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This work presents the details behind each step in the development of a frame-

work for two-dimensional quadrilateral discontinuous Spectral Multidomain Penalty

Method (SMPM) solvers for environmental flow processes: a shallow water equation

(SWE) solver and an incompressible Navier-Stokes equations(NSE) (under the Boussi-

nesq approximation) solver, with additional emphasis given to the associated pressure

solver. The potential for environmental flow simulations through spectral methods is

very strong since these methods are exponentially accurate, non-dissipative and non-

dispersive. These characteristics translate into capturing the smallest resolved scales

of the flow and the propagation of ocean/lake waves with minimum numerical error.

In addition, the element-based capability of the method enables the appropriate resolu-

tion of the important scales of the processes being modeled,the localization of specific

events, and the treatment of complex boundary conditions and geometries. Finally, the

discontinuous character of the method add enhanced stability to the method for highly-

nonlinear under-resolved simulations, an intrinsic characteristic of environmental flow

simulations.

In the SWE solver, the SMPM is compared with a nodal discontinuous Galerkin method

(DGM), where the equations are solved with an explicit SSP-RK34 method. The com-

parison is done by applying both methods to a suite of six commonly considered geo-

physical flow test cases; we also include results for a classical continuous Galerkin (i.e.,



spectral element) method for comparison. Both the analysis and numerical experiments

show that the SMPM and DGM are essentially identical; both methods can be shown

to be equivalent for very special choices of quadrature rules and Riemann solvers in the

DGM along with special choices in the type of penalty term in the SMPM.

In the NSE solver time is discretized with a high-order fractional step projection method,

where the non-linear advection and forcing terms are advanced explicitly via a stiffly

stable scheme. After that, an implicit solution of a Poissonpressure equation (PPE)

is solved in order to introduce the incompressibility constraint. In the final fractional

time-step linear viscosity forces are also solved implicitly by means of a modified

Helmholtz equation. Stability of the numerical scheme for under-resolved simulations at

high Reynolds numbers is ensured through use of penalty techniques, spectral filtering,

dealiasing, and strong adaptive interfacial averaging. Special attention is given to the

solution of the PPE linear system of equations, where the fundamental building blocks

of the PPE solver presented here are a Kronecker (tensor) product-based computation of

the left null singular value of the non-symmetric SMPM-discretized Laplacian matrix

and a custom-designed two-level preconditioner. Both of these tools are essential to-

wards ensuring existence and uniqueness of the solution of the discrete linear system of

equations and enabling its efficient iterative calculation. Accuracy, efficiency, and sta-

bility of the multidomain model are assessed through the solution of the Taylor vortex,

lid-driven cavity flow and double shear layer. The propagation of a non-linear internal

wave of depression type is also presented to assess the potential of the solver for the

study of environmental stratified flows.

The availability of the quadrilateral SMPM solver allows the numerical investigation of

a much broader range of environmental processes, namely those in streamwise,vertical



non periodic domains with both horizontal and vertical localization.
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CHAPTER 1

INTRODUCTION

1.1 Environmental flows

This work is motivated by the need of an improved physical understanding of environ-

mental flows, namely the different flow processes in the natural environment, whose

range of scales vary, and can contain scales, from theO(1mm) to O(10km). That means,

these processes are much smaller that the ones present in a planetary scale, and much

bigger than the ones present in a engineering/human scale. Examples of these processes

are tsunamis, propagation of internal waves in the ocean andlakes, flow through aquatic

vegetation, near shore hydrodynamics, lake dynamics, etc.Depending on the most rep-

resentatives scales and processes of these flows, they can bedivided on large scale and

small scale environmental flows. Typically, these flow processes are not captured by

larger-scale operational models (e.g. weather/ocean forecast), because they are below

their resolution limits. Understanding the basic underlying physics of these processes

allows one to lump them a lot more reliably in the above large-scale models.

One way to understand this type of processes is through the use of a mathematical

model (governing equations), which is generally solved numerically with a computer

code. Different numerical techniques have been developed to solve these equations or

sets of equations. This work is focused on the development and implementation of a

technique called Spectral Multidomain Penalty Method (SMPM), for the numerical so-

lution of two different sets of equations: the Shallow Water Equations (SWE), and the

incompressible Navier-Stokes (NS) equations under the Boussinesq approximation.
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1.1.1 Large-scale environmental flows

Geophysical and large-scale environmental flows (i.e., flows of horizontal longitude of

O(1 km) or greater) exhibit a complex structure and dynamics over a broad range of

scales that render their numerical simulation a formidabletask for state-of-the-art com-

putational methods and resources. Through a complex interplay between the earth’s

rotation, ambient stratification and the constraining effects of lateral and vertical bound-

aries, flow processes in geophysical fluids commonly exhibita characteristic horizontal

lengthscale that can be a few orders of magnitude larger thanits vertical counterpart

[43]. Hydrostatic wave motions occur from the basin/planetary scale roughly down to

the mesoscale. As the wave scales decreases, non-linear effects become significant in

the form of internal/surface bores [90, 118]. At wavelengths ofO(1km), the waves also

become strongly non-hydrostatic [63], localized turbulence occurs at the smaller scales

and the dissipative effect of viscosity is ultimately felt at the smallest scales (O(1 mm))

of the flow field (see section 1.1.2 for more details).

As a result, the numerical methods used in the investigationof geophysical flows need

to exhibit a number of preferred features. These include: a)front/wave propagation

that is effectively non-dissipative and non-dispersive, b) minimum artificial dissipation

at the smallest resolved scales to enable as broad a scale separation as possible, c) effi-

cient resolution of localized flow features and complex geometries and d) optimal use of

computational resources. High-order accurate element-based schemes [24, 68] are par-

ticularly appealing in addressing such needs. These schemes combine the exponential

convergence and weak artificial dissipation and dispersionof standard single-domain

spectral methods [12] with the spatial adaptivity of classical finite element/volume tech-

niques [73, 120]. Furthermore, the domain decomposition philosophy inherent in these

techniques renders them highly amenable for efficient parallelization [40].
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On account of the inevitable impossibility of capturing thefull range of scales intrinsic

to a highly nonlinear, and steep, front/wave or any resulting localized turbulent event,

and the minimal feedback obtained from the unresolved scales, geophysical flow simu-

lations are inherently under-resolved. Under-resolved high-order simulations are prone

towards, often catastrophic, numerical instability as Gibbs oscillations are compounded

by aliasing driven by the nonlinear terms in the governing equations [53]. In high-order

element-based simulations, these numerical instabilities are most pronounced at the el-

ement interfaces when strong continuity of the solution is enforced across neighboring

elements [25] as is typically done in continuous Galerkin methods.

In discontinuous high-order element-based methods, neighboring subdomains carry sep-

arate values of the solution at a fixed spatial location thereby relaxing the constraint

of strong continuity of the solution and significantly mitigating the above concerns of

numerical instability. The two prevalent categories of such methods are spectral mul-

tidomain methods (with and without a penalty scheme) [80, 81, 83, 66, 64, 65, 28] and

discontinuous Galerkin methods (DGM) [47, 46, 48, 51, 68, 49, 86, 103]. The for-

mulation used in our work follows the Spectral Multidomain Penalty Method (SMPM)

presented by Hesthaven [66] and expanded upon by Don [28] butimplemented, to our

knowledge for the first time, to the shallow water equations.In the SMPM, the strong

interfacial patching conditions are replaced with a linearcombination of the governing

equation and the patching condition, the latter multipliedby an appropriately chosen

penalty coefficient. On the other hand, DGM are based on a Galerkin weightedresid-

ual formulation where the integration is performed at the level of an individual element.

Since adjacent elements are not continuously coupled, as isthe case with finite and spec-

tral elements, interfacial flux integrals do not vanish and are represented in the form of
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an appropriately chosen numerical flux that preserves consistency and numerical stabil-

ity.

SMPM have been successfully applied on the simulation of mainly hyperbolic equations

that go from Euler equations [82], until compressible Navier-Stokes equations [83, 109].

DGM have been effectively used in the simulation of the shallow water equations (SWE)

both on the sphere and on planar but fully unstructured domains [47, 46, 51, 86, 49] and

for compressible atmospheric models [48, 103].

However, the literature exploring the similarities and differences of the SMPM and

DGM is limited to the recent work by Gottlieb and Jung [55] whoconsidered the

modal form of SMPM and DGM, both in Galerkin (integral) formulation. Focusing

on one-dimensional conservation laws, that particular study established the equivalence

between the two techniques for a specific value of the penaltycoefficient and empha-

sized the additional flexibility of the penalty scheme in varying the value of this coef-

ficient in space and time and splitting the advective flux at the subdomain interfaces,

which provided for greater stability in regions of strong inhomogeneity of subdomain

thickness. The trade-offs of accuracy vs. stability as a function of the penalty coeffi-

cient value were also examined as was the potential of the coefficient truncation method

[72] in suppressing rapid error growth when using high-order polynomials in the penalty

method. Finally, the impact of inconsistent evaluation of integrals (exact versus numer-

ical quadrature) in the left and right-hand sides of the modal Galerkin formulation of the

penalty method was also considered in the framework of linear and nonlinear problems.

Note that both the coefficient truncation method and the issues with integral evaluation

are restricted to the modal Galerkin form of the SMPM.
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No investigations are known so far that compare the collocation-based SMPM and the

nodal Galerkin formulation of the DGM, the most commonly used formulations of the

two methods which this work focuses on. Furthermore, we are unaware of any compar-

ison of the two methods in the framework of a system of multi-dimensional equations,

particularly in a geophysical context. Such a comparison isone of the objective of the

present work. The platform for this comparison are the SWEs for a variety of reasons:

a) the relative facility of their spatial and temporal discretization with respect to more

complex partial differential equations, such as the Navier-Stokes equations, b) their ca-

pability for non-dissipative propagation of highly non-linear waves, which renders them

an ideal experimentation tool for testing numerical schemes for nonlinear advection,

the primary source of the aliasing-driven instabilities mentioned above and c) their role

as a predictive tool of ocean wave phenomena for the purpose of coastal engineering

applications [30] and tsunami propagation [3]. We specifically aim to compare the two

methods in terms of formulation (with a focus on subdomain communication), accuracy,

conservation properties, numerical stability and computational cost in the framework of

specific linear and non-linear test-cases.

1.1.2 Small-scale environmental stratified flow processes

In the stably stratified portion of the water column of the ocean and lakes, flow pro-

cesses operating over spatial scales of a kilometer or less are largely characterized by

the complex interplay between internal gravity waves (IGW) and highly localized tur-

bulence [119]. IGWs are a type of wave motion unique to stably stratified fluids and

have wavelengths between 100m and 1km [115]. In the absence of instabilities in their

interior and interactions with bottom/lateral boundaries, IGWs can transport energy non-

dissipatively over large horizontal distances ofO(100km). A particular class of IGWs
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are internal solitary waves (ISWs) large-amplitude, long internal solitary waves are hor-

izontally propagating waves guided by the top and bottom surfaces of the ocean or lakes

[63, 8]. Neglecting again internal instabilities and boundary interactions, ISWs not only

propagate non-dissipatively over large distances; their propagation is non-dispersive, as

manifested by the ability of the waves to maintain a very steep waveform, owing to an

intrinsic balance between nonlinearity and physical dispersion.

Localized turbulent events contain a broad range of scales,extending from a largest

scale of 1m to 10m to a smallest one of 1mm. This localized turbulence occurs through

instabilities within an IGW and interactions of IGWs with topography, currents or a vari-

able background stratification profile [119]. In the absenceof IGWs, turbulence is also

driven through instabilities in currents or interactions of currents with topography [119].

From the above discussion, it becomes apparent that the scale separation between IGWs

and the larger-scales of the localized instabilities and turbulence occuring within or un-

der the waves can be as high as three orders of magnitude. Moreover, a turbulent events

itself contains a broad range of scales, quantified by an appropriately defined Reynolds

number,Re= uL/ν, whereu andL are velocity and length scales, respectively, char-

acteristic of the larger-scales of the turbulence, andν is the kinematic viscosity of the

fluid. Within this range of scales, extending from the largerenergy-containing scales

down to the dissipation range, exist motions of intermediate scale subject to nearly

inviscid dynamics [117]. Finally, localized environmental turbulence is strongly non-

hydrostatic, i.e. contains significant vertical accelerations. The degree of hydrostatic-

ity in IGWs varies from case to case, with ISWs being the most extreme example,

where non-hydrostatic effects provides the necessary physical dispersion that allows

the waves to propagate unchanged over long distances. In thesimulation of a strongly
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non-hydrostatic fluid flow, the vertical pressure gradient term cannot be neglected and

invoking the hydrostatic assumption, commonly used in larger-scale geophysical mod-

eling [61] can lead to highly erroneous physical results.

As with large scale environmental flows (see section 1.1.1),higher-order accuracy

element-based numerical methods [12, 24, 68] are a highly promising tool for the sim-

ulation of small-scale environmental flow processes. Theirhigh (spectral) accuracy and

minimal numerical dissipation, defining features of a global spectral discretization tech-

nique (e.g. Fourier or Chebyshev) render the smallest resolved scales of motion in a

turbulent event free of any artificial damping. Moreover, the minimal numerical dis-

persion of these methods, enables wave propagation over long distances free of any

spurious dispersive effects. The flexibility in local flow resolution, inherent in the ele-

ment approach, allows for an efficient capturing of localized instabilities and turbulence.

Nevertheless, the large scale separation between waves andthe instabilities/turbulence

embedded within them and the broad range of localized turbulent bursts themselves re-

quire a prohibitively large number of degrees of freedom to be represented on even the

most state-of-the-art available computational resources. As a result, any simulations at

Reynolds numbers that are environmentall relevant, will be inevitably under-resolved.

Scales where viscous damping is dominant will not be resolved. As a result, for a high-

order accuracy scheme devoid of any numerical dissipation,aliasing effects, driven by

the nonlinear term in the governing equations, will typically lead to catastrophic numeri-

cal instabilities [25]. In addition, when arbitrary, i.e. non-periodic, boundary conditions

are desired, the treatment of non-hydrostatic effects, linked to iterative solution of an

elleiptic equation for the pressure is a non-trivial process which is compounded by the

ill-conditioning inherent in higher-order interpolatingpolynomials [24, 67, 33].
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1.2 High-order methods for incompressible high Re flows

We now turn to a short review of the historical evolution of high-order element-based

techniques and, whenever relevant, their application to the simulation of environmental

flows. Before going into the details of these techniques, and in order to show them in a

general context, Fig. 1.1 presents a schematic of the different discretization techniques

for partial diferential equations, where the high-order techniques are shown in addition

to the widely used low-order techniques.

Figure 1.1: Schematic of the different discretization techniques used to solve nu-
merically partial differential equations

1.2.1 Fourier and Galerkin methods

The application of high-order methods to Computational Fluid Dynamics (CFD) has

been an active research topic since the early 70’s, when computational power evolved
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enough to handle a sufficiently large number of operations in an accurate manner. In

1972, Orszag and Patterson [96] were the first to present a numerical solution for the

three-dimensional Navier-Stokes equations for homogeneous isotropic turbulence using

a Galerkin approximation based on a globally defined Fourier-series representation of

the flow field. The first well known element-based Galerkin approach, using locally-

defined basis functions, was developed by Patera [99] who introduced the Spectral El-

ement Method (SEM) and applied it to laminar flow in a channel expansion. Alumni

of the Patera group developed two well-known SEM codes: the Nek5000 solver based

on nodal SEM [41] and the Nektar solver based on the modal SEM approach [75, 76].

These solvers have evolved significantly from their original formulations and currently

serve as major reference points for high-order element-based simulators of incompress-

ible flows.

Fourier and SEM discretizations have been applied to a wide range of incompressible

flow phenomena of fundamental, engineering and environmental relevance. [24, 75, 14,

15]. Traditionally the method of choice to simulate homogeneous isotropic turbulence

[96], Fourier methods have also been used to simulate homogeneous anisotropic turbu-

lence with the anisotropy caused by either background shear[70] or stable stratification

[62, 13]. Fourier methods relying on sine/cosine transforms have also been used to sim-

ulate localized environmental stratified turbulent flows indomains subject to symmetric

Dirichlet/Dirichlet or Neumann/Neumann boundary conditions at the top and bottom of

the domain [56, 126]. In the case of environmental flows with more complex boundary

conditions and boundary geometries, the SEM has successfully been used in the simu-

lation of turbulent bottom density currents over currogated beds and the investigation of

mixing in a lock exchange [97, 98]. Finally, note that in a geophysical/environmental

context, the SEM has efficiently been used to discretize the shallow water equations
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[88, 48].

The discontinuous Galerkin method (DGM) method was originally developed by Reed

in 1973 [102]. It is a discontinuous variant of the SEM, whereelements/subdomains

do not share nodes with their neighbors along their interfaces forcing the solution to be

discontinuous at these locations ; DGM enforces inter-element continuity only weakly.

A “numerical flux” [68] must be specified along with the governing equation at the sub-

domain interfaces to enable communication between elements. Equivalently, bound-

ary conditions are also also enforced weakly, i.e. in combination with the governing

equations [84]. The discontinuous character in the form of weak inter-element continu-

ity and boundary condition enforcement, allows for enhanced stability in the treatment

of localized discontinuities and/or under-resolved, strongly nonlinear, flow simulations

provided the numerical flux is appropriately specified [77, 68]. The DGM has been ex-

tensively used in the numerical solution of hyperbolic equations, such as the Maxwell,

acoustic and shallow water equations [68, 34] (see also section 1.1.1). More recently,

significant advancement has been made towards the effective use of DGM in the solution

of elliptical PDE’s (see Arnold [5] for a unified theory of DGMfor elliptic problems).

Application of DGM to the incompressible Navier Stokes equations has been rather lim-

ited [89, 110, 93]. DGM-based investigations of the shallowwater equations [47] or the

Boussinesq equations [30], to the authors’ best knowledge, there exists no published

work on the application of this method to incompressible (stratified or unstratified) en-

vironmental flow problems.
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1.2.2 Spectral Multidomain Method

The Spectral Multidomain Method (SMM) is an extension of thesingle-domain collo-

cation approach (Chebyshev or Legendre) to multiple domainsand is also known as the

“patching method” [15]. Connectivity across subdomains is enabled through a patching

condition which is imposed at the interfacial points. This condition may be imposed

strongly or weakly (i.e. combined with the governing equation), leading to a continuous

or discontinuous solution (see below). As a result, although different in formulation and

implementation, in its continuous or discontinuous form, the SMM is similar to either

the SEM or DGM, respectively, in terms of accuracy and conservation properties.

The origins of SMM are from the late 70’s and early 80’s, when Metivet and Mor-

choisne [91] used it as an element-based approach for viscous flow calculations. In the

mid 80’s, Kopriva [80] was the first to present a detailed analysis of the two-dimensional

multidomain approach. Later on, in the mid 90’s, Hesthaven [66, 64, 65] introduced a

multidomain penalty formulation, known as the spectral multidomain penalty method

(SMPM). In the SMPM, the governing equation is penalized, inthe sense that it is

collocated at the physical boundaries/subdomain interfaces with the boundary/patching

conditions, respectively. The range of allowable values ofpenalty parameters used in

this approach is computed by requiring conservation of energy of the discretized equa-

tion (advectio, diffusion or advection diffusion) [66, 65].

In the framework of hyperbolic equations, the SMPM has been used in the numeri-

cal solution of the Euler equations in gas dynamics [82] and compressible viscous flows

[83, 109]. A detailed comparison between the DGM, SMPM, and DGM in the context

of the inviscid shallow water equations is presented in Chapter 3 and in [34]. In terms

of environmental flow applications, Diamessis et al. [25] developed a SMPM solver
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for the incompressible Navier-Stokes equations which was used to study a particular

number of high-Reynolds number stratified flows such as wakes [27], bottom bound-

ary layer instabilities under ISWs [26] and the propagation of internal wave packets [1].

The above solver can support a computational domain that is non-periodic in the vertical

and periodic in the horizontal directions, with a Legendre-based SMPM discretization in

the former and a Fourier discretization in the latter. Localized resolution and arbitrary

boundary conditions are thus only possible in the vertical,thus limiting the range of

environmental flow processes this solver can explored. Moreover, on account of incom-

pressibility and the consideration of impermeable top/bottom boundaries, no Poisson

equation with Neumann boundary conditions was solved for the pressure.

1.3 Extending SMPM to two-dimensional doubly non-periodic do-

mains

The work presented in this thesis is motivated by the need to investigate, in a numer-

ically stable and spectrally accurate manner, a broader range of environmental strati-

fied flow processes at high Reynolds numbers, particularly those with localization and

non-periodic boundary conditions in one of the horizontal directions. To this end, a

Spectral Multidomain Penalty Method (SMPM) solver of the incompressible Navier-

Stokes equations under the Boussinesq approximation has been developed. The solver is

based on two-dimensional discontinuous quadrilateral subdomains with Gauss-Lobatto-

Legendre (GLL) collocation points. We restrict ourselves to a two-dimensional quadri-

lateral subdomain discretization, as a third, periodic, direction may be readily introduced

by using a Fourier discretization. In the numerical method,the penalty scheme is com-

bined with dealiasing by padding [14], spectral filtering [7, 25], interfacial averaging
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and a a high-order temporal discretization [74]. A fundamental difference of the solver

presented here, with respect to the singly non-periodic solver created by Diamessis et

al. [25], is the efficient iterative solution of a pressure Poisson equation. Details of

this iterative solution procedure may be found in Chapter 5 and in [33]. The accuracy

and stability of the new quadrilateral SMPM solver are successfully assessed against

standard benchmarks, such as the Taylor vortex, modified lid-driven cavity and double

shear layer. From an environmental fluid mechanics standpoint, the propagation of an

ISW, which is an exact solution to the incompressible Euler equations, is investigated

in a two-layer continuously stratified free-slip channel, showing negligible numerical

dissipation and dispersion.

1.4 A Poisson pressure equation solver

The time-discretization, originally proposed by Karniadakis and co-workers [74] (here-

after referred to as KIO, and described in Chapter 4), used in the above SMPM model

requires the solution of a Poisson equation for the pressurewith Neumann boundary con-

ditions. Moreover, on account of the broad range of scales inenvironmental stratified

flow processes, any associated simulation will involve a very large number of degrees

of freedom (DOF) and the numerical solution of the linear system of equations corre-

sponding to the pressure Poisson equation (PPE) can only be performed iteratively.

