ANALYSIS OF OPTIMAL CONTROL OF A
FOUR-GIMBAL SYSTEM
by
MICHAEL ANDREW GENNERT

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREES OF
BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1980

@ Michael Andrew Gennert 1980

The author hereby grants to M.I.T. permission to reproduce and
to distribute copies of this theszs document in whole or in oare;

—

> Slgnature redacted -
Signature of Author__. . . . v ceces: o (e s s
Department of Electrical Englneerlng and Computer Science
. Slgnature redacted
Certified by _ e s e~

Nils R. Sanu°11 Jed
Thesis Superv;sor

o Signatur re redacted
Certified by —

7 Rlcnard V. SpenEEF
////’/”’“~i:27><’7 ,/””Fmp—?fﬁompﬂny Sypervisor

Slgnature redacted

Accepted by__-—— livares \‘E,/l Bl
= Arthdr C. Smith
Chairman, Departmental Committee on Graduate Students
ARCHIVES
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
JUN 20 1980

LIBRARIES



VI-A THESIS RELEASE LETTER

Department of Electrical Engineering and Computer Science
Room 38-4u44

Massachusetts Institute of Technology

Cambridge, Mass. 02139

Attention: Professor Arthur C. Smith

Subject: Master's Thesis of Michael A. Gennert

I have reviewed the attached Thesis of Michael Gennert on
behalf of the General Electric Company. The report is within the
scope of the Thesis Proposal as previously approved and does not
contain any material that 1is objectionable to the General
Electric Company. It is also approved for its technical content.

It is understood that this Thesis will be the permanent
property ‘of MIT and will be placed in the MIT library within one
month after the date of submissiom. However, the thesis will not
be given general circulation until a review by the Office of the
Secretary of Defense has been completed and the thesis released
by the sponsor for general use. I will inform the Department of
the results of such review as soon z2s possible. It is also
understood that Michael Gennert has granted MIT permission to
reproduce the thesis and to distribute copies publicly.

Authorized 0fficial of General Electric



-3-

ANALYSIS OF OPTIMAL CONTROL OF A
FOUR-GIMBAL SYSTEM
by

Michael Andrew Gennert

Submitted to the Department of Electrical Engineering and
Computer S3Science on May 9, 1980 in partial fulfillment of the
requirements for the Degrees of Bachelor of Science and Master of
Science.

ABSTRACT

This thesis investigates modelling and control of a
four-gimbal inertial system. The system under study is used to
stabilize an inertial platform and to isolate the platform from
vibration and rotation of the vehicle in which the system is
mounted.

A few simplifying assumptions are made about the gimbal
system. Using these assumptions and Euler's torque equations for
a rotating body, a set of linear equations is developed relating
angular acceleration of the gimbal -elements to torque motor
voltage. Taking a state-space approach, a set of nonlinear
differential equations is used to compute the orientations of the
gimbal elements from the torque motor voltages. A novel approach
to the incorporation of static frictior is presented, which leads
to a simplified set of equations in the presence of static
friction. Coulomb friction is also taken into account.

Modern optimal control techniques are applied to a
linearized discrete-time version of the state equations to
procduce an optimal Gcontrol scheme. The gimbal system and
controller are simulated on a digital computer using the FORTRAN
programming language. A lisfting of the program is included in
the appendix. Comparisons are made with an earlier control
strategy showing the reduction of platform misorientation,
reduction of required torque, and elimination of switching
transients. ‘
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I. Introduction

This thesis investigates modelling and control of a
four-~gimbal system. Gimbals are generally used for precise
orientation and/or stabilization. Typical applications include:
attachment of a rocket engine so that the engine may be aimed,
suspension of a ship's compass in a horizontal position despite
piteh and }011, mounting a radar to rapidly track a target,
stabilization of an inertial platform and isolation of the
platform from vibration. It is this last application that will
be of concern to us in this paper.

Inertial guidance and navigation systems generally use
gyroscopes and accelerometers as sensing devices. High
performance inertial guidance systems usually have these sensors
mounted on an inertial platform and a series of concentrie
gimbals connecting the platform to the case. Gyros on the
platform sense rotations of the platform with respect to inertial
space, and are used in feedback loops to maintain an inertial
reference,

The inertial platform and gimbals are housed in the
inertial measurement unit case. The case is rigidly affixed to a
vehicle whose rotation rate will be changing with time. The
rotation rate is not measured directly; it can be calculated
from other quantities, as will be shown., The rotation can be
viewed as an input to the gimbal system, uninfluenced by the
behavior of the system. As such, the vehicle's motion provides a

set of boundary conditions for the kinematic equations deseribing
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the behavior of the gimbals.

To fully isclate the inertial platform from vehicle motion
requires a minimum of three gimbals, providing three degrees of
freedom. It is possible for two of the gimbal axes to become
parallel; "gimbal lock™ is then said to occur and one degree of
freedom is lost. If all three axes lie in one plane, rotation
about an axis perpendicular to this plane 1is impossible.
Clearly, gimbal 1lock must be avoided. However, it is not
sufficient that the system stay out of gimbal lock; it must noct
even get close Dbecause, as gimbal lock is approached,
increasingly high torque levels are required to keep the platform
inertialls]. If the required torque should exceed the maximum
available torque, then the inertial platform may lose its
inertial reference.

There are basically two strategies available for dealing
with the gimbal 1lock problem. The simplest solution is to
restrict the vehicle's motion so that gimbal lock cannot occur.
Early guidance systems wused exactly this restricted attitude
scheme., The drawbacks are obvious. A present state-of-the-art
all-attitude guidance system avoids gimbal lock by adding a
fourth gimbal (Figure 1.1). The extra degree of freedom ensures
that it will always be possible to avoid gimbal lock. If two
gimbal axes are zligned there will still be three degrees of
freedoh. However, if the system is not properly controlled it is
possible for all four axes to lie in one plane, a second degree
of freedom will be 1lost, and gimbal 1lock will result, The

problem then is one of allocation of coﬁtrol among the four
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gimbals to stabilize the inertial platform while avoiding gimbal
lock given the vehicle's rotation rate.

Céntrol is effected through torque motors mounted on the
outer three gimbals and the case. The torquers are driven by
saturating amplifiers, limiting the maximum available torque.
Information on the state of the system is available from three
sources, Gyroscope outputs indicate any deviation of the
platform attitude from inertial, resolvers mounted on each gimbal
indicate the angles between gimbals, and tachometers measure
angular velocities.

Presently, the inner two gimbals are driven directly byl
gyroscopes, and control is switched between the two outer
gimbals, depending on ﬁhe two middle =angles. The control 1law
takes the form of‘decision rules, so that control is allocated
based upon the zone 1in which the middle ¢two angles reside.
Although the zone control does avoid gimbal lock, it is not
optimal. Large attitude errors and torque transients may occur
when switching zones., The maximum torque requirements are
excessive; by reducing them it will be possible to improve torque
motor performance and/or reduce the torquer size, weight and
cost. Furthermore, reductions in attitude errors resulting from
optimization will contribute to overall system accuracy.

The abproach taken is as follows. The mechanics of the
gimbal system are discussed first. Simplifying assumptions and
approximations are presented and justified. Based upon Euler's
torque equations a set of equations are derived that characterize

the system, We examine friction and its effects. Modern optimal



-12-

control techniques are applied to a linearized discrete-time
version of the torque equations to vyield an optimal control
scheme, Various methods of implementing the controller are
suggested. The controller is realized as a simulation on a
digital computer using the FORTRAN programming language. Results
of the simulation are analyzed and compared with an earlier

control strategy.
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All angles zero

Yr Gimbal lock
B =8 = g0

Figure 1.1

Gimbal Configurations
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II. Nomenclature

A Continuous-time dynamics matrix
At Discrete-time dynamics matrix
B Continous-time matrix from control signals to state derivative
B¥ Discrete«time matrix from control signals to state derivative
c Case
E Continuous-time constant vector
c* Discrete-time constant vector
05 Coordinate transformation from j to k system
D State information compression matrix
e State error vector
E Elevation gimbal = Inertial platform
E Optimal next state
ﬁ% Angular momentum of gimbal j in the k frame
I Inner gimbal
I 3 x 3 identity matrix
J Cost function
Ji Inertii tensor of gimbal k in the 1 reference frame
1

Jkv Moment of inertia of gimbal k about its v~axis in the k frame
Matrix transforming acceleration to torques
Middle gimbal

Matrix transforming torques to accelerations = f'

-

Symmetric state weight matrix in cost function

L

M

M

0 Outer gimbal
Q

R Symmetric torque weight matrix in cost funection
3

Inertial space
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Tj Total torque on gimbal j in the k frame

TkJ Torque on gimbal j supplied by gimbal k in the 1 frame
T%kv Cémponent of T in the v direction

] Control vector

ﬁij Rotation of gimbal j with respect to gimbal k in the 1 frame
State vector

Vector composed of torques and torque-like terms
Angular acceleration vector

Angle between E and I

Angle between I and M

Angle between M and O

Angle between 0 and C

> ®™m © w 4 N b bl

Gimbal lock angle
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III, System Description

The four-gimbal system is shown schematiecally in Figure
3.1. Pictured are the case (C), outer gimbal (0), middle gimbal
(M), inner gimbal (I) and elevation gimbal (E)})., The terms
"elevation gimbal™ (1) and "inertial platform" refer to the same
thing and will be used interchangably. "Case™ and "vehicle" will
also be wused interchangably in the context of rotation and
acceleration, although they do not refer to the same thing. The
case 1is securely bolted to the vehicle and thus experiences the
same velocity and acceleration,

The outer, middle and inner gimbals look much the same
except for size, Two slipring assemblies connect each gimbal to
the next innermost and next outermost gimbals. The slipring
assemblies contain resolvers, tachometers and torgue motors. The
relative pesition and velocity of each gimbal pair may be
direetly observed (after filtering to remove noise). The torque
motors are the sole actuators present in the system.

The elevation gimbal is totally different from the others.,
It is essentially a platform 1laden with sensors. The only

sensors of concern to us here will be the gyroscopes. The

(1)

The phrase "elevation gimbal" is carried over from three-gimbal
system days when the elevation angle Y was exactly equal to the
elevation of the vehicle with respect to the earth's surface.
What 1is now the inner gimbal was then called the "azimuth
" gimbal,." It is still occaisionally referred to by the older
name. We will stick with "inner gimbal." The letter "B" used
for the angle between the inner and middle gimbals reflects the
fact that this angle equalled the bearing of the vehicle in the
three-gimbal system.
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gyroscopes will be treated as though there were three single
degree of freedom (SDF) gyros. In fact, two two degree of
freedom (TDF) gyros may be used, one degree of freedom being
redundant. The gyros are aligned so that their input axes lie
along Xg, YE and Zg. Any rotation of the inertial platform will
be sensed by one or more gyros. Any misalignment of the
gyroscopes with respect to the inertial platform will be subject
to compensation elsewhere in the guidance system and will not
concern us.

Six different Cartesian coordinate systems may be defined.
Four of these coordinate systems are fixed to the four gimbals,
the fifth and sixth coordinate systems are associated with the
case and inertial space (S). One may restate the purpose of the
controller as being to keep the elevation gimbal coordinate frame
and the inertial space coordinate frame as closely aligned as
possible given the rotation rate of the case coordinate frame.
The rotation rates of the case and gimbals with respect to
inertial space coordinatized in the case and gimbal frames may be

defined as f&¢llows:

1 ] 1

P R o | ox ]

Wsc‘-‘iwcyi WSo £ | Woy |

i I 1

b Wz t Woz |

bWy 1 b Wy | | WEX |
o A R #Eoe
Wsu =1 Wy Wsr % 1 Moy SE & | Wgy |
. t 3 1 1
1 WMz | | Wz | | Wgz |
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The above vectors are interpreted as the rotation rate of
the coordinate system denoted by the the right subscript with
respect to the coordinate system denoted by the left subscript as
seen from the coordinate system denoted by Ehe superscript. This
convention is discussed in more detail in Brittingl3].

In order to relate the various coordinate frames it 1is

necessary to define the angle between adjacent gimbals.

Angle name Between Also called
Y E and I Elevation Angle
B I and M Inner Angle
[a] M and 0 Middle Angle
9 0 and C Outer Angle

That only a single degree of freedom exists between gimbals

simplifies the direction cosine matrices. Specifically:

| cos®d 0 -sind |
~ 1 !
=10 1 0 |
i |
! sind 0 cos® | (3.1)
1 0 0

(%]
o

1]

o

t
H
cos® sin6 |
i

0 -sin® cos@ {(3.2)
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| cosB sinB o |

i i

¢l - 1-sinB cosB 0 !

Mo [
| O 0 11 (3.3)

| cosY 0 =5inY |

E | {

C: =10 1 0 |}

I :
| sinY 0 cosY | (3.4)

The above matrices are inierpreted as a linear transform
from the coordinate system denoted by the subscript to the
coordinate system denoted by the superscript. Direction cosine
matrices are treated in more detail in Appendix A. The special
form of the direction cosine matrices is due to the fact that 2
is measured around the outer gimbal and case y-axis, © is
measured around the middle and ocuter z-axis, B is measured around
the inner and middle x-axis, and Y is measured around the
elevation and inner y-axis. These definitions are entirely
arbitrary bg? survive for historical reasons. The time
derivatives of these angles are nothing but the relative rotation

rates, That is:

o KX

] i ] 1

- A 1 & 1 - B I
ﬁf:o‘ﬁgo'iﬂi ﬁgn'”tm‘ioi
! 0| | 0 |
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o ]
—M - o!
- WL 21 i T _ fHE a2 '
7 ST S A MIe = e )T

{ B !} i 0}

It is now possible to relate the rotation of any gimbal to
inertial space. This 1is necessary to express the torque
equations later., Starting with the outer gimbal and applying

equations (A.2) and (4.6) we have:

w0 _ 730 310 P § Cci 70
Wso = Wsc + Weo = CeWge + Weo
; cosp WCX - sinDd WCZ ;
- 1 7
= i WCY -+ 0 ;
. ]
! sin® ch + cosP WCZ | (3.5)
aM  _ Mz0 =M
Wsu = Co¥so * Yom
A '
i Wox + 8 i
= | (8] i !
§ E cos WOY + sine WOZ i
- H 2
|=-sing WOY + ¢c0s0 WOZ ! (3.6)
Wo- eI L1
Wsr = Cusy * W
] 1
i cosB WMX + sinB WMY i
- [
= i sinB WHX + cosB WHY i
| W, + B | (3.7)



]

; IX 1z i

- Y I

= ; WIY + X i
! sinY WIX + cosY WIZ H (3.8

Equations (3.5) through (3.8) and (A.2) may be combined to

compute the case rates.,

2E _ AE7 EZ0 E&M E=1 =E
WSE = chsc + Cowco + CMWOM + chMI + wIE (3.9)

Rearranging terms and multiplying by C% vields:

a0 C CrERD  _ CrEpM  _ nCREQI  _ oCpE

Wse ® CEYse - CE%Yco T CESMom ~ CECTVMr - CEMie

C30  _ ~CoM  _ Ol _ ~Co

ESe = Cofco = CuWom — Ci"ur ~ CEVrg

=g CRE  _ ©C _ €0 _ oCoM  _ oCol

Wse ® CEYse ~ Yoo T Cofom ~ CuVur - CrVie (3.10)

Hoon
O
[y
=l
M
1

The left hand side is the rotation rate of the case, which
is to be determined; the right hand side is dependent only upon
measurable quantities. ‘ We will want to relate torque to
acceleration in the next section, so we may apply equation (A.8)

to equations\(B.S) through (3.8).

-

ﬁgo = CWge - Wgo_ X Cgige + i.‘.go (3.1
Wy = oS, - Wou X Colso * W (3.12)
Vor = Cify - Tar X Cyigy + Wy (3.13)
ﬁgs - c?ﬁgl - Wi X offg; + iﬁ];::l:‘. (3.18)
Unfortunately, equation (3.11) contains iﬂ the

sc?
acceleration of the case, and a difficult quantity to measure,
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It will be desirable to know Wgc in order to predict the

ﬁgc and thereby optimize the performance of the

trajectory of
gimbal system at some time in the future, For a massive vehicle
such as the one under consideration here the rotation rate cannot
change rapidly. Unable to measure the vehicle's acceleration
directly to predict its behavior, a. reasonable approach is to
assume that it does not change at all. Therefore, throughout
this paper it will be assumed that ﬁgc = 0. This is not such a
bad assumption over a short time interval. Thus, equation (3.11)

reduces to

+ WO (3.15)

In theory it 1is pcssible to predict the vehicle's
acceleration knowing the generated thrust and mass. It is
preferable, though, to keep the four-gimbal controller as
decoupled as possible from all other vehicular systems, including
propulsion.

