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Abstract 

The projected human population growth drives a worldwide increased 

pressure to improve animal production systems from both the economic and 

environmental perspectives. Bovine ruminants are one of the most interesting 

sources of high-quality protein, due to their ability to convert human-

undigestible plant biomass and utilize it in the production of meat and milk. 

This ability is due to symbiotic associations with their rumen microbiome, i.e., 

the collection of microorganisms (bacteria, protozoa, fungi, and archaea) 

inhabiting the rumen, and their microbial genes (i.e., the metagenome). 

Whereas mammals do not produce the necessary enzymes to breakdown and 

digest complex polysaccharides in fibrous plants, bacteria, protozoa, and fungi 

are able to ferment these into volatile fatty acids, microbial proteins, and 

vitamins, which are utilized by the ruminant host for maintenance, growth, and 

development. An excess of hydrogen produced during the fermentation 

process is utilized by archaea, leading to the production of methane, a 

greenhouse gas with 28 times higher warming potential than carbon dioxide, 

which is released mostly by eructation into the environment, and thus 

contributing to climate change. This thesis focuses on the investigation of the 

host animal-microbiome symbiosis and how it impacts host animal 

performance traits, including appetite, growth, and feed conversion efficiency. 

We also analysed the symbiotic association with the host’s health, by 

considering the impact of the presence of a parasitic nematode on the 

gastrointestinal microbiome of cattle.  

In the first chapter of this thesis, I present an overview of the state-of-the-art 

knowledge, addressing why these microbiome-focused studies are crucial for 

the future development of more efficient bovines with lower environmental 

impact, summarizing the main findings in the field so far, and underlining the 

current challenges. The second chapter of this thesis includes a comparison 

between taxonomic compositions obtained from processing 16S rRNA 

amplicon sequences derived from caecum, colon, and faecal pig samples, 

using two different bioinformatics pipelines, the MetaGenome Rapid 
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Annotation using Subsystem Technology (MG-RAST) and the Quantitative 

Insights Into Microbial Ecology 2 (QIIME2). The results suggested that the 

microbiota profiles differ significantly according to the bioinformatics pipeline 

applied, with consequences on the subsequent statistical analyses; for 

example, at family level the richness and evenness of the samples was higher 

when samples were processed in QIIME2. We also compared different data 

cleaning and filtering methods (e.g., application of a minimum relative 

abundance threshold of 1%), which led to inconsistent results, depending on 

the pipeline used to identify microbial taxa. When using the whole datasets in 

partial least squares discriminant analyses (PLS-DA) to discriminate between 

sample collection sites, MG-RAST-derived data led to more accurate results, 

whereas QIIME2 was more accurate when a minimum relative abundance 

threshold was applied. This study was published in the Journal of 

Microbiological Methods in May of 2021. 

This first study provides a substantial insight into the challenges of taxonomic 

characterization of samples using 16S rRNA sequencing data, which could be 

at least partly reduced by using whole metagenome sequencing data. The high 

resolution of whole metagenome sequencing methods provides the 

opportunity to identify functional microbial gene orthologs (e.g., using the 

Kyoto Encyclopedia of Genes and Genomes, KEGG), allowing for the 

comprehensive understanding of the biological and biochemical networks 

involved in the digestive processes closely associated with the host animal 

performance and health. Therefore, in the third chapter, we investigated rumen 

metagenome data derived from whole metagenome sequencing of rumen 

samples taken from beef cattle at slaughter, and their association with host 

performance traits including feed conversion ratio, average daily gain, residual 

feed intake and daily feed intake (FCR, ADG, RFI and DFI, respectively). Our 

analyses based on partial least squares (PLS) models identified sets of 20, 14, 

17, and 18 microbial genes whose relative abundances explained 63, 65, 66, 

and 73% of the variation of FCR, ADG, RFI, and DFI, respectively. This 

research was the first to investigate the association between rumen microbial 

genes and beef cattle performance, and it provides very detailed information 
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about the functional role of the microbiome on cattle digestive processes. For 

example, microbial genes associated with cellulose and hemicellulose 

degradation, vitamin B12 synthesis, and amino acid metabolism were 

identified as biomarkers for enhanced feed conversion efficiency, whereas 

biomarkers for inefficient feed conversion were associated with functions such 

as pathogen lipopolysaccharide synthesis, cationic antimicrobial peptide 

resistance, and degradation of toxic compounds. This study was published in 

the journal Frontiers in Genetics in August of 2019. 

Most studies focused on associations between the microbiome and the bovine 

host are based on taxonomic and metagenomic compositions derived from 

samples taken shortly after slaughter, but whether these samples are 

representative of the microbiome found in the rumen at different stages of the 

host animal’s life is still unclear. In chapter 4, a study on the longitudinal 

stability of the rumen microbiome of beef cattle throughout the finishing growth 

phase is presented. Samples were collected from 20 animals before a nitrate- 

or oil-based additive was included in their basal diets (pre-additive), at the start, 

mid and end of a 56-day testing period (during which the performance traits 

FCR, ADG, DFI, and RFI were measured), after the animals left the respiration 

chamber in which they were tested individually for methane production, and at 

slaughter. Our results highlight that the microbiome compositions are stable 

throughout the finishing growth period, both at the microbial genera and 

microbial genes levels. We used partial least squares models to predict each 

performance measure (FCR, ADG, DFI, and RFI), and methane production 

(CH4 production in g/day and CH4 yield in g/kg dry matter intake) trait based 

on the microbiota and metagenomic datasets derived from each timepoint and 

compared the variable importance in projection (VIP) scores and the 

regression coefficients extracted from each PLS model. The results showed 

substantial consistency throughout the timepoints, indicating that data 

collected from any timepoint during the finishing growth phase would be 

suitable for prediction of host traits. Additionally, we found that rumen microbial 

biomarkers previously identified in other studies based on samples taken at 

slaughter are also informative to predict host performance traits based on 
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rumen samples taken at earlier stages of the animal’s life, underlining not only 

the stability of the microbiome but also our confidence in the results from 

previous studies. 

The gastrointestinal microbiome is not only highly associated with host 

performance traits, as shown in chapters 3 and 4, but also with host health 

traits. We investigated the influence of the presence of the abomasal parasitic 

nematode Ostertagia ostertagi, and of a vaccine against the nematode, on the 

rumen and caecum microbiomes of dairy cattle, and these studies are 

presented in chapters 5 and 6, respectively. A total of 24 calves were included 

in the experiment, of which 4 were left unvaccinated and uninfected throughout 

the whole experiment (UNF), 10 received a native vaccine against O. ostertagi, 

and 10 were injected with adjuvant only (positive control). The vaccinated and 

positive control groups were then subjected to the infection challenge that 

consisted of oral administration of 1000 infectious L3 larvae per day for 25 

days. The animals were evaluated based on their cumulative faecal egg count 

(cFEC), leading to the identification of 4 vaccinated animals (with average 

cFEC, VAC) and 8 animals from the positive control group (4 extremely low 

and 4 extremely high cFEC, CLE and CHE, respectively) for whole 

metagenome sequencing and microbiome profiling at both taxonomic and 

microbial genes levels. The results indicate that the parasitism by this 

abomasal nematode substantially impacted the rumen and caecum 

microbiomes, and that the impact on the microbiome differs according to the 

parasitism severity. For example, in comparison to UNF, the rumen of CLE 

animals was depleted of microbial genes associated with valine, leucine, and 

isoleucine metabolism, whereas the rumen of CHE animals was depleted of 

microbial genes associated with bacterial chemotaxis and flagellar assembly. 

Additionally, in comparison to UNF, the rumen of VAC animals was enriched 

in microbial genes associated to metabolism of vitamin C and vitamin B12 

synthesis. In the caecum of infected animals (CLE and CHE) we observed 

enrichment of several genera belonging to the phylum Actinomycetia, e.g., 

Cellulomonas, and depletion of several genera in phyla Gammaproteobacteria 

and Bacilli with pathogenic potential, such as Legionella and Melissococcus. 
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At the functional level, the analyses revealed enrichment of microbial genes 

associated with uptake of urea, and degradation of aromatic compounds in the 

caecum of infected, in comparison to uninfected animals. The rumen and 

caecum of vaccinated animals was enriched in several fungi, most of which 

with potential pathogenicity, e.g., Colletotrichum and Botrytis in the rumen, and 

Pneumocystis and Malassezia in the caecum, in comparison to uninfected 

animals.  

The final chapter of the thesis includes a summary of the results of all previous 

chapters, and a general discussion on the symbiotic relationships between the 

gastrointestinal microbiome and host animal performance and health traits. 
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Lay Summary 

The global population is expected to reach 9.8 billion by 2050, which will 

increase the pressure on food production systems to become more 

economically and environmentally sustainable. Livestock production is one of 

the most important food sources, with important implications in worldwide 

livelihoods, including food security and economic sustenance. The worldwide 

increased demand for high quality protein-rich food, such as meat and milk, 

emphasizes the need for added value, improved safety, minimised waste, and 

minimized environmental impact in livestock production systems. 

Large ruminants, such as cattle, play a vital role in the global agricultural 

system, and since the 1960s, beef production has more than doubled. 

Ruminants can convert human-indigestible feed such as grass and silage, into 

quality foods, therefore contributing substantially to food security and 

economic development. Although mammals do not produce the enzymes 

necessary to digest the fibrous plant material ingested, ruminants have 

developed several strategies that aid in this process: on one hand, they are 

able to regurgitate the feed and re-chew it, increasing the mechanical 

breakdown process; on the other hand, the rumen hosts microbial organisms 

(bacteria, archaea, protozoa and fungi, i.e., the rumen microbiota) that digest 

the fibrous plant material through the enteric fermentation process (the 

fermentation process allows microbes to obtain energy for their own growth 

and activities from plant material in the absence of oxygen), releasing volatile 

fatty acids, microbial protein and vitamins, that the animal host uses for 

maintenance, development, and growth.  

In this thesis, the gastrointestinal microbiome (which includes the microbiota, 

and their microbial genes, i.e., the metagenome) and its symbiotic relationship 

with the bovine host has been analysed with focus on the characterization of 

the microbiome profiles, and their influence on host animal performance 

(including appetite, growth, and feed conversion efficiency) and host health-

related traits.  
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Although substantial research has been devoted to investigating the role of the 

microbiome in ruminal digestion, the rumen function is still under-

characterized, mainly due to the complexity of the biochemical networks 

underlying the rumen functionality, built up on the high population density and 

high diversity of microorganisms. As a result of several investigative works, it 

has been established that the ruminant and its rumen microbiome exist and 

evolve in a symbiotic relationship, in which the host animal provides heat, 

moisture, and food for the microbes, whereas the rumen microbes ferment the 

ingested plant materials, rich in cellulose and hemicellulose (i.e., structural 

carbohydrates of the fibrous plant material), and release sub-products such as 

volatile fatty acids, source of energy and nutrients for the host animal and other 

microbes, as well as being themselves digested by the host animal as the main 

source of protein. The study of the microbiome in association with host animal 

traits is fundamental for the comprehensive understanding of the host animal 

characteristics, particularly those associated with performance, health, and 

even environmental impact, and it is expected to greatly contribute for the 

future development of improved animal production systems, for example by 

influencing diet composition formulation and selection of animals with desired 

characteristics in breeding programmes. 

The complex microbial ecosystem composition within the rumen, and therefore 

the fermentation processes, are subject to the influence of many factors, 

including the age and development stage of the host, the size of the rumen, 

the feed passage rate, the host genetics, and diet composition. The host 

individual genetics explains a part of the variability observed in complex traits, 

such as feed conversion efficiency and health-related traits, which underlines 

even further the need for the characterization of the microbiome. Molecular 

techniques allow for a deeper understanding of the rumen microbiology, 

providing insight into the bacterial composition in the rumen without the need 

for culturing the microbes in the lab. Culture-independent methods carry a 

great advantage, given that around 80% of the rumen microbiota is thought 

not to grow using standard culture techniques. Furthermore, with the advent of 

next-generation sequencing techniques, it became possible to obtain the 
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microbial genetic composition of the microbiota (i.e., the metagenome), which 

aids in the interpretation of the functions of the microbiota in the rumen.  

This thesis starts by providing a comprehensive summary of the research area, 

including the importance of ruminants as high-quality protein sources, and the 

importance of the host animal-microbiome interaction studies for the 

improvement of production systems. Subsequently, I summarized the most up-

to-date literature to provide the reader with a comprehensive background on 

the rumen microbiome in association with the bovine host, and the major 

factors affecting the microbiome, such as diet composition and host genetics. 

Thereafter, I included a section on the influence of the rumen microbiome on 

host traits, including performance traits such as feed conversion efficiency, 

appetite, and growth, and health-associated traits such as parasitism by 

nematodes, one of the most economically impactful factors in grazing animals. 

The second chapter includes a comparison between taxonomic compositions 

obtained based on a microbial gene that allows for the identification of different 

microbial groups, called the 16S rRNA gene. This gene exists in all microbes, 

and it varies sufficiently between different groups of microbes (i.e., genera), 

thus allowing for the characterization of each sample at the genera level. We 

extracted the 16S rRNA genes from caecum, colon and faecal pig samples, 

and processed them using two different bioinformatics pipelines, the 

MetaGenome Rapid Annotation using Subsystem Technology (MG-RAST) 

and the Quantitative Insights Into Microbial Ecology 2 (QIIME2), thus obtaining 

the taxonomic composition of each sample. These tools process the samples 

in different manners; whereas MG-RAST calculates the similarity between all 

the 16S rRNA sequences to group them into Operational Taxonomic Units 

(OTUs), QIIME2 first identifies unique sequences (i.e., 16S rRNA gene 

amplicons that have exactly the same sequence), and then uses the 

abundance of each unique sequence and its similarity to other unique 

sequences to group them into Amplicon Sequence Variants (ASVs). We found 

significant differences between the microbiota profiles obtained from each 

pipeline; for example, we observed higher evenness and richness at family 
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level when samples were processes in QIIME2. Microbiota-focused studies 

rely on the accurate taxonomic characterization of the samples, and 

nowadays, researchers are very focused in finding how the taxonomic 

composition of samples relates to the host animal traits. Thus, with the goal of 

verifying the implications of using different pipelines to obtain the taxonomic 

composition, we investigated how the taxonomic compositions obtained from 

each pipeline were associated to the sampling collection site, i.e., we analysed 

what were the main differences between using the taxonomic compositions 

obtained from MG-RAST and QIIME2 to distinguish samples collected from 

the caecum, colon, and faeces of pigs. Our results suggested that using the 

taxonomic compositions of the samples as processed by different 

bioinformatics pipelines would lead to different statistical results, and for 

example, when using MG-RAST, the microbes considered more important for 

distinguishing the sample collection sites were Acetitomaculum, 

Ruminococcus and Methanosphaera, whereas when using QIIME2, these 

were Candidatus Methanomethylophilus, Sphaerochaeta and Anaerorhabdus.  

In the third chapter, we explored the metagenome of beef cattle from four 

economically significant breeds (Aberdeen Angus, Charolais, Luing and 

Limousin), fed two basal diets differing in fibre content, in association with the 

host animal performance traits, including feed conversion ratio (FCR), average 

daily weight gain (ADG), residual feed intake (RFI) and daily feed intake (DFI). 

This research indicated that there is a substantial link between the rumen 

microbial genes and the host animal performance, identifying sets of 20, 14, 

17, and 18 microbial genes whose relative abundances explained 63, 65, 66, 

and 73% of the variation of FCR, ADG, RFI, and DFI, respectively, and many 

functional explanations for these associations were elucidated. For example, 

we identified microbial genes with functions such as cellulose and 

hemicellulose degradation, vitamin B12 synthesis and amino acids metabolism 

as biomarkers for high feed conversion efficiency, whereas feed-conversion-

inefficient animals were characterized by high relative abundance of microbial 

genes associated with nucleotide sugars metabolism, pathogen 
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lipopolysaccharide synthesis, cationic antimicrobial peptide resistance and 

degradation of toxic compounds. 

Chapter four is dedicated to the analyses of the rumen microbiome of beef 

cattle throughout the finishing growth phase (adult animals). Rumen microbial 

samples were taken from 20 animals before receiving diet additives (nitrate or 

oil based), at the start, middle and end of a 56-day testing period (during which 

the performance traits FCR, ADG, RFI and DFI were measured), after leaving 

the respiration chamber in which the animals were individually measured for 

methane emissions) and at slaughter. Our results indicate that the microbiome 

compositions remained highly stable throughout the finishing period. 

Additionally, the microbiome compositions at microbial taxa (i.e., genera) and 

microbial genes levels at each timepoint were used to explain the variation 

observed in FCR, ADG, DFI, RFI, methane production and methane yield, and 

showed that the association between microbes and microbial genes with each 

performance and methane emissions trait was stable through time. 

The fifth and sixth chapters present the results from an investigation of the 

influence of the presence of the abomasal parasitic nematode Ostertagia 

ostertagi on the rumen and caecum microbiomes, respectively, in dairy cattle. 

The influence of a vaccine against this nematode on the microbiomes was also 

explored. This study included 16 calves, 4 were left unvaccinated and 

uninfected throughout the whole experiment, and 12 were subject to an 

infection challenge consisting of oral administration of 1000 L3 larvae/day for 

25 days, of which 4 had previously been vaccinated against the nematode. 

The rumen and caecum microbiomes were substantially influenced by the 

presence of the nematode, for example, the rumen of infected animals was 

depleted of microbial genes associated to folate, amino acids and fatty acids 

biosynthesis and metabolism. Additionally, the vaccine was also shown to 

influence rumen microbiome compositions, with vaccinated animals showing 

enrichment of microbial genes associated to vitamin C metabolism and vitamin 

B12 biosynthesis. Regarding the caecum, we reported enrichments of 

actinomycetes and depletion of Gammaproteobacteria and Bacilli in infected 
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in comparison to the uninfected animals. Several fungi (Ascomycota and 

Basidiomycota) were enriched in the rumen and caecum microbiome profiles 

of vaccinated animals, most of them were opportunistic pathogens.  

The last chapter summarizes all results obtained throughout the PhD project 

and concatenates them into a general discussion on the microbiome in 

association with different host traits, including those related to performance 

and health.  
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Chapter 1 General introduction 

1.1 Introduction 

The United Nations estimated the world population in 2019 at 7.7 billion 

people, with an expected rise to 9.7 billion people by 2050 (Department of 

Economic and Social Affairs Population Division - United Nations, 2019). The 

populational growth observed during the past few centuries and estimated for 

the near future increases the need for ever more efficient food production 

systems, in both economic and ecological perspectives, mainly due to an 

escalation in the global demand for food. Livestock production systems are 

subject to different pressures, depending on their socioeconomic context. 

Whereas in developing countries the main goal is to increase livestock 

products’ availability for the consumer, in developed countries the focus is on 

increasing product quality and production efficiency through the 

implementation of more environmentally sustainable, and animal welfare-

aware strategies (Thornton, 2010).  

Meat is the most valuable livestock product, mainly due to its nutritional value 

– it provides high quality protein, all essential amino acids, and it is rich in 

minerals and vitamins. Whereas in developed countries meat consumption has 

stabilized (at high levels), the global meat market is expected to double its 

output by 2050, mostly driven by an escalating demand in developing 

countries, due to growing population and increasing incomes (Thornton, 2010; 

Food and Agriculture Organization (FAO), 2019). Livestock products are 

therefore an extremely important commodity, as reflected in the more than 

doubled production of beef and the more than 10-fold increase in chicken meat 

production, coupled with increased carcass weight and milk and eggs 

production per animal by about 30% since the 1960s (Thornton, 2010). 

The pressure for increased livestock production has some obvious drawbacks 

associated with overexploitation and pollution; for example, the extensive use 

of land and water to maintain and feed animals is directly associated with loss 

of biodiversity and natural habitats, soil degradation, and water pollution. 
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Additionally, worldwide food consumption patterns from 2007 to 2016 were 

responsible for 21 to 37% of the total anthropogenic greenhouse gas (GHG) 

emissions, significantly contributing to climate change (FAO, 2020). The 

enormous challenge involved in achieving worldwide food security will require 

extreme efforts, not only through the increased efficiency of livestock and 

agricultural production systems while mitigating GHG emissions, water, and 

land use, but also through socioeconomic and political considerations and 

informed actions (Godfray et al., 2010). 

Providing more than half of all protein in the livestock sector, ruminants occupy 

a prominent position in food security. Ruminants are extremely interesting 

because of their ability to feed on forages, agro-industrial by-products, and 

crop residues that would otherwise be wasted. Not only they provide us with 

high quality protein (i.e., milk and meat), they are also a source of manure used 

for soil fertilization, and they are essential for the livelihoods of millions of 

farmers worldwide (Food and Agriculture Organization (FAO), 2021). 

In this chapter, an overview of the ruminant – particularly bovine cattle - is 

presented, together with different strategies for increased meat and milk 

productivity. The ruminant genetic make-up, its rumen microbiome, and 

environmental factors are focused on due to their widely recognized impact on 

the animals’ performance traits, such as appetite, growth rate, feed conversion 

efficiency, and methane (CH4) emissions, and on health traits, such as 

resilience to parasites. 

1.2 Ruminants 

Ruminant animals are herbivore ungulate mammals characterized by their 

rechewing of the cud. This group includes bovine cattle, sheep, goats, bison, 

antelopes, giraffes, gazelles, and camelids. Ruminants can utilize a vast range 

of plant-based resources, by fermenting the feed in a specialized compartment 

– the rumen. The rumen is the first of four chambers in the digestive tract of 

ruminants. It has a volume capacity in an adult bovine above 100L, with pH 

ranging from 5.7 and 7.3, and temperature around 39o C. The rumen wall is a 
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major site for nutrient absorption, and it is covered in papillae which increase 

the inside surface of the rumen. These characteristics make the rumen an ideal 

fermentation chamber (Moran, 2005). The rumen is inhabited by an array of 

bacteria, archaea, protozoa, and fungi, which maintain complex 

interrelationships (e.g., commensalism, mutualism, competition, and 

predation). The symbiotic relationship between the ruminant animal and the 

microbial communities inhabiting its rumen is the main reason cattle can feed 

on plant-based, even if low-quality, feedstuffs, by utilizing the fermentation 

products for their growth and development without directly competing with 

humans for resources. 

1.3 Microbiome and microbiota – important 
definitions 

Berg et al. (2020) reviewed multiple definitions of the term microbiome, and 

finally proposed the following:  

The microbiome is defined as a characteristic microbial 

community occupying a reasonable well-defined habitat 

which has distinct physio-chemical properties. The 

microbiome not only refers to the microorganisms involved 

but also encompass their theatre of activity, which results in 

the formation of specific ecological niches. The microbiome, 

which forms a dynamic and interactive micro-ecosystem 

prone to change in time and scale, is integrated in macro-

ecosystems including eukaryotic hosts, and here crucial for 

their functioning and health. 

Additionally, the authors proposed the definition of microbiota as follows: 

The microbiota consists of the assembly of microorganisms 

belonging to different kingdoms (Prokaryotes [Bacteria, 

Archaea], Eukaryotes [e.g., Protozoa, Fungi, and Algae]), 

while “their theatre of activity” includes microbial structures, 

metabolites, mobile genetic elements (e.g., transposons, 
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phages, and viruses), and relic DNA embedded in the 

environmental conditions of the habitat. 

Following the definitions presented above, throughout this thesis the rumen 

microbiome refers to the microbial communities (i.e., bacteria, archaea, 

protozoa, and fungi) and all their microbial genes, as well as metabolites, and 

physio-chemical properties of the rumen as a well-defined environment, 

whereas the rumen microbiota refers solely to the assembly of microbial 

organisms found in the rumen environment. 

1.4 The rumen microbiome in the bovine host 

The rumen microbiome is closely associated with the animal host’s 

performance traits (e.g., appetite, growth rate, and feed conversion efficiency), 

mostly because the utilization of plant-based feed by the animal host is only 

possible due to the fermentation by the rumen microbiota of compounds that 

are undigestible by mammalian enzymes.  

The rumen microbiota includes microbial communities with cellulolytic, 

hemicellulolytic, and pectinolytic capabilities, which anaerobically ferment 

complex polysaccharides cellulose, hemicellulose, and pectin, respectively, 

into monosaccharides. These monosaccharides are then converted into 

volatile fatty acids (VFAs), carbon dioxide (CO2) and hydrogen (H2), mostly by 

acetogenic and acidogenic bacteria (Ahring et al., 2018). 

Although the rumen microbiota profiles differ between ruminant species, diets, 

and geographical location (among other factors), there is a core microbiota 

(i.e., a group of microorganisms that are virtually present in all ruminants) of 

dominant bacteria, which includes microbial genera Prevotella, Butyrivibrio, 

and Ruminococcus, microbial families Lachnospiraceae and Oscillospiraceae 

(i.e., Ruminococcaceae), and microbial orders Eubacteriales and 

Bacteroidales (Henderson et al., 2015). 

Of all the microbial communities identified in the rumen, Prevotella is certainly 

the most commonly mentioned; in a 16S rRNA gene-based meta-analyses of 
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2662 bacterial samples collected from the rumen of dairy and beef cattle from 

a total of 53 previous studies performed in 29 countries, Holman & Gzyl (2019) 

identified Prevotella at a prevalence of over 95% and relative abundance 

averaging 24.1%. Prevotella is an anaerobic Gram-negative, non-spore 

forming, non-motile, rod-shaped genus belonging to the phylum Bacteroidetes, 

that feeds mostly on starch, fructan, and/or hemicelluloses. This genus 

encompasses many different species (7 of which have been described in the 

rumen and hindgut), most of which are able to utilize plant storage 

carbohydrates fructan and starch, whereas others can grow on hemicelluloses 

such as xylan. P. ruminicola (one of the most abundant Prevotella species in 

the rumen) has been shown to be a generalist, able to grow on starch, inulin 

(fructan), beta glucan, xyloglucan and arabinoxylan; in contrast, P. brevis 

strains are specialists that rely only on starch and fructan (Accetto and 

Avguštin, 2019). The sole observation of the species within the Prevotella 

genus hints into the complexity of the associations between microbial 

communities in the rumen ecosystem. On the one hand, the proportion of plant 

polysaccharides in the feed suggests a certain degree of functional 

redundancy (i.e., many species being able to degrade the same substrate), 

reflecting the competitiveness of the environment; on the other hand, the 

diversity of these nutrients alludes to the possibility for specialization of the 

enzymatic systems found in microbial genomes, reflecting a coordinated 

ecosystem supported on a somewhat functional complementarity. 

The genus Butyrivibrio belongs to the family Lachnospiraceae, class Clostridia, 

phylum Firmicutes, and includes anaerobic cellulolytic Gram-negative curved 

rods, although B. fibrisolvens has in their cell wall some Gram-positive-like 

structures including glycerol teichoic acids and lipoteichoic acids (Cheng and 

Costerton, 1977). In a comparative genetic analysis, Palevich et al. (2020) 

investigated the genomes of 30 Butyrivibrio strains, and identified a core 

genome composed of 2% of the collective genome, mainly associated with 

survival in the rumen (and housekeeping of the cells), suggesting that a large 

proportion of the collective genome is composed of unique strain-specific 
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genes, which confer the ability to occupy several different niches within the 

rumen ecosystem. Butyrivibrio species are metabolically versatile, with most 

strains showing the ability to grow on pectin and xylan, but not on cellulose. 

As with Butyrivibrio, Ruminococcus is also a Firmicutes, in the Clostridia class, 

but it belongs to the Oscillospiraceae (i.e., Ruminococcaceae) family. The 

genus Ruminococcus is composed of Gram-positive anaerobes that ferment 

cellulose into acetate, formate, and succinate (Kaars Sijpesteijn, 1951; van 

Gylswyk and Labuschagne, 1971; Gokarn et al., 1997; Russell et al., 2009). 

In a global census of ruminal communities of 32 ruminant and camelid species, 

archaea in the core microbiota were shown to be remarkably similar between 

species from different areas of the world. The core microbiota included 

methanogenic archaea such as Methanobrevibacter gottschalkii and 

Methanobrevibacter ruminantium, and methylotrophs such as 

Methanomassiliicoccales (Henderson et al., 2015). These organisms have 

hydrogenotrophic and methylotrophic ability, whereas they can utilize 

hydrogen and methyl groups derived from methanol and methylamines, 

respectively, in their growth, with consequent production of methane. 

Rumen protozoa can account for up to 50% of the biomass in the rumen. 

These organisms have fibrolytic capabilities and are involved in carbohydrates 

transport and metabolism (Williams et al., 2020). Protozoa Entodinium and 

Epidinium are highly abundant in the rumen (Henderson et al., 2015). 

Rumen fungi (also known as gut fungi) such as Neocallimastix, Piromyces and 

Orpirzomyces, are anaerobic organisms that produce hydrolases, mostly 

organized in cellulosomes (uniquely found in gut fungi). These enzymatic 

complexes are extremely active in the degradation of cellulose, but gut fungi 

are also able to utilize xylan, mannose, ester, starch, and glucan (Fliegerova 

et al., 2015). During fermentation, rumen fungi produce formate, acetate, 

lactate, ethanol, CO2, and H2 (Akin and Borneman, 1990). Rumen fungi 

communities were found to be enriched in the rumen of dairy cattle fed a high-

fibre diet, and this was associated with their fibrolytic activity, as well as with 



 General Introduction 
 

7 
 

enrichment of Ruminococcaceae and Succiniclasticum, suggesting an 

interaction between bacterial groups and rumen fungi (Kumar et al., 2015).  

1.5 Diet composition influences the rumen 
microbiome profiles 

The major functions of rumen microbes and their interactions which are 

addressed in this thesis have been mostly identified by dietary interventions 

and are therefore reviewed in this section. By providing different substrates, 

diets differing in nutritional content will promote and/or inhibit the growth of 

specific groups of microorganisms, each with their own growth requirements 

and fermentation products. Additionally, the diet composition influences the 

microbial enzymatic activities. For example, the microbiome structure has 

been shown to shift through increased growth of amylolytic and other starch-

digesting microorganisms when animals are adapted from forage-based to 

concentrate-based diets (Fernando et al., 2010). Additionally, the 

complementation of forage-based feed with concentrate has been shown to 

decrease the activity of fibrolytic enzymes of the microbiota adhering to the 

plant particles (Nozière et al., 1996). 

The primary component of cattle diet is forage, i.e., roughage, like silages, hay, 

straw, and grass; this is often complemented by some type of concentrate 

(usually based on grains, such as barley, or co-products from the food and 

drink industries) in varying proportions, depending on the production system, 

as well as fats. 

Forage is rich in fibre, i.e., it contains a large proportion of plant cell wall water-

insoluble carbohydrates such as cellulose, hemicellulose, and lignin, and cell 

wall water-soluble carbohydrates, including pectin. Mammals do not produce 

the enzymes necessary to digest fibre, but some microbial organisms 

harboured in their digestive tract do, and that is why the rumen microbiota (in 

the case of foregut fermenters such as cattle) is paramount for the digestive 

function in ruminants. The fibrous content in feed is mainly digested by 

cellulolytic and fibrolytic microorganisms in the rumen. Ruminal digestion of 
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water-insoluble carbohydrates takes up to 10 hours and this lag phase has 

been associated with the time it takes for feed particles to be broken down into 

smaller particles and colonized by microbial organisms (Nozière et al., 2010). 

The water-insoluble fibre that escapes ruminal digestion will pass into the small 

intestine and reach the caecum, where it will be fermented by the resident 

microbial communities (Michalet-Doreau et al., 2002; Nozière et al., 2010). 

During ruminal fermentation, cellulose and hemicellulose are mainly broken 

down into glucose, glucose-6-phosphate, fructose-6-phosphate, and 

triosephosphate by enzymes including cellulase. Pectins and part of the 

hemicellulose are broken down into xylose and other pentoses. These are then 

degraded into hexoses, which in turn are converted into fructose-6-phosphate 

and triosephosphates. 

The concentrate component of the diet usually has starch as its main 

component. Since the saliva of ruminants does not contain amylase, this will 

mainly be degraded in the rumen by microorganisms with amylolytic capability 

(Nozière et al., 2010). Compared to water-insoluble carbohydrates, starch is 

rapidly digested by the rumen microbiota (Nozière et al., 2010). Overall, 

increased availability of rapidly fermentable carbohydrates contributes to 

increased ruminal microbial fermentation and consequent increased 

production of VFA, mostly by bacteria and protozoa groups (Nagaraja and 

Titgemeyer, 2007). Storage carbohydrates such as starch, dextran, and simple 

carbohydrates (mono- and disaccharides) are broken down by 

microorganisms into maltose, and then converted into glucose-1-phosphate.  

The products from the microbial fermentation of water-soluble and -insoluble 

carbohydrates are then used as substrates in glycolysis, producing pyruvate, 

which is then converted into acetate, propionate, and butyrate, the main VFAs 

produced in the rumen. VFAs are the most important energy source for the 

ruminant animal, being readily absorbed through the rumen wall, and serving 

as energy for the animal’s tissues. 
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Along with VFA, ammonia is one of the most important products of 

fermentation (Moran, 2005). Ammonia is utilized as nitrogen source for 

production of microbial protein, during the growth and reproduction of the 

rumen microbiota. Microbial protein is the most important protein source for 

the animal, as it supplies the animal with up to 80% of its amino acid 

requirements (Loor et al., 2016).  

Since diet composition greatly influences the rumen microbiota, diet 

composition can be used as a tool to manipulate the microbiota. 

The increased content of rapidly fermentable substrates such as starch in high-

grain diets compared to high-fibre diets promotes the growth of amylolytic 

bacterial groups, including Bacteroides and ciliate protozoa, such as 

entodiniomorphs, which engulf and slowly digest starch (Mackie et al., 1978; 

Goad et al., 1998; Tajima et al., 2001). Additionally, amylodextrin-, and 

maltose-utilizing bacteria including Bifidobacterium, Butyrivibrio, Eubacterium, 

Lactobacillus, Mitsuokella, Prevotella, Ruminobacter, Selenomonas, 

Streptococcus, Succinimonas, and Succinivibrio, are also promoted due to 

amylodextrins and maltose present in the rumen (Nagaraja and Titgemeyer, 

2007), although Eubacterium ruminantium and Succinivibrio dextrisolvens 

have been reported to decrease in animals fed high-grain diets (Tajima et al., 

2001). In contrast, the growth of fybrolytic organisms, such as Ruminococcus 

flavefaciens and Fibrobacter succinogenes, and xylanolytic organisms is 

inhibited, reduced, or slowed down in animals fed concentrate diets, mostly 

due to their sensitivity to even mildly acidic environments (Tajima et al., 2001; 

Krause et al., 2003; Nagaraja and Titgemeyer, 2007). Butyrivibrio fibrisolvens 

is mainly a fibrolytic bacterium but it is also able to use maltose and sucrose. 

Although it can use both fibre and starch, it is usually decreased in the 

microbiomes collected from the rumen of animals fed high-grain diets, most 

likely due to the lower pH (Fernando et al., 2010).  

The fermentation of starch and soluble sugars by the rumen microbiome 

quickly increases the concentration of VFAs and lactate in the rumen. The 
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increased lactate concentration in the rumen favours the growth of lactate-

utilizing bacterial organisms, such as Lactobacillus, Veillonellaceae and 

Selenomonas (specifically S. ruminantium ssp. lactilytica), Fusobacterium 

necrophorum, Megasphaera elsdenii, Peptostreptococcus asaccharolyticus, 

Propionibacterium acnes (Mackie et al., 1978; Goad et al., 1998; Tajima et al., 

2001; Nagaraja and Titgemeyer, 2007), which metabolize lactate into butyrate 

and propionate. The accumulation of VFA leads to increased acidity in the 

rumen, which will inhibit the growth of these groups (including ciliate protozoa) 

in favour of bacterial organisms with acid-tolerance, such as Anaerovibrio spp. 

and Streptococcus bovis (Mackie et al., 1978; Russell and Hino, 1985; 

Nagaraja and Titgemeyer, 2007). 

The marked decrease in pH observed in the rumen of animals fed high-grain 

diets compared to high-fibre diets has been associated with the increased VFA 

production, rather than the lactic acid accumulation, most likely due to 

increased growth of lactate-utilizing bacteria (Goad et al., 1998). For example, 

Megasphaera elsdenii is a lactate-utilizing butyrate-producing bacterium that 

is more abundant in animals fed grain-rich diets in comparison to hay-fed 

animals, whereas butyrate production may serve as an electron sink during 

oxidation of lactate to pyruvate (Fernando et al., 2010). Additionally, although 

Streptococcus bovis is a mixed acid fermenter able to switch to homolactic 

fermentation if the pH is below 5.6, increasing the production of lactate and 

consequently the acidity in the rumen, its growth rate at pH lower than 6 

decreases considerably, whereas the growth rate of Lactobacilli increases, 

and an antagonistic relationship between these taxa has been proposed 

(Nagaraja and Titgemeyer, 2007). The low pH in the rumen can lead to 

digestive disorders, such as acidosis, with a negative impact on the animals’ 

performance (Bergman, 1990). Therefore, the adaptation of the microbiota 

communities towards greater resistance to lower pH may be regarded as a 

defence mechanism against acute acidosis, underlining the symbiotic 

association between the animal host and its rumen microbiome. Adaptation of 

animals to high-grain diets from high-fibre diets is usually performed in a 
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progressive manner, with gradual increases in the grain content of the diet and 

decreases in the fibre content.  

Additionally, rumen microbiome profiles exhibit lower alpha-diversity when 

animals are fed high-grain diets in contrast with high-fibre diets (Anderson et 

al., 2016). These examples underline the complexity of the rumen microbiome, 

and the multitude of factors influencing associations between microbes 

themselves and the ruminal environment. Although these studies, among 

others, have been pivotal for the current understanding of the fluctuations of 

microbial groups within the microbiome due to changes in diet composition, 

most of them involved a low number of animals, and/or were based on culture-

dependent methods, providing limited insights into the rumen microbiome 

processes and dynamics. 

1.6 Animal host genetics influence rumen 
microbiome profiles 

Host genetics have been shown to strongly influence the microbiome 

composition. Roehe et al. (2016) used sire progeny groups to estimate the 

genetic influence of bovine hosts on their methane emissions. The results 

suggested that the relative abundances of archaea in the rumen were under 

genetic influence of the host, and highly associated with methane emissions, 

suggesting the microbiome to be, at least partly, controlled by the host 

genetics. Difford et al. (2018) reported that bovine host genetics determined 

part of the variation in the relative abundance of some bacterial and archaeal 

organisms in the rumen, and that inter-individual differences in CH4 production 

were associated with different genetic background and rumen microbiome 

composition. In a study that included 709 beef cattle, Li et al. (2019) estimated 

the heritability of taxonomic bacterial and archaeal groups (taxonomy was 

resolved based on 16S rRNA gene), and found moderate heritability estimates 

for taxonomic groups associated with feed conversion efficiency and rumen 

VFAs. More recently, Martínez-Álvaro et al. (2021) applied whole metagenome 

sequencing to derive microbial genetic and taxonomic profiles from the rumen 

of 363 steers. From a total of 1107 microbial genera and 1141 microbial genes 
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identified, 203 and 352, respectively, had significant moderate to high 

heritability, confirming the influence of the host genetics on their own 

microbiome profiles. The host genetic effect on microbiome features is of great 

interest, particularly due to its potential application in selecting animals for 

breeding that carry the rumen microbiome profiles associated with, for 

example, higher feed conversion efficiency or with the highest resilience to 

infection by nematodes. 

1.7 Host performance traits 

Feed conversion efficiency is a biologically complex trait, and it is influenced 

by several other traits, including feed intake, absorption rate, activity of the 

animal, and maintenance requirements. Feed conversion efficiency is often 

assessed through feed conversion ratio (FCR) and/or residual feed intake 

(RFI). Whereas FCR is calculated as the ratio between the average daily feed 

intake (DFI) and the average daily weight gain (ADG) of an animal, RFI 

corresponds to the difference between the observed DFI and the expected 

DFI, which is estimated by a multiple regression of observed DFI on potential 

energy sinks, typically including maintenance, lean and fat tissue growth, and 

activity. Due to the high cost of feeding production animals, the improvement 

of feed conversion efficiency is extremely attractive from an economic 

perspective. 

FCR is calculated as a ratio, which implies that changes in FCR may be due 

to either changes on the denominator (DFI) and/or on the numerator (ADG). 

This means that genetic selection for lower FCR may lead to differential 

selective pressure on the component traits. In contrast, RFI is, at phenotypic 

level, independent of the traits that are fitted in the regression model used to 

estimate the expected DFI (Berry and Crowley, 2013). However, 

independence at phenotypic level does not warrant genetic independence. In 

fact, Arthur et al. (2001) estimated the genetic correlation between FCR and 

RFI at 0.66 ± 0.05, showing that these are at least partly different traits. 

Additionally, Arthur et al. (2001) estimated a lower heritability for FCR than for 

RFI, corresponding to 0.29 and 0.39, respectively. 
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Feed conversion efficiency traits are complex, not only because they are 

difficult to measure, but also due to their biological association with so many 

other traits. In a meta-analysis of 9 published studies on growing beef cattle, 

Kenny et al., (2018) reported that high-RFI animals spend a significantly higher 

amount of time (10.3 minutes on average) eating per day than their low-RFI 

counterparts, showing that the appetite and feeding behaviour are closely 

associated with feed conversion efficiency. Additionally, variation in feed 

conversion efficiency may be influenced by factors such as intestinal 

absorption, as suggested by significant associations between jejunal, 

duodenal and ileal epithelial tissue density and RFI in cattle (Montanholi et al., 

2013; Meyer et al., 2014). Higher feed efficiency (lower RFI) has been 

associated with reduced hepatic lipid synthesis and fat accumulation, 

indicative of a more efficient use of consumed energy and nutrients, potentially 

towards protein and lean muscle synthesis (Mukiibi et al., 2018). 

1.8 The gastrointestinal microbiome influences the 
feed conversion efficiency of the bovine host 

The rumen microbiome has been shown to be associated with feed conversion 

efficiency variation in animals. Carberry et al. (2012) analysed the association 

of specific rumen microorganisms with feed conversion efficiency and diet in 

beef cattle, using PCR-denaturating gradient get electrophoresis (DGGE) and 

quantitative PCR (qPCR). The authors suggested that the association between 

the rumen microbiota and RFI is dependent on the diet, in agreement with the 

RFI-based re-ranking of animals when these were adapted from a grower to a 

finisher diet (Durunna et al., 2011). McCann et al. (2014) investigated the 

association of the rumen microbiota and RFI of Brahman bulls on 

bermudagrass pastures, based on 16S rRNA amplicon data. The authors 

determined the core microbiota within positive- and negative-RFI animals (p-

RFI and n-RFI, respectively); four Ruminococcaceae, five Prevotella and one 

Paludibacter operational taxonomic units (OTUs) were exclusively observed in 

the core microbiota of the n-RFI group, whereas ten Prevotella, three 

Lachnospiraceae, two Oscillospira, and one Treponema OTUs were 
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exclusively observed in the core microbiota of the p-RFI group. Furthermore, 

Prevotellaceae family was significantly relatively more abundant in the p-RFI 

group (McCann et al., 2014). In 2016, Li et al. (2016) further clarified the 

association of the rumen microbiota profiles with the host animal RFI. 

Regarding the microbiota, bacterial families Lachnospiraceae, Veillonelaceae, 

and p-2534-18B5 were found to be relatively more abundant in low efficiency 

(i.e., higher RFI) animals, whereas archaea Methanomassiliicocales was 

found to be more abundant in high efficiency (i.e., lower RFI) animals. 

Additionally, the authors suggested that more efficient animals harbour rumen 

microbiomes that better adapt to different environmental challenges and thus 

improve fermentation efficiency (Li et al., 2016). Paz et al. (2018) suggested 

that approximately 20% of the variation observed in gain:feed ratio could be 

explained by the microbiome in beef cattle, particularly by OTUs belonging to 

Bacteroidales, BS11, Victivallaceae, Prevotellaceae, Fibrobacteraceae, 

Spirochaetae, S24-7, Paraprevotellaceae, Veillonellaceae and 

Lachnospiraceae. 

1.9 Association between the gastrointestinal 
microbiome and health traits in bovines 

The gastrointestinal microbiome of bovine hosts not only greatly influences 

their feed conversion efficiency, due to their close association with the 

digestive processes, as presented in the previous sections, but also it is very 

closely associated with health traits.  

Since birth, the establishment and development of a healthy and viable 

microbiota within the gastrointestinal tract of the ruminant is essential for the 

balance between health and disease. In ruminants, the microbiome profiles 

change rapidly and drastically throughout the first weeks of life, playing an 

important role in the development of immunity (Klein-Jöbstl et al., 2019). For 

example, in a very comprehensive review, Taschuk & Griebel (2012) 

suggested that the proper development of the mucosal immune system heavily 

depends on its exposure to a diverse gastrointestinal microbiota, which 

educates and trains the immune system. In a study including 60 Holstein cows, 
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Wang et al. (2021) showed that the content of ruminal VFAs in animals with 

clinical mastitis was significantly decreased in comparison to their subclinical 

or healthy counterparts, and that this had consequences such as reduced milk 

yield and quality (i.e., reduced fat and lactose content). Additionally, the rumen 

microbiota of animals with clinical mastitis also showed a decrease in 

commensals and an increase in potentially pathogenic microorganisms, which 

could be associated with intestinal or oral inflammation (Wang et al., 2021). In 

a review on the impact of nematode parasites on the gastrointestinal 

microbiome, Peachey et al. (2017) concatenates the results from several 

previous studies including hosts of different veterinary species, and suggests 

that microorganisms and metabolic markers involved in fibrolytic activities, and 

carbohydrate and protein transport and metabolism were altered as a 

consequence of parasitic infections. For example, Li et al. (2011) reported 

increased Ethanoligenens and decreased Subdoligranulum in the abomasum 

of dairy cattle infected with Ostertagia ostertagi.  

1.10 Techniques to study the rumen microbiome 

The study of the rumen microbiome often starts by the identification of its 

taxonomic composition, and the characterization of the abundances of each 

taxon. Since most of the rumen microbes are not culturable in laboratory 

conditions, other techniques of identification and quantification, such as those 

based on the 16S rRNA gene, and more recently, based on whole 

metagenomic sequencing of samples, have become extremely powerful to 

identify microbial profiles (Rappé and Giovannoni, 2003). 

The most used technique for analysing microbiomes is the amplicon analyses 

of the 16S rRNA gene. This method is based on the PCR amplification of a 

segment of the 16S rRNA gene, which is then sequenced. The 16S rRNA gene 

is a highly conserved gene amongst prokaryotic organisms, however, it differs 

sufficiently between taxon, providing enough phylogenetic information as to 

allow for the identification of microorganisms at different taxonomic levels, from 

phylum to genus. In advantage to traditional clinical microbiology studies, the 

analysis of the 16S rRNA gene does not require the microorganisms to be 
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grown in culture plates. However, this method becomes inaccurate in the 

identification of microorganisms at the species level, mostly because of the 

great similarity of the 16S rRNA genes of different species. Furthermore, due 

to the variation between species of the number of 16S rRNA gene copies in 

the genomes, the accurate quantification of each taxon is impossible. 

Additionally, the amplification of each 16S rRNA gene may differ, due to 

variable affinity to the primers, which could introduce some bias to the 

characterization of the samples (Jo et al., 2016).  

Whole genomic sequencing (WGS) techniques involve the random 

sequencing of DNA fragments in the sample, allowing for a comprehensive 

identification of microbial genes and organisms present in a complex sample. 

In advantage to 16S rRNA-based methods, WGS can be more accurate in the 

characterization of microbiome samples at the species level if good reference 

databases for the analysed community are available. Whereas 16S rRNA 

amplicon sequencing can be used to infer microbial gene content based on 

previous characterization of the identified OTUs, whole metagenome 

sequencing can be used to accurately resolve DNA fragments into microbial 

genes. Ranjan et al. (2016) compared the use of both methods in the 

characterization of a human stool microbiome sample and reported that WGS 

identified significantly more bacterial species per sample and identified even 

rare bacteria when both depth and coverage were adequate, with 

consequences on the sample’s microbial diversity. 

1.10.1 Statistical analyses of microbiome datasets 

Microbiome datasets are compositional by nature, due to the way samples are 

processed. Sequencing instruments used in high-throughput sequencing can 

only deliver sequence reads up to the capacity of the instrument used, and 

therefore, the total read count is a fixed number, arbitrary for each run. The 

total number of reads in each sample is therefore not interesting, but rather the 

relationships between the components, which are often described as relative 

abundances (i.e., the abundance of a microbial taxon/gene divided by the total 

number of reads). The transformation of sequence read counts to relative 
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abundances is often performed to avoid dilution effects in the samples. 

However, the use of relative abundances directly in statistical analyses of 

microbiome datasets may lead to statistical pitfalls, for example from spurious 

correlations between parts, associated with subcompositional incoherence, 

i.e., results from statistics performed on the original dataset containing all 

observed variables differing from results from statistics performed in a subset 

of the original dataset (Gloor et al., 2017). The issue of subcompositional 

incoherence is discussed in the general discussion chapter of this thesis, along 

with other issues related to the compositionality of microbiome datasets, and 

some strategies (e.g., logratio transformations) to overcome these pitfalls. 

1.11 Research objectives 

This thesis addresses several research aims associated with the microbiome, 

firstly, the study of different methodologies for obtaining microbial 

communities, secondly, the estimation of associations of rumen microbiome 

profiles and bovine performance traits, thirdly, the evaluation of the stability of 

the rumen microbiome profiles and their usefulness to predict performance and 

methane traits based on longitudinal microbiome data, and fourthly, the 

influence of infection of animals with an abomasal nematode on the ruminal 

and caecal microbiome profiles. Therefore, the specific objectives are as 

follows: 

1. To compare two popularly used bioinformatic pipelines, the 

MetaGenome Rapid Annotation using Subsystem Technology (MG-

RAST) and Quantitative Insights Into Microbial Ecology 2 (QIIME2), 

based on 16S rRNA gene amplicons.  

 

2. To understand the association between the bovine rumen metagenome 

and feed conversion efficiency traits, including FCR, RFI, ADG, and 

DFI. 

 

3. To evaluate the longitudinal stability of the rumen microbiome 

composition throughout the finishing phase of beef cattle, and the ability 



 General Introduction 
 

18 
 

of the microbiome collected at different timepoints to predict 

performance and methane emissions traits. 

 

4. To understand the impact of the parasitic abomasal nematode 

Ostertagia ostertagi, and of a vaccine against the parasite, on the 

rumen and caecum microbiome profiles of dairy cattle. 

 

The aim of implementation of this research is the application of the results of 

these studies for breeding, dietary interventions, and vaccine development. 
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Chapter 2 Taxonomic annotation of 16S rRNA 
sequences of pig intestinal samples 
using MG-RAST and QIIME2 
generated different microbiota 
compositions 

2.1 Introduction 

An important step in the study of microbiome compositions is to assess the 

impact that the choice of bioinformatics pipeline used to resolve 16S rRNA 

gene amplicons into taxonomic groups has on the characterization of 

microbiota samples. In this chapter, I present our published journal article that 

compares the microbiota compositions of swine gastrointestinal and faecal 

samples obtained from using the bioinformatics pipelines MetaGenome Rapid 

Annotation using Subsystem Technology (MG-RAST), and Quantitative 

Insights Into Microbial Ecology 2 (QIIME2). 
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A B S T R A C T   

Environmental microbiome studies rely on fast and accurate bioinformatics tools to characterize the taxonomic 
composition of samples based on the 16S rRNA gene. MetaGenome Rapid Annotation using Subsystem Tech
nology (MG-RAST) and Quantitative Insights Into Microbial Ecology 2 (QIIME2) are two of the most popular 
tools available to perform this task. Their underlying algorithms differ in many aspects, and therefore the 
comparison of the pipelines provides insights into their best use and interpretation of the outcomes. Both of these 
bioinformatics tools are based on several specialized algorithms pipelined together, but whereas MG-RAST is a 
user-friendly webserver that clusters rRNA sequences based on their similarity to create Operational Taxonomic 
Units (OTU), QIIME2 employs DADA2 in the construction of Amplicon Sequence Variants (ASV) by applying an 
error model that considers the abundance of each sequence and its similarity to other sequences. Taxonomic 
compositions obtained from the analyses of amplicon sequences of DNA from swine intestinal gut and faecal 
microbiota samples using MG-RAST and QIIME2 were compared at domain-, phylum-, family- and genus-levels 
in terms of richness, relative abundance and diversity. We found significant differences between the microbiota 
profiles obtained from each pipeline. At domain level, bacteria were relatively more abundant using QIIME2 than 
MG-RAST; at phylum level, seven taxa were identified exclusively by QIIME2; at family level, samples processed 
in QIIME2 showed higher evenness and richness (assessed by Shannon and Simpson indices). The genus-level 
compositions obtained from each pipeline were used in partial least squares-discriminant analyses (PLS-DA) to 
discriminate between sample collection sites (caecum, colon and faeces). The results showed that different 
genera were found to be significant for the models, based on the Variable Importance in Projection, e.g. when 
using sequencing data processed by MG-RAST, the three most important genera were Acetitomaculum, Rumino
coccus and Methanosphaera, whereas when data was processed using QIIME2, these were Candidatus Meth
anomethylophilus, Sphaerochaeta and Anaerorhabdus. Furthermore, the application of differential filtering 
procedures before the PLS-DA revealed higher accuracy when using non-restricted datasets obtained from MG- 
RAST, whereas datasets obtained from QIIME2 resulted in more accurate discrimination of sample collection 
sites after removing genera with low relative abundances (<1%) from the datasets. Our results highlight the 
differences in taxonomic compositions of samples obtained from the two separate pipelines, while underlining 
the impact on downstream analyses, such as biomarkers identification.   

