Modular contactors

Contents

Introduction .		í
----------------	--	---

Generalities on bar contactor's main uses	3
Use under direct current	3
Use under alternating current	5
Definition of normalized duty cycles	7
Three-phase 50/60 Hz outputs	8

Applications......9

"Direct" start-up and co-ordination	9
"Star-Delta" start-up 12-13	12
"Start-up" by auto-transformers 14-15	14
How to select contactors for rotary circuits 16	16
How to select CBA contactors for battery capacitors	18
How to select contactors for heating circuits	19

Description of contactor's components.....21

Frame	21
Electromagnet	21
Main poles	22
Auxiliary contacts	23
Mechanical locking between two contactors	23
Locking by "RONIS" type lock	23
Mechanical latching with electrical release	24
Auxiliary contacts	25
M type instant contacts 26	26
Dimensions 26	26
Operating diagram for different versions of M type instan	
contacts	27
D type instant contacts 28	28
TP 86 type delayed contacts 28	28
CBC 80 to 630A, single-pole versions	.29
Technical features:	
CBC 80 to 200A - RUBC 400 to 630A	29
Overall dimensions:	
CBC 80 to 200A 31	31
CBC - RUBC 400 to 630A 32	32
CB 80 to 200A, multipolar version	.33
Technical features:	
CBA 55 - CBPA 57 80 to 200A 34	34
CBC 57 B - CBFC 55 80 to 200A 35	35
Overall dimensions:	
CBA 55 – CBPA 55 80A 36	36

CBA 57 – CBPA 57 B 80A 37

CBA 55 – CBPA 55 150A 38

CBA 57 – CBPA 57 B 150A 39	39
CBA 55 – CBPA 55 200A 40	40
CBA 57 – CBPA 57 B 200A 41	41
CB 75 400 to 1000A	43
Technical features:	
CBA 75 400 to 1000A 44	44
CBFC 75 400 to 1000A 45	45
Overall dimensions:	-10
	46
CBA&CBFC 75 400 to 1000A, 1000Vac&500Vdc 46	46
CBA&CBFC 75 400, 1000Vac&500Vdc 47	47
CBA&CBFC 75 500 &630A, 1000Vac&500Vdc 48	48
CBA&CBFC 75 800&1000A, 1000Vac&500Vdc 49	49
CBFC 75 400 to 1000A 2.0, 1000Vac-dc 50	50
CBFC 75 400 to 1000A 3.0, 1000Vac-dc 51	51
CBFC 75 400 to 1000A 4.0, 1000Vac-dc 52	52
CBFC 75 400 to 1000A 2.1, 1000Vac-dc 53	53
CBFC 75 400 to 1000A 3.1, 1000Vac-dc 54	54
, ,	
CB 71 1250 to 2000A	55
Technical features:	
	50
CBA 71 1250 to 2000A 56	56
CBC 1250 to 2000A 57	57
Overall dimensions:	
CBA& CBC 71 1250 to 2000A, 1000Vac&600Vac-dc	58
CBC 1250 to 2000A, 1000Vac-dc 59-60	59
CB 2500 to 5000 A and more	61
Technical features:	
CBA – CBC 2500 to 6200A 62	62
CBA - CBC 98 2560 to 5000 A 63	63
Overall dimensions:	00
	64
CBA – CBC 2500 to 6200A 64	64
CBA – CBC 2500 to 6200A 65	65
CBC 54 3000A, 1000Vac-dc 66-67	66
CBC 60 5000A, 1000Vac-dc 68-69	68
CBC 98 2560 and 3200 70-73	70
CBC 98 5000 74-75	74
Field circuit breakers (excitation contactors) from	
80 to 6200A	75
Technical features	77
Overall dimensions:	
	70
CEX 57 80 To 200A 1.1, 500Vdc	79
CEX 57 80 To 200A 2.1, 500Vdc	80
CEX 75 400 To 1000A, 500Vdc	81
CEX 75 400 To 1000A 1.1, 500Vdc	82
CEX 75 400 To 1000A 2.1, 500Vdc	83
CEX 75 400 To 1000A 3.1, 1000Vdc	84

CEX 71 1250 To 2000A, 600Vdc	85
CEX 71 1250 To 2000A 3.1, 1000Vdc	86
CEX 54 3000 To 60 5000A 2.2, 600Vdc	87
CEX 54 3000 To 60 5000A 2.1, 600Vdc	88
CEX 54 3000A 3.1, 1000Vdc	89
CEX 3000 to 5000A bipolar, 1500 Vdc	90
CEX 3000 to 5000A four-poles, 1500 Vdc	92
CEX 98 2560-3200A 1.1, 600 Vdc	92
CEX 98 2560-3200A 1.1, 1000 Vdc	92
CEX 98 2560-3200A 2.1, 1000 Vdc	93
CEX 98 2560-3200A 2.1, 1500 Vdc	94
CEX 98 2560-3200A 4.1, 2000 Vdc	95
CEX 98 5000A 1.1, 600 Vdc	96
CEX 98 5000A 1.1,1000 Vdc	97
CEX 98 5000A 2.1, 1000 Vdc	98
CEX 98 5000A 3.1,1000 Vdc	99
CEX 98 5000A 4.1, 1000 Vdc	100

DRAW-OUT EXCITATION CONTACTORS......101

CMA 98 1250 to 5500 A.....102

Technical features:	
CMA 98 1250 to 2000 A	108
CMA 98 2560 to 5500 A	109
Overall dimensions:	
CMA 98 1250 - 1600 - 2000 3.0	110
CMA 98 1250 - 1600 - 2000 2.0	111
CMA 98 1250 - 1600 - 2000 6.0	112
CMA 98 1250 - 1600 - 2000 3.0	113
CMA 98 2560 2.0 - 3200 2.0	114
CMA 98 2560 - 3000 1.0	115
CMA 98 2560 - 3000 2.0	116
CMA 98 5000 - 5500 1.0	117
CMA 98 5000 - 5500 2.0	118
CMA 98 5000(1) + 2 x 1250(2)	119

Vertical mechanical locking120

80 to 200 A range	120
400 to 1000 A range	120
1250 to 5000 A range	121
2500 to 5000 A range	121
1250 to 5000 A range	

CBT rapid contactors122

Technical features CBT 200 - 400 - 800	123
Co-ordination of thyristor's protections	124
Operation and graphic method	125
CBT 200 A - Definition of KL according to Kcc and τ	129
CBT 200 A - Definition of K according to Kcc and τ	130
CBT 400 to 800 A- Definition of KL according to Kcc	131
and T	
CBT 400 A - Definition of K according to Kcc and τ	132
CBT 800 A - Definition of K according to Kcc and T	133
Overall dimensions CBT 200 to 800 A	134
Control circuit drawings	135

Magnetic RBC 1054 Z relays	136
Technical features	137
Operation	138
Overall dimensions	139
Overall dimensions for 900 to5000 A current-triggered	140
relays	
CIC 1 - 2 DC contactors	141
Technical features	142
Overall dimensions	143
Connection drawings	.144
How to select your connection drawing 152	144
Control circuit of contactors without mechanical latching	145
with electrical release	
Control circuit of contactors with mechanical latching:	
with single electrical release	146
with single electrical release (§1) 155	147
with single electrical release (§2) 156	148
with single electrical release (§3) 157	149
with double electrical release 158	150
with double electrical release (§1) 159	151
with double electrical release (§2) 160	152
with double electrical release (§3) 161	153
with double electrical release (§4) 162	154
with double electrical release (§5) 163	155
Legends	.156

Introduction

Generaliti es on bar contactor's mainuses

Thanks to their modular constitution, bar contactors from 80 to 6200 A can meet most of your requirements that block contactors, although easy to mount, can not meet.

It is possible on a bar contactor to:

- mount one or several poles of different or similar calibres,
 of different currents (AC and DC),
- of different types: closing poles or opening poles (rupturing poles),
- with or without mechanical overlapping,
- with or without magnetic blow-out.
- to mount a significant number of auxiliary contacts of different types,
- instant, opening or closing, with or without overlapping, without blow-out or with magnetic blow-out (for DC inductive control circuits),

- delayed on opening or on closing of the contactor.

- to obtain a reinforced level of insulation by increasing the distance between the poles (for high rotary voltages, for dusty or conductive atmosphere).
- to mount on the contactor a mechanical latching with single or double electrical release, with or without selfprotective device for the release coil(s).
- to lock mechanically the contactor with one or several contactors of similar or different calibres in a vertical, horizontal or «back to back» position.
- to adapt the fixation centre-to-centre distance to the mounting conditions.

Below are shown a few examples of characteristic uses and possibilities of our bar contactors.

Use under direct current

Electrochemistry - Galvanoplasty

- voltage from 6 to 220 Vdc
- current from 1250 to 8000 A

The contactors with or without blow-out are designed for the supply, coupling in series, in parallel or complex coupling, for the sectioning of electrolysis vats, and for the reversion of the supply polarities.

Type of contactors adapted to these applications:

- CBC 71 1250 1600 2000 A,
- CBC 54 2500 3000 A,
- CBC 60 4000 5000 6200 A.

Handling - Heavy lifting

- voltage from 220 to 550 Vdc
- current from 80 to 2000 A

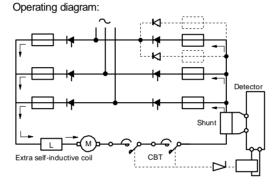
Single-pole or two-pole contactors are designed for the control, the reversion of motor running direction and to short-circuit the acceleration and braking resistance catches.

Type of contactors adapted to these applications:

Single-pole contactors:

- CBC 57 80 & 150, CBC 68 200, CBC 96 400 (replacing the CBC 45 320 & CBC 75 320).
- one-pole rupturing contactors RUBC 57 B 80 150 200, RUBC 96 400 (for brake shoe).
- Two-pole contactors:
 - CBC 57 B 80 150 200 A,
 - CBFC 75 400 to 1000 A,
 - CBC 71 1250 to 2000 A.

Mining industries


- voltages from 110 to 1200 Vdc
- current from 80 to 9000 A

Our single-pole or multipolar contactors are designed for motor control, rolling mills accessories, «blooming», wire trains, etc...

CBC and CBFC contactors have been designed for such intensive duty cycles.

Rapid contactors (release < 10 ms) are indicaded for the thyristor's bridges and their related fuses protection, should the network voltage disappears.

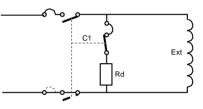
Type of contactors adapted to those applications: - CBT75 300 - 500 - 1000

Uninterrupted Power Supply

- voltage from 110 to 550 Vdc - current from 80 to 1000 A

DC entry contactors for the supply of UPSunits.

CBC and CBFC contactors have been used and are still used for that application since the development of UPS's.


Power generation

Excitation and desexcitation of power inductors up to 900 MW and more.

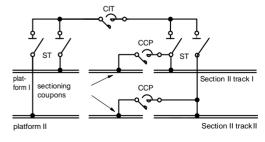
- -voltage from 110 to 1200 Vdc
- current from 80 to 6200 A

Our CEX contactors are used by a significant number of French and foreign alternator manufacturers. They are made up of 1, 2 or 3 magnetic arc-blow-out poles and of 1 opening pole called a «rupturing pole».

On opening, the rupturing pole closes before the main poles open.

C1: excitation contactor. Rd: discharge resistor. Ext: inductor.

Traction networks, railways, undergrounds, and trolley buses


- voltages of 500 - 600 - 750 Vdc

- current from 25 to 6000 A

Contactors can be used for supplying and splitting up the tracks into sections, for supplying the sectioning coupons, sectioning and putting to earth the rails in the repairing workshops, coupling and insulating the tracks.

Type of contactors adapted to those applications: - all our DC contactors, with reinforced insulation or double insulation according to the nominal operating voltage.

You will find our contactors in the undergrounds of Mexico, Cairo, Athens, Santiago, Montreal, Paris, Lyon, Marseille, etc... This range is completed by switches with «manual or electrical» energy storage control.

CIT-CCP: contactors. **ST**: sectioning equipments.

Protection of equipments supplied with DCcurrent

- voltage up to 600 Vdc and more - current from 2 to 10000 A

It is necessary to check and control voltages, currents and the current's crossing direction, to delay or not the effects produced by variations in basic features. Our RBC 1054 relays equipped with contacts, with or without magnetic arc-blow-out, with currents ranging from 2 to 40 A can be:

- instant voltage-triggered or delayed on opening,
- instant direct current-triggered from 1 to 10000 A or magnetically delayed on opening,
- reverse-current relays,
- synchronising relays for the start-up of synchronous motors,
- regenerative braking control relays with rectifier for slip ring motors.

Use under alternating current

Heavy industries

- voltage from 110 to $1000\,\text{V}$
- current from 80 to 4000 A
- Generally used for distribution, in association with high switch-off rating fuses in case of remote control distribution with quite frequent operations.
- High speed motor control up to 1200 V, either with direct start-up or via starters with statory resistors or autotransformers.
- Short-circuit of slip-ring motor starting resistors up to 2000 V (for greater voltages, please consult us).

Selection and connecting mode of contactors used in the rotary circuit of asynchronous motor:

- automatic start-up without speed adjustment by variation of the rotor's resistance: contactor without arcblow-out,
- automaticstart-up withspeed adjustment byvariation of the rotor's resistance: contactor with magnetic arc-blow-out.

Connecting mode

- Contactor without arc-blow-out:
 - rotary voltage 600 V, parallel connection
 two-pole contactor, *I passing = I rotor*
 - (contactor with standard insulation) • three-pole contactor, *I passing = I rotor /1.5*
 - (contactor with standard insulation)

- rotary voltage between 600 and 1200 V, parallel connection

- two-pole contactor, *I passing = I rotor* (contactor with reinforced insulation)
- three-pole contactor, *I passing* = *I rotor*/*1.5* (contactor with reinforced insulation)

 rotary voltage between 1200 and 2000 V, connection in series with three-pole contactor

I passing = I rotor (contactor with reinforced insulation)

- Contactor with magnetic blow-out
- rotary voltage \$ 600 V, parallel connection
 two-pole contactor, *I passing = I rotor* (contactor with standard insulation)
 - three-pole contactor, I passing = I rotor / 1.5 (contactor with standard insulation)

 rotary voltage between 600 and 1200 V, parallelconnection subject to the fact that the voltage between fixed and moving contacts of each pole does not exceed 800 V; should it exceeds, adopt a connection in series.

- two-pole contactor, connection in parallel, *I passing = I rotor*
- (contactor with reinforced insulation)
- three-pole contactor, connection in parallel, I passing = I rotor / 1.5
- (contactor with reinforced insulation) • three-pole contactor connection in series,
- I passing = I rotor(contactor with reinforced insulation)

 rotary voltage between 1200 and 2000 V, connection in series subject to the fact that the voltage between fixed and moving contacts of each pole does not exceed 800 V.

• three-pole contactor, *I passing = I rotor* (contactor with reinforced insulation)

Calibre

- Short-circuiting contactor: calibrated according to the rotary current.
- Acceleration contactor
 - automatic start-up:
 - *I* nominal of contactors inferior or equal to *I* peak/6, semiautomatic start-up or with adjustment catches:
 - I nominal of contactors inferior or equal to I passing,
 - for stator M-T: rotary blow-out CBA contactor (slow break: 200 ms at stator's contactor).

Mining Industries

CBA contactors can meet the requirements of inductive Electrotherm as line contactors, coupling devices for capacitors or ovens.

- voltage from 220 to 690 V
- current from 80 to 2000 A

Three-pole contactors are designed for the control and the reversion of motors' running direction.

CBA contactors are adapted to these applications.

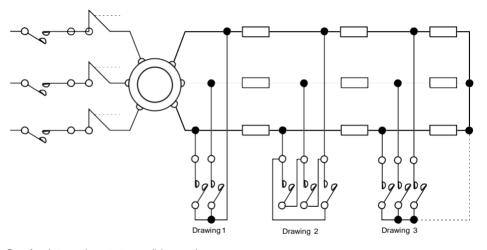
Service Industries

Medical centres, banks, shopping malls, post and telecommunication centres, etc...

- voltage from 48 to 690 V
- current from 80 to 4000 A

Protection of emergency generating sets A contactor placed at the end of the alternator coupled with magnetic or thermomagnetic relays ensures the distribution of the spare current and the protection against the alternator overloads. The contactor current switch-off rating issufficient in case of short-circuit. Thermal motors, with their loss of speed, limit the short-circuit current value.

UPSunits


Front entry and exit of UPS.

Coupling of UPS.

Quick changeover from UPSto network supply in case of UPSfailure, by using on the same contactor closing poles and overlapping opening poles.

Galvanicseparation between the UPSand the network to hinder the network interference.

These functions can be ensured with CBA contactors delivered separately or as complete equipment «Normal-Spare/Emergency».

Drawing 1: two-pole contactor, parallel connection. Drawing 2: three-pole contactor, parallel connection. Drawing 3: three-pole contactor, series connection.

Definition of normalised duty cycles

According to IEC 158-1, VDE 0660, NF 63-100, IEC 947-4

Duty cycles of contactors

These ones state the current values that the contactor has to make or break.

- They depend on:
- the kind of receptor controlled: cage or slip-ring motor, resistors, \ldots
- the conditions under which the closings and the openings happen: running or stalled motor, reversion of running direction, regenerative braking.

Alternating current

Duty cycle AC_1

Is applied to all the AC receivers whose power factor equals at least 0.95 (cos 'P ?: 0.95). Closing and opening of the current normally absorbed by the receiver without risk of overcurrent on closing or opening. Example of applications: heating and distribution systems.

Duty cycle AC_2

Governs the start-up, regenerative braking and «step» running of slip-ring motors. On closing, the contactor establishes the starting current, (around 2.5 times the motor nominal current). On opening, it has to cut-off the starting current under a voltage at least equal to the network voltage.

Note: AC_2 duty cycle according to UTE standards corresponds to AC'2 according to VDC 0660.

Duty cycle AC_3

Concerns squirrel-cage motors with opening under running motor conditions. On closing, the contactor establishes the starting current which is around 5 to 7 times the motor nominal voltage. On opening, it cuts off the nominal current absorbed by the motor, at that time, the voltage at the terminals of its poles is about 20 % of the network voltage.

The opening remains easy.

Example of use: all standard squirrel-cage motors, lifts, elevators, escalators, conveyor belts, compressors, pumps, mixers, air conditioners, etc...

Duty cycle AC_4

Concerns regenerative braking and step running applications with squirrel-cage motors. The contactor closes under a peak of current that can reach a value 5 or 7 times as high as the motor nominal voltage. When it opens, it cuts off the same current under a voltage all the more high since the speed motor is low. This voltage can be the network voltage. The opening is severe. Example of use: metallurgy, lifting systems, wiredrawing machines.

Direct current

Duty cycleDC_1

Concerns all the DC equipments (receivers) whose time constant (L/R) is inferior or equal to 1 ms.

Duty cycleDC_2

Cut-off of the «running motor» current.

Time constant is about 7.5 ms. On closing, the contactor makes the starting current, about 2.5 times as high as the motor nominal current on opening, the contactorcuts-off the motor nominal current. The voltage at its terminals depends on the electromotive force of the motor. Opening is easy.

Duty cycleDC_3

This category governs the start-up, regenerative braking and «step» running of shunt motors.

Time constant � 2 ms.

On closing, the contactor makes the starting current, around 2.5 times the motor nominal current. On opening, it must cut-off 2.5 times the starting current under a voltage at least equal to the network voltage. The lower is the speed of the motor, the higher is that voltage and then the lower is its counter-electromotive force. Opening is difficult.

Duty cycleDC_4

Control of a series motor, cut-off of «running motor» current. Time constant is about 10 ms. On closing, the contactor makes the starting current which is about 2.5 times the nominal current of the motor. On opening, it cuts off the third of the nominal current absorbed by the motor at this time. The voltage at the terminals of its poles is also around 20 % of the network voltage. In that category, the number of operations per hour can be high.

Duty cycleDC_5

Control of a series motor, cut off of «not running» motor current. This category concerns thestart-up, regenerative breaking and «step» running of series motors. Time constant � 7.5 ms. The contactor closes under a peak of current that can reach 2.5 times the nominal current of the motor. When it opens, it cuts off the same current under a voltage which varies unproportionally with the speed of the motor. This voltage can equal the network voltage. Opening is severe.

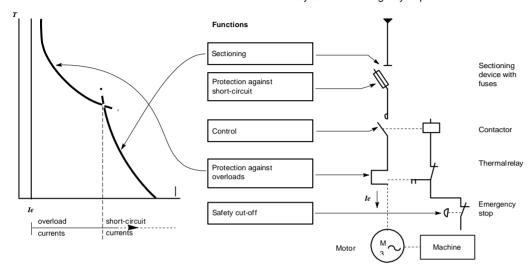
Introduction Motor currents

Nominal currents for asynchronous cage motors

Three-phase 50/60 Hz motor outputs

								Voltage						
0	utput	200/ 208 V	220 V	230 V*	380 V	400 V	415 V	433/ 440 V	460 V*	500/ 525 V	575 V*	660 V	690 V	750 V
kW	ch or hp	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
18.5	25	70	64	68	37	35	35	32.8	34	28.5	27	21.9	20.2	18.5
22	25	84	75	80	44	42	40	39	40	33	32	25.4	24.2	22
30	40	114	103	104	60	57	55	51.5	52	45	41	54.6	33	30
37	50	138	126	130	72	69	66	64	65	55	52	42	40	36
45	60	162	150	154	85	81	80	76	77	65	62	49	46.8	42
55	75	200	182	192	105	100	100	90	96	80	77	61	58	52
75	100	270	240	248	138	131	135	125	124	105	99	82	75.7	69
90	125	330	295	312	170	162	165	146	156	129	125	98	94	85
110	150	400	356	360	205	195	200	178	180	156	144	118	113	103
132		480	425		245	233	240	215		187		140	135	123
	200	520	472	480	273	222	260	236	240	207	192	152	128	136
160		560	520		300	285	280	256		220		170	165	150
	250			600					300		240	200		
200		680	626		370	352	340	321		281		215	203	185
220	300	770	700	720	408	388	385	353	360	310	288	235	224	204
250	350	850	800	840	460	437	425	401	420	360	336	274	253	230
280					528									
315		1070	990		584	555	535	505		445		337	321	292
	450			1080					540		432			
355			1150		635	605	580	549		500		370	350	318
	500			1200					600		480			
400			1250		710	675	650	611		540		410	390	356
450	600			1440					720		576			
500			1570		900	855	820	780		680		515	494	450
560			1760		1000	950	920	870		760		575	549	500
630			1980		1100	1045	1020	965		850		645	605	550
710					1260	1200	1140	1075		960		725	694	630

These values are only indicative, they are likely to vary according to the type of motor, its polarity and its manufacturer. * Values in conformity with the NEC (National Electrical Code).



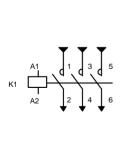
Applications «Direct» start-up and co-ordination

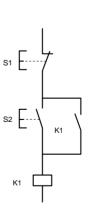
General

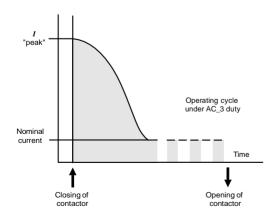
The machines inserted in the supply circuit of a motor ensure different functions as scheduled in the installation rules. *Standards NFC 15-100.*

- motor start-up and stop control,
- protection against the overloads and short-circuits of the motor and supplying circuit,
- safety cut-off or emergency stop.

Start-up and stop of the motor


This function called control is ensured by the contactor. It is imposed by the installation rules *NFC 15-100* for all «operating machinery», notably the motors. These rules also forbid the automatic start-up after a lack of voltage when it is likely to be dangerous.

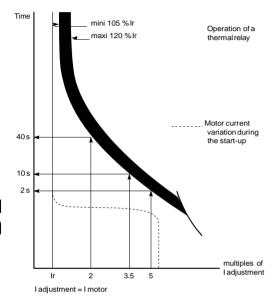

Controlled by two pulse switches and equipped with an auto-supplying contact, the contactor meets these requirements. Remote control and warning functions are also possible.


When it closes, the contactor makes the starting current of the motor, that can reach 5 to 7 times its normal voltage on load. After a few milliseconds (a few seconds at max), the motor reaches its normal speed and the

peak of current from the start-up decreases up to a value corresponding to the carried load. When the contactor opens, it cuts off that current under a voltage reduced by the counter electromotive force of the running motor.

This cycle of operations, usual for a contactor, corresponds to the AC_3 duty cycle as defined by the *IEC 947-4 standards* (contactors). To other operating modes or other types of motors correspond other duty cycles with specific selection modes for contactors: definition of duty cycles.

Protection against overloads


This function is ensured by thermal relays. The rules for installation highly recommend to have the motor and its supplying circuit protected against overloads. Motor overloads are from mechanic origin and affect the

equipment driven or the motor itself. The resulting overcurrent may damage the insulation of

the windings by excess of heat.

Fuses for the protection of the contacto'rs control circuit Q_1 Q_1 F_2 F_3 F_4 F_2 F_4 F_4 F_5 It crosses the supplying circuit that incurs the same risk. But, this circuit can also be overloaded by a current of defect.

As the circuit is normally calibrated for the motor current, the thermal relay protects both of them against overloads.

The combination «contactor + thermal relay» constitutes a direct starter complying with the *IEC 947-4 standards*.

Moreover, this one functions when the motor is in danger in case of one phase cut-off (due to the fusion of fuses for example). Such operations of the relay are called differential operations, the relay only starts to operate for a balanced overcurrent, between 105 and 120 % of the current for which it is adjusted, and provokes the opening of the contactor in a time all the more short since the overcurrent is significant. The standard use corresponds to the category 10. For long start-ups, we recommend to select relays of categories 20 or 30.

If the start-ups succeed one another at the rate of 30 per hour or more, the thermal relay may not be adapted to the duty for which the motor has been especially selected. In that case, the protection should be ensured by an electronic relay or by a sonde incorporated into the motor and coupled with a relay.

Protection against short-circuits

This protection is ensured by cut-outs or circuit breakers with fuses. Iq is the presumed short-circuit current value (according to *IEC947-4*) corresponding to the short-circuit current that is likely to be reached if the Protective Device against Short-Circuits or DPCC doesn't interrupt it. This is the maximum short-circuit current value for which the manufacturer warrants the co-ordination. Short-circuit can happen in the circuit, in the motor's terminal box or in its windings after the destruction of the insulation.

As per the *NFC* 15-100 standards, a «DPCC» must protect the circuit, the equipment it includes and eventually the environment of the motor. The compatibility of the components associated for a

«motor start-up» - contactor, thermal relay, circuit breaker or fuses - and the quality level of protection are assessed by the co-ordination class. The most current one is «co-ordination 2». The *IEC947-4* recommendations define 2 types of coordination from which no danger should result to people or installations:

Type 1: after the short-circuit, the materials shouldn't be in a position to function without repair or replacement of damaged parts.

Type 2: after the short-circuit, the materials should be in a position to function (the risk of soldering is possible). The co-ordination tables proposed are resulting from satisfactory tests undertaken under the Iq current and the *r* current according to *IEC947-4*.

* The testing current r is a conventional value of the short-circuit current that depends on the current of use AC_3.

Safety cut-offs or emergency stop

According to the installation rules NFC 15-100 (§ 462), this function is necessary when a danger to human beings can result from a failure during the operation or an electrical defect.

It has to be possible to stop the machine, putting the circuit off-load by acting on a single, easy to access and fastly recognisable system - one or several emergency stop switches piloting the contactor(s).

Association «contactors - thermal relays - co-ordination type 2 - 50 kA fuses»

Permanent, temporary or intermittent service up to 30 cycles of operation per hour. Ambient temperature \$ 55 C°.

							Adjustment zone	Types	of fuses
		Mote	or ⁽¹⁾			Three-pole contactor	of the three-pole differential	aM	g1 or BS88
							thermal relay	Calibre	Calibre
220	0/230 V		3	380/400 V	/				
kW	ch	In(A)	kW	ch	In(A)	Calibre	Α	Α	Α
30 4	40	103	55	75	105	CBA 55 150	80/125	125	200
40 5	54	134	75	100	138	CBA 55 150	100/160	160	200
45 6	60	150	80	110	147	CBA 55 150	100/160	160	200
55 7	75	182	90	125	170	CBA 55 150	125/200	200	250
63 8	85 1	203	110	150	205	CBA 55 150	160/250	250	315
75 10	00	240	132	180	245	CBA 55 200	200/315	315	400
80 11	10 🛛	260	150	205	200	CBA 55 200	200/315	315	400
110 15	50	356	185	250	342	CBA 75400	250/400	400	500
			200	270	370	CBA 75400	315/500	400	500
140 19	90 ·	450	250	340	460	CBA 75 500	315/500	500	630
147 20	· 00	472				CBA 75630	400/630	500	630
180 24	45	578	315	430	584	CBA 75800	400/630	630	800
200 27	70	626	335	450	620	CBA 75800	500/800	800	1000
220 30	00	700	400	545	710	CBA 75800	500/800	800	1000

(1)the values given in the table are normalised outputs and average nominal voltages. The relay will be adjusted for the current indicated on the ID plate of the motor or, failing that, for the one given in the In column. For any other output, select the relay covering the nominal current with the corresponding contactor and fuses of the same calibre or immediately current to In. superior to In.

Applications «Star-delta» start-up

General

«Delta-star» start-ups are used:

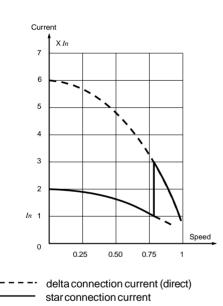
- either to limit the inrush current at the start-up of a motor according to the recommendations of installation.
- or to reduce the torque and the mechanical stress on the machine.

This kind of start-up can only be applied to squirrel-cage motors equipped with 6 terminals, whose motor star connection voltage corresponds to the network voltage.

In this case of star connection motors, each winding is supplied with 0.58 Un (i.e. $\frac{Un}{\sqrt{3}}$) which enables to avoid

a signifiant inrush current on the line and to limit the value at the third of the one for direct start-up, i.e. ca 2 In.

Squirrel-cage motor operation curves.


The motor torque - star connection during start-up - is also reduced to the third of the value corresponding to a direct start-up.

Indeed, the motor torque is proportional to the square of the supply voltage.

For 0.58 Un, we have $(0.58)^2$ i.e. 1/3.

By admitting that, the motor torque for direct start-up is 1.5 times the nominal torque i.e. Cd = 1.5 Cn, the star connection torque during is of Cd = 0.5 Cn start-up. This kind of start-up allows the maximum motor torque for the minimum line current.

This kind of start-up is suitable for low or mediumpower machines starting in neutral or with low loads, example: low-inertia machine, compressor starting in neutral, pumps starting with closed gates, small fans.

Recommendations of use

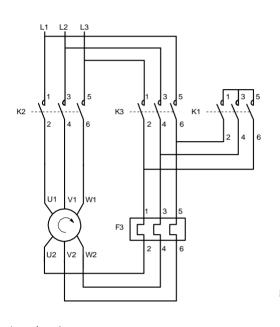
Let L1, L2 and L3 be the chronological order of succession of the phases. In order to reduce the transient current resulting from the change from star connection to delta connection, the cabling is recommended to be as follows:

motor winding delta connection

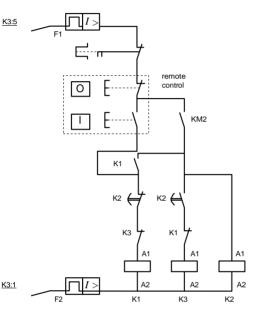
U1-U2 between L1 and L3 V1-V2 between L2 and L1 WI-W2 between L3 and L2.

In case of reverse rotation of the motor and in order to comply with the above conditions, it is recommended to cross two windings of the motor according to the opposite drawing.

Recommended connection to reverse the motor's rotating direction (Normalised motor, shaftend side view).


Applications «Star-delta» start-up

Selection of components


The components are placed according to the following drawing:

- K2 and K3 contactors are calibrated at Ie $(AC_3) \approx 0.58$ In motor. In me
- Ie (AC_3) ≈ 0.58 In motor. • K1 is calibrated at Ie (AC_3) = $\frac{\text{In motor}}{3}$

Operation

Recommended connection to reverse the motor's rotating direction (Normalised motor, shaftend side view).

Starting current can be withstood for 20 seconds (dur-

Such contactors are equipped with a temporiser. The

thermal protection relay must be adjusted at 0.58 In

ing 2 successive start-ups of 10 sec. each).

motor.

Starting sequence:

1st step:

Closing of K1, closing of K2, start-up of the «star» motor.

Starting temporisation adjusted to obtain 80 % of the star connection speed.

2nd step:

Opening of K1, closing of K3, «delta» connection.

«Star delta» changeover - Role of the temporisation

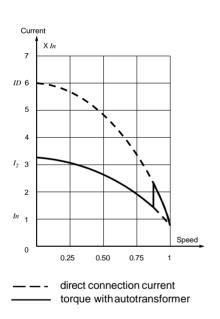
Make sure that the «star delta» changeover lasts long enough to enable the extinction of the arcs, in order to avoid short-circuit between phases.

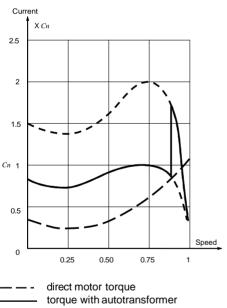
V1 W1

W2

Applications «Start-up» by auto-transformers

General

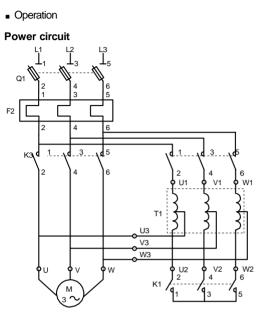

- The start-up by autotransformer has the following advantages:
- it is suitable for all cage motor start-up: at 3 terminals,
 6 or 9 terminals according to the North-American technology.
- start-up occurs under reduced voltage.
- it provides the maximum torque for the minimum line current.
- it enables to adapt the starting torque $(C = f(U)^2)$ to the resistive torque of the machine, thanks to its 2 ou 3 intermediary voltage measures of which generally only one is used (0.65 0.80 Un or 0.50 0.65 0.80 Un).
- it is used to start high-power and/or high-inertia machines.
- the motor is never separated from its supplying source during the start-up (closed transition) and transient phenomena are suppressed.


- The start-up is made of 3 steps:
- autotransformer «star» changeover by K1, then closing of the contactor K2. The motor starts under reduced voltage.
- opening of the neutral point by K1. A winding part of the autotransformer is inserted in each phase during a short time constituting a statory star inductance.
- a third contactor K3 connects the motor under full network voltage and provokes the autotransformer «OFFLOAD» by K2.

The autotransformer used generally has an air-gap (adjusted or not) so as to obtain, during the 2nd step of start-up, an inductance «series of values» compatible with a correct start-up.

Typical values for a start-up by autotransformer

Operations curves:



– — resistive torque of the machine

Applications «Start-up» by auto-transformers

Constitution of a starter

Control circuit <u>1</u> Q1:2 01 F2 П F3 🗖 S1 F s2 E KA1 K2 КЗ КЗ K1 KA1 КЗ 42 A2 A2 6T3 Q1:6

Operation

Manual closing of Q1. Closing of K1: star connection of the autotransformer. Closing of K2: supply of the autotransformer, start-up of the motor. Opening of K1: elimination of the star connection of the autotransformer, the motor is transiently supplied through a part of the windings of the autotransformer. Closing of K3: direct supply of the motor. Opening of K2: elimination of the autotransformer. Particularities: Q1: calibre In motor,

F2: calibre In motor.

Operation

Pulse on S2. Closing of K1. Locking of K3 by K1. Closing of KA1 by K1 and supply of the thermal temporiser relay F3. Closing of KM2 by KA1. Self-supply of K2. Opening of K1 by KA1. Closing of K3 by K1. Locking of K1 by K3. Self-supply of K3. Opening of KA1 by K3. Elimination of F3 by K3. Opening of K2 by KA1. Stop: pulse on S1.

F3: Thermal temporiser relay ensuring the protection of the autotransformer against too frequent or incomplete start-ups.

For the control of single running direction motors. To be mounted by the customer (on frame or in cabinet). Selection of components: The contactors defined in the opposite table have been determined according to the following criteria:

- starting current = 6 In,
- starting time: 30 sec,
- number of start-ups per hour: 3; 2 of which are consecutive,
- ambient temperature e, :: 40°C,
 transient on closing of
- $K 3 \le 7\sqrt{2} \times In$.

 for parallel connection of the fuses, make sure to strictly respect the manufacturer's recommendations.

	alised puts		Contactors	Recom- mended delay of thermal			
220/230 V	380/400 V	Line K3	Autotransformer K2			aM gl	calibres
kW	kW	type	type	type	calibre	Α	Α
40	75	CBA 55 150 3.0	CBA 55 80 3.0	CBA 55 80 3.0	100 to 160	160	200
51	90	CBA 55 150 3.0	CBA 55 150 3.0	CBA 55 80 3.0	125 to 200	200	250
63	110	CBA 55 150 3.0	CBA 55 150 3.0	CBA 55 80 3.0	160 to 250	250	315
75	132	CBA 55 200 3.0	CBA 55 150 3.0	CBA 55 150 3.0	200 to 315	250	315
90	160	CBA 75 400 3.0	CBA 55 200 3.0	CBA 55 150 3.0	250 to 400	315	400
110	200	CBA 75 400 3.0	CBA 75 400 3.0	CBA 55 150 3.0	315 to 500	400	500
140	250	CBA 75 500 3.0	CBA 75 400 3.0	CBA 55 200 3.0	400 to 630	500	630
180	315	CBA 75 630 3.0	CBA 75 400 3.0	CBA 55 200 3.0	400 to 630	630	800
200	355	CBA 75 800 3.0	CBA 75 500 3.0	CBA 75 200 3.0	500 to 800	800	1000
220	400	CBA 75 800 3.0	CBA 75 500 3.0	CBA 75 400 3.0	500 to 800	800	1000
250	450	CBA 75 1000 3.0	CBA 75 630 3.0	CBA 75 400 3.0	630 to 1000	800	1000
280	500	CBA 75 1000 3.0	CBA 75 630 3.0	CBA 75 400 3.0	630 to 1000	1000	1250
315	560	CBA 71 1250 3.0	CBA 75 630 3.0	CBA 75 500 3.0	630 to 1000	1000	1250
335	630	CBA 71 1250 3.0	CBA 75 630 3.0	CBA 75 500 3.0		1250	2 x 800 ⁽¹⁾
400	710	CBA 71 1600 3.0	CBA 75 800 3.0	CBA 75 500 3.0		1250	2 x 800 ⁽¹⁾
450	800	CBA 71 1600 3.0	CBA 75 800 3.0	CBA 75 500 3.0		2 x 800 ⁽¹⁾	2 x 1000 ⁽¹⁾
500	900	CBA 71 2000 3.0	CBA 75 1000 3.0	CBA 75 630 3.0		2 x 800 ⁽¹⁾	2 x 1000 ⁽¹⁾

Applications How to select contactors

For rotary circuits of slip-ring motors (elimination of starting resistors)

The most common application is for starters and without rotor speed adjustment: pumps, fans, conveyers, compressors, etc...

Rotary contactors are subjected to the statory contactor and only open after this one, when the rotary voltage has disappeared or nearly disappeared.

They make the current corresponding to the usual starting peak (1.5 to 2.5) of the nominal rotary current and open the circuit in neutral. This use is characterised by an easy closing and switch-off.

Current factor and rotary voltages of use according to the contactor connection

Type of	Factor ⁽¹⁾ I rotary	Ue max. three-phase rotary voltage in Volts	Ue three-phase rotary voltage with counter-current in Volts
connection	$\overline{I \ of \ use}$	Type of c	contactors
	1 of use	CBA with reinforced insulation	CBA with normal insulation
Star	1	2000 V	1000 V
Delta	1.5	1700 V	850V
In V	1	1700 V	850 V
In W	1.6	1700 V	850 V

(1) factor to be applied to the values mentioned in the table below for currents of use.

Table of currents of use (ambient temperature inferior or equal to 40°C)

Calibre of CBA contactor		80	150	200	400	500	630	800	1000	1250	1600	2000	2500
	Changeo- ver time					C	urrent of	use in Ar	nps				
Intermediarycontactor:with	10s	277	519	692	1385	1732	2182	2771	3464	4330	5542	6928	8660
number of operation cycles	30s	160	300	400	800	1000	1260	1600	2000	2500	3200	4000	5000
inferior or equal to 30/hour	60s	113	212	282	565	707	890	1131	1414	1767	2262	2828	3535

Calibre of CBA contactor	2	80	150	200	400	500	630	800	1000	1250	1600	2000	2500
	Changeo- ver time					c	urrent of	use in An	nps				
Intermediarycontactor: with	5s	277	519	692	1385	1732	2182	2771	3464	4330	5542	6928	8660
number of operation cycles	10s	160	300	400	800	1000	1260	1600	2000	2500	3200	4000	5000
inferior or equal to 60/hour	30s	113	212	282	565	707	890	1131	1414	1767	2262	2828	3535

Calibre of CBA contactor		80	150	200	400	500	630	800	1000	1250	1600	2000	2500
	Changeo- ver time					С	urrent of	use in Am	ips				
Intermediarycontactor: with	5s	195	367	489	979	1224	1543	1959	2449	3061	3919	4898	6123
number of operationcycles inferior or equal to 120/hour	10s	138	259	346	692	866	1091	1385	1732	2165	2771	3464	4330

The selections below take into account:

- a ratio of 2 between the maximum rotary voltage of use (Uer) and the statory voltage of use (Ues), ratio proposed by the IEC 947-4 standards, section «starters».
- a warranty for casual operations (current switch-on and switch-off ratings) recommended by these same standards.

The use of contactors with magnetic blow-out are recommended in case of control via manual combinative device.

Applications How to select contactors

For rotary circuits of slip-ring motors

In a simple starting equipment, the contactors that short-circuit the rotary current go through a static voltage stress whose «decreasing with time value» is all the more low since they are far from the rotor's terminals. Therefore, the rotary voltage of use can be deduced from the maximum voltage of use. It is then possible to use contactors whose nominal insulating voltage is inferior to the rotary voltage. This use is characterised by an easy closing and switch-off.

The selections below take a ratio of 2 between the maximum rotary voltage of use (Uer) and the statory voltage of use (Ues) into account, ratio proposed by the *IEC 947-4* standards, section «starters».

For a regenerative braking equipment, the rotary voltage of use corresponds to the insulating voltage.

For slowing down or braking equipment, the selection of related contactors will also have to take the switchoff conditions into account.

The use of contactors with magnetic blow-out are recommended in case of control via manual combinative device.

Current factor and rotary voltages of use according to the contactor's connection

The temporary allowable current according to the starting time must be taken into account for the current crossing the contactor of a rotary circuit. Only the contactor for rotor short-circuit takes the permanent current into account.

Type of connection	Drawing of the circuit	I rotary I of use in Amps	Ue maximum three-phase rotary volt- age in Volts	Ue three- phase rotary voltage with counter-cur- rent in Volts	Type of contactor
		1	1320	660	CBA
Star		1	2000	1000	CBA with rein- forced insulation
		1.5	1100	550	CBA
Delta		1.5	1700	850	CBA with rein- forced insulation
		1	1100	550	CBA
V		1	1700	850	CBA with rein- forced insulation

Mersen

Applications How to select CBA contactors

Control of three phase capacitor batteries used for power factor correction

The capacitors make with the circuit at the terminals of which they are connected, oscillating circuits able to create high transient with high frequencies overcurrents as they are connected.

Generally speaking, the peak on closing is all the more low since:

- the network inductances are high,
- the power of line transformers is small,
- the transformer short-circuit voltage is high,
- the ratio between the addition of the powers of connected capacitors and the power of the capacitor to be connected is small (in case of multilevel batteries).

In compliance with the *VDE 0560*, *NFC 54 100*, *IEC 70* standards, the contactor for control must be able to withstand a permanent voltage of 1.43 times the nominal current of the level controlled.

The powers of use indicated in the tables below take this overload into account.

The protection against short-circuits is usually ensured by g1 fuses calibrated at 1.3 to 1.4 In.

Use of contactors

Connection is direct. The values of the peak current on closing shouldn't exceed the ones mentioned below. If the peak current has to be reduced, insert an self-inductive coil or a pre-closing resistor in each of the 3 capacitor supply phases. The dimensions of the self-inductive coils will be scheduled according to the temperature chosen during operation.

Compensation by single-level capacitor battery

The insertion of a shock self-inductive coil is useless as the inductance of the network is sufficient to limit the peak to values compatible with the characteristics of contactors.

Compensation by multilevel capacitor battery The insertion of a shock self-inductive coil in each of the 3 phases of each level is compulsory.

Nota:

Shock coils with minimum inductance of $4 \mu H$. These can be obtained by winding 4 or 6 turns of 15 cm diameter each round the conductor of each phase.

Table of contactor's maximum powers of use

Connection with possible shock self-inductive coils. Power of use: 50/60 Hz, ambient temperature :,: 40 °C.

Battery power (kVAR)	Type of contactor	In (A)
Three phase network 220/240	V	
5	CBA 55 80SR ⁽¹⁾ 20 A	20
7.5	CBA 55 80SR ⁽¹⁾ 40 A	32
10	CBA 55 80SR ⁽¹⁾ 40 A	38
12.5 - 15	CBA 55 80SR ⁽¹⁾ 40 A	40
20	CBA 55 80	80
25	CBA 55 150	100
30 - 35	CBA 55 150	125
40 - 47.5	CBA 55 150	160
50	CBA 55 200	200
60	CBA 55 200	250
75 - 90	CBA 75 400	320
100 - 120	CBA 75 400	400
150	CBA 75 500	500
180	CBA 75 630	630
Three phase network 400/440	V	
10	CBA 55 80SR ⁽¹⁾ 25 A	25
15	CBA 55 80SR ⁽¹⁾ 40 A	38
20	CBA 55 80	50
25 - 30	CBA 55 80	63
45 - 50	CBA 55 150	115
65	CBA 55 150	125
70-75-80	CBA 55 150	160
90	CBA 55 200	200
100 - 125	CBA 55 200	250
150	CBA 75 400	315
180 - 200	CBA 75 400	400
240 - 250	CBA 75 500	500
300	CBA 75 630	630
350	CBA 75 800	800

(1) SR: reinforced blowout.

General

A heating circuit is a terminal circuit supplying one or several resistant heating elements controlled by a contactor.

Rules of motor's supply circuits are also applicable for heating circuits, taking into account the fact that normally they cannot carry overcurrents. This can only protect them against short-circuits.

Heating elements features

Here are only considered heating systems with resistive elements used for industrial ovens, offices (infrared heaters, convectors, etc...). The resistancevariation between "hot and cold" creates a current peak in the system that never exceeds 2 to 3 Un when the voltage is applied. Moreover, this peak only fully appears when first energised, if the temperature variations are limited by a regulator.

The output and the nominal current are given for the duty temperature.

Protection

The current absorbed in permanent duty by a heating circuit is constant when the voltage is stable.

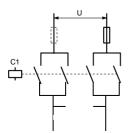
As in an existing system, the number of receptors are very unlikely to vary and as such a circuit is unable to create overloads, it can only be protected against shortcircuits. g1 class fuses or,
modular circuit breakers.

Nevertheless, it is always possible and sometimesmore economical (due to the cable section) to use a protection system coupling thermal relays and aM fuses.

Connection - Control - Protection

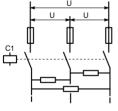
One element (or a group of elements) with a given output can be single-phase or three-phase and supplied either by 220/127 V or by 380/220 V.

The different possible connections can be classified into 3 groups:


2 pole single-phase current connection

Circuit controlled by 2 poles of the contactor.

4 pole single-phase current connection


Circuit controlled by a tetrapolar contactor whose poles are connected 2 to 2 in parallel via suitable small junction bars. This solution allows the control of outputs more or less equivalent to the ones controlled by the same contactor in three-phase current.

Three-phase current connection

You may choose:

Circuit controlled by the 3 poles of the contactor.

How to select contactors from the output controlled

The combinations proposed thereunder are given for an ambient temperature of 50°C and for outputs under nominal voltage; they still ensure the control even in case of a lasting overvoltage at 110 % of Un.

2 pole single-phase current connection

Calibre of contactor			Maxir	num output	in kW		
Calible of Contactor	220/230V	380/400V	415V	440V	500V	660V	1000V
CBA 55 80 2.0	18	32	33	35	40	52	
CBA 55 150 2.0	46	80	83	88	100	132	200
CBA 55 200 2.0	58	102	106	112	128	168	256
CBA 75 400 2.0	73	128	132	140	160	211	320
CBA 75 500 2.0	92	160	166	176	200	264	400
CBA 75 630 2.0	110	192	199	211	240	316	480
CBA 75 800 2.0	147	256	265	281	320	422	640
CBA 75 1000 2.0	184	320	332	352	400	528	800
CBA 71 1250 2.0	230	400	415	440	500	660	1000
CBA 71 1600 2.0	294	512	531	563	640	844	1280
CBA 71 2000 2.0	368	640	664	704	800	1056	1600

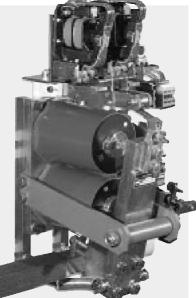
4 pole single-phase current connection

Calibre of contactor			Maxir	num output	t in kW		
Calible of Contactor	220/230V	380/400V	415V	440V	500V	660V	1000V
CBA 55 80 4.0	25	44	46	49	56	73	
CBA 55 150 4.0	64	112	116	123	140	184	280
CBA 55 200 4.0	82	143	148	157	179	236	358
CBA 75 400 4.0	103	179	185	197	224	295	448
CBA 75 500 4.0	128	224	232	246	280	369	560
CBA 75 630 4.0	154	268	278	295	336	443	672
CBA 75 800 4.0	206	358	371	394	448	591	896
CBA 75 1000 4.0	257	448	464	492	560	739	1120
CBA 71 1250 4.0	322	560	581	616	700	924	1400
CBA 71 1600 4.0	412	716	743	788	896	1182	1792
CBA 71 2000 4.0	515	896	929	985	1120	1478	2240

three-phase current connection

Calibre of contactor			Maxiı	num outpu	t in kW		
Calibre of Contactor	220/230V	380/400V	415V	440V	500V	660V	1000V
CBA 55 80 3.0	39	69	71	76	86	114	
CBA 55 150 3.0	99	173	179	190	216	285	433
CBA 55 200 3.0	127	221	230	243	277	365	554
CBA 75 400 3.0	159	277	287	304	346	457	692
CBA 75 500 3.0	199	346	359	381	433	571	866
CBA 75 630 3.0	239	415	431	457	519	685	1039
CBA 75 800 3.0	318	554	575	609	692	914	1385
CBA 75 1000 3.0	398	692	718	762	866	1143	1732
CBA 71 1250 3.0	497	866	898	952	1082	1428	2165
CBA 71 1600 3.0	637	1108	1150	1219	1385	1829	2771
CBA 71 2000 3.0	796	1385	1437	1524	1732	2286	3464

Frame



The basic frame of contactor consists of one fixed rod for the 80 to 200 A range or four fixed rods for the 400 to 5000 A range, a moving shaft, two bearings and their bushes. The shaft and the rod(s) are coated with a high-resistance insulator. The mechanical endurance of these contactors is of several million operations.

Frame CBA - CBC - 71 - 1250/2000 A type Electromagnet

Coil for laminated magnetic circuit

Coil for solid magnetic circuit

The electromagnet consists of a "magnetic circuit + trip coil" assembly, normally located on the right side of the poles.

In compliance with international standards, voltage at coil terminals must be between 85 and 110% of the coil's nominal voltage.

Coil

The function of the coil is to produce the magnetic flux required to attract the moving armature of the electromagnet.

It is designed to resist the mechanical shocks caused by the closings and openings of the contactors and the electromagnetic shocks caused by the current passing through its windings.

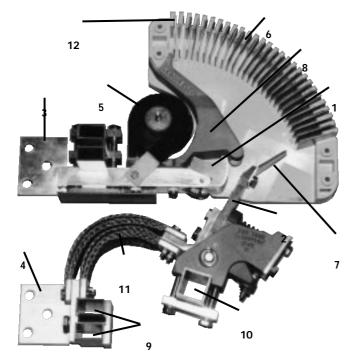
The coils used are especially resistant to overvoltages, shocks, aggressive environmental conditions and are made of reinforced enamelled copper wire; they are vacuum impregnated and some are overmoulded.

AC type magnetic circuit

Characteristics:

- silicon steel plates assembled by rivets,
- laminated circuit to reduce the eddy currents which are generated in all metallic masses subjected to alternating flux (these eddy currents reduce the effective flux for a given magnetizing current and cause unwanted heating of the magnetic circuit),
- accurate grinding of the fixed and moving parts ensuring silent operation,
- one or two phase-shift or Frager rings creating, in part of the circuit, a flux offset with respect to the main alternating flux. This feature prevents the periodic elimination of the attraction force total flux (which would cause noisy vibrations).

Use in DC mode:


A laminated magnetic circuit can be used in DC mode without any drawbacks. In this case, the coil used differs from the coil normally used for AC voltage of same value and requires the insertion of an economy resistor.

DC type magnetic circuit

No eddy currents are formed in the magnetic circuit of an electromagnet supplied with DC current. In some cases, it is preferable to select a solid steel electromagnet especially designed for DC current instead of the AC current type laminated magnetic circuit, requiring indispensible adaptations, as they are better suited to the conditions of use (high rates, high endurance, no peak on closing).

Main poles

View of a c osing po e CBA-CBC 71 2000 A

1: fixed contact,

- 2: moving contact,
- 3: upper connecting section,
- 4: lower connecting section,
- 5: arc blowout coil,
- 6: arc blowout cage,
- 7: moving blowouthorn, 8: fixed blowouthorn,
- 9: fixation bars,
- 10: moving shaft.
- 11: supple connection,
- 12: metallic wing.

Main contacts

- 80 to 200 A range, two types of contacts exist:
- copper contacts (C) for current use, semi-intensive and intensive duties (AC_2 - AC'2 - AC_3 - AC_4 - DC_2 -DC_3 - DC_4 - DC_5 use).
- silver or silver alloy contacts (M) for continuous, semiintensive and intensive duties particularly recommended for low voltages and corrosive or dusty environmental conditions (AC_1 - AC_2 - AC'2 - AC_3 -DC_1 - DC_2 - DC_3 - DC_4 - DC_5 use).

400 to 1000 A range:

- silver calcium oxide contact.
- 1250 to 2000 A range:
- 1250 A poles:
- copper contact (C),
- silver cadmium oxide contact (M) on request for use with very low voltages or in corrosive or dusty environmental conditions.

Changing the contact type does not increase the nominal thermal current of the device.

- 1600 to 2000 A poles:
- silver cadmium oxide contact only.
- 2500 to 5000 A poles:
- copper contact (C),
- silver cadmium oxide contact (M).

These poles make and break the current in the power circuit. Consequently, they are sized to take the nominal current of the contactor, in permanent duty, without abnormal heating.

They include a fixed part and a moving part, the moving part is equipped with springs transferring a suitable pressure to the contacts.

The kinematic study of the contacts and magnetic circuits has allowed us to keep the contact bounce to a minimum which contributes to an extended electrical lifetime. The main poles are single pin.

The current only passes through the arc-blowout pole coil during opening. It is introduced into the circuit by the arc when it passes from the fixed pin to the arc-blowout horn.

Used to solve some automatic operating problems, rupturing poles operate in the opposite way to opening poles: their contacts are "conductive" when the control electromagnet is not supplied and "nonconductive" when energized.

Arc-blowout coil

Depending on the current, this coil is made of a flat edge conductor or round enamelled wire.

The arc-blowout coil is normally sized for the pole's nominal thermal current.

In DC, when the current used is 50 % lower than the nominal thermal current of the device, the arc-blowout coil must be adapted to suit the current used.

Blowout cages

All arc-blowout poles are equipped with blowout cages. They are made of "compound polyester" for the 80 to 2000 A range and of micro-concrete reinforced with glass fibre for the 2500 to 6200 A range. In addition, all the blowout cages for contactors ranging from 150 to 2000 A are equipped with metallic wings that fraction the electric arc, allowing its extinction and dissipation. The easy and fast extraction of these blowout cages allows at any time the main contacts to be efficiently checked for wear and replaced if necessary.

Auxiliary contacts

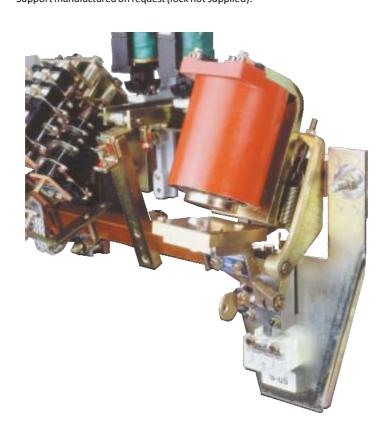
There are three types:

- D block

Including 1 normally open contact and 1 normally closed contact, installed above the magnetic circuit for the 400 to 1000 A range with a maximum of 4 blocks D per magnetic circuit.

Mechanical locking between two contactors

Types of contactors allowing mutual mechanical locking of two contactors exist.


This locking is achieved by rod and requires vertical alignment of the bearings opposite the magnetic circuit on the two contactors.

Locking by "RONIS" type lock

Possibility to lock all types of contactors by a "RONIS" typelock. Support manufactured on request (lock not supplied). - M block Several configurations possible.

- TP 86 pneumatic delayed block (Seetechnical specifications for each type).

For a different center-to-center distance or for locking two contactors of different sizes, please consult our technical department.

Mechanical latching with electrical release

General

Mechanically latched contactors are equipped with a mechanical locking facility with electrical and manual release that enables them to remain closed although the coil is no more supplied.

Use

Specific properties of contactors with mechanical latching and electrical release make them suitable for various applications.