The vector angular acceleration equations, although
compact, are of limited utility by themselves[10]. They need to
be expressed in terms of scalar quanties. To this end, equations
(3.12) through (3.15) will be expanded using equations (3.5)
through (3.8).

g 1
. i-o wmE
ot P
| 2 W..} (3.16)
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e

i ox *+ ©

i .I :

i cos6 hOY + sin® WOZ +
{

De
=

M

ey — o — —

=
(=)
[y}

4

De

=
=
o]

-sing@ ﬁoy + COSO

|-

; -

i c0s® P + sine P Wox +
]

1

De [ o E]
= =
= =
- ~

-5in® ¥ + coso P Wox -

0
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zz
s

+
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+
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=
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]
™
3
o
=3
+
0
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o =]
zo
1
oz
=

9) + sinB,(cose B
8 WMz) + B Wry

00
S’
.|..
o
o]
n
w
~
0
o
w0
©
S

-

cosY WIX - s5inY wIZ - Y WEZ

in + X

——— A -

sinY WIX + cosY WIZ + 7Y WEX

cosY {cosB ( -9 Woz + &) + sinB (cos® )]
+ sin@ P Wox + 0 WMZ) + B WIY}

- 5inY {-sin® @ + cos® ) WOX -6 WMY)
+ B} - Y WEZ

-sinB (-9 Woz + 8) + cosB_(cose D,

S
+ 3ino P WOX +9wMz) -BWIx. + X

inY {cosB ( -p Woz + 8) + sinB (cos6 §
sino A Wox +.0 WMz) + B WIY)

¢osY {-sin® P + cose H WOX - & WMY)
B} - I Wgyx

kit ke T S P S et

(3.17)

(3.18)



These last four équations are second order differential
equations, Note that the only place where second time
derivatives appear is on angles, This is quite a propitious
occurrence because, in a later section the state variables will
be specified, and the angles will be among the state variables.
We will want to express the highest order derivatives of the
state variables as functions of lower order derivatives and other
known quantities, and to do this we must separate the highest
order derivatives from 2all other factors. Equations (3.16)
through (3.19) show where the high order derivatives lie and this
is a great help.

We now introduce three variables aASV, AJ and aSR. They
represent the tilt (rotation) of the inertial platform with
respect to inertial space. ASR is measured abou£ the x-axis, aJ
is measured about the y-axis and ASV is measured about the z-zxis
of the elevation gimbal. The tilts equal the angular
displacement of the inertial platform as sensed by the gyros
about the relevant axes. They may be described by differential
equations by moting that the rate of change of the tilts must

equal - the rotation rate of the inertial platform. The rotation

rate of the platform is merely ﬁgg. Applying egquation (3.8) we
have:
ASR = cosY Wiy ~ sinY Wiz (3.20)
al = Wiy + Y (3.21)
aSvV = sinY Wix + cosY Wyz (3.22)
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Now to define the moments of inertia of the gimbals. Let
Jﬁ be the inertia tensor of gimbal k in the 1 coordinate system.
The matrix representation of an inertia tensor transforms wunder
similarity transformations, i.e., JE = CTJ&C%. Because the
gimbals are symmetric and have been evenly Balanced, and because
the gimbal-~fixed coordinate systems are aligned with the
principal axes, the inertia matrix will have =zeros off the

diagonal when coordinatized in the reference frame of that

gimbal, Thus:

I ka 0 0 :
Kk _ | !
! 0 0 Jkz |

In gZeneral, this is true only when the inertia is
coordinatized in. the reference frame of that gimbal, and not
true in most other reference frames, Thus, Ji,
general, have nonzero terms off the diagonal. Furthermore, the

1£k will, in

elevation giqbal is almost symmetric, so we may approximate JEX =
JEY = Jgz 2 Jgxyz The other three gimbals take the shape of
bands, each having two roughly equal moments of inertia and a
third distinct moment of inertia, the distinct inertia
corresponding to the gimbal axis passing through the "hole" in

the gimbal. For the given geometry:

Jiy = J1z % Jd1yz
Jux = Jnz 2 Juxz
Jox = Jor # Joxy
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These approximations will greatly simplify the torque
equations. As shown 1in Table 3.1 the approximations are good
ones. The largest error introduced is 8% for the E gimbal, 2.5%
for the M gimbal and 0% for the other gimbals. The 8% E gimbal
error will have a negligible effect because that gimbal should
remain inertial and the exact value of its moment of inertia
ought not to matter much.

It should be noted here that the symmetry of the E gimbal

gives rise to some useful results,

P Jex O 0t 1lJgxyz O o i
§ t I
i i ( _
| 0 0 Jgz 110 0 | S— (3.23)
Thus in any coordinate system k,
Jk = CcKJECE - ck(y 1 )ck sy I (3.24)
E EE k E EXYZ E EXYZ
~E _ I _ M _ ;0
JE = JE = JE = JE (3.25)
Equation (3.25) has the following interpretation: JE, Jé,

Jg and Jg are all different tensors; they just happen to share

the same matrix representation.
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Table 3.1

Moments of Inertia

Gimbal = Axis Name Yalue
Elevation X JEx 1.3
Y JEY 1.2
y4 JEZ 1.1
Inner X JIX 1.7
Y JIY 1.3
z Jiz 1.3
Middle X Imx 2.2
Y JMY . 3.0
Z JMZ 2.3
Quter X JOX 3.0
Y Joy 3.0

Z JOZ 3.9
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. " MIDDLE GIMBAL

OUTER GIMBAL

e |

ELEVATION .
GIMBAL
(INERTTAL

PLATFORM)

Figure 3.1
Four-Gimbal System
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IV, Derivation of Torque-Acceleration Equations

Torque is the rate of change of angular momentum. For a
four-gimbal system there will be four angular momentum vectors to
consider, one for each gimbal. This will lead to four torque
equations. These four torque equations will be solved for the
four angular accelerations (f, ﬁ, 5, p). The angular
accelerationé can be integrated twice to solve for the angular
velocities and the angles themselves, thus completely
characterizing the system.

Torques are applied to gimbals through their pivot
assemblies. Torques may be applied either along a torque motor
axis or normal to a torque motor axis or both. Torques normal to
a motor axis are coupled through the bearings; these forces are
not controlled directly. Control is exerted directly only on the
components of torque along the motor axes, There are four
sources in all of torques about a motor axis. They are control
voltage, back-emf, coulomb friction and statie friction.

Let's examine the relationship between angular momentum and
torque. The angular momentum of gimbal j with respect to

inertial space (1) is

(1) :

Strictly speaking, angular momentum is only defined with respect
to inertial space. Nonetheless it will be convenient to treat
angular momentum like any other vector, especially as regards
coordinate transformations,. As long as we remember that .torque

is the rate of change of angular momentum in inertial space there
will be no problem,
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ﬁ? = Jg-ﬁEJ (4.1)

In the j coordinate system equation (4.1) becomes:

- _ j_,.s _ j SaS _ J 5 8 j—ls
) = CgH] = C3d3Wg; = C3J3C5C3Ws;
= 39w, 4,2
393 5 (4.2)

Torque is the time derivative of angular momentum in an
inertial coordinate frame. Differentiating equation (4.2) and

applying (A.2) and (A.8)

T = TS - cdaszae(®S) = clasac(cSHd)y
J S_JS_ S S J s S 3
cIECSHI - WO . X (C5HD)]

CRER g ; 3

H) + cJdW2. x (c°md

1+ ol x (5

it s JeSgd
HY + (CgWgy) X (C3CTRY)

L[]

= Hj +9d; x 89 (4.3)
3 53 J
For a rigid body such as a gimbal, d/dt(Jg) = 0, so equation
(4.3) becomes:.

T = odwdy + Wy x didy (4.4)

For the 0 gimbal we have:

=0 =0 =0 00 -0 0.0
T0 = Tco + TMO = JOWSO + WSo X (JOWsS0) (4.5)
TO - JOWO L WO 070 O™
TCO = JOWSO + WSO X (Jowso) + CMTOM (4.6)
?80 represents the torque transmitted from the case to the

outer gimbal as seen from the outer gimbal. The form of equation
(4.6) will prove most useful. Similar equations can be written

for the other gimbals.
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™. o MM =N M=M M= '
ToM = J??%M + W§M X (J¥W§M) f C%zEI (4.7)
TMI = JIWSI + wSI X (JIWEI) + CoTrp (4.8)

Because the elevation gimbal is assumed to be symmetric, and

ﬁgg is to be kept small, equation (4.9) reduces to:

=E . ExE .
TIE = JEWSE (3.10)

The torque motor force from the inner to the elevation

gimbal is along the y-axis of both gimbals.

E _ -
TIEY - JEXYZWEY
= JEXYZ{I - sinB (=P WOZ + ©) + cosB (cos@ P
+ sine P wox + 8 NMZ) - B WIX} (4.11)

Equation (4.11) can be rewritten as:

- L

Y. =J Y - sinB J & + cosB cos © JEXYZE (4.12)

E EXYZ EXYZ
Where YE 2 . . .
Ty * Jpyy (~SInB & W, - cosB sin®@ D Wy, - cosB & Wy, + B W)
h (4.13)
YE is a quantity that contains all of the terms of the
torque equation for TEEY that do not contain an angular

acceleration., Similar definitions will be made for the other
gimbals. Proceeding in a parallel manner with the inner gimbal

we repeat equation (4.8).

TI - gl . 71 Iyl IFE
TLo = JIWl + Wl x (WL + cITE (4.8)
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Applying equations (3.14) and (4.13) to (4.8):

?ﬁI I I Eml

s — wdh E
sTSr + Wi x (UTHSD + CRJE (CoWsy
_E .
_ B 1 op
WX (chSIz + WE)
I I,E-Ey I . oI Tl
(J7 + CpIgCy) Wgp + wsx.x (J51)
I,ErE 1 =1 . =1
+ cliEcE (W x WL + W)

T I, =1  =I , I=I I, =T ,=I I
(4,14)
Recalling equation (3.25) and expanding (4.14):
1 [] y ]
; Jrx * Jexyz © 0 P Wiy !
- o 1 gl I
Ty = | 0 Yrvz*t Yexyz © : ; Ws1y ;
! ' t il i
0 0 Yrvz* JExyz ' P Ysrz
1 | T 1 R
; Wiy Y1z Uryz = J1y7) {1 JExyz © 0 ; f I Wy
[ 4 [] [ ] ] A
+ } Wiz Wix Uiy = J1ys? Y 0 Jexyz © Lo
1 1 § ' v
| WIX wIY (JIYZ - JIX) i 1 O 0 JEXYZ i . WIX
(J J Y Wo. = J 4

1x ¥ Yexvyz’ "1x EXYZ"1Z

YUrvz * Jexyz) iy * Jexyst

“Yrvz * Texyz) iz * Texva¥ix Tt Vix Yoy Ynyg - T,

When the elevation gimbal is inertial both Wix and Wy,
should be small; ideally they will be zero. The product of such
small terms will certainiy be negligible, Therefore the term Wiy
Wiy (JIx - JIYZ) has been dropped from equation (4.15). Motor

torque from the M to the I gimbal is along the z-axis,
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I ) -
Thiz = Yrvz * Jexvz) Y1z * Yix Yoy Uryz = 910 * Jexyz T Yoy
= (JIYZ EXYZ) (-sin@ 8 + cos © ﬂ HOX - 0 WMX
+ B) 4 Woy Woy gy = Jpp) + Jpxyz T Wiy

(4,16)

Equation (4,16) can be rewritten in a similar fashion to (4.11):

YI = (JIYZ + JEXYZ) (B - sin® 9) (4.,17)
a2 7 0 - )
Where YI S TMIZ + (JIYz + JEXYZ) (6 WMX cos 8 D Wox)
+ WIX WIY (JIx - JIYZ) - Y JEXYZ WIX (4.18)

Proceeding to the middle gimbal:

M MSM . M MeaM M=T
Tom = Iusu * ¥su X UyWgy) *+ C1Tyr , _ (4.7
X 1 ! 1
; Juxz ¢ O i ; Wyx L Yy Wz Yuxz = Iy |
- 1 ¥ Ry ) _ 1
® 0 My © Lo Yyy e ; vz Wyx (mez Iuxz) i
] I ] ¥ [] ] t
i 0 0 dygz Fob Wy b W Wy Ty = Jyyg)
2 1 I u :
i cosB ~sinB 0 E i (JIx + JEXYZ) WIX - JEXYZ WIZ Y
H : 1 1 y Yy
+ E sinB cosB 0 i i (J + JEXYZ) WIY + JEXYZ Y
EXYZ

(4.19)

Torque from the 0 to the M gimbal is along the x-axis.
Using equations (3.17) and (3.18) the x component of (4.19) can

be expanded as follows:

™ = ﬁ
omx = “mxz "ux * Yy Yuz Yuxz T Twy’

+ cosB {(JIx EXYZ) w Iy - JEXYZ WIZ_I}

- 8inB {(JIYZ + JEXYZ) “1! + JEXYZ Y}
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= J -
uxz "ux t Yy "Mz Yvxz T Twy?

+ cosB (JIx + JEXYZ) (cosB &MX + sinB QMY + B Wiy)

- cOoSB JEXYZ WIZ Y . ‘

- sinB (JIYZ EXYZ) (-sinB W my * SOSB Wy, - B WIX)
- sinB JEXYZ Y

= (Juxz + cos®B JIyx + sin®B J1yz + JEXYZ) (8 - # Woz)

+ Wy Wiz Uyyg 'JMY)

+ sinB cosB (J

IxX - ) (cose P + sin 6 P Wog + © WMZ)
+ B {cosB (JIX EXYZ) (-sinB WMX + cosB WMY}

sinB (JIYz + JEXYZ) (cosB WMX + sinB WMY)}

+

- ¢c0SB JEXYZ WIZ Y - sinB JEXYZ Y
(4.20)
Equation (4.20) can be rearranged like this:
YM = -s5inB JEXYZ Y
2 in2 5
+ (JMXZ+ coséB JIx + 5in<B JIYZ + JEXYZ) [a]
+ SinB cosB coso (JIx - JIYZ) 4] (4.21)
Where Y £
M -
M
TOHX . )
2 in2 7
+ (Jsz + cos2B JIx + sinZB JIYZ JEXYZ) 4 WOK
+ sinB cosB (JIYZ - J ) (sind P W ox * ) WMZ - B WHX)
- 2 il
{coscB JIx + sin<B JIYZ EXYZ) B WMY
+ cOsB JEXYZ 17 Y (4,22}

Finally, for the outer gimbal:
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0 - JOWO 4 7O oo oM .
TCO JOWSO + W3 X (JO SO) + CMTOM (4.6}

The component of interest here is along the y-axis since
that is where the torque motor is. The algebra required is
extremely tedious, and little insight is obtained. We will not
go through the entire derivation. A rigorous derivation is given
in [6]. The resulting equation for Y5 (which is really all we

want) is:

Y = cosB cos0 J f
0 EXYZ

- sind (JIYZ+ J

Exyz’ B

+ sinB cosB cos@ (JIx - JIYZ) e

.2 2 4
+ (JoXY + sin<e@ JMXZ + CcOs<P JMY + sinc@ JIYZ

2 2 2 2
+ 3in“B cos<@ JIx + cos“B cos<@ JIYZ + JEXYZ

) P (4.23)

W 2
here Y0

0
TCOY

+ W (J .., = J ) _ Co

ox "or Yoz = Joxy

+ s8inB cosB cos@ (JIx - JIYZ) (D HOZ - B WMY)

. . 2 - *
+ sin@ cos@ (Jy., - Jyy + sin“B Wiyz= I1x}) (@ Woy - 8 Woy)

2 2 .2 , 2 2
- (sin“@ JMXZ + cos“@ JMY + sin“e JIYZ + sin“B cos“9 JIX

+ coszs c032 6 W

(4] JIY + J

EXYZ)

+ sin @ WMY WHX (JMY - JMXZ)

+ sin @ WIY WIX (JIYZ - JIX)

+ 3inB 20s8 JEXYZ Y wIZ

+ sin ¢ JEXYZ Y WIX (4.24)

Z 0z

Equations (4.12), (4,17), (4.21) and (4.23) may be combined

into a single matrix equation.