1. Introduction 

The efficient and reproducible characterization of the microbial 
communities in a given sample (i.e. microbiota) is only as accurate as the 
bioinformatics tools applied to process the large rRNA amplicon 
sequencing datasets. Currently, the microbiota composition is widely 
explored using targeted 16S rRNA amplicons sequenced by a range of 

technologies which are fast and affordable in comparison to shotgun 
metagenomics (e.g. Andrade et al., 2020; Koringa et al., 2019; Li et al., 
2016). Several pipelines are available to perform quality checks and 
taxonomic annotation: Metagenome Analyzer (MEGAN) is a computer 
program that uses NCBI annotation to annotate reads according to their 
conservation level (Huson et al., 2007); MOTHUR is a pipeline that al
lows the user to trim, screen and align sequences and includes tools to 
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evaluate diversity parameters, such as alpha- and beta-diversity, and 
visualization tools such as Venn diagrams and heat maps (Schloss et al., 
2009); Metagenomics Rapid Annotation using Subsystem Technology 
(MG-RAST, Meyer et al., 2008) is a fully automated pipeline that em
ploys similarity-based binning of rRNA sequences into Operational 
Taxonomic Units (OTUs), followed by the comparison of each OTU 
representative against the M5rna database, using the Blast-Like Align
ment Tool (BLAT, Glass et al., 2010); Quantitative Insights into Micro
bial Ecology (QIIME2, Bolyen et al., 2018) is an open-source software for 
the analysis of microbiomes that employs the Divisive Amplicon 
Denoising Algorithm package (DADA2, Callahan et al., 2016) in an 
Amplicon Variant Sequence (ASV)-based binning of sequences. 

In previous studies, D'Argenio et al. (2014) and Plummer et al. 
(2015) compared MG-RAST to QIIME (identifying OTUs), a precursor of 
QIIME2 (Identifying ASVs), and both found that MG-RAST consistently 
reported a significantly higher number of unclassified sequences than 
QIIME. However, whereas D'Argenio et al. (2014) concluded that QIIME 
provided more accurate results than MG-RAST, Plummer et al. (2015) 
concluded that the tools generated similar results. QIIME and QIIME2 
are two pipelines that include external tools to perform some specific 
tasks, i.e. QIIME2 is not a true update of QIIME, as they substantially 
differ in the set of tools and algorithms they employ; e.g. whereas QIIME 
is an OTU-based pipeline, QIIME2 is ASV-based. Kaszubinski et al. 
(2019) compared MG-RAST, MOTHUR and QIIME2, based only on the 
phylum- and family-level compositions, after a rarefaction procedure 
and filtering out the OTUs with mean relative abundance lower than 1%, 
and suggested that QIIME2 was the most appropriate pipeline, mostly 
due to decreased abundance of unclassified sequences, differentially 
abundant taxa and increased alpha- and beta-diversity in comparison to 
MG-RAST and MOTHUR. Although MOTHUR is widely used to analyse 
community sequence data, it was not included in the present study 
because it has been previously found to produce the highest percentage 
of unclassified reads when compared to MG-RAST and QIIME, at the 
phylum- and family-level (Kaszubinski et al., 2019) and at the genus- 
level (Plummer et al., 2015) compositions. Furthermore, MOTHUR 
had the most false positives and lowest concordance to the microbiota 
taxonomic reference dataset (Kaszubinski et al., 2019). 

The aim of the present research was to compare the taxonomic 
compositions resulting from the application of the two pipelines, MG- 
RAST and QIIME2, when sequences are aligned against the SILVA 
database (Pruesse et al., 2007). These pipelines were selected for com
parison because they are self-contained and have fundamentally 
different underlying algorithms. Both tools are among the most popular 
freely available software used to obtain taxonomic composition of 
samples from 16S rRNA amplicon sequence files provided by Illumina 
procedures (i.e. raw sequence reads in fastq format), and both allow the 
use of the SILVA database (Quast et al., 2013) in the identification of 
OTUs/ASVs. Additionally, we investigated the use of microbiota profiles 
obtained using MG-RAST and QIIME2 in the discrimination of sample 
collection sites (caecum, colon and faeces), and assessed the potential 
consequences of using distinct tools for microbiota characterization of 
samples. The impact of different filtering and data cleaning processes on 
the microbiota composition were also evaluated. 

2. Materials and methods 

2.1. Ethical statement 

The porcine trial was conducted at the Pig Research Centre of Scot
land's Rural College (SRUC, 6 miles south of Edinburgh, UK). The 
experiment was approved by SRUC's Animal Welfare and Ethical 
Approval Body and was conducted in accordance with the requirements 
of the UK Animals (Scientific Procedures) Act 1986. 

2.2. Bioinformatics pipelines 

The 16S rRNA amplicon reads obtained from an Illumina MiSeq 
System (Edinburgh Genomics, UK) were analysed using two pipelines: 
MG-RAST (v. 4.0.3) and QIIME2 (v. 2019.1). Pre-processing of samples, 
such as quality-based trimming and/or filtering and chimera detection 
and removal, were performed only if the necessary tools were provided 
within the pipelines because the aim of this study was to apply MG-RAST 
and QIIME2 as stand-alone tools from start (16S rRNA reads obtained 
from Illumina in fastQ files) to finish. For both tools, the SILVA reference 
database (SSU, release 132) was used in the taxonomic annotation of 
reads. 

2.2.1. QIIME2 

2.2.1.1. Data hygiene. High-throughput sequencing techniques such as 
the one employed in Illumina sequencers exhibit a steep, exponential 
increase in error rates along the read length. Illumina results include 
both the nucleotide sequence of the reads and a quality score (Q-score) 
associated to each nucleotide in each read. The QIIME2 pipeline uses the 
Q-scores for the quality-score-based trimming and filtering procedure, 
by randomly selecting a subset of reads per base position and calculating 
a boxplot of the corresponding Q-scores. These results are then provided 
to the user, who makes the decision regarding trimming. Forward and 
reverse reads were trimmed at 153 and 157 bases, respectively. No 
external tool for chimera detection and removal was actively included in 
our protocol using either pipeline, but DADA2 (incorporated in QIIME2) 
defaults the action regarding chimeras to “consensus” (i.e. “Chimeras 
are detected in samples individually, and sequences found chimeric in a 
sufficient fraction of samples are removed.” (QIIME2 Development 
Team, 2020)). In this work, we used a typical or best-practices approach 
to QIIME2, following official tutorials. 

2.2.1.2. Feature annotation. QIIME2 employs DADA2 in the identifica
tion of ASVs. DADA2 is an open-source software package for modelling 
and correcting Illumina-sequenced amplicon errors (Callahan et al., 
2016). This algorithm implements a quality-aware model that works by 
first grouping all amplicon reads with the same sequence into unique- 
sequence sets, keeping record of the abundance and consensus quality 
profile of each of these sets. All unique-sequence sets are grouped into 
one single partition and the most abundant one (the one with the highest 
amount of copies) becomes the centre of the partition. The similarity of 
each unique-sequence set to the centre set is calculated and the one with 
highest dissimilarity from the centre set is identified to become the 
centre of a new partition. All unique-sequence sets are then re- 
distributed through the two partitions, according to their similarity to 
the centre sets. This process continues iteratively until the division of 
sequences into partitions is consistent with the error model creating 
ASVs (Callahan et al., 2016). DADA2 algorithm is mainly based on two 
criteria; the abundance of each amplicon sequence (if a sequence is 
highly abundant, it is most likely a product of true variation than a 
product of errors introduced during the sequencing procedure) and the 
pairwise similarity between sequences (i.e. error rates). Then, a classifier 
is used in the identification of each ASV. In this study, a Bayesian Naïve 
classifier was pre-trained on the SILVA database (“silva-132-99-515-806- 
nb-classifier.qza”, https://docs.qiime2.org/2019.4/data-resources/) and 
then used for the taxonomic annotation of our samples. One table was 
created for each taxonomic level (Domain, Phylum, Class, Order, Family 
and Genus). In each table, sequences that could not be allocated to the 
corresponding taxonomic level (but were allocated to any higher level) 
were accumulated into a new category named “Unidentified”. 

2.2.2. MG-RAST 

2.2.2.1. Data hygiene. Forward and reverse read files were uploaded 
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into MG-RAST, which performs an automated quality control step based 
on an md5 checksum, to identify any issues with the sequencing run, 
such as corrupt files. No issues were detected in our files. At the same 
time, it provides statistical information about the reads present in each 
file, such as base pair count, sequence count, sequence length and GC- 
content. MG-RAST includes options for demultiplexing (necessary 
when reads from multiple samples are mixed in one file, which was not 
the case in our study) and joining paired-ends. In this pipeline, the 
pairing must be performed before any quality-based trimming and 
filtering of reads. MG-RAST incorporates the SolexaQA software pack
age (Cox et al., 2010), which provides a rapid assessment of read quality 
for data generated using Illumina sequencing; the user can select a 
threshold quality for trimming (the default value is Q ~ 13 or P = 0.05). 
In our study, the threshold applied was Q ~ 25, as to warrant base call 
accuracy not to be lower than 99.5%. Although in other pipelines (such 
as QIIME2) the quality-based trimming is an important procedure, with 
consequences for downstream analyses, in MG-RAST this is not as crit
ical because MG-RAST offers the user the possibility of filtering data 
after the taxonomic annotation process, according to criteria such as the 
minimum identity cut-off, the minimum alignment length, the minimum 
abundance threshold and the maximum e-value. No procedure for 
chimera detection and removal are provided within MG-RAST. We did 
not use any external software for this purpose, because the goal was to 
exclusively use the tools provided in each pipeline. The quality control 
procedures in MG-RAST also include a screening stage that uses Bowtie 
(Langmead et al., 2009) to discard sequences that are near-exact 
matches to the host genomes of a selected organism, in our case Sus 
scrofa (i.e. the wild boar). 

2.2.2.2. Feature annotation. Following the quality control, MG-RAST 
performs a rRNA extraction at 70% identity using VSEARCH (Rognes 
et al., 2016) against a 90% identity clustered reduced version of SILVA, 
Greengenes (DeSantis et al., 2006) and RDP (Cole et al., 2003) databases 
(M5RNA_90). The rRNA reads identified are then clustered at 97% of 
identity using cd-hit (Li and Godzik, 2006) and the longest sequence is 
picked as the cluster representative for comparison against the M5rna 
database (non-redundant database that includes SILVA, Greengenes and 
RDP, Wilke et al., 2012) using the BLAST-like Alignment Tool (BLAT; 
Kent, 2002). In this study, we opted to use the “SILVA SSU” option, 
which will provide the SILVA annotation of the features, based on the 
M5rna database. After the feature annotation, MG-RAST provides the 
possibility to manipulate several parameters in real time using the user 
interface (UI), including the minimum identity cut-off and the minimum 
alignment length which were in the present study set to 80% and 100, 
respectively. Additionally, the user can also define the minimum 
abundance threshold and the maximum e-value (or expect value, i.e. the 
number of hits one can expect to be by chance in the used database), 
which were left at the default value. 

2.3. Data used for methodology comparison 

For the comparisons of MG-RAST and QIIME2, 188 samples of the 
gastrointestinal microbiota were obtained from 38 intact male swine, 
which were progeny of crosses of Hampshire boars and Large White ×
Landrace crossbred sows (38 samples from caecum and colon each, and 
112 faecal samples). Faeces samples were collected at 3 time points 
(start, at the end of the second week and at the end of the fourth week). 
For each faecal sample, about 5 g of homogenized matter was placed in 
30 ml universal containers (Alphalabs, UK) filled with 4 ml RNALater 
(Sigma-Aldrich, UK) prior to being snap frozen and stored at − 80 ◦C. At 
the end of the trial, pigs were sedated and euthanized prior to dissection 
and tissue collection. Post-mortem, intestinal luminal contents were 
collected from the caecum and colon using Universal 30 ml tubes, 
whereas mucosal cell wall samples were captured by scraping and 
transferred into Nunc 4.5 ml cryotubes. Tubes were filled with 4 ml or 3 

ml of RNALater, respectively. Total DNA was extracted from intestinal 
content and faeces samples following an adapted protocol of Yu and 
Morrison (2004) combining chemical lysis and bead beating followed by 
purification on column using the QIASymphony with the Qiagen Midi 
kit and applying the blood sample extraction method with the FIX option 
used to collect all the supernatant. DNA was finally eluted in 400 μl of EB 
(Qiagen, UK) and an aliquot of 200 μl was directly stored at − 20 ◦C 
whilst a second one was retained for further analysis. The amount of 
DNA extracted was quantified by Qubit fluorimetric quantitation for 
dsDNA (ThermoFisher, UK). An adapted protocol based on the 16S 
Metagenomic Sequencing Library Preparation for the Illumina MiSeq 
System (Illumina, UK) was applied for total DNA extracted from caecum, 
colon and faeces samples. The V4 region of the 16S rRNA gene was 
amplified specifically using primers 515F and 806R. Two 16S libraries 
were composed of 95 and 93 amplicon samples purified on magnetic 
beads using the ProNex Chemistry (Promega, WI, USA) and quantified 
using Qubit assay prior to being pooled in two different tubes. An aliquot 
of 10 ng/μl in 15 μl per library was sent to Edinburgh Genomics (Scot
land, UK) for Illumina sequencing using MiSeq v2 250PE and providing 
a yield of at least 11 M + 11 M reads per run, resulting in a total of 376 
fasta.gz files (forward and reverse read files for each of the 188 samples). 

2.4. Statistical analyses 

The relative abundances of each group at domain level, of unclassi
fied and unidentified sequences at phylum-level and at genus-level were 
calculated from the taxonomic composition reported by MG-RAST and 
QIIME2 and compared using two-sided paired t-tests, considering the 
different variances of the samples. 

In the domain-level analysis and in all analyses pertaining to the 
percentage of unclassified and unidentified data, all reported groups 
were considered, including the sequences classified as Eukaryota and/or 
viruses. However, for the phylum-, family- and genus-level analyses, 
these groups were removed from the databases. To account for multiple 
testing, presented P-values were adjusted by applying the Bonferroni 
correction. 

Venn diagrams were used to identify taxa reported exclusively by 
either QIIME2 or MG-RAST and by both, and were applied to the phyla-, 
family- and genus-level tables (Oliveros, 2007). 

Principal Component Analysis (PCA) and plots were produced using 
devtools (Hadley et al., 2019) and ggbiplot (Vu, 2011) packages in R 
Studio (v. 1.1.453). PCA was carried out using the relative abundances 
of the 56 families reported by both MG-RAST and QIIME2, after 
removing four outliers (corresponding to two samples whose taxonomic 
compositions generated by either pipeline diverged from the mean by 
more than 4 standard deviations). Additionally, the family compositions 
obtained from MG-RAST and QIIME2 were compared in a permutation 
multivariate analysis of variance (PERMANOVA), using a Bray-Curtis 
distances matrix (Anderson, 2001; Mcardle and Anderson, 2001). This 
analysis was carried out using the adonis() function of the vegan pack
age (Oksanen et al., 2019) in R Studio (v. 1.1.453). 

tThe correlation of the absolute counts of each genus identified by both 
pipelines was calculated, and significance was assessed through Bonfer
roni adjusted P-value (P-value <0.05 means significant correlation). 

Partial Least Squares Discriminant Analyses (PLS-DA), calculated with 
the ‘mixOmics’ package (Le Cao et al., 2020) in R Studio (v. 1.1.453), was 
used to address differences in the microbiota profiles of 114 samples 
collected from different body sites (caecum, colon and faeces) at the end 
of the trial. These analyses were performed (in relative abundances) after 
subjecting the genus-level datasets generated by MG-RAST and QIIME2 
to four different filtering procedures: data scenario A included all genera 
reported by each pipeline; data scenario B included genera reported by 
each pipeline with average relative abundance greater than 1%; data 
scenario C included genera identified by both pipelines; data scenario D 
included all taxa identified by both pipelines with a minimum average 
relative abundance of 1% (Table 1). Relative abundances were calculated 
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within each data scenario. Considering the compositional nature of 
microbiota datasets, further PLS-DA analyses were performed on data 
scenarios A and B using the MG-RAST and QIIME2 datasets transformed 
by the additive logratio methodology (Greenacre, 2018). The de
nominators (Acidaminococcus in MGRAST and Subdoligranulum in 
QIIME2) were identified based on their high prevalence, low variance, 
and high Procrustes correlations with the full log-ratio space. 

The co-abundances of microbial taxa in each of the data scenarios 
were explored in networks analyses using Graphia Professional software 
(Kajeka Ltd., Edinburgh; Freeman et al., 2007), in which nodes represent 
samples and edges represent a correlation value above R = 0.95. Clus
tering was performed using the Markov clustering method (MCL) 
available in Graphia Professional using the default settings (inflation, 
pre-inflation, and scheme values of 6). Each cluster was evaluated for 
enrichment of samples according to their collection sites (caecum, colon 
and faeces) and pipeline (MG-RAST and QIIME2), whereby enrichment 
significance was identified at P-value <0.05. 

2.4.1. Diversity measures 
Several diversity measurements were used to compare the family 

composition of the samples as obtained from MG-RAST and QIIME2 
pipelines. 

2.4.1.1. Alpha-diversity. Observed richness and gamma-diversity (Sobs 
and γ, respectively) are both richness measurements. Sobs corresponds to 
the number of different taxa in each individual sample. For a group of 
samples, Sobs corresponds to the average number of taxa per sample, 
whereas γ corresponds to the total number of different taxa in a 
collection of samples. 

The Chao1 index (Chao, 1987) refers to the richness estimated for 
each sample (including all taxa measured by Sobs and taxa that were 
presumably not sampled). The Chao1 index was calculated using the 
fossil package (Vavrek, 2015) in R Studio (v. 1.1.453). 

Shannon and Simpson indices (H′ and D′, respectively) are 
abundance-based measures of diversity. The results presented here refer 
to the adjusted Shannon and adjusted Simpson indices (H'adj and D'adj, 
respectively), which correspond to the ratios of H′ and D′ by the 
maximum H′ and maximum D′ possible, respectively (Veech, 2017). 
Note that H′, H'adj, D′ and D'adj increase with diversity (Veech, 2017). 

2.4.1.2. Beta-diversity. Multiple beta-diversity measures can be used to 
infer diversity between samples. 

The additive and multiplicative partitioning of the gamma-diversity 
are the most direct ways of calculating beta-diversity; beta-additive (βA) 
corresponds to the taxa richness typically absent from a randomly 
selected sample whereas beta-multiplicative (βM) refers to the number of 
unique samples (i.e. with no taxa in common with any other sample) 
theoretically found in a group of samples. 

The Bray-Curtis index (CBC) makes use of abundance data to calcu
late diversity between samples in a pairwise manner, which results in a 
vector of distances to every other sample; the average value corresponds 
to the CBC presented. 

βA, βM and CBC were used here to address dissimilarity of samples 
within their originating pipeline (Veech, 2017). 

3. Results 

3.1. Domain 

The taxonomic composition of 188 samples computed in MG-RAST 
and QIIME2 resulted in totals of 20,760,260 and 14,576,856 hits, 
respectively (Table 2). The average relative abundances of Archaea were 
non-significantly different, at 0.47 ± 0.88% and 0.42 ± 0.57% using 
MG-RAST and QIIME2, respectively, whereas the differences in relative 
abundances of Unclassified, Bacteria and Eukaryota were significant 
(Table 2). The main reason for these differences was the misclassifica
tion of 16S rRNA amplicon sequences into Eukaryota and Viruses, and a 
relatively higher percentage of unclassified sequences in MG-RAST. 

The Archaea:Bacteria ratio of each sample was calculated using ab
solute counts of hits obtained from each pipeline, and then compared in 
a two-sided paired t-test, which revealed a significant difference be
tween the pipelines, resulting mostly from the differential abundance of 
bacteria. 

3.2. Phylum 

The relative abundances of unclassified and unidentified sequences 
were significantly higher in the phylum-level composition of samples 
obtained from MG-RAST than those from QIIME2 (0.017% and 3.483%, 
respectively, P-value<0.001). All 15 phyla reported by MG-RAST were 
also identified by QIIME2, whereas 7 were exclusively identified by 
QIIME2 (Fig. 1). The overall abundances of the 15 phyla found in 
common between both pipelines accounted for 100% and 98.8% of the 
QIIME2 and MG-RAST total hits, respectively, indicating that taxa 
identified exclusively by QIIME2 only accounted for a small part of the 
overall microbiota. Despite this, some of the phyla exclusively reported 
by QIIME2 had higher average relative abundance (over all animals) 
than phyla identified by both pipelines, e.g. Euryarchaeota was identified 
by both pipelines and accounted for 0.4% of QIIME2 hits, whereas Kir
itimatiellaeota, exclusively identified by QIIME2, accounted for 0.7%. 

The relative abundances of 13 of the 15 phyla were shown to be 
significantly different between the pipelines (P-value<0.05, Table 3). 

Table 1 
Filtering criteria applied to genus-level compositions to create 4 data scenarios for comparisons.  

Data scenario Criteria Total number of genera used 
Minimum average relative abundance Genera identified in either or both pipelines 

A Not applied Either MG-RAST: 225 genera 
QIIME2: 159 genera 

B Applied Either MG-RAST: 14 genera 
QIIME2: 22 genera 

C Not applied Both Both: 86 genera 
D Applied Both Both: 10 genera  

Table 2 
Mean relative abundances (%) of each domain as reported by MG-RAST and 
QIIME2 pipelines. This table summarises the total number of sequences identi
fied, the averages and standard deviations of the relative abundances of each 
domain and whether significant differences occur depending on the used 
pipeline.  

Taxonomic level Pipeline P-value 

MG-RAST QIIME2 

Archaea 0.47 ± 0.88 0.42 ± 0.57 0.1681 
Bacteria 96.02 ± 5.64 99.57 ± 0.57 2.20E-16 
Eukaryota 3.36 ± 5.20 3.77E-04 ± 1.91E-03 5.73E-16 
Viruses 2.94E-05 ± 2.46E-04 – – 
Unclassified 0.15 ± 0.48 5.24E-03 ± 1.56E-02 5.85E-05 
A:B ratio 5.19E-03 ± 1.01E-02 4.28E-03 ± 0.06 0.0202 
Total sequences 20,760,260 14,576,856 – 

A:B ratio indicates Archaea:Bacteria ratio. P-values were obtained from two- 
sided paired t-tests, assuming different variances. 
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The highly abundant taxa showed differences in relative abundances 
as result of the pipeline used, e.g. Firmicutes was significantly more 
abundant using MG-RAST (62.3%) than QIIME2 (48.0%), and Bacter
oidetes was significantly more abundant using QIIME2 (35.3%), than 
MG-RAST (41.9%). 

To highlight the differences in taxa with lower abundances, the 

logarithms of the relative abundances were used in a mirrored bar chart 
(Fig. 2) in which the longer bars correspond to less abundant taxa e.g. 
SAR in QIIME2 and Elusimicrobia in MG-RAST. 

The analyses of the phyla prevalence in the samples revealed that 
Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria were identi
fied in all samples, independently of the pipeline used (Table 4). Addi
tionally, Cyanobacteria and Tenericutes were present in all compositions 
reported by QIIME2, but only in 5% and 53% when applying MG-RAST, 
respectively. Six out of 15 phyla and 17 out of 22 phyla were detected in 
at least half of the samples by MG-RAST and QIIME2, respectively, and 
these summed up to average relative abundances of 99.97% and 
99.95%, respectively. Although seven phyla were exclusively reported 
by QIIME2, five of these were present in at least 50% of the samples. 

3.3. Family 

The family-level composition of samples obtained from the different 
pipelines (after removal of unclassified, unidentified and Eukaryote 
groups) was investigated in a Venn diagram (Fig. 3). A large number of 
taxa were found to be exclusively identified by one of the pipelines: 47 
and 25 for MG-RAST and QIIME2, respectively. 

The 10 most abundant families from each pipeline were ranked by 
decreasing average relative abundance in Table 5. Prevotellaceae and 
Ruminococcaceae were the 1st and 2nd most abundant taxa in both 
pipelines. An additional five taxa (Veillonellaceae, Clostridiaceae, Lach
nospiraceae, Erysipelotrichaceae and Lactobacillaceae) were in the top 10 
most abundant taxa of both pipelines, although not in the same rank e.g. 
Veillonellaceae was the 3rd most abundant in MG-RAST but only the 5th 
in QIIME2. Eubacteriaceae, Acidaminococcaceae and Coriobacteriaceae 
were among the 10 most abundant families as reported by MG-RAST, 
but were identified at lower abundances by QIIME2. Among the 10 
most abundant families identified by QIIME2, Muribaculaceae was not 
detected by MG-RAST, and both Peptostreptococcaceae and Rikenellaceae 
were identified, but at lower relative abundances. 

3.3.1. Taxonomic diversity 
The taxonomic diversity was assessed and compared using different 

indices (Table 6). The family compositions of each sample obtained from 
QIIME2 showed on average greater richness than their MG-RAST 
counterparts (Sobs = 38.95 and 30, respectively). In contrast, sample 
compositions obtained from QIIME2 had lower overall richness than 
MG-RAST (γ = 81 and 103, respectively). Chao1 (which takes into ac
count both the observed and unobserved richness of samples) were 
significantly lower when samples were characterized using MG-RAST. 
However, there was a large difference between Chao1 and Sobs when 
using MG-RAST, indicating a higher estimated number of unsampled 
families. In contrast, Chao1 estimated for samples compositions ob
tained from QIIME2 had the same values as Sobs. This could lead to the 
conclusion that QIIME2 provided us the absolutely complete charac
terization of the targeted environments (caecum, colon and faeces), i.e. 
not one family that exists in the sampled environments has been left 
unsampled, which is virtually impossible. Instead, this is because 
DADA2 (incorporated in QIIME2) does not call singletons, due to the 
difficulty in robustly distinguishing real singletons from singleton errors 
(Callahan et al., 2016). 

The adjusted Shannon and Simpson indices showed that samples 
had, on average, significantly lower evenness and higher dominance (as 
indicated by lower H'adj and lower D'adj) when the taxonomic compo
sitions were obtained from MG-RAST. Dissimilarity between samples 
was assessed through beta partitioning and Bray–Curtis dissimilarity 
index. The βA was higher when MG-RAST was applied, indicating that 
the composition of each sample was more similar to the average 
composition of the collection of samples when these were processed in 
QIIME2. The βM was also higher when using MG-RAST in comparison to 
QIIME2, suggesting that microbiota profiles obtained from the latter 
pipeline were more similar to each other than those obtained from the 

Fig. 1. Commonly and differently identified phyla reported by MG-RAST and 
QIIME2. The numbers in brackets represent percentage of taxa in each area. The 
15 phyla shared by the pipelines correspond to (a) 100% of the sequence hits 
reported by MG-RAST and (b) 98.8% of the sequence hits reported by QIIME2. 

Table 3 
Differences between the relative abundances of the phyla identified by MG- 
RAST and QIIME2 pipelines. ‘Mean of differences’ refers to the average differ
ence between relative abundances reported by the pipelines and the ‘P-value 
Bonferroni’ indicates the significance of those differences. These relative 
abundances were calculated considering only the taxa obtained with both 
pipelines, in order to allow for a balanced comparison.  

Phylum Average relative abundances 
(%) 

Mean of 
differences 

P-value 
Bonferroni 

MG-RAST QIIME2 

Firmicutes 62.37 ±
6.29 

47.98 ± 6.47 14.4 ± 4.99 1.34E-91 

Bacteroidetes 35.32 ±
7.030 

41.88 ± 5.96 6.79 ± 4.06 3.17E-48 

Actinobacteria 1.23 ± 0.97 2.40 ± 0.89 1.23 ± 0.5 3.63E-61 
Euryarchaeota 0.53 ± 1.01 0.43 ± 0.59 0.2 ± 0.5 0.038481 
Proteobacteria 0.51 ± 0.53 2.98 ± 1.86 2.47 ± 1.89 2.2E-41 
Tenericutes 1.27E-02 ±

3.48E-02 
0.87 ± 0.55 0.86 ± 0.54 1.44E-51 

Spirochaetes 1.05E-02 ±
7.43E-02 

1.68 ± 2.50 1.67 ± 2.47 3.35E-16 

Fusobacteria 9.28E-03 ±
7.04E-02 

5.88E-03 ±
4.14E-02 

0.004 ± 0.03 0.118873a 

Fibrobacteres 3.92E-03 ±
2.19E-02 

0.25 ± 0.38 0.25 ± 0.38 1.56E-15 

Chlamydiae 7.91E-04 ±
2.45E-03 

6.10E-04 ±
2.73E-03 

0.0005 ±
0.001 

0.118873a 

Lentisphaerae 6.94E-04 ±
4.93E-03 

0.13 ± 0.17 0.13 ± 0.17 4.44E-19 

Cyanobacteria 1.84E-04 ±
1.07E-03 

1.34 ± 1.11 1.34 ± 1.11 1.07E-37 

Synergistetes 2.13E-05 ±
2.92E-04 

1.30E-02 ±
1.34E-02 

0.01 ± 0.01 9.43E-28 

Verrucomicrobia 1.35E-05 ±
1.31E-04 

4.90E-03 ±
7.39E-03 

0.005 ± 0.01 1.06E-15 

Elusimicrobia 7.96E-06 ±
7.77E-05 

3.74E-02 ±
6.74E-02 

0.04 ± 0.07 5.1E-12  

a indicates non-significant differences (p ≥ 0.05). P-values were obtained from 
two-sided paired t-tests assuming different variances and corrected by the 
Bonferroni method. 
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former pipeline. Similarly, CBC was significantly higher in MG-RAST 
than in QIIME2, indicating that family-level composition of samples 
obtained from MG-RAST were more dissimilar between themselves than 
when using QIIME2; CBC differs from beta partitioning measures because 
it is calculated as the average of pairwise differences, rather than as a 
collective group. 

The PCA plot in Fig. 4 showed that the microbiota profiles (including 
the 56 families detected by both MG-RAST and QIIME2) formed 
different clusters, depending on the pipeline from which they were 

obtained. Additionally, PERMANOVA analysis showed significant dif
ferences (P-value <0.01) in the microbiota communities, with higher 
relative abundances of Eubacteriaceae, Clostridiaceae, Veillonellaceae and 
Acidaminococcaceae when using MG-RAST and higher relative abun
dances of Succinivibrionaceae, Peptostreptococcaceae, Ruminococcaceae, 
Rikenellaceae and Lachnospiraceae in results obtained from QIIME2. 

3.4. Genus 

The similarity of genus-level composition of samples between the use 
of MG-RAST and QIIME2 was explored in the Venn diagram in Fig. 5. 

Fig. 2. Log-transformed relative abundances of the 22 phyla obtained using MG-RAST and/or QIIME2. Note that shorter bars correspond to higher abundances.  

Table 4 
Prevalence of each phylum in 188 samples.  

Phyla Prevalence in QIIME2 (%) Prevalence in MG-RAST (%) 

Actinobacteria 100 100 
Bacteroidetes 100 100 
Cyanobacteria 100 4.79 
Firmicutes 100 100 
Proteobacteria 100 100 
Tenericutes 100 53.19 
Spirochaetes 98.94 23.40 
Fibrobacteres 93.09 4.26 
Euryarchaeota 86.17 95.21 
Lentisphaerae 76.60 5.32 
Synergistetes 75.53 0.53 
Elusimicrobia 52.66 1.06 
Verrucomicrobia 42.02 1.06 
Fusobacteria 19.15 35.11 
Chlamydiae 7.45 24.47 
Epsilonbacteraeota 98.94 n/a 
Patescibacteria 86.70 n/a 
Kiritimatiellaeota 82.98 n/a 
Planctomycetes 65.43 n/a 
Deferribacteres 50.53 n/a 
WPS-2 41.49 n/a 
SAR 2.13 n/a 

n/a indicates non-applicable, these phyla were identified exclusively by QIIME2. 

Fig. 3. Commonly and differently identified families using MG-RAST and 
QIIME2. The numbers in brackets represent the proportion of families in each 
area. A total of 56 families were reported by both pipelines and enclosed (a) 
99.95% of the sequence hits in MG-RAST and (b) 89.67% of the sequence hits 
in QIIME2. 
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Forty eight of the 97 genera detected by both MG-RAST and QIIME2 
were reported with significantly different relative abundances 
(Table S1). Furthermore, for 67 of these 97 genera, the relative abun
dances obtained from the different pipelines were significantly corre
lated, including 36 genera with correlations equal to or higher than 0.8. 

The genus-level compositions of the 114 samples collected at the end 
of the trial from the caecum, colon and faeces (N = 38 each collection 
site) were used in PLS-DA analyses to discriminate microbiota commu
nities based on their collection sites, and compare results obtained using 
different pipelines. These comparisons were based on different data 
scenarios (described in detail in Table 1). 

The explanatory variables included in PLS-DA models are evaluated 
based on their Variable Importance in Projection (VIP) values (Lima 
et al., 2019; Mao et al., 2016; Martínez-Álvaro et al., 2020; Roehe et al., 
2016), which represent the significance of each variable to discriminate 
between sample types (caecum, colon and faeces). Using data scenarios 
A (all genera reported by each pipeline) and C (only genera identified by 
both pipelines), MG-RAST had higher R2 value for discriminating be
tween sample collection sites than QIIME2 (A: 77.19% and 74.56%; C: 
73.68% and 68.42%, respectively). In contrast, for data scenarios B and 
D (same criteria as used for data scenarios A and C, respectively, but 
additional exclusion of genera with average relative abundance <1%), 
the genera obtained from MG-RAST resulted in lower R2 than those 
obtained from QIIME2 (B: 61.40% and 72.81%; D: 58.77% and 62.28%, 
respectively; Table 7). 

Although the number of genera resulting in VIP > 1 differed, their 
proportion in relation to the total number of genera was very similar 
(Table 8). Specifically, using data scenario A, the number of genera with 
VIP > 1 was higher when using genera compositions obtained from MG- 
RAST than those from QIIME2 (62 and 43, respectively). However, it 
corresponded to very similar proportions of genera considered in the 

models (28% and 27%). The analysis of data scenario B, revealed that 4 
and 8 genera (29% and 36% of the genera considered in the model) 
resulted in VIP > 1 using MG-RAST and QIIME2, respectively. Corre
sponding results using scenario C were 24 and 22 genera (28% and 26%) 
when using genera compositions obtained from MG-RAST and QIIME2, 
respectively. In scenario D, both pipelines resulted in 3 genera (30%) 
with VIP > 1: Ruminococcus, Blautia and Faecalibacterium, whereas 
Phascolarctobacterium and Lactobacillus had the lowest VIP values in both 
pipelines (Table 9). 

The most significant variables (VIP > 1) obtained from the PLS-DA 
analyses of the datasets obtained from MG-RAST and QIIME2 were 
not concordant (Fig. 6). These results suggest that the genera discrimi
nating between sample types (caecum, colon and faeces) differ accord
ing to the pipeline applied for taxonomic annotation. 

Table 5 
The 10 most abundant families reported by each pipeline and corresponding overall samples average relative abundances.  

MG-RAST QIIME2 

Rank Family Average Relative Abundance (%) Rank Family Average Relative Abundance (%) 

1 Prevotellaceaea 36.54 ± 1.74E-01 1 Prevotellaceaea 33.40 ± 9.21 
2 Ruminococcaceaea 15.91 ± 1.85E-02 2 Ruminococcaceaea 15.81 ± 3.85 
3 Veillonellaceaeb 10.83 ± 1.80E-04 3 Lachnospiraceaeb 10.82 ± 2.53 
4 Clostridiaceaeb 9.11 ± 7.48E-03 4 Muribaculaceae 6.84 ± 4.35 
5 Eubacteriaceae 6.41 ± 1.86E-04 5 Veillonellaceaeb 6.31 ± 3.20 
6 Lachnospiraceaeb 5.04 ± 5.79E-04 6 Erysipelotrichaceaeb 5.35 ± 1.85 
7 Erysipelotrichaceaeb 4.98 ± 4.13E-02 7 Lactobacillaceaeb 3.39 ± 3.84 
8 Lactobacillaceaeb 4.66 ± 2.57 8 Clostridiaceaeb 2.48 ± 4.40 
9 Acidaminococcaceae 3.84 ± 1.32E-03 9 Peptostreptococcaceae 1.84 ± 3.86 
10 Coriobacteriaceae 1.01 ± 1.15E-04 10 Rikenellaceae 1.83 ± 1.12  

a indicates families that ranked the same for both pipelines. b indicates families in the top 10 most abundant that ranked differently for each pipeline. 

Table 6 
Richness, alpha-, beta- and gamma-diversity at family level.  

Diversity measure MG-RAST QIIME2 P-value 

Sobs 30 38.95 n/a 
γ 103 81 n/a 
Chao1 37.06 38.95 0.0275 
H'adj 0.56 ± 0.05 0.60 ± 0.05 1.49E-64 
D'adj 0.81 ± 0.06 0.84 ± 0.05 2.72E-16 
βA 73 42.05 n/a 
βM 3.43 2.08 n/a 
CBC 0.35 ± 0.1 0.31 ± 0.08 6.05E-21 

Observed richness, Sobs, refers to the average richness of each sample; Gamma, γ, 
refers to richness of all 188 samples; Chao1 refers to the average estimated 
number of families; H'adj and D′ adj refer to the adjusted Shannon and the 
Simpson indices, respectively; βA and βM refer to the additive and multiplicative 
beta-diversity partitioning, respectively; CBC refers to the Bray-Curtis index. n/a 
indicates non-applicable. P-values were obtained from two-sided paired t-tests 
assuming different variances. 

Fig. 4. Principal Components Analysis (PCA) of the relative abundances of the 
56 families retrieved from both MG-RAST and QIIME2 (red and blue, respec
tively). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

J. Lima et al.                                                                                                                                                                                                                                     



Journal of Microbiological Methods 186 (2021) 106235

8

Co-abundance network analyses were carried out using the taxo
nomic compositions of the samples as described for the different filtering 
scenarios (Table 1, Fig. 7). For scenarios A, B and C we found significant 
enrichments of the clusters according to the pipeline from which the 
taxonomic compositions were generated (e.g. clusters 1 were consis
tently enriched in compositions from MG-RAST, whereas clusters 2 and 
3 were consistently enriched in those obtained from QIIME2). However, 
using data scenario D, enrichments were observed to be related to the 
sample collection sites (e.g. cluster 1 was enriched in colon samples, 
clusters 3 and 5 were enriched in faeces samples and cluster 4 was 
enriched in caecum samples), whereas no significant enrichment of the 
pipelines was observed (i.e. samples collected from the same sites 

clustered together independently of the pipeline in which they were 
processed). These results concur with the PCA plots in Fig. 8, where, for 
data scenario C, the clear separation between samples is consistent with 
the pipeline employed, whereas for scenario D no distinct clusters were 
observed. 

4. Discussion 

Bioinformatics tools such as MG-RAST and QIIME2 are crucial for the 
characterization of environmental microbiota based on the 16S rRNA 
amplicon sequences retrieved from samples such as those from the swine 
gut content. We compared MG-RAST and QIIME2 because they are both 
self-contained pipelines that have been widely used for the identification 
of microbial communities from 16S rRNA amplicon sequences. Our 
research highlights differences in microbiota profiles retrieved from 
these tools on domain-, phylum-, family- and genus-level taxonomic 
compositions, while considering several data filtering procedures with 
focus on genus-level. 

MG-RAST is an automated web-based tool that associates a priority 
level to the submitted project depending on its privacy parameters, 
which are defined by the user (priority level increases with decreased 
privacy settings). The duration of the analyses depends on the size of the 
submitted dataset, on the number of projects submitted to the MG-RAST 

Fig. 5. Commonly and differently identified genera using MG-RAST and 
QIIME2. The numbers in brackets represent the proportion of in each area. 
Ninety seven genera were identified by both pipelines and they correspond to 
(a) 92.58% of the sequence hits reported by MG-RAST and (b) 79.69% of the 
sequence hits reported by QIIME2. 

Table 7 
Confusion matrix for Partial Least Squares-Discriminant Analyses (PLS-DA) calculated using 114 samples collected from different body sites. PLS-DA were performed to 
discriminate between sample types, using 4 data scenarios, which included: (A) all genera reported by MG-RAST and QIIME2 (225 and 159, respectively); (B) the 
genera with relative abundance ≥1% reported by MG-RAST and QIIME2 (22 and 14, respectively); (C) the 86 genera identified by both pipelines and (D) the 10 genera 
with relative abundance ≥1% identified by both pipelines.  

Data scenario Predicted Observed  Correctly assigned (%) 

Caecum (N = 38) Colon (N = 38) Faeces (N = 38) Subtotal  per collection site per data scenario 

MG-RAST  
Caecum 20 4 0 24  52.63  

A Colon 17 34 4 55  89.47 77.19 
Faeces 1 0 34 35  89.47  
Caecum 27 18 3 48  71.05  

B Colon 8 12 4 24  31.58 61.40 
Faeces 3 8 31 42  81.58  
Caecum 22 3 0 25  57.89  

C Colon 14 33 9 56  86.84 73.68 
Faeces 2 2 29 33  76.32  
Caecum 24 17 2 43  63.16  

D Colon 13 14 7 34  36.84 58.77 
Faeces 1 7 29 37  76.32   

QIIME2  
Caecum 26 10 0 36  68.42  

A Colon 11 24 3 38  63.16 74.56 
Faeces 1 4 35 40  92.11  
Caecum 30 14 0 44  78.95  

B Colon 6 21 6 33  55.26 72.81 
Faeces 2 3 32 37  84.21  
Caecum 27 17 0 44  71.05  

C Colon 10 19 6 35  50.00 68.42 
Faeces 1 2 32 35  84.21  
Caecum 28 18 2 48  73.68  

D Colon 8 11 4 23  28.95 62.28 
Faeces 2 9 32 43  84.21   

Table 8 
Number and percentage of variables with variable importance in projection 
(VIP) greater than 1.  

Data scenario Total explanatory 
variables imputed 

Explanatory variables with VIP > 1 
(number and percentage) 

MG-RAST QIIME2 MG-RAST (%) QIIME2 (%) 

A 225 159 62 27.56 43 27.04 
B 14 22 4 28.57 8 36.36 
C 86 86 24 27.91 22 25.58 
D 10 10 3 30.00 3 30.00  
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server at the time of submission and on the server's characteristics. After 
the feature annotation, MG-RAST allows the user to alter data cleaning 
parameters maximum e-value, minimum percent similarity, minimum 
length of alignment and minimum abundance. This constitutes a major 
advantage for MG-RAST, as it provides the user the possibility of, in a 
manner of minutes, obtaining several versions of the calculated taxo
nomic tables. Due to the fact that the taxonomic annotations are saved in 
the server indefinitely, this process is feasible, fast and extremely 
practical, particularly because there is no gold standard when it comes 
to these parameters, so at any time during the analysis, the user is free to 
go back and test more appropriate parameters potentially generating 
more accurate results (Randle-Boggis et al., 2016). 

QIIME2 is an installable set of dependencies that can be used for 
analysis as soon as the installation is finished. The analysis run time will 
depend on the size of the submitted dataset as in the case of MG-RAST, 
but also on the computer's characteristics and the user's bioinformatics 
skills. Unlike MG-RAST, QIIME2 does not provide inherent data hosting 
and sharing capabilities, placing the onus on the bioinformatician to 
disseminate the resulting (often large) files. QIIME2 does however 
provide web interfaces allowing users to examine QIIME2 output files 
without the need for installed software. Furthermore, in QIIME2, if the 
user desires to tune parameters such as minimum alignment length or e- 
value, an analysis will need to be performed from scratch, unless the 

intermediate files (which again can be large) are maintained by the user. 
To aid with rerunning microbiome analysis from intermediate files, 
output artefacts produced by QIIME2 contain a record of their prior 
processing steps (i.e. their ‘provenance’). However, modifying micro
biome analysis can still be cumbersome in comparison with the ease of 
MG-RAST. 

4.1. Phylum- and family-level analyses 

The percentage of unclassified and unidentified sequences on the 
phylum-level analyses was significantly higher in taxonomic composi
tions obtained from MG-RAST, in agreement with results of phylum- 
level analysis in Plummer et al. (2015), and family-level analysis in 
D'Argenio et al. (2014), although both these studies compared MG-RAST 
to QIIME, rather than to QIIME2. However, whereas D'Argenio et al. 
(2014) and Plummer et al. (2015) did not find statistically significant 
differences between family- and phylum-level relative abundances, 
respectively, 13 out of 15 phyla detected by both tools in this study had 
significantly different relative abundances. Additionally, at family-level, 
D'Argenio et al. (2014) did not find significantly different microbiota 
diversity (evaluated using Shannon index) resulting from MG-RAST and 
QIIME, whereas we observed QIIME2 to provide, on average, a signifi
cantly more even composition than MG-RAST. 

Seven phyla were identified exclusively by QIIME2 but not by MG- 
RAST, and five of them were prevalent in more than half of the sam
ples. Of this group, Epsilonbacteraeota, Planctomycetes, Deferribacteres 
and WPS-2 have previously been identified in microbiota sampled from 
the swine gastro-intestinal tract (Burrough et al., 2015; Gresse et al., 
2019; Han et al., 2018; Tan et al., 2019); but to the best of our knowl
edge, Patescibacteria, Kiritimatiellaeota and SAR have not. The identifi
cation of SAR could be interpreted as a false positive, mostly because of 
its low overall prevalence of 2% (corresponding to 4 of 112 faecal 
samples), and low relative abundance of 0.01% (calculated within the 4 
samples). Patescibacteria and Kiritimatiellaeota were detected in more 
than 80% of the samples, with relative abundances of 0.12% and 0.81%, 
respectively. Although the presence of these phyla was not confirmed by 
the MG-RAST results, their prevalence and relative abundances (calcu
lated within the samples in which they were detected, based on QIIME2 
results) are higher than several other phyla identified by both tools, such 
as Chlamydiae, Fusobacteria, Verrucomicrobia, Elusimocrobia and Syn
ergistetes. The results regarding these two phyla are most likely the 
reflexion of the finer-scale resolution of reads into ASVs provided by 
DADA2 within QIIME2. 

Using QIIME2 and MG-RAST approaches collectively identified 128 
families, with 56 detected by both pipelines, corresponding to 99.95% 
and 89.67% of the total hits, respectively. Therefore, the families 
exclusively reported by either of the pipelines represent only a small 
percentage of the actual number of hits. In agreement with Kaszubinski 
et al. (2019), our results regarding alpha- and gamma-diversity at the 
family-level revealed that taxonomic compositions obtained from 
QIIME2 had on average higher observed richness (Sobs) but lower overall 
richness (γ) than MG-RAST's counterparts. These results agree with ex
pectations, since MG-RAST's algorithm is based on the clustering of 

Table 9 
Genus Variable Importance in Projection (VIP) calculated by Partial Least 
Squares – Discriminant Analysis including variables with average relative 
abundance superior to 1% identified by MG-RAST and QIIME2 (data scenario D).  

MG-RAST Average relative abundance (%) VIP 

Genus Caecum Colon Faeces 

Ruminococcusa 3.22 3.76 5.78 1.74 
Blautia 1.84 2.02 3.23 1.32 
Faecalibacterium 17.47 19.20 13.10 1.25 
Megasphaera 2.65 3.05 2.91 0.89 
Clostridium 13.28 8.24 15.80 0.84 
Prevotella 49.62 50.64 45.10 0.81 
Dialister 3.82 3.95 2.95 0.75 
Catenibacterium 1.76 2.08 2.33 0.66 
Phascolarctobacteriuma 1.91 2.06 2.44 0.61 
Lactobacillusa 4.42 4.98 6.36 0.39   

QIIME2 Average relative abundance (%) VIP 

Genus Caecum Colon Faeces 

Ruminococcusa 2.31 2.33 4.31 1.79 
Faecalibacterium 9.48 8.96 5.18 1.53 
Blautia 2.84 3.29 4.08 1.16 
Dialister 5.94 5.36 4.17 0.94 
Catenibacterium 3.89 3.47 3.82 0.72 
Megasphaera 3.35 3.24 3.43 0.71 
Clostridium 6.11 6.90 8.97 0.61 
Prevotella 57.00 56.98 53.59 0.60 
Phascolarctobacteriuma 2.74 2.27 3.11 0.52 
Lactobacillusa 6.33 7.21 9.34 0.47  

a indicates genus with the same VIP rank between the 2 pipelines. 

Fig. 6. Common and different genera with VIP > 1 as obtained from PLS-DA using data scenarios A, B and C.  
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sequences at 97% of similarity, which for a 254 bp length region such as 
the V4 region of the 16S rRNA gene would correspond to up to 8 
Hamming distances, whereas DADA2, implemented in QIIME2, con
structs an error model that is trained on the sequencing run and applied 
to create ASVs, resolving sequences with as low as 1 Hamming distance 
to the consensus sequence. As a consequence, it is expected that ASV- 
based algorithms better resolve fine-scale variation, leading to fewer 
spurious identifications than OTU-based methods (Callahan et al., 2016; 
Nearing et al., 2018; Prodan et al., 2020). 

Beta-diversity measures suggested a higher similarity between the 
microbiota profiles computed in QIIME2 in comparison to MG-RAST, 
contrary to what was observed in Kaszubinski et al. (2019), possibly 
due to the filtering process applied, i.e. rarefaction to 1000 sequences to 
account for the variability of library size among pipelines, or to the 
removal of taxa with <1% relative abundance, leading to a loss of 
relevant information, or both (Kaszubinski et al., 2019). 

4.2. Genus-level analyses 

The analysis of the genus-level taxonomic compositions generated 
with MG-RAST and QIIME2 revealed that 97 (out of a total of 337) 
genera were identified by both pipelines and corresponded to 92.58% 
and 79.69% of the total number of sequence hits, respectively. Addi
tionally, although the relative abundances of 67 genera identified by 
both tools were significantly correlated, only 36 genera whose abun
dances showed correlations of 0.8 or higher, suggesting that even 
though the majority of the read annotations concurred between the 
pipelines, the relative abundances of the communities were substan
tially different, which could have meaningful consequences in subse
quent statistical analyses. 

Furthermore, PLS-DA and co-abundance network analyses were used 
here in an attempt to discriminate sampling sites, and showed better 
accuracies for MG-RAST when using the whole taxonomic compositions 
(data scenarios A and C), whereas results were better for QIIME2 when 
using the minimum relative abundance threshold of 1% (data scenarios 
B and D), highlighting the importance of low abundance taxa, particu
larly in quantitative studies focused on associations between a host 
phenotype and its microbiota. It follows that if low abundance genera 
are real observations, MG-RAST is preferred to QIIME2, whereas if there 
is a large error involved in low abundance genera, QIIME2 would be the 
method of choice to determine the microbial community. In particular, 
results obtained from MG-RAST included identification of false positive 
taxa, and this is confirmed by microbiological knowledge, database in
formation and the literature; however, inaccuracy in relative abundance 
of the identified taxa in the samples is more difficult to verify but this 
could be partly achieved by using mock community DNA samples. 

The results obtained from scenarios B and D agreed with Kaszubinski 
et al. (2019), in which they found that random forest models applied to 
distinguish the sample area and death manner based on phylum- and 
family-level compositions had slightly higher mean prediction errors 
when using data obtained from MG-RAST than from QIIME2. The 
agreement between both studies may be due to the filtering procedures 
applied in Kaszubinski et al. (2019), i.e. rarefaction to 1000 sequences to 
account for the variability of library size among pipelines and removal of 
taxa with <1% relative abundance, which is similar to the restriction 
imposed on data scenarios B and D, where we filtered out all taxa with 
relative abundance lower than 1%. Additionally, the VIP (obtained from 
the PLS-DA analyses) associated to each genus differed substantially, 
revealing that the influence of the explanatory genera to the model 
differed, even when the same genera (but different relative abundances) 
were used, which could have implications in biomarkers identification. 
Additionally, due to the compositional nature of the microbiota datasets, 
we performed an exploratory analysis that compared the results of data 
scenarios A and B in PLS-DA models based on data transformed by the 
additive logratio methodology. The results were similar to those based 
on relative abundances, i.e. higher accuracy of discrimination between 

Fig. 7. Co-abundance networks and corresponding enrichment heat maps for 
samples based on data scenarios A (all taxa reported by each pipeline), B (all 
taxa reported by each pipeline with average relative abundance ≥1%), C (all 
taxa reported by both pipelines) and D (all taxa reported by both pipelines with 
average relative abundance ≥1%). Enrichment significance for each network is 
indicated by the heat maps (colour code can be found at the bottom of the 
figure). Nodes represent samples and edges correspond to correlations ≥0.95. 
CL. indicates cluster. Coloured names indicate clusters enrichment for the 
pipeline/sample collection sites. 
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sample types using MG-RAST than QIIME2 based on the whole datasets 
but substantially higher accuracy of QIIME2 when low abundance taxa 
(<1%) were removed. 

