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Abstract 

Amid the current global biodiversity crisis, being able to accurately monitor the changing state 

of biodiversity is essential for successful conservation actions and policy. Despite the pressing 

need for reliable and cost-effective monitoring methods, collecting such data remains 

extremely difficult for elusive species, such as temperate zone bats. Although bats are 

important indicators of environmental changes, monitoring bat populations is challenging 

because they are nocturnal, volant, small, and highly sensitive to human activities and 

disturbance. Thus far, population trends of temperate zone bats have been mainly based on 

visual surveys, including winter hibernation counts at underground sites. However, as bats 

may not always be roosting in visible locations within the hibernacula, it is currently unknown 

how these estimates relate to actual population sizes.  

Infrared light barriers combined with camera traps are a novel method to monitor bats at 

underground sites. When installed at the entrance of hibernacula, infrared light barriers have 

the potential to estimate site-level population sizes more accurately than visual surveys, by 

counting all bats flying in and out of the site. Moreover, camera traps, consisting of a digital 

camera and white flash, can be used for species-level identification. However, for this new 

method to be applicable as a large-scale bat monitoring technique, it is important to 

characterize it with regard to three main criteria: is the method minimally invasive, is it 

accurate, and is it scalable in terms of spatial and temporal resolution? Therefore, the purpose 

of this thesis was to investigate the invasiveness and accuracy of this novel bat monitoring 

method, and to develop standardized and automated data analysis pipelines, both for the light 

barrier and camera trap data, to support the deployment of this method at scale.  

In Publication I, we used light barrier data, infrared video recordings and acoustic data 

from an experimental field study to investigate whether the white flash of the camera trap 

has any measurable short- or long-term effect on bat activity and behavior. The flash of the 

camera trap was turned on and off every week at each site, which allowed us to compare the 

activity and behavior of bats between flash-on and flash-off nights. We found that despite the  

high sensitivity of bats to disturbance, they did not change their nightly activity patterns, flight 

direction, echolocation behavior, or long-term site use in response to the white flash of the 

camera trap. Based on these results, we concluded that camera traps using a white flash are 

a minimally invasive method for monitoring bat populations at hibernacula, providing high 

quality images that allows species-level identification.  

In Publication II, we used infrared video surveillance to quantify the accuracy of infrared 

light barriers, and we described a standardized methodology to estimate population sizes and 

trends of hibernating bat assemblages using light barrier data. We showed that light barrier 

accuracy varies based on the model and location of the installation relative to the entrance, 

with the best combination achieving nearly perfect accuracy over the spring emergence 

phase. When compared to light barrier-based estimates, we found that visual counts markedly 

underestimated population sizes, recovering less than 10% of the bats at the most complex 

hibernacula. Moreover, light barrier-based population trends showed regional patterns of 
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growth and decline that were not detectable using the visual count data. Overall, we 

established that the light barrier data can be used to estimate the population size and trends 

of hibernating bat assemblages with unprecedented accuracy and in a standardized way.  

In Publication III, we described a deep learning-based tool, BatNet, that can accurately and 

efficiently identify bat species from camera trap images. The baseline model was trained to 

identify 13 European bat species or species complexes using camera trap images collected at 

32 hibernation sites (i.e., trained sites). We showed that the baseline model performance was 

very high across all 13 bat species on trained sites, as well as on untrained sites when the 

camera angle and distance from the entrance were comparable to the training images. At 

untrained sites with more atypical camera placements, we demonstrated the ability to retrain 

the baseline model and achieve an accuracy comparable to the trained sites. Additionally, we 

showed that the model can learn to identify a new species, while maintaining high 

classification accuracy for all original species. Finally, we established that BatNet can be used 

to accurately describe ecological metrics from camera trap images (i.e., species diversity, 

relative abundance, and species-specific phenology) that are relevant for bat conservation.  

We conclude that infrared light barriers and camera traps offer a minimally invasive and 

accurate method to monitor site-level bat population trends and species-specific phenological 

estimates at underground sites. Such remote data collection approaches are particularly 

relevant for monitoring large, complex hibernation sites, where traditional visual surveys are 

not feasible or account only for a small fraction of the actual population. Combining this 

automated monitoring method with a deep learning-based species identification tool, BatNet, 

allows us quickly and accurately analyze millions of camera trap images resulting from large-

scale, long-term camera trap studies. As a result, we can gain unprecedented insights into the 

behavior and population dynamics of these enigmatic species, drastically improving our ability 

to support data-driven bat conservation.   
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1. Introduction 

1.1. Biodiversity monitoring and conservation 

Biodiversity, the variety of life on this planet, underpins every aspect of our lives, yet it is 

currently declining at an unprecedented rate. The current global rate of biodiversity loss is 

extraordinary in human history: today, species go extinct tens to hundreds of times faster than 

they did on average in the past ten million years, and currently up to one million species are 

threatened with extinction (IPBES, 2019). Although the world’s human population represents 

only 0.01% of all living things, humanity has already caused incredible damages on the planet. 

For example, we have cut down half of the 6 trillion trees that existed on the planet before 

human civilization, destroyed two third of the world’s tropical rainforests, and caused the 

extinction of 83% of all wild mammals (Bar-On et al., 2018).  

The main drivers of this biodiversity loss are changes in land and sea use, direct 

exploitation of organisms, pollution, invasive alien species, and the most-well known, climate 

change (IPBES, 2019). Rising global temperatures and more frequent extreme weather 

conditions are already affecting nature from the level of ecosystems to genetics (Scheffers et 

al., 2016), as well as directly affecting human populations (Steel et al., 2022). Perhaps as a 

result of this impact on human well-being, numerous international legislative agreements 

have been passed to mitigate the impact of climate change, and the majority of the general 

public now also considers climate change a global emergency (UNDP, 2021). In contrast, public 

awareness of the consequences and urgency of biodiversity loss are often lacking. This 

contributes to the relatively low political priority given to biodiversity issues, despite them 

being one of the greatest threats to the long-term viability of the human species (Díaz et al., 

2006). 

Although now there is a general consensus that we are entering the sixth mass extinction 

event (Ceballos et al., 2015), quantifying the exact extent of biodiversity loss remains difficult. 

Determining the spatial and temporal scales of biodiversity loss is essential to understanding 

its consequences, and developing strategies to mitigate its impact (Magurran, 2021). Since 

ecosystems consist of carefully balanced, complex interactions between species, the 

extinction of one species is likely to have far-reaching consequences (Sodhi et al., 2009). This 

was poignantly illustrated at the COP15 (UN Biodiversity Conference, Montreal, 2022) using 

the metaphor of a Jenga tower for an ecosystem, suggesting that we can take out pieces for 

a while and it remains standing, but we do not fully understand which combination of blocks 

that get removed from the tower will destabilize it, leading to its collapse. What is certain that 

with every species that becomes extinct, biodiversity dwindles, and with it the basis of life on 

Earth as well. In effort to halt or even reverse this biodiversity loss, several global targets have 

been set for the next decade, such as protecting and sustainably managing 30% of the Earth’s 

land and marine environments (CBD, 2022). However, to achieve effective conservation and 

sustainable management of these protected areas, the first essential step is to be able to 

accurately monitor biodiversity and make informed predictions about how and why this 

diversity changes over space and time (Lindenmayer et al., 2012). 



Introduction 

 

4 
 

Accurately monitoring biodiversity provides a reliable baseline to track and understand 

long-term shifts in biological diversity. However, for most species, such analyses can focus only 

on recent changes, as data are limited for the past decades or if older data are available, then 

they are less accurate (Mihoub et al., 2017). Because the baselines are often recent and 

arbitrary, it is important to be cautious when interpreting stable or even increasing population 

trends as a sign of conservation success. For example, European bat populations showed a 

massive decline during the second half of the 20th century, followed by partial recovery of 

some species in the past 30 years, as a result of conservation legislation and habitat 

management (Van der Meij et al., 2015). However, the current bat populations are still likely 

to be smaller compared to the pre-decline figures, making them less robust to the 

considerable anthropogenic changes that continue to affect them. Moreover, in cases when 

we lack long-term monitoring data and knowledge about the past condition of a species, we 

are more likely to perceive such trends as normal, a term called ‘baseline shifting’ (Soga & 

Gaston, 2018). This shifting baseline syndrome increases the society’s tolerance for 

environmental degradation and species extinction, but it also changes the expectation of 

people as to what is a desirable state of nature, and thus, the species and habitats that are 

worth protecting (Papworth et al., 2009). 

 

 

“A shifting baseline has distorted our perception of all life on Earth. We have forgotten that 

once there were temperate forests that would take days to traverse, herds of bison that would 

take four hours to pass, and flocks of birds so vast and dense that they darkened the skies. 

Those things were normal only a few lifetimes ago. Not anymore. We have become 

accustomed to an impoverished planet. We have replaced the wild with the tame. We regard 

the Earth as our planet, run by humankind for humankind. There is little left for the rest of the 

living world. The truly wild world - that non-human world - has gone. We have overrun the 

Earth.”  

(A Life on Our Planet:  

My Witness Statement and a Vision for the Future  

by David Attenborough) 

 

 

Obviously, we cannot go back in time to improve species monitoring and establish 

baselines that represent the population sizes before extensive anthropogenic impacts. What 

can be done, is to initiate the collection of accurate and consistent long-term monitoring data 

that can inform both the current and future generations about the changing state of 

biodiversity (Jones et al., 2020). Since biodiversity monitoring is a very broad term that 

encompasses many different approaches, it is essential that before starting the data 

collection, we clearly define why and what we want to monitor (Jones et al., 2013), and how 

the data should be collected and processed to support conservation actions and management 

decisions. 
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The rationale for starting a monitoring program (the “why”) is very often the simple idea 

that gaining more information about any biological system is always beneficial (Yoccoz et al., 

2001). However, to ensure the success of monitoring programs, it is important to define 

explicit objectives. The monitoring objective can either be to contribute scientific knowledge 

about the behavior and dynamics of the monitored system, or to evaluate the effectiveness 

of conservation actions and make more-informed management decisions in the future (Yoccoz 

et al., 2001). In both cases, a set of a priori hypotheses are developed about how the 

monitored system will respond to environmental changes or management actions, and the 

resulting predictions are compared to the patterns observed from the collected data 

(McComb et al., 2010). This thesis focused on investigating the use of a novel monitoring 

method, and less on addressing these explicit objectives. However, in the future, the data 

collected with such a method can be used to evaluate both the impact of environmental 

changes and conservation actions on the monitored populations. 

Next, we have to specify the level at which we want to document the changing state of 

biodiversity and the metrics we want to quantify (the “what”). Monitoring can range from 

ecosystems and communities to species and populations, or even to an individual level (Noss, 

1990). In this thesis, biodiversity was monitored primarily at the community- (i.e., mixed 

species assemblages) and species-level. Indeed, most monitoring programs focus on species-

level changes and prioritize the monitoring of species that are rare, endangered, or have high 

economic, social, cultural, educational, and aesthetic values (Gascon et al., 2015; McComb et 

al., 2010; Tribot et al., 2018). After choosing the monitored system, the next step is to define 

the characteristics of the system to be monitored. In this thesis, we focused on several 

ecological metrics that can be derived from a novel monitoring technique and have a direct 

relevance to understanding the biology of the monitored species or can be used to evaluate 

management actions that might affect them. For one, we established methods for detecting 

changes in the species composition of communities, which can contribute to better 

understanding the species-specific impact of management actions or to identifying species-

specific threats. Moreover, we monitored population-level parameters, such as population 

sizes and trends, which enables us to determine the conservation status of species and 

evaluate how they are responding to human-induced environmental changes (Elzinga et al., 

2001). Due to its spatial component, such monitoring data can also contribute to identifying 

sites and habitats of high conservation value that should be protected (Chape et al., 2005), 

and to measure the effectiveness of these protected areas. This evaluation is part of an 

important feedback loop to implement more informed, data-driven conservation policy and 

management strategies. Additionally, we monitored species-level phenological changes that 

have also important implications for conservation itself. For example, the phenology of 

hibernating mammals, such as temperate zone bats, can be directly linked to their fitness and 

survival (Iler et al., 2021). However, the timing of phenological events is heavily influenced by 

climatic cues, thus, climate change is expected to have consequences on the persistence of 

these species (Wells et al., 2022). 
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Finally, we have to establish how can we collect monitoring data that is required for 

obtaining relevant ecological metrics (the “how”). First, the chosen method should be 

minimally invasive, so that it does not negatively affect the target species or changes its 

behavior. Beyond the impact on the individual level, if the method causes disturbance, it may 

alter the metric that it is trying to observe, and the results cannot be used for inference about 

the broader population. Second, the collected data should be accurate enough that it can be 

used to evaluate the a priori hypotheses without the true patterns being masked by inaccurate 

data collection. Third, the spatial and temporal scale of monitoring should be sufficient to 

achieve the predefined objectives. Due to the rapid loss of biodiversity, there is a growing 

need for assessing the status of wildlife at large spatial and temporal scales (Schmeller et al., 

2017), but this is often associated with high costs. Therefore, when developing monitoring 

programs, we should aim for using methods that allow cost- and time-efficient sampling, but 

also offer accurate assessment of changes in biodiversity at scale. Recent advancements in 

automated monitoring methods are important in this context, as they have the potential to 

increase the spatial and temporal scale, the accuracy, and the information content of the 

assessments of biodiversity changes (Kitzes & Schricker, 2019; Petrou et al., 2015). Moreover, 

remote data collection is particularly useful to overcome the challenges related to monitoring 

rare or cryptic taxa, such as bats, that are otherwise hard to accurately and efficiently monitor 

due to their elusive behavior (Rebelo & Jones, 2010). In this thesis, we focused on evaluating 

a novel, automated bat monitoring method and its potential to be a minimally invasive, 

accurate and scalable approach that can contribute to data-driven conservation. 

 

1.2. Bat monitoring  

Bat species around the globe provide ecosystem services, such as insect suppression, plant 

pollination and seed dispersal, which are essential for general ecosystem health and human 

well-being (Kunz et al., 2011). However, due to their sensitivity to changing environmental 

conditions, most bat species face a myriad of threats, such as habitat loss, emerging infectious 

diseases or global warming coupled with increasingly unpredictable climatic conditions (Frick 

et al., 2020). Since bats are long-lived animals with a slow rate of reproduction (Barclay et al., 

2004), when environmental and anthropogenic changes cause population declines, bat 

populations will recover only slowly (Fleischer et al., 2017). Consequently, accurate and long-

term monitoring of bat populations is fundamental for tracking the impact of environmental 

changes on their populations, and consequently, for biodiversity conservation.  

Despite the bats’ key ecological role and the current biodiversity crisis, over one third of 

bat species assessed by IUCN (International Union for Conservation of Nature) are considered 

threatened or data deficient, and more than half of the assessed bat species have unknown 

or decreasing population trends (Frick et al., 2020). This means that currently almost a 

thousand bat species around the globe would require improvement to their population 

monitoring data or immediate conservation actions (IUCN, 2022).  
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Monitoring bats is a challenging task, particularly in the temperate zone, where most 

species are small, elusive, show nocturnal activity and are sensitive to the disturbance 

associated with many monitoring methods. Nearly all temperate zone bat species follow a 

similar annual life cycle (Schober & Grimmberger, 1989), which provides opportunities for 

monitoring them. For those species that use underground sites for hibernation, the annual life 

cycle consists of three main phases: summer, when female bats typically form species-specific 

maternity colonies and males roost separately either on their own or in small bachelor groups; 

autumn, when both females and males of multiple species gather at swarming sites for 

mating; and winter, when both sexes of multiple species hibernate together at underground 

sites (Dietz et al., 2009). Therefore, monitoring at underground sites is suitable for observing 

both the autumn mating and winter hibernation phases (Figure 1). 

 

 

Traditionally, many bat species have been monitored primarily by visual surveys at their 

summer maternity roosts. This can be done either by counting the adult and juvenile bats that 

are visible inside the roost – a method often associated with heavy disturbance; or by counting 

bats emerging from the roost for their nightly foraging trips, performed by surveyors outside 

of the roost causing minimal disturbance (Battersby, 2008). While monitoring summer 

maternity colonies is an essential component for understanding bat population dynamics, it 

also comes with some challenges. First, counts at maternity colonies are limited to female and 

juvenile bats, since the adult males are segregated during this time of the year. Second, this 

method requires prior information about the location of the maternity roosts, which is not 

always readily available for many populations. For example, for species that frequently switch 

roosts, it is also important to quantify the home range of their maternity colonies to ensure 

that the same colony is monitored between years. Moreover, for understanding the 

summer 

maternity 

colonies and 

solo males 

autumn 

swarming  

winter 

hibernation 

Figure 1. The annual life cycle of temperate zone bats that use underground sites for 

hibernation. The green portion of the ring indicates the phases when bats are present at the 

hibernacula. Also note that while the species and sexes (brown and black icons) are 

segregated in summer, they form mixed assemblages at the underground sites in autumn 

and winter. 
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population dynamics of species with fission-fusion dynamics, it is also crucial to consider that 

very often only an unknown subset of the population will be counted on any given survey. 

