ANALYSIS OF OPTIMAL CONTROL OF A
FOUR-GIMBAL SYSTEM
by
MICHAEL ANDREW GENNERT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF

BACHELOR OF SCIENCE
and
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1980
(c) Michael Andrew Gennert
1980

The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis document in whole or in part, Signature redacted
Signature of Author

 Department of Electrical Engineering and Computer Science ^. May 9, 1980 Signature redactedCertified by Nils R. Sandeli, Jr. Thesis Supervisor Signature redacted
Certified by

Richard V. Spencer Company Supervisor Signature redacted
Accepted by

Chairman, Departmental Committee on Graduate Students
ARCHIVES
MASSACHUSETTS INSTITUTE
OF TECHNOLOE?
JuN 201980

VI-A THESIS RELEASE LETTER

Department of Electrical Engineering and Computer Science
Room 38-444
Massachusetts Institute of Technology
Cambridge, Mass. 02139
Attention: Professor Arthur C. Smith
Subject: Master's Thesis of Michael A. Gennert

I have reviewed the attached Thesis of Michael Gennert on behalf of the General Electric Company. The report is within the scope of the Thesis Proposal as previously approved and does not contain any material that is objectionable to the General Electric Company. It is also approved for its technical content.

It is understood that this Thesis will be the permanent property of MIT and will be placed in the MIT library within one month after the date of submissiom. However, the thesis will not be given general circulation until a review by the Office of the Secretary of Defense has been completed and the thesis released by the sponsor for general use. I will inform the Department of the results of such review as soon as possible. It is also understood that Michael Gennert has granted MIT permission to reproduce the thesis and to distribute copies publicly.
by
Michael Andrew Gennert

Submitted to the Department of Electrical Engineering and Computer Science on May 9,1980 in partial fulfillment of the requirements for the Degrees of Bachelor of Science and Master of Science.

Abstract

This thesis investigates modelling and control of a four-gimbal inertial system. The system under study is used to stabilize an inertial piatform and to isolate the platform from vibration and rotation of the vehicle in which the system is mounted.

A few simplifying assumptions are made about the gimbal system. Using these assumptions and Euler's torque equations for a rotating body, a set of linear equations is developed relating angular acceleration of the gimbal elements to torque motor voltage. Taking a state-space approach, a set of nonlinear differential equations is used to compute the orientations of the gimbal elements from the torque motor voltages. A novel approach to the incorporation of static friction is presented, which leads to a simplified set of equations in the presence of static friction. Coulomb friction is also taken into account.

Modern optimal control techniques are applied to a linearized discrete-time version of the state equations to produce an optimal control scheme. The gimbal system and controller are simulated on a digital computer using the FORTRAN programming language. A listing of the program is included in the appendix. Comparisons are made with an earlier control strategy showing the reduction of platform misorientation, reduction of required torque, and elimination of switching transients.

THESIS SUPERVISOR: Nils R. Sandell, Jr. TITLE: Adjunct Professor of Electrical Engineering

COMPANY SUPERVISOR: Richard V. Spencer
TITLE: Lead Advanced Systems Development Engineer General Electric Ordance Systems

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Professor Nils Sandell, for supervising this thesis. I would also like to express my thanks to the General Electric Company, Ordance Systems Division in Pittsfield, Massachusetts where most of this work was carried out under the VI-A Cooperative Program. Particular thanks are due Gordon Fiddes for suggesting research in this area; Dick Spencer, without whose guidance this thesis would have been impossible; and Howard Jones for his invaluable assistance. Last but not least I would like to express my deepest gratitude to my parents, Joyce and Warren Galkin, for their inspiration, encouragement and love.

TABLE OF CONTENTS

Title Page 1
VI-A Thesis Release Letter. 2
Abstract 3
Acknowledgements 5
Table of Contents. 6
List of Figures 7
List of Tables 8
I. Introduction. 9
II. Nomenclature. 14
III. System Description. 16
IV. Derivation of Torque-Acceleration Equations. 29
V. Torque and Friction 40
VI. Optimal Control of the Four-Gimbal System. 45
VII. Resuits 58
VIII. Conclusions 76
A. Coordinate Transformations and Notation 77
B. Summary of Computer Routines Used 79
C. Computer Simulation of the Four-Gimbal System. 81
Bibliography 99

List of Figures

Figure 1.1 Gimbal Configurations 13
Figure 3.1 Four-Gimbal System 28
Figure 6.1 Gimbal Lock Angle 55
Figure 6.2 Proposed Controller Configuration 1 56
Figure 6.3 Proposed Controller Configuration 2. 57
Figure 7.1 Zone Control Zones 61
Figure 7.2 Optimal vs. Zone Control Trajectory 1 63
Figure 7.3 Optimal vs. Zone Control Trajectory 2 65
Figure 7.4 Optimal vs. Zone Control Trajectory 3. 67
Figure 7.5 Optimal vs. Zone Control Trajectory 4 69
Figure 7.6 Optimal vs. Zone Control Trajectory 5. 71
Figure 7.7 Optimal vs. Zone Control Trajectory 6 73
Figure 7.8 Optimal vs. Zone Control Trajectory 7 75
-8-

List of Tables
Table 3.1 Moments of Inertia 27
Table 7.1 Optimal vs. Zone Control Run 1 62
Table 7.2 Optimal vs. Zone Control Run 64
Table 7.3 Optimal vs. Zone Control Run 3 66
Table 7.4 Optimal vs. Zone Control Run 4 68
Table 7.5 Optimal vs. Zone Control Run 5 70
Table 7.6 Optimal vs. Zone Control Run 6 72
Table 7.7 Optimal vs. Zone Control Run 7 74

I. Introduction

This thesis investigates modelling and control of a four-gimbal system. Gimbals are generally used for precise orientation and/or stabilization. Typical applications include: attachment of a rocket engine so that the engine may be aimed, suspension of a ship's compass in a horizontal position despite pitch and roll, mounting a radar to rapidly track a target, stabilization of an inertial platform and isolation of the platform from vibration. It is this last application that will be of concern to us in this paper.

Inertial guidance and navigation systems generally use gyroscopes and accelerometers as sensing devices. High performance inertial guidance systems usually have these sensors mounted on an inertial platform and a series of concentric gimbals connecting the platform to the case. Gyros on the platform sense rotations of the platform with respect to inertial space, and are used in feedback loops to maintain an inertial reference.

The inertial platform and gimbals are housed in the inertial measurement unit case. The case is rigidly affixed to a vehicle whose rotation rate will be changing with time. The rotation rate is not measured directly; it can be calculated from other quantities, as will be shown. The rotation can be viewed as an input to the gimbal system, uninfluenced by the behavior of the system. As such, the vehicle's motion provides a set of boundary conditions for the kinematic equations describing
the behavior of the gimbals.
To fully isolate the inertial platform from vehicle motion requires a minimum of three gimbals, providing three degrees of freedom. It is possible for two of the gimbal axes to become parallel; "gimbal lock" is then said to occur and one degree of freedom is lost. If all three axes lie in one plane, rotation about an axis perpendicular to this plane is impossible. Clearly, gimbal lock must be avoided. However, it is not sufficient that the system stay out of gimbal lock; it must not even get close because, as gimbal lock is approached, increasingly high torque levels are required to keep the platform inertial[5]. If the required torque should exceed the maximum available torque, then the inertial platform may lose its inertial reference.

There are basically two strategies available for dealing with the gimbal lock problem. The simplest solution is to restrict the vehicle's motion so that gimbal lock cannot occur. Early guidance systems used exactly this restricted attitude scheme. The drawbacks are obvious. A present state-of-the-art all-attitude guidance system avoids gimbal lock by adding a fourth gimbal (Figure 1.1). The extra degree of freedom ensures that it will always be possible to avoid gimbal lock. If two gimbal axes are aligned there will still be three degrees of freedom. However, if the system is not properly controlled it is possible for all four axes to lie in one plane, a second degree of freedom will be lost, and gimbal lock will result. The problem then is one of allocation of control among the four
gimbals to stabilize the inertial platform while avoiding gimbal lock given the vehicle's rotation rate.

Control is effected through torque motors mounted on the outer three gimbals and the case. The torquers are driven by saturating amplifiers, limiting the maximum available torque. Information on the state of the system is available from three sources. Gyroscope outputs indicate any deviation of the platform attitude from inertial, resolvers mounted on each gimbal indicate the angles between gimbals, and tachometers measure angular velocities.

Presently, the inner two gimbals are driven directly by gyroscopes, and control is switched between the two outer gimbals, depending on the two middle angles. The control law takes the form of decision rules, so that control is allocated based upon the zone in which the middle two angles reside. Although the zone control does avoid gimbal lock, it is not optimal. Large attitude errors and torque transients may occur when switching zones. The maximum torque requirements are excessive; by reducing them it will be possible to improve torque motor performance and/or reduce the torquer size, weight and cost. Furthermore, reductions in attitude errors resulting from optimization will contribute to overall system accuracy.

The approach taken is as follows. The mechanics of the gimbal system are discussed first. Simplifying assumptions and approximations are presented and justified. Based upon Euler's torque equations a set of equations are derived that characterize the system. We examine friction and its effects. Modern optimal
control techniques are applied to a linearized discrete-timeversion of the torque equations to yield an optimal controlscheme. Various methods of implementing the controller aresuggested. The controller is realized as a simulation on adigital computer using the FORTRAN programming language. Resultsof the simulation are analyzed and compared with an earliercontrol strategy.

Figure 1.1
Gimbal Configurations

II. Nomenclature

A
Continuous-time dynamics matrix

B Continous-time matrix from control signals to state derivative C Case
$\vec{C} \quad$ Continuous-time constant vector
Discrete-time constant vector
C\& Coordinate transformation from j to k system
D State information compression matrix
$\overrightarrow{\mathrm{e}} \quad$ State error vector
E Elevation gimbal = Inertial platform
$\overrightarrow{\mathrm{E}}$
Optimal next state

J Cost function
$\mathrm{J}_{\mathrm{k}}^{1}$ Inertia tensor of gimbal k in the 1 reference frame
Moment of inertia of gimbal k about its $v-a x i s$ in the k frame
L Matrix transforming acceleration to torques
M Middle gimbal
M Matrix transforming torques to accelerations $=L^{-1}$
$0 \quad$ Outer gimbal
Q Symmetric state weight matrix in cost function
$R \quad$ Symmetric torque weight matrix in cost function
$S \quad$ Inertial space
$\stackrel{\rightharpoonup}{T}_{j}^{k}$ Total torque on gimbal j in the k frame$\vec{T}_{k j}^{l}$Torque on gimbal j supplied by gimbal k in the l frame
$\mathrm{T}_{\mathrm{jk}}^{1}$ Component of T in the v direction
$\overrightarrow{\mathrm{U}}$ Control vector
\widehat{W}_{k} Rotation of gimbal j with respect to gimbal k in the 1 frame
$\overrightarrow{\mathrm{X}}$ State vector
$\overrightarrow{\mathbf{Y}}$ Vector composed of torques and torque-like terms
$\stackrel{\rightharpoonup}{\mathbf{Z}}$ Angular acceleration vector
I Angle between E and I
$B \quad$ Angle between I and M
$\theta \quad$ Angle between M and O
0 Angle between O and C
λ Gimbal lock angle
III. System Description

The four-gimbal system is shown schematically in Figure 3.1. Pictured are the case (C), outer gimbal (O), middle gimbal (M), inner gimbal (I) and elevation gimbal (E). The terms "elevation gimbal" (1) and "inertial platform" refer to the same thing and will be used interchargably. "Case" and "vehicle" will also be used interchangably in the context of rotation and acceleration, although they do not refer to the same thing. The case is securely bolted to the vehicle and thus experiences the same velocity and acceleration.

The outer, middle and inner gimbals look much the same except for size. Two slipring assemblies connect each gimbal to the next innermost and next outermost gimbals. The slipring assemblies contain resolvers, tachometers and torque motors. The relative position and velocity of each gimbal pair may be directly observed (after filtering to remove noise). The torque motors are the sole actuators present in the system.

The elevation gimbal is totally different from the others. It is essentially a platform laden with sensors. The only sensors of concern to us here will be the gyroscopes. The

(1)

The phrase "elevation gimbal" is carried over from three-gimbal system days when the elevation angle I was exactly equal to the elevation of the vehicle with respect to the earth's surface. What is now the inner gimbal was then called the "azimuth gimbal." It is still occaisionally referred to by the older name. We will stick with "inner gimbal." The letter "B" used for the angle between the inner and middle gimbals reflects the fact that this angle equalled the bearing of the vehicle in the three-gimbal system.
gyroscopes will be treated as though there were three single degree of freedom (SDF) gyros. In fact, two two degree of freedom (TDF) gyros may be used, one degree of freedom being redundant. The gyros are aligned so that their input axes lie along X_{E}, Y_{E} and Z_{E}. Any rotation of the inertial platform will be sensed by one or more gyros. Any misalignment of the gyroscopes with respect to the inertial platform will be subject to compensation elsewhere in the guidance system and will not concern us.

Six different Cartesian coordinate systems may be defined. Four of these coordinate systems are fixed to the four gimbals, the fifth and sixth coordinate systems are associated with the case and inertial space (S). One may restate the purpose of the controller as being to keep the elevation gimbal coordinate frame and the inertial space coordinate frame as closely aligned as possible given the rotation rate of the case coordinate frame. The rotation rates of the case and gimbals with respect to inertial space coordinatized in the case and gimbal frames may be defined as follows:

The above vectors are interpreted as the rotation rate of the coordinate system denoted by the the right subscript with respect to the coordinate system denoted by the left subscript as seen from the coordinate system denoted by the superscript. This convention is discussed in more detail in Britting[3].

In order to relate the various coordinate frames it is necessary to define the angle between adjacent gimbals.

Angle name	Between	Also called
I	E and I	Elevation Angle
B	I and M	Inner Angle
0	M and O	Middle Angle
D	0 and C	Outer Angle

That only a single degree of freedom exists between gimbals simplifies the direction cosine matrices. Specifically:

$$
\begin{align*}
& C_{M}^{I}=\left\{\left.\begin{array}{lll}
\cos B & \sin B & 0 \\
-\sin B & \cos B & 0 \\
0 & 0 & 1 \\
C_{I}^{E}= & \left.\begin{array}{llr}
\cos I & 0 & -\sin Y \\
0 & 1 & 0 \\
\sin Y & 0 & \cos I
\end{array} \right\rvert\,
\end{array} \right\rvert\,\right. \tag{3.3}
\end{align*}
$$

The above matrices are interpreted as a linear transform from the coordinate system denoted by the subscript to the coordinate system denoted by the superscript. Direction cosine matrices are treated in more detail in Appendix A. The special form of the direction cosine matrices is due to the fact that D is measured around the outer gimbal and case y-axis, θ is measured around the middle and outer z-axis, B is measured around the inner and middle x-axis, and Y is measured around the elevation and inner y-axis. These definitions are entirely arbitrary but survive for historical reasons. The time derivatives of these angles are nothing but the relative rotation rates. That is:

$$
\left.\vec{W}_{C O}^{C}=\vec{W}_{C O}^{0} \hat{\equiv} \begin{gathered}
0 \\
\dot{\theta} \\
0
\end{gathered}\left|\quad \vec{W}_{O M}^{0}=\vec{W}_{O M}^{T} \hat{=}\right| \begin{gathered}
\dot{\theta} \\
0 \\
0
\end{gathered} \right\rvert\,
$$

$$
\vec{W}_{M I}^{M}=\vec{W}_{M I}^{I} \hat{=}\left|\begin{array}{c}
0 \\
0 \\
\dot{B}
\end{array}\right| \quad \vec{W} I{ }_{I E}=\vec{W}_{I E}^{E} \hat{I}=\left|\begin{array}{c}
0 \\
\dot{I} \\
0
\end{array}\right|
$$

It is now possible to relate the rotation of any gimbal to inertial space. This is necessary to express the torque equations later. Starting with the outer gimbal and applying equations (A.2) and (A.6) we have:

$$
\begin{align*}
& \vec{W}_{S O}^{0}=\vec{W}_{S C}^{0}+\vec{W}_{C O}^{0}=C_{C}^{0} \vec{W}_{S C}^{C}+\vec{W}_{C O}^{O} \\
&=\left\{\begin{array}{l}
\cos \theta W_{C X}-\sin \theta W_{C Z} \\
W_{C Y}+\dot{\theta} \\
\sin \theta W_{C X}+\cos \theta W_{C Z}
\end{array}\right. \tag{3.5}\\
&=\left\{\begin{array}{l}
W_{O X}^{M}+\dot{\theta} \\
\cos \theta W_{O Y}+\sin \theta W_{O Z} \\
-\sin \theta W_{O Y}+\cos \theta W_{O Z}^{M} \vec{W}_{S O}^{0}+\vec{W}_{O M}^{M} \\
\vec{W}_{S I}^{I}
\end{array}\right. \\
&=C C_{M}^{I} \vec{W}_{S M}^{M}+\vec{W}_{M I}^{I} \tag{3.6}\\
& \operatorname{cosB} W_{M X}+\sin B W_{M Y} \\
&-\sin B W_{M X}+\cos B W_{M Y} \tag{3.7}\\
& W_{M Z}+\dot{B}
\end{align*}
$$

$$
\begin{align*}
\vec{W}_{S E}^{E} & =C_{I}^{E} \vec{W}_{S I}^{I}+\vec{W}_{I E}^{E} \\
& =\left\{\begin{array}{l}
\cos Y W_{I X}-\sin Y W_{I Z} \\
W_{I Y}+\dot{Y} \\
\sin I W_{I X}+\cos Y W_{I Z}
\end{array}\right. \tag{3.8}
\end{align*}
$$

Equations (3.5) through (3.8) and (A.2) may be combined to compute the case rates.

$$
\begin{equation*}
\vec{W}_{S E}^{E}=c_{C}^{E} \vec{W}_{S C}^{C}+c_{0}^{E} \vec{W}_{C O}^{0}+c_{M}^{E} \vec{W}_{O M}^{M}+c_{I}^{E} \vec{W}_{M I}^{I}+\vec{W}_{I E}^{E} \tag{3.9}
\end{equation*}
$$

Rearranging terms and multiplying by C_{E}^{C} yields:

$$
\begin{align*}
\vec{W}_{S C}^{C} & =C_{E}^{C} \vec{W}_{S S E}^{E}-C_{E}^{C} C_{0}^{E} \vec{W}_{C O}^{O}-C_{E}^{C} C_{M}^{C} \vec{W}_{O M}^{M}-C_{E}^{C} C_{I}^{E} \vec{W}_{M I}^{I}-C_{E}^{C} \vec{W}_{I E}^{E} \\
& =C_{E}^{C} \vec{W}_{S E}^{E}-C_{0}^{C} \vec{W}_{C O}^{O}-C_{M}^{C} \overrightarrow{\vec{W}}_{O M}^{M}-C_{I}^{C} \vec{W}_{M I}^{I}-C_{E}^{C} \vec{W}_{I E}^{E} \\
\vec{W}_{S C}^{C} & =C_{E}^{C} \vec{W}_{S E}^{E}-\vec{W}_{C O}^{C}-C_{O}^{C} \vec{W}_{O M}^{O}-C_{M}^{C} \vec{W}_{M I}^{M}-C_{I}^{C} \vec{W}_{I E}^{I} \tag{3.10}
\end{align*}
$$

The left hand side is the rotation rate of the case, which is to be determined; the right hand side is dependent only upon measurable quantities. We will want to relate torque to acceleration in the next section, so we may apply equation (A.8) to equations (3.5) through (3.8).

$$
\begin{align*}
& \dot{\vec{W}}_{S O}^{O}=c_{C}^{0} \dot{\vec{W}}_{S C}^{C}-\vec{W}_{C O}^{O} \times c_{C}^{O} \vec{W}_{S C}^{C}+\dot{\vec{W}}_{C O}^{O} \tag{3.11}\\
& \dot{\vec{W}}_{S M}^{M}=c_{0}^{M} \dot{\vec{W}}_{S O}^{O}-\vec{W}_{O M}^{M} \times c_{O}^{M} \overrightarrow{\vec{W}}_{S O}^{O}+\dot{\vec{W}}_{O M}^{M} \tag{3.12}\\
& \dot{\vec{W}}_{S I}^{I}=c_{M}^{I} \dot{\vec{W}}_{S M}^{M}-\vec{W}_{M I}^{I} \times c_{M}^{I} \vec{W}_{S M}^{M}+\dot{\vec{W}}_{M I}^{I} \tag{3.13}\\
& \dot{\vec{W}}_{S E}^{E}=C_{I}^{E} \dot{\vec{W}}_{S I}^{I}-\vec{W}_{I E}^{E} \times c_{I}^{E} \vec{W}_{S I}^{I}+\dot{\vec{W}}_{I E}^{E} \tag{3.14}
\end{align*}
$$

Unfortunately, equation (3.11) contains $\dot{\vec{W}}_{S C}^{C}$, the acceleration of the case, and a difficult quantity to measure.