The matrix resulting from the SMPM discretization of the Poisson-Neumann problem

is ill-conditioned for two reasons: a) the inherent ill-conditioning of higher-order inter-

polating polynomials and b) the ill-posedness of the corresponding analytical equation,

whose solution can only be determined up to an additive constant. Both of these factors

pose significant challenges to the iterative solution of thePPE. Moreover, existence of
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a solution requires the satisfaction, at the spatially analytical level, of an integral com-

patibility condition between boundary conditions and right hand side of the PPE [101].

In the KIO scheme, the compatibility condition is inherently satisfied at the spatially

continuous level [74]. However, under-resolution and the presence of the penalty terms

can cause a violation of the compatibility condition (see reference [54] and§5.3.3 of

this document), thereby posing an additional major challenge to the iterative solution of

the PPE.

The above challenges in the iterative solution of the linearsystem associated with the

PPE, or the Stokes equation resulting from alternative timediscretizations of the in-

compressible NSE [24], have been efficiently addressed through the development of

appropriate preconditioning techniques [38, 42, 112]. Allthese techniques are designed

for the symmetric matrices resulting directly from the Galerkin formulation of SEM.

Extensive background on the numerical solution of symmetric linear systems of equa-

tions can already be found in the numerical linear algebra literature.

However, the matrix resulting from the SMPM discretizationof the PPE is non-

symmetric on account of the use of a collocation discretization [84]. When examining

the numerical linear algebra literature, one observes a paucity of tools for precondition-

ing, matrix singularity treatment and solvability condition enforcement (the matrix-level

equivalent of the compatibility condition) for linear systems with non-symmetric matri-

ces.

Motivated by the above observations and the need to study environmental flow processes

of increasing complexity, the last chapter of this work presents strategies developed for

the efficient iterative solution of the SMPM-discretized PPE with Neumann boundary
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conditions resulting from application of the KIO splittingscheme to the incompressible

NSE. The fundamental building block of these strategies is afast computation of the

left null singular vector of the global Poisson matrix. Consistency of the associated lin-

ear system of equations, paramount to the robust performance of the iterative GMRES

solver, can only be ensured if this left null singular vectoris available. In addition, a

method for removing the null singular value of the Poisson matrix is outlined, which also

relies of the availability of the the left null singular vector. This method is contrasted,

in terms of accuracy and robustness within the GMRES framework, to other more com-

monly used techniques designed to ensure a unique solution to the Poisson-Neumann

problem. A custom-designed two-level preconditioner is also presented and its superi-

ority is demonstrated with respect to diagonal Jacobi and block-Jacobi preconditioners.

Finally, the efficiency of the Poisson solver, as buttressed by all the above strategies, is

assessed through its application to the solution of two commonly considered benchmark

problems.

1.5 Thesis structure

This dissertation is a compilation of three research paperswritten during the develop-

ment of a incompressible Navier Stokes solver via SMPM. These papers were joined

together in a document with the following structure: In Chapter 2 the basic definition of

the Spectral Multidomain Method is given, as well as the formthe penalty treatment is

imposed on an arbitrary governing equation. In Chapter 3, thefirst paper is presented

[34] where a comparison of the numerical solution of the Shallow Water Equations for

discontinuous high-order methods is analyzed in terms of the SMPM, and DGM. Chap-

ter 4 presents a SMPM solver for high Reynolds number stratified incompressible flows,

which is the second paper [32]. In Chapter 5, the details of themost demanding com-
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ponent of the NS solver, the numerical solution of the pressure Poisson equation, is

presented [33]. Finally, the concluding remarks and futurework are presented.
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CHAPTER 2

THE SPECTRAL MULTIDOMAIN PENALTY METHOD

2.1 Spectral Multidomain Method

This method is based on a collocation approach over multipletwo dimensional quadrilat-

eral subdomains (elements). On each subdomain, any function u(x, z, t) is approximated

with a tensor product of its nodal (i.e. Lagrange) basis functions over a two dimensional

Gauss-Lobatto-Legendre (GLL) grid. Specifically,N + 1 collocation points are used on

the grid in each direction such that [65]:

u(x, z, t) ≈
N∑

i=0

N∑

j=0

u(xi , zj , t)l i(x)l j(z), (2.1)

wherel i(x), l j(z) are thei−th and j−th Lagrange interpolating polynomials evaluated at

each one of the GLL points, at the horizontal (x) and vertical (z) direction, within the

quadrilateral element. Extension of Eq. (2.1) to three dimensions is immediate, but it is

not addressed in this work since its scope is the simulation of two-dimensional flows.

In the collocation approach, on a one-dimensional element,the m-th discrete deriva-

tive of a functionu is approximated by means of spectral differentiation matricesDm
N

[23] as

∂mu(xi , t)
∂xm

=
∂mu(xi , t)
∂ξm

(
∂ξ

∂x

)m

≈
(
∂ξ

∂x

)m N∑

k=0

dm
iku(xk, t) = Jm

x Dm
Nu, (2.2)

Since GLL points are defined over the canonical intervalξ ∈ [−1,1], the termJx =

dξ/dx in Eq. (2.2) represents the mapping/Jacobian fromξ to the global coordinate

system represented byx andz. The entries,dm
i j , of the Legendre spectral differentiation

matrix, Dm
N, are computed using the algorithm outlined in Costa and Don [23]. The

properties of these matrices are discussed in detail in [6].
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The extension from the one-dimensional single subdomain set-up (Eq. (2.2) ) to a

two-dimensional multidomain framework is straightforward if one takes advantage of

the tensor (Kronecker) product structure of the multidomain collocation approach on

structured grids. Consequently [33],

• One-dimensional multidomain:

dmu
dxm
=

(
Lnx ⊗ Dm

N

)
u (2.3)

• Two-dimensional single domain:

∂mu
∂xm
= Jm

x

(
I N ⊗ Dm

N

)
u (2.4)

∂mu
∂zm
= Jm

z

(
Dm

N ⊗ I N
)
u (2.5)

• Two-dimensional multidomain:

∂mu
∂xm
=

(
I nz⊗ Lnx ⊗ I N ⊗ Dm

N

)
u (2.6)

∂mu
∂zm
=

(
Lnz⊗ I nx ⊗ Dm

N ⊗ I N
)
u (2.7)

In Eqs. (2.6) and (2.7),I i are identity matrices of dimensioni, nx,nz represent the

number of subdomains in the horizontal and vertical directions respectively, andL i are

diagonal matrices, whose entries are the Jacobians of each subdomain in thex andz

directions. As a result,I N ⊗ Dm
N andDm

N ⊗ I N accounts for the horizontal and vertical

derivatives within each subdomain, respectively. Additionally, I nx aggregates the contri-

bution of these derivatives across all subdomains in thex−direction. Finally,I nz lumps

together the equivalent contributions in thez−direction.

Eqs. (2.6) and (2.7) allow the explicit evaluation of a discrete derivative in either di-

rection on the computational domain. When a spectral differentiation matrix is used in
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an implicit solve in the spectral multidomain framework, asis done with theDN
2 matrix

for the Poisson equation(Eq. (4.12)) or the modified Helmholtz equation to solve for

the viscosity term (Eq. (4.10)), the above expressions should be augmented with the

necessary penalty terms to account for the communication between subdomains.

Approximating derivatives in the form of Eqs.(2.6) and (2.7) poses additional challenges

in solving iteratively the Poisson and Helmholtz equationsmentioned above since the

differentiation matrices are inherently non-symmetric. In Galerkin type methods, such

as SEM and DGM, this is not the case since most of the global matrices are symmetric

[84].

2.2 Penalty formulation

sB I1

I1

s

s I2
s

I2
s

Figure 2.1: Schematic of a subdomain subject to penalty treatment. I1 denotes a
point along an internal interface of the subdomain andB represents a
point on a physical boundary.I2 denotes the corresponding interfacial
point of the subdomain neighboring pointI1

For the sake of illustration the general form of the penalty formulation will be in-

troduced with the Poisson equation as example. In this formulation, for any collocation

point I1, I2 located along any subdomain interface or physical boundary(see Fig. 2.1),
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the Poisson equation is recast as

∇2p+ τ · [condition] = f , (2.8)

whereτ is a penalty coefficient, and theconditionterm in (2.8) represents the patching or

boundary condition at the subdomain or physical boundary, respectively. Depending on

the type of governing equation, this term takes different forms, as can be seen in Chapter

3 for the case of the Shallow Water Equations, and in Chapter 4 and 5 for the advection,

diffusion, and Poisson equations respectively. The weak enforcement of the patching or

boundary condition provides for enhanced stability of the numerical scheme. Moreover,

in this work, we restrict our presentation to rectangular subdomains, although the exten-

sion to arbitrary quadrilaterals is straightforward [65].

For comparison purposes, it can be said that whereas in the SMPM the patching terms

are imposed directly at the subdomain interfaces due to its collocation based formula-

tion, in the DGM they are incorporated in the form of numerical fluxes at the boundary

integrals that appear during the weighted residual approach treatment done to the gov-

erning equations. For details on the DGM formulation of the numerical fluxes, the

reader is referred to [68, 84], and in the context of the inviscid shallow water equations

to Chapter 3.
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CHAPTER 3

SHALLOW WATER EQUATION SOLVER 1

3.1 Governing Equations

The inviscid shallow water equations (SWE) govern the behavior of a fluid with a hor-

izontal extent much larger than its depth, and are derived byapplying the hydrostatic

approximation to the incompressible Navier-Stokes equations [85]. The primitive vari-

able formulation of the SWE is given by

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
− Z(u, v) = −g

∂h
∂x

(3.1)

∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
+ Z(u, v) = −g

∂h
∂y

(3.2)

∂h
∂t
+
∂

∂x
[(H + h)u] +

∂

∂y
[(H + h)v] = 0 (3.3)

whereu, v are the horizontal velocities,H is the mean depth,h is the displacement of

the free surface,Z(u, v) is the external forcing andg is the gravitational constant.

3.1.1 Conservative form of the SWE

The inviscid shallow water equations (equations (3.1),(3.2) and (3.3)) can also be written

in conservative form:
∂q
∂t
+
∂F(q)
∂x
+
∂G(q)
∂y

= S(q), (3.4)

1The contents of this chapter are published on the article [34] High-order discontinuous element-
based schemes for the inviscid shallow water equations: Spectral multidomain penalty and discontinuous
Galerkin methodswritten by Jorge Escobar-Vargas, Peter Diamessis and FrankGiraldo
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where the conservative variablesq are

q =



φ

φu

φv


=



q1

q2

q3


(3.5)

the horizontal and vertical fluxesF(q) andG(q) are defined as

F(q) =



φu

φu2 + 1
2φ

2

φuv


=



F1

F2

F3


, G(q) =



φv

φuv

φv2 + 1
2φ

2


=



G1

G2

G3


(3.6)

and the source termsS(q) are

S(q) =



0

fφv+ τx

ρ
− γφu

− fφu+ τy

ρ
− γφv


. (3.7)

In Eqs. (3.5), (3.6) and (3.7),φ = gh is the geopotential height,f = f0 + β(y− ym) is the

Coriolis force,τx, τy are the components of the wind stress,ρ is the fluid density, andγ

is a bottom friction constant.

3.1.2 Linearized SWE

Assuming a mean depth much larger than the free surface elevation (H >> h), and

neglecting the nonlinear terms in (3.4), a linearized version of the conservative SWE is

obtained. The modified set of conservation variables is defined as

q =



φ

Φu

Φv


=



q1

q2

q3


, F(q) =



Φu

Φφ

0


=



F1

F2

F3


, G(q) =



Φv

0

Φφ


=



G1

G2

G3


(3.8)

whereΦ = gH is the mean depth geopotential height.
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3.1.3 Quasilinear form of the SWE

Using the chain rule, Eq. (3.4) can be rewritten in the quasi-linear form [120, 4]

∂q
∂t
+
∂F(q)
∂q

∂q
∂x
+
∂G(q)
∂q

∂q
∂y
= S(q)

∂q
∂t
+ A

∂q
∂x
+ B

∂q
∂y
= S(q) (3.9)

whereA andB are the flux Jacobian matrices, that can be decomposed (via aneigende-

composition or characteristic decomposition) as

A = SAΛAS−1
A (3.10)

B = SBΛBS−1
B (3.11)

whereΛA andΛB are diagonal matrices containing the eigenvalues ofA andB, andSA,

SB are orthogonal matrices whose columns are the respective eigenvectors.

The positive and negative flux vectors (F+, F−, G+, G−) are defined by

F+ =
∫

SAΛ
+
AS−1

A dq (3.12)

F− =
∫

SAΛ
−
AS−1

A dq (3.13)

G+ =
∫

SBΛ
+
BS−1

B dq (3.14)

G− =
∫

SBΛ
−
BS−1

B dq (3.15)

whereΛ±A andΛ±B are the diagonal matrices composed of positive and negativeeigenval-

ues ofA andB, respectively. Based on the above decomposition, the flux vectors have

the properties

ΛA = Λ
+
A + Λ

−
A → F = F+ + F− (3.16)

ΛB = Λ
+
B + Λ

−
B → G = G+ +G−. (3.17)
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The eigenvalue matrices and flux vectors are the building blocks for the penalty formu-

lation of the SWE via SMPM, and for the definition of the numerical flux of the DGM

used in this work [47].

3.2 Numerical Methods

3.2.1 Spectral Multidomain Penalty Method (SMPM)

The SMPM implemented in this work is based on the formulationfirst introduced by

Hesthaven [65] (see Chapter 2) and further refined by Don et al.[28]. Specifically, this

SMPM consists of a multidomain collocation approach based on discontinuous non-

overlapping rectangular subdomains that are connected by apenalty term that ensures

stability of the solution by imposing weak continuity at thesubdomain interfaces.

On account of the intrinsic discontinuity of the method and the critical role of inter-

facial patching, the penalized form of the SWE at a collocation point located along the

boundaries of a subdomain requires that (see reference [28]for a similar formulation of

the compressible Navier Stokes equations for chemically reacting flow)

∂q
∂t
+
∂F(q)
∂x
+
∂G(q)
∂y

= S(q)

+ τ1Q(x)[F+(q) − F+(q∗)]

+ τ2Q(x)[F−(q) − F−(q∗)]

+ τ3Q(x)[G+(q) −G+(q∗)]

+ τ4Q(x)[G−(q) −G−(q∗)]. (3.18)
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In (3.18),τi (i = 1, · · · ,4) are the penalty coefficients,Q(x) act effectively as Dirac delta

functions that are non-zero only at the interfaces of the subdomain, where the penalty

terms are active, andF±(q),G±(q),F±(q∗), andG±(q∗) represent the positive and neg-

ative fluxes at the grid points on the particular interfaces of the subdomain (with∗ in-

dicating the corresponding point on the neighboring interface) on the subdomain under

consideration. In a general sense, the penalty coefficients can be viewed as weighting

factors for the positive and negative fluxes across the interfaces.

In what follows, the penalized form of the SWE will be presented for the case of struc-

tured quadrilateral grids with rectangular subdomains, where the treatment for vertical

interfaces is determined by the horizontal fluxes∂F/∂x, and for the horizontal interfaces

by the vertical fluxes∂G/∂y. Embedded in the penalty coefficientsτi (i = 1, · · · ,4) are

mapping factors to enable consistency in units between the different terms in Eq. (3.18).

Vertical interfaces Figure 3.1 presents a schematic of the vertical interface between

subdomainsI and II , whereL or R represent any collocation point at the left and right

edges of the interface.

I L s IIRs

Figure 3.1: Vertical interface

Based on (3.18), the penalized form of the SWE for a point located at the left edge of
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the interface is

∂qL

∂t
+
∂FL

∂x
+
∂GL

∂y
= S(q)L

+ τ1QL[(F+)L − (F+)R]

+ τ2QL[(F−)L − (F−)R]. (3.19)

Similarly, for a point along the right edge of the interface the penalized form is

∂qR

∂t
+
∂FR

∂x
+
∂GR

∂y
= S(q)R

+ τ5QR[(F+)R− (F+)L]

+ τ6QR[(F−)R− (F−)L]. (3.20)

In Eq. (3.20)τ5, τ6 are the corresponding penalty coefficients for the right edge of the

interface.

Horizontal interfaces Figure 3.2 presents a schematic of a horizontal interface be-

tween subdomainsI andIII . In this case,B andT represent the collocation points along

the bottom and top edges of the interface. The penalized equations for a point located at

I

B
s

III

T
s

Figure 3.2: Horizontal interface
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the bottom edge of the horizontal interface are

∂qB

∂t
+
∂FB

∂x
+
∂GB

∂y
= S(q)B

+ τ3QB[(G+)B − (G+)T ]

+ τ4QB[(G−)B − (G−)T ] (3.21)

whereas for a point located on the top side are

∂qT

∂t
+
∂FT

∂x
+
∂GT

∂y
= S(q)T

+ τ7QT [(G+)T − (G+)B]

+ τ8QT [(G−)T − (G−)B]. (3.22)

In Eq. (3.22)τ7, τ8 are the corresponding penalty coefficients for the top edge of the

interface.

The approach of Don et al. [28, 71] for a one-dimensional conservation law can be read-

ily extended to the penalized equations (3.19)-(3.22) to show that the penalty scheme

formally conserves mass. Moreover, the energy of the systemcan been shown to be

bounded by its initial value [28, 71] if

2ωLτ1 ≤ 1, 2ωLτ2 ≥ 1

2ωBτ3 ≤ 1, 2ωBτ4 ≥ 1

2ωRτ5 ≤ −1, 2ωRτ6 ≥ −1

2ωTτ7 ≤ −1, 2ωTτ8 ≥ −1

ωLτ1 − ωRτ5 = 1, ωLτ2 − ωRτ6 = 1

ωBτ3 − ωTτ7 = 1, ωBτ4 − ωTτ8 = 1

whereωL, ωB, ωR andωT are the GLL quadrature weights assigned to points along the

left, bottom, right and top interfaces, respectively. For auniform order of polynomial
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approximation,N, in each subdomain a single value ofω = 2/N(N + 1) can be used

instead.

Implementation Issues In this work, the averaging method [28, 16] is implemented

such that the penalty coefficients for positive and negative fluxes (Eqs. (3.19)-(3.22)) at

the sides of the interfaces are taken to be equal. This leads to

τL = τ1 = τ2 =
1

2ω
∂ξ

∂x

=
1

ω∆x
(3.23)

τB = τ3 = τ4 =
1

2ω
∂η

∂y

=
1

ω∆y
(3.24)

τR = τ5 = τ6 = −
1

2ω
∂ξ

∂x

= − 1
ω∆x

(3.25)

τT = τ7 = τ8 = −
1

2ω
∂η

∂y

= − 1
ω∆y

(3.26)

where∂ξ/∂x, ∂η/∂y are the mapping factors for the penalty terms acting on vertical

and horizontal interfaces respectively (see Eqs. (3.46) and (3.47) ). This approach en-

sures stability of the penalty scheme. Moreover, the positive and negative fluxes of Eqs.

(3.16) and (3.17), have been lumped into a single total flux inthe penalty term.

The penalized SWE ( eqs. (3.19)- (3.22) ) may now be recast accordingly for each

possible orientation of subdomain interfaces:

• Vertical interfaces
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– Left edge of the interface

∂qL

∂t
+
∂FL

∂x
+
∂GL

∂y
= S(q)L + τLQL[FL − FR] (3.27)

– Right edge of the interface

∂qR

∂t
+
∂FR

∂x
+
∂GR

∂y
= S(q)R+ τRQR[FR− FL] (3.28)

• Horizontal interfaces

– Bottom edge of the interface

∂qB

∂t
+
∂FB

∂x
+
∂GB

∂y
= S(q)B + τBQB[GB −GT ] (3.29)

– Top edge of the interface

∂qT

∂t
+
∂FT

∂x
+
∂GT

∂y
= S(q)T + τTQT [GT −GB] (3.30)

Note that, in this scheme, unlike Hesthaven [65] no special formulation is used for

the corners, which are simply treated as points that belong to two edges of the same

subdomain orthogonal to each other. This simplified approach is found to be more

stable than the theoretically derived one. In addition, theformulation of the penalty

term is the same form used by Hesthaven [64, 65], Don et al. [28] and Diamessis et

al. [25]. Variations of this formulation are possible and a particular one, involving

the incorporation of dissipative Rusanov flux-like term, is examined in more detail in

section 3.4.3.

Compact Representation of the SMPM A compact form of representing Eqs. (3.27)

- (3.30) is
∂qe

∂t
+
∂Fe

∂x
+
∂Ge

∂y
= S(q)e+

4∑

l=1

τ̂eQen(e,l) · [Fe− Fl] (3.31)
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wheren(e,l) is the outward pointing unit vector in the direction from control volumee to

l,

τ̂ ≡ |τ| = 1
ω∆s

with ∆s= (∆x,∆y) depending on the orientation of the subdomain interfaces.

