
EO

OLT

2013

Proceedings of the

5th International Workshop on

Equation-Based Object-Oriented Modeling

Languages and Tools

University of Nottingham, UK, 19 April, 2013

Editor
Henrik Nilsson

Supported by The Functional

Programming Laboratory,

School of Computer Science,

University of Nottingham

ISSN: 1650-3686

5th International Workshop on

Equation-Based Object-Oriented
Modeling Languages and Tools

19 April 2013, Nottingham, UK

Proceedings

Edited by Henrik Nilsson

Copyright
The publishers will keep this document online on the Internet — or its possible replacement — starting
from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to down-
load, or to print out single copies for his/her own use and to use it unchanged for noncommercial re-
search and educational purposes. Subsequent transfers of copyright cannot revoke this permission. All
other uses of the document are conditional upon the consent of the copyright owner. The publisher has
taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law, the author has the right to be mentioned when his/her work is
accessed as described above and to be protected against infringement. For additional information about
Linkping University Electronic Press and its procedures for publication and for assurance of document
integrity, please refer to its www home page: http://www.ep.liu.se/.

Series: Linköping Electronic Conference Proceedings, No. 84
ISSN (print): 1650-3686
ISSN (online): 1650-3740
ISBN (print): 978-91-7519-621-3
ISBN (online): 978-91-7519-617-6
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

Printed by AlphaGraphics, Nottingham, UK, 2013

Copyright c© the authors, 2013

Chair’s Welcome

It is my great pleasure to welcome you to EOOLT 2013, the 5th International Workshop on Equation-
Based Object-Oriented Languages and Tools! Equation-based modeling and simulation languages with
hybrid capabilities (that is, supporting both continuous-time and discrete-time aspects) enable high-
level reuse and integrated modeling capabilities for physical systems, embedded systems software, as
well as their combination. They thus offer considerable advantages for many application areas, in-
cluding complex cyber-physical systems. Consequently, this class of languages has gained significant
and increasing attention over the last decade. Examples include Modelica, SysML, VHDL-AMS, and
Simulink/Simscape. EOOLT is a forum for researchers with interests in all aspects of equation-based
modeling languages and their supporting tools, including design, implementation, open issues limiting
their expressiveness or usefulness, novel applications, and their relation to other approaches broadly
addressing similar needs, such as synchronous and actor-oriented languages.

EOOLT 2013 takes place in Nottingham, UK, 19 April, hosted by the School of Computer Science
at the University of Nottingham. It follows on from a successful series of earlier EOOLT workshops that
took place in Berlin, Germany in 2007; Paphos, Cyprus in 2008; Oslo, Norway in 2010; and Zürich,
Switzerland in 2011. For further general information about EOOLT, see http://www.eoolt.org.

In all, 13 papers were submitted and ultimately accepted for presentation after thorough peer review-
ing. Each paper received at least 3 independent reviews. The full, final versions of these papers can all
be found in this volume, along with abstracts for the invited talk and two tool demonstrations. I believe
the result is a very exciting and strong program for EOOLT 2013!

As always, making an event like EOOLT 2013 happen is very much a team effort. First of all, I would
like to thank the authors for their contributions: without you, there would not be any EOOLT 2013 in the
first place! Then I would like to thank the Program Committee and the additional reviewers who through
thorough reviewing and engaged discussions set very high standards for the accepted contributions. The
Steering Committee provided timely and helpful advice and other support throughout the organisational
effort. I am particularly indebted to David Broman for providing various templates for the proceedings
and the website. I would further like to thank Peter Berkesand and Linköping University Electronic Press
for their invaluable help in putting together and publishing the proceedings. As to the local organisation, I
owe a big thank you to John Capper and Nadine Holmes for help with countless practical arrangements.
Additionally I gratefully acknowledge the support for EOOLT 2013 offered by Prof. Graham Hutton
and the Functional Programming Laboratory, as well as the School of Computer Science for hosting the
event and providing administrative support.

Henrik Nilsson (Chair)
Nottingham, March 2013

iii

Table of Contents

EOOLT 2013 Organisation .vi

Session I: Verification and Validation
Chair: Henrik Nilsson (University of Nottingham)

• Invited Talk: Enclosing Hybrid Behavior .3
Walid Taha (Halmstad University and Rice University)

• Static Validation of Modelica Models for Language Compliance and Structural Integrity5
Roland Samlaus and Mareike Strach (Fraunhofer Institute for Wind Energy and Energy System Technology)

• Modeling System Requirements in Modelica: Definition and Comparison of Candidate
Approaches .15
Andrea Tundis (University of Calabria), Lena Rogovchenko-Buffoni (Linköping University),
Peter Fritzson (Linköping University), and Alfredo Garro (University of Calabria)

Session II: Parallel Simulation
Chair: Dirk Zimmer (DLR Oberpfaffenhofen)

• Parallelization Approaches for the Time-Efficient Simulation of Hybrid Dynamical Systems:
Application to Combustion Modeling .27
Abir Ben Khaled (IFP Energies nouvelles), Mongi Ben Gaid (IFP Energies nouvelles),
Daniel Simon (INRIA and LIRMM)

• Automating Dynamic Decoupling in Object-Oriented Modelling and Simulation Tools37
Alessandro Vittorio Papadopoulos and Alberto Leva (Politecnico di Milano)

• A Strategy for Parallel Simulation of Declarative Object-Oriented Models of Generalized
Physical Networks .45
Francesco Casella (Politecnico di Milano)

Session III: Diagnosis and Debugging
Chair: Peter Fritzson (Linköping University)

• Functional Debugging of Equation-Based Languages . 55
Arquimedes Canedo and Ling Shen (Siemens Corporation)

• Toward an Equation-Oriented Framework for Diagnosis of Complex Systems 65
Alexander Feldman and Gregory Provan (University College Cork)

Session IV: Simulation Methods
Chair: Francesco Casella (Politecnico di Milano)

• Using Artificial States in Modeling Dynamic Systems: Turning Malpractice into
Good Practice .77
Dirk Zimmer (German Aerospace Center (DLR))

• Simplification of Differential Algebraic Equations by the Projection Method 87
Elena Shmoylova, Jürgen Gerhard, Erik Postma, and Austin Roche (Maplesoft)

• Initialization of Equation-Based Hybrid Models within OpenModelica . 97
Lennart A. Ochel and Bernhard Bachmann (University of Applied Sciences, Bielefeld)

iv

Session V: Other Topics
Chair: Walid Taha (Halmstad University and Rice University)

• Tool Demonstration Abstract: OpenModelica and CasADi for Model-Based Dynamic
Optimization .107
Alachew Shitahun (Linköping University), Vitalij Ruge (Univ. of Applied Sciences, Bielefeld),
Mahder Gebremedhin (Linköping University), Bernhard Bachmann (Univ. of Applied Sciences, Bielefeld),
Lars Eriksson (Linköping University), Joel Andersson (K.U. Leuven), Moritz Diehl (K.U. Leuven), and
Peter Fritzson (Linköping University)

• Tool Demonstration Abstract: OpenModelica Graphical Editor and Debugger109
Adeel Asghar and Peter Fritzson (Linköping University)

• Modelica on the Java Virtual Machine .111
Christoph Höger (Technische Universität Berlin)

• An Approach to Cellular Automata Modelling in Modelica .121
Victorino Sanz and Alfonso Urquia (ETSI Informtica, UNED)

• Models for Distributed Real-Time Simulation with Vehicle Co-Simulator Setup131
Anders Anderson (Swedish National Road and Transportation Institute)and
Peter Fritzson (Linköping University)

v

EOOLT 2013 Organisation

Chair: Henrik Nilsson University of Nottingham

Steering Committee: David Broman UC Berkeley and Linköping University
François Cellier ETH Zürich
Peter Fritzon Linköping University
Edward A. Lee UC Berkeley

Local Arrangements: John Capper University of Nottingham
Nadine Holmes University of Nottingham
Henrik Nilsson University of Nottingham

Program Committee: Bernhard Bachmann University of Applied Sciences, Bielefeld
Bert van Beek Eindhoven University of Technology
David Broman UC Berkeley and Linköping University
Francesco Casella Politecnico di Milano
François Cellier ETH Zürich
Olaf Enge-Rosenblatt Fraunhofer Institute, Dresden
Peter Fritzson Linköping University
Michaela Huhn Clausthal University of Technology
Edward A. Lee UC Berkeley
Pieter Mosterman MathWorks
Ramine Nikoukhah INRIA Rocquencourt and Altair
Henrik Nilsson (Chair) University of Nottingham
Chris Paredis Georgia Institute of Technology
Peter Pepper TU Berlin
Walid Taha Halmstad University and Rice University
Alfonso Urquia UNED, Madrid
Hans Vangheluwe McGill University and University of Antwerp
Justyna Zander MathWorks and Gdansk University of Technology
Dirk Zimmer DLR Oberpfaffenhofen

Additional Reviewers: Christoph Höger TU Berlin
Alexandra Mehlhase TU Berlin

vi

Session I: Verification and Validation

Invited Talk: Enclosing Hybrid Behavior

Walid Taha

Halmstad University, Sweden and Rice University, USA
Walid.Taha@hh.se

Abstract
Rigorous simulation of hybrid systems relies critically on
having a semantics that constructs enclosures. Edalat and
Pattinson’s work on the domain-theoretic semantics of hy-
brid systems almost provides what is needed, with two ex-
ceptions.

First, domain-theoretic methods leave many operational
concerns implicit. As a result, the feasibility of practical
implementations is not obvious. For example, their seman-
tics appears to rely on repeated interval splitting for state
space variables. This can lead to exponential blow up in
the cost of the computation.

Second, common and even simple hybrid systems ex-
hibit Zeno behaviors. Such behaviors are a practical imped-
iment because they make simulators loop indefinitely. This
is in part due to the fact that existing semantics for hybrid
systems generally assume that the system is non-Zeno.

The feasibility of reasonable implementations is ad-
dressed by specifying the semantics algorithmically. We
observe that the amount of interval splitting can be influ-
enced by the representation of function enclosures. Param-
eterizing the semantics with respect to enclosure represen-
tation provides a precise specification of the functional-
ity needed from them, and facilitates studying their per-
formance characteristics. For example, we find that non-
constant enclosure representations can alleviate the need
for interval splitting on dependent variables.

We address the feasibility of dealing with Zeno systems
by taking a fresh look at event detection and localization.
The key insight is that computing enclosures for hybrid be-
haviors over intervals containing multiple events does not
necessarily require separating these events in time, even
when the number of events is unbounded. In contrast to cur-
rent methods for dealing with Zeno behaviors, this seman-
tics does not require reformulating the hybrid system model
specifically to enable a transition to a post-Zeno state. The
new semantics does not sacrifice the key qualities of the
original work, namely, convergence on separable systems.

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Keywords hybrid systems semantics, hybrid systems im-
plementation, Zeno behavior, event localization

Acknowledgments
Joint work with Michal Konecny (Aston), Jan Duracz
(Halmstad), and Aaron Ames (Texas A&M).

Biography
Walid Taha is a Professor of Computer Science at Halmstad
University. He is interested in the design, semantics, and
implementation of programming and hardware description
languages. His current research focus is on modeling, sim-
ulation, and verification of cyberphysical systems, and in
particular the Acumen modeling language.

Taha is credited with developing the idea of multi-stage
programming (or “staging” for short), and is the designer
of several systems based on it, including MetaOCaml, Con-
Coqtion, Java Mint, and the Verilog Preprocessor. He con-
tributed to several other programming languages innova-
tions, including statically typed macros, tag elimination,
tagless staged interpreters, event-driven functional reactive
programming (E-FRP), the notion of exact software design,
and gradual typing. Broadly construed, his research inter-
ests include cyberphysical systems, software engineering,
programming languages, and domain-specific languages.

Taha was the principal investigator on a number of re-
search awards and contracts from the National Science
Foundation (NSF), Semi-conductor Research Consortium
(SRC), and Texas Advanced Technology Program (ATP).
He received an NSF CAREER award to develop Java Mint.
He founded the ACM Conference on Generative Program-
ming and Component Engineering (GPCE), the IFIP Work-
ing Group on Program Generation (WG 2.11), and the
Middle Earth Programming Languages Seminar (MEPLS).
Taha chaired the 2009 IFIP Working Conference on Do-
main Specific Languages.

According to Google Scholar, Taha’s publications had
over 2,400 citations and an h-index of 26.

Prof. Taha holds an Adjunct Professor position at Rice
University.

3

Static Validation of Modelica Models for Language Compliance
and Structural Integrity

Roland Samlaus Mareike Strach
Turbine Simulation, Software Development and Aerodynamics

Fraunhofer Institute for Wind Energy and Energy System Technology, Germany
{roland.samlaus,mareike.strach}@iwes.fraunhofer.de

Abstract
The increasing importance of the simulation of physical
systems models demands enhanced support for developers.
Models do not only increase in terms of quantity, but also
complexity. Hence, libraries need to be created containing
valid models for re-use. It is crucial for library develop-
ers to get immediate feedback about errors regarding the
language specification. Moreover, users of libraries need to
know immediately if existing components are misused.

When using Modelica as the modeling language the
models are validated at compilation time by recent develop-
ment environments. This decreases the development speed
as developers recognize errors in their models late and
therefore need to recapitalize the design decisions made in
order to maintain the intent of the code during error fixing.

In this paper we present two implementations, i.e. Ob-
ject Constraint Language (OCL) and Java, for Modelica
code validation that can be triggered during model edit-
ing. Both variants are compared to each other regarding
readability of constraints as well as execution performance.
Therefore, rules are extracted from the Modelica language
specification asserting that the models are correct. Further-
more, custom rules are defined restricting library models
such that they can only be used in the intended way.

Keywords Modelica model validation, static source code
analysis, constraint languages

1. Introduction
In the past years the open modeling language Modelica has
become widely used by engineers for physical model devel-
opment. The benefit of an open language approach is that
the user is not dependent on a single tool vendor and can
influence the further development of the language standard.
The development of the language was accompanied by tool
vendors, providing environments accelerating the develop-

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

ment process compared to plain text editors. Furthermore,
libraries are being developed, open source as well as pro-
prietary, enabling re-use of components for further model
design.

At the Fraunhofer Institute for Wind Energy and Energy
Systems Technology (IWES), a development environment
is being developed, aimed at extensive support for physical
model developers. The application of modern model driven
technologies allows one to quickly create an Integrated De-
velopment Environment (IDE) with advanced tools support
for Modelica users. Utilizing the popular Eclipse Model-
ing Framework (EMF) [1] is advantageous since additional
tools built for the Framework can directly be used. As an
example, implementations of Object Constraint Language
(OCL) interpreters are available, supporting the interpreta-
tion of OCL constraints on any language whose meta model
is based on EMF.

The development environment is used by engineers at
Fraunhofer IWES to create a Modelica library for wind
turbines [11]. The demand for immediate validation1 arose
due to the extent of the library. Changes in a model can
affect others, but since full validation is only done during
simulation, errors are often detected late and therefore the
reason may not be obvious any more. Subsequent fixes can
contain further semantic errors leading to more design iter-
ations. The errors discussed here are caused by violation of
rules defined by the Modelica language specification. Since
models are usually composed of various components and
the extension of components is allowed and desired, vali-
dation of models is often expensive. Models concerning a
wide range of extended models need to be flattened in or-
der to be validated. Hence, validation of models needs to be
performed sufficiently well. Additionally, fast constraints
need to be distinguished from slow constraints in order to
be checked by separate triggers - expensive constraints may
only be checked when the user saves the edited document
or even may need to be triggered by hand, while fast con-
straints can be checked during editing. For the checks ex-
isting compilers could be employed, but since we aim at
being independent from any third party tool, this solution

1 All validations and constraints described in this paper target the correct-
ness regarding the Modelica language specification or Modelica frame-
work design. It is not intended to validate or to constraint physical models.

5

is not applicable. Additionally, the Modelica code needs to
be parsed and the models linked by any tool used, which
would lead to performance loss and increased consumption
of resources and may cause delayed error feedback during
editing.

Another aspect of model validation appeared at Fraun-
hofer IWES, especially for engineers unfamiliar with Mod-
elica. Many errors are made by combining predefined com-
ponents, e.g. from a library, that physically do not fit to-
gether. This is because Modelica is a language for math-
ematical modeling and thus does not restrict the use for
domain specific design aspects. There is no support yet for
the definition of semantic rules regarding the combination
of components, which is of special interest for frameworks.
At the moment, two arbitrary Modelica components can be
connected to each other, no matter if they fit, as long as the
connector types match. This can either lead to a model that
cannot be simulated — e.g. because it is structurally singu-
lar — or to a phyiscally incorrect model. In this case, the
error messages do not provide sufficient help for the user
as the source of errors are on a physical level that cannot
be captured by library unspecific error messages.

This paper describes an approach for static model val-
idation, enforcing the rules defined by the Modelica lan-
guage specification. Previous work forming the basis for
the validation is shown and important parts of the Mod-
elica meta model definition needed to understand the dis-
cussed constraints are described. The rules of the Mod-
elica language specification relate to the meta model of
Modelica and thus need to be explicitly defined. Addition-
ally, methods are described that were added to the meta
model classes in order to simplify the access to model data,
which is mainly used when flattening models. The con-
straint definition language OCL is introduced and a selec-
tion of constraints checking the conformance of models
to the Modelica language specification is explained. Fur-
thermore, the implementation of the constraints in Java is
explained and compared to OCL regarding readability, re-
usability and performance. Further rules regarding estab-
lishing structural constraints are discussed and the imple-
mentation of a prototype with Java for wind turbine models
is presented. Finally, conclusions are drawn and an outlook
to future work is given.

2. Related Work
The Object Management Group (OMG) specifies meta
modeling by the Meta Object Facility (MOF) [8] that is
implemented as the EMF for Eclipse. MOF defines four
layers (see Figure 1) of modeling where layer 0 represents
the objects of the real world, e.g. physical systems like a
wind turbine. Layer 1 (model) contains the models of real
world objects, e.g. instances of Modelica classes represent-
ing the behavior of wind turbines. In Layer 2 (meta model),
the structural properties of instances are described (i.e. con-
cepts like Modelica classes, extend clauses or equations are
described). Layer 3 (meta meta model) provides concepts
for the definition of layer 2 elements.

When using EMF these concepts can be classes, refer-
ences or attributes that are used to describe the structure
of a Domain-Specific Language (DSL). Constraints are de-
fined based on layer 2 and establish semantic rules, e.g.
rules defined by the Modelica language specification. Ad-
ditionally, rules can be user defined, e.g. to establish code
styles or to prevent the combination of incompatible com-
ponents.

Figure 1. Layers of the Meta Object Facility

OneModelica [9] is a Modelica IDE that is implemented
using Model Driven Software Development (MDSD). The
validation aims at enriching the IDE and therefore builds on
the technologies being provided by the IDE. Since Model-
ica documents are parsed and represented in a EMF based
tree, the constraints can be checked directly on the tree.
Thereby, it is possible to either interpret constraints de-
fined in special constraint languages like OCL or to vali-
date instances in the tree directly by general purpose lan-
guages like Java. Besides its use as an editor and a valida-
tion interface, the IDE provides views to the Modelica de-
veloper, helping to understand complex models by viewing
information regarding certain aspects in a simplified way.
This includes an outline view, displaying the structural con-
tent of a document, a documentation view, a hint display
for the developer on how to use predefined models, and
others. Furthermore, linking is implemented by connect-
ing related documents to each other, e.g. by linking types
of components to their respective class declarations. Link-
ing is essential for the validation of Modelica models since
many constraints define restrictions on the basis of inher-
ited classes.

RestrictED [10] provides constraint checking with OCL
for arbitrary DSLs defined with EMFText. Constraints are
defined as queries, collecting all objects violating the con-
straint in the parsed tree of the document. The constraints
can be defined by the user during runtime. However, defin-
ing queries instead of invariants can be misleading. More-
over, it is harder to define them such that all erroneous ob-
jects are collected. This limits the complexity of usable lan-
guages and only a few constraints were defined for the ex-
ample languages.

ModIM [4] — a front-end tool for processing Model-
ica models — allows to statically analyze models based

6

on a syntax tree representation. For the analysis the visitor
pattern [3] is applied and custom analysers can be imple-
mented that visit the nodes of the syntax tree. A sample
implementation is presented that performs a type check.
However, the performance of the tool is not addressed, it
is only stated that redeclarations perform badly with the
current implementation.

In [6] an aspect based validation framework is presented
that allows to define elements of the Modelica language
that are involved in the validation (join points). The ele-
ments can be queried by an aspect language (point cut ex-
pressions) and an action language can be used to define
what shall be done with the elements of the models (ad-
vice). The languages are defined by re-using paradigms of
logic programming and can be transformed into a format
that can be evaluated by Prolog. The provided examples
show how custom rules like naming conventions and the
number of classes defined inside a package can be checked.

For the validation of equation-based components fo-
cusing on numerical inconsistencies [2] proposes a graph-
based methodology that provides users with information
about under- and overconstraint equation systems. How-
ever, the general validity regarding the Modelica language
specification is not aimed at.

3. Modelica Meta Model
The Modelica meta model that is the basis for the constraint
definitions is described in this section. However, Xtext [5],
which is used as the framework for the meta model defini-
tion, will not be explained for the sake of brevity. A short
introduction describing the Modelica IDE [9] can be found
in related work and on the project’s web site2. The Mod-
elica meta model structure will not be explained in detail,
since it is quite complex. However, a simplified representa-
tion is displayed in Figure 2, giving an overview of the most
important elements needed for the constraint definitions in
Section 4.

The root element (AstModelicaSourceFile) of
the language definition represents a stored Modelica pro-
gram that can contain arbitrary class declarations and a
statement (within) declaring in which package these
class declarations are contained. Classes can again contain
class declarations and other elements like components,
extends clauses and algorithm sections.

Classes extending other classes inherit the declared
components and the behavior defined by equations and
algorithms. This makes the validation of objects harder
since the inherited attributes need to be taken into account.
Collecting all attributes and behavioral elements and merg-
ing them into one class representation is called flattening.
Components have a type defined by referencing a

class declaration. Again, no restrictions are made by the
syntax definition of the language. But this needs to be re-
stricted since type compatibility must be enforced, espe-
cially when using equations. Here it is important to check
whether the types fit in order to be able to do calculations.
Furthermore, connect statements connect components

2 http://www.onewind.de/OneModelica.html

Figure 2. Simplified Modelica meta model

to each other that must be of type connector [7].
Components and subclasses are stored in a class body
that is only present in classes where the content type is
CommonContent or ExtensionContent. Classes
with an EnumerationContent contain only enumer-
ations while an AssignmentContent assigns a present
class declaration to a new declaration. This is commonly
used when new types are defined in order to make the code
easier to understand (the Modelica.SIunits package
defines new types like Length extending Real and set-
ting the quantity to Length and the unit to meter).

The class concept in the grammar is not restrictive.
Hence, every class type (class, package, function, record,
block, . . .) can contain other classes, algorithms and so
on. The restrictions are defined in the Modelica language
specification in textual form. Hence, constraints needed to
be extracted and must be checked on instances of the meta
model. By parsing a Modelica document and representing
it as an Abstract Syntax Tree (AST), it is possible to check
the semantic constraints on that representation.

Since the parsed tree can be large, querying is a bottle
neck and makes the definition of constraints complex and
error-prone. When using an interpreter like OCL, query-
ing will significantly slow down the validation process.
Since OCL performs badly when processing large tree-
based data structures, methods for easier access to the ele-
ments of the AST were implemented with Java. Xtext pro-
vides the possibility of adding methods to elements of the
meta model with the language Xtend. The methods that
were added mainly implement flattening of classes, i.e. col-
lecting all components defined in a class including its ex-
tended classes. With the help of the additional methods, the
size of the constraints is significantly reduced and the read-
ability enhanced. Details about the validation of Modelica
models are discussed in Section 4.

4. Validating Modelica Language
Specification Compliance

This section describes the static Modelica model valida-
tion regarding correctness as defined by the Modelica lan-

7

guage specification. Two methods of constraint definitions
are compared and implemented with both OCL and Java.
The two approaches are compared to each other in order
to check whether dedicated languages for constraint def-
inition, like OCL, are better suited regarding readability
and re-usability then general purpose languages like Java.
Finally, the performance loss caused by interpretation of
OCL constraints on models compared to Java is analyzed.
The constraints that are validated are arbitrarily chosen to
reflect a wide range of constraint types of the specification.
Type checking is not performed at the moment since the
specification is not clear in any points and the effort for
the implementation is high as first attempts showed. Nev-
ertheless, type checking should be possible and will be ad-
dressed in future work.

4.1 OCL Constraints
OCL was initially designed by the OMG to constrain Uni-
fied Modeling Language (UML) diagrams. The standard
was later extended and can now be used with various meta
modeled languages. Invariants can be specified, checking
if a condition is met by a context object (the object
being validated). Furthermore, queries can be defined for
collecting and analyzing structured data. OCL is also used
in transformation languages for the definition of transfor-
mation rules between two meta models. In this work, con-
straints are defined by invariants that sometimes make use
of queries in order to collect elements of the Modelica
AST. Three OCL constraints are explained, enforcing cor-
rectness of Modelica models for the following rules defined
by the language specification [7] (numbers in parentheses
denote the page of the definitions):

• Operators may only be placed in an operator record or
in a package inside an operator record (42)

• A function can have at most one algorithm section (135)
• A stream connector must have exactly one scalar vari-

able with the flow prefix (175)

The three constraints are used because they present dif-
ferent kinds of constraints that a) check in which program
part the context object can be used, b) analyze what lan-
guage elements the context object is allowed to define in-
side its content and c) check whether conditions are met
that need to be fulfilled when a conditional aspect is met.
context MoOperator
inv operator_only_in_record_or_package:
let cls: AbstractMoClass = getAbstractMoClass()
in

not cls.oclIsUndefined() and
(cls.oclIsKindOf(MoRecord) and
cls.oclAsType(MoRecord).operator)

or
(cls.oclIsKindOf(MoPackage) and
cls.parentIsOperatorRecord())

Listing 1. OCL constraint restricting the use of operators

The first constraint (Listing 1) analyzes whether an op-
erator is located in a permitted enclosing class. The lan-
guage specification defines that an operator can only
be declared inside an operator record or inside a

package that itself is defined in an operator record.
Therefore, declaring an operator elsewhere (e.g. inside a
function) is not allowed. The context object of this con-
straint is defined by the keyword context and is only
applied to objects of the stated type. An invariant is defined
by the keyword inv and assigns a unique name to the in-
variant that is later also used as an identifier to retrieve a
comprehensive error message in case of a violation. A local
variable is defined by the keyword let and, in this con-
straint, represents an object of type AbstractMoClass.

context AbstractMoClass
def: parentIsOperatorRecord(): Boolean =
not getAbstractMoClass().oclIsUndefined()
and getAbstractMoClass().oclIsKindOf(MoRecord)
and getAbstractMoClass()

.oclAsType(MoRecord).operator

Listing 2. OCL helper method for checking whether a
class is a operator record

The method getAbstractMoclass() is imple-
mented with Java, as described in Section 3, and returns
the enclosing class of an AST element. In the case that the
operator is defined in the top level of a document the object
may be null. Hence, a check by the built-in OCL function
oclIsUndefined() needs to be performed resulting
in an error displayed indicating that the restriction is not
met. The next part of the OCL constraint validates whether
the enclosing class is of type MoRecord and whether the
operator keyword is used for that instance. Another al-
lowed use of the operator is when the enclosing type is
a MoPackage and the package’s parent is defined inside
an operator function. This is implemented by a separate
function defined using OCL (Listing 2).

The second constraint, as shown in Listing 3, analyses
whether a declaration of a MoFunction contains at most
one AlgorithmSection. The syntax definition in the
Modelica language specification makes no distinction be-
tween the different class concepts. Hence, the definition
of several algorithm sections inside a function syntacti-
cally conforms to the Modelica specification and thus is
not marked as an error by the parser. However, this is se-
mantically incorrect and must be prevented.

context MoFunction
inv function_no_multiple_algorithms:
let b: Body =
if content.oclIsKindOf(CommonContent) then
content.oclAsType(CommonContent)

.getContentsBody()
else
content.oclAsType(ExtensionContent)

.getContentsBody()
endif

in
b.oclIsUndefined() or
b.bodyelements->select
(oclIsKindOf(AlgorithmSection))->size()<2

Listing 3. OCL constraint restricting functions to have at
most one algorithm section

For validation, the body of the context object is selected.
Bodies are only available in type CommonContent and
ExtensionContent (see Section 3). If no body is avail-

8

able (checked by b.oclIsUndefined()), the con-
straint can not be violated. If a body is available, all el-
ements of type AlgorithmSection are selected from
the list of elements defined inside the body. This is done
by the built-in OCL operation select. It can be applied
to collections and selects all elements satisfying a user de-
fined boolean expression. Here, every object of the list is
analyzed to be of kind AlgorithmSection. In case
the resulting collection contains more then one object, the
constraint is violated.
context MoConnector
inv stream_connector_exactly_one_flow:
let components: Collection(Component)

= getAllComponents()
in

components->exists(cIsStream()) implies
(components->forAll(cIsFlow() implies
componentnames->size() = 1)

and
components->select(cIsFlow())->size() = 1)

Listing 4. OCL constraint checking whether a stream con-
nector has exactly one scalar variable with the flow prefix

The third OCL constraint (Listing 4) checks whether a
stream connector has exactly one scalar variable with flow
prefix. A stream connector is a class of type connector
defining a component (of type Real or an extension of
type Real) that is prefixed with the keyword stream. In
this case exactly one component with the keyword flow
must be present inside the class declaration. The constraint
first collects all components of the connector object inside
the variable components. For convenience, this method
(getAllComponents()) again is implemented in Java,
since it is used frequently and thus an inefficient implemen-
tation may lead to slow processing of the constraints.

After retrieving all components it is checked whether
any of the components is a stream variable. In this case,
all components that are flow variables (cIsFlow()) are
analyzed if they define exactly one variable name. The
count of variable names needs to be taken into account
since multiple components can be defined by a list ex-
pression in Modelica. Additionally, all components that are
flow variables are selected in order to assure that the size
of the resulting collection is exactly 1. The OCL helper
functions cIsStream() and cIsFlow() are defined in
Listing 5.
context Component
def: cIsFlow(): Boolean =
(not connectorprefix.oclIsUndefined())
and connectorprefix.isFlow()

def: cIsStream():Boolean =
(not connectorprefix.oclIsUndefined())
and connectorprefix.isStream()

context ConnectorPrefix
def: isFlow(): Boolean =
(not value.oclIsUndefined()) and
value = ’flow’

def: isStream(): Boolean =
(not value.oclIsUndefined()) and
value = ’stream’

Listing 5. OCL helper methods checking whether a com-
ponent is a flow or stream variable

4.2 Java Constraints
To compare the performance of the interpreted language
OCL to a general purpose language, the constraints are also
defined with Java. The structure of the constraints is some-
how comparable. However, it is possible to optimize the
performance, since the use of local variables and condi-
tional return statements can be used. A Java constraint that
has a similar structure as the corresponding OCL definition
is displayed in Listing 6.

public boolean isValid(EObject eObject) {
MoOperator operator = (MoOperator) eObject;
AbstractMoClass enclosingClass = operator.

getAbstractMoClass();
if (enclosingClass != null) {
if (enclosingClass instanceof MoRecord

&& ((MoRecord) enclosingClass).
isOperator()) {

return true;
}
if (enclosingClass instanceof MoPackage) {

enclosingClass = enclosingClass.
getAbstractMoClass();

if (enclosingClass == null) {
return false;

}
if (enclosingClass instanceof MoRecord

&& ((MoRecord) enclosingClass).
isOperator()) {

return true;
}

}
return false;

}
return false;

}

Listing 6. Java constraint checking whether a stream con-
nector has exactly one scalar variable with the flow prefix

In contrast, Listing 7 displays a constraint that benefits
from the additional language constructs of Java.

public boolean isValid(EObject eObject) {
MoConnector conn = (MoConnector) eObject;
boolean isStream = false;
int numberScalar = 0;
for (Component component :
conn.getAllComponents()) {
if (isStream && numberScalar > 1) {

// break if too many scalar variables
// are defined
return false;

}
if (cIsStream(component)) {

isStream = true;
} else {

if (cIsFlow(component)) {
numberScalar += component.

getComponentnames().size();
}

}
}
if (isStream && numberScalar != 1) {
return false;

}
return true;

}

Listing 7. Optimized Java constraint checking the stream
connector restriction

9

The iteration over components of a class can be inter-
rupted when a violation is detected since the number of
scalar components can be checked every iteration. The col-
lection of components needs to be iterated only once since
both conditions can be checked inside the loop. Hence, they
are checked to see whether a component is stream and as
soon as more than one scalar variable is found, a violation
of the constraint is indicated. The methods cIsStream()
and cIsFlow() are implemented with Java checking for
the connection type of the component similar to the OCL
functions previously defined.

4.3 Language Concept Comparison
When the constraints are compared, it is obvious that the
readability of OCL constraints is very good for rules that
can be defined in a short form. The stated context makes
it obvious which object type is being constrained. Local
variables can be defined and used for the validation of the
context object. Functions allow the definition of re-usable
common functionality. Multiple constraints can be defined
in the same file allowing the accumulation of constraints
targeting the same context object in one document.

On the other hand, Java as the constraint language can
be understood by more software developers. Furthermore,
object oriented development is more common to developers
than the functional programming representation of OCL.
It is possible to define local variables inside the constraint
definition causing validation to be quicker, since checks can
be done inside loops to return a validation result early.

The most obvious benefit of Java as a constraint lan-
guage compared to OCL is the tool support. Although OCL
editors exist, they mostly lack support for automatic refac-
toring and robust referencing or only support syntax high-
lighting. But these features become vital when the meta
model of a language that is being constrained is altered.

Hence, it may be beneficial to use OCL constraints for
the restriction of languages, where the grammar definition
is finally set. On the other hand, constraints defined with
Java may be a better solution when the grammar is still
under development or high performance is required when
validating models.

4.4 Performance
When validation takes place while a user develops a model,
high performance is vital. In this section, all constraints
defined using OCL are compared to their equivalent con-
straints defined with Java. The performance time is com-
pared by validating the Modelica standard library3, which
contains models for various fields of physical modeling.
The library contains all sorts of language constructs defined
by the language specification and hence provides good
feedback regarding the performance of the constraints.
The included models are complex and frequently extend
classes, causing more effort in resolving references and
elements that need to be considered during the validation.

The Modelica standard library used for the performance
measurement is version 3.2 beta 5. It consists of:

3 https://modelica.org/libraries/Modelica

• 1432 Functions
• 1282 Models
• 694 Types
• 651 Packages
• 302 Blocks
• 289 Classes
• 278 Records
• 108 Connectors
• 3 Operators

This includes the definitions of base types like Real,
Integer or Complex that are actually not included in
the library but are added for convenience in our IDE. Pars-
ing all 220 files takes approximately 6200 ms. Linking (re-
solving references, e.g. references between used compo-
nents and their declaration) is done in about 14000 ms. This
may be enhanced in the future since the linking mechanism
is not optimal regarding performance at the moment. Ta-
ble 1 contains the measured performance results of 10 of
37 available constraints in both OCL and Java. The number
of calls and the execution time for the invoked constraints
are stated. The bottom line displays the number of calls and
the overall performance for all 37 constraints. The valida-
tion was performed on a computer with an Intel Core I7
870 CPU (4 cores, max 2.93 GHz) with 8 GB of RAM.

As we can see from the results, there is a tremendous
performance difference between both kinds of constraints.
This would be even worse if the flattening of classes was
performed by OCL instead of using the helper methods
implemented in Java as mentioned in Section 3.

The differences in performance originates in the higher
efficiency of Java when handling collections. This is partic-
ularly clear when investigating the performance of the con-
straint unique_element_names_comp since the im-
plementations have to iterate over lists of components and
compare the names in order to check whether a name has
been used multiple times. This validation is performed for
each of the 5039 types of classes. Since the check needs to
be done for flattened classes to check if an extended class
already defines a component with the same name, the num-
ber of components can be very high.

For less extensive constraints in which few context ob-
jects were called, OCL performs sufficiently. The con-
straint function_no_multiple_algorithms that
validates the 1432 functions of the Modelica standard li-
brary (defined in Section 4) takes only 77 ms. But even
for this simple task, Java performs almost 4 times faster.
The performance comparison shows the drawback of an
interpreted language compared to a native one. Overhead
caused by the interpretation and, in the case of OCL, the
lack of efficient collection handling and early returns on
violation of invariants reduces the performance.

With the fact that about 200 restrictions were found in
the Modelica language specification, it is obvious that the
performance will not be sufficient for automatic validation
during editing with the recent interpreter implementation
for OCL included in the Eclipse MDT project. Even for

10

OCL JAVA
Constraint Calls Time (ms) Calls Time (ms)
unique_element_names_comp 5039 9896 5039 140
protected_variables_dot_reference 225240 3842 225240 731
prefixes_structured_component_flow 22186 97 22186 3
function_no_multiple_algorithms 1432 77 1432 15
flow_subtype_of_real 22186 76 22186 47
stream_only_in_connector 22186 28 22186 15
stream_connector_exactly_one_flow 108 2 108 0
function_no_equations 1446 1 1446 0
nested_when_equations 35 0 35 0
operator_only_in_record_or_package 3 0 3 0

...
94677 20063 946774 3330

Table 1. OCL and Java validation performance of selected constraints

Java, if the user does not want to be disturbed by long last-
ing validations taking place while editing Modelica mod-
els, focus on high performance is needed during further
implementations of the missing constraints.

5. Validation of Structural Constraints
As mentioned before, the validation of constraints that orig-
inate from the physical properties of the model is very ben-
eficial for the user. In the following section, existing com-
ponents of the OneWind Modelica library according to [11]
are used to introduce these kind of constraints. If library
developers would provide domain-specific constraints for
their models, the intended use of the models could be en-
forced. By standardising the constraint definition, e.g. by
providing OCLconstraints inside annotations, all Modelica
tools could benefit from the added semantics. However, for
the proposed solution the tools must be able to process the
same meta model of Modelica, since the constraints are de-
fined based on the AST representation of Modelica models.

5.1 Possible Model Structures for a Horizontal-Axis
Wind Turbine

Using the OneWind Modelica libary, a conventional three-
bladed, horizontal axis wind turbine can be modeled through
parametrizing and connecting components that have a spe-
cific physical meaning. The structure of such a model is
displayed in Figure 3.

Wind Rotor Nacelle

OperatingControl

Tower

Figure 3. Model structure of a horizontal axis wind turbine
using OneWindModelica library components

As can be seen in Figure 3, the Rotor object is con-
nected to the Nacelle object, which is then connected

to the Tower object. However, a user of the library could
connect the Rotor object to the Tower object directly. In
both objects connector instances are used which makes
this connection correct according to the Modelica language
specification. From an engineering perspective, however,
this is not reasonable. Furthermore, the components of the
OneWind Modelica libary are not set up to cover this case,
although there is always the possibility to modify the li-
brary components correspondingly.

If the user made this direct connection of Rotor and
Tower object with the existing library components, the
simulation of the model would result in an error due to
a division by zero in the tower shadow calculation. How-
ever, this error only shows up when the model is already
compiled. This takes valuable time from the model devel-
opment. Depending on how experienced the user is in the
field of wind energy, the given error message does not even
give a direct hint on the true source of the error.

5.2 Introduction of Structural Constraints
To support the library user during the model development,
a constraint that gives a warning can be defined to avoid
the direct connection of Rotor and Tower object. This
is realized utilizing Java. For the sake of brevity, only the
constraint of the Tower object needing to be connected
to the Nacelle object is covered. The library developer
can define this constraint himself using simple annotations
directly in the Modelica code during the development of
library components.

The definition as well as the appearance of the constraint
in the GUI of OneModelica is shown in Figure 4. The li-
brary developer defines the topFrame of type Frame_b
in the PartialTower model as a restricted element
through the annotation shown in the upper right side of
Figure 4. If the user tries to connect the Tower object to
a Rotor object as it is shown in the upper left side of
Figure 4, an error message will appear (cf. bottom part
of Figure 4). The connection of the Tower object to the
Nacelle object does not result in this error.

11

Figure 4. Structural constraint for connection of Tower and Nacelle object

However, if the user decides that he would like to con-
nect an object to the Tower object that is not of type
Nacelle, he can avoid the error message by defining an-
other annotation. This is shown also in the upper left part
of Figure 4. In this way, the user is not prohibited from
using the library components to his wishes. But the con-
straint helps especially unexperienced users to avoid mis-
takes which is of high importance.

For this kind of constraints following steps needed to be
performed. For the context type ConnectClause a Java
validator has been registered. The validator then checks
whether one of the connected elements defines a constraints
inside its annotation (constraints=“constraintname”). If
this is true, the annotation of the other connected element
is queried and it is checked whether it defines a valid con-
straint accordingly (constraints=“constraintname_valid”).
If the constraint does not exist, an error marker is created.

6. Conclusion and Future Work
This work shows that the validation of Modelica models is
possible by the definition of constraints that check models
on the basis of their tree based representation (AST). The
constraint language OCL and Java are utilized for the val-
idation. It becomes clear that many constraints can also be
checked in an efficient way. By implementing the flattening
of classes with Java, the extension of the constraint defini-
tion is reduced and the validation process accelerated. The
integration of the validation is possible and can enhance the
development of Modelica models heavily, since errors can
be immediately displayed to the user.

However, we are able to point out that the interpretation
of OCL constraints is time consuming, although the AST
access has been enhanced. Therefore OCL should only be
used for fast constraints. Since Java is up to 6 times faster
when validating all currently available constraints, it is ad-
vantageous to implement the remaining constraints using
Java in order to keep the performance fast. Another way
to gain performance could be achieved by transforming the
OCL constraints to Java code [12]. This would however
outweigh the benefit of the interpreted language that con-
straints can be defined and checked during runtime.

Beyond validation against the Modelica language spec-
ification, structural constraints can be checked. This allows

developers to define restrictions preventing errors that are
obvious to library designers but that may lead to problems
when done by library users. The approach may also allow
the developer to restrict the usage of components that are
known not to be compatible but can not be restricted by the
modeling language itself.

In future work, more constraints will be implemented
for the validation against the Modelica language specifica-
tion. If all 200 constraints found so far can be implemented
in an efficient way, validations can be recognized immedi-
ately by the developer. Furthermore, compatibility for var-
ious simulators can be established more easily since vio-
lations of the language specification that are accepted by
some simulators can be identified easily.

The access to the AST maybe further enhanced by
adding additional methods. Furthermore the introduction
of caching, e.g. by remembering all base types of a class,
which is necessary for fast type checking, would acceler-
ate the validation with a reasonably cost of memory. This
however would further reduce the complexity of constraint
definition and may enable the use of OCL which seems
to be more promising if e.g. library providers shall define
constraints on how their models can be used.

The idea of further structural restrictions is promising
and can enhance the definition of Modelica libraries. Be-
sides the correct use of components, constraints may also
be used to identify possible combinations of components,
since the selection of usable items is reduced. This may
help the user to find suitable solutions more efficiently by
selecting components that are suggested by the IDE. Con-
straints may be defined for specific design aspects. Addi-
tionally, rules for connections may need to be expressed,
e.g. regarding the cardinality of connections. An imple-
mentation based on role models is currently developed and
will simplify the definition of structural constraints in the
future.

References
[1] Frank Budinsky, Stephen A. Brodsky, and Ed Merks.

Eclipse Modeling Framework. Pearson Education, 2003.

[2] Peter Bunus and Peter Fritzson. Automated static analysis
of equation-based components. Simulation, 80(7-8):321–
345, 2004.

12

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns – Elements of Reusable Object-
Oriented Software. Addison-Wesley Longman, Amsterdam,
1 edition, 1995. 37. Reprint (2009).

[4] Christoph Höger. Modim - a modelica frontend with static
analysis. In MATHMOD 2012 - 7th Vienna International
Conference on Mathematical Modelling, 2012.

[5] Jan Köhnlein and Sven Efftinge. Xtext 2.1 documentation,
October 31, 2011.

[6] Malte Lochau and Henning Günther. A static aspect lan-
guage for modelica models. In Peter Fritzson, FranÃ§ois E.
Cellier, and David Broman, editors, EOOLT, volume 29
of Linköping Electronic Conference Proceedings, pages
47–57. Linköping University Electronic Press, 2008.

[7] Modelica Association. Modelica: A unified object-
oriented language for physical systems modeling, language
specification version 3.3, 2012.

[8] OMG. Meta Object Facility (MOF) Core Specification
Version 2.0, 2006.

[9] Roland Samlaus, Claudio Hillmann, Birgit Demuth, and
Martin Krebs. Towards a model driven modelica IDE. In
8th International Modelica Conference, 2011.

[10] Mirko Seifert and Roland Samlaus. Static Source Code
Analysis using OCL. In Jordi Cabot and Pieter Van Gorp,
editors, OCL’08, 2008.

[11] M. Strobel, R. Vorpahl, C. Hillmann, X. Gu, A. Zuga,
and U. Wihlfahrt. The OnWind modelica library for
offshore wind turbines – implementation and first results.
In Proceedings of the Modelica Conference, 2011.

[12] Claas Wilke. Java code generation for dresden ocl2 for
eclipse. Großer beleg (minor thesis), Technische Universität
Dresden, Dresden, Germany, February 2009.

13

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Modeling System Requirements in Modelica: Definition and
Comparison of Candidate Approaches

Andrea Tundis1 Lena Rogovchenko-Buffoni2 Peter Fritzson2 Alfredo Garro1
1Department of Computer Engineering, Modeling, Electronics, and System Sciences (DIMES), University of Calabria,

Italy, {garro,atundis}@dimes.unical.it
2Department of Computer and Information Science (IDA), Linköping University, Sweden,

{peter.fritzson,olena.rogovchenko}@liu.se

Abstract
The modeling of system requirements deals with formally
expressing constraints and requirements that have an
impact on the behavior of the system to enable their
verification through real or simulated experiments. The
need for models representing system requirements as well
as for methods and techniques centered on model-based
approaches able to support the modeling, evaluation, and
validation of requirements and constraints along with
their traceability is today greater than ever. In this
context, this paper proposes a meta-model for modeling
the requirements of physical systems. Furthermore,
different approaches for integrating the modeling of
system requirements in the Modelica language and their
verification during the simulation are proposed and, then,
evaluated and compared through a case study.

Keywords Requirements, Properties, Modeling,
Assertions, Modelica, Safety, Verification, Validation

1. Introduction
In the systems engineering context, although several
research activities are focused on the system design
phases, there is still a lack of practices and approaches
that specifically deal with the analysis, modeling, and
verification of requirements in an integrated framework.
One of the main open issues concerns the support
provided during the design for the verification and
validation (V&V) of the system under consideration.
Indeed, it is crucial not only to represent in detail both the
structural and behavioral design of a system, but also to
ensure the proper operation of the overall system and of
each individual component to guarantee their functional
correctness in compliance with the requirements.
Moreover in several industrial domains such as nuclear
plants, medical appliances, avionics, and automotive
industry, some requirements such as safety requirements
must be compliant to standard specifications (see IEC

61508) and norms to allow the commercial release of a
system.

In order to add support for verification and validation
during the design stage of the systems engineering
process we formalize a set of concepts that will allow us
to model system requirements, in [9] called properties. In
the following we will use the term requirement, which is
defined [9] as an expression that specifies a condition that
must hold true at given times and places. As a rule, their
identification and definition is neither a trivial nor a
unique process, and can significantly depend on the
reference domain and application context. Similarly, their
formalization and modeling can vary with respect to the
objectives to be reached.

In general, the first step of a systems engineering
process is concerned with the analysis of informal User
Requirements (URs). These are typically problem-
oriented statements and they focus on the required
capabilities. Thus, they need to be converted into
solution-oriented statements. The System Requirements
(SRs) are then derived by decomposing the URs into sets
of basic required functionalities. SRs form the basis for
the subsequent system functional analysis and design
synthesis phases [8]. In particular, in the System Design
phases, SRs are used to define both the structure and the
behavior of the System under development. Specifically,
in an equation-based context, the behavior of each system
component, as well as the behavior of the entire system, is
represented by a set of equations defined using
component attributes (such as variables, parameters and
constants).

Starting from the SRs and according to the defined
System Design (SD), additional mechanisms called
Requirement Assertions can be defined in order to verify
as well as to trace through the simulation the fulfillment
of the SRs. Indeed a requirement assertion can be
associated with a real system, subsystem, equipment or
component, or with a model of the real system, subsystem
or component and it defines what the system should
guarantee, or the validity domain for the behavior of the
system. In particular, in our context a requirement is
represented by an assertion that is related to a specific
physical component and which exploits the attributes of
the component in order to verify and trace the fulfillment
of some SRs related to a specific component. It worth to
notice that while user and system requirements (both

15

functional and non-functional) are used in the analysis
and design phases for the development of the system
under consideration; formalized requirements as
requirement assertions are exploited during the
verification phases for evaluating if the system
requirements are satisfied by a specific system design
model. Consequently, an appropriate approach to define
formalized requirements along with the possibility to
retrieve information about their status is crucial for the
overall development process.

Few works are currently available addressing the
modeling of requirements which was one of the goals
addressed in ModelicaML [11] during the OPENPROD
project [4]. Specifically, our proposal is strongly related
to: (i) [9] in which the representation of the requirements
is closely bound and restricted to the
exploitation/implementation of a software library; (ii) [14,
15] where the communication processes and evaluation
mechanisms among requirements, in order to enable the
propagation of assessments among them, are not properly
dealt. Furthermore, well-known simulation environments
exploit assertions to verify system requirements; for
example, MathWorks Matlab/Simulink provides
assertions and bound checking blocks as configurable
components. However, they are able to face only a limited
set of specific aspects (e.g. zero/nonzero signal, threshold
values). In this context, our aim is twofold: (i) to develop
a comprehensive approach for the definition and
modeling of requirements of a physical system in a clear
and well-defined way, (ii) to define a mechanism to
enable their traceability in order to support the
verification process through simulation. To address these
issues, a meta-model to represent system requirements
along with some different solutions to model them are
described in an equation-based context. On the basis of
this meta-model, several extensions of the Modelica
language [3] (an object-oriented modeling language to
describe physical systems by differential, algebraic and
discrete equations), to model requirements in a more
flexible way, are introduced.

In Section 2 the proposed meta-model is described, in
Section 3 both its use and its possible integration in the
Modelica context are illustrated along with some notation
extensions, in Section 4 a case study for the evaluation of
the various approaches is presented and discussed
whereas in Section 5 conclusions are drawn and future
works outlined.

2. A Meta-model for representing System
Requirements as RequirementAssertions

The concepts required for modeling system requirements
are clearly identifiable and their representation can be
generalized. For this purpose we define formal meta
models [1].

Even though the notions of model and meta-model are
crucial when we talk about representation and modeling,
often these terms generate confusion, so it is necessary to
clarify the difference between them and the context for
the use of each of them.

Firstly we can define the concept of subject as the main
thing that we want to think/reason about and on which we
perform experiments. This usually belongs to the real
world. To solve a problem we construct a simplified
representation of the subject, called model, to which
different experiments can be applied, in order to answer
questions aimed at the subject. Since a model captures
only a part of the complete subject, it is possible to define
many models which represent the same subject but that
are able to capture different characteristics, aspects,
variables and parameters. In order to perform reasoning
on a model it is necessary to know exactly which
variables are available, furthermore, it is necessary to
know the structure of the model. Such information can be
expressed through meta-data by defining a higher
abstraction level called meta-model. Hence, a meta-model
is a model that defines the structure of valid models (see
Figure 1).

In the following the definition and description of the
proposed meta-model (see Figure 2) is provided. It is a
combination of two main parts: the Physical Meta-Model
(in the left-side) and the Requirement Meta-Model (on the
right-side).

Figure 1. Meta-model, model and subject abstraction
levels.

As previously stated, before defining System
Requirements, it is necessary to build a representation of
the physical model. Thus, the meta-data of the Physical
Meta-Model are used to describe and to represent one
among all the possible physical models of a specific
actual system, whereas the meta-data of the Requirement
Meta-Model are exploited to represent System
Requirements in terms of requirement assertions by
defining a possible requirement-model on a specific
physical model representation.

Starting from the Physical Meta-Model side, the main
concept is the Attribute, which represents a characteristic
(i.e. temperature, pressure, level of liquid, age) of an
entity (i.e. a system, a sub-system, a component); in the
proposed meta-model, it is defined by (i) a Name (by
which it is referred) (ii) a Type (type of value which is
expected), (iii) a Value (a possible value among all the
range of values related to a specific Type) and (iv)
(optionally) a Unit of measure. Each Attribute is
associated with one specific Variability which in turn can
be (i) Constant which means that its Value never changes,
(ii) Variable which means that its Value depends on other
attributes, (iii) Parameter which means that its Value can
be properly tuned. Moreover, each Attribute has to specify
its access level called Visibility which, according to the
meta-model, could be either Private, if accessible only
internally to the component in which it has been defined,
Protected, if accessible by the descendants, or Public, if
accessible externally.

16

An Attribute can be (i) an AtomicAttribute, which
means it cannot be further decomposed, (ii) a
ComplexAttribute, that is, composed by other attributes.

A ComputationalModel, which could be represented
through an a Algorithm, a FiniteAutomata (e.g. Timed
Automata, Hybrid Automata, etc.), a Function, an
EquationsSet (i.e. a set of Equation concepts), or by their
combination as well as by Other kinds of computational
models, defines the behavior of a
PhysicalComponentModel. An Attribute has to belong at
least to one ComputationalModel as well as a
ComputationalModel has to use at least one Attribute.
One or more PhysicalComponentModels compose a
PhysicalSystemModel, which in turn is one of the many
possible models to describe an actual system called
PhysicalSystem.

While the meta-data on the left side of the figure is
used for the description of the physical model, moving to
the right side of the meta-model, we can see the concepts
used for the modeling of System Requirements. Among
these, the main concept is the RequirementAssertion,
which is used to describe a Requirement of a system. A
RequirementAssertion can be (i) a
SimpleRequirementAssertion, that means it doesn’t
receive any input from any PhysicalComponentModel, (ii)
a ComplexRequirementAssertion, which is connected
directly to at least one Attribute and to one
PhysicalComponentModel; this means that a
ComplexRequirementAssertion is based on at least a
PhysicalComponentModel and it is able to receive one or
more input values coming from several attributes of the

physical model; moreover, a RequirementAssertion
(SimpleRequirementAssertion or
ComplexRequirementAssertion) could be defined in terms
of other RequirementAssertions whereas on a single
PhysicalComponentModel, different
RequirementAssertions can be defined.

According to the meta-model a RequirementAssertion
belongs at least to one possible RequirementModel as well
as a RequirementModel has to define at least one
RequirementAssertion; each RequirementAssertion being
characterized by:

• a Name and a possible Description in a text format by
using the natural language;

a RequirementAssertionType which specifies the type of
the role played by the RequirementAssertion; in
particular a RequirementAssertion can have (i) a
Default behavior type: it is allowed only to monitor a
PhysicalComponentModel without influencing its
evolution; (ii) a Parameterized behavior type: it is
able to alter the value of a PhysicalComponentModel
and influence its evolution (the RquirementAssertion
has both read and write capabilities);

• at least two Status in order to represent the status of
fulfillment of the requirement, which in turn is
defined in terms of a StatusType and a StatusValue.
The first concept defines the type of value that a state
can take (i.e. a Boolean type, a real type, etc.)
whereas the second one represents the value which is
related to a specific StatusType (such as True/False

Figure 2. A meta-model for modeling System Requirements.

17

for a Boolean or NotEvaluated/Satisfied/NotSatisfied
for a three valued logic, etc.). Each Status could be
associated to both a Counter counting how many
times the RequirementAssertion has gone in a specific
state and a Timestamp in order to register each
occurrence of the event. Moreover, a status can be
defined as a DefaultStatus (useful, for example, in the
initialization phase when none value is still provided
to the RequirementAssertion). A
RequirementAssertion has a StatusOfActivation, that
means it can be Enabled and Disabled in order to
decide if it takes/doesn’t take part in a specific
scenario or simulation run.

• at least one EvaluationPeriod to indicate when the
RequirementAssertion has to be evaluated according
to possible PreConditions and PostConditions that
could be based on temporal values or on values
coming from Attributes. Moreover for each
EvaluationPeriod a Metric must be associated.

• at least a Metric to describe the objective to be
verified for which the RequirementAssertion has been
defined (e.g. Mean Time To Failure for the
Reliability); each metric has to define a way which
objectively allows its evaluation in terms of Measure
(e.g. the number of failures in a period of time to
measure the Mean Time To Failure). Specifically, a
Measure can be expressed by adopting an appropriate
ComputationalModel; moreover, one or more
Patterns could be applied for representing such
ComputationalModels when a sort of recurrent
structure occurs (e.g. a threshold pattern, a derivative
pattern, a delay pattern, etc.). Furthermore, each
measure should define a RangeOfValue, within the
Value of the Attribute which is related to, in which it
is valid. Such RangeOfValue is specified by: (i) a
LowerBoundThreshold: minimum value of validity in
the range; (ii) UpperBoundThreshold: maximum
value of validity in the range; moreover, further
thresholds as LowerBoundOffSet and
UpperBoundOffSet can be exploited when the Value
of a RequirementAssertion is respectively
below/above the LowerBoundThreshold and
UpperBoundThreshold for a limited time.

RequirementAssertions can describe the state and the
intended behavior [6, 7] of PhysicalComponentModels,
i.e. the expected behavior for which components are
designed. Both Physical Meta-Model and Requirement
Meta-Model are jointly exploited to describe the overall
model (hereafter called Extended System Design – ESD)
of an actual system.

To further clarify the meta-model above described, a
simple exemplification is provided below, where some of
the above described concepts are exploited in order to
define an requirement model upon a physical model in
compliance with the proposed meta-model.

The PhysicalSystem under consideration is a Water
System whose model, i.e. one among all possible
PhysicalSystemModels, called WaterSystemModel is
simply composed by a single PhysicalComponentModel

of a Tank. The Tank is modeled through different
Attributes such as the current level of liquid levelInTank
as well as the height of the tank tankHeight (both as a
Real type and unit=“m”). Such attributes can be accessed
externally (Public Visibility), whereas other Attributes can
be used by the descendants of the Tank (Protected
Visibility). All those Attributes (both with Public and
Protected Visibility) are exploited into a
ComputationalModel which is defined through different
equations (EquationsSet) in order to model the Behavior
of the Tank.

Let us assume to define a RequirementModel on this
specific PhysicalSystemModel (the above described
WaterSystemModel), in order to verify the following
RequirementAssertion of a Tank (hereafter we refer to the
model of the Tank), whose Description is: “The level of
liquid in the tank shall never exceed 80% of the tank
height” and its Name is “LevelOfLiquidInTank”.
According to the meta-model the status of activation
(StatusOfActivation) of this RequirementAssertion is
enabled (Enabled) for all the simulation time, and its
evaluation period (EvaluationPeriod) has a duration equal
to the duration of the simulation run without further
specific PreConditions or PostConditions. The Status of
the RequirementAssertion has a StatusType set to
Boolean, consequently, the allowed status value
(StatusValue) will range between true and false (or
satisfied and notSatisfied).

The fulfillment of this RequirementAssertion is
defined by a metric (Metric) based on the current level of
fluid in the Tank, which is measured (Measure) as a
percentage according to the maximum height of the tank.
Consequently, the definition of the RequirementAssertion
exploits the levelInTank and tankHeight that are both two
Public Attributes of the Tank, moreover, an internal
parameter, equal to 0.8, is used to express the percentage.
Finally, this Measure is expressed by adopting as
ComputationalModel a set of equations (EquationsSet). In
particular, in this case by a single Equation, which is
defined according to a threshold Pattern (e.g.
levelInTank<0.8*tankHeight); a fragment of the possible
Modelica (psedo) code is reported below.

requirement LevelOfLiquidInTank
 Real levelInTank(unit="m");
 Real tankHeight(unit="m");

parameter Real limit (start=0.8);
equation
 levelInTank<limit*tankHeight;
end LevelOfLiquidInTank;

In the following section some approaches for modeling
System Requirements through RequirementAssertions,
based on the presented meta-model, are proposed.

3. Extending the Modelica language for
Modeling System Requirements

In this Section different approaches for modeling system
requirements and how they can be used to verify the
intended behavior of the system and validate it through
simulation are described. All the approaches are equation-

18

based and, in particular, based upon the Modelica
language and ModelicaML (Modelica Modeling
Language).

Modelica is a language for equation-based object-
oriented mathematical modeling of physical systems (e.g.,
systems containing mechanical, electrical, electronic,
hydraulic, thermal, control, electric power components)
with acausal features, which allows defining models in a
declarative manner [3].

ModelicaML is an UML profile, which is based on the
SysML/UML profile and reuses its artifacts required for
system specification. ModelicaML reuses several
diagrams types from SysML without any extension,
extends some of them, and also provides several new
ones. ModelicaML diagrams are grouped into four
categories: Requirement, Structure, Behavior and
Simulation [13].

Although both Modelica and ModelicaML are
expressly designed for modeling systems in a coherent
framework based on an equation approach, they do not
yet provide concepts to be used in order to represent and
trace the occurrence of dysfunctional/abnormal behavior
(such as faults and failures), that is to say, an observable
deviation from the intended behavior at the system
boundary [2, 6, 7].

In this perspective, the exploitation of the meta-model
presented in the previous Section can be used to enrich
both the Modelica language and ModelicaML to provide
them with the capability of modeling system requirements
and to enable model checking. In particular, different
approaches are proposed and discussed in the following
subsections based on the two main concepts of
requirement assertion (see Section 2) and fulfill and some
variants of them.

3.1 Approach A

In this approach the formal concepts of requirement and
fulfill are defined as follows:

requirement: which is represented by a
RequirementAssertion able to validate the behavior of
a specific PhysicalComponentModel which is related
to, or to validate interactions among different
PhysicalComponentModels (according to the SRs and
the SD).

• fulfill: which expresses the entailment relationship
between PhysicalComponentModels and a
requirement, as well as among requirements.
Moreover, it provides the propagation process of an
assessment among RequirementAssertions.

An example model, which illustrates these concepts, is
shown in Figure 3. In particular, after the declaration of
the instances of both PhysicalComponentModels and
RequirementAssertions their relationship is established
according to the following five connection-rules:

1. the connections enabled through the connect
construct among PhysicalComponentModels are
defined to build the SD of the PhysicalModel;

2. the connections enabled through the connect
construct among a PhysicalComponentModel and an
RequirementAssertion are used to provide outputs
coming from PhysicalComponentModels in input to
RequirementAssertions.

3. the exploitation of the fulfill keyword is used to
define which instance of an RequirementAssertion
has to be satisfied/related from at least one specific
instance of a PhysicalComponentModel.

4. the exploitation of the fulfill keyword is used among
RequirementAssertions to enable the propagation
mechanisms of assessment among them;

5. If A1,..,An are RequirementAssertions and C1,..,Cm
are PhysicalComponentModels, then we can define
(A2,..,An,C1,..,Cm)fulfill(A1), where A1 is satisfied if
and only if C1,..,Cm satisfy A1 as well as A2,..,An
are all satisfied (fulfill follows the rule of the And
logic).

As we can see in Figure 3, the connect construct, which is
already available in the Modelica language, is used not
only among PhysicalComponentModels but also between
a RequirementAssertion and a PhysicalComponentModel.
Even though the connect construct allows to define
connections among attributes of two or more components
in an acausal way [3], in this approach some restrictions
are defined on it. As an example, the connection is only
able to provide inputs from a physical component towards
a RequirementAssertion. The reason for such a restriction
is to prevent a RequirementAssertion from providing
input to a PhysicalComponentModel and consequently
affecting its behavior.

Figure 3. A verification model based on requirement
assertion and fulfill.

3.2 Approach B

Whilst the above mentioned approach allows to model
requirements in a simple and intuitive fashion, with the
help of a minimal set of new concepts (i.e. requirement
assertion and fulfill), the addition of extra connections
between requirement assertions and components through
connect, could make the ESD overly verbose and difficult
to read from a visual representation point of view, thus
complicating the maintainability of the source code.

Therefore, an alternative approach is a variant of the
previous one in which along with the keyword
requirement, another concept (and another keyword)
called On, which is only visible in the source code of a
RequirementAssertion, is introduced. Similar to the
extends construct, but with some restrictions on the

19

inherited elements, the On keyword enables a requirement
to be defined on specific PhysicalComponentModels.
Such a requirement will inherit the attributes on which it
will carry out the processing.

Figure 4. Modeling Requirements using the On construct.

The process to build the ESD follow the five-connection-
rules, which have been described in Section 3.1 except for
the rule number 2; in this way:

it allows to avoid the exploitation of extra connect
(between PhysicalComponentModels and
RequirementAssertions) in order to provide input
values coming from constants, parameters or
variables of physical components towards an
requirement. Indeed, such relationships are
established during the definition of the
RequirementModel through the exploitation of the On
keyword;

it allows to avoid of having too many connections into a
graphical representation, as it is in Figure 4, by also
reducing the lines of the source code of the Extended
System Design.

The concept of fulfill is that explained in the previous
section.

3.3 Approach C

Often, it is necessary to have additional mechanisms for
generating dysfunctional/abnormal behavior in a physical
component, so as to assess the consequences on the whole
system.

To this end, approach C proposes the possibility of
altering the values of the components starting from the B
approach and adding the new notions of tester
entity/component entity and the supersede keyword. The
tester entity can be seen as a specific component that is
defined on a PhysicalComponentModel and which is able
to generate outputs (e.g. signals, events or values)
according to specific functions and inject them into the
PhysicalComponentModel in order to alter its
intended/nominal behavior (expected values). The
supersede keyword enables the mechanism to create a
reference between an instance of a tester entity and an
instance of a PhysicalComponentModel. In particular, the
following rules define the semantics of the supersede
keyword and how to use it:

1. the exploitation of the supersede keyword is used to
define which specific instance of a
PhysicalComponentModel could be compromised by
which specific instance of a Tester component;

2. If T1,..,Tn are Tester components and C is a
PhysicalComponentModel, then we can define
(T1,..,Tn)supersede(C), where the operation work of
C could be influenced only by one among the
T1,..,Tn Tester components (supersede follows the
rule of the XOr logic).

