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Abstract. RC4(n,m) is a stream cipher based on RC4 and is designed
by G. Gong et al.. It can be seen as a generalization of the famous
RC4 stream cipher designed by Ron Rivest. The authors of RC4(n,m)
claim that the cipher resists all the attacks that are successful against
the original RC4. The paper reveals cryptographic weaknesses of the
RC4(n,m) stream cipher. We develop two attacks. The first one is based
on non-randomness of internal state and allows to distinguish it from a
truly random cipher by an algorithm that has access to 24·n bits of the
keystream. The second attack exploits low diffusion of bits in the KSA
and PRGA algorithms and recovers all bytes of the secret key. This attack
works only if the initial value of the cipher can be manipulated.
Apart from the secret key, the cipher uses two other inputs, namely,
initial value and initial vector. Although these inputs are fixed in the
cipher specification, some applications may allow the inputs to be under
the attacker control. Assuming that the attacker can control the initial
value, we show a distinguisher for the cipher and a secret key recovery
attack that for the L-bit secret key, is able to recover it with about
(L/n) · 2n steps. The attack has been implemented on a standard PC
and can reconstruct the secret key of RC(8,32) in less than a second.

Keywords: RC4(n,m) Stream cipher; Cryptanalysis; Key Recovery At-
tack; Distinguishing Attack; RC4-like cipher; Weak Keys; Weak States

1 Introduction

The well-known AES block cipher standard is widely used to protect com-
munication. However, in many applications, where computing resources
are limited, cryptographic algorithms of choice are stream ciphers. They



offer high speed and can be adapted to specific implementation require-
ments. The cryptographic community has assisted the business and in-
dustry alike by providing a wide range of stream ciphers. One of such
ciphers is RC4 designed in 1987 by Ron Rivest. The cipher uses a large
internal state that is stored in an array of words. Because of a simplicity
of design and a high speed offered by software implementation, the cipher
has gained popularity in many internet applications such as TLS/SSL and
WEP.

In fact, RC4 is a family of stream ciphers indexed by an integer n
that indicates the size of the word in bits. The internal state is an array
S of 2n words. RC4 consists of two algorithms. The first is a key schedul-
ing algorithm (KSA) and it initialises the internal state. The second is
a pseudo-random generation algorithm (PRGA). It generates the output
keystream. The KSA algorithm takes an array S and a secret key K and
produces the initial state or a secret permutation of {0, 1, 2, . . . , 2n − 1}.
The PRGA algorithm accepts the initial state S and produces a sequence
of words - one word per clock. A popular instantiation of RC4 is for
n = 8. In this instantiation, words are 8-bit long and the array S con-
tains 28 = 256 entries. The security of RC4 has been extensively studied.
The key schedule of RC4 is examined in [3, 13, 12, 16, 18, 21]. Distinguish-
ing attacks are presented in [4, 5, 12, 14, 19]. The internal state recovery
attacks are investigated in [11, 15].

When the parameter n is bigger, for instance n = 32, the implemen-
tation requires more memory and, in general, the cipher becomes slower.
On the positive side, one would expect that the cipher is going to be
stronger. This line of investigations resulted in several generalizations of
RC4-like stream ciphers, see for example RC4A [18], VMPC [23], NGG
[17] and RC4(n,m) [6]. Our attention is concentrated on the Gong et al.
design given in [6]. In this cipher the state array S no longer consists of 2n

entries. Consequently the state is no longer a permutation. This cipher
is called RC4(n,m), where the state array consists 2n entries (words)
and each word is m-bit long (n < m). For a 32−bit architecture, the
recommended parameter values are n = 8 and m = 32.

RC4(n,m) is a fast synchronous stream cipher proposed by Guang
Gong, Kishan Chand Gupta, Martin Hell and Yassir Nawaz in [6].RC4(n,m)
produces m bits per clock. The main idea to design RC4(n,m) is to ex-
ploit the 32-bit and 64-bit processor architectures without increasing the
size of the table significantly. The internal state size of RC4(n,m) is
(2nm) + 2n + m bit long, since it consists of an array of 2n entries and
each entry takes m bits , one m-bit variable k and two n-bit indexes i and



j. Note that the key length is proposed up to 8192 bits but the security
is provided for keys of size up to 256 bits.