It will be desirable to know $\dot{\vec{W}}_{S C}^{C}$ in order to predict the trajectory of $\vec{W}_{S C}^{C}$ and thereby optimize the performance of the gimbal system at some time in the future. For a massive vehicle such as the one under consideration here the rotation rate cannot change rapidly. Unable to measure the vehicle's acceleration directly to predict its behavior, a reasonable approach is to assume that it does not change at all. Therefore, throughout this paper it will be assumed that $\dot{\vec{W}}_{S C}^{C}=\overrightarrow{0}$. This is not such a bad assumption over a short time interval. Thus, equation (3.11) reduces to

$$
\begin{equation*}
\dot{\vec{W}}_{S O}^{0}=-\vec{W}_{C O}^{0} \times c_{C}^{0} \vec{W}_{S C}^{c}+\dot{\vec{W}}_{C O}^{0} \tag{3.15}
\end{equation*}
$$

In theory it is possible to predict the vehicle's acceleration knowing the generated thrust and mass. It is preferable, though, to keep the four-gimbal controller as decoupled as possible from all other vehicular systems, including propulsion.

The vector angular acceleration equations, although compact, are of limited utility by themselves[10]. They need to be expressed in terms of scalar quanties. To this end, equations (3.12) through (3.15) will be expanded using equations (3.5) through (3.8).

$$
\dot{\vec{W}}_{\text {SO }}^{0}=\left\lvert\, \begin{array}{ll}
-\dot{\theta} & W_{0 z} \tag{3.16}\\
\ddot{\theta} & \\
\dot{\theta} & W_{O X}
\end{array}\right.
$$

$$
\begin{align*}
& \dot{\vec{W}}_{S M}=\left\{\left.\begin{array}{l}
\dot{W}_{O X}+\ddot{\theta} \\
\cos \theta \dot{W}_{O Y}+\sin \theta \dot{W}_{O Z}+\dot{\theta} W_{M Z} \\
-\sin \theta \dot{W}_{O Y}+\cos \theta \dot{W}_{O Z}-\dot{\theta} W_{M Y}
\end{array} \right\rvert\,\right. \\
& =\left|\begin{array}{l}
-\dot{D} W_{O Z}+\ddot{\theta} \\
\cos \theta \ddot{\partial}+\sin \theta \dot{D} W_{O X}+\dot{\theta} W_{M Z} \\
-\sin \theta \ddot{\partial}+\cos \theta \dot{D} W_{O X}-\dot{\theta} W_{M Y}
\end{array}\right| \tag{3.17}\\
& \dot{\vec{W}}_{S I}^{I}=\left\{\begin{array}{l}
\cos B \dot{W}_{M X}+\sin B \dot{W}_{M Y}+\dot{B} W_{I Y} \\
-\sin B \dot{W}_{M X}+\cos B \dot{W}_{M Y}-\dot{B} W_{I X} \\
\dot{W}_{M Z}+\ddot{B}
\end{array}\right. \\
& =\left\{\begin{array}{l}
\cos B\left(-\dot{D} W_{O Z}+\ddot{\theta}\right)+\sin B(\cos \theta \ddot{D} \\
\left.+\sin \theta \ddot{D} W_{O X}+\dot{\theta} W_{M Z}\right)+\dot{B} W_{I Y} \\
-\sin B\left(-\dot{D} W_{O Z}+\ddot{\theta}\right)+\cos B(\cos \theta \ddot{D} \\
\left.+\sin \theta \ddot{D} W_{O X}+\dot{\theta} W_{M Z}\right)-\dot{B} W_{I X} \\
-\sin \theta \ddot{D}+\cos \theta \dot{D} W_{O X}-\dot{\theta} W_{M Y}+\ddot{B}
\end{array}\right. \tag{3.18}\\
& \dot{\vec{W}}_{S E}^{E}=\left\{\left.\begin{array}{l}
\cos Y \dot{W}_{I X}-\sin Y \dot{W}_{I Z}-\dot{Y} W_{E Z} \\
\dot{W}_{I Y}+\ddot{Y} \\
\sin Y \dot{W}_{I X}+\cos Y \dot{W}_{I Z}+\dot{Y} W_{E X}
\end{array} \right\rvert\,\right.
\end{align*}
$$

Abstract

These last four equations are second order differential equations. Note that the only place where second time derivatives appear is on angles. This is quite a propitious occurrence because, in a later section the state variables will be specified, and the angles will be among the state variables. We will want to express the highest order derivatives of the state variables as functions of lower order derivatives and other known quantities, and to do this we must separate the highest order derivatives from all other factors. Equations (3.16) through (3.19) show where the high order derivatives lie and this is a great help.

We now introduce three variables $\triangle S V, \Delta J$ and $\triangle S R$. They represent the tilt (rotation) of the inertial platform with respect to inertial space. $\Delta S R$ is measured about the x-axis, Δ^{J} is measured about the y-axis and $\Delta S V$ is measured about the z-axis of the elevation gimbal. The tilts equal the angular displacement of the inertial platform as sensed by the gyros about the relevant axes. They may be described by differential equations by noting that the rate of change of the tilts must equal the rotation rate of the inertial platform. The rotation rate of the platform is merely $\bar{W}_{S E}^{E}$. Applying equation (3.8) we have:

$$
\begin{align*}
& \Delta \dot{S} R=\cos Y W_{I X}-\sin Y W_{I Z} \tag{3.20}\\
& \Delta \dot{J}=W_{I Y}+\dot{I} \tag{3.21}\\
& \Delta \dot{S} V=\sin Y W_{I X}+\cos Y W_{I Z} \tag{3.22}
\end{align*}
$$

Now to define the moments of inertia of the gimbals. Let
 be the inertia tensor of gimbal k in the l coordinate system. The matrix representation of an inertia tensor transforms under similarity transformations, i.e., $J_{k}^{m}=C_{1}^{m} J_{k}^{l} C_{m}^{l}$. Because the gimbals are symmetric and have been evenly balanced, and because the gimbal-fixed coordinate systems are aligned with the principal axes, the inertia matrix will have zeros off the diagonal when coordinatized in the reference frame of that gimbal. Thus:

$$
J_{k}^{k}=\left|\begin{array}{lll}
J_{k x} & 0 & 0 \\
0 & J_{k y} & 0 \\
0 & 0 & J_{k z}
\end{array}\right|
$$

In general, this is true only when the inertia is coordinatized in the reference frame of that gimbal, and not true in most other reference frames. Thus, $J_{k}^{l}, ~ l \not k k$ will, in general, have nonzero terms off the diagonal. Furthermore, the elevation gimbal is almost symmetric, so we may approximate jEX \approx $J_{E Y} \simeq J_{E Z} \cong J_{E X Y Z}$ The other three gimbals take the shape of bands, each having two roughly equal moments of inertia and a third distinct moment of inertia, the distinct inertia corresponding to the gimbal axis passing through the "hole" in the gimbal. For the given geometry:

$$
\begin{aligned}
& J_{I Y}=J_{I Z} \xlongequal{J_{M X}}=J_{I Y Z} \\
& J_{M Z} \xlongequal{=} J_{M X Z} \\
& J_{O X}=J_{O Y} \triangleq J_{O X Y}
\end{aligned}
$$

These approximations will greatly simplify the torque equations. As shown in Table 3.1 the approximations are good ones. The largest error introduced is 8% for the E gimbal, 2.5% for the M gimbal and 0% for the other gimbals. The $8 \% \mathrm{E}$ gimbal error will have a negligible effect because that gimbal should remain inertial and the exact value of its moment of inertia ought not to matter much.

It should be noted here that the symmetry of the E gimbal gives rise to some useful results.

Thus in any coordinate system k,

$$
\begin{align*}
J_{E}^{k} & =C_{E}^{k} J_{E}^{E} C_{k}^{E}=C_{E}^{k}\left(J_{E X Y Z} I\right) C_{E}^{k^{-1}}=J_{E X Y Z} I \tag{3.24}\\
J_{E}^{E} & =J_{E}^{I}=J_{E}^{M}=J_{E}^{0} \tag{3.25}
\end{align*}
$$

Equation (3.25) has the following interpretation: J_{E}^{E}, J_{E}^{I}, J_{E}^{M} and J_{E}^{O} are all different tensors; they just happen to share the same matrix representation.

Table 3.1
Moments of Inertia

Gimbal	Axis	Name	Yalue
Elevation	X	$J_{E X}$	1.3
	Y	JEY	1.2
	Z	JEZ	1.1
Inner	X	JIX	1.7
	Y	JIY	1.3
	2	JIZ	1.3
Middle	X	$J_{M X}$	2.2
	Y	JMY	3.0
	2	JMZ	2.3
Outer	X	JoX	3.0
	Y	JOY	3.0
	2	JOZ	3.9

Figure 3.1
Four-Gimbal System
IV. Derivation of Torque-Acceleration Equations

Torque is the rate of change of angular momentum. For a four-gimbai system there will be four angular momentum vectors to consider, one for each gimbal. This will lead to four torque equations. These four torque equations will be solved for the four angular accelerations ($\ddot{Y}, \ddot{B}, \ddot{0}, \ddot{D}$). The angular accelerations can be integrated twice to solve for the angular velocities and the angles themselves, thus completely characterizing the system.

Torques are applied to gimbals through their pivot assemblies. Torques may be applied either along a torque motor axis or normal to a torque motor axis or both. Torques normal to a motor axis are coupled through the bearings; these forces are not controlled directly. Control is exerted directly only on the components of torque along the motor axes. There are four sources in all of torques about a motor axis. They are control voltage, back-emf, coulomb friction and static friction.

Let's examine the relationship between angular momentum and torque. The angular momentum of gimbal j with respect to inertial space (1) is

[^0]\[

$$
\begin{equation*}
\overrightarrow{H_{J}^{S}}=J{ }_{J}^{S} \vec{J}_{W}{ }_{j} \tag{4.1}
\end{equation*}
$$

\]

In the j coordinate system equation (4.1) becomes:

$$
\begin{align*}
\vec{H}_{j}^{j} & =C_{S}^{j} \vec{H}_{j}^{S}=C_{S}^{j}{ }_{j}{ }_{j}^{S_{j}} \vec{W}_{S j}=C_{S}^{j}{ }_{j}^{S_{j}} C_{j}^{S} C_{S}^{j} \vec{W}_{S j} \\
& =J_{j}^{j} \vec{W}_{S j}^{j} \tag{4.2}
\end{align*}
$$

Torque is the time derivative of angular momentum in an inertial coordinate frame. Differentiating equation (4.2) and applying (A.2) and (A.8)

$$
\begin{align*}
& \vec{T}_{j}^{j}=C_{S}^{j} \vec{T}_{j}^{S}=c_{S}^{j} d / d t\left(\vec{H}_{j}^{S}\right)=c_{S}^{j} d / d t\left(C_{j}^{S} \vec{H}_{j}^{j}\right) \\
& =c_{S}^{j}\left[c_{j}^{S \dot{H}} \dot{j}{ }_{j}-\vec{W}_{S j}^{S} \times\left(c_{j}^{S} \vec{H}_{j}^{j}\right)\right] \\
& =\dot{\vec{H}}_{j}^{j}+c_{S}^{j}\left[\vec{W}_{S j}^{S} x\left(C_{j}^{S} \vec{H}_{j}^{j}\right)\right] \\
& =\dot{\dot{H}_{j}^{j}}+\left(c_{S}^{j} \vec{W}_{S j}^{S}\right) \times\left(c_{S}^{j} c_{j}^{S} \vec{H}_{j}^{j}\right) \\
& =\vec{H}_{j}^{j}+\vec{W}_{j}^{j} \times \vec{H}_{j}^{j} \tag{4.3}
\end{align*}
$$

For a rigid body such as a gimbal, $d / d t\left(J_{j}^{j}\right)=0$, so equation (4.3) becomes:

$$
\begin{equation*}
\vec{T}_{j}^{j}=J_{j}^{j} \dot{\vec{W}}_{j}^{j}+\vec{W} \vec{w}_{j}^{j} x\left(J_{j}^{j} \stackrel{\rightharpoonup}{W}{ }_{j}^{j}\right) \tag{4.4}
\end{equation*}
$$

For the 0 gimbal we have:
$\overrightarrow{\mathrm{T}}_{\mathrm{Co}}^{0}$ represents the torque transmitted from the case to the outer gimbal as seen from the outer gimbal. The form of equation (4.6) will prove most useful. Similar equations can be written for the other gimbals.

$$
\begin{align*}
& \vec{T}_{O M}^{M}=J_{M}^{M} \vec{W}_{S M}^{M}+\vec{W}_{S M}^{M} \times\left(J_{M}^{M} \vec{W}_{S M}^{M}\right)+C_{I}^{M} \vec{T}_{M I}^{I} \tag{4.7}\\
& \vec{T}_{M I}^{I}=J_{I}^{I} \dot{\vec{W}}_{S I}^{\mathrm{I}}+\overrightarrow{\mathrm{W}}_{S I}^{\mathrm{I}} \times\left(\mathrm{J}_{\mathrm{I}}^{\mathrm{I}} \overrightarrow{\mathrm{~W}}_{S I}^{\mathrm{T}}\right)+\mathrm{C}_{\mathrm{E}}^{\mathrm{I}} \overrightarrow{\mathrm{~T}}_{\mathrm{E}}^{\mathrm{E}} \tag{4.8}
\end{align*}
$$

Because the elevation gimbal is assumed to be symmetric, and $\vec{W}_{S E}^{E}$ is to be kept small, equation (4.9) reduces to:

$$
\overrightarrow{\mathrm{T}}_{\mathrm{IE}}^{\mathrm{E}} \simeq \mathrm{~J}_{\mathrm{E}}^{\mathrm{E}} \mathrm{\vec{W}}_{\mathrm{SE}}^{\mathrm{E}}
$$

The torque motor force from the inner to the elevation gimbal is along the y-axis of both gimbals.

$$
\begin{align*}
\mathrm{T}_{I E Y}^{E}= & J_{E X Y Z} \dot{W}_{E Y} \\
= & J_{E X Y Z}\left\{\ddot{\mathrm{Y}}-\sin B\left(-\dot{\varnothing} W_{O Z}+\ddot{\theta}\right)+\cos B(\cos \theta \ddot{D}\right. \\
& \left.\left.+\sin \theta \dot{D} W_{O X}+\dot{\theta} W_{M Z}\right)-\dot{B} W_{I X}\right\} \tag{4.11}
\end{align*}
$$

Equation (4.11) can be rewritten as:

$$
\begin{equation*}
Y_{E}=J_{E X Y Z} \ddot{Y}-\sin B J_{E X Y Z} \ddot{\theta}+\cos B \cos \theta J_{E X Y Z} \ddot{\theta} \tag{4.12}
\end{equation*}
$$

Where $Y_{E} \xlongequal{=}$
$T E_{I E Y}+J_{E X Y Z}\left(-\sin B \dot{\theta} W_{O Z}-\cos B \sin \theta \dot{D} W_{O X}-\cos B \dot{\theta} W_{M Z}+\dot{B} W_{I X}\right)$
Y_{E} is a quantity that contains all of the terms of the torque equation for $T_{\text {IE }}^{E}$ that do not contain an angular acceleration. Similar definitions will be made for the other gimbals. Proceeding in a parallel manner with the inner gimbal we repeat equation (4.8).

$$
\begin{equation*}
\vec{T}_{M I}^{I}=J \bar{I}_{I} \dot{\vec{W}}_{S I}^{I}+\vec{W}_{S I}^{I} \times\left(J_{I}^{I} \vec{W}_{S I}^{I}\right)+C_{E}^{I} \vec{T}_{I E}^{E} \tag{4.8}
\end{equation*}
$$

Applying equations (3.14) and (4.13) to (4.8):

$$
\begin{align*}
& \left.-\vec{W}_{I E}^{E} \times\left(C_{I}^{E} \vec{W}_{S I}^{I}\right)+\dot{\vec{W}}_{\mathrm{IE}}^{\mathrm{E}}\right) \\
& =\left(J_{I}^{I}+C_{E}^{I} J_{E} E_{I}^{E}\right) \dot{W}_{S I}^{I}+\vec{W}_{S I}^{I} X\left(J_{I}^{I} \vec{W}_{S I}^{I}\right) \\
& +C_{E}^{I_{J}} E_{E}^{E} E_{I}^{E}\left(-\vec{W}_{I E}^{I} \times \vec{W}_{S I}^{I}+\dot{\vec{W}}_{I E}^{I}\right) \\
& =\left(J_{I}^{I}+J_{E}^{I}\right) \dot{\vec{W}}_{S I}^{I}+\vec{W}_{S I}^{I} x\left(J_{I}^{I} \vec{W}_{S I}^{I}\right)+J_{E}^{I}\left(-\vec{W}_{I E}^{I} x \vec{W}_{I E}^{I}+\dot{\vec{W}}_{I E}^{I}\right) \tag{4.14}
\end{align*}
$$

