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ABSTRACT

This thesis investigates modelling and control of a
four-gimbal inertial system. The system under study is used to
stabilize an inertial platform and to isolate the platform from
vibration and rotation of the vehicle in which the system is
mounted.

A few simplifying assumptions are made about the gimbal
system. Using these assumptions and Euler's torque equations for
a rotating body, a set of linear equations is developed relating
angular acceleration of the gimbal elements to torque motor
voltage. Taking a state-space approach, a set of nonlinear
differential equations is used to compute the orientations of the
gimbal elements from the torque motor voltages. A novel approach
to the incorporation of static friction is presented, which leads
to a simplified set of equations in the presence of static
friction. Coulomb friction is also taken into account.

Modern optimal control techniques are applied to a
linearized discrete-time version of the state equations to
produce an optimal control scheme. The gimbal system and
controller are simulated on a digital computer using the FORTRAN
programming language. A listing of the program is included in
the appendix. Comparisons are made with an earlier control
strategy showing the reduction of platform misorientation,
reduction of required torque, and elimination of switching
transients.
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I. Introduction

This thesis investigates modelling and control of a

four-gimbal system. Gimbals are generally used for precise

orientation and/or stabilization. Typical applications include:

attachment of a rocket engine so that the engine may be aimed,

suspension of a ship's compass in a horizontal position despite

pitch and roll, mounting a radar to rapidly track a target,

stabilization of an inertial platform and isolation of the

platform from vibration. It is this last application that will

be of concern to us in this paper.

Inertial guidance and navigation systems generally use

gyroscopes and accelerometers as sensing devices. High

performance inertial guidance systems usually have these sensors

mounted on an inertial platform and a series of concentric

gimbals connecting the platform to the case. Gyros on the

platform sense rotations of the platform with respect to inertial

space, and are used in feedback loops to maintain an inertial

reference.

The inertial platform and gimbals are housed in the

inertial measurement unit case. The case is rigidly affixed to a

vehicle whose rotation rate will be changing with time. The

rotation rate is not measured directly; it can be calculated

from other quantities, as will be shown. The rotation can be

viewed as an input to the gimbal system, uninfluenced by the

behavior of the system. As such, the vehicle's motion provides a

set of boundary conditions for the kinematic equations describing
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the behavior of the gimbals.

To fully isolate the inertial platform from vehicle motion

requires a minimum of three gimbals, providing three degrees of

freedom. It is possible for two of the gimbal axes to become

parallel; "gimbal lock" is then said to occur and one degree of

freedom is lost. If all three axes lie in one plane, rotation

about an axis perpendicular to this plane is impossible.

Clearly, gimbal lock must be avoided. However, it is not

sufficient that the system stay out of gimbal lock; it must not

even get close because, as gimbal lock is approached,

increasingly high torque levels are required to keep the platform

inertial[5]. If the required torque should exceed the maximum

available torque, then the inertial platform may lose its

inertial reference.

There are basically two strategies available for dealing

with the gimbal lock problem. The simplest solution is to

restrict the vehicle's motion so that gimbal lock cannot occur.

Early guidance systems used exactly this restricted attitude

scheme. The drawbacks are obvious. A present state-of-the-art

all-attitude guidance system avoids gimbal lock by adding a

fourth gimbal (Figure 1.1). The extra degree of freedom ensures

that it will always be possible to avoid gimbal lock. If two

gimbal axes are aligned there will still be three degrees of

freedom. However, if the system is not properly controlled it is

possible for all four axes to lie in one plane, a second degree

of freedom will be lost, and gimbal lock will result. The

problem then is one of allocation of control among the four
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gimbals to stabilize the inertial platform while avoiding gimbal

lock given the vehicle's rotation rate.

Control is effected through torque motors mounted on the

outer three gimbals and the case. The torquers are driven by

saturating amplifiers, limiting the maximum available torque.

Information on the state of the system is available from three

sources. Gyroscope outputs indicate any deviation of the

platform attitude from inertial, resolvers mounted on each gimbal

indicate the angles between gimbals, and tachometers measure

angular velocities.

Presently, the inner two gimbals are driven directly by

gyroscopes, and control is switched between the two outer

gimbals, depending on the two middle angles. The control law

takes the form of decision rules, so that control is allocated

based upon the zone in which the middle two angles reside.

Although the zone control does avoid gimbal lock, it is not

optimal. Large attitude errors and torque transients may occur

when switching zones. The maximum torque requirements are

excessive; bt reducing them it will be possible to improve torque

motor performance and/or reduce the torquer size, weight and

cost. Furthermore, reductions in attitude errors resulting from

optimization will contribute to overall system accuracy.

The approach taken is as follows. The mechanics of the

gimbal system are discussed first. Simplifying assumptions and

approximations are presented and justified. Based upon Euler's

torque equations a set of equations are derived that characterize

the system. We examine friction and its effects. Modern optimal
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control techniques are applied to a linearized discrete-time

version of the torque equations to yield an optimal control

scheme. Various methods of implementing the controller are

suggested. The controller is realized as a simulation on a

digital computer using the FORTRAN programming language. Results

of the simulation are analyzed and compared with an earlier

control strategy.
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II. Nomenclature

A Continuous-time dynamics matrix

A* Discrete-time dynamics matrix

B Continous-time matrix from control signals to state derivative

B1 Discrete-time matrix from control signals to state derivative

C Case

C Continuous-time constant vector

C Discrete-time constant vector

C Coordinate transformation from j to k system

D State information compression matrix

e State error vector

E Elevation gimbal = Inertial platform

E Optimal next state

-hkHj Angular momentum of gimbal j in the k frame

I Inner gimbal

I 3 x 3 identity matrix

J Cost function

Jk Inertia tensor of gimbal k in the 1 reference frame
I

Jkv Moment of inertia of gimbal k about its v-axis in the k frame

L Matrix transforming acceleration to torques

M Middle gimbal

M Matrix transforming torques to accelerations = 11

0 Outer gimbal

Q Symmetric state weight matrix in cost function

R Symmetric torque weight matrix in cost function

S Inertial space
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-&k
Tj Total torque on gimbal j in the k frame

Tkj Torque on gimbal j supplied by gimbal k in the 1 frame

Tjkv Component of T in the v direction

U Control vector

Wkj Rotation of gimbal j with respect to gimbal k in the 1 frame

x State vector

Y Vector composed of torques and torque-like terms

Z Angular acceleration vector

I Angle between E and I

B Angle between I and M

0 Angle between M and 0

0 Angle between 0 and C

A Gimbal lock angle



-16-

III. System Description

The four-gimbal system is shown schematically in Figure

3.1. Pictured are the case (C), outer gimbal (0), middle gimbal

CM), inner gimbal I) and elevation gimbal (E). The terms

"elevation gimbal" (1) and "inertial platform" refer to the same

thing and will be used interchangably. "Case" and "vehicle" will

also be used interchangably in the context of rotation and

acceleration, although they do not refer to the same thing. The

case is securely bolted to the vehicle and thus experiences the

same velocity and acceleration.

The outer, middle and inner gimbals look much the same

except for size. Two slipring assemblies connect each gimbal to

the next innermost and next outermost gimbals. The slipring

assemblies contain resolvers, tachometers and torque motors. The

relative position and velocity of each gimbal pair may be

directly observed (after filtering to remove noise). The torque

motors are the sole actuators present in the system.

The elevation gimbal is totally different from the others.

It is essentially a platform laden with sensors. The only

sensors of concern to us here will be the gyroscopes. The

(1)
The phrase "elevation gimbal" is carried over from three-gimbal
system days when the elevation angle I was exactly equal to the
elevation of the vehicle with respect to -the earth's surface.
What is now the inner gimbal was then called the "azimuth
gimbal." It is still occaisionally referred to by the older
name, We will stick with "inner gimbal." The letter "B" used
for the angle between the inner and middle gimbals reflects the
fact that this angle equalled the bearing of the vehicle in the
three-gimbal system.
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gyroscopes will be treated as though there were three single

degree of freedom (SDF) gyros. in fact, two two degree of

freedom (TDF) gyros may be used, one degree of freedom being

redundant. The gyros are aligned so that their input axes lie

along XE, YE and ZE. Any rotation of the inertial platform will

be sensed by one or more gyros. Any misalignment of the

gyroscopes with respect to the inertial platform will be subject

to compensation elsewhere in the guidance system and will not

concern us.

Six different Cartesian coordinate systems may be defined.

Four of these coordinate systems are fixed to the four gimbals,

the fifth and sixth coordinate systems are associated with the

case and inertial space (S). One may restate the purpose of the

controller as being to keep the elevation gimbal coordinate frame

and the inertial space coordinate frame as closely aligned as

possible given the rotation rate of the case coordinate frame.

The rotation rates of the case and gimbals with respect to

inertial space coordinatized in the case and gimbal frames may be

defined as ftllows:

WCX Wox

WC WCY I SO S WoyIS iwc I Io

1 WCZ I Woz

WMXI I EX

SM IWMYI WI WYSE EY

IWMz IWizI I WEZ
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The above vectors are interpreted as the rotation rate of

the coordinate system denoted by the the right subscript with

respect to the coordinate system denoted by the left subscript as

seen from the coordinate system denoted by the superscript. This

convention is discussed in more detail in Britting[3].

In order to relate the various coordinate frames it is

necessary to define the angle between adjacent gimbals.

AnaI name

I

B

Be~twjeen

E and I

I and M

M and 0

0 and C

That only a single degree of

simplifies the direction cosine

cosO

0

sinO
SC :

1

0

.0

ALso _called

Elevation Angle

Inner Angle

Middle Angle

Outer Angle

freedom exists between gimbals

matrices. Specifically:

0

1

0

-sinO

0

cos0 (3.1)

0 0

cosO sing

-sinG cosO (3.2)

i

i
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I cosB sinB 0 1

C i -sinB cosB 0 1

10 0 11 (3.3)

I cosl 0 -sinI

IIC = 0 10

I sinI 0 cosl 1 (3.4)

The above matrices are interpreted as a linear transform

from the coordinate system denoted by the subscript to the

coordinate system denoted by the superscript. Direction cosine

matrices are treated in more detail in Appendix A. The special

form of the direction cosine matrices is due to the fact that 9

is measured around the outer gimbal and case y-axis, 9 is

measured around the middle and outer z-axis, B is measured around

the inner and middle x-axis, and I is measured around the

elevation and inner y-axis. These definitions are entirely

arbitrary but survive for historical reasons. The time

derivatives of these angles are nothing but the relative rotation

rates. That is:

co co0M M00

00
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-AMS
w w ~o

MI MI
S B I

w W.1IE = E s
IE IE

101

It is now possible to relate the rotation of any gimbal to

inertial space. This is necessary to express the torque

equations later. Starting with the outer gimbal and applying

equations (A.2) and (A.6) we have:

+ W =C0C +W0.
so SC CO C SC CO

cos0 Wcx

:c+b= CY+

S sinO WCX +

w = c 0 so+ W m5M 050O OM

1W +0

=IcosQ W +
OY

I-sinQ WOY +

I CMM +
si m sm mi

1 cosB Wmx +

imsinB Wmx +

w MZ + B

sine WCZ

cos0 W (3.5)

sinO W
oz

cosO W o (3.6)

sinB WMY

cosB Wmy

(3.7)
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VIE =CEWI+ .W.E
SE I si IE

I cosiW - sini W
Ix

=1W +fI

I sini WIx + cosT W1  .(3.8)

Equations (3.5) through (3.8) and (A.2) may be combined to

compute the case rates.

40E + + t Ar+ c&M E-;TI -&
SE CSC O+CoO + C OM + C OM IMI I+E

Rearranging terms and multiplying by CC yields:E

'= CWE - CCCEO - CCEM - CCE4I -CE
Sc ESE EOCO EMOM EIMI EIE

=CE - CC - cCvCM - cCVI -C E
E S E 0 CO M OOM I MI E IE

C 0CSE j C - 0CO -CC0WM -CC0 EI'
SC ESE CO OOM MMI IIE

The left hand side is the rotation rate of the case

is to be determined; the right hand side is dependent oi

measurable quantities. We will want to relate tor

acceleration in the next section, so we may apply equati

to equations (3.5) through (3.8).No

So

SM -

SI -

SE

cof - 0 xWO +
C SC Co C SC

cM 0 _-m x c i0 +

c MSM MI x c MSM+

cEiI - ,EX cETI +
I SI IE ISI+

(39)

(3.10)

, which

nly upon

que to

on (A.8)

Co (3.11)

0& (3.12)om

w mi(3.13)

wI (3.14)

Unfortunately, equation (3.11) contains SC, theSC,

acceleration of the case, and a difficult quantity to measure.
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It will be desirable to knowWC in order to predict the

trajectory of WSC and thereby optimize the performance of the

gimbal system at some time in the future. For a massive vehicle

such as the one under consideration here the rotation rate cannot

change rapidly. Unable to measure the vehicle's acceleration

directly to predict its behavior, a reasonable approach is to

assume that it does not change at all. Therefore, throughout

this paper it will be assumed that SC = 0. This is not such a

bad assumption over a short time interval. Thus, equation (3.11)

reduces to

=1-7 X CW C+ -60(3.15)
SO CO C SC CO

In theory it is possible to predict the vehicle's

acceleration knowing the generated thrust and mass. It is

preferable, though, to keep the four-gimbal controller as

decoupled as possible from all other vehicular systems, including

propulsion.

The vector angular acceleration equations, although

compact, are of limited utility by themselves[10. They need to

be expressed in terms of scalar quanties. To this end, equations

(3.12) through (3.15) will be expanded using equations (3.5)

through (3.8).

I- W(1

W XI(3.16)
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ox + 0

cos'OY + sing Woz + 9 WMZ

I-sinG Woy + cosO Woz - 9 MY

! o Woz +

= IcosO 0 + sing 0

I-sing 0 + cosO 0

WOX + 0WMZ

WOX - 4 WWMY

cosB W mx

SI i-sinB WMX

SWMZ + B

- I
N.E

I cosB (-0
+ sing

= -sinB (-Z0
+ sing 0

-sinG J +

cosT WIX -

WJ y +YT
sin!WIx + 

+ sinB WMY

+ cosB WMY

+ $ Wy

IX

WOZ + ) + sinB.(cosQ t
WOX + 0 WMZ) + B Wiy

Woz + ) + cosB.(cosQ 0 i
WOX + 9 WZ) -BWIX

COG0Wox QWMYy+B I

sifI Wiz - I WE Z

cosI + WEX

I cost {cosB (-0 JWOZ + 9) + sinB (c
+ sing 0 Wox +GouWMZ) +BWIY}
- sin! {-sing 0 + coso 0 WOX - 9
+ BI - I WEZ

-sinB (-0 WOZ + 9) + cosB(cosQ 0,,
+ sing 0 WOX + 0 WMZ) - B WIX. + I

I sin! (cosB (-0 WoZ + 9) + sinB (.c
+ sing Wox +.WMZ) +$ WIY}

1 + sosT. {-sinG 0 + cosO9 0 WOX - 1
1 + B} - I WEX

osG 0

WMY)

os Y

wmy)

S

WSM

SE

(3.18)

(3.19)

(3.17)
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These last four equations are second order differential

equations. Note that the only place where second time

derivatives appear is on angles. This is quite a propitious

occurrence because, in a later section the state variables will

be specified, and the angles will be among the state variables.

We will want to express the highest order derivatives of the

state variables as functions of lower order derivatives and other

known quantities, and to do this we must separate the highest

order derivatives from all other factors. Equations (3.16)

through (3.19) show where the high order derivatives lie and this

is a great help.

We now introduce three variables aSV, aJ and &SR. They

represent the tilt (rotation) of the inertial platform with

respect to inertial space. &SR is measured about the x-axis, aJ

is measured about the y-axis and aSV is measured about the z-axis

of the elevation gimbal. The tilts equal the angular

displacement of the inertial platform as sensed by the gyros

about the relevant axes. They may be described by differential

equations by''noting that the rate of change of the tilts must

equal- the rotation rate of the inertial platform. The rotation

rate of the platform is merely E Applying equation (3.8) weSE

have:

aSR = cost WIx - sinI WIZ (3.20)

. = WIY + t (3.21)

aSV = sint WIx + cost Wiz (3.22)
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Now to define the moments of inertia of the gimbals. Let

J be the inertia tensor of gimbal k in the 1 coordinate system.

