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This work presents the details behind each step in the dawedot of a frame-
work for two-dimensional quadrilateral discontinuous &pa Multidomain Penalty
Method (SMPM) solvers for environmental flow processes: allsiv water equation
(SWE) solver and an incompressible Navier-Stokes equatid8g) (under the Boussi-
nesq approximation) solver, with additional emphasis yjiteethe associated pressure
solver. The potential for environmental flow simulationsotigh spectral methods is
very strong since these methods are exponentially accuratedissipative and non-
dispersive. These characteristics translate into capgutie smallest resolved scales
of the flow and the propagation of ocel@ake waves with minimum numerical error.
In addition, the element-based capability of the methodlesahe appropriate resolu-
tion of the important scales of the processes being mod#iedocalization of specific
events, and the treatment of complex boundary conditiodggaometries. Finally, the
discontinuous character of the method add enhanced sgabilhe method for highly-
nonlinear under-resolved simulations, an intrinsic cbimastic of environmental flow

simulations.

In the SWE solver, the SMPM is compared with a nodal discontiisuGalerkin method
(DGM), where the equations are solved with an explicit SSRB&RHKethod. The com-
parison is done by applying both methods to a suite of six comynconsidered geo-

physical flow test cases; we also include results for a daksontinuous Galerkin (i.e.,



spectral element) method for comparison. Both the analysisxamerical experiments
show that the SMPM and DGM are essentially identical; bothhiods can be shown
to be equivalent for very special choices of quadraturesrated Riemann solvers in the

DGM along with special choices in the type of penalty termhia EMPM.

In the NSE solver time is discretized with a high-order fiaaél step projection method,
where the non-linear advection and forcing terms are addeaplicitly via a sfifly
stable scheme. After that, an implicit solution of a Poispoessure equation (PPE)
is solved in order to introduce the incompressibility coaisit. In the final fractional
time-step linear viscosity forces are also solved impliciiy means of a modified
Helmholtz equation. Stability of the numerical scheme foder-resolved simulations at
high Reynolds numbers is ensured through use of penalty itpetsy spectral filtering,
dealiasing, and strong adaptive interfacial averagingectp attention is given to the
solution of the PPE linear system of equations, where thddmental building blocks
of the PPE solver presented here are a Kronecker (tensahgrbased computation of
the left null singular value of the non-symmetric SMPM-detized Laplacian matrix
and a custom-designed two-level preconditioner. Both odd¢heols are essential to-
wards ensuring existence and uniqueness of the solutidredafiscrete linear system of
equations and enabling itshieient iterative calculation. Accuracyffieiency, and sta-
bility of the multidomain model are assessed through thetswl of the Taylor vortex,
lid-driven cavity flow and double shear layer. The propagatf a non-linear internal
wave of depression type is also presented to assess thdigbtérine solver for the

study of environmental stratified flows.

The availability of the quadrilateral SMPM solver allow® thumerical investigation of

a much broader range of environmental processes, namelg thestreamwise,vertical



non periodic domains with both horizontal and vertical lazion.
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CHAPTER 1
INTRODUCTION

1.1 Environmental flows

This work is motivated by the need of an improved physicalarstanding of environ-
mental flows, namely the fierent flow processes in the natural environment, whose
range of scales vary, and can contain scales, fron®{ihennm) to O(10km). That means,
these processes are much smaller that the ones presentanedgnly scale, and much
bigger than the ones present in a engine¢hagan scale. Examples of these processes
are tsunamis, propagation of internal waves in the oceaie&ed, flow through aquatic
vegetation, near shore hydrodynamics, lake dynamicsPetpending on the most rep-
resentatives scales and processes of these flows, they clvidezl on large scale and
small scale environmental flows. Typically, these flow pes&s are not captured by
larger-scale operational models (e.g. weathean forecast), because they are below
their resolution limits. Understanding the basic undedyphysics of these processes

allows one to lump them a lot more reliably in the above lasgale models.

One way to understand this type of processes is through theofua mathematical
model (governing equations), which is generally solved eucally with a computer
code. Dfiterent numerical techniques have been developed to solse #guations or
sets of equations. This work is focused on the developmetiraplementation of a
technique called Spectral Multidomain Penalty Method (8MHor the numerical so-
lution of two different sets of equations: the Shallow Water Equations (SWif)tlee

incompressible Navier-Stokes (NS) equations under the Soesqg approximation.



1.1.1 Large-scale environmental flows

Geophysical and large-scale environmental flows (i.e.,dlofhorizontal longitude of
O(1 km) or greater) exhibit a complex structure and dynamies @ broad range of
scales that render their numerical simulation a formidéd& for state-of-the-art com-
putational methods and resources. Through a complex Iateletween the earth’s
rotation, ambient stratification and the constrainiffg&s of lateral and vertical bound-
aries, flow processes in geophysical fluids commonly exhibharacteristic horizontal
lengthscale that can be a few orders of magnitude largeritbarertical counterpart
[43]. Hydrostatic wave motions occur from the bdplanetary scale roughly down to
the mesoscale. As the wave scales decreases, non-lifieeciséoecome significant in
the form of interngburface bores [90, 118]. At wavelengths@(flkm), the waves also
become strongly non-hydrostatic [63], localized turbakenccurs at the smaller scales
and the dissipativefiect of viscosity is ultimately felt at the smallest scal@gl( mm))

of the flow field (see section 1.1.2 for more details).

As a result, the numerical methods used in the investigatigqeophysical flows need
to exhibit a number of preferred features. These includdraam)wave propagation
that is dfectively non-dissipative and non-dispersive, b) minimutifieial dissipation
at the smallest resolved scales to enable as broad a scalatep as possible, cfte
cient resolution of localized flow features and complex gewias and d) optimal use of
computational resources. High-order accurate elemesgebschemes [24, 68] are par-
ticularly appealing in addressing such needs. These scheomebine the exponential
convergence and weak artificial dissipation and dispersiostandard single-domain
spectral methods [12] with the spatial adaptivity of cleakfinite elemeritolume tech-
niques [73, 120]. Furthermore, the domain decompositiologdphy inherent in these

techniques renders them highly amenable facient parallelization [40].



On account of the inevitable impossibility of capturing fo# range of scales intrinsic
to a highly nonlinear, and steep, fromaive or any resulting localized turbulent event,
and the minimal feedback obtained from the unresolved scgeophysical flow simu-
lations are inherently under-resolved. Under-resolvethfarder simulations are prone
towards, often catastrophic, numerical instability asliSibscillations are compounded
by aliasing driven by the nonlinear terms in the governingadipns [53]. In high-order
element-based simulations, these numerical instalsilitre most pronounced at the el-
ement interfaces when strong continuity of the solutiomieced across neighboring

elements [25] as is typically done in continuous Galerkirthrods.

In discontinuous high-order element-based methods, hegig subdomains carry sep-
arate values of the solution at a fixed spatial location therelaxing the constraint
of strong continuity of the solution and significantly maigng the above concerns of
numerical instability. The two prevalent categories offsuwethods are spectral mul-
tidomain methods (with and without a penalty scheme) [80 83166, 64, 65, 28] and
discontinuous Galerkin methods (DGM) [47, 46, 48, 51, 68,8® 103]. The for-
mulation used in our work follows the Spectral Multidomaienalty Method (SMPM)
presented by Hesthaven [66] and expanded upon by Don [28inplémented, to our
knowledge for the first time, to the shallow water equatiomssthe SMPM, the strong
interfacial patching conditions are replaced with a lineambination of the governing
equation and the patching condition, the latter multipligdan appropriately chosen
penalty coéficient. On the other hand, DGM are based on a Galerkin weigletsd-
ual formulation where the integration is performed at tivel®f an individual element.
Since adjacent elements are not continuously coupledtlas ase with finite and spec-

tral elements, interfacial flux integrals do not vanish arelrepresented in the form of



an appropriately chosen numerical flux that preserves stamly and numerical stabil-

ity.

SMPM have been successfully applied on the simulation ofilpaiyperbolic equations
that go from Euler equations [82], until compressible Ne\B8&okes equations [83, 109].
DGM have beenféectively used in the simulation of the shallow water equetitSWE)

both on the sphere and on planar but fully unstructured dasr{di7, 46, 51, 86, 49] and

for compressible atmospheric models [48, 103].

However, the literature exploring the similarities andfeliences of the SMPM and
DGM is limited to the recent work by Gottlieb and Jung [55] wbonsidered the
modal form of SMPM and DGM, both in Galerkin (integral) forfation. Focusing
on one-dimensional conservation laws, that particuladysastablished the equivalence
between the two techniques for a specific value of the percakfficient and empha-
sized the additional flexibility of the penalty scheme inyiag the value of this coef-
ficient in space and time and splitting the advective flux atgsbbdomain interfaces,
which provided for greater stability in regions of strongp@mogeneity of subdomain
thickness. The tradefis of accuracy vs. stability as a function of the penaltyficoe
cient value were also examined as was the potential of thicieat truncation method
[72] in suppressing rapid error growth when using high-optdynomials in the penalty
method. Finally, the impact of inconsistent evaluationndégrals (exact versus numer-
ical quadrature) in the left and right-hand sides of the hGaderkin formulation of the
penalty method was also considered in the framework of tinad nonlinear problems.
Note that both the cdicient truncation method and the issues with integral evialoa

are restricted to the modal Galerkin form of the SMPM.



No investigations are known so far that compare the coliooatased SMPM and the
nodal Galerkin formulation of the DGM, the most commonly disermulations of the
two methods which this work focuses on. Furthermore, we aasvare of any compar-
ison of the two methods in the framework of a system of muhi&hsional equations,
particularly in a geophysical context. Such a comparis@nes of the objective of the
present work. The platform for this comparison are the SWEsa feariety of reasons:
a) the relative facility of their spatial and temporal detization with respect to more
complex partial dierential equations, such as the Navier-Stokes equatiptisein ca-
pability for non-dissipative propagation of highly nongiar waves, which renders them
an ideal experimentation tool for testing numerical schefoe nonlinear advection,
the primary source of the aliasing-driven instabilitiesw@ned above and c) their role
as a predictive tool of ocean wave phenomena for the purploseastal engineering
applications [30] and tsunami propagation [3]. We spedlfiim to compare the two
methods in terms of formulation (with a focus on subdomamigmnication), accuracy,
conservation properties, numerical stability and comanal cost in the framework of

specific linear and non-linear test-cases.

1.1.2 Small-scale environmental stratified flow processes

In the stably stratified portion of the water column of theatand lakes, flow pro-
cesses operating over spatial scales of a kilometer or tess@ely characterized by
the complex interplay between internal gravity waves (IG\WJ &ighly localized tur-
bulence [119]. IGWs are a type of wave motion unique to statvitied fluids and
have wavelengths between 100m and 1km [115]. In the absdmastabilities in their
interior and interactions with bottghateral boundaries, IGWs can transport energy non-

dissipatively over large horizontal distances@(fLOkm). A particular class of IGWs



are internal solitary waves (ISWs) large-amplitude, lortgrinal solitary waves are hor-
izontally propagating waves guided by the top and bottorfasas of the ocean or lakes
[63, 8]. Neglecting again internal instabilities and boandinteractions, ISWs not only
propagate non-dissipatively over large distances; thepggation is non-dispersive, as
manifested by the ability of the waves to maintain a verysigaveform, owing to an

intrinsic balance between nonlinearity and physical disipa.

Localized turbulent events contain a broad range of scabdending from a largest
scale of 1m to 10m to a smallest one of 1mm. This localizeduderize occurs through
instabilities within an IGW and interactions of IGWs with tagraphy, currents or a vari-
able background stratification profile [119]. In the absewsicksWs, turbulence is also

driven through instabilities in currents or interactiofisarrents with topography [119].

From the above discussion, it becomes apparent that theseadration between IGWs
and the larger-scales of the localized instabilities amluience occuring within or un-
der the waves can be as high as three orders of magnitudeoiéya turbulent events
itself contains a broad range of scales, quantified by anogpiately defined Reynolds
number,Re = uL/v, whereu andL are velocity and length scales, respectively, char-
acteristic of the larger-scales of the turbulence, amglthe kinematic viscosity of the
fluid. Within this range of scales, extending from the largeergy-containing scales
down to the dissipation range, exist motions of intermedstale subject to nearly
inviscid dynamics [117]. Finally, localized environmelntarbulence is strongly non-
hydrostatic, i.e. contains significant vertical accelerst. The degree of hydrostatic-
ity in IGWs varies from case to case, with ISWs being the mosteext example,
where non-hydrostaticfiects provides the necessary physical dispersion that sllow

the waves to propagate unchanged over long distances. Birth#ation of a strongly



non-hydrostatic fluid flow, the vertical pressure gradiemit cannot be neglected and
invoking the hydrostatic assumption, commonly used indaeggale geophysical mod-

eling [61] can lead to highly erroneous physical results.

As with large scale environmental flows (see section 1.lhigher-order accuracy
element-based numerical methods [12, 24, 68] are a higliyising tool for the sim-
ulation of small-scale environmental flow processes. Thigin (spectral) accuracy and
minimal numerical dissipation, defining features of a glapectral discretization tech-
nique (e.g. Fourier or Chebyshev) render the smallest redaeales of motion in a
turbulent event free of any artificial damping. Moreoveg thinimal numerical dis-
persion of these methods, enables wave propagation ovgrdstances free of any
spurious dispersivefiects. The flexibility in local flow resolution, inherent inetlele-

ment approach, allows for affieient capturing of localized instabilities and turbulence

Nevertheless, the large scale separation between wavdabairtstabilitiegurbulence
embedded within them and the broad range of localized terbddursts themselves re-
quire a prohibitively large number of degrees of freedomdadpresented on even the
most state-of-the-art available computational resourdssa result, any simulations at
Reynolds numbers that are environmentall relevant, willnavitably under-resolved.
Scales where viscous damping is dominant will not be resbls a result, for a high-
order accuracy scheme devoid of any numerical dissipadilesing éfects, driven by
the nonlinear term in the governing equations, will typigédad to catastrophic numeri-
cal instabilities [25]. In addition, when arbitrary, i.eomperiodic, boundary conditions
are desired, the treatment of non-hydrostaffeas, linked to iterative solution of an
elleiptic equation for the pressure is a non-trivial pracesich is compounded by the

ill-conditioning inherent in higher-order interpolatipglynomials [24, 67, 33].



1.2 High-order methods for incompressible high Re flows

We now turn to a short review of the historical evolution ofiitiorder element-based
techniques and, whenever relevant, their applicationgssimulation of environmental
flows. Before going into the details of these techniques, armtder to show them in a
general context, Fig. 1.1 presents a schematic of tiierdint discretization techniques
for partial diferential equations, where the high-ordeht@ques are shown in addition

to the widely used low-order techniques.

SOME DISCRETIZATION
METHODS FOR PDE'’s

I

Imif

Based

t Single J { Element J Single Element
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Domain Based

- e

Discontinuous

Continuous

Discontinuous

Figure 1.1: Schematic of theftrent discretization techniques used to solve nu-
merically partial diferential equations

N

1.2.1 Fourier and Galerkin methods

The application of high-order methods to Computational dIDiynamics (CFD) has

been an active research topic since the early 70’s, when a@atignal power evolved



enough to handle a fliciently large number of operations in an accurate manner. In
1972, Orszag and Patterson [96] were the first to present &meahsolution for the
three-dimensional Navier-Stokes equations for homogeneswmtropic turbulence using
a Galerkin approximation based on a globally defined Fowseeies representation of
the flow field. The first well known element-based Galerkinrapph, using locally-
defined basis functions, was developed by Patera [99] winoduted the Spectral El-
ement Method (SEM) and applied it to laminar flow in a chanxgla@sion. Alumni
of the Patera group developed two well-known SEM codes: teSR00 solver based
on nodal SEM [41] and the Nektar solver based on the modal Sgjivibach [75, 76].
These solvers have evolved significantly from their origfoamulations and currently
serve as major reference points for high-order elemergebsisnulators of incompress-

ible flows.

Fourier and SEM discretizations have been applied to a vadge of incompressible
flow phenomena of fundamental, engineering and envirormheglevance. [24, 75, 14,
15]. Traditionally the method of choice to simulate homaogurs isotropic turbulence
[96], Fourier methods have also been used to simulate homeogis anisotropic turbu-
lence with the anisotropy caused by either background gf6hor stable stratification
[62, 13]. Fourier methods relying on sjigesine transforms have also been used to sim-
ulate localized environmental stratified turbulent flowslamains subject to symmetric
Dirichlet/Dirichlet or NeumanfNeumann boundary conditions at the top and bottom of
the domain [56, 126]. In the case of environmental flows witlrercomplex boundary
conditions and boundary geometries, the SEM has succlysiadn used in the simu-
lation of turbulent bottom density currents over currogdieds and the investigation of
mixing in a lock exchange [97, 98]. Finally, note that in a gleysicalenvironmental

context, the SEM hasflgciently been used to discretize the shallow water equations



[88, 48].

The discontinuous Galerkin method (DGM) method was origyraeveloped by Reed
in 1973 [102]. It is a discontinuous variant of the SEM, whelementgsubdomains
do not share nodes with their neighbors along their inteddorcing the solution to be
discontinuous at these locations ; DGM enforces inter-etgrnontinuity only weakly.
A “numerical flux” [68] must be specified along with the goviergnequation at the sub-
domain interfaces to enable communication between elemdaquivalently, bound-
ary conditions are also also enforced weakly, i.e. in comtioom with the governing
equations [84]. The discontinuous character in the form edkvnter-element continu-
ity and boundary condition enforcement, allows for enhdrstability in the treatment
of localized discontinuities arior under-resolved, strongly nonlinear, flow simulations
provided the numerical flux is appropriately specified [78], @he DGM has been ex-
tensively used in the numerical solution of hyperbolic emuns, such as the Maxwell,
acoustic and shallow water equations [68, 34] (see als@osettl.1). More recently,
significant advancement has been made towarddiibetiee use of DGM in the solution
of elliptical PDE’s (see Arnold [5] for a unified theory of DGHMr elliptic problems).
Application of DGM to the incompressible Navier Stokes dares has been rather lim-
ited [89, 110, 93]. DGM-based investigations of the shaNeater equations [47] or the
Boussinesq equations [30], to the authors’ best knowledggetexists no published
work on the application of this method to incompressibleafgfted or unstratified) en-

vironmental flow problems.
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1.2.2 Spectral Multidomain Method

The Spectral Multidomain Method (SMM) is an extension of ¢sirgle-domain collo-
cation approach (Chebyshev or Legendre) to multiple doneidds also known as the
“patching method” [15]. Connectivity across subdomainsal@ed through a patching
condition which is imposed at the interfacial points. Thomdition may be imposed
strongly or weakly (i.e. combined with the governing eqoia)j leading to a continuous
or discontinuous solution (see below). As a result, altiadiferent in formulation and
implementation, in its continuous or discontinuous forhe EMM is similar to either

the SEM or DGM, respectively, in terms of accuracy and corag&m properties.

The origins of SMM are from the late 70’s and early 80’s, whegtivet and Mor-
choisne [91] used it as an element-based approach for \adtaw calculations. In the
mid 80’s, Kopriva [80] was the first to present a detailed gsialof the two-dimensional
multidomain approach. Later on, in the mid 90’s, Hestha#) p4, 65] introduced a
multidomain penalty formulation, known as the spectraltrdamain penalty method
(SMPM). In the SMPM, the governing equation is penalizedthi@ sense that it is
collocated at the physical boundaym#domain interfaces with the boundgatching
conditions, respectively. The range of allowable valueparialty parameters used in
this approach is computed by requiring conservation ofggnef the discretized equa-

tion (advectio, difusion or advection dliusion) [66, 65].

In the framework of hyperbolic equations, the SMPM has bessdun the numeri-
cal solution of the Euler equations in gas dynamics [82] anrdpressible viscous flows
[83, 109]. A detailed comparison between the DGM, SMPM, a@&Min the context

of the inviscid shallow water equations is presented in Giraptand in [34]. In terms

of environmental flow applications, Diamessis et al. [25}eleped a SMPM solver
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for the incompressible Navier-Stokes equations which wseiuo study a particular
number of high-Reynolds number stratified flows such as wakéls pottom bound-
ary layer instabilities under ISWs [26] and the propagatibimi@rnal wave packets [1].
The above solver can support a computational domain thatisperiodic in the vertical
and periodic in the horizontal directions, with a Legendesed SMPM discretization in
the former and a Fourier discretization in the latter. Laeal resolution and arbitrary
boundary conditions are thus only possible in the vertittals limiting the range of
environmental flow processes this solver can explored. Mae on account of incom-
pressibility and the consideration of impermeable/boftom boundaries, no Poisson

eqguation with Neumann boundary conditions was solved ®ptiessure.

1.3 Extending SMPM to two-dimensional doubly non-periodic do-

mains

The work presented in this thesis is motivated by the needuestigate, in a numer-
ically stable and spectrally accurate manner, a broadeyerafh environmental strati-
fied flow processes at high Reynolds numbers, particularlyevath localization and

non-periodic boundary conditions in one of the horizonia¢éctions. To this end, a
Spectral Multidomain Penalty Method (SMPM) solver of theampressible Navier-

Stokes equations under the Boussinesq approximation haslbeeloped. The solver is
based on two-dimensional discontinuous quadrilateradsoifains with Gauss-Lobatto-
Legendre (GLL) collocation points. We restrict ourselves two-dimensional quadri-
lateral subdomain discretization, as a third, periodieation may be readily introduced
by using a Fourier discretization. In the numerical methbd,penalty scheme is com-

bined with dealiasing by padding [14], spectral filtering £B], interfacial averaging

12



and a a high-order temporal discretization [74]. A fundatakdgifference of the solver
presented here, with respect to the singly non-periodieesalreated by Diamessis et
al. [25], is the dicient iterative solution of a pressure Poisson equationtail3eof
this iterative solution procedure may be found in Chapterdiarf{33]. The accuracy
and stability of the new quadrilateral SMPM solver are sesfidly assessed against
standard benchmarks, such as the Taylor vortex, modifiedrién cavity and double
shear layer. From an environmental fluid mechanics stantipihie propagation of an
ISW, which is an exact solution to the incompressible Eutprations, is investigated
in a two-layer continuously stratified free-slip channélowing negligible numerical

dissipation and dispersion.