Recalling equation (3.25) and expanding (4.14):

$$
\begin{aligned}
& \vec{T}_{M I}^{I}=\left\{\begin{array}{lll:l}
J_{I X}+J_{E X Y Z} & 0 & 0 \\
0 & J_{I Y Z}+J_{E X Y Z} & 0 \\
0 & 0 & J_{I Y Z}+J_{E X Y Z} & \dot{W}^{I} S_{I X} \\
\dot{W_{S I Y}} \\
\dot{W}_{S I Z}^{I}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
\left(J_{I X}+J_{E X Y Z}\right) \dot{W}_{I X}-J_{E X Y Z} W_{I Z} \dot{I} \\
\left(J_{I Y Z}+J_{E X Y Z}\right) \dot{W}_{I Y}+J_{E X Y Z} \\
\left(J_{I Y Z}+J_{E X Y Z}\right) \dot{W}_{I Z}+J_{E X Y Z} W_{I X} \dot{I}+W_{I X} W_{I Y}\left(J_{I Y Z}-J_{I X}\right)
\end{array}\right.
\end{aligned}
$$

When the elevation gimbal is inertial both $W_{I X}$ and $W_{I Z}$ should be small; ideally they will be zero. The product of such small terms will certainly be negligible. Therefore the term $W_{I X}$ $W_{I Z}\left(J_{I X}-J_{I Y Z}\right)$ has been dropped from equation (4.15). Motor torque from the M to the I gimbal is along the 2 -axis.

$$
\begin{align*}
T_{M I Z}^{I}= & \left(J_{I Y Z}+J_{E X Y Z}\right) \dot{W}_{I Z}+W_{I X} W_{I Y}\left(J_{I Y Z}-J_{I X}\right)+J_{E X Y Z} \dot{I} W_{I X} \\
= & \left(J_{I Y Z}+J_{E X Y Z}\right)\left(-\sin \theta \ddot{\theta}+\cos \theta \dot{D} W_{O X}-\dot{\theta} W_{M X}\right. \\
& +\ddot{B})+W_{I X} W_{I Y}\left(J_{I Y Z}-J_{I X}\right)+J_{E X Y Z} \dot{I} W_{I X} \tag{4.16}
\end{align*}
$$

Equation (4.16) can be rewritten in a similar fashion to (4.11):

$$
\begin{equation*}
Y_{I}=\left(J_{I Y Z}+J_{E X Y Z}\right)(\ddot{B}-\sin \theta \ddot{D}) \tag{4.17}
\end{equation*}
$$

Where $Y_{I} \hat{=} T_{M I Z}^{I}+\left(J_{I Y Z}+J_{E X Y Z}\right)\left(\dot{\theta} W_{M X}-\cos \theta \dot{\theta} W_{O X}\right)$

$$
\begin{equation*}
+W_{I X} W_{I Y}\left(J_{I X}-J_{I Y Z}\right)-\dot{I} J_{E X Y Z} W_{I X} \tag{4.18}
\end{equation*}
$$

Proceeding to the middle gimbal:

$$
\begin{equation*}
\overrightarrow{\mathrm{T}}_{O M}^{M}=J_{M}^{M} \dot{\vec{W}}_{S M}^{M}+\overrightarrow{\mathrm{W}}_{S M}^{M} \times\left(J_{M}^{M} \overrightarrow{\vec{W}}_{S M}^{M}\right)+C_{I}^{M} \overrightarrow{\mathrm{~T}}_{M I}^{I} \tag{4.7}
\end{equation*}
$$

Torque from the 0 to the M gimbal is along the x-axis. Using equations (3.17) and (3.18) the x component of (4.19) can be expanded as follows:

$$
\begin{aligned}
T_{O M X}^{M}= & J_{M X Z} \dot{W}_{M X}+W_{M Y} W_{M Z}\left(J_{M X Z}-J_{M Y}\right) \\
& +\operatorname{cosB}\left\{\left(J_{I X}+J_{E X Y Z}\right) \dot{W}_{I X}-J_{E X Y Z} W_{I Z} \dot{I}\right\} \\
& -\operatorname{sinB}\left\{\left(J_{I Y Z}+J_{E X Y Z}\right) \dot{W}_{I Y}+J_{E X Y Z} \oplus\right\}
\end{aligned}
$$

$$
\begin{align*}
& =J_{M X Z} \dot{W}_{M X}+W_{M Y} W_{M Z}\left(J_{M X Z}-J_{M Y}\right) \\
& +\cos B\left(J_{I X}+J_{E X Y Z}\right)\left(\cos B \dot{W}_{M X}+\sin B \dot{W}_{M Y}+\dot{B} W_{I Y}\right) \\
& -\operatorname{cosB} J_{E X Y Z} W_{I Z} \dot{Y} \\
& -\sin B\left(J_{I Y Z}+J_{E X Y Z}\right)\left(-\sin B \dot{W}_{M X}+\cos B \dot{W}_{M Y}-\dot{B} W_{I X}\right) \\
& \text { - } \sin B J_{E X Y Z} \ddot{\mathbf{Y}} \\
& =\left(J_{M X Z}+\cos ^{2} B J_{I X}+\sin ^{2} B J_{I Y Z}+J_{E X Y Z}\right)\left(\ddot{\theta}-\dot{\theta} W_{O Z}\right) \\
& +W_{M Y} W_{M Z}\left(J_{M X Z}-J_{M Y}\right) \\
& +\sin B \cos B\left(J_{I X}-J_{I Y Z}\right)\left(\cos \theta \ddot{D}+\sin \theta \dot{D} W_{O X}+\dot{\theta} W_{M Z}\right) \\
& +\dot{B}\left\{\cos B\left(J_{I X}+J_{E X Y Z}\right)\left(-\sin B W_{M X}+\cos B W_{M Y}\right)\right. \\
& \left.+\sin B\left(J_{I Y Z}+J_{E X Y Z}\right)\left(\cos B W_{M X}+\sin B W_{M Y}\right)\right\} \\
& -\cos B J_{E X Y Z} W_{I Z} \dot{\mathbf{I}}-\sin B J_{E X Y Z} \ddot{\mathbf{Y}} \tag{4.20}
\end{align*}
$$

Equation (4.20) can be rearranged like this:

$$
\begin{align*}
Y_{M}= & -\sin B J_{E X Y Z} \ddot{I} \\
& +\left(J_{M X Z}+\cos ^{2} B J_{I X}+\sin ^{2} B J_{I Y Z}+J_{E X Y Z}\right) \ddot{\theta} \\
& +\sin B \cos B \cos \theta\left(J_{I X}-J_{I Y Z}\right) \ddot{\theta} \tag{4.21}
\end{align*}
$$

Where $Y_{M} \xlongequal{ }$
$\mathrm{T}_{\mathrm{OMX}}^{\mathrm{M}}$
$+\left(J_{M X Z}+\cos 2 B J_{I X}+\sin ^{2} B J_{I Y Z}+J_{E X Y Z}\right) \dot{D} W_{O X}$
$+\sin B \cos B\left(J_{I Y Z}-J_{I X}\right)\left(\sin \theta \dot{D} W_{O X}+\dot{\theta} W_{M Z}-\dot{B} W_{M X}\right)$
$-\left(\cos ^{2} B J_{I X}+\sin ^{2} B J_{I Y Z}+J_{E X Y Z}\right) \dot{B} W_{M Y}$
$+\operatorname{cosB} J_{E X Y Z} W_{I Z} \dot{Y}$
Finally, for the outer gimbal:

$$
\begin{equation*}
\vec{T}_{C O}^{O}=J_{O}^{O} \dot{\hat{W}}{ }_{S O}^{0}+\vec{W}_{S O}^{O} \times\left({ }_{O}^{O} \vec{W}_{S O}^{O}\right)+C_{M}^{O} \vec{T}_{O M}^{M} \tag{4.6}
\end{equation*}
$$

The component of interest here is along the y-axis since that is where the torque motor is. The algebra required is extremely tedious, and little insight is obtained. We will not go through the entire derivation. A rigorous derivation is given in [6]. The resulting equation for Y_{O} (which is really all we want) is:

$$
\begin{align*}
Y_{0}= & \cos B \cos \theta J_{E X Y Z} \ddot{Y} \\
& -\sin \theta\left(J_{I Y Z}+J_{E X Y Z}\right) \ddot{B} \\
& +\sin B \cos B \cos \theta\left(J_{I X}-J_{I Y Z}\right) \ddot{\theta} \\
& +\left(J_{O X Y}+\sin ^{2} \theta J_{M X Z}+\cos ^{2} \theta J_{M Y}+\sin ^{2} \theta J_{I Y Z}\right. \\
& \left.+\sin ^{2} B \cos ^{2} \theta J_{I X}+\cos ^{2} B \cos ^{2} \theta J_{I Y Z}+J_{E X Y Z}\right) \ddot{\theta} \tag{4.23}
\end{align*}
$$

Where $Y_{0}=$
$\mathrm{T}_{\mathrm{COY}}^{0}$
$+W_{O X} W_{O Y}\left(J_{O Z}-J_{O X Y}\right)$
$+\sin B \cos B \cos \theta\left(J_{I X}-J_{I Y Z}\right)\left(\dot{D} W_{O Z}-\dot{B} W_{M Y}\right)$
$+\sin \theta \cos \theta\left(J_{M X Z}-J_{M Y}+\sin ^{2} B\left\{J_{I Y Z}-J_{I X}\right\}\right)\left(\dot{\theta} W_{O X}-\dot{\theta} W_{O Y}\right)$
$-\left(\sin ^{2} \theta J_{M X Z}+\cos ^{2} \theta J_{M Y}+\sin ^{2} \theta J_{I Y Z}+\sin ^{2} B \cos ^{2} \theta J_{I X}\right.$ $\left.+\cos ^{2} B \cos ^{2} \theta J_{I Y Z}+J_{E X Y Z}\right) \dot{\theta} W_{O Z}$
$+\sin \theta W_{M Y} W_{M X}\left(J_{M Y}-J_{M X Z}\right)$
$+\sin \theta W_{I Y} W_{I X}\left(J_{I Y Z}-J_{I X}\right)$
$+\sin B \cos \theta \mathrm{~J}_{\mathrm{EXYZ}} \dot{\mathrm{I}} \mathrm{W}_{\mathrm{IZ}}$
$+\sin \theta J_{E X Y Z} \dot{\mathrm{I}} \mathrm{W}_{I X}$
Equations (4.12), (4.17), (4.21) and (4.23) may be combined into a single matrix equation.

$$
\begin{equation*}
\overrightarrow{\mathrm{Y}}=\mathrm{L} \overrightarrow{\mathrm{Z}} \tag{4.25}
\end{equation*}
$$

Where $\vec{Y} \hat{\cong}\left(Y_{E}, Y_{I}, Y_{M}, Y_{O}\right)^{T}$
$\vec{Z} \cong(\ddot{Y}, \ddot{B}, \ddot{\theta}, \ddot{\theta})^{T}$
$L=\left|\begin{array}{llll}L_{11} & L_{12} & L_{13} & L_{14} \\ L_{21} & L_{22} & L_{23} & L_{24} \\ \mathrm{~L}_{31} & \mathrm{~L}_{32} & \mathrm{~L}_{33} & \mathrm{~L}_{34} \\ \mathrm{~L}_{41} & \mathrm{~L}_{42} & \mathrm{~L}_{43} & \mathrm{~L}_{44}\end{array}\right|$
With $L_{11}=J_{E X Y Z}$
$L_{12}=L_{21}=0$
$L_{13}=L_{31}=-\sin B J_{E X Y Z}$
$L_{14}=L_{41}=\cos B \cos \theta \mathrm{~J}_{E X Y Z}$
$L_{22}=J_{I Y Z}+J_{E X Y Z}$
$L_{23}=L_{32}=0$
$L_{24}=L_{42}=-\sin \theta\left(J_{I Y Z}+J_{E X Y Z}\right)$
$L_{33}=\mathrm{J}_{M X Z}+\cos ^{2} B J_{I X}+\sin ^{2} B J_{I Y Z}+J_{E X Y Z}$
$L_{34}=L_{43}=\sin B \cos B \cos \theta\left(J_{I X}-J_{I Y Z}\right)$

$$
\begin{align*}
L_{44}= & J_{O X Y}+\sin ^{2} \theta J_{M X Z}+\cos ^{2} \theta J_{M Y}+\sin ^{2} \theta J_{I Y Z} \tag{4.34}\\
& +\sin ^{2} B \cos ^{2} \theta J_{I X}+\cos ^{2} B \cos ^{2} \theta J_{I Y Z}+J_{E X Y Z} \tag{4.35}
\end{align*}
$$

A term lying on the diagonal of $L_{i}, L_{i i}$, is the effective moment of inertia of gimbal i and those gimbals inside is as seen looking into the pivot axis of gimbal. i. For example, if all four gimbals are treated as a single unit, then the inertia along the y-axis of the outer gimbal is just L_{44}. Similarly, L_{33} is the inertia of the three innermost gimbals along the x-axis of the middle gimbal. The off-diagonal terms of L are a consequence of the fact that an inertia matrix may no longer be diagonal if
coordinatized in a coordinate system not attached to the appropriate gimbal.

L contains information about the geometry of the gimbals. We have already assumed that the elevation gimbal is symmetric. This implies that the orientation of the elevation gimbal is not relevant to the overall geometry of the system and therefore we would not expect the elevation angle I to appear in equations (4.26) through (4.35). The outer angle \varnothing alsu should not affect the gimbal geometry, so we would not expect 0 to appear in equations (4.26) through (4.35) either. These expectations are realized. The gimbal configuration as defined by the matrix L is only a function of B and θ.

Note that L is symmetric. This is an instance of a reciprocity relationship between torque and angular acceleration. A torque applied at angle i will produce a response at angle j equal to the response at angle i to a torque at angle j.

The actual torque values are nestled into the Y vector together with a great many other terms having the same dimensions as torque. These other terms for the most part resemble Coriolis forces, although their exact interpretation is not always obvious. In any event, for reasonable gimbal rates and reasonable torque levels the torque terms will dominate the Coriolis forces.

Equation (4.25) allows the computation of torque given acceleration. In actuality we know the torque since the controller will be supplying the control signals; it is the acceleration we wish to compute. So we may take the inverse of
equation (4.25) to come up with:

$$
\begin{equation*}
\vec{Z}=L^{-1} \vec{Y}=M \vec{Y} \quad \text { where } M \cong L^{-1} \tag{4.36}
\end{equation*}
$$

M will of course be symmetric since L is. The computation of M is aided by repeated application of the following matrix identity:

$$
\left\lvert\, \begin{array}{l:l:l:l}
A & B & A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & A^{-1} B\left(D-C A^{-1} B\right)-1 \\
\hdashline C & D & -\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right.
$$

Before presenting the terms of M it is helpful to define a quantity called DENOM. DENOM is the determinant of ($\mathrm{L}_{44}-\mathrm{L} 43^{\mathrm{L}}-{ }_{3}^{-1} \mathrm{~L}_{34}$) obtained when using formula (4.37). Since this quantity appears in each element of M it will be much easier to define DENOM once than to write it out in full each time.

$$
\begin{align*}
& \text { DENOM }=\left[J_{O X Y}+\sin 2 \theta J_{M X Z}+\cos ^{2} \theta\left(J_{M Y}+\cos ^{2} B J_{I Y Z}+\sin ^{2} B\left\{J_{I X}\right.\right.\right. \\
& \left.\left.+J_{E X Y Z}{ }^{f}\right)\right]\left[J_{M X Z}+\cos ^{2} B\left(J_{I X}+J_{E X Y Z}\right)+\sin ^{2} B J_{I Y Z}\right. \\
& -\cos ^{2} B \sin ^{2} B \cos ^{2} \theta\left[J_{I Y Z}-J_{I X}-J_{E X Y Z}\right]^{2} \tag{4.38}\\
& M_{11}=\left\{\left[J_{O X Y}+\sin ^{2} \theta J_{M X Z}+\cos ^{2} \theta\left(J_{M Y}+J_{I X}+J_{E X Y Z}\right)\right]\right. \\
& {\left[J_{E X Y Z}+\sin ^{2} B J_{I Y Z}+\cos ^{2}{ }_{B} J_{I X}+J_{M X Z}\right]} \\
& \left.-\cos ^{2} B \cos ^{2} \theta\left[J_{I X}-J_{I Y Z}\right]\left[J_{M X Z}+J_{I X}+J_{E X Y Z}\right]\right\} \\
& \text { / DENOM / J EXYZ } \\
& M_{12}=-\operatorname{cosB} \sin \theta \cos \theta\left[J_{E X Y Z}+J_{I X}+J_{M X Z}\right] / D E N O M \tag{4.40}\\
& M_{13}=\sin B\left[J_{O X Y}+\sin ^{2} \theta J_{M X Z}\right. \\
& \left.+\cos ^{2} \theta\left(J_{M Y}+J_{I X}+J_{E X Y Z}\right)\right] / D E N O M \tag{4.41}\\
& M_{14}=-\operatorname{cosB} \cos \theta\left[J_{M X Z}+J_{I X}+J_{E X Y Z}\right] / D E N O M \tag{4.42}
\end{align*}
$$

$$
\begin{align*}
& M_{22}=\left\{\operatorname { c o s } ^ { 2 } B \operatorname { c o s } ^ { 2 } \theta [J _ { I Y Z } - J _ { I X } - J _ { E X Y Z }] \left[J_{E X Y Z}+J_{I X}\right.\right. \\
& \left.+J_{M X Z}\right]+\left[J_{M X Z}+\cos ^{2} B\left(J_{I X}+J_{E X Y Z}\right)+\sin ^{2}{ }_{B} J_{I Y Z}\right] \\
& {\left[J_{O X Y}+\cos ^{2} \theta\left(J_{M Y}+J_{I X}\right)+\sin ^{2} \theta\left(J_{M X Z}+J_{I Y Z}\right)\right.} \\
& \left.\left.+J_{E X Y Z}\right]\right\} /\left[J_{I Y Z}+J_{E X Y Z}\right] / \text { DENOM } \\
& M_{23}=\sin B \cos B \sin \theta \cos \theta\left[J_{I Y Z}-J_{I X}-J_{E X Y Z}\right] / D E N O M \\
& M_{24}=\sin \theta\left[J_{M X Z}+\cos ^{2} B\left(J_{I X}+J_{E X Y Z}\right)+\sin ^{2}{ }_{B} J_{I Y Z}\right] / D E N O M \\
& \text { (4.45) } \\
& M_{33}=\left[J_{O X Y}+\sin ^{2} \theta J_{M X Z}+\cos ^{2} \theta\left(J_{M Y}+\cos ^{2} B J_{I Y Z}\right.\right. \\
& \left.\left.+\sin ^{2} B\left\{J_{I X}+J_{E X Y Z}\right\}\right)\right\} / \text { DENOM } \\
& M_{34}=\operatorname{cosB} \sin B \cos \theta\left[J_{I Y Z}-J_{I X}-J_{E X Y Z}\right] / D E N O M \tag{4.47}\\
& M_{44}=\left[J_{M X Z}+\cos ^{2} B\left(J_{I X}+J_{E X Y Z}\right)+\sin ^{2} B J_{I Y Z}\right] / \text { DENOM (4.48) }
\end{align*}
$$

The above equations are rather difficult to manipulate and verify. By writing a computer program to numerically multiply L amd M it was found that M is indeed the inverse of L.

