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Abstract
We introduce a framework for statistical inference of the closure coefficients using machine learning methods. The objective
of this framework is to quantify the epistemic uncertainty associated with the closure model by using experimental data via
Bayesian statistics. The framework is tailored towards cases for which a limited amount of experimental data is available.
It consists of two components. First, by treating all latent variables (non-observed variables) in the model as stochastic
variables, all sources of uncertainty of the probabilistic closure model are quantified by a fully Bayesian approach. The
probabilistic model is defined to consist of the closure coefficients as parameters and other parameters incorporating noise.
Then, the uncertainty associated with the closure coefficients is extracted from the overall uncertainty by considering the
noise being zero. The overall uncertainty is rigorously evaluated by using Markov-Chain Monte Carlo sampling assisted
by surrogate models. We apply the framework to the Spalart–Allmars one-equation turbulence model. Two test cases are
considered, including an industrially relevant full aircraft model at transonic flow conditions, the Airbus XRF1. Eventually,
we demonstrate that epistemic uncertainties in the closure coefficients result into uncertainties in flow quantities of interest
which are prominent around, and downstream, of the shock occurring over the XRF1 wing. This data-driven approach could
help to enhance the predictive capabilities of computational fluid dynamics (CFD) in terms of reliable turbulence modeling at
extremes of the flight envelope if measured data is available, which is important in the context of robust design and towards
virtual aircraft certification. The plentiful amount of information about the uncertainties could also assist when it comes to
estimating the influence of the measured data on the inferred model coefficients. Finally, the developed framework is flexible
and can be applied to different test cases and to various turbulence models.

Keywords Turbulence modeling · Uncertainty quantification · Parameter calibration · Bayesian statistics · Surrogate-assisted
methods · Spalart–Allmaras one-equation turbulence model · Large-scale industrial aircraft use-case
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Abbreviations

x A vector-valued input variable
y A scalar-valued output variable
X A dataset of input variable x
Y A dataset of input variable y
a A parameter vector in general
σ Standard deviation
θ A hyperparameter vector in general
f A function to produce the output value by CFD

with a turbulence model
ε A stochastic variable representing noise
p A probability
N Sample size of a dataset
N Normal distribution
D A dataset as D � (X,Y)
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CFD Computational fluid dynamics
RANS Reynolds-Averaged Navier–Stokes
S-A Spalart–Allmaras
UQ Uncertainty quantification
QoI Quantities of interest
MCMC Markov-chain Monte Carlo
DoE Design of experiment
POD Proper orthogonal decomposition
CI Credible interval
AoA Angle of attack
2D Two-dimensional
3D Three-dimensional
Cd Drag coefficient of a 2D profile
CD Drag coefficient of a 3D profile
Cp Pressure coefficient

Subscripts

i i th element of a vector
|a Predictive distribution contributed only by the param-

eter a
org Original value
new A new value to distinguish with the others
pri A prior distribution

Superscripts

(i) i th sample point of a dataset

Oversets

̂ Fixed by a point-estimate approach for a stochastic vari-
able

˜ Approximated by a surrogate model for a function

1 Introduction

When using computational fluid dynamics (CFD) to inves-
tigate complex, industrial relevant aircraft configurations
at high Reynolds numbers, the direct simulation of turbu-
lent fluctuations is still computationally prohibitive. Thus,
typically, the Reynolds averaged Navier–Stokes (RANS)
equations are solved and turbulent behavior ismodelled using
so called turbulence models. Various different models are
available. However, all of them are based on coefficients
which need to be tuned theoretically and empirically based
on experimental data in order to obtain accurate predictions.
Traditionally, this was and is a rather manual process in
which one tries to match numerical results with canonical
experiments without accounting for uncertainties. Due to
increasing computational resources and data being available,

data-driven approaches based on machine learning gained
attention for such coefficient tuning tasks within the past few
years [1]. The idea of these data-driven approaches is to re-
infer and/or to adjust the established coefficients or terms in
the turbulence model based on experimental data or numeri-
cal data computed by direct numerical simulations (DNS) or
other higher-fidelity numerical techniques by using statistical
methods.

InCFDcomputations, the issue of physicalmodeling inac-
curacy is normally inevitable. Numerical errors due to spatial
and temporal discretization of the governing equations and
physical models are one of the most important issues in
CFD computations [2]. These inaccuracy and errors are rec-
ognized as epistemic uncertainty, which can be reduced if
more knowledge is gained. Turbulence models are one of the
important issues here. In measurements, on the other hand,
the observed data may contain measurement errors due to
various unknown external factors. These unknown factors
are classified as aleatory uncertainty, which is inherently
regarded as irreducible.

Data-driven methods depend on our hypothesis in statisti-
cal inference.One example of a conceivable hypothesis is that
the form of the turbulence closure model is accurate enough,
but that the coefficients defined in empiricism that relate to
specific flow properties are not always correct for a variety of
flow cases due to insufficient knowledge. In this article these
coefficients are treated as stochastic by Bayesian inference.
Bayesian inference refers to statistical inferencewhere uncer-
tainty in inferences is quantified using probability. In general,
statistical inference methods vary from problem to problem
but can abstractly be grouped in two categories on how to
treat the parameters (latent variables), which are the coeffi-
cients in closure models. On the one hand, if large data sets
are available, so-called point-estimate approaches are com-
monly applied with deep learning being the arguably most
promising and efficient methodology. On the other hand, the
inference of the latent variables by regarding themas stochas-
tic by enforcing a Bayesian perspective provides uncertainty
quantification (UQ) capabilities associated with the latent
variables and enables another perspective on the quantities
of interest (QoIs) in terms of observable variables. These
capabilities become especially remarkable when the amount
of data is relatively small. However, effective numerical tech-
niques for UQ are crucial especially in high dimensional
cases. In this article, the closure coefficients are treated as
stochastic latent variables. The expression latent variables
refers to unobserved variables and is used as an antonym to
observed variables such as input and output variables. The
stochastic approach then enables to quantify uncertainties of
the latent variables in the QoI in terms of credible intervals.
The above-mentioned categories are rigorously classified in
Sect. 2. In this article, to emphasize the differences between
tuning parameters by a point-estimate and evaluating them
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stochastically by an interval-estimate, we sometimes use
the expressions calibration and inference, respectively. Here
we start with reviewing some previous work on the point-
estimate approach.

One of the examples of turbulence model calibration with
the point-estimate approach is to minimize the error between
experimental data and the output of RANS-based CFD com-
putations for some QoIs. This is a direct approach. From a
statistical inference perspective, this is known as a parametric
regression process or parameter calibration: the turbulence
model is considered as a nonlinear regression model whose
inputs and outputs are parameters such as flow conditions,
the numerical mesh, etc., and QoIs such as integral aerody-
namic coefficients or pressure distributions, respectively. The
closure coefficients are treated as the parameters (or glob-
ally speaking, latent variables) of the nonlinear regression
model. Thus, least-squares optimization through minimiz-
ing the mean squared error (MSE) [3] provides turbulence
closure coefficients calibration. In general, during the cal-
ibration process a larger number of RANS simulations are
required causing a huge computational burden especially for
industrial relevant cases. Hence, large computational costs
during the optimization can be partly circumvented by rely-
ing on surrogatemodels such asGaussian processes or neural
networks [3, 4]. Another alternative is the use of adjoint flow
solvers to efficiently compute the gradients of the QoIs with
respect to the closure coefficients, enabling efficient gradient-
based optimization for solving the least-square problems.

Another example of approaches using the point-estimate
is calibration of the turbulence closure coefficients as the
output of the statistical inference methods [5–7]. Since the
coefficients to be inferred are now the output of regression
models, not parameters in the models, any kind of supervised
learning techniques are applicable. For example, the authors
in Refs. [5–7] used neural networks to handle millions of
data points by considering spatio-temporal parameters on
flow fields.

These two approaches introduced above can theoretically
be extended to an interval-estimate via the Bayesian perspec-
tive to evaluate the uncertainty associated with the closure
coefficients. For example, in the direct approach using the
least squares, the closure coefficients as the latent variables
can be treated as stochastic to formulate a posterior dis-
tribution of the coefficients. As a result, the output QoIs
also form a probability distribution, which is called pre-
dictive distribution. These probability distributions cannot
be obtained analytically because the probabilistic mod-
els behind are inherently nonlinear regression models. The
second approach mentioned in above may have further dif-
ficulties in extension to the interval-estimate. In case the
parameters to be calibrated are high-dimensional, the use
of Gaussian processes may become infeasible [7]. Bayesian
neural networks would have to rely on approximation meth-

ods to compute the posterior distribution because of the high
dimensionality of the parameters. In this article, our approach
is based on the direct approach that the nonlinear regression
model is a turbulence model equation with closure coeffi-
cients as parameters (the latent variables) to be inferred using
the interval-estimate via the Bayesian perspective.

There are several methods to compute the posterior and
the predictive distributions. The variational inference and the
Laplace approximation [8] are versatile methods to approxi-
mate the posterior distribution by a parametric probability
distribution. Since both of them require an iterative opti-
mization process with many RANS computations, the direct
simulation is still not as practical as the calibration process by
the least squares.Markov-chainMonteCarlo (MCMC)meth-
ods [8, 9] are used to approximate the posterior distribution of
a parameter of interest by random sampling in a parameter
space. Unlike the above-mentioned parametric approxima-
tion methods, MCMC provides a theoretical guarantee that
the histograms of the obtained sample points compose the
posterior distribution when the sample size approaches infin-
ity. Since each sample requires a RANS computation and
the number of samples is usually greater than the number
of iterations of the optimization, a direct implementation of
MCMC is infeasible. It is essential for all MCMC methods
to be supported by surrogate models in order to reduce the
number of RANS computations. Once a surrogate model is
constructed, the computational cost of MCMC can be negli-
gible and MCMC can be regarded to have higher fidelity for
computing the posterior than the other methods. However,
it has to be noted that the application of MCMC to high-
dimensional spaces remains a challenging topic. Also, from
the point of view of surrogate model construction, it is desir-
able to keep the dimension of the parameters to be inferred
as small as possible.

There is a body of existing research on surrogate-assisted
MCMC approaches [10–12]. In Ref. [12], output uncertainty
is directly computed via the samples generated by MCMC
using an efficient boundary layer code. In Ref. [11] MCMC
is used to evaluate the probability in the Bayesian update
process for the purpose of calibrating turbulence model
parameters. Surrogate-assisted MCMC approaches are also
used for sensitivity analysis in the context of UQ [3, 13]. A
review of recent work related to turbulence models can be
found in Ref. [14].

In this article, the uncertainty associated with the closure
coefficients is rigorously evaluated with a help of MCMC.
The quantified uncertainty in the QoIs can be identified intu-
itively as a lack of knowledge of the coefficients. On the other
hand, there are other uncertainties lurking in flow physics as
mentioned above.All the other uncertainties, nomatterwhere
they come from, are classified as noise in a Gaussian proba-
bilistic model to focus on the uncertainty associated with the
closure coefficients.
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The probabilistic model is a parametric model governed
by a model parameter that describes the set of closure coeffi-
cients and a parameter to control the noise. The main feature
of the Bayesian perspective here is to regard the parame-
ters (the latent variables) as stochastic variables. In order to
fully execute the Bayesian approach to account for all the
uncertainties that are present, all the parameters are treated
as stochastic. Thismodeling approach can quantify the uncer-
tainty in the QoIs that stems from the contribution of all the
uncertainties, i.e., uncertainty due to the closure coefficients
and due to noise. However, our interest is to quantify the
uncertainties associated with the closure coefficients. From a
physical perspective, this uncertainty needs to be clearly dis-
tinguished from the noise. However, the parameter to control
the noise depends on the turbulence model parameters when
data is observed (it forms a joint probability). A method for
extracting the uncertainty associated with the closure coeffi-
cients is presented and demonstrated using various test cases.
Note that modeling only the closure coefficients as stochastic
variables yields different results which do not account for the
effects of the uncertainty due to noise.

