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Abstract

Fretting fatigue is defined as damage resulting from small magnitude (0.5-50 microns) dis-
placement between contacting bodies where at least one of the bodies has an applied bulk
stress. The applicability and limits of a fracture mechanics based life prediction is explored.
Comparisons are made against highly controlled experiments and less controlled but more re-
alistic experiments using a novel dovetail attachment fixture. Surface engineering approaches
are examined from a mechanics perspective. Using a new tool, depth sensing indentation, the
mechanical properties of an aluminum bronze coating are determined. Fretting fatigue experi-
ments are performed on specimens coated with aluminum bronze and on specimens treated with
low plasticity burnishing. Low plasticity burnishing is a new method of introducing beneficial
compressive residual stresses without significant cold work at the surface. A mechanics based
approach to the selection of palliatives is addressed.
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Chapter 1

Introduction

1.1 Background

Contact fatigue can be defined as damage resulting from cyclic relative motion between two

surfaces. As a result, component service life may be reduced and maintenance costs could

increase as inspections, repairs and palliatives may be required. The list of engineering systems

affected by contact fatigue is long and stretches across the engineering spectrum including

aerospace systems, micromechanical devices, railroad tracks, chain links, ball bearings, and

biomedical implants [1, 2, 3, 4].

A particularly damaging form of contact fatigue is fretting fatigue. Fretting wear is defined

as cyclical small displacements between two bodies in contact. In fretting fatigue, one or both

of the bodies also have an applied cyclical bulk stress. The fretting is then accompanied with

fatigue damage and if the cyclic bulk load is sufficiently large, fatigue cracks may propagate to

failure.

There are competing demands on the engineer who faces contact fatigue. The design engi-

neer desires guidelines to prevent or minimize contact fatigue. The maintenance engineer wants

reliable service life predictions with room for safety, yet predictions that are less conservative

result in more economical ownership costs. Before these demands can be met, the materials

science and mechanics of contact fatigue must be more fully understood.
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Figure 1-1: a.) Fretting wear involves small cyclic displacements as a result of contact alone.
b.) Fretting fatigue is fretting in the presence of a bulk fatigue load. Fatigue cracks can develop
and will propagate if the bulk load is sufficiently large.

1.1.1 Historical perspectives on fretting fatigue

Much of the effort in contact fatigue research has been focused on fretting fatigue for two

primary reasons. First, fretting fatigue is encountered in many engineering systems. Second,

all the major variables can be obtained experimentally including a bounded displacement.

One of the earliest articles on fretting fatigue was that of Eden et al. who in 1911 noted that

oxides formed in the grips of a tensile fatigue specimen [5]. Early fretting fatigue developments

included linking oxide formation to tangential contact loading [6] and discovery that fretting

fatigue reduces the fatigue strength [7].

In the 1960’s, some of the more common experimental methods were developed. The first

was the bridge pad apparatus which gives a constant stress distribution equal to the normal

load divided by the contact area. This was soon followed by the development of a fretting

fatigue fixture that held a cylindrical pad. The primary advantage of this geometry is that

analytical solutions exist for the stresses under a cylindrical pad [8]. These will be discussed

in detail later.

The field of contact mechanics provided the necessary tools to determine stresses and dis-

placements under fretting contacts. Hertz solved the boundary value problem to obtain the
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contact pressure underneath cylindrical and spherical indenters [9]. Cattaneo [10], and later

Mindlin [11], found the tangential tractions underneath spheres in partial-slip conditions; a

useful development for the study of fretting fatigue. The tractions underneath a partial-slip

cylindrical contact can be found in detail in [12].

The application of fracture mechanics in fretting fatigue was first considered by Endo and

Goto [13] then Edwards [14]. Accounting for the stress gradients resulting from contact requires

application of a weight function such as in [15]. Another approach is that of Hills and Nowell

who suggest the use of a distribution of hypothetical dislocations to model the stress field and

boundary conditions of the fretting fatigue crack [16]. One can also use fracture mechanics

to determine total life by assuming that all of the life is propagation [17]. In this method, an

effective initial flaw size (non-physical) is assumed based on a large body of experimental data.

Beyond stresses and displacements, other damage mechanisms were considered by researchers.

The effect of adhesion on fretting fatigue was first approached by Godfrey [18], and later by

Bethune and Waterhouse [19]. Since friction can increase temperatures, several researchers

considered experimental measurements or theoretical predictions to determine the magnitude

of temperature increase as a result of fretting and what, if any, material damage may result

[20, 21, 22].

1.1.2 Recent developments

While the study of the effects of contact fatigue can be traced back to the failure analysis of

railroad tracks in the late 1800’s, remarkable headway has occurred in the last ten to twenty

years.

One of the major recent efforts in fretting fatigue centered around the progression of wear

damage and its impact on fretting fatigue life. Most of this research was performed by research

teams in France. Fretting maps were developed from a large quantity of experiments showing

regimes of no slip, partial-slip or stick-slip, mixed slip and gross slip plotted in an analytical

space bounded by the applied normal load and the displacement [23]. In general, the fatigue

life decreased significantly during partial-slip conditions as opposed to gross-slip conditions.

However, many experiments begin with gross-slip that eventually becomes stick-slip after several

hundreds or thousands of cycles as a result of wear damage. This evolution of the coefficient
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of friction was qualitatively demonstrated through plotting the tangential load/displacement

hysteresis loops over the entire life of the experiment. Hills, Nowell and Sackfield analytically

determined the evolution of the coefficient of friction for a Hertzian contact [24].

At Oxford, extensive effort was placed into developing an experimental apparatus to mea-

sure and control all fretting fatigue variables [25]. Upon obtaining these variables, one could

use the experimental results for validation of fretting fatigue models. It was determined that

the common bridge pad fretting fatigue apparatus did not permit partial slip conditions since

a stick region was not permissible under a flat surface [26]. Simple non-conforming Hertzian

contacts and partially conforming contacts such as flat punches with rounded corners permitted

experiments with partial slip contact conditions. Such an approach required careful develop-

ment of fretting fatigue experimental fixtures particularly to quantify the tangential loading

and the displacement. Key features included interchangeable pads and specimens, load cells

to quantify tangential loads, and extensometers to measure displacements.

Ruiz, also at Oxford, developed a fretting fatigue damage parameter based on work-energy

principles [27]. He realized that the work performed in fretting is the area of the local shear

times the local displacement (both shear and displacement vary over the interface) or τδ. This

parameter reasonably predicted the location of fretting fatigue cracks in dovetails but not so for

other geometries. As a result, Ruiz and Chen empirically added the maximum normal stress,

στδ, and showed reasonable nucleation location for the sphere-on-flat geometry [28]. Thus, a

unique fretting fatigue parameter has been developed but without a fully physical basis.

In the area of contact fatigue modelling, several recent advances should be noted. One

was Ciaverella’s development of a generalized Cattaneo-Mindlin analytical solution of contact

pressure distributions[29]. This enabled researchers and engineers to determine the surface

tractions for almost any contact geometry. In particular, the rounded punch contact problem

was examined in detail because of its relevance to the dovetail attachment fatigue [30, 31].

Fretting fatigue at lap joints in aging aircraft prompted research into rivet geometries [32].

Temperature gradients were measured experimentally to validate numerical contact modelling,

but the temperature increases in aluminum alloys proved to be on the order of 1 K [33]. Even-

tually, some of this work was folded into research sponsored by the U. S. Air Force on fretting

fatigue in gas turbine engines (to be discussed in the next section). This led to numerical
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integration of closed-form singular integral contact equations [34]. This methodology rapidly

generated solutions for the contact pressure, shear tractions and resultant stresses.

At MIT, a fretting fatigue apparatus was developed that was very similar to the one devel-

oped at Oxford [35, 36]. This enabled a wide range of loading conditions and spherical pad

radii to be examined using pads and specimens made of Al 7075 [36] and Ti-6Al-4V [37]. The

normal load, tangential load, bulk stresses and pad radii are known for each test, so the results

are readily available for model validation.

The MIT research group also developed several novel approaches to life prediction. De-

parting from the stress-at-a-point approaches found in the literature [38, 39], Giannakopoulos,

Lindley and Suresh proposed a method where aspects of contact mechanics can be described

with fracture mechanics via analogy if appropriate [40]. This method opened new doors to

crack nucleation predictions (“go-or-no-go”) and total life prediction. This methodology was

extended to strong and weakly adhered contacts [41] as well as nearly-singular flat contacts

[42]. Chambon compared experimental results and total life predictions from these models [43]

while Kirkpatrick developed a theoretical approach to determining the depth necessary to peen

without losing residual stresses as a result of yielding from the contact stresses [44]. Further

details of the MIT experimental fixture and experiments is given below. This thesis builds on

this foundation laid by these researchers at MIT.

1.2 Contact fatigue in aerospace materials

One of the primary motivations for this research is the role of contact fatigue in applications of

aerospace materials. The demands placed on an aircraft structure are extensive. Mechanical

and thermal loads can be extreme while density must be relatively light to reduce overall

structure weight. An aircraft is subject to cyclic loading through wing loading, atmospheric

turbulence, and cabin pressurization. The propulsion and hydraulic systems also experience

cyclic loading. In the early to mid 1990’s, much research was focused on the problem of

contact fatigue in rivet joints of aging aircraft. Common materials used in lap joints are

the aviation aluminum alloys (2xxx or 7xxx series alloys) [32, 45]. During the mid 1990’s,

the U. S. Air Force became concerned about dovetail joints in gas turbine engines. As a
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result of these problems, the U. S. Air Force funded a National Turbine High Cycle Fatigue

Program. This program was an effort by government agencies, industry and universities to

research the mechanics, life-prediction methods and palliatives for high cycle fatigue including

contact fatigue. Estimates by the U. S. Air Force show that one in six of all in-service high

cycle fatigue related engine mishaps were the result of fretting and galling [46]. As a result,

inspections and regular maintenance procedures are performed in order to prevent catastrophic

in-flight failures. An estimated $20 million is spent annually on these preventative measures

[46]. Increased turbine maintenance also results in higher operating costs and lower mission

availability. The seriousness of the contact fatigue problem is captured in this statement from

a failure investigation.

”While a fighter was taxiing for takeoff, a sudden “bang” was heard, the aero-

engine vibrated violently and the rotational velocity declined. The fire warning

light came on. The pilot immediately stopped the process of takeoff and quickly

left the fighter. Then the fighter caught fire. After field investigation, it was con-

cluded that the accident resulted from the fracture failures of rotor blade and disk

in the first stage compressor.” [47]

The common material used in the manufacturing of compressor blades and disks is Ti-6Al-

4V or a variant of that alloy. Thus, this material will be the primary focus of the experiments

in this thesis.

Contact fatigue plagues commercial aviation just as it does military aircraft. In 2001, an

Emirates Air 777 was forced to abort takeoff because of a fretting fatigue failure that liberated

a fan blade that destroyed the engine. This incident prompted Rolls Royce to examine their

contact fatigue palliatives to find one that could offer more protection [48]. Obviously, the

concern over safety increases by several orders of magnitude for a commercial aircraft, and

there is still the economic cost of excessive maintenance and inspections.

It should be noted that space systems are also affected by contact fatigue [49]. Contact

damage (not necessarily fatigue) has effected several prominent orbital missions including a gear

failure on Sputnik, the fatal parachute failure of cosmonaut V. M. Kormarov, a docking failure

on Salyut/Soyuz-10 mission [50], a stuck antenna on the Galileo space probe, and stick-slip
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fatigue on the space shuttle’s orbital quick check values for the orbital maneuvering engines

[51]. Ground testing revealed potential contact damage problems on the beta gimbal joints for

the International Space Station [51]. The space environment produces unique problems such

as vacuum and extreme temperature fluctuations for Earth orbiting spacecraft. The absence of

an oxygen atmosphere would prevent the formation of oxides from wear thus influencing third

body debris effects and the evolution of friction. The issue of space environmental effects will

not be addressed in this thesis but should be noted.

1.3 Contact Mechanics

Contacting objects can be cyclically loaded both normally and tangentially. If the tangential

load, Q, exceeds the product of the normal load, P, and the coefficient of friction, f, sliding will

occur over the entire region of contact. If one of the objects can freely rotate about an axis, then

friction can cause rolling. Often, if the objects are designed to fit closely together such as in a

rivet joint or a dovetail attachment, relative motion will result in very small displacements on

the scale of microns. This is called fretting. Damage resulting from fretting in the presence of

a cyclic bulk load applied to one or both of the contacting objects is called fretting fatigue. The

applied bulk load required to initiate and propagate a crack to failure will often be significantly

less than that required for fatigue failure in the absence of fretting.

In cases, where Q is less then fP, slip will be confined to the outer edges of the contact

region and the central region will entirely stick. This condition is partial slip and contrasts

with the gross displacements of global sliding. Fretting fatigue is often partial slip or a mixture

of partial slip and gross sliding [23].

1.3.1 Normal Contact

Cylindrical bodies

The normal contact of two elastic bodies shall now be addressed. Assuming that both bodies

are well supported (i.e. we can neglect rigid body motion), applying a force, P, normal to the

interface will result in elastic deformation resulting in enlargement of the contact region to a

half-width or radius, a. From Hertz, the boundary conditions require that the normal traction
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Figure 1-2: h is the amount of overlap if two bodies can freely penetrate. After Hills and
Nowell 1994.

or pressure be zero outside a and non-zero inside a. The dimensions of the contact region are

determined by the geometry and the elastic material properties of both bodies. Consider two

simple cases known as the Hertz problems: spherical and cylindrical contact. Prior to loading,

the contact of spheres (also the contact of two orthogonal cylinders) results in a point contact

geometry. Likewise, the geometry of contacting cylinders is a line. Hence, spherical contact

is often referred to as a point contact and cylindrical contact as a line contact. First, the

governing equations of elastic cylindrical contact will be derived, followed by those for spherical

contacts. h is the amount that two bodies would overlap if they could freely interpenetrate

each other, Figure 1-2. The relationship between h and the normal and shear tractions resulting

from contact is a singular integral equation.

1

A

∂h

∂x
=
1

π

Z
p (ξ) dξ

x− ξ
− βq(x) (1.1)

where ξ is a coordinate at the interface in the same direction as x. The elastic properties of

both surfaces are contained in constants A and β[52]

A = 2

½
1− ν21
E1

+
1− ν22
E2

¾
(1.2)
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β =
1

A

½
(1− 2ν1) (1 + ν1)

E1
− (1− 2ν2) (1 + ν2)

E2

¾
(1.3)

the subscripts 1 and 2 denote the properties of objects 1 and 2.

We will assume elastically similar contact, therefore β equals zero. As a result, there are

no shear tractions during normal loading. This would not hold if the materials are dissimilar.

