Modular contactors

Mersen

Generalities on bar contactor's main uses	3
Use under direct current	3
Use under alternating current	5
Definition of normalized duty cycles	7
Three-phase $50 / 60 \mathrm{~Hz}$ outputs	8
Applications...	
"Direct" start-up and co-ordination	9
"Star-Delta" start-up 12-13	12
"Start-up" by auto-transformers 14-15	14
How to select contactors for rotary circuits 16	16
How to select CBA contactors for battery capacitors	18
How to select contactors for heating circuits	19
Description of contactor's components...........	21
Frame	21
Electromagnet	21
Main poles	22
Auxiliary contacts	23
Mechanical locking between two contactors	23
Locking by "RONIS" type lock	23
Mechanical latching with electrical release	24
Auxiliary contacts	25
M type instant contacts 26	26
Dimensions 26	26
Operating diagram for different versions of M type instan contacts	27
D type instant contacts 28	28
TP 86 type delayed contacts 28	28
CBC 80 to 630A, single-pole versions...................	29
Technical features:	
CBC 80 to 200A - RUBC 400 to 630A	29
Overall dimensions:	
CBC 80 to 200A 31	31
CBC - RUBC 400 to 630A 32	32
CB 80 to 200A, multipolar version	
Technical features:	
CBA 55 - CBPA 5780 to 200A 34	34
CBC 57 B - CBFC 5580 to 200A 35	35
Overall dimensions:	
CBA 55 - CBPA 55 80A 36	36
CBA 57 - CBPA 57 B 80A 37	37
CBA 55 - CBPA 55 150A 38	38

CEX 711250 To 2000A, 600Vdc	85
CEX 711250 To 2000A 3.1, 1000Vdc	86
CEX 543000 To 60 5000A 2.2, 600Vdc	87
CEX 543000 To $605000 \mathrm{~A} 2.1,600 \mathrm{Vdc}$	88
CEX 54 3000A 3.1, 1000Vdc	89
CEX 3000 to 5000A bipolar, 1500 Vdc	90
CEX 3000 to 5000A four-poles, 1500 Vdc	92
CEX 98 2560-3200A 1.1, 600 Vdc	92
CEX 98 2560-3200A 1.1, 1000 Vdc	92
CEX 98 2560-3200A 2.1, 1000 Vdc	93
CEX 98 2560-3200A 2.1, 1500 Vdc	94
CEX 98 2560-3200A 4.1, 2000 Vdc	95
CEX 98 5000A 1.1, 600 Vdc	96
CEX 98 5000A 1.1,1000 Vdc	97
CEX 98 5000A 2.1, 1000 Vdc	98
CEX 98 5000A 3.1,1000 Vdc	99
CEX 98 5000A 4.1, 1000 Vdc	100
DRAW-OUT EXCITATION CONTACTORS.	101
CMA 981250 to 5500 A.	102
Technical features:	
CMA 981250 to 2000 A	108
CMA 982560 to 5500 A	109
Overall dimensions:	
CMA 98 1250-1600-2000 3.0	110
CMA 98 1250-1600-2000 2.0	111
CMA 98 1250-1600-2000 6.0	112
CMA 98 1250-1600-2000 3.0	113
CMA 98-2560 2.0-3200 2.0	114
CMA 98-2560-3000 1.0	115
CMA 98 2560-3000 2.0	116
CMA 98-5000-5500 1.0	117
CMA 985000-5500 2.0	118
CMA $985000(1)+2 \times 1250(2)$	119
Vertical mechanical locking	120
80 to 200 A range	120
400 to 1000 A range	120
1250 to 5000 A range	121
2500 to 5000 A range	121
CBT rapid contactors	122
Technical features CBT 200-400-800	123
Co-ordination of thyristor's protections	124
Operation and graphic method	125
CBT 200 A - Definition of KL according to Kcc and T	129
CBT 200 A - Definition of K according to Kcc and $\mathrm{T}^{\text {I }}$	130
CBT 400 to 800 A - Definition of KL according to Kcc and T	131
CBT 400 A - Definition of K according to Kcc and T	132
CBT 800 A - Definition of K according to Kcc and T	133
Overall dimensions CBT 200 to 800 A	134
Control circuit drawings	135

Magnetic RBC 1054 Z relays 136
Technical features 137
Operation 138
Overall dimensions 139
Overall dimensions for 900 to5000 A current-triggered 140
relays
CIC 1-2 DC contactors 141
Technical features 142
Overall dimensions 143
Connection drawings 144
How to select your connection drawing 152 144
Control circuit of contactors without mechanical latching 145
with electrical release
Control circuit of contactors with mechanical latching
with single electrical release 146
with single electrical release (§1) 155 147
with single electrical release (§2) 156 148
with single electrical release (§3) 157 149
with double electrical release 158 150
with double electrical release (§1) 159 151
with double electrical release (\$2) 160 152
with double electrical release (§3) 161 153
with double electrical release (§4) 162 154
with double electrical release (§5) 163 155
Legends 156

Thanks to their modular constitution, bar contactors from 80 to 6200 A can meet most of your requirements that block contactors, although easy to mount, can notmeet.

It is possible on a bar contactor to:

- mount one or several poles of different or similar calibres, - of different currents (AC and DC),
- of different types: closing poles or opening poles (rupturing poles),
- with or without mechanical overlapping,
- with or without magnetic blow-out.
- to mount a significant number of auxiliary contacts of different types,
- instant, opening or closing, with or without overlapping, without blow-out or with magnetic blow-out (for DC inductive control circuits),
- delayed on opening or on closing of the contactor.
- to obtain a reinforced level of insulation by increasing the distance between the poles (for high rotary voltages, for dusty or conductive atmosphere).
- to mount on the contactor a mechanical latching with single or double electrical release, with or without selfprotective device for the release coil(s).
- to lock mechanically the contactor with one or several contactors of similar or different calibres in a vertical, horizontal or «back to back» position.
- to adapt the fixation centre-to-centre distance to the mounting conditions.

Below are shown a few examples of characteristic uses and possibilities of our bar contactors.

Electrochemistry - Galvanoplasty

- voltage from 6 to 220 Vdc
- current from 1250 to 8000 A

The contactors with or without blow-out are designed for the supply, coupling in series, in parallel or complex coupling, for the sectioning of electrolysis vats, andfor the reversion of the supplypolarities.

Type of contactors adapted to these applications:
-CBC 71-1250-1600-2000 A,

- CBC 54-2500-3000 A,
- CBC 60-4000-5000-6200 A.

Handling - Heavy lifting

- voltage from 220 to 550 Vdc
- current from 80 to 2000 A

Single-pole or two-pole contactors are designed forthe control, the reversion of motor running direction and to short-circuit the acceleration and braking resistance catches.

Type of contactors adapted to these applications:

- Single-pole contactors:
- CBC 5780 \& 150, CBC 68 200, CBC 96400 (replacing the CBC 45320 \& CBC 75 320),
- one-pole rupturing contactors RUBC 57 B 80-150200, RUBC 96400 (for brake shoe).
- Two-pole contactors:
- CBC 57 B 80-150-200 A,
- CBFC 75400 to 1000 A,
- CBC 711250 to 2000 A.

Power generation

Excitation and desexcitation of power inductors up to 900 MW and more.

> - voltage from 110 to 1200 Vdc
> - current from 80 to 6200 A

Our CEX contactors are used by a significant number of French and foreign alternator manufacturers. They are made up of 1, 2 or 3 magnetic arc-blow-out poles and of 1 opening pole called a «rupturing pole».

On opening, the rupturing pole closes before the main poles open.

C1: excitation contactor.
Rd: discharge resistor.
Ext: inductor.

Traction networks, railways, undergrounds, and trolley buses

- voltages of 500-600-750 Vdc
- current from 25 to 6000 A

Uninterrupted Power Supply

- voltage from 110 to 550 Vdc - current from 80 to 1000 A

DC entry contactors for the supply of UPSunits.
CBC and CBFC contactors have been used and are still used for that application since the development of UPS's.

Contactors can be used for supplying and splitting up the tracks into sections, for supplying the sectioning coupons, sectioning and putting to earth the rails in the repairing workshops, coupling and insulating the tracks.

Type of contactors adapted to those applications:

- all our DC contactors, with reinforced insulation or double insulation according to the nominal operating voltage.

You will find our contactors in the undergrounds of Mexico, Cairo, Athens, Santiago, Montreal, Paris, Lyon, Marseille, etc... This range is completed by switches with «manual or electrical» energy storage control.

CT-CCP: contactors.
ST: sectioning equipments.

Protection of equipmentssupplied

 with DCcurrent- voltage up to 600 Vdc and more
- current from 2 to 10000 A

It is necessary to check and control voltages, currents and the current's crossing direction, to delay or not the effects produced by variations in basic features.

Our RBC 1054 relays equipped with contacts, with or without magnetic arc-blow-out, with currents ranging from 2 to 40 A can be:

- instant voltage-triggered or delayed on opening,
- instant direct current-triggered from 1 to 10000 A or magnetically delayed on opening,
- reverse-current relays,
- synchronising relays for the start-up of synchronous motors,
- regenerative braking control relays with rectifier for slip ring motors

Heavy industries

- voltage from 110 to 1000 V
- current from 80 to 4000 A
- Generally used for distribution, in association with high switch-off rating fuses in case of remote control distribution with quite frequentoperations.
- High speed motor control up to 1200 V, either with direct start-up or via starters with statory resistors or autotransformers.
- Short-circuit of slip-ring motor starting resistors up to 2000 V (for greater voltages, please consult us).

Selection and connecting mode of contactors used in the rotary circuit of asynchronous motor:

- automatic start-up without speed adjustment by variation of the rotor's resistance: contactor without arc-blow-out,
- automaticstart-up withspeed adjustment byvariation of the rotor's resistance: contactor with magnetic arc-blow-out.

Connecting mode
. Contactor without arc-blow-out:

- rotary voltage 600 V , parallel connection
- two-pole contactor, I passing = I rotor (contactor with standard insulation)
- three-pole contactor, I passing $=$ I rotor $/ 1.5$ (contactor with standard insulation)
- rotary voltage between 600 and 1200 V, parallel connection
- two-pole contactor, I passing = I rotor
(contactor with reinforced insulation)
- three-pole contactor, I passing = I rotor /1.5 (contactor with reinforced insulation)
- rotary voltage between 1200 and 2000 V , connection in series with three-polecontactor I passing $=$ I rotor (contactor with reinforced insulation)
- Contactor with magnetic blow-out
- rotary voltage 600 V , parallel connection
- two-pole contactor, I passing = I rotor (contactor with standard insulation)
- three-pole contactor, I passing = I rotor / 1.5 (contactor with standard insulation)
- rotary voltage between 600 and 1200 V, parallelconnection subject to the fact that the voltage between fixed and moving contacts of each pole does not exceed 800 V ; should it exceeds, adopt a connection in series.
- two-pole contactor, connection in parallel, I passing = Irotor (contactor with reinforced insulation)
- three-pole contactor, connection in parallel, I passing $=$ I rotor $/ 1.5$
(contactor with reinforced insulation)
- three-pole contactor connection inseries, I passing = Irotor
(contactor with reinforced insulation)
- rotary voltage between 1200 and 2000 V, connection in series subject to the fact that the voltage between fixed and moving contacts of each pole does not exceed 800 V .
- three-pole contactor, I passing = Irotor (contactor with reinforced insulation)

Calibre

- Short-circuiting contactor: calibrated according to the rotary current.
- Acceleration contactor
- automatic start-up:

I nominal of contactors inferior or equal to I peak/6,

- semiautomatic start-up or with adjustment catches:

I nominal of contactors inferior or equal to I passing,

- for stator M-T: rotary blow-out CBA contactor (slow break: 200 ms at stator's contactor).

Mining Industries

CBA contactors can meet the requirements of inductive Electrotherm as line contactors, coupling devices for capacitors or ovens

- Protection of emergency generating sets

A contactor placed at the end of the alternator coupled with magnetic or thermomagnetic relays ensures the distribution of the spare current and the protection against the alternator overloads. The contactor current switch-off rating issufficient in case of short-circuit. Thermal motors, with their loss of speed, limit the short-circuit current value.

- UPSunits

Front entry and exit of UPS.
Coupling of UPS.
Quick changeover from UPSto network supply in case of UPSfailure, by using on the same contactor closing poles and overlapping opening poles.
Galvanicseparation between the UPSand the network to hinder the network interference.
These functions can be ensured with CBA contactors delivered separately or as complete equipment «NormalSpare/Emergency».

Drawing 1: two-pole contactor, parallel connection.
Drawing 2: three-pole contactor, parallel connection.
Drawing 3: three-pole contactor, series connection.

- Duty cycles of contactors

These ones state the current values that the contactor has to make or break.
They depend on:

- the kind of receptor controlled: cage or slip-ring motor, resistors, ...
- the conditions under which the closings and the openings happen: running or stalled motor, reversion of running direction, regenerative braking.

Alternating current

Duty cycleAC_1

Is applied to all the $A C$ receivers whose power factor equals at least 0.95 (cos 'P ?: 0.95). Closing and opening of the current normally absorbed by the receiver without risk of overcurrent on closing or opening. Example of applications: heating and distribution systems.

Duty cycleAC_2

Governs the start-up, regenerative braking and «step» running of slip-ring motors. On closing, the contactor establishes the starting current, (around 2.5 times the motor nominal current). On opening, it has to cut-off the starting current under a voltage at least equal to the network voltage.
Note: AC_2 duty cycle according to UTEstandards corresponds to AC'2 according to VDC 0660.

Duty cycleAC_3

Concernssquirrel-cage motors with opening under running motor conditions. On closing, the contactor establishes the starting current which is around 5 to 7 times the motor nominal voltage. On opening, it cuts off the nominal current absorbed by the motor, at that time, the voltage at the terminals of its poles is about 20% of the network voltage.
The opening remains easy.
Example of use: all standard squirrel-cage motors, lifts, elevators, escalators, conveyor belts, compressors, pumps, mixers, air conditioners, etc...

Duty cycleAC_4

Concerns regenerative braking and step running applications with squirrel-cage motors. The contactor closes under a peak of current that can reach a value 5 or 7 times as high as the motor nominal voltage. When it opens, it cuts off the same current under a voltage all the more high since the speed motor is low. This voltage can be the network voltage. The opening is severe. Example of use: metallurgy, lifting systems, wiredrawing machines.

Direct current

Duty cycleDC_1

Concerns all the DC equipments (receivers) whose time constant (\lfloor) is inferior or equal to 1 ms .

Duty cycleDC_2

Cut-off of the «running motor» current.
Time constant is about 7.5 ms . On closing, the contactor makes thestarting current, about 2.5 times as high as the motor nominal current on opening, the contactorcutsoff the motor nominal current. The voltage at its terminals depends on the electromotive force of the motor. Opening is easy.

Duty cycleDC_3

This category governs the start-up, regenerative braking and «step» running of shuntmotors.
Time constant $\diamond 2 \mathrm{~ms}$.
On closing, the contactor makes the starting current, around 2.5 times the motor nominal current. On opening, it must cut-off 2.5 times the starting current under a voltage at least equal to the network voltage. The lower is the speed of the motor, the higher is that voltage and then the lower is its counter-electromotive force. Opening isdifficult.

Duty cycleDC_4

Control of a series motor, cut-off of «running motor» current. Time constant is about 10 ms . On closing, the contactor makes the starting current which is about 2.5 times the nominal current of the motor. On opening, it cuts off the third of the nominal current absorbed by the motor at this time. The voltage at the terminals of its poles is also around 20% of the network voltage. In that category, the number of operations per hour can be high.

Duty cycleDC_5

Control of a series motor, cut off of «not running» motor current. This category concerns thestart-up, regenerative breaking and «step» running of series motors. Time constant $\quad 7.5 \mathrm{~ms}$. The contactor closes under a peak of current that can reach 2.5 times the nominal current of the motor. When it opens, it cuts off the same current under a voltage which varies unproportionally with the speed of the motor. This voltage can equal the network voltage. Opening issevere.

Nominal currents for asynchronous cage motors

Three-phase $50 / 60 \mathrm{~Hz}$ motor outputs

Output		Voltage												
		$\begin{gathered} 200 / \\ 208 \mathrm{~V} \end{gathered}$	220 V	230 V*	380 V	400 V	415 V	$\begin{aligned} & 433 \mathrm{I} \\ & 440 \mathrm{~V} \end{aligned}$	460 V*	$\begin{gathered} 500 / \\ 525 \mathrm{~V} \end{gathered}$	575 V*	660 V	690 V	750 V
kW	ch or hp	A	A	A	A	A	A	A	A	A	A	A	A	A
18.5	25	70	64	68	37	35	35	32.8	34	28.5	27	21.9	20.2	18.5
22	25	84	75	80	44	42	40	39	40	33	32	25.4	24.2	22
30	40	114	103	104	60	57	55	51.5	52	45	41	54.6	33	30
37	50	138	126	130	72	69	66	64	65	55	52	42	40	36
45	60	162	150	154	85	81	80	76	77	65	62	49	46.8	42
55	75	200	182	192	105	100	100	90	96	80	77	61	58	52
75	100	270	240	248	138	131	135	125	124	105	99	82	75.7	69
90	125	330	295	312	170	162	165	146	156	129	125	98	94	85
110	150	400	356	360	205	195	200	178	180	156	144	118	113	103
132		480	425		245	233	240	215		187		140	135	123
	200	520	472	480	273	222	260	236	240	207	192	152	128	136
160		560	520		300	285	280	256		220		170	165	150
	250			600					300		240	200		
200		680	626		370	352	340	321		281		215	203	185
220	300	770	700	720	408	388	385	353	360	310	288	235	224	204
250	350	850	800	840	460	437	425	401	420	360	336	274	253	230
280					528									
315		1070	990		584	555	535	505		445		337	321	292
	450			1080					540		432			
355			1150		635	605	580	549		500		370	350	318
	500			1200					600		480			
400			1250		710	675	650	611		540		410	390	356
450	600			1440					720		576			
500			1570		900	855	820	780		680		515	494	450
560			1760		1000	950	920	870		760		575	549	500
630			1980		1100	1045	1020	965		850		645	605	550
710					1260	1200	1140	1075		960		725	694	630

These values are only indicative, they are likely to vary according to the type of motor, its polarity and its manufacturer.

* Values in conformity with the NEC(National Electrical Code).

The machines inserted in the supply circuit of a motor ensure different functions as scheduled in the installation rules. Standards NFC 15-100.

- motor start-up and stop control,
- protection against the overloads and short-circuits of the motor and supplying circuit,
- safety cut-off or emergencystop.

Start-up and stop of the motor

This function called control is ensured by the contactor. It is imposed by the installation rules NFC 15-100 for all «operating machinery», notably the motors. These rules also forbid the automatic start-up after a lack of voltage when it is likely to be dangerous.

Controlled by two pulse switches and equipped with an auto-supplying contact, the contactor meets these requirements. Remote control and warning functions are also possible.

When it closes, the contactor makes the starting current of the motor, that can reach 5 to 7 times its normal voltage on load. After a few milliseconds (a few seconds at max), the motor reaches its normal speed and the
peak of current from the start-up decreases up toa value corresponding to the carried load. When the contactor opens, it cuts off that current under a voltage reduced by the counter electromotive force of the running motor.

This cycle of operations, usual for a contactor, corresponds to the AC_3 duty cycle as defined by the IEC 947-4 standards (contactors). To other operating modes or other types of motors correspond other duty cycles with specific selection modes for contactors: definition of duty cycles.

This function is ensured by thermal relays. The rules for installation highly recommend to have the motor and its supplying circuit protected against overloads. Motor overloads are from mechanic origin and affect the equipment driven or the motor itself.
The resulting overcurrent may damage the insulation of the windings by excess of heat.

The combination «contactor + thermal relay»constitutes a direct starter complying with the IEC947-4 standards.
Moreover, this one functions when the motor is in danger in case of one phase cut-off (due to the fusion of fuses for example). Such operations of the relay are called differential operations, the relay only starts to operate for a balanced overcurrent, between 105 and 120 \% of the current for which it is adjusted, and provokes the opening of the contactor in a time all the more short since the overcurrent issignificant.

It crosses the supplying circuit that incurs the same risk. But, this circuit can also be overloaded by a current of defect.
As the circuit is normally calibrated for the motor current, the thermal relay protects both of them against overloads.

The standard use corresponds to the category 10. For long start-ups, we recommend to select relays of categories 20 or 30.

If the start-ups succeed one another at the rate of 30 per hour or more, the thermal relay may not be adapted to the duty for which the motor has been especially selected. In that case, the protection should be ensured by an electronic relay or by a sonde incorporated into the motor and coupled with a relay

Protection against short-circuits

This protection is ensured by cut-outs or circuit breakers with fuses. I q is the presumed short-circuit current value (according to IEC947-4) corresponding to the short-circuit current that is likely to be reached if the Protective Device against Short-Circuits or DPCC doesn't interrupt it. This is the maximum short-circuit current value for which the manufacturer warrants the co-ordination. Short-circuit can happen in the circuit, in the motor's terminal box or in its windings after the destruction of the insulation.

As per the NFC 15-100 standards, a «DPCC» must protect the circuit, the equipment it includes and eventually the environment of the motor.
The compatibility of the components associated for a «motor start-up» - contactor, thermal relay, circuit breaker or fuses - and the quality level of protection are assessed by the co-ordination class. The mostcurrent one is «co-ordination 2».

The IEC947-4 recommendations define 2 types of coordination from which no danger should result to people or installations:
Type1: after the short-circuit, the materialsshouldn't be in a position to function without repair or replacement of damaged parts.
Type 2: after the short-circuit, the materials should be in a position to function (the risk of soldering is possible). The co-ordination tables proposed are resulting from satisfactory tests undertaken under the Iq currentand the r current according to IEC947-4.

* The testing current r is a conventional value of the short-circuit current that depends on the current of use AC_3.

According to the installation rules NFC 15-100 (§ 462), this function is necessary when a danger to human beings can result from a failure during the operation or an electrical defect.

It has to be possible to stop the machine, putting the circuit off-load by acting on a single, easy to accessand fastly recognisable system - one or several emergency stop switches piloting the contactor(s).

Association «contactors - thermal relays - co-ordination type 2-50 kA fuses»
Permanent, temporary or intermittent service up to
30 cycles of operation per hour.
Ambient temperature $\leqslant 5 \mathrm{C}^{\circ}$.

Motor ${ }^{(1)}$						Three-pole contactor	Adjustment zone of the three-pole differential thermal relay	Types of fuses		
						aM		$\begin{aligned} & \text { g1 or } \\ & \text { BS88 } \end{aligned}$		
220/230 V			$380 / 400 \mathrm{~V}$							
kW	ch	$\ln (\mathrm{A})$	kW	ch	$\ln (\mathrm{A})$		Calibre	A	A	A
30	40	103	55	75	105	CBA55150	80/125	125	200	
40	54	134	75	100	138	CBA55150	100/160	160	200	
45	60	150	80	110	147	CBA55150	100/160	160	200	
55	75	182	90	125	170	CBA55150	125/200	200	250	
63	85	203	110	150	205	CBA55150	160/250	250	315	
75	100	240	132	180	245	CBA55200	200/315	315	400	
80	110	260	150	205	200	CBA55200	200/315	315	400	
110	150	356	185	250	342	CBA 75400	250/400	400	500	
			200	270	370	CBA 75400	315/500	400	500	
140	190	450	250	340	460	CBA 75500	315/500	500	630	
147	200	472				CBA 75630	400/630	500	630	
180	245	578	315	430	584	CBA 75800	400/630	630	800	
200	270	626	335	450	620	CBA 75800	500/800	800	1000	
220	300	700	400	545	710	CBA 75800	500/800	800	1000	

(1)the values given in the table are normalised outputs and average nominal
voltages. The relay will be adjusted for the current indicated on the ID
plate of the motor or, failing that, for the one given in the In column.
For any other output, select the relay covering the nominal current with
the corresponding contactor and fuses of the same calibre or immediately superior to In.

Applications

«Star-delta» start-up
«Delta-star» start-ups areused:

- either to limit the inrush current at the start-up of a motor according to the recommendations of installation.
- or to reduce the torque and the mechanical stresson the machine.

This kind of start-up can only be applied to squirrel-cage motors equipped with 6 terminals, whose motorstar connection voltage corresponds to the network voltage.

In this case of star connection motors, each winding is supplied with $0.58 U n$ (i.e. $\frac{U n}{\sqrt{3}}$) which enables to avoid a signifiant inrush current on the line and to limit the value at the third of the one for direct start-up, i.e. ca 2 In.

Squirrel-cage motor operation curves.

- - - -- delta connection current (direct)
- starconnection current

Let L1, L2 and L3 be the chronological order of succession of the phases. In order to reduce the transient current resulting from the change from star connection to delta connection, the cabling is recommended to be as follows:
motor winding U1-U2 between L1 and L3
delta connection V1-V2 between L2 andL1 WI-W2 between L3 and L2.

In case of reverse rotation of the motor and in order to comply with the above conditions, it is recommended to cross two windings of the motor according to the opposite drawing.

The motor torque - star connection during start-up - is also reduced to the third of the value corresponding to a direct start-up.
Indeed, the motor torque is proportional to the square of the supply voltage.
For $0.58 U n$, we have $(0.58)^{2}$ i.e. $1 / 3$.
By admitting that, the motor torque for direct start-up is 1.5 times the nominal torque i.e. $C d=1.5 \mathrm{Cn}$, the star connection torque during is of $C d=0.5$ Cn start-up.
This kind of start-up allows the maximum motor torque for the minimum line current.
This kind of start-up is suitable for low or mediumpower machines starting in neutral or with low loads, example: low-inertia machine, compressor starting in neutral, pumps starting with closed gates, small fans.

Recommended connection to reverse the motor's rotating direction(Normalised motor, shaftend side view).

Applications

The components are placed according to the following drawing:

- K2 and K3 contactors are calibrated at

Ie $\left(A C _3\right) \approx 0.58$ In motor.

- K1 is calibrated at Ie $\left(A C _3\right)=\frac{\text { In motor }}{3}$

Operation

Recommended connection to reverse the motor's rotating direction (Normalised motor, shaftend side view).

Starting current can be withstood for 20 seconds (during 2 successive start-ups of 10 sec . each) Such contactors are equipped with a temporiser. The thermal protection relay must be adjusted at 0.58 In motor.

