

EMC / EMI Test Report

As per

CISPR 32:2015 / EN 55032:2015, CISPR 24:2010/EN 55024:2010, FCC Part 15 Subpart B:2015 & ICES-003:2016

Emissions & Immunity for

Multimedia Class A Equipment

on the

DynaCERT RMF 1 AUG2016 Hydrogen Oxygen Generator

Issued by:

TÜV SÜD Canada Inc. 11 Gordon Collins Dr, Gormley, ON, L0H 1G0 Canada Ph: (905) 883-7255

Testing produced for: **OdynaCERT**inc. See Appendix A for full client & EUT details.

Glen Westwell Project Engineer

R-4023, G-506 C-4498, T-1246

Page 1 of 47 Report Issued: 3/16/2017 Report File #: -000 © TÜV SÜD Canada Inc. This test report shall not be reproduced except in full, without written approval of TÜV SÜD Canada Inc CISPR32-24_FCC_ICES_Rev2

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Table of Contents

Table of Contents
Report Scope
Summary
Test Results Summary5Notes, Justifications, or Deviations6Sample Calculation(s)6
Applicable Standards, Specifications and Methods7
Document Revision Status
Definitions and Acronyms
Testing Facility
Calibrations and Accreditations
Detailed Test Result Section
Radiated Emissions14Electro-Static Discharge22Radiated Field Immunity29Conducted RF Immunity32Power Frequency Magnetic Field35
Appendix A – EUT & Client Provided Details
Appendix B – EUT, Peripherals, and Test Setup Photos

Page 2 of 47 Report Issued: 3/16/2017 Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Report Scope

This report addresses the EMC verification testing and test results of the **DynaCERT**, Model: **RMF ECU 1 AUG2016 Hydrogen Oxygen Generator**, herein referred to as EUT (Equipment Under Test). The EUT was tested for emissions and immunity compliance against the following standards:

EN 55032:2015/CISPR 32:2015 EN 55024:2010/CISPR 24:2010 FCC Part 15 Subpart B:2015 ICES-003:2016

Radiated emissions, and immunity testing was evaluated on the EUT. Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

For a more detailed list of the standards and the revision used, see the "Applicable Standards, Specifications and Methods" section of this report.

This report does not imply product endorsement by any government, accreditation agency, or TÜV SÜD Canada Inc.

Opinions or interpretations expressed in this report, if any, are outside the scope of TÜV SÜD Canada Inc. accreditations. Any opinions expressed do not necessarily reflect the opinions of TÜV SÜD Canada Inc., unless otherwise stated.

Page 3 of 47 Report Issued: 3/16/2017 Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Summary

The results contained in this report relate only to the item(s) tested.

Equipment Under Test (EUT)	RMF ECU 1 AUG2016
EUT passed all tests performed	Yes
Testing conducted by	Glen Westwell

For testing dates, see 'Testing Environmental Conditions and Dates'.

|--|

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Test Results Summary

Standard/ Method	Description	Criteria	Class / Level	Result
EN 55032/ CISPR 32 FCC 15 - ICES 003	Power Line Conducted Emissions	N/A	Class A	N/A
EN 55032/ CISPR 32 FCC 15 - ICES 003	Radiated Emissions	N/A	Class A	Pass
EN 61000-3-2	Power Line Harmonic Emissions	N/A	Class A	N/A
EN 61000-3-3	Flicker Emissions	N/A		N/A
EN 55024/ EN 61000-4-2	Electro-Static Discharge	В	±4kV Contact ±8kV Air	Pass
EN 55024/ EN 61000-4-3	Radiated Field Immunity	А	3 V/m, 80 MHz – 1 GHz	Pass
EN 55024/ EN 61000-4-4	Electrical Fast Transients (Bursts)	В	±1kV - Mains ±0.5kV - I/O	N/A
EN 55024/ EN 61000-4-5	Surge Immunity	В	±1kV Line - Line ±2kV Line - Ground	N/A
EN 55024/ EN 61000-4-6	Conducted RF Immunity	А	3 Vrms, 150 kHz – 80 MHz	Pass
EN 55024/ EN 61000-4-8	Power Frequency Magnetic Field	А	1 A/m (3 A/m Tested)	Pass
EN 55024/ EN 61000-4-11	Voltage Dips and Interrupts	B/C	Various	N/A
	Overall Result			Pass

If the product as tested complies with the specification or requirement, the EUT is deemed to comply and is issued a 'PASS' grade. If not, 'FAIL' grade is issued.

Page 5 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Notes, Justifications, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

Note:

- This device contains certified GPRS, Bluetooth and WiFi radio modules.
- The Bluetooth radio was active during testing as a means of monitoring the EUT during assessment.
- All radio devices were powered during testing.

A later revision of the standard may have been substituted in place of the previous dated referenced revision. The year of the specification used is listed under applicable standards. Using the later revision accomplishes the goal of ensuring compliance to the intent of the previous specification, while allowing the laboratory to incorporate the extensions and clarifications made available by a later revision.

Sample Calculation(s)

Radiated Emission Test

 $\begin{array}{l} Margin = Limit - (Received Signal + Antenna Factor + Cable Loss - Pre-Amp Gain)\\ Margin = 50dB\mu V/m - (50dB\mu V + 10dB + 2.5dB - 20dB)\\ Margin = 7.5 \ dB \ (pass) \end{array}$

Power Line Conducted Emission Test

$$\begin{split} \text{Margin} &= \text{Limit} - (\text{Received Signal} + \text{Attenuation Factor} + \text{Cable Loss} + \text{LISN Factor}) \\ \text{Margin} &= 73.0 \text{dB} \mu \text{V} - (50 \text{dB} \mu \text{V} + 10 \text{dB} + 2.5 \text{dB} + 0.5 \text{dB}) \\ \text{Margin} &= 10.0 \text{ dB} \text{ (pass)} \end{split}$$