V. Torque and Friction

The torque produced by a given torque motior is proportional to the current through it. The constant of proportionality is Kt/r. This current will equal the applied voltage, in this case the control signal, minus the back-emf generated by the motor, divided by the resistance of the motor windings. Back-emf is created when a torque motor acts like an electric generator, putting out a voltage proportional to the relative rotation rate of the rotor and stator, tending to cancel any rotation of the gimbals. The constant of proportionality is denoted by Kv. These torque motor parameters will differ from gimbal to gimbal. Inductive effects in the motors are negligible.

Anathema to designers of precision guidance equipment, friction is nonetheless a force to be reckoned with, or at least accounted for. It is a major factor in the four-gimbal system; much of the torque supplied by the torque motors is used to overcome friction. In fact, in the absence of friction there would be almost no forces acting to perturb the inertial platform except in the neighborhood of gimbal lock.

There are essentially two types of friction: static friction and Coulomb friction. Although they originate in the same intermolecular forces the analysis of the two types of friction is substantially different. We deal first with Coulomb friction.

Gimbals in relative motion will be subject to Coulomb friction. We will use a very simple model for friction in the
simulation.

Tcoulomb =-sgn (relative gimbal rate) X Tcoulomb-limit(5.1)
Where $\operatorname{sgn}(x)=\left\{\begin{array}{rl}-1 & x<0 \\ 0 & x=0 \\ 1 & x>0\end{array}\right.$
This simple model has adequately predicted Coulomb friction in earlier simulations. It has the advantage of requiring only a single parameter for each gimbal. Gully[7] goes into more sophisticated models. The net torque at each pivot can now be determined in terms of control signals and rotation rates.

$$
\begin{align*}
& T_{I E Y}^{E}=(K t / r)_{E}\left\{U_{E}-(K v)_{E} \dot{\mathbf{I}}\right\}-\operatorname{sgn}(\dot{Y}) T c l_{E} \tag{5.2}\\
& T_{M I Z}^{I}=(K t / r)_{I}\left\{U_{I}-(K v)_{I} \dot{B}\right\}-\operatorname{sgn}(\dot{B}) \mathrm{Tcl}_{I} \tag{5.3}\\
& T_{O M X}^{M}=(K t / r)_{M}\left\{U_{M}-(K v)_{M} \dot{\theta}\right\}-\operatorname{sgn}(\dot{\theta}) T c 1_{M}^{I} \tag{5.4}\\
& T_{\text {COY }}^{0}=(K t / r)_{0}\left\{U_{O}-(K v)_{0} \dot{D}\right\}-\operatorname{sgn}(\dot{D}) T c I_{0} \tag{5.5}
\end{align*}
$$

Static friction or stiction as it is often called, is the force tending to prevent adjacent bodies from moving at all relative to one another once they have stopped moving. Static friction is in general stronger than Coulomb friction, the latter being effective only after the onset of relative motion. Static friction is quite annoying from the viewpoint of the four-gimbal controller. It means that a comparatively large torque must be applied to get a stuck gimbal pair unstuck.

The model used for static friction here is extremely simple. Others are certainly possible and ought to be analyzable in the same framework. The model used here is characterized by a single parameter, the static friction torque limit. The static
friction torque limit will differ from gimbal to gimbal. The model works as follows:

Whenever two adjacent gimbals are not in relative motion (i.e. their relative rotation rate is zero) they will be considered stuck until the magnitude of the torque supplied by a torque motor from one gimbal to the other exceeds the static friction torque limit. If a greater amount of torque is applied, then the gimbals will be free to rotate subject to Coulomb friction. If the relative rotation rate is nonzero, no matter how small in magnitude, then the gimbals will not be stuck.

This may cause some difficulty in the computer simulation of the system. Because of numerical considerations it is unlikely that the relative rate of any gimbal pair will exactly equal zero in the simulation. The approach taken then is to check if the relative rotation rate about any axis has recently passed through zero (i.e. changed sign). If so, then a comparison of applied torque with the static friction limit is made as though the rotation rate were exactly zero, and the system is trèated accordingly.

When two gimbals are stuck they will travel together. Neither a relative velocity nor a relative acceleration will be experienced, despite any applied torque up to the static friction torque limit. This causes problems in applying equation (4.25). We no longer know the net torque being supplied between the stuck gimbals. The motor torque is known, but not the amount of stiction. Static friction will be just adequate to prevent motion along the affected axis, but it is not possible to predict
a priori. Calculation of angular acceleration by means of equation (4.36) is thereby rendered impossible. Some other method is required.

The method used is to go back to equation (4.25). If all net torques were known then (4.25) could be inverted as was done in (4.36). But the net torque will not be known at a stuck gimbal pair. So a constraint will have been lost from equation (4.25) and the system will be indeterminate. However, another constraint may be added, namely that the acceleration of the affected angle will be zero. This can be best expressed by rearranging and partitioning the elements of equation (4.25)

Let \vec{Y}, be a vector containing those eiements of \vec{Y} not affected by stiction. \bar{Y}_{1} can be computed since the net torque is readily computable in the absence of stiction. Let $\overrightarrow{\mathrm{Z}}_{1}$ be a vector containing the angular accelerations in \vec{Z} not affected by stiction. These are the values we wish to compute. Similarly, let \vec{Y}_{2} be a vector containing the elements of \vec{Y} that are affected by static friction. Even though the torque motor contributions to \vec{Y}_{2} will be known, the static friction contributions will not, as was discussed above. Lastly, let $\overrightarrow{\mathrm{Z}}_{2}$ be a vector containing those angular accelerations that are affected by static friction. \vec{Z}_{2} will be identically zero. Introduce a new matrix L^{\prime} whose elements are permuted elements of L such that:

$$
\left|\begin{array}{c}
\overrightarrow{\mathrm{Y}}_{1} \tag{5.6}\\
\hdashline \overrightarrow{\mathrm{Y}}_{2}
\end{array}\right|=L^{\prime}\left|\begin{array}{c}
\overrightarrow{\mathrm{Z}}_{1} \\
\hdashline \overrightarrow{\mathrm{Z}}_{2}
\end{array}\right|
$$

L' can be partitioned like so:

$$
L^{\prime}=\left|\begin{array}{c:c}
L_{1}^{\prime} & L_{1}^{\prime} \tag{5.7}\\
\hdashline \mathrm{L}_{21}^{\prime} & 1 \\
\mathrm{~L}_{22}^{\prime}
\end{array}\right|
$$

Equations (5.6) and (5.7) can be combined as follows:

$$
\begin{align*}
\vec{Y}_{1} & =L_{11} \vec{Z}_{1}+L_{12}^{i} \vec{Z}_{2} \\
& =L_{1} \vec{Z}_{1} \tag{5.8}\\
\vec{Z}_{1} & =\left(L_{11}\right)-1 \vec{Y}_{1} \tag{5.9}
\end{align*}
$$

So that

$$
\overrightarrow{\mathrm{Z}}=\left|\begin{array}{c}
\overrightarrow{\mathrm{Z}}_{1} \tag{5.10}\\
\hdashline \overrightarrow{\mathrm{Z}}_{2}
\end{array}\right|=\left\{\left.\begin{array}{l}
\left(\mathrm{L} 1_{1}\right)-1 \overrightarrow{\mathrm{Y}}_{1} \\
\hdashline \overrightarrow{0}
\end{array} \right\rvert\,\right.
$$

This is what we wanted. The presence of stiction leads to a smaller set of equations to solve. The exact contribution of static friction was not needed. If stiction is present and equation (5.10) is used, or stiction is absent and equation (4.36) is used, the angular accelerations, and thus the angles can be correctly determined.

VI. Optimal Control of the Four-Gimbal System

Up to this point, differential equations have been derived that relate acceleration of the gimbals to control signals. These have all been scalar equations although they may be considered selected components of a set of vector equations of the type exemplified by (4.3). Rearranging the scalar equations into state-space form will aid the application of modern optimal control theory to the four-gimbal problem. Define an 11-dimensional state vector $\overrightarrow{\mathrm{X}}$ and a 4-dimensional control vector U by :

$$
\begin{aligned}
& \vec{X}=(Y, B, \theta, \varnothing, \dot{I}, \dot{B}, \dot{\theta}, \dot{D}, \Delta S R, \Delta J, \Delta S V) T \\
& \vec{U}=\left(U_{E}, U_{I}, U_{M}, U_{0}\right)^{T}
\end{aligned}
$$

$\overrightarrow{\mathrm{X}}$ is composed of the gimbal angles and velocities plus the inertial platform tilts $\Delta \mathrm{SV}, \Delta \mathrm{J}, \Delta \mathrm{SR}$. The entire dynamics of the four-gimbal system can be compressed into a single nonlinear vector differential equation by writing:

$$
\begin{equation*}
\dot{\vec{x}}=\overrightarrow{\mathrm{f}}\left(\overrightarrow{\mathrm{X}}, \overrightarrow{\mathrm{U}}, \overrightarrow{\mathrm{w}}_{\mathrm{SC}}^{\mathrm{C}}\right) \tag{6.1}
\end{equation*}
$$

Explicitly, $\dot{\vec{X}}$ may be expanded using equations (3.20)-(3.22) and (4.36) to yield:

$$
\begin{align*}
\dot{x}_{1} & =x_{5} \tag{6.2}\\
\dot{x}_{2} & =x_{6} \tag{6.3}\\
\dot{x}_{3} & =x_{7} \tag{6,4}\\
\dot{x}_{4} & =x_{8} \tag{6.5}\\
\dot{x}_{5} & =M_{11} Y_{1}+M_{12} Y_{2}+M_{13} Y_{3}+M_{14} Y_{4} \tag{6.6}
\end{align*}
$$

$$
\begin{align*}
& \dot{X}_{6}=M_{21} Y_{1}+M_{22} Y_{2}+M_{23} Y_{3}+M_{24} Y_{4} \tag{6.7}\\
& \dot{X}_{7}=M_{31} Y_{1}+M_{32} Y_{2}+M_{33} Y_{3}+M_{34} Y_{4} \tag{6,8}\\
& \dot{X}_{8}=M_{41} Y_{1}+M_{42} Y_{2}+M_{43} Y_{3}+M_{44} Y_{4} \tag{6.9}\\
& \dot{X}_{9}=\cos X_{1} W_{I \cdot X}-\sin X_{1} W_{I Z} \tag{6.10}\\
& \dot{X}_{10}=W_{I Y}+X_{5} \tag{6.11}\\
& \dot{X}_{11}=\sin X_{1} W_{I X}+\cos X_{1} W_{I Z} \tag{6.12}
\end{align*}
$$

The M's are functions of B and θ_{s} or X_{2} and X_{3}. The W's are functions of case rates, gimbal angles and angular rates, and so can be expressed in terms of $\vec{W}_{S C}^{C}$ and $X^{\prime} s$. The Y^{\prime} s are also functions of X 's and U'S. Only the states, controls and case rates appear on the right hand side of equations (6.2)-(6.12) in accordance with the formulation (6.1).

One advantageous aspect of this formulation of the system relates to sensors. Each state variable has a unique sensor associated with it. X_{1} through X_{4} are measured by resolvers, X_{5} through X_{8} are measured by tachometers and X_{9} through X_{11} are measured by gyros. There can be no question as to whether or not the system is observable. Measurement noise does complicate the picture somewhat, but filtering of the sensor data should suffice to provide accurate estimates of the state variables. The oft-quoted Separation Theorem permits issues of estimation to be considered separately from issues of control for linear systems. The system under study is not linear, but as we will shortly see, it can be approximated by linear equations. Henceforth we will not be concerned with estimation of state except insofar as it relates to the validity of simulation studies.

The nonlinear equations embodied in (6.1) are fine for numerical analysis and simulation. They allow for numerical integration of the dynamical equations given any inputs to predict the trajectory of the system. As far as optimal control is concerned, equation (6.1) is horrendous. The theory of nonlinear optimal control is difficult to apply to actual real-time processes. For this reason linear quadratic optimal control will be applied to a linearized discrete-time version of the state equations.

Start by looking at the system at time to and at short intervals thereafter. Over a short enough interval, tens of milliseconds for example, the system will not change state much and the dynamics may be faithfully described by linear equations.

It is necessary to choose a nominal operating point about which to perform the linearization. One could choose $\vec{X}=\vec{X}(t 0)$, $\vec{U}=\vec{U}(t 0)$ and $\vec{W}=\vec{W}_{S C}^{C}(t 0)$. This is valid if \vec{X}, \vec{U}, and \vec{W} are slowly time-varying. It has already been assumed that \vec{W} is. \vec{X} is also slowly changing on the time scale of interest here. But \vec{U} need not be so constrained. \vec{U}, the control vector, is a quantity that ultimately will be minimized. Since U ideally will be near zero we will use $\vec{X}=\vec{X}(t 0), \vec{U}=\overrightarrow{0}$ and $\vec{W}=\vec{W}_{S C}^{C}(t 0)$ as a nominal operating point. Assuming constant case velocity, equation (6.1) can be approximated by

$$
\begin{equation*}
\Delta \dot{\vec{X}}=(\mathrm{d} \overrightarrow{\mathrm{f}} / \mathrm{d} \overrightarrow{\mathrm{X}}) \Delta \overrightarrow{\mathrm{X}}+(\mathrm{d} \overrightarrow{\mathrm{f}} / \mathrm{d} \overrightarrow{\mathrm{U}}) \Delta \overrightarrow{\mathrm{U}} \tag{6.13}
\end{equation*}
$$

$$
\begin{align*}
\dot{\vec{X}}(t)-\dot{\vec{X}}(t 0) & \simeq(d \vec{f}(\vec{X}, \vec{U}, \vec{W}) / d \vec{X}) \left\lvert\, \begin{array}{l}
{[\vec{X}(t)} \\
\bar{X}=\vec{X}(t 0) \\
\left.\frac{W}{X}(t 0)\right\} \\
\vec{W}=\vec{W}_{S C} c
\end{array}\right. \\
& +(d \vec{f}(\dot{X}, \vec{U}, \vec{W}) / d \vec{U}) \left\lvert\, \begin{array}{l}
\stackrel{\rightharpoonup}{U}(t) \\
\vec{X}=\vec{X}(t 0) \\
\vec{U}=\overrightarrow{0} \\
\vec{W}=\vec{W}_{S C}
\end{array}\right. \tag{6.14}
\end{align*}
$$

Equation (6.14) can be rewritten as:

$$
\begin{align*}
& \dot{\vec{X}(t)}=A \vec{X}(t)+B \vec{U}(t)+\dot{\vec{X}}(t 0)-A \vec{X}(t 0) \tag{6.15}\\
& \text { Where } A=d \vec{f}(\vec{X}, \overrightarrow{0}, \vec{W}) / d \vec{X} \tag{6.16}\\
& B=d \vec{f}(\vec{X}, \vec{U}, \vec{W}) / d \vec{U} \tag{6.17}
\end{align*}
$$

Equation (6.15) is a linear continuous-time approximation to the four-gimbal system. Computation of A and B is extremely complex. Unfortunately, we do not have at our disposal a computer that can exactly simulate in a finite amount of time the continuous behavior of the system that is implicit in (6.15). It is appropriate to ask what the state of the system will be at time to $+\Delta t$ given the state and control at time to. Simulating samples of the state will relieve the computational burden required for a continuous solution. Assuming $\vec{U}(t)$ to be constant in the interval $[t 0, t]$ and A to be nonsingular, the solution to the dynamical equation (6.15) is:

$$
\begin{align*}
\vec{X}(t) & =e^{A(t-t 0) \vec{x}(t 0)} \\
& +A^{-1}\left[e^{A(t-t 0)}-I\right][B \vec{U}+\dot{\vec{X}}(t 0)-A \vec{X}(t 0)] \tag{6.18}
\end{align*}
$$

Equation (6.18) can be differentiated versus time to check that it does solve the dynamical equation. Plugging in to for t
allows us to check the initial conditions, too.

$$
\begin{align*}
\dot{\vec{X}}(t) & =A e^{A(t-t 0)} \vec{X}(t 0)+A^{-1} A e^{A(t-t 0)}[B \vec{U}+\dot{\vec{X}}(t 0)-A \vec{X}(t 0)] \\
& =A e^{A(t-t 0)} \vec{X}(t 0)+e^{A(t-t 0)}[B \vec{U}+\dot{\vec{X}}(t 0)-A \vec{X}(t 0)] \\
& =[B \vec{U}+\dot{\vec{X}}(t 0)-A \vec{X}(t 0)]+[B \vec{U}+\dot{\vec{X}}(t 0)-A \vec{X}(t 0)] \\
& =A\left\{e^{A(t-t 0)} \vec{X}(t 0)+A^{-1}\left[e^{A(t-t 0)}-I\right][B \vec{U}+\dot{\vec{X}}(t 0)\right. \\
& -A \vec{X}(t 0)]\}+B \vec{U}+\dot{\vec{X}}(t 0)-A \vec{X}(t 0) \\
& =A \vec{X}(t)+B \vec{U}+\dot{\vec{X}}(t 0)-A \vec{X}(t 0) \tag{6.19}
\end{align*}
$$

$$
\begin{align*}
\vec{X}(t 0) & =e^{A(t 0-t 0)} \vec{X}(t 0)+A^{-1}\left[e^{A(t 0-t 0)}-I\right][B \vec{U} \\
& +\dot{\vec{X}}(t 0)-A \vec{X}(t 0)] \\
& =\vec{X}(t 0) \tag{6.20}
\end{align*}
$$

Denoting t by to $+\Delta t$, equation (6.18) can be rewritten as:

$$
\begin{align*}
\vec{X}(t 0+\Delta t) & =e^{A \Delta t} \cdot \vec{X}(t 0)+A^{-1}\left[e^{A_{\Delta} t}-I\right][B \vec{U}+\dot{\vec{X}}(t 0)-A \vec{X}(t 0)] \\
& =e^{A_{\Delta} t} \stackrel{\rightharpoonup}{X}(t 0)+A^{-1}\left[e^{A \Delta t}-I\right] B \vec{U} \\
& +A^{-1}\left[e^{A \Delta t}-I\right][\dot{\vec{X}}(t 0)-A \vec{X}(t 0)] \tag{6.21}
\end{align*}
$$

Equation (6.21) can be put in discrete form as:

Where

$$
\begin{align*}
-\vec{X}[n+1] & =A^{*} \vec{X}[n]+B^{*} \stackrel{\rightharpoonup}{U}[n]+\vec{C}^{*} \tag{6.22}\\
A^{*} & =e^{A \Delta t} \tag{5.23}\\
B^{*} & =A^{-1}\left[e^{A \Delta t}-I\right] B \tag{6.24}\\
C^{*} & =A^{-1}\left[e^{A \Delta t}-I\right][\dot{\vec{X}}(t 0)-A \vec{X}(t 0)] \tag{6.25}
\end{align*}
$$

Because Δt is assumed small equations (6.23) through (6.25)
may be approximated to second order:

$$
\begin{equation*}
A^{*}=I+A \Delta t / 1!+A^{2} \Delta t^{2} / 2! \tag{6.26}
\end{equation*}
$$

$$
\begin{align*}
B^{*} & =A^{-1}\left[I+A \Delta t / 1!+A^{2} \Delta t^{2} / 2!-I\right] B \\
& =\left[I_{\Delta t}+A \Delta t^{2} / 2!\right] B \tag{6.27}\\
C^{*} & =\left[I_{\Delta t}+A \Delta t^{2} / 2!\right][\dot{\vec{x}}(t 0)-A \vec{X}(t 0)] \tag{6.28}
\end{align*}
$$

A cost function will be used as a measure of performance. The performance index will be a quadratic function of those parameters to be minimized by the controller. They are motor torques, inertial platform misorientation as sensed by the gyros, inertial platform rotation rate, and proximity to gimbal lock. Only proximity to gimbal lock remains to be expressed mathematically.