As mentioned earlier, the ability to quantify the epis-
temic uncertainty associated with closure coefficients has
a number of potential applications, for example, feedback
to experimental measurement techniques and propagation of
the uncertainty to the output QoI for arbitrary flow types.
It can be possible to identify at which domains in the input
parameter space (such as angles of attack, Mach number, and
the location on the wings) we need to measure the output QoI
in experiments (sensor placement). Note that this process is
basically the same concept as so-called Bayesian optimiza-
tion and active learning, effectively employing the posterior
uncertainty. There is, however, an important difference as
the inferred parameters (the latent variables) are physically
meaningful in our applications.

The target test case to demonstrate the data-driven
Bayesian inference of the turbulence model closure coef-
ficients is based on the Airbus XRF1 research aircraft
configuration and corresponding wind tunnel data at flight
Reynolds numbers. The RAE2822 airfoil is also used to
verify themethodology, butwith numerically generatedmea-
sured data. The output QoIs are the drag and surface pressure
coefficients, for which measured data is required to infer the
model coefficients.

The flow solver and the turbulence model used in this
article, the methodologies and the developed framework are
introduced in Sect. 2. In Sect. 3, results are presented for two
test cases and discussed. Section 4 provides a summary and
conclusions.

2 Methodology

This section introduces a framework for data-driven turbu-
lence modeling and provides a generalized perspective to
showcase that the developed framework can be applied to
other (turbulence) models as well as other test cases.

2.1 Flow solver and turbulencemodel

The flow solver employed is the DLR TAU-code. It is based
on a finite volume scheme, where inviscid terms are com-
puted via a first or second order scheme. Viscous terms are
computed via a second order scheme. Details of the solver
can be found in Ref. [15–17]. In this paper, matrix dissipa-
tion is used. For time integration a LUSGS implicit scheme is
chosen. Convergence acceleration is achieved with a multi-
grid algorithm based on agglomerated coarse grids. Various
turbulencemodels are available and the negative Spalart–All-
maras turbulencemodel [18] (referred to as the negative S–A)
is investigated and hence altered in this paper.

The equations of the negative S–A are briefly described
next. The negative S–A is derived from the original
Spalart–Allmaras turbulence model (referred to as the orig-
inal S–A). Details of the derivations provided below are
available in Ref. [18]. The original S–A is a linear eddy
viscosity model based on Boussinesq approximation. The
turbulent eddy viscosity νt is calculated by:

νt � ν̃ fv1. (1)

Here, the transport equation to be solved to obtain ν̃

is as:

(2)

Dν̃

Dt
� cb1 (1 − ft2) S̃ν̃
︸ ︷︷ ︸

production

−
(

cw1 fw − cb1
κ2 ft2

)

(

ν̃

d

)2

︸ ︷︷ ︸

destruction

+ · · · 1
σ

[

∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)2
]

,
︸ ︷︷ ︸

diffusion

where S̃ is the modified vorticity,

S̃ � S + S, S � ν

κ2d2
χ fv2, (3)

where S is the vorticity magnitude. The other coefficients in
Eqs. (1–3) are defined as:
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cw1 � cb1
κ2

+ 1+cb2
σ

,

fv1 � χ3

χ3+c3v1
,

χ � ν̃
ν
,

fv2 � 1 − χ
1+χ fv1

,

fw � g

(

1+c6w3
g6+c6w3

)1/6

,

g � r + cw2
(

r6 − r
)

,

r � min
(

ν̃

S̃κ2d2
, 10
)

,

fv1 � ct3exp
(−ct4χ2

)

.

(4)

The original S–A contains two additional coefficients namely
ct1 and ct2. In the DLR TAU-code, the trip term in Eq. (2)
is neglected. Therefore, 9 closure coefficients are accounted
for.

In the negative S–A, there are two modifications to the
original S–A. The first one is that the modified vorticity S̃ in
Eq. (3) is enforced to be positive. The other one is a modifi-
cation of the diffusion coefficient ν + ν̃ in Eq. (2). Therefore
S in Eq. (2) is represented by two additional coefficients cv2

and cv3 when S ← cv2S as:

S̃ � S +
S
(

c2v2S + cv3S
)

(cv3 − 2cv2)S − S
. (5)

Otherwise Eq. (3) is retained. The diffusion coefficient ν + ν̃

in Eq. (2) is modified to be ν + ν̃ fn , where fn is expressed
as follows by introducing one coefficient cn1:

fn � cn1 + χ3

cn1 − χ3 . (6)

Hence, the negative S–A includes 12 closure coefficients.
These coefficients are regarded as a parameter vector which
should be inferred. Moreover, constraints on the feasible
intervals of the coefficients are introduced to±50% of the
default values. Table 1 shows the original coefficient values
of the negative S–A and the valid intervals for the inference
processes. Note that in Ref. [18], the modified vorticity S̃ in
the negative S–A should not below 0.3S posing an additional
implicit constraint. Equations (3) and (5), might introduce
further constraints on the intervals on cv2 and κ , but these
restrictions are not considered.

Table 1 Default values and intervals of the negative Spalart–Allmaras
turbulence model for the inference processes

Min Original Max

σSA 0.333 0.667 1

κ 0.205 0.41 0.62

cb1 0.06775 0.1355 0.20325

cb2 0.311 0.622 0.933

cv1 3.55 7.1 10.65

cv2 0.35 0.7 10.5

cv3 0.45 0.9 1.35

cw2 0.15 0.3 0.45

cw3 1 2 3

cct3 0.6 1.2 1.8

cct4 0.25 0.5 0.75

cn1 8 16 24

2.2 Theory

This sub-section introduces a parametric statistical inference
method as the cornerstone of the developed framework. The
process of the statistical inference method is fundamentally
composed of two steps, learning and prediction. These steps
are conducted on a parametric probabilistic model that we
define. The definition relies on two hypotheses as the first
two steps. Eventually the process of the parametric statistical
inference is in a broad way composed of the following four
steps:

1. Define a regression model
2. Define a probabilistic model
3. Compute a posterior by given data (learning process)
4. Compute output distributions (prediction process)

The first two steps introduce the two hypotheses by each.
The overall process here can be also regarded as extension of
Bayesian linear regression to nonlinear regression models in
general. A principal figure to illustrate the process is shown
Fig. 1. The goal is to compute the posterior distribution p
(a, σ |X,Y) and the predictive distribution contributed only
by the closure coefficients expressed as p(y|x,X,Y)|a in
Fig. 1. Details of each step are described in the next sub-
sections.

2.2.1 The 1st Step: defining a regression model

The regression model here means a deterministic function
that produces a scalar output y when an arbitrary input vec-
tor x is given. The model characteristics are controlled by
a parameter vector a. These are deterministic variables cur-
rently. Normally the parameter a is being determined by the

123



D. Maruyama, et al.

Fig. 1 Principal figure of the statistical inference process

learning process in the 3rd step with available data. Based on
this concept, a CFD computation using a turbulence model
can be represented as the deterministic function device:

(7)y � f (x, a) ,

where a represents a vector as a set of all the turbulence
model coefficients. The input x is a vector as a set of flow
conditions and/or a spatial coordinate. The output y is a scalar
value as an output aerodynamic value such as lift and drag or
distributed quantities, e.g. pressure coefficient distributions.
The function f represents then the CFD computation with a
turbulencemodel as amapping f : (x, a) �→ y. For example,
in this paper a turbulencemodel here is the negativeS–A.This
is the first hypothesis in the statistical inference method. As
this first hypothesis for example, other turbulence models
could be set here by modeling it as f (x, a). The negative
S–A has 12 independent coefficients, which are summarized
as one parameter vector a, whose dimensionality is 12, i.e.
a � (σSA, κ, cb1, cb2, cv1, cv2, cv3, cw2, cw3, cct3, cct4, cn1)
by following Table 1. The parameter a in Eq. (7) is called
model parameter or simply parameter in this paper. Note
that when our interest is only the input and the output as
supervised learning, the function f is freely chosen (e.g. by
model selection conducted in the third and fourth steps).

2.2.2 The 2nd Step: defining a probabilistic model

In the second step, now the output y is considered to be a
stochastic variable. The process starts from assuming that
the observed data y as the output has been generated by a
probabilistic model as y ∼ p(y). Our interest is evaluat-
ing the epistemic uncertainty associated with the turbulence
model y ∼ p(y) by diminishing the effects of all the other
uncertainties, even the mesh and the scheme effects. Other

possible strategies for Bayesian inference can be found in
Ref. [19]. First, the discrepancy between the output y and
the model f (x, a) is represented by introducing a stochas-
tic variable labelled ε. Thus, the output y can be defined as
follows:

y :� f (x, a)
︸ ︷︷ ︸

the source term of
the uncertainty
associated wi th a

+ ε
︸︷︷︸

the source term of
all the other
uncertainties

. (8)

The physical meaning of the stochastic variable ε is noise
in the output value y. Since ε is stochastic, a probabilistic
model is introduced into this variable. One example of the
probabilisticmodel of ε is an univariateGaussian distribution
as ε ∼ N (0, σ 2

)

, where N and σ 2 represents the Gaussian
distribution and its variance, respectively. This eventually
brings the following conditional probability distribution of
y:

p(y|x, a, σ ) � N
(

y| f (x, a), σ 2
)

. (9)

Now σ has been added as another parameter (called hyperpa-
rameter or noise parameter in this paper to be distinguished
with the parameter a). Equation (9) is the probabilistic model
of the observed variable y as the objective here. Different
from the observed variable y (and x), the parameters a and σ

are not observed (the latent variables). In the fully Bayesian
approach, the hyperparameter σ is also treated as a stochastic
variable as σ ∼ p(σ ). Thus, the defined probabilistic model
can account for all the uncertainties that are present.

Following Eq. (8), two sorts of induced uncertainties can
be easily separated by looking at each term individually. since
the model parameter a is the only parameter that can directly
interact with the internal structures of the model f . All the
other external uncertainties are dealt within the term ε gov-
erned by the noise parameter σ . No other functions (such as
bias functions) are added in Eq. (8). The parameter a is then
treated as a stochastic variable in the Bayesian approaches
as a ∼ p(a). The function f as the first term also becomes
stochastic. The stochastic variable y ∼ p(y) as the predictive
distribution becomes a mixture of probabilities derived from
the two stochastic terms after the learning process. After the
learning process when data is given, all the parameters in
Eq. (9) as the latent variables are not independent of each
other and compose a joint probability distribution. In the
4th step, a rigorous form of the probability of y as p(y)
is presented. In that form, the contribution of the uncertainty
associatedwith the parameter a is not that obvious likeEq. (8)
due to the above fact.
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2.2.3 The 3rd Step: computing a posterior by given data
(learning process)

The third step is the learning process of the parameters a and
σ using data. In this step, derivation to the Bayesian approach
is employed. The process in this step is to evaluate the joint
probability of all the parameters a and σ as a posterior distri-
bution. The posterior distribution can be evaluated using the
Bayes’ theorem by prior distributions of all the parameters
a and σ , and the likelihood function obtained by the prob-
abilistic model and the data. How to compute the posterior
function is described below. Some additional details about
the definition of the prior distributions etc. are in Appendix
1.

The likelihood function can be defined by data and the
probabilistic model defined in the second step as:

p(Y|X, a, σ ) �
N
∏

i�1

N
(

y(i)| f
(

x(i), a
)

, σ 2
)

, (10)

where X � (

x(1), x(2), . . . , x(N )
)

and Y �
(

y(1), y(2), . . . , y(N )
)

are observed data. N denotes the
sample size of the data. The data is assumed to be indepen-
dently drawn from the defined probabilistic model by Eq. (9)
since the model is an univariate Gaussian distribution,
hence no correlations exist. It has to be emphasized that
direct evaluation of the likelihood function by Eq. (10)
is practically available for the learning process instead of
that of the posterior p(a, σ |X,Y) (see Appendix 1). The
computation of the marginal likelihood p(Y|X) used as the
normalization constant is either not necessary in executing
the MCMC sampling techniques.