Properties

- preservation of the sequence memory in automation equipments in case of disappearance of the control voltage.
- energy savings, as the coil's source of supply does not produce any current when the contactor is lachted.
- change of state "open"-"closed" by supplying the tripping coil.
- insensibility to the network's disruptions.
- silent contactors when latched.

Applications

These contactors are suitable for:

- refineries, power stations, excitation circuits, electromagnet controls,...
- contactors remaining closed for long times, example:

- refinery,

power supply,

- low voltage distribution.

- selective opening control.
- no untimely closings or openings of the main poles.
- current conductor for applications over 1000 V.

Operation

Such contactors are equipped with a mechanical latching facility with one or two tripping coils, supplied in direct or alternating current (in that first case, the coils are not polarised). When a short pulse is applied to the contactor (control by pulse switch, required time > 0.5 s), this one closes and remains mechanically latched. It is no more necessary to supply the closing coil, the contactor remains closed.

The opening of the contactor is obtained by exciting the tripping coil.

Precautions of use

For 80 to 200 A range, it is necessary to foresee one automatic switch-off contact for the tripping coil(s) to avoid their destruction in case of extended command. For other ranges, this contact is directly pre-cabled on the contactor as all these coils are pulse coils.

Manual release facility

On standard versions, for our whole range (except 80 to 200 A range) contactors are equipped with a manual release facility, useful in case of disappearance of the control voltage for example (for 80 to 200 A range, available on request).

Options

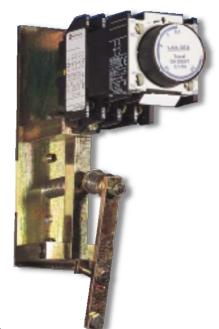
Individual protective system for the tripping coils providing memorisation of the defect that caused the opening, one contact for its visualisation and remote or local closing facility can be supplied separately on a pre-cabled support plate.

All our contactors can be equipped with a mechanical latching with single or double release.

Auxiliar y contacts

As for the main poles, the number of auxiliary contacts can vary in a significant way. 3 types of auxiliary contacts blocks exist:

> D type Available only on the 80 to 1000 A range.


M type Avaible on all our range of contactors; several configurations are possible to meet all the requirements.

TP 86 type Delayed blocks available on all our range of contactors: -A: delayed at rest, -C: delayed at work.

M type block

Delayed block

M type blocks

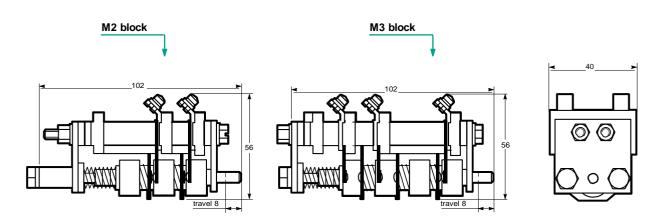
1. Instantanés Type M

Use

On all modular contactors from 80 to 6200 A.

Description

- Block of 2 (M2) or 3 (M3) silver pad contacts with double break on closing or opening.
- The flexibility of the fixed support causes a self-cleaning action on the contacts allowing use for low control voltages (24 and 48 V) without risk of failure.

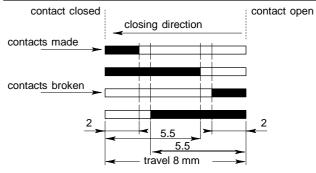


Technical features

Maximum o	operatingvoltage						
AC	· · · · · · · · · · · · · · · · · · ·	V	500				
DC		V	600				
Thermal no	minal current	A	15				
Current swit	tch-on rating 500 VAC or 600 VDC	A	60				
Current swi	tch-off rating under a voltage of	V	110	220	440	500	600
AC		A	15	15	15	15	
DC							
C	on resistivecircuit						
	1 contact	A	15	5	1	0.75	0.6
	2 contacts in series	A		15	3.25	3	
	3 contacts in series	A			5	4.5	
	on inductivecircuit /R= 15 ms						
	1 contact	A	7	1	0.5	0.4	0.3
	2 contacts in series	A	15	1.5	0.75	0.7	
	3 contacts in series	A		8	2	1.2	
	on inductivecircuit /R= 40ms						
	1 contact	A	3	0.4	0.15	0.14	
	2 contacts in series	A	15	0.7	0.6	0.4	
	3 contacts in series	A		2.5	0.7	0.6	
Weight							
M2		kg	0.210				
M3		kg	0.260				

Block of 5 (M5) silver pad contacts with double break on closing or opening for 1250 to 5000 A range, on request.

Dimensions


Auxiliary contacts Different versions

M type blocks

Operating diagrams (instant M type)

Items	Diagra ms	Schematics	Items	Diagrams	Schematics
M type with	2 contacts				
02 - Z	NO NO	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02 - Y		$\begin{array}{c c} & 1 & \begin{array}{c} 4.2 \\ \end{array} \begin{array}{c} 2.2 \\ \end{array} \begin{array}{c} 2 \\ 4.1 \end{array} \begin{array}{c} 2.1 \end{array} \begin{array}{c} 1 \\ 2.1 \end{array}$
F2 - Z	NC	$\begin{array}{c} 1 & 1.4 & 1.2 \\ 1 & 1.3 & 1.1 \\ 2 & 1.3 & 1.1 \end{array}$	F2 - Y	NC	$\begin{array}{c c} 1 & 1.2 & 3.2 \\ \hline & & & \\ 2 & & & \\ 1.1 & 3.1 \end{array}$
F101 - Z	NC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F101 - Y		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
F1O1 - X		$\begin{array}{c} 2.1^{+} 1.1^{+} \\ \hline \\ 1 \\ 2 \\ 4.1 \\ 3.1 \\ \end{array}$	F101 - W		$\begin{array}{c} 2.1 & 3.1 \\ \hline \\ 1 & 4.2 \\ \hline \\ 2 & 4.1 \\ 1.1 \\ \end{array}$
M type with	3 contacts				
03 - Z	NO MILI	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03 - Y	NO N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
F3 - Z	NC	$\begin{array}{c} 1 & 1.6 & 1.4 & 1.2 \\ 2 & 1 & 1.5 & 1.3 & 1.1 \\ 3 & 1.5 & 1.3 & 1.1 \end{array}$	F3 - Y	NC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
F1O2 - Z	NC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F1O2 - Y	NC NO NO	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
F2O1 - Z	NC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F2O1 - Y	NC NC NC NO	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
F2O1 - X	NC C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F2O1 - W	NC NC NC NC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
F102 - X	NC NO	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F1O2 - W	NC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Contact representation:

Use		Marks
instant NC	locking	1
instant NO	 hold	2
delayed NC	power-saving - overlap	3
delayed NO	overlap	4

Auxiliary contacts Technical features

Use On 80 to 1000 A bar contactors.

D type blocks and delayed blocks

2. D type instant contacts



Therm	al nominal current	A	10					
Under								
	AC voltage of	V	24	48	127	220	380	500
	DC voltage of	V	24	48	110	220		
Operat	ting current							
-	tingcurrent AC	A	10	10	7	5	3	2.5
	DC	А	5	3	1	0.5		
	resistive circuit	A	Э	3	1	0.5		
	DC	٨	-	•	0.0	0.0		
	inductive circuit L/R = 15 ms	A	5	2	0.8	0.3		
Occasi	onal current switch-on and switch-off r	ating						
	AC	A	20	20	15	12	8	5
	DC	А	20	15	4	0.8		
	resistivecircuit	А	20	GI	4	0.0		
	DC	А	20	15	3	0.6		
	inductivecircuit L/R=15 ms	A	20	15	3	0.6		

Description

Block of 2 contacts (NO + NC).

3. TP 86 type delayed contacts

On request, TP 86 type blocks can be delivered with adjustable delay: - from 0.1 to 3 seconds,

- from 0.1 to 180 seconds

Use

On 80 to 6200 A modular contactors

Description

Block includes:

- 4 instantaneous auxiliary contacts 3 NO + 1 NC.
- 2 auxiliary contacts, 1 NO + 1 NC delayed; delay adjustable from 0 to 30 seconds.

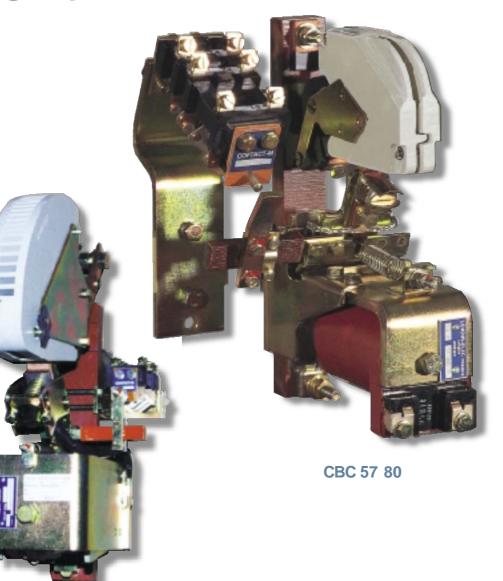
2 different blocks:

TP 86 A: delayed block counting from contactor closing.

TP 86 C: delayed block counting from contactor opening.

Technical features

The sum of the surface become surf		40						
Thermal nominal current	A	10						
Nominal voltage	V	660						
Insulating voltage	V	750						
Under								
AC voltage of	V		48	110/127	220	380	440	660
DC voltage of	V	24	48	110	220		440	600
Operating power								
1 million operations								
AC	VA		300	500	600	520	500	390
DC	W	120	90	75	68		61	58
3 million operations								
AC	VA		160	300	330	300	280	190
DC	W	70	50	38	33		28	27
10 million operations								
AC	VA		70	100	110	100	100	80
DC	W	25	18	14	12		10	9
Occasional current switch-on and s	witch-off ratin	g						
AC	VA		3000	7000	12000	15000	14000	13000
DC	W	1000	700	400	260		220	170



CBC 80 to 630 A, singl e-pole versions

With a closing pole CBC 57 80, CBC 57 150, CBC 68 200, CBC 96 400, CBC 96 630.

With an opening pole RUBC 96 400, RUBC 96 630.

Use

Switching-on and cutting-off resistive or inductive circuits. Nominal operating voltage: 500 Va.

Description

- Single pin arc-blowout main pole (reinforced magnetic blowout for adaptation to nominal current, on request).
- Silver or silver alloy contacts for all the range, for use under continuous, semi-intensive and intensive duties DC_1 to DC_5.
- Copper contacts for the calibres 150, 200, 400 and 630 A for current use under semi-intensive and intensive duties DC_2 to DC_5.
- Solid closing electromagnet in iron, direct DC supply for the coil without economy resistor, except for the RUBC 96 400 and 630 contactors.

Options

CBC 96 400

- Possible addition M type auxiliary contact blocks (2 blocks at maximum).
- Horizontal mechanical locking facility.
- Reinforced insulation.
- Tropical treatment n° 2.

Single pole DCcontactors

4. CBC 80 - 150 - 200 - 400 - 630 and RUBC 400 to 630

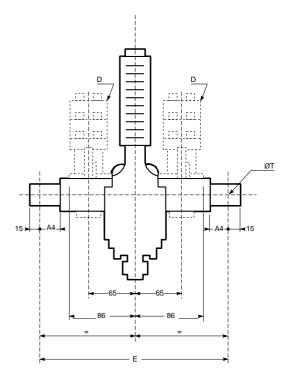
Standards: IEC947.4.1.

(In conformity with UTEC 63-100, IEC 158-1 standards and VERITAS regulations.)

						CBC 57-	80	CBC 57-15	50	CBC 68-2	00	
Thermal nominal current ⁽¹⁾ A						100		250	250		320	
	connecting sec	tion			mm ²	35		70		95		
Nominal operating v	oltage				V	500		500		500		
Maximum controlled			voltage	;	V	220/250	440/500	220/250	440/500	220/250	440/500	
	DC_2-DC_40	duty cycle			kW	22	44	45	90	65	130	
Current switch-off ra	ating L/R = 15	ms, all co	ontacts									
	in open air und	er 500 V				500		1400		3500		
	in cubicle		voltage	;	V	250	500	250	500	250	500	
	safety p	erimeter for	•									
	metallic	walls	insulate	ed walls								
	М	Ν	М	Ν	-							
	45	25	35	20	A			300		3000	500	
	50	40	40	30		250						
	110	80	90	65	A		150					
	125	95	105	75	A			500	165	4250	600	
	140	110	120	90		900						
	175	125	145	105	A						700	
	195	145	185	135	A			1400	600			
	245	175	225	105	A				700		1000	
Arcing time at currer	nt switch-off r	ating				s 60		75		88		
Magnetic blowout			norma			100		250		320		
			reinford	ced		10 - 16 - 25 - 40 ⁽⁴⁾		80(4)		150(4)		
Current switch-on ra	ting $L/R = 15$	ms			A	500		1400		3500		
Control circuit												
	standardvoltag	jes ⁽³⁾					125-220/230	110/125 - 2	20/230		25 - 200/220	
					19		23		30			
	closing time at Un ms					125		180		220		
	openi <u>ng time b</u>			d		05				05		
		on of conta			ms			30		35		
Maalaadaadaad		te opening			ms			85		110		
Mechanical endurance				llions of op	perations			5		10		
Number maximum o		liary cont	acts			6 NO		6 NO		6 NO		
(M type blocks with 2 c	or 3 contacts).					3 NO 1 NC	;	4 NO 1 NC		4 NO2 NC		
										3 NC		

		RUBC 96		CBC 96	
		400	630	400	630
Thermal nominal current ⁽¹⁾	A	500	630	500	630
connecting section	mm ²	240	400	240	400
Nominal operating voltage	V	600	600	600	600
Maximum operating voltage	V	700	700	700	
DC_2-DC_4 duty cycle	kW	200	250	200	250
Current switch-off rating L/R = 15 ms					
in open air under 500 V	A	6000	8500	6000	8500
Safety perimeter for					
metallic walls					
Μ	mm	80	100	80	100
Ν	mm	40	60	40	60
insulated walls					
М	mm	40	60	40	60
Ν	mm	30	40	30	40
Arcing time at current switch-off rating	ms	40	40	40	40
- J	ormal A	400	630	400	630
Current switch-on rating L/R = 15 ms	A	6000	8500	6000	8500
Control circuit					
standard voltages ⁽³⁾	V	110-127-22	20/230 - 250		
consumptions	W	460/60	460/60	125	125
closing time at Un	ms			160	160
opening time between comman					
separation of contacts		50	50	38	38
Mechanical endurance	millions of operations	10	10	10	10
Number maximum of instant auxiliary contacts		6	6	6	6
(M type blocks with 2 or 3 contacts).		0	U	U	0

In open air, DC_1 duty, silver contacts and normal blowou.
 30 operations/hour, duty factor f 20 %.
 for other voltages, please consult us.


(4) possible blowout calibration: CB80 A: 1-2-3-4-6-10-16-25-40 A. CB150 A: 1-2-3-4-6-10-16-25-40-80 A. CB200 A: 1-2-3-4-6-10-16-25-40-80-150 A

CBC80 to 680 A, single-pole versions Overall dimensions CBC80 to 200 A

Single pole DC contactors 500 V \dot{U}

5. CBC 57 - 80 and 150 and 68 - 200

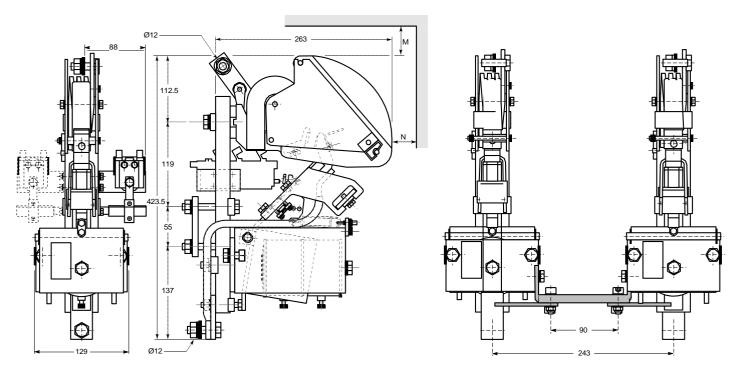
	PF		
1	•		
В	2 B3		
			
B V	1 1	ੑੑ <u>ਗ਼</u> ੑੑੑੑੑੑੑ ੑੑੑੑੑੑੑ	

 $\ensuremath{\textbf{D}}$: instant contact block, form to be specifiied. E: for CBC contactor with

bar	80	150	200
bare	25 x 16	25 x 16	40 x 20
insulated	30 x 21	30 x 2	44 x 24
A4	17	27	22
В	204	252	302
B1	80	97	112
B2	124	155	190
B3	126	180	189
B4	7	8	12,5
B2 B3 B4 C	155,5	181,5	190
ØK	6	8	10
ØT	9	9	13

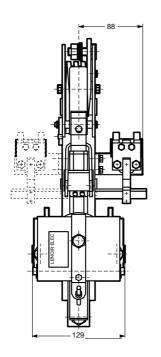
PF: attachment plane.

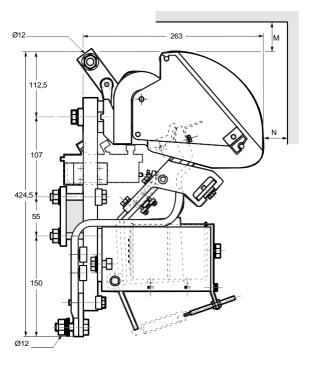
zero C block: 175,
one C block: 200,
two C blocks: 250.


Example : li ft ing plane for travelling crane for iron and steel industry

CBC80 to 680 A, single-pole versions Overall dimensions CBC400 to 630 A

Single pole DC contactors 600 V \dot{U}


6. CBC 96 - 400 - 630



Attachment on an insulated bar 44 x 24.

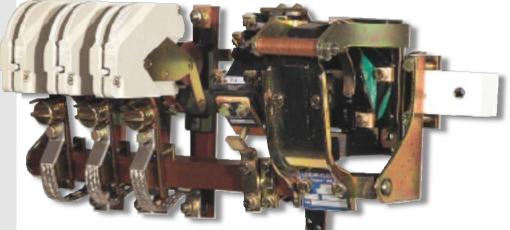
Calibre	М	N
400	45	45
630	75	60

7. RUBC 96 - 400 - 630

Attachment on an insulated bar 44 x 24.

Calibre	М	N
400	45	45
630	75	60

CB 80 to 200 A, multipolar versions


4 types for each calibre:

AC poles and control circuit CBA 55 80, CBA 55 150, CBA 55 200.

DC poles and AC control circuit CBFC55 80, CBFC55 150, CBFC55 200.

AC poles and DC control circuit CBPA 57 80, CBPA 57 150, CBPA 57 200.

DC poles and DC control circuit CBC 57B 80, CBC 57B 150, CBC 57B 200.

CBA 55 80 3.0

Calibres 80, 150 and 200 A

Single pin main poles and copper contacts (C) for current use, semi-intensive and intensive duties (AC_2-AC'2-AC_3-AC_4-DC_2-DC_3-DC_4-DC_5).

- Calibre 80 and 150: 1 to 4 poles for each type.
- Calibre 200: 1 to 2 poles for CBC and CBPA contactors, 1 to 4 poles for CBA and CBFC contactors. On request, contactors can be equipped with:
- silver or silver alloy contacts (M) for continuous, semiintensive and intensive duties, especially recommended for low voltages and corrosive atmospheres (AC_1-AC_2-AC'2-AC_3-DC_1-DC_2-DC_3-DC_4-DC_5 duties).
- closing electromagnet is located at the right side of the poles:
- supply from an AC source: laminated magnetic circuit;
- supply from a DC source: solid magnetic circuit, without power-saving device up to contactors 150 A, 3 poles, with power-saving device for contactors 150 A,
- 4 poles; and contactors 200 A, 2 poles.

Options

CBC 57 B 80 2.0

- For currents 50 % lower than the nominal thermal DC current, adaptation of the arc-blowout coil to the current of use.
- Mechanichal latching with single or double electrical release.
- Metallic support for «Ronis type» lock (lock not supplied).
- Opening poles without mechanical overlapping with the closing poles.
- Adaptation for mechanical locking facility for contactors of different ranges.
- Poles with different calibres and supplied with different currents.
- Closing electromagnet mounted on the left side of the poles.
- Longer attachment bars.

CB 80 to 200 A, multipolar versions Technical features CBA 55 - CEPA 57 80 to 200 A

ACcontactors Ue up to 660 V, 50/60 Hz

		80* 100			150 * 250			200 * 320			
connecting section mm ²						70			95		
		1000			1000			1000			
Nominal operating volt		V	1000			1000			1000		
AC, 40 to	age	V	660			660			660		
Maximum controlledpo		V	000			000			000		
AC			200	200	500/000	000	200	500/000	000	200	500/000
AC	voltage		220	380	500/660	220	380	500/660	220	380	500/660
(2)	AC'2 - AC_3duties	kW		45	60	65	110	145	80	132	160
	AC_23 duties	kVA	33	55	70	80	132	160	100	170	220
Maximum currents of u			100			050			000		
continuou		A	100			250			320		
Short-time current, t :,:						4 75			0.5		
	<u>1s</u>	kA				1.75			2.5		
	5s		0.5			0.8			1.15		
	10s		0.35			0.57			0.81		
	15s		0.3			0.51			0.7		
	30s		0.23			0.42			0.56		
	<u>1 min</u>		0.19			0.31			0.43		
	3 min		0.14			0.3			0.4		
	10min		0.12			0.26			0.35		
Nominal thermal currer		A	60			113			150		
Allowable overcurrent/	time										
AC		kA eff/s	1/1			1.75/1	(3)		2.5/1(3)	
Current switch-off ra											
AC	voltage		500			500			500		
		= 0.3 kAeff	1.3(4)			1.85 ⁽⁴⁾			2.75 ⁽⁴⁾		
Current switch-on ra											
AC cos <		kAeff	1.3(4)			1.85 ⁽⁴⁾			2.75 ⁽⁴⁾		
Mechanical endurance	ce	millions of operations	3.5/10	(5)		3.5/10	(5)		3.5/10	(5)	
		operations									
Control circuit											
Control circuit Nominal voltages	AC, 50 Hz	V	24 49	110 12	7-220-380-50	0					
voiminai voitages	DC			-48-115		0					
Anvinum concumptio	= =		12-24	-40-110	-220						
Maximum consumption AC	1P		900/12	20		900/12	20		1500/1	75	
AC	2P		900/12			1500/12			2000/1		
	<u>2</u> P 3P		900/12			1500/			2000/1		
	<u>3P</u> 4P		1500/12			2000/1			2000/1		
DC	4P 1P		36	175			127			21	
DC	1P 2P					36 36			36		
	<u>2</u> P 3P		36						43		
	<u>3P</u> 4P		36 36			36 43			_		
						43					
/D constant of algots	omagnet open/c					05/00			05/00		
	-111-	ms	25/45			35/60			65/60		
	at Un	- ما ا							_		
Closing time	at 0.85										
Closing time Opening tim <u>e</u>	at 0.85 at Un	iUn ms ms									
Closing time Opening time 	at 0.85 at Un command and	ms									
- separatio	at 0.85 at Un command and on of contacts	ms ms	45			45			45		
Closing time Opening time between c - separatic	at 0.85 at Un command and on of contacts ening of electromagnet	ms ms ms	45			45			45		

(2) motor 1500 rpm:	
30 operations/h: long sta	rt-up,
120 operations/h: shorts	tart-up.
(3) for C type contacts; for N	I type contacts values are as follows
Calibres	kA eff
80	1
150	1.75
200	2.75
(4) for M and C type contac	
(5) 1st figure: CBA contacto 2nd figure: CBPA contacto	

2nd figure: CBPA contactor. * possible blowout calibration: CB80 A: 1-2-3-4-6-10-16-25-40 A. CB150 A: 1-2-3-4-6-10-16-25-40-80 A. CB200 A: 1-2-3-4-6-10-16-25-40-80-150 A.

1.04	40 < t < 45°C
1.08	45 < t < 50°C
1.12	50 < t < 55°C
1.19	55 < t < 60°C

•Factor to be applied to the contactor for poles connected in parallel, this factor already includes a safety margin:

	2 poles in parallel	3 poles in parallel
AC	I.th 1 pole x 2 x 0.7	I.th 1 pole x 3 x 0.66
		•

•The current switch-off rating of poles connected in parallel remains the same as for a single pole.

CB 80 to 200 A, multipolar versions Technical features CBC57 B - CBFC55 80 to 200 A

DCcontactors Ue up to 500 VÜ

Standards IEC947-4-1			80*		150 *		200 *		
Thermal nominal current ⁽¹⁾ DC_1 A		100		250	250		320		
connecting se	ection	mm ²	35		70		95		
Nominal insulation voltage		V	1000		1000		1000		
Nominal operating voltage	9				•				
DC		V	500(2)		500 ⁽²⁾	500(2)		500(2)	
Maximum controlledpowe	ers								
DC	voltage	V	220/250	440/500	220/250	440/500	220/250	440/500	
	DC_2 - DC_4 duties	kW	22	44	45	90	66	132	
Maximum currents of use									
continuous du	/	A	100		250		320		
Short-time current, t :,: 40°	°C								
	1s	kA			1.75		2.5		
	5s	kA	0.5		0.8		1.15		
	10s	kA	0.35		0.57		0.81		
	15s	kA	0.3		0.51		0.7		
	30 s	kA	0.23		0.42		0.56		
	1 min	kA	0.19		0.31		0.43		
	3 min	kA	0.14		0.3		0.4		
	10 min	kA	0.12		0.26		0.35		
Allowable overcurrent/tim	le				•		•		
DC		kA/s	s 1/1		1.75/1		2.5/1(3)		
Current switch-off ratin	g						·		
DC	voltage	V	500		500		500		
	L/R = 15ms	kA	0.7(4)		0.8(4)		3.5(4)		
Current switch-on rating							÷		
DCL/R=15 r		kA	0.7(4)		0.8(4)		3.5(4)		
Mechanical endurance	millio	ons of ations	3.5/10 ⁽⁵⁾		3.5/10 ⁽⁵⁾		3.5/10 ⁽⁵⁾		

Control circuit

Control circuit						
Nominal voltages	AC, 50 Hz		V			
	DC		V			
Maximum consumpti	ons	inrush/hold				
AC		1P	VA	900/120	900/120	1500/175
		2P	VA	900/120	1500/175	2000/127
		3P	VA	900/120	1500/175	2000/127
		4P	VA	1500/175	2000/127	2000/127
DC		1P	W	36	36	36
		2P	W	36	36	43
		3P	W	36	36	
		4P	W	36	43	
L/R constant of electr	omagnet	open/closed	ms			
Closing time	-	at Un	ms	25/45	35/60	35/60
-	at 0.85 Un	ms				
Opening time		at Un	ms			
between	command and					
- separati	on of contacts		ms	45	45	45
- total op	ening of electrom	nagnet	ms			
- complet	teopening		ms	300	300	300

Calibres 80 150

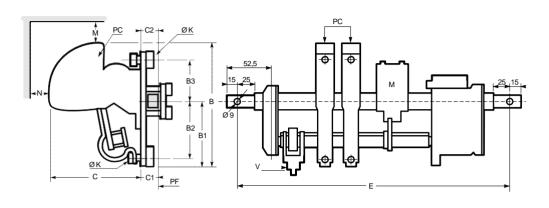
in open air.
 for voltage of use greater then 500 V, consult us.
 for C contacts; for M type contacts values are as for

ype contacts values are as follows:		1.04
kA e	ff	1.04
1		1.12
1.75		1 10

200	2.75					
(4) for M and C type contacts, consult	(4) for M and C type contacts, consult us.					
(5) 1st figure: CBA contactor,						
2nd figure: CBPA contactor.						
* possible blowout calibration:	* possible blowout calibration:					
CB80 A: 1-2-3-4-6-10-16-25-40 A,						
CB150A:1-2-3-4-6-10-16-25-40-80A,						
•CB200 A: 1-2-3-4-6-10-16-25-40-80)-150 A.					

•Temperature factor to be applied to the poles or the current controlled according to the ambient temperature (around the contactor):

1.04	40 < t < 45°C
1.08	45 < t < 50°C
1.12	50 < t < 55°C
1.19	55 < t < 60°C


•Factor to be applied to the contactor for poles connected in parallel, this factor already includes a safety margin:

	2 poles in parallel	3 poles in parallel
DC	I.th 1 pole x 2 x 0.8	I.th 1 pole x 3 x 0.75

The current switch-off rating of poles connected in parallel remains the same as for a single pole.

8. CBA 55 - CBFC 55 80

			etallic valls		ulated valls
		М	N	М	N
220 V	CBA	30	30	30	25
	CBFC	55	45	45	35
500 V	CBA	55	40	40	30
	CBFC	110	80	90	65

В	155.5
B1	101
B2 B3	93
B3	48
С	122
С С1 С2 ØК	27
C2	30
ØK	M6

Pole equipped with silver contact.

M: M type auxiliary contact blocks (D blocks on request). PC: contactor pole.

PF: attachment plane.

V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm.

of poles		Voltage	_			i, vers	sion w	itnou	t IOCKI	ng po	ssibili	ty												
		of use	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBA	220-500	А		B-D		С	Е	F															
	CBFC	220	А		В	D	С	E	F															
		500	А		В	D	С	E		F														
2	CBA	220-500		Α		В	D	С	Е		F													
	CBFC	220			Α		В	D	С	Е	F													
		500				Α		В	D	С	Е		F											
3	CBA	220-500				Α		В	D	С	Е		F											
	CBFC	220					Α		В	D	С	Е		F										
		500							А		В	D	С	Е		F								
4	CBA	220-500					Α		В	D		C-E		F										
	CBFC	220							А		В	D	С	Е		F								
		500									А			B-D		С	Е		F					

Number	Туре	Voltage	Edis	stance	in mn	n, vers	sion w	ith lo	cking	possil	oility													
of poles		of use	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBA	220-500		Α		B-D		С	Е	F														
	CBFC	220		Α		B-D		С	Е	F														
		500		А		В	D	С	Е		F													
2	CBA	220-500			А		В	D	С	Е		F												
	CBFC	220				Α		B-D		С	Е	F												
		500					А		В	D	С	E		F										
3	CBA	220-500					А		B-D		С	E		F										
	CBFC	220						А		B-D		С	Е		F									
		500								А		B-D		С	Е		F							
4	CBA	220-500						А		В	D		C-E		F									
	CBFC	220								А		B-D		С	Е		F							
		500											Α		B-D		С	E		F				

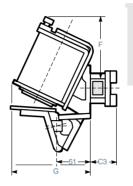
In each calibre and for each type, 6 versions are possible:

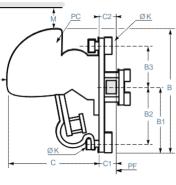
3 versions without TP 86 delayed auxiliary contacts.

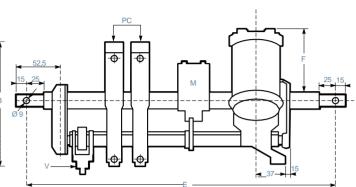
Version A: without M instant auxiliary contact block. Version B: with one M block with 3 instant contacts,

i.e. 2 NO + 1 NC. Version **C**: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2NC.

3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. 1 NO + 1 NC.


Version D: without M instant auxiliary contact block. Version E: with one M block with 3 instant contacts,


i.e. 2 NO + 1 NC.


Version **F**: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2 NC.

9. CBPA 57 - CBC 57 B 80

			etallic valls	In	sulated walls
		M	N	M	N
220 V	CBPA	30	30	30	25
	CBC	55	45	45	35
500 V	CBPA	55	40	40	30
	CBC	110	80	90	65
		-			~
CM 62	77	F		108	G
CM 63	95			120	
CM 64	110)		130	

В	155,5
B1	101
B2 B3	93
B3	48
С	122
C1	27
C2	30
ØK	M6

M: M type auxiliary contact blocks (D blocks on request). PC: contactor pole.

PF: attachment plane.

V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm.

Pole eq	uipped	with	silver	contact.

C3: attachment bar 30 x 21 = 34,

attachment bar 44 x 24 = 37.

Number	Туре	Voltage	Edis	tance	in mn	n, vers	sion w	vithou	t locki	ing po	ssibili	ty												
of poles		of use	225	250	275	300					425		475	500	525	550	575	600	625	650	675	700	725	750
1	CBPA	220-500	Α		В	D	С	E		F														
	CBC	220	А		В	D	С	E		F														
		500	А			B-D		C-E		F														
2	CBPA	220-500			Α		B-D		C-E		F													
	CBC	220			А		В	D	С	E		F												
		500				Α		В	D		C-E		F											
3	CBPA	220-500				Α		В	D	С	Е		F											
	CBC	220					А		В	D	С	E		F										
		500							Α		В	D	С	E		F								
4	CBPA	220-500						Α		В	D	С	E		F									
	CBC	220							А		В	D	С	E		F								
		500										Α		В	D	С	Е		F					

Number	Type	Voltage	E dis	stance	in mr	n, vers	sion w	ith lo	cking	possil	oility													
of poles		of use	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBPA	220-500		Α		В	D	С	Е		F													
	CBC	220		Α		В	D	С	Е		F													
2	CBPA	220-500			А		В	D		C-E		F												
	CBC	220				Α		В	D	С	E		F											
		500					А		В	D	С	E		F										
3	CBPA	220-500					Α		В	D	С	E		F										
	CBC	220						Α		В	D	С	Е		F									
		500								Α		В	D	С	Е		F							
4	CBPA	220-500							Α		В	D	C-E		F									
	CBC	220								Α		В	D	С	Е		F							
		500											Α		В	D	С	E		F				

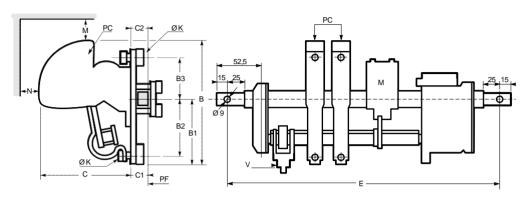
In each calibre and for each type, 6 versions are possible:

3 versions without TP 86 delayed auxiliary contacts.

Version A: without M instant auxiliary contact block. Version B: with one M block with 3 instant contacts,

i.e. 2 NO + 1 NC.

Version **C**: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2 NC.


3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. 1 NO + 1 NC.

Version **D**: without M instant auxiliary contact block. Version **E**: with one M block with 3 instant contacts, i.e. 2 NO + 1 NC.

Version F: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2 NC.

10. CBA 55 - CBEC 55 150

		etallic valls		ulated valls
	М	N	М	N
220 V CBA	35	30	20	20
CBFC	105	75	85	60
500 V CBA	40	30	30	25
CBFC	125	95	105	75

В	209,5
B1	112
B2	102
B3	61
С	158
C1(1)	29 33
<u>C1(1)</u> <u>C2(1)</u> ØK	33
ØK	M8

Pole equipped with copper contact (silver on request).

M: M type auxiliary contact blocks (D blocks on request). PC: contactor pole.

PF: attachment plane.

V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm. (1) support bar: 44×24 . C1 = 30.5, C2 = 34.5.

Number	Туре	Voltage	Edis	tance	in mn	n, vers	sion w	vithou	t locki	ing po	ssibili	ty												
of poles		of use	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
	CBA	220-500	А		В	D	С	E		F														
	CBFC	220-500	А		В	D	С	Е		F														
	_CBA	220			Α		В	D	С	E			F											
		500			Α			B-D		C-E			F											
	CBFC	220			А			B-D		C-E			F											
		500					Α		B-D		С	Е		F										
	_CBA	220					Α		В	D	С		Е		F									
		500						Α		В	D	С	Е		F									
	CBFC	220						Α		В	D	С	Е		F									
		500									А		B-D		С	E		F						
	CBA	220							А		В	D	С		Е		F							
		500									А	В	D	С		Е		F						
	CBFC	-									А		B-D		С	Е		F						
		500												Α		В	D	С	Е			F		

Number	Туре	Voltage	Edis	tance	in mn	n, vers	sion w	ith lo	cking	possił	oility													
of poles		of use				300	325		375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBA	220-500		А		В	D	С	Е		F													
	CBFC	220-500		Α		В	D	С	E		F													
2	CBA	220				А		В	D	С	Е		F											
		500				А			B-D		C-E			F										
	CBFC	220				А			B-D		C-E			F										
		500						Α		B-D		С	Е		F									
3	_CBA	220						А		В	D	С	Е			F								
		500							А		В	D	С	Е		F								
	CBFC	220							А		В	D	С	Е		F								
		500									А			B-D		С	Е		F					
4	_CBA	220								А		В	D	С		E		F						
		500									А		В	D	С		Е		F					
	CBFC	220									А			B-D		С	Е		F					
		500													А		В	D	С	Е			F	

In each calibre and for each type, 6 versions are possible:

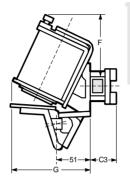
3 versions without TP 86 delayed auxiliary contacts.

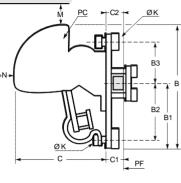
Version A: without M instant auxiliary contact block. Version B: with one M block with 3 instant contacts,

i.e. 2 NO + 1 NC.

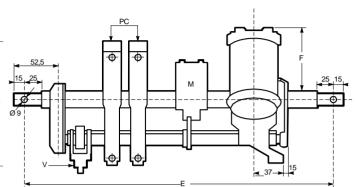
Version C: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2 NC.

3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. 1 NO + 1 NC.


Version D: without M instant auxiliary contact block.


Version E: with one M block with 3 instant contacts, i.e. 2 NO + 1 NC.

Version F: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2 NC.


11. CBPA 57 - CBC 57 B 150

Pole equipped with silver contact on request.

C3: attachment bar: 30 x 21 = 34, attachment bar: $44 \times 24 = 37$.

				tallic alls			lated alls
			М	N		М	Ν
220 V	CB	PA	30	30		20	20
	CB	С	105	75		85	60
500 V	CB	PA	40	30		30	25
	CB	С	125	95		105	75
			F			G	
CM 62		77			10)8	
CM 63		95			12	20	
CM 64		110			13	30	

В	209,5
B1	112
B2 B3 C	102
B3	61
С	158
C1 ⁽¹⁾	29 33
<u>C2(1)</u>	
ØK	M8

 ${\bf M}:$ M type auxiliary contact blocks (D blocks on request).

PC: contactor pole. PF: attachment plane.

V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm.

(1) support bar: 44 x 24. C1 = 30.5,

C2 = 34.5.

| Type | Voltage | | stance | in mi | n, vers | sion w | itnou | t IOCK

 | ing po | SSIDIII | ty | | | |
 | |
 | | | | | |
 |
|-------|--|--|---|--|---|---|---
--
---|---|---|--|--
---|---

---|--|---
---|---|--|---|---|
| | of use | 225 | 250 | 275 | 300 | 325 | 350 | 375

 | 400 | 425 | 450 | 475 | 500 | 525 | 550
 | 575 | 600
 | 625 | 650 | 675 | 700 | 725 | 750
 |
| CBPA | 220-500 | | А | | B-D | | C-E |

 | | F | | | | |
 | |
 | | | | | |
 |
| CBC | 220-500 | | А | | B-D | | C-E |

 | | F | | | | |
 | |
 | | | | | |
 |
| _CBPA | 220 | | | | А | В | D | С

 | | Е | | F | | |
 | |
 | | | | | |
 |
| _ | 500 | | | | А | | В | D

 | С | Е | | F | | |
 | |
 | | | | | |
 |
| CBC | 220 | | | | А | | В | D

 | С | Е | | F | | |
 | |
 | | | | | |
 |
| | 500 | | | | | А | | В

 | D | С | E | | F | |
 | |
 | | | | | |
 |
| CBPA | 220 | | | | | | Α | В

 | | C-D | | Е | | F |
 | |
 | | | | | |
 |
| _ | 500 | | | | | | | Α

 | В | D | С | | E | | F
 | |
 | | | | | |
 |
| CBC | 220 | | | | | | | А

 | В | D | С | | E | | F
 | |
 | | | | | |
 |
| | 500 | | | | | | |

 | | А | | В | D | С | Е
 | | F
 | | | | | |
 |
| _CBPA | 220 | | | | | | |

 | А | | B-D | | С | Е |
 | F |
 | | | | | |
 |
| | 500 | | | | | | |

 | | А | | В | D | С | Е
 | | F
 | | | | | |
 |
| CBC | 220 | | | | | | |

 | | А | | В | D | С | Е
 | | F
 | | | | | |
 |
| | 500 | | | | | | |

 | | | | | | А |
 | B-D |
 | С | E | | F | |
 |
| | CBPA
CBC
CBPA
CBC
CBC
CBPA
CBC | of use CBPA 220-500 CBC 220-500 CBC 220 500 500 CBPA 220 | of use 225 CBPA 220-500 CBC 220-500 CBPA 220 500 500 CBC 220 500 500 CBC 220 500 500 CBPA 220 500 500 CBPA 220 500 500 CBC 220 500 500 CBPA 220 500 500 CBPA 220 500 500 CBPA 220 500 500 CBC 220 | of use 225 250 CBPA 220-500 A CBC 220-500 A CBPA 220 A CBC 220 B CBPA 220 B CBPA 220 C 500 CB C CBPA 220 C 500 CB C CBPA 220 C 500 C C CBPA 220 C 500 C C CBPA 220 C 500 C C CBC 220 C | of use 225 250 275 CBPA 220-500 A A CBC 220-500 A A CBPA 220 A A CBC 220 A A CBC 220 A A CBC 220 A B CBC 220 B B CBC 220 B B CBPA 220 B B CBPA 220 B B CBPA 220 B B CBC 220 B B CBC 220 B B CBC 220 B B CBPA 220 C B CBPA 220 C C CBC 220 C C | of use 225 250 275 300 CBPA 220-500 A B-D CBC 220-500 A B-D CBC 220-500 A B-D CBPA 220 A A 500 A B-D A CBC 220 A A 500 A B-D A CBC 220 A A 500 S00 S00 S00 S00 CBPA 220 S00 S00 S00 S00 CBPA 220 S00 S00 S00 S00 S00 CBPA 220 S00 S00 | of use 225 250 275 300 325 CBPA 220-500 A B-D B-D | of use 225 250 275 300 325 350 CBPA 220-500 A B-D C-E CBC 220-500 A B-D C-E CBPA 220 A B D 500 A B-D C-E CBC 220 A B D 500 A A B C CBC 220 A A B CBC 220 A A B CBPA 220 A A C CBPA 220 A A C CBC 220 A A C CBC 220 A A C CBPA 220 A A <td< td=""><td>of use 225 250 275 300 325 350 375 CBPA 220-500 A B-D C-E C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C</td><td>of use 225 250 275 300 325 350 375 400 CBPA 220-500 A B-D C-E</td><td>of use 225 250 275 300 325 350 375 400 425 CBPA 220-500 A B-D C-E F CBC 220-500 A B-D C-E F CBPA 220 A B D C E CBPA 220 A B D C E 500 A B-D C E E CBC 220 A B D C E CBC 220 A B D C E 500 A B D C E CBPA 220 A B D C 500 A B D C D CBPA 220 A A B D 500 A A B D A CBPA 220 A</td><td>of use 225 250 275 300 325 350 375 400 425 450 CBPA 220-500 A B-D C-E F CBC 220-500 A B-D C-E F CBPA 220 A B D C E CBPA 220 A B D C E CBPA 220 A B D C E CBC 220 A B D C E CBC 220 A B D C E CBC 220 A B D C E 500 A B D C E 500 A B D C E 500 A B D C A 500 A B D C A</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 CBPA 220-500 A B-D C-E F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 CBPA 220-500 A B-D C-E F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F</td></td<> <td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< td=""><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <t< td=""></t<></td></td<></td></td> | of use 225 250 275 300 325 350 375 CBPA 220-500 A B-D C-E C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C | of use 225 250 275 300 325 350 375 400 CBPA 220-500 A B-D C-E | of use 225 250 275 300 325 350 375 400 425 CBPA 220-500 A B-D C-E F CBC 220-500 A B-D C-E F CBPA 220 A B D C E CBPA 220 A B D C E 500 A B-D C E E CBC 220 A B D C E CBC 220 A B D C E 500 A B D C E CBPA 220 A B D C 500 A B D C D CBPA 220 A A B D 500 A A B D A CBPA 220 A | of use 225 250 275 300 325 350 375 400 425 450 CBPA 220-500 A B-D C-E F CBC 220-500 A B-D C-E F CBPA 220 A B D C E CBPA 220 A B D C E CBPA 220 A B D C E CBC 220 A B D C E CBC 220 A B D C E CBC 220 A B D C E 500 A B D C E 500 A B D C E 500 A B D C A 500 A B D C A | of use 225 250 275 300 325 350 375 400 425 450 475 CBPA 220-500 A B-D C-E F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F | of use 225 250 275 300 325 350 375 400 425 450 475 500 CBPA 220-500 A B-D C-E F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F | of use 225 250 275 300 325 350 375 400 425 450 475 500 525 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td> <td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< td=""><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <t< td=""></t<></td></td<></td> | of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< td=""><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <t< td=""></t<></td></td<> | of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - < | of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -< | of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | of use 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 CBPA 220-500 A B-D C-E F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <t< td=""></t<> |

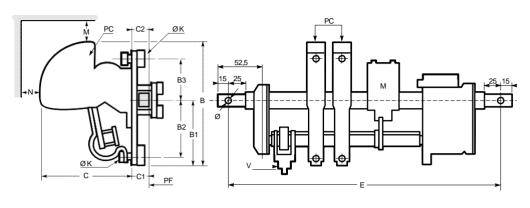
Number	Туре	Voltage	Edis	tance	in mn	n, vers	sion w	ith lo	cking	possik	oility													
of poles		of use	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBPA	220-500		Α		В	D		C-E		F													
	CBC	220-500		Α		В	D		C-E		F													
2	CBPA	220					А	В	D	С	Е		F											
		500					А		B-D		С	Е		F										
	CBC	220					А		B-D		С	Е		F										
		500						Α		В	D	С	Е		F									
3	CBPA	220							А	В	D	С		E		F								
		500							А		В	D	С		Е		F							
	CBC	220							А		В	D	С		Е		F							
		500										Α		В	D	С	Е		F					
4	CBPA	220									А		B-D			C-E		F						
		500										Α		В	D	С	Е		F					
	CBC	220										Α		В	D	С	Е		F					
		500													А			B-D		С	E		F	

In each calibre and for each type, 6 versions are possible:

In each callore and for each type, 6 versions are possible 3 versions without TP 86 delayed auxiliary contacts. Version A: without M instant auxiliary contact block. Version B: with one M block with 3 instant contacts, i.e. 2 NO + 1 NC. Version C⁽¹⁾: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2 NC.

3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. 1 NO + 1 NC.

Version D: without M instant auxiliary contact block.


Version E: with one M block with 3 instant contacts, i.e. 2 NO + 1 NC.

Version $\mathbf{F}^{(1)}$: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2NC.

(1) for CBC 57 B 150 contactor, 4 poles, 1 NC contact is used for inserting the economy resistor ..

12. CBA 55 - CBFC 55 200

		letallic walls	s wall N M 5 30 2 35 130 1 5 50 3							
	M	N	М	N						
220 V CBA	30	25	30	20						
CBF	C 165	135	walls M N 30 20 130 105 50 35							
500 V CBA	<u>،</u> 65	45	50	35						
CBF	C 235	175	175	145						

В	235
B1	120
B2	107
B3	103
B2 B3 C	211
C1	32
C1 C2 ØK	37
ØK	M10

Pole equipped with copper contact, silver on request.

M: M type auxiliary contact blocks (D blocks on request). PC: contactor pole

PF: attachment plane.

V: possible mechanical locking, attachment centre-to-centre dis-tance between 2 superimposed contactors: 250 mm. Support bar: 44 x 24.

Ø: 13 mm for bar 44 x 24..

Number	Type	Voltage	Edis	tance	in mr	n, vers	sion w	ithou	t locki	ng po	ssibili	ty												
of poles		of use	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBA	220-500	А		В	D	С		Е		F													
	CBFC	220-500		Α		B-D		С	Е		F													
2	CBA	220				А		В	D	С		Е		F										
		500				А			B-D		С	E		F										
	CBFC	220				А			B-D		С	E		F										
		500						А		В	D	С		Е		F								
3	_CBA	220							А		В	D	С	Е		F								
		500							А			B-D		С	Е		F							
	CBFC	220								А		В	D	С	Е		F							
		500										Α			B-D		С	E		F				
4	CBA	220										А		B-D		C-E		F						
	_	500											Α		B-D		С	E		F				
	CBFC	220											Α		В	D	С	E		F				
		500															Α		B-D		С	E		F
																							-	-
Number	Туре	Voltage	Edis	tance	in mr	n, vers	sion w	ith lo	cking	oossik	oility													
of poles	71 -	of use	225						375		425	450	475	500	525	550	575	600	625	650	675	700	725	750

numper	Type	vollage		ance		n, vers	SOLIM	ILLI IO	cking	possii	лпсу													
of poles		of use	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBA	220-500	А		В	D	С		Е		F													
	CBFC	220-500	А			B-D		С	Е		F													
2	CBA	220				А		В	D	С		Е	F											
		500				Α		В	D		С	E		F										
	CBFC	220				Α			B-D		С	E		F										
		500					Α			В	D	С	Е		F									
3	CBA	220							А		В	D	С	Е		F								
		500							А			B-D		С	Е		F							
	CBFC	220								А		В	D	С	Е		F							
		500										Α			B-D		C-E		F					
4	CBA	220									Α		В	D	С	Е		F						
		500											А		B-D		С	E		F				
	CBFC	220											Α		В	D	С	E		F				
		500														А			B-D		С	E		F

In each calibre and for each type, 6 versions are possible:

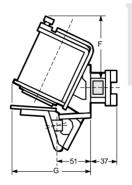
3 versions without TP 86 delayed auxiliary contacts.

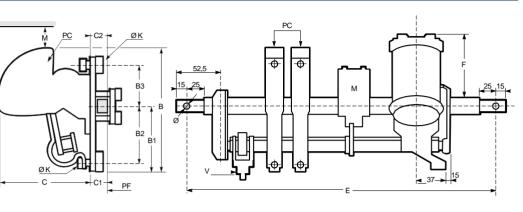
Version A: without M instant auxiliary contact block. Version B: with one M block with 3 instant contacts,

i.e. 2 NO + 1 NC.

Version C: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2 NC.

3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. 1 NO + 1 NC.


Version **D**: without M instant auxiliary contact block.


Version E: with one M block with 3 instant contacts,

i.e. 2 NO + 1 NC. Version F: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2 NC.

13. CBPA 57 - CBC 57 B 200

			etallic valls		ulated valls
		М	N	М	N
220 V	CBPA	30	25	30	20
	CBC	165	135	130	105
500 V	CBPA	65	45	50	35
	CBC	235	175	175	145
		F		(G
CM 63	95			120	
CM 64	110)		130	

Pole equipped with silver contact on request.

M: M type auxiliary contact blocks (D blocks on request).

В	235 120
B1	
B2	107
B3	103
B2 B3 C	211
C1 C2	32
C2	37
Н	
ØK	M10

PC: contactor pole.

PF: attachment plane. V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm. Support bar: 44 x 24. Ø: 13 mm for bar 44 x 24.

Number	Туре	Voltage	Edis	tance	in mn	n, vers	sion w	ithou	t locki	ng po	ssibili	ty												
of poles		of use	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBPA	220-500		А	В		D-C		Е		F													
	CBC	220-500		Α		В	D	С	Е		F													
2	CBPA	220					А	В	D	С	Е		F											
		500					А		B-D		С	Е		F										
	CBC	220					А		В	D	С	Е		F										
		500						Α		В	D	С	E		F									

Number	Туре	Voltage	Edis	tance	e in mn	n, vers	sion w	ith lo	cking	oossil	oility													
of poles		of use	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBPA	220-500		А	В	D	С		Е		F													
	CBC	220-500		Α		В	D	С	Е		F													
2	_CBPA	220				А		В	D	С	Е		F											
		500					Α		B-D		С	E		F										
	CBC	220					А		В	D	С	Е		F										
		500						А		В	D	С	Е		F									

In each calibre and for each type, 6 versions are possible:

3 versions without TP 86 delayed auxiliary contacts. Version A: without M instant auxiliary contact block. Version B: with one M block with 3 instant contacts,

i.e. 2 NO + 1 NC.

Version C: with 2 M blocks each one with 3 intant contacts, i.e. 4 NO + 2 NC.

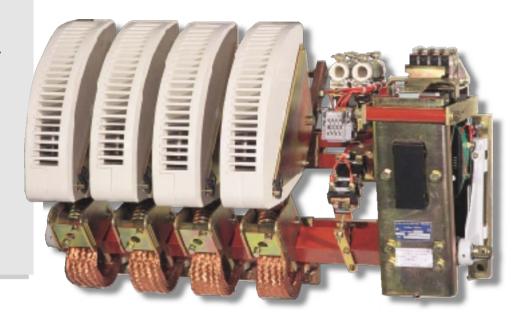
3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. 1 NO + 1 NC.

Version D: without M instant auxiliary contact block.

Version **E**: with one M block with 3 instant contacts, i.e. $2 \text{ NO} + 1 \text{ NC}^{(1)}$.

Version F: with 2 M blocks each one with 3 instant contacts, i.e. 4 NO + 2 NC.⁽²⁾.

(1) for CBC 57 B 200 contactor, 2 poles: 2 NO free auxiliary contacts as 1 NC contact is used for inserting the economy resistor. (2) CBC 57 B 200 contactor, 2 poles: 4 NO + 1 NC free auxiliary contacts as 1 NC contact is used for inserting the economy resistor.



CB 75 400 to 1000 A

2 types for each calibre:

AC poles CBA 75 400, CBA 75 500, CBA 75 630, CBA 75 800, CBA 75 1000.

DC poles CBFC75 400, CBFC75 500, CBFC75 630, CBFC75 800, CBFC75 1000.

CBA 75 1000 4.0 Reinforced insulation

Standard versions

- 1 to 4 single pin main poles with silver pad contacts.
- Closing electromagnet mounted on the right side of the poles, (on request, it can be mounted on the left) and laminated magnetic circuit.
- control circuit supplied from an AC source:
 - for calibres 400 (1 to 4 poles), 500 and 630 (1 to 2 poles), without economy resistor.
- over, rectified and power-saved current via a rectifier mounted on the contactor.
- control circuit supplied from a DC source: power-saved circuit with economy resistor.
- Mechanical locking: vertical type.

Auxiliary contacts

- 2 NO + 2 NC available on D blocks on the whole range (2 extra D blocks can be mounted on request).
- Control circuit supplied from an AC source: one M block, form F2.01Y, on calibres 500 and 630, from 3 to 4 poles and on calibres 800 and 1000; from 1 pole as control circuit is rectified and coil power-saved via 1 NC overlap contact, 1 NO + 1 NC free auxiliary contacts.
- Control circuit supplied from a DC source: on the whole range, one block type F2.01Y with one NC overlap contact for inserting the economy resistor and 1 NO + 1 NC free auxiliary contacts.

Options

- NO or NC delayed block, TP 86 type (this one also includes 4 free instant contacts, i.e. 3 NO + 1NF).
- Addition of D type and M type auxiliary contact blocks according to different versions.
- Device to hold the contactor closed in case of untimely micro-cuts for contactors that are not equipped with a mechanical latching.
- Mechanical latching with single or double electrical release.
- Self-protective device for the release coil(s).
- Metallic support for 'Ronis type' lock (lock not supplied).
- Horizontal or back-to-back mechanical locking.
- Poles of different calibres and supplied with different currents.

CB75 400 to 1000 A Technical features CBA 75 400 to 1000 A

AC contactors Ue up to 1000 V, 50/60 Hz

Standards: IEC947-4-1															
Alternating current		CBA Typ	be 75												
		400		500			630			800			100	0	
Thermal nominal current ⁽¹⁾ AC_1	A	500/500		500/5	500		630/6	30		800/8	300		1000)/1000)
Current of use frequency limitations	Hz	50 - 60		50 -6	60		50 - 6	0		50 -6	50		50 -	60	
Nominal insulating voltage	V	1000		1000)		1000			1000)		1000)	
connecting section	mm ²			300			400			500			600		
Nominal operating voltage, 40 to 60 Hz ⁽⁴⁾	4) V	660 100	0 ⁽⁶⁾	660	1000	(6)	660	1000	(6)	660	1000	(6)	660	1000	(6)
Maximum controlled powers															
voltage	V	220 380		220		500/660	220	380	500/660	220	380	500/660		380	500/660
AC'2 - AC_3 duty cycle	kW	110 220	220	150	250	250	160	250	250			440	220	440	440
AC_23 duty cycle	kVA	170 290	350	170	290	350	210	360	490	275	475	620	340	590	780
Short-time current, t ::: 40°C															
1s		10		12			14			24			26		
5s	kA	4.5		5.75			6.5			11			12.5		
<u>10s</u>		3.25		4			4.5			7.8			8.5		
<u>15s</u>	kA	2.7		3.4			3.8			6.5			7		
30s	kA	1.9		2.4			2.7			4.6			5		
<u>1 min</u>		1.4		1.78			2			3.3			3.65		
3 min		0.88		1.1			1.3			2			2.3		
10 min		0.62		0.79			0.92			1.38			1.6		
Nominal thermal current under 400 Hz		380		380			480			640			800		
Allowable overcurrent time	kAeff/s	4.5/5		5.75/	5		6.5/5			11/5			12.5	/5	
Current switch-off rating															
operating volta	0	500 660		500		1000			1000			1000			
$\cos(\beta) = 0.3$	kA eff		2.5	8.5	8	3.3		8	3.3	12	12	7.5	12	12	7.5
Current switch-on rating cos (f) =0.3	kA eff			8.5			8.5			12			12		
Mechanical endurance millions of op	perations	3		3			3			3			3		

Control circuit

Nominal voltage	AC, 50H	z	V	24-48-110-12	27 - 220 - 380 - 500			
-	DC		V	24 - 48 - 115 - 22	20 - 440 - 500			
Maximum consum	nptions	inrush/hold						
AC ⁽²⁾		1P	VA	2000/175	2000/175	2000/175	500/30	500/30
-		2P	VA	2000/175	2000/225	2500/225	500/30	500/30
		3P	VA	2000/175	525/30	525/30	750/66	750/66
		4P	VA	2000/175	525/30	525/30	750/66	750/66
DC		1P	W	400/26	400/26	400/26	500/30	500/30
		2P	W	400/26	525/30	525/30	500/30	500/30
		3P	W	400/26	525/30	525/30	750/66	750/66
		4P	W	525/30	525/30	525/30	750/66	750/66

Average time of operation at nominal voltage⁽⁵⁾

Constant L/R rate of election	iomagnet openic	JUSEU					
Closing time at Un	AC	ms 40	40	40			
	DC	ms 90	90	90	120	120	
Opening time at Un betw	een command ar	nd separation of contacts					
AC		ms 20	20	20			
DC		ms 25	25	25	38	38	

(1) in open air.

