

Abstract—The purpose of the paper is to evaluate and compare

the performance of various transport protocols over some
current tactical radios using different topologies The four
selected transport protocols were TCP, SCTP, UDT, and
Mockets. The comparison was done with three different tactically
relevant radios – the Harris PRC-117G, the TrellisWare TW-400,
and the Persistent Systems WaveRelay MPU4. The results show a
surprising amount of variability in performance, and indicate
that the Mockets transport protocol provided the best overall
performance on two of the three radios used for evaluation.

I. INTRODUCTION
Transport protocols sit between the network layer and the

middleware / application layers and are typically responsible
for end-to-end delivery of data with various types and qualities
of service. The most popular transport protocols are TCP and
UDP, with TCP being used by the majority of applications on
the Internet. TCP provides a simple stream-based protocol
with reliable and in-order delivery of data. However, TCP was
designed for the commercial Internet and fairly reliable wired
and wireless networks. As a result, TCP typically provides
poor performance when operating over tactical networks that
are typically wireless, bandwidth constrained, unreliable,
variable latency, and prone to temporary disconnection.

The primary purpose of this paper is to evaluate and
compare the performance of various transport protocols over
some current tactical radios in a suburban outdoor
environment. This is a significant, ongoing task and in order to
constrain the complexity of the problem, several simplifying
assumptions have been made in terms of the choice of
protocols, the selection of radio platforms, the size of the
network, and the deployment topologies. Even with these
assumptions, the results are sufficiently interesting and worth
reporting – hence this paper. The evaluation is by no means
complete, as new aspects are still being incorporated.
However, those will be reported in future publications and
reports.

It is important to note that this paper is not comparing the
performance of different radios, and we discourage the reader
from using the results presented as a means to compare radio
performance for two reasons. First, the radios were not
configured (in terms of frequencies and bandwidth) to provide
the same performance. Second, we do not feel that the testing
was sufficiently rigorous for that purpose. Instead, our
objective is to compare the performance of different transport
protocols on each of the selected radio platforms.

For the purpose of this paper, four transport protocols were
selected – TCP (the de facto baseline), SCTP (Stream Control
Transmission Protocol), UDT (UDP-based Data Transfer
Protocol), and Mockets. An overview of these four protocols
is provided in section 2. Several other protocols were
considered for evaluation, including SCPS-TP (Space
Communications Protocol Specifications – Transport
Protocol) [ref], DCCP (Datagram Congestion Control
Protocol) [ref], and QUIC (Quick UDP Internet Connections)
[ref], but were ultimately not included for a variety of reasons
– primary to constrain the scope of the paper, but for other
reasons as well. For example, the home page for SCPS
(www.scps.org) is not even online anymore. An internet
archive was used to retrieve a version of the code for an
implementation from 2009, and could possibly be
incorporated into a future evaluation. Also QUIC was not
included because it was difficult to extract an easily reusable
implementation out of the overall Google™ Chromium
codebase. Again, this could possibly be incorporated into a
future evaluation.

Likewise, for the purpose of this paper, three tactical radios
were selected – the Harris PRC-117G with the ANW2
waveform, the TrellisWare TW-400 CUB, and the Persistent
Systems WaveRelay MPU4. These radios were selected
primarily because they are commonly utilized for tactical edge
networks. Other radio platforms that were not selected for this
initial evaluation but would probably be considered in the
future include the Harris PRC-117G with SRW (Soldier Radio
Waveform), the Harris PRC-152A platform, and the General
Dynamic PRC-154A Rifleman radio with SRW. Details
regarding the configuration of the radios are described in
section 3.

In order to establish a baseline performance measure prior
to more complex scenarios and topologies, only three radios
were deployed for all of the experiments conducted. One radio
was connected to a server node, one radio to a client node, and
one intermediate radio acted as a communications relay.
Furthermore, all of the tests were done in a static scenario –
without any mobility during the test. Mobility will be
incorporated into future evaluations. The radios were deployed
outdoors in a suburban office park like environment.
Frequencies were selected so as to not interfere with each
other but also to not allow common cellular and WiFi signals
that might be present to interfere with the radios being
evaluated. Being outdoors, there was random movement of
automobiles – sometimes between the radio node locations.
Likewise, there were buildings and trees and minor changes in

Transport Protocols Revisited
Maggie Breedy1, Peter Budulas2, Alessandro Morelli3, Niranjan Suri1,2

1Florida Institute for Human and Machine Cognition, Pensacola, FL USA
2US Army Research Laboratory, Adelphi, MD USA

3University of Ferrara, Italy

This work was conducted at and supported by the U.S. Army Research
Laboratory under Cooperative Agreement W911NF-11-2-0095.

elevation. While one of the configurations involved a number
of trees in the path between two of the nodes, the tests were
conducted at the end of March – when there was no foliage on
the trees. The environment and the topologies are further
described in section 4.