1.1 Previous Works

RC4(n,m) has been proposed based on a 32-bit RC4-like stream cipher
[17] by Y. Nawaz, K.C. Gupta, and G. Gong called NGG Stream Cipher
to improve the security of the cipher against the proposed attacks. H. Wu
proposed a distinguishing attack on NGG [22] which could distinguish
the keystream outputs from random sequences with about 3200 output
bits. Also, In [8], A new distinguisher and a key recovery attack on the
cipher has been proposed. The attack can distinguish the cipher from a
random stream using only the first keystream word. Attacker also can
recover the secret key by exploiting leaked information from the first few
kilobytes of the keystream output. But the story about the new version
calledRC4(n,m) or GGHN is different 1. Note that all the above proposed
attacks on NGG are not applicable on RC4(n,m).

To our best knowledge, there are few attacks on RC4(n,m). Paul and
Preneel have proposed a distinguishing attack that needs 232.89 output
keystream words to distinguish the cipher from a random source [19].
The second attack [20] proposed by Tsunoo, Saito, Kubo, and Suzaki is a
distinguishing attack, which uses the bias along with the first two words of
a keystream associated with approximately 230 secret keys. In the attack,
the authors explore the correlation between indices and entries of the
array. The third attack proposed by Kircanski and Youssef [9] is a fault
attack, which extracts the internal state of the cipher by applying induced
faults. The attack also needs 2 keystream words for each of 257 × 255
induced faults and approximately 257 non-faulted keystream words.

1.2 Our Contributions

We study security of RC4(n,m). We will show several weaknesses in
the initialization part and the update function of the algorithm. Two
distinguishing attacks are described. The first attack takes advantage of
the bias of least significant bits of the internal state. The idea of this attack
is similar to [19, 20] but we apply it to the key scheduling algorithm. The
second attack is based on truncated differentials and requires 256 output
words only. Finally, we will present a key recovery attack, which is able

1 NGG (or NGG(n,m)) is a previous version of RC4(n,m) (or GGHN, GGHN(n,m)).
In this paper, we analyse the security of RC4(n,m) (GGHN).



to find 256-bit secret keys with time complexity about 213 algorithm
operations for RC4(8, 32). The current state of analysis of RC4(n,m)
is summarized in Table 1.

Table 1. Comparison between the previous attacks and our proposals

Attack type The result Date Complexity Time Com-
plexity

Comments

1 Correlation
attack [19]

Distinguishing 232·82 output words
of a single stream

O(232·82) Attack is
applied on
RC4(8,32)

2 Correlation
attack [20]

Distinguishing 230 first two words of
keystreams

O(230) Attack is
applied on
RC4(8,32)

3 Fault attack
[9]

Internal state
Recovery

2 keystream words
for each of 257 × 255
induced faults
and approximately
257 non-faulted
keystream words

≈O(216)+
negligible
additional
complexity
to perform
attack

Attack is
applied on
RC4(8,32)

4 our proposed
Correlation
attack

Distinguishing O(24·n) O(24·n) Attack is
applied on
RC4(n,m)

5 our proposed
Differential
attack

Distinguishing 2n output words cor-
responding to two
initial vectors

O(2n+1) Attack is
applied on
RC4(n,m)

6 our proposed
Differential
attack

Secret Key Re-
covery

2n×2n output words
corresponding to two
initial vectors to re-
cover each key byte

O((L/n) ·
2n) where
L is secret
key length
in bit

Attack is
applied on
RC4(n,m)