Finally, visual counts in and outside of large maternity roosts are both highly susceptible to 

observer bias. The accuracy and reproducibility of such counts can be increased by using 

automated counting methods. For example, emergence counts can be performed post-hoc 

from infrared and thermal videos that were recorded at the exit of the roosts. Furthermore, 

automated animal tracking methods can be applied to the video data (e.g., Bentley et al., 

2022), providing more standardized count results with less human effort. However, due to 

high power and data storage requirements of the video recording devices, such approaches 

remain unfeasible for widespread or long-term bat monitoring.  

In contrast to summer, the autumn and winter phase of the annual life cycle of most 

temperate zone bat species take places at the same underground sites. Although monitoring 

such underground sites is not suitable for tracking colony-level dynamics or approximating the 

reproductive output of colonies, these underground sites offer an opportunity to efficiently 

track regional population dynamics. This is because during autumn and winter the same 

underground sites are used by both sexes of multiple species, and by individuals from different 

maternity colonies (Dekeukeleire et al., 2016). The most common bat monitoring methods at 

such underground sites are swarming captures and acoustic surveys in autumn, and visual 

surveys during the winter hibernation period.  

During autumn, temperate zone bat species assemble at underground sites for swarming, 

which is a behavior that can serve several purposes. First, it supports a promiscuous mating 

system and facilitates gene flow between the otherwise isolated summer maternity colonies 

(Furmankiewicz & Altringham, 2007; Kerth et al., 2003). Second, it provides opportunities for 

social information transfer regarding the location of the underground site (Humphrey & Cope, 

1976), particularly to juveniles (Stumpf et al., 2017). Third, it supports the assessment of the 

suitability of an underground site as hibernaculum (Fenton, 1969; van Schaik et al., 2015). 

During autumn swarming, bats exhibit high flight activity and circling behavior at the entrance 

of the site (Parsons et al., 2003), which provides opportunities to capture bats using mist-nets 

and harp-traps. Although capturing and handling bats allows reliable species and sex 

identification, this method might expose the captured bats to considerable stress (Battersby, 

2008). To minimize the potential stress caused to bats, the temporal and spatial resolution of 

swarming capture data is often limited. As result, this coarse data cannot be used to directly 

estimate population sizes and trends or to efficiently monitor species-level phenology. 

As an alternative to swarming captures, acoustic detectors can also be used at swarming 

sites to non-invasively survey bat activity. Another advantage of acoustic surveys is the 

possibility to record species that would be difficult to observe with other traditional methods, 

such as captures (O’Farrell & Gannon, 1999). Moreover, passive acoustic detectors can be 

installed at swarming sites to record large volumes of bat activity data without the presence 

of a surveyor (Froidevaux et al., 2014). To speed up the data analysis, several automated 

classifiers of echolocation calls have been developed (Rydell et al., 2017). However, reliably 

distinguishing calls to species level is not always possible due to intraspecific call variation, 

interspecific overlap in the call features (Russo et al., 2018), and overlap of concurrently calling 
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individuals (Bergmann et al., 2022). Another limitation of the acoustic activity data is that it 

cannot be directly translated into population size estimates, and even comparing the relative 

volume of activity between sites is likely challenging due to site- and year-specific levels of 

swarming activity. 

During winter, many temperate zone bat species share the same underground sites for 

hibernation. In this period, bats alternate between prolonged bouts of torpor (i.e., reduced 

body temperature and metabolic rate) and short arousals with a return to normal body 

temperature (Ruf & Geiser, 2015). This behavior constitutes a trade-off between energy 

conservation during unfavorable environmental conditions and the physiological and 

ecological costs of lowered metabolic rate (Humphries et al., 2003). Given this energetic 

constraint, it is important to consider that hibernating bats are sensitive to non-tactile stimuli 

and might arouse due to changes in microclimatic conditions, disturbance from other bats or 

humans. While hibernating bat assemblages are most commonly monitored by visual counts, 

the presence of observers may evoke arousal in hibernating bats, as a result to exposure to 

light, noise, air currents and heat (Davis, 1970; Pflitsch & Piasecki, 2003; Speakman et al., 1991; 

Thomas, 1995). Such arousals may result in high metabolic activity and loss of body mass 

(Johnson et al., 1998; Speakman et al., 1991; Thomas, 1995), which may also lower overwinter 

survival rates (Johnson et al., 1998). Although the use of modern technology (e.g., LED lamps 

instead of halogen or kerosine lamps) and following best practice guidelines has likely reduced 

the impact of visual surveys in recent decades (Stapelfeldt et al., 2020). Nevertheless, to limit 

the impact of human disturbance on hibernating bats, winter counts are usually limited to one 

occasion per year. Because they are relatively easy to perform,  winter hibernation counts are 

the most widely used and oldest monitoring method used to track population dynamics of 

temperate zone bats (Van der Meij et al., 2015). However, it has been long acknowledged that 

there is a discrepancy between the visually observed and the actual population size of bat 

assemblages in hibernacula, as a result of bats hiding in deep cracks and crevices (Battersby, 

2008).  

In addition to these monitoring options (i.e., swarming captures, acoustic surveys, winter 

counts), the installation of infrared light barriers and camera traps at the entrance of 

hibernacula represents a promising, novel bat monitoring method. Light barriers can count all 

bats that enter or leave the site without being affected by the visibility of bats. Consequently, 

they are expected to provide more accurate population size and trend estimates than visual 

counts, but the discrepancy between the two methods has not been quantified before. 

Additionally, camera traps can be connected to the light barriers to gather species-level 

information even for rare or crevice-dwelling species that may remain hidden during visual 

surveys. The resulting camera trap data can be used to describe activity patterns and 

hibernation phenology of different bat species, and ultimately, to monitor species-level 

population trends. However, to gather images with sufficient quality that allows reliable 

species identification, camera traps must include a white flash. The use of white flash might 

cause disturbance to temperate zone bats that are generally considered sensitive to artificial 

light (Voigt et al., 2018), but the potential effects of the white flash on bats have not been 

investigated. Moreover, manual bat species identification from camera trap images is a time-
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consuming and monotonous task that requires extensive experience with the subtle 

morphological differences between species. Given that a medium-size site with around 600 

hibernating bats may yield up to 30,000 camera trap images every year, manually analyzing 

images from large-scale monitoring projects appears unrealistic. To overcome this bottleneck, 

deep learning-based species identification could offer a more efficient solution to process the 

resulting huge volume of images, and thus, ensure that the temporal and spatial resolution of 

camera trap-based monitoring can be vastly scaled up. Although such solutions exist for many 

other mammals (e.g., Norouzzadeh et al., 2018; Tabak et al., 2019), thus far no tools have 

been developed for automated identification of bat species from camera trap images. The aim 

of this thesis was to fill these knowledge gaps related to the invasiveness, accuracy, and 

scalability of infrared light barriers and camera traps used for bat monitoring. 
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1.3. Data collection 

In this thesis, several types of techniques have been applied to monitor bats, and to quantify 

the accuracy and impact of the monitoring methods on the bats. In addition to traditional 

visual count at hibernacula, we used infrared light barriers, custom-built camera traps, self-

built infrared video cameras and full-spectrum acoustic loggers at the entrance of hibernacula 

(Figure 2, for details see Box 1). 

  

Figure 2. An automated bat monitoring system consisting of a custom-built camera trap, an 

infrared video camera and an acoustic logger, facing the entrance of a hibernaculum, where 

an infrared light barrier was installed. 

Acoustic 

logger 

Infrared 

video 

camera 

Camera 

trap 

Infrared light 

barrier 
 



Introduction 

 

12 
 

Box 1. How does the automated bat monitoring technology used here work? 

Infrared light barrier 

Infrared light barriers consist of a sensor array of infrared LEDs and corresponding receivers 

that create two parallel sets of infrared light beams, called ‘curtains’. These systems cycle 

through each transmitter-receiver pair at a frequency of 1kHz (i.e., 60 times a second) 

within each curtain. The curtain is considered blocked when any single receiver does not 

register the photoelectric signal from the LED during a cycle. The direction of the passes 

through the light barrier can be distinguished based on the order that the curtains are 

blocked (Figure 3). In addition to recording passes, the light barrier can save a log of all 

individual curtain triggers, which enables the identification of times when a curtain is 

blocked for an extended period of time (e.g., by a leaf or spiderweb in the entrance). 

In this study, we used three light barrier models produced by ChiroTEC (Lohra, 

Germany). The models differ in the height of the monitored opening (Liba-4: 9.7 cm; Liba-

16: 35.5 cm; Liba-16k: 20.1 cm), the number of sensors per curtain (Liba-4: 4 sensors; Liba-

16 and Liba-16k: 16 sensors), and thus, the sensor density (Liba-4 and Liba-16: 2.2 cm 

between sensors, Liba-16k: 1.3 cm). These light barriers can either be powered directly via 

a power outlet or using car batteries. Using one 12V 100 Ah battery, a light barrier can 

continuously run for approximately six weeks. However, using a custom-made power 

manager tool, the light barrier can be connected simultaneously to four batteries, which 

will be depleted one after another in sequence.  

 

A bat enters the hibernaculum, and the 

light barrier registers an “in” event, based 

on the sequence of the blocked curtains: 

0 (none) – 1 (outer) – 1 and 2 

(simultaneously) – 2 (inner) – 0 (none). 

 
outer 

curtain (1) 

outside 

oof  

inside 

inner 

curtain (2) 

IN 

A bat exits the hibernaculum, and the 

light barrier registers an “out”, based on 

the sequence of the blocked curtains:         

0 (none) – 2 (inner) – 2 and 1 

(simultaneously) – 1 (outer) – 0 (none). 

 
outer 

curtain (1) 

outside inside 

inner 

curtain (2) 

OUT 

Figure 3. The logic behind how the infrared light barrier distinguishes the directionality of 

the registered bat passes (i.e., entry vs exit).  
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Box 1. (cont.) 

Camera trap 

We used custom-built 

camera traps produced by 

ChiroTEC (Lohra, Germany; 

Figure 4A). These camera 

traps consist of a Panasonic 

Lumix G5 digital mirrorless 

camera and a Metz 58 AF-2 

digital white flash with 

standardized settings 

(aperture 5.6, power 1/16, 

zoom 70). The camera trap 

is connected to the light 

barrier, and it is triggered 

on each entry or exit 

registered by the light 

barrier, depending on the 

settings. Such camera trap 

can be powered for up to 

four weeks using six car 

batteries (12V, 100Ah; four 

for camera and two for 

flash).   

 

      Infrared video camera 

We used self-built infrared 

video cameras that consist of a 

Raspberry Pi 3, an 8 MP 

camera, and an 850 nm 

infrared illuminator (Figure 

4B). They were mounted on 

top of the camera traps and 

recorded continuously 

between sunset and sunrise, 

with 800x600 resolution and 

25 frames per second. The 

Raspberry Pi received a signal 

from the light barrier 

whenever it registered a pass, 

enabling the automatic 

extraction of short video clips 

around every registered pass. 

These video cameras could 

record for one week using two 

car batteries (12V, 100Ah). 

 

             Acoustic logger 

We used AudioMoth 

acoustic loggers that were 

encased in a 3D printed 

protective casing (Figure 

4C). The recorders were 

mounted directly on top of 

the infrared video cameras, 

with the microphone facing 

the entrance of the 

hibernaculum. They 

recorded with a sample 

rate of 192 kHz, on the 

medium gain setting. The 

recorders are originally 

powered by four AA 

batteries, but these were 

modified with a holder for 

four additional batteries. 

This allowed continuous 

recording every day 

between sunset and sunrise 

for one week. 

 

 

Figure 4. Overview of the automated bat monitoring techniques used in this study: A) a 

custom-built camera trap, consisting of a digital camera and a white flash, that is connected 

to an infrared light barrier; B) a self-built infrared video camera, consisting of a Raspberry Pi 

3, an 8 MP camera, and an 850 nm infrared illuminator; C) an AudioMoth acoustic logger, 

modified to be powered with eight AA batteries, and covered with a 3D-printed protective 

casing. 

Digital 

camera 

White 

flash 

Camera 

Infrared 

light 

Raspberry 

Pi 

AudioMoth 
Protective casing 

Additional battery holder 
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Infrared light barriers enable us to constantly monitor bat activity at hibernacula 

throughout the entire year. Based on this data, we can distinguish five activity phases at 

underground sites that are not used by maternity colonies in summer (Figure 5): mid-summer 

with low activity and no substantial entry or exit; autumn swarming phase, with generally high 

activity and swarming behavior (i.e., flying in and out of the site and circling at the entrance 

of the site), gradually transitioning into a period of net entry into the site; winter hibernation 

with very low activity and little to no net exit or entry; spring emergence, with generally lower 

flight activity than in autumn, characterized by net exit from the site; and early summer 

activity with relatively low activity without significant net entry or exit.  

Across all these activity phases, the light barrier registers every bat flying through the 

entrance. For each recorded pass, a light barrier event is saved that contains the direction of 

the pass (i.e., in or out) and a time stamp. Using these data, we can describe activity patterns 

(i.e., sum of all events, irrespective if it was an in or out), throughout the year, across seasons, 

or even on a nightly or hourly basis. Since we can distinguish the direction of the passes, we 

can assign a positive value (+1) to the entries (Figure 5, grey bars on the positive y-axis), and a 

negative value (-1) to the exits (Figure 5, grey bars on the negative y-axis). Consequently, we 

can calculate a net value for each night that represents how many bats entered or left the site. 

When the nightly net value is positive, more bats entered the site than left on that given night 

(Figure 5, light purple bars on the positive y-axis), and vice versa, when the nightly net is 

negative, more bats emerged from the site than entered it (Figure 5, dark purple bars on the 

negative y-axis). To estimate population sizes, we can either calculate the number of bats that 

entered the hibernaculum in autumn by adding up the nightly net values during the autumn 

swarming and hibernation entry phase; or calculate the number of bats that emerged from 

the hibernacula in spring by adding up the nightly net values during the spring emergence 

phase. However, precisely delineating these phases can be challenging due to the variation 

between species, sites, and years (Box 2). 
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To decide whether the autumn entry or spring emergence data are better to use for estimating 

population sizes, we must consider that the accuracy of the light barrier may vary with the 

number of registered passes (i.e., more passes in a short time increases the chance of passes 

being missed by the light barrier) and with the behavior of bats (i.e., bats swarming at the 

entrance are more likely to trigger false registrations). Consequently, the autumn entry data 

is expected to have lower accuracy compared to spring emergence data, for the following 

reasons. First, the highest activity peak of bats is recorded in autumn, which is several folds 

higher than in spring. Moreover, the autumn swarming phase cannot be reliably separated 

from the hibernation entry phase in the light barrier data (see Figure 5). This further inflates 

the number of registered passes and false triggers by swarming bats that circle on the inside 

of the hibernaculum without leaving, leading to higher error rate. In contrast, the spring 

emergence phase is characterized by low overall number of passes and less swarming activity 

at the entrance, and the emergence phase can also be relatively well separated from the early 

summer activity. However, none of these activity phases can be delineated with fixed dates, 

because their precise timing may differ between species, sexes, age classes, sites, and years 

(e.g., Meier et al., 2022). Therefore, the start and end dates of the emergence phase are 

usually determined visually by observing the activity patterns, which may introduce 

considerable bias to the final estimates.  

In some cases, the emergence phase is followed by a short, low-activity period that 

separates it from the start of the early summer activity (e.g., Eldena 2017, Figure 6A). As a 

result, visually delineating the emergence and the early summer activity is relatively easy. 

Moreover, due to the low number of passes between the two phases, any differences in the 

human-defined time windows for emergence would have only a minor effect on the ultimate 

population size estimate. In other cases, when the emergence and early summer phases 

overlap without any clear gap (e.g., Eldena 2020, Figure 6B), visually separating the two phases 

becomes challenging. In such cases, the large variance in human-defined time windows for 

emergence is expected to have a significant effect on the population size estimates, due to 

the relatively high number of passes between the two phases. 