(2) bold type ratings: rectified and power-saved control circuit voltage.
 (3) diodes are warranted up to a network overload of 3 Un efficient.

(4) if nominal operation voltage > 1000 V, please consult us.
(5) closing time is measured from the supply of the closing coil until the contact of main poles. Opening time is measured from the supply of the tripping coil until the separation of mainpoles. (6) reinforced insulation for use under 1000 V, please specify it when you

order.

Temperature factor to be applied to the poles or the current (controlled according to the ambient temparature (around the contactor):

	40 < t < 45°C
1.08	45 < t ::: 50°C
1.12	50 < t ::: 55℃
1.19	55 < t ::: 60°C

•Arcing time depends on the circuit controlled by the main contacts. In three-phase current, arcing time is normally inferior to 15 ms. The receiver is insulated from the network after a time corresponding to the opening time plus the arcing time.

•Factor to be applied to the contactor for poles connected in parallel, this factor already includes a safety margin:

	2 poles in parallel	3 poles in parallel
AC	I.th 1 pole x 2 x 0.7	I.th 1 pole x 3 x 0.66

•The current switch-off rating of poles connected in parallel remains the same as for a singlepole.

Maximum consumptions:

Bold type ratings: -AC: control circuit is supplied with rectified and power-saved current via a rectifier mounted on the contactor⁽³⁾.

- DC: control circuit is power-saved.

For technical features of opening poles, see p. 70.

CB75 400 to 1000 A Technical features CBFC75 400 to 1000 A

DC contactors Ue up to 2000 VÜ

Direct current			CBFC T	ype 75								
			400		500		630		800		1000	
Thermal nominal current ⁽¹⁾			500/500		500/500		630/630		800/800		1000/10	00
Nomina <u>l insulating voltag</u>	e		1000		1000		1000		1000		1000	
connecting section		mm ²			300		400		500		600	
Nominal operating voltag		V	500	1000 ⁽⁶⁾	500	1000(6)	500	1000 ⁽⁶⁾	500	1000 ⁽⁶⁾	500	1000 ⁽⁶⁾
Maximum controlle <u>d pow</u>												
voltage			220/250	440/500	220/250		220/250		220/250		220/250	
DC'2-1	DC_4 duty cycle	kW	90	180	110	220	110	220	175	350	175	350
Short-time current, t <i>o</i> ;; 40	°C Oʻ				1		1				1	
	<u>1s</u>	kA			12		14		24		26	
	5s		4.5		5.75		6.5		11		12.5	
	<u>10s</u>		3.25		4		4.5		7.8		8.5	
	15s		2.7		3.4		3.8		6.5		/	
	<u>30s</u>		1.9		2.4		2.7		4.6		5	
	<u>1 min</u>		1.4		1.78		2		3.3		3.65	
	3 min		0.88		1.1		1.3		2		2.3	
All	10min		0.62		0.79		0.92		1.38		1.6	
Allowable overcurrent / ti		kAeff/s	4.5/5		5.75/5		6.5/5		11/5		12.5/5	
Current switch-off rating I			500 700	4000	500 30	2 4000	500 700	1000	500 700	1000	500 30	0 4000
	voltage applied		500 700	1000	500 700	J 1000	500 700	1000	500 700	1000	500 700	J 1000
	single-pole	kA		1-	8	1-	8	1-	19	140	19	140
	two-pole ⁽⁶⁾	kA	6	5	10		10		17		17	
	voltage applied		1500 180	_	1500 180		1500 180		1500 180		1500 180	
	three-pole ⁽⁶⁾	kA	52	1.5	7 2.5		7 2.5	2.5	10 8	6	10 8	6
	four-pole ⁽⁶⁾	kA	0/5001/	5	40 5/500	7	40 5/500	7	40/500	10	40/5001	10
Current switch-on rating I			6/500 V		10.5/500) V	10.5/500	V	19/500 V		19/500\	/
Mechanical endurance	millions of opera	ations	3		3		3		3		3	
Control circuit												
Nominal voltage AC, 50	Hz	V	24-48-	110-127-2	20-380-	500						-
				115-220-4		000						
Maximum consumptions	inrush/hold	v	24 40	110 220 -								
AC(2)	1P	VA	2000/175	;	2000/17	5	2000/17	5	500/30		500/30	
AC(2)	2P		2000/175		2000/22	-	2500/22		500/30		500/30	
			2000/175		525/30	•	525/30		750/66		750/66	
	4P		2000/175		525/30		525/30		750/66		750/66	
DC	1P		400/26		400/26		400/26		500/30		500/30	
	2P		400/26		525/30		525/30		500/30		500/30	
	3P		400/26		525/30		525/30		750/66		750/66	
	4P		525/30		525/30		525/30		750/66		750/66	
Average time of operatior	at nominal volta	ge ⁽⁴⁾										
Constant L/R rate of elect		sed										
Closing time at Un	AČ	ms	40		40		40					
-	DC		90		90		90		120		120	

	DC	1110	30	30	30	120	120
ening time at Un	between command and sep	paration of	f contacts				
-	AC	ms 2	20	20	20		
	DC	ms 2	25	25	25	38	38

(1) in open air.

(2) bold type ratings: rectified and power-saved control circuit voltage.
(3) diodes are warranted up to a network overload of 3 Un efficient.

(a) diversity wantanied up to a network overload or 3 On efficient.
(4) closing time is measured from the time of supply of the closing coil until the time of contact of the main poles. Opening time is measured from the time of supply of the tripping coil until the time of separation of the main poles.

main poies.
(5) dielectric testing voltage according to insulation voltage can reach 8 kV for specific applications.
(6) for applications with Ue > 500 V, please consult our technical department to select the contactor (specific dimensions and insulation).

•Temperature factor to be applied to the poles or the current controlled according to the ambient temperature (around the contactor):

1.04	40 < t < 45°C
1.08	45 < t ø;; 50°C
1.12	50 < t ø;; 55°C
1.19	55 < t ø;; 60°C

•Factor to be applied to the contactor for poles connected in parallel, this factor already includes a safety margin:

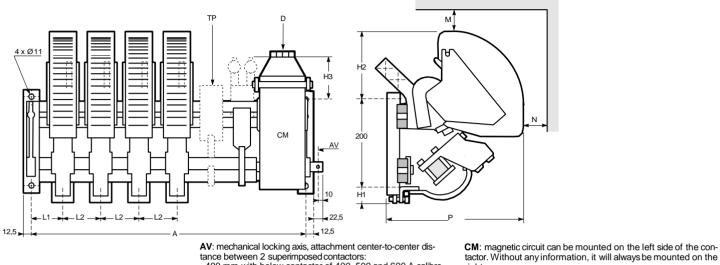
	2 poles in parallel	3 poles in parallel
DC	I.th 1 pole x 2 x 0.8	I.th 1 pole x 3 x 0.75

•The current switch-off rating of poles connected in parallel remains the same as for a singlepole.

 Maximum consumptions: Bold type ratings:

-AC: control circuit is supplied with rectified and power-saved current via a rectifier mounted on the contactor⁽³⁾.

- DC: control circuit is power-saved.


For technical features of opening poles, see p. 70.

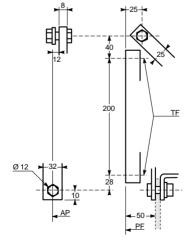
CB75 400 to 1000 A Overall dimensions CBA & CBFC75 400 to 1000 A

Standard AC & DC contactors CBA: Ue up to 1000 V, 50-60 Hz - CBFC: Ue 500 VIII

14. CBA - CBFC75 400 to 1000

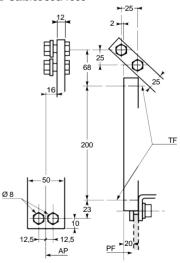
AV: mechanical locking axis, attachment center-to-center dis-- 400 mm with below contactor of 400, 500 and 600 A calibre, - 575 mm with below contactor of 800 or 1000 A calibre.

right. D: D type auxiliary contact blocks. TP: delayed auxiliary contact block.


Please advise when you order whether the contactor has to be equipped with the «shaft end» - necessary to adapt a possible mechanical locking device. Without information, the contactor will be delivered without it

Dimension	S															
Calibres	H1	H2	H3(1)	v	/ithout de	elayed.coi	ntact	A	L1	L2	Р		afety neter ⁽²⁾			
				1P	2P	3P	4 P	1P	2P	3P	4P	-			М	Ν
400	38	75	105	250	325	400	450	325	400	475	525	43.5	68	278	45	45
500/630	38	75	105	250	350	425	500	325	425	500	575	45	80	278	75	60
800/1000	33	149	112	325	400	500	600	400	475	575	675	66	92	315	185	85

for equipment with DC supplied or rectified AC supplied coil.
 with metallic walls.


Connecting sections

Calibres 400 and 500/630

Calibres 800/1000

For control circuit, see P. 144

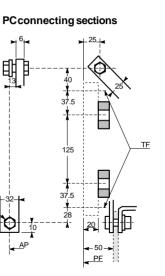
.

S

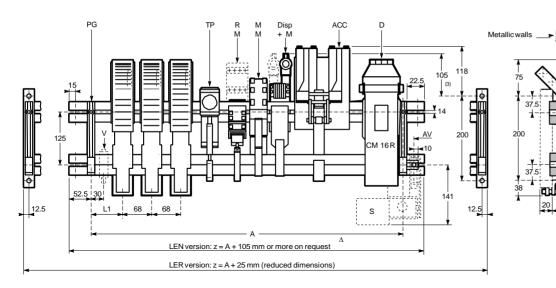
R Ď

х.

CBFC


75

400


) X.0(2)

CB 75 400 to 1000 Overall dimensions Þ CBA G FC75 400 A

CBA: Ue up to 1000 V, 50/60 Hz Modular AC Qo DC contactors . CBFC: Ue 500 VÚ

ACC: mechanical latching with single or double release. AP: pole axis. AV: mechanical locking axis. attachment centre-to-centre distance between two superimposed contactors. - 400 mm with below contactor of calibre 400, 500 and 630 A, - 575 mm with below contactor of calibre 800 or 1000A. CM 16 R: magnetic circuit can be mounted on the left side of the contactor. Without any informa-tion, it will always be mounted on the right. D: D type auxiliary contact blocks. **Disp + M**: device used for DC or rectified AC control circuit. Standard contents: one support with on the left extremity: 45 mm, - with locking possibility on the left extremity: 90mm. M: M type auxiliary contact blocks⁽¹⁾ PC: closing pole. PF: attachment plane, LERversion. PG: left bearing. R: possible auxiliary relays. S: metallic support for «Ronis type» lock for locking the contactor at rest (lock not supplied). TF: attachment holes. TP: delayed auxiliary contact block. V: possible mechanical locking 1250 to 5000 A contactor or with

Contactor without «mechanical latching with electrical and manual release»

A dim	ension			loc	cking p	ossibili	ty on th	ne righ	t extrer	mity (A	V)						ocking	possib	ility on	the lef	t extrer	mity (V)			
n)	nm)		without delayed contact with delayed contact							witho	out dela	ayed co	ontact			with	n delay	ed con	itact							
	iber of e blocks	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	
μo	1	250	300	300	350	350	400	325	375	375	425	425	475	300	350	350	400	400	450	375	425	425	475	475	525	
imber poles	2	325	375	375	425	425	475	400	450	450	500	500	550	375	425	425	475	475	525	450	500	500	550	550	600	
of p	3	400	450	450	500	500	550	475	525	525	575	575	625	450	475	475	525	525	575	500	550	550	600	600	650	
20-	4	450	500	500	550	550	600	525	575	575	625	625	675	500	550	550	600	600	650	575	625	625	675	675	725	

Contactor w	ith «	mech	anica	I latch	ning v	vith s	ingle	electri	ical ai	nd ma	anual	releas	se»													1
A dimensi	on			loc	cking p	ossibili	ty on tl	ne righ	t extrer	mity (A	V)						ocking	possib	ility on	the lef	t extrer	nity (V)	-		1
(mm)			withc	out dela	ayed co	ontact			with	n delay	ed con	itact			withc	out dela	ayed co	ontact			with	n delay	ed con	tact		ľ
Number o M type bloc		1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	a t
<u>ଅ</u> ନ୍ତ୍ର 1		350	375	375	425	425	475	400	450	450	500	500	550	375	425	425	475	475	525	450	500	500	550	550	600	1
Number of poles	2	400	450	450	500	500	550	475	525	525	575	575	625	450	500	500	550	550	600	525	575	575	625	625	675	ì
žō 3	3	475	525	525	575	575	625	550	600	600	650	650	700	525	575	575	625	625	675	600	650	650	700	700	750	

Contactor with «mechanical latching with double electrical and manual release»

A din	nension			lo	cking p	ossibili	ty on th	ne righ	t extre	mity (A	V)					ļ	ocking	possib	ility on	the lef	t extre	mity (V)		
(1	mm)		witho	out dela	ayed co	ontact			wit	h delay	ed con	itact			withc	out dela	ayed co	ontact			with	n delay	ed con	tact	
	nber of be blocks	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
5 0	1	425	450	450	500	500	550	475	525	525	575	575	625	450	500	500	550	550	600	525	575	575	625	625	675
କୁ କ୍ଷ	2	475	525	525	575	575	625	550	600	600	650	650	700	525	575	575	575	575	675	600	650	650	700	700	750
Number of poles	3	550	600	600	650	650	700	625	675	675	725	725	775	600	650	650	700	700	750	675	725	725	775	775	825
20	4	625	675	675	725	725	775	700	750	750	800	800	850	675	700	700	750	750	800	725	775	775	825	825	875

(1) form to be specified.

 (1) for the pumber of closingpoles.
 (3) for contactor equipped with DC or rectified AC supplied coil. Δ for LEN version, please advise the position of the contactor on the bar

Control circuit: for connection drawings, see p. 144

Please advise when you order whether the contactor has to be equipped with the «shaft end» - necessary to adapt a possible mechanical locking device. Without information, the contactor will be delivered without it.

PC

Ø12 ►

terminal box, economy resistor(s), rectifier for alternating current and one M type auxiliary contact block. L1: - without locking possibility

facility with a 80, 150, 200 and CBA-CBFC 55 400 to 1000 A old generation contactors.

တ

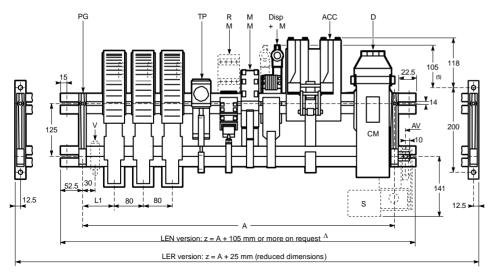
ß Ď

÷.

CBFC

35

500


and

630

) X.0(4)

CBA: Ue up to 1000 V, 50/60 Hz -

CBFC Ue 500 VÚ

A dime	ension			lo	cking p	ossibili	ty on tl	he righ	t extrer	nity (A '	V)						ocking	ng possibility on the left extremity (V)							
(m	m)		witho	out dela	ayed co	ontact			wit	h delay	red cor	ntact			witho	out dela	ayed co	ontact			wit	h delay	ed con	tact	
Num M type	per of blocks	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
۲ S	1	275(2)	300(2)	300(2)	350 (2)	350 (2)	400(2)	325(2)	375 (2)	375 (2)	425 (2)	425 (2)	475 (2)	300(2)	350(2)	350(2)	400(2)	400(2)	450(2)	375(2)	425 (2)	425 (2)	475(2)	475 (2)	525 ⁽²
poles	2	350 (2)	400(2)	400(2)	450 (2)	450 (2)	500 (2)	400(2)	450 (2)	450 (2)	500 (2)	500 (2)	550 (2)	400(2)	425(2)	425 (2)	475(2)	475(2)	525 (2)	450(2)	500 (2)	500 (2)	550 (2)	550 (2)	600(2
of b	3	425 (2)	475(2)	475(2)	525 (2)	525 (2)	575 (2)	500 (2)	550 (2)	550 (2)	600 (2)	600 (2)	650 (3)	475(2)	525(2)	525(2)	575(2)	575 (2)	625(2)	525 (2)	575 (2)	575 (2)	625 (2)	625 (2)	675(2
20	4	500 (2)	550 (2)	575 (3)	625 (3)	625(3)	675 ⁽³⁾	600 (3)	650 (3)	650 (3)	700 (3)	700(3)	750(3)	550 (2)	600(2)	625 (3)	675(3)	675 ⁽³⁾	725(3)	650 (3)	700(3)	700(3)	750(3)	750 (3)	800(3

Contactor with «mechanical latching with single electrical and manual rele
--

A dime	ension			lo	cking p	ossibili	ty on tl	he righ	t extrer	nity (A	V)					I	ocking	possib	ility on	the lef	t extrer	mity (V)		
(m	m)		with	out dela	ayed co	ontact			wit	h delay	/ed con	tact			witho	out dela	ayed co	ntact			wit	h delay	ed con	tact	
Numb M type	per of blocks	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
50	1	350 (2)	400(2)	400(2)	450 (2)	450 (2)	500 (2)	400(2)	450 (2)	450 (2)	500 (2)	500 (2)	550 (2)	400(2)	425 (2)	425 (2)	475(2)	475(2)	525 (2)	450 (2)	500 (2)	500 (2)	550 (2)	550 (2)	600(2)
Imber poles	2	425 (2)	475(2)	475 (2)	525 (2)	525 (2)	575 (2)	500 (2)	550 (2)	550 (2)	600 (2)	600(2)	650 (2)	475 (2)	525 (2)	525 (2)	575 (2)	575 (2)	625 (2)	525 (2)	575 (2)	575 (2)	625 (2)	625 (2)	675 (2)
of b	3	500 (2)	550 ⁽²⁾	550 ⁽²⁾	600(2)	600(2)	650 (2)	575(2)	625(2)	625(2)	675(2)	675(2)	725(2)	550 ⁽²⁾	600(2)	600(2)	650 (2)	650(2)	700(2)	625(2)	675(2)	675(2)	725(2)	725(2)	775(2)
20-	4	575 (2)	650 (3)	650 ⁽³⁾	700 (3)	700(3)	750(2)	675 (3)	725(3)	725(3)	775(3)	775(3)	825(2)	625 (2)	700(3)	700(3)	750(3)	750(3)	800(3)	700(3)	750 (3)	750 (3)	800(3)	800(3)	850 (3)

Contactor with «mechanical latching with double electrical and manual release»

A dim	ension			lo	cking p	ossibili	ity on th	he right	t extre	mity (A	V)						locking	possib	ility on	the lef	't extre	mity (V)		
(m	nm)		with	out dela	ayed co	ontact			wit	h delay	red cor	ntact			witho	out dela	ayed co	ontact			wit	h delay	/ed cor	ntact	
	ber of blocks	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
۲ S	1	425 (2)	475(2)	475(2)	525 (2)	525 (2)	575 (2)	475(2)	525 (2)	525 (2)	575 (2)	575 (2)	625(2)	475(2)	500 (2)	500 (2)	550 ⁽²⁾	550 (2)	600 (2)	525 (2)	575 (2)	575 (2)	625(2)	625 (2)	675(2)
e e e	2	500 (2)	550 (2)	550 (2)	600(2)	600(2)	650 (2)	575 (2)	625 (2)	625 (2)	675 (2)	675(2)	725(2)	550 (2)	600(2)	600(2)	650 ⁽²⁾	650 (2)	700(2)	600 (2)	650(2)	650 (2)	700(2)	700(2)	750(2)
Number of poles	3	575 (2)	625 (2)	625 (2)	675 (2)	675(2)	725(2)	650 (2)	700(2)	700(2)	750 (2)	750(2)	800(2)	625 (2)	675 (2)	675(2)	725 (2)	725 (2)	775(2)	700(2)	750(2)	750(2)	800(2)	800(2)	850(2)
20	4	650 (2)	725(3)	725(3)	775(3)	775(3)	825(3)	750 (3)	800(3)	800(3)	850 (3)	850(3)	900(3)	700(2)	775(3)	775(3)	825 (3)	825 (3)	875 (3)	775(3)	825(3)	825(3)	875(3)	875(3)	925(3)

(1) form to be specified.

(2) magnetic circuit n° 16 R.
(3) magnetic circuit n° 18.

(4) X is the number of closingpoles.
 (5) for contactor equipped with DC or rectified AC supplied coil.

 Δ for LEN version, please advise the position of the contactor on the bar.

Control circuit: for connection drawings, see p. 144.

Please advise when you order whether the contactor has to be equipped with the «shaft end» - necessary to adapt a possible mechanical locking device. Without information, the contactor will be delivered without it.

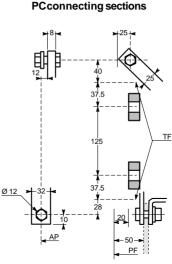
Metallicwalls

37.5

200

20

4

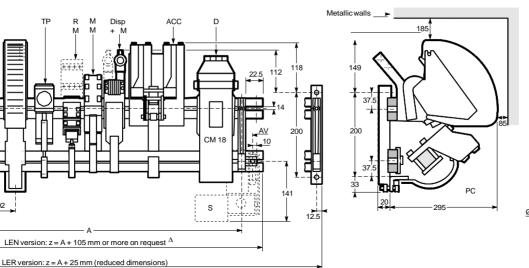

-

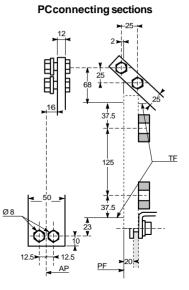
20

DC

250

-


ACC: mechanical latching with single or double release. AP: pole axis.


AV: mechanical locking axis, attachment centre-to-centre distance between two superimposed conactors.

400 mm with below contactor of calibre 400, 500 and 630 A. 575 mm with below contactor of calibre 800 or 1000A. **CM**: magnetic circuit can be mounted on the left side of the contactor. Without any information, it will always be mounted on the right.

D: D type auxiliary contact blocks. Disp + M: device used for DC or rectified AC control circuit. Standard contents: one support with terminal box, economy resistor(s), rectifier for alternating current and one M type auxiliary contact block.

L1: - without locking possibility on the left extremity: 45 mm. - with locking possibility on the left extremity: 90 mm. M type auxiliary contact ks(1 closing pole. attachment plane. LERversion. : left bearing. possible auxiliary relays. netallic support for «Ronis e» lock for locking the contacat rest (lock not supplied). TF: attachment holes. TP: delayed auxiliary contact block. V: possible mechanical locking facility with a 80, 150, 200 and 1250 to 5000 A contactor or with CBA-CBFC 55 400 to 1000 A old generation contactors.

7

ß

Ď н.

CBFC

35

800

) and

1000

) X.0(2)

Contactor without «mechanical latching with electrical and manual release»

тр

R м Disp

• •

Ļ

A dim	ension			lo	cking p	bossibil	ity on t	he righ	nt extre	mity (A	V)					I	ocking	possib	oility or	n the le	ft extre	mity (N	')		
(m	nm)		witho	out del	ayed o	ontact			wit	h delay	/ed cor	ntact			with	out dela	ayed o	ontact			wit	h delay	/ed cor	ntact	
	iber of e blocks	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
5 0	1	325	375	375	425	425	475	375	425	425	475	475	525	350	400	400	450	450	500	425	475	475	525	525	575
පිසි -	2	400	450	450	500	500	550	475	525	525	575	575	625	450	475	475	525	525	575	500	550	550	600	600	650
Number of poles	3	500	550	550	600	600	650	575	625	625	675	675	725	525	575	575	625	625	675	600	650	650	700	700	750
20-	4	600	650	•	•	•	•	650	٠	•	•	•	•	625	675	•	•	٠	•	700	•	•	•	•	•

Contactor with «mechanical latching with single electrical and manual release»

A dim	ension			lo	cking p	ossibili	ity on t	he righ	nt extre	mity (A	V)					l	locking possibility on the left extremity (V) ut delayed contact with delayed contact									ti
(n	nm)		with	out del	ayed o	ontact			wit	h delay	/ed cor	ntact			with	out dela	ayed co	ontact			wit	h delay	/ed cor	ntact		tł
	nber of e blocks	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	D
5 (0	1	400	425	425	475	475	525	450	500	500	550	550	600	425	475	475	525	525	575	475	525	525	575	575	625	d
mber poles	2	475	525	525	575	575	625	550	600	600	650	650	700	525	550	550	600	600	650	575	625	625	675	675	725	te
of D	3	575	625	625	675	675	725	650	700	700	750	750	800	600	650	650	700	700	750	675	725	725	775	775	825	0
20-	4	675	725	•	•	•	•	725	•	•	•	•	•	700	750	•	•	•	•	750	•	•	•	•	•	Ľ

Contactor with «mechanical latching with double electrical and manual release»

A dim	ension			lo	cking p	oossibili	ity on t	he righ	it extre	mity (A	V)						ocking	possib	oility on	n the le	ft extre	mity (\	/)		
(n	nm)		with	out del	ayed o	ontact			wit	h delay	/ed cor	ntact			with	out del	ayed co	ontact			wit	h delay	/ed cor	ntact	
	iber of e blocks	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
5 00	1	475	525	525	575	575	625	525	575	575	625	625	675	500	550	550	600	600	650	550	600	600	650	650	700
- Ber	2	550	600	600	650	650	700	625	675	675	725	725	775	600	625	625	675	675	725	650	700	700	750	750	800
of b	3	650	700	700	750	750	800	725	775	775	825	825	875	675	725	725	775	775	825	750	800	800	850	850	900
20-	4	750	800	•	•	•	•	800	•	•	•	•	•	775	825	•	•	٠	•	825	•	•	٠	•	•

· consult us. (1) form to be specified. (2) X is the number of closingpoles. Δ for LEN version, please advise the position of the contactor on the bar Control circuit: for connection drawings, see p. 144.

Please advise when you order whether the contactor has to be equipped with the «shaft end» - necessary to adapt a possible mechanical locking device. Without information, the contactor will be delivered without it.

ACC: mechanical latching with sinle or double release. P: pole axis. V: mechanical locking axis.attahment centre-to-centre distance etween two superimposed conctors: 400 mm with below contactor of calibre 400, 500 and 630 A 575 mm with below contactor of calibre 800 or 1000 A.

CM 18: magnetic circuit can be mounted on the left side of the contactor. Without anvinformation, it will always be mounted on the right. D: D type auxiliary contact blocks. **Disp + M**: device used for DC or rectified AC control circuit. Standard contents: one support with terminal box. economy resistor(s). rectifier for alternating current and one M type auxiliary contact block. L1: - without locking possibility on the left extremity: 45 mm, - with locking possibility on the left extremity: 90 mm. I: M type auxiliary contact blocks⁽¹⁾. C: closing pole. F: attachment plane, LERversion. G: left bearing. possible auxiliary relays. : metallic support for «Ronis type» ock for locking the contactor at est (lock not supplied). F: attachment holes. TP: delayed auxiliary contact block. V: possible mechanical locking facility with a 80, 150, 200 and 1250 to 5000 A contactor or with

CBA-CBFC 55 400 to 1000 A old

generation contactors.

PG

52.5 30

11

92

02

Ø11

125

ΜÐ

₿

12.5

CB75 400 to 1000 A Overall dimensions CBB BHC7 S 800 and 1000 A

CBA: Ue up to 1000 V, 50/60 Hz

.

CBFC Ue up to 500 VU

Modular AC

Qo

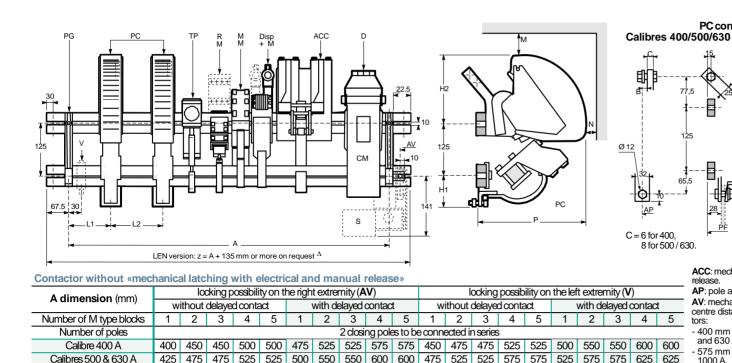
DC contactors

 ∞

Ó

-

5


400

đ

_ 000 N

0

Ue: 1000 V(

Calibres 800 & 1000 A 500* 550* 550* 600* 600* 575* 625* 625* 675* 675* 525* 575* 575* 625* 600* 650* 650* 700* 700* 700*

50

Contactor with «mechanical latching with single electrical and manual release»

A dimension (mm)		loc	cking p	ossibili	ty on t	he righ	t extrer	mity (A	N)				ocking	possib	ility on	the lef	t extre	mity (V	()	
A dimension (mm)	W	ithout	delaye	d conta	act	١	with de	elayed	contac	t	W	ithout	delaye	d conta	act		with de	elayed	contac	t
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles								2 closi	ng pole	es to be	econne	ected i	nseries	;						
Calibre 400 A	475	525	525	575	575	550	600	600	650	650	525	575	575	625	625	600	650	650	700	700
Calibres 500 & 630 A	500	550	550	600	600	575	625	625	675	675	550	600	600	650	650	625	675	675	725	725
Calibres 800 & 1000 A	575*	625*	625*	675*	675*	650*	700*	700*	750*	750*	600*	650*	650*	700*	700*	675*	725*	725*	775*	775*

Contactor with «mechanical latching with double electrical and manual release»

			3																	
A dimension (mm)		lo	cking p	ossibili	ty on t	he righ	nt extre	mity (A	V)			ŀ	ocking	possib	ility on	the lef	ft extre	mity (V)	
A dimension (mm)	W	ithout	delaye	d conta	act		with d	elayed	contac	t	w	ithout	delaye	d conta	act		with de	elayed	contac	,t
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles								2 closi	ng pole	es to be	econn	ected i	n series	3						
Calibre 400 A	550	600	600	650	650	625	675	675	725	725	600	650	650	700	700	675	725	725	775	775
Calibres 500 & 630 A	575	625	625	675	675	650	700	700	750	750	625	675	675	725	725	700	750	750	800	800
Calibres 800 & 1000 A	650*	700*	700*	750*	750*	725*	775*	775*	825*	825*	675*	725*	725*	775*	775*	750*	800*	800*	850*	850*

 Δ for LEN version, please advise the position of the contactor on the bar

* magnetic circuit nº 18.

(1) form to be specified. (2) with metallic walls

Control circuit: for connection drawings, see p. 144.

Please advise when you order whether the contactor has to be equipped with the «shatt end» - necessary to adapt a possible mechanical locking device.

Without information, the contactor will be delivered without it.

125	125	
 65,5 	Ø8 -50 -60,5 -12,5	PF

PC connecting sections

775

5

Calibres 800/1000

16

ACC: mechanical latching with single or double release. AP: pole axis.

AV: mechanical locking axis. attachment centre-to-

centre distance between two superimposed contactors: 400 mm with below contactor of calibre 400, 500.

and 630 A.

575 mm with below contactor of calibre 800 or 1000 A.

CM: magnetic circuit can be mounted on the left side of the contactor. Without any information, it will always be mounted on the right. D: D type auxiliary contact blocks.

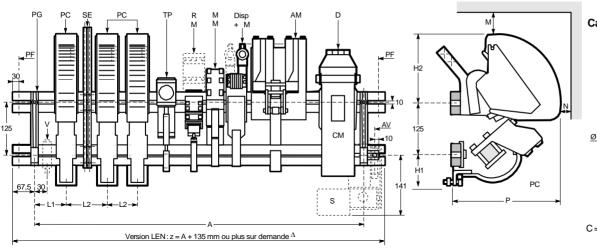
Disp + M: device used for DC or rectified AC control circuit. Standard contents: one support with terminal box, economy resistor(s), rectifier for alternating current and one M type auxiliary contact block.

M: M type auxiliary contact blocks⁽¹⁾. PC: closing pole.

PF: attachement plane. LERversion.

PG: left bearing

R: possible auxiliary relays.


S: metallic support for «Ronis type» lock for locking the contactor at rest (lock not supplied).

TP: delayed auxiliary contact block. : possible mechanical locking facility with a 80, 150.

200 and 1250 to 5000 A contactor or with CBA-CBFC 55 400 to 1000 A old generation contactors.

Calibre	L1 me cal lock possibi with- out	king lity V	L2	Saf perim M	iety neter ⁽²⁾ N
400	62	107	102	45	45
500/630	65	110	120	75	60
800/1000	89	118	138	185	85
Calibre 400 500/630 800/1000	7: 7:	H1 5.5 5.5 0.5	H2 112.5 112.5 186.5	5	P 258 258 295

Overall

Contactor without «mechanical latching with electrical and manual release»

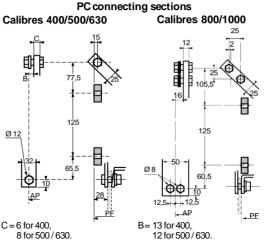
A dimension (mm)		lo	cking p	ossibili	ity on t	he righ	it extre	mity (A	V)			ļ	ocking	possib	ility on	the lef	ft extre	mity (V	/)	
A dimension (mm)	W	ithout	delaye	d conta	act		with de	elayed	contac	t	W	ithout	delaye	d conta	act		with d	elayed	contac	t
Number of M type blocks	1	2	2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4														5			
Number of poles		2 3 4 5 1 2 3 4 5																		
Calibre 400 A	500	550	550	600	600						550	575	575	625	625	600	650	650	700	700
Calibres 500 & 630 A	550	600	600	650	650	600	650	650	700	700	600	625	625	675	675	650	700	700	750	750
Calibres 800 & 1000 A	650*	675*	675*	725*	725*	700*	750*	750*	800*	800*	675*	725*	725*	775*	775	725*	775*	775*	825*	825*

Contactor with «mechanical latching with single electrical and manual release»

A dimension (mm)		loc	cking p	ossibili	ty on tl	ne righ	t extrer	nity (A	V)			ŀ	ocking	possib	ility on	the lef	't extre	mity (V	()	
A dimension (mm)	W	ithout	delaye	d conta	act		with de	elayed	contac	t	W	ithout	delaye	d conta	act		with de	elayed	contac	t
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles		2 closing poles on the positive polarity to be connected in series and 1 closing pole on the negative polarity																		
Calibre 400 A	575	625	625	675	675	650	700	700	750	750	625	675	675	725	725	700	750	750	800	800
Calibres 500 & 630 A	625	675	675	725	725	700	750	750	800	800	675	725	725	775	775	725	775	775	825	825
Calibres 800 & 1000 A	725*	750*	750*	800*	800*	775*	825*	825*	875*	875*	750*	800	800	850	850	800*	850*	850*	900*	900*

Contactor with «mechanical latching with double electrical and manual release»

A dimension (mm)		lo	cking p	ossibili	ty on t	he righ	t extre	mity (A	V)			l	ocking	possib	ility on	the lef	't extre	mity (V)	
A dimension (mm)	W	ithout	delaye	d conta	act		with de	elayed	contac	t	W	ithout	delayed	d conta	ict		with de	elayed	contac	t
Number of M type blocks	1	2	2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4													5				
Number of poles		2 dosing poles on the positive polarity to be connected in series and 1 closing pole on the negative polarity																		
Calibre 400 A	650	700	700	750	750	725	775	775	825	825	700	750	750	800	800	775	825	825	875	875
Calibres 500 & 630 A	700	750	750	800	800	775	825	825	875	875	750	800	800	850	850	800	850	850	900	900
Calibres 800 & 1000 A	800*	825*	825*	875*	875*	850*	900*	900*			825*	875*	875*			875*				


 Δ for LEN version, please advise the position of the contactor on the bar. * magnetic circuit n° 18.

- (1) form to bespecified.
- (2) with metallic walls.

5

Control circuit: for connection drawings, see p. 144.

Please advise when you order whether the contactor has to be equipped with the «shaft end» - necessary to adapt a possible mechanical locking device. Without information, the contactor will be delivered without it.

ACC: mechanical latching with single or double release.

AP: pole axis

AV: mechanical locking axis, attachment centre-tocentre distance between two superimposed contactors:

- 400 mm with below contactor of calibre 400, 500, and 630 A.

- 575 mm with below contactor of calibre 800 or 1000 A.

CM: magnetic circuit can be mounted on the left side of the contactor. Without any information, it will always be mounted on the right. D: D type auxiliary contact blocks.

Disp + M: device used for DC or rectified AC control circuit. Standard contents: one support with terminal box, economy resistor(s), rectifier for alternating current and one M type auxiliary contact block.

M: M type auxiliary contact blocks⁽¹⁾. PC: closing pole.

PF: attachement plane, LERversion.

PG: left bearing.

R: possible auxiliary relays.

S: metallic support for «Ronis type» lock for locking the contactor at rest (lock not supplied). SE: separator.

TP: delayed auxiliary contact block. V: possible mechanical locking facility with a 80, 150, 200 and 1250 to 5000 Å contactor or with CBA-CBFC 55 400 to 1000 A old generation contactors

1001013.					
Calibre	possil	ocking bility V	L2	Sat perim	fety neter ⁽²⁾
	with-	with		м	Ν
	out				
400	out 62	107	102	45	45
500/630	65	110	120	75	60
800/1000	89	118	138	185	85
Calibre	н	1	H2		Р
400	75	5.5	112.5	5 2	258
500/630	75	5.5	112.5	5 2	258
800/1000	70).5	186.5	5 2	295

Ue : 1000 V

G

CBFC

35

400

ರ

 \rightarrow 000

ω

0

CB75 400 to 1000 Modular DC contactors, dimensions Ъ CBFC7 S 400 **ö** 1000

3 poles, double insulation.

PG PC $SE3012512$	—>!≼ >!		R M M M 	Disp + M						H2 H2 125 H1 1					N Ø		es 400/500/6		Calibr	res 800 $2 + \frac{7}{105,5} + \frac$	25	20. CBFC 75 400 to 1000 4.0
Contactor without «med	chanical latch	ina wi	ith electri	cal ar	nd manu	al relea	ise»										ACC: mechar	nical latching	with single	e or dout	ble	
			sibility on th							locking	possi	ibility on	thele	ft extremity	V)		release. AP: pole axis					
A dimension (mm)	without de	elayed	contact		with delay	ed conta	act	W	vithout	delaye	d con	tact		with delaye	d conta	ct	AV: mechanic	cal locking axi	s, attachn	nent cent	re-to-	
Number of M type blocks	1 2	3	4 5	1		3 4	5	1	2	3	4	5	1	2 3	4	5	centre distand tors:	ce detween tv	vo superir	nposea c	contac-	
Number of poles														ne negative p				th below cont	actor of c	alibre 40	0, 500,	
Calibre 400 A			700 700	675			5 775			700	750		725	775 775	_		and 630 A.	th below cont	actor of c	alibre 800	0 or	
Calibres 500 & 630 A		725* 7	75* 775*	750*	800* 80	0* 850	* 850*			775*	825	5 825	800	850 850) 900	900	1000 A.					
Calibres 800 & 1000 A	775* 825*							800^	850*								CM: magneti of the contac					
A dimension (mm)	lock	rina nos	saibility on th	ne riah	t extremit	ν (ΔV)		i i		lockina	nossi	ihility on	the let	ft extremity	V)		always be mo	ounted on the	right.	iation, it	will	
	without de	01	,	0	with delay	, , ,	art	14		delave				with delaye	· /	4	D: D type aux Disp + M: de			tified AC	control	
Number of M type blocks	1 2	3	4 5	1		3 4		1	2	3	4	5	1	2 3	4	5	circuit. Standa	ard contents:	one supp	ort with t	erminal	
Number of poles		-		n serie		-		nd 2 pc		-	ected		sonth	ne negative p	olarity	-	box, econom rent and one				ing cur-	
Calibre 400 A			775 775	750		00 850				775	825		800	<u> </u>	,	900	M: M type au					
Calibres 500 & 630 A	750 800* 8	300* 8	50* 850*		875* 87			800	850*	850*	9003	* 900*					PC: closing po					
Calibres 800 & 1000 A	850* 900*							875*	'								PF: attachem PG: left beari		Rversion.			
A dimension (mm)	lock	king pos	ssibility on th	ne righ	t extremit	y(AV)				locking	possi	ibility on	thele	ft extremity	V)		R: possible au					
·				-	-												S: metallic su	pport for «Ro			ocking	
Contactor with «mechar							releas	e»						-			the contactor SE: separator		10t supplie	ed).		
A dimension (mm)		01	ssibility on th	<u> </u>		, <u>,</u> ,		<u> </u>						ft extremity	· /		TP: delayed a	uxiliary conta				
	without de				with delay					delaye				with delaye			V: possible me 200 and 1250	echanical lock				
Number of M type blocks	1 2	3	4 5	1		3 4	5	1	2	3	4	5	1	2 3	4	5	CBFC 55 400					
Number of poles						75 925			-					ne negative p				L1 mecha				
Calibre 400 A Calibres 500 & 630 A	750 800		850 850	825		/5 92:	925			850 925*		900	8/5	925 925	>			nicallockir		Safe	ety	
Calibres 800 & 630 A	825 875* 8 925*	515		900*				0/5	925	920		_					Calibre	possibility	Ŭ L2	perime		
	323								1									with-	h	М	Ν	
Δ for LEN version, please advise the * magnetic circuit n° 18. (1) form to bespecified. (2) with metallicwalls. Control circuit: for connection d			n the bar.				equ me	iipped v chanica	with the I lockin	e «shaft g device	t end) e.	» - nece	ssary to	ontactor has adapt a pos	ssible		400 500/630 800/1000	out wit 62 67 65 11 89 11	7 102 0 120 8 138	75 185	45 60 85	
										,			20 at				Calibre	H1	H2		P	
																	400	75.5	112.		58	
																	500/630 800/1000	75.5 70.5	112. 186.		58 95	
																	000/1000	70.5	100.	2	90	

52

Ue : 1000 VÜ

Modular 1000 V DC contactors, 4 pole, double isulation, CB75 400 to 1000 A Overall dimensions CBFC75 400 to 1000 A

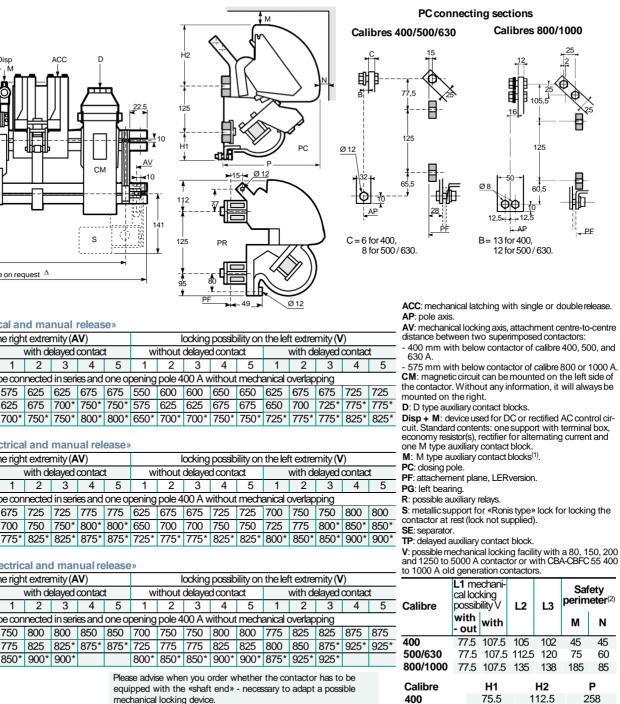
N

CBFC

35

400

ð _


1000

N

<u>`</u>

CB75 400 to 1000 Overall dimensions Þ CBFC7 S 400 6 1000 $\mathbf{\Sigma}$

double isulation. Ue: 1000 Modular DC contactors, N main poles and 1 opening pole

500/630

800/1000

75.5

70.5

112.5

186.5

258

295

PG DD ΤР PC P Ν. Disr 125 30 12 13 1.1 67.5 LEN version: z = A + 135 mm or more on request Δ

Contactor without «mechanical latching with electrical and manual release»

A dimension (mm)		lo	cking p	ossibili	ity on t	he righ	nt extre	mity (A	V)				ocking) possik	oility or	the let	ft extre	mity (V	')	
A dimension (mm)	W	vithout	delaye	d conta	act		with d	elayed	contac	t	w	ithout	delaye	d conta	act		with d	elayed	contac	t
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles			2 dd	sing p	oles to	be cor	nected	d in seri	ies and	oneo	pening	pole 4	00 A v	vithout	t mech	anical	overlap	ping		
Calibre 400 A	525	550	550	600	600	575	625	625	675	675	550	600	600	650	650	625	675	675	725	725
Calibre 500 & 630 A	550	600	600	650	650	625	675	700*	750*	750*	575	625	625	675	675	650	700	725*	775*	775*
Calibre 800 & 1000 A	625*	675*	675*	725*	725*	700*	750*	750*	800*	800*	650*	700*	700*	750*	750*	725*	775*	775*	825*	825*

Contactor with «mechanical latching with single electrical and manual release»

			.		·																
A dimension (mm)		lo	cking p	bossibil	ity on t	he righ	it extre	mity (A	V)				ocking	possib	ility on	the lef	ft extre	mity (V	()		1
A dimension (mm)	W	ithout	delaye	d conta	act		with d	elayed	contac	t	w	ithout	delaye	d conta	act		with de	elayed	contac	t	F
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	Ē
Number of poles			2 clc	sing p	oles to	becon	nected	d in seri	esand	oneo	pening	pole 4	00 A v	vithout	mecha	anical o	overlap	ping			F
Calibre 400 A	600	650	650	700	700	675	725	725	775	775	625	675	675	725	725	700	750	750	800	800	5
Calibre 500 & 630 A	625	675	675	725	725	700	750	750*	800*	800*	650	700	700	750	750	725	775	800*	850*	850*	
Calibre 800 & 1000 A	700*	750*	750*	800*	800*	775*	825*	825*	875*	875*	725*	775*	775*	825*	825*	800*	850*	850*	900*	900*	

Contactor with «mechanical latching with double electrical and manual release»

																						101
	A dimension (mm)		lo	cking p	bossibil	ity on t	he righ	nt extre	mity (A	V)				ocking	possib	ility on	the lef	ft extre	mity (V	/)		
	A dimension (mm)	w	rithout	delaye	ed conta	act		with d	elayed	contac	t	w	ithout	delaye	d conta	act		with d	elayed	contac	t	
Ν	Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	Ca
	Number of poles			2 dd	osing p	oles to	becor	nected	d in seri	esand	l one o	pening	pole 4	00 A v	vithout	mech	anical (overlap	ping			
	Calibre 400 A	675	725	725	775	775	750	800	800	850	850	700	750	750	800	800	775	825	825	875	875	
	Calibre 500 & 630 A	700	750	750	800	800	775	825	825*	875*	875*	725	775	775	825	825	800	850	875*	925*	925*	40
	Calibre 800 & 1000 A	775*	825*	825*	875*	875*	850*	900*	900*			800*	850*	850*	900*	900*	875*	925*	925*			50

 Δ for LEN version, please advise the position of the contactor on the bar. * magnetic circuit nº 18.

(1) form to bespecified.

(2) with metallic walls.

53

Control circuit: for connection drawings, see p. 144.

mechanical locking device.

Without information, the contactor will be delivered without it.

CB75

400 to 1000

Þ

Overall

dimensions

CBFC7

G

400

6

000

 $\mathbf{\Sigma}$

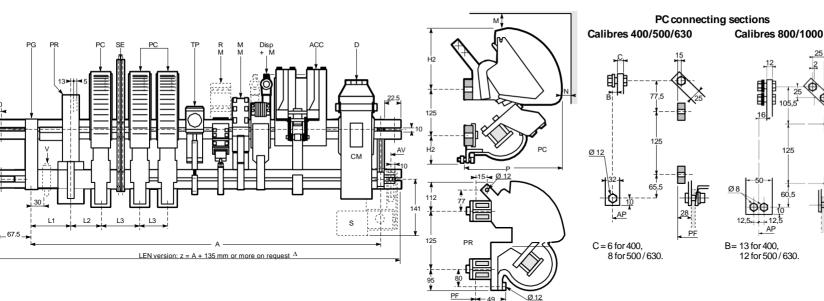
Modular DC contactors, 3 main poles and 1 opening pole double insulation. Ue: 1000 V \bigcup

N

Ň

CBFC

75


400

2

1000

ω

<u>`</u>

ACC: mechanical latching with single or double release. AP: pole axis.

1055

125

60 5

PF

-50

ЮÒ

AP

12 for 500/630.

AV: mechanical locking axis, attachment centre-to-centre distance between two superimposed contactors: - 400 mm with below contactor of calibre 400, 500, and

630 A. - 575 mm with below contactor of calibre 800 or 1000 A. CM: magnetic circuit can be mounted on the left side of the contactor. Without any information, it will always be mounted on the right.

D: D type auxiliary contact blocks.

Disp + M: device used for DC or rectified AC control circuit. Standard contents: one support with terminal box. economy resistor(s), rectifier for alternating current and one M type auxiliary contact block. M: M type auxiliary contact blocks⁽¹⁾.

PC: closing pole.

PF: attachement plane, LERversion,

PG: left bearing.

R: possible auxiliary relays.

S: metallic support for «Ronis type» lock for locking the contactor at rest (lock not supplied).

SE: separator.

TP: delayed auxiliary contact block. V: possible mechanical locking facility with a 80, 150, 200 and 1250 to 5000 A contactor or with CBA-CBFC 55 400 to 1000 A old generation contactors.

10 1000 A 010	genere		laciois	•		
Calibre	L1 me cal loc possib	king	L2	L3	Saf perim	ety leter ⁽²⁾
	with- out	with			м	Ν
400	77.5	107.5	105	102	45	45
500/630	77.5	107.5	112.5	120	75	60
800/1000	77.5	107.5	135	138	185	85
Calibre		H1	ł	12	I	P
400	7	75.5	11	2.5	2	58
500/630	7	75.5	11	2.5	2	58
800/1000	7	70.5	18	36.5	2	95

54

30

125

Contactor without «mechanical latching with electrical and manual release»

A dimension (mm)		lo	cking p	ossibili	ty on t	he righ	t extre	mity (A	V)			ļ	ocking	possib	ility on	the lef	't extre	mity (V	')	
A dimension (mm)	W	rithout	delaye	d conta	act		with de	elayed	contac	t	W	ithout	delaye	d conta	act		with de	elayed	contac	.t
Number of M type blocks	1	2	2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 2 closing poles to be connected in series on the positive polarity														5			
Number of poles		2 closing poles to be connected in series on the positive polarity 1 pole on the negative polarity and 1 opening pole 400 A without mechanical overlapping for connection to earth																		
Calibre 400 A	625	650	650	700	700	675	725	725	775	775	650	700	700	750	750	725	775	775	825	825
Calibre 500 & 630 A	700*	750*	750*	800*	800*	750*	800*	800*	850*	850*	725*	775*	775*	825*	825*	800*	850*	850*	900*	900*
Calibre 800 & 1000 A	750*	800*	800*	850*	850*	825*	875*	875*	925*	925*	800*	850*	850*	900*	900*	850*	900*	900*		

Contactor with «mechanical latching with single electrical and manual release»

A dimension (mm)		lo	cking p	ossibili	ty on t	he righ	it extre	mity (A	V)				ocking	possib	ility on	the lef	t extre	mity (V)	
A dimension (mm)	w	ithout	delaye	d conta	act		with d	elayed	contac	t	W	ithout	delaye	d conta	act		with de	elayed	contac	t
Number of M type blocks	1	2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 2 closing poles to be connected in series on the positive polarity 2 3 4 5 </td <td>5</td>														5				
Number of poles		2 closing poles to be connected in series on the positive polarity 1 pole on the negative polarity and 1 opening pole 400 A without mechanical overlapping for connection to earth																		
Calibre 400 A	700	750	750	800	800	775	825	825	875	875	725	775	775	825	825	800	850	850	900	900
Calibre 500 & 630 A	775*	800*	800*	850*	850*	825*	875*	875*	925*	925*	800*	850*	850*	900*	900*	850*	900*	900*		
Calibre 800 & 1000 A	850*	875*	875*			900*					875*	925*	925*							

Contactor with «mechanical latching with double electrical and manual release»

A dimension (mm)	locking possibility on the right extremity (AV)						V)	locking possibility on the left extremity (V)												
A dimension (mm)	without delayed contact with delayed contact				t	without delayed contact				with delayed contact										
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles		1 p	ole on	the ne	gative				be con ng pole							g for co	onnecti	ion to e	earth	
Calibre 400 A	775	825	825	875	875	850	900	900			800	850	850	900	900	875	925	925		
Calibre 500 & 630 A	850*	875*	875*			900*					875*	925*	925*							
Calibre 800 & 1000 A	925*																			
∆ tor LEN version, please advise the 'magnetic circuit n° 18. 1) form to be specified. 2) with metallicwalls. Control circuit: for connection di				r on the	bar.	•				equi mec	pped v nanıca	vith the I Iocking	e «shaft g aevic	end»:	- neces	sary to	adapt	r has to a possi	ble	

Without information, the contactor will be delivered without it.

CB 71 1250 to 2000 A

2 types for each calibre:

AC poles CBA 71 1250, CBA 71 1600, CBA 71 2000.

DC poles CBC 71 1250, CBC 71 1600, CBC 71 2000.

CBA 71 2000 4.0

Standard versions

- 1 to 4 single pin main poles with copper contacts for calibre 1250 A (silver pad contact on request) and silver contacts for calibres 1600 and 2000 A.
 Arc-blowout coil operates only during opening.
- Closing electromagnet mounted on the right side of the poles (on request, it can be mounted on the left), solid iron magnetic circuit with 2 coils.
- control circuit supplied from an ACsource via a rectifier and power-saved coils (device mounted and cabled on the contactor).
- control circuit supplied from a DC source with powersaved coils (device mounted and cabled on the contactor).
- Auxiliary contacts
- two M type contact blocks with 3 contacts
- 3 NO + 3 NC, instant contacts or form to be specified when you order.
- number of M type contact blocks can be increased to reach 6 blocks.
- Mechanical locking
- vertical type.

Options

- Silver pad contact pins for calibre 1250 A.
- NO or NC delayed block TP86 type(this one also includes 4 free instant contacts, i.e. 3 NO + 1 NF).
- More than 6 M type contact blocks can be mounted on the contactor by mounting them below the contactor to reduce its total dimensions.
- Device to hold the contactor closed in case of untimely micro-cuts for contactors that are not equipped with a mechanical latching.
- Mechanical latching with single or double electrical release (does not change the total dimensions of the contactor).
- Self-protective device for the release coil(s).
- Metallic support for «Ronis type» lock (lock not supplied).
- Horizontal or back-to-back mechanical locking.
- Poles of different calibres and supplied with different currents.
- Poles without magnetic blowout.
- Reinforced insulation.
- Double insulation for specific applications.
- Tropical treatment n° 2.

