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ABSTRACT OF THE DISSERTATION

Fundamentals, Speculation, and Seasonal Correlation in Commodity Markets

by

Francisco Arroyo Marioli

Doctor of Philosophy in Anthropology

University of California, Los Angeles, 2019

Professor Pierre-Olivier Weill, Chair

The understanding of agricultural commodity �nancial markets has become of signi�cant in-

terest, given the increasing attention both the private and public sector have been giving to them.

Financial investment in these goods has increased exponentially over the past 15 years. Food prices

have reached signi�cantly high levels. Therefore, my dissertation focuses on what is a relevant not

only for the literature but also for both public and private institutions. I start by working within a

competitive storage framework, as is usual for the literature. I then make assumptions and change

the timing and information structure to match realistic aspects, therefore obtaining partially dif-

ferent theoretical results. I then intend to test these results by contrasting them with publicly

available data regarding prices, production, consumption and information. Since the model is de-

signed to match real-life aspects of the market, it can be applied to identify and measure fraction of

price changes due to each di¤erent fundamental. For example, one recurring and important aspect

of the data is that, in general, storage models predict excessively stable prices. That is, standard

deviations are higher in the data than those compared to simulations in the models. Volatility is

important since it can have potential welfare e¤ects on both consumers and producers. Therefore,

it is an issue that deserves attention. Moreover, related to this, in the past 15 years �nancial
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investment in these markets has increased severely, bringing concern to policy makers since these

may have some e¤ects on price levels and/or volatility. In the �rst chapter, I propose an innovative

structure in the model to study this. More speci�cally, I subdivide time periods in four quarters,

and each quarter with its own speci�c parameters. That is, only in the �rst quarter there is pro-

duction, and demand presents seasonal e¤ects for each of the four quarters. My intention is to

improve the accuracy of the model by introducing once more a more realistic framework. Once

these adjustments are made, I will be able to decompose and quantify through simulations the

di¤erent causes of prices changes.

In the second part, I incorporate an innovation into the standard theoretical sotrage model.

The cornerstone of seasonally produced goods literature is the competitive storage model. Since

production occurs only during one part of the year but consumption takes place all year along,

inevitably storage appears as the main solution. Therefore, storage models have been widely used

within the literature, with an important deal of success. However, not all aspects of the data

have yet been explained. For instance, when it comes to agricultural goods, the model predicts

that future contracts that deliver goods before the next harvest should not be strongly correlated

with futures that deliver goods after the harvest takes place. The argument for this is that the �rst

contracts deliver goods �from last year�, whereas the latter ones deliver �this year�s harvest�. Since

sources of supply are di¤erent, when new news regarding supply appear (for example, a harvest

forecast) they should only a¤ect the latter contracts, but not the �rst ones. The data shows however

otherwise. Indeed, correlation between �new harvest�and �old harvest�futures contracts is positive

and close to 1. This is the issue I address in the second chapter. The key element in my paper is

that I assume that harvest comes in �continuously�within a relevant time interval instead of �all

in one moment�. This allows me to split the harvest between early and non-early parts. I show

that the market equilibrium results in the early part end up being arbitraged with �old� future

contracts, whereas the non-early section arbitrages with �new�ones. Therefore, the same source

of supply gets sold on both type of contracts, allowing for supply induced positive correlation. I

simulate the model and show this result is robust to changing parameter speci�cations, obtaining

correlations between 0.7 to 1, as in the data. I also provide proof of the assumptions made to

get this result, showing that they are highly realistic. These results are not incompatible with the

main �ndings that have already been made, therefore it contributes to the literature by additionally
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explaining an unsolved puzzle.

In my third chapter, I analyze in�ationary processes in major LATAM economies. More specif-

ically, with other two coauthors we study in�ation in Peru, Colombia, Brazil, Mexico and Chile

for the past 18 years. We �nd that domestic factors such as intertia and expectations still play

the biggest role. Foreign in�ation however gains importance in some countries. With regarding to

Phillips curve slopes, we �nd that these have been �attening in the last decade for most countries,

that is, the cycl has a smaller e¤ect than it used to have in previous decades when determining

in�ation.
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Part I

Trading Places: The role of Agricultural

Commodity Fundamentals, Information and

Speculation

Francisco Arroyo Marioli, UCLA

What explains the surge and plunge commodity markets have undergone in the past 20 years?

Are speculators to be blamed? Do prices re�ect full information? These are the main questions I

address in this paper, in the context of the corn market. I formulate and calibrate two quantitative

models of corn prices formation. The �rst model is designed to explain prices in the long run

(annual frequency), while the second model applies to prices in the short run (quarterly frequency).

For the long-run analysis, I �nd that deviations of theoretical prices from observed ones are very

small after 1996, and before 1996 they can be explained by government intervention. For the short-

run analysis, my model is designed to mimic the typical seasonality seen in agriculture markets,

incorporate supply and demand shocks as well as news shocks, and allows for speculative storage

decisions. I �nd that demand and supply fundamentals can account for around 52% of past price

changes from 1975 to 2016. I also estimate the impact of information shocks to explain an additional

18% of quarterly deviations. Finally, �nd that at least 30% of short-run price changes seem to have

explanations other than supply or demand fundamentals or information, demonstrating that when

analyzing quarterly data, prices do not always closely track fundamentals.
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1 Introduction

The objective of this paper is to study the fundamental and non fundamental determinants of

commodity prices over the past decades. The analysis speci�cally focuses on corn markets, for

several reasons. Corn and soybean are the main agricultural commodities in terms of production

market value. They are the most traded contracts in futures market (next to cotton and wheat).

Finally, the US is world leader in corn production, consumption and exports.

In this paper I compare prices de�ned by fundamentals versus observed prices. I de�ne fun-

damental determinants of price as demand and supply shocks. These may be either current or

future. Future demand and supply shocks a¤ect current prices through information shocks (agents

acknowledge that shocks will occur in the future) that change current inventory holding decisions.

I divide this paper into two parts. In the �rst part, I study the current determinants of corn prices

at an annual frequency, while in the second I study the short-run, cyclical determinants. The

�rst section determines how annual prices would have changed solely based on current demand

and supply shocks. The reason for this is simplicity: I show that even when focusing only on

current shocks, the model �ts the data very well. Any additional feature would only increase the

performance of the model, thus making my results only stronger. In the second part, I construct

theoretical prices at a quarterly frequency. Given that supply is zero in some quarters, I introduce

inventory purchases as part of the market. Given that inventory purchases are made within a pro�t

maximizing scheme, expectations, and therefore future shocks through information, start playing a

key role. I hence introduce in this section future shocks as part of fundamental-determined prices.

More speci�cally, in the annual model, I analyze the long-run price trend from 1975 to 2015.

I then simulate a theoretical price time series, de�ned as the price such that each year�s demand

matches supply or, in other words, a price such that inventory variations are zero. Moreover, it

is even possible to assume that inventories could reach zero at the end of the year, given that,

in practice, in the last quarter it usually reaches very low values with respect to harvest size. I

proceed to compare these theoretical prices with observed ones and estimate the di¤erence, and

�nd that after 1996, di¤erences are small and do not last more than a year or two. Additionally, I

�nd that the increase in price levels in the 2000s seems to be explained mostly by the presence of

an increasing demand for bioethanol.
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In the quarterly model, I design a model with a market structure that mimics the typical

seasonality seen in agriculture markets ( with production occurring only during one quarter). Given

that the time lapse between decisions is shorter, I also allow for information shocks to occur by

introducing them to the agent�s expectations through private and public signals. Results show that

around 70% of price volatility can be explained through the shocks cited above, leaving a 30%

measured space for other non fundamental sources of variation.

Regarding model speci�cs, in the long run case I assume isoelastic forms Dt = Ztp�t for demand

and St = Atp
�
t for supply, the �rst term represents (exogenous) levels and the second term the

endogenous response to price with the respective elasticity. Therefore, shocks are captured as

changes in Zt; At. These will be de�ned as the current fundamental source of price changes. Time

series for these variables can be obtained using USDA corn usage and production data. They are

then integrated into a market clearing equation with no storage decisions. In the short run case I

consider demand as a whole aggregate and assume identical isoelastic functions for both demand

and supply, as before. I linearize the model, calibrate it and simulate with real shocks as inputs. I

then estimate the impact of di¤erent shocks (demand, supply, and information) on price changes

and quantify them.

One additional analysis that results from this paper is related to the issue of prices�being fully

informative and appropriate for business-cycle measurement. Romer (2006) raises this question and

shows evidence of �rms that not always behave in pro�t-maximing ways by analyzing the case for

professional football teams. In this paper I show that although in the long run, prices seem to be very

close to fundamentals, when going to a quarterly frequency, market prices can sometimes be very far

away� as much as 50%� from them. These results are in line with Hussman (1992), who shows that

once imprecise signals are introduced in a rational expectations framework, market prices become

ine¢ cient in transmitting information. Because corn markets are considered to be well-functioning

markets, in the sense that prices and transactions are transparent, centralized, and very liquid,

it is surprising and interesting to �nd that they might not always behave as one would expect

in a classical supply-demand model with inventories and utility and pro�t-maximizing agents.

This raises several relevant questions regarding macroeconomics, �nancial markets and industrial

organization. First, if a very well developed market fails to deliver fully informative prices, what can

then be said regarding other markets, where illiquidity, information asymmetry and search costs
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are more relevant? Moreover, since these results are found for quarterly data, the implications for

business-cycle accounting could be important. In several developing countries commodity markets

such as corn have a signi�cant impact in overall GDP and exports. If the prices that are being

used for measurement are not market-clearing ones, important distortions could be taking place.

Also, since annual prices don�t di¤er from fundamentals as much as quarterly ones do, another

potential question arises: Should we produce national accounts using prices measured at quarterly,

annual, or some other frequency? How much time do markets need to become fully informative?

Many business-cycle theorists believe that shocks on the real side of the economy, such as shocks to

TFP and commodity prices, trigger and propagate economic �uctuations. Commodity price shocks

clearly play important roles in developing nations today, particularly resource exporters and have

also played a large role in economic �uctuations in the past. Economists and policy makers believed,

for example, that the commodity-price declines in the late 1920s and early 1930s contributed to the

length and severity of the Great Depression. In 1933, the Roosevelt administration�s e¤orts to raise

commodity prices, particularly prices of farm products like corn, formed the centerpiece of its e¤orts

to resurrect the economy. My results have implications for the sources of shocks and the accuracy of

the interpretation of the shocks derived from RBC models. Given that productivity is a key driver

of the cycle, a price system that does not track fundamentals closely could result in ine¢ cient

resource allocations, or in other words, aggregate productivity losses. Therefore the implications of

these �ndings are relevant regarding short-term business cycles. In the short run (at business-cycle

frequencies), the majority of commodity price shocks do not re�ect supply and demand, but could

instead be a¤ected by speculative factors. These distortions could have a signi�cant impact on

commodity producing economies.

This paper is divided into four sections. The �rst section introduces and explains the main

structure of the paper and its relation with the literature. Section 2 presents the low-frequency

model and its results. Section 3 presents the high-frequency model, calibration, and estimation

results. Section 4 summarizes and concludes.

1.1 Literature Review

This paper, therefore, contributes to the literature in three respects: �rst, it tests the hypothesis

that the spike in commodity prices was due to by non fundamental reasons, but focuses on a less
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explored market, since most of the literature has focused on oil markets. Second, I add a new

feature to high-frequency analysis: information shocks. In this paper, I am able to quantify the

historical impact of information shocks by incorporating USDA reports as a source of information.

Additionally, I estimate private signals and their impact on prices, showing that when it comes to

quarterly analysis, they are a relevant source of volatility. Third, I decompose price changes per

source of change� that is, I estimate the impact of each variable change each year, from 1975 to

2015, and therefore o¤er alternative explanations for the observed change in prices in past years.

This also allows me to estimate the fraction of prices that cannot be explained by fundamental or

information factors, leaving a measured space for further research.

The literature has also examined whether commodity markets have been altered for non funda-

mental factors in the past decades, such as �nancial speculation. For instance, in energy markets

results tend to indicate small or null e¤ects of speculation on oil prices. Kilian and Murphy (2013)

develop a VAR model with speculative demand shocks and contrast it with recent oil inventory

data and �nd no basis for speculation�s being blamed for the 2003-2008 price period. They do,

however, �nd it plausible that there was some in�uence in previous years 1979, 1986, and 1990.

Knitell and Pyndick (2016) analyze the oil market using a simple static partial equilibrium model

with inventory markets and again �nd no relation between speculation and the oil price peak in

2008. Fattouh, Kilian, and Mahadeva (2013) summarize the literature that examines oil markets

and conclude that there is no evidence that speculation is the main driver of price increases.

Another branch analyzes commodity �nancial markets from a portfolio point of view. Bohl

and Stephan (2012) study the e¤ect of increased trading in future markets for six top traded

agriculture and energy commodities using a GARCH model approach and �nd no evidence of a

causal relation between future trading and price volatility. Chary, Lochstoer, and Ramadorai

(2013) show that restrictions in �nancial markets can alter spot prices through hedging decisions,

a¤ecting real outcomes. Sockin and Xiong (2015) study on the possibility of information frictions

in commodity markets, and demonstrate the importance of prices as signals for both demand and

supply and the weakness of assuming that shocks are publicly known. In line with their results,

this paper incorporates information shocks and allows for some shocks to be unknown.

The work presented in this paper is mostly related to Knitell and Pyndick (2016), who estimate

non fundamental shocks as deviations in inventory levels. I follow a similar methodology except
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that I consider corn markets (instead of oil) and a dynamic framework (rather than static).

2 Long Run Model

The goal in this section is to analyze and explain changes in price levels. In particular, one key

question is whether observed prices have deviated from fundamentals because of the presence of

non fundamental factors, such as, due to the growing importance of �nancial speculation. I propose

the following experiment: Calculate the theoretical price that would balance supply and demand

every year and compare it with the observed price. That is, calculate the price such that inventory

variation would have been zero. The intention behind this simple experiment is to see how prices

would have changed solely based on current demand and supply shocks.Any additional features

added here would only enhance results, therefore the �t that I will show can only be enhanced but

not worsened by any additional feature of analysis we might want to add. I will show that even

under this simple framework, results are very conclusive. It also implies an more long-run based

approach. In the long-run, inventories cannot play a signi�cant role in price determination. Under

the plausible assumption that speculators do not seek to buy-and-hold inventory, it is clear that in

the long run prices cannot deviate far from fundamental ones. To understand this better, assume

it is not the case. That is, assume that the fundamental price is systematically below or above

equilibria with no inventory change. This would imply that stocks either decrease every year or

accumulate in�nitely. Neither scenario is consistent with long-run equilibria, since it would either

imply hitting the zero lower bound or an irrational accumulation of stocks. Since the analysis is

long-run based, I believe this is a useful approach.

Formally, the theoretical price results from the following market-clearing equation:

Ztp
�!
t = Atp

�
t : (1)

Zt = Z
food
t + Zfeedt + Zethanolt + Zexportst

The left-hand side of the equation is demand for corn, and has four subcomponents: ethanol,
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food industry, feed (and residual) and exports. Supply has only one source: farming. Imports in the

US are (practically) zero. For simplicity, I assume that demand and supply are isoelastic functions of

the price, as in Knitell and Pyndick (2016) and similar to Deaton and Laroque (1996). In this model,

for demand functions, Zt; captures exogenous demand shocks and p�!t the endogenous response to

prices, with ! being the demand elasticity parameter. For supply, At represents productivity and

� supply elasticity.

Equation (1) thus de�nes the theoretical market price as p�t =
h
Zt
At

i 1
!+�
. Also, to quantify the

impact of di¤erent shocks, I can calculate the �rst-order e¤ect for each of them.

dpt =
X
i

@pt
@Zt

dZit +
@pt
@At

dAt; i 2 ffood,feed,ethanol,exportsg (2)

where the right-hand side gives us the sum of the e¤ect of changes in all i 2 ffood,feed,ethanol,exportsg

demand fundamentals and production fundamental A:

USDA databases have time series for prices, all four demand uses (ethanol, feed, food, and

exports), production, and yield per acre. I use these to estimate elasticities and identify exogenous

shocks. For demand price elasticities, I use instrumental variables, taking yield per acre shocks as

a �rst-stage instrument for prices. Changes in yield per acre are explain mostly by weather factors.

Farmers have almost no control over short run productivity levels. Therefore, it is reasonable

to assume that they are exogenous to the production process and are appropriate instruments

for prices. To estimate supply elasticity, I take estimations from Roberts & Shlenker (2013).

Estimation results can been seen in Table I.A.. Results fall within other literature�s �ndings1.

Once elasticities are estimated, given that I have demand, supply and price data, I can identify

exogenous components by reversing the isoelastic equation and setting the exogenous component

equal to the demand or supply level times prices elevated to inverse elasticity.

1The Food and Agriculture Policy Institute shows elasticity estimations for corn in di¤erent countries, giving results
that are always between 0.1 and 0.5. for both demand and supply. http://www.fapri.iastate.edu/tools/elasticity.aspx
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Zit = Ditp
!
t ; (3)

At = Stp
��
t :

Given time series for At; Zit ; and pt; and estimated values for !; �, I can decompose price changes

per year by estimating the di¤erent terms of equation (2). As a result, changes in inventories explain

the remaining residual. Results per variable can be seen in Figures I to V.