1.4 A Poisson pressure equation solver

The time-discretization, originally proposed by Karnikidaand co-workers [74] (here-
after referred to as KlO, and described in Chapter 4), usederabove SMPM model
requires the solution of a Poisson equation for the pressitihidNeumann boundary con-
ditions. Moreover, on account of the broad range of scalenuironmental stratified
flow processes, any associated simulation will involve & Varge number of degrees
of freedom (DOF) and the numerical solution of the lineartesysof equations corre-

sponding to the pressure Poisson equation (PPE) can onlgrimmmed iteratively.

The matrix resulting from the SMPM discretization of the $3@n-Neumann problem
is ill-conditioned for two reasons: a) the inherent ill-caroning of higher-order inter-

polating polynomials and b) the ill-posedness of the c@wasing analytical equation,
whose solution can only be determined up to an additive eohsBoth of these factors

pose significant challenges to the iterative solution ofRR€&. Moreover, existence of
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a solution requires the satisfaction, at the spatially yiwall level, of an integral com-
patibility condition between boundary conditions and tigand side of the PPE [101].
In the KIO scheme, the compatibility condition is inhergrehtisfied at the spatially
continuous level [74]. However, under-resolution and trespnce of the penalty terms
can cause a violation of the compatibility condition (sefenence [54] and5.3.3 of
this document), thereby posing an additional major chgkeio the iterative solution of

the PPE.

The above challenges in the iterative solution of the lirs@stem associated with the
PPE, or the Stokes equation resulting from alternative tiliseretizations of the in-
compressible NSE [24], have beefti@ently addressed through the development of
appropriate preconditioning techniques [38, 42, 112]. tiAdise techniques are designed
for the symmetric matrices resulting directly from the Gkile formulation of SEM.
Extensive background on the numerical solution of symmditrear systems of equa-

tions can already be found in the numerical linear algelesadiure.

However, the matrix resulting from the SMPM discretizatioh the PPE is non-
symmetric on account of the use of a collocation discrabngB4]. When examining
the numerical linear algebra literature, one observes eityanf tools for precondition-
ing, matrix singularity treatment and solvability conditienforcement (the matrix-level
equivalent of the compatibility condition) for linear sgets with non-symmetric matri-

ces.

Motivated by the above observations and the need to studsoamental flow processes

of increasing complexity, the last chapter of this work prés strategies developed for

the dficient iterative solution of the SMPM-discretized PPE witeuxhann boundary
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conditions resulting from application of the KIO splittisgheme to the incompressible
NSE. The fundamental building block of these strategiesfasticomputation of the
left null singular vector of the global Poisson matrix. Catesncy of the associated lin-
ear system of equations, paramount to the robust perforenainibe iterative GMRES
solver, can only be ensured if this left null singular veatoavailable. In addition, a
method for removing the null singular value of the Poissotrixes outlined, which also
relies of the availability of the the left null singular vect This method is contrasted,
in terms of accuracy and robustness within the GMRES framlevtoiother more com-
monly used techniques designed to ensure a unique solatithre tPoisson-Neumann
problem. A custom-designed two-level preconditioner sogiresented and its superi-
ority is demonstrated with respect to diagonal Jacobi andkslacobi preconditioners.
Finally, the dficiency of the Poisson solver, as buttressed by all the alioategies, is
assessed through its application to the solution of two conmtyrconsidered benchmark

problems.

1.5 Thesis structure

This dissertation is a compilation of three research papetten during the develop-
ment of a incompressible Navier Stokes solver via SMPM. @hgpers were joined
together in a document with the following structure: In Clea@ the basic definition of
the Spectral Multidomain Method is given, as well as the fthepenalty treatment is
imposed on an arbitrary governing equation. In Chapter 3fitsepaper is presented
[34] where a comparison of the numerical solution of the BalWater Equations for
discontinuous high-order methods is analyzed in termseo8MPM, and DGM. Chap-
ter 4 presents a SMPM solver for high Reynolds number straiiieompressible flows,

which is the second paper [32]. In Chapter 5, the details ofribst demanding com-
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ponent of the NS solver, the numerical solution of the presfloisson equation, is

presented [33]. Finally, the concluding remarks and futvoek are presented.
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CHAPTER 2
THE SPECTRAL MULTIDOMAIN PENALTY METHOD

2.1 Spectral Multidomain Method

This method is based on a collocation approach over mutiyaelimensional quadrilat-
eral subdomains (elements). On each subdomain, any fangtoz, t) is approximated
with a tensor product of its nodal (i.e. Lagrange) basisfions over a two dimensional
Gauss-Lobatto-Legendre (GLL) grid. SpecificaMy;+ 1 collocation points are used on
the grid in each direction such that [65]:

N

u(x, z t) ~ Z u(x. z, Hi(3)1;(2), (2.1)

i=0 j=0
wherel;(x), j(2) are thei—th andj—th Lagrange interpolating polynomials evaluated at
each one of the GLL points, at the horizonta) é&nd vertical §) direction, within the
guadrilateral element. Extension of Eq. (2.1) to three disiens is immediate, but it is

not addressed in this work since its scope is the simulaticwa-dimensional flows.

In the collocation approach, on a one-dimensional elentéetm-th discrete deriva-
tive of a functionu is approximated by means of spectraffelientiation matrice®y]

[23] as

OMu(x,t) _ dMu(x,t) (9€\" (€ e
o gem (a_x) ( )Zd u(Xc. t) = Jy'Dy (2.2)

Since GLL points are defined over the canonical integval [-1, 1], the termJ, =
dé/dxin Eq. (2.2) represents the mappidgcobian fron¥ to the global coordinate

system represented byandz. The entriesd, of the Legendre spectralfterentiation

ij?
matrix, DY, are computed using the algorithm outlined in Costa and D&h [The

properties of these matrices are discussed in detail in [6].
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The extension from the one-dimensional single subdomahusdEq. (2.2) ) to a
two-dimensional multidomain framework is straightfordiaf one takes advantage of
the tensor (Kronecker) product structure of the multidonmzollocation approach on

structured grids. Consequently [33],

e One-dimensional multidomain:

d™u m
o (Lnx® DY) u (2.3)
e Two-dimensional single domain:
omu
am
a_z': — "DV ® ) u (2.5)
e Two-dimensional multidomain:
o™u m
%:(Inz®Lnx®lN®DN)u (2.6)
a™u m
(9_Zm:(an®|nx®DN®lN)u (2.7)

In Egs. (2.6) and (2.7)l; are identity matrices of dimensian nx nz represent the
number of subdomains in the horizontal and vertical diceirespectively, and; are
diagonal matrices, whose entries are the Jacobians of edclomain in thex andz
directions. As a result,y ® Dfj andDy ® Iy accounts for the horizontal and vertical
derivatives within each subdomain, respectively. Addisily, | ., aggregates the contri-
bution of these derivatives across all subdomains inktrairection. Finally,l ,, lumps

together the equivalent contributions in thalirection.

Egs. (2.6) and (2.7) allow the explicit evaluation of a deterderivative in either di-

rection on the computational domain. When a spectf&édintiation matrix is used in
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an implicit solve in the spectral multidomain frameworkjsidone with theDy? matrix
for the Poisson equation(Eqg. (4.12)) or the modified Helzhetjuation to solve for
the viscosity term (Eqg. (4.10)), the above expressions ldhoe augmented with the

necessary penalty terms to account for the communicatitmea® subdomains.

Approximating derivatives in the form of Eqgs.(2.6) and |2@ses additional challenges
in solving iteratively the Poisson and Helmholtz equatiorentioned above since the
differentiation matrices are inherently non-symmetric. Ine@ah type methods, such
as SEM and DGM, this is not the case since most of the globaiceatare symmetric

[84].

2.2 Penalty formulation

N

Figure 2.1: Schematic of a subdomain subject to penaltynreat. 1, denotes a
point along an internal interface of the subdomain Bnépresents a
point on a physical boundaris denotes the corresponding interfacial
point of the subdomain neighboring point

For the sake of illustration the general form of the penattyrfulation will be in-
troduced with the Poisson equation as example. In this ftatiom, for any collocation

point 14, I, located along any subdomain interface or physical boun@y Fig. 2.1),

19



the Poisson equation is recast as
V2p + 7 - [conditior] = f, (2.8)

wherer is a penalty cogicient, and theonditionterm in (2.8) represents the patching or
boundary condition at the subdomain or physical boundaspectively. Depending on
the type of governing equation, this term takeetent forms, as can be seen in Chapter
3 for the case of the Shallow Water Equations, and in Chapted4dor the advection,
diffusion, and Poisson equations respectively. The weak eafanot of the patching or
boundary condition provides for enhanced stability of tamerical scheme. Moreover,
in this work, we restrict our presentation to rectanguldodamains, although the exten-

sion to arbitrary quadrilaterals is straightforward [65].

For comparison purposes, it can be said that whereas in tHe\VBt¥le patching terms
are imposed directly at the subdomain interfaces due tmltsaation based formula-
tion, in the DGM they are incorporated in the form of numerfaaxes at the boundary
integrals that appear during the weighted residual approaatment done to the gov-
erning equations. For details on the DGM formulation of themerical fluxes, the

reader is referred to [68, 84], and in the context of the idishallow water equations

to Chapter 3.
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CHAPTER 3
SHALLOW WATER EQUATION SOLVER !

3.1 Governing Equations

The inviscid shallow water equations (SWE) govern the bedranfi a fluid with a hor-
izontal extent much larger than its depth, and are derivedgdplying the hydrostatic
approximation to the incompressible Navier-Stokes equat[85]. The primitive vari-

able formulation of the SWE is given by

ou ou du oh
Uk tVgy AW = o5 &1
ov oV oh
ottt Vay TV = —og 5.2
oh 0 0
St s T(H e = 0 (3.3)

whereu, v are the horizontal velocitie$] is the mean depth) is the displacement of

the free surfaceZ(u, v) is the external forcing angdis the gravitational constant.

3.1.1 Conservative form of the SWE

The inviscid shallow water equations (equations (3.13)(&nd (3.3)) can also be written

in conservative form:

69 _IF@) , 96(a)

ot X oy = ). (3.4)

1The contents of this chapter are published on the articlg F8gh-order discontinuous element-
based schemes for the inviscid shallow water equationsct&penultidomain penalty and discontinuous
Galerkin methodsvritten by Jorge Escobar-Vargas, Peter Diamessis and Baaldo
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where the conservative variablesare

¢ o[}
a=|¢u| = |0, (3.5)
oV 03

the horizontal and vertical fluxdgq) andG(q) are defined as

du Fi oV Gy
F(a) = [gpu? + 3¢?| = |F2|. G@=| g¢uv |=|G; (3.6)
duv F3 ¢V2 + %(pz Gg

and the source tern§&q) are

0
S(@) = | fov+Z —ygu |- (3.7)
—fou+ 2 —ygv
In Egs. (3.5), (3.6) and (3.7¢, = ghis the geopotential height, = fo + B(y — ym) is the
Coriolis force,ry, 7y are the components of the wind strgsss the fluid density, angt

is a bottom friction constant.

3.1.2 Linearized SWE

Assuming a mean depth much larger than the free surfacetielev@ >> h), and
neglecting the nonlinear terms in (3.4), a linearized \wersgf the conservative SWE is

obtained. The modified set of conservation variables is ddfas

¢ ql du I:l dv Gl
q=|oul=|q|. F@)=|0¢|=|F,|. G@=|0]|=]|G, (3.8)
dv (0] 0 F3 q)¢ GS

where® = gH is the mean depth geopotential height.
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3.1.3 Quasilinear form of the SWE

Using the chain rule, Eqg. (3.4) can be rewritten in the qliasiar form [120, 4]

oq 0F(Q)dq 0G(q)dq
ot ag ox oq ay @
8_q + Aaq Ba_q —

a T TRy T S(a) (3.9)

whereA andB are the flux Jacobian matrices, that can be decomposed (eigamnde-

composition or characteristic decomposition) as

A = SAAAS;L (310)

B = SsAsS:! (3.11)

whereA, andAg are diagonal matrices containing the eigenvalues ahdB, andS,,

Sg are orthogonal matrices whose columns are the respectjeeectors.

The positive and negative flux vectois"( F~, G*, G7) are defined by

Fr = f SAA;Sitdg (3.12)
F = f SAASdg (3.13)
G' = f SsA;SsHdq (3.14)
G = f SsA;SsMdg (3.15)

whereA; andAg are the diagonal matrices composed of positive and negzitieaval-

ues ofA andB, respectively. Based on the above decomposition, the flutorsebave

the properties

An=Af+A, —> F=F+F (3.16)

As=AL+A; — G=G"+G. (3.17)
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The eigenvalue matrices and flux vectors are the buildingksidor the penalty formu-
lation of the SWE via SMPM, and for the definition of the numatitux of the DGM

used in this work [47].

3.2 Numerical Methods

3.2.1 Spectral Multidomain Penalty Method (SMPM)

The SMPM implemented in this work is based on the formulafiost introduced by
Hesthaven [65] (see Chapter 2) and further refined by Don ¢28J. Specifically, this
SMPM consists of a multidomain collocation approach basediscontinuous non-
overlapping rectangular subdomains that are connectedpenalty term that ensures

stability of the solution by imposing weak continuity at giddomain interfaces.

On account of the intrinsic discontinuity of the method ahd tritical role of inter-
facial patching, the penalized form of the SWE at a colloeapoint located along the
boundaries of a subdomain requires that (see referencéd8Jsimilar formulation of

the compressible Navier Stokes equations for chemicadigtneg flow)

dq  oF(q) A 9G(a)
ot " ox " oy

= S()

+ TQMX)[F(q) - F'(g+)]

+ T2QMX)[F(q) - F ()]

+ 1QX)[G(a) - G*(ax)]

+ 1 QX)[G () - G (g)]. (3.18)
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In (3.18),7; (i = 1,-- - ,4) are the penalty cdicients,Q(x) act dfectively as Dirac delta
functions that are non-zero only at the interfaces of thelsotain, where the penalty
terms are active, ang*(q), G*(q), F*(g*), andG*(gx*) represent the positive and neg-
ative fluxes at the grid points on the particular interfacethe subdomain (with: in-
dicating the corresponding point on the neighboring igiesg) on the subdomain under
consideration. In a general sense, the penaltyticients can be viewed as weighting

factors for the positive and negative fluxes across thefates.

In what follows, the penalized form of the SWE will be preseliar the case of struc-
tured quadrilateral grids with rectangular subdomainsnetine treatment for vertical
interfaces is determined by the horizontal flu#€gdx, and for the horizontal interfaces
by the vertical fluxe9G/dy. Embedded in the penalty dbeientsr; (i = 1,--- ,4) are

mapping factors to enable consistency in units betweenifferent terms in Eq. (3.18).

Vertical interfaces Figure 3.1 presents a schematic of the vertical interfatedsn
subdomaing andll, whereL or R represent any collocation point at the left and right

edges of the interface.

Figure 3.1: Vertical interface

Based on (3.18), the penalized form of the SWE for a point lacatehe left edge of
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the interface is
og- oF- aGh- L
ot Tox "oy - 9
T Q[(F)" - (FH)T

+

+

T QU(F)" ~ (F)R. (3.19)

Similarly, for a point along the right edge of the interfabe penalized form is
ogR  9FR  9GR R
ot Tax Ty - X9

sQRI(FHR = (F)']

+

+

76QRI(F)" ~ (F)']. (3.20)

In Eq. (3.20)7s, 76 are the corresponding penalty é@eents for the right edge of the

interface.

Horizontal interfaces Figure 3.2 presents a schematic of a horizontal interfaee be
tween subdomainisandlll . In this caseB andT represent the collocation points along

the bottom and top edges of the interface. The penalizediegsdor a point located at

»—

Figure 3.2: Horizontal interface
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the bottom edge of the horizontal interface are

agq® OF®  oGB

ot - 0X " oy = S@)°
+ T3QB[(G+)B—(G+)T]
+ 74Qs[(G7)° - (G)']

whereas for a point located on the top side are

aq"  OFT  9GT .
at+6x+<9y = S

+ TQr[(G")" - (G")°]

+ 16Qr[(G)" - (G)®].

(3.21)

(3.22)

In Eq. (3.22)77, 7g are the corresponding penalty ¢oeents for the top edge of the

interface.

The approach of Don et al. [28, 71] for a one-dimensional eoragion law can be read-

ily extended to the penalized equations (3.19)-(3.22) tmsthat the penalty scheme

formally conserves mass. Moreover, the energy of the systambeen shown to be

bounded by its initial value [28, 71] if

2wty < 1, 20T, > 1
20813 < 1, 2087, > 1
20" < -1, 20Rtg > -1
2wty < -1, 20w g > -1
Wt — W5 = 1, Wty —wtrg =1
WPty —w'rr =1, WPty —w'rtg=1

wherew', w8, wR andw’ are the GLL quadrature weights assigned to points along the

left, bottom, right and top interfaces, respectively. Fam#orm order of polynomial
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approximation,N, in each subdomain a single valuewf= 2/N(N + 1) can be used

instead.

Implementation Issues In this work, the averaging method [28, 16] is implemented
such that the penalty ciecients for positive and negative fluxes (Egs. (3.19)-(3.22)

the sides of the interfaces are taken to be equal. This leads t

1o

2w 0X

1

= =X (3.23)
1 on

2w oy

1

= w_Ay (3.24)
1 0¢

RETSETS = oo
1
= —-—— 3.25
wAX ( )
1 0n
TT =T7=Tg = —Z@
1
= —— 3.26
oy (3.26)

TL=T1=T2 =

TB=T3=T4 =

where dé/0x,0n/dy are the mapping factors for the penalty terms acting on cadrti
and horizontal interfaces respectively (see Eqgs. (3.48)(@m7) ). This approach en-
sures stability of the penalty scheme. Moreover, the pesand negative fluxes of Eqs.

(3.16) and (3.17), have been lumped into a single total fluképenalty term.

The penalized SWE ( egs. (3.19)- (3.22) ) may now be recastrdiogby for each

possible orientation of subdomain interfaces:

e \ertical interfaces

28



— Left edge of the interface

ag- oOF- oGh
+ +
ot 0X ay

= 5(q)" + 1. Q[F- - FF (3.27)

— Right edge of the interface

dgR  OFR  9GR
+

_ R R_ L
ot T ax 3y = S(q)" + Tr@R[F" - F"] (3.28)

e Horizontal interfaces

— Bottom edge of the interface

aq® OFB 4GB
+

_ B B_ T
3 + ™ By = 5(q)° + 7QB[G"° - G'] (3.29)

— Top edge of the interface

oq"  OFT  oGT
+ +
ot oX oy

=9(q)" +71Q[G" - GF] (3.30)

Note that, in this scheme, unlike Hesthaven [65] no specahiilation is used for
the corners, which are simply treated as points that belortgvd edges of the same
subdomain orthogonal to each other. This simplified apgraadound to be more
stable than the theoretically derived one. In addition, ftrenulation of the penalty
term is the same form used by Hesthaven [64, 65], Don et al] 88 Diamessis et
al. [25]. Variations of this formulation are possible and atjgular one, involving

the incorporation of dissipative Rusanov flux-like term, xam@ined in more detail in

section 3.4.3.

Compact Representation of the SMPM A compact form of representing Eqs. (3.27)
-(3.30) is
0q® oF°® 0G®
— +—+ =
ot oX ay

4
S(A)°+ ) TeQen® - [F°— F] (3.31)
=1
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wheren®) is the outward pointing unit vector in the direction from tmhvolumee to
l,
_ 1

T=1l= —
wAS

with As = (Ax, Ay) depending on the orientation of the subdomain interfaces.

