between kidney function and AF, and with

occurrence and outcomes of cardiovascular events. These facts may indicate that GFR

may be also be an effective predictor in a generalised cardiovascular risk scoring system.

Iguchi et al. explored the relationship between GFR and AF specifically, and found that

prevalence of AF increases with a decreasing GFR[77]. Most importantly, the ESC guid-

lines for HCM note that renal function, particularly GFR and UR, “may be impaired in

patients with severe left ventricular impairment.” Their performance as predictors of AF

complication in HCM has not previously been explored in the literature.

Olivotto et al. found that in HCM patients, AF was predicted by advancing age, and

an increased LA volume at diagnosis[119]. While the patients in our study are usually

not at the time point of their initial HCM diagnosis, (many patients will have previously

been managed elsewhere), our work helps to confirm that these findings also hold for

patients across the span of their disease. Tani et al. also found that left atrial volume was

increased in HCM patients with paroxysmal hypertrophic cardiomyopathy[156]. Siontis

Konstantinos C. et al. and Olivotto et al. note a significant relationship between age
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and prevalence of AF in HCM patients[140]. Güngör et al. and Sarıkaya et al. found

a relationship between red blood cell distribution width and AF. There is also some

evidence of Bilirubin having some relationship with atrial fibrillation. Demir et al. found

that bilirubin levels were significantly lower among patients with atrial fibrillation. The

biological pathway for this is as yet unknown[47].

In terms of using these covariates as predictors, Benjamin found left ventricular hy-

pertrophy (of which left atrial volume is an indicator) and age were independent risk

factors for atrial fibrillation in a general population[26]. Losi et al. discuss predictors of

AF development in HCM patients, finding that LA volume and age were co-dependent

predictors of AF in HCM[97]. In summary, all of the variables in the model have known

associations with AF in the general population, and most have also been explored in HCM

populations. GFR and BILI however, have not been explored for prediction of future AF

development in HCM patients or the general population, to our knowledge.

With respect to HF, BNP is considered to be an indicator, and is used by clini-

cians to manage the condition[39]. It has also been widely studied as a tool for patient

stratification in HCM populations[39, 29]. Yang et al. discovered a relationship between

RDW, a calculation derived from MCV, and hospital admissions for HF amongst HCM

patients[174], and suggested that it might be a useful prognostic predictor. Several pieces

of work have also identified relationships between RDW and HF diagnosis and prognosis

in general populations[116, 167], as well as for general cardiac conditions[109]. However,

as far as we know, it has not been studied as a predictor of the development of heart

failure (although presumably borderline measurements are tracked). EOSINS has been

used as a marker for particular kinds of heart failure[123], although other relationships

seem unexplored. This could either be an artefact of overfitting or a novel relationship.

In both cases, our models determined significant discriminative and predictive rela-

tionships between predictors and development of the complication in a HCM population.

In almost all cases, these associations have been discussed in the literature for HCM

and general populations. However, several variables, most notably several of the routine
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blood measurements, have not been previously considered in models predicting HF or AF

in HCM populations. We think that this highlights a promising area for future exploration

in the prediction of complications and patient prioritisation for HCM. Furthermore, since

AF and HF both dramatically improve the risk of mortality in HCM, we think that these

routine blood markers could also be considered for inclusion in models predicting sudden

cardiac death.

As future work, we acknowledge the need to better characterise the cohort, and explore

the potential relationships uncovered by this work. Alteration of the text mining pipeline

to track the status of a condition in the text record over time would likely further improve

upon the predictive power of models built using data from it, and would reduce potential

bias from a lack of resolution on follow-up. From Figure 7.3, we also note that many follow

ups occur within the first six months; it’s possible that some patients with borderline or

undiagnosed HF and AF (with according test results indicating so) are then diagnosed

formally in the following months. This is not necessarily a problem, since we are predicting

diagnosis of the complications, but could be a source of bias depending on the reporting

criteria for the condition: perhaps the clinician suspects HF, but waits for the results of an

MRI to make the formal diagnosis on the basis of an ejection fraction. This effect could

potentially be confounded further by the NLP-derived data implying a later diagnosis

date. It’s also possible that some patients actually were diagnosed with AF or HF upon

their initial visit, were misreported in the registry, and were then identified as developing

it at a later date by the NLP algorithm. We do not believe that this can be too prevalent,

however, as we would expect this to cause time-dependence and non-proportionality in

the final model, as well as seriously affecting its discrimination.

