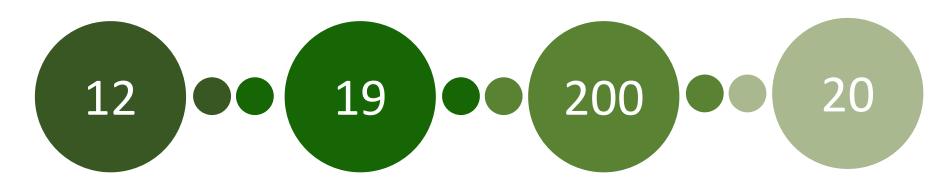
ACIX

Atmospheric Correction Inter-comparison eXercise

WHY?

Free and open access policy to **Sentinel-2** and Landsat-8 imagery has stimulated the development and operational use of **AC processors** for generating Bottom-of-Atmosphere (BOA) products


The objective was to point out:

- Strengths & Weaknesses
- Commonalities & Differences

Teams

from various Space Agencies, R&D Companies, Research Institutes and Universities

Study Sites

spread worldwide based on the AERONET stations

Image Scenes

processed acquired by Sentinel-2 and Landsat-8

Months

to complete the exercise and publish the results in a scientific journal

Definition of the inter-comparison protocol

Coordinators & **Participants**

discussed all the major points and defined the inter-comparison procedure.

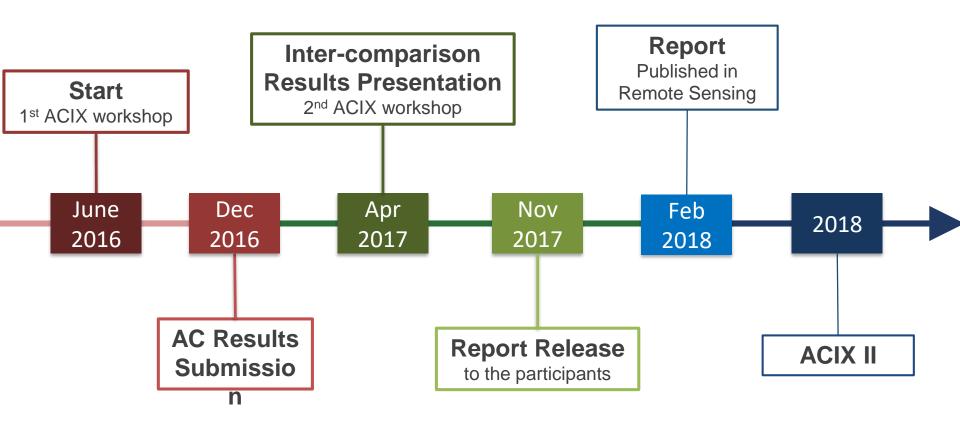
Application of the AC processors

Participants

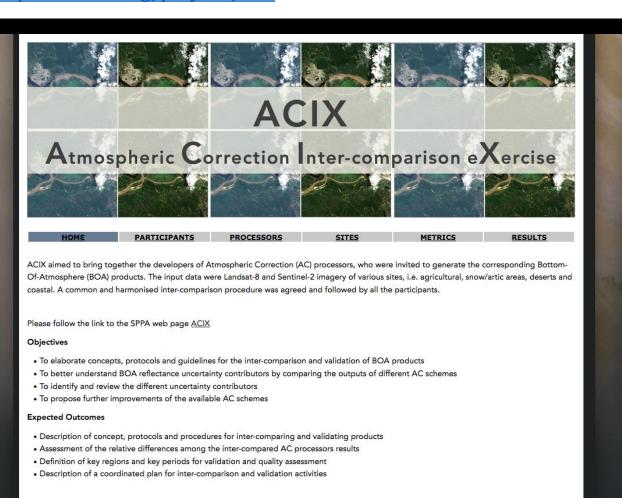
applied their AC schemes on a set of test sites keeping the processing parameters constant. The results were submitted for analysis to ACIX coordinators.

Analysis of the results

Coordinators


processed the AC results and assessed the inter-comparison metrics. The results presented and discussed with the participants.

WHEN?



