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ABSTRACT 
Cancer is a complex disease, which often stems from aberrant gene expression and protein 
signaling. In order to improve development of novel therapeutics, underlying mechanisms 
employed by malignant cells to maintain their function need to be deeply understood. The field 
of phosphoproteomics has advanced over the past few decades to allow analysis of 
phosphorylated proteins with increased sensitivity and accuracy. Using these methods in 
combination with a systematic mutational strategy that evaluates the network effects of loss of 
phosphorylatable tyrosines that the protein of interest seemingly depends on, allows for an 
unbiased mechanistic characterization of the signaling network. When implemented with 
various computational tools, these data can provide a predictive model that can inform future 
targeting strategies in disease.  

Here, I present an overview of the value phosphoproteomics adds to cancer research, and the 
insights we can gain when combined with Y-to-F mutational approaches to gain mechanistic 
understanding underlying protein function. We successfully applied these approaches in 
characterizing EGFR, a protein often dysregulated in cancer. Furthermore, we experimentally 
evaluated the use of fluorophores such as GFP in these signaling studies. We also applied these 
approaches in other settings, when evaluating function of AXL, another RTK that has been 
associated with acquired resistance to EGFR-targeting tyrosine kinase inhibitors. We applied 
phosphoproteomic analysis to explore the regulation of EGFR by phosphatase PTPRJ as a 
potential indirect mechanism of modulation. Beyond cancer, we applied our phosphoproteomic 
approach to validate a novel biomarker in Alzheimer’s disease. 

Together, these findings highlight how these approaches can result in invaluable mechanistic 
insight that can propel future drug development efforts. 
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Cancer is a signaling disease 
 

Cancer is driven by genetic and epigenetic alterations in oncogenes or tumor suppressor genes 

that leads to uncontrolled cell proliferation, migration, angiogenesis and invasion, among 

others.[1] Despite the root of cancer usually being genetic or epigenetic in nature, cancer 

progression is generally associated with complex mechanisms in and between tumor cells, 

healthy cells and the tumor microenvironment. Many of the phenotypic outcomes that are 

common amongst cancer cells, are the result of dysregulated cellular signal transduction 

pathways.[2] 

Despite the many research efforts and therapies that have hit the market, success rates in the 

clinic have often been dampened or plateaud due to heterogeneity of tumors as well as 

acquired resistance to chemotherapies.[3,4] Heterogeneous responses to drugs or resistance 

mechanisms employed by cancer cells have motivated the field of personalized medicine as 

well as targeted strategies. However, even these highly efficacious inhibitors targeting tyrosine 

kinases as well as immune therapies were eventually met with resistance, highlighting the 

complexity of this disease.[5] Given that cancer displays itself as a signaling disease, it is no 

surprise that nearly all molecularly targeted therapeutics are directed against signaling 

molecules. If we consider the fundamentals of biology, in which DNA transcribes to RNA, which 

is translated to protein and can be modified by various post translational modifications (PTMs), 

which then control biological activity, it seems obvious to consider the closest node to 

biological activity as a point of intervention if our aim is to regain control of aberrant biological 

activity in cancer:  protein PTMs (Fig 1).[6] PTMs are essential for a number of activities, such 
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regulation of gene expression, protein stability, protein-protein interactions and 

activation/deactivation of enzymes. PTMs may provide key information about the 

derangements in cellular programming in disease conditions and serve as the major targets for 

therapeutics.[7] 

 

Figure 1: Central dogma of biology: DNA transcribed to RNA, translated to protein, modified with post-
translational modifications, to control biological activity in the cell. 

 

Phosphorylation as a measure of protein activation 
 

One of the most extensively studied PTMs is phosphorylation, and with good reason. 

Phosphorylation regulates a number of critical cellular functions including migration, 

proliferation, apoptosis and differentiation, similar to the functions dysregulated in cancer cells. 

[8]  Phosphorylation is a reversible modification that occurs involves the addition of a 

phosphate group to the polar group of various amino acids, most notably serine (~90%), 

threonine(~10%) and tyrosine (~0.1-1%). The donation of this phosphate group occurs as ATP 

transfers their phosphoryl group to the hydroxyl group. Proteins are dephosphorylated by 

phosphatases (Fig 2).[9]  

As phosphorylation is the most common mechanism of regulation protein function and 

transmitting signals throughout the cells, the level of phosphorylation is often taken as a 

DNA RNA Protein
Protein 
PTMs

Biological 
Activity
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measure of protein activity in the cell. Phosphorylated residues can be recognized by specific 

binding domains, most commonly Src homolgy 2 (SH2) or Protein Tyrosine Binding (PTB) 

domains, which opens the door for downstream signal relay. Rather than linear signal 

transduction, researchers acknowledge the fact that these stimuli often elicit signaling 

casacades that can amplify the initial stimulus for large-scale or global cellular responses such 

as proliferation.[10] Depending on the stimuli and corresponding conformational changes of 

the protein, pathways can be differentially activated and crosstalk between signaling axes often 

the norm rather than exception.  

 

 

Figure 2: Phosphorylation is a reversible modification, mediated by kinases and phosphates. 
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Although phosphotyrosine is not as prevalent as phosphoserine or phosphothreonine, tyrosine 

phosphorylation is at the forefront of biomedical research because of its relation to human 

disease, mainly through the dysregulation of receptor tyrosine kinases(RTKs).[11] 

RTKs and the EGFR signaling network 

 

The RTK family and their downstream tyrosine kinase targets encompass a large number of 

oncoproteins. RTKs are single-pass membrane proteins with an extracellular ligand-binding 

domain and intracellular kinase domain. As their name indicates, they rely on tyrosines and 

more specifically phosphorylation of tyrosines for signal transduction.[12] Extracellular 

stimulation, e.g. by binding of a ligand, causes dimerization in the plasma membrane that also 

induces a conformational change of the protein that is necessary for functional maturity.[13] 

Once the RTK have assumed this “active” conformation, cross- and auto-phosphorylation can 

occur on the C-terminal residues, thereby initiating a cascade of signaling events ultimately 

resulting in one or multiple of the cellular phenotypes described earlier (Fig 3).  
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Figure 3: RTK(EGFR) activation upon ligand binding. Monomeric (inactive) EGFR binds ligand, prompting 
dimerization with another RTK. The subsequent conformational change induces autophosphorylation of 
C-terminal tyrosines, allowing for signal transduction. 

Signaling pathways often engaged by RTKs include the MAPK, PI3K-AKT and JAK-STAT signaling 

axes.[14] Strong evidence exists that associates altered phosphorylation of these pathways with 

cancer and other pathologies, making RTKs attractive therapeutic targets.  

One of the most well studied RTKs is the Epidermal Growth Factor Receptor (EGFR) which is a 

member of the ErbB subfamily (EGFR, HER2, HER3, HER4).[15] EGFR is found to be frequently 

overexpressed, mutated or otherwise dysregulated in a large fraction of human cancers. 

Despite many studies characterizing EGFR and its associated protein-protein interactions (Fig 4), 

the underlying mechanisms explaining the individual functions of the C-terminal tyrosines are 

still poorly understood. [16] 
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Figure 4: EGFR with most prominent autophosphorylation sites and reported binders. 

 

Where most studies focus on EGFR as either an active or inactive protein, we need to admit to 

the fact that EGFR signaling is a lot more complex than that, if we want to explain the variety of 

downstream responses EGFR can regulate based on a variety of inputs. This point is further 

emphasized by the apparent overlap in binding domains for a variety of adapter molecules, 

such as Shc and Grb2, which also suggests a built-in adaptative mechanism is in place should 

one of these sites be unable to participate in signal transduction.[17]  

If our goal is to identify novel biomarkers and develop more effective therapies that overcome 

the resistance and other hurdles currently holding us back in the clinic, we need to analyze the 

phosphorylation-mediated signaling networks using a systems biology approach, that is 



 
15 

quantitative,  physiologically relevant and has great network coverage. On top of that, we need 

to mechanistically understand how these interactions control downstream signaling and 

phenotypic responses. 

 

The power of phosphoproteomics 

 

One of the challenges with measuring tyrosine phosphorylation of proteins remains 

identification and quantification of low abundance pTyr peptides, especially when sample input 

material is limited.[18] However, advances in mass spectrometry tools and methods have 

advanced tremendously over the past two decades and now enables gathering of deep 

biological insight. Phosphoproteomics, the large-scale analysis of protein phosphorylation sites, 

in particular has emerged as a powerful tool to define signaling network regulation and 

dysregulation.[19] Optimizations in sample preparation and enrichment have aided as well in 

increasing the feasibility of using mass spectrometry to measure protein phosphorylation. 

Chapter 2 will discuss this in greater detail. 

This thesis 
 

Aim 

The overarching goal of the projects described in this thesis is to use phosphoproteomics in 

combination with mutational approaches to gain mechanistic understanding of signaling 

networks. These data and the resulting predictive models provide novel insights regarding RTK 
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signaling and suggest potential therapeutic targets to modulate cell biological response in 

disease. 

Outline 

Chapter 2 will detail the advancements in phosphoproteomics and its value in cancer research. 

Chapter 3 will assess the significant contributions Y-to-F mutational approaches have made in 

discovering novel biomarkers and gathering mechanistic insight, and discuss the potential of 

combining this approach with phosphoproteomics to obtain a deeper understanding of the 

signaling networks in question. Chapter 4 will describe the main project of this thesis, where 

previously described approaches are applied to reveal novel insights into the EGFR signaling 

pathway. Chapter 5 takes a little segue to discuss the use of fluorophores such as GFP in these 

types of signaling studies, comparing resulting signaling data. Chapter 6 applies an approach 

similar to that in chapter 4, but to better understand the AXL signaling pathway, in particular as 

it pertains to AXL-mediated resistance to EGFR tyrosine kinase inhibitors (TKIs). Chapter 7  is a 

mechanistic evaluation of PTPRJ, a phosphatase that regulates EGFR activity, as a potential 

therapeutic target to indirectly modulate EGFR activity. Chapter 8 highlights ELAVL4, a novel 

biomarker in Alzheimer’s disease, and the use of phosphoproteomics as a tool to better 

understand the mechanisms underlying its therapeutic potential. Finally, chapter 9 concludes 

and summarizes this thesis as well as highlights areas for future exploration and innovation. 

 

  



 
17 

References 
 

1  Sever R, Brugge JS. Signal Transduction in Cancer. Cold Spring Harb Perspect Med Internet. 2015 
cited 2022 Mar 23;5. Available from: /pmc/articles/PMC4382731/. 

2  Devreotes P, Horwitz AR. Signaling networks that regulate cell migration. Cold Spring Harb 
Perspect Biol. 2015;7. 

3  Bonadonna G. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N 
Engl J Med. 1976;294:405–410. 

4  W Hryniuk HB. The importance of dose intensity in chemotherapy of metastatic breast cancer. J 
Clin Oncol. 1984;2:1281–1288. 

5  Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: 
EGFR gene and cancer. FEBS J Internet. 2010 cited 2022 Feb 4;277:301–308. Available from: 
https://pubmed.ncbi.nlm.nih.gov/19922469/. 

6  Singh V, Ram M, Kumar R, et al. Phosphorylation: Implications in Cancer Internet. Protein J. 
Springer New York LLC; 2017 cited 2021 Jul 5. Available from: 
https://pubmed.ncbi.nlm.nih.gov/28108801/. 

7  Swietlik JJ, Sinha A, Meissner F. Dissecting intercellular signaling with mass spectrometry–based 
proteomics Internet. Curr. Opin. Cell Biol. Elsevier Ltd; 2020 cited 2021 May 19. p. 20–30. 
Available from: https://pubmed.ncbi.nlm.nih.gov/31927463/. 

8  Ardito F, Giuliani M, Perrone D, et al. The crucial role of protein phosphorylation in cell 
signalingand its use as targeted therapy (Review) Internet. Int. J. Mol. Med. Spandidos 
Publications; 2017 cited 2021 Jun 6. p. 271–280. Available from: /pmc/articles/PMC5500920/. 

9  Walters RW, Shukla AK, Kovacs JJ, et al. beta-Arrestin1 mediates nicotinic acid-induced flushing, 
but not its antilipolytic effect, in mice. J Clin Invest Internet. 2009 cited 2015 Apr 28;119:1312–
1321. Available from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2673863&tool=pmcentrez&rendert
ype=abstract. 

10  PH H, ER M, AM X, et al. Phosphotyrosine signaling analysis of site-specific mutations on EGFRvIII 
identifies determinants governing glioblastoma cell growth. Mol Biosyst Internet. 2010 cited 
2021 Jul 31;6:1227–1237. Available from: https://pubmed.ncbi.nlm.nih.gov/20461251/. 

11  Miller MA, Meyer AS, Beste MT, et al. ADAM-10 and -17 regulate endometriotic cell migration via 
concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A 
Internet. 2013 cited 2015 Feb 10;110:E2074-83. Available from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3670354&tool=pmcentrez&rendert
ype=abstract. 

12  Adrain C, Freeman M. Regulation of receptor tyrosine kinase ligand processing. Cold Spring Harb 
Perspect Biol Internet. 2014 cited 2015 Sep 16;6. Available from: 
http://cshperspectives.cshlp.org/content/6/1/a008995.abstract. 

13  KM N, FM W, DA L, et al. Robust co-regulation of tyrosine phosphorylation sites on proteins 



 
18 

reveals novel protein interactions. Mol Biosyst Internet. 2012 cited 2021 Jul 31;8:2771–2782. 
Available from: https://pubmed.ncbi.nlm.nih.gov/22851037/. 

14  Lin Y, Yang Z, Xu A, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and 
stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci 
Rep Internet. 2015 cited 2017 Apr 16;5:8997. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/25757764. 

15  Macdonald-Obermann JL, Pike LJ. Different Epidermal Growth Factor (EGF) Receptor Ligands 
Show Distinct Kinetics and Biased or Partial Agonism for Homodimer and Heterodimer 
Formation. J Biol Chem Internet. 2014 cited 2017 Jan 5;289:26178–26188. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/25086039. 

16  Brewer MR, Yun CH, Lai D, et al. Mechanism for activation of mutated epidermal growth factor 
receptors in lung cancer. Proc Natl Acad Sci U S A Internet. 2013 cited 2022 Feb 9;110. Available 
from: https://pubmed.ncbi.nlm.nih.gov/24019492/. 

17  Daub H, Weiss FU, Wallasch C, et al. Role of transactivation of the EGF receptor in signalling by G-
protein-coupled receptors. Nature Internet. 1996 cited 2015 Dec 10;379:557–560. Available 
from: http://www.ncbi.nlm.nih.gov/pubmed/8596637. 

18  PJ B, LY F, VM D, et al. In-depth qualitative and quantitative profiling of tyrosine phosphorylation 
using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl 
labeling. Mol Cell Proteomics Internet. 2010 cited 2021 Jul 30;9:84–99. Available from: 
https://pubmed.ncbi.nlm.nih.gov/19770167/. 

19  Gerritsen JS, White FM. Phosphoproteomics: a valuable tool for uncovering molecular signaling in 
cancer cells. Expert Rev Proteomics [Internet]. 2021 [cited 2022 Feb 24];18:661–674. Available 
from: https://pubmed.ncbi.nlm.nih.gov/34468274/. 

 

          

  



 
19 

 

 

CHAPTER 2 

REVIEW 

Phosphoproteomics: a valuable tool for uncovering  

molecular signaling in cancer cells 

Jacqueline Gerritsen, M.Sc.  

Forest M. White, Ph.D. 

 

Expert Review of Proteomics, 2021 18(8): 661-674 

 

  



 
20 

Abstract 
 

Background: Protein phosphorylation is crucial in regulating a plethora of cellular signaling processes. 

Many pathologies, including cancer, have been associated with aberrant phosphorylation-mediated 

signaling networks that drive altered cell proliferation, migration, metabolic regulation, and can lead to 

systemic inflammation. Phosphoproteomics, the large-scale analysis of protein phosphorylation sites, has 

emerged as a powerful tool to define signaling network regulation and dysregulation in normal and 

pathological conditions. 

Areas covered: We provide an overview of methodology for global phosphoproteomics as well as 

enrichment of specific subsets of the phosphoproteome, including phospho-motif enrichment of kinase 

substrates. We review quantitative methods, advantages and limitations of different mass spectrometry 

acquisition formats, and computational approaches to extract biological insight from phosphoproteomics 

data. Throughout, we discuss various applications and their challenges in implementation. 

Expert Opinion: Over the past 20 years the field of phosphoproteomics has advanced to now enable deep 

biological, and in some cases, clinical insight through the quantitative analysis of signaling networks. 

Future areas of development include Clinical Laboratory Improvement Amendments (CLIA)-approved 

methods for analysis of clinical samples, continued improvements in sensitivity to enable analysis of small 

numbers of rare cells and tissue microarrays, and computational methods to integrate data resulting from 

multiple systems-level quantitative analytical methods.  
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Introduction: Phosphoproteomics, signaling and cancer 

Phosphorylation is a reversible post-translational modification(PTM) that is critical for 

regulating inter- and intracellular signaling networks [1]. In mammalian cells, phosphorylation 

typically occurs on the side chains of three amino acids; serine, threonine and tyrosine, 

although phosphorylation of other residues has been reported  [2,3]. The addition of a 

phosphate group can have a variety of effects, as phosphorylated proteins may have altered 

conformation, stability, activity, subcellular localization, or protein-protein interactions. Due to 

its ability to modify protein function like a modular switch mechanism, phosphorylation is 

crucial to the regulation of signal transduction pathways [4]. 

Most major cellular processes, including proliferation, migration, apoptosis, and others, are 

regulated by protein phosphorylation-mediated signaling cascades that are also critical for 

relaying information about the external cell micro-environment and internal cell state.  

Dysregulated protein phosphorylation signaling due to aberrant kinase or phosphatase activity 

has been associated with a host of human pathologies [5–7]. Indeed, many hallmarks of cancer, 

including sustained proliferation, resistance to cell death, angiogenesis, avoiding growth 

suppression and invasion and metastasis can be linked to dysregulated signaling pathways and 

inappropriate kinase activity [8,9]. 

The transformative potential of multiple constitutively activated kinases, as well as the role of 

protein phosphorylation in regulating other aspects of biology, has fueled a deep interest in 

protein phosphorylation, including studies at the single protein level, protein complexes, 

enzyme-substrate relationships, or at the level of the phosphoproteome, the compendium of 
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protein phosphorylation sites in a given biological sample.  Phosphoproteomics, the large-scale 

analysis of protein phosphorylation sites, was pioneered in 2002 by Ficarro et al., and has 

developed rapidly over the past few decades [10]. Although phosphoproteomics may be 

performed using a variety of instruments and can encompass both targeted and discovery 

analyses, phosphoproteomics-based mapping of phosphorylation events in a large-scale, 

relatively unbiased manner mainly relies on mass spectrometry (MS)-based approaches [11,12]. 

Alternative techniques to measure protein phosphorylation include immunofluorescence / 

immunohistochemistry, phospho-flow, reverse-phase protein microarrays, and multiple 

different forms of western blotting. Although these techniques are widely used, they are 

dependent on antibody availability and specificity, and can be limited in the number of 

phosphorylation sites monitored per analysis [13,14]. By comparison, MS-based methods 

require minimal a priori knowledge, can identify and quantify >10,000 phosphorylation sites in 

a given sample, and provide high specificity by directly sequencing the site of protein 

phosphorylation.   

MS-based phosphoproteomics has the potential to uncover activated signaling networks and 

novel targets in cancer cells, yet there are some inherent challenges.  For instance, 

phosphorylation is a reversible modification that can be highly dynamic on the seconds-to 

minutes time scale [15]. Additionally, the phosphoproteome comprises approximately 0.1% of 

the proteome, and low-level phosphorylation events such as phosphotyrosine comprise only 

0.1-1% of the phosphoproteome [15]; in many cases these ultra-low-abundance 

phosphorylation events are critical to decipher cellular signaling networks mediating oncogenic 

initiation and progression. Thus, MS-based phosphoproteomics must be able to identify and 
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quantify ultra-low level, dynamic phosphorylation events. At the same time, some highly 

abundant proteins are phosphorylated at high stoichiometry, thus MS-based 

phosphoproteomics must also be able to handle a large dynamic range of phosphorylation.  

Despite these challenges, MS-based phosphoproteomics has already proven to be capable of 

generating valuable phosphorylation data leading to biological insight [16,17].  It has been used 

to detect and validate potential biomarkers and drug targets, for example in identifying kinases 

and their phosphorylation sites not previously known to be involved in cellular signaling in 

multiple disease states [18–20]. Recently, progress was made in the mechanistic understanding 

of the hedgehog pathway; Scheidt et al. showed that aberrant signaling in this pathway is 

correlated with various cancers [21]. Phosphoproteomics may lead to new biomarkers for drug 

development, and also can elucidate resistance mechanisms and other mechanisms of action in 

disease [22–24]. For example, as cancer therapy development becomes increasingly focused on 

personalized medicine, phosphoproteomics has been used to uncover cancer cell signaling 

networks in patient tissues and signaling signatures of response to tyrosine kinase inhibitors 

[25–28]. Here we will focus on MS-based phosphoproteomics, including technical aspects of the 

analysis, challenges in implementation, and applications where phosphoproteomics has been 

used to uncover novel information in cancer signaling networks. 

 

Sample preparation and phosphopeptide enrichment 

While MS is the method of choice for large-scale analysis of phosphorylated proteins, high-yield 

sample preparation with minimal losses of specific classes of proteins is important, especially 

for analysis of ultra-low level phosphorylation sites (Figure 1). The first steps in MS-based 
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sample preparation are cell lysis and protein extraction. Many protocols now utilize a urea-

based buffer to lyse cells, as it rapidly denatures proteins to preserve the physiological 

modification state of proteins, and is easily removed by desalting in later steps. If heated, urea-

based buffers can lead to the carbamylation of proteins; higher temperatures for longer times 

can exacerbate this effect. As an alternative, guanidine hydrochloride (Gnd-HCl) can be used, as 

this buffer allows for heating to high temperature for better solubilization, recovery and 

denaturation. However, Gnd-HCl can negatively impact digestion efficiency, so additional 

dilution needs to be performed prior to adding proteolytic enzymes. Although sodium dodecyl 

sulfate (SDS) is a powerful chaotropic agent that is widely used in molecular biology, western 

blotting, and protein arrays, it is challenging to remove in sample processing steps for MS 

analysis and can suppress protease activity and MS signal. Recent clean-up strategies like SP3 

and S-trap have been developed that can overcome this hurdle, although complete removal of 

SDS can still be challenging [29,30]. Acid-labile surfactant is an MS-friendly alternative to SDS, 

yet due to the relatively high cost of this reagent and the additional clean-up steps required, 

most groups favor urea-based cell lysis.  

Following cell lysis, denatured proteins are typically reduced and alkylated, most commonly 

using dithiothreitol (DTT) and iodoacetamide (IAA), respectively.[18] After chemical 

modification, digestion of proteins into peptides is performed in bottom-up proteomics. Trypsin 

is the most widely used protease, as it cuts C-terminal to arginine and lysine residues; due to 

their frequency in the proteome, trypsin tends to produce peptide lengths that are compatible 

with MS analysis [31]. Additional benefits include the wide availability and high specificity of 

trypsin.  Peptides generated by trypsin proteolysis tend to have improved ionization and 
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fragmentation due to the basicity of the arginine and lysine residues at the C-terminus, thereby 

enhancing sequencing by MS. As an alternative choice, Lys-C cleaves C-terminal to lysine and is 

compatible with a range of different buffer conditions. Lys-C is commonly used in combination 

with trypsin in a double-digestion protocol, with the goal of reduced missed cleavages [32]. 

While trypsin is the most commonly preferred protease, it is worth noting that many 

phosphorylation sites fall in regions of the protein that are not amenable to MS-analysis 

following trypsin digestion. To gain deeper coverage of the phosphoproteome, some 

researchers combine data resulting from proteolysis with multiple enzymes (typically a single 

enzyme at a time), including GluC (V8 protease), Chymotrypsin and Elastase [33–35]. Regardless 

of the protease used, it must be ensured that the lysis buffer used is compatible with the 

protease or diluted sufficiently as not to inhibit protease activity [36]. 
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Figure 5: General sample preparation protocol for mass-spec based phosphoproteomic analysis. Protein 
is extracted from in vitro cell cultures or in vivo tissue or liquid samples, followed by chemical 
modification. In bottom-up proteomics, proteins are digested into peptides. Quantification can be 
performed by multiple methods, including non-isobaric and isobaric labeling, many of which are applied 
after digestion and before enrichment. Phosphopeptide enrichment purification can be performed at the 
global or subset-enrichment level depending on the biological question or experimental goals. 
Enrichment steps are critical in ensuring detection of these low-abundant peptides before analysis. 
Created with biorender.com. 
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Following digestion, phosphoproteomic workflows can take multiple directions. Some groups 

choose to desalt peptides prior to chemical modification (e.g., non-isobaric or isobaric labeling, 

see below), while other applications may skip these steps and move straight to phosphopeptide 

enrichment. It is worth noting that the optimal workflow for a given application may not follow 

either of these approaches. We recommend developing a simple protocol with minimal 

unnecessary steps that could lead to increased peptide loss, especially for enrichment and 

analysis of low-level phosphopeptides from small amounts of starting material. 

Due to the low stoichiometry of phosphoproteins compared to non-phosphorylated proteins, 

enrichment is a key step towards successful detection of phosphorylated peptides [37]. For 

large-scale phosphoproteomic analysis, phosphopeptide enrichment is typically performed by 

either immobilized metal affinity chromatography (IMAC) or by metal-oxide affinity 

chromatography (MOAC). Both of these techniques depend on the affinity and coordination of 

negatively charged phosphate groups towards positively charged metal ions such as Fe3+ (IMAC) 

and Ti4+ (MOAC). [38] Since binding to the metal occurs through the phosphate moiety, 

phosphorylated serine, threonine, and  tyrosine appear to be enriched equivalently, although 

phosphorylated serine (pSer) and phosphorylated threonine (pThr) constitute approximately 

90% and ~9-10% of the phosphoproteome, respectively, with phosphorylated tyrosine 

comprising the remaining 0.1-1%. Since the selectivity of most metal ions for phosphorylated 

peptides is often imperfect, nonspecific binding of non-phosphorylated peptides can confound 

the analysis, especially for low-level samples [10,39].  Non-specific binding can be mitigated 

through a variety of techniques, including addition of organic acids to MOAC-based enrichment, 

chemical modification of carboxylate groups, or by using a nitrilotriacetic acid (NTA)-based resin 
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for Fe3+-IMAC.  While several studies have pointed to the complementary nature of IMAC and 

MOAC in phosphopeptide enrichment, [40] using an excess of either material enables similar 

degree of enrichment, and thus selecting either IMAC or MOAC should suffice for most large-

scale phosphoproteomic analyses [41]. For most applications, sufficient depth of coverage can 

be achieved with a simple one-step enrichment protocol (e.g., NTA-Fe3+ IMAC spin columns), 

and additional depth can be afforded by fractionation of the sample prior to phosphopeptide 

enrichment of each fraction [42]. 

Using any of the above strategies to enrich phosphopeptides from mammalian cell lysate for 

analysis on a high-resolution mass spectrometer, it is fairly straightforward to identify 

thousands of high confidence phosphopeptides from a single sample.  While large-scale data 

generation has become relatively easy, unfortunately, gaining biological understanding from 

this data remains challenging, largely due to the complexity of the phosphoproteome.  