There are mainly two perspectives in the learning process
(also see Fig. 1). One is point-estimate while the other is
interval-estimate. In practice, these names are driven from
the properties of the parameters to be inferred using the pos-
terior distribution. The commonly known least square (LSQ)
approach can be categorize as a special case of the point-
estimate. The interval-estimate simply corresponds to using
all the information of the posterior itself. The point-estimate
in this paper directly indicates maximum a posterior (MAP).
The MAP can be achieved by literally maximizing a poste-
rior function p(a, σ |X,Y) with respect to the parameters a
and σ :

â, σ̂ � argmax
a,σ

p(a, σ |X,Y). (11)

In practice, Eq. (11) is solved analytically when the regres-
sion model f (x, a) is a linear regression model. Since the
regression model here is a nonlinear regression model, typi-
cally Eq. (11) is solved employing optimizers.

Under the above-mentioned condition that no specific
prior distribution is set, the direct evaluation of the likelihood
function by Eq. (10) is available in practice. When pursu-
ing the point-estimate using an optimizer, error functions
which are derived by taking the negative of the log-likelihood
function (see Appendix 5 for further details) are practically
used. When pursuing the interval-estimate, the sampling
method using MCMC can be directly applied to the like-
lihood function in Eq. (10). This evaluation by MCMC
provides an approximation of the posterior p(a, σ |X,Y) by
sample points. The posterior is composed by a histogram of
the sample points in the parameters space a, σ . This means
that the frequency of the generated sample points directly
forms a scaled function of the posterior. The mode of the
posterior p(a, σ |X,Y) represents a pair of the calibrated
parameters â, σ̂ . By using the obtained sample points, the
predictive distributions p(y|x,X,Y)|a shown in Fig. 1 as
our goal are computed at the fourth step. Again note that
same as requirement of optimizers inEq. (11), the reasonwhy
numerical approaches are required is because the regression
model f (x, a) is a nonlinear regression model.

Various established algorithms for MCMC are available
and herein the random walk Metropolis-Hastings is applied.
Details on MCMC algorithms can be found in many papers
[8, 9]. As for optimizer for the point-estimate, we use dif-
ferential evolution algorithm, which is a heuristic method.
The reason why we do not use only the MCMC even for
the point-estimate is for double-check of the accuracy of the
tools. Therefore, the results by optimizers are not directly
used in the prediction process.

2.2.4 The 4th Step: computing output distributions
(prediction process)

In the last step the output y is computed by using the learned
parameters: â, σ̂ by the point-estimate, or p(a, σ |X,Y) by
the interval-estimate. First as for the point-estimate, the pre-
diction of the output y for a given input x is obtained by
evaluating the regression model in Eq. (7):

y � f
(

x, â
)

. (12)

Note that even for the point-estimate, the predictive distribu-
tion p(y|x,X,Y) is introduced following Eq. (9). However,
this predictive distribution contains only the noise ε as
identified by the point-estimate represented by the standard
deviation σ̂ as ε ∼ N (0, σ̂ 2

)

.
In the interval-estimate (with fully Bayesian perspective),

the parameters a, σ form a joint probability as p(a, σ |X,Y)

which is represented by the MCMC sample points. The pre-
dictive distribution p(y|x,X,Y) is obtained as follows by
the sum and product rules of the probability theory:
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p( y|x, X,Y) �
∫ ∫

p( y|x, a, σ )p(a, σ |X,Y)dadσ

≈ 1

Nmcmc

Nmcmc
∑

i�1

p
(

y|x, (a, σ )(i)
)

(13)

The parameters a, σ are marginalized (integrated out) to be
eliminated. This operation can be regarded as taking the
expectation. The probability as the weight is already realized
by theMCMCsampling result. Therefore, it can be computed
by mixtures of the probabilistic model p

(

y|x, a(i), σ (i)
)

,
where each sample point i is weighted with its respective
probability p

(

a(i), σ (i)|X,Y
)

. The constraint that the sum of
all the weights has to be 1 to be a probability is accomplished
by being divided with the sample size Nmcmc. Note that, the
predictive distribution shown inEq. (13) is a commonway for
a fully Bayesian approach [8]. No hyperparameters in priors
of the parameters a and σ are explicitly presented in Eq. (13)
since an improper prior for both a and σ is assumed. Note
that investigation when using an empirical Bayes approach
in contrast to the full Bayes approach is shown inAppendices
2 and 3. In Appendix 3, a comparison of results between p
(y|x,X,Y) in Eq. (13) and p(y|x,X,Y)|a in Eq. (15a, 15b)
using the empirical Bayes approach is also shown.

The predictive distribution p(y|x,X,Y) in Eq. (13) rep-
resents the contribution of all the sources of the uncertainties,
one of which is associated with the model parameter a, and
all the others of which is associated with the noise parameter
σ . These two sorts of uncertainties physically stem from
different sources as shown in Eq. (8) and the predictive distri-
bution p(y|x,X,Y) in Eq. (13) lost the information of their
origins. Our goal is to quantify the epistemic uncertainty
associated with the closure coefficients a, without including
the external factors represented by the noise ε ∼ N (0, σ 2

)

.
This is accomplished through the following two steps by
using the sum and product rules of the probability theory.
The first step is to obtain themarginal posterior p(a|X,Y) by
marginalizing the posterior p(a, σ |X,Y) with respect to σ :

p(a|X,Y) �
∫

p(a, σ |X,Y)dσ . (14)

Then, in order not to take the noise term in Eq. (8) into
account, the probabilistic model of Eq. (9) where σ → 0
is considered. Eventually the predictive distribution where
only the contribution of the parameter a is considered is rep-
resented as follows:

p(y|x,X,Y)|a �
∫

p(y|x, a)p(a|X,Y)da

≈ 1

Nmcmc

Nmcmc
∑

i�1

p
(

y|x, a(i)
)

(15a)

with p(y|x, a) � δ(y − f (x, a)),

where p(a|X,Y) indicates themarginal distribution obtained
by Eq. (14), δ is the Dirac delta function as the limit of nor-
mal distributions as σ → 0. In practice, the technical process
itself becomes eventually very simple. The predictive distri-
bution p(y|x,X,Y)|a in Eq. (15a) can be approximated by
the output values of the MCMC sample points themselves in
practice (by substituting the MCMC samples for the regres-
sion model f (x, a)):

f :
(

x, a(i)
)

�→ y(i)(i � 1, 2, · · · , Nmcmc), (15b)

where ai is the i th sample point (a, σ )i obtained by the
MCMC sampling with omitting the σi component in the
sample point. The meaning of the predictive distribution
p(y|x,X,Y)|a in Eq. (15a) is different from that of p
(y|x,X,Y) in Eq. (13). Both of them are a probability of
the output y after learning from the same data. However,
the predictive distribution in Eq. (15a) represents the out-
put uncertainty contributed only by the turbulence closure
coefficients a which have been learned by considering all
the uncertainties that are present. The closure coefficients
a themselves were learned by taking the information of the
uncertainty of the noise into account but the output y as QoI
reflects only the epistemic uncertainty associated by a even-
tually.

Overall for the entire steps, the process is common when
a likelihood function is determined. The likelihood function
in Eq. (10) is one example. Based on the concept of the four
steps, the likelihood function to be evaluated (by either an
optimizer or MCMC) can be naturally and flexibly deter-
mined for each problem setting. Note that further abstraction
of the entire process of the four steps can be generalized by
classifying all the stochastic variables into the latent variables
and the observed variables (see Appendix 6).

2.3 Practical implementation details

This section provides insight into the practical implementa-
tion details with a special focus on computing the likelihood
function. The likelihood function represented by Eq. (10)
contains f

(

x(i), a
)

, which is obtained through CFD compu-
tations. It is iteratively computed during the processes by the
optimizer and MCMC, due to variations of the parameters a
and σ . The iteration number of this process could be the order
of 103 to 106. It means that this order of times of the CFD
computations are needed. This is the most time-consuming
part in the whole process. The iteration number is unable
to be predicted and this process itself is infeasible in prac-
tice especially for 3D aircraft test cases. A surrogate-assisted
strategy is used for efficiency. A series of the following
surrogate-assisted strategy is conducted in a framework of the
DLR’s surrogate and reduced-order modeling toolbox called
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SMARTy. Recent articles on research works using SMARTy
are found in Refs. [20, 21].

Once a surrogate model is constructed, no additional CFD
computations are needed. A surrogate model is constructed
at each flow condition (and/or at each spatial coordinate)
x(i). The process of building a surrogate model is as follows.
First, search domains of the turbulence model parameter a
are required to be decided. We set this as the ranges from
0.5 to 1.5 aorg as already defined in Table 1, where aorg
is a vector of a set of the original turbulence model coef-
ficients. Sampling locations where CFD computations are
executed are determined by design of experiment (DoE). We
used Sobol sequence, which is categorized as a kind of quasi
MonteCarlo samplingmethods [22, 23]. The Sobol sequence
is able to keep the uniformity (the low-discrepancy) of the
sampling filling the space even when the dimensionality of
the input parameter is relatively high. It is also able to add
sequentially low-discrepancy sampling points when the orig-
inal sample size is not sufficient to achieve the accuracy of
the constructed surrogate model. Based on the sample points
generated byDoE, a surrogatemodel is constructed.Note that
the process of constructing a surrogate model is theoretically
the same as the statistical inference method in the previous
subsection (a regressionmodel by Eq. (12) or analytical solu-
tions of the dual representation of Eq. (13) in e.g. Gaussian
processes, where x and a in the previous subsection corre-
sponds to a and parameters to describe the surrogate model,
respectively).

The constructed surrogate model eventually can be recog-
nized as function approximation on the parameter space of
a at each flow condition (and/or at each spatial coordinate)
as ỹ(i) � f̃

(

a; x(i)
)

, where noted that a is now input but
x(i) as a set of parameters of the flow conditions is fixed. In
practice, the new input of the surrogate model f̃ corresponds
to a new turbulence model parameter anew nominated dur-
ing the process in the optimizer/MCMC. Thus, the output f̃
(

anew; x(i)
)

, which is iteratively computed in the parameter
space a during the optimization or MCMC process, is effi-
ciently obtained via the surrogate model at each fixed flow
condition (and/or at each spatial coordinate) x(i). Now the
most time-consuming part has been replaced by the limited
CFD computations on the DoE sample points, which are now
predictive in terms of the cost. The required sample size to
construct a surrogate model is normally dependent on the
dimensionality of the input parameter a. The sample size is
shown later at each test case in Sect. 3. The surrogate models
here used are Gaussian processes with hyperparameter tun-
ing for prediction of drag coefficient as f , and additionally
assisted by proper orthogonal decomposition (POD) for the
cases of prediction of pressure coefficient. The kernel func-
tion commonly used in the Gaussian processes is a Gaussian

kernel. The hyperparameter tuning as point-estimate to deter-
mine the probability distribution is achieved by the MLE. In
prediction of pressure coefficients, multiple output of Y �
(

y(1), y(2), . . . , y(N )
)

is assisted by the POD at once for mul-
tiple input X � (

x(1), x(2), . . . , x(N )
)

, where x is a spatial
coordinate in this case, N as the sample size can be the num-
ber of the surface output of a wing.