CB 71 1250 to 2000 A Technical features CBA 71 1250 to 2000 A

ACcontactors Ue up to 1000 V 50/60 Hz

Alternating current			CBA Type 7 1250			1600			20	000		
hermal nominal current ⁽¹⁾	AC 1	_	1250			1600				000		
connecting section		_	1000			1400			-	500 500		
Iominal insulating voltage			1000			1000				1000		
Nominal operating voltage			660 100	0		660				500	1000	
Maximum controlled power	'S			•		000						
voltage	-	V 2	220 380)	500	220	380	500	22	20	380	500
	C_3 duty cycles k		370 630		630	470	700	700	60		1000	1000
AC 23 d	luty cycles k	/A 4	490 840)		620	930		80	00	1330	
laximum operatingcurrent	t		•									•
continuous duty		A 1	1250			1600			20	000		
hort-time current t 🔶 40°C												
	1s I	دA ۷				30			65			
		κA 2				15			30			
			13.5			10.9			21			
			11.8			8.7				7.9		
		A 7				6			12			
		(A 5				4.5			8.			
		A 3				3			5			
		(A)				2.2			3.2			
hermal nominal current un		A	938			1200				500		
Allowable overcurrent / tim			25/3 220/380/440		1100	25/1.6 220/38	0/440	1100		5/7 20/380	////0	1100
Current switch-off rating ⁽²⁾							0/440				//440	
Current-switch-on rating	cosq,=0.3 kAc cosq,=0.3 kAc				12 12	25 23		12 12	25 23			12 12
BA poles inductance	$\cos q$,=0.3 KAG		2.9410-7		12		-	12			-	12
BA poles resistance	cold		5.25 ¹⁰⁻⁷			2.38 ¹⁰ 7.19 ¹⁰				82 10-7		
DA poles resistance			5.96 ¹⁰⁻⁵							72 ¹⁰⁻⁸		
lumber of openings on load		52 5	50000			7.5510)		4.	<u>7210-</u> 0000)	
lumber of openingson load under	r for I = 1250 A		50000			15000				50000		
80 V before contact	for I = 1600 A		35000			10000				10000		
eplacement:	for $I = 2000 \text{ A}$		50000		50000							
Mechanical endurance	millions of operatio	ns 1	1			1	1		1			
ominal voltage AC 50 H	7	VZ	24 - 48 - 110 -	- 12	7 - 220 - 380 - 5	500(4)						
DC					7 - 220 - 380 - 5 7 - 220 - 380 - 5							
DC Maximum consumptions	inrush/hold	V 2	24 - 48 - 110 ·			500 ⁽⁴⁾				20/4 4		
DC	inrush/hold 1P	V 2 /A 1	24 - 48 - 110 · 180/14			500 ⁽⁴⁾ 180/14				30/14		
DC Maximum consumptions	inrush/hold 1P 2P	V 2 /A 1 /A 3	24 - 48 - 110 · 180/14 380/24			500 ⁽⁴⁾ 180/14 380/24			38	30/24		
DC Maximum consumptions	inrush/hold 1P 2P 3P	V 2 /A 1 /A 3 /A 8	24 - 48 - 110 · 180/14 380/24 860/50			500 ⁽⁴⁾ 180/14 380/24 860/50			38 86	30/24 60/50	2	
AC*	inrush/hold 1P 2P 3P 4P	V 2 /A 1 /A 3 /A 8	24 - 48 - 110 · 180/14 380/24 860/50 1700/88			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8	8		38 86 17	80/24 60/50 700/88	-	
DC Maximum consumptions	inrush/hold 1P 2P 3P 4P 1P	V 2 /A 1 /A 3 /A 3 /A 1 /A 1	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17	8 .5		38 86 17 16	80/24 60/50 700/88 65/17.5	-	
AC*	inrush/hold 1P // 2P // 3P // 4P // 1P 2P	V 2 /A 1 /A 3 /A 8 /A 7 W 1 W 3	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17 360/35	8 .5		38 86 17 16 36	80/24 60/50 700/88 65/17.3 60/35	-	
AC*	inrush/hold 1P 2P 3P 4P 1P 2P 3P		24 - 48 - 110 180/14 380/24 860/50 1700/88 165/17.5 360/35 836/55			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17 360/35 836/55	8 .5		38 86 17 16 36 83	80/24 60/50 700/88 65/17.3 60/35 36/55	5	
Ac*	inrush/hold 1P 2P 3P 4P 1P 2P 3P 4P		24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17 360/35	8 .5		38 86 17 16 36 83 16	80/24 60/50 700/88 65/17.3 60/35	5	
AC*	inrush/hold 1P 2P 3P 4P 1P 2P 3P 4P agnet open/closed		24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35 836/55 1600/110 118/41			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1	8 .5		38 86 17 16 36 83 16	80/24 60/50 700/88 65/17.3 60/35 36/55 600/11 18/41	5	
AC*	inrush/hold 1P 2P 3P 4P 1P 2P 3P 4P 4P 1P 2P 3P 4P 1P 2P 3P 4P 10 10 10 10 10 10 10 10 10 10	V 2 /A 1 /A 3 /A 8 /A 7 /A 8 /A 1 /A 1 /A 1 /A 1 /A 3 /A 1 /A 1 /A 1 /A 1 /A 1 /A 1 /A 1 /A 1	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35 3836/55 1600/110 118/41 180			180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41	8 .5		38 86 17 16 36 83 16 11	80/24 60/50 700/88 65/17.3 60/35 36/55 600/11 18/41 80	5	
AC*	inrush/hold 1P 2P 3P 4P 1P 2P 3P 4P 12P 3P 4P 12P 12P 12P 12P 12P 12P 12P 12	V 2 /A 1 /A 3 /A 3 /A 4 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35 3836/55 1600/110 118/41 180			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41 180	8 .5		38 86 17 16 36 83 16 11 11 18	80/24 60/50 700/88 65/17.3 60/35 36/55 600/11 18/41 80	5	
AC*	inrush/hold 1P 2P 3P 4P 1P 2P 3P 3P 4P agnet open/closed m at Un m at Un m	V 2 /A 1 /A 3 /A 8 /A 8 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35 3836/55 1600/110 118/41 180			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41 180	8 .5		38 86 17 16 36 83 16 11 11 18	80/24 60/50 700/88 65/17.3 60/35 36/55 600/11 18/41 80	5	
AC*	inrush/hold 1P /// 2P /// 3P /// 4P // 2P /// 3P /// 4P /// 3P /// 4P /// at Un ///	V 2 /A 1 /A 3 /A 8 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7	24 - 48 - 110 180/14 380/24 860/50 1700/88 165/17.5 360/35 836/55 1600/110 118/41 180 215 60			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41 180 215 60	8 .5		38 86 17 16 36 83 16 11 18 21	30/24 50/50 700/88 55/17.3 50/35 36/55 500/11 18/41 30 15 0	5	
DC Maximum consumptions AC* DC DC DC Constant L/R rate of electrom closing time ⁽⁶⁾ Dening time ⁽⁶⁾ between commandan	inrush/hold	V 2 /A 1 /A 3 /A 2 /A 2 /A 2 /A 2 /A 2 /A 2 /A 2 /A 2	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35 836/55 1600/110 118/41 180 215 60 82			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41 180 215 60 82	8 .5		38 86 17 16 36 83 16 11 11 18 21 21 60 82	30/24 50/50 700/88 55/17.: 50/35 36/55 500/11 18/41 30 15 0 2	5	
DC Maximum consumptions AC* DC DC Constant L/R rate of electrom Closing time ⁽⁶⁾	inrush/hold 1P 2P 3P 4P 1P 2P 3P 4P 12P 3P 4P 12P 12P 12P 12P 12P 12P 12P 12	V 2 /A 1 /A 3 /A 8 /A 8 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7 /A 7	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35 3836/55 1600/110 118/41 180			500 ⁽⁴⁾ 180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41 180	8 .5		38 86 17 16 36 83 16 11 11 18	80/24 60/50 700/88 65/17.3 60/35 36/55 600/11 18/41 80	5	
DC Maximum consumptions AC* DC Constant L/R rate of electrom Closing time ⁽⁶⁾ Opening time ⁽⁶⁾ between commandan - separation of contacts	inrush/hold 1P 2P 3P 4P 2P 3P 4P 2P 3P 4P agnet open/closed at Un at Un at Un at Un t (1) in open (2) arcing ti (3) diodesa (4) for othe (5) if nomin (6) closing of main coil unti * control ci Equipme power-sa	V 2 /A 1 /A 3 /A 8 /A 7 /A 8 /A 7 /A 8 /A 7 /A 8 /A 7 /A 8 /A 7 /A 8 /A 7 /A 8 /A 8 /A 8 /A 8 /A 8 /A 8 /A 8 /A 8	24 - 48 - 110 - 180/14 380/24 3860/50 1700/88 1700/88 165/17.5 360/35 386/55 1600/110 118/41 180 215 60 82 300 < 15 ms. rranted up to an or tages, please con 60 82 300 < 15 ms. rranted up to an or tages, please con 82 300	overka sult u > 100 > 100 > 100 altern	pad of 3 Un efficien 0 V, please consult supply of the closis supred from the su les. nating current are	180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41 180 215 60 82 300 t. us. g coil until con oply of the tripp rectified ⁽³⁾ and	8 5 10 ••	factor already inclu	388 86 17 16 36 83 16 11 11 18 21 21 21 60 82 30 10 60 82 30 0 10 the cont des a safety <i>2</i> pr <i>j</i> .th 1 pr of rating of	80/24 50/50 700/85 55/17.3 560/35 560/11 18/41 30 15 15 2 00 00 15 15 00 00 15 15 00 00 15 15 15 15 15 15 15 15 15 15	5 10 or poles ∞ : parallel x 0.7	3 poles in para <i>I</i> .th 1 pole x 3 x 0.6
DC Maximum consumptions AC* DC DC Constant L/R rate of electrom Closing time ⁽⁶⁾ Dpening time ⁽⁶⁾ between commandan - separation of contacts - total opening of electr	inrush/hold	V 2 A 1 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35 836/55 1600/110 118/41 180 215 60 82 300 < 15 ms. rranted up to an - tages, please con reration of ma separation of ma commanded with ctor to be applie	overld overld > 100 n the altern altern	pad of 3 Un efficien bad of 3 Un efficien s. 0 V, please consult supply of the closi asured from the su les. nating current are the poles or the con	180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41 180 215 60 82 300 us. g coil until con pply of the tripp rectified ⁽³⁾ and rrent controlled	8 5 10 ••	factor already inclu AC The current switch-	388 86 17 16 36 83 16 11 11 18 21 21 21 60 82 30 10 60 82 30 0 10 the cont des a safety <i>2</i> pr <i>j</i> .th 1 pr of rating of	80/24 50/50 700/85 55/17.3 560/35 560/11 18/41 30 15 15 2 00 00 15 15 00 00 15 15 00 00 15 15 15 15 15 15 15 15 15 15	5 10 or poles ∞ : parallel x 0.7	3 poles in para <i>I</i> .th 1 pole x 3 x 0.6
DC Maximum consumptions AC* DC DC Constant L/R rate of electrom Closing time ⁽⁶⁾ Dpening time ⁽⁶⁾ between commandan - separation of contacts - total opening of electr	inrush/hold	V 2 A 1 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35 836/55 1600/110 118/41 180 215 60 82 300 < 15 ms. rranted up to an - tages, please con reration of ma separation of ma commanded with ctor to be applie	overld overld > 100 n the altern altern	pad of 3 Un efficients bad of 3 Un efficients bad of 3 Un efficients v, please consult supply of the closis asured from the su les. nating current are the poles or the current the poles or the current are the poles or the current are the poles or the current are the poles or the current are the poles or the current are the poles or the current are the poles or t	180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41 180 215 60 82 300 us. g coil until con pply of the tripp rectified ⁽³⁾ and rrent controlled	8 5 10 ••	factor already inclu AC The current switch-	388 86 17 16 36 83 16 11 11 18 21 21 21 60 82 30 10 60 82 30 0 10 the cont des a safety <i>2</i> pr <i>j</i> .th 1 pr of rating of	80/24 50/50 700/85 55/17.3 560/35 560/11 18/41 30 15 15 2 00 00 15 15 00 00 15 15 00 00 15 15 15 15 15 15 15 15 15 15	5 10 or poles ∞ : parallel x 0.7	nnected in parallel, ti 3 poles in paral 7.th 1 pole x 3 x 0.6 in parallel remains th
DC Maximum consumptions AC* DC DC Constant L/R rate of electrom Closing time ⁽⁶⁾ Dpening time ⁽⁶⁾ between commandan - separation of contacts - total opening of electr	inrush/hold	V 2 A 1 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2	24 - 48 - 110 - 180/14 380/24 860/50 1700/88 165/17.5 360/35 836/55 1600/110 118/41 180 215 60 82 300 < 15 ms. rranted up to an - tages, please con reration of ma separation of ma commanded with ctor to be applie	overld overld > 100 n the altern altern	pad of 3 Un efficien bad of 3 Un efficien s. 0 V, please consult supply of the closi asured from the su les. nating current are the poles or the con	180/14 380/24 860/50 1700/8 165/17 360/35 836/55 1600/1 118/41 180 215 60 82 300 us. g coil until con pply of the tripp rectified ⁽³⁾ and rrent controlled	8 5 10 ••	factor already inclu AC The current switch-	388 86 17 16 36 83 16 11 11 18 21 21 21 60 82 30 10 60 82 30 0 10 the cont des a safety <i>2</i> pr <i>j</i> .th 1 pr of rating of	80/24 50/50 700/85 55/17.3 560/35 560/11 18/41 30 15 15 2 00 00 15 15 00 00 15 15 00 00 15 15 15 15 15 15 15 15 15 15	5 10 or poles ∞ : parallel x 0.7	3 poles in paral <i>I</i> .th 1 pole x 3 x 0.6

CB71 1250 to 2000 A Technical features CBC71 1250 to 2000 A

DCcontactors Ue: 600 and up to 2000 V \dot{U}

Direct current		СВС Тур	oe 71							
		1250			1600			2000		
Thermal nominal current ⁽¹⁾ D0		1250			1600			2000		
connecting section		1000			1400			1600		
Nominal insulating voltage ⁽⁷⁾) V	1000			1000			1000		
Nominal operating voltage ⁽⁵⁾		600	700(2)	1000 ⁽²⁾	600	700(2)	1000 ⁽²⁾	600	700(2)	1000 ⁽²⁾
Maximum operating current		1050			1000			0000		
permanent duty		1250			1600			2000		
8 hours duty		1250			1600 2400			2000		
temporary duty without		2000 1400			1700			3500 2500		
openings on load		1250			1600			2500		
		2400			2400			3500		
temporary duty with		1700			1700			2500		
openings on load		1500			1600			2000		
continuous duty		1250			1600			2000		
Short-time current t	/	1200			1000			2000		
Short-time current t v 40°C	1s kA	41			30			65		
	5s kA				15			30		
		13.5			10.9			21		
		11.8			8.7			17.9		
		7.9			6			12		
	1 min kA	5.5			4.5			8.5		
	3 min kA	3.3			3			5		
	10 min kA				2.2			3.2		
Allowable overcurrent / time					25/1.6			25/7		
Current switch-off rating			700	1000	550	700	1000	550	700	1000
			18		23	18		23	18	
	bipolar ⁽²⁾ kA		23	19		23	19		23	19
		1500		2000	1500		2000	1500		2000
		19		8	19		8	19		8
	tetrapolar ⁽²⁾ kA			19			19			19
Current switch-on rating		25/550 V			25/550			25/550		
Poles inductance		2.94 10-7			2.3810-			2.8210		
Poles resistance		5.25 ¹⁰⁻⁵			7.19 ¹⁰⁻			4.01 ¹⁰		
Number of openings on load		<u>5.96¹⁰⁻⁵</u> 50000			7.55 ¹⁰⁻			4.72 ¹⁰ 50000	-5	
Number of openings of load		50000			150000			15000	า	
Number of openings on load under	1011 = 120071	35000			100000			10000		
	$\frac{\text{for } I - 1600 \text{ A}}{\text{for } I = 2000 \text{ A}}$	00000			50000	·		50000	5	
Mechanical endurance	millions of operations	1			1			1		
		·								
Control circuit										
Nominal voltage AC50 Hz				27 - 220 - 380 - 3						
DC	V	24 - 48 - 1	10-12	27 - 220 - 440 - 9	500 ⁽⁴⁾					
Maximum consumptions	inrush/hold									
AC*		180/14			180/14			180/14		
		380/24			380/24			380/24		
		860/50			860/50			860/50		
	4P VA	1700/88			1700/88			1700/8		
DC	1P W	165/17.5			165/17.	5		165/17		
	2P W	360/35			360/35			360/35		
		836/55			836/55	10		836/55		
Constant /D not f - l f		1600/110			1600/1	IU		1600/1		
Constant L/R rate of electroma		118/41			118/41			118/41		
Closing time ⁽⁶⁾		180			180			180		
Opening time ⁽⁶⁾		215			215			215		
	at Un ms									
botwoon commondated								<u></u>		
between commandand		60			60					
- separation of contacts	ms magnet ms				60 82			60 82		
	magnet ms				60 82 300			82 300		

(1) in open air.
(2) for applications under voltages > 600 Vdc, please consult our technical department.
(3) diodes are warranted up to an overload of 3 Un efficient.
(4) for other voltages, please consult us.
(5) if nominal operating voltage > 1000 V, please consult us.
(6) closing time is measured from the supply of the closing until the contact of main poles. Opening time is measured from the supply of the tripping coil until the separation of main poles.
(7) dielectric testing voltage related to a given insulation voltage can reach 8 kV for specificapplications.
* control circuit: Equipments commanded with alternating current are rectified⁽³⁾ and power-saved.
• The current switch-off rating of poles connected in parallel remains the same as for a singlepole.

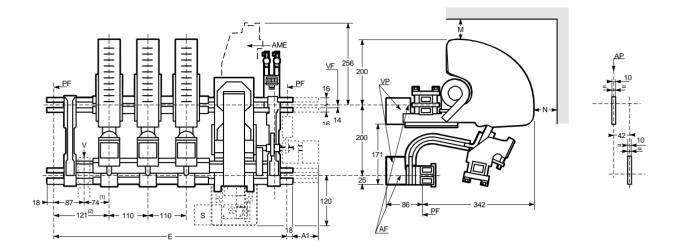
same as for a singlepole.

•Temperature factor to be applied to the poles or the current controlled according to the ambient temperature (around the contactor):

1.04	40 < t < 45℃
1.08	45 < t ♦ 50°C
1.12	50 < t ♦ 55°C
1.19	55 < t ♦ 60°C

•Factor to be applied to the contactor for poles connected in parallel, this factor already includes a safety margin:

	2 poles in parallel	3 poles in parallel
DC	I.th 1 pole x 2 x 0.8	<i>I</i> .th 1 pole x 3 x 0.75


For technical features of opening poles, see p. 70.

CB 71 1250 to 2000 A Overall dimensions CBA & CBC71 1250 to 2000 A

AC & DCcontactors CBC: Ue up to 600 VIII CBA: Ue up to 1000 V 50/60 Hz

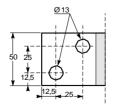
23. CBA - CBC 71 - 1250 to 2000 x.0⁽⁴⁾

1) E attachment centre-to-centre distance

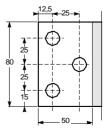
Number	Locking p	possibility
of poles	without	with
1	419 mm	459 mm
2	529 mm	569 mm
3	639 mm	679 mm
4	749 mm	789 mm

Number of TR delayed blocks	Number of M blocks ⁽³⁾				
0	2	10 mm			
0	3	48 mm			
0	4	60 mm			
0	5	100 mm			
0	6	100 mm			
1	1	21 mm			
1	2	48 mm			
1	3	70 mm			
1	4	110 mm			
1	5	110 mm			

2) Protrusion A1 AF:


	attachment axis.
_	AME : mechanical latching with single electrical release (option: double electrical release).
	AP: pole axis.
	PF: attachment plane.
	S: metallic support for "Ronis type" lock for locking the contactor at rest (lock not supplied).
	V: possible mechanical locking, attachment centre-to-centre dis- tance between two superimposed contactors: 625 mm
	VF: attachment screws.
	VP: see connecting sections.
_	 with mechanical locking. dimension without locking device. block with 2 or 3 contacts. the number of closing poles.

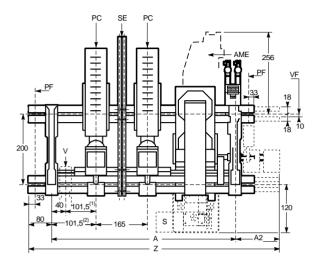
3) Insulation distance (safety perimeter)

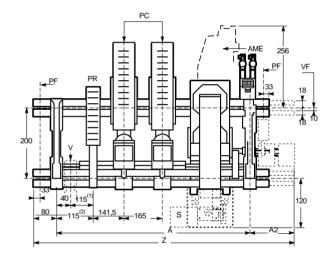

	DC								AC				
		\$ 2	20V			< 2	220V						
		Currents t	oswitch-off			Currents to	oswitch-off			22017		> 220 V	
	\$ '	15kA	🛛 25kA		🛭 😵 15kA		🛛 25kA		◆ 220V		220 V		
	1P	2P	1P	2P	1P	2P	1P	2P					
	M = N	M = N	M = N	M = N	M = N	M = N	M = N	M = N	М	N	М	N	
Metallic walls	250		400		400				150	150	180	200	
Insulated walls	120	200	120	250	120	250	120	80	80	90	100		

Connecting sections

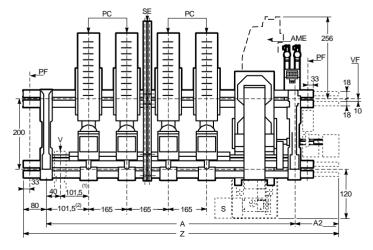
CBA - CBC1250

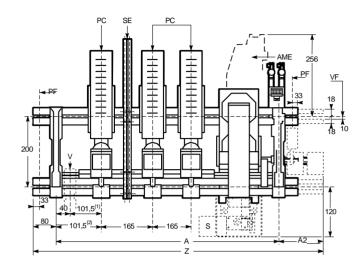
CBA - CBC 1600/2000

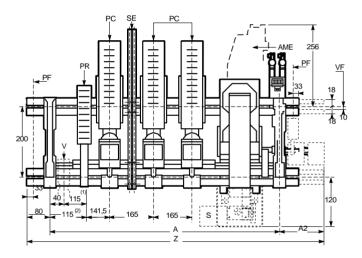



CB71 1250 to 2000 A Overall dimensions CBC71 1250 to 2000 A

DCcontactorsCBCUe: 1000 VIII **Double insulation**


CBC 71 - 1250 to 2000 2.0


CBC 71 - 1250 to 2000 2.1


CBC 71 - 1250 to 2000 4.0

CBC 71 - 1250 to 2000 3.0

AME: mechanical latching with single electrical release (option: double electrical release). PC: closing pole. PR: rupturing pole 500 A, for calibre 800 and 1000, please consult us.

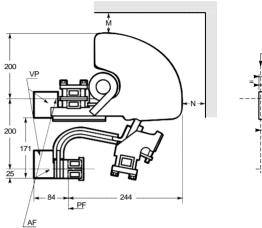
S: metallic support for "Ronis type" lock for locking the contactor at rest (lock not supplied). SE: separator.

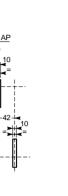
V: possible mechanical locking, attachment centre-to-centre distance between two superimposed contactors: 625 mm.

VF: attachment screws.

Z: total length of attachment barsZ = A + A2 + 80 mm. On request, lenght can be increased, in that case, please advise the position of the contactor on the bars.

(1) with possibility of mechanical latching.


(2) without possibility of mechanical latching.



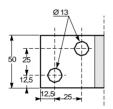
CB71 1250 to 2000 A Overall dimensions CBC71 1250 to 2000 A

DCcontactorsUe:1000 VIII **Double insulation**

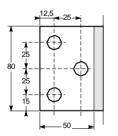
PCpole

- AF: attachment axis.
- AP: pole axis.
- PC: closing pole. PF: attachment plane.

PR: rupturing pole 500 A, for calibre 800 and 1000, please consult us.

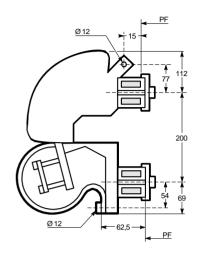

VP: see connecting sections.

Safety perimeter


	М	N
Metallic walls	180	200
Insulated walls	120	120

Connecting sections

CBC 1250



CBC 1600/2000

Nota: All these contactors have a double insulation, dielectric testing voltage: 80 kV, 50 Hz for 1 min (for other ratings, consult us).

PR pole

Number of TR delayed blocks	Number of M blocks ⁽³⁾	A2
0	2	85
0	3	128
0	4	140
0	5	180
0	6	180
1	1	101
1	2	128
1	3	150
1	4	190
1	5	190

(3) block with 2 or 3 contacts.

Type of contactor	Locking	A possibility
	without	with
CBC 71 - 1250/1600/2000 2.0	545	585
CBC71 - 1250/1600/2000 3.0	710	750
CBC71 - 1250/1600/2000 4.0	875	915
CBC 71 - 1250/1600/2000 2.1	700	740
CBC71 - 1250/1600/2000 3.1	865	905

CBC 71 1250 to 2000 x.x

x.x: 1st figure represents the number of closing poles and 2nd figure the number of opening poles.

2.0: two-pole break.

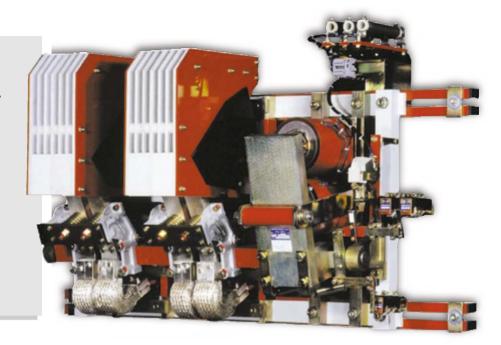
3.0: two-pole break in series on the positive polarity and single-pole break on the negative polarity.

4.0: two-pole break in series on the positive and negative polarities.

2.1: two-pole break and rupturing pole 500 A without overlapping between the poles.

3.1: two-pole break in series on the positive polarity, single-pole break on negative polarity and rupturing pole 500 A without overlapping between poles.

Poles to be connected in series by the customer.



CBC98 2560 to 5000 A and more CB 2500 to 5000 A and more

2 types for each calibre:

AC Poles CBA 54 2500, CBA 60 4000.

DC Poles CBC 54 3000, CBC 60 5000, CBC 60 5500, CBC 60 6200, CBC 60 8000.

CBC 60 5000 2.0

Standard versions

- 1 to 4 single pin main poles (2 pins for calibres 4000 and 5000) with copper contact (silver pad contact on request or for specific applications).
 Arc-blowout coil operates only during opening.
- Closing electromagnet mounted on the right side of the poles (on request, it can be mounted on the left), solid iron magnetic circuit with 2 coils.
- control circuit supplied from an AC source via a rectifier and power-saved coils (device mounted and cabled on the contactor).
- control circuit supplied from a DC source with powersaved coils (device mounted and cabled on the contactor).

Auxiliary contacts

- Two type M contact blocks with 3 contacts 3 NO + 3 NC, instant contacts or form to be specified when you order.
- Number of M type contact blocks can be increased to reach 6 blocks.

Mechanical locking

- vertical type.

Options

- Silver pad contact pins.
- NO or NC delayed block TP 86 type (this one also includes 4 free instant contacts, i.e. 3 NO + 1 NC).
- More than 6 M type contact blocks can be mounted on the contactor by mounting them below the contactor to reduce its total dimensions.
- Device to hold the contactor closed in case of untimely micro-cuts for contactors that are not equipped with a mechanical latching.
- Mechanical latching with single or double electrical release (does not change the total dimensions of the contactor).
- Self-protective device for the release coil(s).
- Metallic support for «Ronis type» lock (lock not supplied).
- Horizontal or back-to-back mechanical locking.
- Poles of different calibres and supplied with different currents.
- Poles without magnetic blowout.
- Reinforced insulation.
- Double insulation for specific applications.
- Tropical treatment n° 2.

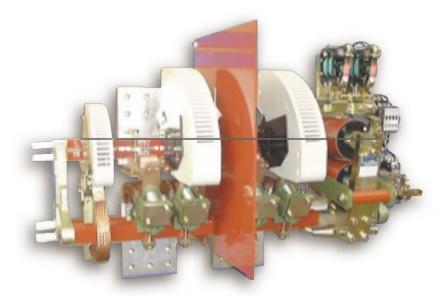
CBC98 2560 to 5000 A and more Technical featuresCBA - CBC2500 to 6200 A

CBA: AC contactors CBC: DC contactors

)	5000	EE00(2)	
C		5500 ⁽²⁾	6200 ⁽²⁾
		5500	6200
J			7000
-			
′1000 ⁽¹⁾	600/1000 ⁽¹⁾	600/1000 ⁽¹⁾	600/1000(1)
)	5000	5500 ⁽²⁾	6200 ⁽²⁾
	56	61	69
	25	27	31
			24.5
	15	16.5	18.5
	11	12	13.5
			10.5
	6.5		8
		-	6.9
	56/1	61/1	69/1
500 1000(1)	250 500 1000(1)	250 500 1000(1)	250 500 100
			55 35 35
35 35	55 35 35	55 35 35	55 35 35
00	50000	50000	50000
	1	1	1
/75	750/75	750/75	750/75
75	1950/127	1950/127	1950/127
0/127	5250/220	5250/220	5250/220
0/127			
			610/46
		960/72	960/72
	2600/145	2600/145	2600/145
0/72			
	350	350	350
			60
			85
	300	300	300
2		60 85 300	350 350 60 60 85 85 300 300

in open air
 (2) CBC 5000 A, direct current: to reach 5500 A: usual connecting section + 20 %, to reach 6200 A: usual connecting section + 40 %.
 (3) diodes are warranted up to an overload of 3 Un efficient.
 control circuit: Equipments controlled with alternating current are rectified and power-saved.
 (4) for two-pole break, please consult us.

•Factor to be applied to the contactor in case of poles connected in parallel (this factor already includes a safety margin).


`	,		1
		2 poles in parallel	3 poles in parallel
AC		I.th x 0.7	I.th x0.66
DC		I.th x 0.8	I.th x0.75

•The current switch-off rating of poles connected in parallel remains the same as the one for a single pole. For technical features of opening poles, see p. 78.

CBC: DC contactor CBA: AC contactor (consult us)

DC current														
			2560				3200				5000(8)		
Generation		9					98				98			
Thermal nominal current ⁽¹⁾		A 2					3200				5000			
connecting section		mm ² 2					3000				5000			
Nominal insulating voltage ⁽⁷	")		000				1000				1000			
Nominal operating voltage ⁽⁵	i)	V 6	600	700(2)	1000(2)		600	700(2)	1000(2)	600	700(2)	1000(2)
Short-time current														
	1s	kA 4												
	<u>5s</u>	kA 2					43				50			
	10s	kA 1					30				40			
	15s	kA 1	2,5				25,7				36			
	30s	kA 8					17,3				24			
	1 min	kA 6					12,2				17			
	3 min	kA 4					7,2				10			
	10 min	kA 3					4,6				6,5			
Current switch-off rating	voltage		000				1000				1000			
L/R = 5 ms	single pole	kA 1					10				10			
Current switch-off rating	voltage	V 5		700	1000	1500	550	700	1000	1500	550	700	1000	1500
_/R = 15 ms	single pole	kA 2		18			23	18			23	18		
	two pole ⁽²⁾	kA 3		23	19	6,6	32	23	19	6,6	32	23	19	6,6
	voltage		000	1500	1800	2000	1000	1500	1800	2000	1000	1500	1800	2000
	three pole ⁽²⁾	kA 2		19	14	8	23	19	14	8	23	19	14	8
	voltage		000		2000	3000	1000		2000	3000	1000		2000	3000
	Four pole ⁽²⁾	kA 3			19	5	30		19	5	30		19	5
Current switch-on rating	L/R= 15ms		60/550 ∖	/			30/550	V			30/550	V		
Mechanical endurance	millions of opera	ations 1					1				1			
Control circuit														
Nominal voltages AC50 Hz		1/10												
DC		V Z	24 - 48 -	110-12	7-220-3	380 - 500	(4)							
Maximum consumptions s	inrush/hold				7 - 220 - 3 7 - 220 - 4									
Maximum consumptions s AC*	inrush/hold 1P	V 2									380/24			
		V 2 VA 3	4 - 48 -				(4)				380/24 860/50			
	1P	V 2 VA 3 VA 8	24 - 48 - 880/24	110-12			(4))						
	1P 1P1500 V ⁽⁸⁾ 2P	V 2 VA 3 VA 8 VA 1	24 - 48 - 80/24 60/50 700/88	110-12			 (4) 380/24 860/50 1700/8 	8			860/50 1700/8	8		
	1P 1P1500 V ⁽⁸⁾	V 2 VA 3 VA 8 VA 1 VA 1	24 - 48 - 80/24 60/50 700/88 8000/18	110-12			⁽⁴⁾ 380/24 860/50	8 80			860/50	8 80		
AC*	1P 1P1500 V ⁽⁸⁾ 2P 2P3000 V ⁽⁹⁾ 1P	V 2 VA 3 VA 8 VA 1 VA 3 W 3	24 - 48 - 80/24 860/50 700/88 8000/18 60/35	110-12			 (4) 380/24 860/50 1700/8 3000/1 360/35 	8 80			860/50 1700/8 3000/1 360/35	8 80		
AC*	1P 1P1500 V ⁽⁸⁾ 2P 2P3000 V ⁽⁹⁾	V 2 VA 3 VA 8 VA 1 VA 3 W 3 W 8	24 - 48 - 80/24 60/50 700/88 8000/18	<u>110 - 12</u> 0			 (4) 380/24 860/50 1700/8 3000/1 	8 80			860/50 1700/8 3000/1	8 80		
AC*	1P 1P1500 V ⁽⁸⁾ 2P 2P3000 V ⁽⁹⁾ 1P 1P1500 V ⁽⁸⁾ 2P	V 2 VA 3 VA 8 VA 1 VA 3 W 3 W 3 W 3	24 - 48 - 80/24 60/50 700/88 60/35 60/35 60/35 600/11	110-12 0 0			 (4) 380/24 860/50 1700/8 3000/1 360/35 836/55 	8 80 10			860/50 1700/8 3000/1 360/35 836/55	8 80 10		
AC*	1P 1P1500 V ⁽⁸⁾ 2P 2P3000 V ⁽⁹⁾ 1P 1P1500 V ⁽⁸⁾	V 2 VA 3 VA 8 VA 1 VA 3 W 3 W 3 W 3 W 8 W 1 W 2	24 - 48 - 80/24 860/50 700/88 8000/18 860/35 836/55	110-12 0 0			 (4) 380/24 860/50 1700/8 3000/1 360/35 836/55 1600/1 	8 80 10			860/50 1700/8 3000/1 360/35 836/55 1600/1	8 80 10		
DC Constant L/R of electromagnet	1P 1P1500 V ⁽⁸⁾ 2P 2P3000 V ⁽⁹⁾ 1P 1P1500 V ⁽⁸⁾ 2P 2P3000 V ⁽⁹⁾	V 2 VA 3 VA 8 VA 1 VA 3 W 3 W 3 W 3 W 8 W 1 W 2	4 - 48 - 80/24 60/50 700/88 000/18 60/35 60/11 900/25 18/41	110-12 0 0			(4) 380/24 860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2	8 80 10			860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2	8 80 10		
AC* DC Constant L/Rof electromagnet	1P 1P1500 V(8) 2P 2P3000 V(9) 1P 1P1500 V(8) 2P 2P3000 V(9) open/close at Un	V 2 VA 3 VA 8 VA 1 VA 3 W 3 W 3 W 3 W 3 W 1 W 2 M 1 W 2 M 1 M 2 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1	4 - 48 - 80/24 60/50 700/88 6000/18 60/35 36/55 600/11 900/25 18/41 80	110-12 0 0			(4) 380/24 860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2 118/41	8 80 10			860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2 118/41	8 80 10		
AC* DC Constant L/Rofelectromagnet Closing time ⁽⁶⁾	1P 1P1500 V(8) 2P 2P3000 V(9) 1P 1P1500 V(8) 2P 2P3000 V(9) 0pen/close	V 2 VA 3 VA 8 VA 1 VA 3 W 3 W 3 W 3 W 1 W 2 W 1 W 2 Ms 1	4 - 48 - 80/24 60/50 700/88 6000/18 60/35 36/55 600/11 900/25 18/41 80	110-12 0 0			(4) 380/24 860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2 118/41 180	8 80 10			860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2 118/41 180	8 80 10		
AC*	1P 1P1500 V(8) 2P 2P3000 V(9) 1P 1P1500 V(8) 2P 2P3000 V(9) open/close at 0,85 Un at Un	V 2 VA 3 VA 8 VA 1 VA 3 W 3 W 3 W 1 W 1 W 1 W 2 ms 1 ms 1 ms 2	4 - 48 - 80/24 60/50 700/88 6000/18 60/35 36/55 600/11 900/25 18/41 80	110-12 0 0			(4) 380/24 860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2 118/41 180	8 80 10			860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2 118/41 180	8 80 10		
AC* DC Constant L/Rof electromagnet Closing time ⁽⁶⁾ Opening time at on ⁽⁶⁾	1P 1P1500 V(8) 2P 2P3000 V(9) 1P 1P1500 V(8) 2P 2P3000 V(9) open/close at 0,85 Un at Un	V 2 VA 3 VA 8 VA 1 VA 3 W 3 W 3 W 1 W 1 W 1 W 2 ms 1 ms 1 ms 2	24 - 48 - 80/24 60/50 700/88 6000/18 60/35 136/55 600/11 2900/25 18/41 80 15	110-12 0 0			(4) 380/24 860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2 118/41 180	8 80 10			860/50 1700/8 3000/1 360/35 836/55 1600/1 2900/2 118/41 180	8 80 10		

(1) in open air.
(2) for applications under voltages > 600 Vdc, please consult our technical departement.
(3) diodes are waranted up to an overload of 3 Un efficient.
(4) for other voltages, please consultus.
(5) if nominal operating voltage > 1000 V, please consult us.
(6) closing time is measured from the supply of closing until the contact of main poles. Opening time is measured from the supply of the tripping coil until the separation of main poles.
(7) dielectric testing voltage related to a given insulation voltage can reach 8 KV for specific applications.
* control circuit :
Equipements commanded with alternating currrent are rectified⁽³⁾ and power-saved.

•The current switch-off rating of poles connected in parallel remains the same as for a singlepole.

•Temperature factor to be applied to the poles or the current controlled according to the ambient temperature (around the contactor):

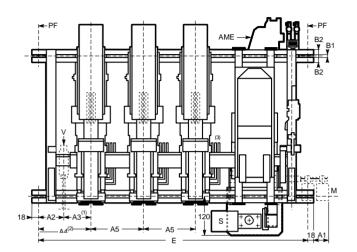
1,04	40 < t < 45°C
1,08	45 < t ♦ 50°C
1,12	50 < t ♦ 55°C
1,19	55 < t ♦ 60°C

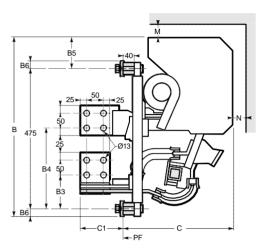
•Factor to be applied to the contactor for poles connected in parallel, this factor already includes a safety margin:

	2 poles in parallel	3 poles in parallel
DC	I.th 1 pole x 2 x 0,8	I.th 1 pole x 3 x 0,75
		•

(8) calibre 5500 A : lower section C = 15 mm. (9) 2×2 blowout poles with separator.

For technical features of opening poles, see p. 78.


CBC 98 3200 2.1, 1000V


CBC98 2560 to 5000 A and more Overall dimensions CBA - CBC2500 to 6200 A

CBA : Ue 660 V 50/60 Hz CBC: Ue 600 VÜ

24.CBA CBC 2500 - 5000

(1) with locking possibility.
 (2) dimension without locking possibility.
 (3) connecting section can face the bottom, to be specified in that case when you order.

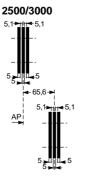
AME: possible mechanical latching (with single or double release). M: M type auxiliary contact block, form to bespecified.

 BF: attachment plane.
 S: metallicsupport for "Ronis type lock" for locking the contactor at rest (lock not supplied). V: possible mechanical locking, attachment center-to-center distance between two superimposed contactors: 700 mm.

Calibre	A2	A3	A4	A5	В	B1	B2	B3	B4	B5	B6	C	C1
2500/3000	97	100	154	180	613	14.5	16	118	275	110.5	27.5	408	146
4000/5000 ⁽¹⁾	112	143	212	228	622	16	20	127	277	115	32	427	130

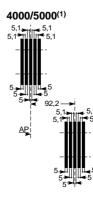
1) Attachment centre-to-centre distance E

Number of poles	2500	/3000	4000/5000 ⁽¹⁾			
-	locking	possibility	locking	possibility		
	with without		with	without		
1	536	579	628	671		
2	716	759	856	899		
3	896	939	1084	1127		
4	1116	1139	cons	sult us		


2) Protrusion A1

	tacts compared /ing shaft	2500/3000	4000/5000(1)				
above	below						
1 M block	1 M block	5	0				
2 M blocks	2 M blocks	69	41				
1 delayed block	1 or 2 M blocks	69	41				

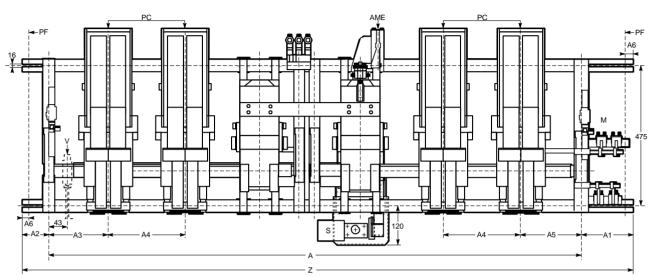
3) Insulating distance (safety perimeter)


		2500/3000				4000/5000(1)						
		ACand DC current			ACc	ACcurrent DC curre				Irrent		
	<	< 300 V 300 to 600 V		\$ 6	♦ 600V		300 V	300 to 600 V				
	М	N	М	N	M	N	M	N	M	N		
Metallic walls	200	100	400	300	160	160	400	400	do not use	•		
Insulated walls	100	65	200	150	120	120	250	250	250	250		

Connecting sections

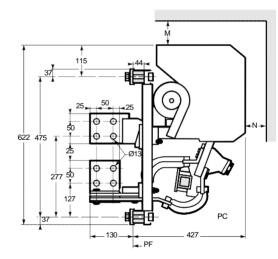
AP: poleaxis.

(1) CBC 5000 A, direct current: to reach 5500 A: usual connecting section + 20 %, to reach 6200 A: usual connecting section + 40 %. 6200 A : usual connecting section + 40 %.



CBC98 2560 to 5000 A and more Overall dimensions CBA - CBC4000 to 8000 A

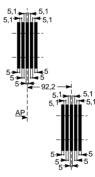
CBA : Ue up to 660 V 50/60 Hz CBC : Ue up to 1000 V \dot{U}


25. CBA - CBC 4000 to 8000

AME: possible mechanical latching (with single or double release). **AP**: pole axis.

AP: pole axis. M: M type auxiliary contact block.

PC: closing pole.



PF: attachment plane.

S: metallic support for «Ronis type lock» for locking the contactor at rest (lock not supplied). V: possible mechanical coupling, attachment centre-to-centre distance between two superimposed contactors: 700 mm.

Z: total length of the attachment bars: Z = A + A1 + A2

Connecting sections

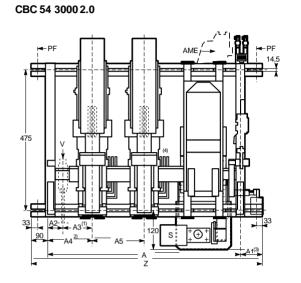
Type and calibre			A3 locking	g possibility					
of contactor	voltage of poles	of insulation	Α	A2	without	with	A4	A5	A6
CBA 60 4000 4.0	660 Vac	normal	1339 + A3	90	140	183	228	140	18
CBC60 8000 2.0	600 Vcc	normal	1339 + A3	90	140	183	228	140	18
CBC60 8800 2.0	600 Vcc	normal	1339 + A3	90	140	183	228	140	18
CBC60 9920 2.0	600 Vcc	normal	1339 + A3	90	140	183	228	140	18
CBC60 5000 2.0	1200 Vcc	double	1580 + A3	105	175	218	270	175	33
CBC60 5500 2.0	1200 Vcc	double	1580 + A3	105	175	218	270	175	33
CBC60 6200 2.0	1200 Vcc	double	1580 + A3	105	175	218	270	175	33

Insulating distance (safety perimeter)

	AC ci	urrent			DC cu	urrent		
	600 V		600 V 300 V 3			o 600 V	600 to 1200 V	
	М	Ν	М	Ν	М	Ν	М	Ν
Metallic walls	160	160	400	400	450	450	500	500
Insulated walls	120	120	250	250	250	250	350	350

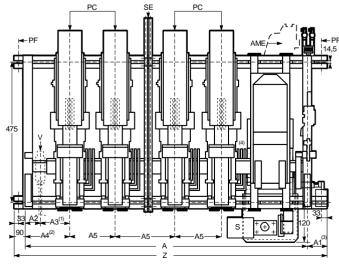
Protrusion A1⁽¹⁾

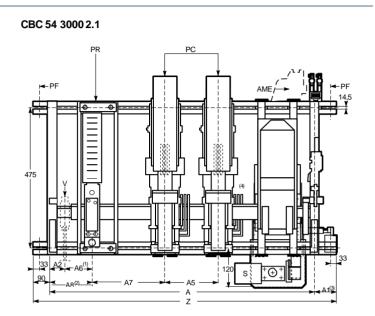
Ale ave medition	Below position	Type of insulation				
Above position	Caution: in that case, block functions are reversed	normal	double			
1 M type block	1 M type block	120	135			
2 M type blocks	2 M type blocks	155	170			
3 M type blocks	3 M type blocks	220	235			

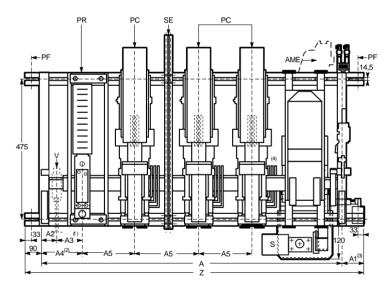

(1) dimensions can be reduced by mounting the auxiliary contact below the contactor (consult us).


CBC98 2560 to 5000 A and more **Overall dimensions CBC54 3000 A**

DC contactor Ue: 1000 V \dot{U}


26. CBC 543000




CBC 54 3000 3.0

CBC 54 3000 4.0

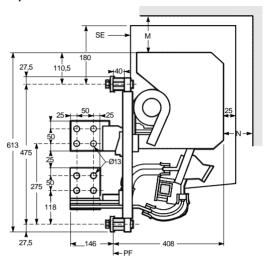
CBC 54 30003.1

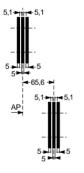
AME: possible mechanical latching (with single or double release). PC: closing pole. PR: opening pole 800 or 1000 A, for poles 400, 500 and 630 A, consult us.

S: metallic support for "Ronis type" lock for locking the contactor at rest (lock not supplied). SE: separator.

Z: total length of the attachment bars: Z = A + A1 + 90 mm.

V: possible mechanical coupling, attachment centre-to-centre distance between two superim-posed contactors: 700 mm.


(1) with locking possibility.
 (2) dimension without locking possibility.
 (3) dimensions can be reduced by mounting the auxiliary contacts below the contactor (consult us).
 (4) connecting sections can face the bottom, in that case, specify it when you order.


CBC98 2560 to 5000 A and more Overall dimensions CBC54 3000 A

DC contactor Ue: 1000 V \dot{U}

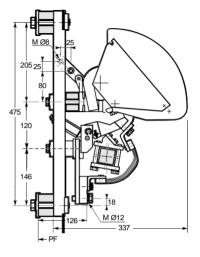
Connecting sections

AP: pole axis.

PC: closing pole.

PF: attachment plane.

PR: opening pole 800 or 1000 A, for poles 400, 500 and 630 A, consult us. **SE**: separator.


Calibre	A2	A3	A4(1)	A5	A6	A7	A8(1)
3000	40	145	142	270	143	240	140
							-

(1) dimension without locking possibility.

Protrusion A1

Above position	Below position Caution: in that case, block functions are reversed	A1
1 M type block	1 M type block	109
2 M type blocks	2 M type blocks	159

PR pole

Type of contactor		A possibility
	without	with
CBC 54 3000 2.0	782	825
CBC 54 3000 3.0	1052	1095
CBC 54 3000 4.0	1322	1365
CBC 54 3000 2.1	1020	1063
CBC 54 3000 3.1	1290	1333

Insulating distance (safety perimeter)

	М	Ν
Metallic walls	400	400
Insulated walls	350	350

Nota:

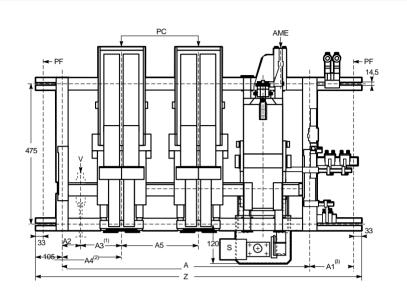
CBC 54 3000 2.0: two-pole break.

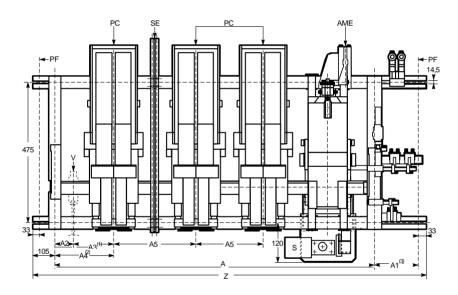
CBC 54 3000 3.0: two-pole break in series on the positive polarity and single-pole break on the negative polarity.

CBC 54 3000 4.0: two-pole break in series on the negative and positive polarity. CBC 54 3000 2.1: two-pole break and rupturing pole 800 or 1000 A without overlapping with the poles.

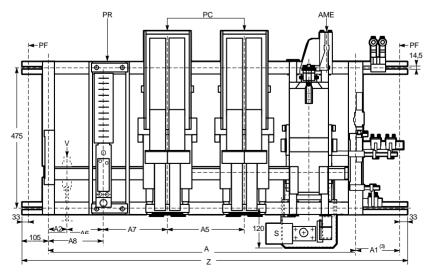
CBC 54 3000 3.1: two-pole break in series on the positive polarity, single-pole break on the negative polarity and rupturing pole 800 or 1000 A without overlapping with the poles.

All these contactors have a double insulation, dielectric testing voltage: 80 kV, 50 Hz for 1 min.

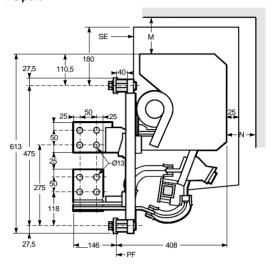

Poles to be connected in series by the customer.

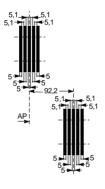

CBC98 2560 to 5000 A and more Overall dimensions CBC60 5000 A Ue : 1000 VÜ

27. CBC 60 5000


CBC 60 5000 2.0

CBC 60 50003.0


CBC 60 5000 2.1



CBC98 2560 to 5000 A and more **Overall dimensions CBC60 5000 A** Ue: 1000 V[†]

PC pole

Connecting sections

AME: possible mechanical latching (with single or double release).

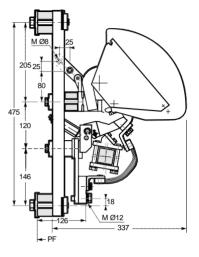
AP: pole axis.

PC: closing pole 5000 A.

- PF: attachment plane.

R: opening pole 800 or 1000 A, for pole 500 A, consult us. S: metallic support for "Ronis type" lock for locking the contactor at rest (lock not supplied). SE: separator.

V: possible mechanical coupling, attachment centre-to-centre distance between two superim-**Z**: total length of the attachment bars: Z = A + A1 + 90 mm.


(1) with locking possibility.
 (2) dimension without locking possibility.
 (3) dimensions can be reduced by mounting the auxiliary contacts below the contactor (consult us)

Calibre	A2	A3	A4(2)	A5	A6	A7	A8 (2)
5000	40	178	175	280	143	280	140

Protrusion A1

Above position	Below position Caution: in that case, block functions are reversed.	A1
1 M type block	1 M type block	135
2 M type blocks	2 M type blocks	170
3 M type blocks	3 M type blocks	235

PR pole

Type of contactor	Locking	A possibility
	without	with
CBC54 5000 2.0	850	893
CBC54 5000 3.0	1130	1173
CBC54 5000 4.0	1095	1138

Insulating distance (safety perimeter)

	М	Ν
Metallic walls	500	500
Insulated walls	350	350

Nota:

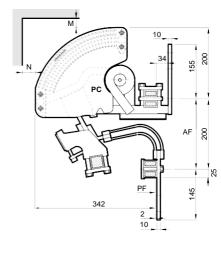
CBC 60 5000 2.0: two-pole break.

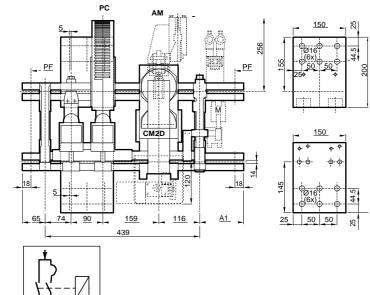
CBC 60 5000 3.0: two-pole break in series on the positive polarity and single-pole break on the negative polarity.

CBC 60 5000 2.1: two-pole break and rupturing pole 800 or 1000 A without overlapping with the poles.

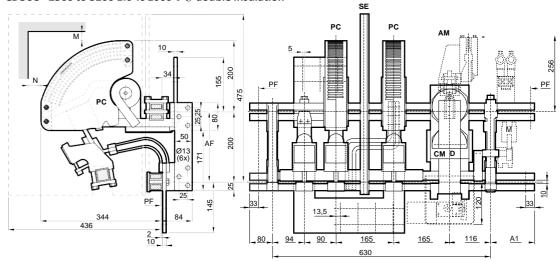
All these contactors have a double insulation, dielectric testing voltage: 80 kV, 50 Hz for 1 min.

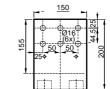
Poles to be connected in series by the customer.

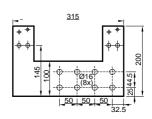


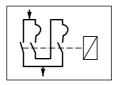


CBC : DC contactor


28. CBE 98256569narc20000


CBC 98 - 2560 to 3200 1.0 Ts 600 V Ü

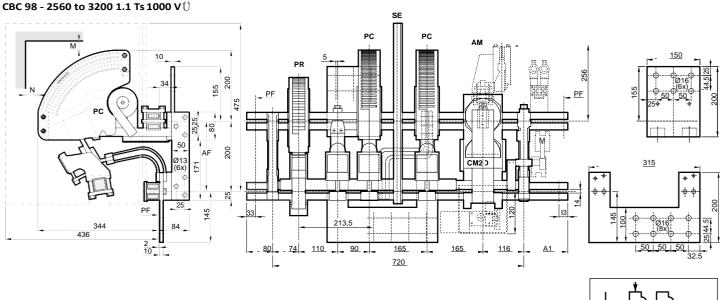


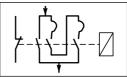


CBC 98 - 2560 to 3200 1.0 Ts 1000 V $\ddot{\mathrm{U}}$ double insulation

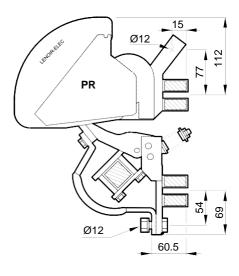
Insulation dis	stance				
voltago	metal	lic walls	insulat	ed walls	
voltage	М	N	М	N	
220	150	200	120	160	
> 220	200	240	150	200	

Protusion A1			
Number of delayed blocks	Number o type block		Double insulation
0	2	75 mm	90 mm
0	3	125 mm	140 mm
0	4	125mm	140 mm
0	5	190 mm	205 mm
0	6	190 mm	205 mm
1	1	86 mm	101 mm
1	2	125 mm	140 mm
1	3	125 mm	140 mm
1	4	190 mm	205 mm
1	5	190 mm	205 mm


AF: attachement axis. AM: mechanical latching with electrical release. CM2D: magnetic circuit M: auxiliary contact blocks, form to specify. PC: contactor pole. PF: attachment plane. SE: separator.



GB2599 195999 A 4010 PA and more Overall dimensions GBC 2560 to 500 A

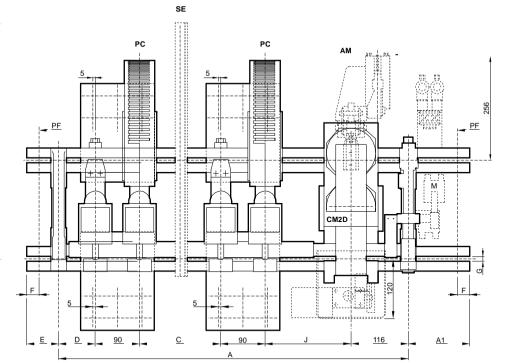

CBC : DC contactor

28. CBE 9825669narc20000

Rupturing pole 500 A (without overlapping)

voltage	metal	lic walls	insulat	ed walls
voitage	м	N	М	N
220	150	200	120	160
> 220	200	240	150	200

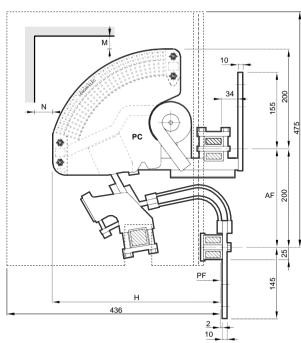
Number of delayed blocks	Number of M ⁽¹ type blocks)
1	2	90 mm
	3	140 mm
	4	140mm
	5	205 mm
	6	205 mm
	1	101 mm
	2	140 mm
	3	140 mm
	4	205 mm
	5	205 mm

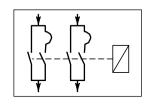

AF : attachement axis. AM : mechanical latching with electrical release. CM2D : magnetic circuit M : auxiliary contact blocks, form to specify. PC : contactor pole. PF : attachment plane. PR : rupturing pole 500 A without overlapping SE : separator.

CBC 98 2560 to 5000 A and more Overall dimensions CBC 98 2560 to 5000 A **CBC** : **DC** contactor

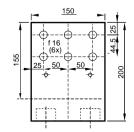
128 CBC 98 2560 and 3200

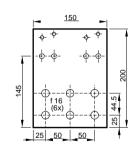
CBC 98 - 2560 to 3200 2.0 Ts 600 and 1000 V $\dot{\cup}$


	Dimensions (mm)							
	Α	С	D	Ε	F	G	н	J
Standard	615	110	74	65	18	14	342	135
Double insulation with separator	730	165	94	80	33	10	344	175

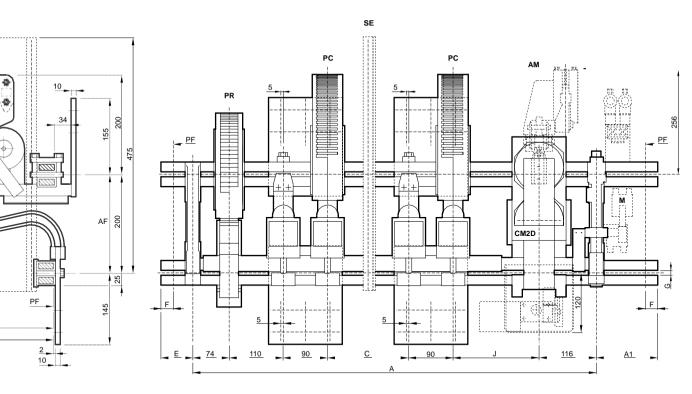

Insulation distance (safety perimeter

voltage	metall	ic walls	insulated walls		
	М	N	М	N	
220	150	200	120	160	
> 220	200	240	150	200	


Protusion A1


Number of delayed blocks	Number type bloc	Double insulation	
0	2	75 mm	90 mm
0	3	125 mm	140 mm
0	4	125mm	140 mm
0	5	190 mm	205 mm
0	6	190 mm	205 mm
1	1	86 mm	101 mm
1	2	125 mm	140 mm
1	3	125 mm	140 mm
1	4	190 mm	205 mm
1	5	190 mm	205 mm

AF: attachement axis. AM: mechanical latching with electrical release. CM2D: magnetic circuit M: auxiliary contact blocks, form to specify. DC: contact blocks PC : contactor pole. PF :attachment plane. SE : separator.