The matrix representation of an inertia tensor transforms under

similarity transformations, i.e., Jm CmJICl. Because the
k - 1lk m

gimbals are symmetric and have been evenly balanced, and because

the gimbal-fixed coordinate systems are aligned with the

principal axes, the inertia matrix will have zeros off the

diagonal when coordinatized in the reference frame of that

gimbal. Thus:

Jkx 0 0

J = 0Jky 0

j0 0 Jkz

In general, this is true only when the inertia is

coordinatized in the reference frame of that gimbal, and not

true in most other reference frames. Thus, J 4lik will, in

general, have nonzero terms off the diagonal. Furthermore, the

elevation gimbal is almost symmetric, so we may approximate JEX Z

JEY = JEZ J JEXYz The other three gimbals take the shape of

bands, each having two roughly equal moments of inertia and a

third distinct moment of inertia, the distinct inertia

corresponding to the gimbal axis passing through the "hole" in

the gimbal. For the given geometry:

:IY jIZ IYZ

MX MZ MXZ

JOX =jOY jOXY



These approximations will greatly simplify the torque

equations. As shown in Table 3.1 the approximations are good

ones. The largest error introduced is 8% for the E gimbal, 2.5%

for the M gimbal and 0% for the other gimbals. The 8% E gimbal

error will have a negligible effect because that gimbal should

remain inertial and the exact value of its moment of inertia

ought not to matter much.

It should be noted here that the symmetry of the E gimbal

gives rise to some useful results.

SEX 0 0 JEXYZ 0 0

JE :0 JEY 0 = 0 JEXYZ 0  : JEXYZI

I 0 0 JEZ I 0 0 JEXYZI (3.23)

Thus in any coordinate system k,

jk = CkjECE Ck(j I )Ck' 1= J 1 (3.24)
E E E k E EXYZ E EXYZ

J = J = J= Jo (3.25)E E E E

Equation (3.25) has the following interpretation: J , J ,
E E'

J and J are all different tensors; they just happen to share
E E

the same matrix representation.



Table

Moments of

Elevation

Inner

Middle

Outer

3.1

Inertia

x

Y

z

x

Y

z

x

Y

z

x

Y

z

JEX

JEY

JEZ

JIX

JIY

JIz

JMX

JMY

JMZ

Jox

JOY

Joz

1.3

1.2

1.1

1 .7

1 .3

1 .3

2.2

3.0

2.3

3.0

3.0

3.9
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IV. Derivation of Torque-Acceleration Equations

Torque is the rate of change of angular momentum. For a

four-gimbal system there will be four angular momentum vectors to

consider, one for each gimbal. This will lead to four torque

equations. These four torque equations will be solved for the

four angular accelerations (I, B, 0, 0). The angular

accelerations can be integrated twice to solve for the angular

velocities and the angles themselves, thus completely

characterizing the system.

Torques are applied to gimbals through their pivot

assemblies. Torques may be applied either along a torque motor

axis or normal to a torque motor axis or both. Torques normal to

a motor axis are coupled through the bearings; these forces are

not controlled directly. Control is exerted directly only on the

components of torque along the motor axes. There are four

sources in all of torques about a motor axis. They are control

voltage, back-emf, coulomb friction and static friction.

Let's examine the relationship between angular momentum and

torque. The angular momentum of gimbal j with respect to

inertial space (1) is

(1)
Strictly speaking, angular momentum is only defined with respect
to inertial space. Nonetheless it will be convenient to treat
angular momentum like any other vector, especially as regards
coordinate transformations. As long as we remember that.torque
is the rate of change of angular momentum in inertial space there
will be no problem.6_
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(4.1)

In the j coordinate system equation (4.1) becomes:

iii= C U = CJ = CtJ3CjC t

= J j F (4.2)
i Si

Torque is the time derivative of angular momentum in an

inertial coordinate frame. Differentiating equation (4.2) and

applying (A.2) and (A.8)

fi = CJT = Cid/dt(E) =GCd/dt(C Tf
j Sj S j S S
=C[CHI - . X (CS1W))

S ji Sj 33J
= #. + CirS. X (C )

3 S Sj a
=Th + (CWS ) X (CiCi Hb

SSJ S jj
= HI + j X H(4.3)

3 i

For a rigid body such as a gimbal, d/dt(JI) = 0, so equation

(4.3) becomes:

= J3WAj + rqj X (Jiij) (4.4)

For the 0 gimbal we have:

-O -aO -sO 0O ..aO 0.0
To = TCO + TMO JOWSO + WSo X (JoWso)

P SjOO + '0 X (joO) + cOTfMo 03s 0 so m OM

(4.5)

(4.6)

CO represents the torque transmitted from the case to the

outer gimbal as seen from the outer gimbal. The form of equation

(4.6) will prove most useful. Similar equations can be written

for the other gimbals.

am& = J ij
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T8M j=AJ + $M x cjMrM ) + CMtI I(4.7)
M SM SM M SM IMI

TI = J + xI (JTW1 ) +C E
. MI I SI SI I SI E IE (4.8)

-&E j E4E -wE x(EwE) 49
TIE -=E +SE +SE ESE( 9

Because the elevation gimbal is assumed to be symmetric, and

-&E
WSE is to be kept small, equation (4.9) reduces to:

--E E--E
TIE JESE ( .10)

The torque motor force from the inner to the elevation

gimbal is along the y-axis of both gimbals.

TE =
IEY EXYZ EY

= jEXYZ{Y - sinB (-0 WOz + 0) + cosB (cosQ 0

+ sinQ 0WOx + 0 WMZI) - W }(4.11)

Equation (4.11) can be rewritten as:

YE :JIEXYZ-sinB J QEXYZ 0 + cosB cosQ9 JEXYZO (4.12)

Where YE

TE + J (-sinB0b W - cosB sing0WX -cosBO WZ + WI)IEY EXYZ Oz OX MZ Ix

(4.13)

YE is a quantity that contains all of the terms of the

torque equation for TE that do not contain an angularIEY
acceleration. Similar definitions will be made for the other

gimbals. Proceeding in a parallel manner with the inner gimbal

we repeat equation (4.8).

MI I I+V x (JW ) + cIE48)Mi ISI SI I SI E IE(48
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Applying equations (3.14) and (4.13) to (4.8):

JAI ej -ai IT-I TIE EA
SJI + WSJ X (JisI) + CE E (Cisi
-E --W X(CW ) + IE
IE I SI IE

=(J, + c JIC ) + W x (J W)
I E EI SI +SI I131

+ CEJECI (-W 1 E x I + IE
(I I:J I II wEI --I &I j
I( E J S si X ( ) + E (IE X WIE +WIE

(4.14)

Recalling equation (3.25) and expanding (4.14):

IX + JEXYZ 0
0

0

J + JIYZ EXYZ
0

w i W I (J x - J )

wI I IYz IYz)
IXIY IYX IZ

0

o

J +J J
IYZ EXYZ

JEXYZ

+ JEX
10 0

SIY

siz

o

YZ

EXYZ

IX + JEXYZ IX EXYZ IZ

IYZ + JEXYZ IY + JEXYZ

IYZ, + JEXYZ IZ + JEXYZ IX + WIX wIY IYZ
-J

When the elevation gimbal is inertial both WIx and Wyz

should be small; ideally they will be zero. The product of such

small terms will certainly be negligible. Therefore the term WIX

W IZ iIx IYZ ) has been dropped from equation (4.15). Motor

torque from the M to the I gimbal is along the z-axis.

T I

.1

:1

Ix

ifYWI
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TI =(J ) W + W W (J -J )+ j I W
MIZ IYZ EXYZ IZ IX IY IYZ IX EXYZ IX

=JIYZ + JEXYZ)(-sing 0 + cos 9 0 WOX - 9 WMX

+ B) + WfIx WIY LIYZ - IX) + JEXYZ Ix

(4.16)

Equation (4.16) can be rewritten in a similar fashion to (4.11):

I j IYZ + jEXYZ)
- sing

Where Y TI + (J + JEX (Q W - cos 9 0 W )
I MIZ IYZ EXYZ MX OX

+ I wIY(iIx I IYZ EXYZ wIx

Proceeding to the middle gimbal:

OM MWM + WM X McjMW ) + CIMV

J x 0 0
MXZ

0 MY 0
0 0 1JMXZ

cosB -sinB

sinB cosB

0 '0

01

0I

1II

MX

!WMY

WMZ

1wW
MY MZ

+ MZ WMX
1W WMX wMY

MXZ MY

(JMXZ -MXZ)

MY JMXZ

JiIX + JEXYZ WIx x EXYZ W 3IZ
(J +j )W + J YI

IYZ EXYZ IY EXYZ

J + jEvYZ) Wz + WfI WIY IYZ IX
EXYZ IX (41

Torque from the 0 to the M gimbal is along the x-axis.

Using equations (3.17) and (3.18) the x component of (4.19) can

be expanded as follows:

TM =J W + W W (J -J )
OMX MXZ MX MY MZ MXZ MY

+ cosB {( JIX + JEXYZ IX EXYZ IZ

- sinB {(JIYZ + -JEXYZ WIY + JEXYZ 1

(4.17)

(4.18)

(4.7)

- i

+1|

a

|



MXZ MX + WMY mZ MXZ MY

+ cosB (JIx + JEXYZ) (cosB Wmx + sinB WMY + BwY)

- cosB JEXYZ IZ

- sinB (JY + JEXYZ) (-sinB Wmx + cosB W -MY BwIx

-sinBJIEXYZ

= (JMXZ + cos2B JIX + sin2B JiyZ + JEXYZ) (0- 0 WOZ)

+ WMY MZ MXZ MY

+ sinB cosB (JIx -IYZ)(coso JD + sin 96 wOx + wMZ)

+ B (cosB (JIx + JEXYZ) (-sinB Wmx + cosB WMY

+ sinB (J + JEXYZ) CcosB WMX + sinB WMY)}

-cosB JEXYZ W 1 -sinBJEXYZI

(4.20)

Equation (4.20) can be rearranged like this:

yM =-sinB JEXYZ

+ " JMXZ+ cos2B JIx + sin2 B J + JEXYZ

+ sinB cosB cos CdI I JIY) Z (4.21)

Where Y 2
M

TM
OMX

+ (JMXZ + cos2 B JIx + sin2 B JIYZ + JEXYZ 0WO

+ sinB cosB (J - JIX) (sing 0 WOX + 9 WZ -BW

-(cos 2B JIx + sin2B J + JEXYZ WMY

+ cosBJWEXYZ IZ ' (4.22)

Finally, for the outer gimbal:
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T 0 JOWO + W0 X (JOi O ) + COYM (4.6)
CO OSO SO 0so M OM

The component of interest here is along the y-axis since

that is where the torque motor is. The algebra required is

extremely tedious, and little insight is obtained. We will not

go through the entire derivation. A rigorous derivation is given

in [6]. The resulting equation for Y0 (which is really all we

want) is:

Y cosB cosO J I
0 EXYZ

- sing (JJY)+JBEXYZ

+ sinB cosB cosO (JIX J 0IYZ

+ (J OXY+ sin20 J MXZ + cos2Q J MY + sin2J

+sin 2 B cos 2 OGJIX + cos2B cos29 J + JEXYZ)) (4.23)

Where Y0

To
COY

+ XOY oz OXY

+ sinB cosB cos CJIX JIYZ OzMY)

+ sing cos(JMXZ - MY + sin2B J -IYZ JIX 1X (0 WOx - 9 WOY)

- (sin2Q JMXZ + cos20 1MY + sinQ2 JY 5 + sin2B cos2

+ cos2B cos29 J1YZ + JEXYZ Oz
+ sinG9W W (J -JMY MX MY MXZ

+ sinQ9 W W IYZ)Ix

+ sinB cosQ JEXYZ IZ
+ sin 9 JEXYZ WIX (4.24)

Equations (4.12), (4.17), (4.21) and (4.23) may be combined

into a single matrix equation.
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Y L Z (4.25)

Where Y2 E' ( I' M' OY)

Z = (Y, BI, 0,)

I L L11 12 13 14
SL L L L

L 21 22 23 24;
SL L L L

31 32 33 34
iL41 L42 L43 L44

With Lii = JEXYZ (4.26)

L12 = L21 = 0 (4.27)

L13 = L31 = -sinB JEXYZ (4.28)

L14 = L41 =cosB cosO JEXYZ (4.29)

L22 =J IYZ + JEXYZ(4-30)

L23 = L32 =0 (4.31)

L24 = L42 = -sinO (JIYZ + JEXYZ) (4.32)

L33 = JMXz + cos2B JIX + sin2B JYZ + JEXYZ (4.33)

L34 = L43 = sinB cosB cos( CJ - J YZ) (.4

L44 = JOXY + sin2 oJMXZ + cos2 QJ ÷MY+sin 2QJ

+ sin2B cos2Q J + cos2B cos2 J + JEXYZ (4.35)

A term lying on the diagonal of L, L.., is the effective

moment of inertia of gimbal i and those gimbals inside it as seen

looking into the pivot axis of gimbal- i. For example, if all

four gimbals are treated as a single unit, then the inertia along

the y-axis of the outer gimbal is just L44. Similarly, L33 is

the inertia of the three innermost gimbals along the x-axis of

the middle gimbal. The off-diagonal terms of L are a consequence

of the fact that an inertia matrix may no longer be diagonal if



coordinatized in a coordinate system not attached to the

appropriate gimbal.

L contains information about the geometry of the gimbal.s.

We have already assumed that the elevation gimbal is symmetric.

This implies that the orientation of the elevation gimbal is not

relevant to the overall geometry of the system and therefore we

would not expect the elevation angle I to appear in equations

(4.26) through (4.35). The outer angle 0 also should not affect

the gimbal geometry, so we would not expect 0 to appear in

equations (4.26) through (4.35) either. These expectations are

realized. The gimbal configuration as defined by the matrix L is

only a function of B and 9

Note that L is symmetric. This is .an instance of a

reciprocity relationship between torque and angular acceleration.

A torque applied at angle i will produce a response at angle j

equal to the response at angle i to a torque at angle j.

The actual torque values are nestled into the Y vector

together with a great many other terms having the same dimensions

as torque. T-hese other terms for the most part resemble Coriolis

forces, although their exact interpretation is not always

obvious. In any event, for reasonable gimbal rates and

reasonable torque levels the torque terms will dominate the

Coriolis forces.

Equation (4.25) allows the computation of torque given

acceleration. In actuality we know the 'torque since the

controller will be supplying the control signals; it is the

acceleration we wish to compute. So we may take the inverse -of

-037-
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equation (4.25) to ccme up with:

SZ LY = M Y where M L-l

M will of course be symmetric since L is. The computation

of M is aided by repeated application of the following matrix

identity:

I A I B 1-I 1A-1+A-1 B(D-CA-1 B)- 1 CA-1 I J-A1 B(D-CA-1 B)-1
I------i=------------------------- ------------------ '

I C I D 1 -(D-CA- 1 B)- 1 CA 1  (D-CA 1 B) 1

(4.37)

Before presenting the terms of M it is helpful to define a

quantity called DENOM. DENOM is the determinant of

(L -L4L34L ) obtained when using formula (4.37). Since this44 43 33 34

quantity appears in each element of M it will be much easier to

define DENOM once than to write it out in full each time.