As a result of this assumption

1

A

∂h

∂x
=
1

π

Z
p (ξ) dξ

x− ξ
|x| ≤ a (1.4)

and with inversion this becomes

p(x) = −w(x)
Aπ

Z a

−a
h0 (ξ) dξ

w (ξ) (ξ − x) +Cw(x) (1.5)

where w is a weight function that depends on the behavior of p(x) at the end points x=a or

x=-a. The normal overlap in freely penetrating bodies is

h(x) = ∆− 1
2
kx2 (1.6)

where ∆ is the approach of two distant points and k is the curvature

k =

µ
1

R1
+
1

R2

¶
(1.7)

Rather than use the profile h(x), instead the slope is considered.

dh

dx
= −kx (1.8)

Since the contact pressure is zero at the edge of contact, C = 0 and thus w becomes
√
a2 − x2. Now we can integrate and find an elliptical contact pressure distribution.

p(x) = −
√
a2 − x2
Aπ

Z a

−a
kξdξp

a2 − ξ2 (ξ − x)
= − k

A

p
a2 − x2 (1.9)

Recognizing that there is equilibrium between the contact pressure and the applied load

leads us to a
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P =

Z a

−a
p (ξ) dξ =

πka2

2A
(1.10)

This can be rewritten as

a =

r
2PA

πk
(1.11)

Note that P is in units of load per unit thickness (N/m). Thus, the pressure distribution can

be written as

p (x) = po

q
1− (x/a)2 (1.12)

There is a maximum at the center of the contact (x=0). po is the maximum contact pressure

and is defined by

po =
2P

πa
(1.13)

Hertzian contact produces parabolic normal tractions as shown in Figure 1-3.

p (x) = po

r
1−

³x
a

´2
(1.14)

Upon determination of the surface tractions, the stress and displacements field can be

determined. Often these can be obtain via the Muskhelishvili potential[53] . Solutions to

the Muskhelishvili potential for cylindrical contacts can be found in [12].

Spherical contacts

A simple, yet very relevant, three dimensional axisymmetric contact is the spherical contact.

The same assumptions of elastic similarity as the cylindrical contact are used here. The

assumption that the contact radius is small compared to the contact bodies allows that each

bodies can be replaced by a half-space. Thus, the total deformation, h(r), can be represented

as follows.

h(r) = ∆− 1
2
kr2 (1.15)
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Figure 1-3: Application of a normal load, P , to a cylindrical contact produces a parabolic
pressure distribution, p(x) which goes to zero at a and has a maximum at x = 0.

where ∆ is the approach of distant points and k is the curvature. Using a kernel from Collins

[54] without detail, this is transformed into

h∗(r) = − ¡∆− kr2¢ (1.16)

The pressure is found by inversion of the following Abel type equation

h∗(r) = −A


aZ
r

sp(s)ds√
s2 − r2

 (1.17)

then integration of the equation to give

p(r) =
2

πA

½
∆√
a2 − r2 + k

·
− r2√

a2 − r2 +
p
a2 − r2

¸¾
(1.18)

This is the general solution for the contact pressure. Notice the solution includes a square

root singular tensile term. This exists only if adhesion is present. This term will become

relevant in discussions later. For now, it is assumed that adhesion is not present and the

condition that the pressure drops to zero at the edge of contact gives ∆ = ka2.
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Figure 1-4: A top-down view of the contact between spheres (or a sphere and a flat). The
geometry of the contact patch is a circle of radius a. It should be noted that application of a
load tangent to the contact is typically in the x-direction.

p (r) =
4k

πA

p
a2 − x2 (1.19)

Requiring equilibrium between the contact pressure and the applied load gives

P =

Z a

0
p (r) 2πrdr (1.20)

Note that P is in units of load only (N). Leading us to the solution of the contact radius

(schematically shown in Figure 1-4)

a =
3

r
3PA

8k
(1.21)

With the solution for a, the normal traction can be rewritten as

p (x) = po

r
1−

³r
a

´2
(1.22)

where the maximum contact pressure is

po =
3P

2πa2
(1.23)

A schematic of the pressure distribution for a spherical contact is given in 1-5.
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Figure 1-5: Application of a normal load, P , to the spherical contact results in a parabolic
pressure distribution, p(r), with a pressure of zero at ±a and a maximum pressure at x = 0.

1.3.2 Contact in the presence of friction

Sliding contact

Once P is applied, a tangential force Q can be introduced and sliding will occur if Q ≥ fP.
The shear traction, q, is a linear function of p (or a parabolic function of position).

q (x) = fp (x) (1.24)

q (r) = fp (r) (1.25)

Partial slip contact

If Q ≤ fP , sliding will not be permitted. However, the shear traction will become unbounded
at the edge of contact. Since an unbounded traction is not permitted, a counter-traction is

added (the Cattaneo-Mindlin solution [10, 11]) and a region of slip will separate the edge of

contact from a central region of stick. This phenomenon is shown schematically in Figure 1-7.

The radius or half-width of the stick zone is c and the slip region is bounded by a and c. For
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Figure 1-6: A schematic of the shear traction, q(r), and the pressure traction, p(r), for a
spherical contact.

the case of the cylindrical contact, the shear traction fp(x) must be balanced in the stick region

by traction q∗(x). The shear tractions become as follows

q(x) = fp(x); a ≤ x ≤ c (1.26)

q (x) = fp (x)− q∗ (x) = fp(x)−
³ c
a

´
f

r
1−

³x
a

´2
; c ≤ x ≤ −c (1.27)

q(x) = fp(x); − c ≤ x ≤ −a (1.28)

For the spherical case, replace x with r. Force equilibrium gives us the stick zone dimensions.

c

a
= 3

s
1− Q

fP
; for spherical contacts (1.29)

c

a
=

s
1− Q

fP
; for cylindrical contacts (1.30)

Figure 1-8 shows the normalized pressure and shear tractions for the case of Q/fP=0.8.

It will be noted here that the conditions for a stick region cannot be satisfied under a flat
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Figure 1-7: If Q < fP , slip will be confined only to the outer regions of contact, while an
adhered region, referred to as the stick zone, will develop at the center of contact.
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Figure 1-8: Normalized pressure and shear tractions shown for a cylinder with Q/fP=0.8.
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contact [26]. If a flat punch has a rounded corner, the stick region will extend beyond the flat

portion of the punch into the contact region under the rounded corner. In the absence of a

rounded corner, partial-slip contact cannot occur and the flat punch will slide.

It should be noted that the coefficient of friction may evolve over the course of a contact

fatigue experiment. In the case of partial-slip, wear in the slip region will result in a modified

surface. Often the coefficient of friction will increase in this region. The experimentalist would

be interested in determining the evolution of the coefficient of friction. It must be recognized

that the coefficient of friction is different in each region of the contact. In the stick region, the

coefficient of friction, λ,is indeterminate. Here the shear traction is determined by

q (x) = λp (x) (1.31)

After n cycles, the coefficient of friction in the slip region can increase from fo to fn. The

coefficient of friction will then vary from the stick zone to the slip zone by the unknown function

f(x).

q (x) = f (x) p (x) (1.32)

In the slip region, the coefficient of friction is constant as a function of position (albeit

dependent on time).

q (x) = fnp (x) (1.33)

If the coefficient of friction does increase after n cycles, the size of the size zone may increase

resulting in a new stick zone size, cn.

cn
a
= 3

s
1− Q

fP
; for spherical contacts (1.34)

cn
a
=

s
1− Q

fP
; for cylindrical contacts (1.35)

The following method can be used to determine the coefficient of friction [55] and this will
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Figure 1-9: Adhesive energy between the two bodies results in an increase in contact radius
from a to amax..

be discussed in detail in Section 3.6.

1.3.3 Contact in the presence of adhesive forces

Thus far, the elastic contact described has not considered the presence of adhesive forces.

Bonding between surfaces can have a significant impact on the size of the contact region and

the magnitude of the surface tractions. Two surfaces with surface energies γ1 and γ2 can

adhere to form a new interface γ12. The work of adhesion is defined as

w = (γ1 + γ2 − γ12) ≥ 0 (1.36)

For most metals, w=1 N/m. In the case of the spherical contact, the new contact radius is

amax =

3A
8k

P + 3πw
k

+

s
6πwP

k
+

µ
3πw

k

¶21/3 (1.37)

As a result of the adhesion, the contact radius will increase as shown in Figure 1-9.

For the cylinder contact, the relationship between the adhesive contact radius and the

normal load is
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Figure 1-10: The solid line represents the contact pressure including adhesion. The first dashed
line shows the bounded pressure without adhesion and the second (on the right) shows square
root pressure.

P =
π

A

(
ka2max
2
− 2

·
Aamaxw

k

¸1/3)
(1.38)

If the adhesion is weak enough to allow for slip near the edge of contact, the region of stick

for spherical contacts is redefined as

c

amax
= 3

s
1− Q

fP
(1.39)

while for cylindrical contacts, this becomes

c

amax
=

s
1− Q

fP
(1.40)

Figure 1-10 gives the pressure distribution for a specific spherical contact both with and

without adhesion and compares the adhesion case to a square root singular function. In the

asymptotic limit (as r-→ amax), the pressure can be represented by the square root singular

function.
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Figure 1-11: The normalized pressure distribution for a flat punch of length 2a with rounded
corners resulting in contact length 2b. Various values a/b are shown.

1.3.4 Other geometries

Consider a punch that has a flat region of length 2a with a rounded corner of radius D/2.

Under a normal load, the contact length becomes 2b. The contact pressure of such a punch in

contact with a semi-infinite substrate was given by Ciavarella [30]

πb

2P
p (φ) =

1

π − 2φo − sin (2φo)
[(π − 2φo) cosφ+ ln (G(φ))] ; |x| ≤ b (1.41)

G(φ) =

¯̄̄̄
sin (φ+ φo)

sin(φ− φo)

¯̄̄̄sinφ
×
¯̄̄̄
tan

φ+ φo
2

tan
φ− φo
2

¯̄̄̄sinφo
(1.42)

where

sinφ = x/b; sinφo = a/b (1.43)
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The pressure distributions for values of a/b are shown in Figure 1-11. The relationship

between b and P is given by

PD

a2E∗
=

π − 2φo
2 sin2 φo

− cotφo (1.44)

In conditions of partial slip, a stick zone cannot be sustained within the flat region of the

punch [26]. In other words, the magnitude of c must be greater than that of a. The relationship

between Q and c becomes[31]

Q

fP
= 1−

³c
b

´2 π − 2θo − sin (2θo)
π − 2φo − sin (2φo)

(1.45)

where

sin θo = a/c; sinφo = a/b (1.46)

The shear tractions are defined as

q(x) = fp(x); b ≤ |x| ≤ c (1.47)

q(x) = f [p(x)− q∗(x)] ; a ≤ |x| ≤ c (1.48)

where q∗(x) is the same as p(x) above replacing φ and φo with θ and θo. The normalized shear

tractions for various a/b are shown in Figure 1-12.

The contact pressure and the shear tractions become singular as b equals a, while they

approach the Cattaneo-Mindlin solution as a goes to zero. Figure 1-13 shows compares a/b=0.9

to the Cattaneo-Mindlin solution at a/b=0.0.

In engineering practice, a plethora of contact geometries exist. For the most complex

geometries and loadings, there is often no choice but to use numerical models such as finite

element analysis to obtain contact stresses and relative displacements. Finite element meshes

must be very dense in the region of contact because of the steep strain and displacement

gradients. Optimal meshes, balancing computational efficiency and solution accuracy, must be

carefully designed. If sharp corners are present, one may choose to use crack-tip finite elements
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Figure 1-12: Normalized shear tractions are shown for values of a/b and Q/fP of 0.8
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near the corners [16].

36



Chapter 2

Overview of highly controlled

fretting fatigue experiments

2.1 Introduction

As researchers determined critical variables to fretting fatigue damage, fretting fatigue fixtures

had to be designed to control and instrument these variables. These variables would include

the normal load, P ; the tangential load, Q; the bulk load, F ; and the displacement. A fretting

fatigue fixture developed at MIT enables the researcher to control and measure every major

fretting fatigue variable, see Figure 2-1.

2.2 Description of the apparatus

Loads are controlled in several ways. A servo-hydraulic testing machine provides the bulk

load to the specimen. The normal load is applied through the compression of springs against

a shaft held by linear bearings. Interchangeable contact pads are fixed to the end of the shaft

opposite from the springs. The shaft is held in place by a linear bearing. The bearing and

a fluid lubricant reduce friction, allow for maximum transfer of force from the springs to the

contact pad. A load cell between the spring and the shaft measures the normal force, P . A

frictional force, Q, that is tangent to the contact interface develops with application of the bulk

load, F . Load cells underneath the mounts containing the linear bearings measure Q.
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An extensometer was developed to measure global displacement. The extensometer is

attached behind one of the fretting pads. It has two sharp prongs. One is affixed to the shaft

directly behind the pad. The other is glued to the specimen surface at nearly 25 mm away

from the center of contact. A schematic of the fixture, the extensometer and the load cells is

shown in Figure 2-2.

The signals from each load cells are sent to a data card on a nearly PC. The voltages are

converted into loads or displacements by a LabView program. The LabView program displays

the inputs from the load cells in real time and records data at predetermined intervals.

2.2.1 The relationship between the tangential load and the bulk load

The bearing mount rests upon a stiff plate supported by flexible sheets at each end. Moveable

blocks attach the sheet to the rigid supporting structure affixed to the servo-hydraulic machine.

The location of the blocks determine the amount of compliance in the tangential load train, Cq.

The compliance of the bulk load train, Cf ,can be changed by inserting one end of the specimen

into either a stiff or compliant fixture. The tangential load is related to the application of the

bulk load by the following relationship

Q = −
µ
Cf
Cq

¶
F (2.1)

This relationship serves as a guide for experiment setup (e.g. one must apply a specific F to

produce a Q) and must be determined experimentally. It should be noted that the tangential

and bulk loads are in-phase.

2.3 Description of experiments

The specimens are bar specimens with a square cross sectional area. The pads are spherical

and screw into the rods. Tests can be run up to a pre-determined number of cycles or to

failure. Upon failure, tension on the specimen would result in a rapid increase in displacement

of the actuator. If the pre-programmed displacement limits are exceeded, the test will stop.

Small variations in the loading waveform require that the displacement limits be set on the

order of 0.5 mm. As a result, the contact region is often scratched and damaged upon failure,
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Figure 2-1: A photograph of the MIT fretting fatigue fixture. The extensometer can be clearly
seen to the left of the specimen. The width of the bar specimen is 4.74 mm.
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Figure 2-2: A schematic of the MIT fretting fatigue fixture showing the location of load cells,
applied loads and supports.
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E (GPa) ν σy (MPa) σTS (MPa) σTF (MPa) Tens el. (%) RA (%) SR (s−1)
116 0.3 930 965 1310 19 45 8×10−4

Table 2.1: A list of some of the mechanical properties of the Ti-6Al-4V alloy. TS=tensile
strength. TF=true fracture stress. RA=reduction in area at fracture. SR=strain rate

so information is limited. Interrupting tests can determine the dimensions of a fretting scar

and location of cracks (if they have initiated) compared to the contact radius and slip region.

2.3.1 Material

Ti-6Al-4V was the material selected for the controlled fretting fatigue experiments as well as

the dovetail fretting fatigue experiments described in the next chapter [37, 56]. Most of the

tests were performed on two heat treatments: mill annealed (MA) and solution treated over-

aged (STOA). The MA and STOA materials had very similar fretting fatigue behavior and

mechanical properties. Some of the mechanical properties of the STOA material are shown in

Table 2.1 [57]. Fatigue behavior at various R can be found in [58].