RESULTS PUBLICATION

http://calvalportal.ceos.org/projects/acix

RESULTS PUBLICATION

https://www.mdpi.com/2072-4292/10/2/352

Article

Atmospheric Correction Inter-Comparison Exercise

Georgia Doxani ^{1,*}, Eric Vermote ^{2,*}, Jean-Claude Roger ^{2,3} O, Ferran Gascon ⁴, Stefan Adriaensen ⁵, David Frante ^{6,†} O, Olivier Hagolle ⁷, André Hollstein ⁸, Grit Kirches ⁹, Fuqin Li ¹⁰, Jérôme Louis ¹¹, Antoine Mangin ¹², Nima Pahlevan ^{2,13}, Bringfried Pflug ¹⁴ O and Quinten Vanhellemont ¹⁵

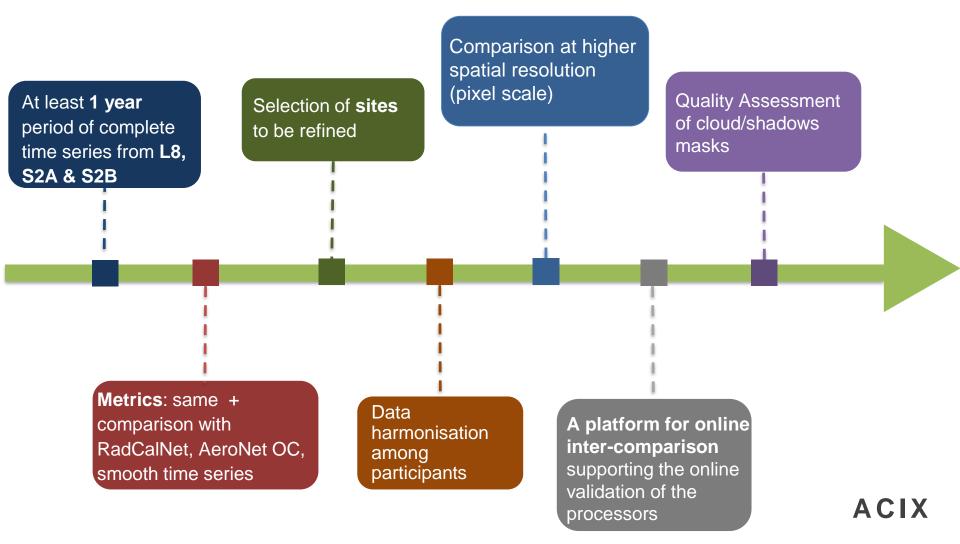
- SERCO SpA c/o European Space Agency ESA-ESRIN, Largo Galileo Galilei, 00044 Frascati, Italy
 NASA/GSFC Code 619, Greenbelt, MD 20771, USA; jean-claude.roger@nasa.gov (J.-C.R.);
- nima.pahlevan@nasa.gov (N.P.)
- Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
- European Space Agency ESA-ESRIN, Largo Galileo Galilei, 00044 Frascati, Italy; ferran.gascon@esa.int VITO, Boeretang 200, 2400 Mol, Belgium; stefan.adriaensen@vito.be
- 6 Environmental Remote Sensing and Geoinformatics, Faculty of Regional and Environmental Sciences,
- Trier University, 54286 Trier, Germany; david.frantz@geo.hu-berlin.de
- Orntre d'études Spatiales de la Biosphère, CESBIO Unite mixte Université de Toulouse-CNES-CNRS-IRD, 18 Avenue E.Belin, 31401 Toulouse CEDEX 9, France; olivier.hagolle@cnes.fr
- 8 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Section Remote Sensing Telegrafenberg, 14473 Potsdam, Germany; andre@dr-hollstein.de
- 9 Brockmann Consult GmbH, Max-Planck-Straße 2, 21502 Geesthacht, Germany; grit.kirches@brockmann-consult.de
- National Earth and Marine Observation Branch, Geoscience Australia, GPO Box 378, Canberra, ACT 2601 Australia; fuqin.li@ga.gov.au
- 11 Telespazio France, SSA Business Unit (Satellite Systems & Applications), 31023 Toulouse CEDEX 1, France; ierome.louis@telespazio.com
- ACRI-ST, 260 Route du Pin Montard, BP 234, 06904 Sophia-Antipolis CEDEX, France;
- antoine.mangin@acri-he.fr
- Science Systems and Applications, Inc., 10210 Greenbelt Road, Suite 600, Lanham, MD 20706, USA
- 14 German Aerospace Center (DLR) Remote Sensing Technology Institute Photogrammetry and Image Analysis Rutherfordstraße 2, 12489 Berlin-Adlershof, Germany; bringfried.pflug@dlr.de
- Royal Belgian Institute for Natural Sciences (RBINS), Operational Directorate Natural Environment, 100 Gulledelle, 1200 Brussels, Belgium; quinten.vanhellemont@naturalsciences.be
- * Correspondence: georgia.doxani@esa.int (G.D.); eric.f.vermote@nasa.gov (E.V.); Tel.: +39-06-941-88496 (G.D.); +1-301-614-5413 (E.V.)
- † Present address: Geomatics Lab, Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.