  

Box 2. Delineating and selecting the most suitable period for estimating bat population 

sizes when using light barrier data. 
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Box 2. (cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6. Light barrier data showing the spring emergence and early summer activity 

phases, collected in Eldena in A) 2017 and B) 2020. The number of passes registered 

each night are indicated with gray bars (entries on the positive y-axis, exits on the 

negative y-axis). The nightly net sum of all entries and exits is represented by the purple 

bars (net entry: light purple bars on positive y-axis; net emergence: dark purple bars on 

negative y-axis). 

Early summer Spring emergence 

Low-activity 

period 

between 

two phases 

Precise transition 

between two 

phases less clear 

Early summer Spring emergence 
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1.4. Study sites and species 

For this study, we collected or were given access to bat monitoring data from 12 hibernation 

sites across Germany (Table 1), with most of the sites being located in Mecklenburg-Western 

Pomerania in northeast Germany. The type of collected data varied between sites, including 

data from infrared light barriers, camera traps, infrared video cameras, acoustic recorders, 

and visual surveys. Moreover, a curated collection of camera trap images from 33 other 

hibernacula was additionally used to develop an automated species identification tool. The 

monitored sites were mostly man-made structures, such as old cellars, bunkers, wells, and 

abandoned mines, but we also used light barrier data from one of the largest and most 

important natural bat hibernacula in northern Europe, the Kalkberg Cave (Kugelschafter et al., 

2014). We specifically selected these hibernation sites to meet the following criteria: sites with 

one or two narrow entrances, where the dimensions of the existing opening did not have to 

be markedly reduced to fit an infrared light barrier (currently the maximum dimensions that 

can be covered with a light barrier is 35x300 cm). Conveniently, the entrances of many 

hibernation sites in Germany have already been reduced in size to prevent human access and 

disturbance (for examples see Figure 7). Therefore, installing light barriers at the entrance of 

these sites required only minimal modification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7. Entrances of the different types of hibernacula used by bats: A) a natural cave 

(Kalkberg Cave, photo: Karl Kugelschafter), B) a purpose-built hibernaculum in Demmin, and 

C) an old beer cellar in Eldena. The bat icons indicate the openings used by bats, where the 

infrared light barriers were installed. 
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Table 1. Overview of the bat hibernation sites monitored in this study, including their location 

within Germany, roost type, and the type of monitoring data collected at each site. 

Site 
Federal 
state* 

Roost type 
Light barrier 

(model, 
position) 

Camera 
trap 

Winter 
count 

Video 
camera + 
acoustic 
recorder 

Anklam MV cellar 
Liba-4, 

within opening 
✓ ✓ ✓ 

Demmin MV 
purpose-built 
hibernaculum 

Liba-16k, 
within opening 

✓ ✓ ✓ 

Friedland MV cellar 
Liba-16, 
back of 
opening 

✓ ✓ ✓ 

Peenemünde MV bunker 
Liba-4, 
back of 
opening 

✓ ✓ ✓ 

Eldena MV cellar 

main: Liba-16, 
back of 

opening; Liba-
16k, within 

opening 

✓ 
✓ 

✓ 

side: Liba-4, 
within opening 

  

Comthurey MV bunker 
Liba-4, 
back of 
opening 

 ✓  

Putbus MV cellar 
Liba-4, 

within opening 
 ✓  

Strasburg MV cellar 
Liba-4, 

within opening 
✓ ✓  

Trollenhagen MV bunker 

main: Liba-16, 
within opening  

 ✓  
side: Liba-16k, 
within opening 

Kalkberghöhle SH natural cave 

main: Liba-16k, 
within opening  

 ✓  
side: Liba-16k, 
within opening 

Baumberge 1 NRW well 
Liba-16, 

within opening 
   

Baumberge 2 NRW well 
Liba-16, 

within opening 
   

33 other 
hibernacula 

across 
Germany 

cellars, 
bunkers, and 

mines 

Liba-4, Liba-16 
or Liba-16k 

✓   

* German federal state abbreviations: MV - Mecklenburg-Western Pomerania, NRW - North Rhine-

Westphalia, SH - Schleswig-Holstein. 
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 Depending on the entrance dimensions, we selected the most suitable light barrier model: 

Liba-4 for smaller, Liba-16k for medium, and Liba-16 for larger entrances. In general, we aimed 

to minimize modifications to the entrance, thus, we integrated the light barrier within the 

existing opening if it was possible. If the opening was too small, we mounted the light barrier 

on the inner wall of the hibernaculum, directly behind the back of the opening (compare the 

positioning of the Liba-16k and Liba-16 in Eldena, Figure 8A). When the light barrier could not 

be installed directly at the entrance, mainly due to safety reasons, it was installed in a wooden 

frame before any branching or alternative paths, maximum a few meters away from the 

entrance (Figure 8B). At sites with multiple entrances, all openings were monitored, so no bat 

could enter or leave the site without flying through a light barrier.

Figure 8. A) The main entrance of a hibernaculum (Eldena) showing two light barrier models 

in situ: a Liba-16k integrated within the existing opening and a Liba-16 mounted on the inner 

wall of the hibernaculum, directly behind the back of the opening. The camera trap was 

triggered by a brown long-eared bat (Plecotus auritus). B) A Liba-16k light barrier installed in 

a wooden frame a few meters away from the entrance of the hibernaculum. The camera trap 

was triggered by a greater mouse-eared bat (Myotis myotis). 

Liba-16k 
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The monitored hibernation sites largely differed in terms of their inner structural 

complexity. Purpose-built or concrete-made hibernacula, such as Demmin and Comthurey, 

had little to no crevice formation where the bats could potentially hide during the visual 

counts (Figure 9A). In cellars and bunkers, the amount of deep crevices was highly variable 

between sites. Some sites, like Eldena and Trollenhagen, had so-called cavity walls (i.e., wall 

with hollow center) that are accessible to bats via small openings, which made it impossible 

to visually count them (Figure 9B). Certain hibernacula, like the one in Strasburg, had 

inaccessible sections because parts of the site have collapsed (Figure 9C), while other sites 

were completely inaccessible for visual surveys, like the 60-m deep well shaft in Baumberge 

(Figure 9D).  

 

Figure 9. The inner structural composition of different hibernacula: A) with little to no crevice 

formations, B) with deep cavity-walls (arrow indicates the opening where bats can enter into 

the hollow wall), C) with inaccessible sections, and D) a 60-m deep well that is inaccessible 

for visual surveys.  
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Besides the size and complexity of the hibernacula, the preference of different species to 

hide in small cracks and deep crevices also affects our ability to accurately count them during 

visual surveys. Based on their roosting preference, we can distinguish between free-hanging 

species that are relatively easy to count (Figure 10A), and crevice-dwelling species that can 

often hide quite effectively (Figure 10B, C). While these crevice-dwelling species are at best 

underestimated or not found at all during visual hibernation counts (Toffoli & Calvini, 2021), 

the light barrier and camera trap data is not affected by their visibility in the hibernacula. From 

the camera trap images, we can identify bats to species level, or as a species complex when 

the characteristics visible in the images are not sufficient to reliably distinguish between 

morphologically similar species (Box 3).  

 

 

Figure 10. Bats in hibernation: A) a free-hanging mouse-eared bat (Myotis myotis), B) a brown 

long-eared bat (Plecotus auritus) hiding in a brick wall, and C) a Natterer’s bat (Myotis 

nattereri) hibernating in a metal pipe. 
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Box 3. Bat species and species complexes identified from camera trap images in this study: 

1) Barbastelle bat (Barbastella barbastellus), 2) Serotine bat (Eptesicus serotinus), 3) Noctule 

bat (Nyctalus noctula), 4) Bechstein’s bat (Myotis bechsteinii), 5) Pond bat (Myotis 

dasycneme), 6) Daubenton’s bat (Myotis daubentonii), 7) Natterer’s bats (Myotis nattereri), 

8) Geoffroy’s bat (Myotis emarginatus), 9) Common bent-wing bat (Miniopterus schreibersii), 

10) Whiskered bats: Myotis alcathoe, M. brandtii, M. mystacinus,  11) Mouse-eared bats: 

Myotis blythii, M. myotis, 12) Long-eared bats: Plecotus auritus, P. austriacus, 13) Pipistrelle 

bats: Pipistrellus pipistrellus, P. pygmaeus,  and 14) Horseshoe bats: Rhinolophus 

ferrumequinum, R. hipposideros. 
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Box 3. (cont.) 

 

 

1.5. Objectives of the thesis 

The main goal of this thesis was to develop and evaluate automated methods for data 

collection and analysis that can improve bat monitoring and thus, conservation. Specifically, 

we investigated the use of infrared light barriers combined with camera traps to monitor bat 

population dynamics at hibernacula. Importantly, for this method to be applicable as a new 

large-scale bat monitoring technique, it had to meet the following three criteria: being 

minimally invasive because bats are sensitive to disturbance; being accurate because 

otherwise the misleading population monitoring data might lead to wrong or no conservation 

actions; and being scalable to increase the spatial and temporal resolution of the collected 

data. 

The first objective was to evaluate the invasiveness of the monitoring method and 

investigate whether the white flash of the camera trap has any measurable short or long-term 

effect on bat activity and behavior. To do so, we ran an experimental field study over four 

months at four hibernacula in northern Germany. During the study, each hibernaculum 

entrance was monitored using a camera trap with white flash, an infrared light barrier, an 

infrared video camera and a full-spectrum acoustic logger. The flash of the camera trap was 

turned on and off every week at each site, which allowed us to compare the activity and 

behavior of bats between flash-on and flash-off nights. If the flash disturbs the bats, we 

expected 1) lower overall bat activity as measured by the light barrier, 2) change in the flight 
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direction of entering bats as measured using the infrared video data, and 3) change in the 

echolocation behavior of entering bats as a short-term response to the flash. In addition to 

this experimental approach, we also looked at the potential long-term effects of the flash at a 

site with two entrances, where one was monitored with a camera trap and a light barrier, and 

the other one only with a light barrier over six years. If the flash would have caused substantial 

disturbance to the bats, we expected that 1) bats should show a preference for the entrance 

monitored without a camera trap, or 2) in the worst-case scenario, some individuals may 

abandon the site, which would ultimately lead to the reduction of annual population size 

estimates in the long-term. Collectively these data allowed us to determine if this photo-

monitoring system can be considered a minimally invasive bat population monitoring method, 

without any short- or long-term effects on natural bat behavior. 

After evaluating and confirming that the monitoring method is minimally invasive, the 

second objective was to quantify how accurate the infrared light barriers are, and to develop 

a standardized data analysis pipeline that provides comparable and reproducible results for 

bat population monitoring. First, we quantified light barrier accuracy and described how it 

varies with model type, positioning, and season. To do so, we monitored six light barrier 

installations with infrared video cameras over 15 weeks during the autumn hibernation entry 

phase and 15 weeks during the spring emergence phase. For each pass registered by the light 

barrier, a corresponding short video clip was cut from the continuous video data. 

Subsequently, these video snips were manually evaluated to determine whether the light 

barrier registration was correct or not. Next, we standardized the estimation of population 

sizes using the light barrier data. This required evaluating the possibility of generating 

population size estimates based on the autumn entry or the spring emergence data, and 

developing a method to delineate the start and end dates of these different activity phases in 

a standardized way (Box 2). Using the developed pipeline, we then estimated bat population 

sizes at 12 hibernacula in northern Germany and compared these estimates to traditional 

visual counts at ten sites, and to population size estimates based on the infrared video data at 

five sites. Since light barriers are not affected by the visibility of bats in the hibernacula, unlike 

visual surveys, we expected that 1) winter counts underestimate bat population sizes to a 

varying degree, based on the complexity of the hibernacula (i.e., amount of crevice formations 

and cavity walls where bats remain invisible during visual surveys), and that 2) light barriers 

can accurately estimate the true bat population sizes, thus, will overlap with the video-based 

population size estimates. Finally, we used the video data to calculate a confidence interval 

around the population size estimates that accounts for the measurement error of the light 

barrier at each video-monitored site. Moreover, we developed a method that can 

approximate these confidence intervals around the light barrier-based population size 

estimates even at sites where video data were not available. Applying such a method to 

population size estimates over multiple years allowed us to distinguish true population trends 

from measurement uncertainty, which could not be quantified in the case of visual counts. 

Consequently, we used the light barrier-based population estimates with approximated 

confidence intervals to explore population dynamics at four sites for which 5-6 years of 

continuous light barrier data were available. Overall, these results enabled us to quantify the 
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accuracy of this novel, automated bat monitoring system and propose a standardized 

methodology to make use of the resulting data for site-level population monitoring purposes. 

Finally, to integrate light barriers and camera traps into large-scale monitoring programs, 

we require efficient solutions to analyze the hundreds of thousands of camera trap images 

collected every year. Therefore, the third objective was to overcome the bottleneck of manual 

image analysis using automated solutions to identify bat species from camera trap images. To 

achieve this, we developed an open-source, deep learning-based tool (named BatNet) for 

automated identification of 13 European bat species or species-complexes, that encompass 

all species commonly observed at underground hibernacula in Germany. For the widespread 

adoption of this novel tool, it was crucial to demonstrate its ability to be retrained for new 

locations and to add new species from within a coding-free graphical user interface. The final 

model performance was evaluated in terms of 1) accuracy on test images of all 13 species 

from previously seen backgrounds, 2) accuracy on test images from six unseen backgrounds, 

before and after retraining the model on the site, 3) accuracy on test images (of the 13 original 

species and one new species) after retraining the model to recognize an additional species 

(Miniopterus schreibersii), and 4) in an ecological case study, in terms of species-level 

ecological metrics (i.e., diversity, relative abundance, and phenological estimates) compared 

between the human and BatNet results. Taken together, these results allowed us to evaluate 

the potential of BatNet to speed up the camera trap image analysis while achieving high 

accuracy, both in terms of species-level identifications and ecological measures that are 

relevant for bat monitoring and conservation. 
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2. Synthesis 

2.1. General findings and discussion 

This dissertation investigated the use of automated monitoring methods and data analysis 

tools to improve bat population monitoring and thus, conservation. Specifically, we focused 

on the use of infrared light barriers and camera traps to monitor bat population dynamics at 

hibernacula, as well as deep learning-based solutions to automate the analysis of the resulting 

large camera trap datasets. To support the widespread use of this automated bat monitoring 

system, we first evaluated the invasiveness of the white flash of camera traps that are 

connected to the light barriers. Second, we quantified the accuracy of infrared light barriers 

in terms of recording bat passes and estimating population sizes and trends. Finally, we 

developed standardized and automated data analysis pipelines, both for the light barrier and 

camera trap data, to support scaling up bat monitoring efforts both in space and time. 

In Publication I we found that bats did not show any observable negative reaction to the 

use of camera traps with white flash at hibernation sites. Specifically, when comparing flash-

on and flash-off nights, we found that nightly bat activity was not affected by the flash, but it 

decreased in relation to an abiotic environmental factor: the duration of rain per night. 

Similarly, flight direction of bats entering the hibernaculum was not affected by the flash, but 

we did observe changes based on the presence of other bats, likely due to chasing and 

avoidance behavior. Likewise, we observed no difference in the latency of the first 

echolocation call after the camera trap trigger between nights when the flash was turned on 

and off (i.e., no discernible startle reaction). In terms of the potential long-term effects of the 

flash, we did not find a decreasing trend in overall light barrier activity or winter hibernation 

counts, as would be expected if the flash caused substantial disturbance to the bats. 

Moreover, at a site with two entrances, bats showed no increasing preference over the years 

for using the entrance monitored only with a light barrier (without flash), over the entrance 

which was also monitored with a camera trap (with flash). Taken together, this multi-faceted 

experimental approach allowed us to establish that camera traps with a white flash, 

connected to infrared light barriers, are a minimally invasive method for monitoring bat 

populations, without any short- or long-term effects on natural bat behavior.