3.2.2 Discontinuous Galerkin Method (DGM)

The discontinuous Galerkin (DG) discretization of SWE (3s4s follows: we begin

with the governing equations in continuous flux-form

% +V - F(q) = S(0). (3.32)

Next we introduce a basis function expansion
(N+1)2
W)= D wi()g (3.33)
i=1

wherey represents the basis functions of oréeand g, are the solution variables at
specially chosen interpolation points; in this work theg ahosen to be the Gauss-
Legendre-Lobatto (GLL) points in order to make the compmariwith the SMPM more
relevant and because we have used these points in previodierB@lations (e.qg., [47,
48]). Using Eqg. (3.33) we can now construct approximatiarglie remainder of the

spatial terms in Eq. (3.32). For example, we can now repteblerflux tensor as
Fn = F(0y) (3.34)

and the source function as
Sn = S(an)- (3.35)
Upon defining these expansions, we can then substitute thieenEg. (3.32), multi-

ply the equations by a test function, and integrate to olta#nelement-wise integral
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problem: findgy € S(Qe)Vy € S(Qe) On each elemer, such that

f l//.( ot VF )dQe_f ¥iSy dQe (3.36)

whereS is the finite-dimensional space
= {0 € LXAQ) : Ylo, € Pu(Qe)VQ},

Py is the polynomial space of ordéf defined or()e and the union of thesd, elements
defines the global domain, i.€2, = Ugjl Q.. Next, we integrate the divergence term by

parts to get

(e)
fw. dQe +Z ¢in(e~')-F§? dre - fgevwi-lrﬁ) dQe

= fg $iSY dQe. (3.37)

wheren®) is the outward normal vector going from elemerto element that defines
a specific edge of the (in this specific case) quadrilateratrobvolume. Now, since
the solutions are discontinuous across element boundheesit becomes critical (in
order to construct a consistent and stable numerical appation to the governing
continuous equations) to choose the flux tensor carefutlye$olve this inconsistency,
a numerical flux is introduced that we denotefs). The simplest choice is the mean

value between the two elements claiming the same interface
1
(1) _ (e 0}
FV =5 [F§ +F{]

where the superscriptssand| represent the element under consideration and the side
(interface) neighbor; unfortunately this numerical fluxnist the best choice. Another

easy but better choice is the local Lax-Friedrichs (or Rugpflox defined as

w1
Fi = S [FE + FU — dasddmadn® (f — )] (3:38)

wherednax is the maximum wave speed of the shallow water equationsfeémum

eigenvalue of the Jacobian matrix at the etljgend we have included the switdhiss
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that controls whether the dissipation term is included.eAlative, more sophisticated
formulations for the numerical flux have also reported inlitezature [36, 121, 127],
which, however, we will not use as they are beyond the scoghisfwork. With a

specific numerical flux defined, the DG formulation becomes

og® 4
=1 e €

_ f 0iS9) dQ. (3.39)
Q,

that is in fact theveakform DGM. Integrating by parts one more time yields the fol-

lowing mathematically equivalent system

99©
flp, N 40, +Zf¢n(e') Fi" - FY) dre+ f¢,v FO dQe
Qe
- fg viS® dQ. (3.40)

which is thestrongform DGM and is the form that we shall use to compare and centra
with the SMPM described in section 3.2.1. Next, let us expledermsgy, andSy in
order to rewrite Eq. (3.40) in matrix-vector form. Exparglihese terms in Eq. (3.40)
gives
M(e>dq(6) (D(e))T F© 4 24] (M(I))T (F(*,I) _ |:(e)) - M@g® (3.41)
i dt ij j - ij j I | Eg )

where the elemental matrices are defined as follows:

M = fQ Yig; dQe, DY = fQ UiV dQe, MY = j; pin®  (3.42)

where’” denotes the transpose operator. At this point in the DG ftatiom, we have to

introduce numerical quadrature in order to evaluate tregnals defined in Eq.(3.42) in
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the following way

(Q+1y?
; D7 @13 (w4,
k=1
(Q+1y?
; D7 @13 () Vi (%),
k=1
(Q+1)
MO = > oP1I0wa(xdw(x) (3.43)
k=1

<
>
S
I

)
Z.
©

I

whereQ is the number of quadrature points along each direction efgtiladrilateral

element, and andJ are quadrature weights and Jacobians, respectively.

Using GLL points for both interpolation and integration wietain the following ele-

ment matrices

MO = W0,
DY = o{13®IVy;(x),
MO = w130 (3.44)

wheres denotes the usual Kronecker delta function. Using Eq. {3r&q. (3.41) and

dividing by the mass matrix yields:

dq® T 4 .
| (vuy00) FO =504 3 00 (FO_FUD)  (as)

dt —
where
Qb 1 ifiisonthe edgé
|
0 otherwise
and
| |
O C"i()|‘]i()| )
| (,()|(6)|J|(e)|’

note that Eq. (3.45) is quite similar to Eq. (3.31) for the WP
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Next, we need to simplify the penalty-like term that we haatketlr. To do so requires
explicitly stating the value of the Jacobians of both therslet and edges. For the sake
of simplicity, if we assume that = £(x) andn = n(y), that is, that the computational

axes are aligned exactly with the physical axes, then we cda w

_ 2(X = X0)
g_W_l
_2(y-Yo
= Ay -1 (3.46)

whereXo, Yo is the left-bottom most point on each element @andAy is the length of

the element along the x and y directions, respectively.

This mapping yields the following metric terms

9% _ 2
OX  AX
on 2
=z _ = 47
&y - Ay (3.47)

with the following Jacobians

|J(e)|56_xa_y_a_xa_y—w

dEdn onoE 4
and

A . . .
73’ along a vertical interface (Left-Right edge)

99 =

A—Z" along a horizontal interface (Top-Bottom edge)

From the definition of these metric terms we can see that thalfyelike term simplifies

to
-2 along a vertical interface (Left-Right edge)

O _

2 . .
o= along a horizontal interface (Top-Bottom edge)
wherew = wg = wy IS the value of the quadrature weight at the beginning or emak p

(they are equal by symmetry). Introducing the DGM numeriiced given in Eq. (3.38)
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into Eq. (3.45) yields

dq®

Y E©
4
=S@ 4 Z’Tf')Qi(')ni(e") : [Fi@ — FO — 5gisdAmandn®” (qi(') - qfe))] (3.48)
=1
where
==L _ 1
T2 wAs

andAs = (Ax, Ay) depending in which direction the interface is orientedtiAs$ point,
we have not made too many sacrifices or simplifications invaeyiEqg. (3.48). This
equation is in fact a valid DGM representation of the shalaater equations with only

the very slight assumptions that:

1. The computational coordinate& ) are aligned with the physical coordinates
(%)
2. Co-located interpolation and integration points are uskte fact that we have

chosen these points to be the GLL points results in inexaegiation.

3. The numerical flux used is the simple Rusanov flux.

Taking the special casiiss = 0, that is, no dissipation in the flux term, yields

dg® T 4
% +(Vyix) FO =89+ > 70Q0n® - [FO - F0] (3.49)
=1

which is identical to the SMPM representation given in Eq3{3. Eq. (3.49) shows that
another way of viewing the penalty term is as an extfiedencing term (as is evident
by theAiS term inT and AF in the numerator) that considers the information from the
neighboring elements, which is in fact what we mean by thalusumflux. In section
3.3 we use Eqg. (3.48) with and without the dissipation terncdmpare the SMPM
with the DGM. We now turn our discussion to the time-integrate use to advance the

SMPM and DGM solutions forward in time.
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B @ik | Bik |

1 1/2
41 0 |1 0 |12
231013 0O 0 |16

O (0| 02| 0| 0| 0|12

Table I: Codficients for the third order - four stage SSP-RK(34) method

3.2.3 Temporal Discretization

To retain the high-order accuracy of the SMPM and the DGM,gh+arder time ad-
vancement scheme is needed. The explicit strongly stalpiiiésserving Runge-Kutta
(SSP-RK) method [22, 113] is implemented for both approac@essider the follow-
ing initial value problem

dq

5t = R@. (3.50)

The prediction at the tima + 1 is based on the existing solution at the timand the

forcing termsR(qg). The scheme can be written as [113]

q© = ¢ (3.51)
i-1

d = > (aa® +AtBREY)),  i=12--.s (3.52)
k=0

gy = ¥ (3.53)

wheres are the number of stages of the SSP-RK approaghand B are constant

codficients given in Table | [113], andlt is the size of the time step at a specific time.

3.3 Test cases: Description and Results

Six test cases are examined to compare the performance &M and DGM in

terms of accuracy, dynamic stability, robustness and coasen properties: three linear
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(standing wave, Kelvin wave, and Stommel problem), wheoeigcy can be evaluated
through the availability of analytic solutions, and thremdinear (nonlinear Stommel,
equatorial Rossby wave, and Riemann problem) that providatéoph for assessing
the dynamic stability and robustness of the methods. Intadiresults obtained with
the spectral element method (SEM) [44, 45, 50] are includexbimpare, for each case,
the behavior of a continuous method with a discontinuousetg-based approach. For
the linear cases an additional error analysis based on timeatizedL., andL, norms

of the error is performed.

The normalized.., andL, error norms are defined as

MaXeq(Nexact—
”h”L00 — X( Q( exact ) (3.54)

MaXcaNexact

(3.55)

||h|| J j;z(hexact_ h)de
L, = .
’ J;) hgxacplQ

The mass) and energy[) of the system are measured in the following way

M = f $dQ (3.56)

Q

E |6(U +V2) + ¢?| dQ. (3.57)

I
s

The metric for assessing mass and energy conservation igspective relative error,

defined with respect to the corresponding initial valueMadndE. It is computed as

M; — Mo

0

E: - Eo
Eo

RM = ‘ , RE = (358)

whereRy andRg are the relative errors in mass and energy, BigdEy, My, E; are the
corresponding values for mass and energy at the initial aatitfmes of the simulation,
respectively. For each test case, it is specified explidithyass and energy are lost or

generated by the end of simulation.
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For all simulations no boundary conditions are applied edbntinuity equation. For
the momentum equation no-flux (i.e., reflecting) boundarnduoons are applied along
all four walls of the basins; for the SEM and SMPM methods ihigccomplished via
strong homogeneous Dirichlet boundary conditions whei@athe DGM they are sat-

isfied in a weak sense.

To compute the Courant number a high-order cell techniquesésl,uwhere the cells
are defined based on the GLL points on each subdomain. A méaeityeand geopo-
tential height is defined at the center of each cell [51]. \higse considerations, the

Courant number is defined as

Courant Numbee max(

At(U + o)
As )

whereAt is the size of the time stepl is the mean velocity magnitude at the cellis
the average geopotential height in the cell Aisd= /Ax2 + Ay? is the grid spacing. For
SMPM and DGM, the maximum Courant numladrthat ensures stability of the numer-
ical simulations (® (Courant Numbek 0.5). The equivalent value for SEM is 1. As
specified in the relevant sections, two test cases (stamaiddlelvin wave) are run with
a significantly smaller time step to prevent the time-steg@rror from dominating the
error associated with the spatial discretization. Norle#s as the conservation proper-
ties of the SMPM are negatively impacted by a linearly granoss of mass which is of
order machine epsilon at each time step, all other test @aisasin with a time step that
is 80% the maximum time step associated with Courant numipéslindicated above.
We refer the reader to sections 3.4.1 and 3.4.2 for furtreaudision on time-stepping
error and the impact of time step on the conservation prigseot the spatial discretiza-
tion methods under consideration. The degree of polynoagptoximation is varied

from N = 4 to 20. The number of subdomains is also varied within a ralegpendent
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on the geometry of each case, and the SSP-RK34 method defimsadysly is used to

advance in time the simulations.

3.3.1 Linear Problems

In this section, we compare the three methods quantitgtiv@hg linear test cases that

have analytic solutions.

Linear Standing Wave

This case represents the evolution in time of a wave drivéy lmngravitational &ects
(S = 0) through an initial perturbation of the free surface. Freferences [51, 69], the

analytic solution for this case is given by

h(x,y,t) = cos (rx)cos fry) cos (it V2) (3.59)
u(x,y,t) = %sin(yrx) sin (ry) sin (xt V2) (3.60)
v(x,y,t) = %cos (rx) sin (ry) sin (tt V2) (3.61)

with (x,y) € [0,1] x [0, 1].

The simulations are run fdre [0, 0.5]. Figure 3.3 shows results for SMPM, DGM
and SEM simulations for a fixed number of subdomains and bigri@rder of polyno-
mial approximationN. A time step which is 150th of that associated with a Courant
number value of @ is used, to make time-stepping errorfiisiently small. The results
are indistinguishable if an even smaller time step is engdoy Exponential conver-
gence of the error norms for free surface elevation and botét velocity is attained

for each method for polynomial degree less or equal tHaa 8. At higher values of
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a. h Normalized L , error norm b. u-velocity normalized L , error norm

—#%— SMPM
-©-DGM
-+ SEM

L L L L L L L L L L L L L L L L
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Polynomial degree (N) Polynomial degree (N)
. c. Mass conservation (m 2/52) » d. Energy conservation (m 3152)
10 T T T T T 10 T T T T T
—¥— SMPM O‘ —%— SMPM
' -©-DGM
10° 1Y o+ SEM |l

=

Relative error of mass
=
1S

Relative error of Energy

g -4

L L L L
2 4 6 16 18 20

8 1 12 14
Polynomial degree (N)

Figure 3.3: Analysis of the standing wavexX® subdomains) at= 0.5 seconds
for a varying number of GLL points. d), normalized relative error
in the free surface elevatiam b) L, normalized relative error i
velocity. c) Relative error in mass. d) Relative error in egerg

N, the convergence rate is finally reduced, reaching a plaitthe order ofO(10712).
The Galerkin based methods (i.e. DGM, SEM) conserve mase upathine preci-
sion. The SMPM mass cumulatively loses mass over time. Adehmethods show
improved energy conservation with increasMgvith the relative error reaching a value
of O(107%?) atN = 8. An interpretation for the performance of the SMPM in tewhs

mass conservation idfered in section 3.4.1.

Linear Kelvin Wave

The equatorial Kelvin wave is a low amplitude non-dispersisave trapped in the vicin-

ity of the equator. It is driven by rotational and gravita@b efects through an initial
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perturbation of the free surface. The analytic solutiontifies case [51, 35] is

h(xy,t) = 1+exp(—y§2)exp(—W) (3.62)
uix,y,t) = exp(—%)exp(—@) (3.63)
v(x,y,t) = 0 (3.64)

for fo =0,8=1and &, y) € [-20,20] x [-10, 10].

Simulations are run fot € [0,5]. Figure 3.4 shows results for this case for a do-
main discretized with 2& 10 elements and a varying valuelf As with the standing
wave, here the time step ig30th that associated with a Courant number value.4f 0
No further reduction in time step was required to make tinegysing errors diiciently
small. The behavior of the error norms is similar to that obse for the linear stand-
ing wave: exponential convergence is observed for all theetimethods. DGM and
SEM conserve mass up to machine precision. On the contrifigMsagain shows a
loss of mass, which, in the end of simulations, is up to oneod magnitude larger
than the value computed for DGM and SEM. The trend in relagirer of total en-
ergy conserved is comparable to that observed for the Isteading wave in Fig. 3.3.
Improved energy conservation occurs with increasihgith a relative error value of

O(10*3) observed folN = 20.

Linear Stommel Problem

This problem [114] also known as westward intensificationvofd-driven ocean cur-
rents, represents the steady balance between rotatiaditygfection and wind stress
in a square ocean basin. A sinusoidal wind stress forces parumbed free surface

generating a small amplitude wave moving westward due tcCiéolis force that is

41



a. h normalized L , €rror norm b. u-velocity normalized L , error norm
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c. Mass conservation (m 2/52) d. Energy conservation (m 3/52)
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Polynomial degree (N)

Figure 3.4: Kelvin wave results for 200 subdomains at= 5. Panels (a) through
(d) show the same quantities with Fig. 3.3.

compensated by bottom friction and gravitation@ets and, eventually, reaches steady

state. The analytic solution used for this case is [51]

h(x,y,t) = (;:—llefllx + %éZX)YTﬂ cos(”l—y)
2
+%3 (7'7) cos(”l—y)
+f sin(”l—y)(cleﬂlx + Coe* 4 Cy) (3.65)
u(x,y,t) = —(Cie"*+ Cre’ + Cg)lz cos(nl—y) (3.66)
VOOYY) = (Coage™ + Colpe®) sin(”Ty) (3.67)
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where

1- et
Ci = Colp—y
1- el
C: = G en
¢, - *
Ty

For the case presented hefg= 1x1074, 8= 1x10,y = 1x10° g = 10,p = 1000,

7 = 0.2, Hyp = 1000, and %, y) € [0,1 x 10°] x [0,1 x 1C°]. Note that the solution is

symmetric with respect to theaxis.

Figure 3.5: Free surface elevation computed by all thredhoust for the linear
Stommel problem for X% 5 subdomains an = 12 att = 400 days

Simulations are run until the solution is close to the stestdte (i.et = 320 days), and

the structure of the steady state flow field, displaying theeeted symmetry around

the horizontal axis at = 5 x 10°, is shown in Fig. 3.5 for all three methods. Figure

3.6 shows the error norm convergence curves for the case affarfesh for solutions

obtained with diferent values oN. For all three methods, the error in the free surface

displacement shows an exponential convergence simil&etprevious two linear cases

for up toN = 8, beyond which the error norms levet to a constant value. This plateau

is reached because an exact steady is almost never attaipedttice, as simulations are

dominated by slowly-decaying, weak-amplitude basineoabdes, with the decay time

43



a. h Normalized L 2 error norm

b. Mass conservation (m 2/sz)
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Figure 3.6: Linear Stommel problem results fotr 5 subdomains dat= 320 days.
a) Convergence plot for the, normalized relative error in the free
surface elevatioh. b) Relative error in mass conservation.

of the gravest, longest-wavelength, mode reaching 60 yéa}s Mass is conserved up
to machine precision by DGM and SEM, whereas SMPM shows aofiasdal mass up

to three orders of magnitude larger than DGM and SEM.

3.3.2 Nonlinear Problems

In this section, we compare the three methods qualitativelgg nonlinear test cases
that, unfortunately, do not have analytic solutions. ladteve use the conservation of
mass and energy to compare the methods. All three modelsafigrehould conserve

mass but are not guaranteed to conserve energy. It is p@gsilsbnserve energy (at
least up to the time-truncation error) but this requiregrglmodifications to the discrete

operators that we will not pursue in this work.
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Nonlinear Rossby Soliton

This case considers an equatorial non-linear Rossby wavea amplitude, driven by
gravity and rotational forces. It is initialized by a Gaassiike perturbation in the free
surface elevation. An approximate asymptotic solutionhef $ystem of Korteweg-
DeVries equations resulting from the SWE through applicatibthe method of multi-

ple scales is obtained for this problem in [10]. Althougtsthiist order solution does
not provide a reference to assess the convergence rate mditherically computed so-
lution for the SEM, DGM, and SMPM, it is used to compare assecl phase speed
and solution structure with the corresponding estimatespted by the three numer-

ical methods. For this case,f) € [-24,24] x [-8,8], g = 1, and the Coriolis force

fly) =y.

Simulations are run fot € [0,40]. All three methods accurately reproduce the free
surfacgvelocity structure of the soliton and its propagation at astant phase speed
equal to the analytically predicted value. The structureheffree surface elevation
field at the end of the simulation, with its characteristiotlebe structure, as computed
by all three methods is shown in Fig. 3.7. Figure 3.8 showsli®fr mass and energy
conservation for 24 8 subdomains, and varying, which are similar to their counter-
parts obtained for the linear cases. The SMPM is subject txeedse in mass when the
polynomial order increases. The DGM conserves mass up thimaprecision, with
the SEM dfering comparable performance. The SEM and SMPM are the mddeast
energy conserving, respectively. As discussed in sectibii 3the energy conservation
properties of the DGM are highly dependent on the formutatibthe numerical flux

and the use of spectral filtering (see Fig. 3.12).
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Figure 3.7: Qualitative comparison of the Non-linear Rosglaye results with
24 x 8 subdomaingN = 12, and at time = 40.
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Figure 3.8: Non-linear Rossby wave results for-28 subdomains at = 40. a)
Relative error in mass. b) Relative error in energy.

Nonlinear Stommel Problem

The same configuration (forcing parameters, dimensions@physical domain, and
boundary conditions) is used as in the linear Stommel probleHowever, the fully
nonlinear set of Egs. (3.4) are now solved. In this case,fadhihe gyre toward the
northwest part of the basin is expected due to theceof the nonlinear terms.

Figure 3.9 shows the steady state results, for a domain with Subdomains. Similar
trends are observed for all three methods. Note that in #iScolar case, the fier-
ences in subdomain interface treatment between SMPM and D@ rise to chal-

lenges of numerical stability for the former, when valuepoliynomial degreéN > 12
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Figure 3.9: Nonlinear Stommel problem forx65 subdomains antl = 12 at
t = 400 days

are used. In the SMPM, whenx55 subdomains are used aNd> 12, weak spurious
oscillations develop in the top left corner of the domain anensify, as time advances,
eventually forcing a catastrophic blow-up of the solutids a counter-measure, a 16-th
order Boyd-Vandeven filter [87] is used, which attenuatey timé very highest modes
of the solution, to suppress these oscillations. This gmbtloes not occur for the
DGM, as the spurious oscillations are damped by the disgg@tarmdgiss = 1 in the
numerical flux. The sensitivity of the DGM and SMPM to the gnese of dissipative
terms is examined in greater detail in section 3.4.3. Figut® shows the behavior of
the relative error in mass as a functionf which is similar to what is observed for
the corresponding linear problem (Fig. 3.6) . Results argicesd toN < 8, as high-

order polynomial approximations require the use of a spéfilier to preserve stability.

Nonlinear Riemann Problem

This modification of the circular dam break problem [92] imsimlered as a platform to
assess the performance of the three methods in simulatorggsg nonlinear flows, i.e.

flow fields with distinct sharp spatial gradients. The initandition, a Gaussian bump
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Figure 3.10: Relative error in mass as a function of polynborider for the Non-

linear Stommel problem. & 5 subdomains at= 360 days.

(used instead of a cylindrical step function), is charapger by such a sharp gradient

and has free surface and velocity fields given by:

v)2 w2
hocy.ty) = H o+ Aexp(- X=X+~ Y0) (3.71)
202
uxy,tp) = 0
v(x,y,to)) = O
(3.72)

where §&,y) € [0,1] x[0,1],g=98,H =1, A= 0.2, X = Yo = 0.5, ando = 0.05.
The flow is driven by gravity as in the standing wave problermuations are run for
t € [0,0.2], i.e., up to a short time after the first reflection of thaialiwave from the
domain boundaries where reflecting boundary conditionsjppéied.

