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Any physical quantum system is in thermal contact with its environment and if left

undisturbed, will always come to thermal equilibrium with its surroundings. Nuclear

magnetic resonance techniques however displace the system from its thermal equilibrium

position. The amount of time a system may be displaced from its thermal equilibrium

position is inherently time limited due to constant information exchange between the

system and the environment. This fundamental process is known as quantum relaxation

or quantum decoherence.

In this thesis we focus our attention on the relaxation dynamics of nuclear spin ensembles.

Particular spin configurations may display surprisingly long relaxation time constants

and surprising dynamical behaviour as the system deviates further from its thermal

equilibrium position. A simple framework for the description of nuclear spin systems far

from thermal equilibrium is described and its necessity is experimentally demonstrated

by consideration of simple model systems. The presented framework aims to advance

recent developments in the storage of hyperpolarised materials, which ideally posses

exceptionally long relaxation times and highly ordered spin configurations.
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Chapter 1

Introduction

The humble beginnings of Nuclear Magnetic Resonance (NMR) can be tracked back

all the way to the 1940s. Following Rabi’s description of the magnetic resonance effect

Purcell, Torrey, Pound and Bloch, Hansen, Packard almost simultaneously (24th of De-

cember, 1945 and 29th of January, 1946) reported the observation of nuclear induction

for the first time [1–3].

Since then, it is probably fair to say that NMR has grown into something much bigger

than the founding fathers could have hoped for. The applicability of NMR is seemingly

endless and ranges from elementary physics to quantum computation, material science,

organic chemistry, medical science, biology and many other fields of active research.

Major landmarks in the field of NMR include the development of magnetic resonance

imagining, two-dimensional NMR and its extension to protein structure elucidation [4–

7]. For obvious reasons these developments continue to influence our every day life by

guiding biomedical and pharmaceutical research.

Nowadays NMR is considered a standard tool in many areas of active research. Nonethe-

less, it seems that whenever the community is convinced to have reached the stories end,

a new idea magically appears and opens up a new chapter. In recent years this has cer-

tainly been the development of hyerpolarisation techniques [8–19].

Despite a great number of benefits, NMR suffers from a weak magnetic response of the

sample. Hyperpolarisation techniques try to address this problem by displacing the sys-

tem from its equilibrium position to a highly non-equilibrium state. The non-equilibrium

state often displays a much stronger magnetic response than the thermal state under

identical conditions. In practical applications this leads to a tremendous reduction in

experimental time.

It will be the aim of this thesis to explore some properties of equilibrium and non-

equilibrium systems with focus on their theoretical description. Surprisingly, the stan-

dard description of NMR experiments can lead to non-physical predictions in the case

of strongly perturbed spin systems. A new approach for the treatment of highly non-

equilibrium systems will be discussed in order to clarify and remedy the situation.

1



2 Chapter 1 Introduction

1.1 Nuclear magnetism

1.1.1 The NMR setup

For conventional high-field NMR experiments the sample is initially placed inside the

center of a magnet. As illustrated in figure 1.1a it is NMR convention to assume that

the main magnetic field B0 is aligned with the z-axis of the laboratory frame

B0 = B0
zez =

 0

0

B0
z

 . (1.1)

The magnetic field strength along the z-axis B0
z is specified in units of Tesla [T].

Figure 1.1: a) Schematic representation of a modern high-field NMR magnet. The
main magnetic field B0 is by convention along the z-axis. The sample is located in the
center of the magnet and surrounded by RF coils. b) A closer look at the sample region
of the magnet. The solenoid RF coil generates a field BRF that is perpendicular to the
main magnetic field. Note: In modern NMR spectrometers the RF coil is usually given
by a saddle coil.

The potential energy Emag arising from the interaction of a magnetic material and a

magnetic field is given by the following expression

Emag(θ) = −µ ·B0 = −‖µ‖
∥∥B0

∥∥ cos(θ), (1.2)

where θ represents the angle between the magnetic field and the magnetic moment µ,

and the norm of a vector ‖v‖ is defined by

‖v‖ =
√
v · v. (1.3)
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Equation 1.2 implies that the (bulk) magnetic moment of the sample tends to align itself

with the main magnetic field. This leads to a net polarisation of the sample along the

z-axis and the sample becomes magnetised. The build up of the magnetisation follows

an exponential law (a more thorough discussion follows later)

µ(t) =

 0

0

M0
eq(1− exp (−t/T1))

 and µ(∞) =

 0

0

M0
eq

 . (1.4)

The equilibrium magnetisation or net polarisation of the sample is denoted by M0
eq (see

figure 1.2). The characteristic time constant T1 with which the magnetisation builds up

is called longitudinal relaxation time constant.

Figure 1.2: After the sample is exposed to a magnetic field along the z-axis (left) the
magnetisation µz slowly starts to build up (right). The build up follows an exponential
law and eventually reaches its equilibrium value M0

eq.

1.1.2 Precession and relaxation

The magnetic moment may be perturbed from its equilibrium position by the applica-

tion of an oscillating radio frequency (RF) field. As indicated in figure 1.1b the radio

frequency field is generated by a coil perpendicular to the main magnetic field. If the

perturbation is sufficiently strong and quick (a so-called RF pulse) the magnetic mo-

ment may be completely rotated into the xy-plane of the laboratory system. Being in

the xy-plane the main field exerts a torque onto the magnetic moment

τ = µ×B0. (1.5)

Following the original description by Bloch, both the magnetic moment and the torque

may be related to the angular momentum of an object [3]

d

dt
L = τ , µ = γL and γ = 2π × q

2m
gcl, (1.6)
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where q denotes the charge of the object in Coulomb [C] and m its mass in kilogram

[kg]. The dimensionless constant gcl is the classical g-factor. The overall proportionality

constant γ relating a magnetic moment to its angular momentum is the gyromagnetic

ratio and usually specified in [rad T−1 s−1].

Substitution of the relations above into equation 1.5 leads to the so-called Bloch equation

d

dt
µ = −γ B0 × µ,

d

dt

 µx(t)

µy(t)

µz(t)

 = −γB0
z

 −µy(t)µx(t)

0

 ,
(1.7)

where the minus sign follows from the anti-commutativity of the cross product. For a

conventional NMR setup the Bloch equations are readily solved and yield the following

expressions  µx(t)

µy(t)

µz(t)

 =

 cos(ω0t)

− sin(ω0t)

0

 for µ(0) =

 1

0

0

 . (1.8)

The equations above indicate a rotation of the magnetic moment in the xy-plane with

angular frequency ω0 = −γB0
z. The angular frequency ω0 is called Larmor frequency

and the motion of the magnetic moment Larmor precession.

The velocity of the Larmor precession is determined by the magnitude of the Larmor

frequency, but the sense of rotation depends upon the sign of the gyromagnetic ratio.

Figure 1.3 illustrates that the magnetic moment precesses clockwise for positive gyro-

magnetic ratios (γ > 0) and counter-clockwise for negative gyromagnetic ratios (γ < 0).

Figure 1.3: Sense of rotation for a magnetic moment µ depending on the sign of the
gyromagnetic ratio γ. For positive γ the sense of rotation is clockwise, whereas for
negative γ the sense of rotation is anti-clockwise.
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The Bloch equations in their current form are slightly flawed. Not only do they indicate

that the magnetic moment rotates in xy-plane, but it does so for all time. This cannot be

the case, as experiments indicate a decay of the transverse magnetisation and a recovery

of the longitudinal magnetisation with increasing time. A more realistic description of

the NMR experiments is therefore given by the modified expressions below [20]: µx(t)

µy(t)

µz(t)

 =

 cos(ω0t) exp (−t/T2)

− sin(ω0t) exp (−t/T2)

M0
eq(1− exp (−t/T1))

 for µ(0) =

 1

0

0

 . (1.9)

where T2 represents the transverse relaxation time constant. A graphical representation

of the modified Bloch equation is shown in figure 1.4 (left panel). The magnetic moment

slowly spirals its way up again until it is fully aligned with the z-axis.

Figure 1.4: left panel) Representation of the modified Bloch equations on a unit
sphere. If the initial position of the magnetic moment µ lies in the xy-plane the
magnetic moment starts precessing around the z-axis of the laboratory frame. Due
to relaxation the magnetic moment slowly spirals its way upwards. The transverse
components can be seen to die out whereas the longitudinal magnetisation recovers.
right panel) The oscillation of the transverse magnetisation is picked up by a detector.
The resulting complex FID is illustrated at the top. The Fourier transform F converts
the FID into a complex spectrum. The real part of the spectrum (left) is the absorption
Lorentzian and the imaginary part (right) is the dispersive Lorentzian. Oscillating
components of the time-domain signal appear at a frequency ω0. The whole process
may be reversed by applying the inverse Fourier transform F−1 to S(ω).
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1.1.3 The NMR signal

It is exactly this precession motion that an NMR experiment aims to observe. According

to Maxwell’s equations (Faradays induction law) a time-varying magnetic field is capable

of inducing an electric current [21]

∇×E = − ∂

∂t
B. (1.10)

As a consequence, the transverse component of the rotating magnetic moment generates

an oscillating electric current in the RF coil. This current may be picked up by a suitable

detector [22]. The resulting NMR signal is called a free induction decay (FID). For

technical reasons it is conventional to combine the x- and y-component of the oscillation

into a single signal object known as complex FID

s(t) = M0
eq(µx(t) + iµy(t))

= M0
eq

(
cos(ω0t)− i sin(ω0t)) exp(−t/T2)

)
= M0

eq exp(−iω0t) exp(−t/T2).

(1.11)

While the complex FID contains all the necessary information, its interpretation by eye

is difficult. For this reason, NMR data is usually presented in form of a spectrum. The

NMR spectrum is generated by applying a Fourier transform to the signal s(t). The

Fourier transform is a mathematical tool that helps to identify the frequency components

of a given signal. This is achieved by converting a function of time into a function of

frequency. The formal definition of the (one-sided) Fourier transform is given below:

S(ω) = F{s(t)} =

∫ ∞
0

s(t) exp(−iωt)dt, (1.12)

with S(ω) denoting the resulting spectrum. Application of the Fourier transform to the

prototype signal of equation 1.11 results in a so-called complex Lorentzian

S(ω) = F{M0
eq exp(−iω0t) exp(−t/T2)} =

M0
eqT2

1 + (T2 (ω0 − ω))2
− i

M0
eq(T2)2 (ω0 − ω)

1 + (T2 (ω0 − ω))2
.

(1.13)

The Lorentzian decomposes into a real and an imaginary part. The real part represents

an absorption and the imaginary part a dispersion Lorentzian.

The complex FID of equation 1.9 with its corresponding complex Lorentzian are shown

in figure 1.4 (right panel). The interpretation of the signal is now considerably easier.

Whenever the signal contains a frequency component ω the resulting spectrum shows a

spectral peak at that particular position, otherwise it is zero.
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1.1.4 Microscopic nuclear magnetism

The description above constitutes the classical description of NMR. The magnetic mo-

ment is treated as a bulk property of the sample and the dynamics are governed by

classical equations. From a microscopic point of view however, the question ”what gen-

erates nuclear magnetism?” still remains.

A partial resolution to this problem was given by the famous double slit experiment

by Otto Stern and Walther Gerlach [23]. Consider the following thought experiment:

”What happens to a particle with no angular momentum moving through an inhomo-

geneous magnetic field?”

According to equation 1.2 the magnetic energy of the particle depends on its magnetic

moment. The exerted magnetic force on the particle may be deduced by differentiating

the potential energy

Fmag = ∇(µ ·B) = µz
dBz(z)

dz
ez, (1.14)

where it is assumed (for simplicity) that the magnetic field varies along the z-axis only.

This is an obvious oversimplification as this would contradict Gauss’s flux theorem [21].

The force above indicates a deflection of the particles path along the z-axis. The mag-

nitude of the deflection depends upon its magnetic moment.

Since equation 1.6 relates the magnetic moment of a particle to its angular momentum,

an angular momentum-less particle would not experience a deflection force (Fmag = 0)

and continue its linear motion.

It is exactly this experiment that Stern and Gerlach realised. The angular momentum-

less particles were provided by a silver atom beam. The electronic configuration of a

silver atom is given by: [Kr]4d105s1. The unpaired 5s1 electron occupies the necessary

orbital angular momentum ground state (J = 0).

Figure 1.5: Brief sketch of the double slit experiment. The whole setup is under a
strong vacuum. A small electric oven provides a beam of silver atoms which is focused by
a collimator. On their way to the screen the silver atoms experience an in-homogeneous
magnetic field provided by an electromagnet.

An outline of the double slit experiment can be seen in figure 1.5. Surprisingly, the
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results indicated a clear deflection pattern with the beam being split into two distinct

rays. This observation was not in agreement with physical laws at the time.

A full resolution to this problem was later given by Goudsmit and Uhlenbeck [24]. Within

the framework of the newly developed quantum physics, they proposed the existence of

intrinsic angular momentum carried by the electron. Similar to the classical case, it had

to be proportional to the magnetic moment of the electron

µ = γe
~̂
I, γe =

q

2me
ge and

~̂
I =

 Îx

Îy

Îz

 . (1.15)

Here γe denotes the gyromagnetic ratio of the electron, me its mass and ge its g-factor.

The object
~̂
I indicates a quantum mechanical (vector) operator and measures spin angu-

lar momentum along the {x, y, z}-axis. An arrow is used to distinguish classical vectors

and vector operators. It is however common to loosely write I instead of
~̂
I whenever

there is no cause for confusion.

This new type of angular momentum later came to be known as spin angular momen-

tum, so that Î represents a spin angular momentum operator.

Being a quantum mechanical object means that spin angular momentum is quantised.

Quantisation implies that a particular degree of freedom stores energy in discrete pack-

ages proportional to ~ ≈ 1.054 × 10−34J s. The discrete states a system may occupy

are then labelled by quantum numbers. In the case of spin angular momentum one may

classify the state by its (ground state) spin I and a projection quantum number mI . The

projection number refers to the spin angular component along the z-axis (by conven-

tion). A spin angular momentum state is then identified with a collection of quantum

numbers as indicated below:

physical state 7→ |I,mI〉 . (1.16)

The collection of quantum numbers |I,mI〉 is called a state vector or ket vector (more

on ket vectors follows later).

For the double slit experiment two discrete states are identified: ”up” for the top beam

of atoms and ”down” for the lower beam of atoms. The electron may then occupy two

different spin states. From the quantum theory of angular momentum it follows that

the spin quantum number has to equal I = 1/2 [25]. The projection number mI may

then either be mI = +1/2 for ”up” or mI = −1/2 for ”down”. This may be visualised

as shown in figure 1.6.

The double slit experiment indisputably identified spin angular momentum for electrons.

Similar considerations later showed that nuclei (in fact all elementary particles) posses

spin angular momentum as well. In this case one speaks of nuclear spin angular mo-

mentum. The existence of nuclear spin is what enables NMR experiments. If nuclear
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Figure 1.6: Relative orientation of the magnetic moment and spin angular momentum
depending on the sign of the gyromagnetic ratio and its projection number mI . The
spin angular momentum is indicated by solid arrows and the magnetic moment by
hollow arrows. According to equation 1.15 the spin angular momentum and magnetic
moment are parallel for positive γ and anti-parallel for negative γ. Strictly speaking
this applies to systems that occupy a spin +1/2 state. The relative orientation of the
spin angular momentum is inverted if the system occupies a spin −1/2 state.

spins are visualised as vectors being ”attached” to the nuclei of a sample, macroscopic

magnetism may be understood as a summation of contributions from all the individual

spin angular momenta (see figure 1.7).

Figure 1.7: In zero magnetic field the spin angular momentum vector of a particle may
point into any spatial direction. There is no preferential axis since space is isotropic.
The isotropy of space is broken through the application of a static magnetic field. The
magnetic potential energy depends upon the relative orientation of the magnetic field
and the spin angular momentum through equation 1.2. The thermodynamic principle
of minimum energy then implies that the particles preferably occupy the lower energy
spin state. For γ > 0 this is the mI = +1/2 spin state. As a result there is a slight net
polarisation along the positive z-axis at thermal equilibrium.

It is worthwhile to stress that the term ”spin” might be misleading. It suggests a phys-

ical rotation of the particle, but this is not true. The necessary velocities to generate
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such large magnetic moments for small charge distributions (like the electron) would

greatly exceed the speed of light. This was already recognised by Uhlenbeck [24]. Spin

angular momentum therefore has nothing to do with the particle undergoing a rotation.

Spin is simply an intrinsic property of particles very much like mass, charge, etc.

1.1.5 Nuclear Zeeman effect

In the absence of a magnetic field the net magnetic moment vanishes. This does not

mean that spin angular momentum vanishes (similar to how a person does not suddenly

disappear as one enters zero gravity). It simply means that the interaction between

the spins and the magnetic field got weaker. At zero magnetic field the spin states

|1/2,+1/2〉 and |1/2,−1/2〉 have identical energy and are said to be degenerate. In

general the projection number mI for a particle with spin I may take one of the values

from the set {−I,−I + 1, . . . , I − 1, I}. It follows that a spin state is (2I + 1)-fold

degenerate at zero magnetic field [22].

If the sample is subjected to a magnetic field (by convention along the z-axis), the

energies start to split. The energy level splitting due to the interaction with a static

magnetic field is called Zeeman effect. In the case of nuclei one discusses the nuclear

Zeeman effect. Figure 1.8 illustrates the nuclear Zeeman effect for protons (I = 1/2)

and deuterons (I = 1).

Figure 1.8: Nuclear Zeeman effect for protons with I = 1/2 and deuterons with
I = 1. At zero magnetic field the spin states are (2I + 1)-degenerate. This leads to two
degenerate states for protons and three degenerate states for deuterons. Application
of a static magnetic field leads to a splitting of the energy levels and the degeneracy is
completely lifted. The difference in energy between two adjacent energy levels equals
the Larmor frequency of the nuclei for that particular field.

According to equation 1.15 the magnetic moment of the sample µ may be expressed in

terms of a spin angular momentum vector
~̂
I. The quantum mechanical version for the

magnetic energy of the sample (see equation 1.2) may then be expressed shown below:

Emag = −µ ·B0 = −γi ~̂I ·B0, (1.17)
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where γi is the gyromagnetic ratio of nuclei i. Since the only non-vanishing magnetic

field component is along the z-axis, equation 1.17 reduces to the following:

Emag = −γiB0
zIz = ω0Iz. (1.18)

The presence of the z-angular momentum operator Iz indicates that the magnetic energy

of a state |I,mI〉 is given by

Emag(mI) = mIω
0. (1.19)

The energy difference between any two adjacent energy levels (see figure 1.8) then reduces

to the Larmor frequency ω0

Emag(mI)− Emag(mI − 1) = mIω
0 − (mI − 1)ω0 = ω0. (1.20)

As described earlier, typical NMR experiments measure the frequency of the oscillating

transverse component of the magnetisation vector. But this frequency is identical to

the Larmor frequency of the sample. It therefore follows, that NMR experiments are

sensitive to transitions between adjacent energy levels.
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1.2 Mathematical framework

The discussion in the previous section illustrated the quantum mechanical origins of

nuclear magnetism. The next several chapters introduce these concepts in a more formal

way to facilitate the quantum description of NMR. For NMR purposes the system may

only occupy a finite number of spin states. This has some implications for the underlying

structure of the state space. Much of the following discussion will be written from this

point of view.

1.2.1 State vectors

In quantum mechanics the physical state of the system is described by a so-called ket |ψ〉.
A ket is an element of some Hilbert space H. For finite systems H possesses dimension-

ality dim(H) = NH and |ψ〉 may be considered a vector in H. It is therefore custom to

call |ψ〉 a ket vector.

In analogy to the Hilbert space H, one may define its dual space H∗ through the adjoint

map (†)
(c |ψ〉)† = c∗ 〈ψ| ∈ H∗, (1.21)

here c ∈ C is some complex number and (∗) denotes complex conjugation. The adjoint

of a ket 〈ψ| is called a bra or bra vector. The dual space H∗ therefore has the same

dimensionality as H.

The scalar product of any two vectors (|ψ〉,|φ〉) is defined by the bra-ket operation 〈φ|ψ〉.
The norm of a vector |ψ〉 is then given by the following expression

‖|ψ〉‖ =
√
〈ψ|ψ〉. (1.22)

For a finite dimensional Hilbert space one may always choose an orthonormal basis

{|bn〉} of ket vectors

〈bm|bn〉 = δmn, 〈bm|bm〉 = 1, (1.23)

where δmn denotes the Kronecker delta with the property δnn = 1 and δmn = 0 for

m 6= n. A representation for a state |ψ〉 is constructed by making use of a basis vector

expansion

|ψ〉 =

NH∑
n

|bn〉 〈bn|ψ〉 =

NH∑
n

|bn〉 cn,
NH∑
n

|bn〉 〈bn| = 1. (1.24)

The scalars cn ∈ C are the expansion coefficients and 1 denotes the identity on H. An

explicit form of the inner product may then be given as follows

〈φ|ψ〉 =

NH∑
n,m

〈φ|bm〉 〈bm|bn〉 〈bn|ψ〉 =

NH∑
n,m

δmnd
∗
mcn =

NH∑
n

d∗ncn. (1.25)



Chapter 1 Introduction 13

1.2.2 Operators

In quantum mechanics transformations of states are represented by linear operators. In

general, the application of an operator Q̂ onto a state |ψ〉 leads to a new state |ψ′〉

∣∣ψ′〉 = Q̂ |ψ〉 . (1.26)

To simplify notation for the rest of the discussion the ”hat” of an operator is omitted

Q̂ = Q. Once a basis has been fixed (linear) operators may be represented by NH×NH-

dimensional matrices. The matrix elements are determined by their action on the basis

elements

[Q]mn = 〈bm|Q|bn〉 . (1.27)

The action of any operator Q onto some state |ψ〉 may then be calculated according to

standard matrix-vector multiplication∣∣ψ′〉 = Q |ψ〉

=

NH∑
m,n

|bm〉 〈bm|Q |bn〉 〈bn|ψ〉

=

NH∑
m,n

|bm〉 〈bm|Q|bn〉 cn =

NH∑
m,n

|bm〉 [Q]mncn.

(1.28)

The transformation of bra vectors follow in similar fashion

〈
ψ′
∣∣ = 〈ψ|Q =

NH∑
n

cn 〈bn|Q

=

(
NH∑
n

Q† |bn〉 c∗n

)†

=

(
NH∑
m,n

|bm〉 〈bm|Q† |bn〉 c∗n

)†
=

(
NH∑
m,n

|bm〉 [Q†]mnc
∗
n

)†

=

(
NH∑
m,n

|bm〉 [Q]∗nmc
∗
n

)†
=

NH∑
m,n

cn[Qnm] 〈bm| .

(1.29)

The relations above indicate that ket vectors may be represented by column vectors and

bra vectors by row vectors.

Associated to each operator Q there exists a special set of ket vectors {|qn〉}. The

members of the set {|qn〉} are called eigenstates or eigenvectors of the operator Q. When

Q acts on one of its eigenstates, Q returns the same ket vector up to some constant

Q |qn〉 = qn |qn〉 . (1.30)



14 Chapter 1 Introduction

The constant qn is an eigenvalue of Q corresponding to the eigenstate |qn〉. The set of

all eigenvalues {qn} is also called the spectrum of the operator Q.

The eigenvalues of an operator are in general complex. But for self-adjoint or hermitian

operators A all eigenvalues are real

A |an〉 = an |an〉 , an ∈ R. (1.31)

As the name suggests self-adjoint operators equal their adjoint

A† = A. (1.32)

Self-adjoint operators additionally possess a complete set of orthogonal eigenstates

〈am|an〉 = δmn. (1.33)

The eigenstates of an operator O may therefore be chosen as an orthogonal basis for the

Hilbert space H.

Hermitian operators are central to quantum mechanics. The postulates of quantum

mechanics assume that every physical observable of the system may be represented by

a linear self-adjoint operator [25]. The eigenvalues {an} of a hermitian operator A

may then be understood as the possible measurement outcomes of the observable A.

If a measurement results in an the system is certainly occupying one of the possible

eigenstates |an〉 associated with an [26]. This process is often referred to as the wave-

function collapse [25].

Once the system has collapsed into a particular state of A it is natural consider if there

exist any additional observables B that may be measured without further disturbing the

system. The operators A and B are then said to be compatible and may be measured

”simultaneously”.

Such observables may be found by considering the order in which A and B are measured.

In general, the measurement of an observable A followed by the measurement of an

observable B is different than the reversed measurement. To ”quantify” the discrepancy

between the two measurement sequences one introduces the commutator [A,B] of A and

B

[A,B] = AB −BA. (1.34)

It follows that two observables A and B may only be measured simultaneously if they

commute

[A,B] = 0. (1.35)

From a mathematical point of view commuting operators share a common set of eigen-

states {|an, bm〉}, so that each eigenstate may be characterised by the eigenvalues of A

and B

A |an, bm〉 = an |an, bm〉 and B |an, bm〉 = bm |an, bm〉 . (1.36)
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1.2.3 State and operator representations

As discussed earlier, for a spin with spin quantum number I the projection quantum

number mI may take one of the values within the set {mI}

{mI} = {−I,−I + 1, . . . , I − 1, I}. (1.37)

The projection quantum number represents the number of independent spin states. In

general there are (2I + 1) independent spin states for a spin I

{|I,mI〉} = {|I,−I〉 , |I,−I + 1〉 , . . . , |I, I − 1〉 , |I, I〉}. (1.38)

The set of spin states {|I,mI〉} spans the Hilbert space H of the spin. The dimension

of H for a single spin I is therefore given by the following:

NH = dim(H) = 2I + 1. (1.39)

A representation may be constructed by mapping each of the independent spin states

onto one of the standard basis vectors of CNH . For a spin I = 1/2 particle for example

there are two independent spins states. A vector representation may be constructed as

shown below:

|1/2,−1/2〉 7→

[
1

0

]
and |1/2,+1/2〉 7→

[
0

1

]
. (1.40)

The same reasoning applies to spin systems with several spins. For a system of N spins

with spin quantum numbers {I1, I2 . . . IN} the first spin may occupy one of its possible

(2I1 + 1) states, the second spin one of its (2I2 + 1) possible states, etc. The number of

independent spin states is therefore by the following:

NH =
N∏
i=1

(2Ii + 1). (1.41)

Mathematically the composite space is constructed by forming tensor products (⊗) with

the individual spin spaces Hi

H = H1 ⊗H2 ⊗ · · · ⊗ HN . (1.42)
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Having chosen a representation for the individual members, the tensor product for two

matrices A and B may be carried out as follows:

A⊗B =


[A]11B [A]12B . . . [A]1NHB

[A]21B [A]22B . . . [A]2NHB
...

...
...

...

[A]NH1B [A]NH2B . . . [A]NHNHB

 . (1.43)

For two spins with I = 1/2 for example the formula above leads to the following:

|−1/2,−1/2〉 =

|1/2,−1/2〉 ⊗ |1/2,−1/2〉
7→


1

0

0

0

 , |−1/2,+1/2〉 =

|1/2,−1/2〉 ⊗ |1/2,+1/2〉
7→


0

1

0

0

 ,

|+1/2,−1/2〉 =

|1/2,+1/2〉 ⊗ |1/2,−1/2〉
7→


0

0

1

0

 , |+1/2,+1/2〉 =

|1/2,+1/2〉 ⊗ |1/2,+1/2〉
7→


0

0

0

1

 .
(1.44)

Note that whenever all spins share the same spin number I it is common to only use

the projection quantum numbers mI to label a specific spin state.

The operators for the composite space are constructed in similar fashion. An operator

Q solely acting on the i’th spin is constructed by a sequence of N unity operators with

the i’th unity operator being replaced by Q

Qi = 11 ⊗ · · · ⊗ 1i−1 ⊗Q⊗ 1i+1 ⊗ · · · ⊗ 1N , (1.45)

where 1j represents the unity operator for the j’th spin. Many-body interactions are

constructed by simple composition of single-body operators. Some matrix examples for

two spins with I = 1/2 are given below:

I1z = Iz ⊗ 12 7→


1
2 0 0 0

0 1
2 0 0

0 0 −1
2 0

0 0 0 −1
2

 , I2z = 11 ⊗ Iz 7→


1
2 0 0 0

0 −1
2 0 0

0 0 1
2 0

0 0 0 −1
2

 ,

I1zI2z = Iz ⊗ Iz 7→


1
4 0 0 0

0 −1
4 0 0

0 0 −1
4 0

0 0 0 −1
4

 ,
(1.46)
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where Iiz measures the spin angular momentum along the z-axis of the i’th spin and

IizIjz measures the correlation between the z-angular momentum of spins i and j.