2.3.2 Experimental matrix

A matrix of experiments was established to consider the effect of changing individual loads

while maintaining all others constant. The load ratio (defined as R = Lmin/Lmax) was -1

in all of the fretting fatigue experiments performed with this apparatus. The first category of

experiments involved changing the maximum bulk load while keeping contact loads constant.

This is very similar to fretting fatigue tests found in the early literature and demonstrate the

effect of fretting fatigue on the fatigue strength. The second set of experiments involved

changing the normal load for each test while keeping Q constant at 17 N and the maximum

bulk load constant at 300 MPa. By increasing the normal, the contact area and the contact

pressure also increase. Finally, the tangential load was modified in each test as the P constant

at 50 N and the maximum bulk load constant at 300 MPa. As Q is increased, the size of the

slip region increases until it covers the entire contact surface and global sliding occurs. Below

a certain Q, the impact of fretting fatigue on fatigue life is minimized, but Q greater than fP

results in sliding. For each category of tests, one other variable was considered: changing the

pad radius from 12.7 mm to 25.4 mm. Table 2.2 shows the effect of changing pad radius on
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Pad radius (mm) Load (N) a (µm) po (MPa) w (N/m) amax (µm)
12.7 50 194 637 1 237
25.4 50 244 401 1 298

Table 2.2: Contact radii and pressures for Ti-6Al-4V pads pressed into a flat surface at 50 N.
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Figure 2-3: The first series of experiments varied the maximum bulk stress applied in each test
for several contact conditions. The results are compared with plain fatigue data from Bellows
et al. [58].

contact radius and pressure.

Experimental results are plotted in Figures 2-3 to 2-5. The following statements could be

made:

1.) Compared with plain fatigue, fretting fatigue reduces the maximum bulk stress required

for failure at a given life. This is known as the ”knockdown” effect [59] and a knockdown factor

can be computed:

σf,ff = kf × σf,pf (2.2)
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kf =
σf,ff
σf,pf

(2.3)

The controlled fretting fatigue experiments shown in Figure 2-3 demonstrates that kf is reduced

when Q is increased and P is held constant for a given pad radius. kf is also reduced when

the pad radius is reduced and contact loads remain constant. It should be noted that fretting

fatigue life is also reduced when the maximum bulk stress is increased and all other conditions

are held constant.

2.) If the normal load is held constant, the fretting fatigue life decreases as Q is increased.

The fretting fatigue life will decrease even further if the pad radius is reduced.

3.) If the tangential load is held constant, increasing P will increase fretting fatigue life.

However, reduction in the pad radius will still decrease fretting fatigue life.

Scar description and crack initiation location

Wear is produced as a result of slip in the region between the stick zone and the edge of contact.

Oxides are produced as fresh material is exposed. For a Ti-6Al-4V on Ti-6Al-4V contact, this

oxide is dark and produces a ring about the stick zone called the fretting scar, shown in Figure

2-6.

When cracks did initiate, they did so only at the region near the edge of contact closest to

the actuator (x = −a, y = 0). This is because the bulk stress is tensile and the contact stresses
are tensile at the same time, see Figure 2-7. “Near” the edge of contact is defined as at the

edge of contact, in the slip zone, or just outside of the edge of contact. The crack in 2-6 is just

outside of the contact zone.

Further analysis of these results will be presented in Chapter 5 when a fracture mechanics

based life prediction method is applied.
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Figure 2-6: A fretting fatigue scar for a specimen after 10,000,000 cycles (P=24 N, Q=17 N,
pad radius of 25.4 mm and max bulk stress of 300 MPa). A crack developed but did not
propagate to failure.

Figure 2-7: In the sphere-on-flat experiments, cracks would initiate only on the side closest to
the actuator.
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Chapter 3

Development of a dovetail fretting

fixture

A typical fretting fatigue apparatus applies a constant normal load through springs or bolts.

Fretting is possible when both the normal and tangential loads are cyclic. There are two

methods to perform this in an experimental fixture. The first is to use the typical fretting

fatigue fixture but add an actuator in the contact load train to apply the cyclic normal load.

The second is to develop a dovetail fixture. Both types of fretting fixtures have been developed.

Ruiz developed a dovetail fretting fatigue fixture and validated his fretting fatigue parameter

with experiments [27, 28, 60]. Two or six dovetail shaped specimens are held in dovetail slots

on opposite sides of a sheet. One actuator pulls on the dovetails while another places the sheet

in tension. This simulates the inertial loading in a gas turbine engine. Recently, the Oxford

group added the capability of a bending moment on the dovetail specimen to simulate blade

bending as a result of airflow. The contact between the blade and the sheet is fully conformal

on the Ruiz fixture unlike basic contact geometries often found in the literature. The advantage

of the Ruiz fixture is that it is very similar to the real blade-disk dovetail joints in gas turbine

engines.

To bridge the gap between real contact geometries and more fundamental geometries, a new

dovetail fixture was developed at the U. S. Air Force Research Laboratory (AFRL), see Figures

3-1 and 3-2. Rather than use a fully conformal contact geometry as in the Ruiz fixture, the
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Figure 3-1: A photograph of the dovetail fixture and specimen.

AFRL fixture holds removable contact pads that can be made of any geometry or material. The

fixture itself is made of 4140 steel with a Young’s modulus of 205 GPa and Poisson’s ratio of

0.27. It is held by a bolt at the top. The specimens and pads are placed into the fixture from

the side. The specimen is loaded in tension only since compression would cause the specimen

to impact the dovetail slot. The specimen is gripped by friction either by collet grips or friction

grips and loaded by a hydraulic actuator.

Early finite element modeling showed a region of compressive strain of large magnitude on

the face of the fixture located across from the high stress concentration of the dovetail slot,

see Figure 3-2. A strain gauge was placed at this location to validate finite element modeling.

This is discussed further below.

3.1 Experimental results

All experiments used Ti-6Al-4V specimens and pads. Three contact geometries were chosen.

The first is a 1.016 mm flat pad with an 11◦ taper and a blend radius of approximately 1 mm.

Next is a 6.35 mm flat pad with rounded corners of radius 3.175 mm. Finally, a cylindrical

pad was chosen to provide a Hertzian pressure distribution. It has a radius of 50.8mm. These

geometries will be referred to as the “short flat”, “long flat” and “cylindrical” pads.
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Figure 3-2: A schematic of the dovetail fretting fatigue fixture.

The specimens were tested with a step testing methodology. This method was first derived

to develop rapidly a high cycle fatigue (107 cycles) Haigh diagram experimentally [61]. It was

later validated for fretting fatigue testing [62]. The method is as follows. A load is applied to

the specimen at a given load ratio but at a maximum load below that which is expected to cause

failure. If failure does not occur after a specified number of cycles, No, the maximum load is

increased by a predetermined step increment, but the same load ratio is maintained. The load

is stepped up until failure occurs at a given step, n. The load at failure, Ff , and the number of

cycles to failure at step n, Nf,n is recorded. Since a predetermined step increment was used at

each step, the load at the step prior to failure, Fpr, is also known. The load required to cause

failure at No cycles, Fi, can now be determined using the following equation:

Fi = Fpr +
Nf,n
No

(Ff − Fpr) (3.1)

In all of the tests that were designed to lead to failure, No was 106 cycles. A summary

of all of the dovetail fretting fatigue tests is given in Table 3.1. The first series of tests were

performed at a frequency of 30 Hz and load ratio of 0.1. All three of the pad geometries were

used. It was demonstrated that the long flat pad could sustain the largest maximum load, an
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Figure 3-3: A large crack developed near the maximum edge of contact in Specimen # T2.

average of 20.1 kN, to failure after 106 cycles. This geometry was followed by the cylindrical

pad with an average maximum load of 19 kN while the short flat geometry could only sustain a

mean maximum load of 18.3 kN. When the load ratio was increased to 0.5, the short flat pad

sustained a maximum load of 21 kN.

The dominant crack (i.e. the one that will propagate to failure) is located near the maximum

edge of contact on the side of the specimen closest to the actuator. This is shown in the SEM

image of the fretting scar in Figure 3-3. A section of that scar reveals that cracks initiated in

the slip regions near both sides of the maximum contact length, see Figure 3-4. The dominant

crack will always be near the edge closest to the actuator since the maximum bulk stress and

the maximum contact stresses occur during the same portion of the loading cycle.

Using the mean maximum loads above, strain gauge measurements were made during the

fretting fatigue experiments. Measurements were taken as early as 3 cycles after the test

start and as late as 100,000 cycles. The test frequency was reduced since the data acquisition

software could not take data at frequencies faster than 10 Hz.

A CCD camera was focused on the near contact region. Using a software algorithm devel-

oped at AFRL, displacements near the region of contact were measured [63]. During filming,

the test frequency was dropped to 0.001 Hz. To film at higher frequencies would require a

synchronized strobe light. The CCD images recorded gross relative contact displacements.

For the short flat geometry with a maximum load of 18.3 kN at R=0.1, the global relative

displacement during the second cycle of loading was 18 microns. In the case of the cylindrical
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Figure 3-4: A section taken from the scar in the previous figure shows that cracks have developed
in the slip regions near both edges of maximum contact length. The largest crack is the same
crack visible in the previous figure.

with a maximum load of 19.0 kN at R=0.1, the global displacement during the second cycle of

loading was 23 microns.

3.1.1 Fretting fatigue scar measurement

Several of the fretting fatigue scars were measured from micrographs taken after fretting fatigue

tests. The measurements of the contact length, 2a or 2b, and the length of the stick zone, 2c,

(recall definitions of a, b, and c from Chapter 1) are listed in Table 3.2. The presence of stick

zones underneath the flat portion of the contact is in direct disagreement with theory from [26].

There are two posssible reasons for the presence of the stick zones. The first is that corners

may become rounded as a result of wear during the fretting fatigue test. The second is that

the flat region of the contact pad may not truly be flat but cylindrical with a very large radius

of curvature as a result of machining and tumbling. ‘
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Specimen # Pad R f (Hz) Ff Fpr Fi n Nf,n Result
T2 short flat 0.1 30 18 16 16.7 5 351,094 failure
01-590 short flat 0.1 30 19 18.5 18.6 3 239,291 failure
01-595 short flat 0.1 30 18.5 18 18.5 2 926,097 failure
01-593 short flat 0.1 30 18 n/a 18 0 892,301 failure
01-479 short flat 0.1 30 18.3 n/a 18.3 0 1,400,000 failure
01-587 short flat 0.5 30 21 20.5 20.9 5 842,712 failure
01-474 short flat 0.5 30 22 21.5 21.9 5 710,452 failure
01-598 long flat 0.1 30 20.5 20 20.1 6 213,988 failure
01-599 long flat 0.1 30 20 19.5 19.5 3 14,575 failure
01-601 long flat 0.1 30 21 20.5 20.6 5 227,441 failure
01-478 cylindrical 0.1 30 20 18 19.5 3 770,828 failure
01-596 cylindrical 0.1 30 19.5 19 19.4 4 888,192 failure
01-597 cylindrical 0.1 30 19 18.5 18.7 2 305,585 failure
01-594 cylindrical 0.1 30 19 18.5 18.8 2 557,008 failure
01-465 short flat 0.1 10 18.3 n/a n/a 0 33,324 interrupted, sg
01-466 long flat 0.1 10 20.1 n/a n/a 0 100,000 interrupted, sg
01-467 cylindrical 0.1 10 19 n/a n/a 0 100,000 interrupted, sg
01-468 short flat 0.1 10 20.1 n/a n/a 0 100,000 interrupted, sg
01-473 cylindrical 0.1 30/0.001 19 n/a n/a 0 500 interrupted, vm
01-472 short flat 0.1 30/0.001 18.3 n/a n/a 0 500 interrupted, vm
01-477 short flat 0.5 30/0.001 18.3 n/a n/a 0 500 interrupted, vm

Table 3.1: Experimental results from dovetail fretting tests. Loads in kN; sg=strain gauge;
vm=video strain mapping.

Specimen Geometry Flat length (mm) 2a or 2b (mm) 2c (mm)
T2 short flat 1.016 1.21 0.73
01-590 short flat 1.016 1.22 0.69
01-479 short flat 1.016 1.36 0.96
01-594 cylindrical 0 2.36 1.58
01-598 long flat 6.35 4.64 2.32

Table 3.2: Measurements of fretting fatigue scars
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Head E (GPa) v
Ti-6Al-4V 116 0.3
4140 Steel 125 0.3

Table 3.3: Elastic properties of materials used in finite element model of the dovetail.

3.2 Numerical simulation of fretting fatigue in a dovetail fixture

A 2-D global finite element model of the dovetail fretting apparatus was developed. Using

symmetry boundary conditions at the fixture centerline, only the right side of the fixture is

modeled. The mesh of the fixture itself is coarse compared to the mesh in the contact region.

Convergence plots were used to determine the necessary element size to obtain accuracy of the

vertical elastic strain in the region of the strain gauge.

The contact pads were integrated into the fixture (rather than placed in slots) so the model

would be well supported. However, the contact pads were partitioned apart from the remainder

of the fixture, so that the mechanical properties of the Ti-6Al-4V could be applied to the pads

while the mechanical properties of 4140 steel were applied to the fixture, see Table 3.3.

The fixture was rigidly supported at the bolt hole and was found to produce the equivalent

strains as placing a fixed, frictionless rigid cylinder into the bolt hole. A pressure was applied

to the base of the specimen equivalent to the applied load divided by half the specimen cross-

sectional area (the factor of one-half due to symmetry).

4 node plane strain elements (ABAQUS CPE4R) were chosen. The deformation was taken

to be fully elastic. The global mesh is shown in Figure 3-5. Near the contact, the length of an

element side was approximately 8 microns. For the loads in the cylinder dovetail experiment,

there are nearly 270 elements in the contact region. For the short flat experiment, there are

nearly 130 elements in the contact region as shown in Figure 3-6. Smaller elements would

have been computationally too costly for this scale of model. The surface of the pad and the

opposing specimen surface were chosen to be a contact pair.

A Langrangian multiplier method was selected to enforce stick-slip constraints at the surface.

The Langrangian method prevents relative motion between two surfaces until the shear traction

exceeds a critical value [64]. This adds more degrees of freedom to the model; therefore, it is

more computationally expensive than say a penalty friction method which allows sticking nodes
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Figure 3-5: The global mesh for the dovetail finite element model. Notice that the mesh in
both the specimen and the fixture becomes refined closer to the interface.

Figure 3-6: In the case of the short flat contact geometry, nearly 130 elements are located near
the contact region.
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Figure 3-7: The calculated hystersis loop over two cycles of loading for several values of the
coefficient of friction.

to slip to increase efficiency. However, partial-slip conditions would not be accurately modeled

with a penalty method, so the cost must be accepted. A coefficient of friction of 0.5 was chosen

for all models except that of the coated dovetail which had f=0.2. More will be said on the

coated dovetail in the chapter on palliatives.

To obtain a stable hysteresis loop, two cycles of loading are performed. Each half cycle was

broken into 15 steps. The steps were the minimum load, 5% of the cycle’s half-period, 10%,

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5% and maximum load. The reduction of

step size near maximum load was necessary for the model to converge.