Nevertheless, we believe that we have made an important initial step in characterising

the dataset, and towards creating evidence-based tools that integrate data from several

modalities to describe and potentially influence patient outcomes. Once the previously

mentioned limitations are solved, we plan to construct a generalisable model to be con-

siderd for external validation and potential use in clinical practice.
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CHAPTER 8

CONCLUSIONS

In this thesis we have explored several fields in biomedical informatics, describing contri-

butions to each. These fields and contributions are deeply inter-linked, and subsequent

chapters build on the work described by previous chapters, either directly or indirectly.

In the unMIREOT chapter, we surveyed the biomedical ontology ecosystem for interop-

erability issues, revealing extremely large clusters of hidden unsatisfiability. We provided

a tool to diagnose and automatically repair these inconsistencies, applying it to the OBO

Foundry to discover a small number of axioms accounting for all cases of inconsistency.

The Synonym Expansion chapter presents a novel method of exploring ontology reuse and

redundancy to obtain extended sets of synonyms for terms. The results of the synonym

expansion method are affected by the quality of ontology interoperability, since hidden

inconsistencies could potentially lead to imprecision at the equivalency step, returning

synonyms from terms that are actually disjoint from the target. While the novel Nega-

tion Detection algorithm does not directly benefit from the ontology work, it does show

superior performance over two clinical text corpora, and is used in combination with the

Synonym Expansion work to form the basis of the text mining pipeline described by the

Patient Identification and Phenotype Extraction chapter. The pipeline discovered diag-

nosed patients with HCM unknown to the rare disease registry, who will now be brought

under specialist care. This, along with the better knowledge obtained of which patients

suffer HCM complications, will directly influence patient care. In the following chap-
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ter, the previous work culminates in these extracted phenotypes being used to enable

an investigation of predictors of AF and HF in a HCM population. While not necessar-

ily immediately generalisable, this work revealed promising relationships between several

routine blood markers future complication development in a HCM cohort, which have not

previously been explored in prognostic models.

Each of the earlier chapters also present individual contributions divorced from their

context in the final two. The MIREOT investigation reveals problems and solutions

that may affect any use of biomedical ontologies, and the two novel algorithms for text

mining consist of components that can be used in any text mining pipeline or experiment.

Meanwhile, the text mining pipeline itself can be applied to any condition or group of

conditions, even outside of biomedicine.

Due to the scope of the work, and the limited time involved, we were unable to fully

evaluate every piece of work with respect to how it relates to the other pieces of work.

While work in individual chapters is evaluated, and the results are used in subsequent

chapters, the contribution of the included work is not measured. For example, we have

not proven that the synonym expansion module or negation detection module improve

the results of the text mining pipeline. It is likely that since the performance is better

than other algorithms in isolation, this translates to improved performance as part of an

information extraction pipeline. However, this would ideally be proven by comparing the

performance of an information extraction task using several negation modules. The same

kind of investigation could also be used to test the efficacy of the synonym expansion

algorithm. While we expect that the ontology interoperability issues revealed in the

unMIREOT chapter has implications for the synonym expansion algorithm, we did not

test this, as it would ultimately require the ontology developers to repair the root causes

of the inconsistencies. It would be possible to test whether ontologies repaired by the

automatic repair algorithm produce better results for vocabulary expansion by creating

a local staging version of AberOWL. We would also like to explore whether such changes

improve the performance of semantic similarity experiments, for example in predicting
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patient-patient similarity.