The actual results are presented in section 5, followed by a
discussion of the results. Section 6 contains some conclusions
and a description of future work.

II. OVERVIEW OF SELECTED TRANSPORT PROTOCOLS

A. TCP
The Transmission Control Protocol (TCP) is a transport

layer protocol of the Internet Protocol Suite, and the de-facto
standard for the majority of Internet applications and services,
such as HTTP(S), e-mail, SSH, etc. TCP establishes an end-to-
end connection between two applications running on nodes of
an IP-based network and provides the abstraction of a reliable,
ordered stream of bytes flowing between them. Reliability is
guaranteed thanks to a mechanism based on acknowledgments
(ACKs) of correctly delivered packets and on the timeout-
driven retransmission of unacknowledged segments. To ensure
the ordered delivery of data, TCP uses a sequence number to
identify the first byte of each segment; this allows the receiver
to also restore the correct transmission sequence in case of
packet loss. TCP also provides flow control and congestion
control, to share the bandwidth between multiple connections
equally and avoid network collapse. TCP was designed for
wired infrastructure environments, hence it exhibits several
weaknesses in wireless, low bandwidth, and intermittently
connected networks. When applications do not require in-
order and reliable data transmission, their only choice consists
of switching to other transport protocols, like UDP.

Researchers have invested much effort to improve TCP
over the course of its existence. This has led to the
development of a number of alternative congestion-avoidance
algorithms, which add features like slow-start, fast recovery,
fast retransmit, and different ways to manage the size of the
congestion window in response to packet losses or successful
ACKs. TCP CUBIC [1] is the default algorithm in Linux
kernels from version 2.6.19 to 3.1 and the one we used in our
experiments. It builds upon TCP BIC and changes the
congestion window growth function from a combination of
linear, logarithmic, and exponential curves to a cubic function,
hence its name. TCP CUBIC shows more efficient use of
network resources in high bandwidth-delay product networks
under a wide range of round-trip times and achieves better
fairness with competing TCP flows [1].

B. SCTP
The Stream Control Transmission Protocol (SCTP) [2] is a

transport layer protocol that relies on IP to provide message-
oriented and connection-oriented end-to-end communications.
Similarl to TCP, SCTP ensures the reliable, in-sequence
delivery of messages and comparable algorithms provide flow
and congestion control. However, SCTP optionally provides
order-of-arrival message delivery semantics. Unlike TCP,

SCTP also supports multi-homing and multi-streaming. The
former allows the protocol to take advantage of multiple IP
addresses or network interfaces on the same endpoint, a
feature that can improve connection survivability in case of
node mobility or link disruption. SCTP currently exploits
multi-homing for redundancy purposes only, and it does not
permit increasing the maximum throughput. A “primary”
address is chosen to receive data, and heartbeats are used to
monitor the availability of alternate transmission paths and to
test previously discovered paths. Multi-streaming, instead,
ensures the concurrent transmission of multiple streams of
data between connected hosts. This feature is important to
avoid head-of-line blocking between independent streams.

Although the Linux Kernel natively supports SCTP since
version 2.6, we installed the Linux Kernel Stream Control
Transmission Protocol Tools (LKSCTP Tools), version 1.0.16,
on the systems we used in our experiments. LKSCTP provides
a Linux user-space library that we used in the test utility we
developed to access the SCTP-specific API that is not part of
the standard sockets interface.