Figure 3.11 shows results for conservation propertiesarcse of a % 5 subdomains.
In terms of mass conservation, it iglitult to discern which methodi@rs superior per-
formance. The energy conservation properties of each rdetarove with increasing
N. Ata given value o, the DGM is found to produce a slightly larger relative eiror
terms of the total final energy. Note that for the time for whilee simulations were run,

no filtering was needed to preserve numerical stabilitylatediies ofN and subdomain
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Figure 3.11: Nonlinear Riemann problem fox% subdomains dt= 0.2. Panels
(a) and (b) are the same as Fig. 3.8

thicknesses considered. Nevertheless, the smoothnebg gblution is damaged at
later times, as weak spurious wiggles emerge. As in the ddbe aon-linear Stommel
problem, in the DGM, the dissipation term in the Rusanov flabgizes the solution
while keeping it free of spurious oscillation, although sahat adversely impacting
the energy conservation properties of the method. The fapextral filtering and dis-
sipative terms on the conservation properties for the DGhMribier discussed in section

3.4.1.

3.4 Discussion

3.4.1 Mass and Energy Conservation

All three methods are found to have very good conservatiopegties, a direct result
of their formulation, see e.g. [28] for SMPM, [48] for DGM, @fil16] for SEM. The
DGM conserves mass up to machine precision. The SMPM is feutase mass over

long model times with the corresponding relative error agimas four orders of mag-
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nitude larger than that for the DGM. This error increasehwiimber of time steps.
Such observations might initially seem perplexing, giviea analytical demonstration
of Don et al. [28] that the averaging method-based penaltgrse is conservative. For
all SMPM-driven test-cases we have found that the mass tagshiown here) is a lin-
ear function of time, with a decay rate that is of the order aichine epsilon. The
linear Stommel problem has a total mass loss that reachessvaf 101° at higherN, a
value even higher than that observed for the standing andrike@hve test-cases where
1/50th the maximum time step is used. Thiffelience is simply because®ltime steps
are required for the linear Stommel problem to reach stestaly. Consequently, we

attribute the observed loss of mass to an accumulation oic-off error.

The energy conservation properties of all three methodsawepwith increasing\,
although both SMPM and DGM are found to be inferior in thisarebto the SEM. Note
that in simulations where no energy sink terms (such as imoftiction in the Stommel
problems) are present, the performance of the discontgteminniques in terms of en-
ergy conservation can be strongly influenced by spectratifigg and the structure of the
numerical flux terms, such as the dissipative term used nvitie Rusanov flux. Figure
3.12 shows the élierences in conservation of mass and energy in the DGM, fdRie
mann problem, when spectral filtering, through a 10th-oBi®rd-Vandeven filter [87],
is added to the simulation or the dissipation term is negteut the numerical flux. The
absence of both the dissipative term in the numerical fluxspadtral filtering provides
for the best energy conservation properties, although Bahbhvior does not necessarily

guarantee a smooth and stable solution for such a stronglinear problem.
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Figure 3.12: Comparison of conservation properties of th&/D& the Riemann
problem. Results for % 5 att = 0.2. (a) Mass conservation. (b)
Energy conservation.

3.4.2 Hfect of time step on convergence and conservation proper-

ties

For the purpose of demonstrating that the temporal digetdin error does not domi-
nate over the spatial error, we now perform an analysis oéftieet of time stepAt, size,

on the convergence and conservation properties of eacle dfitbe methods. The base
time step corresponds to that associated with a simulatitn@ourant Number of 0.4.
At is then progressively decreased by a factor,dfand 50 (denoted Hy2, D10, D50
respectively). In Figure 3.13 the convergence plots foffitae surface elevatiomof the
standing wave test case are presented for all three metRods. givenN, the increase

in accuracy of all three methods is visiblestss decreased. Once a factor of 50 reduc-

tion is reached exponential convergence is obtained Nnl8.
The same exercise has been performed to assess the role-atémon mass and energy

conservation in all three methods. The results show (see&i8.14 and Figure 3.15)

that the SMPM mass loss increases with decreastngrhis observation is consistent
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sizes are used.

with the loss, at a linear decay rate of order machine epsitothe SMPM discussed
in section 3.4.1.
chine epsilon regardless of the valuehdf On the other hand, conservation of energy is

improved by the three methods once the polynomial degreeases or the size dit

decreases.
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Figure 3.14: Conservation of mass for the standing wave prolwvhen diferent
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Figure 3.15: Conservation of energy for the standing wavblpro when diferent
At sizes are used.

3.4.3 Hfect of Filtering

In the interfacial treatment of the SMPM, there is no distygeterm that removes spu-
rious high wavenumber oscillations that develop in highdnlmear simulations. Thus,
spectral filtering is needed when such simulations are ruroftg integration times,

namely when sharp localized features emerge in the simuokfie.g., nonlinear Rie-
mann problem) or even when the structure of the solutionpsuggntly smooth and free
of any localized features (e.g., nonlinear Stommel probleim contrast, in the case of
the DGM , the dissipation term introduces a dissipation raa@m that stabilizes the
solution and renders it oscillation-free; for a very simidev problem, this term reduces
to a simple upwinding scheme. By neglecting it, the DGM-gatest solution also be-
comes unstable. Without resorting to recasting the noatiterms in skew-symmetric
form [12] and in the absence of an over-integration-basealidsing strategy [78] (both
which are out of the scope of this work), spectral filteringeiguired to recover stability.
In terms of mass and energy conservation, the performanted®GM appears to be
very similar when spectral filtering and no dissipative tasnused or when only the

dissipative term is used (Fig. 3.12).
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The performance of both SMPM and DGM is further examined obfgms where sig-
nificantly sharp features are present. The dam-break prod&0] is simulated with
a cylindrical step-function of the free surface elevatigraa initial condition and with
(x,y) € [-20,20] x [-20,20] andt € [0,0.1]. The dfect of filtering (with a Boyd-
Vandeven filter ofp = 10) and the dissipative term on the solution are shown in Fig.

3.16.

a. SMPM no dissipation 3 b. SMPM with filter 3 ¢. SMPM with dissipation

0 10 20 30 %30 20 10 0 10 20 30 %30 20 10 0
z z z

d. DGM no dissipation s e. DGM with filter, no dissipation 3 f. DGM with dissipation

Figure 3.16: Cross section of the Dam-break problem ferS5subdomains, and
N = 20 att = 0.1. (a) SMPM without dissipation. (b) SMPM with
filtering (Filter orderp = 10). (c) SMPM with dissipative term. (d)
DGM without dissipative term/{|(gR — g-). () DGM with filtering
(Filter orderp = 10), and without dissipation term. (f) DGM full
Rusanov flux.

In the absence of a dissipative term in the DGM and any spéittieaing for both meth-
ods (panels a and d), spurious oscillations are localizetienvicinity of subdomain
interfaces for the SMPM, whereas, in the DGM, these ositltgtare more evenly dis-
tributed throughout the computational domain. When spkfittaring is applied to
both methods (panels b and e), the oscillations are strategtyped in the subdomain
interior where the fect of the filter is focused [53]. Nevertheless, some weakell-0

lations remain at the subdomain interfaces [53]. If no spéditering is applied but
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an additional dissipative term is added to the penalty terthe SMPM (panel c), the
solution has a nearly identical structure with the one caeghby the DGM with the
full Rusanov flux. For the purpose of comparison, Fig. 3.17ghthe filtered solu-
tion obtained from the SEM which is contrasted to its filtecednterparts (no Rusanov
flux term present) computed from DGM and SMPM (Figs. 3.16b@ndThe results
for SEM with filtering show stronger spurious oscillatioman SMPM or DGM with

dissipation or spectral filtering.

3r SEM with filter

25F
15F

osf

sl )

Figure 3.17: Cross section of the filtered Dam-break problenbfx 5 subdo-
mains, andN = 20 att = 0.1 (Filter orderp = 10) for SEM.

3.4.4 Computational Hficiency and implementation

For all test cases, the order of magnitude of the CPU time per $tep has been found
to be comparable for both DGM and SMPM and increases whenumder of degrees
of freedom increases due koor p refinement. Figure 3.18a shows the computational
time for all three methods considered in this manuscript P8MDGM and SEM) for
different values oN for the Riemann problem with>65 subdomains and the same time
step value for each method, corresponding to Courant Numi@ef.

Figure 3.18b shows the time needed to advance a simulatithe tsame final time
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Figure 3.18: CPU time for the Riemann problem. x55 subdomains with
different polynomial orders at = 0.2. (@) All methods
with Courant Number = 04 and (b) DGM and SMPM with
Courant Numbee 0.4 and SEM with Courant Number 0.8.

as Fig. 3.18a, where the Courant Number is set to the emgyricamputed maxi-
mum value that enables a stable simulation for each meth&M Smulations are
found to support double the maximum Courant Number value oMD&hd SMPM
and are thus twice as fast. DGM and SMPM simulations were @dstormed with
a Courant Number value slightly above the empirically olgdistable limit value. In

this case, DGM was found to destabilize faster than SMPM.

Theoretical justification for these observations is gaibhgdexamining the eigenvalue
spectra of the discretized 1-D linear advection operatoe&ezh of the three discretiza-
tion methods for a periodic domain with 5 subdomains Bingd 4 (Fig. 3.19). In the
absence of the dissipation term in DGM, and as expectedraktmethods have purely
imaginary eigenvalues. The extreme eigenvalues of DGM aughly 25 % larger
than their SMPM counterparts and double the correspondiig Sigenvalues. Incor-
poration of the numerical flux term in DGM gives rise to eigaimes with a negative
real part which equip the numerical solution with the neagssumerical dissipation.

Moreover, the separation between the eigenvalues withatiges$t absolute imaginary
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values is reduced with respect to the case without dissipduut is still slightly larger
than that in SMPM and almost double that of SEM. Taking intocat the stability
region of the SSP-RK34 scheme (which is stable along the maagiaxis) for Courant
numbers below this eigenvalue separation can explain why &h attain double the
Courant Number of DGM and SMPM and why DGM explodes a littleédathan SMPM

for a marginally unstable time step.
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Figure 3.19: Eigenvalue distribution of the 1D discretedinadvection operator
(udﬂx) for all three methods, with an advective velocitywt 1. In
all casesx € [-1,1], 5 subdomaind\ = 4.

In terms of implementation, in the context of the SWE, both$iWPM and DGM
can be written as a system of time-dependent ordindfgréntial equations where the
vector of unknowns is the solution vector at the grid poi@]][ In the matrix-vector
product that appears on the right hand side of this systengudtens, the associated
matrix is simply a spectral ffierentiation matrix (Eq. (2.2) ) for the SMPM due to its un-
derlying collocation method framework with any modificatsoto this matrix incurred

through communication with points on the edge of the neighigssubdomain. Sim-
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ilar modifications on account of the numerical flux term enkber construction of the
corresponding right hand side matrix for the DGM, the corevbich is built through
additional numerical integration and, therefore, costis™ost is, neverthelessffeet
over the course of a long unsteady simulation. In summaryhyperbolic systems
of equations, the cost of SMPM and DGM are very similar. Hosvewe expect the
SMPM to have an advantage when elliptic operators are inted since the addition of
a Laplacian for the SMPM becomes simply a matter of introdgi@ Laplacian dfer-
entiation matrix whereas in DGM either local discontinu@aderkin or interior penalty
methods have to be introduced [18, 5, 21]. For SEM, the auiditf Laplacian operators

introduces only a slight cost.
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CHAPTER 4
INCOMPRESSIBLE NAVIER STOKES SOLVER !

4.1 Incompressible Stratified flow model

4.1.1 Governing equations and Boundary Conditions

This study considers incompressible stratified flow goveinethe Navier-Stokes equa-

tions under the Boussinesq approximation [85, 126]:

ou 1 1
— =—Z[u- V(u - - —Vvp 2 .
50 2[u Vu+ V(u-u)] +Fqg pOVp +v Y(ul),l , (4.1)
N(u)
ap, ’ — YN
i =V -l +p(2)) +«kVp 4.2)
V-u=0. (4.3)
where Fy=-g2k (4.4)

Po
The five unknowns to solve for are the velocity veaor (u,v,w), and the pressure
and density perturbation® andp’, respectively. The non-linear term in the momentum
equations (4.1) is written in the skew-symmetric form to imize aliasing &ects in

the numerical solution [12, 24, 128]. The perturbatignsandp’ originate from the

1The contents of this chapter are published on the articlg A3&pectral quadrilateral multidomain
penalty method solver for high-Reynolds number stratifiedinpressible flowsritten by Jorge Escobar-
Vargas, Peter Diamessis, and Takahiro Sakai
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decomposition of the corresponding total values into [85]:

p=p(XY.2+p(Xxy.zt) , (4.5)

p=pot+p@+p(Xy.zt) . (4.6)

Following the Boussinesq approximation, the referencespiresp(x, y, 2) and density,

po + p(2) are in hydrostatic balance:

P o470 (4.7)

We seek to simulate a broader range of small-scale envimtainow processes than
those attainable by the solver previously developed by #dwersd author [25]. To
this end, the computational domain is designed to flexibbéa non-periodic bound-
ary conditions along all boundaries in the stream vs. defghep Possible choices
of boundary conditions include homogeneous and non-honemes Dirichlet, Neu-
mann, a mixed (Robin) conditions which are applied to both exteim and advection-
diffusion equations. The boundary conditions for the pressaefgpurely numerical

nature and their discussion is thus deferred to 4.2.1.

In this work, we will only consider two-dimensional simutats within the framework

of a quadrilateral Legendre multidomain discretizatiohrdughout the chaptez,will

be used to denote the vertical direction, according to thadstrd convention in en-
vironmental fluid mechanics. Three-dimensional simutadiare readily accessible by
incoprorating a third, periodic spanwise direction subjecthe Fourier discretization
discussed in reference [25] and will be the subject of fytphg/sics-focused publica-

tions.
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4.2 Numerical Method

4.2.1 Temporal discretization

For the temporal discretization a high-order time spliftstcheme proposed by Kar-
niadakis et al. [74], and refereed as the KIO scheme, is usBus scheme is a
high-temporal-accuracy variant of the projection techesjintroduced by Chorin and
Temam [20]. A more general and detailed analysis of prajacthethods for incom-

pressible flows is presented in [60] and specifically for logtler methods in reference
[15]. The scheme used in this work is the same with the one ligelle earlier singly

non-periodic spectral multidomain incompressible NaBaskes solver developed by
the second author [25]. According to this scheme, if onegiraties Egs. (4.1)-(4.3) in
time from levelt, to t,,; one obtains the following semi-discrete equations decaeqho

into three fractional steps far, by means of the intermediate velocitizand{:

0-Sagaum® ¥
th = > BN, (4.8)
q=0
(-0
A—t = V5n+l, (49)
u™l — a
Yo - - vyt (4.10)

The pressure is thus decoupled from the velocity in this {adeancement scheme,
thereby avoiding the emergence of spurious pressure modethe use of a staggered

grid or the incorporation of stabilization terms into theszgming equations [24].

The splitting procedure fgy’ consists of two steps analogous to Egs.(4.8) and (4.10).
The codficientsay, B, of Eq. (4.8) andy, of Eq. (4.10) correspond to a 3rd orderfibyi
Stable Scheme (SS3) [74]. Their values may be found in neéee[74, 100]. Such a

time-advancement scheme allows for a maximum CFL numbeighsas one.
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In the first step (Eq.(4.8)), the non-linear terN(()), defined on Eq. (4.1) is advanced
explicitly via a third order sflly stable scheme (SS3) [74]. In the second fractional step,
the incompressibility constraint (Eq. (4.3) ) is enforcedrbquiring that the second
intermediate velocityi is divergence free, i.€V - G = 0. This enforcement is done by
applying the divergence operator to both sides of equatid®),(and consequently solv-
ing a Poisson pressure equation with Neumann type boundaditons. Details on the
solution of this system of equations are presented in [38Rlfy, in the third fractional
step, the linear termk(u) are solved with an implicit modified Helmholtz equation
solver, in order to obtain the final velocity(!) field at each time step. The values
of the codficientsag, 8q Of EQ. (4.8) andy, of Eq. (4.10) can be found on [74, 100].
The weakly dissipative nature of such an approximation igphkin stability-sensitive

under-resolved problems.

The quantityp™?:
thel
f Vpdt = AtVp™? . (4.11)
tn

is an intermediate scalar field, the pseudopressure, tisarenthat the final velocity
vl is incompressible. Hereafter, we will refer to this quanéis the pressure. In Eq.
(4.9), the incompressibility constraint is enforced, itds assumed tha¥ - ¥ = 0 and

the Poisson equation is solved for the pressure:

A

2enl g [ Y
vVeptt =V ( At) f. (4.12)

The boundary conditions for the velocity field are enforcedEgs. (4.8)-(4.10) and
an analogous approach is followed f@gr However, the correct choice of boundary
conditions for the pressure Poisson equation (PPE) EqR)#& Hictated by the need for

temporal accuracy of the splitting scheme, but most impdigtaby the fulfillment of a
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compatibility condition (see section 4.2.4). Satisfactid the compatiability condition
is of paramount importance for existence of a solutiond® [54, 74, 101, 33]. For
the temporal discretization used in this work, the appadprboundary conditions for
the PPE are given by [74]

P _

Je—1
o =N qZ:;,BqN(u”‘q)+v,6’qL(u”‘q) (4.13)

where the cofficient 5, take the same values as in the SS3 scheme described on Egs.
(4.8)-(4.10). Further detail on the derivation of thesermary conditions and their role

with respect to the compatibility condition is given in nefaces [74, 33]. Guermond

and Shen [59, 60] demonstrate that the splitting scheme (Eg8), (4.9), (4.10) and
(4.12) ) isO(At?) accurate. Finally, note that, throughout the remaindehisftext, we

will use p to represent the (pseudo)pressure as defined in (4.11).

4.2.2 Spatial discretization
Spectral multidomain penalty method

In an under-resolved simulation relying on element-basgtdn-order accuracy dis-
cretization techniques, a preferred location for the appese of spurious Gibbs oscil-
lations are the physical boundaries and subdomain intesfg&5, 25]. Since at these
locations the highest resolved Legendre modes are modiatwi [12], the numerical

noise, caused by aliasing associated with the nonlinemistar the governing equations,
is most likely to manifest itself. This issue is compoundgdhe strong enforcement of

boundary conditions and across-subdomain communicgaictiing conditions) [25].
In such a problematic situation, SMPM provide dhaent means of enabling numer-
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ical stability, without loss of high accuracy, at the subdminterfaces by collocat-
ing both governing equation and boundagtching condition at the physical bound-
ary/subdomain interface interior. As a result, the solutiomsraons more stably and
smoothly from the subdomain’s boundary into its interiahdrent in a penalty scheme
is that boundary conditions are enforced weakly as is @jsandC; continuity of the
function at the interfaces, i.e. the discretization is digmuous [64, 25]. The weak er-
ror associated with the weak enforcement of boundary cemditand intra-subdomain

continuity is no greater than the order of the numerical sehfs4, 25].

In what follows, we discuss the penalty formulation asseciavith each of the op-
erators (i.e., non-linear advective, pressure, and vigdatusive) within the temporal
discretization scheme described§#.2.1. In the penalty formulation of the nonlinear
and viscous terms, all relevant equations are written ims$esf theu-velocity without

loss of generality.

Non-linear advective operator The explicit nonlinear term advancement in Eq. (4.8)
is treated as a hyperbolic equation and the associated fationis adapted accordingly
[25]. Writing the time derivative in continuous form, for teake of compactness, for a
pointk located at a subdomain interface, we have [65]

AUk
i N(U¥) - 7Q)[ant(x, t) — g*(x, 1)] (4.14)

wherery are the penalty cdicients,Q(x) are dfectively Dirac delta functions which are
non-zero only at the interfaces of the subdomain (where ¢nalpy terms are nonzero).

The codficienta, and the functiomg*(x, t) are defined below.

The appropriate value of the penalty parameteis computed based on conservation

of energy considerations of the linear advection equatb@j. [ Numerical stability is
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established by setting

=2, atvertical interfaces
m (4.15)

i% at horizontal interfaces
Z

x

wherelL, andL, are the horizontal and vertical extents of the subdorkamndw =

2/N(N + 1) is the GLL weight. Ifn is the vector normal to a subdomain interfacend

Ug) the velocity at a poinp along the particular interface, the d¢heientay is given by
ud it uP.n<o

ax = (4.16)
0 otherwise

Finally, the boundarpatching operatorg)(x, t) of thek-th subdomain are given by

axu*(x,t) atinterfaces
g(x. 1) = (4.17)

axf(x,t) atphysical boundaries
whereu*(x, t) is the velocity (or density) at the corresponding integfa€the neighbor-
ing subdomain, and(x, t) is the externally prescribed value of the boundary cooditi

at the subdomain interface under consideration.

Viscougdiffusive operator In this case, the starting point of our presentation is Eq.
(4.10), which, on account of the fully implicit scheme foethiscougdiffusive terms, is
recast as a modified Helmholtz equation
L V—AtL(u”+l) —u™t (4.18)
Yo Yo
Settinge = vAt/yo, the penalized form of equation (4.18) is

yE = el (™) — U™ - QU[aUX(x, 1) + fen - VU (1) ~ gF(x. D] (4.19)
0

wherer is the penalty caicient, andQ(x) has the same definition as in the advective

term treatment. The constant ¢helentsa andg are weights for the continuity at the
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function and derivative respectively, which in practice aet to one. The penalty coef-
ficient 7y is also computed through energy conservation considesafmr the discrete

diffusion equations [65]. At the subdomain interfacgslies within the bounds

i[8+2,<—2«/,<2+sx]3sTksi[s+2K+2«/K2+gK]3 (4.20)
wep L. wep L!

wherex = wa/B andw has the same definition as in the advective term treatment. As
indicated by Eq. (4.20), one can experiment with the exaetcehof ry and, thus, the
degreeoof enforcement of the continuity of the function dedvative between sub-
domains. The closer the value of to the upper limit of Eq. (4.20), the stronger the
enforcement at the interfaces. In practice, for the subdomegerfaces, the value of the
penalty coéficient is chosen to provide maximum stability arfiaency (the latter in
terms of the associated iterative solver), and its valuggally case dependent. For

boundary conditions, the following penalty ¢heients are used [66, 25]

£ (%)2 for Dirichlet boundary conditions
Tk = (4.21)
ﬂiw (%) for Neumann boundary conditions
whereL represents the dimension of the subdomain normal to thedaoynFinally, the

boundarypatching operatorg)(x, t) of thek-th subdomain are given by

yuK(x,t) + den - VuX(x,t) at subdomain interfaces
g(x.t) = (4.22)

f(x,t) at physical boundaries

wherey andé are constant cdicients with the same function asandg.