3.2.2 Discontinuous Galerkin Method (DGM)

The discontinuous Galerkin (DG) discretization of SWE (3.4)is as follows: we begin

with the governing equations in continuous flux-form

∂q
∂t
+ ∇ · F(q) = S(q). (3.32)

Next we introduce a basis function expansion

qN(x) =
(N+1)2∑

i=1

ψi(x)qi (3.33)

whereψ represents the basis functions of orderN and qi are the solution variables at

specially chosen interpolation points; in this work they are chosen to be the Gauss-

Legendre-Lobatto (GLL) points in order to make the comparison with the SMPM more

relevant and because we have used these points in previous DGformulations (e.g., [47,

48]). Using Eq. (3.33) we can now construct approximations for the remainder of the

spatial terms in Eq. (3.32). For example, we can now represent the flux tensor as

FN = F(qN) (3.34)

and the source function as

SN = S(qN). (3.35)

Upon defining these expansions, we can then substitute them into Eq. (3.32), multi-

ply the equations by a test function, and integrate to obtainthe element-wise integral
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problem: findqN ∈ S(Ωe)∀ψ ∈ S(Ωe) on each elementΩe such that
∫

Ωe

ψi

(
∂qN

∂t
+ ∇ · FN

)
dΩe =

∫

Ωe

ψiSN dΩe (3.36)

whereS is the finite-dimensional space

S =
{
ψ ∈ L2(Ω) : ψ|Ωe ∈ PN(Ωe)∀Ωe

}
,

PN is the polynomial space of orderN defined onΩe and the union of theseNe elements

defines the global domain, i.e.,Ω =
⋃Ne

e=1Ωe. Next, we integrate the divergence term by

parts to get
∫

Ωe

ψi

∂q(e)
N

∂t
dΩe+

4∑

l=1

∫

Γe

ψi n(e,l) · F(e)
N dΓe −

∫

Ωe

∇ψi · F(e)
N dΩe

=

∫

Ωe

ψiS
(e)
N dΩe (3.37)

wheren(e,l) is the outward normal vector going from elemente to elementl that defines

a specific edge of the (in this specific case) quadrilateral control volume. Now, since

the solutions are discontinuous across element boundariesthen it becomes critical (in

order to construct a consistent and stable numerical approximation to the governing

continuous equations) to choose the flux tensor carefully. To resolve this inconsistency,

a numerical flux is introduced that we denote byF(∗,l). The simplest choice is the mean

value between the two elements claiming the same interface

F(∗,l)
N =

1
2

[
F(e)

N + F(l)
N

]

where the superscriptse and l represent the element under consideration and the side

(interface) neighbor; unfortunately this numerical flux isnot the best choice. Another

easy but better choice is the local Lax-Friedrichs (or Rusanov) flux defined as

F(∗,l)
N =

1
2

[
F(e)

N + F(l)
N − δdiss|λmax|n(e,l)

(
q(l)

N − q(e)
N

)]
(3.38)

whereλmax is the maximum wave speed of the shallow water equations (themaximum

eigenvalue of the Jacobian matrix at the edgel) and we have included the switchδdiss
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that controls whether the dissipation term is included. Alternative, more sophisticated

formulations for the numerical flux have also reported in theliterature [36, 121, 127],

which, however, we will not use as they are beyond the scope ofthis work. With a

specific numerical flux defined, the DG formulation becomes

∫

Ωe

ψi

∂q(e))
N

∂t
dΩe+

4∑

l=1

∫

Γe

ψi n(e,l) · F(∗,l)
N dΓe−

∫

Ωe

∇ψi · F(e)
N dΩe

=

∫

Ωe

ψiS
(e)
N ) dΩe (3.39)

that is in fact theweakform DGM. Integrating by parts one more time yields the fol-

lowing mathematically equivalent system

∫

Ωe

ψi

∂q(e)
N

∂t
dΩe+

4∑

l=1

∫

Γe

ψi n(e,l) ·
(
F(∗,l)

N − F(e)
N

)
dΓe+

∫

Ωe

ψi∇ · F(e)
N dΩe

=

∫

Ωe

ψiS
(e)
N dΩe (3.40)

which is thestrongform DGM and is the form that we shall use to compare and contrast

with the SMPM described in section 3.2.1. Next, let us expandthe termsqN andSN in

order to rewrite Eq. (3.40) in matrix-vector form. Expanding these terms in Eq. (3.40)

gives

M(e)
i j

dq(e)
j

dt
+

(
D(e)

i j

)T
F(e)

j +

4∑

l=1

(
M(l)

i j

)T (
F(∗,l)

j − F(e)
j

)
= M(e)

i j S(e)
j (3.41)

where the elemental matrices are defined as follows:

M(e)
i j =

∫

Ωe

ψiψ j dΩe, D(e)
i, j =

∫

Ωe

ψi∇ψ j dΩe, M(l)
i j =

∫

Γe

ψiψ j n(e,l) (3.42)

whereT denotes the transpose operator. At this point in the DG formulation, we have to

introduce numerical quadrature in order to evaluate the integrals defined in Eq.(3.42) in
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the following way

M(e)
i j =

(Q+1)2∑

k=1

ω
(e)
k |J

(e)
k |ψi(xk)ψ j(xk),

D(e)
i j =

(Q+1)2∑

k=1

ω
(e)
k |J

(e)
k |ψi(xk)∇ψ j(xk),

M(l)
i j =

(Q+1)∑

k=1

ω
(l)
k |J

(l)
k |ψi(xk)ψ j(xk) (3.43)

whereQ is the number of quadrature points along each direction of the quadrilateral

element, andω andJ are quadrature weights and Jacobians, respectively.

Using GLL points for both interpolation and integration we obtain the following ele-

ment matrices

M(e)
i j = ω

(e)
i |J

(e)
i |δi j ,

D(e)
i j = ω

(e)
i |J

(e)
i |∇ψ j(xi),

M(l)
i j = ω

(l)
i |J

(l)
i |δi j (3.44)

whereδ denotes the usual Kronecker delta function. Using Eq. (3.44) in Eq. (3.41) and

dividing by the mass matrix yields:

dq(e)
i

dt
+

(
∇ψ j(xi)

)T
F(e)

j = S(e)
i +

4∑

l=1

τ
(l)
i Q

(l)
i n(e,l)

i ·
(
F(e)

i − F(∗,l)
i

)
(3.45)

where

Q(l)
i =



1 if i is on the edgel

0 otherwise

and

τ
(l)
i =

ω
(l)
i |J

(l)
i |

ω
(e)
i |J

(e)
i |

;

note that Eq. (3.45) is quite similar to Eq. (3.31) for the SMPM.
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Next, we need to simplify the penalty-like term that we have calledτ. To do so requires

explicitly stating the value of the Jacobians of both the element and edges. For the sake

of simplicity, if we assume thatξ = ξ(x) andη = η(y), that is, that the computational

axes are aligned exactly with the physical axes, then we can write

ξ =
2(x− x0)
∆x

− 1

η =
2(y− y0)
∆y

− 1 (3.46)

wherex0, y0 is the left-bottom most point on each element and∆x,∆y is the length of

the element along the x and y directions, respectively.

This mapping yields the following metric terms

∂ξ

∂x
=

2
∆x

∂η

∂y
=

2
∆y

(3.47)

with the following Jacobians

|J(e)| ≡ ∂x
∂ξ

∂y
∂η
− ∂x
∂η

∂y
∂ξ
=
∆x∆y

4

and

|J(l)| =



∆y
2 along a vertical interface (Left-Right edge)

∆x
2 along a horizontal interface (Top-Bottom edge).

From the definition of these metric terms we can see that the penalty-like term simplifies

to

τ
(l)
i =



2
ω∆x along a vertical interface (Left-Right edge)

2
ω∆y along a horizontal interface (Top-Bottom edge)

whereω = ω0 = ωN is the value of the quadrature weight at the beginning or end point

(they are equal by symmetry). Introducing the DGM numericalflux given in Eq. (3.38)
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into Eq. (3.45) yields

dq(e)
i

dt
+

(
∇ψ j(xi)

)T
F(e)

j

= S(e)
i +

4∑

l=1

τ̂
(l)
i Q

(l)
i n(e,l)

i ·
[
F(e)

i − F(l)
i − δdiss|λmax|n(e,l)

i

(
q(l)

i − q(e)
i

)]
(3.48)

where

τ̂ ≡ τ

2
=

1
ω∆s

and∆s = (∆x,∆y) depending in which direction the interface is oriented. Atthis point,

we have not made too many sacrifices or simplifications in deriving Eq. (3.48). This

equation is in fact a valid DGM representation of the shallowwater equations with only

the very slight assumptions that:

1. The computational coordinates (ξ, η) are aligned with the physical coordinates

(x, y).

2. Co-located interpolation and integration points are used. The fact that we have

chosen these points to be the GLL points results in inexact integration.

3. The numerical flux used is the simple Rusanov flux.

Taking the special caseδdiss= 0, that is, no dissipation in the flux term, yields

dq(e)
i

dt
+

(
∇ψ j(xi)

)T
F(e)

j = S(e)
i +

4∑

l=1

τ̂
(l)
i Q

(l)
i n(e,l)

i ·
[
F(e)

i − F(l)
i

]
(3.49)

which is identical to the SMPM representation given in Eq. (3.31). Eq. (3.49) shows that

another way of viewing the penalty term is as an extra differencing term (as is evident

by the 1
∆s term in τ̂ and∆F in the numerator) that considers the information from the

neighboring elements, which is in fact what we mean by the usual termflux. In section

3.3 we use Eq. (3.48) with and without the dissipation term tocompare the SMPM

with the DGM. We now turn our discussion to the time-integrator we use to advance the

SMPM and DGM solutions forward in time.
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s αik βik

1 1/2
4 0 1 0 1/2

2/3 0 1/3 0 0 1/6
0 0 0 1 0 0 0 1/2

Table I: Coefficients for the third order - four stage SSP-RK(34) method

3.2.3 Temporal Discretization

To retain the high-order accuracy of the SMPM and the DGM, a high-order time ad-

vancement scheme is needed. The explicit strongly stability preserving Runge-Kutta

(SSP-RK) method [22, 113] is implemented for both approaches. Consider the follow-

ing initial value problem
dq
dt
= R(q). (3.50)

The prediction at the timen + 1 is based on the existing solution at the timen and the

forcing termsR(q). The scheme can be written as [113]

q(0) = qn (3.51)

q(i) =

i−1∑

k=0

(
αikq

(k) + ∆tβikR(q(k))
)
, i = 1,2, · · · , s (3.52)

q(n+1) = q(s) (3.53)

where s are the number of stages of the SSP-RK approach,αik and βik are constant

coefficients given in Table I [113], and∆t is the size of the time step at a specific time.

3.3 Test cases: Description and Results

Six test cases are examined to compare the performance of theSMPM and DGM in

terms of accuracy, dynamic stability, robustness and conservation properties: three linear
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(standing wave, Kelvin wave, and Stommel problem), where accuracy can be evaluated

through the availability of analytic solutions, and three non-linear (nonlinear Stommel,

equatorial Rossby wave, and Riemann problem) that provide a platform for assessing

the dynamic stability and robustness of the methods. In addition, results obtained with

the spectral element method (SEM) [44, 45, 50] are included to compare, for each case,

the behavior of a continuous method with a discontinuous element-based approach. For

the linear cases an additional error analysis based on the normalizedL∞ andL2 norms

of the error is performed.

The normalizedL∞ andL2 error norms are defined as

‖h‖L∞ =
maxx∈Ω(hexact− h)

maxx∈Ωhexact
(3.54)

‖h‖L2 =

√√∫
Ω
(hexact− h)2dΩ
∫
Ω

h2
exactdΩ

. (3.55)

The mass (M) and energy (E) of the system are measured in the following way

M =

∫

Ω

φdΩ (3.56)

E =

∫

Ω

[
φ(u2 + v2) + φ2

]
dΩ. (3.57)

The metric for assessing mass and energy conservation is therespective relative error,

defined with respect to the corresponding initial values ofM andE. It is computed as

RM =

∣∣∣∣∣
Mt − M0

M0

∣∣∣∣∣ , RE =

∣∣∣∣∣
Et − E0

E0

∣∣∣∣∣ (3.58)

whereRM andRE are the relative errors in mass and energy, andM0,E0,Mt,Et are the

corresponding values for mass and energy at the initial and final times of the simulation,

respectively. For each test case, it is specified explicitlyif mass and energy are lost or

generated by the end of simulation.
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For all simulations no boundary conditions are applied to the continuity equation. For

the momentum equation no-flux (i.e., reflecting) boundary conditions are applied along

all four walls of the basins; for the SEM and SMPM methods thisis accomplished via

strong homogeneous Dirichlet boundary conditions whereasfor the DGM they are sat-

isfied in a weak sense.

To compute the Courant number a high-order cell technique is used, where the cells

are defined based on the GLL points on each subdomain. A mean velocity and geopo-

tential height is defined at the center of each cell [51]. Withthese considerations, the

Courant number is defined as

Courant Number= max

(
∆t(U +

√
φ)

∆s

)

where∆t is the size of the time step,U is the mean velocity magnitude at the cell,φ is

the average geopotential height in the cell and∆s=
√
∆x2 + ∆y2 is the grid spacing. For

SMPM and DGM, the maximum Courant number∆t that ensures stability of the numer-

ical simulations 0.5 (Courant Number≤ 0.5). The equivalent value for SEM is 1. As

specified in the relevant sections, two test cases (standingand Kelvin wave) are run with

a significantly smaller time step to prevent the time-stepping error from dominating the

error associated with the spatial discretization. Nonetheless, as the conservation proper-

ties of the SMPM are negatively impacted by a linearly growing loss of mass which is of

order machine epsilon at each time step, all other test casesare run with a time step that

is 80% the maximum time step associated with Courant number limits indicated above.

We refer the reader to sections 3.4.1 and 3.4.2 for further discussion on time-stepping

error and the impact of time step on the conservation properties of the spatial discretiza-

tion methods under consideration. The degree of polynomialapproximation is varied

from N = 4 to 20. The number of subdomains is also varied within a rangedependent
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on the geometry of each case, and the SSP-RK34 method defined previously is used to

advance in time the simulations.

3.3.1 Linear Problems

In this section, we compare the three methods quantitatively using linear test cases that

have analytic solutions.

Linear Standing Wave

This case represents the evolution in time of a wave driven only by gravitational effects

(S = 0) through an initial perturbation of the free surface. Fromreferences [51, 69], the

analytic solution for this case is given by

h(x, y, t) = cos (πx) cos (πy) cos (πt
√

2) (3.59)

u(x, y, t) =
1
√

2
sin (πx) sin (πy) sin (πt

√
2) (3.60)

v(x, y, t) =
1
√

2
cos (πx) sin (πy) sin (πt

√
2) (3.61)

with (x, y) ∈ [0,1] × [0,1].

The simulations are run fort ∈ [0,0.5]. Figure 3.3 shows results for SMPM, DGM

and SEM simulations for a fixed number of subdomains and variable order of polyno-

mial approximationN. A time step which is 1/50th of that associated with a Courant

number value of 0.4 is used, to make time-stepping errors sufficiently small. The results

are indistinguishable if an even smaller time step is employed. Exponential conver-

gence of the error norms for free surface elevation and horizontal velocity is attained

for each method for polynomial degree less or equal thanN = 8. At higher values of
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Figure 3.3: Analysis of the standing wave (5× 5 subdomains) att = 0.5 seconds
for a varying number of GLL points. a)L2 normalized relative error
in the free surface elevationh. b) L2 normalized relative error inu
velocity. c) Relative error in mass. d) Relative error in energy.

N, the convergence rate is finally reduced, reaching a plateauof the order ofO(10−12).

The Galerkin based methods (i.e. DGM, SEM) conserve mass up to machine preci-

sion. The SMPM mass cumulatively loses mass over time. All three methods show

improved energy conservation with increasingN with the relative error reaching a value

of O(10−12) at N = 8. An interpretation for the performance of the SMPM in termsof

mass conservation is offered in section 3.4.1.

Linear Kelvin Wave

The equatorial Kelvin wave is a low amplitude non-dispersive wave trapped in the vicin-

ity of the equator. It is driven by rotational and gravitational effects through an initial
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perturbation of the free surface. The analytic solution forthis case [51, 35] is

h(x, y, t) = 1+ exp

(
−y2

2

)
exp

(
− (x+ 5− t)2

2

)
(3.62)

u(x, y, t) = exp

(
−y2

2

)
exp

(
− (x+ 5− t)2

2

)
(3.63)

v(x, y, t) = 0 (3.64)

for f0 = 0, β = 1 and (x, y) ∈ [−20,20]× [−10,10].

Simulations are run fort ∈ [0,5]. Figure 3.4 shows results for this case for a do-

main discretized with 20× 10 elements and a varying value ofN. As with the standing

wave, here the time step is 1/50th that associated with a Courant number value of 0.4.

No further reduction in time step was required to make time-stepping errors sufficiently

small. The behavior of the error norms is similar to that observed for the linear stand-

ing wave: exponential convergence is observed for all the three methods. DGM and

SEM conserve mass up to machine precision. On the contrary, SMPM again shows a

loss of mass, which, in the end of simulations, is up to one order of magnitude larger

than the value computed for DGM and SEM. The trend in relativeerror of total en-

ergy conserved is comparable to that observed for the linearstanding wave in Fig. 3.3.

Improved energy conservation occurs with increasingN with a relative error value of

O(10−13) observed forN = 20.

Linear Stommel Problem

This problem [114] also known as westward intensification ofwind-driven ocean cur-

rents, represents the steady balance between rotation, gravity, friction and wind stress

in a square ocean basin. A sinusoidal wind stress forces an unperturbed free surface

generating a small amplitude wave moving westward due to theCoriolis force that is
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Figure 3.4: Kelvin wave results for 20×10 subdomains att = 5. Panels (a) through
(d) show the same quantities with Fig. 3.3.

compensated by bottom friction and gravitational effects and, eventually, reaches steady

state. The analytic solution used for this case is [51]

h(x, y, t) = (
C1

λ1
eλ1x +

C2

λ2
eλ2x)

γπ

l
cos

(
πy
l

)

+
τβ

γ

(
l
π

)2

cos
(
πy
l

)

+ f sin
(
πy
l

)
(C1e

λ1x +C2e
λ2x +C3) (3.65)

u(x, y, t) = −(C1e
λ1x +C2e

λ2x +C3)
π

l
cos

(
πy
l

)
(3.66)

v(x, y, t) = (C1λ1e
λ1x +C2λ2e

λ2x) sin
(
πy
l

)
(3.67)
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where

C1 = C3
1− eλ2l

eλ2l − eλ1l
(3.68)

C2 = −C3
1− eλ1l

eλ2l − eλ1l
(3.69)

C3 =
τl
πγ

(3.70)

For the case presented here,f0 = 1×10−4, β = 1×10−11, γ = 1×10−6, g = 10,ρ = 1000,

τ = 0.2, H0 = 1000, and (x, y) ∈ [0,1 × 106] × [0,1 × 106]. Note that the solution is

symmetric with respect to they axis.
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Figure 3.5: Free surface elevation computed by all three methods for the linear
Stommel problem for 5× 5 subdomains andN = 12 att = 400 days

Simulations are run until the solution is close to the steadystate (i.e.t = 320 days), and

the structure of the steady state flow field, displaying the expected symmetry around

the horizontal axis atz = 5 × 105, is shown in Fig. 3.5 for all three methods. Figure

3.6 shows the error norm convergence curves for the case of a 5× 5 mesh for solutions

obtained with different values ofN. For all three methods, the error in the free surface

displacement shows an exponential convergence similar to the previous two linear cases

for up toN = 8, beyond which the error norms level off to a constant value. This plateau

is reached because an exact steady is almost never attained in practice, as simulations are

dominated by slowly-decaying, weak-amplitude basin-scale modes, with the decay time
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Figure 3.6: Linear Stommel problem results for 5×5 subdomains att = 320 days.
a) Convergence plot for theL2 normalized relative error in the free
surface elevationh. b) Relative error in mass conservation.

of the gravest, longest-wavelength, mode reaching 60 years[61]. Mass is conserved up

to machine precision by DGM and SEM, whereas SMPM shows a lossof total mass up

to three orders of magnitude larger than DGM and SEM.

3.3.2 Nonlinear Problems

In this section, we compare the three methods qualitativelyusing nonlinear test cases

that, unfortunately, do not have analytic solutions. Instead, we use the conservation of

mass and energy to compare the methods. All three models formally should conserve

mass but are not guaranteed to conserve energy. It is possible to conserve energy (at

least up to the time-truncation error) but this requires slight modifications to the discrete

operators that we will not pursue in this work.
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Nonlinear Rossby Soliton

This case considers an equatorial non-linear Rossby wave of weak amplitude, driven by

gravity and rotational forces. It is initialized by a Gaussian-like perturbation in the free

surface elevation. An approximate asymptotic solution of the system of Korteweg-

DeVries equations resulting from the SWE through application of the method of multi-

ple scales is obtained for this problem in [10]. Although this first order solution does

not provide a reference to assess the convergence rate of thenumerically computed so-

lution for the SEM, DGM, and SMPM, it is used to compare associated phase speed

and solution structure with the corresponding estimates computed by the three numer-

ical methods. For this case (x, y) ∈ [−24,24] × [−8,8], g = 1, and the Coriolis force

f (y) = y.

Simulations are run fort ∈ [0,40]. All three methods accurately reproduce the free

surface/velocity structure of the soliton and its propagation at a constant phase speed

equal to the analytically predicted value. The structure ofthe free surface elevation

field at the end of the simulation, with its characteristic two-lobe structure, as computed

by all three methods is shown in Fig. 3.7. Figure 3.8 shows results for mass and energy

conservation for 24× 8 subdomains, and varyingN, which are similar to their counter-

parts obtained for the linear cases. The SMPM is subject to a decrease in mass when the

polynomial order increases. The DGM conserves mass up to machine precision, with

the SEM offering comparable performance. The SEM and SMPM are the most and least

energy conserving, respectively. As discussed in section 3.4.1, the energy conservation

properties of the DGM are highly dependent on the formulation of the numerical flux

and the use of spectral filtering (see Fig. 3.12).

45



X

-20

-10

0

10

20
Y

-5

0

5

0

0.05

0.1

0.15

F
re

e
S

ur
fa

ce
E

le
va

tio
n

X Y

Zc. SEM

X

-20

-10

0

10

20
Y

-5

0

5

0

0.05

0.1

0.15

F
re

e
S

ur
fa

ce
E

le
va

tio
n

X Y

Za. SMPM

X

-20

-10

0

10

20
Y

-5

0

5

0

0.05

0.1

0.15

F
re

e
S

ur
fa

ce
E

le
va

tio
n

X Y

Zb. DGM

Figure 3.7: Qualitative comparison of the Non-linear Rossbywave results with
24× 8 subdomains,N = 12, and at timet = 40.
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Figure 3.8: Non-linear Rossby wave results for 24× 8 subdomains att = 40. a)
Relative error in mass. b) Relative error in energy.

Nonlinear Stommel Problem

The same configuration (forcing parameters, dimensions of the physical domain, and

boundary conditions) is used as in the linear Stommel problem. However, the fully

nonlinear set of Eqs. (3.4) are now solved. In this case, a shift of the gyre toward the

northwest part of the basin is expected due to the effect of the nonlinear terms.

Figure 3.9 shows the steady state results, for a domain with 5× 5 subdomains. Similar

trends are observed for all three methods. Note that in this particular case, the differ-

ences in subdomain interface treatment between SMPM and DGMgive rise to chal-

lenges of numerical stability for the former, when values ofpolynomial degreeN ≥ 12
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Figure 3.9: Nonlinear Stommel problem for 5× 5 subdomains andN = 12 at
t = 400 days

are used. In the SMPM, when 5× 5 subdomains are used andN ≥ 12, weak spurious

oscillations develop in the top left corner of the domain andintensify, as time advances,

eventually forcing a catastrophic blow-up of the solution.As a counter-measure, a 16-th

order Boyd-Vandeven filter [87] is used, which attenuates only the very highest modes

of the solution, to suppress these oscillations. This problem does not occur for the

DGM, as the spurious oscillations are damped by the dissipative termδdiss = 1 in the

numerical flux. The sensitivity of the DGM and SMPM to the presence of dissipative

terms is examined in greater detail in section 3.4.3. Figure3.10 shows the behavior of

the relative error in mass as a function ofN, which is similar to what is observed for

the corresponding linear problem (Fig. 3.6) . Results are restricted toN ≤ 8, as high-

order polynomial approximations require the use of a spectral filter to preserve stability.