The angle from the inner gimbal x-axis, X_{I}, to the outer gimbal plane defined by X_{0} and Y_{0} is a convenient measure of gimbal lock. This angle is called λ. λ can be shown to obey the following equation:

$$
\begin{equation*}
\sin \lambda=\sin B \sin \theta \tag{6.29}
\end{equation*}
$$

Gimbal lock occurs when λ equals ± 90 degrees. Equation (6.29) requires that both B equal ± 90 degrees and θ equal ± 90 degrees for this to happen. In keeping with a philosophy of linearizing and sampling the equations, the gimbal lock contribution to performance is approximately:

$$
\sin \lambda[n+1]=\cos B \sin \theta \Delta B+\sin B \cos \theta \Delta \theta+\sin \lambda[n+1](6.30)
$$

The inertial platform rotation rates can be handled in similar fashion.

$$
\begin{align*}
& W_{E X}[n+1]=W_{E X}[n]+\sum_{i}\left(d W_{E X} / d X_{i}\right) \Delta X_{i} \tag{6.31}\\
& W_{E Y}[n+1] \simeq W_{E Y}[n]+\sum_{i}\left(d W_{E Y} / d X_{i}\right) \Delta X_{i} \tag{6.32}\\
& W_{E Z}[n+1] \simeq W_{E Z}[n]+\sum_{i}\left(d W_{E Z} / d X_{i}\right) \Delta X_{i} \tag{6.33}
\end{align*}
$$

Equations (6.30) through (6.33) can be combined into a single equation.

$$
\begin{equation*}
\overrightarrow{\mathrm{e}}[n+1]=D[n] \overrightarrow{\mathrm{X}}[n+1]+\vec{E}[n] \tag{6.34}
\end{equation*}
$$

Where $\vec{e}[n+1]=(\sin \lambda[n+1], \Delta S R[n+1], \Delta J[n+1], \Delta S V[n+1]$,

$$
\begin{equation*}
\left.W_{E X}[n+1], W_{E Y}[n+1], W_{E Z}[n+1]\right) \tag{6.35}
\end{equation*}
$$

$\mathrm{D}[\mathrm{n}]$ is a matrix of derivatives with respect to state
$\vec{E}[n]$ is a vector containing those terms in (6.30) through (6.33) not explicitly dependent on $\overrightarrow{\mathrm{X}}[\mathrm{n}+1]$

A quadratic cost function was chosen because of a desire to penalize large misorientations of the inertial platform over small ones. Perhaps it would be more appropriate to minimize the maximum torque rather than minimize the RMS torque, but the latter approach is compatible with a quadratic cost function and is certainly more tractable. The one-step performance index is given by:

$$
\begin{equation*}
J[n]=\vec{e}[n+1]^{T} Q \vec{e}[n+1]+\vec{U}[n]^{T} R \vec{U}[n] \tag{6.36}
\end{equation*}
$$

Where $J[n]$ is a measure of system performance
eln+1] is given by (6.35)
Q is a positive definite symmetric matrix reflecting the cost associated with any state
$\vec{U}[n]$ is the control vector
R is a positive definite symmetric matrix reflecting the cost associated with any control

The cost function in equation (6.36) can be rewritten using matrix trace. Equations (6.34) and (6.22) can then be used to express the cost in terms of \vec{U}.

$$
\begin{align*}
J[n]= & \vec{e}[n+1]^{T} Q \vec{e}[n+1]+\vec{U}[n]^{T} R \vec{U}[n] \tag{6.36}\\
= & \operatorname{Tr}\left\{Q \vec{e}[n+1] \vec{e}[n+1]^{T}+R \vec{U}[n] \vec{U}[n]^{T}\right\} \\
= & \operatorname{Tr}\left\{Q\left(D[n]\left(A^{*} \vec{X}[n]+B^{*} \vec{U}[n]+\vec{C}^{*}\right)+\vec{E}[n]\right)\right. \\
& \left.\left(D[n]\left(A^{*} \vec{X}[n]+B^{*} \vec{U}[n]+\vec{C}^{*}\right)+\vec{E}[n]\right)^{T}+R \vec{U}[n] \vec{U}[n]^{T}\right\} \tag{6.37}
\end{align*}
$$

Applying the Matrix Minimum Principle[1,2] and taking the gradient of equation (6.37) with respect to $\overrightarrow{\mathrm{u}}$ yields:

$$
\begin{align*}
d J / d \vec{U} & =2\left(B^{*} T D[n]^{T} Q D[n] B^{*}+R\right) \vec{U} \\
& +2 B^{*} D[n]^{T} Q\left(D[n]\left(A^{*} \vec{X}[n]+\vec{C}^{*}\right)+\vec{E}[n]\right) \tag{6.38}
\end{align*}
$$

Setting equation (6.38) to $\overrightarrow{0}$ and solving for \vec{U} opt while keeping in mind that things are really dependent on n gives:

$$
\begin{equation*}
\text { Uopt }=-\left(B^{*} T_{D} T_{Q} D B^{*}+R\right)^{-1} B^{*} T_{D} T_{Q}\left(D\left(A^{*} \vec{X}+\vec{C}^{*}\right)+\vec{E}\right) \tag{6.39}
\end{equation*}
$$

This can be expressed as:

$$
\begin{equation*}
\overrightarrow{\text { Ulopt }}=\mathrm{K}_{1} \overrightarrow{\mathrm{X}}+\overrightarrow{\mathrm{K}}_{2} \tag{6.40}
\end{equation*}
$$

$$
\text { Where } \begin{align*}
K_{1} & =-\left(B^{*} T_{D} T_{Q} D B^{*}+R\right)^{-1} B^{*} T_{D} T_{Q} D A^{*} \tag{6.49}\\
\vec{K}_{2} & =-\left(B^{*} T_{D} T_{Q} D B^{*}+R\right)^{-1} B^{*} T_{D} T_{Q}\left(D \vec{C}^{*}+\vec{E}\right) \tag{6.42}
\end{align*}
$$

Equations (6.40) through (6.42) immediately suggest an implementation like that depicted in Figure 6.2. Here the state vector is multiplied by gain matrix K_{1} to produce an intermediate control signal. The intermediate control is corrected by \vec{K}_{2} before driving the actuators. K_{1} and \vec{K}_{2} are functions of the state, so there are two feedback loops operating here.

Alternatively equation (6.40) can be written as:

$$
\begin{equation*}
\text { Uopt }=K_{3}\left(\vec{K}_{4}-\overrightarrow{\mathrm{X}}\right) \tag{6.43}
\end{equation*}
$$

Where $K_{3}=\left(B^{*} T_{D} T_{Q} D B^{*}+R\right)^{-1} B^{*} T_{D} T_{Q ~ D ~ A ~}{ }^{*}$
$\vec{K}_{4}=-A^{*}-\left(D^{T}\left(D D^{T}\right)^{-1} \vec{E}+\vec{C}^{*}\right)$

These equations, although representing the same system as (6.40) through (6.42) suggest a different implementation shown in Figure 6.3. The controller should behave the same way regardess of which implementation is chosen. It is obvious that a great deal of effort is required to compute K_{1}, \vec{K}_{2} or K_{3}, \vec{K}_{4} since they are complicated functions of complicated functions. Their calculation poses an immense computational burden. Some way should be found to reduce the amount of work necessary.

One method is to update K_{1}, \vec{K}_{2} or K_{3}, \vec{K}_{4} less often. The relatively simple calculation of the control vector could be performed very frequently whereas it might be possible to update the gain matrix at a lower rate without sacrificing either performance, or stability. Such an analysis has yet to be undertaken.

Another strategy for coping with the complexity of
computation would be to simplify the torque equations by ignoring high order effects. This would hopefully not degrade performance, but might enable more frequent calculation of the gain matrix and offset vector. Carried to an extreme one could ignore everything in the Y's except for torque, and approximate L and M by constant matrices. Simplifications will get propagated through $A, B, A^{*}, B^{*}, \vec{C}^{*}$ etc. leading to more tractable formulas for the K's. In practice, some combination of both strategies may be most feasible.

Figure 6.1
Gimbal Lock Angle

Figure 6.2

Figure 6.3
Proposed Controller Configuration 2

Embedded in the R and Q matrices of the previous section are four parameters called TORQWT, LOCKWT, TILTWT and RATEWT. They are the weights assigned to torque motor control signals, gimbal lock proximity, inertial platform tilt and inertial platform rate respectively in the cost function. These weights were not assigned in any specific fashion. Rather, a trial and error approach was taken to get results that look good. The simulation was run with various values for the weights and performance was judged on the basis of low control voltage, gimbal lock avoidance, small inertial platform tilts and rates, and stability of the controller. The four parameters were tweaked until the controller exhibited the desired behavior. It may be possible to further improve performance by further refining the weights but it is not clear that any significant amelioration will result. In any event, the cost function weights were not chosen in any formal way.

Before examining the performance of the optimal gimbal controller let us see what it replaces. The currently implemented controller uses a zone control scheme. In this scheme the $B-\theta$ plane is divided into 16 regions (Figure 7.1). Torque motor control signals are generated based on the current zone. The idea is to steer clear of gimbal lock by staying within the numbered zones and avoiding those that include the gimbal lock condition. This is done by driving the elevation and inner gimbals from two of the gyros, and using the third gyro to
control either the middle or outer gimbal depending on the zone. The remaining redundant gimbal is used to assist in some sensible fashion. Essentially it is a three-gimbal controller modified for an extra gimbal. Additionally, two of the physical gyros are replaced in the controller by "computed" gyros. The computed gyros, ΔR and ΔV, lie in the same plane as $\Delta S R$ and $\Delta S V$. However, they point in the same direction as X_{I} and Z_{I} respectively. Equation (3.4) can be used to show that:

$$
\begin{align*}
& \Delta R=\Delta S R \cos Y-\Delta S V \sin Y \tag{7.1}\\
& \Delta V=\Delta S R \sin Y+\Delta S V \cos I \tag{7.2}
\end{align*}
$$

The zone control works fairly well until a zone switch is necessary. When a zone switch occurs, large transient effects arise. Large torque levels may be required to keep the platform inertial. Inertial platform misorientations are greatest immediately following zone changes. The decision rules are:

Zones 1-4 ΔR drives the middle gimbal (Iactual - Icommanded) drives the outer gimbal

Zones 5-8 $\quad \Delta R$ drives the middle gimbal sinB drives the outer gimbal

Zones 9-12 Δ R drives the outer gimbal sine drives the middle gimbal

All zones Δ^{J} drives the elevation gimbal
ΔV drives the inner gimbal

The next several pages compare the optimal controller with the zone control over a variety of orientations and case rates. In all examples the optimal controller exhibits much smaller gyro errors, plus lower RMS and peak torques while avoiding gimbal lock at least as well as the zone control. It wouldn't be optimal otherwise! Much of the apparent advantage of the optimal controller stems from the elimination of zone switch transients. Examples provided courtesy of H. M. Jones. For all examples the time between control updates is 5 milliseconds for the optimal controller, whereas the zone control is simulated as a continous system using a fourth order Runge-Kutta numerical integration technique with a time interval of 1 millisecond.

Zone Control Zones
Figure 7.1

Table 7.1

Optimal vs. Zone Control Run 1

Case Rates (deg/sec) Injtial Angles (deg)

Roll	-30.0	D	0.0
Pitch	0.0	θ	0.0
Yaw	-90.0	B	60.0
		I	0.0

Peak Torque (ft-lbs) Optimal

Zone
0.601
0.460
0.160
0.121

RMS Torque (ft-lbs)

\varnothing	0.111	0.218
θ	0.112	0.135
B	-	0.100
	0.090	0.090

Peak Gyro Errors (milliradians)

$\Delta S R$	0.03	0.51
ΔJ	0.26	0.42
$\Delta S V$	0.06	0.38

-63-

Figure 7.2
Optimal vs. Zone Control Trajectory 1

Table 7.2
 Optimal vs. Zone Control Run 2

Case Rates (deg/sec)	Initial Angles (deg)	
Roll 0.0	00.0	
Pitch 0.0	$\theta 45.0$	
Yaw -90.0	B 90.0	
	$1 \quad 0.0$	
Peak Torque (ft-lbs)	Optimal	Zone
0	0.0	0.0
0	0.258	0.763
B	0.0	0.0
I	0.196	0.117

RMS Torque (ft-lbs)

0	0.0	0.0
\mathbf{D}		0.119
B	0.0	0.413
\mathbf{Y}	0.090	0.0
		0.090

Peak Gyro Errors (milliradians)

$\Delta S R$	0.0	0.0
ΔJ	0.098	0.436
$\Delta S V$	0.0	0.0

Figure 7.3
Optimal vs. Zone Control Trajectory 2

Table 7.3
Optimal vs. Zone Control Run 3

Case Rates (deg/sec)	Initial Angles (deg)	
Roll 0.0	D 135.0	
Pitch 0.0	$\theta \quad 4.1$	
Yaw 90.0	B 41.2	
	I 0.0	
Peak Torque (ft-Ibs)	Optimal	Zone
D	0.395	1.13
θ	0.133	0.673
B	0.322	0.209
I	0.131	0.115

RMS Torque (ft-Ibs)

\varnothing	0.150	0.532
θ	0.110	0.194
B	0.101	0.101
\mathbf{Y}	0.090	0.090

Peak Gyro Errors (milliradians)
$\Delta S R \quad 0.133 \quad 0.460$
$\Delta \mathrm{J}$
$0.049 \quad 0.260$
$\Delta S V$
0.117
0.518

Figure 7.4
Optimal vs. Zone Control Trajectory 3

Table 7.4
Optimal vs. Zone Control Run 4

Case Rates (deg/sec) Initial Angles (deg)

Roll	-90.0	\emptyset	0.0
Pitch	0.0	θ	0.0
Yaw	-90.0	B	0.0
		I	0.0

Peak Torque (ft-lbs) Optimal Zone
$\square \quad 0.75 \quad 1.63$
θ
0.36
1.23

B
0.22
0.138

I
0.26
0.157

RMS Torque (ft-lbs)

D	0.169	0.238
O	0.075	0.192
B	0.082	0.100
I	0.015	0.085

Peak Gyro Errors (milliradians)

$\Delta S R$	0.05	1.06
ΔJ	0.18	0.84
$\Delta S V$	0.05	0.08

Figure 7.5
Optimal vs. Zone Control Trajectory 4

```
Table 7.5
Optimal vs. Zone Control Run 5
```

Case Rates (deg/sec)	Initial Angles (deg)	
Roll 0.0	D 180.0	
Pitch 0.0	Q-105.0	
Yaw 90.0	B 43.5	
	I 0.0	
Peak Torque (ft-lbs)	Optimal	Zone
0	0.939	1.64
θ	1.24	1.23
B	0.234	0.184
Y	0.415	0.177

RMS Torque (ft-lbs)

\varnothing	0.276	0.503
θ	0.174	0.173
B	-	0.100
	0.093	0.099

Peak Gyro Errors (milliradians)

$\Delta S R$	0.029	0.411
ΔJ	0.305	0.902
$\Delta S V$	0.086	1.440

Figure 7.6
Optimal vs. Zone Control Trajectory 5
-72-

> Table 7.6
> Optimal vs. Zone Control Run 6

Case Rates (deg/sec)	Initial Angles (deg)	
Roll 0.0	¢ 135.0	
Pitch 0.0	- 0.0	
Yaw 90.0	B -45.0	
	I 0.0	
Peak Torque (ft-lbs)	Optimal	Zone
\varnothing	0.637	1.29
θ	0.230	1.23
B	0.301	0.138
I	0.183	0.111

RMS Torque (ft-lbs)

D	0.252	0.390
$\boldsymbol{\theta}$	0.110	0.300
B	$-\quad 0.099$	0.087
I	0.089	0.081

Peak Gyro Errors (milliradians)

$\Delta \mathrm{SR}$	0.029	0.887
$\Delta \mathrm{~J}$	0.139	0.236
$\Delta \mathrm{SV}$	0.117	0.232

Figure 7.7
Optimal vs. Zone Control Trajectory 6

```
Table 7.7 Optimal vs. Zone Control Run 7
```

Case Rates ($\mathrm{deg} / \mathrm{sec}$) Initial Angles (deg)

Roll	0.0	0	180.0
Pitch	0.0	0	0.0
Yaw	90.0	B	-45.0
		0.0	
Peak Torque (ft-lbs)	Optimal		
D		0.637	Zone
O		0.230	1.10
B		0.301	0.401
I		0.183	0.158
			0.149

RMS Torque (ft-lbs)

\varnothing	0.252	0.430
D	0.110	0.123
B	0.099	0.085
\mathbf{I}	0.089	0.081

Peak Gyre Errors (milliradians)

$\Delta S R$	0.029	0.278
$\Delta \mathrm{~J}$	0.139	0.846
$\Delta \mathrm{SV}$	0.117	0.312

Figure 7.8

- Optimal vs. Zone Control Trajectory 7

VIII. Conclusions

Modern optimal control provides a useful framework in which to analyze and improve the performance of feedback systems. Many untapped applications exist for this powerful theory. Unfortunately, it is not always used to advantage. This thesis has attempted to relieve this situation for one particular system. Simulation studies indicate great success. The optimal controller for a four-gimbal system potentially far outperforms an earlier nonoptimal controller.

This improvement in performance does not come free. A significant computational burden is imposed by optimization. Some techniques for reducing the load have been suggested. Work remains to be done actually implementing the proposed controller. Final judgement on its feasibility awaits.

There is no reason to be content even with an optimal controller. Under different optimality criteria it is conceivable that a controller could be designed with more desirable operating characteristics. A bang-bang controller is one worth considering. By applying full torque in short pulses it may be possible to further reduce platform tilts.

Leaving such speculation aside, the fact remains that with a suitable model developed, optimal control can be applied to components of inertial guidance equipment. One can only hope that deployment precludes actual use.