Starting sequence:

1st step:
Closing of K1, closing of K2, start-up of the «star» motor.
Starting temporisation adjusted to obtain 80% of the star connection speed.

2nd step:
Opening of K1, closing of K3, «delta» connection.

«Star delta» changeover - Role of the temporisation

Make sure that the «star delta» changeover lasts long enough to enable the extinction of the arcs, in order to avoid short-circuit between phases.

Applications

- The start-up by autotransformer has the following advantages:
- it is suitable for all cage motor start-up: at 3 terminals, 6 or 9 terminals according to the North-American technology.
- start-up occurs under reducedvoltage.
- it provides the maximum torque for the minimum line current.
- it enables to adapt the starting torque $\left(C=f(U)^{2}\right)$
to the resistive torque of the machine, thanks to its 2 ou 3 intermediary voltage measures of which generally only one is used (0.65-0.80 Un or 0.50-0.65-0.80 Un).
- it is used to start high-power and/or high-inertia machines.
- the motor is never separated from its supplying source during the start-up (closed transition) and transient phenomena aresuppressed.
- The start-up is made of 3 steps:
- autotransformer «star» changeover by K1, then closing of the contactor K2. The motor starts under reduced voltage.
- opening of the neutral point by K1. A winding part of the autotransformer is inserted in each phase during a short time constituting a statory star inductance.
- a third contactor K3 connects the motor under full network voltage and provokes theautotransformer «OFFLOAD» by K2.

The autotransformer used generally has anair-gap (adjusted or not) so as to obtain, during the 2nd step of start-up, an inductance «series of values»compatible with a correctstart-up.

Typical values for a start-up by autotr ansformer

- Operationscurves:

— - - direct connection current _ torque withautotransformer

— — - direct motor torque
___ torque with autotransformer resistive torque of the machine

- Operation

Control circuit

Operation

Manual closing of Q1.
Closing of K1: star connection of the autotransformer. Closing of K2: supply of the autotransformer, start-up of the motor.
Opening of K1: elimination of the star connection of the autotransformer, the motor is transiently supplied through a part of the windings of the autotransformer. Closing of K3: direct supply of the motor.
Opening of K2: elimination of the autotransformer.
Particularities: Q1: calibre In motor,
F2: calibre In motor.

Operation

Pulse on S2.
Closing of K1.
Locking of K3 by K1.
Closing of KA1 by K1 and supply of the thermal temporiser relay F3.
Closing of KM2 by KA1.
Self-supply of K2.
Opening of K1 by KA1.
Closing of K3 by K1.
Locking of K1 by K3.
Self-supply of K3.
Opening of KA1 by K3.
Elimination of F3 by K3.
Opening of K2 by KA1.
Stop: pulse on S 1 .
F3: Thermal temporiser relay ensuring the protection of the autotransformer against too frequent or incomplete start-ups.

For the control of single running directionmotors.
Tobe mounted by the customer (on frame or in cabinet). Selection of components: The contactors defined inthe opposite table have beendetermined according to the following criteria:

- starting current $=6$ In,
- starting time: 30 sec ,
- number of start-ups per hour: 3; 2 of which are consecutive,
- ambient temperature e, : $: 40^{\circ} \mathrm{C}$,
- transient on closing of

K $3 \leq 7 \sqrt{2} \times$ In .
(1) for parallel connection of the fuses, make sure to strictly respect the manufacturer's recommendations.

$\begin{array}{r} \text { Normi } \\ \text { out } \\ 220 / 230 \mathrm{~V} \end{array}$	alised puts $380 / 400 \mathrm{~V}$	Line K3	Contactors Autotransformer K2	Star K1	Recommended delay of thermal relay	Fuses aM gl calibres	
kW	kW	type	type	type	calibre	A	A
40	75	CBA 551503.0	CBA 55803.0	CBA 55803.0	100 to 160	160	200
51	90	CBA 551503.0	CBA 551503.0	CBA 55803.0	125 to 200	200	250
63	110	CBA 551503.0	CBA 551503.0	CBA 55803.0	160 to 250	250	315
75	132	CBA 552003.0	CBA 551503.0	CBA 551503.0	200 to 315	250	315
90	160	CBA 754003.0	CBA 552003.0	CBA 551503.0	250 to 400	315	400
110	200	CBA 754003.0	CBA 754003.0	CBA 551503.0	315 to 500	400	500
140	250	CBA 755003.0	CBA 754003.0	CBA 552003.0	400 to 630	500	630
180	315	CBA 756303.0	CBA 754003.0	CBA 552003.0	400 to 630	630	800
200	355	CBA 758003.0	CBA 755003.0	CBA 752003.0	500 to 800	800	1000
220	400	CBA 758003.0	CBA 755003.0	CBA 754003.0	500 to 800	800	1000
250	450	CBA 7510003.0	CBA 756303.0	CBA 754003.0	630 to 1000	800	1000
280	500	CBA 7510003.0	CBA 756303.0	CBA 754003.0	630 to 1000	1000	1250
315	560	CBA 7112503.0	CBA 756303.0	CBA 755003.0	630 to 1000	1000	1250
335	630	CBA 7112503.0	CBA 756303.0	CBA 755003.0		1250	$2 \times 800{ }^{(1)}$
400	710	CBA 7116003.0	CBA 758003.0	CBA 755003.0		1250	$2 \times 800{ }^{(1)}$
450	800	CBA 7116003.0	CBA 758003.0	CBA 755003.0		$2 \times 800^{(1)}$	$2 \times 1000{ }^{(1)}$
500	900	CBA 7120003.0	CBA 7510003.0	CBA 756303.0		$2 \times 800^{(1)}$	$2 \times 1000{ }^{(1)}$

Applications

How to select contactors

For rotary circuits of slip-ring motors (elimination of starting resistors)

The most common application is for starters and without rotor speed adjustment: pumps, fans, conveyers, compressors, etc...

Rotary contactors are subjected to the statory contactor and only open after this one, when the rotary voltage has disappeared or nearly disappeared.

They make the current corresponding to the usual starting peak (1.5 to 2.5) of the nominal rotary current and open the circuit in neutral. This use is characterised by an easy closing and switch-off.

The selections below take into account:

- a ratio of 2 between the maximum rotary voltage of use (Uer) and the statory voltage of use (Ues), ratio proposed by the IEC947-4 standards, section «starters». - a warranty for casual operations (current switch-on and switch-off ratings) recommended by these samestandards.

The use of contactors with magnetic blow-out are recommended in case of control via manual combinative device.

W connection

Current factor and rotary voltages of use according to the contactor connection

Type of connection	$\begin{aligned} & \text { Factor }{ }^{(1)} \\ & \text { Irotary }\end{aligned}$I of use	Ue max. three-phase rotary voltage in Volts	Ue three-phase rotary voltage with counter-current in Volts
		Type of contactors	
		CBA with reinforced insulation	CBA with normal insulation
Star	1	2000 V	1000 V
Delta	1.5	1700 V	850 V
$\ln \mathrm{V}$	1	1700 V	850 V
In W	1.6	1700 V	850 V

(1) factor to be applied to the values mentioned in the table below for currents of use.

Table of currents of use (ambient temperature inferior or equal to $40^{\circ} \mathrm{C}$)

Calibre of CBA contactor		80	150	200	400	500	630	800	1000	1250	1600	2000	2500
	Changeover time	Current of use in Amps											
Intermediarycontactor:with	10s	277	519	692	1385	1732	2182	2771	3464	4330	5542	6928	8660
numberof operationcycles	30s	160	300	400	800	1000	1260	1600	2000	2500	3200	4000	5000
inferiororequal to30/hour	60s	113	212	282	565	707	890	1131	1414	1767	2262	2828	3535

Calibre of CBA contactor		80	150	200	400	500	630	800	1000	1250	1600	2000	2500
	Changeover time	Current of use in Amps											
Intermediarycontactor: with numberof operationcycles inferiororequal to 60/hour	5 s	277	519	692	1385	1732	2182	2771	3464	4330	5542	6928	8660
	10s	160	300	400	800	1000	1260	1600	2000	2500	3200	4000	5000
	30s	113	212	282	565	707	890	1131	1414	1767	2262	2828	3535

Calibre of CBA contactor		80	150	200	400	500	630	800	1000	1250	1600	2000	2500
	Changeo-	Current of use in Amps											
Intermediarycontactor: with	5s	195	367	489	979	1224	1543	1959	2449	3061	3919	4898	6123
number of operationcycles inferiororequal to 120/hour	10s	138	259	346	692	866	1091	1385	1732	2165	2771	3464	4330

Applications

How to select contactors

For rotary circuits of slip-ring motors

In a simple starting equipment, the contactors that short-circuit the rotary current go through a static voltage stress whose «decreasing with time value» is all the more low since they are far from the rotor's terminals. Therefore, the rotary voltage of use can bededuced from the maximum voltage of use. It is then possible to use contactors whose nominal insulating voltage is inferior to the rotary voltage. This use is characterised by an easy closing and switch-off.

The selections below take a ratio of 2 between the maximum rotary voltage of use (Uer) and the statory voltage of use (Ues) into account, ratio proposed by the IEC 947-4 standards, section «starters».

For a regenerative braking equipment, the rotary voltage of use corresponds to the insulating voltage.

For slowing down or braking equipment, the selection of related contactors will also have to take the switchoff conditions into account.

The use of contactors with magnetic blow-out are recommended in case of control via manual combinative device.

Current factor and rotary voltages of use accordi ng to the contactor's connection

The temporary allowable current according to the starting time must be taken into account for the current crossing the contactor of a rotary circuit. Only the contactor for rotor short-circuit takes the permanentcurrent into account.

Type of connection	Drawing of the circuit	I rotary I of use in Amps	Ue maximum three-phase rotary voltage in Volts	Ue threephase rotary voltage with counter-current in Volts	Type of contactor
Star		1	1320	660	CBA
		1	2000	1000	CBA with reinforced insulation
Delta		1.5	1100	550	CBA
		1.5	1700	850	CBA with reinforced insulation
		1	1100	550	CBA
V		1	1700	850	CBA with reinforced insulation

Applications
 How to select CBA contactors

Control of three phase capacitor batteries used for power factor correction

The capacitors make with the circuit at the terminals of which they are connected, oscillating circuits able to create high transient with high frequenciesovercurrents as they areconnected.
Generally speaking, the peak on closing is all themore low since:

- the network inductances are high,
- the power of line transformers issmall,
- the transformer short-circuit voltage is high,
- the ratio between the addition of the powers of connected capacitors and the power of the capacitor to be connected is small (in case of multilevel batteries).

In compliance with the VDE0560, NFC54 100, IEC 70 standards, the contactor for control must be able to withstand a permanent voltage of 1.43 times the nominal current of the levelcontrolled.

The powers of use indicated in the tables below take this overload into account.

The protection against short-circuits is usually ensured by g1 fuses calibrated at 1.3 to 1.4 In.

Connection is direct. The values of the peak current on closing shouldn't exceed the ones mentioned below. If the peak current has to be reduced, insert an selfinductive coil or a pre-closing resistor in each of the 3 capacitor supply phases. The dimensions of the selfinductive coils will be scheduled according to the temperature chosen during operation.

Compensation by single-level capacitorbattery

The insertion of a shock self-inductive coil is useless as the inductance of the network is sufficient to limit the peak to values compatible with the characteristics of contactors.

Compensation by multilevel capacitor battery

The insertion of a shock self-inductive coil in each of the 3 phases of each level is compulsory.

Nota:

Shock coils with minimum inductance of $4 \mu H$. These can be obtained by winding 4 or 6 turns of 15 cm diameter each round the conductor of each phase.

Table of contactor's maximum powers of use
Connection with possible shock self-inductive coils. Power of use: $50 / 60 \mathrm{~Hz}$, ambient temperature :,: $40^{\circ} \mathrm{C}$.

Battery power (kVAR)	Type of contactor	In (A)
Three phase network 220/240 V		
5	CBA55 80SR ${ }^{(1)} 20 \mathrm{~A}$	20
7.5	CBA55 80SR ${ }^{(1)} 40 \mathrm{~A}$	32
10	CBA $5580 \mathrm{SR}^{(1)} 40 \mathrm{~A}$	38
12.5-15	CBA55 80SR ${ }^{(1)} 40 \mathrm{~A}$	40
20	CBA5580	80
25	CBA55150	100
30-35	CBA 55150	125
40-47.5	CBA55150	160
50	CBA55200	200
60	CBA 55200	250
75-90	CBA 75400	320
100-120	CBA 75400	400
150	CBA 75500	500
180	CBA 75630	630
Three phase network 400/440 V		
10	CBA55 80SR ${ }^{(1)} 25 \mathrm{~A}$	25
15	CBA55 80SR ${ }^{(1)} 40 \mathrm{~A}$	38
20	CBA 5580	50
25-30	CBA 5580	63
45-50	CBA 55150	115
65	CBA55150	125
70-75-80	CBA55150	160
90	CBA 55200	200
100-125	CBA 55200	250
150	CBA 75400	315
180-200	CBA 75400	400
240-250	CBA 75500	500
300	CBA 75630	630
350	CBA 75800	800

[^0]
How to select contactors for heating circuils

A heating circuit is a terminal circuit supplying one or several resistant heating elements controlled by a contactor.

Rules of motor's supply circuits are also applicable for heating circuits, taking into account the fact that normally they cannot carry overcurrents. This can only protect them against short-circuits.

Here are only considered heating systems with resistive elements used for industrial ovens, offices (infrared heaters, convectors, etc...). The resistancevariation between "hot and cold" creates a current peak in the system that never exceeds 2 to 3 Un when the voltage is applied.

Moreover, this peak only fully appears when first energised, if the temperature variations are limited by a regulator.

The output and the nominal current are given for the duty temperature.

Protection

The current absorbed in permanent duty by a heating circuit is constant when the voltage is stable.

As in an existing system, the number of receptors are very unlikely to vary and assuch a circuit is unable to create overloads, it can only be protected against shortcircuits.

You may choose:

- g1 classfuses or,
- modular circuit breakers.

Nevertheless, it is always possible and sometimesmore economical (due to the cable section) to use a protection system coupling thermal relays and aM fuses.

One element (or a group of elements) with a given out-
put can be single-phase or three-phase and supplied either by $220 / 127 \mathrm{~V}$ or by $380 / 220 \mathrm{~V}$.
The different possible connections can be classified into 3 groups:

2 pole single-phase current connection Circuit controlled by 2 poles of the contactor.

4 pole single-phase current connection

Circuit controlled by a tetrapolar contactor whose poles are connected 2 to 2 in parallel via suitable small junction bars. This solution allows the control of outputs more or lessequivalent to the ones controlled by the same contactor in three-phasecurrent.

Three-phase currentconnection

Circuit controlled by the 3 poles of the contactor.

The combinations proposed thereunder are given for an ambient temperature of $50^{\circ} \mathrm{C}$ and for outputsunder nominal voltage; they still ensure the control even in case of a lasting overvoltage at 110% of Un.

2 pole single-phase current connection

Calibre of contactor	Maximum output in kW						
	$\mathbf{2 2 0 / 2 3 0 V}$	$\mathbf{3 8 0} / 400 \mathrm{~V}$	$\mathbf{4 1 5 V}$	$\mathbf{4 4 0 V}$	$\mathbf{5 0 0 V}$	$\mathbf{6 6 0 V}$	$\mathbf{1 0 0 0 V}$
CBA55 80 2.0	18	32	33	35	40	52	
CBA55 150 2.0	46	80	83	88	100	132	200
CBA55 200 2.0	58	102	106	112	128	168	256
CBA75 400 2.0	73	128	132	140	160	211	320
CBA75 500 2.0	92	160	166	176	200	264	400
CBA75 630 2.0	110	192	199	211	240	316	480
CBA75 800 2.0	147	256	265	281	320	422	640
CBA75 10002.0	184	320	332	352	400	528	800
CBA71 12502.0	230	400	415	440	500	660	1000
CBA71 1600 2.0	294	512	531	563	640	844	1280
CBA71 2000 2.0	368	640	664	704	800	1056	1600

4 pole single-phase current connection

Calibre of contactor	Maximum output in kW						
	$\mathbf{2 2 0 / 2 3 0 V}$	$\mathbf{3 8 0} / 400 \mathrm{~V}$	$\mathbf{4 1 5 V}$	$\mathbf{4 4 0 V}$	$\mathbf{5 0 0 V}$	$\mathbf{6 6 0 V}$	$\mathbf{1 0 0 0 V}$
CBA55 804.0	25	44	46	49	56	73	
CBA55 1504.0	64	112	116	123	140	184	280
CBA55 2004.0	82	143	148	157	179	236	358
CBA75 4004.0	103	179	185	197	224	295	448
CBA75 5004.0	128	224	232	246	280	369	560
CBA75 6304.0	154	268	278	295	336	443	672
CBA75 8004.0	206	358	371	394	448	591	896
CBA75 10004.0	257	448	464	492	560	739	1120
CBA71 12504.0	322	560	581	616	700	924	1400
CBA71 16004.0	412	716	743	788	896	1182	1792
CBA71 20004.0	515	896	929	985	1120	1478	2240

three-phasecurrent connection

Calibre of contactor	Maximum output in kW						
	$\mathbf{2 2 0 / 2 3 0 V}$	$\mathbf{3 8 0} / 400 \mathrm{~V}$	$\mathbf{4 1 5 V}$	$\mathbf{4 4 0 V}$	$\mathbf{5 0 0 V}$	$\mathbf{6 6 0 V}$	1000V
CBA55 80 3.0	39	69	71	76	86	114	
CBA55 150 3.0	99	173	179	190	216	285	433
CBA55 200 3.0	127	221	230	243	277	365	554
CBA75 400 3.0	159	277	287	304	346	457	692
CBA75 500 3.0	199	346	359	381	433	571	866
CBA75 630 3.0	239	415	431	457	519	685	1039
CBA75 800 3.0	318	554	575	609	692	914	1385
CBA75 1000 3.0	398	692	718	762	866	1143	1732
CBA71 1250 3.0	497	866	898	952	1082	1428	2165
CBA71 1600 3.0	637	1108	1150	1219	1385	1829	2771
CBA71 2000 3.0	796	1385	1437	1524	1732	2286	3464

Description of contactor's components

Frame

The basic frame of contactor consists of one fixed rod for the 80 to 200 A range or four fixed rods for the 400 to 5000 A range, a moving shaft, two bearings and their bushes.

Frame CBA - CBC - 71-1250/2000 A type

Electromagnet

Coilfor laminated magnetic circuit

Coilfor solid magnetic circuit

The electromagnet consists of a "magnetic circuit + trip coil" assembly, normally located on the right side of the poles.
In compliance with international standards, voltage at coil terminals must be between 85 and 110% of the coil's nominal voltage.

Coil

The function of the coil is to produce the magnetic flux required to attract the moving armature of the electromagnet.
It is designed to resist the mechanical shocks caused by the closings and openings of the contactors and the electromagnetic shocks caused by the current passing through its windings.

The coils used are especially resistant to overvoltages, shocks, aggressive environmental conditions andare made of reinforced enamelled copper wire; they are vacuum impregnated and some are overmoulded.

AC type magnetic circuit

Characteristics:

- silicon steel plates assembled by rivets,
- laminated circuit to reduce the eddy currents which are generated in all metallic masses subjected to alternating flux (these eddy currents reduce the effective flux for a given magnetizing current and cause unwanted heating of the magnetic circuit),
- accurate grinding of the fixed and moving parts ensuring silent operation,
- one or two phase-shift or Frager rings creating, in part of the circuit, a flux offset with respect to the main alternating flux. This feature prevents the periodic elimination of the attraction force total flux (which would cause noisy vibrations).

The shaft and the rod(s) are coated with a high-resistance insulator. The mechanical endurance of these contactors is of several million operations.

UseinDCmode:

A laminated magnetic circuit can be used in DC mode without any drawbacks. In this case, the coil used differs from the coil normally used for AC voltage of same value and requires the insertion of an economy resistor.

DC type magnetic circuit

No eddy currents are formed in the magnetic circuit of an electromagnet supplied with DC current. In some cases, it is preferable to select a solid steel electromagnet especially designed for DC current instead of the AC current type laminated magnetic circuit, requiring indispensible adaptations, as they are better suited to the conditions of use (high rates, high endurance, no peak on closing).

These poles make and break the current in the power circuit. Consequently, they are sized to take the nominal current of the contactor, in permanent duty, without abnormal heating.
They include a fixed part and a moving part, the moving part is equipped with springs transferring a suitable pressure to the contacts.
The kinematic study of the contacts and magnetic circuits has allowed us to keep the contact bounce to a minimum which contributes to an extended electrical lifetime.
The main poles are single pin.
The current only passes through the arc-blowout pole coil during opening. It is introduced into the circuit by the arc when it passes from the fixed pin to the arc-blowout horn.
Used to solve some automatic operating problems, rupturing poles operate in the opposite way to opening poles: their contacts are "conductive" when the control electromagnet is not supplied and "nonconductive" when energized.

View of a cosing poe CBA-CBC71 2000A

1: fixedcontact,

2: moving contact,
3: upper connecting section,
4: lower connecting section,
5: arc blowout coil,
6: arc blowout cage,
7: moving blowouthorn,
8: fixed blowout horn,
9: fixation bars,
10: moving shaft,
11: supple connection,
12: metallic wing.

Main contacts

80 to 200 A range, two types of contacts exist:

- copper contacts (C) for current use, semi-intensive and intensive duties (AC_2-AC'2-AC_3-AC_4-DC_2-DC_3-DC_4-DC_5 use).
- silver or silver alloy contacts (M) for continuous, semiintensive and intensive duties particularly recommended for low voltages and corrosive or dusty environmental conditions (AC_1-AC_2-AC'2-AC_3-DC_1-DC_2-DC_3-DC_4-DC_5 use).

400 to 1000 A range:

- silver - calcium oxide contact.

1250 to 2000 A range:

- 1250 A poles:
- copper contact (C),
- silver cadmium oxide contact (M) on request for use with very low voltages or in corrosive or dusty environmental conditions.
Changing the contact type does not increase the nominal thermal current of the device.
- 1600 to 2000 A poles:
- silver cadmium oxide contact only.
- 2500 to 5000 A poles:
- copper contact (C),
- silver cadmium oxide contact (M).

Auxiliary contacts

There are three types:

- D block

Including 1 normally open contact and 1 normally closed contact, installed above the magnetic circuit for the 400 to 1000 A range with a maximum of 4 blocks D per magneticcircuit.

- M block

Several configurationspossible.

- TP 86 pneumatic delayed block
(Seetechnical specifications for each type).

Mechanical locking between two contactors

Types of contactors allowing mutual mechanical locking of two contactors exist.
This locking is achieved by rod and requires vertical alignment of the bearings opposite the magnetic circuit on thetwocontactors.

For a different center-to-center distance or for locking two contactors of different sizes, please consult our technical department.

Locking by "RONIS" type lock

Possibility to lock all types of contactors by a "RONIS" typelock.
Support manufactured on request (lock not supplied).

General

Mechanically latched contactors are equipped with a mechanical locking facility with electrical and manual release that enables them to remain closed although the coil is no more supplied.

- Use

Specific properties of contactors with mechanical latching and electrical release make them suitable for various applications.

- Properties

preservation of the sequence memory in automation equipments in case of disappearance of the control voltage.
energy savings, as the coil's source of supply does not produce any current when the contactor is lachted.
change of state "open"-"closed" by supplying the tripping coil.

- insensibility to the network's disruptions.
- silent contactors when latched.

- Applications

These contactors are suitable for:

- refineries, powerstations, excitation circuits, electromagnet controls,...
- contactors remaining closed for long times, example:
- refinery,
- power supply,
- low voltage distribution.
- selective opening control.
- no untimely closings or openings of the main poles.
- current conductor for applications over 1000 V .

- Operation

Such contactors are equipped with a mechanical latching facility with one or two tripping coils, supplied in direct or alternating current (in that first case, the coils are not polarised). When a short pulse is applied to the contactor (control by pulse switch, required time $>0.5 \mathrm{~s}$), this one closes and remains mechanically latched. It is no more necessary to supply the closing coil, the contactor remains closed.
The opening of the contactor is obtained by exciting the tripping coil.

- Precautions of use

For 80 to 200 A range, it is necessary to foresee one automatic switch-off contact for the tripping coil(s) to avoid their destruction in case of extended command. For other ranges, this contact is directly pre-cabled on the contactor as all these coils are pulse coils.

- Manual release facility

On standard versions, for our whole range (except 80 to 200 A range) contactors are equipped with a manual release facility, useful in case of disappearance of the control voltage for example (for 80 to 200 A range, available on request).

- Options

Individual protective system for the tripping coils providing memorisation of the defect that caused the opening, one contact for its visualisation and remote or local closing facility can be supplied separately on a pre-cabled support plate.

All our contactors can be equipped with a mechanical latching with single or double release.

Auxiliar y contacts

As for the main poles, the number of auxiliary contacts can vary in a significant way. 3 types of auxiliary contacts blocks exist:

> D type

Available only on the 80 to 1000 A range.

M type
Avaible on all our range of contactors; several configurations are possible to meet all the requirements.

TP 86 type
Delayed blocks available on all our range of contactors: -A: delayed at rest, -C: delayed at work.

M type block

Delayed block

Auxiliary contacts

Technical features and overall dimensions

M type blocks

Use

On all modular contactors from 80 to 6200 A.

Description

- Block of 2 (M2) or 3 (M3) silver pad contacts with double break on closing or opening
- The flexibility of the fixed support causes a self-cleaning action on the contacts allowing use for low control voltages (24 and 48 V) without risk of failure.