I solve the price-solving equation (1) from 1981 to 2015. Figure I shows the theoretical price that

results from the simulation and compares it against observed prices. The �gure suggests two key

observations: First, di¤erences between the model-based and observed price are much larger before

1996 than after. That year, a more market-friendly US agriculture policy bill was passed, which

reduced the budget for government purchases (hence the scope for intervention) and lowered price

�oor targets below market equilibria. It is clear that after such an event, the distance between

both time series reduces heavily. Regarding the 2000s spike in prices, the hypothesis of a non-

fundamental driver seems pretty weak, since prices moved as one would expect them given demand

and supply shocks. Second, theoretical volatility reduces signi�cantly after the year 1996.

Table I.A

Description Parameter Value

Demand Elasticity ! 0:18���

Supply Elasticity � 0:15���

Table I. *,**, and *** indicate p-values inferior to 0.1, 0.05, and 0.01, respectively:
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Table I.B

Standard Deviation

Variable All Prior to 1996 After 1996

Observed Price (in logs) 0:39 0:36 0:32

Fundamental Price (in logs) 0:59 0:74 0:36

Observed to Fundamental Ratio 0:41 0:59 0:12

Correlation

Observed vs Fundamental Prices 0:82 0:72 0:96

Table I.B.The �rst two rows show standard deviations of both observed and fundamental prices for

each time interval. The row "Observed to Fundamental Ratio" indicates the standard deviation of the ratio

of observed prices divided by fundamental ones. The �nal row "Observed vs Fundamental Prices" shows the

correlation between observed and fundamental prices for each time interval. A traditional statistical F test

was performed to check for a null hypothesis of equality in standard deviations of the ratio before and after

1996, results rejected the null hypothesis at a 1% level of signi�cancy.
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Figure I

Theoretical Prices vs Observed

Figure I. Theoretical prices are the values that solve the market clearing equation (1) given the

identi�ed shocks. Observed ones are those obtained from the data. Units are in dollars per 100 metric tons

of corn.

In 1996, a Farm bill was passed. That signi�cantly shifted U.S. farming policy from a highly

interventionist one toward a more "free market" approach. Prior to this bill, U.S. farming policy

was heavily biased toward sustaining minimum price levels set at the discretion of the policymaker.

The main tool through which this took place was by either government purchase of goods (The

Commodity Credit Corporation - CCC- program) or subsidies to storage in the private sector

(Farmer-Owned Grain Reserve program). Figure IV quanti�es the e¤ect these programs had on

price levels. After 1996, the government budget allocated for purchasing goods was minimized, and

minimum prices were set below market values; this resulting in a practically zero direct government
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intervention in corn markets. Table I.B shows statistical moments before and after the bill was

passed in 1996. Table I.B shows standard deviations for observed prices and fundamental ones,

standard deviation of the ratio and correlation. Two important facts emerge. First, the ratio

between observed price and "fundamental" ones becomes signi�cantly more stable after 1996. A

traditional statistical F test was performed to check for a null hypothesis of equality in standard

deviations of the ratio before and after 1996, with results rejecting a null hypothesis at less than

1% signi�cance. This is also in line with an increase in correlation between both series. Second, the

volatility of fundamental prices themselves also drop after 1996. This new stability could perhaps

be one of the reasons for the lack of direct intervention during those years.

Regarding the 2000s, it is clear that observed prices do not deviate too signi�cantly from

fundamental ones. That is, the price that would have theoretically cleared the market with no

storage decisions has not deviated signi�cantly from observed prices. This suggests that speculation

(or other non fundamental shocks) has had little� if any� e¤ect on market prices.

The immediate question is then: If not speculation, what has drives the price spikes? Appar-

ently, as can be seen in �gure II, ethanol explains almost 56% of the price increase between 2005

and 2010. This can partially be explained by technological improvements (that allow ethanol to be

used in energy markets) and government policy that has forced gasoline producers to incorporate

mandatory fractions of ethanol in their �nal products. This decomposition has been calculated

by inputting the estimated values of fundamentals and elasticities into equation (2). Additional

evidence for this is the increased correlation between oil and corn prices, as in Figure VII (see

Appendix). Given that an increasing fraction of corn is used for ethanol, increasing correlation

with energy markets is therefore to be expected, and this is what e¤ectively is seen in the data.

This can be viewed as a new form of intervention, since instead of directly purchasing the product,

they force private agents to use them. In future work, it would be interesting to use these results

and calculate the impact of this intervention compared to previous ones, as well as other policy

implications.

In conclusion, the model used here suggests that there is very little ground for a nonfundamental

explanation of price changes in levels during the past 20 years. More speci�cally, regarding the

2000s, the impact of biofuels on corn markets seems to be one of the main explanations for the

observed behavior.
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Figure II

Figures II. Fig. II shows the contribution of each demand factor to total price change (measured in

percentage points change with respect to the previous year). They were calculated by replacing the estimated

values of Zit ; At,!; and � ,i 2 ffood,feed,ethanol,exportsg ; into each term in equation (2). Each term in

equation (2) is represented by a shade of grey for a given year.
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Figure IV

Figure IV. Fig. IV shows the contribution of total price change due to government CCC purchases.

It was calculated by estimating the change in prices not explained by equation (2), i.e., the residual between

explained price changes and observed price changes. That residual was then multiplied by the proportion of

corn inventories held by the government under the CCC program.

3 High Frequency case

The previous model was designed to analyze long-run variation in prices. Our main �nding is that

there is little evidence of non-fundamental shocks. One may argue that this �nding is expected,

since, as explained previously, a systematic deviation from our implied fundamental prices would

mean either hitting the zero lower bound for inventories or increasing them to in�nity, as in Knittel

and Pyndick (2016). However, at a higher frequency there could be space for short-term shocks

that are not necessarily related to supply and demand fundamentals. Therefore, though I continue

to assume isoelastic functional forms for supply and demand, I add speculators as a new type
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of agent. The justi�cation for this is that given that production of corn occurs only during fall

quarter , buying and selling storage inevitably becomes a relevant factor in determining market

prices throughout the whole year. That is, give that production only occurs during on quarter, it is

unrealistic to ignore inventory changes as a relevant factor. Since in a decentralized framework these

inventory decisions are pro�t-seeking, I rationalize this by introducing a representative speculator:

an agent who makes decisions based on expected pro�ts realized by buying low and selling high.

The objective in the next section is to model short-run quarter equilibria and quantify the impact

of both current and future shocks (the latter through information shocks) on total variation, similar

to what was done in the previous section.

3.1 Model

Time has two dimensions: year and quarter. Notation wise, t represents time change from quarter

to quarter, q indicates a quarter-speci�c notation, and y represents marketing (not calendar) year.

A marketing year starts with the harvest and ends exactly before the next one. For simplicity, I

will consider demand as a whole (that is, I will not di¤erentiate by use). Just as in the previous

model, demand and supply are isoelastic. This seems reasonable, given that the demand elasticities

found in the previous section were not so di¤erent across the various sources of demand.

Dy;t(py;t) = Zy;tp
��
y;t :

Sy;t(py;t) = Ay;tp
�
y;t:

where Zy;t; Ay;t are exogenous random variables representing demand and supply fundamentals

and have the following dynamics:

Ay;t = Ay = �AAy�1 + "
A
y if t = 1; Ay;t = 0, for t 2 f2; 3; 4g

Zy;t = Zy + "
Z
t : Zy = �zZy�1 + "

Z
y :
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Shocks are all IID and have the following distributions:

Annual shocks

"iy � logN(0; �iy) for i 2 fZ;Ag :

Quarter-speci�c shocks

"Zt � logN(0; �zq); q stands for each quarter,1 to 4)

.

I summarize all shocks into vector 'y;t =
�
"Zy ; "

A
y ; "

Z
t

	
In other words, demand shocks have a yearly component that follows an AR(1) process, plus

a quarter-speci�c noise. Production only comes during one quarter (harvest season); therefore,

it is equivalent to de�ne supply shocks as annual or quarterly. In addition to farmers and con-

sumers, speculators, participate in the market by buying and selling stored goods. They are pro�t-

maximizing agents who face the following problem:

Vt(xt; �xq) = max
ut;xt+1

ptut � f(xt; �xq; �) + �Et
�
Vt+1(xt+1)

�
:

s.t. xt+1 = xt � ut

f(xt; �xq; �) =
��(xt��xq)2 if t2f1;2;3g

�II(xt��xq)2 if t=4

	
�II > �

The function f(xt; �xq; �) represents the cost of deviation from a certain quarterly optimum �xq;

that has a speci�c value for each quarter and is known, i.e. it is neither random nor uncertain.

Deviating from this optimum implies some cost �; �II . The cost in the last quarter is di¤erent

because usually inventories are managed at low levels during that time of the year. Therefore,

given that agents are closer to hitting the zero lower bound, it is reasonable to assume that cost

of deviating from optimum are higher. Intuitively, for some industries, having low inventories

could imply a huge risk premium: Since they require a minimum level of inventories to keep their

machinery running, stopping them (by reaching zero inventories) would imply high costs. As an

example, say that annual harvest usually has size 1, and quarter optimums are 0:8,0:6, 0:4; and
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0:2; respectively. Having inventory levels below or above the �rst three does not imply the same

costs as having them below 0:2, since in this last case companies would be close to hitting the zero

lower bound.

The speculator must decide one period in advance by how much stocks will di¤er from quarter-

speci�c values.

First-order conditions and envelope conditions are:

�pt + �E
h
V 0
t+1
(xt+1; �xq+1)

i
= 0

�2�t+1 (xt � �xq) + �Et
h
V 0
t+1
(xt+1; �xq+1)

i
= @Vt(:)

@xt
�t+1 2

�
�; �II

	
:

Combing both, we get

pt = �E [pt+1]� 2�t+1 (xt+1 � �xq+1) ;

Policy function then results in:

Xt+1 =
�E [pt+1]� pt

2��t+1
+ �xqt+1 : (4)

with �t+1 2
�
�; �II

	

Consumers, farmers, and speculators must then meet at the market. Therefore, the market-

clearing equation is given by:

Xy;t+1 = Ayp
�
t;y � Zt;yp

��
t;y +Xt;y if t = 1: (5)

Xy;t+1 = �Zt;yp��t;y +Xt;y if t = 2; 3; 4: (6)

As a result, given that parameters and market-clearing conditions are quarter speci�c, equilib-

rium prices will also be quarter speci�c. That is, their values will vary from quarter to quarter,

even in steady state.
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3.2 Information structure

Information is key to forming expectations for speculators, and therefore the information structure

is a relevant issue in the model. I construct it to mimic reality as closely as possible.

Production shocks and annual demand shocks are revealed the quarter after they take place,

so agents do not know at present moments what supply and demand are. They use both public

and private signals to form expectations regarding these. Private signals are formed each quarter.

Public signals, on the other hand, are realized only in quarters 1 and 4. I design public signals

this way in order to map USDA reports; hence, I must mimic the same timing schedule. Private

signals are private in the sense that they are developed by the private sector. They are observable

to speculators, but not to the econometrician.

Information regarding demand and supply fundamentals is only revealed after each quarter is

�nished. During each quarter, therefore the agent does not know with precision what is driving

price changes. As an example, in quarter 1, yield, annual demand, and quarter-speci�c demand

shocks are realized, but the agent only knows them after the quarter is over. Therefore, in quarter

2 the annual component of demand is known, but not the quarter-speci�c one for quarter 2, and

so on.

Uncertainty about current shocks takes place only in quarter 1, since in quarters 2 ,3 and 4

they only speculate with respect to next years fundamentals (which by de�nition have not taken

place yet). So, in quarter 1, speculators can observe the current price, but since the current price

will depend on the realization of three shocks (annual supply shock, annual demand shock and

quarter 1 speci�c demand shock), they cannot identify or map back to fundamentals (there is no 1

to 1 mapping possible). The assumption used here is that if there is any information that can be

captured from this it is negligible and for simplicity will be disregarded.

Agents have access to public reports that are issued in the �rst and last quarters of the marketing

year. The �rst-quarter report predicts current annual demand and yield and the latter predicts

the upcoming year�s amounts. Private forecasts regarding next year�s yield and demand, on the

other hand, are made available every quarter. To summarize, public reports predict current yield

(if quarter 1), upcoming yield (if quarter 4), current annual component of demand (if quarter 1),

and upcoming demand annual shock (if quarter 4).
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To illustrate this, consider the case of a commodities trading company. During the �rst quarter,

it receives the USDA report and the one it privately issues regarding current demand and supply

conditions. Once the �rst quarter has passed, the company observes what happened in quarter 1,

and its research department continues to develop forecasts for the upcoming year. In contrast the

USDA will only make its own forecast once quarter 4 is reached, and so on.

Table II

Public Signaling Timing

Formally, the speculator receives public and private signals at each period t :

In the �rst quarter (or "harvest" quarter) t = 1, signals contain the following structure:

�Apuy;t =

shock being predictedz}|{
"Ay +

noisez }| {
�pu;At public Yield signal

�Zpuy;t = "Zy + �
pu;Z
t public Demand signal

�Apry;t = "
A
y + �

pr;A
t private Yield signal

�Zpry;t = "
Z
y + �

pr;Z
t private Demand signal

In non-harvest quarters t = 2; 3; 4 signals are:

�Apuy;t =

shock being predictedz}|{
"Ay+1 +

noisez }| {
�pu;At public Yield signal

�Zpuy;t = "Zy+1 + �
pu;Z
t public Demand signal

�Apry;t = "
A
y+1 + �

pr;A
t private Yield signal

�Zpry;t = "
Z
y+1 + �

pr;Z
t private Demand signal

where �pu;At ; �pu;Zt ; �pr;At ; �pr;Zt are IID noise components and have a normal distribution with

standard deviations (or inverse precision) ��puA ; ��puZ ; ��prA ; ��prZ .
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I summarize all signals into vector �y;t =
n
�Apry;t ; �

Zpr
y;t ; �

Apu
y;t ; �

Zpu
y;t

o
The predicted variable will vary depending on the quarter. In harvest quarters, signals predict

the annual demand shock and annual supply shock, which are taking place currently. In non-

harvest quarters, signal predict next year�s annual demand shock and annual supply shock. This

can be seen more clearly in Table III. Therefore, each quarter there will be several sources of shocks:

annual demand shocks, annual productivity shocks, quarter-speci�c demand shocks, and public and

private information shocks regarding both demand and supply.

Table III

Predicted variable

Harvest Quarter Non-Harvest Quarters

Signal Quarter 1 Quarter 2 Quarter 3 Quarter 4

�Apuy;t "Ay - - "Ay+1

�Zpuy;t "Zy - - "Zy+1

�Apry;t "Ay "Ay+1 "Ay+1 "Ay+1

�Zpry;t "Zy "Zy+1 "Zy+1 "Zy+1

Table III.This table shows what variable is being predicted by each signal in each quarter. In the

harvest quarter, signals intend to predict current shocks, since these not inmediately observable. In the rest

of the year signals intend to predict next year�s shocks.

Once a signal is received, agents use it to update their previous beliefs. That is, they use past

private (public) signals and combine them with their latest private (public) signal, constructing a

posterior private (public) signal. For example, in quarter 2, the private demand signal the agent

receives is the �rst one that forecasts next year�s fundamentals. In this case she has a �at prior,

and therefore her posterior will be identical to the signal received. In the third quarter, however,

the agent has a previous private demand signal �Zpr2 and receives �Zpr3 : Assuming both signals have

equal precision, she weights them optimally by assigning equal weight to both (recall that the noise

process is IID). Therefore, in the third quarter, posterior signal ��
Zpr
3 will be obtained by following

a Bayesian updating process with normally distributed noise:
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��
Zpr
3;y = 0:5�

Zpr
2;y + 0:5�

Zpr
3;y with standard deviation ���pr3;y;Z =

1p
2
��prZ :

In the fourth quarter, she receives another private demand signal, which she again uses to

update:

��
Zpr
4;y =

1

3
�Zpr2;y +

1

3
�Zpr3;y +

1

3
�Zpr4;y with standard deviation ���pr4;y;Z =

1p
3
��prZ :

In the �rst quarter the agent receives the last private demand signal

��
Zpr
1;y+1 =

1

4
�Zpr2;y +

1

4
�Zpr3;y +

1

4
�Zpr4;y +

1

4
�Zpr1;y+1 with standard deviation ���pr1;y+1;Z =

1p
4
��prZ :

For private signals regarding supply, constructions are identical. In the case of public signals,

calculations are also identical, but since they only take place for two quarters (4 and 1), they have

�nal precision ��puA ; 1p
2
��puA for supply and ��puZ ; 1p

2
��puZ for demand, respectively, for each quarter.

Agents therefore have, each quarter, �nal public demand and supply signals, and �nal private

demand and supply signals. To rationally summarize this information, these �nal signals are

weighted as a function of their posterior precision. Formally, in quarters 1 and 4, they have

posterior public signals �Apuy;t ; �
Zpu
y;t with a noise process that also follows a normal distribution, with

precision ��pu
�1

A ; ��pu
�1

Z calculated above: They then update their beliefs according to Bayes�rule,

that is, they construct a single terminal signal for demand and a single terminal signal for supply,

based on a precision-weighted average of both posterior private and public signals:

�Ay;t = t;A
��
Apu
y;t +

�
1� t;A

�
��
Apr
y;t

��
Apu
y;t ;

��
Apr
y;t with precisions ��pu

�1

t;y;A ; ��
pr�1

t;y;A:

�Zy;t = t;Z
��
Zpu
y;t ;+

�
1� t;Z

�
��
Zpr
y;t

��
Zpu
y;t ;

��
Zpr
y;t with precisions ��pu

�1

t;y;Z ; ��
pr�1

t;y;Z :

4;A =
���pu

�1
4;y;A

���pu
�1

4;y;A +���pr
�1

4;y;A

4;Z =
���pu

�1
4;y;Z

���pu
�1

4;y;Z +���pr
�1

4;y;Z

for quarter 4,
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1;A =
���pu

�1
1;yA

���pu
�1

1;y;A +���pr
�1

1;y;A

1;Z =
���pu

�1
1;y;Z

���pu
�1

1;y;Z +���pr
�1

1;y;Z

for quarter 1,

Parameters t;A; t;Z t 2 f4; 1g indicate the weight agents put in each variable on quarters 4

and 1. Such weights depend on the relative precision of each �nal signal.