RequirementAssertions can monitor the occurrence of
abnormal/dysfunctional behavior in physical components;
the fulfill relationship is exploited by the
RequirementAssertion to check the impact and the
consequently propagation of possible unexpected values
in a component on other components (see Figure 5). The
On keyword enables both RequirementAssertions and
Tester components to have access directly to the attributes
of the physical component models on which they are
defined.

Figure 5. Requirements and Tester component for the
dysfunctional behavior analysis.

4. A case study
In this Section, a case-study is first described and then
used to evaluate some of the solutions which have been
proposed in the previous Section; for this purpose, both
the ModelicaML diagrams and the Modelica code are
presented; finally, the pros and cons of each solution are
discussed.

4.1 System Description

The possible implementation of the previously presented
approaches along with the significant reduction of
programming and implementation efforts to model system
requirements as well as the increased readability, are
demonstrated through a typical case study of a Tank
System.

The Tank System is composed by four main physical
components: a Source component, a Tank component, a
LevelController component and a Sink component. The
Source component produces a flow of liquid, which is
taken in input by the Tank component. The Tank, which is
managed through the LevelController component,
provides in output a liquid flow according to the control
law defined by the LevelController. The Sink is the
component where a part of liquid is sent.

After an analysis of the URs, the following main SRs
(and many others) have been identified:

20

• System_Requirement_1: the system has to be
composed by one Source Component, one Sink
Component, at least one Tank Component and at least
one LevelCotroller Component;

• System_Requirement_2: each tank has to provide one
port called qIn in order to receive flow from another
possible Tank Component (or from the Source
component if it is the first Tank component in the
chain);

• System_Requirement_3: each tank has to be
connected to its own LevelController component;

• System_Requirement_3_1: each Tank component has
to provide a port called tSensor in order to provide
signal to the LevelController component;

• System_Requirement_4: the Source component has
to provide a flow port called qOut;

• System_Requirement_4_1: the liquid flow produced
by the Source component has to be equal three times
the initial flow after 150 seconds;

• System_Requirement_5_1: the liquid flow produced
by the Source component should be less than 10 m3/s.

• System_Requirement_5_2: the role of the
LevelController should be verified by exploiting both
the h level from the Tank component and the qOut
flow.

• System_Requirement_5_3: the validity of both the
tActuator (Out-flow) and the outFlowArea values
should be checked according to a specified function;

• System_Requirement_5_4: both the h level and the
tSensor should provide the same values;

• System_Requirement_5_5: the h level coming from
the Thank should be checked according to a specified
function.

Starting from the SRs above described, the SD of the
Tank System has been defined as shown in Figure 6,
whereas in the following, a fragment of the Modelica
code used to implement the Tank System is reported.

package PhysicalComponentModel
model Source;
 LiquidFlow qOut;
 parameter Real flowLevel=0.02;
equation
 qOut.lflow = if time>150 then
 3*flowLevel else flowLevel;
end Source;
model Tank
 ReadSignal tSensor;
 ActSignal tActuator;
 LiquidFlow qIn;
 LiquidFlow qOut "Connector, flow (m3/s)
 through output valve";
 parameter Real area(unit="m2")=0.5;
 parameter Real flowGain(unit="m2/s")=
 0.05;
 parameter Real minV = 0,maxV = 10;
 Real actuatorControllerV;
 Real outFlowArea(unit="m");
 Real h(start=0.0, unit="m");

equation
 der(h)=(qIn.lflow-qOut.lflow)/area;
 actuatorControllerV=flowGain*
 tActuator.act;
 qOut.lflow = LimitValue(minV, maxV,
 actuatorControllerV);
 tSensor.val=h;
 outFlowArea=-qOut.lflow/flowGain;
end Tank;
…
end PhysicalComponentModel;

Figure 6. The System Design (SD) of the Tank System.

Moreover, starting from the SD of the Tank System, the
following Requirement Assertions have been defined;
they should be represented and verified during simulation
in order to ensure the proper operation of the system. In
the next subsections some of the proposed approaches are
applied for the modeling of requirements.

4.2 Exploiting the A Approach

In this example, starting from the System Requirements
specified in the previous subsection, a set of
RequirementAssertions can be defined on the SD of the
Tank System by exploiting the Approach A; in particular:

• RequirementAssertion_1: LimitInFlow, which takes
in input the value of the qOut port of the Source
component. It is satisfied if the liquid flow produced
by the Source component is less than a specific
“maxLevel” (i.e. liquidFlow<=maxLevel, in our case
maxLevel =10).

• RequirementAssertion_2: ControlOutFlow, which
takes in input the h level from the Tank component
and the qOut flow to validate the role of the
LevelController; moreover, to be valid it must be
fulfilled by both the RequirementAssertion_3 and the
RequirementAssertion_4.

• RequirementAssertion_3: ActuateOutFlow, which
takes in input both the tActuator (Out-flow) and the
outFlowArea, checks if the outFlowArea value is
proportional at the tActuator signal.

• RequirementAssertion_4: SenseLevel, which takes in
input both the h level and the tSensor, checks if the
sensor output is equals to the h level (i.e.
lLevel=sensorOuput).

• RequirementAssertion_5: ControlLevel, which takes
in input the h level coming from the Tank component,

21

checks if hLevel<9 and hLevel>5; moreover, to fulfill
the RequirementAssertion_5, both the state of
RequirementAssertion_1 and of
RequirementAssertion_2 have to be satisfied.

Figure 7 shows an example of ModelicaML-based
notation for the different concepts. In the following, some
code fragments of the RequirementModel and, in
particular, the implementation of RequirementAssertion_1
and of RequirementAssertion_5, introducing the new
keyword requirement, are reported.

Figure 7. Approach A for modeling requirements of the
Tank System.

package RequirementModel
requirement Requirement1
 Real liquidFlow; "qOut of Source"
 parameter Real maxLevel=10;
equation
 if liquidFlow<=maxLevel then
 Status.satisfied;
 …
end Requirement1;
…
requirement Requirement5
 Real lLevel;
 parameter Real Lmin=5, Real Lmax=9;
equation
 if lLevel<Lmax and lLevel>Lmin then
 …
end Requirement5;
end RequirementModel;

In the snippet of code shown subsequently, both the
PhysicalSystemModel (or SD) and the RequirementModel
are composed.

model ExtendedSystemDesign
 //PhysicalComponentModels
 Source source;
 Tank tank1(area=1);
 …
 //RequirementComponents
 Requirement1 limitInFlow;
 …
 Requirement5 controlLevel;
equation
 //Connection among PhysicalComponents
 connect(source.qOut,tank1.qIn);
 …

 //fulfill connections
 (source)fulfill(limitInFlow);
 (tank1)fulfill(actuateOutFlow);
 (tank1)fulfill(senseLevel);
 (limitInFlow,controlOutFlow)
 fulfill(controlLevel);
 (levelController,actuateOutFlow,
 senseLevel)fulfill(controlOutFlow);
 //connection between physical
 //components and requirements
 connect(tank1.h,controlLevel.L);
 connect(tank1.h,senseLevel.lLevel);
 connect(source.qOut,limitInFlow.
 liquidFlow);
 …

end ExtendedSystemDesign;

By adopting this approach, the RequirementModel is
completely decoupled from the PhysicalSystemModel of
the system under consideration. Indeed, a requirement
model only requires input values of specific types,
regardless of the type and the number of components that
the values come from. This means that a requirement
model could be re-used to validate physical components
belonging to different SD, although the semantics of such
physical components could be completely different. The
link between the RequirementModel and
PhysicalSystemModel, occurs only in the ESD, through
the fulfill relationships which govern the assignment of a
component to a requirement, while the inputs to be sent to
the requirement are provided by the connect construct.

4.3 Exploiting the B Approach

In this example the Approach B is exploited to represent
the same Tank System including the
RequirementAssertions described in the previous
subsection. Figure 8 shows the related ModelicaML-
based notation of such a modeling approach. As we can
see, the diagram is less crowded with connections and
consequently easier to read.

Figure 8. Approach B for modeling requirements of the
Tank System

As it is shown in the next code fragments illustrating the
source code of Requirement_Assertion_1 and of
Requirement_Assertion_5, both the keyword requirement
along with the On keyword are combined for the
definition of each requirement. Specifically, starting from
the Source model, Requirement1 is defined on it; this
means that Requirement1 is able to use (read-only) all the

22

Public attributes, which have been defined by the Source
model. In particular, the qOut attribute of the Source
model can be used by Requirement1 without further
referencing or connections with the Source model.

package RequirementModel
requirement Requirement1 On Source
 parameter Real maxLevel=10;
equation
 if Source.qOut<=maxLevel then
 Status.satisfied;
 else
 Status.notSatisfied;
 end if;
…
end Requirement1;
…
requirement Requirement5 On Tank
 parameter Real Lmin=5, Lmax=9;
equation
 if Tank.h<Lmax and Tank.h>Lmin then
 …
end Requirement5;
end RequirementModel;

As for the previous example a fragment of source code
combining both the PhysicalSystemModel and the
RequirementModel is presented. As we can see, no
connections which use the connect construct between a
PhysicalComponentModel and a requirement component,
are present in the source code of the ESD model.

model ExtendedSystemDesign
 //PhysicalComponentModels
 Tank tank1(area=1);
 Sink sink1;
 …
 //RequirementComponents
 Requirement1 limitInFlow;
 …
 Requirement5 controlLevel;
equation
 //Connections among PhysicalComponents
 connect(source.qOut,tank1.qIn);
 …
 //fulfill relationships
 (source)fulfill(limitInFlow);
 (tank1)fulfill(actuateOutFlow);
 (tank1)fulfill(senseLevel);
 (levelController,actuateOutFlow,
 senseLevel)fulfill(controlOutFlow);
 (limitInFlow,controlOutFlow)
 fulfill(controlLevel);
end ExtendedSystemDesign;

By adopting this approach, the RequirementModel is not
completely decoupled from the PhysicalSystemModel
(this make requirement assertions less flexible and less
reusable) as it knows Public Attributes that are defined in
the PhysicalSystemModel. On the other hand, it allows for
a more immediate exploitation making the ESD model
easier to read by hiding the details of the matching
between the PhysicalSystemModel and the
RequirementModel. Indeed, as it is shown both in Figure
9 and through the code of the ESD, only the fulfill
relationships are visible, while the connection (through

4.4 Exploiting the C Approach

The Approach C is adopted to model the previously
described requirement assertions on the Tank System.
Additionally, the possibility of modeling entities that alter
the intended behavior of components, and consequently of
the system, is taken into account by exploiting tester
entities/components.

In this section, three tester components have been
defined in order to illustrate their use:

• AlterSourceFlow and AlterSourceFlow2 on the
Source component, respectively producing the double
of the liquid in the first case and producing a negative
value of liquid in the second case.

• AlterOut on the Tank component, where the
LimitValue function has been removed from the
behavior of the tank.

In the following, some code fragments describing the
TesterModel and, specifically, the source code of the
AlterSourceFlow and of the AlterOut are reported.

package TesterModel
tester AlterSourceFlow On Source
 parameter Real flowLevel=0.04;
 …
equation
 qOut.lflow=flowLevel;
end AlterSourceFlow;
tester AlterOut On Tank
 …
equation
 actuatorControllerV=-
 flowGain*tActuator.act;
 qOut.lflow = actuatorControllerV;
 tSensor.val = h;
 outFlowArea=-qOut.lflow/flowGain;
end AlterOut;
end TesterModel;

As we can see in the source code below, the link between
PhysicalSystemModel and TesterModel is defined in the
ESD through the keyword supersede. In Figure 9 a
ModelicaML-based notation for such a modeling
approach, introducing both Requirement and Tester
components as well as physical components is depicted.

model ExtendedSystemDesign
 //PhysicalComponentModels
 Tank tank1(area=1);Source source;
 …
 //RequirementComponents
 …
 //TesterComponents
 AlterSourceFlow alterSourceFlow;
 AlterSourceFlow2 alterSourceFlow2;
 AlterOut alterOut;
equation
 //supersede relationships
 (alterSourceFlow,
 alterSourceFlow2)supersede(source);
 (alterOut)supersede(tank1);
 //fulfill relationships

the connect construct) among PhysicalComponentModels
and RequirementAssertions are not part of the ESD.

 …
end ExtendedSystemDesign;

23

It is worth noting that one possible variant of the
Approach C consists in defining the relationships between
a PhysicalComponentModel and a Tester component in
the ESD by using the construct connect, in order to avoid
the exploitation of the On keyword during the definition
of the tester components in the TesterModel. By adopting
this version (similar to the A Approach), the
PhysicalSystemModel will be completely decoupled from
both the RequirementModel and the TesterModel.

Figure 9. Approach C for modeling requirements of the
Tank System.

5. Conclusions and future works
The paper focused on the modeling of requirements in an
equation-based context. In particular, a reference meta-
model for representing System Requirements in terms of
RequirementAssertions has been defined. Then, three
different approaches for the modeling of System
Requirements that adhere to the proposed meta-model,
have been outlined. All of them aim to provide support
for model verification by defining extensions of the
Modelica language, and, one of them also aim to extend
such model verification by supporting the modeling of
system failures and thus allowing to analyze the behavior
of the system in presence of faults.

Finally, the exploitation of the proposed approaches in
a case study concerning a Tank System has allowed to
compare their advantages and disadvantages as well as to
appreciate their effectiveness and usability in the system
modeling phases.

This work is part of an ongoing research project
(MODRIO project – ITEA 2) [10] aiming at developing a
model-based approach for system requirements
verification and fault tree analysis through Modelica
extensions for Requirements modeling and Safety
analysis.

Ongoing research efforts are devoted to improving the
proposed approaches through both their implementation
in OpenModelica [12] and their integration in a full-
fledged Systems Engineering development process [5]
along with an extensive experimentation in the analysis of
systems in different application domains such as
automotive, railway, avionics and energy.

Acknowledgements
This work has been supported by ITEA 2 MODRIO
project. Andrea Tundis has been supported by a grant
funded in the framework of the “POR Calabria FSE
2007/2013”.

References
[1] T. Clark, P. Sammut, and J. Willans. Applied

metamodelling: a foundation for language driven
development (Second Edition), 2008.

[2] R. Cressent, V. Idasiak, F. Kratz, and P. David. Mastering
safety and reliability in a model based process. Proc. of the
Reliability and Maintainability Symposium (RAMS), Lake
Buena Vista (FL, USA), January 2011.

[3] P. Fritzson, Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1, Wiley IEEE Press, 944
pages, February 2004.

[4] P. Fritzson. Integrated UML-Modelica Model-Based
Product Development for Embedded Systems in
OPENPROD. Proc. of the 1st Workshop on Hands-on
Platforms and tools for model-based engineering of
Embedded Systems (Hopes’2010), Paris, June 15, 2010.

[5] A. Garro and A. Tundis. Enhancing the RAMSAS method
for Systems Reliability Analysis through Modelica. Proc.
of the 7th Workshop on Model-Based Product Development
(MODPROD), Linköping (Sweden), 5-6 February, 2013.

[6] A. Garro and A. Tundis. Modeling and Simulation for
System Reliability Analysis: The RAMSAS Method. Proc.
of the 7th IEEE International Conference on System of
Systems Engineering (IEEE SoSE), Genova (Italy), July 16-
19 2012.

[7] L. Grunske and B. Kaiser. Automatic Generation of
Analyzable Failure Propagation Models from Component-
Level Failure Annotations. Proc. of the 5th Int. Conf. on
Quality Software (QSIC), Melbourne (Australia),
September 2005.

[8] H. P. Hoffmann. System Engineering Best Practices with
Rational Solution for Systems and Software Engineering.
February 2011. http://www.ibm.com/.

[9] A. Jardin, D. Bouskela, T. Nguyen, N. Ruel, E. Thomas, R.
Schoenig, S. Loembé and L. Chastanet. Modelling of
System Properties in a Modelica Framework. Proc. of the
8th International Modelica Conference, TU Dresden,
March 20-22, 2011.

[10] ITEA 2 Projects: MODRIO - http://www.itea2.org/.
[11] F. Liang, W. Schamai, O. Rogovchenko, S. Sadeghi, M.

Nyberg and P. Fritzson. Model-based Requirement
Verification: A Case Study. Proc. of the 9th International
Modelica Conference (Modelica'2012), Munich
(Germany), September 3-5, 2012.

[12] OpenModelica - Open Source Modelica Consortium
(OSMC) - https://www.openmodelica.org/.

[13] OpenModelica Project: ModelicaML - A UML Profile for
Modelica. www.openmodelica.org/modelicaml.

[14] W. Schamai, P. Fritzson, C.J.J. Paredis, P. Helle.
ModelicaML Value Bindings for Automated Model
Composition. Proc. of the Symposium on Theory of
Modeling and Simulation (DEV’12), Orlando, FL (USA)
March 26-29, 2012.

[15] W. Schamai, P. Helle, P. Fritzson, and C. Paredis. Virtual
Verification of System Designs against System
Requirements. Proc. of 3rd International Workshop on
Model Based Architecting and Construction of Embedded
Systems (ACES’2010), Oslo (Norway), October 4, 2010.

24

Session II: Parallel Simulation

Parallelization Approaches for the Time-efficient Simulation of
Hybrid Dynamical Systems: Application to Combustion Modeling

Abir Ben Khaled1 Mongi Ben Gaid1 Daniel S imon2

1IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France,
{abir.ben-khaled, mongi.ben-gaid}@ifpen.fr

2INRIA and LIRMM-CNRS-Université Montpellier Sud de France, DEMAR team, 95 rue de la Galéra,
34090 Montpellier, France, daniel.simon@inria.fr

Abstract
The need for time-efficient simulation is increasing in all
engineering fields. Potential improvements in computing
speeds are provided by multi-core chips and parallelism.
However, the efficient numerical integration of systems de-
scribed by equation oriented languages requires the ability
to exploit parallelism. This paper investigates the problem
of the efficient parallelization of hybrid dynamical systems
both through the model and through the solver. It is first
argued that the parallelism is limited by dependency con-
straints between sub-systems, and that slackened synchro-
nization between parallel blocks may provide speed-ups at
the cost of induced numerical errors, which are theoret-
ically examined. Then two methods for automatic block
diagonalization are presented, using bipartite graphs and
hypergraphs. The application of the latter method to hy-
brid dynamical systems, both from the continuous state
variables and discontinuities point or view, is investigated.
Finally, the model of a mono-cylinder engine is analyzed
from equations point of view and a possible split using the
hypergraph method is presented and discussed.

Keywords Parallel computing, model decomposition, de-
lay error, dependencies constraints, multicore simulation

1. Introduction
The design and validation of complex systems, like cyber-
physical systems which include both physical and com-
putational devices, is costly, time consuming and needs
knowledge and cooperation of different disciplines [15].
For example, vehicle power-trains belong to such cate-
gory and require the coordinated design of both mechan-
ical, electrical, thermodynamic and chemical models (from
a physical point of view) and many-sided controllers (from
a computational point of view).

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

A global simulation is needed at an early stage to speed-
up the design, development and validation phases. The
main purpose of the numerical simulation is, when an an-
alytic solution cannot be derived, to approximate as faith-
fully as possible the behavior of the complex dynamic sys-
tem. In other words, bounding and minimizing the simula-
tion errors is an important goal of numerical simulations so
that the designers can be confident with the prediction.

Simulating complex systems is time consuming in term
of calculations, and reaching real-time is often out of the
capabilities of single processors. Parallel computing can be
performed by splitting the models into several sub-models
that are concurrently simulated on several processors to
ensure the compliance with the real-time constraints.

The data dependencies due to the coupled variables be-
tween sub-models lead for waiting periods and idle proces-
sor time, decreasing the efficiency of threaded parallelism
on the multicore platform. Therefore these dependency
constraints should be relaxed as far as possible. However, to
avoid too large numerical errors in the simulation results,
a minimal synchronization between sub-models must be
achieved, and the parallelism between computations must
be carefully restricted.

The relaxation of the synchronization constraints, while
guaranteeing correct simulation results, needs to split the
model properly before distribution over several CPUs. An
efficient decomposition relies on knowing how and where
to cut in order to decouple subsystems as far as possi-
ble. Relaxed data dependencies may lead to slack synchro-
nization between sub-models, until reaching an acceptable
trade-off between the computation costs and the simulation
precision.

The aim of this paper is to propose approaches for the
time-efficient and real-time simulation of hybrid dynamical
systems, showing two techniques of parallelization which
can be combined to reach complementary objectives:

• Parallelization across the model where the delay error due
to the model decomposition is evaluated to determine the
involvement and the weighting of each of its elements,
and consequently to know how to act for the error reduc-
tion. The parallelization approach is based on a system

27

splitting using the block-diagonal forms of state and event
incidence matrices.

• Parallelization through the solver where a new method of
parallelization at the event detection and location level is
presented. The parallelization approach is situated on the
solver level using the block-diagonal form of the event
incidence matrices.

This paper is organized as follows. First, a formal model
of a hybrid dynamic system is established. After that, delay
errors due to parallelization across the model are evaluated
in the context of real-time simulation. Then a study of
system splitting using the block-diagonal form of incidence
matrices, related to states and events, is performed. Finally,
a case study concerning a mono-cylinder engine model
is presented and test results are performed by analyzing
the relationships between the states, the events and the
states/events together.

2. Related Work
In the context of the co-simulation or the parallelization
across the model, where the system is split into several
sub-systems and simulated in parallel on different pro-
cessors, several works already targeted the real-time dis-
tributed simulation of complex physical models. In [9],
the study focused on the case of fixed-step solvers. Then,
in [2], the study was extended to examine the case of
variable-step solvers. Besides, in [16] distributed simula-
tion was performed in Modelica [11], using a technology
based on bilateral delay lines called transmission line mod-
eling (TLM) combined with solver in-lining. The TLM
technique consider the decoupling point when the variables
change slowly and the time-step of the solver is relatively
small, so that the decoupled subsystems can be considered
as connected by constant variables.

Another kind of parallelization is called parallelization
through the solver. It concerns the execution of the model
on a single thread while its numerical resolution is paral-
lelized. It relies on using well know parallel approaches for
solving the required steps of the used solver. For example,
parallelizing matrix inversions, which are needed when us-
ing an implicit method (see [17] and [12]) and parallelizing
operations on vectors for ODEs resolution by separating
them into modules (see PVODE in [7] implemented using
MPI (Message-Passing Interface) technology).

3. Problem Formalization
In this kind of cyber-physical systems the physical part
is modeled in the continuous-time domain using hybrid
ODEs. It belongs to the hybrid systems category because
of some discontinuous behaviors, that correspond to events
triggered off when a given threshold is crossed. Controllers,
which interact with physical parts, represent computational
models. They are modeled on the discrete-time domain
and sampling is a mixture of time-driven and events-driven
features.

Let us provide a formal model, considering a hybrid dy-
namic system Σ whose continuous state evolution is gov-

erned by

Ẋ = f (t, X,D,U) for tn ≤ t < tt+1, (1a)
Y = g(t, X,D,U). (1b)

where X ∈ RnX is the continuous state vector, D ∈ RnD is
the discrete state vector, U ∈ RnU the input vector, Y ∈ RnY

is the output vector and t ∈ R+ is the time.
(tn)n≥0 is a sequence of strictly increasing time instants

representing discontinuity points called “state events”,
which are the roots of the equation

h(t, X,D,U) = 0. (2)

h is usually called zero-crossing function or event indicator,
used for event detection and location [18].

At each time instant tn, a new continuous state vector
may be computed as a result of the event handling

X(tn) = I(tn, X,D,U), (3)

and a new discrete state vector may be computed as a result
of discrete state update

D(tn) = J(tn−1, X,D,U), (4)

If no discontinuity affects a component of X(tn), the right
limit of this component will be equal to its value at tn.

This hybrid system model is adopted by several mod-
eling and simulation environments and is underlying the
functional mock-up interface (FMI) specification [6].

We assume that Σ is well posed in the sense that a unique
solution exists for each admissible initial conditions X(t0)
and D(t0) and that consequently X, D, U, and Y are piece-
wise continuous functions in [tn, tn+1).

The system must be split for numerically integration on
a set of P cores. The objective is to speedup the simulation
through the exploitation of parallelism, while keeping the
following objectives in mind [2]:

• minimization of the delay errors, which are related both to
the dependency constraints and to the distribution of the
state variables;

• optimization of the computational resource usage through
load balancing and idle time avoidance: high CPU uti-
lization is influenced by the size and independence of the
computational tasks;

• minimization of the number of solvers interrupts due to
discontinuities unrelated with the local sub-system: dis-
continuities need that the corresponding numerical solver
must be stopped and restarted, therefore introducing com-
putation overheads;

• keeping an acceptable level of numerical stability and
accuracy.

4. Evaluation of Delay Errors due to
Decoupling

4.1 Context and Motivation
To begin with something simple, assume now that the sys-
tem can be split into two subsystems as in Figure 1.

28

U Y U Y

Ui

Uj

Yi

Yj

Xi XjΣ
Σi

Σj

Figure 1. System splitting for parallelization

For simplicity, the analysis is focused only on continuous
time-invariant models. In the following, we will denote by
x(n) = x(tn). Therefore, the system can be written as:{

ẋi = fi(xi, x j,Ui)
Yi = gi(xi, x j,Ui)

and
{

ẋ j = f j(x j, xi,U j)
Y j = gi(x j, xi,U j)

(5)

with X = [xi x j]T

Here Ui are the inputs needed for
∑

i and U j are the
inputs needed for

∑
j. In other words, Ui ∪ U j = U and

Ui∩U j can be an empty set or not according to the achieved
decoupling.

In the same way, Yi are the outputs produced by
∑

i
and Y j are the outputs produced by

∑
j. In other words,

Yi ∪ Y j = Y and Yi ∩ Y j = �.
After parallelization, as shown in Figure 1, each sub-

system Σi have a private subset Ui as input vector and a
private subset Yi as output vector, and the direct interac-
tion between subsystems are only due to a subset made of
variables of the state vector. Hence the focus is now on the
internal data flow, i.e. the shared state variables to be iden-
tified, and whose number should be minimized to enhance
the independence of parallel branches.

In general, in order to compute the next state xi(n + 1),
numerical integrators use [1, 8]:

• Always, the current value of the state xi(n) and the deriva-
tive fi(X(n)).

• For multi-step methods, the m previous values of the
state xi(n − α) and/or the derivatives fi(X(n − α)) (with
α = 1, ..,m).

• For methods with order higher than one, higher derivative
such as fi(X(n) + β. fi(X(n))) for a 2nd order.

• For implicit methods, the future value of the derivative
fi(X(n + 1)) computed through iterations.

Consequently, in order to compute the next state value
xi(n+1), the numerical solver needs at least values for xi(n)
and ẋi(n) = fi(X(n) (see Figure 2).

∫

∫

fi(.)

fj(.)

xi

xjxj

xj

xi

xi
fi(.)

fj(.)

xi

xjxj

xj

xi

xi
solver

solver

Numerical
integration

.

.

.

.

Figure 2. System’s internal composition

However, when the computation of ẋi(n) = fi(X(n)) is
required, the value of xi(n) is already available, but this

assertion is invalid for x j(n) with j , i. In fact, x j is only
updated every synchronization interval P that is larger than
the integration step. In other words, x j(n) can be available
only if the time tn corresponds to the synchronization time,
otherwise its value will be the one of last updated. Thereby,
the focus will be then in ẋi(n) = fi(x j(n)) for j , i.

4.2 Evaluation of Delay Errors in a Basic Problem
In order to evaluate the influence of using a delayed value
of x j in fi(.) due to the lack of communication at processing
time, let us start by a simple case with a single state variable
x. The analysis and results carried out in this case will be
further applied to the large problem with N state variables
X = [x1 . . . xN]T . Therefore, a backup of x correspond to
a synchronization between dependent variables xi and x j

where j , i.
Assume that x is integrated every step hk. As a first

case, we consider that the value of the state variable x is
saved every integration step in order to be available for the
next computation. As a second case, we just consider the
availability of an old saved (delayed) value at n − α.

Case 1: x(n + 1) = x(n − α) +

n∑
k=n−α

hk.ẋ(k) (6)

Case 2: x̃(n + 1) = x(n − α) +

n∑
k=n−α

hk.ẋ(n − α) (7)

The error resulted from the difference between (6) and (7)
(see Figure 3) is represented by e:

e(n + 1) = x(n + 1) − x̃(n + 1)

=
n∑

k=n−α+1
hk.(ẋ(k) − ẋ(n − α))

= e(n) + hn.(ẋ(n) − ẋ(n − α))

(8)

x(n-1)

x(n)

x(n+1)

x(n-α+1)

x(n-α)

x̋(n+1)

x(n)

x(n-1)

˝

˝

n+1nn-1n-α n-α+1

x(n-α)

x(n-α)

x(
n)

x(n-1)

x(n-α+1)

.

.

.

.

hnhn-1hn-α+1hn-α

save/synchro at each step h
only save/synchro at t=n-α

e(n+1)

.

x(n-α)

x(n-1).

. e(n)
e(n-1)

ec(n)

e(n-1)

e(n)

e(n-1)

delay τ

Figure 3. Errors due to delays

To show up the delay τ in the expression of e, (8) is re-
written in the temporal form

e(tn+1) = e(tn)+hn.(ẋ(tn)−ẋ(tn−τ)) where τ = tn−tn−α (9)

Let ec(tn+1) = hn.(ẋ(tn) − ẋ(tn − τ)). Here ec(tn+1) is the
current error generated at tn+1. So, the final error e(tn+1) is
the result of the accumulation of a past error e(tn) and the
current error ec(tn+1). As a conclusion, two conditions must
be met to achieve a correct result:

29

• ec(tn+1) < εloc: allowed local error

• e(tn+1) < εglo: allowed global error

4.3 Evaluation of Delay Errors in a General Problem
The analysis and results made in the previous case (the ba-
sic problem) will be applied to the following larger problem
with N state variables X = [x1 . . . xN]T .

Assume that a given system Σ is split to two separated
subsystems ΣA and ΣB with state vectors XA and XB such as
XA ∪ XB = X and XA ∩ XB = �. Then assume that they are
integrated with a variable time-step hk for XA and hk′ for
XB. Besides, they are synchronized every period P, where
P >> hk, in order to exchange some updated data.

The aim is to find an evaluation of the error, caused by
the lack of an updated data during a delay τ, at any given
time tk for XA and tk′ for XB, which may be a synchro-
nization time or to an integration time between two check-
points.

Thereby, the delay τ is represented by the difference be-
tween the current integration time tk and the last synchro-
nization time ts as follow

τ = tk − ts (10)

where ts is computed as follow

ts = P.
⌊ tk

P

⌋
(11)

in order to have

ts =

{
l.P when tk = l.P l ∈ N∗

(l − 1).P when tk < l.P l ∈ N∗ (12)

which leads to {
τ = 0 when tk = ts

τ > 0 when tk > ts
(13)

Therefore, the resulted error at tn+1 in the subsystem XA
denoted by EA(tn+1) will be the difference between XA(tn+1)
and X̃A(tn+1) deduced from (14) and (15).

XA(tk+1) = XA(tk) + hk. fA(XA(tk), XB(tk)), k ∈ {0, . . . , n} (14)

X̃A(tk+1) =

{
XA(tk+1) k = 0
X̃A(tk) + hk. fA(X̃A(tk), X̃B(tk − τ)) k ≥ 1

(15)
In other words,

EA(tn+1) =
n∑

k=0
EA(tk)

+hn.[fA(XA(tn), XB(tn)) − fA(X̃A(tn), X̃B(tn − τ))]
= EA,p(tn) + EA,c(tn+1)

(16)
where

EA,c(tn+1) = hn.[fA(XA(tn), XB(tn)) − fA(X̃A(tn), X̃B(tn − τ))]

EA,p(tn) =
n∑

k=0
EA(tk)

(17)
Here EA,c(tn+1) is the current error generated at tn+1 what-

ever a synchronization or not. So, the global decoupling

error EA(tn+1) is the result of the accumulation of a past
errors EA,p(tn) and the current error EA,c(tn+1).

As a conclusion, to achieve a correct result, two condi-
tions must be met for the current (local) error and the global
error:

• EA,c(tn+1) < εloc

• EA(tn+1) < εglo

These conditions can be satisfied by acting on some pa-
rameters. In fact, in (17), the delay error depends on the in-
tegration steps hk and on the delay τ. The delay τ depends
on the last synchronization time ts, which itself depends on
the synchronization period P, and on the current integra-
tion time tk. In other word, the delay error depends on the
size and number of integration steps since the last synchro-
nization. Indeed, the step size gives an idea of the sharp-
ness of the state variations, and numerous small integration
steps denotes large variations between successive updates.
Fast variations of the state variables are not only related to
the system stiffness, but also especially to the presence of
discontinuities. Therefore delay errors are strongly related
with discontinuities, whose location and dependencies de-
serve to be carefully examined when splitting the system.

In addition, the delay error size increases with the num-
ber of dependencies between the subsystems. Obviously,
if XA is independent from XB, no synchronization error can
be generated. If conversely XA depends on all the state vari-
ables of XB, the errors may increase considerably. Thus the
objective is to choose cuts in the system to minimize the
data exchanges and to control the growth of the integration
errors.

4.4 Delay Errors in a Real-time Simulation
Up-to-now, the delay errors are evaluated in the case where
the integration of all subsystems was exactly finished at the
synchronization point. In fact we consider that the synchro-
nization points are deadlines, without worrying about what
happens inside at each integration step. The previous study
just treated the case of hard real-time constraints where all
the deadlines are met.

To speed-up the simulation, waiting periods should be
eliminated. These idle times occur at the synchronization
points when one or more sub-systems are waiting for the
end of integration of the other sub-systems. Therefore, this
time can be decreased by using slackened synchronization
[5]. It means that, at the synchronization points, a sub-
systems which needs variable does not wait for its inte-
gration to be completed, but uses the last available value.
Indeed this relaxation induces a cost in term of delay error,
which must be re-evaluated to check the trade-off between
simulation speed and accuracy.

Assuming that only the last integration step before the
synchronization can be missed, the value and production
time of the last completed integration step before the syn-
chronization, (denoted tp for XA and tp′ for XB) must be
known: tp = ts − hp.

Assume that the synchronization deadlines are always
missed, so that the error EA is always computed from the

30

last completed integration step. Thereby, the delay τ com-
puted beforehand in (10) is no longer valid but is as follow:

τ = tk − tp (18)

In other words, instead of X̃B(t′k − τ) = X̃B(ts), now
X̃B(t′k − τ) = X̃B(t′p) leading to

EA,c(tn+1) = hn.[fA(XA(tn), XB(tn)) − fA(X̃A(tn), X̃B(t′p))]

EA,p(tn) =
n∑

k=1
EA(tk)

(19)
Here the two equations (17) and (19) are equivalent, the

only difference lies in the expression of τ.

5. System Splitting Using Block-diagonal
Forms

As mentioned before, the purpose is to optimize the ex-
ploitation of the parallelism of the sub-systems while keep-
ing the previously evaluated delay error due the decoupling
under control. Two methods have been analyzed for this
aim, the first is related to the states to reduce the data-flow
due to coupling variables between sub-systems. The sec-
ond one is related to the events, to reduce integration inter-
rupts, and also to minimize event detection and location via
a complementary kind of parallelization through the solver.

5.1 Accounting for the State Variables
To reduce the data exchange between two sub-models and
to prioritize these swaps inside one sub-model, the depen-
dencies between the state variables must be evaluated. It
can be done either by a direct access to the incidence ma-
trix that describes the coupling between the state variables
and their derivatives, or by computing the Jacobian matrix.

A Jacobian matrix is a matrix of all first-order partial
derivatives of a vector function f = [f1 f2 . . . fN]T regarding
another vector X = [x1x2 . . . xN]T . An N × N Jacobian
matrix denoted by J has the form:

J =

∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xN

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xN

...
...

. . .
...

∂ fN
∂x1

∂ fn
∂x2

. . . ∂ fN
∂xN

If there is a zero element in the Jacobian, i.e. ∂ fi

∂x j
= 0, it

means that fi is not influenced by x j. However, fi is actually
ẋi. In other words, xi does not depend on x j. In the same
way if ∂ fi

∂x j
, 0, it means that xi depends on x j. Moreover,

the numerical value of ∂ fi
∂x j

gives a measure of the sensitivity
of ẋi w.r.t. x j.

This leads to conclude that the Jacobian matrix can be
seen as an incidence matrix which provides useful infor-
mation about data dependencies between state variables.
This could be used for an effective system splitting. So that,
when transforming the matrix into a block-diagonal form
by permuting rows and columns, the blocks represents the
independent subsystems. It may happen that a total block-
diagonalization is not possible so that the final transformed

matrix presents some coupling rows and/or column, this
denotes the presence of irreducible dependencies between
subsystems.

5.2 Accounting for the Discontinuities
To minimize the delay error while optimizing the exploita-
tion of the parallelism across the model, it is also crucial
to reduce the number of discontinuities inside each sub-
model, so that stiff variations of the state variables are lim-
ited. This procedure induces another benefit, as reducing
the number of interrupts for each solver reduces re-starting
overheads and improves the integration speed.

The events incidence matrix describes the relationships
between events. Block-diagonalizing this matrix allows for
separating the discontinuities and scatter them in the differ-
ent sub-models.

Furthermore, the events incidence matrix block-diagonalization
also leads to a kind of parallelization across the solver. In
fact, the system resolution, including events handling, con-
sists of 4 steps as mentioned in Figure 4.

Initialization Integration
Event
detection

Event
location

Event
handling

yes

no

Figure 4. Events handling operations flow

Event detection and location can be an expensive stage
for hybrid systems (and for the addressed combustion mod-
els in particular). Especially, the event location (i.e. solving
the zero-crossing equation (2)) can take a long time through
an iterative process, and it is difficult to bound this step.
By using the event incidence matrix, solving for a particu-
lar event can be localized in a subset of the global system
through parallelization, thus shortening the zero-crossing
function solving.

5.3 Permuting Sparse Rectangular Matrices for
Block-diagonal Forms

Two methods and associated software tools have been eval-
uated to perform the system diagonalization. Note that the
original state variables of the system are preserved and that
diagonal forms are produced only through permutations.

5.3.1 Bipartite Graph Model
A matrix A is transformed to a bipartite graph model. This
graph is used by a specific tool to partition it, then to get a
doubly bordered block-diagonal matrix ADB, i.e. the matrix
has a block-diagonal form with non-zero elements on its
last rows and columns as in Figure 5.

MeTiS [13] is a software aimed to partition large graphs.
The used algorithms are based on multilevel graph par-
titioning, which means reducing the size of the graph by
collapsing vertices and edges, then partitioning the smaller
graph, and finally uncoarsening it to construct a partition
for the original graph.

The block-diagonal form is performed by permuting
rows and columns of a sparse matrix A to transform it into
a K-way doubly bordered block-diagonal (DB) form ADB.
It has a coupling row and a coupling column.

31

Block 1

Block K

Border 1

B
or

de
r

2. . .ADB =

Figure 5. Doubly bordered block-diagonal matrix

The representation of the nonzero structure of a ma-
trix by a bipartite graph model reduces the permutation
problem to those of graph partitioning by vertex separator
(GPVS).

For example, let A the following matrix:

A =

1 0 0 1 0 0
0 1 0 0 1 1
1 0 1 1 0 1
0 0 0 1 0 0
0 1 0 0 1 1
1 0 0 0 0 1

(20)

An undirected graph G = (V, E) is defined as a set of
vertices V and a set of edges E. The corresponding bipartite
graph for MeTiS is built by replacing the rows and the
columns by vertices and the non-zeros are represented by
edges. After transformation, MeTiS partitions the graph as
shown in Figure 6.

r4
c4

r1
c1

r3

c3
r2

r5

c2

c5

c6

r6

V1 V2Vs

1 0 1 0 0 0
1 1 1 0 0 1
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
1 0 0 0 0 1

1 3 4 2 5 6

1
3
4
2
5
6

ADB =

(a)

(b)

Figure 6. (a) Bipartite graph representation of the matrix
A and 2-way partitioning of it by vertex separator Vs; (b)
2-way DB form of A induced by (a)

The objective of MeTiS when partitioning is to:

• Minimize the size of the separator because it implies the
minimization of the border size.

• Balance among sub-bipartite graphs because it implies a
balance among diagonal sub-matrices.

5.3.2 Hypergraph Model
A matrix A is transformed to a hypergraph model. An hy-
pergraph H = (U,N) is defined as a set of nodes (vertices)
U and a set of nets (hyper-edges) N among those vertices.

This hypergraph is used by a specific tool to partition it,
then to get a singly bordered block-diagonal matrix AS B as
in Figure 7, where the matrix has a block-diagonal form
with non-zero elements only on its last rows.

Block 1

Block K

Border 1

. . .ASB =

Figure 7. Singly bordered block-diagonal matrix

PaToH (Partitioning Tools for Hypergraphs) [19] is a
multilevel hypergraph partitioning tool that consist of 3
phases as for MeTiS: coarsening, initial partitioning, and
uncoarsening. In the first phase, a multilevel clustering,
that correspond to coalescing highly interacting vertices to
super-nodes, is applied on the original hypergraph by using
different matching heuristics until the number of vertices
drops below a predetermined threshold value. Then, the
second phase corresponds to partition the coarsest hyper-
graph using diverse heuristics. Finally, in the third phase,
the obtained partition is projected back to the original hy-
pergraph by refining the projected partitions using different
heuristics.

The block-diagonal form is performed by permuting
rows and columns of a sparse matrix A in order to transform
it into a K-way singly bordered block-diagonal (SB) form
AS B. It has only a coupling row. For this reason, this method
of block-diagonalization will be selected for the later study.

The representation of the nonzero structure of a matrix
by an hypergraph model reduces the permutation problem
to those of hypergraph partitioning (HP).

The corresponding hypergraph graph of the matrix A
(20) for PaToH is build by replacing the rows and the
columns of the matrix by nets and nodes respectively. The
number of pins is equal to the number of non-zeros in
the matrix. After the transformation, PaToH partitions the
hypergraph as as it is shown in Figure 8.

The objective of PaToH when partitioning is to:

• Minimize the cut size because it implies the minimization
of the number of coupling rows.

• Balance among sub-hypergraphs because it implies a bal-
ance among diagonal sub-matrices.

In conclusion, the method using the bipartite graph
model as MeTiS generates a doubly bordered block-diagonal
matrix. To further reduce the coupling row and the cou-
pling column to a single coupling row, the Ferris-Horn
(FH) algorithm [10] uses a column splitting method. Un-
fortunately, the number of rows and columns of the matrix
must be increased. In contrast, the method using the hyper-
graph model as PaToH directly generates a singly bordered
block-diagonal matrix which means only a coupling row
without adding an intermediate method. Therefore PaToH

32

4
4

1
1

3 2

5

2

5

6

6

3

U1 U2

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 1
1 0 0 0 0 1

1 4 3 2 5 6

1
4
2
5
3
6

ASB =

(a)

(b)

Figure 8. (a) Row-net hypergraph representation of the
matrix A and 2-way partitioning of it; (b) 2-way SB form
of A induced by (a)

will be used for the block-diagonalization of matrices in
the following case study.

6. Analysis of System Splitting using an
Hypergraph Model through a Case-study

In this study, a Spark Ignition (SI) mono-cylinder engine
has been modeled (see Figure 9) with 3 gases (air, fuel
and burned gas). It was developed using the ModEngine
library [3]. ModEngine is a Modelica [11] library that al-
lows for the modeling of a complete engine with diesel
and gasoline combustion models. It contains more than 250
sub-models. A variety of elements are available to build
representative models for engine components. ModEngine
is currently functional in the Dymola tool 1.

6.1 Engine Modeling

Figure 9. Mono-cylinder engine modeled in Dymola

In the following tests, relationships between state vari-
ables and events as well as their behaviors are essential to
study how to split the system at wisely chosen joints.

For this aim, the mono-cylinder model, written in Mod-
elica language, was translated to a simpler language called

1 http://www.3ds.com/products/catia/portfolio/dymola

Micro-Modelica (µ-Modelica) [4], which is understand-
able by the stand-alone Quantized State Systems (QSS)
tool [14] as shown in Figure 10. The QSS solver is not used
here, only a related tool is used to generate a so-called sim-
ulation file which contains important information about the
system and relationships between states and events. These
data are extracted thereafter by a custom dedicated tool,
and translated both to a matrix form for visualization and
to an hypergraph file for the PaToH tool. Finally PaToH
generates a partitioned hypergraph file that describes how
the graph is decomposed and transformed subsequently to
a matrix form for visualization.

Originel
matrices

.hygr
PaToH
file

PaToH
.hygr.partN

PaToH
file

Block
diagonal
matrices

.mof
flat

Modelica
file

Dymola
translation

.mo
Modelica

file

Translation
by

hand

Information
extraction
+ Matrices

building

.c
simulation

file

.mo
µ-Modelica

file

QSS
tool

Conversion
to

matrices

Figure 10. Software tool-chain

The considered mono-cylinder model is characterized
by a number of:

• State variables: nX = 15

• Events: nZ = 111

• Discrete variables: nD = 93

The state variables xi (i = 1, .., nX) are defined as fol-
lows:

ID Name Details

X0 CrankAngle Crank Shaft angle

X1→3 mEvapo[3]
Gas mass evaporated due to in-
jection in global Mass balance
equation

X4 qvAlfa
Current released heat generated
by the combustion process

X5 mrefAlfa
Burned mass fraction during
combustion process

X6 combuHeatRelease
Output current combustion heat
released

X7→9 mCombu[3]
Gas mass derivatives due to
combustion in global Mass bal-
ance equation

X10→12 M[3] Mass of gas

X13 Energy
Energy contained in the cylin-
der

X14 cylinderTemp
Output temperature in the cylin-
der

33

The events zi (i = 1, .., nZ) and discrete variables di

(i = 1, .., nD) are defined by the “when” blocks as follows:

when (z_i) then
d_i = ... ;
elsewhen !(z_i) then
d_i = ... ;
end when;

The statements that are between the “then” and the
“elsewhen” or the “end when” are called the event han-
dler, it represents the consequence of the event.

6.2 State and Derivatives Incidence Matrices
At first glance, the number of coupled state variables is
6 among 15. In fact, Ẋ13 is only influenced by the state
variables X0, X10, X11, X12, X14 as shown in Figure 11.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

X

X

.

Figure 11. Incidence state matrix: derivatives of state vari-
ables Ẋ depending on state variables X

Thus far, considering only the incidence state matrix,
only 40% of the state variables are directly computed from
the other states, while the others depend on external inputs
(or even remain constant on some particular trajectories of
the state space, e.g. when imposing a constant velocity of
the crank).

The same result is found for events. In fact, the number
of active events is 39 among 111, as the previous cited
involved state variables directly affect values of 39 events
as shown in Figure 12.

0 20 40 60 80 100 110

0

5

10
14

Z

X

Figure 12. Incidence matrix: events Z depending on the
state variables X

This number represents only 35% of the total number of
events, while the rest is only used to activate other events.
In fact these 72 events are defined in the ModEngine library
to be used in more general systems, not for the particular
mono-cylinder use case. In consequence only the subset of
active events must be detected.

However, if the state variables X can affect the events
Z, the events can also change the state variables values.
In order to construct its corresponding matrix, both the in-
cidence matrix that defines the discrete variables D influ-
enced by the events Z: Z → D (see Figure 13) and the in-
cidence matrix that defines the derivatives of the state vari-
ables Ẋ influenced by the discrete variables D: D→ Ẋ (see
Figure 14) are carried out.

0 10 20 30 40 50 60 70 80 93

0

20

40

60

80

100

110

D

Z

Figure 13. Incidence matrix: discrete variables D influ-
enced by the events Z

0

5

10

14
0 10 20 30 40 50 60 70 80 93

X

D

.

Figure 14. Incidence matrix: derivatives of state variables
Ẋ influenced by discrete variables D

Thus the incidence matrix Z → Ẋ is deduced by transi-
tivity in Figure 15.

0

5

10
14

0 20 40 60 80 100 110

X

Z

.

Figure 15. Incidence matrix: derivatives of state variables
Ẋ influenced by the events Z

Figure 15 shows that the previous identification of some
state variables as not coupled (based on incidence state
matrix Figure 11) and events influenced by state variables
(Figure 12), is no longer true. In fact, now 13 state variables
among 15 appear in this incidence matrix. Note that now
only the state variables corresponding to X1 and X3 do
not appear in this incidence matrix, this is due to the fact
that these variables are inhibited momentarily to test a
particular scenario.

By combining the two matrices in Figures 12 and 15, an
incidence matrix between events and state variables can be
achieved as in Figure 16.

Once unnecessary states and events are eliminated and
only involved ones are kept, the intrication between state

34

0 20 40 60 80 100 110

0

5

10
14

Z

X

Figure 16. Incidence matrix: data exchange between
events Z and state variables X

variables and events in both directions shows that it is
difficult to separate or split the system.

Besides, from Figure 12 (X → Z) and Figure 15 (Z →
Ẋ), the state incidence matrix can be built differently than
in Figure 11, by passing through the events as it is shown
in Figure 17.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

X

X
.

Figure 17. Incidence state matrix: derivatives of state vari-
ables Ẋ influenced by state variables X

Using this construction through the events Z, it appears
that the state derivative Ẋ14 is also depending on X10, X11
and X12. Therefore, in order to determine correctly the
relationships between the variables, it is important to use
all the available system data, directly and by transitivity.

6.3 Incidence Event Matrix
The incidence event matrix can be built by transitivity. In
fact, using the incidence matrix that define Z → D (see
Figure 13) and conversely the matrix that define D → Z,
the incidence event matrix Z → Z can be deduced as it is
shown in Figure 18.

As shown previously, it is hard to split the system based
on the relationship between events Z and discrete variables
D. However, with the incidence event matrix, it is possible
to transform it into a block-diagonal form with three blocks
using PaToH and to consider each block as a subsystems
where all the related discontinuities belong to the same
entity (see Figure19).

These blocks can be parallelized and we can hope the
execution time to be reduced. In fact, the event detection,
the event location and the restart of the solver increase
the integration time as shown in Figure 20. In short, for
the mono-cylinder integrated by the variable-step solver
LSODAR, the average execution speed drops down to 4
times in case of events handling, and sometimes even up

0 20 40 60 80 100 110

0

20

40

60

80

100

110

Z

Z

Figure 18. Incidence event matrix: events Z in columns
influenced by events Z in rows

0 20 40 60 80 100 110

0

20

40

60

80

100

110

Z

Z

Figure 19. Block-diagonalized incidence event matrix:
events Z in columns influenced by events Z in rows

to 60 times. This confirms the interest on both limiting the
number of interrupts inside each block of the model due to
the events and parallelizing the event location through the
solver.

0.29 0.3 0.31 0.32 0.33 0.34 0.35
2

3

ze
ro

−c
ro

ss
in

g

time (s)

0.29 0.3 0.31 0.32 0.33 0.34 0.35
0

50

100

150

200

ex
ec

ut
io

n
tim

e
(µ

s)

time (s)

2=no zero−crossing,3=zero−crossing

Figure 20. Effect of events handling on execution time

35

7. Summary and Future Directions
The various methods studied in the paper aim to contribute
to speed-up the numerical integration of hybrid dynami-
cal systems, eventually until reaching a real-time execu-
tion, while keeping the integration errors inside controlled
bounds. Speed-ups can be achieved through an adequate
partition of the original system where the interactions be-
tween the resulting sub-systems are minimized, so that they
can be efficiently integrated in parallel.

Slackened synchronization, as analyzed theoretically in
Section 4, allows for minimizing the number of integration
interrupts and for using optimized integration parameters
on each node (as illustrated experimentally in [2]) . How-
ever the corresponding induced delays between the sub-
systems must be limited to keep the integration errors under
control.

The particular case study shows that it is not easy nor
intuitive to know how to split a system, neither from a
physical point of view nor from the relationship between
the states and the events. In fact, the matrix between the
coupled states and events is not sparse, so it is not possible
to transform it into a block-diagonal form.

However, the incidence events matrix more likely seems
to be sparse and its transformation to a block-diagonal form
is feasible. Thus a relevant way to parallelize this particular
system seems to perform it through the solver, leading
to parallelize the steps corresponding to events handling
which are costly for the numerical resolution (as already
observed and plot in Figure 20).

Future works intend to practically evaluate the achiev-
able speedups. This requires to extend the tool-chain of
Figure 10, by developing a multi-thread runtime system
able to take into account the parallelization choices pre-
sented in this paper. Then an engine with 4 cylinders will
be studied to compare the split performed from a physical
point of view in [2] to the combined use of the analytic
approaches described in sections 4 and 5.

References
[1] U. M. Ascher and L. R. Petzold. Computer Methods for

Ordinary Differential Equations and Differential-Algebraic
Equations. SIAM, Philadelphia, PA, USA, 1st edition,
1998.

[2] A. Ben Khaled, M. Ben Gaïd, D. Simon, and G. Font. Mul-
ticore simulation of powertrains using weakly synchronized
model partitioning. In E-COSM’12 IFAC Workshop on
Engine and Powertrain Control Simulation and Modeling,
Rueil-Malmaison, France, October 2012.

[3] Z. Benjelloun-Touimi, M. Ben Gaid, J. Bohbot, A. Dutoya,
H. Hadj-Amor, P. Moulin, H. Saafi, and N. Pernet. From
physical modeling to real-time simulation : Feedback on
the use of modelica in the engine control development
toolchain. In 8th Int. Modelica Conference, Germany,
March 2011. Linköping University Electronic Press,
Linköpings universitet.

[4] F. Bergero, X. Floros, J. Fernández, E. Kofman, and F. E.
Cellier. Simulating Modelica models with a stand-alone
quantized state systems solver. In 9th Int. Modelica
Conference, Munich Germany, September 2012.

[5] G. Bernat, A. Burns, and A. Llamosi. Weakly hard real-
time systems. IEEE Trans. on Computers, 50:308–321,
April 2001.

[6] T. Blochwitz, T. Neidhold, M. Otter, M. Arnold, C. Bausch,
M. Monteiro, C. Clauß, S. Wolf, H. Elmqvist, H. Olsson,
A. Junghanns, J. Mauss, D. Neumerkel, and J.-V. Peetz.
The functional mockup interface for tool independent
exchange of simulation models. In Proceedings of the 8th
International Modelica Conference. Linköping University
Electronic Press, March 2011.

[7] G. D. Byrne and A. C. Hindmarsh. PVODE, an ODE
solver for parallel computers. International Journal of
High Performance Computing Applications, 13(4):354–
365, Winter 1999.

[8] F. E. Cellier and E. Kofman. Continuous System Simulation.
Springer, 1st edition, March 2006.

[9] C. Faure, M. Ben Gaïd, N. Pernet, M. Fremovici, G. Font,
and G. Corde. Methods for real-time simulation of cyber-
physical systems: application to automotive domain. In
IWCMC’11, pages 1105–1110, 2011.

[10] M. C. Ferris and Jeffrey D. Horn. Partitioning mathematical
programs for parallel solution. Mathematical Programming,
80:35–61, 1998.

[11] P. Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica. Wiley-IEEE Press, 2003.

[12] D. Guibert. Analyse de méthodes de résolution parallèles
d’EDO/EDA raides. PhD thesis, Université Claude Bernard
- Lyon I, Sep 2009.

[13] G. Karypis and V. Kumar. MeTiS : A software package
for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices.
Technical report, Univ. of Minnesota, Dept. of Computer
Science, 1998.

[14] E. Kofman and S. Junco. Quantized-State Systems: a DEVS
approach for continuous system simulation. Trans. of
The Society for Modeling and Simulation International,
18(3):123–132, September 2001.

[15] E. A. Lee. Computing foundations and practice for Cyber-
Physical Systems: A preliminary report. Technical Report
UCB/EECS-2007-72, Univ. of California, Berkeley, May
2007.

[16] M. Sjölund, R. Braun, P. Fritzson, and P. Krus. Towards effi-
cient distributed simulation in Modelica using transmission
line modeling. In EOOLT, pages 71–80, 2010.

[17] P. J. van der Houwen and B. P. Sommeijer. Parallel iteration
of high-order Runge-Kutta methods with stepsize control.
J. Comput. Appl. Math., 29:111–127, January 1990.

[18] F. Zhang, M. Yeddanapudi, and P. Mosterman. Zero-
crossing location and detection algorithms for hybrid system
simulation. In Proc. 17th IFAC World Congress, pages
7967–7972, Seoul, South Korea, July 2008.

[19] Ü. V. Çatalyürek. Hypergraph Models for Sparse Matrix
Partitioning and Reordering. PhD thesis, Computer
Engineering and Information Science Bilkent University,
November 1999.

36

Automating Dynamic Decoupling

in Object-Oriented Modelling and Simulation Tools

Alessandro Vittorio Papadopoulos Alberto Leva
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,

{papadopoulos,leva}@elet.polimi.it

Abstract

This manuscript presents a technique that allows Equation-
based Object-Oriented Modelling Tools (EOOMT) to ex-
ploit Dynamic Decoupling (DD) for partitioning a complex
model into “weakly coupled” submodels. This enhances
simulation efficiency, and is naturally keen to parallel in-
tegration or co-simulation. After giving an overview of the
problem and of related work, we propose a method to auto-
mate DD by means of a novel structural analysis of the sys-
tem – called “cycle analysis” – and of a mixed-mode inte-
gration method. Also, some considerations are exposed on
how the presented technique can be integrated in EOOMT,
considering as representative example a Modelica transla-
tor. Simulation tests demonstrate the technique, and the re-
alised implementation is released as free software.

Keywords dynamic decoupling, model partitioning, effi-
cient simulation code generation

1. Introduction and Motivation

Equation-based Object-Oriented (EOO) modelling lan-
guages are known to possess a number of interesting advan-
tages, and in the context of this work, two are particularly
relevant. First, the EOO modelling paradigm is inherently
suited for building modular, multi-physic models. Second,
the model designer has not to take care of how the system
will be simulated, just focusing on how to write the equa-
tions of its components. In one word, with EOO Modelling
Tools (EOOMT) one handles the complete model by just
aggregating components and acting on them. The translator
included in typical EOOMT is then in charge of manipu-
lating all the gathered equations, and producing efficient
simulation code [5, 8].

As long as the obtained simulation efficiency is suffi-
cient, the possibility of managing complexity at the compo-
nent level has practically no cost. However, there are some
cases where to achieve the desired efficiency, approxima-

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

tions need introducing, and EOOMT are neither meant nor
suited for that. As will be discussed in this work, approx-
imations can be introduced either by altering some equa-
tions in some components, or by acting on the numerical
solution of the complete model. And while with EOOMT
the first action is natural, the second is not at all. This rules
out several powerful approximation techniques aimed at
enhancing simulation speed, e.g., the Dynamic Decoupling
(DD) one [2–4] treated herein.

To enter the subject, it is convenient to specify why in-
troducing approximation at the level of the solution is “un-
natural” in EOO modelling. The main reason is that the
possibility/opportunity of doing so depends on properties
of the whole model, not of the individual components, and
in the typical toolchain of EOOMT no user interaction is
envisaged at that point. Moreover, assuming that the use of
any approximation technique requires some parameters, it
is necessary to provide the user with the necessary informa-
tion to give them a value, and to accept his/her choices, in
a comprehensible manner, manageable by people who are
more experts of physics than of simulation theory.

In this work we refer as “EOO Modelling Tool” to
a Modelica translator, to allow exemplifying the (more
general) presented ideas. For a Modelica translator, the
EOO modelling toolchain can be synthetically depicted as
in Figure 1.

Gather eqs

into DAE

Simplify to

causal ODE

Code

generation Execution

Model

construction

Create, edit

& aggregate

components

Specify

solver

Figure 1. The typical EOO modelling toolchain.

For our purposes, said toolchain has to be extended –
and in some sense “opened” – as suggested in Figure 2, in-
troducing some (clearly optional) automatic system-wide
analysis, and taking care of having the user interact with
simple enough information despite operating at the whole
system level. In this work we present a solution assuming
that the desired type of approximation is DD, therefore tai-
loring the analysis and the use of the produced informa-
tion to that case, but nonetheless the way of acting on the
toolchain is general with respect to the approximation type.

37

Gather eqs

into DAE

Simplify to

causal ODE
Code

generation Execution
Model

construction

Create, edit

& aggregate

components

Specify

solver

and approx

Analyse

for approx

Figure 2. Extending the EOO modelling toolchain.

The rest of the manuscript is organised as follows. Sec-
tion 2 reviews some relevant literature and provides a more
detailed motivation for the presented work, specialising to
the DD technique. Section 3 is devoted to the DD tech-
nique, and particularly to how it is structured – into an anal-
ysis and a simulation part – so as to be applicable to the
addressed context. A few illustrative examples are then re-
ported in Section 4. Some more general considerations are
made in Section 5 on how to integrate the presented tech-
nique in modern EOOMT, ending with some details on an
implementation offered as free software to the community.
Finally, Section 6 draws some conclusions, and sketches
out future research developments.

2. Related Work and Contribution

In this section, we motivate the presented research by relat-
ing DD to other approximation techniques for improving
simulation efficiency, with specific emphasis on their ap-
plicability and convenience in EOOMT.

Referring to Figure 1, the chain of operations of EOO
modelling translators, from component equations to simu-
lation code, can be broadly divided into two parts.

The first part, which we call acting on the continuous-

time equations, transforms the DAE system coming from
the flattening phase, into a causal ODE one. This can be
done without altering the equations’ semantic, by resorting
to techniques, such as the Tarjan algorithm, alias elimina-
tion, index reduction and so forth [5]. The same operation
can also be done by accepting some semantic alteration in
exchange for an efficiency improvement. The techniques of
election for such a purpose are, e.g., MOR [1] or scenario-
based [13] approximations.

The second part of the EOO modelling toolchain, which
we call acting on the discrete-time solution, consists of
taking the mentioned ODE model as the basis to gener-
ate suitable routines that, once linked to the numeric solver
of choice, result in the required simulation code. Assum-
ing that acting on the discrete-time solution is done “cor-
rectly”, i.e., preserving numerical stability, also in this case
two ways of operating can be distinguished. The first way
does not alter the solution semantic, and the chosen dis-
cretisation method is applied as is. In this case, errors in
the solution only come from the inherent imperfection of
the considered method. The second way conversely alters
the semantic of the discrete-time system, by deliberately
deviating from the natural application of the chosen dis-
cretisation method. Notice that most of the co-simulation
techniques fall in this class naturally.

In this manuscript we concentrate on this last type of
operation, where a technique of election is DD [2, 14]. For

the purpose of this section, suffice to say that this technique
aims at partitioning the monolithic system into submodels,
based on time-scale separation. The method is particularly
of interest – as will be detailed better in Section 3 – because
it can be divided into two well separated phases: an analysis
part performed on the overall model, and a simulation part
that either can be monolithic or makes use of co-simulation
technique.

To motivate the choice of focusing on DD, we now
briefly consider the major possible alternatives, and evi-
dence the advantages of our proposal.

2.1 Alternatives Approaches

As already stated, among the techniques that act on the
continuous-time equations, MOR ones are the most adopted,
and there exists a vast literature on the matter. MOR is
based on the idea of approximating a certain part of a
high-dimensional state space of the original system with
a lower-dimensional state space, performing a projection.
Very roughly speaking, the main differences among MOR
techniques come from the way the projection is performed.

Most MOR techniques have been developed for linear
systems [1], and this hampers their application to object-
oriented models, that usually are high-dimensional and
nonlinear; developing effective MOR strategies for non-
linear systems is quite a challenging and relatively open
problem.

In the literature, some extension to the nonlinear case are
present, e.g., based on linearisation or Taylor expansion [7],
or bilinearisation [15], as well as functional Volterra series
expansion [10], followed by a suitable projection. Other in-
teresting extensions worth mentioning are those based on
Proper Orthogonal Decomposition (POD) [6], that produce
approximate truncated balanced realisations for nonlinear
systems [16], often exploiting POD to find approximate
Gramians [11]. The main problem with those extensions
is that, of the former, practical implementations typically
stick to quadratic expansions, strongly limiting the simpli-
fication capabilities. As for the latter, the cost of evaluating
the projected nonlinear operator often remains very high,
and reduces computational performance.

Recently, other works dealing with model reduction
specifically conceived for object-oriented models have ap-
peared [12, 13]. The main idea is that one can define some
operation to be performed on the nonlinear system, e.g.,
neglecting a “term”, linearise a part of the model, and so
on, and use some ranking metrics to identify a priori which
is the “best” (single) manipulation that can be done on the
model. Apparently, the limit of this approach lies in the fact
that ranking all the possible manipulation combinations is
not feasible. Moreover, there is no guarantee that perform-
ing the manipulations in the ranked order will bring to the
optimal manipulation. Another problem is the high cost of
generating the reduced order models, due to necessity of
computing “snapshots” in the time domain, which in turn
requires performing numerous simulations of the original
nonlinear system. Furthermore, this approach is scenario-
based, i.e., the simplified model is guaranteed to be good
only for a set of initial conditions, a set of inputs and a time

38

span. If the scenario is changed, the overall manipulation
must be performed again, limiting again the applicability
of the method.

The old idea of DD has also been recently reconsidered,
for example by the Transmission Line Modelling (TLM)
approach of [18]. This, however requires that the analyst
introduces decoupling by deliberately acting on the model
based on his/her intuition. This work conversely aims at
having decoupling emerge from an automated analysis of
the model.

2.2 A Brief Comparison

Based on the previous discussion, we now point out the
advantages of the proposed technique with respect to the
analysed alternatives.

In comparison with MOR, our proposal does not alter
the state vector, nor does it involve base changes in the
state space. Also, instead of attempting to simplify the
model in a view to monolithic solution, we go exactly in
the opposite direction, as the model is not reduced but
partitioned. This can in turn be exploited in two ways. One
is to ease a monolithic solution, in some sense adapting the
model to the used (single solver) architecture. The other is
to conversely tailor the solution architecture to the model
as analysed and partitioned by the method; this can be
used to fruitfully employ parallel simulation, or even co-
simulation. Finally, the proposed method is naturally keen
to be applied in a nonlinear context.