Technical features
Maximum operating voltage

AC	V	500				
DC	V	600				
Thermal nominal current	A	15				
Current switch-on rating 500 VAC or 600 VDC	A	60				
Current switch-off rating under a voltage of	V	110	220	440	500	600
AC	A	15	15	15	15	
DC						
1 contact	A	15	5	1	0.75	0.6
2 contacts in series	A		15	3.25	3	
3 contacts in series	A			5	4.5	
on inductivecircuit$\mathrm{L} / \mathrm{R}=15 \mathrm{~ms}$						
1 contact	A	7	1	0.5	0.4	0.3
2 contacts in series	A	15	1.5	0.75	0.7	
3 contacts in series	A		8	2	1.2	
on inductivecircuit $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$						
1 contact	A	3	0.4	0.15	0.14	
2 contacts in series	A	15	0.7	0.6	0.4	
3 contacts in series	A		2.5	0.7	0.6	
Weight						
M2	kg					
M3	kg					

M2 block
Block of 5 (M5) silver pad contacts with double break on closing or opening for 1250 to

5000 A range, on request.

Auxiliary contacts

Different versions

M type blocks

Operating diagrams (instant M type)

Auxiliary contacts

Technical features

D type blocks and delayed blocks

3. TP 86 type delayed contacts

On request, TP 86 type blocks can be delivered with adjustable delay:

- from 0.1 to 3 seconds,
- from 0.1 to 180 seconds

Use
On 80 to 6200 A modular contactors

Description

Block includes:

- 4 instantaneous auxiliary contacts $3 \mathrm{NO}+1 \mathrm{NC}$
- 2 auxiliary contacts, 1 NO + 1 NC delayed; delay adjustable from 0 to 30 seconds.

2 different blocks:
TP 86 A: delayed block counting from contactor closing.
TP 86 C: delayed block counting from contactor opening.

Technical features

Thermal nominal current	A	10						
Nominal voltage	V	660						
Insulating voltage	V	750						
Under								
AC voltage of	V		48	110/127	220	380	440	660
DC voltage of	V	24	48	110	220		440	600
Operating power								
1 million operations								
AC	VA		300	500	600	520	500	390
DC	W	120	90	75	68		61	58
3 millionoperations								
AC	VA		160	300	330	300	280	190
DC	W	70	50	38	33		28	27
10 millionoperations								
AC	VA		70	100	110	100	100	80
DC	W	25	18	14	12		10	9
Occasional current switch-on and switch-off rating								
AC	VA		3000	7000	12000	15000	14000	13000
DC	W	1000	700	400	260		220	170

CBC 80 to 630 A, singl e-pole versions

Single pole DCcontactors

4. CBC 80-150-200-400-630 and RUBC 400 to 630

Standards: IEC947.4.1
(In conformity with UTEC63-100, IEC158-1 standards and VERTASregulations.)

	RUBC 96		CBC 96	
	400	630	400	630
Thermal nominal current ${ }^{(1)}$ A	500	630	500	630
connectingsection mm^{2}	240	400	240	400
Nominal operating voltage V	600	600	600	600
Maximum operating voltage V	700	700	700	. ${ }^{5}$
DC_2-DC_4duty cycle kW	200	250	200	250
Current switch-off rating L/R $=15 \mathrm{~ms}$				
in openair under 500 V	6000	8500	6000	8500
Safety perimeter for				
metallic walls				
M mm	80	100	80	100
N	40	60	40	60
insulated walls				
M mm	40	60	40	60
N mm	30	40	30	40
Arcing time at current switch-off rating ms	40	40	40	40
Magnetic blowout normal A	400	630	400	630
Current switch-on rating L/R $=15 \mathrm{~ms}$ A	6000	8500	6000	8500
Control circuit				
standardvoltages ${ }^{(3)}$ V	110-127	250		
consumptions W	460/60	460/60	125	125
closing timeat Un ms			160	160
opening time between command and				
separation of contacts ms	50	50	38	38
Mechanical endurance millions of operations	10	10	10	10
Number maximum of instant auxiliary contacts (M type blocks with 2 or 3 contacts).	6	6	6	6

(M type blocks with 2 or 3 contacts).

CBC80 to 680 A , single-pole versions
 Overall dimensions CBC80 to 200 A
 Single pole DC contactors 500 VU̇

bar	80	150	200	D: instant contact block,
bare	25×16	25×16	40×20	
insulated	30×21	30×2	44×24	
A4	17	27	22	
B	204	252	302	PF: attachment plane.
B1	80	97	112	
B2	124	155	190	
B3	126	180	189	
B4	7	8	12,5	
C	155,5	181,5	190	
ØK	6	8	10	
ØT	9	9	13	

CBC80 to 680 A , single-pole versions
Overall dimensions CBC400 to 630 A
Single pole DC contactors 600 VU̇

Attachment on an insulated bar 44×24.

| Calibre | M | N |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 0 0}$ | 45 | 45 |
| $\mathbf{6 3 0}$ | 75 | 60 |

7. RUBC96-400-630

Attachment on an insulated bar 44×24.

Calibre	M	N
$\mathbf{4 0 0}$	45	45
630	75	60

CB 80 to 200 A, multipolar versions

4 types for each calibre:
AC poles and control circuit CBA 55 80,
CBA 55 150,
CBA 55200.
DC poles and AC control circuit CBFC55 80,
CBFC55 150,
CBFC55 200.
AC poles and DC control circuit
CBPA 57 80,
CBPA 57 150,
CBPA 57200.
DC poles and DC control circuit
CBC57B 80,
CBC57B 150,
CBC57B 200.

Calibres 80, 150 and 200 A

Single pin main poles and copper contacts (C) for current use, semi-intensive and intensive duties (AC_2-AC'2-
AC_3-AC_4-DC_2-DC_3-DC_4-DC_5).

- Calibre 80 and 150: 1 to 4 poles for each type.
- Calibre 200: 1 to 2 poles for CBC and CBPA contactors,

1 to 4 poles for CBA and CBFC contactors.
On request, contactors can be equippedwith:

- silver or silver alloy contacts (M) for continuous, semiintensive and intensive duties, especially recommended for low voltages and corrosive atmospheres (AC_1-AC_2-AC'2-AC_3-DC_1-DC_2-DC_3-DC_4-DC_5 duties).
- closing electromagnet is located at the right side of the poles:
- supply from an AC source: laminated magnetic circuit;
- supply from a DC source: solid magnetic circuit, without power-saving device up to contactors 150 A,
3 poles, with power-saving device for contactors 150 A, 4 poles; and contactors 200 A, 2 poles.

Options

- For currents 50 \% lower than the nominal thermal DC current, adaptation of the arc-blowout coil to the current of use.
- Mechanichal latching with single or double electrical release.
- Metallic support for «Ronis type» lock (lock not supplied).
- Opening poles without mechanical overlapping with the closing poles.
- Adaptation for mechanical locking facility for contactors of different ranges.
- Poles with different calibres and supplied with different currents.
- Closing electromagnet mounted on the left side of the poles.
- Longer attachment bars.

CB80 to 200 A, multipolar versions
Technical features CBA $55-$ CEPA 5780 to 200 A

ACcontactors
 Ue up to 660 V, 50/60 Hz

Control circuit

Calibres	kA eff
80	1
150	1.75
200	2.75
(4) for M and C type contacts, consultus.	

(4) for M and C type contacts, consultus.
(5) 1st figure: CBA contactor,

2nd figure: CBPA contactor

* possible blowout calibration:

CB80 A: 1-2-3-4-6-10-16-25-40 A.
CB150A: 1-2-3-4-6-10-16-25-40-80A. CB200A: 1-2-3-4-6-10-16-25-40-80-150 A

CB80 to 200 A , multipolarversions

Technical features CBC57 B - CBFC55 80 to 200 A

DCcontactors
 Ue up to 500 V \because

Control circuit

Nominal voltages	AC, 50 Hz				
		V			
Maximum consum	inrush/hold				
AC	1 P	VA	900/120	900/120	1500/175
	2P	VA	900/120	1500/175	2000/127
	3 P	VA	900/120	1500/175	2000/127
	4 P	VA	1500/175	2000/127	2000/127
DC	1 P	W	36	36	36
	2P	W	36	36	43
	3 P	W	36	36	
	4 P	W	36	43	
L/R constant of electromagnet open/closed		ms			
Closing time	at Un	ms	25/45	35/60	35/60
	at 0.85 Un	ms			
Opening time	at Un	ms			
between command and					
- separation of contacts		ms	45	45	45
- total opening of electromagnet		ms			
- complete opening		ms	300	300	300

(1) in open air.
(2) for voltage of use greater then 500 V , consult us.
(3) for C contacts; for M type contacts values are as follows:

Calibres	kA eff
80	1
150	1.75
200	2.75
(4) for M and C type contacts, consultus.	
(5) 1st figure: CBA contactor,	
2nd figure: CBPA contactor.	
* possible blowout calibration:	
CB80 A: 1-2-3-4-6-10-16-25-40 A,	
CB150A: 1-2-3-4-6-10-16-25-40-80A,	
-CB200A:1-2-3-4-6-10-16-25-40-80-150 A.	

- emperature factor to be applied to the poles or the current controlled according to the ambient temperature (around the contactor):

1.04	$40<\mathrm{t}<45^{\circ} \mathrm{C}$		
1.08	$45<\mathrm{t}<50^{\circ} \mathrm{C}$		
1.12	$50<\mathrm{t}<55^{\circ} \mathrm{C}$		
1.19	$55<\mathrm{t}<60^{\circ} \mathrm{C}$		-Factor to be applied to the contactor for poles connected in parallel, this
:---			
factor already includes a safety margin:			
DC			

	Metallic walls		Insulated walls		
	\mathbf{M}	\mathbf{N}	\mathbf{N}	\mathbf{M}	\mathbf{N}
220 V	CBA	30	30	30	25
	CBFC	55	45	45	35
500 V	CBA	55	40	40	30
	CBFC	110	80	90	65

Pole equipped with silver contact.
M: M type auxiliary contact blocks (D blocks on request). PC: contactor pole.

\mathbf{B}	155.5
$\mathbf{B} 1$	101
$\mathbf{B} 2$	93
$\mathbf{B} 3$	48
\mathbf{C}	122
$\mathbf{C} 1$	27
$\mathbf{C} 2$	30
ØK	M6

PF: attachment plane.
V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm .

Number of poles 1	Type	Voltage of use	E distance in mm, version without locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
	CBA	220-500	A		B-D		C	E	F															
1	CBFC	220	A		B	D	C	E	F															
		500	A		B	D	C	E		F														
2	CBA	220-500		A		B	D	C	E		F													
	CBFC	220			A		B	D	C	E	F													
		500				A		B	D	C	E		F											
3	CBA	220-500				A		B	D	C	E		F											
	CBFC	220					A		B	D	C	E		F										
		500							A		B	D	C	E		F								
4	CBA	220-500					A		B	D		C-E		F										
	CBFC	220							A		B	D	C	E		F								
		500									A			B-D		C	E		F					
Number of poles	Type	Voltage of use	E distance in mm, version with locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
	CBA	220-500		A		B-D		C	E	F														
1		220		A		B-D		C	E	F														
	CBFC	500		A		B	D	C	E		F													
2	$\begin{aligned} & \hline \text { CBA } \\ & \hline \text { CBFC } \end{aligned}$	220-500			A		B	D	C	E		F												
		220				A		B-D		C	E	F												
		500					A		B	D	C	E		F										
3	$\begin{aligned} & \hline \text { CBA } \\ & \hline \text { CBFC } \end{aligned}$	220-500					A		B-D		C	E		F										
		220						A		B-D		C	E		F									
		500								A		B-D		C	E		F							
4	$\begin{aligned} & \text { CBA } \\ & \hline \text { CBFC } \end{aligned}$	220-500						A		B	D		C-E		F									
		220								A		B-D		C	E		F							
		500											A		B-D		C	E		F				

In each calibre and for each type, 6 versions are possible:

3 versions without TP 86 delayed auxiliarycontacts.
Version A: without M instant auxiliary contact block.
Version B: with one M block with 3 instant contacts,
i.e. $2 \mathrm{NO}+1 \mathrm{NC}$.

Version C: with 2 M blocks each one with 3 instant contacts,
i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. $1 \mathrm{NO}+1 \mathrm{NC}$.
Version D: without M instant auxiliary contact block.
Version E : with one M block with 3 instant contacts,
i.e. $2 N O+1 N C$.

Version F: with 2 M blocks each one with 3 instant contacts, i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

CB80 to 200 A, multipolar versions
Overall dimensionsCBA 57-CBC57 B80 A
9. CBPA 57 - CBC 57 B 80

		Metallic walls		Insulated walls	
		M	N	M	N
220 V	CBPA	30	30	30	25
	CBC	55	45	45	35
500 V	CBPA	55	40	40	30
	CBC	110	80	90	65
		F			
CM 62	77			108	
CM 63	95			120	
CM 64	110			130	

Pole equipped with silver contact
C3: attachment bar $30 \times 21=34$
attachment bar $44 \times 24=37$

B	155,5
B1	101
B2	93
B3	48
C	122
C1	27
C2	30
\varnothing Ø	M6

M: M type auxiliary contact blocks (D blocks on request).
PC: contactor pole.
PF: attachment plane.
V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm .

Number of poles	Type	Voltage of use	E distance in mm, version without locking possibility																					
			225250		275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBPA	220-500	A		B	D	C	E		F														
	CBC	220	A		B	D	C	E		F														
		500	A			B-D		C-E		F														
2	CBPA	220-500			A		B-D		C-E		F													
	CBC	220			A		B	D	C	E		F												
		500				A		B	D		C-E		F											
3	CBPA	220-500				A		B	D	C	E		F											
	CBC	220					A		B	D	C	E		F										
		500							A		B	D	C	E		F								
4	CBPA	220-500						A		B	D	C	E		F									
	CBC	220							A		B	D	C	E		F								
		500										A		B	D	C	E		F					
Number of poles	Type	Voltage of use	E distance in mm, version with locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBPA	220-500		A		B	D	C	E		F													
	CBC	220		A		B	D	C	E		F													
2	$\begin{aligned} & \hline \mathrm{CBPA} \\ & \hline \mathrm{CBC} \end{aligned}$	220-500			A		B	D		C-E		F												
						A		B	D	C	E		F											
		500					A		B	D	C	E		F										
3	CBPA	220-500					A		B	D	C	E		F										
	CBC	220						A		B	D	C	E		F									
		500								A		B	D	C	E		F							
4	CBPA	220-500							A		B	D	C-E		F									
	CBC	220								A		B	D	C	E		F							
		500											A		B	D	C	E		F				

In each calibre and for each type, 6 versions are possible:

3 versions without TP 86 delayed auxiliary contacts.
Version A: without M instant auxiliary contact block.
Version B: with one M block with 3 instant contacts,
i.e. $2 \mathrm{NO}+1 \mathrm{NC}$.

Version C: with 2 M blocks each one with 3 instant contacts,
i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. 1 NO + 1 NC.
Version D: without M instant auxiliary contact block.
Version E: with one M block with 3 instant contacts,
i.e. $2 \mathrm{NO}+1 \mathrm{NC}$.

Version F : with 2 M blocks each one with 3 instant contacts, i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

	Metallic walls		Insulated walls		
	\mathbf{M}	\mathbf{N}	\mathbf{M}	\mathbf{N}	
220 V	CBA	35	30	20	20
	CBFC	105	75	85	60
500 V	CBA	40	30	30	25
	CBFC	125	95	105	75

Pole equipped with copper contact (silver on request).
M: M type auxiliary contact blocks (D blocks on request).
PC: contactor pole.
PF: attachment plane.

V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm .
(1) support bar: 44×24.

C1 $=30.5$,

Number of poles 1	Type	Voltage of use	E distance in mm, version without locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
	CBA	220-500	A		B	D	C	E		F														
$\overline{1}$	CBFC	220-500	A		B	D	C	E		F														
2	CBA	220			A		B	D	C	E			F											
		500			A			B-D		C-E			F											
	CBFC	220			A			B-D		C-E			F											
		500					A		B-D		C	E		F										
3	CBA	220					A		B	D	C		E		F									
		500						A		B	D	C	E		F									
	CBFC	220						A		B	D	C	E		F									
		500									A		B-D		C	E		F						
4	CBA	220							A		B	D	C		E		F							
		500									A	B	D	C		E		F						
	CBFC	220									A		B-D		C	E		F						
		500												A		B	D	C	E			F		
Number of poles 1	Type	Voltage of use	E distance in mm, version with locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
	CBA	220-500		A		B	D	C	E		F													
	CBFC	220-500		A		B	D	C	E		F													
2		220				A		B	D	C	E		F											
	CBA	500				A			B-D		C-E			F										
	CBFC	220				A			B-D		C-E			F										
		500						A		B-D		C	E		F									
3	CBA	220						A		B	D	C	E			F								
		500							A		B	D	C	E		F								
	CBFC	220							A		B	D	C	E		F								
		500									A			B-D		C	E		F					
4	CBA	220								A		B	D	C		E		F						
		500									A		B	D	C		E		F					
	CBFC	220									A			B-D		C	E		F					
		500													A		B	D	C	E			F	

In each calibre and for each type, 6 versions are possible:

3 versions without TP 86 delayed auxiliary contacts.
Version A: without M instant auxiliary contact block.
Version B: with one M block with 3 instant contacts,
i.e. $2 \mathrm{NO}+1 \mathrm{NC}$.

Version C: with 2 M blocks each one with 3 instant contacts,
i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. $1 \mathrm{NO}+1 \mathrm{NC}$.
Version D: without M instant auxiliary contact block.
Version E: with one M block with 3 instant contacts,
i.e. $2 \mathrm{NO}+1 \mathrm{NC}$.

Version F: with 2 M blocks each one with 3 instant contacts,
i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

CB80 to 200 A, multipolar versions
Overall dimensions CBA $57-$ CBC57 B150 A
11. CBPA 57 - CBC 57 B 150

Number of poles 1	Type	Voltage of use	Edistance in mm, version without locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
	CBPA	220-500		A		B-D		C-E			F													
	CBC	220-500		A		B-D		C-E			F													
2	CBPA	220				A	B	D	C		E		F											
		500				A		B	D	C	E		F											
	CBC	220				A		B	D	C	E		F											
		500					A		B	D	C	E		F										
3	CBPA	220						A	B		C-D		E		F									
		500							A	B	D	C		E		F								
	CBC	220							A	B	D	C		E		F								
		500									A		B	D	C	E		F						
4	CBPA	220								A		B-D		C	E		F							
		500									A		B	D	C	E		F						
	CBC	220									A		B	D	C	E		F						
		500													A		B-D		C	E		F		

Number of poles	Type	Voltage of use	E distance in mm, version with locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBPA	220-500		A		B	D		C-E		F													
	CBC	220-500		A		B	D		C-E		F													
2	CBPA	220					A	B	D	C	E		F											
		500					A		B-D		C	E		F										
	CBC	220					A		B-D		C	E		F										
		500						A		B	D	C	E		F									
3	CBPA	220							A	B	D	C		E		F								
		500							A		B	D	C		E		F							
	CBC	220							A		B	D	C		E		F							
		500										A		B	D	C	E		F					
4	CBPA	220									A		B-D			C-E		F						
		500										A		B	D	C	E		F					
	CBC	220										A		B	D	C	E		F					
		500													A			B-D		C	E		F	

In each calibre and for each type, 6 versions are possible:
3 versions without TP 86 delayed auxiliary contacts.
Version A: without M instant auxiliary contact block.
Version B: with one M block with 3 instant contacts,
i.e. $2 \mathrm{NO}+1 \mathrm{NC}$.

Version C(1): with 2 M blocks each one with 3 instant contacts,
i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

3 versions with one TP 86 block, with 2 delayed auxiliarycontacts, i.e. $1 \mathrm{NO}+1 \mathrm{NC}$.
Version D: without M instant auxiliary contact block.
Version E : with one M block with 3 instant contacts,
i.e. $2 \mathrm{NO}+1 \mathrm{NC}$.

Version $F^{(1)}$: with 2 M blocks each one with 3 instant contacts,
i.e. $4 N O+2 N C$.
(1) for CBC 57 B 150 contactor, 4 poles, 1 NC contact is used for inserting
the economy resistor..
12. CBA 55 - CBFC55 200

	Metallic walls		Insulated walls		
	\mathbf{M}	\mathbf{N}	\mathbf{M}	\mathbf{N}	
220 V	CBA	30	25	30	20
	CBFC	165	135	130	105
500 V	CBA	65	45	50	35
	CBFC	235	175	175	145

Pole equipped with copper contact, silver on request.

M: M type auxiliary contact blocks (D blocks on request) PC: contactor pole

PF: attachment plane.
V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm .
Support bar: 44×24.
Ø: 13 mm for bar 44×24.

Number of poles 1	Type	Voltage of use	E distance in mm, version with locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
	CBA	220-500	A		B	D	C		E		F													
1	CBFC	220-500	A			B-D		C	E		F													
2	CBA	220				A		B	D	C		E	F											
		500				A		B	D		C	E		F										
	CBFC	220				A			B-D		C	E		F										
		500					A			B	D	C	E		F									
3	CBA	220							A		B	D	C	E		F								
		500							A			B-D		C	E		F							
	CBFC	220								A		B	D	C	E		F							
		500										A			B-D		C-E		F					
4	CBA	220									A		B	D	C	E		F						
		500											A		B-D		C	E		F				
	CBFC	220											A		B	D	C	E		F				
		500														A			B-D		C	E		F

In each calibre and for each type, 6 versions are possible:
3 versions without TP 86 delayed auxiliarycontacts. Version A : without M instant auxiliary contact block. Version B: with one M block with 3 instant contacts, i.e. $2 \mathrm{NO}+1 \mathrm{NC}$.

Version C: with 2 M blocks each one with 3 instant contacts, i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. $1 \mathrm{NO}+1 \mathrm{NC}$.
Version D: without M instant auxiliary contact block.
Version E : with one M block with 3 instant contacts,
i.e. $2 N O+1 N C$.

Version F: with 2 M blocks each one with 3 instant contacts,
i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

		Metallic walls		Insulated walls	
		M	N	M	N
220 V	CBPA	30	25	30	20
	CBC	165	135	130	105
500 V	CBPA	65	45	50	35
	CBC	235	175	175	145
		F			
CM 63	95			20	
CM 64	110			30	

Pole equipped with silver contact on request. M: M type auxiliary contact blocks (D blocks on request).

PC: contactor pole.
PF: attachment plane.
V: possible mechanical locking, attachment centre-to-centre distance between 2 superimposed contactors: 250 mm .
Support bar: 44×24.
$\varnothing: 13 \mathrm{~mm}$ for bar 44×24.

Number of poles	Type	Voltage of use	E distance in mm, version without locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
	CBPA	220-500		A	B		D-C		E		F													
1	CBC	220-500		A		B	D	C	E		F													
2	CBPA	220					A	B	D	C	E		F											
		500					A		B-D		C	E		F										
	CBC	220					A		B	D	C	E		F										
		500						A		B	D	C	E		F									
Number of poles	Type	Voltage of use	E distance in mm, version with locking possibility																					
			225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750
1	CBPA	220-500		A	B	D	C		E		F													
	CBC	220-500		A		B	D	C	E		F													
2	CBPA	220				A		B	D	C	E		F											
		500					A		B-D		C	E		F										
	$\overline{\text { CBC }}$	220					A		B	D	C	E		F										
		500						A		B	D	C	E		F									

In each calibre and for each type, 6 versions are possible:
3 versions without TP 86 delayed auxiliarycontacts.
Version \mathbf{A} : without M instant auxiliary contact block.
Version B: with one M block with 3 instant contacts,
i.e. $2 \mathrm{NO}+1 \mathrm{NC}$.

Version C: with 2 M blocks each one with 3 intant contacts,
i.e. $4 \mathrm{NO}+2 \mathrm{NC}$.

3 versions with one TP 86 block, with 2 delayed auxiliary contacts, i.e. $1 \mathrm{NO}+1 \mathrm{NC}$.
Version D: without M instant auxiliary contact block.
Version E: with one M block with 3 instant contacts,
i.e. $2 \mathrm{NO}+1 \mathrm{NC}^{(1)}$

Version F : with 2 M blocks each one with 3 instant contacts,
ie. $4 \mathrm{NO}+2 \mathrm{NC}^{(2)}$
(1) for CBC57 B 200 contactor, 2 poles: 2 NO free auxiliary contacts as 1 NC contact is used for inserting the economy resistor
(2) CBC 57 B 200 contactor, 2 poles: $4 \mathrm{NO}+1 \mathrm{NC}$ free auxiliary contacts as

1 NC contact is used for inserting the economy resistor.

CB 75400 to 1000 A

2 types for each calibre:
AC poles CBA 75 400,
CBA 75 500,
CBA 75 630,
CBA 75 800,
CBA 751000.

DC poles
CBFC75 400,
CBFC75 500,
CBFC75 630,
CBFC75 800,
CBFC75 1000.

CBA 7510004.0
Reinforced insulation

Standard versions

- 1 to 4 single pin main poles with silver pad contacts.
- Closing electromagnet mounted on the right side of the poles, (on request, it can be mounted on the left) and laminated magnetic circuit.
- control circuit supplied from an AC source:
- for calibres 400 (1 to 4 poles), 500 and 630 (1 to 2 poles), without economy resistor.
- over, rectified and power-saved current via a rectifier mounted on the contactor.
- control circuit supplied from a DC source: power-saved circuit with economy resistor.
- Mechanical locking: vertical type.

Auxiliary contacts

- 2 NO + 2 NC available on D blocks on the whole range (2 extra D blocks can be mounted on request).
- Control circuit supplied from an AC source: one M block, form F2.01Y, on calibres 500 and 630, from 3 to 4 poles and on calibres 800 and 1000; from 1 pole ascontrol circuit is rectified and coil power-saved via 1 NC overlap contact, $1 \mathrm{NO}+1 \mathrm{NC}$ free auxiliary contacts.
- Control circuit supplied from a DC source: on the whole range, one block typeF2.01Y with one NC overlap contact for inserting the economy resistor and $1 \mathrm{NO}+1 \mathrm{NC}$ free auxiliary contacts.

Options

- NO or NC delayed block, TP86 type (this one also includes 4 free instant contacts, i.e. 3 NO + 1NF).
- Addition of D type and M type auxiliary contact blocks according to different versions.
- Device to hold the contactor closed in case of untimely micro-cuts for contactors that are not equipped with a mechanical latching.
- Mechanical latching with single or double electrical release.
- Self-protective device for the release coil(s).
- Metallic support for 'Ronis type' lock (lock not supplied).
- Horizontal or back-to-back mechanical locking.
- Poles of different calibres and supplied with different currents.