De�nition 1 Speculators do not observe current A and Z; instead they form expectations based

on private and public signals regarding demand and supply. Hence, their information set �y;t can

be formally de�ned as:

For quarter t = 1: �y;t =

8><>: Ay�1| {z }
annual productivity

; Zy�1| {z }
demand level

; "zy�1;4| {z }
previous quarter demand shock

; Xy;1|{z}
inventory

; �Ay;1; �
Z
y;1| {z }

signals

;�y�1;4

9>=>; :

For quarters t = 2; 3; 4: �y;t =

8>>>>><>>>>>:
Ay|{z}

annual productivity

; Zy|{z}
demand level

; "zy;t�1| {z }
previous quarter demand shock

;

Xy;t|{z}
inventory

; �Ay;t; �
Z
y;t| {z }

signals

;�y;t�1

9>>>>>=>>>>>;
:

Therefore, expected prices can be de�ned as:

E(py;t) = E(py;tj�y;t):

�y;t 2 
; where 
 is the set that contains all information and demand and supply shocks, and

therefore contains �y;t 8 fy; t:g Note that by construction, �y;t 2 �y;t; 'y;t�1 2 �y;t 8 fy; t:g and

Information sets are a combination of current signals and past shocks, that come from their own

distributions. Therefore 
 is a measurable space and
�
�y;t; 'y;t�1

	
2 f
;F ; Pg

The solution to the equilibrium system of equations I will be looking for will have the following

functional� nonlinear� form,given that although speculators have a linear-quadratic objective, the

rest of the supply and demand functions are isoelastic:

py;t = py;t(�y;t; 'y;t) = p( Ay|{z}
productivity

; Zy|{z}
demand level

; "zy;t|{z}
quarter shock

; Xy;t|{z}
Inventory

; �Ay;t; �
Z
y;t| {z }

signals

; Ay�1; Zy�1): (7)
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De�nition 2 An equilibrium consists of prices py;t(�y;t; 'y;t) such that, given shocks
�
'y;t; �y;t

	
,

information set �y;t, and initial conditions X0;1; A�1; Z�1, markets clear for all quarters and the

speculator�s FOC is satis�ed for all fy; tg

Prices will depend not only on current level of productivity and demand, but also on the level

of initial inventories and available signals. Past productivity and demand can in�uence this by

providing information about future realizations of demand and supply, since they follow an AR(1)

process. Given this solution, two main issues remain to be addressed: First and most important,

the solution is nonlinear, which makes it impossible to �nd an explicit solution. Second, private

signals are non-observable in the data. Therefor, I will solve the model by proceeding through the

following steps:

Step 1

Linearize the system around steady-state values. I normalize these to 1, such that index points

can be interpreted as being close to percentage changes.

Step 2

Calibrate parameters using USDA corn market data for 1975-2016.

Step 3

Estimate seasonality and simulate the model by feeding estimated shocks as inputs, the compare

model prices versus data.

Step 4

Estimate private signals using a Kalman Filter.

Step 5

Estimate the contribution of each factor to �nal prices and measure the residual (unexplained

fraction of price changes).

3.2.1 Step 1

I proceed to linearize the model around steady state. Variables are rede�ned in the following way:
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For any variable y; ŷ = y� �y where �y is the steady-state value of the respective variable

and ŷ is the linear deviation from it.

Therefore, we must solve for steady-state values. Steady-state estimates are obtained in the

following way:

First, I de�ne a harvest size of one:

�A = 1:

Then I normalize demand for each quarter, such that they all add up to the harvest

4X
i

Zi = 1:

I estimate quarter-speci�c seasonality �Zi for demand in the data and normalize it such that

they all add up to the harvest size:

�Z
0
i =

�Zi
4X
i

�Zi

:

Therefore, we will have
4X
i

�Z
0
i =

�A = 1:

For inventories, in steady state they should not deviate from �xq since the values for these are

picked such that sticking to the target is always optimum. If speculator�s match their target �xq, the

marginal inventory cost is zero These are calibrated by taking average inventory levels (relative to

harvest size) for each quarter throughout the whole sample. Therefore, the policy function equation

from the speculator�s problem will give us the evolution of prices throughout each quarter in steady

state:

�Xt+1 � �xq+1 = 0 ) �p4 =
1
� �p3 =

1
�2
�p2 =

1
�3
�p1:

Therefore, we only need the value of prices in steady state for one quarter to determine the rest.

Given values �A; �Z
0
i ;
�Xi; i = 1; 2; 3; 4 and the price evolution path, I can introduce these values into

steady-state market clearing equations to obtain �p1 numerically:
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�X2 = �Ap�1 � �Z
0
1�p
��
1 + �X1:

�X3 = � �Z
0
2�p
��
2 + �X2:

�X4 = � �Z
0
3�p
��
3 + �X3:

�X1 = � �Z
0
4�p
��
4 + �X4:

Once steady-state values are calculated, I proceed to linearize previous equations (4) and (5).

Linearizing the market-clearing equation results in:

X̂t+1;y = � �Ay �p
��1
t;y p̂t;y + �p

�
t Ây � �p

��
t;y Ẑt;y + �

�Z �p���1t;y p̂t;y + X̂t;y: (8)

Speculator�s policy function will then become:

Xt+1 =
�E[pt+1]�pt
2��t+1

: ) 2��t+1Xt+1 = �E [pt+1]� pt

2��t+1X̂t+1 = �E
�
p̂0t+1

�
� p̂t (9)

with �t+1 2
�
�; �II

	
:

Therefore, variables will re�ect deviation from steady-state values in levels. It is important to

point out that steady-state values are quarter speci�c. Equations (8) and (9) are linear in prices

and inventories. Therefore, the price solution equation will have also a linear solution. Since both

equations depend on parameters that vary in each quarter, the price solution equation will also

vary depending on the quarter.

Conclusion 3 As a result, the linearized new state space will have four price solution equations,

one for each quarter:
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p̂1 = �
I
1Â1 + �

I
2"
Z
1 + �

I
3X̂1 + �

I
4�
A
1 + �

I
5�
Z
1 + �

I
6Ẑy�1 + �

I
7Â0 + �

I
8Ẑy:

p̂2 = �
II
1 Â1 + �

II
2 "

Z
1 + �

II
3 X̂1 + �

II
4 �

A
1 + �

II
5 �

Z
1 + �

II
6 Ẑy�1 + �

II
7 Â0 + �

II
8 Ẑy:

p̂3 = �
III
1 Â1 + �

III
2 "Z1 + �

III
3 X̂1 + �

III
4 �A1 + �

III
5 �Z1 + �

III
6 Ẑy�1 + �III7 Â0 + �

III
8 Ẑy:

p̂4 = �
IV
1 Â1 + �

IV
2 "

Z
1 + �

IV
3 X̂1 + �

IV
4 �

A
1 + �

IV
5 �

Z
1 + �

IV
6 Ẑy�1 + �

IV
7 Â0 + �

IV
8 Ẑy:

�Ai = [�
Apr
i �Apui ] �Zi = [�

Zpr
i �Zpui ]:

where �Ii ; �
II
i ; �

III
i ; �IVi are price policy function parameters with i = 1; ::; /8 for each state

variable and q = I; ::; IV for each quarter. Recall that in steady state �i = 0 for all signals �, both

private and public.

It is important to remember that the sole role of "last year�s" production and demand is to

inform about future production and demand. Therefore, if persistence parameters �A and �Z are

equal to zero, �J7 and �
J
8 should also be zero for all J:

3.2.2 Step 2

I obtain USDA data series for yield per acre, production, demand (local and exports), prices, and

stocks. I proceed �rst by detrending and deseasonalizing them, then normalize their mean so that

index points can be read as percentage points. To obtain the exogenous demand component, I

instrument prices with yield per acre to obtain demand elasticity through a typical IV analysis. I

use residuals as estimates for Zy;t; just as in the long-run-trend model. I then estimate the annual

component of the residuals to obtain Zy and Zt series. For supply elasticity �, again I use Roberts

& Shlenker�s (2013) results. As a robustness check, other values for � were used with very similar

results.

When it comes to reports, I digitalize USDA forecasts for each marketing year, from 1975 to

2016. These forecasts are for demand and yield per acre. To obtain �Zput forecasts from demand

forecasts, I regress these last ones against forecasted yields, then use the residual as a demand

shock estimate. I do this because given that a simple demand forecast contains also an endogenous

forecast, since a higher yield would endogenously result in lower prices and higher consumption,
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I eliminate this endogenous component of the demand forecast by regressing it against the yield

forecast.

In this section I calibrate the parameters to simulate and show quantitative results. Given the

data available (described above), I do the following. First, I calibrate the parameters necessary to

calculate �qi which are �; �
I ; �II ; �A; �Zy; �Zq; !; and �: Demand and supply elasticities are estimated

as indicated in the previous step. The persistence of supply and demand fundamentals are cali-

brated by estimating AR(1) processes, and volatility is obtained by taking the residual�s standard

deviations.

Storage cost parameters �I ; �II are estimated by choosing values that minimize residuals. That

is, the previous set of equations will give theoretical prices as the result for each quarter. The

di¤erence between these and observed prices are the residual. Parameters �I ; �II were calibrated

such that the total sum� in absolute values� of the residuals is minimized.

The next step is to calibrate public and private signaling parameters. Regarding public signals,

it is important to say that these appear in speci�c days, which are publicly known in advance. That

is, at a certain time, information becomes publicly known in a report and markets react almost

instantaneously Price changes for those "announcement" days can be seen, and even though private

information is always present in markets, it is reasonable that by constraining price changes to the

speci�c announcement day isolates public signal�s e¤ect on prices.

The precision of public forecasts is estimated by comparing USDA demand and supply forecasts

versus ex post realizations. The most non-straightforward task, however, is to obtain a value for

the precision of private signals. I proceed to identify them as follows. First, I calculate �I4 and

�I5 by using the method of undetermined coe¢ cients (I use this to obtain all parameters �qi ).

Second, I obtain the release dates for public signals (USDA forecast reports) and the same-day

price reactions. I then regress same-day price changes against the changes in forecasted values in

the released reports� with respect to the previous report� for that day. This allows me to estimate

the e¤ect of public signals on price changes. I know that the parameter that relates price changes to

public supply signaling in the model, �41;A; should match this previous price reaction estimation.

Once I know the value for �41;A, and given that I also know �4; I can obtain the value of the

weight of public signals relative to private ones, 1;A Since 1;A =
���pu

�1
1;yA

���pu
�1

1;y;A +���pr
�1

1;y;A

and public signal

precision, ���puA ; is known, I can identify private signal precision, ���prA . The procedure to identify
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���prZ is identical.

Calibration results for US corn markets can be seen in Table IV.A:

Table IV.A

Description Variable Value Source

Discount factor � 0:995 Literature

Demand elasticity ! 0:18 IV

Supply elasticity � 0:15 Literature

Demand persistence �z 0:64 AR(1) Zt

Supply persistence �A 0 AR(1) At

Steady State productivity �A 1 Normalization

Steady State demand level �Zy 0:25 Normalization

Inventory adjustment cost quarters I,II,III �I 0:0204 Model calibration

Inventory adjustment cost quarter IV �II 0:046 Model calibration

Yield volatility �A 0:098 Stand Dev At

Demand volatility �Z 0:018 Stand Dev Zt

Public signal A st dev ��puA 0:06 USDA Yield forecast

Public signal Z st dev ��puZ 0:048 USDA Demand forecast

3.2.3 Step 3

Once I have determined the values for the parameters, I simulate the model by feeding in shocks

obtained from data. That is, I normalize, detrend, and deseasonalize the data and use the residuals

as supply, demand, information, and inventory state variables. Since I don�t observe private signals,

for now I will assume them to be zero (I will later proceed to estimate them). Simulation results

can bee seen in Figure VIII.
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Figure VIII

Figure VIII. Lines show the evolution of observed corn prices versus model simulated ones. Units are

deviations from steady state in percentage points.

Prices Figure VIII shows the results given by the simulation versus those in the data. At �rst

glance, we can say the model generates a price series that is in line with the one observed in the

data. However, it is clear that for some years there are discrepancies between model-generated

and observed prices. This can be better seen in Figure IX, which shows residuals measured as

di¤erential between observed and e¤ective prices. On average, around 36% of price changes cannot

be explained within the model. However, this is not uniform throughout time. Indeed, there are

quarters, such as 1985-1987, in which non-modeled factors explain almost 60% of price changes, and

others in which that drops to less than 10%. There are several reasons for this. From a theoretical

point of view, the model is a linear approximation to equilibrium values. Hence, second-order e¤ects

might be bigger than expected. From a practical perspective, there could be non-pro�t-maximizing

institutions in place� for example, government policy. Agriculture is an industry subject of several

policies, with tax breaks, subsidies, inventory, and price policies in all world markets, with the US
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being no exception. It is important to say, however, that unexplained factors do not seem to have

increased in the past 15 years.

Figure IX

Figure IX. Bars show the percentage points of price changes that cannot be explained by factors in

the model. For some periods of time, prices can di¤er almost 60% from these based on their fundamentals.

3.2.4 Step 4

A key innovation of the model is the incorporation of both private and public signals into agents�

decisions. Agents use these signals to predict the annual component of demand and yields. They

have both private and public sources, and weight them proportional to their precision. I use USDA

reports released monthly that predict future demand and yield per acre; I consider these to be

public signals since anyone can access them at no cost. I then estimate private signals through a
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Kalman Filter, in which the observables are prices and ex post realized annual demand and yield

values.

Formally:

xt = Ftxt�1 + "t: state space model

yt = Htxt +Btut + �t: observables

where

yt = [pt "
A
t+1 "

Z
y+1]:

ut = [At "
Z
t Xt �

Apu
t �Zput Zy�1 Zy]:

xt = [�
Apr
t �Zprt ]:

�� and �" are covariance matrices for �t; "t: I calibrate �� by measuring the precision of public

forecasts and the standard deviation of changes in price that remain unexplained by the model.

Values for �";are the precision in private forecasts estimated previously. Matrices Ft;Ht; and Bt

represent the laws of motion for private signals, the e¤ect of private signals on prices, and the e¤ect

of the rest of state variables on prices, respectively. Also, the second and third rows of matrix Ht

represent the relation between signals and ex post realizations. That is, they capture the fact that

signals forecast ex post realized demand and supply shocks with some error.

Estimations can be seen in Figures X and XI, which show the estimated private signal. Although

private and public signals tend to move together, as one would expect, there are several moments

in which these di¤er, which may explain public information is not the only driver of expectations.
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Figure X

Figure XI
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Figures X - XI. Bars show the forecasted demand and supply shock for each quarter by both private

and public signals. Fig. X shows supply shock forecasts and Fig. XI shows demand shock forecasts. Darker

bars show forecasts from USDA, and light bars show private forecasts estimated using a Kalman �lter.

An important step is not only estimating signals, but also to checking if they are relevant.

Figures XII and XIII (see Appendix) show the contribution to price change in index points for

1975-1979. In certain quarters, their impact on prices can reach almost 10%. That is, these

information shocks are economically signi�cant the moment they occur. When considered over the

whole sample time span, their relevance di¤ers based on whether they are public or private. In

the �rst case, overall impact drops to 2.6% (combining demand and supply forecasts), while in the

latter it reaches 15%. This is not surprising, since in the model public signals only occur in two

quarters each year, whereas private signals take place every quarter. Also, private signals are more

volatile, and therefore have a greater impact in total volatility.

3.2.5 Step 5

Table IV.B describes the contribution of each factor to price changes, measured by the average ab-

solute value of factor e¤ect over price change (according to model policy parameters). As expected,

the main driving factors are demand components (both annual and quarterly) and inventories,

since when they are combined we reach almost 50% of price variation. The number associated

with yield per acre is particularly small, but this should not surprise since the model divides time

into quarters, with production (yield) only in one of four quarters. The supply in�uence on prices,

hence, tends to be absorbed by stocks in the following quarters, since when there is a good or bad

yield this later changes the level of stocks during the rest of the marketing year.
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Figure XIV

Figure XIV. Decomposition of price changes per factor. Di¤erent shades indicate the individual e¤ect

of each variable over total price change for that quarter. Units are in percentage points.
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Table IV.B

Fraction of Price Change Due to Each Variable*

Variable Description Fraction

�Aprt Supply Private Signal 0:056

�Zprt Demand Private Signal 0:099

At Productivity 0:018

"Zt Quarter Demand Shock 0:089

Xt Inventories 0:088

�Aput Supply Public Signal 0:009

�Zput Demand Public Signal 0:019

Zy�1 Past Demand Level 0:043

At�1 Past Productivity 0

"Zy Annual Demand Shock 0:274

Residual 0:305

*in absolute values

4 Conclusion

This paper addresses the issue of agricultural commodity price changes throughout the past decades.