C. UDT
UDP-based Data Transfer (UDT) [3] [4] is an application-

level data transport protocol that builds on top of UDP to
support distributed data intensive applications over wide area
high-speed networks (WAN). The main design goal of UDT is
to reach high data transfer throughput over the network, while
also achieving fairness between multiple UDT flows and
without starving TCP connections. UDT is connection-
oriented, and provides both stream-oriented and message-
oriented delivery semantics. Additionally, it is possible to
configure UDT to perform reliable, partially reliable, or
unreliable message transmissions, as well as sequenced or
unsequenced delivery. The UDT API is very similar to the
Berkeley socket API, a choice made to simplify the process of
switching from TCP or UDP to UDT. UDT supports user-
defined congestion control algorithms and the multiplexing of
multiple UDT connections over a single UDP flow (that is, all
messages specify the same destination port number).
Additionally, applications using UDT can access an internal
performance monitor to retrieve statistics about open
connections. Finally, as an application-level library based on
UDP, it is easy to port UDT-based applications to different
machines and operating systems.

To develop the test utility we used during our experiments,
we installed the libudt-dev version 4.11. libudt-dev is a
package for Ubuntu Linux systems that provides an
implementation of version 4 of UDT that can be used for
application development.

D. Mockets
The Mockets (for Mobile Sockets) [5][6] framework is an

application-level communications library that is part of the
IHMC Agile Computing Middleware, and is specifically
designed to support adaptive applications in MANET
environments. Figure 1 shows the framework's architecture
and how it interacts with applications and the network.

Mockets provides a number of unique features, including
complete orthogonality between reliability and sequencing in
the delivery semantics, as well as prioritization, message
tagging and replacement of enqueued but outdated messages,
detailed communication statistics, numerous timeout options,
policy-based bandwidth control, statistics collection, and
endpoint migration. With Mockets, applications can open
multiple independent data flows and assign different QoS and
priority levels to each of them. Also, applications can access
statistics on the current channel conditions and the state of
connections. Finally, endpoint migration is extremely useful to
avoid breaking connectivity in case of vertical or horizontal
handover, frequently cause by node mobility in mobile ad-hoc
and heterogeneous networks.

Like UDT, the Mockets framework is designed as an
application-level library and so it is not part of the operating
system kernel or network protocol stack. This allows easy
porting of Mockets to many environments, and it is currently
available for Win32, Linux, Android, and MacOSX platforms.
This design choice was essential to support easy deployment,
platform independence, and phased utilization. It is possible to
only have a subset of the applications to use Mockets, while
the remaining can continue to use TCP and UDP. This
facilitates adoption and deployment, as applications can
gradually migrate to Mockets from the sockets API.

Mockets provides a rich model of interaction between
applications and the framework, which fosters a feedback-
loop-based programming model. In accordance with it,
applications can tune the amount of data handed over to
Mockets and the delivery semantics requested for that data,
making tradeoffs on delivery latency and bandwidth
utilization. In turn, Mockets keeps applications up-to-date
about the current state of the network and the connections, so
that applications can adapt to it and make more informed
choices in the future.

III. TACTICAL RADIO PLATFORMS AND CONFIGURATION

A. Harris PRC-117G with ANW2
The Harris AN/PRC-117G radio is a fielded software

defined tactical radio. This radio is currently being used in
tactical environments in various locations around the world.
Through the software definable waveforms, this radio allows
for backward compatibility with existing fielded radios as well
as newer wave forms that are further optimized for the tactical
environment. The 117G has a wide frequency of operation
starting from 30MHz and extending into the 2GHz bands. It
can operate in narrow and wide band modes, and is capable of
type one encryption. Transmit power for this radio in the
configuration used can vary from .2 to 5 Watts. The specific
waveform used for this test is Adaptive Networking Wideband
Waveform (ANW2C). When configured properly, multiple
radios will form a Mobile Ad hoc Network (MANET). The
three radios used were configured using CPA, a tool provided
by Harris for radio network configuration. For the tests
described in this paper the network was constrained to three
radios allowing for a maximum of 2Mbps throughput between
any two radios, occupying 5MHz of channel bandwidth. The
details of the specific radio configuration used for this test are
provided in Table 1.