Pressure Poisson equation The penalty formulation of the PPE (Eq. (4.12)) is similar
to the one presented above for the vis¢diflisive operator. As in previous work [71,
33], one treats the elliptic PPE as a steady state versiomeofifusion equation and

sets the caéiciente equal to 1.
V2P + 1 Q) (Pt + pn - VP - g (x)) = f¥, (4.23)
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where the coicientsty, Q(X), @ andg have the same definitions as those appearing in
Eq. (4.20), and is the forcing term defined on Eq. (4.12). The upper and lowenks

for 1 are the same as those appearing in Eg. (4.20). As in the \gsliffusive term
treatment, we chose an intermediate valueofvhich provides maximum numerical
stability and, most importantly, optimuntfieiency of the iterative PPE solver. Finally,
the boundargpatching operatorg*(x) of thek-th subdomain are

. vyp*—én-p* for patching conditions
g'(x) = (4.24)

fo(X, 1) for boundary conditions
Note that, as indicated in section 4.2.1, the values of thumbary conditionfy(x, t) are
those given by Eg. (4.13) which satisfy the compatibilitydition presented in section
4.2.4.

As a general conclusion for this section, there is no spematment for the subdo-
main corners. They are treated as any other point along ddhk mterfaces on which

they reside.

4.2.3 Additional Stabilization Measures

Incorporation of a multidomain penalty scheme in the flowwepprovides it with en-
hanced numerical stability properties that enable higlegrees of under-resolution.
However, this form of improved numerical stability is réstied only to the vicinity
of subdomain interfaces and physical boundaries [25]. Rugher-order polynomial
discretization, additional measures need to be implendeotensure numerical stabil-
ity of the solution in the interior of a subdomain. To this edeéaliasing by padding

[14, 12] is applied during the computation of the nonlineants (equation (4.8)) along
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with spectral filtering after each of the fractional stepggE(4.8)-(4.10)) of the tem-
poral discretization. Finally, an interfacial averaginggedure [25] is applied at the

subdomain interfaces.

Dealiasing

This type of error is inherent in the convolution sums assed with the modal repre-
sentation of the non-linear termgu) (see Eq. (4.1) and reference [14]). Higher modes,
beyond the highest resolved mode for the particular GLL grtteind, are generated dur-
ing the computation of the non-linear terms in Eq. (4.1) ardadiased onto highest re-
solved modes [12, 84]. In an under-resolved simulation revaay viscously-dominated
scales are not captured, this error accumulates over timeagh the persistent action
of the non-linear terms, often to catastrophic numericstiahility [53]. For the specific
case of the skew-symmetric form of the non-linear terms icened in this work, the
two productsu - Vu andV - (uu), have to be dealiased. For the sake of simplicity, the
dealiasing procedure will be shown for- % It can be extended in a straightforward
manner to all non-linear products in Eq. (4.1) and the adwetérms in Eq. (4.2). The
dealiasing technique implemented in this work is outlinetbty in individual steps,

following the procedure presented in [14]:

1. In each two-dimensional subdomain, construct tder(1) x (N + 1) matrices,

Uy and a(;J—XN which contain the nodal values of tie — th order inteprolating

polynomial functionuN(x, z t) and itsx-derivative, respectively.

2. Compute the matrices of modal ¢eients associated witlly anda;’—xN on each
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subdomain by applying a two-dimensional Legendre transfor

Uy = MyUyMY (4.25)
dUy Uy, 1

— = My—M]. 4.26
AX Nox N (4.26)

My is a matrix of dimensionN+1)x(N+1) that performs the discrete polynomial

transform from nodal form to modal form [7]

. In each subdomain, consider a finer GLL grid of polynomiaen M. Choose
M > 3N/2 + 1/2 for an odd value oN , or M > 3N/2 + 1 for an even value of
N. Pad the modal expansionsi and‘%’“ by adding zeros to all modes of order

greater thamN and construct the matricéhy and 2% as

— uN fori,j=1,...,N
M Y
u = (4.27)

0 fori,j=N+1,...,M

— o
aui’\j" it fori,j=1,...,N

X
AL 4.28
I (4.28)

0 fori,j=N+1,...,M

. Go back to nodal form with the new expanded discrete mmﬁihfﬂ,v. andg%g

Uu = BuUuB, (4.29)
AUy Uy 1

v _ g, IMp 4.30
AX Max M (4.30)

whereBy, is a matrix, of dimensionNl + 1) x (M + 1), that performs the transfor-

mation from modal space to nodal space [7] on the hig\eth order grid.

. Perform the multiplication

oU oUp
—| = 4.31
(Uax)M Um X (4.31)

on theM-th order grid.
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6. Convert the discrete functic(hlg—g)M onto its modal form

U U
U— :MM(U—) YN (4.32)
[ 8x]M ox)y M

7. Remove the aliased modes from tleth order modal expansion of the nonlinear

product through padding

(Ui,j@ ) Z(Ui,j@ ] fori,j=1,...,N (4.33)
Oxij)y OXij )y

8. Finally, return the nonlinear product into nodal form be N-th order grid:

ou\ _ (,8U) _;
(u&)N = By (u axJN B

As shown in section 4.3.3, the dealiasing procedure takpsitance when non-linear
effects dominate the dynamics of the flow (i.e., high Reynoldsbann If it is not
applied, the solution produced by the solver can contairllsoale errors, which can

potentially evolve in time and give an unrealistic pictufehe flow.

Spectral filtering

On a particular subdomain, the equivalent modal form of BdL)(is

N
uxz) = > Y i, 2, YR P;@) (4.34)
=0

N
i=0 ]
whereu(x;, z;, t) are Legendre modal cicients evaluated at poinki(z;), andPy, k =
0,...,N is thek-th Legendre polynomial. Within each subdomain, the filtetsan
this expansion series by multiplying each one of the modefficents with a weight

function:

N N
u'(xzt) = > " oioli(%, 2, )PP , (4.35)

i=0 j=0
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whereo, k = 0, ..., N is a spectral filter function of ordgs. This study employs the

commonly used exponential spectral filter [53, 7, 25]:

Ok = exp[—a(g)p] , (4.36)

wherea = - In ¢, andey, is the machine precision. From the discrete perspectwe, i.
with respect to its application to th&l(+ 1) x (N + 1) matrixUy of nodal values on the

particular subdomain, the filtering procedure consistfieffbllowing steps:

1. Compute modal cdicients on each subdomain (see previous section)

Un = MyUMY, (4.37)

2. Multiply each of the modal cdcientsUy by the corresponding filter matrix
Ly = diag(O'o,...,O'N)

U = (LaMy)Un(MLT) (4.38)

3. Recover the nodal representation of the filtered function

Uy = (BuLaMn)UNMILLBY) (4.39)

(BNLNMn)Un(BNLNM )T (4.40)

DefiningFy = ByLnMy, the filtering procedure isfiectively reduced to
U/, = FnUNFR (4.41)

A common concern with the implementation of spectral fifigrin spatially continu-
ous spectral element methodologies is that filtering doépreserve the patching and
boundary conditions and thus specific measures need to ip¢ead®7, 11, 7]. Such a

concern does not exist when using the inherently discoatiaypenalty method because
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the error induced by the filtering operation is of the samepes the penalty scheme

[64], i.e. minimal.

In the incompressible spectral multidomain solver presgim this work, spectral fil-
tering is applied across all three fractional steps whemacing the solution from time
level (n) to level (W + 1). First, further suppress aliasinffects, filtering is applied after
advancing the non-linear terms in (4.8). The solution toRR& (4.12) is then filtered to
smooth out any errors induced at the subdomain interfacesadtihe discrete estimate
of V- (0 [23]. Finally, we filter the solution of (4.12). Although ttidtering of the re-
sult of the explicit nonlinear term advancement is mostazily important, we find that
filtering in the subsequent two fractional steps, which imedinear operators, provides

optimal robustness to our solver.

Interfacial averaging

Despite the visible gains in solver robustness enabled éyémalty scheme, spectral
filtering and de-aliasing, numerical instability will intaittently appear in the form of
gradually growing spikes at a small number of subdomainfates. These events are
attributed to the inherently discontinuous nature of thegity scheme and the modifica-
tion of the interfacial values of the solution following gpeal filtering. These interfacial
singularities, though limited in space, can grow catasticgly in time. As a counter-
measure, an interfacial averaging technique is used [38yl2&n the following criterion
is met:

Juf = u|

k— > Cave, (4.42)
U + ur|

Whereu}< represents the value of the solution (velocity componerdemsity) located

at one side of the interfadgebelonging to subdomaik, u* is the corresponding value
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on the same interfadeoriginating from the neighboring subdomain. If Eq. (4.4%) i

satisfied, an averaging operation is performed

05x (U, +u,,) for vertical interfaces
k *
i = Ui = (443)

05x (U, +U,.,) forhorizontal interfaces
In practice, we set the céiecientC,, < 0.005, which results in a very small percentage

of the interfacial nodes being subject to the averagingguore.

4.2.4 Discrete Pressure Poisson equation

The numerical solution of the non-symmetric linear systbat arises from the SMPM
discretization of the PPE, of Eq. (4.12), is by far the moshdeding and costly com-
ponent of our Navier-Stokes solver. In this section, thetriroportant building blocks
for iterative numerical solution of SMPM-discretized PRE mentioned. For a detailed
analysis of the solution and the main characteristics optbblem, the reader is referred

to [33] or Chapter 5.

This is a classical problem encountered on the numericatisal of the incompress-
ible Navier-Stokes equations when a projection techniqueh as the one used in this
work (see section 4.2.1), is used to decouple the velocily frem the pressure field.
The result is a Poisson equation of the form (4.12) with Neumigipe boundary con-
ditions (4.13). From the continuous perspective, an in iotdeébe able to solve the
equation, a compatibility condition has to be fulfilled. $lwiondition requires the vol-
ume integral of the forcing terms to be equal to the net flux@line boundaries. In this
work, we followed the procedure outlined by Karniadakislef&], provides a detailed
presentation on how to compute these values for the PPEg icaihitext of the temporal

discretization of section 4.2.1, as ultimately indicate&qg. (4.13) of this document.
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At the discrete level, the solution of the linear system aiiapns of the discretized
pressure Poisson equation, if exists, is only determinet @m additive constant [24]
which translates into the associated Poisson matrix benmgykr. Moreover, because
the compatibility condition is never satisfied exactly, gystem of equations has no
solution, i.e. is inconsistent. Consistency of the systeanabled by making the right
hand side of equation the PPE orthogonal to the left nullidargralueu, of the corre-

sponding Poisson matrix [101].

Once the system of equations is made consistent, a prewoatitmatrixM has to
be constructed to obtain affieient solution in the framework of the GMRES iterative
technique. In this work, we use a custom-designed a twd-eeonditioner composed
by a coarse-grid component, that accountdifenrefinement, and a fine non-overlapping

additive Schwarz component, that accountsferefinement [33].

4.3 Numerical results

Four benchmarks are examined to validate the SMPM-dige@tincompressible
Navier-Stokes solver. Three of them involve a non-stratifiaid (Taylor vortex, lid-
driven cavity and double shear layer), whereas the rengome include a background
density stratification (propagation of an internal sojitarave of depression type). For
two benchmark cases, a quantitative assessment of soluaraay is possible by com-
paring to an analytical solution. The remaining benchmae®onstrate accuracy and
robustness of the flow solver for problems with strong nadnities angbr fully non-

periodic boundary conditions.
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All the benchmark simulations require the use of the twalg@veconditioner described
in section 5.6 (Eq. (5.49)) for the iterative solution of tABE linear system of equa-
tions to converge. The total number of iterations on eacle step was found to be
case-dependent. Typically, this iteration count is bel®vit@rations for the highly non-

linear cases, and around 40 iterations for the low-Reynolosber cases. In terms
of the CPU time per timestep, approximately 80% of it was dadid to solving the

PPE. The computation of the nonlinear terms becomes tlotde¥fore expensive when

a dealiasing procedure is included.

4.3.1 Taylor vortex

The choice of this benchmark is motivated by the availabditan analytical solution,
which allows us to assess the accuracy of our solver. The feddifiitially consists of
a periodic array of vortices whose velocity fieldfdses out with time. The left panel
of Fig. 4.1 shows the general structure of the streamlingsisflow. The domain is a
periodic box with dimensionsx(2) € [-1,1]?, 0 < t < 1. The Reynolds number of the
simulation isRe= U,,L/v = 100, wherdJ, is the magnitude of the maximum velocity
on the domainlL is the diameter of the vortex, andis the kinematic viscosity. The

initial condition is computed from the analytical solutidri0, 75] fort = 0.

ut,x,2) = —cosérx)sin(nz)exp(_;ﬂ:t) (4.44)
: —21°t

w(t,x,2) = sm(nx)cosérz)exp( Re) (4.45)

otx?) = _COS(ZTX)ZCOS(ZTZ) exp(—iit) (4.46)

The right panel of Fig. 4.1 shows the convergence plot oflLthesrror norm of the
horizontal velocity as a function of the polynomial deghép-refinement over a fixed

number of subdomains) and forfidirent mesh sizes (i.eh;refinement). As expected,
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the results show exponential convergence, a charactesfstpectral methods, for every
level of h-refinement.

In this case the importance of the two-level preconditieeamed not to be as dramatic

-velocity

L norm of error in u

)

Figure 4.1: Taylor Vortex problem. Left: Structure of theestmlines of the flow.
Right: L.,-error norm of the horizontal velocity as a function of poly-
nomial degredNand level ofh—refinement (3< 3, 5x 5, and 10x 10
subdomains) foRe= 100.

as in the other benchmark cases. The authors conjecturthithaehavior is due to the

smoothness of the solution and the double periodicity otittraain.

4.3.2 Lid-Driven Cavity flow

The lid-driven cavity is a standard benchmark for testingn@oempressible flow solver
subject to non-periodic boundary conditions [9, 31]. Thenpatational domain is a
square box defined ovex,fy) € [0, 1]2. The top boundary moves with a steady velocity,
whereas the lateral boundaries and the bottom of the domaimgermeable walls
(i.e., no-slip boundary conditions). The Reynolds numbethts case iRRe= UL/v =
10%, whereU represents the characteristic velocity at the top of thétgalk is the

characteristic length of the box, amds the kinematic viscosity of the fluid. To avoid
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the singularities that arise at the top corners due to digudgties of theu velocity when
a spectral method is used [9, 108], we consider a modifiedriicen cavity [100], where

the top boundary condition is given by
ux1) = -16¢(1-x°) (4.47)

The structure of the streamlines of the velocity field aranshim Fig. 4.2 for a particu-
lar number of uniformly sized subdomains (2Q0), and a varying value of polynomial
approximationN (p-refinement). As expected, the solution agrees well with ¢cbat
responding to the previously published spectral solutibBatella et al.[9]. Viscous
diffusion from the moving boundary generates a large vortexenctnter of the do-
main. Two smaller vortices then form at each corner, the otteesbottom right corner
being the visibly larger one of the two. Once the resolutomcreased (Figs. 4.2b, and

4.2c), the vortices are better resolved, which is trandlat® a more defined structure.

Figure 4.2: Streamlines on the Lid-driven cavity flowtat 20 sec for 10x 10
subdomains anBe= 1000. a)n =9. b)n = 12. c)n = 15.

In order to validate the performance of the method for I@ealiresolution, the same
case with a non-uniform grid distribution was executed, #redstreamlines of the ve-

locity field are shown in Fig. 4.3.
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Figure 4.3: Streamlines on the Lid-driven cavity flontat 20 sec for a 1 10
grid with non-uniform subdomainsg, = 14, filter orderp = 11, and
Re= 1000.

Running with a larger number of uniform or non-uniform sizeddomains (in the latter
case, with smaller domains focused at the bottom cornengjtbra larger value oiN
produces the same streamline structure at steady statdinssramark, in this test case,
the use of the coarse component of the two-level precomditics imperative to ensure
an dficient iterative solution of the PPE, as the levelhafefinement (i.e. number of
subdomains) is already significant, in addition to the nerigulic boundary conditions,
the presence of pronounced non-linefieets, and a non-smooth behavior of the flow
process. Without this component, the iterative solutiothefPPE does not converge. In
addition, this test case served as a platform to check theriapce of spectral filtering

for the stability of the solver.
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4.3.3 Double shear layer

The double shear layer is a commonly used benchmark [1230 894t the performance
of the solver when non-lineaffects have a dominant impact in the simulation. It is also
a useful platform to assess thiéeet of the stabilization techniques, discussed in section
4.2.3, on the flow structure at the final time. The physical dionis a doubly-periodic
box defined overx, z) € [-1, 1]2. Two shear layers in the horizontal velocity field are
positioned symmetrically around the horizontal centexlifhe two layers are subject
to an initial periodic vertical velocity perturbation whicby means of an inviscid in-
stability [119], gives rise to two billow-like vortices. Ehinteraction between each of
the vortices and its periodic image gives rise to a strainiogion that forces the braid
region in-between them to become progressively thinneéhowt, at the Reynolds num-
bers considered, undergoing the counteractifereof viscosity [125]. The braid region
gradually becomes marginally resolved, thereby requiaingbust spatial discretization

scheme such as the SMPM to avoid numerical instability.

The initial conditions are given by [123]

tanhg(z+ 0.5)) forz<O
u = (4.48)

tanhg(0.5-2) forz>0
S COS(rX) (4.49)

=
[

wheree = 40, with 1/¢ providing a measure of the thickness of the shear layer and
6 = 0.05 is the amplitude of the perturbation i The Reynolds number for this
simulation isRe= UL/v = 10%, whereU is the maximum horizontal velocity, is the
characteristic length of the vortices ands the kinematic viscosity of the fluid. The

vorticity field at timet = 2 is shown in Fig.4.4 for filter ordeng = 12 andp = 10.
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Figure 4.4: Vorticity contours for the dealiased solutionthe double shear layer
test case at = 2s for 30 x 30 subdomaingy) = 14, Re= 10*. Left:
Filter orderp = 12. Right: Filter ordeip = 10

The vorticity field structure in the right panel of Fig. 4.4imsagreement with those
presented elsewhere [123, 89]. Furthermore, as shown itethpanel of the same
figure, inaccurate, i.e. too high, a value of the filter orderan artificially modify the
flow dynamics; spurious modes are generated, focused onltii®main corners close
to the braids. These spurious higher modes lead to the fammaft unphysical vortices,
which grow in time, tearing apart the braids and leading tchaocurate representation
of the flow field. A convergence test was also done, and showiign 4.5, in terms
of p—refinement to see how the solution behaves wheiftardnt polynomial degree is
used for a fixed number of subdomains.

As shown in Fig. 4.5a, a low order polynomial degree leadspgoa resolution of the
vortices and braids of the layers. Once the resolution asge (Fig. 4.5b) the expected
structure of the vortices is obtained, and it is even bettsolved with a higher resolution
(Fig. 4.5d and 4.5d). In addition, we have found that the benef the dealiasing
technique become important when a robust numerical soligicequired at as high as
Reynolds number as possible. For the double shear lay&e at 1¢° or higher and

resolutions comparable to those considered in Figure €ajaking is imperative for a
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Figure 4.5:p-refinement convergence test for the double shear layer.icifprt
contours at = 2sfor 30 x 30 subdomains ande= 10*. a)n = 6, b)
n=9,c)n=14,d)n=19.

both numerically stable and accurate solution. Finallg,stmulation in figure 4.4 used
uniformly sized subdomains. Additional simulations weerfprmed by positioning

shorter subdomains at the vertical levels of the billow ieed, with subdomain heights
becoming as small ag4 the height of those used in figure 4.4; an identical voyticit

field structure resulted.
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4.3.4 Propagation of a solitary non-linear internal wave of depres-

sion type

Large-amplitude, long internal solitary waves (ISW) areizmmtally propagating waves
guided by the top and bottom surfaces of the stably stratifeeein or lakes [63, 8]. Such
waves are characterized by a distinct balance betweergstramlinearity and physical
dispersion which allows them to propagate over long digtamhile maintaining a very
steep waveform. The generation, propagation and dissipafiISWs are phenomena

of immediate relevance to physical oceanography and liogyol

From a purely numerical standpoint, a freely propagating/ I8 an ideal platform
for diagnosing the dissipative and dispersive propertfeg particular spatiotemporal
discretization scheme for the incompressible Navier-&aquations under the Boussi-
nesq approximation. One has to simply track the propagatiagvave in an environ-
ment devoid of any mechanisms that will force the wave tapige, disperse or undergo
wave-scale structural transformations. Such mechanisahsde bottom friction, vari-
able bathymetry (bottom topography) and oncoming curremeng others. Moreover,
the propagation of a fully-nonlinear, internal solitarywsan a stably stratified fluid is

a phenomenon of immediate relevance to physical oceanogeam limnology [63].