Moreover, the overwhelming abundance of pSer sites are generally static (e.g., unaltered by a 

given biological perturbation), and their role in regulating the biology of the system is poorly 

understood.  For instance, in one of the early large scale phosphoproteomics analysis, Olsen et 

al. identified and quantified over 6,000 phosphosites in HeLa cells stimulated with EGF at 

several time points [43]. Despite this massive data set, ~85% of the phosphosites were 

unaffected by the stimulation conditions. As might be expected given their overall low 

abundance in the phosphoproteome only ~103 pTyr sites out of 6,600 total phosphorylation 

sites (~1.6%) were identified in this analysis, despite stimulation of the epidermal growth factor 

receptor (EGFR), a receptor tyrosine kinase (RTK) that is highly expressed in these cells. Similar 

results have been seen for a range of other systems, including recent large-scale 
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phosphoproteomic studies of human tumors, where ~34,000 total phosphopeptides were 

identified and quantified, yet only ~2% of these were pTyr sites [44,45].  Since aberrantly 

activated tyrosine kinases are known to be oncogenic and tyrosine phosphorylation sites on 

kinase activation loops are known to be critical regulators of kinase activity, the paucity of 

tyrosine phosphorylation sites in these data sets would suggest that some of the potentially 

most informative signals might be missed in these large-scale studies [46–48]. 

 

Enrichment of subsets of the phosphoproteome 

In order to access low-abundance phosphorylation sites within the complex, high dynamic 

range phosphoproteome, it is often necessary to perform an additional enrichment step.  For 

instance, if the goal is to identify and quantify RTK-driven signaling networks in a given cell line 

or tissue specimen, specific enrichment for pTyr-containing proteins or peptides will 

significantly improve the analysis [49–51]. Perhaps the most common method for pTyr-

enrichment involves using pan-specific anti-pTyr antibodies to immunoprecipitate pTyr-

containing peptides following tryptic digestion [49,50].  There are multiple pan-specific anti-

pTyr antibodies available commercially; while each one has affinity for a range of pTyr sites, 

each tends to have some degree of bias. We have found that mixing several antibodies together 

can give greater overall coverage of the pTyr sites in a given biological sample [52,53]. As with 

most enrichment methods, the amount of non-specific binding in pTyr-immunoprecipitations 

tends to increase with decreasing sample amount. To address this issue, a second stage of 

enrichment (e.g., with an Fe3+-NTA IMAC spin column) can be used to reduce the level of non-

phosphorylated peptides present in the pTyr IP. Alternative strategies to enrich pTyr peptides 
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or proteins have been explored.  In cell signaling networks, Src-homology 2 (SH2) domains bind 

to pTyr sites within a protein or on a different protein to regulate activity and protein-protein 

interactions (i.e., in the context of recruitment of adaptor proteins to an activated RTK) [54]. 

Taking advantage of their binding affinity, several groups, including by Bian et al., have utilized 

SH2 domains for enrichment of pTyr containing peptides, and have also engineered SH2 

domains for increased binding affinity [55,56]. These “SH2 superbinders” have enabled 

enrichment of thousands of pTyr sites, yet different SH2 domains appear to have different 

specificity, thus sequential analysis or mixing SH2 domains for a given analysis might provide 

increased depth of coverage [57]. 

The strategy of enriching phosphorylation site subsets for deeper analysis can be applied to a 

range of biological applications requiring cellular signaling network analyses. For instance, cells 

respond to many environmental contaminants and cytotoxic chemotherapies by initiating a 

DNA damage response; in both contexts this response is critical for halting the cell cycle, fixing 

DNA lesions / adducts, and enabling the cell to survive the damage. To identify critical 

regulators of the DNA damage response, cells were treated with ionizing radiation and 

phosphopeptides were enriched using a combination of phosphorylation site specific antibodies 

[58]. In this study, the non-specificity of the antibodies resulted in enrichment and 

identification of hundreds of phosphorylation sites potentially involved in DNA damage 

response signaling networks.  An alternative approach is to use phospho-motif specific 

antibodies that recognize phosphorylation sites within a particular amino acid sequence. For 

instance, ATM and ATR kinases tend to phosphorylate serines or threonines followed by a 

glutamine; ATM/ATR substrate phospho-motif antibodies therefore enrich pSer or pThr 
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followed by glutamine (e.g., pSQ/pTQ) [59]. Using these antibodies for peptide IP from 

proteolyzed cell lysate allows for the selective enrichment of hundreds of pSQ/pTQ containing 

peptides in a single analysis. Similarly, the ERK 1/2 mitogen activated kinases can regulate cell 

proliferation and tend to phosphorylate S or T residues in the context of a proline in the -2 

position and in the +1 position. ERK 1/2 substrate motif antibodies can therefore be used to IP 

hundreds of peptides containing a PXXpSP or PXXpTP motif, where X represents any amino acid. 

In both of these cases, as with multiple other available phospho-motif specific antibodies, it is 

critical to note that all peptides that match these phosphorylation motifs are not necessarily 

substrates of the given kinase [60]. Indeed, many peptides that happen to have the motif of 

interest are quantitatively unaffected by activation or inhibition of the kinase of interest. As 

with pTyr enrichment, the complexity of the phosphoproteome tends to obscure many of these 

phosphomotif-containing peptides; recent large-scale phosphoproteomics data sets contain 

tens of pSQ/pTQ peptides, while specific enrichment using phospho-motif antibodies would 

likely provide over five hundred pSQ/pTQ-conatining peptides from the same sample [44,59]. It 

is worth noting that phosphorylation subset enrichments can be performed serially on the same 

sample to gain increased depth of coverage on multiple biological pathways [61]. For instance, 

cancer cells are often driven by aberrantly activated RTKs that signal through the ERK 1/2 MAP 

kinases to drive proliferation while also activating protein kinase B (AKT) to promote cell 

survival.  Proliferating cells incur DNA damage during replication and therefore activate a DNA 

damage response. Each of these networks could be interrogated in a given biological sample, or 
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across multiple biological samples, by serial IP using pan-specific and phospho-motif specific 

antibodies, followed by global phosphoproteomics on the resulting supernatant.  

Quantitative phosphoproteomics methods 
 

As mentioned above, with either subset enrichment strategies or with global 

phosphoproteomics analyses, it is now possible to identify thousands to well over 10,000 

phosphorylation sites from a given biological sample, respectively. Despite this plethora of data, 

gaining biological knowledge from these analyses is still quite challenging, as identification of a 

phosphorylation site on a protein in a given sample does not necessarily mean that the site is 

regulatory of the biological processes in that sample. To infer biological knowledge from 

phosphoproteomics, quantitative data comparing phosphorylation levels across different 

conditions (i.e., cell stimulation with a mitogen, treatment with a given kinase inhibitor, or 

treatment with a chemotherapy agent, among others) is often required. Multiple label-free or 

label-based quantification strategies can be employed to determine the relative abundance of 

phosphorylation sites between various conditions of a biological system [62,63]. The simplest of 

these approaches is label-free quantification, in which the amount of a given phosphorylation 

site, typically estimated by the area under the curve (AUC) of the chromatographic elution 

profile of the precursor ion, is compared across phosphoproteomic analyses of different 

biological conditions. This approach is straightforward, can be highly quantitative, does not 

require additional sample handling, and can be used to compare across hundreds of samples 

without requiring a normalization channel. Moreover, since quantification typically occurs from 

the precursor signal intensity, dynamic range signal compression, e.g., from MS/MS-based 
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quantification techniques, see below, may be less of an issue. On the other hand, the vast 

number of phosphopeptides present in global phosphoproteomics experiments can lead to 

highly complex full scan mass spectra (MS1 spectra), and may result in overlap of isotope 

envelopes and inaccurate quantification, especially on mass spectrometers with lower resolving 

power. Additionally, sample handing and chromatographic reproducibility are critically 

important for accurate label-free quantification. More complex workflows, including 

phosphopeptide IP’s, can adversely affect the accuracy of label-free quantification. Early 

versions of label-free quantification relied on spectral counting, in which the number of MS/MS 

spectra for a given precursor were compared across different conditions. This approach is most 

accurate when applied to highly abundant peptides and can be confounded by low-level 

peptides (typically less than 5 spectral counts), where stochasticity between runs can confound 

quantitative accuracy. 

As an alternative to label-free quantification, multiplexed, label-based strategies have been 

developed.  These approaches fall into two categories: non-isobaric labels (MS1 quantification) 

and isobaric labels (MS/MS quantification). Non-isobaric labels, as the name implies, utilize 

different numbers of heavy isotopes on each tag to generate labels for each sample that differ 

in mass. Non-isobaric labels can be applied at multiple steps in sample generation or sample 

processing. Stable Isotope Labeling with Amino Acid in Cell Culture (SILAC), as described by 

Mann’s group, is one of the most commonly used non-isobaric multiplexing methods [64]. In 

SILAC, cells from one condition are cultured in media that contains one or more heavy-isotope 

labeled amino acids, while cells from another condition are cultured in media with 

corresponding light-isotope labeled amino acids. Lysine or arginine are most commonly used 
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for labeling to ensure that tryptic peptides will be quantifiable. Although SILAC labeling can be 

expensive, especially for in vivo applications [65,66], the protocol is relatively easy to 

implement, and since labeling occurs during cell culture (or organism growth), samples can be 

mixed early in sample processing and quantification is relatively unaffected by variation in 

sample handling.  However, SILAC is typically limited to multiplexing of 2 or 3 conditions and 

results in increased complexity of full scan mass spectra that can adversely affect quantification 

dynamic range [67]. SILAC has frequently been used in combination with phosphoproteomics to 

quantify cancer cell signaling networks [68–71]. For instance, Zhang et al.  combined pTyr IP 

with SILAC to quantify the adaptive response of lung adenocarcinoma cells to EGFR inhibition 

[72], and Cunningham et al. combined SILAC with global phosphoproteomics to define 

fibroblast growth factor receptor (FGFR) signaling networks in triple negative breast cancer 

[73]. 

Beyond SILAC, non-isobaric chemical labels have also frequently been used for quantitative 

analysis of phosphorylation-mediated signaling networks. In this approach, peptides from each 

sample are chemically modified after proteolytic digestion, with each sample being tagged with 

the same label with different number of heavy isotopes.  For instance, di-methyl labels, with 

one sample labeled with 12C-H2 formaldehyde and other samples labeled with 12C-D2 or 13C-

D2 formaldehyde offer an inexpensive alternative to SILAC and have been used to elucidate 

phosphorylation changes following cell stimulation in a variety of contexts [74,75]. This 

approach is similarly limited to multiplexing of 2 or 3 samples and can be affected by 

complexity of MS1 spectra due to the combination of multiple non-isobarically tagged samples.   
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Isobaric tags label all samples with a tag of the same mass; quantification occurs in MS/MS 

through production and detection of reporter ions generated during fragmentation [76,77]. 

Isobaric tags enable multiplexing of up to 18 samples [78] in a single analysis with relatively 

minimal increase in the complexity of MS1 spectra. This high degree of multiplexing reduces MS 

analysis time while also reducing inter-analysis variability, including chromatographic 

differences and precursor selection for MS2. While inter-analysis irreproducibility in discovery-

mode analyses can still be a problem for larger sample sets [27], 16- or 18-plex isobaric tags 

significantly reduce this potential problem. Since the m/z ratio for each tagged peptide is 

identical from all samples, isobaric tags have been used for ‘boost’ experiments for 

phosphoproteomics, among other applications, wherein one of the samples is present in much 

higher amount, improving the signal-to-noise ratio in full scan mass spectra and driving 

selection of peaks for MS/MS. This approach can improve sensitivity, enabling analysis of 

smaller amounts of samples in the ‘non-boost’ channel, but may lead to decreased quantitative 

accuracy [79]. Dynamic range compression, one of the major potential problems with isobaric 

labels, is thought to be due to co-isolation of multiple peptides for MS/MS. This problem is 

exacerbated in complex mixtures, including global phosphoproteomics, due to the massive 

number of peptides in the sample. Although narrowing the isolation window can reduce 

dynamic range compression, MS3 may provide more accurate quantification as demonstrated 

by McAllister et al. [80], but may not be applicable to low-abundance peptides including pTyr 

and phospho-motif enriched peptides [62,79]. Enriched subsets of the phosphoproteome tend 

to be much less complex, and thus dynamic range compression is less of an issue, although it 

can still adversely affect quantitative accuracy.  In addition to dynamic range compression, 
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isobaric labels tend to be similar in cost to SILAC, and introduce at least one additional step in 

the workflow, thereby risking sample loss. Even with these issues, isobaric labeling has enabled 

a wide range of quantitative phosphoproteomic analyses, including quantification of pTyr 

dynamics following growth factor stimulation [81,82], quantification of pTyr signaling networks 

from formalin fixed parrafin embedded (FFPE) sections of human tumor specimens by Kohale et 

al. [26], and quantification of adaptive response to therapy in cancer models and tumor tissues 

[63,83,84], among many others. 

MS-based analysis of the phosphoproteome: applications and challenges 

Proteomics experiments can be generally divided into top-down / middle down and bottom-up 

proteomics.  In top-down proteomics, intact proteins are ionized and analyzed by mass 

spectrometry (MS) in the absence of a digestion step [85]. In middle-down proteomics, typically 

a single digestion step, e.g., Cyanogen bromide (CNBr)-digestion, is used to produce a few large 

protein fragments which are then ionized for MS analysis [86]. Both of these approaches enable 

identification of proteoforms: the post-translation modification ‘code’ present on a given 

protein, although middle-down approaches can suffer from data integration requirements to 

reconstitute the intact protein [87,88]. Although top-down and middle-down proteomics have 

been extensively used to analyze the post-translational modification code of histones, to date 

there are only a few applications of these approaches to the phosphoproteome [89–92], with 

no in-depth analysis of signaling network alterations between conditions. The dearth of top-

down phosphoproteomics experiments might be due to the inherent challenges of top-down 

proteomics, as characterization of intact proteins, and especially PTMs on intact proteins, can 
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require significant time, effort, and expertise. Additionally, dynamic PTMs such as 

phosphorylation are highly challenging, as each new phosphorylation site results in a new 

proteoform, and thus a dozen or more sites on a given protein may lead to a combinatorial 

explosion of protein states. With that said, top-down and middle-down phosphoproteomics are 

needed to define the associations between phosphorylation sites across a given protein and to 

answer fundamental questions, including whether EGFR or other RTKs are phosphorylated on 

multiple sites on the C-terminal tail in a given isoform, or whether each of the multiple sites are 

mostly exclusive to a given isoform.  Almost all phosphoproteomics experiments have been 

performed by bottom-up proteomics, where proteins are proteolyzed to peptides, typically 

using enzymes such as trypsin (see above). In general, bottom-up proteomics experiments are 

much easier compared to top- or middle-down experiments, but this ease of analysis comes at 

the cost of information that may be critical for understanding protein function and signaling 

network mechanisms. For instance, can phosphorylation of an inhibitory site, e.g., the C-

terminal phosphorylation site on Src-family kinases, co-occur with phosphorylation of the 

activation loop? Since these sites are separated by ~100 residues, this information is only 

available by top-down or middle-down analyses.  

Bottom-up proteomics can be sub-divided into three subcategories based on the data 

acquisition method: data-dependent acquisition (DDA), data-independent acquisition (DIA) and 

targeted phosphoproteomics [93](Figure 2). These methods mainly differentiate from each 

other by the manner in which specific ions are chosen for fragmentation. DDA, also known as 

discovery mode, generally selects the most abundant peptides for isolation and fragmentation. 

When coupled with fractionation, DDA experiments can provide deep characterization of the 
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phosphoproteome [61,94,95], and are still the most common approach to signaling network 

analyses. Although the total number of detected peptides is generally higher with DDA 

compared to DIA or targeted approaches, DDA tends to suffer from run-to-run irreproducibility 

of identified and quantified peptides, due to the stochastic nature of peptide sampling. DDA-

based quantification of cancer signaling networks in cell lines and tumors can suffer from the 

‘sparse-matrix’ problem, where only a subset of phosphorylation sites are quantified across all 

samples, even when coupled with multiplexed isobaric reagents [27,96,97].  In DIA, pre-set 

windows of m/z ratios are sequentially isolated, fragmented, and analyzed, with the goal of 

covering the full m/z ratio rapidly enough to fragment and analyze all peptides present in a 

given sample. Since peak selection is absent in DIA, run-to-run reproducibility tends to be much 

greater compared to DDA.[98] However, depending on the width of the isolation window and 

the sample complexity being analyzed, DIA can be adversely affected by dynamic range, e.g., 

loss of the lowest abundance fragments in the presence of highly abundant fragments. Due to 

the complex MS/MS spectra, DIA is also best applied with a library of spectra, typically obtained 

from multiple DDA experiments, and is suboptimal for discovery. However, more recent DIA 

experiments have utilized smaller isolation windows that are on-par with DDA experiments; 

these new settings suggest a powerful combination of high reproducibility with the potential 

for discovery of novel signaling components. Quantification with DIA tends to occur through 

label-free, as the duty cycle for full scan MS is suboptimal for non-isobaric labels, and the mixed 

MS/MS spectra are suboptimal for isobaric labels. As mentioned above, label-free 

quantification for DIA can be problematic when working with more complex workflows 

involving IP of pTyr or phospho-motifs, both of which are highly susceptible to slight variations 
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between sample processing steps. Nevertheless, DIA methods have been applied to analysis of 

signaling networks for multiple applications [99–101], and new tools are emerging to facilitate 

these approaches [102].  

 

Figure 6: Types of MS data acquisition modes in bottom-up proteomics. data dependent acquisition 
(DDA) selects the most abundant peptides which are then isolated and fragmented sequentially. Data 
Independent Acquisition (DIA) isolates and fragments peptides within defined m/z windows. In targeted 
acquisition mode, the instrument is set up to detect and fragment selected peptides that are defined a 
priori. In parallel reaction monitoring (PRM), multiple fragments per precursor can be detected at the 
same time. In SRM or MRM, fragment ions from a given precursor are typically detected sequentially. 
Created with biorender.com. 

Targeted phosphoproteomics provides consistent reproducibility with high accuracy 

quantification and can provide high sensitivity, especially when coupled with internal standard 

trigger peptides, but it comes at the cost of discovery and coverage as shown in our research 

group [27].  As the name implies, targeted methods require prior knowledge about the signals 

(e.g., phosphopeptides) of interest, as the instrument method is typically constructed to select 

the precursor m/z ratios of interest for fragmentation and quantification. Targeted methods 

typically utilize multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM) 
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based methods to isolate and fragment the precursor of interest. In MRM, specific fragment 

ions are detected sequentially, typically on a triple quadrupole MS, while in PRM, all fragment 

ions are detected in the same analysis, on an ion trap or TOF MS. Although targeted methods 

have historically been used to quantify a few targets per analysis, MRM-based targeted 

phosphoproteomics have been used to monitor signaling networks. In one example application 

by Wolf-Yadlin et al., 226 pTyr-containing peptides were quantified by MRM to assess the 

dynamic signaling network response to EGF stimulation at multiple time points [103]. MRM 

methods have also been used to quantify the DNA damage response to chemotherapy; in this 

example, a combination of phospho- and non-phosphopeptides were targeted for 

quantification [104,105]. In targeted analyses with a large number of targets, elution time 

windows have allowed for longer detection times while maintaining high duty cycles. More 

recently, heavy-isotope labeled internal standard (IS) trigger peptides have bypassed the need 

for elution time windows; in this approach, fragmentation of the heavy labeled IS trigger 

peptide is coupled with on-the-fly pseudo-spectral matching to a known fragment ion 

fingerprint [106]. Matching of multiple fragment ions initiates high resolution MS/MS of the 

endogenous peptide, and quantitative data can be generated by comparing the light:heavy 

ratio of multiple fragment ion peaks. The SureQuant framework available on selected 

ThermoFisher MS instruments allows for monitoring of hundreds of IS-peptides. We have 

recently developed an approach (SureQuant pTyr) to quantify pTyr signaling networks 

comprised of ~400 pTyr peptides in EGF-stimulated cell lines and across dozens of human 

colorectal tumor specimens [27]. Although SureQuant pTyr provides quantitative data for each 

detected peptide in each sample, quantification relies on one-point calibration and assumes a 
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linear dynamic range. To generate absolute quantification data with internal standard curves 

for each peptide, we developed Multiplex Absolute Regressed Quantification with Internal 

Standards (MARQUIS), a multiplexed MRM- or PRM-based targeted approach in which different 

amounts of heavy-isotope labeled IS phosphopeptides were added to each biological sample. 

Following the addition of these reference peptides, multiple samples were isobarically labeled 

and combined for analysis [107]. Reporter ions from MS/MS of the TMT-labeled endogenous 

peptides could then be regressed against the internal standard curve provided by MS/MS of the 

TMT-labeled IS peptides. Application of this approach to ~20 pTyr phosphorylation in the EGFR 

signaling network provided absolute quantification, e.g., copies/cell, for the temporal dynamic 

profiles for each phosphorylation site and relative stoichiometry information for multiple sites 

on the EGFR C-terminal tail. In the future, combining a MARQUIS-style approach with 

SureQuant pTyr may provide absolute quantification of hundreds of nodes in the network, 

enabling more mechanistic computational modeling of cancer cell signaling networks. 

Computational analysis of phosphoproteomic data  

While technological and methodological advancements have greatly expanded the capabilities 

of phosphoproteomics, the ultimate impact depends on the biological knowledge that can be 

gleaned from the data. In this section, steps in data analysis as well as potential tools to gain 

biological insight will be discussed (Figure 3). 

High quality / high accuracy phosphopeptide identification and quantification can be critical for 

defining cancer cell signaling networks from phosphoproteomic data [108]. Since each 

phosphopeptide is typically a ‘one-hit wonder’, high stringency in data filtering is recommended 
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to remove as many false positive assignments as possible and to localize the phosphorylation 

site to the correct residue, if possible. While restrictive filters may compromise the ultimate 

data set size, high quality data facilitates computational data analysis and ultimate biological 

insight.   

 

Figure 7: Steps in data processing and downstream analysis tools for phosphoproteomic data. Top: 
multiple data processing steps are needed in order to identify and quantify phosphorylation sites from 
MS/MS data, including database searching, site localization and quality filtering for identifications. 
Depending on the quantitative method, data may go through additional filtering, normalization, 
clustering, and statistical analysis as a first pass at identifying differentially phosphorylated peptides. 
Bottom: more nuanced biological information can be gained through additional computational analysis, 
including temporal analysis, kinase / substrate or pathway enrichment of phosphorylation subsets, and 
machine learning approaches to identify modules and pathways of phosphorylation-mediated signaling 
networks. Each of these tools can lead to predicted functions for phosphorylation sites in the data. 
Validation experiments should be performed to confirm analysis results. Created with BioRender.com. 
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A vast number of computational methods have been developed to extract cellular signaling 

network information from phosphoproteomic data [109]; here we will highlight a few general 

computational data analysis strategies as well as some specific instances where tools have been 

applied to provide novel biological insight. As a first pass approach, clustering methods, 

including hierarchical clustering, k-means-clustering, self-organizing maps, and others, have 

been applied to reveal associations between phosphorylation sites and to thereby define 

'modules’ of co-regulated sites across different biological conditions. In some cases, clustering 

has helped to predict the function of unknown phosphorylation sites, for instance when they 

are co-regulated with multiple sites of known function [43,49,110]. Although different 

clustering methods can be applied to extract additional information from a given data set, 

combining the results from multiple clustering methods can reveal consensus modules and 

provide novel insight.  As one example of this strategy, the multiple cluster analysis 

methodology (MCAM) algorithm was developed by Naegle et al.  Application of MCAM to 

dynamic phosphotyrosine data uncovered phospho-site specific interactions, including a novel 

interaction between EGFR phosphorylation and the PDLIM1 cytoskeletal protein [111,112]. Co-

correlation can also be used to identify phosphorylation sites that are co-regulated across 

multiple biological conditions. This approach was applied to studies of pTyr signaling networks 

in glioblastoma and non-small cell lung cancer tumor tissues to highlight patient-specific 

activated signaling networks [26,113,114]. To gain additional insight into signaling networks 

from large-scale phosphoproteomic datasets, multiple computational approaches have been 

developed to predict kinase-phosphorylation site associations. These algorithms, e.g., ptmRS 

and Thesaurus, typically rely on kinase motifs, known substrates, or a combination of motifs, 
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substrates, and protein-protein interactions to predict kinases that may be responsible for 

phosphorylating particular sites in the data [115–122].  As with all predictive algorithms, the 

results from these analyses should be confirmed through additional experiments, e.g., by 

chemical or genetic perturbation of the kinase.   

Integrative ‘omics, combining information from several different types of data, can provide 

additional insight into the structure and function of phosphorylation mediated signaling 

networks. As one example, proteogenomics, combining proteomic and phosphoproteomic data 

with genomic and transcriptomic data has been used to classify subtypes of different human 

tumors and identify putative activated signaling networks and central nodes [44,123–125]. 

Other integrative ‘omics tools have combined proteomics, phosphoproteomics, transcriptional 

profiling, and metabolomics to attempt to characterize the role of phosphorylation sites in 

regulating the state of a given system and to identify targeted nodes [44,126–128]. Another 

computational tool that allows integration of multiple datatypes is partial least squares 

regression (PLSR), which utilizes input matrices X (e.g., phosphoproteomic dataset) and Y (e.g., 

phenotypic outcome such as proliferation) to build a predictive model correlating associations 

between phosphorylation sites and phenotypic outcome. We have previously used this 

approach to identify pTyr sites associated with migration and proliferation in HER2 

overexpressing mammary epithelial cells and to highlight a counter-intuitive role for the ERK 

1/2 MAP kinases in EGFRvIII expressing glioma cells [96,97,129]. Frejno et al. used a PLSR-based 

analysis on multi-omics data to determine the landscape of proteome activity in a large set of 

cancer cell lines, with the goal of predicting drug response and novel functional associations 

from these networks [130]. Other approaches have been developed over the years to integrate 
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different types of omics as well as non-omics data, such as immunohistochemical data [83,131]. 

Computational analysis can be challenging with discovery-mode proteomic or 

phosphoproteomic datasets, due to the sparse matrix problem associated with missing 

observations between biological replicates or different biological conditions. From a 

computational perspective, one option is to disregard all peptides that are not quantified across 

all conditions; unfortunately this approach radically reduces the dataset size [96]. [An 

alternative approach is to impute quantitative values for the missing data, typically zeros, or an 

average of the remaining channels. Although this allows conservation of more peptide 

information, it risks false hypothesis generation in downstream analysis, as it assumes high 

similarity between biological conditions [132]. Targeted data acquisition approaches (see 

above) help to reduce the sparse matrix problem and should enable improved computational 

analysis. 

Future of phosphoproteomics 

MS-based phosphoproteomics has made great strides over the past decade in terms of 

detection limits, speed, accuracy and resolution. Phosphoproteomics has emerged as a 

powerful tool for analysis of signaling networks in diseased tissues and model systems, both in 

vivo and in vitro. Nonetheless, one of the main challenges in MS-based phosphoproteomics is 

the application to limited sample amounts / low abundance model systems. Progress in this 

area has enabled successful phosphoproteomic analysis on extracellular vesicles secreted from 

cancer cells to identify potential biomarkers in glioblastoma-EGFRVIII variant [133]. 