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Applicable Standards, Specifications and Methods

ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CFR47 FCC Part 15 Subpart B:2015	Code of Federal Regulations - Radio Frequency Devices
ICES-003, Issue 6 2016	Information Technology Equipment (ITE) - Limits and Methods of Measurement
EN55032:2015/ CISPR32:2015	Electromagnetic Compatibility of Multimedia Equipment – Emission Requirements
EN55024:2010/ CISPR24:2010	Information Technology Equipment - Immunity Characteristics - Limits and Methods of Measurement
CISPR 16-2-3:2010/A2:2014	Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods - Part 2-3: Methods of Measurement of Disturbances and Immunity - Radiated Disturbance Measurements
IEC/EN 61000-3-2:2014	Limits for Harmonic Current Emissions (equipment input current \leq 16A per phase)
IEC/EN 61000-3-3:2013	Limitation of Voltage Changes, Voltage Fluctuations and Flicker in Public Low-Voltage Supply Systems, for equipment with rated current $\leq 16A$ per phase and not subject to conditional connection.
IEC 61000-4-2:2008 EN 61000-4-2:2009	Testing and Measurement Techniques - Electrostatic Discharge Immunity Test
IEC/EN 61000-4-3:2006/ A2:2010	Testing and Measurement Techniques - Radiated, Radio-Frequency, Electromagnetic Field Immunity Test
IEC/EN 61000-4-4:2004	Testing and Measurement Techniques - Electrical Fast Transient/Burst Immunity Test
IEC 61000-4-5:2005 EN 61000-4-5:2006	Testing and Measurement Techniques - Surge Immunity Test
IEC 61000-4-6:2008 EN 61000-4-6:2009	Testing and Measurement Techniques - Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields
IEC 61000-4-8:2009 EN 61000-4-8:2010	Testing and Measurement Techniques - Power Frequency Magnetic Field Immunity Test
IEC/EN 61000-4-11:2004	Testing and Measurement Techniques - Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
ISO 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories

Page 7 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
--------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Document Revision Status

Revision 0 March 15th, 2017 Initial Release

 Page 8 of 47
 Report Issued: 3/16/2017
 Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AM – Amplitude Modulation
CDN – Coupling Decoupling Network
EFT – Electrical Fast Transients
ESD – Electro-Static Discharge
HCP – Horizontal Coupling Plane
VCP – Vertical Coupling Plane
LISN – Line Impedance Stabilization Network
NCR – No Calibration Required
NSA – Normalized Site Attenuation
N/A – Not Applicable
RF – Radio Frequency

AE – Associated Equipment. Equipment needed to exercise and/or monitor the operation of the EUT.

Class A Device – A device that is marketed for use in a commercial, industrial or business environment. A 'Class A' device should not be marketed for use by the general public. A 'Class A' device should contain a warning notice in the user manual stating that it could cause radio interference. For example: "**Warning**: Operation of this equipment in a residential environment could cause radio interference."

Class B Device – A device that is marketed for use in a residential environment and may also be used in a commercial, business or industrial environments. NOTE: A residential environment is an environment where the use of broadcast radio and television receivers may be expected within a distance of 10m of the device concerned.

EMC – Electro-Magnetic Compatibility. The ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment.

EMI – Electro-Magnetic Immunity. The ability to maintain a specified performance when the equipment is subjected to disturbance (unwanted) signals of specified levels.

EUT – Equipment Under Test. A device or system being evaluated for compliance that is representative of a product to be marketed.

Page 9 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

ITE – Information Technology Equipment. Has a primary function of entry, storage, display, retrieval, transmission, processing, switching, or control of data and/or telecommunication messages and which may be equipped with one or more ports typically for information transfer.

Antenna Port – Port, other than a broadcast receiver tuner port, for connection of an antenna used for intentional transmission and/or reception of radiated RF energy.

Broadcast Receiver Tuner Port – Port intended for the reception of a modulated RF signal carrying terrestrial, satellite and/or cable transmissions of audio and/or video broadcast and similar services.

Optical Fiber Port – Port at which an optical fiber is connected to an equipment.

Signal/Control Port – Port intended for the interconnection of components of a EUT, or between a EUT and local AE and used in accordance with relevant functional specifications (for example for the maximum length of cable connected to it). (Examples include: RS-232, USB, HDMI, Fire Wire)

Wired Network Port – Point of connection for voice, data and signaling transfers intended to interconnect widely dispersed systems by direct connection to a single-user or multi-user communication network.

(Examples include: CATV, PSTN, ISDN, xDSL, LAN and similar networks)

EMC Test Plan – An EMC test plan established prior to testing. See 'Appendix A – EUT & Client Provided Details'.

Page 10 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Testing Facility

Testing for EMC on the EUT was carried out at TÜV SÜD Canada testing lab near Toronto, Ontario. The testing lab has a calibrated 3m semi-anechoic chamber which allows measurements on a EUT that has a maximum width or length of up to 2m and a height of up to 3m. The chamber is equipped with a turntable that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120Vac and 240Vac single phase, or devices that are rated for a 208Vac 3 phase input. DC capability is also available for testing. The chamber is equipped with a mast that controls the polarization and height of the antenna. Control of the mast occurs in the control room adjoining the shielded chamber. Radiated emission measurements are performed using a BiLog antenna and a Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN and using the Vertical Ground plane if applicable.

Calibrations and Accreditations

The 3m semi-anechoic chamber is registered with Federal Communications Commission (FCC, CA6844), Industry Canada (IC, 6844A-3) and Voluntary Control Council for Interference (VCCI, R-4023, G-506, C-4498, and T-1246). This chamber was calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. The NSA data is kept on file at TÜV SÜD Canada. For radiated susceptibility testing, a 16 point field calibration has been performed on the chamber. The field uniformity data is kept on file at TÜV SÜD Canada Inc. is accredited to ISO 17025 by A2LA with Testing Certificate #2955.02. The laboratory's current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or biannual basis as listed for each respective test.