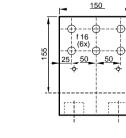

72

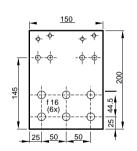
CBC 98 2560 to 5000 A and more Overall dimensions CBC 98 2560 to 5000 A **CBC** : **DC** contactor

28. CBC 98 2560 and 3200

CBC 98 - 2560 to 3200 2.1 Ts 600 and 1000 V $\dot{\bigcup}$

June of PR	


М


PC

H 436

N

AF : attachement axis. AM : mechanical latching with electrical release. CM2D : magnetic circuit M : auxiliary contact blocks, form to specify. PC : contactor pole. PF : attachment plane. PR : rupturing pole 500 A without overlapping SE : separator.

44.5

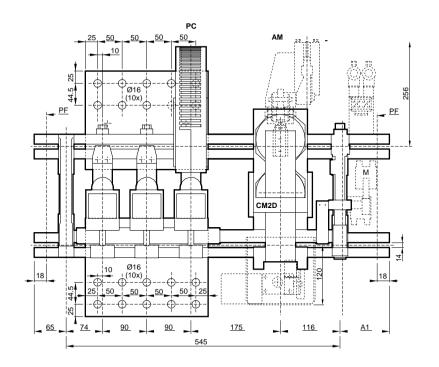
80

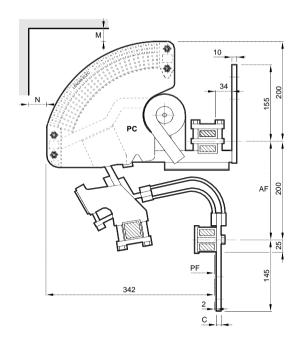
		Dimensions (mm)					
	Α	С	E	F	G	н	J
Standard	725	110	65	18	14	342	135
Double insulation with separator	820	165	80	33	10	344	175

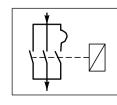
insulation distance

voltage	metall	ic walls	s insulated walls	
voltage	М	N	М	N
220	150	200	120	160
> 220	200	240	150	200

Protusion A1

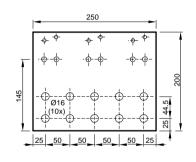

Number of delayed blocks		Number of M ⁽¹⁾ type blocks	
0	2	75 mm	90 mm
0	3	125 mm	140 mm
0	4	125mm	140 mm
0	5	190 mm	205 mm
0	6	190 mm	205 mm
1	1	86 mm	101 mm
1	2	125 mm	140 mm
1	3	125 mm	140 mm
1	4	190 mm	205 mm
1	5	190 mm	205 mm




CBC 98 2560 to 5000 A and more Overall dimensions CBC 98 2560 to 5000 A

29. CBC 98 5000

CBC 98 - 5000 1.0 Ts 600 V Ü



AF : attachement axis. AM : mechanical latching with electrical release. CM2D : magnetic circuit M : auxiliary contact blocks, form to specify. PC : contactor pole. PF :attachment plane. SE : separator.

250 44.5 25 Ø16 (10x) Ð, ¢ Æ 55

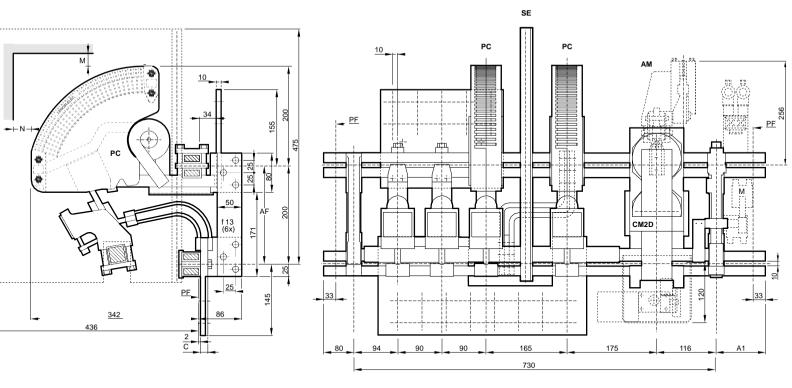
Di	sta	nce C	

Calibre 5000	mm 10	
Calibre 5500	mm 15	

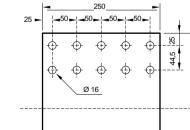
Dinsulation distance

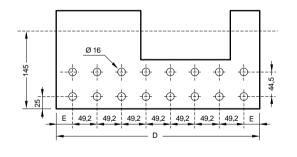
voltage	metall	ic walls	insulate	ed walls
voltage	м	N	м	N
220	150	200	120	160
> 220	200	240	150	200

Protusion A1


Number of delayed blocks	Number of M ⁽¹ type blocks	1)
0	2	75 mm
0	3	125 mm
0	4	125mm
0	5	190 mm
0	6	190 mm
1	1	86 mm
1	2	125 mm
1	3	125 mm
1	4	190 mm
1	5	190 mm

CBC 98 2560 to 5000 A and more Overall dimensions CBC 98 2560 to 5000 A


29. CBC 98 5000


CBC 98 - 5000 1.0 Ts 1000 V Ü

1

AF : attachement axis. AM : mechanical latching with electrical release. CM2D : magnetic circuit M : auxiliary contact blocks, form to specify. **PC** : contactorpole. PF :attachment plane. SE : separator

Dis	tance		с	D	Е
Cal	ibre 5000	mm	10	405	30,3
Cal	ibre 5500	mm	10	425	40,3

Insulation distance

voltage	metall	ic walls	insulate	ed walls
voitage	М	N	М	N
220	150	200	120	160
> 220	200	240	150	200

Protusion A1

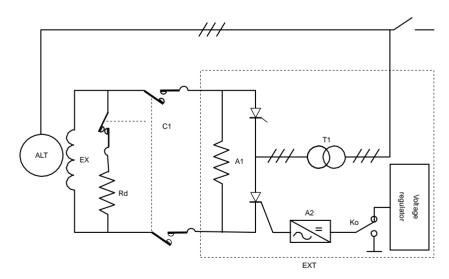
FIOLUSIONAL				
Number of delayed blocks	Number of M ⁽¹⁾ type blocks			
0	2	90 mm		
0	3	140 mm		
	4	140mm		
0 0 0 1	5	205 mm		
0	6	205 mm		
1	1	101 mm		
1	2	140 mm		
1	3	140 mm		
1	4	205 mm		
1	5	205 mm		

CBC : **DC** contactor

Field circuit breaker s (excitation contactors) from 80 to 6200 A

CEX 57 80,	
CEX 57 150,	
CEX 57 200,	
CEX 75 400,	
CEX 75 500,	
CEX 75 630,	
CEX 75 800,	
CEX 75 1000	,
CEX 71 1250	,
CEX 71 1600	,
CEX 71 2000	,
CEX 98 2560	,
CEX 54 3000	,
CEX 98 3000	,
CEX 98 5000	,
CEX 60 5000	
CEX 60 5500	,
CEX 60 6200	

Reinforced insulation


Field circuit breakers - CEX80 to 6200 A

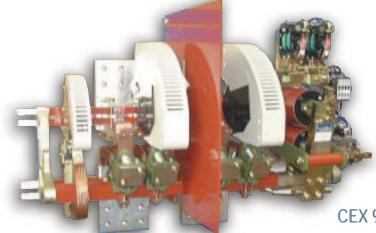
- A1 : complete thyristor bridge.
- A2 : thyristor starter.
- ALT: alternator.
- C1 : contactor for field supply. EX : inductor.
- EXT : static excitation.
- Ko : relay for regulation and release.
- Rd : discharge resistor.
- T1 : excitation transformer.

Use

Switching on and cutting off the excitation circuit of a machine, inserting a discharge resistor at the terminals of the inductor at the time of the break.

The drawing below represents the static excitation circuit of an alternator.

Double CEX


Double CEX contactors (contactors for field supply) ranging from 80 to 1000 A are equipped with a mechanical coupling whereas double CEX contactors ranging from 1250 to 5000 A are equipped with a manual release system.

Description

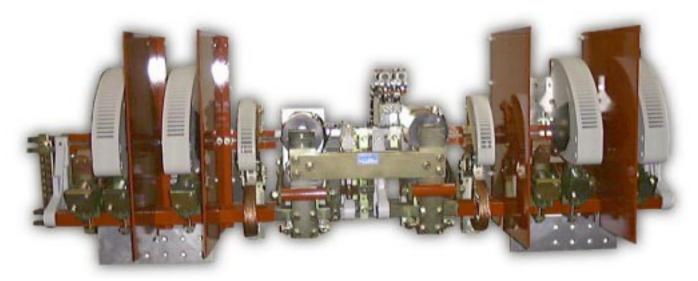
- 1, 2 or 3 magnetic arc-blow-out contactor poles:
- silver alloy contacts for calibre 80 to 5000 A.
- copper contacts (on request).
- One magnetic arc-blow-out dosing pole with overlapping . with the contactorpoles.
- One mechanical latching with single or double electrical release.
- Magnetic circuit for over-excited coil supplied with DC current:
- closing: economy resistor for calibre 80 to 200 A, delivered separately.
- opening: one NO contact connected in series with the coil opens at the same time as the contactor.
- Auxiliary contacts:
- range 80 to 200 A: 1 one M3 block type F102-Y with one NC overlap contact inserting the resistor, one NO contact switching off the tripping coil and one NO contact available.
- range 400 to 1000 A: two D-blocks, that is 2 NO + 2 NC contacts available and one M3 block type F102-Z with one overlap NC contact inserting the resistor, one NO contact switching off the tripping coil and one contact available.
- range 1250 to 5000 A: one NC arc-blow-out contact inserting the resistor, one M3 block type F102-Z with one NO contact switching off the tripping coil, 1 NO + 1 NC contacts available.
- For a maximum pole switch-off voltage of: 2000 V for range 80 to 200 A, 2200 V for range 400 to 1000 A, 2400 V for range1250 to 6200 A.

Field circuit breakers (excitation contactors) from 80 to 6200 A **Technical features**

CEX 98 3200	2.1
-------------	-----

ontactor pole			80	150	200	400	500	630	800	1000	1250	1600	2000	2560	3200	3000	5000(10	5000	5500	62
énération			55/57	55/57	55/57	75	75	75	75	75	71	71	71	98	98	54	98	60	60	60
ermal nominal current		A	80	150	200	400	500	630	800	1000	1250	1600	2000	2560	3200	3000	5000	5000	5500	62
connecting section		mm ²	35	70	95	240	300	400	500	600	1000	1400	1600	1900	3000	3000	5000	5000	6000	70
perating voltage																				_
two-pole or single-pole break		V	500	500	500	550	550	550	550	550	600	600	600	600	600	600	600	600	600	60
three-polebreak		V	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000			
2 two-pole breaks in series		V	1400	1400	1400	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	15
sulating voltage																				
two-pole or single-pole break		V	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	50
three-polebreak		V	6250	6250	6250	6250	6250	6250	6250	6250	6250	6250	6250	6250	6250	6250	6250			
2 two-pole breaks in series		V	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	75
nort-time current, t 🗞 40°C																				
1 s		kA	1	1.75	2.5	10	12	14	24	26	41	30	65	43		36				
5 s		kA	0.5	0.8	1.15	4.5	5.75	6.5	11	12.5	20	15	30	21.6	43	16	50	25	27	33
10 s		kA	0.35	0.57	0.81	3.25	4	4.5	7.8	8.5	13.5	10.9	21	15.7	30	11.5	40	20	22	24
<u>15 s</u>		kA	0,3	0.51	0.7	2.7	3.4	3.8	6.5	7	11.8	8.7	17.9	12.5	25.7	9.5	36	15	16.5	18
<u>30 s</u>		kA	0.23	0.42	0.56	1.9	2.4	2.7	4.6	5	7.9	6	12	8.6	17.3	7	24	11	12	13
1 min		kA	0.19	0.31	0.43	1.4	1.78	2	3.3	3.65	5.5	4.5	8.5	6.5	12.2	5.4	17	8.5	9	1
<u>3 min</u>		kA	0.14	0.3	0.4	0.88	1.1	1.3	2	2.3	3.3	3	5	4.3	7.2	4	10	6.5	7	8
10 min		kA	0.12	0.26	0.35	0.62	0.79	0.92	1.38	1.6	2	2.2	3.2	3.1	4.6	3.3	6.5	5.6	6	6.
aximum switch-off voltag	е																			
single-pole break		V	550	550	550	550	550	550	550	550	700	700	700	700	700	600	700	600	600	60
two-pole break		V	1000	1000	1000	1100	1100	1100	1100	1100	1200/ 1500 ⁽³⁾	1200/ 1500 ⁽³⁾	1200/ 1500 ⁽³⁾	1500	1500	1200	1500	1200	1200	12
three-pole break ⁽¹⁾		V	1500	1500	1500	1500/ 2000	1500/ 2000	1500/ 2000	1500/ 2000	1500/ 2000	1500/ 2100	1500/ 2100	1500/ 2100	1500/ 2100	1500/ 2100	1500/ 1800	1500/ 2100			
four-pole break (2 two-pole breaks in series) ⁽¹)	V	2000	2000	2000	2200	2200	2200	2200	2200	3000	3000	3000	3000	3000	2400	3000	2400	2400	24
urrent switch-off rating ur	nder a giv	/en v	oltage	, with	L/R=	15 ms	(1)													
single-pole break under	500 V	kA	0.5	1.4	3.5		8	8												
	550 V	kA				6	7	7	18	18	23	23	23	23	23	35	23	35	35	3!
	700 V	kA									15	15	15	15	15		15			
two-pole break under	500 V	kA									32	32	32	32	32	55	32	55	55	55
	700 V	kA	0.5	1.4	3.5	6	10	10	17	17	23	23	23	23	23	35	23	35	35	3
	1000 V	kA	0.25	0.7	1.75	5	7	7	10	10	19	19	19	19	19	35	19	35	35	3
	1500 V ⁽³⁾	kA									6.6	6.6	6.6	6.6	6.6		6.6			Τ
three-pole break under	1000 V	kA				6	10	10	17	17	23	23	23	23	23	35	23	35	35	3
-	1500 V	kA				5	7	7	10	10	19	19	19	19	19	24	19	24	24	24
	1800 V	kA				2	2.5	2.5	8	8	14	14	14	14	14	20	14	20	20	2
	2000 V	kA				1.5	2	2	6	6	8	8	8	8	8		8			
four-pole break	1000 V	kA									30	30	30	30	30	55	30	55	55	5
(2 two-pole breaks in series)	2000 V	kA	0.25	0.7	1.75	5	7	7	10	10	19	19	19	19	19	35	19	35	35	3!
,	3000 V	kA									5	5	5	5	5		5			

maximum switch-off voltage is directly linked to the current to cut off, as well as to the different configurations (single-pole, two-pole, three-pole breaks, 2 two-pole break in series). In onder to choose the best contactor, please consult our technical department.
 S00 A and 1000 A, on request.
 dimensions given with separator between the poles.
 one single control circuit.
 standard ratings for rupturing pole:


rupturing pole rating	CEX 98 2560/3000 type of break (number of blow- out poles)	CEX 98 5000 type of break (number od blow- out poles)	Maximum switch-off voltage (V)
500(7)	1	1	700
500(7)	2	2	1500
800		2(6)	1500
500(7)	3	3	2100
800	4	4	3000

(6) two pole break: one break on each line.
(7) 800 A, on request.
(8) average consumption under 220 V. For other voltages, consult us.
(9) average consumption under 220 V with single pole or two-pole break on a single line only. For other voltages, consult us.
(10) for 5500 A, lower section C = 15 mm.

•Temperature factor to apply to the power or to the current controlled according to the ambient temperature (around the contactor). For ranges 80 to 2000 A, 54-3000, 60-5000, 60-5500 and 60-6200 A, no derating up to 55° C.

1.04	40 < t < 45°C
1.08	45 < t� 50°C
1.12	50 < t� 55°C
1.19	55 < t� 60°C

CEX 98 3200 4.2

Contactor pole		80	150	200	400	500	630	800	1000	1250	1600	2000	2560	2200	3000	5000(10	5000	5500	6200
Génération																0000.			
Generation		55/57	55/57	55/57	75	75	75	75	75	71	71	71	98	98	54	98	60	60	60
Rupturing pole																			
Thermal nominal current	А	80	80	150	400	400	400	400	400	500	500	500	500/ 800 ⁽⁵⁾	500/ 800 ⁽⁵⁾	800(2)	500/ 800 ⁽⁵⁾	800(2)	800(2)	800(2)
Current-switch-on rating	kA	0.5	0.5	1.4	6	6	6	6	6	8	8	8	8/10	8/10	10	8/10	10	10	10
Allowable curent for 15 s	kA	0.35	0.35	0.8	3.5	3.5	3.5	3.5	3.5	5	5	5	5/9.5	5/9.5	9.5	5/9.5	9.5	9.5	9.5
Allowable curent for 0.5 s	kA	1	1	1.75	4.5	4.5	4.5	4.5	4.5	6.5	6.5	6.5	6.5/12	6.5/12	12	6.5/12	12	12	12
Resistive current switch-off rating	kA	0.25	0.25	0.7	6	6	6	6	6	8	8	8	8/10	8/10	10	8/10	10	10	10
Control circuit	.,			(1															
Standard voltages	V	24 - 48	- 110 1	25/12/	- 220-4	440													
Average consumption																			
on closing																			
single-pole or two-pole break														(-)					
inrush		43	43	77	500	500	500	800	800	500	500	500	3145 ⁽⁸⁾	3145 ⁽⁸⁾		3145 ⁽⁹⁾	2600	2600	2600
hold	W	43	43	43	30	30	30	70	70	42	42	42	225 ⁽⁸⁾	225(8)	66	225 ⁽⁹⁾	145	145	145
three-polebreak									,			-		-			-		
inrush		43	195	195	525	525	525	850	850	1600(8)		1600(8)			1100	3370 ⁽⁸⁾			
hold	W	43	74	74	35	35	35	75	75	110(8)	110(8)	110(8)			72	350(8)			
2 two-pole breaks in series																			
inrush		43(4)	86	154	1000	1000	1000	1600	1600	1000	1000	1000	3370(8)	3370(8)			5200	5200	5200
hold	W	43(4)	86	86	60	60	60	140	140	84	84	84	350(8)	350(8)	132		290	290	290
on opening				-		-		-	-	-	-	-			-		-	-	
single-pole,two-poleorthree-polebreak	W	220	220	220	220	220	220	220	220	220	220	220			220		220	220	220
2 two-pole breaks in series	W	220(4)	440	440	440	440	440	440	440	440	440	440			440		440	440	440
Opening time	ms	25	25	25	50	50	50	50	50	60	60	60	90	90	60	70	60	60	60
Closingtime	ms	180	180	180	125	125	125	125	125	300	300	300	300	300	300	300	300	300	300
Constant L/R rate of closed electromagnet	ms	140	140	40	40	40	40	40	40	40	40	40			50		50	50	50
Total break time	ms	50	50	50	70	70	70	70	70	85	85	85	90	90	85	90	85	85	85
 maximum switch-off voltage is directly linked to the cu off, as well as to the different configurations (single-pr 				pole br		break or	each lir	ne.							y to the p emperate	ower or			

(4) meaning witch-or vortage is arrectly linked to the current to cut off, as well as to the different configurations (single-pole, two-pole, three-pole breaks, 2 two-pole break in series). In onder to choose the best contactor, please consult our technical department.
(2) 500 A and 1000 A, on request.
(3) dimensions given with separator between the poles.
(4) one single control circuit.
(5) standard ratings for rupturing pole :

rupturing pole rating	CEX 98 2560/3000 type of break (number of blow- out poles)	CEX 98 5000 type of break (number od blow- out poles)	Maximum switch-off voltage (V)
500(7)	1	1	700
500(7)	2	2	1500
800		2(6)	1500
500(7)	3	3	2100
800	4	4	3000

(a) two point software to a contract of react min.
(b) two points of request.
(c) average consumption under 220 V. For other voltages, consult us.
(c) average consumption under 220 V with single pole or two-pole break on a single line only. For other voltages, consult us.
(10) for 5500 A, lower section C = 15 mm.

according to the ambient temperature (around the contactor). For ranges 80 to 2000 A, 54-3000, 60-5000, 60-5500 and 60-6200 A, no derating up to 55° C.

1.04	40 < t < 45°C
1.08	45 < t ♦ 50°C
1.12	50 < t ♦ 55°C
1.19	55 < t� 60°C

0

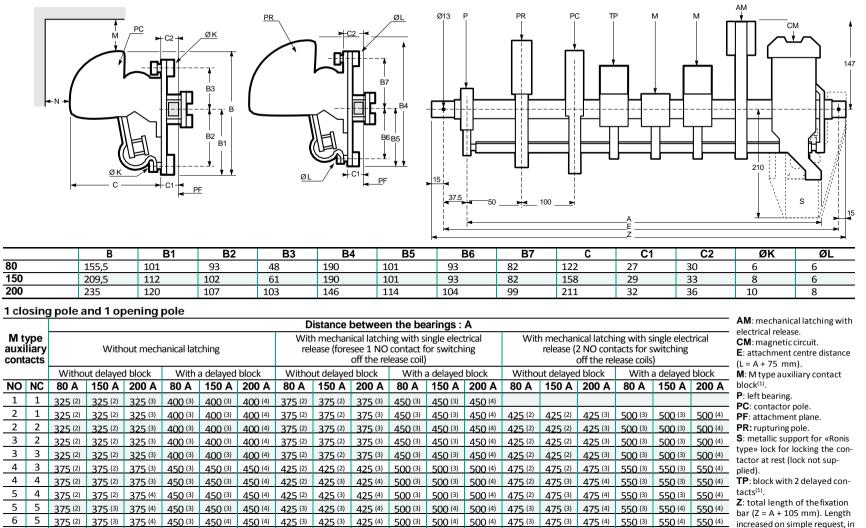
Ì

СЛ

*_*i ∞

õ

1


___ G õ

τ.

200

_

Single-pole break

525 ⁽³⁾ 550⁽⁴⁾ 550⁽⁴⁾ 525 ⁽³⁾ 525 ⁽⁴⁾ 525 ⁽⁴⁾ 600 ⁽⁴⁾ 600 ⁽⁴⁾ 600 ⁽⁴⁾ (1) form to be specified

525 (3)

525 (3)

525 (3)

525 (3)

475 (3) 475 (3)

525 (3)

525 (3)

525 (3)

525 (3)

525 (3)

525 (4)

(2) magnetic circuit n°63 (power-saved version available on request).

475 (4) 550 (4) 550 (4) 550 (4)

525 (4) 600 (4) 600 (4) 600 (4)

525⁽⁴⁾ 600⁽⁴⁾ 600⁽⁴⁾ 600⁽⁴⁾

525 (4) 600 (4) 600 (4) 600 (4)

525 (4) 600 (4) 600 (4) 600 (4)

600 (4) 600 (4) 600 (4)

 (3) magnetic circuit n°64.
 (4) magnetic circuit n°64, power-saved version (Foresee one NC contact for inserting the economy resistor).

that case, please advise the

har

position of the contactor on the

Control circuit: for connection drawings, see p. 144.

M type

375 (3)

425 (3)

425 (3)

425 (3)

425 (3)

425 (3)

425 (3)

375 ⁽⁴⁾

425 (4)

425 (4)

425 (4)

425 (4)

425⁽⁴⁾

425 (3) 425 (4) 500 (4)

450⁽³⁾

500 (3)

500 (4)

500 ⁽⁴⁾

500 (4)

500⁽⁴⁾

450 (4)

500 (4)

500 (4)

500 (4)

500 (4)

500 (4)

500 (4)

450 (4)

500 (4)

500 (4)

500⁽⁴⁾

500 (4)

500 (4)

500 (4)

375 ⁽³⁾

425 (3)

425 (3)

425 (3)

425 (3)

425 (3)

52

80

6

7

7 7

8 7

8 8

9 8

9 9

6

6

Insulating distance (safety perimeter) motallicuvalle

425 ⁽³⁾

475 (3)

475 ⁽³⁾

475 ⁽³⁾

475 (3)

475 (3)

425 ⁽³⁾

475 (3)

475 (3)

475 ⁽³⁾

475 (3)

475 (3)

475 (3) 475 (4) 475 (4) 550 (4)

-		meta	licwalls			insulat	edwalls	;
Calibre	ŵ : M	250 V N	> 2 M	250 V N	ŵ : M	250 V N	Ň	250 V N
80	55	45	110	80	45	35	90	65
150	105	75	125	95	85	60	105	75
200	165	135	235	185	130	105	185	145

425 ⁽⁴⁾

475 (4)

475 (4)

475 (4)

500 (4)

550 (4)

550 (4)

550⁽⁴⁾

475 (4) **550** (4)

475⁽⁴⁾ 550⁽⁴⁾

500 (4) 500 (4)

550⁽⁴⁾

550 (4)

550 (4)

550⁽⁴⁾

550 (4)

550 (4)

550 ⁽⁴⁾

550⁽⁴⁾

550 ⁽⁴⁾

550 (4)

w -

CEX

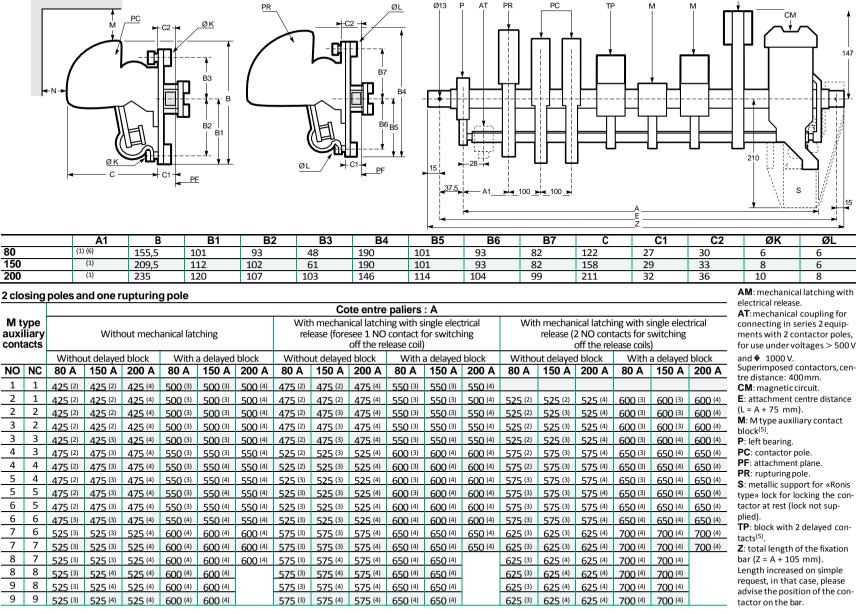
СЛ

~i 80

.

.

50


.

200

N

٠.

Two-pole break Ue : 500 VU

(1) U 500 V: A1 = 50 mm (without AT) U > 500 V and ♦ 1000 V: A1 = 78 mm

(space available for AT), PLEASE CONSULT US for total overall dimensions.

(2) magnetic circuit n° 63 (power-saved version available on request).

- (3) magnetic circuit n° 64.
- (4) magnetic circuit n° 64, power-saved version (Foresee one NC contact for inserting the economy resistor)

(5) forme to be specified.

(6) for contactor mounted on a single bar, PLEASE CONSULT US for a total overall dimensions: $A1 = 50 \, \text{mm}$

Control circuit: for connection drawings, see p. 144.

80

80

150

200

2

3

3

4

4

5

5

6

6

7

7

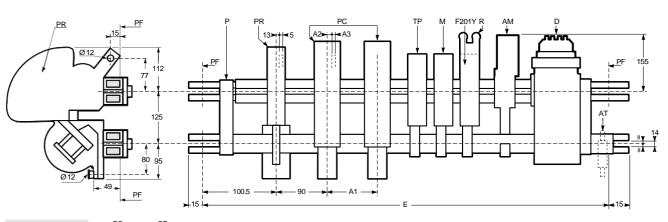
8

8

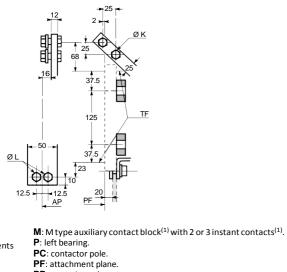
9

9

Insulating distance (safety perimeter)


Stanto	meta	llicwalls	.er)		insulat	ed walls	;	
\$ 2	250 V	> 2	250 V	•	250 V	> 2	250 V	
м	Ν	Μ	Ν	М	Ν	Μ	Ν	
55	45	110	80	45	35	90	65	
105	75	125	95	85	60	105	75	
165	135	235	185	130	105	185	145	
	 3 55 105 	metal	metallic walls ♦ 250 V > 2 M M M 55 45 110 105 75 125	♦ 250 ∨ > 250 ∨ M N M N 55 45 110 80 105 75 125 95	metallicwalls ◆ 250 ∨ > 250 ∨ ◆ 2 M N M M 55 45 110 80 45 105 75 125 95 85	metallicwalls insulat ◆ 250∨ > 250∨ ◆ 250∨ M N M N 55 45 110 80 45 35 105 75 125 95 85 60	metallicwalls insulated walls ♦ 250V > 250V ♦ 250V > 2 M N M N M 55 45 110 80 45 35 90 105 75 125 95 85 60 105	metallicwalls insulated walls ♦ 250V > 250V ♦ 250V > 250V M N M N M N 55 45 110 80 45 35 90 65 105 75 125 95 85 60 105 75

Field circuit breakers (excitation contactors) from 80 to 6200 A Overall dimensions CEX 75 400 to 1000 A


Single-pole break and two-pole break Ue : 500 $\,$ VU

32. CEX 75 400 - 500 - 630 - 800 - 1000

PC <mark>∢ PF</mark> C1 Ŵ øк Ă B4 B3 125 **B**2 <-C2 С PF

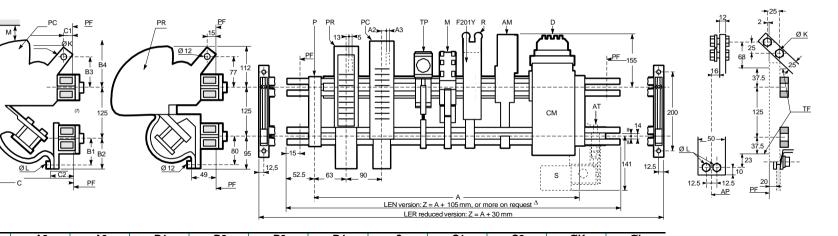
Connecting section for closing pole 800 and 1000 A

AM: mechanical latching with electrical release. **AT**: mechanical coupling for connecting in series 2 equipements with 2 contactor poles, for use under voltages > 500 V and ♦ 1000 V.

Superimposed contactors, centre distance: 500 mm.

D: block with two instant contacts (1NO + 1NF).

- - PR: rupturing pole.
 - R: economy resistor.


 \mathbf{TP} : block with 2 delayed contacts⁽¹⁾.

	A1	A2	A3	B1	B2	B3	B4	C	C1	C2	ØK	ØL
400	90	13	5	65	80	77	112	256	15	30	12	12
500/630	100	12	8	65	80	77	112	256	15	30	12	12
800/1000	110	16	12	60	70	(2)	186	291	(2)	0	8	8

	At	tachmentce	entredistar	nceE	Insulating distance (safety perimeter)										
	1	1 pole 2 pol		oles		meta	licwalls		insulated walls						
	1M	1M+1TD	M+1TP 1M 1M+1TP		\$ 3	300 V	> 300 V		♦ 300 V		> 300 V				
		INITI	TIVI	TIALLTL	м	N	M	N	м	N	м	N			
400	575	650	650	725	100	30	100	40	40	30	40	30			
500/630	575	650	675	750	150	50	150	70	60	40	70	60			
800/1000	600	675	700	775	75	75	155	75	75	75	155	75			

(1) form to be specified.
 (2) see connecting section.

Control circuit: for connection drawings, see p. 144.

	A2	A3	B1	B2	B3	B4	C	C1	C2	ØK	ØL
400	13	5	65	80	77	112	256	15	30	12	12
500/630	12	8	65	80	77	112	256	15	30	12	12
800/1000	16	12	60	70	(7)	186	291	(7)	0	8	8

1 closing pole and 1 openig pole

82

				poingpo				Dist	tance bet	tween the	e bearing	s: A						gle or double electrical release.
a	A type uxiliar ntacts	/		out mecha latching ⁽⁴⁾	inical	with sin	nechanical I gle electrica ut delayed I	al release	with dou	nechanical l uble electric ut delayed l	al release	with sin	nechanical l gle electrica delayed bl	al release	with dou	nechanical uble electric delayed bl	cal release	AT: mechanical coupling for con- necting in series 2 equipments with 2 contactor poles, for use under
N	D N) 4	00	500/630	800/1000	400	500/630	800/1000	400	500/630	800/1000	400	500/630	800/1000	400	500/630	800/1000	voltages > 500 V and � 1000 V.
1	. 2	37	' 5 (2)	375 ⁽²⁾	400 (3)	450 ⁽²⁾	450 ⁽²⁾	475 ⁽³⁾				525 ⁽²⁾	525 (2)	550 ⁽³⁾				Superimposed contactors, centre
2	. 1	37	'5 (2)	375 ⁽²⁾	400 ⁽³⁾	450 ⁽²⁾	450 ⁽²⁾	475 ⁽³⁾	525 ⁽²⁾	525 (2)	550 ⁽³⁾	525 (2)	525 (2)	550 ⁽³⁾	600 ⁽²⁾	600 ⁽²⁾	625 ⁽³⁾	distance: 500 mm. CM: magnetic circuit. This one can
3	2	40	0 (2)	425 (2)	450 ⁽³⁾	500 (2)	500 (2)	525 ⁽³⁾	575 ⁽²⁾	575 ⁽²⁾	600 ⁽³⁾	575 ⁽²⁾	575 (2)	600 ⁽³⁾	650 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	be mounted on the left side of the
3	3	40	0 (2)	425 (2)	450 ⁽³⁾	500 (2)	500 (2)	525 ⁽³⁾	575 ⁽²⁾	575 ⁽²⁾	600 ⁽³⁾	575 ⁽²⁾	575 (2)	600 ⁽³⁾	650 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	contactor without any information
4	. 3	40	0 (2)	425 ⁽²⁾	450 ⁽³⁾	500 (2)	500 ⁽²⁾	525 ⁽³⁾	575 ⁽²⁾	575 ⁽²⁾	600 ⁽³⁾	575 ⁽²⁾	575 (2)	600 ⁽³⁾	650 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	it is always mounted on the right
4	. 4	40	0 (2)	425 (2)	450 ⁽³⁾	500 (2)	500 (2)	525 ⁽³⁾	575 ⁽²⁾	575 ⁽²⁾	600 ⁽³⁾	575 ⁽²⁾	575 (2)	600 ⁽³⁾	650 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	side of the contactor.
5		40	O (2)	425 (2)	450 ⁽³⁾	500 ⁽²⁾	500 (2)	525 ⁽³⁾	575 ⁽²⁾	575 ⁽²⁾	600 ⁽³⁾	575 ⁽²⁾	575 (2)	600 ⁽³⁾	650 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	D: block with 2 instant contacts on
5		45	0 (2)	475 ⁽²⁾	500 (3)	550 ⁽²⁾	550 ⁽²⁾	575 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	625 ⁽²⁾	625 (2)	650 ⁽³⁾	700 ⁽²⁾	700 (2)	725 ⁽³⁾	standard version; 2 additional
6		45	0 (2)	475 ⁽²⁾	500 (3)	550 ⁽²⁾	550 ⁽²⁾	575 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	625 ⁽²⁾	625 (2)	650 ⁽³⁾	700 ⁽²⁾	700 (2)	725 ⁽³⁾	blocks can be added on request.
6	6	45	0 (2)	475 ⁽²⁾	500 (3)	550 ⁽²⁾	550 ⁽²⁾	575 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	625 ⁽²⁾	625 (2)	650 ⁽³⁾	700 ⁽²⁾	700 (2)	725 ⁽³⁾	M: M type auxiliary contact block ⁽¹⁾ .
7		45	0 (2)	475 ⁽²⁾	500 (3)	550 ⁽²⁾	550 ⁽²⁾	575 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	700 (2)	700 ⁽²⁾	725 ⁽³⁾	P : left bearing.
7		45	0 (2)	475 ⁽²⁾	500 (3)	550 ⁽²⁾	550 ⁽²⁾	575 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	700 ⁽²⁾	700 ⁽²⁾	725 ⁽³⁾	PC: contactorpole.
8			0 (2)	475 ⁽²⁾	500 (3)	550 ⁽²⁾	550 ⁽²⁾	575 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	700 ⁽²⁾	700 ⁽²⁾	725 ⁽³⁾	PF : attachment plane.
8		50	0 (2)	525 (2)	550 ⁽³⁾	600 (2)	600 ⁽²⁾	625 ⁽³⁾	675 ⁽²⁾	675 ⁽²⁾	700 (3)	675 ⁽²⁾	675 ⁽²⁾	700 (3)	750 ⁽²⁾	750 ⁽²⁾	775 ⁽³⁾	PR: rupturing pole 400
9		50	O (2)	525 (2)	550 ⁽³⁾	600 (2)	600 (2)	625 ⁽³⁾	675 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	675 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	750 ⁽²⁾	750 ⁽²⁾	775 ⁽³⁾	A.R: economy resistor.
9	-		O (2)	525 (2)	550 ⁽³⁾	600 (2)	600 ⁽²⁾	625 ⁽³⁾	675 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	675 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	750 ⁽²⁾	750 ⁽²⁾	775 ⁽³⁾	TP : block with 2 delayed con-
1		30	O (2)	525 (2)	500 ⁽³⁾	600 (2)	600 (2)	625 ⁽³⁾	675 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	675 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	750 ⁽²⁾	750 ⁽²⁾	775 ⁽³⁾	tacts ⁽¹⁾ . S : metallic support for «Ronis
1		50	0 (2)	525 (2)	550 ⁽³⁾	600 (2)	600 ⁽²⁾	625 ⁽³⁾	675 ⁽²⁾	675 ⁽²⁾	700 (3)	675 ⁽²⁾	675 ⁽²⁾	700 (3)	750 ⁽²⁾	750 ⁽²⁾	775 ⁽³⁾	type» lock for locking the contac-
1			0 (2)	525 (2)	550 ⁽³⁾	600 (2)	600 ⁽²⁾	625 ⁽³⁾	675 ⁽²⁾	675 ⁽²⁾	700 (3)	675 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	750 (2)	750 ⁽²⁾	775 ⁽³⁾	tor at rest (lock not supplied).
1		55	0 (2)	575 ⁽²⁾	600 ⁽³⁾	650 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	725 ⁽²⁾	725 ⁽²⁾	750 (3)	725 (2)	725 ⁽²⁾	750 (3)	800 (2)	800 (2)	825 ⁽³⁾	Δ in that case, please advise the
1		- 	0 (2)	575 ⁽²⁾	600 ⁽³⁾	650 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	725 ⁽²⁾	725 ⁽²⁾	750 (3)	725 (2)	725 (2)	750 ⁽³⁾	800 (2)	800 (2)	825 ⁽³⁾	position of the contactor on the
1	2 1	2 55	0 (2)	575 ⁽²⁾	600 ⁽³⁾	650 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	725 ⁽²⁾	725 ⁽²⁾	750 (3)	725 ⁽²⁾	725 (2)	750 ⁽³⁾	800 (2)	800 (2)	825 ⁽³⁾	bars.

-	
-	
-	
_	AM: mechanical latching with sin-
_	gle or double electrical release.
	AT: mechanical coupling for con-
	necting inseries 2 equipments with
_	2 contactor poles, for use under
)	voltages > 500 V and \clubsuit 1000 V.
	Superimposed contactors, centre
	distance: 500 mm.
	CM : magnetic circuit. This one can
	be mounted on the left side of the contactor without any information,
	it is always mounted on the right
-	side of the contactor.
-	D : block with 2 instant contacts on
-	standard version; 2 additional
-	blocks can be added on request.
_	M : M type auxiliary contact
_	block ⁽¹⁾ .
_	P: left bearing.
_	PC: contactorpole.
_	PF : attachment plane.
_	PR: rupturing pole 400
	A. R: economy resistor.
_	TP : block with 2 delayed con-
	tacts ⁽¹⁾ .
	S: metallic support for «Ronis
	type» lock for locking the contac-
	tor at rest (lock not supplied).
-	Δ in that case, please advise the

75 400 to 1000 1.1

3

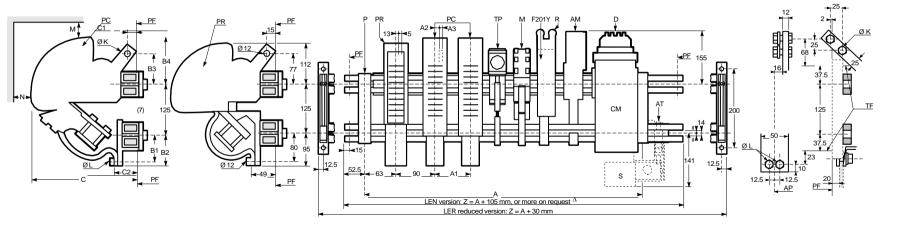
CEX

Field circuit breakers (excitation contactors) from 80 to 6200 A Overall dimensions CEX 75 400 to 1000 A Single-pole break Ue : 500 VU

ת ג נו

Insulating distance (safety perimeter)

		meta	licwalls			insulat	ted walls	
Calibre	∲ З М	00 V N	> 3 M	00 V N	ф З М	00V N	> 3 M	00 V N
400	100	30	100	40	40	30	40	30
500/630	150	50	150	70	60	40	70	60
800/1000	75	75	155	75	75	75	155	75


(1) form to be specified.

magnetic circuit n° 16 R, power-saved version.
 magnetic circuit n° 18, power-saved version.

(4) forese 1 overlapping NC for inserting the economy resistor(s).
 (5) foresee 1 overlapping NC for inserting the economy resistor(s) and 1 NO for switching off the

- release coil (6) foresee 1 overlapping NC for inserting the economy resistor(s) and 2 NO for switching off the
- release coil. (7) detailed connections for pole 800 and 1000 A.

(8) should you require other versions, please consult our technical department. Control circuit: for connecting drawings, see p. 144.

	A1	A2	A3	B1	B2	B3	B4	C	C1	C2	ØK	ØL
400	90	13	5	65	80	77	112	256	15	30	12	12
500/630	100	12	8	65	80	77	112	256	15	30	12	12
800/1000	110	16	12	60	70	(7)	186	291	(7)	0	8	8

2 closing poles and 1 opening pole

83

M +	bistance between the bearings: A															
auxi	liary act ⁽⁸⁾	With	nout mecha latching ⁽⁴⁾		with sin	With mechanical latching with single electrical release without delayed block ⁽⁵⁾			With mechanical latching with double electrical release without delayed block ⁽⁶⁾			nechanical gle electrica delayed bl	al release	with dou	nechanical uble electric delayed bl	al release
NO	NC	400	500/630	800/1000			800/1000	400		800/1000	400		800/1000		500/630	
1	2	450 ⁽²⁾	475 ⁽²⁾	550 ⁽³⁾	550 ⁽²⁾	550 ⁽²⁾	600 ⁽³⁾				600 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾			
2	1	450 ⁽²⁾	475 ⁽²⁾	550 ⁽³⁾	550 ⁽²⁾	550 ⁽²⁾	600 ⁽³⁾	625 ⁽²⁾	625 ⁽²⁾	675 ⁽³⁾	600 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	675 ⁽²⁾	700 ⁽²⁾	725 ⁽³⁾
3	2	500 (2)	525 (2)	550 ⁽³⁾	575 (2)	600 ⁽²⁾	625 ⁽³⁾	650 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	650 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	725 ⁽²⁾	750 ⁽²⁾	775 ⁽³⁾
3	3	500 (2)	525 (2)	550 ⁽³⁾	575 (2)	600 ⁽²⁾	625 ⁽³⁾	650 ⁽²⁾	675 ⁽²⁾	700 (3)	650 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	725 ⁽²⁾	750 ⁽²⁾	775 ⁽³⁾
4	3	500 (2)	525 (2)	550 ⁽³⁾	575 ⁽²⁾	600 ⁽²⁾	625 ⁽³⁾	650 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	650 ⁽²⁾	675 ⁽²⁾	700 ⁽³⁾	725 ⁽²⁾	750 ⁽²⁾	775 ⁽³⁾
4	4	500 (2)	525 (2)	550 ⁽³⁾	575 ⁽²⁾	600 ⁽²⁾	625 ⁽³⁾	650 ⁽²⁾	675 ⁽²⁾	700 (3)	650 ⁽²⁾	675 ⁽³⁾	700 ⁽³⁾	725 ⁽²⁾	750 (3)	775 ⁽³⁾
5	4	500 (2)	525 (2)	550 ⁽³⁾	575 ⁽²⁾	600 ⁽²⁾	625 ⁽³⁾	650 ⁽²⁾	675 ⁽²⁾	700 (3)	650 ⁽²⁾	675 ⁽³⁾	700 (3)	725 ⁽²⁾	750 (3)	775 ⁽³⁾
5	5	550 (2)	575 ⁽²⁾	600 ⁽³⁾	625 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	700 (2)	725 (2)	750 ⁽³⁾	700 ⁽²⁾	725 ⁽³⁾	750 ⁽³⁾	775 ⁽²⁾	800 (3)	825 ⁽³⁾
6	5	550 (2)	575 ⁽²⁾	600 ⁽³⁾	625 (2)	650 ⁽²⁾	675 ⁽³⁾	700 (2)	725 (2)	750 (3)	700 (2)	725 ⁽³⁾	750 ⁽³⁾	775 (2)	800 (3)	825 ⁽³⁾
6	6	550 (2)	575 ⁽²⁾	600 ⁽³⁾	625 (2)	650 ⁽²⁾	675 ⁽³⁾	700 (2)	725 (2)	750 (3)	700 (2)	725 ⁽³⁾	750 ⁽³⁾	775 ⁽²⁾	800 (3)	825 ⁽³⁾
7	6	550 (2)	575 ⁽²⁾	600 ⁽³⁾	625 (2)	650 ⁽²⁾	675 ⁽³⁾	700 (2)	725 (2)	750 (3)	700 (2)	725 ⁽³⁾	750 ⁽³⁾	775 (2)	800 (3)	825 ⁽³⁾
7	7	550 (2)	575 ⁽²⁾	600 ⁽³⁾	625 ⁽²⁾	650 ⁽²⁾	675 ⁽³⁾	700 (2)	725 (2)	750 ⁽³⁾	700 ⁽²⁾	725 ⁽³⁾	750 ⁽³⁾	775 ⁽²⁾	800 (3)	825 ⁽³⁾
8	7	550 (2)	575 ⁽²⁾	600 ⁽³⁾	625 (2)	650 ⁽²⁾	675 ⁽³⁾	700 (2)	725 (2)	750 (3)	700 (2)	725 ⁽³⁾	750 ⁽³⁾	775 (2)	800 (3)	825 ⁽³⁾
8	8	600 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	675 ⁽²⁾	700 (2)	725 ⁽³⁾	750 ⁽²⁾	775 ⁽²⁾	800 (3)	750 ⁽²⁾	775 ⁽³⁾	800 (3)	825 ⁽²⁾	850 ⁽³⁾	875 ⁽³⁾
9	8	600 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	675 ⁽²⁾	700 (2)	725 ⁽³⁾	750 ⁽²⁾	775 ⁽²⁾	800 (3)	750 ⁽²⁾	775 ⁽³⁾	800 (3)	825 (2)	850 ⁽³⁾	875 ⁽³⁾
9	9	600 ⁽²⁾	625 ⁽²⁾	650 ⁽³⁾	675 ⁽²⁾	725 ⁽³⁾	725 ⁽³⁾	750 ⁽²⁾	800 (3)	800 (3)	750 ⁽²⁾	775 ⁽³⁾	800 (3)	825 (2)	850 ⁽³⁾	875 ⁽³⁾
10	9	600 ⁽²⁾	650 ⁽³⁾	650 ⁽³⁾	675 ⁽²⁾	725 ⁽³⁾	725 ⁽³⁾	750 (2)	800 (3)	800 (3)	750 ⁽²⁾	775 ⁽³⁾	800 (3)	825 ⁽²⁾	850 ⁽³⁾	875 ⁽³⁾
10	10	600 ⁽²⁾	650 ⁽³⁾	650 ⁽³⁾	675 ⁽²⁾	725 ⁽³⁾	725 (3)	750 ⁽²⁾	800 (3)	800 (3)	750 ⁽²⁾	775 ⁽²⁾	800 (3)	825 ⁽²⁾	850 ⁽³⁾	875 ⁽³⁾
11	10	600 ⁽²⁾	650 ⁽³⁾	650 ⁽³⁾	675 ⁽²⁾	725 ⁽³⁾	725 ⁽³⁾	750 ⁽²⁾	800 (3)	800 (3)	750 ⁽²⁾	775 ⁽³⁾	800 (3)	825 (2)	850 ⁽³⁾	875 ⁽³⁾
11	11	650 ⁽²⁾	700 (3)	700 (3)	725 (2)	775 ⁽³⁾	775 ⁽³⁾	800 (2)	850 ⁽³⁾	850 ⁽³⁾	800 (2)	825 ⁽³⁾	850 ⁽³⁾	875 ⁽²⁾	900 (3)	925 (3)
12	11	650 ⁽²⁾	700 (3)	700 (3)	725 (2)	775 ⁽³⁾	775 ⁽³⁾	800 (2)	850 ⁽³⁾	850 ⁽³⁾	800 (2)	825 ⁽³⁾	850 ⁽³⁾	875 ⁽²⁾	900 (3)	925 (3)
12	12	650 ⁽²⁾	700 (3)	700 (3)	725 (2)	775 ⁽³⁾	775 (3)	800 (2)	850 ⁽³⁾	850 ⁽³⁾	800 (2)	825 ⁽³⁾	850 ⁽³⁾	875 ⁽²⁾	900 (3)	925 (3)

AM: mechanical latching with sinlouble electrical release. echanical coupling for conin series 2 equipments contactor poles, for use voltages > 500 V and 00 V. Superimposed contac-entre distance: 500 mm. agnetic circuit. This one can unted on the left side of the tor without any informais always mounted on the ide of the contactor. ck with 2 instant contacts on rd version: 2 additional can be added on request. type auxiliary contact bearing. ntactorpole. achment plane. pturing pole 400 conomy resistor. ock with 2 delayed conallic support for «Ronis lock for locking the contacest (lock not supplied). at case, please advise the on of the contactor on the

Two-pole break Ue : 500 VU

ני נו

34.

CEX

75

400 to

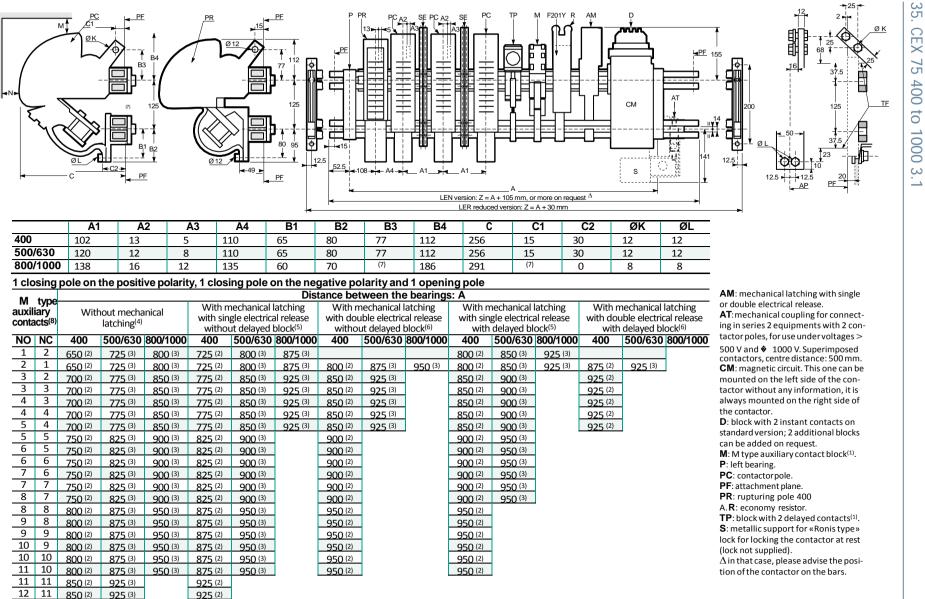
1000

2.1

Insulating distance (safety perimeter)

		meta	llicwalls			insulat	ted walls	
Calibre	∲ 3 M	00 V N	> 3 M	00 V N	∲ 3 M	00 V	> 3 M	00 V N
	IVI	IN	IVI	IN	IVI	IN	IVI	IN
400	100	30	100	40	40	30	40	30
500/630	150	50	150	70	60	40	70	60
800/1000	75	75	155	75	75	75	155	75

(1) form to be specified.


(2) magnetic circuit n° 16 R, power-saved version.

(3) magnetic circuit n° 18, power-saved version.

(4) foresee 1 overlapping NC for inserting the economy resistor(s).
 (5) foresee 1 overlapping NC for inserting the economy resistor(s) and 1 NO for switching off the

- release coil
- (6) foresee 1 overlapping NC for inserting the economy resistor(s) and 2 NO for switching off the release coil.

Checked Connections for pole 800 and 1000 A.
 (8) should you require other versions, please consult our technical department. Control circuit: for connecting drawings, see p. 144.

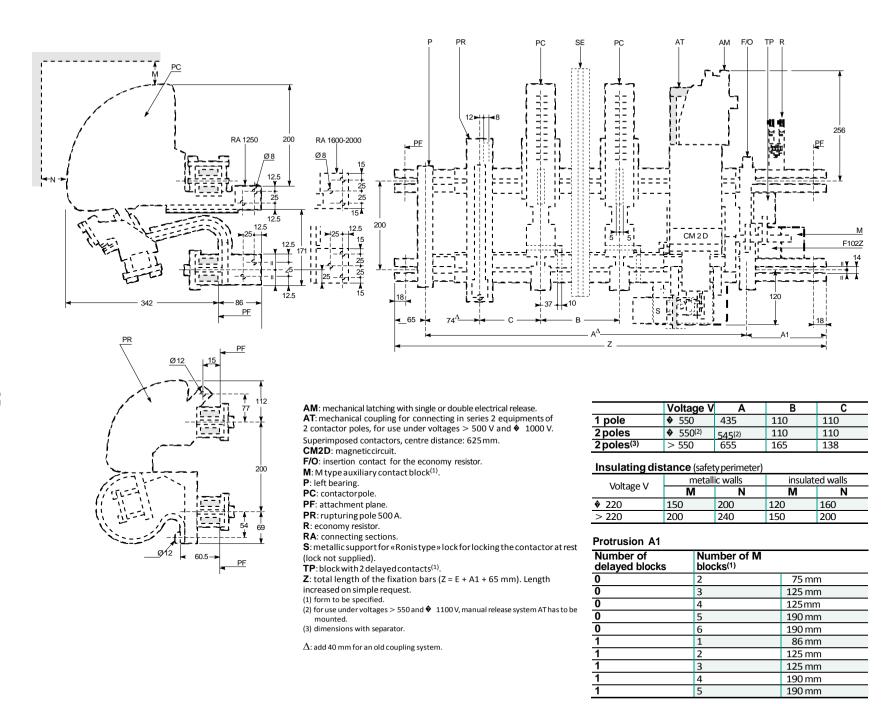
Insulating distance (safety perimeter)

925 (2)

	meta	allicwalls	ins	ulated walls
Calibre	>	300 V		> 300 V
	M	N	M	N
400	100	40	40	30
500/630	150	70	70	60
800/1000	155	75	155	75

form to be specified.

(2) magnetic circuit n° 16 R, power-saved version.


- (3) magnetic circuit n° 18, power-saved version.
- (4) foresee 1 overlapping NC for inserting the economy resistor(s).
- (5) foresee 1 overlapping NC for inserting the economy resistor(s) and 1 NO for switching off the release coil
- (6) foresee 1 overlapping NC for inserting the economy resistor(s) and 2 NO for switching off the release coil
- (7) detailed connections for pole 800 and 1000 A.
- (8) should you require other versions, please consult our technical department.
- Control circuit: for connecting drawings, see p. 144.

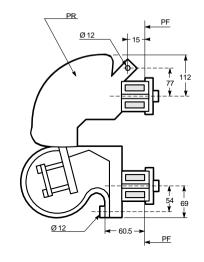
Three-pole break Ue : 1000 VÜ

12 12

850⁽²⁾ 925⁽³⁾

Field circuit breakers (excitation contactors) from 80 to 6200 A Overall dimensions CEX 75 400 to 1000

CEX 71 1250 - 1600 - 2000


36

Field circuit breakers (excitation contactors) from 80 to 6200 A Overall dimensions CEX 71 1250 to 2000 A

Single-pole and two-pole break

PR PC SE PC F/O TP PC SE АМ R **m** Ýr 12 256 RA 1600-2000 PF PF Ø8 15 25 25 25 -Ē -0-15 12,5 200 м Ш ▶+25 CM 2 D 15 F102Z 25 25 • • 14 V V ሑ 25 18 120 18 4 820 z

342

PC

RA 1250

25

-86

PF

200

Ø8

12.5

25

12.5

12.5

12.5

12.5

M

┝╾

98

CM2D: magnetic circuit. F/O: insertion contact for the economy resistor. M: M type auxiliary contact block⁽¹⁾. **P**: left bearing. PC: contactorpole. **PF**: attachment plane. **PR**: rupturing pole 500 A. R: economy resistor.

