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Abstract 

 

Obesity is a complex disease characterized by excessive fat accumulation that leads to decrease in 

health and increased risk of developing numerous health complications such as metabolic syndrome, 

type 2 diabetes mellitus, cardiovascular diseases, and other pathological conditions. Fundamentally, 

obesity is a consequence of long-term energy imbalance where energy intake surpasses energy 

expenditure, but the mechanisms behind energy imbalance are influenced by numerous biological and 

environmental factors, such as genetics and diet. Both the complex etiology and heterogeneous nature of 

obesity present challenges to effective long-term prevention and treatment of obesity at the population 

level. For example, population-based diet recommendations have had limited success in mitigating 

obesity because of the variation in other factors that differ at the individual level to impact physiological 

response to diet and obesity development, such as differences in genetic background. Since genetics and 

diet are crucial determinants in the regulation of energy balance, it is necessary to broaden our 

understanding of how genetic background and diet interact relative to the development of obesity for 

improving recommendations for weight loss.  

 Animal models are indispensable for discerning the effect of genetic factors from environmental 

factors on the manifestation of the phenotype of interest. The murine model has been especially crucial 

for the discovery of mechanisms that influence energy balance and obesity development, such as 

appetite signaling. Of all available mouse models, the Collaborative Cross (CC) mouse panel is a 

particularly excellent model system for comparing the effects of genetic background to environmental 

effects. Derived from elaborate intercrosses of 5 classically inbred mouse strains and 3 wild-derived 

mouse strains, the CC is a large recombinant inbred mouse population with the degree of genetic and 

phenotypic diversity reflective of the human population. The CC simultaneously provides both 

tremendous genetic diversity and the ability to use genetic “replicates” which can mimic twin studies. 

In this work, replicates from 22 CC strains were placed on either a high protein diet or high fat 

high sucrose diet challenge for eight weeks. Body composition and circulating analyte levels were 

assessed both at baseline before the diet challenge and post-diet to compare the impact of genetic 

background (strain) and diet on adiposity and clinical traits associated with metabolism. The second 
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chapter of this work focused on determining how much genetic background and diet contribute to the 

development of obesity, whether diet alters susceptibility to developing obesity, and whether differences 

in diet macronutrient composition result in more beneficial phenotypic outcomes. Both at baseline and 

post-diet, the CC exhibited a wide range of phenotypic variation for adiposity and circulating analytes by 

strain; after the diet challenge, phenotypic differences were much larger between strains than diet, 

suggesting that genetics play a much bigger role in the development of obesity than diet. Similar to the 

observation in humans, the individual CC strains responded differently to diet where certain strains 

gained weight on one diet or the other, while others stayed consistently lean or consistently fat regardless 

of diet, indicating that genetics largely determines whether an individual will become obese, but the effect 

of diet can be larger or smaller depending on specific genetics. When examining the effect of diet by 

itself, certain traits differed significantly by diet such as body weight and cholesterol levels, while others 

did not differ by diet such as adiposity and triglyceride levels, demonstrating that whether and how 

macronutrient composition influences phenotypic change depends on the trait. Surprisingly, when 

correlations were performed between adiposity and traditional markers of metabolic syndrome (such as 

circulating triglycerides, glucose, cholesterol, and insulin), only the correlation between insulin and 

adiposity stayed significant both before and after the diet challenge.  

The third chapter of this work explored the relationship between genetics, diet, and hepatic gene 

expression relative to obesity since the liver regulates biological processes that impact adiposity 

accumulation, such as lipogenesis and metabolism of macronutrients. To relate the phenotypic results 

and findings from chapter two to hepatic gene expression, correlations were performed using phenotype 

data and microarray data, revealing 2,552 genes whose expression levels were significantly correlated 

with adiposity. In general, the effect of strain was much stronger than diet on hepatic gene expression as 

demonstrated by differential gene expression analysis which found over 9,000 genes differentially 

expressed by strain compared to 1,344 genes differentially expressed by diet. Interestingly, diet 

differentially expressed genes (DEGs) were enriched for many biological pathways associated with 

substrate metabolism, whereas strain DEGs were enriched for pathways less sensitive to environmental 

perturbations. Because common obesity is caused by multiple genes, weighted gene co-expression 

network analysis (WGCNA) was performed to identify clusters of related genes grouped into “modules”. 
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Multiple gene modules were found that differed in average expression by both diet and strain, where 

three of the gene modules were correlated with adiposity and enriched for biological pathways related to 

obesity development. By combining all the analyses above and searching in the genome-wide association 

studies (GWAS) catalog, the list of obesity candidate genes found via (GWAS) in humans can be 

narrowed down to increase the success of future functional validations studies.  
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Chapter 1: 

The Consequences and Causes of Obesity  

 

Viewed as a detrimental global epidemic in the 21st century (NCD Risk Factor Collaboration [NCD-RisC], 

2016; Williams et al., 2015), obesity is a serious disease defined by a disproportionately increased ratio of 

body weight to height and an excessive accumulation of body fat resulting in negative health outcomes 

(González-Muniesa et al., 2017; World Health Organization [WHO], 2021).  Various methods have been 

developed to determine whether an individual is obese and to quantify the extent of obesity, such as 

assessments using anthropometry and techniques to measure body composition, including densitometry 

and imaging-based methods (Duren et al., 2008; Fosbøl & Zerahn, 2015; Heymsfield et al., 2015). To 

formally classify the status of obesity for adults, body mass index (BMI) is the most often used tool to 

estimate adiposity (Javed et al., 2015) based on the weight of the individual measured in kilograms (kg) 

divided by the square height in meters (m2). Using BMI as the metric, the World Health Organization 

(WHO) classifies undernutrition as <18.5 kg/m2, normal weight as 18.5–24.9 kg/m2, overweight as 25–

29.9 kg/m2, obesity as ≥30 kg/m2, and extreme obesity as ≥40 kg/m2 (Després, 2012). The broad 

estimation of adiposity provided by measuring BMI can be further classified with the additional 

measurement of waist circumference and calculating waist-to-hip circumferences and waist-to-height 

ratios to differentiate between subcutaneous obesity and visceral obesity (Cerhan et al., 2014), which 

differ in physiological adipose deposition, function, and associated mortality (Ibrahim, 2010).  

The benefits of indirect anthropometric methods of assessing obesity include their simplicity, low 

cost, non-invasive nature, universal standardization, and ease of practical execution, all of which make 

BMI the most commonly used tool for estimating obesity (Javed et al., 2015). Although indirect 

anthropometric estimations of obesity are incredibly useful, direct assessments of body composition that 

can quantify an individual’s ratio of fat tissue to lean mass such as dual energy X-ray absorptiometry 

(DXA scans), computed tomography (CT scans), or magnetic resonance imaging (MRI) should be used in 

conjunction with anthropometric measurements when possible for the most accurate diagnosis of obesity, 

especially in a clinical setting to monitor the loss of weight attributed to fat compared to water when an 

individual is on a weight loss program to treat obesity (Duren et al., 2008). 
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Prevalence and Detrimental Effects of Obesity 

The most recent global estimates of obesity in 2016 indicate that 39% of adults aged 18 years and over 

(39% of men and 40% of women) were overweight, while about 13% of the world’s adult population (11% 

of men and 15% of women) were obese; in terms of a population count, more than 1.9 billion adults were 

overweight, of which over 650 million adults were obese (World Health Organization [WHO], 2021). 

Alarmingly, the worldwide prevalence of obesity nearly tripled between 1975 and 2016 (González-

Muniesa et al., 2017; World Health Organization [WHO], 2021) with estimates predicting that 57.8% of the 

world’s adult population (3.3 billion people) will be obese by 2030 (Finkelstein et al., 2012; Kelly et al., 

2008). Increases in the prevalence of obesity have been observed in both developed and developing 

countries (Ng et al., 2014) with the rate of increase higher in developed countries than in developing 

countries (Apovian, 2016).  

 Given the high prevalence of obesity, public health efforts have been made over the past four 

decades to slow the increase of obesity at the population level. For example, the United States 

Department of Agriculture (USDA) and Health and Human Services (HHS) issued the first official version 

of dietary guidelines in 1980 describing principles for helping people make healthy food choices and 

providing guidance on limiting certain dietary components such as sugar, fat, cholesterol, and sodium, 

which were suspected of being risk factors for various chronic diseases; this document was subsequently 

revised about every five years by the Dietary Guidelines Advisory Committee based on reviewing updated 

findings in nutrition and health, and is now known as the Dietary Guidelines for Americans (DGA) (USDA, 

2021). Similarly, the WHO has published several reports since 2004 detailing actions needed to support 

healthy diets and regular physical activity at the population level to control and reduce both adult and 

childhood obesity (World Health Organization [WHO], 2021). In the past decade, several countries around 

the world have implemented taxes on sugar-sweetened beverages and front-of-package nutrition labels 

to promote healthier food choices and discourage excessive consumption of calories, sugar, saturated 

fat, and sodium (Malik et al., 2013, 2020), which resulted in reductions in sales of sugar-sweetened 

beverages in the US and Mexico (Colchero et al., 2017; Silver et al., 2017) and reformulations of 

beverages to reduce sugar content in the United Kingdom (Bandy et al., 2020). 
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Despite these efforts, the prevalence rate for being overweight or obese increased 27.5% for 

adults and 47.1% for children between 1980 and 2013 for a total of 2.1 billion overweight or obese 

individuals worldwide (Ng et al., 2014) with BMI rising at the same rate or faster in rural areas as urban 

areas, especially in low- and middle-income countries (NCD Risk Factor Collaboration [NCD-RisC], 

2019). These increases in the prevalence of obesity have resulted in a global health care cost equivalent 

of approximately $2 trillion US dollars, or 2.8% of the world’s gross domestic product (Dobbs et al., 2014). 

In the United States alone, about $40 billion in increased medical spending is attributed to obesity 

(Finkelstein et al., 2009), as people with obesity have increased annual health care costs of 36% and 

medication costs of 77% compared to people of average weight (Sturm, 2002). Furthermore, health care 

costs related to obesity-associated diseases are forecasted to reach $48-66 billion per year by 2030 in 

the US (Y. C. Wang et al., 2011). Clearly, the high prevalence of obesity incurs substantial costs to the 

world at large and individuals alike. 

In addition to bearing the increased financial burden of obesity, individuals with obesity often have 

adversely impacted physical and mental health, and overall decreased quality of life. Obesity has been 

well established as a risk factor for the development of a plethora of adverse pathological conditions such 

as certain types of cancer, cardiovascular diseases, type 2 diabetes mellitus, and metabolic syndrome 

(Alberti et al., 2009; González-Muniesa et al., 2017; Williams et al., 2015).  Although a subset of 

individuals with obesity may be metabolically healthy (Dobson et al., 2015; Peppa et al., 2013; Schulze, 

2019), they may still suffer from the negative influence of obesity on mental health, as obesity has been 

associated with an increased risk of depression, body image dissatisfaction, suicide ideation, and low 

self-esteem (Avila et al., 2015; Carpenter et al., 2000; C. Dong et al., 2006; R. Puhl & Suh, 2015; Sarwer 

& Polonsky, 2016). Furthermore, individuals with obesity may experience various forms of social 

stigmatism, including employment discrimination (e.g. being paid less than their non-obese counterparts 

for an equivalent job, being less likely to be hired or receive promotions), receiving reduced quality of 

health care due to explicit and implicit bias of medical professionals, and subjugation to shame or ridicule 

by peers – frequently spouses, friends, and family members (Fulton & Srinivasan, 2021; R. Puhl & 

Brownell, 2001; R. M. Puhl & Heuer, 2010; Schwartz et al., 2003; Seacat et al., 2016). 
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Prevention and Treatment of Obesity 

Effective prevention and treatment of obesity requires interventions on multiple levels of the social 

continuum, from individual efforts to systemic changes in the community and public policy. With the 

currently available knowledge on the etiology of obesity and the limitations dictated by practicality and 

health care systems, health professionals encourage the implementation of low-risk treatments for weight 

management or weight loss at the individual level, including behavioral modifications, dietary 

improvements, and maintaining moderate levels of physical activity. As the “first line of defense”, 

recommendations for weight management or weight loss should account for multiple facets of energy 

balance. Lifestyle programs for effective weight loss or weight management that focus on behavior 

modification encourage individuals to monitor their eating behavior and educate individuals about the 

different factors that shape their eating behavior to improve their understanding of dietary patterns and 

make appropriate changes, such as eating type, location, speed, and other triggers of unhealthy eating 

(Burke et al., 2011; Robinson et al., 2014).  

As the “calorie in” component of energy balance, employing dietary interventions to achieve 

negative energy balance through calorie restriction is advised for weight loss with either a restriction of 

500 kcal per day or -30% energy restriction as the typical recommendation; alternative general dietary 

recommendations are diets with 1,200 kcal per day for women and 1,500 kcal per day for men (González-

Muniesa et al., 2017). Any healthy diet can induce weight loss since differences in macronutrient 

composition do not favor any one diet over others at the population level (Gardner et al., 2018; Johnston 

et al., 2014), though the effects of differences in diet macronutrient composition at the individual level 

requires further elucidation; for example, a meta-analysis of many popular diets demonstrated a negligible 

difference in weight loss after 12 months between low-carbohydrate diets (-7.25 kg) and low-fat diets (-

7.27 kg) (Johnston et al., 2014). Interestingly, improving the overall dietary quality of calories consumed 

without caloric restriction can also facilitate weight loss (e.g. consuming the Mediterranean diet) 

(Mozaffarian, 2016a, 2016b). Specifically, differences in macronutrient composition may facilitate 

maintenance of long-term weight loss (Abete et al., 2010); for example, diets higher in carbohydrates may 

result in weight gain, while low fat diets higher in protein and foods with low glycemic index may prevent 

regaining weight (Bray & Siri-Tarino, 2016; Larsen et al., 2010).  
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In terms of changes in weight from a population perspective, there is high inter-individual 

variability in response to diet, where some individuals lose weight while others actually gain weight on the 

same diet (Berry et al., 2020; Dansinger et al., 2005), which may be affected by genetics (Bray & Siri-

Tarino, 2016). Because the more important determinant of weight loss is adherence to the chosen 

calorie-restricting weight loss diet more than differences in macronutrient composition alone (Dansinger et 

al., 2005), effective dietary recommendations for weight control should take into consideration the 

different individual factors that impact eating behaviors and long-term health, such as food preferences, 

clinical history, culture, lifestyle, and socioeconomic status. In the future, clinicians may be able to use a 

“precision nutrition” approach to improve dietary adherence in patients by integrating individualized 

genetic, nutrigenomic, phenotypical, and environmental information when making dietary 

recommendations for obesity management (Ferguson et al., 2016; Goni et al., 2015). 

When enacted along with dietary intervention, regular physical activity has been shown to 

facilitate weight loss (T. Wu et al., 2009) and improve health independent of weight loss by lowering risk 

of developing diabetes mellitus and cardiovascular disease (WHO, 2010). The current recommendation 

for sedentary individuals is to gradually increase aerobic physical activity to reach a goal of >150 minutes 

per week, although 60-90 minutes of exercise per day may be required for long term weight maintenance 

(Donnelly et al., 2009; Jakicic, 2008; WHO, 2010). Because the response to any treatment may differ 

depending on the individual, clinicians may tailor their recommendations related to behavior 

modifications, dietary improvements, or physical activity according to whether the goal is to lose or 

maintain weight (Bray & Siri-Tarino, 2016).  

 For individuals with moderate- to high-risk obesity (BMI of >30 kg/m2 or >27 kg/m2 with 

comorbidities present) who have a history of struggling and failing to lose and maintain weight loss, 

clinicians may prescribe drugs to assist in weight loss in tandem with diet interventions and exercise 

programs (Apovian et al., 2015; Bray et al., 2016; Solas et al., 2016). Most medications used for treating 

individuals with obesity facilitate weight loss by helping patients adhere to their diets (usually via appetite 

suppression), including phentermine/topiramate, naltrexone/bupropion, and liraglutide, which are 

available and approved for use in the US only for adults who are not pregnant or nursing (Bray et al., 
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2016). Similar to diet recommendations, there is no single ideal medication so far and any of these 

medications may help patients successfully lose weight. Because of the variation in individual response to 

specific compounds in each of these drugs and associated side effects, the efficacy of these medications 

may vary depending on the specific individual. The current recommendation is to stop the drug treatment 

and switch to an alternative approach if the patient fails to lose 4-5% of their body weight after three 

months; individual patients with obesity may be on medication that influences weight gain for treating 

other conditions such as diabetes or depression, which further necessitates using a personalized 

approach for prescribing weight loss medication (Apovian et al., 2015). 

   Advances in surgical interventions have led to the development of a wide range of lower risk 

laparoscopic procedures each with different degrees of weight loss, benefits, and risks (Courcoulas, 

2013; Inge et al., 2016), which has increased the use of bariatric surgery to treat severe obesity recently, 

with nearly half a million procedures performed in 2013 (Bray et al., 2016). As criteria for determining 

patient eligibility to receive bariatric surgery as a treatment for severe obesity, “severe obesity” is defined 

as having either a BMI of >40 kg/m2, a BMI of >35 kg/m2 with comorbidities such as hypertension or 

dyslipidemia, or a BMI between 30 and 35 kg/m2 with pre-diabetic symptoms or recent-onset diabetes 

(Schauer et al., 2014). Two examples of current bariatric surgical techniques are the abdominal gastric 

band and the sleeve gastrectomy (Naik et al., 2016). The abdominal gastric band results in less weight 

loss than some other procedures but is technically easier to implement since weight loss depends on the 

size of the gastric pouch determined by the circumference of the band placed below the gastro-

esophageal junction. In the sleeve gastrectomy, the size of the patient’s stomach is reduced by placing a 

staple line “down” the curvature of the stomach, followed by excision of the closed segment; though 

technically more demanding than the abdominal gastric band, this method typically results in greater 

weight loss and is one of the most widely performed procedures. Bariatric surgery can generally produce 

important improvements in health (e.g. glucose control in patients with type 2 diabetes mellitus) and 

reduction in risk for myocardial infarction, cancer, and other comorbidities (Sjöström, 2013). Although 

bariatric surgery can potentially provide many benefits, there are also risks and potential adverse side 

effects that may be challenging to treat like dumping syndrome, gastro-esophageal reflux, and 

hypoglycemia. Furthermore, proper aftercare is crucial to the long-term success of the initial procedure, 
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which requires adhering to huge dietary changes to prevent weight regain and may include lifelong 

replacement therapy for vitamin or mineral deficiencies after malabsorptive operations (Chang et al., 

2014).  

 Systemic changes in the community and public policies are necessary to support individuals in 

overcoming the barriers of obesity prevention and treatment established by socioeconomic status and 

other environmental influences. At the population level, public policies can be adjusted to improve food 

environments for encouraging individuals to ameliorate longstanding eating behavior, while improving 

physical environments would aid individuals in incorporating more physical activity into daily habits. Some 

examples of current efforts in various countries such as the United States, Mexico, United Kingdom, and 

Chile to prevent and treat obesity include the implementation of taxes on sugar-sweetened beverages, 

the inclusion of calorie labels on menus, and the addition of front-of-package nutrition labels to promote 

healthier food choices and discourage excessive consumption of calories, sugar, saturated fat, and 

sodium (Malik et al., 2013, 2020). Still, the prevention and treatment of obesity would benefit from more 

attention and financial support (Malik et al., 2013) to maintain and expand current efforts such as 

education programs that integrate public and personalized nutrition to support individuals in long-term 

adherence to behavior modifications that are part of healthy lifestyles (Enright et al., 2016; Kelley et al., 

2016).   

Etiology of Obesity 

To effectively prevent and treat obesity, it is necessary to understand its etiology. The first law of 

thermodynamics provides the simplest explanation of how obesity occurs: excessive fat accumulation 

results from the disruption of energy balance, where an individual’s caloric intake exceeds their energy 

expenditure (J. O. Hill et al., 2012; Oussaada et al., 2019; Romieu et al., 2017). According to this view, 

obesity results from overconsumption of food relative to energy expenditure, as even small daily positive 

energy balance contributes to weight gain (F. B. Hu, 2008). Thus, the seemingly obvious solution for 

obesity prevention and treatment would be to simply “eat less, move more.” In reality, the implementation 

of such a simple solution is limited by a myriad of complex factors that dictate the mechanisms behind 

energy balance (or lack thereof), including socioeconomic status, culture, environment, personal 

behavior, physiology, and genetics, as well as the interactions between these factors (Batis et al., 2011; 
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C. G. Bell et al., 2005; Bhupathiraju & Hu, 2016; Leng et al., 2021; Sanchez-Vaznaugh et al., 2019; 

Sellayah et al., 2014; Shahnazaryan et al., 2019; Singh et al., 2017).  

Part of the “eat less, move more” solution includes the encouragement to consume a “healthy” 

diet, since the type and quality of calories defined by macronutrient type (fat, carbohydrates, and protein) 

and the sources of these macronutrients has been shown to affect energy balance and long-term body 

weight (Ebbeling et al., 2012; Ludwig, 2016; Mozaffarian et al., 2011). Although it is unclear whether the 

impacts of dietary distribution and thermogenic effects of specific macronutrients affect overeating or 

have direct metabolic effects to influence body weight (J. A. Martinez et al., 2014), studies have shown 

associations between higher weight gain and increased consumption of “unhealthy” foods such as sugar-

sweetened beverages, potato chips, French fries, trans-fats, processed meats, ultra-processed foods, 

and added sugars (González-Morales et al., 2020; Juul et al., 2018; Mozaffarian et al., 2011), which are 

calorically dense and alter insulin/satiety signaling if consumed in excess. Conversely, a high-quality 

dietary pattern with increased consumption of fruits, nuts, vegetables, and whole grains has been shown 

to be inversely associated with weight gain (Razquin et al., 2009; Schwingshackl et al., 2015), while 

several longitudinal studies echo the importance and benefits of consuming meals comprised of these 

“healthy” foods and complex carbohydrates with a low glycemic index for the prevention obesity 

(Mozaffarian, 2016b; J. D. Smith et al., 2015; Tobias et al., 2015). In fact, the current DGA recommends 

implementing these findings in practice, essentially to consume just enough calories according to one’s 

caloric need in the form of nutrient-dense food that have little or no added sugars, saturated fat, and 

sodium while providing vitamins, minerals, and other health-promoting components (USDA and HHS, 

2020). 

Despite the simplicity behind the ideas of “eat less, move more” and “eat a healthy diet”, 

numerous elements associated with socioeconomic status, culture, environment, physiology, and 

genetics that shape personal behaviors of food choice, overeating, and reduced physical activity prevent 

the practice of these tenets. From an individual’s perspective, genetic and biological factors that influence 

food choice such as taste perception (Callaway, 2012; L. Eriksson et al., 2019; Knaapila et al., 2012; 

Risso et al., 2018; Roudnitzky et al., 2015) are often further driven by: preferences in personal tastes – 
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food choices are often made depending on taste perception (Duffy et al., 2010; Feeney et al., 2011; 

Graham et al., 2021; J. L. Smith et al., 2020); convenience – both ease of food acquisition in the local 

environment and ease of food preparation in the context of accommodating work schedules are important 

determinants of healthy eating patterns (Bell et al., 2021; Lima et al., 2021; Martinho et al., 2021; Nicholls 

et al., 2017); and cost – higher quality nutrient-dense food generally costs more than the “unhealthy” food 

(Aggarwal et al., 2011; Darmon & Drewnowski, 2015; Drewnowski, 2018; Monsivais et al., 2012). 

Essentially, the choice to consume unhealthy foods over healthy foods is often a result of increased 

accessibility, affordability, and availability to unhealthy foods over healthy foods (Matsuzaki et al., 2020; 

Mylona et al., 2020; Sanchez-Vaznaugh et al., 2019). Furthermore, changes in lifestyle from the past to 

the present have fostered habits that are often associated with overeating, such as: watching television 

while eating which was shown to extend time eating (Alblas et al., 2021; Kegler et al., 2021; Mougharbel 

et al., 2020); stress which can lead to emotional eating as a coping mechanism (Caner & Evgin, 2021; D. 

C. Hill et al., 2018; Richardson et al., 2015), and increased frequency of eating away from home (Bes-

Rastrollo et al., 2010; Bhutani et al., 2018; H. J. Kim et al., 2019; Nago et al., 2014). 

Environmental factors especially can discourage physical activity, including perceived and 

objective lack of safety in the built environment (e.g. neighborhood of residence) or decreased proximity 

to safe spaces for exercise (Elshahat et al., 2020; Jáuregui et al., 2016; Rees-Punia et al., 2018) and 

excessive screen time, e.g. playing video games or using the internet (Islam et al., 2020; Matthews et al., 

2021). Conversely, environment can also increase physical activity; for example, availability of healthy 

transportation options such as public transit or bike sharing programs can facilitate the incorporation of 

physical activity during daily transportation time (Centers for Disease Control and Prevention (CDC), 

2018; L.-T. Chen & Hsu, 2020; Koehler et al., 2018; Saelens et al., 2014). Ultimately, one of the biggest 

challenges in preventing and treating obesity is the long-term adherence to overall healthy lifestyle 

changes and habits that result in an energy deficit for weight loss, or at least energy balance for the 

prevention of weight gain.   

Heterogeneous Phenotypes of Obesity  

Exploring the biology behind the etiology of obesity illustrates the complexity of its development, both in 

terms of the heterogeneity in phenotypes as well as variety of underlying causes. Numerous studies have 
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clearly demonstrated the increased risk of individuals with obesity developing related common 

comorbidities that contribute to premature death compared to normal-weight individuals as the extent of 

obesity increases, including endocrine disorders, type 2 diabetes mellitus, respiratory problems such as 

sleep apnea, cardiovascular diseases, cancer, and features of metabolic syndrome (Cornier et al., 2011; 

Nordestgaard et al., 2012; Park et al., 2013; Renehan et al., 2010), but the degree of disease risk can 

differ widely among individuals with obesity. The International Diabetes Federation, the American Heart 

Association, and the US National Heart, Lung, and Blood Institute define the diagnosis of metabolic 

syndrome as the simultaneous occurrence of three of five clinical criteria in a patient (Alberti et al., 2009): 

waist circumference of ≥94 cm in men and ≥80 cm in women in Western countries as an estimate of 

visceral obesity (thresholds vary by country); hypertriglyceridemia (≥150 mg/dl or on triglyceride-lowering 

medication); low levels of high-density lipoprotein (HDL) cholesterol (<40 mg/dl for men, <50 mg/dl for 

women); elevated blood pressure (systolic blood pressure of ≥130 mmHG, diastolic blood pressure of ≥85 

mmHg, or on an antihypertensive drug treatment); increased glucose levels (fasting glucose levels of 

≥100 mg/dl or on glucose-lowering medication). In the context of these clinical criteria, obesity 

phenotypes differ by severity of cardiometabolic health impairment based on how many of these risk 

factors occur concurrently in an individual with obesity, where individuals with few or none of these 

conditions have metabolically healthy obesity (MHO) (Stefan et al., 2013; Teixeira et al., 2015) and 

individuals afflicted with many of these conditions have metabolically unhealthy obesity (MUHO). 

Although individuals with MHO have increased fat mass compared to normal-weight individuals, they may 

not necessarily be at an increased risk of developing cardiovascular complications (Schulze, 2019), since 

the magnitude of myocardial dysfunction appears to be more correlated with poor metabolic health than 

just BMI or fat mass alone (Dobson et al., 2015). Yet the metabolically healthy obese phenotype may not 

be entirely benign since it tends to be a transient state (Stefan et al., 2013), where higher baseline BMI or 

waist circumference and extended duration of obesity are related to the conversion from MHO to MUHO 

(Achilike et al., 2015; Appleton et al., 2013; Mongraw-Chaffin et al., 2016; Moussa et al., 2019); thus, it 

may only be a matter of time until cardiometabolic complications arise.  

 Because cardiovascular disease risk increases with decline in metabolic health, a subgroup of 

individuals may be metabolically unhealthy and at high risk of developing cardiometabolic complications 
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despite belonging to the normal weight BMI category (18.5-24.9 kg/m2) i.e. metabolically unhealthy 

normal-weight (MUHNW) (Schulze, 2019). For instance, metabolically “unhealthy” phenotypes were 

characterized by higher levels of insulin resistance biomarkers, hepatic steatosis and inflammation, and 

higher indices of central (abdominal) adiposity, but not total adiposity in both obese and nonobese 

postmenopausal women (Peppa et al., 2013). This highlights the importance of using additional methods 

to quantify obesity in conjunction with BMI to accurately assess cardiovascular disease risk in a clinical 

setting. To overcome the limitations of only using BMI to appraise disease risk, clinicians also utilize other 

tools including obesity staging systems that take into account estimations of metabolic health (e.g. blood 

pressure, dyslipidemia, and glucose homeostasis) and physiological fat distribution, such as waist-to-hip 

ratio derived from measuring waist circumference to quantify body shape, the Framingham risk score, the 

Cardiometabolic Sating System, and the Edmonton Obesity Staging System (B. Dong et al., 2015; F. Guo 

et al., 2014; Savva et al., 2013).  

In addition to the degree of excessive adiposity or fat accumulation, the regional distribution of fat 

deposition also confers differences in the degree of the manifestation of associated health risks and their 

severity (González-Muniesa et al., 2017; Hiuge-Shimizu et al., 2012). Across populations, there is high 

heterogeneity in terms of the ways that individuals with obesity accumulate body fat, with subcutaneous 

obesity on one end of the spectrum and visceral obesity on the other. Characterized by excess fat 

deposition under the skin around the hip and thigh areas, subcutaneous obesity typically results in a pear-

like body shape and is also known as gynoid obesity, which tends to be more common in pre-menopausal 

women (Abildgaard et al., 2021; Pan & Chen, 2021). On the other hand, visceral obesity is characterized 

by the deposition of mainly mesenteric adipose tissue concentrated in the abdominal region, typically 

resulting in an apple-like body shape. Also known as android obesity, visceral obesity tends to be more 

common in men and more harmful to cardiovascular health than subcutaneous obesity (Hernández-

Conde et al., 2019; Hiuge-Shimizu et al., 2012; Pan & Chen, 2021; Ruiz-Castell et al., 2021). 