CB75 400 to 1000 A
Technical features CBA 75400 to 1000 A

AC contactors

Ue up to 1000 V, $50 / 60 \mathrm{~Hz}$

Standards: IEC947-4-1

Control circuit

Nominal voltage	AC, 50 Hz	V	24-48-110-127-220-380-500				
	DC V		24-48-115-220-440-500				
Maximum consumptions inrush/hold							
AC(2)	1P	VA	2000/175	2000/175	2000/175	500/30	500/30
	2 P	VA	2000/175	2000/225	2500/225	500/30	500/30
	3 P	VA	2000/175	525/30	525/30	750/66	750/66
	4 P	VA	2000/175	525/30	525/30	750/66	750/66
$\overline{\mathrm{DC}}$	1 P	W	400/26	$400 / 26$	400/26	500/30	500/30
	2 P	W	400/26	525/30	525/30	500/30	500/30
	3 P	W	400/26	525/30	525/30	750/66	750/66
	4P	W	525/30	525/30	525/30	750/66	750/66

Average time of operation at nominal voltage ${ }^{(5)}$
Constant L/R rate of electromagnet open/closed

(1) in open air.
(2) bold type ratings: rectified and power-saved control circuit voltage. (3) diodes are warranted up to a network overload of 3 Un efficient
(4) if nominal operation voltage $>1000 \mathrm{~V}$, please consult us
(5) closing time is measured from the supply of the closing coil until the con tact of main poles. Opening time is measured from the supply of the trip ping coil until the separation of mainpoles.
(6) reinforced insulation for use under 1000 V , please specify it when you order.

Temperature factor to be applied to the poles or the current (controlled according to the ambient temparature (around the contactor):

1.04	$40<\mathrm{t}<45^{\circ} \mathrm{C}$
1.08	$45<\mathrm{t}:: 50^{\circ} \mathrm{C}$
1.12	$50<\mathrm{t}::: 55^{\circ} \mathrm{C}$
1.19	$55<\mathrm{t}::: 60^{\circ} \mathrm{C}$

Arcing time depends on the circuit controlled by the main contacts. In hree-phase current, arcing time is normally inferior to 15 ms . The receiver is insulated from the network after a time corresponding to the opening time plus the arcing time.

Factor to be applied to the contactor for poles connected in parallel, this factor aready includes a safety margin:

	2 poles in parallel	3 poles in parallel
AC	I.th 1 pole $\times 2 \times 0.7$	I.th 1 pole $\times 3 \times 0.66$

-The current switch-off rating of poles connected in parallel remains the same as for a singlepole.

- Maximum consumptions:

Bold type ratings:
AC: control circuit issupplied with rectified and power-saved current via a rectifier mounted on the contactor ${ }^{(3)}$
DC: control circuit is power-saved.

CB75 400 to 1000 A

Technical features CBFC75 400 to 1000 A

DC contactors

Ue up to 2000 VÜ

Standards: IEC947-4-1

Direct current		CBFC Type 75									
		400		500		630		800		1000	
Thermal nominal current ${ }^{(1)}$ DC 1	A	500/500		500/500		630/630		800/800		1000/1000	
Nominal insulating voltage	V	1000		1000		1000		1000		1000	
connecting section	mm ${ }^{2}$	240		300		400		500		600	
Nominal operating voltage	V	500	1000 ${ }^{(6)}$	500	1000(6)	500	1000(6)	500	1000(6)	500	1000(6)
Maximum controlled powers											
voltage	V	220/250	440/500	220/250	440/500	220/250	440/500	220/250	440/500	220/250	440/500
DC'2-DC_4dutycycle	kW	90	180	110	220	110	220	175	350	175	350
Short-time current, $\mathrm{t} \boldsymbol{\rho ;} \mathbf{4 0}{ }^{\circ} \mathrm{C}$											
5s	kA	4.5		5.75		6.5		11		12.5	
10s	kA	3.25		4		4.5		7.8		8.5	
15s	kA	2.7		3.4		3.8		6.5		7	
30s	kA	1.9		2.4		2.7		4.6		5	
1 min	kA	1.4		1.78		2		3.3		3.65	
3 min	kA	0.88		1.1		1.3		2		2.3	
10min	kA	0.62		0.79		0.92		1.38		1.6	
Allowable overcurrent / time	kAeff/s	4.5/5		5.75/5		6.5/5		11/5		12.5/5	
Current switch-off rating L/R = 15 ms											
voltage applied	V			$\begin{array}{\|l\|l\|l\|} \hline 500 & 700 & 1000 \\ \hline \end{array}$		500 $700 \mid 1000$		500 700 1000 19		$500 \mid 700 ~ 1000$	
single-pole	kA	6		8		8				19	
two-pole(6)	kA	6	5	10	7	10	7	17	10	17	10
voltageapplied	V	150018002000		150018002000		150018002000		150018002000		150018002000	
three-pole ${ }^{(6)}$	kA	512	1.5	$7 \quad 2.5$	2.5	$7 \quad 2.5$	2.5	108	6	108	6
four-pole(6)	kA		5		7		7		10		10
Current switch-on rating L/R $=15 \mathrm{~ms}$	kA	6/500V		10.5/500V		10.5/500V		19/500V		19/500V	
Mechanical endurance millions of ope	ations	3		3		3		3		3	

(1) in open air
(2) bold type ratings: rectified and power-saved control circuit voltage.
(3) diodes are warranted up to a network overload of 3 Un efficient.
(4) closing time is measured from the time of supply of the closing coil until the time of contact of the main poles. Opening time is measured from the time of supply of the tripping coil until the time of separation of the main poles.
(5) dielectric testing voltage according to insulation voltage can reach 8 kV for specific applications.
(6) for applications with Ue $>500 \mathrm{~V}$,please consult our technical department to select the contactor (specific dimensions andinsulation).
-Temperature factor to be applied to the poles or the current controlled according to the ambient temperature (around the contactor):

1.04	$40<\mathrm{t}<45^{\circ} \mathrm{C}$
1.08	$45<\mathrm{t} \mathrm{o}_{; ; 5} 0^{\circ} \mathrm{C}$
1.12	$50<\mathrm{t}_{0 ; 5} 55^{\circ} \mathrm{C}$
1.19	$55<\mathrm{t} p ; 60^{\circ} \mathrm{C}$

- Factor to be applied to the contactor for poles connected in parallel, this factor already includes a safety margin:

	2 poles in parallel	
DC	I.th 1 pole $\times 2 \times 0.8$	I.th 1 poles in parallel $\times 3 \times 0.75$

-The current switch-off rating of poles connected in parallel remains the same as for a singlepole.

- Maximum consumptions:

Bold type ratings:
AC: control circuit issupplied with rectified and power-saved current via a rectifier mounted on the contactor ${ }^{(3)}$.
DC: control circuit is power-saved.
For technical features of opening poles, see p. 70

Overall dimensions CBA \& CBFC75 400 to 1000 A

Standard AC \& DC contactors

CBA: Ue up to 1000 V, 50-60 Hz - CBFC: Ue 500 vituit

AV: mechanical locking axis, attachment center-to-center dis
tance between 2 superimposed contactors:
-400 mm with below contactor of 400,500 and 600 A calibre
-575 mm with below contactor of 800 or 1000 A calibre.

Please advise when you order whether the contactor has to be equipped with the «shaft end» - necessary to adapt a possible mechanical locking device
Without information, the contactor will be delivered without it

CM: magnetic circuit can be mounted on the left side of the contactor. Without any information, it will always be mounted on the right.
D: D type auxiliary contact blocks.
TP: delayed auxiliary contactblock.

Dimensions																
Calibres	H1	H2	H3(1)	A								L1	L2	P	Safety perimeter(2)	
				without delayedcontact				with delayedcontact								
				1 P	2P	3P	4P	1P	2 P	3P	4P				M	N
400	38	75	105	250	325	400	450	325	400	475	525	43.5	68	278	45	45
$500 / 630$	38	75	105	250	350	425	500	325	425	500	575	45	80	278	75	60
800/1000	33	149	112	325	400	500	600	400	475	575	675	66	92	315	185	85

(1) for equipment with DC supplied or rectified AC supplied coil.
(2) with metallic walls.

Connecting sections

- Calibres 400 and 500/630

[^1]- Calibres 800/1000

For control circuit, see P. 144

ACC: mechanical latching with single or double release. AP: pole axis. AV: mechanical locking axis, attachment centre-to-centre distance between two superimposed contactors.
of calibre 400,500 and 630 A , -575 mm with below contactor of calibre 800 or 1000A. CM 16 R: magnetic circuit can be mounted on the left side of the contactor. Without any informa-
tion, it will always be mounted on theright.
D: D type auxiliary contact blocks. Disp + M: device used for DC or rectified AC control circuit. Standard contents: one support with
terminal box, economy resistor(s), terminal box, economy resistor(s),
rectifier for alternating current and rectifier for a aterniaing current and
one M type auxiliary contactblock. L1: - without locking possibility on the left extremity: 45 mm with locking possibility on
M: M type auxiliary contact
PC: closing pole
PF: attachment plane, LERversion PG: left bearing.
R: possible auxiliary relays.
type» lock for locking the contactor at rest (lock notsupplied). TF: attachment holes.
TP: delayed auxiliary contact
block.
V: possible mechanical locking
facility with a $80,150,200$ and 1250 to 5000 A contactor or with CBA-CBFC 55400 to 1000 A old generation contactors.

ACC: mechanical latching with single or double release. AP: pole axis.
AV: mechanical locking axis, attachment centre-to-centre distance between two superimposed con tactors:
of calibre 400,500 and 630 A -575 mm with below contactor of calibre 800 or 1000 A . CM: magnetic circuit can be mounted on the left side of the
contactor Without anyinformacontactor. Without any informa-
tion, it will always be mounted on the right. D: D type auxiliary contact blocks.
Disp +M : device used for DC or Disp + M: device used for DC or
rectified AC control circuit. Stanrectified AC control circuit. Stan-
dard contents: one support with dard contents: one support with
terminal box, economy resistor(s), rectifier for alternating current and one M type auxiliary contact block.
1: - without locking possibility on the left extremity: 45 mm
with locking possibilityon the left extremity: 90 mm . M: M type auxiliarycontact M: M typ
blocks ${ }^{(1)}$. PC: closing pole
PF: attachment plane, LERversion PG: left bearing
R: possible auxiliary relays.
S : metallic support for «Ronis type» lock for locking the contactor at rest (lock notsupplied)
TP: delayed auxiliary contac
block.
V: possible mechanical locking
facility with a 80, 150,200 and 1250 to 5000 A contactor or with generation contactors.

A dimension (mm)		locking possibility on the right extremity (AV)												locking possibility on the left extremity (V)											
		without delayed contact						with delayed contact						without delayed contact						with delayed contact					
		1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	1	325	375	375	425	425	475	375	425	425	475	475	525	350	400	400	450	450	500	425	475	475	525	525	575
	2	400	450	450	500	500	550	475	525	525	575	575	625	450	475	475	525	525	575	500	550	550	600	600	650
	3	500	550	550	600	600	650	575	625	625	675	675	725	525	575	575	625	625	675	600	650	650	700	700	750
	4	600	650	-	-	-	-	650	-	-	-	-	-	625	675	-	-	-	-	700	-	-	-	-	-

A dimension (mm)		locking possibility on the right extremity(AV)												locking possibility on the left extremity (V)											
		without delayed contact						with delayed contact						without delayed contact						with delayed contact					
		1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	1	400	425	425	475	475	525	450	500	500	550	550	600	425	475	475	525	525	575	475	525	525	575	575	625
	2	475	525	525	575	575	625	550	600	600	650	650	700	525	550	550	600	600	650	575	625	625	675	675	725
	3	575	625	625	675	675	725	650	700	700	750	750	800	600	650	650	700	700	750	675	725	725	775	775	825
	4	675	725	-	-	-	-	725	-	-	-	-	-	700	750	-	-	-	-	750	-	-	-	-	-

Contactor with «mechanical latching with double electrical and manual release»

A dimension (mm)		locking possibility on the right extremity (AV)												locking possibility on the left extremity (V)											
		without delayed contact						with delayed contact						without delayed contact						with delayed contact					
		1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	1	475	525	525	575	575	625	525	575	575	625	625	675	500	550	550	600	600	650	550	600	600	650	650	700
	2	550	600	600	650	650	700	625	675	675	725	725	775	600	625	625	675	675	725	650	700	700	750	750	800
	3	650	700	700	750	750	800	725	775	775	825	825	875	675	725	725	775	775	825	750	800	800	850	850	900
	4	750	800					800	-					775	825					825					

[^2](2) form to the ne specified.
Δ for LEN version, please advise the position of the contactor on the ba
Control circuit: for connection drawings, see p. 144 .

Pease advise when you order whether the contactor has to be equipped with the «shaft end» - necessary to adapt a possible mechanical locking device
Without information, the contactor will be delivered without it.

ACC: mechanical latching with sin gle or double re axis.
chment centre locking axis, attachment centre-to-centre distance
between two superimposed con-
tactors: tactors:
-400 mm with below contactor of calibre 400,500 and 630 A , 575 mm with below contactoro
calibre 800 or 1000 A CM 18: magnetic circuit can mounted on the left side of the contactor. Without any information, it will always be mounted on
the right. the right.
D: D type auxiliary contact blocks,
Disp + M: device used for $D C$ or rectified AC control circuit. Standard contents: one support with terminal box, economy resistor(s), rectifier for alternating current and
one M type auxiliary contact block. 1. - witho auxiliary contact block without locking possibility with locking possibility on
the left extremity: 90 mm .
M: M type auxiliary contact blocks ${ }^{(1)}$ PC: closing pole.
PF: attachment plane, LERversion.
R: possible auxiliary relays.
lock for locking the contactor at rest (lock not supplied)

TP: delayed auxiliary contact block
V: possible mechanical locking fac lity with a $80,150,200$ and 1250 to 5000 A contactor or with
CBA-CBFC 55400 to 100 A generation contactors.

Contactor without «mechanical latching with electrical and manual release»

A dimension（mm）	locking possibility on the right extremity（AV）										locking possibility on the left extremity（V）									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 closing poles to be connected in series																			
Calibre 400 A	400	450	450	500	500	475	525	525	575	575	450	475	475	525	525	500	550	550	600	600
Calibres 500 \＆630 A	425	475	475	525	525	500	550	550	600	600	475	525	525	575	575	525	575	575	625	625
Calibres 800 \＆1000 A	500＊	550＊	550＊	600＊	600＊	575＊	625＊	625＊	675＊	675＊	525＊	575＊	575＊	625＊	625＊	600＊	650＊	650＊	700＊	700＊

©
Contactor with «mechanical latching with single electrical and manual release»

A dimension（mm）	locking possibility on the right extremity（AV）										locking possibility on the left extremity（V）									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 closing poles to be connected in series																			
Calibre 400 A	475	525	525	575	575	550	600	600	650	650	525	575	575	625	625	600	650	650	700	700
Calibres 500 \＆630 A	500	550	550	600	600	575	625	625	675	675	550	600	600	650	650	625	675	675	725	725
Calibres 800 \＆1000 A	575＊	625＊	625＊	675＊	675＊	650＊	700＊	700＊	750＊	750＊	600＊	650＊	650＊	700＊	700＊	675＊	725＊	725＊	775＊	775＊

Contactor with «mechanical latching with double electrical and manual release»

A dimension（mm）	locking possibility on the right extremity（AV）										locking possibility on the left extremity（V）									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 closing poles to be connected in series																			
Calibre 400 A	550	600	600	650	650	625	675	675	725	725	600	650	650	700	700	675	725	725	775	775
Calibres 500 \＆630 A	575	625	625	675	675	650	700	700	750	750	625	675	675	725	725	700	750	750	800	800
Calibres 800 \＆1000 A	650＊	700＊	700＊	750＊	750＊	725＊	775＊	775＊	825＊	825＊	675＊	725＊	725＊	775＊	775＊	750＊	800＊	800＊	850＊	850＊

Δ for LENversion，please advise the position of the contactor on the bar
${ }^{\star}$ magnetic circuit $n^{\circ} 1$
（1）form tobespecinie
（2）with metalic walls．
Control circuit：for connection drawings，see p． 144.

Please advise when you order whether the contactor has to be
equuppea win tne «snart ena»－necessary to aaapi a possipie equippea witn the «snart ena»－necessary to acapt a possibie evice
elease．
release．
AV：mechanical locking axis，attachment centre－to－ entre distance between two superimposed contac tors：
400 mm with below contactor of calibre 400，500 and 630 A ．
575 mm with below contactor of calibre 800 or 1000 A ．
CM：magnetic circuit can be mounted on the left side of the contactor．Without any information，it will always be mounted on the right．
isp＋M：device used for DC or rectified AC contro circuit．Standard contents：one support with termina box，economy resistor（s），rectifier for alternating cur－ rent and one M type auxiliary contact block．
M：M type auxiliary contact blocks ${ }^{(1)}$
PC：closing pole．
PF：attachement plane，LERversion
G：left bearing．
S：metallic support for «Ronis type» lock for locking s：metalic supporf for «Ronis type» lock
the contactor at rest（lock not supplied）． TP：delayed auxiliary contact block． V ：possible mechanical locking facility with a 80,150 200 and 1250 to 5000 A contactor or with CBA－ CBFC55 400 to 1000 A old generation contactors．

Calibre	L1 mechani－ cal locking possibility V		L2	Safety perimeter ${ }^{(2)}$	
				M	N
400	62	107	102	45	45
500／630	65	110	120	75	60
800／1000	89	118	138	185	85

Calibre	H1	H2	P
400	75.5	112.5	258
$\mathbf{5 0 0 / 6 3 0}$	75.5	112.5	258
$\mathbf{8 0 0 / 1 0 0 0}$	70.5	186.5	295

Contactor without «mechanical latching with electrical and manual release»

A dimension (mm)	locking possibility on the right extremity(AV)										locking possibility on the left extremity (V)									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 closing poles on the positive polarity to be connected in series and 1 closing pole on the negative polarity																			
Calibre 400 A	500	550	550	600	600						550	575	575	625	625	600	650	650	700	700
Calibres 500 \& 630 A	550	600	600	650	650	600	650	650	700	700	600	625	625	675	675	650	700	700	750	750
Calibres 800 \& 1000 A	650*	675*	675*	725*	725*	700*	750*	750*	800*	800*	675*	725*	725*	775*	775	725*	775*	775*	825*	825*

ACC- mechanical latching with release.
AV: mechanical locking axis, attachment centre-toentre distance between two superimposed conactors:
400 mm with below contactor of calibre 400,
500, and 630 A.
575 mm with below contactor of calibre 800 or
CM: magnetic circuit can be mounted on the let side of the contactor. Without any information, it will always be mounted on the right. D: D type auxiliary contact blocks.
Disp + M: device used for DC or rectified AC control circuit. Standard contents: one support with terminal box, economy resistor(s), rectifier for alternating current and one M type auxiliary contact

M: M type auxiliary contact blocks(1). PC: closing pole.
PF: attachement plane, LERversion.
PG: left bearing.
R: possible auxiliary relays.
S: metallic support for «Ronis type» lock for locking the contactor at rest (lock not supplied). SE: separator.
TP: delayed auxiliary contact block. V: possible mechanical locking facility with a 80 , 150, 200 and 1250 to 5000 A contactor or with tactors.

Calibre	L1 mechanical locking possibility V with-	L2	Safety perimeter ${ }^{(2)}$	
	out with		M	N
400	out 62107	102	45	45
500/630	65110	120	75	60
800/1000	89118	138	185	85
Calibre	H1	H2		P
400	75.5	112.5		258
500/630	75.5	112.5		258
800/1000	70.5	186.5		295

LEN version: $\mathrm{z}=\mathrm{A}+135 \mathrm{~mm}$ or more on request ${ }^{\Delta}$
Contactor without «mechanical latching with electrical and manual release»

A dimension (mm)	locking possibility on the right extremity(AV)										locking possibility on the left extremity (V)									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 poles to be connected in series on the positive polarity and 2 poles to be connected in series on the negative polarity																			
Calibre 400 A	600	650	650	700	700	675	725	725	775	775	650	700	700	750	750	725	775	775	825	825
Calibres 500 \& 630 A	675	700	725*	775*	775*	750*	800*	800*	850*	850*	700	750	775*	825	825	800	850	850	900	900
Calibres 800 \& 1000 A	775*	825*									800*	850*								
A dimension (mm)	locking possibility on the right extremity (AV)										locking possibility on the left extremity (V)									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 poles to be connected in series on the positive polarity and 2 poles to be connected in series on the negative polarity																			
Calibre 400 A	675	725	725	775	775	750	800	800	850	850	725	775	775	825	825	800	850	850	900	900
Calibres 500 \& 630 A	750	800*	800*	850*	850*	825*	875*	875*			800	850*	850*	900*	900*	875*				
Calibres 800 \& 1000 A	850*	900*									875*									
A dimension (mm)	locking possibility on the right extremity(AV)										locking possibility on the left extremity (V)									

Contactor with «mechanical latching with double electrical and manual release»

A dimension (mm)	locking possibility on the right extremity (AV)										locking possibility on the left extremity (V)									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 poles to be connected in series on the positive polarity and 2 poles to be connected in series on the negative polarity																			
Calibre 400 A	750	800	800	850	850	825	875	875	925	925	800	850	850	800	900	875	925	925		
Calibres 500 \& 630 A	825	875*	875*			900*					875*	925*	925*							
Calibres 800 \& 1000 A	925*																			

Δ for LENversion, please advise the position of the contactor on the bar
${ }^{*}$ magnetic circuit $n^{\circ} 18$.
(1) form to bespecifed.
(2) with metallicwalls.

Control circuit: for connection drawings, see p. 144

Please advise when you order whether the contactor has to be equipped with the «shaft end» - necessary to adapt a possible mechanical locking device.
Without information, the contactor will be delivered without it.

PCconnecting sections

8 for $500 / 630$

ACC: mechanical latching with single or double release. AP: pole axis
AV: mechanical locking axis, attachment centre-tocentre distance between two superimposed contac-

400 mm with below contactor of calibre 400,500 575 mm with below contactor of calibre 800 or 1000 A .
CM: magnetic circuit can be mounted on the left side of the contactor. Without any information, it will D: D type auxiliary contact blocks.
Disp + M: device used for DC or rectified AC contro circuit. Standard contents: one support with termina box, economy resistor(s), rectifier for alternating curent and one M type auxiliary contactblock. M: M type auxilia
PF: attachement plane, LERversion
PG: left bearing.
: possible auxiliary relays.
: metallic support for «Ronis type» lock for locking the contactor TP: delayed auxiliary contact block. V: possible mechanical locking facility with a 80,150 00 and 1250 to 5000 A contactor or with CBACBFC55 400 to 1000 A old generation contactors.

L1 mechanical locking possibility V with-		L2	Safety perimeter ${ }^{(2)}$		
		M	N		
out	with		102	45	
65	110	120	75	60	
89	118	138	185	85	

Calibre	H1	H2	P
400	75.5	112.5	258
500/630	75.5	112.5	258
$\mathbf{8 0 0 / 1 0 0 0}$	70.5	1865	295

PC connecting sections
Calibres 400/500/630
Calibres 800/1000

$=6$ for 400 ,
8 for 500/ 630

ACC: mechanical latching with single or double release AP: pole axis.

AV: mechanical locking axis, attachment centre-to-centre distance between two superimposed contactors:
400 mm with below contactor of calibre 400,500, and
575 mm with below contactor of calibre 800 or 1000 A . CM: magnetic circuit can be mounted on the left side of he contactor. Without any information, it will always be ounted on the right
Disp + M: device used for DC or rectified AC control circuit. Standard contents: one support with terminal box
economy resistor(s), rectifier for alternating current and one M type auxiliary contact block.
Contactor with «mechanical latching with single electrical and manual release»

A dimension (mm)	locking possibility on the right extremity (AV)										locking possibility on the left extremity (\mathbf{V})									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 closing poles to be connected in series and one opening pole 400 A without mechanical overlapping																			
Calibre 400 A	600	650	650	700	700	675	725	725	775	775	625	675	675	725	725	700	750	750	800	800
Calibre 500 \& 630 A	625	675	675	725	725	700	750	750*	800*	800*	650	700	700	750	750	725	775	800*	850*	850*
Calibre 800 \& 1000 A	700*	750*	750*	800*	800*	775*	825*	825*	875*	875*	725*	775*	775*	825*	825*	800*	850*	850*	900*	900*

PF: attachement plane, LERversion
G: left bearing
,
: metallic support for «Ronis type» lock for locking the E: separator (lock not supplied).
P: delayed auxiliary contact block
V: possible mechanical locking facility with a $80,150,200$
Contactor with «mechanical latching with double electrical and manual release»

A dimension (mm)	locking possibility on the right extremity(AV)										locking possibility on the left extremity (V)									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 closing poles to be connected in series and one opening pole 400 A without mechanical overlapping																			
Calibre 400 A	675	725	725	775	775	750	800	800	850	850	700	750	750	800	800	775	825	825	875	875
Calibre 500 \& 630 A	700	750	750	800	800	775	825	825*	875*	875*	725	775	775	825	825	800	850	875*	925*	925*
Calibre 800 \& 1000 A	775*	825*	825*	875*	875*	850*	900*	900*			800*	850*	850*	900*	900*	875*	925*	925*		

Δ for LENversion, please advise the position of the contactor on the bar
${ }^{*}$ magnetic circuitn ${ }^{\circ}{ }^{18}$.
(1) form to bespecififed.

Control circuit: for connection drawings, see p. 144

Please advise when you order whether the contactor has to be equipped with the «shaft e
Without information, the contactor will be delivered without it.

Calibre	L1 mechanical locking possibility V with - out with		L2	L3	Safety perimeter(2)		
			M		N		
400	77.5	107.5		105	102	45	45
500/630	77.5	107.5	112.5	120	75	60	
800/1000	77.5	107.5	135	138	185	85	
Calibre		H1		H2		P	
400		75.5		112.5		258	
500/630		75.5		112.5		258	
800/1000		70.5		186.5		295	

Calibres 400/500/630

$C=6$ for 400 ,
8 for $500 / 630$.
PC connecting sections

$B=13$ for 400 ,
12 for $500 / 630$

A dimension (mm)	locking possibility on the right extremity(AV)										locking possibility on the left extremity (V)									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 closing poles to be connected in series on the positive polarity 1 pole on the negative polarity and 1 opening pole 400 A without mechanical overlapping for connection to earth																			
Calibre 400 A	625	650	650	700	700	675	725	725	775	775	650	700	700	750	750	725	775	775	825	825
Calibre 500 \& 630 A	700*	750*	750*	800*	800*	750*	800*	800*	850*	850*	725*	775*	775*	825*	825*	800*	850*	850*	900*	900*
Calibre 800 \& 1000 A	750*	800*	800*	850*	850*	825*	875*	875*	925*	925*	800*	850*	850*	900*	900*	850*	900*	900*		

AV: mechanical locking axis, attachment centre-to-centre distance between two superimposed contactors:
400 mm with below contactor of calibre 400, 500 , and 630 A.
575 mm with below contactor of calibre 800 or 1000 A CM: magnetic circuit can be mounted on the left side of mounted on the right. D: D type auxiliary contact blocks.
Disp + M: device used for DC or rectified AC control circuit. Standard contents: one support with terminal box, cuit. Standard contents: one support with terminal box,
economy resistor(s), rectifier for alternating current and one M type auxiliary contact block.