Y=1.7 (1.25)
Where ¥ 2 (YE, Yo Yy YO)T
72,8 8 DT
! L11 L12 L13 L1u i
L = E L21 L22 L23 LEH i
i Ly L3a L33 Py f
: Lu1 LH2 LH3 LHH :
With L11 = JEXYZ (4.26)
Lip =Ly =0 (4.27)
Lyg = L3y = =sinB Jpyyy (4,28)
Lyy = Lyq = cosB cos0 Jpyyz (4.29)
Lao = J1yz *+ YExyz - ' - (B30)
Lyg = Lgy = 0 _ (4,.31)
Loy = Ly, = -sine (JIYZ + JEXYZ) | (4.32)
Lyz = Jyyy + cos2B Iig + sin<B I1y7 * YExyz (4.33)
L34 = Lu3 = sinB cosB cos® (JIx - JIYZ) (#.BH)
Luu = JOXY + =ino Jsz + cos?0 JMY + sin29 JIYZ
+_fin23 c0s® J ¥ * cosB cos®g I1yz * YExyz (4.35)

I
A term lying on the diagonal of i, Lii’ is the effective
moment of inertia of gimbal i and those gimbals inside it as seen
looking into the pivot axis of gimbal i. For example, if all
four gimbals are treated as a single unit, then the inertia along
the y-axis of the outer gimbal is just Luu. Similarly, L33 is
the inertia of the three innermost gimbals along the x-axis of

the middle gimbal. The off-diagonal terms of L are a consequence

of the fact that an inertia matrix may no longer be diagonal if
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coordinatized in a coordinate system not attached to the
appropriate gimbal.

L contains infermation about the geometry of the gimbals.,
We have already assumed that the elevation gimbal is symmetric.
This implies that the orientation of the elevation gimbal is not
relevant to the overall geometry of the system and therefore we
would not expect the elevation angle ¥ to appear in equations
(4.26) through (4.35), The outer angle ® alsy should not affect
the gimbal geometry, so we would not expect # to appear in
equations (4.26) through (4.,35) either. These expectations are
realized. The gimbal cornfiguration as defined by the matrix L is
only a function of B and 9. .

Note that L is symmetric. This is .an instance of a-
reciprocity relationship between torque and angular acceleration.
A torque applied at angle i will produce a response at angle j
equal to the response at angle i to a torque at angle j.
| The actual torque values are nestled into the Y vector
together with a great many other terms having the same dimensions
as torque, These other terms for the most part resemble Coriolis
forces, although their exact interpretation is not always
obvious. In any event, for vreasonable gimbal rates and
reasonable torque levels the torque terms will dominate the
Coriolis forces.

Equation (4.25) allows the computation of torque given
acceleratioﬁ. In actuality we know the "torque since the
controller will be supplying the control signals; it is the

acceleration we wish to compute. So we may take the inverse .of
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equation (4,25) to ccme up with:

marih.

T =L :=MY where M & L-1 (4.36)

M will of course be symmetric since L is. The computation

of M 1is aided by repeated application of the following matrix

identity:
1A 1 B 1=V 1 a-Tea-TB(D-ca~"B)"Tca™ ¢ —a~'B(D-ca™'B)-1 |
A B ey o P T et SR
I ¢ !p1] | —(p-ca-1B)-Tga-T ! (p-ca~1p)-1 |
(4.37)

Before presenting the terms of M it is helpful to define a
quantity called DENOM, DENOM is the determinant of
(Luu Lu3L33L34) obtained when using formula (4.37). Since this

quantity appears in each element of M it will be much easier to

define DENOM once than to write it out in full each time.

DENOM = [Jgyy + 5in26 . + cos?0 (J  + cos?B J .+ sin8 {J

+ JEXYZ})] [JMXZ+ cos2B (JIx EXYZ) + sin?B JIY%

- c0s2B sin®B cos%e [JIYZ - Jyy - EXYZ]2 (4,38)
Moo= DI+ sinZ0 gz * cose Wy * 97y * Tpyys))

[JEXYZ + 5in®B JIYZ + cos®B JIx + Jnxé]

- cos®B cosZ0 0oy = I1yz? Wygz *+ Iry * Jpxygl!

/ DENOM / J_ .. | (4.39)
M,, = -cosB sin@ cos® [J .,y + Jp  + Iy, ] / DENOM (4.40)
Mg = sinB [J o+ sin?o Iyxz

+ cos?p Uy *+ Iy * EXYZ)] / DENOM (4,41)
M, = -cosB cos@ [J +J 1 / DENOM (4.42)

14 MXZ x * EXYZ
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34
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{cos2B cos?o [J S N 1 (4 + J
IYZ IX EXYZ EXYZ IX

2 .2
+ JMXZ] + [JMXZ + COS°B (JIX + JEXYZ) + sin°“B JIYZ]

2 i 2
[JOXY + CcOS<@ (JHY + JIX) + sin“e (Jsz + JIYZ)

+ JEXYZ]} / iJIYZ + JEXYZ] / DENGCM (4.,43)

sinB cosB sin® cos® [J,,., = Jd

1Y7 Ix - JEXYZ] / DENOM (4.34)

sin® [Jyy, + 08B (Jpy + Jpyys) +-$in®B Jyy,1 / DENOM
(4.45)

[JOXY + sin20 Jsz + cos2e (JMY + cosaB J1vz

+ 5in®B {J , + J5yy,})] / DENOM (4.46)

cosB sinB cos® [Jry, = Jyy = Jpyyz] / DENOM (5.47)

[Jyg; + COS°B (S + Jpyy,) + SinB Jpy,1 / DENOM (4.18)

The above equations are rather difficult to manipulate and

verify.

By writing a computer program to numerically multiply L

amd M it was found that M is indeed the inverse of L.
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V. Torque and Friction

The torque produced by a given torque motor is proportional
to the current through it. The constant of proportionality is
Kt/r. This current will equal the applied voltage, in this case
the control signal, minus the back-emf generated by the motor,
divided by the resistance of the motor windings. Back-emf is
created when a torque motor acts 1like an electric generator,
putting out a voltage proportional to the relative rotation rate
of the rotor and stator, tending to cancel any rotation of the
gimbals. The constant of proportionality 1is denoted by Kv.
These torque motor parameters will differ from gimbal to gimbal.
Inductive effects in the motors are negligible.

Anéthema to designers of precision guidance equipment,
friction is nonetheless a force to be reckoned with, or at least
accounted for. 1If is a major factor in the four-gimbal system;
much of the torque supplied by the torque motors is used to
overcome fricticon. In fact, in the absence of friction there
would be almgst no forces acting to perturb the inertial platform
except in the neighborhood of gimbal lock.

There are essentially 7two types of frietion: static
friction and Coulomb friction. Although they originate in the
same intermolecular forces the analysis. of the two types of
friction 1is substantially different, We deal first with Coulomb
friction, | | )

Gimbals in relative motion will be subject to Coulomb

friction., We will wuse a very simple model for friction in the
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simulation,
Tcoulomb = -sgn (relative gimbal rate) X Tcoulomb-limit(5.1)
-1 x<0
Where sgn(x) = 0 x=0
1 x>0

This simple model has adequately predicted Coulomb friction
in earlier simulations. It has the advantage of requiring only a
singleAparameter for each gimbal, Gully[7l goes into more
sophisticated models. The net torque at each pivot can now be

determined in terms of control signals and rotation rates.

TE .y = (K&/r) {U. - (Kv) T} - sgn(D) Telp (5.2)
Thpz = (K&/r)_ {U_ = (Kv) ?} - sgnu:n Tel (5.3)
Tgm = (Kt/r) {0 - (kv) 8} - sgn(d) Tel (5.4)
TQpy = (KE/r) U, - (Kv) B} - sgn(d) Tel, (5.5)

Static friction or stiction as it is often called, is the
force tending to prevent adjacent bodies from moving at all
relative to one another once they have stopped moving. Static
friction is in general stronger than Coulomb friction, the latter
being effective only after the onset of relative motién. Static
friction is quite annoying from the viewpoint of the four-gimbal
controcller. It means that a comparatiyely large torque must be
applied to get a stuck gimbal pair unstuck.

The model used for static friction here is extremely
simple. Others are certainly possible agd ought to be analyzable

in the same framework. The model used here is characterized by a

single parameter, the static frictionm torque limit, The static
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friction torque limit will differ from gimbal to gimbal. The
model works as follows:

Whenever two adjacent gimbals are not in relative motion
(i.e. their relative rotation rate is zero) they will be
considered stuck until the magnitude of the torque supplied by a
torque motor from one gimbal to the other exceeds the static
friction torque limit. If a greater amount of torque is applied,
then the gimbals will be free to rotate subject to Coulomb
friction. If the relative rotation rate is nonzero, no matter
how small in magnitude, then the gimbals will not be stuck.

This may cause some difficulty in the computer simulation
cf the system. Because of numerical considerations it is
uniikely that the relative rate of any gimbal pair will exactly
equal zero in the simulation. The approach taken then is to
check if the relative rotation rate about any axis has recently
passed through zero (i.e. changed sign). If so, then a
comparison of applied torque with the statiec friction 1limit is
made as though the rotation rate were exactly zero, and the
system is treated accordingly.

When two gimbals are stuck they will travel together,
Neither a relative velocity nor a relative acceleration will be
experienced, despite any applied torque up to the static friction
torque limit. This causes-problems in applying equation (4.25),
We no longerlknow the net torque being supplied between the stuck
gimbals. fhe moter torque is known, but not the amount of
stiction. Static friction will be Jjust adequate to prevent

motion along the affected axis, but it is not possible to predict
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a priori, Calculation of angular acceleration by means of
equation (4.36) 1is thereby rendered impossible, Some other
method is required.

The method used is to go back to equation (4.25). If all
net torgques were known then (4.25) could be inverted as was done
in (4.36), But the net torque will not be Kknown at a stuck
gimbal pair. So a constraint will have been lost from equation
(4.25) and the system will be indeterminate. However, another
constraint may be added, namely that the acceleration of the
affected angle will be zero. This can be best expressed by
rearranging and partitioning the elements of equation (4.25)

Let ?1 be a vector containing those elements of T not
affected by stiction. ?1can be computed since the net torque is
readily computable in the absence of stiction, Let '31 be a
vector containing the angular accelerations in Z not affected by
stiction. These are the values we wish to compute, Similarly,

-t

let Y2 be a vector containing the elements of Y that are affected

by static friction. Even though the torque motor contributions

to Yz will be known, the static friection contributions will not,

as was discussed above. Lastly, let 22

those angular accelerations that are affected by static friction.

o

22 will be identically zero. Introduce a new matrix L' whose

elements are permuted elements of L such that:

be a vector containing

' ' ¥, [ T, 1
P R
1Y, | | Z, (5.6)
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L' can be partitioned like so:

Ll’ E L?
R e O O
I'Lé1 l Lée ! (5.7)
Equations (5.6) and (5.7) can be combined as follows:
it - 1 -l " —
R PR TRE P
= L1, 7, (5.8)
Z, = (L.'“)—'i T, (5.9)
30 that > : 1%
T -
r A T R et L o
V2,0 0 | (5.10)

This is what we wanted. The presence cf sticticn leads to
a smaller set of equations to solve. The exact contribution of
static friction was not needed. If stiection is present and
equation (5.10) is wused, or stiction is absent and equation
(4,36) is used, the angular accelerations, and thus the angles
can be correctly determined.

Y
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VI. Optimal Control of the Four-Gimbal System

Up to this point, differentiai egquations have been . derived
that relate acceleration of the gimbals to control signals.,
These have all been scalar equations although they may be

considered selected components of a Set of vector equations of
the type exemplified by (4.3). Rearranging the scala} equations
into state-space form will aid the application of modern optimal
control .theory to the four-gimbal problem. Define an
11-dimensional state vector X and a 4-dimensional control vector

1] by:

(Y, B, 9, #, I, B, &, D, aSR, ad, as¥)T
u )T

o

U

(UE, U )

I "M 7o

X is composed of the gimbal éngles and velocities plﬁs the
inertial platform tilts ASV, AJ, aSR. The entire dynamies of the
four-gimbal system can be compressed into a single nonlinear
vector differential equation by writing:

-:5 I S )
~ X =7 (%, U, ﬁ§c> (6.1)

-

Explicitly, X may be expanded using equations (3.20)-(3.22)
and (4.36) to yield:

i1 = X (6.2)
X, = X, (6.3)
X, o= x (6.4)
X, =Xg (6.5)
Xs = M11Y1 + M12Y2 + H}3Y3 + H14Yu - (6.6)
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Xg = My ¥, + Mpo¥, & Moa¥q 4+ My Yy . (6.7
Xy = Mgq¥q « Mgp¥p + M33¥3 + Myy¥y . (6.8)
Kg = Myq¥q + Myo¥o 4 My3¥a + Myy¥y (6.9)
Xg = cosXy Wpy - sinXq Wyg (6.10)
Xip = Wy + Xg ‘ (6.11)
i11 = sinXq Wry + cosXqy Wyg (6.12)

The M's are functions of B and 8, or X, and X3. The W's
are functions of case rates, gimbal angles and angular rates, and
so can be expressed in terms of ﬁgc and X's. The Y's are also
functions of X's and U's, Only the states, c¢ontrols and case
rates appear on the right hand side of equations (6.2)-(6.12) in
accordance with the formulation (6.1).

One advantageous aspect of this formulation of the system
relates to sensors. Each state variable has a uniqde sensor
associated with it., X4, through X, are measured by resolvers, Xg
through Xg are measured by tachometers and Xg through X411 are
measured by gyros. There can be no question as'to whether or not
the system is observable. Measurement noise does complicate the
picture someghat, but filtering of the sensor data should suffice
to provide accurate estimates of the state variables. The
oft-quoted Separation Theorem permiﬁs-issues of estimation to be
considered separately from issues of control for linear syétems.
The system uqder‘study is not linear, but as we will shortly see,
it can be approximated by linear equations., Henceforth we will
not be concerned with estimation of state except insofar as it

relates to the Qalidity of simulation studies.
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The honlinear eqdations embodied in (6.1) are* fine for
numerical analysis and simulation. They allow for numerical
integrafion of the dynamical equations given ény inputs to
predict the trajectory of the system. As far as optimal control
is concerned, equation <(6.1) is horrendous, The theory- of
nonlinear optimal control is difficult ¢to apply to actual
real-time processes. For this reason 1linear quadratic optimal
control will be applied to a linearized discrete-time version of
the state equations.

Start by looking at the system at time ¢t0 and at short
intervals thereafter. Over a short enough interval, %Zens of -
milliseconds for example, the system will not change state much
and the dynamics may be faithfully described by linear equations.

It is necessary to choose a nominal operating point about
which to perform the linearization. One could choose X = -kto),
U = T(t0) and W = WSc(t0). This is valid if X, U, and W are
slowly time-varying. It has already been assumed that W is. X
is also slowly changing on the time scale of interest here. But
U need not~ be .so constrained. ﬁ? the control vector, is a
quantity that ultimately will be minimized., Since U ideally will
be near zero we will use X = fkto),'ﬁ =0 and W = ﬁgc(to) as a
nominal operating point. Assuming constant case velocity,

equation (6.1) can be approximated by

Ty

AX = (dF/dX) oX + (dF7d0) AT . (6.13)
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X(t) - X(t0) = (4T, T, W) /d¥) [F(t) - F(to)}
¥ = T(to)
T- 0,
w = WSC
+ (FT, T, Dsa) iy, (6.14)
X = _)_(_(tﬂ)
=0
W = F"'gc
Equation (6.14) can be rewritten as:
X(t) = 4 X(L) + B T(t) » X(£0) - 4 T(t0) (6.15)
Where A = dF(X, 0, W)/d¥ (6.16)
B = dF(X, U, W)/d0 (6.17)

Equation (6.15) is a linear continuous-time approximation
to the four-gimbal system. Computation of A and B is extremely
complex. Unfortunately, we do not have at our disposal a
computer that can exactly simulate in a finite amount of time the
continuous behavior of the system that is implicit in (6.15). It
is appropriate to ask what the state of th: system will be at
time t0 + Aot given the state and control at time tO. Simulating
samples of -~the state will relieve the computational burden
required for a continuous solution. Assuming U(t) to be constant

in the interval [t0, t] and A to be nonsingular, the solution to

the dynamical equation (6.15) is:

X(t) = A (t-t0ix(¢o)

s 27T e? P00 1yrp T 4w R(k0) - A TCEO)T  (6.18)

Equation (6.18) can be differentiated versus time to check

that it does solve the dynamical equation. Plugging in t0 for ¢
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allows us to check the initial conditions, too.