In particularly, I take the case of corn for US markets. I derive two analyses: long run and short

run. In the �rst, I develop a simple model with annual variables in which I simulate theoretical

prices, such that demand and supply match each year. That is, I estimate the price that would

have theoretically cleared the market (no inventory changes), then compare it against the observed

prices. The intention was to develop what one could consider a proxy for a non-distorted price

and compare to see whether the observed price was too far away from it. Results show that after

the 1996 farm bill, the relationship between these two time series is very close. That is, there

does not seem to be a major di¤erence between the market-clearing price and the observed price.

Before 1996, observed prices clearly di¤ered from theoretical ones. There are several explanations

for this, but a major one is that government agriculture policy intervened heavily, mostly through

price-sustaining policies. These were instrumented by either government accumulation of stocks
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(the CCC program) or subsidizing the private sector to do that for them (the FOR program).

After 1996, government policy became more market friendly by introducing price �oors below

equilibrium and limiting the government�s budget available for stocks. As a �rst result, Figure I

shows that no big distortions are to blame for price hikes in the 2000s. Moreover, a more detailed

analysis shows that the emergence of an energy-related source of demand for corn had a signi�cant

impact, and explains an important aspect of price increases in 2005-2010. This is in line with the

increasing positive correlation between corn prices and energy ones. An important thing to note

is that government mandates could have played a major role in this. Therefore, it could be that

we are observing a shift in regulation type from direct purchases to private coercion. Identifying

these interventions, quantifying them, and estimating their economic impact are subject�s for future

research.

The second part of the paper analyzes the short run. I develop a quarterly based model in

which agents can only produce at certain quarters, as in most agricultural markets. I then linearize

it and analyze second order moments. When focusing on a higher frequency, there is space for

speculation to play an important role, since it is possible to make pro�ts by storing for short

periods of time and reselling. In other words, it is irrational for inventories to go up forever, but it

is perfectly possible that they increase for one or two quarters. Therefore, I proceed by modeling

speculation and introduce a theoretical innovation: information shocks. Given that storage is by

de�nition related to expectations about future prices, the information available at each moment

is key to inventory decision-making. I introduce two sources of information: public and private.

Public information comes as a forecast by a government agency (in this case, the USDA). Private

information comes from information markets (consulting �rms, private research departments, etc.).

These reports help agents form expectations about what future prices might be and make decisions

accordingly. Given that USDA reports are publicly available, and that they contain quantitative

forecasts for demand and supply, I am able to estimate their impact on market prices. I also

identify the precision of private signals and estimate a time series for them. Results show that

as one would expect, demand and supply shocks account for a large fraction of price changes� as

much as 52%. However, this leaves a relevant space for speculation or inventory shocks. Information

shocks (which act by inducing agents to buy or sell their stored goods) can explain an additional

18%. A remaining 31% is due to factors not included in the model but that alter storage decisions,
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as well as second-order e¤ects in demand or supply. That is, in the second section I am able to

quantify by how much these unexplained factors can in�uence observed prices. Finally, another

important result is that non-explained sources of price changes, whatever these may be, do not

seem to be any more relevant in the 2000s than they were before. This again con�rms once more

that the idea that nonfundamental factors have increased in importance is not sustainable.

Results show that in the short run, prices can deviate severely from fundamentals, even though

in the long run that is not the case. Given that the market analyzed here is well developed in terms

of liquidity and transparency, this raises questions regarding how informative prices may be in the

short run, with important implications with respect to GDP accounting and theoretical modeling.

As in Romer (2016), my results challenge the notion of market prices as a result of a standard

pro�t- and utility-maximizing framework.

In conclusion, the evidence presented here indicates that there is no evidence for the hypothesis

that corn markets arti�cially deviated from fundamentals in the long run, but does allow the

possibility for quarterly frequencies. As an innovation, this paper also shows the important role

information shocks play in the short run. Unknown sources of variability are quanti�ed, but are

yet to be explained. Further research in this respect is necessary.
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Part II

Commodity Futures and Seasonal Correlation

Francisco Arroyo Marioli, UCLA

Although competitive storage theory has proven successful in explaining many patterns for

commodity prices, some important features remain unexplained. Particularly, while standard mod-

els predict low correlation between future prices with delivery dates before and after the harvest,

the data suggests otherwise. To correct this issue, my approach assumes that harvests appear

continuously rather than at a single moment. This addition to the standard model allows me to

link pre-harvest and post-harvest markets to the same source of supply, hence obtaining the high

correlation observed in the data. Empirical evidence also suggests that the assumptions used are

realistic. Results are robust to di¤erent parameter speci�cations.

40



6 Introduction

Commodity markets have several characteristics that de�ne them and make them unique. They

are more homogeneous, more transparent and more liquid than other types of goods. Information

regarding price and quantity is available at high frequencies. Many of them have markets with de-

livery dates in the future, as well as call and put options. Compared to markets like manufacturing,

the market for commodities is much more developed.

Because they are mostly natural resources, the production process also tends to be unique.

The extension of this paper will be focusing on farming products to explore the implications of a

key feature of agricultural markets: the seasonality of their production process. By seasonality,

I will include any production process that presents exogenous monthly variations throughout the

year systematically every year. That is, seasonal production processes are variations that repeat

themselves every year and hence can be forecastable within a certain range. Di¤erences in season-

ality allow for di¤erent future curves depending on the product in question, its harvest season and

geographic location of markets.

Agricultural goods are di¤erent from most other goods since they can only be produced (har-

vested) during a certain interval of the year. Production decisions must follow a certain timing

and schedule. This process is all common knowledge and allows for a set of future contracts to be

signed before delivery dates. Since production is irregular but demand for these goods is steady

throughout the year the inevitable answer is to add storage to the industry. Within a closed

economy framework, the existence of storage means that throughout the year consumers will be

�eating�old harvest leftovers (stored in silos) while waiting for the �new�harvest to come in at

some point. Therefore future prices with delivery dates prior and after the new harvest will have

di¤erent sources of supply. Since supply during di¤erent moments in time will come from di¤erent

sources (harvests), then supply shocks (or information shocks regarding supply) should not �move�

future prices in the same direction. Moreover, shocks regarding the new harvest (i.e., a USDA

report that forecasts the next harvest) should only a¤ect futures with post-harvest delivery dates

whenever these are in backwardation, which is the usual case for agricultural commodities since it

is common to see a "drop" in future prices that mature after the next harvest. However, data shows

the opposite. Correlations between new and old future prices for all main agricultural commodities
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are not only positive but also consistently high throughout the years, usually between 0.7 and 1.

The �rst explanation for this is that demand shocks might be autocorrelated, hence allowing for

positive correlation between all future prices. However, Pirrong (2011) addresses this hypothesis

as "incomplete" by analyzing the correlations under supply-side news shocks. Indeed, he �nds that

even after conditioning the sample to supply-related information shocks, correlation is still positive

and close to one. Therefore, some "supply" based explanation is still required.

The main hypothesis in this paper is that new harvests are sold in both �old� and �new�

markets. That is, if we start by assuming that harvests come �in pieces� (instead of all in one

moment, as the literature does), market equilibrium will result in selling the �early part� of the

harvest in the old markets, and the rest in the new one. Hence, both markets would have a common

source of supply, allowing for supply induced correlation.

It is also important to say that the model used in this paper is consistent with standard liter-

ature. Competitive storage models have been widely used within the commodity literature, with

many positive results when contrasted empirically. The main goal here is to explain correlations

between future prices of seasonal goods without contradicting the key �ndings that competitive

storage models have already achieved.

This paper is organized as follows: the present section is the introduction to the topic and main

puzzle that this papers intends to address. Section 2 details the main �ndings of the literature and

how this issue has been approached so far. Section 3 introduces the model, explains the puzzle

and shows theoretical results. Section 4 presents empirical evidence for the assumptions used and

results obtained. Section 5 concludes. An appendix is attached with proofs for all the results shown

in section 3.

7 Literature overview

Storage theory has been widely used throughout the commodity literature. It dates back to almost a

century ago with Kaldor�s 1939 convenience yield hypothesis stating that future prices are expected

spot prices adjusted for storage costs, opportunity costs and an implicit bene�t -convenience yield-.

This theory contrasted with Keynes�s normal backwardation theory, which describes future prices

as expected spot prices plus a risk premium. The empirical analysis of competitive storage theory
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however didn�t come until the late 80�s, probably due to the availability of data and computational

capacity. Many statistical aspects of these markets were studied within this framework. Fama

& French (1987) test storage models and analyze the relation between the basis ( the di¤erence

between future and spot prices) and risk premiums (normal backwardation approach). They �nd

evidence in support for storage theory and also, for some commodities, evidence in favor of the

risk premium approach. In the same direction, Gorton, Hayashi and Rouwenhorst (2012) also �nd

evidence for the predicted relation both between inventories and basis and between inventories

and risk premiums in a much broader set of commodity data. They don�t however �nd a relation

between trading position and risk premiums. Both Ng-Pirrong (1994) and Fama & French (1988)

analyze variability in spot and future prices and their relation with inventory levels, comparing

model predictions with data, and again �nding interesting results in its favor.

In a seminal paper, Deaton-Laroque (1992) apply standard rational expectations competitive

storage model to thirteen commodities and match moments in the data like skewness, kurtosis

and conditional variances depending on the type of demand shocks simulated. Dvir-Rogo¤ (2014)

apply the storage model with growth to the oil market, obtaining results that match data in certain

aspects for both before and after 1973, when supply became restricted.

More related to the issue addressed in this paper, Pirrong examines correlations between new

and old harvest prices for six agricultural commodities for a thirty-year sample and shows a sys-

tematical high and positive correlation for all goods. Moreover, he repeats this analysis but then

conditioning the sample on USDA report harvest forecast release dates, that is, he only tests for

correlations on days where such reports are released. These USDA harvest reports contain infor-

mation regarding supply: harvests forecast, quality conditions, expected timing, etc. These results

conditioned on report release dates still show a high positive correlation. Therefore, one cannot

simply explain such correlation through autocorrelated demand shifts as in Deaton-Laroque (1992).

He demonstrates that these results are inconsistent with simulated results from a storage model

and also claims that alternative explanations such as intertemporal substitution and inventories

as inputs cannot obtain the quantitative desired results. Finally, he suggests that multiple com-

modities in a general equilibrium might be a more fruitful approach, but faces computational and

quantitative constraints. The focus of this paper will be to reconcile this discrepancy between

model and data.
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8 Model

Time is continuous and runs from zero to some �nite time T , so the economy starts at period 0 and

ends at T . Initially, there is an endowment of stored goods Qs0 = Q(0); also known as "carry-in".

Later, during the time interval [a; b] ; 0 < a < b < T a harvest of y quantities (exogenous)

comes into the market following some frequency g(t) with domain [a; b]. Harvest scale y is random,

hence it will be the only source of uncertainty. Frequency g(t) is deterministic and perfectly known.

There will be two agents: consumers and speculators. Consumers buy good c for �nal consump-

tion. Speculators on the other hand are risk neutral agents that wish to maximize pro�t. They

buy goods in order to store and sell them later.

8.1 Consumer�s problem

There is a representative agent that can consume either commodity good C or numeraire good w:

Since the commodity good is a very small fraction of the economy, I will assume preferences are

quasilinear in such good. Formally, her problem is:

maxE0

24 TZ
0

exp(�rt)
�
Z C(t)

1��

1�� + w(t)
�
dt

35
s.t. S(t)C(t) + w(t) = �W where C indicates consumption of the commodity good, w is

the numeraire and �W is income

FOC for consumers imply:

S(t) = exp(�rt)ZC(t)�� (1)

8.2 Speculator�s problem

There is a representative speculator, which stands for both farmers and �nancial agents in practice.

Speculation occurs by buying goods for storage and selling them later. At each time t the speculator

solves the following problem:

max
X(t;i)

Et

24 TZ
t

mt(i)S(i)X(t; i)di� S(t)X(t)
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X(t; i) � 0, for all t; i

X(t) =

TZ
t

X(t; i)di

where S(:) is the spot price, X(t; i) is the good stored at time t to be sold at time i > t, X(t)

is total goods stored at time t and mt(i) is the stochastic discount factor between time i and t:

Optimality conditions imply that:

Et [mt(i)S(i)] � S(t) ; with " = " if X(t; i) > 0 (2)

That is, in equilibrium the expected discounted value of the good has to be lower or equal than

the spot price. The reason of the inequality is given by the non-negative constraint on storage. If

expected discounted prices are greater than present ones, then arbitrage pro�ts can be made, but

the opposite is not the case, since you cannot have negative goods. Notice that if equation 2 holds

with equality then speculators are indi¤erent between any amount of storage. In equilibrium stored

amounts will be given by market clearing conditions:

X(t) = Q(t) + y(t)�D(S(t)) (3)

Also, since _Q(t) = y(t)�D(S(t)), then

_Q(t) = X(t)�Q(t) (4)

Also, since _Q(t) = y(t)�D(S(t)), we have

_Q(t) = X(t)�Q(t) (5)

Lemma 1 If storage is positive, consumption will move according to the following equation:

_c(t)

c(t)
= �r

�
(6)
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The previous lemma states that consumption should move smoothly according to storage costs

and elasticity. This will imply that prices move in a way such that they match interest rates.

Hence, the solution be will be composed of intervals during which non-negative constraints are

active or non active. It is trivial to point out that when the non-negative constraint is active, then

consumption is just equal to harvest pick-up c(t) = y(t): During intervals of with positive storage,

consumption path is set by equation 6.

Take the case of some interval [�; �] with Q(t) > 0:The level of consumption can be found by

solving 6:

C(t) = exp(� r
� t)C(�) for � � t

where C(�) indicates some initial level of consumption determined by the feasibility condition:

Q(�) +

�Z
�

y(i)di =

�Z
�

C(i)di

Q(�) +

�Z
�

y(i)di =

�Z
�

exp(� r
� t)C(�)di

Q(�) +

�Z
�

y(i)di = C(�)�r

h
1� exp(� r

�(� � a))
i

C(�) =

r
�h

1� exp(� r
�(� � �))

i
24Q(�) + �Z

�

y(i)di

35 (7)

for some interval [�; �]

8.3 Futures market

Additional to storage, speculators can sign in any moment future contracts that set prices in a

speci�c time. By non-arbitage conditions, these should have the following value:

exp(�r(t+ j))F (t; t+ j) = E(mt(t+ j)S(t+ j)) (8.a)
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where F (t; t+ j) indicates a future contract signed at time t, regarding the commodity price at

moment t+ j: We can rewrite equation 6 under some equivalent measure to obtain:

exp(�r(t+ j))F (t; t+ j) = Ê(S(t+ j)) (8.b)

Equations 8 state that the value of future contracts signed in t depends on expectations over

spot prices at delivery moment t+ j. If this condition was not the case, then speculators would go

long/short and make in�nite expected pro�ts.

8.4 Centralized problem

The previous solution can also be mapped into a planner�s problem, hence proving that it is also

e¢ cient. In summary, the planner�s problem is:

Max
x

E0

24 TZ
0

exp(�rt)Z C1��1�� dt

35
st _Q = y � x Q � 0 Qs0 > 0 where y(t) indicates the harvest that is picked up

in moment t:

Q(T ) � 0

The solution will depend on harvest variable y(t) = G(t)H, where G(t) =

tZ
0

g(i)di indicates the

fraction of harvest H picked up up to time t. Q(T ) indicates storage leftover at time T . Optimality

implies that Q(T ) = 0; since if not (Q(T ) > 0) we could �nd a better solution by just reallocating

such storage to consumption.

As can be seen in appendix, the solution will have for every t :

� = exp(�rt)Zc�� (9.a)
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�0 = �HQ = �
r

�
+ � (9.b)

_Q = y � x (9.c)

�Q = 0 (9.d)

where � is the multiplier from the Hamiltonian related to the law of motion (also interpreted

as "shadow prices") and � is the multiplier associated with the non-negative constraint.

Therefore, for any social planner�s solution I can �nd a decentralized version by setting S(t) =

�(t) to �nd prices and use non-arbitrage conditions to construct the future curve.

8.5 Degenerate harvest case

Let�s assume now that in moment J , harvest y (random) will come in all at once. Mathematically,

we assume that g(t) degenerates in a single point 0 < J < T; that is, g(J) = 1 and " = 0" otherwise.

An easy way to frame the solution to this situation is as if there were two markets, one that goes

from [0; J)and has carry-in Qs0 and another one during interval [J; T ]:with carry-in y: Obviously,

arbitrage between these two markets in time is possible with storage technology (i.e. bring present

goods to the future). An intuitive approach is to call the �rst term "old-harvest term" and the

second one "new harvest term".

Hence there are two possible scenarios, depending on the size of y: For simplicity I will assume y

can be in two ergodic states: YH , where y is always big enough to cause a drop in future prices (see

scenario II below), and YL, where y is never big enough to cause a drop in future curves (scenario I).

The goal of this is assumption to simplify the analysis even though it doesn�t necessarily correspond

to reality. By focusing on the simple case, I can concentrate in cases where backwardation takes

place, and yet still get the desired correlation found in the data. Hence results will be strong since
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I will not need to go for possible "jumps" for contango to backwardation as a main explanation for

correlation.

Scenario I: Ê [S(J�)] = Ê [S(J+)]. One interval all along [0; T ] with positive storage

Proposition 1 If the harvest is not big enough, there will be no "kink" in prices, since there are

incentives to have positive storage all along the whole time interval [0; T ]

Proof. See appendix

Here it is common knowledge at time zero that y 2 YL ; hence, y will always be small.

Figure I

Here, speculators have incentives to arbitrage by reducing available goods in the �rst term and

storing them for the second one, hence increasing old-harvest prices and reducing new-harvest ones.

This will continue up to the point where they converge, only then will we be in equilibrium (blue

line). Inventories will drop throughout time but never reach zero until the end of the period. For

this to happen, the harvest must be small enough. I call this the "small harvest e¤ect".