With respect to scenario-based approximations, the
most computing-intensive part of the proposal (as will be
explained later on) is simply not scenario-based: informa-
tion related to the considered scenarii come into play only
at a later stage, and this separation results in lightening
the computing effort. Furthermore, the proposal does not
alter the model equations, thus being less exposed to the
possible unpredictable effects of local modifications at the
overall system level.

The next section will delve into details on the proposed
technique, thereby providing evidence for the statements
made so far.

3. Dynamic Decoupling

Multi-physics systems are usually made of parts evolving
within different time-scales. For example, in mechatronic
systems a “slow” mechanical part is often controlled by
“fast” electric circuits or by a hydraulic drive. The under-
lying idea of DD is to find a way to separate the different
dynamics present in the model and to numerically integrate
them with a suitable mixed-mode method, in order to im-
prove simulation efficiency.

DD is composed of two subsequent phases, termed here
analysis and decoupled integration. The former consists
in performing an offline structural analysis of the system
and in identifying which are the time-scales involved in the
model. The latter exploits the information coming from the
analysis to improve simulation efficiency.

Both phases can be carried out with multiple techniques.
For the analysis phase, we propose here a novel method,

called cycle analysis, that carries most of the merit for
the applicability of the entire technique to the nonlinear
case. For the latter, we conversely resort to mixed-mode
integration.

3.1 Cycle Analysis

Cycle analysis is based on the idea that explicit integra-
tion methods are the most suited to enhance simulation
speed [5]. Their computational effort is relatively low and
constant, and the number of calculations per step can be
easily estimated. However, those methods show their lim-
its when dealing with stiff-systems. For simplicity, in the
following we consider the Explicit Euler (EE) integration
method, but similar (and less restrictive) results can be ob-
tained for other explicit single-step methods, e.g., Explicit
Runge-Kutta of any order.

The main idea of the cycle analysis – and of DD, in
general – is that in a causal ODE model, both each variable
and each equation can be associated with a characteristic
time-scale.

A first possible idea to achieve this is to perform an
eigenvalue analysis of the linearised system, and to par-
tition the state space, as spanned by the eigenvectors, on
the basis of the corresponding time constants (or natural
frequencies). However, this is not always a good idea, be-
cause it involves a coordinate transformation; if the linear
system involved in the eigenvalue analysis comes from the
linearisation of a nonlinear one, the management of that
transformation results in additional computations at each
integration step. Different criteria for state space partition-
ing are thus advisable, like that proposed in [17].

Coming to our proposal, consider the state space form
of a continuous-time ODE system

ẋ = f(x,u)

that discretised with EE with an integration step h yields

xk+1 = xk + h · f (xk,uk) . (1)

Suppose now that the system is at an asymptotic stable
equilibrium, i.e., xk+1 = xk. If a small perturbation is
applied to a single state variable xk, a transient occurs, and
two things may happen:

1. the perturbation affects the other state variables, how-
ever without in turn re-affecting xk;

2. the perturbation, after some integration steps, re-affects
xk.

In the first case, no numerical instability can occur, but
in the second case there is a “dependency cycle” among
some state variables that may lead to unstable behaviours,
depending on how the perturbation propagates.

The proposed method detects the dependency cycles
that are present in the system, and defines conditions under
which the perturbation cannot lead to numerical instability.

The first step in cycle analysis is to build the dependency
digraph G = (N,E) associated with the ODE model. In
particular, there is a node n ∈ N for each state variable,

39

and the set of edges E ⊆ N ×N is formed as

ei,j = h · ∂fi
∂xj

.

In other words, the Jacobian of the model corresponds
to the adjacency matrix of the weighted graph. The weights
come from (1) and characterise the way the perturbation
propagates.

The second step is to detect the set C of all cycles con-
tained in the digraph G. Unfortunately, the problem of
finding all the cycles in a directed graph has complexity
O
(

2|E|−|N |+1
)

, as shown by a vast research in the oper-
ation research domain [9, 19, 20]. This is of course a limi-
tation with strongly connected graphs, but sparse ones are
more common in real applications, especially if weak cou-
plings exist. On the other hand, it is worth stressing that
the cycle analysis must be performed only once for a given
model, during an offline phase before the simulation is
started. According to practical experience, spending some
additional time to perform a structural analysis aimed at
speeding up the simulation is an acceptable tradeoff, espe-
cially when the simulation is run many times. Anyway, in
all the performed tests (with up to 100 state variables), the
analysis phase always took less than one second on a note-
book with a 2.4GHz Intel Core 2 Duo processor and 4GB
of RAM.

At this point, for every cycle c ∈ C detected in G a cycle

gain can be defined.

DEFINITION 1. A cycle gain µc of a cycle c ∈ C is

µc =
∏

xi,xj∈c

ei,j = hL ·
∏

xi,xj∈c

∂fi

∂xj

where ei,j are the edges involved in the cycles and L is the

length of the cycle.

The meaning of this gain is related to how the pertur-
bation propagates. Starting from the computed cycle gains,
for each cycle an inequality in the form

|µc| ≤ α ⇒ 0 < h ≤ L
√
α ·

∣

∣

∣

∣

∣

∣

∏

xi,xj∈c

∂fi

∂xj

∣

∣

∣

∣

∣

∣

−
1

L

(2)

is written, where α > 0 is a design parameter of the
method, related – as discussed later on – to the required
simulation accuracy. Suffice for now to say that lower val-
ues of α make the method less keen to consider a certain
coupling “weak”.

So far, each cycle has been associated with a constraint
on the integration step, i.e., with an upper bound for the
integration step which prevents the perturbation from pro-
ducing unstable behaviours.

Finally, each variable xi is associated with the most
restrictive constraint on hxi

among the set of cycles Cxi
=

{c ∈ C|xi ∈ c}, i.e., formally

hxi
=max h

s.t. h > 0,

0 < hi ≤ L
√
α ·

∣

∣

∣

∣

∣

∣

∏

xj,xk∈c

∂fj

∂xk

∣

∣

∣

∣

∣

∣

−
1

L

, ∀c ∈ Cxi
.

3.2 Decoupled Integration

The second phase of DD is decoupled integration, which
exploits the partition coming from cycle analysis in a view
to improve simulation efficiency. Among the various pos-
sible ways to do so, we consider here the use of a mixed-
mode integration method. The underlying idea is that im-
plicit methods are able to simulate stiff systems with larger
integration periods, at the cost of solving a nonlinear set
of algebraic equations at each step, while explicit ones are
better in terms of performance but cannot deal with stiff
systems equally well. Having separated the system in (at
least) two parts with different time scales, it is possible to
use an implicit method for the fast part(s), and an explicit
one for the slow part(s), exploiting the advantages of both
kinds of integration algorithms.

Coming back to the proposal, the discrete-time system
associated with the continuous-time one reads

x
s
k+1 = x

s
k
+ h · f

(

x
s
k
,x

f
k
,uk

)

x
f
k+1

= x
f
k
+ h · f

(

x
s
k+1

,x
f
k+1

,uk+1

)

showing that the fast and the slow parts are integrated with
the Implicit Euler (IE) and the EE method, respectively.

This means that the fast component xf
k+1

can be com-
puted considering x

s
k+1

as an input. Figure 3 shows the
resulting mixed-mode integration scheme.

EE

IE

uk
x
s
k+1

x
f
k+1

Figure 3. Explicit/Implicit Euler integration scheme.

4. Application Examples

4.1 DC Motor

The DC motor is a very simple example of system with two
well separated time scales (electric and mechanic), and can
be represented by a third order model in the form

L · İ = −R · I − km · ω + u(t)
J · ω̇ = km · I − b · ω − τ(t)

ϕ̇ = ω

(3)

where L = 3mH is the armature inductance, R = 50mΩ
is the armature resistance, J = 1500 kg m2 is the inertia,
b = 0.001 kg m2 s−1 is the friction coefficient, and km =
6.785V s is the electro-motorical force (EMF) constant of
the motor. These parameter values correspond to those of a

40

real system. The inputs are the armature voltage, u(t), and
the torque load, τ(t), respectively. In the given example,
u(t) is 500V, and the torque is of 2500N m.

The cycle analysis leads to the constraints

I : h ≤ 0.060

ω : h ≤ 0.313

ϕ : h ≤ +∞

Hence, choosing an integration step h = 0.3 induces
a partition of the system that is natural, as it clearly sepa-
rates the electric components from the mechanic ones. The
constraint associated with ϕ comes from the fact that there
is a pure integral action that does not influence the cycle
analysis. Figure 4 shows the simulation results.

0

20

40

60

ω
(r

ad
/s

)

0

0.5

1

·104

I
(A

)

0 2 4 6 8
0

200

400

time (s)

ϕ
(r

ad
)

Figure 4. Simulation results of Model (3). Dashed lines
represent the real trajectories, while the solid lines are the
trajectories obtained with DD.

Table 1 shows the simulation statistics for different in-
tegration methods. It is worth noticing that the dimension
of the system the Newton iteration has to solve is reduced
from 3 to 1 in the mixed-mode method. Notice also that the
EE method needs a smaller step size, hence h = 0.05 was
chosen for numerical stability reasons. Apparently, using
DD improves simulation efficiency also in this very simple
case.

Mixed-mode BDF IE EE

Steps 28 136 28 162
Function ev. 86 157 86 –
Jacobian ev. 2 3 2 –
Fun. ev. in Jac. ev. 4 9 8 –
Newton iterations 58 153 58 –
Newton fail 0 0 0 –
Accuracy 1.118 – 1.213 10.043
Sim time 0.04s 0.05s 0.06s 0.04s

Table 1. Simulation statistics for Model (3).

4.2 Counterflow Heat Exchanger

This example refers to a counterflow heat exchanger with
two incompressible streams (Figure 5).

Ta,i pa,i pa,o

Wall
pb,o Tb,i pb,i

L

Ta,1

Tw,1

Tb,N

Figure 5. Counterflow heat exchanger scheme.

Both streams and the interposed wall are spatially dis-
cretised with the finite volume approach, neglecting axial
diffusion in the wall – as is common practice – and also
in the streams (zero-flow operation is not considered for
simplicity). Taking ten volumes for both streams and the
wall, with the same spatial division (again, for simplicity)
leads to a nonlinear dynamic system of order 30, having as
boundary conditions the four pressures at the stream inlets
and outlets, and the two temperatures at the inlets. More
precisely, the system is

pa,i − pa,o =2cf,aL/(ρaπ
2r5) · wa|wa|

pb,i − pb,o =2cf,bL/(ρbπ
2r5) · wb|wb|

caρaπr
2 L

N
Ṫa,j =waca · (Ta,j−1 − Ta,j)

+γa

(

wa

wa,nom

)0.8

πr
L

N
· (Tw,j − Ta,j)

cwρwπr2
L

N
Ṫw,j =− γa

(

wa

wa,nom

)0.8

πr
L

N
· (Tw,j − Ta,j)

−γb

(

wb

wb,nom

)0.8

πr
L

N
· (Tw,j − Tb,N−j+1)

cbρbπr
2 L

N
Ṫb,j =wbcb · (Tb,j−1 − Tb,j)

+γb

(

wb

wb,nom

)0.8

πr
L

N
· (Tw,N−j+1 − Tb,j)

(4)
where T stands for temperature, w for mass flowrate, p
for pressure, cf for the friction coefficient, c and ρ for
(constant) specific heat and density, and γ the coefficient of
heat transfer; the a, b and w subscripts denote respectively
the two streams and the wall, while j ∈ [0, N] (j = 0 for
boundary conditions) is the volume index, counted for both
streams from inlet to outlet, the wall being enumerated like
stream a; the i and o subscripts, finally, stand for “inlet”
and “outlet”. Table 2 shows the parameter values used in
the example.

Parameters

pa,i 1.216kPa r 0.1m ρb 3500kg/m3

pb,i 1.216kPa s 0.005m ρw 4200kg/m3

pa,o 1.013kPa cf,a 0.1 γa 100W/(m2K)
pb,o 1.013kPa cf,b 0.2 γb 100W/(m2K)
Ta,i 323.15K ca 4200J/(kg K) wa,nom 0.5kg/s
Tb,i 288.15K cb 3500J/(kg K) wb,nom 0.5kg/s
N 10 cw 3500J/(kg K)
L 30m ρa 4200kg/m3

Table 2. Parameter values of Model (4).

In this example, contrary to the previous one, there is
no neat physical separation between the time scales of the

41

involved dynamics. In fact, the cycle analysis leads to the
constraints

Ta,j : h ≤ 10.383

Tb,j : h ≤ 13.327

Tw,j : h ≤ 13.658

which show that the time scales associated with the vari-
ables are quite close one to another. Due to the physical
nature of this system, DD is not expected to take particular
advantage of the partition.

Choosing an integration step h = 13.0 yields a partition
that considers the Ta,j as the fast while the Tb,j and Tw,j

as the slow states. Figure 6 shows the simulation results
— notice that the temperatures are reported with different
scales.

290

300

310

320

T
a
,j

(K
)

290

300

310

T
w
,j

(K
)

0 100 200 300 400 500
286
288
290
292
294
296

time (s)

T
b
,j

(K
)

Figure 6. Simulation results of (4) with α = 1.0. Dashed
lines represent the real trajectories, while the solid lines are
the trajectories obtained with DD.

Table 3 shows the simulation statistics for different in-
tegration methods. It is worth noticing that the dimension
of the system is reduced from 30 to 10 in the mixed-mode
method. Also, the EE method needs a smaller step size,
hence h = 10.0 was chosen, again for numerical stability
reasons.

Mixed-mode BDF IE EE

Steps 38 212 38 50
Function ev. 114 241 114 –
Jacobian ev. 2 4 2 –

Fun. ev. in Jac. ev. 22 120 62 –
Newton iterations 76 237 76 –

Accuracy 0.017 – 0.014 0.059
Sim time 0.04s 0.15s 0.06s 0.08s

Table 3. Simulation statistics for Model (4) (h = 13.0).

As can be seen in (2), the integration step depends on
the choice of α. Choosing a value of α = 1.0 is usually
a good choice—in fact the value of α used in the previous

examples. This choice is however quite aggressive from the
point of view of accuracy, even if the low frequency dynam-
ics are caught (see, for instance, Tb,j in Figure 6). Choosing
a smaller value of α, e.g., α = 0.5, will conversely yields a
more conservative partitioning but more accurate a numer-
ical solution. In particular, the output of the cycle analysis
changes to

Ta,j : h ≤ 5.191

Tb,j : h ≤ 6.664

Tw,j : h ≤ 6.829

and choosing h = 6.0 leads to the same partition as be-
fore, but producing more accurate solutions (see Figure 7).
Apparently enough (see Table 4), the performance of the

290

300

310

320

T
a
,j

(K
)

290

300

310

T
w
,j

(K
)

0 100 200 300 400 500
286
288
290
292
294
296

time (s)

T
b
,j

(K
)

Figure 7. Simulation results of (4) with α = 0.5. Dashed
lines represent the real trajectories, while the solid lines are
the trajectories obtained with DD.

mixed-mode method is still better in terms of simulation
speed, and the accuracy is improved.

Mixed-mode BDF IE EE

Steps 83 213 83 100
Function ev. 234 243 243 –
Jacobian ev. 4 4 4 –

Fun. ev. in Jac. ev. 44 120 124 –
Newton iterations 151 239 160 –

Accuracy 0.011 – 0.008 0.018
Sim time 0.08s 0.15s 0.16s 0.10s

Table 4. Simulation statistics for Model (4) (h = 6.0).

The presented examples have been kept as small as pos-
sible in order to improve results readability, but the method
can be applied to larger models as well. For example, by
changing in (4) the parameter N to 30, the model becomes
of order 90, and the obtained simulation results are sum-
marised in Table 5.

42

Mixed-mode BDF IE EE

Steps 125 304 125 250
Function ev. 336 337 345 –
Jacobian ev. 6 6 6 –

Fun. ev. in Jac. ev. 186 540 546 –
Newton iterations 211 333 220 –

Accuracy 0.014 – 0.014 0.084
Sim time 0.21s 0.43s 0.41s 0.20s

Table 5. Simulation statistics for Model (4) (h = 4.0).

4.3 Remarks

The presented examples prove the usefulness of the ap-
proach, and show its potentialities, concluding the presen-
tation of the DD technique. However, a last statement need
motivating, i.e., the DD technique can complement existing
EOOMT. To this end, we need discussing how to insert the
presented technique in a manipulation toolchain of modern
EOOMT (Section 5).

5. A Unifying Manipulation Toolchain

As already stated, nowadays MOR techniques do not allow
to introduce approximations in the solution of DAE sys-
tems, neither acting on equations (e.g., MOR techniques)
nor acting on the solution (e.g., DD). In this section we pro-
pose a complementing manipulation toolchain that bridges
those concepts, without altering the classical manipulation
framework, but adding some useful functionalities for the
model designer (see Figure 8).

In particular, the idea is that if the analyst wants to per-
form some approximations in order to improve simulation
speed, he/she needs to be able to specify high-level prop-
erties, e.g., upper bounds on the approximation error, and
which technique must be used for it, e.g., the MOR tech-
nique as well as whether or not the use of DD is advisable.

Figure 8 depicts the proposed toolchain of model ma-
nipulations, from the EOO description to the simulation
algorithm ready for code generation. The decision nodes
(the diamond ones in the diagram) show where additional
manipulation for simplification can be performed. If, in ev-
ery decision node, the simplification is not performed, the
classical manipulation toolchain comes out. Otherwise, a
simpler model is produced at the end of the toolchain. The
diagram also reports some coloured dashed boxes on the
right side. Red boxes stand for already available method-
ologies that can be automatically applicable at this level
of the manipulation, while green ones stand for potential
methodologies which may be introduced as automatic pro-
cedures, but to date not exploited in the context of EOO
modelling.

5.1 An Example Toolchain Implementation

To prove the feasibility of extending an EOO modelling
toolchain as here suggested, the task was actually carried
out by using JModelica1 as the Modelica translator, export-
ing the model as a Functional Mockup Unit (FMU), and

1 http://www.jmodelica.org

Simplify1?

Flattening

Sorting

Index Red.

Tearing

Discretisation

Equation
Manipulation

Yes

Simplify2?
Equation

Manipulation
Yes

Simplify3?
Solution

Manipulation
Yes

DAE

ODE

DT

sys

Continous time

Discrete time

MOR with
heuristics

on DAE

Dynamic
Decoupling

Classical
MOR on ODE

Constitutive

and connection

equations

Simulation

algorithm for

code

generation

Physical/
functional

approx.

Physical/
functional

approx.

Figure 8. Activity diagram of the modified manipulation
toolchain.

employing Assimulo2 for the numerical integration, having
developed the mixed-mode integrator ad hoc.

More in detail, the toolchain of Figure 8 was modified –
for the case when “simplify” is desired – as shown in Fig-
ure 9: the output of the continuous-time part (the manipu-
lated model.mo) is exported by means of the Functional
Mockup Interface (FMI) to model.fmu, elaborated by the
external python module jd2.py that performs the cycle
analysis (i.e., takes care of the “discretisation” and the “so-
lution manipulation” blocks); the partitioned model is then
simulated with Assimulo, with the developed mixed-mode
method. It is worth noticing that the integration of a new
functionality (like DD) into an EOO modelling toolchain
was greatly eased by adopting, for the various phases, tools
that allow for some common interchange format—a feature
of great importance indeed.

The developed code, including the reported examples, is
available as free software, within the terms of the Modelica
License v2, at the URL http://home.dei.polimi.

it/leva/jd2.html.

6. Conclusion and Future Work

A technique was presented to allow equation-based EOOMT
to take profit of DD, partitioning a complex model into
“weakly coupled” submodels in a view to enhancing the

2 http://www.jmodelica.org/assimulo

43

model.mo

JModelica

model.fmu

Exporting to FMU

jd2.py
Discrete-time

Continuous-time

Assimulo

Partitioned Model

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

Mixed-mode integration

Figure 9. Integration of DD in the toolchain of Figure 8.

obtained simulation efficiency. Also, differently from some
alternatives that were comparatively reviewed, the tech-
nique is naturally keen to the use of parallel simulation, or
co-simulation.

The technique is based on a structural analysis of the
system – called here “cycle analysis”, and novel – coupled
to a convenient use of mixed-mode integration. Some con-
siderations were made on how the presented technique can
be integrated in EOOMT, considering a Modelica transla-
tor as example. Simulation tests were reported to illustrate
the achieved benefits, and the realised implementation was
made available as free software to the community.

Future work will concern the exploitation of the men-
tioned keenness to co-simulation, and a tighter integration
into EOOMT by developing a consistent and informative
user interface. Also, the analysis will be deepened by defin-
ing convenient “separability indices” – on which some pre-
liminary ideas are already available – to form the basis
for said informative interfaces, and possibly to further au-
tomate the overall decoupling process. Finally, models of
higher complexity will be addressed, so as to possibly im-
prove the time performance of the software implementa-
tion.

Acknowledgements

The authors are grateful to Prof. F. Casella and Prof. J.
Åkesson for the useful discussions and constructive criti-
cisms, and for providing advice and cooperation to the in-
tegration of DD in the JModelica framework.

References

[1] A. Antoulas. Approximation of large-scale dynamical

systems, volume 6 of Advances in Design And Control.
SIAM, 2005.

[2] A. Bartolini, A. Leva, and C. Maffezzoni. A process
simulation environment based on visual programming and
dynamic decoupling. Simulation, 71(3):183–193, 1998.

[3] F. Casella, A. Leva, and C. Maffezzoni. Dynamic simulation
of a condensation plate column by dynamic decoupling. In

Proc. EUROSIM ’98, Espoo 1998, pages 368–374, 1998.

[4] F. Casella and C. Maffezzoni. Exploiting weak interactions
in object-oriented modeling. Simulation News Europe,
22:8–10, 1998.

[5] F. Cellier and E. Kofman. Continuous system simulation.
Springer, 2006.

[6] J. Chen and S.-M. Kang. Model-order reduction of non-
linear MEMS devices through arclength-based Karhunen-
Loeve decomposition. In The 2001 IEEE Int. Symp. on

Circuits and Systems, volume 3, pages 457–460, 2001.

[7] J. Chen, S.-M. Kang, J. Zou, C. Liu, and J. Schutt-Aine.
Reduced-order modeling of weakly nonlinear MEMS
devices with Taylor-series expansion and Arnoldi approach.
J. of Microelectromechanical Systems, 13(3):441– 451,
2004.

[8] P. Fritzson. Principles of Object-Oriented Modeling and

Simulation with Modelica 2.1. Wiley, 2003.

[9] L. Goldberg and G. Ann. Efficient algorithms for listing

combinatorial structures, volume 5. Cambridge Univ Pr,
2009.

[10] M. Innocent, P. Wambacq, S. Donnay, H. Tilmans,
W. Sansen, and H. De Man. An analytic volterra-series-
based model for a mems variable capacitor. IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems,
22(2):124–131, 2003.

[11] S. Lall, J. Marsden, and S. Glavaski. A subspace approach
to balanced truncation for model reduction of nonlinear
control systems. Int. J. of Robust and Nonlinear Control,
12:519–535, 2002.

[12] L. Mikelsons and T. Brandt. Symbolic model reduction for
interval-valued scenarios. In ASME Conf. Proc., volume
49002, pages 263–272. ASME, 2009.

[13] L. Mikelsons and T. Brandt. Generation of continuously ad-
justable vehicle models using symbolic reduction methods.
Multibody System Dynamics, 26:153–173, 2011.

[14] A. V. Papadopoulos, J. Åkesson, F. Casella, and A. Leva.
Automatic partitioning and simulation of weakly coupled
systems. Technical report, Politecnico di Milano, 2013.

[15] J. R. Phillips. Projection frameworks for model reduction
of weakly nonlinear systems. In Proc. of the 37th Annual

Design Automation Conf., DAC ’00, pages 184–189, New
York, NY, USA, 2000. ACM.

[16] J. Scherpen. Balancing for nonlinear systems. Systems &

Control Letters, 21(2):143–153, 1993.

[17] A. Schiela and H. Olsson. Mixed-mode integration for real-
time simulation. In Modelica Workshop 2000 Proc., pages
69–75, 2000.

[18] M. Sjölund, R. Braun, P. Fritzson, and P. Krus. Towards
efficient distributed simulation in modelica using transmis-
sion line modeling. In 3rd Int. workshop on Equation-Based

Object-Oriented Modeling Languages and Tools, pages 71–
80, 2010.

[19] R. Tarjan. Depth-first search and linear graph algorithms.
SIAM J. on Computing, 1(2):146–160, 1971.

[20] R. Tarjan. Enumeration of the elementary circuits of a
directed graph. SIAM J. on Computing, 2(3):211–216,
1972.

44

A Strategy for Parallel Simulation of Declarative Object-Oriented
Models of Generalized Physical Networks

Francesco Casella1
1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,

francesco.casella@polimi.it

Abstract
For several years now, most of the growth of comput-
ing power has been made possible by exploiting paral-
lel CPUs on the same chip; unfortunately, state-of-the-art
software tools for the simulation of declarative, object-
oriented models still generate single-threaded simulation
code, showing an increasingly disappointing performance.
This paper presents a simple strategy for the efficient com-
putation of the right-hand-side of the ordinary differen-
tial equations resulting from the causalization of object-
oriented models, which is often the computational bottle-
neck of the executable simulation code. It is shown how
this strategy can be particularly effective in the case of gen-
eralized physical networks, i.e., system models built by the
connection of components storing certain quantities and of
components describing the flow of such quantities between
them.

Keywords Parallel simulation, Declarative modelling,
Structural analysis

1. Introduction
For several years now, most of the growth of computing
power predicted by Moore’s law has been made possible
by exploiting parallel CPUs on the same chip; this trend is
likely to continue for many years in the future. Significant
speed-up in the simulation of declarative, object-oriented
models will require to exploit the availability of parallel
processing units.

With reference to the Modelica community, there are
several attempts in this direction reported in the literature,
mostly from Linköping University PELAB. One possible
approach (see, e.g., [2, 8, 9]) is to analyse the mutual
dependencies among the equations and variables of the
system by means of graph analysis, eventually providing
some kind of optimal scheduling of tasks to solve them in

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

parallel, while avoiding idle times and bottlenecks in the
computation.

A completely different approach, also pioneered at
PELAB, is based on Transmission Line Modelling (TLM)
[11, 13]. The basic idea is that physical interactions can
often be modelled by means of components that repre-
sent wave propagation in finite time (e.g. pressure waves
in hydraulic systems, elastic waves in mechanical systems,
electromagnetic waves in electrical systems). It is then pos-
sible to split large system models into several smaller sub-
systems, that only interact through TLM components. This
allows to simulate each sub-system in parallel for the du-
ration of the TLM delay, as its behaviour will only depend
on the past history of connected sub-systems.

This approach is interesting because it is based on phys-
ical first principles, introducing no approximations; how-
ever, the values of transmission line delays in most systems
are quite small, thus limiting the maximum length of the
integration time step allowed for the simulation. Moreover,
this approach critically depends on the good judgement of
the modeller, that must introduce appropriate TLM compo-
nents all over the system model in order to obtain a perfor-
mance benefit.

In spite of the above-mentioned studies, the state-of-the-
art software tools for the simulation of declarative, object-
oriented models still generate single-threaded simulation
code, as of today. This results in an increasingly disappoint-
ing performance, as the number of cores available on stan-
dard desktop workstations or even laptops roughly doubles
every two years, while the simulation speed basically re-
mains the same.

The goal of this paper is to show that, for a fairly
large class of object-oriented models of physical systems,
a simple strategy for parallel simulation can be envisioned,
which is expected to provide large speed-up ratios when us-
ing many-cores CPUs, and which does not depend on the
accurate estimation of the computation and communication
delay to obtain good performance. Since this strategy is
very easy to implement and test, it is hoped that it quickly
finds its way into mainstream object-oriented simulation
tools, thus improving the state of the art in this field.

The paper is organised as follows. Section 2 contains
the statement of the problem and a discussion of related
work. The algorithm to partition the solution of the model

45

into independent tasks that can be executed in parallel is
described in detail in Section 3. In Section 4, models of
generalized physical networks are introduced, and the re-
sults of the partitioning algorithm are discussed. Section 5
briefly discusses the task scheduling problem, while Sec-
tion 6 concludes the paper with final remarks and indica-
tions for future work.

2. Problem Statement and Related Work
The starting point of this analysis is an equation-based,
object-oriented model of a dynamical system, e.g. writ-
ten in Modelica. For the sake of conciseness, the analysis
is limited to continuous-time systems, though it could be
easily extended to hybrid systems with event handling and
clocked variables.

After flattening, the model is transformed into a set of
Differential-Algebraic Equations (DAEs)

F (x, ẋ, v, t) = 0, (1)

where F (·) is a vector-valued function, x is the vector of
variables appearing under derivative sign in the model, v is
the vector of all other algebraic variables, and t is the time.

A commonly adopted strategy for the numerical simu-
lation of such systems is to first transform the DAEs (1)
into Ordinary Differential equations (ODEs), i.e., solving
equations (1) for the state derivatives ẋ and for the other
variables v as a function of the states and of time:

ẋ = f(x, t) (2)

v = g(x, t). (3)

By defining the vector z of unknowns as

z =

[
ẋ
v

]
, (4)

the ODEs (2)-(3) can be formulated as

z = h(x, t) (5)

Sophisticated numerical and symbolic manipulation
techniques (see [5] for a comprehensive review) are em-
ployed to generate efficient code to compute h(x, t), which
will then be called by the ODE integration algorithm at
each simulation step. Implicit integration algorithms will
also require every now and then the computation of the
Jacobian ∂h(x,t)

∂x , which might be performed either sym-
bolically or numerically [4, 3]. This code is then linked to
standard routines for numerical integration of differential
equations, such as DASSL or the routines from the Sundi-
als suite, thus generating an executable simulation code.

In this context, it is in principle possible to exploit par-
allelism in the computation of h(x, t), in the computation
of ∂h(x,t)

∂x , and in the algorithm for numerical integration,
which might, e.g., employ parallel algorithms to solve the
implicit equations required to compute the next state value
at each time step. This paper focuses on those problems
in which the computation of h(x, t) takes the lion’s share

of the simulation time, e.g., because it involves the com-
putation of cumbersome functions to evaluate the proper-
ties of a fluid in an energy conversion system model. Of
course, it is also possible to combine the approach pre-
sented here with the parallel computation of the Jacobian
(which is fairly trivial if done numerically) and of the nu-
merical integration algorithms, but this is outside the scope
of the present work.

The algorithm presented in the next section follows the
same principle that was first put forward in [1], and later on
further developed in the Modelica context in [2]: exploiting
the dependencies between the different equations (and parts
thereof) to determine the order in which the systems has to
be solved and which systems that can be solved in parallel.
However, it tries to do so in a simpler way, by exploiting
the mathematical structure of generalized network models.

More specifically, [2] first represents the algorithm to
compute h(x, t) with the finest possible granularity: each
node in the dependency graph is a single term in the
right-hand-side expressions of those equations that can be
solved explicitly for (x, t), or a system of implicit equa-
tions for those who can’t. Subsequently, these atomic tasks
are merged into larger tasks, taking into account execution
and communication costs, in order to minimize the overall
execution time and maximize the parallel speed-up ratio.
The merging algorithms are fairly involved, and their re-
sult critically depends on those costs, which are often hard
to estimate reliably. Moreover, this kind of analysis seems
to fit well the computational model of networked systems
(e.g., clusters of workstations, which were popular at the
time of that work), where communication delays are signif-
icant when compared to execution times, making a clever
merging of tasks mandatory for good performance. Results
obtained by the application of these techniques to a few
representative test models were reported in [2] and subse-
quent related work, but no analysis was ever attempted to
understand what is the typical structure of the dependen-
cies in different classes of physical system models, in order
to understand how much they can benefit in general from
the application of this parallelization technique. Unfortu-
nately, even though these algorithm were implemented in
earlier versions of the OpenModelica compilers, they are
currently no longer supported, which prevents trying them
on real-life problems that can only be handled by more
recent versions of the compiler.

The aim and scope of this paper are somewhat different.
First of all, the underlying computational model is that of
multiple-core CPUs with shared memory, in which com-
munication delays tend to be small or negligible compared
to execution times, at least as long as all the variables of
the model can be kept within the on-chip cache memory at
all times. This seems a feasible proposition for models of
moderately large size: a system with 10000 variables (after
optimizations such as alias elimination) in double precision
requires only 80 kilobytes of shared cache memory. Sec-
ond, it is shown that a fairly large class of object-oriented
models, namely generalized physical networks, has a de-
pendency structure that can be very well exploited by a sim-

46

ple parallelization algorithm which does not critically de-
pend on the accurate estimation of execution times, but can
guarantee nearly optimal allocation of parallel resources, as
long as the number of nodes in the network is much larger
than the number of parallel processing units.

3. An Algorithm for Parallel Solution of
Equations from Declarative Models

The proposed algorithm is now outlined in detail.

1. Build an Equations-Variables (E-V) digraph, where ev-
ery E-node corresponds to an equation in (1), every V-
node correspond to a scalar unknown variable in z, and
an edge exists between an E-node and a V-node if the
unknown variable shows up in the equation.

2. Find a complete matching between E and V nodes (see
[7] for a review of suitable algorithms); if this is not
possible because the DAE system has index greater than
one, apply Pantelides’ algorithm [12] and the Dummy
Derivative algorithm [10] until the system is reduced to
index 1 and a complete matching can be found.

3. Transform the E-V digraph into a directed graph by first
replacing each non-matching edge with an arc going
from the E-node to the V-node, then by collapsing each
V-node with its matching E-node.

4. Run Tarjan’s algorithm [6] on the directed graph to lo-
cate its strongly connected components, corresponding
to systems of algebraic equations that need to be solved
simultaneously for their matching unknown variables.

5. Collapse each set of nodes making up a strong compo-
nents into one macro-node.

6. Let i = 1

7. Search for all the sinks in the graph and collect them in
the set Si; these correspond to equations (or to systems
of implicit equations) that can be solved independently
of each other.

8. Delete all nodes in Si from the directed graph, as well
as all arcs connected to them.

9. If there are still nodes in the graph, increase i by one
and goto Step 7.

When the algorithm shown above terminates, all the
equations and systems of implicit equations of the system
will be collected in the sets Si.

Proof: after executing Step 5, the directed graph has no
closed cycles left in it, because each and every strong com-
ponents has been collapsed into a single macro-node; there-
fore, there exists at least one sink in the graph. Remov-
ing nodes without outgoing arcs does not create cycles, so
that at each iteration at least one node is removed from the
graph, until there will be none left, QED.

Note that state-of-the-art Modelica tools already per-
form Steps 1 to 4, so that the addition to the tool code in
order to implement the proposed strategy is minimal.

The result of this analysis can also be visualized in terms
of the Block Lower Triangular (BLT) representation of the

Figure 1. The incidence matrix in BLT form with Si sets.

incidence matrix, see Figure 1. Each set Si corresponds to
a block diagonal square matrix in the BLT matrix, marked
in red in Figure 1, where every block on the diagonal cor-
responds to a strong component of the system of equations.
As the ordering induced by the directed graph is partial,
there exist many different BLT transformations of the orig-
inal system corresponding to the same graph.

All the equations or systems of equations showing up in
each set Si can now be solved independently on parallel
cores. Before moving to the solution of set Si+1, it is
necessary to wait that all equations belonging to the set Si
have been solved.

The latter requirement can in general create bottlenecks,
e.g., N − 1 cores might stand idle for a long time, waiting
for the N th one to complete its task. However, if the num-
ber of nodes is much larger than the number of cores and
there is no single node whose execution time is dispropor-
tionately longer than that of all the others, on average the
impact of such situations on the overall execution time will
be small. It will be shown in the next Section that this is
precisely the case of large generalized physical networks.

4. Application to Generalized Network
Models

Many physical models can be built by connecting storage
components and flow components, see Figures 2-3. The
former ones describe the storage of certain quantities, by
means of dynamic balance equations; the latter instead de-
scribe the flow of those quantities between different com-
ponents, which is governed by the difference of some po-
tential variable at the two boundaries. Two examples will
be detailed in this section: thermal networks and thermo-
hydraulic networks.

4.1 Thermal Networks
Thermal networks describe the flow of heat between bod-
ies having different temperature. In this case the stored
quantity is thermal energy, which is conveniently described
by temperature state variables, while the flow components

47

S S

SS

S

Figure 2. A physical network model with flow compo-
nents connected to storage components only.

compute the thermal power flow based on the temperature
at the two boundaries.

Thermal storage components are described by energy
balance equations:

C(Ti)
dTi
dt

=
∑
j

Qi,j , (6)

where Ti is the temperature of the i-th storage component,
C(T) is the thermal capacitance, andQi,j are the heat flows
entering the i-th component. For simplicity, assume all
thermal power flows can be modelled by constant thermal
conductances:

Qi = Gi(Ti,a − Ti,b) (7)

where Gi is the thermal conductance of the i-th flow com-
ponent and Ti,a, Ti,b are the two boundary temperatures.

Assuming that each thermal flow component is directly
connected to two storage components, as in Figure 2, once
all alias variables have been eliminated, the equations (6)
will be matched to their corresponding temperature deriva-
tives, while the equations (7) will be matched to their cor-
responding heat flows. There will be no strong components
in the E-V graph, corresponding to a strictly lower trian-
gular BLT form of the incidence matrix. If the algorithm
presented in Section 3 is now applied, the set S1 will con-
tain all the flow equations (7), each of which can be solved
independently, and the set S2 will contain all the storage
equations (6), each of which can be solved independently
once the heat flows have been computed by the equations
in S1.

With reference to the thermal network in Fig. 2, the di-
rected graphs at each algorithm iteration are shown in Fig.

S S

SS

S

Figure 3. A physical network model with flow compo-
nents directly connected to each other.

S1

S2

S3

S4

S5

F1

F2

F3

F4

F5

F6

S1

S2

S3

S4

S5

First iteration Second iteration

Figure 4. Iterations of the parallelization algorithm: ther-
mal network

4. Nodes marked with the letter S represent storage equa-
tions (6), nodes marked with the letter F represent thermal
flow equations (7); thick-bordered red nodes correspond to
the set Si at the i-th iteration.

In case of more complex connection topologies, where
the heat flow components are directly connected to other
heat flow components as in Figure 3, there will be strong
components in the E-V graph, corresponding to sets of al-
gebraic equations that must be solved simultaneously to de-
termine the heat flows and the intermediate temperatures,
which in this case are not known state variables. Con-
sequently, the set S1 will also contain the corresponding
macro-nodes.

4.2 Thermo-Hydraulic Systems
Thermo-hydraulic networks describe the flow of mass and
thermal energy between different components representing
the storage of mass and thermal energy in finite volumes
of the system, by means of flow components describing the
mass flow and the heat flow (e.g., due to convective heat
transfer) between different volumes. In this case, the stored
quantities are mass and energy, which can be described,
e.g., by pressure and temperature state variables. Mass flow
rates are determined by the pressure difference between the
boundaries of flow components, and also by the upstream

48

properties of the fluid (e.g., the density). Heat flows are
determined by thermal conductances, as in the previous
sub-section.

Storage components are described by mass and energy
balance equations:[

ei hi ρi
∂ρi
∂p

∂ρi
∂T

∂ei
∂p

∂ei
∂T

]
= f(pi, Ti) (8)

Mi = ρiVi (9)
dMi

dt
=
∑
j

wi,j (10)

dEi
dt

=
∑
j

wi,jhi,j +
∑
j

Qi,j (11)

dMi

dt
=
∂ρi
∂p

dpi
dt

+
∂ρi
∂T

dTi
dt

(12)

dEi
dt

=

(
∂ei
∂p

dpi
dt

+
∂ei
∂T

dTi
dt

)
Mi + ei

dMi

dt
(13)

where ei, hi, ρi, pi, Ti are the specific internal energy, spe-
cific enthalpy, density, pressure, and temperature of the
fluid contained in the i-th component, Vi is the volume
of the component, Mi is the mass of the fluid contained
in the component, wi,j are the mass flow rates entering
the component, hi,j the associated upstream specific en-
thalpies, and Qi,j the heat flows entering the component.

Mass flow components determine the mass flow rate as
a function of the boundary pressures and of the upstream
density:

wi = w(pi,a, pi,b, ρi), (14)

while heat flows components are the same as in the previ-
ous sub-section.

Assuming that mass flow and heat flow components are
always connected between two storage components, once
all alias variables have been eliminated, equations (8) will
be matched to all the properties on their left-hand-side,
equation (9) will be matched to Mi, equation (10) will be
matched to dMi

dt , equation (11) will be matched to dEi

dt , the
pairs of equations (12)-(13) will be matched to dpi/dt and
dTi/dt, forming a strong component of two variables and
equations for each i, equations (14) will be matched to the
mass flow rates wi, and equations (7) will be matched to
the heat flows Qi.

After the algorithm illustrated in Section 3 has been ap-
plied, the set S1 will contain all the fluid property equa-
tions (8) and the thermal flow equations (7), each of which
can be computed independently. The set S2 will contain
the equations (9), (14), which can be solved independently.
The set S3 will contain the equations (10) and (11), each
of which can be solved independently. Finally, the set S4

will contain the macro-nodes corresponding to the systems
(12)-(13), each of which can be solved independently to
compute the state derivatives.

With reference to a simple system composed of three
storage components, connected in series by two mass flow
components, with the flow direction from the first to the
last storage component, the directed graphs shown in Fig.
5 are obtained at each iteration. Equations (8) are marked
with P, (9) with M, (14) with F, (10) with MB, (11) with

EB, (12)-(13) with D. As before, thick-bordered red nodes
correspond to the set Si at the i-th iteration.

In case there are series-connected heat flow or mass flow
components in the system, as in Figure 3, their variables
and equations will form strong components in the E-V
graph, which will end up in sets S1 (heat flows) and S2

(mass flows), respectively.

4.3 Outlook
First of all, it is worth noting how the number of sets
of equations Si, that need to be solved in sequence, re-
mains very low (2 for thermal networks and 4 for thermo-
hydraulic networks), regardless of the size of the system.
Therefore, as the number of components increases, the pos-
sibility of exploiting a large number of parallel CPU also
increases, since there will be an increasing number of tasks
in each Si that can be performed in parallel before syn-
chronizing for the transition to the next set Si+1. For in-
stance, if there are 1000 storage components in a thermo-
hydraulic network, it is possible to distribute the computa-
tion of the corresponding fluid properties over up to 1000
parallel cores.

It is also worth noting that in the case of thermo-
hydraulic systems such as steam power plant models, the
computation of the fluid properties in each storage compo-
nent, equation (8), often takes up the lion’s share (90% or
more) of the CPU time required to solve the DAEs for the
state derivatives, and also a large share of the total CPU
time required for the entire system simulation, as the time
required to compute h(x, t) dominates the time spent by the
integration algorithm to find the value of the next state vec-
tor. A simple strategy as the one proposed here will be thus
very effective in this case, since those computations will all
end up in set S1, and thus will be performed in parallel on
all the available CPU cores. In these cases, a speed-up ratio
close to the number of cores can be expected.

5. Scheduling Policies
The parallel tasks determined by the algorithm discussed
in the previous section need to be run several times at each
simulation time step, depending on the chosen integration
algorithm, so they will be run hundreds or thousands of
times in a typical simulation run. A trivial scheduling pol-
icy for the parallel solution of the system equations is to
first set up a thread for each (macro) nodes in the graph;
subsequently, for every required computation of h(x, t),
the threads corresponding to the set S1 are activated, so
they run on the first available core until there are no more
threads running, then those corresponding to set S2, and so
on and so forth until SN is completed. All threads read and
write from and to a shared memory; since every node only
computes the variables it is matched to, and only reads vari-
ables that were computed in previous parallel sequences, it
is guaranteed that read/write conflicts cannot take place,
thus avoiding the need of mechanisms such as semaphores.

In many cases (e.g., when cumbersome fluid properties
computations are involved, as noted in the previous sec-
tion), such a simple policy could already be highly advan-

49

P1

P2

P3

M1

M2

M3

F1

F2

MB1

MB2

MB3

EB1

EB2

EB3

D1

D2

D3

M1

M2

M3

F1

F2

MB1

MB2

MB3

EB1

EB2

EB3

D1

D2

D3

MB1

MB2

MB3

EB1

EB2

EB3

D1

D2

D3

D1

D2

D3

First iteration Second iteration Third iteration Fourth iteration

Figure 5. Iterations of the parallelization algorithm: thermo-hydraulic network

50

tageous, compared to a purely sequential solution of the
DAEs. However, there are two major potential problems
that could arise.

The first problem is the impact of the overhead required
to activate a thread for each (macro) node in the equations
directed graph. Consider for example the case described
in Section 4.1: every instance of equation (7), which only
requires a subtraction and a multiplication to be solved,
will end up in a separate thread. If the thread activation
time is comparable or higher than the time required for the
two floating point operations, then the end result of this
parallelization strategy could be a code that actually runs
slower than its sequential counterpart. This problem can
be solved by roughly estimating the order of magnitude of
the execution time associated to each (macro) node, and
then aggregate many of them until the thread set-up time is
negligible compared to the total execution time.

The second problem is how to guarantee that all cores
are used as much as possible, and none stays idle for a long
time. If a few tasks in Si take a much longer time than all
the other ones, and there is a large number of parallel cores
available, activating them as the last ones might result in
a waste of time, because most of the cores will eventually
stay idle, waiting for those longer tasks to end. A possible
solution to this problem is to estimate the execution time of
each task, then start the longer-running ones first. Again,
a very rough estimate of the order of magnitude of the
execution time is enough for this purpose. If the number
of tasks in Si, which corresponds to the number of nodes
in the physical networks, is much larger than the number
of processing units, the impact of the idle time spent at the
end of each parallel section of the algorithm will on average
be small, compared to the total execution time. This is the
case, for example, if a 16-cores CPU is used to simulate
a network of a few hundred nodes (e.g., a thermal power
plant model).

6. Conclusions and Future Work
In this paper, a simple algorithm has been presented that
allows to distribute over parallel CPU cores the solution of
DAEs stemming from object-oriented models. It has been
shown how this algorithm can be very effective in parti-
tioning the solution of the system DAEs over many parallel
CPU cores, when applied to large models of thermal and
thermo-hydraulic networks, which can easily involve hun-
dreds or thousands of storage and flow models.

In the near future, it is planned to implement the al-
gorithm in the OpenModelica compiler, which already of-
fers support for parallel simulation of systems having a de-
coupled structure (e.g., thanks to the TLM methodology),
using the OpenMP framework. This will allow to exper-
iment the proposed strategy on generalized physical net-
work models, but also on different kinds of models, such as
mechanical systems. Another interesting perspective could
be to couple the strategy presented here for parallel solving
of DAEs with parallel ODE solvers for sparse systems, in
order to fully exploit parallelism in all the tasks required to
simulate an object-oriented declarative model.

References
[1] Niclas Andersson and Peter Fritzson. Generating parallel

code from object oriented mathematical models. In
Proceedings 5th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Santa Barbara, CA,
USA, Jul 19–21 1995.

[2] P. Aronsson. Automatic Parallelization of Equation-Based
Simulation Programs. PhD thesis, Linköping University,
Department of Computer and Information Science, 2006.

[3] Willi Braun, Stephanie Gallardo Yances, Kilian Link, and
Bernhard Bachmann. Fast simulation of fluid models with
colored jacobians. In Proceedings of the 9th International
Modelica Conference, pages 247–252, Munich, Germany,
Sep. 3–5 2012. Modelica Association.

[4] Willi Braun, Lennart Ochel, and Bernhard Bachmann. Sym-
bolically derived jacobians using automatic differentiation
- Enhancement of the OpenModelica compiler. In Pro-
ceedings 8th International Modelica Conference, pages
495–501, Dresden, Germany, Mar 20-22 2010. Modelica
Association.

[5] F. E. Cellier and E. Kofman. Continuous System Simulation.
Springer-Verlag, 2006.

[6] I. S. Duff and J. K. Reid. An implementation of Tarjan’s
algorithm for the block triangularization of a matrix. ACM
Transactions on Mathematical Software, 4(2):137–147,
1978.

[7] Jens Frenkel, Gunter Künze, and Peter Fritzson. Survey
of appropriate matching algorithms for large scale systems
of differential algebraic equations. In Proceedings 9th In-
ternational Modelica Conference, pages 433–442, Munich,
Germany, Sep. 2012. Modelica Association.

[8] H. Lundvall. Automatic parallelization using pipelining for
equation-based simulation languages, 2008. Lic. Thesis.

[9] H. Lundvall, K. Stavåker, P. Fritzson, and C. Kessler.
Automatic parallelization of simulation code for equation-
based models with software pipelining and measurements
on three platforms. Computer architecture news, Special
issue MCC08 - Multicore computing 2008, 36(5), 2008.

[10] S. E. Mattsson and G. Söderlind. Index reduction in
differential-algebraic equations using dummy derivatives.
SIAM Journal on Scientific Computing, 14(3):677–692,
1993.

[11] Kaj Nyström and Peter Fritzson. Parallel simulation
with transmission lines in Modelica. In Proceedings 5th
Modelica Conference, pages 325–331, Vienna, Austria, Sep
6–8 2006. The Modelica Association.

[12] Constantinos C. Pantelides. The consistent initialization of
differential-algebraic systems. SIAM Journal on Scientific
and Statistical Computing, 9(2):213–231, 1988.

[13] Martin Sjölund, Robert Braun, Peter Fritzson, and Petter
Krus. Towards efficient distributed simulation in modelica
using transmission line modeling. In Proceedings 3rd In-
ternational Workshop on Equation-Based Object-Oriented
Languages and Tools, pages 71–77, Oslo, Norway, Oct 3
2010.

51

Session III: Diagnosis and Debugging

Functional Debugging of Equation-based Languages

Arquimedes Canedo1 Ling Shen1

1Siemens Corporation, Corporate Technology, Princeton, USA,
{arquimedes.canedo, ling.shen}@siemens.com

Abstract
State-of-the-art debugging techniques for equation-based
languages follow a low-level approach to interface users
with the complex interactions between equations and al-
gorithms that describe cyber-physical processes. Although
these techniques are useful for understanding the low-level
behaviors, they do not provide the means for creating a
system-level understanding that is often necessary during
the early concept product design phase. In this paper, we
present a novel debugging technique for equation-based
languages based on a high-level approach to facilitate
the system-level understanding of complex cyber-physical
processes. Our debugging interface is based on functional
models that describe what the system does in a formal
language that uses natural language elements to improve
inter-disciplinary communication. Our novel technique,
referred to as functional debugging, can be used in the
context of the current systems engineering industrial prac-
tice in order to identify system-level problems and explore
design alternatives during the early concept design phase.
We present a working implementation of our functional
debugger and we discuss the benefits of our approach using
an automotive use-case.

Keywords Functional modeling, debuggers, equation-
based languages, simulation, cyber-physical systems,
concept design

1. Introduction
Product development, from consumer products to military
systems, is a highly competitive area where companies
are constantly challenged to meet quality targets, revenue
targets, and launch dates for new and innovative prod-
ucts [2]. In order to reduce the product development cycle,
companies use systems engineering methodologies that
attempt to parallelize and detect errors in the design as early
as possible. For example, DARPA’s META-II project [59]
has the qualitative goal to compress the system design,
development, test, and evaluation of mission critical design
applications by a factor of 5x or more by identifying
system-level and component interaction problems early in
the design cycle. Currently, most computer-based design

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

tools are suitable for detail design and it is very difficult
or impossible to effectively front-load the detection of
system-level design flaws [10, 17].

Products characterized by a blend of multiple disciplines
including mechanical, electrical, thermal, software, and
control are often referred to as cyber-physical systems
(CPS). CPS are often characterized by the use of dy-
namic architectures (e.g. based upon the availability of
elements such as sensors) that produce online, emergent,
and on-the-fly unprecedented behavior. Therefore, CPS
design, analysis, validation necessitates a new systems
science that encompasses both physical and computational
aspects [1]. Object oriented equation-based languages are
often used to describe CPS because they can be used to
model the behavior of both continuous (physical-) and
discrete (cyber-) processes. To facilitate physical modeling
in terms of energy conservation principles, these languages
are implemented as declarative programming languages
that describe what the goal is. Debugging these programs
is very challenging because during execution or simulation,
these programs are highly optimized and transformed [44]
into imperative programs that instruct the computer how to
reach the goal. Unfortunately, these debugging techniques
expose the user with the low-level details of the model and
therefore, it is difficult to incorporate these techniques in
tools for the early concept design phase.

In this paper, we introduce a new debugging technique
suitable for the concept design phase. Based on the obser-
vation that functional models describe what the system is
supposed to do, and models in equation-based languages
describe what the cyber-physical process is, we provide a
functional debugging interface that helps users understand
complex processes in a high-level of abstraction. Our
implementation couples a functional model (functionality)
with an underlying simulation model (behavior). This en-
ables, for the first time, a dynamic functional representation
of the system that serves as a quick validation tool for
new design concepts. The functional debugging technique
can be integrated into the systems engineering process by
reusing functional and simulation components and allow-
ing the identification of system-level problems early in the
design. Specifically, the novel contributions of this paper
are:

• A model-based debugging methodology, referred to
as functional debugging, that interprets the results of
simulation models written in equation-based languages
in a high-level manner and allows the identification of
system-level errors and integration problems early in the
design cycle.

55

• The observation that declarative equation-based lan-
guages fundamentally describe what the system does
and therefore can be naturally mapped to functional
models that also describe what the system is supposed
to do but in a higher-level of abstraction that is suitable
for communication and design space exploration of new
concepts.

• An implementation of the functional debugging method-
ology that, for the first time, provides a dynamic or
executable functional model that effectively combines
functionality and behavior in the same model.

The rest of the paper is organized as follows. Section 2
puts our work into context with an overview of the state-
of-the-art in equation-based languages and their debugging
techniques, and functional modeling. Section 3 introduces
our new functional debugging approach and provides the
details of our implementation. Section 4 presents how
the functional debugger can be integrated into a systems
engineering process with an automotive use-case. Section 5
summarizes our findings and provides the outlook for
future work.

2. Background and Related Work
2.1 Physical Modeling with Equation-based

Languages
In recent years, companies from all sectors are designing
complex products through physical modeling – the combi-
nation of components that correspond to physical objects in
the real world (e.g. pipes, motors, resistors, software). This
approach is very attractive because reusable components
encapsulate an associated behavioral description according
to the laws of physics and principles of energy conserva-
tion. The interconnection of components in a model creates
complete mathematical models that effectively combine
different disciplines. Thus, by focusing the design on
the structure of the system and automatically finding the
equations that describe its behavior, physical modeling
eliminates the need for manually finding mathematical
descriptions of systems [51]. Equation-based languages
such as Bond Graphs [12], Modelica [33], Simscape [28]
have been developed to provide the syntax and semantics
for physical modeling. Most equation-based languages
are declarative programming languages that describe what
the program should accomplish. It is the responsibility
of the compilers and optimizers to transform equation-
based declarative programs into an imperative program that
specifies how to accomplish the goal as most numerical
solvers require an imperative program to simulate the
dynamic behavior of the system. Due to the extensive
transformations that a declarative program suffers when
converted into its imperative equivalent, what the user sees
(equations in the declarative model) is NOT what the user
gets (code in the imperative simulation), and therefore it is
very challenging to debug these applications.

2.2 State-of-the-art Debugging Techniques for
Equation-based Languages

Debugging equation-based languages is a challenging
problem that requires a combination of classical debugging
techniques and other special techniques. In [44], the
authors provide a comprehensive survey of the state-of-

the-art in techniques for debugging declarative equation-
based languages typically used in physical modeling. These
debugging techniques are categorized as static (compile-
time) and dynamic (run-time). Static techniques focus on
tracing the complex process of symbolically transforming
declarative code into highly optimized imperative code to
provide explanations regarding problematic code. Novel
and innovative static debugging techniques using graph-
theoretic methods have been developed [9]. Dynamic
techniques, on the other hand, are similar to classical
debugging and focus on interactively inspecting the
imperative parts of the model that relate to functions and
algorithms typically used to describe control code and
embedded software. Hybrid approaches [44] that combine
static and dynamic methods are the most advanced
debugging techniques for equation-based languages.

Although these techniques are invaluable for identifying
errors in models and code during the detail design phase,
they must focus on the low-level aspects of modeling
and simulation. Integrating these debugging techniques to
the first iterations of the systems engineering processes is
difficult because a high-level of abstraction, rather than
a low-level, is preferred during the early concept design
phase of modern cyber-physical systems [25]. In this pa-
per, we present a debugging technique that deals with
the functional aspects of equation-based languages and
presents to the user a high-level interface to complex cyber-
physical processes to facilitate the conceptual design space
exploration of complex products. In the following Sections
we discuss how our high-level debugging approach and
state-of-the-art low-level debugging techniques are com-
plementary in a systems engineering context.

2.3 Functional Modeling
Functional modeling is a systems engineering activity
where products are described in terms of their func-
tionalities and the functionalities of their subsystems.
Fundamentally, a functional model reflects what the
system does and, therefore, we observe that functional
models are strongly related to declarative equation-based
languages. Because a Functional Model decouples the de-
sign intentions (functions) from behavior and/or structure
(logical components1), it can be used as the basis for
communication among engineers of different disciplines.
Functional modeling reflects the design intentions that are
typically driven by the product requirements and the human
creativity.

Functional modeling is acknowledged by many re-
searchers and practitioners to be a subjective process [17],
therefore suitable for concept design. Defining a system
in terms of its functionality2 may seem simplistic and
unnecessary but this is exactly what improves the systems
engineering process by consolidating multiple engineering
paradigms (e.g. electrical, mechanical, software, thermal
engineering) into a unified system representation. By
making explicit the implicit knowledge of the engineers,
a functional model exposes the obvious facts about the
system that people can easily understand, regardless of
their domain of expertise. This improves the communi-

1 Logical components (and models) are often used as the guidelines for
the creation of simulation models.
2 Functionality of a system is defined as its purpose, intent, or goal.

56

cation among different disciplines because it brings the
minds of the domain experts and designers to a system-
level abstraction that is facilitated by natural language.
In this paper, we introduce a novel high-level debugging
technique suitable for early concept design phases that
uses functional modeling as a debugging interface for
equation-based languages. Compared to existing research
on functional modeling [17, 10, 46, 8, 25, 61], we are
the first to demonstrate the use of functional models for
debugging simulation models.

3. Functional Debugging
In this paper, we define functional debugging of equation-
based languages as the mechanism by which states and
variables of a running simulation are visualized through a
functional model to create an implementation independent
understanding of a cyber-physical process. As shown in
Figure 1, a functional debugger relies on three components
: a functional editor, a simulation model synthesizer, and
a simulation runtime3. The functional editor is a visual
programming environment for users to author functional
models that describe what the system does. The functional
editor is also used as the debugger user interface that
allows users to visualize and interact with the simulation
in a high-level of abstraction. Our implementation uses
Microsoft Visio as the functional editor. The simulation
model synthesizer is a computer program (automatic) or a
simulation expert (manual) that takes a functional model as
an input and generates a corresponding simulation model
that realizes or embodies the system’s functionality. This
simulation model provides the executable semantics to the
functional model. In addition to the simulation model, the
synthesizer also generates a mapping model that associates
functions to simulation components. Finally, the simulation
runtime simulates the simulation model and calculates the
dynamic behavior of the system. It is important to note that
different simulation runtimes may be used to simulate the
same functional model. For example, the thermal-vibration
facet of a functional model may be simulated using a finite
element analysis solver, and its 1D electro-mechanical
facet may be simulated using Modelica or Simscape.

The functional debugger takes a functional model, a
simulation model, and a mapping model as inputs. The
mapping model specifies how functions and flows in the
functional model associate to simulation components and
effort/flow variables in the simulation model. This infor-
mation is used during debugging (dotted lines in Figure 1)
to relate the simulation output to visualization in the
functional model, and to relate user interaction debug-
ging commands to the running simulation. For interactive
debugging, the functional debugger should be capable
of controlling a simulation through pausing, stopping,
resuming, advancing time to the next integration step, and
querying simulation variables. The rest of this Section
describes our implementation of the functional debugger
architecture.

3.1 Functional Editor
Visual programming languages are suitable for authoring
functional models [56, 21, 42, 48, 17, 66, 23] because a

3 In this paper, we use simulation runtime and simulation engine
interchangeably.

Figure 1. Functional Debugging Architecture consists of
three main components: a functional editor, a synthesizer,
and a simulation runtime. Different models are necessary
for the functional debugger to relate functions to behavior.

Table 1. Functional modeling shapes in Visio stencil.
Visio Shape Syntax

Function Block

Material Flow

Energy Flow

Signal Flow

diagrammatic representation facilitates the understanding
of the system as a collection of functionalities interacting
through the exchange of material, energy, and signals. Al-
though a functional model can be also expressed textually,
or as a design matrix [31], we believe that a visual func-
tional editor improves the productivity of designers and
our implementation provides an editor based on Microsoft
Visio ActiveX control that can be easily embedded in other
systems engineering tools. We have extended Visio with a
C# implementation to improve the user-interaction and to
manage the communication and data transfer between the
displayed interface and the simulation runtime.

The functional modeling types are provided as shapes
in a Visio stencil as shown in Table 1. We use the de-
facto functional modeling syntax consisting of a block-flow
diagram where blocks represent functions (process) that
transform inputs into outputs (flows) [21, 42]. Blocks and
flows use the Functional Basis syntax [56] to categorize
functions into 8 categories and a total of 32 primitive
functions, and flows into 3 categories (material, energy,
and signal and a total of 18 flow subtypes. Constraining
the vocabulary for functional modeling is beneficial for
the systems engineering process because it normalizes
the understanding and consistency of the models across
the computer-aided tools and the organization. Although
functional modeling is a highly subjective and creative
process [17], the use of a constrained vocabulary does not
affect the expressiveness of the functional models.

57

In the functional editor, a functional model can be
refined into more specific descriptions in a process referred
to as functional decomposition. For example, in the
functional model of an automobile shown in Figure 2,
the “transport people” function can be decom-
posed into sub-functions such as “Store Chemical
Energy” and “Convert Chemical Energy to
Rotational Mechanical Energy” implying the
design of an internal combustion engine car. Furthermore,
sub-functions can be decomposed to create a functional
decomposition tree where the root node represents the
top-level function and the leaf-nodes represent elemen-
tary functions such as “Transfer Translational
Mechanical Energy (TME)”.

Although our implementation uses the Functional Ba-
sis vocabulary, we use different semantics and we have
added additional function types to facilitate the model-
ing of modern cyber-physical systems. For example, the
original Functional Basis specifies that functional mod-
els are executed from left-to-right [56]. This causality
rule, unfortunately, prohibits the coupling of functional
models to acausal equation-based simulation languages
because a change in the direction of energy flow during
simulation is not expressible in the original Functional
Basis semantics. Moreover, this causality rule does not
allow for feedback loops, an essential construct for con-
trol theory modeling. To overcome these limitations, our
functional editor allows acausal (left-to-right and right-
to-left) execution semantics and the creation of feedback
loops anywhere in the functional model as shown in the
Third-level Functions in Figure 2. Moreover, we provide
additional elementary functions for “Control” (function
in black) and “Sense” (function in gray) to model cyber-
physical control systems. Note that the functional modeling
flows are represented by a directed arrow in Table 1. This is
simply the syntax of the Functional Basis [56] and during
debugging, the simulation semantics will affect the look
and feel of these flows and functions. In other words,
although the static functional model is constructed with
directed flows, the dynamic functional model implies and
reflects energy and material transfers in both directions and
this also affects the functions’ signatures.

3.2 Simulation Model Synthesis
The goal of the simulation model synthesis is to find
components that fulfill the functionalities in a functional
model. The synthesis can be performed manually by a sim-
ulation expert, or automatically by a synthesis tool. Auto-
matic synthesis of functional models to simulation models
is challenging because one function may be realized by
multiple and different components, and one component
may realize multiple functions. In other words, multiple
valid simulation models exist for a given functional model,
but only a few are useful for modeling the actual sys-
tem. In our previous work [11], we introduced a context-
sensitive synthesis algorithm that reliably generates high-
quality simulation models from functional models. The
synthesizer puts every function within a functional model
into a context provided by its input and output flows, and
using engineering rules4 it correctly maps functions to the

4 Engineering rules are analogous to machine description files in a
traditional compiler.

specified simulation components from reusable component
libraries. Engineering rules and simulation component li-
braries are the means for capturing engineering knowledge.
Due to the easy access to various simulation component
libraries [34, 26, 36], our synthesizer currently generates
Modelica code as an output. However, the synthesizer can
be easily modified to emit and reuse components from
other equation-based languages.

A simulation model consists of components with well
defined interfaces, and each component may contain equa-
tions, variables, and algorithms. In order to create a correct
mapping from functions to simulation components, the
functional debugger must associate functions and flows in
a functional model with components and variables in a
simulation model. In the case of automatic synthesis, the
output of an engineering rule is the mapping of functions
and flows to components and variables. On the other hand,
manual mapping requires the designer to make these rela-
tions by looking at both the functional and the simulation
models and deciding how the two models relate. Either
way, the functional debugger needs access to functional
models, simulation models, and the mapping model.

3.2.1 Mapping of Functional Models to Simulation
Models

It is possible to relate functional models (functions and
flows) to simulation models (components and variables)
because the concept of physical quantities exist in both
models. Functional models specify material, energy, and
signal flows and transformation functions operating on
these flows. Physical-based equation-based languages, on
the other hand, specify complementary physical domains
such as electricity, mechanics, software, etc., and the phys-
ical behavior of components operating and governed by
laws on these domains such as a resistor, gearbox, or
PID controller. An important observation is that a single
functional energy flow maps to a pair of conjugate variables
in the simulation model that are used to accomplish acausal
modeling5. These conjugate variables are known differ-
ently in different equation-based languages but have very
similar semantics. For example, Modelica uses potential-
flow [33] variables, Bond Graphs use effort-flow [12] vari-
ables, and Simscape uses across-through [28] variables.