 Remarkably, differences in the region of fat accumulation are associated with differences in the 

pathological effects of adipose tissue, where the presence of additional inner fat deposits (e.g. visceral 

adipose tissue stored in the abdomen) and stores of adipose tissue in and around normally lean tissues 
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such as the heart, liver, and kidneys (also known as ectopic fat deposition) (Després & Lemieux, 2006; 

Rosen & Spiegelman, 2014; Shulman, 2014) influences an individual’s cardiometabolic risk profile, insulin 

sensitivity, and dyslipidemia due to dysregulated oxygen tension from pathological adipocyte growth and 

the way adipose tissue manages the excess of energy (González-Muniesa et al., 2016). In fact, these 

differences in adipose tissue function are so profound that adipose tissue can be broadly classified based 

on their location in the body, where the two main types are subcutaneous adipose tissue located in the 

hypodermis just under the skin and visceral adipose tissue located in the abdominal cavity packed 

between organs (Marieb & Hoehn, 2008); visceral adipose tissue can be further categorized as intra-

abdominal (mesenteric), perirenal, or pericardial adipose tissue. Imaging-based methods for measuring 

body composition such as CT or MRI scans are used to estimate the amount of abdominal fat stored in 

different physiological compartments and to distinguish abdominal fat from ectopic fat (Després & 

Lemieux, 2006; Rosito et al., 2008; Thanassoulis et al., 2010; Thomas et al., 2012), but these methods 

are usually limited to laboratory settings and not typically used to diagnose obesity (Heymsfield et al., 

2015; Seabolt et al., 2015).  

  Given the clear correlations between visceral adipose tissue accumulation and development of 

metabolic abnormalities that characterize metabolic syndrome as well as obesity-related cardiovascular 

risk, intra-abdominal adipose tissue biology has been a topic of particular interest to researchers and 

clinicians (Hiuge-Shimizu et al., 2012; Kotani et al., 1994). Indeed, visceral obesity and excess fat in the 

liver, heart, and kidneys often occur simultaneously (the degree to which this occurs with inter-individual 

variation), but this relationship is less clear between subcutaneous obesity and fat accumulation in organs 

(Fabbrini et al., 2009; Ross et al., 2008). Moreover, studies have shown that visceral fat can create a 

physiological state of low-grade inflammation which imparts systemic metabolic and cardiovascular 

impairment via the release of increased amounts of pro-inflammatory adipokines and suppression of anti-

inflammatory adipocytokine secretion, leading to increased risk of diabetes, metabolic syndrome, and/or 

cardiovascular disease (de Heredia et al., 2012; Ouchi et al., 2011).  

In contrast, the nature of subcutaneous adipose tissue function and pathology varies greatly 

relative to obesity-associated disease risk depending on how the adipose tissue handles excess energy 
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stores. For example, if excess energy stores induce subcutaneous adipose tissue expansion by 

increasing the number of adipose cells in the tissue (cell hyperplasia), then this proper expansion of 

adipose tissue can protect lean tissues and organs against harmful ectopic fat deposition by functioning 

as a “metabolic sink” (Després & Lemieux, 2006; Karpe & Pinnick, 2015); in this state, subcutaneous 

adipose tissue may function normally with the expected release of anti-inflammatory adipokines and may 

even be protective against unwanted health outcomes such as diabetes and cardiovascular disease 

(Neeland et al., 2015). However, if subcutaneous adipose tissue instead expand via the enlargement of 

individual adipose cell size (cell hypertrophy), adipocytes become saturated with triglyceride molecules, 

which may lead to adipocytes rupturing when they reach their size limit and can no longer expand; this is 

often accompanied by the increased release of pro-inflammatory adipokines, decreased release of anti-

inflammatory adipokines, and/or macrophage invasion (de Heredia et al., 2012; Hammarstedt et al., 2018; 

Ouchi et al., 2011). Once adipocytes are fully saturated, ectopic fat deposition increases and creates a 

physiological environment conducive to atherosclerosis, diabetes, and inflammation, since excess 

triglyceride molecules will subsequently be stored at inappropriate sites such as the liver, heart, and 

kidneys if the subcutaneous adipose tissue lack the physical capacity to store the triglyceride molecules 

(Rosen & Spiegelman, 2014); ectopic intrahepatic fat in particular may be an even better marker of 

metabolic dysfunction associated with obesity than visceral adipose tissue (Fabbrini et al., 2009).    

As master regulators of energy balance and nutritional homeostasis, adipocytes can also be 

categorized into “types” based on their function: brown adipocytes which play a role in energy expenditure 

by maintaining body temperature through thermogenesis (Sacks & Symonds, 2013); white adipocytes 

which store energy in the form of triglycerides packed into large lipid droplets and secrete various 

adipokines that affect inflammation, appetite mediation, and fat deposition (Matsuzawa, 2006); and 

“beige” adipocytes which have morphology and gene expression patterns  similar to brown adipocytes but 

are recruited from white adipose depots (Rosen & Spiegelman, 2014). Although brown and white 

adipocytes are considered the two major types of adipose tissue compared to beige adipocytes, beige 

adipocytes also help regulate energy balance since they can either store energy or turn on heat 

production when the receive the appropriate signals or thermogenic stimuli (Wu et al., 2012).     
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Physiological Basis of Energy Balance 

Many physiological systems contribute to the regulation of the complex biological mechanisms that 

control energy balance, beginning with the central nervous system – specifically, the hypothalamus which 

senses hormonal and neuronal signals communicating when and whether energy intake should occur (B. 

Xu et al., 2003). In particular, the arcuate nucleus in the hypothalamus contains two sets of neurons 

crucial to the regulation of energy balance: one set of neurons produces agouti-related protein (AGRP) 

and neuropeptide Y (NPY), and sends orexigenic signals to downstream effector neurons promoting food 

intake and reducing energy expenditure, while the other set of neurons produces pro-opiomelanocortin 

(POMC) and cocaine- and amphetamine-related transcript (CART), and relays anorexigenic signals to 

downstream effector neurons reducing food intake and promoting energy expenditure (Barsh & Schwartz, 

2002). Important downstream effector neurons that enact the actions dictated by the arcuate nucleus 

include melanin-concentrating hormone neurons, thyrotrophin-releasing hormone neurons, and γ-

aminobutyric acid (GABA)-releasing interneurons (Flier et al., 2000; Spiegelman & Flier, 2001). The 

dopamine, serotonin, and endocannabinoid signaling systems also provide input to modify appetite 

signals. 

A myriad of signaling molecules play important roles in the feeding behavior regulated by the 

central nervous system through different mechanisms, including the appetite inhibitors POMC, alpha-

melanocyte stimulating hormone (α-MSH), insulin, leptin, and adiponectin as well as the appetite 

stimulators NPY, AGRP, and ghrelin (Singh et al., 2017). In the brain, POMC is processed to form α-

MSH, which interacts with melanocortin receptors (MCRs) widely expressed in the hypothalamus such as 

melanocortin-3-receptor (MC3R) and melanocortin-4-receptor (MC4R) to regulate metabolic functions and 

inhibit appetite (Begriche et al., 2011; D’Agostino & Diano, 2010; Garfield et al., 2009; Pritchard et al., 

2002). Secreted by pancreatic β-cells, insulin interacts with specific receptors in the arcuate nucleus of 

the hypothalamus to reduce food intake and indicates adiposity levels over a moderate- to long-term 

period (Air et al., 2002); in the liver, insulin decreases the release of glucose while stimulating the uptake 
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of glucose and deposition of glycogen in the liver (Chavez et al., 1995). Leptin and adiponectin are both 

secreted by white adipose tissues but inhibit appetite using different mechanisms. Known as the “satiety 

hormone”, leptin secreted from white adipocytes conveys information regarding the amount of energy 

stored in adipose tissue directly to the hypothalamus – inhibiting orexigenic NPY/AGRP neurons and 

stimulating anorexigenic POMC/CART neurons - and its levels in plasma are highly correlated to 

adipocyte numbers (Friedman & Halaas, 1998). In addition to suppressing appetite, leptin also stimulates 

energy expenditure and activates AMP-activate protein kinase to influence other metabolic processes 

such as fatty-acid oxidation (Friedman & Halaas, 1998; Minokoshi et al., 2002). In contrast, adiponectin 

also influences fatty-acid oxidation and glucose homeostasis among other metabolic pathways, but 

adiponectin inhibits food intake by decreasing insulin resistance (González-Muniesa et al., 2017; 

Heilbronn et al., 2003) instead of direct communication through the central nervous system.  

 The main appetite stimulators in satiety and hunger signaling via the central nervous system also 

employ different mechanisms to increase food intake. Both NPY and AGRP are produced in the arcuate 

nucleus, but NPY sends direct signals to the paraventricular nucleus in the hypothalamus to stimulate 

appetite (Olza et al., 2013) while AGRP mediates food intake through antagonist interactions with MC3R 

and MC4R (Jackson et al., 2006; Lu et al., 1994; Yang et al., 1997). Unlike NPY and AGRP, ghrelin the 

“hunger hormone” is produced in the stomach and duodenum and increases appetite by activating the 

orexigenic NPY/AGRP neurons through growth hormone secretagogue receptors; though ghrelin induces 

the “opposite” metabolic effects of leptin, ghrelin’s effects on appetite are more short-term compared to 

leptin and adiponectin (Gale et al., 2004; Kohno et al., 2003).  

 Other important gut hormones in appetite suppression that are released in response to food 

intake include peptide YY(PYY), glucagon-like peptide 1 (GLP1), and cholecystokinin (CCK). Like leptin, 

PYY suppresses appetite by inhibiting orexigenic NPY/AGRP neurons in the hypothalamus and 

conveying postprandial satiety (Wren & Bloom, 2007), but PYY secretion is differentially triggered 

depending on the macronutrient composition of a meal, with high protein meals increasing PYY levels in 

serum (Alhabeeb et al., 2021; Batterham et al., 2002). GLP1 instills satiety and reduces food intake by 

increasing insulin secretion and inhibiting glucagon secretion, thereby decreasing glucose production 
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(Smith & Moran, 2021). Along with gastric distension, CCK reduces food intake by providing feelings of 

satiety after a meal via binding with receptors on the vagus nerve instead of interacting directly with the 

central nervous system (Howard et al., 1996); primarily synthesized in the duodenum and jejunum, CCK 

is rapidly released in response to nutrients in the gut, especially fat and protein (Wren & Bloom, 2007). 

Secretion of CCK may be indirectly related to changes in GLP1 and PYY levels, since CCK binds to 

cholecystokinin receptor type A which seems to play a part in mediating the secretion of GLP1 and PYY 

(Alhabeeb et al., 2021). 

 While signaling via the central nervous system plays a key role in regulating energy intake, 

molecules that affect energy expenditure also impact energy balance, such as thyroid hormones that 

modulate basal metabolic rate and body temperature, as well as mitochondrial brown fat uncoupling 

protein 1 (UCP1) which induces non-shivering thermogenesis (González-Muniesa et al., 2017). One way 

that thyroid hormones control energy expenditure is through the stimulation of basal metabolic rate by 

enhancing of adenosine triphosphate (ATP) production in muscle and the maintenance of ion gradients 

which leads to ATP consumption (Mullur et al., 2014; Volke & Krause, 2021; F. Yu et al., 2000). 

Furthermore, thyroid hormones can cross the blood-brain barrier to increase sympathetic nervous system 

activation for inducing thermogenesis (López et al., 2013). In addition, thyroid hormones can help 

stimulate the expression of UCP1 which dissipates the electrochemical gradient in the mitochondrial 

membrane that drives ATP synthesis, and thus increase heat generation in brown adipose tissue 

(Cannon & Nedergaard, 2004). 

Impact of Genetics and Epigenetics on Obesity 

Along with environmental factors that affect energy balance, genetics play a significant role in the 

pathogenesis of obesity, since up to 70% of inter-individual variation in body weight may be attributed to 

genetic differences (Elks et al., 2012). When considering obesity severity as degrees of variation across a 

phenotypic trait at the population level, heritability can estimate how much genetic variation between 

individuals contributes to obesity phenotypic variation in a population, compared to variation of 

environmental factors (Falconer, 1989; Gazzaniga et al., 2016; Wray & Visscher, 2008). Prior to the 

advent of genetic sequencing, twin studies and studies involving closely related individuals were 

instrumental for measuring heritability and demonstrating the important and unique contributions of 
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genetics to obesity development apart from environmental factors. For example, in 1986 Stunkard studied 

1,974 monozygotic and 2,097 dizygotic twin pairs and estimated the heritability for weight to be 0.78; 

similarly, Stunkard performed an adoption study examining 540 adult adoptees divided into four weight 

classes (thin, median weight, overweight, and obese) and relating the weight class of the adoptees to 

their biological parents and adopted parents, which demonstrated that the adoptees had body sizes more 

like their biological parents than their adopted parents across the whole range of body fatness, from very 

lean to very fat (Stunkard, 1986; Stunkard et al., 1986). The results from these studies were combined 

four years later in a seminal paper that also examined obesity phenotypes of identical and fraternal twins 

that were raised together and apart, which reported heritability estimates for obesity phenotypes to be 

0.70 for men and 0.66 for women (Stunkard et al., 1990).  More recently, Katzmarzyk et al. examined the 

heritability of BMI, skinfold thickness, and waist circumference in 327 Canadian Caucasian participants 

from 102 nuclear families and estimated heritability for BMI and other measures of fatness to be 0.46-

0.60, while heritability estimates for measures of fat distribution (e.g. waist circumference adjusted for 

BMI) were in the range of 0.29-0.48 (Katzmarzyk et al., 2000). Along with heritability estimates of obesity 

phenotypes such as BMI and measures of central obesity from numerous other studies (Koeppen-

Schomerus et al., 2001; Moll et al., 1991; Pietiläinen et al., 1999; Selby et al., 1989), these results 

indicate a minimum heritability of 0.4 for obesity and/or fatness.  

Traditionally, heritability estimations are made using pedigree study designs relying on twin 

studies or studies that involve closely related individuals, but developments in genetic sequencing 

technology have facilitated the wide-spread application of large-scale genome-wide sequencing in 

“unrelated” individuals, which has enabled the use of single nucleotide polymorphisms (SNPs) as genetic 

markers in genome-wide association studies (GWAS) and advanced statistical methods such as mixed 

linear models for the calculation of heritability in a population study design (Yang et al., 2010, 2017). 

Heritability calculated using twin and full sibling data estimates total heritability which gives more 

precision but potentially more bias from environmental variation confounded with additive genetic 

variation, whereas heritability calculated using SNP data estimates the genetic variance explained by the 

SNPs which gives less precision but less bias (Vinkhuyzen et al., 2013), which may result in 

discrepancies between heritability estimates for the same trait. Referred to as the “missing heritability 
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problem” (Maher, 2008), multiple explanations have been suggested for this discrepancy between 

heritability estimates calculated for the same trait using different study designs, including (but not limited 

to) the presence of a large number of common variants of small effect yet to be discovered, rare variants 

of large effect not tagged by common SNPs during genotyping, epigenetic factors, and influences from 

the microbiome (Eichler et al., 2010; Manolio et al., 2009; Sandoval-Motta et al., 2017). When estimating 

heritability using the population (SNP) approach, the “missing heritability problem” can be partially 

ameliorated when phenotypic and SNP data are available for 10,000s of individuals since the population 

design is as efficient as the twin design with a large enough sample size (Vinkhuyzen et al., 2013). 

Additionally, Yang et al. proposed using a method to estimate heritability for human complex traits in 

unrelated individuals using whole-genome sequencing data followed by imputation to capture the 

variation at both common and rare genetic variants, suggesting that heritability is likely to be 30-40% for 

BMI (Yang et al., 2015). Although the “missing heritability problem” remains to be fully elucidated, 

heritability estimates for fat distribution and measures of fatness indicate that genetics have a substantial 

effect on obesity. 

Differences in genetic architecture can lead to the development of obesity through a plethora of 

diverse mechanisms. In fact, types of obesity can be categorized based on the underlying genetic origins 

responsible for their development, specifically syndromic obesity, monogenic obesity, and common 

(polygenic) obesity. Approximately 20 rare syndromes caused by genetic defects or chromosomal 

abnormalities are currently known to be characterized by obesity, often accompanied by mental 

retardation or learning disabilities; at least four of these syndromes are characterized by hyperphagia that 

results in obesity and/or other signs of hypothalamic disorder (Delrue & Michaud, 2004), such as Prader-

Wili syndrome and Single minded-1 (Sim-1) syndrome. Characterized by decreased muscle tone, short 

stature, and the absence or decreased function of gonads in addition to obesity, hyperphagia, and mental 

retardation, Prader-Willi syndrome is an autosomal-dominant disorder and is the most prevalent of 

syndromes associated with obesity occurring in 1 of 25,000 births (Goldstone, 2004). Most cases of 

Prader-Willi syndrome are caused by a paternally inherited deletion at the chromosomal region 15q11.2-

q12 and occasionally by maternal uniparental disomy (González-Jiménez et al., 2012; Jiang et al., 1998). 

Some mechanisms proposed to cause hyperphagia in Prader-Willi syndrome include hypothalamic 
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impairment resulting in endocrine abnormalities, and increased secretion of ghrelin in the stomach 

leading to elevated stimulation of the POMC/CART and NPY neurons in the arcuate nucleus of the 

hypothalamus (Cummings et al., 2002; Farooqi & O’Rahilly, 2004). Sim-1 syndrome is characterized by 

“Prader-Willi-like” phenotypes, delayed development, and/or early-onset obesity, but instead results from 

deletion or disruption of the SIM1 region on chromosome 6q (Faivre, 2002; Holder et al., 2000). The 

suggested mechanism behind hyperphagia in Sim-1 syndrome involves dysfunction of the hypothalamic 

paraventricular nucleus which modulate effector neurons involved in appetite signaling (e.g. via MC4R 

signaling) caused by the deletion or disruption of the SIM1 gene, which encodes a transcription factor 

critical to neurogenesis (Holder et al., 2000; Ramachandrappa et al., 2013). 

 The etiology of obesity may be more complex in other syndromes such as Bardet-Biedl 

syndrome. Unlike Prader-Willi syndrome, Bardet-Biedl syndrome is typically an autosomal recessive 

disorder, and occasionally may manifest through triallelic inheritance in certain families (Beales et al., 

2003). In addition to early-onset obesity and learning disabilities, Bardet-Biedl syndrome is also 

characterized by rod-cone dystrophy, polydactyly, hypogonadism in males, and renal abnormalities 

(Farooqi, 2005; Ristow, 2004). Thus far, at least 20 genes associated with Bardet-Biedl syndrome have 

been identified (BBS1-BBS20), all of them involved in the regulation of primary cilia function (Priya et al., 

2016; Suspitsin & Imyanitov, 2016). Loss-of-function mutations in these genes result in reduced number 

of cilia and disruptions in the sonic hedgehog (Shh) and Wnt signaling in differentiating preadipocytes, as 

well as altered leptin resistance and neuroendocrine signaling from ciliated neurons to adipose tissue (D.-

F. Guo & Rahmouni, 2011; Priya et al., 2016). BBS knockout mice are hyperphagic and have decreased 

locomotor activity, suggesting that both energy intake and expenditure are perturbed to contribute to 

obesity development in individuals with Bardet-Biedl syndrome (Rahmouni et al., 2008).   

Monogenic forms of obesity refer to obesity without the additional symptoms that accompany 

syndromic obesity and are caused by mutations in single genes that commonly encode proteins involved 

in the regulation of appetite such as POMC, leptin, leptin receptor (LEPR), NPY, ghrelin receptor, MC3R, 

and MC4R, typically resulting in increased feeding behavior (Singh et al., 2017; van der Klaauw & 

Farooqi, 2015). Compared to common obesity, cases of monogenic obesity are relatively rare Mendelian 



 20 

disorders, but phenotypes tend to be more severe (Farooqi & O’Rahilly, 2004). Interestingly, MC4R 

deficiency is the most common form of monogenic obesity identified thus far, present in 1-6% of obese 

individuals from different ethnic groups (Farooqi et al., 2003; Lubrano-Berthelier et al., 2003), though 

European populations exhibit higher pathogenicity of MC4R mutations than Mediterranean or Asian 

populations (Kublaoui & Zinn, 2006). In humans, the severity of MC4R mutations appear greater in 

homozygous obese individuals than in heterozygous obese individuals (Farooqi et al., 2003). In MC4R-

deficient mice, the degree of hyperphagia increases as dietary fat increases (Butler & Cone, 2003), 

suggesting that gene-environment interactions may alleviate or worsen dysregulation of energy intake. 

Identification of the genes involved in these distinct types of obesity and understanding the 

associated biological mechanisms that disrupt energy balance are crucial for effective obesity prevention 

and treatment. Identification of genes related to common obesity can be a challenge since the genetic 

variants of polygenic obesity can differ from one individual to another (Clément, 2006; Hinney et al., 

2010). One approach used to find genes related to common obesity that does not require prior knowledge 

about potential gene candidates is to perform large-scale genome-wide association studies (GWAS) that 

test the association of millions of common genetic variants with adiposity traits, which has shown some 

success. Although GWAS often require a large sample size to find significant results, over 300 genetic 

loci associated with obesity traits have been found, where the first major breakthrough was the discovery 

of the FTO locus (Frayling et al., 2007; Scuteri et al., 2007). Further investigation of the association 

between the non-coding variants found in this locus with obesity risk suggest that the locus may regulate 

RPGRIP1L or IRX3-IRX5 expression, resulting in alterations in appetite, thermogenesis, adipocyte 

browning, and other processes related to obesity (Claussnitzer et al., 2015; J. Yang et al., 2012). In 

addition to the FTO locus, there are currently 1,818 genes in the mouse that have corresponding human 

homologs found in the GWAS catalog to be associated with an obesity trait such as BMI or waist-to-hip 

ratio (Buniello et al., 2019). Furthermore, Kunej et al. have created a freely available obesity database 

compiling data of 1,736 obesity-associated loci collected from human, cattle, rat, and mouse studies to 

facilitate comparisons of obesity-associated loci across different biological systems (Kunej et al., 2013). 

Recently, Akbari et al. performed large-scale sequencing of 640,000 human exomes to identify rare 

protein-coding variants with large impacts on obesity and found 16 genes significantly associated with 
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BMI, five of which encode brain-expressed G protein-coupled receptors (CALCR, MC4R, GIPR, GPR151, 

and GPR75) (Akbari et al., 2021). The authors then verified the therapeutic potential of targeting GPR75 

as a candidate gene for weight loss by demonstrating resistance to weight gain in Gpr75 knockout mice.   

Other important obesity candidate genes discovered or confirmed through GWAS include 

SLC6A14 (Durand et al., 2004; Suviolahti et al., 2003) and genes in the uncoupling proteins (UCPs) gene 

family (Damcott et al., 2004; Herrmann et al., 2003; Oppert et al., 1994; Yanovski et al., 2000). SLC6A14 

is highly expressed in the region of the hypothalamus where appetite signaling is regulated and encodes 

an amino acid transporter that modulates tryptophan availability for serotonin synthesis, which may affect 

feeding behavior (Suviolahti et al., 2003). The association between SLC6A14 and polygenic obesity 

development has been reinforced by additional studies that related SLC6A14 deficiency to obesity in mice 

on a high-fat diet (Sivaprakasam et al., 2021) and demonstrated that genetic variants may affect food 

intake and nutritional status in children (Miranda et al., 2015). Candidate genes associated with obesity in 

the UCP gene family include UCP1, UCP2, and UCP3, which vary in terms of function and locations of 

expression. While UCP2 is ubiquitously expressed in any tissue, UCP1 is expressed in brown adipose 

tissue and UCP3 is expressed in both brown adipose tissue and skeletal muscle; UCP1 and UCP3  

mediate thermogenesis, while UCP1 and UCP2 influence energy metabolism (Gong et al., 1997; GENOI 

et al., 2004; Ochoa et al., 2004; Saleh et al., 2002).  

Despite the success of discovering numerous highly significant associations, the genetic effect 

sizes of most loci discovered via GWAS on obesity traits are small; for example, all currently identified 

BMI-associated variants combined only explain <5% of variation in BMI (The LifeLines Cohort Study et 

al., 2015; Winkler et al., 2015). Given the vast differences in environmental exposure between individuals, 

interactions between genetic and environmental factors may explain the variations in individual body 

weight response; additional research using animal models is required to determine which factors interact 

and how these interactions impact body weight since both genetics and environmental setting can be 

controlled in animal model studies.  

Highly responsive to both external environmental perturbations (e.g., diet and physical activity) 

and internal biological influences (e.g., hormones and genetics), the epigenome may partially explain how 
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mechanisms that govern gene-by-environment interactions function for the regulation of energy balance. 

The epigenome induces changes in gene function or expression without modification of DNA sequence 

that may be heritable and reversible; some examples of epigenetic processes include DNA methylation, 

histone modification, and mechanisms mediated by RNA. Because epigenetic processes are cell-, time-, 

and tissue-specific, investigating their particular functions in obesity directly in humans is a challenge, 

given the major role that the central nervous system plays in the regulation of energy balance. However, 

two critical developmental periods where the importance of epigenetics is well-established are the 

prenatal and neonatal periods in which metabolic imprinting transpires. During metabolic imprinting, 

programming of fetal metabolism occurs at both the genomic and epigenomic levels to affect future 

disease risk and health (Eriksson, 2016; Hanley et al., 2010), since both overnutrition and undernutrition 

during fetal development (as measured by birth weight) are associated with higher risk of obesity and 

higher percentage of body fat independent of BMI, respectively (Labayen et al., 2009; Yu et al., 2011). In 

addition to the amount of maternal food consumption during pregnancy and lactation, the type of nutrients 

consumed during these times has also been associated with the development of metabolic complications 

in adulthood (Chen et al., 2017). Considering the pivotal role that the epigenome plays in conveying 

intergenerational effects on obesity, expanding our understanding of epigenetic effects on energy 

metabolism by using animal model studies to overcome the barriers inherent to human studies could lead 

to the discovery of important therapeutic targets for the prevention and treatment of obesity.  

 
Advantages of utilizing a genetically diverse mouse panel to investigate obesity development  
 
Two challenges present in studying the effects of genetics and diet on the development of obesity in 

humans that can be overcome using a model organism include the heterogeneity in environmental 

exposures, as well as the inability to manipulate genetics. Although technological advances in sequencing 

have facilitated the discovery of candidate genes in humans through GWAS, model organisms such as 

the mouse are still vital for establishing and verifying the function of identified candidate genes and how 

genetic architecture and diet influence their expression (Attie et al., 2017). The high similarity in 

physiology, protein functions, biological pathways, and genome organization between humans and mice 

makes the mouse an excellent model organism for differentiating the effects of genetics compared to diet 
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on obesity development, since the environmental influences that affect obesity can be more easily 

controlled in mouse studies compared to human studies, while findings in mouse studies are still 

translatable due to the homology between humans and mice. In addition, it is possible to induce various 

types of mutations to specific genes in the mouse to test changes in expression or function in a cost-

effective manner (Harms et al., 2014). 

Compared to other mammalian model organisms, the lowered cost of mouse maintenance, 

shorter life cycle, and smaller size of the mouse allows the inclusion of many biological samples in one 

study, which is crucial for generating large-scale -omics and phenotyping data sets to explore the 

relationship between gene expression and resulting phenotypes. In fact, there are two essential facets of 

obesity that are logistically challenging or cost-prohibitive to study in humans but made possible to 

examine in the mouse: comparing -omics data derived from tissues of healthy control subjects with data 

from patients in a diseased state, and quantifying metabolism as energy expenditure through indirect 

calorimetry.  

For example, the liver plays a crucial role in the development of obesity and obesity-related 

health complications. Not only does the liver interact with adipose tissue, the central nervous system, and 

hormones that regulate energy balance through numerous signaling pathways (Bell et al., 2005; 

González-Muniesa et al., 2017), but the liver also shapes obesity through its metabolism of dietary 

macronutrients including glycogenolysis, production of triglycerides, lipogenesis, and the synthesis of 

molecules used as building blocks for hormones such as amino acids, cholesterol, and lipoproteins (Rui, 

2014; Trefts et al., 2017). Furthermore, insulin resistance in the liver leads to the disruption of appropriate 

carbohydrate and lipid metabolism, impairing the ability of insulin to decrease glucose output from the 

liver while continuing to stimulate lipogenesis, which is thought to exacerbate the severity of the health 

complications associated with obesity like metabolic syndrome. Naturally, alterations in hepatic gene 

expression from genetic or dietary effects would impact liver function and signaling, and thus impact 

metabolism and mechanisms involved in energy balance. Despite the importance of investigating the 

effects of genetics and diet on hepatic gene expression in the context of obesity, obtaining liver tissue 

from healthy human subjects remains challenging while obtaining liver tissue in both healthy and disease 
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states is much more feasible in mice, which illustrates the necessity to use the mouse as a model to study 

obesity.  

 Since obesity is caused by disruption in energy balance, quantifying changes in energy intake 

and expenditure due to genetics or diet and relating these changes to adiposity is vital to understanding 

how genetics and diet impact obesity development. In humans, total energy expenditure (TEE) is defined 

as the amount of heat energy used for daily functions and can be divided into three components based on 

what the energy is used for that vary in terms of the amount of energy required relative to TEE (Gupta et 

al., 2017): basal or resting energy expenditure is the amount of energy require to sustain basic cellular 

metabolic activity and vital functions (60-65% of TEE); diet-induced thermogenesis is the energy used for 

postprandial substrate metabolism (5-10% of TEE); and active energy expenditure is the energy used 

during physical activity (25-30% of TEE). Fundamentally, the two ways to measure energy metabolism 

are either to measure heat as the end product of metabolic activity (direct calorimetry) or to measure 

components of the metabolic process that generate heat instead of measuring heat directly (indirect 

calorimetry) (Speakman, 2013). Indirect calorimetry is the preferred method for estimating energy 

expenditure from the calculation of heat produced derived from measuring oxygen consumption and/or 

carbon dioxide production since measuring oxygen and carbon dioxide gases can be performed much 

more accurately than directly measuring heat. After measuring respiratory gases, an estimate of heat 

produced and energy expenditure can then be calculated using equations derived from values for the 

metabolism of typical carbohydrates, fats, and proteins. Furthermore, during rest or mild to moderate 

exercise the measured ratio of oxygen consumption to carbon dioxide production (called the respiratory 

exchange ratio [RER]) can be used to approximate the respiratory quotient (RQ), which indicates which 

macronutrient (e.g. carbohydrate or fat) is serving as the main fuel source in the body (Katch et al., 2011), 

where 0.7 implies pure fat oxidation and 1.0 implies pure carbohydrate oxidation (Kenney et al., 2012). 