Now we will have a single interval solution, despite the harvest arriving at J . Now both carry-

in Qs0 and harvest y will be consumed smoothly throughout [0; T ] : Since y is ex ante a random

variable, in equilibrium the price will be:
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S0 =M(0; T )Ê0
�
(Qs0 + y)

���

F (0; t) =M(t; T )Ê0
�
(Qs0 + y)

��� 0 � t � T

where M(A;B) = exp(�r(A))Z
"

r
�h

1�exp(� r
�
B
i
#��

The results are pretty intuitive. The �rst term M(t; T ) is a constant that depends on interval

length "T � 0" and delivery date t and is decreasing in T: That is, the bigger the interval, the

higher the price, since you have to stretch storage throughout more time. Notice also that prices

are continuous and decreasing in carry-in variable Qs0 (the more reserves you start with, the more

you can consume in each moment of time).

Notice that in scenario I, changes in expectations of y change prices all over the interval, even

before the harvest. Here the correlation among futures with both old harvest and new harvest

delivery dates should be positive and close to 1. This matches what happens in the data. The

puzzle however, comes when prices are in backwardation, as will be seen in scenario II. Indeed, the

data shows that correlations are still high despite future curves show very often a "backwardation"

position.

From this point onwards I will de�ne as a "Hotelling interval" any time interval where:

a) Future curves move according to interest rates (plus implicit storage costs, in this case zero)

b) Storage is positive

c) No goods are "left over" once this interval is over

Hence, scenario I shows a future curve that presents a "Hotelling" interval all along the entire

time framework [0; T ].

Scenario II: Ê [S(J�)] > Ê [S(J+)]. Two intervals [0; J) and [J; T ], with Q(J) = 0:

Proposition 2 If the harvest is big enough, there will be a negative drop in prices at time J, since

there are no incentives to store for after the harvest.
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Proof. See appendix

The intuition is the following. If agents know that a big harvest is to come at time J , then it is

optimal for them to consume all their stored goods right to the moment before the harvest comes

in. Then, for t � J , they can consume whatever the resulting harvest was.

In this case, I assume it is known at time zero that y 2 YH ; hence, y will always be big enough

such that we are in backwardation. Therefore, the future curve will take the shape of �gure II:

Figure II

Here, by non-negativity of storage, arbitrage is not possible and we have an equilibrium with a

negative discontinuous jump in J: Inventories are fully used before the harvest arrives at J . This

will happen if the harvest is big enough. I call this the "big harvest e¤ect".

Mathematically, at time 0, future prices will be

For the �rst term 0 < t < J;

S0 =M(0; J)Q
s��
0
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F (0; t) =M(t; J)Qs
��
0

For the second term J � t � T , since we have uncertainty over harvest size y, expectations

will now be a part of the solution:

F (J; J) = F (J; t) exp(�r(t� J)

F (J; J) =M(0; T � J)Ê0
�
y��
�

F (J; t) =M(t� J; T � J)Ê0
�
y��
�

J � t � T

Figure II shows a future curve that breaks in J . Since storage cannot be negative, new harvest

markets (futures that mature after J) will not be linked with old harvest ones (futures that mature

before J). Hence if expectations regarding the harvest change, only the second term price curve

should change. The �rst one should not move at all. Therefore, at least for shocks that are small,

curves should not move together, resulting in close to zero correlation.

The puzzle here is that this is not what is seen in the data. Indeed, Pirrong shows that

correlations between new and old harvest prices are positive and very high, for all main agricultural

crops, even when most of the time future curves are in backwardation. An initial explanation that

follows from Deaton-Laroque (1994) is that such correlation is explained by demand shocks that

tend to have persistence. However, although it may be true, high correlations still hold even

when controlling for information shocks regarding only supply variables. Pirrong (2015) tests the

relationship between old harvest prices versus and new harvest ones by controlling for days when

USDA reports (that contain information only related to supply) are released. He �nds that the

previous results still hold. Hence, there must be some supply side explanation for this feature

of the data (not necessarily contradicting the persistent demand hypothesis). The intention here
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is to obtain such correlation within a competitive storage benchmark by adding a more realistic

assumption: the fact that harvests appear continuously rather than in a one-time lump fashion.

8.6 Continuous harvesting

I will now proceed to the version of the model that drives the main results in this paper. The goal

here is explain supply-side induced correlation even under backwardation conditions.

Let there be a period of harvesting in the interval [a; b]; 0 < a < b < T: Within that period,

harvest comes in according to a known frequency function g(t); with domain a � t � b: The size of

the harvest, H is a random variable, and information regarding such variable is revealed at some

moment J; t < J � a:

Therefore, at a given moment t, total goods harvested up to that point are y(t) = G(t)H;

where G(t) =

tZ
0

g(i)di. For simplicity, I will assume g(a) = g(b) = 0 ("smooth" starting and

ending). Since the goal of the paper is to explain correlation under backwardation cases, I will

assume that the distribution of H is such that probability of contango is zero. Hence we will be

under backwardation almost surely. Since it is already known that under contango correlation is

high and close to 1, this assumption will make results stronger and do not contradict in any sense

other possible scenarios. Formally:

H 2
�
H
¯
; �H
�
; where 0<H

¯
< �H; and H

¯
is such that always for some t 2 [0; T ] ; _S(tjH

¯
)

S(tjH
¯
) < r for all t;

0 � t � T:

Lemma 2 If H
¯
is such that spot prices drop at some time, then this is also true for any H

¯
<H.

Proof. See appendix
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Figure III

Theoretical equilibrium future curves under no uncertainty

Claim 1: There exists an initial Hotelling interval [0; A]; with A � a.

Intuitively, if the early part of the harvest G(A) is small, we will have the "small harvest e¤ect"

until some moment A � a: At that point, the major part of the harvest starts �owing in, causing a

"big harvest e¤ect", hence followed by a negative slope. If g(a) = 0 (i.e., harvest starts "smoothly"),

then A > a:

Claim 2: At some moment B; a � B < b, storage will occur and hence Hotelling�s rule will

apply from that moment onwards until the ending of the period, T:

The logic operating in this case is that after b, we must have some stored goods, otherwise

nothing would available and prices would skyrocket to in�nity. Hence the storage process must

start at some moment prior to the harvest ending, B < b:

Proof. See appendix.

Let us take the case of the �gure III, where A > a: In this case, prices can be de�ned within

three intervals : [0; A); [A;B) and [B; T ]
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8.7 Main Result

During the �rst and the last intervals, Hotelling�s rule applies, hence time zero future prices can be

written as:

F (0; t) = M(t; J)
�
Q(0)� �Q(J)

��� (10.a.1)

0 < t < J

F (0; t) = M(t; A� J)E0
h�
G(A�)H + �Q(J)

���i (10.a.2)

J � t < A

F (0; t) = M(t�B; T �B)Ê0
�
[(1�G(B))H]��

	
(10.b)

B � t � T

Where �Q(J) will be such that in equilibrium F (0; J�) = F (0; J+): Hence �Q(J) is a function of

expectations and carry-in Q(0):

During the interval [A;B) Hotelling�s rule is not active, hence there is no storage taking place.

Therefore, demand is constantly supplied by the continuous harvest in�ow. With continuous har-

vesting, the market clearing equation becomes:

ZS��t = D(St) = dG(t)H for A � t < B

F (0; t) = Ê0 (St) = ZÊ0
�
(dG(t)H)��

�
(10.c)

A � t < B
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Intuitively, we can call equations 10.a.1, 10.a.2 "old harvest prices", 10.b and 10.c "new harvest

prices", as the literature does.

The only source of randomness comes from E0

h�
G(A�)H + �Q(J)

���i in 10.a.2, �Q(J) (that
depends itself on expected harvest �see appendix) in 10.a.1, Ê0 (H��)in 10.b and 10.c. Clearly,

all terms have the variable H in common and are strictly decreasing in it for any � > 0. Prices are

set according to expectations over those terms. If expectations change (due to new information for

example) then both new and old harvest prices will change in a similar way. Correlation will be

high. Hence, the model solves the puzzle presented by Pirrong without abandoning the inventory

based framework.

The source of randomness is the set of possible conditional expectations agents can have at

each time t. Hence, the �nal random variable is the conditional expectation itself. Depending on

di¤erent sets of information, expectations in time zero (or time j > 0, WLOG) will be di¤erent.

Finally, if we take a closer look at equation 10.A, we can see that the expectations term has both

carry-in Q(0) and early harvest G(A)H. Hence, I proceeded to simulate correlations for di¤erent

relative values of carry-in to expected early harvest, �nding that as long as the early part of the

harvest G(A)H is positive, correlation will always be between 0.7 and 1, as in the data. Results are

robust to di¤erent values of elasticity �. Hence, the model successfully achieves the values observed

in the data, even after conditioning the possible set of results to backwardation future curves only.

Results can be summarized in Figure IV. The concept is that, given that harvest gets picked up

continuously, "Marketing years" for seasonal commodities are de�ned endogenously by containing

both old harvests and "early-parts" of new ones. Therefore, in each marketing year, there are

always goods supplied by the new "upcoming harvest, allowing for positive strong correlation

between future prices with di¤erent delivery dates.
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Figure IV

Marketing Year de�ned endogenously by markets

9 Empirical evidence

9.1 Hypothesis

A key component of the model used in this paper is the frequency and interval through which

the harvest is "picked up". Hence, it is of high relevance that such assumptions match the data.

Figures V (a-b-c-d) summarize the average harvest pick-up rate for 2011-2016 in terms of weeks.
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Figures V

Source: USDA. Average 2011-2016 fraction picked during each harvest week.

Two main points must be driven from �gures V. First, harvests for all main commodities follow

some bell shaped distribution throughout time. Second, the harvest interval lasts between 10 to 13

weeks, i.e. between one �fth and one fourth of a calendar year. Therefore, not only does harvest

progress come in a bell shaped form, but it also requires a signi�cant amount of time. That is, the

size of the interval is relevant.

9.2 Price and Inventory Seasonality

The model predicts that prices and inventories should both follow a heavy seasonal pattern. More-

over, between harvests, we should see prices grow as a function of interest rates plus storage costs

(Hotelling interval). Figures VI.a, b c and d depict seasonality components (monthly dummies)

for �rst generic futures for corn, soybean, wheat and cotton. Also, as a comparison, I show future

curves for non-seasonal commodities like gold and silver. First generic futures re�ect the value of

the future contract with closest delivery date. Once that date is reached, the series changes to

the following one, and so on. Hence, they are not spot prices, but rather an approximation that

might be two to three months lagged. An example of future curves can be seen in Figures VII

instead. In these, Hotelling intervals are pretty clear, and the relation between harvest season and

backwardation points is also evident.
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Figure VI.a

Figure VI.b
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Figure VI.c

Figure VI.d

Source: Bloomberg, USDA and Gorton & Hayashi (2012). Future�s month seasonality is calculated for

�rst generic futures with moving average multiplicative methods. Inventory levels are monthly log deviations

from past 12 month averages. Shaded areas indicate harvest periods.
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Figures VII

Future curves by Jan-02-2004

Source: Bloomberg and USDA. Horizontal axis indicate delivery dates

It is important to point out that when looking at future curves we only observe �ve months.

We cannot know what equilibrium values are between such dates. The lines drawn in �gures VII

are merely illustrative, they do not indicate prices for moments between delivery dates (squares).

Additionally, it is useful to point out that wheat has two harvests: spring (65% of total) and winter

(other 35%).

9.3 Finding the revelation moment

In the model I assume that at some moment J information is revealed. Of course, in reality that

is not necessarily true: there may be more than one or even a continuous of "J"s. The important

thing is that when information is revealed consumption paths are corrected and hence equilibrium

prices change. Therefore, we should expect to see higher volatility during these events. Table

I shows some suggestive evidence. The dependent variable is the standard deviation of generic

futures during the last 60 business days (rolled over throughout the years 2002 - 2017). Besides the
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agricultural commodities of interest, I add gold, silver and oil to have an outside reference. Indeed,

it is clear that during July, August and September volatility increases signi�cantly, coinciding with

pre- harvest months for all crops. This pattern is not observed with the other three non-agricultural

commodities.

Table I

Corn Soybean Wheat Cotton Gold Silver Oil

Feb 0.00249 .002498 0.0003201 .00009 .0005783 .00033 .00757**
[.0022] [.0022] [.0022] [.0026] [.0012] [.0023] [.003]

Mar .0034854 .006782*** 0.0031457 .003319 .0014 .00459** .01558***
[.0021] [.0021] [.0021] [.0025] [.0012] [.0022] [.0029]

Apr .00607*** .007844*** 0.0047109** .00247 .005377*** .00434* .008***
[.0022] [.0021] [.00222] [.0025] [.0012] [.0023] [.0029]

May .00483** .004992** 0.004672** .003377 .003592*** .00967*** .0092***
[.0022] [.0021] [0.00224] [.0025] [.0012] [.0023] [.003]

Jun .0008705 .007947*** 0.0008894 .00637** .003836*** .00575** .00888***
[.0022] [.0021] [.0021] [.0026] [.0012] [.0023] [.003]

Jul .02137*** .01511*** 0.015532*** .01721*** .00723*** .00063 0.01683***
[.0022] [.0021] [.00222] [.0025] [.0012] [.0023] [.0029]

Aug .0449*** .0283*** 0.0225113*** .02175*** .007425*** .002736 .01745***
[.0021] [.0021] [.00222] [.0025] [.0012] [.0022] [.0029]

Sep .02847*** .0332*** 0.0123016*** .0063034** .003526*** .00601*** .01506***
[.0022] [.0021] [.00222] [.0025] [.0012] [.0023] [.003]

Oct .01477*** .03109*** 0.00734*** .0051884** .0003 .01378*** .01458***
[.0021] [.0021] [.00222] [.0025] [.0011] [.0022] [.0029]

Nov .02149*** .0255*** 0.004888** .01386*** .001 .01078*** .0032
[.0022] [.0021] [.00222] [.0025] [.0012] [.0023] [.0029]

Dec .00759*** .0103*** 0.0013325 .007011*** .00003 .0033 .0013
[.0021] [.0021] [.00222] [.0025] [.0012] [.0023] [.0029]

cons .04393*** .03409*** 0.0525291*** .0472*** .0352*** .0527 .0729
[.00151] [.0018] [.00083] [.00161] [.0020967]

Rsq 0.25 0.15 0.08 0.04 0.03 0.03 0.03
Obs 3,743 3,743 3,743 3,743 3,743 3,743 3,743
*p<0.1, **p<0.05,  ***p<0.01

Dependent variable: Standard Deviation of Generic future  past rolling over 60 days

Source: Bloomberg. First generic futures. Jan 2002- April 2017

The case of wheat deserves a special explanation. April/May is planting season for winter

wheat, that only accounts for 35% of total US wheat production. However, since spring wheat is

the only major crop planted in October/November, and this coincides with corn, winter wheat and

soybean harvest dates, it is logical that whatever economic decisions are made in April determine

the amount to be planted later on. That is, once we know how much area has been dedicated to
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corn, soybean and winter wheat, the area to be used for spring wheat is straightforward.

9.4 High frequency data

Figure V depicts a theoretical future curve with continuous delivery dates. In reality, future markets

show only certain points throughout the year, with very low frequency. Therefore, I proceed to work

with cash prices, since they are available both daily and weekly In the model future values depend

on expectations over delivery date spot prices. Therefore, I proxy such curves with (average) spot

price series:

Figure VIII.a

Source. USDA. Lines depict 2000-2016 weekly average

Two standard deviation interval. Price level in log values
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Figure VIII.b

Source. USDA. Lines depict 1992-2016 weekly average

Two standard deviation interval. Price level in log values

Figure VIII.c

Source. USDA. Lines depict 1992-2016 weekly average for Kansas

Two standard deviation interval. Price level in log values

64



Figure VIII.d

Source: USDA. Lines depict 1992-2016 weekly average for Illinois

Two standard deviation interval. Price level in log values

Figures VIII.a, VIII.b, VIII.c and VIII.d show average changes in prices and harvests for 1992-

2016 throughout the harvest weeks, for corn, winter wheat and soybean in the US. That is, I take

the average harvest pick-up of each week of the harvest calendar and compare it with the average

level of prices (in logs).The following two points come out. First, during the �rst weeks prices

already drop, even before the vast part of the harvests starts. Second, price patterns stabilize

before the harvest peak is reached. Both facts match the models predictions and follow the theory

of storage�s prediction that agents anticipate to future markets and store for later, rather than

selling everything today at perhaps a lower price.

10 Conclusions

Competitive storage theory is a widely used framework when it comes to commodity markets.

Although it has been proven successful in many ways, there are still some issues that remain

unexplained. Particularly, the standard theory�s prediction regarding correlation between futures

with pre and post harvest delivery dates does not match empirical evidence. In this paper I address

this main issue without altering the fundamentals of storage models. by introducing continuous

harvesting, rather than the "at once" endowment approach. This allows me to separate intervals of
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the same harvest between "early part" and "non early". Results are perhaps best perceived in Figure

IV. Through non-arbitrage mechanisms, I manage to link in equilibrium old(pre) harvest prices with

the early fraction of the upcoming harvest. Hence, the same source of supply (the upcoming harvest)

is present in both old and new markets, allowing for the supply-side explained high correlation found

in the data. Therefore, what the model is showing is that the marketing year is de�ned endogenously

by markets by splitting harvests between early and non-early. Previous models could not capture

this feature because harvests were usually de�ned as a "all-in-one-moment" drop. The innovation

here is that giving length and continuity to harvest pick-up allow for this key aspect.