5. Conclusions 

This study found meaningful differences in the microbiota profiles 
generated by MG-RAST and QIIME2 from 16S rRNA amplicon sequences 
of samples from swine caecum, colon and faeces, not only in terms of 
which taxa were detected but also based on their relative abundances 
and overall prevalence. When low abundant (<1%) taxonomies are real 
and of importance, microbiota compositions generated by MG-RAST are 
preferred because it discriminated more accurately the collection sites of 
our samples than those generated by QIIME2. However, using the same 
accuracy criteria, QIIME2 is recommended when low abundance genera 
(<1%) were removed. 

This research provides further evidence that the selection of pipeline 
greatly affects the outcomes and clarifies some of the characteristics of 
MG-RAST and QIIME2 which resulted in different taxonomic profiles 
based on the same amplicon sequence data. The user should be aware 
that, due to richness bias, employing an ASV-based pipeline may lead to 
increased false positives and thus artificially inflate alpha-diversity. 
However, the ASVs are a natural evolution for assessment of taxonomic 
profiles, whereas OTUs are based on an arbitrary similarity threshold, 
typically 97%. Additionally, irrespective of the pipeline selected, pro
cedures such as trimming and parameters including minimum similarity 
to the taxonomic database should be tuned in each work, in order to 
maximize the pipelines' potential. The choice of pipeline and parameter 
tuning procedures should account for the context in which the resulting 
taxonomic compositions will be applied, whether this is for example, a 
study on human-derived post-mortem microbiome with forensic appli
cations, in which fine-tuning of low abundance taxa is essential, or a study 
on cattle-derived rumen microbiome in association to animal production 
traits, in which high abundance taxa would potentially be more relevant. 

Generally, we highlight the necessity to consider the potentially 
large differences in microbial community compositions based on 
different pipelines in the interpretation of results of microbiome studies. 
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source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584. 

Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., 
Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., 
Thallinger, G.G., Van Horn, D.J., Weber, C.F., 2009. Introducing mothur: open- 
source, platform-independent, community-supported software for describing and 
comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. 
https://doi.org/10.1128/AEM.01541-09. 

Tan, Z., Dong, W., Ding, Y., Ding, X., Zhang, Q., Jiang, L., 2019. Changes in cecal 
microbiota community of suckling piglets infected with porcine epidemic diarrhea 
virus. PLoS One 14, e0219868. https://doi.org/10.1371/journal.pone.0219868. 

Vavrek, M.J., 2015. Package “fossil”. 
Veech, J.A., 2017. Measuring biodiversity. In: Encyclopedia of the Anthropocene. 

Elsevier Inc., pp. 287–295. https://doi.org/10.1016/b978-0-12-809665-9.10296-4 
Vu, V.Q., 2011. Package “ggbiplot”. 
Wilke, A., Harrison, T., Wilkening, J., Field, D., Glass, E.M., Kyrpides, N., 

Mavrommatis, K., Meyer, F., 2012. The M5nr: a novel non-redundant database 
containing protein sequences and annotations from multiple sources and associated 
tools. BMC Bioinformatics 13. https://doi.org/10.1186/1471-2105-13-141. 

Yu, Z., Morrison, M., 2004. Improved extraction of PCR-quality community DNA from 
digesta and fecal samples. Biotechniques 36, 808–812. https://doi.org/10.2144/ 
04365st04. 

J. Lima et al.                                                                                                                                                                                                                                     

https://doi.org/10.1155/2014/325340
https://doi.org/10.1128/AEM.03006-05
https://docs.qiime2.org/2020.2/plugins/available/dada2/denoise-paired/
https://docs.qiime2.org/2020.2/plugins/available/dada2/denoise-paired/
https://doi.org/10.1371/journal.pcbi.0030206
https://doi.org/10.1101/pdb.prot5368
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0070
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0070
https://doi.org/10.3390/microorganisms7090343
https://doi.org/10.3390/microorganisms7090343
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0080
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0080
https://doi.org/10.1038/s41598-018-24508-7
https://doi.org/10.1038/s41598-018-24508-7
https://doi.org/10.1101/gr.5969107
https://doi.org/10.1111/1556-4029.14213
https://doi.org/10.1101/gr.229202
https://doi.org/10.1007/s10142-018-0640-x
https://doi.org/10.1007/s10142-018-0640-x
https://doi.org/10.1186/gb-2009-10-3-r25
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0115
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0115
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.2527/jas.2016-0524
https://doi.org/10.2527/jas.2016-0524
https://doi.org/10.3389/fgene.2019.00701
https://doi.org/10.3389/fgene.2019.00701
https://doi.org/10.1111/1462-2920.12724
https://doi.org/10.1111/1462-2920.12724
https://doi.org/10.3389/fmicb.2020.00659
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0145
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0145
https://doi.org/10.1002/9781118010518.ch37
https://doi.org/10.1002/9781118010518.ch37
https://doi.org/10.7717/peerj.5364
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0160
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0160
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0160
https://bioinfogp.cnb.csic.es/tools/venny/index.ht
https://doi.org/10.4172/jpb.1000381
https://doi.org/10.4172/jpb.1000381
https://doi.org/10.1371/journal.pone.0227434
https://doi.org/10.1093/nar/gkm864
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/femsec/fiw095
https://doi.org/10.1371/journal.pgen.1005846
https://doi.org/10.1371/journal.pgen.1005846
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1371/journal.pone.0219868
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0215
https://doi.org/10.1016/b978-0-12-809665-9.10296-4
http://refhub.elsevier.com/S0167-7012(21)00103-2/rf0225
https://doi.org/10.1186/1471-2105-13-141
https://doi.org/10.2144/04365st04
https://doi.org/10.2144/04365st04


 Taxonomic annotation of 16S rRNA using MG-RAST and QIIME2 
 

40 
 

2.3 Conclusions 

The taxonomic characterization of samples based on the 16S rRNA gene 

carries many advantages in comparison to laboratory grown cultures. The wide 

range of microenvironments found in the gastrointestinal tract of animals 

makes it difficult for these conditions to be replicated using laboratory standard 

techniques, and so a large percentage of microorganisms are unculturable. 

For example, McCabe et al. (2015) suggested that less than 1% of the 

microorganisms in the rumen microbiota were culturable in the laboratory. 

Culture-independent approaches, such as those based on the 16S rRNA gene, 

allow for the characterization of the samples at low taxonomic levels (i.e., the 

genus level). Using specific primers for the amplification of the 16S rRNA gene 

in Prokaryotes, we derive the taxonomic composition based on the similarity 

of 16S rRNA amplicons to a reference database. 16S rRNA gene-based 

techniques are cost effective, have well-established protocols and 

bioinformatics pipelines, and well characterized reference databases (Ranjan 

et al., 2016). However, they also have limitations, for example, Ranjan et al. 

(2016) reported that this annotation technique is based on a putative 

association of the 16S rRNA gene with a taxon defined by an OTU. 

Additionally, the quantification of taxonomic groups based on the 16S rRNA 

gene is controversial, as the number of 16S rRNA gene copies in the genome 

of each group is variable, and therefore the abundance of 16S rRNA gene 

amplicon is not correlated with the abundance of the taxonomic groups (Smith 

and Osborn, 2009). Furthermore, bias can be introduced, for example, due to 

the variable affinity of the primers with their template and by the sequencing 

technologies used (Tremblay et al., 2015; Allali et al., 2017). 

The advent of whole genome shotgun sequencing (WGS) allowed the 

development of techniques that overcome some of the disadvantages of the 

16S rRNA gene-based approaches. These techniques are based on the 

sequencing of multiple random fragments of DNA within a sample, removing 

therefore the possible bias introduced by the use of primers. WGS has been 

shown to provide a more comprehensive characterization of the microbiome 
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profile present in a sample. Additionally, whereas the metagenomic profile can 

only be estimated when using 16S rRNA gene-based techniques, the WGS is 

able to identify specific genes, without the need for estimation (Ranjan et al., 

2016).  

Therefore, in our second manuscript we focused on the metagenomic 

composition derived from whole metagenomic sequencing of rumen 

microbiome samples, and on its association with production traits, including 

feed conversion efficiency, appetite, and growth rate in beef cattle.  
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Chapter 3 Identification of rumen microbial 
genes involved in pathways linked 
to appetite, growth, and feed 
conversion efficiency in cattle 

3.1 Introduction 

The second main objective of this thesis was to understand the association 

between the bovine rumen metagenome and host feed conversion efficiency 

traits, including feed conversion ratio (FCR), residual feed intake (RFI), 

average daily gain (ADG), and daily feed intake (DFI), in beef cattle; firstly, we 

aimed at evaluating the suitability of microbial genes in the rumen microbiome 

as biomarkers of host performance traits, and secondly, our goal was to 

identify which were the microbial genes more closely associated with these 

host traits, and in which biochemical pathways these microbial genes 

participated. 
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Identification of Rumen Microbial 
Genes Involved in Pathways Linked 
to Appetite, Growth, and Feed 
Conversion Efficiency in Cattle
Joana Lima 1*, Marc D. Auffret 1, Robert D. Stewart 2, Richard J. Dewhurst 1, 
Carol-Anne Duthie 1, Timothy J. Snelling 3, Alan W. Walker 3, Tom C. Freeman 2†, 
Mick Watson 2 and Rainer Roehe 1*
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2 Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom, 
3 The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom

The rumen microbiome is essential for the biological processes involved in the conversion 
of feed into nutrients that can be utilized by the host animal. In the present research, 
the influence of the rumen microbiome on feed conversion efficiency, growth rate, and 
appetite of beef cattle was investigated using metagenomic data. Our aim was to explore 
the associations between microbial genes and functional pathways, to shed light on the 
influence of bacterial enzyme expression on host phenotypes. Two groups of cattle were 
selected on the basis of their high and low feed conversion ratio. Microbial DNA was 
extracted from rumen samples, and the relative abundances of microbial genes were 
determined via shotgun metagenomic sequencing. Using partial least squares analyses, 
we identified sets of 20, 14, 17, and 18 microbial genes whose relative abundances 
explained 63, 65, 66, and 73% of the variation of feed conversion efficiency, average 
daily weight gain, residual feed intake, and daily feed intake, respectively. The microbial 
genes associated with each of these traits were mostly different, but highly correlated 
traits such as feed conversion ratio and growth rate showed some overlapping genes. 
Consistent with this result, distinct clusters of a coabundance network were enriched 
with microbial genes identified to be related with feed conversion ratio and growth rate or 
daily feed intake and residual feed intake. Microbial genes encoding for proteins related 
to cell wall biosynthesis, hemicellulose, and cellulose degradation and host–microbiome 
crosstalk (e.g., aguA, ptb, K01188, and murD) were associated with feed conversion 
ratio and/or average daily gain. Genes related to vitamin B12 biosynthesis, environmental 
information processing, and bacterial mobility (e.g., cobD, tolC, and fliN) were associated 
with residual feed intake and/or daily feed intake. This research highlights the association 
of the microbiome with feed conversion processes, influencing growth rate and appetite, 
and it emphasizes the opportunity to use relative abundances of microbial genes in the 
prediction of these performance traits, with potential implementation in animal breeding 
programs and dietary interventions.
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INTRODUCTION

The global population is expected to reach 9.8 billion by 2050 
(United Nations–Department of Economic and Social Affairs/
Population Division, 2017), resulting in an escalation of the 
global demand for food and of the need for economically and 
environmentally sustainable livestock production systems 
(Godfray et al., 2010; Gerber et al., 2013). A large portion of 
livestock production is based on ruminants. In 2017, the EU-28 
had a population of 88 million bovine animals, including cattle 
and water buffalo (Eurostat, 2018). Ruminants are particularly 
interesting due to their ability to convert human-indigestible plant 
biomass into high-quality products for human consumption such 
as meat and milk. Ruminants live in a symbiotic relationship with 
their rumen microbiota (comprising bacteria, protozoa, fungi, 
and archaea), which produce enzymes able to digest their food by 
breaking down complex polysaccharides of the plant biomass into 
volatile fatty acids (VFA), microbial proteins, and vitamins (Russell 
and Hespell, 1981; Bergman, 1990; Van Soest, 1994). Thus, the 
rumen microbiota fermentation profile has a significant influence 
on the feed conversion efficiency of the host (Russell, 2001; Li et al., 
2009; Hernandez-Sanabria et al., 2011; Jami et al., 2014; Sasson et 
al., 2017; Meale et al., 2018) and is accountable for up to 70% of the 
host’s daily energy requirements (Bergman, 1990).

In beef cattle production systems, expenses associated with 
feed account for up to 75% of the total production costs (Moran, 
2005a; Nielsen et al., 2013), which makes the improvement of 
feed conversion efficiency very economically compelling. There is 
consequently great interest in understanding the host–microbial 
symbiotic relationships responsible for the conversion of feed 
into energy, protein, and vitamins usable by the host animal, but 
the mechanisms and degree to which the rumen microbiome 
impacts on animal production, health, and efficiency remain 
undercharacterized (Brulc et al., 2009; Creevey et al., 2014). 
Although the rumen harbors a core microbiome (Jami and Mizrahi, 
2012; Henderson et al., 2015), in agreement with studies performed 
in the human gastrointestinal tract (Tap et al., 2009; Qin et al., 2010), 
the structure, and composition of the rumen microbiome varies 
within and between animals with differing performance traits. 
For example, in lactating dairy cattle, the increased methane yield 
during late lactation in comparison to early lactation within the same 
individual was found to be associated with significant changes in the 
ruminal microbial community structure (Lyons et al., 2018); Myer 
et al. (2015) showed different relative abundances of some microbial 
taxa and operational taxonomic units in animals with different 
average daily gain (ADG); Shabat et al. (2016) focused on residual 
feed intake (RFI) to demonstrate that highly efficient animals had 
a less diverse microbiota, being dominated by specific taxa and 
microbial genes which were involved in simpler metabolic pathway 
networks when compared to their less efficient counterparts. Other 
authors have reported that the rumen microbiome varies more 
between animals than within animals, proposing that the host 
itself and its physiological parameters have a significant influence 
on its own rumen microbiome (Li et al., 2009) and, therefore, on 
the efficiency of feed conversion into energy. In a mouse study, 
Benson et al. (2010) found that there is a well-defined portion of 
the gut microbiota that is subject to host genetic control, proposing 

it to be regarded as a host trait, rather than an environmental trait 
affecting the host. In agreement, in a beef cattle study, Roehe et al. 
(2016) confirmed the host genetic influence on the rumen bacterial 
composition using a genetic model based on sire progeny groups. 
The differences between sire progeny groups in methane emissions 
were in some cases larger than the differences found between diets 
differing largely in plant fiber content, suggesting a substantial host 
genetic influence on the microbial communities.

Selecting animals for breeding based on their ability to harvest 
energy from feed, together with nutritional interventions, could 
be the basis for an effective strategy to produce faster growing and 
more efficient animals (Gerber et al., 2013; Scollan et al., 2018). 
Given that the host has influence over the ruminal microbiome, 
which impacts the animals’ feed conversion efficiency, this 
selection may be further improved by the inclusion of rumen 
metagenomic information into predictive models, as previously 
suggested by Ross et al. (2013). Feed conversion efficiency is very 
often estimated by either feed conversion ratio (FCR) or RFI; 
the latter is independent of growth and maturity patterns and is 
expected to be more sensitive and precise in measurements of feed 
utilization (Arthur and Herd, 2008). The use of microbial genes as 
proxies for feed conversion efficiency traits may be much more 
cost effective, rapid, and less labor intensive than their recording 
(Ross et al., 2013; Roehe et al., 2016). Our earlier research was 
the first proposing that the inclusion of relative abundance of 
microbial genes as proxies for FCR may be favorable, allowing 
their use as selection criteria for breeding animals, by identifying 
49 microbial genes that explained 88.3% of the variation observed 
in FCR (Roehe et al., 2016). To our knowledge, no other studies 
have focused on the relationship between microbial gene 
abundances and RFI, daily feed intake (DFI), and ADG, which 
highlights the importance and novelty of the present work.

This study aimed at validating whether rumen microbial gene 
abundances are suitable proxies for feed conversion efficiency traits 
such as FCR; the analysis was further extended by focusing on RFI. 
Based on the previous evidence of strong interactions between 
the rumen microbiome and the host animal with consequences 
for feed conversion efficiency (Guan et al., 2008; Roehe et al., 
2016; Shabat et al., 2016), we hypothesized that microbial gene 
abundances are linked to the animals’ appetite and, consequently, 
to feed intake. A further aim of this research was to gain insight into 
the association of growth rate with the microbial gene abundances. 
Building on this, we aimed at better understanding the rumen 
microbial functional network associated with feed conversion 
efficiency and its component traits. This research will improve on 
the current knowledge about the impact of the rumen microbiome 
on appetite, growth, and efficiency of feed conversion processes.

MATERIALS AND METHODS

Ethics Statement
This study was conducted at the Beef and Sheep Research Centre, 
SRUC, UK. The study was carried out in accordance with the 
requirements of the UK Animals (Scientific Procedures) Act 
1986. The protocol was approved by the Animal Experiment 
Committee of SRUC. All standard biosecurity and institutional 
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safety procedures were applied during the animal experiment 
and the laboratory analysis.

Animals, Adaptation Period, and 
Measurement of Traits
Two experiments were carried out to determine the effect of 
nitrate or lipid additives within different basal diets on methane 
emissions from beef cattle. The first experiment was conducted in 
2013, and it consisted of a 2 × 2 × 3 factorial design including 84 
steers of two breed types (crossbreed Charolais, CHx and Luing); 
two basal diets, forage (FOR) and concentrate (CONC), which 
consisted respectively of ratios of 520:480 and 84:916 forage to 
concentrate (g/kg dry matter); and three treatments, nitrate and 
lipid feed additives, as well as the control. From these animals, 
24 animals were selected with extreme high and low FCR values 
within breed type and basal diet (two animals per feed additive 
and control). More details related to this experiment can be 
found in Duthie et al. (2015) and Troy et al. (2015). The second 
experiment was a 2 × 4 factorial design experiment, conducted 
in 2014, involving 80 animals. There were two breed types—40 
crossbred Limousin (LIMx) and 40 crossbred Aberdeen Angus 
(AAx)—which were subject to a balanced design consisting of 
four dietary treatments using one basal diet (550:450 forage to 
concentrate ratio g/kg dry matter, FOR) and testing the effects of 

feed additives nitrate, lipid, or their combination in comparison 
to the control on methane output. Full details of the experiment 
are presented in Duthie et al. (2017). From this experiment, 18 
animals were selected within each combination of breed type and 
diet: nine for the high FCR group and nine for the low FCR group. 
DFI was assessed by measuring dry matter intake (DMI, kg/day), 
which was recorded in both experiments using electronic feeding 
equipment (HOKO, Insentec, Marknesse, The Netherlands). Body 
weight (BW) was measured weekly using a calibrated weight scale 
(before fresh feed was offered). Growth was modeled by linear 
regression of BW against test date to obtain ADG, mid-test BW, 
and mid-test metabolic BW (MBW = BW0.75). FCR was calculated 
as average DMI (kg/day) divided by ADG. RFI was estimated 
as deviation of actual DMI (kg/day) from DMI predicted based 
on linear regression of actual DMI on ADG, mid-MBW, and fat 
depth at 12th/13th rib at the end of the 56-day test (Duthie et al., 
2015; Troy et al., 2015; Duthie et al., 2017).

A flowchart summarizing the methods for generation of data 
and subsequent statistical analyses is presented in Figure 1.

Sampling of Rumen Digesta and Whole 
Metagenomic Sequencing
As described in Duthie et al. (2015) and Auffret et al. (2017), 
animals from both experiments were slaughtered in a commercial 

FIGURE 1 | Flowchart summarizing methods for generation of data and their statistical analyses: This flowchart summarizes how the data were generated and 
which statistical analyses were used to identify the associations between gene abundances and performance traits of animals to understand the rumen microbial 
functional pathways associated with these traits. KEGG, Kyoto Encyclopedia of Genes and Genomes; FCR, feed conversion ratio; ADG, average daily gain; RFI, 
residual feed intake; DFI, daily feed intake; PLS, partial least squares; LDA, linear discriminant analysis.
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abattoir where two samples of rumen digesta (~50 ml) were 
collected immediately after the rumen was opened to be drained. 
The slaughter house sample collection process results in well-
mixed samples of rumen contents. DNA was extracted from 
the rumen samples of 42 animals following the methodology 
described in Rooke et al. (2014). Illumina TruSeq libraries were 
prepared from genomic DNA and sequenced on Illumina HiSeq 
systems 4000 by Edinburgh Genomics (Edinburgh, UK). Paired-
end reads (2 × 150 bp) were generated, resulting in between 8 
and 15 GB per sample (between 40 and 73 million paired reads). 
The raw data can be downloaded from the European Nucleotide 
Archive under accession PRJEB21624.

Identification of the Rumen Microbial 
Gene Abundances
Bioinformatics analysis for identification of rumen microbial 
genes was carried out as previously described by Wallace et al. 
(2015). Briefly, to measure the abundance of known functional 
microbial genes in the rumen samples, reads from whole 
metagenome sequencing were aligned to the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database (Kanehisa and Goto, 
2000) using Novoalign (www.novocraft.com). Parameters were 
adjusted such that all hits were reported that were equal in 
quality to the best hit for each read and allowing up to a 10% 
mismatch across the fragment. The KEGG Orthologue groups 
(KO) of all hits that were equal to the best hit were examined. 
If we were unable to resolve the read to a single KO, the read 
was ignored; otherwise, the read was assigned to the unique KO. 
Read counts were summed and normalized to the total number of 
hits. This mapping of the whole metagenomic data to the KEGG 
database resulted in a dataset comprising of 4,966 KEGG genes. 
Microbial genes were removed from the dataset when they were 
absent from three or more animals and when the mean relative 
abundance was lower than 0.001%, leaving 1,692 microbial genes 
for further analyses.

Statistical Analysis
For each of the 1,692 microbial genes, a linear model was fitted, 
including as fixed effects a combined class variable of breed, diet, 
and year of experiment (six levels) and the FCR groups (high 
FCR, FCR-H and low FCR, FCR-L) using the lm() function in 
R version 3.4.2. The microbial genes which resulted in P ≥ 0.1 
for the differences in FCR groups were not considered in the 
partial least squares analyses (PLS, SAS version 9.3 for Windows, 
SAS Institute Inc., Cary, NC, USA) to avoid excessive noise of 
microbial genes uncorrelated to the traits of interest. In the linear 
model, FCR groups were replaced successively by ADG, RFI, and 
DFI as covariables to identify only potentially relevant microbial 
genes of these traits for further PLS analyses. In addition, genes 
with unknown function were removed from these datasets.

Microbial genes whose relative abundances were significantly 
associated to each trait in the linear models were analyzed 
using a sequential PLS-based methodology. First, PLS models 
were calculated in which the number of latent variables was 
determined by “leave-one-out” cross-validation, and genes with 
lower variable importance in projection (VIP) were removed. 

Second, the sets of genes created in the first step were evaluated 
by PLS models using three latent variables to determine the 
smaller set of genes leading to higher explained variation of both 
independent and dependent variables.

Each set of microbial genes identified in the PLS analyses as 
best predicting the trait was then used in a linear discriminant 
analysis (LDA), performed in R version 3.5.1 (2018-07-02) 
package MASS_7.3-51.4. In these analyses, the categories were 
for FCR those described previously as FCR-H and FCR-L; for 
all other traits, animals were classified as high or low, depending 
on their observations being higher or lower than the median 
(balanced for trial, breed, and diet).

The microbial genes identified to be significantly associated 
with each trait were submitted to an extensive review about 
their functionality based on databases such as KEGG (Kanehisa 
Laboratories, 2018), BioCyc (Karp et al., 2017), and UniProt 
(Bateman, 2019) and information from the literature.

Networks
The coabundances between microbial genes were investigated 
in a stepwise network analysis using the Graphia Professional 
software (Kajeka Ltd, Edinburgh; Freeman et al., 2007), in which 
nodes represent microbial genes and edges represent a correlation 
value above a defined value of r. In the first step, the correlation 
threshold of r = 0.45 was selected such that all microbial genes 
(n = 1,692) were included in the network. The microbial genes 
identified by PLS to be associated with a trait of interest were 
then located in the network. Clustering was performed using 
the Markov clustering method (MCL) available in Graphia 
Professional using the default settings (inflation, preinflation, and 
scheme values of 6). All clusters that held at least one microbial 
gene previously identified in the PLS analysis to be associated 
with a trait of interest were identified. These were incorporated 
into a new network generated at correlation threshold of r = 0.80 
containing 1,135 microbial genes. MCL was then performed 
on this network, with inflation and preinflation values of 2 and 
scheme value of 6, reflecting the clustering structure suggested 
in the network itself. Analyses of enrichment of genes identified 
in the PLS as associated to each trait were performed on the 
clusters, and significance was assessed at P < 0.05.

RESULTS

Performance Traits Related With Feed 
Conversion Efficiency
The average FCR values observed for animals selected into FCR-H 
(inefficient) and FCR-L (efficient) groups differed significantly 
by 2.3 kg DFI/kg ADG (Figure 2). When comparing these two 
groups for other traits, the FCR-H group had significantly higher 
values of RFI (0.8 kg) and significantly lower ADG (0.39 kg); in 
the case of DFI, no significant difference was observed between 
the FCR groups.

ADG and FCR had a strong significant negative correlation of 
0.80, suggesting that high growth rate is associated with efficient 
animals, using less feed per kilogram of weight gain. FCR and 
RFI were significantly positively correlated, but at a low level of 
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0.32. DFI was significantly correlated with RFI and ADG at high 
and moderate levels of 0.77 and 0.53, respectively.

Rumen Microbial Genes Associated With 
Feed Conversion Efficiency Traits
The PLS analyses identified sets of 20 and 14 microbial genes whose 
relative abundances explained 63.4 and 65.4% of the variation 
in FCR and ADG, respectively, and sets of 17 and 18 microbial 
genes whose relative abundances explained 65.6 and 72.9% of the 
variation in RFI and DFI, respectively, including the combined fixed 
effect of diet, breed, and year of experiment (Table 1). Without this 
combined fixed effect, the variances explained by microbial genes 
in FCR and ADG decreased to 54.2 and 61.4%, while in RFI and 

DFI, they decreased to 50.8 and 67.7%, respectively. A discriminant 
analysis between groups of high- and low-performing animals, 
using the set of microbial genes identified in the PLS analysis to 
best predict each trait, resulted in prediction accuracies of 90, 79, 
86, and 86% for FCR, ADG, RFI, and DFI (Figure 3).

The Venn diagram presented in Figure 4 illustrates the 
overlap between the sets of genes identified for the prediction 
of each of the four traits. For the prediction of FCR and ADG, 
six microbial genes were simultaneously selected: UDP-N-
acetylmuramoylalanine-D-glutamate ligase, glycine cleavage 
system H protein, translation initiation factor IF-1, N utilization 
substance protein A, DNA-binding protein HU-beta, and 
diphthamide synthase subunit dph2 (murD, gcvH, infA, nusA, 
hupB, and dph2, respectively). Three microbial genes were 

FIGURE 2 | Distribution of variation and range of performance traits: (A) feed conversion ratio, (B) average daily gain, (C) residual feed intake, and (D) daily feed 
intake within feed conversion ratio groups (high and low). The boxplots show the variation and range of each trait within each feed conversion ratio group. FCR, feed 
conversion ratio; AAx, crossbred Aberdeen Angus; CHx, crossbred Charolais; LIMx, crossbred Limousin.
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simultaneously selected for the prediction of traits RFI and 
DFI: glucose-1-phosphate cytidylyltransferase, CDP-glucose 
4,6-dehydratase, and energy-converting hydrogenase B subunit 
D (rfbF, rfbG, and ehbD, respectively). The microbial genes 
identified for the prediction of more than one trait are highlighted 
in the shaded rows in Tables 2–5, in which a more detailed 
information about their function and importance for prediction 
is provided.

Based on the relative abundance of 1,135 microbial genes 
across rumen samples, a coabundance network was developed 
(Figure 5), and clusters were identified. The clustering pattern 
evidences the microbial genes that are more closely connected 
to microbial genes previously identified in the PLS analyses. 
The network cluster to which each microbial gene belongs to 
is presented in Tables 2–5. Cluster 2 was significantly enriched 
for microbial genes predicting DFI and RFI&DFI (RFI and/or 
DFI). Cluster 4 was enriched for microbial genes predicting 
RFI and RFI&DFI. Microbial genes simultaneously predicting 
FCR and ADG were enriched in clusters 20 and 21, while those 
predicting FCR&ADG (FCR and/or ADG) were enriched in 
clusters 21 and 25. ADG-predicting microbial genes were 
enriched in clusters 21 and 25, whereas FCR-predicting genes 
were only enriched in cluster 25. Other genes previously 
identified in the PLS analysis were scattered across the graph.

Most microbial genes identified exclusively for the prediction 
of FCR are related to carbohydrate metabolism and transport: 

fructuronate reductase, galactokinase, alpha-glucuronidase, beta-
glucuronidase, beta-glucosidase, phosphate butyryltransferase 
P, UDP-N-acetylglucosamine acyltransferase, gluconate 
5-dehydrogenase, and lactate permease (respectively uxuB, galK, 
aguA, uidA, K01188, ptb, lpxA, idnO, and lctP) were proportionally 
more abundant in efficient animals (lower FCR, Supplementary 
Figure S1A). The microbial gene lactoylglutathione lyase (glo1) 
is also associated with carbohydrate metabolism and identified 
for predicting FCR, but it had higher relative abundance in less 
efficient animals (higher FCR). Microbial genes galK and xylE 
(i.e., MFS transporter, SP family, xylose:H+ symporter) were 
both located in cluster 5, but this cluster was not significantly 
enriched for microbial genes associated to FCR. On the other 
hand, cluster 25 was enriched due to the presence of microbial 
genes uxuB and lpxA.

Microbial genes associated with amino acid metabolism 
and transport pathways were identified for the prediction of 
ADG and found to be relatively more abundant in animals with 
higher ADG (see Supplementary Figure S1B), e.g., aspartate-
semialdehyde dehydrogenase and phenylacetate-CoA ligase (asd 
and paak, respectively). Some housekeeping genes were also 
identified for this set, including large subunit ribosomal protein 
L17 and L36, F-type H+-transporting ATPase subunit delta 
and FKBP-type peptidyl-prolyl cis-trans isomerase slyD (rplQ 
and rpmJ, atpH, and slyD). Genes rplQ, atpH, and slyD were 
relatively more abundant in animals with higher ADG, and rpmJ 
was relatively more abundant in animals with lower ADG. The 
microbial gene N-acetylmuramoyl-L-alanine amidase (amiABC) 
was identified for prediction of ADG, being negatively correlated 
with the trait.

All microbial genes simultaneously identified for predicting 
FCR and ADG showed a negative correlation to FCR and a 
positive correlation to ADG. These included housekeeping genes 
(infA, hupB, and dph2), a gene related to carbohydrate metabolism 
(gcvH), murD, which was associated with peptidoglycan 
metabolism and D-glutamine and D-glutamate metabolism, and 
nusA, associated with transcription regulation. Cluster 21 was 
enriched in ADG- and FCR&ADG-predicting microbial genes 
due to the presence of atpH, rplQ (ADG), and infA (FCR&ADG).

Five microbial genes identified for the prediction of RFI were 
associated with environmental sensing, bacterial chemotaxis, 
and motility: sensor kinase cheA, response regulator cheY, methyl 
accepting chemotaxis protein, flagellar motor switch protein 
fliN/fliY, and flagellar hook protein flgE (cheA, cheY, mcp, fliN, 
and flgE, respectively) were found to be relatively more abundant 
in more efficient animals, i.e., lower RFI. Other microbial 
genes associated with RFI are involved in the biosynthesis of 
cofactors and vitamins, particularly vitamin B12 production, 
for example, cobalt transport protein, threonine-phosphate 
decarboxylase, and precorrin-6Y C5,15-methyltransferase 
(decarboxylating), which correspond respectively to cbiN, cobD, 
and cobL (Supplementary Figure S1C). Finally, three genes 
that encode proteins related to carbohydrate transport and 
metabolism were relatively more abundant in more efficient 
animals (i.e., lower RFI): the simple sugar transport system 
permease protein, oxaloacetate decarboxylase, alpha subunit, 
and aldehyde:ferredoxin oxidoreductase (respectively ABC.

TABLE 1 | Percentage of variation in each trait explained by the microbial 
genes identified in the partial least squares (PLS). 

Percent variation accounted for by partial least 
squares factors

Model effects Dependent variables

Trait No. 
factors

Current Total Current Total

FCR 1 41.59 41.59 35.46 35.46
2 6.35 47.94 21.19 56.65

3 7.57 55.51 6.72 63.37

ADG 1 39.42 39.42 49.26 49.26
2 9.60 49.02 11.47 60.73

3 7.97 56.99 4.67 65.40

RFI 1 24.04 24.04 44.32 44.32
2 13.95 37.99 16.80 61.12

3 16.72 54.71 4.52 65.63

DFI 1 28.98 28.98 44.94 44.94
2 21.25 50.23 19.94 64.88

3 7.86 58.09 8.05 72.93

The number of factors refers to the number of latent variables in which the total 
number of microbial genes (independent variables) were projected in the PLS 
procedure, and each factor accounts for a portion of the total explained variation. 
The “Model Effects” columns refer to the percent variability of the independent 
variables matrix that relates to the respective percent variability presented in the 
“Dependent Variables” columns. The “Current” columns present values for each 
extracted factor individually, and the “Total” columns present the subtotal variation. 
The cells colored in gray contain the values of percent variation explained by the 
three latent variables for each trait. FCR, feed conversion ratio; ADG, average daily 
gain; RFI, residual feed intake; DFI, daily feed intake.
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SS.P, oadA, and aor). Cluster 4 was significantly enriched in 
microbial genes associated with RFI due to the presence of 
microbial genes cobD, cobL, mcp, and oadA, and serine-type 
D-Ala-D-Ala carboxypeptidase (penicillin-binding protein 5/6), 
inner membrane protein, and Cd2+/Zn2+-exporting ATPase 
(respectively, dacC, ybrG, and zntA).

The set of microbial genes identified for prediction of DFI 
included four microbial genes, proportionally more abundant in 
animals with higher DFI, which encoded proteins associated with 
environmental sensing, i.e., nitrogen regulatory protein P-II 1, outer 
membrane channel protein TolC, and preprotein translocase subunit 
YajC (glnB, tolC, and yajC, respectively). Nitrate reductase 1, alpha 
subunit (narG) was related to denitrification, releasing nitrite, and 
it was found to be relatively more abundant in animals with lower 
DFI (Supplementary Figure S1D). DNA-directed RNA polymerase 
subunit beta (rpoB, proportional higher abundance in animals 
with lower DFI), ribosomal large subunit pseudouridine synthase 
B, exodeoxyribonuclease VII small subunit, ribonuclease III, N 
utilization substance protein B, and integration host factor subunit 
alpha (respectively rluB, xseB, rnc, nusB, and ihfA, proportionally 
more abundant in animals with higher DFI) are housekeeping 
genes identified in this work for the prediction of DFI. Cluster 2 was 
significantly enriched with microbial genes associated with DFI due 
to the presence of glnB, infA, mrdA, nusB, rdgB, rluB, tolC, and xseB.

RFI- and DFI-predicting genes include glucose-1-phosphate 
cytidylyltransferase, CDP-glucose 4,6-dehydratase (respectively 
rfbF and rfbG, related to amino sugar and nucleotide sugar 
metabolism), and energy-converting hydrogenase B subunit D 
(ehbD, housekeeping). These three genes were proportionally 
more abundant in less efficient animals (higher RFI associated 
with increased DFI).

DISCUSSION

Rumen Microbial Gene Abundances 
Associated With Efficiency Traits
Our research indicates that there is a substantial link between 
rumen microbial gene abundances and appetite (measured as feed 
intake), growth rate, and feed conversion efficiency (Figure 6). 
The relative abundances of 20 and 17 microbial genes accounted 
for substantial variation (>60%) in FCR and RFI, respectively. 
The discriminant analyses of high- and low-performing animals 
indicated that accurate classification (>85% correct assignment 
of FCR and RFI categories) could be achieved using the 
microbial genes identified in the PLS for the prediction of the 
traits. Roehe et al. (2016) also found an association of microbial 
gene abundances with FCR, but their results were based on a 
smaller number of animals selected for their extreme values in 

FIGURE 3 | Linear discriminant analysis density plots: Microbial genes identified in the PLS analyses to be significantly associated with the trait were used in a linear 
discriminant analysis of high- and low-performing animals. The density plots represent the predicted categories for each trait. The accuracy value represents the 
percentage of animals that were correctly assigned to their category. FCR, feed conversion ratio; ADG, average daily gain; RFI, residual feed intake; DFI, daily feed 
intake; LD1, linear discriminant 1.
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methane emissions. In the present study, animals were selected 
based on their extreme FCR values, yielding a statistically more 
powerful estimate of this trait. Whereas FCR is calculated as a 
ratio between DFI and ADG and is therefore highly affected by 
growth rate and body composition, RFI is independent of these 
traits (Berry and Crowley, 2013). The low phenotypic correlation 
(r = 0.32) between FCR and RFI suggests that these traits capture 
substantially distinct characteristics.

For ADG and DFI, the relative abundances of 14 and 18 
microbial genes, respectively, also explained substantial variation 
(>65%), and the discriminant analyses of high- and low-
performing animals resulted in high prediction accuracies of 79 
and 86%, respectively. These component traits were moderately 
correlated, agreeing with the report by Berry and Crowley (2013) 
of a large independent variation of feed intake and weight gain.

The animals’ appetite, feeding behaviour, and gastrointestinal 
motility (among other traits) are thought to be regulated by 
several mechanisms, including a communication between the 
rumen microbiome and the brain, through the gut–liver–brain 
axis (vagus nerve). This communication has been proposed to 
be mediated by multiple mechanisms, such as insulin/glucagon 
homeostasis, oxidation of acetyl coenzyme A, and release of 
VFA by the rumen microbiota (like propionate, associated 
with hypophagic behavior in ruminants, or butyrate and 

acetate, associated with motility of the gastrointestinal tract 
in monogastric animals; Sakata and Tamate, 1979; Cherbut, 
2003; Oba and Allen, 2003; Arora et al., 2011; Maldini and 
Allen, 2018). Given the predictability of performance traits 
using relative abundances of rumen microbial genes observed 
in the present research (particularly that of DFI) and the high 
impact of the rumen microbiome on feed intake regulation 
(as discussed in the literature), we hypothesize that rumen 
microbial genes are closely involved in the metabolic pathways 
that regulate feed intake.

Differential Microbial Gene Sets Predicting 
Distinct Trait Complexes
The coabundance microbial gene network (Figure 5) identified 
two separate trait complexes. While microbial genes identified 
for the prediction of FCR were grouped with ADG-predicting 
genes, microbial genes identified for the prediction of RFI were 
grouped with DFI-predicting genes, as revealed by differential 
enrichment in separate clusters (Supplementary Figure S2). 
For example, beta-glucosidase is encoded by microbial genes 
bglX and K01188, which were associated to different traits (DFI 
and FCR, respectively). This type of differential clustering was 
previously observed for microbial genes associated with methane 

FIGURE 4 | Overlap analysis of identified microbial genes: The image illustrates the number of microbial genes identified in the partial least squares analysis as  
fitted for prediction of each animal performance trait exclusively, and the number of microbial genes simultaneously predicted for multiple traits: six microbial genes 
were simultaneously identified for prediction of FCR (feed conversion ratio) and ADG (average daily gain), and three for both RFI (residual feed intake) and  
DFI (daily feed intake).
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emissions and FCR by Roehe et al. (2016). The trait complexes 
associated with feed conversion efficiency were further 
evidenced when analyzing the overlapping genes identified for 
the prediction of each trait (Figure 4 and shaded rows in Tables 
2–5), i.e., six microbial genes were identified for the prediction 
of both FCR and ADG and three genes for the prediction of both 
RFI and DFI. In agreement, strong correlations were observed 

for each pair of traits, as shown previously in the literature with 
the literature (Arthur and Herd, 2008; Herd et al., 2014). These 
results suggest that different microbial genes can be used to 
predict each trait. Furthermore, microbial genes overlapping for 
the prediction of more than one trait might be useful for the 
interpretation of biological processes explaining the correlation 
between phenotypes.

TABLE 2 | Summary of microbial genes identified for the prediction of FCR. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K03783 Purine-nucleoside 
phosphorylase

punA 2Metabolic pathways; biosynthesis of secondary 
metabolites; purine metabolism; pyrimidine 
metabolism; nicotinate and nicotinamide 
metabolism

0.0107 −0.2755 1.22 1

K08138 MFS transporter, SP family, 
xylose:H+ symporter

xylE 3Carbohydrate transport and metabolism, amino 
acid transport and metabolism, Inorganic ion 
transport and metabolism

0.0404 0.1135 1.09 05

K00046 Gluconate 5-dehydrogenase idnO 4L-idonate degradation 0.0845 0.0166 1.08 11
K00040 Fructuronate reductase uxuB 2Metabolic pathways; pentose and glucuronate 

interconversions
0.0847 0.0503 1.01 25

K01759 Lactoylglutathione lyase glo1 2Pyruvate metabolism 0.0021 0.1547 1.01 09
K00849 Galactokinase galK 2Metabolic pathways; galactose metabolism; 

amino sugar and nucleotide sugar metabolism
0.0631 0.0675 1.00 05

K01195 Beta-glucuronidase uidA 2Metabolic pathways; biosynthesis of secondary 
metabolites; pentose and glucuronate 
interconversions; glycosaminoglycan degradation; 
porphyrin and chlorophyll metabolism; flavone 
and flavonol biosynthesis; drug metabolism—
other enzymes; lysosome

0.0127 −0.1174 0.99 07

K14220 tRNA Asn tRNA-Asn 2Aminoacyl-tRNA biosynthesis 0.0155 0.0139 0.96 NC
K00677 UDP-N-acetylglucosamine 

acyltransferase
lpxA 2Metabolic pathways; lipopolysaccharide 

biosynthesis; cationic antimicrobial peptide 
(CAMP) resistance

0.0403 −0.0186 0.91 25

K01188 Beta-glucosidase beta-
glucosidase

2Metabolic pathways; biosynthesis of secondary 
metabolites; cyanoamino acid metabolism; 
starch and sucrose metabolism; phenylpropanoid 
biosynthesis

0.0398 −0.0210 0.90 1

K07214 Enterochelin esterase and 
related enzymes

fes 3Inorganic ion transport and metabolism 0.0475 −0.1511 0.90 1

K03303 Lactate permease lctP 5Lactate transmembrane transporter activity 0.0195 −0.0271 0.88 28
K00634 Phosphate butyryltransferase ptb 2Metabolic pathways; butanoate metabolism 0.0075 −0.0079 0.85 1

K01235 Alpha-glucuronidase aguA 3Carbohydrate transport and metabolism 0.0104 −0.0626 0.80 NC

K07561 diphthamide synthase subunit 
DPH2

dph2 3Translation, ribosomal structure and biogenesis 0.0030 −0.3881 1.86 01

K01925 UDP-N-
acetylmuramoylalanine–D-
glutamate ligase

murD 2Metabolic pathways; D-Glutamine and 
D-glutamate metabolism; peptidoglycan 
biosynthesis

0.0620 −0.0857 0.99 1

K02437 Glycine cleavage system H 
protein

gcvH 2Metabolic pathways; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; glyoxylate and 
dicarboxylate metabolism; carbon metabolism

0.0069 −0.0167 0.93 1

K03530 DNA-binding protein HU-beta hupB 3DNA binding protein: replication, recombination, 
and repair

0.0331 −0.0892 0.89 19

K02600 N utilization substance protein 
A

nusA 3Transcription 0.1126 −0.0655 0.89 1

K02518 Translation initiation factor IF-1 infA 3Translation, ribosomal structure and biogenesis 0.0346 0.0170 0.88 21

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 63.4% of the variation in FCR (feed 
conversion ratio). Rows colored in gray correspond to genes simultaneously identified for both FCR and ADG (average daily gain) prediction.
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Metabolic Pathways of Microbial Genes 
Associated With Efficiency Traits
Our results indicate that most proteins encoded by microbial 
genes identified for the prediction of FCR were generally involved 
in carbohydrates metabolism and transport. For example, aguA 
and K01188 are involved in biomass conversion, through the 
degradation of hemicelluloses and lignocelluloses and lactate 
biosynthesis (Cairns and Esen, 2010; Lee et al., 2012; Michlmayr 
and Kneifel, 2014; Li, 2015). Microbial genes xylE, aguA, and 
uidA are involved in xylan degradation, the main component of 
hemicellulose (Lee et al., 2012; Fliegerova et al., 2015). Xylose 
needs to be taken up by a transporter (putatively associated 

with xylE) before it is metabolized, and it has been recognized 
as a rate-controlling step in bacterial metabolism (Chaillou and 
Pouwels, 1999). Furthermore, microbial genes such as uidA 
[previously identified by Roehe et al. (2016)], directly involved in 
carbohydrate metabolism pathways like pentose and glucuronate 
interconversions and galactose metabolism, are coupled with 
NAD or NADP oxidoreduction, important for regulating the flux 
of carbon and energy sources in microorganisms (Spaans et al., 
2015). In addition, punA (i.e., purine-nucleoside phosphorylase) 
is involved in the metabolism of nucleotides, nicotinate and 
nicotinamide (vitamin B3), which also contain NAD and NADP, 
and is therefore important in carbohydrate, protein, and lipid 

TABLE 3 | Summary of microbial genes identified for the prediction of ADG. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K01448 N-acetylmuramoyl-L-
alanine amidase

amiABC 2Cationic antimicrobial peptide (CAMP) resistance 0.0236 −0.1937 1.22 06

K00133 Aspartate-semialdehyde 
dehydrogenase

asd 2Metabolic pathways; microbial metabolism in 
diverse environments; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; monobactam 
biosynthesis; cysteine and methionine metabolism; 
lysine biosynthesis; 2-oxocarboxylic acid metabolism; 
biosynthesis of amino acids

0.1197 −0.0684 1.20 NC

K01912 Phenylacetate-CoA 
ligase

paaK 2Microbial metabolism in diverse environments; 
phenylalanine metabolism; biofilm formation—Vibrio 
cholerae

0.1543 −0.0980 1.16 16

K02919 Large subunit ribosomal 
protein L36

rpmJ 2Ribosome 0.0261 −0.1884 1.04 NC

K02879 Large subunit ribosomal 
protein L17

rplQ 2Ribosome 0.0773 0.0746 1.00 21

K02113 F-type H+-transporting 
ATPase subunit delta

atpH 2Metabolic pathways; oxidative phosphorylation; 
photosynthesis

0.0292 −0.0486 1.00 21

K00283 Glycine dehydrogenase 
subunit 2

gcvPB 2Metabolic pathways; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; glyoxylate and 
dicarboxylate metabolism; carbon metabolism

0.0284 0.0502 0.99 25

K03775 FKBP-type peptidyl-
prolyl cis-trans 
isomerase SlyD

slyD 5Posttranslational modification, protein turnover, 
chaperones

0.0139 0.0672 0.93 22

K07561 Diphthamide synthase 
subunit DPH2

dph2 5Translation, ribosomal structure, and biogenesis 0.0030 0.2310 1.20 01

K01925 UDP-N-
acetylmuramoylalanine–
D-glutamate ligase

murD 2Metabolic pathways; D-glutamine and D-glutamate 
metabolism; peptidoglycan biosynthesis

0.0620 0.1155 1.15 1

K02437 Glycine cleavage system 
H protein

gcvH 2Metabolic pathways; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; glyoxylate and 
dicarboxylate metabolism; carbon metabolism

0.0069 0.1209 1.08 1

K03530 DNA-binding protein 
HU-beta

hupB 5DNA binding protein: replication, recombination, and 
repair

0.0331 0.1062 1.07 19

K02600 N utilization substance 
protein A

nusA 5Transcription 0.1126 0.0726 1.02 1

K02518 Translation initiation 
factor IF-1

infA 5Translation, ribosomal structure, and biogenesis 0.0346 0.0646 0.98 21

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 65.4% of the variation in ADG 
(average daily gain). Rows colored in gray correspond to genes simultaneously identified for both FCR (feed conversion ratio) and ADG prediction.
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metabolism reactions. Positive effects of vitamin B3 have been 
previously observed in healthy rumen microbiomes in beef and 
dairy cattle (Aschemann et al., 2012; Luo et al., 2017). Microbial 
genes uidA and punA were more abundant in efficient animals.

Proteins encoded by lctP, K01188, and ptb, involved in lactate 
transport and cellulose and butyrate metabolism, respectively, 
could be involved in host–microbiome crosstalk mechanisms 
in cattle due to their participation in metabolic pathways that 
involve the release of H+, such as lactate metabolism, potentially 
reducing microbial fiber-degrading activity and consequently 
slowing digestion and rumen emptying rate, causing a decrease in 
appetite (Moran, 2005b). Furthermore, beta-glucosidase is widely 
present in lactic acid bacteria and is thought to interact with the 
human host (Michlmayr and Kneifel, 2014). Butyrate has been 
shown in rats to directly activate the intestinal gluconeogenesis 
genes in enterocytes via an increase in cationic antimicrobial 
peptides (cAMP, De Vadder et al., 2014). In contrast, glo1 (more 
abundant in FCR-H) is involved in methylglyoxal degradation, 

which is a highly toxic substance that decreases bacterial cell 
viability, and is produced by bacteria when there is carbohydrate 
excess and nitrogen limitation (Russell, 1993). Therefore, glo1 is 
a strong candidate biomarker of rumen microbiome difference in 
less efficient animals (i.e., FCR-H).

The microbial gene with highest impact in prediction of ADG 
was amiABC, which is mainly involved in the peptidoglycan 
turnover through cleavage of glyosidic bonds and release of 
amino acids and cAMP resistance (Uehara and Park, 2008; 
Uehara et al., 2010). Some bacteria (mostly pathogenic) have 
evolved mechanisms of resistance, such as decreased affinity to 
cAMPs (Anaya-López et al., 2013), and the higher abundance of 
amiABC in animals with lower ADG may be indicative of higher 
abundance of pathogens, which can cause inflammatory response 
in the rumen potentially reducing nutrient use and absorption 
(Reynolds et al., 2017). Brown et al. (2003) demonstrated that 
acetate and propionate are agonists of the human receptors 
GPR43 and GPR41, and Hong et al. (2005) proposed that acetate 

TABLE 4 | Summary of microbial genes identified for the prediction of RFI. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K03406 Methyl-accepting chemotaxis protein mcp 2Two-component system; bacterial 
chemotaxis

0.0225 −0.0510 1.26 1

K03413 Two-component system, 
chemotaxis family, response 
regulator CheY

cheY 2Two-component system; bacterial 
chemotaxis

0.0018 0.0478 1.16 1

K01534 Cd2+/Zn2+-exporting ATPase zntA 5Cation-transporting ATPase activity; metal 
ion binding; nucleotide binding

0.0211 −0.0653 1.16 04

K07258 serine-type D-Ala-D-Ala 
carboxypeptidase (penicillin-binding 
protein 5/6)

dacC 2Metabolic pathways; Peptidoglycan 
biosynthesis

0.0049 −0.0375 1.14 1

K07301 Cation:H+ antiporter yrbG 3Inorganic ion transport and metabolism 0.0096 −0.0145 1.09 04
K04720 Threonine-phosphate decarboxylase cobD 2Porphyrin and chlorophyll metabolism 0.0034 −0.0501 1.06 04
K03407 Two-component system, chemotaxis 

family, sensor kinase CheA
cheA 2Two-component system; bacterial 

chemotaxis
0.0048 −0.0236 1.04 1

K00595 Precorrin-6Y C5,15-
methyltransferase (decarboxylating)

cobL 2Metabolic pathways; porphyrin and 
chlorophyll metabolism

0.0078 0.0223 1.02 04

K01571 Oxaloacetate decarboxylase, alpha 
subunit

oadA 2Metabolic pathways; pyruvate metabolism 0.0165 −0.0501 0.96 04

K02057 Simple sugar transport system 
permease protein

ABC.SS.P 3Carbohydrate transport and metabolism 0.0023 −0.1375 0.96 20

K02390 Flagellar hook protein FlgE flgE 2Flagellar assembly 0.0015 −0.0376 0.87 1

K02417 Flagellar motor switch protein FliN/
FliY

fliN 2Bacterial chemotaxis; flagellar assembly 0.0018 −0.1120 0.77 1

K03738 Aldehyde:ferredoxin oxidoreductase aor 2Metabolic pathways; Microbial metabolism 
in diverse environments; Pentose phosphate 
pathway; Carbon metabolism

0.0144 −0.0657 0.68 NC

K02009 Cobalt transport protein cbiN 2ABC transporters 0.0074 −0.1126 0.67 01

K01709 CDP-glucose 4,6-dehydratase rfbG 2Metabolic pathways; amino sugar and 
nucleotide sugar metabolism

0.0041 0.2549 1.46 1

K00978 Glucose-1-phosphate 
cytidylyltransferase

rfbF 2Metabolic pathways; amino sugar and 
nucleotide sugar metabolism; starch and 
sucrose metabolism

0.0042 0.2056 1.23 1

K14113 Energy-converting hydrogenase B 
subunit D

ehbD – 0.0010 0.1703 1.00 NC

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 65.6% of the variation in RFI (residual 
feed intake). Rows colored in grey correspond to genes simultaneously identified for both RFI and DFI (daily feed intake) prediction.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Rumen Microbiome and Feed EfficiencyLima et al.