A dimension (mm)	locking possibility on the right extremity(AV)										locking possibility on the left extremity (V)									
	without delayed contact					with delayed contact					without delayed contact					with delayed contact				
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Number of poles	2 closing poles to be connected in series on the positive polarity 1 pole on the negative polarity and 1 opening pole 400 A without mechanical overlapping for connection to earth																			
Calibre 400 A	700	750	750	800	800	775	825	825	875	875	725	775	775	825	825	800	850	850	900	900
Calibre 500 \& 630 A	775*	800*	800*	850*	850*	825*	875*	875*	925*	925*	800*	850*	850*	900*	900*	850*	900*	900*		
Calibre 800 \& 1000 A	850*	875*	875*			900*					875*	925*	925*							

Contactor with «mechanical latching with double electrical and manual release»

A dimension (mm)	locking possibility on the right extremity(AV)										locking possibility on the left extremity (V)											L1 mechanical locking possibility V		L2	L3	Safety perimeter ${ }^{(2)}$		
	without delayed contact					with delayed contact					without delayed contact					with delayed contact					Calibre							
Number of M type blocks	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5								
Number of poles	1 pole on the negative polarity and 1 opening pole 400 A without mechanical overlapping for connection to earth																					with- out	with			M	N	
Calibre 400 A	775	825	825	875	875	850	900	900			800	850	850	900	900	875	925	925			400	77.5	107.5		105	102	45	45
Calibre 500 \& 630 A	850*	875*	875*			900*					875*	925*	925*								500/630	77.5	107.5	112.5	120	75	60	
Calibre 800 \& 1000 A	925*																				800/1000	77.5	107.5	135	138	185	85	
Δ tor $\vdash \mathrm{N}$ version, please advise the position ot the contactor on the bar. * magnetic circuit ${ }^{\circ} 18$. (1) form to be speafied. (2) with metallicwalls. Control circuit: for connection drawings, see p. 144.										Please advise when you order whether the contactor has to be equipped with the «shaft end» - necessary to adapt a possible mechanical locking device. Without information, the contactor will be delivered without it.											$\begin{aligned} & \text { Calibre } \\ & 400 \\ & 500 / 630 \\ & 800 / 1000 \end{aligned}$	H1		H2		P		
																							75.5					
																							75.5					
																							70.5					

PC: closing pole. C: closing pole.
FF: attachement plane, LERversion. G: left bearing.
: metallic support for «Ronis type» lock for locking the contactor at rest (lock not supplied) SE: separator.
TP: delayed auxiliary contact block.
V: possible mechanical locking facility with a $80,150,200$ to 1000 A old generation contactors

CB 711250 to 2000 A

CBA 7120004.0

Standard versions

- 1 to 4 single pin main poles with copper contacts for calibre 1250 A (silver pad contact on request) and silver contacts for calibres 1600 and 2000 A.
Arc-blowout coil operates only during opening.
- Closing electromagnet mounted on the right side of the poles (on request, it can be mounted on the left), solid iron magnetic circuit with 2 coils.
- control circuit supplied from an ACsource via a rectifier and power-saved coils (device mounted and cabled on the contactor).
- control circuit supplied from a DC source with powersaved coils (device mounted and cabled on the contactor).
- Auxiliary contacts
- two M type contact blocks with 3contacts 3 NO + 3 NC, instant contacts or form to be specified when you order.
- number of M type contact blocks can be increased to reach 6 blocks.
- Mechanical locking
- vertical type.

Options

- Silver pad contact pins for calibre 1250 A .
- NO or NC delayed block TP86 type(this onealso includes 4 free instant contacts, i.e. $3 \mathrm{NO}+1 \mathrm{NF}$).
- More than 6 M type contact blocks can be mounted on the contactor by mounting them below the contactor to reduce its totaldimensions.
- Device to hold the contactor closed in case of untimely micro-cuts for contactors that are not equipped with a mechanical latching.
- Mechanical latching with single or double electrical release (does not change the total dimensions of the contactor).
- Self-protective device for the release coil(s).
- Metallic support for «Ronis type» lock (lock not supplied).
- Horizontal or back-to-back mechanical locking.
- Poles of different calibres and supplied with different currents.
- Poles without magneticblowout.
- Reinforced insulation.
- Double insulation for specific applications.
- Tropical treatment $\mathrm{n}^{\circ} 2$.

Technical features CBA 711250 to 2000 A

ACcontactors

Ue up to 1000 V 50/60 Hz

(1) in open air.

(4) for other voltages, please consult us.
(5) in nominal operation voltage $>1000 \mathrm{~V}$, please consult us
(6) closing time is measured from the supply of the closing coil until contact of main poles. Opening time is measured from the supply of the tripping * control cilit the

Equipments commanded with alternating current are rectified ${ }^{(3)}$ and power-saved.
-Temperature factor to be applied to the poles or the current controlled according to the ambient temperature (around the contactor):

1.04	$40<t<45^{\circ} \mathrm{C}$
1.08	$45<\mathrm{t} 50^{\circ} \mathrm{C}$
1.12	$50<\mathrm{t} 55^{\circ} \mathrm{C}$
1.19	$55<\mathrm{t} 60^{\circ} \mathrm{C}$

CB71 1250 to 2000 A

Technical features CBC71 1250 to 2000 A

DCcontactors

Ue: 600 and up to 2000 VÜ

Direct current			CBC Type 71								
			1250			1600			2000		
Thermal nominal current ${ }^{(1)}$ DC_1 A			1250			1600			2000		
connecting section		mm^{2}	2 1000			1400			1600		
Nominal insulating voltage ${ }^{(7)}$			1000			1000			1000		
Nominal operating voltage ${ }^{(5)}$			V600	700(2)	1000(2)	600	700(2)	1000(2)	600	700(2)	1000(2)
Maximum operating current											
pemanent duty			A 1250			1600			2000		
8 hours duty		A 1250				1600			2000		
	10 minutes		A 2000			2400			3500		
openings onload	30 minutes	A 1400				1700			2500		
	60 minutes	A 1250				1600			2000		
	10 minutes	A 2400				2400			3500		
openings onload	30 minutes	A 1700				1700			2500		
	60 minutes	A 1500				1600			2000		
continuous duty		A 1250				1600			2000		
Short-time current t ${ }^{\text {a }} 40^{\circ} \mathrm{C}$			kA 41			30			65		
	1 s										
	5 s	kA 20				15			30		
	10s	kA 13.5				10.9			21		
	15 s	kA11.8				8.7			17.9		
	30s	kA 7.9				6			12		
	1 min	$\text { KA } 5.5$				4.5			8.5		
	3 min		A 3.3			3			5		
	10 min	kA 2				2.2					
Allowable overcurrent / time		A/s 25/3				25/1.6			25/7		
Current switch-off rating	voltage	V 550kA23		700	1000	$\begin{aligned} & 550 \\ & \hline 23 \\ & \hline \end{aligned}$	700	1000	550	700	1000
	one-pole			18			18		23	18	
	bipolar(2)	kA	A	23	19		23	19		23	19
	voltage	V1500			2000	1500		2000	1500		2000
	tripolar(2)		A19		8	19		8	19		8
	tetrapolar(2)	kA			19			19			19
Current switch-on rating \quad LR $=15 \mathrm{~ms}$ Poles inductance		kA $25 / 550 \mathrm{~V}$				25/550V			25/550V		
		$\mathrm{H}_{2} 2.9410-7$				$2.3810-7$			$2.8210-7$		
Poles resistance	cold	$\begin{aligned} & \Omega=2510-5 \\ & \hline \Omega \\ & \hline 5.96^{10-5} \\ & \hline \end{aligned}$				7.1910.5			4.0110-5		
	hot					$\frac{7.5510-5}{100000}$			$4.7210-5$		
Number of openings on load at nominal current			Ω S. $5.9610-5$ 50000						50000		
Number of openings on load under	for $I=1250 \mathrm{~A}$		50000			$\begin{aligned} & 100000 \\ & 150000 \end{aligned}$			150000		
	for $I=1600 \mathrm{~A}$ for $I=2000 \mathrm{~A}$	35000				100000			50000		

Control circuit

Nominal voltage	AC50		V 24-48-110-127-220-380-500(4)			
	$\overline{\mathrm{DC}} \mathrm{V}$			24-48-110-127-220-440-500 ${ }^{(4)}$		
Maximum consumptions inrush/hold						
AC*		1P	VA	180/14	180/14	180/14
		2P	VA	380/24	380/24	380/24
		3P	VA	860/50	860/50	860/50
		4P	VA	1700/88	1700/88	1700/88
$\overline{\mathrm{DC}}$		1 P	W	165/17.5	165/17.5	165/17.5
		2 P	W	360/35	360/35	360/35
		3P	W	836/55	836/55	836/55
		4P	W	1600/110	1600/110	1600/110
Constant L/R rate of electromagnet open/closed ms				118/41	118/41	118/41
Closing time ${ }^{(6)}$		at Un	ms	180	180	180
		at 0.85Un	ms	215	215	215
$\overline{\text { Opening time }}$ (6)		at Un	ms			
between commandand						
- separation of contacts			ms	60	60	60
- total opening of electromagnet			ms	82	82	82
- complete opening			ms	300	300	300

(1) in open air.
(2) for applications under voltages $>600 \mathrm{Vdc}$, please consult our technical
3) diodes are warranted up to an overload of 3 Un efficient.
(4) for other voltages, please consult us.
(5) if nominal operating voltage $>1000 \mathrm{~V}$, please consult us.
closing time is measured from the supply of the closing until the contact of main poles. Opening time is measured from the supply of the tripping coil until the separation of main poles
(7) dielectric testing voltage related to a given insulation voltage can reach

8 kV for specificapplications.
control circuit:
Equipments commanded with alternating current are rectified ${ }^{(3)}$ and power-saved.
The current switch-off rating of poles connected in parallel remains the same as for a singlepole.
-Temperature factor to be applied to the poles or the current controlled according to the ambient temperature (around the contactor):

1.04	$40<$ t $<45^{\circ} \mathrm{C}$
1.08	$45<t-50^{\circ} \mathrm{C}$
1.12	$50<t-55^{\circ} \mathrm{C}$
1.19	$55<t-60^{\circ} \mathrm{C}$

-Factor to be applied to the contactor for poles connected in parallel, this factor already includes a safety margin:

[^3]
Overall dimensions CBA \& CBC71 1250 to 2000 A

AC \& DCcontactors CBC: Ue up to 600 vituld CBA: Ue up to 1000 V $50 / 60 \mathrm{~Hz}$

1) E attachment centre-to-centre distance

Number of poles	Locking possibility without	
$\mathbf{1}$	419 mm	459 mm
$\mathbf{2}$	529 mm	569 mm
$\mathbf{3}$	639 mm	679 mm
$\mathbf{4}$	749 mm	789 mm

2) Protrusion A1 AF:
attachment axis.
AME: mechanical latching with single electrical release(option: double electrical release)
AP: poleaxis.
PF: attachment plane.
S: metallicsupport for "Ronistype" lock for locking the contactor at rest (lock not supplied).
V: possible mechanical locking, attachment centre-to-centre distance between two superimposed contactors: 625 mm
VF: attachment screws.
VP: seeconnecting sections.
(1) with mechanical locking.
(2) dimension without locking device.
(3) block with 2 or 3 contacts.
(4) x is the number of closing poles.
3) Insulation distance (safety perimeter)

	DC								AC			
	- 220V				< 220V				- 220 V		> 220 V	
	Currents toswitch-off				Currents toswitch-off							
	-15kA		*25kA		-15kA		- 25kA					
	1P	2P	1P	2P	1P	2P	1P	2 P				
	$\mathrm{M}=\mathrm{N}$	$\mathrm{M}=\mathrm{N}$	$\mathrm{M}=\mathrm{N}$	$\mathrm{M}=\mathrm{N}$	$\mathbf{M}=\mathbf{N}$	$\mathrm{M}=\mathrm{N}$	$\mathrm{M}=\mathrm{N}$	$\mathrm{M}=\mathrm{N}$	M	N	M	N
Metallic walls	250		400		400				150	150	180	200
Insulated walls	120	200	120	250	120	250	120	80	80	90	100	

Connecting sections

- CBA - CBC1250

- CBA - CBC1600/2000

Overall dimensions CBC71 1250 to 2000 A

DCcontactorsCBCUe: 1000 V̈UU
 Double insulation

CBC 71-1250 to 20002.0

CBC 71-1250 to 20002.1

CBC 71-1250 to 20004.0

CBC 71-1250 to 20003.0

CBC 71-1250 to 20003.1

AME: mechanical latching with single electrical release (option: double electrical release). PC: closing pole.
PR: rupturing pole 500 A , for calibre 800 and 1000 , please consult us.
S: metallic support for "Ronis type" lock for locking the contactor at rest (lock not supplied). SE: separator.
V: possible mechanical locking, attachment centre-to-centre distance between two superimposed contactors: 625 mm .
VF: attachment screws.
Z: total length of attachment barsZ $=A+A 2+80 \mathrm{~mm}$. On request, lenght can be increased, in that case, please advise the position of the contactor on the bars.
(1) with possibility of mechanical latching.
(2) without possibility of mechanical latching

Overall dimensions CBC71 1250 to 2000 A

DCcontactorsUe:1000 V̇íU̇U

Double insulation

PCpole

AF: attachment axis.
AP: pole axis.
PC: closing pole.
PF: attachment plane.
PR: rupturing pole 500 A , for calibre 800 and 1000 , pleaseconsult us.
VP: see connecting sections.

Safety perimeter

	M	N	
Metallic walls	180	200	
Insulated walls	120	120	

Connecting sections

- CBC 1250

- CBC 1600/2000

Nota: All these contactors havea double insulation, dielectric testing voltage: $80 \mathrm{kV}, 50 \mathrm{~Hz}$ for 1 min (for other ratings, consult us).

PR pole

Number of TR delayed blocks	Number of M blocks ${ }^{(3)}$	
$\mathbf{0}$	2	A2
$\mathbf{0}$	3	85
$\mathbf{0}$	4	128
$\mathbf{0}$	5	140
$\mathbf{0}$	6	180
$\mathbf{1}$	1	180
$\mathbf{1}$	2	101
$\mathbf{1}$	3	128
$\mathbf{1}$	4	150
$\mathbf{1}$	5	190

(3) block with 2 or 3 contacts.

Type of contactor	Locking possibility without	
	with	
CBC71-1250/1600/2000 2.0	545	585
CBC71-1250/1600/2000 3.0	710	750
CBC71-1250/1600/20004.0	875	915
CBC71-1250/1600/2000 2.1	700	740
CBC71-1250/1600/2000 3.1	865	905

CBC 711250 to 2000 x.x

x.x: 1st figure represents the number of closing poles and 2 nd figure the number of opening poles.
2.0: two-pole break.
3.0: two-pole break in series on the positive polarity and single-pole break on the negative polarity.
4.0: two-pole break in series on the positive and negative polarities.
2.1: two-pole break and rupturing pole 500 A without overlapping between the poles.
3.1: two-pole break in series on the positive polarity, single-pole break on negative polarity and rupturing pole 500 A without overlapping between poles.

Poles to be connected in series by the customer.

CBC 6050002.0

Standard versions

- 1 to 4 single pin main poles (2 pins for calibres 4000 and 5000) with copper contact (silver pad contact on request or for specific applications).
Arc-blowout coil operates only during opening.
- Closing electromagnet mounted on the right side of the poles (on request, it can be mounted on the left), solid iron magnetic circuit with 2 coils.
- control circuit supplied from an AC source via a rectifier and power-saved coils (devicemounted and cabled on the contactor).
- control circuit supplied from a DC source with powersaved coils (device mounted and cabled on the contactor).

Auxiliary contacts

- Two type M contact blocks with 3 contacts $3 \mathrm{NO}+3 \mathrm{NC}$, instant contacts or form to be specified when you order.
- Number of M type contact blocks can be increased to reach 6 blocks.

Mechanical locking

- vertical type.

Options

- Silver pad contact pins.
- NO or NC delayed block TP86 type (this one also includes 4 free instant contacts, i.e. $3 \mathrm{NO}+1 \mathrm{NC}$).
- More than 6 M type contact blocks can be mounted on the contactor by mounting them below the contactor to reduce its total dimensions.
- Device to hold the contactor closed in case of untimely micro-cuts for contactors that are not equipped with a mechanical latching.
- Mechanical latching with single or double electrical release (does not change the total dimensions of the contactor).
- Self-protective device for the release coil(s).
- Metallic support for «Ronis type» lock (lock not supplied).
- Horizontal or back-to-back mechanical locking.
- Poles of different calibres and supplied with different currents.
- Poles without magneticblowout.
- Reinforced insulation.
- Double insulation for specific applications.
- Tropical treatment $\mathrm{n}^{\circ} 2$.

CBC98 2560 to 5000 A and more
Technical featuresCBA - CBC2500 to 6200 A

CBA: AC contactors CBC: DC contactors

Control circuit			
Nominal voltage AC 50 Hz		\checkmark 110-127-220-380-500	
$\overline{\mathrm{DC}}$	V	110-220-400-500	
Maximum consumptions inrush/hold			
AC^{*}	VA	760/75	750/75
	VA	760/75	1950/127
	VA	1440/127	5250/220
	VA	1950/127	
DC	W	610/35	610/46
	W	610/35	960/72
	W	1000/66	2600/145
	W	1100/72	
ConstantL/Rrate of electromagnet open/closedms			
Closing time	ms	350	350
	ms		
$\frac{\text { Opening time }}{\text { between commandand }}$	ms		
	between commandand		
- separation of contacts	ms	60	60
- total opening of electromagnet	ms	85	85
- complete opening	ms	300	300
		CBA	

$760 / 75$	$750 / 75$	$750 / 75$	$750 / 75$
$760 / 75$	$1950 / 127$	$1950 / 127$	$1950 / 127$
$1440 / 127$	$5250 / 220$	$5250 / 220$	$5250 / 220$
$1950 / 127$			
$610 / 35$	$610 / 46$	$610 / 46$	$610 / 46$
$610 / 35$	$960 / 72$	$960 / 72$	$960 / 72$
$1000 / 66$	$2600 / 145$	$2600 / 145$	$2600 / 145$
$1100 / 72$			
		350	350
350	350		
		60	60
	60	85	85
60	85	300	300
85	300		
300			
CBC			

-Factor to be applied to the contactor in case of poles connected in parallel (this factor already includes a safety margin).

-The current switch-off rating of poles connected in parallel remains the same as the one for a single pole.
For technical features of opening poles, see p. 78.

Mersed
 CBC 982560 to 5000 A and more
 Technical features CBA - CBC 982560 to 5000 A
 CBC: DC contactor
 CBA : AC contactor (consult us)

-Factor to be applied to the contactor for poles connected in parallel, this factor already includes a safety margin:

CBC98 2560 to 5000 A and more

Overall dimensions CBA - CBC2500 to 6200 A

CBA : Ue 660 V 50/60 Hz

CBC: Ue 600 VÜ

(1) with locking possibility.
(2) dimension without locking possibility.
(3) connecting section can face the bottom, to be specified in that case when you order.

AME: possible mechanical latching (with single or double release)
M: M type auxiliarycontact block, form to bespecified.
PF: attachment plane.
S: metallicsupport for "Ronistype lock" for locking thecontactor at rest(lock not supplied).
V: possible mechanical locking, attachment center-to-center distance between two superimposed contactors: 700 mm .

Calibre	A2	A3	A4	A5	B	B1	B2	B3	B4	B5	B6	C	C1
2500/3000	97	100	154	180	613	14.5	16	118	275	110.5	27.5	408	146
4000/5000(1)	112	143	212	228	622	16	20	127	277	115	32	427	130

1) Attachment centre-to-centre distance E

Number of poles	2500/3000		4000/5000(1)	
	locking possibility		locking possibility	
	with		without	with
without				
$\mathbf{1}$	536	579	628	671
$\mathbf{2}$	716	759	856	899
$\mathbf{3}$	896	939	1084	1127
$\mathbf{4}$	1116	1139	consult us	

2) Protrusion A1

Position of contacts compared with moving shaft		$\mathbf{2 5 0 0 / 3 0 0 0}$	$\mathbf{4 0 0 0 / 5 0 0 0}(\mathbf{1)}$
above	below		
1 M block	1 M block	5	0
2 M blocks	2 M blocks	69	41
1 delayed block	1 or 2 M blocks	69	41

3) Insulating distance (safety perimeter)

	2500/3000				4000/5000 ${ }^{(1)}$					
	ACand DCcurrent				$\frac{\text { ACcurrent }}{600 \mathrm{~V}}$		DCcurrent			
	< 300V		300 to 600V				< 300V		300 to 600V	
	M	N	M	N	M	N	M	N	M	N
Metallic walls	200	100	400	300	160	160	400	400	do not	
Insulated walls	100	65	200	150	120	120	250	250	250	250

[^4]CBC98 2560 to 5000 A and more

Overall dimensions CBA - CBC4000 to 8000 A

CBA : Ue up to 660 V $50 / 60 \mathrm{~Hz}$
CBC: Ue up to 1000 VU̇

AME: possible mechanical latching (with single or double release).
AP: poleaxis.
M: M type auxiliarycontact block.
PC: closing pole.

PF: attachment plane.
S: metallic support for «Ronistype lock» for locking the contactor at rest (lock not supplied).
V: possiblemechanical coupling, attachment centre-to-centre distancebetween two superimposed contactors: 700 mm .
Z: total length of the attachment bars: Z = A + A1 + A2

Connecting sections

Type and calibre of contactor	Nominal voltage of poles		A	A2	A3 locki	possibility	A4	A5	A6
		of insulation			without	with			
CBA 6040004.0	660 Vac	normal	1339 + A3	90	140	183	228	140	18
CBC60 80002.0	600 Vcc	normal	1339 + A3	90	140	183	228	140	18
CBC60 88002.0	600 Vcc	normal	1339 + A3	90	140	183	228	140	18
CBC60 99202.0	600 Vcc	normal	1339 + A3	90	140	183	228	140	18
CBC60 50002.0	1200 Vcc	double	1580 + A3	105	175	218	270	175	33
CBC60 55002.0	1200 Vcc	double	1580 + A3	105	175	218	270	175	33
CBC60 62002.0	1200 Vcc	double	1580 + A3	105	175	218	270	175	33

Insulating distance (safety perimeter)

	AC current									DC current					
	600 V		300 V		300 to 600 V		600 to 1200 V								
	\mathbf{M}	\mathbf{N}	\mathbf{M}	\mathbf{N}	\mathbf{M}	\mathbf{N}	\mathbf{M}								
\mathbf{N}															
Metallic walls	160	160	400	400	450	450	500								
Insulated walls	120	120	250	250	250	250	350								

Protrusion A1 ${ }^{(1)}$

Above position	Below position cation in that case, block functions are reversed	Type of insulation	
		120	double
1 M type block	2 M type blocks	155	135
2 M type blocks	3 M type blocks	3 M type blocks	220

(1) dimensions can be reduced by mounting the auxiliary contact below the contactor (consult us).

Control circuit: for connection drawings, see p. 144.

Overall dimensions CBC54 3000 A

DC contactor Ue: 1000 VÜ

CBC 5430002.0

CBC 5430003.0

CBC 5430004.0

CBC 5430002.1

CBC 5430003.1

AME: possible mechanical latching (with single or double release).

PC: closing pole.
PR: opening pole 800 or 1000 A , for poles 400,500 and 630 A , consult us.
S: metallicsupport for "Ronis type" lock for locking the contactor at rest (lock not supplied). SE: separator.
Z: total length of the attachment bars: $Z=A+A 1+90 \mathrm{~mm}$.
V: possible mechanical coupling, attachment centre-to-centre distance between two superimposed contactors: 700 mm .
(1) with locking possibility.
(2) dimension without locking possibility
(3) dimensions can be reduced by mounting the auxiliary contacts below the contactor (consult us). (4) connecting sections can face the bottom, in that case, specify it when you order.

Overall dimensions CBC54 3000 A

DC contactor Ue: 1000 VÜ

Connecting sections

AP: pole axis.

PC: closing pole.
PF: attachment plane.
PR: opening pole 800 or 1000 A, for poles 400,500 and 630 A, consult us.
SE: separator.

Calibre	A2	A3	A4(1)	A5	A6	A7	A8(1)
$\mathbf{3 0 0 0}$	40	145	142	270	143	240	140

(1) dimension without locking possibility.

Protrusion A1

Above position	Below position caution:in that case, block functionsare reversed	A1
1 M type block	1 M type block	109
2 M type blocks	2 M type blocks	159

PR pole

Type of contactor		
CBC54 30002.0	782	825
CBC54 30003.0	1052	1095
CBC54 30004.0	1322	1365
CBC54 30002.1	1020	1063
CBC54 30003.1	1290	1333

Insulating distance (safety perimeter)

	M	N
Metallic walls	400	400
Insulated walls	350	350

Nota:

CBC54 3000 2.0: two-pole break.
CBC54 3000 3.0: two-pole break in series on the positive polarity and single-pole break on the negative polarity. CBC54 3000 4.0: two-pole break in series on the negative and positive polarity. CBC 543000 2.1: two-pole break and rupturing pole 800 or 1000 A without overlapping with the poles.
CBC54 3000 3.1: two-pole break in series on the positive polarity, single-pole break on the negative polarity and rupturing pole 800 or 1000 A without overlapping with the poles.

All these contactors have a double insulation, dielectric testing voltage: 80 kV , 50 Hz for 1 min .

Poles to be connected in series by the customer.