Results are robust to di¤erent parametrization of harvest size and demand elasticity, and are

valid even when markets feel they will be in backwardation. As long as the "early harvest" (i.e., the

fraction of the harvest sold in old markets) is positive, correlation will be positive and signi�cantly

high. These results are valid for any goods that are seasonally produced, therefore not constraining

results to any particular agricultural commodity. I show empirical evidence to support the hypoth-

esis of a continuous bell shaped harvest pick-up. I then take the case of corn, soybean, wheat and

cotton, four commodities where the US leads in many aspects (consumption, production, exports),

and contrast it with the theoretical predictions. I �nd very similar results to those given in the

model, for both low and high frequency prices (futures and cash prices, respectively).

Assumptions used and simulations were designed to explicitly explain and show a supply-side

source of correlation. Supply was assumed to be exogenous, demand to be deterministic and

markets to take place within a closed economy framework. This by no means disregards other type

of shocks that take place in reality, but merely intends to disentangle a remaining puzzle within

the competitive storage literature, the fact that correlations between futures have not yet been

explained from a supply point of view.
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Part III

Drivers of In�ation in LATAM

Francisco Arroyo Marioli, UCLA

Vibha Nanda, IMF

Frederik Toscani, IMF

In this section we analyze empirically in�ationary processes in major Latin American countries:

Peru, Chile, Colombia, Mexico and Brazil. We proceed to decompose core in�ation time series into

several drivers by estimating augmented versions of Phillips curves using data from the early 2000s

until 2018. We �nd that domestic factors, such as persistence and expectations are still the main

drivers. Foreign factors such as trade partner in�ation and exchange rates can play an important

role too. Finally, GDP cycles are still signi�cant but rather small in explaining overall in�ation

processes.
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12 Introduction

The last 20 years has been a period of in�ation stabilization within most Latin American (LATAM)

economies. Particularly, most countries have followed in�ation targeting schemes, with signi�cant

success. This has brought several concerns on wether Phillips curves (PCs) may have "�attened",

in the sense that in�ation is no longer sensitive to output gaps. Moreover, given an increasing

role of international trade it could be the case that external factors play now a bigger role in

local in�ationary processes. Many authors have explored this issue for many economic areas and

countries,.such as the US (Abdih et al, 2016), the Euro Area (Abdih et al, 2018), Colombia (Lanau

et al, 2018) and Chile (Naudon and Vial, 2016). Though many of the results are on a case-by-case

basis, some common �ndings emerge, such as a reducing slope for Phillips curves and an increasing

role for foreign factors in in�ationary processes. In this paper, we address the same issue and

focus on Latin America�s biggest �ve economies -excluding Argentina. More formally, we intend to

revisit Phillips curves for LATAM by including foreign factors such as exchange rates and trading

partner�s in�ation in our analysis.

In summary, we �nd that domestic factors still play a major role in determining in�ation. Past

in�ation and expectations still seem to be the main drivers behind in�ationary processes, with

economic slack playing still a role but smaller.

12.1 Stylized Facts

Economic cycles and in�ation have a long relationship that has been captured and observed by

both empirical and theoretical studies. In the past 30 years, since in�ation has dropped globally to

low levels, there has been increasing evidence that the e¤ect of domestic economic slack in in�ation

has reduced signi�cantly. However, in the case of Brazil, Chile, Mexico, Peru and Colombia, a �rst

look seems to suggest that there is still some signi�cant relationship between both (see Figure I)

within the past 18 years.
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Figure I

When asking these questions, the �rst step is to de�ne exactly what type of in�ation we are

interested in studying. Typically, when policy makers and authors mention in�ation they usually

refer to total CPI. However, this index may not fully re�ect the outcome of economic determinants,

since some of its components can have seasonal e¤ects or might be the result of direct regulations

(for example, in the case of utilities or fuel). Therefore, we proceed to work with core in�ation

measurements, as de�ned by local authorities. Although this implies reducing the scope of prices

of certain goods and services analyzed, it nevertheless, as can be seen in Figure II, still re�ects the

main driver behind total CPI in�ation,.
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Figure II

13 Estimation and Results

Our goal is to obtain augmented Phillip curves estimates, in order to capture and quantify the e¤ects

of both foreign and domestic factors in in�ation. Formally, we proceed to estimate these for Brazil,

Peru, Chile, Mexico and Colombia. The methodology used is the "general to speci�c" approach

(GenSpec), as in Abdih et al, 2018. The �rst step consists of assuming a very general estimation

approach, that is, estimate an equation with a prede�ned number of estimators, also known as

the general unrestricted model (GUM). The algorithm then proceeds by deleting those estimators

that are found to not be statistically signi�cant until and reestimate again. The process continues

until a �nal regression speci�cation is reached. This �nal speci�cation is then robust-checked by

resimulating with a di¤erent deletion paths. If a �nal speci�cation survives the robustness check

process, it is delivered as the algorithm�s �nal output . These �nal speci�cations are then estimated

for each country, allowing us to obtain the results shown here. We then proceed to compare those

results against those estimated in other papers, and also against other estimation techniques used

with our own data.

Our initial GUM equation consists of six main variables: Cycle (measured by HP �lter), past

in�ation, expectations, trade-weighted in�ation of each country�s 5 biggest trading partners (ex-

cluding Argentina), e¤ective exchange rates (as de�ned by Haver) and oil prices (WTI). The �rst
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three account for domestic factors, whereas the latter three summarize foreign ones. Initially, since

we work quarterly data, we choose the amount of lags for all variable to be 4 (one year), with the

exception of in�ation, since we suspect that lags e¤ects could be longer.

(10)

The GenSpec algorithm will then proceed to drop any non signi�cant lagged variables, delivering

a �nal speci�cation. The results of these �nal speci�cations for each country are summarized in

the following sections.

13.1 Data

We chose the most representative economies of LATAM according to a GDP size criteria. We left

out Argentina, since there are concerns over the validity of in�ation data for years 2007-2015. This

resulted in a �nal choice of Brazil, Colombia, Mexico, Peru and Chile. For each country, CPI Core

time series were obtained from Haver database as de�ned by local authority. We then proceeded to

deseasonalize them using X-13 methodology and calculate seasonally adjusted annualized in�ation

rates. Alternative time series were also used as robustness checks. We then created a �foreign

in�ation index�that consists of an import-weighted average CPI index of the top 5 trading partners

of each country (excluding Argentina). Exchange rates (NEER) were obtained from IMF database,

and consist also of trade weighted exchange rate indexes. Cycles were constructed with a quarterly

adjusted H-P �lter. Finally, the expectations survey used are 12-months-ahead forecasts. We also

used Consensus data (24 months) in robustness checks. The frequency of choice is quarterly. Length

of data varies by country between 18 to 15 years, up to quarter 1 of 2018.

74



13.2 Main Results

We estimated the GenSpec algorithm for all �ve countries. Results can be found in tables I and

II. Given that there several lags, result shown in the tables represent the cumulative e¤ect (sum of

all lags used) of each variable on in�ation. In summary, we �nd that persistence is highly relevant

for all countries. Regarding expectations, they play a much smaller role in all countries, with

the exception of Brazil. With respect to Phillips curve slopes, we found them to be statistically

signi�cant in all cases but economically small, with the exception of Chile. These three drivers

represent domestic factors. Based on our results, we can conclude that they still play a major role

in determining local core in�ation.

When looking at foreign factors, we also �nd interesting results. First and most important is

that foreign in�ation can impact signi�cantly on core in�ation (as much as the cycle). This is result

is particularly stronger for Colombia. Second and perhaps a bit less surprising, exchange rates also

might have an e¤ect on in�ation, particularly when including lags. In this sense, we also �nd that

incorporating lags is important when estimating total e¤ects of all variables. That is, statistical

signi�cance can be lost if these are not included in the speci�cation. Finally, as a robustness check,

we �nd that exchange rate and cycle estimates are more robust to alternative speci�cation than

foreign in�ation ones.

Table I

Table I. This table shows the result of the GenSpec algorithm applied to each country database. Dashed
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lines indicated that these variables did not survive the code�s selection process. Numbers represent the sum

of all lagged estimators for that particular variable, as well as a statistical signi�cance test for the sum of all

used estimators.

We then proceed to compare our �ndings with those obtained in other papers Abdih et al, 2016

and 2017. These authors use also the GenSpec approach. Additionally, we compare our �ndings

to those obtained in the World Economic Outlook, October 2018 (WEO), where they estimate the

augmented Phillips Curve for all Latin America according to the following speci�cation:

(11)

Our results are similar with these alternative �ndings. In all cases persistence remains as a

signi�cant factor. Also, just as in our paper, the PCs slopes that they �nd a statistically signi�cant

but economically small. In the case of the US and WEO-LATAM, foreign in�ation also plays

a signi�cant role (units in these columns are to be read multiplied by 100), although caution is

recommended when reading those estimates since foreign prices and exchange rates are collapsed

together into one "foreign factors" variable.

As mentioned above, we also �nd that lags becomes a very important factor when determining

e¤ects of certain variables on in�ation, specially when it comes to exchange rates and cycle esti-

mates. Table II shows the case of applying WEO speci�cation estimates to our data. The biggest

di¤erence between our baseline estimation and WEO�s is the amount of lags that we incorporate.

When looking at the exchange rate row, we see that all estimates loose signi�cance once lags are

dropped. Therefore, regarding future research, its important to acknowledge that many of the

in�ationary e¤ects of these shocks may take some time to play a role, and such consideration must

be incorporated in models. Finally, it is worth mentioning that as an additional robustness check

we proceeded to reestimate these parameters by using consensus 24 months ahead expectations

survey as our "expectations" variable, with similar results as in our main estimation.
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Table II

Table IV. This table shows the result of the GenSpec algorithm applied to each country database vs

the result of using the same speci�cation as in WEO. Dashed lines indicated that these variables did not

survive the code�s selection process. Numbers represent the sum of all lagged estimators for that particular

variable, as well as a statistical signi�cance test for the sum of all used estimators.

13.3 Rolling Windows

The next step is to test the hypothesis that PC slopes have "�attened". We do this in two ways.

First, we reestimate the parameter associated to the cycle with 10 years rolling windows for each

country. Additionally, we add as a robust check estimations of the same parameter with a Kalman

Filter. The key di¤erence is that the Kalman Filter uses all information available from t = 0 until

t, (it never drops past information) whereas the rolling windows approach estimates only based on

a �xed moving set of data throughout time. Results can be seen in Figures III.A-III.E to IX. With

the exception of Mexico, results show that PC slopes have become increasingly �atter, in line with

other studies.
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Figure III.A

Figure III.B

Figure III.C
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Figure III.D

Figure III.E

13.4 Secondary results

Although it is not the intention of the paper, part of our estimations consist of measuring the e¤ect

of changes in the exchange rate on prices, also known as pass-through. As a robustness check, we

proceed to compare them with those of another study in the Regional Economic Outlook (REO),

2016. In this study, they estimate passtrough for the same countries in our sample. Results can be

contrasted in table X. We �nd that our results are similar to those in REO.
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Table III

Table III. This table contrasts our pass-though estimates with those in REO, 2016

13.5 In�ation Decomposition

The previous results show statistical signi�cance. However, it also important to check for economical

signi�cance. Therefore, we proceed to measure the economic impact of each variable as follows.

First, we rede�ne in�ation (and in�ation expectations) as deviations from central bank�s target.

This allows us to compare more easily between countries. We then quantify the contribution of

each factor to each quarter�s in�ation by multiplying the change in variables and the estimated

parameters, as in the following equation:

(12)

This calculation allows us to obtain the contribution during each quarter for each variables in

in�ation. Therefore, a high contribution may be the result of two things: high statistical signi�cance

in the estimator associated to the variable and a high level of volatility in the variable itself. Figures

IV.A-IV.E show contribution per variables by adding up all the lagged e¤ects for each of them.
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Figure IV.A
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Figure IV.B
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Figure IV.C
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Figure IV.D
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Figure IV..E
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Figures IV.A-IV.E. Colored columns denote the economic impact of each variable in in�ation points

as deviation from in�ation target. Minf represents foreign in�ation and Exp12 represent 12 month ahead

expectations as relevated by local central bank.

The previous �gures show the e¤ects for some countries. As can be seen, there are certain

quarters where some factors may play a bigger role than others. However, a more holistic view may

be also of interest. Figure V shows total e¤ects per variable as a fraction of total in�ation deviation

from target. It was constructed the following way: we measure each e¤ect per variable per quarter

(as in Figures IV.A-IV.E), and then proceed to add them up for all the time interval (in absolute

values, to avoid negative shocks compensating for positive ones). Then, we measure each of them

proportionally to total shocks on in�ation. That is, Figure V shows the total proportion of each

variable in in�ationary shocks during the whole sample period for each country. In summary, the

main �ndings are several. First of all, domestic factor still a big role. Persistence, expectations

and cycle still explain at least 50% of deviations from in�ation targets, if not more. Particularly,

we �nd that persistence is still the most relevant among them. Second, foreign in�ation can play
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a signi�cant role, especially in some countries like Colombia or Brazil. Foreign in�ation can shock

in�ation as much as expectations or persistence, in some cases. Third, domestic slack matters, but

by less than many other factors. Though it still plays a role in determining in�ation, it is not the

main driver by itself. Even in some countries like Peru and Brazil it is among the lease relevant

factors.

Figure V

Figure V. Colored columns denote the economic impact of each variable in in�ation points as a fraction

of the total in�ationary impact (in absolute values). Minf represents foreign in�ation and Exp12 represent

12 month ahead expectations as relevated by local central bank.

13.6 Additional estimations

As an additional experiment, we ran the same algorithm but restricting on tradables and non-

tradables. Results can be seen Tables IV and V. For Tradables we �nd that, not surprisingly,

foreign in�ation can play an important role in determining their in�ation. Also, for both Tradables

and Non-Tradables we �nd that, as expected, either persistence and/or expectations is still among

the most relevant factors. In�uence of cycle is less straightforward and varies depending on each

country.
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Finally, we also tested for nonlinearity in the PC, as in Abdih, Balakrishnan and Shang (2016),

�nding non-statistically signi�cant results for all countries. That is, we do not �nd evidence that

PC slopes might have a non-linear shape, similar to what the same authors �nd in their paper for

the US.

Table IV

Table V

Tables IV and V. These tables show the result of the GenSpec algorithm applied to each country

database, restricting for only tradable and non-tradable goods, respectively. Dashed lines indicated that these

variables did not survive the code�s selection process. Numbers represent the sum of all lagged estimators

for that particular variable, as well as a statistical signi�cance test for the sum of all used estimators.
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14 Conclusion

Our paper intends to estimate augmented Phillips curves for �ve major LATAM countries. We do

this by using a General-to-Speci�c approach, an algorithm already applied in other studies that

focus in other economic regions, such as the EU or USA. This algorithms consists in going from a

very general PC regression speci�cation to a more speci�c one in a systematic way, in which non-

statistically signi�cant variables are dropped fro the speci�cation. We apply it to Brazil, Mexico,

Chile, Peru and Colombia, for the last 18 years. Our main goal is to estimate what are the main

drivers of in�ation in these countries.

In summary, we �nd that domestic factors still play a major role in determining in�ation.

Past in�ation and expectations still seem to be the main drivers behind in�ationary processes,

with economic slack playing still a role but smaller. Persistence is overall the most important

variable. Expectations on the other hand vary depending on country and at what horizon they

are. Therefore expectations formation (either backward or forward) becomes key in understanding

in�ation processes better. Also, cycles matter, but not more than other factors. Foreign drivers

like foreign in�ation of major trade partners can actually be more relevant, specially for Colombia.

Regarding the change of PC slopes throughout time, we �nd that they have reduced for most

LATAM countries. In this sense, our �ndings are similar to others done for EMs and Developing

economies. We also �nd that exchange rate pass through estimates also similar to REO 2016

�ndings. Finally, we also our results and robust check them with other methodologies used in other

studies like WEO, �nding similar results.
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Part IV

Appendixes

16 Appendix Part 1

16.1 Additional Figures

Figure III

Figure III. Fig. III shows the contribution of each factor in total price change (measured in percentage

points change with respect to the previous year). More speci�cally, Fig. III shows changes in prices due

to productivity shocks. They were calculated by replacing the estimated values of Zit ; At,!i and � , i 2

ffood,feed,ethanol,exportsg ; into equation (2). Each term in equation (2) is represented by a di¤erent bar

for a given year.
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Figure V

Figure V. Fig. V shows the contribution of total price change due to private inventory purchases. It

was calculated by estimating the change in prices not explained by equation (2), i.e., the residual between

explained price changes and observed price changes. That residual was then multiplied by the proportion of

corn inventories not held by the government under the CCC program.
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Figure VI

Price Indexes for di¤erent Commodities
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Figure VII

Figures VI-VII. Fig. VI shows how corn and soybean prices have deviated from other commodities

that were not used for energy production. Fig. VII shows increasing daily correlation between corn prices

and oil prices for a past-�ve-years rolling window.
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Figure XII

Figure XII. Fig. XII shows the e¤ect on prices for forecasts regarding supply. The e¤ects are shown

as changes in prices in percentage points.
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Figure XIII

Figure XIII. Fig. XIII shows the e¤ect on prices for forecasts regarding demand. The e¤ects are

shown as changes in prices in percentage points.

16.2 High-Frequency Model.Proof of parameter estimates

Parameters that associate state variables with prices were calculated using the method of unde-

termined coe¢ cients. Below are the steps and formal results of such calculations for each quarter.