During the entire process, a variance-based sensitivity
analysis can be additionally inserted for the purpose of selec-
tion of dominant model coefficients to QoI as the output.
The results of the sensitivity analysis are expected to bring
physical aspects of the turbulence model coefficients. It can
even bring dimensionality reduction, which can benefit of
the computational costs. The required sample size for the
DoE is basically dependent on the dimensionality of the input
parameter space a. Therefore, it directly brings reduction of
the required number ofCFDcomputations.However, the sen-
sitivity analysis itself requires the whole information using
the original dimensionality of the parameter. Hence, it can
be useful to use the results of a test case to other test cases
to proceed the whole process with the selected coefficients.
The global sensitivity of the input variableswith respect to the
output is computedbyDoEsamples using theSobol sequence
assisted by the constructed surrogate models. The execution
of the Sobol indices itself was done by the Python library
called SALib [24]. Details of the theory of the Sobol indices
and sensitivity analysis methods in general can be found in
Ref. [25].

Finally the flow chart of the data-driven method in this
paper is shown in Fig. 2. This flow chart describes the direct
process used in the application test cases in Sect. 3. The
estimation of the modes by the optimizer can be a strategy
for double check if the MCMC works properly.

3 Applications and results

Two case studies were performed to validate and demon-
strate the methods presented above: (a) a two-dimensional
RAE2822 airfoil and (b) a three-dimensional full aircraft
model based on theAirbus XRF1. Analyses of both test cases
targeted the transonic regime. For the 2D test case, artificial
experimental data was used to validate the proposed frame-
work. Then, for the 3D test case, several sets of proprietary
wind tunnel data for XRF1 were used to compare the simu-
lation results against the experimental results. In this article,
actual values cannot be published for XRF1 due to reasons of
confidentiality. Therefore, quantitative results and/or relative
evaluations are shown in Sect. 3.2. The 3D case is, however,
valuable to demonstrate that the framework can be applied
to real, industrial-grade test cases.
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(a) Flowchart

(b) Sketch of surrogate-based approach

Fig. 2 Flow chart and simple sketch of surrogate-based approach

The parameter settings of the MCMC are common for
all the test cases in this article. The sample size is 105 and
the burn-in ratio is 0.8. The step length for a normalized by
aorg and σ normalized by σ̂ are 0.025 and 0.05, respectively.
Here σ̂ is the noise parameter obtained by the deterministic
approach obtained by an optimizer (e.g. by Eq. (11)). Note
just for visualization issues of the following figures that in the
graphs ofmarginal posterior distributions of a andσ obtained
by the MCMC, the graphical ranges of a and σ are common

(a) Grid overview

(b) visualization

Fig. 3 RAE2822 airfoil configuration with grid overview and Cp visu-
alization at Mach number of 0.734

for all the figures in this article. The range of a is from 0.5 to
1.5 aorg . The center is aorg . That of σ is from 0 to 5 σ̂ (only
Fig. 7 is 0 to 2 σ̂ ). This indicates that themode of the posterior
of σ should be located one fifth from the left (or the middle in
Fig. 7) when the MCMC works well by producing the same
results as the optimizer. Note also that all the predictions
depicted by lines, and predictive distributions depicted by
filled colored areas, have only their valid points/ranges at the
discrete input flow conditions since the surrogate models are
available for those discrete input flow conditions.
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3.1 2D RAE2822 Airfoil

The RAE2822 airfoil is introduced here to validate the
methodology and to investigate the characteristics of the
turbulence model closure coefficients. The baseline Mach
number is 0.734 and it varies in the transonic regime. The
angle of attack and the Reynolds number are fixed at 2.79
degree and 6.5 million, respectively. The mesh used for CFD
computations and aCp visualization at this flowcondition are
shown in Fig. 3. The number of nodes is around 29 thousand.

For the purpose of dimensionality reduction, dominant
closure coefficients, with respect to aerodynamic coeffi-
cients, are selected based on their Sobol indices. These
selected closure coefficients are subsequently used as param-
eter a for the XRF1 test case to reduce the computational
costs; the assumption being that the flow characteristics are
similar to each other in the transonic regime. Note that the
results of the Sobol indices depends on the QoI as the output.

3.1.1 Sobol indices as preprocessing

The required information to generate the Sobol indices is
obtained through surrogate models, which contain all of
the closure coefficients as input parameters and the QoI as
the output value. In this case the drag coefficient (Cd ) was
selected as the QoI to generate the Sobol indices. The surro-
gate models of Cd were constructed at each flow condition
where the Mach number ranged from 0.704 to 0.784 in 0.01
increment. Each surrogate model was built using 100 DoE
sample points generated between 0.5 and 1.5 aorg .

Table 2 shows results of the Sobol indices over the Mach
number range. The percentages indicate the relative amount
of contribution of the turbulence model coefficients to Cd at
each flow condition. The mean values of the percentages at
each coefficient are also shown in Table 2. It can be observed
from the mean results that κ and cb1 are the most dominant
followed by σSA and cv1. This ranking of the result has sim-
ilar characteristics to the works by Papadimitriou et al. [26]
and Da Ronch et al. [2] when they investigated the original
S–A. They listed κ , cb1 and cv1 as the most influential coeffi-
cients to the output uncertainty of their quantities of interest.
From the result in Table 2, the coefficients resulting from
the negative S–A model which are not present in the original
S–A model are not influential.

The selection process to determine which coefficients are
dominant is similar to the mindset enforced when POD is
employed and relies onusing eigenvalues.Herewedecided to
truncate the list of dominant coefficients at 90%. Eventually
the coefficients, κ , cb1 and the σSA, were selected as the
dominant coefficients. These selected coefficients are set to
the components of the turbulence model parameter a as a �
(σSA, κ, cb1) to be inferred in the following test cases. The
process described so far is a preprocessing process and leads

into the learning process using observed data. From now as
a validation test of the framework, data-driven turbulence
modeling results are shown by using artificial data.

3.1.2 Inference using drag coefficient

First the drag coefficient (Cd ) is used as the QoI. Figure 4
shows marginal posterior distributions of each component
of a and σ after the learning process, and the obtained pre-
dictive distribution. As described in Sect. 2, the posterior
distributions p(a, σ |X,Y) and the predictive distributions
p(y|x,X,Y)|a by Eq. (15) (contributed only by the closure
model coefficient a) were obtained directly by the MCMC
sampling. Figure 4a also includes the result of â obtained
through the optimization for comparison.

The artificial data is also depicted in Fig. 4b. It was created
based on CFD results obtained by using aorg with inde-
pendently and randomly generated noise from the Gaussian

distributionN
(

0, σ 2
org

)

, where σorg is a constant value set to

σorg � 0.001 (10 drag counts), whichwasmanually set by the
authors. Since we know that the generated noise follows an
independently identically distributed (i.i.d) Gaussian distri-
bution, in this case, it is explicitly justified to use Eq. (10) as
the likelihood function. It can be confirmed from Fig. 4a that
σSA as a1 (the first element of a) has greater uncertainty than
the other coefficients in the relative ranges defined by aorg . In
Fig. 4b, a reference result of the output obtained by aorg and
a result obtained by â (by the point-estimate) are depicted
by the dotted orange lines and the green lines, respectively.
The values of â and σ̂ obtained by the optimizer is â �
[0.801, 0.417, 0.129] and σ̂ � 0.000689, respectively. Hence
â obtained by the optimizer agrees well with the modes of
the marginal posterior distributions obtained by the MCMC
in Fig. 4a, However, the obtained â and σ̂ could not detect
aorg and σorg as the reference (each component of aorg is
at the center of the horizontal axis). Nevertheless, it can be
confirmed from Fig. 4a that the marginal posterior distribu-
tions are wide and covers aorg , σorg with high probability
density except for the first component of aorg . Therefore, a
lack of the data for this amount of noise has been revealed
by the results of the posterior obtained by the MCMC. It
is emphasized that this information is never detected by the
point-estimate.

Thus, this test case using the artificial data is not only
validating the developed method but moreover offers further
insight into underlying flow physics. For example, it can be
observed that the influence of the turbulence closure coeffi-
cients is less when predicting the drag coefficient for a Mach
number around 0.74 in contrast to higher and lower Mach
numbers.

Next, the same test case but using prior information is
also investigated. Prior can be set to any arbitrary probabil-

123



D. Maruyama, et al.

Table 2 Contribution percentage
of the turbulence model
coefficients to drag coefficient
(Cd ) at each flow condition

Mach number σSA κ cb1 cb2 cv1 cv2 cv3 ccw2 cw3 cct3 cct4 cn1

0.704 1.83 83.48 5.08 0.00 8.25 0.00 0.00 0.01 0.20 0.96 0.19 0.00

0.714 3.28 77.84 9.40 0.51 8.44 0.00 0.00 0.00 0.00 0.21 0.32 0.00

0.724 2.86 66.00 17.34 1.20 10.07 0.00 1.16 0.00 0.00 0.00 0.00 1.36

0.734 7.26 51.38 33.35 0.00 0.10 0.00 7.89 0.00 0.00 0.00 0.00 0.01

0.744 3.63 44.92 50.39 0.00 0.25 0.72 0.01 0.00 0.00 0.00 0.08 0.00

0.754 2.70 51.23 41.66 0.00 1.75 0.00 1.88 0.02 0.04 0.69 0.00 0.03

0.764 0.10 39.10 60.26 0.00 0.00 0.01 0.50 0.01 0.00 0.00 0.00 0.01

0.774 8.56 16.82 66.86 0.00 0.47 6.01 0.75 0.16 0.00 0.00 0.29 0.07

0.784 8.70 45.78 39.20 0.00 0.00 2.10 1.15 0.06 0.00 1.84 0.00 1.17

Mean 4.32 52.95 35.95 0.19 3.26 0.98 1.48 0.03 0.03 0.41 0.10 0.29
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(a) Marginal distributions of a posterior

(b) Predictive distributions of 

Fig. 4 Results of predictions using Cd . a Marginal distributions of a posterior of the turbulence model parameter (red dotted lines indicate â),
b predicted CD distributions by the point-estimate (green line), and the predictive distributions of CD by the interval-estimate (light green fill as
95% CI), which are also shown in the right side of the figure as distributions. The dotted orange line is CD distributions by the original model

ity of the parameters a and σ independently, e.g. as p(a).
So far, the constraints of the parameter as a ∈[0.5 aorg ,1.5
aorg] have been used in the process of the optimization and
MCMC. Hence, these constraints are implicitly employed as
prior information in the form of uniform distributions for all
the test cases (seeAppendix 1). In contrast, we enforce a prior
distribution for a which is Gaussian and can be represented
as:

p(a) � N
(

a|aorg, diag
(

σ 2
pri

))

, (16)

where σ pri � (

σpri,1, σpri,2, · · · , σpri,M
)

and M is the
dimensionality of the parameter a. Therefore it is the num-
ber of the turbulence model coefficients to be inferred. σpri, j

indicates the variance of the j th element of the parameter a.
Figures 5 and 6 show marginal posterior distributions and

predictive distributions, respectively, when the specific pri-

123



Data-driven Bayesian inference of turbulence model closure coefficients incorporating…

(a) only 

(b) only 

(c) both and 

Fig. 5 Marginal distributions of a posterior of the turbulence model parameter a when a prior is used (red dotted lines indicate â)

ors expressed by Eq. (16) are respected during the inference
process. Priors for each element of the parameters can be
independently set. Therefore, prior information is introduced
at three different locations: (A) only for a, (B) only for σ and
(C) for both a and σ . The function to be evaluated by the
optimizer and the MCMC in case (A) is Eq. (16). Those for
cases (B) and (C are p(Y|X, a, σ )p(a) and p(Y|X, a, σ )p
(a)p(σ ), respectively, where p(σ ) can be obtained by as
again following Eq. (16). The mode as (â, σ̂ ) obtained by
direct optimization for each case is also described in Fig. 5.

Due to the prior functions, the posteriors shown in Fig. 5
can be regarded as having updated from those in Fig. 4a. For
example, in case (B), the uncertainty of σ as noise is reduced.
In Fig. 5a, the uncertainty of a is also reduced and the mode
moved closer to aorg . Moreover, the resulting predictive dis-
tribution p(y|x,X,Y)|a in Fig. 6a is smaller compared to
Fig. 4b and is distributed around the reference result.