Table 2 (adapted from [56]) shows the mapping be-
tween flow types (e.g. electrical, magnetic, etc.
in Column 2) in a functional model to conjugate vari-
ables (Column 3) in equation-based simulation languages.
The last two Columns shows some of the system-level
equation-based languages (e.g. Modelica) and domain-
specific equation-based languages (e.g. CAD/CAE) that
are typically used to simulate physical systems. This table
shows that functional models can be mapped to both
system-level languages and domain-specific languages and
therefore, functional debugging can be adapted to various
equation-based languages. Notice that a single equation-
based language is not sufficient to cover all the functional
flow types. Even though it is out of the scope of this
paper, we believe it is important to observe that functional
debugging can be also used to comprehend multi-tool
multi-language co-simulations of complex systems.

5 Acausal modeling describes the behavior of components in terms of
energy conservation laws [19].

58

Figure 2. Functional model of an internal combustion engine car showing the functions associated with the main powertrain
subsystems (in parentheses). Syntactically and semantically, our functional modeling approach handles feedback loops.

Our functional debugger implementation uses a data
structure referred to as the Mapping Model (See Figure 1)
to read the mapping information of functions and flows
(Functional Model) to components and conjugate variables
(Simulation Model). Although it is common that map-
pings are from function(s)-to-component(s) and flow(s)-to-
variable(s), other combinations are also possible including
flow(s)-to-component(s) and component(s)-to-variable(s).
For example, a “pneumatic energy” flow in a func-
tional model may be mapped to a “pipe” component, or
to a “pressure” variable.

3.3 Simulation Runtime
A simulation runtime responsible for executing the sim-
ulation models, is the last component required for func-
tional debugging. Although a simulation model is heavily
transformed and optimized into a mathematical model for
integration with numerical methods, the variables remain
visible during simulation. Using the mapping model, the
functional debugger can query the variables’status and
values during simulation.

From the functional debugging perspective, there are
two important requirements for the simulation runtime.
First, in order to facilitate a natural human-computer inter-
action in the functional debugger, the simulation runtime
must allow the synchronization of the simulation time with
the real (human) time. Whenever the simulation time is
faster than the real time, the simulation runtime must delay
the execution of the simulation in order to synchronize the
two times. In case that the simulation time is slower than
the real time, the simulation runtime can adopt execution
strategies similar to the ones used in hardware-in-the-loop
simulations including fixed-step size solvers, loop tearing,
or iterative limits. The second requirement demands the
simulation runtime to be programmatically controlled by
the functional debugger in order to start, pause, stop, and
proceed to the next iteration step during the simulation.
Currently, our functional debugger uses Wolfram’s Sys-

temModeler [64] as the simulation runtime and the next
Section discusses the details of our implementation.

3.4 User Interaction, Visualization, and Simulation
Control

The functional debugger consists of three applications as
shown in Figure 3. The Functional Editor or Functional
Debugger GUI (left) handles the user interaction events
such as breakpoints and visualization requests on specific
functions and flows. This C# application extends the func-
tionality of Visio through the Visio Object Model [32]
and allows the functional debugging specific commands
and visualization such as stop, pause, restart, and perform
the next iteration step; load functional, simulation, and
mapping models; detect user events to debug specific
functions and flows and to zoom in/out in the functional
model hierarchy; manipulate the look & feel of Visio
shapes representing the functional model to convey points
of interest during the simulation. These points of interest
can be pre-programmed by the user to monitor a range
of operation of a subsystem, or built-in into our imple-
mentation (e.g. indicate when the energy flow changes
direction). In our implementation, the simulation runtime
(right) [64] uses an application-specific TCP protocol that
allows a client application to control the simulation and
set/receive simulation data. After the simulation runtime
server has been initialized for control commands and data
flow, this application streams data over TCP to the client
after every integration time step. Through an initialization
file, this application can be configured to maintain the
simulation time and the real-time synchronized. The func-
tional debugger application (middle) is the intermediary
between the GUI and the simulation runtime. Its main
responsibility is to retrieve data from the simulation and
map it to the functional model in the GUI, and also to
control the simulation according to the user commands.

Although we have developed an in-house implemen-
tation, each component of our functional debugger has
an analogous technology that could be used to provide

59

Table 2. Relationship between functional models and equation-based languages based on flow types.
Functional Modeling Equation-based Languages

Flow Class Flow Type Conjugate Vars. (Effort/Flow) System-Level Lang. Domain Specific Lang.

Energy

Electrical Electromotive Force / Current [34], [28] [45], [13]
Mechanical (Rotational) Torque / Angular Velocity [34], [28] [52], [57], [5]
Mechanical (Translational) Force / Linear Velocity [34], [28] [52], [57], [5]
Mechanical (Vibrational) Amplitude / Frequency [52], [57], [5]
Hydraulic Pressure / Volumetric Flow [35], [28] [53]
Pneumatic Pressure / Mass Flow [34] [53]
Thermal Temperature / Heat Flow [34], [28] [52], [57]
Electromagnetic Intensity / Velocity [4]
Magnetic Mag. Force / Mag. Flux Rate [34]
Chemical Affinity / Reaction Rate [38]
Biological Pressure / Volumetric Flow [38]
Human Force / Motion
Acoustic Pressure / Particle Velocity [24] [55]
Radioactive Intensity / Decay Rate

Signal Status [41], [29] [37], [30], [16]
Control [41], [29] [37], [30], [16]

Material

Human [54], [20] [18]
Gas [52], [57], [5]
Liquid [52], [57], [5]
Solid [54], [20], [18]

Figure 3. Control and data flow interactions between
the functional editor, the functional debugger, and the
simulation runtime.

the same functionality. For example, the functional editor
could be implemented in SysML [39]. Several published
investigations [66, 3] have shown how to create functional
models in SysML. Similarly, the simulation model synthe-
sizer could be realized by SysML4Modelica [43] or Mod-
elicaML [50]. Open source Modelica runtimes [40, 22]
could be used as the simulation runtime. And FMI [6] could
be used as the communication and data transfer mechanism
between the functional editor and the simulation runtime.

3.5 Industry Perspective
Concept design, despite being a critical design phase that
determines 70-80% of the cost of a product [15], lacks the
tool and methodology support that is available for detail
design phases [49]. We strongly believe that the develop-
ment of tools for conceptual design is mandatory to handle
the complexity of large-scale cyber-physical systems [63,
47, 27, 58] where system-level optimization plays a critical
role. Our functional debugger is a concept design tool that
allows product designers to functionally understand the
complex underlying cyber-physical processes of a system.
Additionally, we see functional debugging as a comple-
mentary and orthogonal approach to existing debugging
techniques that are employed during detail design. We
also believe that functional debugging can be used as
a tool to consolidate 3D CAD/kinematics with system-
level simulation models. This would allow system design-
ers to have an integrated and dynamic function-behavior-
structure [60] view of the system with the capacity for
testing and simulating design alternatives while reusing
existing components.

4. Case Study: eCar Development
We evaluate our functional debugger with a common sce-
nario in automotive development. In order to reduce risk
and cost, automotive companies invest in the development
of architectures that can be reused to produce different
models of cars within and across brands [14, 7]. There-
fore, it is natural that even radical new designs, such as
an eCar, attempt to reuse an existing architecture and a
set of compatible cyber-physical components. Functional
models are used in this type of scenarios to understand
the impact of major architectural changes6 in the overall
design. In summary, our objective is to demonstrate how
the functional debugger supports a realistic conceptual

6 An architecture is, after all, the allocation of functions (or functionality)
to specific cyber-physical (logical) components (e.g. a gearbox, a wheel,
an ECU).

60

design scenario where an eCar is developed while reusing,
as much as possible, components of an existing architec-
ture. Additionally, we show how our functional debugging
approach is compatible and orthogonal to the existing
debugging techniques for equation-based languages.

4.1 Baseline Architecture
We first created a baseline functional model of an in-
ternal combustion engine car shown in Figure 2. This
baseline functional model describes the functionality of
the automotive driveline industrial example in Modelica
language published in [65]. The mapping of functions-to-
components is indicated by the parentheses in Figure 2 and
this represents the baseline architecture for our scenario.
Using the baseline models as the starting point, the next
step is to conceptually design an eCar with the help of
functional debugging.

4.2 Concept Design Space Exploration
Conceptually, the simplest way to create an eCar from a
conventional car is by replacing its internal combustion
engine with an electric motor. In terms of function-
ality, the function “convert chemical energy
to rotational mechanical energy” must be
replaced with “convert electrical energy to
rotational mechanical energy” as shown in
Figure 4. This change also implies new functionality where
the “electrical energy” flow is “stored” (e.g. in
a battery).

Figure 4. Changes to the functional model in Figure 2
to convey the new design intentions of an e-Car. Fuel
containing chemical energy is replaced with electrical
energy. This implies the use of a Battery and an Electric
DC Motor instead of a Gas Tank and a Combustion Engine.

To mimic the reusability aspect in the current system
engineering practice, we created new engineering rules
to convert the newly introduced eCar functionality into
existing simulation models of a DC motor and a bat-
tery developed in-house [62]. As a result, the synthesizer
creates an aggregated simulation model that replaces the
internal combustion engine component from the baseline
simulation model with the battery and DC motor, but reuses
the rest of the simulation components in the baseline. The
coupling between the DC motor and the baseline drivetrain
is possible because the two have a compatible interface and
this allows the aggregated simulation model to be correctly
generated and compiled using SystemModeler.

This workflow shows that a simple change in the func-
tional model can be used to generate new simulation
models that allow the designer to understand and quantify
how a change in functionality of an existing architecture
has an impact in the overall system-level design. The
relation of functions to components, or mapping model,

was created by the engineering rules and the analogy
between functions and system-level equation-based lan-
guages discussed in Table 2. Therefore, at this point in
time, the three input models to the functional debugger are
available: an eCar functional model (Visio), a simulation
model (Modelica), and the mapping model (data structure
described in Section 3.2.1). The next step is to run the
eCar simulation model under the functional debugger to
identify any possible system-level problems created by the
architectural change.

4.3 Functional Debugging
We use the New European Driving Cycle to test the eCar
simulation model in the functional debugger. Figure 5
shows the functional debugger under four modes of op-
eration: (a) Acceleration, (b) Cruise, (c) Deceleration, and
(d) Idle. During acceleration in Figure 5(a), the functional
debugger shows that the main energy transfer in the power
train, indicated by the direction of the flows, is from
left-to-right starting from the “convert electrical
energy to rotational mechanical energy”.
While the Modelica simulation explains the physical
behaviors, the functional debugger helps a non-expert to
understand that rotational mechanical energy (RME) is
functionally correct. During cruise in Figure 5(b), the
functional debugger shows that there is an equilibrium of
energy transfer in the powertrain and this is indicated by the
bi-directional flows. During deceleration in Figure 5(c), the
functional debugger shows that RME flow is from right-
to-left. In addition, this functional debugging snapshot
shows that the function being performed by the “Electric
Motor” component changed to “Convert RME to electrical
energy”. This insight is very important for the systems
engineer because it shows that the newly introduced
electric motor is performing two functions and this can
be used to validate the requirements. It is also important
to note that this additional functionality can be used to
recharge the battery while the eCar decelerates. During the
idle mode in Figure 5(d), the functional debugger shows
the case when the clutch is disengaged and the electric
motor and the transmission are physically decoupled, and
the functional debugger eliminates the flow connecting
these two components. This causes the functionality of
the electric motor to change to “convert electrical
energy to thermal energy”.

The snapshots in Figure 5 illustrate how the functional
debugger can help the concept level designer to create
a mental high-level picture of the system and conceptu-
ally understand how a functional and architectural change
affects the rest of the system. It also allows them to
visualize potential new innovations such as regenerative
breaking, and visualize the energy, material, and signal
flows through the system. Functional debugging can be eas-
ily integrated to the current systems engineering processes
and reuse the existing and legacy simulation, functional,
and architectural models. Another important feature is
that functional debugging allows any non-technical person
to easily understand the cyber-physical process at the
functional or conceptual level.

Iterative design is a very important aspect of the sys-
tems engineering process. Although the results shown in
Figure 5 are functionally correct as the system does what
it is supposed to, the systems engineer must verify that

61

Figure 5. Visualization of an eCar simulation through the functional debugger on different modes: (a) acceleration, (b)
cruise, (c) deceleration, (d) idle. Notice the energy flows across the functional model on the different modes, and the mapping
of multiple functions to a single component (e.g. Electric Motor).

the eCar is reaching its performance targets by enabling
the display of numerical values of the conjugate variables
of the simulation in the functional model. Enabling the
numerical values in the functional debugger reveals that
although the system is functionally correct, the eCar never
accelerates to even 5% of the desired speed. Since the
eCar concept includes a newly introduced component, the
electric motor, the first guess would probably be that the
test needs a stronger motor. However, after simulating the
eCar with a stronger electric motor, the results are still
unfavorable. These quick iterations that use the functional
debugger as a visualizer for the underlying simulation
provide valuable information to the systems engineer about
the system-level integration problems on the new concept
at a level of abstraction where they can reason about the
possible problem, but without being concerned about the
details of the cyber-physical implementation.

Typically, this situation would lead the systems engi-
neer to report and discuss the problem with the multi-
disciplinary teams in charge of the transmission, the soft-

ware, and the electro-mobility. Using the common lan-
guage of functionality, engineers can communicate at a
high-level of abstraction and then translate these insights
to their domain of expertise. At this point in time, the
domain experts would perform detail design iterations on
their subsystems and this is where existing debugging
techniques for equation-based languages are very useful
for identifying the root cause of the problem. In this ex-
ample, the problem is in the control gains in the controller
software at the transmission control unit, and it required
an expert to use the existing debugging techniques to
find the solution. Because functional debugging is used
early in the concept design phase, and its purpose is to
communicate potential problems to the systems engineer
using a high-level of abstraction (functionality) rather than
a low-level of abstraction (behavior), we argue that it
enhances the systems engineering and it is complementary
and orthogonal to the existing debugging techniques for
equation-based languages.

62

5. Summary
With the objective of supporting the early concept de-
sign phases with computer-based tools, we introduced a
new methodology referred to as functional debugging that
builds a functional view of an underlying cyber-physical
process described in equation-based languages. Our imple-
mentation couples functions and flows in functional models
with conjugate variables in simulation models, and this
mapping enables a high-level view of what the system
does. In a systems engineering context, our functional
debugger can be used as a rapid prototyping tool for
new concepts to identify system-level integration prob-
lems. Through an industrial use-case, we have shown that
functional debugging can be a valuable tool for an iterative
design process that involves the coordination of multiple
disciplines. Additionally, we have shown that functional
debugging is compatible with existing low-level debugging
techniques for equation-based languages. Our future work
will include the implementation of functional debugging
for domain-specific equation-based languages.

Acknowledgments
The authors would like to thank Eric Schwarzenbach from
Princeton University and Georg Muenzel from Siemens
Corporate Technology for their support during the research
and development of the functional debugger.

References
[1] Foundations for innovation: Strategic R&D opportunities

for the 21st century cyber-physical systems – connecting
computer and information systems with the physical world.
Technical report, NIST, 2013.

[2] Aberdeen Group. System design: New product development
for mechatronics. January 2008.

[3] A. A. Alvarez Cabrera, M. S. Erden, and T. Tomiyama. On
the potential of function-behavior-state (FBS) methodology
for the integration of modeling tools. In Proc. of the 19th
CIRP Design Conference âĂŞ Competitive Design, pages
412–419, 2009.

[4] ANSYS. HFSS. http://www.ansys.com.

[5] Autodesk. Simulation Software. http://www.ni.com/
labview/.

[6] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss,
H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro,
T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and
S. Wolf. The functional mockup interface for tool
independent exchange of simulation models. In Proceedings
of the 8th Modelica Conference, pages 105 – 114, 2011.

[7] Manfred Broy, Mario Gleirscher, Peter Kluge, Wolfgang
Krenzer, Stefano Merenda, and Doris Wild. Automotive
architecture framework: Towards a holistic and standardised
system architecture description. Technical report, TUM,
2009.

[8] Cari R. Bryant, Robert B. Stone, Daniel A. Mcadams, Tolga
Kurtoglu, and Matthew I. Campbell. Concept generation
from the functional basis of design. In Proc. of International
Conference on Engineering Design, ICED 2005, pages 15–
18, 2005.

[9] Peter Bunus. An empirical study on debugging equation-
based simulation models. In Proceedings of the 4th
International Modelica Conference, pages 281 – 288, 2005.

[10] A.A. Alvarez Cabrera, M.J. Foeken, O.A. Tekin, K. Woeste-
nenk, M.S. Erden, B. De Schutter, M.J.L. van Tooren,
R. Babuska, F.J.A.M. van Houten, and T. Tomiyama. Towards
automation of control software: A review of challenges in
mechatronic design. Mechatronics, 20(8):876 – 886, 2010.

[11] A. Canedo, E. Schwarzenbach, and M. A. Al-Faruque.
Context-sensitive synthesis of executable functional models
of cyber-physical systems. In ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), 2013.

[12] F. E. Cellier. Continuous System Modeling. Springer-Verlag,
1991.

[13] E. Christen and K. Bakalar. Vhdl-ams-a hardware
description language for analog and mixed-signal applica-
tions. Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on, 46(10):1263 –1272, oct
1999.

[14] Jeffrey B. Dahmus, Javier P. Gonzalez-Zugasti, and Kevin N.
Otto. Modular product architecture. Design Studies,
22(5):409–424, September 2011.

[15] D. Dumbacher and S. R. Davis. Building operations
efficiencies into NASA’s Ares I crew launch vehicle design.
In 54th Joint JANNAF Propulsion Conference, 2007.

[16] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu,
J. Ludvig, S. Neuendorffer, S. Sachs, and Yuhong Xiong.
Taming heterogeneity - the ptolemy approach. Proceedings
of the IEEE, 91(1):127–144, jan 2003.

[17] M.S. Erden, H. Komoto, T.J. Van Beek, V.D’Amelio,
E. Echavarria, and T. Tomiyama. A review of funcion
modeling: approaches and applications. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing,
22:147–169, 2008.

[18] G. S. Fishman. Discrete-Event Simulation - Modeling,
Programming, and Analysis. Springer, 2001.

[19] Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica. IEEE, 2004.

[20] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris.
Fundamentals of Queueing Theory. Wiley, 4th edition, 2011.

[21] Julie Hirtz, Robert B. Stone, Simon Szykman, Daniel A.
McAdams, and Kristin L. Wood. A functional basis for
engineering design: Reconciling and evolving previous
efforts. Technical report, NIST, 2002.

[22] JModelica. http://www.jmodelica.org/.

[23] Hitoshi Komoto and Tetsuo Tomiyama. A framework
for computer-aided conceptual design and its application
to system architecting of mechatronics products. Comput.
Aided Des., 44(10):931–946, October 2012.

[24] H. Kuehnelt, Thomas Baeuml, and Anton Haumer.
SoundDuctFlow: a Modelica library for modeling acoustics
and flow in duct networks. In Proc. of the 7th Intl. Modelica
Conference, pages 519–525, 2009.

[25] Tolga Kurtoglu and Matthew I. Campbell. Automated
synthesis of electromechanical design configurations from
empirical analysis of function to form mapping. Journal of
Engineering Design, 19, 2008.

[26] Lawrence Berkeley National Laboratory - Modelica
Buildings Library. http://simulationresearch.
lbl.gov/modelica.

[27] Insup Lee, Oleg Sokolsky, Sanjian Chen, John Hatcliff,
Eunkyoung Jee, BaekGyu Kim, Andrew L. King, Margaret
Mullen-Fortino, Soojin Park, Alex Roederer, and Krishna K.
Venkatasubramanian. Challenges and research directions in
medical cyber-physical systems. Proceedings of the IEEE,

63

100(1):75–90, 2012.

[28] MathWorks. Simscape. http://www.mathworks.
com/products/simscape/.

[29] MathWorks. Simulink. http://www.mathworks.
com/products/simulink/.

[30] Stephen J. Mellor and Marc Balcer. Executable UML:
A Foundation for Model-Driven Architectures. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[31] Oregon state university, design engineering lab, design
repository. http://designengineeringlab.org/.

[32] Microsoft. Visio. http://msdn.microsoft.com.

[33] Modelica Association, Modelica. https://modelica.
org/.

[34] Modelica Association, Modelica Standard Library. https:
//modelica.org/libraries/Modelica/.

[35] Modelon. Hydraulics Library. http://www.
modelon.com/products/modelica-libraries/
hydraulics-library/.

[36] Modelon - Vehicle Dynamics Library. http://www.
modelon.com/.

[37] National Instruments. LabVIEW System Design Software.
http://www.ni.com/labview/.

[38] E. L. Nilson and P. Fritzon. BioChem - A Biological and
Chemical Library for Modelica. In Proc. of the 3rd Intl.
Modelica Conference, pages 215–220, 2003.

[39] OMG Systems Modeling Language (SysML). http:
//www.omgsysml.org/.

[40] OpenModelica. https://www.openmodelica.
org/.

[41] Martin Otter, Karl-Erik Årzén, and Isolde Dressler.
Stategraph—A Modelica library for hierarchical state
machines. In Modelica 2005 Proceedings, 2005.

[42] G. Pahl, W. Beitz, J. Feldhusen, and K.H. Grote.
Engineering Design - A Systematic Approach. Springer,
3rd edition, 2007.

[43] Christiaan J.J. Paredis, Yves Bernard, Roger M. Burkhart,
Hans-Peter de Koning, Sanford Friedenthal, Peter Fritzson,
Nicolas F. Rouquette, and Wladimir Schamai. An overview
of the SysML-Modelica transformation specification. In
INCOSE International Symposium, 2010.

[44] Adrian Pop, Martin Sjolund, Adeel Asghar, Peter Fritzson,
and Francesco Casella. Static and dynamic debugging of
Modelica models. In Proceedings of the 9th International
Modelica Conference, pages 443 – 454, 2012.

[45] Thomas L. Quarles. Analysis of Performance and
Convergence Issues for Circuit Simulation. PhD thesis,
EECS Department, University of California, Berkeley, 1989.

[46] Venkat Rajagopalan, Cari R. Bryant, Jeremy Johnson,
Daniel A. McAdams, Robert B. Stone, Tolga Kurtoglu,
and Matthew I. Campbell. Creation of assembly models
to support automated concept generation. ASME Conference
Proc., 2005(4742Xa):259–266, 2005.

[47] Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John
Stankovic. Cyber-physical systems: the next computing
revolution. In Proceedings of the 47th Design Automation
Conference, DAC ’10, pages 731–736, New York, NY, USA,
2010. ACM.

[48] S.D. Rudov-Clark and J. Stecki. The language of FMEA:
on the effective use and reuse of FMEA data. In AIAC-
13 Thirteenth Australian International Aerospace Congress,
2009.

[49] Alberto Sangiovanni-Vincentelli. Quo vadis SLD:
Reasoning about trends and challenges of system-level
design. Proceedings of the IEEE, 95(3):467–506, March
2007.

[50] Wladimir Schamai, Peter Fritzson, Chris Paredis, and Adrian
Pop. Towards unified system modeling and simulation
with ModelicaML: Modeling of executable behavior using
graphical notations. In Proceedings of the 7th Modelica
Conference, pages 612 – 621, 2009.

[51] Peter Schwarz. Physically oriented modeling of hetero-
geneous systems. Math. Comput. Simul., 53(4-6):333–344,
October 2000.

[52] Siemens. NX. http://www.plm.automation.
siemens.com.

[53] Siemens. Simulation & Testing SIMIT. http://www.
siemens.com.

[54] Siemens. Technomatix. http://www.plm.
automation.siemens.com.

[55] MCS Software. Actran Acoustics. http://www.
mscsoftware.com/product/actran-acoustics.

[56] Robert B. Stone and Kristin L. Wood. Development of a
functional basis for design. Journal of Mechanical Design,
122(4):359–370, 2000.

[57] Dassault Systemes. SolidWorks. http://www.
solidworks.com/.

[58] Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai,
Nicholas Kottenstette, Panos Antsaklis, Vijay Gupta, Bill
Goodwine, John Baras, and Shige Wang. Toward a science of
cyber-physical system integration. Proceedings of the IEEE,
100(1):29–44, 2012.

[59] Serdar Uckun. Meta II: Formal co-verification of
correctness of large-scale cyber-physical systems during
design. Technical report, Palo Alto Research Center, 2011.

[60] Y. Umeda, H. Takeda, T. Tomiyama, and H. Yoshikawa.
Function, behaviour, and structure. Applications of artificial
intelligence in engineering V, 1:177–194, 1990.

[61] Thom J. van Beek, Mustafa S. Erden, and Tetsuo Tomiyama.
Modular design of mechatronic systems with function
modeling. Mechatronics, 20(8):850 – 863, 2010.

[62] A. Votintseva, P. Witschel, and A. Goedecke. Analysis of a
complex system for electrical mobility using a model-based
engineering approach focusing on simulation. Procedia
Computer Science, 6(0):57 – 62, 2011.

[63] Wolfgang Wahlster. Industry 4.0: From smart factories to
smart products. In Forum Business Meets Research BMR
2012, 2012.

[64] Wolfram. Systemmodeler. http://www.wolfram.
com/system-modeler/.

[65] Wolfram. Systemmodeler. http://www.wolfram.
com/system-modeler/industry-examples/
automotive-transportation/.

[66] Stefan Wölkl and Kristina Shea. A computational
product model for conceptual design using SysML. ASME
Conference Proc., 2009(48999):635–645, 2009.

64

Toward an Equation-Oriented Framework for
Diagnosis of Complex Systems

Alexander Feldman Gregory Provan
University College Cork, Ireland

a.feldman@ucc.ie, g.provan@cs.ucc.ie

Abstract
Diagnosis of complex systems is a critical area for most
real-world systems. Given the wide range of system types,
including physical systems, logic circuits, state-machines,
control systems, and software, there is no commonly-
accepted modeling language or inference algorithms for
model-Based Diagnosis (MBD) of such systems. Design-
ing a language that can be used for modeling such a wide
class of systems, while being able to efficiently solve the
model, is a formidable task. The computational efficiency
with which a given model can be solved, although often ne-
glected by designers of modeling languages, is a key to pa-
rameter identification and answering MBD challenges. We
address this freedom-of-modeling versus model-solving
efficiency trade-off challenge by evolving a language for
MBD of physical system, called LYDIA. In this paper we
report on the abilities of LYDIA to model a class of phys-
ical systems, the algorithms that we use for solving MBD
problems and the results that we have obtained for several
challenging systems.

Keywords model-based diagnosis, model-based testing,
automated reasoning, modeling language

1. Introduction
Diagnosing complex systems using a model-based diagno-
sis (MBD) approach has led to the development of several
languages, most of which are extensions of simulation lan-
guages. Examples include logic-based diagnosis languages
(which extend multi-valued logics), e.g., [20]; bond-graph
diagnosis languages (which extend bond-graphs), e.g.,
[21]; and MODELICA-based diagnosis languages (which
extend MODELICA), e.g., [2].

Each of these languages has strong and weak points.
The logic-based diagnosis languages have a well-defined
diagnosis semantics and cleverly-designed inference algo-

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

rithms, but are limited in the types of behaviours that they
can be described by logic-based constraints.

The bond-graph and MODELICA-based diagnosis lan-
guages can describe a wider class of systems, but do not
have a well-defined diagnosis semantics or efficient diag-
nostics inference algorithms. For example, MODELICA fo-
cuses on a single nominal mode of a system1, whereas a
diagnosis language must be able to specify behaviours for
all the pertinent nominal and faulty modes of the system.

In this article we propose a diagnosis framework that
aims to provide the expressive power of a MODELICA-
based diagnosis language together with a clear diagnosis
semantics and efficient diagnostics inference algorithms.
The language, LYDIA, is a component-based, hierarchi-
cal language that supports dynamical systems (based on
ODEs) as well as logical constraint-based representations.
In addition, the framework provides a range of simula-
tion and fault-isolation algorithms. Hence, LYDIA provides
many of the simulation-oriented capabilities of a Mod-
elica implementation together with the associated mode-
identification and fault-isolation algorithms. Further, LY-
DIA allows modes to be identified by their likelihood of
explaining the observed data, using a variety of likelihood
metrics.

Our contributions are as follows:

1. We describe a modeling language, LYDIA, that supports
the specification of mode-based behaviours for nominal
and faulty models;

2. We describe a framework that can simulate, identify
modes and isolate faults for models described in the
LYDIA language;

2. Related Work
This section compares our approach to that of some key
existing equation-oriented systems/languages, e.g., MOD-
ELICA (http://modelica.org/), bond graphs (http://
bondgraph.org/), and Rodelica [5].

2.1 Diagnostic Approaches
MODELICA is a mixed declarative/procedural language; see, e.g.,
[12]. The declarative aspect involves the dynamical systems equa-
tions; the procedural aspect involves the specification of code

1 Of course, it is possible to have multiple modes in MODELICA, however,
the price is often increased modeling and simulation complexity.

65

fragments within the model itself. It is noted in [12] that the se-
mantics of MODELICA is defined not just by the declarative as-
pects of the model, but also by the compilation of the model that
aims at optimizing simulation efficiency. In other words, seman-
tics is also provided by the process of translation of a hierarchical
model, which consists of a hierarchically-nested set of classes, in-
stances and connections, into a flat model, consisting of a set of
constants, variables and equations. In the flat model, an optimiza-
tion/compilation step performs several operations, including sort-
ing and conversion of equations to assignment statements. Next,
strongly-connected sets of equations are solved using symbolic
and/or numeric solvers.

In contrast to MODELICA, the LYDIA language is fully declar-
ative. For example, whereas MODELICA allows users to define
procedural entities (code fragments) within the model itself, LY-
DIA only allows declarative statements developed from syntacti-
cally correct language statements. Allowing in-model algorithm
specification is problematic for model-based reasoning, since this
interferes with the symbolic manipulation of equations that is cru-
cial to simulation and diagnostics inference.

Bond graphs are an equation-oriented language which bear a
close relation to MODELICA; in fact, a bond graph library exists
in MODELICA [7]. Bond graphs constrain MODELICA to repre-
sent systems in terms of energy and power flows, thus forming
a semantic framework for physical systems. Bond graphs model
physical systems in terms of four entities: effort e, flow f , general-
ized momentum p, and generalized displacement q. A graphG en-
ables the specification of energy flows among components, where
a node corresponds to a component and an edge to a bond (i.e.,
a flow/effort interaction) between the joined components. The se-
mantics of a bond graph G is specified through the assignment of
differential- algebraic equations to each of the nodes and edges of
the graph G, as based on mapping the graph structure (noting the
connection semantics of the two basic connection types, parallel
and series connection) into equations. These differential-algebraic
equations describe the behavior of the four variables p, q, e and
f , for each of the physical components in the system (i.e., the
nodes in the graph G).

Standard bond graphs have no notion of mode, or mode-based
inference. Extended models, e.g., [21], have been developed, but
the approach is quite different to that of LYDIA. For example,
LYDIA does not impose any flow/energy restrictions to semantics,
and its notion of mode is an inherent part of the language, rather
than an extension.

RODELICA is a diagnosis language based on MODELICA, and
used as the basis for the diagnostics system RODON [5, 4].
Rodelica is similar in structure to the LYDIA-NG language, in
that it specifies component modes along with their associated
behaviours. However, Rodelica is strictly more limited than the
LYDIA-NG language, in that it allows not full ODSs but point-
or interval-valued arithmetic constraints. In addition, a Rodelica
model is restricted to atemporal equations (and hence uses data
from one time instance), and cannot define the stochastic occur-
rence of faults in components. On top of this, the Rodon diagnos-
tics system is limited to a single inference engine, as opposed to
the ability of LYDIA-NG to use multiple inference engines and
residual generators.

MATLAB/SIMULINK models (http://mathworks.com/)
have a highly procedural semantics associated with simulation
of a block-oriented model. Procedural tools for execution of a
Simulink block during a given simulation step are governed by
a number of factors; these include, among others, whether or not
the block (or a subsystem containing the block) has a sample
time, or whether or not the block resides in a conditionally exe-

cuted subsystem. Block execution can also be disabled by condi-
tional input branch statements. Matlab/Simulink has no inherent
language framework for modes, nor well-established algorithms
for diagnosis. As mentioned earlier, the LYDIA language is fully
declarative and has associated algorithms for simulation and di-
agnostics inference.

2.2 LYDIA versus MODELICA

LYDIA is an equation-based language, i.e., a LYDIA model is
translated to a system of equations. These equations can be
Boolean, linear, or systems of ODEs. One of the major differ-
ences between LYDIA and MODELICA is the approach to solving
systems of equations. MODELICA can solve DAEs. LYDIA tries
to identify the type of the system of equations and invoke ap-
propriate solver (simulation engine). For example, if LYDIA-NG
detects a model that contains Boolean variables only, it will not
use an ODE solver but a SAT algorithm which is better optimized
for this class of systems. The idea is to use specialized solvers for
various tasks, for examples trigonometric systems, etc.

LYDIA is in the same category of equation/simulation-based
declarative languages but is targeted toward the diagnostic user-
group. These are the the major differences between the two lan-
guages:

Syntax: LYDIA evolved from several diagnostic projects. The
design of the language syntax was probably dictated by the
experience of the language designers. LYDIA has syntactical
resemblance to C, VERILOG, and ADA.

Type system: Both LYDIA and MODELICA are strongly typed
languages. LYDIA optimizes heavily the use of Boolean vari-
ables.

Object orientation: MODELICA is an object-oriented language,
while LYDIA is not. From all features of object-oriented lan-
guages [14], the most important one for equation-oriented ap-
proaches is inheritance which may lead to more compact mod-
els. LYDIA uses external pre-processors to achieve the same
goals, however, in future extensions of the language the au-
thors of LYDIA may bring inheritance into the language. Infor-
mation hiding is supported by MODELICA and not supported
by LYDIA. Information hiding may help modelers avoid mis-
takes.

Explicit procedures: LYDIA does not support MODELICA-type
algorithm sections. The reason for that is that while MOD-
ELICA models are typically used from simulation only, LY-
DIA models are used for multiple simultaneous simulations.
This imposes strict requirements on (1) the computational ef-
ficiency of the simulation and (2) the side-effects of the sim-
ulation. An example of a side-effect would be a MODELICA

algorithm using a file on disk. In LYDIA this would create a
problem as this file would be overwritten by the multiple si-
multaneous simulations for the various fault-modes. Further
it is very difficult to have automated performance analysis on
procedural code.

Units: LYDIA does not support directly units. Units can be speci-
fied as string attributes, but there is no unit algebra. Units may
be supported as first-class citizens in future versions of LY-
DIA.

Modes: The most important difference between LYDIA and
MODELICA is the use of modes in LYDIA. This is not strictly
a language difference but an issue of interpreting the mod-
els. LYDIA detects health and user-input variables and iden-
tifies components based on these variables. This can be eas-
ily achieved in MODELICA by using special variable types,

66

e.g., according to a naming convention. LYDIA also identifies
which equations belong to which component mode.

3. LYDIA Modeling Examples
This section describes the LYDIA language through examples,
rather than use a formal approach. Viewed simply, LYDIA enables
users to define models in terms of constraints, where constraints
may range from logic to differential equations. Further, LYDIA

supports component-based definitions of systems, such that for
each component we can associate a mode that represents the
distinct functional modes that drive the component’s behaviors.
When a system is composed, the system-level modes consist
of the cross-product of the component modes, and the system
equations consist of the union of the mode-based component
equations. We use standard methods for component composition,
e.g., [13].

A LYDIA model has four sections: prologue, domains, struc-
ture, and components. The prologue describes the main charac-
teristics of the model, i.e., the types of the constraints, fault-
modeling, etc. The structure displays the model hierarchy that is
essential for many of the MBD algorithms existing today. The
domain description specifies symbolic values for all the Finite
Domain Integer (FDI) variables (Booleans are treated as a spe-
cial case of many-valued logic). Finally, for each component a set
of constraints and transitions are specified. In particular, LYDIA
supports constraints ranging from logic to differential equations.

The models discussed in this section come from three differ-
ent domains. The first one is an analogue electrical circuit. The
example shown in section 3.1 is a logic circuit similar to the ones
that are used for benchmarking of Automated Test Patter Gener-
ation (ATPG) [3]. Finally, the third example illustrates the use of
Ordinary Differential Equations (ODEs) in LYDIA.

Another difference between LYDIA and simulation languages
like SIMULINK and MODELICA is that LYDIA splits the model in
two: system model and diagnostic scenario. The system model
is similar to what we have in other modeling languages. The
diagnostic scenario contains sensor data, initial values and other
information that is unknown at modeling time. This allows the use
of compilation methods—the system model does not change and
can be compiled (sometimes in the strict sense of the term [8]) to
facilitate reasoning. while the sensor data is supplied at run-time
and even includes noise.

3.1 An Analogue Electrical Circuit
Figure 1 shows a small electrical circuit. It consists of a single
voltage source (V1), two switches (SW1 and SW2), and a current
sensor (I1). If we disregard the switches and the sensor (take the
voltage source and resistors only) we can easily calculate all node
voltages and branch currents. This can be done with an electronic
calculator or with a simulation program like SPICE [16]. LYDIA-
NG implements SPICE simulation.
When modeling a system in LYDIA we start with each component
separately. With some luck, these are standard components and
are already modeled in a component library. Otherwise the com-
ponent models have to be created. We next show a resistor model
in LYDIA. This is already part of the electrical component library
electrical.lcl.

1 type ResistorHealth = enum { nominal, open, short };
2
3 system Resistor (float resistance , current , pn, nn)
4 {
5 ResistorHealth h;
6

+

-
V1 24

resistor

A
current
sensor

voltage sourceswitch

+

-
20

A

I1

SW1

SW2

N1

N2

N3

N4

R1

20

10

R2

20

Figure 1. A small power distribution network

7 attribute health (h) = (h == ResistorHealth .nominal);
8
9 switch (h) {

10 ResistorHealth .nominal −>
11 {
12 resistor (resistance , current , pn, nn);
13 }
14 ResistorHealth .open −>
15 {
16 // no constraint
17 }
18 ResistorHealth . short −>
19 {
20 resistor (0, current , pn, nn);
21 }
22 }
23 }

Listing 1. Resistor model

Line 1 defines a new discrete LYDIA type that will be used for
the health of the resistor. This type defines three modes for the
resistor: nominal, open-circuited, and short-circuited. The first
mode is a nominal and the other two are fault-modes. The health
variable itself is declared in line 5. We specify in the model which
mode is the nominal and which modes are the fault modes by
adding a variable attribute. This is done in line 7 of the resistor
model.

Component models in LYDIA typically follow the same struc-
ture. LYDIA simulates for a set of nominal/fault modes. The
choice which simulation goes for which fault mode is made in
line 9 of the resistor model. When diagnosing, disambiguating, or
otherwise reasoning, LYDIA-NG, will pick the relevant equations
(constraints) depending on the hypothesized (assumed) value of
the health variables (in the case of the resistor model above, the
health variable is h).

The actual resistor equations (constraints) are specified in lines
12, 16, and 20. Notice that in the case of an open-circuit, there
is no constraint, i.e., an open-circuited resistor is modeled with
an empty set of constraints. This is equivalent to specifying a
resistor with infinite resistance but eliminates the need of this
resistor to be pruned (LYDIA-NG supports infinite resistance and
conductance through symbolic preprocessing). For the nominal
mode we specify the built-in constraint resistor , parametrized
with its nominal resistance. LYDIA-NG will take this and fill-in
the proper values in a nodal equation matrix so it can compute
the unknown voltages and currents. In the case of a short-circuit

67

(line 20), we make the resistance parameter zero and LYDIA-NG
knows how to deal with this case during simulation.

When diagnosing, LYDIA-NG will choose constraints based
on hypothesized fault modes and construct a simulation model.
This simulation model will be simulated with a domain-specific
solver (in the above case with SPICE). This process will be
repeated multiple times until the proper fault mode is identified.

We next describe a component that cannot be fully-simulated
with SPICE . This is the current sensor. The current sensor con-
sists of a small-resistor (just like the majority of the electronic
current sensors do) and some equation that allows the reading of
the sensor to be “stuck-at” some value in the presence of a fault.
Of course, the last equation has nothing to do with SPICE and is
a very simple algebraic equation. This algebraic equation can be
solved by value propagation after the SPICE simulation finishes.
LYDIA-NG partitions the constraints (equations) and invokes the
appropriate solvers (up until now we have mentioned the SPICE
solver and a simple algebraic propagation-based solver) automat-
ically. Here is a model of a current sensor:

1 type SensorHealth = enum { nominal, failed };
2
3 system CurrentSensor(float pn, nn)
4 {
5 float r ;
6
7 attribute observable (r);
8 attribute name(r) = "current [A]";
9

10 float current ;
11
12 SensorHealth h;
13
14 attribute health (h) = (h == SensorHealth.nominal);
15
16 switch (h) {
17 SensorHealth .nominal −>
18 {
19 resistor (0.01, current , pn, nn);
20 r = current ;
21 }
22 SensorHealth . failed −>
23 {
24 resistor (0.01, current , pn, nn);
25 r != current ;
26 }
27 }
28 }

Listing 2. Current sensor model

Last, we show how to model a switch in LYDIA:

1 type SwitchHealth = enum { nominal, stuck };
2 type SwitchCommand = enum { open, closed };
3
4 system Switch(float current , pn, nn)
5 {
6 SwitchHealth h;
7 SwitchCommand cmd;
8
9 attribute health (h) = (h == SwitchHealth.nominal);

10 attribute control (cmd) =
11 (cmd == SwitchCommand.closed);
12
13 switch (cmd) {

14 SwitchCommand.open −>
15 {
16 switch (h) {
17 SwitchHealth.nominal −>
18 {
19 // no constraint
20 }
21 SwitchHealth. stuck −>
22 {
23 resistor (0, current , pn, nn);
24 }
25 }
26 }
27 SwitchCommand.closed −>
28 {
29 switch (h) {
30 SwitchHealth.nominal −>
31 {
32 resistor (0, current , pn, nn);
33 }
34 SwitchHealth. stuck −>
35 {
36 // no constraint
37 }
38 }
39 }
40 }
41 }

Listing 3. Single throw switch model

The new feature in the switch model is that we have a user-
command variable—the commanded position of the switch. So,
this is an example in which we have two parameters: the com-
manded position and the health. Remember that, when building
component models we have to simulate for a subset of the Carte-
sian product of each user-command/health variable. In the above
example we have two possible switch positions (open and close)
and two possible modes (nominal and stuck), hence there is a total
of four models for each combination of values of the parameters.
Remember that the user-commands have to be specified in the
outer switch statement and the health models in the inner switch
statements. It is also possible to specify each simulation with a
sequence of if-statements but using switches is more elegant.

Of course, there are also models of the voltage sensor and the
voltage source but we will not discuss those. Fortunately, there
are component libraries that come with LYDIA and the user is
not required to model standard components. We have shown the
three component models above only to explain some basic LYDIA

modeling and to provide information for users to design their own
component libraries for non-standard components.

Before we are ready to start simulation/diagnosis in LYDIA-
NG we have to connect together all components that are shown in
figure 1. This is done in the top-level (or main) LYDIA system:

1 #include "electrical.lcl"
2
3 attribute void reference ;
4
5 system main()
6 {
7 float ground;
8
9 attribute reference (ground);

10

68

11 float N1, N2, N3, N4;
12 float V1, R1, R2, SW1, SW2;
13
14 voltage_source (24.0, V1, N1, ground);
15
16 system CurrentSensor I1(N1, N2);
17 system SimpleSwitch SW1(SW1, N2, N3);
18 system SimpleSwitch SW2(SW2, N2, N4);
19 system Resistor R1(20.0, R1, N3, ground);
20 system Resistor R2(20.0, R2, N4, ground);
21 }

Listing 4. Top-level system in a model of a power distri-
bution network

The above top-level system starts with the include directive in line
1 so LYDIA can use the electrical component library. LYDIA-NG
uses a C-like preprocessor. The first three models in this section
were excerpts from the electrical component library.

Notice that the top-level system in a LYDIA model comes last
(i.e., first all component and subsystem models and the last system
is the top-level one). The rest of the systems and sub-systems do
not have to be in a particular order as far as the top-level system
is the last one.

The significant part of the top-level system instantiates and
connects components from the component library (see lines 16–
20). A system instantiation is done by specifying the keyword
system followed by the type of the system and then the name
of the instantiation. After the name of an instance follows (a
left parenthesis and) a list of variables. The number and type of
variables should match the system interface, otherwise the LYDIA

compiler is going to produce an error.

3.2 A System of Boolean Equations
It is straightforward to enter Boolean equations in a LYDIA model.
These systems of equations can be used for modeling of digital
integrated circuits, or other combinatorial computational devices.
Boolean functions are often represented graphically, by using the
same symbols as in a standard computer arithmetic schoolbook
[19]. An example Boolean function is shown in figure 2. This
function implements a full-adder, a device that computes the
sum (and the carry) of two Boolean numbers (and carry). By
composing multiple of these one can build, for example, a 32-bit
adder.

ci

i1

i2

co

Σ

rp

q

Figure 2. Boolean full adder

The full-adder shown in figure 2 has three types of components,
in this case logic-gates: OR-gate, AND-gate, and XOR-gate. This
is how a model of an AND-gate looks like:

1 system and2(bool o, i1 , i2)
2 {
3 bool h;
4

5 attribute health (h) = h;
6
7 h => (o = (i1 and i2));
8 !h => (o = !(i1 and i2));
9 }

Listing 5. Model of an AND-gate with two inputs

Let us have a closer look at the above AND-gate model. First, all
variables are Boolean. There are one output (o) and two input vari-
ables (i1 and i2). These three variables are declared as formals of
the system (line 1). The health variable h is declared in line 3. The
health attribute in line 5 tells LYDIA that when h equals true, the
component is healthy, and otherwise. LYDIA-NG needs this so
it can perform diagnosis. When diagnosing, LYDIA-NG performs
multiple simulation for different values of the health variables and
it needs to know which value means healthy (nominal) and which
values means fault.

There are two constraints in the model of the AND-gate: one
for when the gate is working nominally (line 7), and one for when
the gate is at-fault (line 8). Instead of a switch-predicate like in
the example in section 3.1, we use conditional expressions to
differentiate between the nominal and the fault mode.

We call the model of the AND-gate shown in listing 5, a
“stuck-at-opposite” model. This means that when the gate is
faulty, the output of the gate has the opposite value of what it
is supposed to be for the specified inputs. This is the same as
a weak-fault model [10] but allows simulation by simple value
propagation for any value of the health variable h.

A full-adder is composed of two half-adders as illustrated
in figure 2. Each of the two half-adders in figure 2 is enclosed
by a dashed rectangle. Modeling separately the half-adder and
composing the full-adder out of the two half-adders and the OR-
gate results in non-trivial hierarchy (i.e., a hierarchy where we do
not only have component models and a top-level system, but also
subsystems). The model of the half-adder simply combines and
AND-gate and an XOR-gate as shown next.

1 system halfadder2 (bool i1 , i2 , sum, carry)
2 {
3 system and2 A(carry , i1 , i2);
4 system xor2 X(sum, i1 , i2);
5 }

Listing 6. Model of a half-adder

Of course, a large number of Boolean gates, adders and various
logic circuits are already modeled in the std-logic-so.lcl
component library and can be used in any model that includes it.

To conclude the model of the full-adder, we have to compose
the two half-adders and an OR-gate into the final top-level design.
This is shown in the listing that comes next.

1 #include "std-logic-so.lcl"
2
3 attribute void input ;
4 attribute void output ;
5
6 system fulladder (bool ci , i1 , i2 , sum, carry)
7 {
8 attribute input (ci , i1 , i2);
9 attribute output (sum, carry);

10 attribute observable (ci , i1 , i2 , sum, carry);
11
12 bool f , p, q;
13
14 system halfadder2 HA1(i1, i2 , f , p);

69

15 system halfadder2 HA2(ci, f , sum, q);
16 system or2 O(carry , p, q);
17 }

Listing 7. Top-level system in a model of a Boolean adder

What is new in the top-level system above, is that in addition to
all the subsystems and variables we have two new attributes—
input (line 3) and output (line 4). We use these two attributes to
denote the primary inputs (ci , i1, and i2), and the primary outputs
(sum and carry). LYDIA-NG needs to know what is an input and
what is an output so it can simulate, i.e., propagate the values of
the Boolean inputs through the circuit to obtain the values of the
Boolean outputs.

3.3 Ordinary Differential Equations
One of the first devices for measuring time is a water-filled vessel
with a small orifice in it. Measuring time with such a device
requires solving a differential equation as the rate of change of the
observable quantity (the water height) depends on the amount of
water in the vessel. The so called clepsydra problem is a standard
problem in schoolbooks on ordinary differential equations [23,
p. 108] and can be solved analytically.

In this paper we solve a diagnostic version of the water clock
problem. We start with the clepsydra example in Ordinary Differ-
ential Equations: An Elementary Textbook for Students in Mathe-
matics, Engineering, and the Sciences [22, p. 183] and modify it
so it has two holes as illustrated in figure 3. Either of these two
holes (or both) can get instantaneously and fully blocked. The
goal is, given a measurement of the water height, to determine
which of the holes is open and which is stuck. This is how the
problem is formulated:

water level after 1 minwater level after 2 minwater level after 3 min

initial water level

Figure 3. Water clock with two holes that can get blocked

Problem 1. Water flows freely throgh two orificies of a water
vessel. It has been established that the rate of flow of water is
proportional to the area of the orifices and the square root of the
height of the water:

Adh = ka
√
hdt, (1)

where

A is the area of the water surface,

h is the height of the water,

r1 and r2 are the radii of the orifices.

It has been determined experimentally that k = −4.8. In this
problem, A = 12, r1 =

√
3/24, r2 = 1/24, and the initial level

of the water is h0 = 9.
In addition to all that, there is a discrete parameter m ∈

{0, 1, 2, 3} where m = 0 means that both holes are unblocked,
m = 1 means that the hole with radius r1 is blocked, m = 2
means that the hole with radius r2 is blocked, and m = 3 means
that both holes are stuck. Given a measurement of the water αt

at time t and (predicted) levels of the water h0, h1, h2, and h3

for m = 0,m = 1,m = 2, and m = 3, respectively, we can
compute the value of m from the formula:

m = arg min
i∈{0,1,2,3}

|αt − hi| (2)

Given ht = 6.5 at time t = 135, compute the value of the discrete
parameter m.

Let us model in LYDIA the clepsydra shown in figure 3.

1 type ClepsydraHealth = enum { nominal, s1 , s2 , sb };
2
3 system Clepsydra ()
4 {
5 float A = 12;
6 float r1 = (sqrt (3) / 2) / 12;
7 float r2 = (1 / 2) / 12;
8
9 float height ;

10
11 attribute observable (height);
12
13 ClepsydraHealth h;
14
15 attribute health (h) = (h == ClepsydraHealth .nominal);
16
17 switch (h) {
18 ClepsydraHealth .nominal −>
19 {
20 float area = pi ∗ r1 ^ 2 + pi ∗ r2 ^ 2;
21 height ’ = (−4.8 ∗ area ∗ sqrt (height)) / A;
22 }
23 ClepsydraHealth .s1 −>
24 {
25 float area = pi ∗ r2 ^ 2;
26 height ’ = (−4.8 ∗ area ∗ sqrt (height)) / A;
27 }
28 ClepsydraHealth .s2 −>
29 {
30 float area = pi ∗ r1 ^ 2;
31 height ’ = (−4.8 ∗ area ∗ sqrt (height)) / A;
32 }
33 ClepsydraHealth .sb −>
34 {
35 height ’ = 0;
36 }
37 }
38 }

Listing 8. Clepsydra model

The only new feature in the clepsydra model above is the use of
derivatives in lines 21, 26, 31, and 35. In this case the dependent
variable is height and the independent variable is (implicitly) t .

70

Notice that t (not used in the clepsydra model) is a keyword in
LYDIA.

What remains is to specify the initial value (water height) and
the measurement 10 min, after the beginning of the scenario. This
is done in a scenario file similar to the one that follows.

1 scenario start @ + 0 {}
2 initial values @ + 0 { height = 9; }
3 observation @ + 135 s { height = 6.5; }
4 scenario end @ + 10 min {}

Listing 9. Clepsydra scenario

There are four events in the scenario above. The first and last ones
in lines 1 and 4 mark the beginning and the end of the scenario
(timestamps are in milliseconds). The initial value for the ODE is
given in line 2. In line 3, the scenario supplies the measured water
level.

If we now invoke LYDIA-NG to diagnose the above system
with the above scenario, we should get that the clepsydra is most
likely in state m = 2, i.e., the hole with radius r2 is blocked.

4. LYDIA Concepts and Definitions
We represent a generic linear analogue system in terms of a
relation between effort ~x and flow ~z vectors of variables, using
T~x = ~z, where T is an n ×m matrix. For example, for circuits
~x ∈ Rn is an (unknown) nodal voltage vector, and ~z ∈ Rm is a
measurable current-source vector.

We will adopt a mode-based representation, i.e., we assume
that the system can operate in a set Ω of modes, which can consist
of nominal or faulty operating conditions. Given a system that
consists of a discrete set of components with a corresponding set
of health parameters COMPS, a mode ω ∈ Ω is an assignment
to all variables in COMPS.

Further, for each mode we assume that we can specify a
distinct set of equations. Hence, for each ω ∈ Ω we specify an
equation set SDω given by Tω ~xω = ~zω .

4.1 Models and Residuals
Definition 1 (Diagnostic Model). Given a system that consists of
a discrete set of components with a corresponding set of health
parameters COMPS, a diagnostic model M = 〈SD, COMPS〉 is
specified using a function SD =

⋃
ω∈Ω SDω .

In this article, we are typically given the flow vector ~z and must
compute the effort vector via ~xω = T−1

ω ~zω , a process we call
simulation of ~xω . Since SD is linear, we can simulate efficiently.

Given an observation ~α, we estimate the mode (i.e., solve
a diagnostic problem) by computing an optimal solution of a
parameter estimation problem where the parameters are discrete
and the problem is split in two parts: simulation and residual
analysis.

In real-world applications, straightforward simulation function
(from definition 1) is not sufficient to adequately solve the di-
agnostic problem. This is because models are imprecise, there is
sensor noise, health parameters are discrete, etc. Instead, we com-
pute a difference between ~α and a simulation ~̂z (using the residual
function of Definition 2), and then identify the mode that min-
imises this function.

Definition 2 (Residual Function). Given twom-dimensional real
vectors ~̂z, ~α ∈ Rm, a residual function R : {~̂z, ~α} 7→ R(~̂z, ~α)

maps ~̂z and ~α into the real interval [0;∞).

Definition 3 (Health Estimation Problem). Given a diagnostic
model SD and a residual function R, the health estimation prob-

lem is to compute an assignment ωmin to all variables in COMPS
such that:

ωmin = arg min
ω

R(SDω, ~α)

Solving the above health estimation problem, while maintain-
ing computational efficiency is the main goal of our framework.

4.2 Control
LYDIA-NG supports control specifications in a straightforward
manner. In particular, LYDIA-NG can specify mode-based con-
trols (e.g., as occurs in Finite State Automata [6] and Hybrid
Systems [15] models) using the notion of mode inherent in the
LYDIA-NG language. This is possible since LYDIA-NG asso-
ciates a set of dynamical equations with a mode (together with
constraints on mode transitions), just as in hybrid systems. As
such, a LYDIA-NG can specify a declarative control model and
use the simulation infrastructure to run closed-loop feedback-
control simulations.

Furthermore, the LYDIA-NG framework can support the diag-
nosis of hybrid systems, e.g., [1]. It is beyond the scope of this ar-
ticle to describe the control and diagnosis functionality of which
LYDIA-NG is capable. It is important to note that LYDIA-NG
currently has a simple temporal representation, and hence is lim-
ited to discrete-event models. In future work we intend to signif-
icantly extend the temporal modeling capabilities, and hence be
able to analyse a wider range of hybrid models, e.g., as done in
[18].

5. Framework for Model-Based Diagnosis
The basic idea of the LYDIA-NG diagnostic library (shown in
Fig. 4) is to perform multiple simulations for various hypothe-
sized health states of the plant. The output of these multiple sim-
ulations is then processed and combined into single diagnostic
output.

Figure 4. Overview of the LYDIA-NG diagnostic method

The LYDIA-NG diagnostic library consists of the following
building blocks:

Generator of Diagnostic Assumptions: A diagnostic assump-
tion is a set of hypothetical assignments for the health or fault
state of each component in the system. The “all nominal”

71

diagnostic assumption assigns healthy status to each compo-
nent. LYDIA-NG allows one nominal and one or more faulty
states per component.

Simulation Engine: Given a diagnostic assumption, LYDIA-NG
can construct a simulation model of the system. This simu-
lation model consists of equations. By solving this system of
equations LYDIA-NG computes values for one or more ob-
servable variables. The values of these observable variables is
also referred to as a prediction.

Residual Analysis Engine: A prediction is compared to the sen-
sor data by a residual analysis engine. This engine combines
the individual discrepancies in each sensor data/predicted
variable pair to produce a single real value that indicates how
close is the prediction of the simulation engine to the sensor
data obtained from the plant. A simulation that results in all
predicted values coincide with the measured ones will result
in the residual being zero. The data structure containing pre-
dictions, their corresponding sensor data and the computed
residual is called a diagnostic candidate or simply candidate.

Candidate Selection Algorithm: Not all candidates generated
by the residual analysis engine are used for computing the fi-
nal system health. The candidate selection algorithm discards
each candidate whose residual is larger than the residual of
the “all nominal” candidate.

System State Estimation Algorithm: LYDIA-NG uses the set
of candidates that is computed by the candidate selection al-
gorithm to compute an estimate for the health of each com-
ponent. This is done by the system state estimation algorithm.
Finally, LYDIA-NG computes RCoF by choosing the compo-
nents with highest probability of failure.

5.1 Search Algorithm
Algorithm 1 shows the top-level diagnostic process. The inputs
to algorithm 1 are a model and a scenario, and the result is a
diagnosis.

At the heart of algorithm 1 is the use of simulation. Algo-
rithm 1 supports a large variety of simulation methods that may
or may not use time as an independent variable. In the setup de-
scribed in this paper we have used SPICE in combination with a
constraint propagation solver. The latter we have used for sensor
values, complex components such as mixed analog-digital elec-
tronics and other parts of the model where it is difficult or inap-
propriate to model with SPICE. The only requirement toward the
simulation engine is to predict a number of variables whose types
can be mapped to LYDIA-NG and to be relatively fast (the com-
putational performance of LYDIA-NG will not be thoroughly dis-
cussed in this paper which emphasizes the application of LYDIA-
NG to a space model).

The basic idea of algorithm 1 is to simulate for various health
assignments and to compare the predictions with the observed
sensor data (i.e., telemetry). There are several important aspects
of this algorithms that ultimately affect the diagnostic accuracy as
measured by various performance metrics.

The first algorithmic property that determines many of the di-
agnostic performances is the order in which health-assignments
are generated. In algorithm 1 this is implemented by the func-
tion named NEXTHEALTHASSIGNMENT. The latter subroutine
also determines when to stop the search and should be properly
parametrized depending on the model and the user requirements.
In the standard LYDIA-NG diagnostic library we provide the fol-
lowing diagnostic search policies:

Algorithm 1 Diagnosis framework
1: function DIAGNOSE(SCN) returns a diagnosis

inputs: SCN, diagnostic scenario
local variables: h, FDI vector, health assignment

p, real vector, prediction
Ω, a set of diagnostic candidates
DIAG, diagnosis, result

2: while h← NEXTHEALTHASSIGNMENT() do
3: p← SIMULATE(M , γ,h)
4: r ← COMPUTERESIDUAL(p, α)
5: Ω← Ω ∪ 〈h, r〉
6: end while
7: DIAG← COMBINECANDIDATES(Ω)
8: return DIAG
9: end function

Breadth-First Search (BFS): This policy first generates the
nominal health assignment, then single-faults, double-faults,
etc.

Depth-First Search (DFS): This search policy starts with the
nominal health assignment, then adds a single-fault, contin-
ues with a double fault including the first, and so on, until
all components are failed. After the all-faulty assignment is
generated, the algorithm backtracks one step and generates a
sibling assignment and continues traversing down and back-
tracking in the same manner until no more backtracking is
possible.

Backwards Greedy Stochastic Search (BGSS): In this mode,
the search start from the all-faulty assignment. A random
health variable is then flipped and the flip is retained iff the
flip leads to a decrease in the residual. The order of health
variables is arbitrary. As the whole search process is stochas-
tic, it needs to be run multiple iterations in order to achieve
the desired completeness. A formal description of this method
for Boolean circuit models can be found in [11].

Each simulation produces what we call a candidate: a set of
predicted values for a given health-assignment. The second im-
portant property of algorithm 1 is the comparison and ordering of
the diagnostic candidates. This is done by mapping the predicted
and observed variables into a single real-number, called residual.
The residual computation is discussed in what follows.

5.2 Residual Generation
Our mode estimation task requires a method to identify the mode
ω whose simulation zω most closely matches the observation
vector α. We use a residual function R(zω, α) to measure this
difference. The specification of R(zω, α) is intentionally generic,
since we aim to enable users to specify domain-specific residual
generators that are best suited to their application domain.

The area of residual analysis has received significant attention
in the literature, and it is not possible to provide a comprehensive
set of residual methods within LYDIA-NG.

We currently have implemented a small set of residual gener-
ators, the size of which will increase over time.

We provide below examples of two straightforward residual
generation functions, together with their advantages and disad-
vantages. These two residual generation functions bear resem-
blance to loss functions in decision theory.

72

Squared Residuals:

Rsq(OBS, ~z, α) =
∑

v∈OBS

W (v) [~z(v)− α(v)]2 (3)

where W (v) is a weight-value associated with sensor v, ~z(v)
is the value of variable v in the prediction assignment ~z and
α(v) is the value of the observable variable v.

Absolute Residuals:

Rabs(OBS, ~z, α) =
∑

v∈OBS

W (v) |~z(v)− α(v)| (4)

where W (v), ~z(v) and α(v) are used in the same way as in
Eq. 3.

A disadvantage of the squared residuals function Rsq is that it
adds a lot weight to outliers. In decision theory, the absolute loss
function that corresponds to the Rabs function is discontinuous.
The latter, however, is not a problem for the algorithms described
in this paper and we prefer Rabs over Rsq.

The above two residual functions may lead to relatively bad
diagnostic results, especially in the presence of noise. One of
the properties of Rsq and Rabs is that they are memoryless. An
alternative would be to use some historical predictions and sensor
data. Of course, the use of history would increase the isolation
time, but has the potential to also increase the diagnostic accuracy.
Another approach for more advanced residual analysis function
would be to use methods from machine learning, for example
neural networks. Particle filters [9] or Bayesian networks [17] can
be also used for residual analysis.

5.3 Computation of Component Failure Probabilities
Consider the circuit shown in Fig. 1 and a scenario α = {I1 =
1.19}. This scenario corresponds to one of the resistors being
open-circuited or one of the switches being stuck-open. Table 1
shows applying Eq. 4 for the predictions simulated from the nom-
inal and all single-fault health assignments. The rows of Table 1
are sorted in order of an increasing residual value. In this table
(and below) we abbreviate a stuck switch as S and an open-circuit
resistor mode as OC.

V1 I1 SW1 SW2 R1 R2 faults Rabs

− − S − − − 1 0.0006
− − − S − − 1 0.0006
− − − − OC − 1 0.0006
− − − − − OC 1 0.0006
− − − − − − 0 1.1758
F − − − − − 1 1.1888
− F − − − − 1 1.1888
− − − − SC − 1 79.3402
− − − − − SC 1 79.3402

Table 1. Single-fault residuals for the circuit shown in
Fig. 1 and an observation simulated from a single open-
circuited resistor

The COMBINECANDIDATES subroutine from algorithm 1
uses a table similar to the one shown in Table 1. It retains only the
predictions with residuals smaller than the residual of the nominal
prediction. The reason for that is that the nominal prediction is the
only one that has a special meaning in LYDIA-NG and leads to a
“landmark” residual, i.e., LYDIA-NG does not attempt to differ-
entiate amongst the various fault-mode predictions. As a result,

in our running example, only the first four rows of Table 1 are
considered when calculating the final fault-probabilities.

The second step of COMBINECANDIDATES is to convertRabs

in the interval [0; 1] where Rnorm = 0 for the nominal prediction
and Rnorm = 1 for a fault prediction that gives Rabs = 0.
Applying this on Table 1 gives us Table 2.

SW1 SW2 R1 R2 Rnorm

S − − − 1
− S − − 1
− − OC − 1
− − − OC 1

Table 2. Normalized single-fault residuals from Table 1
that are smaller than the nominal residual

Finally, what remains to be done is to normalize the rightmost
column of Table 2 so it sums up to one and marginalize the
probability of failure in each column. For the small circuit we
are analyzing this results in {Pr(SW1 = S) = 0.25,Pr(SW2 =
S) = 0.25,Pr(R1 = OC) = 0.25,Pr(R2 = OC) = 0.25}.
The fact that all probabilities are 0.25 means that algorithm 1
cannot determine unambiguously which component is the faulty
one. In this case this is due to the fact that there is only one sensor,
i.e., the unambiguity is due to sensor placement and circuit design.

One way to reduce this ambiguity is to change the position of
SW1 and/or SW2. In the next section we devise an algorithmic
framework that works for any circuit or model that can be diag-
nosed in the LYDIA-NG framework.

6. Conclusion and Future Work
This article has described a model-based framework for modeling
and diagnostics of complex systems. The framework has several
important characteristics, of which we have focused on the mod-
eling language. This LYDIA language is a constraint-based system
that enables modelers to specify systems according to a discrete
set of system modes, such that each mode is associated with a be-
haviour. The language allows behaviour specifications based on a
wide range of constraints, of which two important constraint rep-
resentations are ODEs and first-order logic.