Appendix A. Coordinate Transformations and Notation

The notation used here is based on work by Britting[3]. This notation is helpful for representing orientations, rotations and coordinate transformations. The reference frame of a vector is indicated by a superscript. \vec{r}^{j} is a vector coordinatized in the j reference frame. Any vector in the j frame can be expressed in the k frame by premultiplying the original vector by a coordinate transformation c_{j}^{k}. The subscript indicates the original reference frame and the superscript denotes the new reference frame. Thus, for the example given:

$$
\begin{equation*}
\frac{\stackrel{n}{r}^{k}}{}=c_{j}^{k} \vec{r}^{j} \tag{A.1}
\end{equation*}
$$

Note that the original superscript has been canceled by the subscript of c_{j}^{k}. For Cartesian coordinate systems, in which the basis vectors are orthonormal, the entries of a coordinate transformation matrix are direction cosines. Direction Cosine Matrix (DCM) is a term often used to describe such a matrix. The direction cosine from the m-axis of reference frame j to the n-axis of frame k is the mnth entry of C_{j}^{k}. DCM's exhibit many interesting properties. Some follow:

$$
\begin{align*}
& c_{k}^{1} c_{j}^{k}=c_{j}^{1} \text { but } c_{j}^{k} c_{k}^{1} \neq c_{j}^{1} \tag{A.2}\\
& c_{j}^{j}=I \tag{A.3}\\
& c_{j}^{k}=\left(c_{k}^{j}\right)^{-1} \tag{A.4}\\
& c_{j}^{k}=\left(c_{k}^{j}\right)^{T} \tag{A.5}
\end{align*}
$$

Rotations satisfy the same superscript convention as other vectors. In addition rotation vectors have two subscripts. The sense of rotation is from the left subscript to the right subscript. To be precise, coordinate systems rotate, not subscripts. $\vec{W}_{k j}^{1}$ would be the rotation rate of system j with respect to system k as seen from the l reference frame. Rotations add vectorially. When they do, subscripts cancel.

$$
\begin{equation*}
\vec{W}_{k i}^{1}=\vec{W}_{k j}^{1}+\vec{W}_{j i}^{1} \tag{A,6}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
\vec{W}_{k j}^{1}=-\vec{W}_{j k}^{1} \tag{A.7}
\end{equation*}
$$

The superscripts must be the same for these relations to hold. Differention of vectors is no longer simple in rotating reference frames. For any vector \vec{r}^{i} we have the following equivalent expressions:

$$
\begin{align*}
\dot{\vec{r}}^{i} & =c_{j}^{i} \dot{\vec{r}}^{j}-c_{j}^{i}\left(\vec{W}_{j i}^{j} \times \vec{r}^{j}\right) \\
& =c_{j}^{i} \dot{\vec{r}}^{j}-c_{j}^{i} \vec{W}_{j i}^{j} \times c_{j}^{i} \vec{r}^{j} \\
& =c_{j}^{i} \dot{\vec{r}}^{j}-\vec{W}_{j i}^{i} \times \vec{r}^{i} \\
& =c_{j}^{i} \dot{\vec{r}}^{j}+\vec{W}_{i j}^{i} \times \vec{r}^{i} \tag{A,8}
\end{align*}
$$

Appendix B. Summary of Computer Routines Used

Main Program

1. Calls INITLZ routine
2. Calls DERIVE routine
3. Calls OUTPUT routine
4. Calls UPDATE routine
5. Loops to 2.
INITLZ (X, DXDT, W, OLDRATE, TOTALT, DELTAT)
6. Clears out storage areas
7. Initializes state, case rates and other parameters
OUTPUT (X, DXDT, U, W, I, TIME)
8. Prints output 1 out of J invocations else returns
9. Prints state, derivative, control and case rate vectors
UPDATE (X, DXDT, U, W, OLDRATE, DELTAT)
10. Updates state via 4th order Runge-Kutta Integration
11. Calls DERIVE during computation
DERIVE (X, DXDT, U, W, OLDRATE)
12. Computes friction as described in section V.
13. Derives torque-acceleration equations as per section VI.
14. Solves for angular accelerations using SIMQ
15. Returns state derivative in DXDT
SIMQ (A, B, N, KS)
16. Solves system of equations of form $A X=B$
17. Returns solution in B
MINV (A, N, D, L, M)
18. Inverts a matrix
19. Returns result in A
MATMPY (A, B, C)
20. Computes $\mathrm{C}=\mathrm{AB}$
CONTRL (X, U, W, OLDRATE, DELTAT)
21. Computes linear discrete-time equations as in section VII
22. Calls MINV and MATMPY to perform matrix manipulations
23. Returns control in U

Appendix C. Computer Simulation of the Four-Gimbal System

$\begin{aligned} & 86690 \\ & 09780 \end{aligned}$	DIMENSION X (i), DXDT (i), U(i) OLDRATE (i) $X K=3.1415926535837932384600 / 181.00$
00710C	
00720 C	CLEAR State vector
$08730 C$	
00740	DO $100 \mathrm{I}=1, \mathrm{IXX}$
80750	$\chi^{X(I)}$ (10) $=0.00$
00760	ifo CONTINIE
00770C	E, I, $\mathrm{H}, 0$ FOLLOH IN DEGREES
80790C	
00800	$X(1)=0 . D 0 \$ X K$
00810	$X(2)=60.0018 \mathrm{XX}$
00820	$X(3)=0.0 \mathrm{~B} \pm \times \mathrm{K}$
00830	$X(4)=0 . D 0 \$ X K$
$\begin{aligned} & 00840 \mathrm{C} \\ & 08850 \mathrm{C} \\ & \text { OARSAR } \end{aligned}$	$d E / d t, d 1 / d t, d H / d t, d 0 / d t$ FOLLOW IN DECREES/SECOND
6087i	$X(5)=0$. D0tek
00880	$X(6)=30.00 \pm \times K$
00890	$X(7)=90.00 \pm X \mathrm{C}$
00900	$\mathrm{X}(8)=0 . D 0 \% \mathrm{XK}$
06910 C	
0 0920C	SET OLDRATE TO AMGLEDOT FOR FRICTION COMPUTATION
08940	D0 110] $=1,4$
00950	OLDRATE (I) = X (I + 4)
00968	110 CONTİde
00980C	CALCULATE CASE RATES IN RADIANS/SECOND
08990 C	
1001	SB $=$ USIN (X (2)
01010	$C 8=\operatorname{DCOS}(X)$
01028	ST $=$ DSIN (X (3)
01030	$C T=\operatorname{Cos}(x)$
01040	SF $=$ DSIN (X (4))
01050	$C F=D C O S(X)(4))$
01060	UIY $=-X$ (5)
81070	
01888	WAY $=$ CE*HIY
05090	MHZ $=-X(6)$
01100	HOX $=$ WHX-X (7)
01110	WOY = CTENAY-ST*MEZ
01128	HOZ $=$ STEAHY+CTKHMZ
01130	$V(1)=$ CFFHOX + SFWUZ
01140	$\pm(2)=W 0 Y-X(8)$
01150	
$01160 C$	SET UP TIME PARAMETERS IN SECONDS
01180 C	SEf UP Tine Paraneters in Secund
01199	TOTALT $=1$. D0
01288	DELTAT=1.DO/3006.D0
01210	RETURN
01228	END
01240 C	OUTPUT SUBROUTIME
01250 C	
01270	ITPRLICIT DOUBLE PRECISION (A-H'O-Z)
01280	DIMENSION X (1), DXDT (1), U (1), W(1)
0129	$j=30$
01300	IPRINT $=6$
01310	$X K=3.1415926535897932384601 / 188.81$
13240	
01330C	Print every Jth yirg, return the other j-i occuramies
01350	If (I.NE, (I/J)WJ) RETLSN
61368	WRITE (IPRIMT,900) TIME

```
01370
```

900 FORMAT (//' TIME =', F8.3, ` SECDNDS')

```
900 FORMAT (//' TIME =', F8.3, ` SECDNDS')
    WRIIE (IPRINT 901)
    WRIIE (IPRINT 901)
901 FORMAT (18x "DEG", IXX, 'DEG/SEC', 7X "DEG/SEE/SEC", 7X 'CONTROL')
901 FORMAT (18x "DEG", IXX, 'DEG/SEC', 7X "DEG/SEE/SEC", 7X 'CONTROL')
    WRITE (IPRINT,902)' "E",'X (1)/XK, X (5)/XK, DXDT (5) jXK, J (1)
    WRITE (IPRINT,902)' "E",'X (1)/XK, X (5)/XK, DXDT (5) jXK, J (1)
902 FORHAT (6X, 1A1 4(8X,FS.3))
902 FORHAT (6X, 1A1 4(8X,FS.3))
    URIIE (IPRINT,992) I , X (2)/XK, X (5)/XK, DXDT (6)/XK, U (2)
    URIIE (IPRINT,992) I , X (2)/XK, X (5)/XK, DXDT (6)/XK, U (2)
    WRITE (IPRINT,902) "H', X (3)/XK, X (7)/XK, DXDT (7)/XK, U(3)
    WRITE (IPRINT,902) "H', X (3)/XK, X (7)/XK, DXDT (7)/XK, U(3)
    #RITE (IPRINT,905) '0', X (4)/XK, X (8)/XK, DXDT (B)/XK, U (4)
    #RITE (IPRINT,905) '0', X (4)/XK, X (8)/XK, DXDT (B)/XK, U (4)
    HRITE (IPRINT 913)
    HRITE (IPRINT 913)
903 FORMAT (18X, "MRAD' 9X, 'MRAD/SEC', 25X, 'DEG/SEC')
903 FORMAT (18X, "MRAD' 9X, 'MRAD/SEC', 25X, 'DEG/SEC')
    WRITE (IPRINT, 904) "SR', X i9)*IE3, DXDT (9):1E3, "NCX", W (1)/XK
    WRITE (IPRINT, 904) "SR', X i9)*IE3, DXDT (9):1E3, "NCX", W (1)/XK
904 FORHAT (6X. "DELTA", A2, FIC.3, 5X, FIO.3, {6X, A3, 5X, F8,3)
```

904 FORHAT (6X. "DELTA", A2, FIC.3, 5X, FIO.3, {6X, A3, 5X, F8,3)

```




```

 RETURN
    ```
    RETURN
    END
    END
    UPDATE SIEROUTINE
    UPDATE SIEROUTINE
    CALLS DERIUE HHTCH COMPUTES DERIUATIVE, THEN
    CALLS DERIUE HHTCH COMPUTES DERIUATIVE, THEN
    EMPLOYS RUHGE-KUTTA 4 th ORDER INTEGRATLOH
    EMPLOYS RUHGE-KUTTA 4 th ORDER INTEGRATLOH
    SUBROUTINE UPDATE (X, DXDT, U, W OR.DRATE, DELTAT)
    SUBROUTINE UPDATE (X, DXDT, U, W OR.DRATE, DELTAT)
    IMPLICIT DOUBLE PRECISIOH(A-H,O-Z)
    IMPLICIT DOUBLE PRECISIOH(A-H,O-Z)
    PARAMETER IXX=I1
    PARAMETER IXX=I1
    DIMENGIDA X (1) DXDT (1) U (1), W (1), OLDRATE (1)
    DIMENGIDA X (1) DXDT (1) U (1), W (1), OLDRATE (1)
    DIMENSION Q (IXX), XSTOR (IXK')
    DIMENSION Q (IXX), XSTOR (IXK')
    STORE STATE VECTOR IN XSTOR'
    STORE STATE VECTOR IN XSTOR'
    D0 100 I = 1, IXX
    D0 100 I = 1, IXX
    XSTOR (I) = X (I)
    XSTOR (I) = X (I)
10O CONTINUE
10O CONTINUE
    COMPUTE DERIVATIVE AND MAKE ist APPROXIHATION
    COMPUTE DERIVATIVE AND MAKE ist APPROXIHATION
    CALL DERIUE (XSTOR, DXDT, U, W, DLDRATE)
    CALL DERIUE (XSTOR, DXDT, U, W, DLDRATE)
    DO ITO I = I, IXX
    DO ITO I = I, IXX
    Q(I) = DXDT' (I)
    Q(I) = DXDT' (I)
    XSTOR (I) = X (I) + ,5DO # DELTAT- DXDT (I)
    XSTOR (I) = X (I) + ,5DO # DELTAT- DXDT (I)
1so continue
1so continue
    2nd APPROXIMATION
    2nd APPROXIMATION
    CALL DERIUE (XSTOR, DXDT, U, W, OLDRATE)
    CALL DERIUE (XSTOR, DXDT, U, W, OLDRATE)
    D日 120I= 1, IXX
    D日 120I= 1, IXX
    Q(I) = Q (I) +2.DO * DXDT (I)
    Q(I) = Q (I) +2.DO * DXDT (I)
    XSTOR (I) = X (I) +.5DO & DELTAT & DXDT (I)
    XSTOR (I) = X (I) +.5DO & DELTAT & DXDT (I)
120 CONTINUE
120 CONTINUE
    3rd APPROXIMATION
    3rd APPROXIMATION
    CALL DERIUE (XSTOR, DXDT, U, W, OLDRATE)
    CALL DERIUE (XSTOR, DXDT, U, W, OLDRATE)
    DO 130 I = 1, IXX
    DO 130 I = 1, IXX
    Q(I) = Q (I) + 2.D0 # DXDT (I)
    Q(I) = Q (I) + 2.D0 # DXDT (I)
    XSTOR (I) = X (I) + DELTAT I DXDT (J)
    XSTOR (I) = X (I) + DELTAT I DXDT (J)
{30 CONTINUE
{30 CONTINUE
    FINAL APPRDXIMATION
    FINAL APPRDXIMATION
    CALL DERIVE (XSTOR, DXDT, U, W, OLDRATE)
    CALL DERIVE (XSTOR, DXDT, U, W, OLDRATE)
    STORE OLD UALUES OF ANELE RATES FON FRICTIOM CONPUTATION
    STORE OLD UALUES OF ANELE RATES FON FRICTIOM CONPUTATION
    DO 140I = 1,4
    DO 140I = 1,4
    OLDRAIE (I)}=X(I+4
    OLDRAIE (I)}=X(I+4
140 CONTMUE
140 CONTMUE
    DO 15%I = {, IXX
    DO 15%I = {, IXX
    DXDT (I) = (Q (I) + DXDT (I)) / 6.DO
```

 DXDT (I) = (Q (I) + DXDT (I)) / 6.DO
    ```


02730
02740C
02750 C
02760 C
02770 C 02780C
02790
02806
02810
02820
02830
02840
02850
02860
02870
02880
02890
02909
02928
02330
02940
02950
02960 C
02970 C
\(02580 C\)
82990
03009
03010 C
63020
03030 C
03040 C
03050 C
03070
03080 C
03090C
93100C
03110
03120
03130
03140 C
03150C
03560C
03170C
03180
03190
03210
03210
03230

\section*{CT2 = CT}

DEFINE L.11 THROUGH L44
FOR THE SIGNIFICANCE OF THESE QUANTIES REFER TO THE
GIMBAL TORGUE EQUATION DERIVATIONS
\(L(1,1)=J E\)
\(L(1,2)=0.00\)
\(L(1,3)=-S B\) : JE
\(L(1,4)=C B * C T * J E\)
\(L(2,1)=0.00\)
\(L(2,2)=J I Y Z+J E\)
\(L(2,3)=0.00\)
\(L(2,1)=-S T *(J I Y Z+J E)\)
\(L(3,1)=-58 * \mathrm{JE}\)
\(L(3,2)=0.00\)
\(L(3,3)=(\mathrm{JE}+\mathrm{SR} 2 * \mathrm{JIYZ}+\mathrm{CR2}\) ( JIX +JMXZ\()\)
\(L(3,4)=S B \geqslant C B+C T \$(J I X-J I Y Z)\)
\(L(4,1)=\) CB \(* C T *] E\)
\([(4,2)=-5 T *(J I Y Z+J E)\)
\([(4,3)=\) SE \(*\) CE \(\approx\) CT \(\ddagger(J I X-J I Y Z)\)
\(L(4,4)=\) JOXY \(+C I 2 * J M Y+S T 2 *(J M X Z+J I Y Z)+\) SB2 \(\ddagger\) CTZ \(\ddagger\) JIX

ROUTIAE TO CONUERT CONTROL SICNALS TO TORQUES, INCLUDIMG FRICTION
\(00120 I=1,4\)
TORQUE (I) \(=\) KTR (I) \(*(\mathrm{U}(\mathrm{I})-\mathrm{KU}(\mathrm{I}) * X(I+4))\)
IF THE HACNITUDE OF THE APPLIED TOROUE DOES HOT EXCEED THE STATIC
FRICTION LIMIT AND THE GIMBAL RATE IS PASSING THROLGH ZERO (iP.
ANGLEDOT CHANGES SIGN) THEN THE GIMBALS HILL BE STUCK TOGETHER
IF (ABS (TORGUE (I)),LE, FSTATC (I), AND, ( \((X(I+4)\) ) \(O L D R A T E ~(I))\).
\(8^{\text {IF }}\) LT. \(\left.0 . D 0.0 R, X(I+4), E Q . G . D 01\right)\) GOTO 100
gimbals mot stuck tegether -- clear stuck flag, subtract friction
STLCK (I) \(=\). FALSE,
TORQUE \((I)=\) TORQUE (I)-SIGN (FCOULY (I), X(I+4))
GOTD 120
GIMRALS STUCK TOGETHER -- SET STUCK FLAG, SET ANGLEDOT TO ZERO
SET Ith RON AND Ith COLUNAN OF (L) TO ZERD, SET \(L(I, I)=1\).
IOO STUCK (I) = .TRUE.
\(X(I+4)=0 . D 8\)
DO IIO II \(=1,4\)
\(L(I, I I)=0.08\)
\(L(I I, I)=0 . D 0\)
119 Continue
※TL (I,I) = 1. SO AS NOT TO HAVE A SINGULAR MATRIX
\(L(I, I)=1 . D 0\)
S2O CONTINE
DEFINE GIMBAL RATES
PSIDOT \(=X(5)\)
BETADOT \(=X(6)\)
THETADOT \(=\hat{X}(7)\)
PHIDOT \(=X(8)\)
\(4 C X=4(1)\)

HOX \(=\) CF \(* W C X-S F * W C Z\)
\(M O Y=W C Y+\) PHIDOT
\begin{tabular}{|c|c|}
\hline 03410 & W02 \(=\) SF WCX + CF WCZ \\
\hline 03420 & WHX \(=\) HOX + THETADOT \\
\hline 03430 & WHY = CT * HOY + ST * HOZ \\
\hline 03440 & \(\mathrm{WHZ}=-5 \mathrm{~T} * \mathrm{HOY}+\mathrm{CT}\) \# KOZ \\
\hline 03450 & HIX \(=\) CB WHX + SB \# WhY \\
\hline 03469 &  \\
\hline 03470 & HIZ \(=\) WMZ + EETADOT \\
\hline 83480 & WEX \(=\) CP \# WIX - SP \$ WI2 \\
\hline 93490 & HEY \(=\) WIY + PSIDOT \\
\hline 13500 & WEZ \(=\) SP WIX + CP WIZ \\
\hline 63510C & \\
\hline 03520C & DEFINE TORQUES \\
\hline 83538 C & \\
\hline 03540 & TIEY = TOPGLK ( 1 ) \\
\hline 03550 & TMIL \(=\) TOPQUE (2) \\
\hline 03560 & TOHX \(=\) T0RQUE (3) \\
\hline 05570 & TCOY = TORQUE (4) \\
\hline 035806 & \\
\hline 03596 C & TORQUE EqUATIONS FOR THE FOUR GInEALS \\
\hline 036010 & \(Y(1)=\) TIEY + JE * (-SB * PHIDOT * HDT - CB * ST \% PHIDOT \$ HOX \\
\hline 03620 &  \\
\hline 03630 & \(Y(2)=\) TMIZ + (JIYZ + JE) \# (THETADOT * Wh\% - CT * PHIDOT \% WOX) \\
\hline 03648 & \& + \#IX \$ HIY \# (JIX-JIYZ) - PSIDO \% JE * HIX \\
\hline 03650 &  \\
\hline 03660 & \& - SB \% CB \\
\hline 03570 & \& \% WNZ - EETADOT \# WMX) + WHY * UNZ \% (JAY - JMXL) - (CBE \\
\hline 03688 &  \\
\hline 03690 &  \\
\hline \(63 \% 00\) &  \\
\hline 03710 & \& + ST2 ( JHXZ + JIYI) + JE) * THETADOT \% WOZ + ST * CT \\
\hline 03729 & \(\&\) \# (JHY - JMXZ + SR2 \# (JIX-JIYZ)) * (ThETADOT \# \#OY \\
\hline 03730 & \& - PHIDOT \$ YOX) + SE * CB \% CT * (JIX - JIYZ) \% (PHIDOT \\
\hline 03740 &  \\
\hline 03750 & 8 * BETADOT + ST * HMY * (JMY- JHXZ ) ) * WHX + SB \% CT * JE \\
\hline 03768 & \& * PSIDOT \# WIZ + ST * (JE \# PSIDOT + KIY * (JIYZ - JIX) \\
\hline 03770 & \% \# WIX \\
\hline 037800 & CALI SIM TO SOLUE FOR ACCELERATIONS \\
\hline 03800C & \\
\hline 03810 & CALL SIHQ (L, Y, 4, KS) \\
\hline 63820C & SET TO 7ERD THE ACCELEPATIOH OE ANY GIHBAL THAT IS STIEX \\
\hline 038340 C &  \\
\hline 03858 & \(7013011=1,4\) \\
\hline 03860 & IF (SIUCK (II) ) \(Y\) (II) \(=0.00\) \\
\hline 83878 & 330 CONTINUE \\
\hline O3880C & CET DXDT TO THE COMPITED DEPIUATIUE \\
\hline 63890¢ & SEI DXid To The cohputed derivative \\
\hline 03910 & DXDT (1) = PSIDOT \\
\hline 83920 & DXDT (2) = BETADOT \\
\hline 83930 & DXDT (3) = THETADOT \\
\hline 03940 & DXDT (4) \(=\) PHIDOT \\
\hline 03950 & DXDT (5) \(=Y(1)\) \\
\hline 03960 & DXDT (6) \(=Y\) (2). \\
\hline 03970 & DXDT (7) \(=Y(3)\) \\
\hline 63980 & DXDT (8) \(=Y(4)\) \\
\hline 03990 & DXDT (9) \(=\) GEX \\
\hline 04000 &  \\
\hline 04010 & DXPT ( 51 ) WEZ \\
\hline 04020 & RETUR \\
\hline 04036 & END \\
\hline 04840 C & SURROUTIME TO SOLUE SYSTEMS OF SIMILTANEOLS LIMEAR EQUATIOMS \\
\hline 84050 C & \\
\hline 04970 & SURRDUTINE SIMG (A, B N, KS ) \\
\hline 84880 & IHPLICIT DOUBLE PRECISIOA(A-H, \(0-7)\) \\
\hline
\end{tabular}
```