12 August 2019  |  Volume 10  |  Article 701Frontiers in Genetics  |  www.frontiersin.org

and propionate induce lipid accumulation and inhibition of 
lipolysis through the GPR43 receptor in mice. These genes are 
also part of the bovine genome, where they mediate an inhibitory 
effect of acetate, propionate, and butyrate on cAMP signaling 
(Wang et al., 2009). This could indicate that, in less efficient 
animals (lower ADG), the lower amount of acetate, propionate, 
and butyrate may lead to decreased inhibition of lipolysis by the 
host, which potentially results in lower ADG. Alternatively, the 
lower amount of VFAs in these animals may lead to decreased 
inhibition of cAMP signaling and increased release of cAMPs by 
the host to the rumen. The cAMPs act primarily on organisms 
without effective resistance mechanisms, consequently 
increasing the relative abundance of cAMP-resisting organisms 

and of the microbial genes encoding for the resistance. Two other 
microbial genes identified in the present research are part of the 
cAMP resistance pathway—lpxA and tolC (associated with FCR 
and DFI, respectively). Although all three genes (amiABC, lpxA, 
and tolC) are part of the same pathway, they present opposite 
tendencies—while lpxA and tolC are proportionally highly 
abundant in animals with higher ADG and lower FCR, amiABC 
is relatively highly abundant in animals with lower ADG and 
higher FCR. The gene lpxA is related to lipid A integration in 
the cell wall, as a preventive measure against the hosts’ immune 
system, and tolC is involved in the efflux of antibiotics (Raetz 
et al., 2007; Zgurskaya et al., 2011). This could be indicative of 
the different cAMP resistance mechanisms evolved by bacterial 

TABLE 5 | Summary of microbial genes identified for the prediction of DFI. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K00370 Nitrate reductase 1, alpha 
subunit

narG 2Microbial metabolism in diverse environments; 
nitrogen metabolism; two-component system

0.0022 −0.2272 1.22 1

K01858 Myo-inositol-1-phosphate 
synthase

INO1 2Metabolic pathways; biosynthesis of antibiotics; 
streptomycin biosynthesis; inositol phosphate 
metabolism

0.0542 −0.0459 1.14 1

K03685 Ribonuclease III rnc 2Ribosome biogenesis in eukaryotes; proteoglycans 
in cancer

0.0288 −0.0097 1.13 1

K00613 Glycine amidinotransferase GATM 2Metabolic pathways; glycine, serine and threonine 
metabolism; arginine and proline metabolism

0.0019 −0.1417 1.09 1

K02428 XTP/dITP 
diphosphohydrolase

rdgB 2Metabolic pathways; purine metabolism 0.0147 −0.0216 0.94 02

K03602 Exodeoxyribonuclease VII 
small subunit

xseB 2Mismatch repair 0.0035 0.0803 0.94 02

K03210 Preprotein translocase 
subunit YajC

yajC 2Bacterial secretion system; quorum sensing; 
protein export

0.0069 0.1317 0.93 1

K12340 Outer membrane channel 
protein TolC

tolC 2Beta-lactam resistance; cationic antimicrobial 
peptide (CAMP) resistance; two-component 
system; bacterial secretion system; plant−pathogen 
interaction; pertussis

0.0157 0.0068 0.92 02

K03043 DNA-directed RNA 
polymerase subunit beta

rpoB 2Metabolic pathways; purine metabolism; pyrimidine 
metabolism; RNA polymerase

1.2470 −0.0995 0.91 NC

K04751 Nitrogen regulatory protein 
P-II 1

glnB 2Two-component system 0.0151 0.0613 0.91 02

K03625 N utilization substance 
protein B

nusB 3Transcription termination 0.0135 0.0766 0.91 02

K06178 Ribosomal large subunit 
pseudouridine synthase B

rluB 3Translation, ribosomal structure, and biogenesis 0.0693 −0.0038 0.85 02

K05349 Beta-glucosidase bglX 2Metabolic pathways; biosynthesis of secondary 
metabolites; cyanoamino acid metabolism; 
starch and sucrose metabolism; phenylpropanoid 
biosynthesis

0.2272 0.0063 0.84 1

K05515 Penicillin-binding protein 2 mrdA 2Peptidoglycan biosynthesis; beta-lactam resistance 0.0295 0.0214 0.82 02
K04764 Integration host factor 

subunit alpha
ihfA 3DNA binding: replication, recombination, and repair 0.0041 0.0306 0.80 02

K01709 CDP-glucose 
4,6-dehydratase

rfbG 2Metabolic pathways; amino sugar and nucleotide 
sugar metabolism

0.0041 0.2412 1.53 1

K00978 Glucose-1-phosphate 
cytidylyltransferase

rfbF 2Metabolic pathways; amino sugar and nucleotide 
sugar metabolism; starch and sucrose metabolism

0.0042 0.2634 1.43 1

K14113 Energy-converting 
hydrogenase B subunit D

ehbD – 0.0010 0.1594 1.16 NC

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 72.9% of the variation in DFI (daily 
feed intake). Rows colored in gray correspond to genes simultaneously identified for both RFI (residual feed intake) and DFI prediction.
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FIGURE 5 | Correlation network analysis of metagenomic data: Each node represents a vector of relative abundances of each microbial gene in all 42 animals, and 
the edges represent a correlation between the microbial genes. A minimum correlation threshold of 0.80 was applied to the network. Different colors illustrate different 
clusters, which were calculated using MCL method (inflation: 2; preinflation: 2; scheme: 6). Clusters identified by numbers were found to be significantly (P < 0.05) 
enriched for microbial genes identified for the traits whose abbreviations are between brackets (FCR, feed conversion ratio; ADG, average daily gain; RFI, residual 
feed intake; DFI, daily feed intake; FCR&ADG, set including microbial genes identified for prediction of either FCR and/or ADG; RFI&DFI, set including microbial genes 
identified for prediction of RFI and/or DFI; FCR+ADG, set including microbial genes simultaneously identified for prediction of both traits FCR and ADG).

FIGURE 6 | Summary of microbial genes identified for the prediction of each trait: Traits are located in the four central boxes: FCR, feed conversion ratio; ADG, 
average daily gain; RFI, residual feed intake; DFI, daily feed intake. Solid lines represent positive correlations, and dotted lines represent negative correlations. 
Microbial genes are listed in the outside boxes, organized by general function, and each general function is represented by a different color.
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organisms, which include modification of the cell external 
surface, efflux pumps, and biosynthesis and crosslinking of cell 
envelope components (Nizet, 2006).

The set of microbial genes associated with ADG included 
mostly housekeeping genes and genes related to amino acid 
metabolism and transport. Artegoitia et al. (2017) found a 
link between ruminal aromatic amino acids synthesis such as 
phenylalanine and high ADG in beef steers. For example, paak 
[previously mentioned by Kamke et al. (2016) related to sheep 
with high production of methane] and asd encode proteins 
that respectively catalyze phenylalanine and phenylacetate 
(related to aspartate degradation and biosynthesis of amino 
acids including threonine), with release of H+. In the current 
research, both of these genes were positively correlated to 
ADG, which is supported by the positive correlations between 
ADG and dry matter intake (DMI), between DMI and methane 
emissions, and between methane emissions and body weight 
measurements (weaning weight, yearling weight, and final 
weight), previously observed in cattle (Koots et al., 1994; Arthur 
et al., 2001; Herd et al., 2014).

Some housekeeping genes were simultaneously identified 
for the prediction of FCR and ADG, such as protein translation 
from diphthamide (dph2) or peptidoglycan biosynthesis (murD), 
both more abundant in efficient animals (higher ADG and lower 
FCR). The importance of diphthamide biosynthesis in archaea 
is not yet fully known (Narrowe et al., 2018). Microbial gene 
murD is related to the glutamate–glutamine cycle, an important 
appetite regulator in humans (Delgado, 2013), but in the present 
research, it was not associated to DFI.

Proteins encoded by microbial genes associated with RFI are 
mostly related to chemotaxis (cheA and cheY), detoxification 
(Cd2+/Zn2+-exporting ATPase, zntA), and vitamin B12 
production (cbiN, cobD, and cobL). The negative correlation of 
microbial genes involved in chemotaxis and motility with RFI 
may suggest an increased microbial metabolism in efficient 
animals, derived from their ability to sense chemical gradients 
in their surrounding environment and to react accordingly, i.e., 
moving closer to nutrients (Rajagopala et al., 2007). Microbial 
gene zntA was also more abundant in efficient animals and 
plays a role in the homeostasis of transition metals (Cd2+, Zn2+), 
participating in functional pathways ranging from cellular 
respiration to gene expression (Fraústro da Silva and Williams, 
2001). Finally, higher relative abundance of microbial genes 
involved in vitamin B12 production (cbiN, cobD, and cobL) was 
observed in more efficient animals. This essential cofactor needs 
to be taken up directly from the diet or to be made available for 
animal absorption by the rumen microbial organisms because it 
is not produced by eukaryotes (Warren et al., 2002). Furthermore, 
vitamin B12 has been previously associated with increased cobalt 
content on high-fiber diets and increased VFA, such as acetate 
(Beaudet et  al., 2017), which may affect the animals’ appetite 
(Frost et al., 2014), in line with our observation of higher relative 
abundance of these genes in more efficient animals, i.e., animals 
with lower feed intake than expected.

The four most important microbial genes identified for 
the prediction of DFI included the three microbial genes also 
identified for prediction of RFI (rfbG, rfbF, and ehbD) and 

narG. Microbial genes rfbG and rfbF (VIP > 1.4) are part of the 
rfc region (Morona et al., 1994) and are related to nucleotide sugar 
metabolism, which is necessary for the production of microbial 
lipopolysaccharide (LPS). LPS is a major virulence factor of Gram-
negative bacteria, particularly due to the O-antigen, paramount for 
host colonization and niche adaptation by bacterial organisms, due 
to its part in the protection from host immune response (Reeves, 
1995; Samuel and Reeves, 2003; Geue et al., 2017). Both genes rfbG 
and rfbF showed a positive correlation to RFI and DFI, supporting 
our hypothesis that the use of energy to stimulate the innate immune 
system against pathogens increases DFI and reduces feed conversion 
efficiency as determined by RFI (Neal et al., 1991; Jing et al., 2014; 
Vigors et al., 2016). Other microbial genes positively correlated to 
DFI were found to be involved in resistance mechanisms, such as 
the penicillin-binding protein 2-encoding gene (mrdA), which 
belongs to the peptidoglycan and beta-lactam resistance metabolic 
pathways. These proteins are transpeptidases or carbopeptidases 
involved in peptidoglycan metabolism and have an important role 
against beta-lactam resistance (Zapun et al., 2008). The microbial 
gene myo-inositol-1-phosphate synthase (INO1) is related to 
antibiotic biosynthesis, including streptomycin. Microbial gene 
ehbD is a subunit of the energy-converting hydrogenase B, found 
in methanogens such as Methanococcus maripaludis. This microbial 
gene is important due to its role in autotrophic CO2 assimilation (Porat 
et al., 2006), having implications for microbial growth. Furthermore, 
narG, part of the narGHIJ operon, essential for some microorganisms 
to gather energy under anaerobic conditions by the reduction in 
nitrate to nitrite in a denitrification process (Blasco et al., 1990; 
Latham et al., 2016), was proportionally more abundant in animals  
with low DFI.

The microbial gene nusB (associated with DFI) is part of a set 
of nus genes, which also includes nusA (identified for prediction 
of FCR and ADG). Genes in the nus complex are involved in 
transcription termination and antitermination processes, such 
as Rho-dependent transcriptional termination (Torres et  al., 
2004), which is the regulatory mechanism involved in the 
efficient transcription of the tryptophan operon (Farnham et al., 
1982; Kuroki et al., 1982; Prasch et al., 2009). The nus-complex 
microbial genes were found to be relatively more abundant in 
efficient animals. This association may be due to the influence 
of the nus genes, which extends from the ribosomal operons 
to the tryptophan operon and constitutes a good example of 
how termination and antitermination processes can control 
gene expression, occurring during RNA transcription, and 
potentially positively impacting bacterial growth and rumen  
fermentation processes.

Although microbial genes amiABC, tolC, glo1, rfbF, rfbG, and 
lpxA were identified in the present research for the prediction 
of different traits, all are associated with bacterial defense 
mechanisms either from other bacteria or from the host. The 
majority of these genes had higher abundance in less efficient 
animals. This suggests that the presence of either bacterial 
pathogens in the rumen or antibiotics produced as host immune 
responses might represent a significant energy sink, impairing 
feed conversion efficiency.

Further improvement of prediction of feed conversion traits 
using metagenomic information may be achieved through 
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the integration of protein, enzyme, and pathway data from the 
Hungate collection (Seshadri et al., 2018) and the large rumen 
metagenomic reference dataset (Stewart et al., 2018).

CONCLUSIONS

The results presented here suggest that relative abundances of 
rumen microbial genes may be highly informative predictors of 
feed conversion efficiency, growth rate, and feed intake, which are 
labor intensive, time consuming, and expensive traits to record. 
Most microbial genes identified for the prediction of traits in this 
research were trait specific. Microbial genes related to cellulose and 
hemicellulose degradation, vitamin B12 synthesis, and amino acids 
metabolism were associated to enhanced feed conversion efficiency 
(FCR or RFI), while those involved in nucleotide sugars metabolism, 
pathogen LPS synthesis, cAMP resistance, and degradation of 
toxic compounds were associated with inefficient feed conversion. 
Furthermore, we identified specific microbial genes encoding 
proteins related to the crosstalk between the microbiome and the host 
cells, such as murD and amiABC, and associated to gene expression 
regulatory mechanisms, such as nusA and nusB. Thus, our results 
provide a deeper understanding of the potential influence of the 
rumen microbiome on the feed conversion efficiency of its host, 
highlighting specific enzymes involved in metabolic pathways that 
reflect the complex functional networks impacting the conversion 
of feed into animal products such as meat.
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3.3 Validation of previously identified biomarkers for 
feed conversion efficiency, appetite, and growth 

After publication of the journal article in August of 2019, we performed a 

validation procedure, to evaluate the accuracy of the identification of the 

microbial genes identified as biomarkers for FCR, RFI, ADG, and DFI. This 

consisted of the random selection of groups of microbial genes containing the 

same number of microbial genes that had been identified previously as 

biomarker for each of the host traits, i.e., groups of 20, 17, 14, and 17 microbial 

genes were randomly selected from the original dataset and used in the 

evaluation of the accuracy of the identification of the previously identified 

biomarkers for FCR, RFI, ADG, and DFI, respectively. Using each set of 

randomly selected microbial genes, a partial least squares (PLS) model was 

fitted to predict the corresponding host performance trait. This procedure was 

repeated 100 times, including and excluding the fixed factors (diet and breed), 

and the results are presented in tables 1 and 2, respectively. The analyses 

were performed using the R software (v. 1.1.453) (R Core Team, 2021).  

Table 1. Percent variation of host performance traits feed conversion ratio, residual feed 
intake, average daily gain and daily feed intake explained by diet, breed, trial, and groups of 
randomly selected microorganisms 

Trait Average of explained variation (%) Standard deviation of explained variation (%) 

FCR 6.15 2.33 
RFI 4.25 1.55 
ADG 4.60 1.74 
DFI 4.45 1.40 

FCR, RFI, ADG and DFI correspond to feed conversion ratio, residual feed intake, average 
daily gain, and daily feed intake, respectively. Average and standard deviation of explained 
variation (%) were obtained by averaging and calculating the standard deviation of the 
explained variation obtained from 100 partial least squares models for the prediction of each 
trait, based on the relative abundances of randomly selected groups of microbial genes, and 
including fixed factors (breed, diet, and trial).  

 

PLS models including or excluding the fixed factors breed, diet, and trial, and 

groups of microbial genes randomly selected from the same dataset from 

which we had previously identified biomarkers of the host performance traits 

explained a substantially lower (on average less than 7%) proportion of the 

variation observed in the traits. 
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Table 2. Percent variation of host performance traits feed conversion ratio, residual feed 
intake, average daily gain and daily feed intake explained by groups of randomly selected 
microorganisms 

Trait Average of explained variation (%) Standard deviation of explained variation (%) 

FCR 6.67 2.94 
RFI 5.14 3.10 
ADG 4.41 1.88 
DFI 5.17 2.80 

FCR, RFI, ADG and DFI correspond to feed conversion ratio, residual feed intake, average 
daily gain, and daily feed intake, respectively. Average and standard deviation of explained 
variation (%) were obtained by averaging and calculating the standard deviation of the 
explained variation obtained from 100 partial least squares models for the prediction of each 
trait, based on the relative abundances of randomly selected groups of microbial genes.  

 

These results further highlighted the close association between the biomarkers 

identified for the prediction of the host traits in our published article and each 

of the traits, which explained 63, 66, 73, and 65% of the variation of FCR, RFI, 

ADG and DFI, respectively. 

3.4 Conclusions 

There is a close association between the rumen microbiome and the host 

performance traits, particularly involving biochemical pathways such as those 

of cellulose and hemicellulose degradation, vitamin B12 synthesis, and amino 

acids metabolism, and microbial genes involved in these functions were 

relatively more abundant in highly efficient animals, whereas the microbiome 

of animals with lower feed efficiency showed higher relative abundances of 

microbial genes associated with LPS biosynthesis, cAMP resistance, and 

degradation of toxic compounds.  

Focusing on the rumen microbial genes (i.e., the metagenome) provides very 

detailed information about which microbiome functions are altered between 

groups of hosts exhibiting different levels of a trait, or for example, subject to 

different treatments in an experimental setting. However, this study, as many 

others, was based on the microbiome compositions of samples collected at 

the abattoir, and knowledge is still lacking on whether rumen microbiome 

samples taken post-mortem are representative of previous moments of the 

animals’ life. Therefore, whether the association between these microbial 
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genes and the bovine host traits is stable throughout the bovine’s adult life is 

still unknown, which prompted the study presented in the next chapter of this 

thesis. 
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Chapter 4 Temporal stability of the rumen 
microbiome and its associations 
with performance traits in beef 
cattle 

4.1 Abstract 

Studies focused on the rumen microbiome characterization and its association 

with host traits are very often based on one single microbiome sample, mostly 

collected at slaughter. However, whether this is representative of the rumen 

microbiome at earlier stages of growth is still unclear. In the present study, we 

investigated the temporal stability of the rumen microbiome, and its association 

with host performance traits, including feed conversion ratio (FCR), average 

daily weight gain (ADG), daily feed intake (DFI), residual feed intake (RFI), 

daily methane (CH4) emissions (g/day) and CH4 yield (g/kg of daily dry matter 

intake). A total of 20 beef cattle had their rumen digesta sampled at 6 

timepoints, before inclusion of a diet additive (nitrate- or oil-based), at the start, 

mid, and end of a 56-day performance testing period (during which animals 

were tested for FCR, ADG, DFI, and RFI), after leaving the respiration chamber 

in which each steer was measured for its CH4 emissions individually, and after 

slaughter. Microbial DNA was extracted from each sample, and whole 

metagenomic shotgun sequencing was performed to determine the 

abundance of microbial genera and genes. We compared microbiome profiles 

at both microbial genera and genes levels, throughout the sampling timepoints, 

evaluating alpha and beta diversity, correlation between timepoints, and using 

partial least squares (PLS) models to understand whether the associations 

between the rumen microbiome and host traits were stable throughout the 

finishing phase of cattle. The results showed overall that diversity indices of 

microbiome profiles were not affected by time, and Pearson correlations 

between microbial genera and genes vectorized matrices were, respectively, 

71% and 81% between pre-additive and end test, and higher between other 

pairs of sampling timepoints. Microbiome compositions generated from 

samples taken at any sampling timepoint explained high percentages of the 



 Temporal stability of the rumen microbiome 

65 
 

variation of the performance traits, averaging between 55 ± 9% and 64 ± 10% 

(FCR and CH4 emissions in g/day, respectively) when using microbial genera, 

and between 74 ± 7% and 86 ± 2% (ADG and CH4 yield, respectively) when 

using microbial genes as predictors. The use of moderately to highly heritable 

microbial genes to predict the estimated breeding values of the performance 

traits revealed that the association between the microbiome and the host traits 

was strong over the entire finishing period, with PLS models explaining 67 ± 

10% and 73 ± 8% (RFI and DFI, respectively). These longitudinal analyses 

revealed that the rumen microbiome remained remarkably stable, and that the 

associations between the rumen microbiome and the host performance traits 

are overall maintained throughout the finishing phase of beef cattle, indicating 

that microbiome data generated from samples taken even before the 

performance test could be used for breeding purposes.  

4.2 Introduction 

The increasing demand for foods rich in quality protein such as milk and meat 

emphasises the need for the improvement of ruminant production systems in 

terms of both economic efficiency and environmental impact. Ruminants have 

the unique ability to convert human undigestible feed, such as grass, into meat 

and milk, due to their symbiotic relationship with their rumen microbiome, 

composed of the rumen microbiota, i.e., all the microbes that inhabit the rumen, 

and the metagenome, i.e., their microbial genes. The rumen harbours bacteria, 

protozoa, and fungi, that ferment complex polysaccharides in the plant 

biomass, such as cellulose and hemicellulose, into volatile fatty acids (VFA), 

microbial protein, and vitamins, that the ruminant can absorb and/or further 

digest and utilize in its own development and growth. During the fermentation 

process, excess hydrogen can be produced that methanogenic archaea use 

to produce ATP, leading to methane (CH4) emissions being released, mostly 

through eructation. Previous authors have shown the close association 

between the rumen microbiome and the host performance traits; Myer et al. 

(2015) reported increased relative abundances of Firmicutes in steers with 

greater growth rates, Roehe et al. (2016) identified 49 microbial genes that 
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explained 86% of the variation in feed conversion efficiency, Lima et al. (2019) 

found that sets of fewer than 20 rumen microbial genes explained more than 

60% of the variation in feed efficiency traits including daily weight gain, appetite 

and feed conversion efficiency (chapter 3), and Auffret et al. (2020) identified 

microbial functional pathways such as biofilm formation, secretion system, and 

fucose sensing to be associated with higher feed conversion efficiency in beef 

cattle. Additionally, the association between the rumen microbiome and CH4 

emissions has been extensively explored; for example, Wallace et al. (2014) 

proposed that the Archaea:Bacteria ratio was a suitable biomarker for CH4 

emissions, Roehe et al. (2016) identified 20 microbial gene biomarkers that 

explained 81% of the variation in CH4 emissions, Danielsson et al. (2017) 

observed increased relative abundances of Methanobrevibacter ruminantium 

and Methanobrevibacter olleyae in low CH4 emitting dairy cattle, Auffret et al. 

(2018) showed that Butyrivibrio and Pseudobutyrivibrio were strongly 

associated with high CH4 emissions in beef cattle, and Martínez-Álvaro et al. 

(2020) uncovered, based on complex interactions among rumen microbial 

communities and their genes, functional niches affecting CH4 emissions, and 

that these emissions are mostly driven by microbial communities other than 

methanogenic archaea.  

Most of the studies of associations between the microbiome and host traits are 

based on rumen samples taken at a single time point, usually immediately after 

slaughter. Previous studies on temporal stability of the rumen microbiome 

have found some fluctuations, e.g., Piao et al. (2014) showed that short-term 

shifts in the rumen microbiota profiles (specifically at 30min and 4h of 

incubation in the rumen) were associated to plant-biomass degradation rate, 

and Huws et al. (2016), based on 16S rRNA-based taxonomic compositions, 

showed that the colonization of fresh perennial ryegrass throughout an 8 hour 

period when feed particles enter the rumen of dairy cattle occurred fast, and 

that the microbiota profiles at 1 and 2h were significantly different from those 

at 4, 6, and 8 hours of particle incubation in the rumen. In a long-term study, 

Snelling et al. (2019) showed that the rumen microbiota was temporally stable 



 Temporal stability of the rumen microbiome 

67 
 

and suggested that, after a period of adaptation to potential dietary 

interventions, a single sample could be considered reasonably representative 

of the microbial communities. Additionally, the rumen microbiome is under the 

influence of the host genetics; Roehe et al. (2016) used a genetic model based 

on sire progeny groups and showed that information on microbiome profiles is 

crucial to identify and select animals with desirable characteristics for breeding 

programs, and Martínez-Alvaro et al. (2021) reported that rumen microbial 

genes and genera were significantly heritable, particularly those associated 

with CH4 emissions, further confirming and specifying that a substantial portion 

of the host genetic control over its traits occurs through the control of its own 

microbiome profile. 

In this study, we assessed the temporal stability of the rumen microbiome by 

focusing on the microbial communities and their microbial genes throughout 

the finishing period of 7 months of beef cattle. Furthermore, we investigated 

the stability of the prediction of host performance traits (feed conversion ratio, 

average daily weight gain, daily feed intake, and residual feed intake, FCR, 

ADG, DFI, and RFI, respectively) and CH4 emissions traits (daily CH4 

emissions, in g/day, and yield, in g/kg daily dry matter intake) based on the 

rumen microbiota and metagenomic profiles collected at 6 sampling timepoints 

during growth.  

4.3 Material and methods 

This study was based on data collected from a previous animal trial 

investigating the effect of different diets and feed additives on animal 

performance and CH4 emissions in different breeds of beef cattle during the 

finishing phase. 

4.3.1 Experimental design, animals, and diets 

The animal trial was a 2 × 2 × 3 factorial design performed that included 84 

animals from crossbred Charolais (Chx, n=42) and purebred Luing (Lu, n=42) 

breeds. These steers were allocated to one of two basal diets (consisting of 

forage:concentrate ratios of 520:480, and 84:916 g/kg dry matter basis; forage, 
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and concentrate, respectively). On the allocation day, these animals weighted 

on average 414.1 ± 35.7 kg. Before adaptation to the basal diet, all animals 

were fed the forage diet. Half of the steers were then adapted to the 

concentrate diet in a stepwise manner over a period of 4 weeks. Animals fed 

each basal diet were then allocated to one of three treatments; the control 

(CTL), the supplementation of 21.5g nitrate/kg dry matter (NIT), and the use of 

high oil content rapeseed cake (RSC). Animals were adapted to the NIT and 

RSC treatments in a stepwise manner over a period of four weeks. During the 

trial, the steers were offered diets ad libitum, at approximately 1.05 times the 

average daily feed intake. Diet composition and more details on the feeding 

trial can be found in Duthie et al. (2016).  

The experiment was conducted at Scotland’s Rural College (SRUC) Beef and 

Sheep Research Centre in Edinburgh in 2013. The experimental protocol was 

approved by SRUC’s Animal Welfare and Ethical Review Body, the Animal 

Experiments Committee, and was conducted in accordance with the 

requirements of the United Kingdom Animals (Scientific Procedures) Act, 

1986. 

4.3.2 Animals selected for rumen digesta sampling 

To limit whole metagenomic sequencing cost for the longitudinal samples, a 

total of 20 animals were selected for rumen digesta sampling (10 Chx, and 10 

Lu). Six animals from each breed were fed concentrate, which were balanced 

for the three treatment groups (CTL, NIT, or RSC), whereas 4 animals from 

each breed were fed forage, and balanced for 2 treatment groups (CTL or NIT).  

4.3.3 Bovine host performance traits 

Performance traits were measured during a 56-day testing period. DFI was 

assessed by measuring dry matter intake (DMI, kg/day), which was recorded 

using electronic feeding equipment (Insentec, Marknesse, The Netherlands). 

Body weight (BW) was measured weekly using a calibrated weight scale 

(before fresh feed was offered). ADG was modelled by linear regression of BW 

against test date. FCR was calculated as average DMI (kg/day) divided by 
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ADG. Daily CH4 emissions were measured in respiration chambers, in which 

each steer remained for 3 days, whereas the final 48 hours were used in the 

estimation of daily CH4 emissions. Daily CH4 emissions was divided by the 

average DMI measured within the respiration chambers, resulting in CH4 yield. 

A more detailed description can be found in Duthie et al. (2016). 

4.3.4 Rumen digesta sampling timepoints 

All animals had their rumen digesta sampled after the adaptation to the basal 

diets but before introduction of feed additives (pre-additive) at an average of 

418 ± 32 days old, at the start (average of 460 ± 32 days old), mid-point 

(average of 492 ± 32 days old), and end (average 520 ± 32 days old) of the 

56-day performance test period (start, mid, and end RFI, respectively), on the 

day the animal left the respiration chambers (chamber), and at the abattoir 

within 2 hours of the animal slaughter (slaughter; Figure 1).  

 

Figure 1. Schematic representation of the experimental timeline. Test refers to the 56-day 
performance testing period. 

 

At each sampling, approximately 50 mL of rumen liquid were taken by inserting 

a stomach tube (16 × 2700 mm Equivet Stomach Tube, Jørgen Kruuse A/S, 

Langeskov, Denmark) nasally and aspirating manually. This liquid was filtered 

through two layers of muslin and 5 mL strained rumen fluid were mixed with 

10 ml phosphate buffered saline containing glycerol (30% v/v). These samples 

were stored at −20°C between collection and analysis. Animals were 

slaughtered in a commercial abattoir where two samples of rumen digesta (~50 

ml) were collected immediately after the rumen was opened to be drained. The 
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slaughterhouse sample collection process results in well-mixed samples of 

rumen contents.  

4.3.5 Whole metagenomic sequencing 

DNA was extracted from the samples of rumen digesta obtained from 20 

animals following the methodology described in Rooke et al. (2014). Illumina 

TruSeq libraries were prepared from genomic DNA and sequenced on Illumina 

HiSeq systems 4000 (8 animals) or Illumina PE150 (12 animals) by Edinburgh 

Genomics (Edinburgh, UK). Paired-end reads (2 × 150 bp) were generated, 

resulting in between 16 and 42 GB per sample (between 55 and 140 million 

paired reads). To measure the abundance of known functional MGs whole 

metagenome sequencing reads were quality trimmed using Fastp (Chen et al., 

2018) and assembled using MEGAHIT (Li et al., 2015). Proteins were 

predicted using Prodigal (Hyatt et al., 2010) and searched against the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database 

(https://www.genome.jp/kegg/ko.html) (version 2020-10-04) (Kanehisa and 

Goto, 2000) using KofamScan database (Aramaki et al., 2020). Hits that 

passed KofamScan’s default thresholds were assigned to KEGG orthologous 

groups (KO). Proteins that passed the threshold for multiple KOs were grouped 

separately, as were those that did not have a hit. The resulting KO grouping 

corresponded to a highly similar group of sequences. For phylogenetic 

annotation of rumen samples, we followed the same pipeline as described in 

Martínez-Álvaro et al. (2021a). Briefly, the sequence reads of the samples 

were aligned to a database including cultured genomes from the Hungate 1000 

collection (Seshadri et al., 2018) and Refseq genomes (Pruitt et al., 2007) 

using Kraken software (Wood and Salzberg, 2014). 

4.3.6 Statistical analyses 

4.3.6.1 Data cleaning and transformation 

The microbiome data included a total of 1178 microbial genera 6916 microbial 

genes. Microbial genera and genes were removed from the dataset if they 

were absent from at least one animal and/or if they had average relative 

https://www.genome.jp/kegg/ko.html
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abundance lower than 0.001%, leaving a total of 1050 microbial genera and 

1902 microbial genes for further analyses. 

To deal with the compositional nature of microbiome data, a transformation 

was applied using the additive logratio (ALR; Gloor et al., 2017), with 

denominators Oribacterium and K00858 for microbial genera and genes, 

respectively. The denominators were selected following the criteria proposed 

in Greenacre et al. (2021), and previously applied in Martínez-Álvaro et al. 

(2021a, 2021c), based on high Procrustes correlation between the ALR-

transformed data and the centred logratio-transformed data (ensuring isometry 

between samples), and the lowest variance in the denominator (simplifying the 

interpretation of results). 

4.3.6.2 Diversity indices 

To investigate the temporal stability of the samples in terms of diversity within 

sample, and dissimilarity from other samples, we used the original datasets (in 

absolute counts) including 1178 microbial genera and 6916 microbial genes to 

calculate the adjusted Shannon index of each sample in each sampling 

timepoint and the Bray-Curtis dissimilarity between all samples at all 

timepoints, respectively, using the vegdist() function included in the vegan 

package (Oksanen et al., 2019). We compared Shannon indices using linear 

mixed models with sampling timepoints as fixed effect and animal ID as 

random effect (independently distributed with mean 0 and individual variance 

multiplied by an identity matrix of 20 × 20 order), using the lme4 package 

(Bates et al., 2015) in R version 1.4.1103 (R Core Team, 2021). Post hoc tests 

to compare Shannon indices from sampling timepoints in a pairwise manner 

were performed using the package emmeans (Russell et al., 2021), in R. Bray-

Curtis dissimilarities in different timepoints were compared in a PERMANOVA 

calculated using the adonis2() function from the vegan package in R, and a 

post hoc pairwise comparison of the dissimilarities in each sampling timepoint 

was performed using the pairwise.adonis2() function from the pairwiseAdonis 

package (Martinez Arbizu, 2020) in R. Because the PERMANOVA can result 

in significant differences due to either significant differences in the centroids or 
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due to heteroscedasticity of the groups of samples, we calculated the 

homogeneity of group dispersions (i.e. dispersion within sampling timepoints) 

using the betadisper() function of the vegan package and compared them in 

an anova in R. Additionally, Bray-Curtis dissimilarities were projected using the 

nonmetric multidimensional scaling (NMDS), with random seeds set at 10403 

and 432 (first and second elements of the .Random.seed vector in R) for 

microbial genera and genes level analyses, respectively. 

4.3.6.3 Temporal stability of microbial genera and genes throughout 
the finishing period 

To evaluate the temporal stability of the abundances of microbial genera and 

genes throughout the sampling timepoints, we fitted 1049 and 1901 linear 

mixed models using as dependent variables the ALR-transformed abundances 

(ALR-As) of microbial genera and genes, respectively, timepoint as fixed 

effect, and animal ID as random effect (independently distributed with mean 0 

and individual variance multiplied by an identity matrix of 20 × 20 order). P-

values testing for significance of different ALR-As between timepoints were 

corrected by the Bonferroni method, and significance was assessed at p-value 

< 0.05. These analyses were done using the lme4 (Bates et al., 2015) and car 

(Fox and Weisberg, 2019) packages in R. 

Additionally, we compared the microbial genera and gene datasets by 

calculating the Pearson correlation between the vectorized microbial genus 

and microbial gene ALR-As matrices generated from the samples collected at 

each sampling timepoint in a pairwise manner. These analyses were 

performed in R. 

4.3.6.4 Prediction ability of performance and methane emissions traits 
based on data generated from different sampling timepoints 

Partial Least Squares (PLS) models were used to understand which of the 

1049 microbial genera and 1901 microbial genes were most associated to 

each trait in each timepoint. The traits included in the models were the 

residuals of FCR, ADG, DFI, RFI, daily CH4 emissions, and CH4 yield, obtained 

from linear models regressing each trait on the animals’ weights as measured 
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on the day they were allocated to the basal diet. These analyses were 

performed using the mixOmics (Cao et al., 2020) package in R. Variable 

importance in projection (VIP) scores were obtained for each explanatory 

variable in each predictive model using 2 components. Regression coefficients 

from the first component were used to describe the direct relationship between 

each predictor variable (microbial genera or genes) and the trait. Significance 

levels of the regression coefficients were obtained using the Jack-Knife 

procedure, based on intervals of average ± 2 standard deviations (regression 

coefficients distribution obtained from leave-one-out cross validation).  

Additionally, we investigated whether microbial genera and genes measured 

at slaughter previously identified as highly associated (VIP ≥ 1) to performance 

and methane emissions traits by our group would still be identified as important 

using the datasets generated from samples at earlier sampling timepoints. For 

this analyses we included the microbial genera and genes identified for 

prediction of methane yield by Martínez-Álvaro et al. (2020), the microbial 

genes identified for prediction of FCR, ADG, DFI, and RFI by Lima et al. (2019) 

and the microbial genes identified for prediction of FCR and methane yield by 

Roehe et al. (2016) (these manuscripts are identified as MA, L, and R, 

respectively). In these studies, the authors identify host performance traits’ 

biomarkers based on the investigation of the relative abundance of microbial 

genera and genes, using PLS and/or correlation networks, with enrichment 

analyses. 

4.3.6.5 Stability of the association of host-genomically influenced 
microbial genes with the estimated breeding values of host 
performance traits 

We repeated the analyses exclusively based on the host-genomically 

influenced functional core microbiome composed of 443 microbial gene 

ALR-As defined in Martínez-Álvaro et al. (2021b) identified in the datasets 

generated from all sampling timepoints of our analyses. These microbial genes 

presented significant host-genomic effects after a stringent multitest 

correction, estimated by using a larger data set (n=359 animals) with 

metagenomics and host genomic information (described in Martínez-Álvaro et 
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al. (2021b)) which included the animals in this study. Additionally, estimated 

breeding values (EBVs) were calculated based on records in the complete 

database (n=359 animals), using univariate GBLUP analysis resolved with 

BGLR software (Pérez and De Los Campos, 2014). The univariate models 

included correction for systematic effects (diet, breed, and trial) and followed 

the same assumptions as in Martínez-Álvaro et al. (2021b). A total of 443 

microbial gene ALR-As previously estimated to have moderate to high 

heritability generated from samples collected from each sampling timepoint 

were evaluated in the present study for their stable association with the EBVs 

of the performance traits FCR, ADG, DFI, RFI, and CH4 yield. These analyses 

were performed by using the ALR-As as predictor variables in PLS models that 

included the EBVs of the performance traits as dependent variable. 

4.4 Results 

4.4.1 Diversity indices 

The diversity indices were remarkably stable throughout the finishing period. 

No significant differences in diversity indices were observed in the analyses at 

microbial genera level. At the microbial genes level, only those from slaughter 

samples had significantly higher Shannon diversity than mid test samples 

(averages of 0.891 and 0.880, respectively, p-value = 0.02), whereas no 

significant differences in diversity indices were observed for any other pairwise 

comparison (Figure 2). 

 

Figure 2. Adjusted Shannon index for a) microbial genera and b) microbial genes throughout 
the sampling timepoints. 
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The PERMANOVA analysis of Bray-Curtis dissimilarities revealed significant 

differences between the dissimilarity matrices calculated based on 

abundances of microbial genera at different sampling timepoints, due to 

differences between the centroids of those dissimilarity matrices at different 

timepoints (dispersions from the centroids based on Euclidian distance within 

each timepoint were not significantly different between timepoints). The 

pairwise analyses showed the differences occurred mostly between 

dissimilarity matrices based on slaughter data and those obtained from other 

timepoints, and that, overall, timepoint had little effect on the centroids of the 

BC dissimilarity matrices, explaining only 0.143 or lower of the total variance 

in the PERMANOVA models (Table 1). 
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Table 1. Comparison of distance matrices between different sampling timepoints based on 
Bray-Curtis dissimilarity indices. 

Timepoint dataset  Microbial genera  Microbial genes 

PERMANOVA  Explained variance P-value  Explained variance P-value 

All datasets  0.085 0.001  0.042 0.419 

Heteroscedasticity   n.a. 0.378  n.a. 0.060 

PERMANOVA Pairwise 
comparisons  

Explained variance P-value  Explained variance P-value 

Pre-additive vs Start test  0.039 0.178  0.014 0.614 

Pre-additive vs Mid test  0.028 0.327  0.019 0.416 

Pre-additive vs End test  0.037 0.188  0.023 0.393 

Pre-additive vs Chamber  0.049 0.086  0.011 0.713 

Pre-additive vs Slaughter  0.143 0.002  0.084 0.025 

Start test vs Mid test  0.006 0.962  0.005 0.941 

Start test vs End test  0.006 0.972  0.006 0.895 

Start test vs Chamber  0.016 0.699  0.006 0.876 

Start test vs Slaughter  0.101 0.003  0.058 0.084 

Mid test vs End test  0.007 0.964  0.004 0.970 

Mid test vs Chamber  0.011 0.832  0.010 0.687 

Mid test vs Slaughter  0.114 0.001  0.062 0.075 

End test vs Chamber  0.017 0.689  0.009 0.722 

End test vs Slaughter  0.106 0.001  0.054 0.103 

Chamber vs Slaughter  0.097 0.002  0.057 0.086 

n.a. refers to non-applicable; shaded cells represent significant differences. 

 

Additionally, the NMDS plots of Bray-Curtis dissimilarities based on microbial 

genera and genes showed no distinctive clustering of samples by sampling 

timepoint (Figure 3). 

 

Figure 3. Non-metric multi-dimensional scaling (NMDS) plot of Bray-Curtis distances between 
samples at a) microbial genera and b) microbial genes level. 
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4.4.2 Temporal stability of microbial genera and genes 

The linear mixed models regressing the ALR-As of each microbial genera and 

gene on sampling timepoint, using animal ID as random effect revealed that 

11 and 26 microbial genera and genes, respectively, had significantly different 

abundances over timepoints; meaning that the abundances of 99% of the 

microbial genera and of the microbial genes were stable throughout the 6 

timepoints. The 5 most abundant microbial genera and genes did not show 

significant differences between timepoints (Figure 4). 
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Figure 4. ALR-transformed abundances of most abundant microbial genera a) Prevotella, b) 
Ruminococcus, c) Selenomonas, d) Succiniclasticum, and e) Methanobrevibacter, and 
microbial genes f) DNA-directed RNA polymerase subunit delta (rpoE), g) starch-binding outer 
membrane protein, SusD/RagB family (susD), h) TonB-dependent starch-binding outer 
membrane protein SusC (susC), i) integrase/recombinase XerD (xerD), and j) transposase 
(K07486), throughout all sampling timepoints 

The Pearson correlations between the vectorized microbiome data showed 

that those generated from samples taken after the animals left the respiration 
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chambers (microbial genera) and at mid test (microbial genes) were the ones 

that mostly resembled the microbiome generated from slaughter samples 

(Table 2). However, all pairwise analyses resulted in strong correlations, with 

the lowest being 71% between pre-additive and end test for microbial genera 

and 81% between pre-additive and end test for microbial genes data. 

Table 2. Correlations (%) between vectorized matrices of ALR-transformed abundances of 
microbial genera and genes generated from each sampling timepoint 

Timepoints Pre-additive Start test Mid test End test Chamber Slaughter 

Pre-additive  80.69 72.04 70.58 80.75 78.05 

Start test 81.85  77.10 79.14 82.46 81.19 

Mid test 81.52 84.25  87.15 81.69 82.56 

End test 81.36 83.35 89.20  82.72 80.75 

Chamber 82.59 85.27 83.11 84.57  85.10 

Slaughter 83.55 85.21 85.82 84.98 84.57  
Pairwise Pearson correlations between microbial genera at different sampling 
timepoints are above the diagonal, while those based on microbial gene at different 
sampling timepoints are below the diagonal. Shaded cells represent the sampling 
timepoints with highest correlation to slaughter samples. 

 

4.4.3 Prediction ability of microbial genera and genes 
throughout the finishing phase 

The PLS models predicting the performance traits based on the microbiome at 

each different sampling timepoint revealed that microbial genera or microbial 

genes explained very similar amounts of variance of the phenotypes 

throughout the different timepoints (Table 3), with averages of 55.4 ± 9.1%, 

56.3 ± 9.2%, 60.9 ± 12.2%, 59.4 ± 12.3%, 60.2 ± 4.6% and 64.3 ± 10.3% 

(microbial genera) and 74.1 ± 6.3%, 73.8 ± 7.3%, 80.3 ± 4.2%, 74.2 ± 6.2%, 

85.7 ± 2.2% and 82.5 ± 3.3% (microbial genes) for FCR, ADG, DFI, RFI, CH4 

yield and daily CH4 emissions, respectively. 
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Table 3. Proportion of explained variance of performance and methane emissions traits 
predicted by microbial genera or genes generated from rumen samples taken at each 
sampling timepoint  

 
Trait  FCR  ADG  DFI  RFI  CH4 yield  

Daily CH4 
emissions 

 Timepoint  X (%) Y (%)  X (%) Y (%)  X (%) Y (%)  X (%) Y (%)  X (%) Y (%)  X (%) Y (%) 

M
ic

ro
b

ia
l 

g
e
n
e
ra

 

Pre-additive  64.71 44.77  63.57 54.33  62.82 71.46  62.37 66.59  65.88 54.10  62.66 76.99 

Start test  57.47 70.19  57.69 67.77  54.02 78.33  65.11 44.74  69.51 57.44  68.10 51.42 

Mid test  54.20 56.21  31.71 62.64  67.20 61.41  24.68 80.17  66.72 58.46  65.18 74.16 

End test  61.63 52.41  53.88 61.24  62.35 53.80  64.06 56.77  62.80 60.43  65.30 63.93 

Chamber  57.51 60.35  60.91 47.11  65.18 45.26  58.10 54.55  67.12 66.59  66.15 53.93 

Slaughter  57.34 48.65  59.94 44.51  52.64 55.07  58.95 53.70  64.86 64.37  52.50 65.52 

M
ic

ro
b

ia
l 
g
e

n
e
s
 

Pre-additive  33.45 82.90  34.08 82.59  24.53 88.10  36.41 83.29  23.36 88.01  35.05 80.57 

Start test  39.61 65.19  38.35 63.78  33.17 77.45  34.90 64.41  33.99 85.59  33.61 83.41 

Mid test  37.54 70.95  39.42 73.31  42.54 78.25  42.88 72.21  40.28 87.15  41.06 88.47 

End test  39.97 78.47  40.78 78.79  43.77 79.19  41.26 73.15  37.22 84.33  44.30 82.95 

Chamber  30.12 76.23  30.82 77.72  28.55 82.13  31.77 77.00  33.70 86.99  32.27 79.35 

Slaughter  34.60 70.89  38.24 66.87  34.81 76.84  35.07 75.00  40.66 81.99  37.17 80.12 

FCR, ADG, DFI, RFI, CH4 yield, and daily CH4 emissions refer to feed conversion ratio, average daily weight 
gain, daily feed intake, residual feed intake, methane yield (g/Kg DMI) and daily methane emissions (g/day) 
respectively. X (%) and Y (%) represent the percentage of explained variation in the microbiome and the trait, 
respectively, based on Partial Least Squares models using 2 components and including a total of 1049 
microbial genera ALR-transformed abundances (upper table part) and 1901 microbial gene ALR-transformed 
abundances (lower table part). The shaded cells represent the timepoint that explained the highest variance 
of each trait. 

 

The analyses of the most important microbial genera and genes revealed that 

a high proportion of microbial genera and genes identified as important (VIP ≥ 

1) for prediction of traits based on slaughter samples, would also be important 

for the prediction of those traits using microbiome data generated from other 

timepoints (Table 4).  
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Table 4. Number of microbial genera or genes important to predict each host performance 
and methane emissions trait at each timepoint, and percentage of those genera and genes 
at each given timepoint also important in slaughter samples 

 
Trait  FCR  ADG  DFI  RFI  CH4 yield  

Daily CH4 
emissions 

 Timepoint  VIP≥1 SL(%)  VIP≥1 SL(%)  VIP≥1 SL(%)  VIP≥1 SL(%)  VIP≥1 SL(%)  VIP≥1 SL(%) 

M
ic

ro
b

ia
l 
g
e

n
e
ra

 

Pre-additive  355 44.4  356 42.3  349 36.4  328 34.1  352 32.0  358 26.2 

Start test  362 34.2  384 40.5  349 26.6  409 37.5  384 36.7  438 65.6 

Mid test  448 44.6  427 42.6  454 50.7  418 35.9  405 58.3  431 68.8 

End test  381 38.6  334 29.7  425 40.0  404 36.3  443 54.1  443 65.6 

Chamber  448 46.2  433 47.1  390 35.9  418 35.0  390 61.9  402 50.1 

Slaughter  383 100.0  333 100.0  418 100.0  320 100.0  412 100.0  381 100.0 

M
ic

ro
b

ia
l 
g
e

n
e
s
 

Pre-additive  723 43.3  651 37.8  584 29.7  817 51.5  714 26.8  666 25.4 

Start test  819 46.6  807 45.5  769 43.2  789 41.9  861 54.5  820 57.6 

Mid test  650 29.6  717 43.1  901 56.3  877 52.1  868 55.3  910 64.0 

End test  805 51.0  860 54.5  926 61.8  908 61.4  879 60.3  849 61.9 

Chamber  801 42.9  834 45.5  770 43.2  829 52.9  806 59.0  858 56.9 

Slaughter  802 100.0  792 100.0  704 100.0  823 100.0  851 100.0  861 100.0 

FCR, ADG, DFI, RFI, CH4 yield, and daily CH4 emissions refer to feed conversion ratio, average daily weight 
gain, daily feed intake, residual feed intake, methane yield (g/Kg DMI) and daily methane emissions (g/day) 
respectively. VIP ≥ 1 represents the number of microbial genera and genes with variable importance in 
projection (VIP) score above 1. SL (%) was calculated as the percentage of microbial genera and genes 
important for prediction of the trait (VIP ≥ 1) obtained at each timepoint that were also important for prediction 
of those traits at slaughter. Shaded cells represent the highest SL (%) for each trait. VIPs were obtained from 
Partial Least Squares prediction models using 2 components and including a total of 1049 microbial genera 
ALR-transformed abundances (upper table part) and 1901 microbial genes ALR-transformed abundances 
(lower table part) as explanatory variables. 