The evolution of friction during the first two cycles was examined by plotting the calculated

strain versus the applied bulk load to the dovetail specimen. As shown in Figure 3-7, the shape

of the curve is strongly influenced by the coefficient of friction. The hysteresis loop becomes

closed as the coefficient of friction increases. The response in the model is not as stiff as the

actual response measured by the strain gauges, see Figure 3-8. This may be the result of the

two dimensional nature of the model or an error in the material properties.
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Figure 3-8: The strain versus load response measured at the strain gauge compared to the
calculated response from the model.

3.2.1 Obtaining point loads from the finite element model

As presented earlier, determining contact point loads is impossible without outside information

(numerical modeling or devices such as the strain gauge) since the loads are statically inde-

terminate. An infinite number of magnitudes of P and Q could be found for a given F. One

approach numerically, would be to use a cylindrical contact geometry for the desired F (even if

the actual contact geometry is not cylindrical). The cylindrical contact will produce a parabolic

pressure distribution with known relationships for a and P. Since the pressure goes to zero at

the edge of contact, one can determine a, then P can be found.

An understanding of the applied forces will help. Consider the dovetail shown in Figure

3-9. Three points are shown. A force F is applied in the x2 direction to the bottom cylindrical

portion of the specimen at point A. The two points along the flanks of dovetail represent the

centroid of the contact. These are named points L and R for left and right. The following

assumptions are made. First, that the contact problem can be modeled using static equilibrium

(i.e.
P
Fi = 0,

P
Mi = 0). There are no body forces in this model. Second, the contact loads
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Figure 3-9: A schematic of the boundary conditions and loads involved in the dovetail model.

are located at the centroid of the contact throughout the entire loading cycle. In other words,

there is no “tipping” or off-center loading. As a result of applying F, there are loads normal

and tangential to the contact surface, Q and P, at L and R (with subscripts denoting which

side the force is applied to). F , QL, QR, PL and PR are vector forces and related via the force

balance equation

−→
F =

−→
QL
2 +
−→
QR
2 +
−→
P L
2 +
−→
P R
2 (3.2)

The subscript 2 denotes the components of the vectors Q, P in the x2 direction. Take

θ to be the angle between the contact face and the x1 axis. By symmetry,
−→
QL
2 =

−→
QR
2 and

−→
P L
2 =
−→
P R
2 , so

F = 2QR cos
³π
2
− θ
´
+ 2PR cos (θ) (3.3)

A quick check can verify this equation. If θ = π
2 , then there should be no normal force

and the dovetail would slide out of the slot. If θ = 0, F would produce only a normal load on

the contact (this dovetail would have an unusual appearance). The equation bears out both
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Description R Fmax (kN) P (kN/m) % error Q (kN/m) Nf (cycles)
Cylinder 0.1 19 1258 ±2.1 505 1×106
Short flat 0.1 18.3 1130 ±6.2 568 1×106
Long flat 0.1 20.1 1195 ±2.9 670 1×106
Short flat 0.5 21.4 1285 ±7.6 654 1×106
Short flat, LPB 0.1 18.3 1130 ±6.2 568 runout
Short flat, LPB 0.1 27.3 1485 ±8.8 1048 1×106

Table 3.4: Loads as determined via FEM. LPB is low plasticity burnishing and will be described
in Chapter 6.

of these limiting cases.

Still, QR and PR can take any range of values which satisfy this relationship. Q is a

frictional force. If there was no friction, Q would be zero. This condition is the upper bound

of P . The lower bound comes from the restriction that Q ≤ fP . The exact result comes

about as a result that the load is not applied at a point (or a line of unit thickness) but rather

over the region of contact. The finite element model discretizes the region of contact and gives

a reasonably accurate approximation for P. If po can be determined from the model, then P

can be found since

a =
3

r
3PA

8k
(3.4)

Figure 3-10 is a plot of the pressure for an applied load of 1.9 kN on the dovetail and a

cylindrical contact pad. The pressure should go to zero at the edge of contact, thus a can be

measured from a plot of the pressure. P could also be determined from the maximum contact

pressure, but notice the large scatter in p near po. Thus, measuring a is preferable to measuring

po when finding P . Errors occur as numerical approximations cause nonzero pressures at the

edge of contact or zero pressures at nodes close to but interior to the actual edge of contact.

a can also be obtained from the location where the opening or gap function is nonzero. The

same types of numerical errors are present in that analysis.

The upper bound for the normal load occurs when f = 0 and therefore Q = 0. As shown in

3.5, the calculated normal load is much smaller than the upper bound. The lower bound can

be set to be sliding or Q = fP . In most cases, the calculated normal load is near or slightly

above (a numerical error) the value of sliding.
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Figure 3-10: A plot of the pressure for a cylindrical contact of a dovetail specimen loaded at
P=1900 N. Notice the large scatter in pressure values near the maximum contact pressure.

Description P (kN/m) Upper bound
Cylinder 1258 1763
Short flat 1130 1698
Long flat 1195 1865
Short flat, R=0.5 1285 1986
Short flat, LPB 1130 1698
Short flat, LPB 1485 2533

Table 3.5: Loads as determined via FEM compared with the upper bound when f=0.
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Figure 3-11: The evolution of shear tractions from 5% of maximum load to 100% of maximum
load for a dovetail specimen contacted by a cylindrical pad. f=0.8.

3.2.2 Evolution of the shear traction of a cylindrical geometry during the

loading cycle.

The finite element model also yields the shear tractions during loading. Consider the case of

a dovetail specimen in contact with cylindrical pads and f = 0.8. A cyclical load is applied to

the specimen with load ratio of 0.1 and a maximum load of 19 kN. Increasing the load from

minimum to maximum load results in an evolution of the shear traction as shown in Figure

3-11. The contact length, and as a result the area of the shear traction, increases as the normal

load increases. The stick zone, 2c, remains nearly the same size throughout the loading cycle

until 80% of the maximum load. 2c then rapidly shrinks until sliding occurs until the maximum

load is reached.
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Chapter 4

Observations of fretting fatigue

micro-damage

4.1 Background

A fundamental understanding of fretting fatigue cannot be obtained without the observation of

fretting fatigue damage at small scales. These observations can help to clarify the role of wear

damage and contact stresses to the development of fatigue cracks. Some researchers have made

notable effort to determine the relationship between wear damage and fretting fatigue life. This

is primarily accomplished through the measurement of displacement and the development of

wear mapping [23, 65]. Considerable experimental work is required on given contact geometries

to develop such maps. On the other hand, stresses and strains are more universal. Thus, there

has been a recent focus on more quantitative contact fatigue experiments and analysis that

emphasizes stress and strain effects [25, 37, 38, 62]. If advances can be made in this arena,

fretting fatigue life-prediction can be extended to various contact geometries. It has been

determined that life-prediction based on the location of maximum stress or shear at the surface

generally fails to predict life accurately and is not universal outside given contact conditions

[66].

There is a need for a more comprehensive view of fretting damage across a variety of loading

conditions that examines the surface damage mechanisms from a mechanical viewpoint. These

mechanisms contribute to the uncertainty in contact fatigue life-prediction. A literature search
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reveals only a few examples of substantial research into fretting fatigue damage. Antoniou and

Radtke [67] examined the mechanisms of fretting fatigue damage in Ti-6Al-4V and Ti-17 but

only with a bridge pad apparatus. Neu et al. demonstrated a link between crystal-plasticity

and surface damage [68] while Pape et al. noticed tribologically transformed regions under a

stainless-steel fretting contact [69]. Sauger et al. used several methods to identify tribologically

transformed structures in various materials including Ti-6Al-4V and developed a strain-based

model of phase transformation [70]. However, the strain-based model of phase transformation

failed to predict the correct solute concentrations that result in tribological phase transformation

of Ti-6Al-4V.

The knowledge of the interaction of wear and stresses also impacts maintenance of com-

ponents and surface engineering. The design engineer must determine whether wear reduction

or stress reduction is desired. Wear in tight fitting joints could lead to unacceptable part

tolerances. However, some wear may be preferred if fatigue cracks are removed by the wear.

Damage mechanisms affect the choice of palliative. A hard coating could prevent wear, but

it may also delaminate if large strains are applied to the substrate as is so often the case in

fretting fatigue versus fretting wear.

4.2 Section preparation

Specimens were cut by a low speed diamond saw through the fretting scar and parallel to the

bulk loading axis. Then the sections were ground using SiC paper of grit numbers 600, 1200,

2400 and 4000 grit paper. Finally, the section was polishing with alumina and diamond paste

down to surface roughness near 0.05 microns. Polishing was followed by cleaning and the

sections were placed in a desiccant prior to examination in the SEM.

4.3 Description of fretting cracks and damage

4.3.1 Sphere-on-flat geometries

A description of the sphere-on-flat experiments using the MIT apparatus is given in Chapter 2.

For the sphere-on-flat geometry, observations [37] reveal that fretting cracks initiated on the
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Figure 4-1: A schematic of the flat-on-flat fixture developed at AFRL.

centerline of the contact region (y=0) near the edge of contact closest to the actuator (x=-a).

Cracks tend to initiate in this location since the edge of contact closest to the actuator is the

trailing edge of contact (hence the maximum contact stresses [71]) at the same time maximum

tension is applied to the specimen. Micrographs show that several cracks develop within ±25
µm of the edge of contact. In other words, cracks will develop in the region of slip or just

outside the region of slip.

4.3.2 Dovetail fixture

Chapter 3 describes the dovetail fretting fatigue fixture and experiments performed using that

fixture. In order to examine the fretting fatigue scars on the dovetail specimens, a 3 point

bend apparatus was developed that could be placed in an SEM. By placing the scar in tension,

cracks are revealed through the wear debris as the crack mouths open. Cracks are found on

the side of the dovetail scar closest to the actuator (just as in sphere-on-flat contacts) and in

the slip region. The location of the edge of contact varies since the normal load is cyclic.

Besides the dominant cracks, multiple cracks with widths on the order of 20 µm are found in
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Figure 4-2: Two fretting cracks initiated (location shown by arrows) and linked.

the slip region. This phenomenon of nearly simultaneous multiple crack initiations is common

throughout the contact geometries and fixtures as will be shown below.

Figure 4-2 is a dovetail specimen where cracks initiated at two locations almost equidistant

from the center of the specimen width. Semi-quantitative elemental analysis near the sites of

initiation reveal a presence of oxygen much stronger than the oxide on the fracture surface

away from the region of initiation. Combined with the morphology of the fracture surface near

the region of initiation, it is apparent the dark regions near the contact surface are oxides that

formed via the wear process and have entered the crack to a depth of 100 µm.

4.3.3 Flat on flat

Specimens were examined from a fixture that clamped a thin flat specimen with flat pads shown

schematically in Figure 4-1. These pads were typically flat with rounded edges. The clamping

bolts were instrumented to measure the normal force. The ends of the specimen were free, and

one set of pads was fixed. The set of pads on the opposite end of the specimen was loaded

uniaxially. Thus, the axial load is provided through the clamped pads, and the bulk stress is

the load divided by the cross-sectional area of the specimen. The tangential load is simply the
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Figure 4-3: Debris flows into a crack in the slip region of a dovetail specimen. The contact
pad was a short flat with taper.

applied load divided by two. This specimen has the advantage that failure typically occurs at

one set of pads first. Thus, the contact under the opposite set of pads can be examined.

While the overall stresses from the contact fatigue are elastic or elastic after shakedown

[72], there is some plastic deformation near the surface as the stresses in asperity tips exceed

yield. As shown in Figure 4-4 taken from a specimen contacted by a rounded flat pad, asperities

harden and then are removed leaving behind small craters. Cracks may develop in these craters.

Shallow cracks will remove asperities and increase the size of wear craters. Inclined cracks may

propagate into the material.

4.3.4 Shot peened specimens

Figures 4-5 to 4-8 are micrographs taken from specimens that were shot-peened so crack prop-

agation was suppressed. Figure 4-5 shows significant plastic deformation due to wear in the

slip region. One 20 µm crack and three small notches are clearly visible. These notches served

as initiation sites for fatigue cracks. At higher magnification (Figure 4-6), a small crack can

be seen growing out of one of the notches. Typically, one dominant crack grows although it

may be formed by the linkage of smaller cracks. The damage in Figure 4-5 looks very similar

to what would be expected by crystal plasticity modeling of fretting in Ti-6Al-4V [68].

Figure 4-7 clearly shows cracks that are filled with wear debris. The smallest crack is about
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1.0 µm

Figure 4-4: A crack from a wear crater grows into an asperity.

5 µm

Figure 4-5: SEM image of surface damage showing delamination and the formation of small
notches developing into cracks (P=50 N, Q=27.5 N, N=300,000 cycles, σaxial=270 MPa,
R=0.1, r=12.7 mm).
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1 µm

Figure 4-6: A small crack (0.5 µm) growing out of a notch. This is one of the notches shown
in the above photo.

3 µm long (Figure 4-8). Even at such a small length the crack is filled with debris that would

obviously impact the growth behavior of the crack.

There is general agreement that fretting fatigue crack growth consists of 4 regimes. The

first is crack nucleation. This includes accumulation of damage leading to crack initiation and

incipient crack growth. The second is propagation by the combination of the contact and bulk

stresses. This regime lasts until the total stress asymptotically approaches the stress-state of

the bulk material. The third then is crack propagation solely by the bulk stresses. The fourth

regime is that of fast fracture and can be neglected in terms of the overall fatigue life [39]. The

observations above agree with this approach to fretting fatigue crack growth. In the shot-peened

specimens, the second regime was suppressed by the presence of compressive residual stresses.

4.4 Impact of micromechanisms on life-prediction modeling

It has been observed in experiments using specific contact geometries that multiple cracks

initiate nearly simultaneously [73]. However, only one or two cracks will become dominant

and propagate to failure. Our observations indicate that this phenomenon is true regardless
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10 µm

Figure 4-7: Wear debris fill fretting cracks.

2 µm

Figure 4-8: Small fretting fatigue crack filled with wear debris.
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Figure 4-9: a.) A small crack has developed near the edge of contact. b.) Oxides developed
by wear enter the crack as it is opened by contact and bulk tensile stresses. Either one of two
effects occur: c.) the crack jumps ahead of the wedge during compressive loading or d.) crack
growth is slowed by closure.

of contact geometry or loading condition. It has been postulated that the near simultaneous

initiation of cracks would result in crack shielding. Thus, fracture mechanics based modeling

of cracks growing out of this region may need to adjust ∆K to an effective ∆K to account for

shielding effects.

The micro-mechanism of wear debris can be expected to impact fracture-mechanics based

life-prediction models. Once a crack initiates and is opened by the tensile portion of the fretting

fatigue loading, wear debris at the surface may enter into the crack, see Figure 4-9 a and b. This

will produce one of two effects on crack growth. Recalling that stresses at the leading edge of

contact are compressive, the first effect is that crack growth may accelerate upon compression

of the crack if the oxide is more stiff than the matrix material, see Figure 4-9 c. This effect is

reduced as crack length increases since R will increase as depth increases. The other effect is

that the oxides may close the crack and divert energy from the crack tip, see Figure 4-9 d.

From early research in steels, it has been shown that as the displacement or the ratio

of Qmax/(fP ) increases from zero, the number of cycles to failure reaches a minimum then

increases [23, 74]. The wear damage due to contact is a function of the displacement. It has
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been postulated that increased wear damage may remove small cracks. The fatigue life and wear

removal rates are shown qualitatively as functions of the displacement in Figure 4-10. However,

the increase in wear also results in an increase in the production of wear particles that can enter

cracks and retard propagation. The ratio of crack removal and crack filling would change as a

function of the displacement with the former becoming more dominant in the region of global

sliding. However, at a given point in the partial-slip regime, the rate of change in the fatigue life

as a function of displacement is reduced until the minimum in fatigue life is reached. This is due

to the filling of cracks by wear particles as the wear rate is insufficient to remove small cracks.