B. TrellisWare TW-400 CUB
The TrellisWare TW-400 radio is a small footprint radio

used in many commercial, law enforcement and tactical
applications. It is based on a software defined radio
architecture and uses TrellisWare’s Tactical Scalable MANET
Enhanced (TSM-E) waveform, with AES-256 encryption. It
can operate in two specific bands 1800/2200 MHz and offers
different interface adapters for analog video, audio, USB,
Ethernet and Wi-Fi. As used for this test, each radio was
configured with an Ethernet interface adapter. The TW-400 is
capable of up to 8Mbps data rate, occupying 20MHz of
channel bandwidth. These radios operate as peer to peer
devices and will autonomously form a MANET.
Configuration for the radios used in this test was performed
through a custom configuration application. Specific details of
the configuration for this test are listed in Table 1.

C. Persistent Systems WaveRelay MPU4
Persistent systems WaveRelay Man Portable Unit fourth

generation (MPU4) is a peer to peer MANET radio being used
in many commercial, law enforcement and tactical
applications. This radio provides data rates up to 37Mbps
using UDP and 27 Mbps using TCP, while occupying 40MHz
of channel bandwidth. The radio provides AES-CTR-256
encryption. These radios are manufactured to operate in
several frequency bands. The radios used for this test were
operating in the 2.3 to 2.5 GHz bands. Interface dongles are
available to allow audio, USB and Ethernet. The Ethernet
dongles were used for the tests covered by this paper.
Configuration for the radios used in this test was performed
through a browser interface. Specific details of the
configuration for this test are listed in Table 1.

Figure 1: Mockets Architecture

IV. ENVIRONMENT, TOPOLOGIES, AND EXPERIMENTAL
SCENARIO

A. Environment
The Army Research Laboratory (ARL) Adelphi Laboratory

Center (ALC) campus was chosen for this experiment. The
ARL-ALC campus consists of multiple buildings of varying
construction, interconnected by paved roadways and
pathways. This campus is considered to be representative of a
suburban environment, and also provided a somewhat
controlled area for this experiment. Though the elements
involved in this test were stationary, there were multiple
vehicles and pedestrians moving throughout the campus and
the testing elements at any given time. In most of the testing
topologies, trees and some foliage existed between the relay
node and one of the end nodes. The tests conducted for this
paper took place toward the end of March with most of the
foliage not yet in bloom. . Terrain variation also existed
between test sites, and elevation maps are provided in section
4.2. Since the intent of this test was not to test radio
effectiveness or RF propagation and path loss, further
measurements were not performed. Scans of the spectrum
before the tests did not reveal any interferers on the
frequencies being used.

The antennas used during the tests were the standard
antennas provided with the man portable units. In the case of
the TrellisWare radios, the standard dual band antenna was
used. For the TrellisWare and the WaveRelay radios, the
antennas were attached to the radio and the radio was mounted
to the roof of the trailer and vehicles used in the test. For the
Harris 117G, the antenna was mounted to the roof of the
trailer and vehicles, but the radio was remoted to the interior,
using a low loss coax cable. More details on radio
configuration are given in section 3.

B. Topologies
Preliminary tests were conducted using the Harris and

WaveRelay radios. Given the environment mentioned in 4.1,
these tests determined that a relay node would be required in
order to get the desired throughput at the desired distances.
This intermediate node also tested the protocol’s response to a
relay, which would be a common occurrence in a wireless ad-
hoc network. End points for the topology were selected to test
performance at various distances. Figure 2 shows a map
(courtesy of Google™ Earth) of the overall topology for the
test. Node locations are labeled and marked with a circle.
Distance is measured between each marked location in feet.

For all tests, the server node remained stationary at the
trailer location. The relay node also remained stationary in the

South Lot. The client node remained stationary during the
tests, but then moved to each of the other locations to conduct
each test. The VIP lot topology involved a server node located
in the trailer, a relay node in the South Lot, and a client node
in the VIP Lot. For the Flag Pole topology, the server and
client remained in their previous locations while the client
moved to the Flag Pole location for the test. During the Zahl
Road topology, server and relay remained as before, while the
client was located on Zahl road. In the K lot topology, server
and relay remained in their respective locations, while the
client node moved to the K Lot location for the test. The
results for these tests are presented and discussed in section 5.

Figure 3 is an elevation graph of the terrain for the K Lot
topology. This is provided to show the variability of the
terrain.