1.2.4 Time evolution of states

The time evolution of a generic state vector |ψ〉 is governed by the (time-dependent)

Schrödinger equation
d

dt
|ψ(t)〉 = −iH (t) |ψ(t)〉 , (1.47)

where the operator H is the Hamiltonian of the system. Explicit expressions for the

Hamiltonian of a spin system will be given in section 1.3. The Hamiltonian is always

hermitian

H (t) = H †(t). (1.48)

Physically the Hamiltonian describes the total energy of the system. The eigenstates of

the Hamiltonian are called energy eigenstates and the eigenvalues are the energy levels

of the system

H (t) |n〉 = En |n〉 . (1.49)

The energies En are specified in Joule [J]. It is however NMR convention to work in

natural units. For this purpose the Hamiltonian is redefined as follows:

H(t) = ~−1H (t). (1.50)

The eigenstates remain unchanged but the eigenenergies are now specified in angular

frequencies [rad s−1]. The term eigenfrequencies of the Hamiltonian is then more appro-

priate

H(t) |n〉 = ωn |n〉 . (1.51)

For a time-dependent Hamiltonian the eigenstates and eigenvalues are in general func-

tions of time. Their explicit time-dependence has been suppressed for simplicity.

The solution to the Schrödinger equation may be specified in terms of a time ordered

exponential

|ψ(t)〉 = T exp

{
−i
∫ t

0
H(s)ds

}
|ψ(0)〉 = U(t, 0) |ψ(0)〉 . (1.52)

Time ordering is indicated by the Dyson time ordering operator T [25]. Formally the

Dyson time ordering operator acts on the series expansion of the exponential. A time

ordered exponential resulting from the solution of the Schrödinger equation is often ab-

breviated by U(t, 0). The operator U(t, 0) is called the system propagator as it translates

the system forwards in time. It is common practice to suppress the initial time point

U(t, 0) = U(t) if the evolution starts at time t = 0.
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1.2.5 Unitary transformations

Another special class of linear operators are unitary operators. Unitary operators are

defined by the requirement that the corresponding inverse operation is given by their

adjoint

V V † = V †V = 1. (1.53)

A physical motivation may be given as follows. For closed quantum systems (systems

that are not in contact with a thermal environment) dynamics are in principle reversible

because the energy of the system is a constant. Any unitary transformation V should

therefore leave the inner product of a state vector invariant

〈ψ|ψ〉 = 〈V ψ|V ψ〉 , 〈V ψ|V ψ〉 = 〈ψ|V †V |ψ〉 , =⇒ V †V = 1. (1.54)

A particular simple example of a unitary transformation is the propagator of the system

U †(t)U(t) = 1. (1.55)

In general the (time-ordered) exponential of an operator iQ(t), where Q is hermitian,

always leads to a unitary transformation.

A small subtlety arises when working with transformations of this kind. The transfor-

mation V and the state |ψ〉 are geometric objects and coordinate independent. In other

words the choice of coordinates should not matter.

When working with coordinates however the transformation of a state |ψ〉 may be un-

derstood in two distinct ways. To see this the state |ψ〉 is first expanded in terms of a

given basis

|ψ〉 =

(
NH∑
n=1

cn |bn〉

)
. (1.56)

The transformation V may now act either on the vector coordinates cn or the basis

vectors |bn〉. In the first case one speaks of active transformations whereas in the latter

case one speaks of passive transformations.

Geometrically an active transformation ”physically” moves the state vector leaving the

basis vectors invariant. A passive transformation leaves the state vector invariant but

moves the basis vectors. This is simply a matter of convention.

If the passive point of view is chosen the new basis vectors may be expressed in terms

of the old basis vectors as follows:

|b̃n〉 =

NH∑
m=1

|bm〉 [V ]mn. (1.57)
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The transformed state |ψ̃〉 in terms of the new basis is then given by the expression

below:

|ψ̃〉 =

NH∑
n=1

cn|b̃n〉. (1.58)

The coordinates cn of the state |ψ̃〉 are unchanged and only the basis elements have been

moved.

If the active point of view is chosen the new vector components may be expressed in

terms of the old vector components as shown below:

c̃n = [V ]nmcm. (1.59)

For the active point of view the new state |ψ̃〉 then reads as follows:

|ψ̃〉 =

NH∑
n=1

c̃n |bn〉 . (1.60)

Here the basis vectors remain the same but the vector coordinates have changed.

In agreement with most physics literature the active point of view is chosen. So whenever

an expression like V |ψ〉 is encountered it should be interpreted as the corresponding

matrix-vector multiplication

V |ψ〉 =


V11 V12 . . . V1NH

V21 V22 . . . V2NH
...

...
...

...

VNH1 VNH2 . . . VNHNH




c1

c2

...

cNH

 . (1.61)

With this convention it is straightforward to show that the vector coordinates c̃n with

respect to the transformed basis |b̃n〉 are calculated by the adjoint operation V † |ψ〉.
As a consequence of the observation above the physical evolution of the system may

equally well be described by an unitarily equivalent state vector |ψ̃〉

|ψ̃(t)〉 = V †(t) |ψ(t)〉 , (1.62)

where V †(t) takes the state |ψ〉 to a new (time-dependent) reference frame or non-inertial

frame.
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The Schrödinger equation satisfied by the transformed state vector |ψ̃(t)〉may be derived

by considering its time derivative

d

dt
|ψ̃(t)〉 =

d

dt

(
V †(t) |ψ(t)〉

)
=

(
d

dt
V †(t)

)
|ψ(t)〉+ V †(t)

(
d

dt
|ψ(t)〉

)
=

(
d

dt
V †(t)− iV †(t)H(t)

)
|ψ(t)〉

=

(
d

dt
V †(t)− iV †(t)H(t)

)
V (t)V †(t) |ψ(t)〉

= −i
(
V †(t)H(t)V (t) + i

(
d

dt
V †(t)

)
V (t)

)
|ψ̃(t)〉

= −iH̃(t)|ψ̃(t)〉.

(1.63)

The dynamics of the system are now governed by the transformed Hamiltonian H̃. The

first contribution to H̃ corresponds to the Hamiltonian as experienced by an observer

within the new reference frame. The second contribution to H̃ is an inertial term and

describes the relative movement of the two frames.

1.3 Nuclear spin interactions

The dynamics of any quantum system are determined by the Schrödinger equation and

require careful construction of the appropriate Hamiltonian. The interaction of nuclear

spins with their environment and other spins is described by the nuclear spin Hamilto-

nian.

In general nuclear spins may interact with magnetic and electric fields. These may orig-

inate from external or internal perturbations. External perturbations refer to electric or

magnetic fields that are applied by an apparatus, whereas internal perturbations arise

from the sample itself. As illustrated in figure 1.9 spin interactions may therefore be

divided into external spin interactions and internal spin interactions.

While the zoo of spin interactions is certainly large, it is useful to note that every spin

interaction reduces to the same recipe

HΛ = CΛ Ii ·WΛ · Ij or HΛ = CΛ Ii ·WΛ ·K, (1.64)

where WΛ represents a 3 × 3 Cartesian tensor or simply an interaction tensor and CΛ

an interaction specific constant. The interaction tensor is contracted with the Cartesian

vector operators (Ii, Ij) or a Cartesian (classical) vector K.

Tensors are generalisations of vectors. As such they may be represented by tensor

components with respect to a particular coordinate system. Cartesian tensors are in
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Figure 1.9: Overview of the most common nuclear spin interactions. The spin Hamil-
tonian is roughly separated into internal and external interactions. External interac-
tions refer to the coupling of the spin angular momenta to external magnetic fields.
Internal interactions refer to the coupling of spin angular momenta to their molecular
environment. The spin angular momenta are represented by small spheres with an
arrow. An interaction tensor is represented by shaded areas around the spin. External
magnetic fields are represented by hollow arrows and dipolar magnetic fields are rep-
resented by their field lines. A detailed discussion of these interactions is given in the
main text.

general specified by 9 coefficients that are conveniently collected in terms of a matrix

WΛ =

 Wxx Wxy Wxz

Wyx Wyy Wzx

Wzx Wzy Wzz

 . (1.65)

The notation Wµν for the tensor components indicates the tensor’s extension into that

particular Cartesian direction.
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Figure 1.10: Graphical representation of a Cartesian interaction tensor with its cor-
responding matrix elements. The laboratory coordinate frame axes are indicated by
{ex, ey, ez}. A Cartesian tensor may in general be specified by the extension of an
ellipsoid and its orientation with respect to the laboratory coordinate frame. A suit-
able rotation R(PAS → lab) may align the tensor and the laboratory frame axes. In
this case the matrix representation of the tensor appears to be diagonal to an observer
within the laboratory frame.

For (most) spin interaction tensors there exists a special coordinate system that diago-

nalises the interaction matrix. This coordinate system is called the principal axes system

(PAS) and the corresponding eigenvalues are the principal values of the tensor.

As figure 1.10 indicates a tensor may then be visualised as an ellipsoid in space by

making use of its principal values.

If the axes of the laboratory frame and the PAS are aligned the interaction tensor appears

to be diagonal with respect to the laboratory frame. The rotation R(PAS→ lab) relating

the two frames is only unique up to permutation of the diagonal elements. To ensure

uniqueness of the rotation the diagonal elements are sorted according to the following

convention

|λ3 −Wiso| ≥ |λ1 −Wiso| ≥ |λ2 −Wiso| with Wiso =
1

3
Tr(W ). (1.66)
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1.3.1 External spin Hamiltonian

1.3.1.1 Static magnetic field

The application of a static magnetic field leads to the Zeeman effect. The Zeeman effect

describes the coupling between the spin angular momentum vector Î and the main

magnetic field B0

HZ = CiZ Ii · 1 ·B0 = CiZB0
zIiz = ω0

i Iiz, CiZ = −γi. (1.67)

Here −γiB0
z = ω0

i is the Larmor frequency of the i’th spin. It can be seen that the

principal axes of the Zeeman interaction tensor coincide with the laboratory frame axes

and the principal values are all 1.

1.3.1.2 Radio-frequency field

In order to manipulate the spin angular momentum a transverse radio-frequency field is

applied to the sample. The transverse field is usually only applied for a short amount

of time and one speaks of an RF pulse. During the RF pulse the magnetic field may be

expressed as shown below:

BRF(t) = BRF cos(ωreft+ φp)ex. (1.68)

The transverse magnetic field oscillates at a reference frequency ωref along the x-axis

of the laboratory frame with maximum amplitude BRF. Some additional flexibility is

provided by the reference phase φp. The interaction tensor and orientation is the same

as for the static Hamiltonian so that the resulting Hamiltonian HRF has the form

HRF(t) = CiRF Ii · 1 ·BRF(t) with CiRF = −γi

= CiRF BRF cos(ωreft+ φp)Iix

= ωRF cos(ωreft+ φp)Iix.

(1.69)

The Hamiltonian above is complicated, but if ωref ≈ ω0
i the transverse field may be

decomposed into a resonant

Hres
RF(t) =

1

2
ωRF(cos(ωreft+ φp)Iix + sin(ωreft+ φp)Iiy) (1.70)

and off-resonant part

Hoff res
RF (t) =

1

2
ωRF(cos(ωreft+ φp)Iix − sin(ωreft+ φp)Iiy). (1.71)

For conventional high-field NMR experiments the off-resonant term of the RF Hamil-

tonian may be neglected so that the effective RF Hamiltonian simply reduces to the
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resonant part

HRF(t) ≈ Hres
RF(t) = ωnut(cos(ωreft+ φp)Iix + sin(ωreft+ φp)Iiy), (1.72)

where ωnut = 1
2ωRF refers to the nutation frequency of the RF pulse. The reasoning to

introduce the term ”nutation frequency” may be understood by looking at the dynamics

from within a second frame rotating with frequency ωref with respect to the laboratory

frame. This issue will be discussed in section 1.4.

1.3.2 Internal spin Hamiltonian

1.3.2.1 Chemical shift

The chemical shift Hamiltonian lies at the intersection of internal and external inter-

actions. A nucleus is in general surrounded by electrons which may be understood as

a local charge distribution. The static magnetic field exerts a torque onto the electron

charge distribution causing the distribution to reorient in space. The resulting current

induces a local magnetic field. The induced magnetic field Bind at spin site i is to a good

approximation given by

Bi
ind = W i

CS ·B0, (1.73)

where W i
CS is the chemical shift tensor. The induced magnetic field is capable of in-

teracting with the nuclear spins in a similar fashion to the static magnetic field. The

chemical shift Hamiltonian therefore takes the form

HCS = CiCS Ii ·W i
CS ·B0 with CiCS = −γi. (1.74)

The chemical shift tensor is in general orientation dependent. It is convenient to de-

compose the interaction tensor into an isotropic part (orientation independent) and an

anisotropic part (orientation dependent)

HCS = CiCS Ii · (W i
CSI +W i

CSA) ·B0,

W i
CSI =

1

3
Tr(W i

CS)1, W i
CSA = W i

CS −W i
CSI.

(1.75)

In isotropic solutions the anisotropic part vanishes due to molecular averaging effects

HCS ≈ HCSI = δiisoIiz, (1.76)

where the isotropic chemical shift is usually denoted by δiso = 1
3Tr(W i

CS). It can be seen

that the isotropic chemical shift interaction influences the apparent Larmor frequency

of the spins. This determines the relative peak positions in the spectrum. It is therefore

common to absorb the isotropic chemical shift into the Zeeman Hamiltonian: HZ =

HZ +HCSI.
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1.3.2.2 J-coupling

J-coupling interactions refer to indirect dipole-dipole interactions of nuclear spins me-

diated by surrounding bonding electrons. This type of interaction reflects the local

electronic environment of the spins and may only be observed if the spins are separated

by a small number of chemical bonds. The corresponding Hamiltonian may again be

separated into an isotropic and anisotropic part

HJ = CijJ Ii ·W ij
J · Ij = CijJ Ii · (W ij

JI +W ij
JA) · Ij ,

CijJ = 2π, W ij
JI =

1

3
Tr(W ij

J )1, W ij
JA = W ij

J −W
ij
JI .

(1.77)

Only the isotropic part survives for conventional liquids

HJ ≈ HJI = 2πIi ·W ij
JI · Ij = 2πJijIi · Ij , Jij =

1

3
Tr(W ij

J ), (1.78)

where Jij is the isotropic J-coupling between spins i and j.

1.3.2.3 Dipolar coupling

Dipolar interactions or dipole-dipole interactions represent the direct coupling of a pair

of spins through space. As illustrated in figure 1.9 each spin can be visualised as a

magnetic dipole creating a local magnetic field. If two spins are sufficiently close they

will experience the local dipolar fields produced of each other. The dipolar interaction

Hamiltonian is constructed in analogy to the classical case

HDD = CijDD (3(Ii · eij)(Ij · eij)− IiIj) = CijDD Ii ·W ij
DD · Ij ,

CijDD = −µ0

4π

γiγj~
r3
ij

, W ij
DD = 3e†ij ⊗ eij − 1,

(1.79)

where rij denotes the distance and eij a unit vector between the spins i and j. The

prefactor µ0 = 4π × 10−7 [Hm−1] is the magnetic constant.

From the definition of the dipolar interaction tensor W ij
DD it is straightforward to show

that this tensor is traceless. This has the important consequence that dipolar interactions

do not contribute to the liquid-state NMR spectrum.

1.3.2.4 Spin-rotation coupling

The spin-rotation interaction is somewhat similar to the chemical shift interaction. In

case of the chemical shift interaction the static magnetic field sets the electron density

into motion leading to an induced local magnetic field. For the spin-rotation case the

movement of the molecule itself sets the charge distribution into motion (electrons and

nuclei). As a consequence the molecular motion induces a local magnetic field. The
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local magnetic field may be expressed in terms of a spin-rotation tensor W i
SR and the

angular momentum vector J of the molecule

Bi
ind = W i

SR · J. (1.80)

The interaction Hamiltonian may be defined as shown below:

HSR = CiSR Ii ·W i
SR · J with CiCS = −γi. (1.81)

The spin-rotation tensor is in general not traceless and does not vanish in isotropic

liquids. But since the distribution of molecular angular momenta J is isotropic in solution

spin-rotation interactions do not lead to an observable resonance shift of the nuclear

Larmor frequency.

1.3.2.5 Quadrupole coupling

For spins with I > 1/2 the positive charge distribution of the nucleus is not spherical (the

nucleus cannot be visualised as a spherical object). This means that the nucleus displays

a nuclear quadrupole moment. The nucleus itself is constrained by the electric potential

generated by the electrons. The potential may be characterised by its spatial derivatives,

the first being the electric field and the second being the electric field gradient. The

nuclear quadrupole moment is capable of interacting with the electric field gradient of

the electron cloud. This interaction is called quadrupole coupling

HQ = CiQ Ii ·W i
Q · Ii with CiQ =

eQi
2Ii(2Ii − 1)~

, (1.82)

where Qi is the nuclear quadrupole moment of the i’th spin. The quadrupole tensor

W i
Q is by definition traceless and unlike other nuclear spin interactions the quadrupole

coupling is bilinear in the spin operators. The quadrupole interactions is therefore

somewhat similar to a dipole-dipole interaction ”with itself.”

1.4 Interaction-frame Hamiltonian

In most practical situations it is difficult to solve the Schrödinger equation with a generic

Hamiltonian H(t) and approximate schemes are necessary. A commonly employed tech-

nique is the interaction frame formalism. Here the Hamiltonian of the system is first

separated into a ”dominant” contribution H0(t) and a ”secondary” contribution H1(t)

H(t) = H0(t) +H1(t). (1.83)
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In a second step the total propagator of the system U(t) is expressed as a product of

the dominant term U0(t) and the secondary term Ũ1(t)

U(t) = U0(t)Ũ1(t). (1.84)

The necessity for the tilde in the expressions above will be explained shortly. The idea is

that both U0(t) and Ũ1(t) may be calculated by considering two Schrödinger equations

separately. The calculation of the overall propagator has therefore been split into two

subproblems. The Schrödinger equation for the H0(t) problem takes the form

d

dt
U0(t) = −iH0(t)U0(t) (1.85)

and the solution is given by a time-ordered exponential

U0(t) = T exp

{
−i
∫ t

0
H0(s)ds

}
. (1.86)

The general strategy is to choose H0(t) as simple as possible so that an exact solution

to the time-ordered exponential is available.

Naively one might expect that the Ũ1(t) term may be calculated by solving the H1(t)

problem, but this is false. The Ũ1(t) term obeys a Schrödinger equation with a trans-

formed Hamiltonian H̃1(t). The transformed Hamiltonian may be calculated by consid-

ering the time evolution of the transformed state vector | ˜ψ(t)〉 = U †0(t) |ψ(t)〉. According

to section 1.2.5 this transformation amounts to a time-dependent change of basis. Sub-

stitution of H1(t) and U0(t) into equation 1.63 leads to the following:

d

dt
|ψ̃(t)〉 = −iH̃1(t)|ψ̃(t)〉, H̃1(t) =

(
U †0(t)H1(t)U0(t) + i

(
d

dt
U †0(t)

)
U0(t)

)
,

=⇒ d

dt
Ũ1(t) = −iH̃1(t)Ũ1(t).

(1.87)

The term ”interaction frame” is justified because the Hamiltonian H̃1(t) represents the

secondary contribution as viewed from within a coordinate system whose movement is

determined by H0(t).

So far the complexity of the problem has not been reduced, but shifted to the H̃1(t)

problem. Since H0(t) represents the dominant part of the motion, the contribution of

the H̃1(t) part is often greatly suppressed inside the interaction frame of H0(t). This

provides a reasonable starting point for further approximations.

In NMR a commonly encountered interaction frame is the rotating-frame generated by

the Zeeman Hamiltonian HZ. The idea of the rotating-frame is illustrated in figure 1.11.
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Figure 1.11: Geometrical interpretation of a rotating frame transformation with Lar-
mor frequency ω0 > 0. Laboratory frame axes are labelled by {ex, ey, ez} and rotating
frame axes by {erot

x , erot
y , erot

z }. For an observer like Bob that lives inside the rotating
frame the magnetic moment appears to be static and there is no indication for the
presence of a magnetic field. But an observer like Alice that lives in the laboratory
frame knows that Bob is in reality rotating in synchrony with the magnetic moment
restoring faith in the laws of physics.

An observer in the laboratory frame will conclude that the spin magnetic moment is

rotating rapidly in the xy-plane. A second observer however, in a non-inertial frame

that is rotating at the same angular frequency as the Larmor frequency ω0, will conclude

that the spin magnetic moment is not rotating at all. From the second observer’s point

of view the Zeeman interaction has been ”removed”. This is the geometric idea of an

interaction frame transformation.

The Zeeman interaction frame is commonly used to justify the absence of the off-resonant

part Hnres
RF (t) of the radio-frequency Hamiltonian. For this setup one may identify

H0(t) = ω0Iz, H1(t) = 2ωnut cos(ωreft+ φp)Ix and V (t) = exp {−iωreftIz},
(1.88)

so that the interaction frame Hamiltonian H̃1(t) takes the form

H̃(t) = V †(t)H(t)V (t)− ωrefIz

= (ω0 − ωref)Iz + 2ωnut cos(ωreft+ φp)(cos(ωreft)Ix − sin(ωreft)Iy).
(1.89)

If the reference frequency ωref is sufficiently close to the Larmor frequency ω0 ∼ MHz

of the spins, the interaction frame Hamiltonian oscillates rapidly in time. A sufficient

approximation of the interaction frame Hamiltonian is then provided by its time-average
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over one evolution period T = 2π/ωref

H̃RF =
ωref

2π

∫ 2π
ωref

0
H̃1(s)ds = (ω0 − ωref)Iz + ωnut(cos(φp)Ix + sin(φp)Iy). (1.90)

The interaction Hamiltonian H̃RF is a contribution of two terms. The first term repre-

sents the residual Larmor precession and is called frequency off-set. The second term

can be identified as the resonant part Hamiltonian of the RF Hamiltonian (see equation

1.72) viewed from within a rotating-frame.

In the case of additional interactions the same approximations are imposed on the indi-

vidual contributions leading to the so-called rotating-frame Hamiltonian H̃rot instead of

just the RF Hamiltonian.

Since most spin dynamical calculations are performed within the rotating frame it is

common to simply drop the tilde Hrot = H̃rot and refer to Hrot as the Hamiltonian of

the system.

1.5 Quantum measurements

A quantum measurement describes the process of extracting information from a quan-

tum system. Quantum systems are funny in the sense that the evolution of the system

is deterministic and governed by the Schrödinger equation, but the measurement pro-

cess is inherently indeterministic. It is impossible to predict the exact outcome of a

measurement. It is only possible to predict the probability of a certain outcome. This

constitutes the probabilistic interpretation of quantum mechanics.

1.5.1 Single spin systems

In NMR a single spin system usually refers to the spin system of a single molecule. In

this case the system may be described by a state vector |ψ〉. The evolution of |ψ〉 is

described by equation 1.47.

The measurement of a physical observable A of the system |ψ〉 may result in one of the

eigenvalues ai. Assuming that the measurement returned the eigenvalue ai the wave

function collapses into the corresponding eigenstate |ai〉. Any subsequent measurement

of the observable A will then always lead to the same result ai. No more information

regarding A may be obtained. If on the other hand the system is restored to its original

state |ψ〉, a second measurement of A may in general lead to observation of a different

eigenvalue aj . Continuing in this fashion allows sampling of the spectrum of the observ-

able A.

If the measurement on the restored state |ψ〉 is performed N times and the eigenvalue
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Figure 1.12: Quantum measurement on a single quantum system. The system is
initially prepared in some state |ψ〉. The measurement of an observable A returns
one of its eigenvalues ai determined by the probability distribution Pψ(ai). If another
measurement of the observable A follows immediately no further information can be
extracted as the wave function has collapsed. To extract new information from the
system it has to be restored to its original state before performing the measurement.

ai has been measured ni times, it is possible to define the relative frequency of a mea-

surement event

f(ai) =
n(ai)

N
. (1.91)

For large N the frequency may be equated with the corresponding probability

lim
N→∞

f(ai) = p(ai), (1.92)

where p(ai) is the probability of measuring the eigenvalue ai.

This simple example illustrates the idea that the measurement of an observable A is

characterised by a probability distribution. The measurement process for a single quan-

tum system is illustrated in figure 1.12. The probability distribution is denoted by

Pψ(ai) emphasizing that it depends on the current state of the system. An explicit

representation for Pψ(ai) may be constructed by making use of the eigenvectors of A

Pψ(ai) = 〈ψ|ai〉 〈ai|ψ〉 = | 〈ai|ψ〉 |2,
NH∑
i=1

Pψ(ai) =

NH∑
i=1

〈ψ|ai〉 〈ai|ψ〉 = 〈ψ|ψ〉 = 1.

(1.93)

The state of the system and its probability distribution after measurement of an eigen-

value aj may be expressed as follows:

|ψ〉 7→
∣∣ψ′〉 =

〈aj |ψ〉
| 〈aj |ψ〉 |

|aj〉 and
〈
ψ′|ψ′

〉
= 1,

Pψ′(ai) =
〈
ψ′|ai

〉 〈
ai|ψ′

〉
= 〈aj |ai〉 〈ai|aj〉 = δij ,

(1.94)
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where the updated probability distribution Pψ′(ai) indicates that subsequent measure-

ments of A return the value aj with a probability p(aj) = 1.

A useful quantity is the expectation value 〈A〉 of an observable A. The expectation value

of an operator is given by the statistical average of its eigenvalues.

〈A〉 =

NH∑
i=1

aiPψ(ai) =

NH∑
i=1

ai 〈ψ|ai〉 〈ai|ψ〉 = 〈ψ|A|ψ〉 . (1.95)

1.5.2 Spin ensemble

Conventional NMR experiments are not performed on single spin systems, but on a

collection of identical (but distinguishable) spin systems. Such a collection is called a

spin ensemble E . In contrast to the previous section the NMR signal represents a global

measurement. This means all spins are observed simultaneously.

Measurements on ensembles display some subtle differences compared to measurements

on single quantum systems. In order to deal with ensembles one has to make a big

assumption. Individual members of the ensemble are non-interacting and can be treated

separately (this assumption is not true and interactions within the ensemble are the

origin of spin relaxation).

The top panel of figure 1.13 illustrates a global measurement of an ensemble where every

member is in the same quantum state |ψ〉. Such an ensemble is called a pure state since

it can be described by a single state vector. Upon measurement of the observable A

each member of the ensemble returns one of the possible eigenvalues ai according to the

probability distribution Pψ(ai). In general there are n1 systems returning the eigenvalue

a1, n2 systems returning the eigenvalue a2, etc. The global measurement 〈A〉G is the

result of all individual contributions

〈A〉G =

NH∑
i=1

niai ≈
N∑
k=1

NH∑
i=1

Pψk(ai)ai

=
N∑
k=1

〈ψk|A|ψk〉 =
N∑
k=1

〈ψ|A|ψ〉 = N〈A〉,

(1.96)

where |ψk〉 represents the state vector of the k’th member of the ensemble. The last

equality follows from the assumption that all members occupy the same quantum state.

A more convenient way to evaluate expectation values when working with ensembles

is the density operator formalism. The density operator ρ of an ensemble is defined as

follows:

ρ = N−1
N∑
k=1

|ψk〉 〈ψk| = N−1
N∑
k=1

σk, (1.97)
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Figure 1.13: Global quantum measurements on a pure state (top) and a mixed state
(bottom) with N particles. In a pure state E all members of the ensemble E are pre-
pared in the same quantum state |ψ〉. The measurement on each individual member
is performed simultaneously but may be treated according to a single quantum sys-
tem. The measurement result then returns ni times the eigenvalue ai. The individual
contributions combine to give the overall measurement result N〈A〉. A mixed state E
consists of a statistical mixture of M pure states Ei. When a measurement is performed
on a mixed state each subensemble is treated according to the pure state case. The
pure state measurement results Mi〈A〉i are then combined according to their statistical
weights to give the overall measurement result N〈A〉. The measurement process on a
mixed state therefore involves two different averaging procedures.

where σk is the density operator for a single member of the ensemble. The calculation

of a global expectation value may then be calculated as shown below:

〈A〉G = N Tr(A†ρ) with Tr(Q) =

NH∑
i=1

〈i|Q|i〉 , (1.98)

where the trace of an operator Tr(Q) is defined as the sum of its diagonal elements. In

physical experiments it is rare to find a pure state. The system is usually in a statistical

mixture or mixed state. A statistical mixture is constructed by mixing several pure

states together. The resulting ensemble E = {E1, E2, . . . , EM} is characterised by M

subensembles Ej with Mj members. A measurement of the observable A for a mixed

state is illustrated at the bottom of figure 1.13. For a mixed state the measurement

result is made up of contributions from all subensembles. The subensembles may again
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be evaluated according to the pure state case

〈A〉G =

M∑
j=1

Mj〈A〉jG =

M∑
j=1

Mj Tr(A†σj)

= N
M∑
j=1

wj Tr(A†σj) = N Tr(A†
M∑
j=1

wjσj)

= N Tr(A†ρ),

(1.99)

where the mixed state density operator ρ is a weighted combination of pure state density

operators with statistical weights wj

ρ =
M∑
j=1

wjσj , wj ≥ 0 ∀j and
M∑
j=1

wj = 1. (1.100)

Although the final results of equation 1.98 and 1.99 look similar, they represent very

different things. Equation 1.99 involves two different averages. The first average is

performed on each subensemble and represents a quantum mechanical average. The

second average is a classical ensemble average. It represents the probability of finding

a randomly selected ensemble member in state |ψk〉. To distinguish these two cases

the term ”weight” is chosen rather than ”probability” and an ”overbar” rather than

”angular brackets”.