We have described several model types that can be developed
in LYDIA. In addition, we have proposed a model benchmark for
evaluating the capabilities of LYDIA and other MBD languages.
By comparing our approach to that of well-known frameworks,
such as MATLAB/SIMULINK and MODELICA, we have shown
properties of the LYDIA framework that are specific to MBD.

Future work includes extending the range of simulation and di-
agnosis solvers within our framework, and extending the residual
analysis engine.

Acknowledgments
The publishing of this article is supported by Enterprise Ireland
grant CC-2011-4005A.

References
[1] Shai A Arogeti, Danwei Wang, and Chang Boon Low. Mode

identification of hybrid systems in the presence of fault.
Industrial Electronics, IEEE Transactions on, 57(4):1452–
1467, 2010.

[2] Olof Bäck. Modelling for diagnosis in Modelica: implemen-
tation and analysis. PhD thesis, University of Linköping,
2008.

73

[3] Franc Brglez and Hideo Fujiwara. A neutral netlist of 10
combinational benchmark circuits and a target translator in
fortran. In Proc. ISCAS’85, pages 695–698, 1985.

[4] Peter Bunus, Olle Isaksson, Beate Frey, and Burkhard
Münker. Model-based diagnostics techniques for avionics
applications with rodon. In 2nd Workshop on Aviation
System Technology. Citeseer, 2009.

[5] Peter Bunus, Olle Isaksson, Beate Frey, and Burkhard
Münker. Rodon-a model-based diagnosis approach for the
dx diagnostic competition. Proc. DX’09, pages 423–430,
2009.

[6] Christos G Cassandras and Stephane Lafortune. Introduction
to discrete event systems, volume 11. Kluwer academic
publishers, 1999.

[7] François E Cellier and Àngela Nebot. The modelica bond
graph library. In 4th International Modelica Conference,
2005.

[8] Adnan Darwiche and Pierre Marquis. A knowlege com-
pilation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

[9] Nando de Freitas. Rao-blackwellised particle filtering for
fault diagnosis. In Proc. AEROCONF’02, volume 4, pages
1767–1772, 2002.

[10] Johan de Kleer, Alan Mackworth, and Raymond Reiter.
Characterizing diagnoses and systems. Artificial Intelli-
gence, 56(2-3):197–222, 1992.

[11] Alexander Feldman, Gregory Provan, and Arjan van
Gemund. Approximate model-based diagnosis using greedy
stochastic search. Journal of Artificial Intelligence Research,
38:371–413, 2010.

[12] Peter Fritzson and Vadim Engelson. Modelica—a unified
object-oriented language for system modeling and simula-
tion. ECOOP’98—Object-Oriented Programming, pages
67–90, 1998.

[13] Gregor Gössler and Joseph Sifakis. Composition for
component-based modeling. Science of Computer Pro-
gramming, 55(1):161–183, 2005.

[14] I. Graham, A. O’Callaghan, and A.C. Wills. Object-Oriented
Methods: Principles & Practice. Addison-Wesley Object
Technology Series. Addison-Wesley, 2000.

[15] Thomas A Henzinger. The theory of hybrid automata. In
Logic in Computer Science, 1996. LICS’96. Proceedings.,
Eleventh Annual IEEE Symposium on, pages 278–292.
IEEE, 1996.

[16] Ron M. Kielkowski. Inside SPICE. Electronic packaging
and interconnection series. McGraw-Hill, 1998.

[17] Uri Lerner, Ronald Parr, Daphne Koleer, and Gautam
Biswas. Bayesian fault detection and diagnosis in dynamic
systems. In Proc. AAAI’00, pages 531–537, 2000.

[18] Pieter J Mosterman and Gautam Biswas. A comprehensive
methodology for building hybrid models of physical
systems. Artificial Intelligence, 121(1):171–209, 2000.

[19] Behrooz Parhami. Computer Arithmetic: Algorithms and
Hardware Designs. Oxford University Press, Inc., New
York, NY, USA, 2nd edition, 2009.

[20] Raymond Reiter. A theory of diagnosis from first principles.
Artificial intelligence, 32(1):57–95, 1987.

[21] AK Samantaray, K. Medjaher, B. Ould Bouamama,
M. Staroswiecki, and G. Dauphin-Tanguy. Diagnostic bond
graphs for online fault detection and isolation. Simulation
Modelling Practice and Theory, 14(3):237–262, 2006.

[22] Morris Tenenbaum and Harry Pollard. Ordinary Differential
Equations: An Elementary Textbook for Students of Math-
ematics, Engineering, and the Sciences. Dover Books on
Mathematics. Dover Publications, 1963.

[23] D.G. Zill. Differential Equations With Computer Lab
Experiments. Brooks/Cole, 1998.

74

Session IV: Simulation Methods

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Using Artificial States in Modeling Dynamic Systems:
Turning Malpractice into Good Practice

Dirk Zimmer
German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany

dirk.zimmer@dlr.de

Abstract
This paper analyzes the current use of artificial states in
modeling practice and proposes a new form of equations
for the purpose of modeling dynamic systems. These
balance dynamics equations are used to formulate
dynamic processes that help to find the solution of non-
linear systems of equations.

Keywords: artificial states, continuation methods,
language design.

1. Introduction
Any kind of formal modeling involves abstraction. The
modeler has to study the given system and decide which
parts are relevant and which are not. Typically a system
contains many dynamic processes where only a small
subset is of interest. For instance, in rigid body dynamics,
the modeler chooses to ignore the elasticity of the applied
material. In power-electronics with ideal switches, the
modeler chooses to ignore the complicated switching
behavior.

In an equation-based modeling language, the modeler
will then provide equations for both parts. The dynamic
processes that are regarded as relevant will be represented
by differential equations. For other processes idealizations
are provided in form of algebraic equation systems.
Optimally, the resulting set of differential-algebraic
equations has a set of state variables that precisely
matches the dynamics of interest. In real modeling
practice, this is infeasible for many cases.

In many applications, the modeler is forced to extend
the dynamics of the system significantly beyond his area
of interest. The reason for this aggravation is that
otherwise the systems of non-linear algebraic equations
resulting from the idealization of dynamic processes get
too complex to be reliably solved by a general simulation
engine. In order to avoid this, the modeler counteracts by
including more state-variables in his system than he
actually intends and thereby breaking the algebraic

equation systems down. Consequently, these state
variables are denoted as artificial since the dynamics of
them are actually of no interest. They have been
artificially introduced in order to enable a better
computational realization of the simulation code.

This method of artificial states represents common
modeling practice. It is applied in many different ways
and comes along in many disguises. In mechanics, rigid
detents get replaced by stiff spring-damper constructs. In
electrics, micro capacitances or leakage currents are used
without original intent. In bondgraphs, small-valued C or
I elements are being added. And in this paper, we present
two further examples that belong to the domains of
thermodynamics and microeconomics.

Although the use of artificial states is common
practice, it is not regarded as good practice. Instead it is
often denounced as malpractice or as method of last resort
that shall only be applied if all other potential remedies
have failed. This is because of the significant
disadvantages this method typically incorporates.

Since the artificial states mostly express dynamic
processes whose time scale is orders of magnitudes lower
than the time scale of actual interest, the system becomes
very stiff. This requires the use of complex ODE-solvers
for stiff systems, reduces simulation speed, and often
prevents real-time capability of the simulation code.
Furthermore, modeling the processes attached to artificial
states requires parameters that are mostly of no interest or
that cannot be retrieved in a meaningful way. This results
in so-called fudge parameters whose values are arbitrarily
stipulated but not based on any real data. Instead, the
determination of these parameter values represents mostly
a trade-off between the unwanted degree of stiffness and
the unwanted loss of precision: a true choice between the
devil and the deep blue sea.

Hence it is easy to understand why the use of artificial
states seems strongly objectionable. The more rewarding
question is to ask why this method is still being so
frequently applied and why the recent progress in general
M&S frameworks has not eradicated the need for this
method. Why do modelers use a method from that they
know it is bad? What forces them to use a method of last
resort? And what is to say about all the other resorts?

This paper examines these questions and it will show
that the method of artificial states is not bad per se. It is
actually quite clever, a smart thing to do in many
occasions, and, when conducted carefully, provides
valuable insight into the modeled system. What is wrong

77

about it is the way modelers are forced to apply this
method in today´s M&S frameworks. Hence, we will
suggest new constructs for modeling languages and new
computational processing schemes for simulation engines.
With these new tools at hand, the malpractice of artificial
states will be turned into good practice.

But first let us look at some examples to expose the
current dilemma.

2. Using Artificial States in Modeling
Practice

In this section, we demonstrate the practical use of
artificial states by the means of two examples. Both are
realistic examples in the sense that they demonstrate the
kind of problems that a modeler is typically confronted
with in equation-based modeling languages. Both
examples demonstrate the problems that forced the
modeler to use artificial states although being initially
reluctant.

2.1 Example 1: Energy Market Model

In the first example, principles from microeconomics are
used for the management of energy flows [10]. The idea
is the following: based on a market price each generator
produces a certain amount of power and each load
consumes a certain amount of power. The corresponding
cost curves of generators and consumers are continuous
monotonic increasing (Figure 1). The market price is then
simple determined as the intersection between the two
cost curves (Figure 2) for generators and consumers. In
this way, a market model can be used to compute the
power flow in an energy network.

Figure 1: Cost curves

So far, so simple – but when we approach more
sophisticated applications, things become a bit more
difficult. Figure 3 presents the model diagram of a
combined power generator whose outputs are electric and
thermal energy. Up to 60% of the thermal energy can be
converted into electricity.

Figure 2: Equilibrium price

To this end, the power is split from the source (red
component) into two sub-markets by the fixed split:
40% - 60%. Connected to this market are the consumers
(blue). The thermal market, however, can take energy
from the electric market but not vice versa. This is
modeled by a one-way component that acts like an
electric diode. The energy needs to be converted before
reaching its consumer, hence the conversion element. The
thermal energy can be wasted if inevitable, hence the
waste element.

Figure 3: Model diagram of a combined power

generator

The problem we get here is that we have two different
market prices: one for electric energy and one for thermal
energy. However these markets are not independent but
coupled by algebraic equations. For instance, the model of
the split component states that price at the generator is the
weighted mean of the two consumer prices.

vin = vout1 ∙ R + vout2 ∙ (1-R)

Hence we have a non-linear system with two iteration
variables, namely the two prices of the electric and
thermal market. This is certainly not exceptional and
poses often no problems at all. However, in this particular
case, it does. The cost-curves for the generator, the
consumers, and the one-way limiter as well as the waste
element all contain very flat and very steep gradients.
This makes iterative, gradient-based solvers (such as
Newton’s method) difficult to apply since the
convergence area is often very small. Finding the initial

Load 1

Load 2

Load 3

Source 2

Source 1

Power p [W]

Power p [W]

Power p [W]

Power p [W]

Power p [W]

0

0

0

0

0 Price v [$/W]

Price v [$/W]

Price v [$/W]

Price v [$/W]

Price v [$/W]

Price v [$/W]

Power p [W]

Equilibrium

Negated sum of loads
Sum of sources

0

heat

T

split

0.4

CR
ss

electricity

T

waste

$ $

oneWay

conversion

78

solution requires a very good guess and steps of time-
integration have to be small in order to stay within the
area of convergence.

In order to approach a market solution in a more robust
way, we provide a price controller. With this element, it is
possible to find the solution in robust way by approaching
steady state. Instead of having to determine the market
price v directly such that the balance equation of power

p1 + p2 + p3 = 0

holds, we make the more relaxed statement:

p1 + p2 + p3 + pc = 0

and control the price v by the lack or excess of power

represented in pc.
The corresponding controller is a very simple model

that introduces an artificial state. It may compensate for
any lack or excess of power pc. The controller increases
the market price in case of a power outflow (pc > 0) due to
a lack of power and decreases the price in case of a power
inflow (pc < 0) due to excess of power.

dv/dt ∙ T = pc

where T is an arbitrary time constant. In the diagram of

Figure 3, it is depicted as grey “$” placed in a circle. We
can use such a price controller, because we know that the
cost-functions are monotonic increasing. Any price
advance will lower the demand and increase the provision
of power and vice versa. This knowledge is not available
to a non-linear solver but can be incorporated into the
model in this way.

The incorporated disadvantages are a stiff system and
that the simulation results are polluted by the dynamics of
the price controller.

2.2 Exampe 2: Environmental Control System

The second example represents the modeling of a three-
wheel bootstrap circuit from the environmental control
system of classic aircraft architectures [7]. Here, air that is
tapped from the aircrafts turbine (bleed air) is used to
pressurize the cabin. Since the bleed air is hot (ca. 220°C)
and at high pressure (ca. 2.5bar) [6], it needs to be cooled
down and expanded before it enters the cabin. The idea is
to use the energy gained in this expansion process to
power a compressor and a fan for the ram air channel that
is being used as cooling element. With those two devices
joining the drive shaft of the expansion turbine, a more
efficient cooling device can be designed.

Let us trace the path of the bleed air in the
corresponding model diagram of Figure 4. The bleed air
first passes the primary heat exchanger (PHX) for cooling
and is then compressed before passing the main heat
exchanger (MHX). Before entering the turbine for
expansion, the water content needs to be extracted. Hence
the bleed air passes a condenser and later on a reheater.
These are both heat exchangers where the bleed air is

actually interacting with itself at different stages in the
circuit. Finally, after expansion, the air is sent to the
mixer where it is being used to pressurize the cabin.

Figure 4: Model diagram of an environmental control
system

In this model, we are only interested in the equilibrium
point and not in any dynamics of the system at all. In the
equilibrium point, the energy consumed by compressor
and fan will balance the energy gain of the turbine.
Furthermore all losses and gains of thermal energy in the
heat exchangers cancel each other out. In the model, this
equilibrium point is described by a set of pure algebraic
equations. Due to the nature of thermal processes many of
these equations are non-linear. The connections between
the components in Figure 4 form many loops. This
indicates that many of these algebraic equations are
tightly coupled with each other1. And indeed when we
have implemented the model in the modeling language
Modelica, there results a very difficult non-linear system
with more than 200 equations. Corresponding M&S
frameworks like Dymola [3] are able to compress the
system but even then a non-linear system remains with
more than 40 iteration variables.

Solving such a complex system of equations in a robust
manner is a very difficult task. But even when possible, a
large system with more than 40 iteration variables
significantly slows down the simulation engine as soon as
the ECS becomes part of other dynamic processes.

For these reasons, artificial states have been used to
tear the algebraic equations system apart. In total 5 state
variables were sufficient to break down the non-linear
equation system into individual non-linear equations that
can be solved one after another.

1 more technically: they represent a large block in the block
lower triangular form of the equation system.

extraction

injection

turbine

co
m

pr
e?

PH
X

M
H

X reheater

condenser

BleedAi?

RamAirI?

toMixer

RamAir?

fan

ps
eu

do
I?

79

One of the state variables represents the velocity of the
drive-shaft. A small inertia has been assigned to this shaft
and hence any difference between turbine and compressor
power does not need to be immediately balanced. Instead
the difference can be used to accelerate or decelerate the
drive shaft, as this happens in reality too. The precise
value of the inertia I is not important here since we are not
interested in the corresponding dynamics.

The inertia of the drive shaft introduces the following
differential equation:

τ = der(ω)∙I
The variable ω represents the angular velocity of the drive
shaft and is now an artificial state of the system. Its
product with the torque τ determines the lack or excess of
power that is (de-)accelerating the drive shaft.

The other four states are not mechanical inertias but
thermal inertias. Although the physical domain is
different, the applied methodology is identical.

By using artificial states, the model can be solved
robustly and is open for further extension as for instance
its inclusion into a complete aircraft energy system
model. The amount of stiffness that is added to the system
depends on the fudge parameters. However, for many
practical applications, solving the stiff system is still
faster than solving the original system simply because
there is no complicated non-linear system with over 40
iteration variables to be solved.

3. Review of the method of artificial states
Let us review the methodology that can be extracted from
the two examples. In both cases, the modeler generated a
non-linear system of equations that turned out to be very
difficult to solve. It is inappropriate to blame the
numerical solvers for this. Without any further
information no one can guarantee that any potential solver
will find the correct solution2. Demanding for a better
solver method to solve all of your problems is a pie in the
sky.

It is important to understand that these non-linear
system of equations result from a process of idealization.
In example 1, we requested for a balance between power
consumption and generation. The price had to be
determined in such a way that the balance is met. Closer
to reality is to regard the price determined by
continuously ongoing negotiation. A lack of power leads
to a higher prices and an excess of demand leads to lower
prices. The balance equation simply idealizes this
negotiation process by reducing it to an instant and letting
it take immediate effect.

Also in example 2, balance equations are a source of
idealization. The balance of power along the drive shaft
ignores the inertia of the shaft and that it takes time to
establish this balance. In many, many cases non-linear
systems of equations result from the idealization of such
balance dynamics.

2 Presuming that there is exactly one solution or that there are
multiple solutions of which any of them can be regarded as
correct.

What happens now is particularly interesting. After the
modeler has realized that he has gone too far and that his
idealizations have created non-linear systems too difficult
to solve, he reverts some of his idealization against his
original intent. In example 1, the continuous process of
negotiation has been reintroduced by a price controller. In
example 2, mechanic and thermal inertia have been added
to the system although the corresponding dynamics are of
no interest.

The modeler understands that the system cannot be
solved without some background knowledge that is
inaccessible to the solver. It is inaccessible because it got
lost in the process of idealization. For instance, the
modeler knows the effects of price advance and price
reduction and how to use that knowledge to derive a
market solution. He also knows that inertias in physical
systems help to balance the system.

But how can a modeler convey such valuable
background knowledge into a general M&S framework?
He sees no other way than to introduce artificial dynamics
in his system and hence the method of artificial states
becomes the weapon of choice. In this way, he abuses the
time-integration of the simulator as a solver for his non-
linear systems of equations.

When using artificial states, the modeler evidently
makes a distinction between

• Dynamic processes that are relevant of the system
under study.

• Dynamic processes that describe how to solve a non-
linear system of equations.

Once we have become aware of this distinction, the
problematic point about the use of artificial states
becomes evident: The modeler makes this distinction but
the M&S framework does not. It is not the modeler who
wants to mix up things. He is forced to mix up things
because the M&S frameworks do not provide adequate
means to make a proper distinction between these two
descriptions of dynamic processes.

The aim of a good modeling language should be to
grasp the modeler’s knowledge in a formal, clear and
unambiguous way. So when the modeler knows which
dynamics lead to the solution of a non-linear system of
equations, any modeling language should encourage him
to include this knowledge into his models in a proper
form. After all, this represents valuable knowledge that
can only be beneficial for the subsequent processes of
code generation and simulation.

Hence the next chapter suggests a way, how such
knowledge can be conveniently incorporated in a
modeling language. It turns out to be surprisingly simple
and intuitive.

80

4. Balance dynamics equations: Turning
implicit idealization into explicit
idealization

In the previous section, we stated that the idealization of
balance dynamics is a very frequent source of non-linear
system of equations. Let us therefore review the equations
of the price controller from Example 1 that represent
exactly one such example. First we had the desired ideal
form for the balance of power flows:

p1 + p2 + p3 = 0

In this case, the market price v has to be determined by a
non-linear system of equations. Because of this, we
relaxed the balance equation by introducing pc and
determined (or controlled) the price by means of a
differential equation:

p1 + p2 + p3 + pc = 0

dv/dt ∙ T = pc

We can derive the ideal form out of the balance dynamics
by assuming a steady-state scenario and setting the
derivative to zero. Furthermore, we assume that this
steady state is continuously maintained and hence that the
corresponding balance dynamics take instantaneous
effect. This is like stating that the time constant is
approaching zero.

This helps to understand the process of idealization and
we can see that there are two major implications behind
this idealization process:

1. The balance dynamics take place in no time; so they
are regarded as infinitely fast.

2. The balance dynamics finally reach a stable steady
state.

Since this pattern of idealization is so common in so many
applications, it seems meaningful to enable its explicit
formulation in a modeling language. To this end, a simple
operator suffices.

Most modeling languages feature an operator for the
time-derivative such as:

der(v) ∙ T = pc

In strong resemblance to this operator, we can define and
use a balance operator instead:

balance(v) = pc

The operator balance(v) simply replaces the term
der(v) ∙ T and implies the two idealizations der(v) = 0 and
T 0. The fudge parameter T has consequently gone lost.

With this operator we have introduced a new kind of
equation. We call them balance dynamics equations. They
enable us to state the implicit assumption of the idealized
algebraic equation in explicit form. In this way, you get
the best of both worlds: you can interpret them as
algebraic constraints in the simulation context but you can
also interpret them as dynamic process in the solver
context. How to precisely do that is content of the next
section.

5. Handling balance dynamics equations in
a simulation environment

In the following small example, we find an algebraic
equation, a differential equation, and a balance dynamics
equation:

der(x) = z
balance(y) = p(y)-x

z = sin(y)

The balance equation now states two things: a non-linear
equations system (0 = p(y)-x) and a dynamic process how
to solve this system (der(y) = p(y)-x) based on the
modeler’s knowledge that p is a monotonic increasing
function.

Consequently, these model equations can now be
transformed in two different ways:

der(x) = z
0 = p(y)-x
z = sin(y)

x = const
der(y) = p(y)-x

z = sin(y)

The left version represents the simulation dynamics, the
dynamics of relevance for simulation; the right version
represents the solver dynamics, the dynamics needed to
solve the non-linear system of equations. This solver
dynamics is formulated as sub-simulation (a simulation
nested within the main simulation) hence the states of the
actual simulation (here: x) are held constant. There
remains the question how to take use of such a sub-
simulation.

The idea is of course that in case we fail to solve the
non-linear equation (here: 0 = p(y)-x) directly, we use the
sub-simulation on the differential equation (here: der(y) =
p(y) – x) to get to the area of local convergence. But
before we pursue this idea any further, let us highlight
another benefit of balance dynamics equations. Balance
dynamics equations do not only help solving non-linear
equations by getting to the area of local convergence but
they also provide information that helps to solve the
actual system more efficiently once you are in this area.

Whenever an iterative numerical solver is applied to a
non-linear system of equations, we need to determine a
set of suitable iteration variables. These iteration variables
are also often denoted as tearing variables since they are
used to tear the algebraic loops apart and generate
residual values instead. Choosing such iteration variables
is a difficult task where many constraints have to be
regarded [11]. This led to the choice of over 40 iteration
variables for the ECS system in example 2.

Balance dynamics equations provide an excellent
indication which variables to choose as iteration variables.
Since they are assigned to a state-variable in the
corresponding sub-simulation, this state variable must
also be a suitable iteration variable. In this way, the
number of iteration variables (and thereby the size) can be
significantly reduced. For instance, in Example 2, the
number of iteration variables can be reduced from over 40
to 5, leading to a much more efficient simulation.

This coincidence of iteration variables for the direct
solution with the state variables for sub-simulation

81

indicates that these two tasks are actually closely related.
Remember, the balance equation

balance(x) = f(x)

offers us two different ways to get to a solution. Either we
solve the equation 0 = f(x) directly or we approach the
steady state by a sub-simulation on the differential
equation der(x) = f(x). On the first look, this looks like two
separate tasks. However, let us analyze how we would
perform such a sub-simulation in practice.

After all, this is a special case: we do not perform a
usual simulation; we want to perform a simulation for the
sole purpose to approach the steady state with the time3
t → ∞. Which integration method would we choose for
that?

Since the differential equation der(x) = f(x) is supposed
to describe a stable system, an implicit method is a strong
favorite. Any explicit integration method would be
limited in its step-size in order to maintain stability and
approaching infinity with steps of finite width is an
unpromising endeavor.

Since we do not care about the precise trajectory
leading to the steady state and since the steady state
solution itself is insensitive to the local integration error,
there is no reason to choose any higher-order method.
Order 1 is completely sufficient.

So our method of choice would be to perform
Backward Euler with as large steps as possible. Hence, let
us look at one integration step of this method going from t
to t+h:

xt+h = xt + h∙der(xt+h)

or in our current example:

xt+h = xt + h∙f(xt+h)

Being an implicit method, we have to solve the system of
equations: 0 = g(xt+h) with g(xt+h) being defined as:

g(xt+h) = xt - xt+h + h∙f(xt+h)

Evidently for h → ∞, solving g(xt+h) becomes equivalent
to solving f(x) directly. Now it becomes clear how the
solver dynamics can support us to find the solution of f(x).
Instead of solving the system f(x), we can solve g(x) and
in this way, we have won one important degree of
freedom: we can choose h.

In this way, we have transformed the problem into a
numerical continuation problem [1]. In general, a
continuation problem results from transforming a function
F(x) to F’(x,λ) with λ ∈ [0,1] where F’(x,1) = F(x) and F’(x,0)
is easy to solve. Many solutions methods have been
developed for this kind of problem and they are already
applied by many M&S Frameworks, mostly to solve
initialization problems in a more robust way [9] for
instance by using homotopy [8].

3 Please note, the time t does not represent the main simulation
time here but the time of the nested sub-simulation. The
complete time-span of the sub-simulation represents only one
instant in the main simulation.

To use numerical continuation solvers not only for
initialization problems but also during simulation is also
not a completely new idea. Artificial time integration is
not uncommon to find solutions for PDEs [2]. The main
difference to classic continuation problem in our case is
that is not bounded by 1 but is free to go to infinity.
Hence we have to adapt the continuation solver. The
following paragraph sketches an algorithm that is a
variant of the simplest kind of numerical continuation: the
natural parameter continuation where h is our
continuation parameter.

In case h is too large and our guess value for xt+h is
outside the convergence area, we can choose h small
enough to be located in the convergence area again. And
with each solution of g(x), we step a little closer to the
final solution of f(x). In this way, we have found a robust
way to solve our non-linear system of equations. Figure 5
depicts the corresponding algorithm of the balance
dynamics solver.

Figure 5: Algorithm for the balance dynamics solver

This algorithm becomes part of the main simulation loop
and replaces the former direct solver for
0 = f(x). It is hence performed at each integration step of
the main simulation task. It is not necessarily slower than
the direct solver for f(x). Having a high initial value for
the sub-simulation step-size h and a good guess value for
xt+h, not many more iterations would be required than for
a direct solution of 0 = f(x). A call to the direct solver is
thus not required.

82

The difference occurs when good guess values for xt+h are
not available. In a normal setup, the integration step-size
of the main simulation loop would be reduced in order to
reobtain a good guess. Using our balance dynamics
solver, this is unlikely to be necessary. More iterations
would be needed in the solver to get the solution but the
step-size of the main simulation loop can be maintained.
And of course, finding the initial solution is also much
simpler.

Without balance dynamics equations, the modeler has
the choice of either creating a stiff system or a difficult
non-linear system of equations. In both cases, he imposes
severe limitations on the main integration step size and
thereby creates a global damage even when only a small
subsystem is actually concerned. With balance dynamics
equations and a corresponding solver, the damage is kept
local.

A final remark with respect to the algorithm in
Figure 5: please note that the step-size control of h is not
equivalent to classic step-size control in ODE solvers. It is
based solely on the matter of convergence not on the
matter of local integration error and hence can be
performed much more aggressively.

6. Small application example
To prove the feasibility of this approach, we provide a
small example. The following DAE

dx/dt = y

dy/dt = -0.1∙a – 0.4∙y
s(a) = 10∙x

requires the solution of an expression containing the non-
linear function s(a) displayed in Figure 6:

s(a) = if a < -1 then a/4 – 3/4

else if a > 1 then a/4 + 3/4
else a

with its derivative to be defined as

s(a) = if a < -1 then 1/4

else if a > 1 then 1/4
else 1

Figure 6: The piecewise linear function s(a)

The convergence area of solving s(a)=0 with respect to
Newton’s method is exactly [-1,1]. Although the
convergence area is strictly limited, the solution can
easily be found if one knows that s(a) is strictly
monotonic increasing. We can incorporate this knowledge
in form of a balance dynamics equation:

dx/dt = y
dy/dt = -0.1∙a – 0.4∙y

balance(a) = 10∙x – s(a)

This DAE is now transformed into two forms for
numerical ODE solvers.

• For the main ODE solver:

dx/dt = y
dy/dt = -0.1∙a – 0.4∙y

0 = 10∙x – s(a)

• For the continuation solver:

x = const
der(a) = 10∙x – s(a)

The main simulation is performed with Forward Euler and
a step width of 0.1s for 100s. Without the continuation
solver, the non-linear system of equations cannot be
solved when the state variable x enters the range of
[-0.1,0.1]. A step-size of smaller than 0.01s has to be
taken in order to practically ensure the solvability of the
system.

The continuation solver has been realized according to
the algorithm sketched in Figure 5 and can robustly solve
this system of equations. Figure 7 shows the simulation
result. The step-size of the main-simulation loop is not
impaired by the non-linear system anymore.

Figure 7: Simulation result showing the state x

Of course, this is a very small and simple example but it
demonstrates that the basic idea works. For more mature
implementation, we need to examine a number of
interesting questions:

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a

s(
a)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

time [s]

x

83

• How to optimally control the step-width h of the
sub-simulation?

• How to provide suitable initial guesses of this
step-width?

• When to stop sub-simulation when convergence
is not reached?

• How should the step-size control of the main-
simulation loop be controlled w.r.t to the
convergence speed of the continuation solver?

• etc…

In this test-implementation, for instance, the initial step
width h was chosen to be three times the minimum step-
width that was required for the solution of the last step
from the main simulation. This ensures that the initial
value of h is relatively close to a prior successful
continuation step while enabling a geometric increase of h
for the case the continuation solver is actually not needed.

Figure 8 plots the number of times the function s(a) is
being evaluated by the continuation solver in order to
compute a new step or to check for convergence. Each
value in the plot represents one time-step of the main
simulation loop.

Figure 8: Number of function evaluations

During the first half of the simulation, the system
oscillates with high amplitude. There are several peaks
caused by the continuation method when several sub-
steps had to be taken before convergence could be
reached. This is where a direct solution with a gradient-
based solver would have failed.

In the second half, there is no need for the continuation
method anymore and a large initial step-size and an
increasing quality of the guess value significantly reduce
the computational effort. With the exception for one extra
evaluation to check for convergence, the continuation
solver hardly generates any additional burden anymore.

Even this rudimentary test implementation shows that a
continuation solver is affordable for each time-step of the
main simulation while the robustness of the solution can
be improved. Solving at certain points might be expensive
but when not needed the overhead is small. Because of
the robust solution method, a large step-size of the main
simulation can be afforded.

7. Prospective Limits of this Solution
Method

The proposed variant for the natural parameter
continuation is of course very simple and may not be able
to solve all forms of balance dynamics. More elaborated
continuation solvers support to deal with more complex
continuation paths such as bifurcations of turning points.
(There are complete libraries for continuation solvers
such PyCont [5]). However, the need for such complex
solvers is a warning and we shall rather question
ourselves about the origin of this need.

After all, balance dynamics should be simple but
practically oriented modelers will tell us that they can
become pretty complex even stating self-contradictory
sentences such as: “the value of fudge parameters is very
significant”. Evidently, “fudge parameter tuning” can
become an obsession. Why does this happen?

One important point is that in many complex
applications, balance dynamics are layered. For instance,
in the model of an environmental control system, there are
balance dynamics resulting from physical inertia. There
might also be balance dynamics resulting from sub-
controllers. The modeler is actually interested in none of
these processes but for the working of the sub-controller,
it is important that the physical balance dynamics take
place in a shorter time span. The resulting layering is
illustrated in Figure 9:

Main ECS Control

ECS Sub-control balance dynamics

Physical balance dynamics[ms]

[s]

[min]

time scale

Figure 9: Layering of different balance dynamics

In classic modeling, the modeler is now using the fudge
parameters to impose this layering. During this process,
he typically makes a trade-off: on the one hand, he wants
to separate the different balance dynamics and keep them
in right order. On the other hand, he wants to reduce the
stiffness of the overall system. Optimizing this trade-off is
what is typically described as “fudge parameter tuning”.

Having this idea in mind, it seems now smart that
instead of having one continuation solver to solve
complex balance dynamics, we prefer nested continuation
solvers, each of them solving one layer of simple balance
dynamics. This requires that the modeler has means to
separate different balance dynamics and to layer them.
The currently proposed operator does not offer a
sufficient solution for this.

10 20 30 40 50 60 70 80 90 100
0
1

3

5

7

10

15

20

[s]

s(

a)
 e

va
lu

at
io

ns

84

8. Realization within a Modeling Language
The proposal as presented here is of course very easy to
realize in most equation-based modeling languages. It is
sufficient to add one single operator for the formulation of
balance equations just as this had been done for the
homotopy operator [8] in Modelica [4].

However, as temptingly simple as this seems, the
balance operator as presented here will prove to be only
partly sufficient. There are two major flaws involved with
this solution:

1. The last section outlined the need to layer balance
dynamics and to nest the corresponding continuation
solvers. This is not possible with this operator
notation.

2. Having available only this operator, it is not possible
to reuse existing models (or components) of dynamic
processes formulated with derivatives for the balance
dynamics. The modeler is forced to remodel all
relevant equations using the balance operator
instead.

The second point of critique is valid also for the
homotopy operator in Modelica. Typically, a modeler
first builds a stiff system that includes the balance (or
initialization) dynamics and then, in a second stage, he
separates the two dynamics from each other. It would be
favorable if the modeling of the second stage could reuse
the components of the first stage.

For these reasons, we will finally need a better solution
than the proposed operator but we can regard this
proposal as intermediate solution in order to conduct the
heavily needed research on this topic.

9. Conclusions
Since decades modelers use artificial states. Since decades
they are being told that this is bad. Since decades they do
it anyway. This is because formulating the dynamics that
lead to the balance point of a sub-system is often the only
way a modeler can explain how to solve his non-linear
system of equations. It is unfortunate that M&S
frameworks have not recognized this and provided better
means for the modeler that enable him to distinguish
between simulation dynamics and solver dynamics. This
would prevent the rightfully criticized abuse of simulation
dynamics to solve non-linear systems of equations.

For this purpose, we have proposed the concept of
balance dynamics equations. It turns out that adding a
simple operator is at least partly sufficient and a first step
to explore the concept further. Balance dynamics
equations can then be used to create code for a
corresponding solver that is much more robust.
Furthermore, the information contained in them can be
used to make a better choice of iteration (or tearing)
variables. Unwanted stiffness can be avoided and the
integration step size of the main-integration loop is not
needlessly limited. A difficult non-linear system of
equations in a subcomponent will still increase the
computational burden but the damage can be kept local.

This work so far is essentially based on theoretical
thoughts and analysis of modeling experience. It needs to
be put into practice and properly tested. Also balance
dynamics equations do not provide never-ending
salvation. They won’t solve all modeling problems, but
they have the potential to solve a big chunk of them. We
hope for the future that this or similar methodologies are
adapted by M&S Frameworks of industrial maturity.

Acknowledgements
I would like to thank Andreas Pfeiffer, Martin Otter and
Michael Sielemann from DLR for suggesting several
improvements.

References
[1] Eugene L. Allgower and Kurt Georg. Introduction to

Numerical Continuation Methods, SIAM Classics in
Applied Mathematics 45. 2003.

[2] U. Ascher, H. Huang, and K. van den Doel. Artificial Time
Integration. BIT Numerical Mathematics, 47(1): 3-25,
2007.

[3] Dymola: available at www.dymola.com
[4] The Modelica Association. Modelica® A Unified Object-

Oriented Language for Systems Modeling - Language
Specification Version 3.3, Available at www.modelica.org,
2012

[5] PyCont available at: www2.gsu.edu/~matrhc/PyCont.html
[6] Rolls Royce. The Jet Engine. Rolls Royce Plc. Derby

England. 278p. 1996.
[7] M. Sielemann, T. Giese, B. Oehler, M. Gräber,

Optimization of an Unconventional Environmental Control
System Architecture. In: SAE International Journal of
Aerospace, 4(2):1263-1275. 2011

[8] M. Sielemann et. al., Robust Initialization of Differential-
Algebraic Equations Using Homotopy. In: Proceedings of
8th International Modelica Conference. Dresden,
Germany, 2011

[9] M. Sielemann and G. Schmitz, A quantitative metric for
robustness of nonlinear algebraic equation solvers. In:
Mathematics and Computers in Simulation, 81 (12), pp
2673-2687. Elsevier, 2011.

[10] D. Zimmer and D. Schlabe, Implementation of a Modelica
Library for Energy Management based on Economic
Models. Proceedings of the 9th International Modelica
Conference , Munich, Germany (2012)

[11] D. Zimmer, Equation-Based Modeling of Variable
Structure Systems. PhD Thesis, ETH Zürich, 219 p. 2010

Biography
Dr. Dirk Zimmer received his
PhD degree from the Department
of Computer Science at the Swiss
Federal Institute of Technology
(ETH Zurich). He is currently
pursuing his research work at the
Institute of System Dynamics and
Control belonging to the German
Aerospace Center (DLR). Also,

he is lecturer at the Institute of Computer Science at the
Technical University of Munich (TUM).

85

Simplification of Differential Algebraic Equations
by the Projection Method1

Elena Shmoylova2 Jürgen Gerhard2 Erik Postma2 Austin Roche2
2Maplesoft, Canada, {eshmoylova,jgerhard,epostma,aroche}@maplesoft.com

Abstract
Reduction of a differential algebraic equation (DAE) sys-
tem to an ordinary differential equation system (ODE) is an
important step in solving the DAE numerically. When the
ODE is obtained, an ODE solution technique can be used
to obtain the final solution. In this paper we consider com-
bining index reduction with projection onto the constraint
manifold. We show that the reduction benefits from the pro-
jection for DAEs of certain form. We demonstrate that one
of the applications where DAEs of this form appear is opti-
mization under constraints. We emphasize the importance
of optimization problems in physical systems and provide
an example application of the projection method to an elec-
tric circuit formulated as an optimization problem where
Kirchhoff’s laws are acting as constraints.

Keywords differential algebraic equations, index reduc-
tion, projection method

1. Introduction
The idea of using projection in the treatment of DAEs stems
from the projection method introduced by Scott [16] as an
alternative to Lagrange’s equations for obtaining equations
of motion of a constrained mechanical system. Scott pro-
posed to consider constraints as a manifold and to project
the equations of unconstrained motion onto the space tan-
gent to the manifold. The idea came from intuitive obser-
vations of a mechanical system subject to holonomic con-
straints and was later justified by Blajer [6]. Blajer [7]
and Arczewski and Blajer [1] extended the applications
of the projection method to mechanical systems subject
to affine linear nonholonomic constraints. From Arczewski
and Blajer’s [1] derivations it can be seen that the projec-
tion method is not an alternative to Lagrange’s equations

1 This work has been submitted as US Patent Application 20120179437
on July 12, 2012.

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

but rather a technique applied to the Lagrange equations in
order to simplify them.

To describe the behavior of a constrained mechanical
system correctly, the equations of the unconstrained system
and the constraints must be combined into one system of
equations that takes into account the contributions of the
forces induced by the constraints. One of the possible ways
to achieve this goal is to introduce the Lagrange multipliers
as it is done in Lagrange’s equations. The system of DAEs
obtained by introducing the Lagrange multipliers is the
system to which the projection method is applied. Simply
put, the projection method is a method to eliminate the
necessity of computing the Lagrange multipliers and to
satisfy the constraints in one simple action – projection
onto the constraint manifold. At the same time, it is still
possible to find the Lagrange multipliers after the solution
is obtained [1], if necessary.

From [1] we see that the projection method consists of
the index reduction performed by differentiation followed
by projection. We want to investigate what we can gain in
the case of an arbitrary DAE by adding projection to the
index reduction.

Consider a DAE system in a general form given by

f(t,x(t), ẋ(t), z(t)) = 0, (1)

where f = (f1, . . . , fn+k)T , the superscript T denotes the
transpose, t is time, x(t) = (x1(t), . . . , xn(t))T is called
the vector of differential variables, due to the presence of
its derivatives ẋ(t) = (dx1(t)/dt, . . . , dxn(t)/dt)

T , and
z(t) = (z1(t), . . . zk(t))T is called the vector of algebraic
variables.

System (1) can be reduced to a system of ODEs by dif-
ferentiating with respect to t. The number of differentia-
tions needed to obtain equations for ż(t) is called the index
of system (1) [2]. The higher the index of a DAE, the more
complicated the problem of converting it to an ODE. For
example, a mechanical system with holonomic constraints
typically is an index-3 DAE system.

In this paper, we consider DAEs of various indices and
investigate the properties of the DAEs that make simplifi-
cation by projection of the reduced system possible. One
application where DAEs with these properties are common
is optimization under constraints.

We consider optimization problems that result in DAEs
and show how addition of projection to the index reduction

87

simplifies the equations. As an example, we formulate an
optimization problem for an electric circuit consisting of
a resistor, an inductor, and a capacitor connected in series
and demonstrate the application of the projection method.

2. Preliminaries
In what follows, to make the formulae easily readable, we
do not write explicitly what variables a function depends
on, unless this information is crucial for understanding the
formulae. Moreover, by a linear function or equation we
always mean one that is affine linear.

We want to consider the general form of a DAE and
investigate how projection can assist us in the reduction of
the DAE to an ODE. We want to consider DAEs of different
indices. The general form (1) is not suited for this purpose,
for it does not reflect the index information. Luckily, most
of the problems encountered in practice can be expressed
as a combination of more restrictive structures of ODEs
coupled with constraints [2]. These are called Hessenberg
forms and are given below.

Hessenberg Index-1

ẋ = f(t,x, z), (2a)

0 = h(t,x, z), (2b)

where x = x(t) = (x1(t), . . . , xn(t))T is the vector of
differential variables, f = (f1, . . . , fn)T , z = z(t) =
(z1(t), . . . , zk(t))T is the vector of algebraic variables,
h = (h1, . . . , hk)T , and the Jacobian

∂h/∂z is assumed to be nonsingular for all t. (3)

Equations (2a) are differential, and equations (2b) are alge-
braic. If the Jacobian is nonsingular, by the implicit func-
tion theorem [12], it is possible to solve the algebraic equa-
tions (2b) for z uniquely in a numerical fashion.

We note that the Jacobian in condition (3) may become
singular for some particular solution of the system (2).
Consequently, the index of the DAE will be higher for this
particular solution. Therefore, in what follows, when we
speak of index, this is to be understood as the generic index
meaning that the corresponding Jacobian is nonsingular for
almost all t and for almost all solutions.

Hessenberg Index-2

ẋ = f(t,x, z), (4a)

0 = h(t,x), (4b)

where x, z, f , h are defined as above for the index-1
form (2), and the product of Jacobians

∂h

∂x

∂f

∂z
is nonsingular for all t. (5)

For example, a mechanical system subject only to nonholo-
nomic constraints is a Hessenberg index-2 system, where x
is the vector of velocities, and z is the vector of Lagrange
multipliers.

Hessenberg Index-3

ẏ = f(t,x,y, z), (6a)

ẋ = g(t,x,y), (6b)

0 = h(t,x), (6c)

where y = y(t) = (y1(t), . . . ym(t))T and x = x(t) =
(x1(t), . . . xn(t))T are the vectors of differential variables,
f = (f1, . . . , fm)T , g = (g, . . . , gn)T , z = z(t) =
(z1(t), . . . , zk(t))T is the vector of algebraic variables,
h = (h1, . . . , hk)T , and the product of the Jacobians

∂h

∂x

∂g

∂y

∂f

∂z
is nonsingular for all t. (7)

There are two different kinds of differential equations, (6a)
and (6b), and a set of algebraic equations (6c). An example
of a DAE system in Hessenberg index-3 form is a mechan-
ical system subject only to holonomic constraints, whose
displacements, velocities and Lagrange multipliers corre-
spond to x, y, and z, respectively.

Hessenberg forms of higher index are defined similarly.
Given a Hessenberg index-1 equation of the form (2),

by differentiating the algebraic equations (2b) once and
replacing ẋ according to equation (2a), equations (2) are
reduced to ODEs

ẋ = f(t,x, z), (8a)

ż = −
(
∂h

∂z

)−1 [
∂h

∂t
+
∂h

∂x
f(t,x, z)

]
. (8b)

Note that we do not solve the algebraic equations them-
selves. We use only the derivatives of the algebraic equa-
tions in the reduced system (8). In exact computations,
we use the initial conditions to satisfy the original alge-
braic equations. Numerical integration, however, always
involves some small errors, which can accumulate into a
large error. Consequently, it may happen that a numerical
solution of system (8) does not solve the original prob-
lem (2) [8]. This phenomenon is known as constraint drift.
In order to avoid it, the integration procedure must be
modified. Therefore, special methods for index-1, index-2,
and even Hessenberg index-3 DAEs have been developed
[2, 10]. For example, for index-1 DAEs, solving the orig-
inal algebraic equations by the Newton-Raphson method
could be added to every integration step.

In what follows, we take the index-1 form as the target
form when performing index reduction, since most numer-
ical integration software can easily handle index-1 DAEs.

3. Reduction of Hessenberg Index-3 DAEs
and the Projection Method

As it turns out, not much simplification is possible for
Hessenberg index-2 DAEs, and we omit this case here.

Consider now the Hessenberg index-3 system (6). From
a geometrical point of view, the algebraic equations (6c)
define a time-varying manifold, which we denote byM(t),
in the n-dimensional vector space of x. For x to stay on
M(t) for every t, ẋ must be tangent toM(t) for every t.

Since ∂h
∂x

∂g

∂y

∂f

∂z
is nonsingular,

C =
∂h

∂x

is of maximal row-rank, and the rows of the matrix C
span the space normal to M(t) at x(t) for every x and t.

88

Differentiating the algebraic equations (6c) with respect to
time, we get

Cẋ +
∂h

∂t
= 0. (9)

Equation (9) means that the projection of ẋ onto the space
normal to M(t) is determined only by the change of the
manifoldM(t) with time. If the manifold is time-invariant,
i.e. the algebraic equations are time-invariant, then ẋ is
tangent toM(t) for any t.

To describe the projection of ẋ onto the tangent space,
we choose a matrix D such that D is of maximal column-
rank and

CD = 0, (10)

i.e. the columns of D span the space tangent to M(t)
at x(t) for every x and t. Therefore, for any t we have
obtained two subspaces of Rn, spanned by the rows of C
and by the columns of D, that are orthogonal complements
of each other. By the theorem on orthogonal decomposition
[11], any element in Rn can be represented as a sum of
projections onto these subspaces. Consequently, for any t,

ẋ = Du + CTv, (11)

for certain vectors u ∈ Rn−k and v ∈ Rk. Note that both
C and D depend on x and t only, but not on y or z.

Substituting representation (11) into equation (9), we
find the tangential component of ẋ as

v = −
(
CCT

)−1 ∂h

∂t
, (12)

vanishing identically if h does not depend on t explicitly.
We start the reduction of system (6) to an index-1 system

by differentiating the algebraic equations (6c), as in (9),
and then use equation (6b) to obtain:

Cg +
∂h

∂t
= 0. (13)

We differentiate equation (13) once more:

C

[
∂g

∂t
+
∂g

∂x
ẋ +

∂g

∂y
ẏ

]
+Ċg+

∂2h

∂t2
+
∂2h

∂x∂t
ẋ = 0. (14)

Finally, using equations (6a) and (6b) in equation (14), we
can re-write equations (6) as:

ẏ = f(t,x,y, z), (15a)

ẋ = g(t,x,y), (15b)

0 = Ċg + C

[
∂g

∂t
+
∂g

∂x
g +

∂g

∂y
f

]
+
∂2h

∂t2
+

∂2h

∂x∂t
g.

(15c)

The system (15) is an index-1 system of DAEs. In order to
see this, we notice that z appears in the equations (15c)
only inside f , and the Jacobian in condition (3) for the
equations (15c) is equal to the product of Jacobians in
condition (7). Then condition (7) yields that the algebraic
equations (15c) are solvable for z.

We now want to apply the projection method to simplify
the system (6) and compare the result with system (15). We
substitute the representation (11) of ẋ into equation (6b):

Du + CTv = g(t,x,y). (16)

Instead of differentiating equation (13), we differentiate
equation (16) and obtain

Ḋu + Du̇ + ĊTv + CT v̇ =
∂g

∂t
+
∂g

∂x
g +

∂g

∂y
f , (17)

where v is given by equation (12). Projecting equation (17)
onto the normal space by multiplying it by C on the left,
we obtain equations for z:

CḊu+CĊTv+CCT v̇ = C
∂g

∂t
+C

∂g

∂x
g+C

∂g

∂y
f , (18)

where we used relation (10) between C and D. Due to
condition (7), equation (18) is solvable for z.

Projecting (17) onto the tangential space by multiplying
it by DT on the left, we obtain equations for u̇:

DT Ḋu+DTDu̇+DT ĊTv = DT ∂g

∂t
+DT ∂g

∂x
g+DT ∂g

∂y
f ,

(19)
where we used relation (10) between C and D again. Since
D is of maximal column-rank, from (19) we can explicitly
solve for u̇ in terms of t, x, y, and u. Note that from
equation (12), it follows that v is a known function of t
and x. However, to complete the change of variables from
y to u, we also need a representation of y in terms of t, x
and u. To find the relation between y and u, we use (16).

In order to determine whether the equations (16) are
solvable for y, we take a closer look at condition (7). From

condition (7), it follows that rank
∂h

∂x

∂g

∂y

∂f

∂z
= k, and,

hence,

rank
∂h

∂x
≥ k, (20)

rank
∂g

∂y
≥ k, (21)

rank
∂f

∂z
≥ k. (22)

Moreover, we can conclude that

n ≥ k and m ≥ k. (23)

To verify relations (23), assume otherwise: Let n < k.
Then the rank of ∂h/∂x cannot be higher than n, and,
therefore, not higher than k, either, which contradicts re-
lation (20). Similarly, if m < k, the rank of ∂f/∂z cannot
be higher than m, and, therefore, not higher than k, either,
which contradicts relation (22). Thus, relations (23) hold.

Let the rank of ∂g/∂y be equal to j. In what follows,
for any vector or matrix, the superscript a denotes the
first j rows, e.g. ya = (y1, . . . , yj)

T , and the superscript
d denotes the last rows starting from j + 1, e.g. yd =
(yj+1, . . . , ym)T . For simplicity, we re-order the compo-

nents of y so that rank
∂g

∂y
= rank

∂g

∂ya
= j. Then equa-

tions (16) can be considered as algebraic equations with re-
spect to the ya. The variables yd are differential variables
whose differential equations are given by

ẏd = fd. (24)

89

The projected index-1 DAE obtained from (11), (16),
(18), (19), and (24) is given by

ẋ = Du + CTv, (25a)

u̇ =
(
DTD

)−1
DTw, (25b)

ẏd = fd, (25c)

0 = Du + CTv − g, (25d)

0 = C
[
w −CT v̇

]
, (25e)

where v is given by equations (12) and

w =

[
∂g

∂t
+
∂g

∂x
g +

∂g

∂ya
fa +

∂g

∂yd
fd − Ḋu− ĊTv

]
.

(26)
System (25) consists of n+ (n− k) + (m− j) differential
equations (25a)-(25c), with respect to n+(n−k)+(m−j)
differential variables, x, u, and yd, respectively, and n+ k
algebraic equations (25d) and (25e) with respect to j + k
algebraic variables, ya and z, respectively.

Note that equation (25e) is equation (15c) written in
terms of v, Ċ, and Ḋ and not in terms of derivatives of
h explicitly.

The number of differential equations in system (15)
obtained by index reduction is n+m, whereas the number
of differential equations in system (25) obtained by the
projection method is n+m+ (n−k− j). If n > k+ j, an
application of the projection method is not more beneficial
than an application of the index reduction alone. Otherwise,
the projection method performs not only index reduction
but also decreases the number of differential variables. In
addition, there is a number of special cases that allow to
simplify system (25) further.

Special case 1. Some of the algebraic constraints (6c)
are linear with respect to x.

We are given a Hessenberg index-3 system of the form

ẏ = f(t,x,y, z), (27a)

ẋ = g(t,x,y), (27b)

0 = C1(t)x + α(t), (27c)

0 = h2(t,x), (27d)

where C1 is an l × n matrix of maximal row rank, such
that l ≤ n, and h2 is a (k − l)-dimensional vector function
which is nonlinear with respect to x.

First, we consider equations (27b) and (27c). Similarly
to the projection method, we choose a matrix D1 of maxi-
mal column-rank and such that

C1D1 = 0. (28)

Then, since for every t the rows of C1 span a subspace in
Rn and the columns of D1 span the orthogonal comple-
ment to that subspace, any x ∈ Rn can be represented as

x = D1χ+ CT
1 ψ, (29)

where χ = (χ1, . . . , χn−l)
T and ψ = (ψ1, . . . , ψl)

T .
Substituting decomposition (29) into equation (27c) and
making use of relation (28), we find

ψ = −
(
C1C

T
1

)−1
α. (30)

From equation (29) we find ẋ:

ẋ = Ḋ1χ+ D1χ̇+ ĊT
1 ψ + CT

1 ψ̇.

We substitute this equation into equation (27b) and mul-
tiply the result by DT

1 on the left, obtaining a differential
equation for χ̇:

χ̇ =
(
DT

1 D1

)−1

DT
1

[
g(t,D1χ+CT

1 ψ,y)− Ḋ1χ− ĊT
1 ψ
]
.

(31)

On the other hand, we can apply the projection method
and derive equations (25), where

C =

(
C1
∂h2

∂x

)
.

We see that equations (25a) for ẋ can be replaced with
equations (31). Thus, we reduce the DAEs (15) to the
following DAEs:

χ̇ =
(
DT

1 D1

)−1
DT

1

[
g − Ḋ1χ− ĊT

1 ψ
]
, (32a)

u̇ =
(
DTD

)−1
DTw, (32b)

ẏd = fd, (32c)

0 = Du + CTv − g, (32d)

0 = C
[
w −CT v̇

]
, (32e)

where w is as in (26), we substituted x = D1χ+ CT
1 ψ, ψ

is given by equation (30), and v is given by equation (12).
System (32) has (n− l)+(n−k)+(m− j) differential

variables χ, u, yd and j + k algebraic variables ya, z. �
Special case 2. Equation (25d) can be solved symboli-

cally for ya: ya = ỹa(t,x,u,yd) .
Then we can consider the system of equations (25a),

(25b), (25c), and (25e) with ya = ỹa(t,x,u,yd) substi-
tuted, which we solve for x, u, yd, and z. Consequently, j
algebraic equations are removed from the system.

One possible situation where we can express ya sym-
bolically is the case where g is linear with respect to ya:

g(t,x,ya,yd) = A(t,x,yd)ya + γ(t,x,yd), (33)

and A(t,x,yd) is of maximal column-rank. �
Special case 3. Equation (25e) can be solved symboli-

cally for z:z = z̃(t,x,u,ya,yd).
Then we can consider the system of equations (25a),

(25b), (25c), and (25d) where z = z̃(t,x,u,ya,yd) was
substituted, which we solve for x, u, ya, and yd, and k
algebraic equations are removed from the system.

One possible situation where we can express z symbol-
ically is the case where f is linear with respect to z:

f(t,x,ya,yd, z) = ϕ(t,x,ya,yd) +B(t,x,ya,yd)z. (34)

In order to satisfy condition (7), B must be such that
∂h

∂x

∂g

∂y
B is nonsingular for all t. �

When we consider Special cases 2 and 3 together, we
can obtain an ODE system with respect to n + (n − k) +
(m − j) variables x, u, and yd. Let us consider what we
obtain in the case where f and g are given by equations (34)
and (33), respectively:

90

ẋ = Du + CTv, (35a)

u̇ =
(
DTD

)−1
DT

[
P + Qz̃− Ḋu− ĊTv

]
, (35b)

ẏd = ϕ̃d + B̃dz̃, (35c)

where

P =
∂A

∂t
ỹa +

∂γ

∂t
+

(
∂A

∂x
ỹa) +

∂γ

∂x

)
(Aỹa + γ)

+ Aϕ̃a +

(
∂A

∂yd
ỹa +

∂γ

∂yd

)
ϕ̃d, (36a)

Q = AB̃a +

(
∂A

∂yd
ỹa +

∂γ

∂yd

)
B̃d, (36b)

B̃ = B(t,x, ỹa(t,x,u,yd),yd), (36c)

ϕ̃ = ϕ(t,x, ỹa(t,x,u,yd),yd), (36d)

ỹa = (ATA)−1AT
[
Du + CTv − γ

]
, (36e)

z̃ = (CQ)
−1

C
[
Ḋu + ĊTv + CT v̇ −P

]
. (36f)

When system (35) is solved, ya is given by ỹa from
equation (36e), and z is given by z̃ from equation (36f).
Equations (35) have the simplest form we can get by ap-
plying projection to the reduced system (15).

REMARK 1. The original projection method [16, 6, 7, 1]
was developed for mechanical systems under holonomic
constraints:

Mẍ = ϕ(t,x, ẋ) + CT z (37a)

0 = h(t,x), (37b)

where x denotes the coordinates, z denote the Lagrange
multipliers, M is a symmetric positive-definite generalized
mass matrix, ϕ is independent of z and represents forces
acting on the system. Denoting the velocities by y, we can
re-write the system (37) in the form described by Special
cases 2 and 3 with y = ya, g = y, and f linear with re-
spect to z. However, in this case the computations simplify
if we first multiply both sides of equation (17) by M on the
left and then project the result onto the tangential space,
and use equation (17) as is when projecting onto the nor-
mal space. Equations (37) are simplified to:

ẋ = Du + CTv,

u̇ =
(
DTMD

)−1
DT

[
ϕ̃−M

(
Ḋu + ĊTv + CT v̇

)]
,

where we used CD = 0 and ϕ̃ = ϕ(t,x, ỹ). Equa-
tions (36e) and (36f), respectively, become:

ỹ = Du + CTv,

z̃ =
(
CM−1CT

)−1
C
[
Ḋu + ĊTv + CT v̇ −M−1ϕ̃

]
.

The last equation is not needed to obtain the motion of the
mechanical system but can be used to find the constraint
forces, since the vector CT z represents the generalized
forces induced by the constraints.

Lagrange multipliers z appear in the equations for a con-
strained mechanical system (37) as a result of application
of the Principle of Least Action [4, 13]. For a constrained
mechanical system, this principle results in a problem of
optimization under constraints. We can show that any opti-

mization under constraints with an objective function sim-
ilar to the mechanical action gives a DAE system that can
be simplified to an ODE system by the projection method.
We demonstrate this in Section 6.

4. The Projection Method and Higher
Hessenberg Index DAEs

In this section we generalize the approach from the previ-
ous section to DAEs of arbitrary Hessenberg index.

We consider a Hessenberg index-(r + 2) DAE

ẏr = fr(t,x,y1,y2, . . . ,yr, z), (38a)
...

ẏ2 = f2(t,x,y1,y2,y3), (38b)

ẏ1 = f1(t,x,y1,y2), (38c)

ẋ = g(t,x,y1), (38d)

0 = h(t,x), (38e)

where
∂h

∂x

∂g

∂y1

∂f1
∂y2
· · · ∂fr−1

∂yr

∂fr
∂z

is nonsingular for all t. (39)

The vectors y1, y2, . . . , yr are of size m1,m2, . . . ,mr,
respectively. Due to condition (39), the ranks of the Jaco-
bians ∂g

∂y1
, ∂f1
∂y2

, . . . , ∂fr−1

∂yr
and their products forming sub-

products in condition (39) are at least k at any t. We re-
order the components of the vectors y1,y2, . . ., yr so that
the first j1, j2, . . . , jr components, respectively, denoted by
superscript a, are such that:

rank
∂g

∂y1
= rank

∂g

∂ya
1

= j1, (40a)

rank
∂g

∂y1

∂f1
∂y2

= rank
∂g

∂y1

∂f1
∂ya

2

= j2, (40b)

...

rank
∂g

∂y1

∂f1
∂y2
· · · ∂fr−1

∂yr
= rank

∂g

∂y1

∂f1
∂y2
· · · ∂fr−1

∂ya
r

= jr.

(40c)

As in the previous cases the projection method leads to
the representation

ẋ = Du1 + CTv, (41)

where C = ∂h
∂x is of maximal row-rank, D is of maximal

column-rank and satisfies (10), v = −
(
CCT

)−1
∂h
∂t , and

u1 is an (n − k)-dimensional vector. Then we introduce
(n− k)-dimensional vectors u2, . . . ,ur such that

u̇1 = u2, (42a)

u̇2 = u3, (42b)
...

u̇r−1 = ur, (42c)

and we want to re-write equations (38) in terms of the pro-
jection of ẋ onto the tangential space, u1, and its deriva-
tives. We substitute (41) into equation (38d), obtaining

Du1 + CTv = g(t,x,y1). (43)

From (40a), it follows that (43) can be solved for ya
1 .

91

Differentiating (43) with respect to time, we obtain

Ḋu1 +Du2 +ĊTv+CT v̇ =
∂g

∂t
+
∂g

∂x
g+

∂g

∂y1
f1, (44)

where we made use of (38d), (38c), and (42a). From con-
dition (40b), it follows that (44) can be solved for ya

2 .
Differentiating equation (43) with respect to time a sec-

ond time, i.e. differentiating equation (44), and replacing
derivatives of variables that occur in the left-hand side with
their representation according to equations (41) and (42)
and derivatives that occur in the right-hand side according
to equations (38), we obtain algebraic equations that can
be solved for ya

3 . We continue this process until we dif-
ferentiate equation (43) r times. After each differentiation
we make use of equations (41) and (42) in the left-hand
side and of equations (38) on the right-hand side. The i-th
differentiation gives us an algebraic equation, which due to
conditions (40) can be solved for ya

i+1, for i = 1, . . . , r−1.
The r-th differentiation gives us an equation, from

which we derive a differential equation for u̇r and an al-
gebraic equation for z. Let us consider the result of r-th
differentiation. We are interested only in the terms that de-
fine equations for u̇r and z, and, therefore, for simplicity,
we represent the result of r-th differentiation as follows:

Du̇r + ϕ1 (t,x,u1,u2, . . . ,ur) (45)

=
∂g

∂y1

∂f1
∂y2

∂f2
∂y3
· · · ∂fr−1

∂yr
fr + ϕ2 (t,x,y1,y2, . . . ,yr) ,

where functions ϕ1 and ϕ2 represent the remaining terms,
in which we are not interested.

If we project equation (45) onto the tangential space of
the constraint manifold by multiplying both sides of the
equation by DT on the left, we obtain an equation for u̇r.

u̇r =
(
DTD

)−1
DTe, (46)

where

e =

[
∂g

∂y1

∂f1
∂y2

∂f2
∂y3
· · · ∂fr−1

∂yr
fr + ϕ2 − ϕ1

]
. (47)

If we project equation (45) onto the normal space of the
constraint manifold by multiplying both sides of the equa-
tion by C on the left, we obtain an equation for z, which
is solvable due to condition (39) and is independent of u̇r

due to relation (10).

0 =
(
CCT

)−1
Ce (48)

The DAE system simplified by the projection method is
then given by equations (41), (42), (43), (44), (46), (48), al-
gebraic equations for ya

3 , . . . ,y
a
r and differential equations

for yd
1 , . . . ,y

d
r , where we represent each yi in terms of ya

i

and yd
i , for i = 1, . . . , r.

ẋ = Du1 +CTv, (49a)

u̇1 = u2, (49b)

u̇2 = u3, (49c)

...

u̇r−1 = ur, (49d)

u̇r =
(
DTD

)−1

DT e, (49e)

ẏd
1 = fd1 , (49f)

ẏd
2 = fd2 , (49g)

...

ẏd
r = fdr , (49h)

0 = Du1 +CTv − g, (49i)

0 = Ḋu1 +Du2 + ĊTv +CT v̇ − ∂g

∂t
− ∂g

∂x
g − ∂g

∂y1
f1,

(49j)

0 =
d3

dt3

(
Du1 +CTv

)∣∣∣∣
(41),(42)

− d3

dt3
(g)

∣∣∣∣
(38)

, (49k)

...

0 =
dr−1

dtr−1

(
Du1 +CTv

)∣∣∣∣
(41),(42)

− dr−1

dtr−1
(g)

∣∣∣∣
(38)

,

(49l)

0 =
(
CCT

)−1

Ce. (49m)

System (49) consists of differential equations (49a)-(49h)
w.r.t. n+ r(n−k)+(m1− j1)+ . . .+(mr− jr) variables
x, u1, . . . , ur, y

d
1 , . . . , y

d
r and of algebraic equations (49i)-

(49m) w.r.t. j1 + j2 + . . . + jr + k variables ya
1 , . . . ,

ya
r , z. Index reduction alone yields an index-1 DAE w.r.t.
n+m1 + . . .+mr differential and k algebraic variables.

Special case 4. Equations (49i)-(49m) can be solved
symbolically.

We can decouple these equations from the system, re-
moving j1 + j2 + . . .+ jr + k algebraic variables and ob-
taining an ODE system given by equations (49a)-(49h). �

An example of a Hessenberg system of higher index
falling under the Special case 4 is a high-order differential
equation subject to algebraic constraints.

The analog of Special case 1 can be also considered
for higher Hessenberg index DAEs. Then, following the
guidelines given in the Special case 1, we can additionally
eliminate l differential variables, where l is the number of
linear constraints.

5. A Particular Case of DAEs of More
General Form

In this section we consider a case when DAEs are not of the
form (2), (4), or (6) and show how they can be reduced to
one of these forms, in order to apply the projection method.
We call this case mixed Hessenberg index-1,3 form.

We define the mixed Hessenberg index-1,3 form as a
system of the form

ẏ = f(x,y, z), (50a)

ẋ = g(x,y), (50b)

0 = h(x) + A(x)z, (50c)

where the matrix A is not invertible. We also define a solv-
ability condition guaranteeing that system (50) has index 3.