The velocity and density fields of a fully-nonlinear, fulignhydrostatic internal solitary
wave field in the Boussinesq limit can be obtained by solvimgRhbreil-Jacotin-Long

(DJL) nonlinear eigenvalue problem as given by

LN (4.50)

2
Vn =

with
n=0atz=0=H
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and

n— 0asx — +oo

wheren(x, 2) is a vertical displacement of isopycnal (iso-density¥aces relative to a
moving frame of reference with the constant speéd the horizontal x—direction; H
is a constant total depth of the fluid columNZ(2) is the Brunt-\aisala frequency as
defined by

N?(2) = 29 (4.51)

Po

wherep(2) is an equilibrium density distributionfiset from the reference densjyand
g is a gravitational constant taken@s- 9.81[m/s?] [85]. Given a solution setc( ) for
the wave phase speed and the wave-induced isopycnal dispdat, the corresponding

solution for the wave velocifgensity fields is obtained through the relation

(U, W, p) = (=C1z: C1px po + p(Z2— 1)) (4.52)

The eigenvalue problem (4.50) is solved by using the Matlalgiam [29] that imple-

ments a nonlinear optimization algorithm formulated byKiogton et al. [122].

The DJL equation is a result of a rigorous derivation from ithescid, non-difusive
equations of fluid motion without any asymptotic projecidh22]. Therefore, a wave
solution obtained from the DJL equation is an exact solutiotihe incompressible Eu-
ler equations and is expected to decay in a, numericallylated, viscous and ffusive
environment. It is thus reasonable to expect that the nwalesdlution of the Navier-
Stokes equations initialized with an ISW computed throudghDJL equations solver
will asymptotically preserve the corresponding invisdL) solution in the limit of

vanishing viscosity and fusivity.

The computational domain is defined over?) € [0,24] x [0,H = 2] with units in
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meters. We impose periodic boundary conditions in the bated x—direction. Peri-
odicity in the streamwise direction allows us to track thesgvaver long propagation
distances, provided of course that the domain length fiscently longer that the ac-
tual ISW wavelength. Impermeable, nondeformable, frgeisbundary conditions for
velocities (1, = O,w = 0) along both the topz(= H) and bottom £ = 0) boundaries
of the domain are used. We choose a no-flux condition for tmsitde o, = 0 at the
top and bottom surfaces. However, we find that our numergsallts are essentially the
same even when the no-perturbation conditienO is used instead. With the use of the
stress-free boundary conditions, formation of viscousnay layers can be avoided
and the only physical mechanisms for wave decay are visadiusion of momentum
and mass diusion. The equilibrium density profile is prescribed by thalgtical func-
tion

p(2) = —20tanh(¢ - 0.2667)0.1333) (4.53)

with the reference density, = 1020kg/m’]. We set the amplitude of the test wave
to 0.346™, which is quite large, close to the limit amplitude allowedHx.(4.50) for
the given stratification. Given the present wave amplitutttthe density stratification,
the wave speed is found to Iz = 0.400928[m/ 5] after solving Eqg.(4.50). The corre-
sponding wave field solution is adopted as an initial coodifior the incompressible
Navier-Stokes solver and is positioned at the center of treain (see Figure 4.6-a).
This inviscidly-balanced, initial state begins to propsklf in a single direction de-
pending on the sign of the phase spee(l,e., positivex—direction, ifc > 0; negative
x—direction, otherwise). The computational domain is dididgo forty equally-spaced
subdomains in x and four equally-spaced subdomairzswith a polynomial order of
N = 32 in bothx andz directions for each domain. For later reference we define ther
wave Reynolds numbéte, in terms of the wave speerhnd the total depthi, as given

by Re, = cH/v, wherev is a kinematic viscosity. The densityfiisivity « is chosen to
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be equal to the kinematic viscosity for all test cases ingbigion.

Figure 4.6 shows the density contours taken at 120[s] (after 4Q 000 steps with a
timestepAt = 0.003[s]) for Re, = 1.6 x 10° andReg, = 4 x 10* along with the initial
density contour at = 0. During this time interval, the wave has traveled for aatise
corresponding to ten wavelengths (i.e. the wave has trdvele cycles through the
presentx—periodic domain). It is evident from the figure that the shapthe wave is
preserved quite well, and no unphysical, dispersive wakeslserved after such long
time integration. Restricting ourselves to visual insp@ttno visible diferences in the

wave shape across Reynolds numbers are distinguishable jpnekent figure.

Figure 4.6: Snapshots of density contours of propagatiteynal solitary wave:
a) initial condition att = O[s]; b) att = 120[s] for Rg, = 1.6 x 10°;
and c) att = 120[s] for Rg, = 4 x 10*. The wave propagates to the
left, and the domain is periodic iR—direction. Ten equally-spaced
contour levels in the range [100B035][kg/m?] are shown.

In Figure 4.7 ab we measured the amplitugig, and the wavelength as functions of
timet for Rg, = 1.6 x 10° andReg, = 4 x 10*. The wave amplitude is defined as the

maximum displacement of the thermocline (an isopycnal fiveg passes through the
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location in the vertical where the density gradient is theximam in an undisturbed
fluid). The wavelength is then defined as,

o |, 2(x. tydx

gmax ’

wherel(x, t) is a displacement function of the thermocline. These wagpqrties, nor-

(4.54)

malized by their respective initial valuésand g in the figure were extracted from the
numerical solution by means of spline interpolation. FroiguFe 4.7 ab, both ampli-
tudes and wavelength generally decay as the time increasgé$he rate of the decay is

slower for the lower viscosity casRé§, = 1.6 x 10°), as expected.
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Figure 4.7: Time histories of wave properties obtained frammerical simula-
tions: a) wave amplitude normalized by its initial valuewa@velength
normalized by its initial value; c) wave travel normalizegdthe initial
wavelength; and d) wave phasédtdrence from the inviscid limit.

Small, high frequency fluctuations appearing in Figure 4e7pgimarily caused by dis-
continuities in the numerical solution inherently presaihe subdomain interfaces on
account of the penalty treatment. When the wave passes thi@sgbdomain inter-

face, some weak numerical noise is generated through tihesentnuities. This noise,
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not entirely removed by spectral filtering, remains in thendo, weakly modifying the
numerical solution over long time integration. Note thathe present simulations we
used rather a weak, exponential filter of orgee 16. Although the above numerical
noise can be fully eliminated by further reducing the ordethe spectral filter, such
tuning toward better appearance of the numerical resuttstipursued here, as our pri-
mary goal is the conservation of the physical propertiesfodely propagating wave in

weakly-dissipative media with minimal artificial damping.

Figure 4.7-c exhibits the distance travelled by the wavadghoas a function of time.
This figure, at the leading order, suggests that the waveagaimn speed is the same
with the speed at the inviscid limit (associated with thausoh of the DJL equation)
for the values ofReg, considered here. For a more detailed comparison, thevelati
wave phase (i.e., theftierence of the actual simulated wave trough location frorh tha
expected in the inviscid limit) is calculated and shown igufe 4.7-d. The result is,
again, normalized by the initial wavelength. The numeritaise mentioned above is
again presente here. However, most importantly, the ph#&sehce becomes smaller
for the less viscous casBé§, = 1.6 x 10°), as expected. Figure 4.7-d also reveals that,
for both values oRg,, the wave propagates slightly faster than what it would it
viscid limit; specifically, about A percent faster (relative to the corresponding inviscid
phase speed) fdtg, = 1.6 x 10° and about (B percent faster for the cais, = 4 x 10*

on average. According to the (inviscid) nonlinear wave tiiea wave of larger am-
plitude (i.e. the less-dissipated high Rew ISW) propagatsteifa In this regard, our
particular results are therefore opposite to our expextafossible reasons include the
time discretization error, the interpolation error in theasurements and the numeri-
cal noise mentioned above. Nevertheless, consideringatietfat the phase fikerence

is maintained within a few percent of the wavelength aft@pgagating for a distance
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of ten wavelengths, we believe that the wave phase prompagatwell-captured in the

simulations considered here.
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CHAPTER 5
POISSON SOLVER'!

5.1 The pressure Poisson equation

5.1.1 Compatibility condition

In the KIO splitting scheme [74] presented on section 4.th&, PPE is obtained by
taking the divergence of Eq. (4.9)

A

a-2a

V. ——
At

=V.vp™, (5.1)
and imposing a divergence-free condition to the intermedlalocityﬁ

=0.

o

V-

A Poisson equation with Neumann boundary conditions tioeeafesults:

Vip = V-(—i):f on Q, (5.2)
ap Je—1

- _ 5. n-q n-ay| —

= n LZ:;,BqN(u )+ vBL(U"Y)|=qg on T. (5.3)

The above expression for the Neumann boundary conditismsed in the KIO scheme
to ensure consistency with the ABDEK time-discretization of the incompressible N-S

equations [74].

The right hand sidé and boundary operatgrmust satisfy a compatibility condition for

the PPE (Eq. (5.2)-(5.3)) to have a solution. Specificdily,Roisson-Neumann problem

1The contents of this chapter are published on the articlpT38 numerical solution of the pressure
Poisson equation for the incompressible Navier-Stokeat@ns using a quadrilateral spectral multido-
main penalty methodritten by Jorge Escobar-Vargas, Peter Diamessis, andé3héan Loan
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is compatible (solvable) only if the volume integral (aretegral in two dimensions) of
the right hand side is equal to the net flux along the bounsgarie. the boundary in-

tegral of the boundary conditions. By integrating Eq. (5.28rahe whole domain we

szde:ffdQ, (5.4)
Q Q

and by employing Gauss’ theorem

fVchD fn-Vde“, (5.5)
Q r

fg f dQ fr qdr. (5.6)

Therefore, the Poisson-Neumann problem (5.2)-(5.3) hatuéian only if (5.6) is sat-

obtain

isfied [74, 101, 95, 58]. As already indicated§a.2.1, in the original presentation of
the KIO scheme, it is emphasized that the boundary intedr@.6) is transformed by

Gauss’ theorem into a volume integral where the divergemtleeosecond term in the

original integrand vanishes. As a result,

:Z_:ﬁq [v-oyeaa- [

Q

V. (Ait) do (5.7)

must hold, which is indeed true through the /BBEk time-discretization, i.e. the com-

patibility condition is naturally satisfied.

5.1.2 Non-uniqueness of the pressure Poisson equation’s solution

In addition to the compatibility condition, the Poisson atjon does not have a unique
solution because, by virtue of its boundary conditionssdtsition is some function plus

an additive constant. That is, given the Neumann boundarglitons

n-Vp=gonr, (5.8)
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any function of the form
p(x) = g(x) +h, (5.9)

wherehis an indeterminate additive constant, satisfies the bayrodaditions (5.3) and
is a solution to the PPE. Of course, in the spatially contirsu@nalytical) sense, once
the pressure field has been obtained in the second fracstemlof the KIO scheme,
its determination up to an additive constant is a non-issherw:omputingﬁ through
(4.9) since only the the gradient of the pressure fi€ld) (s required. However, for the
spatially discretized version of the KIO scheme, the noitueness of solution to the
Poisson-Neumann problem generates its own set of chalexshe corresponding lin-
ear system of equations is nearly-singular though comgi§deovided the compatibility
condition is satisfied). The above challenges, in a numieiiamework, of compabil-
ity condition satisfaction and the non-uniqueness of thetem of the PPE motivate a
closer look at the SMPM discretization and its impact on #sulting Poisson matrix

structure.

5.2 The penalty-based discrete pressure Poisson equation

5.2.1 Penalty formulation at subdomain interfaces

The spatial discretization of the penalized PPE for a pRifsee Fig 2.1) located at an

interface (i.e. vertical or horizontal) takes the form [71]
v2p + 7Q(x) (™ + gn - Vp? — g'(x)) = £, (5.10)
where

g(lz)(x) — yp(IZ) +4n - Vp(IZ) (511)
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In this case, the variables g, y,§ are constants of the penalty method, set to one in
practice [66, 25], and)(x) is a Dirac delta function which ensures that the patching

condition is applied only along the subdomain interfaces.

Expressions and limits for the penalty ¢oeents are derived based on determination of
energy bounds in the evolution of the time-dependent linedrBurgers equation [66].
Following [25] the choice of penalty céients for the difusion equation is found to
perform robustly for the PPE. As a result, at the subdomaerfiaces, the penalty coef-

ficient must be chosen within the limits [66, 25, 65] (seeisect.2.2)

r=—[e+2-2Verex]

1 2
STS—[8+2K+2VK2+3K]—, (5.12)
wepP L

2

L B

wherew = 2/(N(N — 1)) is a GLL quadrature weight, is the corresponding flusion
codficient, set to one [71] and = wa/B [66, 71]. For a horizontal interfack, L—2| is

a mapping cofiicient andL! the length of the subdomain. For a vertical interface, the
subdomain height!, is used instead. The degree of enforcement of the patchimg co
dition is set by the proximity of the penalty déieient to the upper limit of Eq. (5.12).
Our practical experience dictates that a choice pbsitioned closer to the lower limit
works robustly for the problem of interest. Finally, thesend special formulation at the
subdomain corners, which are treated as standard poimtg #ie vertical or horizontal

interfaces.

5.2.2 Penalty treatment at physical boundaries

In a similar vein, given that the PPE under considerationlgext to Neumann boundary

conditions, the penalty formulation for a poldtocated on a physical boundary (see Fig.
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2.1) is given by
V2p® + 7Q(x) (p’n VPP - gB) = fB, (5.13)
with
o°=d° (5.14)
whereqP is the prescribed value for the boundary condition at thendavy pointB,

given by Eg. (5.3), and the remaining variables are the sanfierdhe interfacial case.

The penalty termr is now defined as [66]

1

wherew is again the GLL weight at the collocation poiat

5.3 Properties of the discrete pressure Poisson equation

5.3.1 The discrete Poisson pressure equation

Once discretized, the pressure Poisson equation can lhemai a linear system:
Ax = b, (5.16)

where the matripA is the discrete analog of the penalized Laplacian and istagrisd
from the tensor product definitions given in Eqg. (2.6)-(Zadymented with the contri-
bution of the boundaypatching conditions at the boundayieterfaces. Additionallyx
is the solution vector (i.e. the pressure), &nd V - (—%) is the right-hand-side vector
which contains information from the convective term andMemann boundary con-

ditions (see Eqg. (5.2) -(5.3)).
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Fig. 5.1 shows the structure of the Poisson ma#jxfor a 3 by 3 subdomain exam-

ple with order of polynomial approximatidd = 8.

Figure 5.1: Left panel: SMPM Gauss-Lobatto-Legendre gridtee left (3x 3
subdomains withN = 8). Central panel: Structure of the correspond-
ing Poisson matriA. Right panel: Structure of the contribution of
each subdomain into the global matAx

As shown in the exploded view of the right panel of Fig. 5.% #imaller-size blocks
originate from the second derivative with respect{eqn (2.6)), whereas the remaining
elements account for the second derivative with resper{éqn (2.7)). The additional
entries within the matripA, visible in the central panel of Fig. 5.1, correspond to the
contribution of boundary and patching conditions. Mostiafge contributions are rank
one matrices. In addition, and because of the intrinsiaccire of the diferentiation

matrix at the subdomain level, the global matrix is non-syetrio.

5.3.2 Singular value distribution of the Poisson matrix

Due to the non-symmetric structure of the matrix, and its glemeigenvalues, its spec-
tral properties are moreftectively explored through a singular value analysis. The

singular value decomposition (SVD) of the mathixs given by

A=UxV', (5.17)
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whereU andV are two orthogonal matrices that contain the left and rigigudar vec-
tors, and is a diagonal matrix with the singular values as its diagemafies. Fig. 5.2
shows the singular value distribution for the example mathown in Fig. 5.1. From
this figure, it is clear that the matrix isfectively singular by virtue of it©(107*?) mini-
mum singular value which forces the condition number of tlagrma («(A) = 0"max/Omin)
to be ofO(x 10'7). Section 5.4 demonstrates explicitly the connection betwthe zero
singular value and the non-uniqueness of the solution &gsdowith the discrete Pois-

sonn equation.

Singular values for ORIGINAL system. Condition number = 1.3x 10"

Figure 5.2: Singular value distribution of the Poisson ima#f: Case of 3x 3
subdomains antll = 8

5.3.3 Compatibility condition revisited

The question arises whether Eq. (5.6) is the appropriatgpatlity condition for the
penalized form of the PPE ? Volume integration of the PPE dbalve to first be per-
formed over each subdomain. In this case, an additionahweluntegral arises which
effectively is reduced to the along-interface and along-bawndhtegral of the penalty
terms in EQ. (5.10) and (5.13), respectively. There is noantae, primarily due to the
inherent discontinuity of the SMPM at the subdomain integfg that the sum of these
integrals across all subdomains will be zero, thereby atigwne to recover Eq. (5.6).
One may argue that a modified compatibility condition, whigkes into account the

integral contribution of the penalty terms, might be morgadle, although the practical
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utility of such a modified condition is unclear.

For all practical purposes, in the simulations considereié hthe diference between
the left and right hand side of Eq. (5.6) was found to be wethv@machine epsilon, the
discrepancy becoming greater with increasing degree amarasolution. Whether this
discrepancy may be strictly attributed to the presenceeptmnalty terms or whether it
is also compounded by GLL quadrature errors in an undetvegget-up [54], remains
unclear to us. Using the strategy originally proposed bytli@btand Streett [54], where
the right hand side of the PPE is augmented by a constant emjtia¢ diference of
the right and left hand sides of (5.6) normalized by the arfethe computational do-
main, did not produce a linear system of equations for whitlterative solver could
converge. From a practical standpoint, this observatiggests that, rather than focus
on satisfaction of the compatibility condition, it is moraportant to establish whether
the resulting linear system of equations is indeed solvaleleconsistent. This issue is

addressed in the next section.

5.3.4 Consistency of the linear system of equations

The system of equations (5.16) is consistent if
UgAx = ujb =0, (5.18)

whereug is the left null singular vector of the matrik [52]. Eq. (5.18) indicates that
the PPE has a solution if the forcing vectois orthogonal to the left null singular vec-
tor ug. In reference [101], this rationale is outlined for matsabtained for low-order
schemes and real eigenvalues, in the context of an eigemgi@sition of the matrixA

and its transposAT.
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In practice the condition (5.18) is usually not fulfilledy f@asons outlined in the previ-
ous section, and a regularization has to be applied to makeght hand side of (5.16)

orthogonal to the left null singular vectag [101], i.e.
Ax = (I —upul)b=b (5.19)

whereb is the orthogonal complement bfontou,. Consistency, as represented by Eq.

(5.18), is now ensured to machine epsilon since

ugAx = ug(b— upugb)

ugb — ujuoujb = 0 (5.20)

It is important to recall that if the PPE matrix is symmetristandard eigendecompo-
sition may be used where there is only one null eigenvectactwis a constant vector
[101]. In this case, the implementation of (5.19) is trivielowever, when the matrix
IS non-symmetric, as is the case with the SMPM, the left nathwar vectorug is no
longer constant and has to be explicitly computed. For alangtrix, typical of envi-
ronmental flow simulations with many degrees of freedomgctimaputational cost for a
full singular value decomposition (SVD) is prohibitive. Asailability of the left null
singular vector is of vital importance for théieient and robust solution of the SMPM-
discretized pressure Poisson equation, an alternativeguoe to obtaiml is presented

in section 5.5.

5.4 Null singular vector removal

The singularity of the Poisson matrix can pose a significaupieidiment to the iterative

solution of the associated linear system of equations. iB1déction, we provide an
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overview of strategies to remove the null singular vectocJuding either commonly
used ones and also strategies developed specifically f@NtM-discretized Poisson
matrix. Note that the former are focused on removing the teonipart of the solution,
without necessarily considering a singular value decomipas(or eigendecomposi-

tion)of the matrix.

5.4.1 Commonly used strategies

Dirichlet boundary condition at a single point

This widely used technique consists of imposing a Diricb@atdition at one point along
the physical boundaries [19]. As a result, the indeterreiaalditive constant responsi-
ble for a non-unique solution is now set equal to the valuemgby the Dirichlet condi-
tion. The null singular value is then shifted to the regioreventhe remaining singular
values are clustered and the matixs no longer singular. Although straightforward in
its implementation, when used within the SMPM frameworiks technique produces a
particularly detrimental spurioustect. The insertion of a Dirichlet condition at a point
on a boundary otherwise subject to Neumann conditions,yzexla localized spike in
the solution. In an incompressible Navier-Stokes simaigtihis spike will grow in
magnitude and pollute the solution in the interior of the poimational domain. Note
that this spuriousféect is also observed when the Neumann boundary conditi@ns ar

enforced strongly.
Furthermore, this technique modifies the tensor produatstre of the global matrix

A. As a result, theféiciency of any preconditioning technique at hand, which seola

on the original structure of the matrix, is adversely impdcas the system solved is
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no longer equivalent to the original one. Finally, use of adbiet pressure boundary
condition along an entire boundary of the computational @ionmight be dictated by
the physics of the actual problem at hand, e.g. for an outflountdary [79]. Such an
approach obviously avoids any singularity issues of the$m matrix but is not always
feasible since the pressure distribution along a physicahtary is not always known

a priori.

Constant part removal

Taking into account that the solution of the system of equstcan be determined up to
an additive constant, an alternative approach to make thé@ounique is by forcing

its volume integral (i.e. its mean) to be zero [24]:

f pdQ = 0. (5.21)
Q

The discrete analog of Eqg. (5.21) consists of adding one rittvtve Gauss-Legendre
integration weights to the global matri and solving the overdetermined system of
equations in a least squares sense. We did not pursue tihos @gt it is unclear how
one may obtain anficient iterative solution of the resulting normal equatiowsh

concerns of appropriate preconditioner design also beaingsale.