3.1.3 Inference using pressure coefficient

After using the global quantity Cd as the QoI, next the pres-
sure coefficient (Cp) distributions is investigated. As for the
drag coefficient analysis, artificial noise data is generated.
Similar to before, the data was created based on CFD results
using aorg with independently and randomly generated noise

from a Gaussian distributionN
(

0, σ 2
org

)

, where σorg � 0.1.

The likelihood function is expressed as follows since the
probabilistic model of the noise ε is assumed to be a Gaus-
sian distributionN (0, σ 2

)

so that the probabilistic model of
the output y that we defined isN ( f (x(i), a

)

, σ 2
)

. Therefore
the likelihood function when the dataset D � (X,Y) is:

p(Y|X, a, σ ) �
Ndata
∏

j�1

N j
∏

i�1

N
(

y(i, j)| f
(

x(i, j), a
)

, σ 2
)

, (17)

where Ndata and N j indicate the number of data (equivalent
to the number of the flow conditions) and the number of the
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(b)(a) (c)

Fig. 6 PredictedCd distributions when a prior is used, computed by a calibrated turbulencemodel parameter by the point-estimate, and the predictive
distributions of Cd inferred by the interval-estimate

(a) Marginal distributions of a posterior

(b) Predictive distributions of 

Fig. 7 Results of predictions usingCp distributions of 3 flow conditions (Mach numbers of 0.704, 0.734 and 0.764) when no prior is used. aMarginal
distributions of a posterior of the turbulence model parameter a (red dotted lines indicate â), b predicted Cp distributions by the point-estimate
(green line), and the predictive distributions of Cp by the interval-estimate (light blue fill as 95% CI). The dotted orange is the reference

available pressure coefficient at each flow condition, respec-
tively. Note that this equationmeans that one unique variance
σ 2 to represent the output noise ε is assumed to be common
at all the flow conditions, i.e. assuming that the noise level is
the same at any flow conditions.

Figure 7 shows marginal posterior distributions and their
predictive distributions p(y|x,X,Y)|a at Mach numbers of
0.704, 0.734 and 0.764. The reference results obtained by
aorg and the results by the point-estimate are described as the
dotted orange lines and the green lines, respectively. It can
be seen that the shock waves around the mid-chord when the

Machnumber is at 0.704 and0.734 canbe accurately detected
by the deterministic approach (the green line match the ref-
erence depicted by the orange dotted lines). The uncertainty
shown as 95% credible interval (CI) is wider at the Mach
number of 0.704. This uncertainty is the epistemic uncer-
tainty associated with the turbulence closure coefficients. On
the other hand, the point-estimate could not detect the ref-
erence at the Mach number of 0.764 but the resulting wide
uncertainty (shown as 95% CI) by the interval-estimate cov-
ers the reference. These results mean that the point-estimate
cannot detect the reference but the interval-estimate can as
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Fig. 8 XRF1 configuration at Case 4 and grid overview

Fig. 9 Drag coefficient distribution of experimental data, CFD solu-
tions using the original coefficients, and feasible CFD solutions range
spanned by DoE samples

a probability and furthermore can indicate sensitive flow
domains/conditions accordingly, which was not included in
the given artificial data as information.

3.2 XRF1 generic long-range transport aircraft

In this section the XRF1 is investigated relying on high-
quality but proprietary wind tunnel data at transonic flow
conditions and flight Reynolds numbers. XRF1 is an Air-
bus provided industrial standard multi-disciplinary research
testcase representing a typical configuration for a long-range
wide body aircraft. The XRF1 research testcase is used by
Airbus to engage with external partners on development and
demonstration of relevant capabilities / technologies.

The XRF1 wind tunnel data set at hand consists of drag
(CD) and pressure coefficients (Cp) at nine flow conditions,

namelyCase 1 toCase 9. TheMach number and theReynolds
number are fixed between the cases while the angle of attack
(AoA) is varied. TheMach number and the Reynolds number
are around 0.86 and 25 million, respectively. All the flight
conditions are within the transonic regime and subsequently
shock waves are present on the wing. In this test case, no
specific prior is used (the improper prior is implicitly used)
to learn the coefficients only from the wind tunnel data.

The inference is executed on two problems:

1. use CD data from all the nine cases at once,
2. use Cp data available at three sections of the wing focus-

ing on one Case only.

At each flow condition, the aircraft configuration is
deformed due to its aeroelastic response. However, in this
paper this influence is neglected and a fixed aircraft configu-
ration is used for CFD computations for all nine cases. This
fixed configuration has the surface deformation measured
for Case 4. Hence for the second analysis focusing on Cp no
deformation inconsistency is present. For theCD analysis the
inconsistency in surface deformations is expected to emerge
to some extend as the variance σ 2 in Eq. (9). Figure 8 shows
the corresponding grid used for RANS computations. The
number of grid nodes is around 6.3 million. As one reference
showing a validation result of the grid (which also causes an
epistemic uncertainty but evaluated in the noise parameter
when it exists), we take an example that the difference ofCD

between the corresponding data and a RANS computation
using the original turbulence model coefficient aorg is 3 drag
counts (where one drag count is 10–4).

The results of the Sobol indices for the RAE2822 air-
foil are used to downselect the turbulence model parameters
which are inferred for the XRF1 assuming that both cases
share underlying physics due to the transonic flow regime.
Hence, the turbulence model coefficients κ , cb1 and σSA

are the inferred coefficients group in the parameter a (a �
(σSA, κ, cb1)). All neglected coefficients are fixed at the orig-
inal S–A model values given in Table 1.

Surrogate models for the drag coefficient are constructed
at eachflowconditionwhile for the pressure coefficient distri-
butions one model for each wing section is computed. Since
the dimensionality of the turbulence model parameter a is 3,
the required number of CFD computations has been reduced
compared to the 12-dimensional airfoil case. A minimum of
70 DoE sample points to construct a surrogate model at each
flow condition is used. This varying number of DoE sam-
ples is caused from diverging CFD simulations which occur
once a combination of closure coefficients has been selected
which violate the underlying RANS modeling assumptions.
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(a) Marginal distributions of a posterior

(b) Predictive distributions of 

Fig. 10 Results of predictions usingCD by the experimental dataset at nine flow conditions. aMarginal distributions of a posterior of the turbulence
model parameter (red dotted lines indicate â), b predicted CD distributions by the point-estimate (green line), and the predictive distributions of
CD by the interval-estimate (light green fill as 95% CI), which are also shown in the right side of the figure as distributions. The dotted orange line
is CD distributions by the original model

3.2.1 Inference using drag coefficient

First, turbulence model coefficients are inferred based on
the drag coefficient CD . The dataset used consisting of
the input X and the output Y at all the nine flow condi-
tions as X � (

x(case1), x(case2), · · · , x(case9)
)

and Y �
(

y(case1), y(case2), · · · , y(case9)
)

, where x and y are the AoA
andCD , respectively. The experimental data forCD is shown
in Fig. 9. As aforementioned, the deformation used for all
computations is fixed and belongs to Case 4 which is the case
of the second lowest angle of attack. Figure 9 also depicts
the possible CD region in the search space a ∈[0.5 aorg ,1.5
aorg]. This region is spanned by directly using all available
DoE sample pointsand plotting their minimum and maxi-
mum values. It has to be noted that this coverage does not
guarantee that a possible combination of parameters exists
for each CD value inside. Nevertheless, it can be seen that
all experimental data points are within the covered region.
The CD characteristics using the original coefficients aorg
are also described in Fig. 9.

Results obtained by the point-estimate and the interval-
estimate are shown in Fig. 10. Since the probabilistic model
is exactly the same as that in the case of RAE2822 in the
previous sub-section, the likelihood function used for the
learning process is Eq. (10) as well. First of all, the results of
the point-estimate are discussed. After the learning process,
the parameters a and σ in Eq. (10) are calibrated as â and
σ̂ . Figure 10 shows CD characteristics over the nine angles
of attack. The green line indicates the results computed by
using the calibrated turbulence model parameter â. At the
angle of attack of Case 4, the predicted CD by the calibrated
parameter â (Ccalib

D ) corresponds well to the underlying data.
For the other cases, Ccalib

D is between the data Y and Corg
D

at each angle of attack, which is the qualitative informa-
tion obtained by the point-estimate. The difference between
Ccalib
D and Y is treated as the noise produced by a probabil-

ity with the calibrated parameter σ̂ . This noise represents all
of the uncertainties except the uncertainty associated with
the model parameter a. By following the model definition in
sect. 2.2, the inaccuracy of the configuration due to aeroelas-
ticity is also treated as the noise.
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Fig. 11 Pressure distributions of experimental data and feasible CFD solutions by DoE samples at three sections

(a) Marginal distributions of a posterior

(b) Predictive distributions of 

Fig. 12 Results of predictions usingCp distributions by the experimental dataset at one flow condition (Case 4) when the turbulencemodel parameter
a and the noise parameter σ are set to be common at all the three sections. aMarginal distributions of a posterior of the turbulence model parameter
(red dotted lines indicate â), b predictions by the point-estimate and predictive distributions by the interval-estimate (showing 95% CI)

When following a stochastic approach, the marginal pos-
terior distributions shown in the upper part of Fig. 10 have
large uncertainties especially on a1 (� σSA) since it is fully
distributed in the constrained range of [0.5 aorg , 1.5 aorg].
The mode is around the lower bound. The noise parameter σ

is also widely distributed and spreads around four times of
the mode σ̂ . The predictive distributions p(y|x,X,Y)|a are
depicted in the lower part of Fig. 10. It can be observed that
the 95% CI at the highest AoA is quite wide compared to
lower AoA. The predictive distribution at the second highest
AoA is relatively narrow and the data point at this condition
is not within the 95% CI. The noise parameter σ is actually
estimated quite high even though the exact drag counts of σ

cannot be described here. Therefore, the predictive distribu-
tion considering all the uncertainties computed by Eq. (13),
should contain the data points. However, in this particular
application case, there exists external noise due to the geom-
etry difference which falsifies this assumption.

3.2.2 Inference using pressure coefficient

As described in the 2D airfoil case, at each flow condition,
the amount of the information when usingCp distributions is
much greater than when using CD . However, for practically
relevant cases,Cp measurements are usually available only at
several sections/locations. Figure 11 shows Cp distributions
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(a) Marginal distributions of a posterior

(b) Predictive distributions of 

Fig. 13 Results of predictions usingCp distributions by the experimental dataset at one flow condition (Case 4) when the turbulencemodel parameter
a is set to be common at all the three sections but the noise parameter σ is set individually. Upper: marginal distributions of a posterior of the
turbulencemodel parameter (red dotted lines indicate â). Lower: predictions by the point-estimate and predictive distributions by the interval-estimate
(showing 95% CI)

of the experimental data and feasible CFD solutions for Case
4. Three sections are available and each of them cover the
whole surface of the section where Cp data is measured.
namely Section i to Section i i i ordered from wing root to
tip. Since the angle of attack at Case 4 is negative, shock
waves are generated on the lower surface of the wing.

As the assumption in the inference process introduced in
Sect. 2.2, the turbulence model parameter a is stochastic. It
is neither a spatio-temporal parameter like a function of the
time and space nor a function of flow conditions. In definition
of probabilisticmodels, we introduce two derivations (A) and
(B) from two hypotheses:

A. the same noise parameter at each section as one σ

B. different noise parameters at each section as σ ( j), where
j � 1,2,3

The likelihood function in the hypothesis (A) is the same
as Eq. (17) in the 2D RAE2822 test case as follows:

p(Y|X, a, σ ) �
Nsec
∏

j�1

N j
∏

i�1

N
(

y(i, j)| f
(

x(i, j), a
)

, σ 2
)

, (18)

where x (i, j) indicates in this case the spatial coordinate of i
th point at the section j , and Nsec indicates the number of
the sections. Here we use the three sections, therefore Nsec

� 3. A common noise parameter denoted by σ is set for all
the sections.