 

The consistency of the relationship between the microbial genera and genes 

that explained the variance observed in performance and CH4 emissions traits 

throughout all timepoints was assessed by analysing the significant regression 

coefficients (based on Jack-Knife intervals) of the microbial genera and genes 

important (VIP ≥ 1) for the prediction in each PLS model (Table 5). The results 

showed that the direction of the association (regression coefficient positive or 

negative) between the microbial genera and genes and the trait is mostly 

maintained, suggesting that the relationship between the explanatory variables 

and the host performance traits is mostly stable throughout time. Some 

changes in the direction of association could be due to the many correlations 

among the microbial genera or genes. 
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Table 5. Regression coefficients of microbial genera and genes important for the prediction 
of each performance and methane emissions traits in all timepoints 

Trait 
Microbial genus/ 
gene 

Pre-additive Start test Mid test End test Chamber Slaughter 

F
C

R
 

Candidatus 
Hamiltonella 

1.12E-03 -2.99E-04 -7.69E-04 -1.54E-03 -2.16E-03 -6.14E-04 

Algibacter 3.85E-05 -5.47E-04 4.91E-03 7.27E-04 1.54E-03 2.09E-03 

rbsK (K00852) 2.16E-03 1.20E-03 3.15E-03 -1.23E-04 -3.25E-05 -1.40E-04 

cpaB (K02279) -9.55E-04 9.72E-04 -3.26E-04 1.35E-03 -5.92E-04 1.62E-03 

ltrA (K00986) 3.50E-03 1.52E-03 -1.25E-03 1.62E-03 -9.83E-04 1.84E-03 

ABC.PE.S (K02035) 1.98E-03 1.36E-03 -5.22E-04 -3.79E-04 9.88E-05 1.42E-03 

A
D

G
 

Dehalococcoides -9.81E-04 -8.00E-04 -2.09E-03 -9.90E-04 -2.34E-03 -1.80E-03 

Dichelobacter 2.73E-04 2.08E-04 -1.16E-03 -7.19E-06 -1.45E-03 -1.68E-03 

ABC.PE.S (K02035) -2.83E-03 -1.35E-03 -3.68E-04 -4.62E-04 -2.85E-04 -1.03E-03 

glmM (K03431) -1.90E-03 -9.42E-04 -8.73E-04 -8.99E-04 -4.51E-04 -1.07E-03 

ltrA (K00986) -3.88E-03 -1.63E-03 -1.01E-04 -1.03E-03 7.38E-04 -1.44E-03 

ATPF1G (K02115) -2.14E-03 -1.04E-03 -3.22E-04 -1.88E-04 -1.62E-04 2.02E-04 

D
F

I 

Eubacterium -1.23E-03 -3.04E-04 -1.77E-03 -9.72E-04 -2.24E-03 -7.81E-03 

Methanobrevibacter -2.42E-04 1.11E-03 2.33E-03 1.27E-03 2.73E-03 2.97E-03 

Cryptococcus -2.44E-04 8.33E-05 2.63E-03 1.54E-03 2.03E-03 2.69E-03 

Scheffersomyces 1.68E-04 2.33E-04 2.00E-03 1.47E-03 2.13E-03 2.65E-03 

virD4 (K03205) 2.18E-03 -1.45E-03 -1.12E-03 -1.27E-03 -1.25E-03 -1.18E-03 

spoVK (K06413) -3.95E-03 -1.14E-04 9.42E-04 9.90E-04 1.13E-03 2.15E-04 

paaK (K01912) -2.42E-03 -1.63E-04 1.09E-03 8.53E-04 5.44E-04 1.34E-04 

iorB (K00180) -2.19E-03 3.23E-04 1.09E-03 8.00E-04 1.12E-03 2.56E-04 

higB (K19166) 5.90E-03 2.00E-03 8.56E-04 1.13E-03 1.17E-03 1.63E-03 

ehaD (K14095) 2.09E-03 1.43E-03 1.17E-03 8.50E-04 1.31E-03 4.21E-04 

R
F

I 

Azorhizobium -4.02E-04 -1.06E-03 -2.42E-03 -2.64E-03 -2.39E-03 -3.86E-05 

Roseburia -3.11E-03 4.05E-04 -2.91E-03 -2.59E-03 -2.58E-03 -6.06E-04 

Jonquetella 5.04E-05 -1.09E-03 -3.10E-03 -2.99E-03 -2.57E-03 -2.11E-04 

pflX (K04070) -1.06E-03 9.26E-04 -4.75E-04 -9.21E-04 -1.53E-03 -3.44E-04 

metA (K00651) -1.21E-03 4.31E-04 -9.57E-04 -9.69E-04 -1.26E-03 -1.68E-03 

wecC (K02472) -1.36E-03 4.83E-04 9.14E-04 3.91E-04 -4.56E-05 -1.48E-04 

ftnA (K02217) 8.85E-05 -1.44E-04 -8.27E-04 -1.64E-04 3.87E-04 1.73E-04 

EGD2 (K03626) 1.11E-03 1.29E-03 1.03E-03 8.98E-04 1.60E-03 1.13E-03 

RP-L30e (K02908) 9.73E-04 1.30E-03 1.04E-03 9.23E-04 1.80E-03 1.07E-03 

D
a
ily

 C
H

4
 e

m
is

s
io

n
s
 

Eubacterium -1.26E-03 -1.93E-03 -3.40E-03 -1.74E-03 -1.23E-03 -4.27E-03 

Candidatus 
Methanoperedens 

-1.98E-03 -2.48E-03 -2.61E-03 -1.97E-03 -1.13E-03 -4.51E-03 

Mitsuokella -1.20E-03 -2.23E-03 -3.40E-03 -2.69E-03 -1.70E-03 -4.34E-03 

Cryptobacterium -2.74E-04 -7.82E-04 -2.59E-03 -1.83E-03 -1.21E-03 -2.54E-03 

Dickeya -1.39E-03 -1.81E-03 -2.71E-03 -1.62E-03 -7.17E-04 -3.51E-03 

Acidaminococcus -1.42E-03 -1.96E-03 -3.06E-03 -2.04E-03 -1.36E-03 -3.17E-03 

Faecalitalea -2.33E-03 -2.51E-03 -2.71E-03 -1.48E-03 -6.80E-04 -3.19E-03 

Methanoregula 3.97E-04 -2.15E-03 -2.87E-03 -2.21E-03 -5.95E-04 -3.79E-03 

Zygosaccharomyces -5.07E-05 1.22E-03 2.58E-03 1.76E-03 1.54E-03 2.42E-03 

Blastomyces -1.18E-05 1.43E-03 2.94E-03 1.99E-03 1.65E-03 2.29E-03 

Plasmodium -1.14E-04 1.44E-03 2.86E-03 1.84E-03 1.77E-03 2.21E-03 
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Neurospora -1.74E-04 1.34E-03 2.38E-03 2.13E-03 1.67E-03 2.23E-03 

Lodderomyces -9.33E-05 1.32E-03 2.38E-03 1.75E-03 1.79E-03 2.09E-03 

Saccharomyces -8.08E-05 1.08E-03 2.78E-03 1.63E-03 1.84E-03 2.13E-03 

Halapricum 2.23E-03 2.27E-03 3.45E-03 2.44E-03 2.14E-03 4.03E-03 

Sarcina 4.15E-04 1.39E-03 2.46E-03 2.14E-03 2.01E-03 3.34E-03 

Calothrix 1.63E-04 1.58E-03 3.08E-03 1.89E-03 2.13E-03 3.01E-03 

Nodularia 3.51E-04 1.48E-03 2.94E-03 1.81E-03 2.12E-03 2.89E-03 

Haloquadratum 3.35E-04 1.34E-03 3.27E-03 2.08E-03 1.42E-03 2.79E-03 

Isaria 3.41E-04 1.64E-03 2.53E-03 1.89E-03 2.26E-03 2.68E-03 

Anabaena 4.37E-04 1.49E-03 3.17E-03 2.22E-03 1.70E-03 2.47E-03 

Histoplasma 9.12E-05 1.53E-03 2.84E-03 1.91E-03 1.75E-03 2.37E-03 

Coccidioides 2.20E-05 1.56E-03 2.51E-03 2.10E-03 1.87E-03 2.19E-03 

Emticicia 9.27E-05 1.65E-03 2.44E-03 1.50E-03 1.40E-03 2.17E-03 

Trypanosoma 1.07E-04 1.43E-03 2.72E-03 1.94E-03 1.81E-03 2.11E-03 

Microsporum 2.33E-04 1.69E-03 2.65E-03 2.06E-03 1.70E-03 2.01E-03 

Marssonina 7.90E-05 1.20E-03 2.88E-03 2.00E-03 1.54E-03 2.02E-03 

citF (K01643) -2.17E-03 -1.21E-03 -9.74E-04 -9.09E-04 -1.53E-03 -1.15E-03 

sucD (K01902) -1.82E-03 -1.07E-03 -1.07E-03 -1.12E-03 -1.24E-03 -1.04E-03 

fliJ (K02413) 2.31E-03 -1.22E-03 -1.06E-03 -1.32E-03 -1.21E-03 -1.46E-03 

dinJ (K07473) 1.95E-03 -1.14E-03 -1.26E-03 -1.39E-03 -3.02E-04 -1.21E-03 

gidA (K03495) 2.03E-03 -1.10E-03 -8.82E-04 -9.76E-04 -1.19E-03 -1.29E-03 

fliQ (K02420) 1.98E-03 -1.09E-03 -9.85E-04 -1.32E-03 -1.07E-03 -1.33E-03 

pncC (K03742) 3.94E-03 -1.46E-03 -7.92E-04 -1.35E-03 -1.53E-03 -1.32E-03 

bioD (K01935) 1.96E-03 -1.39E-03 -1.19E-03 -1.27E-03 -1.28E-03 -1.16E-03 

yfbR (K08722) 2.05E-03 -4.70E-04 -1.31E-03 -1.34E-03 2.50E-04 -9.50E-04 

fic (K04095) 1.75E-03 1.71E-04 -3.89E-04 -1.33E-03 4.82E-04 -1.16E-03 

hemD (K01719) -1.71E-03 1.20E-03 1.16E-03 1.34E-03 1.22E-03 1.33E-03 

menI (K19222) -3.91E-03 1.24E-03 8.99E-04 1.36E-03 1.18E-03 9.29E-04 

K09922 8.68E-05 4.25E-04 9.88E-04 9.28E-04 1.38E-03 1.14E-03 

C
H

4
 y

ie
ld

 

Candidatus 
Phytoplasma 

9.48E-04 9.82E-04 1.44E-03 1.18E-03 1.79E-03 1.65E-03 

Marssonina 6.13E-04 1.50E-03 2.40E-03 1.60E-03 1.90E-03 1.83E-03 

Turneriella 1.40E-03 1.07E-03 1.46E-03 5.60E-05 1.38E-03 1.88E-03 

Nakaseomyces 1.28E-03 1.38E-03 2.24E-03 1.29E-03 1.85E-03 2.02E-03 

Blastomyces 8.13E-04 1.58E-03 2.26E-03 1.61E-03 2.02E-03 2.02E-03 

Trypanosoma 1.00E-03 1.41E-03 2.11E-03 1.54E-03 2.04E-03 1.96E-03 

Rhodotorula 8.93E-04 8.03E-04 1.34E-03 1.43E-03 1.35E-03 1.85E-03 

Zygosaccharomyces 8.27E-04 1.47E-03 2.08E-03 1.39E-03 1.90E-03 2.14E-03 

Pichia 1.02E-03 1.72E-03 1.88E-03 1.29E-03 1.93E-03 2.00E-03 

Saprolegnia 3.32E-04 1.85E-03 1.50E-03 1.52E-03 1.53E-03 2.33E-03 

Candidatus 
Protochlamydia 

9.72E-04 1.49E-03 1.78E-03 1.45E-03 1.63E-03 1.58E-03 

arsC (K03741) -1.80E-03 -1.34E-03 -1.08E-03 -9.26E-04 -1.60E-03 -1.34E-03 

ppdK (K01006) -1.49E-03 -8.30E-04 -9.69E-04 -9.70E-04 -1.57E-03 -1.19E-03 

K07118 -2.50E-03 -1.48E-03 -1.03E-03 -1.07E-03 -1.83E-03 -1.42E-03 
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FCR, ADG, DFI, RFI, CH4 yield, and daily CH4 emissions refer to feed conversion ratio, average daily weight 
gain, daily feed intake, residual feed intake, methane yield (g/Kg DMI) and daily methane emissions (g/day) 
respectively. Regression coefficients extracted from the first component of 2 component Partial Least 
Squares prediction models based on 1049 microbial genera ALR-transformed abundances and 1901 
microbial gene ALR-transformed abundances as predictor variables, which had variable importance in 
projection (VIP) score higher or equal to 1. Cells coloured blue and orange represent positive and negative 
regression coefficients, respectively.  

 

We investigated the importance (VIP) of microbial genera and genes 

previously identified as biomarkers for the host performance traits, to evaluate 

whether these were still highly associated with each trait using the longitudinal 

microbiome data of the present study (Table 6). Microbial genera and genes 

biomarkers extracted from Roehe et al. (2016), Martínez-Álvaro et al. (2020), 

and Lima et al. (2019) that met our abundance/zeros criteria (total of 123 

biomarkers) were included in these analyses. The results showed that 

whereas some of these biomarkers had decreased importance in PLS 

predictions based on their abundances at earlier timepoints, when those 

predictions were based on end test and slaughter data, they were highly 

concordant with previous studies, with 81 of 123 biomarkers had VIP ≥ 0.8 in 

each of these 6 timepoints. The timepoint showing the lowest agreement with 

previous works was at mid test, in which the PLS models resulted in 66 and 

26 biomarkers with VIP ≥ 0.8 and VIP < 0.5, respectively.  

  



 Temporal stability of the rumen microbiome 

85 
 

Table 6. Importance (VIP) of microbial genera and genes previously identified as biomarkers 
for host performance and methane emissions traits in partial least squares analyses based 
on our microbiome data generated from 6 timepoints. 

Trait Study 
Microbial genus/ 
gene 

Pre-additive 
VIP 

Start test 
VIP 

Mid test 
VIP 

End test 
VIP 

Chamber 
VIP 

Slaughter 
VIP 

CH4 yield MA Pochonia 0.84 1.13 1.38 1.25 1.55 1.59 

Tremella 1.27 0.78 1.26 1.08 1.15 1.39 

Niastella 0.94 0.79 0.83 1.34 0.83 1.24 

Bacillus 0.84 0.94 1.09 1.02 1.28 0.74 

Fomitiporia 0.57 0.94 1.54 0.99 1.55 1.08 

Selenomonas 0.51 1.29 1.67 1.93 1.42 1.27 

Tolumonas 0.94 1.78 0.89 0.68 1.30 1.34 

Leclercia 0.98 1.83 1.08 0.46 0.83 1.40 

Moraxella 1.17 1.81 0.90 0.46 0.96 1.41 

Fibrobacter 0.52 0.74 1.31 1.16 1.17 1.46 

Prevotella 1.16 1.06 1.17 0.91 0.76 0.63 

Butyrivibrio 0.99 0.45 0.79 0.62 1.05 1.60 

Salinibacter 1.12 0.73 0.48 0.91 0.77 1.19 

Alloactinosynnema 0.84 0.74 0.73 0.89 0.29 0.69 

Sediminispirochaeta 0.76 0.38 0.70 0.91 0.84 0.80 

FCR L GLO1 (K01759) 0.85 1.16 0.42 1.17 1.26 0.93 

lctP (K03303) 1.18 0.65 1.08 1.65 1.57 0.87 

nusA (K02600) 1.00 1.56 1.49 1.06 0.64 1.07 

xylE (K08138) 0.34 0.92 1.52 0.87 0.22 0.91 

idnO (K00046) 0.80 0.55 1.19 1.68 1.20 1.31 

galK (K00849) 0.35 0.96 1.31 1.43 0.74 0.81 

gcvH (K02437) 1.50 1.01 0.69 0.65 1.02 1.23 

infA (K02518) 1.04 0.51 1.46 0.97 1.36 0.58 

punA (K03783) 1.16 0.86 0.66 0.70 0.69 1.01 

hupB (K03530) 0.92 0.36 1.77 0.42 1.23 0.53 

lpxA (K00677) 0.89 0.46 0.38 0.58 0.06 1.05 

murD (K01925) 1.78 1.12 0.49 0.40 0.73 0.75 

uidA (K01195) 0.31 0.77 0.16 0.79 0.43 1.14 

aguA (K01235) 0.50 0.47 0.27 0.20 0.99 0.56 

R murC (K01924) 1.18 1.33 1.24 0.93 0.92 0.90 

recD (K03581) 1.12 1.08 0.96 1.10 0.85 1.23 

uvrD (K03657) 1.11 1.47 1.19 1.14 0.99 0.94 

dnaA (K02313) 1.02 1.03 0.97 1.01 0.95 1.03 

DARS2 (K01876) 1.12 1.50 1.01 1.20 0.93 0.83 

gidB (K03501) 0.99 1.03 2.06 0.88 0.14 1.26 

dnaX (K02343) 1.02 1.33 0.76 0.98 0.81 0.89 

RP-L30 (K02907) 1.23 0.51 1.28 1.51 1.56 0.88 

tyrA2 (K04517) 1.09 0.98 1.23 1.02 0.49 1.21 

hisA (K01814) 0.89 0.91 0.81 1.52 1.43 0.45 

pepF (K08602) 1.09 1.17 0.97 1.06 0.77 1.27 

MMAA (K07588) 1.08 0.89 0.69 1.22 1.05 1.19 

thiD (K00941) 1.36 1.06 1.26 1.39 0.27 1.20 
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dgt (K01129) 0.99 0.82 0.87 1.35 0.78 0.76 

recN (K03631) 0.87 1.54 0.74 0.91 0.74 0.88 

K07139 1.08 1.83 0.78 1.04 0.63 1.11 

clpP (K01358) 1.18 0.92 0.60 0.50 1.10 1.16 

iorA (K00179) 0.86 0.97 0.51 1.10 1.82 0.57 

pdxK (K00868) 0.53 1.23 0.92 1.56 1.03 0.50 

TSTA3 (K02377) 0.87 0.60 1.17 1.14 0.29 1.48 

psd (K01613) 1.14 0.50 0.66 1.00 0.39 1.00 

ssb (K03111) 1.43 1.46 0.48 0.34 0.87 0.66 

ribD (K11752) 0.90 1.06 0.21 0.97 0.59 0.32 

ftsX (K09811) 2.31 1.08 0.25 0.46 0.72 0.92 

murE (K01928) 0.83 1.70 0.69 1.20 0.04 0.68 

gale (K01784) 0.86 1.98 0.48 0.80 0.66 1.05 

rnfC (K03615) 0.33 1.10 1.33 1.09 0.80 0.75 

murB (K00075) 0.87 1.55 0.72 0.20 0.68 0.88 

nadB (K00278) 0.99 0.79 0.19 0.22 0.96 0.88 

K06921 1.12 0.84 0.19 0.69 0.82 0.55 

trpD (K00766) 0.84 1.46 0.58 0.80 1.24 0.57 

E3.1.3.48 (K01104) 0.71 0.75 1.31 0.53 0.73 0.91 

comEB (K01493) 0.69 0.76 0.85 0.44 1.34 0.65 

cca (K00974) 0.52 0.74 0.50 0.99 0.21 1.12 

nudC (K03426) 0.90 1.18 0.70 0.54 0.46 0.02 

tgt (K00773) 0.58 0.72 0.39 0.73 0.43 0.99 

cbiQ (K02008) 0.70 0.75 0.47 0.67 1.34 0.47 

K07082 0.26 0.57 1.00 0.57 0.65 0.40 

fucI (K01818) 0.31 1.05 0.68 0.68 0.31 0.08 

uidA (K01195) 0.31 0.77 0.16 0.79 0.43 1.14 

ADG L gcvH (K02437) 1.60 1.10 1.31 0.95 0.95 1.20 

paaK (K01912) 0.57 1.45 0.92 0.91 1.43 0.89 

RP-L36 (K02919) 0.93 0.90 1.92 1.23 1.43 0.53 

ATPF1D (K02113) 0.42 1.10 0.86 0.96 1.39 1.79 

gcvPB (K00283) 0.93 1.59 0.94 0.85 0.99 0.80 

nusA (K02600) 0.84 1.45 1.17 1.05 0.44 1.23 

infA (K02518) 1.01 0.91 1.00 0.90 1.41 0.55 

amiABC (K01448) 1.00 1.03 0.48 1.03 0.46 1.00 

asd (K00133) 0.69 1.58 1.80 0.95 1.30 0.68 

slyD (K03775) 1.26 0.73 1.63 1.05 1.67 0.69 

hupB (K03530) 1.45 1.05 1.49 0.41 1.44 0.39 

RP-L17 (K02879) 1.04 1.54 0.47 0.74 0.88 0.77 

murD (K01925) 2.19 1.02 0.72 0.29 0.72 0.63 

DFI L tolC (K12340) 1.54 1.09 0.98 1.40 1.29 0.83 

rpoB (K03043) 0.56 0.99 1.21 1.37 0.90 1.02 

ehbD (K14113) 0.23 1.46 1.38 1.00 1.11 0.92 

glnB (K04751) 0.72 1.35 0.79 1.03 1.33 1.36 

yajC (K03210) 0.32 1.19 1.17 0.69 0.84 1.30 

rnc (K03685) 0.50 0.94 0.75 1.00 0.96 1.18 

mrdA (K05515) 0.21 0.76 0.77 0.88 1.54 0.95 
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rfbG (K01709) 1.48 0.93 0.38 0.67 0.93 0.76 

rdgB (K02428) 0.72 0.39 0.46 1.05 0.86 1.18 

INO1 (K01858) 1.14 0.05 1.26 1.23 0.29 0.76 

bglX (K05349) 1.06 0.45 0.75 1.16 0.65 1.05 

rluB (K06178) 0.97 0.52 0.41 0.55 0.75 0.71 

nusB (K03625) 0.45 0.43 0.46 0.54 0.40 1.58 

rfbF (K00978) 1.05 0.64 0.36 0.44 0.47 0.60 

RFI L zntA (K01534) 1.02 1.41 1.15 1.03 1.26 1.20 

dacC (K07258) 1.37 1.55 0.82 1.19 1.87 0.98 

yrbG (K07301) 0.85 1.09 1.15 1.43 0.93 1.06 

ehbD (K14113) 0.88 1.29 1.28 0.96 1.00 0.99 
cobL-cbiET 
(K00595) 

1.43 0.44 1.09 0.93 0.97 1.49 

cbiN (K02009) 0.75 1.32 1.38 0.87 1.02 1.00 

cobD (K04720) 0.69 0.64 1.02 1.49 0.90 1.02 

rfbG (K01709) 0.87 0.78 0.32 1.05 0.88 1.51 

rfbF (K00978) 0.54 0.43 0.26 0.91 0.94 1.57 

CH4 yield MA LDH (K00016) 1.02 1.20 1.26 1.09 0.80 1.38 

BCP (K03564) 0.89 1.09 1.24 1.26 1.21 1.07 

metA (K00651) 0.36 1.22 0.84 1.14 1.12 1.40 

livM (K01998) 0.63 1.13 1.44 1.16 1.15 1.25 

K09702 0.74 0.89 1.32 0.43 0.83 1.45 
E1.1.1.219 
(K00091) 

0.61 1.16 0.79 0.85 1.34 0.48 

xynA (K01181) 0.44 1.07 0.90 1.41 0.36 0.26 

nifB (K02585) 0.22 0.80 0.50 0.77 0.99 0.86 

kbl (K00639) 0.46 0.93 0.72 0.42 1.40 0.18 

nusA (K02600) 0.18 0.65 0.74 1.19 0.78 0.92 

ramA (K05989) 0.75 0.66 0.67 0.74 1.10 1.37 

K06950 0.83 0.65 0.77 0.90 0.72 0.56 

PK (K00873) 0.78 0.78 0.80 0.74 0.56 1.37 
ABC.SN.A 
(K02049) 

0.81 0.68 0.24 0.63 0.52 0.52 

R frhB (K00441) 0.64 1.22 0.94 0.75 0.86 1.51 

fdhB (K00125) 1.47 0.64 0.82 1.20 0.68 0.42 

porB (K00170) 0.52 0.52 0.56 1.00 0.90 0.60 

porA (K00169) 0.27 0.44 0.51 0.55 0.69 0.16 

VIP refers to variable importance in projection, obtained from partial least squares prediction models 
for prediction of methane yield (CH4 yield; g/kg dry matter intake), feed conversion ratio (FCR), average 
daily gain (ADG), daily feed intake (DFI), and residual feed intake (RFI). MA, L, and R refer to the 
manuscripts identified as Martinez-Alvaro et al. (2020), Lima et al. (2019), and Roehe et al. (2016), 
respectively. Cells coloured in green, and orange represent VIP ≥ 0.8 and VIP < 0.5, respectively. 
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4.4.4 Evaluation of the stability of the association between 
host-genomically influenced microbial genes and the 
estimated breeding values of host performance traits 

Microbial genes found to be moderately to highly heritable (with mean 

heritability between 0.16 and 0.54) in the study of Martínez-Álvaro, et al. (2021) 

were used as explanatory variables in PLS models, separately analysed for 

each timepoint, to predict EBVs of host performance traits FCR, ADG, DFI, 

RFI, and CH4 yield.  

Table 7. Proportion of explained variance of estimated breeding values of performance and 
methane emissions traits predicted by ALR-transformed abundances of moderately to highly 
heritable microbial genes separately analysed for each of the 6 timepoint 

Trait  FCR  ADG  DFI  RFI  CH4 yield 

Timepoint  X (%) Y (%)  X (%) Y (%)  X (%) Y (%)  X (%) Y (%)  X (%) Y (%) 

Pre-additive  16.82 81.57  33.83 77.31  47.49 78.86  29.09 69.71  25.38 70.33 

Start test  35.38 65.24  35.21 64.10  25.38 75.01  31.34 57.45  33.19 70.44 
Mid test  35.77 63.98  23.37 66.07  39.32 71.03  38.58 59.28  36.08 83.11 
End test  32.77 61.93  38.18 72.79  41.56 58.42  36.37 60.22  27.57 75.44 
Chamber  39.98 67.11  40.53 83.27  27.23 79.20  37.90 78.43  27.66 60.59 
Slaughter  23.13 70.87  24.30 71.94  24.72 76.64  22.20 78.88  26.17 64.41 

FCR, ADG, DFI, RFI, CH4 yield, and daily CH4 emissions refer to feed conversion ratio, average 
daily weight gain, daily feed intake, residual feed intake, methane yield (g/Kg DMI) and daily 
methane emissions (g/day) respectively. X (%) and Y (%) refer to percentage variation in the 
metagenomic dataset and the estimated breeding value of the trait, respectively, obtained from 
Partial Least Squares prediction models using 2 components and including a total of 443 
microbial gene ALR-transformed abundances. The shaded cells represent the timepoint that 
explained the highest variance of each trait. 

 

The PLS analyses using separately the ALR-As of 443 moderately to highly 

heritable microbial genes at each timepoint to predict EBVs of each trait 

revealed that a high proportion of the EBVs of each trait was explained by the 

microbial genes throughout all timepoints, with averages of 68.5 ± 7.1%, 72.6 

± 7.1%, 73.2 ± 7.8%, 67.3 ± 9.8%, and 70.7 ± 8.0%, respectively for FCR, 

ADG, DFI, RFI, and CH4 yield, respectively (Table 7). 

A total of 28, 37, 34, 56, and 42 microbial genes were found to be significantly 

(based on their Jack-Knife interval not containing 0) associated to the EBVs of 

FCR, ADG, DFI, RFI, and CH4, respectively, in all timepoints. From these, 7, 

17, 12, 28, and 17 were negatively, whereas 8, 8, 5, 15, and 6 were positively 
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associated with FCR, ADG, DFI, RFI, and CH4, respectively, in at least 5 

timepoints. 

Table 8. Number of highly to moderately heritable microbial genes important to explain the 
variance of the estimated breeding values (EBV) of each performance and methane 
emissions trait, and percentage of these that were also important in slaughter samples 

 

Microbial genes with moderate to high heritability strongly associated with the 

performance traits based on slaughter-generated data were also found to be 

strongly associated with the performance traits at earlier timepoints (Table 8). 

For example, 67.6%, 63.4%, 62.1%, 50.7%, and 61.2% of the end test-

generated microbial gene ALR-As significantly associated with FCR, ADG, 

DFI, RFI, and CH4 yield, were also identified as significant when PLS models 

were based on slaughter-generated microbiome data. 

  

Trait  FCR EBV  ADG EBV  DFI EBV  RFI EBV  CH4 yield EBV 

Timepoint  Sig (JK) SL (%)  Sig (JK) SL (%)  Sig (JK) SL (%)  Sig (JK) SL (%)  Sig (JK) SL (%) 

Pre-additive  231 52.2  261 54.6  275 58.5  299 61.5  259 59.6 

Start test  292 66.4  286 59.7  258 55.1  265 51.4  303 67.3 

Mid test  262 58.1  275 57.1  297 57.7  320 65.5  308 69.2 

End test  314 67.6  290 63.4  286 62.1  248 50.7  293 61.2 

Chamber  253 57.3  253 55.3  241 51.8  280 58.3  250 51.5 

Slaughter   253 100.0   273 100.0   272 100.0   278 100.0   260 100.0 

FCR, ADG, DFI, RFI, and CH4 yield refer to feed conversion ratio, average daily weight gain, daily 
feed intake, residual feed intake, and methane yield (g/Kg DMI), respectively. Sig (JK) represents the 
number of microbial genes significantly associated with the trait (based on Jack-Knife interval) in partial 
least squares prediction models (PLS) based on data generated from each timepoint. SL (%) was 
calculated as the percentage of microbial genes also significant for prediction of those traits at 
slaughter. PLS prediction models were calculated using 2 components and including a total of 443 
microbial gene ALR-transformed abundances. Shaded cells represent the highest SL (%) for each 
trait. 
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Table 9. Number of highly to moderately heritable microbial genes significantly associated to 
the estimated breeding values of host performance and methane emissions traits throughout 
the finishing phase, and percentage of these that were also important in slaughter-generated 
samples 
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Trait  FCR EBV  ADG EBV  DFI EBV  RFI EBV  CH4 yield EBV 

 
Timepoint  Sig (JK) SL (%)  Sig (JK) SL (%)  Sig (JK) SL (%)  Sig (JK) SL (%)  Sig (JK) SL (%) 
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 Pre-additive  174 16.7  102 47.7  150 47.5  65 57.7  186 32.9 
 Start test  162 23.7  104 57.8  104 48.5  190 22.7  84 55.7 
 Mid test  145 29.0  102 37.6  94 43.4  110 34.0  78 54.4 
 End test  154 18.4  82 39.5  68 58.6  63 55.7  47 65.8 
 Chamber  64 75.4  180 35.8  86 57.6  78 44.3  83 43.0 
 Slaughter   114 100.0   109 100.0   99 100.0   97 100.0   79 100.0 
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 Pre-additive  79 43.2  171 72.6  122 43.4  213 86.7  74 26.5 
 Start test  91 46.0  169 64.6  168 69.4  88 36.5  176 72.9 
 Mid test  108 54.0  171 79.3  178 78.3  168 74.6  182 76.8 
 End test  99 56.1  191 90.2  204 84.4  215 89.0  213 89.0 
 Chamber  189 74.1  93 32.9  186 74.6  200 86.7  177 79.0 
 Slaughter   139 100.0   164 100.0   173 100.0   181 100.0   181 100.0 

FCR, ADG, DFI, RFI, and CH4 yield refer to feed conversion ratio, average daily weight gain, daily feed intake, 
residual feed intake, and methane yield (g/Kg DMI), respectively. 1Significance was assessed by Jack-Knife 
procedure of regression coefficients obtained through leave-one-out cross-validation and the mean ± 2 
standard deviations interval not containing 0. Sig (JK) represents the number of microbial genes significantly 
associated with the trait (based on Jack-Knife procedure) in partial least squares models (PLS) based on 
slaughter-generated data, that had a positive or negative association with the trait in each timepoint. SL (%) 
was calculated as the percentage of microbial genes significantly (positively or negatively) associated with 
the host traits in previous timepoints that were also positively or negatively associated with the traits for 
prediction of those traits at slaughter. Shaded cells represent the highest SL (%) for each trait.  

 

In addition, several of these associations were found to maintain the signal of 

their relationship (i.e., the signal of the regression coefficient of the first 

component in the PLS, Table 9). For example, 253 microbial gene ALR-As 

based on rumen samples at slaughter were significantly associated with FCR 

in the PLS model. Using microbiome data obtained shortly after leaving the 

respiration chamber, 64 and 189 microbial gene ALR-As had positive and 

negative association, respectively, with FCR, constituting 75.4% and 74.1% of 

the 114 and 139 microbial gene ALR-As at slaughter that had positive and 

negative associations with the trait, respectively. The agreement between the 

associations was particularly high regarding the microbial genes with negative 

associations with the traits based on PLS models microbiome data generated 

from slaughter samples. For example, 56.1%, 90.2%, 84.4%, 89.0%, and 
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89.0% of the microbial genes showing negative associations with FCR, ADG, 

DFI, RFI, and CH4 yield, respectively, in PLS models based on microbiome 

data at end test, also showed negative association with the traits when models 

were based on microbiome data at slaughter. 

4.5 Discussion 

Based on all results, the rumen microbiome at microbial genera and genes 

level showed high temporal stability over the entire finishing phase of beef 

steers based on longitudinal ruminal samples taken at 6 timepoints, 

approximately within one month of each other.  

At the microbial genes level, diversity was highly stable throughout the 

finishing phase except for samples taken at slaughter, which showed 

significantly higher evenness than those taken at mid test. In agreement, Qiu 

et al. (2019) investigated the taxonomic alpha diversity of rumen samples 

throughout 3 months of adaptation to new diets in finishing steers and 

observed no significant differences between timepoints (no post-slaughter 

samples were investigated). Additionally, PERMANOVA and NMDS plot of the 

samples based on Bray-Curtis dissimilarities indicates that even when the 

differences were significant, the effect of timepoint was not strong, because it 

accounts only for a maximum of 14% of the variation between microbiome 

compositions. Considering that the rumen liquid digesta has been suggested 

to harbour different communities from those found in the rumen epithelium 

(Sadet et al., 2007; Mao et al., 2015), the differences between preceding 

timepoints and slaughter may be due to the sample collection methods 

applied; whereas before slaughter, the samples were obtained through a nasal 

tube (liquid digesta samples), after slaughter the samples were collected 

directly from the open rumen at the abattoir, which results in well mixed 

samples (liquid digesta and epithelium samples). In a previous study by 

Snelling et al. (2019), Bray-Curtis dissimilarities were shown to significantly 

differ between Operational Taxonomic Units (OTUs) datasets generated from 

samples taken from concentrate-fed animals at pre-additive and 25 days after 

the pre-additive timepoint (adaptation timepoint, not included in the present 
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study), but no differences were observed regarding forage-fed animals. 

Considering that these animals had been adapted to concentrate diet for a 

period or 4 weeks, and prior to that they were forage-fed, this significant 

difference could be associated to the adaptation of the microbiome to the new 

diet, rather than to time. In agreement, in a study on finishing beef cattle, 

Clemmons et al. (2019) showed that the rumen microbiome started to shift to 

a stable microbial community 4 weeks after the change in diet, and continued 

to stabilize over the next 5 weeks, and recommended an adaptation period of 

at least 8 weeks following the transition from a forage-based to a concentrate-

based diet. 

The ALR-As of the microbial genera and genes observed at each timepoint 

were compared using linear mixed models, revealing that the abundance of 

99% of the microbial genera and of the microbial genes were maintained 

throughout the 6 timepoints, suggesting that the microbiome has a high level 

of stability during the finishing phase of steers. 

Since the performance traits are calculated based on measurements taken 

during the RFI testing period, it would be expectable that the microbiota and 

microbial genes datasets generated from samples obtained during the 

performance testing period (i.e., start, mid, and end test) explained the highest 

variance in each of these performance traits, and some of our results agreed 

with these expectations, particularly when the analyses were based on the 

abundance of microbial genera. For example, the highest proportion of 

variation in FCR, ADG, and DFI (70.19%, 67.77%, and 78.33%, respectively) 

was explained by microbial genera generated from start test samples. Overall, 

the explained variances for each trait were substantially high throughout all 

timepoints, particularly when using microbial genes as predictor variables, and 

showed low variation throughout the timepoints, suggesting that the rumen 

microbiome collected at any timepoint during the finishing phase is highly 

associated to performance and methane emissions traits including appetite, 

growth, feed conversion efficiency, daily methane emissions, and methane 

yield.  
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The correlations between microbiome datasets generated from samples taken 

at different timepoints showed that at both microbial genera and genes levels, 

the highest correlation to the compositions generated from slaughter samples 

were observed for samples taken after the animals left the respiration 

chambers; additionally, all pairwise correlations were high overall, with the 

lowest being 70% and 81% in the cases of microbial genera and genes, 

respectively. 

The influence of the nitrate and oil-based additives on the daily methane 

emissions and yield of these same animals was investigated by Troy et al. 

(2015), who reported reductions of 17% and 7.5% in methane yield from 

animals fed forage diet with nitrate and oil additives, respectively, but no effect 

was reported for additives when animals were fed concentrate.  

We also analysed the temporal stability of moderately to highly heritable 

microbial genes, in association with the EBVs of FCR, ADG, DFI, RFI, and CH4 

yield. The results showed that the ALR-As of microbial genes generated from 

any timepoint explained 67% or higher proportion of the variation of the EBVs. 

Additionally, 51% or more of the microbial genes generated from slaughter 

were also significantly associated with each trait when models were based on 

data generated from previous timepoints, suggesting that heritable microbial 

genes and their associations with the traits have high temporal stability.  

The rumen microbiome has been shown to significantly shift over the early life 

of calves. O’Hara et al. (2020) investigated the rumen microbial dynamics of 

beef calves based on 16S rRNA gene sequencing (i.e., bacterial and archaea 

communities) and showed that age had a significant impact on the rumen 

microbiota composition, which became stable when calves were 21 days old, 

and suggested that this 3-week window could be the most advantageous for 

microbiota manipulation. Additionally, Jami et al. (2013) showed the 

microbiome of young calves undergoes drastic changes, particularly 

associated to the rumen maturation, with progressive depletion of aerobic and 

facultative aerobic groups, establishment of cellulolytic microbes long before 
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exposure to plant material, and increased taxonomic diversity with age. In adult 

animals, however, the expectation is that, in the absence of major 

perturbations (i.e., diet changes), the microbiome will remain relatively stable, 

not only in bovines but also other animals. Previous authors have shown this 

tendency; for example, Schloissnig et al. (2013) investigated human gut 

microbial genomic variation from 207 humans, and showed that individual-

specific variation patters were stable over time, Snelling et al. (2019) 

investigated the rumen microbiota (resolved based on the 16S rRNA gene) in 

steers, and concluded that a single sample may be reasonably representative 

of the microbial communities in the rumen, in agreement with the analyses 

presented in this study. 

Most often, the association of microbial genera and genes with host 

performance and methane emissions traits is based on microbiome profiles 

generated from slaughter samples (Guan et al., 2008; Mao et al., 2015; Roehe 

et al., 2016; Li and Guan, 2017; Lima et al., 2019; Martínez-Álvaro et al., 

2021a), but whether the slaughter samples are suitable representatives of the 

microbiome composition in previous moments of hosts’ life is still unclear. We 

have analysed biomarkers previously identified as strong predictors of 

performance and methane emissions traits in studies based on slaughter 

samples; our results suggest that the rumen microbiome has such stability that 

the previously identified important biomarkers would still be considered 

important if these analyses had been based on data generated from any 

timepoint other than slaughter. Our results confirm the suitability of these 

slaughter-generated biomarkers, particularly when considering that these 

previous studies applied different statistical procedures (e.g., correlation 

networks), on data transformed by different methods (e.g., relative 

abundances), and that the identification of microbial genera and genes was 

performed based on different reference databases (e.g., through update of 

KEGG databases). 
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4.6 Conclusions 

Overall, our study showed that the rumen microbiome is remarkably stable 

throughout the finishing phase of beef cattle. Alpha and beta diversity 

compared between timepoints were overall stable at both microbial genera and 

genes levels. Additionally, most ALR-As of microbial genera and genes within 

animal were maintained throughout this period. The predictability (measured 

as explained variation of the traits) of host performance and methane 

emissions traits using microbiome information collected at each of the 6 

different timepoints was strong throughout the entire finishing phase. The high 

stability of microbial ALR-As of microbial genera and genes could be one of 

the reasons for the high predictability of host traits based on ALR-As 

throughout all 6 timepoints. The microbiome datasets that led to the strongest 

associations with the host performance and methane emissions traits were the 

ALR-As of microbial genera generated from samples collected at start test, 

and those of microbial genes generated from samples collected at pre-

additive. Overall, the use of microbial genes as predictors leads to higher 

explained variance of host performance and methane emissions traits. Daily 

CH4 emissions and CH4 yield were, from the analysed traits, the ones most 

strongly predicted based on microbial genera, and microbial genes, 

respectively. Our analyses of previously identified biomarkers of host 

performance and methane emissions traits based on slaughter-generated data 

underlines the stability between microbiome information throughout the 

finishing phase. The ALR-As of host-genomically influenced microbial genes 

generated from samples taken after the animals left the respiration chambers 

in which they were measured for methane emissions were the most strongly 

associated with EBVs of host performance and methane emissions traits. 

Overall, host-genomically influenced microbial genes were strongly associated 

with the EBVs of all host performance and methane emissions traits, but the 

association was particularly stronger between host-genomically influenced 

microbial genes and the EBV of DFI. Our results indicate that microbiome 

profiles generated from samples collected at any timepoint can be used to 

accurately predict host performance and methane emissions traits, suggesting 
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that microbiome profiles generated from timepoints as earlier as that at pre-

additive can be applied to predict breeding values of the analysed traits.  
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Chapter 5 Rumen microbiome profiles of dairy 
cattle are affected by the presence 
of, and vaccination against, the 
abomasal parasitic nematode 
Ostertagia ostertagi 

 

5.1 Abstract 

Parasitism of ruminants by nematodes such as Ostertagia ostertagi is reported 

to negatively affect performance and welfare, leading to inappetence, impaired 

weight gain, and sometimes death, but whether the rumen microbiome is also 

affected is still unclear. In this research, we investigated the influence of the 

abomasal nematode Ostertagia ostertagi on the rumen microbiome, at the 

taxonomic (microbial genera) and functional (microbial genes) levels. Two 

groups of 10 calves (balanced for weight and breed) were subject to an 

infection challenge consisting of oral administration of 1000 infectious L3-stage 

larvae for 25 days. Each group had previously received either a native vaccine 

against O. ostertagi or a co-adjuvant-only injection (positive control). From the 

infected group, a total of 8 animals were identified based on their high (CHE) 

and low (CLE) cumulative faecal egg counts (cFEC) and 4 animals were 

chosen from the vaccinated (VAC) group based on their average cFEC. These, 

together with 4 unvaccinated and uninfected animals (UNF, negative control), 

had their rumen digesta sampled post-mortem (20 days after the infection 

challenge finished). Shotgun metagenomic sequencing was used to resolve 

the samples into microbiota and metagenomic compositions. The rumen 

microbiomes of CHE, CLE, and VAC were compared in a pairwise manner 

against those of UNF using partial least squares discriminant analyses. Our 

analyses identified 294, 314, and 330 microbial genera important for the CHE 

vs. UNF, CLE vs. UNF, and VAC vs. UNF discriminations, respectively. Eighty-

six microbial genera were altered in CHE, CLE, and VAC, in comparison to 

UNF, and included microbial genera previously associated with 

gastrointestinal parasites in animals, such as Bacillus and Deferribacter. 

Additionally, the parasitism by O. ostertagi led to increased abundance of 
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opportunistic pathogens (e.g., Streptomyces and Tsukamurella). The 

microbiome profiles of infected (INF) were compared with those of VAC; the 

results showed that microbial genes enriched in INF were mostly associated 

with methane metabolism (e.g., frhD) and carbon metabolism (e.g., rbcL), 

whereas those enriched in VAC were mostly ABC transporters (e.g., cbiN), or 

involved in quorum sensing (e.g., ABC.SP.S) and the two-component system 

(e.g., pilR). This study reveals that the rumen microbiome profiles of infected, 

vaccinated, and uninfected cattle differ substantially due to the infection by 

abomasal parasite O. ostertagi and could be used as biomarkers for breeding 

programmes, probiotics development, and for measuring side effects of 

vaccination. 

5.2 Introduction 

Ostertagia ostertagi is an abomasal parasitic nematode of cattle, that 

negatively impacts the gastrointestinal function of the host. Ostertagia’s life 

cycle consists of a free-living phase and a parasitic phase. The free-living 

phase starts when eggs develop in deposited faeces into first-stage larvae 

(L1), hatch and moult into second-stage larvae (L2), which develop and moult 

into infective third-stage larvae (L3). These larvae move onto the herbage, 

where they are ingested by the grazing animals, starting the parasitic phase of 

the life cycle (Myers and Taylor, 1989). The L3 larvae lose their protective 

sheath in the rumen, and pass into the abomasum, where they penetrate the 

gastric glands and develop into forth-stage larvae (L4) and subsequently to 

young adults (L5). The L5 leave the gastric glands and continue their 

maturation in the mucosal surface, and females will produce the eggs in the 

gastrointestinal tract lumen (Saverwyns, 2008). Ostertagiasis has three 

clinically distinctive conditions. Type I is a disease of young cattle, 

characterized by damage to the abomasum gastric glands caused by the L5 

exiting the cells, with clinical signs depending on level of infection, ranging from 

reduced appetite and stunted growth to diarrhoea, rapid weight loss and even 

death; pre-type II disease occurs when larval development is arrested after 

entering the gastric glands, and it is usually clinically mild or silent; type II 
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disease is most common in yearling (older) cattle and is associated with the 

continuation of the development of previously inhibited larvae, having clinical 

signs similar to type I disease (Myers and Taylor, 1989). 

One of the most economically impactful and widely recognized effects of 

Ostertagia parasitism in cattle is the host’s inappetence (Fox et al., 1987, 

1989a; Myers and Taylor, 1989; Fox, 1993; Hawkins, 1993; Fox et al., 2002). 

For example, Fox et al. (1989) reported depressed voluntary feed intake 

associated with nearly 73% reduction in weight gain, and a 74% decrease in 

rate of passage of digesta in infected animals, and suggested these signs to 

be associated with hypergastrinaemia (i.e., increased blood gastrin levels). 

This association was further confirmed by Fox et al. (2002), with the authors 

reporting abomasal pH to be positively correlated with blood gastrin levels (and 

no significant difference in the satiety-associated cholecystokinin levels, 

Farningham et al., (1993)), suggesting the elevated pH (due to damaged 

gastric glands) as the main cause for the hypergastrinaemia in infected 

animals; a positive correlation between blood gastrin and serum pepsinogen 

levels was also previously reported (Fox et al., 1989b). Serum pepsinogen 

levels are considered a key parameter to monitor nematode exposure in first-

season calves (Charlier et al., 2011), and a positive correlation between the 

relative pepsinogen concentration and O. ostertagi numbers has been found 

(Berghen et al., 1993; Kenyon and Jackson, 2012). Pepsinogen is the inactive 

precursor of the aspartic protease pepsin; it is produced in the parietal cells, 

and it is autocatalytically activated by acidic conditions like those in the 

abomasum (Muñoz et al., 2004). It has been suggested that pepsinogen 

increase in the blood is due to increased permeability of the abomasal mucosa, 

with pepsinogen leaking back into the circulatory system (Murray, 1969). 

The inappetence of animals associated with the nematode infection carries 

obvious negative consequences for productivity. Almería et al. (2009) reported 

a negative correlation between optical density ratios of milk samples (ODR, 

proxy for infection level) and milk yield, in temperate climates.  
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The gastrointestinal tract microbiota is closely associated with the hosts’ 

digestive functional efficiency in many different species, including humans 

(Cani and Knauf, 2016), pigs (Wellmann et al., 2017; Nowland et al., 2019), 

chickens (Díaz-Sánchez et al., 2019), and cattle (Shabat et al., 2016). In beef 

cattle, the rumen microbiome has been associated with feed conversion 

efficiency and methane emissions (Roehe et al., 2016; Martínez-Álvaro et al., 

2020), appetite, and growth (Lima et al., 2019). Given the close associations 

between the rumen microbiome and performance traits of the host, the 

investigation of the impact of parasitism by O. ostertagi on the rumen 

microbiome profiles is of great interest as biomarkers for identification of 

animals resilient to infection and in the development of probiotics to mitigate 

the impact of infection. 

Nematode-parasitic infections have been suggested to lead to increased 

abundance of potentially pathogenic microorganisms in the gastrointestinal 

microbiome of the host. For example, Li et al. (2016) reported that although 

absent from the abomasal microbiome of uninfected goats, pathogenic Gram-

negative microorganisms of the Pasteurellaceae family were significantly 

increased in those challenged with Haemonchus contortus infectious larvae. 

Additionally, Lass et al. (2013) showed that co-infecting mice with the 

pathogen Bordetella bronchiseptica promoted the survival of the intestinal 

nematode Heligmosomoides polygyrus.  

Immunity to O. ostertagi develops only slowly, with cattle remaining 

susceptible even after long grazing periods. In developed production systems, 

this parasite is controlled through the application of anthelminthics, and 

vaccines are being developed. The application of a vaccine against O. 

ostertagi in comparison to the use of anthelminthics is advantageous because 

it prevents development of potential anthelminthic-resistant parasites. Ideally, 

a vaccine should build up the animal’s immunity, preventing or halting the 

establishment and consequent damage to the abomasum gastric glands 

caused by the natural life cycle of this parasite, and therefore avert typical 

ostertagiasis clinical signs (e.g., inappetence), while not unfavourably 



 Rumen microbiome profiles affected by Ostertagia ostertagi 
 

107 
 

impacting the rumen microbiome. Furthermore, since the microbiome deeply 

influences the host immune responses, and has been shown to affect vaccine 

immunogenicity and efficacy (de Jong et al., 2020), understanding the interplay 

between the rumen microbiome and the vaccine is crucial for the development 

of efficient vaccines. 

The main objective of this study was to understand whether parasitism by O. 

ostertagi impacted the rumen microbiome composition, and, if so, to identify 

the main changes at the taxonomic level (by, for example, focusing on 

potentially pathogenic microbes) and at the functional level (by focusing on 

microbial KEGG genes). We also aimed at understanding whether the vaccine 

against O. ostertagi influenced the rumen microbiome profiles. Subsequently, 

we focused on the association between the taxonomic and functional infection- 

and vaccine-derived alterations and investigated them in light of the rumen 

microbiome complex biological networks, essential for the rumen proper 

function. Additionally, we investigated how the host animal’s resilience to O. 

ostertagi (as assessed by cFEC) influenced taxonomic and functional changes 

in the rumen microbiome profiles. 

5.3 Materials and methods 

5.3.1 Ethics statement 

Immunizations and parasite challenges of cattle were performed at the 

Moredun Research Institute (MRI) under Home Office licence 70/7914. Ethical 

approval was obtained from the MRI Animal Welfare and Ethical Review Body 

(E12/18). Animals were euthanized at the MRI post-mortem facility. 

5.3.2 Animals and experimental procedure 

An experimental trial was carried out in 2018 to determine the effect of a native 

vaccine against O. ostertagi in dairy cattle (British Friesian and Norwegian 

Red). 
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Figure 1. Schematic representation of the experimental timeline. 

 

This experiment included 20 male calves of 4-5 months of age. Animals were 

allocated into 2 groups, balanced for breed and weight. Animals in each group 

were injected either with the native vaccine or with adjuvant-only (Quil A® 

(Brenntag Biosector) - 750ug per dose, positive control). Administration of 

vaccine or adjuvant-only occurred on days 0, 21, and 42 of the experimental 

trial (Figure 1). The infection challenge started on day 42; animals were orally 

administered 1000 infectious L3 larvae per day, for 25 days. During the 

experimental trial, faeces samples were collected at 13 timepoints, and 

animals were evaluated for their cumulative faecal egg count (cFEC). The 

cFEC is an indicator of worm fitness, and is used to determine vaccine efficacy 

against O. ostertagi (Meyvis et al., 2007). Based on cFEC distribution per 

group, a total of 12 animals were identified for post-mortem rumen digesta 

sampling: 8 animals from the non-vaccinated group were selected based on 

their high and low cFEC (CHE and CLE, respectively) and 4 animals from the 

vaccinated group (VAC) were selected from the cFEC-boxplot’s second and 

third quantiles. Additionally, 4 uninfected and unvaccinated calves were kept 

throughout the experimental trial as negative control (UNF) and were also 

identified for post-mortem rumen digesta sampling.  

5.3.3 Sampling of rumen digesta and whole metagenomic 
sequencing 

Animals included in the experimental trial were slaughtered at the Moredun 

Research Institute. Sixteen samples of rumen digesta each were collected 

within 10 minutes after slaughter. Sampling rumen digesta at slaughter results 
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in well mixed samples. DNA was extracted from the samples following the 

methodology described by Yu and Morrison (2004).  

5.3.4 Identification of abundances of microbial organisms 
and microbial genes in rumen samples 

Illumina TruSeq DNA Nano libraries were prepared from genomic DNA and 

sequenced on Illumina NovaSeq 6000 systems by Edinburgh Genomics 

(Edinburgh, UK). Paired-end reads (2 × 150 bp) were generated, resulting in 

between 8 and 50 GB per sample (between 28 and 165 million paired reads). 

For taxonomic classification, the sequence reads of the samples were aligned 

to a database including genomes from the Hungate 1000 Collection (Seshadri 

et al., 2018) and metagenome-assembled genomes (MAGs) from beef rumen 

samples (Stewart et al., 2018) using Kraken (Wood and Salzberg, 2014). In 

total, 1200 genera found in all animals were identified and described as the 

genus having the highest similarity with the identified microbial genome or 

MAG. For functional annotation, DIAMOND was used to blast the reads for 

each sample against the KEGG database (downloaded 15/09/18) (Buchfink et 

al., 2015). Gene abundance was calculated as the sum of reads mapping to 

each KEGG orthologue. 

5.3.5 Statistical analyses 

Alpha diversity was assessed by the number of taxa/microbial genes observed 

per sample and the adjusted Shannon index (Sobs and H’adj, respectively). 

Beta diversity was assessed by calculating Bray-Curtis dissimilarity over 

samples of the same type (BC). Diversity measures were estimated using the 

vegan package in R studio (Version 1.3.959). 