In application protocols like WEP(Wired Equivalent Privacy), there
is a session-dependent initial value that needs to be introduced as input
to the stream cipher to produce different pseudo-random streams for dif-
ferent sessions. In these protocols, the attacker can often manipulate the
initial value, as for example in the attack [3] on RC4 used in the WEP
protocol, and exploit a chosen IV attack model to investigate the secu-
rity of the scheme. Consequently, for such applications, the stream cipher
needs to be designed to accept initial value inputs, and its security needs
to be assessed with respect to initial value inputs chosen by the attacker.
RC4(n,m) also uses three input parameters (Figure 1): Secret Key, ini-
tial vector, and initial value (to initialise internal state before applying



Key scheduling Algorithm). From a practical point of view, the system
designer may exploit all the features of the crypto-algorithm to enhance
better efficiency. In this case, using initial value and initial vector as vari-
able input parameters to differentiate applications and also to increase
the security level may seem to be reasonable in the first glance. We study
the extreme misuse of RC4(n,m) when the initial value is assumed to be
under the attacker control. The protocol initial value could be incorpo-
rated in two ways: either as the ”initial value” input to the KSA* module,
or as part of the secret key input (using a hash function) as the authors
of RC4(m,n) proposed. From the implementation point of view, the first
option might be tempting since it may be simpler to implement. For the
sake of clarity, we assume that the attacker is able to change the initial
value. In this case, we will prove the cipher is surprisingly insecure against
the distinguishing and key recovery attacks. We also note that the attacks
(5) and (6) in Table 1 are not applicable when the attacker is not allowed
to manipulate the initial value.

This paper is organized as follows. Section 2 provides a description
of initialisation and key generation part of the scheme. Section 3 is the
main part of the work, which contains our distinguishing and key recovery
attacks.

2 Description of RC4(n,m) Stream Cipher

The RC4(n,m) stream cipher uses the building blocks defined for the
RC4 stream cipher. These blocks, however, are modified by the authors.
We first describe the original key scheduling algorithm of RC4 and then
we give the modified algorithm of RC4(n,m). A general illustration of
RC4(n,m) is presented in Figure 1.

Fig. 1. RC4(n,m) Stream Cipher Scheme



– KSA (key scheduling algorithm of RC4) – this algorithm takes as an
input a secret key of a size between 40 and 256 bits and outputs the
internal state 〈S〉, where S = (S[0], . . . , S[255]) is a 256-byte sequence.
The algorithm is described in Figure 2.

1 Input: Secret Key Key
2 Output: Internal State 〈S, i, j〉
3 for i = 0 to 255
4 S[i] = i;
5 end for
6 j = 0;
7 for i = 0 to 255
8 j = (j + S[i] +Key[i mod l]) mod 256;
9 swap(S[i], S[j]);

10 end for

Fig. 2. KSA Function of RC4

The algorithms of RC4(n,m) are called KSA* and PRGA* to dis-
tinguish them from KSA and PRGA, respectively. To recall, the pa-
rameters of RC4(n,m) are defined as follows. The size of the state
array is N = 2n and each entry of the array holds m bits. Entries are
going to be called words. We define a constant M = 2m. For example,
RC4(8, 32) means that the size of the array S is 256 and each entry
of S holds 32-bit words.

– KSA* (key scheduling algorithm of RC4(n,m)) – the algorithm takes
a secret key2 of a size between 40 and 256 bits and the state array as
the input and returns an updated internal state stored in the array S
and variable k. The full details are given in Figure 3.

2 The designers suggest using a Hash Function to generate Key array from Secret Key
and initial vector to prevent possible attacks on KSA*



1 Input: initial values ai, Secret Key and initial value
Key[j] 0 ≤ i < N, 0 ≤ j < l

2 Output: Internal State 〈S〉, variable k
3 for i = 0 to N − 1
4 S[i] = ai;
5 end for
6 j = 0;
7 k = 0;
8 Repeat r times;
9 for i = 0 to N − 1

10 j = (j + S[i] +Key[i mod l]) mod N ;
11 swap(S[i], S[j]);
12 S[i] = S[i] + S[j] mod M ;
13 k = k + S[i] mod M ;
14 end for

Fig. 3. KSA*: The Key Scheduling Algorithm of RC4(n,m)

– PRGA* (Pseudo-Random Generation Algorithm) – it takes the pair:
the internal state 〈S〉 and variable k as the input and generates output
keystream words. The pseudo-code of the algorithm is given in Figure
4.