Received: 24 January 2018; Accepted: 20 February 2018; Published: 24 February 2018

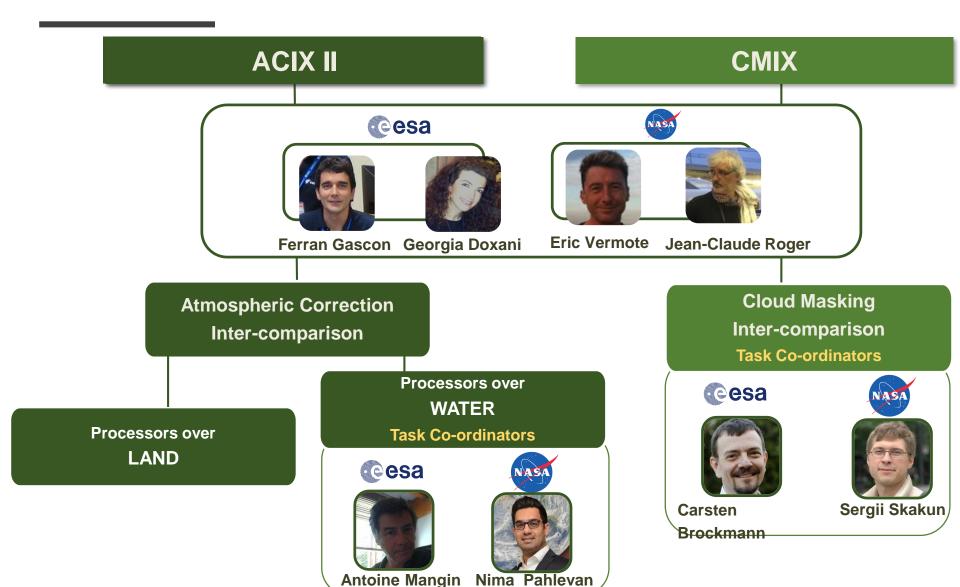
Abstract: The Atmospheric Correction Inter-comparison eXercise (ACIX) is an international initiative with the aim to analyse the Surface Reflectance (SR) products of various state-of-the-art atmospheric correction (AC) processors. The Aerosol Optical Thickness (AOT) and Water Vapour (WV) are also examined in ACIX as additional outputs of AC processing. In this paper, the general ACIX framework is discussed; special mention is made of the motivation to initiate the experiment, the inter-comparison protocol, and the principal results. ACIX is free and open and every developer was welcome to participate. Eventually, 12 participants applied their approaches to various Landsate8 and Sentinel-2 image datasets acquired over sites around the world. The current results diverge depending on the sensors, products, and sites, indicating their strengths and weaknesses. Indeed, this first implementation of processor inter-comparison was proven to be a good lesson for the developers to learn the advantages and limitations of their approaches. Various algorithm improvements are expected, if not already implemented, and the enhanced performances are yet to be assessed in future ACIX experiments.

Remote Sens. 2018, 10, 352; doi:10.3390/rs1002035

www.mdpi.com/journal/remotesensing


Doxani, G.; Vermote, E.; Roger, J.-C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; Louis, J.; Mangin, A.; Pahlevan, N.; Pflug, B.; Vanhellemont, Q. Atmospheric Correction Inter-Comparison Exercise. *Remote Sens.* **2018**, 10, 352

Way Forward



Way Forward

Definition of the inter-comparison protocol

Coordinators & Participants

discussed all the major points and defined the inter-comparison procedure.