C. Hardware, Software, and Scenario
As described in the topologies section, each of the tests

consisted of three radio nodes and two computer nodes. The
server node was always fixed at the location marked Trailer
and consisted of a Dell Precision 6600 Laptop with an Intel
Core i7 2820QM Processor with 8 GB RAM and a 256 GB
SSD running Ubuntu Linux 14.04 Desktop 64-bit. Likewise,

Figure 2: Topology for Protocol Performance Tests

Table 1: Radio Configuration Parameters

 Harris 117G Harris RT-1949(P)(C) 4.4.0 ANW2C 402.50 5MHz 2W
TrellisWare CUB TW400 TrellisWare ASY0540250 5.5.6 TSM-E 2230.00 20MHz 2W

WaveRelay MPU4 Persistent Systems WR-MPU4-12 18.5.1 64QAM? 2507.00 40MHz 2W

Channel
Bandwidth

Transmit
PowerRadio Name Manufacturer Model

Number
Firmware
Version Waveform Frequency in

MHz

the client node was an identically configured laptop located at
one of the four possible locations marked VIP Lot, Flag Pole,
Zahl Road, and K Lot. The relay radio node, located at the
position marked South Lot, was not attached to a computer
node.

The experiment scenario was chosen to be very simple – a
bulk data transfer over a single connection from the client
node to the server node. This also ensured that there was no
other traffic being generated at the same time to interfere with
the single data transfer. As already mentioned, there was no
mobility involved during the invocation of the test.

V. EXPERIMENT RESULTS AND ANALYSIS
Two custom applications were implemented to exercise the

selected transport protocols – one for the server side and one
for the client side. The server side instantiated listeners (e.g.,
server sockets) for each of the protocols and simply waited for
incoming connections. The client node connected to the server
node using one of the four selected transport protocols, waited
for a response, sent the size of the data to be uploaded to the
server followed by the data. The client would then wait until
the server acknowledged receipt of all the data (done by
sending a single byte, the character “.”). The client determined
the throughput by measuring the elapsed time starting after the
size of the data was sent (but before the transmission of the
actual data started) and until the acknowledgement was
received. The size of the data was 1024 KB for the K Lot and
the Zahl Road topologies and 2048 KB for the Flag Pole and
VIP Lot topologies.

Each test was conducted with one of the three radios
connected to the client and server nodes. The other radios
were left on and idle (which should not have caused any
interference given that the frequencies were deconflicted as
shown in Table 1). In order to reduce temporal effects, the
client cycled through each of the four transport protocols
(Mockets first, followed by TCP, then SCTP, and finally
UDT). This comprised one iteration of the test and each test
consisted of 10 such iterations.

The results of the experiment are shown in Table 2. Each
column represents one particular topology and radio
combination. Each row presents the results for a specific
transport protocol for the topology and radio combination. For
each result, we show the average throughput, the maximum
throughput, and the minimum throughput, all in KB/sec, over
10 iterations, followed by the standard deviation. One
exception is that for the K Lot topology, we only show the
results for the Harris 117G, as the other two radios did not
work sufficiently reliably to collect data for multiple
iterations. For example, when the nodes were connected to the
TrellisWare radios, they were able to ping each other, but the
client would time out connecting to the server, the data
transfers would abort, or the data transfers would essentially
remain stuck and had to be aborted after several minutes.

One of the most interesting results of these tests was the
observed variability in performance across multiple iterations.
We show the maximum and minimum performance and the
standard deviation to highlight this observation. Figure 3,
Figure 4, Figure 5, and Figure 6 show the results in graphical
form, for each of the four topologies. The thin vertical bar
shows the minimum and maximum observed performance.
The larger rectangle shows one standard deviation above and
below the mean performance. Note that Figure 6 only shows
the performance for the Harris radio. As discussed earlier, the
other two radios were not able to complete the test with this
topology.