Nonlinear Riemann Problem

This modification of the circular dam break problem [92] is considered as a platform to

assess the performance of the three methods in simulating strongly nonlinear flows, i.e.

flow fields with distinct sharp spatial gradients. The initial condition, a Gaussian bump
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Figure 3.10: Relative error in mass as a function of polynomial order for the Non-
linear Stommel problem. 5× 5 subdomains att = 360 days.

(used instead of a cylindrical step function), is characterized by such a sharp gradient

and has free surface and velocity fields given by:

h(x, y, t0) = H + Aexp

(
− (x− x0)2 + (y− y0)2

2σ2

)
(3.71)

u(x, y, t0) = 0

v(x, y, t0) = 0

(3.72)

where (x, y) ∈ [0,1] × [0,1], g = 9.8, H = 1, A = 0.2, x0 = y0 = 0.5, andσ = 0.05.

The flow is driven by gravity as in the standing wave problem. Simulations are run for

t ∈ [0,0.2], i.e., up to a short time after the first reflection of the initial wave from the

domain boundaries where reflecting boundary conditions areapplied.

Figure 3.11 shows results for conservation properties in the case of a 5× 5 subdomains.

In terms of mass conservation, it is difficult to discern which method offers superior per-

formance. The energy conservation properties of each method improve with increasing

N. At a given value ofN, the DGM is found to produce a slightly larger relative errorin

terms of the total final energy. Note that for the time for which the simulations were run,

no filtering was needed to preserve numerical stability at all values ofN and subdomain
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Figure 3.11: Nonlinear Riemann problem for 5× 5 subdomains att = 0.2. Panels
(a) and (b) are the same as Fig. 3.8

.

thicknesses considered. Nevertheless, the smoothness of the solution is damaged at

later times, as weak spurious wiggles emerge. As in the case of the non-linear Stommel

problem, in the DGM, the dissipation term in the Rusanov flux stabilizes the solution

while keeping it free of spurious oscillation, although somewhat adversely impacting

the energy conservation properties of the method. The role of spectral filtering and dis-

sipative terms on the conservation properties for the DGM isfurther discussed in section

3.4.1.

3.4 Discussion

3.4.1 Mass and Energy Conservation

All three methods are found to have very good conservation properties, a direct result

of their formulation, see e.g. [28] for SMPM, [48] for DGM, and [116] for SEM. The

DGM conserves mass up to machine precision. The SMPM is foundto lose mass over

long model times with the corresponding relative error as much as four orders of mag-
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nitude larger than that for the DGM. This error increases with number of time steps.

Such observations might initially seem perplexing, given the analytical demonstration

of Don et al. [28] that the averaging method-based penalty scheme is conservative. For

all SMPM-driven test-cases we have found that the mass loss (not shown here) is a lin-

ear function of time, with a decay rate that is of the order of machine epsilon. The

linear Stommel problem has a total mass loss that reaches values of 10−10 at higherN, a

value even higher than that observed for the standing and Kelvin wave test-cases where

1/50th the maximum time step is used. This difference is simply because 106 time steps

are required for the linear Stommel problem to reach steady-state. Consequently, we

attribute the observed loss of mass to an accumulation of round-off error.

The energy conservation properties of all three methods improve with increasingN,

although both SMPM and DGM are found to be inferior in this regard to the SEM. Note

that in simulations where no energy sink terms (such as bottom friction in the Stommel

problems) are present, the performance of the discontinuous techniques in terms of en-

ergy conservation can be strongly influenced by spectral filtering and the structure of the

numerical flux terms, such as the dissipative term used within the Rusanov flux. Figure

3.12 shows the differences in conservation of mass and energy in the DGM, for theRie-

mann problem, when spectral filtering, through a 10th-orderBoyd-Vandeven filter [87],

is added to the simulation or the dissipation term is neglected in the numerical flux. The

absence of both the dissipative term in the numerical flux andspectral filtering provides

for the best energy conservation properties, although suchbehavior does not necessarily

guarantee a smooth and stable solution for such a strongly nonlinear problem.
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Figure 3.12: Comparison of conservation properties of the DGM for the Riemann
problem. Results for 5× 5 at t = 0.2. (a) Mass conservation. (b)
Energy conservation.

3.4.2 Effect of time step on convergence and conservation proper-

ties

For the purpose of demonstrating that the temporal discretization error does not domi-

nate over the spatial error, we now perform an analysis of theeffect of time step,∆t, size,

on the convergence and conservation properties of each of the three methods. The base

time step corresponds to that associated with a simulation with Courant Number of 0.4.

∆t is then progressively decreased by a factor of 2,10 and 50 (denoted byD2,D10,D50

respectively). In Figure 3.13 the convergence plots for thefree surface elevationh of the

standing wave test case are presented for all three methods.For a givenN, the increase

in accuracy of all three methods is visible as∆t is decreased. Once a factor of 50 reduc-

tion is reached exponential convergence is obtained untilN = 8.

The same exercise has been performed to assess the role of time-step on mass and energy

conservation in all three methods. The results show (see Figure 3.14 and Figure 3.15)

that the SMPM mass loss increases with decreasing∆t. This observation is consistent
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Figure 3.13: Convergence plots for the standing wave problemwhen different∆t
sizes are used.

with the loss, at a linear decay rate of order machine epsilon, in the SMPM discussed

in section 3.4.1. In contrast, the DGM and SEM conserve mass to the order of ma-

chine epsilon regardless of the value of∆t. On the other hand, conservation of energy is

improved by the three methods once the polynomial degree increases or the size of∆t

decreases.
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Figure 3.14: Conservation of mass for the standing wave problem when different
∆t sizes are used.
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Figure 3.15: Conservation of energy for the standing wave problem when different
∆t sizes are used.

3.4.3 Effect of Filtering

In the interfacial treatment of the SMPM, there is no dissipative term that removes spu-

rious high wavenumber oscillations that develop in highly nonlinear simulations. Thus,

spectral filtering is needed when such simulations are run for long integration times,

namely when sharp localized features emerge in the simulations (e.g., nonlinear Rie-

mann problem) or even when the structure of the solution is apparently smooth and free

of any localized features (e.g., nonlinear Stommel problem). In contrast, in the case of

the DGM , the dissipation term introduces a dissipation mechanism that stabilizes the

solution and renders it oscillation-free; for a very simpleflow problem, this term reduces

to a simple upwinding scheme. By neglecting it, the DGM-generated solution also be-

comes unstable. Without resorting to recasting the nonlinear terms in skew-symmetric

form [12] and in the absence of an over-integration-based de-aliasing strategy [78] (both

which are out of the scope of this work), spectral filtering isrequired to recover stability.

In terms of mass and energy conservation, the performance ofthe DGM appears to be

very similar when spectral filtering and no dissipative termis used or when only the

dissipative term is used (Fig. 3.12).
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The performance of both SMPM and DGM is further examined in problems where sig-

nificantly sharp features are present. The dam-break problem [120] is simulated with

a cylindrical step-function of the free surface elevation as an initial condition and with

(x, y) ∈ [−20,20] × [−20,20] andt ∈ [0,0.1]. The effect of filtering (with a Boyd-

Vandeven filter ofp = 10) and the dissipative term on the solution are shown in Fig.

3.16.
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Figure 3.16: Cross section of the Dam-break problem for 5× 5 subdomains, and
N = 20 att = 0.1. (a) SMPM without dissipation. (b) SMPM with
filtering (Filter orderp = 10). (c) SMPM with dissipative term. (d)
DGM without dissipative term (|λ|(qR − qL ). (e) DGM with filtering
(Filter order p = 10), and without dissipation term. (f) DGM full
Rusanov flux.

In the absence of a dissipative term in the DGM and any spectral filtering for both meth-

ods (panels a and d), spurious oscillations are localized inthe vicinity of subdomain

interfaces for the SMPM, whereas, in the DGM, these oscillations are more evenly dis-

tributed throughout the computational domain. When spectral filtering is applied to

both methods (panels b and e), the oscillations are stronglydamped in the subdomain

interior where the effect of the filter is focused [53]. Nevertheless, some weaker oscil-

lations remain at the subdomain interfaces [53]. If no spectral filtering is applied but
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an additional dissipative term is added to the penalty term in the SMPM (panel c), the

solution has a nearly identical structure with the one computed by the DGM with the

full Rusanov flux. For the purpose of comparison, Fig. 3.17 shows the filtered solu-

tion obtained from the SEM which is contrasted to its filteredcounterparts (no Rusanov

flux term present) computed from DGM and SMPM (Figs. 3.16b ande). The results

for SEM with filtering show stronger spurious oscillations than SMPM or DGM with

dissipation or spectral filtering.
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Figure 3.17: Cross section of the filtered Dam-break problem for 5 × 5 subdo-
mains, andN = 20 att = 0.1 (Filter orderp = 10) for SEM.

3.4.4 Computational Efficiency and implementation

For all test cases, the order of magnitude of the CPU time per time step has been found

to be comparable for both DGM and SMPM and increases when the number of degrees

of freedom increases due toh or p refinement. Figure 3.18a shows the computational

time for all three methods considered in this manuscript (SMPM, DGM and SEM) for

different values ofN for the Riemann problem with 5×5 subdomains and the same time

step value for each method, corresponding to Courant Number= 0.4.

Figure 3.18b shows the time needed to advance a simulation tothe same final time
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Figure 3.18: CPU time for the Riemann problem. 5× 5 subdomains with
different polynomial orders att = 0.2. (a) All methods
with Courant Number = 0.4 and (b) DGM and SMPM with
Courant Number= 0.4 and SEM with Courant Number= 0.8.

as Fig. 3.18a, where the Courant Number is set to the empirically computed maxi-

mum value that enables a stable simulation for each method. SEM simulations are

found to support double the maximum Courant Number value of DGM and SMPM

and are thus twice as fast. DGM and SMPM simulations were alsoperformed with

a Courant Number value slightly above the empirically obtained stable limit value. In

this case, DGM was found to destabilize faster than SMPM.

Theoretical justification for these observations is gainedby examining the eigenvalue

spectra of the discretized 1-D linear advection operator for each of the three discretiza-

tion methods for a periodic domain with 5 subdomains andN = 4 (Fig. 3.19). In the

absence of the dissipation term in DGM, and as expected, all three methods have purely

imaginary eigenvalues. The extreme eigenvalues of DGM are roughly 25 % larger

than their SMPM counterparts and double the corresponding SEM eigenvalues. Incor-

poration of the numerical flux term in DGM gives rise to eigenvalues with a negative

real part which equip the numerical solution with the necessary numerical dissipation.

Moreover, the separation between the eigenvalues with the largest absolute imaginary

56



values is reduced with respect to the case without dissipation but is still slightly larger

than that in SMPM and almost double that of SEM. Taking into account the stability

region of the SSP-RK34 scheme (which is stable along the imaginary axis) for Courant

numbers below this eigenvalue separation can explain why SEM can attain double the

Courant Number of DGM and SMPM and why DGM explodes a little faster than SMPM

for a marginally unstable time step.
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Figure 3.19: Eigenvalue distribution of the 1D discrete linear advection operator
(u d

dx) for all three methods, with an advective velocity ofu = 1. In
all casesx ∈ [−1,1], 5 subdomains,N = 4.

In terms of implementation, in the context of the SWE, both theSMPM and DGM

can be written as a system of time-dependent ordinary differential equations where the

vector of unknowns is the solution vector at the grid points [84]. In the matrix-vector

product that appears on the right hand side of this system of equations, the associated

matrix is simply a spectral differentiation matrix (Eq. (2.2) ) for the SMPM due to its un-

derlying collocation method framework with any modifications to this matrix incurred

through communication with points on the edge of the neighboring subdomain. Sim-
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ilar modifications on account of the numerical flux term enterthe construction of the

corresponding right hand side matrix for the DGM, the core ofwhich is built through

additional numerical integration and, therefore, cost. This cost is, nevertheless, offset

over the course of a long unsteady simulation. In summary, for hyperbolic systems

of equations, the cost of SMPM and DGM are very similar. However, we expect the

SMPM to have an advantage when elliptic operators are introduced since the addition of

a Laplacian for the SMPM becomes simply a matter of introducing a Laplacian differ-

entiation matrix whereas in DGM either local discontinuousGalerkin or interior penalty

methods have to be introduced [18, 5, 21]. For SEM, the addition of Laplacian operators

introduces only a slight cost.
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CHAPTER 4

INCOMPRESSIBLE NAVIER STOKES SOLVER 1

4.1 Incompressible Stratified flow model

4.1.1 Governing equations and Boundary Conditions

This study considers incompressible stratified flow governed by the Navier-Stokes equa-

tions under the Boussinesq approximation [85, 126]:

∂u
∂t
= −1

2
[u · ∇u + ∇(u · u)] + Fg

︸                             ︷︷                             ︸
N(u)

− 1
ρ0
∇p′ + ν ∇2u︸︷︷︸

L (u)

, (4.1)

∂ρ′

∂t
= −∇ · (u(ρ′ + ρ(z))) + κ∇2ρ′ , (4.2)

∇ · u = 0. (4.3)

where Fg = −g
ρ′

ρ0
k̂ . (4.4)

The five unknowns to solve for are the velocity vectoru = (u, v,w), and the pressure

and density perturbationsp′ andρ′, respectively. The non-linear term in the momentum

equations (4.1) is written in the skew-symmetric form to minimize aliasing effects in

the numerical solution [12, 24, 128]. The perturbationsp′ andρ′ originate from the

1The contents of this chapter are published on the article [32] A spectral quadrilateral multidomain
penalty method solver for high-Reynolds number stratified incompressible flowswritten by Jorge Escobar-
Vargas, Peter Diamessis, and Takahiro Sakai
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decomposition of the corresponding total values into [85]:

p = p(x, y, z) + p′(x, y, z, t) , (4.5)

ρ = ρ0 + ρ(z) + ρ′(x, y, z, t) . (4.6)

Following the Boussinesq approximation, the reference pressure,p(x, y, z) and density,

ρ0 + ρ(z) are in hydrostatic balance:

∂p
∂z
= −(ρ0 + ρ)g . (4.7)

We seek to simulate a broader range of small-scale environmental flow processes than

those attainable by the solver previously developed by the second author [25]. To

this end, the computational domain is designed to flexibly enable non-periodic bound-

ary conditions along all boundaries in the stream vs. depth plane. Possible choices

of boundary conditions include homogeneous and non-homogeneous Dirichlet, Neu-

mann, a mixed (Robin) conditions which are applied to both momentum and advection-

diffusion equations. The boundary conditions for the pressure are of purely numerical

nature and their discussion is thus deferred to 4.2.1.

In this work, we will only consider two-dimensional simulations within the framework

of a quadrilateral Legendre multidomain discretization. Throughout the chapter,z will

be used to denote the vertical direction, according to the standard convention in en-

vironmental fluid mechanics. Three-dimensional simulations are readily accessible by

incoprorating a third, periodic spanwise direction subject to the Fourier discretization

discussed in reference [25] and will be the subject of future, physics-focused publica-

tions.
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4.2 Numerical Method

4.2.1 Temporal discretization

For the temporal discretization a high-order time splitting scheme proposed by Kar-

niadakis et al. [74], and refereed as the KIO scheme, is used.This scheme is a

high-temporal-accuracy variant of the projection techniques introduced by Chorin and

Temam [20]. A more general and detailed analysis of projection methods for incom-

pressible flows is presented in [60] and specifically for high-order methods in reference

[15]. The scheme used in this work is the same with the one usedby the earlier singly

non-periodic spectral multidomain incompressible Navier-Stokes solver developed by

the second author [25]. According to this scheme, if one integrates Eqs. (4.1)-(4.3) in

time from leveltn to tn+1 one obtains the following semi-discrete equations decomposed

into three fractional steps foru, by means of the intermediate velocitiesû and ˆ̂u:

û −∑Ji−1
q=0 αqun−q

∆t
=

Je−1∑

q=0

βqN(un−q), (4.8)

ˆ̂u − û
∆t

= ∇p̄n+1, (4.9)

γ0un+1 − ˆ̂u
∆t

= ν∇2un+1. (4.10)

The pressure is thus decoupled from the velocity in this time-advancement scheme,

thereby avoiding the emergence of spurious pressure modes and the use of a staggered

grid or the incorporation of stabilization terms into the governing equations [24].

The splitting procedure forρ′ consists of two steps analogous to Eqs.(4.8) and (4.10).

The coefficientsαq, βq of Eq. (4.8) andγ0 of Eq. (4.10) correspond to a 3rd order Stiffly

Stable Scheme (SS3) [74]. Their values may be found in references [74, 100]. Such a

time-advancement scheme allows for a maximum CFL number as high as one.
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In the first step (Eq.(4.8)), the non-linear term (N(u)), defined on Eq. (4.1) is advanced

explicitly via a third order stiffly stable scheme (SS3) [74]. In the second fractional step,

the incompressibility constraint (Eq. (4.3) ) is enforced by requiring that the second

intermediate velocitŷ̂u is divergence free, i.e.∇ · ˆ̂u = 0. This enforcement is done by

applying the divergence operator to both sides of equation (4.9), and consequently solv-

ing a Poisson pressure equation with Neumann type boundary conditions. Details on the

solution of this system of equations are presented in [33]. Finally, in the third fractional

step, the linear termsL (u) are solved with an implicit modified Helmholtz equation

solver, in order to obtain the final velocity (un+1) field at each time step. The values

of the coefficientsαq, βq of Eq. (4.8) andγ0 of Eq. (4.10) can be found on [74, 100].

The weakly dissipative nature of such an approximation is helfpul in stability-sensitive

under-resolved problems.

The quantity ¯pn+1:

∫ tn+1

tn

∇p′dt = ∆t∇p̄n+1 . (4.11)

is an intermediate scalar field, the pseudopressure, that ensures that the final velocity

vn+1 is incompressible. Hereafter, we will refer to this quantity as the pressure. In Eq.

(4.9), the incompressibility constraint is enforced, i.e.it is assumed that∇ · ˆ̂v = 0 and

the Poisson equation is solved for the pressure:

∇2p̄n+1 = ∇ ·
(
− û
∆t

)
= f . (4.12)

The boundary conditions for the velocity field are enforced in Eqs. (4.8)-(4.10) and

an analogous approach is followed forρ′. However, the correct choice of boundary

conditions for the pressure Poisson equation (PPE) Eq. (4.12) is dictated by the need for

temporal accuracy of the splitting scheme, but most importantly, by the fulfillment of a
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compatibility condition (see section 4.2.4). Satisfaction of the compatiability condition

is of paramount importance for existence of a solution for ¯pn+1 [54, 74, 101, 33]. For

the temporal discretization used in this work, the appropriate boundary conditions for

the PPE are given by [74]

∂p̄
∂n
= n ·


Je−1∑

q=0

βqN(un−q) + νβqL (un−q)

 (4.13)

where the coefficientβq take the same values as in the SS3 scheme described on Eqs.

(4.8)-(4.10). Further detail on the derivation of these boundary conditions and their role

with respect to the compatibility condition is given in references [74, 33]. Guermond

and Shen [59, 60] demonstrate that the splitting scheme (Eqs. (4.8), (4.9), (4.10) and

(4.12) ) isO(∆t2) accurate. Finally, note that, throughout the remainder ofthis text, we

will use p to represent the (pseudo)pressure as defined in (4.11).

4.2.2 Spatial discretization

Spectral multidomain penalty method

In an under-resolved simulation relying on element-based higher-order accuracy dis-

cretization techniques, a preferred location for the appearance of spurious Gibbs oscil-

lations are the physical boundaries and subdomain interfaces [65, 25]. Since at these

locations the highest resolved Legendre modes are most oscillatory [12], the numerical

noise, caused by aliasing associated with the nonlinear terms in the governing equations,

is most likely to manifest itself. This issue is compounded by the strong enforcement of

boundary conditions and across-subdomain communication (patching conditions) [25].

In such a problematic situation, SMPM provide an efficient means of enabling numer-
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ical stability, without loss of high accuracy, at the subdomain interfaces by collocat-

ing both governing equation and boundary/patching condition at the physical bound-

ary/subdomain interface interior. As a result, the solution transitions more stably and

smoothly from the subdomain’s boundary into its interior. Inherent in a penalty scheme

is that boundary conditions are enforced weakly as is alsoC0 andC1 continuity of the

function at the interfaces, i.e. the discretization is discontinuous [64, 25]. The weak er-

ror associated with the weak enforcement of boundary conditions and intra-subdomain

continuity is no greater than the order of the numerical scheme [64, 25].

In what follows, we discuss the penalty formulation associated with each of the op-

erators (i.e., non-linear advective, pressure, and viscous/diffusive) within the temporal

discretization scheme described in§4.2.1. In the penalty formulation of the nonlinear

and viscous terms, all relevant equations are written in terms of theu-velocity without

loss of generality.

Non-linear advective operator The explicit nonlinear term advancement in Eq. (4.8)

is treated as a hyperbolic equation and the associated formulation is adapted accordingly

[25]. Writing the time derivative in continuous form, for thesake of compactness, for a

pointk located at a subdomain interface, we have [65]

∂uk

∂t
= N(uk) − τkQ(x)[αku

k(x, t) − gk(x, t)] (4.14)

whereτk are the penalty coefficients,Q(x) are effectively Dirac delta functions which are

non-zero only at the interfaces of the subdomain (where the penalty terms are nonzero).

The coefficientαk and the functiongk(x, t) are defined below.

The appropriate value of the penalty parameterτk is computed based on conservation

of energy considerations of the linear advection equation [66]. Numerical stability is
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established by setting

τk =



1
2ω

2
Lx
, at vertical interfaces

1
2ω

2
Lz
, at horizontal interfaces

(4.15)

whereLx and Lz are the horizontal and vertical extents of the subdomaink, andω =

2/N(N + 1) is the GLL weight. Ifn is the vector normal to a subdomain interfacei, and

U (i)
p the velocity at a pointp along the particular interface, the coefficientαk is given by

αk =



|U (i)
p | if U (i)

p · n < 0

0 otherwise

(4.16)

Finally, the boundary/patching operators,gk(x, t) of thek-th subdomain are given by

gk(x, t) =



αku∗(x, t) at interfaces

αk f (x, t) at physical boundaries

(4.17)

whereu∗(x, t) is the velocity (or density) at the corresponding interface of the neighbor-

ing subdomain, andf (x, t) is the externally prescribed value of the boundary condition

at the subdomain interface under consideration.

Viscous/diffusive operator In this case, the starting point of our presentation is Eq.