Page 11 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Testing Environmental Conditions and Dates

Following environmental conditions were recorded in the facility during time of testing:

Date	Test	Initials	Temperature (ºC)	Humidity (%)	Pressure (kPa)
6 March 2017	Radiated Emissions	GW	21 – 24	40 – 51	98.0 - 102.0
8 March 2017	Electro-Static Discharge	GW	21 – 24	40 – 51	98.0 - 102.0
6 March 2017	Radiated Field Immunity	GW	21 – 24	40 – 51	98.0 - 102.0
8 March 2017	Conducted RF Immunity	GW	21 – 24	40 – 51	98.0 - 102.0
8 March 2017	Power Frequency Magnetic Field	GW	21 – 24	40 – 51	98.0 – 102.0

Page 12 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Detailed Test Result Section

Page 13 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Radiated Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard and measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limits & Method

The limits and method are as defined in ANSI C63.4 and CISPR 32, EN55032, 47 CFR FCC Part 15 Section 15.109(g), and ICES-003 Issue 6 Section 6.2:

CLASS A

Frequency Range ^a	Quasi-Peak Limits - 10mb	Quasi-Peak Limits - 3mb
30 MHz – 230 MHz	40 dBµV/m	50 dBµV/m
230 MHz – 1 GHz	47 dBµV/m	57 dBμV/m

CISPR 32 / EN 55032,

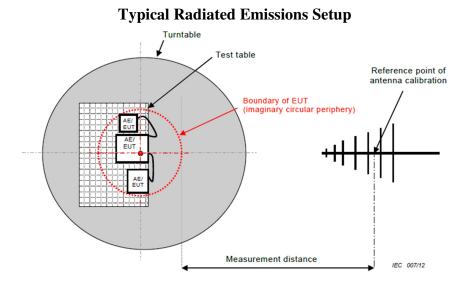
Frequency Range ^a	Average Limit - 3m ^c	Peak Limit - 3m ^d	
1 GHz – 3 GHz	56 dBµV/m	76 dBµV/m	
3 GHz – 6 GHz	60 dBµV/m	80 dBµV/m	

FCC Part 15 Subpart B,

Frequency Range ^a	Average Limit - 3m ^c	Peak Limit - 3m ^d
1 GHz and Up	60 dBµV/m	80 dBµV/m

^aThe frequency range scanned is in accordance to CISPR 32 Table 1 and FCC Part 15 Section 15.33(b).

^bLimit is with a resolution bandwidth of 120 kHz, a video bandwidth at least three times greater than the resolution bandwidth, and using a Quasi-Peak detector.


^cLimit is with a resolution bandwidth of 1 MHz and using an Average detector.

^dLimit is with a resolution bandwidth of 1 MHz, a video bandwidth at least three times greater than the resolution bandwidth, and using a Peak detector.

Based on ANSI C63.4 Section 4.2 and CISPR 32 Annex C.3, if the Peak detector measurements do not exceed the Quasi-Peak limits, where defined, then the EUT is deemed to have passed the requirements.

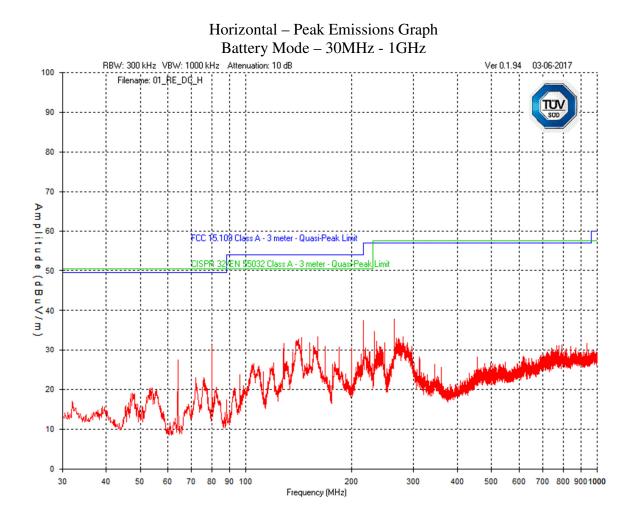
Page 14 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Note: In accordance with CISPR 32 Annex C, testing was performed at a 3 meter test distance.

Measurement Uncertainty

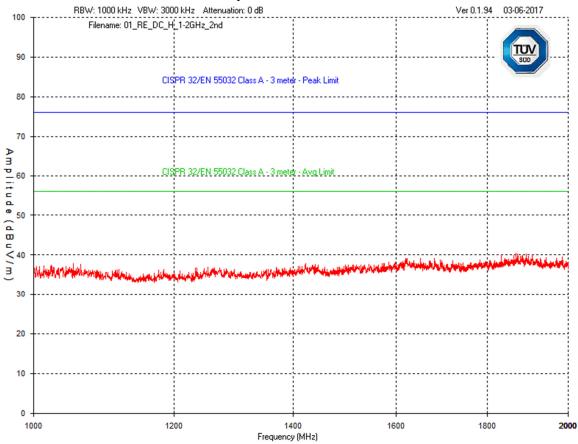
The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is ± 4.25 dB for 30MHz – 1GHz and ± 4.93 dB for 1GHz – 18GHz with a 'k=2' coverage factor and a 95% confidence level.