CBC98 2560 to 5000 A and more
Overall dimensions CBC60 5000 A
Ue : 1000 VU̇

27. CBC605000

CBC 6050002.0

CBC 6050003.0

CBC 6050002.1

Control circuit: for connection drawings, see p. 144.

CBC98 2560 to 5000 A and more
Overall dimensions CBC60 5000 A
Ue : 1000 VÜ

PC pole

Connecting sections

AME: possible mechanical latching (with single or double release).
AP: poleaxis.
PC : closing pole 5000 A .
PF: attachment plane.
PR: opening pole 800 or 1000 A , for pole 500 A , consult us.
S: metallicsupport for "Ronis type" lock for locking the contactor at rest (lock not supplied). SE: separator.
V: possible mechanical coupling, attachment centre-to-centre distance between two superimposed contactors: 700 mm .
Z: total length of the attachment bars: $Z=A+A 1+90 \mathrm{~mm}$.
(1) with locking possibility.
(2) dimension without locking possibility.
(3) dimensions can be reduced by mounting the auxiliary contacts below the contactor (consult us)

Calibre	A2	A3	A4 ${ }^{(2)}$	A5	A6	A7	A8 ${ }^{(2)}$
5000	40	178	175	280	143	280	140

Protrusion A1

Above position	Below position caution: in that case, block functions are reversed.	A1	
1 M type block	1 M type block	135	
2 M type blocks	2 M type blocks	170	
3 M type blocks	3 M type blocks	235	

PR pole

Type of contactor	LockingA possibility without CBC54 50002.0 CBC54 5000 3.0 CBC54 50004.0$\| 1130$	

Insulating distance (safety perimeter)

	\mathbf{M}	M
Metallic walls	$500 \quad 500$	
Insulated walls	350	350

Nota:

CBC 605000 2.0: two-pole break.
CBC 605000 3.0: two-pole break in series on the positive polarity and single-pole break on the negative polarity.
CBC 605000 2.1: two-pole break and rupturing pole 800 or 1000 A without overlapping with the poles.

All these contactors have a double insulation, dielectric testing voltage: 80 kV , 50 Hz for 1 min .

Poles to be connected in series by the customer.

CBC 98-2560 to 3200 1.0 Ts 600 V U U

CBC 98-2560 to 3200 1.0 Ts 1000 V Ư double insulation

Insulation distance

voltage	metallic walls		insulated walls	
	\mathbf{M}	\mathbf{N}	\mathbf{N}	\mathbf{N}
220	150	200	120	160
>220	200	240	150	200

Number of delayed blocks	Number of $\mathbf{M}^{(1)}$ type blocks		Double insulation
0	2	75 mm	90 mm
0	3	125 mm	140 mm
0	4	125 mm	140 mm
0	5	190 mm	205 mm
0	6	190 mm	205 mm
1	1	86 mm	101 mm
1	2	125 mm	140 mm
1	3	125 mm	140 mm
1	4	190 mm	205 mm
1	5	190 mm	205 mm

Rupturing pole 500 A (without overlapping)

AF: attachement axis.
AM : mechanical latching with
electrical release
CM2D : magnetic circuit
M: auxiliarycontact blocks,
form to specify.
PC: contactor pole
PF : attachment plane.
PR :rupturing pole 500 A
without overlapping
SE: separator.

Insulation distance

voltage	metallic walls		insulated walls	
	\mathbf{M}	\mathbf{N}	\mathbf{M}	\mathbf{N}
220	150	200	120	160
>220	200	240	150	200

Protusion A1 Number of delayed blocks $\mathbf{0}$		Number of $\mathbf{M}^{(\mathbf{1})}$ type blocks
$\mathbf{0}$	2	90 mm
$\mathbf{0}$	3	140 mm
$\mathbf{0}$	4	140 mm
$\mathbf{0}$	5	205 mm
$\mathbf{1}$	6	205 mm
$\mathbf{1}$	1	101 mm
$\mathbf{1}$	2	140 mm
$\mathbf{1}$	3	140 mm
$\mathbf{1}$	4	205 mm
\mathbf{l}	5	205 mm

AF: attachementaxis.
AM : mechanical latchingwith
electrical release.
CM2D : magnetic circuit
M: auxiliary contact blocks,
form to specify.
PC: contactor pole.
PF : attachment
SE : separator.

insulation distance

AF: attachementaxis.
AM : mechanical latching with
electrical release.
CM2D : magnetic circuit
M: auxiliary contact blocks,
form to specify.
PC: contactor pole.
PF : attachment plane.
PR :rupturing pole 500 A
without overlapping
SE : separator

さ

AF: attachementaxis.
AM : mechanical latching with
electrical release.
CM2D : magnetic circuit
M: auxiliary contact blocks,
form to specify.
PC: contactorpole.
PF : attachment plane.
PF : attachment
SE : separator.

Dinsulation distance

0
0
0
0
0

Insulation distance

voltage	metallic walls		insulated walls	
	\mathbf{M}	\mathbf{N}	\mathbf{M}	\mathbf{N}
220	150	200	120	160
>220	200	240	150	200

Field circuit breaker s (excitation contactors) from 80 to 6200 A

CEX 7112502.1
Reinforced insulation

Field circuit breakers - CEX80 to 6200 A

A1 : complete thyristor bridge.
A2 : thyristor starter.
ALT : alternator.
C1 : contactor for field supply.
EX: inductor.
EXT : static excitation.
Ko : relay for regulation and release.
Rd : discharge resistor.
T1 : excitation transformer.

Use
Switching on and cutting off the excitation circuit of a machine, inserting a discharge resistor at the terminals of the inductor at the time of the break.
The drawing below represents the static excitation circuit of an alternator.

Description

- 1, 2 or 3 magnetic arc-blow-out contactor poles:
- silver alloy contacts for calibre 80 to 5000 A.
- copper contacts (on request).
- One magnetic arc-blow-out dosing pole with overlapping with the contactorpoles.
- One mechanical latching with single or double electrical release.
- Magnetic circuit for over-excited coil supplied with DC current:
- closing: economy resistor for calibre 80 to 200 A, delivered separately.
- opening: one NO contact connected in series with the coil opens at the same time as the contactor.
- Auxiliary contacts:
- range 80 to 200 A: 1 one M3 block typeF102-Y with one NC overlap contact inserting the resistor, one NO contact switching off the tripping coil and one NO contact available.
- range 400 to 1000 A: two D-blocks, that is 2 NO + 2 NC contacts available and one M3 block type F102-Z with one overlap NC contact inserting the resistor, one NO contact switching off the tripping coil and one contact available.
- range 1250 to 5000 A: one NC arc-blow-out contact inserting the resistor, one M3 block type F102-Z with one NO contact switching off the tripping coil, $1 \mathrm{NO}+1 \mathrm{NC}$ contacts available.

For a maximum pole switch-off voltage of: 2000 V for range 80 to 200 A , 2200 V for range 400 to 1000 A , 2400 V for range 1250 to 6200 A .

CEX 9832004.2

Contactor pole

Génération

Thermal nominal current	A	80	80	150	400	400	400	400	400	500	500	500	$\begin{aligned} & \hline 500 / \\ & 800(5) \\ & \hline \end{aligned}$	$\begin{aligned} & 500 / \\ & 800(5) \\ & \hline \end{aligned}$	8000 ${ }^{(2)}$	$\begin{aligned} & 500 / \\ & 800(5) \\ & \hline \end{aligned}$	800 ${ }^{(2)}$	800(2)	800 ${ }^{(2)}$
Current-switch-on rating	kA	0.5	0.5	1.4	6	6	6	6	6	8	8	8	8/10	8/10	10	8/10	10	10	10
Allowable curent for 15 s	kA	0.35	0.35	0.8	3.5	3.5	3.5	3.5	3.5	5	5	5	5/9.5	5/9.5	9.5	5/9.5	9.5	9.5	9.5
Allowable curent for 0.5 s	kA	1	1	1.75	4.5	4.5	4.5	4.5	4.5	6.5	6.5	6.5	6.5/12	6.5/12	12	6.5/12	12	12	12
Resistive current switch-off rating	kA	0.25	0.25	0.7	6	6	6	6	6	8	8	8	8/10	8/10	10	8/10	10	10	10

Control circuit

Standard voltages	V	24-48-110 125/127-220-440																	
Average consumption																			
on closing																			
single-pole or two-polebreak																			
inrush	W	43	43	77	500	500	500	800	800	500	500	500	3145(8)	3145(8)	1000	3145(9)	2600	2600	2600
hold	W	43	43	43	30	30	30	70	70	42	42	42	225(8)	225(8)	66	$225(9)$	145	145	145
three-polebreak																			
inrush	W	43	195	195	525	525	525	850	850	1600(8)	$1600{ }^{(8)}$	1600(8)			1100	3370(8)			
hold	W	43	74	74	35	35	35	75	75	$110^{(8)}$	110(8)	110(8)			72	350(8)			
2 two-pole breaks in series																			
inrush	W	43(4)	86	154	1000	1000	1000	1600	1600	1000	1000	1000	3370 ${ }^{(8)}$	$3370{ }^{(8)}$	2000		5200	5200	5200
hold	W	43(4)	86	86	60	60	60	140	140	84	84	84	350(8)	350(8)	132		290	290	290
on opening																			
single-pole,two-poleorthree-polebreak	W	220	220	220	220	220	220	220	220	220	220	220			220		220	220	220
2 two-pole breaks in series	W	$220{ }^{(4)}$	440	440	440	440	440	440	440	440	440	440			440		440	440	440
Opening time	ms	25	25	25	50	50	50	50	50	60	60	60	90	90	60	70	60	60	60
Closing time	ms	180	180	180	125	125	125	125	125	300	300	300	300	300	300	300	300	300	300
ConstantL/R rateofclosedelectromagnet	ms	140	140	40	40	40	40	40	40	40	40	40			50		50	50	50
Total break time	ms	50	50	50	70	70	70	70	70	85	85	85	90	90	85	90	85	85	85

(1) maximum switch-off voltage is directly linked to the current to cut off, as well as to the different configurations (single-pole, twopole, three-pole breaks, 2 two-pole break in series).
In onder to choose the best contactor, please consult our technical department.
(2) 500 A and 1000 A , on request.
(2) dimensions given with sequest.
(3)
(4) one single control circuit.
(5) standard ratings for rupturing pole :
(6) two pole break: one break on each line.
(7) 800 A , on request.
(8) average consumption under 220 V .

For other voltages, consult us.
(9) average consumption under 220 V with single pole or two-pole break on a single line only.
For othervoltages, consultus.
(10) for 5500 A , lower section C $=15 \mathrm{~mm}$.
-Temperature factor to apply to the power or to the current controlled according to the ambient temperature (around the contactor).
For ranges 80 to $2000 \mathrm{~A}, 54-3000,60-5000,60-5500$ and
$60-6200 \mathrm{~A}$, no derating up to $55^{\circ} \mathrm{C}$.

rupturing pole rating	CEX 98 2560/3000 type of break (number ofblow- outpoles)	CEX 985000 type of break (number odblow- out poles)	Maximum switch-off voltage (V)
$500(7)$	1	1	700
$500(7)$	2	2	1500
800		$2(6)$	1500
$500(7)$	3	3	2100
800	4	4	3000

	B	B1	B2	B3	B4	B5	B6	B7	C	C1	C2	ØK	ØL
80	155,5	101	93	48	190	101	93	82	122	27	30	6	6
150	209,5	112	102	61	190	101	93	82	158	29	33	8	6
200	235	120	107	103	146	114	104	99	211	32	36	10	8

1 closing pole and 1 opening pole

ฮ

Overall dimensions CEX 75400 to 1000 A

Single-pole break and two-pole break Ue:500 VU

32. CEX 75-400-500-630-800-1000

	A1	A2	A3	B1	B2	B3	B4	C	C1	C2	ØK	ØL
400	90	13	5	65	80	77	112	256	15	30	12	12
$500 / 630$	100	12	8	65	80	77	112	256	15	30	12	12
800/1000	110	16	12	60	70	(2)	186	291	(2)	0	8	8

	AttachmentcentredistanceE				Insulating distance (safety perimeter)							
	1 pole		2 poles		metallicwalls				insulatedwalls			
	1M	1M+1TP	1M	1M+1TP	- 300V		$>300 \mathrm{~V}$		-300V		$>300 \mathrm{~V}$	
					M	N	M	N	M	N	M	N
400	575	650	650	725	100	30	100	40	40	30	40	30
$500 / 630$	575	650	675	750	150	50	150	70	60	40	70	60
800/1000	600	675	700	775	75	75	155	75	75	75	155	75

(1) form to be specified.
(2) see connecting section.

	A1	A2	A3	B1	B2	B3	B4	C	C1	C2	ØK	ØL
400	90	13	5	65	80	77	112	256	15	30	12	12
$500 / 630$	100	12	8	65	80	77	112	256	15	30	12	12
800/1000	110	16	12	60	70	(7)	186	291	(7)	0	8	8

	A1	A2	A3	A4	B1	B2	B3	B4	C	C1	C2	ØK	ØL
400	102	13	5	110	65	80	77	112	256	15	30	12	12
500/630	120	12	8	110	65	80	77	112	256	15	30	12	12
800/1000	138	16	12	135	60	70	(7)	186	291	(7)	0	8	8

1 closing pole on the positive polarity, 1 closing pole on the negative polarity and 1 opening pole
M type
Distance between the bearings: A

M type auxiliary contacts ${ }^{(8)}$		Distance between the bearings: A														
		Without mechanical latching ${ }^{(4)}$			With mechanical latching with single electrical release without delayed block ${ }^{(5)}$			With mechanical latching with double electrical release without delayed block ${ }^{(6)}$			With mechanical latching with single electrical release with delayed block ${ }^{(5)}$			With mechanical latching with double electrical release with delayed block ${ }^{(6)}$		
NO	NC	400	500/630	800/1000	400	500/630	800/1000	400	500/630	800/1000	400	500/630	800/1000	400	500/630	800/100
1	2	650 (2)	725 (3)	800 (3)	725 (2)	800 (3)	875 (3)				$800{ }^{(2)}$	850 (3)	925 (3)			
2	1	$650{ }^{(2)}$	725 (3)	$800{ }^{(3)}$	$725{ }^{(2)}$	$800{ }^{(3)}$	875 (3)	$800{ }^{(2)}$	875 (3)	$950{ }^{(3)}$	$800^{(2)}$	850 (3)	925 (3)	$875{ }^{(2)}$	925 (3)	
3	2	700 (2)	775 (3)	850 (3)	775 (2)	$850{ }^{(3)}$	925 (3)	$850{ }^{(2)}$	925 (3)		850 (2)	$900{ }^{(3)}$		925 (2)		
3	3	700 (2)	775 (3)	850 (3)	775 (2)	850 (3)	925 (3)	$850{ }^{(2)}$	925 (3)		850 (2)	$900{ }^{(3)}$		925 (2)		
4	3	$700{ }^{(2)}$	775 (3)	850 (3)	$775{ }^{(2)}$	850 (3)	925 (3)	$850{ }^{(2)}$	925 (3)		850 (2)	900 (3)		925 (2)		
4	4	700 (2)	775 (3)	850 (3)	775 (2)	850 (3)	925 (3)	850 (2)	925 (3)		850 (2)	$900{ }^{(3)}$		925 (2)		
5	4	700 (2)	775 (3)	850 (3)	775 (2)	850 (3)	925 (3)	$850{ }^{(2)}$	925 (3)		850 (2)	$900{ }^{(3)}$		925 (2)		
5	5	750 (2)	825 (3)	900 (3)	825 (2)	900 (3)		900 (2)			900 (2)	950 (3)				
6	5	750 (2)	825 (3)	$900{ }^{(3)}$	$825{ }^{(2)}$	900 (3)		$900{ }^{(2)}$			900 (2)	950 (3)				
6	6	750 (2)	825 (3)	$900{ }^{(3)}$	825 (2)	$900{ }^{(3)}$		$900{ }^{(2)}$			900 (2)	950 (3)				
7	6	750 (2)	825 (3)	$900{ }^{(3)}$	$825{ }^{(2)}$	$900{ }^{(3)}$		$900{ }^{(2)}$			$900{ }^{(2)}$	950 (3)				
7	7	750 (2)	825 (3)	$900{ }^{(3)}$	825 (2)	900 (3)		$900{ }^{(2)}$			900 (2)	950 (3)				
8	7	750 (2)	825 (3)	$900{ }^{(3)}$	$825{ }^{(2)}$	$900{ }^{(3)}$		900 (2)			$900{ }^{(2)}$	950 (3)				
8	8	$800{ }^{(2)}$	875 (3)	950 (3)	$875{ }^{(2)}$	950 (3)		950 (2)			950 (2)					
9	8	$800{ }^{(2)}$	875 (3)	$950{ }^{(3)}$	$875{ }^{(2)}$	$950{ }^{(3)}$		$950{ }^{(2)}$			$950{ }^{(2)}$					
9	9	800 (2)	875 (3)	950 (3)	875 (2)	950 (3)		950 (2)			950 (2)					
10	9	800 (2)	875 (3)	950 (3)	875 (2)	950 (3)		950 (2)			950 (2)					
10	10	$800{ }^{(2)}$	875 (3)	950 (3)	$875{ }^{(2)}$	950 (3)		$950{ }^{(2)}$			950 (2)					
11	10	$800{ }^{(2)}$	875 (3)	$950{ }^{(3)}$	875 (2)	$950{ }^{(3)}$		950 (2)			950 (2)					

AM: mechanical latching with single
or double electrical release. or double electrical release.
AT:mechanical coupling for connecting in series 2 equipments with 2 contactorpoles, foruse undervoltages > 500 V and 1000 V . Superimposed 500 V and 1000 V . Superimposed CM: magnetic circuit. This one can be mounted on the left side of the conactor without any information, it is always mounted on the right side of the contactor.
D: block with 2 instant contacts on standard version; 2 additional blocks can be added on request.
M: M type auxiliary contact block ${ }^{(1)}$ PC. contactorp
PF: attachment plane
PR: rupturing pole 400
A.R: economy resistor.

TP: block with 2 delayed contacts ${ }^{(1)}$ S: metallic support for «Ronis type ock for locking the contactor at rest (lock not supplied).
Δ in that case, please advise the position of the contactor on the bars.

AM：mechanical latching with single or double electrical release．
AT：mechanical coupling for connecting in series 2 equipments of 2 contactor poles，for use under voltages $>500 \mathrm{~V}$ and 1000 V ．
Superimposed contactors，centre distance： 625 mm ．
CM2D：magneticcircuit．
F／O：insertion contact for the economy resistor
M：M type auxiliary contact block ${ }^{(1)}$ ．
P：left bearing．
PC：contactorpole．
PF：attachment plane．
PR：rupturing pole 500 A
R：economy resistor．
S：metallic support for «Ronis type» lock for locking the contactor at rest （lock not supplied）．
TP：blockwith 2 delayedcontacts ${ }^{(1)}$ ，
Z：total length of the fixation bars $(Z=E+A 1+65 \mathrm{~mm})$ ．Length increased on simple request．
（1）form to be specified．
（2）for use under voltages＞ 550 and 1100 V ，manual release system AT has to be mounted．
（3）dimensions with separator
Δ ：add 40 mm for an old coupling system．

Protrusion A1

$\begin{array}{l}\text { Number of } \\ \text { delayed blocks }\end{array}$	$\begin{array}{l}\text { Number of M } \\ \text { blocks }^{(1)}\end{array}$

AM: mechanical latching with single or double electrical release.

AP: pole axis
AP: poleaxis.
CM: magnetic circuit.
FIO: insertion contact for the economy resistor.
M: M type auxiliary contact block ${ }^{(1)}$.
PC: contactorpole.
-
PR: 2 rupturing poles 500 A .
PR: 2 rupturing pole
R: economy resistor.
R: economy resistor.
S: metallic support for «Ronis type» lock for locking the contactor at rest
S: metallic supportf
(lock not supplied).
(lock not supplied).
TP: block with 2 delayed contacts ${ }^{(1)}$.
(1) form to be specified.

B1	B2	B3	B4	B5	C	C1
118	250	110.5	14.5	136	408	146
127	252	119.5	16	141	427	130

Connecting sections

	Voltage V	metallic walls		insulated walls	
		M	N	M	N
3000	- 300	200	100	100	65
	> 300	400	300	200	100
5000	- 300	400	400	250	250
	> 300	-	-	250	250

5000

AM: mechanical latching with single or double electrical release AP: pole axis.

FIO: insertion contact for the economy resistor
M: M type auxiliary contact block ${ }^{(1)}$
PC: contactorpole.
PF: attachment plane.

PR: rupturing pole 800 A or 1000 A
R: economy resistor
S: metallic support for «Ronis type» lock for locking the contactor at rest (lock not supplied)
SE: separator
TP: block with 2 d
T1) form to be 2 delayed contacts ${ }^{(1)}$.
(1) form to be specified.

	E	A1	A2	A3	B1	B2	B3	B4	B5	C	C1
$\mathbf{3 0 0 0}$	1474	201	226	216	118	250	110.5	14.5	136	408	146
Connecting sections											

Connecting sections
I

41. Double CEX 54 3000-60 5000

R: economy resistor.
S: metallic support for «Ronis type» lock for locking the contactor at rest (lock not supplie
SE: separator.
TP: block with 2 delayed contacts ${ }^{(1)}$.
(1) form to be specified.

AM: mechanic
AP: pole axis.
FIO: insertion contact for the economy resistor
\mathbf{M} : M type auxiliary contact block ${ }^{(1)}$.
M: M contactor pole.
PC: contactor pole.
PR: rupturing pole 800 A or 1000 A

B1	B2	B3	C	C1	
$\mathbf{3 0 0 0}$	193	250	26.5	426.5	146
$\mathbf{5 0 0 0}$	202	252	31	430	130

42. Double CEX 54 3000-605000

R: economy resistor.
S: metallic support for «Ronis type» lock for locking the contactor at rest (lock not supplied).
SE: separator.
TP: block with 2 delayed contacts ${ }^{(1)}$.
(1) form to be specified.

CM: magnetic circuit
CM: magnetic circuit.
F/O: insertion contact for the economy resistor
M: M type auxiliary contact block ${ }^{(1)}$.
C: contactor pole.
R: rupturing pole 800 A or 1000

	E	A1	A2	A3	B1	B2	B3	C	C1
3000	1292	180	265	250	193	250	26.5	426.5	146
5000	1386	180	311	300	202	252	31	430	130

43. CEX 98 2560-3200 1.1 Ts 600 V

45. Rupturing pole 500 A with overlapping

Protrusion A1		
Number of delayed blocks	Number of M type blocks $(\mathbf{1})$	
$\mathbf{0}$	2	75 mm
$\mathbf{0}$	3	125 mm
$\mathbf{0}$	4	125 mm
$\mathbf{0}$	5	190 mm
$\mathbf{0}$	6	190 mm
$\mathbf{1}$	$\mathbf{1}$	86 mm
$\mathbf{1}$	2	125 mm
$\mathbf{1}$	3	125 mm
$\mathbf{1}$	4	190 mm
$\mathbf{1}$	5	190 mm

46. CEX $982560-32002.1$ Ts 1000 V

Insulating distance (safety perimeter) | voltage V | metallicwalls | | insulated walls | |
| :--- | :--- | :--- | :--- | :--- |
| | \mathbf{M} | \mathbf{N} | \mathbf{M} | \mathbf{N} |
| 220 | 150 | 200 | 120 | 160 |
| >220 | 200 | 240 | 150 | 200 |

Number of delayed blocks	Number of M type blocks ${ }^{(1)}$	
0	2	75 mm
0	3	125 mm
0	4	125 mm
0	5	190 mm
0	6	190 mm
1	1	86 mm
1	2	125 mm
1	3	125 mm
1	4	190 mm
1	5	190 mm

$\stackrel{\bullet}{\circ}$

AF：attachment axis．
AM：mechanical latching with
electrical release．
CM2D：magnetic circuit． PC：contactorpole．
PF：attachment plane．
PR：rupturing pole 500 A
with overlapping
SE：separator．

AF: attachment axis.
AM: mechanical latching with
AM:mechanical electrical release.
CM2D: magnetic circuit.
PC: contactorpole.
PF: attachment plane.
PR: rupturing pole 500 A
with overlapping.
SE: separator.

Protrusion A1 Number of delayed blocks $\mathbf{0}$ Number of M type blocks $\mathbf{(1)}$ $\mathbf{0}$ 2 75 mm $\mathbf{0}$ 3 125 mm $\mathbf{0}$ 4 125 mm $\mathbf{0}$ 5 190 mm $\mathbf{0}$ 6 190 mm $\mathbf{1}$ $\mathbf{1}$ 86 mm $\mathbf{1}$ 2 125 mm $\mathbf{1}$ 3 125 mm $\mathbf{1}$ 4 190 mm $\mathbf{1}$ 5 190 mm		

Draw-out version provided
for generation 71 from 1250 to 2000 and for generation 98 from 2560 to 5500 A

CEX 711250 to 20002.1 in draw-out version

Shunt contactor and protect ion coupon

Energy-storing
control with abrupt
closing, independent
from the operating speed of the operator

Description of the operating mode

Energy-storing control with abrupt closing, independent from the operating speed of the operator

Manual version only

These contactors have a control lever to stretch the energy-storing spring and an anti-pumping device. When the energy isstored by the spring, there are two possibilities for closing the contactor.

Closing by push-button

Once the energy is accumulated by the spring, a local action on the push-button issufficient to close the contactor.
This one closes and remains mechanically latched. Should you wish so, the spring can be re-stretched after that closing which allows successively and without bringing any energy:

- to open,
- to close,
- and to open again the contactor.

Opening

Since the contactor is closed, only a local action on the opening push-button issufficient to open the contactor. This one opens under the pressure of the contacts and return springs.

Automatic closing

Once the energy is accumulated by the spring, the contactor closes. In this specific case, the system won't provide any local push-button. Moreover, there won't be any possibility to stretch again the spring in order to make, as in the previouscase:

- to open,
- to close,
- an opening.

As for the opening, this one remains unchanged (by a local push-button).

Adapting an electrical control device on a manual control equipment is easysince the needed space is already integrated into the CMA dimensions. (However, this adaptation has to be done in ourworkshops.)

The energy-storage of the spring is achieved by the adjunction of a universal motor and of a reducer device with gearing with mechanical anti-pumping system, in case of maintained order.
Once the energy isstored by the spring there are 2 possibilities to close thecontactor.