1 Input: Internal State 〈S〉, variable k
2 Output: Output (Keystream words)
3 i = 0;
4 j = 0;
5 while ()
6 i = i+ 1 mod N ;
7 j = (j + S[i]) mod N ;
8 k = (k + S[j]) mod M ;
9 output = (S[S[i] + S[j] mod N ] + k) mod M ;

10 S[S[i] + S[j] mod N ] = S[i] + k mod M ;

Fig. 4. PRGA*: Pseudo-Random Generation Algorithm of RC4(n,m)

2.1 Notations

[X]0 is the least significant bit of the word X.
[X]i,...,j are (j−i+1) consecutive bits of word X started from the position
of i− th to j − th.



3 Cryptanalysis of RC4(n,m) Stream Cipher

In this section, we prove that RC4(n,m) is not resistant against distin-
guishing and key recovery attacks. First, we are going to identify weak-
nesses in the KSA* algorithm. Next, we exploit these weaknesses and
show how to distinguish the output stream of RC4(n,m) from a random
cipher. The data complexity of the attack is 256 output words. Then, we
propose a key recovery attack based on truncated differentials. The time
complexity attack to recover a 256-bit secret key of RC4(8, 32) is about
213 algorithm operations.

In some applications, one may design a cryptosystem in which the
initial values are varied in different sessions. At first glance, it looks like
this may increase the security level of the cipher as the attacker cannot use
the results from the analysis of previous sessions generated for different
initial values. In the second distinguishing attack and key recovery attack,
we assume that the initial value can be modified and selected as in the
chosen IV attack. We show that the cipher is susceptible to this kind of
attacks.

3.1 Weaknesses of RC4(n,m)

Before describing our attacks, we discuss properties of the RC4(n,m)
that underpin our attacks.

Non-Randomness Property of Internal States: The array S has
256 elements whose lengths are 32 bits and the pointer j takes one byte.
This means that if we choose two indices i, j ∈ {0, 1}8 at random, then the
probability Pr(S[i] = S[j]) = Pr(i = j) = 2−8 assuming that S[i] 6= S[j]
for i 6= j, while for two random 32-bit words, this probability is 2−32.
Now, we can prove that for every element in the array S after applying
initialization algorithm, Pr([S[i]]0 = 0) = 0.5 + 2−8, where 0 < i < 256.

Weak Keys: There are several classes for secret keys that generate in-
ternal states with short cycles. The final internal states (after a run of
KSA* but before an execution of PRGA*) can be computed using a cer-
tain relation among the states. For example, in the following, we show
that the state S[0] in the array moves and all other states swap with this
state only.

Example 1. Let internal states of algorithm be equal to the values sug-
gested in the appendix A in [6], and the secret key is 0X0101 ... 01.
According to the KSA algorithm, we can write the following relations:



i = 0, j = 0, k = 0 i = 1, j = 1, k = S[0] i = 2, j = 2, k = S[0] + S[1]
j = 0 + S[0] +K[0] = 1 j = 1 + S[1] +K[1] = 2 j = 2 + S[2] +K[2] = 3
Swap(S[0], S[1]) Swap(S[1], S[2]) Swap(S[2], S[3])
S[0] = S[0] + S[1] S[1] = S[1] + S[2] S[2] = S[2] + S[3]
k = 0 + S[0] k = S[0] + S[1] k = S[0] + S[1] + S[2]

The above relations show that in RC4(n,m), there are Finney states
[7] that swap S[i] with S[i+ 1] and both indices i and j are incremented
by 1. Other weak keys can be found using probabilistic relations. Note
that other weaknesses have been deeply investigated in [1] recently.

Weak States: We are going to find several initial states, for which the
outputs will be distinguishable from a truly random source. The main
weak point, which we exploit here, is a low diffusion of bits in KSA*.