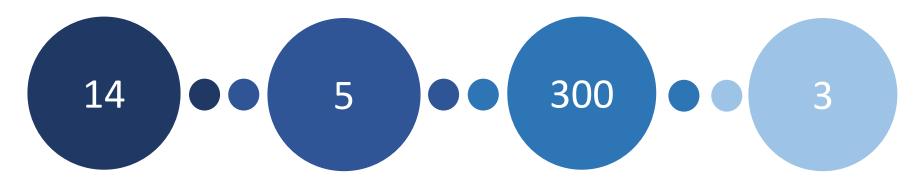
Application of the AC processors

Participants

are applying their AC schemes on a set of test sites keeping the processing parameters constant. The results will be submitted for analysis to ACIX coordinators. **Analysis of the results**

Coordinators

will process the AC results and assess the inter-comparison metrics. The results will be presented and discussed with the participants.



Teams

from various Space Agencies, R&D Companies, Research Institutes and Universities

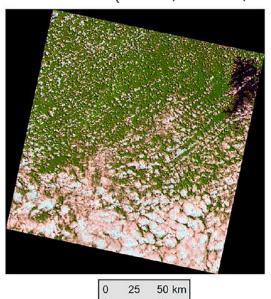
Validation Datasets

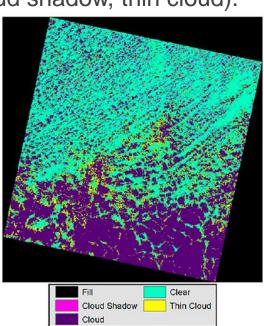
L8Biome (USGS), S2 Hollstein, S2/L8 PixBox, GSFC: LC8/S2A/S2B, CESBIO

Image Scenes

to be processed acquired by Sentinel-2A, -2B and Landsat-8

Months


for the participants to submit their results



L8Biome (Foga et al. 2016)

- 96 LC8 scenes, semi-random sampling with Biome stratification
- Photo-interpretation with See5.0
- All pixels are labelled (clear, cloud, cloud shadow, thin cloud).

S2 (Hollstein et al. 2016)

- 108 Sentinel-2 scenes
- Photointerpretation
- Selected polygons are labeled manually
- Classes: clear sky, cloud, cloud shadow, cirrus, water, snow

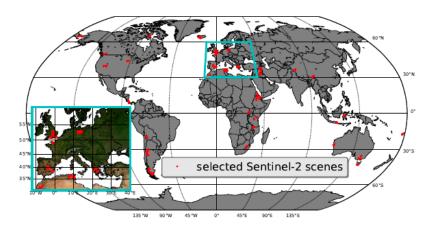
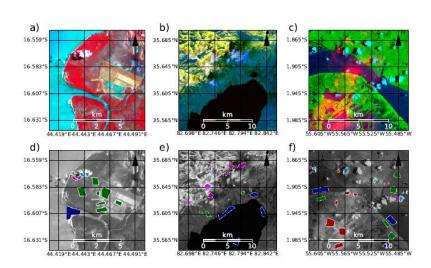
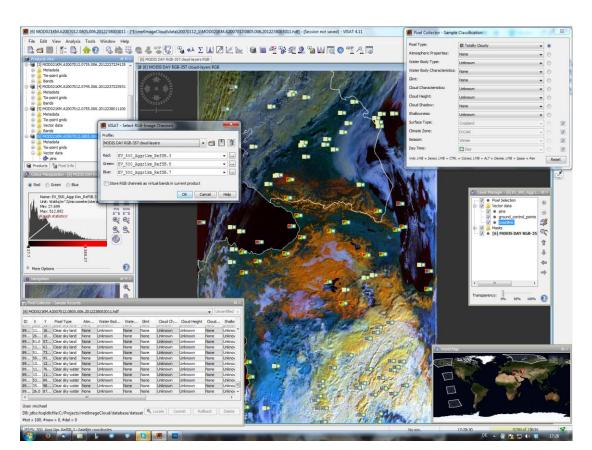



Figure 2. Global distribution of selected Sentinel-2 scenes which are included in the database.

S2/L8: PixBox data set

Database to store manually classified pixels.

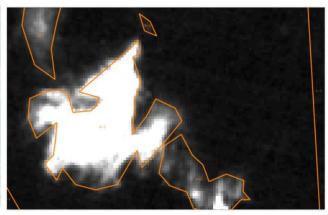

Pixel collection supported by dedicated SNAP tool.