$50 A(I I)=A(I i) /$ EICA
SAVE $=B$ (IMAX)
$B(I M A X)=B(J)$
$B(J)=$ SAVE $/$ BIGA
IF $(J-N) 55,70,55$
55 IQS $=\mathrm{N}:(\mathrm{J}-1)$
IQS $65 \mathrm{IX}=\mathrm{NY}$
NX
$I X J=I Q S+I X$
IT = J - IX
$-0060 J X=J Y, N$
IXJX $=\mathrm{N}+(J X-1)+I X$
$\mathrm{JJX}=I X J X+I T$
60 A (IXJX) $=A(I X J X)-A$ (IXJ) ${ }^{*}$ A(JJX)
65 B (IX) $=\mathrm{B}(\mathrm{IX})-\mathrm{B}(\mathrm{J})$ A (IXJ)
$70 N Y=N-1$
$I T=N \quad N$
DO $80 \mathrm{~J}=\mathrm{y}, \mathrm{NY}$
$I A=I T-J$
$I B=H-J$
$1 A=I T-J$
$I B=H-J$
IC $=\mathrm{H}$
DO $80 K=\{1,5$
$B(I B)=B(I B)-A(I A) * B(I C)$
$I A=I A-N$
80 IC $=I C-1$
RETURN
04690
04700 C
04710 C
04720 C
04730
64730 SURROUTIME KINV (A, N D L_{2}, N)
IMPLICIT DOURLE PRECISION(A-H,O-Z)
$04760 C$
DIMENSION A (1), B (1)
SOLUE SET OF ESUATIONS $A X=B$
A = AATPIX OF COEFFICIENTS STORED COLUNMISE, THESE ARE DESTROYED
IN THE COMPUTATION. THE SITE OF A IS N BY N.
$B=$ VECTOR OF ORIGIHAL CGASTAITS (LENGTH N). THESE ARE REPLACED
BY FINAL SOLUTION VALUES, VECTOR X.
$N=$ NLIMER OF EQUATIONS AMD YARIARLES.
KS = OUTPUT DIGIT, O FOR NORMAL SOLUTION, I FOR A SINGLLAR SYSTEM,
$T O L=0.090$
$\mathrm{KS}=0$
$\mathrm{JJ}=-\mathrm{N}$
$0065 J=1, N$
$J Y=J+1$
$\mathrm{JJ}=\mathrm{JJ}+\mathrm{N}+.1$
BIGA $=6 . D 0$
IT $=\mathrm{jJ}-\mathrm{J}$
D0 $30 I=J, N$
$I J=I T+J$
IF (ABS (BIGA) - ABS (A (IJ)) $20,30,31$
20 BIGA $=A$ (IJ)
IKAX = I
30 CONTIMUE
IF (ABS (BIGA) - TOL) $35,35,40$
$35 K S=1$
RETURH
$40[1=J+N(J-2)$
IT $=$ IMAX -J
DO $51 \mathrm{~K}=\mathrm{J}, \mathrm{N}$
$I 1=I i+N^{\prime}$
$I 2=I i+I T$
$S A D E=A(I)$
$A(1)^{\circ}=A(12)$
$A(\mathrm{I})=$ SAUE
END
subroutine to invert a hatrix
DIMENSION A (i), L(i), H (i)

```
```

$84770 C$
04780 C
047800
047900
04800 C
048100
048200
04830 C
04848 C
4850
44850
84870
84870
04881
04890
04890
04910
04920
04930
04940
04950
04960
04970
04980
04990
05000
8510
65020
05030
05048
6505
05860
65078
05080
05090
05100
05118
05120
05130
05149
05150
85160
05170
85180
05190
INVERT A MATRIX
A = INPUT ARRAY, IESTROYED IN COMPUTATION AND REPLACED BY INERSE
$N=$ ORDER OF MATRIX A
D = RESLLLTANT DETERMINANT, A ZERO DETERKINANT INDICAIES A singular hatrix
$L=$ WORK VECTOR OF LENGTH N
$h=$ HORK VECTOR OF LENGTH N
$D=1 . D 0$
NK $=-N$
$D O B O K=1, N$
$N K=N K+N$
$L(K)=K$
$H(K)=K$
$K K=N K+K$
$B I C A=A(K K)$
$0020 J=K, ~ i$
IZ $=N(J)-1)$
DO $20 I=K, N$
$I J=12+I$
10 IF (ABS (BIGA) - ABS (A (IJ)) 15, 20, 20
15 BIGA $=A$ (IJ)
$L(X)=!$
$\mathrm{H}(\mathrm{K})=\mathrm{J}$
20 CONTINUE
IF $(\mathrm{J}-K) 35,35,25$
$25 K I=K-N$
DO
KI
K
$=K I=1, N$
HOLD $=-A(K I)$
$J I=X I-X+J$
$A(K I)=A(J I)$
$30 \mathrm{~A}(\mathrm{JI})=\mathrm{HOLD}$
$35 I=H(K)$
IF (I - K) 45, 45, 38
$38 \mathrm{JP}=\mathrm{N}:(\mathrm{I}-1)$
DO $40 \mathrm{~J}=1, \mathrm{~N}$
$J K=N K+J$
$J I=J P+J$
HOLD $=-A(J X)$
$A(\mathrm{JK})=A(\mathrm{JI})$
40 A (JI) $=\mathrm{HOLD}$
45 IF (BIGA) 48, 46, 48
$46-7=\theta, D O$
RETURN
$48 \mathrm{DO} 55 \mathrm{I}=\mathrm{I}_{2}{ }^{\mathrm{N}}$
IF $(I-K) 58,55,50$
50 IX $=N K+I$
$A(I K)=A(I K) /(-B I C A)$
55 CONTINUE
$D 065 I=1, N$
$I K=N K+I$
HOLD $=A$ (IX)
$I J=I-N$
$0065 \mathrm{~J}=1, \mathrm{H}$
$\mathrm{IJ}=\mathrm{IJ}+\mathrm{N}$
IF (1 -
61 IF $(J-K) 62,65,62$
$62 \mathrm{KJ}=\mathrm{IJ}-\mathrm{I}+\mathrm{K}$
$A(I J)=H O L D: A(K J)+A(I J)$
65 CONTINUE
$\mathrm{KJ}=\mathrm{K}-\mathrm{N}$
DO $75 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{KJ}=\mathrm{KJ}+\mathrm{N}$
IF $(J-K) 70,75,78$
78 A (KJ) $=A(K J) / B I G A$
75 contime

```
```

05450
65470
6570
05488
05490
05500
05510
05520
05530
05540
05550
05560
85570
05580
05590
05610
05610
05620
05630
05640
05650
85669
05670
05680
65690
05700
05710
05720
05730 C
05740 C
85750C
6556
8528

- 57890
85790C
0580BC

```

```

05830C
$05840 \AA$
05850 C
05860 C
05870 C
05880 C
05890
05900
05911
65920
05930
05440
05950
05968
05978
05980
0599
06890
0611
06020
06031
86640
06150
86060
86070
86080
8680
06690
05100
05110
06120

```
```

 \(D=D:\) BIGA
    ```
    \(D=D:\) BIGA
    \(A(K X)=1 . D O / B 1 C A\)
    \(A(K X)=1 . D O / B 1 C A\)
    80 CONTIME
    80 CONTIME
    \(K=N\)
    \(K=N\)
\(100 K=(K-1)\)
\(100 K=(K-1)\)
    IF (K) \(150,150,105\)
    IF (K) \(150,150,105\)
\(105 \mathrm{I}=\mathrm{L}(\mathrm{K})\)
\(105 \mathrm{I}=\mathrm{L}(\mathrm{K})\)
    IF (I - K) \(120,120,108\)
    IF (I - K) \(120,120,108\)
\(108 \mathrm{JQ}=\mathrm{N}=(\mathrm{K}-1)\)
\(108 \mathrm{JQ}=\mathrm{N}=(\mathrm{K}-1)\)
    \(J R=N(I-1)\)
    \(J R=N(I-1)\)
    DO \(150 J=1, N\)
    DO \(150 J=1, N\)
    \(J K=J Q+J\)
    \(J K=J Q+J\)
    HOLD =A (JX)
    HOLD =A (JX)
    \(\mathrm{JI}=\mathrm{JR}+\mathrm{J}\)
    \(\mathrm{JI}=\mathrm{JR}+\mathrm{J}\)
    \(A(J K)=-A(J I)\)
    \(A(J K)=-A(J I)\)
110 A (JI) \(=\) HOLD
110 A (JI) \(=\) HOLD
\(120 \mathrm{~J}=\mathrm{M}(\mathrm{K})\)
\(120 \mathrm{~J}=\mathrm{M}(\mathrm{K})\)
    If \((\mathrm{J}-\mathrm{K}) 100,100,125\)
    If \((\mathrm{J}-\mathrm{K}) 100,100,125\)
\(125 \mathrm{KI}=-\mathrm{N}\)
\(125 \mathrm{KI}=-\mathrm{N}\)
    \(D 0130 I=1, N\)
    \(D 0130 I=1, N\)
    \(K I=K I+N\)
    \(K I=K I+N\)
    HOLD \(=A(K I)\)
    HOLD \(=A(K I)\)
    \(J I=K I-K+J\)
    \(J I=K I-K+J\)
    \(A(\mathrm{KI})=-A(\mathrm{JI})\)
    \(A(\mathrm{KI})=-A(\mathrm{JI})\)
130 A (JI) \(=\) HOLD
130 A (JI) \(=\) HOLD
    GO TO 100
    GO TO 100
150 RETURN
150 RETURN
    END
    END
    MATRIX MULTIPLICATION SUBROUTINE
    MATRIX MULTIPLICATION SUBROUTINE
    SURROUTINE MATKPY (A \({ }^{B}{ }^{B} C^{L I}, L 2, M 1, N 2, N 1, N 2\), IFLAG)
```

 SURROUTINE MATKPY (A \({ }^{B}{ }^{B} C^{L I}, L 2, M 1, N 2, N 1, N 2\), IFLAG)
    ```


```

 A \(=\mathrm{LI}\) BY L2 INPUT MATRIX
    ```
    A \(=\mathrm{LI}\) BY L2 INPUT MATRIX
    \(B=M 1\) BY H2 INPUT MATRIX
    \(B=M 1\) BY H2 INPUT MATRIX
    \(\mathrm{C}=\mathrm{NI}\) BY NZ OUTPUT MATRIX
    \(\mathrm{C}=\mathrm{NI}\) BY NZ OUTPUT MATRIX
    IF IFLAG \(=1\) THEN \(C=A \neq B\)
    IF IFLAG \(=1\) THEN \(C=A \neq B\)
        \(\begin{array}{ll}=2 & =\text { TRANSPOSE (A) A B } \\ =3 & =A \& T R M S P O S E\end{array}\)
        \(\begin{array}{ll}=2 & =\text { TRANSPOSE (A) A B } \\ =3 & =A \& T R M S P O S E\end{array}\)
        \(=4=\) TRANSPOSE (A) \(-\operatorname{TRANSPOSE~(B)}\)
        \(=4=\) TRANSPOSE (A) \(-\operatorname{TRANSPOSE~(B)}\)
    -GOTO (100, 110, 120, 130), IFLAG
    -GOTO (100, 110, 120, 130), IFLAG
100 If \(=\mathrm{Li}\)
100 If \(=\mathrm{Li}\)
    \(12=12\)
    \(12=12\)
    \(13=L 2\)
    \(13=L 2\)
    GOTO 146
    GOTO 146
\(15015=L 2\)
\(15015=L 2\)
    \(12=12\)
    \(12=12\)
    \(13=11\)
    \(13=11\)
    \(00 T 0140\)
    \(00 T 0140\)
120
120
    \(12=11\)
    \(12=11\)
    \(13=12\)
    \(13=12\)
    GOTO 148
    GOTO 148
130
130
    \(12=\mathrm{B}\)
    \(12=\mathrm{B}\)
    \(13=11\)
    \(13=11\)
\(140002001=1\), II
\(140002001=1\), II
    D0 200 II \(=1,12\)
    D0 200 II \(=1,12\)
    TEMP = \(0 . D \mathrm{D}\)
    TEMP = \(0 . D \mathrm{D}\)
    DO 190 III \(=1,13\)
    DO 190 III \(=1,13\)
    6010 (150, \(160,170,180\) ), IFLAS
```

 6010 (150, \(160,170,180\)), IFLAS
    ```


```

 COTO 190
    ```
    COTO 190
160 TEMP \(=\) TEMP \(+A(L I+(I-1)+I I I): 8(H I *(I I-1)+I I I)\)
```

160 TEMP $=$ TEMP $+A(L I+(I-1)+I I I): 8(H I *(I I-1)+I I I)$