Additionally, methods have emerged that address the challenge of limited starting material 
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when working with patient tissue specimens [134], and phosphoproteomic analyses have now 

been successfully performed on FFPE tissue samples [26,135]. Simultaneously, given the value 

of patient samples and the importance of multi-omics analysis, methods are being developed 

that allow for simultaneous extraction of DNA, RNA and protein from samples [136]. 

Another challenge for phosphoproteomics is spatial analysis, due to the highly dynamic nature 

of this PTM. With the use of proximity labeling strategies, Liu et al. demonstrated the ability to 

monitor altered phosphorylation patterns due to ER stress in in vitro and in vivo systems [137]. 

We previously used phosphoproteomics to characterize the immediate-early signaling dynamics 

in the EGFR network and proximity ligation assays (PLA) to characterize dynamic recruitment of 

adaptor proteins to the membrane [82], or total internal reflection fluorescence (TIRF) 

microscopy to monitor in vivo SH2 binding dynamics and binding site kinetics [138]. Being able 

to directly quantify spatially resolved signaling networks by MS-based phosphoproteomic 

analysis has yet to be accomplished.    

Another fascinating development in the field is single cell proteomics (scProteomics)  [139]. This 

type of analysis has the potential to provide information about co-occurrence of 

phosphorylation sites and states of individual cells and would therefore enable significantly 

improved definition of cellular signaling networks. Although progress has been made at the 

proteome level using nanodroplet sample preparation platforms, phosphopeptide analysis 

remains challenging, as most signaling nodes are well below detection limits thus far [140].  

Continued improvements in MS instrumentation, phosphoproteomic methodology, and 

computational modeling algorithms will facilitate the application of MS-based 
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phosphoproteomics to additional systems, including tissue microarrays, needle biopsies, and 

rare liquid tumors, and the interpretation of this data to define activated signaling networks in 

these tissues. 

Expert opinion 

Quantitative MS-based phosphoproteomics has begun to emerge as a powerful technique 

enabling the identification of activated oncogenic signaling networks from a variety of biological 

systems, including in vitro and in vivo model systems as well as patient tumor tissue specimens.  

While global phosphoproteomics can provide an impressive overview of the phosphorylation 

state of thousands of proteins within a given sample, this analysis method may fail to identify 

and quantify low-abundance sites, e.g., pTyr and many oncogenic kinase substrates, that may 

be critical regulators of biological function, especially in cancer cell signaling. Accessing these 

low abundance sites requires enrichment of selected subsets of the phosphoproteome, often 

through immunoprecipitation. These experiments can be more technically challenging 

compared to global phosphoproteomics, as the low amount of phosphorylated peptides are 

strongly impacted by sample losses during processing steps. Nonetheless, pTyr 

phosphoproteomics can provide insight into activated tyrosine kinases regulating a range of 

oncogenic phenotypes, including cellular migration, proliferation, invasion, therapeutic 

resistance, among others.  Advances in pTyr proteomics, including higher affinity reagents for 

pTyr enrichment, targeted approaches for monitoring selected pTyr phosphorylation sites, and 

MS-instrumentation improvements to provide enhanced sensitivity, have begun to make this 

approach more turn-key and accessible to a wider range of proteomics research labs and core 

facilities.  
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The next step in the evolution of phosphoproteomics and especially for pTyr proteomics may be 

development of a CLIA (Clinical Laboratory Improvement Amendments) approved analysis 

workflow to provide clinical insight for patient stratification and therapeutic selection based on 

signaling network activation in clinical samples. Moving to CLIA approval will require 

standardization of standard operating procedure (SOPs), dedicated instrumentation, and highly 

reproducible quantification. Although difficult to implement, CLIA approval may be facilitated 

by targeted approaches such as SureQuant pTyr, where heavy-isotope encoded standard 

peptides are included in every analysis, yielding accurate quantification even in the context of 

sub-optimal pTyr enrichment. Recently we implemented SureQuant pTyr to identify activated 

signaling networks in dozens of human colorectal tumor specimens; importantly, this method 

was performed with commercially available columns, reagents, and instrumentation, and thus 

should be accessible to most, if not all, proteomics facilities.  

Phosphoproteomics continues to be limited by sample requirements, with many studies 

requiring relatively large amounts of frozen tissue specimens for in vivo studies, or multiple 

plates of cells per condition for in vitro studies. It is worth noting that multiple labs have been 

developing improved methods to enable analysis of signaling networks from smaller amounts 

of starting material, and continued developments over the next several years should enable the 

analysis of pTyr signaling networks from tissue microarray (TMA) samples, or from small 

numbers of rare cell types.  While starting material requirements may not rival genomic or 

transcriptional profiling experiments, both of these technologies have amplification steps that 

are currently not possible with proteomic approaches. Importantly, without amplification it is 

challenging to perform phosphoproteomics at the single cell level. While biologically relevant 



 
49 

phosphorylation sites span a large range of copy numbers in different cell types, we can take, as 

an example, a phosphorylation site that may be present at a reasonably high expression level of 

10,000 copies/cell. Detection of this site in a single cell would require low-zeptomole sensitivity 

(10,000 copies/cell equates to ~1.7x10-20 moles/cell (17 zeptomoles/cell), assuming no losses in 

sample processing and high efficiency ionization. At this point, it seems that single cell 

phosphoproteomics might be limited to very high expression phosphorylation sites, which may 

be less informative regarding activated signaling networks. Continued technological 

development is clearly required to advance this aspect of the field forward.  Non-MS-based 

approaches, including immunohistochemistry, immunofluorescence, and phosphoflow can 

accomplish single-cell signaling network analysis, albeit with limited and targeted detection of 

selected phosphorylation sites. 

One other challenge for phosphoproteomics is data integration with other systems-level 

measurements that may be performed on additional aliquots of the same samples. For 

instance, integration of phosphorylation data with transcript expression (bulk or single cell), 

metabolomics, methylation, genome sequencing, and other ‘omics measurements, will provide 

significant insight into the co-regulation of these often dynamic regulatory networks. While 

some methods (see above) have been developed to attempt to integrate these data, our 

understanding of how transcript expression is related to signaling network regulation, and vice-

versa, is still elementary. Development of improved computational algorithms, including 

artificial intelligence / machine learning approaches, are needed to define the linkages between 

these often highly complex data sets. 
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Over the past two decades the field of phosphoproteomics has experienced explosive growth in 

new tools, technologies, algorithms, and applications that have advanced the field to enable 

deep biological and clinical insight. Continued development of the field will lead to more stable 

technologies that can be applied to identify therapeutic targets, track therapeutic efficacy in 

clinical trials, and identify non-genomic adaptive response / resistance mechanisms that 

adversely impact patient survival. 
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Abstract 
 

Receptor tyrosine kinases (RTKs) play a crucial role in cellular processes through 

complex phosphorylation-mediated signaling networks. Their aberrant activity in disease has 

resulted in many efforts to understand the underlying mechanisms that explain their contribution 

to disease. However, RTK crosstalk and downstream signaling redundancy hinder the 

identification of signaling components triggered by individual RTK members. One powerful 

approach that allows for mechanistic characterization of RTKs is the use of tyrosine-to-

phenylalanine (Y-to-F) mutational studies, in which intracellular tyrosine residues are 

systematically mutated to non-phosphorylatable residues. Different Y-to-F mutations induce 

subtle but distinct RTK-specific signaling and phenotypic perturbations in a cellular environment. 

Both signaling and cellular responses driven by an RTK can then be functionally linked by coupling 

proteomic experiments with computational tools. Here, we review the mechanistic and 

translatable insights gained from these types of studies, as well as discuss current approaches to 

collect and analyze this type of data. Finally, we offer a future perspective discussing the potential 

value current advances in our tools and knowledge can add to the level of biological insight we 

can gain from this mechanistic research, especially as throughput and sensitivity of methods 

continues to improve.  
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Receptor Tyrosine Kinases in Disease 

Phosphorylation Receptor tyrosine kinases (RTKs) are key regulators of a plethora of cellular 

processes including cell proliferation, migration, differentiation, and metabolism[1,2]. 

Regulation occurs as RTKs transfer and translate signals from the extracellular environment to 

an intracellular response. Given their critical cellular function, aberrant RTK signaling has been 

associated with a variety of human diseases, including many cancers[3]. Large-scale omics 

studies have revealed various mechanisms through which abnormal RTK activation can occur, 

including gene amplification, autocrine activation, chromosomal rearrangements, and gain-of-

function mutations[4–7]. As a result, many tyrosine kinase inhibitors (TKIs) and monoclonal 

antibodies (MAbs) have been developed and approved over the past few decades that target 

various pathologies, e.g., cetuximab in lung and head and neck cancer, panitumumab in colon 

cancer and trastuzumab and pertuzumab in breast cancer[8].  

 Despite these advancements, acquired resistance to these targeted therapies has often 

dampened success in the clinic, which can occur through several mechanisms, including driver 

mutations, drug-target interaction interference and RTK bypass mechanisms. One well-known 

example of acquired resistance to EGFR-TKIs is the T790M mutation in non-small cell lung 

cancer (NSCLC). The Threonine in position 790 regulates inhibitor specificity in the ATP binding 

pocket. The mutation confers resistance through enhancement of ATP affinity, thereby 

successfully competing with TKIs[9,10]. Drug treatment may lead to acquired mutations that 

modify drug metabolism, and hence inducing resistance, e.g., by changes in drug efflux and 

uptake1. Bypass resistance involves the hyperactivation of a receptor not targeted by therapy. 
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For instance, MET and AXL have been shown to provide bypass resistance to EGFR-targeted 

therapies in lung carcinoma while HER3 drives resistance to HER2-inhibition in breast 

cancer[11–15]. Lack of treatment response or cancer growth after remission due to acquired 

resistance or cancer heterogeneity emphasizes the complexity of the signaling networks 

employed by RTKs to propagate cellular signals. Understanding the receptor physiology and 

mechanisms underlying their signaling function is critical to understand why and how RTKs 

contribute to disease and has important implications for selection of anti-cancer therapies. 

 

RTK Structure and Function 

All RTKs (58 known in humans) are grouped into 20 subfamilies based on their domain 

architecture and share a similar protein structure that includes an extracellular ligand binding 

domain, a single transmembrane helix, an intracellular region that contains a juxtamembrane 

regulatory region, a tyrosine kinase domain (TKD) and a carboxyl (C-) terminal tail[16].  

Stimulation of these receptors, e.g., by binding of a ligand, results in conformational changes 

and receptor dimerization, allowing the kinase domain to assume an active conformation. At 

this time, these changes allow trans-autophosphorylation of tyrosine residues located on the 

TKD and C-terminal[17]. Autophosphorylation leads to recruitment and activation of a wide 

variety of downstream signaling proteins that contain Src homology-2 (SH2) or 

phosphotyrosine-binding (PTB) domains. This increased kinase activity in turn causes 

association with several cellular proteins due to recognition of the phosphorylated residues by 

their SH2 and SH3 binding domains, i.e., PLCɣ-1 and PI3K. These proteins and other adapter 
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proteins become phosphorylated and produce second messengers that trigger intracellular 

changes that aid in the receptor’s biological signal relay and activate major signaling pathways 

including, but not limited to, the activation of the RAS/MAPK, PI3K/AKT and JAK/STAT 

pathways[18,19](Figure 1A). The interaction between activated growth factor receptors and 

signal transduction molecules relies on (1) the RTK being tyrosine phosphorylated for binding 

motif recognition of adapter proteins containing an appropriate binding domain, (2) the 

subsequent adapter-mediated recruitment of signaling molecules, and (3) the direct RTK 

phosphorylation of downstream targets. The importance of these events for signal relay is 

further illustrated by the fact that mutant receptors lacking kinase activity fail to signal[20]. 

 

RTK Signaling Network Models and Y-to-F Mutational Studies  

Over the past few decades, numerous models have been generated that attempt to explain RTK 

activation and predict their signaling response[21–23]. Many of the experimental models are 

based on bait experiments that helped identify phosphorylation-dependent interactions 

between RTKs and intracellular components[24–26]. Unfortunately, most of these studies do 

not account for the signaling dynamics, competition or recruitment of other kinases and 

phosphatases. More importantly, they are not capable of isolating the proximal interactors and 

downstream signaling pathways specific to individual RTK members. This continuous challenge 

in investigating RTK biology is further complicated by the redundancy in downstream signaling 

nodes and converging pathways, which hinder the ability to functionally link an RTK input to a 

given phenotypic output.  
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 Generating a panel of Y-to-F RTK mutant cell lines represents a powerful approach to 

distinctly perturb both RTK-driven signaling pathways and phenotypic consequences. Genetic 

editing of tyrosine phosphosites to phenylalanine—a non-phosphorylatable tyrosine mimetic—

induces signaling changes due to their impaired ability to engage in signal transduction (Figure 

1B).  

 Besides affecting downstream signaling pathways, Y-to-F mutations can influence the 

overall activation state of the RTK. As described, ligand induced RTK activation involves RTK 

monomer dimerization and autophosphorylation of several tyrosines within the kinase domain. 

The absolute amount of intracellular tyrosine phosphorylation is typically used as a proxy for 

RTK activation[27]. However, biochemical assays have provided evidence of phosphorylation 

events inhibiting the catalytic activity of protein kinases. For instance, the enzymatic inhibition 

of CDK1 through Y15 phosphorylation leads to exit from mitosis and locks CDK1 in its inactive 

state in G1 phase[28,29]. Thus, while Y-to-F mutations are generally shown to cause loss-of-

function effects, it is possible that mutation to phenylalanine of an inhibitory phosphosite leads 

to increased RTK activation (Figure 1B).  

 Finally, there is evidence of Y-to-F mutations affecting the specificity of RTKs for their 

downstream substrates. Moreover, phosphorylation at conserved tyrosine residues in PTB 

domains has been shown to lead to an increased preference for a particular set of substrates 

due to a shift in kinase specificity[30,31].  This suggests that the lack of tyrosine 

phosphorylation near the RTK binding pocket might affect the receptor’s kinase domain 

specificity. In such case, the signaling differences observed in RTK Y-to-F mutants would not 

only be due to the interaction with adapter molecules and overall kinase activation but also due 
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to differences in complex formation with a distinct set of recognized downstream substrates 

(Figure 1C).  

 In this review, we will describe valuable insights gained from site-directed mutagenesis 

methods in various RTKs subfamilies through Y-F mutations. We provide an overview of 

experimental and computational methods to measure, analyze, and integrate the signaling and 

phenotypic consequences of RTK Y-to-F mutant cell lines, describe ways in which model 

predictions of downstream drivers can be validated, and provide a forward-looking perspective 
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of the utility of this system, the potential impact and challenges that lie ahead. 

 

Figure 8: Y to F mutational studies to distinguish individual contributions of tyrosine residues to signaling 
network. A. Under wild-type conditions, tyrosine residues are phosphorylated and recognized by adapter 
molecules for signal relay. B. Loss of tyrosine residue can lead to decreased recruitment and subsequent 
activation of downstream signaling pathways. Alternatively, loss of tyrosine residue causes increase of 
recruitment by other residues leading to increased activation of certain downstream network nodes. C. 
Loss of tyrosine may not affect pathways or responses measured and therefore display a response similar 
to wild-type.   
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Consideration of choosing tyrosine-replacing amino-acid 

 

Because each phosphorylated tyrosine and their surrounding amino acids selectively recognize 

certain SH2 or PTB domains, many studies leverage gene editing techniques to identify the 

pathways regulated by these tyrosines[26]. Phenylalanine is the replacement residue of choice 

as it most closely replicates tyrosine structure and is still able to make π-π and hydrophobic 

interactions.[32] Phenylalanine lacks the hydroxyl group that could lead to modifications 

including phosphorylation, thereby functionally knocking out tyrosine phosphorylation[33]. 

Other residues, including alanine, have been used as well, but are structurally quite different 

and may confound signaling data as it can cause changes in protein folding[34]. 

Counterintuitively, Zisch et al. found that replacing tyrosines 605 and 611 in EphB2 with a 

glutamic acid prevented binding of SH2 domains without abrogating kinase activity and 

biological responses, while mutating these sites to tyrosine impaired receptor kinase activity, 

complicating analysis of their function in terms of identifying binding partners and signaling 

pathways[35]. This approach may prove useful in establishing the role of other 

autophosphorylation sites in systems where mutation to phenylalanine would affect kinase 

activity.  

C-terminal deletions of the EGFR receptor to investigate the ability of tyrosines to 

autophosphorylate have yielded replicable results, although caution must be exerted given the 

risk of more extensive effects to protein folding and dimerization[36,37]. 
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Y-to-F interactome studies  

Computational simulations as well as experimental studies have shown that the EGFR pathway 

contains regions of functional redundancy in the upstream region. Results suggest that this 

redundancy helps to maintain functional robustness in the event of low EGF stimulus or partial 

system failure. Downstream signaling nodes, like ERK, have fewer phosphosite redundancies, 

more often resulting in an attenuated signal response[23]. A study by Gill et al found that EGFR 

containing just one functional tyrosine on the C- terminal tail was still signaling-competent[38]. 

Given the multiplicity of binding sites, i.e. the ability of adapter molecules to bind to multiple 

phosphosites, Schlesssinger et al utilized Y-to-F mutant cell lines to determine the hierarchy of 

binding sites for Grb2 and Shc1 on EGFR using co-immunoprecipitation experiments. Although 

at least 5 tyrosines have been reported to bind Grb2 and Shc1 on EGFR, their data 

demonstrated a preference for Grb2 binding to Y1068 and Y1173, and that Y1173 is the 

preferred      binding site for Shc1[39]. Y992 was identified as a main binding domain for PLCɣ-1 

and has been connected to various phenotypic outcomes[38,40]. As a primary binder of Abl, 

Y1173 plays a major role in ABL-mediated endocytosis making it a potential target in human 

tumors[41]. This binding multiplicity was demonstrated in other RTKs as well. In IGF1R, Y1150 

and Y1151 were responsible for ~80% of autophosphorylation, while no single Y-to-F mutation 

was able to abolish kinase activation[42]. 

In HER3, Y1325 was identified as the major binding site for Shc1 as well as the responsible 

residue for inducing heregulin (HRG)-dependent ERK activation[43]. Furthermore, Y-to-F studies 

have demonstrated cooperativity between residues on HER3 as well as requirement co-

activation of HER2 and HER3 for PI3K activity[44]. Figure 2 summarizes the efforts that involved 
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mutation of selected C-terminal phosphorylation sites that revealed loss of a given adapter 

binding or confirmed the multiplicity of a binding interaction44–56. 

 Instead of mutating the residues on the RTK, others have aimed to evaluate RTK 

function through determining the preferred interaction domain on the adapter proteins[45,46]. 

In the case of Shc1, for example, the PTB domain interaction with EGFR was shown to be the 

dominant interaction compared to the SH2 domain interaction[47,48]. Other studies have 

evaluated the effect of loss of a tyrosine site by measuring a phenotypic response, as a 

decrease in response is often expected as a result of decreased phosphorylation[49]. However, 

the VEGFR2 Y1006F mutant showed an increased ability to stimulate cell proliferation 

compared to wildtype[50]. 

 

Figure 9: Known binding interactions between tyrosine residues of a subset of RTKs and secondary 
adaptor molecules. Numbers indicating residue location on protein. Proteins shown: EGFR89,90, HER291, 
HER392, PDGFRa/b93, VEGFR1-394,95, IGF1R96, IR97, FGFR1-498, AXL/TYRO3/MER99,100, MET101, RON102, KIT93. 
Several are still poorly characterized in terms of binding partners and function. 
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Y-to-F studies in disease models  

One major application of these mechanistic studies has been the identification of novel 

therapeutic targets. Given a strong correlation between HER2 activation and constitutively 

active Stat3a in a variety of human tumors, Ren et al found that Y1139 to be the main residue 

responsible for Stat3a activation through JAK2 and SRC-dependent mechanisms, and provided 

multiple novel targets for HER2-overexpressing tumors[51]. In EGFR-VIII mutants, site-specific 

mutational experiments have led to the identification of a set of phosphoproteins as potential 

candidates for future drug development in Glioblastoma Multiforme[52]. Using a similar 

approach, PDGFRα was identified to be important in development of cardiac and brain cells, 

providing a model to study aberrant NCC development[53]. In constitutively active mutants of 

FGFR3, Y724 was found to be a critical node in activation of multiple signaling pathways[54,55]. 

Finally, AXL-Y821 was found to mediate resistance to cetuximab through c-ABL in a head and 

neck squamous carcinoma (HNSCC) model, proposing ABL inhibition as a potential therapeutic 

strategy to resensitize tumor cells to cetuximab treatment[56]. 

 

Site-specific roles beyond downstream signaling conveyance  

Besides their role in signal transduction as binding domains for adapter molecules, certain 

tyrosine residues have also been found to have functions related to receptor dimerization or 

substrate specificity. For example, Y762 was found to bind Crk as well as suggested to be partly 

responsible for the signaling divergence between the two PDGFR receptors[57]. Furthermore, 
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Y857 on PDGFRβ was identified as a critical site in transactivation of EGFR, providing 

mechanistic clues of crosstalk mechanisms between RTKs[58]. Interestingly, another study 

found this same tyrosine to affect cell proliferation, but not migration, while EGFR is known to 

affect both phenotypes[59]. Finally, while an IGFR1 Y1136F mutation only minimally affects its 

overall kinase activity, it was found to substantially reduce the phosphorylation of various 

substrates[60]. This seeming discrepancy highlights the complexity of the network, but it should 

also be noted that      these experiments are often performed in a single cell line. Depending on 

the cell context, the concentration of the adapter protein may vary and be a limiting factor in 

certain model systems and yield different functional outcomes. In FGFR1, Y677 was found to 

function as a stabilizer of the active conformation[61]. Certain tyrosine residues on FGFR2 were 

found responsible in determining substrate specificity of the receptor[24,62]. Jiang et al. 

demonstrated IGFR’s dependence on Y950 as a mediator of substrate binding and showed 

Y1136 dramatically reduces the transforming ability and overall substrate phosphorylation[60]. 

Finally, these mutational approaches have been used to understand molecular-level specificity 

in transphosphorylation. For example, Bae et al. showed that asymmetric receptor contact is 

required for autophosphorylation of FGFR1 and transphosphorylation of Y583[63]. Even for the 

same cancer types, the driving signaling pathways and targets identified across studies are 

largely context-dependent and thus cross-referencing insights generated in different systems 

can often be challenging and misleading. RTKs are responsible for the regulation of several 

oncogenic processes. For example, the RTK AXL has been shown to promote cell proliferation, 

epithelial-to-mesenchymal transition, metastasis, macropinocytosis, metabolic oxidation, DNA 

damage response (DDR), and immunosuppression in various types of cancer[64–67]. All these 
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phenotypes affect disease progression and response to targeted therapy against RTK-driven 

cancers. 

 

Omics based Y-to-F studies 

The studies described above have helped identify binders and function to specific tyrosines on 

the TKD and C-terminal tails or measured phenotypic variation because of functional tyrosine 

knock-out. To fully understand the mechanisms underlying binding and phenotype, however, it 

is critical to understand to functionally link these together. Recent advances in omics-based 

approaches have allowed for improved mechanistic interrogation of the entire network in 

model systems that recapitulate the complexity and competition of the cellular signaling 

networks. The next section of this review will focus on how Y-to-F mutational model systems 

and omics-tools can be combined to gain valuable biological insight. The ability to link 

functional consequences to specific tyrosine phosphorylation events, has important 

implications in understanding acquired resistance mechanisms in disease and identifying novel 

biomarkers for drug development. 

A panel of Y-to-F mutant cell lines to model RTK-specific responses 

We propose that the use of a panel of RTK mutant cell lines provides a unique opportunity to 

link specific phosphoproteomic downstream components to various cell phenotypes that 

collectively drive a complex multifactorial response (Figure 3A). For instance, as reviewed by 

Baselga et al, drug resistance should be viewed and investigated as a multifaceted problem 

driven by the development of simultaneous “collateral” malignant phenotypes that 
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coordinately promote tumor growth and metastasis in the presence of therapy[68]. Through 

coupling signaling and phenotypic experiments with computational modeling, a panel of Y-to-F 

RTK cell lines represents an ideal system to separate the signaling components driving specific 

phenotypes in the same RTK-driven cellular context. Below, we provide an overview of 

experimental and computational methods to measure, analyze, and integrate the signaling and 

phenotypic consequences of RTK Y-to-F mutant cell lines, describe ways in which model 

predictions of downstream drivers can be validated, and provide a forward-looking perspective 

of the utility of this system. 

Computational tools to analyze and interpret phosphoproteomic signaling 

networks 

Phosphoproteomics is a powerful approach that allows gathering of quantitative, network-

level, dynamic signaling data, making it well suited for interrogating site-specific tyrosine 

functions. However, challenges inherent to phosphoproteomic data hinder the identification of 

relevant proteomic alterations; namely measuring substrates rather than kinases, the 

incomplete and stochastic coverage of the phosphoproteome across experiments and its high-

content but low-sample throughput. In the last decade there has been substantial 

advancements in the development of computational methods tailored to overcome these 

challenges and improve our capabilities to disentangle and reconstruct signaling networks. 

Depending on the question at hand, we can categorize computational tools tailored to signaling 

data of Y-to-F RTK mutant cell lines in two main groups: Univariate and Multivariate methods 

(Figure 3B).  
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 Univariate methods are those that allow one to profile the phosphoproteome of an 

individual sample or RTK mutant cell line. Kinome enrichment tools such as kinase-substrate 

enrichment analysis (KSEA) and Integrative Inferred Kinase Activity (INKA) identify hyperactive 

upstream kinases using the phosphoproteomic quantification of a sample. KSEA averages the 

signals of groups of known kinase substrates to infer enriched pathways in biological 

samples[69], while INKA ranks kinases based on their inferred activity by integrating kinases’ 

overall and activation loop phosphorylation with the phosphorylation abundance of its known 

substrates[70]. These methods require making assumptions about kinase-substrate 

relationships for which there is experimental evidence in the literature or are predicted by 

kinase prediction algorithms such as Scansite or KinomeXplorer. Scansite makes predictions 

using kinase specificity profiles generated from oriented peptide library scanning experiments 

while KinomeXplorer uses sequence motif and protein-protein network information[71,72].  

Furthermore, ranked gene identifiers based on the signaling data of a sample can be used to 

run Gene Set Enrichment Analysis (GSEA) or STRING analysis to identify and visualize 

overrepresented biological processes and protein interaction network maps, respectively. Thus, 

univariate methods can be used to find enriched signaling components and their associated 

biological processes in specific Y-to-F RTK perturbations.  

 Widely used multivariate methods such as clustering or dimensionality reduction 

algorithms to analyze phosphoproteomic data are extremely useful to enhance our 

interpretation of a dramatically underdetermined system comprised of thousands of peptides—

or variables—and only a few observations. Recently, the Meyer lab constructed an expectation-

maximization (EM) algorithm, Dual Data and Motif Clustering (DDMC) that can be viewed as a 
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multivariate form of KSEA and INKA. DDMC generates clusters displaying similar 

phosphorylation patterns and sequence motif features. Incorporating the sequence information 

into the clustering criterion allows one to make predictions about the upstream kinases 

regulating clusters by comparing the clusters’ sequence features with previously reported 

kinase specificity profiling data[73]. These univariate and multivariate methods, often in 

combination, can help reconstruct signaling networks from phosphoproteomic data. Another 

clustering approach, ENSEMBLE, generates and incorporates multiple unique clustering 

solutions utilizing different combinations of data transformations (e.g., untransformed, z-score, 

mean-centering), clustering algorithms (k-means, hierarchical clustering, GMM…), and 

parameters (number of clusters, distance metrics, linkage methods, etc.). Samples are then 
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grouped based on how often they cluster together[74]. 