(4.10), which, on account of the fully implicit scheme for the viscous/diffusive terms, is

recast as a modified Helmholtz equation

−
ˆ̂u
γ0
=
ν∆t
γ0

L (un+1) − un+1 . (4.18)

Settingε = ν∆t/γ0, the penalized form of equation (4.18) is

−
ˆ̂u
γ0
= εL (un+1) − un+1 − τk

kQ(x)[αuk(x, t) + βεn · ∇uk(x, t) − gk(x, t)] (4.19)

whereτk is the penalty coefficient, andQ(x) has the same definition as in the advective

term treatment. The constant coefficientsα andβ are weights for the continuity at the
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function and derivative respectively, which in practice are set to one. The penalty coef-

ficient τk is also computed through energy conservation considerations for the discrete

diffusion equations [65]. At the subdomain interfaces,τk, lies within the bounds

1
ωεβ

[
ε + 2κ − 2

√
κ2 + εκ

] 2
LI

x

≤ τk ≤
1
ωεβ

[
ε + 2κ + 2

√
κ2 + εκ

] 2
LI

x

(4.20)

whereκ = ωα/β andω has the same definition as in the advective term treatment. As

indicated by Eq. (4.20), one can experiment with the exact choice ofτk and, thus, the

degreeoof enforcement of the continuity of the function andderivative between sub-

domains. The closer the value ofτk to the upper limit of Eq. (4.20), the stronger the

enforcement at the interfaces. In practice, for the subdomain interfaces, the value of the

penalty coefficient is chosen to provide maximum stability and efficiency (the latter in

terms of the associated iterative solver), and its value is typically case dependent. For

boundary conditions, the following penalty coefficients are used [66, 25]

τk =



ε
αω2

(
2
L

)2
for Dirichlet boundary conditions

1
βω

(
2
L

)
for Neumann boundary conditions

(4.21)

whereL represents the dimension of the subdomain normal to the boundary. Finally, the

boundary/patching operators,gk(x, t) of thek-th subdomain are given by

gk(x, t) =



γuk(x, t) + δεn · ∇uk(x, t) at subdomain interfaces

f (x, t) at physical boundaries

(4.22)

whereγ andδ are constant coefficients with the same function asα andβ.

Pressure Poisson equation The penalty formulation of the PPE (Eq. (4.12)) is similar

to the one presented above for the viscous/diffusive operator. As in previous work [71,

33], one treats the elliptic PPE as a steady state version of the diffusion equation and

sets the coefficientε equal to 1.

∇2pk + τkQ(x)
(
αpk + βn · ∇pk − g∗(x)

)
= f k, (4.23)
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where the coefficientsτk, Q(x), α andβ have the same definitions as those appearing in

Eq. (4.20), andf is the forcing term defined on Eq. (4.12). The upper and lower bounds

for τk are the same as those appearing in Eq. (4.20). As in the viscous/diffusive term

treatment, we chose an intermediate value ofτk which provides maximum numerical

stability and, most importantly, optimum efficiency of the iterative PPE solver. Finally,

the boundary/patching operatorsg∗(x) of thek-th subdomain are

g∗(x) =



γp∗ − δn · p∗ for patching conditions

fp(x, t) for boundary conditions

(4.24)

Note that, as indicated in section 4.2.1, the values of the boundary conditionfp(x, t) are

those given by Eq. (4.13) which satisfy the compatibility condition presented in section

4.2.4.

As a general conclusion for this section, there is no specialtreatment for the subdo-

main corners. They are treated as any other point along each of the interfaces on which

they reside.

4.2.3 Additional Stabilization Measures

Incorporation of a multidomain penalty scheme in the flow solver provides it with en-

hanced numerical stability properties that enable higher degrees of under-resolution.

However, this form of improved numerical stability is restricted only to the vicinity

of subdomain interfaces and physical boundaries [25]. For ahigher-order polynomial

discretization, additional measures need to be implemented to ensure numerical stabil-

ity of the solution in the interior of a subdomain. To this end, dealiasing by padding

[14, 12] is applied during the computation of the nonlinear terms (equation (4.8)) along
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with spectral filtering after each of the fractional steps (Eqs. (4.8)-(4.10)) of the tem-

poral discretization. Finally, an interfacial averaging procedure [25] is applied at the

subdomain interfaces.

Dealiasing

This type of error is inherent in the convolution sums associated with the modal repre-

sentation of the non-linear termsN(u) (see Eq. (4.1) and reference [14]). Higher modes,

beyond the highest resolved mode for the particular GLL gridat hand, are generated dur-

ing the computation of the non-linear terms in Eq. (4.1) and are aliased onto highest re-

solved modes [12, 84]. In an under-resolved simulation, where any viscously-dominated

scales are not captured, this error accumulates over time through the persistent action

of the non-linear terms, often to catastrophic numerical instability [53]. For the specific

case of the skew-symmetric form of the non-linear terms considered in this work, the

two products,u · ∇u and∇ · (uu), have to be dealiased. For the sake of simplicity, the

dealiasing procedure will be shown foru · ∂u
∂x . It can be extended in a straightforward

manner to all non-linear products in Eq. (4.1) and the advective terms in Eq. (4.2). The

dealiasing technique implemented in this work is outlined below in individual steps,

following the procedure presented in [14]:

1. In each two-dimensional subdomain, construct the (N + 1) × (N + 1) matrices,

UN and ∂UN

∂x , which contain the nodal values of theN − th order inteprolating

polynomial functionuN(x, z, t) and itsx-derivative, respectively.

2. Compute the matrices of modal coefficients associated withUN and ∂UN

∂x on each
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subdomain by applying a two-dimensional Legendre transform:

ŨN = M NUNMT
N (4.25)

∂̃UN

∂x
= M N

∂UN

∂x
MT

N . (4.26)

M N is a matrix of dimension (N+1)×(N+1) that performs the discrete polynomial

transform from nodal form to modal form [7]

3. In each subdomain, consider a finer GLL grid of polynomial order M. Choose

M ≥ 3N/2 + 1/2 for an odd value ofN , or M ≥ 3N/2 + 1 for an even value of

N. Pad the modal expansions inŨN and ˜∂UN

∂x by adding zeros to all modes of order

greater thanN and construct the matrices̃UM and ˜∂UM
∂x as

ũM
i j =



ũN
i j for i, j = 1, . . . ,N

0 for i, j = N + 1, . . . ,M

(4.27)

∂̃uM
i j

∂x
=



∂̃uN
i j

∂x for i, j = 1, . . . ,N

0 for i, j = N + 1, . . . ,M

(4.28)

4. Go back to nodal form with the new expanded discrete modal basisŨM and ∂̃UN

∂x

UM = BMŨMBT
M (4.29)

∂UM

∂x
= BM

∂̃UM

∂x
BT

M (4.30)

whereBM is a matrix, of dimension (M + 1)× (M + 1), that performs the transfor-

mation from modal space to nodal space [7] on the higher,M-th order grid.

5. Perform the multiplication

(
U
∂U
∂x

)

M

= UM
∂UM

∂x
(4.31)

on theM-th order grid.

69



6. Convert the discrete function
(
U∂U

∂x

)
M

onto its modal form


˜

U
∂U
∂x


M

= M M

(
U
∂U
∂x

)

M

MT
M (4.32)

7. Remove the aliased modes from theM-th order modal expansion of the nonlinear

product through padding


˜

ui, j
∂u
∂x i, j


N

=


˜

ui, j
∂u
∂x i, j


M

for i, j = 1, . . . ,N (4.33)

8. Finally, return the nonlinear product into nodal form on theN-th order grid:

(
U
∂U
∂x

)

N

= BN


˜

U
∂U
∂x


N

BT
N

As shown in section 4.3.3, the dealiasing procedure takes importance when non-linear

effects dominate the dynamics of the flow (i.e., high Reynolds number). If it is not

applied, the solution produced by the solver can contain small scale errors, which can

potentially evolve in time and give an unrealistic picture of the flow.

Spectral filtering

On a particular subdomain, the equivalent modal form of Eq. (2.1) is

u(x, z, t) =
N∑

i=0

N∑

j=0

ũ(xi , zj , t)Pi(x)Pj(z) (4.34)

whereũ(xi , zj , t) are Legendre modal coefficients evaluated at point (xi , zj), andPk, k =

0, . . . ,N is the k-th Legendre polynomial. Within each subdomain, the filter acts on

this expansion series by multiplying each one of the modal coefficients with a weight

function:

uf (x, z, t) =
N∑

i=0

N∑

j=0

σiσ jũ(xi , zj , t)Pi(x)Pj(z) , (4.35)

70



whereσk, k = 0, . . . ,N is a spectral filter function of orderp. This study employs the

commonly used exponential spectral filter [53, 7, 25]:

σk = exp

[
−α

(
k
N

)p]
, (4.36)

whereα = − ln ǫm, andǫm is the machine precision. From the discrete perspective, i.e.

with respect to its application to the (N + 1)× (N + 1) matrixUN of nodal values on the

particular subdomain, the filtering procedure consists of the following steps:

1. Compute modal coefficients on each subdomain (see previous section)

ŨN = MNUNMT
N (4.37)

2. Multiply each of the modal coefficients ŨN by the corresponding filter matrix

LN = diag(σ0, . . . , σN)

Ũ f
N = (LNMN)UN(MT

NLT
N) (4.38)

3. Recover the nodal representation of the filtered function

U f
N = (BNLNMN)UN(MT

NLT
NBT

N) (4.39)

= (BNLNMN)UN(BNLNMN)T (4.40)

DefiningFN = BNLNMN, the filtering procedure is effectively reduced to

U f
N = FNUNFT

N . (4.41)

A common concern with the implementation of spectral filtering in spatially continu-

ous spectral element methodologies is that filtering does not preserve the patching and

boundary conditions and thus specific measures need to be adopted [87, 11, 7]. Such a

concern does not exist when using the inherently discontinuous penalty method because
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the error induced by the filtering operation is of the same order as the penalty scheme

[64], i.e. minimal.

In the incompressible spectral multidomain solver presented in this work, spectral fil-

tering is applied across all three fractional steps when advancing the solution from time

level (n) to level (n+ 1). First, further suppress aliasing effects, filtering is applied after

advancing the non-linear terms in (4.8). The solution to thePPE (4.12) is then filtered to

smooth out any errors induced at the subdomain interfaces due to the discrete estimate

of ∇ · û [23]. Finally, we filter the solution of (4.12). Although thefiltering of the re-

sult of the explicit nonlinear term advancement is most critically important, we find that

filtering in the subsequent two fractional steps, which involve linear operators, provides

optimal robustness to our solver.

Interfacial averaging

Despite the visible gains in solver robustness enabled by the penalty scheme, spectral

filtering and de-aliasing, numerical instability will intermittently appear in the form of

gradually growing spikes at a small number of subdomain interfaces. These events are

attributed to the inherently discontinuous nature of the penalty scheme and the modifica-

tion of the interfacial values of the solution following spectral filtering. These interfacial

singularities, though limited in space, can grow catastrophically in time. As a counter-

measure, an interfacial averaging technique is used [28, 25] when the following criterion

is met:
|uk

i − u∗i |
|uk

i + u∗i |
> Cave , (4.42)

whereuk
i represents the value of the solution (velocity component ordensity) located

at one side of the interfacei belonging to subdomaink, u∗i is the corresponding value
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on the same interfacei originating from the neighboring subdomain. If Eq. (4.42) is

satisfied, an averaging operation is performed

uk
i = u∗i =



0.5× (uk
i−1 + u∗i+1) for vertical interfaces

0.5× (uk
i−N+1 + u∗i+N+1) for horizontal interfaces

(4.43)

In practice, we set the coefficientCave≤ 0.005, which results in a very small percentage

of the interfacial nodes being subject to the averaging procedure.

4.2.4 Discrete Pressure Poisson equation

The numerical solution of the non-symmetric linear system that arises from the SMPM

discretization of the PPE, of Eq. (4.12), is by far the most demanding and costly com-

ponent of our Navier-Stokes solver. In this section, the most important building blocks

for iterative numerical solution of SMPM-discretized PPE are mentioned. For a detailed

analysis of the solution and the main characteristics of theproblem, the reader is referred

to [33] or Chapter 5.

This is a classical problem encountered on the numerical solution of the incompress-

ible Navier-Stokes equations when a projection technique,such as the one used in this

work (see section 4.2.1), is used to decouple the velocity field from the pressure field.

The result is a Poisson equation of the form (4.12) with Neumann type boundary con-

ditions (4.13). From the continuous perspective, an in order to be able to solve the

equation, a compatibility condition has to be fulfilled. This condition requires the vol-

ume integral of the forcing terms to be equal to the net flux along the boundaries. In this

work, we followed the procedure outlined by Karniadakis et al. [74], provides a detailed

presentation on how to compute these values for the PPE, in the context of the temporal

discretization of section 4.2.1, as ultimately indicated in Eq. (4.13) of this document.
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At the discrete level, the solution of the linear system of equations of the discretized

pressure Poisson equation, if exists, is only determined upto an additive constant [24]

which translates into the associated Poisson matrix being singular. Moreover, because

the compatibility condition is never satisfied exactly, thesystem of equations has no

solution, i.e. is inconsistent. Consistency of the system isenabled by making the right

hand side of equation the PPE orthogonal to the left null singular valueu0 of the corre-

sponding Poisson matrix [101].

Once the system of equations is made consistent, a preconditioner matrixM has to

be constructed to obtain an efficient solution in the framework of the GMRES iterative

technique. In this work, we use a custom-designed a two-level preconditioner composed

by a coarse-grid component, that accounts forh−refinement, and a fine non-overlapping

additive Schwarz component, that accounts forp−refinement [33].

4.3 Numerical results

Four benchmarks are examined to validate the SMPM-discretized incompressible

Navier-Stokes solver. Three of them involve a non-stratified fluid (Taylor vortex, lid-

driven cavity and double shear layer), whereas the remaining one include a background

density stratification (propagation of an internal solitary wave of depression type). For

two benchmark cases, a quantitative assessment of solver accuracy is possible by com-

paring to an analytical solution. The remaining benchmarksdemonstrate accuracy and

robustness of the flow solver for problems with strong nonlinearities and/or fully non-

periodic boundary conditions.
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All the benchmark simulations require the use of the two-level preconditioner described

in section 5.6 (Eq. (5.49)) for the iterative solution of thePPE linear system of equa-

tions to converge. The total number of iterations on each time step was found to be

case-dependent. Typically, this iteration count is below 90 iterations for the highly non-

linear cases, and around 40 iterations for the low-Reynolds number cases. In terms

of the CPU time per timestep, approximately 80% of it was dedicated to solving the

PPE. The computation of the nonlinear terms becomes three-fold more expensive when

a dealiasing procedure is included.

4.3.1 Taylor vortex

The choice of this benchmark is motivated by the availability of an analytical solution,

which allows us to assess the accuracy of our solver. The flow field initially consists of

a periodic array of vortices whose velocity field diffuses out with time. The left panel

of Fig. 4.1 shows the general structure of the streamlines ofthis flow. The domain is a

periodic box with dimensions (x, z) ∈ [−1,1]2, 0 ≤ t ≤ 1. The Reynolds number of the

simulation isRe= UmL/ν = 100, whereUm is the magnitude of the maximum velocity

on the domain,L is the diameter of the vortex, andν is the kinematic viscosity. The

initial condition is computed from the analytical solution[110, 75] fort = 0.

u(t, x, z) = − cos(πx) sin(πz) exp

(
−2π2t

Re

)
(4.44)

w(t, x, z) = sin(πx) cos(πz) exp

(
−2π2t

Re

)
(4.45)

p(t, x, z) = −cos(2πx) + cos(2πz)
4

exp

(
−4π2t

Re

)
(4.46)

The right panel of Fig. 4.1 shows the convergence plot of theL∞-error norm of the

horizontal velocity as a function of the polynomial degreeN (p-refinement over a fixed

number of subdomains) and for different mesh sizes (i.e.,h-refinement). As expected,
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the results show exponential convergence, a characteristic of spectral methods, for every

level ofh-refinement.

In this case the importance of the two-level preconditionerseemed not to be as dramatic
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Figure 4.1: Taylor Vortex problem. Left: Structure of the streamlines of the flow.
Right: L∞-error norm of the horizontal velocity as a function of poly-
nomial degreeNand level ofh−refinement (3× 3, 5× 5, and 10× 10
subdomains) forRe= 100.

as in the other benchmark cases. The authors conjecture thatthis behavior is due to the

smoothness of the solution and the double periodicity of thedomain.

4.3.2 Lid-Driven Cavity flow

The lid-driven cavity is a standard benchmark for testing anincompressible flow solver

subject to non-periodic boundary conditions [9, 31]. The computational domain is a

square box defined over (x, y) ∈ [0,1]2. The top boundary moves with a steady velocity,

whereas the lateral boundaries and the bottom of the domain are impermeable walls

(i.e., no-slip boundary conditions). The Reynolds number for this case isRe= UL/ν =

103, whereU represents the characteristic velocity at the top of the cavity, L is the

characteristic length of the box, andν is the kinematic viscosity of the fluid. To avoid
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the singularities that arise at the top corners due to discontinuities of theu velocity when

a spectral method is used [9, 108], we consider a modified lid-driven cavity [100], where

the top boundary condition is given by

u(x,1) = −16x2
(
1− x2

)
(4.47)

The structure of the streamlines of the velocity field are shown in Fig. 4.2 for a particu-

lar number of uniformly sized subdomains (10×10), and a varying value of polynomial

approximationN (p−refinement). As expected, the solution agrees well with thatcor-

responding to the previously published spectral solution of Botella et al.[9]. Viscous

diffusion from the moving boundary generates a large vortex in the center of the do-

main. Two smaller vortices then form at each corner, the one at the bottom right corner

being the visibly larger one of the two. Once the resolution is increased (Figs. 4.2b, and

4.2c), the vortices are better resolved, which is translated into a more defined structure.

Figure 4.2: Streamlines on the Lid-driven cavity flow att = 20 sec for 10× 10
subdomains andRe= 1000. a)n = 9. b)n = 12. c)n = 15.

In order to validate the performance of the method for localized resolution, the same

case with a non-uniform grid distribution was executed, andthe streamlines of the ve-

locity field are shown in Fig. 4.3.
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Figure 4.3: Streamlines on the Lid-driven cavity flow att = 20 sec for a 10× 10
grid with non-uniform subdomains,n = 14, filter orderp = 11, and
Re= 1000.

Running with a larger number of uniform or non-uniform sized subdomains (in the latter

case, with smaller domains focused at the bottom corners) orwith a larger value ofN

produces the same streamline structure at steady state. As afina remark, in this test case,

the use of the coarse component of the two-level preconditioner is imperative to ensure

an efficient iterative solution of the PPE, as the level ofh-refinement (i.e. number of

subdomains) is already significant, in addition to the non-periodic boundary conditions,

the presence of pronounced non-linear effects, and a non-smooth behavior of the flow

process. Without this component, the iterative solution ofthe PPE does not converge. In

addition, this test case served as a platform to check the importance of spectral filtering

for the stability of the solver.
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4.3.3 Double shear layer

The double shear layer is a commonly used benchmark [123, 89]to test the performance

of the solver when non-linear effects have a dominant impact in the simulation. It is also

a useful platform to assess the effect of the stabilization techniques, discussed in section

4.2.3, on the flow structure at the final time. The physical domain is a doubly-periodic

box defined over (x, z) ∈ [−1,1]2. Two shear layers in the horizontal velocity field are

positioned symmetrically around the horizontal centerline. The two layers are subject

to an initial periodic vertical velocity perturbation which, by means of an inviscid in-

stability [119], gives rise to two billow-like vortices. The interaction between each of

the vortices and its periodic image gives rise to a strainingmotion that forces the braid

region in-between them to become progressively thinner, without, at the Reynolds num-

bers considered, undergoing the counteracting effect of viscosity [125]. The braid region

gradually becomes marginally resolved, thereby requiringa robust spatial discretization

scheme such as the SMPM to avoid numerical instability.

The initial conditions are given by [123]

u =



tanh(ε(z+ 0.5)) for z≤ 0

tanh(ε(0.5− z)) for z> 0

(4.48)

w = δ cos(πx) (4.49)

whereε = 40, with 1/ε providing a measure of the thickness of the shear layer and

δ = 0.05 is the amplitude of the perturbation inw. The Reynolds number for this

simulation isRe= UL/ν = 104, whereU is the maximum horizontal velocity,L is the

characteristic length of the vortices andν is the kinematic viscosity of the fluid. The

vorticity field at timet = 2 is shown in Fig.4.4 for filter ordersp = 12 andp = 10.
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Figure 4.4: Vorticity contours for the dealiased solution for the double shear layer
test case att = 2s for 30× 30 subdomains,n = 14, Re= 104. Left:
Filter orderp = 12. Right: Filter orderp = 10

The vorticity field structure in the right panel of Fig. 4.4 isin agreement with those

presented elsewhere [123, 89]. Furthermore, as shown in theleft panel of the same

figure, inaccurate, i.e. too high, a value of the filter orderp can artificially modify the

flow dynamics; spurious modes are generated, focused on the subdomain corners close

to the braids. These spurious higher modes lead to the formation of unphysical vortices,

which grow in time, tearing apart the braids and leading to aninaccurate representation

of the flow field. A convergence test was also done, and shown inFig. 4.5, in terms

of p−refinement to see how the solution behaves when a different polynomial degree is

used for a fixed number of subdomains.

As shown in Fig. 4.5a, a low order polynomial degree leads to apoor resolution of the

vortices and braids of the layers. Once the resolution increases (Fig. 4.5b) the expected

structure of the vortices is obtained, and it is even better resolved with a higher resolution

(Fig. 4.5d and 4.5d). In addition, we have found that the benefits of the dealiasing

technique become important when a robust numerical solution is required at as high as

Reynolds number as possible. For the double shear layer, atRe = 105 or higher and

resolutions comparable to those considered in Figure 4.4, dealiasing is imperative for a

80



Figure 4.5:p−refinement convergence test for the double shear layer. Vorticity
contours att = 2s for 30× 30 subdomains andRe= 104. a)n = 6, b)
n = 9, c)n = 14, d)n = 19.

both numerically stable and accurate solution. Finally, the simulation in figure 4.4 used

uniformly sized subdomains. Additional simulations were performed by positioning

shorter subdomains at the vertical levels of the billow vortices, with subdomain heights

becoming as small as 1/4 the height of those used in figure 4.4; an identical vorticity

field structure resulted.
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4.3.4 Propagation of a solitary non-linear internal wave of depres-

sion type

Large-amplitude, long internal solitary waves (ISW) are horizontally propagating waves

guided by the top and bottom surfaces of the stably stratifiedocean or lakes [63, 8]. Such

waves are characterized by a distinct balance between strong nonlinearity and physical

dispersion which allows them to propagate over long distances while maintaining a very

steep waveform. The generation, propagation and dissipation of ISWs are phenomena

of immediate relevance to physical oceanography and limnology.