AM: mechanical latching with single or double electrical release.

RA: connecting sections.

S: metallic support for «Ronis type» lock for locking the contactor at

rest(locknotsupplied).

SE: separator.

Z: total length of the fixation bars (Z = 885 + A1).

(1) form to be specified.

Insulating distance (safety perimeter)

	M	N
metallicwalls	200	240
insulated walls	150	200

Protrusion A1

Number of M blocks ⁽¹⁾	
1	75 mm
2	75 mm
3	125 mm
4	125 mm
5	175 mm
6	175 mm

Field circuit breakers (excitation contactors) from 80 to 6200 A Overall dimensions CEX 71 1250 and 2000 A

Three-pole break Ue : 1000 VU

37.

. CEX 71

1250 -

1600 - 2000 3.1

PR AM PC P Å PC сήг PF PF , PF B5 B3 **....** R4 Ø 13 12 🛏 F/O -N-25 ¢ 50 CM \oplus 25 475 TP ₩-50-+25 25 ф Φ 50 B2 即 ŀ R1 Μ 6 0 ۸1 120 A2 _A3 C1 PF 120 Ð s 18 **AM**: mechanical latching with single or double electrical release. AP: pole axis. **PR**: 2 rupturing poles 500 A.

AF: DUIE data.
CM: magnetic circuit.
F/O: insertion contact for the economy resistor.
M: M type auxiliary contact block⁽¹⁾.

PC: contactorpole. PF: attachment plane.

	E	E	Δ1	A2	A3	B1	B2	B3	B4	B5	C	C1
	1pole	2 poles	~ '	~~	73	51	52	55		55	Ŭ	U
3000	930	1110	149	144	180	118	250	110.5	14.5	136	408	146
5000	1000	1230	164	169	230	127	252	119.5	16	141	427	130

3000

5.1**→**

5.

51

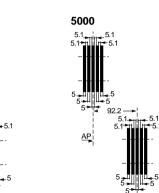
AP

Insulating distance (safety perimeter)											
	Veltage V metallic walls insulated walls										
	Voltage V	М	N	М	N						
3000	300	200	100	100	65						
	> 300	400	300	200	100						
5000	300	400	400	250	250						
	> 300	-	-	250	250						

Connecting sections

- 5.1

65,6→

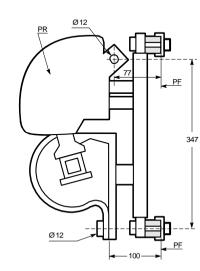

5.1-

TP: block with 2 delayed contacts⁽¹⁾.

R: economy resistor.

(lock not supplied).

(1) form to be specified.



S: metallic support for «Ronis type» lock for locking the contactor at rest

CEX 54 3000 Ť 60 5000 \sim N

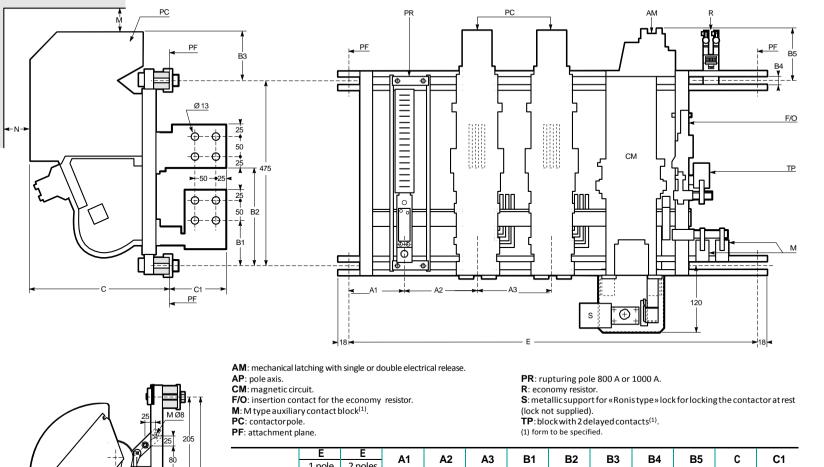
30 00 00

Single-pole and two-pole break Ue : 600 V $\overset{\frown}{U}$

39.

CEX

54


3000

to

60

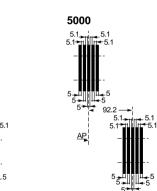
5000

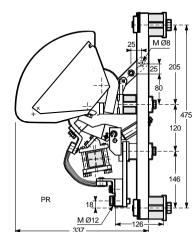
2.1

	E	E	۸1	A2	٨2	P1	B2	D2	B4	B5	C	C1
	1 pole	2 poles	AI	A2	AJ	ы	62	БЭ	D4	ЪJ	U U	
3000	815	995	165	190	180	118	250	110.5	14.5	136	408	146
5000	885	1115	180	215	230	127	252	119.5	16	141	427	130

3000

5.1≻ılu≺ 5.1


5+111 5+11


- 65,6-

5.1→ AP

	Insulating	distance (safety perir	neter)		
16		VoltagoV	metall	ic walls	insulate	ed walls
		Voltage V	М	N	М	N
¥_¥	3000	\$ 300	200	100	100	65
		> 300	400	300	200	100
	5000	\$ 300	400	400	250	250
		> 300	-	-	250	250

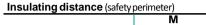
Connecting sections

40.

CEX

54

3000


) 3.1

Overall dimensions CEX 54 3000 A

PR SF PC SF PC SF PC SF AM SE м PC ΠÝΠ 4 PF PF PF B5 B3 R4 Ð --+-÷. Ø13 F/O 25 ¢ 50 ____ CM Ð ₼ TP 475 ► 50 · -25 25 Á φ 0 50 B2 卽 凹 回 B1 М Ó C - C1 PF 43 Α2 120 Ð s ▶ 18

> AM: mechanical latching with single or double electrical release. AP: pole axis. CM: magnetic circuit. F/O: insertion contact for the economy resistor. M: M type auxiliary contact block⁽¹⁾. PC: contactorpole. PF: attachment plane.

	E	A1	A2	A3	B1	B2	B3	B4	B5	C	C1
3000	1474	201	226	216	118	250	110.5	14.5	136	408	146

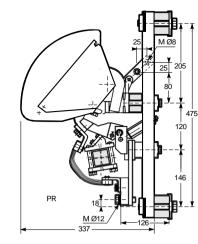
	IVI	N
metallic walls	400	300
insulated walls	250	150

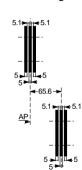
Connecting sections

PR: rupturing pole 800 A or 1000 A.

TP: block with 2 delayed contacts⁽¹⁾.

S: metallic support for «Ronis type» lock for locking the contactor at rest

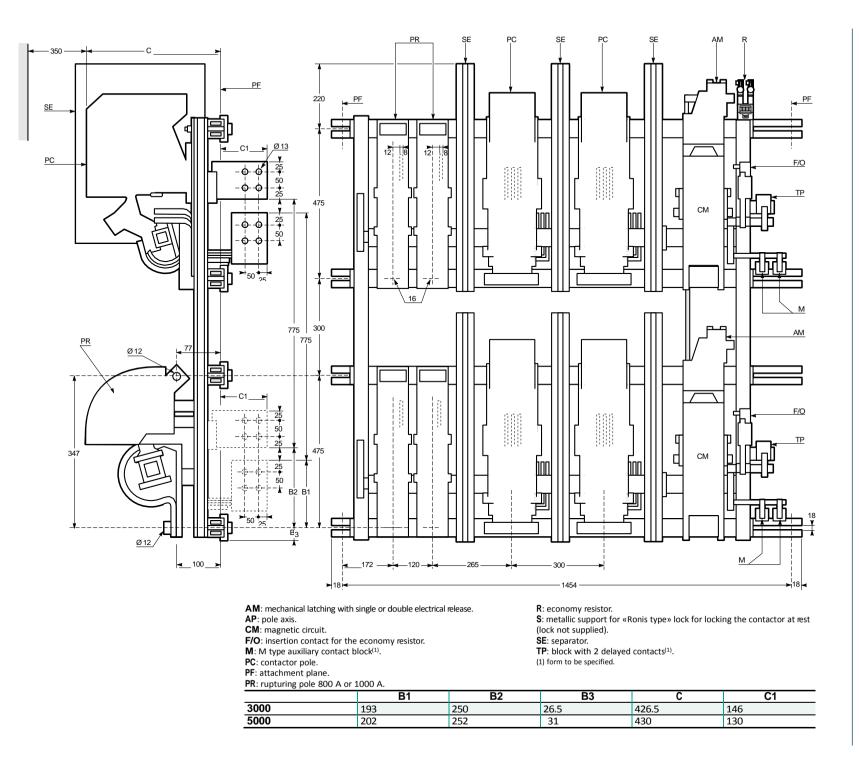

R: economy resistor.


(lock not supplied).

form to be specified.

SE: separator.

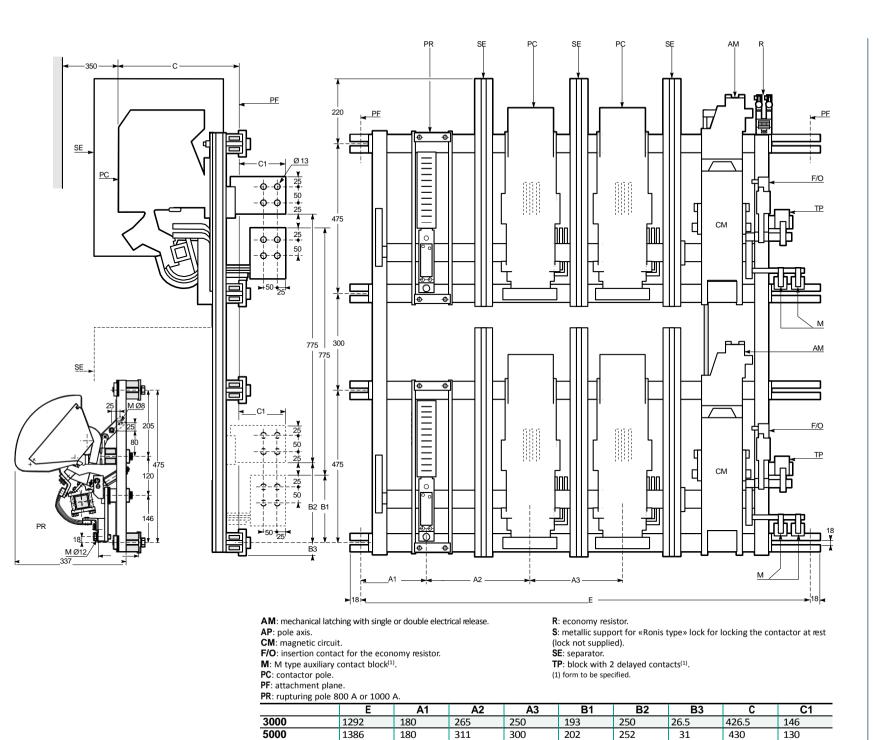
Field circuit breakers (excitation contactors) from 80 to 6200 A Three-pole break Ue : 1000 VU



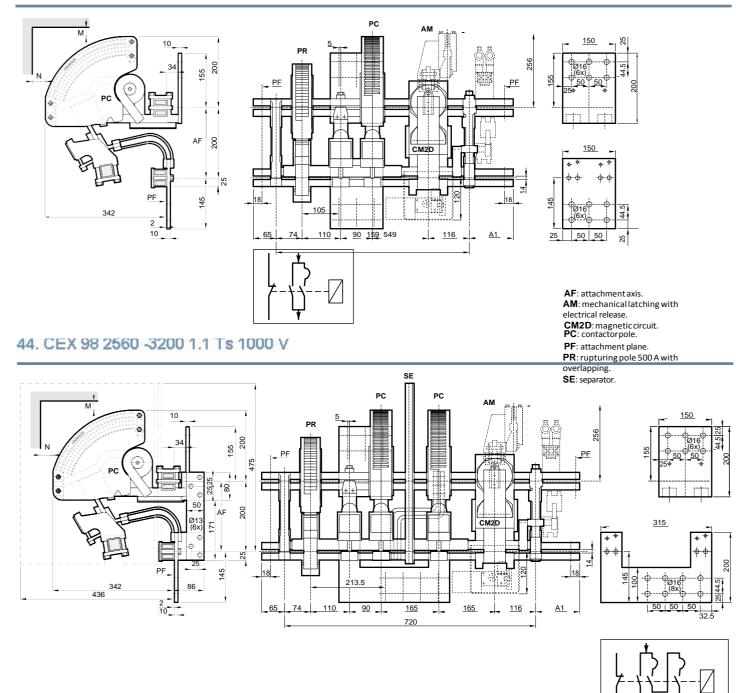
Field circuit breakers (excitation contactors) from 80 to 6200 A **Overall dimensions** CEX 3000 to 5000 A

2 two-pole break in series Ue : 1500 V $\overset{\frown}{U}$

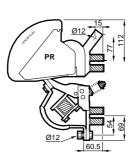
41. Double CEX 54 - 3000 -60 5000



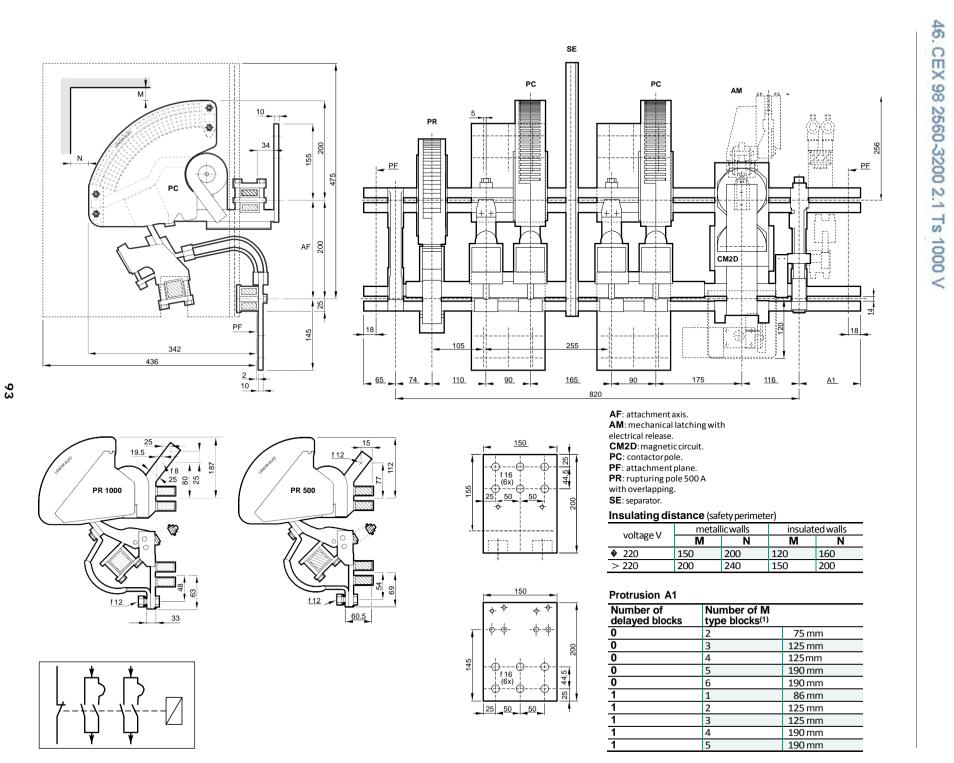
Field circuit breakers (excitation contactors) from 80 to 6200 A Overall dimensions CEX 54 3000 to 60 5000 A


Four-pole break Ue : 1500 VU

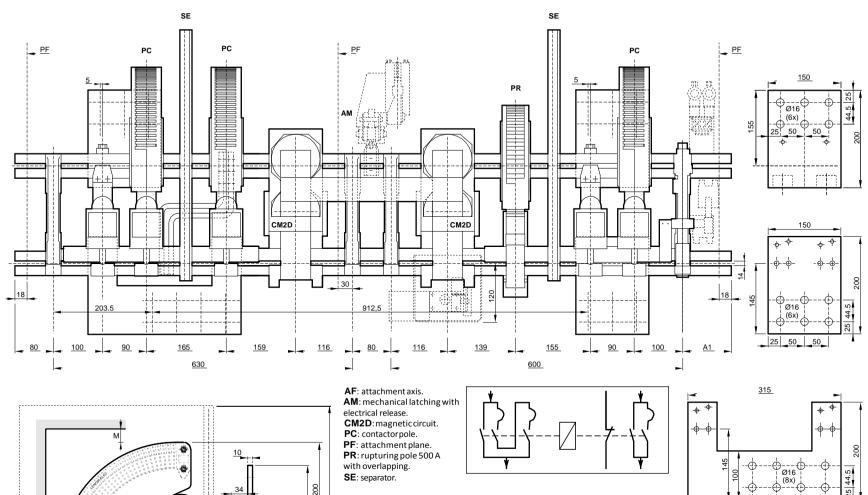
42. Double) CEX 54 - 3000 -. 60) 5000

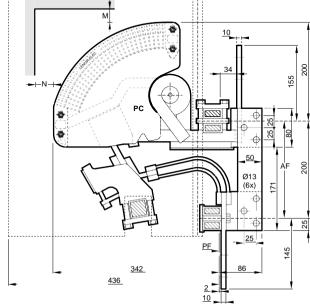


43. CEX 98 2560-3200 1.1 Ts 600 V

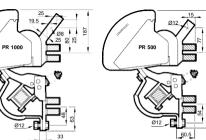

45. Rupturing pole 500 A with overlapping

Insulating distance (safety perimeter)					
voltage V	metall	ic walls	insulated walls		
voltage V	М	N	М	N	
2 20	150	200	120	160	
> 220	200	240	150	200	


Protrusion A1		
Number of delayed blocks	Number of M type blocks ⁽¹⁾	
0	2	75 mm
0	3	125 mm
0	4	125mm
0	5	190 mm
0	6	190 mm
1	1	86 mm
1	2	125 mm
1	3	125 mm
1	4	190 mm
1	5	190 mm

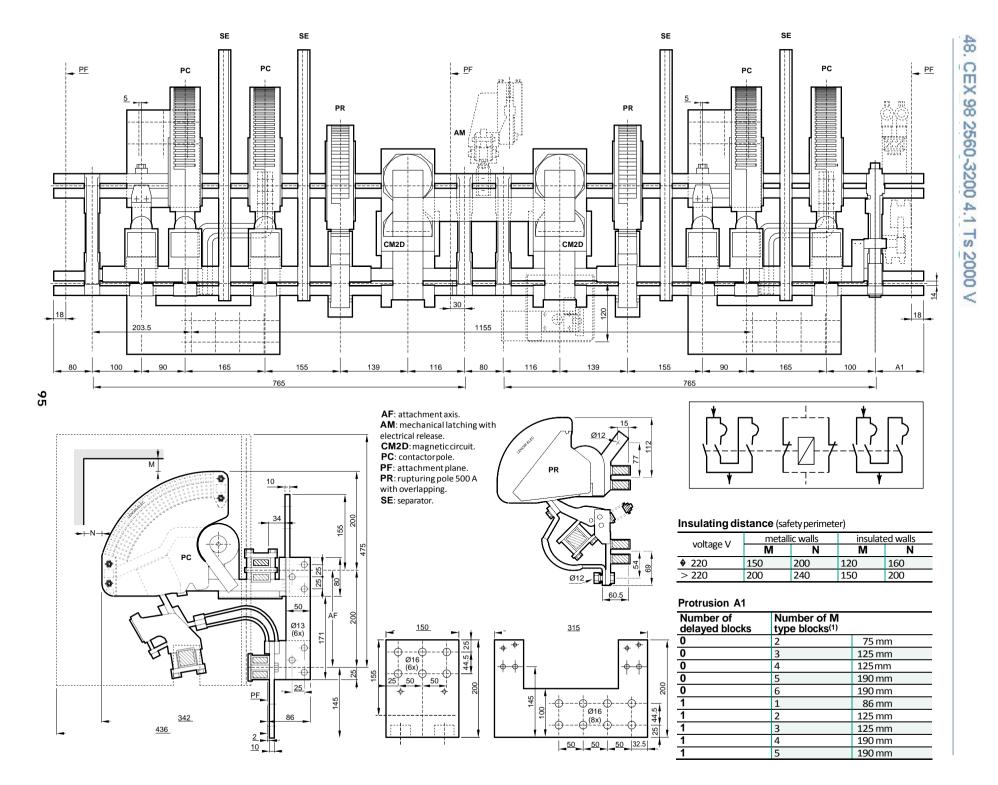


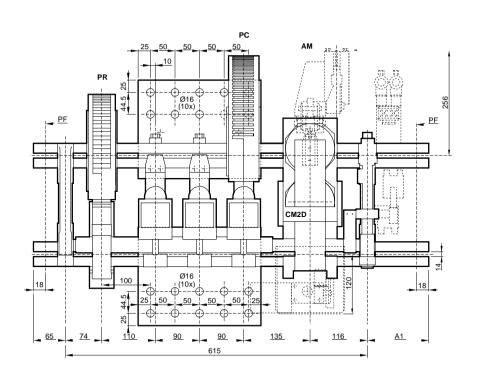


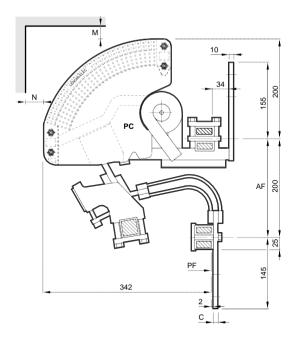


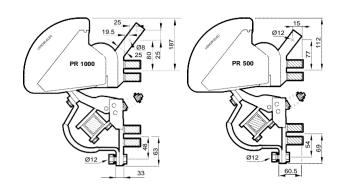
Insulating distance (safety perimeter)

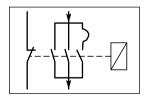
voltagaV	metal	licwalls	insulated walls		
voltage V	М	N	М	N	
220	150	200	120	160	
> 220	200	240	150	200	

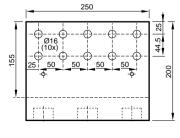

Number of lelayed blocks	Number of M type blocks ⁽¹⁾	
0	2	75 mm
)	3	125 mm
)	4	125mm
)	5	190 mm
)	6	190 mm
	1	86 mm
	2	125 mm
	3	125 mm
	4	190 mm
	5	190 mm

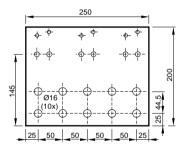












AF: attachment axis. AM: mechanical latching with electrical release. **CM2D**: magnetic circuit. **PC**: contactorpole. PF: attachment plane. PR: rupturing pole 500 A with overlapping.

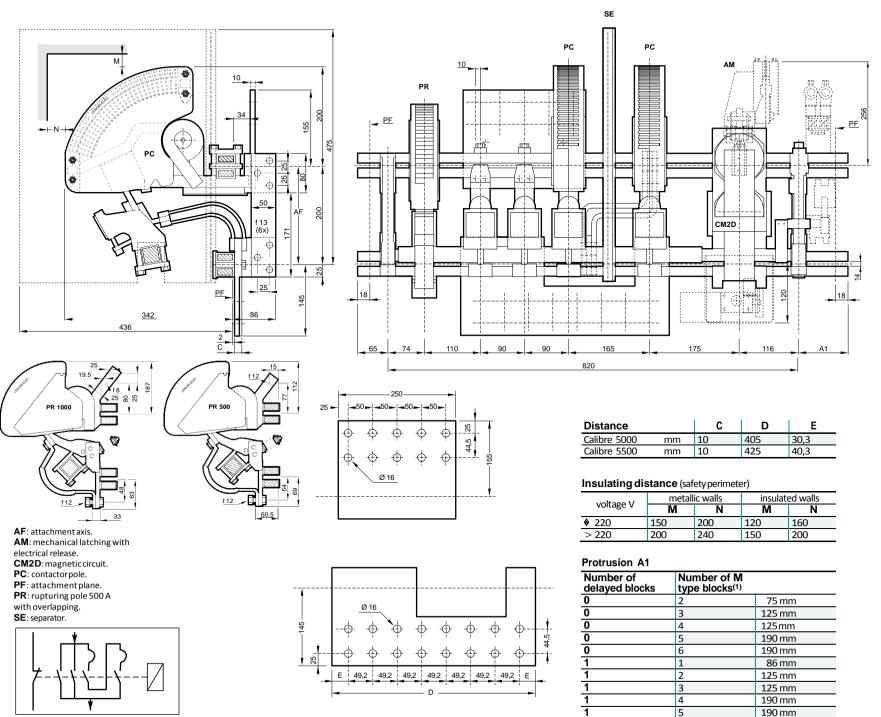
Distance	С

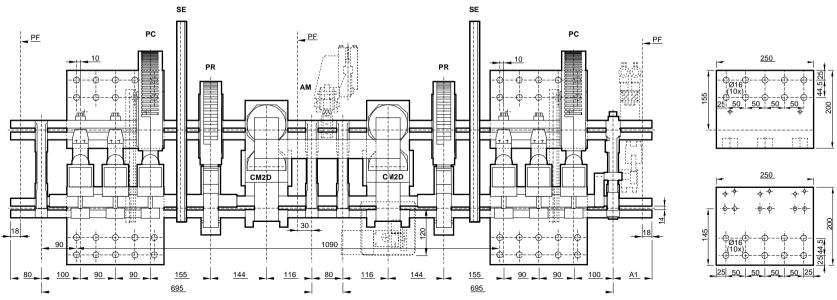
Biotanioo e		
Rating 5000	mm	10
Rating 5500	mm	15

Insulating distance (safety perimeter)

voltage V	metallicwalls		insulated walls	
voltage V	М	N	М	N
220	150	200	120	160
> 220	200	240	150	200

Protrusion A1

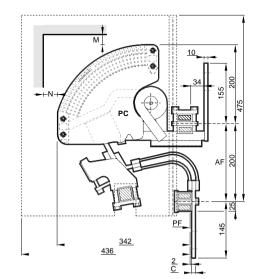

Number of delayed blocks	Number of M type blocks ⁽¹⁾	
0	2	75 mm
0	3	125 mm
0	4	125mm
0	5	190 mm
0	6	190 mm
1	1	86 mm
1	2	125 mm
1	3	125 mm
1	4	190 mm
1	5	190 mm

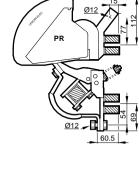


0

m

X 98 5000 1.1 1000 V

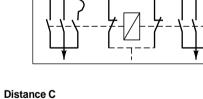




0

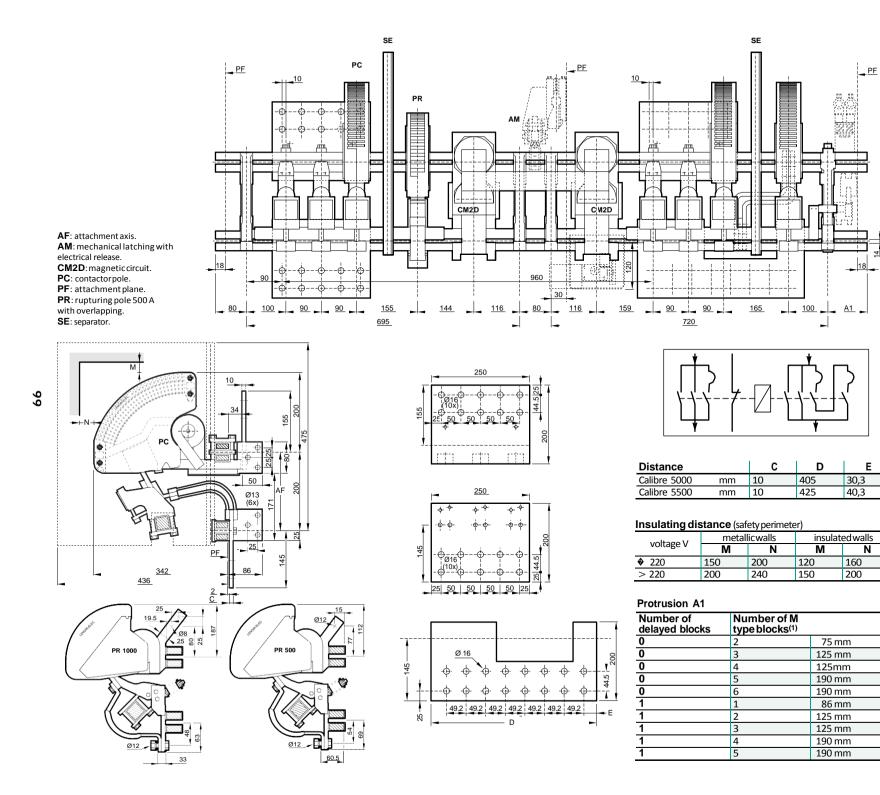
EX 98 5000 2.1

AF: attachment axis. AM: mechanical latching with electrical release. **CM2D**: magnetic circuit. PC: contactor pole. PF: attachment plane. **PR**: rupturing pole 500 A with overlapping. SE: separator.


Rating 5000	mm	10
Rating 5500	mm	15

Insulating distance (safety perimeter)

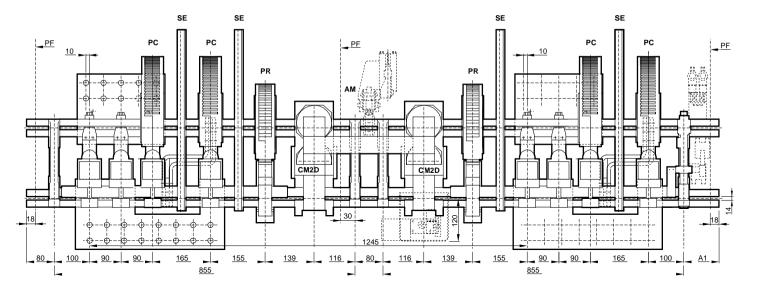
voltogo V	metall	icwalls	insulated walls			
voltage V	М	N	М	N		
220	150	200	120	160		
> 220	200	240	150	200		

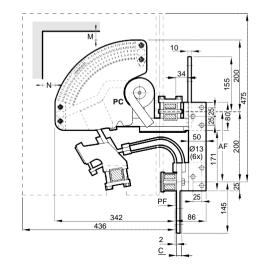

Protrusion A1

Number of delayed blocks	Number of M type blocks ⁽¹⁾					
0	2	75 mm				
0	3	125 mm				
0	4	125mm				
0	5	190 mm				
0	6	190 mm				
1	1	86 mm				
1	2	125 mm				
1	3	125 mm				
1	4	190 mm				
1	5	190 mm				

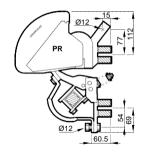
	1	1
ce C		

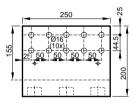
Rating 5500 mi	n	15

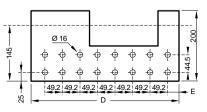

0

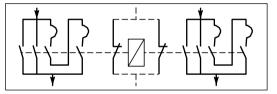

EX 98 5000 3.1

Nexse

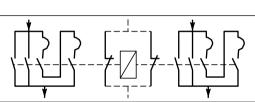



53. CEX 98 5000 4.1





100


Distance		C	D	E
Calibre 5000	mm	10	405	30,3
Calibre 5500	mm	10	425	40,3

Insulating distance (safety perimeter)

voltage V	metall	icwalls	insulated walls			
voltage V	М	N	М	N		
220	150	200	120	160		
> 220	200	240	150	200		

Protrusion A1

Number of delayed blocks	Number of M type blocks ⁽¹⁾	
0	2	75 mm
0	3	125 mm
0	4	125mm
0	5	190 mm
0	6	190 mm
1	1	86 mm
1	2	125 mm
1	3	125 mm
1	4	190 mm
1	5	190 mm

Distance		С	D	E
Calibre 5000	mm	10	405	30,3
Calibre 5500	mm	10	425	40,3

	dela
	0
	0
AF: attachment axis.	0
AM : mechanical latching with	0
electrical release.	0
CM2D: magnetic circuit.	1
PC: contactorpole.	1
PF: attachment plane.	1
PR : rupturing pole 500 A with overlapping.	1
SE: separator.	1

54. DRAW-OUT EXCITATION CONTACTORS

Draw-out version provided for generation 71 from 1250 to 2000 and for generation 98 from 2560 to 5500 A

CEX 71 1250 to 2000 2. 1 in draw-out version

CMA 06 1250 to 5500 A

DC Poles CMA 06 1250, CMA 06 1600, CMA 06 2000, CMA 06 2560 CMA 06 3000 CMA 06 5000 CMA 06 5500.

AC Poles, consult us

Purpose

Ensuring the division into sections of a track portion by opening a bi-stable motorised energy-storing contactor on DC distribution circuits, line tracks for trolley buses, tramways, protection coupons for metros, and so on,... Lifting and handling: insulation of a travelling crane supplied with DC current,...

CMA front cover

- Mechanical signalling light gives the position of the contactor (opened/closed).
- Mechanical light signals the status of the spring.
- Lever for stretching the spring for manual control.
- Mechanical push-buttons (closing and opening).

Options

- Motorization of the stretching of the spring.
- Mechanical locking in opened position by a RONIS, TRAYVOU, PROFALUX, etc., type lock
 Equipment locked in opened position:

 Key isfree,
 No electrical control allowed.
- Padlocking system (padlock not provided).
- Locking of the Local/Remote control by a RONIS, TRAYVOU, PROFALUX, etc. type lock and shutter preventing the access to the local push button.
- Manual control locked: key isfree.
- Manual control freed: Key is trapped, No electrical control allowed.
- Opening of the contactor by a "lacking voltage" coil. This one provokes the opening of the contactor when the supplied voltage is reduced to 35% to 70% of its nominal value.
- Instant action, or delayed on request.
- Draw-out energy-storing control.
- Possible combination of poles of different ratings on the same contactor.
- Possible placement in panels:
 - metallic,
 - in polyester.

* number of keys provided: 2

Shunt contactor and protect ion coupon

Energy-storing control with abrupt closing, independent from the operating speed of the operator

Energy-storing control with abrupt closing, independent from the operating speed of the operator

Manual version only

These contactors have a control lever to stretch the energy-storing spring and an anti-pumping device. When the energy is stored by the spring, there are two possibilities for closing the contactor.

Closing by push-button

Once the energy is accumulated by the spring, a local action on the push-button is sufficient to close the contactor.

This one closes and remains mechanically latched. Should you wish so, the spring can be re-stretched after that closing which allows successively and without bringing any energy:

to open,
to close,

- and to open again the contactor.

Opening

Since the contactor is closed, only a local action on the opening push-button is sufficient to open the contactor. This one opens under the pressure of the contacts and return springs.

Automatic closing

Once the energy is accumulated by the spring, the contactor closes. In this specific case, the system won't provide any local push-button. Moreover, there won't be any possibility to stretch again the spring in order to make, as in the previous case:

- to open,
- to close,
- an opening.

As for the opening, this one remains unchanged (by a local push-button).

Manual and electri calversion

Adapting an electrical control device on a manual control equipment is easy since the needed space is already integrated into the CMA dimensions. (However, this adaptation has to be done in our workshops.)

The energy-storage of the spring is achieved by the adjunction of a universal motor and of a reducer device with gearing with mechanical anti-pumping system, in case of maintained order.

Once the energy is stored by the spring there are 2 possibilities to close the contactor.

Closing by PB and Closing Electromagnet EE

Remote closing with a closing electromagnet with current emission.

Local closing with the closing push button located on the panel board.

The spring is again automatically stretched after the closingof the CMA which allows successively and without bringing anyenergy:

to open,to close,to open again the contactor.

Optical signalling of the board panel

Status of the spring:

- Yellow: not stretched,
- Blue: stretched (energy is stored).

Position indicator of the CMA: - Red: closed, - Green: opened.

Opening by PB and EA

Remote opening by a voltage-triggered releaser EA. Local opening with the opening push-button located on the board panel.

Automatic closing

As soon as the energy is stored by the spring, the contactor closes. In this specific case, the system will provide neither a local closing push-button nor a closing electromagnet EE(the supply of the motor is switched-off by a limit switch) and there is no possibility to stretch again the spring in order to make, as in the previous case:

- an opening,
- a closing,
- an opening.

As for the opening, this one remains unchanged (by a local push-button or by the opening electromagnet).

Energy-storing control with abrupt closing, independent from the operating speed of the operator

Options

Motorization of the stretching of the energystoring spring

Padlocking of the CMA in opened position

- by a RONIS, PROFALUX,...type lock and with the adder of auxiliary contacts (1NO + 1NC).
- by a padlock (not supplied).

Condemnation of the PB of the board panel

- by a shutter that can be padlocked (padlock not supplied).
- by a RONIS, PROFALUX,... type lock with auxiliary contacts (1 NO + 1 NC) in order to inhibit the remote orders and shutter preventing the access to the PB.

Stopped closing FE

Only for "manual control" or "electrical without automatic closing" versions of CMA. Operating voltage from 0.35 to 0.85 Un.

Remote release mechanism

Two types of release mechanisms allow the remote opening of the CMA.

- A release mechanism in case of current emissionEA provokes the instant opening of the CMA.
- A release mechanism at minimum voltage MV or MVR provokes the opening of the CMA when its supplied voltage decreases to a value between 35 and 70% of its nominal value.

MV : instant action.


MVR : delayed action of 250 ms or 0.6 s (AC supply).

Other delaying devices on request.

Draw-out control

(Manual or electrical) draw-out energy-storing control.

Board panel functions

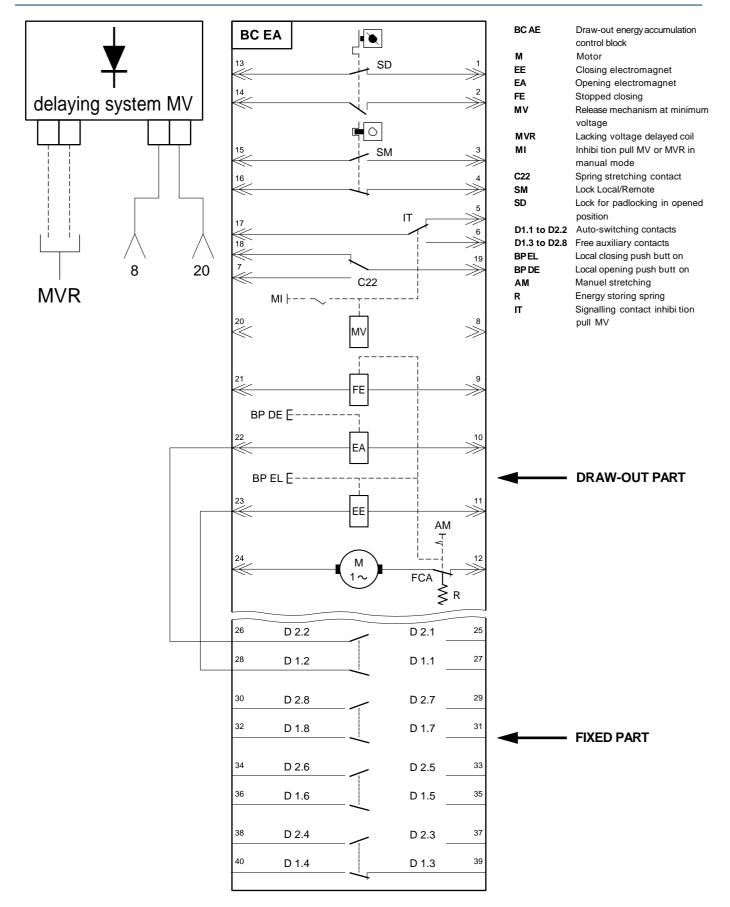
- 1 LOCAL/REMOTE lock (locking of the local controls: free key) related contacts: 1NO+1NC
- 2 Cover prohibiting use of the push-buttons (padlock and/or lock) related contacts: 1NO+1NC
- 3 Control handle for stretching the energy-storing spring
- 4 Lock for locking the contactor in OPEN position (free key: equipmentlock)
- 5 Spring position indicator:
 - yellow = not stretched spring blue = stretched spring
- 6 Connecting block (information on the position contacts)
- 7 Push-button for local opening
- 8 Push-button for local closing
- 9 Padlocking facility in OPEN position
- 10 Status indication of the equipment
 - green = equipment OPEN
 - red = equipment CLOSED
- 11 Sectioning plug for the accumulation control block
- 12 Lever for inhibiting the lacking voltage coil (MV or MVR) in manual mode
- 13 Front plastron
- 14 ID label (reference to be mentioned in any correspondence)

Power circuit

Particularities for currents greater than 2000 A, the power circuit is made of 2 separated parts assembled on the same axis and linked to a same mechanism.

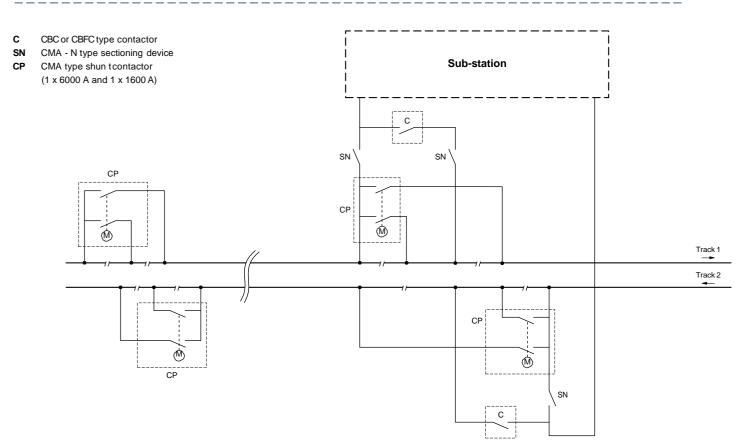
 A "thermal" part: Composed of blow-out poles mounted in parallel on a single section where the nominal current passes.

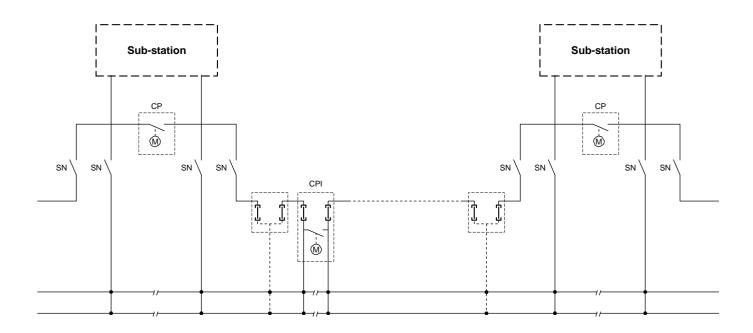
 A "break" part: Composed of magnetic blow-out poles and blow-out cages with metallic plates. At the time of the opening, the thermal poles open before the blow-out poles and the break is ensured by these magnetic blow-out poles.


All the contacts are in copper with special silver pad for currents from 1250 to 6000 A.

Possibility to have opening poles without overlapping.

Control circuit of the energy-storing motorised contactor


Drawing representing all the possible options for non-draw-out versions in AC current


Examples of simplified applications

"HEAVY" Metro

Tramway

- **CP** CMA type shun t contactor
- CPI CMA type shun t contactor
- **SN** CMA N type manual sectioning device

CMA 06 1250 to 5500 A

Characteristics of CMA 06 1250 to 2000 A

Energy-storing motorised contactor Ue : 750 and upto 1200 V \dot{U}

Power Circuit			CMA 1	Type 06										
			1250				1600				2000			
Thermal nominal current (1)	DC_1		1250				1600				2000			
Nominal voltage of use			1000				1000				1000			
Duty voltage		Vcc	750				750				750			
Short-time current t														
	5s	kA					15				30			
	10s	kA	-				11				21			
	15s	kA					8				17			
	30s	kA	-				6				12			
	1 min	kA					4				8			
	3 min	kA					3				5			
	10 min	kA					2,2				3			
Unipolar current	voltage	V	900				900				900			
switch-off rating	5 ms	kA	10				10				10			
Bipolarcurrent	voltage	V	500	700	1000	1500	500	700	1000	1500	500	700	1000	1500
switch-off rating ⁽⁵⁾	L/R=15 ms	kA	30	23	18	6.6	30	23	18	6.6	30	23	18	6.6
C C	L/R=20 ms	kA			18				18			-	18	
Tetrapolarcurrent	voltage		1000	2000	3000		1000	2000	3000		1000	2000	3000	
switch-off rating ⁽⁶⁾	L/R=15 ms			19	5		30	19	5		30	19	5	
Current switch-on rating	L/R=5ms	kA			12		40		12		40		1	
Dielectric voltage				0Hz-1m	าท			50 Hz-1 r	nn			50 Hz-1 r	nn	
			0 0	•••=•••			0				0		••••	
Control circuit			1											
Nominal voltages AC 50 - 6	0 Hz	V	48 - 12	7 - 220/2	30 - 380(3)								
				- 110 - 22										
Power absorbed by the mot	or													
AC		VA	175				175				175			
DC			150				150				150			
Closing electromagnet														
AC	inrush	\/Δ	320				320				320			
A0	duty		50				50				50			
DC	inrush		300				300				300			
20	duty		500				50				500			
Opening electromagnet	duty	~ ~ ~	50				50				50			
AC 50-60 Hz	inrush	\/٨	100				100				100			
DC			30				30				30			
DC	inrush ♦ 220 V 500 V		275				275				275			
Electrical insulation/earth		VV		- 50 Hz - 1	Imn			- 50 Hz -	1 mn			′-50 Hz-	1 mn	
Electrical insulation/earth			2.5 KV	- 30112-			2.5 KV	- 30112-			2.5 KV	- 30112-		
Stopped closing FE														
Operating voltage		V	from 0 f	35 to 0.8										
Operating voltage						415 - 500	(2)							
				- 127 - 24										
Assigned voltages AC50Hz			04 40	407 00										
Assigned voltages AC50Hz AC60Hz		V			20 - 380 -	415-500	(3)							
Assigned voltages AC50Hz AC60Hz DC		V			20 - 380 -		(3)							
Assigned voltages AC50Hz AC60Hz DC Consumption		V V	24 - 48		20 - 380 -	415-500	(3) (3)							
Assigned voltages AC 50 Hz AC 60 Hz DC	inrush	V V VA	24 - 48 23		20 - 380 -	415-500	(3) (3) 23				23			
Assigned voltages AC50Hz AC60Hz DC Consumption AC	inrush duty	V V VA VA	24 - 48 23 10		20 - 380 -	415-500	(3) (3) 23 10				10			
Assigned voltages AC50Hz AC60Hz DC Consumption	inrush duty ± 220 V	V V VA VA W	24 - 48 23 10 6		20 - 380 -	415-500	(3) (3) 23 10 6				10 6			
Assigned voltages AC50Hz AC60Hz DC Consumption AC	inrush duty ± 220 V 440 - 550 V	V VA VA W W	24 - 48 23 10 6 21		20 - 380 -	415-500	(3) (3) 23 10 6 21				10 6 21			
Assigned voltages AC50Hz AC60Hz DC Consumption AC	inrush duty ± 220 V	V VA VA W W	24 - 48 23 10 6		20 - 380 -	415-500	(3) (3) 23 10 6				10 6			
Assigned voltages AC50Hz AC60Hz DC Consumption AC DC	inrush duty ± 220 V 440 - 550 V 500 V	V VA VA W W	24 - 48 23 10 6 21		20 - 380 -	415-500	(3) (3) 23 10 6 21				10 6 21			
Assigned voltages AC50Hz AC60Hz DC Consumption AC DC Release mechanism at minin	inrush duty ± 220 V 440 - 550 V 500 V	V VA VA W W	24 - 48 23 10 6 21		20 - 380 -	415-500	(3) (3) 23 10 6 21				10 6 21			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un	inrush duty ± 220 V 440 - 550 V 500 V hum voltage	V VA VA W W	24 - 48 23 10 6 21 21	- 110 - 12	20 - 380 - 20 - 220 -	415 - 500 440 - 500	(3) (3) 10 6 21 21				10 6 21			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un AC 50 Hz	inrush duty ± 220 V 440 - 550 V 500 V hum voltage	V VA VA W W W	24 - 48 23 10 6 21 21 21 24 - 48	- 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 3	415 - 500 440 - 500 380 - 415	(3) (3) 10 6 21 21				10 6 21			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un AC 50 Hz AC 60 Hz	inrush duty ± 220 V 440 - 550 V 500 V hum voltage	V VA VA W W W	24 - 48 23 10 6 21 21 21 24 - 48 24 - 48	- 110 - 12 - 110/12 - 110/12 - 110/12	20 - 380 - 20 - 220 - 7 - 220 - 3 7 - 220 - 3 7 - 220 - 3	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (3) (4) (3) (4) (4) (4) (5) (3) (3) (4) (4) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5				10 6 21			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC 50 Hz AC 60 Hz DC	inrush duty ± 220 V 440 - 550 V 500 V hum voltage	V VA VA W W W	24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 24 - 48	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415	(3) (3) (3) (3) (3) (4) (3) (4) (4) (4) (5) (3) (3) (4) (4) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5				10 6 21			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un AC 50 Hz AC 60 Hz DC Operating voltage	inrush duty ± 220 V 440 - 550 V 500 V hum voltage	V VA VA W W W	24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 24 - 48	- 110 - 12 - 110/12 - 110/12 - 110/12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (3) (4) (3) (4) (4) (4) (5) (3) (3) (4) (4) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5				10 6 21			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC 50 Hz AC 60 Hz DC Operating voltage Absorbed power	inrush duty ± 220 V 440 - 550 V 500 V hum voltage	V VA VA W W V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 76 m 0.	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) 10 6 21 21 - 500(3) 0 (3)				10 6 21 21			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un AC 50 Hz AC 60 Hz DC Operating voltage	inrush duty ± 220 V 440 - 550 V 500 V hum voltage	V VA VA W W W V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 from 0. 23	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) 10 6 21 21 - 500(3)) (3) 23				10 6 21 21 21			
Assigned voltages AC50Hz AC60Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un AC 50Hz AC 60Hz DC Operating voltage Absorbed power AC	inrush duty $\pm 220 V$ 440 - 550 V 500 V hum voltage	V VA VA W W W V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 70 70 23 10	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) 10 6 21 21 - 500(3) 0 (3) 23 10				10 6 21 21 21 21 21 23 10			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC 50 Hz AC 60 Hz DC Operating voltage Absorbed power	inrush duty ± 220 V 440 - 550 V 500 V hum voltage 2 2 inrush duty inrush ♦ 220 V	V VA VA W W V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 70 70 23 10 6	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) 10 6 21 21 - 500(3)) (3) 23				10 6 21 21 21 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
Assigned voltages AC50Hz AC60Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un AC 50Hz AC 60Hz DC Operating voltage Absorbed power AC	inrush duty $\pm 220 V$ 440 - 550 V 500 V hum voltage	V VA VA W W V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 70 70 23 10	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) 10 6 21 21 - 500(3) 0 (3) 23 10				10 6 21 21 21 21 21 23 10			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un AC 50 Hz AC 60 Hz DC Operating voltage Absorbed power AC DC	inrush duty ± 220 V 440 - 550 V 500 V hum voltage 2 2 inrush duty inrush ♦ 220 V	V VA VA W W V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 70 70 23 10 6	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (3) (4) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
Assigned voltages AC50Hz AC60Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un AC 50Hz AC 60Hz DC Operating voltage Absorbed power AC DC	inrush duty ± 220 V 440 - 550 V 500 V hum voltage 2 2 inrush duty inrush ♦ 220 V	V VA VA W W V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 70 70 23 10 6	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (3) (4) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minim Assigned voltages Un AC 60 Hz DC Operating voltage Absorbed power AC DC Average time of operation	inrush duty ± 220 V 440 - 550 V 500 V num voltage 2 inrush duty inrush ♦ 220 V 440 - 500 V	V VA VA W W V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 70 6 23 10 6 21	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (3) (4) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC 50 Hz AC 60 Hz DC Operating voltage Absorbed power AC DC Average time of operation Closing time of the contacto	inrush duty ± 220 V 440 - 550 V 500 V num voltage inrush duty inrush & 220 V 440 - 500 V autor (4) at Un	V V VAV AV W W V V V V V V V V V V V V V	24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 70 23 10 6 21 21 50	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (3) (4) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 21 6 23 10 6 21			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC 50 Hz AC 60 Hz DC Operating voltage Absorbed power AC DC Average time of operation Closing time of the contacto	inrush duty ± 220 V 440 - 550 V 500 V num voltage inrush duty inrush & 220 V 440 - 500 V autor (4) at Un	V VA VA W W W V V V V V V V V V V V V V	24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 70 23 10 6 21 21 50	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (4) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 21 21 23 10 6 21 50			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC 50 Hz AC 60 Hz DC Operating voltage Absorbed power AC DC Operating voltage Absorbed power AC DC Average time of operation Closing time of the contacto Opening time of the contacto	inrush duty ± 220 V 440 - 550 V 500 V hum voltage inrush duty inrush ♦ 220 V 440 - 500 V r (4) at Un tor at Un	V VA VA W W W V V V V V V V V V V V V V	24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 70 23 10 6 21 21 50	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (4) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 21 21 23 10 6 21 50			
Assigned voltages AC50Hz AC60Hz DC Consumption AC DC DC Release mechanism at minin Assigned voltages Un AC50Hz AC60Hz DC Operating voltage Absorbed power AC DC Operating voltage Absorbed power AC DC Average time of operation Closing time of the contacto Opening time of the contacto Auxiliary contacts 3 NO + 3 N	inrush duty ± 220 V 440 - 550 V 500 V hum voltage inrush duty inrush ♦ 220 V 440 - 500 V r (4) at Un tor at Un	V VA VA W W V V V V V V V V V V V V V M W V V M M V V V V	24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 70 23 10 6 21 21 50	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (4) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 21 21 23 10 6 21 50			
Assigned voltages AC50Hz AC60Hz DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC50Hz AC60Hz DC Operating voltage Absorbed power AC DC Operating voltage Absorbed power AC DC Average time of operation Closing time of the contacto Opening time of the contacto Auxiliary contacts 3 NO + 3 N Thermal current ith	inrush duty ± 220 V 440 - 550 V 500 V hum voltage inrush duty inrush ♦ 220 V 440 - 500 V r (4) at Un tor at Un	V VA VA W W V V V V V V V V V V V V V M W V V M M V V V V	24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 7 7 7 7 10 6 21 23 10 6 21 50 50	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) 10 6 21 21 - 500(3) 0 (3) 23 10 6 21 - 500(3) 0 (3) 23 10 6 21 - 500(3) 0 (3) - 50 50 50 50 - - - - - - - - - - - - -				10 6 21 21 21 21 21 50 50 50			
Assigned voltages AC50Hz AC60Hz DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC50Hz AC60Hz DC Operating voltage Absorbed power AC DC Operating voltage Absorbed power AC DC Average time of operation Closing time of the contacto Opening time of the contacto Opening time of the contacto	inrush duty ± 220 V 440 - 550 V 500 V hum voltage inrush duty inrush ♦ 220 V 440 - 500 V r (4) at Un tor at Un	V VA VA W W V V V V V V V V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 70 70 6 21 23 10 6 21 50 50 50 20	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) 10 6 21 21 - 500(3) 0 (3) 23 10 6 21 - 500(3) 0 (3) 23 10 6 21 - 500(3) 0 (3) - 50 50 50 50 - - - - - - - - - - - - -				10 6 21 21 21 21 21 50 50 50			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC 50 Hz AC 60 Hz DC Operating voltage Absorbed power AC DC Operating voltage Absorbed power AC DC Average time of operation Closing time of the contacto Opening time of the contacto	inrush duty ± 220 V 440 - 550 V 500 V hum voltage inrush duty inrush ♦ 220 V 440 - 500 V r (4) at Un tor at Un	V VA VA W W V V V V V V V V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 7 20 50 50 50 20 6	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (3) (3) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 23 10 6 21 50 50 50 20			
Assigned voltages AC 50 Hz AC 60 Hz DC Consumption AC DC DC Release mechanism at minin Assigned voltages Un Ac 60 Hz DC Operating voltage Absorbed power AC DC Operating voltage Absorbed power AC DC Average time of operation Closing time of the contacto Opening time of the contacto	inrush duty ± 220 V 440 - 550 V 500 V num voltage inrush duty inrush ♦ 220 V 440 - 500 V r (4) at Un tor at Un IC 110 V	V VA VA WW WV VV VV VV VV VV VV VA VA VA VA VA A A A A	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 70 70 6 21 23 10 6 21 50 50 50 20	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (3) (3) (23) (3) (3) (3) (3) (3) (3) (3) (10 6 21 21 21 23 10 6 21 50 50 20 6			
Assigned voltages AC50Hz AC60Hz DC Consumption AC DC Consumption AC DC Release mechanism at minin Assigned voltages Un AC50Hz AC60Hz DC Operating voltage Absorbed power AC DC Operating voltage Absorbed power AC DC Average time of operation Closing time of the contacto Opening time of the contacto Opening time of the contacto Opening time of the contacto Opening time of the contacto Auxiliary contacts 3 NO + 3 N Thermal current ith Current switch-off rating ACcos $q = 0.3/500V$	inrush duty ± 220 V 440 - 550 V 500 V num voltage 2 2 inrush duty inrush ♦ 220 V 440 - 500 V er (4) at Un tor at Un	V VA VA WW WV VV VV VV VV VV VV VA VA VA VA VA A A A A	24 - 48 23 10 6 21 21 24 - 48 24 - 48 25 50 50 50 50 6 20 6 20 20 6 21 23 23 23 23 23 23 24 - 48 24 - 48 20 20 20 20 20 20 20 20 20 20	- 110 - 12 - 110/12 - 110/12 - 110/12 - 110 - 12	7 - 220 - 380 - 20 - 220 - 20 - 220 - 220 - 220 - 220 - 220 - 220 - 220 - 220 - 220 - 20 - 220 - 20 - 220 - 20	415 - 500 440 - 500 380 - 415 380 ⁽³⁾	(3) (3) (3) (3) (4) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	- 50 Hz - 7			10 6 21 21 21 21 20 50 50 50 50 50 50 50 50 50	- 50 Hz-1		