On the other hand, the noise parameter of the likelihood
function in the hypothesis B) can be expressed by a vector.
Each element of the parameter vector consists of a differ-
ent noise parameter σ ( j) at each section j . The likelihood
function is slightly modified from Eq. (18) as:

p(Y|X, a, σ ) �
Nsec
∏

j�1

N j
∏

i�1

N
(

y(i, j)
∣

∣

∣ f
(

x(i, j), a
)

, σ ( j)2
)

,

(19)
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(a) Marginal distributions of a posteriors

(b) Predictive distributions of 

Fig. 14 Results of predictions using Cp distributions by the experimental dataset at one flow condition (Case 4) when both the turbulence model
parameter a and the noise parameter σ are set independently at each section. a Marginal distributions of a posterior of the turbulence model
parameter (red dotted lines indicate â), b predictions by the point-estimate and predictive distributions by the interval-estimate (showing 95% CI)

where σ � (σ (1), σ (2), . . . , σ (Nsec)
)

. The probabilistic mod-
els of the hypotheses (A) and (B) are summarized in
Appendix 4 for further descriptions of the hypotheses behind.

The point-estimate and the interval-estimate are con-
ducted on Eqs. (18) and (19) in order to obtain â, σ̂ (by
the point-estimate), and p(a, σ ) (by the interval-estimate),
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where σ̂ � (σ̂ ) in Eq. (18), σ̂ � (σ̂ (1), σ̂ (2), · · · , σ̂ (Nsec)
)

in
Eq. (19), respectively.

Figure 12 shows the marginal posterior distributions and
predictive distributions p(y|x,X,Y)|a when a unique noise
parameter is introduced. In the predictive distributions at all
three sections, the epistemic uncertainties associated with
the parameter a (shown as 95% CI in the figure) are slightly
wider around the shock locations and downstream thereof
compared to more benign flow phenomena. However, they
are so small that they do not cover the experimental data.
In fact, the predictive distribution at section i even diverged
further from the experimental data than the CFD prediction
relying on the original model parameters aorg . These results
are mainly caused by introducing the same noise parameter
for all the sections.

On the hypothesis B using Eq. (19), a more flexible
assumption is used inwhich noise at each section is expressed
independently. Figure 13 shows the marginal posterior dis-
tributions and predictive distributions p(y|x,X,Y)|a. The
overall characteristics are similar to those of the hypothesis
(A). However, the predictive distribution covers the shock
wave at Section i slightly better than hypothesis A). Hence,
assuming different noise parameters for each section seems
more promising than assuming a common noise parame-
ter. However, the results in Fig. 13 also clearly indicate that
there is no possibility for the turbulence model parameter to
properly predict all flow phenomena at the three sections by
adjusting just three turbulence model parameters and aiming
for a global model description.

Based on the previous results, the flexibility is further
increased by allowing different turbulence model parameters
a for each section as a( j), where j � 1,2,· · ·,Nsec (named
hypothesis (C)). The likelihood function at each section is
identical to Eq. (10). Figure 14 shows three sets of marginal
posterior distributions on the three sections and the respective
predictive distributions p(y|x,X,Y)|a. It can be observed
in Fig. 14 that the shock wave at each section can be better
detectedby independently inferredparameter a( j).As before,
the uncertainties associated with the individual parameters a
are larger around the shock locations. This showcases that the
developed framework is able to detect location of increased
physical complexity, e.g. shocks, and highlights them by a
larger local uncertainty.

A natural extension of the previous strategy is the assump-
tion that the parameter is spatially varying in general. For
example, Duraisamy et al. [7] proposed a model correction
term and then inferred it employing a learning process. Since
the spatially varying parameter has the same dimensionality
than the underlying computational grid, computations of a
posterior by MCMC are infeasible and they are achieved by
the other approximation methods based on definition of pos-
terior distributions such as the variational inference and the
Laplace approximation (see Appendix 2).

4 Conclusions

A framework for data-driven turbulence modeling under
uncertainties was developed and applied to a 2D airfoil and
an industrially-relevant 3D full aircraft case. The objec-
tive of this framework is to quantify the uncertainty of
the closure coefficients and that of the quantities of inter-
est associated with the closure coefficients by employing a
Bayesian approach. In this paper, the closure coefficients of
the Spalart Allmaras turbulence model were inferred. The
partial availability of information,which is common for cases
of industrial relevance, is regarded as an epistemic uncer-
tainty that is addressed by a fully Bayesian approach, with
special treatment for computing the predictive distribution.
The resulting uncertainties can provide an insight into one
of the model uncertainties due to the closure coefficients
for predicting the quantities of interest by distinguishing it
from other external uncertainties. In this work, these other
external uncertainties are treated as noise. The other pos-
sible epistemic uncertainties in the CFD simulations such
as the grid convergence were eliminated as much as pos-
sible in advance though they are classified into the noise if
they exist. The uncertainties associated by all the parameters,
which are the closure coefficients and the noise parameter,
in the fully Bayesian model were rigorously evaluated by a
Markov-Chain Monte Carlo (MCMC) sampling technique.
To overcome the bottleneck of high computational cost in the
MCMC process associated with repetitive RANS evaluation,
a surrogate-based methodology has been employed.

The 2D airfoil test case with artificial data has been used
to validate the methodologies integrated in the framework.
Moreover, dominant closure coefficients were selected by
using Sobol indices as a preprocessing step that further
increased the efficiency of the surrogate-based approxima-
tion. It was shown that known model coefficients can be
rediscovered by relying on data. Furthermore, it was con-
firmed not only that the closure coefficients and the artificial
noise were replicated by the developed method but also that
the epistemic uncertainty associated with the closure coeffi-
cients are large around the shock locations.What is important
in this replication test case is that the information of this epis-
temic uncertainty was not specified in the problem setting but
was derived by the developed method.

For the 3D aircraft case the information obtained from
the airfoil Sobol indices analysis has been reused to keep
computational cost at a feasible level. Inference of coefficient
by analyzing pressure coefficients showed that the epistemic
uncertainty associated by the coefficients are highly detected
in regions of sensitive flow, such as the shock position and
downstream thereof. It was also shown that the uncertainty
associated by the noise is quite large compared with that by
the coefficients in this test case.
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Obtained results, and in particular the epistemic uncer-
tainties associated by the coefficients, can be used for various
applications. For example, one option could be to feedback
information to the experimental measurement strategies to
determine at which locations on the wing new measurement
devices should be placed. Another opportunity is the propa-
gation of uncertainties towards unobservable flow conditions
with the assistance of surrogate models and the posterior of
the closure coefficients to enhance the modeling of e.g. loads
at the edge of the flight envelope. The developed framework
is flexible in terms of modelling, i.e. other closure models
can be applied as well as other probabilistic models.
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Appendix

Supplementation of the omitted explanations of the method-
ologies and details of the theory in background in Sect. 2.2
and Sect. 3 are described here.

1. The function to be evaluated by optimizer/MCMC

In Sect. 2.2, it is explained that a likelihood function is eval-
uated by MCMC. Accurately to say, it has to be a posterior
function by the Bayes’ theorem. It needs to be transformed
into a form of a probability in terms of the parameters a and
σ as from p(y|x, a, σ ) to p(a, σ |X,Y). This is the trans-
formation from a likelihood p(Y|X, a, σ ) to a posterior p
(a, σ |X,Y) and can be achieved by the Bayes’ theorem as:

p(a, σ |X,Y) � p(Y|X, a, σ )p(a, σ )

p(Y)
, (20)

where p(a, σ ) is a joint prior of the parameters a, σ that can
be defined arbitrarily. In practice, we can set independent
priors for each element of the parameters, e.g. p(a, σ ) � p
(a)p(σ ) since Y is not observed yet. p(Y) is the denomi-
nator in Bayes’ theorem as being the normalization constant
required to ensure the posterior to be a probability density.
This normalization constant can be represented by an integral
of the numerator in the right-hand side but is normally incom-
putable. However, the formulation needed to be evaluated is
the posterior by Eq. (20) in theory.

However, in practice, the likelihood function p
(Y|X, a, σ ) or the product of that and a prior p(a, σ ) is
sufficient for the formulation to be evaluatedwhen using opti-
mizer/MCMC. Therefore, the formulation to be evaluated is
simply the product of the likelihood and a prior:

p(a, σ |X,Y) ∝ p(Y|X, a, σ )p(a, σ ). (21)

When no specific prior wants to be assumed (purely evalu-
ated only by currently observed data), improper prior such as
p(a, σ ) � 1 to be p(Y|X, a, σ )p(a, σ ) � p(Y|X, a, σ ) can
be used. It is rational when no nonlinear transformation of the
parameters and the normalize constant can be obtained [8].
Eventually the function to be evaluated by optimizer/MCMC
becomes the likelihood function itself. Note that like a like-
lihood function in general, the improper prior either does
not guarantee the integral of it to be 1 over the parameters
a, σ . The improper prior can be applicable since the normal-
ization constant can be computed by the MCMC and since
no nonlinear mapping of the parameter a is operated in the
whole procedure. Constraints of the parameter a (e.g. a∈ [0.5
aorg ,1.5 aorg] used in the main context) can be also treated
as prior information. The prior function of these constraints
is a step function extended from the improper prior as:

(22)p (a) �
{

1, 0.5aorg ≤ a ≤ 1.5aorg,
0, otherwise.

Therefore, all of the likelihood functions (Eqs. (10), (17–19))
introduced in the main context is actually:

p(Y|X, a, σ )p(a, σ )

�
{

p(Y|X, a, σ ), 0.5aorg ≤ a ≤ 1.5aorg,

0, otherwise,
(23)

where p(a, σ ) � p(a)p(σ ), and p(σ ) � 1 as the improper
prior. This expression is totally omitted in themain context to
avoid complexity. In practice the posterior to be a probability
that the integral of posterior as a probability density function
is guaranteed to be 1 by using the MCMC.
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2. How to compute the predictive distributions

First of all, it has to be reminded that cases where the regres-
sionmodel definedbyEq. (7) is a linear regressionmodel, and
the probabilisticmodel defined byEq. (9) is aGaussian distri-
bution, can analytically represent the predictive distribution
in general [8]. The posterior can be analytically obtained by
assist of a conjugate prior, which can share the same prob-
ability distribution between the prior and the posterior, and
leads to efficient update of the posterior. These cases are
often used in practical applications. In fact, some properties
in this process to obtain analytical solutions are applied to
the approximation methods for their efficiency. For example,
one of the most widely used analytical representations is the
case where the noise parameter (of a Gaussian probabilistic
model) is deterministic and the prior is a Gaussian distribu-
tion. Thismodeling can be categorized in one of the empirical
Bayes approaches shown inAppendix 3. In this case, the pos-
terior becomes also a Gaussian distribution. This approach
would be rather used for rapid approximations in iterative
processes. On the other hand, when the noise parameter is
treated as stochastic such as the case in this ariticle, the conju-
gate prior is not a Gaussian distribution but a Gauss-Gamma
distribution and more generally a Gaussian-Wishart distribu-
tion for multiple input parameters.

In our applications, since the regression model is a non-
linear regression model, the predictive distribution by Eq.
(13) does not have analytical solutions even in the empiri-
cal Bayesian approaches (see Appendix 3). As an example
of other cases, the neural networks in general can be also
regarded as nonlinear regression models in general, so as it
to the same.

There are several approximation methods in computing
the predictive distributions [8]

• MCMC,
• Laplace approximation,
• variational inference.

The first one is a method with a help of the MCMC. The
integral in Eq. (13) is replaced by the samples. The aim of
the latter two methods is basically to approximate the pos-
terior distribution by a parametric distribution. These can be
rather used in terms of efficiency or intractability due to high
dimensionality of the parameter to be inferred. These require
other alternative computations such as optimization (used for
the point-estimate) and Hessian predictions of the regression
model f (x, a), the second derivatives with respect to a. If
computational resources are sufficient, the MCMC strategy
is expected to be more accurate in general than the others.