DENOM = T + sin2  J + cos2@ (J + cos2B J + sin2B JIDNM= Oy+sn JM MY IYZ IX
+ JEXYZ MXz cos2B (J + JEXYZ) + sin2B J

- cos2B sin2 B cos2 Q EJ - IX EXYZ 2  (4.38)

M 1={[J + sin2 Q J + cos29 (J + J + J )]11OXY MXZ MY IX EXYZ
[+EXYZ sin2B J +cos 2B J +J J

EXZIYZ IX MXZ
-cos 2B cos2  j -J I MXZ +JIX + JEXYZ1D

/ DENOM / JEXYZ (4.39)

M = -cosB sing cosO [J + J + JX] / DENOM (4.40)12 EXYZ IX MXZ

M13 = sinB [JOXY + sin2GJ MXZ
+ cos2G (JMY + JIX + JEXYZ] / DENOM (4.41)

M = -cosB cosQ [JMXZ + JIX + JEXYZ / DENOM (4.42)

(4.36)
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M =(cos 2 B cos 2Q (J - J - J J [J +
22 IYZ Ix EXYZ EXYZ IX

+ JMXZ + dMXZ + cos2B (JIx + JEXYZ) + sin 2 B J I

[J OXY+ cos2g (MY + JIx) + sin 2 Q (CMxz + J YZ)

+ JEXYZ / IYZ + JEXYZI / DENOM (4.43)

M2= sinB cosB sing cos [J - JI EYI / DENOM (4.44)
23 IYZ Ix EXYZ

H24 = sin[J MXZ + cos2B CdIx + JEXYZ) +-sin 2B J3 / DENOM

(4.45)

M 3= [JOXY + sin2Q JMXZ + cos 2@ (MY + cos 2B JY

+ sin 2B {JIx + JEXYZ})] / DENOM (4.46)

M34 = cosB sinB cosO [JYZ, - dJI EXYZI / DENOM (4.47)

M 11=4 MXZ+ cos2 CB (J + JEXYZ + sin2B J I / DENOM (4.48)

The above equations are rather difficult to manipulate and

verify. By writing a computer program to numerically multiply L

amd M it was found that M is indeed the inverse of L.
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V. Torque and Friction .

The torque produced by a given torque motor is proportional

to the current through it. The constant of proportionality is

Kt/r. This current will equal the applied voltage, in this case

the control signal, minus the back-emf generated by the motor,

divided by the resistance of the motor windings. Back-emf is

created when a torque motor acts like an electric generator,

putting out a voltage proportional to the relative rotation rate

of the rotor and stator, tending to cancel any rotation of the

gimbals. The constant of proportionality is denoted by Kv.

These torque motor parameters will differ from gimbal to gimbal.

Inductive effects in the motors are negligible.

Anathema to designers of precision guidance equipment,

friction is nonetheless a force to be reckoned with, or at least

accounted for. It is a major factor in the four-gimbal system;

much of the torque supplied by the torque motors is used to

overcome friction. In fact, in the absence of friction there

would be almost no forces acting to perturb the inertial platform

except in the neighborhood of gimbal lock.

There are essentially two types of friction: static

friction and Coulomb friction. Although they originate in the

same intermolecular forces the analysis of the two types of

friction is substantially different. We deal first with Coulomb

friction.

Gimbals in relative motion will be subject to Coulomb

friction. We will use a very simple model- for friction in the



-41-

simulation.

Tcoulomb -sgn (relative gimbal rate) X Tcoulomb-limit(5.1)

-1 x<O
Where sgn(x) = 0 x=O

f1 x>0

This simple model has adequately predicted Coulomb friction

in earlier simulations. It has the advantage of requiring only a

single parameter for each gimbal. Gully[7 goes into more

sophisticated models. The net torque at each pivot can now be

determined in terms of control signals and rotation rates.

TE (Kt/r)E U - (K E - sgn(i) TclE (5.2)IEYE E E E
TI =(Kt/r) {U - (Ky) B - sgn(B) Tcl (5.3)MIZ I I I

MTM = (Kt/r) {U - (Kv) 1 - sgn(Q) TelM(5.4)
OMX M M M M

TOY (Kt/r) {U (Ky) 0} - sgn(b) Tcl0  (5.5)
COY0 0 0 0

Static friction or stiction as it is often called, is the

force tending to prevent adjacent bodies from moving at all

relative to one another once they have stopped moving. Static

friction is in general stronger than Coulomb friction, the latter

being effective only after the onset of relative motion. Static

friction is quite annoying from the viewpoint of the four-gimbal

controller. It means that a comparatively large torque must be

applied to get a stuck gimbal pair unstuck.

The model used for static friction here is extremely

simple. Others are certainly possible and ought to be analyzable

in the same framework. The model used here is characterized by a

single parameter, the static friction torque limit. The static



friction torque limit will differ from gimbal to gimbal. The

model works as follows:

Whenever two adjacent gimbals are not in relative motion

(i.e. their relative rotation rate is zero) they will be

considered stuck until the magnitude of the torque supplied by a

torque motor from one gimbal to the other exceeds the static

friction torque limit. If a greater amount of torque is applied,

then the gimbals will be free to rotate subject to Coulomb

friction. If the relative rotation rate is nonzero, no matter

how small in magnitude, then the gimbals will not be stuck.

This may cause some difficulty in the computer simulation

of the system. Because of numerical considerations it is

unlikely that the relative rate of any gimbal pair will exactly

equal zero in the simulation. The approach taken then is to

check if the relative rotation rate about any axis has recently

passed through zero (i.e. changed sign). If so, then a

comparison of applied torque with the static friction limit is

made as though the rotation rate were exactly zero, and the

system is treated accordingly.

When two gimbals are stuck they will travel together.

Neither a relative velocity nor a relative acceleration will be

experienced, despite any applied torque up to the static friction

torque limit. This causes-problems in applying equation (4.25).

We no longer know the net torque being supplied between the stuck

gimbals. The motor torque is known, but not the amount of

stiction. Static friction will be just adequate to prevent

motion along the affected axis, but it.is not possible to predict
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a priori. Calculation of angular acceleration by means of

equation (4.36) is thereby rendered impossible. Some other

method is required.

The method used is to go back to equation (4.25). If all

net torques were known then (4.25) could be inverted as was done

in (4.36). But the net torque will not be known at a stuck

gimbal pair. So a constraint will have been lost from equation

(4.25) and the system will be indeterminate. However, another

constraint may be added, namely that the acceleration of the

affected angle will be zero. This can be best expressed by

rearranging and partitioning the elements of equation (4.25)

Let Y be a vector containing those elements of Y not

affected by stiction. Y1can be computed since the net torque is

readily computable in the absence of stiction. Let be a

vector containing the angular accelerations in Z not affected by

stiction. These are the values we wish to compute. Similarly,

let Y2 be a vector containing the'elements of Y that are affected

by static friction. Even though the torque motor contributions

to Y2 will be known, the static friction contributions will not,

as was discussed above. Lastly, let Z2 be a vector containing

those angular accelerations that are affected by static friction.

Z2 will be identically zero. Introduce a new matrix L' whose

elements are permuted elements of L such that:

ZY2  Z56

. I Y iI Z -( . )
2 2(56
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.L' can be partitioned like so:

I L' I L 1

I 2 I (5.7)

Equations (5.6) and (5.7) can be combined as follows:

Y =L' Z +L' Z
1 11 1 12 2

(L;)-1 YT
1 111

I Z I C L;1 )-1 Y

2

(5.8)

(5.9)

(5.10)'

This is what we wanted. The presence of stiction leads to

a smaller set of equations to solve. The exact contribution of

static friction was not needed. If stiction is present and

equation (5.10) is used, or stiction is absent and equation

(4.36)'is used, the angular accelerations, and thus the angles

can be correctly determined.

So that
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VI. Optimal Control of the Four-Gimbal System

Up to this point, differential equations have been. derived

that relate acceleration of the gimbals to control signals.

These have all been scalar equations although they may be

considered selected components of a set of vector equations of

the type exemplified by (4.3). Rearranging the scalar equations

into state-space form will aid the application of modern optimal

control theory to the four-gimbal problem. Define an

11-dimensional state vector X and a 4-dimensional control vector

U by:

X = (I, B, 9, 0, 1i, , 0, 0, aSR, tJ, SV) T

U = (UE UI' %, u TO

X is composed of the gimbal angles and velocities plus the

inertial platform tilts aSV, fJ, aSR. The entire dynamics of the

four-gimbal system can be compressed into a single nonlinear

vector differential equation by writing:

X= f (X, U, (6.1)
Sc

Explicitly, Xmay be expanded using equations (3.20)-(3.22)

and (4.36) to yield:

1  =X5  
(6.2)

2 -- X 6 (6.3)

3 =X7(6.4)

X4 = X8  (6.5)

5 = M 11Y1 + M12 2 + M13 3 + M Y4(6.6)
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* =-M Y+MY+MMY(67
6 21 1 + 222 2+ 33+ (244

*7 = M31Y1 + M32Y2 + M33Y3 + M34Y4  (6.8)

i8 = M41 Y1 + M42Y2 + M43Y3 + M44Y4 (6.9)

*9 = cosX1 WI-X - sinX1 WIZ (6.10)

X10 = WIy + X5  
.(6.11)

ill1 = sinX1 WIX + cosX1 WI (6.12)

The M's are functions of B and 9, or X2 and X3 . The W's

are functions of case rates, gimbal angles and angular rates, and

&aC
so can be expressed in terms of Wsc and X's. The Y's are also

functions of X's and U's. Only the states, controls and case

rates appear on the right hand side of equations (6.2)-(6.12) in

accordance with the formulation (6.1).

One advantageous aspect of this formulation of the system

relates to sensors. Each state variable has a unique sensor

associated with it. X1 through X4 are measured by resolvers, X5

through X8 are measured by tachometers and X9 through X11 are

measured by gyros. There can be no question as to whether or not

the system is observable. Measurement noise does complicate the

picture somewhat, but filtering of the sensor data should suffice

to provide accurate estimates of the state variables. The

oft-quoted Separation Theorem permits-issues of estimation to be

considered separately from issues of control for linear systems.

The system under study is not linear, but as we will shortly see,

it can be approximated by linear equations. Henceforth we will

not be concerned with estimation of state except insofar as it

relates to the validity of simulation studies.



The honlinear equations embodied in (6.1) aret fine for

numerical analysis and simulation. They allow for numerical

integration of the dynamical equations given any inputs to

predict the trajectory of the system. As far as optimal control

is concerned, equation '(6.1) is horrendous. The theory- of

nonlinear optimal control is difficult to apply to actual

real-time processes. For this reason linear quadratic optimal

control will be applied to a linearized discrete-time version of

the state equations.

Start by looking at the system at time tO and at short

intervals thereafter. Over a short enough interval, tens of

milliseconds for example, the system will not change state much

and the dynamics may be faithfully described by linear equations.

It is necessary to choose a nominal operating point about

which to perform the linearization. One could choose X = X(t0),

U = U(.to) and W = WSC(t0). This is valid if X, U, and W are

slowly time-varying. It has already been assumed that W is. X

is also slowly changing on the time scale of interest here. But

U need not- be so constrained. U, the control vector, is a

quantity that ultimately will be minimized. Since U ideally will

be near zero we will use X = X(tO), U = 0 and W = WSC(tO) as a

nominal operating point. Assuming constant case velocity,

equation (6.1) can be approximated by

AX (df/dX) aX + (df/dtU) AU (6,13)
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X(t - X(tO) (dt(, 1I, Vp)/d7) {Ct) - t
= Y(to)

WSC

+ (dr(X, U, W)/dU) U(t), (6.14)
X X(tO)

U.,= QC
W = WSC

Equation (6.14) can be rewritten as:

X(t) = A X(t) + B U(t) + X(tO) - A X(tO) (6.15)

Where A = df(Y, 0, W)/dY (6.16)

B =dtX, U, W)/dU (6.17)

Equation (6.15) is a linear continuous-time approximation

to the four-gimbal system. Computation of A and B is extremely

complex. Unfortunately, we do not have at our disposal a

computer that can exactly simulate in a finite amount of time the

continuous behavior of the system that is implicit in (6.15). It

is appropriate to ask what the state of tha system will be at

time tO + at given the state and control at time tO. Simulating

samples of -the state will relieve the computational burden

required for a continuous solution. Assuming U(t) to be constant

in the interval [tG, t] and A to be nonsingular, the solution to

the dynamical equation (6.15) is:

T(t) = eA (t-tof(to)

-1 A (t-tO) - '--+C 1 [eA Ct-) I][B U+X(tO) - AX(tO)] (6.18)

Equation (6.18) can be differentiated versus time to check

that it does solve the dynamical equation. Plugging in tO for t
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allows us to check the initial conditions, too.

X(t) =ACA(t-tO) X(tO) + A~lAeA(t-tO) [B UI + X(tO) - AXYtO)J

- AeA(t-tO) Y(to) + eA(ttU) [B t + X(t) - A f (t)]

- [B U + X(tO) - A +(tO)] + [B U + X(tO) - A X tQ)]

- A~A(t-t) 1( [At-t) - IB U + r(to)

- A R"tO)31 + B U + x(tU) - A X(tO)

U A X(t) + B U + X(tO) -A X(tO) (6.19)

X(tO) eA(to-tQ)r(tO) + A" [eA(t0-t)- I[B it

+ Rto) - A (tO)J

= to) (6.20)

Denoting t by tO + At, equation (6.18) can be rewritten as:

X(tn0+at) e .\(to) + A[eAIt I]B U + X(tO) - A X(tO)J
A~tms a-1 A~t

e X(tO) + A [e - I] B 11
+ 1 Aet- t)

iA [e - IJEX(tO) -A X~tO)J (6.21)

Equation (6.21) can be put in discrete form as:

Where

X[n+1= A X[n] + B U[n] + C
* AttA :e

B= Al[eAAtm I]B

* -1 AAtI[C A[e - IJ[XVtO)- A X(tO)J

(6.22)

(6.23)

(6.24)

(6.25)

Because at is assumed small equations (6.23) through

may be approximated to second order:

AI 2&2A = I + Ant/1! + A at /2!

(6.25)

(6.26)
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B A-1[I + Ant/11 + A2At2/2! - IJB

= IAt + At /21JB (6.27)
* ~2 XtOJi6.8

C Z [Iat + Aat /21][X(tO) - A MtM (6.28)

A cost function will be used as a measure of performance.

The performance index will be a quadratic function of those

parameters to be minimized by the controller. They are motor

torques, inertial platform misorientation as sensed by the gyros,

inertial platform rotation rate, and proximity to gimbal lock.

Only proximity to gimbal lock remains to be expressed

mathematically.

The angle from the inner gimbal x-axis, X1 , to the outer

gimbal plane defined by Xo and Yo is a convenient measure of

gimbal lock. This angle is called X. X can be shown to obey the

following equation:

sinX = sinB sinQ (6.29)

Gimbal lock occurs when X equals 90 degrees. Equation

(6.29) requires that both B equal 90 degrees and Q equal 90

degrees for this to happen. In keeping with a philosophy of

linearizing and sampling the equations, the gimbal lock

contribuition to performance is approximately:

sinX[n+1J = cosB sing &B + sinB cosQ AQ + sinX[n+1J (6.30)

The inertial platform rotation rates can be handled in

similar fashion.
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WEx[n+1 Z WEX[n] + Z(dwEi/dXi) AXi (6,31)
1

WEY[n+1 = WEY[n] + f(dWEY/dX ) AX. (6.32)

WEZ[n+1) = WEZ[nJ +IZ(dWEZ/dXi) aXi (6.33)

Equations (6.30) through (6.33) can be combined into a

single equation.

fln+1 = D[n] r[n+1] + E[n] (6.34)

Where e[n+1] = (sinX[n+1], ASR[n+1], aJ[n+1), aSV[n+1J,

WEX[n+1, WEY[n+1], WEZ[n+l]) (6.35)

D[n] is a matrix of derivatives with respect to state

E[n] is a vector containing those terms in (6.30)

through (6.33) not explicitly dependent on Xfn+1]

A quadratic cost function was chosen because of a desire to

penalize large misorientations of the inertial platform over

small ones. Perhaps it would be more appropriate to minimize the

maximum torque rather than minimize the RMS torque, but the

latter approach is compatible with a quadratic cost function and

is certainly more tractable. The one-step performance index is

given by:

T -T a
J[n] = e'[n+1] Q 'e[n+1] + U[n] R U[n) (6.36)

Where J~n] is a measure of system performance

en+1J is given by (6.35)

Q is a positive definite symmetric matrix reflecting

the cost associated with any state

W[n] is the control vector
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R is a positive definite symmetric matrix reflecting

the cost associated with any control

The cost function in equation (6.36) can be rewritten using

matrix trace. Equations (6.34) and (6.22) can then be used to

express the cost in terms of U.