Figure 3: Terrain Elevation for the K Lot Test Topology

Harris TrellisWare WaveRelay Harris TrellisWare WaveRelay Harris TrellisWare WaveRelay Harris TrellisWare WaveRelay
Average 260.42 347.02 238.06 257.98 311.85 366.41 182.57 196.77 97.15 57.54
Max 262.09 371.82 403.87 261.99 324.98 581.32 190.23 220.74 117.16 64.89
Min 257.51 309.04 55.61 233.74 263.27 165.19 157.81 158.74 43.97 26.34
St. Dev. 2.02 24.04 101.46 8.68 19.94 159.40 9.93 25.37 24.83 11.70
Average 194.15 175.56 219.49 191.03 147.99 385.46 97.29 85.82 103.86 57.43
Max 199.09 227.53 293.96 201.63 226.45 489.60 126.61 100.83 154.22 100.90
Min 180.00 99.91 158.77 177.87 55.28 267.22 43.01 70.58 64.27 25.52
St. Dev. 7.56 44.38 39.61 10.86 53.30 68.66 28.95 10.75 27.70 21.11
Average 157.01 116.98 255.01 156.53 131.80 365.72 96.38 70.86 97.77 38.90
Max 161.67 165.29 374.27 161.60 164.39 568.26 118.79 103.81 136.12 67.78
Min 117.65 63.27 129.40 121.52 76.56 165.52 36.12 38.55 36.08 17.01
St. Dev. 13.84 40.50 77.37 12.43 33.82 125.85 28.76 21.07 30.23 16.87
Average 154.43 264.69 139.37 127.58 303.91 260.06 128.02 132.70 75.52 58.48
Max 196.15 369.94 265.04 180.28 450.61 436.49 198.03 194.16 104.38 94.74
Min 92.88 147.24 50.51 34.93 86.25 116.33 42.16 49.71 10.73 16.32
St. Dev. 28.11 70.00 67.39 54.45 120.29 98.90 49.70 49.26 27.62 24.91

K Lot Topology

Mockets

TCP

SCTP

UDT

VIP Lot Topology Flag Pole Lot Topology Zahl Road Topology

Table 2: Results showing Average, Maximum, and Minimum Throughput and Standard Deviation

The variability observed was particularly surprising given
four simplifications imposed on the experiment. The first
simplification was that there was no mobility involved
whatsoever. The second simplification was that all the
frequencies were deconflicted prior to the test, and none of the
radios were being interfered with at the RF level. The third
simplification was that there were only three radio nodes in
the topology. The fourth simplification was that there were
only two applications using the radio, with only one active
data transmission.

The observed performance was also surprising given the
distances and the number of nodes in the topologies. As shown
in Figure 2, the distance between the server node and the relay
node was always fixed at 673.1 feet. The distance between the
relay node and the client node varied from 310.13 feet and
1285.03 feet.

The next observation is to compare the performance of the
different transport protocols. As can be observed in Table 2
and Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8, the
Mockets protocol performed better than all the other protocols
on the Harris. In particular, Mockets performed 45% better
than TCP and 71% better than SCTP and UDT. This result
was surprising for the Harris radio given that Harris includes a
TCP accelerator built into the radio when using the ANW2
waveform. TCP did perform as the second best protocol on the
Harris radio, slightly beating out SCTP and UDT.

Figure 8: Cumulative Performance for Different Protocols over Different
Radios

Figure 7: Performance Results for Flag Pole Topology Showing Minimum,
Maximum, and Deviation in Throughput (KB/sec)

Figure 5: Performance Results for Zahl Road Topology Showing Minimum,
Maximum, and Deviation in Throughput (KB/sec)

Figure 4: Performance Results for K Lot Topology Showing Minimum,
Maximum, and Deviation in Throughput (KB/sec)

Figure 6: Performance Results for VIP Lot Topology Showing Minimum,
Maximum, and Deviation in Throughput (KB/sec)

On the TrellisWare radio, Mockets significantly
outperformed TCP by 109% and SCTP by 167%. It also
outperformed UDT, but by a smaller margin of 22%. The
second best performing protocol was UDT, followed by TCP
and finally SCTP.

On the WaveRelay radio, Mockets, TCP, and SCTP
performed just about the same, within 1% to 2% of each other.
UDT was the worst performing protocol on the WaveRelay
radio, with Mockets beating UDT by 48%, TCP beating UDT
by 49%, and SCTP beating UDT by 51%.

Another surprising observation was that UDT did very well
on the TrellisWare radio compared to TCP and SCTP, but did
much worse on the WaveRelay radio than TCP and SCTP.

As mentioned earlier, we urge the reader to not use these
results to compare the performance of one radio with another,
as the characteristics of the radio as well as the configuration
parameters do not provide a common baseline for such a
comparison.