CMA 06 1250 to 5500 A

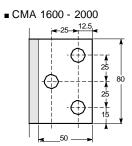
Characteristics of CMA 06 2560 to 5500 A

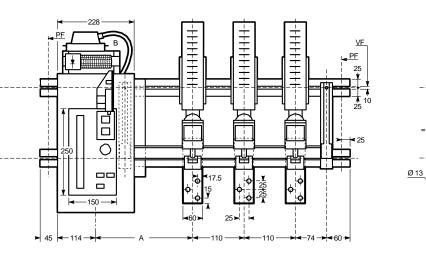
Energy-storing motorised contactor Ue : 750 and upto 1200 V \dot{U}

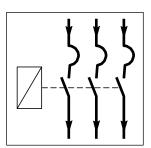
Power circuit				Type 06			2200/	*)				(m) (+)		
hermal nominal current (1)	DC 1		2560 (* 2560	/			3200 (3200	1			5000 ((7) (*)		
Iominal voltage of use			1000				1000				1000			
outy voltage			750				750				750			
		V00	100				100				130			
Short-time current t 🕸 40°C	5s	kA	24				48				68			
	10s	kA					34				47			
	15s	kA					27				38			
	30s	kA					19				27			
	1 min	kA					14				19			
	3 min	kA	5				8				12			
	10 min	kA					5				7			
ipolar current switch-off	voltage	V	500	700	1000	1500	500	700	1000	1500	500	700	1000	150
ating ⁽⁵⁾	L/R=15 ms	kA	30	23	18	6.6	30	23	18	6.6	30	23	18	6.6
	L/R=20 ms	kA			18				18				18	
etrapolar current	voltage		1000	2000	3000		1000	2000	3000		1000	2000	3000	
witch-off rating ⁽⁶⁾	L/R=15 ms	kA		19	5		30	19	5		30	19	5	
urrent switch-on rating	L/R=5ms	kA					60				100			
ielectric voltage			8 kV - 5	0 Hz-1 n	nn		8 kV-5	50 Hz-1 n	nn		8 kV-	50 Hz-1 n	nn	
Control circuit														
Nominal voltages AC 50 - 6	50 Hz				30 - 380(3	3)								
DC		V	24 - 48	- 110 - 2	20 (3)									
Power absorbed by the mo		475					175							
AC DC	VA 175 W 150	175 150					175 150							
Closing electromagnet	VV 150	150	1				150							
AC	inrush		320				320				320			
AC	duty	- VA VA					50				50			
DC	inrush		300				300				300			
20	duty		50				50				50			
Opening electromagnet	uuty	~~	50				100				50			
AC50-60Hz	inrush		100				100				100			
DC	inrush 220V		30				30				30			
20	500 V		275				275				275			
Electrical insulation/earth	500 V			- 50 Hz - 1	1 mn			- 50 Hz - 1	lmn			′-50 Hz-´	1 mn	
				00.12				001.2						
Stopped closing FE]											
Operating voltage		V	from 0.	35 to 0.8	51 In									
Assigned voltages AC50H	_		0 1 10											
Assigned voltages ACOUR	Ζ	V	24 - 48	- 127 - 2		415-500	(3)							
Assigned voltages AC50 R. AC60 R					20 - 380 -	415-500								
		V	24 - 48	- 127 - 2	20 - 380 - 20 - 380 -		(3)							
AC60H DC		V	24 - 48	- 127 - 2	20 - 380 - 20 - 380 -	415-500)(3))(3)							
AC60H DC		V	24 - 48 24 - 48	- 127 - 2	20 - 380 - 20 - 380 -	415-500)(3))(3) 23				23			
AC 60 H DC Consumption AC	Ζ	V V VA VA	24 - 48 24 - 48 23 10	- 127 - 2	20 - 380 - 20 - 380 -	415-500	(3) (3) 23 10				10			
AC 60 H DC Consumption	z inrush duty ± 220 V	V V VA VA W	24 - 48 24 - 48 23 10 6	- 127 - 2	20 - 380 - 20 - 380 -	415-500	(3) (3) 23 10 6				10 6			
AC60H DC Consumption AC	z inrush duty	V V VA VA W	24 - 48 24 - 48 23 10	- 127 - 2	20 - 380 - 20 - 380 -	415-500	(3) (3) 23 10				10			
AC60H DC Consumption AC	z inrush duty ± 220 V	V VA VA W W	24 - 48 24 - 48 23 10 6	- 127 - 2	20 - 380 - 20 - 380 -	415-500	(3) (3) 23 10 6				10 6			
AC60H DC Consumption AC DC	z inrush duty ± 220 V 440 - 550 V 500 V	V VA VA W W	24 - 48 24 - 48 23 10 6 21	- 127 - 2	20 - 380 - 20 - 380 -	415-500	(3) (3) 23 10 6 21				10 6 21			
AC60H DC Consumption AC DC Release mechanism at minir	z inrush duty ± 220 V 440 - 550 V 500 V	V VA VA W W	24 - 48 24 - 48 23 10 6 21	- 127 - 2	20 - 380 - 20 - 380 -	415-500	(3) (3) 23 10 6 21				10 6 21			
AC 60 H DC Consumption AC DC Release mechanism at minir Assigned voltages Un	$\frac{inrush}{duty}$ $\frac{\pm 220 V}{440 - 550 V}$ 500 V num voltage	VA VA W W W	24 - 48 24 - 48 23 10 6 21 21	- 127 - 2 - 110 - 1	20 - 380 - 20 - 380 - 20 - 220 -	415-500 440-500)(3))(3) 10 6 21 21 21				10 6 21			
AC 60 H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H	$\frac{inrush}{duty}$ $\frac{\pm 220V}{440-550V}$ $\frac{500V}{500V}$ num voltage	V V VA VA W W W	24 - 48 24 - 48 23 10 6 21 21 21 24 - 48	- 127 - 2: - 110 - 1: - 110/12	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 3	415 - 500 440 - 500 380 - 415 -)(3))(3) 10 6 21 21 21				10 6 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC50H AC60H	$\frac{inrush}{duty}$ $\frac{\pm 220V}{440-550V}$ $\frac{500V}{500V}$ num voltage	VA VA VA W W W V	24 - 48 24 - 48 23 10 6 21 21 21 24 - 48 24 - 48	- 127 - 2: - 110 - 1: - 110/12: - 110/12: - 110/12:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) 23 10 6 21 21 21 500(3)				10 6 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC50H AC60H DC	$\frac{inrush}{duty}$ $\frac{\pm 220V}{440-550V}$ $\frac{500V}{500V}$ num voltage	VA VA VA W W W W V V V	24 - 48 24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 -	(3) (3) 23 10 6 21 21 21 500(3)				10 6 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC50H AC60H DC DC	$\frac{inrush}{duty}$ $\frac{\pm 220V}{440-550V}$ $\frac{500V}{500V}$ num voltage	VA VA VA W W W W V V V	24 - 48 24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48	- 127 - 2: - 110 - 1: - 110/12: - 110/12: - 110/12:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) 23 10 6 21 21 21 500(3)				10 6 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50H AC 60H DC DC Dperating voltage	z inrush duty ± 220 V 440-550 V 500 V num voltage z	VA VA VA W W W V	24 - 48 24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 760 0.	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (23 10 [6 21 [21 500(3) (3)				10 6 21 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC50H AC60H DC DC	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z z inrush	VA VA VA WW WW VV VV	24 - 48 24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 24 - 48 700 0	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) [3] [4] [2] [6] [2] [2] [2] [3] [3] [3] [2] [2] [2] [3] [3] [3] [3] [3] [3] [3] [3				10 6 21 21 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H AC 60 H DC DC Dperating voltage Absorbed power AC	z inrush duty $\pm 220V$ 440-550V 500V num voltage z z inrush duty	VA VA VA W W W V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 7 from 0. 23 10	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (3) (3) (3) (3)				10 6 21 21 21 21 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50H AC 60H DC DC Dc Dc Dc	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z z inrush duty inrush & 220 V	VA VA VA W W W V V V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 7 from 0. 23 10 6	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 21 6			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H AC 60 H DC DC Dperating voltage Absorbed power AC	z inrush duty $\pm 220V$ 440-550V 500V num voltage z z inrush duty	VA VA VA W W W V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 7 from 0. 23 10 6	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (3) (3) (3) (3)				10 6 21 21 21 21 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H AC 60 H DC Dc Dperating voltage Absorbed power AC DC	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z z inrush duty inrush & 220 V	VA VA VA W W W V V V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 7 from 0. 23 10 6	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 21 6			
AC 60 H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H AC 60 H DC Derating voltage Absorbed power AC DC	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z z inrush duty inrush \$ 220 V 440 - 500 V	V VA VA W W W V V V V V V V V V V V V V	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 7 from 0. 23 10 6 21	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (6) (21) (21) (3) (3) (3) (3) (3) (10) (6) (21) (1) (6) (21) (1) (1) (1) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (4) (5) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7				10 6 21 21 21 21 23 10 6 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50H AC 60H DC Dperating voltage Absorbed power AC DC	z inrush duty ± 220 V 440-550 V 500 V num voltage z inrush duty inrush ♦ 220 V 440-500 V or (4) at Un	VA VA WW WW WV VV VV VV VV VA VA VA WW WW	24 - 48 24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 21 10 6 21	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 21 50			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50H AC 60H DC Dperating voltage Absorbed power AC DC	z inrush duty ± 220 V 440-550 V 500 V num voltage z inrush duty inrush ♦ 220 V 440-500 V or (4) at Un	V VA VA W W W V V V V V V V V V V V V V	24 - 48 24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 21 10 6 21	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (6) (21) (21) (3) (3) (3) (3) (3) (10) (6) (21) (1) (6) (21) (1) (1) (1) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (4) (5) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7				10 6 21 21 21 21 23 10 6 21			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC60H DC Dperating voltage Absorbed power AC DC Average time of operation Closing time of the contactor Dpening time of the contactor	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z inrush duty inrush § 220 V 440 - 500 V or (4) at Un tor at Un	VA VA WW WW WV VV VV VV VV VA VA VA WW WW	24 - 48 24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 21 10 6 21	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 21 50			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H AC 60 H DC DC Derating voltage Absorbed power AC DC DC Average time of operation Closing time of the contacted Dpening time of the contacted Dpening time of the contacted Dening time of the contacted	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z inrush duty inrush § 220 V 440 - 500 V or (4) at Un tor at Un	VA VA VA WW WV VV VV VV VV VA VA VA VA VA Sms	24 - 48 23 10 6 21 21 21 24 - 48 24 - 48 24 - 48 24 - 48 7 from 0 23 10 6 21 23 10 6 21 23 50 50	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) [3] [4] [23] [6] [21] [21] [500(3) (3) [3] [3] [3] [4] [50] [50] [50] [50] [50]				10 6 21 21 21 21 21 50 50 50			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H AC 60 H DC DC Derating voltage Absorbed power AC DC DC Average time of operation Closing time of the contacted Dpening time of the contacted Dpening time of the co	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z inrush duty inrush § 220 V 440 - 500 V or (4) at Un tor at Un	VA VA VA WW WV VV VV VV VV VA VA VA VA VA Sms	24 - 48 24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 21 10 6 21	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 21 50			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC50 H AC60H DC Derating voltage Absorbed power AC DC Derating voltage Absorbed power AC DC DC Ac DC Ac DC DC DC DC DC DC DC DC DC DC DC DC DC	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z inrush duty inrush § 220 V 440 - 500 V or (4) at Un tor at Un	VA VA VA WW WV VV VV VV VV VA VA VA VA VA A A A	24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 70 0 6 21 23 10 6 21 50 50	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 23 10 6 21 50 50 50 20			
AC 60 H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H AC 60 H DC Dereating voltage Absorbed power AC DC Dereating voltage Absorbed power AC DC Average time of operation Closing time of the contacts Dpening time of the contacts Auxiliary contacts 3 NO + 3 I Thermal current ith Current switch-off rating AC cos $(q = 0.3/500 V)$	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z z inrush duty inrush ♦ 220 V 440 - 500 V or (4) at Un tor at Un	VA VA VA WW WV VV VV VV VV VV VA VA VA VA VA A A A	24 - 48 24 - 48 21 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 27 10 6 21 50 50 50 50 6	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 21 23 10 6 21 50 50 50 20 6			
AC 60 H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H AC 60 H DC Depression of the contact DD Ac DC Depression of the contact DC Depression of the contact DC Werage time of operation Closing time of the contact Depring time of the contact Depring time of the contact Ac cost g = 0.3/500 V DC	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z z inrush duty inrush ♦ 220 V 440 - 500 V or (4) at Un tor at Un NC 110 V	VA VA WW WW VV VV VV VA VA VA VA VA VA A A A	24 - 48 24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 27 23 10 6 21 23 10 6 21 23 10 6 21 24 - 48 24 - 48 25 - 48 26 - 48 27 - 48 28 - 48 29 - 48 20 - 48	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 7 - 220 - 2 7 - 220 - 2 20 - 220 - 2 20 - 220 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) (3) (3) (3) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3				10 6 21 21 21 50 50 50 20 6 2.5			
AC60H DC Consumption AC DC Release mechanism at minir Assigned voltages Un AC 50 H AC 50 H AC 60 H DC Dc Operating voltage Absorbed power AC DC Dc Dc Average time of operation Closing time of the contact DC Average time of operation Closing time of the contact DC Average time of the contact DC	z inrush duty ± 220 V 440 - 550 V 500 V num voltage z z inrush duty inrush ♦ 220 V 440 - 500 V or (4) at Un tor at Un	VA VA WW WW VV VV VV VA VA VA VA VA A A A	24 - 48 24 - 48 23 10 6 21 21 24 - 48 24 - 48 24 - 48 24 - 48 24 - 48 27 23 10 6 21 23 10 6 21 23 10 6 24 24 24 24 24 24 24 24 24 24	- 127 - 2: - 110 - 1: - 110/12 - 110/12 - 110/12 - 110 - 1:	20 - 380 - 20 - 380 - 20 - 220 - 20 - 220 - 7 - 220 - 7 - 220 - 20 - 220 - 20 - 220 - 10 - 20 - 220 - 20 - 20 - 20 - 20 - 20 -	415 - 500 440 - 500 380 - 415 - 380(3)	(3) [3] [4] [4] [2] [2] [2] [2] [2] [3] [3] [3] [3] [3] [3] [3] [3	- 50 Hz-1			10 6 21 21 21 21 50 50 50 50 50 50 50 50 50 50 50 50 50	- 50 Hz-1		

(3) for other voltages, consult us.
 (4) opening time is measured from the supply of the closing coil until the separation of the main contacts.
 (5) 2 blow-out poles.

contactor):	
1.04	40 < t < 45°C
1.08	45 < t � 50°C
1.12	50 < t � 55℃
1.19	55 < t ♦ 60°C




54. CMA 06 1250 - 1600 - 2000 3.0



AP

Ŀф 125

21

226

AF : attachment axis AP : pole axis PF : attachment plane	Isulating dista (safety perime	Dist		
VF : attachment screw		М	Ν	Star
VP : see connecting sections	Insulated walls	120	120	Red

M

l≁ N

25 ►

393

-160 -

B : connecting box

→ - 90 →

AF

125

200

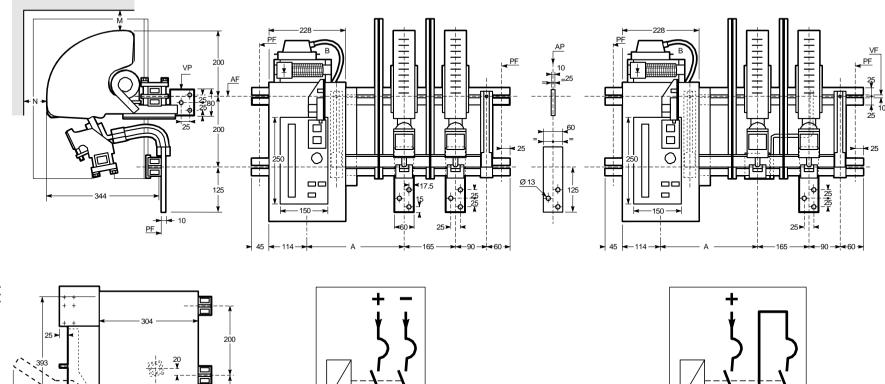
160

-<mark>≻ |<</mark> 10 PF

昌

304

_20 _∎


143

3/1/

	Distance A
Ν	Standard
120	Reduced

55. CMA 06 1250 - 1600 - 2000 2.0

160

AF : attachment axis
AP : pole axis
PF : attachment plane
VF: attachment screw
VP : see connecting sections
B : connecting box

160

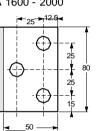
-**-**90 ·

Isulating distance (safety perimeter) М 120 Insulated walls

Ν

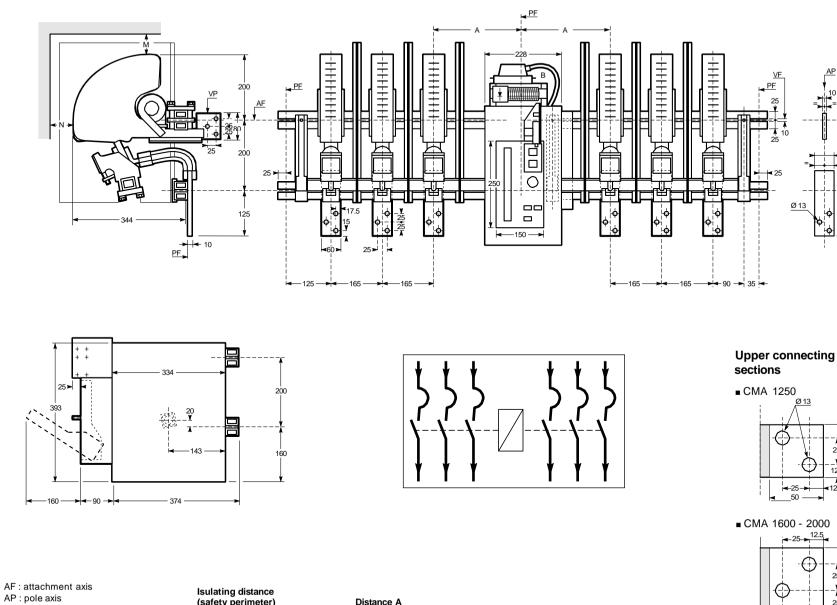

120

Distance A	
Standard	316
Reduced	226


+ }	}	
	╵╉│	

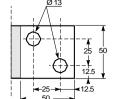
Upper connecting sections

■ CMA 1250_{Ø 13}



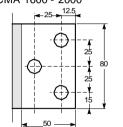
CMA 1600 - 2000

56. CMA 06 1250 - 1600 - 2000 6.0

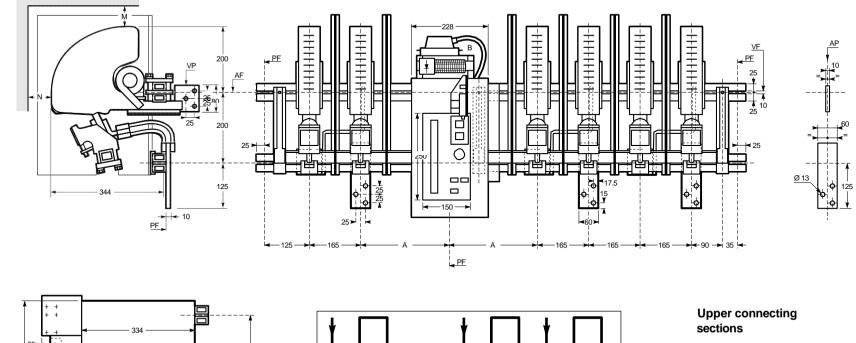

- AP : pole axis PF : attachment plane
- VF : attachment screw
- VP : see connecting sections
- B : connecting box

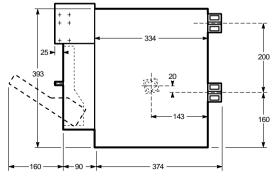
(safety perimeter) Μ Insulated walls 120

Ν

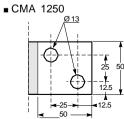

120

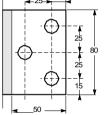
Standard	316
Reduced	226


125


¥

57. CMA 06 1250 - 1600 - 2000 3.0




Isulating distance (safety perimeter)				
	М	Ν		
Insulated walls	120	120		

Distance A

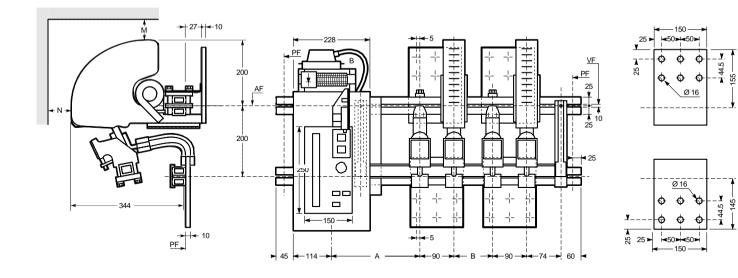
Diotanoo / (
Standard	366
Reduced	276

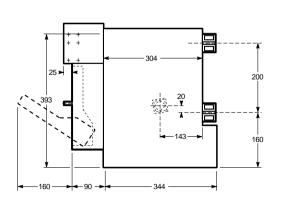
■ CMA 1600 - 2000

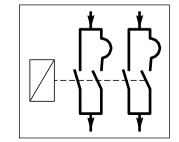
AF : attachment axis

PF : attachment plane

VF : attachment screw VP : see connecting sections


B : connecting box


AP : pole axis



58. CMA 06 2560 2.0 - 3200 2.0

45

AF : attachment axis nontnla

PF	: attachment plane
VF	: attachment screw

Isulating dista (safety perime	
	М

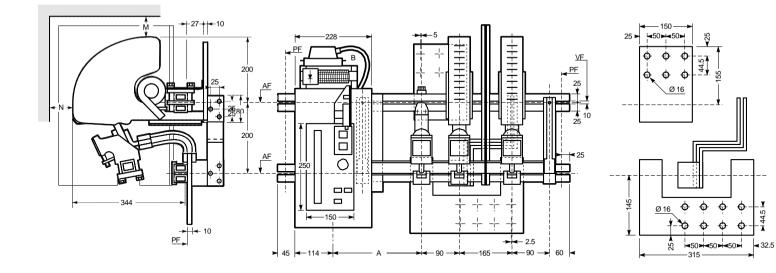
Insulated walls

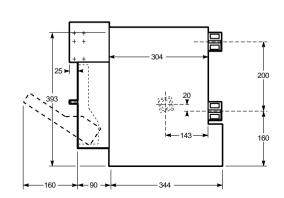
120

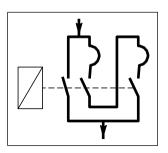
	Distance A	
Ν	Standard	
120	Reduced	

Distance B
Without separat

316


226


Without separator	110
With separator	165

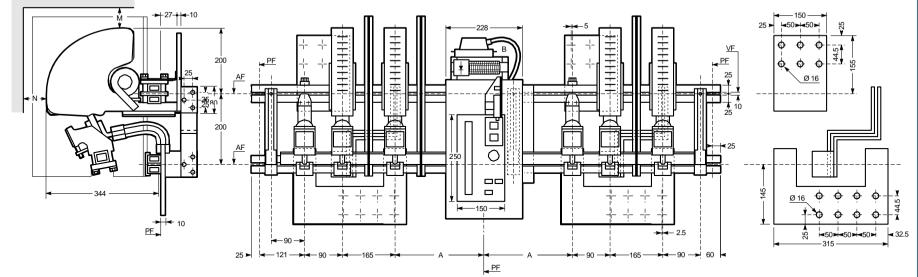

erall	
rall dimensions CMA 06 1250 to 5500	
CMA	
06	
1250	
б	
5500	

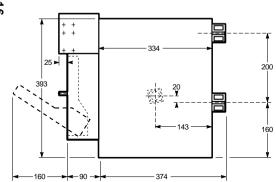
59. CMA 06 2560 - 3000 1.0

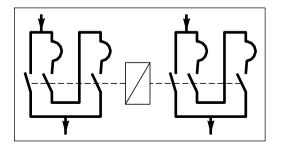
AF : attachment axis PF : attachment plane

VF : attachment plane

B : connecting box


Isulating distance (safety perimeter)


(safety perimeter)			
	М	Ν	
Insulated walls	120	120	

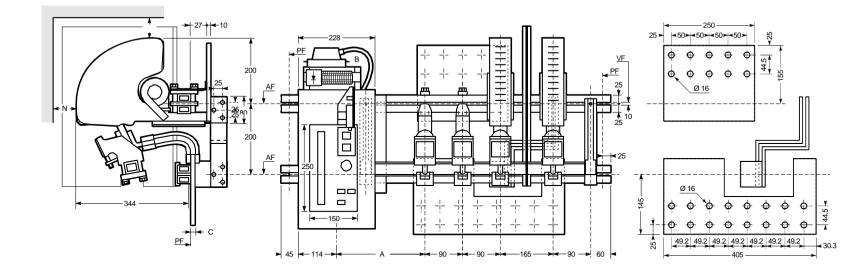

Distance A	
Standard	316
Reduced	226

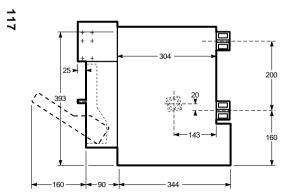
60. CMA 06 2560 - 3000 2.0

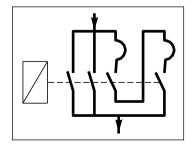
AF : attachment axis

PF : attachment plane VF : attachment screw

B : connecting box


Isulating distance (safety perimeter)


(salety perimeter)			
	М	Ν	St
Insulated walls	120	120	Re

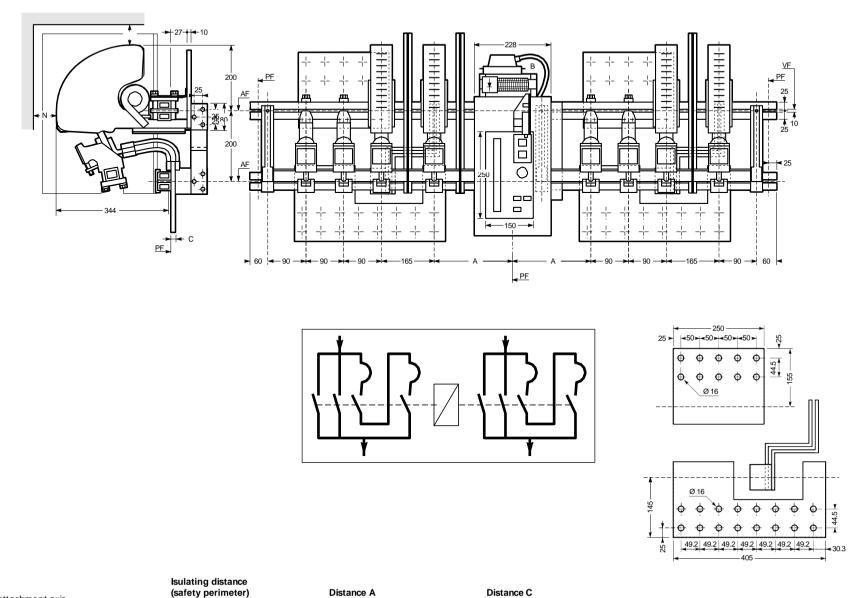

Distance A	
Standard	316
Reduced	226

61. CMA 06 5000 - 5500 1.0

AF : attachment axis

PF : attachment plane VF : attachment screw

B : connecting box


Isulating distance (safety perimeter)			
	М	N	
Insulated walls	120	120	

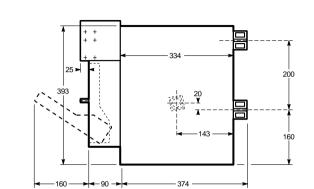
Distance A	
Standard	316
Reduced	226

Distance C	
Calibre 5000	10
Calibre 5500	15

62. CMA 06 5000 - 5500 2.0

AF : attachment axis

PF : attachment plane


VF : attachment screw

B : connecting box

Mezse

27 10 М

Isulating distance (safety perimeter)

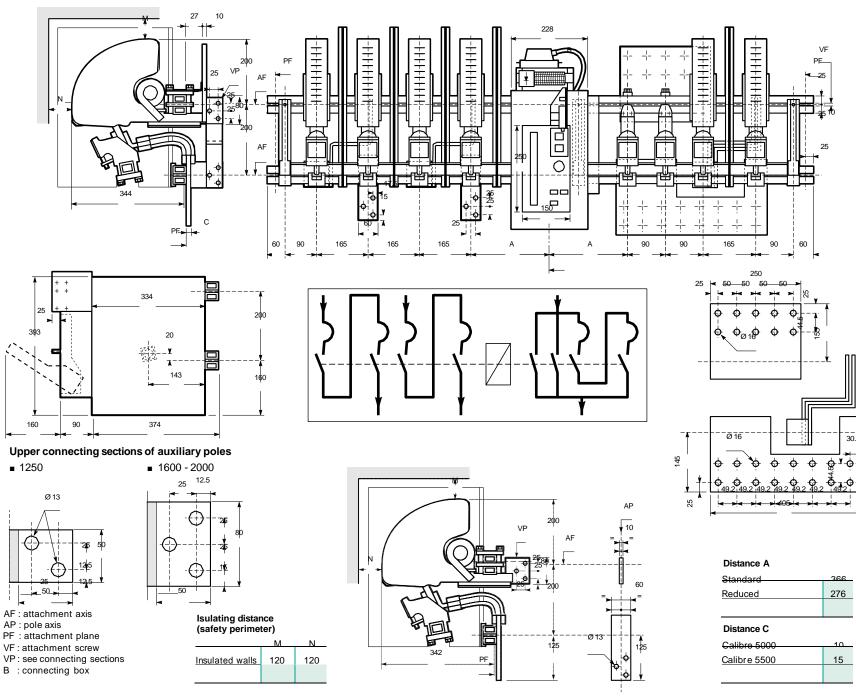
	М	N	Standard	366	Calibre 5000	10
Insulated walls	120	120	Reduced	276	Calibre 5500	15

Distance A

228

Distance C

AF : attachment axis PF : attachment plane VF : attachment screw B : connecting box



Overall dimensions CMA 06 1250 to 5500 A CMA 06 1250 to 5500 A

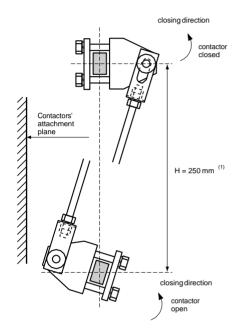
63. CMA 06 5000⁽¹⁾ + Ν × (1250(2)

30.3

¢

(1) 5500 possible.(2) 1600 or 2000 possible.

119

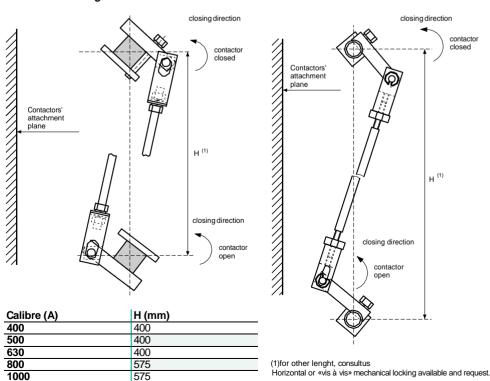


Vertical mechanical locking

80 to 200 A range

- CBA 55. - CBPA 57, - CBFC 55,
- CBC 57B 80 150 200.

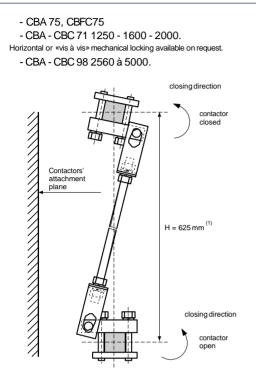
Horizontal or «vis-à-vis» mechanical locking available on request.

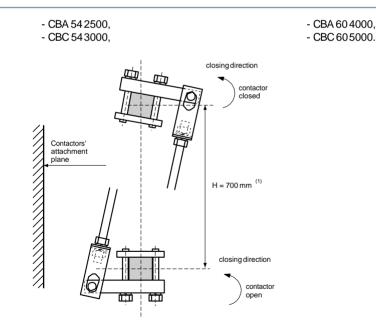

400 to 1000 A range

- CBA 75, - CBFC 75 400 - 500 - 630 - 800 - 1000.

Locking on the hold generaytion moving shaft or for 1250 to 5000 A range.

Standard locking at the end of the moving shaft.


contactor closed



Vertical mechanical locking

1250 to 5000 A range

2500 to 5000 A range

(1) for other lenght, consultus. Horizontal or «vis à vis» mechanical locking available on request.

CBT rapid contactors

CBT 200, CBT 400, CBT 800.

CBT 75 400 manual control

General

The equipment composed of the fast opening system DS1 + rapid opening contactor CBT may be used for other applications than the ones described in the present chapter. However, the general rules of application remain the same.

We know that some commanded rectifier bridges, of «all thyristor» type may restore the energy to the network by operating as UPSunits. This is the case for example of a GRAETZbridge connected to a driving load motor. This type of operation is also found in case of motors connected to rectifier bridges (constituted of two GRAETZ bridges assembled opposite) capable of ensuring the operation during the four quadrants of the «speed

torque» diagram. During the UPSoperation, if the network voltage suddenly abnormally drops, the electromotive force of the load is no more opposed to the one of the network. Moreover, as the control pulses of the thyristors' UPS bridge generally, go on energizing then, this short-circuit closes very fast directly in one or several vertical branches of the bridge.

Ultra-rapid fuses, playing their normal part of protection melt in more or lesssignificant number. If there are no fuses in the branches of the bridges, the thyristors will be the ones, by being put off load, to stop the output of the load on that short-circuit, but only after the current had reached high ratings. For rectifier bridges that:

 are to operate on networks subject to frequent voltage disruptions or,

have to ensure significant duty factors as UPSunits. The probability of defect is high enough to make it interesting to foresee an additional selective protection, capable of opening the connection between the load and the bridge before the energy created in the fuses generates their fusion or partial degradation.

All the more so, the thyristors are also protected by this protective system.

- This last one should include:
- a rapid switch off device the $\mbox{\ \ rapid CBT}\mbox{\ \ contactor\ \ }\ \ and,$
- a CBT contactor instant control device in case the current would exceed a pre-fixed value - the fast opening system DS1.

Those elements and eventually the outer circuit must be scheduled and adjusted so that at the end of the cut off, the energy dissipated in the fuses and thyristors shouldn't cause any damage.

We know that for the fuses, this limit is defined by the

manufacturers by the integral $\int i^2 dt$ of pre-arc.

Same thing for the thyristors, an integral $\int t^2 dt$ of fusion, not to reach or exceed, has to be defined

CBT rapid contactors Technical features CBT 200 to 800 A

41. CBT 200 - 400 - 800

Use

Such a contactor is used to complete the protection of thyristors bridges supplying the DC motors in case of disappearance of the AC supply voltage. Coupled with an electronic current detector, the CBT contactor opens fast enough to:

- avoid the fusion of the ultra-rapid fuses.
- Imit the current to a value inferior to the one that would create a clash to the motor's commutator.
- Imit the $\int i dt$ value to a doorstep very inferior to the present possibilities of thyristors.

Description

- 1 or 2 magnetic arc-blowout closing poles.
- Closing
- CBT200: electrical closing thanks to a solid magnetic circuit controlled by an auxiliary contactor,
- CBT400 and 800: manual closing with handle or electrical closing with a separated laminated magnetic circuit controlled by an auxiliary contactor or manual & electrical closing.
- Mechanical latching with electrical release on CBT 200 (manual release on request), mechanical latching with electrical and manual releases on CBT400 and 800 A.
- Instant M type auxiliary contacts (the contacts for switching-off the closing and tripping coils are mounted and cabled).

Free auxiliary contacts: 1 NO + 1 NC on CBT200 and CBT 400 & 800 with electrical control, 1 NO + 2 NC on CBT 400 & 800 with manual control.

Possible addition of 1 or 2 extra M3 blocks, (increases the overall dimensions of the CBT).

Contactors with manual control are equipped with: - asafety contact (opened during the operation of the handle),

- a padlocking facility, on request.

Technical features

							CBT 200	CBT 400	CBT 800
	ng voltage					V	1000	1000	1000
Nomina	Nominal DCvoltage								
			single-po	ole break			250	300	300
			two-pole	e break		V	500	600	600
Current	ofuse						300	500	1000
			section to			mm ²		240	500
Current	switch-off	rating L/R	l= 15 ms,	U re-estal	olished-550	Vcontinuous A	4000	8000	16000
							1200	1900	1900
Time of rise of arcing voltage (7 ms < L/R < 37 ms) ms							< 5	< 5	< 5
Arcing time (L/R=15 ms) ms						ms	14	14	14
Control	circuit								
		closing (di	roctor		d voltages		110-200	110 - 127 - 220 - 380	110-127-220-380
		rectified c	urrent ⁽²⁾		ed power		660	2300	2300
		recuneut	closing time at Un			ms	95	80	80
		opening	pening ⁽³⁾			A	27	27	27
				quanti	ty of electri	city coulomb	0.1	0.1	0.1
				allowab	le permaner	ntcurrent A	1.1	1.1	1.1
				pulse tir	ne	ms	18	18	18
Opening	g time betv	ween com	mand and	separatio	on of contac	ts ms	8-9	8-9	8-9
	nical endu	rance				operations	75000	15000	15000
Use			connecti	ion ⁽¹⁾					
			1 contac	tor		2 contactors			
	Current	Voltage	1P	2Pin	2Pin	2Pin			
	ofuse	e of use		series	parallel	parallel			
	01000	01000	1						
			i,	-/-/-	1 1				
			ſ	ſĽ	\square				
	A	V			'			1	
	300	250	•	-	-	-	•	-	-
		500	-	•	-	-	•	-	-
	500	300	•	-	-	-	-	•	-
		600	-	•	-	-	-	•	-
	600	300	-	-	•	-	•	-	-
		600	-	-	-	•	•	-	-
	1000	300	•	-	-	-	-	-	•
			-	-	•	-	-	•	-
		600	-	•	-	-	-	-	•
	2000	300	-	-	•	-	-	-	•
		600	-	-	-	•	-	-	•

from the current of use and the voltage of use depend the connection of contactors.
 exclusively via a rectifier (not supplied).

(3) either in 220 V dc or via a capacitors' discharge of 1300 µF (Voltage of charge: 250 V).

CBT rapid contactors Operation and graphic method

42. Co-ordination of thyristor's protections

The DC supplies via thyristors generally have already an internal protection system by circuit breakers and an external protection system by a limiting rapid equipment such as a CBT contactor. It is necessary to check the good co-ordination of both protection systems to avoid the fusion of the circuit breakers on only external defect that should be deleted by the limiting equipment. Therefore, it is necessary to compare the integral of Joule

2

 $\int i dt$ that the protection equipment allows to the inte-

gral of Joule $\int i^2 dt$ required to obtain the fusion of the

circuit breakers. This last value is one of the main characteristics of the circuit breakers and can be easily calculated from the manufacturer's ratings, the number of connections in parallel and the drawing achieved.

This sheet aims at giving a calculation method of the integral of Joule allowed by the limiting rapid equipment and the extra self induction coil to schedule whether the coordination is not ensured by the design characteristics of the circuit.

Operation of the protection equipment

The characteristic oscillogram is represented on page 128. The value of the network voltage U and the value of the total resistance R determine the asymptotic value of the supposed short-circuit current Icc. The value of the self-induction of the circuit L and the value of that resistance

R determine the time constant t = L/R. The operation of the limiting protection equipment for

that circuit can be schematised as follows: After a certain time TD, the adjustment limit doorstep iD

of the current detector DXT is reached. This one, through an electro-mechanical device, provokes the opening of the contacts after a certain time DM. The arcing voltage appears but a certain time is necessary for the value of the

arc to be sufficient to provoke the limitation of the shortcircuit voltage to a value il. This arc will last until the extinction of the current during a total time ta.

For a precise calculation of the integral of Joule, the full knowledge of the function i = f(t) during the whole phenomenon is necessary. This can only be undertaken by using an oscillogram corresponding to all the characteristics of the circuit.

Experience shows that a good approximation could be obtained under normal operating conditions by formulating the following simplifying hypotheses (the drawing page 128 represents the allure of the phenomenon):

- the value of the limited current *iL* will be taken from the curve of the supposed current *Icc* for a time *TL* corresponding to the summa of TG + DM + Tma (*Tma* corresponds to the average time of rise of the arcing voltage for different values of current).
- the growth of the current will be supposed as linear from 0 to *IL*.
- the decrease in the current will be supposed as linear from *IL* to 0.
- the duration of that decrease will be considered as equal to a value TA corresponding to the difference between the average value of the arcing time DA and the time of

rise of the arcing voltage Tma for the corresponding equipment (TA = DA—Tma).

• the integral of Joule can then be calculated from the formula: $2 = H_{\perp}^{2} (TL + TA)$

$$\int_{i}^{2} dt = \frac{IL (IL + IA)}{3}$$

The elements required for applying this formula can be obtained from 2 different methods:

- graphic method,
- «set of curves» method.

Both methods will be presented in the next pages with a corresponding example. Each method will be divided in 2 parts:

- the calculation of $\int_{1}^{2} dt$,
- the calculation of the extra self-induction coil.

Graphic method

i =

During the course of the calculation leading to *IL* and *TL*, it will be necessary to pass from a value of the time to a value of the current and vice versa; as the function

$$f(t)$$
 is $i = Icc(I - \xi - \frac{t}{2})$, in shape we have

looked for a graph that would allow us to obtain a linear representation of such a function.

$$i = Icc \begin{pmatrix} I - \xi - \frac{t}{\tau} \\ i \\ \tau \end{pmatrix}$$

in which $\frac{I}{Icc} = I - \xi - \frac{t}{\tau}$ and $I - \frac{i}{Icc} = \xi - \frac{t}{\tau}$
so $Log \begin{pmatrix} I \\ - \\ Icc \end{pmatrix} = -\frac{\tau}{\tau}$

expression which is linear on a semi-logarithmic paper. To draw the lines corresponding to different T, you will

only have to notice that for
$$t = \tau$$
, $I - \frac{t}{Icc} = 0.367$ (see

figure page 126).

- To make it clearer, we will take as example: • the switching-off a supposed current *Icc* of 8400 A,
- protection doorstep ID adjusted at 600 A,
- time constant $\tau = 15ms$,
- equipment used: CBT400 whose design features are: -DM = 9 ms,
 - -Tma = 2 ms,
- -DA = 10 ms.

Circuit breakers can only admit $(\int i dt)a$ as integral of Joule of pre-arc value. We will calculate the extra self-inductive coil required in the circuit not to exceed this restraint value. In the example chosen, this value will be fixed at $100000 A^2 S$.

CBT rapid contactors Operation and graphic method

Method (figure page 126)

2

• calculation of $\int i dt$

- representation of the supposed current:

D from the abscissa, draw T on the line 0.367.

D draw the line representative of $\log(1 - \frac{i}{1 - \frac{i}{1$

 $Ic\bar{c}$

from the point 1 of the ordinate 0 – 1 and passing through the point T drawn on the line 0.367 - determination of TD on that line:

D the ordinate of *TD* is defined by $I - \frac{ID}{Icc}$

D the abscissa corresponds to the time TD
calculation of TL from the formula $TL = TD + DM + Tma$
- determination of <i>IL</i> on the characteristic line for:

D the abscissa TL corresponds to the ordinate whose

expression is $1 - \frac{IL}{L}$

calculation of $\int i dt$, by using of the approaching formula: $\int i^{2} dt = \pi L^{2} \frac{(TL + TA)}{2}$

calculation of the extra-self:

- value of the limited current IL not to exceed: The change in the time constant will slightly modify the value of TD but to go on with the calculation, we suppose the total time constant and

$$IL2 = IL1 \sqrt{\frac{(\int i^2 dt)a}{2}} (\int i^2 dt)1}$$

- value of the new time constant T 2

A line of operation for which TL - TD = DM + Tma and IL = IL2 has to be found. The slope of such line that enables to passfrom ID to IL in (DM + Tma) ms can be obtained from the following points:

DA on the ordinate is defined by I -	$-\frac{ID}{Icc}$
D B projected from: ▲ the ordinate $1 - \frac{IL2}{Icc}$ ▲ the abscissa $(DM + Tma)ms$	
D draw the line passing by A and B	

 ${\rm D}$ its intersection point C with the horizontal 0.367 projected on the abscissa axis gives the new value of the circuit time constant.

D as we know the existing characteristics, it is now possible to determine the characteristics of the extraself (L and R) to obtain that new total time constant of the circuit.

Exemple (figure page 126)

D from the abscissa, draw τ

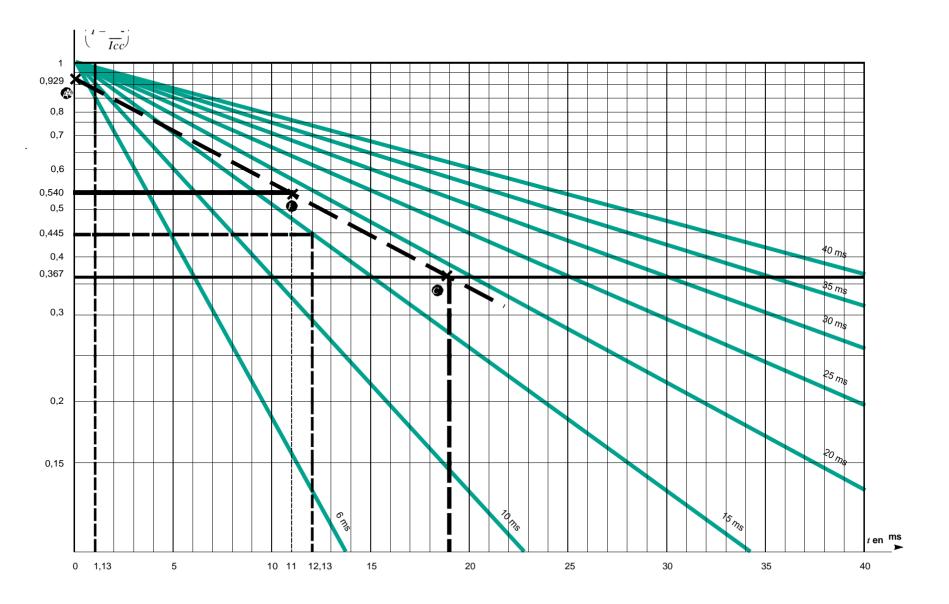
D draw the line representative of $\log \left(1 - \frac{i}{Ic\bar{c}} \right) = -\frac{t}{\tau}$

Definition of the ordinate of TD is:

$$\begin{pmatrix} 1 & -\frac{600}{8400} \end{pmatrix} = 1 - (0.071) = 0.929$$
Definition to the abscissa gives 1.13 ms as time TD
TL = 1.13 + 9 + 2 = 12.13 ms
Definition to the abscissa TL = 12.13 ms
So, $\frac{IL}{Icc} = 1 - (0.445) = 0.555$
So, $IL = 0.555 \times Icc$, i.e. $0.555 \times 8400 = 4660A$
 $IL = 4660$, $TL = 12.13$
TA = DA - Tma = 10 - 2 = 8
 $2 \int_{1}^{2} \frac{(I2, I3 + 8)}{(I2 + 4660)} \times \frac{2}{3} = 145000 \text{ A S}$

The corresponding oscillogram gives the following result:

 $IL = 4400 A \text{ and } \int t dt = 134000 A S$


 $IL2 = 4660 \times \sqrt{\frac{100000}{145000}} = 3860A$

points:

D the intersection point C projected on the abscissa gives $20.5 \ ms.$

 $[\]mbox{D}$ the extra self combined with the present characteristics of the network should allow to obtain that time constant of 20.5 ms.

CBT rapid contactors **Operation and graphic method**

Graphic method by set of curves

To make the calculation of *IL* and $\int i^2 dt$ easier, you can pre-determine per equip-ment a network of curves that would enaMethod

ble you to obtain quickly the values looked for form the characteristic parameters of the circuits. According to the adjustment of

the protection ID, you can define a current of use $Ie = \frac{ID}{2}$ withstandingnormal operation overloads. To characterise

this method, we will take the same exampleasin the graphic method, i.e. switch-off of a supposed current Icc = 8400 A,

protection doorstep ID set on 600 A,

time constant τ equipment used CBT 400 whose design

features are: DM = 9ms,

Tma = 2ms and DA = 10ms.

If the value of the integral of Joule $\int i dt$ is superior to the pre-arc one for short-cir-

cuits $(\int i^2 dt) a$, a new time constant has to be looked for in the circuit. In the exam-2 2 S

ple chosen:
$$(\int i dt)a = 100000 A S$$

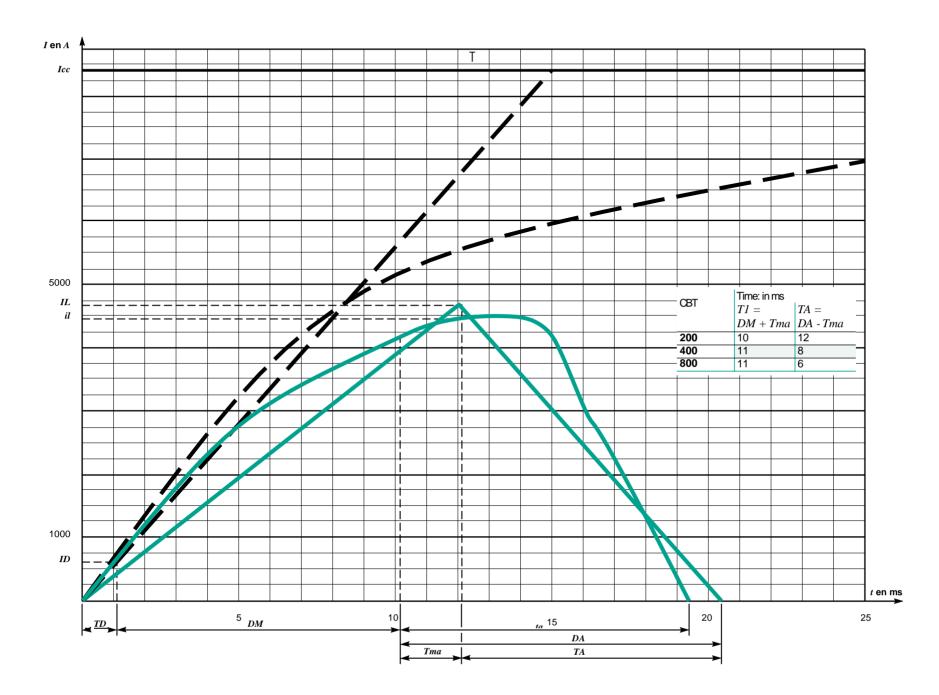
• calculation of $\int i dt TD$ calculation of 1 - TD time to reach ID from the parameters 8400 D I c c = K c c short-circuit factor Ie 300 Ie and T, you can determine the value of the TD time to reach the adjustment doorstep for the protection $TD = \tau \log \left[1 - \frac{2}{Kcc} \right]$ time *TL* to reach the limit current IL for a type of protection equipment, the values DM and Tma are known and by applying the rule TL = TD + DM + Tma, you obtain a set of values determinig TL limitation factor $KL = \frac{IL}{icc}$ from the parameters Kcc and for CBT400 - 800, page 131, τ Kcc = 28 on the abscissa. KL = 0.555 is obtained on T, you can determine the value of the limitation factor KLthe ordinate by using the formula $KL = I - \xi - \frac{t}{\tau}$ and plot the corresponding curves: D figure page 129 for CBT200, D figure page 131 for CBT400 and 800 allowing the determination of IL: $\overline{IL = KL \times Icc} = 0.555 \times 8400 = 4660 A$ $IL = KL \times Icc$ overcurrent factor: $KS = \frac{ILIe}{Ie}$ and T and the formula $\frac{ILIe}{Ie} = \frac{IL}{Icc} \times \frac{Icc}{Ie}$ and - overcurrent factor: $KS = \frac{IL}{L}$ from the parameters Kcc $KS = KL \times Kcc$, you can determine the values of the overcurrent factor KS for different combinations of parameters. - integral of Joule $\int i dt$ for a given equipment, the value of the time TA = DA - Tma is also a known feature and the approaching value of the integral of Joule 2 2(TL+TA) $\int i dt$ can be written: $\int i dt \# IL -$ that can be expressed in reduced magnitude by $\frac{l(IL)^2}{3(Ie)^2}(TL + TA)le^2 \text{ or } \int i^2 dt \, \#\frac{l}{3}(KS)^2$ by considering TT as the total current time and K = ---(KS)As K is a factor expressed according to Kcc for CBT400 page 132 on the set of curves, τ T, the set of curves page 130 for the CBT200, page 132

Example

for the CBT400, page 133 for the CBT800 gives the factor K according to Kcc and T

 $\int i dt = KIe$ calculation of the extra self. You determine a new factor $\frac{1}{K2} \frac{1}{K1} \int \frac{dt}{dt} \frac{dt}{dt}$ K2 $(\int i dt) l$

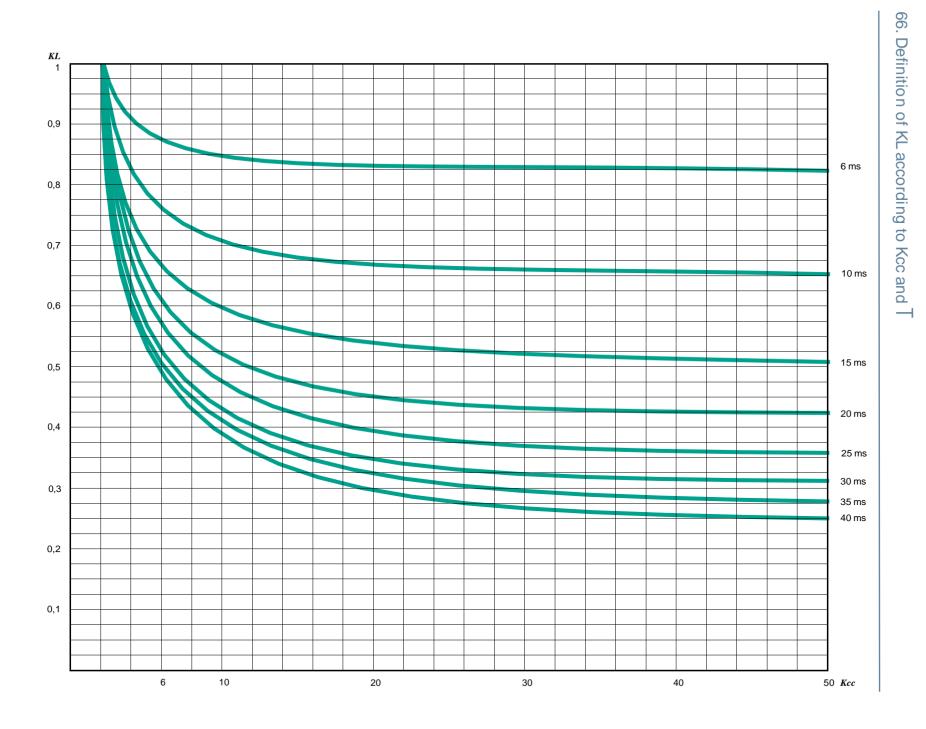
The point $K = f(\tau - Kcc)$ in the set of curves, page 130 for CBT200, page 132 for CBT400, page 133 for CBT800, determines the value of the circuit total time constant to achieve.