S2 collection:

29 products

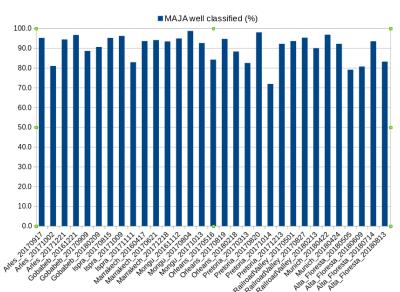
L8 collection:

11 products



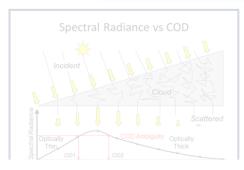
GSFC: LC8/S2A/S2B

- Around 25 scenes labelled.
- Manually labeled polygons assisted by ground photos of sky.
- The same area over GSFC (also Aeronet measurements available), but varying conditions and time period.



How? CESBIO

- 31 fully classified images using active learning method (Active Learning for Cloud Detection)
 - Manually supervised and iterative
 - Manual reference points added where first iterations not satisfying
 - Valid/Invalid pixels (an invisible cloud except in cirrus band is valid)
- Data and software are available, can be used to generate reference for ACIX-2 scenes
 - Would save processing for users
 - <2 hours of work per image



IDEALLY

we would get a physical measure like cloud optical thickness or "impact on reflectance", spectrally resolved

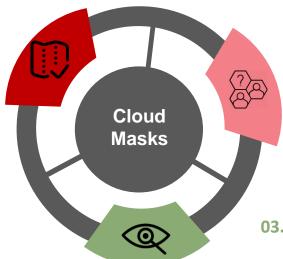

REALISTICALLY

we follow the 'traditional' approach:

CM as an absolute indication on

cloudiness

Binary mask for different levels of cloudy/ clear: proposed classes: Clear, Cloud, Cloud shadows, Thin/(semi)-transparent



01. Per pixel validation

Confusion matrix & OA, PA, UA

Class	Clear	Cloud	Cloud Shadow	Thin/(semi)- transparent	Row Total	<u>UA</u>
Clear						
Cloud						
Cloud Shadow						
Thin/(semi)- transparent						
Column Total						
<u>PA</u>						<u>0A</u>

02. Per object validation

Oversegmentation, undersegmentation, edge-location, fragmentation and shape

03. Visual inspection

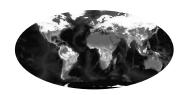
potentially study an impact on SR, especially with transparent/cirrus clouds

Teams from various Space Agencies, R&D Companies, Research Institutes and Universities

Study Sites spread globally based on the AERONET stations (location & measurements availability)

Image Scenes to be processed acquired by Sentinel-2A, -2B and Landsat-8

Monthsfor the participants to submit their results


WHAT?

Aerosol Optical Thickness

Water Vapour

Surface Reflectance

Estimated AOT(/WV) vs AERONET

measurements

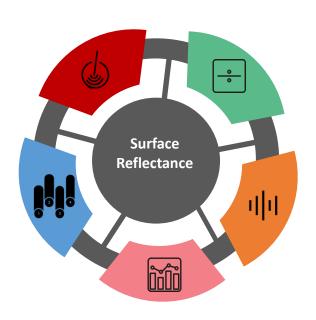
Estimated AOT (/WV) & compared to Level 1.5 (cloud screened) AERONET data

- Interpolate AERONET values @ λ=550 nm using Angstrom Exponent
- Average AERONET values over time period within ±15 min from AOT retrieved values (L-8/S-2A, -2B overpass)
- Average AOT values over an image subset of 9 km x 9 km centred on the AERONET Sunphotometer station

Statistics and Plots

No. of samples
R² (Coefficient variation)
r (Pearson's correlation coef.)
A (Accuracy)
P (Precision)
U (Uncertainty)

Max AOT₅₅₀ difference



01. Ground based validation

- RadCalNet [La Crau (France), Gobabeb (Namibia)], SR are provided by CNES in the same angular conditions as L-8, S-2A & -2B
- DLR campaign measurements from Lake Stechlin (Germany) at 4th May 2018

05. SR inter-comparison

Plotting the SR time series per date, band and AC approach.