Preliminary Graphs

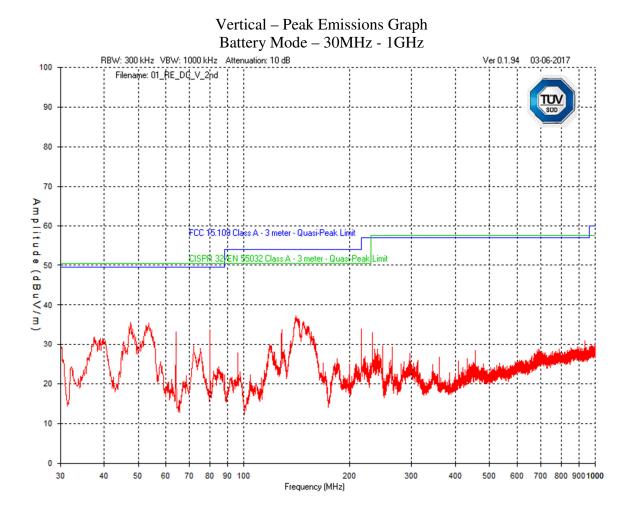
The graphs shown below are maximized peak measurement graphs measured with a resolution bandwidth greater than or equal to the final required detector over a full 0-360°. This peaking process is done as a worst-case measurement and enables the detection of frequencies of concern for final measurement. For final measurements with the appropriate detector, where applicable, please refer to the tables under Final Measurements.

In accordance with FCC Part 15, Subpart A, Section 15.33 and CISPR 32 Table 1, the EUT was scanned to a minimum of a 1 GHz. For devices containing clocks higher than 108 MHz, they were scanned above 1 GHz to meet the requirements of FCC Part 15 Section 15.33 and CISPR 32.

Page 15 of 47 Report Issued: 3/16/2017 Report File #:7169002039 -000		Page 15 of 47
--	--	---------------

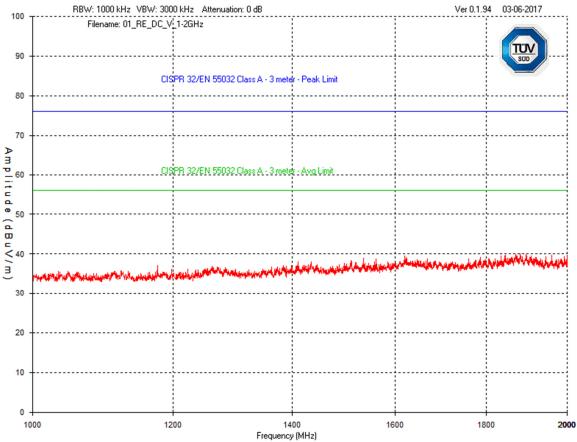

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Page 16 of 47 Report Issued: 3/16/2017 Report File #:7169002039 -000	02039 -000
--	------------


Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Horizontal – Peak Emissions Graph Battery Mode – 1GHz - 2GHz

	Page 17 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
--	---------------	--------------------------	-------------------------------


Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

	Page 18 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
--	---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Vertical – Peak Emissions Graph Battery Mode – 1GHz - 2GHz

 Page 19 of 47
 Report Issued: 3/16/2017
 Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	SUD
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Final Measurements

Worst case emission data presented. No emissions above 1GHz were detected. A peak detector was used and compared to the quasi-peak limit. Highest EUT clock frequency = 168 Mhz.

> Quasi-Peak Emissions Table 30MHz – 1 GHz

Proc	duct Catego	ory				C	lass A			
	Supply					12	2 VDC			
Frequency (MHz)	Detector Peak	Received Signal	Antenna Factor	Atten Factor	Cable Factor	Pre- Amp	Level (dBµV/m)	QP Limit (dBµV/m)	QP Margin	Pass/ Fail
(. cun	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(,	(,	(dB)	
			Horiz	ontal Ar	ntenna Po	larizatio	n			
216.05	PEAK	48.7	13.2	3	1.0	-28.5	37.4	50.5	13.1	Pass
159.98	PEAK	45.9	12.1	3	0.9	-28.5	33.4	50.5	17.1	Pass
143.98	PEAK	45.6	12.2	3	0.9	-28.5	33.2	50.5	17.3	Pass
151.93	PEAK	45.2	11.4	3	0.9	-28.5	32.0	50.5	18.5	Pass
127.97	PEAK	45.9	10.5	3	0.9	-28.5	31.8	50.5	18.7	Pass
80.05	PEAK	46.9	9.0	3	0.7	-28.5	31.1	50.5	19.4	Pass
			Ver	tical Ant	enna Pola	arization				
140.87	PEAK	49.8	12.2	3	0.9	-28.5	37.4	50.5	13.1	Pass
47.56	PEAK	53.3	7.4	3	0.5	-28.5	35.7	50.5	14.8	Pass
53.57	PEAK	53.0	7.3	3	0.5	-28.5	35.3	50.5	15.2	Pass
216.05	PEAK	45.2	13.2	3	1.0	-28.5	33.9	50.5	16.6	Pass
127.97	PEAK	47.9	10.5	3	0.9	-28.5	33.8	50.5	16.7	Pass
80.05	PEAK	49.5	9.0	3	0.7	-28.5	33.7	50.5	16.8	Pass

Note:

Peak = Peak measurement

QP = Quasi-Peak measurement

See 'Appendix B – EUT, Peripherals, and Test Setup Photos' for photos showing the test set-up for the highest radiated emission.

		Page 20 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
--	--	---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	SUD
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

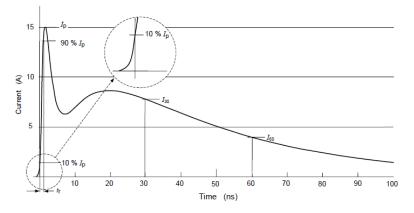
Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESU 40	Rohde & Schwarz	Jan. 6, 2016	Jan. 6, 2018	GEMC 233
BiLog Antenna	HLP-3003C	TDK RF Solutions	Oct. 12, 2016	Oct. 12, 2018	GEMC 231
Attenuator 3 dB	612-03-1	Meca Electronics, Inc	NCR	NCR	GEMC 222
Pre-Amp 9 kHz – 1 GHz	LNA 6901	Teseq	Feb. 2, 2017	Feb. 2, 2019	GEMC 168
Pre-Amp 1 – 26.5 GHz	HP 8449B	HP	Nov. 27, 2015	Nov. 27, 2017	GEMC 189
RF Cable 7m	LMR-400-7M- 50Ω-MN-MN	LexTec	NCR	NCR	GEMC 28
RF Cable 10m	LMR-400-10M- 50Ω-MN-MN	LexTec	NCR	NCR	GEMC 27
RF Cable 0.5m	LMR-400- 0.5M-50Ω-MN- MN	LexTec	NCR	NCR	GEMC 31
Emissions Software	0.1.94	Global EMC	NCR	NCR	GEMC 58