1. For an arbitrary secret key, if the least significant bits of initial states
are equal to zero, then the least significant bits of keystreams will be
zero with the probability one. We can extend this observation for 2,
3, ..., 32-bit of LSB of initial states.

2. Assume that

S[i] (mod 2n) = 1−K[i (mod l)]

and

S[0] (mod 2n) = −K[0]

then j will be equal to i in the first round. It means that after one
round, all the internal states will be even (the least significant bits of
internal states will always be zero).

3. Suppose that K[0] is odd and K[1] = K[0] − 2. Also assume that
(S[0]) mod 2n = (1 − K[0]) mod 2n, S[1] is even, (S[2]) mod 2n =
(2−K[2]) mod 2n and (S[i]) mod 2n = 1−K[i mod l] 3 < i < 255,
then the internal states after one round will be even. In other words,
the least significant bit of keystreams will be always zero.

Low Diffusion Property: Clearly, the update function of RC4(n,m) is
like a T-function [10]. It means that the i-th bit of output depends on the
i-th bit of input and all less significant bits (i.e. bits i−1, . . . , 0) of the in-
put. This is a serious weakness for RC4(n,m), because if the cryptanalyst
changes the most significant bits of initial values (ai) in KSA*, then only
the most significant bits of keystreams will be changed (other bits will be



unchanged). In the RC4 initialization algorithm, all bytes of initial state
and secret key are involved to provide internal state as input for PRGA
to generate output keystream. This means that by complementing one bit
of initial state, all bits of output key streams will be changed with prob-
ability close to 1/2. In fact, this property called the avalanche criterion
is one of the most essential properties of a secure cipher. However, this
property has been confirmed only for the least significant bytes of initial
value array. In other words, if we change the I−th bit (32 > I ≥ 8),
then more significant bits i may change (i > I), while less significant bits
(with index i < I) are not going to change. This property of the KSA*
algorithm of RC4(n,m) is illustrated in Figure 5. Now, we are ready to
describe the proposed attacks on RC4(n,m).

3.2 Distinguishing Attack on RC4(n,m)

The first attack: This attack is based on the non-randomness property
of internal states, which is described in the previous section. Consider the
line 12 of Figure 3 in the r − th round of the algorithm.

Proposition 1 Assume that (1) The index j at line 10 of KSA∗ is uni-
formly distributed in {0, ..., N − 1} and independent of i, and (2) if i 6= j
then S[i]+S[j] mod M is independent and uniform in {0, ..., N − 1}. Then,
for all elements of Array S, after performing KSA∗ we have:

Pr([S[i]]0 = 0) =
1

2
(1 +

1

2n
) 0 ≤ i < 2n

Proof. First, we know if i = j then in line 12, we have S[i] = 2·S[i] mod M
is even since M is even. And then, Pr([S[i]]0 = 0) = Pr([S[i]]0 = 0|i 6= j)·
Pr(i 6= j)+Pr([S[i]]0 = 0|i = j)·Pr(i = j) = 1

2 ·
2n−1
2n +1· 12n = 1

2 ·(1+ 1
2n ).

�

Thus, we can find out that all the least significant bits of the array
S contents are biased. If the keystream just depended on the array S,
then we could exploit the bias to mount a distinguishing attack. But,
the keystream output is summation of a word from the array S and the
variable k. In addition, the variable k is the sum of randomly chosen
elements of the array S. It can be shown that the least significant bit
of the variable k is also biased but the bias is very close to zero. So, we
need to use combination of outputs to eliminate the effect of variable k
and find a biased linear relation. For instance, linear combination of two
consecutive outputs can reveal the expected bias. To do this, let the event



Fig. 5. RC4(n,m): Another perspective of KSA*. According to Low Diffusion Prop-
erty, P-th slice of internal state in r-th round of KSA* (r is an arbitrary round ) depends
on P-th slice of internal state and previous slices in initial state. And also, any random
difference in P-th slice in initial state does not change Q-th slice in r-th round of KSA*.