TT
Jin] = [n+1]TQ E[n+1] + U[n]TR Un] (6.36)

T T= Tr{Q E[n+1] e[n+1] + R Un] U[n]

*-"* -0 -a

= Tr{Q (D[n](A X[n] + B U[n] + C ) +
*-. A .-.a* T T

(D[n](A X[n] + B U[n] + C) + E[nJ) + R TI[nfUn]TI

(6.37)

Applying the Matrix Minimum Princi ple[1,2] and taking the

gradient of equation (6.37) with respect to 'U yields:

dJ/dU = 2(B D[n]TQ D[n] B + R) U
T LT

+ 2B D[n]TQ (D[n](A XnJ + C) + E[n]) (6.38)

Setting equation (6.38) to 0 and solving for IUopt while

keeping in mind that things are really dependent on n gives:

*T T * -1 *TT *- -
Uopt -(B D Q D B + R) B D Q (D(A X + C ) + E) (6.39)

This can be expressed as:

Uopt = K1 X + K2  (6.40)

*T T * -1 *T T *Where K z -(B D Q D B + H) B D Q D A (6.41)

K2 = -(B*DTQ D B + R)'BTDTQ (DC + E) (6.42)
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Equations (6.40) through (6.42) immediately suggest an

implementation like that depicted in Figure 6.2. Here the state

vector is multiplied by gain matrix K, to produce an intermediate

control signal. The intermediate control is corrected by K2

before driving the actuators. K, and K2 are functions of the

state, so there are two feedback loops operating here.

Alternatively equation (6.40) can be written as:

Uopt = K3(K4 - X) .(6.43)

*T T * -1 *T T *
Where K3 (=B D Q D B + R) B D Q D A (6.44)

-.A - T T -1-b
K4 = -A IDT(D DT ) E + C)(6.45)

These equations, although representing the same system as

(6.40) through (6.42) suggest a different implementation shown in

Figure 6.3. The controller should behave the same way regardless

of which implementation is chosen. It is obvious that a great

deal of effort is required to compute KjK2 or K3,K4 since they

are complicated functions of complicated functions. Their

calculation poses an immense computational burden. Some way

should be found to reduce the amount of work necessary.

One method is to update K3,K2 or K3,K4 less often. The

relatively simple calculation of the control vector could be

performed very frequently whereas it might be possible to update

the gain matrix at a lower rate without sacrificing either

performanceor stability. Such an analysis has yet to be

undertaken.

Another strategy for coping with the complexity of



computation would be to simplify the torque equations by ignoring

high order effects. This would hopefully not degrade

performance, but might enable more frequent calculation of the

gain matrix -and offset vector. Carried to an extreme one could

ignore everything in the Y's except for torque, and approximate L

and M by constant matrices. Simplifications will get propagated
a * -. *

through A, B, A , B , C etc. leading to more tractable formulas

for the K's. In practice, some combination of both strategies

may be most feasible.



-55-

ZC

Figure 6.1

Gimbal Lock Angle



-56-

State Vector Gain Matrix Oft

Figure 6.2

Proposed Controller Configuration 1

Controller

fset Control

Plant



State Vector Offse ain Matrix Control

-9

Nb

Figure 6.3

Proposed Controller Configuration 2

Controller
I .-

Plant

-57-



VII. Results

Embedded in the R and Q matrices of the previous section

are four parameters called TORQWT, LOCKWT, TILTWT and RATEWT.

They are the weights assigned to torque motor control signals,

gimbal lock proximity, inertial platform tilt and inertial

platform rate respectively in the cost function. These weights

were not assigned in any specific fashion. Rather, a trial and

error approach was taken to get results that look good. The

simulation was run with various values for the weights and

performance was judged on the basis of low control voltage,

gimbal lock avoidance, small inertial platform tilts and rates,

and stability of the controller. The four parameters were

tweaked until the controller exhibited the desired behavior. It

may be possible to further improve performance by further

refining the weights but it is not clear that any significant

amelioration will result. In any event, the cost function

weights were not chosen in any formal way.

Before examining the performance of the optimal gimbal

controller let us see what it replaces. The currently

implemented controller uses a zone control scheme. In this

scheme the B-Q plane is divided into 16 regions (Figure 7.1).

Torque motor control signals are generated based on the current

zone. The idea is to steer clear of gimbal lock by staying

within the numbered zones and avoiding those that include the

gimbal lock condition. This is done by driving the elevation and

inner gimbals from two of the gyros, and using the third gyro to
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control either the middle or outer gimbal depending on the zone.

The remaining redundant gimbal is used to assist in some sensible

fashion. Essentially it is a three-gimbal controller modified

for an extra gimbal. Additionally, two of the physical gyros are

replaced in the controller by "computed" gyros. The computed

gyros, aR and &V, lie in the same plane as &SR and aSV. However,

they point in the same direction as X, and Z1 respectively.

Equation (3.4) can be used to show that:

- R = &SR cost - aSV sin! (7.1)

aV = aSR sin! + iSV cost (7.2)

The zone control works fairly well until a zone switch is

necessary. When a zone switch occurs, large transient effects

arise. Large torque levels may be required to keep the platform

inertial. Inertial platform misorientations are greatest

immediately following zone changes. The decision rules are:

Zones 1-4 &R drives the middle gimbal

(lactual - Icommanded) drives the outer gimbal

Zones 5-8 cR drives the middle gimbal

sinB drives the outer gimbal

Zones 9-12 aR drives the outer gimbal

sinG drives the middle gimbal

All zones &J drives the elevation gimbal

aV drives the inner gimbal
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The next several pages compare the optimal controller with

the zone control over a variety of orientations and case rates.

In all examples the optimal controller exhibits much smaller gyro

errors, plus lower RMS and peak torques while avoiding gimbal

lock at least as well as the zone control. It wouldn't be

optimal otherwise! Much of the apparent advantage of the optimal

controller stems from the elimination of zone switch transients.

Examples provided courtesy of H. M. Jones. For all examples the

time between control updates is 5 milliseconds for the optimal

controller, whereas the zone control is simulated as a continous

system using a fourth order Runge-Kutta numerical integration

technique with a time interval of 1 millisecond.
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Table 7.1

Optimal vs. Zone Control Run 1

Case Rates (deg/sec)

Roll -30.0

Pitch 0.0

Yaw -90.0

Peak Torque (ft-lbs)

B

RMSI.rque (ft-lbs)

B

I

Initial Angles (deg)

0 0.0

o 0.0

B 60.0

1 0.0

Opti-mal

0.328

0.203

0.172

0.223

0.111

0.112

0.100

0.090

Peak Qyr. Errora (milliradians)

aSR 0.03

aJ 0.26

aSV 0.06

Zone

0.601

0.460

0.160

0.121

0.218

0.135

0.100

0.090

0.51

0.42

0.38
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Table 7.2

Optimal vs. Zone Control Run 2

Casae Rates (deg/sec)

Roll 0.0

Pitch 0.0

Yaw -90.0

Peak TorqWe (ft-lbs)

B

aS TorquQ (ft-lbs)

B

Injtial Angles (deg)

0 0.0

o 45.0

B 90.0

1 0.0

Op~tima~l

0.0

0.258

0.0

0.196

0.0

0.119

0.0

0.090

Peak GyrQ Exrorz (milliradians)

ASR 0.0

aJ 0.098

&SV 0.0

Zone

0.0

0.763

0.0

0.117

0.0

0.413

0.0

0.090

0.0

0.436

0.0
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Table 7.3

Optimal vs. Zone Control Run 3

Case Ratls (deg/sec)

Roll 0.0

Pitch 0.0

Yaw 90.0

teak TorQue (ft-lbs)

B

I .

EMS TorQmue (ft-lbs)

B -

I

Initial Angles (deg)

0 135.0

Q 4.i

B 41.2

1 0.0

Optimal

0.395

0.133

0.322

0.131

0.150

0.110

0.101

0.090

Peak Gyrn Er.nars (milliradians)

aS R 0.133

aJ 0.049

aSV 0.117

1.13

0.673

0.209

0.115

0.532

0.194

0.101

0.090

0.460

0.260

0.518
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Table 7.4

Optimal vs. Zone Control Run 4

Caa& Rates (deg/sec)

Roll -90.0

Pitch 0.0

Yaw -90.0

Pe.ak TQrQue (ft-lbs)

0

B

B

I -

Initial Angles (deg)

0 0.0

Q 0.0

B 0.0

1 0.0

Optimal

0.75

0.36

0.22

0.26.

0.169

0.075

0.082

0.015

Eeak G.Yro Errrs (milliradians)

&SR 0.05

,&J 0.18

aSV 0.05

Zon e

1 .63

1 .23

0.138

0.157

0.238

0.192

0.100

0.085

1.06

0.84

0.08
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Table 7.5

Optimal vs. Zone Control Run 5

Case Rates (deg/sec)

Roll 0.0

Pitch 0.0

Yaw 90.0

fPeak Tnrqauei (ft-lbs)

B

I '

RMSi TIQcu& (ft-lbs)

B

I

InDiaL1

0 180.0

0-105.0

B 43.5

1 0.0

Optimal

0.939

1 .24

0.234

0.415

0.276

0.174

0.100

0.093

Angles (deg)

Zone

1 .64

1.23

0.184

0.177

0.503

0.173

0.099

0.091

Peak GYr Errnrs (milliradians)

&SR 0.029

aJ 0.305

&SV 0.086

0.411

0.902

1.440
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Table 7.6

Optimal vs. Zone Control Run 6

Case Rates (deg/sec)

Roll 0.0

Pitch 0.0

Yaw 90.0

Peak Torcue (ft-lbs)

B

BMS.Torque(ft-lbs)

0

B

I

InitLa4 Angles (deg)

0 135.0

9 0.0

B -45.0

1 0.0

Optimal

0.637

0.230

0.301

0.183

0.252

0.110

0.099

0.089

Peak Gyro Errors (milliradians)

&SR 0.029

Aj 0.139

&SV 0.117

Zone

1 .29

1.23

0.138

0.111

0.390

0.300

0.087

0.081

0.887

0.236

0.232
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Table 7.7

Optimal vs. Zone Control Run 7

Case Rates (deg/sec)

Roll 0.0

Pitch 0.0

Yaw 90.0

Peak TorgQu-e (ft-lbs)

B

En IQLT.QVu (ft-lbs)

0

B

I

Initial Angles (deg)

0 180.0

o 0.0

B -45.0

1 0.0

Optimal

0.637

0.230

0.301

0.183

0.252

0.110

0.099

0.089

Pakn Gyrxo Errars (milliradians)

aS H 0.029

aJ 0.139

&SV 0.117

0

Zone

1.10

0.401

0.158

0.149

0.430

0.123

0.085

0.081

0.278

0.846

0.312
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VIII. Conclusions

Modern optimal control provides a useful framework in which

to analyze and improve the performance of feedback systems. Many

untapped applications exist for this powerful theory.

Unfortunately, it is not always used to advantage. This thesis

has attempted to relieve this situation for one particular

system. Simulation studies indicate great success. The optimal

controller for a four-gimbal system potentially far outperforms

an earlier nonoptimal controller.

This improvement in performance does not come free. A

significant computational burden is imposed by optimization.

Some techniques for reducing the load have been suggested. Work

remains to be done actually implementing the proposed controller.

Final judgement on its feasibility awaits.

There is no reason to be content even with an optimal

controller. Under different optimality criteria it is

conceivable that a controller could be designed with more

desirable operating characteristics. A bang-bang controller is

one worth considering. By applying full torque in short pulses

it may be possible to further reduce platform tilts.

Leaving such speculation aside, the fact remains that with

a suitable model developed, optimal control can be applied to

components of inertial guidance equipment. One can only hope

that deployment precludes actual use.
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Appendix A. Coordinate Transformations and Notation

The notation used here is based on work by Britting[3).

This notation is helpful for representing orientations, rotations

and coordinate transformations. The reference frame of a vector

is indicated by a superscript. 76 is a vector coordinatized in

the j reference frame. Any vector in the j frame can be

expressed in the k frame by premultiplying the original vector by

k
a coordinate transformation C . The subscript indicates the

original reference frame and the superscript denotes the new

reference frame. Thus, for the example given:

r = C'5& (A.1)

Note that the original superscript has been canceled by the

k
subscript of Cj. For Cartesian coordinate systems, in which the

basis vectors are orthonormal, the entries of a coordinate

transformation matrix are direction cosines. Direction Cosine

Matrix (DCM) is a term often used to describe such a matrix. The

direction cosine from the m-axis of reference frame j to the

n-axis of frame k is the mnth entry of C4. DCM's exhibit many

interesting properties. Some follow:

1 k 1 kl I
CkCJk= C1  but C kCk 4 C1  (A.2)

C = I (A.3)

k j -1C1 = (Ck) (A.4)
k jT

C1 = (Ck) (A.5)
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Rotations satisfy the same superscript convention as other

vectors. In addition rotation vectors have two subscripts. The

sense of rotation is from the left subscript to the right

subscript. To be precise, coordinate systems rotate, not
--1

subscripts. Wkj would be the rotation rate of system j with

respect to system k as seen from the I reference frame.

Rotations add vectorially. When they do, subscripts cancel.

Wki =Wkj + W (A.6)

It follows that:

al -l A.7
Wkj Wjk (A.7)

The superscripts must be the same for these relations to

hold. Differention of vectors is no longer simple in rotating

reference frames. For any vector r we have the following

equivalent expressions:

i ihW~Sir = C-f - C.(W. X r)

= Cj - C i W X C jr

= Ct3 - W. x ct33 31 3

i..j -.i -.i= Cir + Wij X r (A.8)
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Appendix B. Summary of Computer Routines Used

Main Program

1. Calls INITLZ routine

2. Calls DERIVE routine

3. Calls OUTPUT routine

4. Calls UPDATE routine

5. Loops to 2.

INITLZ (X, DXDT, W, OLDRATE, TOTALT, DELTAT)

1. Clears out storage areas

2. Initializes state, case rates and other parameters

OUTPUT (X, DXDT, U, W, I, TIME)

1. Prints output 1 out of J invocations else returns

2. Prints state, derivative, control and case rate vectors

UPDATE (X, DXDT, U, W, OLDRATE, DELTAT)

1. Updates state via 4th order Runge-Kutta Integration

2. Calls DERIVE during computation

DERIVE (X, DXDT, U, W, OLDRATE)

1. Computes friction as described in section V.

2. Derives torque-acceleration equations as per section VI.

3. Solves for angular accelerations using SIMQ

4. Returns state derivative in DXDT

SIMQ (A, B, N, KS)

1. Solves -system of equations of form AX=B

2. Returns solution in B
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MINV (A, N, D, L, M)

1. Inverts a matrix

2. Returns result in A

MATMPY (A, B, C)

1. Computes C=AB

CONTRL (X, U, W, OLDRATE, DELTAT)

1. Computes linear discrete-time equations as in section VII

2. Calls MINV and MATMPY to perform matrix manipulations

3. Returns control in U
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Appendix C. Computer Simulation of the Four-Gimbal System
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00010C SIMUL4G -- 4 GIMBAL SYSTEM SIMULATION
Onfl20C MICHAEL A, GENNERT
v0030 IMPLICIT DOUBLE PRECISION(A-HO-Z)
00940 PARAMETER IXX=iiIDR=7-
00050 DIMENSION X(ii), bXDT(li), U(4), W(3), OLDRATE (4)
00060C
00170C DELTAT = TIME INCREMENT SIZE
00080C TOTALT = TOTAL SIMULATION TIME
00090C X = STATE VECTOR
00100C DXDT = TIME RATE OF CHANGE OF STATE VECTOR
00110C U =zCONTROL VECTOR
00126C U = CASE RATE VECTOR
001300 OLDRATE= VECTOR CONTAINING PREVIOUS VALUES OF GIMBAL ANGLE RATES
00140C USED TO DETERMINE FRICTION EFFECTS IN DERIVE ROUTINE
00150C
00160C XCI) =PSI (E)
00170C X(2) = BETA (I)
00180C X(3) = THETA (t)
001900C X(4) = PHI (0)
002000 X(S) = PSIDOT (dE/dt)
00210C X(6) = BETADOT (dI/dt)
00220C X(7) =THETADOT (dM/dt)
00230C X(8) = PHIDOT (dO/dt)
00240C X(9) = DELTASR
00250C X(10) = DELTAJ
00260C X(ii) = DELTASV
00270C
00280C 0 U(i) = CONTROL ON E GIMBAL
00290C U(2) = CONTROL ON I GIMGAL
00300C U(3) = CONTROL ON N GIMBAL
00310C U(4) = CONTROL ON 0 GIMBAL
08320C .