Closing by PB and Closing Electromagnet EE

Remote closing with a closing electromagnet with current emission
Local closing with the closing push button located on the panel board.

The spring is again automatically stretched after the closingof the CMA which allows successively and without bringing anyenergy:

- to open,
- to close,
- to open again the contactor.

Opening by PB andEA

Remote opening by a voltage-triggered releaser EA Local opening with the opening push-button locatedon the board panel.

Automatic closing

As soon as the energy isstored by the spring, the contactor closes. In this specific case, the system will provide neither a local closing push-button nor a closing electromagnet $E E$ (the supply of the motor is switched-off by a limit switch) and there is no possibility to stretch again the spring in order to make, as in the previous case:

- an opening,
- a closing,
- an opening.

As for the opening, this one remains unchanged (by a local push-button or by the opening electromagnet).

Optical signalling of the board panel
Status of the spring:

- Yellow: not stretched,
- Blue: stretched (energy is stored).

Position indicator of the CMA:

- Red: closed,
- Green: opened.

Description of the operating mode

Energy-storing control with abrupt closing, independent from the operating speed of the operator

Motorization of the stretching of the energystoring spring

Padlocking of the CMA in opened position

- by a RONIS,PROFALUX,...type lock and with the adder of auxiliary contacts (1NO + 1NC)
- by a padlock (not supplied).

Condemnation of the PB of the board pane

- by a shutter that can be padlocked (padlock not supplied).
- by a RONIS, PROFALUX,... type lock with auxiliary contacts ($1 \mathrm{NO}+1 \mathrm{NC}$) in order to inhibit the remote orders and shutter preventing the accessto the PB.

Stopped closing FE

Only for "manual control" or "electrical without automatic closing" versions of CMA.
Operating voltage from 0.35 to 0.85 Un.

Remote release mechanism

```
Two types of release mechanisms allow the remote opening of the CMA.
- A release mechanism in case of current emissionEA provokes the instant opening of the CMA.
- A release mechanism at minimum voltage MV or MVR provokes the opening of the CMA when its supplied voltage decreases to a value between 35 and \(70 \%\) of its nominal value.
MV : instant action.
MVR : delayed action of 250 ms or 0.6 s (AC supply).
Other delaying devices on request.
Draw-out control
```

(Manual or electrical) draw-out energy-storing control.

1 LOCAL/REMOTE lock (locking of the local controls: free key) related contacts: $1 \mathrm{NO}+1 \mathrm{NC}$
2 Cover prohibiting use of the push-buttons (padlock and/or lock) related contacts: $1 \mathrm{NO}+1 \mathrm{NC}$
3 Control handle for stretching the energy-storing spring
4 Lock for locking the contactor in OPEN position (free key: equipmentlock)
5 Spring position indicator: yellow = not stretched spring blue = stretched spring
6 Connecting block (information on the position contacts)
7 Push-button for local opening
8 Push-button for local closing
9 Padlocking facility in OPEN position
10 Status indication of the equipment green = equipment OPEN red = equipment CLOSED
11 Sectioning plug for the accumulation control block
12 Lever for inhibiting the lacking voltage coil (MV or MVR) in manual mode
13 Front plastron
14 ID label (reference to be mentioned in any correspondence)

Particularities for currents greater than 2000 A , the power circuit is made of 2 separated parts assembled on the same axis and linked to a same mechanism.

- A " thermal" part:

Composed of blow-out poles mounted in parallel on a single section where the nominal current passes.

- A "break" part:

Composed of magnetic blow-out poles and blow-out cages with metallic plates.

At the time of the opening , the thermal poles open before the blow-out poles and the break is ensured by these magnetic blow-out poles.

All the contacts are in copper with special silver pad for currents from 1250 to 6000 A .

- Possibility to haveopening poles without overlapping

Description of the operating mode

Control circuit of the energy-storing motorised contactor

Drawing representing all the possible optio ns for non-draw-out versions in AC current

Description of the operating mode

Examples of simplified applications

"HEAVY" Metro

C CBC or CBFC type contactor
SN CMA - N type sectioning device
CP CMA type shun tcontactor
($1 \times 6000 \mathrm{~A}$ and $1 \times 1600 \mathrm{~A}$)
(1×6000 A and $1 \times 1600 \mathrm{~A})$

Tramway

CP CMA type shun tcontactor
CPI CMA type shun tcontactor
SN CMA - N type manual sectioning device

Characteristics of CMA 061250 to 2000 A

Energy-storing motorised contactor
 Ue : 750 and upto 1200 V U

CMA 061250 to 5500 A

Mersen

Characteristics of CMA 062560 to 5500 A

Energy-storing motorised contactor
 Ue: 750 and upto 1200 V U

Release mechanism at minimum voltage
Assigned voltages Un

Average time of operation			
Closing time of the contactor ${ }^{(4)}$ at Un	ms 50	50	50
Opening time of the contactor at Un	ms 50	50	50
Auxiliary contacts $3 \mathrm{NO}+3 \mathrm{NC}$			
Thermal currentith	A 20	20	20
Current switch-off rating			
ACcos $\langle\hat{y}=0.3 / 500 \mathrm{~V}$	A 6	6	6
DC 110 V	A 2.5	2.5	2.5
UR 0.01s 250 V	A 0.8	0.8	0.8
Electrical insulation/earth	$2.5 \mathrm{kV}-50 \mathrm{~Hz}-1 \mathrm{mn}$	$2.5 \mathrm{kV}-50 \mathrm{~Hz}-1 \mathrm{mn}$	$2.5 \mathrm{kV}-50 \mathrm{~Hz}-1 \mathrm{mn}$
(1) in open air (2) closing of the contactor is ensured from 0.85 Un . (3) for other voltages, consult us. (4) opening time is measured from the supply of the closing coil until	(6) 4 blow-out poles (2 on th (7) 5500 A ; lower section C * Association of thermal poles	2 on the negative line). -Tempe contra conta	to be applied to the poles or to the current g to the ambient temperature (around the
the separation of the main contacts.		1.04	$40<\mathrm{t}<45^{\circ} \mathrm{C}$
		1.08	$45<1850^{\circ} \mathrm{C}$
		1.12	$50<t$ ¢ $55^{\circ} \mathrm{C}$
		1.19	$55<t 0^{\circ} \mathrm{C}$

AF ：attachment axis
AP ：pole axis
PF：attachment plane
VF：attachment screw
VP ：see connecting sections
B ：connecting box

Isulating distance （safety perimeter） $\mathrm{M}_{\mathbf{M}}$
Insulated walls

Distance A	
Standard	21
Reduced	226

Upper connecting
sections
－CMA 1250

－CMA 1600－2000

$\stackrel{\stackrel{\rightharpoonup}{\bullet}}{\stackrel{\rightharpoonup}{\bullet}}$

Upper connecting sections

VF: attachment screw
VP : see connecting sections
B : connecting box

Isulating distance (safety perimeter)			Distance A	
	M	N	Standard	316
Insulated walls	120	120	Reduced	226

$\stackrel{\rightharpoonup}{\sim}$

AF ：attachment axis
AP ：pole axis
PF：attachment plane
VF：attachment
VF：attachment screw
VP：see connecting sections
B：connecting box

Isulating distance （safety perimeter） $\mathrm{M}_{\mathbf{M}}$
Insulated walls

Distance A	
Standard	316
Reduced	226

Upper connecting
sections
－CMA 1250

－CMA 1600－2000

5

	M	N
Insulated walls	120	120

Distance A	
Standard	316
Reduced	226

Distance B	
Without separator	110
With separator	165

品

Isulating distance （safety perimeter）
Insulated walls

Distance A	
Standard	316
Reduced	226

Distance A	
Standard	316
Reduced	226

Isulating distance
（safety perimeter）
:---:
Insulated walls

Distance A	
Standard	316
Reduced	226

Distance C	
Calibre 5000	10
Calibre 5500	15

$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\rightharpoonup}{\infty}}$

Isulating distance (safety perimeter)

Standard	366
Reduced	276

Distance A

Vertical mechanical locking

80 to 200 A range

- CBA 55,
- CBPA 57,
- CBFC 55,
- CBC 57B $80-150-200$.

Horizontal or «vis-à-vis» mechanical locking available on request.


```
- CBA 75,
- CBFC 75 400-500-630-800-1000.
```

Locking on the hold generaytion moving shaft or for 1250 to 5000 A range.

Calibre (A)	H (mm)
$\mathbf{4 0 0}$	400
$\mathbf{5 0 0}$	400
$\mathbf{6 3 0}$	400
$\mathbf{8 0 0}$	575
$\mathbf{1 0 0 0}$	575

$$
\begin{array}{l|l}
\text { Calibre (A) } & \text { H (mm) } \\
\hline 400 & 400 \\
\hline 500 & 400 \\
\hline 630 & 400 \\
\hline 800 & 575 \\
\hline 1000 & 575 \\
\hline
\end{array}
$$

Standard locking at the end of the moving shaft

- CBA 75, CBFC75
- CBA - CBC 71 1250-1600-2000.

Horizontal or «vis à vis» mechanical locking available on request.

- CBA - CBC 982560 à 5000.

2500 to 5000 A range

- CBA 542500,	- CBA 604000,
- CBC543000,	- CBC 605000.

(1) for other lenght, consultus.

Horizontal or «vis à vis» mechanical locking available on request.

General

The equipment composed of the fast opening system DS1 + rapid opening contactor CBTmay be used for other applications than the ones described in the present chapter. However, the general rules of application remain the same.
We know that some commanded rectifier bridges, of «all thyristor> type may restore the energy to the network by operating as UPSunits. This is the case for example of a GRAEIZbridge connected to a driving load motor. This type of operation is also found in case of motors connected to rectifier bridges (constituted of two GRAEIZ bridges assembled opposite) capable of ensuring the operation during the four quadrants of the «speed torque» diagram.
During the UPSoperation, if the network voltage suddenly abnormally drops, the electromotive force of the load is no more opposed to the one of the network. Moreover, as the control pulses of the thyristors' UPS bridge generally, go on energizing then, thisshort-circuit closes very fast directly in one or several vertical branches of the bridge.
Ultra-rapid fuses, playing their normal part of protection melt in more or lesssignificant number. If there are no fuses in the branches of the bridges, the thyristors will be the ones, by being put off load, to stop the output of the load on that short-circuit, but only after the current had reached high ratings.

For rectifier bridges that:

- are to operate on networkssubject to frequent voltage disruptions or,
- have to ensure significant duty factors as UPSunits.

The probability of defect is high enough to make it interesting to foresee an additional selective protection, capable of opening the connection between the load and the bridge before the energy created in the fuses generates their fusion or partial degradation.
All the more so, the thyristors are also protected by this protective system.
This last one should include:

- a rapid switch off device - the «rapid CBTcontactor» and,
- a CBT contactor instant control device in case the current would exceed a pre-fixed value - the fast opening system DS1.
Those elements and eventually the outer circuit must be scheduled and adjusted so that at the end of the cut off, the energy dissipated in the fuses and thyristorsshouldn't cause any damage. We know that for the fuses, this limit is defined by the manufacturers by the integral $\int i^{2} d t$ of pre-arc.
Same thing for the thyristors, an integral $\int i^{2} d t$ of fusion, not to reach or exceed, has to bedefined

Description

- 1 or 2 magnetic arc-blowout closing poles.
- Closing
- CBT200: electrical closing thanks to a solid magnetic circuit controlled by an auxiliary contactor,
- CBT400 and 800: manual closing with handle or electrical closing with a separated laminated magnetic circuit controlled by an auxiliary contactor or manual \& electrical closing.
- Mechanical latching with electrical release on CBT200 (manual release on request), mechanical latching with electrical and manual releases on CBT400 and 800 A .
- Instant M type auxiliary contacts (the contacts for switch-ing-off the closing and tripping coils are mounted and cabled).
Freeauxiliary contacts: $1 \mathrm{NO}+1$ NC on CBT200 and CBT 400 \& 800 with electrical control, 1 NO + 2 NC on CBT 400 \& 800 with manual control
- Possible addition of 1 or 2 extra M3 blocks, (increases the overall dimensions of theCBT).
Contactors with manual control are equipped with: - asafety contact (opened during the operation of the handle),
- a padlocking facility, onrequest.

Technical features

[^5]The DC supplies via thyristors generally have already an internal protection system by circuit breakers and an external protection system by a limiting rapid equipment such as a CBTcontactor. It is necessary to check the good co-ordination of both protection systems to avoid the fusion of the circuit breakers on only external defect that should be deleted by the limiting equipment.
Therefore, it is necessary to compare the integral of Joule 2 $\int i d t$ that the protection equipment allows to the integral of Joule $\int i^{2} d t$ required to obtain the fusion of the circuit breakers. This last value is one of the main characteristics of the circuit breakers and can be easily calculated from the manufacturer's ratings, the number of connections in parallel and the drawing achieved.
This sheet aims at giving a calculation method of the integral of Joule allowed by the limiting rapid equipment and the extra self induction coil to schedule whether the coordination is not ensured by the design characteristics of the circuit.

Operation of the protection equipment

The characteristic oscillogram is represented on page 128. The value of the network voltage U and the value of the total resistance R determine the asymptotic value of the supposed short-circuit current Icc. The value of the selfinduction of the circuit L and the value of that resistance

that circuit can be schematised as follows:
of the current detector $D X T$ is reached. This one, through an electro-mechanical device, provokes the opening of the contacts after a certain time $D M$. The arcing voltage appears but a certain time is necessary for the value of the arc to be sufficient to provoke the limitation of the shortcircuit voltage to a value il. This arc will last until the extinction of the current during a total time $t a$.
For a precise calculation of the integral of Joule, the full knowledge of the function $i=f(t)$ during the whole phenomenon is necessary. This can only be undertaken by using an oscillogram corresponding to all the characteristics of the circuit.
Experienceshows that a good approximation could be obtained under normal operating conditions by formulating the following simplifying hypotheses (the drawing page 128 represents the allure of the phenomenon):

- the value of the limited current $i L$ will be taken from the curve of the supposed current Icc for a time TL corresponding to the summa of $T G+D M+$ Tma (Tma corresponds to the average time of rise of the arcing voltage for different values of current).
- the growth of the current will besupposed as linear from 0 to $I L$.
- the decrease in the current will be supposed as linear from $I L$ to 0.
- the duration of that decrease will be considered asequal to a value $T A$ corresponding to the difference between the average value of the arcing time $D A$ and the time of
rise of the arcing voltage Tma for the corresponding equipment $(T A=D A — T m a)$.
- the integral of Joule can then be calculated from the formula:

$$
\int i^{2} d t=\frac{I L^{2}(T L+T A)}{3}
$$

The elements required for applying this formula can be obtained from 2 different methods:

- graphic method,
- «set of curves» method.

Both methods will be presented in the next pages with a corresponding example. Each method will be divided in 2 parts:

- the calculation of $\int i d t$,
- the calculation of the extra self-induction coil.

Graphic method

During the course of the calculation leading to $I L$ and $T L$, it will be necessary to pass from a value of the time to a value of the current and vice versa; as the function
$i=f(t)$ is $i=\operatorname{Icc}\left(1-\xi-\frac{t}{-\bar{\tau}}\right)$, in shape we have
looked for a graph that would allow us to obtain a linear representation of such a function.
We can write:
$i=\operatorname{IcC}\left(\begin{array}{cc}1-\xi-t \\ i & -j\end{array}\right)$
in which $\frac{i}{I c c}=1-\xi_{i}-\frac{t}{\tau}$ and $1-\frac{i}{I c c}=\xi-\frac{t}{\tau}$
so $\log \left(1-\frac{1}{\text { ICC }}\right)=\frac{t}{\tau}$
expression which is linear on a semi-logarithmic paper. To draw the lines corresponding to different T, you will only have to notice that for $t=\tau, 1-\frac{i}{I c c}=0.367$ (see figure page 126).
To make it clearer, we will take as example:

- the switching-off a supposed current Icc of 8400 A,
- protection doorstep ID adjusted at 600 A ,
- time constant $\tau=15 \mathrm{~ms}$,
- equipment used: CBT400 whose design features are:
- $D M=9 \mathrm{~ms}$,
- Tma = 2 ms
$-D A=10 \mathrm{~ms}$.

2

Circuit breakers can only admit ($\int i d t$) a as integral of Joule of pre-arc value. We will calculate the extra selfinductive coil required in the circuit not to exceed this restraint value. In the example chosen, this value will be fixed at $100000 A^{2} S$.

CBT rapid contactors

Operation and graphic method

Method (figure page 126)

- calculation of $\int i^{2} d t$
- representation of the supposed current:

D from the abscissa, draw T on the line 0.367 .
D draw the line representative of $\log \left(1-\frac{i}{I C \bar{C}}\right)=-\frac{t}{\tau}$
from the point 1 of the ordinate $0-1$ and passing through
the point T drawn on the line 0.367

- determination of $T D$ on that line:

D the ordinate of $T D$ is defined by $1-\frac{I D}{I C C}$
D the abscissa corresponds to the time $T D$
calculation of $T L$ from the formula $T L=T D+D M+T m a$
- determination of $I L$ on thecharacteristic line for:
D the abscissa $T L$ corresponds to the ordinate whose
expression is $1-\frac{I L}{I C C}$

calculation of $\int i^{2} d t$, by using of theapproaching formula:
$\int i^{2} d t=L^{2} \frac{(T L+T A)}{3}$

- calculation of the extra-self:
- value of the limited current $I L$ not to exceed:

The change in the time constant will slightly modify the value of $T D$ but to go on with the calculation, we suppose the total time constantand

$$
I L 2=I L 1 \sqrt{\frac{\left(\int i^{2} d t\right) a}{\left(\int i d t\right) 1}}
$$

- value of the new time constant T2

A line of operation for which $T L-T D=D M+T m a$ and $I L=I L 2$ has to be found. The slope of such line that enables to passfrom $I D$ to $I L$ in ($D M+T m a) m s$ can be obtained from the following points:
$\mathrm{D} A$ on the ordinate is defined by $1-\frac{I D}{I c c}$
© B projected from:
$\mathbf{\Delta}$ the ordinate $1-\frac{I L 2}{I c c}$
Δ the abscissa $(D M+T m a) m s$
D draw the line passing by A and B
D its intersection point C with the horizontal 0.367 projected on the abscissaaxis gives the new value of the circuit time constant.

D as we know the existing characteristics, it is now possible to determine the characteristics of the extraself (L and R) to obtain that new total time constant of the circuit.

D from theabscissa, draw τ
D draw the line representative of $\log \left(1-\frac{i}{I C \bar{C}}\right)=-\frac{t}{\tau}$

D the ordinate of $T D$ is:
$\left(1-\frac{600}{8400}\right)=1-(0.071)=0.929$
D the abscissa gives 1.13 ms as time $T D$
$T L=1.13+9+2=12.13 \mathrm{~ms}$

D abscissaTL $=12.13 \mathrm{~ms}$
D ordinate $1-\frac{I L}{I C C}=0.445$
so, $\frac{I L}{I C C}=1-(0.445)=0.555$
so, $I L=0.555 \times I c c$, i.e. $0.555 \times 8400=4660 A$
$I L=4660, T L=12.13$
$T A=D A-T m a=10-2=8$
$2<2_{2}(12,13+8)$
$\int i d t=\overline{4660} \times \frac{}{3}=145000$ A S
The corresponding oscillogram gives the following result:

$$
I L=4400 A \text { and } \int i^{2} d t=134000 A^{2} S
$$

$$
-10-1+0-10
$$

$I L 2=4660 \times \sqrt{\frac{100000}{145000}}=3860 A$
points:

D $A=1-\frac{I D}{I C C}=1-\frac{600}{8400}=1-(0.071)=0.929$
D B from:
Δ the ordinate $1-\frac{3860}{8400}=1-(0.46)=0.54$
Δ the abscissa $9+2=11 \mathrm{~ms}$
D the intersection point C projected on the abscissa gives
20.5 ms .
D the extraself combined with the present characteristics of
the network should allow to obtain that time constant of
20.5 ms .

CBT rapid contactors

Operation and graphic method

Graphic method by set of curves

Tomake the calculation of $I L$ and $\int i^{2} d t$ easier, you can pre-determine per equipment a network of curves that would ena-
ble you to obtain quickly the values looked for form the characteristic parameters of the circuits. According to the adjustment of
the protection $I D$, you can define a current of use $I e=\frac{I D}{Z}$ withstandingnormal operation overloads. To characterise this method, we will take the same example as in the graphic method, i.e.switch-off of asupposed current Icc = 8400 A, protection doorstep ID set on 600A,
time constant τ equipment used CBT 400 whose design
features are: $D M=9 m s$,
Tma $=2 \mathrm{~ms}$ and $D A=10 \mathrm{~ms}$.
If the value of the integral of Joule $\int_{i}^{2} d t$ is superior to the pre-arc one for short-circuits $\left(\int i^{2} d t\right) a$, a new time constant has to be looked for in the circuit. In the example chosen: $\left(\int_{j}^{2} d t\right) a=100000{ }^{2}{ }^{2} S$

Method

- calculation of $\int i d t T D$
- TD time to reach ID from the parameters:
$\frac{I c c}{\frac{I e}{}}=K c c$ short-circuit factor
and T , you can determine the value of the $T D$ time to reach the adjustment doorstep for the protection
$T D=\tau \log \left[1-\frac{2}{K c \bar{c}}\right]$ time $T L$ to reach the limit cur-
rent $I L$ for a type of protection equipment, the values $D M$ and Tma are known and by applying the rule
$T L=T D+D M+T m a$, you obtain aset of values
determinig $T L$
limitation factor $K L=\frac{I L}{i c c}$ from the parameters $K c c$ and
T , you can determine the value of the limitation factor $K L$
by using the formula $K L=1-\xi-{ }_{\tau}^{t}$ and plot the corre-
sponding curves:
D figure page 129 for CBT200,
D figure page 131 for CBT400 and 800 allowing the determination of $I L$:
$I L=K L \times I c c$
- overcurrent factor: $K S=\frac{I L}{}$ from the parameters $K c c$ and T and the formula $\frac{I L I e}{I e} \stackrel{I L}{I c c} \times \frac{I c c}{I e}$ and
$K S=K L \times K c c$, you can determine the valuesof the overcurrent factor $K S$ for different combinations of parameters.

2

- integral of Joule $\int i d t$ for a given equipment, the value of the time $T A=D A-T m a$ is also a knownfeature and the approaching value of the integral of Joule
$2 \quad 2 \quad 2(T L+T A)$
$\int i d t$ can be written: $\int i d t \# I L-3$ that can be expressed in reduced magnitude by

$$
\begin{aligned}
& \frac{1}{3}\left(\frac{I L}{I e}\right)^{2}(T L+T A) l e^{2} \text { or } \int i^{2} d t \# \frac{1}{3}-(K S)^{2} \\
& \text { by considering } T T \text { as the total current time and } \\
& K=1--(K S) \\
& \text { As } K \text { is a factor expressed according to } K c c=\frac{I c c}{I e} \text { and }
\end{aligned}
$$

T, the set of curves page 130 for the CBT200, page 132 for the CBT400, page 133 for the CBT 800 gives the factor K according to Kcc and T
$\overline{\int i}{ }^{2} d t=K I e{ }^{2}$

- calculation of the extraself.
$K 2=K 1 \frac{\text { You determine a new factor }}{\left(\int i d t \text { (}\right.}$

The point $K=f(\tau-K c c)$ in the set of curves,
page 130 for CBT200, page 132 for CBT400, page 133
for CBT800, determines the value of the circuit total time constant to achieve.

Example

Te $=\frac{I D}{\overline{2}}=\frac{600}{\overline{2}}=300 \mathrm{~A}$

for CBT 400-800, page 131, τ
$K c c=28$ on the abscissa, $K L=0.555$ is obtained on the ordinate
$\overline{I L}=K L \times I c c=0.555 \times 8400=4660 \mathrm{~A}$
for CBT400 page 132 on theset of curves, τ
$K c c=28$ on the abscissa, and $K=1.6$ is obtained on the ordinate
$\int i^{2} d t=K l e^{2}=1.6 \times 300^{2}=144000 A^{2} S$
$K 2=1.6 \times \frac{100000}{144000}=1.11$
D for CBT400 on the curves page 132, for
Kcc $=28$ on the abscissa,
$K=1.11$ on the ordinate, we obtain τ

67. Definition of K according to Kcc and T

70. Definition of K eaccording to Kcc and \top

CBT rapid contactors

Encombrements CBT 200 à 800 A

CBT 200

CBT 400-800 manual control

AM: mechanical latching with electrical release.
Ca: padlocking facility.
CC: auxiliary contacts.
Cs: safetycontact.
Dm: manual release.
PC: arc-blowout poles.
PF: attachment plane.
Pm: manual handle.

		$\mathbf{4 0 0}$	$\mathbf{8 0 0}$
\mathbf{E}	1 pole	450	450
	2 poles	550	550
$\mathbf{B 1}$		132	211
$\mathbf{C 1}$	292	330	

CBT 400-800 electrical control

AM: mechanical latching with electrical release.
C: closing electromagnet.
Ca: padlocking facility.
CC: auxiliary contacts.
Cs: safety contact.
Dm: manual release.
PC: arc-blowout poles.
PF: attachment plane.
Pm: manual handle.
Control circuit drawing ${ }^{(1)}$

Closing

- DCsupply

Opening

- DCsupply, 220 Vdc

- AC supply

[^6]A: detector can besupplied with 110,220 or $380 \mathrm{~V}, 50$ or 60 Hz .
C: CBTcontactor.
CC: CBTsauxiliary contacts.
CD: detector's contact.
D: tripping coil

	$\mathbf{4 0 0}$		$\mathbf{8 0 0}$
\mathbf{E}	1 pole	575	575
	2 poles	675	675
$\mathbf{B 1}$		132	211
$\mathbf{C 1}$	292	330	

Magnetic RBC 1054 Z relays

This equipment can be used as:

- instant voltage-triggered or current-triggered control relay,
- voltage-triggered, current-triggered or magnetically delayed on opening of the circuit control relay (delay on opening 1.2 sec.max.),
- reverse-current relay,
- synchronizing relay,
- regenerative braking control relay.

Type of applications: industries, metros, tramways, travelling cranes..