From a purely numerical standpoint, a freely propagating ISW is an ideal platform

for diagnosing the dissipative and dispersive properties of a particular spatiotemporal

discretization scheme for the incompressible Navier-Stokes equations under the Boussi-

nesq approximation. One has to simply track the propagatingthe wave in an environ-

ment devoid of any mechanisms that will force the wave to dissipate, disperse or undergo

wave-scale structural transformations. Such mechanisms include bottom friction, vari-

able bathymetry (bottom topography) and oncoming currents, among others. Moreover,

the propagation of a fully-nonlinear, internal solitary wave in a stably stratified fluid is

a phenomenon of immediate relevance to physical oceanography and limnology [63].

The velocity and density fields of a fully-nonlinear, fully-nonhydrostatic internal solitary

wave field in the Boussinesq limit can be obtained by solving the Dubreil-Jacotin-Long

(DJL) nonlinear eigenvalue problem as given by

∇2η +
N2(z− η)

c2
η = 0 (4.50)

with

η = 0 atz= 0 = H
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and

η→ 0 asx→ ±∞

whereη(x, z) is a vertical displacement of isopycnal (iso-density) surfaces relative to a

moving frame of reference with the constant speedc in the horizontal,x−direction;H

is a constant total depth of the fluid column;N2(z) is the Brunt-V̈ais̈alä frequency as

defined by

N2(z) = − ρ̄(z)g
ρ0

, (4.51)

whereρ̄(z) is an equilibrium density distribution offset from the reference densityρ0 and

g is a gravitational constant taken asg = 9.81[m/s2] [85]. Given a solution set (c, η) for

the wave phase speed and the wave-induced isopycnal displacement, the corresponding

solution for the wave velocity/density fields is obtained through the relation

(u,w, ρ) = (−cηz, cηx, ρ0 + ρ̄(z− η)) (4.52)

The eigenvalue problem (4.50) is solved by using the Matlab program [29] that imple-

ments a nonlinear optimization algorithm formulated by Turkington et al. [122].

The DJL equation is a result of a rigorous derivation from theinviscid, non-diffusive

equations of fluid motion without any asymptotic projections [122]. Therefore, a wave

solution obtained from the DJL equation is an exact solutionto the incompressible Eu-

ler equations and is expected to decay in a, numerically simulated, viscous and diffusive

environment. It is thus reasonable to expect that the numerical solution of the Navier-

Stokes equations initialized with an ISW computed through the DJL equations solver

will asymptotically preserve the corresponding inviscid (DJL) solution in the limit of

vanishing viscosity and diffusivity.

The computational domain is defined over (x, z) ∈ [0,24] × [0,H = 2] with units in
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meters. We impose periodic boundary conditions in the horizontal x−direction. Peri-

odicity in the streamwise direction allows us to track the wave over long propagation

distances, provided of course that the domain length is sufficiently longer that the ac-

tual ISW wavelength. Impermeable, nondeformable, free-slip boundary conditions for

velocities (uz = 0,w = 0) along both the top (z = H) and bottom (z = 0) boundaries

of the domain are used. We choose a no-flux condition for the density, ρz = 0 at the

top and bottom surfaces. However, we find that our numerical results are essentially the

same even when the no-perturbation conditionρ = 0 is used instead. With the use of the

stress-free boundary conditions, formation of viscous boundary layers can be avoided

and the only physical mechanisms for wave decay are viscous diffusion of momentum

and mass diffusion. The equilibrium density profile is prescribed by the analytical func-

tion

ρ̄(z) = −20 tanh((z− 0.2667)/0.1333) (4.53)

with the reference densityρ0 = 1020[kg/m3]. We set the amplitude of the test wave

to 0.3467H, which is quite large, close to the limit amplitude allowed by Eq.(4.50) for

the given stratification. Given the present wave amplitude and the density stratification,

the wave speed is found to be|c| = 0.400928[m/s] after solving Eq.(4.50). The corre-

sponding wave field solution is adopted as an initial condition for the incompressible

Navier-Stokes solver and is positioned at the center of the domain (see Figure 4.6-a).

This inviscidly-balanced, initial state begins to propel itself in a single direction de-

pending on the sign of the phase speed,c (i.e., positivex−direction, if c > 0; negative

x−direction, otherwise). The computational domain is divided into forty equally-spaced

subdomains in x and four equally-spaced subdomains inz with a polynomial order of

N = 32 in bothx andzdirections for each domain. For later reference we define here the

wave Reynolds numberRew in terms of the wave speedc and the total depthH, as given

by Rew = cH/ν, whereν is a kinematic viscosity. The density diffusivity κ is chosen to
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be equal to the kinematic viscosity for all test cases in thissection.

Figure 4.6 shows the density contours taken att = 120[s] (after 40,000 steps with a

timestep∆t = 0.003[s]) for Rew = 1.6 × 105 andRew = 4 × 104 along with the initial

density contour att = 0. During this time interval, the wave has traveled for a distance

corresponding to ten wavelengths (i.e. the wave has traveled two cycles through the

present,x−periodic domain). It is evident from the figure that the shapeof the wave is

preserved quite well, and no unphysical, dispersive waves are observed after such long

time integration. Restricting ourselves to visual inspection, no visible differences in the

wave shape across Reynolds numbers are distinguishable in the present figure.

Figure 4.6: Snapshots of density contours of propagating internal solitary wave:
a) initial condition att = 0[s]; b) at t = 120[s] for Rew = 1.6 × 105;
and c) att = 120[s] for Rew = 4 × 104. The wave propagates to the
left, and the domain is periodic inx−direction. Ten equally-spaced
contour levels in the range [1005,1035][kg/m3] are shown.

In Figure 4.7 ab we measured the amplitudeζmax and the wavelengthλ as functions of

time t for Rew = 1.6 × 105 andRew = 4 × 104. The wave amplitude is defined as the

maximum displacement of the thermocline (an isopycnal linethat passes through the
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location in the vertical where the density gradient is the maximum in an undisturbed

fluid). The wavelength is then defined as,

λ =

∫
Ω
ζ(x, t)dx

ζmax
, (4.54)

whereζ(x, t) is a displacement function of the thermocline. These wave properties, nor-

malized by their respective initial valuesζ0 andλ0 in the figure were extracted from the

numerical solution by means of spline interpolation. From Figure 4.7 ab, both ampli-

tudes and wavelength generally decay as the time increases,and the rate of the decay is

slower for the lower viscosity case (Rew = 1.6× 105), as expected.

Figure 4.7: Time histories of wave properties obtained fromnumerical simula-
tions: a) wave amplitude normalized by its initial value; b)wavelength
normalized by its initial value; c) wave travel normalized by the initial
wavelength; and d) wave phase difference from the inviscid limit.

Small, high frequency fluctuations appearing in Figure 4.7 are primarily caused by dis-

continuities in the numerical solution inherently presentat the subdomain interfaces on

account of the penalty treatment. When the wave passes through a subdomain inter-

face, some weak numerical noise is generated through these discontinuities. This noise,
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not entirely removed by spectral filtering, remains in the domain, weakly modifying the

numerical solution over long time integration. Note that inthe present simulations we

used rather a weak, exponential filter of orderp = 16. Although the above numerical

noise can be fully eliminated by further reducing the order of the spectral filter, such

tuning toward better appearance of the numerical results isnot pursued here, as our pri-

mary goal is the conservation of the physical properties of afreely propagating wave in

weakly-dissipative media with minimal artificial damping.

Figure 4.7-c exhibits the distance travelled by the wave trough as a function of time.

This figure, at the leading order, suggests that the wave propagation speed is the same

with the speed at the inviscid limit (associated with the solution of the DJL equation)

for the values ofRew considered here. For a more detailed comparison, the relative

wave phase (i.e., the difference of the actual simulated wave trough location from that

expected in the inviscid limit) is calculated and shown in Figure 4.7-d. The result is,

again, normalized by the initial wavelength. The numericalnoise mentioned above is

again presente here. However, most importantly, the phase difference becomes smaller

for the less viscous case (Rew = 1.6× 105), as expected. Figure 4.7-d also reveals that,

for both values ofRew, the wave propagates slightly faster than what it would in the in-

viscid limit; specifically, about 0.1 percent faster (relative to the corresponding inviscid

phase speed) forRew = 1.6×105 and about 0.3 percent faster for the caseRew = 4×104

on average. According to the (inviscid) nonlinear wave theory, a wave of larger am-

plitude (i.e. the less-dissipated high Rew ISW) propagates faster. In this regard, our

particular results are therefore opposite to our expectation. Possible reasons include the

time discretization error, the interpolation error in the measurements and the numeri-

cal noise mentioned above. Nevertheless, considering the fact that the phase difference

is maintained within a few percent of the wavelength after propagating for a distance
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of ten wavelengths, we believe that the wave phase propagation is well-captured in the

simulations considered here.
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CHAPTER 5

POISSON SOLVER 1

5.1 The pressure Poisson equation

5.1.1 Compatibility condition

In the KIO splitting scheme [74] presented on section 4.2.1,the PPE is obtained by

taking the divergence of Eq. (4.9)

∇ ·
ˆ̂u − û
∆t
= ∇ · ∇pn+1, (5.1)

and imposing a divergence-free condition to the intermediate velocity ˆ̂u

∇ · ˆ̂u = 0.

A Poisson equation with Neumann boundary conditions therefore results:

∇2p = ∇ ·
(
− û
∆t

)
= f on Ω, (5.2)

∂p
∂n
= n ·


Je−1∑

q=0

βqN(un−q) + νβqL (un−q)

 = q on Γ. (5.3)

The above expression for the Neumann boundary conditionq is used in the KIO scheme

to ensure consistency with the AB/BDEk time-discretization of the incompressible N-S

equations [74].

The right hand sidef and boundary operatorq must satisfy a compatibility condition for

the PPE (Eq. (5.2)-(5.3)) to have a solution. Specifically, the Poisson-Neumann problem

1The contents of this chapter are published on the article [33] T he numerical solution of the pressure
Poisson equation for the incompressible Navier-Stokes equations using a quadrilateral spectral multido-
main penalty methodwritten by Jorge Escobar-Vargas, Peter Diamessis, and Charles Van Loan
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is compatible (solvable) only if the volume integral (area integral in two dimensions) of

the right hand side is equal to the net flux along the boundaries, i.e. the boundary in-

tegral of the boundary conditions. By integrating Eq. (5.2) over the whole domain we

obtain ∫

Ω

∇2p dΩ =
∫

Ω

f dΩ, (5.4)

and by employing Gauss’ theorem

∫

Ω

∇2p dΩ =

∫

Γ

n · ∇p dΓ, (5.5)
∫

Ω

f dΩ =

∫

Γ

q dΓ. (5.6)

Therefore, the Poisson-Neumann problem (5.2)-(5.3) has a solution only if (5.6) is sat-

isfied [74, 101, 95, 58]. As already indicated in§4.2.1, in the original presentation of

the KIO scheme, it is emphasized that the boundary integral of (5.5) is transformed by

Gauss’ theorem into a volume integral where the divergence of the second term in the

original integrand vanishes. As a result,

Je−1∑

q=0

βq

∫

Ω

∇ · (N)n−q dΩ =
∫

Ω

∇ ·
(

û
∆t

)
dΩ (5.7)

must hold, which is indeed true through the AB/BDEk time-discretization, i.e. the com-

patibility condition is naturally satisfied.

5.1.2 Non-uniqueness of the pressure Poisson equation’s solution

In addition to the compatibility condition, the Poisson equation does not have a unique

solution because, by virtue of its boundary conditions, itssolution is some function plus

an additive constant. That is, given the Neumann boundary conditions

n · ∇p = gonΓ, (5.8)
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any function of the form

p(x) = g(x) + h, (5.9)

whereh is an indeterminate additive constant, satisfies the boundary conditions (5.3) and

is a solution to the PPE. Of course, in the spatially continuous (analytical) sense, once

the pressure field has been obtained in the second fractionalstep of the KIO scheme,

its determination up to an additive constant is a non-issue when computinĝ̂u through

(4.9) since only the the gradient of the pressure field (∇p) is required. However, for the

spatially discretized version of the KIO scheme, the non-uniqueness of solution to the

Poisson-Neumann problem generates its own set of challenges as the corresponding lin-

ear system of equations is nearly-singular though consistent (provided the compatibility

condition is satisfied). The above challenges, in a numerical framework, of compabil-

ity condition satisfaction and the non-uniqueness of the solution of the PPE motivate a

closer look at the SMPM discretization and its impact on the resulting Poisson matrix

structure.

5.2 The penalty-based discrete pressure Poisson equation

5.2.1 Penalty formulation at subdomain interfaces

The spatial discretization of the penalized PPE for a pointI1 (see Fig 2.1) located at an

interface (i.e. vertical or horizontal) takes the form [71]

∇2p(I1) + τQ(x)
(
αp(I1) + βn · ∇p(I1) − g(I2)(x)

)
= f (I1), (5.10)

where

g(I2)(x) = γp(I2) + δn · ∇p(I2). (5.11)
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In this case, the variablesα, β, γ, δ are constants of the penalty method, set to one in

practice [66, 25], andQ(x) is a Dirac delta function which ensures that the patching

condition is applied only along the subdomain interfaces.

Expressions and limits for the penalty coefficients are derived based on determination of

energy bounds in the evolution of the time-dependent linearized Burgers equation [66].

Following [25] the choice of penalty coefficients for the diffusion equation is found to

perform robustly for the PPE. As a result, at the subdomain interfaces, the penalty coef-

ficient must be chosen within the limits [66, 25, 65] (see section 4.2.2)

τ =
1
ωεβ

[
ε + 2κ − 2

√
κ2 + εκ

] 2
LI

x

≤ τ ≤ 1
ωεβ

[
ε + 2κ + 2

√
κ2 + εκ

] 2
LI

x

, (5.12)

whereω = 2/(N(N − 1)) is a GLL quadrature weight,ε is the corresponding diffusion

coefficient, set to one [71] andκ = ωα/β [66, 71]. For a horizontal interfaceI1, 2
LI

x
is

a mapping coefficient andLI
x the length of the subdomain. For a vertical interface, the

subdomain heightLI
z is used instead. The degree of enforcement of the patching con-

dition is set by the proximity of the penalty coefficient to the upper limit of Eq. (5.12).

Our practical experience dictates that a choice ofτ positioned closer to the lower limit

works robustly for the problem of interest. Finally, there is no special formulation at the

subdomain corners, which are treated as standard points along the vertical or horizontal

interfaces.

5.2.2 Penalty treatment at physical boundaries

In a similar vein, given that the PPE under consideration is subject to Neumann boundary

conditions, the penalty formulation for a pointB located on a physical boundary (see Fig.
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2.1) is given by

∇2pB + τQ(x)
(
βn · ∇pB − gB

)
= f B, (5.13)

with

gB = qB, (5.14)

whereqB is the prescribed value for the boundary condition at the boundary pointB,

given by Eq. (5.3), and the remaining variables are the same as for the interfacial case.

The penalty termτ is now defined as [66]

τ =
1
βω

(5.15)

whereω is again the GLL weight at the collocation pointB.

5.3 Properties of the discrete pressure Poisson equation

5.3.1 The discrete Poisson pressure equation

Once discretized, the pressure Poisson equation can be written as a linear system:

Ax = b, (5.16)

where the matrixA is the discrete analog of the penalized Laplacian and is constructed

from the tensor product definitions given in Eq. (2.6)-(2.7)augmented with the contri-

bution of the boundary/patching conditions at the boundaries/interfaces. Additionally,x

is the solution vector (i.e. the pressure), andb = ∇ ·
(
− û
∆t

)
is the right-hand-side vector

which contains information from the convective term and theNeumann boundary con-

ditions (see Eq. (5.2) -(5.3)).
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Fig. 5.1 shows the structure of the Poisson matrixA, for a 3 by 3 subdomain exam-

ple with order of polynomial approximationN = 8.

Figure 5.1: Left panel: SMPM Gauss-Lobatto-Legendre grid on the left (3× 3
subdomains withN = 8). Central panel: Structure of the correspond-
ing Poisson matrixA. Right panel: Structure of the contribution of
each subdomain into the global matrixA.

As shown in the exploded view of the right panel of Fig. 5.1, the smaller-size blocks

originate from the second derivative with respect tox (eqn (2.6)), whereas the remaining

elements account for the second derivative with respect toz (eqn (2.7)). The additional

entries within the matrixA, visible in the central panel of Fig. 5.1, correspond to the

contribution of boundary and patching conditions. Most of these contributions are rank

one matrices. In addition, and because of the intrinsic structure of the differentiation

matrix at the subdomain level, the global matrix is non-symmetric.

5.3.2 Singular value distribution of the Poisson matrix

Due to the non-symmetric structure of the matrix, and its complex eigenvalues, its spec-

tral properties are more effectively explored through a singular value analysis. The

singular value decomposition (SVD) of the matrixA is given by

A = UΣVT , (5.17)
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whereU andV are two orthogonal matrices that contain the left and right singular vec-

tors, andΣ is a diagonal matrix with the singular values as its diagonalentries. Fig. 5.2

shows the singular value distribution for the example matrix shown in Fig. 5.1. From

this figure, it is clear that the matrix is effectively singular by virtue of itsO(10−12) mini-

mum singular value which forces the condition number of the matrix (κ(A) = σmax/σmin)

to be ofO(≈ 1017). Section 5.4 demonstrates explicitly the connection between the zero

singular value and the non-uniqueness of the solution associated with the discrete Pois-

sonn equation.

Figure 5.2: Singular value distribution of the Poisson matrix A: Case of 3× 3
subdomains andN = 8

5.3.3 Compatibility condition revisited

The question arises whether Eq. (5.6) is the appropriate compatibility condition for the

penalized form of the PPE ? Volume integration of the PPE would have to first be per-

formed over each subdomain. In this case, an additional volume integral arises which

effectively is reduced to the along-interface and along-boundary integral of the penalty

terms in Eq. (5.10) and (5.13), respectively. There is no guarantee, primarily due to the

inherent discontinuity of the SMPM at the subdomain interfaces, that the sum of these

integrals across all subdomains will be zero, thereby allowing one to recover Eq. (5.6).

One may argue that a modified compatibility condition, whichtakes into account the

integral contribution of the penalty terms, might be more suitable, although the practical
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utility of such a modified condition is unclear.

For all practical purposes, in the simulations considered here, the difference between

the left and right hand side of Eq. (5.6) was found to be well above machine epsilon, the

discrepancy becoming greater with increasing degree of under-resolution. Whether this

discrepancy may be strictly attributed to the presence of the penalty terms or whether it

is also compounded by GLL quadrature errors in an under-resolved set-up [54], remains

unclear to us. Using the strategy originally proposed by Gottlieb and Streett [54], where

the right hand side of the PPE is augmented by a constant equalto the difference of

the right and left hand sides of (5.6) normalized by the area of the computational do-

main, did not produce a linear system of equations for which an iterative solver could

converge. From a practical standpoint, this observation suggests that, rather than focus

on satisfaction of the compatibility condition, it is more important to establish whether

the resulting linear system of equations is indeed solvable, i.e. consistent. This issue is

addressed in the next section.

5.3.4 Consistency of the linear system of equations

The system of equations (5.16) is consistent if

uT
0Ax = uT

0b = 0, (5.18)

whereu0 is the left null singular vector of the matrixA [52]. Eq. (5.18) indicates that

the PPE has a solution if the forcing vectorb is orthogonal to the left null singular vec-

tor u0. In reference [101], this rationale is outlined for matrices obtained for low-order

schemes and real eigenvalues, in the context of an eigendecomposition of the matrixA

and its transposeAT .
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In practice the condition (5.18) is usually not fulfilled, for reasons outlined in the previ-

ous section, and a regularization has to be applied to make the right hand side of (5.16)

orthogonal to the left null singular vectoru0 [101], i.e.

Ax = (I − u0uT
0 )b = b̂ (5.19)

whereb̂ is the orthogonal complement ofb ontou0. Consistency, as represented by Eq.

(5.18), is now ensured to machine epsilon since

uT
0Ax = uT

0 (b − u0uT
0b)

= uT
0b − uT

0u0uT
0b = 0 (5.20)

It is important to recall that if the PPE matrix is symmetric astandard eigendecompo-

sition may be used where there is only one null eigenvector which is a constant vector

[101]. In this case, the implementation of (5.19) is trivial. However, when the matrix

is non-symmetric, as is the case with the SMPM, the left null singular vectoru0 is no

longer constant and has to be explicitly computed. For a large matrix, typical of envi-

ronmental flow simulations with many degrees of freedom, thecomputational cost for a

full singular value decomposition (SVD) is prohibitive. Asavailability of the left null

singular vector is of vital importance for the efficient and robust solution of the SMPM-

discretized pressure Poisson equation, an alternative procedure to obtainu0 is presented

in section 5.5.

5.4 Null singular vector removal

The singularity of the Poisson matrix can pose a significant impediment to the iterative

solution of the associated linear system of equations. In this section, we provide an
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overview of strategies to remove the null singular vector, including either commonly

used ones and also strategies developed specifically for theSMPM-discretized Poisson

matrix. Note that the former are focused on removing the constant part of the solution,

without necessarily considering a singular value decomposition (or eigendecomposi-

tion)of the matrix.

5.4.1 Commonly used strategies

Dirichlet boundary condition at a single point

This widely used technique consists of imposing a Dirichletcondition at one point along

the physical boundaries [19]. As a result, the indeterminate additive constant responsi-

ble for a non-unique solution is now set equal to the value given by the Dirichlet condi-

tion. The null singular value is then shifted to the region where the remaining singular

values are clustered and the matrixA is no longer singular. Although straightforward in

its implementation, when used within the SMPM framework, this technique produces a

particularly detrimental spurious effect. The insertion of a Dirichlet condition at a point

on a boundary otherwise subject to Neumann conditions, produces a localized spike in

the solution. In an incompressible Navier-Stokes simulation, this spike will grow in

magnitude and pollute the solution in the interior of the computational domain. Note

that this spurious effect is also observed when the Neumann boundary conditions are

enforced strongly.

Furthermore, this technique modifies the tensor product structure of the global matrix

A. As a result, the efficiency of any preconditioning technique at hand, which is based

on the original structure of the matrix, is adversely impacted as the system solved is
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no longer equivalent to the original one. Finally, use of a Dirichlet pressure boundary

condition along an entire boundary of the computational domain might be dictated by

the physics of the actual problem at hand, e.g. for an outflow boundary [79]. Such an

approach obviously avoids any singularity issues of the Poisson matrix but is not always

feasible since the pressure distribution along a physical boundary is not always known

a priori.