003500 W(3) Z AXIS CASE RATE (WCZ)
50360C
00370C
00380C INITIALIZE
00390C
00400 CALL INITLZ (Q'DXDT , OLDRATE, TOTALT, DELTAT)
00410 N = TOTALT/DELIAT
00420 DOD 100 I = 1, N+2
004300
054400 DETERMINE CONTROL SIGNAL TO BE APPLIED
004500 -
00460 CALL CONTRL (X, U, W, OLDRATE, DELTAT)
00470C
014800 COMPUTE STATE DERIVATIVE VECTOR PRIOR TO OUTPUT
00490C
00500 CALL DERIVE (X, DXDT, U, U, OLDRATE)
00510C
00520C PRINT STATE AND CONTROL INFORMATION
005300
08540 II = I-i
00558 CALL OUTPUT (X, DXDT, U, W, II, DBLE(FLOAT(II))$DELTAT)
00560C
00570C UPDATE STATE EQUATIONS AND INTEGRATE
005800
00590 CALL UPDATE (X, DXDT, U, 9, OLDRATE, DELTAT)
00603 100 CONTINUE
00610 STOP
00620 END
00630C
00640C INITIALIZE SUBROUTINE
006500
00660 SUBROUTINE INITLZ (X DXDT U, OLDRATE, TOTALT, DELTAT)
00670 IMPLICIT DOUBLE PRECISION(A-HO-Z)
00686 PARAMETER IXX=i1



00690 DIMENSION X () DXDT (1) w (1) OLDRATE ()
00700 XX = 3.14i5926ShS8?79323846DO/id6,D0
00710C
0672CC CLEAR STATE VECTOR
00730C
00740 00 1I = 1, IXX
00750 X(I) : =0D0
00760 160 CONTINUE
0077C
00780C E, I, N, 0 FOLLOW IN DEGREES
0079OC
00800 X (j) = 0.DIXK
00810 X(2)=60.DOIXK
00820 X(3)=,DOXK
00830 X (4) = 0,DOtXK
00840C
06850c dE/dt, dI/dt, dM/dt, dO/dt FOLLOW IN DEGREES/SECOND
00860C
00871 X (5) = 0.DC*XK
00880 X(6)=30,DOtXK
00890 X(7)=90,DCtXK
00900 X(8) = 0.D6tXK
0910C
0092C SET OLDRATE TO ANGLEDOT FOR FRICTION COMPUTATION
0093C
00940 DO 110 1 = 1, 4
00950 OLDRATE (I) = X (I + 4)
00960 110 CONTINUE
00970C
00980C CALCULATE CASE RATES IN RADIANS/SECOND
00990C
11001 SB = DS]N (X (2))
01010 CB = DCOS (X (2))
01020 ST = DSIN (X (3))
01030 CT = DCOS (X (3))
01040 SF = DSIN (X (4))
01050e CF = BOOS (X (4))
0060 WIY= -X (5)
61070 WMX = -SB$WIY
01080 WMY = CBtWIY
01090 WMZ = -X (6)
01100 WOX = WMX-X (7)
0li WOY = CTtWMY-STtWMZ
01120 WOZ =STtWMY+CT*WMZ
01130 1 (1) =CF*WOX+SF*WOZ
01140 W (2) = WOY-X (8)
01150 w (3) : -SF$WOX+CF*WOZ
01160C
017C SET UP TIME PARAMETERS IN SECONDS
OlIIoc
1190 TOTALT = 1.DO
01200 DELTAT=i 1.DO/3000.DO
01210 RETURN
01220 END
01230C
01240C OUTPUT SUBROUTINE
012soc
01260 SUBROUTINE OUTPUT (X DXDT U, W I, TIME)
01270 IMPLICIT DOUBLE PRECISION(A-HO-Z)
01280 DIMENSION X (1), DXDT (1), U (1), W(i)
61291 J=30
01300 IPRINT : 6
01311 XK = 3.14159265358979323846D01B0 .DO
3132C
01330C PRINT EVERY Jth TIME, RETURN THE OTHER J-i OCCURANCES
01340c
01350 IF (I.NEA(I/J)*J) RETISN
61360 WRIIE (IPRINT,900) TIME



or

01370 900 FORMAT (//' TIME =*, F8.3, ' SECONDS')
01380 WRITE (IPRINT,901)
01390 901 FORMAT (18X 'DEG, IlX, 'DEG/SEC', 7X 'DEC/SEC/SEC, 7X 'CONTROL')
01400 WRITE (IPRIAT 902) E', X (i)/XK, X (5/XK, DXDT (5)/XK, b ()
01410 902 FORMAT (6X. i~i 4(X'F8.3))
01420 WRITE (PR/NT,962)'IX(2)IXK, X (6)/XK, DXDT (6)/XK, U (2)
01430 WRITE (IPRINT,902) N', X (3)/X , X (7)/XX, DXDT (7)/XK, U (3)
01440 WRITE (IPRINT,902) 1O', X (4)/XK, X (8)/XK, DXDT (8)/XK, U (4)
01450 WRITE (IPRINT,903)
01460 903 FORM AT (iSX * MRAD'k I9X?MRAD/SEC', 25X, "DEC/SEC')
01470 WRITE (IPRINT,904) SRI, X (9)*1E3, DXDT (9)$iE3 'WCXO, W (t)/XK
01480 904 FORMAT (6X,'DELTA1'A2, F0 X3 6K FIO 3, ib E K (2)XF3)
01490 WRITE (IPRINT,904)IJ' K (iO4iEt DXDT (Ii) v 'LY' W (2)/fl
01590 WRITE (IPRINT,904) 'SV X (i1)tiE3, DXDT (11)tiE3, 'WCZ, W (3)/XK
01510 RETURN
01520 END
01530C
01540C UPDATE SUBROUTINE
CISSOC CALLS DERIVE WHICH COMPUTES DERIVATIVE THEN
01560C EMPLOYS RUNGE-KUTTA 4th ORDER INTEGRATiON
015700
01580 SUBROUTINE UPDATE (X, DXDT U, W OLDRATE, DELTAT)
01590 IMPLICIT DOUBLE PRECISION(h-H,0-i)
01600 PARAMETER iXX=ii
01610 DIMENSION X () DXDT (i) U (1), W (1), OLDRATE (1)
01620 DIMENSION Q (IXK, XSTOR IIXX)
01630C
01640C STORE STATE VECTOR IN XSTOR*
0165OC
01660 DO 100 I 1 IXX
01670 XSTOR (I) (I)
01680 108 CONTINUE

S E 1COMPUTE DERIVATIVE AND MAKE ist APPROXIMATION
01710C
01720 CALL DERIVE (XSTOR, DXDT, U, W, OLDRATE
01730 DO 110 1 = 1, IXX
01740 Q (I) = DXDT (I)
01750 XSTOR (1) = X (I) + .5DO t DELTATr$ DXDT (I)
0060 110 CONTINUE
01770C
01780C 2nd APPROXIMATION
01790C
61801 CALL DERIVE (XSTOR, DXDT, U, U, OLDRATE)
01810 D 12 I = 1, IXX
01820 Q(I) = Q (I) + 2,DO * DXDT ()
01830 XSTOR (1) = X (I) + aSDO I DELTAT * DXDT (I)
01840 120 CONTINUE
018500
01860C 3rd APPROXIMATION
018700
01880 CALL DERIVE (XSTOR, DXDT, U, W, OLDRATE)
01890 D P0301=1 IXX
01900 Q (I) Q (1I+2.D0 * DXDT (1)
01910 XSTOR (I) = X ( ) + DELTAT t DXDT (D
01920 130 CONTINUE
019300
01940C FINAL APPROXIMATION
01950C
01960 CALL DERIVE (XSTOR, DXDT, U, W, OLDRATE)
019700
019800 STORE OLD VALUES OF ANGLE RATES FOR FRICTION COMPUTATION
01990C
02008 DO0140 1 = 1 4
02010 OLDRATE (I)= X (1+4)
02020 140 CONTINUE
62030 DO0150 I = i IXX
62040 DXDT (1) = (4 (1) + DXDT (I)) / 6.DO
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02050
02060 151
02070
82080
02090C
02100C
02110C
021200
82130
02140
02150
02160
02170
02180
02i90
02200
02210
02220
02230
02240
02250
02260
022700
02280C
02290C
023000
02310C
02320C
02330C
02340C
02350C
023600
02370C
023800
02390C
024000
024100
02420C
02430C
024400
024500
02460C
02470C
02480C
02490C
02500C
02510C
02520C
02530C
02540C
025500
02560C
02570C
02580
02590
02600
02610
12628
02630
02640
02650
82661
02670
02680
02690
92700
02710
om

I Yi
i Y2
I Y3
i Y4

STUCK

FSTATI

FCOULI

KTR
KV
JE
IX
1ITZ
JMXZ
JMY
JOXY
Joz

X (1) = X (I) + DELTAT t DXDT (1)
I CONTINUE
RETURN
END

DERIVATIVE SUBROUTINE
COMPUTES DXDT GIVEN X, U AND W

SUBROUTINE DERIVE (X, DXOT U W, OLDRATE)
IMPLICIT DOUBLE PRECISIONcA-Z
LOGICAL STUCK
INTEGER III FLAG KS
DIMENSION X 1), bXDT (I), U (), W (1) OLDRATE (1)
DIMENSION STUCK (4) TORQUE (4), KTR (41, KV (4), FSTATC (4)
DIMENSION FCOULM (4
DIMENSION L (4,4) Y (4)
DATA JE, JIX, JIY, JMXZ Jmy, JOXY, JOz

& /L,2D-21 .7D-2 i .D-" 22F' 3,OD-2, 3,OD-2, 3.9D-g
DATA FSTATC /,O9D0,ADO,.11D6,,165SDO
DATA FCCULM /.09D0,.iD0,ID0O 165DO /
DATA KTR /i.9D-2,I,9D-2 4,'D- S,13D-2/
DATA KV /6,iD-i biD-i D-i{ T sDo,/
THIS RO:JTINE SOLVES Th FOLLOING MATRIX EQUATON, Yi IS A FUI
ONLY OF GIMBAL ANGLES, GIMBAL RATES, AND TIEY, Y2 IS A FUINCT
ONLY OF GIMBAL ANGLES, GIMBAL RATES, AND TMIZ. Y3 IS A FUNCT.
ONLY OF GIMBAL ANGLES, GIMBAL RATES, AND TOMX. Y4 IS A FUNCT
ONLY OF GIMBAL ANGLES, GIMBAL RATES, AND TCOY,

i Lii Li2 Li3 L14 i i PSIDOUBLEDOT i
1 L21 L22 L23 L24 i i BETADOUBLEDOT i

j i L31 L32 L33 L34 i I THETADOUBLEDOT i
i 41 42 L43 L44 i i PHIDOUBLEDOT i

ONE FLAG FOR EACH GIMBAL. VALUE IS TRUE IF THE SPECIFIED
GIMBAL IS STUCK TO THE NEXT OUTER GIMBAL DUE TO STATIC
FRICTION, VALUE IS FALSE IF THE GIr3ALS ARE NOT STUCK,

C = STATIC FRICTION TORQUELIMIT. SPECIFIES THE STATIC FRICTION
LEVELS THAT MUST BE OVERCOME TO FREE A STUCK GIMPAL,

N = COULOMB FRICTION TORQUE LIMIT, SPECIFIES THE FRICTION
MAGNITUDE WHEN THE GIMBALS ARE UNSIUCK,

= CONVERSION CONSTANTS FROM TORQUE MOTOR VOLTAGES TO TORQUES
= PROPORTIONALITY CONSTANTS FROM ANGLEDOTS TO BACK EMFS
= INERTIA ABOUT ANY AXIS OF THE ELEVATION GIMBAL
= INERTIA ABOUT THE X AXIS OF THE INNER GIMPAL
= INERTIA ABOUT THE Y AND Z AXES OF THE INNER GIMBAL
= INERTIA ABOUT THE X AND Z AXES OF THE MIDDLE GIMBAL
= INERTIA ABOUT THE Y AXIS OF THE MIDDLE GIMBAL
= INERTIA ABOUT IfIT X AND Y AXES OF THE OUTER GIMBAL
= INERTIA ABOUT THE Z AXIS OF THE OUTER GIMBAL

ASSOCIATE VARIABLES WITH ARRAY ELEMENTS
COMPUTE REQUIRED TRIGONOMETRIC FUNCTIONS

PSI = X (1)
BETA = X (2)
THETA = X (3)
PHI = X (4)
SP DSIN (PSI)
CP DCOS (PSI)
S9 DSIN (BETA)
CB DCOS (BETA)
ST DSIN (THETA)
CT = DCOS (THETA)
SF = DSIN (PHI)
CF DCOS (PHI)
SB2 = SB t SB
CB2 = CB t CB
ST2 m ST $ ST

NOTION
ION
ION
ION

2/
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02730 CT2 = CT * CT
02740C
02750C DEFINE Lii THROUGH L44
02760C FOR THE SIGNIFICANCE OF THESE QUANTIES REFER TO THE
02770C GIMBAL TORQUE EQUATION DERIVATIONS
02780C
02790 1 (1,1) = JE
02800 1 (1,2) = 0.DO
02810 L (13)= -SB t JE
02820 L(14) = CBt CT * JE
02830 1 (2,1) = 0.DO
02840 1 (2,2) = JIYZ + JE
02850 L (2,3) = 0,D
02860 1 (2,4) = -ST * (JIYZ + JE)
02870 L (3,1) = -SB * JE
02880 1 (3,2) = O.DO
02890 (3,3) =(JE +SB2 *JIYZ + CB2 tJIX + JMXZ)
02900 1 (3;4)= SB * CB * CT t (JIX - JIYZ)
02910 L(4,1)=CB*s CT * SE
02920 L (4,2) = -ST * (JIYZ + JE)
02930 L (4,3) = SB t CB * CT * (SIX - JIYZ)
02940 L (4,4) = JOXY + CT2 * JMY + ST2 t (JMXZ + JIYZ) + B2 * CT2 * JIX
02950 & +CB2 * CT2 * JIYZ + JE
02960C
02970C ROUTINE TO CONVERT CONTROL SIGNALS TO TORQUES, INCLUDING FRICTION
02980C
02990 DO120OI = 1, 4
03000 TORQUE (I) = KTR (I) * (U (I) - KV (I) * X (1+4))
030100
03020C IF THE MAGNITUDE OF THE APPLIED TORQUE DOES NOT EXCEED THE STATIC
03030C FRICTION LIMIT AND THE GIMBAL RATE IS PASSING THROUGH ZERO (le.
03040C ANGLEDOT CHANGES SIGN) THEN THE GIMBALS WILL BE STUCK TOGETHER
030500
03060 IF (ABS (TORQUE (I)).LEFSTATC (I).AND,((X (I+40 LDRATE (I)).
03070 & LT,0.D0.OR.X(I+4).EQ,0,DO)) GOTO j00
030800
03090C GIMBALS NOT STUCK TOGETHER -- CLEAR STUCK FLAG, SUBTRACT FRICTION
03100C
03110 STUCK (I) .FALSE.
03120 TORQUE (I) TORQUE (I)-SIGN (FCOLLM (I), X (1+4))
03130 GOTO 120
03140C
03150C GIMBALS STUCK TOGETHER -- SET STUCK FLAG SET ANGLEDOT TO ZERO
03160C SET ith ROW AND Ith COLUMN OF LI TO ZER6, SET L (1,1) 1.
03170C -
03180 100 STUCK (I)= .TRUES
03190 X (1+4) =0.D0
03200 DO 110 1 =1 4
03216 L (III) = 0.
03220 L (IiI) 0D0
03230 110 CONTIhUE
03240C
93250C ET L (II) = 1. SO AS NOT TO HAVE A SINGULAR MATRIX
03260C
03275 L(I I)=1.DO
03280 120 CONtINUE
03290C
03300C DEFINE GIMBAL RATES
03310C
03320 PSIDOT = X (5)
03330 PETADOT = X (6)
13340 THETADOT = X (7)
03350 PHIDOT = X (8)
03360 UCX = S (1)
03371 WCY = W (2)
03380 II = W (3)
033?0 WOX=CFSt WCX - SFS* WCZ
03410 WOY = WCY + PHIDOT
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63410 WOZ= SFt WCX + CF * WCZ
03420 WMX =WOX + THETADOT
03438 WMY= CT t WOY + ST tWOZ
03440 WMZ =-ST * WOY + CT * WOZ
03450 WIX =CB *WMX + SB *WMY
03460 Wy =-SB t WMX + CB * WHY
03470 WIZ = WIZ + BETADOT
63480 WEX= CP* WIX -SPt WIZ
03490 WEY = WIY + PSIDOT
03500 WEZ = SP s WIX + CP t WIz
63510C
03520C DEFINE TORQUES
03S36C
03540 TIEY : TORQUE (1)
03550 TMIZ : TORQUE (2)
03560 TOMX : TORQUE (3)
03570 TCOY TORQUE (4)
13580C
0359CC TORQUE EQUATIONS FOR THE FOUR GIMBALS
0360CC
0361C Y (1) = TIEY + JE * (-SB * PHIDOT * WOZ - CB * ST * PHIDOT t WOX
03620 & - CB * THETADOT * WMZ + BETADOT $ WIX)
03630 Y (2) = THIZ + (JIYZ + JE) * (THETADOT $ WHY - CT * PHIDOT $ WOX)
03640 & + WIX $ WIYt (JIX-JIYZ) - PSIDOT * JE * WIX
03650 Y (3) = TOMX + (JMXZ + CB2 * JIX + SB2 S JIYZ + JE) * PHIDOT * WOZ
03660 & - SB $ CB * (JIX-JIYZ ) * (ST $ PHIDOT S WOX + THETADOT
03670 & t WMZ - BETADOT * WMX) + WHY S WMZ $ (JMY - JXL) - (C2
03680 & * JIX + SB2 $ JIYZ + JE) * BETADOT t WMY + CB $ JE S PSIDOT
03690 & t IZ
03700 Y (4) TCOY - WOX $ WOZ t (JOXY -JOZ) - (CT2 S (JMY SB2 S JIX)
03710 & + ST2 S (JMXZ + JIYZ) + JE) * THETADOT t WOZ + ST * CT
03720 & $ (JMY - JMXZ + SB2 t (JIX-JIYZ)) * (THETADOT * WOY
03730 & - PHIDOT t WOX) + SB LICB * CT t (JIX - JlYZ) S (PHIDOT
03740 & * WOZ - BETADOT $ WlY) + (CT t (SB * JIX + CB2 $ JIYZ + JE)
03750 & $ BETADOT + ST * WMY * (JMY- JMXZ)) * WMX + SB t CT * JE
03760 & * PSIDOT 8 WIZ + ST $ (JE * PSIDOT + WEY * (IYZ - JIX))
03770 & t WIX
13780C
03790C CALL SIMQ TO SOLVE FOR ACCELERATIONS
03800C
03810 CALL SIMQ (L, Y, 4, KS)
03820C
03830C SET TO ZERO THE ACCELERATION OF ANY GIMBAL THAT IS STUCK
03840C
03850 -DO 130 II= 1 4
03860 IF (STUCK (IIi Y (II) = 0DO
63870 130 CONTINUE
03880C
*3890C SET DXDT TO THE COMPUTED DERIVATIVE
03900C
03910 DXDT (j) = PSIDOT
63920 DXDT (2) = BETADOT
03930 DXDT (3) = THETADOT
03940 DXDT (4) = PHIDOT
03956 DXDT (5) = (j)
03960 DXDT (6) = Y (2).
03970 DXDT (7) = Y (3)
03980 DXDT (8) = Y (4)
03990 DXDT (9) = WEX
04000 DXDT (WQ) = WEY
04010 DXDT (ii) = WEZ
64020 RETURN
04036 END
04840C
040S0C SUBROUTINE TO SOLVE SYSTEMS OF SIHULTANEOUS LINEAR EQUATIONS
04060C
04070 SUBROUTINE SIMQ (A B N KS)
14680 IMPLICIT DOUBLE PRECI&IOh(A-H,O-Z)
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DIMENSION A (1), B (1)