Otherwise we would expect both a constant rate of change in the fatigue life (in partial-slip)

as a function of displacement as well as a sharp transition in fatigue life and mechanisms upon

sliding. Therefore, the effective stress-intensity factor from above should now also include the

effects of the wear particle by becoming a function of displacement.

∆Keff → ∆Keff (l, δ or Q/fP ) (4.1)

where l is the crack length and d is the displacement. No attempt is made in this paper to

derive this relationship.

Crack arrest also impacts life-prediction modeling. There are several reasons why fretting

fatigue cracks nucleate and then arrest. These include the combined effects of shielding, wear

filling of cracks, crystal orientation of near surface grains and the combination of contact and

bulk stresses below the contact interface. Merely determining crack initiation based on local

stresses may be overly conservative. Such methods may predict crack initiation but fail to

incorporate the effects of micromechanisms that would prevent further nucleation. Likewise,

short-crack fracture mechanics methods may be also overly conservative because of crack closure

due to wear debris in cracks as small as 3 mm. Both initiation-based and fracture mechanics

based life-prediction methods may be conservative because of the effects of the stress-state

and micro-mechanisms. Stress/strain-at-a-point methods would fail to capture any of these

effects. Introduction of a length-scale such as a volume-averaging effect or fracture mechanics-

based method would help capture the gradient in contact stresses, but not the micromechanical

effects, induced by crack-filling for example. The initiation of multiple cracks can affect the

application of fracture mechanics. For an example, see [75, 76]. Crystal plasticity modeling
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Figure 4-10: A schematic of the dependence of the fatigue life and the wear volume loss (W )
on the fretting displacement slip amplitude. The highlighted region is the region where wear
debris most impacts fatigue life.
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may reveal more information on near-surface plasticity and wear. To incorporate explicitly all

of these micromechanisms would be extremely difficult for engineering design. One should

determine the most important micromechanisms for a given contact geometry and loading, and

incorporate those in life-prediction methods.

4.5 Friction and its evolution

4.5.1 A derivation of the spherical contact load history

If fretting starts at a constant frequency and load (i.e. neither load or frequency is ramped),

then the coefficient of friction will be uniform and equal to fo throughout the contact area.

Wear damage in the slip regions will increase the coefficient of friction to fn after n cycles.

Because of the increase in friction, the stick zone will grow in size from co to cn.

This new stick zone is described by the relationship

cn
a
= 3

s
1− Q

fP
(4.2)

After several hundred (or perhaps thousands) of cycles, the coefficient of friction will become

steady-state.

The coefficient of friction in the region of stick (0 < x < co) is statically indeterminate.

The shear traction, q, and the normal traction, p, are related by

q(r) = λp(r) (4.3)

In the region co < x < cn, the coefficient of friction may vary as a function of position as

well as time. Hills and Nowell suggested the following relationship for q and p [16].

q(r) = f(r)p(r) (4.4)

The value of f(x) is unknown in this region.

Finally, in the region cn < x < a, the coefficient of friction is again constant but takes the

modified value, fn.
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Figure 4-11: The coefficient of friction is initially constant in across the contact patch (shown
here to be circular). Over n cycles, the coefficient of friction will increase in the slip region as
a result of wear. Therefore, the radius of stick will also increase.

q(r) = fnp(r) (4.5)

Even though friction may vary from point to point, there is a macroscopic coefficient of

friction, f . This can be described by the following ratio.

f =
Q

P
=

R
qdAR
pdA

(4.6)

dA is the differential in area. If fretting starts at a constant frequency and load (i.e. neither

load or frequency is ramped), then the coefficient of friction will be uniform and equal to fo

throughout the contact area. Wear damage in the slip regions will increase the coefficient of

friction to fn after n cycles.

By solving 4.6, the variation of the coefficient of friction in the slip zone over n cycles can

be determined experimentally. Hills and Nowell describe this as “stopping the fretting [after n

cycles] and then slowly increasing the tangential force until sliding occurs.” The closed-form

analytical solution for the evolution of friction for the contact of cylinders problem is given by

Hills, Nowell and Sackfield [24]. However, the solution of the problem for the contact of spheres

has not been completed, yet this is relevant to our experimental work.

In 4.6, it must be noted that dA = rdrdθ, thus
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Z
p(x)dA = po

2πZ
0

aZ
0

r
1−

³r
a

´2
rdrdθ =

2πa2

3
po (4.7)

and therefore

2πa2f

3
= 2π


coZ
0

fo

r
1−

³r
a

´2
rdr +

cnZ
co

f(r)

r
1−

³r
a

´2
rdr +

cnZ
co

fn

r
1−

³r
a

´2
rdr

 (4.8)

which if differentiated with respect to the number of cycles is (assuming, as is the case with

Hills et al that f(x) is not dependent on n)

2πa2

3

∂f

∂n
=

∂fn
∂n

(
2πa2

3

µ
1−

³cn
a

´2¶3/2)
(4.9)

and from 4.2 is

∂f

∂n
=

∂fn
∂n


Ã
1−

µ
1− Q

fnP

¶2/3!3/2 (4.10)

therefore

f − fo =
fnZ
fo

Ã
1−

µ
1− Q

fnP

¶2/3!3/2
dfn (4.11)

This integration can be accomplished numerically taking with fn = Q/P if fretting starts after

an initial period of sliding.

This equation demonstrates that in the absence of adhesive forces, the relationship between

the macroscopic coefficient of friction and the variation of friction in the slip zone is not a

function of the pad radius or the material properties. It is only a function of the ratio of the

normal and tangential loads. Thus, this can be used for a variety of experimental conditions.

A plot of this relationship is shown Figure 4-12.

It should be noted that the cylindrical contact solution can be derived analytically as done

by Hills, Nowell and Sackfield [24] resulting in
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Figure 4-12: f versus fn for selected values of Q/P

f = fn − 2Q
πP

µ
−2 sinα+ 2 ln

h
tan

³α
2
+

π

4

´i
+
Pfnα

Q
− tanα

¶
(4.12)

where α is defined as:

cosα =
Q

fnP
(4.13)

If we plot f versus fn for given Q/P , there is distinctly differently behavior between the

point contact and the line contact as shown in Figure 4-13. The behavior of the line contact is

well known from Hills, Nowell and Sackfield.

4.5.2 A review of the cylindrical contact load history

The evolution of the load history for cylindrical contacts was first examined by Hills, Nowell

and Sackfield. To review, the pressure distribution for a normal load applied to a cylindrical

contact is:
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Figure 4-13: The relationship between f and fn is different for spherical and cylindrical contacts.
The dashed lines represent the cylindrical contact.
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p(x) = −po
r
1 +

³x
a

´2
(4.14)

The modified stick zone size is

cn
a
=

s
1− Q

fP
(4.15)

If fretting is stopped and the tangential force is increased until sliding, the measured coefficient

of friction will be given by

πa2f

4
=

coZ
0

fo

r
1−

³x
a

´2
dx+

cnZ
co

f(x)

r
1−

³x
a

´2
dx+

cnZ
co

fn

r
1−

³x
a

´2
dx (4.16)

This equation may now be differentiated with respect to the number of cycles.

πa2

4

∂f

∂n
=

∂fn
∂n

(
π

4
− cn
2

r
1−

³cn
a

´2 − 1
2
arcsin

³cn
a

´)
(4.17)

which gives us

f = fn − 2
π

fnZ
fo

Ã
Q

fnP

s
fnP

Q
− 1 + arcsin

s
1− Q

fnP

!
dfn (4.18)

It should be noted that algebraic errors exist in 4.17 and 4.18 in both Hills, Nowell and

Sackfield [24] and Hills and Nowell [77]. Despite the errors, the final solution shown above in

4.12 and 4.13 is correct.

4.5.3 Incorporating the effects of adhesion

Giannakopoulos, et al proposed that interfacial adhesion could impact the initiation of fretting

cracks. Adhesion will change the contact dimensions. For example, the contact radius will

increase from a to amax.
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amax =

3D(1− ν)2

4E

P + 3πDw
2

+

s
3πDwP +

µ
3πDw

2

¶21/3 (4.19)

where D is the diameter of the sphere and w is the work of adhesion and for most metals

is approximately 1 N/m.

Recall from Chapter 1, the normal traction becomes unbounded and is now

p(r) = −po
s
1 +

µ
r

amax

¶2
+

p∗or
1 +

³
r

amax

´2 (4.20)

where p∗o is defined as

p∗o =
wE

(1− ν2)πamax
(4.21)

Thus the radius of the stick region after n cycles of fretting becomes

cn
amax

= 3

s
1− Q

fnP
(4.22)

recalling that the initial stick radius is

co
amax

= 3

s
1− Q

foP
(4.23)

Thus, the inputs in the above equations must be modified so that a is replaced by amax.

f

Z
pdA = 2π

fo
coZ
0

s
1−

µ
r

amax

¶2
rdr +

cnZ
co

f (r)

s
1−

µ
r

amax

¶2
rdr +D0

 (4.24)

where D0 is

D0 =
amaxZ
cn

fn


s
1−

µ
r

amax

¶2
− 1r

1−
³

r
amax

´2
 rdr (4.25)

and the pressure changes to:
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Z
p(x)dA = po

2πZ
0

amaxZ
0

s
1−

µ
r

amax

¶2
rdrdθ−p∗o

2πZ
0

amaxZ
0

1r
1−

³
r

amax

´2 rdrdθ = 2πa2max
3

(po − 3p∗o)

(4.26)

Again, differentiate with respect to the number of cycles

2πa2max
3

(po − 3p∗o)
∂f

∂n
=

∂fn
∂n

2π
amaxZ
cn


s
1−

µ
r

amax

¶2
− 1r

1−
³

r
amax

´2
 rdr

 (4.27)

Thus

2πa2max
3

(po − 3p∗o) f =
fnZ
fo

2π
amaxZ
cn


s
1−

µ
r

amax

¶2
− 1r

1−
³

r
amax

´2
 rdr

 dfn (4.28)

These integrals can be solved numerically.

The relationship between f and fn is dependent on the contact loads and the contact

geometry or pressure. Figure 4-14 shows the variations in and several values of w for a spherical

contact with a pad radius of 25.4 mm and elastic properties of E=116 GPa and ν=0.3. The

equation is very sensitive to the value of w. As w increases, the minimum possible value of the

coefficient of friction in the slip zone increases. As the value of w approaches 1, the relationship

becomes linear. These observations agree with the physics of the process. The separate effects

of adhesion and surface roughness (which is changed by wear) are included in the coefficient of

friction. Just as fn will likely increase as n increases, so must fn increase as w increases.

4.5.4 Experimental results

Fretting fatigue experiments were performed using Ti-6Al-4V specimens and hemispherical

pads. The results are described in Table 4.1. The fretting apparatus used is described with

detail in Chapter 1. A sinusoidal bulk load is applied to the specimen resulting in a tangential
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Figure 4-14: A plot of f (the vertical axis) and fn (the horizontal axis) for w=0, 0.1 and 1. As
w increases from zero, so does the value of f with respect to fn.

Q/P n δmax(µm) f fn (w=0) fn (w=1)
2 0.44 1000 0.025 0.4875 0.49 0.55
3 0.4 500 0.027 0.4375 0.44 0.475
4 0.475 350 0.030 0.6 0.63 0.735
5 0.356 100 0.027 0.4375 0.45 0.5

Table 4.1: Experimental results for Ti-6Al-4V on Ti-6Al-4V spherical contact

load in-phase with the bulk load. Load cells enable measurement of the tangential and normal

loads while a compliant tangential load train allows for adjustment of the tangential load for a

given bulk load.

The experiments were performed at a frequency of 2 Hz and a load ratio of -1. The ratio

of Q/P was near 0.4 for all of the tests. After the desired number of cycles, the test was

stopped. Monotonic tensile bulk loading was then applied which resulted in increasing Q. Q

was monitored through the point of sliding and the value of Q/P just prior to sliding was

recorded. The macroscopic value of friction was equal to Q/P. The details are given in Table

3.1.

The scatter from the experimental results is large and shows the difficulty of conducting

these experiments. Nonetheless, the method is shown to work and can be extended to the vital

issue of the fretting of coatings.
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Evolution of friction, Ti-6Al-4V on Ti-6Al-4V
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Figure 4-15: Experimentally measuring the coefficient of friction in the slip zone over n cycles.

4.6 Summary

An examination of specimens & pads from 3 different fretting fixtures and 4 different contact

geometries revealed several damage mechanisms that are of note. Fretting fatigue produces

wear debris that enters cracks as small as 3 µm in length and causes crack closure in very

small cracks in Ti-6Al-4V. While wear debris does interact with cracks, the depth of wear or

appearance of wear is a poor indicator of contact fatigue life.

The overall contact mechanics in fretting fatigue are elastic, although there is localized

plasticity. This results in wear damage at the surface and near-surface ratcheting. Micro-

notches form in the wear region with lengths as small as 1 µm and root radii as small as 0.5

µm. These become crack initiation sites and contribute to further wear damage through the

development of small cracks that propagate until surface material is removed.

In all of the fretting geometries observed, multiple cracks initiate nearly simultaneously.

This encourages crack shielding. It is also true that early crack growth is affected by the

crystallographic properties of the near surface grains. As a result of these mechanisms, most
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fretting fatigue cracks that do initiate do not propagate but arrest. Only one or two will

dominate in propagation

Wear in the regions of slip results in surface modification that changes the coefficient of

friction over the first number of cycles of fretting fatigue. Hills, Nowell and Sackfield [24] devel-

oped a methodology for determining the coefficient of friction in the slip region for cylindrical

contacts. This has now been extended to spherical contacts and to adhesive contacts.
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Chapter 5

Fracture mechanics based life

prediction

Fretting fatigue life can be divided into two segments. The first is crack initiation or nucleation.

Physically, this is the period of time required for defects to coalesce into a crack. It is difficult to

separate the exact moment that the crack transitions out of initiation and into the second phase

of fretting fatigue life known as crack propagation. Because of this ambiguity, it is appropriate

to refer to the initiation phase as “nucleation” and specify an initial crack length via the fatigue

threshold (∆K th) or the smallest detectable crack size by current non-destructive evaluation

methods.

5.1 The need for a length scale

It has been demonstrated that a crack initiation parameter based on stress at a given point is

not sufficient [66]. Since stress at a point cannot predict fretting fatigue life, the introduction

of a length scale may assist. The significant length scales in contact fatigue are as follows:

- Contact dimensions (radii, geometry, a, c)

- Global, g, or local displacement, δ

- Strength of singularity (σ=f(r))

- Stress gradients (dσ/dr)

- Specimen thickness
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- Microstructural length scales such as the grain size

- Rolling contact: diameter of roller or characteristic rolling length

A crack initiation parameter could be developed using any of these length scales. Those

length scales not already associated with one of the above dimensions could be combined with

one as in the fretting-specific Ruiz parameter (τδ or στδ) [28].