Although several indirect calorimetric methods are available for estimating energy expenditure in humans 

such as the Douglas bag, metabolic carts, and metabolic wards, these methods can only be applied over 

short periods of time to small study cohorts either due to cost or difficulty in recruiting volunteers for long-

term studies (Hall et al., 2015; Haugen et al., 2007; McClave & Snider, 1992; Zhao et al., 2014). In 

contrast, machine systems such as the CLAMS system produced by Columbus instruments, the 
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Promethion system by Sable systems, Inc., and the Phenomaster system produced by TSE systems, 

Ltd., enable the inclusion of numerous “subjects” within a mouse study for measuring numerous aspects 

of energy metabolism (Speakman, 2013). For example, the Phenomaster system facilitates the 

measurement of respiratory gases to calculate heat for the estimation of energy expenditure, food 

consumed to measure energy intake, and movement to approximate basal physical activity over the 

course of several days to quantify energy metabolism during periods of activity and rest.      

 Alternatively, the doubly labeled water method, in which the hydrogen and oxygen have been 

replaced by heavy but non-radioactive forms of each element, can also be used to measure metabolic 

rate over a longer period of time (from days to weeks). This technique is performed by administering a 

dose of doubly labeled water and measuring the elimination rates of the labeled hydrogen and oxygen 

over time by sampling saliva, urine, or blood where the magnitude of the difference in elimination of the 

isotopes is related to carbon dioxide production (Speakman, 1997, 2013). Because of the time required 

for the elimination of these isotopes and relative convenience of sample collection, this method has been 

widely used to measure metabolic rate in humans (Pontzer et al., 2021) and in mouse studies where the 

mice could not be housed separately, such as in studies where metabolism is measured in lactating mice 

(M. S. Johnson & Speakman, 2001; Speakman, 2013). Limitations of this technique include the cost of 

doubly labeled water and the reliance on expensive mass spectrometry equipment (Speakman, 2013). 

 In addition to the aforementioned benefits of using the mouse model to study obesity, the power 

to control and manipulate mouse genetics make the mouse indispensable to obesity research for both 

gene functional validation studies and discovery of genetic and molecular causes of obesity. After 

candidate genes for obesity have been identified through GWAS performed in humans, functional 

validation studies in a model organism are necessary for determining the function of the gene in the 

context of obesity. Typically, a reverse genetics approach is used to elucidate the function of the gene 

and the mechanism it employs to affect the trait of interest, where the expression of the candidate gene is 

disrupted followed by the study of the changes in phenotype (García-García, 2020). Traditional inbred 

mouse strains are excellent for such studies due to their affordability, ease of inducing mutations, well-

defined phenotypes for comparison of phenotypic differences resulting from the studied mutation(s), and 

reproducibility of results. In contrast, forward genetics is a useful approach for determining the genetic or 
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molecular causes of the phenotype of interest, where models exhibiting the phenotype of interest are 

created from naturally occurring or induced genetic changes followed by the investigation of the genetic 

cause(s) that induced the morphological manifestation of the phenotype (García-García, 2020). One 

important advantage of forward genetics is that no prior knowledge about the identity of causal genes nor 

the specific type of mutation or genetic alteration responsible for the eliciting the phenotype are necessary 

for discovering the association between the genetic/molecular cause and the phenotype (Clark et al., 

2020), which makes forward genetics an unbiased strategy for finding novel elements. Genetic screens 

that find phenotype-regulating genomic regions known as quantitative trait loci (QTLs) for complex traits 

such as obesity require a genetically diverse reference population to provide the high resolution 

necessary for genetic mapping and for better translatability of cross-species comparisons (Swanzey et al., 

2021).   

 Two recently developed murine genetic reference populations well-suited for studying the effects 

of genetics and diet on the development of obesity using either reverse or forward genetic approaches 

are the Collaborative Cross (CC) and the Diversity Outbred (DO) multiparent mouse panels. The CC is a 

large recombinant inbred mouse population developed for systems genetics, derived from elaborate 

intercrosses of eight founder strains, five classically inbred mouse strains (C57BL/6J, A/J, NOD/ShiLtJ, 

NZO/HiLtJ, and 129S1/SvImJ) and three wild-derived strains representing three Mus musculus 

subspecies (WSB/EiJ, CAST/EiJ, and PWK/PhJ) (Aylor et al., 2011; Churchill et al., 2004; Iraqi et al., 

2008; Threadgill & Churchill, 2012). CC strains were generated using a funnel breeding scheme that 

combined the genomes from the eight founders via outbreeding for three generations before repeated 

generations of sibling inbreeding (Churchill et al., 2004; Collaborative Cross Consortium, 2012). The 

tremendous genetic diversity of the CC population exhibits greater phenotypic diversity than other 

available recombinant inbred mouse panels and captures over 90% of the genetic variation in laboratory 

mice including 45 million segregating polymorphisms, a degree of genetic diversity that is comparable to 

the genetic divergence captured in most of the human population after the great expansion (Collaborative 

Cross Consortium, 2012; Garrigan et al., 2007; Henn et al., 2012; Keane et al., 2011; Philip et al., 2011; 

Roberts et al., 2007; Shorter et al., 2019; Srivastava et al., 2017). Moreover, the CC strains were 

designed to have equal genetic contribution and genomic randomization from all eight founder strains 
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normally distributed across their genomes, therefore encompassing both high genetic diversity and 

reproducibility at the genome level (Collaborative Cross Consortium, 2012). In comparison, the DO 

population was generated by randomly outcrossing CC strains, creating a population of mice with high 

allelic heterozygosity and accumulation of recombination events that improve genomic resolution, 

increases statistical power, and reduces the sample size needed for fine genetic mapping (Churchill et al., 

2012; Rockman & Kruglyak, 2008). Although DO mice are genetically unique and thus not replicable at 

the genome level, the CC and DO founder strains can be used for the identification of replicable 

genotypes in regions of interest discovered in the DO population.  

 Since the underlying causes of obesity are vast and complex, using a systems genetics approach 

provides a platform for studying multidimensional data sets collectively to delineate the effects of genetics 

and diet on obesity development for multiple related physiological and molecular traits across multiple 

“treatment” groups. In the absence of genetic mapping, the integration of multiple data sets and utilization 

of modeling network analyses facilitate the discovery of obesity-associated genes whose expression is 

modulated by genetics or diet and relating those genes to molecular pathways that underlie obesity 

development. For example, gene expression can be correlated with phenotypes and differential gene 

expression analysis can be performed to identify genes modulated by genetic background or diet, 

followed by enrichment analysis of functional genes and pathways to bridge the effect of genetics or diet 

on gene expression with elicited phenotypes and the activation of biological pathways in the context of 

obesity (Ashburner et al., 2000; E. Y. Chen et al., 2013; Kanehisa, 2000; Ritchie et al., 2015; 

Subramanian et al., 2005). Another model networking approach that enables the exploration of genetic 

and diet effects on the expression of groups of genes is weighted gene coexpression network analysis 

(WGCNA), in which gene networks are constructed based on correlated expression levels (Zhang & 

Horvath, 2005). Following gene network construction, groups of genes with highly correlated expression 

patterns called “modules” are identified, their average expression levels which can then be summarized 

using dimensional reduction techniques, correlated with phenotypes, and used in enrichment analysis to 

find related biological functions or pathways, and thus elucidate the specific effects of genetics and diet 

on obesity.    
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Abstract 

Defined as chronic excessive accumulation of adiposity, obesity results from long-term imbalance 

between energy intake and expenditure. The mechanisms behind how caloric imbalance occurs are 

complex and influenced by numerous biological and environmental factors, especially genetics, and diet. 

Population-based diet recommendations have had limited success partly due to the wide variation in 

physiological responses across individuals when they consume the same diet. Thus, it is necessary to 

broaden our understanding of how individual genetics and diet interact relative to the development of 

obesity for improving weight loss treatment. To determine how consumption of diets with different 

macronutrient composition alter adiposity and other obesity-related traits in a genetically diverse 

population, we analyzed body composition, metabolic rate, clinical blood chemistries, and circulating 

metabolites in 22 strains of mice from the Collaborative Cross (CC), a highly diverse recombinant inbred 

mouse population, before and after 8 weeks of feeding either a high protein or high fat high sucrose diet. 

At both baseline and post-diet, adiposity and other obesity-related traits exhibited a broad range of 

phenotypic variation based on CC strain; diet-induced changes in adiposity and other traits also 

depended largely on CC strain. In addition to estimating heritability at baseline, we also quantified the 

effect size of diet for each trait, which varied by trait and experimental diet. Our findings identified CC 

strains prone to developing obesity, demonstrate the genotypic and phenotypic diversity of the CC for 

studying complex traits, and highlight the importance of accounting for genetic differences when making 

dietary recommendations. 
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Introduction 

Obesity is a complex disease characterized by excessive adipose tissue accumulation and has become 

one of the leading preventable causes of death in both developed and developing countries (Bell et al., 

2005; Friedman, 2015; WHO, 2015). Fundamentally, obesity results from a chronic imbalance between 

energy intake and expenditure (Hill et al., 2012; Romieu et al., 2017; Swift et al., 2018; Oussaada et al., 

2019). This imbalance is caused by numerous biological factors including: genetics (Bell et al., 2005; 

Singh et al., 2017; Loos, 2018), metabolism (Timper and Brüning, 2017; Speakman, 2018; Fernández- 

Verdejo et al., 2019), and the gut microbiome (John and Mullin, 2016; Martinez et al., 2016; Torres-

Fuentes et al., 2017), as well as environmental factors such as chemical exposure (Janesick and 

Blumberg, 2016; Heindel and Blumberg, 2019; Shahnazaryan et al., 2019) and diet, particularly in the 

context of overfeeding relative to physical activity levels (Sims, 1976; Danforth, 1985; Schmidt et al., 

2012; Cuthbertson et al., 2017; Creasy et al., 2018). 

Identification of the underlying genes predisposing an individual to obesity has been a very active 

area of investigation. Large-scale human genome-wide association studies (GWAS) that test the 

association of millions of genetic variants with adiposity, body mass index, and waist-to-hip ratio have 

identified >300 genetic loci for obesity traits, such as the FTO, TMEM18, CADM2, and LYPLAL1 loci, 

among others (Loos et al., 2008; González-Muniesa et al., 2017; Loos, 2018). Complementing 

approaches in humans, studies in mice have provided fundamental insights into the genetic regulation of 

adiposity and susceptibility to obesity (Coleman and Hummel, 1974; Lu et al., 1994; Carroll et al., 2004; 

Attie et al., 2017). For example, the genes that encode leptin and leptin receptor which arose as 

spontaneous deficiency mutations in ob/ob and db/db obese mice respectively (Ingalls et al., 1950; 

Hummel et al., 1966) were shown to regulate satiety after gene cloning was possible (Zhang et al., 1994; 

Tartaglia et al., 1995). Similarly, the link between the FTO gene and obesity was first reported in mice 

prior to the identification of this gene’s association with obesity in humans (Fischer et al., 2008). The 

similar biology between humans and mice in terms of physiology, morphology, and genetics, and the 

ability to manipulate the mouse genome has aided our understanding of the underlying mechanisms 

affecting energy balance and obesity (Robinson et al., 2000; Pomp et al., 2008). 
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Similarly, diet is among the most studied environmental factors, as it remains an important and 

potentially successful focus of public health interventions (Wilborn et al., 2005; Eknoyan, 2006; Makris 

and Foster, 2011). One of the difficulties identifying the optimal dietary recommendation for a population 

is the inter-individual variation observed in response to diet (Berry et al., 2020). At a certain level there 

may be no “perfect” diet that works universally across populations to mitigate obesity (Dansinger et al., 

2005; Johnston et al., 2014). Thus, in spite of the successes of GWAS and dietary intervention studies, 

there still remains practical public health challenges for understanding and preventing obesity. Animal 

models often solve some of the challenges by limiting confounding environmental influences to gain a 

more complete understanding of the etiology of obesity. Studies performed using inbred mouse strains 

suggest that phenotypic response to diet occurs in a strain-dependent manner (West et al., 1992, 1995; 

Barrington et al., 2017). Understanding the interaction of genetics and diet offers insight into how 

“precision nutrition” could improve and refine our dietary recommendations. 

In order to broaden our understanding of how genetics and diet impact obesity at both the 

individual and population levels in a genetically diverse population, we analyzed how consumption 

of diets with different macronutrient compositions altered adiposity and other physiological traits in 22 

strains of mice from the Collaborative Cross (CC), a large recombinant inbred mouse population 

generated from elaborate intercrosses of C57BL/6J, A/J, NOD/ShiLtJ, NZO/HiLtJ, 129S1/SvImJ, 

WSB/EiJ, CAST/EiJ, and PWK/PhJ, mouse strains (Churchill et al., 2004; Iraqi et al., 2008; Threadgill and 

Churchill, 2012). The tremendous genetic diversity of the CC population (Philip et al., 2011; Collaborative 

Cross Consortium, 2012; Srivastava et al., 2017; Shorter et al., 2019) facilitates the discernment between 

effects caused by diet from effects caused by genetic variation when measuring differences and changes 

in adiposity and other metabolic traits across multiple genetic “replicates” in each strain, thereby 

increasing power, reproducibility, and relevance to obesity in humans (Mathes et al., 2011). Following a 

2-week acclimation period on standard synthetic diet (AIN-76A) to determine baseline phenotypes, mice 

between 8 and 11 weeks of age were randomized and put on experimental diets (high fat high sucrose or 

high protein) for 8 weeks, followed by analysis of body composition, metabolic rate, clinical blood 

chemistries, and circulating metabolites to assess the effect of diet on each trait since diets with higher 
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protein, low glycemic index, and lower fat content may assist in maintaining weight loss compared to diets 

with higher carbohydrate content (Abete et al., 2010; Larsen et al., 2010; Hu et al., 2018; Myrmel et al., 

2019; San- Cristobal et al., 2020). While both genetics and diet interact to influence adiposity and other 

phenotypes, health outcomes were more strongly impacted by genetic effects than diet. Furthermore, the 

effect of diet on each trait varied depending on CC strain, indicating that genetics determine how a 

particular diet may affect body composition. 

Materials and Methods 

Animals and Husbandry 

Female mice from 22 CC strains were obtained in 2016 from University of North Carolina’s Systems 

Genetics Core Facility (Welsh et al., 2012) (total n = 204, Figure 1-1). All strains used are listed in 

Supplementary Table 1. Mice were then acclimated for 2 weeks on standard synthetic diet (AIN-76A), 

housed three mice per cage at 22◦ C with non-irradiated pine bedding, and provided free access to sterile 

water in a climate-controlled facility under a 12-h light/dark cycle. Mice were put on experimental diets 

between 8 and 11 weeks of age after the 2-week acclimation period, randomized into different cages by 

experimental diet (Figure S1-1, Supplementary Table 1), and housed under the same conditions. After 

randomization, mice were challenged on their respective diets for 8 weeks, and analysis of body 

composition, metabolic rate, and physical activity were performed at the UNC Animal Metabolism 

Phenotyping Core post diet challenge (methods for analysis of body composition, metabolic rate, and 

physical activity described below) followed by necropsy and tissue collection. Because only a limited 

number of mice were available at one time, experiments spanning 11 weeks (2 weeks of acclimation, 8 

weeks of diet challenge, post-diet phenotype assessments) for each “batch” were performed in 7 batches, 

where each batch contained about 33 mice on average, except for batch 6 which contained 14 mice. All 

mice were maintained on their respective experimental diets for the remainder of the study using 

protocols in accordance with the University of North Carolina Institution Animal Care and Use Committee 

guidelines. All maintenance protocols and experimental procedures were approved by the IACUC at 

University of North Carolina (UNC) Chapel Hill (IACUC Protocol Number: 13-103). 
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Diets 

During the 2-week acclimation period, mice were maintained on the defined synthetic diet containing 

20.8% kcal protein, 67.7% kcal carbohydrate, and 11.5% kcal fat, referred to as AIN-76A in this study 

(D10001, Research Diets, New Brunswick, NJ; Supplementary Table 2) until 8–11 weeks of age to 

account for differences due to variable components of standard chow. Subsequently, one sibling from 

each of the 102 sibling trios was randomly assigned to each experimental diet (Supplementary Table 1). 

One hundred and two mice were transferred to a synthetic high fat high sucrose diet (HS) containing 

16.8% kcal protein, 51.4% kcal carbohydrate, and 31.8% kcal fat, and 102 mice were placed on a high 

protein diet (HP) containing 40% kcal protein, 40% kcal carbohydrate and 20% kcal fat (D12266B 

and D12083101, respectively, Supplementary Table 2; Research Diets, New Brunswick, NJ). 

Body Composition and Weight 

Body composition (lean and fat mass) was assessed in all cohorts during the first week of the acclimation 

phase to establish baseline phenotypes, as well as after 8 weeks of the experimental diet challenge using 

the Echo MRI-130 Body Composition Analyzer (EchoMRI, Houston, TX, USA). Body fat and lean mass 

percentages were calculated by dividing fat mass by scale weight and dividing lean mass by scale weight, 

respectively. 

Metabolic Rate and Activity 

Mice were placed into individual indirect calorimetry cages (Phenomaster, TSE SYSTEMS, Chesterfield, 

MO) the week immediately following the 8 weeks of the experimental diet challenge for ∼3 days and two 

nights (∼48h) to obtain O2 consumption and CO2 production, activity, and feed and water consumption 

measurements. After an 8-h acclimation period, data were collected for two complete 12-h night cycles 

and one complete 12-h day cycle every 42 min (Figure S1-2). Basal activity was measured in three 

dimensions (x, y, and z) as breaks in the two infrared light beam frames that surrounded each cage. 

Rearing was detected by beam breaks in the z axis and total physical activity was defined as the sum of 

beam breaks in all three axes in counts. Feed and water were available ad libitum and consumption was 

measured by weighing sensors that held containers for feed and water, respectively, and recorded the 
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amount of feed or water consumed. Spilled feed and water were caught by extended attachments on the 

feed and water containers suspended from the weighing sensors, so spilled feed and water were not 

recorded as consumed. 

Heat production calculations were performed two ways by the TSE software (LabMaster) using 

O2 consumption and CO2 production measurements: (1) for the computation of total body weight 

(kcal/h/kg), and (2) for the computation of an exponent lean body mass assigned to total body weight 

(kcal/h/kg). From the exported raw data, energy consumption was calculated by multiplying feed 

consumption measurement (in grams) by the calorie (kcal) content per gram feed for each diet 

(Supplementary Table 2). Protein, carbohydrate, and fat consumption were calculated by multiplying the 

feed consumption measurement (in grams) by macronutrient content (in grams) per total gram of feed. 

For example, the average protein consumption for mice on the high protein diet was calculated by 

multiplying the measured feed consumed (g) by (40.6 g protein/90.3 g feed total). 

Individual and combined diurnal means were calculated for each metabolic measurement using 

data collected at time points between the start and end times of the day cycle. Likewise, individual and 

combined nocturnal means were calculated for each metabolic measurement using data collected at time 

points between the start and end times of the night cycle (Figure S1-2). Means for each measure were 

also calculated by date, e.g., mean of feed consumption for both light and dark cycles on the second day 

of the experiment. 

Biological Samples Collection 

Tail clippings and blood samples were collected immediately before putting mice on experimental diets to 

establish baseline values. To collect tail clippings, tail tips were cleaned with 70% ethanol, and up to 5 

mm of the tail tips were excised with sterile scissors and placed in 2 ml screw-cap tubes. After 8 weeks on 

experimental diets, mice were anesthetized via isoflurane inhalation and euthanized using cervical 

dislocation during the necropsy following a 4-h fast. Blood, kidney, liver, subcutaneous and gonadal fat, 

and cecum samples were collected (Figure 1-1). Blood samples were collected via retro-orbital bleed with 

heparinized capillary tubes into EDTA tubes, placed on ice, and centrifuged at 6,000 rpm for 10 min at 4◦ 

C for plasma collection. Plasma was then transferred to 1.5 ml Eppendorf tubes. Tissues were placed in 2 
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ml screw-cap tubes and snap frozen in liquid nitrogen. All plasma, frozen tissues, and previously collected 

samples were stored at −80◦ C. Additional gonadal fat, kidney, and liver tissues were fixed in capped 

glass vials containing 10% formalin and stored at room temperature. 

Plasma Clinical Chemistries 

Cholesterol, triglyceride (TG), glucose, albumin, creatinine, urea, aspartate transaminase (AST), and 

alanine transaminase (ALT) levels were quantified using the Cobas Integra 400 Plus (Roche Diagnostics, 

Indianapolis, IN), according to manufacturer’s instructions. An internal control (Human UTAK) was used 

to assess run variation. Baseline and post-diet circulating insulin were measured using ultrasensitive 

mouse insulin ELISA (ALPCO Diagnostics, Salem, NH) per manufacturer’s instructions except for the 

following adjustment: 15 μl of plasma sample dilutions were used in the assay and back calculations were 

performed to determine actual plasma concentrations. Insulin optical density (OD) was measured at 

450nm using a spectrophotometric BioTek Synergy 2 plate reader (BioTek Instruments Inc, Winooski, 

VT). Insulin concentrations were derived from measured ODs using BioTek’s Gen5 software. 

Liquid Chromatography-Mass Spectrometry (LC-MS) 

Baseline and post-diet circulating trimethylamine N-oxide (TMAO), choline, phosphocholine, betaine, and 

carnitine were quantified using liquid chromatography–mass spectrometry (LC-MS) methods described by 

Wang et al. (2014) with modifications. Standards ranging from 0 to 100μM of non- deuterated analytes in 

methanol were run in order to establish analyte standard curves. Two-fold serial dilutions of a 100μM 

stock solution in methanol was used to make 13 standards. 5μM of surrogate standard (SSTD) were 

prepared comprising of deuterated analytes in methanol. All standards were purchased from Sigma-

Aldrich (St. Louis, MO). All reagent solvents were mass spectrometry grade and purchased from Fisher 

Scientific (Waltham, MA). Details of the protocol are contained in the data supplement (Supplementary 

File 1) and Supplementary Table 3. 

Statistical Methods 

Determining Contributors to Phenotypic Variance 
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All phenotype data were tested for normality using the Shapiro-Wilk test in the statistical programming 

language R (R Core Team, 2019). Baseline non-normal data were transformed using power 

transformation or rank normalization if necessary before linear fixed models were fitted using CC strain 

and mouse batch (“week” in Supplementary File 2) as fixed effects to test for significant CC strain effects 

on phenotypic variance. Post- diet non-normal data were also normalized using these methods as 

appropriate for fitting linear mixed models using restricted maximum likelihood (REML) to determine the 

significance of the effect of diet and strain/diet interactions. To test for the significance of the effect of diet 

underlying phenotypic variance, linear mixed model analysis of the relationship between diet and 

phenotypic traits was performed using R and packages lme4 (Bates et al., 2015), lmerTest (Kuznetsova 

et al., 2017), and car (Fox and Weisberg, 2019) for each post-diet phenotype. For models testing diet as 

the main effect, fixed effects included experimental diet and mouse batch, and random effects (intercepts) 

included CC strain, CC strain × experimental diet, randomization cage nested within experimental diet, 

and baseline cage nested within CC strain. In models used to test for the significance of the effect of 

strain/diet interactions, linear mixed models were fit for each post-diet phenotype, which included CC 

strain, experimental diet, CC strain × experimental diet, and mouse batch as fixed effects, and 

randomization cage nested within experimental diet and baseline cage nested within CC strain as random 

effects (intercepts). Visual inspection of residual plots did not reveal obvious deviations from 

homoscedasticity or normality. P-values were obtained by implementing Satterthwaite approximations as 

described by Luke (2016). 

Calculation of Health Scores to Estimate Overall Metabolic Health 

Metabolic health scores were calculated for all mice at baseline and 9 weeks post-diet. First, Z scores 

were calculated for several metabolic risk factors (circulating glucose, insulin, glucose/insulin ratio, 

cholesterol, TG, and body fat %) measured at baseline and post-diet for each mouse; the distribution 

used to calculate the Z score for baseline was all baseline samples, while samples were separated by 

diet before calculating post- diet Z scores. Next, the Z scores for each metabolic risk factor were added 

together, and then multiplied by −1 so that decreased health is reflected by a lower health score. 
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Baseline Broad-Sense Heritability Estimates 

From linear models fitted using baseline normalized data with CC strain and mouse batch as the 

covariates used to test for significant CC strain effects on phenotypic variance (described above), broad-

sense heritability (H2) was estimated for each phenotype by calculating the intraclass correlation (rI) and 

the coefficient of genetic determination (g2) using derived values for mean square between (MSB) strains 

and mean square within (MSW) strains (Festing, 1979). rI may be interpreted as the proportion of total 

phenotypic variation that is accounted for by differences between strains, while g2 accounts for the 

additive genetic variance that doubles during inbreeding (Festing, 1979; Falconer, 1989; Lightfoot et al., 

2001), so g2 is a more appropriate estimate for broad sense heritability in this study. However, other 

studies sometimes only provide one estimate or the other, so we have included both values to facilitate 

comparisons with other findings in the literature. rI and g2 were calculated using the following formulas, 

where n is the number of mice per strain: 

 

r i= 
(MSB - MSW)

MSB + (n - 1)MSW
                g2 = 

(MSB - MSW)

MSB + (2n - 1)MSW
 

               

The number of mice per strain varies in this study, so n was calculated as: 

 

n  = 
1

(a - 1)
(N - 

Σ ni
2

N
) 

 

where a is the number of strains, ni is the number of mice in the ith strain, and N is the total number of 

mice (samples) per phenotype. 

Post-diet Broad-Sense Heritability Estimates 

Post-diet broad-sense heritability estimates (H2) were calculated for each trait to contrast the proportion of 

relative heritable variation attributed to genetics or diet, and to assess whether different diet 

“environments” affect heritability. Post-diet intraclass correlation (rI) values and the coefficients of genetic 

determination (g2) were calculated using the formulas above and the MSB and MSW derived from four 

different linear models: (1) a “full” additive model with strain, diet, and week as variables fitted with 
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phenotype data from both experimental diets, (2) a “partial” additive model including strain and week as 

variables (diet excluded) fitted with phenotype data from both experimental diets, (3) a “HP” additive 

model including strain and week as variables fitted with phenotype data from only mice fed the HP diet, 

and (4) a “HS” additive model including strain and week as variables fitted with phenotype data from only 

mice fed the HS diet. H2 estimates derived from models fitted with data from all mice post-diet compare 

the contribution of genetics (strain) and diet overall to heritable phenotypic variance, while diet-specific H2 

estimates were calculated to discern differences in heritability affected by differences in macronutrient 

composition. 

Quantification of Heritable Variation Attributed to Genetics, Diet, and Gene × Diet Interactions 

Linear mixed models with strain, diet, and strain x diet interactions as random effects (intercepts) were 

fitted using all post-diet phenotype data for body fat % and obesity-related traits to quantify the relative 

heritable variation attributed to genetics, diet, and gene × diet interactions based on the variance of each 

term in the model. The approximate values for the proportion of variance for strain, diet, and interaction 

were calculated by dividing the variance for each term by the sum of the variance for all terms in the 

model (including residuals). 

Quantification of Diet Effect Size 

To quantify size effects of diet on each trait, Hedges’ g values for the HP diet were calculated by using 

the baseline-specific (AIN-76A) mean of the phenotype minus the HP-specific mean of the phenotype 

(M1-M2), and then dividing this value by the weighted pooled standard deviation (SD) for the two groups 

(Ellis, 2009): 

Hedges' g = 
M1 - M2

SD*pooled

 

 

The weighted pooled SDs was calculated using the following equation where n1 = the number of samples 

from mice on the AIN-76A diet and n2 = the number of samples from mice on the HP diet: 
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SD
*
pooled =  √

(n1 - 1)SD1
2 + (n2 - 1)SD2

2

n1+ n2 - 2
 

 

Calculations for Hedges’ g were performed using the following function from the effsize package in R 

(Torchiano, 2019), with pooled weighted SD, unpaired samples, removed NA entries and a 95% 

confidence interval, where d = phenotype measurements and f = experimental diets: cohen.d (d, f, pooled 

= TRUE, paired = FALSE, na.rm = TRUE, hedges.correction = TRUE, conf.level = 0.95). Corrected 

Hedges’ g effect sizes are presented as standard deviation units so that a Hedges’ g value of 1 indicates 

that the baseline diet and respective experimental diet differ by 1 standard deviation, a g of 2 indicates 

they differ by 2 standard deviations, and so on with the sign indicating the direction of change between 

diets. Positive Hedges’ g indicates increased phenotype values post-diet compared to baseline, e.g. body 

fat % was increased from baseline in mice after feeding them the HP diet. Magnitude descriptions are 

based on the following cut-offs of |g|: negligible < 0.2 < small < 0.5 < medium < 0.8 < large. Hedges’ g 

values were calculated for the HS diet for each trait using the same method. 

To further quantify the effect size of diet, we also calculated the intraclass correlation (ICC) for 

diet using the mean square between (MSB) diets and mean square within (MSW) diets derived from post-

diet linear models including strain, diet, and week as variables, using the following formula where n = 

number of mice on each diet: 

ICC = 
(MSB - MSW)

MSB + (n - 1)MSW
 

 

The ICC for diet can be interpreted as the proportion of the total phenotypic variation that is accounted for 

by differences between diet. 

Testing Significance of Phenotypic Difference Between Day and Night Cycles for Metabolic Traits 

Phenotype data for metabolic traits were viewed in histograms to check for normality of the distributions, 

revealing skewness and non-normality. Thus, Wilcoxon signed rank tests with continuity correction were 

performed instead of student’s t-tests using the following function from the stats package in R (R Core 

Team, 2019), with paired samples and a 95% confidence interval, where day = diurnal metabolic trait data 
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and night = corresponding nocturnal metabolic trait data: wilcox.test (day, night, paired = TRUE, conf.int = 

TRUE). 

Additional Statistical Analyses 

All statistical analyses were performed in R (R Core Team, 2019). Summary statistics were calculated for 

all phenotypic data, include means and standard error (SE). Spearman’s correlations were performed to 

determine significant relationships between traits at baseline and post-diet. To ascertain the magnitude of 

the effect of diet behind gene x environmental effects found for each trait in our linear mixed models, 

Spearman’s correlation analysis was performed between the F-statistic of the gene x diet interactions of 

our models and Hedges’ effect size for both diets (|g|). Each trait was categorized as either largely 

affected by diet (|g| > 0.8) or not (|g| < 0.8), and significantly affected by gene x diet interactions (p < 0.05) 

or not (p > 0.05), followed by Chi square analysis of whether the effect size of diet and the gene x 

environment are significantly related for the given trait. 