X(t) = 2eR(t=t0) Firo) + a~taeh(E=t0) [ T 4 X(t0) - A F(t0)]
= 4ePE-t0) R0y 4 AUE-E0) (5 T 4 F(to) - & K(t0)]

(BT + ¥(t0) - A X(t0)] + [B T + X(t0) - & ¥(t0)]

= ager=t0) ooy 4 a”reA(E-0) | 1y1p T 4 R(to)
- A X(t0)3} + B U + X(t0) - A X(t0)
-— - -— ——
= AX(t) + BT + X(t0) - A X(t0) (6.19)

iktO) - eA(tO—tO)ftto) - A-1[eA(t0-t0)_ 1]IB T

l.

(t0) - A X(t0)1
X(t0) (6.20)

4

|

Denoting t by t0 + aAt, eguation (6.18) can be rewritten as:

Ttoeat) = 8% (t0) + 87T 1e . 1118 T + F(t0) - & F(t0)]
= eAAtiktO) + A_1[eAAt- 11B 7T
s a7 1e™0 TIIX(t0) - 4 X(t£0)] (6.21)

Equation (6.21) can be put in discrete form as:

~Xn+1] = A'X[n) + B*Tln] + CF (6.22)

Where A* = eAAt {6.23)
B* = a~'refatl 131 . . (6.2l4)

¢’ = a7 Mt 11ft0) - A Te0)] (6.25)

Because at is assumed small equations (6.23) through (6.25)

may be approximated to second order:

' _ 2 .2
A = I + Aat/11 4+ A pt /21 (6.26)
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BY = 271 + aat/1t + A%at2/721 - T1B
= [Iat + AatZ/21]B ' (6.27)
¢* 2 [Iat + BatZ/2100%(80) - & T(t0)] (6.28)

A cost function will be used as a measure of performance.
The performance index will Be a quadratic function of those
parameters to be minimized by the controller. They are motor
torques, inertiazl platform misorientation as sensed by the gyros,
inertial platform rotation rate, and proximity to gimbal lock.
Only proximity to gimbal 1lock remains to be expressed
mathematically.

The angle from the inner gimbal x-axis, Xy, to the outer
gimbal plane defined by Xo and Yo is a convenient measure of
gimbal lock. This angle is called A. X can be shown to obey the

following equation:
sinl\ = sinB siné® (6.29)

Gimbal lock occurs when A equals +90 degrees. Equation
(6.29) requ{res that both B equal £90 degrees and @ equal +90
degrees for this to happen. In keeping with a philosophy of
linearizing and sampling the equations, the -gimbal lock

contribution to performance is approximately:
sinAln+1] = cosB sin8 AB + sinB ¢c0s50 A0 + sini[n+1] (6.30)

The inertial platform rotation rates c¢an be handled in

similar fashion.
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Wpxln+1]l = WEx[n] + ;‘Z(dwm‘(/dxi) aXy (6.31)
HEY{n-H] = [n] + Z(dwE /dX. ) Ax ‘ (6.32)
sz[n+1] = sztﬂ] + 2:(dsz/dx ) Ax (6.33)

Equations (6.30) through (6.33) can be combined into a

single equation,
€ln+1] = DInl Xin+1] + Elnl (6.34)

Where @[n+1] = (sinAl[n+1], aSRIn+13, adJln+1l, ASVIin+11l,
WEX[n+1], WEY{H+1], WEz[n+1]) (6.35)
Din] is a matrix of derivatives with respect to state
Eln] is a vector containing those terms in (6.30)

through (6.33) not explicitly dependent on iTnf1]

A quadratic cost function was chosen because of a desire to
penalize large misorientations of the inertial platform over
small ones. Perhaps it would be more appropriate to minimize the
maximum torque rather than minimize the RMS torque, but the
latter approach is compatible with a quadratic cost function and
is certainly more tractable. The one-step performance index is

given by:

Jinl = S[n+117Q Eln+11 + Ulnl R Tinl (6.36)

Where J[n] is a measure of system performance
€In+1] is given by (6.35)
Q is a positive definite symmetric matrix reflecting
the cost associated with any state

UInl is the control vector
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R is a positive definite symmetric matrix reflecting

the cost associated with any control

The cost function in equation (6.36) can be rewritten uéing
matrix trace. Equations (6.34) and (6.22) can then be used to

express the cost in terms of 5.

Jdin] €fn+1]TQ Eln+1]1 + Ulnl'R Ulnl (6.36)

"

Tr(Q Sln+1] €ln+11" + R Tlnl Ulnl*)
Tr{Q (D[n1(A X[nl + B UIn] + ) + Elnl)

%_. %o at - T - =s _T
(D{n](A X[n]l + B Un] + C ) + E[n]) "+ R UlnlU[n]}
(6.37)

Applying the Matrix Minimum Principle[1,2] and taking the

gradient of equation (6.37) with respect to U yields:

- *T T * -
dJ/dU = 2(B "DI[n)l"Q D[n]l B + R) U
*T T *_ o -
+ 2B "D[n]1 Q (DInl(A X[n] + C ) + E[n)) (6.38)

Setting equation (6.38) to 0 and solving for 'L-I.opt while

keeping in mind that things are really dependent on n gives:

-~

1

- ® * - * % _. - -
Topt = -(B 'D'Q DB + R B DQ(DAT + ) + ) (6.39)

This can be expressed as:

T.l.opt = Kff + ?2 (6.20)
* % - * #
Where K, = -(B lap s+ »y" 8" dTg D & (6.41)
— # #* - # -
K. = (B TpTg p B"+ R)-18'TpTq (DC¥+ B) (6.42)

2



Equations (6.40)

implementation

through

like that depicted in Figure 6.2.
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(6.,42) immediately suggest an

Here the state

vector is multiplied by gain matrix Kq to produce an intermediate

control signal,

before driving the

The intermediate

actuators.

control 1s <c¢orrected by Eé

K1 and E} are functions of the

state, so there are two feedback loops operating here.

Alternatively equation (6.40) can be written as:

-l - -
Uopt = K3(Kq - X)
*® * -
Where K3 = (B TDTQ DB + R) !
- *¥_1 T T =1a
Kll = -4 lD (D b)) 1E +

#
B

y (6.43)
ToTa b &' (6.44)
.

&) (6.45)

These equations, although repbesenting the same system as

(6.40) through (6.42) suggest
Figure 6.3.
of which implementation is
deal of effort is required to
functions

are complicated

calculation poses an immense
should be found to reduce the
One method is to update

relatively simple

performed very frequently whereas it might be possible to

the gain matrix at a

performance or stability.
undertaken.

Another strategy for

calculation

lower

Such

a different implementation shown in

The controller should behave the same way regardless

chosen. It is obvious that a great

compute K1,fé or K3,Eh since they

of complicated functions. Their
computational burden. Some way

amount of work necessary.

Ki,K or K3,K; less often. The

of the control vector could be

update

rate without sacrificing either

an analysis has yet to bte

coping with the complexity of
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computation would be td simplify the torque equations by ignoring
high order effects., This would hopefully not degrade
performénce, but might enable more frequent calculation of the
gain matrix .and offset vector, <Carried to an extreme one could
ignore everything in the Y's except for torque, and approximate L
and M by constant matrices., Simplifications will get propagated
through A, B, A*, B*, E* etc. leading to more tractable formulas
for the K's. In practice, some combination of both strategies

may be most feasible.



=-55=

Figure 6.1
Gimbal Lock Angle
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VII. Results

Embedded in the R and Q¢ matrices of the previocus section
are foﬁr parameters called TORQWT, LOCKWT, TILTWT and RATEWT.
They are the weights assigned to torque motor control signals,
gimbal 1lock proximity, inertial platform tilt and inertial
platform rate respectively in the cost function. These weights
were not assigned in any specific fashion, Rather, a trial and
error approach was taken to get results that look good. The
simulation was run with various values for the weights and
performance was judged on the basis of low control voltage,
gimbal 1lock avoidance, small inertial platform tilts and rates,
and stability of the controller. The four parameters were
tweaked until the controller exhibited the desired behavior, It
may be possible to further 1improve performance by further
refining the weights but it is not clear that any significant
amelioration will result, In any event, the cost function
weights were not chosen in any formal way.

Before examining the performance of the optimal gimbal
controller let us see what it replaces. The currently
implemented controller uses a zone control scheme, In this
scheme the B-@ plane is divided into 16 regions (Figure T7.1).
Torque motor control signals are generated based on the current
zone. The idea is to steer clear of gimbal lock by staying
within the numbered zones and avoiding those that include the
gimbal lock condition. This is done by driving the elevation and

inner gimbals from two of the gyros, and using the third gyro to
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control either the middle or outer gimbal depending on the zone.
The remaining redundant gimbal is used to assist in some sensible
fashion, Essentially it is a three-gimbal controller modified
for an extra gimbal. Additionally, two of the physical gyros are
replaced in the controller by "computed®™ gyros. " The computed
gyros, aR and AV, lie in the same plane as aSR and ASV. However,
they point in the same direction as X; and Z7 respectively.

Equation (3.4) can be used to show that:

oR = ASR cosY - ASV sinY (7.1

aVv

ASR sinY + ASV cosY (7.2)

The zone control works fairly well until a zone switch is
necessary. When a zone switch occurs, large transient effects
arise. Large torque levels may be required to keep the platform
inertial. Inertial platform misorientations are greatest

immediately following zone changes. The decision rules are:

Zones 1-=4 aR drives the middle gimbal

(Yactual ~ Ycommanded) drives the outer gimbal

Zones 5-8 AR drives the middle gimbal

SinB drives the outer gimbal

Zones 9-12 AR drives the outer gimbal

sin® drives the middle gimbal

All zones oad drives the elevation gimbal

AV drives the inner gimbal
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The next several pages compare the optimal controller with
the zone <control over a variety of orientations and case rates.
In all examples the optimal controller exhibits much smaller gyro
errors, plus lower RMS and peak torques while avoiding gimbal
lock at 1least as well as the zone control, It wouldn't be
optimal otherwise! Much of the apparent advantage of the optimal
controller stems from the elimination of zone switch transients.
Examples provided courtesy of H. M. Jones. For all examples the
time between control updates is 5 milliseconds for the optimal
controller, whereas the zone contrél is simulated as a continous
system using a fourth order Runge-Kutta numerical integration

technique with a time interval of 1 millisecond.
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Table T.1

Optimal vs. Zone Control Run 1

Case Rates (deg/sec) Initial Angles (deg)

Roll -30.0 [y 0.0
Piteh 0.0 1) 0.0
Yaw -90.0 B 60.0

Y 6.0
Peak Torque (ft-1bs)  Optima Zone
4] 0.328 0.601
9 0.203 0.460
B 0.172 0.160
X 0.223 : -0.121

i

RMS Torque (ft-1bs)
(4} 0.111 0.218
[} 0.112 0.135
B ) 0.100 0.100
Y 0.090 0.090
Peak Gyro Errors (milliradians)
aSR 0.03 0.51
ad 0.26 0.u42

asy 0.06 0.38
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Table 7.2

Optimal vs., Zone Control Run 2

Case Rates (deg/sec)  Initial Angles (deg)
Roll 0.0 4 0.0
Pitch 0.0 e #5.0
Yaw -90.0 B 90.0

h 4 0.0
Peak Torgque (ft-1bs) Optimal Zone
[ 0.0 0.0
(5 0.258 0.763
B 0.0 c.0
Y 0.196 .0.1'17-
RMS Torque (ft-1bs)
] 0.0 0.0
G 0.119 0.413
B ) 0.0 0.0
Y ‘ 0.090 0.090
Peak Gyro Errors (milliradians)
ASR 0.0 0.0
ad 0.098 0.436

Asv 0.0 0.0
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Table 7.3

Optimal vs. Zone Control Run 3

Case Rates (deg/sec) Initia) Angles (deg)

Roll 0.0 P 135.0
Pitch 0.0 0 4.1
Yaw 90.0 B 41,2

| Y 0.0
Peak Torque (ft-lbs) Optima Zone
[/ 0.395 1.13
0 0.133 0.673
B 0.322 0.209
Y 0.131 0.115
RMS Torque (ft-1bs)
P 0.150 0.532
o 0.110 0.194
B - 0.101 0.101
¢ 0.090 0.090
Peak Gyro Errors (milliradians)
aSR 0.133 : 0.460
ad 0.049 0.260

ASV 00117 0-518
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Table 7.4

Optimal vs. Zone Control Run 4§

Case Rates (deg/sec)
Roll -90.,0
Pite¢h 0.0

Yaw -90.,0

Peak Torque (ft-1bs)
(]

HH I ©

Torque (ft-1lbs)

HUJOBI::I
=
(9]

Initial Aﬁgles (deg)

L) 0.0

e 0.0

B 0.0

Y 0.0

Optima Zone

0.75 1.63

0.36 1.23

0.22 0.138
0.26. 0.157
0.169 0.238
0.075 0.192
0.082 0.100
0.015 0.085

Peak Gyro Errors (milliradians)

aSR
Ad
ASV

0.05 - 1.06
0.18 0.84
0.05 0.08
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Table 7.5

Case Rates (deg/sec)  Initial Angles (deg)

Rell 0.0 9 180.0

Pitch 0.0 8-105.0

Yaw 90.0 B 43.5
Y 6.0

Peak Torque (ft-1lbs) Optimal

[ 0.939

e 1.24

B 0,234

X 0.415

RMS Torque (ft-1bs)

B 0.276

e 0.174

B . C.100

Y 0.093

Peak Gyro Errors (milliradians)

SR 0.029

ad 0.305

asv - 0.086

Zone Control Run 5

0.503
0.173
0.099
0.091

0.411
0.902
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Table 7.6

Optimal vs. Zone Control Run 6

Case Rates (deg/sec) Initial Angles {deg)
Roll 0.0 % 135.0
Pitch 0.0 0 0.0
Yaw 90.0 B -45.0

Y 0.0
Peak Torque (ft-1lbs) Qptima Zone
9 0.637 1.29
e 0.230 1.23
B 0.301 0.138
b4 0.183 0.111
RMS Torque (ft-1bs)
[/ 0.252 0.390
e 0.110 0.300
B = 0.099 0.087
Y 0.089 0.081
Peak Gyro Errors (milliradians)
aSR 0.029 0.887
ad 0.139 0.236
aSv 0.117 0.232
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Table 7.7

Optimal vs. Zone Control Run 7

Case Rates (deg/sec) Initial Angles (deg)

Roll 0.0 9 180.0
Pitch 0.0 e 0.0
Yaw 90.0 B =45.0

Y 0.0
Peak Torque (ft-1bs) Optima Zone
4] 0.637 1.10
G 0.230 6.u401
B 0.301 0.158
Y 0.183 0.149
RMS Torque (ft-1lbs)
2 0.252 0.430
e 0.110 0.123
B - 0.099 0.085
Y 0.089 0.081
Peak Gyro Errors (milliradians)
aSR 0.029 0.278
ad _ 0.139 0.846

asSy ' 0.117 0.312
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VIII, Conclusions

Modern optimal control provides a useful framework in which
to analyze and improve the performance of feedback systems. Many
untapped applications exist for this powerful theory.
Unfortunately, it 1is not élways used to advantage, This thesis
has attempted to relieve this situation for one particular
system, Simulation studies indicate great success., The optimal
controller for a four-gimbal system potentially far outperforms
an earlier nonoptimal controller.