Having said all of that, it is NMR convention to forget about these things and simply

work with the quantities defined below:

ρ = N−1ρ and 〈A〉 = N−1〈A〉G. (1.101)

1.6 Time evolution of the ensemble

The equation of motion for the ensemble may be derived by considering the time deriva-

tive of the density operator

d

dt
ρ(t) = N−1

N∑
k=1

d

dt
|ψk(t)〉 〈ψk(t)|

= N−1
N∑
k=1

(
d

dt
|ψk(t)〉

)
〈ψk(t)|+ |ψk(t)〉

(
d

dt
〈ψk(t)|

)
.

(1.102)
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The individual members obey the Schrödinger equation (and its adjoint version for bra

vectors)

d

dt
ρ(t) = −iN−1

N∑
k=1

Hk |ψk(t)〉 〈ψk(t)| − |ψk(t)〉 〈ψk(t)|Hk

= −iN−1
N∑
k=1

[Hk, |ψk(t)〉 〈ψk(t)| ].

(1.103)

The assumption that all members of the ensemble are identical implies that they expe-

rience the same Hamiltonian Hk = H

d

dt
ρ(t) = −iN−1

N∑
k=1

[H, |ψk(t)〉 〈ψk(t)| ]

= −i[H, ρ(t)].

(1.104)

The resulting equation of motion is the so-called Liouville-von-Neumann equation (LvN

equation). The solution to the Liouville-von-Neumann equation may be constructed

by sandwiching the initial density operator ρ(0) between the forward and backward

propagator of the system

ρ(t) = U(t)ρ(0)U †(t) = N−1
N∑
k=1

U(t) |ψk(0)〉 〈ψk(0)|U †(t). (1.105)

The matrix elements [ρ]rs of a density operator ρ have a simply interpretation in the

eigenbasis of the Hamiltonian H. The diagonal elements [ρ]rr are given by

〈r|ρ(t)|r〉 = 〈r|U(t)ρ(0)U †(t) |r〉

= exp (−iωrt) 〈r| ρ(0) |r〉 exp (iωrt)

= 〈r| ρ(0) |r〉 = N−1
N∑
k=1

〈r|ψk(0)〉 〈ψk(0)|r〉

= N−1
N∑
k=1

pkr (0) = pr(0).

(1.106)

They represent the initial fraction of ensemble members in the eigenstate |r〉 and are

therefore also called spin populations.
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The diagonal elements [ρ]rs are given by

〈r|ρ(t)|s〉 = 〈r|U(t)ρ(0)U †(t) |s〉

= exp (−iωrt) 〈r| ρ(0) |s〉 exp (iωst)

= 〈r| ρ(0) |s〉 exp (−i(ωr − ωs)t)

= N−1
N∑
k=1

〈r|ψk(0)〉 〈ψk(0)|s〉 exp (−i(ωr − ωs)t)

= N−1
N∑
k=1

ck,∗r (0)cks(0) exp (−i(ωr − ωs)t)

= c∗r(0)cs(0) exp (−i(ωr − ωs)t).

(1.107)

They represent the presence of superpositions between states (|r〉 , |s〉) across the ensem-

ble. Superpositions indicate that two states (|r〉 , |s〉) may interfere with or talk to each

other. In particular they evolve in unison with time as indicated by the exponential

factor. The off-diagonal elements are therefore often called spin coherences.

All of this would not be very useful if there was no way to determine the initial values

for spin populations and coherences. The next section addresses this issue.

1.7 Thermal equilibrium

In typical NMR experiments the system is in a mixed state. Equation 1.100 however

does not indicate how to choose the weights or states of the mixture. From a physical

point of view it reasonable to assume that the sample will reach a thermal equilibrium

with its environment if it is left unperturbed for a sufficient amount of time. The term

environment is vague and refers to anything that is not the sample.

Thermodynamical arguments then assure that the system obeys the Boltzmann distri-

bution. The corresponding thermal equilibrium density operator ρeq for a generic spin

system may then be specified as follows:

[ρeq]rr =
exp(−βθωi)∑NH
i=1 exp(−βθωi)

and [ρeq]rs = 0, (1.108)

where the energies ωi refer to the energy levels of the system and the temperature

parameter is given by βθ = ~
kBT

. A more compact form for the thermal equilibrium

density operator may be stated by making use of the Hamiltonian H of the system

ρeq =
exp{−βθH}

Tr(exp{−βθH})
with Tr(ρeq) = 1. (1.109)

The Boltzmann distribution indicates that energy levels with higher energies are less

likely to be occupied. This follows from the principle of entropy maximisation. By first

occupying the lower energy states the ensemble will simply be found in more distinct
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configurations.

The absence of coherences may be rationalised by a uniform distribution of phase angles

at thermal equilibrium so that the ensemble average vanishes.



Chapter 2

Far from thermal equilibrium

The following material is based on reference 27.

NMR experiments are usually performed on samples which are allowed to reach thermal

equilibrium in a large magnetic field, perturbed by radio-frequency pulses resonant with

the Zeeman transitions in order to induce an observable electromagnetic response, and

allowed to return to thermal equilibrium before the process is repeated. Under most

circumstances, the behaviour of the spin system is described by a differential equation

which is usually known as the inhomogeneous master equation (IME) and is given by [22,

28–38]
d

dt
ρ(t) = −i[Hcoh(t), ρ(t)] + Γ̂(ρ(t)− ρeq). (2.1)

The term Hcoh is the coherent part of the spin Hamiltonian, which is uniform for all

spin ensemble members. The relaxation of the spin system is described by a relaxation

superoperator, denoted Γ̂. The relaxation superoperator is constructed from the fluc-

tuating part of the spin Hamiltonian, which is in general different for each member of

the ensemble at a given point in time. The fluctuating part represents the interaction

between ensemble members and their environment.

The last term in equation 2.1 depends on the deviation of the spin density operator

from its thermal equilibrium value, and causes the density operator to reach thermal

equilibrium when left unperturbed for a long time. This is situation is similar to the

modified Bloch equation 1.9.

Equation 2.1 has been a fixture in spin dynamical theory for a long time and its limi-

tations have remained unnoticed for almost the same time period. In the derivation in

his 1957 paper [29], Redfield used the following phrase at a key step of the derivation:

“unless the system is prepared in an unusual way”.

So what is “a system prepared in an unusual way”? The discussion in the Redfield paper

makes it clear that the term implies a large deviation of the density operator from ther-

mal equilibrium, such that the density operator ventures outside the high-temperature

37
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and weak-order approximation (see reference 30, page 288)

‖~Hcoh/kBT‖ � 1 and
∥∥ρ−N−1

1

∥∥� 1, (2.2)

where the Frobenius norm of an operator is defined by ‖A‖ =
∑

r,s |〈r|A |s〉|
2.

In other words, equation 2.1 only applies in the high-temperature limit for spin systems

which remain close to equilibrium at all times, and this restriction was well-known at

the time this equation was first developed.

There is great current interest in the preparation of nuclear spin systems “in an un-

usual way”, i.e. far from equilibrium. Such preparations include hyperpolarised spin

systems with a large level of Zeeman polarisation, enhanced with respect to thermal

equilibrium polarisation by many orders of magnitude [8–19]. Typical hyperpolarisa-

tion methods include dynamic nuclear polarisation (DNP) [8–11, 39] and optical pump-

ing [12–15]. In addition, nuclear spin systems may be prepared in states corresponding

to non-equilibrium spin isomer distributions, such as hydrogen enriched in the para spin

isomer and rapidly rotating methyl groups prepared with non-equilibrium distributions

of populations between the spin isomers of the three equivalent protons [40–42]. In some

circumstances these different modes of non-equilibrium spin order interconvert, leading

for example to the phenomena of parahydrogen-induced hyperpolarisation, in which the

non-equilibrium singlet spin order of para-enriched hydrogen gives rise to large magne-

tization components after a chemical reaction [16–19, 43], and quantum-rotor-induced

polarisation (QRIP) in which non-equilibrium methyl rotor order also gives rise to en-

hanced NMR signals [40–42].

The IME suffers from (at least) two distinct sets of problems. For spin dynamical cal-

culations

• the inhomogeneous character of the IME is awkward to deal with.

From a thermodynamic point of view

• the IME is restricted to the high-temperature and weak-order regime.

• the IME does not correctly predict the observed build-up of longitudinal magne-

tization for spin systems that are far from equilibrium.

• the IME does not handle the relaxation of coherences correctly.

To overcome at least some of these issues several alternative master equations have been

proposed, each of which have the form of a homogeneous differential equation, of the

type:
d

dt
ρ(t) = −i[Hcoh(t), ρ(t)] + Γ̂θρ(t), (2.3)

where Γ̂θ is a “thermalised” variant of the relaxation superoperator Γ̂, adjusted in such

a way that the spin density operator ρ tends to the correct thermal equilibrium value
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ρeq in thermal equilibrium with the environment [44–47].

However as shown below the proposed solutions are not able to resolve all the raised

issues. The aim of this chapter is to discuss the construction of an alternative HME

which does not suffer from these restrictions and most importantly retains validity for

spin systems far from equilibrium. In order to achieve this, a departure from the semi-

classical approach to relaxation theory, which is almost universal in standard texts on

magnetic resonance, is considered [22, 33–37].

2.1 Theoretical Background

The theoretical background of NMR relaxation theory is reviewed briefly in order to

establish the notation and to resolve ambiguities in some of the key terms.

2.1.1 Liouville space

While the state |ψ〉 of a system is an element of a Hilbert space H, the density operator

ρ is an element of the space of linear operators on H denoted by L and referred to as

Liouville space. The description of NMR relaxation phenomena is most easily carried out

within Liouville space. The dimension of the corresponding Liouville space is NL = N2
H.

An operator O may then be then regarded as a vector of length NL in this space and is

denoted |O). The inner product between any two operators (called the Liouville bracket)

is defined as follows:

(M |N) = Tr{M †N}. (2.4)

One may always choose a set of orthonormal NL basis operators {|Op)} with p ∈
{1, 2 . . . NL}

(Op|Oq) = δpq. (2.5)

Such a set of operators constitutes a basis for L.

2.1.1.1 Superoperators

In analogy to operators a superoperator Â transforms an operator |Q) into a different

operator |Q′) [44, 48]. The following superoperators play a particular important role in

relaxation theory:

1. The left-multiplication superoperator is denoted here by M•, where the bullet sym-

bol • is a placeholder for an operator argument. The superoperator M• multiplies

its operand by an operator from the left, as follows:

(M•) |O) = |MO) . (2.6)
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2. The right-multiplication superoperator is denoted here by •M , and multiplies its

operand by an operator from the right, as follows:

(•M) |O) = |OM) . (2.7)

3. The commutation superoperator is defined as follows:

M̂ = (M•)− (•M) (2.8)

such that

M̂ |N) = |[M,N ]) = |MN −NM) . (2.9)

In the following discussion, a symbol of the form M̂ implies a general superoperator of

unspecified type, unless M is already defined as the symbol for an operator, in which

case M̂ implies the commutation superoperator of the operator M .

The matrix representation of a superoperator in a particular operator basis has matrix

elements defined as follows:

[M̂ ]rs = (Or|M̂ |Os) = Tr[O†rM̂Os]. (2.10)

2.1.2 Spin Hamiltonian

Section 1.3 discussed some of the more relevant nuclear spin interactions. For the pur-

poses of NMR relaxation theory these interactions are organised as shown in figure 2.1.

The spin Hamiltonian is then expressed as a sum of coherent and fluctuating contribu-

tions:

H(t) = Hcoh(t) +Hfluc(t). (2.11)

The coherent part is assumed to be the same for each member of the ensemble, whereas

the fluctuating part may differ for ensemble members at a given point in time, and is

responsible for the relaxation of the system. For typical solution-state NMR experiments

the coherent part consists of Zeeman, chemical shift and scalar coupling interactions.

2.1.2.1 Coherent Hamiltonian

The discussion below makes extensive use of a division of the coherent Hamiltonian into

three parts, called HA, HB and HC , as follows:

Hcoh(t) = HA +HB +HC(t). (2.12)

The properties of these three terms are as follows:
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Figure 2.1: The organisation of spin Hamiltonian terms used in this article. The
Hamiltonian H(t) consists of a coherent term Hcoh(t) and a fluctuating term Hfluc(t).
The coherent term contains a dominant part HA, a static (or quasi-static) perturba-
tion HB , and a time-dependent perturbation HC(t). The static perturbation may be

decomposed into a secular part H
‖
B which commutes with HA, and a non-secular part

H⊥B , which does not. The time-dependent perturbation HC may be divided into a res-
onant part Hres

C and an off-resonant part Hoff res
C . Standard approximations lead to a

corrected perturbation H ′B which commutes with HA. The main coherent Hamiltonian
H0 is constructed by adding HA and H ′B .

• The dominant Hamiltonian HA. The term HA is much larger than the HB, HC

and Hfluc terms:

‖HA‖ � ‖HB‖ , ‖HC‖ , ‖Hfluc‖ . (2.13)

The operators HB and HC may therefore be regarded as perturbations to the dom-

inant Hamiltonian HA. To proceed with the discussion the eigenvalues of HA are

assumed to be either degenerate or widely spaced compared to the corresponding

matrix elements of the perturbations HB and HC in the eigenbasis of HA (see

figure 2.2). This strong constraint on the eigenvalue spectrum of HA is very im-

portant and underpins much of the theory described below. The eigenvalues and
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Figure 2.2: Schematic eigenvalue spectra of the coherent Hamiltonian terms HA

and HB . Degenerate eigenvalues are indicated by square brackets. The eigenvalue
spectrum of HA consists of degenerate or widely-spaced eigenvalues, such that the
eigenvalue spacing is large compared to ‖HB‖, and also ‖HC‖ and ‖Hfluc‖ (not shown).
Degeneracy is broken whenH0 is constructed by combiningHA andHB , after correction
for non-secular and off-resonant contributions (equation 2.22).

eigenstates of the dominant term HA are denoted by ωAr and |r〉A respectively

HA |r〉A = ωAr |r〉
A . (2.14)

The perturbations HB and HC are both assumed to fulfill the following condition

〈r|AHB|s〉A , 〈r|AHC(t)|s〉A �
∣∣ωAr − ωAs ∣∣ ∀ ωAr 6= ωAs . (2.15)

Equation 2.15 implies that the matrix representations of HB and HC , expressed in

the eigenbasis of HA, has off-diagonal terms which are either between degenerate

states of HA, or which are always small in magnitude compared to the correspond-

ing separation of non-degenerate HA eigenvalues.

In typical high-field NMR experiments, HA represents the dominant Zeeman in-

teraction with a strong external magnetic field. However in some cases, a different

Hamiltonian, such as an exchange interaction, is assigned to the HA term.
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• The (quasi)static perturbation term HB. The term HB is assumed to be small

in magnitude with respect to HA (equation 2.13) and either time-independent or

with a slow time-dependence. The latter condition may be written as follows:∣∣∣∣ d

dt
〈r|AHB |s〉A

∣∣∣∣� ∣∣ωAr − ωAs ∣∣ ∀ ωAr 6= ωAs . (2.16)

In typical high-field NMR applications, the term HB contains spin-spin couplings,

chemical shift terms, and interactions with time-varying fields such as magnetic

field gradient pulses. In solid-state NMR, anisotropic spin interactions such as

chemical shift anisotropies, quadrupolar interactions, and dipole-dipole couplings

are also included. These terms may acquire a slow time-dependence satisfying

equation 2.16 through sample rotation. Since the eigenvalues of HA are combina-

tions of the Larmor frequencies for the nuclides in the spin system, equation 2.15

implies the validity of a high-field approximation for the nuclear spin Hamiltonian.

The HB term may be further subdivided into a “secular” term H
‖
B and a “non-

secular” term H⊥B :

HB = H
‖
B +H⊥B , (2.17)

where H
‖
B commutes with HA

[HA, H
‖
B] = 0, (2.18)

while H⊥B does not

[HA, H
⊥
B ] 6= 0. (2.19)

• The time-dependent perturbation term HC(t). The term HC is also small in mag-

nitude with respect to HA (equation 2.13) but has a rapid time-dependence such

that the following condition is satisfied∣∣∣∣ d

dt
〈r|AHC(t) |s〉A

∣∣∣∣ ≮ ∣∣ωAr − ωAs ∣∣ ∀ ωAr 6= ωAs . (2.20)

In typical NMR experiments, HC(t) includes the interaction of the spin system

with a radio-frequency field. The HC(t) term may be further divided into the

resonant term Hres
C (t) and the off-resonant term Hoff res

C (t).

Since equation 2.15 is assumed to be satisfied, the “non-secular” term H⊥B may either

be ignored, or treated approximately by a small correction to the eigenvalues of H
‖
B.

The off-resonant term Hoff res
C (t) also gives rise to small shifts which may be taken into

account through a small correction to HB. For simplicity it is assumed that any non-

secular corrections induced by H⊥B , and any off-resonance shifts induced by Hoff res
C (for

example, Bloch-Siegert shifts [49]), are incorporated into a corrected version of HB,
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denoted H ′B, which commutes with HA

[HA, H
′
B] = 0. (2.21)

The main part of the coherent Hamiltonian, denoted here H0, is now constructed by

combining the HA and H ′B terms

H0 = HA +H ′B. (2.22)

Since the operators HA and H0 commute

[HA, H0] = 0, (2.23)

it is possible to define a set of states that form a simultaneous eigenbasis of both op-

erators. The states which form this simultaneous eigenbasis are denoted {|1〉 . . . |NH〉},
where NH is the dimension of H. The corresponding eigenequations are as follows:

H0 |r〉 = ωr |r〉 , HA |r〉 = ωAr |r〉 . (2.24)

Note that although the eigenvalues ωAr of HA are the same as in equation 2.14, the set

of eigenstates |r〉 may not be identical to the set of eigenstates |r〉A, since eigenstates

belonging to degenerate subspaces of HA may be mixed by the HB term.

The H0 eigenstates may be used to define a set of transition operators (or shift operators)

Xrs, as follows:

Xrs = |r〉〈s| , (2.25)

where the states |r〉 satisfy equation 2.24. The operator Xrs converts the state |s〉 into

the state |r〉. There are NL = N2
H transition operators since the indices r and s both

run from 1 to NH.

The set of all eigenstate transition operators {Xrs} forms an orthonormal operator basis

of Liouville space, being orthonormal in both indices

(Xrs|Xkl) = δrkδsl. (2.26)

The eigenstate transition operators Xrs are eigenoperators of the commutation super-

operator of H0

Ĥ0 |Xrs) = ωrs |Xrs) (2.27)

and the transition frequencies are given by

ωrs = ωr − ωs. (2.28)
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The eigenstate transition operators Xrs are also eigenoperators of the commutation

superoperator of HA, but with different eigenvalues

ĤA |Xrs) = ωArs |Xrs) , (2.29)

where

ωArs = ωAr − ωAs . (2.30)

In the case that HA is chosen to be the Zeeman Hamiltonian for the spin system, the

eigenvalues ωArs are given by linear combinations of the nuclear Larmor frequencies of

the relevant nuclides.

The transition operators Xrs have inconvenient rotational properties which derive from

the complexity and low rotational symmetry of the operator HB. It proves convenient

to define a new orthonormal eigenoperator basis for ĤA, with operators |Aα) satisfying

the eigenequation

ĤA |Aα) = ωAα |Aα) . (2.31)

The eigenvalues are denoted ωAα with α ∈ {0, 1 . . . NL}. Each eigenvalue ωAα corresponds

to one of the frequencies ωArs in equation 2.30, and each eigenoperator may be expressed

as a linear superposition of transition operators with the same eigenvalue of ĤA

|Aα) =

NH∑
r=1

NH∑
s=1

|Xrs) (Xrs|Aα)× δ(ωArs − ωAα ), (2.32)

where δ(x) = 1 for x = 0 and 0 otherwise.

It is desirable to choose eigenoperators {|A1) . . .} which have convenient properties un-

der three-dimensional rotations of the nuclear spin angular momenta. Whether this is

possible depends on the commutation properties of the dominant Hamiltonian HA.

In high-field NMR, the dominant Hamiltonian HA is usually identified with the Zeeman

Hamiltonian, ignoring any chemical shifts or other perturbations:

high-field NMR: HA = HZ , (2.33)

HZ =

N∑
i=1

ω0
i Iiz. (2.34)

The commutation properties of HA are different for homonuclear and heteronuclear

systems:

• In homonuclear systems (all nuclides of the same type), all Larmor frequency terms

ω0
i are identical, and hence HA is proportional to the total angular momentum

operator along the z-axis, Iz =
∑N

i=1 Iiz. In this case HA commutes with the
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total spin angular momentum along the field, and also the total square angular

momentum of all nuclei

[HA, Iz] = [HA, I
2] = 0, (2.35)

where I2 = I2
x+I2

y+I2
z and Iν =

∑N
i=1 Iiν ; ν ∈ {x, y, z}. Hence, each eigenoperator

|Aα) may be identified with an irreducible spherical tensor operator (ISTO)
∣∣∣Tαλµ)

|Aα) = cα
∣∣Tαλµ) (2.36)

obeying the following standard eigenequations:

Î2
∣∣Tαλµ) = λα(λα + 1)

∣∣Tαλµ) ,
Îz
∣∣Tαλµ) = µα

∣∣Tαλµ) ,
Î2 = (Îx)2 + (Îy)

2 + (Îz)
2.

(2.37)

Here Îx is the commutation superoperator of the total angular momentum along

the x-axis, Ix =
∑N

i=1 Iix, and similarly for the x and y-operators [44]. Note that

(Îx)2 is not the same superoperator as
∑N

i=1 Î
2
ix. The rotational rank and azimuthal

quantum number of the eigenoperator |Aα) are denoted λα and µα respectively.

The normalization factor cα in equation 2.36 ensures that (Aα|Aα) = 1.

• In heteronuclear systems, the Zeeman Hamiltonian does not commute with the

total square angular momentum operator of all spins but with the total square

angular momentum operators of individual groups of spins, organized by their

isotopic types {I, S, . . . }. If the numbers of spins of the different isotopic types are

denoted {NI , NS . . .}, the relevant z- angular momentum operators are denoted

Iz =
∑NI

i=1 Iiz, Sz =
∑NS

s=1 Ssz, etc. and the total-square angular momentum

operators by:

I2 =

NI∑
i=1

(I2
ix + I2

iy + I2
iz), S2 =

NS∑
s=1

(S2
sx + S2

sy + S2
sz). (2.38)

The following commutation relationships apply:

[HA, Iz] = [HA, I
2] = [HA, Sz] = [HA, S

2] = 0 . . . ,

[Iz, Sz] = [I2, S2] = 0 . . .
(2.39)

An appropriate set of ĤA eigenoperators is given by the tensor product of the

individual spherical tensor operator sets

{Aα} = {T Iλ,µ} ⊗ {TSλ,µ} ⊗ . . . (2.40)
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Each eigenoperator has the form

|Aα) = cα

∣∣∣T I,αλ,µTS,αλ,µ...

)
, (2.41)

with a set of rotational ranks {λIα, λSα . . .} and azimuthal quantum numbers {µIα, µSα . . .}
for the spin species {I, S . . .}.

2.1.2.2 Fluctuating Hamiltonian

The fluctuating Hamiltonian Hfluc, which is responsible for spin relaxation, typically

contains contributions from several different nuclear spin interactions

Hfluc(t) = HΛ1
fluc(t) +HΛ2

fluc(t) + . . . (2.42)

The interactions {Λ1,Λ2 . . .} typically include nuclear dipole-dipole interactions, chem-

ical shift anisotropies, etc. The random fluctuations of these interactions, due to molec-

ular motion, are responsible for nuclear spin relaxation. In general, the fluctuations of

different interactions are correlated with each other.

Each fluctuating Hamiltonian term may be expressed as a superposition of ĤA eigenop-

erators, as follows: ∣∣HΛ
fluc

)
(t) =

∑
α

FΛ
α (t) |Aα) , (2.43)

where the coefficients are defined as follows:

FΛ
α (t) =

(
Aα|HΛ

fluc(t)
)

(2.44)

and have the following correlation functions:

GΛΛ′
αα′ (τ) = FΛ∗

α (t+ τ)FΛ′
α′ (t) (2.45)

The overbar indicates the ensemble average. The correlation functions GΛΛ′
αα′ (τ) are

assumed to be independent of t (stationary assumption)

GΛΛ′
αα′ (τ) = GΛΛ′

αα′ (0)gΛΛ′
αα′ (τ) with gΛΛ′

αα′ (0) = 1 (2.46)

and to decay monotonically with increasing τ . For most physical situations the corre-

lation functions become vanishingly small for τ larger than an interval called the cor-

relation time denoted τc. In general the correlation time may be different for different

mechanisms, but this complication will be overlooked, for the sake of simplicity.
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In the case of rotational diffusion, the correlation functions may be shown to decay

approximately exponentially [50], with the following form

gΛΛ′
αα′ (τ) ' exp{− |τ | /τc} with τc > 0. (2.47)

For simplicity we assume that the correlation time is independent of the interaction and

eigenoperator indices.

The spectral density functions is defined as the Fourier transform of the correlation

functions

jΛΛ′
αα′ (ω) =

∫ ∞
−∞

gΛΛ′
αα′ (τ) exp{iωτ}dτ. (2.48)

For an exponential correlation function (equation 2.47), the real part of the spectral

density has the simple form of an absorption-mode Lorentzian

Re{jΛΛ′
αα′ (ω)} =

2τc
1 + ω2τ2

c

. (2.49)

An alternative approach is to expand the fluctuating Hamiltonian in transition operators

as follows: ∣∣HΛ
fluc

)
(t) =

∑
r,s

〈r|HΛ
fluc(t)|s〉 |Xrs) . (2.50)

The correlation functions of the fluctuating matrix elements are defined as follows:

GΛΛ′
ijkl(τ) = 〈i|HΛ

fluc(t+ τ)|j〉 〈k|HΛ′
fluc(t)|l〉 , (2.51)

which are again assumed to be independent of t due to stationarity. The spectral density

functions of the transition matrix elements are defined as follows:

Jijkl(ω) =
∑
Λ,Λ′

JΛΛ′
ijkl (ω), (2.52)

from which the contributions of the individual correlation functions are given by

JΛΛ′
ijkl (ω) =

∫ ∞
−∞

GΛΛ′
ijkl(τ) exp{iωτ}dτ. (2.53)

Their real parts are again proportional to absorption-mode Lorentzians, as in equa-

tion 2.49.

2.1.3 Equation of Motion

The time evolution for a single member of the ensemble in Liouville space may be

expressed as follows:

d

dt
|σ(t)) = −iĤ(t) |σ(t)) , Ĥ(t) = Ĥ0 + Ĥres

C + Ĥfluc(t) (2.54)



Chapter 2 Far from thermal equilibrium 49

and the solution is given by a time-ordered exponential superoperator

|σ(t)) = Û(t) |σ(0)) , Û(t) = T̂ exp

{
−i
∫ t

0
Ĥ(s)ds

}
. (2.55)

The evolution of the ensemble may be determined by performing an ensemble average.

After the ensemble average the evolution of the system may be approximated by an

equation of the type [51]

|ρ(t)) = V̂ (t) |ρ(0)) , (2.56)

but the propagation superoperator V̂ is in general not unitary. The primary aim of

relaxation theory is the systematic construction of V̂ valid within appropriate limits. [28–

30, 51–58]

2.2 Semi-classical relaxation theory

The semi-classical relaxation theory of nuclear spin systems is widely covered in the

standard literature [28, 30, 32–37]. To underpin the later discussion however a concise

overview of the basic concepts and key approximations is necessary.