A total of 1200 genera and 8393 microbial genes (i.e., KEGG orthologues, 

Kanehisa and Goto (2000)) were identified over the 16 samples, and their 

relative abundances were calculated. Genera and microbial genes that were 

absent from at least one sample and/or had average relative abundance lower 

than 0.001% were removed from the datasets, leaving a total of 899 genera 

and 3124 microbial genes for further analyses. Prior to the statistical analyses, 
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these datasets were centred-log ratio (CLR) transformed, due to the 

compositional nature inherent to microbiome data (Greenacre, 2018). Partial 

Least Squared Discriminant Analysis (PLS-DA) models were applied to 

evaluate the suitability of the microbiome profiles at microbial genera and 

microbial genes level (using their CLR-transformed abundances) to 

discriminate CLE, CHE, and VAC from UNF. Variable importance in projection 

scores (VIP) were obtained from each PLS-DA, and the threshold of VIP ≥ 1 

was used to identify the variables (microbial genera or microbial genes) that 

most contributed to the discrimination between treatments. We also compared 

the microbiome profiles of VAC with those derived from infected animals (INF, 

i.e., CHE and CLE), to better understand the impact of the vaccine. The PLS-

DA analyses was performed fitting 2 latent components. These analyses were 

performed using the ‘mixOmics’ package in R studio (Version 1.3.959). 

A co-abundance network was created using the Graphia Pro software 

(Dimonaco et al., 2021), based on the CLR-transformed abundances of 3124 

microbial genes derived from the UNF animals, using a minimum correlation 

threshold of r=0.98. Clustering was performed using the Markov clustering 

method (MCL) available in Graphia Pro, using the granularity value of 2. 

Information pertaining to the biochemical pathways each microbial gene takes 

part in (according to KEGG database), and to whether the microbial 

gene/genus was considered important for the discrimination of CLE, CHE, and 

VAC from UNF (i.e., VIP ≥ 1 in the PLS-DA models) was included in the 

network and used in enrichment analyses of the clusters. 

5.4 Results 

5.4.1 Pairwise comparisons of infected against uninfected 
animals 

Alpha- and beta-diversity indices of CLE, CHE, and VAC were compared with 

those of UNF in a pairwise manner and revealed no significant differences at 

either genus or microbial gene levels.  
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In contrast, PLS-DA comparison of microbiome profiles of CLE with those of 

UNF revealed significant discrimination at microbial genus and gene levels 

(Figure 2). From a total of 899 genera, 314 were important (VIP ≥ 1) to 

discriminate between CLE and UNF microbiomes, of which 126 had lower 

relative abundance in CLE, including Candidatus Xiphinematobacter, 

Sphaerochaeta, and Enterococcus (41%, 19%, and 19% decreases, 

respectively), whereas Isoptericola, Tsukamurella, and Aminobacter were 

increased in CLE (70%, 64%, and 56% increases, respectively). Regarding 

the microbial gene-based analysis, from 3124 microbial genes, 1408 showed 

VIP ≥ 1, e.g., CLE animals had 27%, 17%, and 13% lower relative abundance 

of SpsF (spore coat polysaccharide biosynthesis protein), modE (molybdate 

transport system regulatory protein), and acpD (FMN-dependent NADH-

azoreductase), respectively, and 95%, and 18% higher relative abundances of 

lin (lincosamide nucleotidyltransferase A/C/D/E), and thrB (homoserine 

kinase), respectively, than UNF. 

 

Figure 2. Partial least squares discriminant analyses (PLS-DA) plots of individuals 
discriminating between uninfected and infected animals with low cumulative faecal egg count 
(UNF and CLE, respectively) using PLS-DA based on a) 899 microbial genera and b) 3124 
microbial genes (i.e., KEGG level). 

 

Comparing CHE with UNF in the PLS-DA analysis revealed significant 

discrimination between treatment groups (Figure 3), with 294 genera and 1060 

microbial genes considered important for the discrimination (VIP ≥ 1) in the 

respective models; for example, Syntrophomonas, Nitratifractor and 

Macrococcus showed, respectively, 6%, 21%, and 20% lower relative 
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abundance, whereas Auricularia, Fimbriimonas and Candidatus 

Methanoplasma had 44%, 45%, and 58% higher relative abundances in CHE 

in comparison to UNF. For the corresponding comparison of treatment groups 

at the microbial genes level, xthA (exodeoxyribonuclease III), nifB (nitrogen 

fixation protein), and modE had respectively 2%, 13%, and 11% decreased 

abundances, whereas nfo (deoxyribonuclease IV), comFA (a competence 

protein), and spnN (dTDP-3,4-didehydro-2,6-dideoxy-alpha-D-glucose 3-

reductase) showed, respectively, relative abundance increases of 9%, 34%, 

and 17% in CHE, in comparison to UNF. 

 

Figure 3. Partial least squares discriminant analyses (PLS-DA) plots of individuals 
discriminating between uninfected and infected animals with high cumulative faecal egg count 
(UNF and CHE, respectively), using PLS-DA based on a) 899 microbial genera and b) 3124 
microbial genes (i.e., KEGG level). 

 

The pairwise comparison of VAC with UNF in the PLS-DA analyses revealed 

that these groups are more similar than the corresponding comparisons of 

infected groups (CHE, and CLE) with UNF (Figure 4 vs. Figures 2 and 3). This 

is reflected in the overlap of the 95% confidence ellipses in the PLS-DA plot 

using microbial genes of the VAC vs. UNF comparison (Figure 4b).  
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Figure 4. Partial least squares discriminant analyses (PLS-DA) plots of individuals 
discriminating between uninfected and vaccinated animals (UNF and VAC, respectively), 
using PLS-DA based on a) 899 microbial genera and b) 3124 microbial genes (i.e., KEGG 
level). 

 

In comparing VAC with UNF, we observed increases of more than 40% in 

Tenacibaculum, Thalassospira, and Pseudopropionibacterium and decreases 

of 5%, 19%, and 0.5% in Parvimonas, Macrococcus, and Arthrospira, 

respectively, in VAC. For the same comparison, at the microbial genes-level, 

TamB (translocation and assembly module), RTCA (RNA 3'-terminal 

phosphate cyclase (ATP)), and rhaA (L-rhamnose isomerase) were 18%, 23%, 

and 15% more abundant, respectively, whereas emrE (small multidrug 

resistance pump), modE, and nrfH (cytochrome c nitrite reductase small 

subunit) were, respectively, 19%, 8%, and 39% less abundant in VAC. 
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Figure 5. Important variables for the discrimination of infected animals with low and high 
cumulative faecal egg count (CLE and CHE, respectively) and vaccinated (VAC) from 
uninfected (UNF) animals. 

 

A total of 86 microbial genera were important for the discriminations of CHE, 

CLE, and VAC from UNF (Figure 5), of which 36 were on average depleted 

and 38 were on average enriched in CHE, CLE, and VAC (of which the most 

abundant are presented in Figure 6). 

 

Figure 6. Average relative abundance of the 20 microbial genera with highest relative 
abundances in infected showing high and low cumulative faecal egg count and vaccinated 
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(CHE, CLE, and VAC), in comparison to uninfected (UNF) animals. Microbial genera were 
distributed from highest to lowest relative abundances in plots A to D, for clarity. 

 

From 3124 microbial genes, 201 were identified in the PLS-DA models as 

important (VIP ≥ 1) to discriminate CHE, CLE, or VAC from UNF; 44 of these 

genes were depleted whereas 125 genes were enriched in CHE, CLE, and 

VAC, in comparison to UNF. The group of microbial genes depleted in the 3 

groups in comparison to UNF included microbial genes mtd, frhD, hdrA2, hxlB, 

fwdG, cofC and aksE (i.e., methylenetetrahydromethanopterin 

dehydrogenase, coenzyme F420 hydrogenase subunit delta, heterodisulfide 

reductase subunit A2, 6-phospho-3-hexuloisomerase, 4Fe-4S ferredoxin, 2-

phospho-L-lactate/phosphoenolpyruvate guanylyltransferase and 

methanogen homoaconitase small subunit, respectively), which belong to the 

methane metabolism pathway; microbial genes hxlB, fwdG, mtd and hdrA2, 

together with gap2 (glyceraldehyde-3-phosphate dehydrogenase (NAD(P))), 

also participate in the carbon metabolism pathway; AK6, nadX, MET8, pyrl 

(i.e., adenylate kinase, aspartate dehydrogenase, precorrin-2 dehydrogenase 

/ sirohydrochlorin ferrochelatase, and aspartate carbamoyltransferase 

regulatory subunit, respectively) belong to the biosynthesis of cofactors 

pathway (with genes cofC and aksE); hxlB, aksE and gap2 are also part of the 

biosynthesis of amino acids pathway. 

The group of microbial genes found to be enriched in CHE, CLE, and VAC in 

comparison to UNF included genes from several different pathways; for 

example, pathways associated with biosynthesis and metabolism of amino 

acids, such as biosynthesis of amino acids (CTH, cysM, argA, i.e., 

cystathionine gamma-lyase, S-sulfo-L-cysteine synthase (O-acetyl-L-serine-

dependent), amino-acid N-acetyltransferase, respectively, and thrB), 

Selenocompound metabolism (sat, cysNC, i.e., sulfate adenylyltransferase 

and bifunctional enzyme CysN/CysC, respectively, and CTH); Glutathione 

metabolism (pxpA, CARP, i.e., 5-oxoprolinase (ATP-hydrolysing) subunit A 

and leucyl aminopeptidase, respectively); Cysteine and methionine 
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metabolism (CTH, cysM, and speD, i.e., S-adenosylmethionine 

decarboxylase); arginine biosynthesis (argA, and GDH2, i.e., glutamate 

dehydrogenase), and glycine serine and threonine metabolism (CTH and 

thrB). Some microbial genes in this group were associated with pathways of 

carbohydrate metabolism, such as the pyruvate metabolism (bccA and nifV, 

i.e., acetyl-CoA/propionyl-CoA carboxylase, biotin carboxylase, biotin carboxyl 

carrier protein, homocitrate synthase NifV); the pentose and glucuronate 

interconversions (rhaD and rhaB, i.e., rhamnulose-1-phosphate aldolase and 

rhamnulokinase, respectively); the fructose and mannose metabolism (algA, 

i.e., mannose-1-phosphate guanylyltransferase / mannose-6-phosphate 

isomerase, rhaD, rhaA and rhaB), and amino sugar and nucleotide sugar 

metabolism (arnB, wbpA and glmU, i.e., UDP-4-amino-4-deoxy-L-arabinose-

oxoglutarate aminotransferase, UDP-N-acetyl-D-glucosamine dehydrogenase 

and bifunctional UDP-N-acetylglucosamine pyrophosphorylase / glucosamine-

1-phosphate N-acetyltransferase, respectively, and algA).  

Some microbial genes were associated with lipid metabolism, and belonged to 

pathways glycerophospholipid metabolism (aas and glpQ, i.e., acyl-[acyl-

carrier-protein]-phospholipid O-acyltransferase / long-chain-fatty-acid--[acyl-

carrier-protein] ligase and glycerophosphoryl diester phosphodiesterase, 

respectively), and fatty acid biosynthesis and metabolism (fabI, i.e., enoyl-

[acyl-carrier protein] reductase I and bccA). Furthermore, some microbial 

genes were associated with biosynthesis of cofactors and vitamins, such as 

pabA, queD, bioD, bioB, lipA, pncA, gltX, NQO1 (i.e., para-aminobenzoate 

synthetase component II, 6-pyruvoyltetrahydropterin/6-

carboxytetrahydropterin synthase, dethiobiotin synthetase, biotin synthase, 

lipoyl synthase, nicotinamidase/pyrazinamidase, nondiscriminating glutamyl-

tRNA synthetase and NAD(P)H dehydrogenase (quinone), respectively) and 

fabI, in the biosynthesis of cofactors pathway; fabI, bioD and bioB, also 

participating in the biotin metabolism pathway. Some genes had functions 

associated with energy sourcing such as ndh and ATPVA (i.e., 

NADH:ubiquinone reductase (H+-translocating) and V/A-type H+/Na+-
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transporting ATPase subunit A, respectively) in the oxidative phosphorylation 

pathway, GDH2 and nirB (i.e., nitrite reductase (NADH) large subunit), in the 

nitrogen metabolism pathway, and sat and cysNC (i.e., bifunctional enzyme 

CysN/CysC), in the sulfur metabolism pathway.  

Microbial genes belonging to pathways associated with bacterial defence 

mechanisms, such as the monobactam biosynthesis (sat and cysNC), biofilm 

formation - Vibrio cholerae (gspF, gspD, and rpoS, i.e., general secretion 

pathway protein F, general secretion pathway protein D, and RNA polymerase 

nonessential primary-like sigma factor, respectively), biofilm formation - 

Escherichia coli and quorum sensing (gspF and tatA i.e., sec-independent 

protein translocase protein TatA), cationic antimicrobial peptide (CAMP) 

resistance (arnT and amiABC, i.e., 4-amino-4-deoxy-L-arabinose transferase 

and N-acetylmuramoyl-L-alanine amidase, respectively, and arnB), O-antigen 

nucleotide sugar biosynthesis (algA, wbpA and glmU), and lipopolysaccharide 

biosynthesis (waaC, lpxJ and lpxC i.e., heptosyltransferase I, Kdo2-lipid IVA 3' 

secondary acyltransferase and UDP-3-O-[3-hydroxymyristoyl] N-

acetylglucosamine deacetylase, respectively, and arnT), together with 

microbial genes involved in environmental information processing, such as 

gspD, rpoS, and oxyR, (i.e., LysR family transcriptional regulator, hydrogen 

peroxide-inducible genes activator), belonging to the two-component system; 

gspF, tatA, and gspD, in the bacterial secretion system pathways and ABC 

transporters gadC, K14645 (i.e., glutamate:GABA antiporter and serine 

protease, respectively), and arnB, were also enriched in CHE, CLE, and VAC, 

in comparison to UNF. 

5.4.2 Microbial genera and genes influenced by the presence 
of O. ostertagi 

The variables identified as important for the discriminations of CLE and CHE 

from UNF were analysed together in a Venn diagram (Figure 7). Some 

microbiome features (147 microbial genera and 395 microbial genes) were 

important to discriminate UNF from infected animals independently of the level 

of resilience of the animals to the infection, however, most of them were 
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exclusively identified as important for the comparison CLE vs. UNF (167 

microbial genera, and 939 microbial genes) or CHE vs. UNF (147 microbial 

genera and 665 microbial genes). 

 

Figure 7. Important a) microbial genera and b) microbial genes for the discrimination of 
infected animals with low and high cumulative faecal egg count (CLE and CHE, respectively) 
from uninfected animals (UNF). 

 

From a total of 899 genera, 167 and 147 were identified exclusively as 

important for the CLE vs. UNF and CHE vs. UNF discriminations, respectively 

(Figure 7a), suggesting a differential impact of the parasitism by O. ostertagi, 

depending on the resilience of the animal to the parasite. The group of 

microbial genera with VIP ≥ 1 in the CLE vs. UNF comparison and VIP < 0.5 

in the CHE vs. UNF comparison included 67 microbes, all of them depleted in 

the CLE group, in comparison to UNF. Most of these microbes belonged to 

phyla Proteobacteria, e.g., Aminobacter and Helicobacter, Actinobacteria, 

e.g., Micrococcus and Brevibacterium, and Firmicutes, e.g., Staphylococcus 

and Clostridium. The group of microbes with VIP ≥ 1 in the CHE vs. UNF 

comparison (and VIP < 0.5 in the CLE vs. UNF comparison) included 63 

microbial genera, of which 34 and 29 were enriched and depleted in CHE, 

respectively, in comparison to UNF. The 34 microbial genera included mostly 

Proteobacteria, e.g., Desulfobacter and Sulfurospirillum, Ascomycota, e.g., 

Sporothrix, and Firmicutes, e.g., Sharpea, whereas the 29 included mostly 
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Proteobacteria, e.g., Methylococcus, Firmicutes, e.g., Dorea, and 

Basidiomycota, e.g., Cryptococcus.  

5.4.3 The rumen microbiome of infected differs from that of 
vaccinated animals 

 

Figure 8. Partial least squares discriminant analyses (PLS-DA) plots of individuals 
discriminating between vaccinated (VAC) and infected animals (INF, including animals with 
high and low cumulative faecal egg count, CHE, and CLE, respectively), using PLS-DA based 
on a) 899 microbial genera and b) 3124 microbial genes (i.e., KEGG level). 

 

The comparison of VAC with all infected animals (INF, combining CLE and 

CHE) resulted in a significant discrimination between these groups (Figure 8). 

A total of 344 microbial genera had a VIP ≥ 1 in the PLS-DA comparing VAC 

with INF (i.e., CHE and CLE). Within the 344, 176 microbial genera were 

enriched in INF, of which most belonged to phyla Proteobacteria (e.g., 

Candidatus Phaeomarinobacter, Ruminobacter, Bartonella, Bosea, Advenella, 

Psychromonas, and Tateyamaria, at least 20% more abundant on average in 

INF than in VAC), Actinobacteria (e.g., Brevibacterium, Nocardiopsis, 

Brachybacterium, and Janibacter showed at least 45% more relatively 

abundant in INF than in VAC), Bacteroidetes (e.g., INF had 45% or higher 

increases in the relative abundances of Cytophaga, Emticicia, Leadbetterella, 

Petrimonas, and Solitalea, in comparison to VAC), and Firmicutes (e.g., 

Staphylococcus, Selenomonas, and Vagococcus were 134%, 40% and 25%, 

respectively, more abundant in INF than in VAC), whereas 168 were enriched 

in VAC, most belonging to phyla Proteobacteria (e.g., Moraxella, 

Acinetobacter, and Psychrobacter were at least 75% more abundant in VAC 

than in infected animals), Ascomycota (e.g., Verticillium, and Botrytis were at 
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least 60% more abundant in VAC than in INF), Firmicutes (e.g., 

Tepidanaerobacter, Carboxydothermus, Jeotgalibaca, Succiniclasticum, 

Pelosinus, Geosporobacter, and Acidaminococcus were at least 20% more 

abundant in VAC than in INF), and Basidiomycota (e.g., Trichosporon, and 

Moniliophthora, 75% more abundant in VAC than in INF).  

The analyses of this data at the functional level revealed 396 microbial genes 

important for the discrimination of VAC from INF, of which 246 were enriched 

in INF, whereas 150 were enriched in VAC. The microbial genes enriched in 

INF were associated with methane emissions (e.g., frhD, mcrC, and mcrD, i.e., 

coenzyme F420 hydrogenase subunit delta, methyl-coenzyme M reductase 

subunits C and D, respectively), carbon metabolism (e.g., rbcL, fadN, and 

croR, i.e., ribulose-bisphosphate carboxylase large chain, 3-hydroxyacyl-CoA 

dehydrogenase, and 3-hydroxybutyryl-CoA dehydratase, respectively) and 

biosynthesis of cofactors (e.g., cbiT, ribB, and nadX, i.e., cobalt-precorrin-6B 

(C15)-methyltransferase, 3,4-dihydroxy 2-butanone 4-phosphate synthase, 

and aspartate dehydrogenase, respectively), whereas the microbial genes 

enriched in VAC were mostly ABC transporters (e.g., cbiN, cysW, and ccmA, 

i.e., cobalt/nickel transport protein, sulfate/thiosulfate transport system 

permease protein, and heme exporter protein A, respectively), involved in 

quorum sensing (e.g., ABC.SP.S, hfq, and lsrF, i.e., putative 

spermidine/putrescine transport system substrate-binding protein, host factor-

I protein, 3-hydroxy-5-phosphonooxypentane-2,4-dione thiolase, 

respectively), or included in the two-component system (e.g., pilR, hyaC, and 

citX, i.e., two-component system, NtrC family, response regulator PilR, Ni/Fe-

hydrogenase 1 B-type cytochrome subunit, and holo-ACP synthase, 

respectively). 

5.4.4 Co-abundance network of microbial genes in the rumen 

The CLR-transformed abundances of 3124 microbial genes were investigated 

in a co-abundance network based on UNF records (Figure 9), in which clusters 

were identified that were found to be significantly enriched in microbial genes 

important (VIP ≥ 1) for the pairwise discriminations (i.e., PLS-DA models 
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comparing CHE, CLE or VAC, with UNF). Additionally, clusters were analysed 

for enrichment in microbial genes according to the biochemical pathways to 

which they belong.  
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Figure 9. Co-abundance network of microbial genes in uninfected animals (UNF). Each node represents the CLR-transformed abundance of a microbial gene, 
and each edge represents a correlation between nodes of r=0.98 or higher. Clusters significantly enriched in microbial genes identified as important (VIP ≥ 1) in 
the PLS-DA analyses for the pairwise discrimination of CHE, CLE, and VAC from UNF animals are labelled accordingly, and the increased or decreased 
abundance of microbial genes in each treatment group in comparison to UNF is indicated between the brackets by a  or a , respectively. Labels include 
information about enrichment regarding the biochemical pathways to which these microbial genes belong. 
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The co-abundance network showed that clusters 12, 38, 39, 44, and 47 were 

significantly enriched in microbial genes important for the CLE vs. UNF 

discrimination, e.g., cluster 12 was enriched in microbial genes with increased 

abundance in CLE in comparison to UNF, and in microbial genes associated 

with monobactam biosynthesis; clusters 10, 11, 14, 15, 16, 18, 19, 27, 35, 36, 

42, 49, 59, and 62 were significantly enriched in microbial genes important for 

the CHE vs. UNF discrimination, e.g., cluster 14 was enriched in microbial 

genes that, in comparison to UNF, had higher abundance in CHE, and in 

microbial genes associated with biofilm formation – Vibrio cholerae; clusters 

20, 43, 58, and 64 were enriched in microbial genes important for the VAC vs. 

UNF discrimination, for example, cluster 64 showed enrichment of microbial 

genes with higher abundance in VAC than in UNF, and of microbial genes 

associated with Butanoate metabolism.  

5.4.5 Methane 

We observed enrichment of several methanogens in CHE and CLE, in 

comparison to UNF; Candidatus Methanoplasma had VIP ≥ 1 in both CHE vs. 

UNF and CLE vs. UNF comparisons. Other methanogens (e.g., 

Methanococcus, Methanocorpusculum, Methanothermococcus) were 

enriched in both CHE and CLE but at lower VIPs (0.8, 0.5, and 0.4 in the CHE 

vs. UNF and 0.5, 0.3, and 0.6 in the CLE vs. UNF comparisons, respectively). 

Additionally, methanotrophs Methylocystis, Methylobacterium, and 

Methyloversatilis were enriched (with VIP ≥ 1) in both CLE and CHE, in 

comparison to UNF, and other methanotrophs including Methylomonas, 

Methylococcus, and Methylomicrobium showed the same trends, although at 

lower VIPs (VIPs of 0.5, 1.0, and 0.8 in CHE vs. UNF, and 0.4, 0.5, and 0.3 in 

CHE vs. UNF comparisons, respectively). However, we also found depletion 

of methanogens, e.g., Methanobacterium, Methanobrevibacter, and 

Methanosphaera with VIP ≥ 1 in CHE and CLE, and Methanomicrobium (with 

VIPs of 0.8 and 1.6 in CHE vs. UNF and CLE vs. UNF comparisons, 

respectively). 
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Additionally, microbial genes associated with the methane metabolism 

pathway, e.g., hxlB, comA, cofC, and aksE (i.e., 6-phospho-3-

hexuloisomerase, phosphosulfolactate synthase, 2-phospho-L-

lactate/phosphoenolpyruvate guanylyltransferase, and methanogen 

homoaconitase small subunit, respectively), in cluster 44, and mtrC, and mcrD 

(i.e., tetrahydromethanopterin S-methyltransferase subunit C, and methyl-

coenzyme M reductase subunit D, respectively), in cluster 56, mcrA, mcrB and 

mcrC (i.e., methyl-coenzyme M reductase alpha-, beta- and gamma-subunits, 

in cluster 1), important for the last step of methanogenesis, were depleted in 

CHE and CLE, in comparison to UNF (Figure 10). 

Overall, some microbial genera and genes known to be associated with 

methane production were altered in infected in comparison to uninfected 

animals, however, we cannot, based on our analyses, conclude about the 

impact of these alterations on the methane production level of the host 

animals. 

 

Figure 10. Contribution of important methanogens and methanotrophs for the discrimination 
between uninfected (UNF) and a) infected showing high (CHE), and b) low (CLE) cumulative 
faecal egg count, and c) vaccinated and challenged (VAC). 1. Methanobacterium; 2. 
Methanobrevibacter; 3. Methanosphaera; 4. Methanomicrobium; 5. Candidatus 
Methanoplasma; 6. Methanosarcina; 7. Methanoculleus; 8. Methanococcus; 9. 
Methanocorpusculum; 10. Methanothermococcus; 11. Methylocystis; 12. Methylobacterium; 
13. Methyloversatilis; 14. Methylomonas; 15. Methylococcus; 15. Methylomicrobium 
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5.5 Discussion 

5.5.1 Parasitism by, and vaccination against, the abomasal 
nematode O. ostertagi affects the rumen microbiota 

This study is the first to focus on the changes to the rumen microbiome profiles 

both at taxonomic and microbial genes levels caused by the presence of the 

abomasal nematode O. ostertagi and/or by the vaccination against the 

nematode in dairy cattle. 

The comparisons of treatment groups infected with high or low cumulative 

faecal egg counts (CHE, and CLE, respectively), and vaccinated (VAC) with 

uninfected (UNF) animals revealed 294, 314, and 330 microbial genera 

important for the CHE vs. UNF, CLE vs. UNF, and VAC vs. UNF 

discriminations, respectively.  

A set of 86 microbial genera were identified as important (VIP ≥ 1) in the three 

pairwise comparisons (CHE vs. UNF, CLE vs. UNF, and VAC vs. UNF, Figure 

5). Within this set, 38 microbial genera were enriched in CHE, CLE, and VAC. 

Within the 20 most abundant microbial genera enriched in CHE, CLE, and 

VAC, in comparison to UNF, we found microbial genera that were previously 

identified to be in association with gastrointestinal nematodes, such as Bacillus 

and Deferribacter (Figure 6). Although Bacillus spp. are known to produce 

fibrolytic enzymes that increase diet digestibility (Castillo-González et al., 

2014), some strains of B. thuringiensis have been shown to have larvicidal 

activity against Haemonchus contortus (a nematode helminth parasitic of 

ruminants), to lead to a decrease in the relative abundance of Fibrobacter 

succinigenes, an important fibrolytic microbial genus in the rumen, and to 

impair diet degradability (Campos et al., 2019). Additionally, Deferribacter has 

previously been reported as enriched in the proximal colon microbiota of pigs 

infected with gastrointestinal nematode Trichuris suis (Li et al., 2012). Other 

microbial genera here enriched in CHE, CLE, and VAC, in comparison to UNF, 

were previously associated with digestive processes and feed conversion 

efficiency, e.g., Acetobacter is an acetogen previously found to be more 

abundant in cows producing milk with high concentration of saturated fatty 
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acids (SFA) in comparison to their low-SFA counterparts (Stergiadis et al., 

2021), Thalassospira was previously reported as significantly increased in the 

caecum of high-nitrogen-utilizing goats (Wang et al., 2019), and Streptomyces 

is an actinobacteria able to produce ionophores, which are polyether 

carboxylic antibiotics that affect the cell membrane of Gram-positive bacteria, 

e.g., monensin (Castillo-González et al., 2014). 

5.5.1.1 Microbial genera associated with efficient digestive functionality 
are depleted in the rumen of calves parasitised by O. ostertagi 

Of the most important microbial genera for the discriminations of CLE and CHE 

from UNF (Figure 7), 70 were depleted in CHE and CLE, the majority belonging 

to phylum Firmicutes, e.g., Enterococcus and Paenibacillus, in class Bacilli; 

Acidaminococcus in class Negativicutes; and Butyrivibrio, Eubacterium, 

Faecalicatena, Lachnospira and Pseudobutyrivibrio in class Clostridia.  

Enterococcus is a lactate-producing bacterium (Nagpal et al., 2015), belonging 

to the class Bacilli, phylum Firmicutes. Whereas some Enterococcus species 

are opportunistic pathogens of humans (e.g., E. faecalis and E. faecium) or 

animals (e.g., E. hirae; Lebreton, Willems, and Gilmore (2014)), with 

Enterococcus having been previously reported as enriched in the faecal 

microbiota of cats parasitised by the nematode Toxocara cati (Duarte et al. 

2016), they are also considered normal commensals of the gastrointestinal 

tract, and for example, Jackson et al. (2011) reported that 88.7% of 718 dairy 

cattle faecal samples were positive for enterococci. Also in the class Bacilli, 

Paenibacillus is an hemicellulose-degrading bacterium, identified in the core 

rumen fluid microbiome (although at low relative abundances) of dairy cattle 

(Wirth et al., 2018).  

Belonging to the class Negativicutes, Acidaminococcus is an amino acid 

degrader, here depleted in the rumen of infected animals. This microbial genus 

was previously shown to be important for the pyruvate to phosphoenolpyruvate 

conversion (gluconeogenesis) and shown to be associated with high methane 

emissions (Auffret et al., 2018) and low feed conversion efficiency (Auffret et 

al., 2020) in beef cattle. 
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Several microbial genera in the class Clostridia were also depleted in the 

rumen of animals parasitised by O. ostertagi. For example, Butyrivibrio and 

Pseudobutyrivibrio are commonly found in the rumen and can utilize xylans 

and pectins, and ferment carbohydrates into butyrate, formate, lactate and 

acetate, being important energy suppliers to ruminants. Butyrivibrio is also 

involved in protein breakdown and biohydrogenation of fatty acids (Palevich et 

al., 2020). Butyrivibrio and Pseudobutyrivibrio were also previously shown to 

have the largest number of LuxS protein genes in their genomes and have the 

ability to use the Lux-based AI-2 quorum sensing genes, which is the most 

abundant and predominant communication system used by rumen bacteria 

(Won et al., 2020). In the present study, however, although Butyrivibrio and 

Pseudobutyrivibrio were depleted, the microbial gene luxS (cluster 3) was 

enriched in infected groups. Eubacterium (class Clostridia), which was also 

depleted in inflected animals, has previously been associated with high feed 

conversion efficiency in beef cattle (Auffret et al., 2020). This genus includes 

cellulolytic, e.g., Eubacterium cellulosolvens (Prins et al., 1972), and 

hemicellulolytic and xylanolytic groups e.g., Eubacterium ruminantium 

(Taguchi et al., 2004), which are important lactate and butyrate producers 

(Flint et al., 2014) of the rumen core microbiome, and has been shown to have 

high metabolic versatility, being involved e.g., in the carbohydrate metabolic 

process, gluconeogenesis, and glycolysis (Wirth et al., 2018). Another 

microbial genus in the class Clostridia found here to be depleted in infected 

animals is Lachnospira. This microbial genus belongs to the family 

Lachnospiraceae, which has previously been identified as a core member of 

the rumen microbiome of beef cattle (Li and Guan, 2017). This microbial genus 

was also previously reported as relatively more abundant in low feed 

conversion efficiency animals and as associated with pathways such as 

methane metabolism, glyoxylate and dicarboxylate metabolism, tryptophan 

metabolism and valine leucine and isoleucine degradation. Furthermore, the 

family Lachnospiraceae was previously reported as increased in microbiota 

samples from colorectum bile ducts of hamsters parasitised by the nematode 

Opisthorchis viverrini (Plieskatt et al., 2013).  
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The results suggest that the parasitism by O. ostertagi causes changes on the 

rumen microbiome of the host animal, leading to the depletion of several 

community members strongly associated with fermentation and digestive-

associated biochemical pathways, which could potentially be unfavourable for 

the animal.  

5.5.1.2 The rumen microbiota of O. ostertagi-parasitised calves is 
enriched in microbial genera with pathogenic potential 

The microbial genera enriched in CHE and CLE in comparison to UNF were in 

their majority from the phylum Actinobacteria, i.e., bacteria with Gram-positive 

or Gram-positive like walls with pathogenic potential. For example, microbial 

genera Streptomyces, Tsukamurella, Pseudopropionibacterium and 

Segniliparus include human pathogenic species such as S. somaliensis (Kirby 

et al., 2012), T. paurometabolum (Shapiro et al., 1992), P. propionicum (Suzuki 

et al., 2019), S. rotundus and S. rugosus (Kim et al., 2013). Other members of 

the phylum Actinobacteria were also enriched in infected animals. For 

example, Curtobacterium, which includes plant pathogen species reported as 

causing infection in humans (Francis et al., 2011), Kocuria is a potential human 

pathogen (Kandi et al., 2016), and Dermabacter is a rare human pathogen 

(Gómez-Garcés et al., 2001). Some microbial genera (also Actinobacteria) 

potentially cause dysbiosis in the rumen, as they were here enriched in 

infected animals, e.g., the genus Kutzneria is represented by K. albida which 

produces the secondary product aculeximycin, an antibiotic with activity 

against Gram-positive bacteria and fungi (Rebets et al., 2014), and the genus 

Saccharothrix produces a wide variety of potent antibiotics with activity against 

bacteria and yeasts (Strobel et al., 2012). Both Kutzneria and Saccharothrix 

were recently isolated from bovine rumen samples, and found to be more 

abundant in dairy cattle with high saturated fatty acid (SFA) content in their 

milk, in comparison to their low-SFA counterparts (Stergiadis et al., 2021). 

Additionally, Saccharomonospora (phylum Actinobacteria) was previously 

reported as associated with increased methane emissions in beef cattle 

(Martínez-Álvaro et al., 2020). 
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The enrichment of potentially pathogenic microbial genera in the rumen of 

CHE and CLE in comparison to UNF suggests that the presence of the parasite 

has led the rumen microbiome into a state of dysbiosis, which could, in addition 

to the direct effect of O. ostertagi on animal health and welfare, contribute to 

the reduced productivity previously observed in infected animals.  

5.5.1.3 Rumen microbiota affected by the vaccine against O. ostertagi 

We identified 31 microbial genera which were important for the discrimination 

of VAC from UNF but not important (VIP < 0.5) for the discrimination of UNF 

from CHE or CLE. Of these, 9 and 22 microbial genera were depleted and 

enriched, respectively, in VAC. The microbial genera depleted in VAC 

belonged mostly to the Bacteroidetes phylum, e.g., Barnesiella, Odoribacter, 

and Parabacteroides. Barnesiella was previously identified in the rumen (Islam 

et al., 2021), Odoribacter is highly heritable and strongly positively genetically 

correlated with methane production (Martínez-Álvaro et al., 2021); 

Parabacteroides has been shown to be depleted in the faecal microbiome of 

mice throughout the course of infection by the nematode Trichuris muris, and 

the authors linked this change with the reduced plant-derived carbohydrates 

metabolism, and immune and signalling responses that may have led to 

increased amino acid content in stool samples (Houlden et al., 2015). 

Microbial genera enriched in VAC, in comparison to UNF, were mostly from 

phyla Ascomycota and Basidiomycota. Ascomycota phyla included, e.g., 

Colletotrichum, Botrytis, Verticillium, and Thielavia; Colletotrichum is widely 

recognized genus of phytopathogenic fungi (da Silva et al., 2020), however, 

some species have previously been reported as causative agent of disease in 

humans (Cano et al., 2004); Botrytis is a necrotrophic phytopathogen (Grant-

Downton et al., 2014). Veticillium is an endoparasite of nematodes (Barron, 

1987; Segers et al., 1994). Thielavia has been isolated from a case of keratitis 

(Theoulakis et al., 2009) and as a cause of fatal brain infection in an Indian 

farmer (Badali et al., 2011). Basidiomycota phylum included e.g., Tsuchiyaea, 

which was previously shown to have a positive association with methane 

emissions (Martínez-Álvaro et al., 2020), and Punctularia and 
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Cutaneotrichosporon, recently reported as enriched in the rumen microbiome 

of cattle with in high SFA content in comparison to their low-SFA counterparts 

(Stergiadis et al., 2021).  

We evaluated the impact of the vaccine by comparing the microbiome profiles 

of vaccinated with those of infected animals (INF = CHE + CLE), to provide an 

insight of the possible outcomes of vaccination on the rumen microbiome 

under the condition that all animals were infected with O. ostertagi at the same 

dose. 

The analyses of the rumen microbiome profiles at the taxonomic level revealed 

several microbial genera to be increased in INF, in comparison to VAC, as for 

example, the potential pathogen Bartonella (Schmidt and Hensel, 2004), and 

Bosea. The latter genus was recently reported to be associated with a 

nosocomial infection (Skipper et al., 2020). Both Bartonella and Bosea belong 

to the phylum Proteobacteria, previously shown to be enriched in the rumen of 

low-nitrogen-utilizing goats (i.e., with higher nitrogen waste in the form of urea 

(Wang et al., 2019)). Nitrogen retention has previously been reported to be 

decreased in parasitised calves, mostly due to increased excretion through 

urine and faeces (Parkins et al., 1982), and Fox et al. (1989a) reported that 

the nitrogen digestibility of infected calves was significantly lower than that of 

ad-libitum-fed and pair-fed calves and attributed this to changes in the protein 

metabolism of infected animals. Furthermore, microbial genes involved in the 

nitrogen metabolism pathway, such as nifD and nifK (nitrogenase 

molybdenum-iron protein alpha and beta chains, respectively), were depleted 

in both CHE and CLE, in comparison to UNF. Several microbial genera 

enriched in the rumen of INF in comparison to VAC belonged to the phylum 

Actinobacteria, e.g., Brevibacterium, which was also enriched in CHE and 

CLE, in comparison to UNF.  

Regarding the microbiome functional profiles, the results suggested that 

vaccinating the calves against O. ostertagi could potentially lead to lower 

methane emissions, as well as strengthen the environmental sensing potential 
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and bacterial cell wall structures-associated biochemical pathways, important 

for the healthy functioning of the rumen microbial communities. Enriched 

presence of microbial genes associated with environmental sensing and 

bacterial cell wall structures was also observed in UNF, in comparison to CHE 

and CLE. These results suggested that the vaccine prevented some of the 

alterations observed in the unvaccinated infected groups CHE and CLE and 

underlined that VAC-derived microbiome profiles are more like those of 

uninfected than those derived from CHE or CLE. 

5.5.2 Rumen microbiome functionality is affected by O. 
ostertagi parasitism, and by the vaccine against the 
abomasal nematode 

We compared the microbial genes derived from the rumen of CHE, CLE, and 

VAC with those from UNF animals, and found that the presence of the parasite 

not only alters the microbial community profiles in the rumen, but also their 

functional potential, particularly affecting digestive processes such as those 

associated with amino acid degradation, and putatively protein deposition, fatty 

acids processing, and carbohydrate uptake regulation, bacterial cell wall 

structures and environmental sensing, and even methane emissions.  

5.5.2.1 Microbiome-associated digestive processes in the rumen are 
affected by the abomasal nematode 

One of the most common clinical signs of nematode parasitism in ruminants is 

the animals’ inappetence and associated weight loss; Fox et al. (1989) used 

pair-fed animals to shown that the weight loss of parasitised animals is not 

exclusively associated with their inappetence, but also with gastrointestinal 

function impairment, particularly considering the increased abomasal pH due 

to damage to the gastric glands by the parasite, and the importance of the 

acidic pH for the activation of peptidases in the abomasum (with 

consequences on nitrogen digestibility). 

Histidine is one of the limiting amino acid in ruminants, particularly in young 

cattle (Greenwood and Titgemeyer, 2000; Onodera, 2003), making bacterial 

histidine biosynthesis essential for ruminants, particularly in environments 
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where it is present at very low levels; McCuistion et al. (2004) showed 

increased nitrogen retention in cattle supplemented with histidine, suggesting 

histidine to be crucial for protein deposition. Microbial genes in the histidine 

metabolism pathway were enriched in cluster 16 (Figure 9), some of these 

belonging to the his operon (e.g., hisH and hisIE, imidazole glycerol-phosphate 

synthase subunit HisH, and phosphoribosyl-AMP cyclohydrolase / 

phosphoribosyl-ATP pyrophosphohydrolase, respectively), involved in the first 

step of the pathway (from PRPP to histidine), which in turn forms a critical link 

between amino acid, purine and thiamine biosynthesis (Ames et al., 1961; 

Winkler and Ramos-Montanez, 2009). These microbial genes, along with hdc 

and urdA (i.e., histidine decarboxylase, and urocanate reductase, respectively) 

were depleted in CHE (and CLE) animals.  

Microbial genes involved in arginine biosynthesis were also included in cluster 

16, e.g., argC and argG (i.e., N-acetyl-gamma-glutamyl-phosphate reductase, 

and argininosuccinate synthase, respectively), which were depleted in CHE 

and VAC, but enriched in CLE, and e.g., argB and argH (i.e., acetylglutamate 

kinase, and argininosuccinate lyase, respectively), which were depleted in 

CHE, CLE, and VAC. Arginine is a fundamental amino acid, with functions 

associated with the urea cycle, and protein synthesis; the post-ruminal 

supplementation of arginine has been shown to increase lactation 

performance and nitrogen utilization efficiency in lactating dairy cattle (Ding et 

al., 2019), and L-arginine in-vitro supplementation of rumen digesta collected 

from rumen-fistulated cows has been shown to contribute to rumen 

fermentation efficiency, leading to increased production of volatile fatty acids 

(Chacher et al., 2012). 

Microbial genes arG and argH also participate in the alanine, aspartate, and 

glutamate metabolism, together with gltB, carA, and carB (i.e., glutamate 

synthase (NADPH) large chain, and carbamoyl-phosphate synthase small and 

large units, respectively, in cluster 16), which were depleted in CHE, but 

enriched in CLE. Other microbial genes in the same pathway were depleted in 

both CHE and CLE, e.g., mhpE and AROA2 (i.e., 4-hydroxy 2-oxovalerate 
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aldolase, and 3-deoxy-7-phosphoheptulonate synthase, respectively), in 

cluster 35, aroD (i.e., 3-dehydroquinate dehydratase) in cluster 62, and puuE 

(i.e., 4-aminobutyrate aminotransferase), in cluster 64. Glutamate was 

previously shown to be decreased in the rumen of dairy cows with high feed 

intake, in comparison to their low feed intake counterparts (Li et al., 2020), and 

free glutamate in formula has been shown to increase satiation and satiety 

levels in human infants, leading to significantly lower intake (Ventura et al., 

2012). The depletion of microbial genes associated with glutamate metabolism 

in infected animals potentially leads to increased glutamate levels in the 

rumen, thus being one of the potential contributors to the inappetence typically 

observed in cattle parasitised by O. ostertagi.  

Valine, leucine, and isoleucine act as hydrogen donors in fermentations carried 

out by proteolytic anaerobes, and they are processed into fatty acids within the 

rumen, having an additive effect on cellulose digestion (Dehority et al., 1958; 

Menahan and Schultz, 1964). Additionally, these fatty acids have been shown 

to greatly stimulate the growth of many non-cellulolytic bacteria, and Allison et 

al., (1958) showed that they were a requirement for cellulolytic cocci 

Ruminococcus flavefaciens and Ruminococcus albus. In the present work, 

Ruminococcus was found to be on average 6.8% and 13.7% more abundant 

in CLE and CHE, respectively, in comparison to UNF. Additionally, cluster 38 

was significantly enriched in microbial genes in the valine, leucine, and 

isoleucine degradation pathway, including genes E6.4.1.4B and liuC (3-

methylcrotonyl-CoA carboxylase beta subunit and methylglutaconyl-CoA 

hydratase liuC, respectively), which were more abundant in CLE (and non-

significantly in CHE) than in UNF.  

Although some microbial genes with functions associated with biosynthesis of 

amino acids were more abundant in CLE animals, the majority was depleted 

in CHE and CLE, suggesting that protein metabolism processes may be 

hindered, in agreement with Fox et al. (1989a), who reported a 22% decrease 

in apparent nitrogen digestibility in infected, in comparison to pair-fed calves, 

accompanied by increased nitrogen excretion. 
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The PTS system catalyses the uptake and phosphorylation of many different 

carbohydrates and plays a major role in the carbon catabolite repression 

(CCR); for each organism, a specific hierarchy exists for the utilization of 

carbon sources; glucose, fructose or sucrose are usually the preferred sugars, 

and their availability in the environment represses the uptake and utilization of 

other carbon sources (Deutscher et al., 2006). Cluster 19 was enriched in 

microbial genes involved in PTS, due to the inclusion of celA and treB (i.e., 

cellobiose PTS system EIIB component, and trehalose PTS system EIIBC or 

EIIBCA component, respectively), also involved in the starch and sucrose 

metabolism pathway, and manXa, manX, manY, manZ (i.e., mannose PTS 

system EIIA, EIIAB, EIIC, and EIID components, respectively), cmtA and cmtB 

(i.e., mannitol PTA system EIIA, and EIICBA or EIICB components, 

respectively), also involved in the fructose and mannose metabolism pathway; 

whereas cluster 19 was enriched in microbial genes significantly depleted in 

CHE, 9 out of 10 microbial genes associated with the PTS in this cluster were 

more abundant in CHE and CLE than in UNF. In cluster 47 there was 

enrichment of microbial genes with significantly increased abundance in CLE, 

and of microbial genes in the PTS pathway, that were more abundant in 

infected animals than in uninfected (e.g., agaF and celB, respectively, N-

acetylgalactosamine PTS system EIIA component, and cellobiose PTS system 

EIIC component). Considering that the network was constructed based on the 

abundances of microbial genes derived from UNF animals only, the results 

suggest that parasitism by O. ostertagi leads to alterations in microbial genes 

in clusters 19 and 47, particularly to an increase in the abundance of microbial 

genes in the PTS system. 

5.5.2.2 Previously identified rumen appetite- and performance-
associated microbial gene biomarkers are affected by the 
presence of the abomasal nematode 

Microbial genes previously identified as feed conversion efficiency biomarkers 

were evaluated here for their association to the parasitism levels; infA, galK, 

and xylE (translation initiation factor IF-1, galactokinase, and MFS transporter, 

SP family, xylose:H+ symporter, respectively) were important for the CHE vs. 
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UNF and CLE vs. UNF discriminations, and enriched in CHE and CLE, and 

were previously shown to be associated with decreased feed conversion 

efficiency, whereas dph2, hupB, ABC.SS.P, cbiN, fliN, aor, zntA, mcp and 

oadA (diphthamide synthase subunit DPH2, DNA-binding protein HU-beta, 

simple sugar transport system permease protein, cobalt transport protein, 

flagellar motor switch protein FliN/ FliY, aldehyde:ferredoxin oxidoreductase, 

Cd2+/Zn2+-exporting ATPase, methyl-accepting chemotaxis protein, and 

oxaloacetate decarboxylase, alpha subunit, respectively), here depleted in 

infected animals, were previously shown to be associated with increased feed 

conversion efficiency (Lima et al., 2019). Additionally, previously identified 

biomarkers for increased appetite (rfbG and rfbF, i.e., CDP-glucose 4,6-

dehydratase and glucose-1-phosphate cytidylyltransferase) and increased 

weight gain (slyD, i.e., FKBP-type peptidylprolyl cis-transisomerase SlyD, 

hupB, and dph2) were here depleted in infected animals, whereas biomarkers 

for decreased appetite (rpoB, INO1, and rdgB, i.e., DNA-directed RNA 

polymerase subunit beta, myo-inositol-1-phosphate synthase, and XTP/dITP 

diphosphohydrolase, respectively) and for decreased growth (rpmJ, and atpH, 

i.e., large subunit ribosomal protein L36, and F-type H+-transporting ATPase 

subunit delta, respectively, and amiABC) were enriched in O. ostertagi 

parasitised animals (Lima et al., 2019). 

5.5.2.3 Ruminal bacterial cell wall structures and environmental 
information processing affected by O. ostertagi parasitism  

Several ABC transporters were important for the discrimination of CHE and 

CLE from UNF, some of these were included in cluster 10, such as livK, afuA, 

metQ and togM (i.e., branched-chain amino acid transport system substrate-

binding protein, iron (III) transport system substrate binding protein, D-

methionine transport system substrate-binding protein, and oligogalacturonide 

transport system permease protein, respectively), which were depleted in CHE 

and CLE but enriched in VAC, in comparison to UNF, along with e.g., tcyN and 

lplB (i.e., L-cystine transport system ATP-binding protein, and putative 

aldouronate transport system permease protein, respectively), in cluster 11. 

Also in cluster 11, we found ABC transporters depleted in CHE, CLE, and VAC, 
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such as gsiC and lysY (i.e., glutathione transport system permease protein, 

and putative lysine transport system ATP-binding protein, respectively). 

Additionally, we found enrichment of microbial genes associated with the two-

component system in cluster 11 and 15, most of which were depleted in CHE 

and CLE, e.g., baeS, kdpD, and kdpE (i.e., two-component system, OmpR 

family, sensor histidine kinase BaeS and KdpD, and two-component system, 

OmpR family, KDP operon response regulator KdpE, respectively). 

Microbial genes in pathways associated with flagellar assembly were altered 

by the presence of the nematode and by the vaccination, for example, in 

cluster 19, microbial genes flgK, flgL and fliN (i.e., flagellar hook associated 

proteins 1 and 3, and a flagellar motor switch protein, respectively), depleted 

in infected animals, and in cluster 27, e.g., flagellar biosynthesis protein FlhA, 

Flip, and FliQ, enriched in infected and VAC animals. Interestingly, microbial 

genes associated with flagellar assembly in cluster 15, e.g., flagellar basal-

body rod protein flgB, flagellum-specific ATP synthase fliI, and flagellar 

biosynthesis protein fliR were found to be enriched in CLE and VAC, but 

depleted in CHE, showing the differential effect of the nematode according to 

the level of parasitism. 

Infected animals showed enrichment of microbial genes associated with 

bacterial defence mechanisms, e.g., microbial genes rbfA and rbfC (i.e., 

glucose-1-phosphate thymidylyltransferase, and dTDP-4-dehydrorhamnose 

3,5-epimerase, respectively), associated with streptomycin resistance (cluster 

18), dapA (i.e., 4-hydroxy-tetrahydrodipicolinate synthase, in cluster 12), 

associated with monobactam biosynthesis, vanX and vanW (i.e., zinc D-Ala-

D-Ala dipeptidase, and a vancomycin resistance protein, respectively), 

associated with vancomycin resistance (cluster 12). Vancomycin is an 

antibiotic compound that acts on the cell walls, inhibiting the PG synthesis by 

interacting with the PG precursor N-acetylmuramyl-pentapeptide on the 

exterior surface of the cell wall. Resistance to vancomycin is most often found 

in Gram-positive enterococci, and it occurs by modification of the pentapeptide 

(replacement of a C terminal D-ala residue by a D-lactate or a D-serine) so 
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they have low affinity to vancomycin or by degradation of these precursors by 

production of an enzyme (Courvalin, 2006). Vancomycin resistance is acquired 

through horizontally transferred plasmid inducible genetic elements; antibiotic-

resistant bacteria are an increasing public threat and the cattle rumen has been 

previously identified as a reservoir for microbial genes associated with 

antimicrobial resistance (AMR, Auffret et al. 2017). Auffret et al. (2017) 

suggested that the higher abundance of AMR genes observed in the rumen of 

concentrate-fed cattle was due to the change in diet from forage-fed, and that 

the presence of these genes was associated with the adaptation of microbial 

population to a recently altered environment. Although the nematode infection 

challenge differs substantially from that of altering the diet composition, our 

results are in line with this suggestion.  

Microbial genes associated with O-antigen nucleotide sugar biosynthesis in 

cluster 18 (e.g., wecB and gmd, i.e., UDP-N-acetylglucosamine 2-epimerase 

(non-hydrolysing), and GDPmannose 4,6-dehydratase, respectively), in 

cluster 42 (e.g., wbpB and wbpD, i.e., UDP-N-acetyl-2-amino-2-

deoxyglucuronate dehydrogenase, and UDP-2-acetamido-3-amino-2,3-

dideoxy-glucuronate N-acetyltransferase, respectively), and in cluster 49 (e.g., 

pseI, i.e., pseudaminic acid synthase) were mostly enriched in CHE and CLE, 

and depleted in VAC, in comparison to UNF. 

5.5.3 The influence of O. ostertagi on the rumen microbiome 
differs according to the degree of parasitism 

Our research suggests that the parasitism of the abomasal nematode O. 

ostertagi in cattle had significant effect on rumen microbiome profiles, and that 

this impact differs according to the degree of parasitism. At the microbiota 

level, we observed that microbial genera exclusively important for the CHE vs. 

UNF discrimination enriched in CHE mostly belonged to phylum 

Proteobacteria, Ascomycota, and Firmicutes, whereas no microbial genus was 

identified as important exclusively for the CLE vs. UNF discrimination and 

enriched in CLE. On the other hand, microbial genera depleted in CHE (CHE 

vs. UNF discrimination) belonged to the phyla Proteobacteria, Firmicutes and 
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Basidiomycota, whereas those depleted in CLE (CLE vs. UNF discrimination) 

were mostly Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. 