In Publication II we quantified light barrier accuracy and how it varies with light barrier 

model, positioning, and season. Using infrared video surveillance as a control, we found that 

light barriers with high sensor density integrated within the entrance opening could achieve 

nearly perfect accuracy in registering directional bat passes (i.e., entry and exit) during the 

spring emergence phase. Therefore, we developed an analysis pipeline to use the resulting 

spring data to estimate bat population sizes and trends in a standardized way. This involved 

developing a method to flexibly determine the start and end dates of the emergence phase 

based on the observed activity, which ensures that light barrier estimates are comparable 

even between years and between sites where the timing of the emergence varies due to the 

latitude and species composition. Next, we compared the population sizes estimated using 

light barrier data to video-based population estimates and traditional visual counts at several 
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hibernacula. We found that light barrier estimates overlapped with the video-based 

estimates, confirming that light barriers accurately estimated population sizes. In contrast, 

visual counts markedly underestimated population totals and recovered as little as 3% of all 

bats at the most complex hibernacula, such as natural caves. When comparing population 

trends over six years, the light barrier-based trends showed regional patterns of growth and 

decline that were not detectable using the visual count data. Moreover, we could use the light 

barrier accuracy to calculate confidence intervals around the light barrier-based population 

size estimates. This allowed us to distinguish true population trends from measurement error, 

which was not possible with the visual count data. Based on these results and the proposed 

analysis pipeline, we established that infrared light barriers can be used to estimate the 

population sizes and trends of hibernating bat assemblages with unprecedented accuracy and 

in a standardized way.  

In Publication III we developed and presented a deep learning-based tool, BatNet, that 

can automatically identify bat species from camera trap images (for further details see Box 4). 

We showed that the baseline model performance was high across all 13 European bat species 

or species complexes on which the model was trained. The accuracy was high for trained sites, 

but also for untrained sites when the camera angle and distance from the entrance were 

comparable to the training images. At untrained sites with more atypical camera placements, 

we demonstrated the ability to retrain the baseline model in a coding-free environment within 

a graphical user interface. As a result of retraining, site-specific models achieved an accuracy 

comparable to the trained sites. Additionally, we showed that the baseline model can be also 

retrained to identify new species, while maintaining high classification accuracy for all original 

species. Finally, in an ecological case study, we established that BatNet can be used to 

accurately describe species-level ecological metrics from camera trap images, such as species 

diversity, relative abundance of species, and species-specific phenological estimates. 

Altogether, we demonstrated that BatNet can significantly speed up the camera trap image 

analysis process while achieving high accuracy, both in terms of species-level identifications 

and ecological measures that are relevant for bat monitoring and conservation. Moreover, the 

user-friendly interface, and the possibility to retrain the model for new sites and species within 

it, makes BatNet readily accessible for users without any programming knowledge. 

Combining the results of these three publications, we established that the use of camera 

traps and infrared light barriers is a viable method to monitor bat populations at hibernacula. 

In order to understand the potential benefits and real-world application of this method, it 

must be contextualized and compared to other common monitoring methods, namely 

acoustic surveys, visual hibernation counts, and swarming captures. In the following section, 

we compare these methods in terms of their invasiveness, the type of data they provide, their 

accuracy, the associated costs and the effort required to collect and analyze the data, for 

individual sites and at large geographic scale (for summary see Table 2).  
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Box 4. Automated bat species identification from camera trap images using BatNet 

Deep neural networks can be trained to automatize image-based species identification, and 

BatNet was specifically developed to automatically identify bat species from camera trap 

images. BatNet is composed of three distinct stages: detection, segmentation, and 

classification. First, an object detector network locates the bat in the image and places a 

bounding box around it (Figure 11A). Second, the image is cropped to the bounding box and a 

segmentation network removes the background (Figure 11B) to ensure that the actual bat 

characteristics are used for classification in the next step and not the background features. 

Third, an ensemble of three neural networks makes a prediction for the cropped bat image, 

which consists of a species label and a confidence value (0-100%), indicating the level of 

certainty in the species identification (Figure 11C). 

In this study, the object detector and the segmentation network were trained on camera 

trap images collected at 32 hibernation sites (i.e., trained sites). Since both these steps require 

the networks to distinguish between the bats and the background, their performance is 

expected to be lower at new, untrained sites, where the background characteristics are 

different from those previously learnt from the training images. The classifier networks were 

also trained on these 32 backgrounds with images of 13 European bat species or species 

complexes, and we refer to this final model as the ‘baseline model’. This baseline model can 

be retrained in a graphical user interface to expand the species list that the classifier can 

identify. Moreover, this approach can be used to create site-specific models at new sites 

where the background does not resemble of those in the training dataset, which is expected 

to improve the performance of both the detector and the segmentation network. 

 

  

Figure 11. The three main steps of automated species identification with BatNet: A) detecting 
the bat in the image with an object detector network, and placing a bounding box around it;                       
B) cropping the image to the bounding box, and removing the background around the bat 
with a segmentation network; and C) identifying the bat species and the corresponding 
confidence level, using an ensemble of three classifier networks. 
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2.1.1. Invasiveness 

Since bats are especially sensitive to human activities and disturbance (Kunz et al., 2009; 

Tuttle, 2003), when choosing a monitoring method, we have to first ensure that the process 

of data collection does not affect their natural behavior, and either causes them to abandon 

the monitored site or in the worst-case scenario, reduces their survival rate.  

In terms of the disturbance caused to bats, passive acoustic surveys can be considered the 

least invasive monitoring method, because they do not require the presence of an observer 

on site or any direct contact with the monitored bats (Battersby, 2008).  

In comparison, visual in-person hibernation counts can be considered potentially 

disturbing, because the non-tactile stimuli caused by the observers, such as light, noise, air 

currents and increase in temperature, may evoke arousal of hibernating bats (Davis, 1970; 

Pflitsch & Piasecki, 2003; Speakman et al., 1991; Thomas, 1995). These arousals can lead to 

less efficient hibernation and premature depletion of fat reserves in disturbed individuals 

(Johnson et al., 1998; Speakman et al., 1991; Thomas, 1995). Moreover, disturbed bats may 

also wake up other individuals within the hibernacula, spreading this energy stress across a 

larger part of the population as a cascade effect (Thomas, 1995), and potentially lowering the 

overwinter survival rate of the population (Johnson et al., 1998).  

Compared to visual surveys, capturing bats with mist-nets or harp-traps is associated with 

potentially even higher degrees of disturbance because they require handling the bats 

(Battersby, 2008). Additionally, captures are sometimes combined with marking (e.g., rings, 

RFID-tags) and/or other sampling (e.g., wing punches, blood sampling). These actions expose 

the bats to even higher level of stress and may in some cases reduce long-term survival (e.g., 

Baker et al., 2001).  

We argue that light barriers and camera traps are only marginally more invasive than 

passive acoustics., because they do not require the presence of an observer or direct contact 

with the bats. Moreover, in Publication I, we demonstrated that the use of camera traps with 

white flash has no measurable effect on the bats in terms of their activity or behavior. 

However, since the system does produce a potentially disturbing stimulus (i.e., flash) and 

requires some degree of entrance modification, further notes on its invasiveness are 

considered below. 

At first glance, the lack of flash effect may appear surprising for two reasons. First, several 

other studies have found startle reactions in mammals to the white flash of camera traps 

(Gibeau & McTavish, 2009; Schipper, 2007; Séquin et al., 2003; Wegge et al., 2004). Second, 

the hibernacula investigated in this study were dominated by Myotis species that are generally 

considered light aversive (Voigt et al., 2018), and show a strong negative reaction to even low 

levels of constant illumination (Azam et al., 2018; Zeale et al., 2018). We posit that the lack of 

a flash effect observed in this study can likely be explained by the comparatively weak (power 

1/16) and short duration (1/5500 s) of the flash. Therefore, it is important to note that 

changing the monitoring setup, in particular the brightness, length and frequency of the flash, 

could potentially result in undesirable consequences. For example, there might be a threshold 

in terms of the number of flashes per night, at which bats may start to react to the stimulus. 

While technically the camera trap and flash can be triggered every 20 ms, the sites included 

in this study were of moderate sizes (populations ranging from 100 to 400 bats), where the 

flash was ‘only’ triggered a maximum of 400-500 times per night during the highest activity 
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peak in autumn. However, at hibernacula with larger populations, particularly during the 

autumn swarming, the camera trap might be triggered up to 4000 times a night. This could 

potentially lead to such high frequency of flashes that it might be perceived as almost constant 

light by the bats. As we do not know whether this would have a negative effect on bats, we 

recommend being cautious at new sites that are expected to have large populations. This 

caution could be incorporated in practice by designing stepwise installation protocols for 

monitoring new sites where no previous information on activity is available. In such cases, one 

could first only install a light barrier to gather information about the general activity levels. At 

sites with substantially higher activity than those included in this study, as a next step, infrared 

video cameras could be temporarily installed together with the camera traps to observe the 

behavior of bats and investigate any potential reactions to the monitoring system.  

Another important aspect to consider is that the effect of flash in this study was 

investigated only at a population level. The reason for this is that species-level identification 

could only be reliably achieved from camera trap images when the flash was turned on, and 

individual-level recognition was not possible from any of the data sources. Consequently, in 

rare cases, individual- or species-level aversive reactions may have remained undetected. In 

this context, it is worth noting that bats turning around and leaving the site right after being 

exposed to the flash (i.e., U-turns) were exceptionally rare, which was considered the most 

extreme potential behavioral reaction of an individual to the flash. Therefore, highly negative 

reactions to the flash appear unlikely for the species that were present at the hibernation sites 

in this study. This notably includes Myotis myotis, which is one of the most well-documented 

light aversive bat species (Voigt et al., 2018).  

Beyond the flash of the camera trap, another potential impact that this automated 

monitoring system may have on bats is the reduction of the hibernacula opening to a size that 

allows installing a light barrier (currently max 35x300 cm). While such entrance modifications 

can be beneficial due to minimized anthropogenic disturbance, substantially reducing the size 

of the existing opening of a hibernaculum can affect both bat behavior and abundance (Pugh 

& Altringham, 2005; Spanjer & Fenton, 2005). Therefore, light barriers can be considered a 

minimally invasive monitoring method at hibernacula where their installation does not require 

large-scale entrance modifications. In many cases, hibernaculum entrances have already been 

reduced in size to limit human access, and thus, their entrances do not need to be substantially 

modified to enable light barrier installation.  

Overall, despite being a permanent monitoring installation, the entrance modifications 

required to install a light barrier and the effect of camera traps with white flash appears to be 

minimal at most, certainly when compared to the alternative of winter hibernation counts and 

captures. Furthermore, the effect of the flash is limited to individuals that actively trigger the 

camera trap by flying in and out of the hibernacula, in contrast to the potential disturbance to 

bats in torpor caused by visual surveys.  
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2.1.2. Data type and accuracy 

Next, we compare the data generated by different bat monitoring methods (i.e., swarming 

captures, acoustic surveys, winter counts, infrared light barrier combined with camera traps), 

in terms of their accuracy and the ecological metrics that they can provide. Specifically, the 

resulting data are most often used to describe species diversity, to estimate population sizes 

and trends, and to quantify changes in species-level activity patterns and phenology.  

 

2.1.2.1. Species diversity 

The first step of monitoring is to identify where the populations are that we want to protect 

and thus, monitor. Therefore, monitoring efforts should focus on the spatial distribution of 

species and site-level species composition.  

Captures at underground sites during the autumn swarming phase have the advantage 

that the species of the captured individuals can be always reliably identified. This is also true 

for cryptic species, which can only be reliably distinguished in the hand (Dietz & von Helversen, 

2004). Moreover, handling bats offers an opportunity to determine additional features of the 

captured bats, such as sex, age group, or body condition. However, it is important to consider 

that the capture probability of different species, demographic groups and even individuals 

may vary, with some being better at avoiding certain types of capture methods (Ferreira et 

al., 2021), which may bias the recorded species composition. 

The ability to reliably identify species from acoustic data has massively improved over the 

past decade (e.g., Russ, 2021), but still faces several. Traditionally, acoustic data were 

collected actively, where the surveyor followed the bat with an acoustic detector and thus, 

could optimize the method by changing the orientation of the microphone relative to the bat 

(Britzke, 2004). As a result, this method yields high-quality echolocation calls that make 

species identification more reliable. More recently, passive acoustic sampling schemes have 

been developed to record bat activity throughout the entire year without the presence of a 

surveyor (Froidevaux et al., 2014). Although passive acoustic setups allow large data volumes 

to be collected with minimal human effort, the quality of the data is limited due to the fixed 

position and the lower quality of the microphone used in most passive recorders. While 

acoustic data can be used to reliably distinguish certain morphologically similar species, like 

pipistrelle bats (Russ, 2021), distinguishing calls of many other bat species is not always 

possible due to intraspecific call variation or interspecific overlap in the call features (Russo et 

al., 2018). For example, Myotis species that dominated the hibernacula monitored in this 

study can be challenging to reliably distinguish acoustically, especially when many individuals 

are concurrently calling (e.g., Bergmann et al., 2022). Moreover, reliable acoustic detection of 

some species is challenging because they emit short and quiet echolocation calls (e.g., Plecotus 

species, which are known as the “whispering bats”; Russ, 2021).  

Visual count data from hibernacula can also be used to describe the species composition 

of hibernating bat assemblages. However, it is important to note that these data are affected 

by the visual detectability of bats, which varies with the available hiding places in the 

hibernacula, but also with the different preferences of bat species to hide in crevices. For 

example, free-hanging or clustering species, like Myotis myotis, are easier to count, while 
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crevice-dwelling species, like Myotis bechsteinii, are more likely to be undercounted or 

completely missed during visual surveys (Toffoli & Calvini, 2021). Moreover, some species 

(e.g., Barbastella barbastellus) are not necessarily present at underground sites for the entire 

hibernation period but shift between man-made objects and natural roosts, such as tree 

cavities, depending on winter temperatures (De Bruyn et al., 2021). As a result, winter 

hibernation counts might underestimate the importance of the site for some species that are 

not present or recorded on the given day when the visual survey is performed at the site.  

In contrast to visual counts, camera traps installed at the entrance of hibernacula are not 

affected by the visibility of bats, thus can reliably detect rare and crevice-dwelling species as 

well. However, similar to acoustics and visual counts, certain morphologically similar species 

cannot be distinguished from camera trap images to species level, but only as a species 

complex (e.g., whiskered bats). Despite this limitation, camera traps outperform the other 

monitoring methods for describing species diversity at hibernation sites for several reasons. 

First, because the detection probabilities do not vary between species when using camera 

traps. Second, the fine temporal resolution of the data allows us to describe species-level use 

of underground sites across all seasons, even outside of the hibernation period. Finally, 

accurate identification of species and species complexes from camera trap images is also 

feasible using automated solutions.  

Previously, the primary limitation to using camera traps for bat monitoring was the need 

for experts to manually identify thousands of images per site every year. We addressed this 

limitation by developing BatNet, a deep learning-based tool presented in Publication III. By 

using BatNet, we were able to automatically identify 13 European bat species and species 

complexes with high accuracy (F1-score range: 0.98-1) on test images. Using real-world data, 

we established an analysis pipeline to describe the species diversity at a hibernaculum in an 

automatized way using the output of BatNet. To do so, first we filtered out BatNet 

identifications with a confidence level below 95% to minimize the proportion of false positive 

errors while still retaining each species, including the rare ones. Next, we manually reviewed 

images for species that constituted less than 1% of the total dataset to eliminate the small 

number of remaining false positives. Applying this method, BatNet results provided the same 

species diversity as human experts at all study sites, and manual review was required for only 

0.1% of all images. 

 

 

2.1.2.2. Population size and trends 

When the populations to be monitored are identified, the next goal is to gather information 

about the current size of the population, and track population trends over time.  

For estimating the population size of hibernating bat species, the use of acoustic data is 

limited, because thus far the recorded activity data could only be used to generate a relative 

index of bat activity, but not to directly estimate absolute population sizes or absolute 

population trends. Similarly, swarming capture data collected at hibernation sites cannot be 

directly translated into population-level estimates. Potentially, comparing acoustic or capture 

data over several years could give an indication about the population trends compared to a 

reference year (i.e., indexed population trends), but the effect of confounding factors, such as 
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weather effects, remain unknown. Moreover, since species have different detection 

probabilities, these methods are not suitable to compare absolute abundance or activity levels 

between species (Thomas & Davison, 2022). 

Currently, the most widespread method for assessing the population dynamics of 

European bat species is winter hibernation counts. These visual counts estimate the absolute 

number of hibernating bat assemblages and the abundance of each species within these 

assemblages. However, the main limitation of visual counts is that they are point estimates 

that reflect only the visible proportion of the population on a given day. In Publication II, we 

found that in comparison to light barrier estimates, visual counts account for as little as 3-10% 

of all the bats at the most complex hibernation sites with many hidden crevices and cavities. 

Predicting a priori the accuracy of a winter count at a site is not possible, for several reasons. 