This improvement in performance does not come free, A
significant computational burden is imposed by optimization,
Some techniques for reducing the load have been suggested. Work
remains to be done actually implementing the proposed controller,
Final Jjudgement on its feasibility awaits.

There is no reason to be content even with an optimal
controller, Under different optimality criteria it is
conceivable that a controller could be designeﬁ with more
desirable operating characteristics. A bang~bang controller is
one worth considering. By applying full torque in short pulses
it may be possible to further reduce platform tilts.

Leaving such speculation aside, the fact Eemains that with
a suitable model developed, optimal control can be applied to
components of inertial guidance equipment. One c¢an only hope

that deployment precludes actual use,
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Appendix A. Coordinate Transformations and Notation

The notation used here is based on work by Brittingl[31].
This notation is helpful for representing orientations, rotations
and coordinate.transformations. The reference frame of a vector
is indicated by a superscript. ?j is a vector coordinatized in
the J reference f{rame, Any vector in the j frame can be
expressed in the k frame by premultiplying the original vector by
a coordinate transformation C?.
original reference frame and the superscript denotes the new

The subscript indicates the

reference frame. Thus, for the example given:
(A.1)

Note that the original superscript has been canceled by the
subscript of C?. For Cartesian coordinate systems, in which the
basis vectors are orthonormal, the entries of a coordinate
transformation matrix are direction cosines, Direction Cosine
Matrix (DCM) is a term often used to describe such a matrix. The
direction cosine from the m-axis of reference frame j to the
n=axis of frame k is the mnth entry of Ck. DCM's exhibit many

interesting properties. Some follow:

1 k.1l 1

1l k

cg = T (A.3)
cf = (! | (A.4)
¢f = ()’ (4.5)



~78-

Rotations satisfy the same superscript convention as other
vectors. In addition rotation vectors have two subscripts. The
sense of rotation is from the left subscript to the right
~ subscript. To be precise, coordinate systems rotate, not
subscripts. ﬁij would be the rotation rate of system j with
respect to system k as seen from the 1 reference frame.

Rotations add vectorially., When they do, subscripts cancel.

-1 =1 =1

Upg = Wey + W54 (4.6)
It follows that:

-] -a]

ij = —ij (AOT)

The superscripts must be the same for these relations to

hold. Differention of vectors is no longer simple in rotating
-l

reference frames, For any vector T we have the following

equivalent expressions:

o e a
- z c}?". - c3ﬁ'§i x‘cé?"’
= c}FJ - ﬁ%i X ¥
= i) LW x T (A.8)
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Appendix B. Summary of Computer Routines Used

Main Program
1. Calls INITLZ routine
2. Calls DERIVE routine
3. Calls OUTPUT routine
4, Calls UPDATE routine

5. Loops to 2.

INITLZ (X, DXDT, W, OLDRATE, TOTALT, DELTAT)
1. Clears out storage areas

2. Initializes state, case rates and other parameters

QUTPUT (X, DXpT, U, W, I, TIME)
1. Prints output 1 out of J invocations else returns

2. Prints state, derivative, control and case rate vectors

UPDATE (X, DXDT, U, W, OLDRATE, DELTAT)
1. Updates state via 4th order Runge-Xutta Integration

2. Calls DERIVE during computation

DERIVE (X, DXDT, U, W, OLDRATE)
1. Computes friction as described in section V.
2. Derives torque-acceleration equations as per section VI,
3. Solves for angular accelerations using SIMQ

4, Returns state derivative in DXDT

SIMQ (A, B, N, KS)
1. Solves system of equations of form AX=B

2. Returns soluticn in B
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MINV (A, N, D, L, M)
1. Inverts a matrix

2. Returns result in A

MATMPY (4, B, C)
1. Computes C=AB

CONTRL (X, U, W, OLDRATE, DELTAT)

1. Computes linear discrete~time equations as in section VII
2. Calls MINV and MATMPY to perform matrix manipulations

3. Returns control in U
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Appendix C. Computer Simulation of the Four-Gimbal System
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ooi4ac SIULAG -- 4 GIMEAL SYSTEM SIMULATION
pr20C MICHAEL A, GEMNERY

0030 IMPLICIT DOUBLE PRECISIDN(A—H 0-73

20240 PARAKETER IXX=if,]IR=7"

00058 DIXEWSION X(11), bXDT(li) Ut4), ¥(3}, OLIRATE (4)

00470C DELTAT = TIME INCREMENT SIZE
06060C TOTALT = TOTAL SIFULATIGN TInE

800900 X = STATE VECTOR

00§00C DXDT = TIME RATE OF CHANGE OF STATE VECTOR

g0ifoc U = CONTROL VECTOR

80128C W = CASE RATE VECTOR

goilec CLDRATE= VECTCR CONTAINING PREVIDUS VALUES OF GIMBAL ANGLE RATES
ggiggg USED TO DETERMINE FRICTION EFFECTS IN DERIVE ROUTINE

00£60C X(i) = P§l {E)
80170C X{2) = BETA (1)
THETA (W)

§0i70C X(4) = PHI (0}
00200C X(S) = PSIDOT  (dE/dt)
00240C X{6} = BETADOT ({dI/dt)
go220C X(7) = THETADOT (dM/dt)
002300 X(8) = PHIDOT  (d0/dt)
00240C X{9y = DELTASR

00250C X(40) = DELTAJ

00260C X{11) = DELTASV

s0270C

fo280C (i) = CONTROL ON E GINBAL
002%0c U(2) = CONTROL ON I GIXGAL
80300C U(3) = CONTROL ON M GIrBaL
00310C U{4) = CONTROL ON O GIXRAL

U §0) =% 0 O T

00350C H(3) = I AXIS CASE RATE (¥C2)

00380C INITIALIZE

00400 CALL INITLZ (%, DXDT, W, OLDRATE, TOTALT, DELTAT)
00440 N = TOTALT/DELTAT
08420 0 £60 1 =4, N¥2

00430C
ggigg% DETERHINE CONTROL SIGHAL TO BE APPLIED
0460 CALL CONTRL (X, U, W, OLDRATE, DELTAD)
804700

814300  COMPUTE STATE DERIVATIVE VECTOR PRICR TO DUTRUT
00580 CALL DERIVE {X, DXDT, U, ¥, OLDRATE)
00520C  PRINT STATE AND CONTROL INFORMATION
11 = I-f
60556 CALL OUTPUT (X, DXBT, U, ¥, 1I, DBLE(FLOAT{II))SDELTAT)

08560C
08570C UPDATE STATE EQUATIONS AND INTEGRATE

80580C

80590 CALL UPDATE (X, DXDT, U, ¥, OLDRATE, DELTAT)
00588 180 CONTINUE

80650 sTap

80620 EWD

80630C
80640C INITIALIZE SUBROUTINE

00550C

00650 SUBROUTINE INITLZ (X, DXDT, ¥, GLORATE, TOTALT, DELTAT) .
00670 TNPLICIT DOUBLE Pnscisxnucé-n 0-7)

§0680  PARAMETER QXX=ii



08690
09780
8074 0C
g0724C
09730C
00740

00759
00750 1€0
gg770C
go7eoc
B0790C
90800
84810
o0820
00830
00840C
gsasic
008400
90871
01880
00896
00900
0esitc
§920¢C
00930C
06940
00950
00960 1iD
009700
84980C
00990C
$1008
81010
81020
64030
81040
81050
01660
04070
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DINENSION X (1), DXDT (1), ¥ (i), OLDRATE ({)
XK = 3.14§59265558979323846D0/188.04

CLEAR STATE VECTOR
DO 106 I =i, IXX
(1) =0.D0
CONTINUE
€, 1, B, O FOLLOW IN DEGREES
1) = §,D08XK
)=60., DRSXK
)=0.D 38K
4) = 0.D38xK
dE/dr, dI/dt, di/dt, dD/dt FOLLOW IN DEGREES/SECOND
X (5) = §.DO%K -
X(6)=30,D01XK
X(7)=60, DO1XK
X(B) = §.DoEXK
SET OLDRATE TO ANGLEDOT FOR FRICTIOH COMPUTATION
DO 450 ) =1, 4
OLDRATE (I) = X (I + 4)
CONTIRUE
CALCULATE CASE RATES IN KADIANS/SECOND
SB = DSIN (X

4}
CB = DCOS €X (21
ST = DSIN (X (3))
3

))

n

g

LG
.

{
2
3
(

£T =DCOS (X (
SF = DSIN (X (4
CF = DCOS (X (4
Wiy = =X (5)
RMX = -SEINIY
RMY = CEXWIY

Wz = -X (b)

WOX = BMX-X (7)

¥OY = CTEMNY-STIENZ
HOZ = STRENY+CTRUML

Y (1) = CrEnOX+5SFI80Z
W (2) = BOY-X (8)

# (3) = -SFENDX+CFR0Z

SET UP TIME PARANETERS IN SECONDS

JOTALT = 1.D0
DELTAT=1.D4/3000.D6
RETURN

BUTPUT SUBROUTINE

SUBROUTINE DUTPUT (X, DXDT, U, ¥, I, TIHE)
THPLICIT DOUBLE PRECEsIon(A-Hl0-1)
DIKENSION X (1), DXDT (), U {1), WD)

IPRINT = &
XX = 3.1415926535897932384601/168 . D4
PRINT EVERY Jth TIME, RETURN THE OTHER J-1 OCCURANCES

IF (INE.(I/D)2]) RETURN
WRITE (IPRINT,900) TIME
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01370 900 FORMAT (//® TINE =*, F.3, ® SECDHDS*)
01360 WRITE (IPRINT.90f)

85390 908 FORMAT (18X, “DEG®, §iX, *DEG/SEC*, 7X, *DEG/SEC/SEC®, 7X, "CONTROL®)
08400 WRITE (IPRIAT 902) "%’ ()/XK, X (SI/XK, BXDT (S, U ()

04410 902 FORMAT (8, tAi 4(8Y.’F3.3))

05420 WRITE (IPRINT,902) *T%, X'(2)/XK, X (837YK, DXDT (63/XX, U (2)
04430  URITE (IPRINT,922) "K', X (3)/XK, X (73/XK, DXDT (D)/XK, U (3
03480 WRITE (IPRINT,903) *D%, X (4)/XK, X (8)/Xk, DXDT (8)/XK, U (4)
D450 WRITE (IPRINT,903)

01460 903 FOIMAT (18X, *2AD*, OX, "MRAD/SECY, 26X, "DEG/SECY)

04470 WRITE (IPRIAT,904) *8R*) X {9)XMEL, DXDT (9)HE3, *WCX®, W {1/
0140 994 FORMAT (6X. *ELTA", A2, Fi0.3, BX, Fi0.3, 16X 41, 5X,'F8.3)
91490 WRITE (IPRINT,904) %3 *) X (1304sE3, DXIT (imkaez, ubye,'v 21/
01580 WRITE (IPRINT)904) "Su*, X ({1)#E3, DXDT (11)ME3, "WCZ*, W (3)/XK
01540  RETURN

04520 END

81530¢

0iS40C  UPDATE SUERCUTINE

01550C  CALLS DERIVE HHICH COMPUTES DERIVATIVE, THEM

g}g;gg ENPLOYS RUNGE-KUTTA 4th ORDER INTEGRATION

01580 SUBROUTINE UPDATE (X, DXDT, U, W, OLDRATE, DELTAT)

94590 IMPLICIT DOUBLE PRECISICM(A-H,0-0)

01800  PARAMETER IXX={f

01616 DINEWSION X (1), DXDT (). U {1}, W (1), OLDRATE ()

g{gggc DIKENSION & (IX%), XSTOR {IX)

0§640C  STORE STATE VECTOR IN XSTOR'
016500 .
0is6? DO 1001 =f, IXX
0670 XSTOR (D) = & {D
01680 100 CONTINUE

COMPUTE DERIVATIVE AND MAKE {st APPROXIHATION

81720 CALL DERIVE (XSTOR, DXDT, U, W, DLDRATE }
84739 DG £46 I = §, IXX

01740 B {I) = DXDT (I}

81750 XSTOR (I) = X (I) + 5D % DELTAT-% DXDT ()
ﬂi;é%c 110 CONTINUE

8177

g1780C 2nd APPROXIMATION

§1790C

0.800 CALL DERIVE (XSTOR, DXDT, U, W, DLDRATE)
01840 pg i20 I =14, IX

¢i820 Q(I) = § (I)'+ 2,D% # DXDT (1)

01630 XSTOR (1) = X (I) + .5DG 8 DELTAT ¥ BXDT (D)
0i540 120 CONTIMUE

04850C
93850C  3rd APPROXIMATION

81870C

04880 CALL DERIVE (XSTOR, DXDT, U, W, DLDRATE)
4890 DO 30 1 = &, IXX

61900 (1) = g (1} + 2,00 3 DXOT (I}

04944 XSTOR (I) = X (1) + DELTAT 8 DXDT ()
05920 130 CONTINUE

0$930C

0i930C  FINAL APPROXIMATION

01956C -
%{gggc CALL DERIVE (XSTOR, DXDT, U, ®, OLBRATE)
g{;gg% STORE OLD VALUES OF ANGLE RATES FOR FRICTION COMPUTATION

b2loe DD 140 I =4, 4

02040 DLDRATE (1)-= X (I+4)
02020 £40 CONTINUE

02030 DO §50 I =14, IXX

12040 DXDT (1) = (A €T) + DYDY (1)) / 6.D0
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paese X (1) = X (I) + DELTAT & DXBT (D)
02660 50 CONTINUE

02070 RETURK
02080 END
82090C

§2100C DERIVATIVE SURRGUTINE
82140C COMPUTES DXDT GIVEN X, U AND W

62430 SUERDUTINE DERIVE (X, DXDT, U
0244 THPLICIT DOUBLE PRECISICH(A-2}
$2150 LOGICAL STUCK

82450 INTEGER 1,17, FLAG.KS

62470 DIKERSION'X 14), DXDF {£), U (§), W (1), OLDRATE (1)
02180 DIKENSION STUCK' (4), TORGUE (4),'KTR (43, KV (4), FSTATC (4)

0210 DIMENSION FCOULM (45 .

12200 DIMENSION L (4,4)

02240 DATA JE, T, 51Yi JHXZ I, 30Xy, 302

02220 & /0.2 {.4p-2 "2 25012, 3.00-2, 3.00-2, 3.90-2/
0223 DATA FSTATC /. 0959 {no 1;96 48500 }

02240 DATA FLOULH /. neao .400,.44D0,.46500 /

02250 DATA KTR /4,90-2.1.9D-2.4,10-2 5, 110-2/

02250 DATA KU /b.iD~1,4.10-1.9.90-1 1, 25008/

02270C  THIS ROUTINE SOLVES THE FALLOGING MATRIX EQUATON, Yi IS A FUNCTION
02380C  ONLY OF GIMBAL ANCLES, GIXEAL RATES, AND TIEY. Y2 IS A FLACTION
02250C  ONLY OF GIFRAL ANDLES, GIRPAL RATES, AND THIZ. Y3 IS A FUNCTION
02500 ONLY OF GIMPAL ANGLES, CIREAL RATES, AND T0MX. Y4 IS A FUNCTION
02310C  ONLY OF GINEAL ANGLES, GIMBAL RATES, AND TCOY.