We also identified several limitations of each individual chapter, and areas we would

like to explore in future work. The most important overall limitation is that the pheno-

typing pipeline only classifies the most recent document discussing the condition, as this

limits the resolution and potentially the correctness of the prognostic models at interme-

diate time points. Upon extending the pipeline with this functionality, we would like to

build a new model that can be published and externally validated.

We would also like to explore other uses of the text extraction pipeline, especially as

it applies to analysis. Text mining of literature reviews could be used to perform pre-

feature selection for prognostic models. Ontology-based integration could also enable the

use of public data or different sources of structured data to be used in modelling. We

would also like to explore the use of ontology-based analysis, such as semantic similarity,

for prediction. Furthermore, this thesis has focused on moving from general background

knowledge expressed by ontologies, to extracting more specific knowledge from text, to

then exploring an even more specific development of complications. However, we also

expect that text mining can be used to move in the other direction, and we would like to

investigate using some of the technologies developed in this thesis to move from descriptive

text, such as clinical letters, to extending existing background knowledge and perhaps even

creating new ontologies from the knowledge expressed in text.
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CHAPTER 9

SUPPLEMENTARY MATERIALS

In the Term Expansion, Negation Detection, and Patient Identification and Extraction

chapters, we refer to a clinical expert WB. This is Dr William Bradlow, a consultant

cardiologist at UHB.

9.1 Negation Detection

Table 9.1: Summary the negation algorithms compared with in the negation detection
algorithm, including versions and source for download.

Name Version Source
NegEx Commit 21b013c https://github.com/chapmanbe/negex/
pyConTextNLP 0.7.0.1 https://pypi.org/project/pyConTextNLP/
negation-detection Commit 6d9d88e https://github.com/gkotsis/negation-detection
NegBio Commit d025875 https://github.com/ncbi-nlp/NegBio/

9.2 Risk Prediction
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Table 9.2: Summary of variables considered after initial pre-processing. Note that atrial
fibrillation was not considered for experiments with atrial fibrillation as an outcome, and
heart failure was not considered for experiments with heart failure as an outcome.

Category Variables
Blood Results ALB, ALP1, ALT, BASOS, BILI, CK,

CREAT, EGFR, EOSINS, FT4, GFR,
HCT, HGB, K, LYMPHS, MCH, MCHC1,
MCV, MONOS, NA, NEUTS, PLATS, RBC,
RDW, TSH, UR, WBC

Family, Social History, and Demographic Age, BMI, Female, AlcoholIntake, Exerci-
seIntensity, SmokingHistory, SmokingPack-
Years, MonthsSinceDiagnosis, FamilyAtrial-
Fibrillation, FamilyHCM, FamilyHeartFail-
ure, AgeAtDiagnosis

Routinely collected healthcare data BloodPressureTotal, BloodPressureAvgBP-
Dia, BloodPressureAvgBPSys, BNPngL,
BNPngLAvgVal

Comorbidities AbortedSuddenCardiacDeath, AcuteKid-
neyInjury, AlcoholSeptalAblation, Angi-
naPectoris, ApicalVariantphenotypep-
resence, AtrialFibrillation, HeartFailure,
BasalPhenotype, CABG, ChronicKidney-
Diseases, COPD, CoronaryArteryDisease,
CRT, Depression, DiabetesMelitusTypeII,
ObstructiveSleepApnoea, Oedema, Or-
thopnea, Defibrillator, Palpitations, Parox-
ysmalDyspnea, PercutaneousCoronaryIn-
tervention , NonAnginalAtypicalChestPain,
PPM, Stroke, TIA, UnexplainedSyncope,
HistoryOfArrythmia, Hypercholesterolemia,
Hypertension, ICD, Lethargy, Mitral-
ValveSurgery, Myectomy, MyocardialInfarc-
tion

HCM-related Phenotypes NYHA, SCD, NonObstructionPhenotype,
SigmoidSeptalPhenotype, LabilePhenotype,
NeutralSeptalPhenotype

Genetic FabryEnzymeLevel, MYBPC3Other,
MYBPC3PM, MYBPC3VUS, MYH7Other,
MYH7PM, MYH7VUS, TNNI3Other,
TNNI3PM, TNNT2Other, TNNT2PM,
TNNT2VUS

ECG ECGLBBB, ECGPacedRhythm, ECGPreex-
citation, ECGRBBB, ECGRhythm

112



Table 9.3: Summary of variables selected by the feature selection algorithm for consid-
eration in the AF and HF complication prediction models.