First, we found that the visually counted percentage of the population substantially varied 

within a site between years and, even between hibernacula that have similar inner structural 

complexity. Second, besides the amount of crevice formations, it has been previously shown 

that the visibility of bats is also affected by observer effects (i.e., survey effort and experience; 

Dambly et al., 2021), weather conditions (Degn, 1987; Toffoli, 2021) and by the timing of the 

count within the season (Daan, 1973; Řehák et al., 1994; Zukal et al., 2017) as a result of 

internal bat movements within the hibernaculum. Finally, the roosting preferences of the 

species (i.e., free-hanging vs crevice-dwelling) may lead to biased relative abundances of 

species, and in some cases vast underestimates of the total hibernating population. 

Nevertheless, when data from many sites are combined, robust overall population trends are 

possible for some species (Van der Meij et al., 2015). 

In this context, infrared light barriers constitute a vast improvement, as they provide 

absolute population size estimates and trends that are not affected by the visibility of bats. In 

Publication II, we found that the entries and exits registered with light barriers during the 

spring emergence phase can be summed to accurately estimate the number of bats that 

successfully emerged from hibernation. Using video recordings as a control, we found that 

light barriers with high sensor density and integrated within the entrance provide the most 

accurate population size estimates. As a result of the standardized analysis pipeline presented 

in Publication II, these light barrier-based estimates are also comparable between sites and 

years. Moreover, the light barrier activity data can be used to calculate a confidence interval 

around the light barrier-based population size estimates, which allows distinguishing true 

population trends from measurement error. 

The primary limitation of these analyses is that they currently only measure site-level 

population estimates, and not species-level trends. To obtain species-specific estimates, a 

camera trap can be connected to the light barrier, which takes an image of each bat that enters 

or leaves the hibernaculum. Despite the possibility for automated species identification from 

the images, partitioning these site-level estimates into species-level population sizes and 

trends remains challenging for several reasons. First, collecting 10 camera trap images of a 

species could be either a result of one bat flying in and out of the hibernaculum 10 times, or 

10 individuals entering the site once. Second, the number of times a bat flies in and out of the 

hibernaculum before finally emerging in spring may vary between individuals, species, sites, 

light barrier models and positioning, and it may also change with weather conditions. 

Therefore, we cannot just simply take the relative abundances of species from the camera 
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trap images and partition the total population estimate into species-level estimates. To 

overcome this challenge, a potential solution would be to install two camera traps (i.e., ‘entry’ 

and ‘exit’ camera) connected to the light barrier: one being triggered when bats enter the site, 

and the other when they exit. Taking the net number of images per species from the two 

cameras could provide species-specific population estimates. However, confidence intervals 

should be calculated around these estimates to account for light barrier error (i.e., missing 

images as a result of some passes not being registered by the light barrier, and extra images 

due to false triggers by bats circling on the inside of the light barrier). This could be achieved 

similarly as our proposed method to calculate confidence intervals around the site-level 

population size estimates based on light barrier accuracy. 

 

 

2.1.2.3. Phenological estimates 

Tracking changes in the phenology of species with strong seasonal dynamics is crucial to 

understand how different species optimize their behavior to avoid unfavorable environmental 

conditions (i.e., low temperature and reduced prey availability), but at the same time minimize 

the ecological and physiological costs of hibernation (Meyer et al., 2016; Willis, 2017). In this 

context, describing the hibernation phenology of temperate zone bats is essential to 

understand how global climate change might affect the population dynamics of different 

species (Festa et al., 2023; Reusch et al., 2022). From a conservation perspective, such 

phenological information can also help identify sensitive periods when disturbance should be 

avoided at hibernacula (e.g., Meier et al., 2022). Finally, investigating the hibernation length 

of bats is relevant for predicting the impact of emerging infectious diseases on temperate zone 

bat species, such as white-nose-syndrome (Puechmaille et al., 2011). 

One way to investigate species-level phenology of temperate zone bats is passive acoustic 

surveys (Kotila et al, 2022; Thomas & Davison, 2022). However, this method remains 

challenging because call intensity and thus, acoustic detectability varies between species, and 

correctly distinguishing certain species only based on echolocation calls is not always feasible 

(Russ, 2021). Moreover, species-level identification of many individuals echolocating 

simultaneously (i.e., during autumn swarming) remains extremely difficult due to the high 

overlap between call sequences (Rydell et al., 2017), only allowing the detection of the most 

dominant species from swarming soundscapes (Bergmann et al., 2022).  

Systematic repeated captures during the autumn or spring swarming phases allow for a 

general comparison of phenology within and between species (Furmankiewicz, 2008; Parsons 

et al., 2003; van Schaik et al., 2015). Besides the possibility for reliable species identification, 

captures at swarming sites provide additional information about the captured individuals 

(e.g., sex, age group), which may further affect their phenology. Similarly, repeated visual 

hibernation counts throughout the winter have been used to track the presence of species at 

underground sites (e.g., Daan, 1973). However, the biggest limitation of both methods is that 

the temporal resolution of the resulting data is very coarse. To increase the temporal 

resolution of phenological data, individualized RFID-tags can be implanted in captured bats 

which will be automatically registered by an antenna at the entrance of the hibernacula 

throughout the year. Despite the high data resolution provided by RFID-tags, such studies 
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have been limited to a few model species at single study sites (Meier et al., 2022; Norquay & 

Willis, 2014), because it is associated with extraordinarily high effort. 

Infrared light barriers and camera traps allows us to track species-level activity patterns of 

bats at a spatial and temporal resolution that cannot be achieved by any of the other methods. 

Such an approach can be combined with automated deep learning-based species 

identification to speed up data processing. Indeed, in Publication III we found that 

phenological patterns of the investigated bat species (Myotis daubentonii, M. myotis, M. 

nattereri and Plecotus auritus) were nearly identical when images in a 5-month long dataset 

were identified by human experts versus automatically by BatNet. This means that the data 

from camera traps that are triggered by bats entering the hibernacula (i.e., ‘entry’ camera) 

can be automatically analyzed with BatNet to accurately describe species-level activity 

patterns of bats in autumn. However, to quantify and compare these autumn phenological 

estimates between species and years, the remaining challenge is that we lack standardized 

methods to separate the two overlapping autumn activity phases: the swarming phase and 

the hibernation entry phase. In contrast, the start and end dates of the spring emergence 

phase can be determined with the standardized methodology presented in Publication II. To 

investigate spring emergence phenology, ideally an additional camera trap should be 

connected to the light barrier that takes an image of each bat that leaves the hibernaculum 

(i.e., ‘exit’ camera), using the same setup as in autumn (i.e., ‘entry’ camera).  
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2.1.3. Scalability 

Finally, monitoring population dynamics and phenology of bats at a small geographic scale 

allows only to identify local effects and threats for the populations, but to understand how 

different bat species are coping with the rapidly changing environment on a larger scale, we 

have to monitor many sites simultaneously. When choosing the most suitable data collection 

method for such large-scale monitoring programs, it is important to consider both the 

monetary and human costs associated with them. 

While swarming captures are relatively low-cost (i.e., travel costs, capture equipment), 

handling bats is time intensive and requires experts to be present at the site for the entire 

survey night. Due to this high human effort associated with swarming captures, both their 

spatial and temporal scalability is relatively limited.  

On the contrary, winter hibernation counts require a single visit per year by surveyors, 

who have experience with the morphological differences between hibernating bat species. 

The expenses and human effort associated with visual surveys are relatively low; therefore, it 

is a suitable method for large-scale, long-term bat monitoring. Indeed, the earliest bat 

population monitoring data available are based on winter counts and even today visual 

surveys are the most widespread monitoring method to track population dynamics of 

temperate zone bat species (Van der Meij et al., 2015). Moreover, these counts also serve an 

important public outreach function by engaging citizen scientists and volunteers in bat 

monitoring and conservation. 

In contrast to these traditional monitoring methods, automated data collection methods 

can increase the spatial scale of monitoring efforts, because they do not require the presence 

of surveyors on-site. For example, passive acoustic surveys can provide continuous monitoring 

data, potentially at several sites and even over the entire year. Since passive acoustic 

detectors are medium to low-cost devices, large-scale acoustic surveys can be considered 

cost-effective. While passive detectors allow large volume of acoustic data to be collected 

with minimal maintenance effort, the resulting data quality is lower compared to active 

acoustic surveys and manually identifying the echolocation calls from the collected huge data 

volume is labor and time intensive. To reduce manual workload, several automated classifiers 

of echolocation calls have been developed (see examples in Rydell et al., 2017). Such tools can 

speed up data analysis, but it is important to consider that different species are expected to 

have different probabilities to be correctly identified based on their echolocation calls (Russo 

et al., 2018; Rydell et al., 2017; Thomas & Davison, 2022), especially when many bats of 

multiple species are calling simultaneously (Bergmann et al., 2022).  

Similarly, infrared light barriers combined with camera traps also offer an automated 

monitoring approach that can be implemented at many hibernacula simultaneously, without 

the need for an observer to be present at the site. While the initial installation cost of such 

systems might be higher than for acoustic surveys, later the system can run with relatively low 

maintenance cost. Maintaining such monitoring systems consists of monthly visits to 

exchange power supplies at remote sites and backup the data. This effort is comparable to 

what would be needed for long-term acoustic monitoring; however, the data storage 

requirements are significantly lower for light barriers and camera traps. Moreover, in 

hibernacula with direct connection to electricity, the light barrier can be accessed remotely, 

providing constant access to the data, and allowing us to immediately identify technical issues 
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or potential threats for the bats. For example, near real-time activity data from hibernacula 

can be used to detect when the light barrier is blocked for an extended time (e.g., by a 

spiderweb) and cannot register bat passes. This feature is also useful for detecting sudden 

changes in bat activity that may be caused by imminent threats to the population, such as the 

persistent presence of a predator (e.g., an owl at the entrance) or unusual constant 

illumination of the entrance (e.g., during construction work directly adjacent to a 

hibernaculum entrance). 

Increasing the spatial scale of monitoring efforts enables us to collect large volumes of 

monitoring data but interpreting such “big data” also requires efficient and standardized 

analysis tools. Therefore, in the context of light barrier data analysis, we proposed a 

standardized pipeline that ensures that the light barrier-based population estimates are 

comparable between sites and years, and that confidence intervals capture the measurement 

error. Moreover, this methodology includes recommendations on detecting potential outliers 

and dealing with missing data. In terms of efficiently analyzing camera trap images, we 

presented a highly accurate, deep learning-based solution for automated species 

identification. However, there are several important aspects to consider when using BatNet 

in practice to automatically analyze camera trap datasets.  

First, performance of the baseline model (i.e., final BatNet model trained with 13 species 

on 32 backgrounds) may drop when we use it on images from a new site that was not included 

in the training data. This is particularly the case at sites where the camera placement (i.e., 

angle and distance from the entrance) are different from the training images. Overall, new 

installations are expected to be similar to the ones included in the training data, because the 

infrared light barriers and camera traps used in this study have default settings. Nevertheless, 

in cases when the baseline model performance is not satisfactory, retraining the model on 

new backgrounds is possible within the graphical user interface, without any programming 

knowledge. However, it is important to note that before inference, these new site-specific 

models should be first carefully evaluated on a batch of images that were identified by a 

human expert.  

Second, we also have to consider that the baseline model can currently distinguish 13 

species or complexes. In cases when the model is presented a completely new, untrained 

species, it can only assign a species from the list of trained species (i.e., no indication that it is 

a new species). However, when we have enough training images, it is possible to retrain the 

baseline model to recognize an additional species in the future. Indeed, we showed in 

Publication III that using only 58 local annotations, we can achieve high accuracy for a new 

species (F1-score: 0.99), while maintaining high classification accuracy for all other 13 species 

(F1-score range: 0.94-0.99). 

Third, when using BatNet to describe ecological metrics, we have to decide on an approach 

on how to deal with the BatNet identifications that have a low confidence threshold, and the 

extra identifications of bats that are in the background and are normally not scored by 

humans. In this study, we decided to simply exclude all identification that were below a pre-

defined confidence threshold (70%) and include all identifications above it, also including bats 

in the background. We found that this approach did not affect the results of BatNet compared 

to human experts in terms of species diversity, relative abundance, and species-specific 

phenology. However, depending on the purpose, manual review of identifications with low 
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confidence threshold might be required. Moreover, distinguishing the bat that triggered the 

light barrier from the bats flying in the background might be also necessary for certain 

applications. For example, to partition population-level estimates and trends into species-

specific ones, we would need to identify all images from an entry and exit camera, including 

manual review of the ones that had low confidence thresholds. Although automatically 

isolating the bat that triggered the camera trap is currently not feasible, presumably the 

population size estimates based on the spring emergence are less affected by this issue, 

because images with multiple bats are most often taken during the autumn swarming period. 

Furthermore, even if images with low threshold and/or multiple bats are manually validated, 

the overall effort required to process camera trap datasets is substantially reduced when using 

BatNet. 
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2.2. Conclusions and perspectives 

Overall, the results of this thesis demonstrate that infrared light barriers combined with 

camera traps are a minimally invasive bat monitoring method that improves our ability to 

accurately monitor population dynamics and phenology of temperate zone bat species at 

underground sites. Moreover, the resulting camera trap images can be automatically analyzed 

with a deep learning-based image analysis tool (BatNet) to vastly scale up monitoring efforts 

over time and space. Based on the comparison with other monitoring methods outlined above 

(Table 2), it is evident that infrared light barriers and camera traps should be integrated into 

the toolbox of bat monitoring and have the potential to completely change how we think 

about bat monitoring. However, the real challenge still lies ahead of us: how do we implement 

this method in practice, and translate the resulting “big data” into evidence-based 

conservation? 

2.2.1. Practical recommendations 

Based on the results of this thesis and our experiences, we share some practical advice on how 

to best use infrared light barriers and camera traps, in combination with other monitoring 

methods, to improve our ability to collect accurate bat monitoring data on large temporal and 

spatial scales. For infrared light barriers and camera traps to be an integral part of large-scale 

bat monitoring schemes, first we need to identify a network of suitable sites where this 

method is the most useful, but also feasible. In Publication II, we found that the biggest gain 

of using light barriers as a monitoring tool is at structurally complex hibernacula with large bat 

populations, particularly at sites that are either completely inaccessible for visual surveys or 

have many areas that cannot be visually counted (e.g., cavity walls and deep crevices), and 

thus, hibernation counts are expected to be less accurate. To identify such sites, swarming 

captures, visual inspections or passive acoustic surveys can serve as useful “scouting 

methods”.  

Beyond having high structural complexity, it is also important to consider the number of 

entrances at a site and their dimensions, when choosing light barriers as a monitoring method. 

First, sites with one or two entrances should be prioritized, because all openings have to be 

monitored with a light barrier to provide accurate population estimates. Second, infrared light 

barrier models used in this study (ChiroTEC, Germany) are only suitable to monitor sites with 

relatively small entrances (max 35x300 cm). Although this somewhat limits the range of 

suitable sites, most underground sites have already been closed off from the public, and thus, 

their entrances are suitably sized for light barrier installation. If the entrance dimensions are 

too large, light barriers can also be installed within a wooden frame a few meters away from 

the entrance, before any branching paths. For such installations, it is essential to cover the 

area around the light barrier with a fine mesh. This setup does not substantially change the 

microclimatic conditions of the site since it allows continuous airflow, but it ensures that all 

bats fly through the light barrier when entering or leaving the site. In such cases, the recorded 

bat activity is expected to be higher due to internal movements of the bats within the 

hibernaculum, which ultimately increases the number of collected camera trap images. 

Moreover, in addition to the standard ‘entry’ camera, such installations also allow us to 

connect an ‘exit’ camera to the light barrier on the inside of the hibernaculum, by minimizing 

the risk of theft or damage. While these double-camera setups further increase the number 
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of camera trap images to be analyzed, the automated species identification pipeline presented 

in Publication III can overcome this bottleneck of manual image analysis.  

Overall, the benefits of using light barriers in comparison to winter counts are clearly 

demonstrated in this study. Nevertheless, it is not realistic to expect that in the future every 

bat hibernaculum will be monitored with such an automated monitoring system, due to the 

high cost and effort related to installation and maintenance. In contrast to light barrier 

monitoring, winter counts are a low-cost method, that can be relatively easily performed at 

large spatial scales. This is because visual counts require only a one-day effort every year from 

a few experienced people who are able to distinguish hibernating bat species. Moreover, as 

shown in Publication II, at smaller sites with comparatively few deep crevices and cavities, 

winter hibernation counts did not differ substantially from the light barrier-based population 

size estimates, suggesting that such sites can be reliably monitored by visual surveys.  