023300 £y f fLi8L12 143 Lf4 4 § PSIDOURLEDOT  §
b234iC $Y2 1§ jlaileetailed ﬁcTﬁqu*LEDﬂT i
023%8C £ Y3 §=4 138 132133134 £ 1 THETADOUBLEDOT §
02350C £ Y4 £ fL4f L42 L43 L4414 § PHIDOURLEDOT 1

H, OLDRATE)

g2370C

§2384C STUCK = ONE FLAG FOR EACH CIMBAL, VALUE IS TRUE IF THE SPECIFIED
023510 GIMBAL IS STUCK 7O THE NEXT QUTER GINMAL DUE TO STATIC
§2400C FRICTION., VALUE IS FALSE IF THE GIr2ALS ARE NOT STUIK,

241 0C FSTATC = STATIC FRICTION TORGUE LINIY, SPECIFIES TFV STATIL FRICTION
p24z20C LEVELS THAT HMUST BE OUERCOME TO FREE A STUCK SIEPAL,
02430C FCOULN = CUULBHB FRICTICN TORQGUE LIMIT, SPECIFIES ThE FRICTION
02440C HACNITUDE WHEN THE GINMBALS £RE UNSIUCK,

p2450C KTR = CCNVERSION CONSTANTS FRCM TOIGUE MOTOR VOLTAGES TO TORRUES
024680 K = PROFORTIGNALITY CONSTANTS FRON ANGLEDOTS TO BACK EMFS
02476C JE = INERTIA ABOUT ANY AXIS CF THE ELEVATION GI“BAL

02460C JIX = INERTIA ABJUT THE X AXIS OF THE INMER GIKEAL

02450C  TIVZ = INERTIA AZOUT THE Y AND 7 AXES OF THE INRER GIMBAL
82500C JHXZ = IMERTIA ABQUT THE X AND 7 AXES OF THE MIDME GIMBAL
02510C JHY = INERTIA ABOUT THE Y AXIS OF THE MIDDLE GIMEAL
§2520C JOXY = INERTIA AGRQUT IHE X AND Y AXES OF THE OUTZR GIMBAL
02530C JOZ = INERTIA ABOUT THE Z AXIS OF THE OUTER GINBAL

2550l ASSOCIATE VARIABLES WITH ARRAY ELEMENTS
02560C COMPUTE REQUIRED TRIGONOMETRIC FUNCTIONS

g2sae PSl X (1)
BET4 =X (2)
f2600 THETA = X (3}
02640 PHI =X (4)
82628 SP = DSIN {PSI)
52630 CP = DLOS (PSD)
02640 SB = DSIN (RETA)
02650 (B = DCOS (PETA)
p2s6t ST = DSIN (THETA)
92670 £T = DCOS (THETA)
82680 SF = DSIN (PHD)
02690 €F = DCOS (PHD)
92700 SB2 =581 5B
02710 (B2 =CR s [P
62720 §T2 = ST & 5T
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02730 CT2 = CT & LT
02740C
02750  DEFINE L§i THROUGH L44
02750C  FOR THE SICNIFICANCE OF THESE QUANTIES REFER TO THE
gg;ggg CINBAL TORGUE EQUATION DERIVATIGNS
02790 L (,1) = JE
02808 L (1)2) = ) nu
02810 L {13 =
07820 L {18 =ca xcr T JE
02830 L (2)0) =
02840 L(2,2) = mz +JE
02850 L0 =
02859 L (20 = -sr Y (IYZ + 3B
02870 L (31) = SR & JE
02850 L (3,2) = 0,50
02899 L (3)3) = (JE + 582 % JIYZ + CB2 £ JIX + JNXD)
82919 L (304) =SR2 CE & LT 8 (JIX - JIYD)
07910 L (8 =(RECTXIE
02520 L (4,2) = 5T % (JIYZ + ]
22730 L (4'3) = SR # CR X LT 3 (JIX - JIYD)
02949 L 4'%) = JOXY & CTo ¥ JMY + ST2 & (IMXZ + JIYZ) + $B2 # CT2 # JIX
gggggc & +CR28CI2XJIVI+ JE
3‘32@%& ROUTINE TO CONVERT CONTROL SICNALS TO TORQUES, INCLUDING FRICTION
02990 D0 £20 ] =
333235 BRQUE m m () % (U (D) - KV (1) X X {I+4))
03330C  IF TWE HAGRITUDE OF THE APPLIED TORQUE BOSS NOT EYCEED THE STATIC
03030C  FRICTION LIXIT AND THE GIMRAL RATE 15 PASSIHG THROUSH 7ERD (je.
gggggg ANCLEDOT CHANGES SIGN) THEN THE GIMBALS WILL BE STUCK TOGETHER
0304 IF (ARS (TORGUE (I)).LE.FSTATE (D). r-wn {0X (I1+4)RCLDRATE (D).
33%73c & LUT.0.D0.08 . X(I+4) .EQ.6.D0)) 6OTD 1
308
3%%3% GIKBALS WOT STUCK TOGETHER -- CLEAR STUCK FLAG, SURTRACT FRICTION
93119 STUCK ¢I) = ,FALSE,
03129 TORQUE (I) = TORQUE (I)-SIGH (FCOULK (I}, X (I+4})
i, o
03150C  GIMRALS STUCK TOGETHER -- SET STUCK FLAG, SET ANGLEDOT TO ZERO
33§$“B SET ith RON AND Ith COLUMN OF (L} TO ZER, SET L (1,1} = 1.
03180 108 STUCK (D) = .TRUE.
03190 X (1+4) = 0, na
03209 no ua =1
03248 ID = 15
83230 ui 1) = 0.0
03230 118 cmmﬁus
032480
:ggggg SETL (LI} = §, 50 AS NOT T0 HAVE A SINGULAR MATRIX
H
03270 . L{I,1)=1.D0
03280 120 CONTIMUE
83290C
93300 DEFINE CIMBAL RATES
03310¢
03320 PSINOT = X (S)
13339 BETADIT = X (b)
§3340 THETADOT = X (D)
03356 PHIDOT = X (B)
0330 NCK = ¥ (1)
033N WY =4 (2)
03380 sCz=W (D
01329 WOX = CF ¥ KCX - SF 8 W(Z

WOY = WCY + PHIDOT
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63410 W0Z = SF & NCX + CF % KEZ
03420 WHX = WOX + THETADOT
03430 WEY = CT X WOY + ST X 0L
03440 WKZ =-5T $ WOY + LT & W0Z
03450 WIX = CB & WMX + SR X WY
G464 WIY =-GR % kMY + CB ¥ BMY
03478 WIZ = WHI + BETADOT

93480 WEX = CP X WIX - SP ¥ WlZ
93490 VEY = WIY + PSIDOT

23500 NEZ =SP S WIX + (P X KIZ

03520C DEFINE TORQUES

03540 TIEY = TORBLE (1)
03550 THIZ = TORQUE (2)
63560 TO0HX = JORGUE (3)
04570 TCOY = TORQUE {4)

035960 TORGUE EQUATIONS FOR THE FOUR GIMBALS

03619 Y (1) = TIEY + JE % (-SB % PHIDOT & WOZ - CR ¥ ST % PHIDOT % WOX
- [R & THETADOT ¥ WrZ + BETADOT ¥ WIX)
03630 Y (2) = THIZ + (JIYZ + JE) % (THETADOT % WY - CT X PRIDOT % ¥OX)
+ YIX & BIY & (JIX-JIYZ) - PSIDOT & JE ¥ 4IX
03650 Y (3) = TOMX + (JMXZ + CB2 X JIX + SR2 & JIYZ + JE) % PHITOT % W07

[— 15—
Sl
e ek P2
==
a o=

03468 & - SB ® CR ¥ (JIX-JIYZ ) % (ST & PHIDOT ¥ WOX ¢ THETALOT
038670 4 ¥ WKZ - RETADOT & WMX) + WNY X WMZ ¥ (JHY - JHXZ) - (CB2
3§£gg 2 % JIX + SE2 & JIYZ + JE) ¥ BETADOT ¥ WY + CB & JE X PSIDOT

¥ NI7
83700 Y (4) = TCOY - WOX & W0Z ¥ {JOXY - T0Z) - (CT2 & (JHY + SB2 % JIX)

0371 & # ST2 & (JHXZ + JIYD) + JE) % THETEDOT & W07 + ST & CT
03720 & 3 (JHY - JNXZ + SE2 % (JIX-JIYZ)) X CTHETADOT ¥ wOY
03730 & - PHIDOT % §0Y) + SB # CB X CT X (JI¥ = JIYZ) & (FHIDOT
03780 & % W02 - BETADOT & B4Y) + (CT & (SB2 X JIX + CR2 & JIVZ + JE)
03750 & £ BETADOT + ST % WMY & (JHY- JHZ)) ® §M{ + SR R CT R JE
03760 & % PSIDOT # WIZ + ST & (JE % PSIDOT + MIY % (JIYZ - JIX)
03770 & £ MiX

§3780C

gégggg CALL SING TO SOLVE FOR ACCELERATIONS

3810 CALL SIM (L, Y, 4, KS)

63820C

03830C SET TO ZERD THE ACCELERATION OF ANY GIMBAL THAT IS STUEK

0C

03558 PO Il =i, 4

03850 TF ¢STUCK (IID) Y (ID) = 0.00

83870 $30 CONTINUE

038800

ggggg SET DXDT T0 THE CONPUTED DERIVATIVE

93910 DXDT (§) = PSIDOT
13y DXBT {2) = BETAPOT

03930 DXDT (33 = THETADOT
03940 DXDT (4} = PHIDOT
03958 DXDF () =Y (i)
03964 DXDT (&) =Y {2).
03970 DT (7) =Y (D)
03980 DXDT (8) =Y (4)
23990 DXDT (9) = WEX
04009 DXDT (10) = WEY
04010 ‘DXDT (1) = WEZ

84020 RETURN
ga03e END

04400
g:gggg SUBROUTIKE YO SOLVE SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS

94970 SUBROUTINE SIMR (A, B, N, KS)
94880 INPLICIT DOUSLE PRECISION(A-H,0-D)



04750
04760C
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DINENSION & (1), B (1)

SOLVE SET OF EQUATICNS AX:=

A = HATRIX OF COEFFICIENTS STORED CBLUWNQISE THESE ARE DESTROYED
IN THE COMPUTATICM, THE SITE OF A IS N BY N,

B = VECTOR OF ORIGINAL CGASTAHTS (LENGTH N). THESE ARE REPLACED
BY FINAL SOLUTION VALUES, VECTOR X.

N = NUMEER OF EQUATIONS AKD (ARTABLES,

KS= QUTPUT DIGIT, 0 FOR NORMAL SOLUTION, { FOR & SINGLLAR SYSTEM,

;DL.= 0.00d

I = -
ppesy=1, N
J¥=71+4

JJ =]+ N +4
BIGA = 6.D0
IT ol

I I

IF (ABS (BICA) - ABS (A (ID))) 20, 38, N
20 RIGA = & {ID)

I#AX = 1
30 CONT INUE

IF (ABS (BIGA} - TOL) 35S, 35, 40
JSKS =4

RETURK
MI=JsNE(T-D)

—t b
H-M*%
o

To H v e |}
- - I U TR -

[
L

S5 IS E H £(]- 1)

m
90 60 X =
10X = utt3ﬁ-11+1x
I IXIX + 1T
60 A (IXTXY = A (DUX) - & (IXD) B & (JIN)
%ﬁ(n)=num-3(nxA(nn

A Dol nef b Tl g
MmO —t—<
@ N »
=am— =

“" , Su=E
10

Hd—ov--z

"

i
=nhm-ntm)xnum
A=m-n
@ IC=1IC~1
RETURN
END

l- -}
——
o—c

SURROUTINE TO INVERT A MATRIX

SUBROUTINE WINY (A
INPLICIT DOUBLE Pnécxéxuécn H u—z;

DIMENSION A (1), L (f), # ()’
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KATRIX
HPUT ARRAY, DESTRUYED 1N COMPUTATION AND REPLACED BY INVERSE
RDER OF MATRIX
ESULTANT DETERHINAHT A TERD DETERKINANT INDICATES A
INGULAR MATRIX

NVERT
=]
=0
8

EURK VECTOR OF LENGTH ¥

D

I
A
N
]

0RK VECTOR OF LENGTH N

v
[ —

;h!:: 1nna ixz

F =1 T]
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=
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)
==
z
M=
= z-az
F =

X
(A (17 ) = HOLD 8 A (K1} + A (ID)
C?NTINU
D7SI=t, N

KJ =KJ ¢+ N

IF (T =X 70, 75, 78
A (K1) = A (kb 7810A
CONTIMIE
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1051

OO O SO T il
i,

A D
i0LD

100, 100, 425

“ﬂﬂlig".-““ "
Ty
=

-

T H M

L, g
[ [ L b =8 |
[y

5 BE
e
LV N — 1

=

H

1 - i~
£

I
I+MN
A (KD
I-K+]
A (KI)=-a (J1)
£30 A (JI) = HOLD
GO 70 160
150 RETURM
END

HATRIX MULTIPLICATION SUBROUTINE
SURROUTINE HATMPY (4,

REHED SR Pgeisthth p-0°

A = L1 BY L2 INPUT MATRIX
B = M1 BY M2 INPUT MATRIX
£ = N{ BY N2 QUTPUT MATRIX

IFIRAE =1 THENC =A% B

= TRANSPOSE (A} & B

= # ¥ TRANSPBSE (B)

= TRANSPOSE (A) & TRANSPOSE (B)

_GOTO (100, 110, £20, 130),IFLAG
10011 = L4
12 = K2
12 =12
GOTO 148
119 I = L2
12 = K2
17 = L{
GOTO 140
120 T§ = L4
12 = A{
I3 = L2
GOTD 140
130 I = L2
I2 = Kt
13 = 1
140 20 200 )
D0 200 11 -i 12
rm 0,00
DO §90 111 = {, I3
G070 450 160, {70, 180),IFLAG
1S TENP = TEMP + A (T4 LE&'(XIT - 1)) 28 (M1 8 (11 - ) + IID)

GUTB 190
160 TEMP = TEWP + A (LI 2 (I - 4) + 1T} 8 B (ME X (11 - §) + IID)

-
LI~}

g T AP T ot g T T g I St TP g o g
e Tecs

— L) 5 i )

L2, M, K2, Ni, N2, IFLAG)

innu
e T



06430
86140
06450
06159

06750C
968000
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£0T0 199
170 EE?E ;9£EHP +A(T+ LI B (I - 1)) $ B(IT ¢+ ML X (11D - 1))
180 TEMP = TEMP + A (Lf & (1 - 1) + III) & B {II + M§ & (III -~ i})

: 190 CONTINUE

C(I+N®(I[=-1))=7D0F
200 CONTINUE

RETURN

END

CONTROL SICNAL GEWERATION SUBRCUTINE

SUERDUTINE CONTRL (X, U, W, DLDRATE, DELTAT)

IXPLICIT DOUSLE PRECiSIONCA-H,J-1)

PARANETER 1XX=11,10R=7

DIMENSION ARA(IXX, IXX), ARSACIIX, IXX)

DINENSICH X (1), U (1}, W (1), OLDRATE (4)

DIFENSION ASTAR’ (IXX,1XX), BSTAR (1XX,4), CSTAR (IXX)
DIKENSION A (Iix,TXx} B {1xx,4), xpote (1o

DIKENSION AA (IXX,TXXS, DIA (XX 100, XDOTAK. (IXK)
DIMENSION ZERD {4}, TWbRYY (4, TLORKR (4)

DIKERSTON D (IDR,IfX), E (IDR), § (IDR,IDR), R (4,4)
DIKENSION DB (ICR 4} EDQ (4,138), KDGOR (4,4), REDADE (4,4)
DIKENSION AX (IXx}, MXC (1xx}, Da%c (1DR), DAXCE (IDR), BLQDAXCE (4)
DIMERSICH KTR (4), KV (4), FCOULK (4)

DIKENSION ASTRYCIHX), xNERTIXX)

DIHENSION XTEXP (IXX)

DATA JE, JIX, JIYZ, INXZ, IMY, JOXY, Jo
L /ien-2 17002, 1.30-2 '2,2502, 3.00-2, 3.00-2, 3.5D-2/
pATA FLOULH 7,09D0,.406, 1508, 18500 7

DATA KIR /i,9D-2,1,9D-2,4,1D-2 §,13D-2/

DATA XU /6,1D-1 b, 1D-1, 7,901, { 2500/

DATA JERD /480,307

DATA TORQWT, LOCKWT, TILTWT, RATENT /1,D-13, §,D-13, £.D8,1.0-13/

ZERD = ZERD VECTOR USED TO COXPUTE DERIVATIVE WITH U =0

TOROWT = WEISHT ASSIGHED TO TOPSUE RECUIGEMENT IN COST FUNCTION

LOCKRHT = EEIGHT ASSICNED TO GIMRAL LOCK PROXIAITY IN CUST FUNCTION

TILTHT = REICHT ASSIGHED TO ELEVATION GIH3AL TILT IN COST FUNCTION

RATENT = BEIGHT ASSIGNED TO ELEVATIGH GIKEAL RATE IN COST FUNCTION

FCOULM = COULOMR FRICTION TORGUE LIMIT, SPECIFIES THE FRICTION
MAGNITUDE WHEN THE GIHBALS ARE UNSTUCK.