Magnetic RBC1054 Z relays

Technical features

Magnetics DCrelays

72. RBC 1054 Z

Use
This device is usedas:

- Instantaneous, voltage-triggered or current-triggered control relay
- Control relay, magnet-controlled time delay on open ing of circuit, voltage-triggered or current-triggered.
- Reverse-current relay
- Synchronizing relay.
- Regenerative braking control relay.

Description

RBC 1054 Z relays include:

- 1 solid magnetic circuit: lower section of armature hinged if device hasat least 1 arc-blowout contact, upper section if relay has no arc-blowout contacts.
- Contacts normally made of copper (silver on request):
-1 contact NO orNC,
-2 contacts NO or NC,
-3 contacts $3 \mathrm{NC}, 1 \mathrm{NC}+2 \mathrm{NO}$.
The table below gives number, position and form of contacts according to the type of relay.
Relay installation is intended for insulated rods 30×21 or 44×24.

Relay delivered with 0.25 mm gap plate 0.5-0.2 and 1.1 plates can be delivered on request.

The device can be equipped with mechanical latching with manual release on request.

RBC 1054 ZA Volmétrique

Contacts		Type of relay	NO contact			NC contact without arc-blowout			Weight (kg)
number	position		without arc-blowout		with arc-blowout	15A	2A(2)		
			15A	2 A	$6 \mathrm{~A}{ }^{(1)}$		dry	blade	
1	central	ZA	-	-	-	-	-	-	2.250
		ZCT	-	-	-	-	-	-	2.250
		ZD	-	-	-	-	-	-	2.750
		ZB	-	-	-	-	\bullet	-	2.250
		ZCH	-	-	-	-	-	-	2.250
2	lateral	ZBA	- (3)	-	-	-	-	-	2.800
		ZBM	-	-	-	-	-	-	2.800
		ZCD	-	-	- ${ }^{(3)}$	-	-	-	3.800
		ZBQ	-	-	-	-	-	-	3.300
3	1 central 2 lateral	ZBP	- (3)	-	-	-	-	-	3.000
		ZDB	-	-	-	- (3)	-	-	3.000
		ZCP	- (3)	-	-	-	-	-	3.000
		ZDK	-	-	- (3)	-	-	\bullet	4.000

Technical features

Operating voltage		V	600	
NO or NC15 A without arcblowout	thermal nominal current	A	15	
	current switch-off rating ${ }^{(4)}$ undervoltage	V	250	600
	resistivecircuit	A	1.5	0,6
	inductivecircuit	A	1	0,4
NO with arc-blowout	thermal nominal current current switch-off rating ${ }^{(4)}$	A	according to arc-blowout coil capacity	
Standard coils Other values and/or 10000 V dielectric strength on request.	instantaneousvoltage-rriggered relays	V	92-1	
	delayed voltage-triggered relays	V	130	
	instantaneouscurrent-triggered relays	A	2 to	
	delayed current-triggered relays	A	100	
	reverse-current relays			
	shunt coil	V	6-12-16-38-48-60-95-115-167-220	
		V	2-5-10-100-200-320-350-600-900-1000-2000-3500-5000	
	$\frac{\text { seriescoil }}{\text { averageconsumption of voltage-triggered coils }}$	W	20	
	min. closing ampere-tums		400	
Minimum ratio between closing and opening voltages			1.2	

[^7]
When you order, please let us know

- the RBC type, name and kind of contacts.
- the nominal voltage or the nominal current of the closing coil.
- the closing range and, if necessary, the opening range.
- if the relay has to be equipped with a mechanical latching with manual release.
- if an arc-blowout coil is to be supplied with the relay, please specify its amperage.
- if instant or delayed on opening operation is required.

Instantaneouscontrol relay:

 voltage-triggered or current-triggered.The relay coil, connected to the terminals of the circuit to be controlled, closes the device when the voltage or current reaches a determined value.

- Closing can occur from 30% of coil rated voltage or current.
- Opening can be set at closest to 80% of closing voltage or current.

Reverse-current relay.

The device includes 2 coils:

- 1 series coil.
- 1 shuntcoil.

The relay is closed by its shunt coil R.
Relay contact R1 closes contactor C.
Contactor C switches the series coil Ra of the relay into the circuit.
Contactor C inserts an RSresistance in series with the shunt coil R of the relay by contact C 1 .

Synchronizing relay.

The RBC 1054 Z relay (1 NC contact) equipped with a retarding turn is used assynchronizing relay for starting synchronous motors. The relay coil isset into service by a selenium diode.
On energization of motor M , inductor Ind closed on discharge resistor Rd, a current appears at the terminals of the assembly Rs (coil + diode) and the relay closes.

Current frequency reduces asstart-up progresses.

When synchronism is reached, the interval between 2 rectified half-waves is sufficient to open the relay.

Regenerative braking control relay.

The device includes a coil with 2 windings in opposition.
They are connected, via a rectifier, one to the terminals of the stator, the other to the terminals of the rotor of motor M.

When braking is commanded, rotor voltage is equal to $2 \mathrm{VR}(\mathrm{VR}=$ normal rotor voltage $)$.

RelayR must open for voltage 2 VR only.

Control relay magnetically delayed on opening of circuit:
voltage-triggered or current-triggered.
Same closing and opening characteristics as for instantaneous relays.

Delay on opening:

- 0.8 seconds max when trip coil isshort circuited by inserting a series-connected resistor.
- 1.2 seconds max when relay coil is equipped with a retarding turn.

This resistor RSis calculated to bring the ampere-turns to the minimum required to hold the relay closed.
The relay remains closed whilst the current is in the correct direction, the ampere-turns of coils R and Ra are summed.
The relay opens, the contactor opens assoon as the current changes direction in generator G .

Contact R1 of the relay closes contact C .

Contactor C insertsExand opens the discharge resistor circuit Rd.

Specify on order:

- Voltage at terminals of Rd, motor stopped, to close the relay.
- Maximum voltage reached during start-up for choice of diode.

Closing the relayswitches the stator winding into service: - rotor voltage decreases from 2 VR to VR,

- motor speed falls from normal to 0 .

Zero speed corresponds to end of braking and opening of relay.

BP AF: "Braked stop" push-button.
CF: braking contactors.
R1-R2: adjustableresistors.
\mathbf{V} : electronic locking contact of "Normal run" contactor.

Magnetic RBC1054 Z relays
Overall dimensions

Magnetic DC relays

2) ZCD - ZDK
3) ZBQ

6) ZBA - ZBP - ZCP

8) ZBM

Attachment

$\operatorname{bar}(\mathrm{mm})$	A	B	EØ
$\mathbf{3 0 \times 2 1}$	30	13	9
44×24	40	18	13

Magnetic RBC1054 Z relays
Overall dimensions for 900 à 5000 Acunent-triggered relays DC current-triggered magnetic relays
73. 900 A ZCH relay ${ }^{(2)}$

74. 1250, 2000, 3500, 5000 A ZCH relay ${ }^{(2)}$

Connecting sections

[^8]Bars 3500/5000 A

CIC 1-2 DC contactors

CIC DC contactors:

- Connecting points that allow a full connection (poles and coil) on the front, making easier the installation of the equipments on the trolley.
- An easy accessto all the partssubject to replacement, all located on the front.

They are also equipped with:

- A moving element on blades eliminating premature wear and jamming which allows use of the contactors in cold chamber, without risk of icing the coil core.
- A moving contact control device providing intentional sliding of "NO" and "NC" contacts which increases the reliability of the contactor when the current passes(selfcleaning) and reduces rebounds (reduced risk of welding on closing).

2 versions of CIC contactors are available:

- contactor version = 1 NO contact,
- reverser version = 1 NO contact +1 NC contact.
- It is possible to add one reverser auxiliary contact without any point in common.
- The contactor closes at 50% of the nominal voltage which enables the trolleys to join the recharging point even after a long time of operation.
- Arc-blowout with permanent magnet device for use under nominal voltages superior to 48 V .
In that case, it iscompulsory to have the fixed NO contact connected to the pole + of the battery.

Equipement for electrical trolleys

75. CIC 1-2 DCcontactors

Possible addition of a block of adjustable auxiliary contacts 1 NO + 1 NC, on request.

Use
Device intended to control DC loads, voltage 110 V under ambient temperature conditions of $50^{\circ} \mathrm{C}$ max. It is specially recommended for:

- Equipping electrical vehicles and trolleys:
- traction motor (strat-up by short circuiting resistors, electrical speed controller),
- hydraulic pump motor (direct start-up or by electronic speed controller).
- Distribution by accumulatorbattery:
- coupling, battery charge,
- emergency lighting,
- passenger car lighting, railways.
- Equipping electrical welding sets (DCside switch-off).

Description

- model element on blades elimininating prematurewear and jamming allowing use in cold chamber.
- moving contact control device providing intentional sliding of contacts (self-cleaning) and reducing rebound (risk of welding on closing reduced).
- Ag Cdocontacts.
- polarised device: + to be connected to upper fixed contact.
- connection via front.
- 4 versions:
- D: 1 main pole without magneticarc-blowout,
- DS: 1 main pole with magneticarc-blowout,
-R: 1 reverser pole without magnetic arc-blowout,
-RS: 1 rupturing pole with magnetic arc-blowout.
- 3 power supply possibilities:
- intermittent service(trolley),
- permanent service without power-saving,
- permanent service with power-saving.
- rupturing, set of 2 CIC version R or RS (rupturing pole)
- installed on support plate,
- upper closing and opening contacts of polesinterconnected

Technical features

		CIC 1	CIC 2
Operating current (in open air DC_1)		180	
permanent servie	A		
trolley service ${ }^{(1)}$	A	250	310
connecting section	mm^{2}	35	70
Operating voltage ${ }^{(2)}$	V	- 110	- 110
Pole thermal time constant	mn	18	18
Operating category: DC_1 to DC_5 class 3		-	-
Pole current switch-off and switch-on rating			
NO contact			
version D-R closing	A	900	2000
V 48 opening	A	900	1200
version DS-RS closing	A	900	2000
V V66 opening	A	900	1200
NC contact			
versionR closing	A	400	550
V V 48 opening	A	400	500
version RS closing	A	400	550
V 96 opening	A	200	500
Voltage drop at pole	mV	37	44
under a current of	A	150	200
Maximum operating rate under load	operations/hour	300	300
Mechanical endurance	millions of operations	3	3
Control circuit: standard rated voltage	V	12-24-36-48-72-80-96-100-200	
permanent service without power-saving ${ }^{(3)}$			
consumption at rated voltage	W	25	32
closing/opening time	ms	55/15	75/16
permanent senvice with power-saving ${ }^{(4)}$			
consumption at rated voltage: inrush/hold	W	44/20	53/22
closing/opening time	ms	40/13	50/14
intermittent service: duty factor 50\%(5)			
consumption at rated voltage	W	44	53
closing/opening time	ms	40/16	50/17

[^9]CIC 1-2 DC contactors

Overall dimensions

Equipement for electrical trolleys

CIC 1

A: attachment two 5.5 dia. holes.
A1: attachment two 6.5 dia. holes
B: insulating plate $109 \times 58 \times 1$.
B1: insulating plate $129 \times 71.5 \times 1$.

Reverser CIC 1 contactor 1

A: attachment: four 7 dia. holes.
C: coil connection 6.35 Faston lugs.
$\mathrm{D}:$ auxiliary contacts $1 \mathrm{NO}+1 \mathrm{NC}$.

CIC 2

C: coil connection 6.35Faston lugs
D: auxiliarycontacts $1 \mathrm{NO}+1 \mathrm{NC}$.
E: power-saving resistor.
(1) with auxiliary contacts

IReverser CIC 2 contactor

F: coupling of NO and NC contacts of reverser pole.
(1) with auxiliary contacts

Weights (kg)	CIC1	CIC2
D without arc-blowout	1.100	1.850
R withoutarc-blowout	1.140	1.850
Complete reversercontactor (2 NC without arc-blowout)	2.500	4.000
Magnetic arc-blowout	0.025	0.045
Auxiliary contactblock($\mathbf{1 2}$	0.055	0.055
Power-saving device	(2)	0.085

(1) with support and hardware.
(2) contact block, power-saving resistor and support

Connection drawings

Magnetic circuit type	Poles for	Type and size of the contactor	Mechanical latching with manual and electrical release	Magnetic circuit supplied with					®0\%
				direct	Alternating current		Direct current		
					rectif	fied			
					power-saved	not power-saved	not power-saved	power-saved	
laminated	Alternating current	CBA5580-150-200	without	1	-			(2)	145
			single	7	-			(8)	146
			double	25	-			(26)	150
solid	Alternating current	CBPA57 80-150-200	without		(3)	-	2	2	145
			single		(9)	-	8 (18)	8 (18)	146
			double		(27)	-	26 (36)	26 (36)	150
solid	Direct current	CBC57B80-150-200	without		(3)	-	2	2	145
			single		(9)	-	8 (18)	8 (18)	146
			double		(27)	-	26 (36)	26 (36)	150
laminated	Direct current	CBFC55 80-150-200	without	1	-			(2)	145
			single	7	-			(8)	146
			double	25	-			(26)	150
solid	Direct current	CBC57 80-150				-	2		145
		CBC68200				-	2		145
		CBC96 400-630			-	-	2	-	145
		RUBC96 400-630			-			2	145
laminated	Alternating current	CBA754001 to 4 poles and 500-6301 to 2 poles	without	1	(3-5)			4 (6)	145
			single	7	(9-13-17-19-21-23)	(11-15)	(12-16)	(10-14-18-20-22-24)	146
			double	25	(27-31-35-37-39-41)	(29-33)	(30-34)	(28-32-36-38-40-42)	150
laminated	Alternating current	$\begin{aligned} & \text { CBA } 75500 \text { to } 1000 \\ & >\text { to } 2 \text { polesfor } 500-630 \end{aligned}$	without		3(5)			4 (6)	145
			single		9 (13-17-19-21-23)	(11-15)	(12-16)	10 (14-18-20-22-24)	146
			double		27 (31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	150
laminated	Direct current	CBFC754001 to 4 poles and 500-6301 to 2 poles	without	1	(3-5)			4 (6)	145
			single	7	(9-13-17-19-21-23)	(11-15)	(12-16)	(10-14-18-20-22-24)	146
			double	25	(27-31-35-37-39-41)	(29-33)	(30-34)	(28-32-36-38-40-42)	150
laminated	Direct current	$\begin{aligned} & \text { CBFC75 } 500 \text { to 1000 } \\ & >\text { to } 2 \text { polesfor } 500-630 \end{aligned}$	without		3 (5)			4 (6)	145
			single		9 (13-17-19-21-23)	(11-15)	(12-16)	10 (14-18-20-22-24)	146
			double		27 (31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	150
solid	Alternating current	CBA711250-1600-2000	without		3 (5)			4 (6)	145
			single		9 (13-17-19-21-23)	(11-15)	(12-16)	10 (14-18-20-22-24)	146
			double		27 (31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	150
solid	Direct current	CBC711250-1600-2000	without		3 (5)			4 (6)	145
			single		9 (13-17-19-21-23)	(11-15)	(12-16)	10 (14-18-20-22-24)	146
			double		27 (31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	150
solid	Alternating current	CBA542500-604000	without		3 (5)			4 (6)	145
			single		9 (13-17-19-21-23)	(11-15)	(12-16)	10 (14-18-20-22-24)	146
			double		27 (31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	150
solid	Direct current	CBC543000-605000	without		3 (5)			4 (6)	145
			single		9 (13-17-19-21-23)	(11-15)	(12-16)	10 (14-18-20-22-24)	146
			double		27 (31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	150
solid	Direct current	CBT200							
laminated	Direct current	CBT400 \& 800							
solid	Direct current	CEX57 80-150-200	without	-	-	-	2	2	145
			single	-	-	-	8 (18)	8 (18)	146
			double					26 (28)	150
laminated	Direct current	CEX75400 to 1000	without		(3-5)			4 (6)	145
			single		(9-13-17-19-21-23)	(11-15)	(12-16)	10 (14-18-20-22-24)	146
			double		(27-31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	150
solid	Direct current	CEX711250 to 2000	without		(3-5)			4 (6)	145
			single		(9-13-17-19-21-23)	(11-15)	(12-16)	10 (14-18-20-22-24)	146
			double		(27-31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	150
solid	Direct current	CEX543000-605000	without		(3-5)			4 (6)	145
			single		(9-13-17-19-21-23)	(11-15)	(12-16)	10 (14-18-20-22-24)	146
			double		(27-31-35-37-39-41)	(29-33)	(30-34)	28 (32-36-38-40-42)	150

- consult us.
$(\mathrm{x}) \mathrm{x}$ is the n° of the optional connection drawing that can be applied to the contactor. It has to be determi-
ned, when you consult us or when you order.
Bold figures represent the standard type of connection.
Note: All the contactors from 80 to 200 A are delivered not connected.
For the whole range of contactors from 80 to 5000 A :
- overall dimensions are only given for standard connections. In case you wish your contactor to have other optional connections, please contact our technical department to have itstotal dimensions.
We can also supply, for contactors that are not equipped with a mechanical latching with electrical release, a system installed on a support plate designed to maintain the contactor closed in order to avoid untimely micro-cuts, please consult our technical department.

76. Control circuit of contactors without mechanical latching with electrical release

AC control voltage, alternating or rectified device

DC control voltage

- Control by pulse switch for range 80 to 200 A , in ACsupply for range $400 \mathrm{~A}-1$ to 4 poles, $500 / 630 \mathrm{~A}-1$ and 2 poles..

- Drawing $\mathrm{n}^{\circ} 1$

~
-Drawing n ${ }^{\circ}$ 2*

- Control by pulse switch.

- Drawing n ${ }^{\circ} 3$

- Drawing ${ }^{\circ} 4$

- Control by pulse switch and auxiliary contactor.

- Drawing n ${ }^{\circ}$ 5**

- Drawing n ${ }^{\circ}$ 6**

* in case of direct supply, there are no economy resistor 'RE', no eventual extra resistor 'Rae' and no insertion contact 'C1'.
** 'CA' relay not supplied.

On request, diode or RC on control circuit.
77. Control circuit of contactors with mechanical latching with single electrical release

AC control voltage, alternating or rectified device

DC control voltage

- Control by pulseswitch (required pulse time $\leqslant 0.5 \mathrm{~s}$) for range 80 to 200 A , in AC supply for range $400 \mathrm{~A}-1$ to 4 poles, $500 / 630 \mathrm{~A}-1$ and 2 poles.

- Drawing $\mathrm{n}^{\circ} 7$

- Control by pulse switch (required pulse time 0.5 s)..

- Drawing $\mathrm{n}^{\circ} 9$

~ 1

- Drawing $\mathrm{n}^{\circ} 11$

* in case of direct supply, there are no economy resistor 'RE', no eventual extra resistor 'Rae' and no insertion contact 'C1'.

- Drawing n ${ }^{\circ}$ 8*

$=\quad$ De \quad C2

- Drawing $\mathrm{n}^{\circ} 10$

$\stackrel{=}{\cdots} \underset{\sim}{\square}$

- Drawing $\mathrm{n}^{\circ} 12$

On request, diode or RC on control circuit.
77. Control circuit of contactors with mechanical latching with single electrical release (§1)

AC control voltage, alternating or rectified device

DC control voltage

- Control by pulseswitch (required pulse time 0.5 s) and protective device with defect memorisation for the releasecoil.

- Drawing $\mathrm{n}^{\circ} 13$

- Drawing $\mathrm{n}^{\circ} 15$

- Drawing $\mathrm{n}^{\circ} 14$

- Drawing $\mathrm{n}^{\circ} 16$

On request, diode or RC on control circuit.

77. Control circuit of contactors with mechanical latching with single electrical release (§2)

AC control voltage, alternating or rectified device

DC control voltage

- Control byswitch, mechanically delayed contact and auxiliary contactor.

- Drawing $\mathrm{n}^{\circ} 17$

- Drawing $\mathrm{n}^{\circ} 18$

- Control byswitch delayed auxiliary contactor and protective device with defect memorisation for the release coil.
- Drawing $\mathrm{n}^{\circ} 19$

Drawing $\mathrm{n}^{\circ} 20$

77. Control circuit of contactors with mechanical latching with single electrical release (§3)

AC control voltage, alternating or rectified device

- Control by switch and delayed auxiliary contactor.

- Drawing $\mathrm{n}^{\circ} 21$

DC control voltage

- Drawing $\mathrm{n}^{\circ} 22$

- Control byswitch, delayed auxiliary contactor and protective device with defect memorisation for the release coil.
- Drawing $\mathrm{n}^{\circ} 23$

- Drawing $n^{\circ} 24$

[^10]
78. Control circuit of contactors with mechanical latching with double electrical release

AC control voltage, alternating or rectified device

DC control voltage

- Control by pulse switch for range 80 to 200 A , in AC supply for range $400 \mathrm{~A}-1$ to 4 poles, $500 / 630 \mathrm{~A}-1$ and 2 poles.

- Drawing $n^{\circ} 25$

- Control by pulseswitch (required pulse time 0.5 s).

- Drawing ${ }^{\circ} 27$

- Drawing $\mathrm{n}^{\circ} 29$

* in case of direct supply, there are no economy resistor 'RE', no eventual extra resistor 'Rae' and no insertion contact 'C1'

- Drawing $\mathbf{n}^{\circ} \mathbf{2 6}^{*}$

- Drawing n ${ }^{\circ} 28$

$+$

- Drawing $\mathbf{n}^{\circ} \mathbf{3 0}$

On request, diode or RC on control circuit.

78. Control circuit of contactors with mechanical latching with double electrical release (§1)

AC control voltage, alternating or rectified device
DC control voltage

- Control by pulse switch (required pulse time $\leqslant .5 \mathrm{~s}$), protective device with defect memorisation for the release coil.

- Drawing $\mathrm{n}^{\circ} 31$

\sim \qquad

$\underbrace{1211}$
12

Drawing $\mathbf{n}^{\circ} 32$

78. Control circuit of contactors with mechanical latching with double electrical release (§2)

AC control voltage, alternating or rectified device

- Drawing n ${ }^{\circ} 33$

- Control byswitch, mechanically delayed contact and auxiliary contactor.

- Drawing $\mathrm{n}^{\circ} 35$

On request, \&iode or $\mathrm{RC}^{2.4}$ on control circuit
On request, diode or RC on control circuit

DC control voltage

- Drawing $\mathrm{n}^{\circ} 34$

- Drawing $\mathrm{n}^{\circ} 36$

78. Control circuit of contactors with mechanical latching with double electrical release (§3)

AC control voltage, alternating or rectified device

DC control voltage

- Control byswitch, delayed auxiliary contactor and protective device with defect memorisation for the releasecoils.

- Drawing $\mathrm{n}^{\circ} 37$

- Drawing $\mathrm{n}^{\circ} 38$

RB4
78. Control circuit of contactors with mechanical latching with double electrical release (§4)

AC control voltage, alternating or rectified device

- Control by switch and delayed auxiliary contactor.

- Drawing $\mathrm{n}^{\circ} 39$

DC control voltage

Drawing $n^{\circ} 40$

78. Control circuit of contactors with mechanical latching with double electrical release (§5)

- Control byswitch, delayed auxiliary contactor and protective device with defect memorisation for the release coils.

- Drawing $\mathrm{n}^{\circ} 41$

- Drawing n ${ }^{\circ} 42$

11 11 \qquad
78. Control circuit of contactors with mechanical latching with double electrical release (§5)

DC control voltage

- Control byswitch, delayed auxiliary contactor and protective device with defect memorisation for the releasecoils.
- Drawing $n^{\circ} 41$

- Drawing n ${ }^{\circ} 42$

CODIFICATION OF MERSEN BAR CONTACTORS

Type of contactor:

CBA: AC contactor.
CBPA: AC contactor (solid magnetic circuit for range 80 to 200 A only).
CBC: DC contactor (solid magnetic circuit for ranges 80 to 200 and 1250 to 6200 A)
CBFC: DC contactor (range 80 to 1000 A)
CBT: Rapid contactor.
CEX: Excitation contactor with overlapping of the rup turing pole and closing pole(s).
RUBC : DC contactor with opening pole only.

Number of auxiliary contact type M, (x) NOI + (x)NFI + (x)NOR + (x)NFR + TPA + TPC
(x) : instant closing auxiliary contact.
NOI : instant opening auxiliary contact.
NFI : sligh tly mechanically delayed closing auxiliary contact.
NOR : sligh tly mechanically delayed opening auxiliary contact.
NFR : contact auxiliaire à ouverture légèrement retardé mécaniquement.
TPA: pneumatically delayed block on closing.
TPC: pneumatically delayed block on opening.

[^0]: (1) SR: reinforced blowout

[^1]: AP: pole axis.
 PF: attachment plane
 TF: fixation holes.

[^2]: (1) form to b

[^3]: DC
 For technical features of opening poles, see p. 70

[^4]: Connecting sections

 ## 2500/3000

 ## AP: poleaxis

 (1) CBC 5000 A , direct current:
 to reach 5500 A : usual connecting section $+20 \%$,
 to reach 6200 A : usual connecting section $+40 \%$.
 6200 A : usual connecting section $+40 \%$.

[^5]: (1) from the current of use and the voltage of use depend the connection of contactors.
 (2) exclusively via a rectifier (not supplied).
 (3) either in 220 V dc or via a capacitors' discharge of $1300 \mu \mathrm{~F}$ (Voltage of charge: 250 V).

[^6]: M: Push-button «on».
 PR: rectifier bridge.
 RA: auxiliarycontactor.
 S : Shunt connection: 100 mV .
 (1) contactor delivered not cabbled..

[^7]: (1) can be equipped with 1-2-3-4-16-25 or 30 Acoil
 (2) dry: without penetration, with blade: penetration by bending of blade.
 (3) 2 contacts of this type
 (4) for normal settings, special settings may reduce them to a large extent.

 * for other values, consult us.

[^8]: Bars 900/1250/2000 A

[^9]: (1) duty factor $50 \%, 5 \mathrm{~min}$. open, 5 min. closed.
 (2) magnetic arc-blowout by permanent magnet mandatory for opening under load with $\mathrm{V}>48$.
 (3) allowable voltage 85 to 110% rated voltage, opening voltage 20% rated voltage.
 (4) device with auxiliary contact and power-saving resistor allowable voltage 65 to 110%, opening voltage 22% rated voltage.
 (5) max. cycle $150 / 150 \mathrm{~s}$, allowable voltage 65 to 110% ratedvoltage, opening voltage 15% rated voltage.

[^10]: On request, diode or RC on control circuit