Taken together, in the future, infrared light barriers should be considered a powerful 

complementary method to traditional visual counts that can cost-effectively monitor many 

smaller hibernation sites but are notoriously difficult and inaccurate at larger, more complex 

sites. To implement this approach in practice, we should first designate a network of 

hibernacula that meet the criteria of light barrier monitoring being both useful and feasible, 

and consider performing visual surveys for the remaining sites. The combination of these two 

methods allows us to accurately monitor the population dynamics of species that 

predominantly make use of underground hibernacula, notably including those that have 

previously been difficult to detect (e.g., Myotis bechsteinii; Toffoli & Calvini, 2021). 

Nevertheless, in certain cases we would still need alternative solutions. For example, 

monitoring hibernation sites where there are several huge entrances (e.g., some natural 

caves), or where we do not know all possible entrances (e.g., rock crevices in the ground; 

Lemen et al., 2016) cannot be monitored with either of these methods. For such sites, the 

most feasible methods we currently have for monitoring bat populations are passive acoustic 

surveys and captures. 

 

2.2.2. Scientific and conservation implications 

Besides ensuring that the monitoring method is non-invasive, accurate and scalable, it is also 

essential to consider how can the collected data be used to gain better understanding about 

the monitored ecological systems, and to contribute to data-driven conservation and 

management decisions (Yoccoz et al., 2001). Therefore, in the following section we outline the 

scientific and conservation implications of using light barrier and camera trap data collected 

at bat hibernacula. 

Monitoring at hibernation sites of temperate zone bats species enables us to investigate 

how different bat species respond to climate change. This information is crucial both for better 

understanding bat biology and for designing effective conservation strategies (Festa et al., 

2023). Thus far, studies about how hibernation timing differs between bat species were mainly 

based on individualized RFID-data, but such studies are limited to a few model species at single 

study sites due to their invasiveness and high monitoring effort (e.g., Meier et al., 2022; 

Norquay & Willis, 2014). Although light barrier and camera trap data do not provide such 

individual-level information, the method can be implemented over large geographic scales to 
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investigate climate change-related deviations in the hibernation phenology of different bat 

species. Such phenological changes may affect the population dynamics of hibernating species 

(Reusch et al., 2022; Wells et al., 2022), thus the light barrier and camera trap data can also 

be used to predict the future impact of global environmental changes on the persistence of 

different bat species. While such information is crucial to support biodiversity conservation, 

scientific knowledge on its own - even if it is based on accurate, large-scale monitoring data - 

might not be enough to make an impact. To make a positive change for biodiversity 

conservation, such scientific findings must be translated into conservation policy and on-the-

ground action (Gluckman, 2016).  

To achieve conservation success, biodiversity monitoring should not be considered as a 

standalone activity, but as a component of a larger process that creates a link between 

monitoring objectives and conservation actions (Lindenmayer et al., 2012; Robinson et al., 

2018). Although most monitoring programs identify conservation as a rationale for collecting 

data, these programs very often do not lead to real-world changes in conservation practice. 

This suggests that there is a barrier that prevents the collected data and scientific evidence 

from being used by policy makers and managers (Walsh et al., 2019), which ultimately results 

in the lack of evidence-based conservation. Here, we highlight several ways through which we 

could overcome this barrier and successfully incorporate monitoring data into conservation 

practice.  

First, we need to ensure that the scientific evidence is robust, and the quality of the data 

and their analysis is clearly communicated to practitioners in the field. Despite the limitations 

of some traditional monitoring methods, researchers and conservationists may be reluctant 

to adapt new methods when lacking relevant and transparent performance data (Hall & 

Fleishman, 2010). To reduce the uncertainty regarding the use of this new automated bat 

monitoring system, we demonstrated that infrared light barriers greatly improve the accuracy 

of population size estimates and trends of hibernating bat assemblages, in comparison to 

traditional visual surveys. Moreover, we showed that the combination of this automated 

monitoring system with deep learning-based species identification can improve our ability to 

accurately monitor species-level activity patterns and phenological estimates. However, such 

deep learning solutions are also often referred to as a “black box” (i.e., they are said to lack 

transparency or interpretability of how input data are transformed into model outputs), which 

is a key concern for their wider application. Consequently, the lack of sufficient evaluation of 

novel deep learning-based methods may prevent their acceptance by users in other disciplines 

than computer science (Hall & Fleishman, 2010). To overcome this challenge, we evaluated 

the performance of BatNet both in terms of traditional accuracy metrics on test images, but 

also using real-world camera trap datasets, in terms of ecological metrics (i.e., species-

diversity and species-level phenology) that are relevant for conservation. 

Second, jointly framing research questions and conservation goals can also contribute to 

closing the gap between science and conservation (Young et al., 2014). Such approach is 

essential, because it is extremely challenging to try to retrofit research outcomes to meet the 

needs of decision makers. In the context of bat conservation, the most basic objective is often 

to quantify population trends and begin to understand the drivers of population declines. 

Accurate monitoring at local and broader geographic scales (e.g., within the catchment area 
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of a species vs between distant catchment areas) can help identify the spatial scale of such 

declines. For example, if a decline is observed at an individual site within a local network, this 

suggests that the driver might be site-specific, such as predation or anthropogenic 

disturbance. On the other hand, if all the sites within a local network show similar declines in 

comparison to other regional networks, this suggests that the driver might be related to wide-

scale impacts, such as extreme climatic events or changes in land-use and habitat quality. In 

this respect, light barrier monitoring can be scaled up to provide accurate population 

monitoring data from a network of hibernacula both on local and broad spatial scales. While 

this approach does not explicitly tell us what is causing the decline, it is an important first step 

to identify the potential drivers affecting bat population dynamics. In contrast, with inaccurate 

and biased monitoring methods, we would not even be able to detect such declines in the first 

place. 

Third, even if we implement accurate and objective-oriented monitoring, the results must 

reach the right audience to be translated into practical action, and ultimately, to make any 

difference for biodiversity conservation. However, such evidence-based conservation cannot 

be achieved without improving the access of stakeholders to scientific evidence (Kadykalo et 

al., 2021). Unfortunately, research results are often exclusively reported in scientific 

publications, which can be hard to comprehend for stakeholders that are involved in 

developing policy and its implementation. For example, if the conclusions from the 

development of a new monitoring method are not communicated to those who might 

implement it, then the research effort was wasted. Therefore, it is crucial to maintain good 

communication between the data collectors and the stakeholders, and to tailor the language 

of communicating these results to audiences and policy contexts (van den Broek et al., 2020). 

For example, thus far, population trends of temperate zone bats were assessed based on 

winter counts, that are simple measures, making the results easy to comprehend. If we want 

to transform bat conservation to incorporate “big data”, such as infrared light barrier and 

camera trap data, then we have to make sure that the results are similarly easy to interpret. 

To achieve this goal, in Publication II, we presented a pipeline that provides standardized 

population size estimates using the light barrier data, which are comparable between sites 

and years, and account for measurement error. In Publication III, we presented an automated 

analysis pipeline for camera trap images, including opportunities for retraining the network 

for new sites and species without any programming knowledge, which makes the results 

readily accessible for conservationists and researchers. This is a huge step towards making 

these automated bat population monitoring data accessible to stakeholders and thus, 

translatable to conservation action. 

To ultimately conclude, this study demonstrates the potential of a novel, automated 

monitoring approach to non-invasively and accurately track population dynamics and 

phenology of temperate zone bats at scale and illustrates how the collected data can be 

successfully applied to address real-world conservation issues. Such an approach is essential 

for bats in the Anthropocene, where the environment is changing so rapidly that the window 

of opportunity for action to prevent further biodiversity loss is becoming extremely narrow. 
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Abstract 

Automated monitoring technologies can increase the efficiency of ecological data collection 

and support data-driven biodiversity conservation. Camera traps coupled with infrared light 

barriers can be used to monitor temperate-zone bat assemblages at underground hibernacula, 

where many species and thousands of individuals can aggregate in winter. However, the broad-

scale adoption of such photo-monitoring techniques is limited by the bottleneck of manual 

image processing. Here, we present BatNet, an open-source, deep learning-based tool for 

automated identification of 13 European bat species from camera trap images. BatNet includes 

a user-friendly graphical interface, where the baseline model can be retrained to add new bat 

species or to create site-specific models to improve detection accuracy at new sites. Model 

accuracy was evaluated on test images from both trained and untrained sites, and in an 

ecological context, where 5-month camera trap datasets were used to compare species-level 

metrics (species diversity, relative abundance, and phenology) between human experts and 

BatNet. At trained sites, baseline model performance was high across all species (F1-score 

range: 0.98-1). At untrained sites, overall classification accuracy remained high (96.7-98.2%), 

when the camera placement was comparable to the training images. For atypical camera 

placements, retraining the baseline model with 500 local annotations achieved an accuracy of 

over 95% at all sites. In a case study encompassing the complete hibernation-entry phase at 

three sites, all three species-level metrics were nearly identical between human and BatNet 

identifications. Finally, we retrained BatNet to identify a new species, Miniopterus schreibersii, 

achieving an F1-score of 0.99 while maintaining high classification accuracy for all original 

species. BatNet can be implemented directly to scale up the deployment of camera traps in 

Europe and enhance bat population monitoring. Moreover, the pretrained model can be used as 

a baseline for transfer learning to automatize the identification of bat species worldwide. 
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Introduction 

Effective conservation depends on the ability to quantify biodiversity and monitor 

species-level population dynamics in our threatened ecosystems (Primack, 1995). Bats are an 

integral part of nearly all terrestrial ecosystems, where they provide essential ecosystem 

services and act as ecological indicators of general ecosystem health (Kunz et al., 2011). 

Despite their essential ecological role, bat populations across the globe face a daunting diversity 

of threats, such as the loss and degradation of suitable roosting and foraging sites, the 

introduction of new infectious diseases, and global warming coupled with increasingly 

unpredictable climatic conditions (Frick et al., 2020). These effects are especially problematic 

for species with slow life histories, such as bats, where populations may require decades to 

recover from individual mortality events (Fleischer et al., 2017). Therefore, the need for 

accurate estimates of population trends and a fundamental understanding of how these effects 

are changing bat behavior and life history has never been more pressing. 

One of the primary monitoring techniques used for temperate-zone bat populations is 

counting bats at winter hibernacula. Hibernation sites are attractive for monitoring as they are 

used by individuals of multiple species, and by individuals from multiple summer maternity 

colonies (Dekeukeleire et al., 2016). However, as bats are small and many prefer to hibernate 

in crevices, there can be large discrepancies between winter hibernation counts and actual 

population sizes (Battersby, 2008), and some species may be entirely missed (e.g., Toffoli & 

Calvini, 2021). More accurately monitoring bat activity and population dynamics at hibernacula 

is possible with custom-made camera traps that are triggered by bats flying through an infrared 

light barrier installed at the entrance of the site. Unlike other nocturnal species, bats do not 

change their behavior in response to the fast, white flash of such camera traps (1/5500 s, 1/16 

power), making these photo-monitoring systems suitable as a minimally invasive method for 

bat monitoring (Krivek et al., 2022). The resulting camera trap images (e.g., Fig. 1) allow 
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species-level identification and can thus be used to describe the diversity, relative abundance, 

and phenology of bat species at a hibernaculum.  

Manual bat species identification from camera trap images is a time-consuming and 

monotonous task that requires extensive experience with the subtle morphological differences 

between the species. Given that a site with around 600 hibernating bats may yield up to 30,000 

camera trap images per year (Krivek et al., unpublished data), manual identification of images 

represents a substantial hurdle for large-scale monitoring projects. While deep learning-based 

species identification from camera trap images is now commonplace for many terrestrial 

mammals and birds (e.g., Norouzzadeh et al., 2018; Tabak et al., 2019), such resources do not 

exist for bats.  

Here, we present BatNet, an open-source, deep learning-based tool for automated bat 

species identification from camera trap images. BatNet consists of three main stages: a detector 

that localizes bats in the image, a segmentation network that removes the background, and a 

classifier that uses the image crop for species identification. We used 16,333 camera trap images 

from 32 hibernation sites to train the baseline model to identify 13 bat species or species-

complexes, encompassing all species commonly observed at hibernacula in Northwestern 

Europe. Model performance was evaluated in three ways: 1) accuracy on test images of all 

species from trained sites; 2) accuracy on images from new, untrained sites; and 3) in an 

ecological case study, where species-level ecological metrics (i.e., diversity, relative 

abundance, and phenology) were compared between human and BatNet identifications in 5-

month datasets encompassing the hibernation-entry phase. Finally, we highlight the ability to 

retrain the detector and the classifier for new locations and species within a coding-free 

graphical user interface. BatNet is freely available under a CC BY-NC-SA 4.0 license 

(https://github.com/GabiK-bat/BatNet).  

https://github.com/GabiK-bat/BatNet
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Figure 1. Camera trap image of bats entering a hibernaculum in Batzbach (Plecotus auritus), 

Eldena (Myotis daubentonii) and Comthurey (Myotis nattereri) in Germany, where the entrance 

is monitored with a custom-made camera trap that consists of a digital camera and a white flash, 

and it is triggered by bats flying through an infrared light barrier.   
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Methods 

Training data and model architecture 

In total 18,496 images of bats were collected at the entrance of 32 hibernacula across 

Germany using custom-built camera traps that are triggered by infrared light barriers 

(ChiroTEC, Lohra). For each image, two human experts classified the bat to species level 

(Barbastella barbastellus, Eptesicus serotinus, Myotis bechsteinii, M. dasycneme, M. 

daubentonii, M. emarginatus, M. nattereri, and Nyctalus noctula) or to species-complex (the 

whiskered bats: Myotis alcathoe, M. brandtii, M. mystacinus; the mouse-eared bats: M. blythii, 

M. myotis; the long-eared bats: Plecotus auritus, P. austriacus; the pipistrelles: Pipistrellus 

pipistrellus, P. pygmaeus; and the horseshoe bats: Rhinolophus ferrumequinum, R. 

hipposideros). The location of each bat in all images was annotated with a bounding box. A 

random subset of 3,685 images were subsequently manually traced to crop the bat out from the 

background. From the total dataset, 90% (N=16,333) was used to train the detector and the 

classifier, and 10% (N=2,163) was used for testing final model performance (for sample sizes 

per species see Table S1). All networks were trained for 30 epochs with a learning rate of 0.05 

and a stochastic gradient descent (SGD) optimizer. 

BatNet is composed of three distinct stages: detection, segmentation, and species 

classification (Fig. S1). First, a Faster-R-CNN object detector (Ren et al., 2015) with a 

ResNet50 (He et al., 2016) Feature Pyramid Network (Lin et al., 2017) places a bounding box 

around all bats detected in the image. Second, the image is cropped to the bounding box and a 

U-Net segmentation network (Ronneberger et al., 2015) with a MobileNet V3 backbone 

(Howard et al., 2019) removes the background. Because deep learning models have the 

tendency to learn static background features (Miao et al., 2019), this segmentation step ensures 

that the actual bat characteristics are used for classification in the next step and not the 

background features. Finally, the segmented crop of the image is classified by an ensemble of 
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three MobileNet V3 networks (Howard et al., 2019). This configuration was selected, because 

ensemble networks are less prone to make highly confident yet incorrect predictions than a 

single neural network (Li & Hoiem, 2020). Each network classifies the original and the flipped 

version of the image crop and the predictions of the individual networks are then averaged. This 

technique, called test-time augmentation, is known to improve the performance of image 

classification models (e.g., Kim et al., 2020). The final output of the classifier is composed of 

the predicted identification for each detected bat and a confidence value between 0 and 1 for 

each prediction. Confidence values indicate the level of certainty in the species identification 

and predictions with confidence values below a user-defined threshold are flagged. 

Since transfer learning is an established technique to improve neural network 

performance and reduce training time (Yosinski et al., 2014), the object detector was pretrained 

on the COCO (Common Objects in Context) dataset (Lin et al., 2014), and all other networks 

were pretrained on ImageNet (Russakovsky et al., 2015). In addition, the training dataset was 

augmented with random horizontal flips of the original camera trap images, and we included 

additional image crops of bats and of the background. Since outlier exposure is commonly used 

to improve detection performance at untrained background locations (Hendrycks et al., 2018), 

random images were also included from the ImageNet dataset (Russakovsky et al., 2015) as 

negative examples (i.e., images of anything else than a bat).  

Within the BatNet graphical user interface, both the object detector and the species 

classifier can be retrained on new images in a coding-free environment. In both cases, new 

images can either be manually labeled with bounding boxes and species identifications, or the 

baseline model output can be corrected and used directly. All training parameters (i.e., species 

of interest, number of epochs, learning rate) are adjustable, and the resulting retrained model 

can be selected from a drop-down menu within the user interface. Further details and 

documentation are provided on GitHub (https://github.com/GabiK-bat/BatNet). 