Results  

Baseline Traits Show Extensive Phenotypic Variation Among CC Strains 

Baseline values for adiposity (synonymous with body fat % in this study), clinical blood chemistries, and 

circulating metabolites were established to assess the degree of phenotypic variation due to genetic 

background of the CC strain (see Methods and Figure 1-1). Adiposity and circulating metabolic health 

marker levels exhibited wide ranges of phenotypic variation by CC strain (Figure 1-2) and there was a 

wide range of adiposity in the CC population ranging from 1.1 to 29.8% body fat, with strain 

CC019/TauUnc least susceptible to obesity (average body fat 4.4 ± 0.6%) and strain CC028/GeniUnc 

most susceptible (average body fat 23.1 ± 1.5%) (Figure 1-2A). Similarly, there was a wide range in 

average weight across the CC lines ranging from 12.4 ± 0.2g in strain CC019/TauUnc to 23.7 ± 1.0g in 

line CC011/Unc (Figure 1-2B). Within CC strains, CC040/TauUnc had the highest range of variability in 

adiposity (1.7–29.3%), while CC030/GeniUnc had the lowest range of variability in adiposity (7.6–12.6%). 

CC040/TauUnc had the highest variability in weight (11–28g), while CC019/TauUnc had the lowest 

variability in weight (11.1–13.2 g). Linear regression analysis was performed to assess the significance of 
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the effect of strain on each of the measured traits at baseline (Supplementary Table 4), and strain was 

found to have a significant effect on almost all traits, especially body fat % (F = 12.44, p = 7.71 × 10−25) 

and weight (F = 19.39, p = 3.95 × 10−35). To estimate the overall health of the mice from each CC strain, a 

metabolic health score was calculated using the sum of Z scores from measurements of several 

metabolic risk factors (circulating glucose, insulin, glucose/insulin ratio, cholesterol, TG, and body fat %). 

While the health score includes body fat % as one of the components, the phenotypes exhibited across 

CC strains for circulating analytes typically used as markers of metabolic health (circulating glucose, 

insulin, glucose/insulin ratio, cholesterol, TG) varied so that although one strain may have high body fat 

%, it may simultaneously have low levels of TG or glucose, such as CC040/TauUnc at baseline. Because 

metabolic health is determined by multiple phenotypes, the health score provides a way to estimate 

overall metabolic health for each CC strain in a way that accounts for these differences. For example, at 

baseline CC028/GeniUnc had the highest BF% but its health score was close to 0, so it was not 

exceedingly unhealthy relative to the other strains in this study despite its high BF%, since this strain’s 

glucose, TG, and cholesterol levels were not elevated. Similar to adiposity and circulating analytes 

(Figures 1-2C–F), metabolic health also showed a wide range of phenotypic variation by CC strain at 

baseline (Figure 1-2G), where most strains with higher adiposity also appeared to have decreased 

metabolic health (Figures 1-2A, 1-2G), with the exception of CC028/GeniUnc. 

Total Body Weight Has a Limited Effect on Increased Adiposity 

To determine whether total body weight predicts susceptibility to increased adiposity, body fat % was 

correlated with total body weight. Although the leanest strain overall (CC019/TauUnc, average body fat 

4.41 ± 0.56%) was on average also the smallest strain (12.4 ± 0.22 g) and body fat % was positively 

correlated with weight overall (Figure 1-3B, rho = 0.56, p < 2.2 × 10−16), the largest average CC strain was 

not necessarily the most susceptible to developing obesity (Figures 1-2A, 1-2B, Figure S1-3). For 

example, the CC strains with the highest average weight (23.4 ± 0.97 g in CC011/Unc, 22.4 ± 1.08 g in 

CC028/GeniUnc, and 22.3 ± 0.7 g in CC008/GeniUnc) did not necessarily always have the highest body 

fat % (15.7 ± 1.29% in CC011/Unc, 23.11 ± 1.59% in CC028/GeniUnc, and 15.00 ± 1.39% in 

CC008/GeniUnc). 
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Adiposity Exhibits Complex Associations Across Various Health Measures at Baseline 

Excessive adiposity is a risk factor for metabolic dysfunction and thus we quantified the relationship 

between circulating plasma analyte levels and body fat % (Figure 1-3). For example, for traits associated 

with metabolic syndrome such as total weight, circulating glucose, insulin, TG, and cholesterol, body fat 

% was significantly correlated with weight (rho = 0.56, p < 2.2 × 10−16), insulin (rho = 0.44, p = 8.8 ×10−11), 

and TG (rho = 0.24, p = 5.9 × 10−4) as shown in Figures 1-3B – 1-3D, but not glucose nor cholesterol. In 

terms of metabolites associated with cardiovascular health, adiposity was not correlated with the risk 

factor TMAO but was moderately associated with circulating choline (rho = 0.190, p adj = 0.012), carnitine 

(rho = 0.17, p adj = 0.023), and phosphocholine (rho = 0.260, p adj = 0.001; Figure 1-3A, Supplementary 

Table 5). 

Estimates for Broad Sense Heritability (H2) Show the Size of Strain Effects on Phenotypic Variation at 

Baseline 

We next calculated broad sense heritability (H2) of traits at baseline to quantify the degree that genetic 

variation influences phenotypic variation compared to the variation of environmental factors. Linear 

regression analysis was performed to test whether strain had significant effects on phenotypic variation. 

Strain was a significant predictor for all traits at baseline except for circulating non-esterified fatty acids 

(Supplementary Table 4). Using the between- and within-strain mean square values (MSB and MSW, 

respectively) derived from these linear models, broad sense heritability (H2) was estimated by calculating 

the intraclass correlation (rI) and coefficient of genetic determination (g2) which determine the proportion 

of phenotypic variation accounted for by differences between strain (genetic variation) (Table 1-1). 

Estimates of H2 for phenotypic variation based on g2 were 0.359–0.565. The highest and lowest estimates 

of H2 were for lean mass (g2 = 0.565) and circulating non-esterified fatty acids (g2 = 0.029). Our 

assessment of H2 demonstrates that genotypic variation accounts for a large proportion of phenotypic 

variation in the CC for all body composition traits and a medium proportion of phenotypic variation for 

traits related to 1-carbon metabolism. We note that not all analytes were highly heritable. 
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Genetic Background Mediates Degree of Weight Gain, Adiposity, and Metabolic Health in Response to 

Diet 

After establishing baseline phenotype values to examine the effect of strain without the influence of diet, 

we investigated the effect of diet in the CC population on weight gain and metabolic health. To 

accomplish this, we randomized the 204 female mice from 22 CC strains to one of two diets and 

challenged them for 8 weeks with either a high protein (n = 102) or high fat high sucrose diet (n = 102). 

After 8 weeks on the experimental diets, we assessed whether phenotypic response to diet differed by 

genetic background (CC strain) (see Methods and Figure 1-1). MRI body composition analysis of the CC 

mice after 8 weeks on the diet challenge revealed that diet influenced susceptibility to adiposity in a 

strain-dependent manner (Figure 1-4A). Strain CC028/GeniUnc was most susceptible to increased 

adiposity on the high fat high sucrose (HS) diet (35.7 ± 2.0%) and strain CC019/TauUnc was least 

susceptible (4.68 ± 0.5%) (Figure 1-4A, Figure S1-4). CC040/TauUnc was most susceptible to increased 

adiposity on the high protein (HP) diet (29.7 ± 1.37%) and strain CC019/TauUnc was least susceptible 

(4.7 ± 0.47%). The effect of diet was highly variable across the selected strains from the CC. For 

example, CC028/GeniUnc and CC004/TauUnc had a 12% increase in adiposity when fed the HS diet 

compared to the HP diet (Figure S1-4), while CC019/TauUnc and CC063/Unc showed negligible 

differences in adiposity when fed different diets (0.05 and 0.54%). Comparisons of phenotypic differences 

between baseline and post-diet body fat % (Figure S1-5A) by strain and diet further emphasize the strain-

dependent response of body fat % to diet in the CC. 

Similar to adiposity, total weight, circulating analyte levels, and metabolic health score all showed 

phenotypic variation and different responses to diet depending on CC strain (Figure 1-4), though to a 

lesser degree than adiposity. As shown in Figure 1-4G, strain effects account for the inherent phenotypic 

variation in metabolic health illustrated by metabolic health score, as well as the varied responses to diet. 

Certain strains such as CC059/TauUnc and CC008/GeniUnc showed very little responses to diet in terms 

of their metabolic health score, while other strains showed improved metabolic health on either the HP 

compared to the HS diet (CC032/GeniUnc and CC004/TauUnc) or HS compared to the HP diet 

(CC012/GeniUnc and CC030/GeniUnc). 
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To ascertain whether there is a significant effect of CC strain x experimental diet interaction on 

adiposity and related traits, linear mixed models were fitted as appropriate for each trait using CC strain, 

experimental diet, and CC strain × experimental diet as covariates, followed by application of the 

Satterthwaite approximations for degrees of freedom for evaluating significance (Supplementary Table 6). 

A significant effect of CC strain × diet interactions was found for adiposity, fat mass, lean mass 

percentage, metabolic health score, and circulating TMAO and TG. The models for each phenotype were 

significant with the range of significant p-values from p = 7.37 × 10−5 for adiposity to p = 0.03 for metabolic 

health score (F = 3.36 and F = 1.84). There was a significant effect of strain on circulating cholesterol, 

glucose, and insulin (Supplementary Table 6), but no significant effect of CC strain × diet interactions 

which suggests that genotypic variation is largely responsible for the phenotypic variation of these traits. 

To determine the magnitude of the effect of diet behind gene × environmental effects found for 

each trait in our linear mixed models, we performed Spearman’s correlation analysis between the F-

statistic of the gene x diet interactions of our models and Hedges’ effect size for both diets (|g|), which 

demonstrated that the significance of gene x diet interactions were not significantly affected by diet for 

either diet (HP p = 0.96, HS p = 0.74). Furthermore, we categorized each trait as either largely affected by 

diet (|g| > 0.8) or not (|g| < 0.8), and significantly affected by gene × diet interactions (p < 0.05) or not (p > 

0.05), followed by Chi square analysis of whether the effect size of diet and the gene x environment are 

significantly related. The results of the Chi square analysis (p > 0.99) were consistent with the results of 

the Spearman’s correlations performed between the F-statistic of the gene x diet interactions models and 

Hedges’ effect size for both diets (|g|) which suggest that the magnitude of the effect of diet is not a 

significant “driver” of gene x diet interactions. 

Magnitude of Quantified Diet Effects Varies Depending on Diet Macronutrient Composition for Body 

Composition and Obesity-Related Traits 

Because diet is an important environmental factor that affects the manifestation of phenotypes, we next 

investigated the relative effect size of diet on clinical traits associated with adiposity and metabolic health. 

To accurately quantify the effect size of diet on each phenotype, Hedges’ g was calculated for each trait 

instead of Cohen’s d because strain groups were dissimilar in sample size for various traits. The 
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difference in n by strain may result in unequal measures of variation between experimental groups, which 

needs to be adjusted for so that the standard deviation (SD) used to calculate effect size more closely 

reflects the SD of the population. Hedges’ g uses pooled SD weighted by sample size of each group in its 

calculation (see Methods), which makes it a more appropriate measure of effect size when experimental 

groups are dissimilar in sample size compared to Cohen’s d (Ellis, 2009). As shown in Table 1-2, the HS 

diet had large effects on circulating choline, urea and non-esterified fatty acids (NEFAS), as well as most 

traits associated with body composition (|g|> 0.8); medium effects on adiposity, glucose/insulin ratio, 

TMAO, and albumin (0.8 > |g| > 0.5); and small to negligible on all other phenotypes (|g| < 0.5). In 

contrast, the HP diet only had large effects on total weight (|g|> 0.8); medium effects on glucose/insulin 

ratio, circulating choline, TMAO, NEFAS, albumin, urea, cholesterol, and TG, as well as all phenotypes 

associated with body composition; and small to negligible on all other phenotypes (|g| < 0.5). 

Post-diet values for body fat %, clinical blood chemistries, and circulating metabolites were 

established for each diet to assess the degree of phenotypic variation due to differences in macronutrient 

composition of diet (Figure 1-5). For both diets, there was a wide range of phenotypic variation within 

each diet for body fat % (HP = 3.6–33.9%, HS = 3.17–41.7%), total weight (HP = 14.1–35.5 g, HS = 

14.1–39 g) and cholesterol (HP = 64.8–199.5 mg/dL, HS = 63–228.9 mg/dL). Means per diet for body fat 

% (HP = 17.95 ± 0.77%, HS = 20.31 ± 0.97%), total body weight (HP = 21.78 ± 0.42 g, HS = 24.02 ± 0.5 

g), TG (HP = 104.6 ± 4.28 mg/dL, HS = 113.65 ± 4.73 mg/dL), cholesterol (HP = 115.1 ± 2.85 mg/dL, HS 

= 139.51 ± 3.3 mg/dL), glucose (HP = 173.45 ± 5.73 mg/dL, HS = 184.63 ± 6.42 mg/dL), and insulin (1.03 

± 0.05 ng/ml, HS = 1.17 ± 0.08 ng/ml) showed slightly elevated values for each trait on the HS diet 

compared to the HP diet (Supplementary Table 7), but the only significant increases in phenotype were 

for total weight and cholesterol (p < 0.01, Student’s t-test), not body fat %, TG, glucose, insulin, nor 

metabolic health score (Figure 1-5). Relative to mice fed the HP diet, mice fed the HS diet showed a 

10.6% increase in total weight (Figure 1-5B) and a 21.2% increase in cholesterol (Figure 1-5D), 

suggesting that macronutrient composition had a stronger effect on these traits compared to body fat %, 

TG, glucose, insulin, and metabolic health score. 
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To further assess whether diet had a significant effect on adiposity and related phenotypes, linear 

mixed model analysis was performed (Supplementary Table 8), which showed that experimental diet had 

a significant effect on all phenotypes related to body composition, except post-diet body fat % for which 

diet showed a suggestive effect (F = 3.98, p = 0.057). Although experimental diet alone did not have a 

significant effect in general on body fat %, TG, glucose, insulin, nor metabolic health score (Figure 1-5), 

experimental diet did have significant effects on total weight (F = 20.0, p = 0.0002) and cholesterol (F = 

43.8, p = 6.22 × 10−7). Furthermore, experimental diet also had significant effects on circulating urea, 

betaine, TMAO, carnitine, and phosphocholine (Supplementary Table 8), indicating that diet 

macronutrient composition still plays an important role in terms of metabolic health. 

To confirm the degree to which genetic background mediates weight gain, adiposity, and 

metabolic health in response to diet, additional linear mixed model analyses with strain, diet, and strain × 

diet interactions as all random effects were performed for each trait to estimate the relative heritable 

variation that can be attributed to genetics, environment (diet), and gene × environmental effects. From 

the results of these models, we calculated the variance for each of these terms (Supplementary Table 9) 

and found that a large proportion of relative phenotypic variation can be attributed to background strain 

for most traits, especially body fat %, total weight, and TG (> ∼49.6%). In contrast, the proportion of 

relative phenotypic variation that can be attributed to diet varied depending on the trait, where cholesterol, 

betaine, and urea/BUN were the traits that had the highest proportion of heritable variation attributed to 

diet (> ∼21%). 

Post-diet Estimates for Broad Sense Heritability (H2) Reaffirm the Strong Contribution of Strain Effects on 

Heritable Phenotypic Variation and Identify Traits With High Proportions of Heritable Phenotypic Variation 

Attributed to Diet 

The degree to which genetics, diet, and gene x diet interactions influence phenotypic variation differs 

depending on the trait. To quantify the relative heritable phenotypic variation which can be attributed to 

genetics or diet for body fat % and obesity-related traits, we calculated heritability using the mean square 

between (MSB) strains and mean square within (MSW) strains derived from two different linear models 

for post-diet traits (a “full” additive model that includes strain, diet, and week as variables and a “partial” 
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model that excludes diet) and the intraclass correlation (ICC) for diet using the mean square between 

(MSB) diets and mean square within (MSW) diets derived from the “full” model (Methods). Heritability 

estimates were similar for most traits regardless of the model used (“full” vs. “partial”) except for traits 

where the ICCs for diet were relatively high, such as total weight, cholesterol, urea/BUN, and betaine, 

demonstrating the robust contribution of strain to heritable variation compared to diet (Table 1-2). The 

relatively high diet ICCs for total weight, cholesterol, urea/BUN, and betaine suggest that diet may be 

responsible for a higher proportion of heritable variation for these traits compared to other traits, which is 

consistent with the results of our linear mixed models testing the significance of diet that also show diet as 

significantly affecting these traits (Supplementary Table 8). Traits with negative or close to zero diet ICCs 

had higher within-diet variation than between- diet variation. Interestingly, with the exception of insulin 

and metabolic health score, most post-diet traits had higher heritability estimates when the MSB term was 

used from linear models that included diet compared to the models excluding diet, suggesting that 

accounting for the effect of diet improved heritability estimates since either the within-strain variation was 

decreased and/or the between-strain variation was increased. 

Diet-specific heritability was also calculated using linear models fitted only including mice fed HP 

or HS diet with strain and week as covariates to compare changes in heritability for each experimental 

diet due to “environmental” differences (Tables 1-1 and 1-2). One caveat of comparing baseline 

heritability and diet-specific post-diet heritability is that diet-specific post-diet heritability values were 

calculated using half the number of mice as the baseline heritability values, which could affect the within-

strain variance component of the heritability calculations. Nonetheless, assuming that the genotypic 

variance is the same between diets and time points (baseline vs. post-diet), we can still identify which 

traits may be more strongly affected by differences in macronutrient composition. Indeed, after calculating 

the heritability estimates for each of the traits post- diet on the respective experimental diets, we found 

that the different “environments” (diets) resulted in slight alterations in heritability estimates depending on 

the trait. For example, the difference in macronutrient composition appears to have a bigger impact on 

traits such as cholesterol, insulin, and glucose with larger variation in heritability (Table 1-2), and less 

important to traits such as metabolic health score where heritability estimates remain consistent (baseline 

g2 = 0.21, HP g2 = 0.24, HS g2 = 0.24). 
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Comparison of Quantified Metabolic Traits During Daytime and Nighttime Show Decreased Rates of 

Metabolism, Energy Intake, Utilization of Carbohydrates as a Fuel Source, and Basal Activity During Rest 

Obesity is characterized by the excess accumulation of body fat, which results from chronic energy 

imbalance between energy intake and expenditure. Given the diverse range of body fat accumulation in 

response to diet across strains, we sought to elucidate the differences in metabolism between strains on 

each diet by using indirect calorimetry to measure the following traits related to energy balance in mice 

after 8 weeks on the experimental diets: (1) heat expenditure to estimate metabolism levels, (2) 

respiratory exchange rate (RER) to estimate substrate utilization (carbohydrate compared to fat as a 

source of energy), (3) food intake to estimate energy consumption, and (4) basal activity. Energy 

consumption was calculated by multiplying feed consumption measurement (in grams) by the calorie 

(kcal) content per gram feed for each diet. Similar to other phenotypes reported above, linear mixed 

model analysis was performed for each trait to test whether experimental diet, CC strain, and/or CC strain 

x experimental diet interactions had significant effects on metabolic traits. 

Heat production, RER, energy intake, and basal activity phenotypes varied widely by CC strain 

(Figure 1-6, Figures S1-6 and S1-7, Supplementary Table 10), with phenotype measurements higher at 

night than day which reflected the active nocturnal behavior of mice. Wilcoxon signed rank tests 

performed comparing the day and night measurements for each trait confirmed the differences between 

light and dark cycles for all strains on both diets (p < 2.2 × 10−16 for all traits). Overall heat production 

while accounting for total weight (Heat1) was highest on average for both day and night cycles in the 

leanest strain, CC019/TauUnc on the HS diet (21.4 ± 0.64 and 27.6 ± 0.87 kcal/h/kg in the day and night) 

(Figure 1-6A, Figure S1-6A). During the day, heat production was lowest in CC030/GeniUnc on the HP 

diet (11.9 ± 2.86 kcal/h/kg) even though CC030/GeniUnc was relatively lean compared to other strains on 

the same diet (11.9 ± 1.2%, Figure 1-4A), while heat production was lowest in CC008/GeniUnc during the 

night on the HS diet (15.4 ± 0.30 kcal/h/kg), which was one of the fatter strains compared to other strains 

in the same diet (26.8 ± 1.3%, Figure 1-4A). Overall heat production while accounting for only lean mass 

(Heat2) (Figure 1-6B, Figure S1-6B) was highest on average for CC019/TauUnc on the HS diet during the 

day (7.61 ± 0.23 kcal/h/kg) and CC004/TauUnc on the HP diet at night (10.2 ± 0.56 kcal/h/kg) and lowest 
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in CC030/GeniUnc on the HP diet (4.35 ± 1.06 and 5.81 ± 0.94 kcal/h/kg in the day and night, 

respectively). In summary, variation in energy production was much larger between strains than diets, 

with the differences in phenotype by diet depending on the strain (Figure S1-6). Linear mixed model 

analysis showed that CC strain × experimental diet interactions had significant effects on energy 

production during both day and night, but the effect of CC strain was much stronger and may be driving 

the effects of CC strain × experimental diet interactions (Supplementary Table 6). In linear mixed models 

testing the effect of experimental diet alone, diet had a significant effect on Heat2 during the day (F = 5.3, 

p = 0.03) but not any of the other heat production measured (Supplementary Table 8), suggesting that 

diet may have a different effect on metabolism during the day for lean mass compared to non-lean mass. 

Similar to energy production, the wide range of variation in substrate utilization (RER) depended 

on CC strain and were all higher during the night compared to the day for mice within the same strain on 

either diets (Figure 1-6C, Figure S1-7A). RER levels were lowest in CC030/GeniUnc during the day and 

CC012/GeniUnc during the night on the high protein diet (0.725 ± 0.007 and 0.76 ± 0.01) even though the 

adiposity of CC012/GeniUnc was twice the adiposity of CC030/GeniUnc (24.1 ± 1.8% and 11.9 ± 1.2%, 

Figure 1-4A), while RER levels were highest in CC071 during the day and CC019/TauUnc during the 

night on the HS diet (0.825 ± 0.019 and 0.943 ± 0.013) despite vastly different levels of adiposity (13.9 ± 

1.5% in CC071 and 4.7 ± 0.5% in CC019/TauUnc, Figure 1-4A). Surprisingly, linear mixed model analysis 

revealed that both CC strain and experimental diet independently had significant effects on RER for both 

day and night (Supplementary Tables 6, 8), but despite CC strain having a stronger effect than diet, the 

effects of CC strain × diet interactions were not significant. 

Our indirect calorimetry assays were also able to calculate the energy intake and activity of the 

mice over the 48-h test. As expected, there were significant differences between night and day cycles in 

both of these behaviors, as confirmed by the results of Wilcoxon signed rank tests (p < 2.2 × 10−16). 

Energy intake was lowest in the lean strain CC041/TauUnc on the HP diet for both day and night (0.579 ± 

0.110 kcal/h and 2.68 ± 0.915 kcal/h) (Figure 1-6D, Figure S1-7B). Food intake was highest for strain 

CC024/GeniUnc during the day (16.47 ± 3.661 kcal/h) and CC019/TauUnc during the night (26.64 ± 

7.301 kcal/h) on the HS diet. The energy consumption was variable depending on the diet consumed. For 
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example, in terms of mice on the HS diet, energy intake was highest in CC024/GeniUnc during the day 

(16.47 ± 3.66 kcal/h) and CC019/TauUnc at night (26.64 ± 7.30 kcal/h), and lowest in CC063/Unc during 

both day (2.32 ± 0.17 kcal/h) and night (4.59 ± 0.44 kcal/h). Additionally, energy intake for CC063/Unc 

was extremely variable on the HP diet during the day and night (39.45 ± 18.00 kcal/h and 40.42 ± 17.34 

kcal/h). Because of this high variability, four types of linear mixed models were fitted for both day and 

night energy intake: (1) model testing for the effect of diet including CC063/Unc, (2) model testing for the 

effect of diet excluding CC063/Unc, (3) model testing for the effect of CC strain × diet including 

CC063/Unc, and (4) model testing for the effect of CC strain x diet excluding CC063/Unc. For energy 

intake both day and night, both experimental diet and CC strain had significant effects on energy intake 

regardless of whether CC063/Unc was included, but the CC strain × diet interaction did not significantly 

affect energy intake when CC063/Unc was excluded (Supplementary Table 11). Although we could not 

identify a specific error with the collection or calculation of the data for CC063/Unc, results for energy 

intake from CC063/Unc should be interpreted with caution. 

Basal activity exhibited phenotypic variation depending on and between CC strains, but barely 

any difference by diet (Figure 1-6E, Figure S1-7C). Diurnal basal activity was lowest in CC030/GeniUnc 

on the HP diet and CC041/TauUnc on the HS diet (988.8 ± 383.1 and 1,188.2 ± 260.6 beam breaks/h), 

and highest in CC004/TauUnc on the HP diet and CC045/GeniUnc on the HS diet (4,328.1 ± 985.7 and 

3,322.5 ± 988.8 beam breaks/h), while nocturnal basal activity was lowest in CC012/GeniUnc on the both 

HP and HS diets (2,304.4 ± 124.7 and 2,792.7 ± 337.7 beam breaks/h), and highest in CC004/TauUnc on 

HP and CC045/GeniUnc on HS diets (16,742.5 ± 1,919.9 and 11,081.9 ± 6,070.3 beam breaks/h). Linear 

mixed model analysis confirmed that only CC strain had a significant effect on both diurnal and nocturnal 

basal activity; the effects of experimental diet and CC strain x experimental diet interactions were not 

significant (Supplementary Tables 6, 8). 

Complex Relationships Between Adiposity, Energy Intake, and Energy Expenditure Suggest an Important 

Role of Diet Substrate Utilization in Maintaining Energy Homeostasis 

Our comprehensive phenotyping demonstrates the high variability among metabolic traits. Using the 

phenotyping data, Spearman’s correlations between body composition and traits related to energy intake 
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or expenditure were performed. Although the individual phenotypes are variable between strains there 

are several notable results, such as the negative correlations between body fat percentage and all 

expenditure phenotypes except for basal activity and diurnal fat intake (rho < −0.17, p adj < 0.02). 

Conversely, lean mass percentage was positively correlated with all energy intake/expenditure 

phenotypes except for basal activity, diurnal fat intake, and diurnal carbohydrate intake (rho > 0.16, p adj 

< 0.025, Figure 1-7). Total body weight was significantly but negatively correlated with nocturnal protein 

intake, night RER, and heat expenditure (rho < −0.17, p adj < 0.01), while all energy intake phenotypes 

were positively correlated with RER, energy expenditure phenotypes, and basal activity (rho > 0.19, p adj 

< 0.008, Figure 1-7). Body fat percentage and heat production (accounting for total weight) are negatively 

correlated for both day and night (rho = −0.563 and rho = −0.612), stronger than the negative correlations 

between body fat percentage and energy intake (rho = −0.20 and rho = −0.26). These data demonstrate 

that the decrease in food intake as body fat percentage increases is not enough to maintain energy 

balance. 

Coupled with average adiposity measurements, indirect calorimetry data demonstrated that 

energy expenditure varies tremendously between inbred strains of similar weight, specifically strains 

CC030/GeniUnc and CC019/TauUnc (Figure 1-8). Although mice from these two strains were close in 

terms of average total body weight (Figure 1-8A), the average body fat percentage of CC030/GeniUnc 

was more than twice the average body fat percent of CC019/TauUnc (Figure 1-8B). CC019/TauUnc 

stayed consistently lean across diets, while CC030/GeniUnc’s highest average post-diet body fat 

percentage paradoxically decreased with increasing dietary fat content (Figure 1-4A). Comparing the two 

strains of mice on the same diet, CC019/TauUnc mice consistently consumed more calories than 

CC030/GeniUnc mice during both day and night (Figure 1-8C) but also consistently produced more heat 

than CC030/GeniUnc and importantly, produced enough heat to achieve energy balance (Figure 1-8D). In 

addition to CC019/TauUnc’s relatively high metabolism, the difference in substrate utilization between the 

two strains could help to explain their different responses to diet (Figure 1-8E); during the night, the 

average RERs of CC019/TauUnc are 0.943 and 0.926 on the HS and HP diets, and the average RERs of 

CC030/GeniUnc are 0.82 and 0.798 on the HS and HP diets, implying that CC019/TauUnc mice are 

utilizing carbohydrates as their fuel source more than CC030/GeniUnc mice, which could suggest that 
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CC019/TauUnc mice are more active than CC030/GeniUnc mice. Intriguingly, substrate utilization during 

the light phase was quite different between strains. The average RERs of CC019/TauUnc across diets is 

0.800 and the average RERs of CC030/GeniUnc are 0.746 and 0.725 on the HS and HP diets, which 

suggests that at rest CC030/GeniUnc mice preferentially utilize fat as an energy source more than 

carbohydrate as compared to CC019/TauUnc mice (Figure 1-8F). 

Small but Significant Alterations in Metabolite Levels Are Associated With Diet-Driven Adiposity, but 

Largely Not Associated With Metabolic Phenotypes 

Given the variation in diet-driven changes in adiposity, we next investigated whether there were 

alterations in metabolic health in corresponding fashion. We correlated body fat % after diet feeding with 

other traits (Figure 1-9). Broadly, body fat % is strongly correlated with total weight (Figure 1-9B; rho > 

0.579, p < 3.91 × 10−10), and moderately correlated with insulin levels, total heat production, and total 

RER (Supplementary Table 12). Remarkably, the significant correlations at baseline (Figure 1-3) between 

body fat % and TG (rho = 0.24, p adj = 1.35 × 10−3), carnitine (rho = 0.17, p adj = 0.036), and choline (rho 

= 0.19, p adj = 0.018) were no longer significant after the diet challenge (Supplementary Table 12), 

indicating that the metabolic effect of diet varies among clinical traits. 

Spearman’s correlation analysis performed between metabolic traits and other traits related to 

adiposity (Figure 1-9A) revealed significant correlations between metabolic health score and heat 

production accounting for total weight (Heat1) (rho = 0.37, p adj = 2.61 × 10−7), heat production 

accounting for lean mass (Heat2) (rho = 0.32, p adj = 9.12 × 10−6), feed intake (rho = 0.20, p adj =0.009), 

energy intake (rho = 0.20, p adj = 0.009), and RER (rho = 0.36, p adj = 7.08 × 10−7) but not basal activity 

(p adj = 0.76). These relationships are heavily driven by the body fat % component of metabolic health 

score, as body fat % was also significantly correlated with these traits but in the “opposite” direction 

(Supplementary Table 12). Of all circulating analytes and 1-carbon metabolites, RER was moderately 

correlated with albumin (rho = −0.29, p adj = 3.21 × 10−4), heat production accounting for total body 

weight and lean mass showed a slight negative correlation with albumin (rho = −0.19, p adj = 0.01 for 

both heat production estimations), and feed intake was positively correlated with betaine (rho = 0.21, p 

adj = 0.02) and carnitine (rho = 0.22, p adj = 9.12 × 10−3). Other than metabolic traits, the only traits which 
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total basal activity showed slight correlations with were insulin (rho = 0.23, p adj = 3.31 × 10−3) and 

glucose/insulin ratio (rho = −0.19, p adj = 0.02). 