```

\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 06810 \mathrm{C} \\
& 06820 \mathrm{C}
\end{aligned}
\] & ASSOCIATE VARIABLES hith array elements compute required trigonometric functions \\
\hline 06830 C & \\
\hline 66840 & D0 989 \(1=6\) \\
\hline 06850 & XTEHP(I) \(=\) X (I) \\
\hline 06880 & 90 CONTINUE \\
\hline 06870 & PSI \(=X(1)\) \\
\hline 06880 & BETA \(=X(2)\) \\
\hline 06890 & THETA \(=X(3)\) \\
\hline 06900 & PHI \(=X\) (4) \\
\hline 06910 & SP = DSIN (PSI) \\
\hline 06920 & \(C P=\operatorname{DCOS}(\mathrm{PSI})\) \\
\hline 26930 & SB = DSIN ( SETA \\
\hline 06940 & \(C B=D C O S ~(E E T A)\) \\
\hline 06950 & ST = DSIN (THETA) \\
\hline 06960 & \(C T=\) DCOS (THETA) \\
\hline 06976 & SF = DSIH (PHI) \\
\hline 06989 & \(C F=D C O S(P H I)\) \\
\hline 06998 & SB2 \(=\) SB \(*\) SB \\
\hline 07980 & CB2 \(=\) CB * CB \\
\hline 07010 & STO \(=\) ST \({ }^{\text {PT }}\) \\
\hline 0760 & CT2 = CT +CT \\
\hline 87930 & PSIDOT \(=X(5)\) \\
\hline 87848 & BETADAT \(=x(6)\) \\
\hline 07850 & THETADOT \(=x(7)\) \\
\hline 07060 & PHIDOT \(=X\) (8) \\
\hline 07670 & \(\psi C X=U\) (i) \\
\hline 87080 & HEY \(=\mathrm{H}(2)\) \\
\hline 07890 & HCZ \(=\) H(3) \\
\hline 07100 & WOX = CF \$ MCX - SF \% WCZ \\
\hline 0759 & HOY \(=\mathrm{WCY}+\mathrm{PH} \mathrm{IDOT}\) \\
\hline 07120 & HOZ \(=\) SF \(\ddagger\) WCX + CF \(* W C Z\) \\
\hline 838 & H\% \(=\) HOX \({ }^{\text {+ }}\) + IHETADOT \\
\hline 0748 & WMT \(=\) CTT \\
\hline \(0 \% 168\) &  \\
\hline 87168 &  \\
\hline 67170 & WIY \(=-58 *\) WHX + CB * \({ }_{\text {dit }}\) \\
\hline 67180 &  \\
\hline 07198 & WEX \(=\) CP * UIX - SP * WIZ \\
\hline 7720 & HEY \(=\) HIY + PSIDOT \\
\hline 07210 & WEZ \(=\) SP WIX + CP WIZ \\
\hline 07230 C & 1 PSIDOT 1 I M11 M12 M13 M14 1 1 Y 1 \\
\hline 67240C &  \\
\hline 07258 C &  \\
\hline 07260 C &  \\
\hline 87270 C & TORque Equations for the four gimbals excliding comirdi signals \\
\hline \(072980^{\circ}\) &  \\
\hline 7310 &  \\
\hline 07320 & \% - CB + THETADOT \# Wia + BETADOT * UIX) \\
\hline 07330 &  \\
\hline 07340 & \& + (JIY + JE) \# (THETADOT * WRY - CT \# PHIDOT \& WDX) \\
\hline 07350 &  \\
\hline 0736 d & Y3 \(=-X T R(3) \pm X U\) (3) + THETADOT \\
\hline 07378 &  \\
\hline 07380 &  \\
\hline 07390 & 8 * HKZ - EETADOT \$ WHX) + WHY * WHZ \$ (JMY - JHXZ ) - (CB2 \\
\hline 07400 & 8 * JIX + SB2 + JIYZ + JE) \% BETADOT \\
\hline 07410 & 8 - HIL \\
\hline 87420 & \(Y 4=-K T R\) (4) \(亠\) KV (4) \# PHIDOT \\
\hline 7730 & 8 - HOX * WOZ \\
\hline 87440 &  \\
\hline 07450 & \% (JHY - JMXZ + SBZ * (JIX-JIYZ) * (THETADOT \# WOY \\
\hline 07468 & 6 - PHIDOT \# WOX) + SB CR \% CT \% (JIX - IIYZ) - (PHIDOT \\
\hline 87470 &  \\
\hline 07480 &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 07490 \\
& 07500
\end{aligned}
\] &  \\
\hline 07510C & \\
\hline 17520C: & M MATRIX -- THIS IS THE INUERSE OF THE L MATRIX ABOUE \\
\hline 07530 C & beCAUSE K IS SYMiktric only the upper half need be computed \\
\hline 07540 C & \\
\hline 07550 &  \\
\hline 07560 &  \\
\hline 07570 &  \\
\hline 07580 &  \\
\hline 67590 &  \\
\hline 07600 &  \\
\hline 07610 &  \\
\hline 07820 &  \\
\hline 07630 &  \\
\hline 07640 & H23 = SBXCS*STECTK(JIYZ-JIX-JE)/DEDGM \\
\hline 07650 &  \\
\hline 07668 &  \\
\hline 07670 &  \\
\hline 97688 &  \\
\hline \[
\begin{aligned}
& 07690 \mathrm{C} \\
& 87700 \mathrm{C}
\end{aligned}
\] & Partial derivatives of y and w WITH Regpect to x fallou \\
\hline 07710 C & \(D Y 10 B=d Y 1 / d E E T A, ~ D Y I D F D=d Y S / d P H I D O T ~ E T C, ~\) \\
\hline 07720 C & \\
\hline 07730 & DYIDB = JEt(-CB\$PHIDOT* \\
\hline 07740 & \& BETADOT*WIY) \\
\hline 07750 &  \\
\hline 07760 &  \\
\hline 07770 &  \\
\hline 67780 &  \\
\hline 07790 &  \\
\hline 07800 &  \\
\hline 07810 &  \\
\hline 07820 &  \\
\hline 07830 &  \\
\hline \(0 \% 840\) &  \\
\hline 07850 &  \\
\hline 97860 &  \\
\hline 07878 & 8 \# (JIX-JIYZ) \\
\hline 07680 & DY2DPD \(=-\) JEwUIX \\
\hline 07890 & DY2DBD \(=-\mathrm{KTR}\) (2) EK C (2) \\
\hline 07906 &  \\
\hline 07510 &  \\
\hline 07920 & 8 \$PSIDOT \\
\hline 87930 &  \\
\hline 87940 & 8 *(JIX-JIYZ) \({ }^{\text {(ST }}\) \\
\hline \(07950^{\circ}\) &  \\
\hline 07960 &  \\
\hline 07978 &  \\
\hline 67580 &  \\
\hline 97990 &  \\
\hline 08000 &  \\
\hline 08610 &  \\
\hline \(\bigcirc 8820\) &  \\
\hline 88830 &  \\
\hline 89040 &  \\
\hline 08858 &  \\
\hline 88060 &  \\
\hline 88870 &  \\
\hline 08080 & \& ERETADOT-C5 STEJEFPSIDOT \\
\hline 88098 &  \\
\hline 0810 &  \\
\hline 8818 &  \\
\hline 18120 &  \\
\hline 08130 &  \\
\hline 08140 &  \\
\hline 08150 &  \\
\hline 88168 &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 08170 & *(JMY-JMXZ) *! \\
\hline 08180 &  \\
\hline 08190 &  \\
\hline 08260 &  \\
\hline 08219 &  \\
\hline 08220 &  \\
\hline 18230 &  \\
\hline 08259 &  \\
\hline 08253 &  \\
\hline 08\%60 &  \\
\hline 08270 &  \\
\hline 08280 &  \\
\hline 08290 & 8 - +SERCTETEYPSIDOT \\
\hline 08300 &  \\
\hline 08310 &  \\
\hline 08320 &  \\
\hline 88330 & \& \#JETPSIDOT \\
\hline 08340 & DY4DFD \(=-\mathrm{KTR}\) (4)*KU (4)+STXCTE(JHY-JKXZZ SE2 (JIX-JIYZ) ) (THETADOT \\
\hline 08350 &  \\
\hline 08360 & 8 *UKX 6 ST*CT* (JIYZ-JIX) \\
\hline 083780 &  \\
\hline 08390 &  \\
\hline 08480 &  \\
\hline 08410 &  \\
\hline \(0844^{\circ} 0\) & 8 -DDENOEKHISDENOH \\
\hline 88430 &  \\
\hline 08440 &  \\
\hline 08450 &  \\
\hline 08480 &  \\
\hline 684\% &  \\
\hline 88480 &  \\
\hline 88498 &  \\
\hline 08510 &  \\
\hline 08520 &  \\
\hline 08530 &  \\
\hline 88540 &  \\
\hline 08550 &  \\
\hline 08564 &  \\
\hline 88570 &  \\
\hline 08580 &  \\
\hline 08590 &  \\
\hline 88600 &  \\
\hline 88610 &  \\
\hline 08620 & 8 -DDENDT* \(37 /\) DEMOM \\
\hline 08630 &  \\
\hline 08640 &  \\
\hline 88658 & DM44DE \(=2\) 2SSICS \((\) (JIYZ-JIX-JE)/DENOM-DDENDBIM \(44 /\) DENOH \\
\hline 08660 & DM44DT \(=\)-DDENDT 4 H44/DENOK \\
\hline \(08670{ }^{\text {c }}\) & \\
\hline 686B0C & \\
\hline 08690C & DERTVATIVES OF HE HITH RESPECT TO X FOLLOW \\
\hline 08700C & DUXDFD \(=\) dWEX/dPHIDOT ETC. \\
\hline 88710 C & \\
\hline 88720 & DUXD \({ }^{\circ} \mathrm{C}=-\) HEZ \\
\hline 08738 & DWXDB \(=\) CP WIY \\
\hline 88749 &  \\
\hline 88\%58 &  \\
\hline 88760 & DHXDBD \(=-5 P\) \\
\hline 8877 & - DUXOID \(=\) CP \(+C A\) \\
\hline 88780 &  \\
\hline 68990 & DUYDB \(=-\) UIX \\
\hline 88800 & DIYDT \(=\) CH\% WHZ \\
\hline 08610 & DHYDF \(=\) SB \(*\) WOZ + CB \(*\) ST \(\ddagger\) HOX \\
\hline 08829 & DHYDP D \(=1\). DO \\
\hline 18830 & DUYDTD \(=-5 B\) \\
\hline 08840 & DHYDFD \(=\) CB \(\ddagger\) CT \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 69530 & A ( 10,8\()=\) DHYNFD \\
\hline 09540 & \(A(19,1)=\) DHCD \\
\hline 09550 & \(A(11,2)=\mathrm{DHZDB}\) \\
\hline 09588 & \(A(11,3)=\) EUZDT \\
\hline 09570 & A \((11,4)=\) DUZDF \\
\hline 09580 & \(A(11 ; 6)=\) DH2DRD \\
\hline 09590 & A \((11,7)=\) DUZDID \\
\hline 09660 & \(A(11,8)=\) DUZDFD \\
\hline 09610 C & GET UP ARPAY B \\
\hline 89630 C & SEf UP Anat D \\
\hline 09640C & CLEAR OUT B \\
\hline 09650 C & \\
\hline 09660 & DO \(120 \mathrm{I}=1, \mathrm{IXX}\) \\
\hline 09670 & DO 120 II \(=1,4\) \\
\hline 09880 & \(B\) (II II) \(=0.00\) \\
\hline 09698120 & CONTINTE \\
\hline 89700 C & \\
\hline 09710 & \(\mathrm{B}(5,1)=\mathrm{KTR}(1) * \mathrm{ML}\) \\
\hline 89720 & \(\mathrm{B}(5,2)=\mathrm{KIR}\) (2) * M12 \\
\hline 09730 & \(B(5,3)=K T P(3) \pm M 13\) \\
\hline 09740 & \(B(5,4)=K T R ~(4) * M 14\) \\
\hline 09750 & \(B(6,1)=K T R(1) * M 12\) \\
\hline 09760 & \(B(6,2)=K T R ~(2) * M 22\) \\
\hline 09770 & \(B(6,3)=K \operatorname{LR}(3) * M 23\) \\
\hline 09780 & \(B(6,4)=K T R(4) * M 24\) \\
\hline 05750 & \(\mathrm{B}(7,1)=\mathrm{KTR}\) (1) \(\mathrm{Miz}^{(13}\) \\
\hline 88800 & \(8(7,2)=\operatorname{KTP}\) (2) \(* N 23\) \\
\hline 09810 & \(\mathrm{B}(7,3)=\mathrm{KTR}\) ( 3 ) \(*\) M 33 \\
\hline 09820 & \(B(7,4)=K T R(4) * M 3 A\) \\
\hline 09830 & \(B(8,1)=K T R(1) * M 14\) \\
\hline 09640 & \(B(8,2)=K T R(2)-124\) \\
\hline 89850 &  \\
\hline 09870 C & \\
\hline 69880C & SET UP UECTOR XDOFO \\
\hline 09890 C
09900 & CALL DERIUE (XTEAP, XDOTO, ZERO, W, OLPRATE) \\
\hline 39910C & \\
\hline 09920C & 4 GIKBAL SYSIEH DYNAKIC EQUATIONS ARE NOW COMPLETELY LINEARIZED \\
\hline 8993040 C & THE DISCRETE TIME APPROXIMATIONS FOLLD \\
\hline 09950 C & The DISLRETE THE APROXIMAT 2 \\
\hline 09960C & A = I + DELTAT * A + DELTAT * \(/\) / \(2!\) \\
\hline 09970 C & \\
\hline 09980 & DELTAC = 5DD \# DELTAT * 2 \\
\hline 09990 & DELTA \(=\) DELTAT \(\pm\) DELTA2/3.00 \\
\hline 10900 & DELTA4=DELTAT*DELTA3/4.D0 \\
\hline 10810 &  \\
\hline \(10820 C\)
10830 & CALL HATMPY (A, A, AA, IXX, IXX, IXX, IXXX IXX, IXX, 1) \\
\hline 10040 & CALL KATMPY(A, AA, AAA IXX, IXX, IXX, IXX, IXX, IXX, 1) \\
\hline 10059 & CALL MATMPY(A, AAA, AAAA, IXX, IXX, IXX, IXX, IXX, IXX, 1 ) \\
\hline 10050 & DU \(130 \mathrm{I}=5\), IXX \\
\hline 10478 & M 130 II \(=1\), IXX \\
\hline 16888 & ASTAR (I, II) = DELTAT \# A (1, II) + DELTA2 \% AA (I, II) \\
\hline 10090 &  \\
\hline 10108 & IF (I , EQ , II ASTAR ( \(1, I I)=\operatorname{ASIAR}(1, I I)+1.00\) \\
\hline 10118130 & CONTINJE \\
\hline \({ }^{10120 C}\) &  \\
\hline 10130C & \(B=(\) DELTAT \# I + DELTAT \% A \(/ 2!) B\) \\
\hline 10140 C & \\
\hline 10151 & \\
\hline 10160 & 00149 II \(=1\), IXX \\
\hline 10170
10880 &  \\
\hline 10150 & If (I, EG, IJ) DIA \((\mathrm{I}, \mathrm{II})=\) DIA ( \(\mathrm{I}, \mathrm{II})+\) DELIAT \\
\hline \$0200 141 & CONTINUE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 10210 \\
& 10220 \mathrm{C}
\end{aligned}
\] & CALL MATMPY (DIA, B, BSTAR, \(14,11,11,4,11,4,1)\) \\
\hline 10230 C & \(C=(D E L T A T * I+\) DELTAT \(\ddagger\) A \(/ 2!)(X(10)-A X(10))\) \\
\hline 10240 C & \\
\hline 10258 & D0 160 I \(=1,1 \mathrm{IXX}\) \\
\hline 10260 & TENP \(=\) XDOTO ( I ) \\
\hline 10270 & 00150 II \(=1, I X X\) \\
\hline 10280 & TEMP \(=\) TEHP - A (I, II) \(\ddagger\) XTEHP (II) \\
\hline 10240 & 150 CONTINUE \\
\hline 10300 & XDOTAX ( 1 ) \(=\) TEM \\
\hline 10310 & 160 CONIINUE \\
\hline 10320 & CALL HATMPY (DIA, XDOTAX, ESTAR, IXX, IXX, IXX, 1, IXX, 1, 1) \\
\hline 10330 C
10340 C & THE MATRIX 8 REFLECTS THE WEIGHT OF THE CONTROL SIGNALS IN \\
\hline 10350 C & THE COST FUNCTION \\
\hline 10360 C & \\
\hline 10370 & \(001701=1,4\) \\
\hline 16380 & D0 170 II \(=1,4\) \\
\hline 10390 & \(\mathrm{R}\left(\mathrm{I}_{2} \mathrm{II}\right)=0 \mathrm{DO}\) \\
\hline 10400 & If (I, EQ. II) R (I, II \(=\) TORQUT \\
\hline 10419 & 170 CONIINUE \\
\hline 10430 C & THE HATRIX Q REFLECTS THE WEIGRT OF TKE STATE IN THE COST FUNCTION \\
\hline 10440 C & \\
\hline 10450 & D0 \(180 \mathrm{l}=1, \mathrm{IDR}\) \\
\hline 10460 & D0 180 II \(=1, I D R\) \\
\hline 10470 & Q (İ II) \(=0.00\) \\
\hline 10480 & IF ( 1 , EQ, II , AND, I GE, 2) Q (I, II) = TILTVT \\
\hline 10490 &  \\
\hline 10500 & 18O CONTINE \\
\hline 10510 & Q (1, 1) = L0CKHT \\
\hline 10530 C & THE KATRIX D COMPRESSES THE STATE INFGRMATION AND LINEARIZES \\
\hline 10540 C & THE GIMEAL LOCX COST \\
\hline \(10550 C\) & \\
\hline 10568 & D0 190 I \(=1, I D R\) \\
\hline 10570 & 00190 II \(=1, I X X\) \\
\hline 10588 & \(D(I, I I)=0 . D 0\) \\
\hline 10590 & 190 CONTIMUE \\
\hline 10608 & D0 \(200 \mathrm{I}=1,3\) \\
\hline 10610 & D 0 (I \(+1,1+8)=1 . D 0\) \\
\hline 10620 & 208 CONIINUE \\
\hline 10630 & \(D(1,2)=C B * S T\) \\
\hline 10640 & \(D(5,1)=D \mathrm{~S} \times \mathrm{DP}\) \\
\hline 50659 & - \(D(5,2)=D\) dx \({ }^{\text {a }}\) \\
\hline 10660 & D \((5,3)=\) DUXDI \\
\hline 10678 & \(D(5,4)=D\) UXDF \\
\hline 10880 & \(D(5,6)=D .12 \times D E D\) \\
\hline 18699 & \(D(5,7)=\) UXD \({ }^{\text {d }}\) ( 5 - \\
\hline 10700 & \(D(5,8)=\) Dix \({ }^{1}\) DFD \\
\hline 10710 & \(0(6,2)=\) DHYDB \\
\hline 10728 & \(D(6,3)=\) DUYDT \\
\hline 18730 & \(D(1,3)=S 5 \pm C T\) \\
\hline 17740 & \(D(6,4)=D, 4 Y D F\) \\
\hline 10758 & \(D(6,5)=D H Y D P D\) \\
\hline 10760 & \(D(6,7)=D 4 Y D T D\) \\
\hline 10770 &  \\
\hline 10780 & \(D(7,1)=D W Z D P\) \\
\hline 10790 & \(D(7,2)=D 47 D 8\) \\
\hline 10888 & \(D(7,3)=0127 D\) \\
\hline 18810 & \(D(7,4)=\square H P D F\) \\
\hline 10823 & \(D(7,6)=\) DHLCED \\
\hline 18830 & \(D(7,7)=D\) ULDID \\
\hline 10840 & \(D(7,8)=\) DHZDFD \\
\hline 10850C & the matrix E Expresses the optimhk LInearized hext siate \\
\hline \({ }^{10870 C}\) & \\
\hline 10880 & \(E(1)=\) SBES \()\)-BETAICBIST-THETAESBICT \\
\hline
\end{tabular}


\section*{Bibliography}
1. M. Athans, The Matrix Minimum Principle, Information and Control, Vol. 11, 1967
2. M. Athans and F. C. Schweppe, Gradient Matrices and Matrix Calculations, MIT Lincoln Laboratory Technical Note 1965-53, 17 Nov 1965
3. K. R. Britting, Inertial Navigation Systems Analysis, Wiley-Interscience, 1971
4. C. T. Chen, Introduction to Linear System Theory, Holt, Rinehart and Winston, 1970
5. G. Fiddes and D. Mislivec, Transient Torque Requirements for a 4 Gimbal Inertial Guidance Platform, General Electric Company, TIS 66 POD 8
6. M. A. Gennert, Torque Equations for a Four Gimbal System: A State Space Approach, General Electric Company, January 1980
7. S. W. Gully, The Effects of Friction and Base Motion on High Performance Servos, General Electric Company, TIS 69 POD 10
8. R. W. Reeves, Characterizing a Four Gimbal Inertial Platform, General Electric Company, August 301974
9. A. K. Sen, Tools of Kinematics: A Critical Review, IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-15 No. 1, January 1979
10. R. V. Spencer, Development of Preliminary Torque Equations \(\frac{\text { for }}{12}\) Optimal Gimbal Control, General Electric Company, April 121980```


[^0]:    (1)

    Strictly speaking, angular momentum is only defined with respect to inertial space. Nonetheless it will be convenient to treat angular momentum like any other vector, especially as regards coordinate transformations. As long as we remember that torque is the rate of change of angular momentum in inertial space there will be no problem.