KTR = CONVERSION CONSTANTS FROM TORSUE ROTOR YOLTAGES TO TORQUES

kv = PROPORTIONALITY COMSTANTS FROM ANGLEDOTS 10 BACK EHFS

JE = INERTIA ABOUT ANY AXIS OF THE ELEVATION GIAEAL

JIX = INERTIA ABOUT THE X AXIS OF THE IKNER GINEAL

JIYZ = JNERTIA APGUT THE Y AND Z AXES OF THE TMMER GINEAL

JHXZ = INERTIA AROUT THE X AHD Z AXES OF THE HIDDLE GIMBAL

JHY = INERTIA ABCUT THE Y AXIS OF THE MIDBLE GIMBAL

JOXY = INERTIA AROUT THE X AND Y AXES OF THE CUTER GINRAL

JOZ = IMERTIA ABOUT THE Z AXIS OF THE OUTER GINBAL

THE LINEARIZED CONTINUDUS TINE SYSTEM EQUATIONS ARE OF THE FORM
X(1) = AL10) (X{t) = X(103) + B(t0) U{) + X(10)

THE LINEARIZED DISCRETE TIHE SYSTEY EQURTIONS ARE OF THE FORM
Xtn+1] = Aln] Xinl + Binl Uln} + Cln}
mmmmmmm$mn. .

T = (Dln] Xn#1) ¢ Eind ) Q (DIn) X[n#1 # Eln] ) + Uln] R Uln}
SOLUTION 1

Uinl=-R+8DRDDBDRM(AX+ 0 4D

-
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ASSOCIATE VARTABLES WITH ARRAY ELEMENTS

COMPUTE

099l
XTEMP(1
98 CONTINU
PSI =
BETA =
THETA
PHI =

I

REQUIRED TRIGGNOMETRIC FUNCTIONS
ixXx
n
X (4)
X (2)

=X {3

X (4)

Sp = DSIN (PST)
(P = BCOS (PSI)
SB = DSIN (BETA)
CB = DCOS (EETA)
ST = DSIN (THETA)
€T = DCOS (THETA)
SF = DSIN (PHI)
{F = DCOS (PHD)
5B2 =SB X SR
(B2 =CB3CB
S12 =87 x 57
Ci2=Crs (T

pPSIDOT

= X (5)

BETADOT =X ()

HLZ = 4§ (3)

WOX = CF ¥ WCX - SF ¥ WCZ
WOY = KCY + PRIDOT

ROZ = SF ¥ WCX + CF ¥ WCZ

Y 2 HP Ry g

WNZ =-ST & 807 + CT x 402
WIX = CR X UMYX + SB X% WMY
WIY =-5B & WKX + CB X WHY
WIZ = WHZ + BETADT

WEX = CP & WIX - SP X UIZ
WEY = KIY + PSIDOT

WEZ = 5P ¥ NIX + CP B WIZ

i PSIDOT f § Mi§ ME2 KiI ME4 1§
§ BETADOT {1 f M24 MO2 M23 M24 1
-4 THETADOT £ = i W34 M32 H33 34 § §
f PSIDOT {1 f Maf HA2 HAZ W44 1 |

Y54
Y24
Y31
Y4 i

TORQUE EQUATIONS FOR THE FOUR GINBALS EXCLUDING CONTROL SIGNALS

¥ =
4
&
Y2
&
&
B =

)
3
&
&
Y

A
&
Y
&
&
&

—KTR (1) & XV (1) x PSIDOT
+ JE 3 (-5B * PHIDOT % W0Z - CB % ST x PHIDOT & WOX
- CB ¥ THETADOT & W4Z 4 BETADGT x RIX)

= =XTR_(2) % XV (2) ¥ BETALOT

+ {JIYI + JE) & (THETADOT ¥ WHY ~ CT % PHIDOT % WOX}

+ WIX & WIY 3 (JIX-JIYZ) - PSIDOT & JE X WIX

=KTR (3) ¥ XU (3 ¥ TEETADOT

+ (JMXZ + CB2 % JIX + SB2 ¥ JIVZ + JE) & PHIBOT % WiZ

- SB & (B ¥ {JIX-JIYZ ) % (ST ¥ PHIDOT 3 WOX + THETALOT

¥ WHZ - RETADOT % WKX) + WMY X WNT x (JNY - JHXI) - (CR2

® JIX + SB2 ¥ JIYZ + JE) % BETADOT ® WY + CB & JE & PSIDOT

1 WIZ
Y4 = -KTR (4} ¥ XV (4) ¥ PHIDOT

- NOX x WOZ & {JOXY - JOZ) - (CT2 % (MY + SR2 ¥ JIX)

+ GT2 & (JMXZ ¢ JIVZ) # JE) % THETADOT 8 WOZ + ST & CT

¥ (JHY - JMXZ + SB2 ¥ (JIX-JIYZ)) % {THETADOT & #0Y

- PHIDOT & WOX) ¢ SB & {B X LT & (JIX - JIYZ) & (PHIDOT

¥ §0Z - BETADOT # WMY) + (CT ¢ (SB2 % JIX + CB2 ¢ JIYZ + JE)
% BETADOT + ST & BMY & (JMY- JHXZ}) ¥ MX + SB S CT R JE
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4 : 5§§DUT £ WIZ + ST % (JE 8 PSIDOT + WIY % (JIVZ - JIX))
M KATRIX -- THIS IS THE INVERSE OF THE L MATRIX AROVE
BECAUSE M IS SYMHETRIC OMLY THE UPPER HALF KEED BE COMPUTED

DENOM = {JOXV+ST2XJMAZ+CT2R{THY+CR2EITY 2+5R2R(TTX+IE) ) IR (IKXZ

& +BP2¥(JIX+JE)+QE°3JIYI)—CP*!SE”!CT°R(JIYZ JIX-JEVIR2

K{f = ((JOXY+STRRIMXZHLTRL(IHY+JIXHIE) ) KOTE4SRELTTYE

& +CRLITX+IMAZ)-CRAXCT2H( T X = JIYZ}*(JHXZ+JIX+IE))/JE/DEHUH
Mi2 = -CBXSTECTR{JE+JIX+THXT) /DENDN

¥iJ = SEX(JOXY+STRRIMXZ+CT2R{THY+TIX4TE) ) /DENOH

Hid4 = ~CRECTR(IMXT+JIX+TE)/DENDH

K22 = (CBRCT2R(TIVZ-JIX-JE) R (JE4TIX4 THYT) +{THXZ+CRX (T X+JE ) 4SR2R

4 IIYZ)!(TUYY+CT”X(JPY+JIY}+bTL¥(JHX7+JIYZ)+JE))/(JIYZ+JE)/DENUH

N23 = SBRCRESTRCTR(JIVZ-JIX-JE) /DEHGH

#24 = STH(JNXZ+CERX (JIX+TE}+SR2ATTYZ) /DENON

M31 = (JOXY+STERIMXZ:CT2R{JHY+CRIATIYZ +SE2R(TIX4TE)) ) /DENDN
¥34 = CRISERCTR{TIYZ-JI¥~]c)/DERCH

M44 = (JHXZ+CB2R(IIX+JE)+SR2RTIYZ)/DENOH

PARTIAL DERIVATIVES OF Y AND % WITH RESPECT T0 X FOLLOW
DYiDB = dYi/dBETA, DYLDFD = dYi/dPHIDOT ETC.

DYIDB = JES(-CBAPHIDOTAROZ+SBISTEPHIDOTINOX+SBETHETADOTRNNZ
& RETADOTANIY)

DYIDT = JEXCBI(THETADOTRUMY-CTEPHIDOTIHOX)+SERRE TADDTEUHZRIE
DY{DF = JEX{-SEAPHIDOTAMOXCEESTAPHIDOTAWOZ-CEACTATHETADOTENOX
+BETALOTR {SRISTAUOX-CRINOZ))

&
DYEDPL = -KTR (1)3KV (1)

DYSDED = JERWIX

DYLDTD = -JERCRRENI+TERCBARETADOT

DYIDED = JER(-SHRUDI- CB?ST$HOX+CFXSTiTHcTAﬁﬂT+SBSCTIBETﬁDﬂT)

DY2DE = (HIVES2-HIXZR23%{JIX-JIYZ)-PGI1DOTR]

DYEDT-HHZ!((JIY7+TE)*T&ETAD3T+(SDYJIf+€5!UI¥)l(IIX-JIYZ)-
PSIDOTXSBYJE M (JIYZHIT)ESTAPHIDATIAOX

DY”DF'(JIVZ+ E)X(STXTRETADDTERAOX+CTRPHII0T2Y07) + (-(RRUDZ+5DA5T
FROE(WIYR(JIX-FIZ)-PSILATHIE ) +RIXR{SRARIZ+CEXCTRNDX)

& ¥ IIX-JIYZ)

DY2DPL = -JEXWIX
DYZDED = -KTR {(2)3KU (2)
DY2DTD = (JIYZ+JE)XUMY+(JIX-JIYI)¥(CRENIY-SEENIX)-CBRIE4PSIDAT
DY?DFD=ET§;JI;I+JE)!(THETQDBT-HDX)-ET!(JIX-JIYZ)tﬂHX-SB!ETlJE
YIDE = gf?%;ﬁgi(%IIZs{!X\t(PHIDOTtHBZ-BETADUTtHHT)+(SBE—CBE)
XPHIDOTANOX+THETADOTIUKZ-BETADOTEWMX ) -SERTEAPSTIDOTINIZ
DYIDT = SRICBR(JIX-JIYZ)R(-CTEPHIDOTRUOX+THETADOTINAY )+ (WK L2
;gg}!t;)E(JHY -JHYZ)-(CB2ATIX+SB28TIYI+IE) ¥BETADOTRWNI-CB
DY3DF = (JMXZ+LRCRTIX+SB2RTIYZ4IE )RPHIDOTRUOY-SBRCRR(IIN-TIVT)
$(-STEPHIDOTHUOZ+ THETADOTACTREDN+ERETADD THNOZ ) +{ STRUNZ
+CTANNY JRUOXK (JHY-JHXZ)-( CE2RJIX+5B24JIYZ+]E) RBETADOT
RSTEROX+CRETERPSIDATECTRNOX
DYIDPD = CRAJENWIZ
DYZDBD = SRACEX!JIX-FIYZ)RUMX-(CR2ETIX+SRORIIVZ+TEVENNY+CBRIELPSIDOT
BYIDTD = ~KTR (3)2KV (T)+4524CRE(IIX-JIVZ}R(SETADOT-WNZ)
DYIDFD = (JHXZ+CB2XJIX+SEIRIIYT4TE) ¥B0Z+SBACBASTR(TIX-TIVT ) ${THETADDT
& ~HOX)+(CTXURT-STHRHY) R(TNY-THYT)}-CTR(CE2STIX+SB24TIYZ4IE)
& IBRETADDT-CEXSTRIESPSTDOT
DYADB = 2RSRICERL-CT2ATTASTHETADOTHROZ+(JIX-TIYZ) M{THETAEDTRHOY
& ¥STRCT-STECTIFRIDOTER0X+CTABETADDTRWMY) )+ (CB2-SE2) LT
& ROIX-TIYI)R(PHILOTEHOZ-BETADCTHNNY ) +CEACTRIESPSIDOTIVIZ
¢ -STARIXSR 2R TIYZ-TIX) S TH(TESFSIOT+RIVR{TIYI-JIX) ) SWIY
DYADT = 29CTRSTH(IMY+SR2TIN-JHYZ- IIY"tTPETA'ﬂ11UFL+(CTE-ST2)
& BCIMY=THY Z4SE 20 FTa=-TE 2 DX (THETS ]y - 2K D0 T4ha) SR
S SCHR(TIX-TIYZIB(-STHPHIDOTHLGI-PE ETRL0T XY )= THEETASOT
] $UHZ)-STH(SB2RTIX+CBANTIY 2+ JE ) IBE TADOTAUAK {CTIUHYSTHNZ)



08170
18180
08190
18200
08218
gez20
18230
08249
(8259
08268
08270
08280
08290
68300
08340
08320
8E330

08340
98350

8360

0837¢C

98380
08390
18488

8440
fe4z0
88430
08440

Qe O

bY4pF

Q= R O O O

DYADPD =
DYADED =

DY4DTD

[-od - o d - L -

DYADFD =

Lol o

DDENDB
&DBEHBT

DHL1DB
&

alDHMDT =
D¥i2DB =

DML2DT =
DMi3DB =
DME3DT

i -

&DHEEDB
DHe2pt
&
&

DM23DB =
DH2IDT =

DK24DB =
DM24DT =
DH33DB =
EDHEBDT

DH340B =

-

=

~94-

K (IMY-THXT) MY -SPLTERPSTDOTH( STRWIZ4CTIRMY ) +CTH( JERPSIDOT
HRIYROITYZ-T 10 ) RE X+ CRESTUNTR(TTYZ-TIX BN IX+STR{JE
EPSILOT+RIYR(IIYZ-TIX) ) 35EIUNT
(ROZ832-WOXRR2) 2O TOXY-JOZ ) -(CT2R(TNY +SR2ETIX ) 48T20( JKXZ
+ITYZ)4TE) RTHETADATHUOX+STACTR (JHY-THXZ 43820 J IX-]IY]))
KPHIDOTRHOZ+SBXCBSCTR(JIX-TIYZ } R (PRIDOT XS0 X-RETADOTAST
D) +STIRUOXRC FHY-THXZ ) RN ~(CTR{ERIMTTX+CRILIIVIH]E)
RBETADOT+STEUNY(IMY-TMXT7) ) $80Z+SEICT2RTEXPSIDOTILOX4ST
WIXELTTYZ-JIX) R {LRXSTLROX+S RES0Z)+5TR(JESPSIDOT+NIY
R(JI¥Z-JIX) )R (SRASTXNGX-CBAROT)

SHICTRIEANIZ+STHIZIWIX

~SRICRXCTR(TIX-JIYZYRUNY+C TR(SB2RJTX4CR2AITYZ +JE ) SWHX
+SRACTATEAPSIDOT
=(CTOR(THY+SRZRIIN 4 STRR THXZ ATV Y+ JELERDT+STACTR(JHY
=JHXZ+SE2R(TIX-JIYZ) U0 Y+STHINYRIINY~THXT)+5TR(JIVZ -TIX)
:}Eg;g%EB§B¥UIX)*ET!(SBE!JIX+EBE!JIY2+IE)XEEIADBT+CB!ST
=KTR (4)AKY (4)4STACTE(THY-THXZ+SER(TTX-JIYZ) JR(THETADOT
~BOX)+SBECBACTR (JIX-TIYZ)H(ROZ-CTSBETADDT) +STACTH(THY-THXZ}
SWRXHSTRCTR(SIYZ-TIX) R (CBSNIX+SRINIY)

EXSﬁ}CBJ(IIYZ-JIX-JE)X(JUXY+ST2!JHXZ+CT2!(JHY-JHXZ))

= 2YSTRCTR(( THXT-THY-CERRTIYZ-SROR (T IX+TE) YR (THXZ+LB2A{TIX+E)

+SRZRITYZ)+SKAACREN(F1Y7-TIX-TE ) X22)
2XCRECRR(JOXY+5T 2 THXT+0T2% (THY-THXZ ) 8 (JIYZ-TIX)/ JE/DENOM
~DDEHDRAKE §/DENDK
ZASTRCTR(( JHXZ-TMY-TIX=JE)R{ JE+SEORT IYZ+CRORT TN+ IHXZ)
0R2H{TIX-JIYD R (IHXZ#TIX+TEY ) /JE/DENOH-DDENDTENL 1 /DENDH
SEASTICTR(IE4TTX+IH(T) /DENCH-DIENDEAR 2/ DENDM
CRY(ST2-CT2 R (JE+J T+ THAT /L ENCA-DIEADTXH| 2/ DENDM
CRE(TOXY+ST2H NN +E T2 THY+JTX+J5 ) )/ DENTA-DDENBEING 3 /DENDH
2§§n¥§1§3;§(Jﬁxz-Jnv-r1x J§>/3§§;w g}gg?sﬁaisfnrnen