Discussion 

With the rapid rise in the global prevalence of obesity and obesity-related diseases in the recent decades 

(Flegal, 2010; Ogden et al., 2016, 2018), there is a crucial need to improve our understanding of obesity. 

Individually, diet and genetics are known to be critical factors in the development of obesity, but our 

understanding of how diet and genetics interact to affect obesity remain to be fully elucidated. Taken at 

the individual gene level, this is a daunting task. There are hundreds of genes associated with body 

weight and BMI reported in the GWAS catalog and these can interact with each other and diet, increasing 

the complexity of obesity (Bell et al., 2005; Rankinen et al., 2006; Kunej et al., 2013; Singh et al., 2017). 

Thus, the complexity and heterogeneity of obesity may affect dietary recommendations, as illustrated by 

the lack of a universally “perfect” diet for weight loss (Dansinger et al., 2005; Johnston et al., 2014). 

Increasing our knowledge of how genetics and environmental factors (particularly diet) interact, the 

degree to which these interactions impact the development of obesity, and the mechanisms behind these 

effects are crucial to developing successful methods for mitigating obesity. 

To investigate the degree that genetics, diet, and gene-by-diet interactions impact phenotypic 

variation in obesity, obesity- related traits, and metabolic traits, we performed our study on multiple strains 

of mice from the CC genetic reference population to overcome the limitations of human studies, 

especially in terms of controlling genetic background, diet, and other environmental influences. The CC is 

well-suited for investigating genetic vs. environmental impacts on phenotypic variation due to its high 

genetic diversity and ability to generate genetic “replicates” which enables increased accuracy in 

phenotypic measurements. Indeed, the CC has already been used to provide a genetic framework to 

depict the relationship between body weight and the central nervous system (Mao et al., 2015), high fat 

diet and fasting glucose levels (Atamni et al., 2016), and hepatic gene expression in response to impaired 

glucose tolerance (Atamni et al., 2019). The CC has also been used as a model to study exercise-

induced paradoxical fat response (McMullan et al., 2018). The current manuscript adds to this literature 

by examining the dietary responses of the CC. 
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While previous studies have examined subsets of obesity-related traits in the CC and energy 

balance traits have been examined in pre-CC lines (Mathes et al., 2011), we examined the unique effect 

of diet in this population. In this study we sought to elucidate the relationships between genetic 

background, diet, adiposity, and obesity-related traits. Our comprehensive phenotyping included: body 

composition, circulating analyte and metabolite levels, and metabolism through indirect calorimetry, 

followed by the integration of all these data in common analyses. We found that in the absence of dietary 

perturbation, many of the traits phenotyped in this manuscript are heritable in the CC. Defined as the 

proportion of phenotypic variation due to genetic variation for a specific population, we calculated broad 

sense heritability for adiposity and other traits for mice on the synthetic chow diet at baseline to estimate 

the strength of genetic contribution. Traits related to body composition had moderately high broad sense 

heritability (g2) at baseline ranging between 0.359 and 0.565, with the broad sense heritability estimate of 

total body weight at 0.499 which is higher than a previously reported estimate in the CC at 0.37 (Atamni 

et al., 2016). Given that H2 estimates can vary among studies, we also calculated g2 for baseline body fat 

%, lean %, and total weight using four publicly available body composition data sets (McMullan et al., 

2018). The range of g2 for these traits across the 4 data sets were between 0.268 and 0.511, similar to 

the estimates in this study. The average baseline g2 for lean % in the McMullan study (g2 = 0.358) and the 

current study (g2 = 0.359) were closer than the average g2 for weight in the McMullan study (g2 = 0.357) 

and the current study (g2 = 0.499), but the average g2 for body fat % in the McMullan study and the 

current study was the same (g2 = 0.383), which is close to the minimum heritability of 0.4 in humans as 

indicated by twin studies (Bell et al., 2005). The heritability of most circulating metabolites in the CC 

varied between 12 and 46%, similar to the heritability of circulating small metabolites and amino acids in 

humans, which has been reported to vary between 23 and 55% (Dharuri et al., 2014). Interestingly, broad 

sense heritability for circulating insulin (0.153) was much lower than heritability for adiposity (0.383), 

which implies that environmental factors such as diet or lifestyle may have a stronger effect on 

attenuating hyperinsulinemia than adiposity. Overall, these data suggest similar overall metabolic health 

parameters to those observed in humans, demonstrating that the high genetic, and phenotypic diversity of 

the CC make this mouse panel a suitable model for studying obesity, a trait with complex etiology. 
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Furthermore, we have identified which specific strains have predispositions for increased adiposity 

accumulation, total weight, circulating analyte levels, and metabolic phenotypes. 

Like the CC, the relationship between weight and adiposity is not always uniform within humans 

(Hashimoto et al., 2016; Verheggen et al., 2016). While the CC mostly showed a strong positive 

relationship between adiposity and weight, several strains such as CC011/Unc, CC008/GeniUnc, and 

CC059/TauUnc that weighed more than the majority of other strains had only ∼15% body fat, compared 

to the fattest strains with 20–23% body fat. Similar to the relationship between weight and adiposity, the 

relationship between adiposity and overall metabolic health can vary within humans (Yaghootkar et al., 

2014, 2016; Ding et al., 2016; Gonçalves et al., 2016; Iacobini et al., 2019). At both baseline and post-

diet, significant associations between body fat % and individual markers of metabolic health were only 

detected consistently for body fat % and insulin, and body fat % and alanine transaminase (ALT). One 

possible explanation for the lack of associations obtained is the nocturnal eating pattern of mice, since the 

concentration of glucose and insulin fluctuates with their circadian rhythms (Jensen et al., 2013), though 

the number of hours that the mice were fasted prior to the blood draw could also have minor effects on 

the analytes measured. 

By estimating the average metabolic health of each CC strain via calculation of a metabolic health 

score, we identified CC028/GeniUnc and CC040/TauUnc as two of the fattest strains in our study that 

were healthier than the leaner strains CC030/GeniUnc and CC041/TauUnc at baseline, whose body fat % 

were half of CC028/GeniUnc and CC040/TauUnc, mirroring the “sub-phenotypes” within obesity of 

metabolically “healthy” or “unhealthy” individuals found in human studies (Peppa et al., 2013; Dobson et 

al., 2015; Schulze, 2019). After the 8-week diet challenge, CC028/GeniUnc and CC040/TauUnc remained 

healthier than CC030/GeniUnc, while CC041/TauUnc was both leaner and healthier than these three 

strains, reflecting the strain- dependent effect of diet. 

At baseline the body fat % measured in the CC mice demonstrated that the predisposition to 

developing obesity occurred in a strain-dependent manner; baseline body fat % also highlighted the wide 

phenotypic variation across strains and minor phenotypic variation within strains, which varied by trait and 

strain. For most traits at baseline such as total weight, TG, cholesterol, and glucose, the ranges of strain 
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coefficients of variation (CV%) were within ∼20%; for example, the CV% of total weight for each strain 

was 4.91–23.2% where CC030/GeniUnc exhibited the lowest within-strain phenotypic variation (CV% = 

4.91) and CC040/TauUnc exhibited the highest within-strain phenotypic variation (CV% = 23.2%). The 

range of strain CV% for baseline body fat % was slightly larger (13.9–44.7%), demonstrating that certain 

traits may be more sensitive to environmental differences such as being housed in different cages which 

could lead to differences in microbiome exposure, or minor genetic differences since completed CC lines 

are at least 98% homozygous (UNC Systems Genetics Core Facility, 2012) but not necessarily the same 

degree of homozygosity across individuals. 

By analyzing the post-diet metabolic traits measured in these 22 CC strains together, our data 

recapitulates some key findings in humans by Sims (1976). As expected, metabolic rate estimated as 

heat production had the strongest inverse relationship with post-diet body fat %, which implies that body 

fat % increases as metabolic rate decreases. Body fat % was not significantly correlated with basal 

activity, showing that spontaneous physical activity alone did not significantly alter the degree of adiposity 

accumulation. Remarkably, energy intake decreased as body fat % increased; when adjusted for total 

body weight, this negative correlation increased in both strength and significance regardless of diet 

(Figure S1-8), suggesting that the body attempts to adjust energy consumption and maintain energy 

homeostasis when adiposity is in excess, as reflected by changes in hormone levels that regulate energy 

consumption such as increased leptin secretion from adipose tissue (Caro et al., 1996; Friedman and 

Halaas, 1998) and lower levels of the gut satiety-related peptide tyrosine-tyrosine (PYY) found in obese 

individuals (Simpson et al., 2011). As body fat % increases, the secretion of the satiety hormone leptin 

from adipocytes also increases, which would lead to a decrease in appetite and therefore a decrease in 

feed consumption. Because the HS diet contains 290 g of sucrose for 1,042.8 g of HS diet and the HP 

diet contains 113 g of sucrose for 1,000.1 g of HP diet, another potential explanation for the negative 

correlation between energy intake and body fat % is the glucostatic theory, which states that glucose 

availability and utilization in specific regions of the brain may affect the regulation of satiety perception 

and short- term regulation of appetite (Mayer, 1953). Thus, for two mice consuming the same grams of 

experimental diet, the mouse fed the HS diet would consume more sucrose than the mouse fed the HP 

diet, resulting in a difference in the availability of glucose for each mouse and possible differences in the 
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utilization of macronutrients depending on the strain (genetic effects). For example, the night RER of 

CC002/Unc was 0.847 on the HP diet and 0.921 on the HS diet, whereas the night RER of 

CC008/GeniUnc was 0.821 on the HP diet and 0.824 on the HS diet (Supplementary Table 10). Future 

studies using isocaloric diets with more extreme differences only in fat content or only sucrose content 

would help determine whether the stronger negative correlation between energy intake after correcting for 

total weight and body fat % of mice fed the HS diet is attributed to increased fat or sucrose content. 

As accumulation of adiposity increased, RER decreased which implies increased utilization of fat 

as the substrate for energy expenditure since fat is in excess. RER was strongly positively correlated with 

heat production, illustrating that the increase in metabolic rate shifts substrate utilization toward 

carbohydrates and away from fat. If energy expenditure remains unchanged, the metabolic flexibility of 

shifting from carbohydrate utilization toward lipid utilization would compensate for the decrease in energy 

consumption (Farias et al., 2011; Goodpaster and Sparks, 2017). Along with the strong positive 

correlation between heat production and energy intake, the relationships between metabolic traits reaffirm 

the implication of energy balance. The consistency between the current results and Sims’ results 

demonstrates the ability of the CC to reliably model human genotypic and phenotypic variation when 

studying complex traits. 

After 8 weeks of feeding the CC mice either the HP or HS diet, assessing body composition in the 

CC revealed the strains’ different responses to diet in terms of weight gain and other phenotypic changes 

in obesity-related traits. Consistent with the findings of Barrington et al. (2017), the strength of the effect 

of diet depended on the trait examined, macronutrient composition, and subject strain (genetic 

background). For example, certain CC strains did not respond to differences in macronutrient 

composition, either remaining persistently fat (CC040/TauUnc, CC063/Unc, CC001/Unc) or lean 

(CC019/TauUnc) regardless of experimental diet, while other strains clearly accumulated less body fat % 

on the HP diet compared to the HS diet (CC028/GeniUnc, CC004/TauUnc, CC006/TauUnc). 

Furthermore, experimental diet alone did not have a significant effect in general on circulating glucose, 

insulin, nor TG based on the results of the linear mixed model analysis, but certain CC strains showed 

drastic differences in phenotypic response to diet for these traits, such as CC036/Unc, CC002, and 
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CC004/TauUnc for TG; CC036/Unc and CC040/TauUnc for glucose; and CC040/TauUnc, 

CC004/TauUnc, CC045/GeniUnc, and CC032/GeniUnc for insulin. The different response to diet by CC 

strain suggests that variation in genetic architecture may contribute to differences in individual nutrient 

need and substrate utilization, which should be taken into account when developing weight loss 

strategies. 

Similar to the findings in this study, a recent large-scale human study performed by Berry et al. 

(2020) examining postprandial metabolic response to food relative to precision nutrition highlighted large 

inter-individual variability when subjects were fed identical meals, and found that genetic background and 

environmental factors, including person-specific factors (e.g., the microbiome) and meal macronutrients, 

had varying degrees of influence on traits assessed. Mirroring the broad range of phenotypic response to 

diet in the CC, human participants in the DIETFITS Randomized Clinical Trial that were administered 

either a low-fat or low-carbohydrate diet also exhibited a wide range of response to diet in terms of weight 

loss over 12 months, regardless of their genotypes defined by three SNPs (Gardner et al., 2018). Due to 

the complex etiology of obesity, studies in humans endeavoring to prove direct relationships between 

individual SNPs and obesity have succeeded in finding associations between genetic loci and body 

weight (Deeb et al., 1998; Scuteri et al., 2007; Speliotes et al., 2010; Claussnitzer et al., 2015; Hägg et 

al., 2015), but translational application of these associations will first require further investigation into the 

biological function of novel obesity-associated genetic loci (Loos, 2018) and elucidation of the causes 

behind conflicting findings where associations between genetic loci and phenotypes were not detected 

(Sørensen et al., 2006; Drabsch et al., 2018; Gardner et al., 2018; Merino et al., 2018). Nevertheless, the 

phenotypic variation in adiposity by CC strain in this study clearly illustrate the genetic predisposition for 

developing obesity, concurrent with findings in humans (Stunkard et al., 1986; Bouchard and Tremblay, 

1997; Viitasalo et al., 2019). Therefore, effective mitigation of obesity using personalized nutrition would 

ideally incorporate information regarding an individual’s genetic background, behavior, environmental 

influences, physiological response to diet, and socioeconomic situation in addition to their genotype in 

terms of recommendations for alterations in diet and exercise levels (Drabsch and Holzapfel, 2019). 
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One caveat of our study design is that we cannot assess the effect of aging nor whether there are 

strain specific age-related phenotypes given the natural variation both between strains and between 

individuals within strains. Similar to the current study, a preprint of a pending manuscript utilizing B × D 

mice indicates that certain age-related phenotypes such as longevity and weight are under strong genetic 

regulation and are also affected by diet and gene-by-environmental interactions (Roy et al., 2019). Our 

diet challenge and age are confounded and we cannot assess differences in genetic susceptibility that 

are age dependent. Additional investigations using a modified study design could effectively assess the 

effect of aging on metabolic factors in CC mice. 

Although basal activity levels were assessed, one limitation of this study is the lack of “true” 

exercise activity (e.g., wheel running), since increased weight loss in humans has been shown to be 

associated with increased physical activity if calorie intake is controlled (Zemel et al., 2009). Another 

caveat of this study is the unavailability of metabolic phenotype data for the mice at baseline (e.g., energy 

expenditure, feed intake, RER, basal activity), which limits the conclusions that can be made regarding 

the effects of diet compared to feed intake on energy balance when interpreting these data. Moreover, 

recent studies have found that the gut microbiota also potentially play a significant role in the 

development of obesity (Tilg and Kaser, 2011; Pace and Crowe, 2016; Lee et al., 2018). Further studies 

should be performed with multiple genetically diverse populations to determine which diets would be most 

effective for weight loss by individuals according to their genetic background and to examine the state of 

epigenetic markers and transcript expression levels in specific tissues. 
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Figure 1-1. Experimental design and timeline.  

Collaborative Cross (CC) mice were obtained between 6 and 9 weeks of age (n = 204) and acclimated for 

2 weeks on standard synthetic diet (AIN-76A) for baseline phenotype assessment which included body 

composition assessment and a blood draw for quantification of circulating plasma clinical chemistries and 

metabolites before cage randomization and starting diet challenges on either high protein (HP) or high fat 

high sucrose (HS) diet between 8 and 11 weeks of age, with an average age of 9.4 weeks. For each CC 

strain, 4–5 mice were assigned to each experimental diet except for CC024/GeniUnc which had 2 mice 

assigned to each experimental diet; the number of mice from each strain assigned to each diet are shown 

in Supplementary Table 1. Mice were subsequently maintained on experimental diets for a total of 8 

weeks, with the final phenotype assessment performed the following week (week 9) which included 

another body composition assessment and indirect calorimetry to measure metabolic rate and activity. 

Samples collected during the necropsy were blood used in the current study, kidney, liver, subcutaneous 

and gonadal fat, and cecum samples for additional studies. 
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Figure 1-2. Body composition, circulating metabolic health marker levels, and metabolic health 

score are strain-dependent in the Collaborative Cross.  

At baseline, the Collaborative Cross demonstrates phenotypic variation in a strain-dependent manner. 

Baseline measurements of metabolic phenotypes are shown for (A) body fat %, (B) total weight, (C) 

triglycerides (TG), (D) total cholesterol, (E) glucose, (F) insulin, and (G) metabolic health score by strain 

during the 2-week acclimation period while mice were fed the baseline diet (AIN-76A). For metabolic 

health score (G), strains are ordered from left to right by least healthy to most healthy. Data are mean ± 

SE for (A–F); data are mean for (G). For body fat % and total weight, 8-10 mice were available per strain, 

except for CC024/GeniUni (n = 4). For TG, cholesterol, glucose, insulin, and metabolic health score, 8–10 

mice were available per strain, except for CC024/GeniUni (n = 4), and CC063/Unc (n = 6). Baseline linear 

models with CC strain and week as a covariate showed significant CC strain effects for all phenotypes 

shown (p < 2.87 × 10−6).  
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Figure 1-3. Phenotypic correlations at baseline illustrate the strength of relationships between 

traits without the influence of diet.  

Body fat % shows the strongest relationship with weight, insulin, triglycerides (TG), and metabolic health 

score at baseline compared to other traits. (A) Spearman’s correlations of baseline phenotypes with p 

values adjusted using the Benjamini–Hochberg method. Only significant correlations (p adj < 0.05) are 

shown. Scale indicates rho value. Spearman’s correlations between baseline body fat % and (B) weight 

(R = 0.56, p <2.2 × 10−16), (C) insulin (R = 0.44, p = 8.8 × 10−11), and (D) TG (R = 0.24, p = 0.00059) show 

significant correlations between body fat % and obesity-associated phenotypes. R is Spearman’s rho.  
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Figure 1-4. Average post-

diet body fat %, total 

weight, circulating 

metabolic health marker 

levels, and metabolic health 

score by strain and diet 

show greater phenotypic 

variation by strain than diet. 

Phenotypic variation showed 

greater dependence on CC 

strain than experimental diet. 

Post-diet measurements of 

metabolic phenotypes are 

shown by diet for (A) body fat 

%, (B) total weight, (C) 

triglycerides (TG), (D) total 

cholesterol, (E) glucose, (F) 

insulin, (G) metabolic health 

score for each CC strain. CC 

strains in (A–F) are arranged 

in descending order based on 

HP diet. CC strains for (G) 

metabolic health score are 

ordered left to right from least 

healthy to most healthy. Data 

are mean ± SE for (A–F); 

data are mean for (G). For 

body fat % and weight, there 

were 4–5 mice per strain per 

diet except for 

CC024/GeniUnc (n = 2 per 

diet) and CC063/Unc (n = 3 

per diet). For TG, cholesterol, 

glucose, insulin, and 

metabolic health score, 8–10 

mice were available per 

strain, except for 

CC024/GeniUni (n = 2 per 

diet), CC063/Unc (n = 3 per 

diet), and CC071/TauUnc (HP 

n = 5, HS n = 3). H-Protein 

and H-Sucrose represent the 

HP and HS diets, 

respectively.  
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Figure 1-5. Average post-diet body fat %, total weight, circulating metabolic health marker levels, 

and metabolic health score by diet.  

Post-diet measurements of phenotypes are shown for (A) body fat %, (B) total weight, (C) triglycerides 

(TG), (D) total cholesterol, (E) glucose, (F) insulin, and (G) metabolic health score by diet after 8 weeks of 

feeding the experimental diets as indicated. Points are measurements obtained for each mouse. Linear 

mixed model analysis revealed that experimental diet alone did not have a significant effect in general on 

body fat %, TG, glucose, insulin, nor metabolic health score, but experimental diet did have significant 

effects on total weight (p < 0.01) and cholesterol (p < 0.001). For body fat % and weight, there were 4–5 

mice per strain per diet except for CC024/GeniUnc (n = 2 per diet) and CC063/Unc (n = 3 per diet). For 

TG, cholesterol, glucose, insulin, and metabolic health score, 8–10 mice were available per strain, except 

for CC024/GeniUni (n = 2 per diet), CC063/Unc (n = 3 per diet), and CC071/TauUnc (HP n = 5, HS n = 

3). H-Protein and H-Sucrose represent the HP and HS diets, respectively.  
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Figure 1-6. Dietary effects of heat expenditure, energy intake, RER, and activity in the 

Collaborative Cross.  

Similar to body 

composition, 

circulating analytes, 

and metabolic health 

score, phenotypic 

variation of metabolic 

traits showed greater 

dependence on CC 

strain than 

experimental diet. 

Post-diet 

quantification of 

average (A) heat 

expenditure adjusted 

for total body mass 

(kcal/h/kg), (B) heat 

expenditure adjusted 

for lean mass 

(kcal/h/kg), (C) RER, 

(D) energy intake 

(kcal/h), and (E) total 

basal activity (beam 

breaks/h) for each CC 

strain on each diet 

shows range of 

variation across 

strains for metabolic 

traits. Strains are 

ordered in descending 

order by HP diet. For 

metabolic traits, there 

were 4–5 mice per 

strain per diet except 

for CC024/GeniUnc (n 

= 2 per diet) and 

CC063/Unc (n = 3 per 

diet). H-Protein and H-

Sucrose represent the 

HP and HS diets, 

respectively.  
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Figure 1-7. Post-diet Spearman’s correlations of indirect calorimetry phenotypes contrast the 

difference in relationship between body fat % and each metabolic trait depending on time.  

Phenotypic correlations between body fat % and metabolic traits reveal stronger relationships between 

body fat % and energy expenditure than body fat % and energy intake regardless of the time of day. (A) 

Spearman’s correlation of post-diet phenotypes assessed using indirect calorimetry with p-values 

adjusted using the Benjamini–Hochberg method. Only significant correlations (p adj < 0.05) are shown. 

Scale indicates rho value. Spearman’s correlations by diet between post-diet body fat % and nocturnal 

(B) heat production adjusted for total body weight (R < −0.49, p < 2.11 × 10−7), (C) energy intake (R < 

−0.269, p < 6.81 × 10−3), (D) RER (R < −0.471, p < 1.01 × 10−6), and (E) total basal activity (R < −0.0471, 

p > 0.419). R is Spearman’s rho. H-Protein and H-Sucrose represent the HP and HS diets, respectively.  
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Figure 1-8. Strain-specific effects of diet on body fat %, heat expenditure, energy intake, activity, 

and RER.  

Examination of body composition and metabolic traits of two specific CC strains suggests different 

methods of maintaining energy balance for each strain. Post-diet quantification of average (A) total 

weight, (B) body fat %, (C) energy intake (kcal/h), (D) heat expenditure adjusted for total body mass 

(kcal/h/kg), (E) RER, and (F) total basal activity (beam breaks/h) for strains CC019/TauUnc and 

CC030/GeniUnc. Data are mean ± SE calculated using data from both diets for each strain. 
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Figure 1-9. Post-diet phenotype correlations demonstrate that most relationships between traits 

are maintained after the diet challenge.  

Relationships between body fat % and weight, insulin, and metabolic health score are still strong after the 

diet challenge for both diets, while the association between body fat % and triglycerides (TG) is no longer 

significant. (A) Spearman’s correlations of post-diet phenotypes with p-values adjusted using the 

Benjamini–Hochberg method. Only significant correlations (p adj < 0.05) are shown. Scale indicates rho 

value. Spearman’s correlations by diet between post-diet body fat % and (B) weight (R > 0.579, p < 3.91 

× 10−10), (C) insulin (R > 0.359, p < 2.91 × 10−4), and (D) TG (R < 0.101, p > 0.329) show significant 

correlations between body fat % and weight, as well as body fat % and insulin, but not TG. R is 

Spearman’s rho. H-Protein and H-Sucrose represent the HP and HS diets, respectively.  
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Table 1-1. Broad sense heritability for baseline traits.  

Heritability estimates were calculated for traits at baseline using all mice. For each baseline trait, MSB 

and MSW values were derived from linear models with strain and week as covariates. Estimations of 

broad sense heritability were calculated for each trait represented by intraclass correlations (rI), which 

may be interpreted as the proportion of total phenotypic variation that is accounted for by differences 

between strains, and coefficients of genetic determination (g2), which accounts for the additive genetic 

variance that doubles during inbreeding. Since the CC is a recombinant inbred panel, g2 may be a more 

appropriate estimate for broad sense heritability in this study. However, other studies sometimes only 

provide one estimate of heritability or the other, so we present both values to facilitate comparisons with 

other findings in the literature.  

Trait Baseline rI Baseline g2 

Body fat % 0.554 0.383 

Lean % 0.529 0.359 

Total Weight 0.666 0.499 

Fat mass 0.560 0.389 

Lean mass 0.722 0.565 

TG 0.622 0.452 

Cholesterol 0.634 0.464 

Glucose 0.259 0.149 

Insulin 0.266 0.153 

Glucose/Insulin 0.400 0.250 

Albumin 0.515 0.347 

ALT 0.407 0.255 

AST 0.254 0.146 

Creatinine 0.213 0.119 

NE Fatty acids 0.057 0.029 

Urea/BUN 0.392 0.244 

Betaine 0.621 0.450 

Carnitine 0.398 0.249 

Choline 0.329 0.197 

Phosphocholine 0.419 0.265 

TMAO 0.593 0.421 

Metabolic health score 0.341 0.206 



 97 

  



 98 

Supplementary Material 

 

Additional supplementary material for this chapter can be found online at: 

https://www.frontiersin.org/articles/10.3389/fgene. 2020.615012/full#supplementary-material 

 

All supplementary figures are included in this dissertation below for ease of reading. Unfortunately, no 

supplementary tables were shown in the dissertation due the dissertation format size constraints but can 

be found in Supplementary File 2. A brief description of the supplementary files as follows: 

 

Supplementary File 1. All supplementary figures and methods. 

Supplementary File 2. All supplementary tables. 

Supplementary File 3. R code, data required for generating baseline figures and calculating baseline H2 

estimates, and a README file with brief descriptions of all contents within Supplementary File 3. 

Supplementary File 4. R code, data required for generating post-diet figures and calculating post-diet H2 

estimates, and a README file with brief descriptions of all contents within Supplementary File 4. 
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Figure S1-1. Mouse randomization procedure 

During the 2-week acclimation phase, all mice were fed the AIN-76A synthetic chow diet and housed by 

strain, one strain per cage. Prior to the experimental diet challenge, the mice were randomly assigned to 

either the high fat high sucrose (HS) or high protein (HP) diet, and subsequently the strain siblings were 

moved to new cages according to the assigned experimental diet. Mice were housed according to 

experimental diet for the duration of the 8-week diet challenge. 

 

Figure S1-2. PhenoMaster TSE assessment 12-hr light/dark cycles 

Indirect calorimetry was assessed over three days using PhenoMaster (TSE Systems) automated home 

cage phenotyping. Dark cycles began at 6:00 PM and ended at 6:00 AM, and complete light cycles began 

at 6:00 AM and ended at 6:00 PM. Means of each phenotype measured were calculated for individual 

light cycles by day (day 1, 2, and 3), for individual dark cycles by day (night 1 and 2), for light cycles for 

the duration of the experiment (all days combined), for dark cycles for the duration of the experiment 

(both nights combined), and for individual experiment days (experiment day 1 and 2). Measurements 

were taken for less than 12 hours during the light cycles at the beginning and end of the experiment (days 

1 and 3), while measurements for both dark cycles (nights 1 and 2) and the light cycle between (day 2) for 

12 complete hours. 
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Figure S1-3. Spearman’s correlation of baseline body fat % and total weight 

Spearman’s correlation of baseline body fat % and total weight (g) was performed for each CC strain to 

estimate whether the relationship between body fat % and weight differed by genetic background. Strains 

are ordered by significance of correlation from most to least significant.  

 

Figure S1-4. Average changes in body fat % for each CC strain on the HP or HS diet 

Changes in body fat % for each CC strain on the HP (H-Protein) or HS (H-Sucrose) diet were obtained by 

subtracting baseline body fat % from post-diet body fat % for each mouse, and then the mean change for 

each strain on the respective diets was calculated. Data are mean ± SE.
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Figure S1-5. Baseline and post-diet measurements of body fat %, total weight, and cholesterol by 

strain and diet  

Baseline and post-diet measurements are shown for (A) body fat %, (B) total weight, and (C) total 

cholesterol to compare phenotypic differences between strain and diet. Strains are ordered numerically. 

H-Protein and H-Sucrose represent the HP and HS diets, respectively. Points are measurements 

obtained for each mouse.  
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Figure S1-6. Average post-diet heat expenditure adjusted for total body mass (Heat1) and for lean 

mass only (Heat2) 

Post-diet quantification of average (A) heat expenditure adjusted for total body mass (kcal/h/kg) and (B) 

heat expenditure adjusted for lean mass (kcal/h/kg) for each CC strain on each diet show a wide range of 

variation across and within strains. Individual points are colored by strain. Data for each strain are 

ordered by diet within the day cycle followed by diet within the night cycle. 
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Figure S1-7. Average post-diet RER, energy intake, and total basal activity 

Post-diet quantification of average (A) RER, (B) energy intake (kcal/h), and (C) total basal activity (beam 

breaks/h) for each CC strain on each diet show a wide range of variation across and within strains. 