5.2 The crack analogue

Giannakopoulos, Lindley and Suresh [40] recognized an analogy between aspects of contact

mechanics and fracture mechanics. Noting that the normal tractions near the edges of a sharp-

cornered punch are square root singular [78, 79]

σzz ∝
1√
r

(5.1)

a stress-intensity factor could be determined via an analogy with a double-sided edge cracked

geometry [80] vis-a-vis a coordinate transformation.

θ → π − θ = φ; 0 ≤ θ ≤ π (5.2)

The normal traction p has a correspondingKI while the shear traction q has a corresponding

KII. Consider the rigid, frictionless sharp cornered punch of length 2a with a normal load P

and a tangential load Q. The stress-intensity factors are:

KI = − P√
πa

(5.3)

KII =
Q√
πa

(5.4)

In the case of the sharp cornered punch, the stress-intensity factor for a fully reversed

tangential load Q is

∆KII =
2Q√
πa

(5.5)
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Figure 5-1: Aspects of the rigid punch contact problem in a.) can be equivalent to those of the
double edge cracked specimen in b.)
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Figure 5-2: The normal traction, p, in the punch problem is square root singular in the asymp-
totic limit as one approaches the edge of contact.

Figure 5-3: For a contact without adhesion, the pressure is bounded and zero at the edge of
contact ±a. However, the presence of adhesion would cause the pressure to become singular
at the new edge of contact, ±amax, for strongly adhered contacts or at the stick zone boundary,
±c, for weakly adhered contacts.
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Likewise, for cylindrical or spherical punch geometries, an analogy can be made between

partial-slip contact mechanics and the contact of weakly adhered surfaces [41]. Stresses near the

adhered boundary (analogous to the stick zone in fretting) are square root singular. Tangential

point or line loads must be balanced in this stick region. Thus,

Qinmax = Q− f
P

a3max

¡
a2max − c2

¢3/2
; spherical contacts (5.6)

and

Qinmax = Q−
fP

π

(
π

2
+ arctan

c
p
a2max − c2
c2 − a2max

− c

amax

µ
1− c2

a2max

¶)
; cylindrical contacts (5.7)

where amax is an enlarged contact half-width resulting from adhesive forces. For most metals,

the adhesive forces are very weak (even for similar metals) particularly in air.

This model produces the following stress-intensity factors

∆KII = 2×min
Ã

Q

c
√
πc
,

r
GdE

1− v2
!
; spherical contacts (5.8)

and

∆KII = 2×min
 Q√

πc
,

s
GIId E

1− v2

 ; cylindrical contacts (5.9)

where GIId is the critical shear (hence mode II) debonding energy. Gd is obtained via the

following empirical relationship for a spherical indentor on a metallic surface with friction f

[81]:

Gd = 14.3651
p
0.3 + f2 (5.10)

There is a critical debonding energy corresponding to each mode of loading (normal, shear

and torsion), but it is assumed to be equal to or nearly equal to that given by Equation 5.10.
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Figure 5-4: A schematic of a kinked crack. The mechanics of a kinked crack will be used to
determine crack orientation and early crack growth of fretting fatigue cracks.

5.2.1 Crack orientation

If the surface tractions can be related to a stress-intensity factor, crack orientation can be

determined from the mechanics of kinked cracks. Consider a crack with a KI and KII that

has kinked and the length of the kink is much smaller than the original crack length. The

orientation of the kink will be at an angle φ with respect to the surface and will have a local

k1 and k2. The local stress intensity factors are as follows [82]:

k1 = a11 (φ)KI + a12 (φ)KII (5.11)

k2 = a21 (φ)KI + a22 (φ)KII (5.12)

where aij are functions of φ

a11 (φ) =
1

4

µ
3 cos

φ

2
+ cos

3φ

2

¶
(5.13)

a12 (φ) = −3
4

µ
sin

φ

2
+ sin

3φ

2

¶
(5.14)

a21 (φ) =
1

4

µ
sin

φ

2
+ sin

3φ

2

¶
(5.15)

a22 (φ) =
1

4

µ
cos

φ

2
+ 3 cos

3φ

2

¶
(5.16)
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The orientation angle, φin, is determined by invoking the condition that k2 = 0, which infers

that cracks do not propagate (or, by analogy, nucleate as a result of the contact fatigue) by

shear.

The bulk stress is analogous to the T -stress in linear elastic fracture mechanics since it is

non-zero as the edge of contact is approached. Cotterell and Rice showed that the T -stress

can increase or decrease the angle of the kinked crack [82]. It is then likely that the presence

of a bulk stress will change the crack orientation.

5.2.2 Early crack growth

KI is in general is negative and can be monotonic. Thus, k1 oscillates as a result of KII, with

a positive KII capable of opening the crack. The effective opening stress intensity factor is

∆k1 = ±3
4
KII|max

µ
sin

φin
2
+ sin

3φin
2

¶
(5.17)

Physically, the crack will gradually turn normal to the applied cyclic bulk stress. However,

this will be modeled as the growth of a crack oriented at angle φin until a critical length lc is

reached. At lc, the model assumes that crack turns normal to the bulk stress. Giannakopoulos

et al. suggest the following method to determine lc.

∆Kth =
∆σapp

√
πlc

4
× F (φin) (5.18)

lc =

µ
4∆Kth
∆σapp

√
π

¶2
· {F (φin)}−2 (5.19)

where F (φin) is the stress intensity factor calibration for the doubly kinked crack [83].

F (φin) = F1 (φin)

µ
3 cos

(π − 2φin)
4

+ cos
3 (π − 2φin)

4

¶
+3F2 (φin)

µ
sin
(π − 2φin)

2
+ sin

3 (π − 2φin)
2

¶
(5.20)

Isida provides tables of F1 and F2 from which
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F1 (φ) ≈ 1.058 sinφ− 0.065 sin (3φ) (5.21)

F2 (φ) ≈ 0.374 sin (2φ) + 0.023 sin (4φ) (5.22)

However, the crack can turn normal to the surface prior to reaching than the length predicted

via Isida. It could happen as soon as the threshold for an edge crack oriented normal to the

surface is exceeded. In other words,

lc sinφin =

µ
∆Kth

1.12∆σapp
√
π

¶2
Cases where this is applicable are shown below.

Early crack growth can be described via the Paris Law [84].

dl

dN
= C1 (∆k1)

m1 (5.23)

Note that the Paris Law constants have subscript 1. These constants may have different

values for early crack growth than for later regimes of fretting fatigue crack growth. Integrating

5.23 equation gives

N1 =

lcZ
0

dl

C1 (∆k1)
m1
≈ lc
C1 (∆k1)

m1

if and only if the approximation is made that the stress-intensity factor does not deviate from

∆k1 during kinked crack growth.

5.2.3 Later regimes of fretting fatigue crack growth

If the crack is still able to propagate after the early stages of crack growth, then it will grow

solely by the bulk stress. The new Paris Law is

dl

dN
= C2 (∆k1)

m2 (5.24)
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The subscript 2 denotes Paris Law constants relevant to this regime of crack growth. This

can be integrated to give

N2 =

lfZ
lc sinφin

dl

C2

³
1.12∆σapp

√
πl
´m2

(5.25)

=
1

C2

³
1.12∆σapp

√
πl
´2 ln lf

lc sinφin
; m2 = 2 (5.26)

=

³
2

m2−2
´

C2

³
1.12∆σapp

√
πl
´m2

n
(lc sinφin)

(2−m2)/2 − l(2−m2)/2f

o
; m2 6= 2 (5.27)

The total fretting fatigue life is then

NT = N1 +N2 (5.28)

5.3 Crack initiation in the absence of a singularity

Some geometries and contact conditions produce stresses without singular behavior. Recall

from 1.3.4 the flat punch of length 2a with a rounded corner of radius D/2 with a contact

length of 2b upon loading by P . It should be noted that, for very small b-a, the stresses

become very much like a those of a blunt crack. In that case the asymptotic stress fields are

analogous to those described by Creager and Paris [85] where the notch root radius is b-a. A

crack methodology could then be employed in the manner of Barsom and McNicol [86]. This

methodology relates the stress field at the tip of a blunt crack to the stress intensity factor of

a sharp crack of equal length. In the case of the rounded punch, this becomes[42]:

σQxx = 3.414
KIIp

π(b− a) (5.29)

where KII is the same as that of a sharp cornered punch. This stress is only accurate for small

b-a, and must be added to the bulk stress and any other stress in the x direction. This would

include an additional term from the pressure if the specimen is thin [42]. The stress at a given
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a (mm) t (mm) D (mm) P (kN/m) Q (kN/m) b (mm) σb, max (MPa) R
H1 9.53 2 6.35 2600 350 9.65 350 0.5
H2 3.18 2 6.35 2600 260 3.35 260 0.5
H3 9.53 4 6.35 2100 550 9.63 275 0.5
H4 3.18 1 6.35 3500 138 3.39 275 0.5

Table 5.1: Conditions for experiments reported by Hutson et al.

KII (MPa
√
m) σQxx (MPa) t/b σpxx (MPa) σxx (MPa)

H1 2.01 346 0.21 391 735
H2 2.53 365 0.6 176 801
H3 3.16 584 0.42 429 902
H4 1.33 174 0.29 180 623

Table 5.2: Predictions for stresses in the x-direction for failure at 1e7 cycles.

fatigue life then becomes

σxx = σQxx + σPxx + σb, max (5.30)

Table 5.2 gives model results using conditions listed in Table 5.1 from experiments by Hutson

et al. with failure at 107 cycles [66]. For this fatigue life, the model shows an average value of

767 MPa at maximum load, R=0.5.

5.4 Validation with experimental data

Several sets of experimental data were selected from the literature. Most involved the same

titanium alloy, Ti-6Al-4V, but several different contact geometries and loading conditions. Two

sets of experimental results involved an aluminum alloy and both involved cylindrical geome-

tries. Table 5.3 lists selected mechanical properties of the alloys examined.

Material E (GPa) ν

Ti-6Al-4V 116 0.34
Al-4 wt% Cu 74 0.3

Table 5.3: Some mechanical properties of the alloys used in the selected fretting fatigue tests
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Figure 5-5: ∆k1 is plotted versus number of cycles to failure for experiments where P is varied
while Q is held fixed at 17 N and the maximum bulk stress is 300 MPa.

5.4.1 Controlled sphere-on-flat experiments

Chapter 2 described in detail three series of sphere-on-flat Ti-6Al-4V fretting fatigue tests

performed at MIT [37, 56]. These tests involved two pad radii, 12.7 mm (0.5 in) and 25.4

mm (1 in), with a variety of contact and bulk loads. These tests were all performed at R=-1.

Of particular interest were the series of experiments where the contact conditions varied for a

maximum bulk stress of 300 MPa. m1, C1 were taken to be equal to m2, C2 with m1 = 3.17

and C1 = 1.5 × 10−10 (for units of MPa √m, m). It should be noted that crack growth near

the surface is modeled as two dimensions but the physical crack grows in three dimensions.

Recall that pad radius made a significant difference in the number of cycles to failure for a

given Q/P . Figures 5-5 and 2-5 are plots of ∆k1 versus number of cycles to failure. Since the

bulk stress is the same for all of these controlled experiments, the life due to bulk propagation

is approximately the same for all tests. Thus, the figures show the effect of varying the contact

conditions including the pad radius on crack initiation and early crack growth.
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Description R Fmax (kN) KI, max(MPa
√
m) KII, max(MPa

√
m) φin (

o) lc (µm)
Cylinder 0.1 19 0.21 8.44 71 16.8
Short flat 0.1 18.3 -28.3 14.2 40.3 44.9
Long flat 0.1 20.1 -11.9 6.7 42.6 37.3
Short flat 0.5 21.4 -32.2 26.2 40.6 41.8

Table 5.4: Stress intensity factors and crack orientation angles for the dovetail experiments.

Description ∆Kth (MPa
√
m) m1 C1 m2 C2 Nf,act Nf,pred

Cylinder 2.2 2 2×10−11 4.4 6×10−13 106 9.7×105
Short flat 2.2 2 2×10−11 4.4 6×10−13 106 8.9×105
Long flat 2.2 2 2×10−11 4.4 6×10−13 106 9.7×105
Short flat 2.2 2 2×10−11 4.4 6×10−13 106 8.5×105

Table 5.5: Fatigue life predictions for conditions used in each of the dovetail experiments.
ro=runout

5.4.2 Dovetail fretting fatigue tests

The dovetail tests were described in detail in Chapter 3. Values for the crack growth thresholds

are available in [57, 87] while the Paris Law values m2 and C2 are found in [43]. m1 and C2

were chosen to best fit experimental results. Stress-intensity factors and early crack parameters

are given in Table 5.4 while fatigue information is contained in Table 5.5.

The assumption is made that the crack analogue can be extended to the short flat geometry

and the long flat geometry with a taper. These geometries do not produce tractions that are

square-root singular. Nonetheless, they are nearly singular or nearly square root singular, and

the model will be applied. In the case of the long flat geometry, the notch analogue was also

used to determine stresses at the edge of contact. The calculated stresses were well above yield

and much larger than the stresses from Hutson. It was determined that b− a was very small
for this long flat geometry and the associated contact loads. Thus, the contact mechanics for

the long flat dovetail pads is more analogous to a crack than a notch. As will be shown, the

model can still give reasonable results when extended to these geometries.

As for crack orientation, a section taken from one of the short flat tests at R=0.1 revealed

multiple cracks near the maximum edge of contact, see Figure 5-8. The predicted crack ori-

entation angle is 40.3◦ with an lc of 44.3 µm. The measured angle is 48.7◦, and lc is 17.6

microns.
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5.4.3 Controlled flat-on-flat tests

The second set of data came from a series of fretting fatigue tests performed by Hutson, et al.

[62], using specimens from the same forgings. The assumption is made that the crack analogue

can be applied to these specimens. This is really only valid if b− a is very small. The contact
geometry was flat-on-flat with varying specimen thicknesses and pad lengths. Figure 5-7 is a

plot of actual fatigue life versus predicted life for several different sets of fretting fatigue tests.

The results from the spherical contact tests by Conner are scattered about the line with slope

of 1 where actual life equals predicted life, but the large number of tests will produce some

experimental error. There is good agreement for the dovetail tests and all of the tests from

Hutson et al.
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Figure 5-8: Multiple fretting fatigue cracks emerge from the contact surface (at the bottom of
the micrograph). The dominant crack is oriented at a 48.7 degree angle to the surface and
turns normal to the bulk stress by 17.6 microns.

5.4.4 Cylindrical fretting fatigue of an aluminum alloy

Two sets of data were selected from the literature on fretting fatigue of Al wt%4 Cu alloys

[38, 55]. The experiments were all cylinder on flat contact geometries and contained a wide

range of contact and bulk loads as well as pad radii. Both sets of tests were performed at R=-1.

The experiments in [55] demonstrated the postulated contact size effect which is an apparent

increase in the number of cycles to failure as the contact width decreases. m1, C1 were taken

to be equal to m2, C2 with m1 = 3.387 and C1 = 6.62× 10−11 (for units of MPa √m, m) and
are taken directly from [38].