CISPR32-FCC_RE-A_Rev1

Page 21 of 47 Report Issued: 3/16/2017	Report File #:7169002039 -000
--	-------------------------------

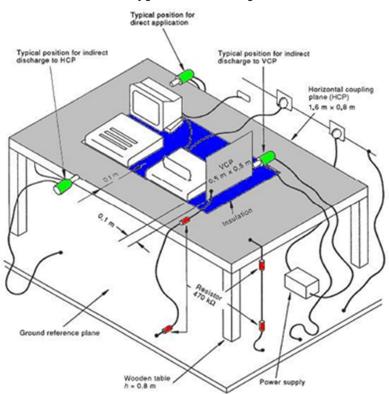
Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada


Electro-Static Discharge

Purpose

The purpose of this immunity test is to apply a static electricity discharge from the operator to the EUT or create a nearby discharge field. An example of this discharge can be seen in low humidity conditions when a person touches an object and creates a small spark. This spark could potentially be harmful to the operation of the EUT. The contact method, with related reduced voltages, has been shown to be roughly equivalent to air discharges in severity and due to its reproducibility, contact is the preferred test method. Air discharge is used where contact discharge cannot be applied since the discharge point is significantly insulated and the insulation cannot be easily broken through. This test ensures a minimum level of immunity which is likely to occur in a normal usage environment. This test does not guarantee that the EUT will not be exposed to higher discharge levels which could cause it to fail.

Application Level Requirement


This test is performed in accordance with the methodology defined in IEC 61000-4-2. Ten hits in the positive and negative polarity are applied at each defined discharge point on the EUT. These are called direct discharges, regardless of contact or air being applied. Horizontal Coupling Plane (HCP) and Vertical Coupling Plane (VCP) discharges are also applied and these are called indirect discharges. A typical test setup representation is shown on the following page. A photograph of the actual test setup is shown in Appendix B. See the results table under Test Results for the actual EUT discharge points.

A level of $\pm 4kV$ contact or $\pm 8kV$ air, where applicable, is applied to each defined discharge point. For air discharge testing, the test is applied at the lower test levels first. Performance Criteria level B as defined in "Appendix A – EUT & Client Provided Details" is applied to this test. However, all anomalies, if any, are noted.

Page 22 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Typical ESD Setup

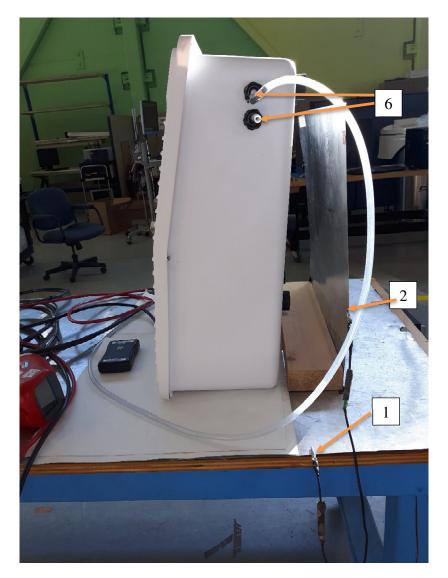
Application Level Accuracy

Contact discharge: $\pm 15\%$ for the first peak current, $\pm 5\%$ for the output voltage and $\pm 25\%$ for the rise time as measured at the discharge electrode tip of ESD generator.

Page 23 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

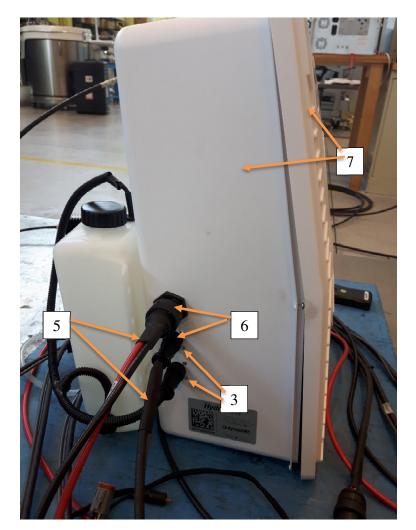
Test Results


The EUT passed the requirements. The EUT met Criteria B as defined in "Appendix A – EUT & Client Provided Details". No anomalies were observed.

Location	Test Voltage	Discharge Type	Pass / Fail
1. HCP	±4kV	Contact	Pass
2. VCP	±4kV	Contact	Pass
3. Connector Rivets	±4kV	Contact	Pass (No Discharge)
4. Rear Mounts	±4kV	Contact	Pass (No Discharge)
5. Power Cables	±8kV	Air	Pass (No Discharge)
6. Connectors	±8kV	Air	Pass (No Discharge)
7. Chassis (Top, Sides, Back)	±8kV	Air	Pass (No Discharge)

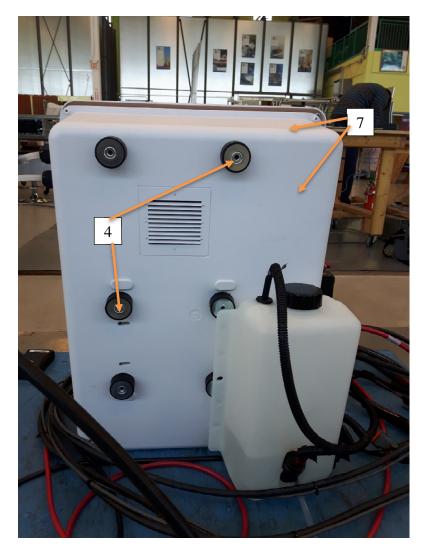
|--|

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada


Figure 1 – ESD Discharge Locations

 Page 25 of 47
 Report Issued: 3/16/2017
 Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	SUD
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada


Figure 2 – ESD Discharge Locations

 Page 26 of 47
 Report Issued: 3/16/2017
 Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Figure 3 – ESD Discharge Locations

 Page 27 of 47
 Report Issued: 3/16/2017
 Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

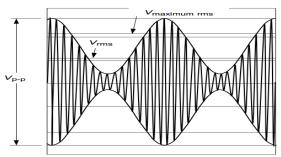
Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
ESD Generator	NSG 437	Teseq	Nov. 6, 2015	Nov. 6, 2017	GEMC 130
ESD HCP	80CM x 160CM	Global EMC	NCR	NCR	GEMC 50
ESD VCP	50CM x 50CM	Global EMC	NCR	NCR	GEMC 51
ESD 470K A	2x470kΩ 100CM	Global EMC	NCR	NCR	GEMC 52
ESD 470K B	2x470kΩ 100CM	Global EMC	NCR	NCR	GEMC 53

IEC61000-4-2_ESD_Rev4

Page 28 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

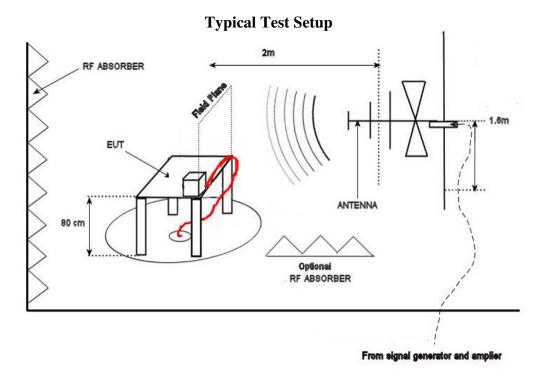

Radiated Field Immunity

Purpose

The EUT will likely be exposed to intentional sources of electromagnetic radiation during its regular application. Sources of such radiation can be cellular phones, FM radio, television, remote car alarms, garage door openers, and other broadcast transmissions. These sources of radiation are licensed or certified for broadcast and therefore, the EUT should be immune to their RF energy. This test assesses the immunity of the EUT to the applicable field strength test level. This test, however, does not guarantee that the EUT will not be exposed to higher level fields during its operation, which may cause it to fail.

Application Level Requirement

This test is performed in accordance with the methodology defined in IEC 61000-4-3. The immunity test is performed over the frequency range of 80MHz to 1.0GHz. As the frequency range is swept incrementally, the step size used is calculated at 1% of the preceding frequency value, rounded down to the nearest kHz. Known clock frequencies, local oscillators, etc. are analyzed separately, where applicable, and these are defined in "Appendix A – EUT & Client Provided Details". The field uniformity is calibrated at 3V/m and a modulation of 80% AM 1kHz sine wave is applied during the application of the RF energy at each frequency.



Modulated RF-signal 80 % AM

The RF field is applied in both horizontal and vertical antenna polarization and four sides of the EUT are subjected to this RF field. The dwell time used for each frequency is 3 seconds. Forward power is monitored and records are kept on file at TUV SUD Canada Inc. An isotropic field probe is also placed in near proximity of the EUT to verify the application of the RF field. Performance Criteria Level A as defined in "Appendix A – EUT & Client Provided Details" is applied to this test.

Page 29 of 47 Report Issued: 3/16/2017 Report File #:/169002039 -000	Page 29 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
--	---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Application Level Accuracy

As per IEC 61000-4-3, the RF field is specified as 0dB to +6dB for at least 12 of the 16 calibration points. For a 10 V/m field, this allows for the EUT to be subjected to a field of 10 V/m to 20 V/m with at least 75% coverage at this level.

Page 30 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Test Results

The EUT passed the requirements. The EUT met Criteria A as defined in "Appendix A – EUT & Client Provided Details". No anomalies were observed.

Input Voltage and Frequency 12Vdc		;
Frequency Range and Field Strength	80MHz – 1GHz 3V/m (80% AM)	
Sweep Step	1% of Fundamental	
Dwell Time	3 sec.	
Clock Frequencies Analyzed Separately		
Clock	Frequency Inspected	Dwell Time
	168 MHz	60 sec
Result	Pass	

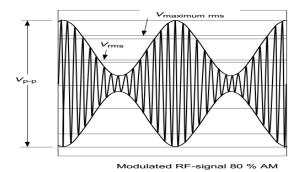
Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Signal Generator	SMU 200A	Rohde & Schwarz	Jan. 7, 2016	Jan. 7, 2018	GEMC 236
BiLog Antenna	3142-C	ETS	Oct. 5, 2016	Oct. 5, 2018	GEMC 8
Power Amplifier	250W1000B	AR	NCR	NCR	GEMC 192
Field Probe	FL 7018	AR	Sept. 21, 2016	Sept. 21, 2018	GEMC 164
Field Monitor	FM 7004	AR	NCR	NCR	GEMC 13
Power Head	PH 2000	AR	Feb. 1, 2017	Feb. 1, 2019	GEMC 15
Power Meter	PM 2002	AR	Feb. 1, 2017	Feb. 1, 2019	GEMC 16
Immunity Software	V221	Global EMC	NCR	NCR	GEMC 57

IEC61000-4-3_RadiatedImmunity_Rev4

 Page 31 of 47
 Report Issued: 3/16/2017
 Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