In the same vein, the constraint (5.21) can be imposed indime bf a penalty term,
i.e. by solving

V2p+rfpdp:f , (5.22)
Q

which in matrix form becomes

Ax + tlw'x = b (5.23)
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wherer is a penalty cofficient, 1 is a vector of all ones with size equal to the total num-
ber of degrees of freedom, as wellashat is a vector containing the Legendre weights
for the numerical integration. For the matrix used in thigkydhe numerical results
obtained with this techniques were not satisfactory siheenew matrix A + 1w') is
dense, which translates into a loss of the block structune aa indficient performance

of the preconditioners customarily designed for the mahrix

Alternatively, one can appeal to the SVD of the Poisson mabrremove the constant
component of the PPE solution at the linear algebra levedcfiipally, the solution can

be rewritten as

x = (Uzv")'b (5.24)
ulb N, uTh

X = —Vo+ ) —V;, (5.25)
(O] (O

i-1 !
whereu;, v; are the left and right singular vectors of the ma#ixando; are the corre-

sponding singular values. Thus, in Eq. (5.25), the solusomritten out in the form of
an orthogonal expansion where the basis vectors are thtesigjular vectors;, and the
corresponding cd&cients areuiTB/o-i. The right null vectown, can readily be shown to
have constant entries. Moreover, for a consistent singyistem and exact arithmetic,
the coeﬁcientugﬁ/o-o is equal to zero divided by zero. Therefore, the first ternbigg)
corresponds to the constant part of the solution and is tleudiscrete equivalent of the
indeterminate additive constant of the analytical solutmthe Poisson-Neumann prob-
lemin (5.9). In practice, the constauﬁf)/ao is found to have a non-zero value which

is bounded by machine epsilon at its lower limit, and rouffcearors at its upper limit.

Now, at each time step, the constant part of the solution neaselmoved by forcing

the solution vectoxk to be orthogonal to the right null singular vector through

X = X — VgV X,
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wherev] x is the codicient of the constant component in the orthogonal exparsfion
Eq. (5.25). The above regularization technique is simiathe one used to enforce
consistency of the linear system of equations (see Eq. X5.18lowever, enforcing
the orthogonality of the solution to the right null singulaactor is éfectively a post-
processing action, i.e. itis implemented after the solutiothe PPE has been iteratively
computed and does not guarantee mdiigient and robust performance of the iterative
solution algorithm. For such a regularization to be implated in the framework of the
actual iterative solution algorithm, such as the conjugaselient or GMRES methods,
one would have to ensure that each new Krylov vector is odhabto the right null sin-
gular vector. For the conjugate gradient method, the iterablver of choice for SEM
[24], this strategy works well since each iteration givesiraproved solution vector,
and the final solution is thus orthogonal to the null vect@ulHFischer, personal com-
munication). When the above condition is imposed within thRES framework, the
orthogonality among elements of the Krylov subspace is @@le impacted. Should
a solution exist, the number of iterations to converge toiik thhen actually increase
significantly. Consequently, moréieient avenues of ensuring a unique solution for the

SMPM-discretized PPE are needed.

5.4.2 Strategies for the SMPM-discretized Poisson equation

Reduced system via Householder matrices

This approach is based on a combination of the SVD with Honigleh matrices [52].
The main goal is, by exploiting the properties of the asgediarthogonal matrices, to
reduce then x n system of equations to an equivalent reduced one, with aspalte of

zero dimension and a rank of- 1. Effectively, the reduced matrix is such that it guides
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the iterative solution method, GMRES in this case, to opesdtan a vector space that

is orthogonal to the null space Af.

To describe the method, let us assume that we have the lefigirtchull singular vec-
torsug andvg of the matrixA. For each one of these two vectors, an orthonormal basis

P andQ can be built using Householder transformations,

th[

P = 1- 2hTh = [pl’ pZ" te ’pN], (526)
L'
th;

Q = I- ZW =[01, 02, , On], (5.27)
rR''R

whereh, andhg are the left and right Householder vectors [52], gndy;, with i =
1,---,n, are the column vectors of the matrid@andQ respectively. It is important to
note that, in this constructiop; = up andq; = vo. Once the bases are built, the null
vectorsug, Vo can be eliminated from the basis to obtain a reduced set «f bastors

P, andQ,

P = [UO, p2,"' 7pN] - Pr = [pZ,"' 7pN], (528)

Q [VO’ Qz,--- ,QN] - Qr = [QZ,' o ,QN]- (529)

Following some algebraic manipulations, the reduced sysiEEqg. (5.30) is finally

written as
P'/AQy = P/b,, (5.30)

wherey = Q/x. The SVD of the reduced matrR' AQ, shows that its singular value
distribution is very similar to that of the original matri but with the main dierence
that the reduced system is free of the null singular valeele reduced matrix is non-
singular. An example of the distribution of singular val@esthe matrix of the reduced
system corresponding to a Poisson-Neumann problem withsibdomains and = 8

is shown in Fig. 5.3. The resulting modified singular valugtrdbution is equivalent to
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eliminating the ternujb/o from Eq. (5.25), which translates into a unique solution for
the system of equations and a significantly lower conditiomber for the new matrix

PTAQ,.

Singular values for REDUCED system. Condition number = 3.9x 10°

Figure 5.3: Singular value distribution of the mattixAV |, whereA is the ma-
trix of Fig. 5.2, obtained with the reduced system technigige
Householder matrices. Unlike Fig. 5.2, the null singulalugar
is now absent.

Given that Q7)~* = Q,, the final solution to the system of equations is computed as

X=Qry (5.31)

Note that none of the matrices used in this method are eiplioiilt and no direct
matrix-matrix multiplications are involved. The final st@n is constructed through a
sequence of matrix-vector multiplications, which are iipin the solution of a linear

system of equations with a Krylov subspace method, such aRES/

Augmented system via bordered systems

An alternative approach is based on the concept of augmémbedered) systems [57].

In this case, the augmented system of equations is exprassed

A dl|x b
- (5.32)
¢’ 0)|e g
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wherec andd are two vectors of dimensiamthat satisfy the following conditions

d'ug#0 (5.33)

c'vg#0 (5.34)
By expanding Eq. (5.32) we obtain

AX + ad

Il
(e

(5.35)
c'x = 0 (5.36)
If Eq. (5.35) is multiplied byu/ the only way in which the system is consistent is for
a=0
UgAX + aujd = ugb (5.37)
on the other hand, by imposimg= vp, uniqueness is ensured (see section 5.4.1), and

the additive constant value is specifieddyThe singular value distribution of the aug-

mented matrix is shown in Fig. (5.4).

Singular values for AUGMENTED system. Condition Number = 3.9x 10°

Figure 5.4: Singular value distribution for the augmentgstesm corresponding
to the matrixA of Fig. 5.2.

As in the case of the reduced system, the augmented systatrig'msingular value is
nearly the same with that of original system, free, of couo$¢he null singular value.
When this method is implemented in a Krylov framework (GMRE@)hin the matrix-
vector multiplication, the vectat is not needed, since all its elements will be multiplied

by the constank = 0.

Between the two methods presented here for the removal ofutheingular vector,
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we have found the iterative solution of the reduced systeneigged through House-
holder matrices to require slightly fewer iterations thes augmented one. Moreover,
the number of iterations for the reduced system remaindynéaed, whereas in the

augmented system, that number fluctuates around the fixee wdiserved in the re-
duced system. As a result, in our actual simulations, we bbaeted to use the reduced

system approach.

5.5 Computation of the left null singular vector

The dficient computation of the left null singular vector (LNSUY® of the matrix
A, denoted asly, is one of the primary contributions of this work. Withouetleft
null-singular vector, consistency of the Poisson pressyséem of equations cannot be
ensured (see section 5.3.4), and the techniques that retineveatrix singularity by
reducing or augmenting the system of equations cannot beimgmted (see section
5.4). Computing this null vector by performing the full SVD thle Poisson matrix is
computationally costly and actually becomes prohibitigettee matrixA increases in
dimension. Moreover, no analytical estimate of the lefl sulgular vector has been
reported in the literature. In this regard, it is worth ngtthat Weideman and Trefethen
[124] show that the eigenvalues and eigenvectors of thenskoaler pseudo-spectral
differentiation matriXDZ cannot be obtained analytically. Such an observation sigge
that the analytical estimation of the singular vectors &f thatrix D3 and, therefore,
of the full Poisson matrix (see sections 2.1 5.3.1) is alsagaly challenging, if not

impossible, task, which is outside of the scope of this work.

We instead resort to an alternative approach, whose maan ddasists of using the

Kronecker (tensor) product properties of the spectral ishathain methods to extend
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concepts from one-dimensional domains to two-dimensidoalains (see Chapter 2).
This approach is validated by an experimental proof whex&.MiSV computed via Kro-
necker products is compared with the corresponding one atedpvith the MATLAB

built-in functionsvds

5.5.1 Doubly-periodic domain

The starting point for describing the particular LNSV cortgiion procedure is a quali-
tative observation of the structure of the LNSV of the disefeoisson matrix associated
with a doubly-periodic domain. Fig. 5.5 shows an exampldefliNSV structure for a
domain with 3x 3 subdomains, ani = 4. The observed LNSV structure and associ-
ated computation procedure outlined below, can be directignded to any number of

subdomains.

-0.05— -

0.1 -

1 1 1 1 1 1 1 1
25 50 75 100 125 150 175 200 22t

Figure 5.5: Left null singular vectas, for an example of a doubly periodic do-
main with 3x 3 subdomains, antl = 4. The vertical dashed lines
separate the contributions of individual subdomainstihe subvector
svshown in 5.6.

Inspection of Fig. 5.5 shows a repetitive patfeuibvector of total size of\ + 1)? el-

ements, shown in detail in Fig. 5.6. This subvector is dashassy, and it is repeated

as many times as the number of subdomairssif) in the global domain (e.qasub= 9
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Figure 5.6: Exploded view of the subvectwfor an example of a doubly periodic
domain with 3x 3 subdomains, and = 4.

for the case of % 3 subdomains). A general definition ®f is
sv=Ug(p: p+(N+17-1)

with p = 1+ (j = 1)(N + 1)?, wherej = 1,...,nsubrepresents thg-th subdomain.
Based on this definition and our visual observations, we hawed that, for the case of
uniform-sized subdomains, we can construct the LNGQ¥s

1nsub® SV
Up=—"7""—""—
||1nsub® SV”Z

wherel, s is a vector of ones witimsubelements. For the more general case of sub-

(5.38)

domains with diferent dimensions, observation indicates that the magnitddhe el-
ements ofsv scales with the area of the particular subdomain it origigdtom. For a
doubly-periodic domain, with any number of arbitrarilysd subdomains, the global
LNSV is then generally computed as

a®sv

=" 5.39
la® svlz (5.39)

Uo

wherea is a vector oihsubelements, which contains the area of each subdomain.

Further analysis applied to the vectwr (Fig.5.6) reveals an additional level of Kro-
necker product structure within it. As in Fig. 5.5, Fig. 5I8cashows a repetitive
pattern, denoted ag (see Fig. 5.7), which repeats itself evéy+ 1 entries ofsv with

varying magnitude. Specifically, the vectrcan be constructed as

sV=—U QU (5.40)
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Figure 5.7: Structure of the vectar for the case oN = 4.

whereu, is a vector, regarded as a “core vector”, representing tinéribation of an
appropriately defined subdomain one-dimensional subdonaail,. Both a detailed
definition and computation procedurelgfare dfered in section 5.5.3. Once the vector

svis computed, the global LNSV\; is calculated using on Eq. (5.39) and (5.40) as

a® U & U
Up= ——————— 5.41
°" Tlagu e ul; (®41)

5.5.2 2D non-periodic domain

The same exercise can be performed for the more generaleradje case. The struc-
ture of the LNSV associated with the discrete Poisson mdtriixan example of & 3

subdomains an®ll = 4, is presented in Fig. 5.8.flectively, the example subdomain
consists of a central domain surrounded by eight subdomedies of which has at least
one physical boundary that is non-periodic. As in the presicase, the observed LNSV
structure and associated computation procedure outlielesvpcan be directly extended

to any number of subdomains.

In this non-periodic example, there are as marjedent types of patterns as there are
subdomains with dierent combinations of boundary conditions along each fexter
(e.g. 9 for the case of:83 subdomains in the example set-up of Fig. 5.8). Nonetheless

there is not a clear repetitive pattern as in the doublygokricase, which means that no
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Figure 5.8: Structure of the of the left null singular veatigifor an example non-
periodic domain with 3 3 subdomains, anN = 4

longer a simple Kronecker product, as the one used in EqQ9)5can be used to com-
puteug. As in the periodic case, the magnitude of the entries in sabkiector is related
to the area of each subdomain. If we denote\disthe sub-vector of sizeN + 1)? that
contains the contribution of the corresponding subdomahre global LNSVuq can be

computed as
[sv(l)l ... |sv‘”5“t)]T
[V [svsud

where the concatenatiol) operator is applied in a row-wise sense such that the numer-

Uo (5.42)

ator of Eq. (5.42) is a vector with the following structured<sq. (5.43) )

;
[S\/l)l...|sv(”3“°]T = sV sl s sls™  gnsud | (5.43)

SV SW0) svinsub)

In Eq. (5.42) and (5.43)ysubis the total number of subdomainss = (N + 1)? is the
total number of points per subdomain, &n@) is the j-th element of the vecta), the
non-periodic analog of vectev defined in the previous section. Similarly to Eq. (5.40),

the subvectos\) corresponding to a subdomaiis computed as
sW) = —a(u, ® uy) (5.44)

whereg; is the area of the subdomainandu, anduy are core vectors, non-periodic
analogs ofu, used in the doubly-periodic case, which, however, are deted by the
type of boundary the subdomaiirhas in the vertical and horizontal direction, respec-

tively. The possible choices of anduy for the 9 diferent type of subdomains (in terms
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of their patchingooundary conditions) of Fig. 5.9 are given in Table I. Spealfy,
these nine dierent subdomain locations where a subdomaian be located are four
corners (BL, BR, TL, and TR), four sides (B, T, L, and R), and the iatdf). Once the
vectorsug, Ut, U, , Ugr andu, are available, the null singular vectog can be computed
for any 2D non-periodic domain discretized with rectangsiabdomains. In the next

section, a procedure to identify and compute these vedgesented.

TL T TR
L I R
BL B BR

Figure 5.9: Schematic of a general non-periodic domain.hdins the possible
locations of subdomainsubject to diferent patchingpoundary con-
ditions.

| Location| uy | u, |

BL u. | Ug
B U] Ug
BT Ur | Ug
L u. | y
I U U
R Ur | U
TL u. | Ur
T u | Ur
TR Ur | Ut

Table I: Possible choices of the core vectayaandu,, used in the computation of
Ug, depending on the location of the subdomain under congidaras
shown in Fig. 5.9
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5.5.3 Computation of the core vectors

We now focus on the estimation of the core vectossut, u, , ug andu,. To this end,

the starting point is the SMPM-discretized analog of the-dimeensional Laplacian de-
fined over a finite horizontal non-periodic interval withébrsubdomains. Neumann
boundary conditions are applied at the end-points of thedfuihain, and each subdo-

main hasN + 1 collocation points.

For the sake of illustration, the procedure for computing¢bre vectors is now shown
for the case oN + 1 = 5 Gauss-Lobatto-Legendre points per subdomain. The samne pr
cedure applies for any number of points per subdomain. Fi0 Shows a schematic
of the global domain in which, | andR indicate the left, internal and right subdomain

within it.

L I R
+—0—0—0—+—0—0—0—+—0—0—0—+

Figure 5.10: One dimensional base configuration for the igeioa of the left null
singular vectou, (case ofN + 1 = 5).

The corresponding SMPM Laplacian matfxy for the one-dimensional set-up shown
in Fig. 5.10 has dimension B(+ 1) x 3(N + 1) (15x 15 in the example) and can be

decomposed according to the SVD as:
A1 = UgZ14V 1 (5.45)

whereUyq4, V14 andXy4 are defined in the same way as in (5.17). From such a decom-
position, we isolate the null vectou§'® andv{'®. The right null vector{|? is constant.

However, the left null vector{'? is not. The latter vector, of size B(+ 1), can be
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partitioned into three sub-vectors of sike+ 1, with each sub-vector representing the
contribution of each subdomain (i.&, 1 andR) to the global 1D null singular vector
u? (see Eq. (5.46) and Fig. 5.11)

T

i
(WG = |G @R @ ol (5 46)

up U Ur

Figure 5.11: Left null singular vector structure of the onmehsional discrete
SMPM Poisson matrixu, , u;, andug for the caseoN +1=5

In Eq. (5.46) and Fig. 5.11, the vectass, u;, andug are the contributions of the
left, central and right subdomains to the global null veef?. Note that if the same
procedure is followed with the canonical 1D subdomains&dywith the vertical direc-
tion, the results are exactly the same as in the horizonsa wéthug = u, andut = Ug.
With these considerations, for the case of doubly-periddicains, the global LNSV
is computed strictly through the vector and Eq. (5.41), whereas for the calculation
of the LNSV for the non-periodic case, the vectarsugr andu, are the ones needed
(see Eg. (5.42)-(5.44)). If the domain has a combinationesigolic and non-periodic
boundary conditions, the corresponding choices, 9fir andu, have to be take into ac-
count depending on the orientation of the periodic directitable Il shows the choices

of uy andu, for the diferent types of boundary conditions.
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| | Periodic| Non-Periodic| x-Periodic| z-Periodic]|

| Location| uc | u; [uc| u, [uc| u, [[uc| u, |
BL U U u, u. U up up U,
B U U U u, U up U, U,
BT U U URr up U up UR U
L U U up U U U up U
| U U U U U U U U
R U U Ur U U U URr U,
TL U U up URr U Ur uL U,
T U U U URr U Ur U U
TR U U URr URr U URr UR U

Table II: Possible choices of the core vectagsandu, used in the computation
of ug for different choices of boundary conditions, recalled that u,
andur = UR

5.5.4 Validation of the procedure

For the case of the 2D doubly-periodic domain, Fig. 5.12 shtivelL, norm of the
difference between the LNSV computed for the full matrix via th&MJAB function
svds and the LNSV computed with the procedure outlined aboves &fnor analysis

is performed for dierent number of subdomains and polynomial degrees. Thésesu
show that the error is of the order 6(< 107!?), and is independent of the number of

subdomains.

The same error analysis is done for the non-periodic casepassented in Fig. 5.13.
As in the periodic case, the results show that the error is@btder ofO(< 107*?), and

is independent of the number of subdomains.
The procedure outlined above is a much mdfieient means to obtain the LNSV of the

pressure Poisson matrix than the prohibitively costly,réalistic problems, full SVD.

All that is needed a priori are the vectars, u;, andug. Moreover, as shown in Fig.s
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Figure 5.12:L, error norm (as compared to the corresponding MATLAB esti-
mate) in the computation of the LNSV forfterent number of sub-
domains and a varying number of the polynomial degree in alglou
periodic domain.
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Figure 5.13:L, error norm in the computation of the LNSV forfférent number
of subdomains and a varying number of the polynomial degree |
2D non-periodic domain.

5.12 and 5.13 it was established that the degree of apprtximaf the two-dimensional
LNSV obtained via tensor products of the contributions &f time-dimensional LNSV
is highly accurate. A rigorous proof of Eq. (5.43) and (5.4dl) remains to be fiered.

Such a proof is deferred to future studies.

Finally, the use of Kronecker products to compute the lelttsingular vector suggest a

connection with the Kronecker product structure of the rditecLaplacian given by the
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sum of Eq. (2.6) and (2.7). Nonetheless, the exact natut@otbnnection remains to

be established and is subject of future work.

5.6 Preconditioners

Although we have established a framework that guarantegsatholution for SMPM-
discretized PPE exists and is unique, we still need to ernbattethe iterative scheme
used towards this computing solution is computationafijcient. To this end, it is
imperative that anfécient preconditioner matrixM ) be developed. In this study, the
design of a preconditioner has been found to be highly seasi the type of boundary
conditions applied to it, which cannot bef@rent than the Neumann conditions applied
to the original system. Furthermore, consistency of thegmditioned system of equa-
tions must be preserved to obtain a physically meaningfuitiem. In what follows,
we outline the basic components of three preconditionirejeggies, classical diagonal
Jacobi, block-Jacobi and a two-level preconditioner, gfesil with the particular char-

acteristics of the SMPM discretization in mind.

5.6.1 Diagonal Jacobi preconditioner

This classic and straightforward strategy uses as a précmmet a diagonal matrix that

consists of the diagonal elements of the global matrix [106]
m; = a;j (5.47)
As a first approximation foM, we find that the diagonal Jacobi preconditioner works

well in the simulation of viscously-driven flows, such as eglor vortex, but when
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applied to a flow with strongly nonlinear characteristicg(ehe lid driven cavity), it is

highly inefficient, often with the iterative solution never converging.

5.6.2 Block Jacobi (non-overlapping additive Schwarz)

The element-based character of the SMPM [65] furnishes @aladlomain decompo-
sition, which is reflected in the block structure of the Porssnatrix A (see section
5.3.1 and Fig. 5.1), where there is a direct one-to-one &gsmt between each of the
large blocks with a particular subdomain. The block-Jacoéihod thus uses the con-
tribution of each subdomain to the global Poisson matribotonfthe individual blocks
of a preconditioner. Each block contains the SMPM-diseegtianalog of the Lapla-
cian combined with the contributions of discretized Rolyipet boundary conditions
at the subdomain interfaces and Neumann conditions at th&qath boundaries (Eq.
(5.10) and (5.13), respectively). Under these considaratiwe can construct a non-

overlapping Schwarz preconditioner as

nsub
M= > RIAR (5.48)
k=1

wherensubis the number of subdomains, aRy is a restrictioyprolongator operator
that transfer data from the local to the global problem ame-wersa [42]. Due to the
type of boundary conditions applied to each subdomain, dbal Isttthess matrixAy

is non-singular and, in the preconditioner setting, it canrlverted directly via an LU

decomposition.