2.2.1 Semi-classical relaxation superoperator

In order to prepare for the application of second-order perturbation theory, the spin

Hamiltonian is expressed in the interaction frame of the dominant part of the coherent

Hamiltonian HA

H̃(t) = exp{+iĤAt}H(t). (2.57)

In the case that HA is identified with the Zeeman Hamiltonian the interaction frame is

the usual rotating frame.

The LvN equation, in the interaction frame, is given by

d

dt
|σ̃(t)) = −i ˆ̃

H(t) |σ̃(t)) , H̃(t) = H̃coh + H̃fluc(t), (2.58)

with the interaction-frame fluctuating Hamiltonian

H̃fluc(t) = exp{+iĤAt}Hfluc(t) (2.59)

and the interaction-frame coherent Hamiltonian

H̃coh(t) = H0 −HA + H̃res
C (t). (2.60)
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The solution to the LvN equation for the time evolution of individual ensemble members

may be approximated by time-dependent perturbation theory [26, 30, 32–37, 59]. The

following standard approximations and assumptions are made:

• The density operator and the fluctuating contributions are statistically indepen-

dent (uncorrelated).

• The ensemble average of the fluctuating contributions vanishes.

• The fluctuating contributions represent a weakly stationary process, so that two-

time correlations only depend on their time difference t′ − t = τ .

• There exists a correlation time τC such that the ensemble average of the random

fluctuations becomes negligible for time differences τ � τC .

• The termsHB, HC andHfluc are all sufficiently small that ‖HBτC‖ � 1, ‖HCτC‖ �
1 and ‖HflucτC‖ � 1, so that the interaction frame density operator does not

change significantly over the timescale of τC .

It is important to note that the set of assumptions above do not include the spin system

being close to equilibrium. So even if the spin system is far from equilibrium the evolution

of the ensemble-average density operator in the interaction frame may be approximated

by
d

dt
|ρ̃(t)) =

ˆ̃LSC(t) |ρ̃(t)) , (2.61)

where the semi-classical Liouvillian superoperator, in the interaction frame, is given by

ˆ̃LSC = −i ˆ̃
Hcoh + Û †A(t)Γ̂lab

SCÛA(t) (2.62)

and the relaxation superoperator in the laboratory frame is as follows [28, 29]:

Γ̂lab
SC = −

∫ 0

−∞

ˆ̃
Hfluc(0)

ˆ̃
Hfluc(τ)dτ. (2.63)

If small dynamic frequency shifts are neglected [26, 28–30, 59], this may be written as

follows:
Γ̂lab

SC = −1
2

∑
Λ,Λ′

∑
α,α′

JΛΛ′
αα′ (ω

A
α′)ÂαÂ

†
α′ . (2.64)

An alternative expression, making use of the transition operators between the eigenstates

of the Hamiltonian H0, is as follows:

Γ̂lab
SC = −1

2

∑
i,j,k,l

Jijkl(ωkl)X̂ijX̂
†
kl, (2.65)

where the spectral densities are given in equation 2.52, and the differences ωAkl between

eigenvalues of the dominant Hamiltonian HA are defined in equation 2.30.
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The interaction-frame Liouvillian given in equation 2.62 is difficult to use, because of the

time-dependent terms ÛA(t). This problem is avoided by making another approximation.

The laboratory frame relaxation superoperator is expanded in eigenoperators of ĤA

Γ̂lab
SC =

∑
α,α′

|Aα) (Aα′ | × (Aα| Γ̂lab
SC |Aα′) . (2.66)

This allows the second term in equation 2.62 to be written as follows:

Û †A(t)Γ̂lab
SCÛA(t) =

∑
α,α′

|Aα) (Aα′ | × (Aα| Γ̂lab
SC |Aα′) exp{i(aα − aα′)t}. (2.67)

The rapidly oscillating terms in this equation may be ignored under the assumption

that the relaxation rate constants are small compared to the eigenvalue separation of

the dominant Hamiltonian HA. This approximation is reasonable since the eigenvalues

of HA are assumed to be either degenerate or widely spaced. The omission of rapidly

oscillating components in equation 2.67 allows use of the following secularized relaxation

superoperator in the interaction frame

ˆ̃
Γ sec

SC '
∑
α,α′

|Aα) (Aα′ | × (Aα| Γ̂lab
SC |Aα′) δ(aα − aα′), (2.68)

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. The Liouvillian superoperator in the

interaction frame of HA is therefore given, to a very good approximation, by

ˆ̃LSC ' −i
ˆ̃
Hcoh +

ˆ̃
Γ sec

SC , (2.69)

where
ˆ̃
Γ sec

SC is time-independent. Spin dynamical calculations may therefore be conducted

in the interaction frame of the dominant Hamiltonian HA, using the interaction-frame

coherent Hamiltonian H̃coh and the secularized semi-classical relaxation superoperator
ˆ̃
Γ sec

SC of equation 2.68.

For homonuclear spin systems in liquid-state high field NMR experiments, HA may be

chosen to equal the dominant Zeeman interaction. In this case, selection rules on the

rotational correlation functions [60] render the secularization procedure in equation 2.68

unnecessary, since the matrix elements (Aα| Γ̂lab
SC |Aα′) vanish in any case for aα 6= aα′ .

However, this is not always true for heteronuclear spin systems. An example of the

relaxation superoperator secularization in heteronuclear systems may be found in refer-

ence 61.

For simplicity, the secularized relaxation superoperator in the interaction frame is now

denoted as Γ̂

Γ̂ =
ˆ̃
Γ sec

SC . (2.70)
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From the definition of
ˆ̃
Γ sec

SC , this superoperator is identical when expressed in the labo-

ratory frame

[ĤA, Γ̂] = 0 =⇒ Γ̂lab = ÛAΓ̂Û †A = Γ̂. (2.71)

2.2.2 Transition probabilities

The transition probability per unit time from an eigenstate |r〉 of H0 to a different eigen-

state |s〉 may be derived from the secularized relaxation superoperator as follows [32]:

Wr→s = −(Xss|Γ̂|Xrr) = Jsrsr(ωsr). (2.72)

The semi-classical approach leads to identical rate coefficients for forward and backward

transitions, as sketched in figure 2.3(a):

Wr→s = Ws→r. (2.73)

As is well-known, symmetrical transition probabilities are incompatible with the estab-

lishment of thermal equilibrium at a finite temperature [22, 28–38].

Figure 2.3: A section of the energy level structure of an arbitrary quantum system.
Relaxation phenomena induce transitions between the states |r〉 and |s〉. Transitions
that cause the system to gain energy are indicated in green, transitions that cause the
system to lose energy are indicated in red. (a) Semi-classical transition probabilities.
The “upwards” and “downwards” transition probabilities Wr→s and Ws→r are equal.
(b) After thermalisation, the “downwards” transition probability W θ

s→r (thick arrow)
is larger than the “upwards” transition probability W θ

r→s (thin arrow).
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2.2.3 Coherence decay rate constants

The decay rate constant for a coherence between the eigenstates |r〉 and |s〉 of the

coherent Hamiltonian H0 may be expressed as

λrs = −(Xrs|Γ̂|Xrs), (2.74)

which may be written as the sum of an ”adiabatic” and ”non-adiabatic” contribu-

tions [30, 32–36]

λrs = λad
rs + λna

rs (2.75)

with

λad
rs =

∫ 0

−∞
(〈r| H̃fluc(0) |r〉 − 〈s| H̃fluc(0) |s〉)(〈r| H̃fluc(τ) |r〉 − 〈s| H̃fluc(τ) |s〉) dτ

= 1
2

∑
Λ,Λ′

(
JΛΛ′
rrrr(0)− JΛΛ′

rrss(0)− JΛΛ′
ssrr(0) + JΛΛ′

ssss(0)
) (2.76)

and

λna
rs = 1

2

(∑
k 6=r

Wr→k +
∑
k 6=s

Ws→k

)
. (2.77)

The adiabatic contributions are due to random fluctuations of the energy levels. The

non-adiabatic contributions arise from the finite lifetimes of the spin states, due to

transitions to other states. As an illustrative example, the non-adiabatic contribution

for an arbitrary three-level system is illustrated in figure 2.4(a). The coherence between

states |2〉 and |3〉 is indicated by a wavy line. The non-adiabatic contribution to the

decay of this coherence is due to all transitions out of the states |2〉 and |3〉.

2.2.4 Semi-classical equation of motion

The master equation for the dynamics of the spin density operator within the semi-

classical approach is therefore given by

d

dt
|ρ) = L̂SC |ρ) , (2.78)

where the Liouvillian is

L̂SC ' −i
{
Ĥ0 + Ĥres

C (t)
}

+ Γ̂SC (2.79)

and the secularized semi-classical relaxation superoperator is given by equation 2.68.

Since the semi-classical relaxation superoperator predicts equal probabilities for transi-

tions gaining and losing energy (equation 2.73), the true thermal equilibrium state of

the spin density operator is not correctly predicted by equations 2.78 and 2.79. This
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Figure 2.4: Energy levels of a three-level quantum system. A coherence between the
states |2〉 and |3〉 is indicated by a blue wavy line. The non-adiabatic contribution
to the coherence decay process is given by the summed transition probability for all
transitions out of the states |2〉 and |3〉 as indicated by the arrows. (a) In the semi-
classical treatment, “upwards” and “downwards” transition probabilities are equal. (b)
At finite temperature the non-adiabatic contributions to the coherence decay rate must
be adjusted to reflect the different transition probabilities in the two directions.

problem is often addressed by arbitrarily introducing a thermal equilibrium term in the

relaxation part, leading to the widely used inhomogeneous master equation (IME) of

the form [22, 28–38]

d

dt
|ρ) = −i

(
Ĥ0 + Ĥres

C (t)
)
|ρ) + Γ̂SC

(
|ρ)− |ρeq)

)
. (2.80)

Strictly speaking the introduction of the thermal equilibrium term may be justified

within the high-temperature and weak-order approximation so that equation 2.80 nec-

essarily gives incorrect results for spin systems which are far from equilibrium.

2.3 Thermalisation

The semi-classical relaxation superoperator of equation 2.64 fails to predict the correct

thermal equilibrium state, since the transition probabilities are symmetric, as in eq.

2.73. Instead the state of complete disorder represents the stationary distribution of Γ̂SC

and lies in its null-space

Γ̂SC |1) = |0) . (2.81)
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The semi-classical relaxation superoperator Γ̂SC therefore drives the system to the un-

physical state of infinite temperature. In the following several of the existing techniques

to account for this problem will be examined with an emphasis on their weaknesses.

2.3.1 Thermal Corrections

The correct thermal equilibrium state may be forced into the null-space of Γ̂SC by

adjusting the semi-classical relaxation superoperator using a procedure known as “ther-

malisation”. Most techniques [44–47] achieve this by multiplying the SC-relaxation

superoperator by a thermal correction superoperator Θ̂

Γ̂θ = Γ̂SCΘ̂, (2.82)

with the resulting property

Γ̂θ|ρeq) = |0). (2.83)

Here, the state |0) represents the zero element of L. The thermalised equation of motion

for the density operator is then given by

d

dt
|ρ) = (−iĤcoh + Γ̂θ) |ρ) , (2.84)

where Ĥcoh is the commutation superoperator of the coherent Hamiltonian Hcoh.

Any thermalised relaxation superoperator should have the following properties:

• preserves the trace: This condition captures the fact that the sum of all pop-

ulations should be a constant of motion. Populations are free to be redistributed

among each other, but there is no ”loss” of populations

d

dt
(1|ρ(t)) = (1| d

dt
ρ(t)) = (1|Γ̂θ|ρ(t)) = 0. (2.85)

• preserves hermiticity: The density matrix must remain hermitian at all points

in time to be in agreement with the statistical interpretation of quantum mechanics

d

dt
ρrs(t) =

d

dt
ρ∗sr(t). (2.86)

• obeys detailed balance: At thermal equilibrium the detailed balance condi-

tion applies [26, 59]. The transition probabilities of Γ̂θ should therefore fulfill the

following condition:

ρsseq

ρrreq

=
Γ̂θssrr

Γ̂θrrss
=
W θ
r→s

W θ
s→r

= exp(βθωrs). (2.87)
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The detailed balance condition indicates that transitions from higher energy states

to lower energy states are slightly more likely than vice versa. It follows that |ρeq)

is a stationary distribution and lies in the null-space of Γ̂θ [62].

• predict consistent coherence decay rates: The thermalised coherence decay

rate constants are composed of adiabatic and non-adiabatic contributions

λθrs = λθ,ad
rs + λθ,na

rs . (2.88)

The adiabatic contributions to the coherence decay rate constants should be inde-

pendent of the thermal correction

λθ,ad
rs = λad

rs . (2.89)

The non-adiabatic contributions, on the other hand, depend on the transition

probabilities and should be adjusted according to the detailed balance condition,

as follows

λθ,na
rs = 1

2

(∑
k 6=r

W θ
r→k +

∑
k 6=s

W θ
s→k

)
. (2.90)

A variety of methods have been proposed for the thermalisation of the relaxation super-

operator. Their properties and limitations are summarized in table 2.1.

Table 2.1: The methods for treating nuclear spin relaxation discussed in this pa-
per, and their properties in the context of a finite-temperature molecular environment.
The following abbreviations are used: SC = semi-classical relaxation theory; IME =
inhomogeneous Master equation; Jeener = Jeener’s thermalised relaxation superoper-
ator [44]; LdB = Levitt-di Bari method for thermalising the relaxation superoperator
[45–47]; sLdB = simplified Levitt-di Bari method as implemented in SpinDynamica 3.2
software [63]; LB = Lindblad method.

SC IME Jeener LdB sLdB LB

correct thermal equilibrium × X X X X X
valid outside

high-temperature regime
× × X X × X

valid outside weak-order
regime

× × X X × X

transition probabilities fulfil
detailed balance

× × X X × X

coherence decay rates:
correct adiabatic

contributions

X X × X X X

coherence decay rates:
correct non-adiabatic

contributions

× × × × × X

equation number 2.68 2.1,2.80 2.92 2.103 2.109 2.125

references 28, 29 28–30 44 45, 46 45–47 this
work
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2.3.1.1 Jeener’s Method

Jeener’s seminal article on superoperators in magnetic resonance [44] contains a pro-

posed thermalisation method for relaxation superoperators. This is based on the energy

superoperator Ê defined as follows:

Θ̂J = exp(βθÊ), Ê =
1

2
(Ĥ0 •+ • Ĥ0). (2.91)

The thermally corrected relaxation superoperator is given by

Γ̂θJ = Γ̂SCΘ̂J = Γ̂SC exp(βθÊ). (2.92)

The method works by transforming the thermal equilibrium density operator |ρeq) into

|1). This may be seen as follows: The action of the energy superoperator on a population

operator of the coherent Hamiltonian is given by

Ê |Xkk) = ωk |Xkk) . (2.93)

The thermal equilibrium density operator may be expressed in terms of the population

operators

|ρeq) = Z−1
∑
k

exp(−βθωk) |Xkk) , Z =
∑
k

exp(−βθωk). (2.94)

According to equations 2.93 and 2.94, the result of applying the total energy superop-

erator to the thermal equilibrium density operator is given by

Ê |ρeq) = Z−1
∑
k

ωk exp(−βθωk) |Xkk) . (2.95)

It is then straightforward to show that Jeener’s thermal correction superoperator trans-

forms the thermal equilibrium state into the state of total disorder

Θ̂J|ρeq) = Z−1
∑
k

exp(−βθωk)
∑
n

(βθωk)
n

n!
|Xkk)

= Z−1
∑
k

exp(−βθωk) exp(βθωk) |Xkk)

= Z−1 |1) .

(2.96)

Since the state of total disorder lies within the null-space of the SC-relaxation superop-

erator, ρeq lies in the null-space of Γ̂θJ

Γ̂θJ|ρeq) = Z−1Γ̂ |1) = |0) . (2.97)
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The transition probabilities per unit time are modified in the following way:

W θ,J
r→s = (Xss|Γ̂θJ|Xrr) = (Xss|Γ̂ exp(βθÊ)|Xrr) = exp(βθωr)Wr→s (2.98)

and the ratio between forward and backwards transition probabilities is given by

W θ,J
r→s

W θ,J
s→r

= exp(βθωrs), (2.99)

showing that the thermalised transition probabilities obey the detailed balance condition

(equation 2.87).

However, Jeener’s method does not handle the coherence decay rate constants correctly.

The thermalised decay rate constants of a particular coherence are given by

λθ,Jrs = (Xrs|Γ̂θJ|Xrs) = exp(βθ(ωr + ωs))λrs,

λθ,Jsr = (Xsr|Γ̂θJ|Xsr) = exp(βθ(ωr + ωs))λsr.
(2.100)

The equality λθ,Jrs = λθ,Jsr follows from λrs = λsr and maintains the hermiticity of the

density operator. However, there is still a problem. The adiabatic and non-adiabatic

contributions to the coherence decay rate constants are given in Jeener’s method by

λθ,ad,J
rs = exp(

1

2
βθ(ωr + ωs))λ

ad
rs ,

λθ,na,J
rs = exp(

1

2
βθ(ωr + ωs))λ

na
rs ,

(2.101)

where the adiabatic and non-adiabatic rate constants are given by equations 2.76 and

2.77 respectively. The terms λθ,ad,J
rs and λθ,na,J

rs are both in conflict with the requirements

of equations 2.89 and 2.90. In particular, Jeener’s method adjusts the adiabatic con-

tributions to the coherence decay rates, which does not make physical sense, since the

adiabatic contributions are not related to state transitions and are energy-preserving.

The properties of the Jeener method are summarized in table 2.1. The Jeener method

fulfils most of the required conditions of a thermalisation method, but does not treat

the coherence decay rate constants correctly.

2.3.1.2 Levitt-di Bari and Levante-Ernst method

An alternative thermalisation technique was proposed by Levitt and di Bari [45, 46]

and further developed by Levante and Ernst [47]. This method is termed here the

LdB method and uses projection superoperators onto the population operators of the

coherent Hamiltonian, weighted by the eigenvalue of the associated eigenstate

ω̂ =
∑
k

ωk |Xkk) (Xkk| . (2.102)
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The superoperator ω̂ is therefore simply the projection of Ê onto the population subspace

of H0. Similarly to equation 2.92 the thermal correction superoperator is then given by

Θ̂LdB = exp(−βθω̂) (2.103)

and the action of ω̂ onto the thermal equilibrium density operator is identical to the

action of Ê (compare with equation 2.95)

ω̂|ρeq) = Z−1
∑
k

ωk exp(−βθωk) |Xkk) . (2.104)

As a result Θ̂LdB transforms the thermal equilibrium density operator into the state of

total disorder

Θ̂LdB|ρeq) = Z−1 |1) (2.105)

and ρeq lies in the null-space of Γ̂θLdB

Γ̂θLdB|ρeq) = |0) . (2.106)

The modification of the transition probabilities is identical to Jeener’s method

W θ,LdB
r→s = (Xss|Γ̂θLdB|Xrr) = (Xss|Γ̂SC exp(βθω̂)|Xrr) = exp(βθωr)Wr→s, (2.107)

so that the transition probabilities of Γ̂θLdB obey the detailed balance condition.

A defect of the LdB method is that the coherence decay rates are not adjusted at all,

since the coherence operators lie in the null-space of ω̂.

ω̂|Xrs) = |0) =⇒ exp(βθω̂) |Xrs) = |Xrs) ,

λθ,LdB
rs = (Xrs|Γ̂SC exp(βθω̂)|Xrs) = (Xrs|Γ̂SC|Xrs) = λrs.

(2.108)

Hence the Levitt-di Bari method obeys the condition of equation 2.89 for the adiabatic

decay rate contribution, but not that of 2.90 for the non-adiabatic contribution.

A simplified version of the LdB method (sLdB), which employs the high-temperature

and weak-order approximations, is currently implemented in version 3.3.2 of the SpinDy-

namica software package [63]. This method uses the following thermalisation correction:

Θ̂sLdB = 1̂− |ρeq)(1|. (2.109)

The thermally adjusted transition probabilities are given by

W θ,sLdB
r→s = Wr→s −

∑
j

Wj→s 〈j| ρeq |j〉 , (2.110)
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whereas the coherence decay rates remain unchanged

λθ,sLdB
rs = λrs. (2.111)

The sLdB method generates the correct thermal equilibrium density operator in the

high-temperature approximation but does not obey detailed balance in general, and

fails to handle coherence decay rate constants correctly.

The sLdB method is in fact the IME in superoperator form. This is easy to see by

applying Γ̂θsLdB to an arbitrary density operator |ρ)

Γ̂θsLdB |ρ) = Γ̂Θ̂sLdB |ρ)

= Γ̂
{
1̂− |ρeq)(1|)

}
|ρ)

= Γ̂ {|ρ)− Tr{ρ} |ρeq)}

= Γ̂ {|ρ)− |ρeq)} ,

(2.112)

where the last equality follows from the fact that Tr{ρ} = 1 for a valid density operator.

This shows that the sLdB method has the same defects as the IME, most notably

the requirement that the density operator |ρ) has to fulfill the weak-order and high-

temperature approximation.

2.4 Lindblad thermalisation

Here an alternative thermalisation method, called the Lindblad (LB) method, is sug-

gested [28, 64–66]. The method is fundamentally different to existing techniques as it

requires quantum mechanical corrections to the spectral densities to account for the fi-

nite sample temperature. As a consequence the LB method does not lead to a relaxation

superoperator which may be expressed as the product of the semi-classical relaxation

superoperator and a thermal correction superoperator, as in equation 2.82. Instead

one has to perform thermal corrections to the individual components of the relaxation

superoperator.

The Lindbladian formulation of relaxation processes has been extensively used in quan-

tum optics, quantum computing, laser physics and quantum information theory [56, 58].

In the field of quantum information theory the Lindblad formulation takes a central

role in the characterisation of dissipative processes. In particular, the characterisation

of Markovian and non-Markovian completely positive and trace preserving (CPTP) dy-

namics is of fundamental importance. Roughly speaking, a CPTP process indicates

evolution of a valid density operator into another valid density operator, and hence cap-

tures all physically reasonable evolutions [26]. Recently, it has been shown that any

evolution generated by a CPTP Markovian process may be obtained by application of

some time-dependent Lindblad generator [67, 68].
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The above implies that if a given relaxation process may not be described in terms of

a Lindblad formulation it can not be considered a valid Markovian quantum process.

One could therefore argue that the reformulation of the NMR master equation in terms

of Lindblad generators is not simply a mathematical exercise, but rather a necessary

criterion to ensure that the resulting dynamics do indeed describe a valid Markovian

process.

Nevertheless, it might be for such reasons that the NMR community has mainly consid-

ered the Lindblad formulation an over-elaborate tool and disregarded its fundamental

physical importance. As a consequence its application to magnetic resonance relaxation

phenomena is rarely found within the NMR literature [69, 70].

2.4.1 Quantum-Mechanical Spectral Densities

The starting point of the Lindblad method is to treat both the environment and the

spin system quantum mechanically [26, 28, 31, 59]. The fluctuating contributions are

replaced by a Hamiltonian of the following type

HΛ
fluc =

∑
α

Aα ⊗BΛ
α , (2.113)

where individual eigenoperators Aα of the system are being coupled (represented by ⊗)

to environmental (”bath”) operators BΛ
α .

The environment represents a thermal reservoir with sufficient heat capacity to always

remain close to thermal equilibrium due to its size and complexity, and is described by a

density operator ρbath
eq . It is not necessary to assume that the spin system remains close

to equilibrium. The combined density operator of the spin system and the environment

is assumed to be of the form:

ρtot(t) = ρ(t)⊗ ρbath
eq . (2.114)

The “quantum-mechanical” relaxation superoperator may be derived by substituting the

expression for Hfluc from equation 2.113 into equation 2.63, and taking the trace over

the environmental degrees of freedom [26, 30, 59]. Following Hubbard [31], the quantum

mechanical relaxation superoperator is obtained:

Γ̂lab
QM = −

∑
Λ,Λ′

∑
α,α′

∫ 0

−∞
(Aα •A†α′ − •A

†
α′Aα)〈BΛ′†

α′ (τ)BΛ
α (0)〉 exp(iωAα′τ)

= −
∑
Λ,Λ′

∑
α,α′

∫ 0

−∞
(A†α′ •Aα −AαA

†
α′•)〈B

Λ
α (0)BΛ′†

α′ (τ)〉 exp(iωAα′τ).

(2.115)
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Here 〈BΛ′†
α′ (τ)BΛ

α (0)〉 are quantum-mechanical correlation functions, defined as follows:

〈BΛ′†
α′ (τ)BΛ

α (0)〉 = Trbath

{
Ubath(τ)BΛ′†

α′ U
†
bath(τ)BΛ

αρ
bath
eq

}
= 〈BΛ′†

α′ (0)BΛ
α (−τ)〉.

(2.116)

Since the system-bath interaction is hermitian it is permissible to replace the second

part of equation 2.115 by its hermitian conjugate

Γ̂lab
QM = −

∑
Λ,Λ′

∑
α,α′

∫ 0

−∞
(Aα •A†α′ − •A

†
α′Aα)〈BΛ′†

α′ (τ)BΛ
α (0)〉 exp(iωAα′τ)

= −
∑
Λ,Λ′

∑
α,α′

∫ 0

−∞
(Aα′ •A†α −A†αAα′•)〈BΛ†

α (0)BΛ′
α′ (τ)〉 exp(−iωAα′τ).

(2.117)

The sum is invariant under the exchange of the labels (α↔ α′) and (Λ↔ Λ′) which we

perform on the second part

Γ̂lab
QM = −

∑
Λ,Λ′

∑
α,α′

∫ 0

−∞
(Aα •A†α′ − •A

†
α′Aα)〈BΛ′†

α′ (τ)BΛ
α (0)〉 exp(iωAα′τ)

= −
∑
Λ,Λ′

∑
α,α′

∫ 0

−∞
(Aα •A†α′ −A

†
α′Aα•)〈B

Λ′†
α′ (−τ)BΛ

α (0)〉 exp(−iωAα τ).

(2.118)

A simple transformation of variables (τ 7→ −τ) in the second sum leads to the following

expression:

Γ̂lab
QM = −

∑
Λ,Λ′

∑
α,α′

∫ 0

−∞
(Aα •A†α′ − •A

†
α′Aα)〈BΛ′†

α′ (τ)BΛ
α (0)〉 exp(iωAα′τ)

−
∑
Λ,Λ′

∑
α,α′

∫ ∞
0

(Aα •A†α′ −A
†
α′Aα•)〈B

Λ′†
α′ (τ)BΛ

α (0)〉 exp(iωAα τ).

(2.119)

By considering only the secular contributions ωα = ωα′ and neglecting dynamical fre-

quency shifts, the two sums may be combined to form a complete Fourier transform (see

Appendix A.1)

Γ̂sec
QM =

∑
Λ,Λ′

∑
α,α′

D̂[Aα, A
†
α′ ]K

ΛΛ′
αα′ (ω

A
α′)δ(ω

A
α − ωAα′), (2.120)

where the quantum-mechanical spectral densities are given by

KΛΛ′
αα′ (ω) =

∫ ∞
−∞
〈BΛ′†

α′ (τ)BΛ
α (0)〉 exp(iωτ)dτ (2.121)

and D̂ defines the so-called Lindbladian dissipator [26, 59]

D̂[A,B] = A •B − 1

2
(BA •+ •BA) . (2.122)
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In contrast to the classical correlation functions, the quantum mechanical correlation

functions are not symmetric with respect to frequency, i.e. K(ω) 6= K(−ω). In thermal

equilibrium they obey the Kubo-Martin-Schwinger(KMS)-condition [26, 59]

KΛΛ′
αα′ (ω) = KΛΛ′

α′α (−ω) exp(βθω). (2.123)

Detailed knowledge of the quantum mechanical spectral densities is rarely available.

Nevertheless they may be approximated by classical spectral densities by invoking an

appropriate quantum mechanical correction [71]. One possibility is given by the Schofield

method [72]

KΛΛ′
αα′ (ω) 7→ JΛΛ′

αα′ (ω) exp(−1
2βθω). (2.124)

Corrections of this form have been previously used in the description of vibrational

relaxation effects [73].

This leads to the following expression for the secularized relaxation superoperator

Γ̂θLB =
∑
Λ,Λ′

∑
α,α′

D̂[Aα, A
†
α′ ]J

ΛΛ′
αα′ (ω

A
α ) exp(−1

2βθω
A
α )δ(ωα − ωα′), (2.125)

where JΛΛ′
αα′ (ω) are the classical spectral densities defined in equation 2.52.