Individual points are colored by strain. Data for each strain are ordered by diet within the day cycle 

followed by diet within the night cycle. 
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Figure S1-8. Spearman's correlation of post-diet body fat % and night energy intake adjusting for 

total body weight 

Spearman’s correlations between post-diet body fat % and nocturnal energy intake adjusting for total 

weight for the HP (rho=-0.4, p=3.9x10-5) and HS (rho=-0.57, p=1.9x10-9) diets. H-Protein and H-Sucrose 

represent the HP and HS diets, respectively. R indicate rho values.  
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Authors and Affiliations 
 
Phoebe Yam1,2, Jody Albright3, Melissa Verhauge3, Erik Gertz2, Fernando Pardo‐Manuel de Villena4 and 

Brian J. Bennett1,2,5* 

 

1Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, California, 

USA 

2Western Human Nutrition Research Center, Agricultural Research Service, US Department of 

Agriculture, Davis, California, USA  

3Nutrition Research Institute, University of North Carolina Kannapolis, North Carolina, USA4 Department 

of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel 

Hill, North Carolina, USA 

5Department of Nutrition, University of California Davis, Davis, California, USA 

 

* Correspondence:  

Brian J. Bennett 

brian.bennett@usda.gov  

 

  

mailto:brian.bennett@usda.gov


 106 

Background:  

Characterized by excessive accumulation of adiposity resulting in adverse health effects, obesity is a 

serious disease with a complex etiology. Given the significant role that the liver plays in the biological 

processes that attenuate adiposity accumulation such as lipogenesis and metabolism of dietary 

macronutrients, expanding the understanding of how genetics and diet influence hepatic gene expression 

is crucial to improve strategies of obesity prevention and treatment. To determine how genetics and diet 

impact obesity development, multiple mice from 22 strains of the genetically diverse recombinant inbred 

Collaborative Cross (CC) mouse panel were challenged to either a high protein or high fat high sucrose 

diet, followed by extensive phenotyping and microarray analysis of post-diet hepatic gene expression.  

Results:  

Genes differentially expressed by diet (1,344) were enriched for biological processes related to metabolic 

pathways while genes differentially expressed by strain (9,436) were enriched for biological process 

involved in cell adhesion and signaling. Weighted gene co-expression network analysis identified three 

biologically relevant gene clusters (modules) whose average expression levels differed by both diet and 

strain and were significantly correlated with body fat %. Each gene cluster was enriched for distinct types 

of biological functions. 

Conclusions: Genetic background affected hepatic gene expression in the CC overall but differences in 

diet also altered gene expression for a smaller subset of genes. Generally diet alters hepatic gene 

expression for metabolic processes sensitive to acute environmental changes, while genetic background 

more heavily influences overall “stable” cellular functions relative to obesity development. 
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Introduction 

Obesity is characterized by the disproportionate and excessive accumulation of adipose tissue relative to 

an individual’s height, resulting in decreased health and increased risk of developing a myriad of chronic 

diseases such as atherosclerosis, cardiovascular disease, metabolic syndrome, type 2 diabetes, and 

certain types of cancer (Williams et al., 2015). Using body mass index (BMI) to classify the extent of 

obesity, the WHO defines BMI for the status of overweight as 25-29.9 kg/m2, obese as >30 kg/m2, and 

extremely obese as >40kg/m2 (Després, 2012). In recent decades, the prevalence of overweight and 

obesity has increased worldwide at an alarming rate, as demonstrated by the increase in the percentage 

of adults with BMIs >25 kg/m2 between 1980 and 2013 from 28.8% to 36.9% for men and 29.8% to 38% 

for women (Ng et al., 2014), necessitating the urgent development of effective methods to prevent and 

treat obesity on both the individual and population levels.  

The prevention and treatment of obesity is challenging, given the complex etiology of obesity. 

Simplistically, obesity results from the chronic imbalance between energy intake and expenditure, but the 

mechanisms involved in maintaining energy balance are complex and regulated by numerous factors 

such as genetic background (C. G. Bell et al., 2005; Loos, 2018; Singh et al., 2017), metabolism 

(Fernández-Verdejo et al., 2019; Speakman, 2018; Timper & Brüning, 2017), gut microbiome (John & 

Mullin, 2016; K. B. Martinez et al., 2016; Torres-Fuentes et al., 2017), and environmental factors such as 

diet in the context of overfeeding (Creasy et al., 2018; Cuthbertson et al., 2017; Danforth, 1985; Schmidt 

et al., 2012; Sims, 1976), which alter the expression of genes associated with signaling of satiety and 

hunger.  

In addition to the complex interactions between adipose tissue, the central nervous system, 

nutrients, and hormones that regulate energy balance (C. G. Bell et al., 2005; González-Muniesa et al., 

2017), the liver also influences the development of obesity, given its major role in the metabolism of 

macronutrients including glycogenolysis, production of triglycerides, lipogenesis, and the synthesis of 

molecules used as building blocks for hormones such as amino acids, cholesterol, and lipoproteins (Rui, 

2014; Trefts et al., 2017). Obesity in turn can induce the pathological response of insulin resistance in the 

liver, which results in an impaired ability of insulin to decrease glucose output from the liver while 

continuing to stimulate lipogenesis; this disruption of appropriate carbohydrate and lipid metabolism is 
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thought to contribute to some of the health complications associated with obesity like metabolic syndrome 

and cardiovascular disease. Adipokines such as adiponectin, adipocyte dysfunction, metabolism, and 

circulating metabolite levels affect hepatic gene expression (Fischer et al., 2017; Y. Luo et al., 

2016), which regulates the mechanisms involved in lipid processing, determination of metabolic rate, and 

other physiological processes associated with energy imbalance (Langhans, 2003; Trefts et al., 2017). 

Furthermore, an individual’s inherent genetic architecture and factors in an individual’s environment such 

as diet also shape hepatic gene expression and traits that affect hepatic gene expression (Hao et al., 

2016; Kozul et al., 2008; Silva & van Booven, 2018). Given that the liver regulates so many biological 

processes related to obesity development, elucidating the effects of genetic architecture and diet on 

hepatic gene expression is therefore necessary to understand the full picture of the development of 

obesity and disease risks associated with obesity for effective prevention and treatment.  

Modern molecular biology techniques have revolutionized our ability to detect changes in gene 

expression (Lis, 2019; Roeder, 2019), which allows one to infer potential candidate genes and pathways 

underlying metabolic dysfunction (Ellero-Simatos et al., 2014; Houtkooper et al., 2011). Identification of 

genes and pathways that determine susceptibility to obesity facilitates the understanding of the underlying 

mechanisms behind the development of obesity, which is instrumental to determining effective methods 

of prevention and treatment. To find potential candidate genes or functional pathways underlying 

metabolic dysfunction regulated by diet in a genetically diverse population, we administered a challenge 

of either high protein (HP) or high fat high sucrose (HS) diet to 22 strains of mice from the Collaborative 

Cross (CC) mouse panel for eight weeks and performed microarray gene expression analysis of 11,542 

genes using high-quality RNA from liver tissue, in addition to extensive phenotyping. 

Derived from elaborate intercrosses of eight founder mouse strains (Churchill et al., 2004; Iraqi et 

al., 2008; Threadgill & Churchill, 2012), the CC is a large recombinant inbred mouse population with 

tremendous genetic diversity and genetic contribution from the five classically inbred strains A/J, 

C57BL/6J (B6), 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), and three wild-derived strains 

CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB) (Collaborative Cross Consortium, 2012; Philip 

et al., 2011; Shorter et al., 2019; Srivastava et al., 2017). Utilizing the CC to study the effects of diet and 

strain on hepatic gene expression enables us to solve some of the challenges caused by confounding 
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environmental influences in the discernment between the effect of diet compared to the effect of genetics 

on gene expression in a mouse population with the genetic and phenotypic diversity similar to the human 

population (Swanzey et al., 2021).  

Previously we examined the effects of diet and genetic background on adiposity and other obesity 

related traits (Yam et al., 2021). In the current follow-up study, our area of focus was to explore the 

effects of diet and strain (genetic background) on hepatic gene expression and relate the diet- and strain-

induced changes in gene expression to phenotypic traits and biological functions. Additionally, we 

determined which genes’ expression in the liver is influenced by diet or strain, potentially identified new 

obesity-related genes, and confirmed previously found obesity genes in the mouse to narrow down genes 

for future functional validation studies by identifying genes correlated with adiposity in CC that are 

relevant in humans found in the GWAS catalog. 

 
Methods 

Animals, husbandry, diets and phenotyping: Details on the origin, housing, husbandry, treatment of 

the CC animals, diet compositions, and phenotyping have been described previously (Yam et al., 2021). 

Briefly, female mice from 22 CC strains (total n=204) were put on either a high protein (n=102) or high fat 

high sucrose (n=102) diet for 8 weeks followed by analysis of body composition, metabolic rate, and 

physical activity. After 8 weeks on experimental diets, mice were euthanized following a 4-hr fast for the 

collection of blood and liver tissue. Subsequently, cholesterol, triglyceride (TG), glucose, albumin, 

creatinine, urea, aspartate transaminase (AST), and alanine transaminase (ALT) levels were quantified 

using the Cobas Integra 400 Plus (Roche Diagnostics, Indianapolis, IN), according to manufacturer’s 

instructions. Circulating insulin was measured using an ultrasensitive mouse insulin ELISA (ALPCO 

Diagnostics, Salem, NH) per manufacturer’s instructions. Trimethylamine N-oxide (TMAO), choline, 

phosphocholine, glycerophosphocholine (g-phosphocholine), betaine, and carnitine were quantified using 

liquid chromatography–mass spectrometry (LC-MS) methods as described with modifications (Z. Wang et 

al., 2014). Health scores were calculated using measurements of several metabolic risk factors 

(circulating glucose, insulin, glucose/insulin ratio, cholesterol, triglycerides, and body fat %) to 

approximate overall metabolic health. 
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Microarray analysis for identification of gene expression levels associated with post-diet traits 

and differentially expressed genes in liver tissue  

Methods of RNA extraction from livers and evaluation of RNA integrity were performed as previously 

described (Coffey et al., 2017). Randomly selecting 3 mice per stain per diet for microarray analysis, high-

quality RNA was available from livers of 127 of the 204 CC mice and hybridized to Affymetrix Mouse 

Gene 2.1 ST 96-Array Plate using the GeneTitan Affymetrix instrument (Affymetrix, Inc., Santa Clara, 

CA) according to standard manufacturer’s protocol. The robust multiarray average (RMA) method was 

used to estimate normalized expression levels of transcripts (median polish and sketch-quantile 

normalization) using the affy R package (Gautier et al., 2004). The quality of sample arrays was then 

assessed using the R package arrayQualityMetrics  (Kauffmann et al., 2008) for outlier detection using 3 

methods: distance between arrays/principle component analysis, computation of the Kolmogorov-Smirnov 

statistic Ka between each array’s intensity distribution and the intensity distribution of the pooled data to 

compare individual array intensity to the intensity of all arrays, and computing Hoeffding’s statistic Da to 

check individual array quality. Sample arrays identified as outliers by all three methods were removed, i.e. 

a sample array was removed if all three methods indicated that it was an outlier, leaving 123 out of 127 

arrays for analysis. 

Probes and transcript cluster IDs (TC IDs) were first filtered as described (Que et al., 2020), 

resulting in the total number of 24,004 unique probes post-filter corresponding to 23,626 genes. Next, TC 

IDs were kept for analysis if their median expression was above the mean of all TC ID medians or if their 

median expression was above the mean of all TC ID medians in over 12.5% of samples, based on the 

assumption that by chance one of the 8 founders may be contributing low/no expression alleles. For TC 

IDs associated with the same gene, the TC ID with the highest expression was selected to represent that 

gene so that each gene was represented by a unique TC ID for analysis, resulting in 11,542 TC IDs 

(genes) used for differential gene expression analysis and correlations between gene expression levels 

and phenotype data. 

After filtering TC IDs and arrays for quality, calculations of multiple biweight 

midcorrelations (bicor) and their corresponding Student correlation p-values were performed for the 

unique TC IDs corresponding to 11,542 genes using the bicorAndPvalue function from the weighted gene 
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co-expression network analysis (WGCNA) R package (Langfelder & Horvath, 2008) to ascertain which 

genes’ expression in the liver were correlated with post-diet traits. Next, differential gene expression 

analysis was performed using the Linear Models for Microarray Analysis (limma) R package version 3.6.1 

(Ritchie et al., 2015) and methods described (Phipson et al., 2016) to find genes that were significantly 

differentially expressed by diet or CC strain. Genes with a Benjamini-Hochberg (BH) adjusted p value < 

0.05 were designated as differentially expressed (DE). Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway and gene ontology (GO) enrichment analyses were performed using the kegga and 

goana functions in limma for differentially expressed genes with the false discovery rate (FDR) cutoff set 

to 0.05.  

Broad-sense heritability estimates and diet intraclass correlations of hepatic gene expression 

levels 

Broad-sense heritability (H2) estimates and the intraclass correlations (ICC) for diet were calculated as 

described previously (Yam et al., 2021) for the 11,542 genes used in limma analysis to assess the degree 

of influence on gene expression variation from genetics (strain) and diet, respectively. H2 was estimated 

by calculating the intraclass correlation (rI) and the coefficient of genetic determination (g2) using mean 

square between (MSB) strains and mean square within (MSW) strains values derived from linear 

regression analysis (Festing, 1979). The following linear models were fit using the lm function and 

implementing Satterthwaite approximations on the output of lm as described (Luke, 2016) to obtain MSB 

and MSW values for rI and g2 calculations: 1) a “full” additive model with strain, diet, and week (mouse 

“batch”) as variables fitted with gene expression data from both experimental diets, 2) a “HP” additive 

model including strain and week as variables fitted with gene expression data from only mice fed the HP 

diet, and 3) a “HS” additive model including strain and week as variables fitted with gene expression data 

from only mice fed the HS diet.  H2 estimates derived from models fitted with data from all mice post-diet 

compare the contribution of genetics (strain) and diet overall to heritable gene expression level variance, 

while diet-specific H2 estimates were calculated to discern differences in heritability affected by 

differences in macronutrient composition. The diet ICCs were calculated using the mean square between 

(MSB) diets and mean square within (MSW) diets derived from the “full” additive linear model described 

above.  
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Weighted gene co-expression network analysis (WGCNA) 

The WGCNA R package was used to identify modules for the 11,542 genes used in microarray analysis 

of differentially expressed genes since complex traits often result from changes in expression of multiple 

genes. Expression data from the 123 non-outlier sample arrays were used to detect modules, which are 

groups of highly correlated genes with similar connection strengths (Ghazalpour et al., 2006; Zhang & 

Horvath, 2005). The soft threshold was chosen by running the pickSoftThreshold function to determine 

the best fit to a scale-free topology, and beta was set to 5 because it was the lowest power value where 

the R2 value crossed the 0.9 threshold for approximate scale-free topology and connectivity measures 

implicated the possibility of finding highly connected genes. The blockwiseModules function was run to 

construct the unsigned network in one block, calculate an adjacency matrix with Pearson correlations, 

calculate the topological overlap matrix (TOM) using the signed method, cluster genes using the default 

average linkage hierarchical clustering, and establish modules by the Dynamic Hybrid tree cut method 

(Langfelder & Horvath, 2008). Next, the mergeCloseModules function was used to merge closely related 

and highly correlated modules. Module eigengenes were calculated and Spearman’s correlations were 

performed between module eigengenes and measured phenotypes. KEGG pathway enrichment and 

gene ontology analyses were performed on genes within each module using Enrichr as described (Que et 

al., 2020) to see which modules contained genes associated with biological function or diseases. 

Human GWAS Catalogue analysis: Entries in the EMBL-EBI Human GWAS catalog v1.0.2 accessed in 

2021 were indexed to matching mouse genes (Buniello et al., 2019) to compare the DE genes found in 

the CC with homologous genes in humans.  Human gene symbols from the “MAPPED_GENE” catalog 

column (described here: https://www.ebi.ac.uk/gwas/docs/methods/curation) were matched against 

mouse gene symbols after case-normalization, white space removal, and in the case of multiple mapped 

genes, delimiter separation. 

Additional statistical analyses: All statistical analyses were performed in R (v.3.6.1) (R Core Team, 

2019). Diet or strain effects on module eigengenes were assessed using the two-group Mann-Whitney U 

(Wilcoxon rank) test or Kruskal-Wallis statistical test, respectively. Fisher’s Exact test was used to 

determine whether expressed genes differentially expressed in the CC appeared in the GWAS catalog 

https://www.ebi.ac.uk/gwas/docs/methods/curation
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more frequently than expected by chance; p-values were adjusted using the Benjamini-Hochberg (BH) 

method where indicated. 

 

Results 

Hepatic gene expression levels are correlated with adiposity for 2,552 genes   

Microarray gene expression analysis of 11,542 genes was performed using high-quality RNA from livers 

of 123 CC mice collected after an 8-week challenge of either a high protein (HP) or high fat high sucrose 

(HS) diet. Correlations of post-diet adiposity with normalized gene expression levels using calculations of 

multiple biweight midcorrelations (bicor) and their corresponding Student correlation p-values were 

performed to determine which genes’ expression levels were associated with body fat % and obesity-

related traits. Post-diet body fat % was significantly correlated with the expression of 2,552 genes out of 

11,542 genes with validated annotation, with the top 15 most significant positive and 15 most significant 

negative correlations shown in Figure 2-1; specifically, post-diet body fat % showed significant moderate 

negative correlation with the gene expression of TBC1 domain family (Tbc1d30; bicor = -0.603, p = 1.56 x 

10-13), insulin-like growth factor binding protein 2 (Igfbp2; bicor = -0.560, p = 1.62 x 10-11), apolipoprotein 

M (ApoM; bicor = -0.530, p = 2.82 x 10-10), inter-alpha globulin inhibitor H5 (Itih5; bicor = -0.527, p = 3.76 

x 10-10), and flavin containing monooxygenase 3 (Fmo3; bicor = -0.483, p = 1.44 x 10-8), as well as 

moderate positive correlation between post-diet adiposity and gene expression of aldehyde 

dehydrogenase (Aldh1a1; bicor = 0.538, p = 1.29 x 10-10),  thyroid hormone receptor interactor 4 

(Trip4; bicor = 0.493, p = 6.41 x 10-9), plastin 3 (Pls3; bicor = 0.469, p = 4.17 x 10-8), lysophospholipase-

like 1 (Lyplal1; bicor = 0.468, p = 4.81 x 10-8), and adiponectin receptor 2 (Adipor2; bicor = 0.425, p = 9.21 

x 10-7). Of these highly correlated genes, metabolic health score was also significantly correlated with 

Aldh1a1 (bicor = -0.246, p = 0.001), Trip4 (bicor = -0.246, p = 0.006), and Igfbp2 (bicor = 0.270, p = 

0.002); total weight was also significantly mildly correlated with the expression levels of these top 30 

genes (Figure 2-1). 

The expression levels of many genes that were significantly correlated either negatively or 

positively with body fat % were also significantly correlated with lean % and heat production “in the 

opposite direction” (Figure 2-1), which confirms that the relationships between hepatic gene expression 
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levels and manifested phenotypes are biologically consistent. Very few of the expression levels of the top 

30 genes showed significant correlations with circulating analytes or metabolites, with the exception of 

insulin and phenotype estimates derived from insulin measurements (glucose/insulin ratio, HOMA-IR, and 

HOMA-B). 

Differential gene expression analysis identified 1,344 genes differentially expressed by diet.  

Both genetics and environmental factors such as diet are critical determinants of obesity. Although 

genetics have a stronger effect on susceptibility to developing obesity than diet alone (Corrêa et al., 2020; 

Hainer et al., 2008), the role of diet as an environmental factor that influences gene expression is still 

important, since changes in dietary patterns can help mitigate the degree of obesity that develops by 

altering gene expression levels. To assess which genes’ expression levels are affected by 

diet, differential gene expression analysis was performed using the R package limma (Linear Models 

for MicroArray) on liver gene expression data. Limma analysis comparing the HS diet to the HP diets 

revealed 1,344 genes that were differentially expressed by diet (p adj < 0.05, Figure 2-2A), with the top 

20 most significant hits showing patterns of expression clustering by diet (Figure 2-2B), with 16 genes 

showing increased expression and 4 genes showing decreased expression in mice fed the HP diet 

relative to the HS diet, though expression patterns exhibited some degree of inter-strain variation 

depending on the gene and strain. The opposite patterns of expression for these genes were shown in 

mice fed the HS diet, i.e. genes that showed increased expression in mice fed the HP diet had decreased 

levels of expression in mice fed the HS diet (Figure 2-2B). The expression levels of 389 differentially 

expressed genes (DEGs) by diet were significantly correlated with body fat % (p < 0.05).   

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO) 

enrichment analyses identified 20 significantly over-represented KEGG pathways and 187 significantly 

over-represented GO terms for DEGs by diet (Figure 2-3), with varying degrees of gene richness defined 

by the number of up- or downregulated DEGs found belonging to each KEGG pathway or GO term out of 

the total number of genes that comprise each KEGG pathway or GO term. The most significantly over-

represented KEGG pathways identified were metabolic pathways, oxidative phosphorylation, and 

biosynthesis of amino acids (p adj < 5.051 x 10-8). In terms of each GO term category, 105 GO biological 

processes, 45 GO cellular components, and 37 GO molecular functions were significantly over-
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represented (p adj < 0.05), with the top 10 most significantly overrepresented GO terms in DEGs by diet 

are shown in Figures 2-3B – 2-3D.  

The effect of CC strain on liver gene expression far surpasses the effect of diet for differential gene 

expression.    

Genetics is clearly an important factor affecting susceptibility to metabolic dysfunction. We tested the role 

of genetics in regulatory gene expression by performing limma differential gene expression analysis by 

CC strain. Differential gene expression analysis revealed 9,436 DEGs by CC strain (p adj < 0.05, Figure 

2-4), with the top 20 most significant hits showing patterns of expression clustering by CC strain instead 

of diet (Figure 2-4B). Unlike the inter-strain variation of expression patterns for diet DEGs, expression 

patterns were consistent across diets for strain DEGs. DEGs by CC strain showed similar levels of 

expression within each CC strain regardless of the diet fed. 2,367 of DEGs by CC strain were correlated 

with body fat % (nominal p < 0.05), and 1,131 DEGs by CC strain were also differentially expressed by 

diet.  

KEGG pathway and GO enrichment analyses identified fewer over-represented KEGG pathways 

and GO terms for genes differentially expressed by CC strain than diet. For DEGs by CC strain, 13 

significantly over-represented KEGG pathways and 163 significantly over-represented GO terms were 

identified (p adj < 0.05, Figure 2-5), with varying degrees of gene richness. The most significantly over-

represented KEGG pathways identified were cell adhesion molecules (CAMs), ECM-receptor interaction, 

and focal adhesion (p adj < 0.002), which are pathways important to cell signaling and structural binding 

between cells. For each GO term category, 95 GO biological processes, 24 GO cellular components, and 

37 GO molecular functions were significantly over-represented in DEGs by CC strain (p adj < 0.05), with 

the top 10 most significantly overrepresented GO terms in DEGs by strain shown in Figures 2-5B – 2-

5D.  

Clinically relevant genes in humans are differentially expressed in the CC  

We sought to determine whether DEGs in the CC were relevant to human health and obesity in humans. 

To examine the DEGs by diet, we dichotomized our 11,542 unique genes by inclusion in the list of genes 

differentially expressed by diet. To examine the DEGs by strain, we dichotomized our 11,542 unique 

genes by inclusion in the list of genes differentially expressed by strain. We then generated a list of 
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unique human GWAS genes from the “Mapped Gene(s)” column of the 2021 EMBL-EBI Human GWAS 

catalog v1.0.2, which we used to dichotomize our mouse genes based on inclusion in the human GWAS 

catalogue (in GWAS: 8,017; not in GWAS: 3,525). To focus on obesity traits in humans, we dichotomized 

our mouse genes based on whether they contained human homologs found in the GWAS catalog 

specifically associated with obesity traits (GWAS obesity trait gene: 1,819; not GWAS obesity trait gene: 

9,723). Using Fisher’s Exact Test, we demonstrated that DEGs in the CC appear in the human GWAS 

catalogue more frequently than expected by chance for both differential expression by diet (OR: 1.35, 

95%CI: 1.19-1.55, p < 4.13x10-6) and strain (OR: 1.23, 95%CI: 1.12-1.37, p < 4.44x10-5). To determine 

whether DEGs in the CC had human homologs that were related to obesity more frequently than 

expected by chance, we performed Fisher’s Exact Test on our mouse genes dichotomized by whether 

they contained human homologs found in the GWAS catalog specifically associated with obesity traits. 

Although DEGs in the CC did not appear in the human GWAS catalogue more frequently than expected 

by chance for obesity traits for diet DEGs (OR: 1.01, 95%CI: 0.86-1.19, p = 0.873) nor strain DEGs (OR: 

1.14, 95%CI: 1.00-1.31, p = 0.06), mouse genetic reference panels can still prove useful for making 

inferences about genes associated with human disease in general. 

DEGs in the CC have homologs implicated to cause complex disease traits in human GWAS studies.  

We were next interested in identifying genes that are suspected of causing underlying complex traits in 

humans since 1,819 of the 11,542 annotated mouse genes included in our analysis have human 

homologs found in the GWAS catalog associated with obesity traits (Buniello et al., 2019). First, we 

determined the number of DEGs with gene expression levels significantly correlated with body fat % for 

diet DEGs (39), strain DEGs (2017), and genes differentially expressed by both diet and strain (350) 

(Figure 2-6A). All of the top 30 genes with expression levels most significantly correlated with body fat % 

were strain DEGs (Figure 2-1), and serine incorporator 2 (Serinc2), alanyl-tRNA synthetase (Aars), and 

F-box protein 21 (Fbxo21) were also differentially expressed by diet. 

To identify DEGs suspected of influencing the manifestation of obesity traits in humans, we 

intersected our list of differentially expressed genes in mouse with homologous human genes from the 

GWAS catalog and established the number of DEGs with human homologs found to be associated with 

obesity traits for diet DEGs (28), strain DEGs (1330), and genes differentially expressed by both diet and 
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strain (186) (Figure 2-6B). Of the top 20 diet DEGs,14 genes were also differentially expressed by strain 

and four genes differentially expressed by both diet and strain were found to be associated with at least 

one obesity trait in the GWAS catalog (Figure 2-2B). Two of the top 20 diet DEGs with mild but significant 

correlations between expression levels and body fat % also had human homologs in the GWAS catalog 

associated with at least one obesity trait: pyruvate kinase liver and red blood cell (Pklr; bicor = 0.286, p = 

0.0012) and carbamoyl-phosphate synthetase 1 (Cps1; bicor = -0.178, p = 0.048). Two of the top 20 

strain DEGs also had human homologs associated with at least one obesity trait in the GWAS catalog but 

did not have expression levels significantly correlated with body fat % (Figure 2-4B), namely 

glycerophosphodiester phosphodiesterase domain containing 3 (Gdpd3) and neurexophilin and PC-

esterase domain family, member 2 (Nxpe2). In humans, PKLR is associated with appendicular lean mass 

and body fat distribution; CPS1 and GDPD3 are associated with body mass index (BMI); and NXPE2 is 

associated with BMI and waist circumference adjusted for BMI. Though not in either of the top 20 DEGs 

lists, FBXO21 is also associated with BMI in humans. 

Of the 1,344 genes differentially expressed by diet, 214 genes had human homologs that were 

found to be associated with obesity traits in the GWAS database; 65 of these 214 genes were also 

significantly correlated with body fat % (Figure 2-6C). Out of 9,436 genes differentially expressed by CC 

strain, 1,516 genes had human homologs that were found to be associated with obesity traits in the 

GWAS database; 431 of these 1,516 genes were also significantly correlated with body fat % (Figure 2-

6D). By intersecting our lists of genes across multiple analyses, we found 434 differentially expressed 

genes with expression levels correlated with body fat % in the CC and human homologs associated with 

obesity traits in humans (Figure 2-6E), with three genes exclusively differentially expressed by diet, 369 

genes exclusively differentially expressed by strain, and 62 genes differentially expressed by both diet 

and strain. 

WGCNA identified 13 unique gene modules with different compositions of DEGs 

Because polygenic obesity is a complex physiological trait, we used a gene co-expression network 

approach to characterize the effects of strain and diet on expression of groups of related genes in 

addition to assessment of genes individually. Weighted gene co-expression network analysis (WGCNA) 

identified 13 gene modules each assigned an arbitrary color, where the number of genes contained in 
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each module ranged from 42 to 3,119 (Figures 2-7A, 2-7B, Table 2-1). Upon further examination of the 

gene composition of each module, the percentage of genes significantly correlated with body fat % (15.1-

69.0%) and the percentage of DEGs by diet (0-49.5%) showed a wide range of variation across modules, 

but the percentage of DEGs by CC strain remained consistently high (>69%) for all modules (Table 2-1, 

Figure 2-7C), demonstrating a stronger effect of CC strain than diet. Of the DEGs with expression levels 

correlated with body fat % and human homologs associated with obesity-related traits in the GWAS 

catalog, the three diet DEGs were each assigned to different modules (black, blue, and pink); the range of 

strain DEGs per module was 1 – 106, with the turquoise module containing the highest number of strain 

DEGs (Table 2-2). The range of DEGs differentially expressed by both diet and strain with expression 

levels correlated with body fat % and human homologs associated with obesity-related traits in the GWAS 

catalog per module was 0 – 19, where most modules contained at least one DEG and yellow contained 

the most DEGs (Table 2-2).  

After establishing the modules, module eigengenes (MEs) were calculated to estimate the 

average expression of profiles of each module and Spearman’s correlations were performed between 

MEs and phenotype data from all mice to determine the relationships between the modules and 

measured phenotypic traits, revealing significant correlations between the pink, yellow, salmon, tan, red, 

and magenta modules and body fat % (Figure 2-7D).  Concurrent with ME x phenotype data correlations, 

modules that were significantly correlated with body fat % had relatively higher percentages of individual 

genes whose expression levels were significantly correlated with body fat %.  

Enrichment analysis revealed multiple biologically relevant modules 

Because multiple module eigengenes were significantly correlated with measured phenotypes in the CC 

(Figure 2-7D), we performed enrichment analysis to determine which modules may be biologically 

relevant. Modules varied widely in terms of the number of enrichments for each category (Table 2-3), 

from no enrichments at all (tan) to 419 total enrichments (brown). Figure 2-8 shows the top enrichments 

for each module if present. Of the modules that were significantly correlated with body fat % in the CC, 

the tan module showed no enrichments, the pink module showed enrichment for the RNA binding GO 

molecular function (GO:0003723) (p adj = 0.042), the salmon module showed enrichment for the 
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regulation of angiogenesis (GO:0045765) (p adj = 0.009) and cGMP metabolic process GO biological 

processes (GO:0046068) (p adj = 0.046), and the magenta, red, and yellow modules showed multiple 

enrichments for GO Biological Processes, GO molecular functions, KEGG pathways, and Jensen 

diseases (Figures S2-1 – S2-4).  Genes in the magenta module were significantly enriched for GO terms 

and KEGG pathways related to endoplasmic reticulum function (Figure S2-1), genes assigned to the red 

module were significantly enriched for GO terms and KEGG pathways involved in steroid, cholesterol, 

and fatty acid biosynthesis/metabolism (Figure S2-2), and genes found in the yellow module were 

significantly enriched for a variety of functions in terms of GO terms and KEGG pathways, such as 

photoperiodism, transcription regulation, insulin signaling, and more (Figure S2-3). Although the brown 

module was only correlated with day basal activity in this study (rho=-0.2, p = 0.03), the highest number 

of significant enrichment terms was found for the brown module compared to all other modules, where 

almost all enrichment terms were related to immune response (Figure S2-4). 