Kcc = 28 on the abscissa, and K = 1.6 is obtained on the ordinate

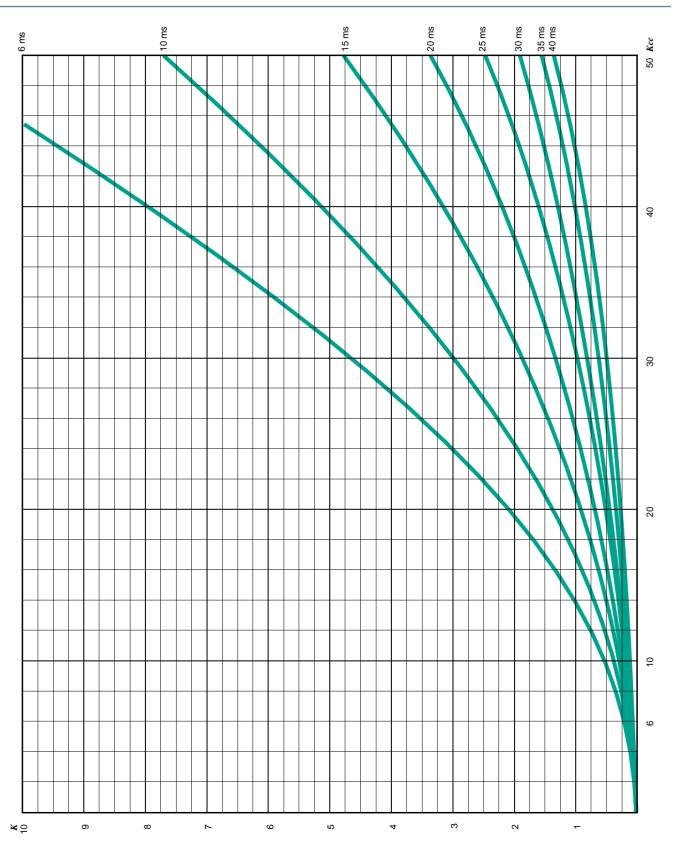
 $\int i^2 dt = K le^2 = 1.6 \times 300^2 = 144000 A^2 S$

$$K2 = 1.6 \times \frac{100000}{144000} = 1.11$$

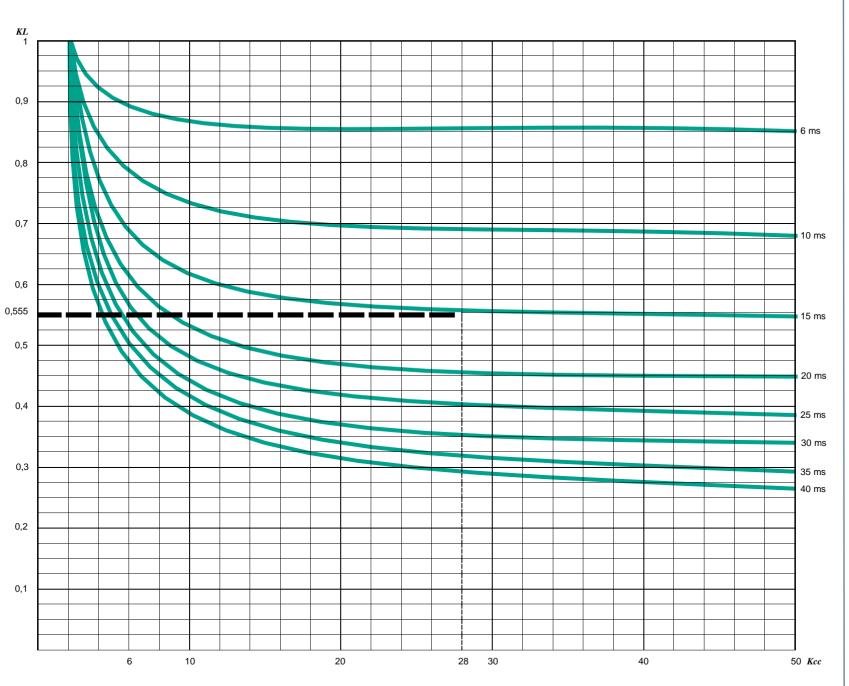
D for CBT400 on the curves page 132, for Kcc = 28 on the abscissa,

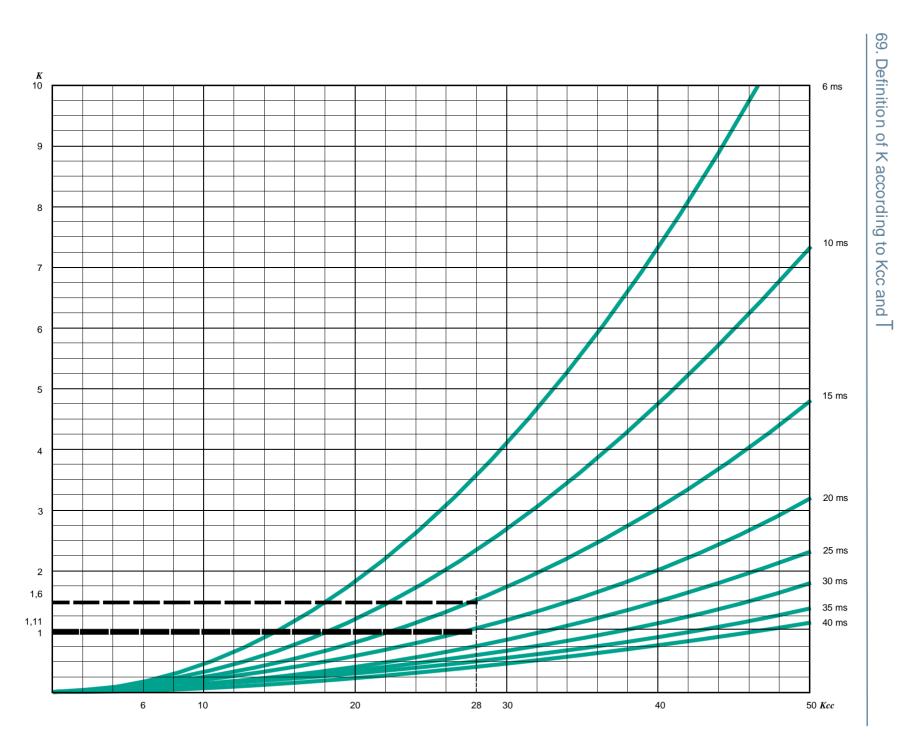

K = 1.11 on the ordinate, we obtain τ

Measer

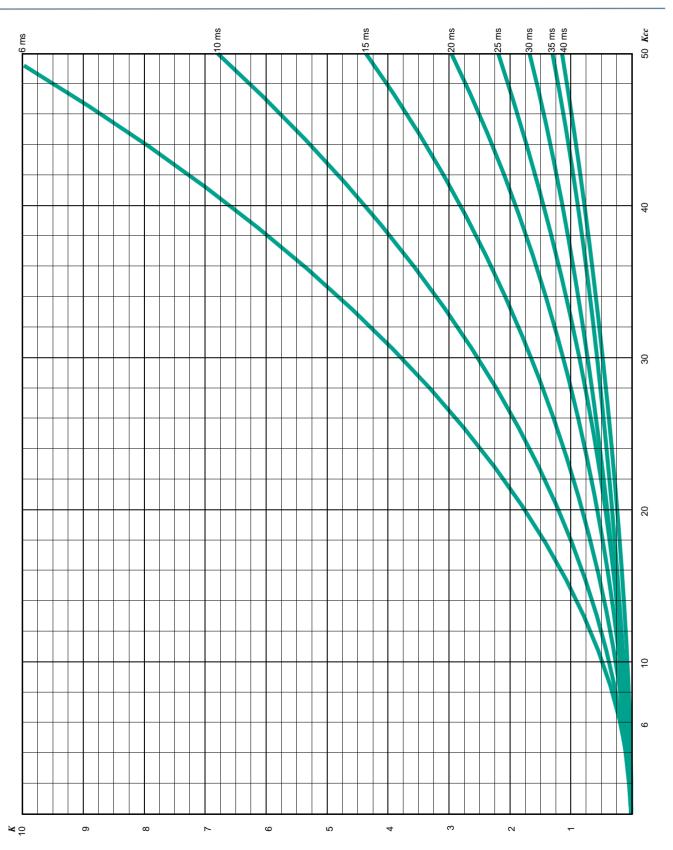

CBT rapid contactors

CBT rapid contactors


67. Definition of K according to Kcc and T

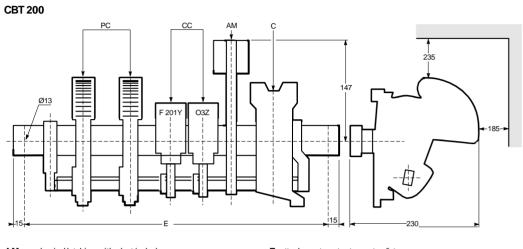

CBT rapid contactors CBT 400 à 800 A

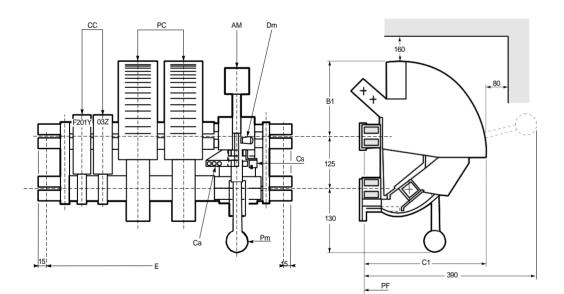
CBT rapid contactors



132

CBT rapid contactors

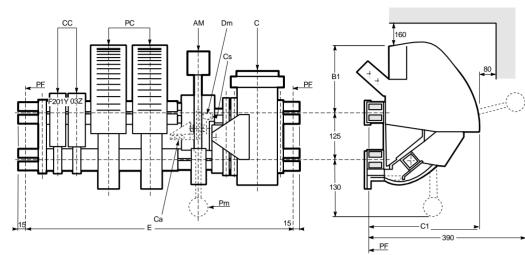

70. Definition of K eaccording to Kcc and T


CBT rapid contactors
Encombrements CBT 200 à 800 A

71. CBT 200 - 400 - 800

AM: mechanical latching with electrical release. C: closing electromagnet. CC: auxiliary contacts. E: attachment centre-to-centre distance: 1 pole = 375, 2 poles = 450. PC: arc-blowout poles..

CBT 400 - 800 manual control


AM: mechanical latching with electrical release. Ca: padlocking facility. CC: auxiliary contacts. Cs: safety contact. Dm: manual release. PC: arc-blowout poles. PF: attachment plane. Pm: manual handle.

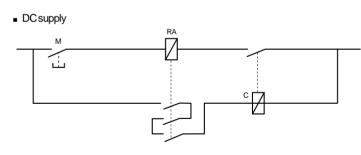
		400	800
E	1 pole	450	450
	2 poles	550	550
B1		132	211
C1		292	330

CBT rapid contactors Overall dimensions CBT 200 to 800 A

CBT 400 - 800 electrical control

AM: mechanical latching with electrical release. C: closing electromagnet. Ca: padlocking facility. CC: auxiliary contacts. Cs: safety contact. Dm: manual release. PC: arc-blowout poles. PF: attachment plane. Pm: manual handle.

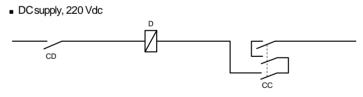
		400	800
E	1 pole	575	575
	2 poles	675	675
B1		132	211
Cl		292	330
		•	

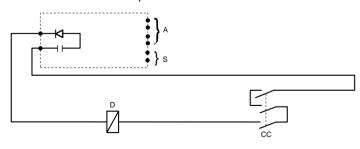

Control circuit drawing⁽¹⁾

Closing

AC supply

М


T


RA

/

Opening

Via detector with inserted capacitor

M: Push-button «on». PR: rectifier bridge. RA: auxiliarycontactor. S: Shunt connection: 100 mV. (1) contactor delivered not cabbled..

A: detector can be supplied with 110, 220 or 380 V, 50 or 60 Hz. C: CBT contactor.

- **CC**: CBT'sauxiliary contacts.
- CD: detector's contact.
- D: tripping coil

Magnetic RBC 1054 Z relays

RBC 1054 ZA, RBC 1054 ZB, RBC 1054 ZD, RBC 1054 ZBA, RBC 1054 ZBP, RBC 1054 ZCD, RBC 1054 ZCD, RBC 1054 ZCP, RBC 1054 ZDB, RBC 1054 ZDK, RBC 1054 ZBM, RBC 1054 ZET, RBC 1054 ZLT, RBC 1054 ZPC.

RBC 1054 Z Relay Voltage-trigger ed

This equipment can be used as:

- instant voltage-triggered or current-triggered control relay,
- voltage-triggered, current-triggered or magnetically delayed on opening of the circuit control relay (delay on opening 1.2 sec.max.),
- reverse-current relay,
- synchronizing relay,
- regenerative braking control relay.

Type of applications: industries, metros, tramways, travelling cranes...

Magnetic RBC1054 Z relays **Technical features**

Magnetics DC relays

72. RBC 1054 Z

Use This device is used as:

- Instantaneous, voltage-triggered or current-triggered control relay.
- Control relay, magnet-controlled time delay on opening of circuit, voltage-triggered or current-triggered.
- Reverse-current relay.
- Synchronizing relay.
- Regenerative braking control relay.

Description

RBC 1054 Z relays include:

• 1 solid magnetic circuit: lower section of armature hinged if device hasat least 1 arc-blowout contact, upper section if relay has no arc-blowout contacts.

- Contacts normally made of copper (silver on request): -1 contact NO or NC,

 - -2 contacts NO or NC,
 - -3 contacts 3 NC, 1 NC + 2 NO.

The table below gives number, position and form of contacts according to the type of relay. Relay installation is intended for insulated rods 30 x 21 or 44 x 24.

Relay delivered with 0.25 mm gap plate 0.5 - 0.2 and 1.1 plates can be delivered on request.

The device can be equipped with mechanical latching with manual release on request..

RBC 1054 ZA Volmétrique

Contacts			NO contact			NC co	Mainht		
number	position	on Type of relay	without arc-blowout		with arc-blowout	15 A	2A ⁽²⁾		- Weight
			15 A	2 A	6 A(1)		dry	blade	— (kg)
	central	ZA	•	-	-	-	-	-	2.250
		ZCT	-	•	-	-	-	-	2.250
		ZD	-	-	•	-	-	-	2.750
		ZB	-	-	-	-	•	-	2.250
		ZCH	-	-	-	-	-	•	2.250
2	lateral	ZBA	• (3)	-	-	-	-	-	2.800
		ZBM	•	-	-	•	-	-	2.800
		ZCD	-	-	• (3)	-	-	-	3.800
		ZBQ	•	-	•	-	-	-	3.300
	1 central	ZBP	• (3)	-	-	-	•	-	3.000
	2 lateral	ZDB	-	-	-	• (3)	•	-	3.000
		ZCP	• (3)	-	-	-	-	•	3.000
		ZDK	-	-	• (3)	-	-	•	4.000

Technical features

Operating voltage		V	600	
NO or NC15 A without arc-	thermal nominal current	A	15	
blowout	current switch-off rating ⁽⁴⁾ under voltage	V	250	600
	resistivecircuit	A	1.5	0,6
	inductivecircuit	A	1	0,4
NO with arc-blowout	thermal nominal current current switch-off rating ⁽⁴⁾	A according to arc-blowout coil capacity		
Standard coils	instantaneousvoltage-triggered relays	V	92 - 127 - 220 - 250*	
Other values and/or 10000 V dielectric	delayed voltage-triggered relays	V	130 - 250*	
strength on request.	instantaneouscurrent-triggered relays	A	2 to 8000	
	delayed current-triggered relays	A	100 - 125 - 150 - 200 - 500*	
	reverse-current relays			
	shunt coil	V	6 - 12 - 16 - 38 - 48 - 60 - 95 - 2	115-167-220
	seriescoil	V	2-5-10-100-200-320-350	-600-900-1000-2000-3500-5000
	average consumption of voltage-triggered coils	W	20	
	min. closing ampere-tums		400	
Minimum ratio between clo	osing and opening voltages		1.2	

(1) can be equipped with 1-2-3-4-16-25 or 30 A coil

(2) dry: without penetration, with blade: penetration by bending of blade.

(2) (3) 2 contacts of this type.
 (4) for normal settings, special settings may reduce them to a large extent.
 * for other values, consult us.

When you order, please let us know:

- the RBC type, name and kind of contacts.
- the nominal voltage or the nominal current of the closing coil.
- the closing range and, if necessary, the opening range.
- if the relay has to be equipped with a mechanical latching with manual release.
- if an arc-blowout coil is to be supplied with the relay,
- please specify its amperage.
- if instant or delayed on opening operation is required.

Magnetic RBC1054 Z relays **Operation**

G

Instantaneous control relay: voltage-triggered or current-triggered.

The relay coil, connected to the terminals of the circuit to be controlled, closes the device when the voltage or current reaches a determined value.

- Closing can occur from 30 % of coil rated voltage or current.
- Opening can be set at closest to 80 % of closing voltage or current.

Control relay magnetically delayed on opening of circuit: voltage-triggered or current-triggered.

Same closing and opening characteristics as for instantaneous relays.

Delay on opening:

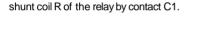
- 0.8 seconds max when trip coil isshort circuited by inserting a series-connected resistor.
- 1.2 seconds max when relay coil is equipped with a retarding turn.

Reverse-current relay.

The device includes 2 coils:

- 1 series coil.
- 1 shuntcoil.

The relay is closed by its shunt coil R.


Relay contact R1 closes contactor C.

Contactor C switches the series coil Ra of the relay into the circuit.

Contactor C inserts an RSresistance in series with the shunt coil R of the relay by contact C1.

This resistor RSis calculated to bring the ampere-turns to the minimum required to hold the relay closed. The relay remains closed whilst the current is in the correct direction, the ampere-turns of coils R and Ra are summed.

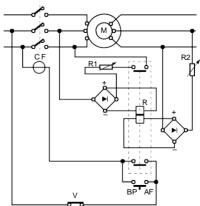
The relay opens, the contactor opens as soon as the current changes direction in generator G.

Synchronizing relay.

The RBC 1054 Z relay (1 NC contact) equipped with a retarding turn is used as synchronizing relay for starting synchronous motors. The relay coil is set into service by a selenium diode.

On energization of motor M, inductor Ind closed on discharge resistor Rd, a current appears at the terminals of the assembly Rs (coil + diode) and the relay closes.

Current frequency reduces as start-up progresses.


When synchronism is reached, the interval between 2 rectified half-waves is sufficient to open the relay.

Contact R1 of the relay closes contact C.

Contactor C inserts Ex and opens the discharge resistor circuit Rd.

Specify on order:

- Voltage at terminals of Rd, motor stopped, to close the relay.
- Maximum voltage reached during start-up for choice of diode.

Regenerative braking control relay.

The device includes a coil with 2 windings in opposition.

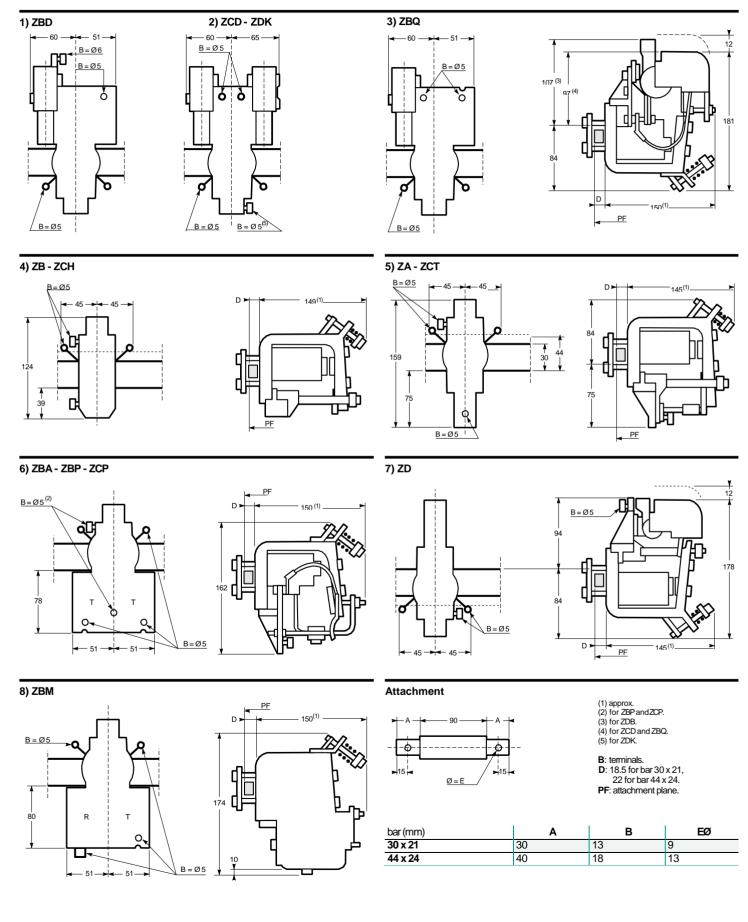
They are connected, via a rectifier, one to the terminals of the stator, the other to the terminals of the rotor of motor M.

When braking is commanded, rotor voltage is equal to 2 VR(VR = normal rotor voltage).

RelayR must open for voltage 2 VR only.

Closing the relay switches the stator winding into service: - rotor voltage decreases from 2 VR to VR,

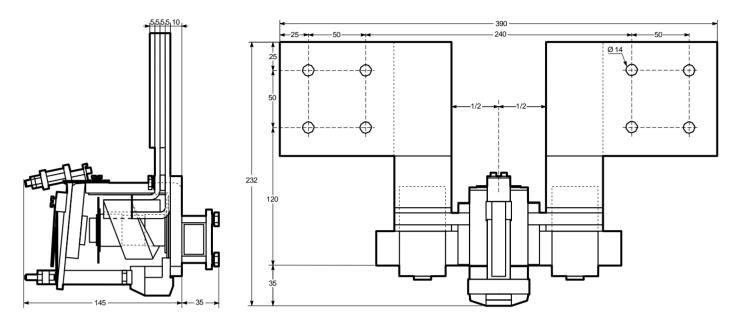
- motor speed falls from normal to 0.

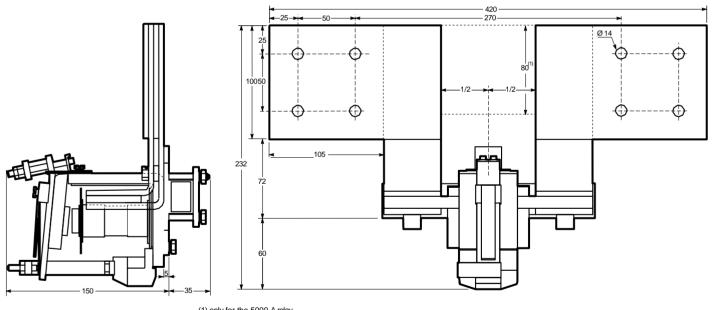

Zero speed corresponds to end of braking and opening of relay.

BP AF: "Braked stop" push-button.
CF: braking contactors.
R1 - R2: adjustable resistors.
V: electronic locking contact of "Normal run" contactor.

Magnetic RBC1054 Z relays **Overall dimensions**

Magnetic DC relays




Magnetic RBC1054 Z relays Overall dimensions for 900 à 5000 A current-triggered relays

DC current-triggered magnetic relays

73. 900 A ZCH relay⁽²⁾

74. 1250, 2000, 3500, 5000 A ZCH relay⁽²⁾

(1) only for the 5000 A relay. (2) other forms on request.

Connecting sections

Bars 900/1250/2000 A

Bars 3500/5000 A

CIC 1 - 2 DC contactors

Contactors for electrical trolleys CIC :

CIC 1D, CIC 1R, CIC 1DS, CIC 1RS, CIC 2D, CIC 2D, CIC 2R, CIC 2DS, CIC 2RS.

CIC DC contactors:

- Connecting points that allow a full connection (poles and coil) on the front, making easier the installation of the equipments on the trolley.
- An easy access to all the partssubject to replacement, all located on the front.

They are also equipped with:

- A moving element on blades eliminating premature wear and jamming which allows use of the contactors in cold chamber, without risk of icing the coil core.
- A moving contact control device providing intentional sliding of "NO" and "NC" contacts which increases the reliability of the contactor when the current passes (selfcleaning) and reduces rebounds (reduced risk of welding on closing).

2 versions of CIC contactors are available:

- contactor version = 1 NO contact,
- reverser version = 1 NO contact + 1 NC contact.
- It is possible to add one reverser auxiliary contact without any point in common.
- The contactor closes at 50 % of the nominal voltage which enables the trolleys to join the recharging point even after a long time of operation.
- Arc-blowout with permanent magnet device for use under nominal voltages superior to 48 V.

In that case, it is compulsory to have the fixed NO contact connected to the pole + of the battery.

CIC 1 - 2 DC contactors **Technical features**

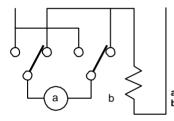
Equipement for electrical trolleys

75. CIC 1-2 DCcontactors

Possible addition of a block of adjustable

auxiliary contacts 1 NO + 1 NC, on request.

Use


Device intended to control DC loads, voltage � 110 V under ambient temperature conditions of 50° C max. It is specially recommended for:

- Equipping electrical vehicles and trolleys:
- traction motor (strat-up by short circuiting resistors, electrical speed controller),
- hydraulic pump motor (direct start-up or by electronic speed controller).
- Distribution by accumulator battery:
- coupling, battery charge,
- emergency lighting,
- passenger car lighting, railways.
- Equipping electrical welding sets (DCside switch-off).

Description

- model element on blades elimininating premature wear and jamming allowing use in cold chamber.
- moving contact control device providing intentional sliding of contacts (self-cleaning) and reducing rebound (risk of welding on closing reduced).
- Ag Cdo contacts.
- polarised device: + to be connected to upper fixed contact.

- connection via front.
- 4 versions.
 - D: 1 main pole without magneticarc-blowout, - DS: 1 main pole with magnetic arc-blowout,
 - R: 1 reverser pole without magnetic arc-blowout,
 - RS: 1 rupturing pole with magnetic arc-blowout.
- 3 power supply possibilities:
 - intermittent service (trolley),
 - permanent service without power-saving,
- permanent service with power-saving.
- rupturing, set of 2 CIC version R or RS(rupturing pole) - installed on support plate,
 - upper closing and opening contacts of poles interconnected

a · induced b : inductance.

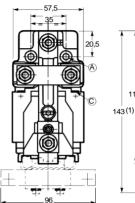
Technical features					
				CIC 1	CIC 2
Operating current (in ope	en air DC_1)				
permanent se	ervie			180	240
trolley service				250	310
connecting s	ection		mm ²		70
Operating voltage ⁽²⁾				� 110	♦ 110
Pole thermal time constant			18	18	
Operating category: DC_			•	•	
Pole current switch-off an	nd switch-on ratii	ng			
NO contact					·
	version D-R	closing	A	900	2000
	V � 48	opening	A	900	1200
	version DS-RS	closing	A	900	2000
	V 🕏 96	opening	A	900	1200
NC contact					
	version R	closing	A	400	550
	V � 48	opening	A	400	500
	version RS	closing	A	400	550
	V�96	opening	A	200	500
Voltage drop at pole			mV	37	44
under a curre	entof		A	150	200
Maximum operating rate	under load		operations/hour	300	300
Mechanical endurance		r	nillions of operations	3	3
Control circuit: standard	ated voltage		V	12-24-36-48-72-8	0-96-100-200
permanent se	ervice without powe	er-saving ⁽³⁾			
	consumption at		W	25	32
	closing/opening	time	55/15	75/16	
permanent se	ervice with power-sa				
	consumption at	rated voltage: inrush/hold	44/20	53/22	
	closing/opening	time	ms	40/13	50/14
intermittent s	ervice: duty factor :	50 % ⁽⁵⁾			
	consumption at	rated voltage	W	44	53
	closing/opening	time	ms	40/16	50/17

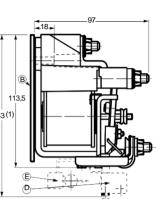
(1) duty factor 50 %, 5 min. open, 5 min. closed.
 (2) magnetic arc-blowout by permanent magnet mandatory for opening

under load with V > 48. (3) allowable voltage 85 to 110 % rated voltage, opening voltage 20 %

rated voltage. (4) device with auxiliary contact and power-saving resistor allowable voltage

65 to 110 %, opening voltage 22 % rated voltage. (5) max. cycle 150/150 s, allowable voltage 65 to 110 % rated voltage,


opening voltage 15 % rated voltage.

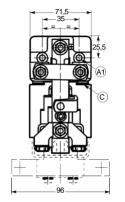


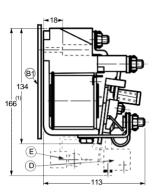
CIC 1 - 2 DC contactors **Overall dimensions**

Equipement for electrical trolleys

CIC 1

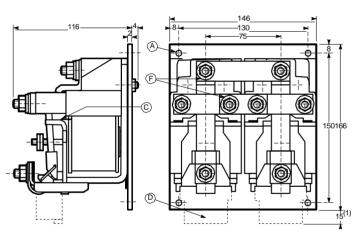
A: attachment two 5.5 dia. holes. A1: attachment two 6.5 dia. holes. B: insulating plate 109 x 58 x 1. B1: insulating plate 129 x 71.5 x 1.


Reverser CIC 1 contactor 1


-155 ↓10| -135 -65 10 A F F -(C) 10 TT (D) 102

A: attachment: four 7 dia. holes. C: coil connection 6.35 Faston lugs. D: auxiliary contacts 1 NO+ 1 NC.

90110 37


CIC 2

C: coil connection 6.35 Faston lugs. **D**: auxiliary contacts 1 NO + 1 NC. E: power-saving resistor. (1) with auxiliary contacts.

IReverser CIC 2 contactor

F: coupling of NO and NC contacts of reverser pole. (1) with auxiliary contacts

Weights (kg)	CIC1	CIC 2
D without arc-blowout	1.100	1.850
R withoutarc-blowout	1.140	1.850
Complete reverser contactor (2 NC without arc-blowout)	2.500	4.000
Magnetic arc-blowout	0.025	0.045
Auxiliary contact block ⁽¹⁾	0.055	0.055
Power-saving device ⁽²⁾	0.085	0.085

Connection drawings

Magnetic circuit type	Poles for	Type and size of the contactor	Mechanical latching with manual and electrical release	Magnetic circuit supplied with Alternating current					
				rectified			Direct current		Page
				direct		not power-saved	not power-saved	power-saved	- č
aminated	Alternating	CBA 55 80 - 150 - 200	without	1	•			(2)	14
	current		single	7	•			(8)	14
			double	25	•			(26)	15
solid	Alternating	CBPA5780-150-200	without		(3)	•	2	2	14
	current		single		(9)	•	- 8 (18)		14
			double		(27)	•	26 (36)	26 (36)	15
solid	Direct current	CBC 57B 80 - 150 - 200	without		(3)	•	2	2	14
			single		(9)	•	8 (18)	8 (18)	14
			double		(27)	•	26 (36)	26 (36)	15
laminated	Direct current	CBFC5580-150-200	without	1	•			(2)	14
			single	7	•			(8)	14
			double	25	•			(26)	15
solid	Direct	CBC 57 80 - 150		20		•	2	(20)	14
3010	current	CBC 68 200	_			•	2		14
		CBC 96 400 - 630			•	•	2	•	14
		RUBC96400-630			•		4	2	14
lominatad	Altomoting	CBA754001 to 4 poles	without	4					
laminated laminated laminated	Alternating current	and 500 - 630 1 to 2 poles	without	1	(3-5)	(11.15)	(10.16)	4 (6) (10-14-18-20-22-24)	14
			single	7	(9-13-17-19-21-23)	(11-15)	(12-16)	(/	14
			double	25	(27-31-35-37-39-41)	(29-33)	(30-34)	(28-32-36-38-40-42)	15
	Alternating current	CBA 75 500 to 1000 > to 2 poles for 500 - 630	without		3(5)	(44.45)	(10.10)	4 (6)	14
			single		9 (13-17-19-21-23)		(12-16)	10 (14-18-20-22-24)	
			double		27 (31-35-37-39-41)(29-33)	(30-34)	28 (32-36-38-40-42)	15
	Direct current	CBFC754001 to 4 poles and 500 - 6301 to 2 poles	without	1	(3-5)	(11.1.7)	((0, (0))	4 (6)	14
			single	7		(11-15)	(12-16)	(10-14-18-20-22-24)	14
laminated	Direct current		double	25	(27-31-35-37-39-41)	(29-33)	(30-34)	(28-32-36-38-40-42)	
		CBFC75 500 to 1000 > to 2 poles for 500 - 630	without	ļ	3 (5)	(4.4.4.7)	(10.10)	4 (6)	14
			single		9 (13-17-19-21-23)		(12-16)	10 (14-18-20-22-24)	
aalial	Alternetinen	004 74 4050 4000 0000	double		27 (31-35-37-39-41)) (29-33)	(30-34)	28 (32-36-38-40-42)	150
solid	Alternating current	CBA711250-1600-2000	without		3 (5)	(44.45)	(40.40)	4 (6)	14
			single		9 (13-17-19-21-23)		(12-16)	10 (14-18-20-22-24)	
solid	Direct current	CBC711250-1600-2000	double		27 (31-35-37-39-41) (29-33)	(30-34)	28 (32-36-38-40-42)	
			without		3 (5)	(44.45)	(40.40)	4 (6)	14
			single		9 (13-17-19-21-23)		(12-16)	10 (14-18-20-22-24)	
			double		27 (31-35-37-39-41)(29-33)	(30-34)	28 (32-36-38-40-42)	
solid	Alternating current	CBA 54 2500 - 60 4000	without		3 (5)	(44.45)	(40.40)	4 (6)	14
			single		9 (13-17-19-21-23)		(12-16)	10 (14-18-20-22-24)	-
			double		27 (31-35-37-39-41) (29-33)	(30-34)	28 (32-36-38-40-42)	150
solid	Direct current	CBC543000-605000	without		3 (5)	(44.45)	(40.40)	4 (6)	14
			single		9 (13-17-19-21-23)		(12-16)	10 (14-18-20-22-24)	
solid	Direct	007000	double		27 (31-35-37-39-41))(29-33)	(30-34)	28 (32-36-38-40-42)	150
laminated	current Direct	CBT200		<u> </u>					<u> </u>
laminated	current	CBT400 & 800							
solid	Direct	CEX5780-150-200	without	•	•	•	2	2	14
	current		single	•	•	•	8 (18)	8 (18)	14
	D'an a'		double			L	ļ	26 (28)	15
laminated	Direct current	CEX75 400 to 1000	without		(3-5)	(44.45)	(40.40)	4 (6)	14
			single			(11-15)	(12-16)	10 (14-18-20-22-24)	
			double		(27-31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	_
solid	Direct current	CEX71 1250 to 2000	without	L	(3-5)	((,,,,,=))	((0, (0))	4 (6)	14
			single		(9-13-17-19-21-23)		(12-16)	10 (14-18-20-22-24)	
			double	L	(27-31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	_
solid	Direct current	CEX543000-605000	without		(3-5)	((, , , , , , , , , , , , , , , , , ,		4 (6)	14
			single		(9-13-17-19-21-23)		(12-16)	10 (14-18-20-22-24)	
	I		double		(27-31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	15

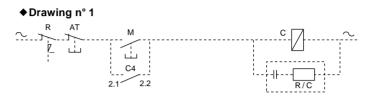
consult us.
(x) x is the n° of the optional connection drawing that can be applied to the contactor. It has to be determined, when you consult us or when you order.
Bold figures represent the standard type of connection.

Note: All the contactors from 80 to 200 A are delivered not connected.

For the whole range of contactors from 80 to 5000 A: - overall dimensions are only given for standard connections. In case you wish your contactor to have other optional connections, please contact our technical department to have its total dimensions.

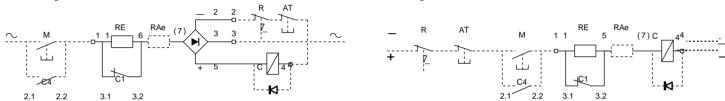
We can also supply, for contactors that are not equipped with a mechanical latching with electrical release, a system installed on a support plate designed to maintain the contactor closed in order to avoid untimely micro-cuts, please consult our technical department.

76. Control circuit of contactors without mechanical latching with electrical release

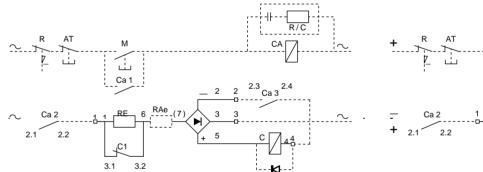

AC control voltage, alternating or rectified device

DC control voltage

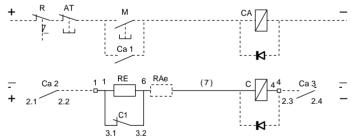
Drawing n° 2*


Drawing n° 4

Control by pulse switch for range 80 to 200 A, in AC supply for range 400 A -1 to 4 poles, 500/630 A-1 and 2 poles..


Control by pulse switch.

Drawing n° 3



Control by pulse switch and auxiliary contactor.

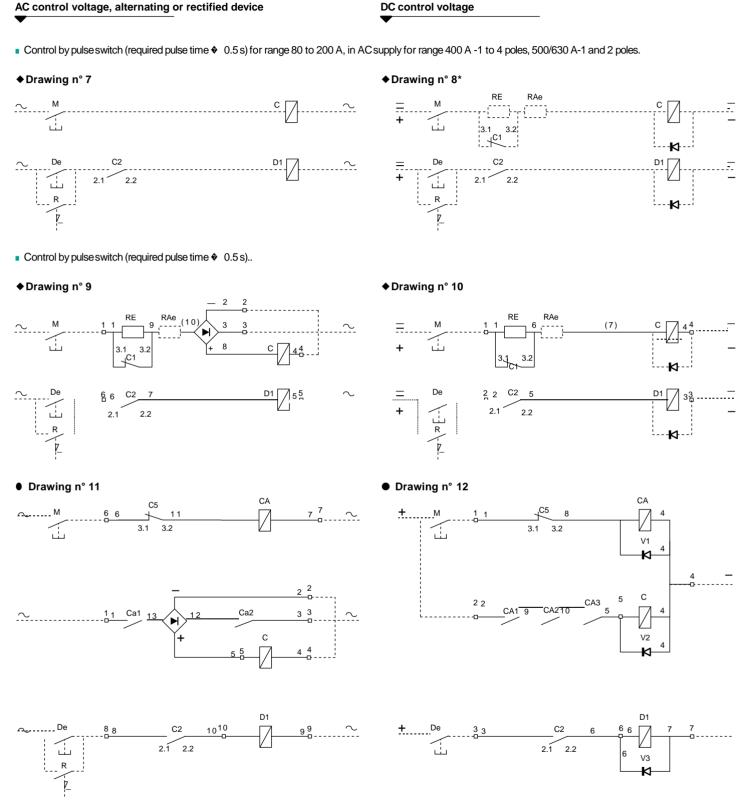
♦ Drawing n° 5**

Drawing n° 6**

C4

2.2

3.1

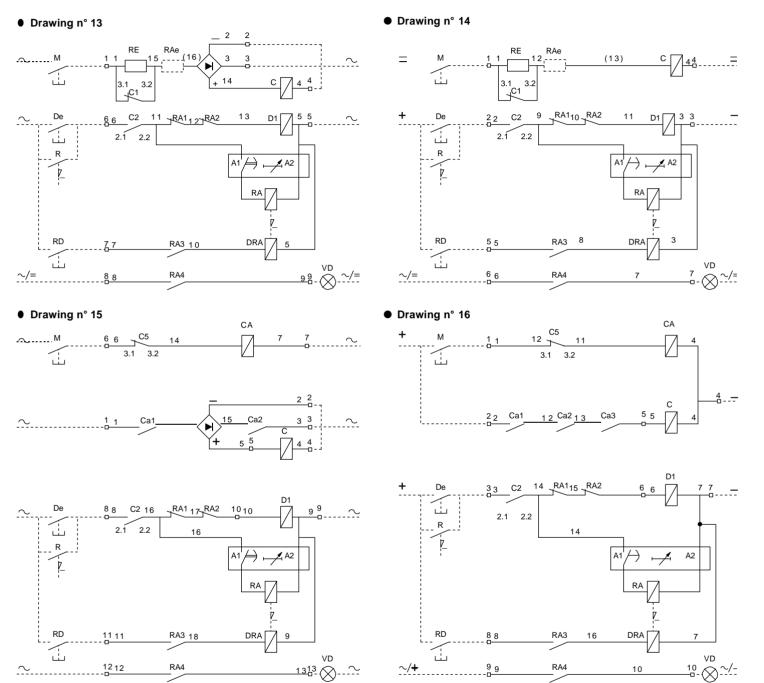

32

* in case of direct supply, there are no economy resistor 'RE', no eventual extra resistor 'Rae' and no insertion contact 'C1'.

** 'CA' relay not supplied.

77. Control circuit of contactors with mechanical latching with single electrical release

* in case of direct supply, there are no economy resistor 'RE', no eventual extra On request, diode or RC on control circuit. resistor 'Rae' and no insertion contact 'C1'.

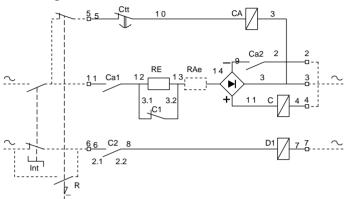


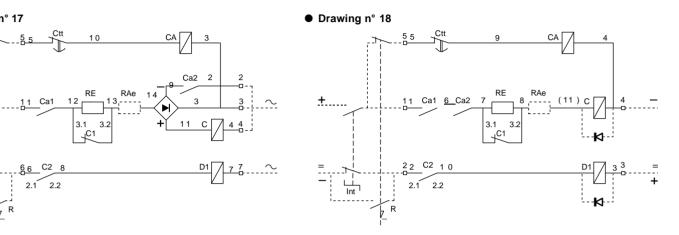
77. Control circuit of contactors with mechanical latching with single electrical release (§1)

AC control voltage, alternating or rectified device

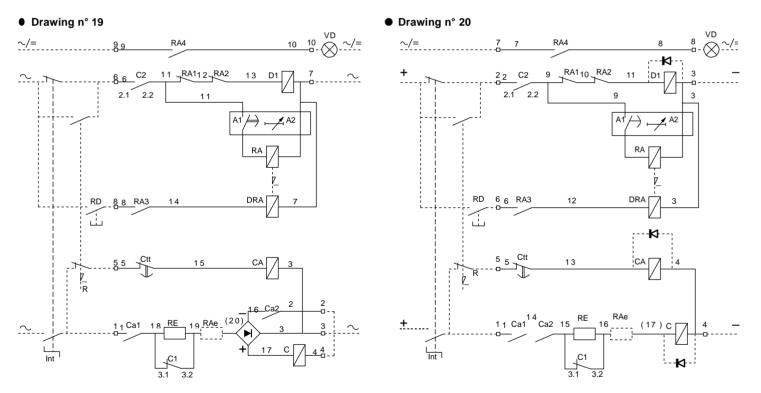
DC control voltage

Control by pulse switch (required pulse time * 0.5 s) and protective device with defect memorisation for the release coil.



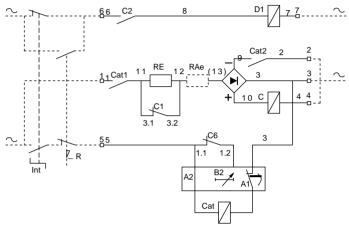

77. Control circuit of contactors with mechanical latching with single electrical release (§2)

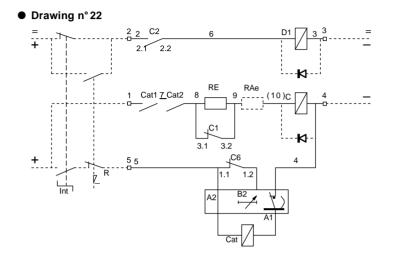
AC control voltage, alternating or rectified device


DC control voltage

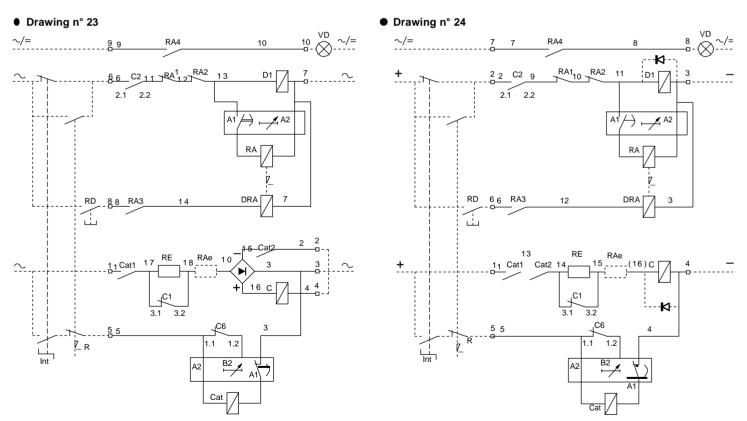
- Control by switch, mechanically delayed contact and auxiliary contactor.
- Drawing n° 17

Control by switch delayed auxiliary contactor and protective device with defect memorisation for the release coil.

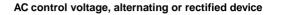



77. Control circuit of contactors with mechanical latching with single electrical release (§3)

AC control voltage, alternating or rectified device

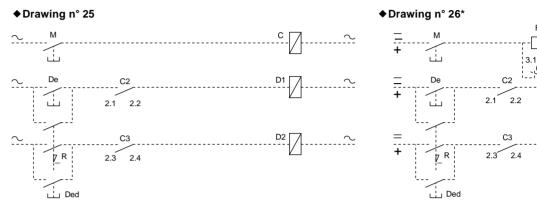

DC control voltage

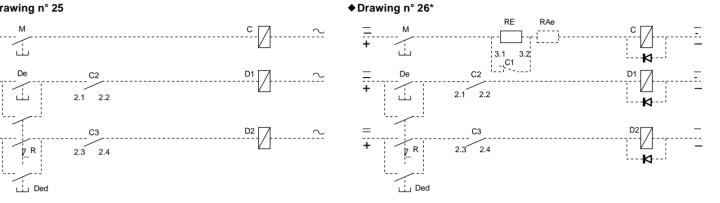
- Control by switch and delayed auxiliary contactor.
- Drawing n° 21



Control by switch, delayed auxiliary contactor and protective device with defect memorisation for the release coil.

78. Control circuit of contactors with mechanical latching with double electrical release

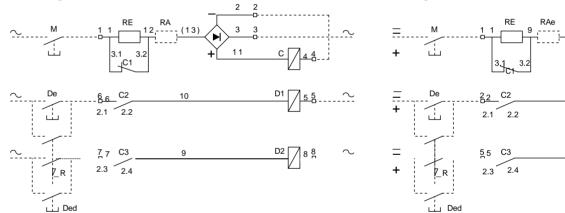

DC control voltage


Control by pulse switch for range 80 to 200 A, in AC supply for range 400 A -1 to 4 poles, 500/630 A-1 and 2 poles.

D1

D2

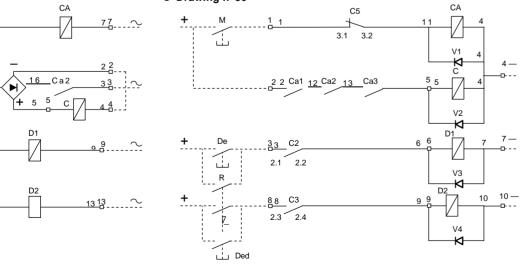
<u>77</u>~~


■ Control by pulse switch (required pulse time � 0.5 s).

♦ Drawing n° 27

• Drawing n° 29

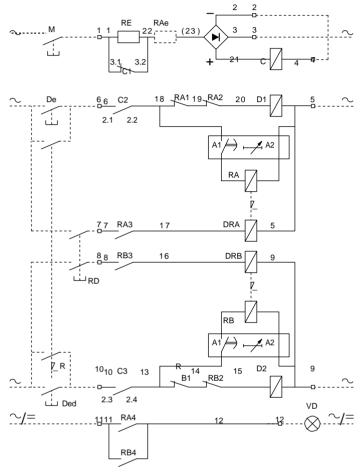
L Ded

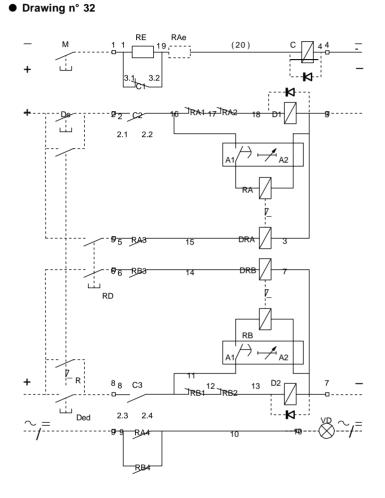

De 8.8 C2 10 10 2.1 2.2

Drawing n° 28

• Drawing n° 30

* in case of direct supply, there are no economy resistor 'RE', no eventual extra On request, diode or RC on control circuit. resistor 'Rae' and no insertion contact 'C1'.

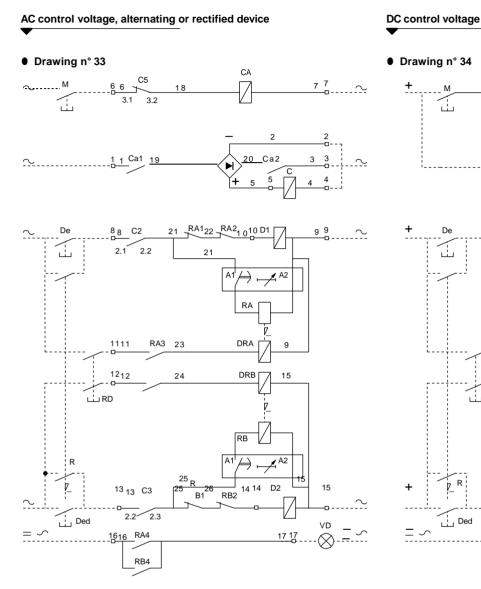

78. Control circuit of contactors with mechanical latching with double electrical release (§1)


AC control voltage, alternating or rectified device

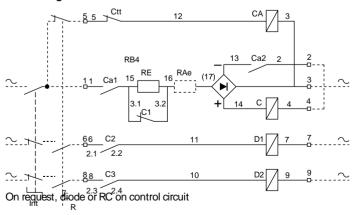
DC control voltage

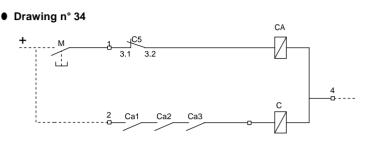
Control by pulse switch (required pulse time & 0.5 s), protective device with defect memorisation for the release coil.

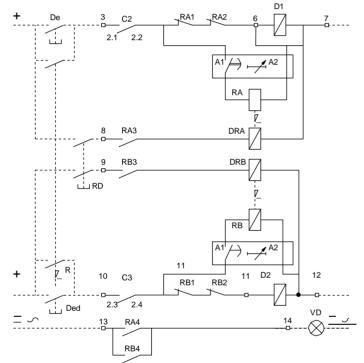
• Drawing n° 31

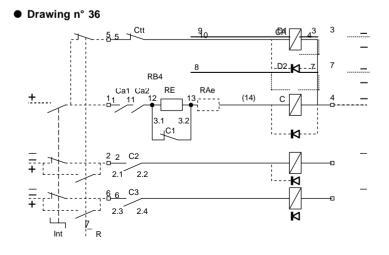

RB4

RB4

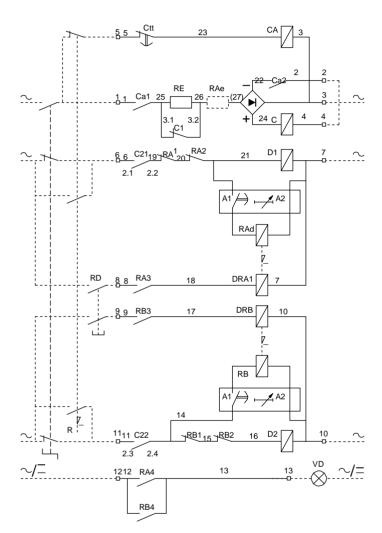

On request, diode or RC on control circuit On request, diode or RC on control circuit

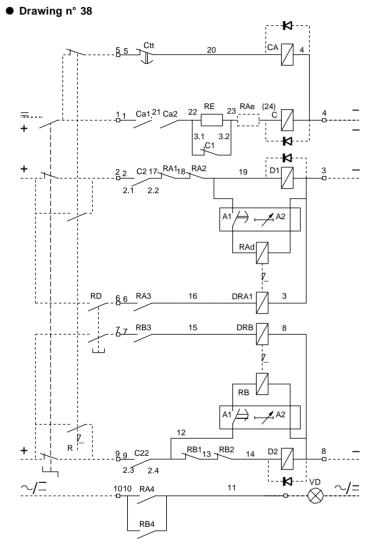



78. Control circuit of contactors with mechanical latching with double electrical release (§2)



- Control by switch, mechanically delayed contact and auxiliary contactor.
- Drawing n° 35




78. Control circuit of contactors with mechanical latching with double electrical release (§3)

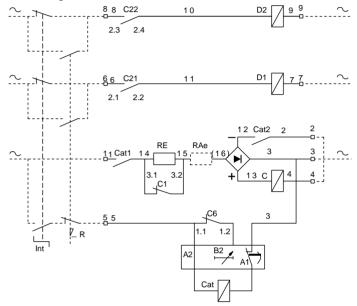
AC control voltage, alternating or rectified device

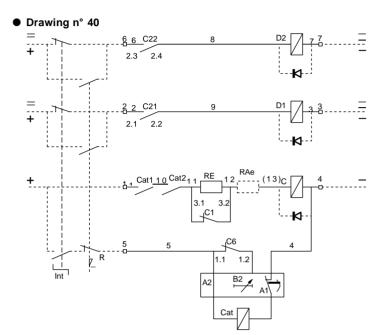
DC control voltage

- Control by switch, delayed auxiliary contactor and protective device with defect memorisation for the release coils.
- Drawing n° 37

RB4

RB4


78. Control circuit of contactors with mechanical latching with double electrical release (§4)


AC control voltage, alternating or rectified device

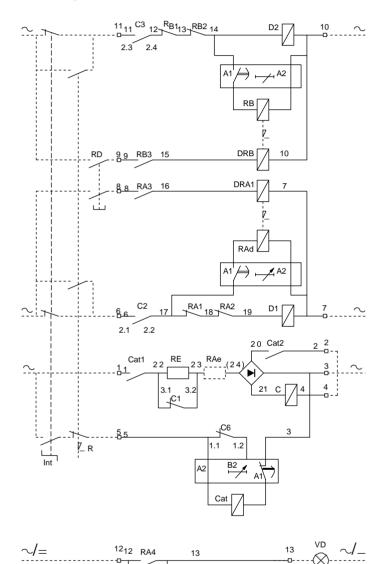
DC control voltage

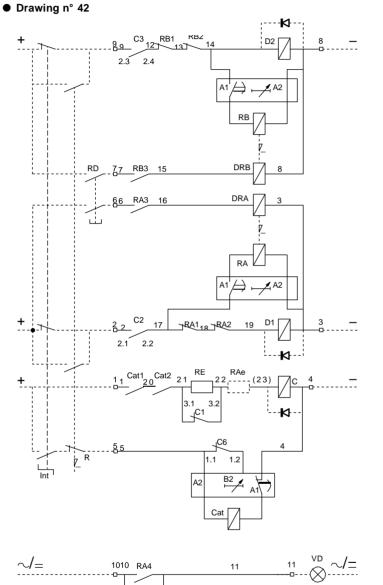
• Control by switch and delayed auxiliary contactor.

• Drawing n° 39

RB4

RB4




78. Control circuit of contactors with mechanical latching with double electrical release (§5)

AC control voltage, alternating or rectified device

DC control voltage

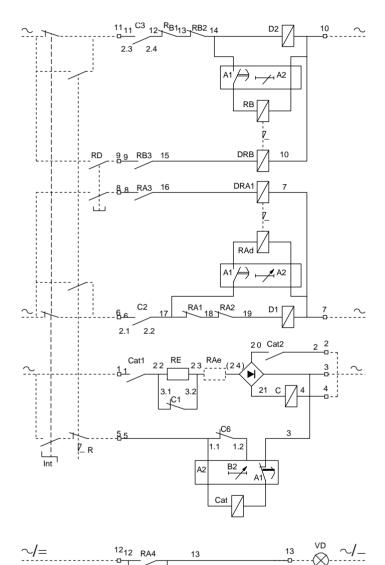
- Control by switch, delayed auxiliary contactor and protective device with defect memorisation for the release coils.
- Drawing n° 41

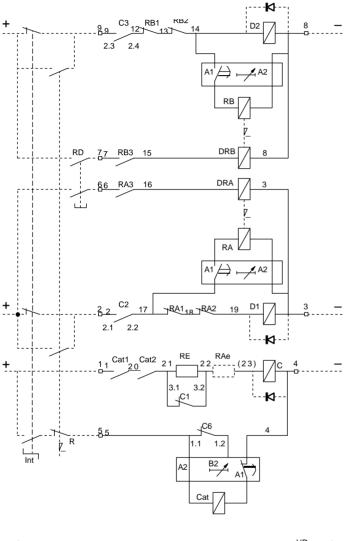
RB4

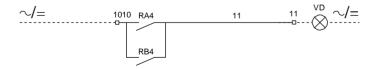
On request, diode or RC on control circuit

RB4

78. Control circuit of contactors with mechanical latching with double electrical release (§5)

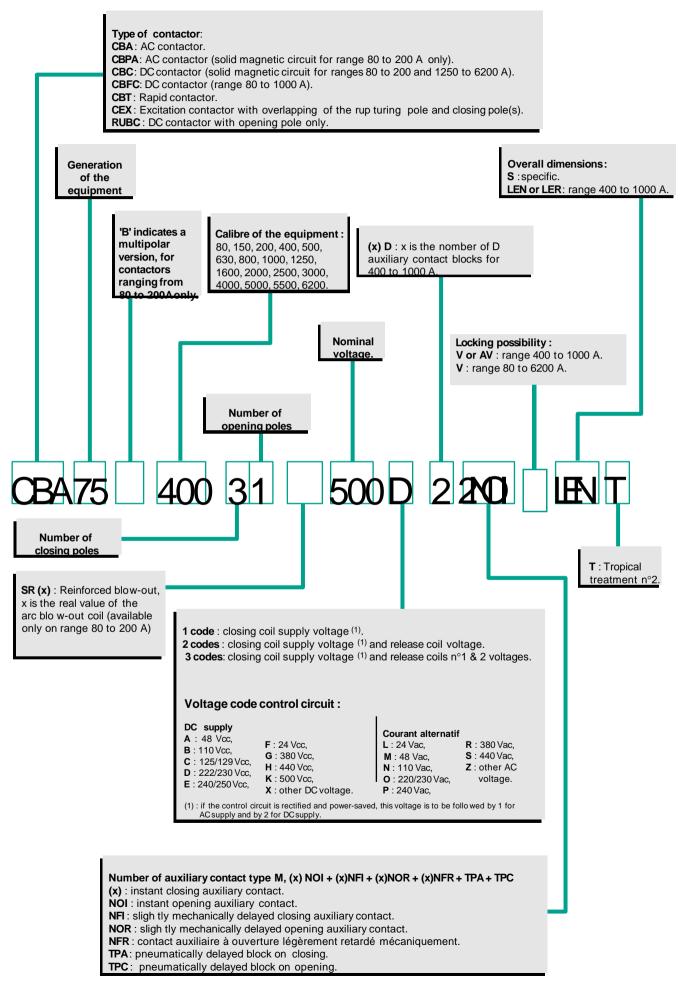

AC control voltage, alternating or rectified device


DC control voltage


• Drawing n° 42

Control by switch, delayed auxiliary contactor and protective device with defect memorisation for the release coils.

• Drawing n° 41


On request, diode or RC on control circuit

-0

RB4

CODIFICATION OF MERSEN BAR CONTACTORS