VI. CONCLUSIONS AND FUTURE WORK
This paper compared the performance of four different
transport protocols – TCP, SCTP, UDT, and Mockets over
three different radios – the Harris 117G, the TrellisWare TW-
400, and the WaveRelay MPU4, using four different
topologies. The tests were conducted in a suburban outdoor
uncontested RF environment using very simple, static, three
node topologies, with one server node, one relay node, and
one client node. The results showed significant variability in
the results, which was surprising given the conditions of the
test. Mockets outperformed all the other protocols over the
Harris and TrellisWare radios, with TCP coming in second on
the Harris and UDT coming in second on the TrellisWare
radio. Mockets, TCP, and SCTP performed very similarly on
the WaveRelay, with UDT not doing as well.

The observed variability lends support to the argument for
adaptive middleware to help applications address such
fluctuations in the network performance. In this particular
evaluation, all the protocols were compared using the TCP
model – namely a reliable and sequenced stream of bytes. The
TCP model is limiting because it does not allow the transport
protocol to distinguish between message boundaries, and the
only type of service provided is reliable and sequenced
delivery of bytes. One consequence is head-of-line blocking,
which prevents subsequent messages from being delivered

even if they were received in their entirety. Another
consequence is that the application cannot specify different
requirements for different messages. The other three protocols
evaluated do provide support for message-based abstractions,
which address some of these concerns. Mockets, which was
designed specifically for tactical networking environments,
provides extensive support to enable application adaptation
[5]. However, many legacy applications still use TCP and
rewriting them to use an alternate protocol would be difficult,
expensive, and/or impossible. For those cases, a proxy-based
approach is a good alternative. The Harris PRC-117G radio
provides a TCP accelerator (which is a proxy) with ANW2
(although Mockets provided better performance than TCP,
even with the accelerator). An independent proxy
implemented as middleware provides additional flexibility and
can work with a variety of radios. One such proxy is described
in [7].

The tests conducted to date will continue in the future with
additional nodes, more complex topologies, and node
mobility. We also intend to incorporate additional tactical
radios/waveforms (for example, SRW) and additional
transport protocols.

VII. References
[1] S. Ha, I. Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP

variant”, ACM SIGOPS Operating Systems Review - Research and
developments in the Linux kernel, Vol. 42, No. 5, pp. 64-74, July 2008.

[2] R. Stewart, Stream Control Transmission Protocol, RFC 4960,
September 2007.

[3] Y. Gu and R.L. Grossman, UDT: UDP-based Data Transfer for High-
Speed Wide Area Networks, Computer Networks (Elsevier), Vol. 51,
No. 7, May 2007.

[4] Y. Gu, X. Hong, and R.L. Grossman, Experiences in Design and
Implementation of a High Performance Transport Protocol, in
Proceedings of the 2004 Super Computing Conference (SC 2004), Nov
6-12.

[5] N. Suri, E. Benvegnù, M. Tortonesi, C. Stefanelli, J. Kovach, and J.
Hanna, Communications Middleware for Tactical Environments:
Observations, Experiences, and Lessons Learned, in IEEE
Communications Magazine, Vol. 47, No. 10 (October 2009), pp. 56-63.

[6] E. Benvegnù, N. Suri, J. Hanna, V. Combs, R. Winkler, and J. Kovach,
Improving Timeliness and Reliability of Data Delivery in Tactical
Wireless Environments with Mockets Communications Library, in
Proceedings of the 2009 IEEE Military Communications Conference
(MilCom 2009), October 2009, Boston, MA.

[7] M. Tortonesi, R. Kohler, A. Morelli, C. Stefanelli, N. Suri, and S.
Watson, Enableing the Deployment of COTS Applications in Tactical
Edge Networks, in IEEE Communications Magazine, Vol. 51, No. 10
(October 2013), pp. 66-73.

	I. INTRODUCTION
	II. Overview of Selected Transport Protocols
	A. TCP
	B. SCTP
	C. UDT
	D. Mockets

	III. Tactical Radio Platforms and Configuration
	A. Harris PRC-117G with ANW2
	B. TrellisWare TW-400 CUB
	C. Persistent Systems WaveRelay MPU4

	IV. Environment, Topologies, and Experimental Scenario
	A. Environment
	B. Topologies
	C. Hardware, Software, and Scenario

	V. Experiment Results and Analysis
	VI. Conclusions and Future Work
	VII. References