Equation 2.125 is the central result of this section. It has a clear relationship with

the semiclassical form of equation 2.64. The double commutation superoperator is re-

placed by a Lindbladian dissipator (multiplied by -1/2), and thermal correction factors

exp(1
2βθω

A
α ) are introduced.

The Lindblad dissipators have a clear relationship with the physical picture of figure

2.3. They may be understood as inducing forward and backward transition processes as

illustrated below:

(Xss|D̂[Xij , X
†
ij ]|Xrr) = δisδjr, (Xss|D̂[X†ij , Xij ]|Xrr) = δjsδir. (2.126)

Terms D̂[Xij , X
†
ij ] and D̂[X†ij , Xij ] are associated with relaxation processes across the

same pair of H0 eigenstates but in opposite directions. The transition probabilities per

unit time are given by

W θ,LB
r→s = (Xss|Γ̂θLB|Xrr) = exp(−1

2βθωsr)Wr→s. (2.127)

Hence the transition probabilities for the forward and backwards processes are related

as follows

W θ,LB
r→s = W θ,LB

s→r exp(−βθωsr), (2.128)

in agreement with the detailed balance condition and the physical picture in figure 2.3.



64 Chapter 2 Far from thermal equilibrium

The Lindbladian formalism also handles the coherence decay rate constants correctly.

The adiabatic contributions to the coherence decay rates are unaffected by thermalisa-

tion, as should be the case:

λθ,ad
rs = λad

rs (2.129)

The non-adiabatic contributions to the coherence decay rate constants are sums of ther-

malised transition probabilities. This is also physically reasonable (see figure 2.4)

λθ,na
rs =

1

2

(∑
k 6=r

exp(−1
2βθωkr)Wr→k +

∑
k 6=s

exp(−1
2βθωks)Ws→k

)

=
1

2

(∑
k 6=r

W θ,LB
r→k +

∑
k 6=s

W θ,LB
s→k

)
.

(2.130)

To summarise, the thermalised Lindblad representation of equation 2.125 preserves the

trace and hermiticity of the density operator, obeys the detailed balance condition, and

handles coherence decay processes correctly.

2.5 Defect of Double Commutators

It is important to note that the double-commutator form of the relaxation superoperator

which results from semi-classical relaxation theory (equation 2.64) does not provide

a clear separation of the forward and backwards transition probabilities and hence is

incompatible with detailed balance at finite temperature, even after the inclusion of

thermal corrections. It is only at infinite temperature that the Lindblad formalism and

double commutator formalism coincide.

This may be demonstrated by making use of the eigenoperator formulation of the relax-

ation superoperator as presented in equation 2.65. An attempt at thermally adjusting

the secularized double-commutation form of the relaxation superoperator is as follows:

Γ̂θ = −1

2

∑
ij

exp(−1
2βθωij)Jijij(ωij)X̂ijX̂

†
ij . (2.131)

The transition probability per unit time Wk→l from the eigenstate |k〉 to the eigenstate

|l〉 of the Hamiltonian HA may be identified with the following matrix element

Wk→l = (Xll|Γ̂θ|Xkk) = −1

2

∑
ij

exp(−1
2βθωij)Jijij(ωij)(δliδki − δliδkj − δljδki + δljδkj).

(2.132)

The collection of Kronecker deltas above indicate that a double-commutator mixes for-

ward and backward processes. Similarly one may calculate the transition probability for
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the reverse process

Wl→k = (Xkk|Γ̂θ|Xll) = −1

2

∑
ij

exp(−1
2βθωij)Jijij(ωij)(δkiδli − δkiδlj − δkjδli + δkjδlj).

(2.133)

Clearly these two transition probabilities are equal

Wk→l = Wl→k, (2.134)

so that forward and backward transitions are equally likely. This violates the detailed

balance condition. It follows that thermal correction of the spectral density functions

within the double commutator formalism cannot lead to a valid thermalised relaxation

superoperator, at finite temperature.

It is only at infinite temperature that the Lindblad formalism and the double commutator

formalism coincide. This is simply because the spectral densities become temperature-

independent. The relaxation superoperator in the double-commutator formalism at

infinite temperature may be written as shown below:

Γ̂θ = −1
2

∑
ij

Jijij(ωij){1
2(X̂ijX̂

†
ij + X̂jiX̂

†
ij)}, (2.135)

since exp(−1
2βθωij) = 1 for T →∞. To proceed the following identity is employed

1
2(X̂ijX̂

†
ij + X̂jiX̂

†
ij) = −(D̂[Xij , X

†
ij ] + D̂[Xji, X

†
ji]). (2.136)

The relaxation superoperator in the double-commutator formalism is then readily ex-

pressed in Lindblad form

Γ̂θ = 1
2

∑
ij

Jijij(ωij)(D̂[Xij , X
†
ij ] + D̂[Xji, X

†
ji])

= 1
2

∑
ij

Jijij(ωij)D̂[Xij , X
†
ij ] + Jijij(ωij)D̂[Xji, X

†
ji]

= 1
2

∑
ij

Jijij(ωij)D̂[Xij , X
†
ij ] + Jjiji(ωji)D̂[Xji, X

†
ji]

=
∑
ij

Jijij(ωij)D̂[Xij , X
†
ij ]

(2.137)

by noticing that Jijij(ωij) = Jjiji(ωji) at infinite temperature.



66 Chapter 2 Far from thermal equilibrium

2.6 Case Studies

In this section the Lindblad approach is applied to three simple cases. The first two

cases concern “ordinary” high-field NMR in the high-temperature and weak-order ap-

proximation, where the LB formulation reproduces well-known results which may also

be derived using the inhomogeneous master equation. In the last example we consider

a spin system far from equilibrium, where the conventional IME equation breaks down.

2.6.1 Homonuclear spin-1/2 pairs

Consider an ensemble of rigid molecules undergoing rotational diffusion, with each

molecule containing a homonuclear spin-1/2 pair. The electronic environments of the

two spins are distinct (chemical inequivalence). The nuclear spin relaxation is assumed

to be dominated by dipole-dipole relaxation where the rotational correlation time is

denoted by τC .

In the presence of resonant radiofrequency irradiation, the coherent Hamiltonian is given

in the laboratory frame, by

Hcoh = HA +HB +HC . (2.138)

The dominant part of the Hamiltonian (see section 2.1.2.1) in the laboratory frame is

given by

HA = ω0(1 + δref)(I1z + I2z), (2.139)

while the terms HB and HC are given in the interaction frame of HA (rotating frame)

by

HB = Ω1I1z + Ω2I2z + 2πJ12I1 · I2, HC = ωnut(Ix cos(φI) + Iy sin(φI)). (2.140)

Here the chemical shift offsets are given by Ωi = ω0(δiiso − δref), where {δ1, δ2} are the

chemical shifts of the two sites and δref is the chemical shift position of the carrier

frequency of the radio-frequency irradiation.

These choices of HA, HB and HC fulfil the constraints in section 2.1.2.1: The eigen-

values of HA are either degenerate or spaced by multiples of the spectrometer reference

frequency
∣∣ω0(1 + δref)

∣∣, which is much larger than the matrix elements of HB and HC .

Following equation 2.36, the eigenoperators of the commutation superoperator ĤA are

proportional to the irreducible spherical tensor operators, as in equation 2.37. The

corresponding eigenvalues of ĤA are given by

ωAα = µαω
0. (2.141)
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The fluctuating part of the spin Hamiltonian, which is responsible for the dipole-dipole

relaxation, takes the form [32]

Hfluc(t) =

+2∑
m=−2

F 2,∗
m (Ω

(12)
PL (t))T

(12)
2m , (2.142)

where T
(12)
2m indicates a component of the second-rank irreducible spherical tensor oper-

ator for the coupling of spins I1 and I2 as defined in Appendix A.1. The spatial compo-

nents F2m depend on the Euler angles Ω
(12)
PL (t) that relate the principal axis system of the

dipole-dipole coupling to the laboratory frame. This transformation is time-dependent

due to rotational diffusion of the molecule. Assuming a single exponential decay for the

corresponding correlation functions as indicated by equation 2.47 the spectral densities

are given by Lorentzians.

Following the recipe of equation 2.125, and assuming isotropic rotational diffusion, the

secular and thermalised relaxation superoperator may be expressed as follows

Γ̂θLB = 6
5b

2
12

+2∑
m=−2

D̂[T
(12)
2m , T

(12)†
2m ]Jθ(mω0), (2.143)

where the thermally corrected spectral density functions are given by

Jθ(ω) = exp(−1
2βθω)J(ω) (2.144)

and

J(ω) =
2τC

1 + ω2τ2
C

. (2.145)

The thermalised relaxation superoperator may be represented as a 16× 16 matrix in a

basis of orthogonal operators. One possible basis involves all ket-bra products for the

singlet and triplet states of the 2-spin-1/2 system, defined as follows:

|S0〉 = 2−1/2(|αβ〉 − |βα〉), |T+1〉 = |αα〉 ,

|T0〉 = 2−1/2(|αβ〉+ |βα〉), |T−1〉 = |ββ〉 .
(2.146)
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The 4× 4 block involving the population operators for these states is as follows:[
Γ̂θLB

]
4×4

= 6
5b

2
12×



|S0〉 〈S0| |T+〉 〈T+| |T0〉 〈T0| |T−〉 〈T−|

0 0 0 0

0 −1
8J

θ(−ω0)− 1
4J

θ(−2ω0) 1
8J

θ(ω0) 1
4J

θ(2ω0)

0 1
8J

θ(−ω0) −1
8(Jθ(−ω0) + Jθ(ω0)) 1

8J
θ(ω0)

0 1
4J

θ(−2ω0) 1
8J

θ(−ω0) −1
8J

θ(ω0)− 1
4J

θ(2ω0)


(2.147)

The row and column of zeros indicate that the singlet population is disconnected from

the triplet populations under dipole-dipole relaxation processes. The population of the

singlet state is therefore a long-lived state [74–80], in the case that coherent Hamiltonian

terms mixing the singlet and triplet states are suppressed. In the current example,

the relevant singlet-triplet mixing term is proportional to the chemical shift frequency

difference |Ω1 − Ω2|. The long-lived nature of the singlet population is revealed by

suppressing this mixing term, either by transporting the sample to a region of low

magnetic field [74], or by applying a resonant radiofrequency field [78].

The thermalised relaxation superoperator Γ̂θLB may also be used to treat well-known

relaxation phenomena such as the transient and steady-state nuclear Overhauser (NOE)

effects [22, 37]. The simulations shown in Figure 2.5 were performed by integrating

the homogeneous equation of motion in the interaction frame (equation 2.84) using

SpinDynamica software [63].

Figure 2.5(a) shows a transient NOE effect in which inversion of the magnetization of

one set of spins induces a transient increase in the magnetization of the second set of

spins through dipole-dipole cross-relaxation. Figure 2.5(b) shows a steady-state NOE

effect. Saturation of the longitudinal magnetization of one set of spins by a continuous

resonant rf field establishes a steady state in which the magnetization of the second set

of spins is enhanced with respect to thermal equilibrium.

These phenomena are well understood and the simulated trajectories using the Lindblad

method agree with the literature [45, 46]. For the steady-state NOE it is straightforward

to show that within the fast motion limit (ω0τC � 1) and high-temperature approxima-

tion the maximal achievable polarisation enhancement on the passive spin is given by

εSS
NOE = 3

2 which is in agreement with figure 2.5(b) [22, 37].
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Figure 2.5: Simulations of nuclear Overhauser effects (NOE) in a system of homonu-
clear proton pairs at a temperature of 300 K and a magnetic field of 11.75 T using the
Lindbladian form of the relaxation superoperator (equation 2.143). The vertical scales
correspond to the ratio of the longitudinal spin magnetization Mz to its thermal equi-
librium value Meq. (a) Simulation of the transient NOE. Starting from thermal equilib-
rium, a selective π-rotation is applied to one set of spins at time point t = 5 s, and the
expectation values of the z-magnetization components tracked in the subsequent inter-
val. No resonant rf field is applied (ωnut = 0). (b) Simulation of the steady-state NOE.
Starting at t = 5 s, a continuous rf irradiation with nutation frequency ωnut = 2π× 2.5
Hz is applied to a thermal equilibrium state. The simulation parameters are as follows:
Ω1 = 0, Ω2 = 2π × 200 Hz, J12 = 15 Hz, b12 = −2π × 30 kHz, and τC = 10 ps. The
resulting T1 time constant is 5.64 s.

2.6.2 Heteronuclear spin-1/2 pairs

In the case of heteronuclear spin pairs (one I-spin coupled to one S-spin, with magneto-

gyric ratios γI and γS), the dominant part of the coherent Hamiltonian, in the laboratory

frame, is given by

HA = ω0
I (1 + δIref)Iz + ω0

S(1 + δSref)Sz, (2.148)

where ω0
I = −γIB0 and ω0

S = −γSB0 are the Larmor frequencies of the two species, and

{δIref , δ
S
ref} are the chemical shifts of the two spectrometer reference frequencies.

The HB and HC components of the coherent spin Hamiltonian have the following form

in the interaction frame of HA

HB = ΩIIz + ΩSSz + 2πJISIzSz

HC = ωInut(Ix cosφI + Iy sinφI) + ωSnut(Sx cosφS + Sy sinφS).
(2.149)

The chemical shift offset frequencies for the two isotopes are given by ΩI = ω0
I (δI −

δIref) and ΩS = ω0
S(δS − δSref), where δI and δS are the chemical shifts of the two spin

species. Resonant radiofrequency fields applied to the two spin species have amplitudes

corresponding to the nutation frequencies {ωInut, ω
S
nut}, and phases {φI , φS}.
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According to Equation 2.40, the eigenoperators of HA are given in the heteronuclear case

by products of spherical tensor operators. These may be labelled by their individual total

and z-angular momentum (T
(ij)
k1k2m1m2

). The relevant eigenoperators for heteronuclear

dipolar relaxation are given by column (k1, k2) = (1, 1) of table A.2. The thermalised

relaxation superoperator for the heteronuclear case may be expressed as follows:

Γ̂θLB = 6
5 b

2
12

+2∑
m
′
1,m
′
2=−2

+2∑
m1,m2=−2

D̂[T
(12)
11m1m2

, T
(12)†
11m1m2

]Jθ(ωAm1m2
)δ(ωAm1m2

− ωA
m
′
1m
′
2

).

(2.150)

The relaxation dynamics of the Zeeman spin state populations are governed by the

following matrix:[
Γ̂θLB

]
4×4

= 6
5b

2
12×



|αα〉 〈αα| |βα〉 〈βα| |αβ〉 〈αβ| |ββ〉 〈ββ|

− 1
16J

θ(−ω0
I )

− 1
16J

θ(−ω0
S)

−1
4J

θ(−(ω0
I + ω0

S))

1
16J

θ(ω0
I )

1
16J

θ(ω0
S) 1

4J
θ(ω0

I + ω0
S)

1
16J

θ(−ω0
I )

− 1
16J

θ(ω0
I )

− 1
16J

θ(−ω0
S)

− 1
24J

θ(ω0
I − ω0

S)

1
24J

θ(−ω0
I + ω0

S) 1
16J

θ(ω0
S)

1
16J

θ(−ω0
S) 1

24J
θ(ω0

I − ω0
S)

− 1
16J

θ(−ω0
I )

− 1
16J

θ(ω0
S)

− 1
24J

θ(−ω0
I + ω0

S)

1
16J

θ(ω0
I )

1
4J

θ(−(ω0
I + ω0

S)) 1
16J

θ(−ω0
S) 1

16J
θ(−ω0

I )

− 1
16J

θ(ω0
I )

− 1
16J

θ(ω0
S)

−1
4J

θ(ω0
I + ω0

S)


(2.151)

Simulations of the z-magnetisation dynamics during heteronuclear transient-NOE and

steady-state-NOE experiments [22, 37] involving pairs of 13C and 1H spins are shown

in figure 2.6. The trajectories were generated by SpinDynamica software [63] using

equation 2.150. The maximum achievable enhancement of the 13C magnetization for

a coupled 13C-1H pair in the steady-state NOE experiment is given by ε ' 3. The

numerical simulations of figure 2.6(b) confirm that this well-known result [22, 37] may

be reproduced by using the Lindbladian relaxation superoperator.

2.6.3 Singlet-Triplet conversion

As a concluding example the build-up of longitudinal magnetization in a system of mag-

netically equivalent (or near-equivalent) spin-1/2 pairs fully populated in their singlet
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Figure 2.6: Simulations of heteronuclear Overhauser effects (NOE) in a system of
1H-13C pairs at a temperature of 300 K and a magnetic field of 11.75 T using the
Lindbladian form of the relaxation superoperator (equation 2.143). The black curves
show the ratio of the 1H (I-spin) magnetization M I

z to its thermal equilibrium value
M I

eq. The red curves show the ratio of the 13C (S-spin) magnetization MS
z to its thermal

equilibrium value MS
eq. (a) Simulation of the transient NOE. Starting from thermal

equilibrium, a selective π-rotation is applied to the 1H spins at time point t = 5 s and
the expectation values of the z-angular momentum components of both spin species
tracked in the subsequent interval. No resonant rf field is applied (ωInut = ωSnut = 0).
(b) Simulation of the steady-state NOE. Starting from a thermal equilibrium state,
continuous rf irradiation with nutation frequency ωInut = 2π × 100 Hz is applied to
the 1H spins, starting at time point t = 5 s. No rf field is applied to the 13C spins
(ωSnut = 0). The dipolar relaxation was treated using equation 2.150. The simulation
parameters are as follows: ΩI = ΩS = 0, τC = 10 ps, b12 = −2π × 30 kHz. For this
choice of parameters the 1H and 13C T1 time constants are T I1 = TS1 = 5.62 s.

state is considered. Under normal conditions this represents a system that has been pre-

pared “in an unusual way” (the experimental verification will be given in the following

section).

The dominant and perturbative parts of the coherent Hamiltonian in the absence of

resonance rf fields are given by:

HA = ω0(I1z + I2z), HB = 2πJ12I1 · I2, (2.152)

so that spherical tensor operators may be used as the eigenoperators of ĤA.

The relaxation of the system may be modelled as a superposition of the dipole-dipole

(DD) and fluctuating random field (ran) mechanisms [39]. The fluctuating random

field mechanism may include spin-rotation interactions as well as external random fields

deriving from, for example, paramagnetic species in solution. The DD mechanism does

not induce spin-isomer conversion, which is entirely driven by uncorrelated random fields.

The relaxation superoperator in the Lindblad formalism is therefore written as

Γ̂θLB = Γ̂θ,DD
LB + Γ̂θ,ran

LB . (2.153)
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The DD Lindbladian relaxation superoperator Γ̂θ,DD
LB is given by equation 2.143. A suit-

able relaxation superoperator for the fluctuating random fields is given by the following

expression

Γ̂θ,ran
LB =

2∑
i,j=1

κijω
(i)
rmsω

(j)
rms

+1∑
m=−1

D̂[T
(i)
1m, T

(j)†
1m ]Jθran(mω0), (2.154)

where

Jθran(ω) = Jran(ω) exp(−1
2βθω) (2.155)

and

Jran(ω) =
2τran

1 + ω2τ2
ran

. (2.156)

Here Jran(ω) represents the spectral density for the external random field fluctuations,

ω
(j)
rms is the root-mean-square amplitude of the local field fluctuations, assumed to be

isotropic and the same for the two sites (ωrms = ω
(1)
rms = ω

(2)
rms). The coefficient −1 ≤

κ12 ≤ 1 describes the correlation between random field fluctuations at spin sites (i) and

(j). By definition, κ11 = κ22 = 1. Perfectly correlated random fields are described by

κ12 = 1 while uncorrelated random fields have κ12 = 0.

In the extreme narrowing limit, the spectral density functions are frequency-independent

(J(ω) ' 2τC). The relaxation rate constant R1 is given by

R1 = RDD
1 +Rran

1 , (2.157)

where the individual contributions to R1 are given by the following matrix elements

RDD
1 = −

(Iz| Γ̂θ,DD
LB |Iz)

(Iz|Iz)
=

3

10
b212τC

(
cosh (1

2βθω
0) + 4 cosh (βθω

0)
)
,

Rran
1 = −

(Iz| Γ̂θ,ran
LB |Iz)

(Iz|Iz)
= 2ω2

rmsτran cosh (1
2βθω

0).

(2.158)

In the Lindblad formalism, the temperature-dependence of the spin-lattice relaxation

rate constants derives not only from the temperature-dependence of the correlation

time τC and τran, but also from the explicit temperature dependence of the hyperbolic

functions in equation 2.158.

The relaxation rate constant for singlet order (the mean population difference between

the singlet and triplet states) is given by the following matrix element

RS = Rran
S = −

(I1 · I2| Γ̂θ,ran
LB |I1 · I2)

(I1 · I2|I1 · I2)
=

4

3
ω2

rmsτran(1− κ12)
(
1 + 2 cosh (1

2βθω
0)
)
.

(2.159)
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In the high-temperature limit, which is applicable to NMR at ordinary temperatures,

these expressions are given by:

RDD
1 ' 3

2
b212τC , Rran

1 ' 2ω2
rmsτran, Rran

S ' 4ω2
rmsτran(1− κ12). (2.160)

The relaxation rate constant for singlet orderRS vanishes for perfectly correlated random

fields (κ12 = 1).

As shown in Appendix A.3, the trajectory of the z-magnetisation is well approximated

within the fast-motion and high-temperature limit by the following expression

〈Iz(t)〉/〈Iz〉eq ' 1−A1 exp(−R1t)−AS exp(−RSt), (2.161)

where the coefficients are

A1 =
RS

2(R1 −RS)
, AS =

−2R1 +RS
2(R1 −RS)

. (2.162)

The first exponential in equation 2.161 represents the fast equilibration of the outer

triplet states due to T1 processes. The second exponential represents the singlet-triplet

conversion process. The coefficients approach A1 → 0 and AS → −1 in the limit

R1 � RS , in which case the recovery of z-magnetization is dominated by the small rate

constant RS for the singlet-triplet conversion.

A numerical comparison between the IME and the Lindblad approach is shown figure 2.7.

As figure 2.7 shows there is great disagreement between the IME and the Lindblad

approach. This may be rationalised as follows. Because the singlet and triplet states

are approximately eigenstates of the dominant Hamiltonian, the conversion between the

I = 0 and I = 1 manifold is rather inefficient. The corresponding time scale of the

process is described by a time constant TS = R−1
S (see figure 2.7a top). However, the

triplet manifold rapidly magnetizes in the magnetic field due to spin-lattice relaxation,

leading to the establishment of a Boltzmann distribution between its Zeeman-split energy

levels (see figure 2.7a middle). The spin-lattice relaxation time constant T1 is therefore

much smaller than the time constant TS for singlet-to-triplet conversion. It is therefore

reasonable to assume that the rate of magnetization build-up is limited by the slowest

process, which is the singlet-to-triplet conversion. Hence, the magnetization should build

up along the field with the slow time constant of the order of TS rather than T1 (see

figure 2.7a bottom).

The IME however predicts a recovery of the z-magnetisation with a time constant T1.

It follows that the IME completely fails to capture the physical picture. This is a direct

consequence of the initial density operator being far from equilibrium. The IME is

simply not suited to treat these cases.
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Figure 2.7: A particular example which illustrates the failure of the IME for spin sys-
tems far from equilibrium. The horizontal lines represent the Hamiltonian eigenvalues
(energy levels) and the balls represent state populations. (a) An ensemble of spin-1/2
pairs is prepared so that only the non-magnetic (I = 0) singlet state is populated. Con-
version from the singlet state to the magnetic triplet states (I = 1) occurs with a time
constant TS . The triplet manifold reaches thermal equilibrium in a magnetic field with
time constant T1, such that T1 � TS . (b) Trajectories of the spin magnetization along
the field Mz, normalized to the thermal equilibrium value. The IME predicts recovery
of Mz with time constant T1 (dashed line), which is physically unreasonable. The Lind-
blad trajectory (solid line) has been simulated using equations 2.143 and 2.154. The
simulations were performed using the parameters: ωrms = 2π × 10 kHz, τran = 60.31
ps, κ12 = 0.955, τC = 107 fs and b12 = −2π × 34.88 kHz, resulting in relaxation time
constants: T1 = 2 s and TS = 22.5 s.

The Lindblad method on the other correctly captures the physical picture and describes

the recovery of the longitudinal magnetization with the long time constant TS � T1, as

indicated by the (approximate) analytic solution of equation 2.161.
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2.7 Fullerene-encapsulated water (H2O@C60)

The following discussion is based on references 39 and 81.

Modern NMR techniques routinely generate far from equilibrium systems. Many of these

systems may not be adequately described within a semi-classical approach. Instead more

sophisticated thermalisation techniques such as the Lindblad method become relevant. A

particular example where this is true, is given by fullerene-encapsulated water molecules

(H2O@C60) as shown in figure 2.8a.

Figure 2.8: a) Schematic representation of a fullerene-encapsulated water molecule
(not to scale). b) The two protons of the H2O@C60 molecules may occupy either
a nuclear singlet or one of its triplet states. The fractional population of these two
spin-states depends significantly on the temperature of the environment.

The C60 framework acts as an isolating cage for the water molecule reducing the effect

of external influences, most notably proton exchange. Inside the fullerene cage the

water molecule undergoes unhindered rotation and behaves like a molecular quantum

rotor. The rotational motion of the water molecule is therefore quantised and may be

characterised by the corresponding quantum numbers. In a rigid rotor approximation

the energy levels (see figure 2.9) are given by [82, 83]

EJ =
J(J + 1)~2

2IM
, (2.163)

where each energy level is (2J + 1)−times degenerate and IM denotes the moment of in-

ertia of the water molecule. In some way the encapsulated water molecule thus behaves

similarly to water in the gas phase.

The H2O@C60 molecules exhibit interesting magnetic properties due to Pauli princi-

ple [84]. The overall wave function of a molecule may be denoted by ψ(~r,~s) with ~r

describing all spatial degrees of freedom and ~s describing all spin degrees of freedom.
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Figure 2.9: Rotational energy levels of a quantum rigid rotor (left) and the particle
exchange symmetry of the associated eigenstate (right).

For the H2O@C60 molecules the vector ~r describes rotational degrees of freedom. The

Pauli principle states that the total wave function (for fermions) has to remain anti-

symmetric under exchange of any two particles

(Pijψ)(~r,~s) = −ψ(Pij~r, Pij~s), (2.164)

where Pij represents the exchange operator for the particles i and j. A common simpli-

fication assumes that the total wave function may be decomposed into a direct product

of spatial and spin degrees of freedom [82]

ψ(~r,~s) = φ(~r)χ(~s). (2.165)

It follows that the Pauli principle may only be fulfilled if either the spatial part or the

spin part is anti-symmetric under particle exchange, but never both. The ladder in figure

2.9 indicates that rotational wave functions described by an even rotational quantum

number J = 2n are symmetric, whereas rotational wave functions characterised by odd

rotational quantum number J = 2n + 1 are anti-symmetric under particle exchange.

This suggests the following pattern for the combination of rotational and spin wave

functions:

φ(~r) χ(~s)

ψ(~r,~s) even odd

ψ(~r,~s) odd even

Table 2.2: Possible permutation symmetries of spatial and spin wave functions under
the exchange of any two particles in order to fulfill the Pauli Principle.



Chapter 2 Far from thermal equilibrium 77

Symmetric rotational states may therefore only combine with anti-symmetric spin states

and anti-symmetric rotational states may only combine with symmetric spin states.

This leads to the concept of spin isomerism describing the idea that encapsulated

H2O molecules may exclusively exist in a para-state (I=0) or ortho-state (I=1). To

a good approximation the populations of the ortho- and para-states are governed by a

rotational Boltzmann-distribution. Experimental observations indicate that the equilib-

rium fraction of ortho and para H2O@C60 follow the Boltzmann-distribution indicated in

figure 2.8b [85, 86]. At low temperatures only the non-magnetic para state is accessible

as it couples to the rotational ground state with J = 0. Sample cooling below T < 10 K

therefore provides an experimental way to prepare the system in a pure para-state.

The following discussion will be based on H2
16O@C60 and H2

17O@C60 molecules. Both

isotopologues behave as quantum rotors at low temperatures. The H2
16O@C60 molecules

represent an easy model system to study, whereas H2
17O@C60 molecules are slightly

more interesting from an NMR point of view. The H2
17O@C60 molecules display sur-

prisingly rich spectral properties even if the system is initially prepared in a thermal

equilibrium state. The spectral discussion will be followed up by a description of the

spin isomer conversion phenomenon at room temperature for both the H2
16O@C60 and

the H2
17O@C60 molecules.

2.7.1 Proton line shape factors

The H2O@C60 molecules have been synthesised by molecular surgery techniques, a de-

tailed description of the synthesis can be found in references 87–89. The starting material

may either consist of H2
16O or H2

17O molecules leading to H2
16O@C60 or H2

17O@C60,

respectively.