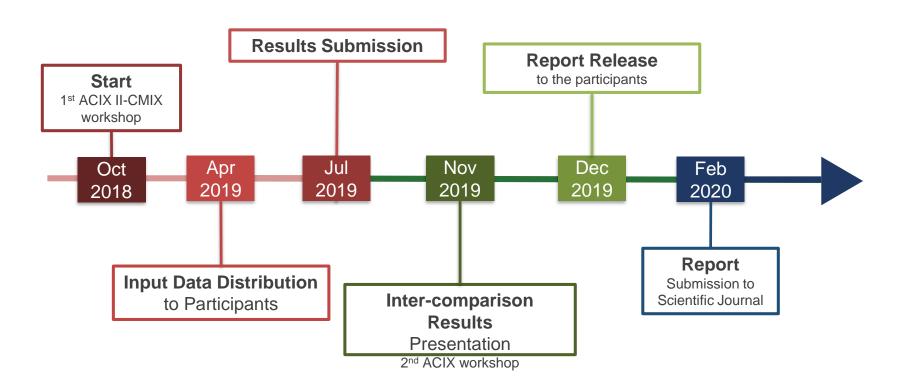
04. AERONET corrected data

AC data generated by 6S radiative transfer model using AERONET data. AOT, aerosol model and column water vapour will be derived from AERONET sunphotometer measurements and will be used in the radiative transfer model in order to perform the AC of TOA reflectance.

02. Indices

NDVI, NDWI and EVI based on the SR products. Similar directional effects are in the visible and near infrared bands, and therefore by estimating their ratio the effect is reduced.

03. Noise Estimation


Assuming that there is a linear SR variation between two consecutive acquisition days; for three successive observations the statistical difference between, the center measurement and the linear interpolation between the two extremes quantifies the "noise":

Noise(y) =
$$\int_{i=1}^{2n-2} \left(y_{i+1} - \frac{y_{i+2} - y_i}{d_{i+2} - d_i} (d_{i+1} - d_i) - y_i \right)^2$$

WHEN?



Teams from various Space Agencies, R&D Companies, Research Institutes and Universities

In-situ data Providers

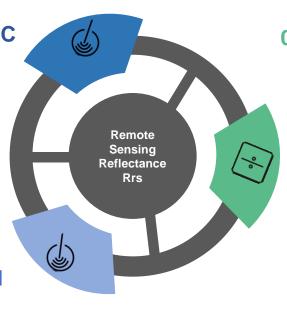
Together with

≅ 20 AERONET OC sites

Image Scenes to be processed acquired by Sentinel-2A, -2B and Landsat-8

Months
for the coordinators to
inter-compare the
results

01. Validation with AERONET-OC Rrs (Phase I)

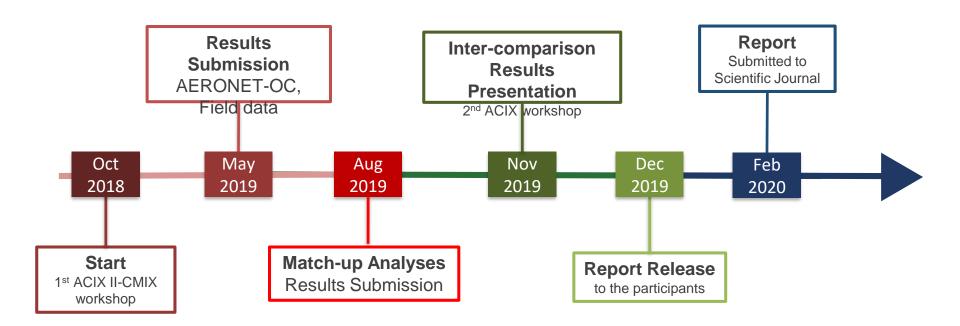

Match-up Analyses (N ~ 1200)

- Time-diff threshold: +/1 hour
- Avoid adjacency effects due to the structure
- Band shifting/adjustment needed

02. Validation with field-based Rrs (Phase II)

Match-up Analyses (N ~ 3200)

- Time-diff threshold: Variable
- Resample hyperspectral data


03. Performance metrics

- Measures for Rrs reported as a function of site characteristics (e.g., water types, solar zenith angles):
 - Mean/Median percentage difference
 Mean/Median absolute difference
 RMSE / NRMSE, R², Linear regression, Accounting for negative retrievals
- Measures for Rrs: reported for a subset of high-fidelity in situ data, i.e., AERONET-OC, in-water field radiometric data within < +/-30min overpass, above-water radiometric data collected under clear skies within < +/-30min overpass
- and, the entire dataset (excluding suspicious data and/or outliers)
- Spider/Taylor diagram to report the overall performance of each processor

WHEN?

Thank you!

https://earth.esa.int/web/sppa/meetings-workshops/hosted-and-co-sponsored-meetings/acix-ii-cmix