The strength of the contact, as evidenced by the local stress intensity factor, has a direct

impact on the fatigue life. Figure 5-9 shows the effect of the local mode I stress intensity factor

on fretting fatigue life for a constant bulk stress.
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5.5 Limitations and assumptions of the model

The model, as presented here, assumes that the life can be estimated solely by accounting for

propagation. An initiation regime is not considered. However, one could easily add the number

of cycles required for initiation, No, to the total life if required for accurate life prediction. This

would likely be based on analysis of experimental data; therefore, No would be empirical.

Another assumption is that linear elastic fracture mechanics is applicable. Employing the

linear elastic fracture mechanics model requires conditions of small scale yielding near the region

of interest. Any significant yielding will affect model predictions. The elastic limits of the

models are discussed in detail in [40],[41] and [42].

The model currently requires knowledge of the point or line contact loads. As demonstrated

with the dovetail specimens, it is difficult to determine these loads. However, using a numerical

method can provide loads within some error.

98



Chapter 6

Palliatives

6.1 Introduction to surface engineering

To minimize contact damage, an engineer must follow certain guidelines. A summary of these

guidelines is given by Ruiz and Nowell [60]:

- Reduce fretting damage by:

— antifretting coatings

— lower contact pressures

— reduced slip

- Prevent crack growth by:

— reducing the bulk tensile stress in the fretting region

There are several ways an engineer can achieve the desired result. An engineer can choose a

new material that is more resistant to wear, thus reducing fretting damage. Another approach

is to reduce fretting damage by using coating or surface treatment such as ion glazing. Or, the

engineer could choose to introduce a compressive residual stress at the surface by peening or

burnishing. This would reduce the composite tensile stress near the fretting region.

In engineering components that are likely to experience fretting, it is best to choose a

material that is intrinsically resistant to fretting damage. It is also best to avoid the use of

the same material for contacting surfaces if possible. Contacting surfaces of the same material

are more likely to bond and increase wear damage [88]. It is of interest to note that titanium is

the material of choice for fan and compressor blades and disks because of its specific strength
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despite its poor fretting resistance. Often the blade and the disk are the same titanium alloy

or similar alloys.

When materials replacement is not an option, as is the case for turbine components other

methods of fretting resistance must be found. Coatings are one alternative option. There

are several factors in the choice of coatings as a fretting palliative. The coating must provide

the optimum combination of mechanical and tribological properties. These properties include

the coefficient of friction, elastic properties and wear protection. A coating should be able to

bond with the titanium, yet have very low solubility to reduce wear damage. Strong interfacial

bonding results in a high wear rate. Tribologically compatible materials (i.e. materials that

without strong interfacial bonding) have low mutual solid solubility. Ti has low mutual solubility

(defined as solid solubility between 0.1 and 1%) with In, Cd, Zn, Cu, Au and Co. Mg will form

a single liquid phase with Ti but has solid solubility below 0.1%. Pb, Sn, Al, Ag, W, Co, Cr, Ni,

Fe, Pt, Zr, and Nb all have solid solubilities with Ti above 1% [89]. Two common coatings used

in Ti compressor lugs are Cu-In-Ni [90] and aluminum bronze. The exact chemical composition

varies with manufacturer and is generally proprietary information.

Hardened surfaces in general provide better wear resistance. This is the principle behind

one of the earliest graded materials processes: carburization. In this process, the surface of a

component is exposed to carbon at elevated temperatures. Diffusion occurs and carbon enters

the surface and hardens it. The hardness approaches that of the interior as a function of the

depth. The interior retains its ductility to withstand fatigue cracks. One of the difficulties with

surface hardening is that it must be harder than any abrasive particles present. In the case

of titanium, the oxides produced by fretting may be harder than any hardened variant of the

alloy. However, a hardened surface may forestall the production of wear oxides.

Aside from tribological characteristics, the coating should meet certain mechanical param-

eters. The coefficient of friction should be reduced which would reduce the magnitude of the

surface and subsurface stresses. In fact, it may shift the maximum stresses away from the sur-

face and into the material [71]. Chivers and Gordelier have examined the effect of the coefficient

of friction for coatings and made predictions on fretting fatigue performance [91].

Deposition of a graded surface can provide mechanical advantages against fretting. It has

been shown by Suresh that a graded surface can better withstand normal contact damage than
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an ungraded surface [92]. If the elastic modulus at the surface is lower than that of the bulk,

the maximum stresses are shifted away from the surface. Development of Hertzian cone cracks

did not occur in the graded material until almost twice the load of the monolithic material. It

must be noted that this resistance to normal contact is valid for dovetail type fretting where

the normal loads vary as well as the tangential loads.

It may be necessary to make a trade-off between wear resistance and mechanical performance

in the choice of surface treatments. Often the wear resistance of a coating is related to its plastic

properties, but the mechanical benefits may be related to its elastic properties.

Coatings may be combined with other surface treatments. A compressive residual stress

could be introduced into the solid by a method of peening or burnishing. Then coatings could

be applied. However, the method of application can affect the residual stresses. Thermal

processes could relieve the residual stresses [90].

6.2 Coatings

6.2.1 Experiments

Early turbine engine designers turned to crude coatings as a form of fretting fatigue protec-

tion [93]. These coatings would rub away during the lifetime of the component in hopes of

preventing crack initiation or unacceptable tolerances as a result of wear. Today, coatings

are still widely used at the contact face of blade-disk attachments in the compressor region of

gas turbine engines. As mentioned above, two common coatings are Cu-In-Ni and aluminum

bronze. Aluminum bronze is now widely used in military applications but Cu-In-Ni coatings

are still used in commercial engines [48].

The coating used was a commercial aluminum bronze coating. The powder composition

is 89% Cu, 9% Al, 1.5% Fe and 0.5% miscellaneous (the remainder of the constituents are

proprietary). The elastic modulus of the coating is 52 GPa and the hardness ranges from 161

to 191 VHN [94]. It should be noted that the coating properties may be significantly different

from those of the bulk material because of changes to the microstructure due to the deposition

process [95].

Dovetail titanium specimens received an aluminum bronze coating from Praxair Surface
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Specimen # Pad R f (Hz) Lf Lpr Li n Nf,n Result
01-591 short flat 0.1 13 22.8 21.3 22.6 3 882,473 failure
01-469 short flat 0.1 13 22.5 22 22.5 1 980,210 failure
01-476 short flat 0.1 13 18.3 n/a n/a 0 10,263,025 no failure

Table 6.1: Experimental results for fretting fatigue of Al-bronze coated specimens

Figure 6-1: A low magnification composite SEM image of the fretting scar of a coated specimen
after a crack has developed and propagated.

Coatings. The coating was applied by plasma spray. The coating thickness was 76 to 152

microns (3-6 mil) thick. Care was taken to stop the coating away from any radii (such as

fillets) on the specimens to avoid interactions between thermal stress effects and the geometric

residual stress concentrations. A Zygo NewView 5000 Surface Texture Analyzer was employed

to determine the surface texture of the coating. This instrument uses white light interferometry

to develop 2D profiles and 3D images of the surface topography. Some of the results are shown

in Figure 6-2. The method determined a surface roughness root mean square (rms) value of

9.070 microns and an amplitude, Ra, value of 7.0 microns.

Fretting fatigue experiments were performed involving dovetail with an aluminum bronze

coating and the results are contained in Table 6.1. The coating thickness was the same as

above. The dovetail experiments showed that the load required for failure at 106 cycles was

increased by 25% with the addition of the coating. When the same loads were applied to the

coated specimens as those required to fail the uncoated specimens at 106 cycles then failure

will not occur until at least 107 cycles.
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a.)

c.) d.)

b.)

Figure 6-2: a.) A 3-D surface profile showing material removal to a depth of 29 microns in a
small section of the slip zone from a coated specimen. b.) An uncoated specimen showing
significantly less material removed in the slip region. c.) and d.) show 2-D surface profiles
taken in a.) and b.) respectively.

Fretting fatigue cracks were observed to have nucleated near the maximum edge of contact,

see Figure 6-1. Some delamination of the coating is seen near the location of the crack, but this

damage most likely occurred after the formation and growth of the crack. Crack growth would

change the compliance increasing the slip displacement resulting in increased wear damage at

maximum load.

The coated dovetail specimens were examined after fretting fatigue using the Zygo and a

Tencor P10 stylus profilometer. In general, the height of the region within the contact was less

than that outside the contact. This is result of the compressive normal traction. The slip zone

region formed a trench around the stick region because of wear in the slip zone. Asperities

in the stick region were plastically deformed (“flattened”) and the rms was reduced to 1.036

microns while the Ra was reduced to 1.020 microns. In the slip zone, the roughness was very

similar to that of the baseline coating, but this is again a result of the wear due to slip.
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6.3 Fracture mechanics modeling and coatings

Fracture mechanics can give insight into the ability of soft metallic coatings to improve fatigue

life under conditions of fretting fatigue. It can be shown that the aluminum bronze coating

provides protection if cracks initiate at the surface of the coating [96, 97]. Since the aluminum

bronze coating is softer (σy,coat < σy,sub) than the Ti-6Al-4V substrate, a crack that develops

in the coating will resist propagation into the substrate assuming a well-bonded coating. The

crack would likely arrest or require an increase in the far-field stresses to propagate into the

substrate.

Hutchinson and Suo [98] developed a complex stress-intensity factor, K, for an edge crack

located at one edge of a coating of thickness h with Ec and νc sandwiched between two layers

with the same properties, Es and νs.

K = h−i²
µ
1−A
1− β2

¶
(KI + iKII) e

iω (6.1)

ε =
1

2π
ln

µ
1− β

1 + β

¶
(6.2)

where A and β are Dundurs parameters, ω is the complex phase angle shift resulting from

moduli dissimilarity and plotted in [98], and KI and KII are from an edge crack in a monolith

with properties Es and νs, One can use the stress-intensity factors, found with the help of FEM,

from the crack analogue as inputs for KI and KII to determine K, see Figure 6-3. Since K is

complex, the strength of K can be determined by examining the norm of K, that is K times its

conjugate. As shown in Table 6.2, addition of the coating results in a reduction in the strength

of K at baseline loads and experiments show no failure. A substantial increase in the strength

of K is required for failure. This may be because of plasticity near the surface as evidenced

in substantial wear and indentation by the contact pad shown in the Zygo measurements.

The plasticity could “shield” the region of the singularity and inhibit the initiation of fretting

cracks.
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Figure 6-3: Transitioning the crack analogue to a coated body with coating thickness h via the
complex stress intensity factor K.

Head Fmax (kN) Nf Ec (GPa) Es h (µm) ω (deg) KI KII kKk
Uncoated baseline 18.3 106 116 116 157 0 -28.29 14.22 1003
Coated at baseline loads 18.3 n/f 50 116 157 -4.9 -28.29 14.22 967
Coated, failure Nf=106 22.6 106 50 116 157 -4.9 -43.81 8.69 1553

Table 6.2: Complex K for the experimental conditions listed above. It is assumed that the
Poisson’s ratio of the substrate and the coating are equal. n/f means no failure.
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Figure 6-4: A schematic of a P-h curve.

6.3.1 Depth sensing indentation of contact fatigue resistant soft-metallic

coatings

Introduction to property extrapolation from depth sensing indentation

Sharp indentation to depths on the nano or micrometer scale can be useful in determining

mechanical properties of thin films. In order to do this, one must be able to measure the

applied normal load, P, and the depth of indentation, h. This is not a trivial problem. As

a result of deposition, the microstructure of the coating (and therefore its properties) may be

vastly different than that of the starting material [95].

In contact fatigue, a coating can provide a variety of benefits including wear resistance,

reduced coefficient of friction, and beneficial relocation of surface stresses. While wear resis-

tance and coefficient of friction can be measured in sliding tests such as the pin-on-disc test,

the mechanical properties of the coating can be difficult to determine. Depth sensing sharp in-

dentation has several advantages including the following. First, it is a non-destructive method.

The indentation depth can be only a few microns or nanometers in depth. Second, it evaluates

the mechanical properties of the coating in the absence of friction. In other words, the effects of

the elastic and plastic properties can be separated from stress effects due to a reduction in the

coefficient of friction. Finally, small volume indentation allows examination of the properties

of the coating apart from that of the substrate.
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While depth sensing indentation is a recent development indentation itself has been used as

a tool to determine the hardness of materials for many years. Determining material properties

from indentation is computationally intensive. One can determine the P-h curve if E, ν, n

and σy are known. This is defined as the forward problem. The reverse problem obtains the

elasto-plastic properties from the P-h curve. It is the solution of the reverse problem that is of

interest to this research [99].

There are potential applications for indentation of contact fatigue resistant coatings. Inden-

tation can be used as a quality assurance tool for coatings in production. Coated components

can be indented after application of the coating. Assuming satisfactory results from indentation,

these components can be returned to service since the indentation is non-destructive. There

are limitations that must be resolved before indentation can be used as a quality assurance

tool. The accuracy of the indentation results improves if the surface is flat. In general, plasma

sprayed coatings are very rough and must be polished before indentation.

Indentation can also quickly determine the elasto-plastic properties of a coating or func-

tionally graded material that is being developed for used as a contact fatigue palliative. Again,

indentation would separate the mechanical properties from friction effects.

Experiments

A Ti-6Al-4V forging was sectioned into two specimens for indentation. One specimen was coated

with the aluminum bronze coating. Prior to grinding and polishing, the coating thickness was

157 microns. Both specimens were first prepared by grinding with 600, 800, 2400 and 4000 grit

SiC paper then mechanical polishing using 3 µm diamond suspension, 0.5 µm diamond paste

and 0.05 µmMastermet. The resulting finish was highly reflective. Observation using an optical

microscope revealed substantial reduction in surface roughness, and the coating thickness after

polishing was 94 µm. However, some small pits still remained after polishing and provided

a source of experimental error. The coating was also shown to be 0.5 to 1% porous as a

result of plasma spray deposition in air leading to splatting. This would provide a source of

experimental error.

The depth of indentation must be chosen to be small enough to prevent interference from the

substrate. In order to find the limit of indentation depth, an elasto-plastic axisymmetric finite
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Figure 6-5: A micrograph looking down into a indentation into the coating. Note the small
dents and particles on the surface.

element analysis of a sharp rigid indenter was performed based on four variations of the film

mechanical properties as supplied by the commercial vendor. The numerical analysis showed

that indentation could be performed up to 9 microns into the coating without interference from

the substrate.

A diamond Berkovich tip was used in each indentation. For the coated specimen, two

indentation depths were chosen: 5-6 microns and 8-9 microns. The uncoated specimen was

indented only to 8-9 microns.

The experiments gave values within 20% of the properties of Ti-6Al-4V but gave values

±150% of the expected coating properties and the known properties of the Al7075 standard.

Thus, results could not be obtained for the coating. There are several possible reasons for this.

This may have been because of the bluntness of the diamond Berkovich indenter tip possibly as

a result of previous testing. Or, plasticity in the coating and the aluminum was so extensive

that it changed the compliance as the indenter was pushed into the material. The plastic zone

became itself an indenter pushing ahead of the tip. Evidence of such plasticity can be seen in

Zygo measurements where material “sink-in” is observed around the edge of the indentation.
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Summary

While the theory for instrumented indentation is extensive, further work must be done before

it can be used for practical applications on this scale. If successful, such indentation will yield

mechanical properties of fretting fatigue resistant coatings. This would be a boost to fretting

fatigue physically based life prediction models which might otherwise not use accurate material

properties.