In order to formulate the solvability condition, we intro-
duce additional matrices. If the matrix A has rank k1 < k,

92

re-ordering its rows and columns if necessary, we can rep-
resent it as

A =

(
A11 A12

A21 A22

)
, (51)

where
rank A = rank A11 = k1, (52)

and A11, A12, A21, and A22 are, respectively, k1 × k1,
k1 × (k − k1), (k − k1) × k1, and (k − k1) × (k − k1)-
dimensional matrices. The condition (52) yields that A11

is invertible.
We introduce matrices L and R:

L =

(
L1

L2

)
=

(
Ik1

0

−A21A
−1
11 Ik−k1

)
, (53a)

R =
(
R1 R2

)
=

(
Ik1

−A−1
11 A12

0 Ik−k1

)
. (53b)

Now we can formulate the solvability condition as follows:

∂(L2h)

∂x

∂g

∂y

∂f

∂z
R2 is invertible. (54)

In order to apply the projection method, we introduce a
change of variables:

z = Rζ. (55)

Substituting transformation (55) into equation (50c) and
multiplying it by L on the left, we obtain:

Lh + LARζ = 0. (56)

From definitions (53) it follows that

LAR =

(
A11 0
0 0

)
.

Let us denote the first k1 rows of ζ by ζ1 and the last k−k1
by ζ2 and consider the first k1 rows of equation (56):

L1h + A11ζ1 = 0. (57)

From condition (52) it follows that equation (57) can be
solved for ζ1, obtaining:

ζ1 = −A−1
11 L1h. (58)

The last k−k1 rows of equation (56) yield the following.

L2h = 0, (59)

which we consider as a new algebraic constraint. Substi-
tuting transformation (55) and representation (58) into the
right-hand side of equation (50a), we obtain:

f(x,y,Rζ) = f(x,y,R1ζ1 + R2ζ2)

= f(x,y,R2ζ2 −R1A
−1
11 L1h).

We obtain a Hessenberg index-3 DAE system

ẏ = f(x,y,R2ζ2 −R1A
−1
11 L1h), (60a)

ẋ = g(x,y), (60b)

0 = L2(x)h(x). (60c)

From the solvability condition (54) it follows that condi-
tion (7) on the product of the Jacobians is satisfied, and the
system (60) is indeed of a Hessenberg index-3 DAE form.
The projection method can now be applied to system (60).

We also consider a special case of mixed Hessenberg
index-1,3 form, where the matrix A can be represented, by
re-ordering columns and rows if necessary, in the form

A =

(
A11 A12

0 0

)
, (61)

where A11 is invertible. Equations (50) now take the form

ẏ = f(x,y, z1, z2), (62a)

ẋ = g(x,y), (62b)

0 = h1(x) + A11(x)z1 + A12(x)z2, (62c)

0 = h2(x), (62d)

assuming the solvability condition is satisfied:

∂h2

∂x

∂g

∂y

∂f

∂z2
is nonsingular for all t.

In this case we do not need to define matrices L and R.
Our goal is to obtain index-1 DAEs, and the equations (62c)
are already in index-1 form. We then apply the projection
method to the system (62a), (62b), and (62d), treating the
variables z1 as known, to obtain index-1 equations for y
and z2 and obtain an index-1 system of DAEs consisting of
the result of application of the projection method and (62c).

6. Optimization Under Constraints
We now show how a general optimization problem can be
represented as a higher-index Hessenberg system, and how
the projection method can then be applied.

Consider the problem of optimizing the functional

F (x) =

t2∫
t1

L
(
t,x, ẋ, . . . , δkx

)
dt, (63)

where δkx = ∂kx
∂tk

, subject to the constraints

φ(x) =

t2∫
t1

h(t,x)dt = 0. (64)

L is called a Lagrangian, h = (h1, . . . , hm)T , φ =

(φ1, . . . , φm)T , and φj =
t2∫
t1

hj(x(t))dt for j = 1, . . .m.

For example, a Lagrangian for a particle of charge q and
mass m in an electromagnetic field with characteristics E
and B is given by

L =
1

2
mẋT ẋ + qẋTA(t,x)− qΦ(t,x), (65)

where x is the position of the particle. The scalar potential
Φ and the vector potential A are such that

B = curl A, E = −∇Φ− ∂A

∂t
,

where curl A is the curl of A, and∇Φ is the gradient of Φ.
For the case of several particle charges, a Lagrangian is

obtained as a sum of the Lagrangians of all particles. There
is also a relativistic counterpart of Lagrangian (65) [4].

93

The variational principle for an electric circuit arises
from imposing that the energy losses must be as small as
possible [4]. A Lagrangian for interconnected electrical
circuits consisting of linear elements can be written as
follows [13]

L =
1

2

∑
j,k

Mjk

·
Ij

·
Ik −

1

2

∑
j

1

Cj
I2j +

∑
j

·
Ej

·
Ij , (66)

where Ij is the current through the j-th element,Mjk is the
mutual inductance between the j-th and k-th inductors, Cj

is the capacitance of the j-th capacitor, and Ej is the j-th
electromotive force. Lagrangian (66) describes the energy
exchange between the elements.

Resistors in an electric circuit act as generalized dissi-
pative forces Qj described by the function

W =
1

2

∑
j

Rj

·
I
2

j ,

where

Qj = −∂W

∂
·
Ij

= −Rj

·
Ij

and Rj is the resistance of the j-th resistor.
Then the energy conservation law states that the loss of

energy described by L is equal to the work done by the
dissipative forces to create a change δIj .

Lagrangian (66) can be also used to describe a mechan-
ical system of masses connected by springs if parameters
are defined as following: Ij is the displacement of the j-th
mass, M is the reciprocal mass tensor, 1/Cj is the spring

constant of the j-th spring,
·
Ej is the j-th driving force, Rj

is the viscous force of the j-th damper [13], and W is the
Rayleigh dissipation function.

Optimal control problems can be formulated as prob-
lems of maximizing a functional using the Pontrjagin max-
imum principle [5].

There is no unique, general, automatic method for de-
termining a Lagrangian for a physical system. Typically,
the derivation of a Lagrangian is based on the invariance
properties of the system [13]. For example, a free particle
in a gravitational field is invariant under changes of time
t→ t+ t0 without any change in coordinates, i.e. time has
no privilege of origin, and, therefore, ∂L/∂t = 0. Space
also has no privilege of origin for the particle, and, there-
fore, ∂L/∂xi = 0. Finally, rotation invariance of the par-
ticle implies that L can only depend on the square of the
velocity, i.e., it is of the form L(ẋ2) [4].

To tackle optimization problem (63), (64), we formulate
the necessary condition for a functional F(x) subject to
constraints ψ(x) = y0 to have an extremum at x0(t) [9].

THEOREM 2. Let U ⊂ Rn be open and F : U → R a
differential functional; furthermore, let ψ : U → Rm be
a continuously differential mapping. Let the functional F
attain a local extremum at a regular point x0 ∈ U of the
mapping ψ subject to the condition ψ(x) = y0. Then there
exist real numbers λ1, . . . λm such that

∂F
∂xi

(x0) =
m∑
j=1

λj
∂ψj

∂xi
(x0), i = 1, . . . , n,

where all derivatives are understood in the Fréchet sense.

From Theorem 2 it follows that to find the extreme
points of functional (63) under constraints (64), we need
to solve the following system of DAEs:

∂L
∂xi
− d

dt

(
∂L
∂ẋi

)
+ . . .+ (−1)k

dk

dtk

(
∂L

∂ (δkxi)

)
=

m∑
j=1

λj
∂hj
∂xi

, 1 6 i 6 n, (67a)

hj(x1, . . . , xn, t) = 0, 1 6 j 6 m. (67b)

For Lagrangian (66) describing an electric circuit in the
absence of dissipative forces, equations (67) take the form

d

dt

(
∂L

∂
·
Ii

)
− ∂L
∂Ii

=
m∑
j=1

λj
∂hj
∂xi

, 1 6 i 6 n.

In the presence of dissipative forces the energy loss is equal
to the work done by the dissipative forces

∂F

∂Ij
=

t2∫
t1

−∂W

∂
·
Ij

δIj

and it has to be as small as possible. Then equations (67)
become:

d

dt

(
∂L

∂
·
Ii

)
− ∂L
∂Ii

+
∂W

∂
·
Ij

=

m∑
j=1

λj
∂hj

∂xi
, 1 6 i 6 n. (68)

We can re-write equation (67) as:

M(t,x, ẋ, . . . , δ2k−1x)δ2kx = f(t,x, ẋ, . . . , δ2k−1x) +CTλ,
(69a)

h(t,x) = 0, (69b)

where C = ∂h/∂x, λ = (λ1, . . . λm)T , and f is a function
of the derivatives of x of order < 2k. System (69) is an in-
stance of Special case 4 from Section 4. In order to see this
we re-write system (69) as a system of first-order DAEs.
Since we know that in Special case 4 we obtain a signifi-
cant simplification by applying the projection method, we
follow the steps in Section 4 and introduce a set of (n−m)-
dimensional variables u1, . . . ,u2k−1 such that

ẋ = Du1 + CTv,

u̇1 = u2,

...

u̇2k−2 = u2k−1.

(70)

Then equation (69) can be rewritten as

M̃Du̇2k−1 = f̃ + CTλ− M̃σ̃ − M̃δ2k−1
(
CTv

)
, (71)

where D is such that CD = 0,

v = −
(
CCT

)−1 ∂h

∂t
,

M̃ = M̃(t,x,u1, . . . ,u2k−1)

= M(t,x,Du1 + CTv, . . . ,δ2k−2(Du1 + CTv)),

94

f̃ = f̃(t,x,u1, . . . ,u2k−1)

= f(t,x,Du1 + CTv, . . . ,δ2k−2(Du1 + CTv)),

σ̃ = σ̃(t,x,u1, . . . ,u2k−1)

= δ2k−1(Du1)−Dδ2k−1u1

and we have replaced the derivatives of u1 with their ex-
pressions in terms of u2, . . . ,u2k−1 according to (71).

Now we multiply equation (71) by DT from the left and,
combining with (70), get the following simplified system:

ẋ = Du(1) +CTv, (72a)

u̇(1) = u(2), (72b)

...

u̇(2k−2) = u(2k−1), (72c)

u̇(2k−1) =
(
DTM̃D

)−1

DT
[
f̃ − M̃σ̃ − M̃δ2k−1

(
CTv

)]
,

(72d)

System (69) is equivalent to a system of DAEs with respect
to 2kn differential and m algebraic variables. System (72),
obtained by application of the projection method to (69),
is an ODE system with respect to n + (2k − 1)(n − m)
variables (x,u(1),u(2), . . . ,u(2k−1)). Thus, we have elim-
inated (2k − 1)m differential and m algebraic variables.

Given the solution of equation (71) we can find the
values of the Lagrange multipliers as

λ =
(
CM̃−1CT

)−1

C
[
σ̃ + δ2k−1

(
CTv

)
− f̃
]
.

For equations (72) we can also formulate an analog of
the Special case 1 for Hessenberg index-3 DAEs. We repeat
the derivations, since we will need the formulas in the
example later.

Special case 5. Some of the algebraic constraints are
linear in x.

The function h is of the form

0 = C1(t)x + α(t),

0 = h2(t,x),

where C1 is an l × n matrix of maximal row-rank, such
that l ≤ n, and h2 is a (k − l)-dimensional vector function
which is nonlinear in x. We can represent x as

x = D1χ+ CT
1 ψ, (73)

where D1 is such that C1D1 = 0, χ = (χ1, . . . , χn−l)
T ,

and ψ = (ψ1, . . . , ψl)
T is given by

ψ = −
(
C1C

T
1

)−1
α.

Substituting representation (73) into equation (72a), we
obtain an equation for χ̇:

χ̇ = (D1D1)
−1 DT

1

[
Du(1) +CTv − Ḋ1χ− Ċ1ψ

]
. (74)

By replacing x with its representation (73) and equa-
tion (72a) with equation (74), we can eliminate l variables
from ODEs (72). �

We now demonstrate the application of the projec-
tion method to the optimization of a functional with La-
grangian (66).

Figure 1. Serial RLC circuit.

7. Example: Electric Circuit
We consider an electric circuit consisting of a resistor of re-
sistance R, an inductor of inductance L, and a capacitor of
capacitance C connected in series as depicted in Figure 1.

From (66) a Lagrangian for the circuit is given by

L =
1

2
L

·
I
2

1 −
1

2

1

C
I23 + λ1 (I1 − I2) + λ2 (I2 − I3) , (75a)

W =
1

2
R

·
I
2

1, (75b)

where the constraints, I1 = I2 and I2 = I3, represent
Kirchhoff’s Current Law.

From equations (67) and (68), the necessary condition
for a functional with L and W given by equations (75)
takes form of the following DAE system:

RI1 = λ1, (76a)

L
··
I2 = −λ1 + λ2, (76b)

1

C
I3 = −λ2, (76c)

0 = I1 − I2, (76d)

0 = I2 − I3, (76e)

where equations (76d) and (76e) are as described in Special
case 5. We define:

C =
∂h

∂x
=

(
1 −1 0
0 1 −1

)
.

It is easy to check that D = (1, 1, 1)T . Note that the right-
hand side of equations (76a), (76b), and (76e) is indeed
given by CTλ. From equation (73)

I1 = u(1), I2 = u(1), I3 = u(1), (77)

where u(1) satisfies the system

u̇(1) = u(2), (78a)

u̇(2) = −R
L
u(2) − 1

LC
u(1) (78b)

that follows from equation (72).
Equations (78) are the desired ODEs. After solving

them, we find the current using (77).

8. Implementation and Benchmarks
We implemented our algorithm in the computer algebra
system Maple (version 16). Table 2 gives some benchmarks
for 5 DAEs of index 3 that were created using a conserved

95

Model Version DE AE SE Time
DoublePendulum1 HF 22 7 112

PM 14 0 129 0.91s
FourBar HF 30 11 166

PM 16 0 194 13.03s
Pendulum1 HF 12 3 58

PM 8 0 67 0.29s
SliderCrank HF 29 10 215

PM 18 0 231 2.15s
TriplePendulum1 HF 32 11 165

PM 20 0 199 1.86s

Table 2. Implementation benchmarks

quantities based modeling tool, HLMT [14, 3], and then
converted to (mixed) Hessenberg index-3 form. (Such mod-
els tend to be more verbose and contain more redundancy
than DAEs that were created using other modeling tools.)

There are two rows per model. The first row lists the
number of equations in the Hessenberg form that is input to
our algorithm. The second row gives the number of equa-
tions in the resulting model after applying the projection
method, as well as the running time (3 GHz Intel Core 2
Duo) of our implementation.

Three types of equations are counted in each row: the
differential equations (DE) and the algebraic equations
(AE) together form the core dynamical system. The solved
equations (SE) are explicit algebraic equations expressing
variables that do not appear in the core system exclusively
in terms of core system variables. In all 5 examples, the
projection method was able to remove all (possibly non-
linear and implicit) algebraic constraints, thanks to Special
cases 2 and 3 above.

9. Conclusions
We have derived how the projection method introduced
in [16] for mechanical systems can be extended to other
types of DAEs. The projection method not necessarily sim-
plifies DAEs better than index reduction alone. However,
in some cases the application of the projection method af-
ter index reduction can decrease the number of variables
and even simplify the reduced index-1 DAE to an ODE. We
have described these cases and demonstrated that optimiza-
tion under constraints is one of them. We have shown the
significance of optimization problems in various applica-
tions and derived an effective simplification procedure for
the optimization of a functional under constraints. As an
example, we have formulated a problem of current flow-
ing through an electric circuit as an optimization problem
and used it to illustrate the applicability of the projection
method. Finally, we have given benchmarks for an imple-
mentation of the projection method in Maple.

10. Acknowledgements
The authors gratefully acknowledge the funding of this
research by Toyota Motor Engine & Manufacturing North
America Inc., and the inspiration from Mr. Akira Ohata,
Toyota Motor Corporation.

References
[1] K. Arczewski and W. Blajer, A unified approach to the

modeling of holonomic and nonholonomic mechanical
systems, Math. Modeling of Systems 2 (1996), 157–174.

[2] U. M. Ascher, L. R. Petzold, Computer Methods for
Ordinary Differential Equations and Differential Algebraic
Equations, SIAM, 1998.

[3] J. Bakus, L. Bernardin, K. Kowalska, M. Léger, A. Wittkopf,
High-Level Physical Modeling Description and Symbolic
Computing, IFAC Proceedings of the 17th World Congress,
2008, 1054–1055.

[4] J.-L. Basdevant, Variational principles in physics, Springer,
New York, 2007.

[5] L. D. Berkovitz, Variational methods in problems of control
and programming, J. Math. Analysis and Applications 3
(1961), 145–169.

[6] W. Blajer, A projection method approach to constrained
dynamic analysis, J. Appl. Mech. 59 (1992), 643–649.

[7] W. Blajer, Projective formulation of Maggi’s method for
nonholonomic system analysis, J. Guidance Control Dyn.
15 (1992), 522–525.

[8] W. Blajer, Elimination of constraint violation and accuracy
aspects in numerical simulation of multibody systems,
Multibody System Dynamics, 7 (2002), 265–284.

[9] P. Blanchard and E. Brüning, Variational Methods in
Mathematical Physics: A Unified Approach, Springer-
Verlag, Berlin, Heidelberg, New York 1992.

[10] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical
Solution of Initial-Value Problems in Differential-Algebraic
Equations, SIAM, 1996.

[11] A. N. Kolmagorov, S. V. Fomin, Elements of the Theory
of Functions and Functional Analysis, Courier Dover
Publications, 1999.

[12] S. G. Krantz, H. R. Parks, The Implicit Function Theorem:
History, Theory, and Applications, Birkhäuser, 2002.

[13] R. K. Nesbet, Variational Principles and Methods in
Theoretical Physics and Chemistry, Cambridge University
Press, Cambridge, 2003.

[14] A. Ohata, H. Ito, S. Gopalswamy, K. Furuta, Plant Modeling
Environment Based on Conservation Laws and Projection
Method for Automotive Control Systems, SICE Journal of
Control, Measurement and System Integration 1 (2008),
227–234.

[15] C. M. Roithmayr, Relating Constrained Motion to Force
Through Newton’s Second Law, Ph.D. thesis, Georgia
Institute of Technology, 2007.

[16] D. Scott, Can a projection method of obtaining equations of
motion compete with Lagrange’s equations? Am. J. Phys 56
(1988), 451–456.

96

5th International Workshop on Equation-Based Object-Oriented Modeling

Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by

Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Initialization of Equation-based Hybrid Models within

OpenModelica

Lennart A. Ochel1, Bernhard Bachmann1
1Department Mathematics and Engineering, University of Applied Sciences Bielefeld, Germany,

{lennart.ochel,bernhard.bachmann}@fh-bielefeld.de

Abstract

Modelica is a multi-domain object-oriented modeling

language designed for time-dependent systems. The time-

dependent part is usually described with “ordinary

differential equations”. In addition to that, it is possible to

express algebraic and difference equations. As a result a

Modelica model will be merged to a hybrid differential

algebraic equation system.

The initialization process is prior to each simulation

and must therefore be solved before any simulation can be

started. Modelica provides high-level features to describe

the initialization problem. This leads often into various

problems. The initialization is usually a system-level

issue. Therefore, high knowledge about the system is

necessary.

In OpenModelica two major methods are implemented

to solve the initialization problem. Both methods are

totally different and are used for different initialization

issues. Both methods will be discussed within this paper.

Keywords initialization, hybrid models, homotopy, start

value, OpenModelica

1. Introduction

Primary linguistic constructs of Modelica to specify the

initialization are initial equations and initial algorithms. It

is possible that the initialization is not unique, even if

initial conditions are fully specified. This means that the

number of unknowns (in the case of initialization) is equal

to the number of initial conditions. The non-uniqueness is

caused by nonlinearities.

As a result, the modeler is not able to control the

initialization completely, if just initial equations and

initial algorithms are used. To retain control of the

initialization, additional linguistic devices such as the

homotopy operator and variable attributes (e.g. start

values) are available in Modelica. Since homotopy is

quite an advanced feature, the modeler may prefer the use

of start values.

The influence of start values is in most

implementations rather small. They are mostly used as an

initial guess for nonlinear systems. Therefore, it is

necessary to provide start values for variables, which are

involved in these nonlinear systems. Moreover, it is

important to know about dependencies of a given model

and about suitable start values for just these variables.

This work will show how it is possible to increase the

influence of start values during initialization a lot and to

provide the modeler full control on the solution for his

initialization problem. This is done by the first major

method based on numerical algorithms and an extension

called “Start Value Homotopy”.

The second major approach is based on symbolical

transformations. It creates a complete dependence graph

for the initialization. Hence, the initial equations are

sorted and transformed to a system that can be explicitly

evaluated, except involved algebraic loops. This leads to a

much faster and more accurate solution compared to the

numeric approach.

2. Modelica Constructs for Initialization

Modelica contains several language constructs that

influence the initialization (see [1]). These constructs can

be categorized like follows:

Firstly, there are initial equations and initial algorithms

that declare additional equations and algorithms to the

time-dependent system. These special equations and

algorithms are only active during initialization and are

added to the simulation equations. In case of a hybrid

model, when-equations are only considered, if activated

using the initial() operator.

attribute Real Integer Boolean String

start X X X X
fixed X X X
min/max X X
nominal X

Table 2.1. Some available variable attributes that can

be important for the initialization process.

Secondly, Modelica provides the possibility to define

variable attributes for each variable. What attributes are

actually available depend on their type as listed above.

97

http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084
http://www.eoolt.org/2013/
mailto:lennart.ochel@fh-bielefeld.de?subject=EOOLT%202013:%20Initialization%20of%20equation%20based%20hybrid-models%20within%20OpenModelica
mailto:bernhard.bachmann@fh-bielefeld.de?subject=EOOLT%202013:%20Initialization%20of%20equation%20based%20hybrid-models%20within%20OpenModelica

These attributes affect the initial solution either

primarily or secondarily. The usage of the start value

depends on the variable type (continuous/discrete) and the

fixed attribute.

The start value is used as an initial guess, if

fixed=false. Otherwise, the start value implicitly

generates an initial equation v=start(v) for a

continuous variable and pre(v)=start(v) for a discrete

variable.

v(start=𝑣𝑠𝑡𝑎𝑟𝑡) fixed=true fixed=false

ty
p

e
o

f
𝑣

continuous
initial equation:
𝑣 = 𝑣𝑠𝑡𝑎𝑟𝑡

initial guess
of 𝑣

discrete
initial equation:
𝑝𝑟𝑒(𝑣) = 𝑣𝑠𝑡𝑎𝑟𝑡

initial guess
of 𝑝𝑟𝑒(𝑣)

Table 2.2. Interpretation of start attribute depending

on fixed attribute and variable kind.

For this reason, it is important to know about the variable

type, if the initial condition should be described using

these attributes. In Modelica it is not necessary to

explicitly declare a variable as discrete or not. This will

be automatically detected by a Modelica tool. Due to that

reason, it is possible that a variable type is changed in a

higher hierarchical component. This can directly affect

the corresponding initial equation as introduced above

and has to be taken into account during the modeling

process.

Using the min and max attribute may restrict the

solution space. This can be utilized, for example, to

remove physical impractical solutions from the solution

space.

The nominal value can be used to setup scaling

coefficients. This is the only attribute with no default

value. If a Modelica tool detects that there is no nominal

value, it can perform some analysis to determine some

suitable nominal values by itself.

Finally, Modelica provides the homotopy operator [1]

that gives the possibility to formulate actual and

simplified expressions for equations. This concept is

utilized to improve the convergence properties of the

nonlinear iterative solver. A Modelica tool is supposed to

introduce the expression (2.1) with a homotopy parameter

𝜆 going from 0 to 1.

𝑎𝑐𝑡𝑢𝑎𝑙 ∙ 𝜆 + 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 ∙ (1 − 𝜆) (2.1)

3. Mathematical Representation

The mathematical representation will be kept as simple as

possible in order to focus on the important aspects.

Therefore, some vectors (e.g. inputs) with no effect to the

described issues are ignored. With this limitation a hybrid

Modelica model can be represented using the following

notation described in Table 3.1.

symbol description

𝑥(𝑡) vector of all states
�̇�(𝑡) vector of all differentiated states

𝑦(𝑡) vector of all continuous algebraic variables

𝑑(𝑡) vector of all discrete variables
𝑝 vector of all parameters

Table 3.1. Used symbols for mathematical

representation.

The variables �̇� and 𝑦 are unknowns during simulation

and are combined to 𝑧(𝑡).

𝑧(𝑡) ≔ (�̇�(𝑡) 𝑦(𝑡) 𝑑(𝑡))
⊤

 (3.1)

The simulation equations can be written as given below.

𝑓1 (𝑥(𝑡), �̇�(𝑡), 𝑦(𝑡), 𝑑(𝑡), 𝑑
𝑝𝑟𝑒(𝑡), 𝑝, 𝑡) = 0

⋮

𝑓𝑛 (𝑥(𝑡), �̇�(𝑡), 𝑦(𝑡), 𝑑(𝑡), 𝑑
𝑝𝑟𝑒(𝑡), 𝑝, 𝑡) = 0

(3.2)

To efficiently evaluate 𝑧(𝑡), equations (3.2) are

transformed to explicit state space representation (3.3).

𝑧(𝑡) = 𝑔 (𝑥(𝑡), 𝑑𝑝𝑟𝑒(𝑡), 𝑝, 𝑡) (3.3)

The representation (3.3) is not always achievable in an

analytic form. But, due to the implicit function theorem

such a representation exists, if the corresponding Jacobian

is regular. A Modelica tool typically performs the

following transformation steps, in order to increase the

efficiency. This mathematical representation and the

transformation steps of a Modelica model are illustrated

using the following example.

 model MathRep

𝑥
 Real x1(start=2.0, fixed=true),

 x2(start=4);

𝑦 Real y1, y2, y3(start=-1.5);

𝑑 Real d1;

 initial equation

ℎ1 pre(d1) = -0.5 + y1;

 equation

𝑓1 0 = -y2 + sin(y3);

𝑓2 der(x1) = sqrt(x1) + time - d1;

𝑓3 0 = x1 + y2 + y3 + 1;

𝑓4 0 = x1 + y1 + x1*y1;

𝑓5

 when {initial(), sample(0.1, 0.1)}

 then

 d1 = pre(d1) - y1 + y2;

 end when;

𝑓6 der(x2) = x1 + y1;

 end MathRep;

Listing 3.1. Example model “MathRep”.

98

Based on a bipartite graph representation of the equation

system (see Figure 3.1) a matching algorithm assigns each

variable exactly one equation [4].

Figure 3.1. Bipartite graph representation and result

of the matching for the time-dependent system of

example model “MathRep”.

The next step is to determine a recursive evaluation order.

Due to algebraic loops the result is a block-lower-

triangular form (see (3.4)). This is done by determine the

strong components using methods like Tarjan’s algorithm

[5].

Figure 3.2. Directed graph representation and result

of the sorting for the example model “MathRep”.

 𝑦3 𝑦2 𝑦1 𝑑1 �̇�2 �̇�1

𝑓3
𝑓1
𝑓4
𝑓5
𝑓6
𝑓2

|

|

(

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0

0 1 1 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1)

(3.4)

More efficiency is gained by so-called tearing algorithms

[6], [7], which further reduce the size of algebraic loops.

The principle of the simulation is based on the concept

that at a given point in time, especially at the initial time

𝑡0, the states, left limit of discrete variables as well as all

free parameters are known. A basic principle is that

parameters are constant during simulation and set by the

user. Modelica provides via the attribute fixed the

possibility that parameters are “free” during the

initialization process. The initialization process calculates

all needed variables at 𝑡0.

The vector 𝜔(𝑡0) contains these additional unknowns

during initialization. It consists of all states 𝑥(𝑡0), all

unfixed parameters 𝑝𝑓𝑟𝑒𝑒 and the left limit of all discrete

variables 𝑑𝑝𝑟𝑒(𝑡0).

𝜔(𝑡0) ≔ (𝑥(𝑡0) 𝑝𝑓𝑟𝑒𝑒 𝑑𝑝𝑟𝑒(𝑡0))
⊤

 (3.5)

In order to describe initial conditions additional equations

are needed. Mathematically, it is helpful to define the

same number of equations than unknowns. If less or more

equations than unknowns are given, special treatments are

necessary and are described further down.

The initial conditions can be written as illustrated

below.

ℎ1 (𝑥(𝑡0), �̇�(𝑡0), 𝑦(𝑡0), 𝑑(𝑡0), 𝑑
𝑝𝑟𝑒(𝑡0), 𝑝, 𝑡0) = 0

⋮ (3.6)

ℎ𝑚 (𝑥(𝑡0), �̇�(𝑡0), 𝑦(𝑡0), 𝑑(𝑡0), 𝑑
𝑝𝑟𝑒(𝑡0), 𝑝, 𝑡0) = 0

The goal of the initialization is to determine valid values

for 𝜔(𝑡0). Example models will be discussed within the

following sections.

4. Numeric Approach

The numeric approach is the first of two major

approaches in OpenModelica to solve the initialization

problem. The basic version was already presented in [2]

and has been successfully applied in [3].

min
𝜔(𝑡0)

𝜙 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0) → 0

s.t.

𝑧(𝑡0) = 𝑔 (𝜔(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝜔𝑚𝑖𝑛 ≤ 𝜔(𝑡0) ≤ 𝜔
𝑚𝑎𝑥

with

𝜙(.) =∑ℎ𝑖 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝑖

2

(4.1)

The basic idea is to transform the initialization problem

into an optimization problem with an optimum that is

equal to the initial solution. This is done by interpreting

all initial equations as residual ones, which are squared

and accumulated to the objective function 𝜙. It becomes

zero if all equations are satisfied.

�̇�2

�̇�1

𝑦1

𝑦2

𝑦3

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6 𝑑1

�̇�2 | 𝑓6

�̇�1 | 𝑓2

𝑦1 | 𝑓4

𝑦2 | 𝑓1

𝑦3 | 𝑓3

𝑑1 | 𝑓5

99

4.1 Under/Over-Determined Systems

Often, the modeler misses to fully describe initial

conditions to a Modelica model. For the initialization

process of such a model it is crucial to provide a

determined system. The numeric approach adds additional

initial equations by numeric model analysis. Therefore,

the Jacobian
𝜕ℎ

𝜕𝜔
(𝜔𝑠𝑡𝑎𝑟𝑡) is numerically approximated and

the maximum of the absolute values is selected for each

column. Until the initial system is determined the fixed

attribute of the variable related to the smallest values are

set to true. The heuristics is based on the fact that these

variables have the least influence on the initial system

near to the start values 𝜔𝑠𝑡𝑎𝑟𝑡. Therefore, additional initial

equations are introduced, which hopefully provide a

solvable initial system.

In some cases, Modelica models can be over-

determined, e.g. when initial equations are formulated

locally in sub-components. If the over-all initial system

consists of redundant equations, however fully determines

the solution, the current numeric approach can deal with

such systems by design [2], [3].

4.2 Scaling

Many problems are hard to solve, since the values of the

involved variables are of different magnitudes. To handle

such systems variables and equations need to be scaled. In

general the nominal attribute 𝜔𝑛𝑜𝑚 is used for scaling and

should be provided by the modeler. By this, the scaling of

the variable is straightforward like shown in (4.2).

𝜔𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 ≔ (𝜔𝑖

𝑛𝑜𝑚)−1 ∙ 𝜔𝑖 (4.2)

Since the nominal attribute is not available for equations

suitable scaling coefficients have to be calculated using

differential error analysis. Therefore, each initial equation

is approximated by first order taylor expansion. The

corresponding scaling factor for each equation is

constructed as illustrated in (4.3).

ℎ(𝜔) ≈ ℎ(𝜔𝑛𝑜𝑚) +
𝜕ℎ(𝜔𝑛𝑜𝑚)

𝜕𝜔1
∙ 𝜔1

𝑛𝑜𝑚

⏟

�̂�1
ℎ𝑗

∙
𝜔1 − 𝜔1

𝑛𝑜𝑚

𝜔1
𝑛𝑜𝑚

+⋯+
𝜕ℎ(𝜔𝑛𝑜𝑚)

𝜕𝜔𝑛
∙ 𝜔𝑛

𝑛𝑜𝑚

⏟

�̂�𝑛
ℎ𝑗

∙
𝜔𝑛 − 𝜔𝑛

𝑛𝑜𝑚

𝜔𝑛
𝑛𝑜𝑚

�̃�𝑖
ℎ ≔ {

|�̂�𝑖
ℎ| 𝑖𝑓 𝜀 < |�̂�𝑖

ℎ|

1 𝑒𝑙𝑠𝑒
 𝑓𝑜𝑟 𝑖 = 1…𝑛

𝑠ℎ ≔ (𝑚𝑎𝑥{�̃�1
ℎ; … ; �̃�𝑛

ℎ})−1
ℎ𝑠𝑐𝑎𝑙𝑒𝑑 ≔ (𝑠ℎ)−1 ∙ ℎ

(4.3)

4.3 Start Value Homotopy

Start Value Homotopy is the name of an extension to the

basic numeric approach within OpenModelica. This

method uses a different objective function 𝜙.

𝜙(.) = (1 − 𝜆) ∙ 𝜙0 + 𝜆 ∙ 𝜙1

𝜆 ∈ [0; 1] ⊂ 𝑅
(4.4)

with

𝜙0(.) =∑(𝑣 − 𝑣𝑠𝑡𝑎𝑟𝑡)2

∀𝑣

𝜙1(.) =∑ℎ𝑖 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝑖

2

(4.5)

The new objective function is a combination of two sub-

objective functions 𝜙0 and 𝜙1. Both are weighted with

the homotopy parameter 𝜆 (see (4.4)). In the beginning 𝜆

is equal to zero and gets increased during the initialization

phase until it is one. As a result the initialization

algorithm considers in the beginning just 𝜙0 and in the

end 𝜙1.
Equation (4.5) shows these sub-objective functions. 𝜙1

is the same function as the objective function of the basic

approach. This is quite reasonable, since it should solve

the same problem. 𝜙0 is a much simpler function which is

based on all explicitly given start attributes.

 model forest

𝑥1 Real foxes;

𝑥2 Real rabbits;

𝑦1 Real population(start=350);

𝑦2 Real value;

𝑝 […] // used parameters

 initial equation

ℎ1 der(foxes) = 20;

ℎ2 value = 11000;

 equation

𝑓1 der(rabbits) = rabbits*g_r –

 rabbits*foxes*d_rf;

𝑓2 der(foxes) = -foxes*d_f +

 rabbits*foxes*d_rf*g_fr;

𝑓3 population = foxes+rabbits;

𝑓4 value = priceFox*foxes +

 priceRabbit*rabbits;

 end forest;

Listing 4.1. Example model “forest”.

Figure 4.1. Paths within the state space for both initial

solutions of the example model “forest”.

100

Figure 4.1 shows the iteration paths for two versions of

the example model “forest” from Listing 4.1. The

difference between both versions is the start value of

population. The solid line and the dashed line represent

the iteration paths for population(start=350) and

population(start=850), respectively. The two small

circles are exact solutions of the related nonlinear

equation system.

The population equation 𝑓3 equally involves both

states. In the beginning of the initialization process 𝜆 is

set to zero, which yields that the objective function

consists just of 𝜙0 and considers therefore only the start

value of the population. As a result both states are set to

half of that start value in the first iteration. As expected

both paths continue straight to the corresponding solution.

Figure 4.2. Homotopy path with

population(start=350).

Figure 4.3. Homotopy path with

population(start=850).

This numeric approach including the Start Value

Homotopy feature has been used as the default

initialization method since the end of 2011.

5. Symbolic Approach

This chapter describes the newly developed symbolic

approach for solving the initialization problem, which has

been investigated and implemented since the beginning of

2012. The main idea behind this approach is the use of

symbolic transformation algorithms (matching, sorting,

tearing, etc.) that have been sketched in chapter 3 and are

already available in the OpenModelica environment.

Using the dependence graph with respect to the

initialization problem the corresponding equation system

is transformed to a block-lower-triangular form. Involved

algebraic loops are further reduced by using tearing

techniques.

So far, this approach can only be used for determined

and under-determined initialization problems. In case of

an under-determined initialization problem additional

equations are added automatically, based on symbolic

model analysis (see section 5.2), until the number of

unknowns and equations match. The resulting

initialization equation system can finally be described by

(5.1) and needs to be solved for the unknowns given by

(5.2) during initialization.

0 = 𝑓1 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

⋮

0 = 𝑓𝑛 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

 (5.1)

0 = ℎ1 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

⋮

0 = ℎ𝑚 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝑧(𝑡0) ≔ (�̇�(𝑡0) 𝑦(𝑡0) 𝑑(𝑡0))
⊤

𝜔(𝑡0) ≔ (𝑥(𝑡0) 𝑝𝑓𝑟𝑒𝑒 𝑑𝑝𝑟𝑒(𝑡0))
⊤

(5.2)

5.1 Dependence Graph

The solution process is firstly described on the example

model “forest” that only involves fixed parameters and

continuous variables. The result of the matching

algorithm performed on the corresponding bipartite graph

is presented in Figure 5.1.

Figure 5.1. Bipartite graph representation and result

of the matching for the example model “forest”.

Tarjan’s algorithm produces the dependence graph below.

Figure 5.2. Dependence graph of the initialization

problem for the example model “forest”.

der(foxes)

der(rabbits)

population

value

foxes

rabbits

𝑓1

𝑓2

𝑓3

𝑓4

ℎ1

ℎ2

der(foxes) | ℎ1

der(rabbits) | 𝑓1

population | 𝑓3

value | ℎ2

foxes | 𝑓2

rabbits | 𝑓4

101

Processing the sorted equation system means that at first

the variables 𝑣𝑎𝑙𝑢𝑒 and 𝑑𝑒𝑟(𝑓𝑜𝑥𝑒𝑠) are calculated in

equation ℎ1 and ℎ2, respectively. Then, the variables

𝑟𝑎𝑏𝑏𝑖𝑡𝑠 and 𝑓𝑜𝑥𝑒𝑠 are calculated simultaneously through

the equation system 𝑓2 and 𝑓4. Finally, the variables

𝑑𝑒𝑟(𝑟𝑎𝑏𝑏𝑖𝑡𝑠) and 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 are determined using 𝑓1

and 𝑓3, respectively. From this evaluation order it is

immediately clear that a starting value for the population

will have no influence on the initialization process. This

behavior was different when using the Start Value

Homotopy approach. In addition, this initialization

process is much faster than using the numeric approach.

But, the modeler has less influence on the final result of

the initialization.

5.2 Under-Determined Systems

As described in section 4.1 it is important to provide a

determined equation system for initialization. Since it can

happen that the initial conditions are not fully specified,

additional equations have to be added to the initialization

problem. The symbolic initialization approach in

OpenModelica automatically augments these equations

based on symbolic model analysis. Additional equations

are determined by setting the fixed attribute to true of

such components of 𝜔 that so far cannot be determined

from the initial equation system.

This information can be extracted by processing the

sparsity pattern for the Jacobian
𝜕ℎ

𝜕𝜔
, which can be seen as

the collapsed dependence graph of 𝜔. If any component

of 𝜔 cannot be calculated from the initial equation system

the whole column is zero. This symbolic method does not

depend on 𝜔𝑠𝑡𝑎𝑟𝑡 as well as other numerical issues

compared to the numeric approach.

5.3 Scaling

Using the symbolic approach the initialization problem is

transformed to a block-lower-triangular form. As

motivated earlier scaling is necessary for finding accurate

solutions even when values of variables are of different

magnitudes. Same principles are used as described in

section 4.2 but only applied on algebraic loops. This

reduces enormously the number of Jacobian elements to

be calculated.

5.4 Hybrid Models

As mentioned in chapter 3, it is necessary to initialize the

continuous as well as the discrete part of a Modelica

model. Using the numerical approach the complete hybrid

equation system necessary for simulation is considered as

constraint for the optimization process. This often leads to

a high-dimensional nonlinear optimization problem

involving real and discrete variables. Such optimization

problems are numerically hard to solve. This issue can be

avoided by symbolic transformation steps, which are also

used for the simulation.

In the following, the example model “MathRep” from

Listing 3.1 will be further analyzed with respect to the

initialization apporach. This model contains two states

and one discrete variable. Therefore, 𝜔 becomes the

following:

𝜔(𝑡0) ≔ (𝑥1(𝑡0) 𝑥2(𝑡0) 𝑑1
𝑝𝑟𝑒(𝑡0))

⊤
 (5.3)

Because there are three variables that need to be

initialized, it would be necessary that there are also three

initial conditions given. The model contains just the initial

conditions ℎ1 as explicitly declared and ℎ2 (see (5.4)) as

implicitly declared. Therefore, the corresponding

dependencies from the three unknowns are analyzed and

the additional equation ℎ3 is automatically derived.

ℎ2 𝑥1 = 𝑥1
𝑠𝑡𝑎𝑟𝑡 (implicitly declared)

(5.4)
ℎ3 𝑥2 = 𝑥2

𝑠𝑡𝑎𝑟𝑡 (automatically declared)

Figure 5.3. Bipartite graph representation and result

of the matching for the initial system of example

model “MathRep”.

Adding this additional information (5.4) to the initial

equation system the bipartite graph from Figure 5.3 is

generated. Utilizing Tarjan’s algorithm the dependence

graph presented in Figure 5.4 is produced.

Due to this symbolic approach, the original high-

dimensional nonlinear optimization problem involving

real and discrete variables is to a large extent reduced to

block-lower triangular form.

If corresponding algebraic loops still include real and

discrete variables further techniques need to be applied in

order to solve these equations. In some cases

OpenModelica’s tearing heuristic [7] eliminates involved

�̇�2

�̇�1

𝑦1

𝑦2

𝑦3

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6 𝑑1

𝑥1

𝑥2

𝑑1
𝑝𝑟𝑒

ℎ1

ℎ2

ℎ3

102

discrete variables. Same applies, if the involved variables

are of boolean or integer type.

Figure 5.4. Directed graph representation and result

of the sorting for the initial system of example model

“MathRep”.

6. Conclusions and Future Work

This paper describes the principles implemented in the

OpenModelica environment, which are utilized to

initialize complex hybrid Modelica models. Two major

methods, the numeric and symbolic approach, are

discussed in detail and advantages and disadvantages

have been pointed out.

The numeric approach can deal with over-determined

systems and has been successfully applied in [3].

Furthermore, this approach has been extended by the Start

Value Homotopy method, which gives the modeler more

control on the initialization process.

Figure 6.1. Reduced directed graph representation of

the initialization problem for the example model

“MathRep”.

The symbolic approach outperforms the numeric

treatment of the initialization problem with respect to

performance and solvability in case of large and hybrid

systems. With the numeric approach it was so far not

possible to initialize the bigger part of model examples in

the Modelica Standard Library (MSL). Today, most of

MSL examples are initialized efficiently using the

symbolic approach.

In case of under-determined initialization problems

both approaches introduce additional equations, based on

model analysis, in order to generate determined initial

systems.

In the future, the two approaches will be more

enhanced within the OpenModelica environment. The

dependence graph achieved by the symbolic approach can

be reduced to represent only the information necessary for

determining the initial unknown vector 𝜔 (see Figure 6.1

in comparison to Figure 5.4).

Up to now, the Start Value Homotopy method

considers all explicitly given start values, which might be

not desirable within an object-oriented Modelica drag-

and-drop environment. This should be improved by

introducing a special Start Value Homotopy annotation

keyword. In addition, the Start Value Homotopy feature

as well as methods for over-determined systems will be

further investigated in order to be integrated into the

symbolic approach.

References

[1] Modelica Association, Modelica® - A Unified Object-

Oriented Language for Systems Modeling - Language

Specification - Version 3.3, 2012

[2] Bernhard Bachmann, et.al., Robust Initialization of

Differential Algebraic Equations. Modelica’2006

Proceedings - Volume 2, pp. 607, 2006.

[3] Francesco Casella, et.al., Overdetermined Steady-State

Initialization Problems in Object-Oriented Fluid System

Models. Modelica’2008 Proceedings - Volume 1, pp. 311,

2008.

[4] Jens Frenkel, et.al., Survey of appropriate matching

algorithms for large scale systems of differential algebraic

equations. Modelica'2012 Proceedings, 2012.

[5] Robert Tarjan, Depth-first search and linear graph

algorithms. SIAM Journal on Computing, Vol. 1, No. 2,

1972.

[6] Hilding Elmqvist and Martin Otter, Methods for Tearing

Systems of Equations in Object-Oriented Modeling.

Proceedings of the Conference on Modeling and

Simulation, eds. Guasch and Huber, pp. 326-332., 1994.

[7] Emanuele Carpanzano, Order reduction of General

Nonlinear DAE Systems by Automatic Tearing,

Mathematical and Computer Modeling of Dynamical

Systems. Vol. 6 No. 2, pp. 145-168, 2000.

�̇�2 | 𝑓2

�̇�1 | 𝑓2

𝑦1 | 𝑓4

𝑦2 | 𝑓1

𝑦3 | 𝑓3

𝑑1 | 𝑓5

𝑥1 | ℎ2 𝑥2 | ℎ3

𝑑1
𝑝𝑟𝑒

 | ℎ1

𝑦1 | 𝑓4

𝑥1 | ℎ2 𝑥2 | ℎ3

𝑑1
𝑝𝑟𝑒

 | ℎ1

103

Session V: Other Topics

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Tool Demonstration Abstract: OpenModelica and CasADi for
Model-Based Dynamic Optimization

Alachew Shitahun1 Vitalij Ruge2 Mahder Gebremedhin1 Bernhard Bachmann2

 Lars Eriksson3 Joel Andersson4 Moritz Diehl4 Peter Fritzson1
1Department of Computer and Information Science, Linkoping University, Sweden,

(alash325@student.liu.se, {mahder.gebremedhin, peter.fritzson}@liu.se)
2Department of Mathematics and Engineering, University of Applied Sciences, Germany,

{vitalij.ruge, bernhard.bachmann}@fh-bielefeld.de
3Department of Electrical Engineering, Linköping University, Sweden, lars.eriksson@liu.se

4Department of Electrical Engineering and Optimization in Engineering Center (OPTEC), K.U. Leuven, Belgium,
{joel.andersson, moritz.diehl}@esat.kuleuven.be

Abstract
This paper demonstrates model-based dynamic
optimization through the coupling of two open source
tools: OpenModelica, which is a Modelica-based
modeling and simulation platform, and CasADi, a
framework for numerical optimization. The coupling uses
a standardized XML format for exchange of differential-
algebraic equations (DAE) models. OpenModelica
supports export of models written in Modelica and the
Optimica language extension using this XML format,
while CasADi supports import of models represented in
this format. This allows users to define optimal control
problems (OCP) using Modelica and Optimica
specifications, and solve the underlying model
formulation using a range of optimization methods,
including direct collocation and direct multiple shooting.
The proposed solution has been tested on several
industrially relevant optimal control problems, including a
diesel-electric power train, a free-floating robot, and a
stirred-tank.

Keywords Model-Based Optimization, OpenModelica,
Dynamic Optimization, Modelica, CasADi

1. Introduction
During the last decade, nonlinear model predictive control
(NMPC) and nonlinear optimal control problems (NOCP)
based on differential-algebraic equations (DAE) have had
a significant impact in the industrial community,
particularly in the control engineering area [1, 2]. State-
of-the-art methods are using numerical algorithms for
dynamic optimization based on direct multiple shooting
[3] or collocation algorithms [1].

Equation-based, object-oriented modeling languages
such as Modelica [4] have become increasingly used for
industrial applications. These languages enable users to
conveniently model large-scale physical systems
described by differential, algebraic, and discrete
equations, primarily with the goal of performing virtual
experiments (simulation) on these systems, but recently
also optimization.

Due to the influence of such equation-based, object-
oriented modeling languages in the industrial community,
there have been results of an effort where model-based
dynamic optimization has been done by coupling of
OpenModelica and CasADi [5], which is a numerical
algorithmic tool. The problem formulation and modeling
is done in Modelica [6] including the Optimica language
extensions described in [7] using the OpenModelica
graphical editor (OMEdit) and then export the model and
optimization descriptions into an XML format (Figure 1).
This enables users to formulate and use model-based
NOCP that can be solved by CasADi, see also [12].

Figure 1: Modeling NOCP using the OpenModelica
Graphical and Textual Editor

2. OpenModelica Compiler and CasADi
The OpenModelica compiler front-end has been extended
to support the Optimica language extensions. In addition,
the OpenModelica compiler has recently been extended
with XML export of models [8] based on the XML format

107

mailto:alash325@student.liu.se
mailto:peter.fritzson%7D@liu.se
mailto:vitalij.ruge@fh-bielefeld.de
mailto:bernhard.bachmann%7d@fh-bielefeld.de

defined in [9], also including the Optimica extensions. In
essence, the task of OpenModelica is to read the Modelica
and Optimica source code, translate into a flat model
description and then export the model and optimization
descriptions into an XML format which can be solved by
a numerical algorithmic tool.

The exported XML document can then be imported to
CasADi tool. The tool supports symbolic import of OCPs
via this XML format. This OCP can then be transcribed
into a nonlinear programming problem (NLP) using the
approach outlined in [10] of Section 5, and solved with
one of CasADi’s interfaced NLP solvers. The complete
tool chain is visualized in Figure 2.

Figure 2: Optimization tool chain for OpenModelica and
CasADi

3. Demonstration

In order to present the proposed concept, we demonstrate
the solution of an industrial-relevant optimal control
problem of diesel engine model. The Diesel-electric
powertrain model presented in [11, 10] is a nonlinear
mean value engine model (MVEM) containing four states
and two control inputs. The problem solved here is a
minimum fuel problem for a transient from idle to 170
kW, for an end time of 0.5 s. The control and state
trajectories of the optimization results are shown in Figure
3 and Figure 4 respectively.

Figure 3: Optimization results of the Diesel-electric
powertrain model– state variables.

Acknowledgements
This work has been partially supported by Serc, by SSF in
the EDOp project and by Vinnova as well as the German
Ministry BMBF (BMBF Förderkennzeichen:
01IS09029C) in the ITEA2 OPENPROD project and in
the ITEA2 MODRIO project. The Open Source Modelica
Consortium supports the OpenModelica work.

Figure 4: Optimization results the Diesel-electric
powertrain model – control variables.

J. Andersson and M. Diehl acknowledge support by
PFV/10/002 OPTEC, GOA/10/09 and GOA/10/11,
FWO G.0320.08, G.0377.09, SBO LeCoPro; Belspo
IUAP P7 DYSCO, FP7-EMBOCON (ICT-248940),
SADCO (MC ITN-264735), ERC ST HIGHWIND (259
166), Eurostars SMART, vicerp, ACCM.

References
[1] Biegler, L.T. Nonlinear Programming: Concepts,

Algorithms, and Applications to Chemical Processes. s.l.:
Society for Industrial Mathematics, 2010.

[2] Tamimi, J. and Li, P. A combined approach to nonlinear
model predictive control of fast systems. Journal of
Process Control, 20: 1092–1102, 2010.

[3] Bock, H.G. and Plitt K.J. A multiple shooting algorithm for
direct solution of optimal control problems. In Proc. of 9th
IFAC World Congress, Budapest, pp: 243-247, 1984

[4] Fritzson, P. Principles of Object-Oriented Modeling and
Simulation with Modelica, Wiley-IEEE Press, 2003.

[5] Andersson, J., Åkesson, J. and Diehl, M. CasADi -- A
symbolic package for automatic differentiation and optimal
control, Recent Advances in Algorithmic Differentiation,
Lecture Notes in Computational Science and Engineering
Volume 87: 297-307, 2012.

[6] Modelica Association. The Modelica Language
Specification Version 3.2, March 24th 2010. Available at:
http://www.modelica.org/(Accessed 8 December 2012).

[7] Akesson, J. Optimica—An Extension of Modelica
Supporting Dynamic Optimization. In Proc. of 6th
International Modelica Conference, March 3-4, 2008.

[8] Shitahun, A.. Template Based XML and Modelica
Unparsers in OpenModelica. Master thesis. Linköping
University, August 30, 2012

[9] Parrotto, R., Åkesson, J. and Casella, F. An XML
representation of DAE systems obtained from continuous-
time Modelica models. In Proc. of EOOLT 2010,
September 2010. www.eoolt.org

[10] Bachmann, B., et al. Parallel Multiple-Shooting and
Collocation Optimization with OpenModelica. In Proc. 9th
Int. Modelica Conf. Munich, Germany, Sept 3-5, 2012.

[11] Sivertsson, M. and Eriksson, L. Time and Fuel Optimal
Power Response of a Diesel-Electric Powertrain. E-
CoSM’12 – IFAC Workshop on Engine and Powertrain
Control, Simulation and Modeling, 2012.

[12] Shitahun, A., Ruge, V., Gebremedhin, M., Bachmann, B.,
Eriksson, L., Andersson, J., Diehl, M., Fritzson, P. Model-
Based Optimization with OpenModelica and CasADi.
Accepted to IFAC Sept. 2013, Tokyo, Jan. 2013.

108

http://www.modelica.org/

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Tool Demonstration Abstract: OpenModelica Graphical Editor and
Debugger

Adeel Asghar Peter Fritzson
Department of Computer and Information Science, Linköping University, Sweden,

{adeel.asghar,peter.fritzson}@liu.se

Abstract
This paper demonstrates the OpenModelica graphic editor
for easy-to-use graphic modeling of Modelica models and
the Modelica debugger.

The graphic editor aims at providing a user friendly
open source Modelica modeling graphical user interface
since most of the already existing open source tools were
either textual or not so user friendly. The target audiences
for the tool are the Modelica users who want easy-to-use
model creation, library browsing, connection editing,
simulation of models, plotting results and visualization of
components.

Modeling errors and problems are often hard to find
because of the high abstraction level of languages like
Modelica. Models containing functions with huge
algorithm sections increase the need for run-time
debugging. The OpenModelica debugger provides a
debugging of such models. The debugger currently
supports debugging of algorithmic code. The debugger
uses the Gnu low-level C-language debugger (GDB) for
low-level manipulation and control of the executing
program during debugging.

Keywords Graphic editor, Connection Diagrams, Run-
time Debugging, Modeling and Simulation, Algorithmic
code.

1. OpenModelica Graphical Editor
The OpenModelica graphical editor (OMEdit) is an
integrated development environment for Modelica where
users can model, simulate and plot their physical systems
designs.

It supports the Modelica standard library 3.2.1 through the
graphical annotations. It is based on OpenModelica’s
interactive scripting environment. The scripting
environment is part of the OpenModelica compiler. The
communication with the scripting environment is carried
out through the CORBA interface. During the
communication the OpenModelica compiler acts as server

while the graphic editor acts as a client.
OMEdit provides user friendly features like;

• Modeling – easy Modelica model creation.

• Browsing – Modelica standard library browsing.

• Component interfaces – smart connection editing for
drawing and editing connections between model
interfaces.

• Simulation subsystem – subsystem for running
simulations and specifying simulation parameters
start and stop time, etc.

• Plotting – interface to plot variables from simulated
models.

Figure 1. OpenModelica Graphical Editor.

2. OpenModelica Debugger
The debugger is integrated within the Modelica
Development Tooling (MDT) which is an Eclipse plugin.
It communicates with the Gnu debugger (GDB) via its
Machine Interface (MI) channel. Figure 2 shows the
Eclipse-based user interface of the debugger.

The debugger provides the following general
functionalities:

• Adding/Removing breakpoints.

• Step Over – moves to the next line, skipping the
function calls.

109

• Step In – takes the user into the function call.

• Step Return – completes the execution of the function
and takes the user back to the point from where the
function is called.

• Suspend – interrupts the running program.

The debug view primarily consists of two main views:

• Stack Frames View

• Variables View

The stack frames view shows a list of frames that
indicates the program flow. The variables view shows the
list of variables at the current stack position.

Acknowledgements
This work has been supported by the Open Source
Modelica Consortium (OSMC), by Vinnova in the
RTSIM, ITEA2 OPENPROD and ITEA2 MODRIO
projects, and by SSF in the EDOp project.

References
[1] Peter Fritzson. Principles of Object-Oriented Modeling and

Simulation with Modelica 2.1, 940 pp., ISBN 0-471-
471631, Wiley-IEEE Press, 2004.

[2] The Modelica Association. The Modelica Language
Specification Version 3.2. http://www.modelica.org

[3] Adeel Asghar, Sonia Tariq, Mohsen Torabzadeh-Tari,
Peter Fritzson, Adrian Pop, Martin Sjölund, Parham
Vasaiely, and Wladimir Schamai. An Open Source
Modelica Graphic Editor Integrated with Electronic
Notebooks and Interactive Simulation. In Proceedings of

the 8th International Modelica Conference, Dresden,
Germany, March.20-22, 2011.

[4] Peter Bunus. Debugging Techniques for Equation-Based
Languages. PhD Thesis. Department of Computer and
Information Science, Linköping University, 2004.

[5] Adrian Pop and Peter Fritzson: A Portable Debugger for
Algorithmic Modelica Code. In Proceedings of the 4th
International Modelica Conference, Hamburg, Germany,
March 7-8, 2005.

[6] Adeel Asghar, Adrian Pop, Martin Sjölund, and Peter
Fritzson. Efficient Debugging of Large Algorithmic
Modelica Applications. In Proceedings of MATHMOD
2012 7th Vienna International Conference on Mathematical
Modelling, Vienna University of Technology, Vienna,
Austria, February 15 - 17, 2012.

[7] Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin,
and David Akhvlediani. OpenModelica Development
Environment with Eclipse Integration for Browsing,
Modeling, and Debugging. In Proceedings of the
Modelica'2006, Vienna, Austria, Sept. 4-5, 2006.

[8] Adrian Pop, David Akhvlediani, and Peter Fritzson.
Towards Run-time Debugging of Equation-based Object-
oriented Languages. In Proceedings of the 48th
Scandinavian Conference on Simulation and Modeling
(SIMS’2007), available at www.scan-sims.org and
http://www.ep.liu.se. Göteborg, Sweden. October 30-31,
2007.

[9] Martin Sjölund and Peter Fritzson. Debugging Symbolic
Transformations in Equation Systems. In Proceedings of
the 4th International Workshop on Equation-Based Object-
Oriented Modeling Languages and Tools, (EOOLT'2011),
Zürich, Switzerland, Sept 5, 2011.

[10] Richard Stallman, Roland Pesch, Stan Shebs, et al.
Debugging with GDB. Free Software Foundation, 2011.

Figure 2. The debug view of the debugger within the MDT Eclipse plugin.

110

Modelica on the Java Virtual Machine

Christoph Höger
Technische Universität Berlin, Germany, christoph.hoeger@tu-berlin.de

Abstract
Modelica has seen a steady growth of adaption in industry
and research. Yet, most of the currently available tools
follow the same technological path: A Modelica model is
usually interpreted into a system of equations which is then
compiled into e.g. C.

In this work, we demonstrate how a compiler can trans-
late Modelica models into Java classes. Those Java classes
can be evaluated into a system of equations which can be
solved directly on the JVM.

Implementing this tool yields some interesting prob-
lems. Among these are the representation of polymorphic
data, runtime-causalisation and equation optimization and
Modelica’s modification system. All those problems can be
solved efficiently on the JVM.

Keywords Modelica, separate compilation, Java

1. Introduction
Modelica [1] is an open, standardized language for the
description of hybrid systems of differential and alge-
braic equations. It brings well-known features from object-
oriented languages (like hierarchic composition, inheri-
tance and encapsulation) into the domain of multi-physics
modeling. Our focus is the implementation of Modelica. In
this work, we present a prototypical extension of modim
[10] that allows us to compile Modelica to the Java Virtual
Machine.

The rest of the paper is organized as follows: First, we
will motivate the need for a Modelica Compiler and the
JVM as its target platform. Afterwards, we show some
details of the translation and the runtime system. Finally
we will demonstrate how our prototype performs in model
instantiation and simulation.

2. Compiling Modelica
As Modelica’s adoption in Industry and Science grows,
three aspects of the language gain more and more attention:

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/TBD/

EOOLT 2013 website:
http://www.eoolt.org/2013/

First, Modelica allows for the easy exchange of mod-
els in forms of libraries. Those libraries are not developed
by a tool vendor and tested and shipped with a specific
implementation of the language. They rather depend (ide-
ally) only on the language’s specification and are platform-
independent. When a Modelica model shall be simulated,
it is first instantiated (or elaborated). During this process,
all the equations that make up the final mathematical model
are generated.

A Modelica library is thus basically a collection of more
or less sophisticated methods to create a mathematical
model. In that sense it is comparable to any other library
of software. And as for any other computer-language it
becomes important for Modelica’s library-developers that
their models behave correctly when being instantiated by a
client (i.e. that they do not cause the model instantiation to
fail in some situations).

Since Modelica is a statically-typed language, this ques-
tion can, in theory, be answered by checking that any model
conforms to its interface. Unfortunately, there is no formal
algorithmic specification of the model instantiation process
for Modelica. Instead, every tool provides its own, slightly
different interpretation of the specification. Therefore a ac-
tual useful typecheck would have to assume a certain exe-
cution model. Hence, any safety assumption is only valid
for a given interpretation of the Modelica specification.

The second problem follows directly from the usage of
libraries. Naturally, libraries tend to offer more features
than actually required for a single application. From the
modelers perspective this may lead to unexpected large sys-
tems of equations. A simple pendulum, for example might
be modeled by using the Modelica Multibody library as
well as by a few equations from the textbook. Naturally, the
Multibody approach is much more generic, since it might
easily be adapted to (and used in) more complex mechani-
cal systems. Such systems require the a fast model instan-
tiation since otherwise instantiation time might exceed the
actual simulation. In fact it may happen that model engi-
neers are slowed down in their development process just
because of the model instantiation overhead.

Finally, Modelica offers a lot of means to actually com-
pute models. Currently, those computations range from ar-
rays and loops to redeclarations. Yet it is not hard to pre-
dict, that more higher-order modeling features (recursive
models, models as parameters etc.) will find their way into
the language. All those features share one common pattern:
The relation between models and their instances becomes

111

1 : n with very large n. In such a case it may become im-
possible to actually generate code for each instance due to
practical reasons: As we have shown in [9], such an attempt
yields C-code with a size proportional to the number of
model-instances. Therefore for very large n, at least the C-
Compiler will usually be unable to generate an executable
model.

2.1 Interpreting vs. Compiling Modelica
To all of those problems exists a common solution: Model-
ica models should be compiled separately. When we think
of a Modelica model as a method to describe a system of
equations, it becomes quite obvious that most current tools
(and even the specification) insist on interpreting Modelica.
There are a few indicators for this:

• Most current tools can be steered into an endless loop
during instantiation. A compiler should guarantee ter-
mination (for finite input).

• Some implementations will even try to call external
functions during instantiation. This may lead to severe
problems e.g. in case of cross-compilation.

• The language specification defines array-types to in-
clude the actual size. This kind of dependent typing
naturally requires an interpreter for a type-check. Since
Modelica does not place any syntactical bounds on the
expressions used for array-access, this means that a
fully compliant type-checker must contain a full Mod-
elica interpreter.

In contrast, a compiler does not need to evaluate any
Modelica expressions at all 1. Instead, a model or a group
of models (called the compilation unit) is translated into a
target language. The effect of the model instantiation, i.e.
the creation of a system of equations is done by evaluating
the compilation result according to the semantics of the
target language.

This way, we gain multiple benefits:

• A compiler can be implemented in a way that guaran-
tees termination.

• The compiled fragments can be reused in different con-
texts.

• The instantiated model is memory-efficient: Only the
parts that actually differ between different instances
need to be allocated dynamically.

It is important to note that to achieve all those benefits,
it is not necessary that the compilation targets are portable
(i.e. compatible between different tools). It suffices that
there is a known way to compile models for a known tool.

2.2 Separate Compilation & Variable Structure
Besides better language scalability and safety an additional
point motivates the compilation of models: In case of a
variable-structure system, every mode of the system needs
to be processed into a computable form (causalisation, in-
dex reduction etc.). A way to achieve this with current im-

1 It might choose to do so for certain optimizations

plementations is to generate a model for each mode and
process it before simulation [15].

This method has two drawbacks:

• Every possible mode needs to be known before the
simulation starts. This excludes sophisticated models,
where some mode depends on the simulation results of
another as well as models that contain a large number
of possible modes.

• It is impossible to decide which mode will become
active during a simulation. Therefore it is quite likely
that computational effort is wasted in the translation of
unneeded modes.

On the other hand it is quite obvious that a compiler has
to postpone all this processing until the instantiation was
successful. Naturally, this means that variable-structure
processing can be solved by the same machinery as a com-
piled model: Once a mode-change occurs, instantiate the
new model the same way as the old one and continue
simulation. Of course, the efficiency of this transition is
quite important, but technically, compilation and variable-
structure systems share a lot of problems.

2.3 JVM
Our compiler requires a much more sophisticated runtime
system than an interpreter: We need to be able to describe
and instantiate data-structures and higher-order functions
(part of Modelica since version 3.2). Additionally, our run-
time needs to support sophisticated graph-algorithms and
some numerical methods. For reasons that are explained
later, we need an accessible intermediate representation of
code. Finally our runtime system needs to be fast enough
for real-world applications.

At least two platforms fulfill those requirements: The
Java Virtual Machine (JVM, [12]) and the Low Level Vir-
tual Machine (LLVM, [11]). Although both are available
for practically every platform we preferred the JVM for the
following reasons:

• The JVM is tightly integrated with (but not bound to)
Java, which is far more productive than C. This makes
it easier to implement the necessary runtime system.

• The JVM is the foundation of a large, active ecosystem.
Currently there exist hundreds of thousands of free Java
libraries2. Currently this is mostly beneficial for the
implementation of the runtime system. But integrating
Modelica into this ecosystem might yield additional
benefits in the future.

• The mainstream JVM implementation, Hotspot is fast.
In fact, a modern Java program may beat an equivalent
C program in certain areas [3].

• In contrast to LLVM, the JVM already contains a notion
of classes and objects which makes it a natural goal for
the compilation of Modelica.

2 available e.g. on http://search.maven.org/

112

3. Modelica on the JVM
In this section we will explain the principles of the compi-
lation from Modelica to Java. To do so, we will answer a
few questions:

• What kind of Java code shall be generated? This is,
more or less, a pragmatic design decision. Yet the gen-
eral layout of the target code influences the runtime sys-
tem and vice-versa, thus it shall be explained.