SOLVE SET OF EQUATIONS AX:B
A = MATRIX OF COEFFICIENTS STORED COLU"NWISE. THESE ARE DESTROYED

IN THE COMPUTATION. THE SIZE OF A IS N BY No
B = VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE REPLACED

BY FINAL SOLUTION VALUES, VECTOR X,
N = NUMBER OF EQUATIONS AND QARIABLES.
KS= OUTPUT DIGIT. 0 FOR NORMAL SOLUTION, I FOR A SINGULAR SYSTEM,

04090
64100C
04110 C
0412CC
0413CC
04140C
04150C
0416CC
04176C
04180C
04190
04200
04210
042211
04230
04240
04250
04260
04270
04280
04290
04300
04318
64320
04330
04340
04350
04360
04370
04380
04390
04400
44

04430
04440
04450
04460
04470
04480
84490
04500
04510
04520
04530
04540
04550
04560
14570
04580
04596
04608
14610
04620
84630
04640
04650.
04660
0467
64686
64691
04700C
04710C
04720C
04730
04740
04750
04760C

0, 30, 31

TOL 0.D06
KS = 5
jJ = -N
DO 65 3 = =, N
JY 3 + 1
33 = JJ + N +.i
BIGA = 0.DO
IT = JJ - J
DO 30 3 = J, N
IJ = IT + I
IF (ABS (BICA) - ABS (A (IJ))) 21

20 BIGA = A (IJ)
IMAX = I

30 CONTINUE
IF (ABS (BIGA) - TOL) 35, 35, 40

35 KS = j
RETURN

40 11 = J + N $ (J - 2)
IT = IMAX - J
DO 51 K = J, N
Il = I+ N
12 It + IT

A Ii- A 12)
A (12) = SAVE

50 A (Ii) = A (Ii) / BIGA
SAVE= B (IMAX)
B (IMAX) = B (3)
B (3) = SAVE / BIGA
IF (J - N) 55, 70, 55

55 IQS :=N $ (3 - 1)
DO 65 IX = JY N
IXJ = IQS + Ii
IT 3 - IX

-DO 603JX = JY N
IXX = N s (J- 1) + IX
JJX = IXJX + IT

60 A (IXJX) = A (IXJX) - A (IXJ) $
65 B (IX) = B (IX) - B (3) $ A (IXJJ
70 NY = N -i

IT =N N
DO 80 J = j, NY
IA: IT - J
ID: N -
IC = N
DO 80 K = i j
B (IB) = B tIB) -A (IA) SB (IC
IA = IA - N

80 Ic = IC - I
RETURN
END

SUBROUTINE TO INVERT A MATRIX

SUBROUTINE MINJ (A N P LM)
IMPLICIT D(OUBLE PRCI,(AINHO-Z)
DIMENSION A (1), L (lb MH(1)

A (JJX)

)
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INVERT A MATRIX
A = INPUT ARRAY, DESTROYED IN COMPUTATION AND REPLACED BY INVERSE
N = ORDER OF MATRIX A
D = RESULTANT DETERMINANT. A ZERO DETERMINANT INDICATES A

SINGULAR MATRIX
L = WORK VECTOR OF LENGTH N
Hf= WORK VECTOR OF LENGTH N

04770C
047800C
0490C
04800C
048100
04800
048300
048400
04850
048920

04881
04890
04900
04910
04920
04930
04940

04500
04960
04970
04980
04990
05000
0510
05020
05030
05040
05051
05060
05070
05080
05090

05100

05120
05130
05140
05150
65160

05180
05190

05200
05210
05220
05230
85240

05350

05260
05270
05281
05290
5300

05310
05320
05330
05340
053S0
05360
I5370
05380

05420
15430
05440

IJ))) 15, 20, 20

D=i.DO
NK = -N
DO 80 K =1, N
NK = NK + N
L (K) K
M (K) K
KK = NK + K
BIGA =A (KK)
DO 20 J = K, N
IZ = N $ (j - 1)
DO 20 1= K, N
IJ = IZ + I

10 IF (ABS (BICA) - ABS (A (J
IS BICA A (IJ)

L (K) I
M(K)J

20 CONTINUE
3 = L (K
IF (3 -K) 35, 35, 25

25 KI = K - N
DO 30 1 = i, N
KI = KI + N
HOLD = -A (KI)
1 = KI - K + J
A (KI) A (3)

30 A (JI)=HOLD
35 1 = M (K)

IF (I - K) 45, 45, 38
38 3P= N I (I - 1)

DO 40 J = , N
JK = NK + J
JI = JP + 3
HOLD = -A (JK)
A (JK) = A (JI)

40 A (JI) = HOLD
45 IF (BIGA) 48, 46, 48
46-D = DO

RETURN
48 D S5 I=I N

IF (I - K) to, 55, 50
50 K NK + I
A (10K) A (1K) / (-BIGA)

55 CONTINUE
DO 65 I = I, N
IK = NK + I
HOLD = A (IK)
11 = I - N
DO 65 = 1, N
IJ = IJ + N
IF (I - K) 60, 65, 60

61 IF (J - X) 62, 65, 62
62 KJ =I - I + K
A (J ) = HOLD $ A (K3) +

65 CONTINUE
KJ = K - N
DO753:J=1, N
K3 = KJ + N
IF (J - K) 70 75 70

70 A (K3) = A (K) /$ICA
75 CONTIMUE

A (IJ)
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05450
05460
05470
05488
05490
05500
05510
05520
05530
95540
05550
05560
95570
05580
05590
05600
05610
05628
05630
05640
05650
05660
0S670
05680
05690
05700
55710
05720
05730C
05740C
057S0C
05760

05790C
05801C0
058100

65820005830
05840C
058580C
058600
058700
05880C
05890
05900
05911
05920
05930
05940
05950
05966
05979
05980
05991
06900
06011
06020
06033
06040
061S0
16060
06070
36080
06090
06100
06110
6610

10011=L
12 = M2
13 = L2
COTO 140

110 =12
12 = M2
13 = Li
GOTO 140

120 It L
12 = HI
13 = L2
GOTO 140

130 t -2
12 = Hi
13 = LI

140 200 1 1 It
DO 2096II=1i,12
TEMP = 0.DO
DO 190 111 = 1,13
60TO M0160 170 180),IFLAG.

159 TEMP =TEAP + A (1 I U19(111 - 1))S$IB(Ml $ (IT - 1) + III)
GOTO 190

160 TEMP z TEMP + A (LI S (I - 1) + III) 8 B (Mi * (11 - 1) + III)

D = D * BIGA
A(KK):l .DO/DICA

80 CONTINUE
K Nf

100 K (K - t)
IF (K) ISO, 150, 105

105 I =L(K)
IF (I - K) 120 120, 108

108 JQ = N * (K -I)
JR = N t (I - 1)
DO 110 J = 1, N
JK = JQ + J
HOLD A(3K)
31 = JR 3
A (3K)= -A (JI)

110 A (31) HOLD
120 J = M (K)

IF (J - K) 1001 100, 125
125 KI = K - N

DO 10 1, lN
KI = K,+ N
HOLD = A (KI)
JI = KI - K + J
A (KI) -A (JI)

130 A (31) HOLD

150 RETURN
END

MATRIX MULTIPLICATION SUBROUTINE

SUBROUTINE MATMPY (A. B C Li 12Mi, l2, Ni, N2, IFLAG)
(h -Z),

A = Li BY L2 INPUT MATRIX
B = Ml BY M12 INPUT MATRIX
C Ni BY N2 OUTPUT MATRIX

IF IFLAG = I THEN C = A * B
= 2 = TRANSPOSE (A) t B
=3 = A $ TRANSPOSE (B)

= 4 = TRANSPOSE (A) t TRANSPOSE (B)

-COTO GOU, 110, 120, 130),IFLAG
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96130 COTO 190
06148 170 IMP =TEMP +tA (I + Li t (III - I)) $ B (II + Mi t (III - 1))
06150 GOTO 190
06160 180 TEMP = TEMP + A (Li * (I - i) + III) * B (II + Mi t (III - 1))
0610 190 CONTINUE
06180 C (I+ NI * (Il-)) =1TEMP
06190 209 CONTINUE
06200 RETURN
06210 END
06220C
06230C CONTROL SIGNAL GENERATION SUBROUTINE
06240C
86250 SUBROUTINE CONTRL (X U W OLDRATE, DELTAT)
06260 IMPLICIT DOUBLE PRECISI6N(A-H,J-Z)
06270 PARAMETER IXX=iiIDR=7
06280 DIMENSION AAA(IAXIXX), AAA(IXXIXX)
06290 DIMENSION X (I), 6Q' W(i), 6LDRATE (1)
06300 DIMENSION ASTAR'(IXXiX BSTAR (IXX,4' CSTAR (IXX)
06310 DIMENSION A (IXXIXX) B IIXX,4) DotoiXX)
06320 DIMENSION AA (IXXIXXi DIA (IXX IXX) XDOTAX (IXX)
06330 DIMENSION ZERO (4$ IW6RKi (4), WORK (4)
06340 DIMENSION D (IDRIX), E(IDR) 9 (IDR,IDR), R (4,4)
06350 DIMENSION DB (IDP 4), PDQ 14,ItR) BDODB (4 4), RDQDB (4 4)
06360 DIMENSION AX (IXXi, AXC (IXX), DAC (IDR), bAX6E (IDR), BQDAXCE (4)
06370 DIMENSION KTR (4) KV (4), FCULM (4)
06380 DIMENSION ASTRX(IXX),XNEWIIXX)
06390 DIMENSION XTEMP(IXX)
06400 DATA JE, JIX, JIYZ JMXZ JMY, JOXY, JOZ
06410 & /i,2D-2, i,7D!-2 iD-2 2.25D-2 3.OD-2, 3.0D-2, 3..9D-2/
06420 DATA FCOULM ,09D9,Do,11 D6,,i6SDk
06430 DATA KTR /1.9D-2,i,9D-2 4,19-2,S,13D-2/
06440 DATA KV /6,ID-i 6 iD-i, 9D-i,1,25D0/
06458 DATA ZERO /4$0,10/
06460 DATA TORQWT, LOCKWT, TILTWT, RATEUT /1,D-i3, i.D-13, iDB,i.D-13/
06470C
06480C ZERO = ZERO VECTOR USED TO COMPUTE DERIVATIVE WITH U = 0
06490C TORQWT = WEIGHT ASSIGNED TO TOPQUE REQUIREMENT IN COST FUNCTION
06500C LOCKWT = WEIGHT ASSIGNED TO GIMBAL LOCK PROXIhITY IN COST FUNCTION
0651C TILTWT = WEIGHT ASSIGNED TO ELEVATION GIMBAL TILT IN COST FUNCTION
06520C RATEUT = WEIGHT ASSIGNED TO ELEVATION GIMBAL RATE IN COST FUNCTION
065300 FCOULM = COULOMB FRICTION TORQUE LIMIT. SPECIFIES THE FRICTION
065400 MAGNITUDE WHEN THE GIMBALS ARE UNSTUCK,
06550C KTR = CONVERSION CONSTANTS FROM TORQUE MOTOR VOLTAGES TO TORQUES
0656CC KV = PROPORTIONALITY CONSTANTS FROM ANGLEDOTS TO BACK EMFS
06570C SE = INERTIA ABOUT ANY AXIS OF THE ELEVATION GIMBAL
06580C JIX = INERTIA ABOUT THE X AXIS OF THE INNER GIMBAL
06590C JIYZ = INERTIA APOUT THE Y AND Z AXES OF THE INNER GIMBAL
06600C JMXZ = INERTIA ABOUT THE X AND Z AXES OF THE MIDDLE GIMBAL
0661OCC SKY = INERTIA ABOUT THE Y AXIS OF THE MIDDLE GIMBAL
0662C JOXY = INERTIA ABOUT THE X AND Y AXES OF THE OUTER GIMBAL
06-5300 SOZ = INERTIA ABOUT THE Z AXIS OF THE OUTER GIMBAL
06640C
0665CC THE LINEARIZED CONTINUOUS TIME SYSTEM EQUATIONS ARE OF THE FORM
0666C
06670C X(t) = A(tO) (X(t) - X(tO)) + B(tO) U(t) + X(t0)
06680C
06690C THE LINEARIZED DISCRETE TIME SYSTEM EQUATIONS ARE OF THE FORM
06700C * $
06710C Xfn+II= Alni X[n]+ B[n] U[n) + Cho]
06720C
06730C THE COST FUNCTION TAKES THE FORM
06740C T T
06750C 5 = (Dn] Xn+il + Eln] ) 9 (Dn] Xn+iI + En] ) + ULn] R IUn)
96760C
0677CC SOLUTION IS
067800 ST T S-itT T $
06790C U[n:= -(R + B D Q D B) B D Q (D (A X + C)+E)
16800C
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06910C ASSOCIATE VARIABLES WITH ARRAY ELEMENTS
06826CC COMPUTE REQUIRED TRIGONOMETRIC FUNCTIONS
06830C
66840 DO 90 I'= IXX
0895 XTEMP(I):*(I)
06860 96 CONTINUE
06870 PSI = X (i)
06880 BETA = X (2)
06890 THETA = X (3)
06900 PHI = X (4)
06910 SP = DSIN (PSI)
06920 CP = DCOS (PSI)
06930 SB = DSIN (BETA)
06940 CB = DCOS (BETA)
06950 ST = DSIN (THETA)
06960 CT = DCOS (THETA)
06970 SF = DSIN (PHI)
06980 CF = DCOS (PHI)-
06990 SB2 = SB * SB
07000 CB2 = CB* CB
07010 ST2 ST * ST
07020 CT2 = CT t CT
07030 PSIDOT = X (5)
07040 BETADOT X (6)
07050 THETADOT: X(7)
07060 PHIDOT = X (8)
07070 WCX = W (1)
07080 WCY = W (2)