Spectral properties of the H2
17O@C60 molecules have been analysed by dissolving 26.77

mg of the material in 1 mL of ortho-dichlorobenzene-d4 (ODCB-d4). Before acquisition

the sample has been thoroughly degassed by several standard freeze-pump-cycles to

reduce the content of dissolved molecular oxygen. The determination of the line shapes

proceeded by simple pulse excitation of equilibrium spin-order. The relevant portion of

the resulting H2
17O@C60 proton spectrum is shown in figure 2.10.

The proton spectrum shows a clear sextet structure with a small H2
16O@C60 impurity

at its center. The sextet structure follows from the non-zero scalar coupling of the two

protons to the 17O nucleus. The 17O nucleus possesses spin S = 5/2 with (2×5/2+1 = 6)

different 17O spin states. These split the proton signal of the 1Ha into a sextet. Clearly

by symmetry the signal of the second proton 1Hb is also split into a sextet in exactly

the same fashion. The resonance frequencies for the 1Ha and 1Hb are thus identical and
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Figure 2.10: Relevant region of the H2
17O@C60 proton spectrum after simple pulse

excitation. Sample was dissolved in ODCB-d4 with a final concentration of 36.2 mM.
The proton resonances are split into a sextet structure. Individual peaks may be asso-
ciated with the z-angular momentum quantum number mS of the 17O. The assignment
assumes a negative scalar coupling constant. The central resonance (indicated by a
star) may be attributed to H2

16O@C60 impurities. Spectral integration indicates that
88% of the fullerenes are occupied by H2

17O molecules and the remaining 12% with
H2

16O. The peak linewidths of the sextet display the ratios (15:23:18:18:23:15).

overlap with each other. The individual peaks of the sextet may therefore be associated

with one of the projection quantum numbers mS of the 17O spin (see figure 2.10 top).

The laboratory frame coherent Hamiltonian for this system may be expressed as follows:

H lab
coh = ω0

I (I1z + I2z) + ω0
SSz + 2πJIS(I1zSz + I2zSz) = ω0

I Iz + ω0
SSz + 2πJISIzSz,

(2.166)

where ω0
I represents the Larmor frequency of the protons, ω0

S the Larmor frequency of

the oxygen and JIS their mutual scalar coupling constant. The z-angular momentum

operators Ijz refer to the z-angular momentum of the protons and the z-angular momen-

tum operator Sz refers to the z-angular momentum of the oxygen. The scalar coupling

between the protons has been omitted as these do not contribute to the NMR signal [22].

The resulting rotating frame Hamiltonian is given by a single scalar coupling interaction

Hcoh = 2πJISIzSz. (2.167)
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The splitting of the proton lines is rather unremarkable and may be explained by stan-

dard NMR theory. But the linewidth behaviour of the proton resonances is surprising

and requires more careful analysis. The proton peaks highlighted in figure 2.10 display

identical peak areas, but rather different proton linewidths (here defined as the full width

at a peaks half maximum height). The linewidths for the proton peaks are 9.1± 0.3 Hz

(mS = ±5/2), 13.2 ± 0.3 Hz (mS = ±3/2) and 10.7 ± 0.1 Hz (mS = ±1/2) leading

to ratios (15:23:18:18:23:15). In general the linewidth of a Lorentzian is related to its

relaxation rate constant λj . The real part of a complex Lorentzian (see equation 1.13)

takes the form

Re{Sj(ω)} = M0
eq ×

λj
λ2
j + (ω − ωj)2

, (2.168)

where λj and ωj represent generic relaxation rate constants and resonance frequencies.

The half maximum peak height of a real Lorentzian occurs at (ωj ± λj)

Re{Sj(ωj − λj)} = Re{Sj(ωj + λj)} = M0
eq

1

2λj
∝ 1

2λj
, (2.169)

so that the peak linewidth is proportional to twice relaxation rate constant (∝ 2λj).

This means that the resonances of the 1H spectrum with mS = ±5/2, mS = ±3/2 and

mS = ±1/2 all relax at different rates.

In general there are several relaxation mechanisms that may contribute to the spectral

line shape. Common relaxation mechanisms for smalls molecules, such as the encapsu-

lated H2O molecules, are fluctuating dipolar fields, external random fields and chemical

shift anisotropy modulation [36]. These however are incapable of explaining the peculiar

peak linewidth pattern of figure 2.10. Instead numerical simulations suggest that the

proton line shape is completely dominated by the quadrupolar relaxation of the oxygen

spin. A comparison between the experimental spectrum (figure 2.10) and a SpinDynam-

ica simulation including only quadrupolar relaxation of the oxygen is shown in figure

2.11 [63].

The spectral simulation assumed a semi-classical expression for the quadrupolar relax-

ation superoperator and the coherent Hamiltonian given by equation 2.166. Within the

fast motion limit the quadrupolar relaxation superoperators takes the following form [36]

Γ̂Q
SC = −τC

5

∥∥∥A(3)
Q

∥∥∥2
2∑

m=−2

(−1)m T̂
(3)
2m T̂

(3)
2−m with

∥∥∥A(3)
Q

∥∥∥2
= (C

(3)
Q )2 Tr(W

(3)†
Q ·W (3)

Q ).

(2.170)

Explicit expressions for the quadrupolar ISTO are given in appendix A.2. Good agree-

ment between the experimental and simulated spectrum was found for JIS = −77.9 Hz,

τC = 107 fs. The norm of the quadrupole tensor
∥∥∥A(3)

Q

∥∥∥/2π = 0.675 MHz has been

calculated previously using quantum chemistry techniques [90].
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Figure 2.11: Comparison between the experimental (black) and simulated (blue)
proton spectrum of the H2

17O@C60 molecules after simple pulse excitation. The proton
line shape is completely dominated by quadrupolar relaxation of the oxygen and other
relaxation mechanisms have been neglected. The simulation parameters are JIS =

−77.9 Hz, τC = 107 fs and
∥∥∥A(3)

Q

∥∥∥/2π = 0.675 MHz.

For the line shape determination it is not necessary to employ the Lindblad formalism

since the initial state of the system represents equilibrium spin order. Instead it is

sufficient to consider the following Liouvillian

L̂ ≈ −iĤcoh + Γ̂Q
SC, (2.171)

with Ĥcoh representing the commutation superoperator of the coherent Hamiltonian

given by equation 2.167. Choosing a particular set of basis operators the Liouvillian may

be represented by a (N2
H×N2

H) dimensional matrix. The dimensionality of the problem

quickly grows with an increasing number of spins and larger spin angular momenta. For

the line shape problem however it is not necessary to consider the complete matrix of

the Liouvillian. The subspace spanned by the following set of orthogonal spin operators

contains all the necessary information

{(I−1 + I−2 )⊗ |S,mS〉〈mS , S|}, mS ∈ {−S,−S + 1, . . . ,+S + 1,+S}. (2.172)

For the H2
17O@C60 case with S = 5/2 the line shape information is contained within a

(6× 6) dimensional subspace. The projected matrix block takes the following form:
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

−i 5
2JIS − 12τQ 8τQ 4τQ 0 0 0

8τQ −i 3
2JIS − 92

5 τQ
16
5 τQ

36
5 τQ 0 0

4τQ
16
5 τQ −i 1

2JIS − 72
5 τQ 0 36

5 τQ 0

0 36
5 τQ 0 i 1

2JIS − 72
5 τQ

16
5 τQ 4τQ

0 0 36
5 τQ

16
5 τQ i 3

2JIS − 92
5 τQ 8τQ

0 0 0 4τQ 8τQ i 5
2JIS − 12τQ



with τQ =
∥∥∥A(3)

Q

∥∥∥2
τC .

(2.173)

For sufficiently slow proton relaxation, which is usually the case in such systems, the

condition 1/T1H � 2πJIS is well satisfied. In this regime the off-diagonal matrix elements

become negligible in the sense of first order perturbation theory [25]. The line widths

of the proton peaks are then given by the real part of the diagonal elements.

Since similar setups are frequently encountered in the context of nuclear long-lived spin

states one may generalise the considerations above to a generic third spin S. To deter-

mine the line shape factors for a generic spin S one may first observe that the quadrupolar

relaxation superoperator only acts on spin S. The required matrix elements indicated

by equation 2.172 are then fully determined by a set of single spin commutators

T̂
(3)
2m

∣∣PSm1,m2

)
= [T

(3)
2m , P

S
m1,m2

], (2.174)

where the operators PSm1,m2
are defined as follows:

PSm1,m2
= |S,m1〉〈S,m2|. (2.175)

As indicated in appendix A.2 the spherical tensor operators T
(3)
2,m may be expressed

in terms of shift and z-angular momentum operators. Their action onto an angular

momentum state for the quadrupolar spin is given by the following expressions:

Ŝ+|S,mi〉 = C+
S,mi
|S,mi + 1〉 =

√
S(S + 1)−mi(mi + 1)|S,mi + 1〉,

Ŝ−|S,mi〉 = C−S,mi |S,mi − 1〉 =
√
S(S + 1)−mi(mi − 1)|S,mi − 1〉,

Ŝz|S,mi〉 = mi|S,mi〉.

(2.176)
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The relations above may be used to determine the general expression for the commuta-

tors in equation 2.174

[T
(3)
22 , P

S
m1,m2

] = +
1

2
(C+

S,m1
C+
S,m1+1P

S
m1+2,m2

− C−S,m2
C−S,m2−1P

S
m1,m2−2),

[T
(3)
21 , P

S
m1,m2

] = −1

2
(m1C

+
S,m1

PSm1+1,m2
− (m2 − 1)C−S,m2

PSm1,m2−1

+ (m1 + 1)C+
S,m1

PSm1+1,m2
−m2C

−
S,m2

PSm1,m2−1),

[T
(3)
20 , P

S
m1,m2

] = +

√
3

2
(m1 −m2)2PSm1,m2

.

(2.177)

Within the projected subspace of equation 2.172 the spherical tensor operators of oppo-

site projections additionally commute

[T
(3)
2m , T

(3)
2−m] = 0, (2.178)

so that a matrix element for a generic spin S reduces to the sum of three contributions

(PSm1,m1
|Γ̂Q

SC|P
S
m2,m2

) = −τC
5

∥∥∥A(3)
Q

∥∥∥2 {
2(PSm1,m1

|T̂ (3)
2−2T̂

(3)
22 |P

S
m2,m2

)

+2(PSm1,m1
|T̂ (3)

2−1T̂
(3)
21 |P

S
m2,m2

) + (PSm1,m1
|T̂ (3)

20 T̂
(3)
20 |P

S
m2,m2

)
}
.

(2.179)

The commutator relations of equation 2.177 may then be substituted into equation

2.179. If the projection quantum numbers are restricted to m1 ≤ m2 the symbolic soft-

ware package Mathematica may be used to reduce the matrix elements to the following

algebraic expressions [91]

(PSm1,m1
|Γ̂Q

SC|P
S
m2,m2

) =

τC

∥∥∥A(3)
Q

∥∥∥2{
− 1

5
δm1,m2(S(S + 1)(S + S2 − 1) + 2S(S + 1)m2

1 − 3m4
1)

+
1

10
δm1,m2+1(S −m2)(S +m2 + 1)((2m2 + 1)2)

+
1

10
δm1,m2+2(1− 2m2)2(S −m2 + 1)(S +m2)

}
.

(2.180)

And since the semi-classical relaxation superoperator is symmetric, the remaining matrix

elements for m1 > m2 are simply obtained by interchanging the projection numbers m1

and m2.

As argued earlier for slow proton relaxation the line shape factors may be determined by

considering the diagonal elements with m1 = m2. The relaxation rate constant λ(m1)

of the proton peak associated with the projection quantum number m1 of the S spin is

then simply given by the expression below:

λ(m1) = (PSm1,m1
|Γ̂Q

SC|P
S
m1,m1

) =
τC
5

∥∥∥A(3)
Q

∥∥∥2
(3m4

1 + S − 2m2
1S(S + 1)− S3(S + 2)).

(2.181)
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For the case that S = 5/2 the following ratios for the peak linewidths are obtained

23

λ(±3/2)
{λ(±5/2), λ(±3/2), λ(±1/2)} = {15, 23, 18}, (2.182)

which matches the peak linewidths of the experimental spectrum shown in figure 2.10

exactly.

2.7.2 H2O@C60 spin isomer conversion

The observation of para-to-ortho conversion for the H2O@C60 molecules at room tem-

perature is enabled by a technique known as bullet DNP [11]. A schematic overview of

the bullet DNP setup is given in figure 2.12.

Figure 2.12: The bullet DNP setup makes use of two NMR magnets. The first magnet
is equilibrated at low temperatures (T < 10 K), the second magnet is a conventional
high-field NMR magnet at room temperature. The two magnets are connected via a
transfer tube. Initially a bullet casing is loaded with a frozen sample solution and placed
inside the cooling magnet. The bullet may be transferred to the room temperature
magnet via the transfer tubing. The rapid transfer process is driven by pressurised
Helium gas. On its way to the detection magnet the bullet hits a receiver before it
reaches the sample region. On impact the frozen sample solution is released from the
bullet casing and drops into hot solvent of a conventional NMR tube. This leads to a
quick dissolution process. After the dissolution process the sample may be manipulated
by means of standard high-field NMR techniques.

The para-to-ortho conversion dynamics for both H2
16O@C60 and H2

17O@C60 have been

observed in separate experiments but under identical conditions. Initially a 17 mM so-

lution of H2O@C60 in ODCB-d4 has been prepared. The bullet casing was loaded with

50 µL of the 17 mM solution. The freezing process has been performed by exposing
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the loaded bullet to liquid nitrogen. Spin isomer enrichment proceeded by keeping the

bullet inside the cooling magnet (∼ 4K) for approximately 15 hours. After equilibration

pressurised Helium gas at 8 bar has been used for a rapid transport of the sample to the

detection magnet. The transfer time was estimated to be around ∼ 100 ms. Acquisition

of the FID started several seconds before arrival of the sample. After arrival relaxation

dynamics of the sample have been monitored by acquisition of a 1H-spectra time series

via application of 30◦ flip angle pulses every 250 ms.

To increase the signal-to-noise ratio the H2
16O@C60

1H-spectra have been multiplied

by a Lorentzian mask (see figure 2.13a). The processed spectra were subsequently inte-

grated to obtain the proton signal intensity as a function of time. The resulting recovery

of the z-magnetisation is shown in figure 2.13b.

n
o

rm
. 

s
ig

n
a

l

Figure 2.13: a) H2
16O@C60 thermal equilibrium proton spectrum in black.

Lorentzian mask is indicated in blue. Experimental spectrum has been obtained 8
minutes after the dissolution process and is averaged over 8 transients. b) Normalised
proton signal as a function of time. The time origin has been chosen to coincide with
the arrival of the sample (t = 0). Relaxation dynamics have been monitored by a series
of 1H-spectra acquired every 250 ms by simple 30◦ pulse excitation. Resulting spectra
have been integrated after multiplication by a Lorentzian mask and normalised with
respect to the steady-state equilibrium magnetisation.

The z-magnetisation trajectory shows a sharp peak at the start of the recovery process.

This peak results from observable Zeeman polarisation and is related to a residual mag-

netic ortho-H2
16O@C60 fraction. It is therefore likely that the equilibration process was

not fully completed even after a 15 hour cooling period at∼ 4K. The Zeeman polarisation

however quickly decays with a longitudinal relaxation time constant T1 of approximately

800 ms and the proton signal intensity drastically decreases below its thermal equilib-

rium value. This indicates the presence of a persistent non-magnetic para-H2
16O@C60

fraction. After approximately 100 seconds the proton signal intensity has fully recov-

ered to its thermal equilibrium value. The slow recovery of the proton intensity may

be attributed to the relatively inefficient para-to-ortho spin isomer conversion process.
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This process occurs on a much longer time scale than ordinary T1 processes. Since the

spin isomer conversion process is closely related to singlet order decay the recovery of

the z-magnetisation may be described by a singlet order relaxation time constant TS

of approximately 30 s. The para-to-ortho conversion process is much slower since the

transition from a para to ortho spin state is necessarily accompanied by a change in

the permutation symmetry of the spin wave function. Many of the very efficient relax-

ation mechanisms at high magnetic fields (intra-pair dipolar relaxation for example) are

incapable of inducing such transitions and are symmetry-forbidden [74–80]. The only ef-

fective relaxation mechanism driving the para-to-ortho conversion process are randomly

fluctuating fields experienced by the fullerene-encapsulated water molecules [39, 74].

Similar observations have been made for the H2
17O@C60 molecules. A time series of indi-

vidual 1H-spectra for the H2
17O@C60 molecules is shown in figure 2.14a. Each spectrum

has been weighted by a Lorentzian mask (see figure 2.14a bottom) and additionally

time-averaged over an acquisition time of 5 seconds for further improvements to the

signal-to-noise ratio.

Most notably the line shapes of the spectrum undergo substantial changes during the

recovery process. This may be further appreciated by the sign changes in the proton

magnetisation as indicated in figure 2.14b. The peculiar anti-phase pattern displayed by

the first proton spectra is characteristic for quantum rotor induced polarisation (QRIP)

effects. A full discussion of this effect goes beyond the scope of this work and a detailed

explanation may be found in references 61, 92 and 93.

In contrast to the H2
16O@C60 sample the z-trajectories for the H2

17O@C60 molecules

do not display any pronounced intensity spikes at the start of the recovery process. The

substitution of 16O by 17O introduces additional dipolar and quadrupolar relaxation

pathways. This causes the H2
17O@C60 para-to-ortho equilibration process to proceed

faster, and the residual Zeeman polarisation to relax quicker as the sample is being

transported to the detection region [39, 86]. It is therefore not too surprising that the

H2
17O@C60 molecules display a faster spin isomer conversion rate than the H2

16O@C60

molecules (compare figures 2.13b and 2.14b). For the H2
17O@C60 molecules the spin

isomer conversion process is characterised by a time constant TS of 16 s. So after a period

of approximately 50 seconds after dissolution the conversion process is fully completed

and the H2
17O@C60 molecules have reached thermal equilibrium. The resulting thermal

proton spectrum at the bottom of figure 2.11a can be seen to agree with the thermal

spectrum shown in figure 2.11.

The observations above indicate that the state of the protons immediately after disso-

lution may be approximated by the following density operator ρH(a, b)

ρH(a, b) ≈ (1 + 2(1− a)bIz − 4aI1 · I2). (2.183)



86 Chapter 2 Far from thermal equilibrium

n
o

rm
. 

s
ig

n
a

l

Figure 2.14: a) H2
17O@C60 spectral time series after dissolution. A thermal spectrum

with small H2
16O@C60 impurities is indicated at the bottom. The Lorentzian mask is

indicated in blue. Time series spectra have been averaged over 5 seconds acquisition
time and multiplied by the Lorentzian mask. The initial anti-phase pattern is a result
of a QRIP effect displayed by the H2

17O@C60 molecules. b) Normalised H2
17O@C60

proton signal as a function of time after the dissolution process (t = 0). The spectral
time series has been acquired 30◦ pulse excitation every 250 ms and resulting spectra
have been integrated after multiplication by a Lorentzian mask. Signal intensity of
the individual peaks has been normalised with respect to their steady-state equilibrium
value.

Strictly speaking this operator represents the state of the H2
16O@C60 protons, for the

H2
17O@C60 case one should use the density operator ρH(a, b) ⊗ ρO(0). The degree of

singlet polarisation is given by a ∈ [0, 1] and the degree of residual Zeeman polarisation is

characterised by b ∈ [0, 1]. For the limiting cases (a, b) = (1, 0) and (a, b) = (0,−1
2βθω

0)

the density operator ρH(a, b) reduces to a fully polarised singlet state and a thermally

polarised Zeeman state, respectively:

ρH(1, 0) = |S0〉 〈S0| ,

ρH(0,−1
2βθω

0) =
1

4
(1− βθω0Iz).

(2.184)

To avoid confusion it should be noted that for the remainder of this section whenever

we compare a system to its thermal equilibrium state, we refer to a thermally polarised

Zeeman state at ∼ 300 K with thermal equilibrium proton magnetisation MH
eq defined
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by

MH
eq =

(
Iz|ρH(0,−1

2βθω
0)
)

(Iz|Iz)
. (2.185)

For high degrees of singlet polarisation the density operator given by equation 2.183

represents a state far from thermal equilibrium . It is exactly this situation that the bullet

DNP experiments aims to create. It should therefore be expected that the relaxation

dynamics of the system may not be appropriately described by the IME or related

techniques but should employ the Lindblad formulation described in section 2.4.

For the simulations of the relaxation dynamics it has been found that chemical shift

contributions are negligible compared to random field, dipolar and quadrupolar (for

the H2
17O) contributions. The focus will therefore be on these three mechanisms. For

consistency reasons the interactions are first expressed in a common reference frame. It

is convenient to choose a frame with the oxygen atom placed at its origin as the common

frame. A schematic representation of the reference frame of choice is shown in figure

2.15.

Figure 2.15: Molecular reference frame for the H2O@C60 molecules. The z-axis is
aligned with the symmetry axis of the water molecule. The hydrogen atoms are placed
along the x-axis. The distance between the oxygen and a proton atom is indicated by
rOH. The angle between the z-axis and the proton-oxygen bond is given by 1

2θHOH,
where θHOH represents the angle enclosed by both proton-oxygen bonds.

The resulting coordinates for the individual atoms are summarised below:

r1 =
[
− sin(1

2θHOH) 0 − cos(1
2θHOH)

]
rOH,

r2 =
[

+ sin(1
2θHOH) 0 − cos(1

2θHOH)
]
rOH,

r3 =
[

0 0 0
]
,

(2.186)
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where the indices {1, 2, 3} refer to the atoms {1Ha,
1Hb,

16/17O}. The proton-oxygen

distance is represented by rOH and θHOH describes the angle enclosed by the two proton-

oxygen bonds.

As the H2O@C60 molecules enter the hot solvent bath inside the detection magnet a

majority of the previously inaccessible rotational states become accessible. Since rota-

tional transitions are much faster than nuclear transitions we assume a quick equilibra-

tion of the rotational states on the NMR timescale [94]. The relaxation process of the

fullerene-encapsulated molecules may then be described according to an isotropic diffu-

sion model [50]. It is further reasonable to assume that the rotational diffusion of the

cage and the encapsulated water molecules are uncorrelated since the reorientation speed

of the water molecules exceeds the reorientation speed of the cage. Experimental obser-

vations indicate that the two diffusion constants are separated by approximately three

orders of magnitude. This may be established by analysing the relaxation behaviour of

single 13C of the C60 framework, for example [81].

The diffusion frame of the H2O may then be assumed to be aligned with the coordinate

frame indicated in figure 2.15 and the rotational diffusion process is described by a single

diffusion constant τC .

The dipolar interaction tensors may then be calculated by making use of equation 1.79

and the atomic coordinates of equation 2.186

WDD
12 =

 2 0 0

0 −1 0

0 0 −1

 , WDD
13 =


1
2(1− 3 cos(θHOH)) 0 3

2 sin(θHOH)

0 −1 0
3
2 sin(θHOH) 0 1

2(1 + 3 cos(θHOH))

 ,

WDD
23 =


1
2(1− 3 cos(θHOH)) 0 −3

2 sin(θHOH)

0 −1 0

−3
2 sin(θHOH) 0 1

2(1 + 3 cos(θHOH))

 ,
(2.187)

so that the dipolar relaxation superoperator (in the fast motion limit) may be expressed

as shown below [36]:

Γ̂DD
SC = −τC

5

∑
i<j
k<l

CDD
ij CDD

kl Tr(WDD†
ij ·WDD

kl )

+2∑
m=−2

T̂
(ij)
2m T̂

(kl)†
2m . (2.188)

A thermalised version of the dipolar relaxation superoperator is obtained by streamlining

the Lindblad thermalisation method presented in section 2.4. To do so we make use of

the following thermalisation superoperator

Θ̂LB = exp(−1
2βθĤ

lab
coh), (2.189)
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where H lab
coh is given by equation 2.166. Additionally we define a projection superoperator

P̂‖ with the property of projecting out any part of Q̂ that commutes with Ĥ lab
coh

[Ĥ lab
coh, P̂‖(Q̂)] = 0. (2.190)

The projection superoperator P̂‖ may be realised by first transforming a superoperator

Q̂ into the eigenbasis of Ĥ lab
coh followed by deletion of all matrix elements connecting

non-degenerate states. The thermalised dipolar relaxation superoperator in Lindblad

form may then be expressed as shown below:

Γ̂θ,DD
LB =

τC
5

∑
i<j
k<l

CDD
ij CDD

kl Tr(WDD†
ij ·WDD

kl )

+2∑
m=−2

P̂‖(D̂[T
(ij)
2m , Θ̂LB(T

(kl)†
2m )]). (2.191)

Similar expressions are obtained for the thermalised random field relaxation superoper-

ator

Γ̂θ,ran
LB = τran

3∑
i,j=1

κijω
(i)
rmsω

(j)
rms

+1∑
m=−1

P̂‖(D̂[T
(i)
1m, Θ̂LB(T

(j)†
1m )]). (2.192)

For the H2
17O@C60 molecules we additionally introduce a thermalised quadrupolar re-

laxation superoperator. With the current choice of reference frame the semi-classical

quadrupolar relaxation superoperator coincides with the expression given in equation

2.170. Its thermalised counterpart takes the following form

Γ̂θ,QLB =
τC
5

∥∥∥A(3)
Q

∥∥∥2
+2∑

m=−2

P̂‖(D̂[T
(3)
2m , Θ̂LB(T

(3)†
2m )]). (2.193)

The total relaxation superoperator for the H2
16O@C60 and H2

17O@C60 cases are then

given by the expressions below

Γ̂θLB(16O) = Γ̂θ,DD
LB + Γ̂θ,ran

LB Γ̂θLB(17O) = Γ̂θ,DD
LB + Γ̂θ,ran

LB + Γ̂θ,QLB . (2.194)

Evaluation of the corresponding matrix elements shows that the singlet decay constants

T−1
S in the fast motion and high-temperature regime is given by the following expressions:

T−1
S (16O) = −

(I1 · I2| Γ̂θLB(16O) |I1 · I2)

(I1 · I2|I1 · I2)
= 4τran (1− κ12)ω(1)

rmsω
(2)
rms,

T−1
S (17O) = −

(I1 · I2| Γ̂θLB(17O) |I1 · I2)

(I1 · I2|I1 · I2)
= 35τC C

DD
13 CDD

23 sin (θHOH)2 + T−1
S (16O).

(2.195)

Agreement between the experimentally observed relaxation rates and the expressions

given in equation 2.195 may be obtained by utilising the parameters indicated in table

2.3.

A comparison between the simulated and experimental z-magnetisation recovery for the



90 Chapter 2 Far from thermal equilibrium

T B0 rOH θHOH τC

300 K 11.75 T 1.00× 10−10 m 109.64◦ 107 fs

JIS

∥∥∥A(3)
Q

∥∥∥/2π CDD
(12)/2π CDD

(13)/2π CDD
(23)/2π

-77.9 Hz 0.675 MHz -27.48 kHz 16.28 kHz 16.28 kHz

ω
(1)
rms/2π ω

(2)
rms/2π ω

(3)
rms/2π τran

13 kHz 13 kHz 2 kHz 100 ps

κ12 κ13 κ23

0.986 0.4 0.4

Table 2.3: NMR parameters for the H2O@C60 simulations. Parameters agree with
references 39, 81, 90 and 95.

H2
16O@C60 and H2

17O@C60 molecules is shown in figure 2.16. All simulations have

been performed using SpinDynamica [63].

Figure 2.16: Comparison between experimental (black) and simulated (red) H2O@C60

spin-isomer conversion at 300 K. a) Proton magnetisation recovery dynamics for
H2

16O@C60 molecules. The simulations indicate an initial para fraction of 45% and a
residual Zeeman enhancement of 20×MH

eq@300K. b) Proton magnetisation recovery dy-
namics for the H2

17O@C60 molecules. Individual proton transitions are associated with
the projection number mS of the 17O. Each resonance displays a different relaxation
behaviour due to a small QRIP effect. A rough estimate on the initial para fraction and
Zeeman enhancement are 30% and 4 ×MH

eq@300K, respectively. Deviations between
experimental data and simulated trajectories are likely due to a combination of post
processing (application of a moving time average and Lorentzian mask) and the poor
quality of the unprocessed experimental data. Simulation parameters are summarised
in table 2.3.
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The simulations allowed for a rough estimate of the initial para and ortho fractions.