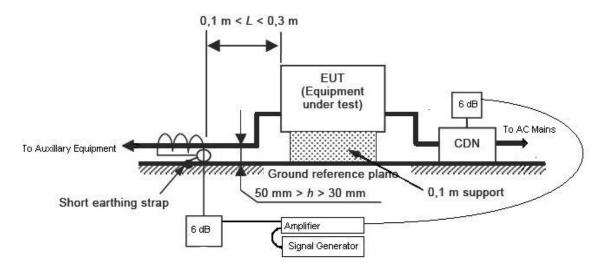

Conducted RF Immunity

Purpose

The EUT will likely be exposed, in some way, to low frequency intentional sources of RF energy during its regular application. Sources of such radiations can be AM radio, shortwave radio, CB transmissions, and other low frequency broadcast transmissions. These sources of radiations are licensed or certified for broadcast and therefore, the EUT should be immune to their RF energy. Due to the properties of radio, the power or I/O lines on the EUT would likely be the passive receiving antenna that induces the disturbance to the EUT. Since this is the main method of coupling at this frequency range, the direct application of the RF energy to the line being tested is used. At this frequency range and level, this method is easier to produce and reproduce in a laboratory environment than subjecting the EUT to an equivalent RF field.

Application Level Requirement

This test is performed in accordance with the methodology defined in IEC 61000-4-6. I/O cables are tested using a bulk current injection probe and power lines are tested using a coupling and decoupling network. The immunity test is performed over the frequency range of 150kHz to 80MHz. As the frequency range is swept incrementally, the step size used is calculated at 1% of the preceding frequency value, rounded down to the nearest kHz. Known clock frequencies, local oscillators, etc. are analyzed separately, where applicable, and these are defined in "Appendix A – EUT & Client Provided Details". The test level is calibrated at 3Vrms and a modulation of 80% AM 1kHz sine wave is applied during the application of the RF energy at each frequency.



The dwell time used for each frequency is 3 seconds. A current probe is placed between the coupling device and the EUT to verify the application of the RF energy. Performance Criteria level A as defined in "Appendix A – EUT & Client Provided Details" is applied to this test.

Page 32 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Typical Test Setup

Application Level Accuracy

As per IEC 61000-4-6, the CDN must meet a common mode impedance $|Z_{CE}| = 150\Omega \pm 20\Omega$ for 150kHz to 26MHz and $|Z_{CE}| = 150\Omega + 60\Omega$ or 150 $\Omega - 45\Omega$ for 26MHz to 80MHz. During tests using the bulk current injection probe, the impedance of each cable will affect the current injected and therefore, current was monitored. The calibration is performed according to IEC 61000-4-6 which allows for ±2dB.

Page 33 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Test Results

The EUT passed the requirements. The EUT met Criteria A as defined in "Appendix A – EUT & Client Provided Details". No anomalies were observed.

Input Voltage and Frequency	12Vdc
Frequency Range and Signal Strength	150kHz - 80MHz 3Vrms (80% AM)
Sweep Step	1% of Fundamental
Dwell Time	3 sec.
Mains Cable	Pass
Result	Pass

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Power Amplifier	75A250A	AR	NCR	NCR	GEMC 14
Bulk Current Injection Probe	F-120-9A	FCC	Jan. 27, 2017	Jan. 27, 2019	GEMC 20
Signal Generator	SMHU	Rohde & Schwarz	Feb. 1, 2017	Feb. 1, 2019	GEMC 155
Power Attenuator 6dB	100-A-FFN- 06	Bird	NCR	NCR	GEMC 48
Immunity Software	V221	Global EMC	NCR	NCR	GEMC 57

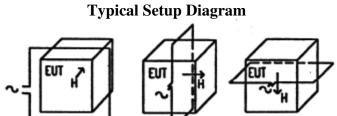
IEC61000-4-6_ConductedImmunity_Rev4

|--|

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	Standard(s)FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	

Power Frequency Magnetic Field

Purpose


A magnetic field with the frequency of the power line is generated around the EUT. In practice, the EUT will be subjected to power frequency magnetic fields from nearby power lines, transformers, or devices such as televisions or monitors. Since the EUT is usually used in conjunction with other electrical equipment, it is subjected to the steady state magnetic fields. These are magnetic fields that the device is exposed to under normal operating conditions. These fields have lower field strengths compared to typical transient magnetic fields.

Application Level Requirement

This test is performed in accordance with the methodology defined in IEC 61000-4-8. Three orthogonal axis of the EUT are subjected to the field within the magnetic loop. The transient magnetic field, if applicable, is tested for 1 minute while the steady state magnetic field is tested for 15 minutes. The frequencies applied are 50 Hz and 60 Hz. A magnetic field strength of 3 A/m is applied to the EUT in each orthogonal axis. Performance Criteria level A as defined in "Appendix A – EUT & Client Provided Details" is applied to this test.

Page 35 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Application Level Accuracy

As per IEC 61000-4-8, the field over the area that the EUT occupies within the loop must be calibrated to be within ± 3 dB. For a field strength of 3 A/m, this means that the empty calibrated field strength can be between 2.1 A/m and 4.2 A/m over the area that the EUT occupies.

Test Results

The EUT passed the requirements. The EUT was powered with a 12Vdc cell and a 60Hz field was applied. The EUT met Criteria A as defined in "Appendix A – EUT & Client Provided Details". No anomalies were observed.