6.4 Low plasticity burnishing: compressive residual stress

6.4.1 Background

One method to combat the contact fatigue is to introduce a compressive residual stress. Shot

peening is a common method of treating components by bouncing shot off the material surface.

A compressive residual stress results as the elastic subsurface material is constrained by plasti-

cally deformed material at the impact site. However, the depth of compression from the shot

peening is only on the order of fractions of millimeters and leaves the maximum residual stress

at the surface. The surface is roughened by the shot peening and this may provide a beneficial

effect during contact fatigue by reducing adhesive forces.

It is known that the beneficial effects of shot peening on contact fatigue can be completely

removed by thermal or mechanical effects. In general, residual stresses can be removed during

the process of thermal annealing. This annealing can even occur during the application of

coatings. Koul et al. [90] demonstrated that the application of wear coatings by plasma spray

may completely relieve the compressive residual stresses at the surface resulting in fretting

performance that is even worse than the absence of peening and coating. Shepard et al. showed

that residual stresses accompanied by high magnitudes of cold work at the surface (which results

from both shot peening and laser shock peening) are relieved at elevated temperatures and serve

no benefit during fatigue [100]. Kirkpatrick provided a theoretical framework for determining

the depth at which compressive residual stresses are relieved by the high compressive stresses

developed during contact [44].

Low plasticity burnishing (LPB) has several advantages. LPB produces a zone of compres-

sive residual stresses that can have approximately the same magnitude and depth as laser shock
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Figure 6-6: A photograph of an LPB treated specimen in the dovetail fixture. Notice the
polished appearance of the specimen regions near the contact pad. This is a result of the
contact pressure from the rolling sphere.

peening with much less cold work at the surface. There is little roughness associated with LPB.

In fact, LPB produces a near-polished surface. While the absence of roughness may increase

adhesion, the experimental results below show that it is clearly not detrimental. Indeed, the

smooth surface may assist adhesion of wear-resistant coatings.

6.4.2 Experiments

Three Ti-6Al-4V specimens were treated with LPB on the contact region and on the side of

the specimen perpendicular to the contact region. The original specimen finish after machining

had roughness (RMS) of 8. After LPB, the machining grooves were removed and the finish was

very smooth.

Both the fretting pads and specimens were Ti-6Al-4V. The pad geometry was a 1.016 mm (40

mil) flat with an 11 degree taper. Typically, the contact region of the blade-disk attachment can

be approximated experimentally with a flat pad with rounded corners or a taper. A photograph

of an LPB treated specimen held in the fretting fixture can be seen in Figure 6-6.

For all of the tests involving LPB-treated specimens, the test frequency was 13 Hz. As

shown in Table 6.3 without LPB, experiments conducted with a load ratio of 0.1 demonstrate
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Figure 6-7: The maximum load for failure at 106 cycles (R=0.1)for baseline specimens and LPB
treated specimens.

Specimen # Pad R f (Hz) Lf Lpr Li n Nf,n Result
01-592 short flat 0.1 13 27.5 25 27.5 3 997,487 failure
01-588 short flat 0.1 13 28 27 27.1 2 68,377 failure
01-589 short flat 0.1 13 18.3 n/a n/a 0 11,682,700 no failure

Table 6.3: Experimental results for fretting fatigue of LPB treated specimens

an average maximum load of 18.3 kN at 106 cycles for this geometry and this material. Two

specimens treated with LPB were also step-tested at a load ratio of 0.1. These specimens failed

after 106 cycles at an average maximum load of 27.3 kN. This was a 49.2% improvement in the

maximum load that can be sustained with failure at 106 cycles (6-7).

A third specimen was tested at a load ratio of 0.1 with a maximum load of 18.3 kN. These

loads represent the average baseline loading conditions for failure at 106 cycles. Thus, this

test determines the improvement in the fretting fatigue life at a given load. After 11,682,700

cycles the test was stopped without any visible cracks, an improvement of at least an order of

magnitude in fatigue life over the baseline specimens (Figure 6-8).
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Figure 6-9: X-ray diffraction measurements of the burnishing induced residual stresses under
the fretting fatigue scar and away from.

6.4.3 Residual stress and cold work distributions

Lambda Research of Cincinnati, Ohio, performed X-ray diffraction (XRD) on specimen #01-589

at two locations on the specimen. The first was under the fretting region and the second away

from the fretting region. Details of the methodology of XRD used to determine residual stresses

and cold work are given in [101],[102] and [103]. Unlike shot peening, the most compressive

residual stresses are not found at the surface but about 200 microns below the surface. The

magnitude of compressive residual stress at the surface actually increases after fretting. The

% cold work is relatively low compared to other methods [100], but it is higher in the fretting

region. This is because of the cold work from wear damage and localized plasticity.

It should be noted that the thickness of the specimen and the size of the application patch

affect the distribution of residual stresses. The stress state in a body must satisfy equilibrium.

In the dovetail specimen, the residual stresses near the surface are very compressive. However,

some region of the specimen will have a small, but non-zero tensile residual stress in order to
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satisfy equilibrium. However, if a specimen is too thin, the residual stresses may be partially

or completely relieved, as the specimen will deform by bending or stretching. The dovetail

specimens are quite thick, but thin bar specimens such as those used in the MIT fretting rig

may not be suitable for testing of LPB.

6.4.4 Effect on crack initiation

A review of the literature shows that the peening treatment has little effect on crack initiation.

In general, micrographs of regions near the contact edge from specimens that have been surface-

treated show the initiation of many cracks, most having arrested [104]. Some treatments such

as shot peening result in surface damage such as pits or folding defects that can form initiation

sites [105]. Shot peening and laser shock peening can produce large percentages of cold work

at the surface which could provide energy for crack initiation [100]. In these cases, the fatigue

life is reduced even further than the baseline specimen if the residual stresses are thermally

relieved. Such surface damage is not seen with low plasticity burnishing which leaves a highly

polished surface.

Surface treatments that introduce compressive residual stresses do reduce the mean stress

but they do not change ∆σ. However, the reduction in residual stress inhibits the nucleation

of an initiated crack to propagate. This is especially true in fretting fatigue where there are

conditions of steep stress gradients as well as gradients in the mean stress. Since the definition

of crack nucleation and crack initiation are often unclear, effects of residual stress on crack

nucleation may be incorrectly said to impact initiation.

6.4.5 Effect on crack propagation

Reduction of the mean stress by LPB reduces the magnitude of the cyclic tensile stresses required

for mode I crack opening. Here, ∆KI is calculated for an edge crack in a stress gradient using a

program developed by Dr. Reji John at Air Force Research Laboratory and weight-functions by

Tada et al. [106]. The program models a crack located at the maximum edge of contact, where

the maximum edge of contact refers to the edge of contact when the bulk load is maximum,

and is oriented normal to the surface. Finite element modeling provides the contact stress field

inputs and the mean stress is superimposed.
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Description R Fmax (kN) KI, max(MPa
√
m) KII, max(MPa

√
m) φin (

o) lc (µm)
Short flat, LPB 0.1 18.3 -28.3 14.2 40.3 798
Short flat, LPB 0.1 27.3 -37.2 26.2 47 1153

Table 6.4: Stress intensity factors and crack orientation angles for the LPB treated dovetail
experiments.

Description ∆Kth (MPa
√
m) m1 C1 m2 C2 Nf,act Nf,pred

Short flat, LPB 2.2 2 1×10−12 4.4 6×10−13 ro 6.8×106
Short flat, LPB 2.2 2 1×10−12 4.4 6×10−13 106 1.2×106

Table 6.5: Fatigue life predictions for conditions used in each of the LPB dovetail experiments.
ro=runout

A load of 18.3 kN applied at a load ratio of 0.1 is required for failure at 106 cycles if a

specimen is untreated. A specimen treated with LPB will not fail after 107 cycles with the

same loading conditions. Subsequentlt, if the load is increased to 27.3 kN, the specimen will

indeed fail. Plots of ∆KI for these three conditions agree quite well with observations. The

LPB-treated specimen may initiate cracks under baseline loading conditions, but they will

most certainly not propagate. However, a significant increase in load is required to cause and

maintain crack propagation.

One can use the fracture mechanics-based model described in Chapter 4 to determine the

fretting fatigue life of a component treated with LPB. This was done for the conditions of the

dovetail test. The assumption is made that all of the effect of the residual stress occurs in the

first regime of crack growth, N1. The reduction in the rate of crack growth changes m1 and

C1 used in the Paris Law. The tensile cyclic applied bulk stress, used in the determination of

lc, is also reduced as

∆σ = σapp,max − σapp,min + σresidual ≥ 0 (6.3)

with σresidual being negative as the residual stresses at the surface are compressive. From XRD

measurements, the residual stress at the surface is -176 MPa and from FEA the maximum and

minimum bulk stresses are 220 and 3 MPa, respectively. Thus, ∆σ is approximately 40 MPa.

As shown in Tables 6.4 and 6.5, the fatigue life at baseline loads is significantly improved by

the LPB treatment and failure at 27.3 kN and R=0.1 is near 106cycles.
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6.4.6 Summary

Low plasticity burnishing is an effective palliative against fretting fatigue. The compressive

residual stresses inhibit crack nucleation and slow or arrest the growth of fretting fatigue cracks.

An increase of 50% of the baseline R=0.1 loads is required to propagate cracks to failure at 106

cycles.
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Chapter 7

Conclusions

7.1 Summary of work

7.1.1 Experiments

A fretting fatigue fixture developed at MIT is able to control and measure major fretting fatigue

variables. Fretting fatigue experiments using a sphere-on-flat geometry examined a wide range

of contact loading conditions and bulk stresses. Fretting fatigue life can be reduced by the

following: an increase in bulk stress, a decrease in spherical pad radius for a given contact load,

an increase in the tangential load provided that sliding does not occur, or a decrease in the

tangential load.

A new fretting fatigue fixture was developed and validated. This dovetail fixture allows the

study of more complicated and realistic contact geometries while still being able to examine less

complicated ones such as cylinders. The thick specimens enable easy examination of palliatives

without deforming the specimen from thermal or mechanical loading, as is often seen in peening

or coating thinner specimens. The most damaging geometry was the short flat pad which only

required 18.3 kN to cause failure at 106 cycles.

Micro-damage from fretting fatigue was observed from dovetail specimens and pads as well

as specimens from sphere-on-flat tests [43, 56] and flat-on-flat tests by Hutson [62, 66]. In

general (i.e. across the various geometries and fixtures), Ti-6Al-4V cracks were observed to be

wedge shaped and often filled with wear oxides that flowed in from the slip regions. Multiple
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cracks would initiate but only one crack would dominate. A final general observation was that

cracks fell into two categories. The Type I crack was a shallow crack oriented at 15-30 degrees

with the surface. The Type II crack was oriented at 45-80 degrees.

The higher loads required to cause cracks in shot peened specimens also resulted in near

surface plasticity. It was observed that cracks developed in large wear regions where a unique

type of damage, one not seen in untreated specimens, was micro-notching. Micro-notches

serve as crack initiation sites. This examination led to a greater understanding of what damage

results in fretting fatigue of Ti-6Al-4V with some implications on their impact on life prediction

methods.

Experiments on two types of palliatives were performed. Experiments were performed on

a new palliative for fretting fatigue resistance called low plasticity burnishing (LPB). LPB is

a method of introducing a compressive residual stress via a hard roller. The second palliative

was a soft metallic coating made of aluminum bronze. The soft coating reduced the coefficient

of friction to 0.2 and had half the Young’s modulus of the Ti-6Al-4V substrate.

Both palliatives showed life improvement at baseline loads. The coated specimen required

a 25% increase in load (R=0.1) to cause failure at 106 cycles while the LPB treated specimens

required a 50% increase in load. The compressive residual stresses inhibited the growth of

fretting fatigue cracks and required a significant increase in applied load in order for cracks to

propagate. The coating reduced the coefficient of friction, thereby reducing stresses. It also

served as wear protection.

7.1.2 Analysis

An elastic finite element model of the dovetail fretting fatigue apparatus was developed. A

method of verifying the accuracy of the FEM was to compare nodal strains to the strains

measured by the strain gauge located across from the stress concentrator in the dovetail slot.

The loads applied to the contact region could be determined using the finite element model.

The model also clarified the evolution of the surface tractions during a loading cycle.

The use of fracture mechanics was explored based on the foundation of the crack analogue

[40] and associated models [41, 42]. Reasonable agreement was reached between experiments

and predicted life for the new dovetail fixture and several other fixtures including the well
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controlled MIT fixture. For each of the controlled sphere-on-flat fretting fatigue test series,

modifying a contact load or geometry directly impacted the local stress-intensity factor as

determined from the model. It is of interest to note that some of the geometries such as the

short flat punch with taper differed from the exact geometries in the model, but reasonable

predictions were still achieved.

The predicted life from the fracture mechanics model was compared to the experimental life

for the low plasticity burnished specimens. It was assumed that the entire effect of the LPB

could be captured in the early crack growth stage, N1. The compressive residual stress would

slow down the crack growth. Reasonable results were obtained when compared with actual

fretting fatigue life.

7.2 New directions for contact fatigue research

7.2.1 Contact fatigue

There is much room for future work in contact fatigue. While this research focused extensively

on fretting fatigue, future research could be directed toward rolling and sliding fatigue. It

would be of interest to determine to what extent it is possible to extend fracture mechanics to

other forms of contact fatigue. Development of new contact fatigue fixtures may be required

to control and instrument variables during these tests.

There is still a need for understanding friction and its impact on contact fatigue. There is

evidence in the literature that friction is not well understood and influences the near surface

damage [66, 107]. While frictional values in metals are often cited to be 0.5 or lower, local

values of friction may be more like 0.95 [37] or 1.5 [107]. Greater understanding of the influence

of cyclic loading on friction may be gained by sensitive friction measurements made using nano

and micro indenters with the capability to perform scratch tests instrumented with tangential

load cells. Repetitive measurements of the evolution of friction could be made at previously

unavailable cycles and length-scales. Fundamental studies of slip, friction and cyclic loading

could be obtained by scratch tests of single crystal materials with various orientations.
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7.2.2 Palliatives

Besides other forms of contact fatigue, research should also be directed to palliatives. Elastically

or plastically graded coatings could improve contact fatigue resistance [108]. Hard coatings

may delaminate if applied to a surface that experiences large bulk strains. Graded coatings may

resist delamination since there is no abrupt change in the mechanical properties. Elastically

graded soft coatings could be designed to transfer peak stresses away from the surface. Cracking

in monolithic hard coatings can propagate into the substrate, but graded hard coatings may

resist propagation. There has been some theoretical research on cracking of fretted functionally

graded coatings, see [109], but little experimentation. For further discussion on the influence

of graded coatings and resistance to contact fatigue see [92].

On the topic of monolithic coatings, new approaches could be developed for further appli-

cation of fracture mechanics to coated materials beyond the work covered here. In particular,

the role of plasticity must be considered [110]. Nanostructured coatings may give improved

wear and fatigue resistance assuming that they can be processed and can effectively bond to

the substrate.

Liquid lubricants were not addressed in this paper. They are a common palliative used

on components affected by rolling fatigue. However, such lubricants can easily interact with

cracks and influence life prediction.
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