The solving pattern is identical in all four quarters; therefore, I mainly describe the �rst quarter

and solve the following ones in the same way. Since �nal expressions are implicit, solutions were

found numerically.

16.2.1 First quarter

Expectations equation in quarter 1 results:

92



E1(p2) = �
II
1 E1

h
~A1

i
+ �II2 E1

�
"Z2
�
+ �II3 E1 [X2] + �

II
4 E1

�
�A2
�
+ �II5 E1

�
�Z2
�
+ �II8 E1 [Zy] :

Replacing the speculator�s policy function in the previous equation:

�2X2 +
p1
� = �

II
1 E1

h
~A1

i
+ �II2 E1

�
"Z2
�
+ �II3 E1 [X2] + �

II
4 E1

�
�A2
�
+ �II5 E1

�
�Z2
�
+ �II8 E1 [Zy] :

p1
� = �

II
1 E1

h
~A1

i
+ �II2 E1

�
"Z2
�
+
�
�II3 � 2�

�
X2 + �

II
4 E1

�
�A2
�
+ �II5 E1

�
�Z2
�
+ �II8 E1 [Zy] :

I now replace X2 with the market-clearing equation for the �rst quarter and leave the price

variable on the left-hand side so to match the linear solution equation:

p1
� =

2666666664

�II1 E1

h
~A1

i
+ �II2 E1

�
"Z2
�

+
�
�II3 � 2�

�264 �p�1
~A1 � �p��1 [Zy + "

z
1] +X1

+(� �A�p��11 + � �Z 01�p
���1
1 )p1

375+
+�II4 E1

�
�A2
�
+ �II5 E1

�
�Z2
�
+ �II8 E1 [Zy]

3777777775
:

p1

h
1
� �

�
�II3 � 2�

�
(� �A�p��11 + � �Z 01�p

���1
1 )

i
=

266666664

�II1
�
�A1 + �AA0

�
+
�
�II3 � �2

� h
�p�1
~A1 � �p��1 [Zy + "

z
1] +X1
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+�II4 E1
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�A2
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+ �II5 E1

�
�Z2
�

+�II8
�
�zZy�1 + �

Z
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377777775
:

p1

h
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� �

�
�II3 � 2�

�
(� �A�p��11 + � �Z 01�p

���1
1 )

i
=

266666664

�II1 �
A
1 + �

II
1 �AA0 + �

II
8 �

Z
1 + �8�zZy�1

�
�
�II3 � 2�

�
�p��1 Zy ++

�
�II3 � 2�

�
�p�1
~A1

�
�
�II3 � 2�

�
�p��1 "

z
1 +

�
�II3 � 2�

�
X1+

+�II4 E1
�
�A2
�
+ �II5 E1

�
�Z2
�

377777775
:

p1

h
1
� �

�
�II3 � 2�

�
(� �A�p��11 + � �Z 01�p

���1
1 )

i
=

266666664

�
�II3 � 2�

�
�p�1
~A1 �

�
�II3 � 2�

�
�p��1 "

z
1

+
�
�II3 � 2�

�
X1

+�II1 �
A
1 + �

II
2 �

Z
1 + �

II
1 �AA0

+�II8 �zZy�1 �
�
�II3 � 2�

�
�p��1 Zy

377777775
:

Therefore, the �nal price solution equation is:
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p1 =

�
�II3 � 2�

�
�p�1h

1
� �

�
�II3 � 2�

�
(� �A�p��11 + � �Z 01�p

���1
1 )

i ~A1 � �
�II3 � 2�
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�p��1h
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�
�II3 � 2�
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(� �A�p��11 + � �Z 01�p
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�II1 �Ah
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�
�II3 � 2�
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�
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1
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�
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(� �A�p��11 + � �Z 01�p

���1
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And parameter values are given by:
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(�II3 ��2)�p

�
1h

1
�
�(�3��2)(� �A�p

��1
1 +� �Z01�p

���1
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��1
1 +� �Z01�p
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i :

�I3 =
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16.2.2 Second quarter

The expectations equation is:

E2(p3) = �
III
1
~A1 + �

III
2 E2

�
"Z3
�
+ �III3 E2 [X3] + �

III
4 E2

�
�A3
�
+ �III5 E2

�
�Z3
�
+ �III8 E2 [Zy] :
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The solution equation and the speculator�s policy function are:

�II2X3 +
p2
� = �

III
1
~A1 + �

III
3 X3 + �

III
4 �A2 + �

III
5 �Z2 + �

III
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I introduce the market-clearing equation and solve:
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Final price solution equation for quarter 2 is:

p2 =

26666664
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37777775

Parameter solutions are:

�II1 =
�III1h

1
�
�� �Z2�p���12 (�III3 ��2)
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�II4 =
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i :

Third quarter is identical to the second one

16.2.3 Fourth Quarter

Solution equation and expectations equation are respectively:
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Introducing the speculator�s policy function into the expectations equation I get the following:
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Now, I proceed to solve by introducing the market-clearing equation:
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17 Appendix Part 2

17.1 Data

Futures

Commodity Ticker and Source Length Type

Soybean S1 - Bloomberg Jan 2002-Apr 2017 First generic future

Corn C1 - Bloomberg Jan 2002-Apr 2017 First generic future

Cotton CT1 - Bloomberg Jan 2002-Apr 2017 First generic future

Wheat W1 - Bloomberg Jan 2002-Apr 2017 First generic future

Gold GC1 - Bloomberg Jan 2002-Apr 2017 First generic future

Silver SI1 - Bloomberg Jan 2002-Apr 2017 First generic future

Oil CL1 - Bloomberg Jan 2002-Apr 2017 First generic future

Harvest CDF

Commodity Source Length Description

Soybean USDA 2011-2016 Fraction of harvest picked up per week

Corn USDA 2011-2016 Fraction of harvest picked up per week

Cotton USDA 2011-2016 Fraction of harvest picked up per week

Wheat USDA 2011-2016 Fraction of harvest picked up per week

Cash prices

Corn - Illinois USDA 1992-2016 Cash prices. Central Illinois

Corn - Iowa USDA 1992-2016 Cash prices. South Central Iowa

17.2 Speculators Problem:

Max
Xj ;aj;t;b(j;t)

Ej

2666664

24 TX
t=j

mj;tStXj(1� �)t�jaj;t + F (j; t)Xj(1� �)t�j(1� aj;t) + b(j; t)

35
�

TX
t=j

q(j; t)b(j; t)� SjXj

3777775
s.t. 0 � aj;t � 1 Xj � 0:
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Notice that the problem is linear in its arguments, hence equilibrium results must keep this

agent indi¤erent.

Set � = 0

Max
Xj;t;aj;t;b(j;t)

Ej

2666664
TX
t=j

mj;t (StXj;taj;t + F (j; t)Xj;t(1� aj;t) + b(j; t))

�

0@ TX
t=j

q(j; t)b(j; t) + SjXj;t

1A

3777775+
TX
t=j

�j;tXj;t

s.t. 0 � aj;t � 1

FOC

Ej (mj;t [Staj;t + F (j; t)(1� aj;t)])� Sj + �j;t = 0

Ej (mj;t [Staj;t + F (j; t)(1� aj;t)]) � Sj (with equality if Xj;t > 0)

Ej [mj;t (StXj;t � F (j; t)Xj;t)] = 0

Ej(mj;tSt) = Ej(mj;t)F (j; t) :

Ej (mj;t)� q(j; t) = 0

Ej (mj;t) = q(j; t)

�j;t � 0; Xj;t � 0

Combining

q(j; t)F (j; t) = Ej (mj;tSt) � Sj

Under an equivalent measure (as in Pirrong 2011):

q(j; t)F (j; t) = Êj (St) � Sj
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Scenario I future curves

No leftovers condition is now:

Qs0 + y =
TX
t=0

Dt(St) =
TX
t=0

�dQSt dt =
TX
t=0

�dQS0 q�tdt = �dQs0
1�q�(T+1)
1�q�

(Qs0 + y)
1� q�

1� q�(T+1)
= �dQs0 (A.1.a)

Introducing A.1.a into 8.a and 8.b gives

S0 =M(0; T )Ê0
�
(Qs0 + y)

���

F (0; t) =M(t; T )Ê0
�
(Qs0 + y)

��� 0 � t � T

Scenario II future curves

S0 =M(0; J)Q
s��
0

F (0; t) =M(t; J)Qs
��
0

F (J; J) =M(0; T � J)Ê0
�
y��
�

F (J; t) =M(t� J; T � J)Ê0
�
y��
�

J � t � T

The previous equations shown in section II are just an extension of equations in section I. In

order to obtain these, we can follow the same procedure shown above for section I. In this case for
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each interval, we can use expression A.1.a adapted to the harvest during that interval. Then we

introduce into equation 8.a and 8.b to obtain �nal results.

17.3 Continuous case

The planner�s problem is:

Max
x

E0

24 TZ
0

exp(�rt) (U(x)) dt

35
st _Q = y � x Q � 0 Q(0) > 0 where y(t) indicates the harvest that is picked up

in moment t;i.e., y(t) = g(t)H, where g(:) is the pdf of the harvest cumulative function.

Q(T ) = 0

Information will be revealed at time 0 < J � a: Hence the problem can be divided in two:

Max
x

JZ
0

exp(�rt) (U(x)) dt+ exp(�rJ)E0

26666664
TZ
J

exp(�r(t� J)) (U(x)) dt

| {z }
V (Q(J))

37777775
st _Q = y � x Q � 0 Q(0) > 0

Q(T ) = 0

Step 1: Solve for V (Q(J))

V (Q(J)) =Max
x
E0

24 TZ
J

exp(�r(t� J)) (U(x)) dt

35
st _Q = y � x Q � 0 Q(J) > 0

Q(T ) = 0

Rede�ning J = 0 WLOG:
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V (Q(J)) =Max
x

TZ
0

exp(�r(t)) (U(x)) dt

st _Q = y � x Q � 0 Q(0) > 0

Q(T ) = 0

Setting up the Hamiltonian�s necessary and su¢ cient conditions:

H = exp(�rt)U(x) + �(y � x) + �Q

Hx = exp(�rt)U 0x � � = 0 ) exp(�rt)Zx�� = �

�0 = �HQ = � r� + �

_Q = y � x �Q = 0

When the constraint is not active:

_x(t)

x(t)
= �r

�
for all 0 � t � T (A.1.b)

tZ
0

_x
xdt = �

r
�

tZ
0

dt

log x(t)� log(x(0)) = � r
� t

log x(t) = log(x(0))� r
� t

x(t) = exp
h
log(x(0))� r

� t
i

x(t) = x(0) exp(�r
�
t) (A.2)

If the constraint never becomes active, we would get:

_Q = y � x
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TZ
0

_Qdt =

TZ
0

(y � x)dt

Q(T )| {z }�Q(0) = G(T )H �
TZ
0

xdt

x(0)

TZ
0

exp(� r
� t)dt = H +Q(0)

x(0)�r

h
1� exp(� r

�T )
i
= H +Q(0)

) x(0) =
r

�

H +Q(0)h
1� exp(� r

�T )
i (A.3)

_Q(t) = y(t)� r

�

H +Q(0)h
1� exp(� r

�T )
i exp(�r

�
t) (A.4)

Q(t) = Q(0) +

tZ
0

_Q(t)dt

Q(t)�Q(0) =
tZ
0

"
y(t)� r

�
H+Q(0)h

1�exp(� r
�
T )
i exp(� r

� t)

#
dt

Q(t)�Q(0) =
tZ
0

y(t)dt� r
�

H+Q(0)h
1�exp(� r

�
T )
i
tZ
0

exp(� r
� t)dt

Q(t)�Q(0) = G(t)H � r
�

H+Q(0)h
1�exp(� r

�
T )
i �
r

h
1� exp(� r

� t)
i

Q(t)�Q(0) = G(t)H � H+Q(0)h
1�exp(� r

�
T )
i h1� exp(� r

� t)
i
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Q(t) = G(t)H +Q(0)� H +Q(0)h
1� exp(� r

�T )
i �1� exp(�r

�
t)

�
for 0 � t � T

For H big enough, Q will reach the zero bound at some moment A and will then return to

positive values for some moment B :

Figure A.I

Clearly, the solution in Figure A.I is not feasible, hence for H big enough we must �nd the

optimal breaking points A;B:

If the constraint is active

�0(t) = �(t) r� + �(t)

x(t) = y(t) ) �(t) = exp(�rt)Zy(t)��

Let us de�ne A as the �rst moment when the restriction become active, hence Q(A) = 0:

_Q = y � x

AZ
0

_Qdt =

AZ
0

(y � x)dt
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Q(A)| {z }
=0

�Q(0) = G(A)H �
AZ
0

xdt

x(0)

AZ
0

exp(� r
� t)dt = G(A)H +Q(0)

x(0)�r

h
1� exp(� r

�A)
i
= G(A)H +Q(0)

) x(0) =
r

�

G(A)H +Q(0)h
1� exp(� r

�A)
i (A.3.A)

_Q(t) = y(t)� r

�

G(A)H +Q(0)h
1� exp(� r

� t)
i exp(�r

�
t) (A.4.A)

For A < t < B

Q(t) = 0; _Q(t) = 0

For B < t � T , we have

_x(t)

x(t)
= �r

�
for all B � t � T

tZ
B

_x
xdt = �

r
�

tZ
B

dt

log x(t)� log(x(B)) = � r
�(t�B)

log x(t) = log(x(B))� r
�(t�B)

x(t) = exp
h
log(x(B))� r

�(t�B)
i
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x(t) = x(B) exp(�r
�
(t�B))

_Q = y � x

TZ
B

_Qdt =

TZ
B

(y � x)dt

Q(T )| {z }
=0

�Q(B)| {z }
=0

= (1�G(B))H �
TZ
B

xdt

x(B)

TZ
B

exp(� r
�(t�B))dt = (1�G(B))H

x(0)�r

h
1� exp(� r

�(T �B)
i
= (1�G(B))H

x(B) =
r

�

(1�G(B))Hh
1� exp(� r

�(T �B)
i (A.3.B)

_Q(t) = y(t)� r

�

(1�G(B))H
1� exp(� r

�(T �B))
exp(�r

�
(t�B)) (A.4.B)

Q(t) = Q(B) +

tZ
B

_Q(t)dt

Q(t) =

tZ
B

_Q(t)dt

Q(t) =

tZ
B

"
y(t)� r

�
(1�G(B))Hh

1�exp(� r
�
(T�B))

i exp(� r
�(t�B))

#
dt

Q(t) =

tZ
B

y(t)dt� r
�

(1�G(B))Hh
1�exp(� r

�
(T�B))

i
tZ

B

exp(� r
�(t�B))dt
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Q(t) = (G(t)�G(B))H � (1�G(B))Hh
1�exp(� r

�
(T�B))

i h1� exp(� r
�(t�B)

i

Therefore, we have:

Q(t)

8>>>>>><>>>>>>:

Q(t) = G(t)H +Q(0)� [G(A)H +Q(0)]

h
1�exp(� r

�
t)
i

h
1�exp(� r

�
A)
i for 0 � t � A

Q(t) = 0 for A � t � B

Q(t) = (1�G(t))H � [(1�G(B))H]
h
1�exp(� r

�
(T�t))

i
h
1�exp(� r

�
(T�B))

i forB � t � T

9>>>>>>=>>>>>>;
A.5

Since � is continuous, then x is continuous also. Therefore _Q is tangent in the constraint

moments A and B: We must have

_Q(A�) = y(A+)� x(A+) ) 0 = y(A+)� x(A+) ) y(A�) = x(A+)

) g(A�)H =
r

�

G(A)H +Q(0)h
1� exp(� r

�A
�)
i exp(�r

�
A�) determines implicitly the value of A�

(A.6)

For B;

0 = _Q(B+) = y(B�)� x(B�) ) y(B�) = x(B�)

) g(B�) =
r

�

(1�G(B�))h
1� exp(� r

�(T �B�))
i determines implicitly the value of B� (A.7)

Notice that the value of B� is independent of the size of H:

Therefore, if A� < B� then the market will be in backwardation. Otherwise, solution will be

A� = B� = T , that is, the market will be in contango, since the non-negative constraint on storage

will never be active.
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For simplicity, assume r = 0

x(t) = x(0) = x(A) = G(A)H+Q(0)
A

Q(t) = G(t)H +Q(0)� [G(A)H +Q(0)]

A
t for 0 � t � A

Q(t) = 0 for A � t � B

Q(t) = (1�G(t))H � [(1�G(B))H]
T �B (T � t) forB � t � T

Solution will be

G(A)H+Q(0)
A = g(A)H ) g(A)A�G(A) = Q(0)

H

g(B) = [1�G(B)]
T�B

For H small enough, equation A.6 might never be satis�ed. In that case, A� = B� = T , that

is, future prices will be in contango.