These results suggest that the enrichment of some microbial communities only 

occurred in the rumen of animals less resistant to the infection challenge 

(CHE), and that the depletion of groups differed according to the level of 

parasitism. At the functional level, we found that microbial genes involved in 

amino acids metabolism, i.e., arginine biosynthesis, alanine, aspartate and 

glutamate metabolism, histidine metabolism, and microbial genes involved in 

environmental sensing such as those in pathways of two-component systems, 

bacterial chemotaxis, and ABC transporters, were depleted in CHE, whereas 

microbial genes in pathways such as fatty acid degradation, O-antigen 

nucleotide sugar biosynthesis, pentose and glucuronate interconversions, and 

purine metabolism were enriched in CHE. On the other hand, alterations 

associated with low levels of parasitism (i.e., CLE) involved microbial genes 

associated with the methane metabolism, biosynthesis of cofactors, and the 

valine, leucine and isoleucine degradation pathways (depleted in CLE), and 

monobactam biosynthesis and vancomycin resistance (enriched in CLE). 

The CHE and CLE animals were selected from a wider group of calves, based 

on their extreme cFEC. This variation in cFEC is most likely due to the natural 

variation in the resistance of the animals to the parasite, associated, for 

example, with their innate immune systems’ differential ability to respond to 

the parasite’s presence, which could be the reason for the differences in the 

impact of the nematode on the rumen microbiome reported here. However, 

during its life cycle, O. ostertagi passes through the rumen, where L3 larvae 

undergo the exsheathment process, developing into L4 and exiting towards 

the abomasum; the efficiency of this process (i.e., % of L3 that successfully 

develop into L4 and leave the rumen) depends on the conditions found in the 

rumen (e.g., the pH and associated bicarbonate/carbonic acid buffering 

system act as stimuli, Derosa et al. 2005), and thus, the difference in cFEC 

between CHE and CLE could therefore be the result of a natural variation of 
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the rumen microbiome between more and less resistant animals that existed 

previously to the infection. 

5.5.4 Methanogens and methanotrophs are influenced by O. 
ostertagi parasitism 

Previous work showed decreased methane output in nematode parasitised 

ruminants, mostly due to decreased feed intake, whereas methane yield was 

increased in parasitised animals (Houdijk et al., 2017; Fox et al., 2018). 

Additionally, 17 peptides associated with the free-living phase of O. ostertagi 

were previously shown to influence methane metabolism (Heizer et al., 2013). 

Our results suggest that the increased methane yield observed in parasitised 

animals (even in comparison to restricted fed unparasitized controls) is at least 

partially associated with alterations in the rumen microbiota community 

structure caused by the presence of the nematode, as suggested previously 

by (Fox et al., 2018). The 20 most abundant microbial genera enriched in CHE, 

CLE, and VAC, in comparison to UNF, included taxa that have previously been 

associated with methane production. For example, Saccharomonospora, a 

glycopeptide-producing Actinobacterium (Donadio and Sosio, 2009) that was 

previously reported as positively associated with CH4 emissions in beef cattle 

(Martínez-Álvaro et al., 2020), Tsukamurella, an Actinobacterium previously 

reported as negatively associated with CH4 emissions in beef cattle (Auffret et 

al., 2018), Methylocystis, a facultative methylotroph (Haque et al., 2020) and 

Nitrosomonas, an epimurial bacterium that oxidizes methane and ammonia 

produced by ureolytic bacteria (Mitsumori et al., 2002), were here enriched, 

whereas Methylomonas, previously observed to negatively correlate to CH4 in 

the rumen of beef cattle (Auffret et al., 2018), was depleted in CHE, CLE, and 

VAC, in comparison to UNF. Furthermore, the comparison of VAC with INF 

showed that INF had enrichment of microbial genes with functions associated 

with methane emissions. 

5.6 Conclusions 

Our results suggest that infection by the abomasal nematode Ostertagia 

ostertagi, and the native vaccine against this parasite, deeply affects the 
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rumen microbial communities, with severe consequences for their 

functionality. We have identified several potentially pathogenic genera with 

increased abundances in the rumen of infected animals, in comparison to 

uninfected, unvaccinated animals. Additionally, we have shown that microbial 

genes involved in the fermentation process reported in the literature as 

influencing the host animal’s appetite, feed conversion efficiency, and methane 

production were altered in infected and vaccinated animals in comparison to 

uninfected ones. Rumen microbial genes enriched in infected animals were 

mainly associated with bacterial defence mechanisms and peptidoglycan 

biosynthesis, whereas those depleted were mainly involved in functions of 

environmental sensing and communication, which highlights a severe level of 

dysbiosis. Therefore, potential negative consequences of parasitism by 

nematodes in cattle, e.g., animal health and welfare issues, inappetence, and 

lower productivity, are not exclusively due to the direct effect of the nematode 

on the ruminant, i.e., by direct damage to gastric cells and alterations to 

abomasal pH, but also due to dysbiosis of the rumen microbiome. Additionally, 

we showed that the vaccinating the animals may have a positive effect on their 

rumen microbiome, by potentially preventing alterations of the microbiome 

associated with increased methane emissions, and hindered nitrogen 

utilization. However, the comparison of vaccinated with unvaccinated 

uninfected animals showed increased abundances of opportunistic pathogens. 

The differential results obtained from the pairwise comparisons of microbiome 

profiles of infected animals with high and low cumulative faecal egg count to 

those of uninfected animals indicated that microbiome features could be used 

as biomarkers for resilience of the host animal to infection by O. ostertagi, 

which could potentially be applied in the development of targeted dietary 

interventions (through pre- or probiotics) to alleviate the impact of the infection. 

Furthermore, we underlined the need to further develop anthelminthic vaccines 

that build on the hosts’ immune response, without negatively impacting the 

rumen microbiome and associated functionality. 
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Chapter 6 The caecal microbiome profiles are 
affected by the presence of the 
abomasal parasitic nematode 
Ostertagia ostertagi in dairy cattle 

6.1 Abstract 

Ostertagia ostertagi is one of the most economically impactful gastrointestinal 

parasitic nematodes in cattle production systems, causing inappetence, 

reduced growth rates, and even death. Since the microbiome in bovine 

gastrointestinal tract (GIT) is so closely associated with host production and 

health traits, we investigated the influence of the nematode on the caecal 

microbiome based on animals challenged by oral administration of 1000 L3 

infectious O. ostertagi larvae/day for 25 days after receiving either a native 

vaccine against the parasite or an injection of adjuvant-only (positive control). 

The caecal microbiome samples of 16 cattle collected at slaughter were whole 

metagenome sequenced and resolved into microbial taxa and microbial genes 

compositions. The caecal microbiome at the taxonomic and genetic levels of 

infected and vaccinated animals was compared to that of uninfected animals 

(negative control), using an iterative partial least squares-based analyses. The 

results showed that vaccinated animals were depleted of e.g., opportunistic 

pathogen Bordetella. Additionally, the infection and the vaccination affected 

microbial genes mostly associated with bacterial cell wall and environmental 

sensing, including ABC transporters and genes involved in the two-systems 

components, and O-antigen nucleotide sugar biosynthesis. The caecum of 

infected animals was enriched in microbial genes associated with degradation 

of aromatic compounds. Furthermore, comparing the microbiome of infected 

with that of vaccinated animals revealed that the vaccine leads to depletion of 

microbial genes e.g., cheA (two-component system, chemotaxis family), 

previously associated with improved feed conversion efficiency in beef cattle, 

and microbial genes associated with production of bacteriocins, e.g., lantibiotic 

biosynthesis proteins nisB and nisC. This study revealed that the abomasal 

nematode O. ostertagi substantially affected the caecal microbiome and 
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identified potential microbial biomarkers that could be used for selection of 

animals in breeding programmes, or the development of individualized 

nutritional interventions to circumvent the impacts of caecal microbiome 

dysbiosis on the hosts’ performance. 

6.2 Introduction 

The symbiotic relationship between the gastrointestinal microbiome and the 

bovine host is a main focus of research, due to its involvement in the animal’s 

health (O’Hara et al., 2020), productivity (Guan et al., 2008; Lima et al., 2019; 

O’Hara et al., 2020), and environmental impact (Difford et al., 2018; Martínez-

Álvaro et al., 2020). Most often, the rumen and its microbiota are the subject 

of the interest due to their essential role in the fermentation of plant biomass. 

The fermentation of complex polysaccharides such as cellulose and 

hemicellulose, into volatile fatty acids, microbial protein, and vitamins by the 

resident flora has been shown to contribute 62% of the total metabolizable 

energy (ME) in steers (Siciliano-Jones and Murphy, 1989). However, the 

hindgut also plays a part in reutilizing previously undigested nutrients and the 

caecum fermentation has been reported to contribute 9% of the ME (Siciliano-

Jones and Murphy, 1989). The rumen and the caecum differ in many aspects, 

e.g., their location within the gastrointestinal tract (GIT), with the rumen being 

the first fermentation chamber in the gastrointestinal tract of ruminants, and 

the caecum being the first segment of the large intestine, which influence the 

residing flora. Whereas the rumen is dominated by Bacteroidetes (cellulolytic 

and saccharolytic bacteria (Naas et al., 2014), characteristically associated 

with high-energy diets (Ottman et al., 2012)), higher abundances of Firmicutes 

(mostly cellulolytic) have been reported in the caecum microbiota (de Oliveira 

et al., 2013). The specific microbiome of each GIT organ has been suggested 

to be associated with different functions; for example, microbial protein 

produced in the rumen flows into the abomasum, where it is digested and 

absorbed to be used as main protein source for the ruminant (Strom and 

Øskov, 1984). On the other hand, the caecum microbiota is involved in the 

fermentation of available nutrients that bypass the rumen and the abomasum 
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(de Oliveira et al., 2013). With 70% of the operational taxonomic units (OTUs) 

identified in the caecum being associated with increased growth rates in cattle, 

the caecal microbiome has been suggested as having an underappreciated 

influence on the host’s performance (Freetly et al., 2020). 

The abomasal nematode Ostertagia ostertagi is a cattle parasite that impairs 

the gastrointestinal function of the host (usually first and/or second season 

calves), by negatively influencing the host’s appetite and liveweight gain (Fox 

et al., 1989), decreasing rate of passage of digesta (Fox et al., 1989), and by 

altering gut motility (Bueno et al., 1982; Fox et al., 2006). During the parasitic 

life stage of O. ostertagi, the third stage infective larvae (L3) invade the gastric 

glands in the abomasum, where they develop into fourth stage larvae (L4) and 

into young adults (L5) that exit the gastric glands, damaging them. The 

damaged gastric glands have been associated with reduced hydrochloric acid 

production (due to damaged parietal cells), and subsequently to increased pH 

observed in the abomasum of infected animals, accompanied by 

hypergastrinemia (Fox et al., 1987), and leading to an accumulation of non-

activated pepsinogen in the gastric glands and increased permeability of the 

mucosa (allowing the pepsinogen to leak back into the blood stream) (Fox et 

al., 2002). Increased abomasal pH, blood gastrin, and pepsinogen levels are 

also associated with the presence of the nematode (by transplantation of adult 

worms, i.e., with no damage to the gastric glands, McKellar et al., 1986). 

Alterations of the abomasal pH have been shown to critically affect the 

abomasal microbiome. For example, the increased pH in the abomasum could 

increase the survivability of Gram-negative pathogens ingested with the feed, 

such as Salmonella and Escherichia coli (Constable et al., 2006).  

In comparison to other bovine pathogens, immunity to O. ostertagi takes a long 

time to develop, with some calves remaining susceptible for up to two years of 

age, and is incomplete, with Ostertagia being reported as suppressing host 

cellular and antibody responses to infection (Klesius, 1988). The prevention 

and control of the parasite in bovine herds is most often achieved by the use 
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of anthelmintics, but the drawback of resistance development (Geerts et al., 

1987; Edmonds et al., 2010) makes vaccination a more attractive strategy. 

Considering the close relationship between the GIT microbiome and the host 

animals’ performance traits, the ideal vaccine should build up the animal’s 

immunity without negatively impacting the microbiome. 

The main objective of the present study was to investigate the impact of 

abomasal O. ostertagi infection on the caecal microbiome of sub clinically 

infected animals. In addition, we explored the influence of a native vaccine on 

the caecal microbiome of dairy cattle. Furthermore, we elucidate the 

differences between the caecal and ruminal microbiome profiles and their 

functionality on healthy (i.e., uninfected) animals, using microbiome 

community and functional microbial gene profiles. 

6.3 Materials and methods 

6.3.1 Ethics statement 

Immunizations and parasite challenges of cattle were performed at Moredun 

Research Institute (MRI) under Home Office licence 70/7914. Ethical approval 

was obtained from the MRI Animal Welfare and Ethical Review Body (E12/18). 

Animals were euthanized at the MRI post-mortem facility. 

6.3.2 Animals and experimental procedure 

An experimental trial was carried out in 2018 to determine the effect of a native 

vaccine against Ostertagia ostertagi in dairy cattle (British Friesian and 

Norwegian Red). 
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Figure 1. Schematic representation of the experimental timeline. 

 

This experiment included 20 male calves of 4-5 months of age. Animals were 

allocated into 2 groups, balanced for breed and weight. Animals in group 1 

were vaccinated using the native O. ostertagi vaccine, whereas animals in 

group 2 were treated with adjuvant-only (Quil A® (Brenntag Biosector) - 750ug 

per dose, positive control). Administration of vaccine or adjuvant-only occurred 

on days 0, 21 and 42 of the experimental trial (Figure 1). The infection 

challenge started on day 42, when animals were orally administered 1000 

infectious L3 larvae per day, for 25 days. During the experimental trial, 13 

faeces samples were collected per animal, and animals were evaluated for 

their cumulative faecal egg count (cFEC). The cFEC is an indicator of worm 

fitness, and it has been previously used to determine vaccine efficacy against 

O. ostertagi (Meyvis et al., 2007). A total of 12 animals were identified for post-

mortem rumen and caecum digesta sampling: 8 animals from group 2 (infected 

non-vaccinated) were identified based on their high (n=4) and low (n=4) cFEC 

(CHE and CLE, respectively) and 4 animals from group 1 (infected and 

vaccinated, VAC) were selected from the cFEC-boxplot’s second and third 

quantiles. Additionally, 4 calves used as negative control (uninfected and non-

vaccinated, UNF) throughout the experimental trial were also included for 

rumen and caecum digesta sampling.  

6.3.3 Sampling of ruminal and caecal digesta and whole 
metagenomic sequencing 

Animals included in the experimental trial were slaughtered at the Moredun 

Research Centre. Sixteen samples of rumen and caecum digesta each were 
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collected within 10 minutes of the slaughter. DNA was extracted from the 

samples following the methodology described in (Yu and Morrison, 2004).  

Illumina TruSeq DNA Nano libraries were prepared from genomic DNA and 

sequenced on Illumina NovaSeq 6000 systems by Edinburgh Genomics 

(Edinburgh, UK). Paired-end reads (2 × 150 bp) were generated, resulting in 

between 8 and 50 GB per sample (between 28 and 165 million paired reads). 

For taxonomic classification, the sequence reads of the samples were aligned 

to a database including genomes from the Hungate 1000 Collection (Seshadri 

et al., 2018) and metagenome-assembled genomes (MAGs) from beef rumen 

samples (Stewart et al., 2018) using Kraken (Wood and Salzberg, 2014). In 

total, 1200 genera found in all animals were identified and described as the 

genus having the highest similarity with the identified microbial genome or 

MAG. For functional annotation, DIAMOND was used to blast the reads for 

each sample against the KEGG database (downloaded 15/09/18) (Buchfink et 

al., 2015). Gene abundance was calculated as the sum of reads mapping to 

each KEGG orthologue. 

6.3.4 Statistical analyses 

6.3.4.1 Comparison of caecal and ruminal microbiome profiles 

To assess the differences between the caecal and ruminal microbiome profiles 

at the domain level, we estimated the effect of the sample type (i.e., caecum 

and rumen) on the Archaea:Bacteria ratio in an ANOVA. Additionally, at the 

phylum and genera levels, we regressed the relative abundances of each of 

the five most abundant phyla and of the ten most abundant genera on sample 

type. The relative abundances of these taxa were used to create two stacked 

bar charts, in R.  

Alpha and beta diversity at phylum, family, genus, and microbial genes levels 

were estimated within the caecum and the rumen microbiomes and compared 

using ANOVA, to further evaluate differences between the microbiome of 

these two organs. Alpha diversity was assessed through observed richness 

(Sobs), Shannon index (H’), and adjusted Shannon index (H’adj), whereas 
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beta diversity was assessed using Bray Curtis dissimilarity (BC). These indices 

were estimated using the vegan package (Oksanen et al., 2019) in R. 

A total of 45 phyla, 461 families, 1200 genera, and 8723 microbial genes (i.e., 

KEGG orthologues) were identified in the 32 samples (16 samples from each 

rumen and caecum), and the relative abundances of each microbiome feature 

was calculated within sample. Microbial taxa and microbial genes that were 

absent from at least one sample or that had average relative abundance lower 

than 0.001% were removed from the datasets, leaving a total of 36 phyla, 367 

families, 1059 genera and 3169 microbial genes for further analyses. The 

original datasets (i.e., read counts) were centred-log ratio (CLR) transformed, 

due to the compositional nature intrinsic to microbiome datasets (Greenacre, 

2018). Partial least squares discriminant analyses (PLS-DA) were applied to 

CLR-transformed datasets at each taxonomic (and microbial genes) level to 

evaluate whether the microbiome profiles of UNF animals were different 

between sample types (i.e., rumen and caecum). These analyses were carried 

out using ‘mixOmics’ package (Cao et al., 2020) in R.  

6.3.4.2 Comparing caecal microbiome profiles of unvaccinated 
challenged and vaccinated challenged with those of uninfected 
animals 

We compared the alpha diversity within the caecal microbiome (at taxonomic 

and genetic level) of animals subjected to the different treatments, based on 

estimates of Sobs, H’ and H’adj. Beta diversity was assessed and compared 

based on BC within treatment group. These indices were calculated using the 

vegan package (Oksanen et al., 2019) and compared using ANOVA in R. 

At the genus-level, the original dataset included the sequence read counts of 

1200 microbial genera. Microbial genera that were absent from at least 30% 

of the animals were removed from the dataset. The remaining zeros were 

imputed using the cmultRepl function of the package zCompositions (Palarea-

Albaladejo and Martín-Fernández, 2020) in R (Version 1.4.1103). A total of 

1194 microbial genera were used for further analyses, after CLR-transforming 

the datasets. At the microbial genes level, the original dataset included the 
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sequence read counts of 8484 microbial gene orthologs (i.e., KEGG) and the 

same thresholds and transformations were applied, resulting in a dataset 

containing the CLR-transformed abundance of 6647 microbial genes for 

further analyses. 

To unravel the effect of the infection and the vaccine on the caecal microbiome, 

pairwise discriminant partial least squares models (PLS-DA) were calculated 

based on the CLR-transformed abundance of 1194 microbial genera and 6315 

microbial genes identified, comparing CHE, CLE, and VAC, to UNF. After 

calculating the first model, the variables with variable importance in projection 

(VIP) scores equal or superior to 1 were selected, and used in a second PLS-

DA. This process continued iteratively until we identified the smallest set of 

variables that best separated the treatment groups. Model quality was 

assessed through prediction error rates and area under the curve of operator 

characteristics (AUROC). Microbial genera and microbial genes identified as 

important for the discrimination between groups were also used in principal 

component analyses (PCA) as to evaluate their discriminative ability when no 

grouping effect is included in the model. Significant discrimination was 

assumed when (i) PLS-DA-based AUROC was equal to 1 with corresponding 

p-value < 0.05, (ii) no overlap between the 95% confidence ellipses in the 

score plot and the prediction error rate (based on confusion matrix) was the 

lowest and (iii) PCA-based score plot showed no overlap between the 95% 

confidence ellipses. We also compared the microbiome profiles of CHE and 

CLE to those of VAC, to better understand the impact of using a vaccine 

against the nematode. All analyses were performed using R Version 1.4.1103 

(R Core Team, 2021). 
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6.4 Results 

6.4.1 Differences between ruminal and caecal microbiota 
profiles 

At domain level, we compared the Archaea:Bacteria ratio, which did not 

significantly differ between caecum and rumen (0.039 ± 0.027, and 0.028 ± 

0.006, respectively). 

6.4.1.1 Diversity indices in the caecum and rumen microbiome profiles 

Diversity indices of observed richness (Sobs), Shannon index (H’), adjusted 

Shannon index (H’adj), and Bray Curtis dissimilarity (BC), calculated within 

sample type) were compared at phylum, family, genus, and microbial genes 

levels (Table 1).  

Table 1. Diversity at phylum, family, genus, and microbial genes levels in caecal and ruminal 
samples 

Taxon/Genes Diversity index Caecum Rumen p-value 

Phylum Sobs 44.813 ± 0.403 44.75 ± 0.447 0.681 

 H' 1.093 ± 0.061 1.134 ± 0.053 0.050 

 H'adj 0.287 ± 0.016 0.298 ± 0.015 0.051 

 BC 0.13 ± 0.039 0.125 ± 0.082 0.823 

Family Sobs 460.313 ± 0.704 460.563 ± 0.512 0.260 

 H' 2.549 ± 0.159 2.055 ± 0.145 3.17E-10 

 H'adj 0.416 ± 0.026 0.335 ± 0.024 3.08E-10 

 BC 0.177 ± 0.039 0.165 ± 0.071 0.567 

Genus Sobs 1195.625 ± 1.544 1194.875 ± 2.63 0.333 

 H' 3.714 ± 0.302 2.816 ± 0.16 1.42E-11 

 H'adj 0.524 ± 0.043 0.397 ± 0.023 1.42E-11 

 BC 0.214 ± 0.036 0.167 ± 0.06 0.012 

Microbial genes Sobs 7146.625 ± 316.675 6937.438 ± 298.075 0.064 

 H' 7.228 ± 0.039 7.25 ± 0.011 0.041 

 H'adj 0.815 ± 0.003 0.82 ± 0.004 4.11E-4 

 BC 0.086 ± 0.043 0.115 ± 0.082 0.224 

Sobs, H’, H’adj, and BC refer to observed richness, Shannon index, adjusted Shannon index, and 
Bray Curtis dissimilarity (calculated within sample type, caecum or rumen), respectively. Averages 
± standard deviations are presented for each sample type; the p-values were obtained using 
ANOVA. Shaded cells represent significant differences. 

 

No significant differences were observed in richness and Bray-Curtis 

dissimilarity between rumen and caecum. For unadjusted and adjusted 
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Shannon indices, we observed significantly higher evenness of the microbial 

community at family and genus levels in the caecum, whereas at microbial 

genes level, evenness was significantly higher in the rumen.  

 

Figure 2. Relative abundances of the 5 most abundant phyla in caecum and rumen. "Others" 
includes all phyla with relative abundance lower than 1%. UNF represents “uninfected” 
animals, C and R represent “caecum” and “rumen”, respectively. 

 

The ANOVA analysis of the most abundant phyla in the rumen and caecum of 

UNF animals showed that Actinobacteria and Firmicutes were significantly 

more abundant in the caecum, whereas Bacteroidetes and Proteobacteria 

were significantly more abundant in the rumen (Figure 2, Table 2). 

  



Caecal microbiome profiles affected by Ostertagia ostertagi 
 

165 
 

 

Table 2. Average relative abundances of most abundant phyla in rumen and caecum. 

Phylum Rumen Caecum p-value 

Actinobacteria 2.1E-2 ± 5.2E-3 8.4E-2 ± 4.1E-2 2.2E-2 

Bacteroidetes 4.9E-1 ± 5.9E-2 1.4E-1 ± 3.1E-2 4.3E-5 

Euryarchaeota 3.2E-2 ± 7.9E-3 2.3E-2 ± 1.0E-2 2.2E-1 

Firmicutes 4.1E-1 ± 5.6E-2 7.1E-1 ± 1.7E-2 5.0E-5 

Proteobacteria 9.1E-3 ± 1.0E-3 2.0E-2 ± 4.0E-3 2.2E-3 

Others 3.5E-2 ± 1.0E-2 2.7E-2 ± 2.7E-3 1.6E-1 

The columns headings “Rumen” and “Caecum” contain the average ± the 
standard deviation of the relative abundance of each phylum in the samples 
obtained from uninfected animals. The p-value was obtained using ANOVA. 
Shaded cells represent significant differences (p-value<0.05). 

 

The analyses of the most abundant genera in the microbiota profiles of 

uninfected animals in each sample type showed that Bacteroides, Clostridium, 

Disctyostelium, Ruminococcus, and Sarcina were significantly more abundant 

in the caecum, whereas Butyrivibrio, Fibrobacter, Methanobrevibacter, 

Prevotella and Succiniclasticum were significantly more abundant in the rumen 

(Figure 3, Table 3).  
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Figure 3. Relative abundances of the 10 most abundant genera in caecum and rumen. 
"Others" includes all other genera. UNF represents “uninfected” animals, C and R represent 
“caecum” and “rumen”, respectively. 

 

Table 3. Average relative abundances of most abundant genera in rumen and caecum 

Genus Rumen Caecum p-value More abundant in 

Bacteroides 1.1E-3 ± 1.6E-4 4.4E-2 ± 9.0E-3 8.1E-5 

Caecum 

Clostridium 1.7E-3 ± 1.3E-4 2.4E-2 ± 2.5E-3 2.3E-6 

Dictyostelium 1.0E-2 ± 3.3E-3 1.6E-2 ± 3.3E-3 3.8E-2 

Ruminococcus 1.3E-1 ± 1.8E-2 2.5E-1 ± 1.9E-2 1.0E-4 

Sarcina 1.4E-1 ± 1.9E-2 1.4E-1 ± 3.1E-2 1.8E-3 

Others 1.5E-1 ± 5.7E-3 4.1E-1 ± 4.6E-2 3.9E-5 

Butyrivibrio 4.5E-2 ± 1.2E-2 1.8E-2 ± 8.1E-4 3.6E-3 

Rumen 

Fibrobacter 7.5E-2 ± 3.6E-2 3.9E-3 ± 2.1E-3 7.2E-3 

Methanobrevibacter 1.9E-1 ± 4.7E-2 8.7E-2 ± 4.9E-2 2.2E-2 

Prevotella 1.7E-1 ± 4.6E-2 1.6E-2 ± 3.8E-3 4.9E-4 

Succiniclasticum 1.8E-1 ± 4.0E-2 3.7E-3 ± 1.2E-4 1.3E-4 

The columns named “Rumen” and “Caecum” contain the average ± the standard deviation of the 
relative abundance of each genus in the samples obtained from uninfected animals. The p-value was 
obtained from ANOVA comparison; all comparisons showed significant differences. 

 

6.4.1.2 Comparison of ruminal and caecal microbiome profiles 

PLS-DA analyses at phylum, family, genus, and microbial genes level 

(including 36, 367, 1059, and 3169 explanatory variables, respectively) 
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revealed significant discrimination between microbiome profiles obtained from 

rumen and caecum samples (Figure 4). 

 

Figure 4. Partial least squares discriminant analyses (PLS-DA) plots of all individuals based 
on a) 36 phyla, b) 367 families, c) 1059 genera, and d) 3169 microbial genes used in the 
discrimination analyses rumen and caecum. CHE, CLE, UNF and VAC refer to treatment 
groups infected showing high and low cumulative faecal egg count, uninfected, and 
vaccinated, respectively. 

 

PLS-DA revealed significant differences between the microbiome profiles 

obtained from rumen and caecum; whereas Fibrobacter and Succiniclasticum 

were more than 2,000-fold and Lentisphaera and Prevotella more than 1000-

fold more abundant in the rumen, Terrisporobacter, Methanocorpusculum, 

Clostridioides and Turicibacter were more than 10,000-fold more abundant in 

the caecum.  

At the functional level, this comparison revealed that 1816 microbial genes had 

VIP ≥ 1, 798 of which were enriched in the rumen, whereas 1018 were 

enriched in the caecum. For example, microbial genes phoN, and GALC (i.e., 



Caecal microbiome profiles affected by Ostertagia ostertagi 
 

168 
 

acid phosphatase (class A), and galactosylceramidase, respectively) were 

more than 3,000-fold more abundant in the rumen, whereas agaW, and agaE 

(i.e., N-acetylgalactosamine PTS system EIIC component, and N-

acetylgalactosamine PTS system EIID component, respectively). Microbial 

genes enriched in the caecum were involved in carbon metabolism, 

biosynthesis of amino acids, and biosynthesis of cofactors pathways. At the 

module level, these microbial genes were found to participate in modules such 

as methanogenesis, acetate => methane (methane and carbon metabolism 

pathways); glycolysis (Embden-Meyerhof pathway), glucose => pyruvate 

(glycolysis/gluconeogenesis and carbon metabolism pathways); Lysine 

biosynthesis, acetyl-DAP pathway, aspartate => lysine (lysine biosynthesis 

and biosynthesis of amino acids pathways). 

Microbial genes enriched in the rumen included ABC transporters and 

microbial genes involved in amino sugar and nucleotide sugar metabolism, 

biosynthesis of amino acids, and the two-component system pathways. At 

module level, the analyses of these microbial genes revealed that they had 

functions in the KDO2-lipid A biosynthesis, Raetz pathway, non-LpxL-LpxM 

type, and the KDO2-lipid A biosynthesis, Raetz pathway, LpxL-LpxM type 

modules, part of the lipopolysaccharide biosynthesis pathway; the 

NADH:quinone oxidoreductase, prokaryotes module, part of the oxidative 

phosphorylation pathway; the tryptophan biosynthesis, chorismate => 

tryptophan module, part of the phenylalanine, tyrosine and tryptophan 

biosynthesis pathway, and the 3-Hydroxypropionate bi-cycle module, part of 

the carbon metabolism and carbon fixation in prokaryotes pathways.  

6.4.2 Comparison of microbiome profiles of infected, 
vaccinated infected, and uninfected animals 

6.4.2.1 Diversity indices 

The comparison of the alpha and beta diversity estimates for microbiome 

profiles of animals under different treatments showed that no significant 

differences were found for alpha diversity. However, BC was significantly 

different between CHE and VAC at the genera level (0.33 ± 0.03 and 0.26 ± 
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0.02, respectively, p-value = 0.034), and between UNF and VAC at the 

microbial genes level (0.22 ± 0.02 and 0.11 ± 0.03, respectively, p-value = 

0.015). 

6.4.2.2 Pairwise comparison of caecal microbiome profiles of 
unvaccinated infected and vaccinated infected animals with 
those of uninfected animals 

6.4.2.2.1 Comparison of microbiota profiles 

Microbial genera were evaluated for their contribution to the discrimination 

between groups (in the pairwise PLS-DA comparisons) based on their VIP 

(i.e., highest VIP corresponds to stronger contribution); microbial genera with 

VIP ≥ 1 were therefore identified as the most affected by the infection by O. 

ostertagi or by the vaccine against this parasite. The pairwise comparison 

based on iterative PLS-DA analyses revealed that the first, third, and second 

PLS-DA models, which included 1194, 204, and 455 microbial genera, led to 

significant discrimination of CLE, CHE, and VAC, respectively, from UNF in 

both the PLS-DA and the PCA (Figure 5). In these PLS-DA models 

discrimination of CLE, CHE, and VAC from UNF, 478, 90, and 167 microbial 

genera had VIP ≥ 1. 
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Figure 5. Partial least squares discriminant analyses (PLS-DA, top figures) and principal 
component analyses (PCA, bottom figures) plots showing significant discrimination of a) 
infected animals with low cumulative faecal egg count (CLE), b) infected animals with high 
cumulative faecal egg count (CHE), and c) vaccinated and challenged animals (VAC), 
respectively, from uninfected animals (UNF). PLS-DA and PCA models for CLE vs. UNF, CHE 
vs. UNF, and VAC vs. UNF discriminations included 1194, 204, and 455 genera-level CLR-
transformed abundances, respectively. 

 

The most important microbial genera (i.e., the smallest set of variables able to 

significantly discriminate the groups, Figure 6) for the CLE vs. UNF 

discrimination were Geodermatophilus and Pusillimonas (enriched and 

depleted, respectively, in CLE), for the CHE vs. UNF discrimination were 

Pimelobacter and Sulfurospirillum (enriched and depleted, respectively, in 

CHE) and for the VAC vs. UNF discrimination were Glaesserella, 

Oceanimonas, and Desulfobacter (all depleted in VAC). 
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Figure 6. Smallest set of microbial genera significant discriminating uninfected (UNF) from a) 
infected with low cumulative faecal egg count (CLE), b) infected with high cumulative faecal 
egg count (CHE), and c) vaccinated and challenged (VAC). Biplots of partial least squares 
discriminant analyses using centred logratio-transformed abundances. 

 

 

Figure 7. Microbial genera identified for the discrimination of uninfected (UNF) from infected 
with low cumulative faecal egg count (CLE), infected with high cumulative faecal egg counts 
(CHE), and vaccinated and challenged (VAC) animals. “Enriched” and “Depleted” refer to the 
increased or decreased centre-logratio abundances, respectively, of the microbial genera in 
CHE, CLE, and/or VAC, in comparison to the abundance in UNF animals. 

 

Of the microbial genera important for the discrimination of CHE, CLE, and VAC 

from UNF, 21 were affected in all three groups (vaccinated and both infected 
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groups with different levels of infection), whereas 54 were exclusively affected 

in the infected groups. A total of 58 microbial genera were important for the 

discrimination between VAC and UNF but not for the discrimination between 

infected (either CLE or CHE) and UNF animals (Figure 7). This suggests that 

these microbial genera were affected by the vaccine and not by the presence 

of the nematode itself. Additionally, 14 and 316 microbial genera were 

differentially affected by the level of infection (important for the discrimination 

of CHE, and CLE, respectively, from UNF).  

6.4.2.2.2 Comparison of microbiome profiles at the functional level 

When focusing on microbial genes, the PLS-DA analyses revealed that the 

PLS-DA models including 6315, 2946, and 911 microbial genes led to the 

significant separation of CLE, CHE, and VAC, respectively, from UNF (Figure 

8). Of these, 3298, 772, and 583 had VIP ≥ 1. 

 

 

Figure 8. Partial least squares discriminant analyses (PLS-DA, top figures) and principal 
component analyses (PCA, bottom figures) plots showing significant discrimination of a) 
infected animals with low cumulative faecal egg count (CLE), b) infected animals with high 
cumulative faecal egg count (CHE), and c) vaccinated and challenged animals (VAC), 
respectively, from uninfected animals (UNF). PLS-DA and PCA models for CLE vs. UNF, CHE 
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vs. UNF, and VAC vs. UNF discriminations included 6315, 2946, and 911 microbial genes 
CLR-transformed abundances. 

 

Most microbial genes enriched in CLE, in comparison to UNF, were associated 

with (i) energy production and conversion, for example, aceE and sucA (i.e., 

pyruvate dehydrogenase E1 component, and 2-oxoglutarate dehydrogenase 

E1 component, respectively) in the carbon metabolism pathway, and aldB and 

frdC (i.e., aldehyde dehydrogenase, and fumarate reductase subunit C, 

respectively, in the pyruvate metabolism pathway; (ii) carbohydrate transport 

and metabolism, mostly ABC transporters such as cebE and gtsC (i.e., 

cellobiose transport system substrate-binding protein, and glucose/mannose 

transport system permease protein, respectively) and genes in the starch and 

sucrose metabolism pathway such as otsA and treY (i.e. trehalose 6-

phosphate synthase, and (1->4)-alpha-D-glucan 1-alpha-D-glucosylmutase); 

(iii) inorganic ion transport and metabolism, also mostly ABC transporters, e.g., 

thiP and mntC (thiamine transport system permease protein, and manganese 

transport system substrate-binding protein, respectively), but also genes 

involved in the two-component system pathway, phoD and kdpA (i.e., alkaline 

phosphatase D, and potassium-transporting ATPase potassium-binding 

subunit, respectively) (iv) and the amino acid transport and metabolism, e.g., 

MAO and E1.5.3.1 (i.e., monoamine oxidase, and sarcosine oxidase, 

respectively) in the glycine, serine and threonine metabolism pathway, and 

dadA and phhA (i.e., D-amino-acid dehydrogenase, and phenylalanine-4-

hydroxylase, respectively), in the phenylalanine metabolism pathway. 

Most microbial genes depleted in CLE animals were associated with (i) 

carbohydrate transport and metabolism, mostly involved in carbon metabolism 

and glycolysis / gluconeogenesis pathway such as glk and pfkA (i.e., 

glucokinase, and 6-phosphofructokinase 1, respectively), (ii) amino acid 

transport and metabolism, including mostly genes involved in biosynthesis of 

amino acids, such as hom and hisD (i.e., homoserine dehydrogenase, and 

histidinol dehydrogenase, respectively), (iii) energy production and 
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conversion, mostly in the carbon metabolism and pyruvate metabolism, such 

as mdh and porA (i.e., malate dehydrogenase, and pyruvate ferredoxin 

oxidoreductase alpha subunit, respectively), and (iv) cell 

wall/membrane/envelope biogenesis, mostly in the O-antigen nucleotide sugar 

biosynthesis pathway, such as UGDH and rfbD (i.e., UDPglucose 6-

dehydrogenase, and dTDP-4-dehydrorhamnose reductase, respectively) and 

peptidoglycan biosynthesis pathway, such as mrcA and murA (i.e., penicillin-

binding protein 1A, and UDP-N-acetylglucosamine 1-carboxyvinyltransferase, 

respectively).  

Most microbial genes important for the CHE vs. UNF discrimination were 

associated with (i) energy production and conversion (8.3% and 5.7% of genes 

enriched and depleted in CHE, respectively) and carbohydrate transport and 

metabolism (7% of microbial genes enriched or depleted in CHE). Microbial 

genes involved in lipid transport and metabolism and amino acid transport and 

metabolism were mostly enriched in CHE, whereas those involved in cell 

wall/membrane/envelope biogenesis were mostly depleted in CHE. Genes in 

the lipid metabolism enriched in CHE were found to be part of the benzoate 

degradation pathway, e.g., GCDH and pcaI (i.e., glutaryl-CoA dehydrogenase, 

and 3-oxoadipate CoA-transferase, alpha subunit, respectively) and carbon 

metabolism pathway, e.g., PCCA and ecm (i.e. propionyl-CoA carboxylase 

alpha chain, and ethylmalonyl-CoA mutase, respectively), whereas genes 

associated with amino acid transport and metabolism mostly belonged to the 

biosynthesis of amino acids pathway, including phhA and GPT (i.e., 

phenylalanine-4-hydroxylase, and alanine transaminase, respectively). Genes 

involved in Cell wall/membrane/envelope biogenesis, depleted in infected 

animals, belonged mostly to the Lipopolysaccharide (LPS) biosynthesis 

pathway, e.g., lpxK and kdsB (i.e., tetraacyldisaccharide 4'-kinase, and 3-

deoxy-manno-octulosonate cytidylyltransferase (CMP-KDO synthetase), 

respectively), and to the amino sugar and nucleotide sugar metabolism and O-

antigen nucleotide sugar biosynthesis pathways, e.g., rfbG and gmd (i.e., 
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CDP-glucose 4,6-dehydratase, and GDPmannose 4,6-dehydratase, 

respectively). 

The significant discrimination between VAC and UNF was observed in a PLS-

DA model using 911 microbial genes, 583 of which had VIP ≥ 1. The 53 

microbial genes that were enriched in VAC animals were mostly associated 

with amino acid transport and metabolism, e.g., GPT (i.e., alanine 

transaminase) in the alanine, aspartate and glutamate metabolism and 

arginine biosynthesis pathways and energy production and conversion, e.g., 

sdhD (i.e., succinate dehydrogenase / fumarate reductase, membrane anchor 

subunit) and mtmC (i.e., monomethylamine corrinoid protein), in the carbon 

metabolism pathway. Microbial genes depleted in VAC were mostly associated 

with (i) carbohydrate transport and metabolism, including ABC transporters, 

e.g., aglK and alsB (i.e., alpha-glucoside transport system ATP-binding 

protein, and D-allose transport system substrate-binding protein, respectively) 

and microbial genes participating in pathways such as pentose and 

glucuronate interconversions, e.g., uxaB and uidA (i.e., tagaturonate 

reductase, and beta-glucuronidase, respectively), galactose metabolism, e.g., 

galK (i.e., galactokinase, also in the amino sugar and nucleotide sugar 

metabolism pathway) and pfkA (i.e., 6-phosphofructokinase 1, also in the 

fructose and mannose metabolism), (ii) amino acid transport and metabolism, 

most in the biosynthesis of amino acids pathway, e.g., hisD and metH (i.e., 

histidinol dehydrogenase, and 5-methyltetrahydrofolate--homocysteine 

methyltransferase, respectively), (iii) energy production and conversion, e.g., 

korC and cdhC (i.e., 2-oxoglutarate ferredoxin oxidoreductase subunit gamma, 

and acetyl-CoA decarbonylase/synthase, CODH/ACS complex subunit beta, 

respectively) in the carbon metabolism pathway, LDH and E3.1.2.1 (i.e. L-

lactate dehydrogenase, and acetyl-CoA hydrolase, respectively) in the 

pyruvate metabolism, and ME2 and DLAT (i.e., malate dehydrogenase 

(oxaloacetate-decarboxylating), and pyruvate dehydrogenase E2 component 

(dihydrolipoamide acetyltransferase), respectively), in both, and (iv) cell 

wall/membrane/envelope biogenesis, such as rfbG and gale (i.e., CDP-
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glucose 4,6-dehydratase, and UDP-glucose 4-epimerase, respectively) 

involved in amino sugar and nucleotide sugar metabolism and O-antigen 

nucleotide sugar biosynthesis pathways, and murE and mrcB (i.e., UDP-N-

acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase, and penicillin-binding 

protein 1B, respectively), in the peptidoglycan biosynthesis pathway.  

The most important microbial genes for the CLE vs. UNF, CHE vs. UNF and 

VAC vs. UNF discriminations were, respectively, rfbG and E1.1.1.52 (CDP-

glucose 4,6-dehydratase, and 3alpha-hydroxycholanate dehydrogenase, 

respectively, both depleted in CLE), E1.2.7.8 and colA (indolepyruvate 

ferredoxin oxidoreductase, and microbial collagenase, respectively, both 

enriched in CHE), and ygjK and K11777 (putative isomerase, and HAD 

superfamily phosphatase, respectively, both depleted in VAC) (Figure 9).  

 

 

Figure 9. Smallest set of microbial genes significant discriminating uninfected (UNF) from a) 
infected with low cumulative faecal egg count (CLE), b) infected with low cumulative faecal 
egg count (CHE), and c) vaccinated and challenged (VAC); Scores plots of partial least 
squares discriminant analyses using CLR-transformed abundances. 
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Figure 10. Microbial genes identified for the discrimination of uninfected (UNF) from infected 
with low cumulative faecal egg count (CLE), infected with high cumulative faecal egg counts 
(CHE) and vaccinated and challenged (VAC) animals. 

 

Similarly to the microbial genera analyses, the analyses based on microbial 

genes shows that some of them are influenced by the infection independently 

of the level of infection. Most of these that were depleted in the infected 

animals were associated with the two-component system pathway, (bacterial 

communication), amino sugar and nucleotide sugar metabolism, and O-

antigen nucleotide sugar biosynthesis, and fructose and mannose metabolism 

(carbohydrates metabolism), whereas the genes enriched in infected animals 

were mostly associated with degradation of aromatic compounds, and 

benzoate degradation. On the other hand, some microbial genes in the two-

component system pathway, and some ABC transporters were depleted due 

to the vaccine (Figure 10).  

6.4.2.3 Comparing microbiome profiles of unvaccinated infected with 
those of vaccinated infected animals 

The pairwise comparisons of CHE and CLE microbiome profiles at the genus 

level with VAC revealed that PLS-DA models using 437 and 425, respectively, 

led to the significant discrimination of these groups. Of these, 173, and 176 
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microbial genera had VIP ≥ 1. The results of CHE vs. VAC and CLE vs. VAC 

revealed that 23 microbial genera of each comparison were observed to be 

enriched and depleted in the infected (CHE and CLE), in comparison to VAC, 

respectively (Figure 11).  

 

 

Figure 11. Microbial genera enriched or depleted in unvaccinated infected in comparison to 
vaccinated infected animals. The ellipses include microbial genera with VIP ≥ 1 in the partial 
least squares discriminant analyses comparing vaccinated (VAC) with infected with high 
cumulative faecal egg count (CHE) or low cumulative faecal egg count (CLE); microbial genera 
in yellow and blue ellipses were enriched in CHE and CLE, respectively, whereas green and 
red ellipses include microbial genera enriched in VAC. 

 

6.5 Discussion 

6.5.1 Rumen and caecal microbiome profiles differ 
significantly 

The rumen and caecum have different functions in the gastrointestinal tract of 

ruminants; whereas the rumen is a fermentation chamber, specialized in the 

pre-gastric breakdown and digestion of complex polysaccharides including 

cellulose and hemicellulose, the caecum is the first segment of the large 

intestine, where previously undigested fibre is fermented by the microbial 
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communities, and VFAs produced during fermentation are absorbed. Although 

the caecum contributes substantially less than the rumen to the breakdown 

and digestion of feed, and consequently to nutrient availability for the host 

ruminant, the caecum microbiota is still closely associated with the host 

performance and health, contributing with up to 10% of the dietary energy 

(Siciliano-Jones and Murphy, 1989; Gressley et al., 2011; O’Hara, 2019); 

Immig (1996) showed that fermentation in the caecum of ruminants may 

account for up to 17% of the daily VFA. Fermentation in the caecum may 

become more important in ruminants when rumen fermentation is hindered 

(Immig, 1996), due to increased availability of rumen-undigested 

carbohydrates in the caecum. The comparison of microbiota profiles derived 

from rumen and caecum samples of uninfected animals showed significantly 

higher relative abundances of Bacteroidetes and Proteobacteria in the rumen, 

whereas the caecum had higher relative abundances of Firmicutes and 

Actinobacteria, which is in agreement with previous studies (Myer et al., 2015; 

Popova et al., 2017). This reflected the differences in fermentation profiles of 

the two organs; easily fermentable carbohydrates such as starch, and xylan, 

are rapidly fermented in the rumen by Bacteroidetes, whereas structural 

carbohydrates, such as cellulose and hemicellulose, may escape the ruminal 

fermentation and reach the caecum, where they are utilized by Firmicutes 

(Siciliano-Jones and Murphy, 1989; Gressley et al., 2011; Min et al., 2019). 

The difference between microbiota profiles of rumen and caecum was further 

highlighted in the stacked bar charts obtained from the relative abundances of 

the most abundant microbial genera in uninfected animals, where we observed 

the rumen microbiota to be dominated by Prevotella, Methanobrevibacter, 

Succiniclasticum, Ruminococcus, and Fibrobacter, whereas the caecum 

microbiota was dominated by Ruminococcus and Methanobrevibacter, and 

had relatively lower abundances of Prevotella, Succiniclasticum, and 

Fibrobacter. Prevotella is a predominant member of the rumen core microbiota 

(Holman and Gzyl, 2019) thought to be mainly involved in the non-cellulose 

plant fibre degradation, such as hemicellulose and glycans, and it was 
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previously found to be enriched in foregut samples in comparison to those from 

the small and large intestine in dairy cattle (Mao et al., 2015); Prevotella was 

significantly more abundant in the rumen, and this is likely due to their role in 

the ruminal degradation of starch and proteins as well as uptake and 

fermentation of peptides (Myer et al., 2015). 

For the diversity at the family and genus level, we observed significantly higher 

unadjusted and adjusted Shannon indices in the caecum, indicating that this 

sample type is characterized by a more even distribution of the microbial 

communities than the rumen. Mao et al. (2015) found, in the gastrointestinal 

tract microbiota of dairy cattle, significantly higher evenness of OTUs in the 

rumen than in the caecum (Shannon indices of 6.26 and 3.13, respectively), 

which disagrees with our results. This difference may be due to biological 

differences or due to the bioinformatics pipelines applied to identify taxonomic 

groups; whereas Mao et al. (2015) applied QIIME to obtain the taxonomic 

profiles based on 16S rRNA gene amplicons using clustering at 97% similarity, 

we applied the Kraken approach on sequence reads obtained from whole 

metagenomic shotgun sequencing using as reference databases the Hungate 

1000 collection (Seshadri et al., 2018) and MAGs generated from beef rumen 

samples (Stewart et al., 2018). Whole metagenome sequencing based 

methods have been previously suggested to provide more accurate results 

than 16S rRNA-based methods (Jovel et al., 2016).  

For diversity at microbial genes level, the observed richness showed a 

tendency to be higher in the caecum. We observed significantly higher 

evenness in the rumen, which could be associated with the microbial 

fermentation profiles of these organs. Whereas the feed that enters the rumen 

contains high diversity of substrates, from easily fermentable compounds such 

as starch, to difficult to break-down complex polysaccharides like cellulose, the 

caecum will most likely only receive some of the complex polysaccharides that 

were previously not digested in the rumen, leading therefore to the growth of 

microbial taxa that carry in their genomes the microbial genes associated with 
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cellulose and hemicellulose degradation, and not so much those associated 

with starch degradation. 

The analyses of the pathways in which the most important microbial genes for 

the discrimination between caecum and rumen microbiome profiles are 

included revealed 1018 and 798 microbial genes enriched, respectively, in the 

caecum and rumen microbiome profiles. The analyses of the pathways and 

modules in which these microbial genes participate suggested that the ruminal 

and caecal microbial gene profiles differ significantly in their functional 

potential. The rumen was enriched in microbial genes associated with 

environmental sensing, and cell wall structures, whereas the caecum was 

richer in microbial genes associated with carbon metabolism, and 

methanogenesis.  

6.5.2 Infection by the parasitic nematode Ostertagia ostertagi, 
and vaccination against this parasite, affects the caecum 
microbiota 

The significant discrimination between CLE and UNF was observed when 

including 1194 microbial genera in the explanatory dataset, of which 478 had 

VIP ≥ 1, 156 enriched and 322 depleted in CLE, showing that the presence of 

O. ostertagi has an impact on the overall structure of the caecal microbiome. 

In contrast, the significant discrimination between CHE and UNF included 204 

microbial genera. This lower number of genera suggests that the influence of 

O. ostertagi parasitism in the caecal microbiome of more susceptible animals 

(i.e., with higher cFEC) affected microbial communities in a more specific 

manner than in more resilient animals (i.e., with low cFEC). Of these 204 

microbial genera, 90 had VIP ≥ 1, of which 47 and 43 were enriched and 

depleted, respectively, in CHE. 

Within the 156 genera whose abundance was enriched in CLE vs. UNF, 69 

(44%) belong to the Actinobacteria and 24 (15%) to Proteobacteria phyla, 

whereas out of the 322 microbial genera depleted in CLE, 99 (31%) were 

Proteobacteria and 68 (21%) were Firmicutes. The most important microbial 
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genera enriched in CLE were mostly from the class Actinomycetia, which are 

high G+C, Gram-positive bacteria that most often inhabit the soil such as 

Geodermatophilus (Gordon and Perrin, 1971) and Rhodococcus (Willey et al., 

2020a). Kineococcus is also an Actinomycetia and was previously found in 

pigs infected with Trichuris suis (Li et al., 2012). Additionally, we observed 

enrichment of opportunistic pathogens such as Babesia and Toxoplasma, in 

agreement with the enrichment of opportunistic pathogens, such as 

Streptomyces and Tsukamurella, in the rumen of infected in comparison to 

uninfected animals, reported in chapter 5. 

The enrichment of microorganisms in the caecum of infected animals that 

typically inhabit the soil, together with increased abundances of opportunistic 

pathogens, may be associated with the putatively increased pH in the 

abomasum, since a low pH in the abomasum is recognized as a barrier, 

protecting the rest of the gastrointestinal tract (Constable et al., 2006). 

Most microbial genera enriched in CHE belong to phylum Actinobacteria 

(mostly to families Pseudonocardiaceae and Microbacteriaceae).               . 

Pseudonocardiaceae was previously reported to have increased relative 

abundance in the gut microbiota of mice with cystic fibrosis (Lynch et al., 2013), 

and Microbacteriaceae has been found to be enriched in chronically diseased 

sigmoid colon tissue, in comparison to adjacent tissues, in humans with 

chronic, recurrent diverticulitis (Schieffer et al., 2017). Out of the 47 microbial 

genera with VIP ≥ 1 and enriched in CHE in this comparison, 40 were also 

identified in the CLE vs. UNF comparison (also with VIP ≥ 1 and enriched in 

the infected group), mostly belonging to the class Actinomycetia and some 

Alphaproteobacteria, including e.g., the methylotrophic Methylobacterium 

(Patt et al., 1976). The methanogenic archaea Methanobacterium was 

enriched, whereas the nitrate-reducing Veillonella was depleted in infected 

animals. Interestingly, Iwamoto et al. (2002) reported a negative association 

between nitrate-reducing organisms and methanogenesis in the rumen; 

whereas nitrate-reducing organisms are tolerant to the nitrite toxicity, 
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methanogens are not. Additionally, Marinomonas, which was previously 

reported as having negative effect on methanogenesis in the rumen (Auffret et 

al., 2018) was here depleted in infected animals.  