• How do we implement Modelica’s data structures and
the operations defined on them? Especially the transla-
tion of Modelica-models and the “.”-operator for pro-
jection are of interest here.

• How do we translate multiple inheritance?
• How can equations be structured as first class citizens?

This is important for efficient simulation: Since we do
not want to interpret equations during simulation (rather
evaluate their compiled bytecode), it is an interesting
question how we can package them into Java-classes.

• How can relations be structured as first class citizens?
The availability of relations as first class citizens would
enable to define the relation resolution outside of the
runtime system and possibly by the user.

3.1 Generated Java Code
As already mentioned, separate compilation means to
transform compilation units from one language into an-
other. What exactly makes up a compilation unit remains
a design decision. The default Java compilation unit is
a class. Java-classes are not one-to-one mapped to java-
source files. Instead, a .java file might contain several
nested classes.

Since Java and Modelica share a notion of classes, it
seems natural to establish a one-to-one relationship be-
tween them. Thus, our compiler will not translate Modelica
source files into Java source files3 but classes into classes.

This decision determines two other aspects of the com-
pilation: Since Java allows aggregation, we can directly
translate Modelica’s aggregation into it. The same holds for
model instantiation. While Modelica has no explicit con-
structors except for records, we are still forced to use them
on the Java side.

Other important requirements for our target language
are:

• Meaningful names. We will try to keep the names of
compiled classes as close as possible to the ones used
in the Modelica source. This should make the generated
code more readable.

• No compilation into Generics. Java’s version of poly-
morphic types is completely erased at object level.
Therefore, there would be no gain in compiling Model-
ica’s polymorphism into Java’s.

• Creation of immutable objects. As explained e.g. in
[2], immutable objects provide greater safety as well

3 As said, this is just a design decision. But since Modelica files tend to be
rather large in practice, we think it is a well-founded one.

as better performance in many cases. Since Modelica
is a declarative language, mutation of objects should be
considered an error. Thus every class and all of its fields
are declared final.

3.2 Modification by Reference
Choosing the JVM as our compilation target has one im-
portant consequence for model modification: We can di-
rectly reuse the JVM’s object reference passing for modi-
fications as proposed by Zimmer in [21]. Consider the fol-
lowing Modelica snippet:

model A
model B

Real x;
end B;
replaceable B b;

end A;

A a(b = c);

Traditional tools usually would interpret the modifica-
tion on a as an additional set of equality constraints rang-
ing over the fields that b and c have in common. Notably,
most of these tools would also remove equalities in a later
optimization step by storing them outside of the system of
equations.

On the JVM we can instead directly pass c into the
instance of a. This way, we do not need to create any
additional equations or even instantiate a.b.

The downside of this approach is, that our runtime sys-
tem needs to deal with the fact that c might have a different
data layout than b. Even worse, this data layout is in gen-
eral unknown at the compile time of A. We will deal with
this issue in section 3.4.

3.3 Inheritance
Modelica allows a class to inherit from multiple distinct
classes 4. Such a class may look like this:

model M
model C

Real z;
end C;
extends A.B;
extends C;
A a;

end M;

The result of flattening M according to the Modelica
specification would yield a representation like this:

model M_Flat
Real a•b•x;
Real x;
Real z;

end M_Flat;

4 See section 6.2 for a discussion of the “same” source rule in Modelica

113

Where • is filled in to make a name unique (Some tools
use the same character as for projection, while others might
prefer underscores etc.). While the generation of composite
names is a technical detail, the semantic requirement is
not: M_Flat contains three real-valued unknowns. This
is exactly what any Modelica tool (be it an interpreter or a
compiler) has to deliver.

To fulfill this requirement, we introduce special fields
into the compiled classes, to represent super-objects (in-
stances of super-classes). That way we can compile the in-
heritance of arbitrary many classes into a simple form of
aggregation:

class M {
public final MBase a;
public final B superclass1;
public final C superclass2;
...

}

Note that the superclasses are declared with the same
(compiled) type as in the original model, while the child-
object is of type MBase. We will motivate this in the next
section.

3.4 Uniform Data Representation
Modelica has a structural type system. This means that for
any compiled class the compiler cannot know all classes
that are compatible (as there infinitely many of such com-
patible classes). When instantiating the model A from our
example above, we could legally choose the type of b arbi-
trarily, as long as it contains a real-valued unknown named
x.

For our implementation this means that there is no way
to know where to actually look for e.g. the field x in
b. It may be the first, second or 42nd field in whatever
object gets passed in from the outside. Java, as our target
language does not allow structural compatible expressions,
but requires nominal compatibility. That is, every class has
to denote the set of its subtypes at its definition site.

Note, that both kinds of systems are equivalent in case
all types are known (by simply enumerating all existing
types). Thus, the problem is tightly coupled to the proposed
scheme of separate compilation.

In addition to structural subtyping, Modelica is a poly-
morphic language, capable of a restricted form of type-
abstraction and type-application. This means we have to
deal with the well known problem of compiling univer-
sally quantified types: A model may contain a so called
replaceable type which may be substituted by any (yet
unknown) concrete type at the instantiation site.

To both problems, there exists a common solution: Uni-
form data representation. This kind of compilation strat-
egy aims at compiling every object-level data into the same
form. This form then needs to support5 any operation that
is mapped from the source into the target language.

5 Since Java is statically typed, this means we have to carefully design the
runtime system to not cause any Java compile-time-errors.

For Modelica, the most important of these operations is
the projection (“.”). This operation cannot be directly en-
coded into the Java-projection (using the same character),
because of the difficulties noted above. Instead, every ob-
ject in our target language has to support this operation via
a Java-method get.

This method implements the dispatch of a projection
among the local fields of a Java class (as already men-
tioned, aggregation is translated directly into Java). As ev-
ery object in our runtime system implements this method,
a Modelica projection a.b can be directly compiled into a
Java expression a.get("b")

Yet, the important question remains how the compiled
object itself can implement get. In the presence of poly-
morphic classes, does a compiled class know its own data
layout?

Fortunately, Modelica contains two important restric-
tion to type abstraction:

• It is only applicable in aggregation, not inheritance:
Thus any class always knows all of it’s concrete super-
classes (not to confuse with it’s super-types as every
super-class is also a super-type but not vice-versa) and
by conclusion the name of all of its fields. This rule
is called the "transitively non replaceable rule" in the
Modelica specification.

• Type application is bounded. That is, every applicable
type has to be compatible with the type, it replaces.
Thus, a compiled class might not know the concrete
type of its fields, but it does know that they exist.

These two restrictions allow a compiler to compute the
set of legal right hand sides for a projection: Either it is a
local field, or a field inherited by some super-class. In case
of a local field, the get-method simply returns the child-
object. In case of an inherited field, the projection can be
forwarded to Java’s built-in projection operator, since the
concrete type of all super-objects is known at compile-time.

Putting it all together our get-method looks like this:

public MObj get(String name) {
switch(name) {

case "a" : return a;
case "y" : return superclass1.y;
case "z" : return superclass1.z;
case default: throw new

RuntimeException("");
}

}

The possibility to use a switch-statement on a String
is a relatively new feature to Java. As it has to handle
only constant input in our case (the field names are always
translated into String literals), we can expect a significant
performance improvement over techniques like reflection
or dynamic method invocation.

3.5 Modification
One important feature of Modelica is the ability to modify
certain values of an instantiated object. Although some

114

fields may be unmodifiable by the keyword final, we
consider all fields modifiable for simplicity.

Such a modification works like a selective record up-
date:

model X
record N

parameter Real x = 4;
parameter Real y = 2;

end N;
N n(y = 1);

end X;

It is important to distinguish this kind of value modi-
fication from the type application mentioned above: The
type application always implies a value modification, but
not vice-versa.

Since we insist on creating immutable objects, value-
modification cannot be implemented by assignments. In-
stead, we have to provide some kind of factory to the in-
stantiated object which takes care of creating the necessary
child-objects. The instantiated object is responsible to in-
voke the factory methods in the correct order.

Additionally the provider of the factory object does not
know about the default modifications defined in the instan-
tiated class (due to separate compilation). Therefore, every
class provides a default factory which can be extended by
any modifying factory at the instantiation site.

final class N {
final MBase x;
final MBase y;

public N(NModification factory) {
x = factory.newX();
y = factory.newY();

}

public class NModification {
public final MBase newX() {
return new MParameter(4.0);

}
public final MBase newY() {

return new MParameter(2.0);
}

}
}

3.6 Equations
The most important parts of a Modelica model are certainly
its equations. In this section we will describe the compila-
tion of such an equation on the basis of the Modelica equa-
tion below:

der(x) = 2*y;

As we have already proposed in [9], equations can be
compiled into solution functions that can be used to com-
pute a root for a given variable. Compiling these functions
into Java-classes is then straightforward. In best object-

oriented manner, an equation might access the surrounding
object via a self-reference (comparable to Java’s this).
Additionally, an equation must be able to report the set of
unknowns it depends on. Now the runtime system can ask
an equation what value a certain unknown has as at a cer-
tain time (if the runtime system provides this equation with
the values of all other unknowns).

final MObj self;

...

public final double solveFor(
final MVar v, final SolvableDAE sys) {

final MVar v1 = system.der.apply(
self.get("x"));

final MVar v2 = (MVar)self.get("y");

if (v == v1) {
final Double tmp1 = 2.0;
final Double tmp2 = sys.valueOf(v2);
final Double tmp3 = tmp1 * tmp2;
return tmp3;

} else if (v == v2) {
final Double tmp4 = 0.5;
final Double tmp5 = sys.valueOf(v1);
final Double tmp6 = tmp4 * tmp5;
return tmp6;

}
throw new RuntimeException();

}

This general scheme can of course be easily special-
ized: Our runtime system contains special classes for linear
equations and direct equalities as these can be solved more
directly (or even be removed before simulation).

Higher-order equations (e.g. if- or for- equations)
can now be translated into corresponding Java code that
instantiates the appropriate equation-objects. It is the task
of the runtime system to collect all those objects, sort them
and invoke their solution functions in a correct order to
compile the global system result. See section 4.2 for a
discussion on how this can be achieved.

3.7 Relation Semantics
Modelica does not only allow equations to be generated
by model instantiation, but also by relations. Relations can
take different forms, but the most widely known one is
probably the connect-statement:

model C
...
connect(x, y);

end C;

Modelica contains several different kinds of those rela-
tions that are all currently specified in the language stan-
dard. This increases the size and complexity of the specifi-
cation significantly and makes it hard to implement Mod-
elica from scratch. Although our favored solution to this

115

issue (userdefined connection semantics) is not the topic of
this paper, our runtime system and compiler are naturally
prepared for it. So we give a short overview:

Unlike equations, relations only have a meaning in a
global context. Only the complete set of all relation in-
stances (usually called the set of connections, but not lim-
ited to the connect-relation) can be used to generate a set
of equations.

Fortunately, these generated equations always have a
certain form. Only some parts of the equations change
(e.g. flow sets always generate sum-to-zero equations etc.).
Thus, those equations can be seen as some kind of higher
order model (parameterized over the relation sets).

To implement this, our runtime contains relations as
first-class citizens. As well as equations, they are computed
by the model-instances (again allowing loops, condition-
als etc.). For this purpose, every compiled model-instance
contains a method relations() to compute all locally de-
fined relation-objects.

Since relations are often defined on ports, which in turn
often distribute a relation over their fields, the relation
creation is invoked on the first argument of the relation
definition. In case of our example model C above, the
relation method would look like this:

public final Iterable<MRelation>
relations() {

final MObj tmp1 = self.get("x");
final MFunction tmp2 =

tmp1.get("connect");
final MObj tmp3 = self.get("y");
return tmp2.apply(tmp1, tmp3);

}

The runtime system collects all relations and hands them
over to specialized relation-handlers, which are basically
models6 with a certain signature. In a future version, they
should be implementable in pure Modelica.

4. The Runtime System
As already mentioned, the runtime system’s responsibili-
ties contain the collection of relations and equations, the
symbolic manipulation of systems of equations and the
control of the simulation.

4.1 Classes
To achieve this, it comes with a set of classes that are to be
implemented or generated by the compiled models.

MBase Since we need to distinguish our object system
from Java’s, MBase was introduced. It is the base class
of all other classes and serves as the same purpose in
our system as java.lang.Object on the JVM.

MObj Every model instance may contain equations and
relations. This is what distinguishes an instance of this
class from the other runtime objects.

6 This means, it is quite natural, that they create equations.

MEquation As already mentioned, equations have a spe-
cial interface to enable causalisation.

MFunction As in any functional languages, functions are
first-class citizens in our runtime environment. Once
Modelica gets (full) support of closures, we will imple-
ment this here.

MRelation This class is basically a tag to distinguish a
relation from the other runtime objects.

MArray Objects of type MArray implement Java’s List
interface. Additionally they provide a specialized im-
plementation of the get-method, which is necessary for
Modelica’s vectorized field access.

MVar Variables basically serve two purposes: They decide
what kind of information need to be written into a result
file and they work as a placeholder for actual double-
values in equations. In a future version, they will prob-
ably hold all the additional attributes (e.g. start, min,
max) that Modelica supports.

MParameter Objects of type MParameter need to be in-
stantiated from user provided values.

MPotentialVar Since Modelica contains a builtin defi-
nition for potential variables, our runtime contains a
builtin class for them.

MFlowVar As for potentials, flows are builtin to the lan-
guage and thus mirrored in the runtime system.

MEquation MBase MFunction

MObj MArray

MRelation MParameter

MVarMPotential MFlow

MDerVar

Figure 1. Modelica Runtime Classes

4.2 Causalisation & Index Reduction
Bringing Modelica models into an efficiently computable
form usually requires two process-steps: Causalisation
and Index-reduction. Informally, causalisation tries to use

116

Edges Vertices Hopcroft-Karp
80 60 5ms

800 600 28ms
8000 6000 135ms

80000 60000 278ms
800000 600000 1.131ms

Table 1. Causalisation runtime on the Automaton model

as much forward-substitution as possible while index-
reduction aims at transforming a DAE into an ODE, which
can be handled by numerical integration methods.

As we have shown in [9], runtime causalisation can be
implemented as a graph algorithm without any symbolic
processing if the solution functions are precompiled. We
implemented this technique in modim for our compiler.
Yet it remained an open question, whether the causalisation
would be fast enough to be invoked on every startup. To
answer this question we measured the the performance of
the Hopcroft-Karp algorithm implemented in the JGraphT
library [17] for different sizes of our Automaton model (see
Appendix).

The results can be seen in table 4.2. In the given case the
algorithm behaved much better than the theoretical limit of
O(|E|

√
|V |). But more important is the fact that even for

large models (400000 non-equality equations) the causali-
sation overhead would still be bearable (as ≈ 1s of addi-
tional instantiation time would be quite small compared to
the expected simulation time).

With causalisation settled, index-reduction remains an
open problem for our runtime system. Although the actual
process is a solved problem with the Dummy Derivatives
Method [14] or even more advanced methods ([13]), from
our perspective, a more fundamental problem has to be
solved first:

The purpose of an index-reduction algorithm is to iden-
tify equations that need to be differentiated at most n times
to reduce a system of index n to an ODE. The actual value
of n can only be computed, once the whole system of equa-
tions is known. And as we have stated in the beginning, our
system will not do any symbolic processing at this point in
time. So the question is not, which algorithm to choose for
index-reduction, but how to resolve this conflict.

This is precisely the reason why we demanded an acces-
sible just-in-time compilation format for our runtime: Au-
tomatic Differentiation [16] allows for precise computation
of derivatives. It has been used with some success for Mod-
elica already [4]. Yet, our approach goes further: With AD,
we can compute the derivative of virtually any function that
can be compiled to the JVM. Since we have access to the
Bytecode, we do not need any symbolic information about
the equations to do so.

Currently, work is ongoing to implement automatic dif-
ferentiation for modim. This work aims to leverage the ex-
isting AD library nabla 7. Once the implementation is ma-

7 http://http://commons.apache.org/sandbox/nabla/

ture, we can investigate, which index-reduction algorithm
is best suited for our approach.

4.3 Numerical Methods
Naturally, numerical simulation requires a set of numerical
tools. The numerical algorithms required for a Modelica
simulation can roughly be divided in three categories:

• DAE solvers
• ODE solvers
• Algebraic solvers

Unfortunately, there is no implementation of a full-
featured DAE solver like DASSL for Java. In theory, we
could interface with an existing C/C++ implementation but
the data transport overhead would probably cause a too
severe performance penalty. In fact there seems to be a
general lack of implicit integration methods for the JVM.
Therefore future versions of our runtime will probably need
to carry their own implementation.

The situation for ODE integrators is slightly better: The
apache commons math library 8 contains a comprehensive
collection of explicit ODE solvers. There we also find a
comprehensive list of root-finding algorithms and some
basic linear algebra support. For now modim’s numeric
runtime depends on those algorithms for simulation.

5. Performance
Benchmarking is a delicate business at best. This is es-
pecially true on the JVM: The Java Virtual Machine is a
garbage collecting environment and issues a just-in-time
compiler. For that reasons, the runtime behavior of a pro-
gram might vary drastically depending on the state of the
virtual machine. This is the reason why our performance
measurements sometimes seem to run faster for larger in-
puts. It is thus not our goal to give precise information
about runtime but to show the general time-frame of a cer-
tain problem size.

5.1 Compilation
Compilation performance is negligible in our approach, as
long as it does not exceed the instantiation time for even
large models. In fact, our current implementation is quite
fast: Compiling the Automaton and Cell model below took
less than 100ms on a warmed-up JVM.

5.2 Instantiation
There is no standardized or widely adopted Modelica-
benchmark (as it exists for other multi-implementation lan-
guages like JavaScript). Even if there was one, our compiler
would not be able to execute it, due to its prototypical state.

So instead of presenting some semi-accurate numbers
comparing our compiled models to another implementa-
tion, we will present synthetic benchmarks for instantiation
without comparing the results to another tool. The focus
here is more on the general ability to instantiate such mod-
els at all in a timely manner.

8 http://http://commons.apache.org/math/

117

n # variables instances time
1 1 1 15ms
2 2 3 20ms
3 6 10 1ms
4 24 41 2ms
5 120 206 10ms
6 720 1237 60ms
7 5.040 8660 308ms
8 40.320 69281 476ms
9 362.880 623530 873ms

Table 2. Instantiation time of Faculty

model Faculty "recurses n! times"
constant Integer n;
Faculty[n] faculties(each n = n - 1)

if (n > 1);
Real root if n == 1;

end Faculty;

The model Faculty above is instantiated recursively.
As one might see at a glance it will create n! unknowns
for any parameter n > 0. But to do so, it also needs to
instantiate a lot of models (actually n!

∑n
k=1

1
k!). Therefore

although this model does not have any usage for simulation,
we consider it a valuable stress-test for our runtime system.
Table 2 shows the instantiation time results for up until
n = 9.

width # equations instance equations
10 60 28ms 145ms

100 600 3ms 18ms
1000 6000 41ms 202ms

10000 60000 237ms 682ms
100000 600000 41ms 1.175ms

Table 3. Instantiation time for Automaton

As a second, more practical test for instantiation per-
formance, we created a small model of a cellular automa-
ton. This kind of models is found in practice in e.g. in
thermodynamic models, where space-discretization leads
to higher accuracy. Thus we consider the instantiation per-
formance of this model of practical relevance.

model Cell
Real center;
Real target;
Real n,e,s,w;

equation
target = (n + e + s + w) / 4;
der(center) = target - center;

end Cell;

To improve readability, the whole automaton model
can be found at the end of this document. We instanti-
ated the automaton model for different values of width.
The height parameter was set to 1. In contrast to the
Faculty model above, the Automaton actually creates

equations. Thus, the time it takes to calculate them is also
of interest in this benchmark. The results are shown in table
3.

5.3 Simulation
When it comes to simulation, a high performance is cru-
cial. While it might seem acceptable to loose some percent
against another tool for the benefit of faster compilation
and instantiation, already a doubled simulation time would
probably rule out our implementation in any relevant appli-
cations.

Thus unlike for instantiation, we have to demonstrate
that a Java-based solution can be as fast as a C-based one.
To show this, we need a reference implementation and a
simple model (simple enough for our prototype to compile
it as well as simple enough to rule out any relevance of the
choice of integration algorithms).

Integration Steps Java Runtime OMC Runtime
10000 993ms 1090ms
25000 2464ms 2277ms
50000 5103ms 5304ms

100000 10034ms 11393ms
150000 14810ms 15904ms

Table 4. Simulation times of JVM prototype compared to
OMC

For the reference computation, we favored OpenModel-
ica due to its openness and availability. For the model we
choose the cellular automaton described above. This model
instantiates into an ODE and we do not want to compare
sophisticated numerical algorithms but sheer floating point
computation. Therefore we choose a simple forward Euler
for the integration method.

Table 5.3 contains the results of this comparison for
different integration periods. As can be seen our compiled
model can indeed be as fast as the omc output. Yet, this
does not mean that modim is already faster. Since omc is a
much more mature implementation it is highly likely that
the small difference between the two is due to additional
tasks computed by the omc simulation.

6. Conclusion
Our compiler is still rather prototypical and does not cover
even a small part of Modelica. Yet, we can already make
some conclusions about the general ability to compile
Modelica into Java:

• As we have proposed in [8], Modelica can be compiled
separately.

• The Java Virtual Machine is a viable platform not only
to host an object-oriented modeling language like Mod-
elica, but also to simulate its output.

• The high-level compilation-scheme moves several parts
of current tool’s “Frontend” into a runtime environment
or even a core-library. This decouples language aspects
from simulation aspects and hopefully simplifies both
further development and maintenance.

118

6.1 Benefits
The proposed compilation shows several benefits over the
classic interpretation:

• Compiled fragments can be safe. Once a Modelica
model has been typechecked compiled, it is guaranteed9

to instantiate safely in any other context.
• Instantiation is fast. Even without special optimization,

structurally changing a model does only involve in-
significant cost. This is especially useful during the de-
velopment cycle of a model, when changes and tests are
iterated fast.

• A compiled model is accessible. Since Java is practi-
cally ubiquitous, a compiled model can be used in many
different contexts at ease.

• There seems to be no general performance penalty at
simulation time.

• Since our compiler naturally provides a foreign function
interface (ffi) to Java, the whole JVM-ecosystem can be
used easily from within the model.

6.2 Drawbacks
Obviously, our approach also comes with some caveats,
that should be mentioned:

• The compiled model always instantiates itself before
it simulates. If there are no structural changes, this ef-
fort is wasted. Of course the model could provide some
caching-mechanisms to circumvent this problem, but
this would increase both the complexity of implemen-
tation and usage.

• The Java-ffi is unlikely to be standardized and adopted
by other tools soon. While it is easy to provide from
within Java, it is equally hard to do so from within a
C-implementation.

• It may conflict with some parts of the language speci-
fication. While this case should be rare, we cannot al-
ways avoid it. Consider the "same-element" rule in the
Modelica specification: It basically states that multiple
inheritance of the same element name is fine as long as
the definition of that element is the same on all defini-
tion sites. Even if we ignore the fact, that “same-ness”
is at least quite hard if not impossible to decide in the
general case, we could still not fulfill this rule. Simply
put, it demands, that a tool knows the right-hand side of
the definition. This is a violation of the separate com-
pilation principle. So either we could be too negative
and simply forbid double definitions completely or be
too positive and allow them as long as every right-hand-
side evaluates to the same value. Since the last option
would raise other questions (what context to evaluate in
etc.), we simply forbid double definitions, thus leaving
the Modelica Specification.

Although these are valid arguments, we think that the
benefits outweigh the drawbacks significantly.

9 Of course only if the compiler and the type-checker are correct.

6.3 Related Work
Reusing multiple instances of a Modelica model has al-
ready been proposed by Zimmer in [19]. This method is
applied after instantiation and can only detect some cases
of shared instances.

Sol [20] is a language with unbound structural dy-
namism. It contains an incremental mechanism for index-
reduction and causalisation. In contrast to our approach,
Sol is completely interpreted and does full symbolic anal-
ysis of equations. Yet, the proposed incremental index re-
duction might be of great value for the further development
of modim.

First-class models have been proposed by Broman for
the MKL [5] and Giorgidze for Hydra [7]. Hydra contains
an implementation of just-in-time compilation and supports
structural variable models. Thus, it is closely related to
our approach. Yet it does not deal with the Modelica spe-
cific aspects of compilation and embeds equations as data-
structures into the host language.

Using the JVM as simulation backend has been pro-
posed for JModelica in [18]. Here Modelica is still inter-
preted. Another JVM simulation backend is implemented
in openmodelica [6].

6.4 Future work
As it was mentioned multiple times, our system is far from
being complete. Thus the implementation of larger parts
of the Modelica specification remains an important, but
academically mostly uninteresting task for the future.

Yet, some more interesting tasks remain:

• While a formal description of Modelica as a whole
seems unfeasible because of the complexity of the lan-
guage, our runtime system could be small enough to for-
mally defined. If this was the case, a correctness proof
of modim’s typechecker would become feasible.

• Optimization. The JVM gives raise to a large set of in-
teresting features. One could research runtime bytecode
generation or solver parallelization. As already men-
tioned, current work is focusing on the implementation
of automatic differentiation. Since this method involves
bytecode manipulation, it seems logical to also investi-
gate the application of bytecode specialisation on Mod-
elica models.

• Variable structure systems. As mentioned in the begin-
ning, this work now gives the framework for a true vari-
able structure Modelica implementation. Yet it remains
a research topic, how efficient e.g. incremental index re-
duction can be implemented.

Acknowledgments
The author wants to thank the anonymous reviewers for
their in-depth reviews and valuable suggestions to improve
the quality of this work.

References
[1] Modelica - a unified object-oriented language for physical

systems modeling, 2012.

119

[2] Joshua Bloch. Effective Java (2nd Edition) (The Java
Series). Prentice Hall PTR, Upper Saddle River, NJ, USA,
2 edition, 2008.

[3] R.F. Boisvert, J. Moreira, M. Philippsen, and R. Pozo.
Java and numerical computing. Computing in Science
Engineering, 3(2):18 –24, mar/apr 2001.

[4] Willi Braun, Lennart Ochel, and Bernhard Bachmann. Sym-
bolically derived jacobians using automatic differentiation -
enhancement of the openmodelica compiler.

[5] David Broman. Meta-Languages and Semantics for
Equation- Based Modeling and Simulation. PhD thesis, De-
partment of Computer and Information Science, Linköping
University, Sweden, 2010.

[6] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David Broman.
The openmodelica modeling, simulation, and development
environment. In Proceedings of the 46th Conference on
Simulation and Modeling, pages 83–90, 2005.

[7] G. Giorgidze. First-class models: On a noncausal language
for higher-order and structurally dynamic modelling and
simulation. PhD thesis, The University of Nottingham,
2012.

[8] Christoph Höger, Florian Lorenzen, and Peter Pepper. Notes
on the separate compilation of modelica. In Peter Fritzson,
Edward Lee, François E. Cellier, and David Broman,
editors, 3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, pages
43–51. Linköping University Electronic Press, 2010.

[9] Christoph Höger. Separate compilation of causalized equa-
tions -work in progress. In François E. Cellier, David Bro-
man, Peter Fritzson, and Edward A. Lee, editors, EOOLT,
volume 56 of Linköping Electronic Conference Proceed-
ings, pages 113–120. Linköping University Electronic
Press, 2011.

[10] Christoph Höger. Modim - a modelica frontend with
static analysis. In Vienna International Conference on
Mathematical Modelling 2012, Vienna, Austria, February
2012.

[11] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transforma-
tion. In Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04), Palo
Alto, California, Mar 2004.

[12] Tim Lindholm and Frank Yellin. Java Virtual Machine
Specification. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 1999.

[13] Sven Erik Mattsson, Hans Olsson, and Hilding Elmqvist.
Dynamic selection of states in dymola. In Modelica
Workshop 2000 Proceedings, pages 61–67, 2000.

[14] Sven Erik Mattsson and Gustaf Söderlind. Index reduction
in differential-algebraic equations using dummy derivatives.
SIAM Journal on Scientific Computing, 14(3):677–692,
1993.

[15] A. Mehlhase. A Python Package for Simulating Variable-
Structure Models with Dymola. In Inge Troch, editor,
Proceedings of MATHMOD 2012, Vienna, Austria, feb
2012. IFAC. submitted.

[16] Uwe Naumann. The Art of Differentiating Computer
Programs: An Introduction to Algorithmic Differentiation.

SIAM, 2012.

[17] Barak Naveh et al. Jgrapht. Internet: http://jgrapht.
sourceforge. net, 2008.

[18] Franck Verdiere, Abir Rezgui, Sana Gaaloul, Benoit Delin-
chant, Laurent Gerbaud, Frédéric Wurtz, and Xavier
Brunotte. Modelica models translation into java compo-
nents for optimization and dae solving using automatic
differentiation. In David Al-Dabass, Alessandra Orsoni,
and Richard Cant, editors, UKSim, pages 340–344. IEEE,
2012.

[19] Dirk Zimmer. Module-preserving compilation of mod-
elica models. In Proceedings of the 7th International
Modelica Conference, Como, Italy, 20-22 September 2009,
Linköping Electronic Conference Proceedings, pages 880–
889. Linköping University Electronic Press, Linköpings
universitet, 2009.

[20] Dirk Zimmer. Equation-based Modeling of Variable-
structure Systems. PhD thesis, ETH Zürich, 2010.

[21] Dirk Zimmer. A reference-based parameterization scheme
for equation-based object-oriented modeling languages-
modim - a modelica frontend with static analysis. In Vienna
International Conference on Mathematical Modelling 2012,
Vienna, Austria, February 2012.

Appendix

model Automaton
parameter Integer width=20, height=20;
Cell[width, height] cells;

initial equation
cells[1,1].center = 1.0;

equation

for i in 1:width loop
for j in 1:height loop
if i > 1 then
cells[i,j].w = cells[i-1, j].center;
cells[i-1, j].e = cells[i, j].center;

else
cells[i,j].w = cells[width, j].center;
cells[width, j].e = cells[i,j].center;

end if;

if j > 1 then
cells[i,j].n = cells[i, j-1].center;
cells[i, j-1].s = cells[i,j].center;

else
cells[i,j].n = cells[i, height].center;
cells[i, height].s = cells[i,j].center;

end if;
end for;

end for;
end Automaton;

120

An Approach to Cellular Automata Modeling in Modelica

Victorino Sanz Alfonso Urquia
Dpto. de Informática y Automática, ETSI Informática, UNED, Spain

{vsanz,aurquia}@dia.uned.es

Abstract
A new Modelica library, named CellularPDEVS, is in-
troduced in this manuscript. This new library facilitates
the description of one- and two-dimensional Cellular Au-
tomata (CA) models in Modelica. CellularPDEVS models
have been specified using Parallel DEVS. The library has
been implemented using the functionality of the DEVS-
Lib library which supports the Parallel DEVS formalism in
Modelica. CellularPDEVS allows the user to focus on de-
scribing the behavior of the cell and the characteristics of
the cellular space. CellularPDEVS models are compatible
with other DEVSLib models, facilitating the combination
of CA, Parallel DEVS and other Modelica models. Three
examples are presented: Wolfram’s rule 30 and 110, and
the Conway’s Game of Life.

Keywords Modelica, Cellular Automata, Parallel DEVS,
CellularPDEVS, DEVSLib

1. Introduction
Cellular automata (CA) are a class of models initially pro-
posed in the 1940s by John von Neumann and Stanislaw
Ulam [30, 29, 28]. CA are dynamic, discrete-time and
discrete-space models. They are represented as a grid of
identical discrete volumes, named cells [11]. The grid can
be in any finite number of dimensions. The state of each
single cell is finite and it is usually represented using in-
teger numbers. The operational dynamics of the automata
is described by a rule or transition function that is used to
update the state of each cell at discrete time steps. This rule
constitutes a function of the current state of the cell and the
state of its neighbors, and defines the state of the cell for the
next time step [27]. Examples of different neighborhoods
are shown in Figure 1: the Moore’s neighborhood that in-
cludes all the surrounding cells; the von Neumann’s neigh-
borhood that includes the cells adjoining the four faces of
one cell; or the extended von Neumann’s that also includes
each cell just beyond one of the four adjoining cells [34].

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

(a) (b) (c)

Figure 1. Examples of CA neighborhoods: a) Moore’s; b)
von Neumann’s and; c) extended von Neumann’s.

As it can be observed, the definition and behavior of
the CA are simple. CA can provide an intuitive way of de-
scribing complex behavior using simple rules. CA may be
considered as discrete idealizations in time and space of
physical systems [35]. Due to its simplicity, CA have been
used to describe models of complex systems in multiple do-
mains. CA models have been developed in areas like chem-
istry [12], economics [22], medicine [10], biology and en-
vironment [13], and urban architecture [18], among many
others [8]. An extension of CA models, named Lattice Gas
Cellular Automata (LGCA), has been applied to the study
of fluid flows. LGCA models have been also extended into
Lattice Boltzmann Models (LBM) that are used as a micro-
scopic approach for the study of fluid dynamics [33].

CA models can be combined with models described us-
ing different formalisms. For example, macroscopic quan-
tities are usually calculated from LGCA and LBM mod-
els in order to combine them with other continuous-time
models. One of the motivations of the work presented in
this manuscript is to facilitate the combination of CA and
continuous-time models using Modelica.

Discrete-event modeling specifications have been used
to formally describe the behavior of CA, facilitating the de-
velopment of models and their understanding. For instance,
DEVS has been used by Zeigler [37] and Wainer [32] to
describe CA models. The former provides a description
of CA using Classic DEVS and Multicomponent DEVS.
Models following these specifications can be implemented
using tools such as DEVSJAVA [38], CoSMoS and MS4
Me™[36]. The latter introduces the Cell-DEVS formalism
that is supported by CD++ [31].

On the other hand, the general-purpose, object-oriented
modeling languages support the physical modeling paradigm
[2]. In particular, the Modelica language [14] facilitates
the object-oriented description of DAE-hybrid models, i.e.,

121

models composed of differential and algebraic equations,
and discrete-time events. Modelica supports a declarative
description of the continuous-time part of the model (i.e.,
equation-oriented modeling) and provides language ex-
pressions for describing discrete-time events. A detailed
description of the characteristics of the language can be
found in the specification of the language [14].

Modelica features have facilitated the development of
libraries supporting several modeling formalisms and de-
scribing phenomena in different physical domains [15].
The main Modelica library is the Modelica Standard Li-
brary (MSL) [17] which is developed and supported by
the Modelica Association. Modelica facilitates the reuse of
models and model components which contribute to reduce
the cost of new model development [21].

A number of Modelica libraries have been implemented
for supporting discrete-event modeling formalisms, includ-
ing StateCharts [6], state graphs [19], hybrid automata [20],
Petri Nets [16] and extended Petri Nets [5]. The DEVSLib
library was developed by the authors to facilitate the de-
scription of Parallel DEVS models in Modelica, and their
combination with other Modelica models [24, 25].

Modelica has been used to describe CA models. The
Game of Life is a particular example of two dimensional
CA. The description in Modelica of the Conway’s Game of
Life is discussed by Fritzson [7]. In this implementation,
the cellular space is represented using a matrix of integer
numbers. The initial condition is set using a vector that
contains the coordinates of the initially active cells. The
behavior of the model is implemented using a function that
is evaluated at discrete intervals using the Modelica sample
operator. Two for loops are used in this function to iterate
over all the components of the matrix, calculating the state
of the neighbors (following Moore’s neighborhood) and
updating the state of the current component.

A new Modelica library, named CellularPDEVS, has
been developed by the authors in order to facilitate the de-
scription of CA. CA in CellularPDEVS are described us-
ing the Parallel DEVS formalism, as coupled models of
interconnected atomic cells. CellularPDEVS has been pro-
grammed using the DEVSLib Modelica library [25]. In this
way, CA constructed using CellularPDEVS are compatible
with the models described using DEVSLib, facilitating the
connection between CA, Parallel DEVS and other Mod-
elica models. The CellularPDEVS library can be freely
downloaded as a part of the DESLib library [26, 4].

The structure of the manuscript is as follows. A short
introduction to Parallel DEVS is presented in Section 2.
The use of the Parallel DEVS as a base for CA imple-
mentation in Modelica is discussed in Section 3. The ar-
chitecture and functionality of the CellularPDEVS library
are described in Section 4. The construction of new CA us-
ing CellularPDEVS, as well as examples of one and two
dimensional CA, are presented in Section 5. Finally, some
future work ideas and conclusions are given in Sections 6
and 7, respectively.

2. Parallel DEVS
The Parallel DEVS formalism is briefly introduced in this
section. Models in Parallel DEVS can be described behav-
iorally (named atomic) or structurally (named coupled).

2.1 Atomic Parallel DEVS Models
According to the Parallel DEVS formalism, an atomic
model is the smallest component that can be used to de-
scribe the behavior of a system. It is defined by a tuple of
eight elements [3, 37]:

Atomic =< XM , S, YM , δint, δext, δcon, λ, ta >

where:

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input
ports and values.

S is the set of sequential states.

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output
ports and values.

δint : S −→ S is the internal transition function.

δext : Q ×Xb
M −→ S is the external transition function,

where Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the
total state set and e is the time elapsed since the last
transition.

δcon : Q×Xb
M −→ S is the confluent transition function.

λ : S −→ Y b
M is the output function.

ta : S −→ <+
0,∞ is the time advance function.

An atomic model remains in the state s ∈ S, for a time
interval ts = ta(s). After ts is elapsed, an internal event
is triggered and the state is changed to snew = δint(s).
Before that, an output can be generated using the output
function and the state prior to the event (output = λ(s)).

A new internal event is scheduled to occur at time in-
stant tnew = ta(snew) + time, where time is the current
time, i.e., the time instant of the current event, and ta(snew)
is the duration until the next internal event scheduled as a
consequence of the current event. The duration ta(snew) is
a function of the new state snew.

Multiple inputs can be received simultaneously through
one or several ports:

• If any input is received at time text and text < ts (so
the inputs are received before the next internal event),
an external event is triggered. As a consequence of
the external event, the state is changed to snew2 =
δext(s, e, bag), where s is the current state, e is the
elapsed time since the last transition (text − tlast) and
bag ⊆ XM is the set of received input messages.

• If the external input is received at time text and text =
ts, the external and the internal events are triggered
simultaneously. This situation triggers a confluent event
(that substitutes the external and internal events), and
the state is changed to snew3 = δcon(s, e, bag), being s
the current state, e the elapsed time, and bag ⊆ XM the
set of received inputs (similarly to the δext function).

122

Also, similarly to the internal events, an output can
be generated as output = λ(s) before executing the
confluent transition function.

New internal events are also scheduled after the external
and confluent transitions using ta(). Note that the time
advance function can return a zero value, generating an
immediate internal event.

2.2 Coupled Parallel DEVS Models
The Parallel DEVS formalism supports the hierarchical and
modular description of the model. Every model has an
interface to communicate with other models.

A coupled Parallel DEVS model is a model composed of
several interconnected atomic or coupled models that com-
municate externally using the input and output ports of the
coupled model interface. It is described by the following
tuple [37]:

Coupled =< X,Y,D, {Md|d ∈ D}, EIC,EOC, IC >

where:

X = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input
ports and values.

Y = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output
ports and values.

D is the set of the component names.

Md is a DEVS model, for each d ∈ D.

EIC is the External Input Coupling: connections between
the inputs of the coupled model and its internal compo-
nents.

EOC is the External Output Coupling: connections be-
tween the internal components and the outputs of the
coupled model.

IC is the Internal Coupling: connections between the
internal components.

The connection of Parallel DEVS models implies the es-
tablishment of an information transmission mechanism be-
tween the connected models. Parallel DEVS models follow
a message passing communication mechanism. A model
generates messages as outputs using its output function
which are received by other models as external inputs. Mes-
sages can be received simultaneously through one or multi-
ple ports. Connections between models can be in the form
of 1-to-1, 1-to-many and many-to-1. Each message can
transport an arbitrarily complex amount of information, de-
pending on the particular application or experiment being
studied.

3. Specification of CellularPDEVS Models
Parallel DEVS has been used to describe the CA compo-
nents (i.e., the cell and the cellular space) implemented in
CellularPDEVS. The formal specification of these compo-
nents is presented in this section.

3.1 Specification of the Cell Models
CellularPDEVS includes two cell models: Cell1D and
Cell2D. The formal specification of the one dimensional
cell,Cell1D, following Parallel DEVS is shown in Table 1.

The interface of Cell1D is composed of:

• The “inE” input port, used to connect with its eastern
neighbor.

• The “inW ” input port, used to connect with its western
neighbor.

• The “inext” input port, used to receive external inputs
from outside the cellular space.

• The “out” output port, used to communicate the state
of the cell.

A graphical representation of the interface of the Cell1D
model is shown in Figure 2.

inW inE

inext

out

Cell1D

Figure 2. Interface of the Cell1D model.

The state variables of Cell1D are:

• phase that represents if the cell is “active” or “passive”.
An “active” phase means that the state variable CS of
the cell has changed in the current time step. The cell
remains “active” until the change of the state is com-
municated to the neighbors. Otherwise, the phase is
“passive”.

• sigma that represents the time delay until the execution
of the next internal transition of the cell.

• CS that represents the current state of the cell repre-
sented by the Cell1D model.

• NE and NW that are used to locally store the state of
the neighbors, also represented by Cell1D models.

The behavior of the Cell1D model is as follows. An ex-
ample of cell simulation is shown in Figure 3, where the
evolution of the inputs, outputs and the state of the cell
are shown. Initially, cells have sigma = ∞ and phase =
“passive” meaning that without an external input no in-
ternal transitions will be executed in the cell. Input events
sent to the “inext” port are intended for initializing the cell,
and have to be received at discrete time steps. The default
duration of the time step is 1 second, however it can be
adjusted as desired. Input events received at port “inext”
update the state variable CS of the cell, set phase =
“active” and schedule an internal event at time + 0.5
(i.e., the middle of the current time step). In the exam-
ple shown in Figure 3, the initial input event is received

123

Table 1. Parallel DEVS specification of the Cell1D model included in CellularPDEVS.

Cell1D =< X,S, Y, δint, δext, δcon, λ, ta >

where:
XM = {(ps, v)|p ∈ {“inE”, “inW ”, “inext”}, v ∈ Z}
S = {“active”, “passive”} × R+

0,∞ × Z× Z× Z
YM = {(‘out”,Z)}
δint(phase, sigma,CS,NE , NW) =

(“passive”, 0.5, CS,NE , NW) if phase == “active”

(“passive”,∞, CS,NE , NW) if phase == “passive” and CS == Rule(CS,NE , NW)

(“active”, 0.5, Rule(CS,NE , NW), NE , NW) if phase == “passive” and CS 6= Rule(CS,NE , NW)

δext(phase, sigma,CS,NE , NW , e,Xb
M) =

(phase, 0.5, CS, VE , NW) if event received in port “inE” , whose value VE ∈ Z
(phase, 0.5, CS,NE , VW) if event received in port “inW ” , whose value VW ∈ Z
(phase, 0.5, CS, VE , VW) if events received in ports “inE” and “inW ” , whose values VE , VW ∈ Z
(“active”, 0.5, Vext, NE , NW) if event received in port “inext” , whose value Vext ∈ Z

δcon(S, e,X
b) = δint(δext(S, e,X

b))
λ(phase, sigma,CS,NE , NW) ={

(“out”, CS) if phase == “active”

∅ if phase == “passive”

ta(phase, sigma,CS,NE , NW) = max(sigma, 0)

at time = 2s. The scheduled internal event generates an
output to send the new state to the neighbors (e.g., output
at time = 2.5s in the figure), fires an internal transition
that sets phase = “passive” and schedules a new inter-
nal event at time + 0.5 that corresponds to the next time
step. The new scheduled internal event will fire a new in-
ternal transition to update the state CS of the cell using
the Rule function. If CS 6= Rule(CS,NE , NW) (i.e., CS
changes) then phase = “active”, sigma = 0.5 (i.e., the
middle of the time step) and CS = Rule(CS,NE , NW)
(e.g., in the example, phase always changes to “active′′

when CS changes). Otherwise, phase = “passive” and
sigma = ∞ (e.g., in the example CS remains constant at
time = 3s and sigma = ∞). Each neighbor receives the
update of the state in the middle of the time step as an ex-
ternal event. This fires an external transition that updates
the locally stored neighbor state with the received value
and sets sigma = 0.5 to schedule an internal event at the
next time step (e.g., in the example, changes in the states of
the neighbors are received as external inputs, and the local
state variables NE and NW are updated with the received
values).

The formal specification of the Cell2D is analogous to
the Cell1D, provided the following modifications. Addi-
tional input ports have to be included to connect with the
additional neighbors (e.g., eight neighbors in the case of
the Moore’s neighborhood). The state has also to be ex-
tended to locally store the states of the additional neigh-
bors. The δext is used to update the locally stored states
with the values received with the events. This function has

Figure 3. Cell1D model execution example.

124

Table 2. Parallel DEVS specification of the CellSpace1D model.

CellSpace1D =< X,Y, {Md|d ∈ D}, EIC,EOC, IC >

where:
X = {(p, v)|p ∈ {“in1”, . . . , “inN”}, v ∈ Z}
Y = {(p, v)|p ∈ {“out1”, . . . , “outN”}, v ∈ Z}
Md = Cell1D for all d ∈ D, where D = {cell1, . . . , cellN}
EIC = {(CellSpace1D, “ini”)− (celli, “inext”)|i = 1, . . . , N}
EOC = {(CellSpace1D, “outi”)− (celli, “out”)|i = 1, . . . , N}
IC = {(celli−1, “out”)− (celli, “inW ”)|i = 2, . . . , N}∪

{(celli+1, “out”)− (celli, “inE”)|i = 1, . . . , N − 1}∪
{(cellN , “out”)− (cell1, “inW ”), (cell1, “out”)− (cellN , “inE”)}

to be extended to allow all the possible combinations of
input events from the ports of the model.

3.2 Specification of the Cellular Space Model
CellularPDEVS includes two models that represent cellu-
lar spaces:CellSpace1D andCellSpace2D. Each cellular
space is defined as a coupled Parallel DEVS model. Cellu-
lar spaces are composed of individual cells and their in-
terconnections. The formal specification of the one dimen-
sional cellular space, CellSpace1D, using Parallel DEVS
is shown in Table 2.

inW inE

inext

out

1DCell

inW inE

inext

out

1DCell

inW inE

inext

out

1DCell

in1 in2 in3

out1 out2 out3

Figure 4. CellSpace1D model of size 3.

The CellSpace1D model is defined as an array of
Cell1D atomic models. The size of the array is N . An
example of one dimensional CA with three cells is shown
in Figure 4. Each cell in the array receives connections
from its eastern neighbor (to the “inE” port) and its west-
ern neighbor (to the “inW ” port) following the one di-
mensional Moore’s neighborhood. The boundaries of the
space are considered wrapped, so the western neighbor of
the first cell of the array is the last cell of the array and
vice-versa for the eastern neighbor of the last cell (cf. con-
nections shown in Figure 4). The interface of the cellular
space is composed of one input port (“ini”) and one out-
put port (“outi”) for each cell in the space. These ports
are connected to the “inext” and “out” ports of each cell,
respectively.

The specification of the CellSpace2D model is analo-
gous to the CellSpace1D provided the following modifi-

cations. The cellular space has to be defined as a two di-
mensional matrix of Cell1D atomic models. The size of
the space is N × N . Each cell receives connections from
its eight neighbors to its input ports. The boundaries are
also wrapped considering the two dimensions of the space.

4. Architecture of CellularPDEVS
The architecture of the CellularPDEVS library is shown in
Figure 5.

Figure 5. Architecture of the CellularPDEVS library.

The library is structured in two areas: 1) user’s area and;
2) developer’s area. The user’s area is composed of:

• The Users Guide that contains the user oriented docu-
mentation.

• The CellSpace1D model that is used to construct new
one dimensional CA.

• The CellSpace2D model that is used to construct new
two dimensional CA.

125

• The Examples package that contains several examples
of use.

The developer’s area is encapsulated into the SRC pack-
age and contains the internal implementation of the models
and the developer oriented documentation. CellularPDEVS
includes two atomic DEVSLib models to represent one
and two dimensional cells, named Cell1D and Cell2D re-
spectively. Cellular spaces, named SRC.CellSpace1D and
SRC.CellSpace2D, are constructed as an array or a matrix
of interconnected Cell1D or Cell2D models depending on
the dimension of the space.

The connections between cells are predefined into the
cellular space describing the Moore’s neighborhood. Since
these connections between individual cells generate alge-
braic loops in the cellular space, a BreakLoop model from
the DEVSLib library is inserted between cell connections.
The BreakLoop model uses the Modelica pre operator to
break the loop. The boundaries of the cellular space are
wrapped automatically, by using the mod operator in the
calculations of the indecees for the connections of cells.

Also, the cellular space includes the models required
to generate the graphical animation of the simulation. The
World, Fixed and fixedShape models, from the Multibody
package of the Modelica Standard Library, have been used
to generate the 1D and 2D visualizations.

Each cellular space model in CellularPDEVS includes
a replaceable function, named Rule that needs to be re-
declared in order to define the transition function for new
models. The inputs of this function are the state of the cur-
rent cell and its neighbors, and the output is the future state
of the current cell. The prototype of this function is shown
in Listing 1.

function Rule
input Integer s;
input Integer[N] neighbors;
output Integer sout;

algorithm
end Rule;

Listing 1. Prototype of the CellularPDEVS transition
function (N is the number of neighbors).

Finally, the cellular space also includes a Generator and
a DUP_N models, from the DEVSLib library that are used
to initialize the required cells at the beginning of the sim-
ulation. A message with Type == 1 is sent by the Gen-
erator model to each cell to be initialized. This message is
received and managed by the external transition function of
the cell which initializes the state and schedules an internal
transition.

5. Modeling using CellularPDEVS
The construction of new CA using CellularPDEVS requires
the description of the parameters of the cellular space (i.e.,
size and initial conditions of the cells) and the rule or tran-
sition function that describes the behavior of each cell. The
formalism and the internal implementation of the cellular
space and the cells is transparent to the user. As mentioned

before, the graphical animation of the simulation is auto-
matically generated, and it can be deactivated using a pa-
rameter of the model.

The transition function can be any Modelica function
with the state of the cell and its neighbors as inputs, and the
updated cell state as output (cf. the prototype of this func-
tion shown in Listing 1). All these values are represented
using integer numbers.

CellularPDEVS models can be combined with any other
Modelica model. The state of the cells in the automata
can be observed using a variable, named state, included
in the CellSpace1D and CellSpace2D models. Also, the
state of the cells can be modified during the simulation by
sending a message to the in1 port of the desired cell. The
message has to have Type == 1 and transport the new
value for the cell. This message can be sent from any model
constructed using DEVSLib. The DUP_N model can be
used to duplicate the message if multiple cells have to be
changed simultaneously.

Additionally, DEVSLib includes interfaces between
continuous-time models and Parallel DEVS models which
translate continuous-time signals into event trajectories
(i.e., series of messages), and viceversa. These interface
models allow combining the use of Parallel DEVS models
developed with DEVSLib and hybrid models developed
using other Modelica libraries. In this way, the behavior of
a continuous Modelica model can be used to affect the state
of the CA model, and viceversa.

The continuous-time to discrete-event interfaces trans-
late continuous-time signals into event trajectories, where
each event corresponds with the send of a message. Two
different implementations of this interface are included
in DEVSLib: quantization (Quantizer model) and value-
crossing interfaces (CrossUP and CrossDOWN models).
The quantization interface generates an event (i.e., a mes-
sage) for every change in the continuous-time signal bigger
than a given quantum value. The value-crossing interface
generates an event every time the continuous signal crosses
a given value in one direction, upwards or downwards.

The discrete-event to continuous-time interface trans-
lates the received message values into a piecewise-constant
real signal. A boolean output is also included, together with
the output real signal, in order to notify the reception in-
stant of the messages. This boolean output may be use-
ful when the received messages have the same value and
consequently the reception instants cannot be inferred from
the output real signal. This interface is implemented by the
DICO model.

CellularPDEVS includes a package that contains several
example model that are used to demonstrate its function-
ality and facilitate the construction of new models. These
models have been also used to validate the library by com-
parison with equivalent models constructed using Golly
which is an open source application for exploring CA mod-
els [9].

The examples included are the Wolfram’s rule 30 and
rule 110 [35] and two different initial conditions for the
Conway’s Game of Life. These models are detailed next.

126

5.1 Examples of One Dimensional CA
The Wolfram’s rule 30 and rule 110 represent two different
transition functions for one dimensional CA. These func-
tions evaluate the state of a cell and its two adjacent neigh-
bors and return the future state for the cell. The state of each
cell is binary. The combination of possible input values and
their outputs are shown in Table 3. The number of the rule,
30 and 110, defines the decimal value of the binary outputs
of each function (e.g., looking at the future state row of the
table, the binary values of the output can be interpreted as
a decimal number: for the rule 30, 000111102 = 3010).

Table 3. Wolfram’s rule 30 and rule 110.

Rule 30
current pattern 111 110 101 100 011 010 001 000
future state 0 0 0 1 1 1 1 0

Rule 110
current pattern 111 110 101 100 011 010 001 000
future state 0 1 1 0 1 1 1 0

(a)

(b)

Figure 6. Simulation of CellularPDEVS 1D models: a)
rule 30 and; b) rule 110.

The implementation of these rules in Modelica is straight
forward. The code included in CellularPDEVS for the rule
30 is shown in Listing 2. An analogous code is included in
the library for the rule 110.

The models of the rule 30 and rule 110 are constructed
in CellularPDEVS by extending the CellSpace1D model,
and redeclaring the Rule function with the corresponding
functions. The parameters of the models are the size of the
cellular space size (named Ssize) and the initial cell (named
init_cell), since all Wolfram rules have only one active cell
at the beginning of the simulation. The simulation results of
the rule 30 and rule 110 models with a space size of 20, the
cell in the middle of the space as initial cell (i.e., init_cell
= 10) and a simulation time of 10 time steps are shown in
Figure 6.

function r30
input Integer s;
input Integer[2] neighbors;
output Integer sout;

protected
Integer[2] n = neighbors;

algorithm
if n[2]==1 and s==1 and n[1]==1 then
sout := 0;

elseif n[2]==1 and s==1 and n[1]==0 then
sout := 0;

elseif n[2]==1 and s==0 and n[1]==1 then
sout := 0;

elseif n[2]==1 and s==0 and n[1]==0 then
sout := 1;

elseif n[2]==0 and s==1 and n[1]==1 then
sout := 1;

elseif n[2]==0 and s==1 and n[1]==0 then
sout := 1;

elseif n[2]==0 and s==0 and n[1]==1 then
sout := 1;

elseif n[2]==0 and s==0 and n[1]==0 then
sout := 0;

end if;
end r30;

Listing 2. Rule 30 Modelica code.

5.2 Examples of Two Dimensional CA
CellularPDEVS includes an implementation of the Game
of Life model described by Conway. This model represents
a two dimensional cell space where each cell may be alive
or dead. The transition function of the model is defined by
the following rules:

• A dead cell becomes alive when it has a number of alive
neighbors equal to 3.

• A living cell dies when it has less than 2 or more than 3
alive neighbors.

• Otherwise, the cell remains in its current state.

function conway
input Integer s;
input Integer[8] neighbors;
output Integer sout;

protected
Integer[8] n = neighbors;

algorithm
sout := s;
if s==0 then // dead, maybe borns
if sum(n)==3 then
sout := 1;

end if;
else // alive, maybe dies
if (sum(n)<2 or sum(n)>3) then
sout := 0;

end if;
end if;

end conway;

Listing 3. Modelica code of the Game of Life’s transition
function.

The description of 2D models in CellularPDEVS is
analogous to the 1D ones. The Game of Life model is con-

127

(a) torus, time = 0 (b) torus, time = 1 (c) torus, time = 2 (d) torus, time = 3 (e) torus, time = 4

(f) torus2, time = 0 (g) torus2, time = 1 (h) torus2, time = 2 (i) torus2, time = 3 (j) torus2, time = 4

Figure 7. Simulation of CellularPDEVS 2D models. The Conway’s Game of Life.

structed by programming its transition function, as shown
in Listing 3. The model extends the CellSpace2D model
and redeclares the Rule function using the conway func-
tion shown. The initial state of the model is described as a
matrix where each row represents the coordinates that cor-
respond to the cells in the space that will be initially active
(e.g., [1,2;2,3;4,4]). The first cell, (1,1), corresponds to the
top-left cell of the matrix. The first index represents rows
and the second represents columns (e.g., (3,5) represents
the cell in the third row and the fifth column).

The first five steps of the simulation of two initial states,
named torus and torus2, for the game of life model in
CellularPDEVS are shown in Figure 7. The torus model
corresponds to the initial cells: [1,2; 2,3; 3,1; 3,2; 3,3]. This
model evolves in a periodical diagonal movement from
the top-left area of the cellular space to the bottom-right.
The torus2 model corresponds to the initial cells: [2,2; 2,4;
3,5; 4,5; 5,5; 6,3; 6,4; 6,5; 5,2]. This model evolves in
a periodical vertical movement from the top area of the
cellular space to the bottom area.

6. Future Work
The models presented in this manuscript have been in-
cluded in CellularPDEVS in order to validate the library
and demonstrate its functionality. CellularPDEVS will be
used to model more complex systems using CA such as a
cement clinker cooler [1] or a PEM fuel cell [23]. The de-
velopment of these models will show the applicability of
library. Also, these new CA models will be used to evalu-
ate the simulation performance of the library in comparison
with the already developed Modelica models.

7. Conclusions
A new Modelica library has been developed to facilitate
the description of Cellular Automata. These are discrete-
time and -space models represented using a grid of indi-

vidual cells, whose state is updated at discrete time steps
using a predefined transition function. The library supports
the description of one and two dimensional automata. The
main components of the library are the cell and the cellular
space. The behavior of these components has been speci-
fied using the Parallel DEVS formalism.

The behavior of each cell is specified as an atomic Par-
allel DEVS model and implemented using the DEVSLib li-
brary. The interface of the cell allows it to receive messages
from its neighbors and from outside the cellular space. The
state of the cell represented by the model is described using
an integer number. Different behaviors can be described by
redeclaring the rule, or transition function that defines the
dynamics of the cell. The duration of the time step can be
adjusted to the requirements of the simulation.

The cellular space is specified as a coupled Parallel
DEVS model. It is composed of a grid of interconnected
cell models. The interface of the cellular space allows to
receive external messages, via its input ports, and to ob-
serve the state of the automata, via its output ports. This
interface facilitates the combination of cellular automata
models with other Modelica models. The boundaries of the
cellular space are wrapped. It uses the Moore’s neighbor-
hood by default. However, future versions will allow the
user to define the neighborhood as desired. A graphical an-
imation of the simulation is automatically generated.

Three examples have been presented in order to demon-
strate the functionality of the library and validate its mod-
els. The Wolfram’s rule 30 and rule 110 elementary cellular
automata as examples of one dimensional automata. The
Conway’s Game of Life, including two initial conditions,
as an example of two dimensional automata.

References
[1] Oscar Acuña, Carla Martin-Villalba, and Alfonso Urquia.

Virtual-lab of a cement clinker cooler for operator training.

128

In Proceedings of the 7th Vienna International Conference
on Mathematical Modeling (MATHMOD), pages 331–336,
Vienna, Austria, 2012.

[2] Karl J. Åström, Hilding Elmqvist, and Sven Erik Mattsson.
Evolution of continuous-time modeling and simulation. In
Proceedings of the 12th European Simulation Multiconfer-
ence (ESM’98), pages 9–18, Manchester, UK, 1998.

[3] Alex Chung Hen Chow. Parallel DEVS: A parallel, hier-
archical, modular modeling formalism and its distributed
simulator. Transactions of the Society for Computer Simu-
lation International, 13(2):55–67, 1996.

[4] Some free modeling and simulation resources. Dpto.
Informática y Automática, UNED. http://www.
euclides.dia.uned.es/, 2013.

[5] Stefan M.O. Fabricius and E. Badreddin. Hybrid dynamic
plant performance analysis supported by extensions to the
Petri Net library in Modelica. In Proceedings of the 4th

Asian control Conference (ASCC), pages 41–50, Singapore,
2002.

[6] J.A. Ferreira and J.P. Estima de Oliveira. Modelling hybrid
systems using StateCharts and Modelica. In Proceedings
of the 7th IEEE International Conference on Emerging
Technologies and Factory Automation, pages 1063–1069,
1999.

[7] Peter Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Computer
Society Pr, 2003.

[8] Niloy Ganguly, Biplab K Sikdar, Andreas Deutsch, Geof-
frey Canright, and P Pal Chaudhuri. A survey on cellular
automata. Technical report, 2003.

[9] Golly. http://golly.sourceforge.net, 2013.

[10] H. Hötzendorfer, W. Estelberger, F. Breitenecker, and
S. Wassertheurer. Three-dimensional cellular automaton
simulation of tumour growth in inhomogeneus oxygen
environment. Mathematical and Computer Modelling of
Dynamical Systems, 15:177–189, 2009.

[11] Andrew Ilachinski. Cellular Automata: A Discrete Uni-
verse. World Scientific, Singapore, 2001.

[12] Lemont B. Kier, Paul G. Seybold, and Chao-Kun Cheng.
Modeling Chemical Systems using Cellular Automata.
Springer, Dordrecht, The Netherlands, 2005.

[13] Jiri Kroc, Peter M.A. Sloot, and Alfons G. Hoekstra,
editors. Simulating Complex Systems by Cellular Automata.
Springer-Verlag, Berlin, 2010.

[14] Modelica Association. Modelica - An unified object-
oriented language for physical systems modeling. Language
specification version 3.1, 2012.

[15] Modelica Libraries. Modelica free and comercial libraries.
http://www.modelica.org/libraries, 2013.

[16] Pieter J. Mosterman, Martin Otter, and Hilding Elmqvist.
Modelling Petri Nets as local constraint equations for hybrid
systems using Modelica. In Proceedings of the Summer
Computer Simulation Conference, pages 314–319, 1998.

[17] Modelica standard library. http://www.modelica.
org/libraries/Modelica, February 2010.

[18] David O’Sullivan and Paul M. Torrens. Cellular models
of urban systems. In S. Bandini and T. Worsch, editors,

Theoretical and Practical Issues on Cellular Automata.
Springer-Verlag, London, 2000.

[19] Martin Otter, Karl-Erik Årzén, and Isolde Dressler. State-
Graph - a Modelica library for hierarchical state machines.
In Proceedings of the 4th International Modelica Confer-
ence, pages 569–578, Hamburg, Germany, 2005.

[20] Tiziano Pulecchi and Francesco Casella. HyAuLib:
modelling hybrid automata in Modelica. In Proceedings
of the 6th International Modelica Conference, pages 239–
246, Bielefeld, Germany, 2008.

[21] Stewart Robinson, Richard E. Nance, Ray J. Paul, Michael
Pidd, and Simon J.E. Taylor. Simulation model reuse:
definitions, benefits and obstacles. Simulation Modelling
Practice and Theory, 12(7-8):479 – 494, 2004. Simulation
in Operational Research.

[22] Jean-François Rouhaud. Cellular automata and consumer
behaviour. European Journal of Economic and Social
Systems, 14:37–52, 2000.

[23] Miguel A. Rubio, Alfonso Urquia, and Sebastian Dormido.
Dynamic modelling of PEM fuel cells using the fuelcelllib
Modelica library. Mathematical and Computer Modelling
of Dynamical Systems, 16(3):165–194, 2010.

[24] Victorino Sanz. Hybrid System Modeling Using the Parallel
DEVS Formalism and the Modelica Language. PhD thesis,
E.T.S.I. Informática, UNED, Madrid, Spain, 2010.

[25] Victorino Sanz, Alfonso Urquia, François E. Cellier, and
Sebastian Dormido. System modeling using the Parallel
DEVS formalism and the Modelica language. Simulation
Modeling Practice and Theory, 18(7):998–1018, 2010.

[26] Victorino Sanz, Alfonso Urquia, and Sebastian Dormido.
Parallel DEVS and process-oriented modeling in Modelica.
In Proceedings of the 7th International Modelica Confer-
ence, pages 96–107, Como, Italy, 2009.

[27] Joel L. Schiff. Cellular Automata: A Discrete View of the
World. Wiley-Interscience, New York, NY, USA, 2008.

[28] Stanislaw Ulam. Random processes and transformations.
In Sets, Numbers and Universes. MIT Press, Cambridge,
1974.

[29] John von Neumann. The general and logical theory of
automata. In Collectd Works, volume 5. Macmillan, New
York, 1963.

[30] John von Neumann. Theory of self-reproducing automata.
University of Illinois Press, Urbana and London, 1966.

[31] Gabriel Wainer. CD++: A toolkit to develop DEVS models.
Software: Practice and Experience, 32(13):1261–1306,
2002.

[32] Gabriel A. Wainer. Discrete-Event Modeling and Simulation
- A Practitioner’s Approach. CRC Press, Boca Raton, FL,
USA, 2009.

[33] Dieter A. Wolf-Gladrow, editor. Lattice Gas Cellular
Automata and Lattice Boltzmann Models: An Introducction.
Springer-Verlag, Berlin, 2000.

[34] Stephen Wolfram. Cellular Automata and Complexity:
Collected Papers. Addison-Wesley, 1994.

[35] Stephen Wolfram. A New Kind of Science. Wolfram Media
Inc., Champain, IL, USA, 2002.

[36] Benard P. Zeigler and Hessam S. Sarjoughian, editors.

129

Guide to Modeling and Simulation of Systems of Systems.
Springer-Verlag, London, 2013.

[37] Bernard P. Zeigler, Tag Gon Kim, and Herbert Prähofer.
Theory of Modeling and Simulation. Academic Press, Inc.,
Orlando, FL, USA, 2000.

[38] Bernard P. Zeigler and Hessam S. Sarjoughian. Introduction
to DEVS modeling & simulation with JAVA: Developing
component-based simulation models, 2003.