Therefore, I can map A�; B� as function of H

A� = A(H) B� = B(H)

The �nal value function is then

If backwardation:

V (Q(J)) =

A�Z
J

exp(�rt)Zx(t)
1��

1� � dt| {z }
V 1

+

B�Z
A�

exp(�rt)Zx(t)
1��

1� � dt| {z }
V 2

+

TZ
B�

exp(�rt)Zx(t)
1��

1� � dt| {z }
V 3

V 1 = z

"
r
�

G(A�)H+Q(0)

[1�exp(� r
� (A

��J))]

#1��
1��

A�Z
J

exp(�r(t� J)� r
�(t� J)(1� �))dt
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V 1 = z

"
r
�

G(A�)H+Q(0)

[1�exp(� r
� (A

��J))]

#1��
1��

A�Z
J

exp(�r(t� J)� r
�(t� J)(1� �))dt

V 1 = z

"
r
�

G(A�)H+Q(0)

[1�exp(� r
� (A

��J))]

#1��
1��

A�Z
J

exp(�rt+ rJ � r
� t+

r
�J + rt� rJ))dt

V 1 = z

"
r
�

G(A�)H+Q(0)

[1�exp(� r
� (A

��J))]

#1��
1�� exp( r�J)

A�Z
J

exp(� r
� t))dt

V 1 = z

"
r
�

G(A�)H+Q(0)

[1�exp(� r
� (A

��J))]

#1��
1�� exp( r�J)

A�Z
J

exp(� r
� t))dt

V 1 = z

"
r
�

G(A�)H+Q(0)

[1�exp(� r
� (A

��J))]

#1��
1��

�
r exp(

r
�J)

h
� exp(� r

�A
�) + exp(� r

�J)
i

V 1(Q(J);H) =
z

1� �
�

r

24r
�

G(A�)H +Q(J)h
1� exp(� r

�(A
� � J))

i
351�� �1� exp(�r

�
(A� � J))

�
A� = A�(Q(J))

V 2(H; �Q) =

B�Z
A�

exp(�rt)Z x(t)
1��

1�� dt

V 2(H; �Q) =

B�Z
A�

exp(�rt)Z [g(t)H]
1��

1�� dt

V 2(H; �Q) = exp(�rA�) z

1� �H
1��

B�Z
A�

exp(�r(t�A�))g(t)1��dt

V 3(H) = exp(�rB�) z

1� �
�

r

24r
�

1�G(B�)Hh
1� exp(� r

�(T �B�))
i
351�� �1� exp(�r

�
(T �B�))

�
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If contango:

V (Q(J);H) =
z

1� �
�

r

24r
�

H +Q(J)h
1� exp(� r

�(T � J))
i
351�� �1� exp(�r

�
(T � J))

�

Now we can return back to our initial problem:

Max
x

JZ
0

exp(�rt) (U(x)) dt

| {z }
N(Q(0))

+ exp(�rJ)E0

26666664
TZ
J

exp(�r(t� J)) (U(x)) dt

| {z }
V (Q(J))

37777775
st _Q = y � x Q � 0 Q(0) > 0

Q(T ) = 0

We can solve for N(Q(0)) conditional on some terminal value Q(J) = �Q

N(Q(0)= �Q) =Max
x

JZ
0

exp(�rt) (U(x)) dt

st _Q = y � x Q � 0 Q(0) > 0

Q(J) = �Q

Since y(t) = 0 for this interval, the restriction will never be active. Hence we can solve for a

standard hamiltonian as above, obtaining identical results as in A.2, A.3, A.4:

x(t) = x(0) exp(�r
�
t)

_Q = �x

JZ
0

_Qdt =

JZ
0

� xdt
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Q(J)| {z }
= �Q

�Q(0) = �
JZ
0

xdt

x(0)

JZ
0

exp(� r
� t)dt = Q(0)� �Q

x(0)�r

h
1� exp(� r

�J)
i
= Q(0)� �Q

x(0) =
r

�

Q(0)� �Qh
1� exp(� r

�J)
i (B.3)

_Q(t) = �r
�

Q(0)� �Qh
1� exp(� r

�J)
i exp(�r

�
t) (B.4)

N(Q(0)) =

JZ
0

exp(�rt) (U(x)) dt

=

JZ
0

exp(�rt)Z

 
r
�

Q(0)� �Q

[1�exp(� r
� J)]

!1��
1�� exp(� r

� t(1� �))dt

= Z

 
r
�

Q(0)� �Q

[1�exp(� r
� J)]

!1��
1��

JZ
0

exp(�rt� r
� t+ rt)dt

= Z

 
r
�

Q(0)� �Q

[1�exp(� r
� J)]

!1��
1��

JZ
0

exp(� r
� t)dt

N(Q(0)) =
Z

1� �

0@r
�

Q(0)� �Qh
1� exp(� r

�J)
i
1A1�� �

r

�
1� exp(�r

�
J)

�

The �nal solution will be given by:

max
�Q
N(Q(0)= �Q) + exp(�rJ)E0

�
V ( �Q)

�
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st �Q � Q(0)

FOC

�@N(:)
@ �Q

= exp(�rJ)E0
h
@V ( �Q)
@ �Q

i
For values of �Q that give backwardation:

@V ( �Q)
@ �Q

= @V 1( �Q)
@ �Q

+ @V 1( �Q)
@A�

@A�

@ �Q
+ @V 2( �Q)

@A�
@A�

@ �Q

@V ( �Q)
@ �Q

= @V 1( �Q)
@ �Q

+ (@V
1( �Q)
@A� + @V 2( �Q)

@A� )@A
�

@ �Q

Recall that

@V 1( �Q)
@A� + @V 2( �Q)

@A� = exp(�rA�)Z 1
1��x(A

��)1�� � exp(�rA�)Z 1
1��x(A

�+)1��

Since optimal x is continuous in A�; we have @V 1( �Q)
@A� + @V 2( �Q)

@A� = 0

@V ( �Q)

@ �Q
=
@V 1( �Q)

@ �Q

For values of �Q that give backwardation:

@V ( �Q)
@ �Q

= Z �r

"
r
�

H+Q(J)h
1�exp(� r

�
(T�J))

i
#�� h

1� exp(� r
�(T � J))

i
r
�

1h
1�exp(� r

�
(T�J))

i

@V ( �Q)

@ �Q
= Z

24r
�

H +Q(J)h
1� exp(� r

�(T � J))
i
35��

Therefore

1 = E0

"
@V ( �Q)
@ �Q

exp(�rJ)
Z
�
�
r

h
1�exp(� r

�
J)
i��
(Q(0)� �Q )

��

#

Backwardation points:

@V 1( �Q)
@ �Q

= Z
�
�
r

h
1� exp(� r

�(A
� � J))

i�� �
G(A�)H + �Q

���
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@V 1( �Q)
@ �Q

exp(�rJ)
Z
�
�
r

h
1�exp(� r

�
J)
i��
(Q(0)� �Q )

�� = Z

h�
�
r

h
1�exp(� r

�
(A��J))

i��
[G(A�)H+ �Q]

�� i
exp(�rJ)

Z
�
�
r

h
1�exp(� r

�
J)
i��
(Q(0)� �Q )

��

=

���
1� exp(�r

�
(A� � J))

��� �
G(A�)H + �Q

��� � exp(�rJ)�h
1� exp(� r

�J)
i�� �

Q(0)� �Q
���

1 = exp(�rJ)
" 
1� exp(� r

�(A
� � J))

1� exp(� r
�J)

Q(0)� �Q

G(A�)H + �Q(J)

!�#
(B.6.A)

For contango points:

@V ( �Q)
@ �Q

exp(�rJ)
Z
�
�
r

h
1�exp(� r

�
J)
i��
(Q(0)� �Q )

�� = Z

"
r
�

H+Q(J)h
1�exp(� r

�
(T�J))

i
#��

exp(�rJ)
Z
�
�
r

h
1�exp(� r

�
J)
i��
(Q(0)� �Q )

��

@V ( �Q)
@ �Q

exp(�rJ)
Z
�
�
r

h
1�exp(� r

�
J)
i��
(Q(0)� �Q )

�� =

"
H+Q(J)h

1�exp(� r
�
(T�J))

i
#��

exp(�rJ)�h
1�exp(� r

�
J)
i��
(Q(0)� �Q )

��

1 =

24
h
1� exp(� r

�(T � J))
i

h
1� exp(� r

�J)
i Q(0)� �Q

H +Q(J)

35� exp(�rJ) (B.6.B)

So, �nally:

1 = exp(�rJ)E0

26664
 h

1�exp(� r
�
(T�J))

i
h
1�exp(� r

�
J)
i Q(0)� �Q

H+Q(J)

!�
IfA�=Tg

+

�
1�exp(� r

�
(A��J))

1�exp(� r
�
J)

Q(0)� �Q
G(A�)H+ �Q(J)

��
IfA�<B�g

37775 (B.6.C)

... determines implicitly the optimal amount �Q� = Q(J).

Hence, given expectations, the path is determined for 0 � t < J by

x(t) =
r

�

Q(0)� �Q�h
1� exp(� r

�J)
i exp(�r

�
t) (B.3.A)
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_Q(t) = �r
�

Q(0)� �Q�h
1� exp(� r

�J)
i exp(�r

�
t) (B.4.A)

and equation B.6 determines �Q�:

Once t = J is reached, information is fully revealed and H is no longer random.

Given this, consumption and storage path is given by:

for 0 < t < J

x(t) =
r

�

Q(0)� �Q�h
1� exp(� r

�J)
i exp(�r

�
t) (B.3.A)

_Q(t) = �r
�

Q(0)� �Q�h
1� exp(� r

�J)
i exp(�r

�
t) (B.4.A)

for J � t � A�

x(t) =
r

�

�Q� +G(A�)Hh
1� exp(� r

�(A
� � J))

i exp(�r
�
(t� J)) (B.3.B)

_Q(t) = g(t)H � r

�

�Q� +G(A�)Hh
1� exp(� r

�(A
� � J))

i exp(�r
�
(t� J)) (B.4.B)

for A� � t � B�

x(t) = g(t)H (B.3.C)

_Q(t) = Q(t) = 0 (B.4.C)

for B� � t � T
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x(t) =
r

�

(1�G(B�))Hh
1� exp(� r

�(T �B�))
i exp(�r

�
(T �B�)) (B.3.D)

_Q(t) = g(t)H � r

�

(1�G(B�))Hh
1� exp(� r

�(T �B�))
i exp(�r

�
(T �B�)) (B.4.D)

17.3.1 Simple example

Assume r = 0. This will make algebra much easier without losing the main properties of the model.

Using L�Hopital, we get:

If backwardation

x(t) =

Q(0)� �Q(J)
J 0 � t � J

G(A�)H+ �Q(J)
A��J J � t � A�

g(t)H A� � t � B�

(1�G(B�))H
T�B� B� � t � T

If contango

x(t) =

Q(0)� �Q(J)
J 0 � t � J

H+ �Q(J)
T�J J � t � T

A� is determined by:

G(A�) +
�Q(J)
H = g(A�) (A� � J) if backwardation

A� = T if contango

Using implicit function theorem:

@A�

@ �Q
= �

1
H

g(A�)� @g(A)
@A

(A�J)�g(A)
=

1
H

@g(A)
@A

(A�J)
= 1

H
1

@g(A)
@A

(A�J)
> 0

Hence:

V 1(:) =

A�Z
J

z

�
G(A�)H+ �Q(J)

A��J

�1��
1�� dt
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V 1(:) = z
1��

�
G(A�)H+ �Q(J)

A��J

�1�� A�Z
J

dt

V 1(:) = z
1��

�
G(A�)H+ �Q(J)

A��J

�1��
(A� � J)

V 1(:) = z (A
��J)�
1��

�
G(A�)H + �Q(J)

�1��

V 1(:) = z
(A� � J)�

1� �
�
G(A�)H + �Q(J)

�1��

V 2(:) =

B�Z
A�

Z [g(t)H]
1��

1�� dt

V 2(:) = Z
H1��

1� �

B�Z
A�

g(t)1��dt

If contango

V (:) =

TZ
J

Z

�
H+ �Q(J)
T�J

�1��
1�� dt

V (:) = Z

�
H+ �Q(J)
T�J

�1��
1��

TZ
J

dt

V (:) = Z

�
H+ �Q(J)
T�J

�1��
1�� (T � J)

V (H; �Q(J)) =
Z

1� �(T � J)
�
�
H + �Q(J)

�1��

N(Q(0)) =
Z

1� �
�
Q(0)� �Q(J)

�1��
J�

�@N(:)
@ �Q

= E0

h
@V 1( �Q)
@ �Q

IfA�<B�g +
@V ( �Q)
@ �Q

IfA�=Tg

i
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ZJ�
�
Q(0)� �Q(J)

���
= E0

264 Z (A� � J)� �G(A�)H + �Q(J)
���

IfA�<B�g

+Z(T � J)�
�
H + �Q(J)

���
IfA�=Tg

375
J�
�
Q(0)� �Q(J)

���
= E0

h�
A��J

G(A�)H+ �Q(J)

��
IfA�<B�g +

�
T�J

H+ �Q(J)

��
IfA�=Tg

i

1 = E0

h�
A��J
J

Q(0)� �Q(J)
G(A�)H+ �Q(J)

��
IfA�<B�g +

�
T�J
J

Q(0)� �Q(J)
H+ �Q(J)

��
IfA�=Tg

i

1 = E0

h�
1

g(A)J (
Q(0)� �Q
H )

��
IfA�<B�g +

�
T�J
J

Q(0)� �Q(J)
H+ �Q(J)

��
IfA�=Tg

i

1 = E0

��
1

g(A)J
(
Q(0)� �Q

H
)

��
IfA�<B�g +

�
T � J
J

Q(0)� �Q(J)

H + �Q(J)

��
IfA�=Tg

�
(B.5)

Figure A.II

Simulation for r = 0

�Q is continuous and changes when expectations change

Hence, when expectations related to the harvest increase( decrease), �Q decreases, increasing

x(t) for 0 < t < J , at the same time E(x(t)) increases for B � t < T (post-harvest consumption).

If prices are the inverse of demand, then we have a positive high correlation induced through

supply-side information shocks.
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17.4 Decentralization

Household�s problem

Max
x

E0

24 TZ
0

exp(�rt) (U(c)) +m(t)dt

35
st Sc+m = Y

c : commodity good consumption

m : numeraire good

Y : income �ow (assumed constant)

Since there are no state variables, solution is pointwise:

L = E0

24 TZ
0

[exp(�rt) (U(c)) +m(t) + �(t)(Y �m(t)� S(t)c(t))] dt

35
FOC

exp(�rt)Zc�� = �S

� = 1

m = Y � Sc

Zc(t)�� = S(t) (C.1)

Combining the usual Q � 0 non-negative contraint, equations C.1 and C.2 we can replicate the

planner�s solution into a market equilibrium with prices S(t) = �(t); c(t) = x(t)

A representative speculator interacts in the market. This embodies all agents in the economy:

both farmers and �nancial agents, any of them can speculate. They do so by buying, selling and
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storing physical commodities and signing future contracts F (t; t + j), where the latter stands for

future price with delivery at time t + j signed at time t. They can also buy or sell riskless bonds

with di¤erent maturity. Hence, the speculator�s problem conditional on information in moment j

is:

Max
X(j);aj;t;b(j;t)

Ej

266666664

TZ
j

wj;t [S(t)X(t)aj;t + F (j; t)X(t)(1� aj;t) + b(j; t)] dt

�
TZ
j

q(j; t)b(j; t)dt� S(j)X(j)

377777775
s.t. X(t) = exp(��(t� j))X(j) 0 � aj;t � 1 X(j) � 0 t > j

Where wj;t is the stochastic discount factor, X(j) is the amount of goods bought in time j and

stored, � is the depreciation rate (assumed to be zero), 1 � aj;t is the fraction of goods that are

going to be sold at a futures prices F (j; t) with delivery t signed in moment j; and b(j; t) are risk

free bonds sold at moment j at price q(j; t) with maturity t � j:

In equilibrum, the agent must be indi¤erent, in order to avoid arbitrage possibilities:

S(j) � q(j; t)F (j; t) = Ej(q(j; t)St) = Êj(St) 0 � t � T

under some equivalent measure

17.5 The goal: correlation under backwardation

Since the goal of the paper is to explain correlation under backwardation cases (with contango

the answer is trivial), I will assume that expectations regarding the harvest�s size are such that

contango cases are very unlikely or have close to zero probability, that is, the market assumes that

we will be under backwardation almost surely. This will make results more powerfull.

Under backwardation, we have a pair A�; B� that depends on the size of H: For ever pair A�;

B� there exists an optimal consumption path x�(t):Hence, x(:) depends also on random variable

H:Reminding that for a decentralized equilibrium, prices are given by:
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S(t) = D�1(x�(t))

We can take expectations for some measure to obtain future price curve F (t; t+ j)

F (0; t+ j) = Ê0(S(t))

F (0; t) = exp(�rt)Z

24 r
�h

1� exp(� r
�(A

� � J)
i
35��

| {z }
M(t;;A��J)

Ê0

��
G(A�)H + �Q�

���� (10.a.2)

J � t � A�

F (0; t) = ZÊ0 [g(t)H]
�� (10.b)

A� < t � B�

F (0; t) = exp(�r(t�B�)Z

24 r
�h

1� exp(� r
�(T �B�)

i
35��

| {z }
M(t�B�;T�B�)

Ê0
�
[(1�G(B))H]��

�
(10.c)

B� � t � T

And for delivery dates before J

F (0; t) = exp(�rt)Z

24 r
�h

1� exp(� r
�J)
i
35��

| {z }
M(t;J)

�
Q(0)� �Q�

��� (10.a.1)

0 � t � J
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Hence, the speculator will be indi¤erent between buying, selling and storing physical goods.

For each moment t he desires has some level of storage X(t). Therefore, the law of motion for his

demand will be given by the market clearing equation:

_X(t) + c(t) = y(t) (C.2)

and

_Q = _X

Since there must be incentives to have �Q > 0;

F (0; J�) = F (0; J);

Hence

exp(�rJ)
"

1h
1�exp(� r

�
J)
i
#�� �

Q(0)� �Q�
���

=

�
1

1�exp(� r
�
(A��J))

���
E0

h�
G(A�)H + �Q�

���i
Which is satis�ed by condition B.6.A (solution for backwardation).
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