A total of 40 microbial genera were important for the CHE vs. UNF and CLE 

vs. UNF discriminations, and were enriched in both infected groups, in 

comparison to UNF. These included 33 actinomycetes, e.g., Cellulomonas, 

Frankia, and Streptomyces, which can produce a variety of secondary 

metabolites, including antibiotics. Since WGS methods do not distinguish 

between spores and live bacterial organisms, and some of these microbial 

genera, for example, Intrasporangium and Micromonospora, are spore-

forming bacteria, it is possible that they are present in the caecum of infected 

animals in their dormant form. 

Most microbial genera important for the CLE vs. UNF discrimination, depleted 

in CLE, belonged to classes Gammaproteobacteria (12 out of 43 – 28%) and 

Bacilli (8 out of 43 – 19%). Lactobacilli Aerococcus, Carnobacterium, 

Tetragenococcus, Melissococcus, and Lactobacillus were depleted in infected 

animals. In a murine study in which mice were infected with the intestinal 

nematode Heligmosomoides polygyrus, Reynolds et al. (2016) showed that 

Lactobacillus was positively correlated with the infection level in mice highly 

susceptible to infection, and that the correlation between Lactobacillus and 

infection level was negative in more resistant mice. In agreement, in our study, 

in which we infected calves at subclinical levels, the lowest abundance of 

Lactobacillus was observed in CHE animals, whereas the highest abundance 

was observed in UNF.  

Filifactor was the genus with the highest VIP in the CLE vs. UNF comparison 

and was depleted in CLE animals. This genus belongs to the class Clostridia, 

phylum Firmicutes and two species have previously been described, F. villosus 

(the type species) and F. Alocis. F. villosus was previously isolated from 

subcutaneous abscesses in cats and described as Clostridium villosum by 

Love et al. (1979) as an obligately anaerobic, rod-shaped, spore-forming, non-
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motile organism which is Gram-positive in its early stages of growth and Gram-

negative after 18 to 24 h, and was later reclassified (Collins et al., 1994). 

Strains of the species were shown to grow well in a culture medium of cooked 

meat plus peptic digest of meat (CMM) broth supplemented with glucose, 

cellobiose, maltose and starch (CMC), and it was shown to produce more 

butyrate in culture mediums containing pyruvic acid. F. alocis is a non-spore-

forming, Gram-negative, obligately anaerobic rod that produces butyrate and 

acetate in a peptone-yeast extract-glucose medium (PYG). Both species had 

their growth stimulated by the addition of animal-origin serums (i.e., rabbit in 

F. alocis and horse in F. villosum) to the mediums. This genus was later 

identified in the rumen epimural bacterial community of forage-fed heifers of 

beef cattle, while it was absent from their mixed-forage and high-grain fed 

counterparts as well as from the rumen while in induced acidotic challenge 

(Petri et al., 2013) and more recently, it was detected in the microbiota of the 

rumen liquid digesta (where it was significantly more abundant than in the solid 

phase) of heifers euthanized on the 7th day after vaginal delivery but it was not 

detected in the rumen microbiota of heifers euthanized from day 14 onwards 

(O’Hara, 2019). Additionally, Agarivorans, Pragia, Gallibacterium, and 

Grimontia (Gammaproteobacteria) also had high VIPs in this comparison and 

were depleted in CLE.  

Thirty-five microbial genera were important in both CHE vs. UNF and CLE vs. 

UNF discriminations, being depleted in infected animals, including several 

groups with pathogenic potential, belonging to Gammaproteobacteria, e.g., 

Acinetobacter, Legionella, and Vibrio, and Bacilli, e.g., Aerococcus, and 

Melissococcus. The depletion of opportunistic pathogens in the caecum of 

infected in comparison to uninfected animals was unexpected, particularly 

considering the enrichment of microbial taxa with pathogenic potential in the 

rumen, reported in chapter 5. Additionally, we observed depletion of beneficial 

lactic acid producers in both groups of infected animals, including, for example, 

Lactobacillus, Tetragenococcus, and Carnobacterium. 
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Four hundred and fifty-five microbial genera were included in the PLS-DA that 

led to the significant discrimination of UNF from VAC, of which 167 had VIP ≥ 

1. Of these microbial genera, 39 and 128 were enriched and depleted, 

respectively, in VAC, in comparison to UNF. Eight and seven out of the 39 

microbial genera enriched in VAC (21% and 18%, respectively) belonged to 

the phyla Actinobacteria and Proteobacteria, respectively, whereas 

Proteobacteria (69 out of 128 = 54%) and Firmicutes (20 out of 128 = 16%) 

were the most dominant phylum among the microbial genera depleted in VAC. 

All Actinobacteria enriched in VAC were Actinomycetia; Streptosporangium 

was previously identified in the rumen microbiota of dairy cattle whose milk 

had low abundance of saturated fatty acids (Stergiadis et al., 2021), and the 

Gram-positive Micrococcus is an ubiquitous anaerobe (found in soil, water, 

and vegetation, as well as on the skin of warm blooded animals), and are often 

reported as opportunistic pathogens, belonging to the same family as S. 

aureus and S. haemolyticus (Micrococcaceae), which are associated with 

mastitis in dairy cattle (Nuñez, 2014). This genus was previously identified as 

part of the intestinal flora of cattle fed high-roughage rations (Maki and Picard, 

1965).  

Within the Proteobacteria enriched in VAC, we identified Methyloceanibacter, 

a methylotroph previously shown to negatively correlate to methane production 

in beef cattle (Auffret et al., 2018). The methanogen Methanobacterium was 

also enriched, whereas methanogen Methanomethylovorans and 

methylotroph Methyloversatilis were depleted in VAC.  

Desulfovibrio is a Gram-negative anaerobic acetate-producer in the 

Desulfovibrionales order, which is a diverse group of sulphur-reducing bacteria 

(Willey et al., 2020b) and has previously been shown to be associated with 

sulphate reduction in the sheep rumen (Howard and Hungate, 1976). 

Desulfomicrobium is one of the most often occurring sulphate reducing 

bacteria in GIT of humans and animals (Dordević et al., 2021). The enrichment 

of these microbial genera in VAC in comparison to UNF may be either due to 
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increased sulphate availability in the caecum of VAC or to improved use of 

sulphate in the caecum of UNF. Sulphate has been suggested as an effective 

hydrogen sink, leading to decreased methane production (but increased 

fermentation rates) by rumen microorganisms; additionally, sulphate was 

suggested to increase reduction of nitrite to ammonia (van Zijderveld et al., 

2010). For example, Desulfovibrio was reported as enriched in the jejunum of 

steers with higher growth rates (Freetly et al., 2020), it was twice more 

abundant in high methane emitting cattle than in the low-emitting counterparts 

(Wallace et al., 2015), and it was enriched in the colon microbiota of pigs 

infected with the nematode Trichuris suis (Li et al., 2012). However, we found 

other sulfate-reducing genera to be depleted in vaccinated animals, including 

Desulfobacter and Desulfocapsa (order Desulfobacterales) and 

Geoalkalibacter and Desulfuromonas (order Desulfuromonadales) (Willey et 

al., 2020b). 

We also observed enrichment of several fungi in the caecum of vaccinated 

animals, including Ascomycota, e.g. Pneumocystis, a potential bovine 

pathogen (Settries and Henriksen, 1989), Basidiomycota, e.g. Malassezia, an 

opportunistic pathogen in animals (Summerbell, 2004), Cryptococcus, 

associated with mastitis in cattle (Summerbell, 2004), and Moniliophthora, 

correlated with methane production (Martínez-Álvaro et al., 2021) and 

Microsporidia, e.g., Vittaforma, a human intestinal and urinary pathogen 

(Mathis et al., 2005). The enrichment of opportunistic pathogenic fungi 

belonging to phyla Ascomycota and Basidiomycota was also observed in the 

rumen of vaccinated animals (chapter 5). 

A total of 128 microbial genera were depleted in vaccinated animals, most of 

them belonging to the phylum Proteobacteria. For example, Gluconobacter is 

an Alphaproteobacteria previously associated with low methane production in 

beef cattle (Martínez-Álvaro et al., 2020), and Cronobacter is a 

Gammaproteobacteria previously associated with lower methane production 

in beef cattle (Auffret et al., 2018).  
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Bordetella (Betaproteobacteria) is a widely recognized respiratory pathogen; it 

is an aerobic Gram-negative proteobacterium, which requires organic sulfur 

and nitrogen for growth (Willey et al., 2020b). However, it has been identified 

in the rumen of young calves (Malmuthuge et al., 2019), which, like the 

caecum, is typically characterized as an anaerobic environment. The murine 

respiratory tract microbiota has been shown to inhibit the growth of B. pertussis 

(Weyrich et al., 2014), and in the present work Bordetella was found to be 

significantly depleted in vaccinated and enriched in infected (although with VIP 

< 1), in comparison to UNF. It is plausible to assume that the degree of 

colonization by a pathogen such as Bordetella is dependent on the fitness of 

the microbiota in the caecum, which is expected to be hindered in infected 

animals and strengthened in vaccinated animals, either due to direct effects of 

these factors on the microbiota, or through the host’s immune system influence 

on the microbiota. 

Enterobacter are facultative anaerobes, butanediol and lactose fermenters that 

produce butanediol, ethanol and CO2 (Willey et al., 2020b). Species of this 

genus have been identified in the rumen fluid and attached to the rumen wall 

(Mitsumori et al., 2002). Members of the same family (i.e. Enterobacteriaceae) 

were identified in the gastrointestinal track of cattle, where they were enriched 

in the small intestine, caecum and colon in comparison to the foregut, and one 

Enterobacteriaceae OTU (OTU-3825) was the most abundant in the 

duodenum microbiota (Mao et al., 2015). Enterobacteriaceae has also been 

associated with nematode infections; Rausch et al. (2013) reported higher 

abundances of Gram-negative Gammaproteobacteria/Enterobacteriaceae in 

the caecum and colon of mice infected with the nematode Heligmosomoides 

polygyrus bakeri in comparison to their uninfected counterparts, and 

suggested that the increased growth of Enterobacteriaceae in the intestinal 

lumen of infected animals could be due to increased glucose availability, which 

is not efficiently absorbed in infected animals (Olaogun and Lasisi, 2015). 

Reynolds et al. (2016) showed that susceptible C57BL/6 mice infected with the 
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nematode Heligmosomoides polygyru had significantly higher levels of 

Enterobacteriaceae in the duodenum, in comparison to naïve animals.  

6.5.3 Influence of the presence of O. ostertagi and the vaccine 
against this abomasal parasite on the caecum microbial 
genes 

Several microbial genes were found to be altered in CHE, CLE, and VAC, in 

comparison to UNF. For example, uidA (i.e., beta-glucuronidase) is a microbial 

gene associated with carbohydrate metabolism, participating in the 

biosynthesis of cofactors and the pentose and glucuronate interconversions, 

and was depleted in CHE, CLE, and VAC, in comparison to UNF; uidA was 

previously shown to be involved in the degradation of xylan (Lee et al., 2012), 

and it was identified as a rumen microbial gene biomarker for decreased feed 

conversion efficiency in beef cattle (Roehe et al., 2016; Lima et al., 2019). 

Furthermore, microbial genes rfbF and rfbG (i.e., glucose-1-phosphate 

cytidylyltransferase, and CDP-glucose 4,6-dehydratase, respectively), 

depleted in CHE, CLE, and VAC are involved in cell wall biosynthesis (in the 

O-antigen nucleotide sugar biosynthesis and the amino sugar and nucleotide 

sugar nucleotide pathways). These genes are part of the rfb operon, and are 

associated with microbial lipopolysaccharide (LPS) production, which together 

with the O-antigen (both in the outer membrane of Gram-negative bacteria), is 

important for host colonization and niche adaptation, and plays a part in 

protection of microbial communities from host immune responses (Reeves, 

1995). Additionally, these microbial genes were previously was associated 

with appetite in beef cattle, showing a positive correlation with daily feed intake 

(Lima et al., 2019). 

Some microbial genes depleted in CHE and CLE (but not in VAC), in 

comparison to UNF, were also associated with the O-antigen nucleotide sugar 

biosynthesis (e.g., manC, gmd). The O-antigen is an important component of 

the cell wall of Gram-negative bacteria, involved in the host immune response 

(Samuel and Reeves, 2003). Microbial genes depleted in CHE and CLE were 

also found to be associated with environmental sensing, belonging to the two-
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component system, and included ABC transporters. For example, artJ, and 

modF (arginine transport system substrate-binding protein, and molybdate 

transport system ATP-binding protein, respectively, ABC transporters), were 

previously shown to be uniquely and highly expressed by Salmonella 

Typhimurium in a magnesium-depleted medium designed to mimic the 

macrophage phagosomal environment (Adkins et al., 2006). These results 

suggest that the influence of the parasite on the caecal microbiome may 

happen via host immune system response. 

Microbial genes depleted in CHE and CLE included also e.g., the 

pectinesterase EC:3.1.1.11, which catalyses the de-esterification of pectin into 

pectate and methanol, with release of hydrogen (AmiGO 2, 2021; EMBL 2021, 

2021). Since methanogenesis is the main hydrogen sink in the bovine GIT, 

and methanogens can utilize methanol as electron acceptor (Castillo-

González et al., 2014), the depletion of this gene is a possible indicator of 

hindered methane production in infected animals, such as reported in the 

rumen of infected sheep (Fox et al., 2018). 

Microbial genes associated with the uptake of urea from the environment 

(Valladares et al., 2002), e.g., urtA, urtB, urtC, and urtD (i.e., urea transport 

system substrate-binding protein, urea transport system permease protein, 

urea transport system permease protein, and urea transport system ATP-

binding protein, respectively) were enriched in CHE and CLE.  

Additionally, microbial genes hcaC, mhpB, mhpD (i.e., 3-

phenylpropionate/trans-cinnamate dioxygenase ferredoxin component, 2,3-

dihydroxyphenylpropionate 1,2-dioxygenase, and 2-keto-4-pentenoate 

hydratase, respectively) were enriched in CHE and CLE, in comparison to 

UNF. These genes participate in the degradation of aromatic compounds 

pathway, which has been suggested as involved in the virulence of Escherichia 

coli B2 strains (Touchon et al., 2009).  
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6.5.4 Comparison of microbiome profiles of unvaccinated 
infected with vaccinated infected animals 

Microbial genes depleted in VAC, in comparison to UNF, included the two-

component system envZ/ompR (i.e., two-component system, OmpR family, 

osmolarity sensor histidine kinase EnvZ, and phosphate regulon response 

regulator OmpR, respectively), associated with the regulation of the 

expression of outer membrane proteins in response to changes in the 

environmental osmolarity (Kenney and Anand, 2020), and microbial gene uvrY 

(i.e., two-component system, NarL family, invasion response regulator UvrY), 

which is part of the two component system barA/uvrY, which controls carbon 

metabolism (Pernestig et al., 2003).  

The pairwise comparisons CHE vs. VAC and CLE vs. VAC revealed depletion 

of several microbial genes in the caecal microbiome of infected animals that 

are involved in two-component systems, e.g., the sensor kinase cheA (two-

component system, chemotaxis family), which was previously identified as 

associated with improved feed conversion efficiency in beef cattle (Lima et al., 

2019); ABC transporters, e.g., natA and natB (i.e., sodium transport system 

permease protein, and sodium transport system ATP-binding protein, 

respectively) are associated with the uptake of amino acids (Montesinos et al., 

1997; Hong et al., 2017); and flagellar assembly, e.g., fliA, fliC, fliE, and flip 

(i.e., RNA polymerase sigma factor FliA, flagellin, flagellar hook-basal body 

complex protein FliE, and flagellar biosynthesis protein FliP, respectively). 

Microbial genes nisB and nisC (i.e., both lantibiotic biosynthesis proteins), are 

involved in the production of the bacteriocin nisin, which inhibits most Gram-

positive bacteria (Li and O’Sullivan, 2006). 

6.6 Conclusions 

Our comparison between caecal and ruminal microbiome profiles showed that 

the differences observed in the microbiome reflect the functional differences 

between these organs. Since the rumen microbiota receives feed as it is 

ingested, with more diverse substrates available for microbial fermentation, its 
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biochemical networks sustained by the resident microbial communities are 

more diverse, as suggested by the significantly higher adjusted Shannon 

index. In contrast, the caecum will receive only the substrates that escape 

ruminal fermentation, richer in fibrous matter, and less rapidly fermentable 

substrates like starch, which is reflected in the decreased abundance of 

Bacteroidetes and increased abundance of Firmicutes. Furthermore, 

differences were observed at the functional level of analyses; whereas the 

caecum was richer in microbial genes associated with, for example, carbon 

metabolism and methanogenesis, the rumen microbiome was enriched in 

microbial genes with functions associated with cell wall structures and 

environmental sensing.  

Overall, the comparisons of microbiome profiles of treatment groups as 

comparisons of infected showing high cumulative faecal egg count (CHE), 

infected showing low cumulative faecal egg count (CLE), and vaccinated and 

challenged (VAC) with uninfected (UNF) animals indicate that the infection by 

the abomasal nematode O. ostertagi even at subclinical levels, leads to a 

marked dysbiosis in the caecal microbiome profiles of dairy cattle.  

The pairwise comparison of infected with uninfected animals revealed 

enrichment of several actinomycetes in the infected groups, e.g., 

Cellulomonas. In addition, enrichment of microbial genes associated with 

uptake of urea, such as urtA, and urtB, important for microbial protein 

metabolism, and with degradation of aromatic compounds, such as hcaC, and 

mhpB, associated with microbial virulence, was observed in the caecum of 

infected, in comparison to uninfected animals. 

The caecum of infected, in comparison to uninfected animals, was depleted of 

several opportunistic pathogenic Gammaproteobacteria, such as 

Acinetobacter, and Bacilli, such as Aerococcus. This result was unexpected, 

particularly considering the enrichment of opportunistic pathogens such as 

Streptomyces, and Tsukamurella in the rumen microbiome, reported in chapter 

5 of this thesis. Favourable lactic acid producers, including Lactobacillus were 
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also depleted in infected, in comparison to uninfected animals. Additionally, we 

observed depletion of microbial genes with functions in carbohydrates 

transport and metabolism, and environmental sensing, including ABC 

transporters and microbial genes included in the O-antigen nucleotide sugar 

biosynthesis, and the two-component system pathways, in infected in 

comparison to uninfected animals. 

We have demonstrated that the native vaccine against O. ostertagi caused 

alterations to the microbiome profiles in the caecum, at both taxonomic and 

functional levels. The caecum of vaccinated animals was enriched in several 

fungi with pathogenic potential including genera of the phyla Ascomycota (e.g., 

Pneumocystis) and Basidiomycota (e.g., Malassezia), and depleted of 

Proteobacteria, including Cronobacter. These results agreed with those 

reported in chapter 5 of this thesis, which also showed enrichment of microbial 

fungi with pathogenic potential in the rumen of vaccinated animals. We also 

observed depletion of microbial genes associated with environmental sensing 

such as those included in the two-component system pathway in the caecum 

of unvaccinated infected in comparison to vaccinated infected animals. 

The results of this study highlight that an infection by abomasal nematode O. 

ostertagi changes the microbial profiles and their functions in the caecum 

which should be considered in the development of vaccines or used for the 

development of pro- and prebiotics to reduce at least the clinical signs of 

ostertagiasis and its impact on loss of performance. 
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Chapter 7 General discussion 

7.1 Introduction 

Bovine production systems are presently under more pressure than ever 

before because they must tackle current goals associated with worldwide food 

security, and pollution, as well as animal health and welfare. The study of the 

taxonomic composition and functional potential of gastrointestinal 

microbiomes in association with economically compelling traits of the animal 

host, such as feed conversion efficiency, appetite, growth rate, and resilience 

to nematode parasitism, is essential for the progress of improved production 

strategies, whether it be related to nutrition, breeding programmes, or 

development of vaccines. This thesis focuses on several aspects of the 

gastrointestinal microbiome, including the use of different bioinformatics 

pipelines to resolve the microbial communities composition of samples based 

on the 16S rRNA gene derived from swine gastrointestinal samples, the impact 

of bovine rumen microbial genes profiles on performance traits including feed 

conversion efficiency, appetite, and growth, the temporal stability of the rumen 

microbiome during the finishing phase of beef cattle and its impact on the 

prediction of performance and methane emissions traits, and the influence of 

an abomasal parasitic nematode on the rumen and caecum microbiomes of 

dairy cattle. In this general discussion, I will firstly describe some of the most 

important results of each of our projects, and then discuss them in a wider 

context, elaborating on their implications, and highlighting their strengths and 

limitations.  

7.2 Application of different bioinformatics pipelines 
leads to different microbiota profiles 

Studies focused on the composition of the microbiome rely heavily on the 

software used. Bioinformatics tools are crucial for microbiome studies, not only 

due to the huge amount of data available to analyse, but also due to its 

complexity. The accurate taxonomic characterization of microbiota in samples 

can be achieved through different strategies. At present, the most used 
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techniques involve the processing of either 16S rRNA gene amplicons, or of 

contigs obtained through next generation whole genome shotgun sequencing. 

7.2.1 16S rRNA gene-based strategies 

The use of the 16S rRNA gene in the study of microbial communities in 

gastrointestinal samples is widely recognized as a sound strategy. This gene 

is present in the genome of most prokaryotes, but it varies enough between 

groups to be used in their distinction. The 16S rRNA gene is a housekeeping 

gene, and since its function has not changed over time, the changes (i.e., 

mutations) it has suffered are believed to be associated with evolution, 

therefore mirroring the phylogeny between organisms. Techniques based on 

the 16S rRNA gene are attractive, in comparison to standard microbiology 

identification techniques, mostly due to the possibility of identifying large 

numbers of microorganisms in the sample that would be costly and sometimes 

impossible to grow on culture plates following standard laboratory procedures, 

and also because they produce more accurate and objective results (Janda 

and Abbott, 2007; Petti, 2007). Additionally, in comparison to next generation 

sequencing techniques, they are fast and substantially less costly. 

In chapter 2, we summarize the characteristics of two bioinformatics pipelines 

widely used to resolve taxonomic compositions based on the 16S rRNA gene, 

the MetaGenome Rapid Annotation using Subsystem Technology, and the 

Quantitative Insights Into Microbial Ecology 2 (MG-RAST, and QIIME2, 

respectively). Additionally, we compared the taxonomic compositions obtained 

from each of these pipelines and discussed them considering the algorithms 

employed by each pipeline.  

The main differences between the algorithms underlying MG-RAST and 

QIIME2 are related with the process of grouping 16S rRNA gene amplicons 

based on their similarity. Whereas MG-RAST groups amplicon reads based on 

a 97% similarity threshold, creating operational taxonomic units (OTUs), 

QIIME2 employs an algorithm that groups sequences into amplicon sequence 

variants (ASVs) based on an error model that accounts for the increasing error 
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rates along the length of the sequence, the number of copies of unique 

sequences, and the similarity between unique sequences. 

Processing the 188 samples collected from the swine gastrointestinal tract in 

MG-RAST and QIIME2 led to different microbiota compositions. At domain 

level, MG-RAST erroneously classified a higher number of amplicons as 

Eukaryota and Viruses than QIIME2, and a higher percentage of hits was left 

unclassified. At phylum level, MG-RAST and QIIME2 identified 15 taxa in 

common (accounting for 100% and 98.8% of the total hits, respectively), 

whereas 7 extra taxa were identified exclusively by QIIME2, but accounted 

only for a small portion of the total microbiota. At family level, Prevotellaceae 

and Ruminococcaceae were the 1st and 2nd most abundant taxa in both 

pipelines, however, the 3rd, 4th, and 5th most abundant families were, 

respectively, Veillonellaceae, Clostridiaceae, and Eubacteriaceae, in MG-

RAST, and Lachnospiraceae, Muribaculaceae, and Veillonellaceae, in 

QIIME2.  

The different microbiota compositions obtained from using MG-RAST and 

QIIME2 impacted the downstream statistical analyses. To evaluate this impact, 

we used partial least squares (PLS) models to discriminate between 

microbiota compositions derived from samples collected from the caecum, 

colon, and faeces. Several cleaning and filtering procedures were also tested 

within these analyses. The results revealed that filtering out microbial genera 

with low average relative abundance led to QIIME2-derived microbiota profiles 

being more accurate for the discrimination between sample types, whereas 

when including low abundance taxa in the matrix of explanatory variables, MG-

RAST resulted in higher accuracy. It follows that, if the low abundance 

microbial taxa are real, MG-RAST would lead to a more accurate 

characterization of the microbiota profiles, whereas, if these are false positives, 

QIIME2 would be preferable. ASV-based pipelines, such as QIIME2, may lead 

to an artificial increase in false positives, and consequently to an artificially 

increase in samples’ diversity, and therefore the application of a minimum 
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relative abundance threshold may be beneficial for the analyses of the 

obtained datasets. 

This study showed that there are differences on microbiome profiles obtained 

using different pipelines and elucidated some of the features in each pipeline 

that are on the basis of these differences, providing useful guidelines for 

potential users.  

7.2.2 Next-generation sequencing-based techniques 

Although there are multiple advantages in the use of 16S rRNA gene for the 

characterization of microbiota profiles, the application of whole genome 

shotgun sequencing (WGS) methods is the natural evolution of the field. One 

of the most important features of WGS is the ability of deriving the composition 

of the microbiome at the microbial genes level, facilitating the analyses of the 

functional potential of the microbiome in a direct manner, rather than by 

inference-based methods possible with the 16S rRNA gene. Additionally, WGS 

methods improve on the accuracy of the microbiota characterization, making 

it possible to resolve microbiome samples even at the species level if genomics 

of the microbes in the samples are well characterized in databases. 

Considering these advantages, the studies presented in chapters 3, 4, 5, and 

6 within this thesis were based on microbiome samples characterized at the 

microbial genera and microbial genes levels, using WGS data. 

7.3 Bovine performance traits are closely associated 
with rumen microbial genes 

The second main aim of this thesis was to understand the association between 

the functional profiles of the rumen microbiome with performance traits in beef 

cattle, including appetite, growth rate, and feed conversion efficiency. In 

chapter 3, I present our published manuscript, in which we identified sets of 

20, 14, 17, and 18 microbial gene biomarkers which explained 63, 65, 66, and 

73% of the variation in FCR, ADG, RFI, and DFI. We obtained these results by 

using PLS to identify the microbial genes whose relative abundances were 

closely associated with each performance trait. The results showed that 
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specific microbial gene biomarkers were mostly exclusive associated with 

each trait, reflecting the different microbial functional networks associated with 

different host traits. However, some microbial genes were commonly identified 

as biomarkers for highly correlated traits, such as FCR with ADG and RFI with 

DFI.  

Microbial genes associated with FCR were involved in carbohydrates 

metabolism and transport, such as xylan degradation, and pentose and 

glucuronate interconversions. Microbial genes important for the prediction of 

ADG were involved in peptidoglycan turnover, in association with cAMP 

resistance, typical of pathogenic organisms, which had relative higher 

abundance in animals with lower ADG. In relation to RFI biomarkers, we 

identified several microbial genes associated with chemotaxis, and motility in 

microorganisms. The microbial genes more important for the prediction of DFI 

were associated with lipopolysaccharide (LPS), a major virulence factor in 

Gram-negative bacteria.  

Microbial genes involved in bacterial defence mechanisms were relatively 

more abundant in less efficient animals, which could be indicative of pathogens 

present in the rumen, representing a potential energy sink for the host. In highly 

efficient animals, higher relative abundances of microbial genes associated 

with cellulose and hemicellulose degradation, amino acids metabolism, and 

vitamin B12 biosynthesis could be indicative of improved fermentation 

processes.  

7.4 Temporal stability of the rumen microbiome 

The association of the microbiome with host traits in the study presented in 

chapter 3 (microbial genes in association with host performance traits) was 

based on the characterization of the rumen microbiome derived from WGS of 

samples collected at slaughter. However, whether slaughter samples are 

representative of the rumen microbiome during the bovine finishing phase was 

still unclear. Therefore, in chapter 4, we present a comparison of microbiome 

profiles of samples collected from the rumen before including a nitrate- or oil-
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based diet additive, at the start, mid, and end of a 56-day performance testing 

period, after the animals left the chamber in which they were individually 

measured for methane emissions, and at slaughter.  

This study showed that the rumen microbiome, both at taxonomic and 

microbial genes level, is highly stable throughout the finishing phase of beef 

cattle. For example, the regression of ALR-transformed abundances of 

microbial genera and microbial genes on sampling timepoint, including animal 

ID as random effect revealed that 99% of the microbiome traits showed no 

significant differences throughout time of sampling. Additionally, the Pearson 

correlations between vectorized matrices of microbial genera and microbial 

genes in samples collected at different timepoints were highly correlated, with 

the lowest being between pre-additive and end test (70.58% and 81.36 for 

microbial genera and microbial genes, respectively). 

We also investigated the temporal stability of the associations of the rumen 

microbiome with performance traits, including FCR, ADG, DFI, RFI, CH4 yield 

and CH4 production. These analyses showed that the microbiome at microbial 

genera or microbial genes level is highly associated with the traits throughout 

the finishing phase. Additionally, there was a substantial agreement of the 

microbial genera and genes that were identified as important for explaining the 

variation of the performance traits based on slaughter data, and those based 

on previous sampling timepoints. This result is consistent with our shown 

previous finding that sampling timepoint had no effect on the microbiome 

datasets generated from samples collected at different times. These results 

suggested that microbiome profiles derived from slaughter samples are 

representative of the microbiome throughout the whole phase, and can 

therefore be used in studies that characterize the rumen microbiome, or in the 

identification of biomarkers of host traits, as we had previously done in the 

published paper “Identification of Rumen Microbial Genes Involved in 

Pathways Linked to Appetite, Growth, and Feed Conversion Efficiency in 

Cattle”, presented in chapter 3. In this context, in chapter 4, we specifically 

verified whether the microbial genera and microbial genes previously identified 
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as biomarkers for host traits (from the published paper in chapter 3, and from 

other published papers), would still have been identified if the analyses had 

been based on data derived from earlier sampling timepoints. The results 

confirmed that the associations between microbial genera and microbial genes 

identified as biomarkers are highly stable throughout the finishing phase of 

beef cattle.  

Furthermore, the stability of associations between host-genomically influenced 

microbial genes (i.e., microbial genes with moderate to high heritability) and 

the estimated breeding values (EBVs) of performance traits was also tested. 

The results showed that the analyses based microbiome profiles obtained in 

samples collected at earlier timepoints mostly agreed with those based on 

slaughter-derived data. 

7.5 The rumen microbiome in association with bovine 
health 

The bovine gastrointestinal microbiome has been increasingly recognized as 

central for improvements in productivity (e.g., feed conversion efficiency and 

appetite), and environmental impact (e.g., methane emissions). The 

relationship between the gastrointestinal microbiome and the animal host has 

been reported to also influence the host health. For example, Nagaraja & 

Titgemeyer (2007) elucidated the impact of diet composition on the rumen 

microbiota, and how excess fermentable carbohydrates can lead to ruminal 

acidosis, and Gomez et al. (2019) discussed how the immune system 

development in calves is dependent on the proper establishment of healthy 

microbiota communities in the gastrointestinal tract. 

The fourth main aim of this thesis was to understand whether parasitism by 

the abomasal nematode Ostertagia ostertagi impacted the rumen and caecum 

microbiome in dairy calves, and if so, which are the microbial genera and 

microbial genes mostly affected by the parasitism. We did this by comparing 

the microbiome profiles of dairy calves subjected to an infection challenge that 

consisted of oral administration of 1000 L3 larvae per day for 25 days, with 
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those of animals in a negative control group (unchallenged). Additionally, we 

investigated the impact of vaccinating the animals with a native vaccine 

against O. ostertagi, by comparing the rumen and caecum microbiome profiles 

of vaccinated animals (vaccinated and challenged with infection), with those of 

animals in a negative control group (unvaccinated and unchallenged), as well 

as with those of infected animals (positive control, unvaccinated, challenged).  

The influence of the parasite and the vaccine was investigated on the rumen 

and caecum microbiome profiles separately, due to the different functions of 

these organs in the digestive processes of the ruminant. Specifically, the 

rumen is responsible for the pre-gastric digestion of the feed, whereas in the 

caecum feed is digested that has escaped the rumen undigested. Because of 

the location of these organs in the gastrointestinal system, and of the type of 

substrates they receive, their microbiota is substantially different, resulting in 

different fermentation capabilities. These differences are explored in chapter 

6. 

7.6 Differences between the rumen and caecum 
microbiome profiles 

The data used in chapters 5 and 6 offered us the unique opportunity of 

comparing microbiome profiles of rumen and caecum. The results are 

presented in chapter 6. One of the most striking differences observed was the 

increased relative abundance of Bacteroidetes and Proteobacteria in the 

rumen, and the increased relative abundance of Actinobacteria and Firmicutes 

in the caecum, reflecting the specific fermentation profiles of these organs, 

since the diet entering the rumen is richer in easily fermentable carbohydrates 

than the diet received by the caecum.  

Although the rumen microbiome is associated with the majority of methane 

emissions produced by the animal, the caecum microbiome has also been 

shown to contribute with between 6 and 14% of the daily methane production 

(Immig, 1996). Interestingly, although the Archaea:Bacteria ratio in the rumen 

has been shown to be an accurate biomarker for methane production (Roehe 
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et al., 2016), we observed no significant differences in relative abundances of 

Euryarchaeota when comparing caecum and rumen microbial profiles. This 

suggests that the lower contribution of the caecum microbiome to the methane 

production may be associated with different fermentation profiles than those 

found in the rumen microbiome, since easily fermentable substrates 

associated with high hydrogen release, closely associated with 

methanogenesis in the rumen, are virtually used up in the rumen, and never 

reach the caecum. In agreement, hydrogen-producing fibrolytic bacteria, 

including Prevotella, Succiniclasticum, and Fibrobacter were the dominant 

microbial genera in the rumen, as well as hydrogen-utilizer 

Methanobrevibacter (Shinkai et al., 2010; Mi et al., 2018). 

7.7 The rumen and caecum microbiome profiles are 
affected by the presence of the abomasal 
nematode Ostertagia ostertagi 

The comparison of rumen microbiome profiles of infected with uninfected 

animals revealed depleted abundances of microbial genera associated with 

beneficial fermentation processes. For example, Butyrivibrio and 

Pseudobutyrivibrio, depleted in both infected groups (infected showing high or 

low ncumulative faecal egg count, CHE, and CLE, respectively), are important 

utilizers of xylans and pectins and other carbohydrates in the production of 

VFAs, supplying energy for the ruminant. In parallel, we observed enrichment 

of opportunistic pathogens in microbiome profiles of infected animals, including 

e.g., Streptomyces, Tsukamurella, Pseudopropionibacterium and 

Segniliparus. 

The investigation of the differences regarding the functional profiles of the 

rumen microbiome in these animals showed that infected animals were 

depleted of microbial genes associated with amino acids biosynthesis and 

metabolism (e.g., involved in the histidine metabolism, and arginine 

biosynthesis), which could be associated with the hindered growth rate 

reported by previous authors (Fox et al., 1989). Additionally, we explored how 

the microbial gene biomarkers identified in the published paper of chapter 3 
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(Lima et al., 2019) were affected by O. ostertagi parasitism. The results 

showed that microbial gene biomarkers previously associated with decreased 

feed conversion efficiency, and decreased growth rates were enriched in 

infected animals, whereas microbial gene biomarkers previously associated 

with increased feed conversion efficiency and increased appetite were here 

depleted in infected animals. 

Additionally, infected animals had their rumen microbiomes enriched with 

microbial genes associated with bacterial cell wall structures, environmental 

sensing processes, and bacterial defence mechanisms.  

In chapter 6, we explored the impact of O. ostertagi parasitism on the caecum 

microbiome of dairy calves. The results showed increased abundance of 

opportunistic pathogens such as Babesia and Toxoplasma in the caecum of 

infected, in comparison to uninfected animals. However, other opportunistic 

pathogens were depleted in the caecum of infected animals, including several 

Gammaproteobacteria, such as Acitenobacter and Legionella and Bacilli, e.g., 

Ehrlichia. These are unexpected results, since we had observed enrichment 

of pathogenic organisms in the rumen of infected animals (chapter 5). In line 

with the expectation, favourable microbial genera such as acid lactic producers 

Lactobacillus and Tetragenococcus were depleted in the caecum of infected 

in comparison to uninfected animals. 

7.8 Influence of a native vaccine against O. ostertagi 
parasitism on the rumen and caecum microbiome 
profiles 

Interestingly, the vaccine in both the rumen and the caecum microbiomes led 

to increased abundances of fungi belonging to phyla Ascomycota and 

Basidiomycota, most of them with pathogenic potential, in comparison to 

uninfected animals. Additionally, the comparison of microbiome profiles at 

genes level suggested that both in the rumen and in the caecum, the 

vaccinated animals had increased abundance of microbial genes associated 

with environmental sensing, cell wall structure and flagellar assembly. 
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The abundance of opportunistic pathogens, such as Bartonella and Bosea was 

depleted in the rumen microbiome of vaccinated, in comparison to infected 

animals, suggesting that the vaccination prevented some of the dysbiosis 

associated with the parasitism. Additionally, the caecum of vaccinated animals 

was enriched in opportunistic pathogen Bordetella, and in members of the 

Enterobacteriaceae family (e.g., Enterobacter), previously shown to be 

associated with nematode infections in mice (Reynolds et al., 2016).  

In the caecum of vaccinated animals, we also observed enrichment of 

methylothrophic Methyloceanibacter, previously shown to be negatively 

correlated with methane emissions in beef cattle (Auffret et al., 2018), and 

sulfur-reducing acetate producer Desulfovibrio (Howard and Hungate, 1976; 

Willey et al., 2020). Since sulfate reduction is an effective hydrogen sync, the 

enrichment of sulfate reducing organisms together with methylotrophs such as 

Methyloceanibacter may influence methane emissions in vaccinated animals, 

however, methane emissions were not measured within this study.  

7.9 Challenges in microbiome-centric studies 

Studies focused on the characterization of microbiome datasets, and their 

association with host traits, face several challenges, which I will briefly 

summarize and discuss here, as they were in continuous development for 

microbiome data during this PhD project and beyond. 

7.9.1 The “large p small n” challenge 

The first main challenge when working with microbiome or other -omics 

datasets stems from their inherent complexity. Microbiome datasets often 

include hundreds or even thousands of variables (e.g., microbial genera or 

microbial genes), and this high dimensionality, together with very complex 

biological interrelationships between the variables, is one of the main 

challenges in the interpretation of results. When the number of observations 

(n) is lower than the number of predictor variables (p), ordinary least squares 

cannot be applied, because n has to be greater than the rank of the covariance 
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matrix (of dimensions p × p), otherwise the covariance matrix is singular. 

However, when n is lower than p, PLS models can be applied.  

PLS models are constructed based on the singular value decomposition (SVD) 

of a matrix containing the continuous response variables (i.e., Y), and of a 

matrix containing the continuous predictor variables (i.e., X). The SVD of the 

Y matrix creates a lower rank matrix, meaning that the information contained 

on the original Y is described by fewer components, in a strategy like that of a 

principal component analysis (PCA), following the equation Y = UQ’ + F, in 

which U refers to the scores, Q refers to the loadings, and F refers to the 

residuals of the SVD. The matrices U and Q are orthogonal, i.e., they are 

statistically independent of each other. The loadings Q can be understood as 

the weights of each original variable in the construction of the latent 

components, whereas the scores U are the original data rotated to the new 

coordinates system. It follows that, after SVD, Y can be estimated based on U. 

Similarly, the SVD of the X matrix follows the equation X = TP’ + E, in which T 

are the scores, P are the loadings and E are the residuals. The main difference 

between PCA and PLS is that whereas PCA will work on a sole matrix of 

variables, creating latent components (i.e., principal components) that will 

maximize the variance of the matrix, PLS will work with two matrices, and will 

create latent variables that maximize the covariance between them. Therefore, 

in the PLS models, the dimension reduction (i.e., the SVD of the predictor and 

response matrices) occurs simultaneously with a regression, in which scores 

U and T and loadings Q and P are developed so that U and T have maximum 

covariance. It follows that, since Y can be estimated from U, and U and T are 

developed as to have maximum covariance, Y can be estimated from X 

(Boulesteix and Strimmer, 2007).  

One of the most interesting features of PLS models is the variable importance 

in projection (VIP) scores. These are defined for each variable in the predictor 

matrix and reflect the importance of each predictor variable for the prediction 

of the dependent variable. VIPs are calculated based on the weight of each 

variable on each PLS latent component, weighted by the percentage of Y 
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variation explained by each PLS latent component. Since the sum of squared 

VIP scores for all variables equals the number of variables, the VIP scores 

vary within a fixed range, and have average 1 (Cocchi et al., 2018). Therefore, 

variables with VIP ≥ 1 (variables with VIP higher than the average squared 

VIP) are often identified as important for the prediction of the response variable 

(Sun et al., 2016; Zeng et al., 2019; Wang et al., 2021). Some other authors 

have applied a threshold of VIP ≥ 0.8, to be less strict (Wallace et al., 2015; 

Roehe et al., 2016; Auffret et al., 2018; Martínez-Álvaro et al., 2020). In 

chapters 3, 4, 5 and 6, the VIP threshold applied was 1. 

PLS models can also be used when the response variable is categorical (i.e., 

partial least squares discriminant analysis, PLS-DA). The use of PLS-DA to 

discriminate groups of observations has been previously criticized, because 

this classification tool is based on a PLS model in which the dependent variable 

is chosen to represent the group membership, in an analyses with a large 

number of variables and a low number of observations. Westerhuis et al. 

(2008) stated that “PLS-DA is eager to please and thus its results should be 

handled with great care”, particularly because the model is forced to infer class 

separation. Additionally, the authors criticize the use of AUROC and other 

forms of cross-validation (e.g., number of misclassifications) due to the 

inexistence of a gold standard value against which we could compare these 

results. Therefore, besides using the AUROC and the prediction error rate in 

the explorative analyses of chapters 5 and 6, we also used PCA because PCA 

models do not include any information regarding the “expected grouping” of 

the observations, and therefore, if a cluster patter becomes apparent, it is 

solely due to the predictor variables matrix.  

PLS and PLS-DA were performed in the studies of chapter 3, 5 and 6 in an 

iterative manner, in which the least important variables (VIP < 1) of the first 

model were removed from the second model, and so forth. This procedure was 

applied because, although factors that alter the structure of the microbiome 

will most likely affect all microbial communities (and therefore microbial 

genes), due to the large number of variables available in each observation 
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some of these variables will change more radically than others, and our goal 

was to identify the microbiome features more strongly associated with 

performance traits (chapter 3), and more strongly influenced  by O. ostertagi 

parasitism and by the vaccine (chapters 5 and 6).  

7.9.2 The compositional nature of microbiome datasets 

Microbiome datasets are inherently compositional. As evidenced in Gloor et 

al. (2017), by using a curious comparison between datasets resulting from 

high-throughput sequencing (HTS) with that of an ecological study scenario 

involving counts of tigers and ladybugs. In HTS experiments, there is a 

maximum number of reads obtained from each sample, which is defined by 

the capacity of the sequencing instrument used; when counting tigers and 

ladybugs in a given location, there is no such maximum number of counts. 

Therefore, HTS techniques result in non-independence of counts between 

different groups, whereas the counts of tigers will be statistically independent 

from that of ladybugs, i.e., the counts of a given variable in an HTS-derived 

dataset may be predicted from the counts of the other variables, whereas the 

number of tigers cannot be predicted from the number of ladybugs. 

Furthermore, there is no apparent interest in the total number of counts in a 

sample, but rather in the relations between these variables.  

One of the most important principles in compositional data analysis is called 

subcompositional coherence. This means that results obtained from statistics 

using a subcomposition (i.e., a subset of the variables) should not differ from 

those obtained from the original composition (i.e., considering all variables). 

The normalization of counts by the total number of counts in a sample (i.e., 

relative abundance) is often applied in microbiome-centric studies and was 

applied in chapters 2 and 3. This process, called closure, is often performed to 

avoid dilution effects in the samples. The normalization by the total number of 

counts leads therefore to a matrix in which any part can be predicted from the 

other parts (because they all sum 1). However, in the matrix of relative 

abundances, the principle of subcompositional coherence is not respected; 

considering for example a composition of 4 parts (variables A to D), and a 
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subcomposition including variables A and B only, the correlation between 

variables A and B based on the complete composition will differ from the 

correlation calculated between A and B based on the subcomposition. 

To overcome the issues of using matrices of relative abundances directly in 

statistical analyses, there are some transformations options, of which we will 

discuss the additive logratio (ALR) and the centred logratio (CLR). The ALR is 

calculated as the logarithm of the ratio between each variable (i.e., abundance 

of each genus or microbial gene) and a selected denominator (i.e., the 

abundance of a selected microbial genus or gene with specific criteria). The 

CLR is the logarithm of the ratio of the counts of each variable by the geometric 

mean of all variables in the sample. 

As explained in Greenacre et al. (2021), although ALRs are not isometric, i.e., 

they do not preserve the original distance between observations, this small 

loss of isometry is compensated by a simpler and clearer interpretation of the 

logratio variables, in comparison to other, isometric, method. When applying 

the ALR transformation, the denominator must be selected as to maximize the 

Procrustes correlation between the (new) ALR-transformed matrix and the 

original CLR-transformed matrix, as to preserve the total logratio variance. Of 

the variables that satisfy this first condition, the ones with lowest variance 

should be the best candidates to become denominator, for two main reasons; 

first, using a non-variant denominator means that all values are just shifted by 

an almost constant value (since the log(A/B) = log(A) – log(B)), and therefore 

the ALR-transformed values can be easily interpreted independently of the 

denominator, i.e., if the value of an ALR-transformed variable increases from 

one observation to the next, this is directly interpreted as an increase in the 

numerator of the ratio, and never as a decrease in the denominator, since the 

denominator is (almost) the same; second, if a variable shows no variation 

between different observations, it is unlikely that it is importantly associated 

with whichever trait we are exploring, and therefore by selecting it as 

denominator (and not using it as a predictor variable) we are not losing 

information. A further criterion for the selection of the denominator is the 
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potential interest in this variable as a predictor of the response variable, 

considering the biological context in which these transformations are used. We 

have applied the ALR transformation in chapter 4. 

The CLR transformation depends on the geometric mean of all variables in a 

sample, making the CLR variables linearly dependent (each part can be 

predicted from all other parts of the full composition). However, in comparison 

to using relative abundances, this method is still preferable, since it brings 

compositional data from a simplex universe (i.e., bounded by the total sum of 

parts) into the universe of real numbers (i.e., the Euclidean space), in which 

classical statistics can be applied (Greenacre, 2018). The CLR method is 

extremely useful for computational purposes, and it was used here in chapters 

5 and 6. 

7.10 The wider context of these results, and their 
implications 

The results of this thesis, discussed in the previous sections of this chapter, 

give insight into several perspectives of the associations between the 

gastrointestinal microbiome and the animal host, with impact on performance 

traits, and health.  

We have identified microbial gene biomarkers for feed conversion efficiency, 

appetite, and growth, in beef cattle (chapter 3). One of the most important 

possible applications of these results is the use of these biomarkers for 

breeding purposes and to investigate the impact of dietary interventions 

without the costly measurement of these traits, in particular feed intake. 

Furthermore, our study on the temporal stability of the rumen microbiome 

(chapter 4) showed that the rumen microbiome and its association with host 

performance traits, including feed conversion ratio, growth rate, and methane 

production, is highly stable during the finishing phase of beef cattle. 

Considering the results of both these chapters, the animals with highest feed 

conversion efficiency and lowest methane emissions could be identified based 

on their microbiome profiles even based on the start of the finishing period. 
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One of the main caveats of our results is that they were mainly obtained based 

on phenotypic level and should be further analysed on the genetic level. This 

was not possible on the used data because it was not sufficient for a genetic 

analysis. Therefore, this study was aligned with a project using a substantially 

larger dataset to estimate genetic parameters and EBVs (Martínez-Álvaro et 

al., 2021) including the animals with longitudinal microbiome information. The 

analyses of this longitudinal microbiome data in chapter 4 revealed strong 

associations between abundances of microbial genes with moderate to high 

heritability and the EBVs of performance traits during the finishing phase of 

cattle. This result is of extreme importance, due to its potential implications in 

the selection of animals for breeding. Since heritable microbial genes are 

highly stable throughout time, the selection of animals for breeding can be 

performed based on microbiome profiles derived from samples taken as early 

as the start of the finishing phase. Furthermore, since heritable microbial 

genes were shown here to have a stable association with the EBVs of the 

performance traits, it is possible to select high-performance animals for 

breeding based on the microbial genes, and therefore use them as predictors 

of breeding values, or as complementary information in the prediction of EBVs, 

which has been shown to increase the accuracy of the estimates Martínez-

Álvaro et al. (2021).  

The knowledge of the function of the microbial genes highly associated with 

increased host animal performance enlightens on the microbial functional 

networks underlying these economically important performance traits, which 

potentially informs on the requirements for the development of potential 

probiotics, or individualized targeted nutritional interventions, that can lead to 

further improvement of animals’ performance as well as health and welfare.  

The gastrointestinal microbiome is not only closely associated with the host 

animals’ performance, but also with their health, as shown in chapters 5 and 

6. Ostertagia ostertagi is one of the most economically impactful parasitic 

nematodes in bovine production systems, leading to inappetence and stunted 
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growth of infected animals. In the most developed systems, the effects of this 

parasite are counteracted using antelminths.  

Previous studies on how O. ostertagi causes disease in animals, particularly 

in ruminants, have clarified on some of the direct effects of the parasite within 

the host organism, such as the damage to the gastric glands as the young 

adult parasite exits them, associated with decreased hydrochloric acid 

production, leading to increased pH, hypergastrinemia, and 

hyperpepsinogenaemia. However, the effects of this abomasal parasite on the 

microbiome in the rumen and caecum were, to the best of our knowledge, not 

investigated using microbiome profiles based on whole metagenomic 

sequenced data. Since the nematode has a high impact on animal 

performance and health traits, it is of great interest whether this may be at least 

partly due to changes in the ruminal and caecal microbiome profiles. 

Therefore, we explored the impact of the parasite and of a native vaccine 

against the parasite, on the rumen and caecum microbiome (chapters 5 and 

6). This research complements those in chapters 2 to 4, where we have shown 

that microbial genes in the rumen are highly associated with performance 

traits, including appetite, and growth. Therefore, it can be suggested that the 

dysbiosis in the rumen and caecum microbiome profiles observed in infected 

animals may also have resulted in inappetence and stunted growth of 

parasitised animals.  

One of the reasons parasitism by O. ostertagi has a severe impact on animal 

health is that immunity to this parasite, unlike other parasitic nematodes of 

ruminants, takes a long time to develop, mainly affecting young animals up to 

2 years old. The negative consequences of inappetence and stunted growth 

during the initial growth stage of animals can have repercussions into their 

growth rate and productivity during mature stages (Everitt and Jury, 1977; Perri 

et al., 2011), which means that the consequences of early-life parasitism can 

extend throughout the whole life of the animals’ productive life span.  
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The potential development of nematodes resistant to anthelmintics makes 

alternative strategies more compelling. The only well-established alternative 

strategy for nematode control is based on grazing management, which aims 

at limiting the contact between the host and the parasite (Charlier et al., 2009), 

though vaccines are also being developed. The identification of microbial 

genera and functional genes potentially affected by the parasitism by O. 

ostertagi may pose an opportunity to develop a new alternative strategy or 

complement existing ones; since the rumen and the caecum microbiome 

profiles are closely associated with the host performance traits and animal 

health and welfare, and intervention on these microbial ecosystems may help 

circumvent the negative consequences of parasitism on host performance, 

particularly while they develop their own immunity response. For example, 

breeding for more resilient animals to O. ostertagi could be based on the 

obtained rumen biomarkers identified in chapter 5 to reduce the adverse 

effects of ostertagiasis on the animal, including host-genomically influenced 

microbial gene biomarkers depleted in the rumen of infected animals, such as 

argO (i.e., N-acetylglutamate synthase), involved in biosynthesis of amino acid 

arginine, ME2 (i.e., malate dehydrogenase (oxaloacetate-decarboxylating)), 

involved in carbon metabolism, and pdp (i.e., pyrimidine-nucleoside 

phosphorylase), involved in pyrimidine metabolism. 

Based on all results of this thesis, it can be concluded that the rumen 

microbiome is highly informative for estimation of performance and methane 

emissions traits, as well as animal health. This can be explored, e.g., by 

breeding, and dietary interventions including the use of probiotics or prebiotics, 

as well as in the development of vaccines with minimal impact on the 

gastrointestinal microbiome. In particular, the profiles of microbial genes 

among animals were shown to be very informative, because the abundances 

of these genes provided information about the functional network of the 

microbiome associated with performance and methane emissions traits, as 

well as animal health. Based on this information, many potential microbial 
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functions associated with these traits were identified and can be verified and 

extended in future studies. 
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