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Magnetic Loop	F-1000-4- 8/9/10-L-1M	FCC	NCR	NCR	GEMC 22
Immunity Generator	EMC Pro Plus	Keytek Thermo Corp.	Dec. 19, 2016	Dec. 19, 2018	GEMC 4
Immunity Software	CEWare 32 V4.1	Thermo Fisher Scientific	NCR	NCR	GEMC 182
Clamp Meter	365	Fluke	Nov. 23, 2016	Nov. 23, 2017	GEMC 260

IEC61000-4-8_MagneticImmunity_Rev3

Page 36 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Appendix A – EUT & Client Provided Details

 Page 37 of 47
 Report Issued: 3/16/2017
 Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

General EUT Description

Client Details		
Organization / Address	DynaCERT 101-501 Alliance Ave. Toronto, ON M6N 2J1, Canada	
Phone	416-766-9691 ext 6	
EUT (Equipment Under Test) Deta	ils	
EUT Name (for report title)	DynaCERT RMF ECU 1 AUG2016	
EUT Model / SN (if known)	RMF ECU 1 AUG2016	
EUT revision	Rev 0	
Software version	Version 1	
Equipment category	Hydrogen Oxygen Generator	
EUT is powered using	12V 40A DC	
Input voltage range(s) (V)	12V	
Frequency range(s) (Hz)	N/A	
Rated input current (A)	>35A	
Nominal power consumption (W)	420W	
Number of power supplies in EUT	3 One on the main ECU board, one on the Reactor Contro Board (RCB), and a 2*AA battery power for the In-cab Display (display)	
Transmits RF energy? (describe)	Bluetooth, WiFi, GPRS (BT used to monitor operation)	
Basic EUT functionality description	The ECU monitors and controls the Hydrogen/Oxygen generator (reactor). It also monitors the truck engine via the Or Board Diagnostic port (OBD). The ECU monitors the reactor through sensors that gather the following: Voltage, Current, Temperature, Electrolyte Concentration, Water level, Electrolyte level. It controls the reactor by adjusting the curren through the RCB via the pulse width modulator.	
Modes of operation	On and Off	
Frequency of all clocks present in EUT	168 MHz	
Peripherals required to exercise EUT Ex. Signal generator	HydraGEN Unit, 12V 40A Power Supply	
Method of monitoring EUT and description of failure for immunity.	A Bluetooth device was used to verify correct operation via error codes. Also, the current draw was monitored at the transformer during tests (2.8A nominal).	

Page 38 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

EUT Configuration

Please see Appendix B for a picture of the unit running in normal conditions.

- Cables and earthing were connected as per manufacturer's specification.
- Performance monitoring was done via Bluetooth error code monitoring and EUT current draw as per manufacturers recommendation.

Operational Setup

Peripheral devices were attached to the EUT for its test operation. However, this report does not represent compliance of these peripheral device(s) in any way.

• None

Modifications for Compliance

The following modifications were made during testing for the sample to achieve compliance with the testing requirements:

• None. The EUT provided met the requirements without need for modification.

Criteria Description

Performance Criterion A: During and after the test, the equipment shall continue to operate as intended as specified by the manufacturer.

Performance Criterion B: After the test, the equipment shall continue to operate as intended as specified by the manufacturer. During testing, temporary degradation, or loss of function or performance which is self-recovering is allowed.

Performance Criterion C: During testing, temporary degradation, or loss of function or performance which is self-recoverable or restorable by the operation of controls.

Page 39 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Appendix B – EUT, Peripherals, and Test Setup Photos

Page 40 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Figure 1 – EUT Close Up – Front

Page 41 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

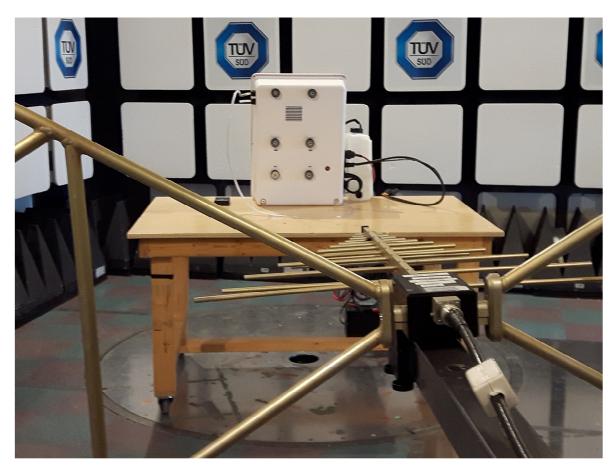

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

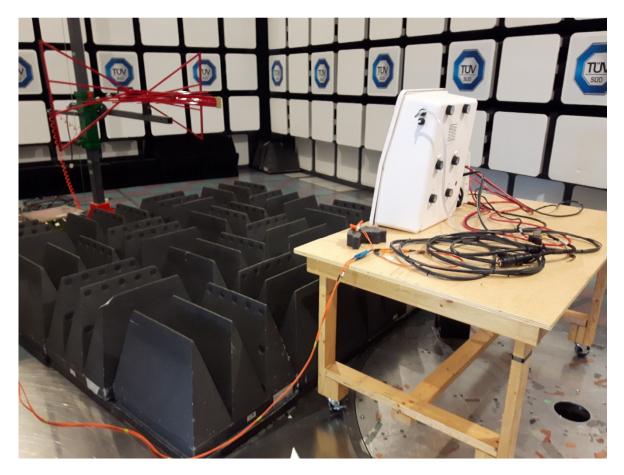
Figure 2 – EUT Close Up – Back

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Figure 3 – Radiated Emissions Setup – Photo 1 30MHz – 2GHz

Page 43 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada


Figure 4 – Electro-Static Discharge Setup

Page 44 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Figure 5 – Radiated Immunity Setup – Photo 1

Page 45 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------

Client	DynaCERT	
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator	TÜV
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada

Figure 6 – Conducted Immunity Setup

 Page 46 of 47
 Report Issued: 3/16/2017
 Report File #:7169002039 -000

Client	DynaCERT		
Product	RMF ECU 1 AUG2016 Hydrogen Oxygen Generator		
Standard(s)	FCC Part 15 Subpart B / ICES-003 CISPR 32/EN55032 & CISPR 24/EN55024	Canada	

Figure 7 – Power Frequency Magnetic Field Setup

Page 47 of 47	Report Issued: 3/16/2017	Report File #:7169002039 -000
---------------	--------------------------	-------------------------------