Constant part removal

Taking into account that the solution of the system of equations can be determined up to

an additive constant, an alternative approach to make the solution unique is by forcing

its volume integral (i.e. its mean) to be zero [24]:

∫

Ω

p dΩ = 0. (5.21)

The discrete analog of Eq. (5.21) consists of adding one row with the Gauss-Legendre

integration weights to the global matrixA and solving the overdetermined system of

equations in a least squares sense. We did not pursue this option as it is unclear how

one may obtain an efficient iterative solution of the resulting normal equations, with

concerns of appropriate preconditioner design also being an issue.

In the same vein, the constraint (5.21) can be imposed in the form of a penalty term,

i.e. by solving

∇2p+ τ
∫

Ω

p dp= f , (5.22)

which in matrix form becomes

Ax + τ1wTx = b (5.23)
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whereτ is a penalty coefficient,1 is a vector of all ones with size equal to the total num-

ber of degrees of freedom, as well asw that is a vector containing the Legendre weights

for the numerical integration. For the matrix used in this work, the numerical results

obtained with this techniques were not satisfactory since the new matrix (A + 1wT) is

dense, which translates into a loss of the block structure, and an inefficient performance

of the preconditioners customarily designed for the matrixA.

Alternatively, one can appeal to the SVD of the Poisson matrix to remove the constant

component of the PPE solution at the linear algebra level. Specifically, the solution can

be rewritten as

x = (UΣVT)−1b̂ (5.24)

x =
uT

0 b̂

σ0
v0 +

N∑

i−1

uT
i b̂

σi
vi , (5.25)

whereui , vi are the left and right singular vectors of the matrixA, andσi are the corre-

sponding singular values. Thus, in Eq. (5.25), the solutionis written out in the form of

an orthogonal expansion where the basis vectors are the right singular vectorsvi, and the

corresponding coefficients areuT
i b̂/σi. The right null vectorv0 can readily be shown to

have constant entries. Moreover, for a consistent singularsystem and exact arithmetic,

the coefficientuT
0 b̂/σ0 is equal to zero divided by zero. Therefore, the first term in (5.25)

corresponds to the constant part of the solution and is thus the discrete equivalent of the

indeterminate additive constant of the analytical solution to the Poisson-Neumann prob-

lem in (5.9). In practice, the constantuT
0 b̂/σ0 is found to have a non-zero value which

is bounded by machine epsilon at its lower limit, and round off errors at its upper limit.

Now, at each time step, the constant part of the solution may be removed by forcing

the solution vectorx to be orthogonal to the right null singular vector through

x̂ = x − v0vT
0x,
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wherevT
0x is the coefficient of the constant component in the orthogonal expansionof

Eq. (5.25). The above regularization technique is similar to the one used to enforce

consistency of the linear system of equations (see Eq. (5.19) ). However, enforcing

the orthogonality of the solution to the right null singularvector is effectively a post-

processing action, i.e. it is implemented after the solution to the PPE has been iteratively

computed and does not guarantee more efficient and robust performance of the iterative

solution algorithm. For such a regularization to be implemented in the framework of the

actual iterative solution algorithm, such as the conjugategradient or GMRES methods,

one would have to ensure that each new Krylov vector is orthogonal to the right null sin-

gular vector. For the conjugate gradient method, the iterative solver of choice for SEM

[24], this strategy works well since each iteration gives animproved solution vector,

and the final solution is thus orthogonal to the null vector (Paul Fischer, personal com-

munication). When the above condition is imposed within the GMRES framework, the

orthogonality among elements of the Krylov subspace is adversely impacted. Should

a solution exist, the number of iterations to converge to it will then actually increase

significantly. Consequently, more efficient avenues of ensuring a unique solution for the

SMPM-discretized PPE are needed.

5.4.2 Strategies for the SMPM-discretized Poisson equation

Reduced system via Householder matrices

This approach is based on a combination of the SVD with Householder matrices [52].

The main goal is, by exploiting the properties of the associated orthogonal matrices, to

reduce then× n system of equations to an equivalent reduced one, with a null-space of

zero dimension and a rank ofn− 1. Effectively, the reduced matrix is such that it guides
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the iterative solution method, GMRES in this case, to operatewithin a vector space that

is orthogonal to the null space ofA.

To describe the method, let us assume that we have the left andright null singular vec-

torsu0 andv0 of the matrixA. For each one of these two vectors, an orthonormal basis

P andQ can be built using Householder transformations,

P = I − 2
hLhT

L

hT
LhL
= [p1,p2, · · · ,pN], (5.26)

Q = I − 2
hRhT

R

hT
RhR
= [q1,q2, · · · ,qN], (5.27)

wherehL andhR are the left and right Householder vectors [52], andpi ,qi, with i =

1, · · · ,n, are the column vectors of the matricesP andQ respectively. It is important to

note that, in this construction,p1 = u0 andq1 = v0. Once the bases are built, the null

vectorsu0, v0 can be eliminated from the basis to obtain a reduced set of basis vectors

Pr andQr

P = [u0,p2, · · · ,pN] → Pr = [p2, · · · ,pN], (5.28)

Q = [v0,q2, · · · ,qN] → Qr = [q2, · · · ,qN]. (5.29)

Following some algebraic manipulations, the reduced system of Eq. (5.30) is finally

written as

PT
r AQry = PT

r b, , (5.30)

wherey = QT
r x. The SVD of the reduced matrixPT

r AQr shows that its singular value

distribution is very similar to that of the original matrixA but with the main difference

that the reduced system is free of the null singular value, i.e. the reduced matrix is non-

singular. An example of the distribution of singular valuesfor the matrix of the reduced

system corresponding to a Poisson-Neumann problem with 3×3 subdomains andN = 8

is shown in Fig. 5.3. The resulting modified singular value distribution is equivalent to
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eliminating the termuT
0b/σ0 from Eq. (5.25), which translates into a unique solution for

the system of equations and a significantly lower condition number for the new matrix

PT
r AQr .

Figure 5.3: Singular value distribution of the matrixURAVT
R, whereA is the ma-

trix of Fig. 5.2, obtained with the reduced system techniquevia
Householder matrices. Unlike Fig. 5.2, the null singular value σ0

is now absent.

Given that (QT
r )−1 = Qr , the final solution to the system of equations is computed as

x = Qry (5.31)

Note that none of the matrices used in this method are explicitly built and no direct

matrix-matrix multiplications are involved. The final solution is constructed through a

sequence of matrix-vector multiplications, which are implicit in the solution of a linear

system of equations with a Krylov subspace method, such as GMRES.

Augmented system via bordered systems

An alternative approach is based on the concept of augmented(bordered) systems [57].

In this case, the augmented system of equations is expressedas


A d

cT 0




x

α

 =


b

g

 (5.32)
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wherec andd are two vectors of dimensionn that satisfy the following conditions

dTu0 , 0 (5.33)

cTv0 , 0 (5.34)

By expanding Eq. (5.32) we obtain

Ax + αd = b (5.35)

cTx = 0 (5.36)

If Eq. (5.35) is multiplied byuT
0 the only way in which the system is consistent is for

α = 0

uT
0 Ax + αuT

0 d = uT
0 b (5.37)

on the other hand, by imposingc = v0, uniqueness is ensured (see section 5.4.1), and

the additive constant value is specified byg. The singular value distribution of the aug-

mented matrix is shown in Fig. (5.4).

Figure 5.4: Singular value distribution for the augmented system corresponding
to the matrixA of Fig. 5.2.

As in the case of the reduced system, the augmented system’s matrix’s singular value is

nearly the same with that of original system, free, of course, of the null singular value.

When this method is implemented in a Krylov framework (GMRES),within the matrix-

vector multiplication, the vectord is not needed, since all its elements will be multiplied

by the constantα = 0.

Between the two methods presented here for the removal of the null singular vector,
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we have found the iterative solution of the reduced system generated through House-

holder matrices to require slightly fewer iterations that the augmented one. Moreover,

the number of iterations for the reduced system remains nearly fixed, whereas in the

augmented system, that number fluctuates around the fixed value observed in the re-

duced system. As a result, in our actual simulations, we haveelected to use the reduced

system approach.

5.5 Computation of the left null singular vector

The efficient computation of the left null singular vector (LNSV)u(2d)
0 of the matrix

A, denoted asu0, is one of the primary contributions of this work. Without the left

null-singular vector, consistency of the Poisson pressuresystem of equations cannot be

ensured (see section 5.3.4), and the techniques that removethe matrix singularity by

reducing or augmenting the system of equations cannot be implemented (see section

5.4). Computing this null vector by performing the full SVD ofthe Poisson matrix is

computationally costly and actually becomes prohibitive as the matrixA increases in

dimension. Moreover, no analytical estimate of the left null singular vector has been

reported in the literature. In this regard, it is worth noting that Weideman and Trefethen

[124] show that the eigenvalues and eigenvectors of the second order pseudo-spectral

differentiation matrixD2
N cannot be obtained analytically. Such an observation suggests

that the analytical estimation of the singular vectors of the matrixD2
N and, therefore,

of the full Poisson matrix (see sections 2.1 5.3.1) is also a highly challenging, if not

impossible, task, which is outside of the scope of this work.

We instead resort to an alternative approach, whose main idea consists of using the

Kronecker (tensor) product properties of the spectral multidomain methods to extend
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concepts from one-dimensional domains to two-dimensionaldomains (see Chapter 2).

This approach is validated by an experimental proof where the LNSV computed via Kro-

necker products is compared with the corresponding one computed with the MATLAB

built-in functionsvds.

5.5.1 Doubly-periodic domain

The starting point for describing the particular LNSV computation procedure is a quali-

tative observation of the structure of the LNSV of the discrete Poisson matrix associated

with a doubly-periodic domain. Fig. 5.5 shows an example of the LNSV structure for a

domain with 3× 3 subdomains, andN = 4. The observed LNSV structure and associ-

ated computation procedure outlined below, can be directlyextended to any number of

subdomains.

25 50 75 100 125 150 175 200 225

−0.1

−0.05

0

Figure 5.5: Left null singular vectoru0 for an example of a doubly periodic do-
main with 3× 3 subdomains, andN = 4. The vertical dashed lines
separate the contributions of individual subdomains, i.e.the subvector
svshown in 5.6.

Inspection of Fig. 5.5 shows a repetitive pattern/subvector of total size of (N + 1)2 el-

ements, shown in detail in Fig. 5.6. This subvector is denoted assv, and it is repeated

as many times as the number of subdomains (nsub) in the global domain (e.g.nsub= 9
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Figure 5.6: Exploded view of the subvectorsv for an example of a doubly periodic
domain with 3× 3 subdomains, andN = 4.

for the case of 3× 3 subdomains). A general definition ofsv is

sv= u0(p : p+ (N + 1)2 − 1)

with p = 1 + ( j − 1)(N + 1)2, where j = 1, . . . ,nsubrepresents thej-th subdomain.

Based on this definition and our visual observations, we have found that, for the case of

uniform-sized subdomains, we can construct the LNSVu0 as

u0 =
1nsub⊗ sv
‖1nsub⊗ sv‖2

(5.38)

where1nsub is a vector of ones withnsubelements. For the more general case of sub-

domains with different dimensions, observation indicates that the magnitude of the el-

ements ofsv scales with the area of the particular subdomain it originates from. For a

doubly-periodic domain, with any number of arbitrarily-sized subdomains, the global

LNSV is then generally computed as

u0 =
a⊗ sv
‖a⊗ sv‖2

(5.39)

wherea is a vector ofnsubelements, which contains the area of each subdomain.

Further analysis applied to the vectorsv (Fig.5.6) reveals an additional level of Kro-

necker product structure within it. As in Fig. 5.5, Fig. 5.6 also shows a repetitive

pattern, denoted asuI (see Fig. 5.7), which repeats itself everyN + 1 entries ofsv with

varying magnitude. Specifically, the vectorsvcan be constructed as

sv= −uI ⊗ uI (5.40)
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Figure 5.7: Structure of the vectoruI for the case ofN = 4.

whereuI is a vector, regarded as a “core vector”, representing the contribution of an

appropriately defined subdomain one-dimensional subdomain to u0. Both a detailed

definition and computation procedure ofuI are offered in section 5.5.3. Once the vector

sv is computed, the global LNSVu0 is calculated using on Eq. (5.39) and (5.40) as

u0 = −
a⊗ uI ⊗ uI

‖a⊗ uI ⊗ uI‖2
(5.41)

5.5.2 2D non-periodic domain

The same exercise can be performed for the more general non-periodic case. The struc-

ture of the LNSV associated with the discrete Poisson matrix, for an example of 3× 3

subdomains andN = 4, is presented in Fig. 5.8. Effectively, the example subdomain

consists of a central domain surrounded by eight subdomains, each of which has at least

one physical boundary that is non-periodic. As in the previous case, the observed LNSV

structure and associated computation procedure outlined below, can be directly extended

to any number of subdomains.

In this non-periodic example, there are as many different types of patterns as there are

subdomains with different combinations of boundary conditions along each interface

(e.g. 9 for the case of 3× 3 subdomains in the example set-up of Fig. 5.8). Nonetheless,

there is not a clear repetitive pattern as in the doubly-periodic case, which means that no
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Figure 5.8: Structure of the of the left null singular vectoru0 for an example non-
periodic domain with 3× 3 subdomains, andN = 4

longer a simple Kronecker product, as the one used in Eq. (5.39), can be used to com-

puteu0. As in the periodic case, the magnitude of the entries in eachsubvector is related

to the area of each subdomain. If we denote assv(i) the sub-vector of size (N + 1)2 that

contains the contribution of the corresponding subdomaini, the global LNSVu0 can be

computed as

u0 =

[
sv(1)| . . . |sv(nsub)

]T

‖ [sv(1)| . . . |sv(nsub)
] ‖2

(5.42)

where the concatenation (|) operator is applied in a row-wise sense such that the numer-

ator of Eq. (5.42) is a vector with the following structure (see Eq. (5.43) )

[
sv(1)| . . . |sv(nsub)

]T
=

sv(1)
1 . . . sv(1)

ns︸        ︷︷        ︸
sv(1)

sv(i)
1 . . . sv(i)

ns︸       ︷︷       ︸
sv(i)

sv(nsub)
1 . . . sv(nsub)

ns︸               ︷︷               ︸
sv(nsub)



T

. (5.43)

In Eq. (5.42) and (5.43),nsubis the total number of subdomains,ns= (N + 1)2 is the

total number of points per subdomain, andsv(i)
j is the j-th element of the vectorsv(i), the

non-periodic analog of vectorsvdefined in the previous section. Similarly to Eq. (5.40),

the subvectorsv(i) corresponding to a subdomaini is computed as

sv(i) = −ai(uz ⊗ ux) (5.44)

whereai is the area of the subdomaini, anduz andux are core vectors, non-periodic

analogs ofuI used in the doubly-periodic case, which, however, are determined by the

type of boundary the subdomaini has in the vertical and horizontal direction, respec-

tively. The possible choices ofuz andux for the 9 different type of subdomains (in terms
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of their patching/boundary conditions) of Fig. 5.9 are given in Table I. Specifically,

these nine different subdomain locations where a subdomaini can be located are four

corners (BL, BR, TL, and TR), four sides (B, T, L, and R), and the interior (I). Once the

vectorsuB,uT ,uL ,uR anduI are available, the null singular vectoru0 can be computed

for any 2D non-periodic domain discretized with rectangular subdomains. In the next

section, a procedure to identify and compute these vectors is presented.

BL B BR

L I R

TL T TR

Figure 5.9: Schematic of a general non-periodic domain. It shows the possible
locations of subdomaini subject to different patching/boundary con-
ditions.

Location ux uz

BL uL uB

B uI uB

BT uR uB

L uL uI

I uI uI

R uR uI

TL uL uT

T uI uT

TR uR uT

Table I: Possible choices of the core vectorsux anduz, used in the computation of
u0, depending on the location of the subdomain under consideration, as
shown in Fig. 5.9
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5.5.3 Computation of the core vectors

We now focus on the estimation of the core vectorsuB,uT ,uL ,uR anduI . To this end,

the starting point is the SMPM-discretized analog of the one-dimensional Laplacian de-

fined over a finite horizontal non-periodic interval with three subdomains. Neumann

boundary conditions are applied at the end-points of the full domain, and each subdo-

main hasN + 1 collocation points.

For the sake of illustration, the procedure for computing the core vectors is now shown

for the case ofN+1 = 5 Gauss-Lobatto-Legendre points per subdomain. The same pro-

cedure applies for any number of points per subdomain. Fig. 5.10 shows a schematic

of the global domain in whichL , I andR indicate the left, internal and right subdomain

within it.

IL R

Figure 5.10: One dimensional base configuration for the generation of the left null
singular vectoru0 (case ofN + 1 = 5).

The corresponding SMPM Laplacian matrixA1d for the one-dimensional set-up shown

in Fig. 5.10 has dimension 3(N + 1) × 3(N + 1) (15× 15 in the example) and can be

decomposed according to the SVD as:

A1d = U1dΣ1dVT
1d (5.45)

whereU1d, V1d andΣ1d are defined in the same way as in (5.17). From such a decom-

position, we isolate the null vectorsu(1d)
0 andv(1d)

0 . The right null vectorv(1d)
0 is constant.

However, the left null vectoru(1d)
0 is not. The latter vector, of size 3(N + 1), can be
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partitioned into three sub-vectors of sizeN + 1, with each sub-vector representing the

contribution of each subdomain (i.e.L, I andR) to the global 1D null singular vector

u(1d)
0 (see Eq. (5.46) and Fig. 5.11)

[
u(1d)

0

]T
=

u
(1)
0 . . . u(N+1)

0︸         ︷︷         ︸
uL

u(N+2)
0 . . . u(2N+2)

0︸             ︷︷             ︸
uI

u(2N+3)
0 . . . u(3N+3)

0︸              ︷︷              ︸
uR



T

. (5.46)
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Figure 5.11: Left null singular vector structure of the one dimensional discrete
SMPM Poisson matrix.uL ,uI , anduR for the case ofN + 1 = 5

In Eq. (5.46) and Fig. 5.11, the vectorsuL ,uI , anduR are the contributions of the

left, central and right subdomains to the global null vectoru(1d)
0 . Note that if the same

procedure is followed with the canonical 1D subdomains aligned with the vertical direc-

tion, the results are exactly the same as in the horizontal case withuB = uL anduT = uR.

With these considerations, for the case of doubly-periodicdomains, the global LNSV

is computed strictly through the vectoruI and Eq. (5.41), whereas for the calculation

of the LNSV for the non-periodic case, the vectorsuL ,uR anduI are the ones needed

(see Eq. (5.42)-(5.44)). If the domain has a combination of periodic and non-periodic

boundary conditions, the corresponding choices ofuL ,uR anduI have to be take into ac-

count depending on the orientation of the periodic direction. Table II shows the choices

of ux anduz for the different types of boundary conditions.
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Periodic Non-Periodic x-Periodic z-Periodic

Location ux uz ux uz ux uz ux uz

BL uI uI uL uL uI uL uL uI

B uI uI uI uL uI uL uI uI

BT uI uI uR uL uI uL uR uI

L uI uI uL uI uI uI uL uI

I uI uI uI uI uI uI uI uI

R uI uI uR uI uI uI uR uI

TL uI uI uL uR uI uR uL uI

T uI uI uI uR uI uR uI uI

TR uI uI uR uR uI uR uR uI

Table II: Possible choices of the core vectorsux anduz used in the computation
of u0 for different choices of boundary conditions, recalled thatuB = uL

anduT = uR

5.5.4 Validation of the procedure

For the case of the 2D doubly-periodic domain, Fig. 5.12 shows theL2 norm of the

difference between the LNSV computed for the full matrix via the MATLAB function

svds, and the LNSV computed with the procedure outlined above. The error analysis

is performed for different number of subdomains and polynomial degrees. The results

show that the error is of the order ofO(< 10−12), and is independent of the number of

subdomains.

The same error analysis is done for the non-periodic case, and presented in Fig. 5.13.

As in the periodic case, the results show that the error is of the order ofO(< 10−12), and

is independent of the number of subdomains.

The procedure outlined above is a much more efficient means to obtain the LNSV of the

pressure Poisson matrix than the prohibitively costly, forrealistic problems, full SVD.

All that is needed a priori are the vectorsuL ,uI , anduR. Moreover, as shown in Fig.s
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Figure 5.12:L2 error norm (as compared to the corresponding MATLAB esti-
mate) in the computation of the LNSV for different number of sub-
domains and a varying number of the polynomial degree in a doubly-
periodic domain.
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Figure 5.13:L2 error norm in the computation of the LNSV for different number
of subdomains and a varying number of the polynomial degree in a
2D non-periodic domain.

5.12 and 5.13 it was established that the degree of approximation of the two-dimensional

LNSV obtained via tensor products of the contributions of the one-dimensional LNSV

is highly accurate. A rigorous proof of Eq. (5.43) and (5.44)still remains to be offered.

Such a proof is deferred to future studies.

Finally, the use of Kronecker products to compute the left null singular vector suggest a

connection with the Kronecker product structure of the discrete Laplacian given by the
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sum of Eq. (2.6) and (2.7). Nonetheless, the exact nature of this connection remains to

be established and is subject of future work.

5.6 Preconditioners

Although we have established a framework that guarantees that a solution for SMPM-

discretized PPE exists and is unique, we still need to ensurethat the iterative scheme

used towards this computing solution is computationally efficient. To this end, it is

imperative that an efficient preconditioner matrix (M ) be developed. In this study, the

design of a preconditioner has been found to be highly sensitive to the type of boundary

conditions applied to it, which cannot be different than the Neumann conditions applied

to the original system. Furthermore, consistency of the preconditioned system of equa-

tions must be preserved to obtain a physically meaningful solution. In what follows,

we outline the basic components of three preconditioning strategies, classical diagonal

Jacobi, block-Jacobi and a two-level preconditioner, designed with the particular char-

acteristics of the SMPM discretization in mind.

5.6.1 Diagonal Jacobi preconditioner

This classic and straightforward strategy uses as a preconditioner a diagonal matrix that

consists of the diagonal elements of the global matrix [106].

mi,i = ai,i (5.47)

As a first approximation forM , we find that the diagonal Jacobi preconditioner works

well in the simulation of viscously-driven flows, such as theTaylor vortex, but when
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applied to a flow with strongly nonlinear characteristics (e.g. the lid driven cavity), it is

highly inefficient, often with the iterative solution never converging.