07100 WOX=CF$WCX -SFt WCZ
07110 NOY = WCY + PHIDOT
07120 OZ= SF * WCX + CF * WCZ

V7i5O wmZ =-ST $ WOY + CT * WOZ
07168 NIX = CB WMX + SB * WMY
07170 IY =-SB $ WMX + CB * WY
07180 WIZ = WKZ + BETADOT
07190 WEX= CP$t WIX - SP$* WIZ
07200 WEY = WIY + PSIDOT
07210 WEZ=SP$tWIX + CPtWIZ
0722CC
07230C 1 PSIDOT I Ii M 1M12 M13 14 i I YI i
0724CC i BETADOT i i M21 M22 123 M24 i i Y2 i
07250C - THETADOT i = 1131 M32 M33 M34 1 1 Y3 i
07260C I PSIDOT I i M41M421143 M44 i i Y4 i
0727C
0728CC TORQUE EQUATIONS FOR THE FOUR GIMBALS EXCLUDING CONTROL SIGNALS
0729CC
07310 y1 = -KTR () * KV (1) * PSIDOT
67310 & + JE * (-SB t PHIDOT t W Z - CB * ST t PHIDOT t WOX
07320 & - CB * THETADOT * WMZ + BETADOT * WIX)
07330 Y2 = -KTR (2) * KV (2) $ DETADOT
07340 & + (JIYZ + JE) $ (THETADOT * WMY - CT * PHIDOT S WOX)
07350 & + NIX t WIY t (JIX-JIYZ) - PSIDOT t JE * WIX
07366 Y3 = -KTR (3) $ KV (3) $ THETADOT
07370 & + (JMXZ + CB2 $ JIX + SE2 $ JIYZ + JE) t PHIDOT *WOZ
07380 & - SB $ CB * (JIX-JIYZ ) * (ST t PHIDOT S WOX + THETADOT
07390 & $W1Z - BETADOT * W9X) + WMY * WKZ $ (JMY - JMXZ) - (CB2
07400 & * JIX + SB2 * JIYZ + JE) $ BETADOT $ WHY + CD * JE $ PSIDOT
07410 & $ VIZ
07420 Y4 = -KTR (4) $ KV (4) $ PHIDOT
67430 & - WOX * WOZ t (JOXY - JOZ) - (CT2 t (MNY + SB2 t JIX)
67440 & + ST2 t (JMXZ + JIYZ) + JE) * THETADOT $ SOZ + ST t CT
07450 & $ (JY - JMXZ + S52 * (JIX-JIIZ)) $ (THETADOT * WOY
07460 & - PHIDOT $ OX) + SB I CB $ CT $ (JIX - JIYZ) t (PHIDOT
07470 & $140Z - BETADOT $ WMY) + (CT t (SB2 $ JIX + CB2 S JIYZ + JE)
07480 & $ BETADOT + ST * SWY * (JY- JMXZ)) I SMX + SB $ CT * JE
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07490 & * PSIDOT S WIZ + ST t (JE * PSIDOT + WIY * (JIYZ - JIX))
07510 & S SIX
07510C
17520C M MATRIX - THIS IS THE INVERSE OF THE L MATRIX ABOVE
07530C BECAUSE H IS SYMMETRIC ONLY THE UPPER HALF NEED BE COMPUTED
97540C
07550 DENOM = (JOXY+ST2*JMXZ+CT2$(JMY+CB2tJIYZ+SB2*(JIX+JE)))*(JMXZ
07561 & +CP2t(JIX+jE)+SB2*JIYZ)-CB2ISB2tCT2*(JIYZ-JIX-JE)$*2
07570 Nil = ((JOXY+ST2tJMXZ+CT2$(JdY+JIX+JE)) (JE+SB2tJIYZ
07580 & +C32$JIX+JMXZ)-CB2$CT2*(JIX-JIYZ)*(JMXZ+JIX+JE))/JE/DENOM
07590 M12 =r-CBtST$CT*(JE+JIX+IMXZ)/DENOM
07600 M13 = SBt(JOXY+ST2tJMXZ+CT?$(JMY+JIX+JE))/DENON
07610 M14 =-CBtCTt(JhXZ+JIX+JE)/EN0M
07620 M22 = (CB2CT2t(JIYZ-JIX-JE)*(JE+JIX+TMXZ)+(JMXZ+CB2*(JIX+JE)+SB2*
07630 & JIYZ)t(JOXY+CT2*(JMY+JIX)+STt(JMXZ+JIYZ)+JE))/(JIYZ+3E)/DENOM
07640 M23 = SB$CB$ST*CTZ(JIYZ-JIX-JE)!DENSM
07650 M24 = ST*(JMXZ+C82t(JIX+JE)+SB2tJIYZ)/DENOM
07660 M33 = (JOXY+ST2*JMXZ+CT2*(JMY+CB2JIYZ+SB2*(JIX+JE)))/DENOM
07670 M34 = CB$SBtCT*(JIYZ-JIX-JE)/DENQM
07680 M44 = (JMXZ+CB2*(JIX+JE)+SB2*JIYZ)/DENOM
07690C
07700C PARTIAL DERIVATIVES OF Y AND K WITH RESPECT TO X FOLLOW
077iBC DYiDB dYi/dBETA, DYiDFD = dYi/dPHIDOT ETC.
07720C
07730 DYiDB JEt(-CBtPHIDOT*WOZ+SBtSTtPHIDOT*WOX+SB$THETADOT*UMZ+
07740 & BETADOT*WIY)
07750 DYiDT JE*CB*(THETADOTfWMY-CTtPHIDOTtWOX)+SBtBETADOTtWMZSJE
07760 DYiDF = JEt(-SBtPHIDOT*WOX+CB*STSPHIDOTtWOZ-CBtCT*THETADOT*WOX
07770 & +PETADOTt(SBST*WOX-CBtWOZ))
07780 DYiDPD = -KTR (1)4KV (1)
07790 DYiDBD= JEtWIX
07800 DYiDTD = JE*CEtVMZ+JE*CBIBETADOT
07810 DYiDFD = JE(-SB$WOZ-CBtST*WOX+CBEST*THETADOT+SB*CT$BETADOT)
07820 DY2DB = (WIY**2-WIX$$2)*(JIX-JIYZ)-PSIDOT*JE*WIY
07830 DY2DT=WMZt((JIYZ+JE)tTHETADOT+(SBtWIY+CIwIX)$(JIX-JIYZ)-
07840 6 PSIDOTtSBtJE)+(JIYZ+JE)STPHIlWOX
07850 DY2DF=(JIYZ+JE)t(STtTHETADOTSWOX+CT*PHIDQT YO2)+(-CBS 0Z+SB*ST
07860 & *WDX)*(WIY*(JIX-JIYZ)-PSIDOT*JE)+WIXt(SB*WOZ+CB*CT*WOX)
07870 & *(JIX-JIYZ)
07880 DY2DPD = -JEtWIX
07890 DY2DBD = -KTR (2)4KV (2)
07900 DY2DTD = (JIYZ+JE)*UMY+(JIX-JIYZ)*(CB*WIY-SB*WIX)-CBtJE*PSIDOT
07910 DY2DFD=CT(JIYZ+JE)*(THETADOT-WOX)-CT*(JIX-JIYZ)tWMX-SBtCTtJE
07920 & *PSIDOT
67930 DY3DB = 2*SB*CB*(JIYZ-JIX)*(PHIDOTWOZ-BETADOT*WMY)+(SB2-CB2)
07940 & *(JIX-JIYZ)*(ST
07950 & *PHIDOT*WOX+THETADOTtWMZ-BETADOT*WMX)-SBtJEtPSIDDTSWIZ
07960 DY3DT = SB*CB*(JIX-JIYZ)(-CTPHIDOTWOX+IHETADOT$WIY)+(WMZtt2
07970 & -WMY*2)*(JMY-JMXZ)-(CB2$JIX+SB2JIYZ+JE)*BETADOTWMZ-CB
07980 & *JE$PSIDOT*WIY
97990 DY3DF = (JMXZ+CB2*JIX+SB2*JIYZ+JE)tPHIDOTIWOX-SB*CBt*(JIX-JIYZ)
08000 & *(-ST$PHIDOT*WOZ+THETADOT*CT*WOX+BETADOTWOZ)+(STWMZ
08010 & +CT*WMY)*WOX$(JMY-JMXZ)-(CB2*JIX+SB2*JIYZ+JE)*BETADOT
Z8020 & *STtWOX+CBtJE*PSIDOT*CT*W0X
68030 DY3DPD = CB*JEtWIZ
08040 DY3DBD = SBtCB* CJIX-JIYZ)*WMX-(CB2tJIX+52*JIYZ+JE)*WMY+CB$JE$PSIDOT
08050 DY3DTD = -KTR (3)IKV (3)+SB*CB*(JIX-JIYZ)*(BETADOT-WMZ)
08060 DY3DFD= (JMXZ+C82*JIX+SB2SJIYZ+JE)SWOZ+SBtCB*ST*(JIX-JIYZ)*(THETADOT
08070 & -WOX)+(CT*WMZ-STEUMY)*(JMY-JMXZ)-CT(CB2*JIX+SB2*JIYZ+iE)
08080 & *BETADOT-CBSTSJEtPS!DOT
08099 DY4DP = 2*SBtCRt(-CT2tJIXSTHETADOTSWOZ+(JIX-JIYZ) *(THETADOT*WOY
08190 & SST*CT-ST$CTzHIDOT:gX+CTBETADOTWMX))+(CB2-SB2)$CT
08110 & *(JIX-JIYZ)t(PHIDOTWOZ-BETADOT$WfY)+CB1CTtJE$PSIDOT$WIZ
18120 & -STSWIX$*2*(JIYZ-JIX)+ST*(JEtFSIDDT+WIY*(JIYZ-JIX))*WIY
08130 DY4DT 2*CTSST*(JMY+SB2JIX-JMZ-IY?)THETAOT$WGZ+(CT2-5T2)
08140 & *(JhY-JhXZ+S?2t(J!X-JIrZ)(THETA:0xWGY-0ZDJiT*-X)+SB
08150 & ZCB*(JIX-JIYZ)*(-sT4(?ui 2 aZ -BUo Y shY )-CTBETADOT
08160 & &WMZ)-ST(SB2*JIX+CB2$JIYZ+JE)tBETADOT*WMX+(CT$W1Y+STSWNZ)



08170 & *(IMY-JMXZ)*'JMX-S?*JEtPSIDDTU(ST*WIZ+CTtWMY)+CTs(JE*PSIDOT
08180 & +WIY*(JIYZ-JIX))tWJX+C?*3TsTMZs(JIYZ-JIX)swIX+STt(JE
08190 & *PSIDOT+WIYt(JIYZ-JIX))1S~tWMZ
08200 DY4DF = (WOZt22-W0X**2)I(J0XY-JOZ)-(CT2t(JMY+SB2tJIX)+ST2t(ThXZ
08?i & +JIYZ)+JE)*THETADOTtJOX+STtCT*(JMY-YMXZ+SB2t(JIX-JIYZ))
08220 & $PHIDOT*WLZ+SB*C?CT*(JIX-JIY)t(PHIDOrT OX-?ETADOTST
18230 & tWQX)+ST2*WOXt(JMY-JMXZ)tWMX-(CTt(c3tJIX+C?3tJIYZ+JE)
08240 & *BETADOT+ST*W$Y$(JMY-JMX)) WOZ+SBtCT2*JE*PSIDOTUWOX+ST
08230 & $WIXt(JIYZ-JIX)$(CPSTXWQX+SPtWOZ)+ST$(JE*PSIDOT+WIY
08260 & t(JIYZ-JIX))$(SBASTtWQX-CB*WOZ)
08270 DY4DPD = SB$CTtJEIWIZ+ST*JEtWIX
08280 DY4DBD = -SB*CBtCTS(JIX-IIYZ)*WMY+CTt(SB2*JIX+CB2*JIYZ+JE)*WIX
08290 & +SBICTJE$PSIDOT
08300 DY4DTD = -(CT2$(JMY+SB2*JIX)+ST2t(MXZ+JIYZ)+JE)tWOZ+ST$CTU(JMY
08310 & -JNXZ+S2t(JIX-JIYZ))E'JOY+STVJMY*(JMY-JMXZ)+STZ(JIYZ-JIX)
08320 & t(CBtWIY-SB*WIX)+CT$(SB2*JIX+CB2*JIYZ+JE)$BETADOT+CBSST
08330 & SJE*PSIDOT
08340 DY4DFD = -KTR (4)KV (4)+STZCTt(JMY-JMXZ+SB2t(JIX-JIYZ))t(THETADOT
08350 & -WOX)+SBtCB*CT$(JIX-JIYZ)t(WOZ-CT$BETADOT)+ST*CT*(JMY-JMXZ)
08360 & *WMX+STCT(JIYZ-JIX)$(CB$WIX+SBtWIY)
08370C
08380 DDENDB = 2*SBICBt(JIYZ-JIX-JE)t(JXY+ST2tJMXZ+CT2t(JMY-JMXZ))
08390 DDENDT = 2*ST*CT*((JMXZ-JMY-CP2JIYZ-SB2t(JIX+JE))*(JMXZ+CB2U(IX+JE)
08410 & +SB2tJIYZ)+SB2tCB2$(JIYZ-JIX-JE)*t2)
08410 DMiIDB = 2tSBICBt(JOXY+3T2TJMXZ+CT2*(JMY-JhXZ))t(JIYZ-JIX)/JE/DENOM
08420 & -DDEND?*Mii/DENOM
08430 DM1iDT = 2ST*CT((JMXZ-JMY-JIX-JE)*(JE+SPOIJIY7+CP2tJIX+JMXZ)
08440 & +CB2t(JIX-JIYZ)*(JMXZ+JIX+JE))/JE/DENOM-DDENDTMii/DENOM
08450 DM12DB = SB*ST*CTf(JE+JIX+JMXZ)/DENOM-DDENDB1Mi2/DENOM
08460 DM12DT = CB(ST2-CT2)l*(JE+JiX+jMXzwrEncMiENDTtMi2/DENOM
08470 DM13D CB*(JOXY+ST2*JMXZ+CT2*-(JMY+JIX+JE))/DENQO-DDENDBtMi3/DENOM
18480 DMI3DT = 2*SB*STtCT$(JMXZ-JMY-JIX-JE)/DEhM-DDENDT$Mi3/DENOM

m tDI~t(i lX$ + - D NO4
ossio DM22DB = 2*.cB*CB*(JT.YZ-IIX-JE)*(JOXY+CT2$(JMY-JMX7)+ST2$(JIYZ
08520 & +JMXZ+JE))/(JIYZ+JE)/DENON-DDENDBtM22/DENOM
08530 DM22DT = 2*CT*ST(CB2P(JIX-JiYZ+JE)*(JE+JIX+JMX7)+(JMXZ+CB2*(JIX
08540 & +JE)+SB2*JIYZ)*(JMXZ+JIYZ-JMY-JIX))/(JIYZJE)/DENOM
08550 & -DDENDT*M22/DENOM
08560 DM23DB = (C?2-SB2)*ST*CT*(JIYZ-JIX-JE)/DENOM-DDENDBtM23/DENOM
08570 DM23DT = StCBt(CT2-ST2)t(JIYZ-JIX-JE)'/DEN-DDENDTM23/DENQM
08580 DM24DB = 2*SBtCB*STt(JIYZ-JIX-JE)/DENOM-DDENDB*M24/DENOM
08590 DM24DT = CT*(JMXZ+CB2*(JIX+JE)+SB2SJIYZ)/DENOM-DDENDT$h24/DENOM
08606 DM33DB = 2tSBECBtCT2*(JIX+JE-JIYZ)/DENOM-DDEND~th33/ENON
08610 -DM33DT = 2*ST*CT(JMX-JMY-CB2JIYZ-SB2*(JIX+JE))/DENOM
08620 & -DDENDT*M33/DENOM
08630 DM34DB = (CB2-SB2)*CT*(JIYZ-JIX-JE)/DENOM-DDENDB3M34/DENOM
08640 DM34DT = S~tCB*ST*(JIX+JE-JIYZ)/DENOM-DDENQ!tSE [$NM
88650 DM44DB = 2*SBtCB*(JIYZ-JIX-JE)/DENOM-DDENDBM44/DENQM
08660 DM44DT = -DDENDTtM44/DENaK
08670C
18680C
08690C DERIVATIVES OF WE WITH RESPECT TO X FOLLOW
08700C DWXDFD= dWEX/dPHIDOT ETC.
08710C
08720 DWXD? = -WEZ
08731 DWXDB = CP t WIY
68740 DWXDT =:CP * SBt WMZ + SPt WMY
08756 DWXDF =CP*3SB * STt WOX - CP t CB *WOZ - SP *CT *WJX
08760 DWXDBD = -SP
08771 OWXDTD = CP t CP
08780 DWXDFD = CP*SB * CT+ SP * ST
68790 DWYDB = -WIX
08800 DWYD Cr: * VMZ
08810 DWYDF =SB*WOZ + C3 * ST *WOX
08820 DWYDPD=i.DO
68830 DWYDTD -S9
18840 D'YDFD=CBDt*CT