Biologically relevant modules associated with body fat % in the CC contain genes associated with 

obesity-related traits in humans in the GWAS catalog. 

WGCNA identified three gene modules with MEs significantly correlated with body fat % in the CC, 

namely the magenta, red, and yellow modules, that were enriched for biological pathways related to: 

endoplasmic reticulum function; steroid, cholesterol, and fatty acid biosynthesis/metabolism; and 

photoperiodism, transcription regulation, and insulin signaling, respectively. To determine whether these 

modules contained DEGs in the CC associated with obesity in humans, the lists of genes assigned to 

each module were intersected with the list of mouse genes that found to have human homologs in the 

GWAS catalog associated with obesity traits, with examples for each module shown in Table 2-4. For the 

magenta module, there were 0 diet DEGs, 16 strain DEGs, and 5 DEGs by diet and strain identified that 

had homologs in the GWAS catalog associated with obesity traits in humans, many of which were not 

significantly correlated with body fat % in the CC. Similarly, there were 0 diet DEGs, 47 strain DEGs, and 

12 DEGs by diet and strain in the red module identified to have many homologs in the GWAS catalog 

associated with obesity traits in humans that were not significantly correlated with body fat % in the CC. In 

contrast, the yellow module had 3 diet DEGs, 87 strain DEGs, and 30 DEGs by diet and strain with 

homologs associated with at least one obesity trait in humans, where many of the DEGs were 
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significantly correlated with body fat % in the CC. By intersecting our results across different analyses, 

DEGs important to obesity in humans were found in biologically relevant modules associated with body 

fat % in the CC, where the DEG distribution across modules highlighted the larger contribution of 

differential expression by strain over diet.  

Most modules correlated with body fat % exhibited significant differences in average expression by diet 

and CC strain 

After finding modules that were correlated with body fat %, we ascertained whether the average gene 

expression profile of these modules defined by their ME first principal components (PC1) differed by diet 

and/or strain. Wilcoxon ranked sum test of the PC1 between mice fed the HP and HS diets for each 

module (Figure 2-9) revealed significant differences by diet for the pink, yellow, tan, red, and magenta 

modules (p < 0.001), but not the salmon module (p > 0.1). Interestingly, when the Kruskal-Wallis test was 

performed to determine whether PC1 differed by strain for each module (Figure 2-10), PC1 significantly 

differed by strain for the yellow (p = 6.0 x 10-4), red (p = 2.8 x 10-9), magenta (p = 8.1 x 10-4), and salmon 

(p = 1.3 x 10-8) modules, but not the pink nor tan modules (p > 0.07). Of the modules with MEs 

significantly correlated with body fat %, the yellow, red, and magenta modules exhibited differences by 

diet and CC strain. 

The magnitude and direction of associations between MEs and body fat % change depending on genetic 

background and diet for certain biologically relevant gene modules 

Relating module MEs and body fat %, Spearman’s correlations performed between MEs and body fat % 

for the yellow, red, and magenta modules using data from all samples revealed a significant negative 

correlation between body fat % and the yellow module (rho = -0.28, p = 0.0016) and significant positive 

correlations between body fat % and the magenta (rho = 0.19, p = 0.037) and red (rho = 0.27, p = 0.0027) 

modules (Figure 2-11). Given the many enrichments in biological pathways found and significant 

differences in MEs by diet and CC strain for these three modules, Spearman’s correlations were 

performed between MEs and body fat % by individual CC strain and diet for each module (Figures S2-5 

– S2-6) to determine whether the relationship between MEs and body fat % stayed consistent across 

different CC strains and diets. Intriguingly, the overall negative correlation between the yellow ME and 
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body fat % changed depending on the strain (Figure S2-5), from suggestive strong positive associations 

(CC036/Unc, CC045/GeniUnc) to strong negative associates (CC041/TauUnc, CC063/Unc). For certain 

CC strains (CC037/TauUnc, CC040/TauUnc), the ME correlations demonstrated a lack of relationship 

between expression of the yellow module and body fat %. The correlation between expression of the 

yellow module and body fat % was significant and negative for the HS diet only (Figure S2-6). Like the 

overall negative correlation between the yellow ME and body fat %, the overall positive correlation 

between the magenta ME and body fat % changed depending on the strain (Figure S2-5), from 

suggestive strong positive associations (CC041/TauUnc, CC063/Unc) to strong negative associates 

(CC036/Unc, CC071/TauUnc). For certain CC strains (CC030/GeniUnc, CC032/GeniUnc), the 

correlations demonstrated a lack of relationship between the magenta ME and body fat %. The 

correlation between expression of the magenta module and body fat % was significant and positive for 

the HS diet only (Figure S2-6). In contrast, the overall positive correlation between the red ME and body 

fat % became weakened for many strains (Figure S2-5), except for several moderate positive 

associations (CC032/GeniUnc, CC071/TauUnc) and one strong negative association (CC027/GeniUnc). 

Unlike the yellow and magenta modules where the correlations between MEs and body fat % were only 

significant for the HS diet, the correlation between the red ME and body fat % remained significant and 

consistently positive for both diets (Figure S2-6). In summary, Spearman’s correlations performed 

between MEs and body fat % by individual CC strain and diet for biologically relevant modules illustrated 

alterations in the direction and magnitude of associations between module MEs and body fat % 

depending on CC strain and diet for the yellow and magenta modules, in contrast to the red module 

where the direction and magnitude of associations between module MEs and body fat % for the red 

module were weakened for many strains, but reflected the overall significant positive association 

regardless of diet. 

Differences in diet macronutrient composition do not strongly affect broad sense heritability (H2) estimates 

for gene expression levels  

To quantify the degree to which genetic variation influences variation in gene expression levels, we 

calculated broad sense heritability (H2) for the 11,542 genes used for differential gene expression 

analysis. Using the between- and within-strain mean square values (MSB and MSW, respectively) derived 
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from linear models, H2 was estimated by calculating the intraclass correlation (rI) and coefficient of genetic 

determination (g2), which determine the proportion of variation in gene expression levels attributed to 

differences between strain (genetic variation). Estimates of H2 based on g2 calculated using MSB and 

MSW derived from the “full” additive linear models for the 11,542 genes used for differential gene 

expression analysis ranged from -0.056 – 0.983 with a median g2 of 0.173. To assess whether differences 

in macronutrient composition (“diet environment”) influenced H2 by DEG status, rI and g2 summary 

statistics were calculated for all genes used in limma analysis, diet DEGs, and strain DEGs (Table 2-5). 

Similar g2 estimates for all limma genes, g2 for diet DEGs ranged from -0.044 – 0.735 with a median of 

0.195, while g2 for strain DEGs ranged from 0.045 – 0.983 with a median of 0.211. For diet-specific g2, 

the minimum g2 values were slightly less than 0, implying that the variation in expression levels for these 

genes was greater within strains than between strains, but maximum g2 and median g2 values were 

similar both across diets and DEG status, demonstrating that the proportion of variation in gene 

expression levels attributed to genetic variation stays relatively constant despite differences in 

macronutrient composition.  

 To quantify the proportion of the total gene expression variation that is accounted for by 

differences between diet, we next calculated the diet intraclass correlation (ICC) using the diet MSB and 

MSW values derived from the “full” additive linear models and then calculated summary statistics by DEG 

status group i.e., all limma genes, diet DEGs, and strain DEGs (Table 2-5). Diet ICC for all limma genes 

ranged from -0.017 – 0.799 with a median diet ICC of 0.015.  Similarly, diet ICC for strain DEGs ranged 

from -0.017 – 0.787 with a median of 0.019. Though the maximum diet ICC for diet DEGs was like the 

other diet ICC maximum values (diet ICC = 0.799), the minimum (diet ICC = 0.099) and median (diet ICC 

= 0.235) estimates were slightly higher, confirming that the proportion of gene expression variation 

explained by diet differences was mildly increased for diet DEGs. 

To investigate the degree to which gene x environmental (diet) effects mediates variation in gene 

expression relative to genetics and environment, additional linear mixed model analyses with strain, diet, 

and strain x diet interactions as all random effects were performed for each gene to estimate the relative 

heritable variation that can be attributed to strain, diet, and strain x diet effects. From the results of these 

models, we calculated the variance for each of these terms and found that the proportion of heritable 



 123 

variation for gene expression attributed to strain x diet interactions on average was small (2.6%) and 

remained the same regardless of DEG status (Table 2-6). For all genes used in differential expression 

analysis, the largest proportion of heritable variation for gene expression can be attributed to genetic 

background (strain) on average (30.3%), while the proportion of heritable variation for gene expression 

attributed to diet (3.9%) and strain x diet interactions (2.6%) were much smaller. As expected, the 

proportion of heritable variation for gene expression attributed to diet was increased in diet DEGs 

(18.7%), and the proportion of heritable variation for gene expression attributed to strain was increased in 

strain DEGs (36.0%).  

Modules showed a wide range of variation for overall H2 and diet ICC both within and between modules  

To estimate the H2 of genes according to WGCNA module assignment, summary statistics were 

calculated for H2 estimates and diet ICC of individual modules. Across modules, the blue module had the 

overall lowest median H2 estimates (g2 full = 0.117; g2 HP = 0.103; g2 HS = 0.116), while the purple 

module had the overall highest median H2 estimates (g2 full = 0.421; g2 HP = 0.472; g2 HS = 0.404). 

Within modules, the modules with the widest ranges in H2 were the yellow, brown, and red modules, while 

the modules with the narrowest ranges in H2 were the salmon and pink modules. The variation in diet ICC 

across modules was less than the variation in H2, as shown by the salmon module which had the lowest 

diet ICC (diet ICC = -0.007) and the pink module which had the highest diet ICC (diet ICC = 0.121). The 

pink and magenta modules had the widest ranges in diet ICC (pink diet ICC = -0.017 – 0.772; magenta 

diet ICC = -0.015 – 0.705), while the salmon and purple modules had the narrowest ranges in diet ICC 

(salmon diet ICC = -0.017 – 0.072; purple diet ICC = -0.017 – 0.453). 

The association between H2 and intramodular gene connectivity and the association between diet ICC 

and intramodular gene connectivity vary by individual modules 

The connectivity of a gene within a single module relative to genes within the same module, also known 

as intramodular connectivity, can help identify genes that are important to individual modules. 

Intramodular connectivity (kWithin) was calculated for all genes used in WGCNA, where higher kWithin 

values for genes indicated higher degrees of connectivity.  To determine whether intramodular 

connectivity and gene expression H2 were related in general, Spearman’s correlations were performed for 

the log10 of kWithin for all genes used in WGCNA and H2 estimates (Figure S2-7), revealing consistent 
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but slight significant negative relationships between intramodular connectivity with H2 (g2 full rho= -0.22, p 

< 2.2 x10-16; g2 HP rho= -0.24, p < 2.2 x10-16; and g2 HS rho= -0.25, p < 2.2 x10-16). Although differences 

in diet macronutrient composition did not greatly alter the association between intramodular connectivity 

and H2 overall, the relationship between intramodular connectivity and H2 changed depending on 

individual modules and differences in diet macronutrient composition (Figures S2-8).    

Spearman’s correlations were performed for the log10 of kWithin for all genes used in WGCNA 

and diet ICC (Figure S2-7D), revealing a weaker association between intramodular connectivity and diet 

ICC than H2 (rho= -0.11, p < 2.2 x10-16). The relationship between intramodular connectivity and diet ICC 

varied depending on individual modules (Figure S2-8), but the association between intramodular 

connectivity and diet ICC was significant in fewer modules than the association between intramodular 

connectivity and H2. 

 

Discussion  

Obesity is a complex and heterogeneous disease whose development is caused by numerous biological 

factors, particularly genetics, diet, and gene expression. Though long established that obesity results from 

a chronic imbalance between energy intake and expenditure at a fundamental level, our understanding of 

exactly how diet and genetics interact to influence gene expression and how gene expression regulates 

the development of obesity remain to be fully elucidated. Because the liver regulates metabolism of 

macronutrients, cholesterol, and triglycerides, we measured hepatic gene expression in the CC to gain 

insight of how diet and genetic background impact obesity and related obesity-related traits. Correlations 

performed between hepatic gene expression levels and post-diet phenotype data revealed 2,552 genes 

whose expression levels were significantly correlated with body fat % in the CC, some which were 

negatively correlated such as ApoM and Fmo3, but also positively correlated such as Aldh1a1 and 

Adipor2. ApoM encodes a membrane-bound apolipoprotein associated with high density lipoproteins, low 

density lipoproteins, and triglyceride-rich lipoproteins; secreted through the plasma membrane, 

alipoprotein M is involved in lipid transport (N. Xu & Dahlbäck, 1999). In the mouse, leptin the “satiety” 

hormone and leptin receptor are essential for expression of ApoM, but excess concentrations of leptin 

inhibited ApoM mRNA expression in a dose-dependent manner in the human hepatoma cell line HepG2, 
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suggesting that leptin may mediate ApoM expression (G. Luo et al., 2005). Although FMO3 is more well-

known for its role in preventing trimethylaminuria (fishy odor syndrome) in humans when present at 

sufficient levels and functioning properly by converting trimethylamine (TMA) to odorless trimethylamine-

N-oxide (TMAO) through oxidation (Treacy, 1998), FMO3 also functions as a drug-metabolizing enzyme 

to catalyze the NADPH-dependent oxygenation of various molecules including therapeutic drugs and 

dietary compounds (Phillips & Shephard, 2020). Intriguingly, studies in the mouse have suggested 

additional roles for FMO3 in health and disease, such as modulating cholesterol metabolism (Warrier et 

al., 2015), glucose and lipid homeostasis (Shih et al., 2015), and as a target for down-regulation by insulin 

(Miao et al., 2015). Since adipocyte secretion of leptin and insulin occurs in proportion with the volume of 

adipose tissue under “normal” circumstances, this may partially explain the negative correlations between 

body fat % and expression of ApoM and Fmo3. 

 In the current study, the hepatic gene expression levels of Aldh1a1 and Adipor2 were positively 

correlated with body fat %. Aldh1a1 encodes the protein aldehyde dehydrogenase 1 family, member A1 

(ALDH1A1), also known as retinaldehyde dehydrogenase 1 (RALDH1), which is a prominent enzyme in 

the oxidative pathway of alcohol metabolism; in humans, mutations in this gene have been linked to 

alcoholism (Liu et al., 2011; Sherva et al., 2009). However, various studies in mice have shown that 

ALDH1A1 also modulates hepatic gluconeogenesis and lipid metabolism  through its role in retinoid 

metabolism (Kiefer et al., 2012) and up-regulation of ALDH1A1 is associated with reduced adiponectin 

expression in adipose tissue after high-fat diet feeding (Landrier et al., 2017). Furthermore, mice without 

ALDH1A1 are resistant to diet-induced obesity and inhibition of ALDH1A1 in mice suppresses weight gain 

(Haenisch et al., 2018, 2021), which is consistent with our finding and illustrates the potential for 

ALDH1A1 as a drug target for obesity prevention or treatment. Adipor2 encodes adiponectin receptor 2 

which interacts with adiponectin to mediate fatty acid oxidation and glucose uptake (Yamauchi et al., 

2003). An agonist of adiponectin receptor 2, the adipokine adiponectin is inversely correlated with body 

fat mass and visceral adiposity in humans, though the mechanisms of how adiponectin’s interactions with 

its receptors to elicit anti-diabetic, anti-atherogenic, and anti-inflammatory effects are not fully understood 

(Parida et al., 2019).  
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After confirming the relationship between expression of genes related to obesity and body fat % 

in the CC, we investigated the effects of genetic background (strain) and diet on hepatic gene expression 

levels. Similar to adiposity and the obesity-related traits examined in our previous study (Yam et al., 

2021), genetic background had a far stronger effect on hepatic gene expression than diet, as shown by 

the overwhelmingly larger number of significant DEGs by strain (9,436) compared to the number of DEGs 

by diet (1,344). Interestingly, gene expression of 28.9% of DEGs by diet were significantly correlated with 

adiposity (389/1,344) compared to 25% of DEGs by strain (2,367/9,436). Of the top 20 most significant 

diet DEGs identified in the CC, carbamoyl-phosphate synthase 1 (Cps1), isovaleryl-CoA dehydrogenase 

(Ivd), neuropilin 1 (Nrp1), and pyruvate kinase L/R (Pklr) have human homologs associated with obesity 

traits (Kichaev et al., 2019; Locke et al., 2015; Pulit et al., 2019; Rask-Andersen et al., 2019; Zhu et al., 

2020), but only one of the top 20 most significant strain DEGs also had a human homolog associated with 

at least one obesity traits, namely glycerophosphodiester phosphodiesterase domain containing 3 

(Gdpd3) (Zhu et al., 2020).  

Gene enrichment analysis of DEGs revealed different trends between DEGs by diet compared to 

strain. DEGs by diet showed enrichment for KEGG pathways and Gene Ontology (GO) biological 

processes related to numerous types of metabolism, amino acid synthesis, and non-alcoholic fatty liver 

disease, whereas DEGs by strain showed enrichment for cell function pathways, type I diabetes, and fatty 

acid metabolism. Like KEGG pathway enrichment, GO term enrichment for cellular components and 

molecular functions also showed distinct differences between DEGs by diet compared to strain; DEGs by 

diet showed enrichment for multiple cellular components related to the mitochondrion, endoplasmic 

reticulum, and cell membrane, while DEGs by strain showed enrichment for cellular components related 

to the cell membrane, extracellular components, and cell surface. In terms of molecular functions, DEGs 

by diet showed enrichment for metabolism and binding for nutrients and small molecules such as cofactor 

binding, vitamin B6 binding, catalytic activity, and electron transfer activity, while DEGs by strain showed 

enrichment for binding related to general cell and tissue functions, such as extracellular matrix, collagen, 

signaling receptor, and fibronectin binding. The culmination of our results suggests that generally diet 

alters gene expression for “acute” metabolic processes sensitive to environmental changes, but genetic 

background more heavily influences overall “stable” cellular function.  
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Having identified genes with expression strongly influenced by diet or strain, we performed further 

analysis using the GWAS catalog to determine which DEGs may be most relevant to human health in 

general and specifically to obesity-related traits in humans, revealing 300 DEGs by diet and 1,704 DEGs 

by strain with expression significantly correlated with body fat % in the CC and a corresponding human 

homolog in the GWAS catalog associated with at least one disease or trait.  Of these 300 DEGs by diet 

and 1,704 DEGs by strain found in the GWAS catalog, 65 DEGs by diet and 431 DEGs by strain were 

specifically associated with obesity-related traits such as body fat distribution, BMI, waist-hip ratio, weight, 

and fat body mass. In our list of genes whose gene expression levels were significantly correlated with 

body fat % that have previously been associated with obesity-related traits in humans, some diet DEGs 

not differentially expressed by strain found in our current study include increased sodium tolerance 1 

homolog (Ist1) (Hoffmann et al., 2018), chromodomain protein, Y chromosome-like (Cdyl) (Tachmazidou 

et al., 2017), and NIPBL cohesin loading factor (Nipbl) (Tachmazidou et al., 2017), while strain DEGs not 

differentially expressed by diet were lysophospholipase-like 1 (Lyplal1) (Fox et al., 2012; Kichaev et al., 

2019; Lindgren et al., 2009; Pulit et al., 2019; Tachmazidou et al., 2017; Wang et al., 2019), leucine rich 

repeat (in FLII) interacting protein 1 (Lrrfip1) (Plourde et al., 2013), and neurotrophic tyrosine kinase, 

receptor, type 2 (Ntrk2) (Akiyama et al., 2017; Kichaev et al., 2019; Pulit et al., 2019; Zhu et al., 2020), 

and lastly genes differentially expressed by both strain and diet include F-box protein 21(Fbxo21) 

(Kichaev et al., 2019; Pulit et al., 2019; Zhu et al., 2020), alanyl-tRNA synthetase (Aars) (Kichaev et al., 

2019; Zhu et al., 2020), and BRCA1 associated protein (Brap) (Hoffmann et al., 2018; The LifeLines 

Cohort Study et al., 2015; Winkler et al., 2015). Our findings highlight which candidate genes previously 

described in the literature have the highest potential for successful future validation studies. 

Since obesity is a complex trait regulated by multiple genes, we used a gene co-expression 

network approach to find groups of genes that are similarly regulated by diet or strain and identified 13 

gene modules comprised of a wide number of genes from 42 to 3,319. Consistent with our DEG 

analyses, all modules were comprised largely of genes that were strain DEGs (>69%) while the 

proportion of diet DEGs (0-49.5%) and genes with expression significantly correlated with body fat % 

(15.1-69.0%) varied much more widely, illustrating the variable effect of diet on gene expression 

compared to genetic background. Spearman’s correlation of the MEs for identified modules with 
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phenotypic data revealed six modules related to body fat %: tan, pink, salmon, magenta, red, and yellow. 

The MEs for all of these modules differed significantly by diet, except for the salmon module, suggesting 

that differences in diet macronutrient composition induce changes in gene expression for entire groups of 

genes. Similar to diet, the MEs for most of the modules also differed significantly by strain, except for the 

pink and tan modules. However, it is important to note that the ME variation within each strain appeared 

much higher for these two modules than the magenta, red, and salmon modules, an observation shown 

through the ability of utilizing genetic “replicates” with high genotypic and phenotypic diversity that is 

inherent to the CC; in fact, increasing the number of “replicates” would enhance the ability to find 

significant strain-by-diet differences. Thus, we show that both diet and strain may strongly affect hepatic 

gene expression.  

Enrichment analysis performed using the lists of genes assigned to each module allowed us to 

assess which modules identified in the CC may be most biologically relevant to obesity and human 

health. Of the six modules whose MEs were significantly correlated with body fat %, the number of 

enrichment terms were few to none for the salmon, pink, and tan modules, but the magenta, red, and 

yellow modules were significantly enriched for numerous functional pathways, biological processes, 

and/or diseases. The magenta module was enriched for pathways related to endoplasmic reticulum (ER) 

function and contained 163 genes total, with 16 strain DEGs and five DEGs by both diet and strain with 

human homologs associated with at least one obesity trait. Two DEGs with homologs associated with 

obesity in humans from the magenta module that merit further study are serpin family A member 6 

(Serp1) and UDP-glucose glycoprotein glucosyltransferase 1(Uggt1). Differentially expressed only by 

strain in the CC, Serp1 participates in the metabolism of proteins in the ER by protecting target proteins 

against degradation and interacting with target proteins during their translocation (Yamaguchi et al., 

1999). Similarly, Uggt1 encodes the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGT), which 

is also located in the lumen of the ER and provides quality control for protein transport by selectively 

reglucosylates unfolded glycoproteins (Dejgaard et al., 2004), but Uggt1 was differentially expressed by 

both diet and strain in the CC. Studies have demonstrated that hepatic ER stress induced by obesity can 

lead to the development of hepatic insulin resistance and gluconeogenesis, likely through the activation of 

the JNK pathway (Kim et al., 2015; Ozcan, 2004; Yilmaz, 2017). Our findings reaffirm the association 
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between obesity and alterations in hepatic gene expression related to ER function and suggest potential 

candidate genes for future study in relation to patient screening for diabetes risk, and provide a link 

between diet, five hepatic ER genes, obesity, and insulin resistance.   

The red module was enriched for pathways clearly related to obesity which involve steroid, 

cholesterol, and fatty acid biosynthesis/metabolism. Containing 378 genes total with 47 strain DEGs and 

12 DEGs by both diet and strain with human homologs associated with at least one obesity trait, potential 

candidate genes from the red module belong to biological pathways clearly related to substrate 

metabolism. For example, strain GWAS DEG Fasn encodes the multifunction protein fatty acid synthase 

whose primary function is to catalyze the synthesis of palmitate from acetyl-CoA and malonyl-CoA into 

long-chain saturated fatty acids in the presence of NADPH (Alberts et al., 1975), processes important to 

maintaining lipid homeostasis. Like Fasn, the Acac gene is also a strain GWAS DEG that encodes a 

protein crucial to fatty acid synthesis - acetyl-CoA carboxylase (ACC), which catalyzes the carboxylation 

of acetyl-CoA to malonyl-CoA (the rate-limiting step in fatty acid synthesis) (Tong, 2005). Of the DEGs by 

both diet and strain, Mipep also shows promise as a potential therapeutic target. In humans, MIPEP 

encodes mitochondrial intermediate peptidase, a critical component of mitochondrial protein import 

machinery involved in the maturing process of nuclear-coded mitochondrial proteins (Chew et al., 1997). 

In mice, calorie restriction upregulates MIPEP in white adipocytes, while MIPEP subsequently 

upregulates sirtuin-3, a protein that regulates mitochondrial quality (Kobayashi et al., 2017). In addition to 

dyslipidemia, further investigation of candidate DEGs found in the red module could offer insights on how 

diet or specific genetic variants influence cardiometabolic disease risk through impaired cholesterol 

metabolism. 

The yellow module was enriched for a variety of pathways, such as photoperiodism, transcription 

regulation, insulin signaling, and more, containing 665 genes total, with strain DEGs and DEGs by both 

diet and strain with human homologs associated with at least one obesity trait. Unlike the magenta and 

red modules, the yellow module also contained 3 genes associated with obesity in humans only 

differentially expressed by diet. Three DEGs with homologs associated with obesity in humans from the 

yellow module that warrant further exploration are Fars2, Pnpla7, and Mgrn1. The nuclear Fars2 gene is 
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differentially expressed only by diet in the CC and encodes phenylalanyl-tRNA synthetase, mitochondrial 

(FARS2), which localizes to the mitochondrion to assist in mitochondrial protein translation (Bullard et al., 

1999); in humans, mutations in the FARS2 gene typically result in early-onset epilepsy, neurological 

deficits, or complex IV deficiency (Almalki et al., 2014). Differentially expressed by strain, Pnpla7 encodes 

patatin-like phospholipase domain-containing protein 7 (PNPLA7), a lipid-metabolizing transmembrane 

protein in the ER linked to insulin signaling and energy metabolism that promotes hydrolysis of 

lysophosphatidylcholine in mammalian cells (Heier et al., 2017). Differentially expressed by both diet and 

strain Mgrn1 encodes the E3 ubiquitin ligase mahogunin ring finger-1 (MGRN1), an accessory protein for 

melanocortin receptor (MCR) signaling in the mouse; MGRN1 has been found to inhibit MCR signaling, 

which modulates body weight by influencing appetite signaling (Pérez-Oliva et al., 2009). Our findings 

provide context on how disruptions in specific biological pathways may contribute to obesity development, 

as well as identify potential candidate genes within these pathways that explain the relationship between 

obesity and other traits such as chronotype.  

Interestingly, our gene network approach allowed us to identify other potentially relevant gene 

modules outside of the focus of the current study, specifically the brown module. The brown module had 

the highest number of enrichment terms (419) where almost all enrichment terms were related to immune 

response, such as neutrophil immune responses, cytokine-mediated and chemokine signaling, T cell 

receptor binding, and others. Since obesity is usually accompanied by mild, chronic, systemic 

inflammation, the identification of a module enriched for immune response pathways may provide novel 

insights about the interactions between liver function, immunity, and obesity in future studies if additional 

phenotypic data were included, such as measurements of circulating cytokine levels. 

Using the between- and within-strain mean square values derived from linear models, we 

calculated H2 estimates to quantify the degree to which genetic variation affects hepatic gene expression 

level variation. For the 11,542 genes included in our analysis, the range of coefficient of genetic 

determination (g2) was broad (g2 = -0.056 – 0.983) as expected, but the median was lower than 

anticipated (g2 = 0.173) given the strong effect of strain on the expression of most genes. Median H2 

estimates by DEG status increased slightly but not drastically (diet DEG g2 = 0.195, strain DEG g2 = 

0.211), while H2 estimates remained similar, suggesting that differences in macronutrient composition did 
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not have a large impact on hepatic gene expression in this study. Upon examination of the relative 

heritable variation that can be attributed to strain, diet, and strain x diet effects for all genes, the largest 

proportion of heritable variation for gene expression can be attributed to genetic background (strain) on 

average (30.3%), while the proportion of heritable variation for gene expression attributed to diet (3.9%) 

and strain x diet interactions (2.6%) were much smaller, which reaffirms the strong effect of strain (genetic 

background) on gene expression relative to diet and strain x diet effects. However, one caveat of these 

approximations is that increasing the sample size would provide a better estimation of the relative 

heritable variation since the number of mice per strain per diet is relatively low, so the estimation of strain 

x diet effect may not be precise.  

One limitation of the current study is the number of strain-by-diet replicates. With an increased 

sample size, significant effects of strain-by-diet interactions would be more detectable and more detailed 

conclusions could be drawn regarding the effects of strain-by-diet interactions on both individual genes 

and in the identified gene modules. For future studies, investigating the transcriptome and epigenome of 

both adipose tissue and hepatic tissue together would further clarify the genetic and dietary mechanisms 

that drive the crosstalk between tissue types to modulate energy balance in the context of obesity 

development. If possible, integrating microbiome data would provide yet another “piece of the puzzle” for 

the elucidation of how genetic and environmental factors interact in the development of obesity. 

Nonetheless, our findings show that both variation in genetic background and diet can strongly influence 

hepatic gene expression of both individual genes and groups of related genes.  
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Figure 2-1. Top 30 genes most significantly correlated with body fat % and their correlation with 
other phenotypes  
Multiple biweight midcorrelations (bicor) and their corresponding Student correlation p-values were 
calculated between phenotypic and microarray liver gene expression data to properly take into account 
the actual number of observations when determining which genes’ expression levels were correlated with 
post-diet phenotypes of interest. The top 15 genes whose expression are most significantly positively 
correlated with body fat % (bicor > 0.410, p < 2.53 x 10-6) and top 15 genes whose expression are most 
significantly negatively correlated with body fat % (bicor < -0.466, p < 5.42 x 10-8) are shown. With the 
exception of insulin and insulin-derived measures, most of the top 30 genes’ expression most significantly 
correlated with body fat % were not significantly correlated with circulating analytes, but were significantly 
correlated with metabolic (energy regulation) traits. Genes are ordered on the y axis in descending order 
of bicor with the strongest positive correlation at the top and the strongest negative correlation at the 
bottom. Scale indicates bicor value with color darkness as indicator of correlation strength. † indicates 
genes that are also differentially expressed by diet; all 30 genes were found to be differentially expressed 
by strain. * indicate genes with human homologs found in the GWAS catalog to be associated with at 
least one obesity-related trait.  
 