E denote the condition, in which the relation kt+1 = kt + S[y] is satisfied
as follows:

Output[t] = S[x] + kt mod M,

Output[t+ 1] = S[y] + kt+1 mod M,

where x and y are randomly chosen indices and t = 0. Now, by adding
Output[0] and Output[1], we get

[Output[1]⊕Output[0]]0 = [S[x]]0.

We can formulate the following proposition.



Proposition 2 In RC(n,m), the probability of ([Output[1]⊕Output[0]]0 =
0) is 1

2 · (1 + 1
2(2·n) ).

Proof. Pr([Output[1]⊕Output[0]]0 = 0) = Pr([Output[1]⊕Output[0]]0 =
0|E).P r(E) + Pr([Output[1] ⊕ Output[0]]0 = 0|Ec) · Pr(Ec) = (12 · (1 +
1
2n )) · 1

2n + 1
2 ·

2n−1
2n = 1

2 · (1 + 1
2(2·n) ). �

For an ideal PRBG, the above probability would have been exactly
1
2 . We can extend our assumption for more than two consecutive output
words in which S[x] is not updated in time t = 0 (or t = 0 and t = 1 ).
In other words,

Output[0] = S[z] + kt mod M ;

Output[1] = S[x] + kt+1 mod M ;

Output[2] = S[y] + kt+2 mod M ;

The probability of [Output[2]⊕Output[1]]0 = 0 can be simply computed
by applying Bayes’ theorem as follows:

Pr([Output[2]⊕Output[1]]0 = 0) =

Pr([Output[2]⊕Output[1]]0 = 0|x 6= z) · Pr(x 6= z)+

Pr([Output[2]⊕Output[1]]0 = 0|x = z) · Pr(x = z) =
1

2
· (1 +

1

2(2·n)
− 1

2(3·n)
).

The above attack is a generalisation of the attack proposed in [19, 20]
with emphasis on the initialization part of algorithm. In the next section,
we will present distinguishing and key recovery attacks, which exploit a
low diffusion of bits property of KSA*.

Algorithm 1 Distinguishing Attack Scenario on RC4(n,m)

Input: The first two (four) output words corresponding 24.n randomly chosen
secret key.
Output: To distinguish between RC4(n,m)’ outputs and a truly random source.

1. Generate Outputk[0] and Outputk[1] , 0 ≤ k < 24.n, Outputk[i] is i-th output
associated with k-th secret key.

2. S =

∑
k(Outputk[0]⊕Outputk[1])

24.n
;

3. If S ≥ 1

2
then the algorithm which is analysed in this test, is RC4(n,m).



Note that the required amount of data to distinguish a biased sequence
Z in which Pr(Zi = 0) = 1/2 + 1/2n from a truly random sequence is
determined as Chernoff bound by an exponential function in n is greater
than 22n ln 1√

1−PS
where PS is the expected success probability. In Table

2, the success probabilities in theory and practice are shown.

Table 2. Experimental Results and Comparison between theory and simulation

n The required amount
of data

Success Probability Pe in
Theory

The founded Success
Probability Pe in simu-
lation

4 216.58 0.95 0.97

4 214.87 0.60 0.59

5 220.58 0.95 0.94

5 218.87 0.60 0.58

The second attack: The second distinguishing attack is based on dif-
ferential cryptanalysis [2]. Differential attacks on stream ciphers use a
chosen initial value or other public variables. This kind of attack can be
launched, if the adversary has access to the cipher and can manipulate
the external (public) elements. But of course, they cannot see the secret
elements that are assumed to be hidden by, for example, a tamper proof
hardware. We are going to use a generalisation of differential cryptanaly-
sis called the truncated differential cryptanalysis. Whereas the standard
differential cryptanalysis considers the full difference between two inputs,
the truncated variant takes differences that are only partially determined.
So, attacker can predict only some of the bits.

As we noted before, a modification of more significant bits will not
change less significant bits. This property is rephrased below.