For the H2
16O@C60 molecules the experimental data was well matched for a = 0.45,

b = 0.48 × 10−3 ≈ 20 × MH
eq@300K, indicating an initial para fraction of 45% and

slight Zeeman enhancement. The H2
17O@C60 molecules displayed a smaller initial para

fraction and Zeeman polarisation. Reasonable agreement was achieved by assuming

a = 0.3, b = 0.01 × 10−3 ≈ 4 ×MH
eq@300K, indicating an initial para fraction of 30%.

This is probably due to the presence of the quadrupolar 17O nucleus.

Overall there is excellent agreement between the simulations and the experimental data

for the H2
16O@C60 case. The simulations for the H2

17O@C60 only agree on a qualitative

basis. This might be due to the challenging quality of the raw data. As mentioned

previously extraction of the slow conversion process required filtering via a Lorentzian

mask and a moving time average of 5 seconds.





Chapter 3

Close to thermal equilibrium

Conventional NMR experiments are performed by coherently manipulating thermally

equilibrated systems. For typical high-field NMR setups the thermally equilibrated

state is given by a slightly magnetised sample. The extent of magnetisation depends

explicitly on the magnetic field strength and the temperature. Following arguments

from the previous section, at ordinary temperatures one may safely invoke the high-

temperature approximation and represent the high-field density operator as follows:

ρeq ≈ N−1
H (1− ~ω0/(kBT )Iz). (3.1)

Since the magnetic energy of the sample is relatively small compared to the average

thermal energy (~ω0/(kBT ) ∼ 10−5) the system is only slightly polarised. The applica-

tion of RF pulses may only influence whatever little Zeeman polarisation is present. For

this reason we refer to such systems as being close to thermal equilibrium even under

coherent manipulation.

The following section analyses some aspects of coherent manipulation of thermal spin

order in coupled spin-1/2 pairs. Special attention will be paid to spin pairs displaying

a small difference in their resonance frequency compared to their scalar coupling con-

stant. For such systems, the eigenstates of the coherent Hamiltonian closely resemble

the angular momentum singlet and triplet states and efficient coherent manipulation of

the angular momentum states becomes relevant.

3.1 Coupled spin-1/2 pairs

Before exploring the coherent manipulation of coupled spin-1/2 pairs some useful tools

for the analysis of typical NMR experiments are briefly summarised. The presented

pulse sequences are mainly analysed within this framework.

93
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3.1.1 The coherent Hamiltonian

For a generic two-spin-1/2 system in solution, the laboratory frame Hamiltonian may

be expressed as follows [22]:

H0 = ω0
1I1z + ω0

2I2z + ωJI1 · I2, ω0
j = −2πγjB

0
z(1 + δjiso), ωJ = 2πJ12. (3.2)

Using equation 1.63 it is convenient to move into a reference frame rotating at the mean

frequency (ωref = 1
2(ω0

1 + ω0
2)) of the two spins. In this reference frame the Hamiltonian

may be expressed as shown below:

H0 =
1

2
ω∆(I1z − I2z) + ωJI1 · I2, ω∆ = ω0

1 − ω0
2 = 2π∆. (3.3)

This particular representation of the Hamiltonian makes it obvious that the differential

chemical shift term is a symmetry breaking contribution and is key in accessing singlet-

order in coupled spin-1/2 systems. A measure for the degree of asymmetry is the mixing

angle of the Hamiltonian defined as follows:

θmix = arctan(|∆/J |). (3.4)

The mixing angle ranges over θmix ∈ [0, π/2] with θmix = 0 representing nearly-equivalent,

θmix = π/4 intermediate and θmix = π/2 inequivalent systems.

3.1.2 Single Transition operators

The subsequent treatment of two-spin-1/2 systems makes heavy use of the single transi-

tion operator formalism [96–98]. For any two states (|r〉 , |s〉) of the system it is possible

to construct the following set of operators:

Irsx =
1

2
(|r〉 〈s|+ |s〉 〈r|), Irsy =

1

2i
(|r〉 〈s| − |s〉 〈r|),

Irsz =
1

2
(|r〉 〈r| − |s〉 〈s|), 1

rs = |r〉 〈r|+ |s〉 〈s| .
(3.5)

satisfying the commutation relations below

[Irsi , I
rs
j ] =

i

2
εijkI

rs
k [Irsi , I

kl
j ] = 0. (3.6)

Single transition operators therefore generate the group SU(2). If the Hamiltonian of

the system allows for such a decomposition it is possible to think of the dynamics as

being broken up into the motion of several “fictitious”-spin-1/2 particles.
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3.1.3 A convenient basis

It is important to note that single transition operators do not only depend on the pair of

states, but also on the particular choice of basis. In that sense, there is some flexibility

in how to choose these operators. Unless otherwise stated the following basis will be

employed for the remainder of this chapter

{|S0〉 , |T0〉 ,
1√
2

(|T+〉+ |T−〉) ,
1√
2

(|T+〉 − |T−〉)}. (3.7)

This basis has some particular advantages when working with coupled spin-1/2 pairs.

Most notably the Hamiltonian of equation 3.3 decouples into three subspaces

H0 = H12
0 +H3

0 +H4
0

= {ω∆I
12
x − ωJI12

z −
1

4
ωJ1

12}+ {1

4
ωJ1

3}+ {1

4
ωJ1

4}.
(3.8)

Additionally, the total projection angular momentum operators are contained within

two-dimensional subspaces

Ix = 2I23
x Iy = −2I24

y Iz = 2I34
x . (3.9)

Every possible sequence of free evolution delays and radio frequency pulses may therefore

be visualised by simple operations onto fictitious-spin-1/2 particles.

3.2 Generalised magnetisation-to-singlet transfer

Since the first experimental demonstration of nuclear singlet states, and their surprising

NMR relaxation properties, the problem of converting magnetisation to singlet-order (or

vice versa) has been a topic of great interest [99]. Over the years several methods have

been developed to tackle this problem [99–104]. Most of these methods fall into one of

three categories.

The first category consists of adiabatic transformations [99–102]. Adiabatic transfor-

mations usually transform the eigenstates of the internal Hamiltonian to singlet and

triplet states. This is achieved by application of a suitable time-dependent and ”slowly”

time-varying Hamiltonian. As a consequence, populations of the internal Hamiltonian

are adiabatically transformed into singlet and triplet populations.

The second class of magnetisation to singlet order transformations may be summarised

as low power methods [103, 104]. These methods exploit avoided crossings in the rotat-

ing frame. Application of a low power pulse with a frequency matching the J coupling of

the two spins places the eigenenergies of the ”singlet” and the ”central triplet” state at

the center of the avoided crossing. At this point the energy levels are almost degenerate

leading to efficient singlet and central triplet mixing.
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The third category consists of high power methods that employ strong radio frequency

pulses separated by suitable evolution delays [105–110]. In general, most of these se-

quences haven been developed either for strongly coupled (∆ � J) or weakly coupled

(∆� J) spin systems.

The magnetisation-to-singlet (M2S) sequence (see figure 3.1) is a popular choice for

strongly coupled spin systems [107]. Its efficiency however quickly drops off in the in-

Figure 3.1: Schematic representation of the M2S pulse sequence. In the strong cou-
pling limit the evolution delay, τM2S, is given by 1/(4J) and the echo number, n, is
determined by the defining equation: 2n tan−1(ω∆/ωJ) = π.

termediate regime (J ∼ ∆).

While this certainly wasn’t an obstacle in the earlier days of singlet NMR, recent devel-

opments in the field of parahydrogen and field cycling NMR led to the need of sequence in

the intermediate regime [111, 112]. Parahydrogen represents a particular realisation of a

nuclear singlet-state connecting the fields of nuclear long-lived states and parahydrogen

NMR [16, 17]. In practical applications parahydrogen is initially reacted with a precur-

sor molecule resulting in a magnetically inequivalent spin system [16–19, 43, 113]. The

overpopulated singlet-state originating from the parahydrogen pair may then be con-

verted into magnetisation using one of the available singlet NMR sequences. In many

cases this results in substantial signal enhancements. There is however no guarantee

that the resulting spin system can be classified as either a strongly or weakly coupled

spin system. The utilisation of intermediate spin systems is therefore very limited in the

context of parahydrogen NMR.

Recently, the group of Jerschow extended the M2S to the intermediate regime by making

use of a chemical shift scaling (CSS) element [110, 114]. The CSS element consists of a

spin echo train that modulates the chemical shift difference in an average Hamiltonain

sense [115]. The CSS element may then replace the free evolution periods of the M2S. If

the scaled chemical shift term falls within the validity range of the M2S magnetisation

to singlet-order transformation becomes possible.

As noted in the original publication introduction of CSS elements increases the number

(π)-pulses of the M2S sequence considerably. To further compensate for error accumu-

lation it is common practice to replace a (π)-pulse by its composite counterpart [116].

In general, this has been known to cause extensive heating of the sample [110].
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The goal of this section is to extend the validity range of the M2S sequence from

nearly equivalent systems to intermediate systems. In similar fashion to the M2S, the

generalised-M2S is a consequence of simple geometric arguments. This avoids the ne-

cessity of introducing an increasing amount refocusing pulses to scale spin interactions

in an average Hamiltonian sense [115].

3.2.1 Transfer scheme

Similar to the M2S, the generalised-magnetisation-to-singlet (gM2S) sequence utilises

evolution blocks of the following type:

USE(τ, y) = U0(τ)−Ry(π)− U0(τ), (3.10)

which are generally known as spin-echo (SE) blocks. As a favourable side effect spin-echo

blocks may also compensate for relaxation effects.

The spin-echo block is conveniently analysed within the single transition operator for-

malism. The Hamiltonian of equation 3.3 may be expressed as follows in terms of single

transition operators

H0 = H12
0 +H3

0 +H4
0

= {ω∆I
12
x − ωJI12

z −
1

4
ωJ1

12}+ {1

4
ωJ1

3}+ {1

4
ωJ1

4}.
(3.11)

The rotation operator Ry(π) may also be decomposed into orthogonal rotations with

respect to the subspaces {1, 2} and {3, 4}

Ry(π) = iR12
z (π)R34

z (π). (3.12)

The echo propagator USE(τ, y) then decouples into two orthogonal transformations

USE(τ, y) = U12
SE(τ, y)U34

SE(τ, y), (3.13)

with individual echo propagators given below

U12
SE(τ, y) = Φ12(−1

2
τωJ) exp {−iτ ω · I12}R12

z (π) exp {−iτ ω · I12}

U34
SE(τ, y) = iΦ34(

1

2
τωJ)R34

z (π)

ωT =
[
ω∆ 0 −ωJ

]
.

(3.14)

The propagators U12
SE(τ, y) and U12

SE(τ, y) may be understood as elements of the group

SU(2). For fixed τ one may therefore represent an echo propagator as some effective

rotation within the respective subspace. Focusing on the {1, 2} subspace for the moment
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one may be represent U12
SE(τ, y) as indicated below [117]:

U12
SE(τ, y) = Φ12(−1

2
τωJ)R12

n (θ). (3.15)

The rotation axis n and the rotation angle θ are defined as follows:

n =


ωxωz(cos(τωe)−1)

ωe
√
ω2
e−ω2

z sin2(τωe)

0

ω2
x+ω2

z cos(τωe)

ωe
√
ω2
e−ω2

z sin2(τωe)

 ,

θ = 2 cos−1

(
−ωz
ωe

sin(τωe)

)
,

ωe =
√
ω · ω = 2π

√
J2 + ∆2.

(3.16)

To keep things compact the parametric dependence of n and θ on (τ,ω) is being sup-

pressed.

By virtue of the rotation formula for SU(2) an equivalent representation of the rotation

operator R12
n (θ) is given by the following expression [117]

R12
n (θ) = cos(θ/2)112 − 2i sin(θ/2)n · I12. (3.17)

In the case of the M2S the echo delay τ is chosen in such a way as to ensure the following

relations

nx = 1 and nz = 0. (3.18)

The appropriate delay and the resulting rotation angle are given by the expressions

below:

τM2S = ω−1
e cos−1

(
−
(
ωx
ωz

)2
)

= (2π
√
J2 + ∆2)−1 cos−1

(
−
(

∆

J

)2
)
,

θM2S = 2 cos−1

−ωz
ωe

√
1−

(
ωx
ωz

)4
 = 2 sec−1

(
J√

J2 −∆2

)
.

(3.19)

In the limit of small near equivalence (|∆| � |J |) the evolution delay reduces to

τM2S = 1/(4J) and the resulting echo block is often known as J-Synchronised-Echo

(JSE)[118].

A single JSE of the M2S sequence therefore produces an effective rotation around the

x-axis in the {1, 2} subspace. The n-fold application of the M2S-JSE leads to an overall

rotation through an angle (n × θM2S). For the M2S the echo number n is chosen as to

generate effective (π/2)12
x - and (π)12

x -rotations. It can be shown that these two rotations

are sufficient to perform full conversion from magnetisation to singlet-order [107, 119].
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The relations of equation 3.18 may only be satisfied for strongly coupled systems |∆| < |J |.
For systems outside the nearly equivalent regime (∆/J) > 1 one may only solve for the

inverse-cosine function by allowing τM2S to take on imaginary values. This of course

does not make much physical sense.

Physically speaking, in these cases a JSE is no longer able to generate pure effective

rotations around the x-axis in the {1, 2} subspace (see figure 3.2).

Figure 3.2: Graphical representation of the rotation axis components defined via
equation 3.16 as a function of the echo delay. The M2S echo delay is indicated by black
circles, whereas the gM2S echo delay is indicated by diamonds.
a) Rotation axis components for a nearly equivalent spin system (J = 10 Hz and ∆ = 1
Hz). In nearly equivalent spin systems it is always possible to choose an echo delay
that generates a pure effective x-rotation (nz = 0). It is also possible to choose an echo
delay that equalises the x and z-components (gM2S delay).
b) Rotation axis components for an intermediate spin system (J = 10 Hz and ∆ = 15
Hz). In the intermediate case it is no longer possible to choose echo delays that set the
z component to zero. It is however still possible to find values of τ that fulfill the gM2S
condition.
c) Rotation axis components for an inequivalent spin system (J = 10 Hz and ∆ = 30
Hz). Roughly speaking when ∆ > 2J it is no longer possible to find an echo delay that
fulfills the gM2S condition.

To overcome this issue the generalised-M2S (gM2S) modifies the conditions of equation

3.18 to the following:

nx = nz. (3.20)

The geometric reasoning for this particular choice is illustrated in figure 3.3.

A (π)-rotation around an axis that is at an angle of π/4 with respect to the z-axis
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Figure 3.3: a) Graphical representation of the spatial rotation Rn(π) with n being
at an angle of π/4 with respect to the z-axis. The Cartesian basis vectors {ex, ey, ez}
are being mapped to {ez,−ey, ex}. b) Graphical representation of the sequence of
rotations Ry(π/2)Rz(π). This sequence of rotations performs the same mapping as
rotation a) and illustrates the relation of equation 3.21.

is (almost) equivalent to a (π/2)y-rotation. The formal relation between these two

operations is summarised below:

Rn(π) = Ry(π/2)Rz(π), n =
[

1/
√

2 0 1/
√

2
]
. (3.21)

Instead of trying to generate a pure effective x-rotation the gM2S sequence generates

an effective rotation around the Ry(π/4)ez-axis. This single operation is sufficient to

perform conversion from magnetisation to singlet-order for systems classifying as nearly

equivalent to intermediate.

In the case of the gM2S the echo delay is modified to the following relations

τgM2S = ω−1
e cos−1

(
ωx(ωx + ωz)

ωz(ωx − ωz)

)
= (2π

√
J2 + ∆2)−1 cos−1

(
∆(J −∆)

J(J + ∆)

)
. (3.22)

The resulting effective rotation angle θgM2S is indicated below:

θgM2S = 2 cos−1

(
−ωz
ωe

√
1− ω

2
x(ωx + ωz)2

ω2
z(ωx − ωz)2

)
= 2 cos−1

(
J

√
J2 + 2J∆−∆2

J2(J + ∆)2

)
.

(3.23)

The delay for the gM2S is well defined as long as (J + (1−
√

2)∆ ≥ 0). If this condition

is met the gM2S is guaranteed to provide a valid effective rotation around the tilted

Ry(π/4)ez-axis.

The gM2S proceeds in similar fashion to the M2S. The first step is to find an echo
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number n = n∗ satisfying:

n∗ × θgM2S ≈ π mod 2π, (3.24)

to utilize equation 3.21. The effective propagator for the n∗-fold application of the gM2S

echo is then approximately given by the following expression

Un
∗

SE(τgM2S, y) ≈ in∗Φ12(−n∗τgM2SωJ/2)Φ34(n∗τgM2SωJ/2)R12
y (π/2)R12

z (π)R34
z (n∗π).

(3.25)

The effective propagator for an n∗-fold gM2S echo is therefore identical (up to some

phase) to an n∗-fold M2S echo. The concatenation of elementary gM2S events is however

slightly different to the M2S sequence. An idealised sequence of events for the gM2S is

illustrated in figure 3.4.

The gM2S sequence starts by exchanging the states |1〉 and |2〉. The pulse element block

that achieves this transformation is indicated in figure 3.4 a). The exact transformation

of block a) is given by the following expression

UagM2S = Un
∗

SE(τgM2S, y)−Ry(π)− Un∗SE(τgM2S, y)

= Un
∗

SE(τgM2S, y)− iR12
z (π)R34

z (π)− Un∗SE(τgM2S, y).
(3.26)

Making use of equation 3.25 the propagator for block a) may be expressed as follows:

UagM2S =

in
∗
Φ12(−n∗τgM2SωJ/2)Φ34(n∗τgM2SωJ/2)R12

y (π/2)R12
z (π)R34

z (n∗π)

iR12
z (π)R34

z (π)

in
∗
Φ12(−n∗τgM2SωJ/2)Φ34(n∗τgM2SωJ/2)R12

y (π/2)R12
z (π)R34

z (n∗π).

(3.27)

After some manipulation one may express the propagator for block a) in a slightly more

intuitive form as shown below

UagM2S ≈ Φ12(π)Φ34(−π/2)Φ12(−n∗τgM2SωJ)Φ34(n∗τgM2SωJ)σ12R
34
z (π), (3.28)

where the symbol σ has been used to indicate a state permutation to avoid confusion

with spin permutation operators (usually denoted by P ).

Block a) finishes by a suitable phase evolution step. It is difficult to see the immediate

necessity for this step, but for now the following idealised phase evolution operation will

be inserted

UφgM2S = Φ12(α)Φ34(β). (3.29)
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Figure 3.4: Illustration of the gM2S pulse sequence with corresponding action onto
the Bloch sphere starting from Ix = I23

x . The gM2S sequence may be analysed by
following the dynamics of the {1, 2} and {3, 2} Bloch spheres simultaneously. a) The
first part of the gM2S sequence performs an exchange of the states |1〉 and |2〉. The
orientation of the top Bloch vector is flipped, whereas the orientation of the bottom
Bloch vector remains unchanged. The exchange is not pure and adds a phase factor to
both states. The phase factor is compensated for by an additional evolution period τev.
b) A (π/2)x exchanges the states |2〉 and |3〉. c) An additional gM2S echo-block rotates
the Bloch vector in the {1, 2} subspace. This transformation takes the bottom Bloch
sphere {3, 2} to a {1, 2} Bloch sphere copy. Assuming a perfect phase compensation in
the free evolution part of a) the two Bloch vectors end up in the transverse plane with
opposite orientation. The resulting density operator in combination with its adjoint
are easily shown to correspond to pure I12

z or singlet-order.

Phase evolution is followed up by a single (π/2)x-pulse. For the current choice of basis

the propagator for block b) takes a particular simple form

Ub
gM2S = Φ23(π/2)σ23, (3.30)

resulting in the exchange of states |2〉 and |3〉 with an additional (π/2) phase shift. The

last block of the gM2S sequence consists of an n∗-fold gM2S echo

U c
gM2S = in

∗
Φ12(−n∗τgM2SωJ/2)Φ34(n∗τgM2SωJ/2)R12

y (π/2)R12
z (π)R34

z (n∗π). (3.31)
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The idealised propagator for the gM2S sequence is therefore given by the following

expression

U ideal
gM2S = U c

gM2SU
b
gM2SU

φ
gM2SU

a
gM2S. (3.32)

The action of the total gM2S propagator onto the initial density operator ρ(0) = 1
2Ix

reduces to a simple expression

ρgM2S =
1

2
(U ideal

gM2S)Ix(U ideal
gM2S)† =

1

2
(U ideal

gM2S)I23
x (U ideal

gM2S)†

= − sin(α− β − 2n∗ωJτgM2S)I12
z − cos(α− β − 2n∗ωJτgM2S)I12

y .
(3.33)

An appropriate operator to measure the amount of singlet-order in a two-spin-1/2 system

is given by the following expression

QSO = −I1 · I2 = I12
z +

1

4
(112 − 134). (3.34)

The amount of singlet-order contained within the density operator ρgM2S is then calcu-

lated as follows:

qSO =
(QSO|ρgM2S)

(QSO|QSO)
= −2

3
sin(α− β − 2n∗ωJτgM2S). (3.35)

The necessity for the phase evolution step is now apparent. Without phase compensa-

tion the singlet-order amplitude qSO would be limited by the product (4πJn∗ × τgM2S).

There is however no guarantee that this product would maximise/minimise the sine

function.

Assuming perfect phase compensation for the moment the maximum achievable singlet-

amplitude for the gM2S sequence equals the theoretical maximum of qmax
SO = ±2

3 [120].

In an actual experiment however the ideal phase propagator is replaced by a free-

evolution period

UφgM2S 7→ U0(τev) (3.36)

and a suitable evolution delay τev. Determination of the correct evolution delay is not

trivial, but may be done under the assumption that the product of the echo number n∗

and the gM2S angle θgM2S are exactly equal to π:

n∗ × θgM2S = π. (3.37)

The singlet amplitude qSO under the experimental propagator

U exp
gM2S = U c

gM2SU
b
gM2SU0(τev)Ua

gM2S (3.38)

is then given by

qSO =
2

3

(
sin(4πJn∗τgM2S)(∆2 + J2 cos(ωeτev))

(ωe/2π)2
+
J cos(4πJn∗τgM2S) sin(ωeτev)

ωe/(2π)

)
.

(3.39)
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and the optimal evolution delay τ∗ev may be shown to equal

τ∗ev =

ω−1
e tan−1(+Jωe/(2π) sin(4πJn∗τgM2S),+(ωe/2π)2 cos(4πJn∗τgM2S)) + 2πm

ω−1
e tan−1(−Jωe/(2π) sin(4πJn∗τgM2S),−(ωe/2π)2 cos(4πJn∗τgM2S)) + 2πm.

.

(3.40)

In practice however, the evolution delay τ∗ev should always be subjected to experimental

optimisation since the condition n∗ × θgM2S = π is rarely fulfilled.

To illustrate the optimality of the gM2S sequence figure 3.5 shows numerical optimisa-

tions of the transformation efficiency from transverse magnetisation to singlet order and

back to transverse magnetisation (〈Ix → SO → Ix〉) as a function of the mixing angle

θmix. Similar to the maximum singlet amplitude qmax
SO the transformation amplitude

〈Ix → SO→ Ix〉max is bounded by ±2
3 .

Figure 3.5: Numerical optimisation of the M2S (red) and gM2S (black) pulse sequence
for transformation of transverse magnetisation to singlet order back to transverse mag-
netisation. The scalar coupling constant of the system was chosen to equal J = 100 Hz
and the mixing angle θmix was discretised in steps of 0.5 degrees. For the M2S sequence
the optimal echo delay was determined with the range τ1 ∈ [0.8×τM2S, 1.2×τM2S]. The
optimal echo number was determined by equation 3.19. For the gM2S sequence optimal
delays were determined within the range τ1 ∈ [0.8×τgM2S, 1.2×τgM2S], τ2 ∈ [0, 2π

ωe
]. The

echo number n was calculated according to equation 3.24. The dashed lines indicate
the validity range of the M2S (θmix ∼ 47◦) and of the gM2S sequence (θmix ∼ 67◦).

Within the validity range of the gM2S, which is roughly given by θmix ∈ (0◦, 67◦], the

transformation efficiency 〈Ix → SO → Ix〉 remains reasonably close to the theoretical

maximum. Slight fluctuations are expected due to the constraint of n∗ being an integer.

For mixing angles exceeding ∼ 67◦ the optimal evolution delay τgM2S becomes imaginary

and the strategy of the gM2S sequence invalid. Systems with such large mixing angles
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classify as inequivalent spin systems. Singlet excitation in this regime is well covered by

other techniques [100, 105].

3.2.2 A simple example

The efficiency of the M2S sequence drops off with increasing ∆ and reaches the ”worst”

case scenario when the scalar coupling constant equals the chemical shift difference

(J = ∆). In this regime the M2S parameters are as follows:

τM2S =
1

2
√

2J
and θM2S|J=∆ = π. (3.41)

It is thus impossible to choose an echo-number n that generates an effective (π/2)12
x -

rotation in the {1, 2} subspace.

For the gM2S sequence the case of (J = ∆) represents in some way the ”best” case

scenario. The effective rotation angle θgM2S is given be the expression below:

τgM2S =
1

4
√

2J
and θgM2S|J=∆ = π/2. (3.42)

It follows that only two gM2S echoes (n∗ = 2) are necessary to generate an effective

(π/2)12
y -rotation in the {1, 2} subspace and the optimal evolution delay τ∗ev takes the

form

τ∗ev =
tan−1(

√
2 cot(

√
2π))

2
√

2Jπ
(3.43)

Substitution of the expressions above into equation 3.39 shows that efficiency of the

gM2S sequence in the intermediate case is sufficiently close to the theoretical maximum

qSO ≈ 2/3. (3.44)

A graphical representation of the gM2S pulse sequence for J = ∆ is illustrated in figure

3.6. In contrast to the conventional M2S sequence the gM2S does have a simple geometric

representation [107].
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Figure 3.6: Geometric representation of the gM2S pulse sequence on a unit-sphere.
The scalar coupling and chemical shift difference of the two spins where chosen to be
equal (J = ∆ = 10 Hz). The initial density operator consisted of pure x-magnetisation:
ρ(0) = 1

2Ix = I23
x . a) As explained in the main text, the first part of the gM2S sequence

exchanges states |1〉 and |2〉. On the Cartesian unit sphere this is noticeable by the
decrease (blue) and increase (red) of the vector norm in the {2, 3} and {1, 3} subspace,
respectively. The system eventually arrives at I23

y rather than I23
x due to the additional

phase evolution step. b) The (π/2)x-rotation exchanges states |2〉 and |3〉 and adds an
additional phase factor. This takes the operator I23

y to −I12
x into a different subspace.

Here the gM2S echoes can be understood as follows. The free evolution period of the
system is interrupted by a (π)z-rotation that reflects the projection in the xy-plane of
the unit vector. In this way the unit vector traverses downwards towards −I12

z .

3.2.3 Experimental demonstration

To compare the performance of the gM2S and M2S sequence singlet excitation has been

performed for the 13C pair in 13C2-labeled 1-methoxy-6-ethoxy-hex-3-yne (compound I)

and for the central 1H pair in tert-butyl propyl maleate diester (compound II). Chemical

structures for I and II are shown in figure 3.7. Residual protons have been replaced by

deuterons to reduce dipolar relaxation contributions from nearby protons.

Compound I has been thoroughly studied previously and represents the nearly equiva-

lent case [121]. Its NMR parameters are summarised in table 3.1. Compound II displays

a higher degree of asymmetry introducing a noticeable difference in the resonance fre-

quency of the two protons. Table 3.1 indicates that II displays a mixing angle of ∼ 39◦ at
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Figure 3.7: Chemical structures of 1-methoxy-6-ethoxy-hex-3-yne (I) and tert-butyl
propyl maleate diester (II). Highlighted atoms for I indicate 13C positions. Protons
not shown have been replaced by deuterons.

a magnetic field strength of 9.4 T and therefore falls into the intermediate regime [110].

compound I compound II

nucleus 13C 1H

J12 [Hz] 171.0 12.0

∆ [ppm] 0.14 2.4× 10−2

θmix [deg] ∼4.7 ∼38.7

Table 3.1: NMR parameters and relaxation time constants for compounds I and II
at 9.4 T.

The general experimental strategy is indicated in figure 3.8 (top). Singlet order is excited

in block A→ via either M2S or gM2S. The arrow indicates chronological application of

the pulses from left to right. Excitation is followed up a singlet filtration step within

Block B. The de-excitation of the singlet order is achieved via block A←. Here the

arrow indicates chronological application of the pulses from right to left. For the inter-

mediate case an additional filtration block C is added to remove any multiple-quantum

coherences generated during the de-excitation step. In contrast to the previous section

the optimal evolution delays τgM2S and τev are being replaced by the delays τ1 and τ2.