When computing the predictive distributions with all
mixed uncertainties represented by Eq. (13), the computa-
tion is a mixture of Gaussian distributions, which consists

of equally weighted Nmcmc Gaussian distributions, each of
which is expressed by a known mean and variance as:

p(y|x,X,Y) ≈ 1

Nmcmc

Nmcmc
∑

i�1

p
(

y|x, (a, σ )(i)
)

� 1

Nmcmc

Nmcmc
∑

i�1

N
(

y| f
(

x, a(i)
)

, σ (i)2
)

.

(24)

The predictive distribution is not guaranteed to be a Gaussian
distribution but its mean and variance can be analytically
obtained by the generated MCMC samples in hand whereas
it is computationally expensive to estimate the distribution
itself by nonparametric approaches.

Thus, the predictive distribution at arbitrary output value
y represented by Eq. (13) can be computed by the mixture of
the distributions p

(

y|x, (a, σ )(i)
)

, where i � 1,2,· · ·,Nmcmc.
Each distribution p

(

y|x, (a, σ )(i)
)

is properly weighted by
dividing the sum of them by the MCMC sample size Nmcmc.
However, although any complex distributions can be rep-
resented by the MCMC sample points, the probability p
(y) is not parametric. Therefore, the probability needs to be
computed at arbitrary y. The direct computation of that is
expensive so that approximation methods are recommended
to be used.

An approximation example when the empirical Bayes
approach is described here. The empirical Bayes approach
is to treat the hyperparameter (the noise parameter σ in the
main context) as deterministic (e.g. as σ̂ ). The mixture of
Gaussian expressed by Eq. (24) is adjusted to as follows in
the empirical Bayes approach:

p
(

y|x,X,Y, σ̂
) �

∫

p
(

y|x, a, σ̂
)

p
(

a|X,Y, σ̂
)

da

≈ 1

Nmcmc

Nmcmc
∑

i�1

p
(

y|x, a(i), σ̂
)

� 1

Nmcmc

Nmcmc
∑

i�1

N
(

y| f
(

x, a(i)
)

, σ̂ 2
)

,

(25)

where σ̂ is a fixed noise parameter. The concept of this
approximation is the same as the Laplace approximation
and the variational inference shown in the above. It is to
approximate the posterior distribution p(a) as aGaussiandis-
tribution. Then only two parameters are needed to completely
describe the distribution. Therefore, the mean μa,σ and vari-
ance σ 2

a are computed from the MCMC samples describing
p(a). The variance σ 2

a is used later to approximate the pre-
dictive distribution.
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Here let us take the analytical form of the predictive distri-
bution of Eq. (13) when the regression model defined in Eq.
(7) is a linear regression and the probabilistic model defined
in Eq. (9) is a Gaussian distribution.

p(y|x,X,Y) ≈ N
(

y| f (x, â
)

, σ 2
pre

)

, (26)

where σ 2
pre is the variance of the predictive distribution. For

example, when the regression model is a linear regression
as f

(

x, â
) � âTϕ(x) can be analytically solved as the ana-

lytical solution of the least-squares as â � (

�T�
)−1

�TY
where � is a matrix whose elements consist of ϕ j (xi ) (so-
called design matrix).

The varianceσ 2
pre is noweasily computed by the following

two facts. One is that the two distributions, the probabilistic
model and the posterior distribution, both of which compose
the predictive distribution, are independent of each other.
This is actually general characteristics of predictive distri-
butions. The other one is that both of the two distributions
are nowGaussian distributions. Based on these two facts, the
variance σ 2

pre is computed simply the sum of the variance of
each distribution as:

σ 2
pre � σ̂ 2 + σ 2

a , (27)

where σ̂ 2 is the variance of the probabilistic model the noise
defined by Eq. (9) [and it was obtained by Eq. (11)]. σ 2

a is
the variance of the posterior distribution. It is regarded as the
uncertainty of the model parameter a. Both σ̂ 2 and σ 2

a are
the variances obtained after the learning process. The mixed
predictive distributions stemmed from all the uncertainties,
which are not valued as important in this article, can be then
efficiently computed.

3. Comparison with the empirical Bayes approach
and the predictive distribution composed of all
themixed uncertainties

Theobjective of this paper isUQofQoIs derived from the tur-
bulence closure coefficients a taking the uncertainty of the
noise into account. This modeling can cover all the uncer-
tainties that are present under the probabilistic model on our
definition. Here influences of the modeling that the noise
parameter is also treated as stochastic are demonstrated by
comparing the results of the empirical Bayes approach in
which thenoise parameter is treated as deterministic as σ̂ (e.g.
obtained by Eq. (11)). The Eqs. (13) and (15a) are adjusted
to Eq. (25) and the following equation, respectively:

p
(

y|x,X,Y, σ̂
)∣

∣

a �
∫

p(y|x, a)p
(

a|X,Y, σ̂
)

da

≈ 1

Nmcmc

Nmcmc
∑

i�1

p(y|x, ai )
(28)

with p(y|x, a) � δ(y − f (x, a)).

The only difference between Eqs. (15a) and (28) is the pos-
terior distributions p

(

a|X,Y, σ̂
)

in Eq. (28) and p(a|X,Y)

in Eq. (15a), whose distributions are computed by MCMC.
The difference between these posterior distributions can be
shown in the next paragraph with Fig. 15. The predictive
distribution p

(

y|x,X,Y, σ̂
)

by Eq. (25) reflects the contri-
bution of all the uncertainties (see Fig. 16 as an example).
The results of reflecting all the uncertainties are shown in the
paragraph after the next.

The difference of the predictive distributions between the
full Bayes approach and the empirical Bayes approach are
expected to be remarkable when the posterior distribution of
σ is wide, i.e. when a large uncertainty on σ . Figure 15 shows
marginal posterior distributions and predictive distributions
for the inference using drag coefficient, on comparison of
Fig. 10, which has relative wide distribution in terms of σ .
Overall the uncertainties of the marginal posterior distribu-
tions (of a) and the accompanying predictive distributions are
estimated to be smaller than the cases when the full Bayes
approach in the main context is used. Note that the mode â
is common for the both approaches since it can be evaluated
just by the point-estimate.

Next, an example of the predictive distribution p
(

y|x,X,Y, σ̂
)

when the contribution of all the uncertain-
ties is accounted is presented. Figure 16 shows compari-
son between the predictive distribution p

(

y|x,X,Y, σ̂
)∣

∣

a
computed by Eq. (28) and the predictive distribution p
(

y|x,X,Y, σ̂
)

computed by Eqs. (25–27)). The approach
commonly used here is the empirical Bayes. Therefore, the
noise parameter σ is fixed at σ̂ . The result obtained by the
fully Bayesian approach is shown in Fig. 14-Section i i in
the main context. It can be interesting to compare Fig. 16a
and Fig. 14-Section i i like comparison between Figs. 10 and
15 for CD , which shows that there is fewer differences in
the cases of Cp than those of the case of CD . However, the
main focus here is to confirm the differences of the uncertain-
ties between p

(

y|x,X,Y, σ̂
)∣

∣

a and p
(

y|x,X,Y, σ̂
)

. The
predictive distribution p

(

y|x,X,Y, σ̂
)

(see 95% CI in the
figures) is not useful anymore to observe the uncertainty
associated with the parameter a which is mixed to be lost
in p

(

y|x,X,Y, σ̂
)

.

4. Probabilistic models

The probabilistic models of hypotheses (A), (B) and (C) in
Sect. 3.2, i.e. how the likelihoods expressed by Eqs. (17),
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(a) Marginal distributions of a posterior

(b) Predictive distributions of 

+100 cts.-100 cts.

-6.049
deg.

-3.48
deg.

-2.855
deg.

-1.705
deg.

0.055
deg.

0.707
deg.

1.34
deg.

3.003
deg.

5.864
deg.

Case 4

Fig. 15 Results of predictions by the empiricalBayes approach, usingCD by the experimental dataset at nine flowconditions.aMarginal distributions
of a posterior of the turbulence model parameter (red dotted lines indicate â), b predicted CD distributions by the point-estimate (green line), and
the predictive distributions of CD by the interval-estimate (light green fill as 95% CI), which are also shown in the right side of the figure as
distributions. The dotted orange line is CD distributions by the original model

(a) ( | , , , ) | (b) ( | , , , )

Fig. 16 Predictive distributions at Section i i by the empirical Bayes approach to compare the left figure to the result obtained by the full Bayes
approach shown in Fig. 14-Section ii. Another comparison from the plots in this figure as two kinds of predictive distributions. a: p

(

y|x,X,Y, σ̂
)∣

∣

a
as discussed in the main context, b p

(

y|x,X,Y, σ̂
)
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(18) and (19) are originally derived, are described here. The
probabilistic model of hypothesis (A) is equivalent to Eq. (9)
as mentioned in the main context. The probabilistic model
of hypothesis (B) is expressed by a multivariate Gaussian
distribution, whose covariance is a known structure but
parametrized by σ � (

σ (1), σ (2), · · · , σ (Nsec)
)

, with Nsec �
3.

p(Y|X, a, �) � N (Y|f .(X, a), �), (29)

where, f .(X, a) �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f
(

x(1,1), a
)

...
f
(

x(N1,1), a
)

f
(

x(1,2), a
)

...
f
(

x(N2,2), a
)

f
(

x(1,3), a
)

...
f
(

x(3,3), a
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

	 �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

σ (1)2

. . .

σ (1)2

0

σ (2)2

. . .

σ (2)2

0

σ (3)2

. . .

σ (3)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where f . means a vector where the common function
f is applied to each sample point of the data X.The
model can be also regarded as a mixture of Gaus-
sians with fixed weighted parameter. The dataset
(X,Y) contains the data points from all the sections
in order aligned to the covariance matrix �, e.g. X �
(

x(1,1), . . . , x(N1,1), x(1,2), . . . , x(N2,2), x(1,3), . . . , x(N3,3)
)

.
The probabilisticmodel of hypothesis (C) is essentially the

same as hypothesis (A), but set to each section independently.

5. Error functions (simplified likelihood/posterior
functions) used for the point-estimate

We introduced globally two derivations in the entire process.
One is the point-estimate. The other one is the interval-
estimate. Both of them were described in a Bayesian per-
spective in the main context.

As noted in Sect. 2.2, error functions can be used in
the point-estimate using optimizers. Computing the mode
of the posterior usingMCMC is also the point-estimate but it
cannot be applied in general to the error functions (the simpli-

fied likelihood/posterior functions). In practical applications,
these error functions were used for the sake of computational
effort. This causes reduction of the computational resource
not only by its simplicity of the function itself but also by
dimensionality reduction of the parameter search space in
some cases.

Here the simplified equations actually used for Eq. (10),
Eqs. (17–19), and the posterior using Eq. (16) are introduced.
First, it is well-known that the error function of Eq. (10)
when using Eq. (9) as its probabilistic model leads to the
ordinary least squares. The main procedure is first to take
its logarithm and then to consider the derivation of the log
equationwith respect to the parameters to be inferred to equal
to 0. Constant terms and scaling parameters can be omitted
in the point-estimate. In the ordinary least-squares, a can be
optimized independently of σ . Therefore σ̂ is obtained by
using the tuned result â. Equations (17) and (19) lead to the
ordinary least squares as well since the likelihood functions
of them are Eq. (10). In the same manner when a Gaussian
prior is used, the error function using Eq. (16) becomes the
ordinary least-squares with the L2 norm regularization (so-
called Ridge regression) which is shown later.