Name Model Description Unit
LA volume AF Volume of the left atrium. Measured either

by MRI or Echocardiogram, with MRI pre-
ferred (as it is more accurate).

mL

TNNI3Other AF An ambiguous result for the TNNI3
pathogenic mutation.

Boolean

EGFR AF Estimated Glomerular Filtration Rate. mL/min.
GFR AF Glomerular Filtration Rate. mL/min
Age at diagnosis AF Age of the patient at the time they were di-

agnosed.
Integer years

MYH7PM AF Whether the patient has the MYH7
pathogenic mutation.

Boolean

Months since di-
agnosis

AF Number of months since the patient was first
diagnosed with HCM.

Integer months

MWTSeptum AF The thickest wall measurement of the left
ventricular septum.

mm

BASOS AF Absolute basophil count in blood. 103/µL
LYMPHS AF Absolute lymphocyte count in blood. 109/L
BILI AF Bilirubin level in the blood. mmol/L
Coronary artery
disease

AF Whether the patient is diagnosed with coro-
nary artery disease.

Factor: Never,
Present, Previ-
ous

RDW AF Red Cell Distribution Width in blood. Percentage
MCV AF, HF Mean Corpuscular Volume in blood. fL
EOSINS AF, HF Eosinophil count in blood. 109/L
Age AF, HF Patient’s age at the time of the visit. Integer years
BNP AF, HF Level of Brain Natriuretic Peptide (BNP)

hormone in the blood.
pmol/L.

UR AF, HF Hematuria (blood in urine) test. red blood
cells/high-power
field

ALP1 HF Alkaline Phosphatas Level blood test. U/L
NA HF Blood sodium measurement. mmol/L

Table 9.4: Test of proportional hazards assumption for final AF complication prediction
model via Schoenfield residuals.

Variable Chi Sq df p
Age 1.1080 1 0.29
LAVolume 0.1140 1 0.74
log(EGFR) 0.0954 1 0.76
BILI 1.5347 1 0.22
Overall 3.3426 4 0.50
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Table 9.5: Test of proportional hazards assumption for final HF complication prediction
model via Schoenfield residuals.

Variable Chi Sq df p
MCV 0.193 1 0.66
EOSINS 0.684 1 0.41
log(Age) 0.208 1 0.65
I((BNP/1000)−1) 0.699 1 0.40
GLOBAL 1.592 4 0.81
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[87] Sebastian Köhler, Sandra C. Doelken, Christopher J. Mungall, Sebastian Bauer,

Helen V. Firth, Isabelle Bailleul-Forestier, Graeme C. M. Black, Danielle L. Brown,

Michael Brudno, Jennifer Campbell, David R. FitzPatrick, Janan T. Eppig, An-

drew P. Jackson, Kathleen Freson, Marta Girdea, Ingo Helbig, Jane A. Hurst, Jo-
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[90] Sebastian Köhler, Leigh Carmody, Nicole Vasilevsky, Julius O. B. Jacobsen, Daniel

Danis, Jean-Philippe Gourdine, Michael Gargano, Nomi L. Harris, Nicolas Matent-

zoglu, Julie A. McMurry, David Osumi-Sutherland, Valentina Cipriani, James P.

Balhoff, Tom Conlin, Hannah Blau, Gareth Baynam, Richard Palmer, Dylan Gra-

tian, Hugh Dawkins, Michael Segal, Anna C. Jansen, Ahmed Muaz, Willie H.

Chang, Jenna Bergerson, Stanley J. F. Laulederkind, Zafer Yüksel, Sergi Beltran,
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Ontology-Development and Knowledge-Acquisition Environment. page 2.
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