 

Figure 10: Combining Y-to-F mutational data and computational analysis to gain biological insight. A. 
Collecting signaling and phenotypic data of a panel of isoform mutants. B. Categories of Univariate or 
Multivariate analyses. C. Supervised learning algorithms to increase prediction of data-driven models. D. 
PLSR as an example to functionally link phenotypic and signaling data together to generate meaningful 
insight.  
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 Thus, multivariate methods such as the described clustering algorithms or other 

common dimensionality reduction techniques such as principal component analysis (PCA) or 

non-negative matrix factorization (NMF) find behavioral patterns across RTK mutant samples 

which allow the systematic identification of RTK-driven signaling pathways and processes.  

 

Establishing associations between cell phenotypes and RTK downstream 

signaling  

RTKs are involved in a myriad of cellular processes, and data-driven multivariate modeling of a 

panel of Y-to-F mutants can help map the downstream signaling pathways that correlate with 

different phenotypes. To build a regression model linking both information sources, the 

phosphoproteomic data—matrix X—is used to explain the cellular responses—matrix Y. In both 

matrices, the observations consist of the RTK mutant cell lines treated under the exact 

conditions and the variables are phosphopeptides and phenotypes, respectively (Figure 3A/C). 

Practically any cell phenotype data of interest such as cell proliferation, apoptosis, migration, or 

genetic signature scores can be incorporated in the Y matrix if the cell culture conditions match 

the ones utilized to generate the signaling data. Importantly, the signaling and phenotypic 

consequences that Y-to-F mutations might induce could be influenced by an impairment of RTK 

regulation at different levels. Thus, trafficking and degradation rates, gene and protein 

expression, as well as dynamic measurements of downstream signaling of the different RTKs 

are crucial factors that should be measured to obtain a holistic view of how these mutations 

induce the observed responses.  
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 Y-to-F mutational studies can provide a unique perspective on the extent to which RTK 

point mutations affect distinct phenotypes through specific downstream signaling components. 

For instance, RTK mutant 1 might largely activate ERK to promote proliferation whereas mutant 

2 mainly induces JNK activity and apoptosis (Figure 3A). However, the benefit of systematically 

investigating the signaling changes across mutants via multivariate modeling provides the 

opportunity of more generally attributing RTK-specific signaling effects to phenotypic 

consequences. As pointed above, MS-global phosphoproteomic data sets are hugely 

underdetermined given its high-content but low-sample throughput. Previous efforts in 

regressing signaling measurements against phenotypic data were based on the great ability of 

partial least squares (PLSR) models to robustly handle prediction in the presence of high-

dimensional and correlated data[75]. This is an excellent strategy with moderately large 

phosphoproteomic data sets. However, as the number of phosphosites—or variables—

increases, the system becomes increasingly underdetermined, and the prediction power 

diminishes. In addition, while these models can generally be predictive with such data, they are 

not easily interpretable. Therefore, clustering large-scale MS measurements based on 

biologically meaningful features and utilizing the cluster averages to fit PLSR could enhance the 

predictive performance of the model while providing highly interpretable results wherein 

clusters constitute signaling nodes distinctly correlated with cell phenotypes (Figure 3C/D). 

 Moreover, The RTK Y-to-F cell signaling data can also be visualized with PCA which 

identifies a low-rank structure within a space of possible outcomes. The resulting PCA scores 

and loadings can then be effectively visualized to establish associations between cell lines and 

signaling molecules. Interestingly, the analysis of omics data can be integrated using higher-
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mode generations of PCA to predict phenotypes. These methods, broadly referred to as tensor 

decomposition techniques, can be remarkably effective at dimensionality reduction even 

beyond PCA while associating omics-based signaling information to phenotypic outcomes. For 

instance, researchers used tensor partial least squares regression to predict the transcriptional 

signatures from signaling induced by different stimuli over time. The model predicted that an 

early-phase, AKT-associated signal downstream of insulin repressed a set of transcripts induced 

by TNF[76].   

 Here, we propose two multivariate modeling strategies, namely (i) fitting of cluster 

centers to a PLSR model to predict phenotypes or (ii) tensor factorization to associate signaling 

responses with phenotypes. The resulting model predictions facilitate the generation of 

hypothesis about key signaling pathway components driving cell responses which in turn 

informs the design of downstream of validation experiments. 

 

Validation experiments to demonstrate model predictions 

The predicted RTK-driven molecular pathways influencing cellular response can be effectively 

validated through several experimental methods. Typical biochemical assays such as western 

blot and proximity ligation assay (PLA) or immunoprecipitation (IP) can be very useful to 

demonstrate a change in protein activation or interaction, respectively. However, here we 

highlight high-throughput methodologies capable of simultaneously quantifying the activation 

of several proteins or detecting RTK-protein interactions, as well as biochemical assays that 

enable the characterization of the specificity profile of a kinase of interest.  
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 To validate RTK-protein or downstream protein-protein interactions, BioID interaction 

mapping facilitates a global view of the interactome of any protein, including RTKs. This system 

utilizes a proximity-dependent labeling strategy wherein a bait protein is fused to a mutant 

form of biotin ligase (BirA*) that biotinylates interacting proteins within a 10-nm radius of the 

protein of interest[77]. Such data can serve as direct evidence of adapter molecules, kinases, 

phosphatases and other signaling molecules distinctly interacting with RTK Y-to-F mutants 

which can then be subsequently associated with downstream signaling consequences.  

 Biochemical kinase specificity assays such as position-specific peptide library scanning 

(PSPL) enable the specificity profiling of a kinase of interest which in turn can help elucidate 

downstream substrates displaying the kinase’s optimal target motif. In this technique, a kinase 

of interest is individually incubated with each of 180 different peptide libraries in which each 

library contains a central phosphoacceptor residue (S/T or Y), a second fixed amino acid located 

any of the peptide residues spanning positions 5 throughout +4 relative to the phosphorylation 

site, and a degenerate mixture containing all natural amino acids at all other positions. The 

kinase and peptide libraries are incubated in the presence of radioactive ATP, which allows the 

quantification of phosphorylation abundance per residue and position and the identification of 

the kinase’s ‘‘optimal’’ substrate motif. The accumulation of PSPL kinase profilings facilitate the 

association of putative upstream kinases regulating specific substrates or groups of 

phosphosites displaying similar kinase motifs[78–81]. Since they do not provide docking 

information, a major limitation of PSPL experiments is that the real affinity between the string 

of identified peptide residues as key determinants of specificity of a sequence motif and the 

interacting kinase domain is unknown. This limitation could compromise kinase-substrate or 
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kinase-cluster associations. A method combining bacterial surface-display of peptide libraries 

with next-generation sequences would tackle this limitation by quantifying the specificity of a 

kinase to virtually all possible motif combinations[82]. 

 Besides any combination of these computational and experimental techniques, the 

resulting mechanistic knowledge can be further validated by repeating the phenotypic 

measurements used to build the regression model in the presence of pharmacological or 

genetic inhibition of the predicted and validated RTK-regulated downstream drivers. In 

summary, we propose an experimental and computational framework to investigate, associate, 

and validate RTK-driven signaling pathways and phenotypes.  

Forward-looking perspective 

In this review, we highlighted the value of using Y-to-F studies to research the underlying 

mechanisms of signal propagation in RTKs. Being able to link signaling data to functional 

response in a cellular environment is crucial, whether the goal is improved mechanistic 

understanding or identification of novel biomarkers or drug targets. Recent advances in 

experimental and computational tools and methods have great potential to add additional 

insight we can gather with this type of data.  

 In terms of model systems, advances in CRISPR methods have made it more feasible to 

make point mutations in model systems expressing endogenous RTKs, allowing generation of a 

physiologically more relevant system, in terms of expression levels and cellular environment. 

Viral-expressing model systems, although easy to use and manipulate, are challenging when it 

comes to controlling expression levels between cell lines and replicates, due to random 
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insertion, even in an inducible system.[38] Furthermore, the use of a viral system limits the 

choice of model system, due to potential confounding signals from endogenous expressing 

genes. CRISPR point mutations are now also shown to be successfully made in in vivo settings, 

opening the door for potential Y-to-F studies in animal studies (e.g., PDX models).[83] 

 For data analysis, increased sensitivity and accuracy of methods and instruments have 

yielded promising results for single-cell and single-molecule phosphoproteomics.[84,85] 

Automated microfluidic chip LC systems are an important component to allow quantitative 

identification of already low-abundant phosphorylated tyrosine.[86] These analyses are 

especially beneficial as they will reveal information about the stoichiometry of phosphorylation 

of the cell or receptor at a given time, and they could allow profiling of a large panel of Y-to-F 

perturbations. One potential translational application would be in understanding tumor 

heterogeneity, which continues to be one of the main obstacles when it comes to cancer 

treatments.[87] Before this method can gain more traction, though, issues regarding sensitivity 

and low-throughput will need to be resolved. 

 Finally, combining targeted phosphoproteomic strategies with absolute quantification 

methods, such as Surequant, will allow for reproducible pTyr profiling of commonly 

dysregulated oncogenic signaling proteins.[88] These advancements allow us to build on 

previously gathered mechanistic insight regarding RTK signal and function and to continue to 

explore the underlying mechanisms that explain the complex signaling network and responses 

that these RTKs regulate in health and disease.  
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Abstract 
 

The Epidermal Growth Factor Receptor (EGFR) has been studied extensively due to its critical role 

in cellular signaling and association with disease. Previous models have elucidated interactions 

between EGFR and downstream adaptor proteins, or showed phenotypes affected by EGFR. 

However, the link between EGFR phosphorylation and phenotypic outcome is still poorly 

understood. Here, we employed a suite of isogenic cells lines expressing site-specific mutations 

at each of the EGFR C-terminal phosphorylation sites to interrogate their role in signaling network 

and cell biological response to stimulation. Our results demonstrate the resilience of the EGFR 

network, which was largely similar even in the context of multiple Y-to-F mutations in the EGFR 

C-terminal tail, while also revealing nodes in the network that have not previously been linked to 

EGFR signaling. Our data-driven model highlights signaling network nodes associated with 

distinct EGF-driven cell responses, including migration, proliferation, and receptor trafficking. 

Application of this same approach to less studied RTKs should provide a plethora of novel 

associations that should lead to a much better understanding of these signaling networks. 

  



 
95 

Introduction 
 

Epidermal Growth Factor Receptor (EGFR) is a receptor tyrosine kinase (RTK) that is 

overexpressed, mutated, or otherwise dysregulated in a large fraction of human cancers [1]. On 

ligand binding, EGFR assumes an active conformation, dimerizes, and cross-/ auto-

phosphorylation occurs on C-terminal tyrosine residues, thus initiating a cascade of signaling 

events ultimately resulting in cellular phenotypes such as proliferation and migration, among 

others [2]. EGFR signaling has been well characterized in a variety of cell lines, including 

immediate-early signaling with high temporal resolution as well as deep characterization of the 

network-wide effects of EGFR activation [3–5]. Despite these large scale phosphoproteomics 

studies, mechanistic insights connecting kinase and phosphatase activity with particular 

phosphorylation sites and their associated protein-protein interactions have been challenging. 

To address this issue and gain a better understanding of how EGFR activity regulates cell 

biology, there have been extensive efforts to define the association between EGFR C-terminal 

tyrosine phosphorylation sites (e.g. Y845, Y974, Y992, Y1045, Y1068, Y1086, Y1101, Y1148, 

Y1173) and recruitment of adaptor or effector proteins. Many of these studies have been 

performed using in vitro assays, including a landmark study using protein microarrays to 

identify and quantify the affinity of Src-homology 2 (SH2) and phosphotyrosine binding (PTB) 

domains for peptides containing phosphorylated tyrosine residues from ErbB family members 

[6], and another using tyrosine phosphorylated peptides from EGFR to identify protein binders 

in cell lysate [7]. These studies, along with a plethora of cell-based studies, have yielded critical 

insight for selected EGFR tyrosine phosphorylation sites. For instance, phosphorylated Tyr 992 

has been shown to function as a major binding site for 1-phosphatidylinositol 4,5-bisphosphate 
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phosphodiesterase gamma-1(PLCɣ-1) [8,9], while phosphorylation of Y1045 serves as the 

primary EGFR binding site for Cbl, an E3 Ubiquitin ligase that mediates receptor ubiquitination, 

endocytosis, and degradation or recycling [10]. Phosphorylated residues Y1068 and Y1086 bind 

the growth factor receptor-bound protein 2 (Grb2) adaptor protein [11,12], while 

phosphorylated Tyr1148 and Tyr1173 can recruit the Shc adaptor protein [13]. Recruitment and 

subsequent phosphorylation of Shc and/or Grb2 can lead to activation of the Erk MAPK 

pathway and thereby mediate activated cell proliferation or cell migration. In addition to these 

well-characterized interactions, several pTyr sites on the receptor have been postulated to bind 

multiple adaptor or effector proteins, and several adaptors can bind to multiple sites. How 

these interactions are regulated in the cellular environment and how they control downstream 

signaling is still poorly understood. 

Further complicating this picture, cytosolic tyrosine kinases and tyrosine phosphatases can be 

recruited to phosphorylated EGFR and function to provide positive and negative feedback to 

regulate receptor phosphorylation and activity. For instance, in a positive feedback loop, initial 

activation of EGFR can lead to activation of Src (or Src-family kinases) that can then 

phosphorylate Y845 in the EGFR activation loop, further increasing EGFR activity [14]. Other 

cytosolic kinases such as the Abelson tyrosine kinase (Abl) have been shown to phosphorylate 

other cytosolic residues in the C-terminal tail, including Y1173 [15]. Tyrosine phosphatases, 

including PTP1B and SHP2, have been postulated to be recruited to the receptor and serve to 

dephosphorylate C-terminal tyrosine residues, thus serving as negative feedback to limit 

receptor activity [16]. Inhibition of the phosphatases has been shown to have a strong impact 

on some auto-phosphorylation sites, even in the immediate-early stages following ligand 
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stimulation [3]. Finally, crosstalk with other RTKs can add to the complexity, through hetero-

dimerization or oligomerization and cross-phosphorylation of tyrosine sites on other RTKs, or 

potentially mediated by activation of cytosolic tyrosine kinases [17]. Regardless of mechanism, 

tyrosine phosphorylation of other RTKs may lead to adaptor recruitment, phosphorylation, and 

additional downstream signaling that could alter phenotypic outcome, including therapeutic 

resistance [18]. 

Since tyrosine phosphorylation controls many aspects of cellular and tumor biology, analysis of 

phosphorylation-mediated signaling networks can provide crucial information on novel 

biomarkers or resistance mechanisms. However, many approaches fail to provide predictive 

insights as the resulting models are based on few nodes with data collected from isolated 

interaction experiments (e.g. protein-protein interaction experiments) that do not consider the 

complexity of intracellular network interactions [19,20].  

To attempt to elucidate the functional roles of individual EGFR C-terminal tyrosine 

phosphorylation sites of EGFR in mediating cellular signaling and phenotypic outcome, NR6 cells 

lacking ErbB expression were infected to stably express wild-type EGFR or EGFR mutant 

isoforms containing one or more site-specific mutations of selected C-terminal tyrosine 

phosphorylation sites. Phosphoproteomic analysis of EGF-stimulated cellular signaling in each 

cell line demonstrated the resilience of the EGFR network to loss of selected pTyr sites while 

also highlighting connections between particular pTyr sites and adaptor or effector proteins. To 

define associations between loss of selected pTyr sites, signaling network alterations, and cell 

biological effects, we quantified cell phenotypic responses, including receptor trafficking, cell 

proliferation, and cell migration. Intriguingly, despite similar overall network response in each 
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line, the phenotypic outcome was, in many cases, significantly altered across cell lines 

expressing different mutant isoforms. To gain insight into the connection between our highly 

dynamic early timepoint phosphoproteomic dataset and the various quantitative phenotypic 

readouts, we developed a predictive data driven model that highlights the importance of 

selected signaling nodes in mediating each phenotypic outcome. These data and the predictive 

model provide novel insights regarding EGFR signaling and suggest potential therapeutic targets 

to modulate cell biological response to EGFR stimulation. 

Results 
 

Development and initial characterization of EGFR-expression system  

To evaluate the individual contributions of the C-terminal tyrosines in the EGFR signaling 

network response, mouse fibroblasts (NR6) lacking ErbB expression were retrovirally 

transfected to stably express human wild type EGFR (wtEGFR) or mutant EGFR isoforms in 

which one or more tyrosines in the C-terminal tail were converted to a non-phosphorylatable 

phenylalanine residue (e.g., Y-to-F mutation) to evaluate loss of function. In total nine cell lines 

were generated; one expressing wtEGFR, six containing single Y-to-F mutations (Y845F; Y992F; 

Y1045F; Y1068F; Y1148F; Y173F), and two isoforms with most of the canonical C-terminal 

tyrosine phosphorylation sites mutated to phenylalanine.  The latter two isoforms contain 5 Y-

to-F mutations (Y992F, Y1068F, Y1086F, Y1148F, and Y1173F) (DY5), or 6 Y-to-F mutations 

(Y845F, Y992F, Y1068F, Y1086F, Y1148F, and Y1173F) (DY6) (Fig 1A).  The DY5 and DY6 multiple 

mutant isoforms allow for evaluation of signaling effects in the context of loss of the major 
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autophosphorylation sites; comparison of DY6 to DY5 also allows for assessment of gain-of-

function of phosphorylation of Y845, located in the activation loop.  

Following successful transfection, expression levels were determined for all cell lines and 

replicates by flow cytometry (Supplemental Fig 1). Expression of each mutant isoform led to 

relatively slight changes in surface level receptor expression for most of the transfected cell 

lines, with Y845F and Y1045F being the major outliers in terms of surface expression (Fig 1B). 

Phosphorylation of the Y1045 site has been associated with binding of the Cbl E3 ubiquitin 

ligase and subsequent ubiquitination of EGFR. Blocking phosphorylation at this site through Y-

to-F mutation should therefore result in altered receptor trafficking, including increased 

recycling and decreased degradation, providing a potential explanation for the significantly 

greater cell surface expression relative to wtEGFR.  
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Figure 11: EGFR expressing model system exhibits strong EGF response.  
A. A panel of 9 cell lines that was generated, including wild type, 6 single Y-to-F mutants, and two multiple 
mutant isoforms lacking 5 or 6 tyrosine residues. Red and Blue dots indicate presence of Phenylalanine or 
Tyrosine at residue location, respectively. B. EGFR expression levels as determined by flow cytometry with EGF-
labeled fluorophore, normalized to wild type, data are presented as mean ± SD. *P≤0.05 (One-way ANOVA), 
n=3. C. Workflow schematic of NR6 retroviral transfection, cell stimulation and sample processing, followed by 
TMT labeling and phosphotyrosine enrichment steps for LC-MS/MS analysis. D. EGFR peptide phosphorylation 
levels in wild type EGFR expressing cells normalized to unstimulated condition, log2 fold change, n=3. E. 
Temporal dynamics of phosphorylation levels of several downstream nodes in EGFR network, normalized to 
unstimulated condition, log2 fold change. Data are presented as mean ± SD (student’s t-test) n=3. F. 
Hierarchical clustering of wild type tyrosine phosphorylation data, normalized to unstimulated condition, log2 
fold change, data are presented as mean, n=3. 
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After confirming that receptor surface expression was roughly similar across most of the 

mutant isoform expressing cell lines, to assess the effect of each mutation on the cellular 

signaling network, cells were stimulated with 2nM EGF for 0 seconds, 30 seconds, 1 minute, 2 

minutes or 5 minutes. At the appropriate time following stimulation, cells were snap-frozen in 

liquid nitrogen, lysed in cold 8M Urea to preserve physiological signaling, and proteolytically 

digested to peptides.  To accommodate the large number of samples (5 time points per cell line, 

9 total cell lines, and 3 biological replicates per condition), peptides from each cell lysate were 

labeled with isobaric tandem mass tags and analyzed as 10-plex experiments (sample labeling 

scheme for each analysis in Supplemental Fig 2) with pooled normalization controls. Labeled 

samples were subjected to 2-step phosphotyrosine enrichment and subsequent liquid 

chromatography tandem mass spectrometry (LC-MS/MS) analysis (Fig 1C). These analyses 

yielded quantitative data for 869 tyrosine phosphorylation (pTyr) containing peptides, on 

average, for each analysis, with 254 pTyr sites being present across all conditions in at least 2 

replicates and 217 pTyr sites present in all conditions and all replicates (quantitative pTyr data 

for all cell lines and conditions can be found in Supplemental Table 1).  

 

NR6 cells expressing wild-type exhibit signaling network response to EGF stimulation 

With this large data set in hand, we initially interrogated pTyr temporal dynamics in wtEGFR-

expressing NR6 cells as a starting point to ensure accurate signaling in the NR6 model system. 

Dynamic pTyr data from these cells displayed expected behavior, with well-characterized 

autophosphorylation sites in the EGFR C-terminal tail (Y1045, Y1068, Y1086, Y1148, and Y1173) 
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all displaying strong, significant increase in phosphorylation within 30 seconds following 

stimulation. Other sites on the receptor (Y703, Y803, Y845, Y954, Y992, Y1101) were detected 

and also demonstrated significantly increased phosphorylation levels upon EGF induction (Fig 

1D). Although NR6 cells do not naturally express EGFR or other ErbB receptors, they are 

signaling competent, in agreement with multiple previous studies [21–24]. Signaling pathways 

downstream of the receptor in our wtEGFR-expressing NR6 cells are intact and responsive to 

EGFR stimulation, as shown by a strong temporal response of several well-characterized 

proximal adaptor protein phosphorylation sites as well as the ERK 1/2 mitogen activated 

protein kinases (MAPK1 and MAPK3) (Fig 1E). Signaling effects of EGF stimulation are 

widespread in these cells, and beyond the canonical EGFR signaling network, we detected an 

overall increase in pTyr phosphorylation of the signaling network over time (Fig 1F) [7]. Of the 

217 pTyr sites detected in these cells, 59% (128/217) were significantly altered by EGF 

stimulation at one or more timepoints. 
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Figure 12: EGFR network is largely resilient to loss of pY sites 
A. Hierarchical clustering of tyrosine phosphorylation data of all EGFR isoforms. Log2 fold change 
over basal levels, data are presented as mean, n=3.  B. Time course plot showing averaged log2 
fold change across peptides for each cell line at each timepoint, n=3. C. EGFR-Y1148 and EGFR-
Y1173 phosphorylation levels in cell lines (if detected), log2 fold change. No significant differences 
between conditions. Data are presented as mean ± SD (student’s t-test). D. Tyrosine 
phosphorylation levels of EGFR peptides containing Y954, showing lack of EGF-induced 
phosphorylation in Y992F isoform. Data are presented as mean ± SD, *P≤0.05 (student’s t-test) E. 
Time course plots of tyrosine phosphorylation levels of several downstream nodes of EGFR 
network, normalized to unstimulated conditions, log2 fold change. Data are presented as mean ± 
SD, *P≤0.05 (student’s t-test), n=3. F. Sum of log2 fold change for each cell line and timepoint 
demonstrating overall amount of phosphorylation between timepoints and cell lines.  G. 
Dendrogram depicting how cell lines cluster based on similarity in EGF response, as calculated by 
Area Under the Curve (AUC).  H. Co-clustering analysis of individual cell lines and time points 
demonstrate order of similarity between conditions. *P≤0.05 (one-way ANOVA), n=3. 
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As a negative control, parental, non-transfected NR6 cells were stimulated with EGF and 

subjected to the same analysis. Although an increase in phosphorylation was observed at the 

30 second timepoint, the signaling network nodes responding to stimulation were largely 

comprised of stress-response signaling, including reactive-oxygen species (ROS) dependent 

activation of Src-family kinases along with JNK and p38, with no EGFR peptides detected in the 

analysis. Moreover, the overall trend indicates diminished activation at later timepoints, further 

suggestive of an EGFR-independent stress response (Supplemental Fig 3). Taken together, these 

results suggest that NR6 cells transfected to express wtEGFR respond to EGF stimulation in a 

manner that is highly similar to EGFR signaling in other lines [25], thus establishing this as a 

viable model system to study the effects of loss of phosphorylation on select C-terminal sites.  

EGFR network is largely resilient to mutation of C-terminal tyrosine residues  

Having confirmed that NR6 cells transfected to express wtEGFR faithfully recapitulate EGFR 

signaling, we next interrogated the temporal pTyr phosphoproteomic data from NR6 cells 

expressing each of the mutant isoforms to assess the effect of each mutation on 

phosphorylation of EGFR, the adaptor proteins, and downstream signaling networks. To 

account for the different initial signaling states of each line (Supplemental Fig 4), temporal 

phosphorylation data for each line were normalized to their own unstimulated (“0 sec”) time 

point, thus extracting quantitative changes induced by EGF stimulation at each time point. 

Interestingly, data from the mutant isoform-expressing NR6 lines indicate largely intact and 

robust signaling response to EGF stimulation, regardless of site-specific mutation. The overall 

resilience of EGFR signaling can be seen from the high degree of similarity (quantified in 

Supplemental Fig 5) between the different cell lines in the heatmap in Fig 2A and average 
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network phosphorylation levels at each timepoint for each cell line in Fig 2B. Surprisingly, 

mutating the Y1148 residue did not seem to affect the overall network response compared to 

wtEGFR, even though this site is reported to be 3-4 times more phosphorylated than other sites 

on EGFR [3,26]. Moreover, even the cell lines expressing DY5 and DY6 isoforms, lacking 5 or 6 

tyrosines, respectively, were able to induce a robust phosphorylation network response.   

Correlation clustering of the EGFR phosphopeptide data confirmed high similarity in EGFR 

activation between isoforms (Supplemental Fig 6). Drilling down further and comparing 

individual phosphopeptide levels between isoforms, phosphorylation levels of Y1173 and Y1148 

were unaffected by mutation of other tyrosine residues, whereas phosphorylation of Y954 was 

significantly downregulated in isoform Y992F after 2 minutes of EGF treatment (Fig 2C and Fig 

2D). This data suggests that dominant phosphorylation sites such as Y1148 and Y1173 

phosphorylation may be less dependent on phosphorylation of other residues, whereas Y954 

phosphorylation more directly correlates with EGFR’s ability to phosphorylate Y992.  

Network nodes downstream of EGFR demonstrated robustness as well, as shown for selected 

well-characterized adapters and effectors of EGFR (Fig 2E). Slight but significant differences 

were observed between wildtype and Y1068F at the 2min time point for the singly 

phosphorylated MAPK1 and MAPK3, as well as for Y1045F for the doubly phosphorylated 

variants. Despite similar phosphorylation response for most EGFR peptides, adaptor proteins, 

and the ERK MAPK effector proteins, decreased phosphorylation in response to stimulation was 

observed for multiple phosphorylation sites in the Y992F-mutant expressing cells as well as the 

Y845F-mutant expressing cells (Fig 2F). These differences were recapitulated in clustering the 

isoforms based on the Area Under the Curve (AUC) for all peptides, which revealed Y992F- and 
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Y845F-mutant expressing cell lines among the least correlated with wtEGFR (Fig 2G). Co-

correlation analysis of the individual timepoints further exposed the differences in response to 

EGF between these lines and wtEGFR (Fig 2H). This suggests that although the network appears 

to be highly resilient overall, selected mutations on the receptor can still alter network 

response to EGF stimulation. 