In the samemanner, the following error function was used
for the optimization in Eq. (18) in the hypothesis (B):

â, σ̂ � argmin
a,σ

{− ln p(Y|X, a, σ )}

� argmin
a,σ

Nsec
∑

j�1

⎧

⎨

⎩

N j ln
(

σ ( j)2
)

+
1

σ ( j)2

N j
∑

i�1

[

y(i, j) − f
(

x(i, j), a
)]2

⎫

⎬

⎭

.

(30)

In this case, the variance vector does not disappear as a scal-
ing constant in the function. The important property is that
the optimization problem defined by Eq. (30) is an ill-posed
problem [8]. This problem is brought when the model is a
mixturemodel.Whenσ ( j) → 0, the cost function diverges to
the infinity. The Bayesian approach using the MCMC might
be more stable to obtain the mode.

As a final example, Eq. (16), which is the case when prior
information is used is considered. Two cases where the noise
parameterσ is fixedor not are shownhere. The casewhere the
parameter σ is fixed in advance (denoted as σ̂ ) corresponds to
the ordinary least-squares with L2 norm regularization (so-
called ridge regression). Literally this is the MAP since the
process itself is maximizing the posterior function. By taking
the logarithm and derivatives to be 0:

â � argmin
a

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Nall
∑

i�1

[

y(i) − f
(

x(i), a
)]2

︸ ︷︷ ︸

least squares

+
M
∑

j�1

λ( j)2
[

a( j) − a( j)
org

]2

︸ ︷︷ ︸

regularization

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

, (31)

with λ( j) � σ̂

σ
( j)
pri

,
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where λ( j) can be a regularization parameter defined as a user
input parameter instead of defining σ

( j)
pri .M is the dimension-

ality of the model parameter a. e.g. M � 12 when using the
original turbulence model parameter. Equation (31) is a kind
of ridge regressions. Therefore, the point-estimate using a
Gaussian prior distribution in Sect. 3.1 is a ridge regression
itself. It is also well-known that the equation correspond-
ing to Eq. (31) becomes a lasso regression when a Laplace
distribution is used for the prior p(a) in Eq. (16).

Our case is to take into account the case where both the
model parameter and the noise parameter are learned by data.
The error function is represented by the following formula-
tion to execute an optimization in the parameter space of
(a, σ ):

â, σ̂ � argmin
a,σ

⎛

⎜

⎝Nln
(

σ 2) +
1

σ 2

N
∑

i�1

{

y(i) − f
(

x(i), a
)}2

+
M
∑

j�1

⎧

⎨

⎩

a( j) − a( j)
org

σ
( j)
pri

⎫

⎬

⎭

2
⎞

⎟

⎠.

(32)

Since the noise parameter is a scalar, ordinary optimization
process is expected to work better than the case of Eq. (30)
because of the dimensionality of the search space.

6. Generalized perspective of statistical modelling

The statistical modelling described in Sect. 2 can be sum-
marized by a generalized perspective which can be more
practical when the probabilistic model that we define is com-
plicated. The process of the modelling is then generalized
with assistance of the graphical model (the Bayesian net-
work) as follows:

1. describe a graphical model (a Bayesian network),
2. describe the joint probability distribution of all the

stochastic variables as p(y,Y),
3. describe the conditional probability distribution of the

prediction output conditioned by the observed variables
as p(y|Y) with marginalizing all the latent variables,

where Y and y specify a dataset and a (arbitrary) prediction
of the output, respectively. The graphical model in the step 1
is described by your defined probabilistic model. Figure 17
shows the graphical model of the fully Bayesian approach
defined in Sect. 2. Please refer some books [8] to follow the
rules of describing graphical models.

In the second step, the joint probability distribution com-
posed of all the stochastic variables (y,Y, a, σ ) according to
the graphical model:

p(y,Y, a, σ |x,X)

� p(y|x, a, σ )p(Y|X, a, σ )p(a)p(σ )
(33)

Fig. 17 Graphical model (the Bayesian network) of the probabilistic
model showing also a new input x together with the corresponding
model prediction y

Deterministic hyperparameters on the independent priors p
(a) and p(σ ) are omitted for simplicity (e.g. p(a|α) and p
(σ |β)).

The third step is composed by two small steps. As indi-
cated in the graphical model, the stochastic variable Y is
an observed variable. Therefore, the joint distribution by
Eq. (33) is modified as conditioned by Y as follows by using
the product rule:

p(y, a, σ |x,X,Y)

� p(y|x, a, σ )
p(Y|X, a, σ )p(a)p(σ )

p(Y)
︸ ︷︷ ︸

posterior

� p(y|x, a, σ )p(a, σ |X,Y). (34)

Here, the Bayes’ theorem and the property of head-to-head
among a, σ and Y as an observed variable visualized in the
graphical model are used for the deformation of the formula,
resulting in a joint probability of the posterior distribution.
All the latent variables (here they are a and σ ) in Eq. (34) are
finally marginalized (integrated out) by using the sum rule
of the probability:

¨
p(y, a, σ |x,X,Y)dadσ

(

�
¨

p(y|x, a, σ )p(a, σ |X,Y)dadσ
)

� p(y|x,X,Y). (35)

Equation (35) is exactly equal to Eq. (13).
Thus, by specifying the stochastic variables in the model,

and by classifying them into the observed variables and the
latent variables, a general process of obtaining the predictive
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distribution is introduced in any complex models with visu-
alization assist by graphical modeling and useful properties
equipped in them.

References

1. Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning
for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2020)

2. Tinoco, E.N., Brodersen, O.P., Keye, S., et al.: Summary of Data
from the SixthAIAACFDDrag PredictionWorkshop: CRMCases
2 to 5. Journal of Aircraft (2018), vol. 55, no. 4 (2018)

3. Da Ronch, A., Panzeri, M., Drofelnik, J., et al.: Sensitivity and
calibration of turbulence model in the presence of epistemic uncer-
tainties. CEAS Aeronaut. J. 11, 33–47 (2020)

4. He,X., Zhao, F.,Vahdati,M.:MachineLearningUncertaintyQuan-
tification of Spalart-Allmaras Turbulence Model for Compressors.
GPPS Paper No. 2019-BJ-0050 (2019)

5. Singh, A.P., Duraisamy, K.: Using field inversion to quantify func-
tional errors in turbulence closures. Phys. Fluids 28(4), 045110
(2016)

6. Parish, E.J., Duraisamy, K.A.: Paradigm for data-driven predictive
modeling using field inversion and machine learning. J. Comput.
Phys. 305, 758–774 (2016)

7. Duraisamy, K., Singh, A.P., Pan, S.: Augmentation of turbulence
models using field inversion andmachine learning. In: Proceedings
of 55th AIAA Aerospace Sciences Meeting, AIAA 2017–0993,
(2017)

8. Bishop, C.M.: Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer, New York (2007)

9. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods.
Springer, New York (2004)

10. Ray, J., Lefantzi, S., Arunajatesan, S. et al.: Bayesian calibration of
a k-ε turbulence model for predictive jet-in-crossflow simulations.
In: Proceedings of 44th AIAA Fluid Dynamics Conference, AIAA
2014–2085 (2014)

11. Subbian, G., Botelho e Souza, A.C., Radespiel, R., et al.: Cal-
ibration of an extended eddy viscosity turbulence model using
uncertainty quantification. In: Proceedings of AIAA Scitech 2020
Forum, AIAA 2020–1031 (2020)

12. Edeling,W.N., Cinnella, P., Dwight, R.P., et al.: Bayesian estimates
of parameter variability in the k-ε turbulence model. J. Comput.
Phys. 258, 73–94 (2014)

13. Schaefer, J., Hosder, S., West, T., et al.: Uncertainty quantifi-
cation of turbulence model closure coefficients for transonic
wall-bounded flows. AIAA J. 55(1), 195–213 (2017)

14. Xiao,H.,Cinnella, P.:Quantificationofmodel uncertainty inRANS
simulations: a review. Prog. Aerosp. Sci. 108, 1–31 (2019)

15. Galle, M., Gerhold, T., Evans, J.: Parallel computation of turbulent
flows around complex geometries on hybrid grids with the DLR-
TAU code. In: A. Ecer, D.R. Emerson (Eds.), Proc. 11th Parallel
CFD Conf. (1999)

16. Gerhold, T., Hannemann, V., Schwamborn, D.: On the validation
of the DLR-TAU code. In: W. Nitsche, H.-J. Heinemann, R. Hilbig
(Eds.), NewResults inNumerical and Experimental FluidMechan-
ics, Notes on Numerical Fluid Mechanics, vol. 72, Vieweg, ISBN
3-528-03122-0, pp. 426–433 (1999)

17. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code:
Recent applications in research and industry, invited lecture. In:
Wesseling, P., Oate, E., Priaux, J (Eds.), Proceedings of the Euro-
pean Conference on Computational Fluid Dynamics (ECCOMAS
CFD 2006) (2006)

18. Allmaras, S.R., Johnson, F.T., Spalart, P.R.: Modifications and
clarifications for the implementation of the Spalart-Allmaras tur-
bulence model. In: Seventh International Conference on Compu-
tational Fluid Dynamics (ICCFD7), ICCFD7-1902 (2012)

19. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer
models. J. R. Stat. Soc. Ser. B 63(3), 425–464 (2001)

20. Bekemeyer, P., Matteo, R., Heinrich, R., et al.: Nonlinear unsteady
reduced-order modeling for gust-load predictions. AIAA J. 57(5),
1839–1850 (2019)

21. Stradtner, M., Liersch, C.M., Bekemeyer, P.: An aerodynamic
variable-fidelitymodelling framework for a low-observableUCAV.
Aerospace Sci. Technol. 107, 106232 (2020)

22. Sobol, I.M.: Distribution of points in a cube and approximate evalu-
ation of integrals. Zh. Vychisl.Mat.Mat. Fiz. 7(4), 784–802 (1967)

23. Joe, S., Kuo, F.Y.: Remark on Algorithm 659: implementing
Sobol’s quasirandom sequence generator. ACM Trans. Math.
Softw. 29, 49–57 (2003)

24. Herman, J., Usher, W.: An open-source Python library for sensi-
tivity analysis. J. Open Source Softw. 2(9), 97 (2017). https://doi.
org/10.21105/joss.00097

25. Iooss, B., Lemaître, P.A.: Review on Global Sensitivity Analysis
Methods. Uncertainty Management in Simulation-Optimization of
Complex Systems, pp. 101–112. Springer, New York (2004)

26. Papadimitriou, D.I., Papadimitriou, C.: Bayesian uncertainty quan-
tification of turbulence models based on high-order adjoint. Com-
put. Fluids 120, 82–97 (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.21105/joss.00097

	Data-driven Bayesian inference of turbulence model closure coefficients incorporating epistemic uncertainty
	Abstract
	Abbreviations
	Subscripts
	Superscripts
	Oversets
	1 Introduction
	2 Methodology
	2.1 Flow solver and turbulence model
	2.2 Theory
	2.2.1 The 1st Step: defining a regression model
	2.2.2 The 2nd Step: defining a probabilistic model
	2.2.3 The 3rd Step: computing a posterior by given data (learning process)
	2.2.4 The 4th Step: computing output distributions (prediction process)

	2.3 Practical implementation details

	3 Applications and results
	3.1 2D RAE2822 Airfoil
	3.1.1 Sobol indices as preprocessing
	3.1.2 Inference using drag coefficient
	3.1.3 Inference using pressure coefficient

	3.2 XRF1 generic long-range transport aircraft
	3.2.1 Inference using drag coefficient
	3.2.2 Inference using pressure coefficient


	4 Conclusions
	Acknowledgements
	Appendix
	1. The function to be evaluated by optimizer/MCMC
	2. How to compute the predictive distributions
	3. Comparison with the empirical Bayes approach and the predictive distribution composed of all the mixed uncertainties
	4. Probabilistic models
	5. Error functions (simplified likelihood/posterior functions) used for the point-estimate
	6. Generalized perspective of statistical modelling

	References