+ L_é1_ End ;1 3
C er(khx7+ff§ 3 E)/ien eg-,ghnnTxuf DEHDN
SCEACER(TTYI-TT%-TE ) B IDAVACT 28 THY ~TREZ 4ST2R LI TYT
+IMXZ+IEY ) (JIYI4+IE) /DENDH-DDERDREM22/ DENDH
2ACTASTR(CRAN{ JIX-TIY T+ JEVK CIE+TTXATHX Z) + ( JHXZ+CROK (T IX
+JE)+SHERTIYZIR(THXT+TIYZ-THY=T1X) )/{ JEY Z4JE ) /DENGH
~DDENDTAHZ2/LENDK
(CR2-SE2)XSTACTA(JTYZ-JIX-TE) /DENON-DOEND BN 23/ DENDK
SEICER(CT2-ST2)2(JTY2-TIX~JE )/ DE ¥OH-DDENDTXKT/ DENDK
23SRICEASTR(TIYZ-JIX-TE )/ DENIM-DIEND R A2/ DE DM
CTR(JEYZ4CRRR(JIX+IE ) 4CEARTTYZ ) /DENOM-DEENDT 124/ DENCH
2XSBECBACT2R(JIX+IE-TIYZ)/DENOH-DEENDE LRI/ TENDH
2ESTRCTH(THX Z-THY-CRIRITYZ-SB2R(J T4+JE) ) /DEHOH
~DDENDTEHIT/DENDN
(CB2-5R2) aCTR(TIYZ-JIX~TE) /DENCH-DDENDEXMI4 /DEROM

ggg:gg = SBICRASTR(JIX+JE-JIVZ)/DENON-DDENSEESR L HENOM
DM44DT = -DDENDTEH44/DENDH

2XSRACBY(TTYZ-JIX-JE)/DENDK-DDENDBRM44/DENON

DERIVATIVES OF WE WITH RESPECT 70 X FOLLOW
DWXDFD = dWEX/dPHIDOT ETLC,

DWXBY = -WNEZ
gHXDB = CP T WIV

DWXDF
DNXDBD

P RSB T UNT + SP X KNY
CP ESERST XX -CP X CB X OZ~SP XCT X HOX

DUXDTD = CP ¥ CR
DWXDFD = CP X SB ¥ CT + SP ¥ ST

DRYDR

-BIX

DUYDT - CE X yMZ

DOYDF =SB & KOZ + CB % ST ¥ W0d
DHYDPD=1.D0

DNYDTD = -SB

DNYDFD = (B R CT



08858 DNZDP = WEX

85840 DWZDR = 5P & WIX

88370 DUIDT = SP & SB ® WNZ - CP £ WNY
08620 DNIDF =SP RSB R STRWOX - SPSCBRWOZ+CPRE
08650 INZDBD = EP

08900 IWIDTD = SP 8 CB

08940 DWZDFD = SP £ SB 2 CT - CP & ST
08920¢

08930C  SET UP HATRIX A

08940C

08950C  CLEAR OUT 4

68950C

08970 DO §00 % =1, INX

msu 00 400 I1 = §, Iy

0855 A (I = 0,08

mua 199 cuminus

$9010C

§9020

DO4s0I=1, 4

T % §OX

09030 AL, Ta4)=1.D0

(9040 110 CONTINUE

69950 A (5,2) = DHESDR £ Y + Kig % DYSDR + DMSZDR % Y2 + M2 3 DY2DB
09050 & + DMSIDR £ Y3 # M13 % DYIDR + DAC4DR £ Y4 + Mi4 1 DY4DB
05070 A (5,3) = DHELDT X Y1 + K11 & DYSDT + DNIZDT ® Y2 + H12 £ DY2OT
09980 & + DHYIDT $ Y3 + K43 8 DYIDT + DALADT 2 Y4 + Ki4 § DYADT
09050 A (S,4) = K{1 R DYIDF + NI2 8 DY2LF + Mi3 2 DY3DF + Hi4 § DYADF
09100 A (5)5) = KLt ¥ DYIDPD + 12 % DY2DPD + HAZ & DYSOPD + Hid X DYADPD
09140 A (5)4) = Kii % DYID3D + K12 3 DYSDRD + Ni3 8 DY2DBD + Ki4 % DYALRD
09120 A (5.7) = Hif 8 DYIDTD + Ki2 & DYZDID + H13 & JYIDTD + M4 % DY4DTD
09430 A(58) =Mt X DYIDFD + Mi2 % DYPDFD + M3 & DYSDFD + Hi4 ¢ DYADFD
69540 A (6)2) = DMI2DB 1 Yt + i3 % DYLDB + DMI20B & Y2 + 122 § DY2R
09150 & + DK23DB & Y3 + K23 X DYIDR + DN24DR ¥ Y4 + M24 ¥ DY4DR
09150 A (6,3) = DHIZDT % I Hi2 ¥ DYIDT + DN2ZDT X Y2 + M22 & DYZLT
09470 & + DNZIDT ¥ Y3 + M23 % DYIDT + DN24DT £ Y4 + H24 % DV4DT
09480 A (6,4) = K12 X DYIDF + K23 X DYIDF + HO3 X DYIDF + M24 8 DYADF
09490 A {6)5) = HLZ & DYDPD + #32 X DY3LPD + K23 & DYILFD + K24 £ DY4DPD
09200 A {b,b) = K12 ¥ DYiDED + K32 & DYZIOD + M33 ¥ DYIIRD + K34 8 DYADAD
09240 A (6)7) = K12 % DYIDTD + K32 X DYZLTD + K23 X DYIDTD + M4 % DYADID
09220 A (6,8) = K12 X DYALFD + 32 % DYZIFD + M23 & DY3DFD + K24 X DYSIFD
05230 A (7,2) = DM3DB & Y1 + Wi3 & DY{DB + DHOIDR & Y2 + M23 X DY2B
09240 & + DH330R 3 YZ + N33 & DYIDB + DH340B % Y4 + W34 8 DY4DB
95258 A (7,3) = DHIIDT & Y1 + ME3 ¥ DYLDT + DHIDT % Y2 + ¥23 % DY2DT
09260 & + DN3IDT ¥ Y3 + K33 ¥ DYIDT + D434DT £ Y4 + K34 & DYADT
09274 A (7,4) = M3 KDYIF + M23 % DY2DF + W33 X DY3DF + W34 & DYADF
05280 A (7)5) = KEJ ¥ DYIDFD + H33 & DYZEPD + K23 ¥ DYIDD + K34 & DYADPD
05298 B (7)8) = Mi3 £ DYILRD + 23 £ DYZDRD + M3 ¢ DYID:D + M34 X DYADRD
99300 A (7)7) = #13 & DYIDTD + H33 % DYZDTD + K33 ¥ DY3DTD + H34 % DY4DID
09340 A (7)8) = Hi3 & DYLDFD + K23 ¥ DYZDFD + 33 t DYSDFD + N34 ¥ DY4DFD
99320 A (B)2) = DHIADB X Y§ + Mi4 ¥ DYITR + DN2ADR £ Y2 + K24 ¥ DY2DR
05338 & + DHIADB § Y3 + N34 % DY3DB + DM44DR K Y4 + MA4 ¥ DY4DR
05340 A 18,3) = DH2ADT % Vi * Kt & DY{DT + DNIADT & Y2 + W24 & DY2DT
09350 & + DN34DT X Y3 + W34 8 GYIDT + DM44DT ¥ Y4 + M&4 8 DY&DT
09360 A (B,4) = Mi4 L DYIDF + N2A X DYZDF + M4 X DYSDF + MA4 8 DYADF
89370 A (B)S) = H{4 3 DYIDPD + N24 % DY20PD + W34 & DYILPD + KA4 ¥ DYAIPD
09380 A (8)8) = Ki4 % DYIDD + H24 1 DYDLRD + 34 X DYIDED + H44 % DYADRD
89390 A (8,7) = Ki4 & DYDTD + Ha4 x DY2DTD + M34 % DY3DTD + H44 $ DYADTD
09488 A (8,8) = Nf4 8 DYIDFD + Ha4 § DYZDFD + K34 & DY3LFD + Hd4 & DYADFD
09460 A (9, 1) = DXOP

19420 A (9)2) = DWiDB

09430 A (9) 3} = DNDT

§9440 A (90 1) = DuxIF

49451 A (9, &) = DNXDBD

19450 A (9, 7) = DRQTD

89474 A (%) 8) = DEXDFD

09480 A (ib, 2) = DurDR

05450 A {10} 3) = DWDT

49500 A (18) 4) = DIIF

§9549 A (10] S = DuYoRD

$9526 A (18, 7) = D¥YDTD
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g9530 A (10, 8) = DWYDFD
09540 A (11, 1) = DWIDP
09550 A (i, 2) = DwIDB
09558 A (if, 3) = DYIDT
89570 A (14, 4) = DVIDF
09580 & (11, &) = [WIDRD
09590 A (11, 7) = DWIDTD
09600 A (i, 8) = DWIDFD
09540C
§9520C  SET UP ARRAY B
§9630¢
09540C  CLEAR OUT B
89650¢
09560 DO 1201 = 1, IXX
0970 D0 430 I1 =1, 4
09680 B (I, 1) = 8.00
09698 120 CONTME
89700¢
89740 B (5, 1) = KTR {{) % Mit
89720 B (5, 2) = KIR (2) X Hf2
89730 B (5 3} = KTR (3) % M(3
89740 B (G, 4) = KIR {4} ¥ K14
09750 B (&, 1) = KTR (§) % Ki2
09760 B (6, &) = KTR (2) ¥ H22
09770 B (4 1) = KIR (3} % HZ3
05760 B (&) &) = KTR (4) & ¥ad
0570 B (7 i) = KTR (i) £ Mi3
85800 B (7, 2) = KIP (2} x 423
09340 B (7, 3) = KIR (3) % K33
§9820 B (7, 4) = KR (&) X NIA
09830 B (B, 1) = KIR (1) ¥ Hi4
bEAD B (8, ) = KIR (2) 1 M4
& BE A ER U T
89870C
$os8IC ST UP VECTOR XDOTO
90 CALL DERIVE (XTEMP, XDOTO, ZERD, W, OLDRATE)
et 4 GIKRAL SYSTEN DYNAKIC EQUATIONS ARE NOW COMPLETELY LINEARIZED
09940  THE DISCRETE TIME APPROXIHATIONS FOLLDN
0950 & 2 2
Boséac A=T+DELTAT2A + DELTAT R A / 2!
99980 DELTA2 = ,SD0 % DELTAT #8 2
09990 DELTA3<DELTATADELTA2/3.D0
10000 DELTA4=DELTATXDELTA3/4.D0
101 DEL TAS=DEL TATSLELTA4/5.D0
10030 CALL HATHPY (A, 4, A, INX, IXg ING, IXX, INX, IXY, 1)
10040 CALL MATHPY(A,AA Aad DX, T00TXE, 10 XX, ExX 4
10050  CALL MATHPY(A.ARA. andA, THX, IXX, IRX, X, IXK, 1X0,
10080 DU 430 I = 3§, INX
1070 20430 11=1, IXx
10880 ASTAR (I, II)'= DELTAT ¥ A (I, II) + DELTAZ2 & A4 (I, II)
{0090  &+DELTAISAAACT, TD)+DELTA4tARAALL, D)
10108 IF (1 .EQ .11} ASTAR (I, I1) = ASTAR (I, ID +1.00
£0110 130 CONTINUE
£0120C % 2
10130C B = (DELTAT ¢ I + DELTAT & A/ 21) B
10130C
10458 D049 I=1, IXX
1040 D0 149 11=1, IxX
$0470  DIA (I, ID) ='DELTA2 £ A (1, 11)
10060 &+DELTASERAA(T, I1)4DELTA48A2A1T, T 4DELTASSAMAME, ID)

10490

Aa(1
I (1 .EQ, Y DIA (I, 11 = DIA (I, 11} + DELTAT

10280 140 CONTINUE



10280
10270
10300
10310
10320
10330C
10340C
10350C

10430C

10470
10480

10490
10508 188 CUNTTN

16510

108500
108600
10870C
10€80

10400
{04i8 179 CGNTINUE
§0420C
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CALL NATIPY (DIA, B, BSTAR, 11, 44, 13, 4, 45, 4, §)
C= (DBELTAT ® 1  DELYAT 8 & /7 21) (X (10) - & X (1)
DO 60 1=, IXX

TENP = XpOTd (1)

D0 §50 II = 1, I

TEXP = TEWP - A (1, II) % XTENP (II)

XDDTAX(I) TEWP

158 C
160 CONYINUE

CALL MATHPY (DIA, XDOTAX, LSTAR, IXX, IXX, I¥X, f, IXX, i, §)

THE MATRIX R REFLECTS THE WEIGHT OF THE CONTROL SIGNALS IN
THE COST FUNCTION

PO70 T =14, 4
nnmn-i4

g (1 0°p0
i} EQ IR (1, 11) = TORGQNT

THE HATRIX § REFLECTS THE NEIGHY OF THE STATE IN TRE COST FUNCTIOM

DD 1RO T = 4, IDR

0§80 11 =1, mn

g (I, 1) = 0D

IF d EQ. 11 mm 1 .06 2 Q{1
qn AHD. 1,GE.5)Q(T, 11 )=RATERT

§ (1, 1) = LOCKWT

THE MATRIX D COMPRESSES THE STATE INFURMATION AND LINEARIZES
THE BIMBAL LOCK COST

DB!?OI-&IDR
1901=1
D(I 1D = 00D

11} = TILIWT

190 cnuriuuz

01=1,3
ntr+1 148 =400

0
200 CONTINUE'

Dii,2)=CBAST
D(S 1) DADP
—B(S 2)=DWXDB
9{5 3)=DUNDT
D(S 4)=DWADF
D(5 6)=DRXDED
D(S 7)=BExbID -
D(S 8)=T%XDFD
B(b, y2)=DH1DB
s,  3)<DHYDT
9(1 3)=581CT
D(6 4)=DUWYDF
9(6 S)y=DWYDPD
Df& 7)=D4YBTD
D(b 8)=DWYBFD
D(? 1)=DuzBp
D(7 2)=D47DB
D7, }3)=042DT
.D(? 4)=DRIlF
D(7, 6)=0470BD
B(7 7)=DUIDTD
D(? B8)=DWZDFD

THE NATRIX E EXPRESSES THE OPTIMAL LINEARIZED NEXT STATE
E(1)=5PEEY-BETASCEAST-THETASSBICT



0890
10700
16940
iﬂ?Eg

§70
089

140
150
168
179
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Do2i01=2, 4
E (I} s .00

240 CONTINUE

E€S2=NEX-PSIEDKYTIP-RETALDNXDR-THE TAXDHYD T-F HIXDUXDF
& -BETARCTSZR DED-THETADOTRSWXT TD-PHIBOTXWXDFD
E{b)=REY-RETARLGYDR-TRETAIDWYDT-FRI LW -PSIDOTS

¢ DRYDPD-THETAROTEDEYDTR-PHILOTEDEYDFD
E(7)=WEZ-PSTLDH2 TP -HETAXDYZDR-THETARDNZ T -PHISONZDF -
3 BETADOTADWZDRD-THETADOTRDWZDTD-PHIDOTEDNZIFD

COMPUTE U

CALL HATHPY tD BSTAR DR, IR, IXX, Ixx 8, 1R, 4, §)
CALL MATHPY (DB, Q, Bba, DR, 4 IR 1,10k, B
ggLL gA;HPT (s08, ﬁs Bbana, 8, IDR IDR 4 54,1
00 550 11 =1 4

REDQDR (I, 113 = R (I, II) + BDQDR (I, ID)

220 CONTINUE

CALL MINV (PBDQDB, 4, DETERH, INDRKY, IWORK2)

CALL HATHPY (nSTAh LTERP, AK, IXX, Dxx, I, &, IXX, §, ©)
DO 2301 =4, IXX

AXE (1) = AX () + CSTAR (I)

230 CONTINUE

CALL PATHPY, (D, AXC, DAXC, I0R, XK, IXX, 1, IR, £, 1)
D0 240 1 = &, IR
DAXCE (1) = ﬁaxc () +E (D

240 CONTINUE

CALL NATMPY (DD, DAXCE BDQﬁAXtE 4 IDR IDR i, 4 1, )
EALL hﬁTﬁPYinguéDH ROADAXCE, U A I
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