Remark 1. LetX+Y = Z ,X,Y, Z ∈ GF (2m),∆ = R 0. . . 0︸ ︷︷ ︸
m−k

,R ∈ GF (2k)

and R is an arbitrary differential input then for{
(X ⊕∆1) � Y = Z∆1

(X ⊕∆2) � Y = Z∆2

(1)

where ∆1 = R10 · · · 0, ∆2 = R20 · · · 0, and R1 6= R2, We have:



[Z∆1 ]0···(m−k) = [Z∆2 ]0···(m−k)

In modular addition, the most significant bits do not affect the least signif-
icant bits. So, applying difference vectors to more significant bits changes
just corresponding output bits and the difference for less significant bits
will be zero.

Remark 2. If Y = (X ⊕∆) and ∆ = 1 0 · · · 000︸ ︷︷ ︸
m−1

then X �X = Y � Y =

(2 ·X) mod 2m. (i.e. the differential value in output will be disappeared.)

Theorem 1. Given the RC4(n,m) cipher. Let there be two initial values
IV1 and IV2, where IV2[i] = IV1[i]⊕∆IV [i] and ∆IV [i] = 0XRR 00 · · · 00
is a truncated differential vector. The length of ∆IV [i] is m bits and 0 ≤
i < 2n. For ∆IV [i], the byte RR is different from zero. Then, for all
output keystream words Output1 and Output2 related to IV1 and IV2, we
have:

[Output1[j]]0···(m−8) = [Output2[j]]0···(m−8)

with probability one, where [Outputk[j]]0 is the least significant bit of j-th
output keystream word, j ≥ 0, and k=1,2.

Proof. For two initial vectors IV1 and IV2, the least significant bytes are
the same. According to the lines 9 and 10 in Figure 3 and the lines 6
and 7 in Figure 4, the indices i and j are all updated modulo 28. So, the
index j which depends on the secret key bytes and the least significant
bytes of internal state will be the same. Consequently, updating internal
state and variable k is similar. However, updating array S and variable
k is based on modular addition then changing MSB does not change the
least significant bits (see Remark 1), then the bits with less significant
bits will remain the same. �

A distinguishing attack on RC4(8, 32) based on Theorem 1 is shown as
Algorithm 2.

3.3 Key Recovery Attack on RC4(n,m)

Now, we prove that the attacker is able to recover the secret key of
RC4(n,m) by guessing each byte of the secret key separately. There are
three phases of our key recovery attack.

1. Guess each byte of the secret key,



Algorithm 2 Distinguishing Attack Scenario on RC4(8, 32)
Input: Two initial vectors IV1 and IV2 which satisfy Equation 2.
Output: To distinguish between RC4(8,32) outputs and a truly random source.

1. Select k elements to apply differential input vectors from set K (|K| = k) and
1 ≤ k < 28.

2. Select differential vectors ∆IV [i] = 0xRR000000, i ∈ K and RR are non-zero
and arbitrary bytes.

3. Generate 2n output keystream words Output1[j] and Output2[j] corresponding
to IV1 and IV2 where{

IV1[i]= IV2[i] ⊕ ∆IV [i] i ∈ K
IV1[i]= IV2[i] otherwise

(2)

4. Compute output differential vector as ∆Output[j] = Output1[j]⊕Output2[j]
5. If the general form of ∆Output[j] = 0xSS 00 00 00 where SS is output truncated

differential bytes, then the algorithm which is analysed in this test, is RC4(8,32).

2. Generate appropriate input differential initial values by Equation 2,
3. Verify the validity of the guess

Without loss of generality, we first focus on recovering the first byte of
secret key. According to Figure 3, this byte first affects S[0] array. Let
define ∆ = 0X80 00 00 00. We consider K = {0}, and ∆IV [0] = ∆, and
SK[0] as the least significant byte of secret key. Now, the key recovery
attack on RC4(8, 32) can be designed based on Theorem 1 and it is shown
as Algorithm 3.