 

https://github.com/GabiK-bat/BatNet
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Evaluation on test data 

As an initial evaluation, we quantified BatNet performance on the 2,163 test images that 

were withheld from the training dataset but were taken at trained background locations. To 

evaluate the performance of the object detector, we compared the intersection between the 

predicted and true bounding boxes around each labelled bat. We considered predictions as true 

positive above 0.4 Intersection over Union (IoU; 0 – no overlap, 1 – perfect overlap) and false 

negative if the overlap was below the threshold. Predicted bounding boxes without any bats 

were considered false positive errors. To evaluate classifier performance, identifications were 

considered true positive when the human and predicted classifications were the same, false 

negative when the species of interest was incorrectly classified as a different species, and false 

positive when a different species was incorrectly classified as the species of interest.  

Object detection and classifier performance were quantified by three accuracy metrics: 

precision (i.e., ratio of correctly predicted positive observations to the total predicted positive 

observations; minimizes false positive errors), recall (i.e., ratio of correctly predicted positive 

observations to all observations in the actual class; minimizes false negative errors) and F1-

score (i.e., weighted average of precision and recall; used for evaluation when both false 

negative and false positive errors are equally undesirable).  

 

Untrained sites and model retraining 

Next, we evaluated the baseline model performance on 49,873 images from seven 

untrained sites that were spatially and temporally independent from the training data. Untrained 

sites were categorized based on their similarity to the training dataset and included three typical 

sites (camera angle and distance from the entrance similar to the training images), two sites 

with atypical camera angle and one with atypical camera distance (Fig. S2). Images from the 

untrained sites were classified by one human expert and annotated with bounding boxes and 

species labels.  
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In addition to the baseline model, the object detector was retrained for each site (10 

epochs, learning rate 0.001) with varying numbers of local annotations (25, 50, 100 or 500). As 

for the baseline detector model, F1-scores were calculated for each of these site-specific 

detector models.  

 

Ecological case study 

Finally, we explored the utility of BatNet for describing species-level ecological metrics 

using a contiguous 5-month camera trap dataset comprising the complete hibernation-entry 

phase (01 August – 01 January) from one trained (Eldena) and two untrained locations 

(Batzbach, Comthurey). In these datasets (N=54,748 images) only the species of the bat that 

triggered the camera trap was identified by one human expert, and bats flying in the background 

were not considered. This represents the typical manual identification procedure, where the 

primary goal is to quantify the number of entering bats per species. For images from Eldena 

(trained) and Batzbach (untrained, typical camera angle) model predictions were based on the 

baseline model. For Comthurey (untrained, atypical camera angle) images were identified using 

a site-specific model that was trained with 500 local annotations.  

In addition to the overall accuracy as described above, we focused on three ecological 

metrics: species diversity (i.e., which species are present at a site), relative abundance (i.e., the 

percentage of identifications attributed to each species at a site) and species-specific phenology 

(i.e., the activity pattern of individual species throughout the hibernation-entry phase). For these 

applications, different confidence thresholds can be applied to the output of BatNet to optimize 

the balance between increased accuracy (i.e., F1-score) and decreased sample size.  

To generate an optimal confidence threshold for each application, we first evaluated the 

proportion of false positive errors versus the false negative errors and identifications below the 

confidence threshold for species with more than 100 identifications at a site, across all 

confidence thresholds (Fig. 2). Based on these results, species diversity at a hibernaculum was 
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determined using a 95% confidence threshold, which minimizes the proportion of false positive 

errors while still retaining each species, including the rare ones. To eliminate the small number 

of remaining false positives, we manually reviewed all identifications of species that constitute 

less than 1% of the total dataset based on the BatNet output. To estimate the relative abundance 

of each species and describe species-specific phenology, we selected a 70% confidence 

threshold. At this threshold the proportion of false positive errors is strongly reduced, but the 

proportion of identifications that are discarded as below the threshold has not started to 

exponentially increase yet (Fig. 2). 

 

Figure 2. Proportion of false positive errors (blue dashed lines) versus the proportion of false 

negative errors and identifications below threshold (red solid lines) across all confidence 

thresholds. Each line represents a species at a site with more than 100 identifications. Vertical 

dashed lines indicate the confidence thresholds used for describing relative abundance and 

phenology of species (70%) and species diversity (95%) using camera trap images. 
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 To describe overall accuracy for the ecological case studies, we generated confusion 

matrices using a 70% confidence threshold for the BatNet output. Since BatNet provides 

predictions for all bats detected in an image, some images yielded multiple bat identifications. 

Since true species labels were missing for the bats that were not considered to have triggered 

the camera trap by the human evaluator, BatNet predictions for these images were manually 

corrected so that only the bat that triggered the camera trap was retained for the accuracy 

assessment (if it exceeded the 70% threshold). To correct for human error, if there was a 

mismatch between the human label and the prediction above 70% confidence threshold (N=243 

out of 54,748 images), two additional human experts manually reviewed the identifications. 

Based on this consensus scoring, the original human identification was either considered correct 

(i.e., BatNet prediction was incorrect, 76.5%), or incorrect (23.5%) and thus, the original human 

label was corrected. 

For all ecological metrics, all BatNet predictions above the confidence threshold were 

considered, including cases where multiple bats per image met these criteria. To investigate the 

ability of BatNet to accurately describe species diversity, we compared the list of species 

identified by BatNet with the species that were truly present at a site based on human 

identifications. For relative abundance, we compared the percentage of the dataset assigned to 

each species by human identification (i.e., the bat that triggered the image) and by BatNet (i.e., 

including multiple identifications per image when both were above threshold). Finally, we 

compared the phenology of the four most common bat species at the investigated sites (Myotis 

nattereri, M. daubentonii, M. myotis and Plecotus auritus) between a human expert and BatNet. 

Specifically, we quantified the differences in the phenological estimates by calculating the date 

at which certain percentiles (5, 25, 50, 75 and 95%) of the total number of identifications had 

been reached per species and per site. Additionally, we used Lin’s concordance correlation 
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coefficients (CCC) to quantify the agreement between the human expert and BatNet regarding 

the number of identifications per species per night throughout the season.  

Classifier retraining: adding new species  

We explored the feasibility of adding a new species to the classifier, while maintaining 

the classification accuracy for all other species. The baseline classifier was retrained with 58 

annotations of a new species (Miniopterus schreibersii) and 40-50 annotations per species 

(complex) originally included in the baseline training. The classifier was retrained for 10 epochs 

at a learning rate of 0.001. These parameters were selected to ensure high classification 

accuracy for the new species, and to minimize forgetting the species learnt from the original 

training data. The performance of the retrained model was evaluated on 1,143 test images of 

Miniopterus schreibersii, in addition to the original 2,163 test images of the other 13 bat species. 

 

Results 

Test dataset evaluation 

Out of the 2,163 BatNet identifications on test images from trained background 

locations, 15 were incorrect (12 misidentifications and 3 missed detections), yielding an overall 

classification accuracy of 99.3% (CI 98.9-99.6%). Precision, recall and F1-score ranged from 

0.97 to 1.00 for all 13 bat species (for confusion matrices see Fig. S3).  

Untrained sites 

Object detection performance of the baseline model, quantified using the F1-score, 

ranged from 0.95 to 1.00 at five of six untrained locations. It was noticeably lower at one site 

(0.38 in Calw; Fig. 3), where the camera trap was situated further from the entrance than usual 

(around 3.5 meters instead of 1.5 meters). After retraining the baseline detector using 500 local 

annotations for each of the six previously untrained sites, the F1-score of the site-specific object 
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detection model increased to 0.94 in Calw and to over 0.98 at the other five previously untrained 

locations. 

Classification accuracy of the baseline model varied depending on the camera angle and 

the distance between the camera and entrance (Table 1; example camera trap images: Fig. S2, 

confusion matrices: Fig. S4). Classification accuracy was high (96.7-98.2%) at untrained 

locations with typical backgrounds (i.e., similar camera angle and distance to the training 

dataset). It was markedly lower and more variable at sites with atypical camera placement 

(17.8%, 86.3% and 90.8%; Table 1), presumably because many bats were not detected or 

incorrectly segmented. Notably, after retraining the detector with 500 local annotations for each 

of the six unseen sites, classification accuracy improved to over 95% at all sites (Table 1; 95.5-

99.9 %).  

 

Figure 3. The object detection performance, quantified by the F1-score, on images from six 

untrained locations using the baseline model (no retraining) and using site-specific models after 

retraining the general detection model with a varying number of local annotations (25, 50, 100 

or 500).  
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Table 1. Classification accuracy with 95% confidence interval at six untrained background 

locations using the baseline model and the site-specific models retrained with 500 local 

annotations (r500), and the number of images used for evaluation. Sites were categorized based 

on their similarity to the training dataset in terms of camera angle and distance from the 

entrance. 

Site category Site Nimages 
Accuracy (95% CI) 

baseline 

Accuracy (95% CI) 

r500 

typical 

Batzbach 39,430 98.2 (98.1 – 98.3) 98.1 (97.9 – 98.2) 

Gemeinezeche 997 97.6 (96.4 – 98.5) 99.9 (99.4 – 100) 

Silberberg 1,000 96.7 (95.4 – 97.7) 99.8 (99.3 – 100) 

atypical angle 
Comthurey 6,472 90.8 (90.1 – 91.5) 97.3 (96.9 – 97.7) 

Grube Emma 979 86.3 (84 – 88.4) 97.5 (96.3 – 98.3) 

atypical distance Calw 995 17.8 (15.5 – 20.3) 95.5 (94 – 96.7) 

 

Ecological case study 

Species diversity  

To determine species diversity at a site using BatNet, we applied a 95% confidence 

threshold to the output and manually reviewed images for species that constituted less than 1% 

of the total dataset. BatNet detected all species that were identified by human experts at all three 

sites (Batzbach, Comthurey, Eldena; Table 2). Across the three evaluated datasets (N=54,748), 

manual review was required for 62 images (0.1% of total), resulting in the confirmation of three 

true positive species (N=60) and one false positive species (N=2). 

Relative species abundance 

To describe species abundance, we used a 70% confidence threshold that maintained, 

high precision for all species (Fig. 4) and retained over 90% of the dataset at all sites (Eldena 

90.1%, Batzbach 93.7%, Comthurey 92.1%). The difference in the relative abundance of all 

species was within 1.1% at all three sites when comparing BatNet predictions with 70% 

confidence threshold to human identifications (Table 3).   
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Table 2. Species diversity based on BatNet predictions with 95% confidence threshold and 

human expert identifications at three sites. Bold text indicates that the total proportion of 

predicted labels for that species was below the 1% threshold, thus these images required manual 

review by a human expert.  

Site Species Nalgorithm Nhuman 

Batzbach 

Myotis nattereri 13,304 (43.2%) 19,416 

Myotis bechsteinii 11,077 (36%) 11,901 

Plecotus sp. 2,202 (7.16%) 2,191 

Myotis daubentonii 1,827 (5.94%) 2,666 

Myotis myotis 1,470 (4.78%) 1,653 

Myotis brandtii 879 (2.86%) 1,363 

Myotis dasycneme 2 (0.01%) 0 

Comthurey 

Myotis nattereri 2,836 (45.7%) 3,019 

Myotis myotis 2,239 (36.1%) 2,263 

Myotis daubentonii 1,024 (16.5%) 1,071 

Barbastella barbastellus 73 (1.18%) 76 

Plecotus sp. 36 (0.58%) 37 

Eldena 

Myotis nattereri 5,542 (72.4%) 6,403 

Myotis daubentonii 1,743 (22.8%) 2,192 

Plecotus sp. 345 (4.51%) 375 

Myotis myotis 19 (0.25%) 71 

Myotis brandtii 5 (0.07%) 51 
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Table 3. Relative species abundance based on BatNet predictions with 70% confidence 

threshold and human identifications at three sites.  

Site Species BatNet % Human % 

Batzbach 

Nimages=39,190 

Myotis nattereri 48.40 49.50 

Myotis bechsteinii 31.40 30.40 

Myotis daubentonii 6.67 6.80 

Plecotus sp. 5.86 5.59 

Myotis myotis 4.32 4.22 

Myotis brandtii 3.28 3.48 

Other 0.04 0.00 

Comthurey 

Nimages=6,466 

Myotis nattereri 47.30 46.70 

Myotis myotis 34.70 35.00 

Myotis daubentonii 16.20 16.60 

Barbastella barbastellus 1.24 1.18 

Plecotus sp. 0.55 0.57 

Eldena 

Nimages=9,092 

Myotis nattereri 70.90 70.40 

Myotis daubentonii 24.30 24.10 

Plecotus sp. 3.99 4.12 

Myotis myotis 0.64 0.78 

Myotis brandtii 0.16 0.56 

Other 0.02 0.00 
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Figure 4. Confusion matrix of human identifications and BatNet predictions with 70% 

confidence threshold for images from three sites. The confusion matrix shows the distribution 

of classification error within a species, where accurate classifications are across the diagonal 

and all other cells on the matrix describe error (missed detection or misclassification). 

Additionally, identifications below the confidence threshold are summarized according to their 

true species label. For images when multiple bats were present, but humans only identified the 

bat that triggered the camera trap, additional identifications were summarized according to their 

predicted species label. 
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Species-specific phenology 

Phenological patterns of the four investigated species (Myotis daubentonii, M. myotis, 

M. nattereri and Plecotus auritus) across a 5-month period were nearly identical between the 

human and BatNet identifications (see Fig. 5A for one example per species, all other 

combinations in Fig. S5A). When phenology was quantified using percentiles (5, 25, 50, 75 and 

95%), the human and BatNet datasets differed by less than three days across all species for all 

percentiles (N=50) but one. In this case, a 6-day discrepancy was observed in the 95th percentile 

(Myotis daubentonii in Comthurey; Fig. S5A).  

The overall sample sizes between the human and BatNet datasets differed due to 

classifications being discarded below threshold (reduces the BatNet sample size), and the 

classification of multiple bats per image where humans only scored a single bat per image 

(increases the BatNet sample size). Despite these differences, we observed high concordance 

between human and BatNet classifications per species, per day (range: 0.989-0.999; Fig. 5B 

and Fig. S5B).  
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Figure 5A) Phenology of Myotis daubentonii, M. myotis, M. nattereri and Plecotus auritus 

based on species identification by human experts (orange) compared to BatNet predictions with 

70% confidence threshold (blue). To quantify the differences between the phenological patterns 

of the two methods, we used percentiles (5, 25, 50, 75 and 95%; indicated with vertical gray 

lines) across a 5-month dataset over the hibernation-entry phase (01 August – 01 January). The 

sample size (N) indicates the total number of identifications across the season. B) Concordance 

plots indicate the agreement between the number of human and BatNet identifications per 

species per night, quantified by the Lin’s concordance correlation coefficient (CCC, range from  

0 to1). 
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New species 

After retraining the baseline model with 58 annotations of a new species (Miniopterus 

schreibersii), BatNet achieved an F1-score of 0.99 for the new species (Fig. 6). The 

performance for the original 13 species remained high (F1-score range: 0.94-0.99). Overall 

classification accuracy of the model was 98% (CI 97.3-98.3%). When applying a 70% 

confidence threshold, out of the 1,413 Miniopterus schreibersii identifications 196 were below 

the threshold and only 1 identification was incorrect (F1-score 1.00; Fig. S6). 

 

Figure 6. Confusion matrix of BatNet predictions and human identifications after retraining 

the baseline model to be able to identify a new species, Miniopterus schreibersii, in addition 

to the 13 species included in the original training data. 
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Discussion 

BatNet is a deep learning-based tool for automated identification of 13 Northwestern 

European bat species, that can be retrained to adjust to new sites and to include new species 

within a coding-free environment. On test images from trained locations, the baseline model 

achieved high species-level classification accuracy across all 13 bat species (F1-score range: 

0.98-1.00). Overall classification accuracy of the baseline model remained remarkably high at 

untrained sites (96.7-98.2%), where the camera angle and distance from the entrance were 

comparable to the training images. At untrained sites with an atypical camera setup, site-

specific models reached an overall classification accuracy above 95% after retraining with 500 

annotations. This possibility to retrain the object detector and create site-specific models with 

minimal manual annotation effort allows BatNet to overcome detection difficulties related to 

new backgrounds and camera setups. Beyond overall accuracy, we showed that BatNet yields 

nearly identical results to manual identification when used to quantify ecologically relevant 

species-level metrics, such as species diversity, relative abundance, and phenological patterns. 