Downstream network analysis reveals network rewiring for Y992F isoform involving PLCɣ-1 and 

other RTKs 

To further interrogate signaling differences between mutant-isoform expressing lines, we 

performed principal component analysis (PCA).  Although most lines and conditions clustered 

tightly together in principal component (PC) space, stimulation time points from the Y992F-

expressing lines occupied a distinct region, strengthening the observation that Y992F is an 

outlier in terms of EGF network response compared to the other cell lines (Fig 3A). Within PC 

space, PC1 largely explains the time component, while PC2 appears to depend on the level of 

phosphorylation in response to EGF (e.g. Y1045F, Y1148F and Y1068F have a stronger overall 

phosphorylation response compared to Y992F and the multiple mutants).  

Consistent with the documented role of phosphorylated Y992 in PLCɣ-1 binding and activation 

[8], PLCɣ-1 phosphorylation was significantly decreased in the Y992F isoform as well in DY5 and 

DY6, both of which contain the Y992F mutation, relative to wtEGFR across all timepoints, 

confirming this site as an important node for PLCɣ-1 activation (Fig 3B). PLCɣ-1 phosphorylation 

was down in the Y845F isoform as well. 
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To 

gain further insight into the earlier observation of decreased phosphorylation on multiple 

nodes in the Y992F line in the hierarchical clustering analysis (Fig 2A), we generated a self-

organizing map (SOM) to identify clusters of co-regulated peptides that were differentially 

regulated in Y992F compared to wtEGFR (Fig 3C). SOMs utilize neural networks to display 

similarities in the data, thereby revealing clusters of peptides that are similarly differentially 

regulated between isoform lines. In the SOM comparing Y992F to wtEGFR signaling response, 

Figure 13: Downstream network analysis reveals network rewiring for Y992F isoform involving PLCγ 
and other RTKs. A. Principle Component Analysis (PCA) explaining 43% (PC1) and 14.5% (PC2) of the 
variance in the data, data is basal normalized.  B. Phosphorylation levels of PLCG-Y1253 at each time 
point per isoform. Log2fold change compared to basal. Data are presented as mean ± SD, n=3. C. Self-
Organizing Map (SOM) clustering to identify similarly differentially regulated peptides between 
wildtype(wt) and Y992F mutant isoform. Neural network iterations = 1000. D. 95% Confidence 
interval of peptides from highlighted cluster in panel C, depicting difference in trend between EGFR 
isoforms. Data presented are mean log2 fold changes and 95% confidence interval, n=3. 
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one of the large clusters displayed an increase in phosphorylation upon EGF treatment at 30 

seconds in the wtEGFR-expressing line (blue line) while these same peptides decrease in 

phosphorylation upon EGF stimulation in the Y992F-expressing line (red line) (Fig 3D). 

Interestingly, the majority of peptides in this cluster belonged to other RTKs, including PDGFRα, 

EPHA2, LDLR, AXL, FGFR1 and EPHB4. This data suggests a potential regulatory function for 

pY992 in modulating crosstalk with other RTKs or by stabilizing otherwise autoinhibitory 

intramolecular interactions [27]. Given the role of PLCɣ- as a negative feedback regulator for 

homodimer formation [28], the increased availability of PLCɣ-1 because of lack of binding 

opportunity at the 992 residue in the Y992F isoform could have inhibited dimer formation and 

hence reduced phosphorylation of other RTKs. 

Phenotypic characterization confirms known biology and reveals interesting trends 

As the phosphoproteomic data reflect overall signaling network similarity as well as some 

mutant-specific differences, our findings raised the question as to whether and how this 

variation translates to cellular response. To evaluate the phenotypic consequences of tyrosine 

loss-of-function, proliferation, migration and internalization rates were measured (Fig 4). 

Confluency measurements taken over time for each line in the absence or presence of EGF 

were compared to quantify an EGF-response proliferation rate. EGF-driven proliferation rates 

were significantly lower for 6 out of 8 mutant isoforms compared to wtEGFR (Fig 4A), with 3 of 

these lines yielding a counter-intuitive decrease in proliferation in the presence of EGF as 

compared to the absence of EGF. This result appears to be linked to Y1068F (and may be 

related to dynamics of the singly phosphorylated ERK activation loop (Fig 2E)) as all three lines 

contain this mutation. 
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To evaluate EGF-stimulated cell migration rates, temporal dynamics of wound healing were 

quantified in confluent plates for each cell line, in the presence or absence of EGF. EGF 

Figure 14: EGFR mutants demonstrate different phenotypic response to EGF 
A. Proliferation rates measured by confluency % over 24 hrs, Data are presented as mean +- SD. 
*P≤0.05 (One-way ANOVA), n=3. * indicates significant difference compared to wt. * at label indicates 
significant difference between EGF and no EGF condition. B. Migration rates determined by measuring 
scratch wound assay closing rate over 24 hrs. Data are presented as mean +- SD. *P≤0.05 (One-way 
ANOVA), n=3. * indicates significant difference. * at label indicates significant difference between EGF 
and no EGF condition. C. Receptor trafficking as determined by flow cytometry and pHrodo-EGF 
conjugate. Untransfected NR6 were used as negative control and normalizing channel. Data are 
presented as mean +- SD. *P≤0.05 (One-way ANOVA), n=3. D. Correlation analysis between 
phenotypes, data presented are Pearson correlation coefficients. n=3. 
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stimulated cell migration at a similar rate for most of the mutant isoform expressing lines as 

compared to wtEGFR, with only DY5 being significantly different (Fig 4B). In comparing the 

mutant lines to each other, Y992F-expressing cells were significantly more responsive to EGF-

stimulated migration as compared to most other lines, despite decreased phosphorylation on 

many signaling nodes.  

In addition to proliferation and migration as measures of downstream phenotypes, receptor 

trafficking to endosomes was evaluated as a more proximal phenotype. The pHrodo-EGF 

conjugate demonstrates increased fluorescence in acidic environments. We used this conjugate 

to quantify internalization and localization of the EGF-EGFR-bound complex to low pH 

endosomes. The results of this assay highlight significant differences in trafficking between 

wtEGFR and 4 mutant isoforms (Fig 4C). Perhaps not surprisingly, minimal endosomal trafficking 

was detected for Y1045F, in accordance with its reported role in CBL binding, ubiquitination, 

and receptor trafficking. Y1068F also showed decreased endosomal trafficking compared to 

wildtype. This effect may be explained by Y1068’s function as a Grb2-binding site, as Grb2 is 

reported to be important in early stages of endocytosis where EGF-activated receptors are 

recruited into clathrin-coated pits [29]. Interestingly, DY6 also showed decreased trafficking, 

however when Y845 function was recovered (DY5), trafficking was at least as high as wildtype 

levels, although both isoforms still contained the Y1068F mutation (amongst others), which by 

itself caused decreased trafficking.  

Correlation analysis of the different phenotypes revealed a slight negative correlation between 

migration and proliferation, which supports the principle of phenotype-switching as cells decide 

which phenotype to pursue (Fig 4D) [30]. Curiously, there appears to be minimal association 
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between network-level phosphorylation and phenotypic outcome in response to EGFR 

stimulation, as most mutant isoforms displayed relatively minor signaling changes at the 

network level relative to wtEGFR, yet several had significantly altered phenotypic response. On 

the other side, cells containing the Y992F mutant isoform were the most different from wtEGFR 

in signaling, yet this same mutation appeared to have minimal phenotypic impact. 

Partial Least Squares Regression model reveals Epsin 8- and PLCɣ-1-mediated mechanisms 

associated with cellular phenotype 

To gain greater insight into the associations between protein site phosphorylation dynamics 

and phenotypic response to EGF stimulation, we used partial least square regression (PLSR) to 

integrate these quantitative data sets and determine drivers of the observed phenotypic 

differences. After selecting the optimal number of latent variables, the model was generated 

based on leave-one-out cross validation (LOOCV). The model was predictive of phenotype with 

a fit to data average R2 of 0.97, while cross-validation provided highly predictive Q2 values >0.75 

for all phenotypes and signaling data timepoints (Supplemental Fig 7), as well as using the Area 

Under the Curve (AUC) as a metric of total phosphorylation for each site over the time course. 

From this model, variable importance in projection (VIP) scores were calculated to identify the 

most critical contributors to the PLSR model.  

To assess the accuracy of the predicted model associations, we checked the phosphorylation 

sites predicted to be positively associated with cell proliferation (Supplemental Table 2). In 

agreement with previous reports, phosphorylation of the activation loop of the ERK MAPKs 

(MAPK1 and MAPK3) at 2 and 5 minutes following stimulation was found to be positively 
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associated with proliferation, as was phosphorylation of SCL38A2 (Y41) [31–33]. Additionally, 

CDK1/2 Y15 is positively associated with cell proliferation in our model; while this site is known 

to inhibit progression through the cell cycle, cells that proliferate more frequently have 

increased CDK Y15 phosphorylation, agreeing with the model prediction. On the other side, 

tyrosine phosphorylation of Afadin (Y1230, Y1285), Girdin (Ccdc88a) (Y1801), and Erbin (Y1097) 

are negatively associated with proliferation. Tyrosine phosphorylation of these proteins has 

been shown to promote cell migration, further suggesting a cell decision process downstream 

of EGFR, where phosphorylation of migration associated proteins is negatively correlated with 

cell proliferation [34,35].  For the PLSR model integrating protein phosphorylation with cell 

migration, the above sites on Afadin, Girdin, and Erbin were all positively associated with cell 

migration, as were sites on Delta-Catenin (Y228, Y865, Y904) and PLC ɣ-1 (Y771, Y1253), also 

supporting the predictive power of this model. The PLSR model integrating protein 

phosphorylation and receptor endocytosis has similar predictive power, with a Q2 = 0.87, yet 

the signaling networks associated with receptor internalization and trafficking are less 

characterized, so interpretation of the model predictions is more challenging. For instance, 

phosphorylation of Grb2-associated binding protein 1 (Gab1) on Y628 and Y660 and 

phosphorylation of the Erk 1/2 MAPK activation loops (T183/Y185; T203/Y205) are positively 

associated with receptor endocytosis, in agreement with a previous publication suggesting that 

Gab1 is recruited to early endosomes and is the primary mediator of Erk MAPK signaling 

following receptor endocytosis [36].  
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Figure 5: PLSR reveals PLCy1 and Eps8- mediated mechanisms predictive of cell phenotypes.  
A. Variable Importance in the Projection (VIP) statistics depicting most predictive nodes for each 
phenotype based on signaling data (AUC). Data presented based on 3 component PLSR, cross 
validated model. B. Cumulative VIP scores across models, rank-ordered. C. Co-correlation map of 
basal-normalized pTyr data (mean log2 fold change) highlighting subcluster containing Eps8 peptide 
(Y602). PLSR model built using LOOCV and 3 components, R2 and prediction accuracy (Q2) values can 
be found in Supplemental Figure 7. 
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However, the roles of other sites in this phenotype, including a strong negative association 

between EGFR internalization and PLCɣ-1 phosphorylation (Y771, Y783, Y1253) are less clear. It 

may be that EGFR phosphorylation of PLCɣ-1 occurs on the cell membrane, and that therefore 

increased internalization of EGFR leads to decreased phosphorylation of PLCɣ-1, but this 

hypothesis would need to be shown experimentally.   

One of the strongest contributors to the proliferation and migration models is pY601 of 

Epidermal growth factor receptor pathway substrate 8 (Eps8) (Fig 5A and Fig 5B). Eps8 is a 

substrate of EGFR and has been shown to be involved in regulating cancer progression [37–39]. 

In our PLSR models, Eps8 was found to be a strong negative predictor for proliferation, whereas 

it was a robust positive predictor for migration. In agreement with our model predictions, 

phosphorylation of Eps8 Y601 has been reported to block proliferation and to promote cell 

migration [40]. In cell lines bearing the Y1068F mutation, Eps8 Y601 is significantly decreased in 

phosphorylation, suggesting that Eps8 and 1068F are directly or indirectly functionally 

correlated. To gain further insight into other protein phosphorylation sites that may be co-

regulated with Eps8, we performed co-correlation clustering. This analysis showed that Eps8 

was most closely correlated with Y104 of the DEAD box helicase DDX3X, a protein whose 

phosphorylation has not been previously linked to the EGFR signaling pathway, yet DDX3X has 

been recently suggested to play a role in EGFR Tyrosine Kinase Inhibitor (TKI) resistance [41]. 

Also highly co-regulated with Eps8 are Girdin, Filamin b (Flnb), RNA-binding motif protein 3 

(Rbm3), TRIO and F-actin binding protein (Triobp), and Grb2, all of which are predicted to be 

positively associated with cell migration and most of which are negatively associated with cell 

proliferation (Fig 5C). Intriguingly, several of these proteins, including DDX3X, Rbm3, and 
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Triobp, have not been previously linked to EGFR signaling, yet through our analysis of signaling 

networks associated with different mutant isoforms of EGFR, we were able to not only connect 

these protein phosphorylation sites to EGFR activity, but also suggest associations with 

phenotypic outcomes downstream of EGFR activation. 

Discussion 
 

In Given the well-established role of EGFR as a driver oncogenic kinase in many cancer types, 

coupled with the need to improve EGFR-targeting strategies in the clinic and the dependence 

on phosphorylation of C-terminal tyrosines for signal propagation, we took a mechanistic, 

phosphoproteomics-based approach to investigate the contribution of individual EGFR C-

terminal tail tyrosines to the EGFR signaling network.  In this work, we utilized NR6 murine 

fibroblasts that lack endogenous ErbB expression as a model system. NR6 cells have previously 

been used to assess the EGFR signaling network response to ligand stimulation, and have been 

shown to respond through increased proliferation and migration, suggesting intact downstream 

signaling networks and compatibility of murine cells to expression of human EGFR [22–24]. 

Here, we generated individual and combined Y>F mutant isoforms and stably expressed each of 

these isoforms in NR6 cells to evaluate loss of function effects for selected C-terminal tyrosine 

phosphorylation sites.  

Moderate to high levels of EGFR expression can lead to receptor activation in the absence of 

ligand. Basal activity of the stably expressed EGFR isoforms in our NR6 cells resulted in a slightly 

altered baseline signaling state for each isoform-expressing line. Although we were able to 

correct for this baseline signaling by normalizing the temporal data to the non-stimulated 
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condition (e.g., the ‘zero’ time point), other model system choices may provide for a more 

straightforward comparison. For instance, stable expression allows the cells to adapt/rewire to 

each mutant EGFR isoform. One could opt for a transient expression system to limit the amount 

of rewiring in the cells before stimulation, although the dynamic nature of transient expression, 

coupled with the difficulty of obtaining consistency in EGFR expression levels across replicates 

and lines, would be highly challenging. CRISPR-based gene editing to mutate selected tyrosine 

phosphorylation sites in endogenously expressed EGFR would also enable interrogation of loss-

of-function of each site without exogenous stable expression. However, our attempts to 

achieve gene editing of EGFR sites in several epithelial lines were not successful, potentially due 

to the inefficiency of current gene editing approaches, making it highly challenging to achieve 

editing in both genomic copies of EGFR. Moreover, many epithelial cells are dependent on EGFR 

expression, and thus mutation of one or both copies may have been negatively selected.  

Given some of the established connections between adaptor proteins and selected EGFR C-

terminal tail phosphorylation sites, our initial hypothesis at the start of the project was that loss 

of a given phosphorylation site might lead to loss of signal for one or more adaptor proteins 

and associated signaling pathways. However, to our surprise, the EGFR signaling network was 

highly resilient, and signaling network response was highly conserved for each loss-of-function 

mutant isoform, even those with combined mutation of 5 or 6 tyrosines. The strong similarity in 

network response to EGF stimulation regardless of loss of tyrosine function suggests dynamic 

cellular rewiring in the context of each mutant isoform. This dynamic adaptation may be a 

result of a built-in mechanism, for example by using redundancy in adaptor protein binding 

sites to help compensate for loss of tyrosine residues. Unfortunately, the ability of the signaling 
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network to compensate for loss of one or more tyrosines made it challenging to isolate the 

functional interactions of a given tyrosine site.  

Previous work has connected signaling network nodes in the ErbB network with consequent 

phenotypic response to EGFR or Her3 stimulation [31]. We used a similar modeling framework 

to generate integrative computational models focused on three phenotypes that are known to 

be regulated by EGFR and cover various degrees of cellular response. Proliferation and 

migration occur on the hours-to-days timescale, whereas receptor internalization is an earlier 

phenotypic response that could be measured on the minutes-timescale. Using quantitative data 

for hundreds of tyrosine phosphorylation sites across multiple time points per cell line and 9 

different cell lines, we were able to generate robust and highly predictive models for each 

phenotype. Intriguingly, although cellular responses such as migration and proliferation take 

hours-to-days to occur, phosphorylation changes in the immediate-early timepoints, as early as 

30 seconds or 1 minute, were found to be highly important in predictive models for these 

longer-term responses. These model predictions highlight the importance of measuring early 

phosphorylation events in the signaling network, as these events effectively set the course for 

the future cellular response to stimulation.  

Phosphorylation of PLCɣ-1 and Eps8 emerged as some of the most important sites in the 

models, with Eps8 as a major feature in predicting cell proliferation (negative association) and 

cell migration (positive association). Among the EGFR phosphorylation sites, Eps8 was strong 

correlated with the 1068 residue. We hypothesize that the association between Eps8 and 

Y1068 may relate to complex formation of Eps8 with Sos1 and Abl1 when Grb2 is unable to bind 

pY1068, a known binding site of Grb2, in the Y1068F mutant isoform. Under this condition, 
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increased Eps8-Sos1 complex formation may lead to decreased ERK activity and consequent 

decreased cell proliferation [42]. Eps8 is known to promote cell migration and also emerged as 

a strong positive factor in this model, suggesting that phosphorylation of this protein may be 

part of the switch mechanism utilized by the cell for phenotype decision making [40]. Small 

molecule inhibitors targeting the EGFR/Eps8 complex in NSCLC and breast cancer models have 

shown promising results, supporting Eps8 as a potential therapeutic target in cancer [37]. PLCɣ-

1 also emerged one of the strongest contributors to the models, with a positive association in 

the cell migration model and a negative association in receptor endocytosis. Although the role 

of PLCɣ-1 in promoting cell migration downstream of receptor activation is well established, the 

connection between receptor endocytosis and PLCɣ-1 requires further investigation. Regression 

based models provide associations, but often fail to provide mechanism. In this case, it is not 

obvious whether increased receptor endocytosis leads to decreased PLCɣ-1 phosphorylation, or 

whether decreased PLCɣ-1 phosphorylation leads to increased receptor trafficking, potentially 

through altered cAMP and Ca2+ signaling.  In addition to Eps8 and PLCɣ-1, our regression models 

also highlight the role of other protein phosphorylation sites in mediating the cell response 

decision between migration and proliferation.  For instance, Girdin (CCdc88a, also known as 

GIV) emerged as a highly important protein in the proliferation and migration models. Several 

manuscripts over the past few years have suggested that Girdin may serve to connect RTKs 

such as EGFR to G-protein coupled receptors to thereby modulate cAMP levels and control the 

proliferation/migration cell decision process [43–45]. Our data suggest that Y1801 on Girdin 

may play an important role in this process, as phosphorylation of this site was negatively 

associated with cell proliferation and positively associated with cell migration. Similarly, 
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phosphorylation of RBM3 Y115 also emerged as a strong predictor in the proliferation and 

migration models. While this protein has been previously linked to cell migration, in agreement 

with our model prediction, RBM3 has not been associated with EGFR signaling previously and 

Y115 appears to be a novel phosphorylation site. Additional studies are needed to characterize 

the role of this phosphorylation site on RBM3 function and to determine the mechanism 

underlying association with cell migration. 

This mechanistic approach to uncover novel insights into the EGFR signaling network is easily 

translatable to other RTKs. It would be interesting to see if all RTKs have similar resilience in 

signaling response to loss-of-function mutation to one or more tyrosines, or whether there is a 

hierarchy of sites on selected RTKs. Using regression models to couple quantitative 

phosphotyrosine phosphoproteomics with quantitative measurements of cell biological 

response led to predictions as to a potential association for poorly characterized 

phosphorylation sites with particular cell responses. Application of this same approach to less 

studied RTKs should provide a plethora of novel associations that should lead to much better 

understanding of these signaling networks. 

Materials and Methods 
 

Plasmid preparation and extraction 

Seven out of nine plasmid constructs were kindly donated by F. Furnari Laboratory (UCSD, CA). 

Wild-type and 1045F mutant plasmids were generated from 845F plasmid using Genscript site-

directed mutagenesis service and sequences verified with Sanger sequencing (EtonBio). 

Plasmids were pLNCX2 retroviral vectors with a neomycin and Ampicillin resistance gene, as 
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well as the EGFR coding sequence containing a variety of Y-to-F mutations (Y845F, Y992F, 

Y1045F, Y1068F, Y1148F, Y1173F, DY6 (6 Y-to-F mutations (Y845F,Y992F, 

Y1068F,Y1086F,Y1148F,Y1173F)), DY5 (DY6 except F845Y) and wild-type. 

Plasmid DNA was transformed into DH5α E. coli (NEB 5-alpha competent E. Coli (High 

Efficiency)) according to NEB protocol. Cells from -80⁰C freezer were thawed on ice for 5 

minutes, and 5μl of plasmid DNA was added to the cell mixture. The mixture was incubated on 

ice for 30 minutes and then heat shocked in a water bath at 42⁰C for 45 seconds. The mixture 

was placed on ice for 5 minutes. 950 μL of Super Optimal broth with Catabolite expression 

(SOC) medium was added to the mixture, which was then shaken at 37⁰C for 60 minutes. 

Subsequently, 100 μL was spread onto a Luria Broth (LB) agar with ampicillin plate and 

incubated overnight at 37⁰C. Individual colonies were picked and grown for ~12 hours at 37⁰C 

in 10mL of LB media with ampicillin (100mg/mL, 1000x). Culture was spun down at 4⁰C and 

10,000 rpm for 10 minutes. Plasmid DNA was isolated using the Qiagen Spin Miniprep Kit. 

Nanodrop (Thermo) was used to determine DNA concentration. 

 

Retroviral transfection 

On day 0, 2e5 293T cells/well were plated in 6 well-plates. The next day, 4μl fuGENE HD 

Transfection Reagent (Promega, E2311) was added to 100μl of Opti-MEM (Gibco) and vortexed 

to mix and incubate for 5 minutes at room temperature (RT). Envelope protein VSV-G and 

packaging genes Gag/Pol were combined with plasmid DNA; 333ng, 666ng and 500ng, 

respectively. The DNA mix was added dropwise to the solution containing fuGENE and HD 

transfection reagent, mixed, and left to incubate at RT for 30 minutes. The resulting mixture 
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was then added dropwise to the 293T cells. On day 2, the media was replaced with regular 

DMEM containing 1% Pen/Strep and 10% FBS using a P1000 to minimally disturb the cells. NR6 

cells were plated in 6 well plates at 5e4 cells/well. The following day, virus was harvested from 

the 293T cells by collecting media and passing it through a .45μm filter. Polybrene (Sigma) was 

added to the solution at 6μg/mL, and the media for NR6 cells was replaced with the filtered 

DMEM containing the virus/polybrene mixture. 8 hours later, the media was removed and 

DMEM supplemented with 10% Fetal Bovine Serum (FBS) and 1% Penicillin/Streptavidin (P/S) 

added onto the cells. On day 6, Geneticin (G418, Gibco) was added at 45μL/well. One day later, 

the cells were split and kept on G418 selection pressure. 

Flow cytometry for EGFR expression and endocytosis 

To select successfully transfected cells as well as to ensure comparable expression levels 

between cell lines and replicates, EGFR expression was determined by flow cytometry. 

Biotinylated EGF, complexed to Alexa Fluor 488 (Invitrogen, E13345) was added to each NR6 

cell line at a concentration of 0.5 μg/mL and incubated at 37⁰C for 5 minutes. Cells were put on 

ice, spun down at 4⁰C at 1,200 g for 5 min and washed twice with cold PBS before analysis on 

the BD FACScanto Clinical Flow Cytometry System. When selecting successfully transfected 

cells, the BD FACSAria Sorter was used and gating for EGFR-expressing cells was determined 

with respect to a negative control. 

To evaluate EGFR internalization and trafficking, pHrodo EGF 488 conjugate (Thermo P35375) 

was added to each NR6 cell line at a concentration of 0.5 μg/mL and incubated at 37⁰C for 5 

minutes. Cells were put on ice, collected from plate using Accutase, spun down at 4⁰C at 1,200 
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g for 5 min and washed twice with cold PBS before analysis. Data was acquired using the BD 

FACSDIVA Software and further analyzed using FlowJo. 

Cell culture and EGF stimulation 

NR6 mouse fibroblasts (gifted by F. Furnari Laboratory, UCSD, CA) were maintained in DMEM 

(Corning) medium supplemented with 1% Penicillin-Streptomycin (5,000 U/mL, Gibco), 2% 

G418 (Gibco) and 10% FBS (Gibco). Approximately 2e5 cells were seeded and incubated for 2 

days to reach ~80% confluency in 10cm dishes. For each line and each biological replicate, one 

plate of cells was used to determine EGFR expression level using Alexa Fluor 488-conjugated 

EGF and flow cytometry, as described above. Other plates of cells (one 10 cm plate/time point) 

were stimulated with 2 nM EGF (Peprotech) in serum-free media for 30 seconds, 1 minute, 2 

minutes or 5 minutes or left untreated as a control (0minute timepoint). 

Sample preparation for MS analysis 

After EGF stimulation, media was promptly discarded and cells were snap frozen on liquid N2 

for instant arrest of all signaling events. Cells were lysed on ice using 500μL 8M Urea (Sigma) 

per 10cm plate. A bicinchoninic acid (BCA) protein concentration assay (Pierce) was performed 

according to the manufacturer’s protocol to estimate the protein concentration in each lysate. 

Cell lysates were reduced with 10mM DTT for 1hr at 56⁰C, alkylated with 55 mM iodoacetamide 

for 1hr at RT shielded from light, and diluted 5-fold with 100 mM ammonium acetate, pH 8.9, 

before trypsin (Promega) was added (20:1 protein:enzyme ratio) for overnight digestion at RT. 

The resulting solutions were acidified with 1 mL of acetic acid (HOAc) and loaded onto C18 Sep-

Pak Plus Cartridges (Waters), rinsed with 10mL of 0.1% HOAc, and eluted with 10mL of 40% 

Acetonitrile (MeCN)/ 0.1% HOAc. Peptides were divided into XYZ microgram aliquots, and 
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sample volume was reduced using a vacuum centrifuge (Thermo) and then lyophilized to 

dryness for storage at -80⁰C. 

TMT labeling for multiplexed analysis was performed according to manufacturer’s protocol. 