08850 DWZDP = WEX
68860 DWZDB = SP * WIX
88870 DWZDT = SP * SB * WMZ - CP * WMY
08880 DWZDF = SP$t SB$* ST *WOX - SP*S CB WOZtCP$ CTWO0X
08610 DWZDBD = CP
08900 DWZDTD = SP S CB
08910 DWZDFD:= SP$* SB$t CT-CP$S ST
08920C
08930C SET UP MATRIX A
08940C
08950C CLEAR OUT A
08960C
08970 DO 100 1 = 1 IXyX
08980 DO 100 ii=1 Ixx
08990 A (I II) = 0
09000 190 CONTiNUE
0901CC
09920 DO 110 i = 1,4
09030 A(II+4)=i.D9
09040 110 COTINUE
09050 A (5,2) =H1DB 1 Ti + 111 * DYIDB + D12DB * Y2 + 112$ SDY2DB
09960 & + DM13DB * Y3 + M13 1 DY3DB + DM14DB t Y4 + M14 t DY4DB
09070 A (5,3) = DMiiDT * Ti + Mil * DYIDT + DM12DT * Y2 + M12 * DY2DT
09080 & + DM1I3DT * Y3 + M13 * DY3DT + D14DT * Y4 + M14 $ DY4DT
09090 A (5,4) = *it DYiDF + 1112 * DY2DF + M13 ; DY3DF + M14I DY4DF
0100 A (5,5) = Mi1 DYIDPD + M12 $ DY2DPD + 113$ DY3DPD + M14 * DY4DPD
09110 A (5,6) = Mi * DYIDBD + N12 $ DY2DBD + M13 $ DY3DBD + M14 S DY4DBD
09120 A (5,7) = Mil * DYiDTD + 112 t DY2DTD + M13 t DY3DTD + M14$t DY4DTD
09130 A (5,8) = Mii * DYiDFD + M12* DY2DFD + M113$ DY3DFD + M14 DY4DFD
09140 A (6,2) = D12DB * Yi + M12 $ DYiDB + DM22DB $ Y2 + H22 t DY2DB
09150 & + DM123DB * Y3 + M123 * DY3DB + DM24DB * Y4 + M24 $ DY4DB
09160 A (6,3) = DM1I2DT * Yi + M12 * DYIDT + DM22DT * Y2 + M22* DY2DT
09170 & + DM23DT $ Y3 + M23 * DY3DI + D124DT t Y4+ M124 $ DY4DT
09180 A (6,4) = M12 * DYIDF + M22 * DY2DF + M23 I DY3DF + 1241I DY4DF
09190 A (6,5) = M12 $ DYiDPD + M122$ DY2DPD + 123 $ DY3DPD + M124t DY4DPD
09200 A (6,6) =12 1 DYiDED + 1122 * DY2?4D + M23 $ DY3DP + 1124 $ DY4DBD
09210 A (6,7) =112* DYiDTD + M22 $ DY2DTD + M23 * DY3DTD + M24 $ DY4DTD
09220 A (6,8) =1112 * DYiDFD + h122 * DY2DFD + M23$ DY3DFD + M24$ IDY4DFD
9230 A (7,2) = DM13DB $ Yi + M13 $ DYiDB + DM23DB $ Y2 + M23$ PDY2DB
09240 & + DM33DB * Y3 + M33 $ DY3DB + DM34DB $ Y4 + M34$t DY4DB
09250 A (7,3) = DM13DT $ Yi + M13 * DYIDT + DM23DT * Y2 + M23 * DY2DT
09260 & + DM33DT $ Y3 + M133 DY3DT + DM34DT t N + M34 $ DY4DT
09270 A (7,4) = 1 3 * DYiDF + M123t DY2DF + M33$t DY3DF + 134$S DY4DF
09280 A (7,5) =13 DYiDFPD + 123 $ DY2DPD + M33 t DY3DPD + M34$t DY4DPD
05290 -A (7,6) = 113 * DYiDBD + 123 $ DY2DBD + M33 t DY3DBD + M34 * DY4DBD
09300 A (7,7) = M13* DYiDTD + 123 $ DY2DTD + M33 * DY3DTD + M34$ DY4DTD
09310 A (7,8) = M13 DYiDFD + 123 $ DY2DFD + M33 t DY3DFD + 134 * DY4DFD
09320 A (8,2) = DM14DB tYi + M14 S DYiDB + DM24DB t Y2 + 124 * DY2DB
09330 & + DN34DB t Y3 + M34 $ DY3DB + DM44DB * Y4 + M44 t DY4DB
09340 A (8,3) = DN24DT * Yi + N14 * DYiDT + DM24DT t Y2 + M24* DY2DT
09350 & + DM34DT $ Y3 + M34$ PY3DT + DM44DT t Y4 + M44 $ DY4DT
09360 A (8,4) = 114 $ DYiDF + 124$ DY2DF + M34 * DY3DF + 144$1 DY4DF
09371 A (8,5) = M14$ DYiDPD + 124$ DY2DPP + M34 t DY3DPD + M44 t DY4DPD
09389 A (8,6) = Mi4 DYiDBD + H24 tDY2DBD + M34 $ DY3DBD + M44 $DY4DBD
09390 A (8,7) = M14 * DYiDTD + M24 $ DY2DTD + M34 * DY3DTD + M44$S DY4DTD
09408 A (8,8) = K14 $ DYiDFD + 124 t DY2DFD + M34 $ DY3DFD + M44 $ DY4DFD
09410 A (9; 1) = DWXDP
09420 A (9, 2) = DWXDB
09430 A (9, 3) = DWXDT
09440 A (9, 4) = DWXDF
09456 A (9, 6) = DWXDBD
09460 A (9, 7) = DWXDTD
09470 A (9 8) = DWXDFD
69480 A (16, 2) = DWYDB
09490 A (10, 3) =DWYDT
09500 A (10, 4) = DWYDF
09510 A (10, 5) = DWYDPD
09520 A (10, 7) = DWYDTD
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09530 A (10, 8) = DWYDFD
09549 A (ft, ) = DWZDP
09550 A (1, 2) = DWDB
09S68 A (I 3)=DWZDT
89570 A (ii4)4) DWZDF
09580 A (1, 6) = DWZDBD
09590 A (Qi 7) = DWZDTD
09600 A (ii, 8) = DWZDFD
09610C
69620C SET UP ARRAY B
09630C
09640C CLEAR OUT B
0965C
09660 DO 120 I 1 IXX
09670 DO0120Il=,11f4
09680 B( II) = 0.D0
09690 120 CONTINIE

970 B (5, ) = KTR () * Mii
69720 B (5, 2) = KTR (2) * MI2
09730 B (,3) TR (3) M 4
09740 B (5, 4)= KTR (4) ;1#M14
09750 B (6, 1) = KTR (I) * Mi2
09760 (6,K2) TR (2) * 22
09770 B (6t 3) KTR (3) * M23
09780 B (6 4) = K TR (4) $ M24
09790 B (7tD)=KTR(1) * Mi3
0980 (7,2 KTP (2) * 23
09810C B (7, 3) EKTR (3) * 33
09820 AB (7, 4) XKT (4) * 1,4
09830 B (8, Y) EKIRE(1) $E 14
09840 B (8,1 2)= KTR (2) * M24

99 C ~ ~ TE DIS RETE T I APOi AIN FLO

09870C
09880C SET LP VECTOR XDOTO
09890C
09900 CALL DERIVE (XTEMP, XDOTO, ZERO, W, OLDRATE)
09910C
09920C 4 GIMBA'L SYSTEM DYNAMIC EQUATIONS ARE NOW COMPLETELY LINEARIZED
09930CC
09940C TIE DISCRETE TIME APPROXIMATIONS FOLLOW
09950C * 2 2
09960C A:I+DELTAT*A+DELTAT$A/2!
09970C -
09980 DELTA2 .SDO $ DELTAT tt 2
09990 DELTA3:PELTAT*DELTA2I3 .DO
10000 DELTA4=DELTATtDELTA3/4 .D0
10010 DELTAS=DELTAT*DELTA4/S.D0
19020C
10130 CALL HATMPY (A A AA IXX IXX lxx, I l IXX, 1)
10040 CALL MATMPY(A AA AAA W lx IXk TXX IXX lXX ii
10050 CALL MATMPY(AAA AAA,IkX,IkXI X,IXIkX,Ih,1)
10060 DUI030OI 1 ,XX
10070 DO 130 II 1 IXX
18880 ASTAR (I II) = DELTAT * A (I II) + DELTA2 * AA (I, II)
10090 &+DELTA3*AAA(I II)+DELTA4*AAAAII II)
10100 IF (IEQIi ASTAR (I, I1) ASTAR (I, II) + 1,00
101 130 CONTINUE
IOi2OC $ 2
10130C B = (DELTAT * I + DELTAT t A / 2!) 0
10140CC
10151 DO 149 1 1 IXX
106 DO 140 I 1 IXX
1070 DIA (1). 11) DELTA? * A (I 11)
1019 &+DELTA A(I II)+DLTA4W UIt)+DELTAS$AAA(I,II)
iiVlo IF (I EQ. Ii) DIA (I, I) 6IA (I, II) + DELTAT
10200 141 CONTINUE
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10210 CALL MATMPY (DIA, B, BSTAR, 11, ii, 11, 4,i11, 4,1)
1022CC * 2
10230C C = (DELTAT $ I + DELTAT S A / 2!) (X (t0) - A X (tO))
10240C
1 0250 DO f601:1,?IXX
10260 TEMP = XDOTO (I)
10270 DO ISO1 II 1, IXX
10280 TEMP = TEMP - A (I, II) * XTEMP (II)
10290 156 CONTINUE
10380 XDOTAX(I)=TEMP
19310 169 CONIINUL
10320 CALL MATMPY (DIA, XDOTAX, CSTAR, IXX, IXX, IXX, 1, IXX, 1, 1)
10330C
10340C 'HE MATRIX R REFLECTS THE WEIGHT OF THE CONTROL SIGNALS IN
10350C THE COST FUNCTION
10360C
10370 DO 170 1=1 4
10380 DO 170 1 1, 4
10390 R (I, II) 0
10400 IF (I EQ. II) R (I, II) = TORQUT
10419 170 CONTINUE
10420C
10430C THE MATRIX Q REFLECTS THE WEH41 OF THE STATE IN THE COST FUNCTION
10440C
10450 DO8SI =I iIDR
10460 DO 180 II 1, IDR
10470 Q (I II) = 0DO
10480 IF (I *EQ. II .AND. I .GE, 2) Q (I II) = TILTUT
10490 IF(I.E ,II.ANDI.GES)Q(I,II)=RATEiT
10500 180 CONTINUE
10516 Q (1, 1) = LOCKWT
10S20C
10530C THE MATRIX D COMPRESSES THE STATE INFGRMATION AND LINEARIZES
i054fC THE GIMBAL LOCK COST
iOSSoc
10568 DO 190 = I IDR
10570 DO 190 ii = 1 IXX
10580 D (I II) =030
10590 190 CONTINUE
10600 DO200 1= 1 3
19610 D (1+1t, I1 8) =iD0
10620 200 CONTINUE
10630 D(i,2)=CB$ST
10640 D(5,1)=DWXDP
10656 -D(S,2)=DWXDB
19660 D(S,3)=DWXDT
10670 D(S,4)=DWXDF
10680 D(56)=DWXDBD
10690 D(S,7)=DWXDTD -
10700 D(5,8)=DWXDFD
10710 D(6 2)=DWYDB
10720 D(6,3)zDWYDT
10730 D(1,3)=SBCT
19740 D(6,4)=WYDF
10750 D(6,S)=DWYDPD
10760 D(6,7)=DWYDTD
10770 D(6,8)=DWYDFD
10780 D(7,i)=DWZDP
10790 D(7,2)=DWZDB
108C0 D(73)=DWZDT
10810 (7,4)=WZDF
10O 80 D(7,6):DWZDBD
10830 D(7,7)=DWZDTD
10840 D(7,8)=DWZDFD
IO8SOC
10860C THE MATRIX E EXPRESSES THE OPTIMAL LINEARIZED NEXT STATE
10870C
10880 E(I)=SBtSI-SETAtCESST-THETASSB*CT
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10890
10900
10910
10920
10930
10940

10960
10970
10990C
18990C

11010
11020
11030
11040
11806
11868
11070
11080

11110
11120
11130
11140
11150
11160

iic'/o

11180
I 1190
11200

11230

DO 210 1 =2, 4
E (1) z03D0

210 CONTINUE
E(S)=WEX-PSItPWYDP-BETAtDWXDB-T HETAtDWXDT-P HItrDXDF
& -BETADOTtDW \DD-THETADOT$DWXDTD-PHIDOT*tPXDFD
E(6)=WEY-BETAtDWYDB-THETAtDWYDT-PHItFIJYDF-PSIDOT$

& DWYDPD-THETADOTtD4YDTP-PHI[OTtDWYDFD
E(7)=WEZ-PSIIDWZDP-BETA$DWZDB-THET AZNWZDT-PHIIDWZDF-

& BETADOT$DWZDBD-THETADOTIDWZDTD-PHIDOTDWZDFD

COMPUTE U

CALL MATMPY (D ESTAR DB$IDR IXX, IXX 4 IDR4, 1)
CALL MATMPY (Db 0 860 4DR, RI, IDR,4 IDR 4)
CALL MATMPY (BD4, B, BbQDB, 4, IDR, IDR; 4, 4; 4,1)
DO 2201=1 4
DO 220 1=i 4
RBDQDB (1,5II = R (I, II) + BDQDB (1, 11)

220 CONTINUE
CALL MINV (RBDQDB 4 DETERM IWORKI IWORK2)
CALL MATMPY (ASTA4, kTEMP, Ak, i X, Xx, IXX, 1, IXX, 1,1i)
DO0'230 1 1, IXX
AXC (I) AX (I) + CSTAR (I)

230 CONTINUE
CALL MATMPY (D AXC, DAXC, IDR, IXX, IXX, f, IDR, ii1)
DO 2401 , IDR
DAXCE (1) =AXC (1) + E (I)

240 CONTINUE
CALL MATMPY (MDg DAXCE BDQDAXCE, 4, IDR, IDR 14 1, i)
CALL NATMPY (RBD4DB, BDODAXCE, U, 4,4, 4,i, 4,i,1)
DO 250 I = 1,4
U(I)=-U(I)

250 CONTINUE
RETURN
END

I
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