Finally, retraining the baseline model with an additional, morphologically similar, new species 

resulted in high classification accuracy, both for the new species (F1-score: 0.99), and for all 

other 13 species (F1-score: 0.94-0.99). Consequently, BatNet represents an accurate and highly 

adaptable platform for automation of camera trap-based bat monitoring. 

Improving the speed and scalability of camera trap-based monitoring of bats has large 

implications considering the improvement this method constitutes over the alternative methods 

available for quantifying bat population dynamics. Importantly, camera traps attached to 

infrared light barriers are able to detect all species entering the site, including those that are 

often vastly undercounted or not detected at all during visual surveys (e.g., crevice-roosting 

species; Toffoli & Calvini, 2021). Moreover, relative species abundances from the 

automatically identified camera trap images can be combined with the light barrier-based 
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population size estimates (Krivek et al., unpublished data) to accurately measure species-level 

population trends, which remains difficult for many species (Van der Meij et al., 2015). In 

addition, the continuous nature of camera trap-based monitoring allows us to describe the 

phenological patterns of different species, which can be quantified using activity percentiles. 

The 5th and 95th percentiles can serve as a reliable measure of the start and end of the species-

specific activity during a particular phase (i.e., hibernation-entry or emergence), while the 

combination of 25th, 50th and 95th percentiles can indicate the peak activity of different species. 

These measures can be used then to compare phenological patterns between species, sites, years 

in a standardized way. Exploring these fine-scale changes in bat activity can help describe how 

species differ in their hibernation phenology and in terms of their response to changing weather 

conditions (cf. Meier et al. 2022) and contribute to data-driven conservation actions. Finally, 

the installation of camera traps with light barriers could be a promising new survey method to 

minimize direct contact with bats and thus, prevent human disturbance and possible 

introduction of pathogens to new sites (e.g., WNS, Covid-19; Blehert et al., 2009; Kingston et 

al., 2021).  

The primary limitation to the implementation of the method is that the light barriers that 

are used to trigger the camera trap can only monitor entrance sizes of up to 35x300 cm. 

However, the entrances of many large complex mines and caves, where gains in monitoring 

resolution are expected to be greatest (Krivek et al., unpublished data), have already been 

reduced to limit human disturbance and access. Thus, although modifications to the entrance 

should always be performed with caution (e.g., Pugh & Altringham, 2005), the method may be 

nevertheless widely applicable. 
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Comparison with other automated species identification approaches 

The accuracy of BatNet, both at trained and untrained sites, is remarkably high in 

comparison to other deep learning solutions for automated, image-based mammal species 

identification (e.g., Norouzzadeh et al., 2018; Tabak et al., 2019). In large part this may be 

explained by several key differences between classic wildlife camera trap setups and the camera 

traps triggered by light barriers here used for bat monitoring. First, these custom-made camera 

traps are installed at the entrance of hibernation sites that are nearly exclusively used by bats. 

Therefore, only a relatively narrow species range had to be considered for training the networks. 

Second, since these camera traps are triggered by bats flying through an infrared light barrier, 

their distance from the camera when the image is taken remains highly consistent. Thus, the 

camera can be manually focused at a fixed depth to ensure that most bats appear sharp on the 

images. Third, the environment is often comparatively simple and artificial, and the bats are 

only rarely partially occluded, which contrasts sharply with the complex, vegetation-rich 

backdrop of most camera trap studies. This allows for relatively simple segmentation and 

isolation of the target from the background. Finally, the use of white flash with standardized 

settings provides a fixed amount of white light in an otherwise completely dark environment. 

This results in a better and more standardized image quality than afforded by infrared flashes 

and variable lighting conditions in most traditional wildlife camera setups. The resulting high 

image quality allows identification of different bat species with high certainty, even though the 

morphological differences between bat species are far more subtle than between most other 

mammals.  

The performance of BatNet was further improved by implementing techniques that have 

been rarely used in other automated species identification pipelines. First, deep learning models 

can learn the background features of specific camera trap stations instead of the focal animals 

(Miao et al., 2019), which introduces bias. To ensure that the classifier focuses on the 
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characteristics of bats instead of the common background features, we trained a U-Net 

segmentation network to automatize background removal. While such approaches may be more 

difficult to implement for datasets with more complex backgrounds, they may nevertheless be 

worthwhile. Second, single neural networks are more prone to make highly confident yet 

incorrect predictions (Li & Hoiem, 2020). Here, we used an ensemble of three neural networks 

for classification, where each network classified the original and the flipped version of the 

image (i.e., test-time augmentation). This resulted in informative confidence levels that could 

be reliably used for data filtering. Exploring the adoption of these techniques in other deep 

learning-based species identification approaches may similarly improve their performance. 

 

Application in bat monitoring and conservation 

Automated monitoring of hibernacula combined with the implementation of BatNet has 

the potential to improve bat population monitoring worldwide. In Northwestern Europe, the 

ability to retrain BatNet for new locations allows it to be directly applied to vastly scale up 

camera trap monitoring while maintaining high accuracy. In other regions, the pretrained model 

of BatNet can be used as a baseline for transfer learning to automatize identification of a broad 

range of bat species, beyond our target species list. In adjacent regions this may only require 

minor modification of the species list, to add species such as illustrated here for Miniopterus 

schreibersii. In other areas, using the pretrained model as a baseline is expected to produce 

more accurate and stable results with less computational expense than pretraining on 

conventional image datasets, because of the general features it learnt from a diverse, yet bat-

specific camera trap dataset. However, all modification should be carefully evaluated using a 

subsample of manually identified images to detect new or hidden biases, prior to ecological 

inference for new sites and species. Such revisions and modifications to the model can be 

performed within the user-friendly graphical interface of BatNet. 
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Given the numerous stressors affecting global bat populations (Frick et al., 2020) and 

the legal obligation to monitor bat populations worldwide, a greater flow of monitoring data is 

essential to support data-driven wildlife management and conservation decisions. BatNet 

drastically improves our ability to achieve these objectives. 

 

Acknowledgements 

We would like to thank for the entire ChiroTEC team for providing an identified set of camera 

trap images and Karl Kugelschafter for his valuable insights, to Alexander Seliger and Marvin 

Marzenberger for helping with the training data preparation, and to Jonas Denck for advice 

regarding the development of BatNet.  

This work was funded by a joint research project DIG-IT! that is supported by the European 

Social Fund (ESF), reference: ESF/14-BM-A55-0014/19, and the Ministry of Education, 

Science and Culture of Mecklenburg-Vorpommern, Germany.  

Author Contributions 

Conception: GKe, JvS, GKr; Training data collection: GKr, MH, MF, JvS; Training data 

preparation: GKr, KF, LT, LM; Human image identification: KF, MH, GKr, JvS; Software 

development: AG, UFvL; Evaluation: GKr, JvS; Writing: GKr, JvS. All authors commented on 

the manuscript and gave final approval for publication. 

Data Availability  

BatNet is freely available under a CC BY-NC-SA 4.0 license at https://github.com/GabiK-

bat/BatNet, along with data and scripts used for evaluation, under a CC BY-NC-ND 4.0 license. 

 

https://github.com/GabiK-bat/BatNet
https://github.com/GabiK-bat/BatNet


Publication III  

 

131 
 

References 

Battersby, J. (2008). Surveillance and Monitoring Methods for European Bats (Guidelines 

Produced by the Agreement on the Conservation of Populations of European Bats 

(EUROBATS), p. 85). 

Blehert, D. S., Hicks, A. C., Behr, M., Meteyer, C. U., Berlowski-Zier, B. M., Buckles, E. L., 

Coleman, J. T., Darling, S. R., Gargas, A., & Niver, R. (2009). Bat white-nose 

syndrome: An emerging fungal pathogen? Science, 323(5911), 227–227. 

Dekeukeleire, D., Janssen, R., Haarsma, A.-J., Bosch, T., & Van Schaik, J. (2016). Swarming 

behaviour, catchment area and seasonal movement patterns of the Bechstein’s bats: 

Implications for conservation. Acta Chiropterologica, 18(2), 349–358. 

Fleischer, T., Gampe, J., Scheuerlein, A., & Kerth, G. (2017). Rare catastrophic events drive 

population dynamics in a bat species with negligible senescence. Scientific Reports, 

7(1), 1–9. 

Frick, W. F., Kingston, T., & Flanders, J. (2020). A review of the major threats and challenges 

to global bat conservation. Annals of the New York Academy of Sciences, 1469(1), 5–

25. 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 

770–778. 

Hendrycks, D., Mazeika, M., & Dietterich, T. (2018). Deep anomaly detection with outlier 

exposure. ArXiv Preprint ArXiv:1812.04606. 

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, 

R., & Vasudevan, V. (2019). Searching for MobileNetV3. 1314–1324. 

Kim, I., Kim, Y., & Kim, S. (2020). Learning loss for test-time augmentation. Advances in 

Neural Information Processing Systems, 33, 4163–4174. 

Kingston, T., Frick, W., Kading, R., Leopardi, S., Medellin, R., Mendenhall, I. H., Racey, P. 

A., Shapiro, J. T., Vicente-Santos, A., Viquez-R, L., & Worledge, L. (2021). IUCN SSC 

Bat Specialist Group (BSG) Recommended Strategy for Researchers to Reduce the Risk 

of Transmission of SARS-CoV-2 from Humans to Bats. Version 2.0, AMP: Assess, 

Modify, Protect. 

Krivek, G., Schulze, B., Poloskei, P. Z., Frankowski, K., Mathgen, X., Douwes, A., & van 

Schaik, J. (2022). Camera traps with white flash are a minimally invasive method for 

long‐term bat monitoring. Remote Sensing in Ecology and Conservation, 8(3), 284–296.  



Publication III 

 

132 
 

Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem 

services provided by bats. Annals of the New York Academy of Sciences, 1223(1), 1–38. 

Li, Z., & Hoiem, D. (2020). Improving confidence estimates for unfamiliar examples. 2686–

2695. 

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature 

pyramid networks for object detection. 2117–2125. 

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, 

C. L. (2014). Microsoft COCO: Common objects in context. 740–755. 

Meier, F., Grosche, L., Reusch, C., Runkel, V., van Schaik, J., & Kerth, G. (2022). Long-term 

individualized monitoring of sympatric bat species reveals distinct species-and 

demographic differences in hibernation phenology. BMC Ecology and Evolution, 22(1), 

1-12.  

Miao, Z., Gaynor, K. M., Wang, J., Liu, Z., Muellerklein, O., Norouzzadeh, M. S., McInturff, 

A., Bowie, R. C., Nathan, R., & Yu, S. X. (2019). Insights and approaches using deep 

learning to classify wildlife. Scientific Reports, 9(1), 1–9. 

Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S., Packer, C., & 

Clune, J. (2018). Automatically identifying, counting, and describing wild animals in 

camera-trap images with deep learning. Proceedings of the National Academy of 

Sciences, 115(25), E5716–E5725. 

Primack, R. B. (1995). Essentials of conservation biology (Vol. 23). Sinauer Associates. 

Pugh, M., & Altringham, J. D. (2005). The effect of gates on cave entry by swarming bats. Acta 

Chiropterologica, 7(2), 293–299. 

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object 

detection with region proposal networks. Advances in Neural Information Processing 

Systems, 28. 

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical 

image segmentation. 234–241. 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., 

Khosla, A., & Bernstein, M. (2015). ImageNet large scale visual recognition challenge. 

International Journal of Computer Vision, 115(3), 211–252. 

Tabak, M. A., Norouzzadeh, M. S., Wolfson, D. W., Sweeney, S. J., VerCauteren, K. C., Snow, 

N. P., Halseth, J. M., Di Salvo, P. A., Lewis, J. S., & White, M. D. (2019). Machine 

learning to classify animal species in camera trap images: Applications in ecology. 

Methods in Ecology and Evolution, 10(4), 585–590. 



Publication III  

 

133 
 

Toffoli, R., & Calvini, M. (2021). Long term trends of hibernating bats in North-Western Italy. 

Biologia, 76(2), 633–643. 

Van der Meij, T., Van Strien, A., Haysom, K., Dekker, J., Russ, J., Biala, K., Bihari, Z., Jansen, 

E., Langton, S., & Kurali, A. (2015). Return of the bats? A prototype indicator of trends 

in European bat populations in underground hibernacula. Mammalian Biology, 80(3), 

170–177. 

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep 

neural networks? Advances in Neural Information Processing Systems, 27. 

 

 

  



Publication III – Supplementary Material 

 

134 
 

Supplementary materials to: 

 

Krivek et al. (submitted) BatNet: a deep learning-based tool for automated bat species 

identification from camera trap images 

Table of Contents 

 Table S1. .................................................................................................................................... 2 

Figure S1. .................................................................................................................................... 2 

Figure S2. .................................................................................................................................... 3 

Figure S3. .................................................................................................................................... 4 

Figure S4. .................................................................................................................................... 5 

Figure S5. .................................................................................................................................... 8 

Figure S6. .................................................................................................................................. 11 

  



Publication III – Supplementary Material  

 

135 
 

Table S1. Number of camera trap images per species used for training BatNet and testing the 

baseline model performance. 

Species/species-complex 
Training 
images 

Test 
images 

Barbastella barbastellus 760 83 

Eptesicus serotinus 677 77 

Myotis bechsteinii 2,132 218 

Myotis dasycneme 596 60 

Myotis daubentonii 2,157 155 

Myotis emarginatus 626 68 

Myotis myotis/M. blythii 1,065 123 

Myotis alcathoe/M. brandtii/ 

M. mystacinus 
712 72 

Myotis nattereri 3,576 929 

Nyctalus noctula 372 39 

Pipistrellus pipistrellus/ 

P. pygmaeus 
733 57 

Plecotus auritus/P. austriacus 2,203 215 

Rhinolophus ferrumequinum/ 

R. hipposideros 
724 67 

Total 16,333 2,163 

 

Figure S1. Schematic overview of BatNet, a deep learning-based tool that automatically identifies 

bat species from camera trap images in three steps: bat detection (object detector), background 

removal (segmentation network) and species classification (ensemble of classifiers). The final output 

includes a species prediction with a confidence level. Optionally, low-confidence predictions can be 

manually reviewed in the graphical user interface by human experts. 
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Figure S2. Example camera trap images from untrained locations that were categorized based on 

their similarity to the training dataset, including three typical sites (camera angle and distance from 

the entrance similar to the training images; A - Batzbach, B - Gemeinezeche, C - Silberberg), two sites 

with atypical camera angle (D - Comthurey, E - Grube Emma) and one with atypical camera distance (F 

- Calw).  
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Figure S3. Confusion matrix of BatNet predictions and human identifications for test images from 

trained background locations. The confusion matrix shows the distribution of classification error within 

a species, where accurate classifications are across the diagonal and all other cells on the matrix 

describe error (missed detection or misclassification).  
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Figure S4. Confusion matrix of BatNet predictions and human identifications for camera trap images 

from six untrained background locations using the baseline model and the site-specific models 

retrained with 500 local annotations (r500). The confusion matrix shows the distribution of 

classification error within a species, where accurate classifications are across the diagonal and all other 

cells on the matrix describe error.  
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Figure S5. A) Phenology of Myotis daubentonii, M. myotis, M. nattereri and Plecotus auritus based 

on species identification by human experts (orange) compared to BatNet predictions with 70% 

confidence threshold (blue). For quantifying the differences between the phenological patterns of the 

two methods, we used percentiles of the nightly identifications (5, 25, 50, 75 and 95%; indicated with 

vertical gray lines) across a 5-month dataset over the hibernation-entry phase (01 August – 01 January). 

The sample size (N) indicates the total number of identifications across the season. B) Concordance 

plots indicating the agreement between the number of human and BatNet identifications per species 

per night, quantified by the Lin’s concordance correlation coefficient (CCC, range: 0-1). 
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Figure S6. Confusion matrix of BatNet predictions with 70% confidence threshold and human 

identifications after retraining the baseline model to be able to identify a new species (Miniopterus 

schreibersii) in addition to the 13 species included in the original training data. The confusion matrix 

shows the distribution of classification error within a species, where accurate classifications are across 

the diagonal and all other cells on the matrix describe error (missed detection or misclassification). 

Additionally, identifications below the confidence threshold are summarized according to their true 

species label. 
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How a neural network imagines my fieldwork now:  
monitoring bats with camera traps.  

- image generated using MidJourney AI 2023 - 

 