Samples, each containing ~200ug peptides, were resuspended in 35μL HEPES (pH 8.5), 

vortexed, and spun down at 13,400rpm for 1 minute. 400μg of a given channel of TMT10plex 

(Thermo) in anhydrous MeCN, was added per sample. Samples were shaken at 400rpm for 1hr, 

after which the labeling reaction was quenched using 5% Hydroxylamine (50%, Thermo). After 

another 15 minutes on the shaker, all samples were combined using the same pipette tip to 

reduce sample loss, and sample aliquots were washed twice with 40 μL 25% MeCN/0.1% HOAc 

which was added to the collection tube to improve yield. Sample volume was reduced using a 

vacuum centrifuge and then lyophilized to dryness for storage at -80⁰C. 

Phosphopeptide enrichment 

Immunoprecipitation (IP) and IMAC were used sequentially to enrich samples for 

phosphotyrosine containing peptides. TMT-labeled samples were incubated in IP buffer 

consisting of 1% Nonidet P-40 with protein G agarose beads conjugated to 24 μg of 4G10 V312 

IgG and 6 μg of PT-66 (P3300, Sigma) overnight at 4⁰C. Peptides were eluted with 25 μl of 0.2% 

trifluoroacetic acid for 10 minutes at room temperature; this elution was performed twice to 

improve yield. Eluted peptides were subjected to phosphopeptide enrichment using 

immobilized metal affinity chromatography (IMAC)-based Fe-NTA spin column to reduce non-

specific, non-phosphorylated peptide background. High-Select Fe-NTA enrichment kit (Pierce) 

was used according to manufacturer’s instructions with following modifications. Eluted 

peptides from IP were incubated with Fe-NTA beads containing 25μL binding washing buffer for 
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30 minutes. Peptides were eluted twice with 20mL of elution buffer into a 1.7 mL 

microcentrifuge tube. Eluates were concentrated in speed-vac until ~1 μL of sample remained, 

and then resuspended in 10μL of 5% acetonitrile in 0.1% formic acid. Samples were loaded 

directly onto an in-house constructed fused silica capillary column [50 micron inner diameter 

(ID) x 10 cm] packed with 5μm C18 beads (YMC gel, ODS-AQ, AQ12S05) and with an integrated 

electrospray ionization tip (~2 micron tip ID). 

LC-MS/MS analysis 

LC-MS/MS of pTyr peptides were carried out on an Agilent 1260 LC coupled to a Q Exactive HF-

X mass spectrometer (Thermo Fisher Scientific). Peptides were separated using a 140-minute 

gradient with 70% acetonitrile in 0.2 mol/L acetic acid at flow rate of 0.2 mL/minute with 

approximate split flow of 20 nL/minute. The mass spectrometer was operated in data-

dependent acquisition with following settings for MS1 scans: m/z range: 350 to 2,000; 

resolution: 60,000; AGC target: 3 x 106; maximum injection time (maxIT): 50 ms. The top 15 

abundant ions were isolated and fragmented by higher energy collision dissociation with 

following settings: resolution: 60,000; AGC target: 1x105; maxIT: 350 ms; isolation width: 0.4 

m/z, collisional energy (CE): 33%, dynamic exclusion: 20 seconds. Crude peptide analysis was 

performed on a Q Exactive Plus mass spectrometer to correct for small variation in peptide 

loadings for each of the TMT channels. Approximately 30 ng of the supernatant from pTyr IP 

was loaded onto an in-house packed precolumn (100μm ID x 10 cm) packed with 10mm C18 

beads (YMC gel, ODS-A, AA12S11) and analyzed with a 70-minute LC gradient. MS1 scans were 

per-formed at following settings: m/z range: 350 to 2,000; resolution:70,000; AGC target: 3x106; 
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maxIT: 50 ms. The top 10 abundant ions were isolated and fragmented with CE of 33% at a 

resolution of 35,000. 

Peptide identification/quantification 

Mass spectra were processed with Proteome Discoverer version 2.5 (Thermo Fisher Scientific) 

and searched against the mouse and human (for EGFR peptides) SwissProt database using 

Mascot version 2.4 (MatrixScience, RRID:SCR_014322). MS/MS spectra were searched with 

mass tolerance of 10 ppm for precursor ions and 20 mmu for fragment ions. Cysteine 

carbamidomethylation, TMT-labeled lysine, and TMT-labeled peptide N-termini were set as 

fixed modifications. Oxidation of methionine and phosphorylation of serine, threonine and 

tyrosine were searched as dynamic modifications. TMT reporter quantification was extracted 

and isotope corrected in Proteome Discoverer. Peptide spectrum matches (PSM) were filtered 

according to following parameters: rank=1, mascot ion score>15, isolation interference<40%, 

average TMT signal>1,000. Peptides with missing values across any channel were filtered out. 

Phenotypic measurements 

Proliferation assay EGFR mutant and wildtype expressing cells were seeded in 96-well tissue 

culture plastic plates (VWR) at 10,000 cells/well in culture media and allowed to adhere for 24 

h. Media was replaced by media containing 1% FBS and 2nM EGF or 1% FBS and no EGF. Cells 

were analyzed by a live-cell imaging platform (Incucyte) every 3 hrs for 48 hrs. Proliferation 

rates were calculated using confluence measurements and correlation values between 

phenotypic measurements were calculated using delta rates with/without EGF stimulation. 

Migration Wound scratch assay EGFR mutant and wildtype expressing cells were seeded at 

1e5 cells/well in 96-well tissue culture plastic plates (Essen Bioscience) at 100,000 cells/well in 
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culture media and allowed to adhere for 24 h and reach ~90% confluency.  The Wound Maker 

(Essen Bioscience) was used to create a scratch across the well surface. Wells were washed with 

PBS to remove floating cells and media was added containing 1% FBS and either 2nM EGF or no 

EGF. Wound closure was monitored by a live-cell imaging platform (Incucyte with Scratch 

wound cell migration software module) every 3 hrs for 48 hrs. Migration rates were calculated 

using wound width and wound confluency measurements. 

Internalization/Receptor trafficking measurements  Biotinylated EGF complexed with pH-

sensitive fluorophore pHrodo (Thermo) was used to measure receptor internalization for each 

line.  This fluorophore is weakly fluorescent outside the cells at neutral pH but become brightly 

fluorescent in acidic endosomes after EGFR internalization.  Cells were plated in 6-well plates 

and cultured to 70-80% confluence. Plates were put on ice for 10 minutes to inhibit any ongoing 

endocytosis. Cells were then washed with Live Cell Imaging Solution (LCIS, Thermo) 

supplemented with 20mM Glucose. Cells were then incubated in 250uL LCIS/glucose with 0.5 

ug/mL EGF-conjugate for 5 minutes at 37C. Then, cells were washed in cold LCIS, and kept on 

ice while being removed from the plate using Accutase (Thermo). Cells were spun down at 

1000rpm for 5 minutes and washed twice in cold LCIS before resuspending in Glucose 

supplemented LCIS for analysis by Flow Cytometry. 

Data analysis  

Data analyses were performed in MATLAB R2020A, Microsoft Excel 2016 and Graphpad Prism 9. 

TMT reporter ion intensities from PSMs were summed for each unique phosphopeptide. For 

protein level quantification, TMT reporter intensities were summed for all unique peptides. 

Peptide or protein quantification were normalized with relative median values obtained from 
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crude lysate analysis to adjust for sample loading in TMT channels. A combination of Student t-

test and One-way Anova was used to perform statistical analysis between conditions. Statistical 

significance was assigned for p<0.05. Unsupervised hierarchical clustering was performed on 

the basis of Person correlation distance metric, unless otherwise specified. Protein networks 

were obtained from STRING (version 11.0) database.  

A self-organizing map (SOM) was used to cluster proteins that exhibited similar signaling 

dynamics following EGF treatment. Clustering analysis was performed using the Self Organizing 

Map Toolbox MATLAB package (http://www.cis.hut.fi/projects/somtoolbox). A 5-by-5 neural 

network was initiated with hexagonal lattice structure. The input was the log-2 fold-change in 

phosphorylation following EGF treatment relative to unstimulated condition for each cell line. 

The network was randomly initiated and used Euclidean distance as the metric for classifying 

proteins to specific neurons. The SOM algorithm was repeated 1,000 times, and a co-clustering 

map was generated indicating the frequency with which any two proteins clustered in the same 

neuron. This co-clustering map was then subjected to hierarchical clustering using Euclidean 

distance as the metric for clustering proteins. Biorender was used for schematics. PLSR model 

was evaluated for goodness of fit (R2) and goodness of prediction (Q2) using leave-one-out-

cross validation (LOOCV). 
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Supplemental Figures 

 

 

Supplementary figure 1: EGFR expression levels as determined by flow cytometry. For each cell line 
(columns) and replicate (rows), EGFR surface-expression levels were determined using fluorophore-
labeled EGF. Protocol as described in methods. 
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Supplementary figure 2: Sample labeling scheme. Samples were multiplexed by timepoint to optimize 
quantitative comparisons between cell lines. One channel was utilized for a batch sample (WT stimulated 
with 2min EGF, depicted by N) to allow normalization and comparison between runs and replicates. 
Labeling scheme was scrambled between replicates to avoid channel bias. 
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Supplementary figure 3: Parental NR6 cells in response to EGF. Un-transfected parental NR6 cells were 
treated with 2nM EGF to confirm lack of EGFR phosphorylation and downstream response. Columns 
indicate timepoint in seconds. Data presented are log2 fold change compared to unstimulated condition. 
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Supplementary figure 4: Basal signaling compared to wt. Data presented are mean log2 fold change in 
unstimulated cells with respect to wildtype cells, n=3. 
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Supplementary figure 5: Correlation of cell lines based average log2 fold change of all overlapping 
peptides, demonstrating high degree of similarity between cell lines. Data presented are calculated 
Pearson r correlation coefficients. 
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Supplementary figure 6: Correlation of EGFR peptide data shows high similarity between isoforms. 
Data presented are calculated Pearson r correlation coefficients. 
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Supplementary figure 7: PLSR prediction values. Partial least squares regression using LOOCV was used 
to build predictive model connecting EGFR signaling and cellular behavior. Table indicates goodness of fit 
(R2) and prediction accuracy (Q2) for each model (3 phenotypes, separate or combined timepoints or 
Area Under the Curve (AUC)). 
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Abstract 
 

Biological research has benefited tremendously from the use of protein labels for the detection 

and quantification of their protein of interest (POI). Green Fluorescent Protein (GFP) in particular 

has been widely used due to its inherent luminescent properties. However, the applicability of 

these labels has been scrutinized when applied in assays with highly dynamic measurements, 

such as phosphorylation. The size of a label like GFP could potentially disrupt substrate 

interactions or hinder proper protein folding and trafficking. In this work, we evaluated the EGFR 

signaling network in NR6 cells expressing human wild type or mutant isoforms. One set of cell 

lines additionally contained a GFP at the C-terminal end, facilitating a variety of measurements 

but potentially interfering with normal EGFR function. The resulting signaling events as 

determined by LC/MS-MS analysis and phenotypic measurements (i.e. migration and 

proliferation) were compared. The results indicate that similar general patterns can be deduced 

from both systems, although slight differences in signaling between GFP and non-GFP systems 

are present. These differences are mostly reflected by the abundance of signal in response to 

ligand stimulation, which is generally higher in the GFP-lacking cells.  Therefore, we propose that 

large labeling proteins like GFP can be used for hypothesis generation but that care should be 

taken when prioritizing quantification of these measurements, in particular when conducting 

signaling network studies focused on highly dynamic post-translational modifications such as 

tyrosine phosphorylation. 
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Introduction 
 

Green Fluorescent protein (GFP) has long been a powerful tool for investigating a wide variety 

of biological events in live cells, including protein tracking, structure labeling and analyzing 

protein activity.[1] The major advantage of using GFPs is their ability to exhibit intrinsic 

fluorescence, as for most other fluorescent proteins, a cofactor is required. [2] This allows for 

monitoring of the dynamics of GFP-tagged proteins in living cells, addressing both the spatial 

and temporal aspects, and avoids potential artefacts due to cell fixation and permeabilization.  

However, as GFP is a large 27 kDa protein, investigators need to be to be wary of deleterious 

effects of such a large protein tag on the function and localization of the tagged protein. 

Especially when monitoring highly dynamic processes such as protein phosphorylation, 

concerns surrounding the effects on protein folding, internalization and steric hindrance exist. 

Here, we compared EGF-induced phosphoproteomic and phenotypic data from NR6 cells 

expressing human EGFR isoforms with or without a GFP-tag. In this model, the GFP tag allows 

for easy monitoring of EGFR expression levels across cell lines and replicates. Our data shows 

that although general trends are comparable across models, GFP seems to decrease the 

dynamic range of change observed in signaling as well as phenotypic data between mutant 

isoforms. Although GFP has clear advantages in biological research, caution must be exerted 

when interpreting this data. 
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Results 
 

Development of EGFR-expression system  

To evaluate and compare signaling effects in the EGFR network response, mouse fibroblasts 

(NR6) lacking ErbB expression were retrovirally transfected to stably express human wild type 

EGFR (wtEGFR) or mutant EGFR isoforms in which one or more tyrosines in the C-terminal tail 

were converted to a non-phosphorylatable phenylalanine residue (e.g., Y-to-F mutation) to 

evaluate loss of function. These lines were generated two-fold, one set additionally containing a 

GFP tag at the C-terminal end of the EGFR sequence (wild type, Y845F, Y992F, Y1045F, Y1068F, 

Y1148F and Y1173F, with or without GFP) (Figure 1). 

 

Figure 15: A panel of 14 cell lines were generated, 7 of which contained a GFP tag at the C-terminal end. 
The 7 isoforms included wild type and 6 single Y-to-F mutants. Red and Blue dots indicate presence of 
phenylalanine or tyrosine at residue location, respectively.  
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Following successful transfection, expression levels were determined for all cell liens and 

replicates by flow cytometry (Figure 2). Expression of each mutant isoform led to relatively 

slight changes in surface3 level receptor expression for most of the non-GFP cell lines, with 

Y845F and Y1045F being the major outliers in terms of surface expression. In the GFP-lines, 

EGFR expression was less variable, with the exception of the Y1173F mutant (Figure 2). 

Phosphorylation of the Y1045 site has been associated with binding of the Cbl E3 ubiquitin 

ligase and subsequent ubiquitination of EGFR. Blocking phosphorylation at this site through Y-

to-F mutation should therefore result in altered receptor trafficking, including increased 

recycling and decreased degradation, providing a potential explanation for the significantly 

greater cell surface expression relative to wtEGFR. These data indicate that GFP is functionally 

affecting surface level expression of the protein, potentially by slowing down protein 

trafficking.  

 

Figure 16:EGFR surface expression levels for GFP-lines (left) and all lines (right). *P≤0.05 (one-way 
ANOVA), n=3. 
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Comparing these cell lines to cell lines with known copy numbers, reveals that copy number is 

comparable to A549 levels [3] (Figure 3). 

 

Figure 17: EGFR expression levels compared. Comparison of signal between NR6-EGFR expressing cell 
lines and other cell lines with known copy numbers of EGFR, showing comparable expression levels with 
A549, a high EGFR-expressing cell line. 

After confirming that receptor surface expression was roughly similar across most of the 

mutant isoform expressing cell lines, to assess the effect of each mutation on the cellular 

signaling network, cells were stimulated with 2nM EGF for 0 seconds, 30 seconds, 1 minute, 2 

minutes or 5 minutes. At the appropriate time following stimulation, cells were snap-frozen in 

liquid nitrogen, lysed in cold 8M Urea to preserve physiological signaling, and proteolytically 

digested to peptides.  To accommodate the large number of samples (5 time points per cell line, 

9 total cell lines, and 3 biological replicates per condition), peptides from each cell lysate were 

labeled with isobaric tandem mass tags and analyzed as 11-plex experiments with pooled 

normalization controls. Labeled samples were subjected to 2-step phosphotyrosine enrichment 

and subsequent liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis (Figure 
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4). These analyses yielded quantitative data for interrogate and compare pTyr temporal 

dynamics between GFP and non-GFP lines. 

 

Figure 18: Workflow schematic of NR6 retroviral transfection, cell stimulation and sample processing, 
followed by TMT labeling and phosphotyrosine enrichments steps for LC-MS/MS analysis. 

 

NR6 cells expressing EGFR-GFP and EGFR lacking GFP exhibit similar signaling network response 

to EGF stimulation 

We interrogated this large data set by initially comparing EGFR network dynamics in response 

to EGF between wtEGFR-GFP and wtEGFR. To evaluate the EGF response, data was normalized 

to each cellline’s corresponding unstimulated condition to correct for any differences in basal 

signaling. Overall, both lines respond to EGF with a strong increase in phosphorylation of the 

network(Figure 5). This response includes many of the canonical nodes of the EGFR network, 

including PLCy-1, SHIP2, GAB1, and ERK1/2.  
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Figure 19: Comparison wtEGFR and wtEGFR-GFP dynamic network response to EGF. Data presented are log2fold change values 
over unstimulated(basal) condition. 

 

 

Mutant EGFR isoforms exhibit stronger signaling network in absence of GFP 

Interestingly, the response to EGF in GFP-containing mutant isoform lines was less affected as a 

result of the mutations compared to the non-GFP cell lines. Figure 6 demonstrates a lack of 

response in GFP-lines, whereas non-GFP lines display a variety of responses ranging from 

downregulation to upregulation of the network in response to EGF. 
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Figure 20: Hierarchical clustering of tyrosine phosphorylation data of all EGFR isoforms at t=5m. Log2 
fold change over basal levels, data are presented as mean, n=3.   

 

Phenotypes are differentially altered between GFP/non-GFP lines. 

As the phosphoproteomic data reflect overall signaling network similarity as well as some 

mutant-specific differences in non-GFP lines, and little differences between mutant isoforms in 

GFP-lines, our findings raised the question as to whether and how this variation translates to 
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cellular response. To evaluate the phenotypic consequences of tyrosine loss-of-function, 

migration and proliferation rates were measured (Fig 7).  

 

Figure 21: Migration and Proliferation data for NR6 EGFR expressing cell lines. Left: Proliferation rates 
measured by confluency % over 24 hrs. Right: Migration rates determined by measuring scratch wound 
assay closing rate over 24 hrs. Data are presented as mean +- SD. *P≤0.05 (One-way ANOVA), n=3. * 
indicates significant difference. 

 

To evaluate EGF-stimulated cell migration rates, temporal dynamics of wound healing were 

quantified in confluent plates for each cell line, in the presence or absence of EGF. EGF 

stimulated cell migration at a similar rate for most of the mutant isoform expressing lines as 

compared to wtEGFR, however Y992F cells were significantly more responsive to EGF-

stimulated migration as compared to most other lines. These results were not recapitulated in 

the GFP lines, where an increase in migration was observed for the Y1068F an Y1148F line, 

although they did not have a strong signaling response to EGF. 

Confluency measurements taken over time for each line in the absence or presence of EGF 

were compared to quantify an EGF-response proliferation rate. Where migration rates were 
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clearly different between GFP-isoforms, proliferation rates were not significantly different 

between wtEGFR-GFP and mEGFR-GFP lines. In the non-GFP lines, significant differences 

between cell lines can be observed, most notably for the Y1068F line, nominating this site as a 

potential driver of proliferation. 

To validate fair comparison between GFP and non-GFP lines, a direct comparison phenotypic 

experiment of wtEGFR and wtEGFR-GFP cell lines demonstrated similar trends upon EGF 

treatment (Fig 8). No significant differences were observed between non-stimulated conditions 

or between stimulated conditions. However, slightly greater EGF-induced migration and 

proliferation was observed in the non-GFP lines.  

  

Figure 8: Migration and Proliferation rates for WT EGFR and WT EGFR-GFP expressing cell lines in 

absence or presence of EGF, directly compared. Left: Proliferation rates measured by confluency % over 

24 hrs. Right: Migration rates determined by measuring scratch wound assay closing rate over 24 hrs. 

Data are presented as mean +- SD. *P≤0.05 (One-way ANOVA), n=3. * indicates significant difference 
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Discussion 
 

In this study, we evaluated the effect of GFP on signaling dynamics of the EGFR network. We 

utilized NR6 cells tranfected with either wtEGFR or single mutant EGFR, in the presence or 

absence of a GFP for detection purposes. Although our wildtype lines both elicited a strong and 

similar response to EGF, we found that the size of the fold change varied. Furthermore, we 

found that our mutations caused greater change in phosphorylation profile in the non-GFP 

lines, potentially due to stabilizing effects of GFP. Furthermore, phenotypic data showed that 

although wildtype lines were comparable in terms of response direction, the size of response 

was significantly different.  Furthermore, we found that phenotypic results were not easily 

comparable between GFP and non-GFP lines for the mutant isoforms. These experimental 

comparisons are important as they highlight the need to be cautious when using fluorophores 

and other labels in highly dynamic experimental setups.  

Although EGFR in our model system remained responsive to EGF stimulation in wild type cells, 

it is clear that GFP has affected EGFR function, particularly at the phenotypic level. Changes in 

receptor surface level expression could very well be the result of decreased internalization or 

recycling of the receptor due to the addition of this 27 kDa protein. Furthermore, GFP may, to 

an extent, have sterically hindered dimerization and/or phosphorylation of the receptor as well 

as blocked substrate accessibility vital for signal transduction.  

For future signaling studies, we propose limiting the use of these fluorophores in signaling 

studies to hypothesis generation purposes, and evaluate surface level expression using 

fluorophore-labeled ligands when available. Alternatively, fluorophores could be positioned 
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further away from interaction sites, such as the C-terminal tail, although caution must be 

exerted to prevent interference with the ligand binding domain.[4] 

Materials and Methods 
 

Plasmid preparation and extraction 

Seven out of nine plasmid constructs were kindly donated by F. Furnari Laboratory (UCSD, CA). 

Wild-type and 1045F mutant plasmids were generated from 845F plasmid using Genscript site-

directed mutagenesis service and sequences verified with Sanger sequencing (EtonBio). 

Plasmids were pLNCX2 retroviral vectors with a neomycin and Ampicillin resistance gene, as 

well as the EGFR coding sequence containing a variety of Y-to-F mutations (Y845F, Y992F, 

Y1045F, Y1068F, Y1148F, Y1173F, and wild-type. 

Plasmid DNA was transformed into DH5α E. coli (NEB 5-alpha competent E. Coli (High 

Efficiency)) according to NEB protocol. Cells from -80⁰C freezer were thawed on ice for 5 

minutes, and 5μl of plasmid DNA was added to the cell mixture. The mixture was incubated on 

ice for 30 minutes and then heat shocked in a water bath at 42⁰C for 45 seconds. The mixture 

was placed on ice for 5 minutes. 950 μL of Super Optimal broth with Catabolite expression 

(SOC) medium was added to the mixture, which was then shaken at 37⁰C for 60 minutes. 

Subsequently, 100 μL was spread onto a Luria Broth (LB) agar with ampicillin plate and 

incubated overnight at 37⁰C. Individual colonies were picked and grown for ~12 hours at 37⁰C 

in 10mL of LB media with ampicillin (100mg/mL, 1000x). Culture was spun down at 4⁰C and 

10,000 rpm for 10 minutes. Plasmid DNA was isolated using the Qiagen Spin Miniprep Kit. 

Nanodrop (Thermo) was used to determine DNA concentration. 
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Retroviral transfection 

On day 0, 2e5 293T cells/well were plated in 6 well-plates. The next day, 4μl fuGENE HD 

Transfection Reagent (Promega, E2311) was added to 100μl of Opti-MEM (Gibco) and vortexed 

to mix and incubate for 5 minutes at room temperature (RT). Envelope protein VSV-G and 

packaging genes Gag/Pol were combined with plasmid DNA; 333ng, 666ng and 500ng, 

respectively. The DNA mix was added dropwise to the solution containing fuGENE and HD 

transfection reagent, mixed, and left to incubate at RT for 30 minutes. The resulting mixture 

was then added dropwise to the 293T cells. On day 2, the media was replaced with regular 

DMEM containing 1% Pen/Strep and 10% FBS using a P1000 to minimally disturb the cells. NR6 

cells were plated in 6 well plates at 5e4 cells/well. The following day, virus was harvested from 

the 293T cells by collecting media and passing it through a .45μm filter. Polybrene (Sigma) was 

added to the solution at 6μg/mL, and the media for NR6 cells was replaced with the filtered 

DMEM containing the virus/polybrene mixture. 8 hours later, the media was removed and 

DMEM supplemented with 10% Fetal Bovine Serum (FBS) and 1% Penicillin/Streptavidin (P/S) 

added onto the cells. On day 6, Geneticin (G418, Gibco) was added at 45μL/well. One day later, 

the cells were split and kept on G418 selection pressure. 

 

Flow cytometry for EGFR expression and endocytosis 

To select successfully transfected cells as well as to ensure comparable expression levels 

between cell lines and replicates, EGFR expression was determined by flow cytometry. 

Biotinylated EGF, complexed to Alexa Fluor 488 (Invitrogen, E13345) was added to each NR6 

cell line at a concentration of 0.5 μg/mL and incubated at 37⁰C for 5 minutes. Cells were put on 
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ice, spun down at 4⁰C at 1,200 g for 5 min and washed twice with cold PBS before analysis on 

the BD FACScanto Clinical Flow Cytometry System. When selecting successfully transfected 

cells, the BD FACSAria Sorter was used and gating for EGFR-expressing cells was determined 

with respect to a negative control. 

To evaluate EGFR internalization and trafficking, pHrodo EGF 488 conjugate (Thermo P35375) 

was added to each NR6 cell line at a concentration of 0.5 μg/mL and incubated at 37⁰C for 5 

minutes. Cells were put on ice, collected from plate using Accutase, spun down at 4⁰C at 1,200 

g for 5 min and washed twice with cold PBS before analysis. Data was acquired using the BD 

FACSDIVA Software and further analyzed using FlowJo. 

 

Cell culture and EGF stimulation 

NR6 mouse fibroblasts (gifted by F. Furnari Laboratory, UCSD, CA) were maintained in DMEM 

(Corning) medium supplemented with 1% Penicillin-Streptomycin (5,000 U/mL, Gibco), 2% 

G418 (Gibco) and 10% FBS (Gibco). Approximately 2e5 cells were seeded and incubated for 2 

days to reach ~80% confluency in 10cm dishes. For each line and each biological replicate, one 

plate of cells was used to determine EGFR expression level using Alexa Fluor 488-conjugated 

EGF and flow cytometry, as described above. Other plates of cells (one 10 cm plate/time point) 

were stimulated with 2 nM EGF (Peprotech) in serum-free media for 30 seconds, 1 minute, 2 

minutes or 5 minutes or left untreated as a control (0minute timepoint). 

 

Sample preparation for MS analysis 



 
154 

After EGF stimulation, media was promptly discarded and cells were snap frozen on liquid N2 

for instant arrest of all signaling events. Cells were lysed on ice using 500μL 8M Urea (Sigma) 

per 10cm plate. A bicinchoninic acid (BCA) protein concentration assay (Pierce) was performed 

according to the manufacturer’s protocol to estimate the protein concentration in each lysate. 

Cell lysates were reduced with 10mM DTT for 1hr at 56⁰C, alkylated with 55 mM iodoacetamide 

for 1hr at RT shielded from light, and diluted 5-fold with 100 mM ammonium acetate, pH 8.9, 

before trypsin (Promega) was added (20:1 protein:enzyme ratio) for overnight digestion at RT. 