 
 
 
 
 
 
 



 140 

Figure 2-2. Top differentially expressed genes by diet show expression patterns more similar by 
diet than CC strain 
(A) Linear Models for Microarray Data (limma) analysis of microarray data revealed 1344 genes 
differentially expressed (DE) by diet in the liver shown in the volcano plot, with a positive log fold change 
value indicating increased expression in mice fed the HP diet relative to mice fed the HS diet. Extremely 
significant genes or significant genes with > |1| log fold change of expression by diet are highlighted. (B) 
The top 20 most significant (BH-adjusted p < 2.37 x 10-8) diet DE genes’ average Z scores of median 
Robust Multi-array Average normalized (RMA) gene expression for each CC strain on either the high 
protein (HP) or high fat high sucrose (HS) diet shown ordered from top to bottom by level of gene 
expression on the HP diet (highest to lowest). The genes’ average Z scores for each CC strain and diet 
are clustered by Euclidean distance on the x axis. ‡ denotes genes also differentially expressed by strain. 
* indicate genes with human homologs found in the GWAS catalog to be associated with at least one 
obesity-related trait.  
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Figure 2-3. Top 10 enriched KEGG and gene ontology (GO) pathways by diet are related to 
metabolism and energy regulation 
Limma analysis of microarray data revealed genes differentially expressed by diet showing significant 
enrichment (p adj < 0.05) for (A) KEGG (20 total), (B) GO biological pathways (105 total), (C) GO cellular 
components for upregulated genes (45 total), and (D) GO molecular functions (37 total). Pathways are 
ordered from top to bottom by significance (highest to lowest) and colored by gene richness. The top 10 
enrichments for each ontology category were all upregulated on the HP diet, except for the GO Cellular 
Component “integral component of membrane”, which was downregulated.  
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Figure 2-4. Top 20 differentially expressed genes by CC strain clearly demonstrate expression 
patterns preferentially according to CC Strain than diet 
(A) Linear Models for Microarray Data (limma) analysis of microarray data revealed 9436 genes 
differentially expressed by CC strain in the liver whose Robust Multi-array Average normalized (RMA) 
expression Z scores are shown, where a higher proportion of significant genes have higher expression. 
Genes with > |1| standard deviation of expression levels are highlighted.  (B) The top 20 most significant 
(BH-adjusted p < 9.42 x 10-55) strain DE genes’ average Z scores of median Robust Multi-array Average 
normalized (RMA) gene expression for each CC strain on either the high protein (HP) or high fat high 
sucrose (HS) diet shown. Gene average RMA z scores for each CC strain and diet are clustered 
according to Euclidean distance by CC strain and diet on the x axis and by gene on the y axis. * indicates 
genes that have homologous genes in humans found in GWAS catalog to be associated with trait or 
disease. 
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Figure 2-5. Top 10 enriched KEGG and gene ontology (GO) pathways by CC strain are related to 
general cellular functions 
Limma analysis of microarray data revealed genes differentially expressed by strain showing significant 
enrichment (p adj < 0.05) for (A) KEGG (13 total), (B) GO biological pathways (95 total), (C) GO cellular 
components for upregulated genes (44 total), and (D) GO molecular functions (24 total). Pathways are 
ordered from top to bottom by significance (highest to lowest) and colored by gene richness. The top 10 
enrichments for each ontology category were all upregulated on the HP diet, except for the linoleic acid 
metabolism KEGG pathway, GO Molecular Functions “monooxygenase activity” and “oxidoreductase 
activity, acting on paired donors…”, which were downregulated.  
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Figure 2-6. Differentially expressed genes in the CC have human homologs identified to be 
associated with obesity-related traits in the GWAS catalog  
Comparisons of differentially expressed genes, genes with expression levels significantly correlated with 
body fat % (BF%), and annotated mouse genes with human homologs associated with obesity-related 
traits in the GWAS catalog revealed (A) the number of genes differentially expressed by both diet and 
strain whose expression levels were significantly correlated with body fat % (350), (B) the number of 
genes differentially expressed by both diet and strain that had human homologs associated with obesity 
traits (186), (C) the number of genes differentially expressed by diet that also had expression levels 
significantly correlated with body fat % and human homologs associated with obesity traits (65), (D) the 
number of genes differentially expressed by CC strain that also had expression levels significantly 
correlated with body fat % and human homologs associated with obesity traits (431), and (E) the number 
of genes that fall under all four categories (62).  
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Figure 2-7. WGCNA identifies gene co-regulated modules correlated with phenotypic traits 
Using the cleaned and filtered hepatic gene expression data from mice fed the HP diet and mice fed the 
HS diet, (A) WGCNA identified 13 modules with arbitrarily assigned colors. (B) The 11,542 genes from 
the limma analysis were used to form the modules, which varied widely in terms of the number genes 
within each module. (C) Modules demonstrated a wide compositional range in terms of genes with 
expression levels significantly with body fat % (BF%) (15.1 – 69.0%) and differential expression by diet (0 
- 49.5%), but consistently contained a high proportion of genes differentially expressed by CC strain (69.7 
– 100%). (D) The heatmap of Spearman’s correlations between module eigengenes and phenotypic traits 
measured in the CC mice revealed significant correlations between the pink, yellow, salmon, tan, red, and 
magenta modules and BF%.  
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Figure 2-8. Modules showed 
significant enrichment for 
different types of functions and 
pathways both related and 
unrelated to energy regulation 
EnrichR analysis performed using 
the most recent versions of 
respective databases identified the 
top significant enrichment for each 
module, if available; genes 
belonging to the tan modules did 
not show any significant 
enrichment. (A) All modules showed 
significant enrichment for at least 
one GO Biological Process, except 
for the tan and pink modules. (B) 
Similarly, all modules showed 
significant enrichment for at least 
one GO Molecular Function, except 
for the tan and salmon modules. 
Fewer modules were enriched for 
(C) KEGG Pathways and (D) 
Jensen’s Diseases.  
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Figure 2-9. Module eigengenes (PC1) for most modules significantly correlated with body fat % 

differ by diet 

Most module eigengene (ME) average gene expression profiles significantly correlated with body fat % 

also significantly differed by diet to different degrees, as ascertained with Wilcoxon ranked sum tests. The 

MEs that significantly differed by diet were (A) pink (p < 0.001), (B) yellow (p < 0.001), (C) tan (p < 0.001), 

(D) red (p < 0.01), and (E) magenta (p < 0.001), but not (F) salmon (p > 0.1). Points indicate individual 

calculated ME expression for each mouse. 
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Figure 2-10. Module eigengenes (PC1) for most modules significantly correlated with body fat % 

differ by CC strain 

Most module eigengene (ME) average gene expression profiles significantly correlated with body fat % 

also significantly differed by CC strain to different degrees, as ascertained with Kruskal-Wallis tests. The 

(A) pink and (C) tan MEs did not differ significantly by CC strain (p > 0.07), but the MEs for the (B) yellow 

(p= 6.0 x 10-4), (D) red (p = 2.8 x 10-9), (E) magenta (p = 8.1 x 10-3), and (F) salmon (p = 1.3 x 10-8) 

modules differed significantly by CC strain. Points indicate individual calculated ME expression for each 

mouse, and CC strains are ordered numerically. 
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Figure 2-11. Significant correlations between MEs of biologically relevant modules and body fat % 

Spearman’s correlations between baseline body fat % and (A) yellow ME (PC1) (rho = -0.28, p = 0.0016), 

(B) magenta ME (PC1) (rho = 0.19, p = 0.037), and (C) red ME (PC1) (rho = 0.27, p = 0.0027) show 

significant overall associations between average expression profiles of modules identified by WGCNA 

and body fat %. 
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Table 2-1. Module gene composition 

WCGNA identified 13 gene modules each assigned an arbitrary color with the number of genes contained 

in each module ranging from 42 (salmon) to 3,119 (turquoise). Each gene module showed variation in 

terms of the number of genes with expression significantly correlated with post-diet body fat (BF%), 

genes differentially expressed by diet, genes differentially expressed by strain, genes with human 

homologs in the GWAS catalog associated with a disease/trait, and genes with human homologs in the 

GWAS catalog associated specifically with obesity traits. 

 

Module 

colors 

BF% 

correlated 

genes 

Diet DE 

genes 

Strain DE 

genes 

GWAS 

genes 

GWAS obesity 

traits genes 
Total genes 

turquoise 564 268 2497 2476 719 3319 

blue 108 85 499 493 104 716 

brown 104 80 659 531 142 687 

yellow 258 172 618 520 123 665 

green 113 30 363 287 71 440 

red 137 68 371 254 74 378 

black 75 72 263 272 75 345 

pink 80 102 151 156 43 206 

magenta 42 52 145 121 27 163 

purple 30 13 155 98 23 157 

greenyellow 27 16 102 77 10 107 

tan 35 33 63 61 20 79 

salmon 29 0 42 40 11 42 
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Table 2-2. DEGs with expression levels correlated with body fat % in the CC associated with 

obesity in humans 

By intersecting lists of genes across multiple analyses, 434 DEGs in the CC were found to have gene 

expression levels significantly correlated with body fat % and human homologs associated with obesity 

traits in the GWAS catalog, with 3 diet DEGs, 369 strain DEGs, and 62 genes differentially expressed by 

both diet and strain. The number of genes belonging to each category and assigned to the respective 

modules are shown above, with 148 genes not assigned to any module. 

Module 

colors 
Diet DEGs 

Gene DE by 

Diet and 

Strain 

Strain 

DEGs 

turquoise 0 9 106 

yellow 0 19 35 

red 0 0 22 

brown 0 1 15 

green 0 1 15 

black 1 2 13 

blue 1 2 8 

pink 1 6 7 

purple 0 0 6 

salmon 0 0 5 

tan 0 3 5 

greenyellow 0 1 1 

magenta 0 0 1 
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Table 2-3. Distribution of significant enrichment terms across modules 

In EnrichR analysis, genes assigned to each module were used to determine whether modules were 

significantly enriched for functional terms, pathways, or diseases (enrichment terms). Modules varied 

widely in terms of the number of enrichments for each category, from no enrichments at all (tan) to 419 

total enrichments (brown). 

 

GO Biological 

Process 2018 

GO Molecular 

Function 2018 

Jensen 

DISEASES 

KEGG 

2019 

Mouse 

Total  

brown 296 25 18 80 419 

turquoise 289 55 1 49 394 

greenyellow 25 11 18 16 70 

red 37 2 3 24 66 

purple 34 2 2 14 52 

yellow 27 11 2 6 46 

magenta 35 4 2 2 43 

black 18 17 3 0 38 

green 24 5 0 8 37 

blue 22 3 0 8 33 

salmon 2 0 0 0 2 

pink 0 1 0 0 1 

tan 0 0 0 0 0 
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Table 2-4. DEGs in the CC assigned to enriched modules with human homologs associated with 

obesity traits in the GWAS catalog 

The number of DEGs for the magenta, red, and yellow modules identified by WGCNA illustrate the larger 

contribution of differential expression by strain over diet. Examples of genes with human homologs 

associated with obesity traits in the GWAS catalog are shown for each module, where * denotes genes 

that are significantly correlated with body fat % in the CC. 

 

 
Magenta module Red module Yellow module 

 

Number 

of DEGs 

Genes 

associated with 

obesity traits in 

humans 

Number 

of DEGs 

Genes 

associated with 

obesity traits in 

humans 

Number 

of DEGs 

Genes 

associated with 

obesity traits in 

humans 

Diet 

DEGs 
0 NA 0 NA 3 

Fars2, Mdfic, 

Abhd15 

Strain 

DEGs 

16 
Macrod1*, 

Vegfb, Serp1 
47 

Fasn*, Acac*, 

Asrgl1*, Ppil1* 
87 

Nicn1*, 

Pnpla7*, 

Syne3*, Clock* 

DEGs by 

diet and 

strain 

5 
Uggt1, Itih1, 

Serpina6 
12 

Spc24, Mipep, 

Cyb5b, Dlat 
30 

Fbxo21*, Brap*, 

Mgrn1* 
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Table 2-5. Summary statistics for broad sense heritability estimates and diet intraclass 

correlations for all limma genes, diet DEGs, and strain DEGs 

Post-diet heritability estimates were calculated from linear models including strain, diet, and week as 

covariates (rI or g2 "full") for gene expression of the 11,542 genes used in limma differential gene 

expression analysis. Diet-specific estimations of broad sense heritability were also calculated accordingly 

for gene expression levels represented by intraclass correlations (rI) and coefficients of genetic 

determination (g2) for each trait using the MSB and MSW for strain derived from linear models with strain 

and week as covariates using only data from each experimental diet per model as indicated to assess 

how different diet “environments” affect heritability. The intraclass correlation for diet (Diet ICC), which is 

the proportion of the total phenotypic variation that is accounted for by differences between diet, was 

calculated to compare the proportion of variation in gene expression attributed to diet in general or 

genetics. Summary statistics were calculated for each group of genes after heritability estimates and diet 

ICC were obtained. g2 accounts for the additive genetic variance that doubles during inbreeding and may 

be a more appropriate estimate for broad sense heritability in this study. However, both rI and g2 values 

are presented to facilitate comparisons with other findings in the literature. 

Heritability estimate or diet 
ICC 

Mean ± SE Median (Q1, Q3) Min Max 

rI full - All limma genes 0.327 ± 0.002 0.295 (0.157, 0.471) -0.12 0.991 

rI full - Diet DEGs 0.341 ± 0.005 0.327 (0.202, 0.471) -0.091 0.848 

rI full - Strain DEGs 0.387 ± 0.002 0.348 (0.232, 0.513) 0.087 0.991 

rI HP - All limma genes 0.324 ± 0.002 0.305 (0.136, 0.498) -0.332 0.99 

rI HP - Diet DEGs 0.339 ± 0.006 0.34 (0.179, 0.497) -0.288 0.899 

rI HP - Strain DEGs 0.388 ± 0.002 0.367 (0.221, 0.545) -0.194 0.99 

rI HS - All limma genes 0.328 ± 0.002 0.313 (0.146, 0.498) -0.359 0.993 

rI HS - Diet DEGs 0.348 ± 0.006 0.345 (0.203, 0.5) -0.264 0.887 

rI HS - Strain DEGs 0.389 ± 0.002 0.372 (0.228, 0.539) -0.234 0.993 

g2 full - All limma genes 0.218 ± 0.002 0.173 (0.085, 0.308) -0.056 0.983 

g2 full - Diet DEGs 0.221 ± 0.004 0.195 (0.112, 0.308) -0.044 0.735 

g2 full - Strain DEGs 0.26 ± 0.002 0.211 (0.131, 0.345) 0.045 0.983 

g2 HP - All limma genes 0.223 ± 0.002 0.18 (0.073, 0.331) -0.142 0.98 

g2 HP - Diet DEGs 0.226 ± 0.005 0.205 (0.098, 0.331) -0.126 0.816 

g2 HP - Strain DEGs 0.267 ± 0.002 0.224 (0.124, 0.374) -0.089 0.98 

g2 HS - All limma genes 0.224 ± 0.002 0.186 (0.079, 0.331) -0.152 0.985 

g2 HS - Diet DEGs 0.232 ± 0.005 0.208 (0.113, 0.333) -0.116 0.797 

g2 HS - Strain DEGs 0.267 ± 0.002 0.229 (0.129, 0.369) -0.105 0.985 

Diet ICC - All limma genes 0.055 ± 0.001 0.015 (-0.009, 0.079) -0.017 0.799 

Diet ICC - Diet DEGs 0.266 ± 0.003 0.235 (0.172, 0.327) 0.099 0.799 

Diet ICC - Strain DEGs 0.061 ± 0.001 0.019 (-0.008, 0.089) -0.017 0.787 
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Table 2-6. Estimating the average relative heritable gene expression variation attributed to CC 

strain, experimental diet, and CC strain x diet interaction  

To estimate the relative heritable variation that can be attributed to genetics, environment (diet), and gene 

x environmental effects, linear mixed model analyses with strain, diet, and strain x diet interactions as all 

random effects were performed to quantify the proportions of variance attributed to each term relative to 

each other for the 11,542 genes used in limma differential gene expression analysis. The mean 

approximate values for proportion of variance for strain, diet, and interaction were calculated by dividing 

the variance for each term by the sum of the variance for all terms in the model and multiplied by 100. 

 

 
CC Strain Diet CC Strain x Diet 

 

Variance 
Proportion of 

Variance (%) 
Variance 

Proportion of 

Variance (%) 
Variance 

Proportion of 

Variance (%) 

All limma 

genes 
0.069 30.3 0.007 3.9 0.004 2.6 

Diet DEGs 0.055 26.2 0.033 18.7 0.004 2.6 

Strain DEGs 0.083 36 0.007 3.9 0.004 2.6 
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Figure S2-1. Significantly enriched pathways and ontologies for the magenta module 
Genes in the magenta module were significantly enriched in 35 GO Biological Processes, four GO 
Molecular Functions, two Jensen Diseases, and two KEGG pathways in mice related to endoplasmic 
reticulum function. The top 10 most significantly enriched GO Biological Processes are shown. The 
number of genes present in the magenta module and total number of genes that belong to respective 
enriched pathways/ontologies are displayed in each bar.  
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Figure S2-2. Significantly enriched pathways and ontologies for the red module 
Genes in the red module were significantly enriched in 37 GO Biological Processes, two GO Molecular 
Functions (MF), three Jensen Diseases, and 24 KEGG pathways in mice related to steroid, cholesterol, 
and fatty acid biosynthesis/metabolism. The top 10 most significantly enriched GO Biological Processes 
and KEGG pathways are shown. The number of genes present in the red module and total number of 
genes that belong to respective enriched pathways/ontologies are displayed in each bar.  
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Figure S2-3. Significantly enriched pathways and ontologies for the yellow module 
Genes in the yellow module were significantly enriched in 27 GO Biological Processes, 11 GO Molecular 
Functions, two Jensen Diseases (J’s DISEASES), and six KEGG pathways in mice related to a variety of 
functions such as photoperiodism, transcription regulation, insulin signaling, etc. The top 10 most 
significantly enriched GO Biological Processes and Molecular Functions are shown. The number of genes 
present in the yellow module and total number of genes that belong to respective enriched 
pathways/ontologies are displayed in each bar.  
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Figure S2-4. Significantly enriched pathways and ontologies for the brown module 
Genes in the brown module were significantly enriched in 296 GO Biological Processes, 25 GO Molecular 
Functions, 18 Jensen Diseases, and 80 KEGG pathways in mice related to immune response; only the 
top 10 most significantly enriched pathways/ontologies are shown. The number of genes present in the 
brown module and total number of genes that belong to respective enriched pathways/ontologies are 
displayed in each bar.  
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Figure S2-5. Correlations between the magenta, red, and yellow MEs with body fat % by CC strain  
Spearman’s correlations performed between the magenta, red, and yellow module eigengenes (PC1) and 
body fat % by CC strain suggest that the magnitude and direction of correlation in gene expression 
between these modules change depending on genetic background (CC strain). 
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Figure S2-6. Correlations between the magenta, red, and yellow MEs with body fat % by diet  
Spearman’s correlations performed between the magenta, red, and yellow module eigengenes (PC1) and 
body fat % by diet suggest that the magnitude and direction of correlation in gene expression between 
these modules change depending on diet. 
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Figure S2-7. Gene module connectivity is negatively associated with gene expression H2 and diet 
intraclass correlation  
For the 11,542 genes used in WGCNA, Spearman’s correlations were performed between log-

transformed gene module connectivity and (A) coefficients of genetic determination calculated using MSB 

and MSW derived from “full” additive linear models (g2 full) (rho = -0.22, p < 2.2 x 10-16), (B) HP-diet 

coefficients of genetic determination (g2 HP) (rho = -0.24, p < 2.2 x 10-16),  (C) HS-diet coefficients of 

genetic determination (g2 HS) (rho = -0.25, p < 2.2 x 10-16),  and (D) diet intraclass correlation estimates 

(Diet ICC) (rho = -0.11, p < 2.2 x 10-16). 
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Figure S2-8. Correlations between H2 and diet ICC with gene module connectivity by module 

Spearman’s correlations performed 

between log-transformed gene 

module connectivity and H2 

estimates, as well as correlations 

performed between log-transformed 

gene module connectivity and diet 

intraclass correlations (diet ICC) for 

the magenta, red, and yellow modules 

demonstrate that the relationship 

between gene module connectivity 

and H2 varies by module; the 

relationship between gene module 

connectivity and diet ICC also varies 

by module. H2 and connectivity were 

not significantly correlated regardless 

of dietary composition, H2 and 

connectivity were consistently 

significantly correlated across 

different “diet environments,” and H2 

and connectivity were inversely 

correlated across different “diet 

environments” where the correlation 

was slightly stronger for the HS diet. 

Interestingly, diet ICC and 

connectivity were significantly 

correlated for the magenta and red 

modules but not the yellow module. 
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Chapter 4: Conclusion 
 

In this dissertation the effects of two important determinants of obesity development, genetics and diet, 

were studied using the Collaborative Cross, a highly genetically diverse mouse panel designed for 

systems genetics. The aim of chapter 2 of this dissertation was to determine the degree that both genetic 

background and diet contribute to the development of obesity; some subobjectives were to investigate 

whether diet alters susceptibility to developing obesity, assess whether differences in diet macronutrient 

composition result in more beneficial phenotypic outcomes, and relate adiposity and metabolism to 

clinical traits associated with various diseases such as type 2 diabetes and cardiovascular disease, such 

as levels of circulating analytes. The results of chapter 2 demonstrate the large effect size of genetics on 

obesity development relative to diet alone and confirm that genetics largely determines whether an 

individual will become obese. However, our findings also show that diet can attenuate the severity of 

obesity depending on the individual and emphasize the importance of accounting for genetics when 

recommending a weight-loss plan, since certain individuals may require therapeutics in addition to 

modification of diet. The broad sense heritability estimates and diet effect sizes in chapter 2 highlight 

which traits are more sensitive to differences in macronutrient composition compared to genetic effects. 

Furthermore, we identified CC strains that are more responsive to diet for various traits. Given the 

relationship between obesity and inflammation, measuring circulating cytokine and/or adipokine levels in 

addition to the traditional markers of metabolic syndrome (e.g. glucose, triglycerides, insulin, and 

cholesterol) would provide additional insight on the effect of macronutrient composition and phenotypic 

differences attributed to genetics.   

 In chapter 3, genetics was found to have a much greater influence on hepatic gene expression 

compared to diet, as evinced by the over 9,000 genes discovered to be differentially expressed by strain 

compared to 1,344 gene differentially expressed by diet. By combining differential gene expression 

analysis and WGCNA into one study, we demonstrated that both strain and diet influence expression of 

individual genes as well as the expression for groups of related genes. By integrating the phenotype data 

into the analysis, we found both individual genes and gene modules expressed in the liver that were 

related to adiposity and other clinical traits. The work in chapter 3 sheds light on one way that genetic 

background and diet influence adiposity, where the identification of genes expressed in the liver related to 
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adiposity provides concrete preliminary suggestions of specific “intermediary” mechanisms that bridge 

genetics and diet with obesity, which may be validated in future studies.  

 The complexity of obesity leaves many questions regarding its etiology to be elucidated, but this 

dissertation sets the foundation for more targeted approaches to uncover some of the specific 

mechanisms that influence the development of obesity. In this dissertation, we identified CC strains that 

were lean non-responders to diet (CC019/TauUnc), fat non-responders to diet (CC040/TauUnc), 

responders that gained more weight on the high protein diet relative to the high fat high sucrose diet 

(CC012/GeniUnc), and responders that gained more weight on the high fat high sucrose diet relative to 

the high protein diet (CC028/GeniUnc). One possible follow-up study that could be performed to 

investigate specific mechanisms that contribute to obesity development using a systems biology 

approach would involve administering a diet challenge to multiple male and female replicates from these 

four CC strains followed by clinical phenotyping of body composition, indirect calorimetry, and measuring 

circulating analytes, as well as exploring the epigenome and transcriptome of the liver, subcutaneous fat, 

gonadal fat, and hypothalamus in one study. Including both male and female mice would facilitate the 

exploration of sexual dimorphism and effects from interactions between sex, genetics, and diet on obesity 

relative to health risks such as cardiovascular disease, for which sex differences are well characterized 

but not in the context of obesity currently (Kamon et al., 2021; Lin et al., 2016). An alternative approach 

would be to perform genetic crosses between non-responder and responder strains and administering the 

diet challenge to the F2 generation to explore changes in phenotype and identify genes whose 

expression levels are influenced by specific diets.   

 To delve deeper into the effects of specific macronutrients on obesity, two different approaches to 

refining diet choice could be used. In one approach, one of four diets would be administered to mice from 

each of the four CC strains comprised of either high protein, high sucrose, high fat, or the control diet. 

Although fat has been implicated in regulating energy intake and causing obesity in several inbred mouse 

strains (S. Hu et al., 2018), the effect of dietary fat on obesity still warrants further study using mice with 

higher genetic diversity such as the CC to better reflect the obesogenic effects of fat consumption in 

humans. Furthermore, sucrose also contributes to obesity development by altering serotonergic 

neuroplasticity and dopamine signaling to decrease dietary control, as well as inducing cravings for 
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sweetened food (Avena et al., 2006, 2008; Beecher et al., 2021; Reichelt, 2016); elucidating the 

differences in the epigenome and transcriptome between CC strains that respond differently to a high 

sucrose diet would provide insight on the genetics-by-diet effects on different tissue types in the context 

of obesity. An alternative approach would be similar to the approach used by Barrington et al., where the 

diets administered would mimic different diets that humans typically consume, such as the American, 

Mediterranean, ketogenic, or Japanese diet (Barrington et al., 2017). Utilizing this diet challenge would 

address questions regarding dietary effects in a more holistic manner; although comparing effects from 

differences in individual macronutrient content would be difficult, this approach would reveal the overall 

synergistic effects on obesity from each diet that humans already consume, which may more readily 

translate to improving dietary recommendations. 

 Important phenotyping for both baseline measurements prior to the diet challenge and after the 

diet challenge would include assessment of fasting circulating clinical markers of disease such as 

glucose, insulin, triglycerides, cholesterol; metabolic phenotyping to estimate food consumption and 

energy expenditure; body composition measured using MRI; and weekly weight measurements from 

baseline to the end of the diet challenge. In this experimental design with the control diet fed from the 

beginning until the end of the experiment, the effect of genetic background, diet, and genetic by diet 

interactions on obesity could be directly compared while accounting for effects due to age. In addition, 

assessing food consumption both before and after the diet challenge would clarify whether the effects of 

diet on obesity were due to differences in dietary composition or the amount of diet consumed.  

 Chapter 3 of this dissertation demonstrated that both strain and diet influence the expression of 

genes in the liver related to obesity. To expand on this work and discover the specific mechanisms of how 

strain and diet exert their influence on obesity development, investigating the epigenome and 

transcriptome of the liver, subcutaneous fat, gonadal fat, and hypothalamus in one study would reveal the 

strain-specific, diet-specific, and strain-by-diet-specific alterations in the crosstalk between different tissue 

types leading to different obesity phenotypic outcomes.  The epigenome is characterized by heritable 

changes in gene function that occur without alterations in DNA sequence and includes processes such as 

histone modifications, DNA methylation, chromatin remodeling, and non-coding RNA interactions (Gao et 

al., 2021; Pagiatakis et al., 2021). Techniques that measure changes in some of these processes include 
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ATAC-seq (Assay for Transposase-Accessible Chromatin) (Buenrostro et al., 2013), whole genome 

bisulfite sequencing (Stevens et al., 2013), Hi-C (Belton et al., 2012), and ChiRP-seq (Chromatin Isolation 

by RNA purification) (Tian & Hu, 2020), the data of which can then be  analyzed in tandem with RNA-seq 

data as demonstrated by Xu et al. (B. Xu et al., 2021), or used in differential expression analysis (e.g. 

limma), pathway analysis (e.g. EnRichr), or a network approach as demonstrated by Pomp et al. (Dobrin 

et al., 2009). Because the epigenome displays variation across cell types and modifications enable cells 

to respond to environmental stimuli, the epigenome may function as the interface of energy metabolism 

gene-environment interactions that lead to obesity development (Ling & Rönn, 2019; Loh et al., 2019; van 

Dijk et al., 2015). For example, several review papers have summarized findings from human studies 

where genes involved with energy metabolism exhibited altered DNA methylation (Hyun & Jung, 2020; 

Ling & Rönn, 2019; Loh et al., 2019), such as the positive association between DNA methylation levels at 

the adiponectin gene locus in subcutaneous adipose tissue with BMI and waist girth (Houde et al., 2015). 

Therefore, characterizing the epigenome and transcriptome in this follow-up study where environment, 

diet, and genetic background are defined and controlled would relate the effects of specific diets and 

epigenetic modifications on genes associated with obesity. 

 Lastly, numerous studies in both humans and animals demonstrated that the complex bacterial 

community that resides within the intestine called the gut microbiota plays an incredibly important role in 

the development of obesity, since this community of microbes induces the expression of genes related to 

macronutrient metabolism and even mediates energy balance by affecting feeding behavior through 

activation of vagal afferent neurons and parasympathetic reflexes (Gérard, 2016; Hamilton & Raybould, 

2016; John & Mullin, 2016; Raybould & Zumpano, 2021). The complex relationship between the gut 

microbiota and host suggests myriad possible mechanisms that the microbiota may use to alter energy 

intake and body weight regulation in relation to host genetics and diet, which currently remain unclear, but 

advances in sequencing technology have made research of the gut microbiota in studies with large 

sample sizes much more affordable while still generating informative data sets. Shallow shotgun 

sequencing is one relatively new method that balances cost with sensitivity and power, producing data 

sets with the sequencing depths of approximately two million reads per sample (A. J. Johnson et al., 

2019). In a future study, the fecal samples collected at baseline and post-diet from the CC cohort studied 
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in this dissertation will be used for shallow shotgun sequencing to examine how host genetics and 

differences in diet alter gut microbial composition and the expression of microbial genes relative to 

obesity. The phenotype and hepatic gene expression data will be integrated with the shallow shotgun 

sequencing data to identify obesogenic genes in the liver that have expression levels modified by 

microbial taxa, gene expression, or functional pathways. The results from this study will highlight 

additional candidate genes for functional validation studies and provide further understanding of the 

mechanisms associated with the gut microbiota and development of obesity. 
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