130

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Models for Distributed Real-Time Simulation in a
Vehicle Co-Simulator Setup

Anders Andersson1 Peter Fritzson2
1Swedish National Road and Transportation Research Institute, Sweden, anders.andersson@vti.se

2IDA, Linköping University, Sweden, peter.fritzson@liu.se

Abstract
A car model in Modelica has been developed to be used
in a new setup for distributed real-time simulation where
a moving base car simulator is connected with a real car
in a chassis dynamometer via a 500m fiber optic
communication link. The new co-simulator set-up can be
used in a number of configurations where hardware in the
loop can be interchanged with software in the loop. The
models presented in this paper are the basic blocks chosen
for modeling the system in the context of a distributed
real-time simulation, estimating parameters for the
powertrain model, the choice of numeric solver, and the
interaction with the solver for real-time properties.

Keywords: Modelica, real-time, distributed,
communications link

1. Introduction
Vehicles are today becoming increasingly complex
systems. An important part of a vehicle is the powertrain
which converts energy in a stored form (fuel) to kinetic
energy in order to move the vehicle. Recent developments
to cope with increasing demands on low fuel consumption
and other environmental aspects have introduced several
new concepts including e.g. hybrid (combined electrical
and fuel) vehicles on the market.

The new vehicles create new challenges. Questions
like the following can be relevant:
• “How do we control the charging of the batteries

optimally?”
• “Does an automatic gearbox change gears in the way

the driver desires?”
• "Does our Human Machine Interface which should

help the driver to drive more economically achieve its
goal?”

One way to get answers to such questions rather
quickly and in a cost efficient way is to use simulation
and simulators. Simulation scenarios can be built in many
different ways and one approach is to include hardware in

the simulation to increase its accuracy [1].
With these benefits in mind cooperation was started

between the Swedish National Road and Transport
Research Institute (VTI), and Linköping University,
including the Vehicular systems group at ISY and the
PELAB group at IDA.

The VTI Simulator III (Figure 1) hardware at VTI has
been connected via a fiber optic link to the Vehicle
propulsion laboratory at Linköping University. A more
detailed description of the hardware can be found in [2].

Using the VTI Simulator III it is possible to do a
driving experiment, e.g. adjust the road environment or
change vehicle models. Since the driving experiment is a
controlled experiment, repeatable driving scenarios can be
achieved. It is also possible to test safety critical situations
in a controlled and safe way.

In the Vehicle propulsion laboratory it is possible to
equip different cars with a chassis dynamometers setup
where the dynamometers can be used for both accelerating
and decelerating the vehicle. The chassis dynamometers
are mobile and one person can fit them on a car by
moving them around, thus enabling a fast switch between
different cars. Connecting these facilities constitute a good
platform for testing new powertrain solutions and also
improve the fidelity of the VTI Simulator III by using a
powertrain in the loop.

Even though new cars could be equipped quickly in the
Vehicle propulsion laboratory there is also a need for a
model of the setup with which different ideas can be
tested in the simulators at VTI before using a vehicle in
the chassis dynamometers setup.

Modelica [3], [4], is a modeling language which
features properties such as acausal and object-oriented
modeling. It has been demonstrated that it is possible to
create models applicable for real-time simulation using
Modelica [5], [6]. The goal of this work is to build upon
an existing hardware model by splitting it into sub-
systems and porting parts of it to the Modelica language.
The long term aim in this work is to model the complete
setup with the car and the system in the Vehicle
propulsion laboratory providing a flexible framework for
testing distributed simulation scenarios and to run the
models in real-time together with VTI Simulator III.

This paper is organized as follows: in Section 2 we give
an introduction to the different hardware facilities and the
connection between them. In Section 3 we present the
Modelica models for the different hardware parts and in

131

Section 4 we show performance tests on the models. The
work conducted so far is then summarized in Section 5
which also includes some future work.

2. Hardware Facilities
The facilities used in this study are the VTI Simulator III
and the chassis dynamometer lab at Linköping University.
To control the vehicle in the chassis dynamometer lab a
pedal robot has been constructed. These physical systems
will be described in the following sections.

2.1 VTI Simulator III

The Swedish National Road and Transport Research
Institute (VTI) is an independent Swedish research
institute. The main research areas at VTI are
infrastructure, traffic, transportation systems. To conduct
research within these areas one important tool is vehicle
simulators. The history of moving base simulators at VTI
goes back to the late 1970’s, and today VTI has three
advanced moving base simulators.

The moving base simulators are mostly involved in
behavioral studies where research questions such as “How
does a driver react in this critical situation?” and “Can my
invention detect if a driver is sleepy?” can be investigated.

One of these advanced moving base simulators is the
VTI Simulator III which is located in Linköping. This
simulator is the one used in this work. A picture of the
VTI Simulator III can be seen in Figure 1.

Figure 1. The VTI moving base Simulator III in
Linköping.

The motion system in VTI Simulator III has four degrees
of freedom where the large outer linear motion can be
used for lateral or longitudinal motion. On this motion
system the driver is positioned inside a dome in a car
cabin which is a production car that has been cut in half to
fit the dome. The car cabin is mounted on a vibration
table able to produce higher frequency noise reproducing
road deformations, e.g. potholes and cracks [7].

The driver view is presented on a 120 degrees arched
screen where six projectors are used to produce the front
view. Small screens are used as rear view mirrors. The
graphics software used is developed at VTI and includes
the environments. Sound for the driver is presented using

the vehicle speakers complemented with a few extra
speakers resulting in a surround sound setup.

The software for controlling the simulation is
developed at VTI including scenario logics, interfaces to
hardware, graphics and sound, vehicle models and traffic
models. The vehicle model used in most of the studies
when car driving is of interest is a Fortran model. This
model has been developed over several decades and its
functionality has been tested in several studies over the
years. Thus, the validity of the model has been confirmed
repeatedly. The problem with the model is that it takes
more and more time to integrate new functions and thus
there is a desire to migrate the model to another language.

2.2 Vehicle Propulsion Laboratory

At the Vehicular Systems group at Linköping University,
a new chassis dynamometer lab was built in 2011, see [8].
The dynamometers in this lab are mobile and can be
adjusted to fit different vehicles sizes and different
propulsion systems, e.g. front wheel drive or all-wheel
drive. These dynamometers can provide both positive and
negative torque while measuring the torque output from
the equipped vehicle within 0.1 percent accuracy.

When running the system, the car is attached to the
dynamometers by removing the wheels and connecting the
wheel hubs to the dynamometers, see Figure 2. When all
driving wheel hubs have been connected the exhaust is
connected to the ventilation system. At this stage it is now
possible to start the system and place a driver in the car.
He can now start to drive by turning the car key and
pressing the accelerator pedal.

Figure 2. Vehicle mounted at Vehicular Systems chassis
dynamometer laboratory at LiU.

2.3 Chassis Dynamometer Vehicle Model

The measured torque output from the vehicle results in
vehicle speed and acceleration. Therefore, the
dynamometers have to simulate resistance forces equal to
those experienced when driving on a road.

These resistance forces come from rolling resistance,
Froll, air resistance, Fair, and incline resistance (gravity
when going uphill or downhill), Fclimb. Thus, the incline
forces are not only resistance uphill but also acceleration
downhill, since the chassis dynamometers can provide

132

both a negative and a positive torque to the wheels. The
acceleration, a, of the vehicle is calculated as

where m is the mass of the vehicle and Ftot are the total
forces acting on the vehicle. Fprop is calculated from the
measured torques at the wheels using

where Ti are the measured torques at the wheel hubs and
rw is the radius of the wheel.

The resistance forces are given as:

Here cr is the rolling resistance coefficient, g is the
gravitational constant, cd is aerodynamic resistance
constant, Af is the vehicle front area, Áair is the density of
the air, v is the speed of the vehicle, v0 is the relative wind
speed and p is the incline of the road. Values for
parameters used in this study are shown in Table 1.

Table 1. Used values for the vehicle model parameters.

Parameter Value
M 1401 [kg]

cd 0.320 [-]

Af 2.0 [m2]

cr 0.01 [-]

rw 0.3 [m]

Signals measured from the chassis dynamometer are then
sent to the VTI Simulator III using the UDP protocol. The
list of signals is presented in Table 2.

Table 2. Data sent from the chassis dynamometers.

Signal Unit Description
ni [rpm] Vehicle wheel speed

Ti [Nm] Vehicle wheel torque

vl [km/h] Longitudinal velocity

vv [km/h] Vertical vehicle speed

rroad [m] Road curvature radius

H [°] Heading, relative origin

h [m] Elevation of road

p [°] Incline

dTP [m] Distance since start

tTP [s] Time since start

Ti [°C] Dynamometer temperature

Sd,i [-] Dynamometer status

S [-] System status

2.4 Pedal Robot

The driver positioned in the VTI Simulator III can control
the vehicle by pressing the accelerator or the brake pedal.
The signals emitted by the simulator also have to
influence the vehicle in the chassis dynamometers lab and
thus a pedal robot was constructed. The pedal robot
mimics the driver input in the VTI Simulator III so that
the vehicle will receive the driver input. The control
parameters are the accelerator pedal position and the brake
pressure. The pedal robot is depicted in Figure 3.

One design choice during the construction of the pedal
robot was to only include accelerator and brake pedals.
Thus, only vehicles with automatic gear are considered.
This design choice limits testing of vehicles but the effort
needed to add manual gear change to the pedal robot was
considered to be too time-consuming. This design choice
limits the input signals needed by the pedal robot to
accelerator pedal position and brake pedal pressure.

Figure 3. Pedal robot installed in the vehicle in the chassis
dynamometer lab.

2.5 Network Performance

To connect the two hardware facilities together, the VTI
Simulator III at VTI and the chassis dynamometers at
Linköping University, it was decided to use optical fiber.
Since the distance between the facilities is approximately
500 m, an optical fiber link was a viable option. The
resulting network can thus be considered as a local
network.

To test the network connection a round trip time test
was performed. Packets which resemble the packages that
are sent from the VTI Simulator III software were sent at
200 Hz which is the speed the VTI Simulator III kernel
loop runs at. The result from sending one million packets
is shown in Table 3.

133

Table 3. Statistics from the connection between facilities.
Number of packages 1 000 000

Minimum delay 0.20 ms

Maximum delay 2.17 ms

Median delay 0.22 ms

Dropped packets none

Spikes above 0.5 ms 18

From Table 3 it can be seen that when sending one
million packets no packets were lost. It can also be seen
that there were very few delays longer than 0.5 ms. Based
on the measured performance of the network it was
decided to use the efficient UDP packet switching
protocol for communication between the involved
hardware setups and models during the tests.

3. Modelica Models
Modelica is a language for modeling and simulating
complex physical and technical systems. The initiative to
start the design of the Modelica modeling language was
taken in 1996 in an international effort [15]. The main
features of the language are:
• Object oriented approach
• Acausal equation-based modeling
• Hybrid (continuous-time and discrete-time) modeling

Since Modelica allows acausal modeling the model code
is close to the physical equations describing the system
behavior. This supports a more intuitive modeling process
and provides a higher level of abstraction. Various
commercial and open-source tools support the design,
compilation and simulation of Modelica models. In the
course of this work we have tested our models with both
OpenModelica [10] and Dymola [11].

When porting the model to Modelica, an important
question is what parts of the model to export to which
separate subsystems. As for any large model there are
alternative choices regarding how to split it into
submodels. In this work the solution to this issue was
more or less dictated by the hardware we want to model.

Thus the model uses the same UDP network interface
as the chassis dynamometers lab, and network packets to
and from the VTI Simulator III will have the same format
when using a model. The resulting model partitioning
consists of a Modelica car model used in the VTI
Simulator III and of another Modelica model of the
chassis dynamometers setup.

3.1 Powertrain Model

The powertrain model is split into two parts, the engine
and the gearbox. To model the engine in the Fortran car
model in the VTI Simulator III an engine map is used.
This engine map consists of a 12 by 12 matrix where the
engine rotational speed and throttle are taken as input and
the output is engine torque.

Using such a matrix has been sufficient for many
performed studies while still being simple. Thus, such an

engine model is implemented in Modelica using a
Modelica.Blocks.Tables.CombiTable2D model
from the Modelica standard library, MSL, with
smoothness set to Modelica.Blocks.Types.
Smoothness.LinearSegments. Instead of using
throttle as input to the engine map it was changed to pedal
position resulting in

Here is the output torque from the engine, is
the accelerator pedal position scaled between zero to one
and is the engine rotational speed.

The engine rotational speed is also limited in the model
to prevent the engine to infinitely increase rotational
speed.

Looking at the gearbox inside the Fortran car model it
is constructed using for-loops and break statements. The
possibility to translate these parts, loops with break
statements, which are quite nonphysical, to a Modelica
model was investigated, but it was decided to create a new
basic model instead. The created model uses the following
equations between the gearbox and the wheel hubs:

Here Éclutch is the rotational speed at the clutch, Éfl and Éfr
are the rotational speeds at the wheel hubs, igear is the gear
ratio from the gearbox and final drive, Tclutch is the torque
at the clutch and Tfl and Tfr are the torques at the wheels.

The clutch model’s rotational speed depends on the
clutch position. The following equations are used for the
clutch:

Here is the inertia in the engine, is a
modified clutch adjusted dead zones in the clutch and is
a first order response time.

This model for the gearbox models a manual gear and
the logic for automatic gear changes has to be applied.
This would mean that instead of having clutch pedal and
gear stick handled by a driver, physical or modeled, the
clutch and gear signals are handled by logics with
accelerator pedal as input from the driver.

3.2 Estimating Powertrain Model Parameters

In the chassis dynamometer lab there exist signals
measuring the responses at the wheels, e.g. engine
rotational speed and torques. To add other necessary
signals for the parameterization of a powertrain model, an
OBD II sensor was used. The OBD II sensor is capable of

134

logging 5 parameters at a speed of 2-4 Hz which might be
too slow for dynamic testing, but for static tests it was
deemed sufficient. As the two systems used for measuring
data both save time stamps a time synchronization using
the Network Time Protocol [12] was performed before the
measurements.

Starting with estimating the gear ratios, the chassis
dynamometer setup wheel rotational speed and time
stamps were logged. From the OBD II sensor engine
rotational speed and time stamps were logged. For every
gear the driver started at a low speed which was
maintained for approximately one minute. The driver then
increased speed to another stationary speed. This
procedure of increasing speed was repeated two to three
times giving a measurement of the gear ratios with both
low and high engine rotational speeds.

The measurements from the chassis dynamometers are
made at a higher frequency. Thus, to achieve equal
positions in time, linear interpolation is used to get logged
wheel rotational speed at the same time instances as the
engine rotational speed. A least square approximation is
then used to estimate the gear ratios and the estimated
ratios are shown in Table 4.

Table 4. Measured gear ratios from car mounted in the
chassis dynamometer lab.

Gear Ratio

1 16.70

2 10.08

3 6.79

4 4.97

5 3.79

6 3.06

In Figure 4 the relation between the engine rotational
speed and the wheel rotational speed using measured gear
ratio for gear one is shown.

Figure 4. Comparison of engine rotational speed, blue
curve, and vehicle wheel speeds multiplied with the gear
ratio, red curve, at gear one.

We continue by measuring a static engine map. In this
setup we use the OBD II sensor to measure time, engine
rotational speed, and accelerator pedal position. Before
starting any measurements the engine was run at high
load to reduce variations in temperature during the
measurements. Measurements for each operating point
were done during approximately 30 seconds when the

engine torque output had stabilized. The resulting engine
map is shown in Figure 5.

Figure 5. Measured engine map from a car mounted in the
chassis dynamometer lab.

In the used cabin in the VTI Simulator III the red zone of
the engine rotational speed starts at 6400 rpm with a stop
at 7000 rpm. To take this into account the engine map is
modified by extrapolating the engine map from 5000 rpm
to 6400 rpm and after that linearly reduce output torque to
7000 rpm. At 7000 rpm the output engine torque is
independent of pedal position and the engine torque where
the driver has released the accelerator pedal is used for
every pedal position. In this case -35.5 Nm.

3.3 Pedal Robot Model

We considered the performance of the pedal robot to be
accurate and fast enough to neglect the effects from it.
Thus, the pedal robot has not been modeled and instead
the pedal signals are sent directly to the chassis
dynamometers model.

3.4 Model of the Chassis Dynamometer Lab

The complete model of the chassis dynamometer lab
consists of three parts. One part handles the longitudinal
vehicle model used to calculate the vehicle speed as
described earlier in the hardware section. The second part
is the vehicle powertrain which from driver pedal input
models wheel torque and rotational speed responses as
shown. The third part is the brake dynamics. To simulate
this setup the complete model had to be extended with a
driver model. A simulation of the complete setup is shown
in Figure 6 where a calm acceleration is performed.

135

Figure 6. A simulation of the complete chassis
dynamometers lab model during a calm acceleration.

The minimum requirement of the complete model is that
it has to run at least at 100 Hz because the chassis
dynamometers send torque and rotational speed data at
this frequency. These signals are important and thus we
want the model to send these signals in the same way the
hardware would do.

The final chassis dynamometer model has 63 equations
where 40 of these are trivial equations. The final model
has 8 continuous states.

3.5 Simulator Car Model

In the VTI Simulator III simulator environment different
vehicle models can be used. One of these models is a ten
degrees of freedom Modelica car model, see [13]. The
model has been compiled from Dymola to Simulink in
Matlab 7.5 where it was further compiled to be used in an
xPC-Target 3.3 environment which is a real-time
environment. For further information about xPC-Target
see [14].

In the Modelica car model the parts regarding the
powertrain have been modified to have the same
connections as to the chassis dynamometers model. Since
the connections are the same it is possible to use the
estimated powertrain model without adjustments in both
the Modelica car model and the chassis dynamometers
model. The connections also make it possible to run the
simulator connected to the chassis dynamometers model
in the same way as if it would be connected to the
hardware in the chassis dynamometers lab.

3.6 Complete Simulator Setup
The complete simulator setup consists of several
components of hardware and Modelica models. An
overview of these components is shown in Figure 7.

Figure 7. An overview of the components in the simulator
environment. Green boxes picture hardware components
and blue boxes picture Modelica model components. Red
boxes picture components where either hardware or a
Modelica model can be used.

Here it can be seen that it is possible to combine these
components in different ways. Examples of combinations
are:
• VTI Simulator III connected to the pedal robot and

the chassis dynamometers.
• VTI Simulator III with the Modelica powertrain

model included in the 10 DOF Modelica car model.
It should be noted that the chassis dynamometers and
connected vehicle either both are in hardware or software
as it is not possible to connect a Modelica powertrain
model to the chassis dynamometers.

One component shown in Figure 7 which has not been
discussed much is the static driver. By static driver we
here mean that the driver has a predefined way of driving,
e.g. change gear from gear 1 to 2 at time 5 s. Another
typical term used for this kind of component is a drive
cycle. Thus, this Modelica model relies heavily on the
time variable and on if statements for controlling driver
output such as the accelerator pedal, the clutch pedal, the
brake pedal and the gear.

4. Results
For the models we have created there are many aspects to
investigate. Our main concern during the initial stages has
been the feasibility of real-time implementation. We
primarily consider two questions:
• How accurately different solvers simulate the model?
• Will the model manage desired time steps?

In the following sections we discuss how our models
perform with respect to these questions.

4.1 Performance of the Chassis Dynamometers
Model

We start here by looking at the first question: "How
accurately different solvers simulate the model?". As a
baseline for comparison the DASSL solver has been used
which is compared to the Euler forward solver. Since
some signals from the chassis dynamometers are sent at
100 Hz this sets the minimal required speed for the model.

Figure 8 shows the difference in acceleration when
using Euler forward or DASSL during the acceleration
maneuver shown in Figure 6. Settings used were a
tolerance of 1e-6 and 2500 intervals. Simulation
environment used was OpenModelica.

136

Figure 8. Difference in acceleration when simulations are
using Euler forward or DASSL as solvers during an
acceleration maneuver.

Here it can be seen that the difference between using
DASSL and Euler forward is comparably small. Since the
difference between DASSL and Euler forward is so small
and we want to keep the setup as simple as possible Euler
forward has been chosen for real-time simulation.

The next concern is if it will be possible to obtain 100
Hz performance during a real-time simulation. To give an
estimate of this the profiler in OpenModelica, [15], has
been used. The results from a run with Euler forward with
a time step of 0.01 s are shown in Table 5.

Table 5. Time measurements from model simulation.

Task Time Fraction

Pre-Initialization 0.000464 1.12%

Initialization 0.000118 0.29%

Event-handling 0.000671 1.62%

Creating output file 0.030664 74.24%

Linearization 0.000000 0.00%

Time steps 0.004043 9.79%

Overhead 0.003650 8.84%

Unknown 0.00216 4.11%

Total simulation time 0.041306 100.00%

In Table 5 we can see that event handling and the time
steps take approximately 0.0047 s which means that it
should be possible to run the model in real-time using
Euler forward with a time step of 0.01 s.

5. Conclusion
The established connection between the VTI Simulator III
and the chassis dynamometer lab has been developed and
this setup shows promising results. For applications it will
be interesting to perform more detailed investigations
regarding modeling and performance issues.

In this paper we have described and presented our first
results on the technical side. A Modelica car model of
appropriate complexity has been adjusted for use in both
OpenModelica and Dymola. A chassis dynamometer
model has been developed which runs in both
OpenModelica and Dymola.

The performance profiler in OpenModelica indicates
that it is possible to run the model in real-time. This

shows that it is promising to continue this work to achieve
a real-time simulation with the VTI Simulator III together
with a Modelica model of the chassis dynamometer setup.

5.1 Future Work

One main future work is to run the parameterized models
in real-time together with the hardware. This should be
investigated using the different possible combinations of
hardware and software. Additionally, some parts of the
model should be improved. For instance, the models for
the pedal robot and the brake dynamics have been over-
simplified and can be enhanced. A model from accelerator
pedal to throttle input could also be further investigated.

Another option to investigate is the use of FMI for real-
time simulation [16]. FMI is a standard for exporting a
compiled model to C-code packaged into a so-called FMU
(Functional Mockup Unit) which can be imported for
simulation within another tool.

The chassis dynamometer model has already been
compiled to a FMU using OpenModelica. A possible
future work is to integrate this FMU with a small cross
platform application. The intention is to run the model on
a stripped Linux computer through this small cross
platform application.

Acknowledgements
The authors would like to thank Tobias Lindell and Per
Öberg for the help with measurements in the chassis
dynamometers lab. The authors would also like to thank
Lena Buffoni for valuable comments and help with the
manuscript.

Partial support for this work has been received from
SSF in the project HiPo, and from Vinnova in the project
RTSIM and in the ITEA2 project MODRIO.

References
[1] X. Hu and E. Azarnasab. From virtual to real – A

progressive simulation-based design framework. In
Discrete-Event Modeling and Simulation, CRC Press, 2010.

[2] A. Andersson, P. Nyberg, H. Sehammar, and P. Öberg.
Vehicle Powertrain Test Bench Co-Simulation with a
Moving Base Simulator Using a Pedal Robot. In SAE
World Congress, number 2013-01-0410, Detroit, USA,
2013.

[3] Modelica Association. Modelica Language Specification
3.3, www.modelica.org, May 2012.

[4] Peter Fritzson. Principles of Object Oriented Modeling and
Simulation with Modelica 2.1, 940 pages, ISBN 0-471-
471631, Wiley-IEEE Press. January 2004.

[5] Elmqvist, H., Mattsson, S., & Olsson, H. Real-time
simulation of detailed vehicle and powertrain dynamics.
SAE SP, 2004.

[6] Otter, M., Schlegel, C., & Elmqvist, H. Modeling and
realtime simulation of an automatic gearbox using
Modelica. Proceedings of ESS, 1997.

[7] A. Bolling, J. Jansson, M. Hjort, M. Lidström, et al. An
approach for realistic simulation of real road condition in a
moving base driving simulator. ASME/Journal of
Computing and Information Science in Engineering, 11(4),
2011.

137

http://www.modelica.org/

[8] P. Öberg, P. Nyberg, and L. Nielsen. A new chassis
dynamometer laboratory for vehicle research. In SAE
World Congress, number 2013-01-0402, Detroit, USA,
2013.

[9] S. Mattson, H. Elmqvist and M. Otter. Physical system
modeling with Modelica. Control Engineering Practice,
6(4), 501–510, 1998.

[10] Open Source Modelica Consortium. OpenModelica Users
Guide version 1.9.0beta, February 2013.
www.openmodelica.org.

[11] Dassault Systems. Dymola Users Guide, version 7.1,
February 2013. www.dymola.com.

[12] D. L. Mills. Internet Time Synchronization: The Network
Time Protocol, IEEE Transactions on Communications,
vol. 39, no. 10, 1991.

[13] J. G. Fernández. A Vehicle Dynamics Model for Driving
Simulators. Master’s thesis at Chalmers University of
Technology, Göteborg, Sweden, 2012.

[14] P. J. Mosterman, S. Prabhu, A. Dowd, J. Glass, T.
Erkkinen, J. Kluza, R. Shenoy. Embedded Real-Time
Control via MATLAB, Simulink, and xPC Target.

[15] M. Huhn, M. Sjölund, W. Chen, C. Schulze & P. Fritzson.
Tool Support for Modelica Real-time Models In
Proceedings of the 8th Modelica Conference, Dresden,
Germany, March 20-22, 2011.

[16] T. Blochwitz, M. Otter, & M. Arnold. The Functional
Mockup Interface for Tool independent Exchange of
Simulation Models. In Proceedings of the 8th Modelica
Conference, (pp. 105–114), 2011.

Appendix

Modelica models for most of the simulated system.

model ChassisDynamometerSystem
 StaticDriver driver;
 ChassisDynamometerVehicleModel
 chassis_dynamometer_vehicle_model;
 volvos40.volvos40powertrain powertrain;
equation
 powertrain.throttle = driver.throttle;
 powertrain.clutch = driver.clutch;
 powertrain.gear = driver.gear;
 powertrain.long_vel =
 chassis_dynamometer_vehicle_model.vl;
 connect(powertrain.fl,
 chassis_dynamometer_vehicle_model.fl);
 connect(powertrain.fr,
 chassis_dynamometer_vehicle_model.fr);
end ChassisDynamometerSystem;

model StaticDriver "driver with
 pre-defined output"
 output Real throttle
 "throttle position scaled [0.0-1.0]";
 output Real clutch
 "clutch positio scaled [0.0-1.0]";
 output Real brake "brake pressure";
 output Integer gear "chosen gear";
 output Real stw_ang

"steering wheel angle";

protected
 constant Real pi=Modelica.Constants.pi;
 constant Real stwamp = (110 * pi) / 180
 "amplitude of the swd manouvre";
equation
 der(throttle) = if time < 17 then 10 *
 (0.5 - throttle) else 10 * (0.3 –
 throttle);
 clutch = if abs(time - 5) < 1 then
 1 - max(0, min(1, abs(time - 5)))
 elseif abs(time - 10) < 1 then
 1 - max(0, min(1, abs(time - 10)))
 elseif abs(time - 20) < 1 then
 1 - max(0, min(1, abs(time - 20)))
 else 0;
 brake = if time < 20 then 0
 elseif time < 30 then 15000
 elseif time < 40 then 0
 elseif time < 55 then 15000
 else 0;
 gear = if time < 5 then 1
 elseif time < 10 then 2
 elseif time < 20 then 3
 elseif time < 35 then 4
 else 3;
 stw_ang = if time < 10 then 0
 elseif time < 10 + (1 / 0.7 * 3) / 4
 then stwamp * sin(2 * pi * 0.7 *
 (time - 10))
 elseif time < 10 + (1 / 0.7 * 3) / 4 +
 0.5 then -stwamp
 elseif time < 10 + (1 / 0.7 * 4) / 4 +
 0.5 then stwamp * sin(2 * pi * 0.7 *
 (time - 10 - 0.5))
 else 0;

end StaticDriver;

model ChassisDynamometerVehicleModel
 "Vehicle model used in the Chassis
 Dynamometer setup at LiU"
 package Interfaces =
Modelica.Mechanics.Rotational.Interfaces;
 Interfaces.Flange_a fl "mechanical
 connection to front left wheel";
 Interfaces.Flange_a fr "mechanical
 connection to front right wheel";
 Interfaces.Flange_b rl "mechanical
 connection to rear left wheel";
 Interfaces.Flange_b rr "mechanical
 connection to rear right wheel";
 Modelica.SIunits.Acceleration a(start =
 0) "vehicle acceleration";
 Modelica.SIunits.Velocity v(start = 0)
 "vehicle speed";
 output Real[4] n "wheel rotational
 speeds";
 output Real[4] M "wheel torque";
 output Real vl "vehicle longitudinal
 speed";
 output Real vv "vehicle lateral speed";
 output Real rroad "road curvature
 radius";
 output Real H "vehicle heading";
 output Real h "elevation of road";
 output Real p "incline";

138

http://www.openmodelica.org/
http://www.dymola.com/

 output Real d_TP "distance since start";
 output Modelica.SIunits.Time t_TP "time
 since start";
 output Modelica.SIunits.Temperature[4] T
 "dynamometer temperature";
protected
 package SI = Modelica.SIunits;
 constant SI.Mass m = 1401 "vehicle
 mass";
 constant SI.CoefficientOfFriction c_d =
 0.32
 "aerodynamic resistance coefficient";
 constant SI.Area A_f = 2.0 "vehicle
 front area";
 constant SI.CoefficientOfFriction c_r =
 0.001 "rolling friction coefficient";
 constant SI.Length r_w = 0.3 "wheel
 radius";
 constant SI.Acceleration g =
 Modelica.Constants.g_n "gravitational
 constant";
 constant SI.Density rho_air = 1.202 "air
 density at an altitude of 200m";
 Real Ftot "total amount of forces acting
 on the vehicle";
 Real Fprop "propulsion forces";
 Real Froll "rolling resistance forces";
 Real Fair "air resistance forces";
 Real Fclimb "vehicle incline forces";
equation
 a = der(v);
 Ftot = m * a;
 Ftot = Fprop - Froll - Fair - Fclimb;
 Fprop = -(fl.tau + fr.tau + rl.tau +
 rr.tau) / r_w;
 Froll = c_r * m * g;
 Fair = (c_d * A_f * rho_air * v * v)/2;
 Fclimb = 0.0;
 der(fl.phi) = v / r_w;
 der(fr.phi) = v / r_w;
 der(rl.phi) = v / r_w;
 der(rr.phi) = v / r_w;
 //Output
 n[1] = v / r_w;
 n[2] = v / r_w;
 n[3] = v / r_w;
 n[4] = v / r_w;
 M[1] = fl.tau;
 M[2] = fr.tau;
 M[3] = rl.tau;
 M[4] = rr.tau;
 vl = v;
 vv = 0.0 "dummy value";
 rroad = 0.0 "dummy value";
 H = 0.0 "dummy value";
 h = 0.0 "dummy value";
 p = 0.0 "dummy value";
 der(d_TP) = v;
 t_TP = time;
 T[1] = 300.0 "dummy value";
 T[2] = 300.0 "dummy value";
 T[3] = 300.0 "dummy value";
 T[4] = 300.0 "dummy value";
end ChassisDynamometerVehicleModel;

139

	coverpage
	coverpage.vsd
	Page-1

	blanksida
	frontmatter
	1_Session I
	ecp13084001
	blanksida
	ecp13084002
	blanksida
	ecp13084003
	1. Introduction
	2. A Meta-model for representing System Requirements as RequirementAssertions
	3. Extending the Modelica language for Modeling System Requirements
	3.1 Approach A
	3.2 Approach B
	3.3 Approach C

	4. A case study
	4.1 System Description
	4.2 Exploiting the A Approach
	4.3 Exploiting the B Approach
	4.4 Exploiting the C Approach

	5. Conclusions and future works

	blanksida
	2_Session II
	ecp13084004
	ecp13084005
	ecp13084006
	3_Session III
	blanksida
	ecp13084007
	ecp13084008
	4_Session IV
	ecp13084009
	1. Introduction
	2. Using Artificial States in Modeling Practice
	2.1 Example 1: Energy Market Model
	2.2 Exampe 2: Environmental Control System

	3. Review of the method of artificial states
	4. Balance dynamics equations: Turning implicit idealization into explicit idealization
	5. Handling balance dynamics equations in a simulation environment
	6. Small application example
	7. Prospective Limits of this Solution Method
	8. Realization within a Modeling Language
	9. Conclusions

	blanksida
	ecp13084011
	1. Introduction
	2. Modelica Constructs for Initialization
	3. Mathematical Representation
	4. Numeric Approach
	4.1 Under/Over-Determined Systems
	4.2 Scaling
	4.3 Start Value Homotopy

	5. Symbolic Approach
	5.1 Dependence Graph
	5.2 Under-Determined Systems
	5.3 Scaling
	5.4 Hybrid Models

	6. Conclusions and Future Work

	blanksida
	5_Session V
	ecp13084012
	Tool Demonstration Abstract: OpenModelica and CasADi for Model-Based Dynamic Optimization
	1. Introduction
	2. OpenModelica Compiler and CasADi
	3. Demonstration

	ecp13084013
	1. OpenModelica Graphical Editor
	2. OpenModelica Debugger

	ecp13084014
	ecp13084015
	ecp13084016
	Models for Distributed Real-Time Simulation in a Vehicle Co-Simulator Setup
	1. Introduction
	2. Hardware Facilities
	2.1 VTI Simulator III
	2.2 Vehicle Propulsion Laboratory
	2.3 Chassis Dynamometer Vehicle Model
	2.4 Pedal Robot
	2.5 Network Performance

	3. Modelica Models
	3.1 Powertrain Model
	3.2 Estimating Powertrain Model Parameters
	3.3 Pedal Robot Model
	3.4 Model of the Chassis Dynamometer Lab
	3.5 Simulator Car Model
	3.6 Complete Simulator Setup

	4. Results
	4.1 Performance of the Chassis Dynamometers Model

	5. Conclusion
	5.1 Future Work

	ecp13085010

Using Artificial States in Modeling Dynamic Systems:
Turning Malpractice into Good Practice

Dirk Zimmer

German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany
dirk.zimmer@dlr.de

Abstract

This paper analyzes the current use of artificial states in modeling practice and proposes a new form of equations for the purpose of modeling dynamic systems. These balance dynamics equations are used to formulate dynamic processes that help to find the solution of non-linear systems of equations.

Keywords: artificial states, continuation methods, language design.

Introduction

Any kind of formal modeling involves abstraction. The modeler has to study the given system and decide which parts are relevant and which are not. Typically a system contains many dynamic processes where only a small subset is of interest. For instance, in rigid body dynamics, the modeler chooses to ignore the elasticity of the applied material. In power-electronics with ideal switches, the modeler chooses to ignore the complicated switching behavior.

In an equation-based modeling language, the modeler will then provide equations for both parts. The dynamic processes that are regarded as relevant will be represented by differential equations. For other processes idealizations are provided in form of algebraic equation systems. Optimally, the resulting set of differential-algebraic equations has a set of state variables that precisely matches the dynamics of interest. In real modeling practice, this is infeasible for many cases.

In many applications, the modeler is forced to extend the dynamics of the system significantly beyond his area of interest. The reason for this aggravation is that otherwise the systems of non-linear algebraic equations resulting from the idealization of dynamic processes get too complex to be reliably solved by a general simulation engine. In order to avoid this, the modeler counteracts by including more state-variables in his system than he actually intends and thereby breaking the algebraic equation systems down. Consequently, these state variables are denoted as artificial since the dynamics of them are actually of no interest. They have been artificially introduced in order to enable a better computational realization of the simulation code.

This method of artificial states represents common modeling practice. It is applied in many different ways and comes along in many disguises. In mechanics, rigid detents get replaced by stiff spring-damper constructs. In electrics, micro capacitances or leakage currents are used without original intent. In bondgraphs, small-valued C or I elements are being added. And in this paper, we present two further examples that belong to the domains of thermodynamics and microeconomics.

Although the use of artificial states is common practice, it is not regarded as good practice. Instead it is often denounced as malpractice or as method of last resort that shall only be applied if all other potential remedies have failed. This is because of the significant disadvantages this method typically incorporates.

Since the artificial states mostly express dynamic processes whose time scale is orders of magnitudes lower than the time scale of actual interest, the system becomes very stiff. This requires the use of complex ODE-solvers for stiff systems, reduces simulation speed, and often prevents real-time capability of the simulation code. Furthermore, modeling the processes attached to artificial states requires parameters that are mostly of no interest or that cannot be retrieved in a meaningful way. This results in so-called fudge parameters whose values are arbitrarily stipulated but not based on any real data. Instead, the determination of these parameter values represents mostly a trade-off between the unwanted degree of stiffness and the unwanted loss of precision: a true choice between the devil and the deep blue sea.

Hence it is easy to understand why the use of artificial states seems strongly objectionable. The more rewarding question is to ask why this method is still being so frequently applied and why the recent progress in general M&S frameworks has not eradicated the need for this method. Why do modelers use a method from that they know it is bad? What forces them to use a method of last resort? And what is to say about all the other resorts?

5th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

This paper examines these questions and it will show that the method of artificial states is not bad per se. It is actually quite clever, a smart thing to do in many occasions, and, when conducted carefully, provides valuable insight into the modeled system. What is wrong about it is the way modelers are forced to apply this method in today´s M&S frameworks. Hence, we will suggest new constructs for modeling languages and new computational processing schemes for simulation engines. With these new tools at hand, the malpractice of artificial states will be turned into good practice.

But first let us look at some examples to expose the current dilemma.

[bookmark: _Toc340241761]Using Artificial States in Modeling Practice

In this section, we demonstrate the practical use of artificial states by the means of two examples. Both are realistic examples in the sense that they demonstrate the kind of problems that a modeler is typically confronted with in equation-based modeling languages. Both examples demonstrate the problems that forced the modeler to use artificial states although being initially reluctant.

Example 1: Energy Market Model

In the first example, principles from microeconomics are used for the management of energy flows [10]. The idea is the following: based on a market price each generator produces a certain amount of power and each load consumes a certain amount of power. The corresponding cost curves of generators and consumers are continuous monotonic increasing (Figure 1). The market price is then simple determined as the intersection between the two cost curves (Figure 2) for generators and consumers. In this way, a market model can be used to compute the power flow in an energy network.

[image:]

[bookmark: _Ref346114603]Figure 1: Cost curves

So far, so simple – but when we approach more sophisticated applications, things become a bit more difficult. Figure 3 presents the model diagram of a combined power generator whose outputs are electric and thermal energy. Up to 60% of the thermal energy can be converted into electricity.

[image:]

[bookmark: _Ref346114610]Figure 2: Equilibrium price

To this end, the power is split from the source (red component) into two sub-markets by the fixed split:
40% - 60%. Connected to this market are the consumers (blue). The thermal market, however, can take energy from the electric market but not vice versa. This is modeled by a one-way component that acts like an electric diode. The energy needs to be converted before reaching its consumer, hence the conversion element. The thermal energy can be wasted if inevitable, hence the waste element.

[image:]

[bookmark: _Ref346114618]Figure 3: Model diagram of a combined power generator

The problem we get here is that we have two different market prices: one for electric energy and one for thermal energy. However these markets are not independent but coupled by algebraic equations. For instance, the model of the split component states that price at the generator is the weighted mean of the two consumer prices.

vin = vout1 ∙ R + vout2 ∙ (1-R)

Hence we have a non-linear system with two iteration variables, namely the two prices of the electric and thermal market. This is certainly not exceptional and poses often no problems at all. However, in this particular case, it does. The cost-curves for the generator, the consumers, and the one-way limiter as well as the waste element all contain very flat and very steep gradients. This makes iterative, gradient-based solvers (such as Newton’s method) difficult to apply since the convergence area is often very small. Finding the initial solution requires a very good guess and steps of time-integration have to be small in order to stay within the area of convergence.

In order to approach a market solution in a more robust way, we provide a price controller. With this element, it is possible to find the solution in robust way by approaching steady state. Instead of having to determine the market price v directly such that the balance equation of power

p1 + p2 + p3 = 0

holds, we make the more relaxed statement:

p1 + p2 + p3 + pc = 0

and control the price v by the lack or excess of power represented in pc.

The corresponding controller is a very simple model that introduces an artificial state. It may compensate for any lack or excess of power pc. The controller increases the market price in case of a power outflow (pc > 0) due to a lack of power and decreases the price in case of a power inflow (pc < 0) due to excess of power.

dv/dt ∙ T = pc

where T is an arbitrary time constant. In the diagram of Figure 3, it is depicted as grey “$” placed in a circle. We can use such a price controller, because we know that the cost-functions are monotonic increasing. Any price advance will lower the demand and increase the provision of power and vice versa. This knowledge is not available to a non-linear solver but can be incorporated into the model in this way.

The incorporated disadvantages are a stiff system and that the simulation results are polluted by the dynamics of the price controller.

Exampe 2: Environmental Control System

The second example represents the modeling of a three-wheel bootstrap circuit from the environmental control system of classic aircraft architectures [7]. Here, air that is tapped from the aircrafts turbine (bleed air) is used to pressurize the cabin. Since the bleed air is hot (ca. 220°C) and at high pressure (ca. 2.5bar) [6], it needs to be cooled down and expanded before it enters the cabin. The idea is to use the energy gained in this expansion process to power a compressor and a fan for the ram air channel that is being used as cooling element. With those two devices joining the drive shaft of the expansion turbine, a more efficient cooling device can be designed.

Let us trace the path of the bleed air in the corresponding model diagram of Figure 4. The bleed air first passes the primary heat exchanger (PHX) for cooling and is then compressed before passing the main heat exchanger (MHX). Before entering the turbine for expansion, the water content needs to be extracted. Hence the bleed air passes a condenser and later on a reheater. These are both heat exchangers where the bleed air is actually interacting with itself at different stages in the circuit. Finally, after expansion, the air is sent to the mixer where it is being used to pressurize the cabin.

[image:]

[bookmark: _Ref346115547]

Figure 4: Model diagram of an environmental control system

In this model, we are only interested in the equilibrium point and not in any dynamics of the system at all. In the equilibrium point, the energy consumed by compressor and fan will balance the energy gain of the turbine. Furthermore all losses and gains of thermal energy in the heat exchangers cancel each other out. In the model, this equilibrium point is described by a set of pure algebraic equations. Due to the nature of thermal processes many of these equations are non-linear. The connections between the components in Figure 4 form many loops. This indicates that many of these algebraic equations are tightly coupled with each other[footnoteRef:1]. And indeed when we have implemented the model in the modeling language Modelica, there results a very difficult non-linear system with more than 200 equations. Corresponding M&S frameworks like Dymola [3] are able to compress the system but even then a non-linear system remains with more than 40 iteration variables. [1: more technically: they represent a large block in the block lower triangular form of the equation system.]

Solving such a complex system of equations in a robust manner is a very difficult task. But even when possible, a large system with more than 40 iteration variables significantly slows down the simulation engine as soon as the ECS becomes part of other dynamic processes.

For these reasons, artificial states have been used to tear the algebraic equations system apart. In total 5 state variables were sufficient to break down the non-linear equation system into individual non-linear equations that can be solved one after another.

One of the state variables represents the velocity of the drive-shaft. A small inertia has been assigned to this shaft and hence any difference between turbine and compressor power does not need to be immediately balanced. Instead the difference can be used to accelerate or decelerate the drive shaft, as this happens in reality too. The precise value of the inertia I is not important here since we are not interested in the corresponding dynamics.

The inertia of the drive shaft introduces the following differential equation:

τ = der(ω)∙I

The variable ω represents the angular velocity of the drive shaft and is now an artificial state of the system. Its product with the torque τ determines the lack or excess of power that is (de-)accelerating the drive shaft.

The other four states are not mechanical inertias but thermal inertias. Although the physical domain is different, the applied methodology is identical.

By using artificial states, the model can be solved robustly and is open for further extension as for instance its inclusion into a complete aircraft energy system model. The amount of stiffness that is added to the system depends on the fudge parameters. However, for many practical applications, solving the stiff system is still faster than solving the original system simply because there is no complicated non-linear system with over 40 iteration variables to be solved.

[bookmark: _Toc340241764]Review of the method of artificial states

Let us review the methodology that can be extracted from the two examples. In both cases, the modeler generated a non-linear system of equations that turned out to be very difficult to solve. It is inappropriate to blame the numerical solvers for this. Without any further information no one can guarantee that any potential solver will find the correct solution[footnoteRef:2]. Demanding for a better solver method to solve all of your problems is a pie in the sky. [2: Presuming that there is exactly one solution or that there are multiple solutions of which any of them can be regarded as correct.]

It is important to understand that these non-linear system of equations result from a process of idealization. In example 1, we requested for a balance between power consumption and generation. The price had to be determined in such a way that the balance is met. Closer to reality is to regard the price determined by continuously ongoing negotiation. A lack of power leads to a higher prices and an excess of demand leads to lower prices. The balance equation simply idealizes this negotiation process by reducing it to an instant and letting it take immediate effect.

Also in example 2, balance equations are a source of idealization. The balance of power along the drive shaft ignores the inertia of the shaft and that it takes time to establish this balance. In many, many cases non-linear systems of equations result from the idealization of such balance dynamics.

[bookmark: _GoBack]What happens now is particularly interesting. After the modeler has realized that he has gone too far and that his idealizations have created non-linear systems too difficult to solve, he reverts some of his idealization against his original intent. In example 1, the continuous process of negotiation has been reintroduced by a price controller. In example 2, mechanic and thermal inertia have been added to the system although the corresponding dynamics are of no interest.

The modeler understands that the system cannot be solved without some background knowledge that is inaccessible to the solver. It is inaccessible because it got lost in the process of idealization. For instance, the modeler knows the effects of price advance and price reduction and how to use that knowledge to derive a market solution. He also knows that inertias in physical systems help to balance the system.

But how can a modeler convey such valuable background knowledge into a general M&S framework? He sees no other way than to introduce artificial dynamics in his system and hence the method of artificial states becomes the weapon of choice. In this way, he abuses the time-integration of the simulator as a solver for his non-linear systems of equations.

When using artificial states, the modeler evidently makes a distinction between

Dynamic processes that are relevant of the system under study.

Dynamic processes that describe how to solve a non-linear system of equations.

Once we have become aware of this distinction, the problematic point about the use of artificial states becomes evident: The modeler makes this distinction but the M&S framework does not. It is not the modeler who wants to mix up things. He is forced to mix up things because the M&S frameworks do not provide adequate means to make a proper distinction between these two descriptions of dynamic processes.

The aim of a good modeling language should be to grasp the modeler’s knowledge in a formal, clear and unambiguous way. So when the modeler knows which dynamics lead to the solution of a non-linear system of equations, any modeling language should encourage him to include this knowledge into his models in a proper form. After all, this represents valuable knowledge that can only be beneficial for the subsequent processes of code generation and simulation.

[bookmark: _Toc340241765]Hence the next chapter suggests a way, how such knowledge can be conveniently incorporated in a modeling language. It turns out to be surprisingly simple and intuitive.

Balance dynamics equations: Turning implicit idealization into explicit idealization

In the previous section, we stated that the idealization of balance dynamics is a very frequent source of non-linear system of equations. Let us therefore review the equations of the price controller from Example 1 that represent exactly one such example. First we had the desired ideal form for the balance of power flows:

p1 + p2 + p3 = 0

In this case, the market price v has to be determined by a non-linear system of equations. Because of this, we relaxed the balance equation by introducing pc and determined (or controlled) the price by means of a differential equation:

p1 + p2 + p3 + pc = 0

dv/dt ∙ T = pc

We can derive the ideal form out of the balance dynamics by assuming a steady-state scenario and setting the derivative to zero. Furthermore, we assume that this steady state is continuously maintained and hence that the corresponding balance dynamics take instantaneous effect. This is like stating that the time constant is approaching zero.

This helps to understand the process of idealization and we can see that there are two major implications behind this idealization process:

The balance dynamics take place in no time; so they are regarded as infinitely fast.

The balance dynamics finally reach a stable steady state.

Since this pattern of idealization is so common in so many applications, it seems meaningful to enable its explicit formulation in a modeling language. To this end, a simple operator suffices.

Most modeling languages feature an operator for the time-derivative such as:

der(v) ∙ T = pc

In strong resemblance to this operator, we can define and use a balance operator instead:

balance(v) = pc

The operator balance(v) simply replaces the term
der(v) ∙ T and implies the two idealizations der(v) = 0 and T 0. The fudge parameter T has consequently gone lost.

With this operator we have introduced a new kind of equation. We call them balance dynamics equations. They enable us to state the implicit assumption of the idealized algebraic equation in explicit form. In this way, you get the best of both worlds: you can interpret them as algebraic constraints in the simulation context but you can also interpret them as dynamic process in the solver context. How to precisely do that is content of the next section.

[bookmark: _Toc340241766]Handling balance dynamics equations in a simulation environment

In the following small example, we find an algebraic equation, a differential equation, and a balance dynamics equation:

der(x) = z

balance(y) = p(y)-x

z = sin(y)

The balance equation now states two things: a non-linear equations system (0 = p(y)-x) and a dynamic process how to solve this system (der(y) = p(y)-x) based on the modeler’s knowledge that p is a monotonic increasing function.

Consequently, these model equations can now be transformed in two different ways:

		der(x) = z

0 = p(y)-x

z = sin(y)

		x = const

der(y) = p(y)-x

z = sin(y)

The left version represents the simulation dynamics, the dynamics of relevance for simulation; the right version represents the solver dynamics, the dynamics needed to solve the non-linear system of equations. This solver dynamics is formulated as sub-simulation (a simulation nested within the main simulation) hence the states of the actual simulation (here: x) are held constant. There remains the question how to take use of such a sub-simulation.

The idea is of course that in case we fail to solve the non-linear equation (here: 0 = p(y)-x) directly, we use the sub-simulation on the differential equation (here: der(y) = p(y) – x) to get to the area of local convergence. But before we pursue this idea any further, let us highlight another benefit of balance dynamics equations. Balance dynamics equations do not only help solving non-linear equations by getting to the area of local convergence but they also provide information that helps to solve the actual system more efficiently once you are in this area.

Whenever an iterative numerical solver is applied to a non-linear system of equations, we need to determine a set of suitable iteration variables. These iteration variables are also often denoted as tearing variables since they are used to tear the algebraic loops apart and generate residual values instead. Choosing such iteration variables is a difficult task where many constraints have to be regarded [11]. This led to the choice of over 40 iteration variables for the ECS system in example 2.

Balance dynamics equations provide an excellent indication which variables to choose as iteration variables. Since they are assigned to a state-variable in the corresponding sub-simulation, this state variable must also be a suitable iteration variable. In this way, the number of iteration variables (and thereby the size) can be significantly reduced. For instance, in Example 2, the number of iteration variables can be reduced from over 40 to 5, leading to a much more efficient simulation.

This coincidence of iteration variables for the direct solution with the state variables for sub-simulation indicates that these two tasks are actually closely related. Remember, the balance equation

balance(x) = f(x)

offers us two different ways to get to a solution. Either we solve the equation 0 = f(x) directly or we approach the steady state by a sub-simulation on the differential equation der(x) = f(x). On the first look, this looks like two separate tasks. However, let us analyze how we would perform such a sub-simulation in practice.

After all, this is a special case: we do not perform a usual simulation; we want to perform a simulation for the sole purpose to approach the steady state with the time[footnoteRef:3]
t → ∞. Which integration method would we choose for that? [3: Please note, the time t does not represent the main simulation time here but the time of the nested sub-simulation. The complete time-span of the sub-simulation represents only one instant in the main simulation.]

Since the differential equation der(x) = f(x) is supposed to describe a stable system, an implicit method is a strong favorite. Any explicit integration method would be limited in its step-size in order to maintain stability and approaching infinity with steps of finite width is an unpromising endeavor.

Since we do not care about the precise trajectory leading to the steady state and since the steady state solution itself is insensitive to the local integration error, there is no reason to choose any higher-order method. Order 1 is completely sufficient.

So our method of choice would be to perform Backward Euler with as large steps as possible. Hence, let us look at one integration step of this method going from t to t+h:

xt+h = xt + h∙der(xt+h)

or in our current example:

xt+h = xt + h∙f(xt+h)

Being an implicit method, we have to solve the system of equations: 0 = g(xt+h) with g(xt+h) being defined as:

g(xt+h) = xt - xt+h + h∙f(xt+h)

Evidently for h → ∞, solving g(xt+h) becomes equivalent to solving f(x) directly. Now it becomes clear how the solver dynamics can support us to find the solution of f(x). Instead of solving the system f(x), we can solve g(x) and in this way, we have won one important degree of freedom: we can choose h.

In this way, we have transformed the problem into a numerical continuation problem [1]. In general, a continuation problem results from transforming a function F(x) to F’(x,λ) with λ [0,1] where F’(x,1) = F(x) and F’(x,0) is easy to solve. Many solutions methods have been developed for this kind of problem and they are already applied by many M&S Frameworks, mostly to solve initialization problems in a more robust way [9] for instance by using homotopy [8].

To use numerical continuation solvers not only for initialization problems but also during simulation is also not a completely new idea. Artificial time integration is not uncommon to find solutions for PDEs [2]. The main difference to classic continuation problem in our case is that is not bounded by 1 but is free to go to infinity. Hence we have to adapt the continuation solver. The following paragraph sketches an algorithm that is a variant of the simplest kind of numerical continuation: the natural parameter continuation where h is our continuation parameter.

In case h is too large and our guess value for xt+h is outside the convergence area, we can choose h small enough to be located in the convergence area again. And with each solution of g(x), we step a little closer to the final solution of f(x). In this way, we have found a robust way to solve our non-linear system of equations. Figure 5 depicts the corresponding algorithm of the balance dynamics solver.

[bookmark: _Ref346117018]Figure 5: Algorithm for the balance dynamics solver

This algorithm becomes part of the main simulation loop and replaces the former direct solver for
0 = f(x). It is hence performed at each integration step of the main simulation task. It is not necessarily slower than the direct solver for f(x). Having a high initial value for the sub-simulation step-size h and a good guess value for xt+h, not many more iterations would be required than for a direct solution of 0 = f(x). A call to the direct solver is thus not required.

The difference occurs when good guess values for xt+h are not available. In a normal setup, the integration step-size of the main simulation loop would be reduced in order to reobtain a good guess. Using our balance dynamics solver, this is unlikely to be necessary. More iterations would be needed in the solver to get the solution but the step-size of the main simulation loop can be maintained. And of course, finding the initial solution is also much simpler.

Without balance dynamics equations, the modeler has the choice of either creating a stiff system or a difficult non-linear system of equations. In both cases, he imposes severe limitations on the main integration step size and thereby creates a global damage even when only a small subsystem is actually concerned. With balance dynamics equations and a corresponding solver, the damage is kept local.

A final remark with respect to the algorithm in
Figure 5: please note that the step-size control of h is not equivalent to classic step-size control in ODE solvers. It is based solely on the matter of convergence not on the matter of local integration error and hence can be performed much more aggressively.

Small application example

To prove the feasibility of this approach, we provide a small example. The following DAE

dx/dt = y

dy/dt = -0.1∙a – 0.4∙y

s(a) = 10∙x

requires the solution of an expression containing the non-linear function s(a) displayed in Figure 6:

s(a) = 	if a < -1 then 		a/4 – 3/4

else if a > 1 then		a/4 + 3/4

else			a

with its derivative to be defined as

s(a) = 	if a < -1 then 		1/4

else if a > 1 then		1/4

else			1

[image:]

[bookmark: _Ref351383551]Figure 6: The piecewise linear function s(a)

The convergence area of solving s(a)=0 with respect to Newton’s method is exactly [-1,1]. Although the convergence area is strictly limited, the solution can easily be found if one knows that s(a) is strictly monotonic increasing. We can incorporate this knowledge in form of a balance dynamics equation:

dx/dt = y

dy/dt = -0.1∙a – 0.4∙y

balance(a) = 10∙x – s(a)

This DAE is now transformed into two forms for numerical ODE solvers.

· For the main ODE solver:

dx/dt = y

dy/dt = -0.1∙a – 0.4∙y

0 = 10∙x – s(a)

· For the continuation solver:

x = const

der(a) = 10∙x – s(a)

The main simulation is performed with Forward Euler and a step width of 0.1s for 100s. Without the continuation solver, the non-linear system of equations cannot be solved when the state variable x enters the range of
[-0.1,0.1]. A step-size of smaller than 0.01s has to be taken in order to practically ensure the solvability of the system.

The continuation solver has been realized according to the algorithm sketched in Figure 5 and can robustly solve this system of equations. Figure 7 shows the simulation result. The step-size of the main-simulation loop is not impaired by the non-linear system anymore.

[image:]

[bookmark: _Ref351383652]Figure 7: Simulation result showing the state x

Of course, this is a very small and simple example but it demonstrates that the basic idea works. For more mature implementation, we need to examine a number of interesting questions:

· How to optimally control the step-width h of the sub-simulation?

· How to provide suitable initial guesses of this step-width?

· When to stop sub-simulation when convergence is not reached?

· How should the step-size control of the main-simulation loop be controlled w.r.t to the convergence speed of the continuation solver?

· etc…

In this test-implementation, for instance, the initial step width h was chosen to be three times the minimum step-width that was required for the solution of the last step from the main simulation. This ensures that the initial value of h is relatively close to a prior successful continuation step while enabling a geometric increase of h for the case the continuation solver is actually not needed.

Figure 8 plots the number of times the function s(a) is being evaluated by the continuation solver in order to compute a new step or to check for convergence. Each value in the plot represents one time-step of the main simulation loop.

 [image:]

[bookmark: _Ref351385610]Figure 8: Number of function evaluations

During the first half of the simulation, the system oscillates with high amplitude. There are several peaks caused by the continuation method when several sub-steps had to be taken before convergence could be reached. This is where a direct solution with a gradient-based solver would have failed.

In the second half, there is no need for the continuation method anymore and a large initial step-size and an increasing quality of the guess value significantly reduce the computational effort. With the exception for one extra evaluation to check for convergence, the continuation solver hardly generates any additional burden anymore.

Even this rudimentary test implementation shows that a continuation solver is affordable for each time-step of the main simulation while the robustness of the solution can be improved. Solving at certain points might be expensive but when not needed the overhead is small. Because of the robust solution method, a large step-size of the main simulation can be afforded.

Prospective Limits of this Solution Method

The proposed variant for the natural parameter continuation is of course very simple and may not be able to solve all forms of balance dynamics. More elaborated continuation solvers support to deal with more complex continuation paths such as bifurcations of turning points. (There are complete libraries for continuation solvers such PyCont [5]). However, the need for such complex solvers is a warning and we shall rather question ourselves about the origin of this need.

After all, balance dynamics should be simple but practically oriented modelers will tell us that they can become pretty complex even stating self-contradictory sentences such as: “the value of fudge parameters is very significant”. Evidently, “fudge parameter tuning” can become an obsession. Why does this happen?

One important point is that in many complex applications, balance dynamics are layered. For instance, in the model of an environmental control system, there are balance dynamics resulting from physical inertia. There might also be balance dynamics resulting from sub-controllers. The modeler is actually interested in none of these processes but for the working of the sub-controller, it is important that the physical balance dynamics take place in a shorter time span. The resulting layering is illustrated in Figure 9:

[bookmark: _Ref346549389][bookmark: _Ref346549383]Figure 9: Layering of different balance dynamics

In classic modeling, the modeler is now using the fudge parameters to impose this layering. During this process, he typically makes a trade-off: on the one hand, he wants to separate the different balance dynamics and keep them in right order. On the other hand, he wants to reduce the stiffness of the overall system. Optimizing this trade-off is what is typically described as “fudge parameter tuning”.

Having this idea in mind, it seems now smart that instead of having one continuation solver to solve complex balance dynamics, we prefer nested continuation solvers, each of them solving one layer of simple balance dynamics. This requires that the modeler has means to separate different balance dynamics and to layer them. The currently proposed operator does not offer a sufficient solution for this.

Realization within a Modeling Language

The proposal as presented here is of course very easy to realize in most equation-based modeling languages. It is sufficient to add one single operator for the formulation of balance equations just as this had been done for the homotopy operator [8] in Modelica [4].

However, as temptingly simple as this seems, the balance operator as presented here will prove to be only partly sufficient. There are two major flaws involved with this solution:

1. The last section outlined the need to layer balance dynamics and to nest the corresponding continuation solvers. This is not possible with this operator notation.

1. Having available only this operator, it is not possible to reuse existing models (or components) of dynamic processes formulated with derivatives for the balance dynamics. The modeler is forced to remodel all relevant equations using the balance operator instead.

The second point of critique is valid also for the homotopy operator in Modelica. Typically, a modeler first builds a stiff system that includes the balance (or initialization) dynamics and then, in a second stage, he separates the two dynamics from each other. It would be favorable if the modeling of the second stage could reuse the components of the first stage.

For these reasons, we will finally need a better solution than the proposed operator but we can regard this proposal as intermediate solution in order to conduct the heavily needed research on this topic.

[bookmark: _Toc340241767]Conclusions

Since decades modelers use artificial states. Since decades they are being told that this is bad. Since decades they do it anyway. This is because formulating the dynamics that lead to the balance point of a sub-system is often the only way a modeler can explain how to solve his non-linear system of equations. It is unfortunate that M&S frameworks have not recognized this and provided better means for the modeler that enable him to distinguish between simulation dynamics and solver dynamics. This would prevent the rightfully criticized abuse of simulation dynamics to solve non-linear systems of equations.

[image:]For this purpose, we have proposed the concept of balance dynamics equations. It turns out that adding a simple operator is at least partly sufficient and a first step to explore the concept further. Balance dynamics equations can then be used to create code for a corresponding solver that is much more robust. Furthermore, the information contained in them can be used to make a better choice of iteration (or tearing) variables. Unwanted stiffness can be avoided and the integration step size of the main-integration loop is not needlessly limited. A difficult non-linear system of equations in a subcomponent will still increase the computational burden but the damage can be kept local.

This work so far is essentially based on theoretical thoughts and analysis of modeling experience. It needs to be put into practice and properly tested. Also balance dynamics equations do not provide never-ending salvation. They won’t solve all modeling problems, but they have the potential to solve a big chunk of them. We hope for the future that this or similar methodologies are adapted by M&S Frameworks of industrial maturity.

Acknowledgements

I would like to thank Andreas Pfeiffer, Martin Otter and Michael Sielemann from DLR for suggesting several improvements.

References

[bookmark: _Ref346548033]Eugene L. Allgower and Kurt Georg. Introduction to Numerical Continuation Methods, SIAM Classics in Applied Mathematics 45. 2003.

[bookmark: _Ref346548015]U. Ascher, H. Huang, and K. van den Doel. Artificial Time Integration. BIT Numerical Mathematics, 47(1): 3-25, 2007.

[bookmark: _Ref346545335]Dymola: available at www.dymola.com

[bookmark: _Ref346544920]The Modelica Association. Modelica® A Unified Object-Oriented Language for Systems Modeling - Language Specification Version 3.3, Available at www.modelica.org, 2012

[bookmark: _Ref346545311]PyCont available at: www2.gsu.edu/~matrhc/PyCont.html

[bookmark: _Ref346544848]Rolls Royce. The Jet Engine. Rolls Royce Plc. Derby England. 278p. 1996.

[bookmark: _Ref346544864]M. Sielemann, T. Giese, B. Oehler, M. Gräber, Optimization of an Unconventional Environmental Control System Architecture. In: SAE International Journal of Aerospace, 4(2):1263-1275. 2011

[bookmark: _Ref346544969]M. Sielemann et. al., Robust Initialization of Differential-Algebraic Equations Using Homotopy. In: Proceedings of 8th International Modelica Conference. Dresden, Germany, 2011

[bookmark: _Ref351713097]M. Sielemann and G. Schmitz, A quantitative metric for robustness of nonlinear algebraic equation solvers. In: Mathematics and Computers in Simulation, 81 (12), pp 2673-2687. Elsevier, 2011.

[bookmark: _Ref346544810]D. Zimmer and D. Schlabe, Implementation of a Modelica Library for Energy Management based on Economic Models. Proceedings of the 9th International Modelica Conference , Munich, Germany (2012)

[bookmark: _Ref351712778]D. Zimmer, Equation-Based Modeling of Variable Structure Systems. PhD Thesis, ETH Zürich, 219 p. 2010

Biography

Dr. Dirk Zimmer received his PhD degree from the Department of Computer Science at the Swiss Federal Institute of Technology (ETH Zurich). He is currently pursuing his research work at the Institute of System Dynamics and Control belonging to the German Aerospace Center (DLR). Also, he is lecturer at the Institute of Computer Science at the Technical University of Munich (TUM).

image2.emf

Price v [$/W]Power p [W]EquilibriumNegated sum of loadsSum of sources0

image3.emf

heat

T

split

0.4

CR

ss

electricity

T

waste

$ $

oneWay

conversion

image4.emf

extractioninjectionturbinecompre?PHXMHXreheatercondenserBleedAi?RamAirI?toMixerRamAir?fanpseudoI?

image5.emf

Perform Newton

Iterations on g(x

t+h

)

Converged?

Perform BE step:

t := t+h

Steady state

reached?

Decrease h

geometrically

Increase h

geometrically

Start with initial h

h cannot be

decreased

Report solution

h cannot be

increased

Report ErrorReport Error

yes

yes

no

no

No

no

yesyes

oleObject1.bin

�

�

�

Perform Newton Iterations on g(xt+h)

image6.emf

-5-4-3-2-1012345

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a

s(a)

image7.emf

0102030405060708090100

-1

-0.5

0

0.5

1

time [s]

x

image8.emf

102030405060708090100

0

1

3

5

7

10

15

20

[s]

s(a) evaluations

image9.emf

Main ECS Control

ECS Sub-control balance dynamics

Physical balance dynamics

[ms]

[s]

[min]

time scale

oleObject2.bin

Main ECS Control

ECS Sub-control balance dynamics

Physical balance dynamics

[ms]

[s]

[min]

time scale

image10.png

image1.emf

Load 1Load 2Load 3Source 2Source 1Power p [W]Power p [W]Power p [W]Power p [W]Power p [W]00000Price v [$/W]Price v [$/W]Price v [$/W]Price v [$/W]Price v [$/W]