Numerical results (see section 5.7 for more detail) show tiia preconditioner re-
duces the number of iterations with respect to the absenaguoéconditioner or using

only diagonal Jacobi. The number of iterations within the RIB& solver are indepen-

116



dent of the degree of approximation, i.e., for a small nundbesubdomains, the block-
Jacobi preconditioner dealffieiently with p-refinement. However, whemrefinement
is applied, corresponding to a sizable increase in numbsulsdomains and degrees of
freedom, the number of iterations of the GMRES and computatibme of the solver
increases linearly (see Fig. 5.15). Thus, this preconbtiés unsuitable for large prob-
lems, such as those encountered in environmental fluid me&shapplications. For

such problems, a morefieient preconditioning strategy is needed.

5.6.3 Two-Level preconditioner

The implementation of this preconditioner draws from thevpyus work of Fischer
and collaborators [38, 42] and the need lletscalability. It combines the above block-
Jacobi method as a preconditioner at the fine-level with asesgrid component based
on a low-ordeN = 1 SMPM approximation of the Poisson-Neumann problem. The

general form of this preconditioner is
nsub
M~ = RIAG'Ro +  RIAR (5.49)
k=1
Eq. (5.49) is fectively Eq. (5.48) augmented by the additional teRfA;'R, that
accounts for the coarse grid correctidRg is an interpolation matrix [7] that projects
a scalar field acrossfiierent Gauss-Lobatto-Legendre grids #adrepresents the low-

order (coarse-level) analog of the Poisson matrix.

As mentioned in the previous section, the solution of the fewel preconditioner
(Block-Jacobi/ Additive Schwarz) does not ffier from the problems of a nearly sin-
gular system due to the Robin type boundary conditions appliehe subdomain in-

terfaces, which make each one of the blocks non-singulais i$mot the case for the
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coarse grid preconditioner, where the same problems adsdawvith the global Poisson
matrix once again must be addressed. In this regard, a rezatlan along the lines of
Eqg. (5.19) has to be applied to the coarse-system solveder o make it consistent,
otherwise the preconditioner cannot be solved for. As vhin block-Jacobi precon-
ditioner, the solution of the coarse grid preconditionepésformed with a direct LU
solver. In section section 5.7, the scalability of the twael preconditioner is compared

to that of the additive Schwarz (Block-Jacobi), and diagdaabbi.

5.7 Numerical results

5.7.1 Taylor vortex

This is the first of two test cases used to assess the perfoamdrihe previously out-
lined iterative solution strategies for the Poisson-Nemmgaroblem within the frame-
work of an incompressible Navier-Stokes equation solvetails on the analytical ex-
pression for this case, and for the convergence properti¢sensolution can be found

in section 4.3.1.

The impact of the above discussed preconditioners onfti@esmcy of the numerical
solution of the PPE is shown in Fig. 5.14 by examining the ayemumber of pressure
iterations per time step and average CPU time per time stedwascaon of the total
number of DOF to account for bothand p-refinement. The left panel in Fig. 5.14
indicates a visible reduction in iteration count when thecklJacobi or the two-level
preconditioner is used in place of diagonal Jacobi. Fortdsscase, there is minimal

difference between the performance of the block-Jacobi andetvebpreconditioners,
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with the former requiring a slightly smaller degree of itesas and slightly less CPU
time. One might conjecture that the minimally better parfance of the block-Jacobi
preconditioner might be linked to the smoothness of theliigiscous solution. From
the right plot of Fig. 5.14 a similar conclusion can be obedini.e. the CPU time per
timestep for the GMRES solver to converge with a particulacpnditioner reflects the

number of iterations per timestep.
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Figure 5.14: Poisson solver performance fdfatient preconditioners for the Tay-
lor vortex problem. Left panel shows the average number e$-pr
sure iterations per timestep as a function of total numbelegtees
of freedom (DOF). Right panel shows the average CPU time per
timestep as a function of total number of degrees of freedd®F).

In the legend, DJ, BJ and TL correspond to diagonal Jacobikblo
Jacobi and two-level preconditioners, respectively.

5.7.2 Lid-driven cavity flow

The lid-driven cavity test case presented on section 4.22 also used to check the

performance of the preconditioners for the solution of tR&f the context of the in-
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compressible Navier-Stokes solver. Fig. 5.15 shows theopeance of the pressure
solver in terms of number of iterations and computatiomaktper timestep for both the
block Jacobi (BJ) and two level (TL) preconditioners. Notattho results are shown
for the diagonal Jacobi preconditioner as its applicatidmat allow the iterative solver
(GMRES) to converge. The left panel of Fig. 5.15 shows thaiien count as a func-
tion of polynomial degreéN and number of subdomains in each direction for the BJ
(white surface) and TL (gray surface) preconditioners. Bgreconditioner success-
fully deals with the demands @frefinement by fixing the average number of iterations
to a constant when increasihgfor a fixed number of subdomains. However, for a given
N, once the number of subdomains increases , the iteratiant etgo increases, which
indicates that the BJ preconditioner isfii@etive in accomodating—refinement. This
shortcoming is addressed through the incorporation of eseegrid component through
a TL preconditioner, as is visible in the same figure. As iatid by the grey surface,
use of the TL preconditioner with an increasing number ofieumbains keeps the itera-

tion count nearly fixed and well below 100.

The right plot in Fig. 5.15 shows the CPU time per timestep fa two precondi-
tioners as a function of the total number of DOF, for the saases presented in the
left figure. A power law best fit is also shown to enable exttagan of the perfor-
mance for both preconditioners for problems with a large ibeinof DOF. For problems
with less than 1ODOF, where the total number of subdomains i€¢100) or less, the
BJ preconditioner is faster. As the total number of DOF insesatypically a result
of h-refinement, the TL preconditioner shows a visible gain ieegp Environmental
flow simulations, such as those discussed in section 1,alpiequireO(10°) DOF in
two dimensions which suggests, according to the power laytfiait, on a single pro-

cessor, the TL preconditioner will be 4 times faster thanBlAegreconditioner. In this
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regard, when applied to a number of other non-periodic beacks, either stratified or

non-stratified (e.g., temporally evolving shear layertsied lock exchange and prop-
agating fully nonlinear internal solitary wave), consielgéin greater detail in a separate
manuscript in preparation, the performance of the threegmitioners here has been

found to be similar to that reported here for the lid-drivewity.
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Figure 5.15: Poisson solver performance for the Block Ja@biand Two-Level
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5.8 Discussion

Various preconditioners previously developed for othghkorder element based meth-
ods have been applied to our SMPM-discretized PPE. Howéverdficient perfor-

mance of such pre-existing preconditioners has been fouibe impeded by the dis-
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continuous formulation of SMPM at the subdomain-interéa¢ke requirement of Neu-
mann boundary conditions and the non-symmetry of the glBb&son matrix. First,
the incomplete LU (ILU) preconditioner [106] was examingdich was found to be
impractical for large problems as matrix storage is reguifesubsequent step involved
a preconditioner based on the finitéfdrence (FD) discretization of the Laplacian oper-
ator [24]. In this case, applying the FD discretization & discontinuous interfaces of
the SMPM grid is not a straightforward procedure. As a resaltving the FD precon-
ditioner matrix is a costly task, since the resulting maisixion-symmetric and nearly

singular.

A p—multigrid preconditioner has also been tested [105, 104137] in order to take
advantage of the hierarchy inherent in the Legendre polyaldrasis functions used in
the SMPM and the fast computation of GLL points anffedentiation matrices. The
main problem encountered in this approach is théficiency of the smoothing steps
which require a significant number of iterations (as high @st& remove the high fre-
guency oscillations that contaminate the coarser gridesobncountered at subsequent
levels of the multigrid cycle. Finally, a projection techuoe relying on multiple right
hand sides of the PPE, obtained from previous timestep$,wWa8 also tested in the
framework of a TL-preconditioned GMRES iterative solverthithe puprose of further
reducing the total number of iterations. A modified Gram+8ich orthogonalization
was needed instead of the classic Gram-Schmidt for theestggleration of the succes-
sive right-hand-sides. Unfortunately, unlike what wasewted in its application to a
conjugate gradient solver used within a SEM framework [88ien applied to the iter-
ative solution of the SMPM-discretized PPE, this technidwenot reveal any decrease

in iteration count for the GMRES solver.
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As a concluding note to this discussion, the coarse-levetqrditioner is constructed
using a low-orderl = 1) SMPM discretization of the Laplacian operator. Such allsma
value ofN is chosen to allow for a direct solver (LU factorization) te bsed for the
resulting linear system of equations when computing the@rditioner. An increase
to N = 2 or 3 polynomial could make this LU decomposition compuotadily infea-
sible when the number of subdomains is large, as is the came efvironmental flow

simulation.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Shallow Water equations

The performance and properties of two commonly used higlereaccuracy element-
based spatial discretization methods, spectral multidompanalty (SMPM) and dis-
continuous Galerkin (DGM), are examined in the frameworkhaf inviscid shallow
water equations (SWE). Whereas a previous comparison st&jydéused on one-
dimensional conservation laws and considered a modagd&alerkin formulation
of SMPM and DGM, this paper applies both techniques to a systienonlinear con-
servation equations and considers them in the more frelyuesed nodal form, in a
collocation and Galerkin formulation, for SMPM and DGM, pestively. The two
methods are applied to a suite of test cases that are ofshiareceanic shallow water
flow: three linear (standing wave, Kelvin wave and lineam3teel problem) and three
non-linear (Rossby soliton, nonlinear Stommel problem arehfann problem). The
analysis shows that the methods can be simplified to be the sathod when specific
choices of the penalty terms (for the SMPM) and numerical {fox the DGM) and
when the same collocation points are chosen for represggthtendiscrete solution. The
numerical solutions showed that the methods are extrenmailas not only in achieving
the same rate of convergence but also in their conservatienmergy measures. The key
difference between the SMPM and DGM is in their choice of penafty$ that enforce
weak boundary conditions across element interfaces. THeNbNas much flexibility in
selecting these terms whereas the DGM method is more rigid ahoices in the sense
that a Riemann solver must be used; however, this idiegsomuch flexibility in han-

dling a large variety of flows including those requiring wegtand drying algorithms,
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for example. Both methods can be used on fully-unstructurestiglateral element
grids but it is not clear how to extend the SMPM to unstruadurangular elements; in
contrast, the formulation of the DGM is quite natural and barextended to triangles
rather straightforwardly, assuming that a good set of paktion and integration points
is known (see, e.g., [46, 51, 86, 68]). The SMPM proved to lghty more dficient

than the DGM, in terms of computational time, and we expeist titend to continue
as Laplacian operators (as required by Navier-Stokes ar leyenore realistic shallow

water ocean modeling simulations) are introduced.

6.2 Incompressible Navier Stokes solver

A quadrilateral spectral multidomain penalty method (SMRdIver has been devel-
oped for the numerical solution of the two-dimensional mpoessible Navier-Stokes
equations under the Boussinesq approximation for the parpiostudying environmen-
tal stratified flow processes at high Reynolds numbers. Tlhiralg use of variable-
size two-dimensional collocation approach in each subdgnagbitrary boundary con-
ditions and localized resolution can be employed in bothiajpdirections. A high-
accuracy semi-implicit splitting scheme is used, based omrd order stifly stable
scheme for the non-linear term approximation, third orcerkiward diferentiation for
the temporal derivatives and a high-order numerical boynotandition for the pressure.
High spatial accuracy in space is enabled through the usdarfah two-dimensional

Legendre discretization in each subdomain.

Environmental stratified flow processes, such as turbulandenternal solitary waves
(ISWs), are characterized by such values of Reynolds numbatshe associated nu-

merical simulations are inherently under-resolved. Te@ree the numerical stability
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of the spectral quadrilateral multidomain scheme, whilesprving spectral accuracy,
in an under-resolved simulation, a penalty technique islempnted at the physical
boundaries and subdomain interfaces. The particularseopdéimalty formulation vary
in each fractional step of the high-order splitting schenge, explicit non-linear term
advancement, pressure Poisson equation and implicit wsste&rm treatment. Addi-
tional stability at the interfaces is provided through adepinterfacial averaging. In
the subdomain interior, numerical stability is ensureatigh dealiasing the nonlinear

term calculation and application of spectral filtering atach fractional step.

Although similar to a previously developed SMPM solver faghh Reynolds incom-
pressible stratified flows in domains with one non-periodreation [25], the solver
here has one fundamentafiérence, the requirement offieient numerical solution of
the SMPM-discretized pressure Poisson equation (PPE)ndriveal and challenging

task. Section 6.3ffers concluding remarks on this issue.

The flow solver’s accuracy and robustness were validateshstga standard set of in-
compressible flow benchmarks, namely the Taylor vortexdiiden and double shear
layer. From an environmental stratified flow process, theoomal problem of ISW
propagating at a high Reynolds numbers in a two-layer coatisly stratified free-slip
horizontal channel was examined. The fully nonlinear ISWeaact solution to the
incompressible Euler equations, propagates at the thealigtprescribed phase speed
while maintaining its original wavelength and amplitudegicating negligible numeri-

cal dissipation and dispersion.

The availability of the quadrilateral SMPM solver enables investigation of a much

broader range of environmental stratified flow processes tthase attainable with the
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equivalent solver that supported only one non-periodieddion. Resolution can now
be localized in the streamwise direction, not only the eaifiwhile arbitrary bound-
ary conditions may be prescribed at the lateral boundatielird, periodic, transverse
direction may be readily incorporated into the quadrilat&MPM solver by using a
Fourier discretization. An example of an environmental fljwcess amenable to sim-
ulation with a three-dimensional quadrilateral SMPM sglithe separating turbulent
bottom boundary layer under under an ISW wave in uniformluegatter [26, 17, 2]. In
this case, the turbulence, homogeneous in the transversanfined to a small-window
near the bed, extending from the trough of the wave towasdsdr end. A computa-
tional domain spanning the above window avoids the unnacgsest of resolving the
full water column depth and length of the ISW, the large bdlkbich is inactive over

significant distances of wave propagation.

6.3 Poisson Pressure equation solver

An efficient iterative solution strategy has been developed ferqgimadrilateral spec-
tral multidomain penalty method (SMPM)-discretized pressPoisson equation (PPE)
with Neumann boundary conditions, implicit in the timedlitization of the two-
dimensional incompressible Navier-Stokes equationsutiitoa high-order splitting
scheme. From the spatially continuous perspective, tlseryof equations has a solu-
tion only if an integral compatibility condition involvinthe right-hand-side of the PPE
and the prescribed value of the Neumann boundary condiitsdiofilled. However, al-
though the compatibility condition is automatically saéd at the spatially continuous
(analytical) level in the context of the above splittingsite, it is unclear whether it is is
the appropriate compability condition for the the SMPMedgized PPE. Our observa-

tions further indicate that, in actual incompressible flondations, the resuling linear
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system of equations never satisfy the equivalent sohglmbndition of orthogonality
between the right hand side and the null left singular veatdine Poisson matrix. This
lack of solvability may be attributed to the discontinuitytibe pressure solution across
subdomains and to inexact quadrature, the latter a featureder-resolved simulations.
Finally, the particular boundary conditions give rise taosm+unique solution and, there-

fore, a near-singular Poisson matrix.

For the resulting linear system of equations, satisfaabiothe above solvability con-
dition, i.e. consistency of the linear system of equatiasignsured through the reg-
ularization that projects the right-hand-side onto thenplarthogonal to the left null
singular vector of the global Poisson matrix. Uniquenesthefsolution is ensured at
the linear algebra level by reducing the system of equatita$iouseholder matrices

or via an augmented matrix technique.

A key contribution of this work is the development of a congtiatnally dficient tech-
nique to estimate the left null singular vector of the SMPIgedetized Poisson matrix,
which avoids the prohibitively costly SVD of the matrix. Ttveo-dimensional left null
singular vector is constructed from its one-dimensionaiiedent which is computed
for a canonical one-dimensional SMPM Poisson matrix defoweat three subdomains.
Availability of the left null singular vector then enabldsetabove described strategies

for ensuring a consistent linear system of equations andcgersolution for the PPE.

Even if a consistent linear system of equations and a unigluien are ensured, the
efficient iterative solution of the SMPM-discretized PPE cdrireobtained without an
appropriately designed preconditioner. To this end, tvexpnditioners, a block Jacobi

(BJ), and a two-level preconditioner (TL), have been impletad. The performance of
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both preconditioners has been assessed through appti¢catiavo well-known bench-
mark problems for the numerical solution of the incompiglssNavier-Stokes equa-
tions: the Taylor vortex and the Lid-driven cavity. The BJgmeditioner is found to
prevent the increase in iteration count with increaprgefinement. However, it cannot
provide for an €icient solution at high levels di-refinement, i.e. an increasing num-
ber of subdomains. For this purpose, a TL preconditioneopaltnation of coarse-grid
and fine-level approaches has been constructed. Its fieédemponent is identical to
the standard BJ preconditioner described above. The ctarslecomponent of the TL
preconditioner is based on a low-order SMPM discretizadioa resolves the issue with
high-levels oth-refinement. In analogy with the SMPM-discretized Poissotrimahe
coarse-level component of the TL preconditioner requirgsdar regularization which

ensures that the associated linear system is consistent.

Beyond providing a framework solution of the PPE system ofaéiqus, this work has
intended to provide a concentrated overview of the tectesqised by the higher-order
method community in the context of the Poisson-Neumannlenolfor the pressure
field implicit in the numerical solution for the incomprdsigl Navier-Stokes equations.
In a similar vein, we hope that the techniques developed, inaraely the construction
of the left null singular vector and its application to ensgrconsistency and a unique
solution of the linear system of equations, will be of instr® the sub-discipline of
numerical linear algebra focused on the iterative solutbeonsistent singular non-

symmetric systems.
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6.4 Future work

From the point of view discontinuous high-order elementeblasethods, future work
will be addressed on observing furtheffdrences between the SMPM and DGM, test
cases with complex geometries, non-smooth solutions dtiexal forcing terms have
to be executed with the methods. The performance of eachoahéths to be also as-
sessed for dierent time advancement schemes , as well fisrént types of numerical
fluxes to account for the communication between subdoma&idditionally, parabolic

and elliptic partial diferential equations have to be assessed in the context ofreemp
ible and incompressible flows, where more challenging nigakdifficulties appear for

the implementation of both methods.

In terms of the incompressible Navier-Stokes solver futuoek will be focused on the
implementation of deformable subdomains. Addition@es will concentrate on the
improvement of preconditioners for the iterative solutairihe PPE. To this end, ISW
propagation and ISW-seafloor interaction is typically deed in highly anisotropic do-
mains with high aspect ratio subdomains, which can detriatlgraffect the éiciency

iterative solution scheme for the PPE. Recently developathiques for improved ef-
ficiency of the numerical solution of highly anisotropiciglic equations [107] carry
great potential towardsflectively addressing this issue. Finally, the ultimate gufal

this dfort is to develop a three-dimensional hexahedral subdo8isliRM solver.

Specifically for the numerical solution of the PPE, futurerkvoan be oriented towards
a detailed comparison of the spectral properties of thesBoiNeumann matrix for dif-
ferent spatial discretizations and constructing a unifrachEwork for the solution of

the nearly-singular systems that arise in the numericaitisol of the incompressible
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Navier-Stokes equations. In addition, the formulationhef Poisson-Neumann problem
within the context of projection techniques can be improwedrder to ensure consis-
tency of the pressure linear system of equations direaiiy he formulation, instead of
the regularization technique presented on section 5.3ake Mticient preconditioning
efforts could focus on exploiting the Kronecker product sutef the Poisson matrix,
or alternatively, translate to the SMPM the experience efwvith algebraic multigrid
for continuous and discontinuous finite element type metlj®d]. Finally, additional
considerations will arise in the computation (as outlinedeh of the left null singular
vector for the Poisson matrix resulting from a SMPM dis@aation of a domain with

deformed, non-square, subdomains.

The degree of strong enforcement of solution continuiy,patching condition enforce-
ment, at the subdomain interfaces for the Poisson and mddifedmholtz equations is
set by the choice of penalty cieient value, as computed in Eq. (4.20). The choice of
the particular penalty cdigcient has been found to play a critical role both the numeri-
cal stability of the solution the solver and th&i@ency of associated iterative implicit
solvers (in terms of number of iterations and CPU time). Wherctgficient is chosen
near the upper limit of Eqg. (4.20), continuity across subdmmsis enforced strongly yet
there is a greater susceptibility towards oscillation$iatsubdomain interfaces and the
number of iterations in the implicit solvers can grow comesably. However, when the
codficient is near the lower limit, continuity across subdomagus become excessively
weak, leading to jumps at the interfaces which can eithew gratastrophically or pro-
duce spurious flow structure. In conclusion, work has to beedo order to establish a
procedure to compute the magnitude of the penaltyfimient as a function of Reynolds

number, and degree of uniformity of the mesh.
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In the same vein, in regards to the high order time-splitiobgeme used in this work
[74], the imposition of penalized inflgloutflow velocity boundary conditions for the
viscous fractional step in the context of Neumann or mixedcbiet-Neumann type

is non-trivial [15]. Similar issues arise in the treatmehtiee boundary values at the
physical boundaries during the update step (Eq. (4.98r #étfie PPE has been solved.
Additional work has to be addressed in this regard in ordbetable to expand the range

of possibilities for which the incompressible Navier-Stslsolver can be used for.
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