5.6.2 Block Jacobi (non-overlapping additive Schwarz)

The element-based character of the SMPM [65] furnishes a natural domain decompo-

sition, which is reflected in the block structure of the Poisson matrix A (see section

5.3.1 and Fig. 5.1), where there is a direct one-to-one association between each of the

large blocks with a particular subdomain. The block-Jacobimethod thus uses the con-

tribution of each subdomain to the global Poisson matrix to form the individual blocks

of a preconditioner. Each block contains the SMPM-discretized analog of the Lapla-

cian combined with the contributions of discretized Robin-type boundary conditions

at the subdomain interfaces and Neumann conditions at the physical boundaries (Eq.

(5.10) and (5.13), respectively). Under these considerations, we can construct a non-

overlapping Schwarz preconditioner as

M−1 =

nsub∑

k=1

RT
k A−1

k Rk (5.48)

wherensubis the number of subdomains, andRk is a restriction/prolongator operator

that transfer data from the local to the global problem and vice-versa [42]. Due to the

type of boundary conditions applied to each subdomain, the local stiffness matrixAk

is non-singular and, in the preconditioner setting, it can be inverted directly via an LU

decomposition.

Numerical results (see section 5.7 for more detail) show that this preconditioner re-

duces the number of iterations with respect to the absence ofa preconditioner or using

only diagonal Jacobi. The number of iterations within the GMRES solver are indepen-
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dent of the degree of approximation, i.e., for a small numberof subdomains, the block-

Jacobi preconditioner deals efficiently with p-refinement. However, whenh-refinement

is applied, corresponding to a sizable increase in number ofsubdomains and degrees of

freedom, the number of iterations of the GMRES and computational time of the solver

increases linearly (see Fig. 5.15). Thus, this preconditioner is unsuitable for large prob-

lems, such as those encountered in environmental fluid mechanics applications. For

such problems, a more efficient preconditioning strategy is needed.

5.6.3 Two-Level preconditioner

The implementation of this preconditioner draws from the previous work of Fischer

and collaborators [38, 42] and the need forh−scalability. It combines the above block-

Jacobi method as a preconditioner at the fine-level with a coarse-grid component based

on a low-orderN = 1 SMPM approximation of the Poisson-Neumann problem. The

general form of this preconditioner is

M−1 = RT
0 A−1

0 R0 +

nsub∑

k=1

RT
k A−1

k Rk (5.49)

Eq. (5.49) is effectively Eq. (5.48) augmented by the additional termRT
0 A−1

0 R0 that

accounts for the coarse grid correction.R0 is an interpolation matrix [7] that projects

a scalar field across different Gauss-Lobatto-Legendre grids andA0 represents the low-

order (coarse-level) analog of the Poisson matrix.

As mentioned in the previous section, the solution of the finelevel preconditioner

(Block-Jacobi/ Additive Schwarz) does not suffer from the problems of a nearly sin-

gular system due to the Robin type boundary conditions applied to the subdomain in-

terfaces, which make each one of the blocks non-singular. This is not the case for the
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coarse grid preconditioner, where the same problems associated with the global Poisson

matrix once again must be addressed. In this regard, a regularization along the lines of

Eq. (5.19) has to be applied to the coarse-system solver in order to make it consistent,

otherwise the preconditioner cannot be solved for. As with the block-Jacobi precon-

ditioner, the solution of the coarse grid preconditioner isperformed with a direct LU

solver. In section section 5.7, the scalability of the two-level preconditioner is compared

to that of the additive Schwarz (Block-Jacobi), and diagonalJacobi.

5.7 Numerical results

5.7.1 Taylor vortex

This is the first of two test cases used to assess the performance of the previously out-

lined iterative solution strategies for the Poisson-Neumann problem within the frame-

work of an incompressible Navier-Stokes equation solver. Details on the analytical ex-

pression for this case, and for the convergence properties od the solution can be found

in section 4.3.1.

The impact of the above discussed preconditioners on the efficiency of the numerical

solution of the PPE is shown in Fig. 5.14 by examining the average number of pressure

iterations per time step and average CPU time per time step as afunction of the total

number of DOF to account for bothh and p-refinement. The left panel in Fig. 5.14

indicates a visible reduction in iteration count when the block Jacobi or the two-level

preconditioner is used in place of diagonal Jacobi. For thistest case, there is minimal

difference between the performance of the block-Jacobi and two-level preconditioners,

118



with the former requiring a slightly smaller degree of iterations and slightly less CPU

time. One might conjecture that the minimally better performance of the block-Jacobi

preconditioner might be linked to the smoothness of the highly viscous solution. From

the right plot of Fig. 5.14 a similar conclusion can be obtained, i.e. the CPU time per

timestep for the GMRES solver to converge with a particular preconditioner reflects the

number of iterations per timestep.
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Figure 5.14: Poisson solver performance for different preconditioners for the Tay-
lor vortex problem. Left panel shows the average number of pres-
sure iterations per timestep as a function of total number ofdegrees
of freedom (DOF). Right panel shows the average CPU time per
timestep as a function of total number of degrees of freedom (DOF).
In the legend, DJ, BJ and TL correspond to diagonal Jacobi, block-
Jacobi and two-level preconditioners, respectively.

5.7.2 Lid-driven cavity flow

The lid-driven cavity test case presented on section 4.3.2 was also used to check the

performance of the preconditioners for the solution of the PPE in the context of the in-
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compressible Navier-Stokes solver. Fig. 5.15 shows the performance of the pressure

solver in terms of number of iterations and computational time per timestep for both the

block Jacobi (BJ) and two level (TL) preconditioners. Note that no results are shown

for the diagonal Jacobi preconditioner as its application did not allow the iterative solver

(GMRES) to converge. The left panel of Fig. 5.15 shows the iteration count as a func-

tion of polynomial degreeN and number of subdomains in each direction for the BJ

(white surface) and TL (gray surface) preconditioners. TheBJ preconditioner success-

fully deals with the demands ofp−refinement by fixing the average number of iterations

to a constant when increasingN for a fixed number of subdomains. However, for a given

N, once the number of subdomains increases , the iteration count also increases, which

indicates that the BJ preconditioner is ineffective in accomodatingh−refinement. This

shortcoming is addressed through the incorporation of a coarse-grid component through

a TL preconditioner, as is visible in the same figure. As indicated by the grey surface,

use of the TL preconditioner with an increasing number of subdomains keeps the itera-

tion count nearly fixed and well below 100.

The right plot in Fig. 5.15 shows the CPU time per timestep for the two precondi-

tioners as a function of the total number of DOF, for the same cases presented in the

left figure. A power law best fit is also shown to enable extrapolation of the perfor-

mance for both preconditioners for problems with a large number of DOF. For problems

with less than 104 DOF, where the total number of subdomains is ofO(100) or less, the

BJ preconditioner is faster. As the total number of DOF increases, typically a result

of h-refinement, the TL preconditioner shows a visible gain in speed. Environmental

flow simulations, such as those discussed in section 1, typically requireO(106) DOF in

two dimensions which suggests, according to the power law fits, that, on a single pro-

cessor, the TL preconditioner will be 4 times faster than theBJ preconditioner. In this
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regard, when applied to a number of other non-periodic benchmarks, either stratified or

non-stratified (e.g., temporally evolving shear layer, stratified lock exchange and prop-

agating fully nonlinear internal solitary wave), considered in greater detail in a separate

manuscript in preparation, the performance of the three preconditioners here has been

found to be similar to that reported here for the lid-driven cavity.
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Figure 5.15: Poisson solver performance for the Block Jacobi(BJ) and Two-Level
(TL) preconditioners applied to the Lid-driven Cavity flow. Left
Panel: pressure iterations as a function of number of subdomains
and polynomial degreeN (White surface: BJ preconditioner. Grey
surface: TL preconditioner). Right panel: CPU time per time step as
a function of degrees of freedom (DOF) on the right. Also shown are
least-squares power law best-fits.

5.8 Discussion

Various preconditioners previously developed for other high-order element based meth-

ods have been applied to our SMPM-discretized PPE. However,the efficient perfor-

mance of such pre-existing preconditioners has been found to be impeded by the dis-
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continuous formulation of SMPM at the subdomain-interfaces, the requirement of Neu-

mann boundary conditions and the non-symmetry of the globalPoisson matrix. First,

the incomplete LU (ILU) preconditioner [106] was examined,which was found to be

impractical for large problems as matrix storage is required. A subsequent step involved

a preconditioner based on the finite difference (FD) discretization of the Laplacian oper-

ator [24]. In this case, applying the FD discretization at the discontinuous interfaces of

the SMPM grid is not a straightforward procedure. As a result, solving the FD precon-

ditioner matrix is a costly task, since the resulting matrixis non-symmetric and nearly

singular.

A p−multigrid preconditioner has also been tested [105, 104, 37, 111] in order to take

advantage of the hierarchy inherent in the Legendre polynomial basis functions used in

the SMPM and the fast computation of GLL points and differentiation matrices. The

main problem encountered in this approach is the inefficiency of the smoothing steps

which require a significant number of iterations (as high as 50) to remove the high fre-

quency oscillations that contaminate the coarser grid solves encountered at subsequent

levels of the multigrid cycle. Finally, a projection technique relying on multiple right

hand sides of the PPE, obtained from previous timesteps, [39] was also tested in the

framework of a TL-preconditioned GMRES iterative solver, with the puprose of further

reducing the total number of iterations. A modified Gram-Schmidt orthogonalization

was needed instead of the classic Gram-Schmidt for the stable generation of the succes-

sive right-hand-sides. Unfortunately, unlike what was observed in its application to a

conjugate gradient solver used within a SEM framework [39],when applied to the iter-

ative solution of the SMPM-discretized PPE, this techniquedid not reveal any decrease

in iteration count for the GMRES solver.
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As a concluding note to this discussion, the coarse-level preconditioner is constructed

using a low-order (N = 1) SMPM discretization of the Laplacian operator. Such a small

value ofN is chosen to allow for a direct solver (LU factorization) to be used for the

resulting linear system of equations when computing the preconditioner. An increase

to N = 2 or 3 polynomial could make this LU decomposition computationally infea-

sible when the number of subdomains is large, as is the case ofan environmental flow

simulation.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Shallow Water equations

The performance and properties of two commonly used high-order-accuracy element-

based spatial discretization methods, spectral multidomain penalty (SMPM) and dis-

continuous Galerkin (DGM), are examined in the framework ofthe inviscid shallow

water equations (SWE). Whereas a previous comparison study [55] focused on one-

dimensional conservation laws and considered a modally-based Galerkin formulation

of SMPM and DGM, this paper applies both techniques to a system of nonlinear con-

servation equations and considers them in the more frequently used nodal form, in a

collocation and Galerkin formulation, for SMPM and DGM, respectively. The two

methods are applied to a suite of test cases that are of interest in oceanic shallow water

flow: three linear (standing wave, Kelvin wave and linear Stommel problem) and three

non-linear (Rossby soliton, nonlinear Stommel problem and Riemann problem). The

analysis shows that the methods can be simplified to be the same method when specific

choices of the penalty terms (for the SMPM) and numerical flux(for the DGM) and

when the same collocation points are chosen for representing the discrete solution. The

numerical solutions showed that the methods are extremely similar not only in achieving

the same rate of convergence but also in their conservation of energy measures. The key

difference between the SMPM and DGM is in their choice of penalty terms that enforce

weak boundary conditions across element interfaces. The SMPM has much flexibility in

selecting these terms whereas the DGM method is more rigid inits choices in the sense

that a Riemann solver must be used; however, this idea offers much flexibility in han-

dling a large variety of flows including those requiring wetting and drying algorithms,
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for example. Both methods can be used on fully-unstructured quadrilateral element

grids but it is not clear how to extend the SMPM to unstructured triangular elements; in

contrast, the formulation of the DGM is quite natural and canbe extended to triangles

rather straightforwardly, assuming that a good set of interpolation and integration points

is known (see, e.g., [46, 51, 86, 68]). The SMPM proved to be slightly more efficient

than the DGM, in terms of computational time, and we expect this trend to continue

as Laplacian operators (as required by Navier-Stokes or even by more realistic shallow

water ocean modeling simulations) are introduced.

6.2 Incompressible Navier Stokes solver

A quadrilateral spectral multidomain penalty method (SMPM) solver has been devel-

oped for the numerical solution of the two-dimensional incompressible Navier-Stokes

equations under the Boussinesq approximation for the purpose of studying environmen-

tal stratified flow processes at high Reynolds numbers. Through the use of variable-

size two-dimensional collocation approach in each subdomain, arbitrary boundary con-

ditions and localized resolution can be employed in both spatial directions. A high-

accuracy semi-implicit splitting scheme is used, based on athird order stiffly stable

scheme for the non-linear term approximation, third order backward differentiation for

the temporal derivatives and a high-order numerical boundary condition for the pressure.

High spatial accuracy in space is enabled through the use of alocal two-dimensional

Legendre discretization in each subdomain.

Environmental stratified flow processes, such as turbulenceand internal solitary waves

(ISWs), are characterized by such values of Reynolds numbers that the associated nu-

merical simulations are inherently under-resolved. To preserve the numerical stability
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of the spectral quadrilateral multidomain scheme, while preserving spectral accuracy,

in an under-resolved simulation, a penalty technique is implemented at the physical

boundaries and subdomain interfaces. The particulars of the penalty formulation vary

in each fractional step of the high-order splitting scheme,i.e. explicit non-linear term

advancement, pressure Poisson equation and implicit viscous term treatment. Addi-

tional stability at the interfaces is provided through adaptive interfacial averaging. In

the subdomain interior, numerical stability is ensured through dealiasing the nonlinear

term calculation and application of spectral filtering after each fractional step.

Although similar to a previously developed SMPM solver for high Reynolds incom-

pressible stratified flows in domains with one non-periodic direction [25], the solver

here has one fundamental difference, the requirement of efficient numerical solution of

the SMPM-discretized pressure Poisson equation (PPE), a non-trivial and challenging

task. Section 6.3 offers concluding remarks on this issue.

The flow solver’s accuracy and robustness were validated against a standard set of in-

compressible flow benchmarks, namely the Taylor vortex, lid-driven and double shear

layer. From an environmental stratified flow process, the canonical problem of ISW

propagating at a high Reynolds numbers in a two-layer continuously stratified free-slip

horizontal channel was examined. The fully nonlinear ISW, an exact solution to the

incompressible Euler equations, propagates at the theoretically prescribed phase speed

while maintaining its original wavelength and amplitude, indicating negligible numeri-

cal dissipation and dispersion.

The availability of the quadrilateral SMPM solver enables the investigation of a much

broader range of environmental stratified flow processes than those attainable with the
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equivalent solver that supported only one non-periodic direction. Resolution can now

be localized in the streamwise direction, not only the vertical, while arbitrary bound-

ary conditions may be prescribed at the lateral boundaries.A third, periodic, transverse

direction may be readily incorporated into the quadrilateral SMPM solver by using a

Fourier discretization. An example of an environmental flowprocess amenable to sim-

ulation with a three-dimensional quadrilateral SMPM solver, is the separating turbulent

bottom boundary layer under under an ISW wave in uniform depth water [26, 17, 2]. In

this case, the turbulence, homogeneous in the transverse, is confined to a small-window

near the bed, extending from the trough of the wave towards its rear end. A computa-

tional domain spanning the above window avoids the unnecessary cost of resolving the

full water column depth and length of the ISW, the large bulk of which is inactive over

significant distances of wave propagation.

6.3 Poisson Pressure equation solver

An efficient iterative solution strategy has been developed for the quadrilateral spec-

tral multidomain penalty method (SMPM)-discretized pressure Poisson equation (PPE)

with Neumann boundary conditions, implicit in the time-discretization of the two-

dimensional incompressible Navier-Stokes equations through a high-order splitting

scheme. From the spatially continuous perspective, this system of equations has a solu-

tion only if an integral compatibility condition involvingthe right-hand-side of the PPE

and the prescribed value of the Neumann boundary conditionsis fulfilled. However, al-

though the compatibility condition is automatically satisfied at the spatially continuous

(analytical) level in the context of the above splitting scheme, it is unclear whether it is is

the appropriate compability condition for the the SMPM-discretized PPE. Our observa-

tions further indicate that, in actual incompressible flow simulations, the resuling linear
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system of equations never satisfy the equivalent solvability condition of orthogonality

between the right hand side and the null left singular vectorof the Poisson matrix. This

lack of solvability may be attributed to the discontinuity of the pressure solution across

subdomains and to inexact quadrature, the latter a feature of under-resolved simulations.

Finally, the particular boundary conditions give rise to a non-unique solution and, there-

fore, a near-singular Poisson matrix.

For the resulting linear system of equations, satisfactionof the above solvability con-

dition, i.e. consistency of the linear system of equations,is ensured through the reg-

ularization that projects the right-hand-side onto the plane orthogonal to the left null

singular vector of the global Poisson matrix. Uniqueness ofthe solution is ensured at

the linear algebra level by reducing the system of equationsvia Householder matrices

or via an augmented matrix technique.

A key contribution of this work is the development of a computationally efficient tech-

nique to estimate the left null singular vector of the SMPM-discretized Poisson matrix,

which avoids the prohibitively costly SVD of the matrix. Thetwo-dimensional left null

singular vector is constructed from its one-dimensional equivalent which is computed

for a canonical one-dimensional SMPM Poisson matrix definedover three subdomains.

Availability of the left null singular vector then enables the above described strategies

for ensuring a consistent linear system of equations and a unique solution for the PPE.

Even if a consistent linear system of equations and a unique solution are ensured, the

efficient iterative solution of the SMPM-discretized PPE cannot be obtained without an

appropriately designed preconditioner. To this end, two preconditioners, a block Jacobi

(BJ), and a two-level preconditioner (TL), have been implemented. The performance of
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both preconditioners has been assessed through application to two well-known bench-

mark problems for the numerical solution of the incompressible Navier-Stokes equa-

tions: the Taylor vortex and the Lid-driven cavity. The BJ preconditioner is found to

prevent the increase in iteration count with increasingp−refinement. However, it cannot

provide for an efficient solution at high levels ofh−refinement, i.e. an increasing num-

ber of subdomains. For this purpose, a TL preconditioner, a combination of coarse-grid

and fine-level approaches has been constructed. Its fine-level component is identical to

the standard BJ preconditioner described above. The coarse-level component of the TL

preconditioner is based on a low-order SMPM discretizationand resolves the issue with

high-levels ofh−refinement. In analogy with the SMPM-discretized Poisson matrix, the

coarse-level component of the TL preconditioner requires asimilar regularization which

ensures that the associated linear system is consistent.

Beyond providing a framework solution of the PPE system of equations, this work has

intended to provide a concentrated overview of the techniques used by the higher-order

method community in the context of the Poisson-Neumann problem for the pressure

field implicit in the numerical solution for the incompressible Navier-Stokes equations.

In a similar vein, we hope that the techniques developed here, namely the construction

of the left null singular vector and its application to ensuring consistency and a unique

solution of the linear system of equations, will be of interest to the sub-discipline of

numerical linear algebra focused on the iterative solutionof consistent singular non-

symmetric systems.
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6.4 Future work

From the point of view discontinuous high-order element based methods, future work

will be addressed on observing further differences between the SMPM and DGM, test

cases with complex geometries, non-smooth solutions or additional forcing terms have

to be executed with the methods. The performance of each method has to be also as-

sessed for different time advancement schemes , as well as different types of numerical

fluxes to account for the communication between subdomains.Additionally, parabolic

and elliptic partial differential equations have to be assessed in the context of compress-

ible and incompressible flows, where more challenging numerical difficulties appear for

the implementation of both methods.

In terms of the incompressible Navier-Stokes solver futurework will be focused on the

implementation of deformable subdomains. Additional efforts will concentrate on the

improvement of preconditioners for the iterative solutionof the PPE. To this end, ISW

propagation and ISW-seafloor interaction is typically simulated in highly anisotropic do-

mains with high aspect ratio subdomains, which can detrimentally affect the efficiency

iterative solution scheme for the PPE. Recently developed techniques for improved ef-

ficiency of the numerical solution of highly anisotropic elliptic equations [107] carry

great potential towards effectively addressing this issue. Finally, the ultimate goalof

this effort is to develop a three-dimensional hexahedral subdomainSMPM solver.

Specifically for the numerical solution of the PPE, future work can be oriented towards

a detailed comparison of the spectral properties of the Poisson-Neumann matrix for dif-

ferent spatial discretizations and constructing a unified framework for the solution of

the nearly-singular systems that arise in the numerical solution of the incompressible
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Navier-Stokes equations. In addition, the formulation of the Poisson-Neumann problem

within the context of projection techniques can be improvedin order to ensure consis-

tency of the pressure linear system of equations directly from the formulation, instead of

the regularization technique presented on section 5.3.4. More efficient preconditioning

efforts could focus on exploiting the Kronecker product structure of the Poisson matrix,

or alternatively, translate to the SMPM the experience gained with algebraic multigrid

for continuous and discontinuous finite element type methods [94]. Finally, additional

considerations will arise in the computation (as outlined here) of the left null singular

vector for the Poisson matrix resulting from a SMPM discretization of a domain with

deformed, non-square, subdomains.

The degree of strong enforcement of solution continuity, i.e. patching condition enforce-

ment, at the subdomain interfaces for the Poisson and modified Helmholtz equations is

set by the choice of penalty coefficient value, as computed in Eq. (4.20). The choice of

the particular penalty coefficient has been found to play a critical role both the numeri-

cal stability of the solution the solver and the efficiency of associated iterative implicit

solvers (in terms of number of iterations and CPU time). When the coefficient is chosen

near the upper limit of Eq. (4.20), continuity across subdomains is enforced strongly yet

there is a greater susceptibility towards oscillations at the subdomain interfaces and the

number of iterations in the implicit solvers can grow considerably. However, when the

coefficient is near the lower limit, continuity across subdomainscan become excessively

weak, leading to jumps at the interfaces which can either grow catastrophically or pro-

duce spurious flow structure. In conclusion, work has to be done in order to establish a

procedure to compute the magnitude of the penalty coefficient as a function of Reynolds

number, and degree of uniformity of the mesh.
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In the same vein, in regards to the high order time-splittingscheme used in this work

[74], the imposition of penalized inflow/outflow velocity boundary conditions for the

viscous fractional step in the context of Neumann or mixed Dirichlet-Neumann type

is non-trivial [15]. Similar issues arise in the treatment of the boundary values at the

physical boundaries during the update step (Eq. (4.9)), after the PPE has been solved.

Additional work has to be addressed in this regard in order tobe able to expand the range

of possibilities for which the incompressible Navier-Stokes solver can be used for.
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