These are further subjected to experimental optimisation to compensate for finite pulse

duration and uncertainty in the spin system parameters.
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Figure 3.8: top) General pulse sequence scheme consisting of blocks A→, B, C, A←.
Blocks A→ and A← represent singlet excitation and de-excitation, respectively. Arrows
indicate application of RF pulses from left to right or right to left. Singlet filtration
occurs within B. Block C is reserved for additional signal editing if necessary. A)
Singlet excitation schemes for the M2S and gM2S pulse sequence. B) Singlet filtration
via a sequence of rf and gradient pulses. The angle θ is given by the magic angle
∼ 54.7◦ [122]. C) Undesired artifacts after the de-excitation step may be filtered by
application of gradient based z-filters [22].
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The synthesis of compound I is described in reference 121. A total amount of 20 mg of

compound I was dissolved in 0.5 mL deuterated methanol to reach a concentration of

200 mM. The resulting sample was subsequently degassed by several freeze-pump-cycles.

Similarly the synthesis of compound II is described in reference 110. Experiments were

performed on a degassed 5 mM solution in deuterated chloroform. The degassing pro-

cedure consisted again of several freeze-pump-cycles. The efficiency for singlet order

excitation in compounds I and II employing experimentally optimised M2S and gM2S

pulse sequences is shown in 3.9.

Figure 3.9: Performance comparison between M2S and gM2S for compounds I and
II. The relevant spectral regions are highlighted, respectively. Pulse acquire spectra
are given as references. Spectra were acquired using a basic two-step phase cycle and
averaged over two transients. compound I) Experimental optimisation suggested the
following evolution delays and echo numbers: τM2S = 1.38 ms, nM2S = 12, τgM2S = 1.33
ms, τev = 1.29 ms and ngM2S = 19. compound II) Experimental optimisation suggested
the following evolution delays and echo numbers: τM2S = 15.4 ms, nM2S = 10, τgM2S =
14.6 ms, τev = 4.2 ms and ngM2S = 2.

Not too surprisingly M2S and gM2S display similar performance in the near-equivalence

regime in which both transfer strategies are applicable. Integration of the resulting

spectra and comparison with the pulse acquire reference indicates that both sequences

preserve approximately ζIM2S = ζIgM2S ≈ 42% of the initial magnetisation. This is less

than the theoretical maximum for the passage of transverse magnetisation through sin-

glet order and back to transverse magnetisation: 〈Ix → SO → Ix〉max = 2
3 [120]. A

possible explanation are short coherence lifetimes caused by the nearby deuterons. In

that case some of the magnetisation is lost before it may be converted to long-lived

singlet order.

Differences in performance for the M2S and the gM2S should be expected as the system

becomes less equivalent. As figure 3.9 shows for compound II the M2S sequence seems to
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perform poorly and the outer peaks display a 180◦ phase shift with respect to the inner

transitions. This is possibly due to excitation of unwanted single-quantum coherences

in the reconversion step. Such artifacts could possibly be removed using a conventional

z-filter [22].

To ensure a fair efficiency comparison between M2S and gM2S, the absolute value of

the relevant spectral region was integrated: In this case the M2S sequence preserves

approximately ζIIM2S ≈ 23% of the transverse magnetisation whereas the gM2S preserves

roughly ζIIgM2S ≈ 52%. For this particular model system the gM2S therefore performs ap-

proximately twice as well as the M2S sequence and is reasonably close to the theoretical

maximum.

3.3 Singlet mediated double quantum excitation

Double quantum (DQ) excitation has been an integral part of NMR for several decades [97,

123–125]. In general double quantum techniques are used to reduce spectral complexity.

This is achieved by exploiting the rotational properties of multiple quantum coherences.

These transform irreducibly under elements of the rotation group SO(2). As a conse-

quence signal components originating from DQ terms may be selectively filtered out by

phase cycling techniques [117, 126–129].

In the 80s, Ad Bax et al. proposed the so-called INADEQUATE experiment (see figure

3.10). The INADEQUATE experiment is designed to suppress signals originating from

single spin-species and to observe DQ terms originating from scalar coupled spin-pairs.

This makes the INADEQUATE experiment interesting for singlet NMR applications.

Here one often faces a similar situation. Selective isotope labelling can be complicated

and initial experiments are often performed on natural abundance material [130–132].

Interpretation of the results is simplified by filtration of signals originating from the

singlet pair and other components. Existing methods to this problem are based on

pulsed field gradients or phase cycling techniques [122, 130, 133, 134].

The idea of pulsed field gradient methods is to construct a physical realisation of the

SO(3) group average. The SO(3) group average projects the system onto the fully

symmetric representation, which for NMR purposes can be equated with the singlet-

state [129]. This is done by insertion of suitable combinations of radio-frequency pulses

and pulsed field gradients into the pulse sequence [122].

Isotropic filtering on the other hand refers to singlet-filtration via phase cycling tech-

niques [133, 134]. Similar to pulsed field gradient methods isotropic filtering requires

modification of the original sequence by insertion of new pulse elements. The phases are

related to the positions of the polyhedra-vertices [134, 135].

In both cases, the original pulse sequence has to be modified by insertion of additional
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pulse elements and the efficiency of the filtration step depends upon pulse performance.

Additionally polyhedral phase cycles tend to take a long time. Even the simplest cycle

requires at least 12 steps to be completed.

This chapter takes inspiration from the INADEQUATE experiment and extends its ap-

plicability to strongly coupled systems. In its original formulation the INADEQUATE

experiment was aimed towards weakly coupled spin systems. In strongly coupled spin

systems however, the DQ excitation time for INADEQUATE sequence becomes im-

practically long. To overcome this problem an alternative DQ excitation scheme is

presented. The excitation time for the presented scheme will be shown to be shorter by

a factor ∼ J/∆.

Figure 3.10: Schematic representation of the INADEQUATE pulse sequence. The
INADEQUATE pulse sequence is subdivided into three parts (vertical lines). These
blocks constitute the phase cycle. Pulse elements are abbreviated by (θ)Φ

φ , where θ
represents the flip angle, φ the base phase and Φ the additional phase shift due to the
phase cycle. The receiver with its phase is indicated by a bold vertical line. A standard
phase cycle for a DQ-filtered INADEQUATE experiment is given by the following set
of phases: ΦA = {0, 0, 0, 0}, ΦB = {0, 1

2π, π,
3
2π}, ΦC = {0, 3

2π, π,
1
2π}.

3.3.1 Double quantum excitation in equivalent spin systems

Extension of the INADEQUATE experiment to strongly coupled spin systems has re-

ceived little attention within the NMR community [136]. Reference [136] demonstrated

that the INADEQUATE experiment may be used to fully excite DQ coherences in

strongly coupled spin systems, but they did not provide an optimal evolution delay τ∗DQ

that maximises the DQ amplitude.

To discuss limitations of the INADEQUATE experiment it is however useful to derive

τ∗DQ. The problem may be stated by considering transformations from the following

initial to target state:

ρa =
1

2
Ix = I23

x , ρb = −I23
y =

i

2
Ry(π/2)(I1+I2+ − I1−I2−). (3.45)

For the INADEQUATE this transformation is realised by a suitable spin echo. The spin

echo may be analysed by considering the propagator at time points T = 2π
ωe

:

U0(
2π

ωe
) = Φ12(π − π

2

ωJ
ωe

)Φ34(
π

2

ωJ
ωe

) = Φ12(π)R14
z (−πωJ

ωe
)R23

z (−πωJ
ωe

), (3.46)
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which indicates the necessary z-rotation in the {2, 3} subspace to transform I23
x into I23

y .

The INADEQUATE propagator at multiple integers of the period is then given by the

the following expression

UDQ = U0(m
2π

ωe
)Rx(π)U0(m

2π

ωe
)

= Φ12(2mπ)Φ23(π)R14
z (−2mπ

ωJ
ωe

)R23
z (−2mπ

ωJ
ωe

).
(3.47)

A straightforward calculation then shows that the DQ amplitude picks up a sinusoidal

time-dependence

qDQ(m) =

(
ρb

∣∣∣∣UDQρaU
†
DQ

)
= sin

(
2πm(1− ωJ

ωe
)

)
. (3.48)

For strongly coupled spin systems it is permissible to replace m by ωet/2π. The optimal

evolution delay for a DQ excitation is then approximately given by the expression below

τ∗DQ ≈
J +
√
J2 + ∆2

4∆2
. (3.49)

The excitation delay τ∗DQ indicates that experimental realisation of the INADEQUATE

experiment becomes increasingly difficult for strongly coupled spin systems. As the

difference in chemical shift becomes smaller (or the J-coupling becomes larger) the

optimal delay becomes impractically long (τ∗DQ ∼
J

∆2 ).

This result can be rationalised as follows. In the limit of negligible chemical shift differ-

ence the free evolution propagator may be expressed as follows

U0|∆=0 = φ1(−3

2
Jπτ)φ234(

1

2
Jπτ). (3.50)

States |2〉 and |3〉 always remain in-phase and DQ excitation is impossible. For non-

vanishing ∆� J any accumulated phase difference originates from second order effects

due to the coupling of states |1〉 and |2〉.

Notice however that even in the case of vanishing chemical shift difference states |1〉 and

|3〉 run out of phase, where the phase difference builds up on the order of J .

This suggests the following idealised sequence of events for DQ excitation in strongly

coupled systems

UDQ = σ12φ
1(−3

2
Jπτ)φ234(

1

2
Jπτ)σ12. (3.51)

The physical realisation of these operations is easily implemented by borrowing results

from singlet NMR. The swap operation σ12 is given by the first block of the gM2S

sequence (see figure 3.4) and the phase propagator may be generated by a suitable free

evolution period. The phase accumulation step relies on the different eigenvalues of the

singlet and triplet states. For the remainder of this chapter we will therefore refer to
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this scheme as singlet-mediated-double-quantum (smDQ) excitation

UsmDQ = Ua
gM2SU0(τev)Ua

gM2S. (3.52)

In the strongly coupled limit the smDQ propagator may be expressed as shown below

UsmDQ ≈ Ua
gM2Sφ

1(−3

2
Jπτev)φ234(

1

2
Jπτev)Ua

gM2S

= Φ12(π)Φ34(−π/2)Φ12(−n∗τgM2SωJ)Φ34(n∗τgM2SωJ)σ12R
34
z (π)

−φ1(−3

2
Jπτev)φ234(

1

2
Jπτev)−

Φ12(π)Φ34(−π/2)Φ12(−n∗τgM2SωJ)Φ34(n∗τgM2SωJ)σ12R
34
z (π).

(3.53)

Making use of the commutation rules for single transition operators the above expression

may be put into a more concise form:

UsmDQ ≈ Φ12(2π)Φ12(−2n∗τgM2SωJ)Φ34(2n∗τgM2SωJ)Φ1234(ωJτev/4)σ12Φ1(−ωJτev)σ12

= Φ12(2π)Φ12(−2n∗τgM2SωJ)Φ34(2n∗τgM2SωJ)Φ1234(ωJτev/4)Φ2(−ωJτev).

(3.54)

Since the total propagator has been reduced to a product of phase operations the smDQ

amplitude may be calculated by collecting the accumulated phase of states |2〉 and |3〉

qsmDQ(τev) =

(
ρb

∣∣∣∣UsmDQρaU
†
smDQ

)
= − i

2
(exp(−i(2π − 2n∗τgM2SωJ − 3

4ωJτev)) exp(i(2n∗τgM2SωJ + 1
4ωJτev))− c.c)

= sin((4n∗τgM2S + τev)ωJ).

(3.55)

The extrema of the smDQ amplitude occur at τ∗ev = 2k+1
4J − 4n∗τgM2S, where the integer

k is chosen to ensure a positive evolution delay.

A qualitative comparison between the duration of the INADEQUATE sequence and

the smDQ sequence may be performed in the limit of nearly equivalent systems. The

evolution delays τDQ, τgM2S and the echo number n∗ are then approximated by the

expressions below:

τ∗DQ ≈
1

2

J

∆2
, τgM2S ≈

1

4J
, n∗ ≈ πJ2

2
√

2(J −∆)∆
=⇒ τ∗ev ≈

2k + 1− 4n∗

4J
. (3.56)

The smallest value that ensures positive values for τ∗ev is given by k = 2n∗ and the phase

evolution delay τ∗ev then reduces to 1/(4J). It follows that the ratio of the INADE-

QUATE duration and the smDQ duration is on the order of J
∆

TDQ

TsmDQ
=

2τ∗DQ

4n∗ × 2τgM2S + τ∗ev

≈
√

2

π

J

∆
∼ J

∆
. (3.57)
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For nearly equivalent spin systems the smDQ sequence should thus displays a much

shorter double quantum excitation time than the standard INADEQUATE sequence.

3.3.2 Experimental demonstration

A full implementation of the smDQ and INADEQUATE pulse sequences are indicated

in figure 3.11.

Figure 3.11: top) General refocused DQ excitation scheme. Arrows indicate appli-
cation of RF pulses from left to right or right to left. A) INADEQUATE and smDQ
pulse sequences. For nearly equivalent systems the optimal echo delay for the INAD-
EQUATE scheme is given by equation 3.49. For the smDQ scheme the optimal values
for τ1 and n may be determined from equation 3.22 and 3.24, respectively. The delay τ2
is approximately given by 1/(4J) in the nearly equivalent case. A sufficient DQ phase
cycle is given by: ΦA = {0, 0, 0, 0}, ΦB = {0, 1

2π, π,
3
2π}, ΦC = {0, 3

2π, π,
1
2π}.

In the previous section the smDQ sequence has been derived in the context of nearly

equivalent spin systems. As a consequence the identical sample of compound I that has

been used to perform the gM2S experiments has been used to experimentally demon-

strate the smDQ sequence. Experiments were performed at a magnetic field strength of



Chapter 3 Close to thermal equilibrium 115

16.44 T and a temperature of 300 K. The NMR parameters for compound I at 16.44 T

are summarised in table 3.2.

compound I J12 [Hz] ∆ [ppm] θmix [deg] T1 [s] T2 [s]

171 0.14 ∼8.2 6.43 293.6× 10−3

Table 3.2: NMR parameters for compounds I at a magnetic field strength of 16.44 T.

The relevant spectral region of the double quantum filtered INADEQUATE and smDQ

experiments are shown in figure 3.12. A pulse acquire spectrum averaged over four tran-

sients is given as reference.

Figure 3.12: Double quantum filtered carbon spectra for compound I. Double quan-
tum excitation has been performed using the smDQ sequence (blue) and the INADE-
QUATE sequence (red). A pulse acquire spectrum (black) is given as reference. Double
quantum filtered spectra were acquired using the schemes indicated in figure 3.11. The
pulse acquire spectrum was simply averaged over four transients. The optimal DQ
excitation time for the INADEQUATE was τDQ = 140 ms. The smDQ sequence used
evolution delays of τ1 = 1.35, τ2 = 1.35 and an echo number of n = 11.

Experimental optimisation indicated an optimal evolution delay of τDQ = 140 ms

for the INADEQUATE experiment. The smDQ experiment utilised evolution delays

τ1 = τ2 = 1.35 ms and an echo number of n = 11, which agrees with the gM2S experi-

ments (see figure 3.9). The total duration for the DQ excitation blocks are then given

by TDQ ∼ 280 ms and TsmDQ ∼ (8×n+1)τ1 ∼ 120 ms. As argued previously the smDQ



116 Chapter 3 Close to thermal equilibrium

sequence is expected to be faster than the INADEQUATE sequence for nearly equiva-

lent spin systems. For compound I the smDQ sequence is approximately 2 times faster.

Additionally the smDQ sequence displays a much higher transformation efficiency than

the INADEQUATE sequence. An integral comparison with the pulse acquire spectrum

shows that the smDQ sequence preserve 60 % of the total magnetisation, whereas the

INADEQUATE sequence preserves only 30 %. For nearly equivalent spin systems the

INADEQUATE is much more susceptible to relaxation effects due to relatively long

DQ evolution delays. Table 3.2 indicates that the transverse relaxation time constant

T2 for compound I equals approximately 300 ms. A substantial loss of magnetisation

during the DQ excitation period of 280 ms should be expected. The smDQ sequence on

the other hand achieves DQ excitation via a train refocusing pulses. These compensate

throughout the whole sequence for relaxation effects making the smDQ excitation more

reliable for spin systems with short relaxation time constants.
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Conclusions

This thesis studied particular aspects of dissipative and coherent dynamics of nuclear

spin ensembles.

In chapter 2 we have revisited the description of a spin ensemble in thermal contact with

its environment, which represents one of the oldest problems of magnetic resonance the-

ory. Early considerations on this matter by Bloch, Wangsness, Redfield and Abragam

led to what is nowadays known as semi-classical relaxation theory [28–30]. The main

result of their combined efforts was the so-called inhomogeneous master equation (IME)

suitable for the description of thermal experiments at the time. A closer look, how-

ever, shows that the semi-classical approach is only valid for systems remaining close to

thermal equilibrium (weak-order approximation) and therefore fails to describe thermal

equilibration of nuclear spin systems deviating strongly from their thermal equilibrium

position. A restriction which the early founders were fully aware of.

It is remarkable that it took almost 80 years of technical advancement to routinely gener-

ate spin configurations ranging outside the weak-order approximation [8–11, 16, 19, 43].

For the description of such systems chapter 2 described the reformulation of semi-

classical NMR relaxation theory within the Lindbladian formalism [26, 59]. The Lind-

blad formalism may be understood within a simple state transition picture and thus

provides a straightforward algorithm to correctly thermalise the relaxation superopera-

tor. A detailed comparison between the Lindblad formalism and existing thermalisation

methods revealed, that only the Lindblad formalism is capable of correctly taking the

environmental temperature dependence of the relaxation rate constants into account.

The necessity of the Lindblad formulation has been demonstrated experimentally by

studying the spin-isomer conversion process of fullerene-encapsulated water molecules [39,

81, 87, 88]. A technique known as bullet dynamic nuclear polarisation (DNP) has been

used to generate a highly non-equilibrium para fraction at ordinary temperatures [11, 39].
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The spin isomer conversion process involves the reorganisation of the non-magnetic sin-

glet populations and the magnetic triplet populations. This leads to an observable in-

crease in the samples magnetisation over time. It was shown that the IME is incapable of

describing the recovery dynamics appropriately. A reliable description of the relaxation

dynamics was only possible within the presented Lindblad formalism. And while we

have demonstrated the necessity of the Lindblad formalism for fullerene-encapsulated

water molecules, its applicability is by no means restricted to such model systems. Con-

tinuous developments in the field of hyperpolarised NMR have started to generate highly

ordered spin systems leading to significant signal enhancements [8–19].

The generation of hyperpolarised material, in form of parahydrogen for example, would

be rather useless without the necessary tools to transform it into observable magnetisa-

tion. In particular efficient conversion methods for singlet order are of great practical

interest. Singlet order displays remarkable relaxation properties and is often used to

”preserve” highly ordered states. A variety of such techniques has been developed in

the context of nuclear long-lived states [99, 100, 103, 105, 119]. Recently, singlet or-

der excitation in the intermediate regime has experienced increasing attention due to

continuous developments of field NMR cycling techniques [110–112].

Existing techniques however do not perform very well in the intermediate regime. Chap-

ter 3 has addressed this issue by providing a generalisation of the magnetisation-to-

singlet (M2S) pulse sequence which was originally developed for nearly equivalent spin

systems. The generalised-magnetisation-to-singlet (gM2S) provides a simple method for

optimal singlet order excitation in spin-1/2 pairs displaying a mixing angle up to ap-

proximately 66◦. The gM2S sequence should therefore prove to be useful for the study

of singlet order in intermediate systems.

The elementary building blocks of the gM2S sequence can in some way be understood as

logical gates that exchange particular angular momentum spin states. As such they are

easily visualised and readily incorporated into other pulse sequence schemes. Based on

the gM2S building blocks an efficient method for double quantum excitation in nearly

equivalent spin systems has been discussed in chapter 3. For nearly equivalent systems

the proposed singlet-mediated-double-quantum (smDQ) excitation scheme provides a

much more time efficient solution than conventional methods such as the INADEQUATE

sequence [123, 136]. The performance of the smDQ sequence has been demonstrated

experimentally in combination with a basic double quantum phase cycle. These types

of experiments may prove useful for the study of long-lived nuclear spin order which

often involve isotopic labeling. The smDQ sequence may be used to study natural

abundance material and offers an alternative to gradient based or polyhedral based

filtration schemes [122, 133, 134].
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A.1 Lindblad form

First consider the Fourier transformation of the unit-step function∫ ∞
−∞

h(t) exp (iωt)dt =

∫ ∞
0

exp (iωt)dt = πδ(ω)− i PV

(
1

ω

)
, (A.1)

where h(t) denotes the unit-step function and PV the Cauchy principal value.

The bath correlation functions are related to the spectral densities as follows:

〈BΛ′†
α′ (τ)BΛ

α (0)〉 =
1

2π

∫ ∞
−∞

KΛΛ′
αα′ (ω) exp(−iωτ)dω. (A.2)

The one-sided Fourier transformation of the bath correlation functions in equation 2.119

may then be expressed as shown below:∫ ∞
0
〈BΛ′†

α′ (τ)BΛ
α (0)〉 exp(iωτ)dτ =

1

2π

∫ ∞
0

∫ ∞
−∞

KΛΛ′
αα′ (ω

′) exp(i(ω − ω′)τ)dω′dτ

=
1

2π

∫ ∞
−∞

KΛΛ′
αα′ (ω

′)

∫ ∞
0

exp(i(ω − ω′)τ)dτdω′

=
1

2π

∫ ∞
−∞

KΛΛ′
αα′ (ω

′)

{
πδ(ω − ω′)− i PV

(
1

ω − ω′

)}
dω′

=
1

2
KΛΛ′
αα′ (ω)− i

2π

∫ ∞
−∞

KΛΛ′
αα′ (ω

′)PV

(
1

ω − ω′

)
dω′.

(A.3)

In a similar manner one can show the following:∫ 0

−∞
〈BΛ′†

α′ (τ)BΛ
α (0)〉 exp(iωτ)dτ =

1

2
KΛΛ′
αα′ (ω) +

i

2π

∫ ∞
−∞

KΛΛ′
αα′ (ω

′)PV

(
1

ω − ω′

)
dω′.

(A.4)
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The above representations of the one-sided Fourier transformation may then be substi-

tuted into equation 2.119.

The combination of the principal value leads to a commutator that is known as dynamic

frequency shift.

The decaying part is proportional to the spectral density Kαα′(ω). The minus sign pre-

ceding the sum of equation 2.119 and the factor of 1/2 are usually absorbed into the

definition of the Lindbladian resulting in the presented Lindblad equation.

A.2 Eigenoperators

The dipolar eigenoperators in the case of a homonuclear Zeeman interaction are sum-

marised in Table A.1. A generic eigenoperator is denoted by T
(ij)
km . Where the superscript

(ij) indicates angular momentum coupling of spins Ii and Ij resulting in a spherical ten-

sor operator of total angular momentum k and z-angular momentum m.

m\k 2 1

±2 1
2I
±
1 I
±
2 -

±1 ∓1
2

(
I±1 I2z + I1zI

±
2

)
∓ 1√

2
I±j

0 − 1
2
√

6

(
I+

1 I
−
2 + I−1 I

+
2 − 4I1zI2z

)
Ijz

Table A.1: Eigenoperators of ĤA for a homonuclear coupled spin-1/2 pair.

The dipolar eigenoperators in the case of a heteronuclear Zeeman interaction are sum-

marised in Table A.2. The eigenoperators are denoted by T
(ij)
k1k2m1m2

. For the heteronu-

clear case the superscript (ij) indicates the direct product of spherical tensor operators

of spins Ii and Ij with total angular momentum k1 and k2 and z-angular momentum

m1 and m2, respectively.

(m1,m2)\(k1, k2) (1,1) (1,0) (0,1) (0,0)

(±1,±1) 1
2I
±
1 I
±
2 - -

(∓1,±1) − 1
2
√

6
I∓1 I

±
2 - -

(±1, 0) ∓1
2I
±
1 I2z ∓ 1√

2
I±1 - -

(0,±1) ∓1
2I1zI

±
2 - ∓ 1√

2
I±2 -

(0, 0)
√

2
3I1zI2z I1z I2z -

Table A.2: Eigenoperators of ĤA for a heteronuclear coupled spin-1/2 pair.

Similarly one may define quadrupolar eigenoperators for the case that the dominant
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interaction is given by Zeeman contributions. The corresponding eigenoperators are

summarised in Table A.3. The generic eigenoperator takes the form T
(i)
2m.

m\k 2

±2 1
2I
±
i I
±
i

±1 ∓1
2

(
I±1 I1z + I1zI

±
1

)
0 1√

6
(3I1zI2z − 21)

Table A.3: Eigenoperators of ĤA = ω0Îz for quadrupolar interactions.

A.3 Longitudinal recovery for singlet-triplet-conversion

We briefly outline the derivation of equation 2.161. First we project out the population

block of the relaxation superoperator.[
Γ̂θLB

]
4×4

=

|S0〉 〈S0| |T+〉 〈T+| |T0〉 〈T0| |T−〉 〈T−|

−Σ1
1
2(1− κ)Rran

1 θ(−ω0) 1
2(1− κ)Rran

1
1
2(1− κ)Rran

1 θ(ω0)

1
2(1− κ)Rran

1 θ(ω0) −Σ2

1
10θ(ω

0)(2RDD
1

+ 5(1 + κ)Rran
1 )

2
5R

DD
1 θ(2ω0)

1
2(1− κ)Rran

1

1
10θ(−ω

0)(2RDD
1

+ 5(1 + κ)Rran
1 )

−Σ3

1
10θ(ω

0)(2RDD
1

+ 5(1 + κ)Rran
1 )

1
2(1− κ)Rran

1 θ(−ω0) 2
5R

DD
1 θ(−2ω0)

1
10θ(−ω

0)(2RDD
1

+ 5(1 + κ)Rran
1 )

−Σ4



,

θ(ω) = exp (−1
2ω

0βθ),

(A.5)

where Σj indicates the sum over all the other elements in one column.

To proceed it is advantageous to perform a change of basis. The transformation matrix

is given by the expression below

X =



1
2

√
3

2 0 0

1
2 − 1

2
√

3
− 1√

6
− 1√

2

1
2 − 1

2
√

3

√
2
3 0

1
2 − 1

2
√

3
− 1√

6
1√
2


. (A.6)
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To simplify notation we denote the transformed population block as follows

X−1

{[
Γ̂θLB

]
4×4

}
X =


0 0 0 0

0 σ22 0 σ24

0 0 σ33 σ34

σ41 σ42 σ43 σ44

 (A.7)

and enumerate the transformed populations:
P1

P2

P3

P4

 = X−1


|S0〉 〈S0|
|T+〉 〈T+|
|T0〉 〈T0|
|T−〉 〈T−|

 . (A.8)

To a good approximation the dynamics of P2 are decoupled from the dynamics of P4
0 0 0 0

0 σ22 0 σ24

0 0 σ33 σ34

σ41 σ42 σ43 σ44

 ≈


0 0 0 0

0 σ22 0 0

0 0 σ33 σ34

σ41 σ42 σ43 σ44

 , (A.9)

leading to the following set of equations

d

dt



P1(t)

P2(t)

P3(t)

P4(t)


=



0 0 0 0

0 σ22 0 0

0 0 σ33 σ34

σ41 σ42 σ43 σ44





P1(t)

P2(t)

P3(t)

P4(t)


. (A.10)

The solutions for P1(t) and P2(t) are easily found

P1(t) = P1(0), P2(t) = exp (σ22t)P2(0). (A.11)

The solution for P3(t) is formally given by

P3(t) = exp (σ33t)P3(0) + σ34

∫ t

0
exp (σ33(t− s))P4(s)ds. (A.12)

We interpret the variable (t− s) as a ”memory time” and perform a 0-th order Markov

approximation [137]

P3(t) ≈ exp (σ33t)P3(0) +
σ34

σ33
P4(t). (A.13)
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The dynamics for P4(t) then reduce to the following

d

dt
P4(t) =σ41P1(0) + σ42 exp (σ22t)P2(0)

+ σ43

{
exp (σ33t)P3(0) +

σ34

σ33
P4(t)

}
+ σ44P4(t),

(A.14)

which is easily solved.

The solution may then be transformed back into the original representation. Using

the appropriate initial conditions: P1(0) = 1
2 , P2(0) =

√
3

2 , P3(0) = 0 and P4(0) = 0

in combination with the high-temperature and fast-motion approximation results in

equation 2.161.
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