The resulting solutions were acidified with 1 mL of acetic acid (HOAc) and loaded onto C18 Sep-

Pak Plus Cartridges (Waters), rinsed with 10mL of 0.1% HOAc, and eluted with 10mL of 40% 

Acetonitrile (MeCN)/ 0.1% HOAc. Peptides were divided into XYZ microgram aliquots, and 

sample volume was reduced using a vacuum centrifuge (Thermo) and then lyophilized to 

dryness for storage at -80⁰C. 

TMT labeling for multiplexed analysis was performed according to manufacturer’s protocol. 

Samples, each containing ~200ug peptides, were resuspended in 35μL HEPES (pH 8.5), 

vortexed, and spun down at 13,400rpm for 1 minute. 400μg of a given channel of TMT10plex 

(Thermo) in anhydrous MeCN, was added per sample. Samples were shaken at 400rpm for 1hr, 

after which the labeling reaction was quenched using 5% Hydroxylamine (50%, Thermo). After 

another 15 minutes on the shaker, all samples were combined using the same pipette tip to 

reduce sample loss, and sample aliquots were washed twice with 40 μL 25% MeCN/0.1% HOAc 

which was added to the collection tube to improve yield. Sample volume was reduced using a 

vacuum centrifuge and then lyophilized to dryness for storage at -80⁰C. 
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Phosphopeptide enrichment 

Immunoprecipitation (IP) and IMAC were used sequentially to enrich samples for 

phosphotyrosine containing peptides. TMT-labeled samples were incubated in IP buffer 

consisting of 1% Nonidet P-40 with protein G agarose beads conjugated to 24 μg of 4G10 V312 

IgG and 6 μg of PT-66 (P3300, Sigma) overnight at 4⁰C. Peptides were eluted with 25 μl of 0.2% 

trifluoroacetic acid for 10 minutes at room temperature; this elution was performed twice to 

improve yield. Eluted peptides were subjected to phosphopeptide enrichment using 

immobilized metal affinity chromatography (IMAC)-based Fe-NTA spin column to reduce non-

specific, non-phosphorylated peptide background. High-Select Fe-NTA enrichment kit (Pierce) 

was used according to manufacturer’s instructions with following modifications. Eluted 

peptides from IP were incubated with Fe-NTA beads containing 25μL binding washing buffer for 

30 minutes. Peptides were eluted twice with 20mL of elution buffer into a 1.7 mL 

microcentrifuge tube. Eluates were concentrated in speed-vac until ~1 μL of sample remained, 

and then resuspended in 10μL of 5% acetonitrile in 0.1% formic acid. Samples were loaded 

directly onto an in-house constructed fused silica capillary column [50 micron inner diameter 

(ID) x 10 cm] packed with 5μm C18 beads (YMC gel, ODS-AQ, AQ12S05) and with an integrated 

electrospray ionization tip (~2 micron tip ID). 

 

LC-MS/MS analysis 

LC-MS/MS of pTyr peptides were carried out on an Agilent 1260 LC coupled to a Q Exactive HF-

X mass spectrometer (Thermo Fisher Scientific). Peptides were separated using a 140-minute 

gradient with 70% acetonitrile in 0.2 mol/L acetic acid at flow rate of 0.2 mL/minute with 
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approximate split flow of 20 nL/minute. The mass spectrometer was operated in data-

dependent acquisition with following settings for MS1 scans: m/z range: 350 to 2,000; 

resolution: 60,000; AGC target: 3 x 106; maximum injection time (maxIT): 50 ms. The top 15 

abundant ions were isolated and fragmented by higher energy collision dissociation with 

following settings: resolution: 60,000; AGC target: 1x105; maxIT: 350 ms; isolation width: 0.4 

m/z, collisional energy (CE): 33%, dynamic exclusion: 20 seconds. Crude peptide analysis was 

performed on a Q Exactive Plus mass spectrometer to correct for small variation in peptide 

loadings for each of the TMT channels. Approximately 30 ng of the supernatant from pTyr IP 

was loaded onto an in-house packed precolumn (100μm ID x 10 cm) packed with 10mm C18 

beads (YMC gel, ODS-A, AA12S11) and analyzed with a 70-minute LC gradient. MS1 scans were 

per-formed at following settings: m/z range: 350 to 2,000; resolution:70,000; AGC target: 3x106; 

maxIT: 50 ms. The top 10 abundant ions were isolated and fragmented with CE of 33% at a 

resolution of 35,000. 

 

Peptide identification/quantification 

Mass spectra were processed with Proteome Discoverer version 2.5 (Thermo Fisher Scientific) 

and searched against the mouse and human (for EGFR peptides) SwissProt database using 

Mascot version 2.4 (MatrixScience, RRID:SCR_014322). MS/MS spectra were searched with 

mass tolerance of 10 ppm for precursor ions and 20 mmu for fragment ions. Cysteine 

carbamidomethylation, TMT-labeled lysine, and TMT-labeled peptide N-termini were set as 

fixed modifications. Oxidation of methionine and phosphorylation of serine, threonine and 

tyrosine were searched as dynamic modifications. TMT reporter quantification was extracted 
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and isotope corrected in Proteome Discoverer. Peptide spectrum matches (PSM) were filtered 

according to following parameters: rank=1, mascot ion score>15, isolation interference<40%, 

average TMT signal>1,000. Peptides with missing values across any channel were filtered out. 

 

Phenotypic measurements 

Proliferation assay EGFR mutant and wildtype expressing cells were seeded in 96-well tissue 

culture plastic plates (VWR) at 10,000 cells/well in culture media and allowed to adhere for 24 

h. Media was replaced by media containing 1% FBS and 2nM EGF or 1% FBS and no EGF. Cells 

were analyzed by a live-cell imaging platform (Incucyte) every 3 hrs for 48 hrs. Proliferation 

rates were calculated using confluence measurements and correlation values between 

phenotypic measurements were calculated using delta rates with/without EGF stimulation. 

Migration Wound scratch assay EGFR mutant and wildtype expressing cells were seeded at 

1e5 cells/well in 96-well tissue culture plastic plates (Essen Bioscience) at 100,000 cells/well in 

culture media and allowed to adhere for 24 h and reach ~90% confluency.  The Wound Maker 

(Essen Bioscience) was used to create a scratch across the well surface. Wells were washed with 

PBS to remove floating cells and media was added containing 1% FBS and either 2nM EGF or no 

EGF. Wound closure was monitored by a live-cell imaging platform (Incucyte with Scratch 

wound cell migration software module) every 3 hrs for 48 hrs. Migration rates were calculated 

using wound width and wound confluency measurements. 
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Data analysis  

Data analyses were performed in MATLAB R2020A, Microsoft Excel 2016 and Graphpad Prism 9. 

TMT reporter ion intensities from PSMs were summed for each unique phosphopeptide. For 

protein level quantification, TMT reporter intensities were summed for all unique peptides. 

Peptide or protein quantification were normalized with relative median values obtained from 

crude lysate analysis to adjust for sample loading in TMT channels. A combination of Student t-

test and One-way Anova was used to perform statistical analysis between conditions. Statistical 

significance was assigned for p<0.05. Unsupervised hierarchical clustering was performed on 

the basis of Pearson correlation distance metric, unless otherwise specified. Protein networks 

were obtained from STRING (version 11.0) database.  
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Abstract 
 

The receptor tyrosine kinase AXL has been a target of interest due to its suggested role in 

resistance to inhibitors by EGFR in lung cancer. It is proposed that AXL is transactivated by EGFR 

in a ligand-independent manner, mediating downstream signaling and augmenting EGFR 

signaling. To improve our understanding of these mechanisms and the AXL signaling network, we 

have used mass spectrometry-based phosphoproteomics to interrogate signaling networks in the 

PC9 lung cancer cell line under a variety of conditions. In this study, PC9 cells were treated with 

erlotinib (EGFR inhibitor) and AF154 (AXL activating antibody in a variety of AXL Y-to-F mutants. 

Integrating these signaling data with cell phenotype data has helped define the network nodes 

driving cell proliferation, apoptosis, migration and island effect under these different conditions. 

Various modeling approaches identified the YAP pathway and several other nodes as potentially 

critical components in AXL signaling and may provide future targeting strategies to overcome 

AXL-mediated resistance to EGFR TKIs. 
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Introduction 
 

Combination therapy holds considerable promise for overcoming intrinsic and acquired 

resistance to targeted therapies but relies on our ability to precisely identify the best drug 

combination for tumors. While immense focus exists on using genomic information to direct 

therapeutic approach, many resistance mechanisms can also arise from entirely tumor-extrinsic 

factors within the microenvironment. The receptor tyrosine kinase (RTK) AXL is widely 

implicated in resistance to targeted therapies such as those directed against EGFR. Regulation 

of AXL by phosphatidylserine (PS), as opposed to mutation, amplification, or autocrine ligand, 

make identifying the tumors that will respond to AXL-targeted therapy especially 

challenging.[1] In lung cancer, resistance to EGFR tyrosine kinase inhibitors such as erlotinib 

have prompted researchers to evaluate potential mechanisms underlying this phenomenon in 

an attempt to prevent it. AXL was found to be highly predictive of lack of response to ErbB 

targeted inhibitors. AXL is transactivated by EGFR, thereby diversifying the downstream 

signaling pathways employed by EGFR.[2]  With the goal of better understanding the underlying 

signaling mechanisms of AXL-mediated resistance to EGFR TKIs, we have used mass 

spectrometry-based phosphoproteomics to interrogate signaling networks in the PC9 lung 

cancer cell line under a variety of conditions. We previously treated PC9 and AXL knockout cells 

with erlotinib (EGFR inhibitor) and R428 (AXL inhibitor), or the combination of erlotinib+R428. 

PC9 cells were also treated with a combination of erlotinib and various growth factors, either 

HGF, FGF or IGF to provide insight into bypass resistance mechanisms. Data from three 

biological replicates motivated collection of phenotypic data as well as another 
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phosphoproteomic dataset, which includes signaling data for a number of cell lines containing 

Y-to-F mutations in AXL, in response to erlotinib or a combination of erlotinib and AF154 (AXL 

activating antibody) to determine functions of individual tyrosine residues on AXL. In addition, 

this dataset included phosphotyrosine data for PC9 cells, AXL knock-out, AXL knock-in, and AXL 

kinase-dead cells as controls. Phenotypic data was collected for these lines as well, as cell 

viability, cell death, cell migration and island formation was measured. Integrating these 

measurements with quantitative modeling will identify the connectivity between receptors, 

interacting adapters, and downstream signaling events, thereby defining the essential set of 

signaling network changes required for tumor cell survival in response to targeted therapeutics. 

Indeed, a combination of clustering and motif analysis revealed proteins of the YAP pathway as 

well as CK2 and NEKs to be highly predictive of the malignant phenotypes that were evaluated. 

These results were further validated using RNAseq and western blot, highlighting potential 

signaling nodes that could link EGFR and AXL together. In summary, this work has helped define 

the network nodes driving various phenotypes under different conditions as potential targets in 

AXL-mediated resistance to EGFR TKIs. 
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Results 
 

Development and phenotypic characterization of AXL-mutant cell lines  

To evaluate the individual contributions of the C-terminal tyrosines in the AXL signaling 

network, PC9 cells were transfected to express AXL wildtype (WT), knock-out(KO), knock-in(KI), 

kinase-dead or containing 1 of 6 C-terminal Y-to-F mutations (Fig 1A and S1). Cells were treated 

with EGFR inhibitor Erlotinib (Erl), or a combination of Erlotinib and AXL activating antibody 

AF154, and subjected to phosphoproteomic analysis. Furthermore, 4 different phenotypes 

were measured: cell death (Erlotinib only), cell viability (Erl+AF154), cell migration and island 

effect (i.e. clustering of cells) (Fig 1B and S1). Fig 1C shows decreased cell viability for all cell 

lines when treated with Erlotinib, even in the presence of AF154, suggesting AXL activity alone 

is not sufficient to maintain cell viability (Fig S1 - S3). Apoptosis results demonstrated less cell 

death in the AXL isoform cell lines compared to WT in the Erlotinib treated condition, 

suggesting an AXL-mediated mechanism at play. Interestingly, the migration data demonstrated 

an increase in migration in WT under treated conditions, while all AXL mutants showed the 

opposite effect in the Erl condition. This effect was negated for several but not all mutants in 

the presence of AF154. The island effect response patterns that were unique to certain Y-to-F 

mutants, highlighted the importance of evaluating individual function and mechanism of these 

tyrosine sites. When plotting our cell lines and phenotype data points in Principle Component 

Analysis (PCA) space, a clear distinction based on phenotype can be observed (Fig 1D). As 
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consistent with prior knowledge, apoptosis and viability, as well as island effect and migration 

are opposing phenotypes.  

 

Figure 22: AXL Y-to-F mutations distinctly affect cell viability and migration phenotypes. (A) A 

panel of PC9 AXL WT, KO, KD, KI, and Y-to-F mutants have different contributions AXL-specific 
downstream signaling pathways which in turn mediate various phenotypes. (B) Cartoon of the observed 
cell phenotypes in this study using the AXL mutant cell lines in the presence of 1uM erlotinib and 
300ng/mL AF154. Cell proliferation was monitored via live imaging during 4 days alongside the number of 
YOYO+ apoptotic cells. In parallel, the ability of cells to migrate and was measured through a scratch 
wound assay (bottom left). Erlotinib-only treated cells form cluster together and form cell “islands” which 
subsequently spread after the activation of AXL with AF154. (C) Heatmap of phenotypic responses of 
PC9 untreated (UT), erlotinib-only, and erlotinib plus AF154. (D) PCA analysis of cell phenotypes. 
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Modeling phosphoproteomic clusters driving AXL-mediated malignant phenotypes. 

Using the Meyer lab’s Dual data-Motif Clustering method is a clustering and kinase prediction 

strategy that identifies signaling nodes by grouping phosphosites according to their 

phosphorylation signal and amino acid sequence (Fig 2A) [3]. Fig 2B shows the log2 fold change 

in abundance of phosphorylated peptides (columns) for each of the AXL mutant isoforms (rows) 

(Fig S4). AXL phosphorylation is increased upon stimulation with the activating antibody, except 

in the KO and KD cell lines, as expected (Fig 2C). Y481 may be utilized by AXL to compensate for 

loss of other tyrosines, as this tyrosine shows no increase in phosphorylation in WT, but a 

strong increase in several of the single mutant cell lines. Furthermore, decreased 

phosphorylation of Y759 in the Y750F mutant suggests a potential co-dependence of these sites 

for signaling. DDMC identified 5 clusters of peptides as shown in Fig 2D and 2E. Combination of 

the signaling data with the phenotypic data through partial least squares regression (PLSR) 

identified several critical nodes as drivers of these phenotypes, most notably Src family kinases 

(SFKs) (Figs 2F, 2G, 2H).  
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Figure 23: Linking AXL downstream signaling and phenotypic responses. (A) Diagram of modeling 

strategy. Phosphoproteomic data was preprocessed and then clustered using DDMC based on the p-
sites phosphorylation abundance and sequence motifs. Then, the cluster centers were fit into a PLSR 
model to predict the AXL-driven cell phenotypes. (B) Hierarchical clustering of phosphoproteomic data. 
(C) AXL phosphosites across mutants. (D) Cluster centers. (E) PLSR prediction performance calculated 
by measured vs predicted correlation scores fitting different clustering strategies. (F-G) PLSR scores and 
loadings. (H) DDMC upstream kinase predictions. 
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AXL activates key components of the YAP pathway 

Having identified SFKs as major drivers of malignant phenotypes in these data, this mechanism 

was further investigated by evaluating cell viability in the presence of SFK inhibitor Dasatinib 

(Fig 3A). Analysis showed that cell viability was affected in otherwise untreated cells when 

exposed to dasatinib. No effect was observed in cells already treated with Erl. Since Yes-

associated protein (YAP) has been reportedly involved in AXL-mediated resistance to EGFR 

TKIs[4], and the proposed role of SFKs in predicting phenotype in our data, phosphorylated YAP 

was measured under various conditions (Fig 3B). This data showed decreased YAP in the 

presence of Erlotinib, particularly in a low cell density environment. This effect was negated 

with increased concentration of dasatinib (Fig 3C). GSEA analysis showed enrichment of YAP in 

our data(Fig 3D), and YAP phosphorylation was down in treated conditions (Fig 3E). Peptides 

consistently downregulated in response to dasatinib in WT and KO lines included classic SFK 

substrates, including ABL, FRK, LCK, LYN and YES which are key components of the YAP pathway 

(Fig 3F and S5). DDMC clusters 2 and 3 were strongly enriched for SFK and ABL motifs in 

dasatinib treated conditions (Fig 3G).  
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Figure 24: Key YAP signaling components drive AXL-driven phenotypes. (A) Dasatinib dose 

response of PC9 WT cells after 72h treated with erlotinib only, erlotinib and AF154, or erlotinib and R428. 
(B) Western blots of total YAP and the inhibitory p-YAP S127 in the presence and/or absence of AF154 at 
high or low cell density in AXL KO, WT, or AXL re-introduced cells. (C) YAP activation status in response 
to dasatinib. (D) YAP transcriptional signature using RNAseq data of the AXL mutants. (E) Phospho-YAP, 
-Src, and -Abl signal over time. (F) Dasatinib-response phosphopeptides in PC9 AXL WT and KO cells. 
(G) Enrichment of dasatinib-response peptides in AXL DDMC phosphoproteomic clusters. 
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CK2/NEKs involvement in DNA damage response 

Besides YAP arising from the analysis as a strong driver of mechanism, CK2 was also identified 

as a potential linking node between AXL and EGFR. Given CK2s function in cell cycle regulation, 

GSEA analysis showed enrichment in DNA Damage Response related pathways (Fig 4A). Viability 

measurements of WT and KO cells subjected to CK2 inhibitor CX-4945 treatment showed strong 

decreased viability, which was also the case when treated with PLK1 inhibitor Volasertib (Fig 

4B). PLK1 reportedly works in concert with CK2 to control DNA damage repair pathways[5]. 

Interestingly, western blot showed an increase in PLK1 activation with increased concentration 

of Volasertib when co-treated with CX-4945 (Fig 4C), suggesting a range of potential 

mechanisms responsible for these effects. 

 

Figure 25: CK2/NEKs involvement in DNA damage response (DDR). 
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Discussion 
 

The goal of this work was to obtain an improved understanding of the AXL signaling network, 

particularly as it pertains to AXL-mediated resistance to EGFR TKIs. A set of AXL mutant 

isoforms were expressed in PC9 cells to evaluate the individual function of its C-terminal 

tyrosines. Cells were treated with AXL activating antibody AF154 in the presence or absence of 

EGFR TKI Erlotinib, and signaling network evaluated using a phosphoproteomics approach. To 

obtain a holistic view of cell response, cell viability, cell death, cell migration and island 

formation were taken. These phenotypic and signaling data sets were subjected to DDMC and 

PLSR analysis that identified the YAP pathway and SFKs as a potential signaling axis mediating 

resistance to erlotinib. Furthermore, CK2 and NEKs were identified as drivers of malignant 

phenotypes and linked to the DNA damage response pathway. Further experiments are 

necessary to validate the link between CK2 and AXL. Other assays that do not require the use of 

chemo agents could be utilized to measure DDR as a phenotype.   

 

Since RNAseq data has also shown an enrichment in trafficking in AXL activated samples, future 

trafficking assays may reveal more potential nodes and mechanisms or further elucidate the 

ones explored thusfar. Finally, given the DDA nature of the phosphoproteomic approach, 

Luminex or PLA measurements of particular nodes of interest or a targeted mass spec approach 

may allow for evaluation of particular proteins of interest in the network, and linking this data 

to the RNAseq data for added biological insight. Fig S6 shows potential drugs that could be used 

to experimentally validate the YAP pathway as a viable way to prevent resistance.  
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In all, this approach could potentially lead to the identification and pursuit of future targeting 

strategies in our combat against EGFR TKI resistance in lung cancer. 

Personal contributions to this work: 

- Processed samples for LC-MS/MS analysis  

- Performed LC-MS/MS analysis 

- Writing LC-MS/MS methods 
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Materials and Methods  

AXL 
Genotype 

Known 
Intracellular 
interactors 

ScanSite NetworKIN NetPhorest PDB Known Phenotype 

Wild-type PI3K, AKT, 
GRB2, p85, 
PLCγ, SRC, 
LCK 

N/A N/A N/A N/A Cell survival, 
proliferation, 
migration, and 
immunosuppression 

Knock-Out N/A N/A N/A N/A N/A Inverse phenotyes 
of WT 

Transduced 
Wild-type 

N/A N/A N/A N/A N/A N/A 

K567R N/A N/A N/A N/A N/A Kinase dead, 
typically 
recapitulates KO 
phenotypes 

Y634F - SHC - CRKL, SRC, 
PTP R3 

- - 

Y643F - p85 - - - - 

Y698F - - INPPL1, 
BCAR3 

FLT3, 
CSF1R, KIT, 
PDGFR, 
PTP R3 

- - 

Y726F - - CBL, SYK PTP R3 - - 

Y750F - - - SH2D - - 

Y821F PI3K, AKT, 
GRB2, p85, 
PLCγ, SRC, 
LCK 

p85, 
FGR, 
GRB2 

GRB2, 
PI3K, 
GRAP, 
MIST SHP2 

PIK3R, 
GRB2, SRC, 
PTP R3 

- - 

 

Search Parameters: 

Scansite: Stringency = “High” for Y821, and “medium” for the rest. NetworKIN: Minimum score 

= 1.11 for Y812 ; 0.89 for the rest. NetPhorest: Minimum score = 0.20 for Y634, Y643, and Y821 ; 

= 0.10 for Y726 and Y750 
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Reagents and Cell Culture 

Erlotinib was obtained from LC Laboratories. The AXL activating antibody AF154 was obtained 

from R&D Systems. PC9 (Sigma Aldrich) cells were grown in RPMI-1640 media supplemented 

with 10% fetal bovine serum (FBS) and penicillin/streptomycin. HEK293T cells were grown in 

DMEM supplemented with 10% FBS and 1% GlutaMAX (Thermo Fisher Scientific). 

 

Generation of Mutant Cell Lines 

The PC9 AXL KO cell line was generated by transfecting cells with a CRISPR/Cas9 and GFP vector 

containing a gRNA targeting the AXL kinase domain. gRNA sequence, as well as cell culturing and sorting 

methods, have been previously described (13). Plasmids containing the AXL phosphosite mutations were 

generated from an AXL-IRES-Puro vector (Addgene #65627) using a site directed mutagenesis kit (New 

England Biosciences). 

Each mutant was copied from its respective plasmid, digested, and inserted into a lentiviral vector 

containing a puromycin resistance gene (Addgene #17448). For viral packaging, HEK 293T cells were 

seeded 4.5 x 106 per 10 cm dish. After 24 hours, the lentiviral AXL expression vector, VSV-G envelope 

vector, and packaging vector (Addgene #12259 and #12260 respectively) were combined in a 10:1:10 

mass ratio and diluted in Opti-MEM (Thermo Fisher Scientific). TransIT-LT1 (Mirus Bio) was added 

dropwise and the solution was mixed gently by swirling and incubated at room temperature for 20 

minutes. The solution was then added dropwise to the cells. After 18 hours, transfection media was 

replaced by media supplemented with 1% BSA fraction V (Thermo Fisher Scientific). Cells were 

incubated for 24 hours, after which the virus-containing media was removed and stored at 4℃. The 

media was replaced and the cells incubated a further 24 hours to generate a second batch of viral 
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media. The harvested batches were then pooled, filtered through a .45μm PVDF membrane to remove 

packaging cells, and flash frozen followed by storage at -80ºC until use. 

PC9 AXL KO cells were seeded with antibiotic-free media in a 6-well plate at a density of 1.5 x 105 cells 

per well and incubated for 24 hours. Cells were then infected with viral particles in antibiotic-free media 

supplemented with polybrene (MilliporeSigma). After 18 hours, the media was replaced with fresh 

antibiotic-free media. Cells were observed for a GFP positive population and passaged into a 10cm plate 

until confluent. The virally transduced cell lines were then sorted for GFP expressing cells using a BD 

FACSAria cell sorter. The mutant cell populations were then subcultured for later experiments. 

 

Preparation of Cell Lysates 

Cell lines were grown to confluence in 10 cm dishes over the course of 72-96 hours, washed, and treated 

by addition of media containing 1 μM erlotinib. Cells were incubated for 4 hours at 37ºC and then 

additionally treated with media containing 1 μM erlotinib and 300 ng/mL AXL activating antibody for 10 

minutes. The cells were then placed immediately on ice, washed with ice-cold phosphate-buffered 

saline, and lysed with cold 8 M urea containing Phosphatase Inhibitor Cocktail I and Protease Inhibitor 

Cocktail I (Boston BioProducts). The lysates were then centrifuged at 20,000xg, 4℃ to pellet cell debris, 

and the supernatants removed and stored at -80℃. 

 

Sample processing 

After vehicle or Erlotinib/AF154 treatment, cells were lysed on ice using 500μL 8M Urea (Sigma) 

per 10cm plate. A bicinchoninic acid (BCA) protein concentration assay (Pierce) was performed 

according to the manufacturer’s protocol to estimate the protein concentration in each lysate. 
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Cell lysates were reduced with 10mM DTT for 1hr at 56⁰C, alkylated with 55 mM iodoacetamide 

for 1hr at RT shielded from light, and diluted 5-fold with 100 mM ammonium acetate, pH 8.9, 

before trypsin (Promega) was added (20:1 protein:enzyme ratio) for overnight digestion at RT. 

The resulting solutions were acidified with 1 mL of acetic acid (HOAc) and loaded onto C18 Sep-

Pak Plus Cartridges (Waters), rinsed with 10mL of 0.1% HOAc, and eluted with 10mL of 40% 

Acetonitrile (MeCN)/ 0.1% HOAc. Peptides were divided into 200 microgram aliquots, and 

sample volume was reduced using a vacuum centrifuge (Thermo) and then lyophilized to 

dryness for storage at -80⁰C. 

TMT labeling for multiplexed analysis was performed according to manufacturer’s protocol. 

Samples, each containing ~200ug peptides, were resuspended in 35μL HEPES (pH 8.5), 

vortexed, and spun down at 13,400rpm for 1 minute. 400μg of a given channel of TMT10plex 

(Thermo) in anhydrous MeCN, was added per sample. Samples were shaken at 400rpm for 1hr, 

after which the labeling reaction was quenched using 5% Hydroxylamine (50%, Thermo). After 

another 15 minutes on the shaker, all samples were combined using the same pipette tip to 

reduce sample loss, and sample aliquots were washed twice with 40 μL 25% MeCN/0.1% HOAc 

which was added to the collection tube to improve yield. Sample volume was reduced using a 

vacuum centifuge and then lyophilized to dryness for storage at -80⁰C.  