Algorithm 3 Key Recovery Attack Scenario on RC4(8, 32) (First byte
of Secret Key)

Input: Two initial vectors IV1 and IV2 which satisfy Equation 3.
Output: Key Recovery of SK[0] (the least significant byte of secret key).

1. Guess SK[0]=ŜK0,

2. Compute [IV1[0]]0···7 = [IV2[0]]0···7 = (−ŜK0) mod 28,
2. Select a differential vector ∆IV [0] = ∆.
3. Generate 28 output keystream words Output1[j] and Output2[j] corresponding to
IV1 and IV2 where {

IV1[0]= IV2[0] ⊕ ∆IV [0]

IV1[i]= IV2[i] 1 ≤ i < 28
(3)

4. Compute output differential vector as ∆Output[j] = Output1[j]⊕Output2[j]

5. If ∆Output[j] = 0X00 00 00 00, Then ŜK0 is the least significant byte of secret key
with probability close to one. Otherwise, Go to step 1.



Remark 3. When the attacker finds a ŜK0 which is confirmed in step 5,
then he has to repeat the scenario with same ŜK0 and different IV1[i] and

IV2[i] to be sure the guessed ŜK0 is the least significant byte of secret
key with probability one.

Remark 4. The attack efficiency does not depend on r parameter. It
means that if the designers increase r, the attack will be still applica-
ble.

To recover all bytes of secret key, we just need to perform the above
sequences. For example, to recover k − th (0 ≤ k < 32 for 256-bit secret
key) byte of secret key, attacker has to find all bytes of SK[i] where
0 ≤ i < k according to Algorithm 4.

Algorithm 4 Key Recovery Attack Scenario on RC4(8, 32)
Input: Two initial vectors IV1 and IV2 which satisfy Equation 4.
Output: Key Recovery of SK[k] (the k-th byte of secret key).

1. Guess SK[k] = ŜKk,

2. Compute [IV1[k]]0···7 = [IV2[k]]0···7 = (−ŜKk) mod 28,
2. Select differential vector ∆IV [k] = ∆.
3. Generate 28 output keystream words Output1[j] and Output2[j] corresponding to
IV1 and IV2 where

[IV1[i]]0···7 = [IV2[i]]0···7 = SK[i] 0 ≤ i < k

IV1[i]= IV2[i] ⊕ ∆IV [i] i = k

IV1[i]= IV2[i] = arbitrary 32− bit values k < i < 28

(4)

4. Compute output differential vector as ∆Output[j] = Output1[j]⊕Output2[j]

5. If ∆Output[j] = 0X00 00 00 00, Then ŜKk is the the k− th byte of secret key with
probability close to one. Otherwise, Go to step 1.

To verify theoretical results, we implemented the key recovery attack
on RC4(8,32). The attack can recover a 256-bit secret key less than one
second in on a standard PC. Also, the attack complexity is not different
for other members of RC4(n,m) family.

3.4 Discussion

Thwarting the proposed attacks: The attacks proposed in this paper were
based on two critical weak points. The first weakness is the non-randomness
property of the internal state after applying KSA*. This weakness is ac-
tually a natural attribute of the cipher. The main difference between RC4



and RC4(n,m) is the length of elements of internal i and j are kept fixed.
The second weak point is a low diffusion property. This weak point can
be removed by using some simple linear operations like bit-rotation to
relocate the positions of the least and most significant bits of internal
states during running of KSA* and PRGA*.

4 Conclusion

We investigated the security of RC4(n,m) and particularly analysed the
initialization part of the algorithm. The attacks in this paper were based
on non-randomness of internal state which lead to a statistical distin-
guishing attack, and based on low diffusion property in KSA* and PRGA*
which shows the attacker can apply a truncated differential technique to
recover all bytes of Key array. These attacks are only applicable when
the protocol allows manipulation of initial value. In this scenario, we have
shown that the output keystream can be distinguished from a truly ran-
dom sequence with having just 256 output words. By using this weak
point, a practical key recovery attack which recovers 256−bit secret key
with time complexity about 213 algorithm operations has been proposed.
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