 

Phosphopeptide enrichment 

Immunoprecipitation (IP) and IMAC were used sequentially to enrich samples for 

phosphotyrosine containing peptides. TMT-labeled samples were incubated in IP buffer 

consisting of 1% Nonidet P-40 with protein G agarose beads conjugated to 24 μg of 4G10 V312 
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IgG and 6 μg of PT-66 (P3300, Sigma) overnight at 4⁰C. Peptides were eluted with 25 μl of 0.2% 

trifluoroacetic acid for 10 minutes at room temperature; this elution was performed twice to 

improve yield. Eluted peptides were subjected to phosphopeptide enrichment using 

immobilized metal affinity chromatography (IMAC)-based Fe-NTA spin column to reduce non-

specific, non-phosphorylated peptide background. High-Select Fe-NTA enrichment kit (Pierce) 

was used according to manufacturer’s instructions with following modifications. Eluted 

peptides from IP were incubated with Fe-NTA beads containing 25μL binding washing buffer for 

30 minutes. Peptides were eluted twice with 20mL of elution buffer into a 1.7 mL 

microcentrifuge tube. Eluates were concentrated in speed-vac until ~1 μL of sample remained, 

and then resuspended in 10μL of 5% acetonitrile in 0.1% formic acid. Samples were loaded 

directly onto an in-house constructed fused silica capillary column [50 micron inner diameter 

(ID) x 10 cm] packed with 5μm C18 beads (YMC gel, ODS-AQ, AQ12S05) and with an integrated 

electrospray ionization tip (~2 micron tip ID). 

 

LC-MS/MS analysis 

LC-MS/MS of pTyr peptides were carried out on an Agilent 1260 LC coupled to a Q Exactive HF-

X mass spectrometer (Thermo Fisher Scientific). Peptides were separated using a 140-minute 

gradient with 70% acetonitrile in 0.2 mol/L acetic acid at flow rate of 0.2 mL/minute with 

approximate split flow of 20 nL/minute. The mass spectrometer was operated in data-

dependent acquisition with following settings for MS1 scans: m/z range: 350 to 2,000; 

resolution: 60,000; AGC target: 3 x 106; maximum injection time (maxIT): 50 ms. The top 15 

abundant ions were isolated and fragmented by higher energy collision dissociation with 
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following settings: resolution: 60,000; AGC target: 1x105; maxIT: 350 ms; isolation width: 0.4 

m/z, collisional energy (CE): 33%, dynamic exclusion: 20 seconds. Crude peptide analysis was 

performed on a Q Exactive Plus mass spectrometer to correct for small variation in peptide 

loadings for each of the TMT channels. Approximately 30 ng of the supernatant from pTyr IP 

was loaded onto an in-house packed precolumn (100μm ID x 10 cm) packed with 10mm C18 

beads (YMC gel, ODS-A, AA12S11) and analyzed with a 70-minute LC gradient. MS1 scans were 

per-formed at following settings: m/z range: 350 to 2,000; resolution:70,000; AGC target: 3x106; 

maxIT: 50 ms. The top 10 abundant ions were isolated and fragmented with CE of 33% at a 

resolution of 35,000. 

Peptide identification/quantification 

Mass spectra were processed with Proteome Discoverer version 2.5 (Thermo Fisher Scientific) 

and searched against the human SwissProt database using Mascot version 2.4 (MatrixScience, 

RRID:SCR_014322). MS/MS spectra were searched with mass tolerance of 10 ppm for precursor 

ions and 20 mmu for fragment ions. Cysteine carbamidomethylation, TMT-labeled lysine, and 

TMT-labeled peptide N-termini were set as fixed modifications. Oxidation of methionine and 

phosphorylation of serine, threonine and tyrosine were searched as dynamic modifications. 

TMT reporter quantification was extracted and isotope corrected in Proteome Discoverer. 

Peptide spectrum matches (PSM) were filtered according to following para-meters: rank=1, 

mascot ion score>15, isolation interference<40%, average TMT signal>1,000. Peptides with 

missing values across any channel were filtered out. 

 

 



 
178 

Cell Viability Assay 

Cells were seeded in a 96-well plate at a density of 1.05 x 103 cells per well. After 24 hours, 

treatments were added in media containing 300nm YOYO-3 (Thermo Fisher Scientific). Cells 

were cultured and imaged every 3 hours using an IncuCyte S3 (Essen Bioscience) at 20x 

magnification with 9 images per well. The phase, green, and red channels were manually 

thresholded and then analyzed by IncuCyte S3 software (Essen Bioscience) to determine cell 

counts and fraction of area covered. 

 

Cell Migration Assay 

96-well IncuCyte ImageLock plates (Essen Bioscience) were coated with a Collagen-I solution 

(Thermo Fisher Scientific), washed twice, and then seeded with 4 x 104 cells per well. After a 4 

hour incubation, cells were wounded using the IncuCyte WoundMaker, washed twice to 

remove detached cells, and then treated with respective conditions. Images of the center of the 

wound were taken every 2 hours at a magnification of 10x, one image per well. The phase and 

green channels were thresholded and analyzed as above to determine migration 

measurements. 

 

Cell Island Effect 

Phase contrast images used for the cell island measurements were taken from image sets 

gathered in the cell viability assay. For endpoint readings, images at the 48 hour post-treatment 



 
179 

time point were used. Representative images were chosen across experimental replicates. 

Images were opened in ImageJ and the center of each cell was manually marked. Dead cells, 

identified using YOYO-3 based fluorescence, were not marked. The 2D coordinates of all cell 

centers in an image were then exported for analysis. The amount of clustering present in a 

particular image was then measured by applying Ripley’s K function to the set of coordinates. 

The implementation of Ripley’s K function used was taken from the astropy Python package. 

All analysis was implemented in Python, and can be found at https://github.com/meyer-

lab/resistance-MS. 
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Supplemental Figures 

 

 

 

Supplementary figure 8: Ectopic AXL expression, activation and migration images. 
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Supplementary figure 9: Cell viability and death time lapse. 
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Supplementary figure 10: Cell migration and island effect time lapse. 
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Supplementary figure 11: Signal of kinases, RTKs and adapters across AXL mutants. 
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Supplementary figure 12: AXL-induced feedback. 
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Supplementary figure 13: Most responsive drugs to YAP-dependent cell lines on DepMap. 
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Abstract 
 

PTPRJ is a receptor protein tyrosine phosphatase (RPTP) (also known as DEP1) that plays a critical 

role in regulating signaling cascades. Underlying mechanisms are poorly understood, in part 

aggravated by lack of targetability of PTPRJs due to lack of endogenous ligands.  Interestingly, 

RPTP activity is suppressed upon dimerization, hypothetically because of prevention of RTK 

substrate interaction as a dimer.  Certain transmembrane mutations in PTPRJ, including the 

G983L mutation, were found to destabilize homodimerization, thereby increasing phosphatase 

activity, and downregulating substrate activity, including phosphorylation of EGFR.  

Here, we aim to elucidate the mechanisms underlying the PTPRJ-EGFR signaling axis, paving the 

way for usage of peptide-based agents that disrupt RPTP dimerization that enter the cell under 

acidic conditions, as is the case in the tumor microenvironment. These agents could be used as 

tools to manage the increased activation of RTK signaling networks often observed in cancers. 
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Introduction 
 

The activity of Receptor Tyrosine Kinases (RTKs) is counterbalanced by phosphatases that 

dephosphorylate their substrates, thereby decreasing their signal transduction.[1–4] The 

receptor -like phosphatases (RPTPs) are a subgroup of phosphatases that span the cell 

membrane, and are active in monomer formation.[5,6] As opposed to RTKs, dimerization of 

RPTPs causes an inactive dimer due to lack of binding ability to its substrate.  

One RPTP of particular interest is PTPRJ (also known as DEP1), due to its associated regulatory 

function of the C-terminal tail of EGFR, which is well-known to regulate many critical cellular 

functions.[7] As EGFR is a frequent driver of cancers, PTPRJ and other phosphatases have 

gained interest as a potential therapeutic target to indirectly regulate EGFR activity.[8] To 

increase the activity of PTPRJ and further decrease EGFR activity, previous work has identified 

several transmembrane domain mutations preventing dimerization and hence disfavoring the 

inactive conformation of PTPRJ.[9] The G983L mutation showed particularly effective at shifting 

the equilibrium towards active monomer.[10] The ultimate goal is to deliver a synthetic peptide 

that fulfills the same function as the mutation by preventing homodimerization, and to 

engineer this peptide to specifically enter cells in an acidic environment like the tumor 

microenvironment, thereby achieving a specific and effective treatment strategy for EGFR-

driven tumors.[11]  
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To better understand the underlying mechanisms and employed signaling axes connecting 

PTPRJ and EGFR, here we analyzed and compared the signaling network in PTPRJ WT and G983L 

cell lines using a phosphoproteomic approach. Migration was also measured as a phenotypic 

outcome, enabling regression analysis to find predictive nodes of this phenotype. These insights 

may further inform development of a novel therapeutic strategy that employs PTPRJ to regulate 

EGFR activity in human cancers. 
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Results 
 

To evaluate the potential of PTPRJ modulation to regulate EGFR activity, SCC2 cells were 

transfected with empty vector, wild type PTPRJ or PTPRJ G983L (blocking dimerization of 

PTPRJ). As discussed above, the G983L transmembrane mutation was found to inhibit 

formation of the inactive PTPRJ homodimer, thereby increasing phosphatase activity and 

downregulation of the EGFR network (Fig 1). 

 

Figure 26: G983L mutation in PTPRJ increases PTPRJ phosphatase activity 
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Following successful transfection, SCC2 cells were stimulation with vehicle or 10mM EGF for 10 

minutes, lysed in cold 8M Urea to preserve physiological signaling, and proteolytically digested 

to peptides.  To reduce inter-sample variability, samples were labeled with isobaric tandem 

mass tags and analyzed as 6-plex experiments. Labeled samples were subjected to 2-step 

phosphotyrosine enrichment and subsequent liquid chromatography tandem mass 

spectrometry (LC-MS/MS) analysis, yielding quantitative phosphotyrosine data (Fig 2). 

 

Figure 27: Workflow schematic of SCC2 cell stimulation and sample processing, TMT labeling and 
phosphotyrosine enrichment steps for LC-MS/MS analysis. 

Initial evaluation of these data showed downregulation of canonical members of the EGFR 

network as compared in the mutant cell line compared to WT, including for MAPK1/3 and 
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several EGFR peptides (Fig 3, left), which could not be explained by differences in basal 

signaling levels (Fig 3, right). However, an increase in signaling was also observed when 

comparing empty vector to wild type, which could not immediately be explained. 

 

Figure 28: EGFR and MAPK phosphorylation in response to EGF. 

When evaluating the overall network response, many EGFR network nodes were upregulated, 

including ERK1/2, SHC and PTK2.  
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Figure 29: Upregulated network in response to EGF. Left: Hierarchical Clustering presenting data as 
log2foldchange compared to unstimulated condition, n=3. Middle: STRING analysis of upregulated 
pathway nodes. Right: List of input nodes for STRING analysis from highly phosphorylated top cluster 
from heatmap. 

 

Figure 30: Migration data as collected by XCelligence assay. Data presented are migration rates 
calculated from wound closure rates. 

 

Having observed decreased EGFR network signaling in the PTPRJ mutant cell line, we aimed to 

evaluate whether this effect would translate phenotypically as well. Using the XCelligence to 

measure wound closure by measuring changes in resistance due to increased cell density, we 
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did not see a significant decrease of migration in the mutant as compared to wt. If anything, the 

migration rate had slightly increased compared to the wildtype line, and these experiments will 

be repeated for validation.  

Despite the counterintuitive results from our migration assay, we performed Partial Least 

Squares Regression (PLSR) analysis in an attempt to build a predictive model linking our 

signaling and phenotypic data together. As can be observed from our VIP score calculations in 

Figure 6 (top), several nodes not often associated with EGFR signaling were found to be 

predictive of migration. When analyzed using STRING, CAV1, STAT3 and MAPK1 were the 

linking nodes that connected these to EGFR activation.  
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Figure 31: PLSR analysis of migration and signaling data. Top: VIP score plot with cutoff of 1.5 highlights 
signaling nodes predictive of migration response in our dataset. Bottom: STRING analysis highlights 
possible pathway connections these nodes have in common for hypothesis generation. 
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Discussion 
 

The main goal of this work was to improve our mechanistic understanding of PTPRJ-mediated 

modulation of the EGFR network. We showed that inhibition of the dimer formation by 

instituting the G983L mutation led to decreased activation of the EGFR network. Furthermore, 

our analysis highlighted certain nodes less connected to the EGFR network that may provide 

hints to possible signaling axes that PTPRJ engages to affect EGFR downstream signaling.  

Despite the richness of this dataset, more experimental validation and follow-up needs to be 

done to make meaningful claims regarding potential mechanisms of action. Finally, our data 

cannot provide any confirmation that targeting PTPRJ using a synthetic peptide will render 

sufficient or sustained downregulation of EGFR to justify it as a viable therapeutic strategy in 

the future. However, increased mechanistic insight may help provide alternative targeting 

strategies as well to modulate the signaling network in EGFR-overexpressing cancers. 

 

Personal contributions to this work: 

- Processed samples for LC-MS/MS analysis  

- Performed LC-MS/MS analysis 

- Data Analysis 

- Writing 
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Materials and Methods for phosphoproteomic analysis 
 

Sample processing 

After vehicle or 10mM EGF treatment, cells were lysed on ice using 500μL 8M Urea (Sigma) per 

10cm plate. A bicinchoninic acid (BCA) protein concentration assay (Pierce) was performed 

according to the manufacturer’s protocol to estimate the protein concentration in each lysate. 

Cell lysates were reduced with 10mM DTT for 1hr at 56⁰C, alkylated with 55 mM iodoacetamide 

for 1hr at RT shielded from light, and diluted 5-fold with 100 mM ammonium acetate, pH 8.9, 

before trypsin (Promega) was added (20:1 protein:enzyme ratio) for overnight digestion at RT. 

The resulting solutions were acidified with 1 mL of acetic acid (HOAc) and loaded onto C18 Sep-

Pak Plus Cartridges (Waters), rinsed with 10mL of 0.1% HOAc, and eluted with 10mL of 40% 

Acetonitrile (MeCN)/ 0.1% HOAc. Peptides were divided into 200 microgram aliquots, and 

sample volume was reduced using a vacuum centrifuge (Thermo) and then lyophilized to 

dryness for storage at -80⁰C. 

TMT labeling for multiplexed analysis was performed according to manufacturer’s protocol. 

Samples, each containing ~200ug peptides, were resuspended in 35μL HEPES (pH 8.5), 

vortexed, and spun down at 13,400rpm for 1 minute. 400μg of a given channel of TMT6plex 

(Thermo) in anhydrous MeCN, was added per sample. Samples were shaken at 400rpm for 1hr, 

after which the labeling reaction was quenched using 5% Hydroxylamine (50%, Thermo). After 

another 15 minutes on the shaker, all samples were combined using the same pipette tip to 

reduce sample loss, and sample aliquots were washed twice with 40 μL 25% MeCN/0.1% HOAc 

which was added to the collection tube to improve yield. Sample volume was reduced using a 

vacuum centifuge and then lyophilized to dryness for storage at -80⁰C.  
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Phosphopeptide enrichment 

Immunoprecipitation (IP) and IMAC were used sequentially to enrich samples for 

phosphotyrosine containing peptides. TMT-labeled samples were incubated in IP buffer 

consisting of 1% Nonidet P-40 with protein G agarose beads conjugated to 24 μg of 4G10 V312 

IgG and 6 μg of PT-66 (P3300, Sigma) overnight at 4⁰C. Peptides were eluted with 25 μl of 0.2% 

trifluoroacetic acid for 10 minutes at room temperature; this elution was performed twice to 

improve yield. Eluted peptides were subjected to phosphopeptide enrichment using 

immobilized metal affinity chromatography (IMAC)-based Fe-NTA spin column to reduce non-

specific, non-phosphorylated peptide background. High-Select Fe-NTA enrichment kit (Pierce) 

was used according to manufacturer’s instructions with following modifications. Eluted 

peptides from IP were incubated with Fe-NTA beads containing 25μL binding washing buffer for 

30 minutes. Peptides were eluted twice with 20mL of elution buffer into a 1.7 mL 

microcentrifuge tube. Eluates were concentrated in speed-vac until ~1 μL of sample remained, 

and then resuspended in 10μL of 5% acetonitrile in 0.1% formic acid. Samples were loaded 

directly onto an in-house constructed fused silica capillary column [50 micron inner diameter 

(ID) x 10 cm] packed with 5μm C18 beads (YMC gel, ODS-AQ, AQ12S05) and with an integrated 

electrospray ionization tip (~2 micron tip ID). 

 

LC-MS/MS analysis 

LC-MS/MS of pTyr peptides were carried out on an Agilent 1260 LC coupled to a Q Exactive HF-

X mass spectrometer (Thermo Fisher Scientific). Peptides were separated using a 140-minute 

gradient with 70% acetonitrile in 0.2 mol/L acetic acid at flow rate of 0.2 mL/minute with 
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approximate split flow of 20 nL/minute. The mass spectrometer was operated in data-

dependent acquisition with following settings for MS1 scans: m/z range: 350 to 2,000; 

resolution: 60,000; AGC target: 3 x 106; maximum injection time (maxIT): 50 ms. The top 15 

abundant ions were isolated and fragmented by higher energy collision dissociation with 

following settings: resolution: 60,000; AGC target: 1x105; maxIT: 350 ms; isolation width: 0.4 

m/z, collisional energy (CE): 33%, dynamic exclusion: 20 seconds. Crude peptide analysis was 

performed on a Q Exactive Plus mass spectrometer to correct for small variation in peptide 

loadings for each of the TMT channels. Approximately 30 ng of the supernatant from pTyr IP 

was loaded onto an in-house packed precolumn (100μm ID x 10 cm) packed with 10mm C18 

beads (YMC gel, ODS-A, AA12S11) and analyzed with a 70-minute LC gradient. MS1 scans were 

per-formed at following settings: m/z range: 350 to 2,000; resolution:70,000; AGC target: 3x106; 

maxIT: 50 ms. The top 10 abundant ions were isolated and fragmented with CE of 33% at a 

resolution of 35,000. 

 

Peptide identification/quantification 

Mass spectra were processed with Proteome Discoverer version 2.5 (Thermo Fisher Scientific) 

and searched against the human SwissProt database using Mascot version 2.4 (MatrixScience, 

RRID:SCR_014322). MS/MS spectra were searched with mass tolerance of 10 ppm for precursor 

ions and 20 mmu for fragment ions. Cysteine carbamidomethylation, TMT-labeled lysine, and 

TMT-labeled peptide N-termini were set as fixed modifications. Oxidation of methionine and 

phosphorylation of serine, threonine and tyrosine were searched as dynamic modifications. 

TMT reporter quantification was extracted and isotope corrected in Proteome Discoverer. 
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Peptide spectrum matches (PSM) were filtered according to following para-meters: rank=1, 

mascot ion score>15, isolation interference<40%, average TMT signal>1,000. Peptides with 

missing values across any channel were filtered out. 

 

Phenotypic measurements 

Migration Wound scratch assay Migration rates of PTPRJ mutant and wildtype expressing 

cells were determined using the XCelligence assay in the presence or absence of EGF. 

 

Data analysis  

Data analyses were performed in MATLAB R2020A, Microsoft Excel 2016 and Graphpad Prism 9. 

TMT reporter ion intensities from PSMs were summed for each unique phosphopeptide. For 

protein level quantification, TMT reporter intensities were summed for all unique peptides. 

Peptide or protein quantification were normalized with relative median values obtained from 

crude lysate analysis to adjust for sample loading in TMT channels. A combination of Student t-

test and One-way Anova was used to perform statistical analysis between conditions. Statistical 

significance was assigned for p<0.05. Unsupervised hierarchical clustering was performed on 

the basis of Person correlation distance metric, unless otherwise specified. Protein networks 

were obtained from STRING (version 11.0) database.  
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Abstract 
 

Background: The RNA-binding protein ELAVL4/HuD has been implicated in dementia since it was 

identified as a target of autoantibodies in paraneoplastic encephalomyelitis.  Knock-out (KO) and 

overexpression studies in mice have revealed that ELALV4 regulates learning and memory, and ELALV4 

expression was found to be decreased in the hippocampus of patients with Alzheimer's disease (AD), the 

most common form of dementia. Furthermore, ELAVL4 regulates the translation and splicing of multiple 

AD candidate genes. Therefore, ELAVL4may be a promising target for AD drug development. 

Methods: We generated ELAVL4 KO human induced pluripotent stem cell-derived neurons in both familial 

AD (fAD) and fAD-corrected human neurons to study the effect that ELAVL4has on AD-related cellular 

phenotypes. To gain further insight into the molecular cascades involved in ELAVL4 signaling in neurons, 

we also conducted pathway and upstream regulator analyses of transcriptomic and proteomic data from 

these neurons.  

Results: ELAVL4KO significantly increased the levels of specific APP isoforms and intracellular 

phosphorylated tau, molecular changes that are related to the pathological hallmarks of AD. In contrast, 

overexpression of ELAVL4in wild-type neurons and rescue experiments in ELAVL4KO cells showed 

opposite effects—decreased levels of specific APP isoforms and intracellular phosphorylated tau—and 

also led to a reduction of the extracellular amyloid-beta (Aβ)42/40 ratio. All of these observations were 

made in both familial AD (fAD) and fAD-corrected neurons. Further, analyses of the generated 

transcriptomic and proteomic data revealed that ELAVL4 affects multiple biological pathways linked to 

AD, including those involved in synaptic function, as well as gene expression downstream of APP and tau 

signaling. These analyses also suggest that ELAVL4 expression is regulated by insulin receptor-FOXO1 

signaling in neurons. 

Conclusions: ELAVL4expression ameliorates AD-related molecular changes in neurons and affects 

multiple synaptic pathways, making it a promising target for novel drug development. 
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Background 
 

ELAVL4 (other name: HuD) is a member of the Hu/ELAV-like family of RNA-binding proteins 

(RBPs)that is predominantly expressed in neurons and, at lower levels, in the pancreas and 

testis (1). In addition to ELAVL4, the Hu family consists of two RBPs that are enriched for 

expression in neurons—i.e., HuB (ELAVL2) and HuC (ELAVL3)—and   the   ubiquitously   

expressed HuR (ELAVL1) (2). By post-transcriptionally processing (pre-)mRNAs, RBPs add an 

additional layer to gene regulation and produce a more diverse assortment of mRNAs and 

proteins (3). Hu proteins contain three RNA recognition motifs (RRMs) that directly interact 

with AU-rich elements (RRM1andRRM2) and poly-A tails (RRM3) of specific target mRNAs (4, 5). 

Through protein-protein interactions mediated by RRM3 and the hinge region that separates 

RRM2 and RRM3, Hu proteins can recruit additional proteins to mRNA-protein complexes(2,  6,  

7). By directly binding mRNAs, Hu proteins are involved in multiple aspects of 

posttranscriptional gene regulation, including mRNA polyadenylation, alternative splicing, 

trafficking, turnover, and translation (8).  

As for human diseases associated with ELAVL4/HuD, links have been established with both 

dementia and type 2 diabetes mellitus (T2DM). As for dementia, it was already reported in 

1986 that high titers of ELAVL4 autoantibodies had been found in the sera from a subset of 

patients with small-cell lung tumors who also developed a paraneoplastic syndrome 

characterized by dementia and other neurological disabilities (9, 10). In this respect, it was 

demonstrated that the autoantibodies produced against ELAVL4 ectopically  expressed  by  lung  

tumor  cells  induced  neuronal  loss  and  inflammatory infiltrates in the brain, leading to the 

observed neurological symptoms (3, 9, 10).In addition, mice with a prenatal ELAVL4 knock-out 
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showed deficits in hippocampus-dependent learning and memory (11), while it was also shown 

that upon learning and memory tasks, ELAVL4 expression is upregulated in the hippocampus of 

mice and rats (12, 13).However, mice that constitutively overexpress ELAVL4 in their forebrain  

also  have  impaired  hippocampus-dependent  learning  and  memory (14).At  the  molecular 

level,ELAVL4 has been shown to strengthen synapses of individual dendritic branches by 

stabilizing the  mRNA and  increasing the  expression  of proteins  with  important  synaptic  

functions,  such  as CAMK2Aand BDNF(15, 16). Additionally, ELAVL4 stabilizes and upregulates 

the expression of GAP43, another protein with a key role in hippocampal neuronal 

plasticity(17). Based on all these findings, it was concluded that ELAVL4 functions as an 

essential regulator of synaptic plasticity during learning and memory tasks in mature neurons, 

likely having roles in both neurodevelopment and in the adult brain (14, 18, 19).   

The most common form of dementia is the progressive neurodegenerative disorder Alzheimer's 

disease (AD) (20). The two hallmark neuropathological lesions that are found in AD patients' 

brains are extracellular neuritic plaques consisting of amyloid-β (Aβ)—which is generated 

through the processing of Amyloid Precursor  Protein  (APP)—and  intracellular  neurofibrillary  

tangles  containing excessively phosphorylated tau protein(21). As for Aβ, the longer form 

consisting of 42 amino acids (Aβ42) is more prone to aggregate into plaques than the most 

common form with40 amino acids (Aβ40), and familial AD mutations either raise the Aβ42 

levels or lower the Aβ40 levels, each of which leads to a higher Aβ42/40 ratio. Therefore, an 

increased Aβ42/40 ratio is considered to be indicative of more neurotoxic Aβ (22-25).  In 

addition to being involved in regulating hippocampal memory-related processes in general, 

decreased expression of neuronal Hu proteins (including ELAVL4) has been reported in the 
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hippocampus of AD patients (26, 27). Furthermore, ELAVL4 has been shown to bind and 

stabilize many mRNAs encoding proteins that have been specifically implicated in AD. As such, 

ELAVL4 binds and stabilizes the mRNAs—leading to increased protein expression—of both APP 

and BACE1, a β-secretase that is involved in amyloidogenic APP to Aβ processing (28). However, 

ELAVL4can also promote the non-amyloidogenic processing of APP by stabilizing the mRNA and 

upregulating the expression of the α-secretase ADAM10 (29). Neuronally  expressed  Hu  

proteins—including ELAVL4—have  also  been reported to regulate the alternative splicing of 

APP mRNA(30). Moreover, ELAVL4 has been shown to bind and stabilize the mRNAs of 

neprilysin, an Aβ degrading enzyme (31), and neuroserpin, an extracellular enzyme that can 

both negatively and positively regulate Aβ clearance (32, 33). In addition to Aβ-related targets, 

ELAVL4 can directly bind, stabilize and upregulate the expression of tau (mRNA) in neuronal 

cells (34). Further, ELAVL4 stabilizes the mRNA and hence upregulates the expression of 

acetylcholinesterase (ACHE) (35), which provides another link with AD as ACHE inhibitors are 

currently the  most  often  used  drugs  for  symptomatic  treatment  of  the  disease (36). Lastly, 

a recent co-expression network analysis of RNAseq data generated from human postmortem 

brain samples identifiedELAVL4 as one of ten 'hub genes' in AD-related synaptic pathways (37).  

Information on how ELAVL4expression and function is regulated is scarce. Some evidence 

comes from work on its contribution to T2DM. Firstly, silencing of ELAVL4 expression increases 

apoptosis of pancreatic beta cells—that are functionally impaired in diabetes—implying that 

ELAVL4 is an important regulator of beta cell function and survival (38). Together with the 

finding that ELAVL4 expression is markedly reduced in beta cells of diabetic patients (39), this 

indicates that ELAVL4 deficiency contributes to diabetes etiology. Furthermore, it was 
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demonstrated in beta cells that the expression of ELAVL4 is regulated by insulin receptor-

FOXO1 signaling (40), which is the only molecular mechanism for ELAVL4 expression regulation 

described thus far.  

In this study, we determined the effects that ELAVL4knock-out and overexpression have on AD-

related phenotypes—i.e., APP (isoform) levels, Aβ42/40 ratio, and (phosphorylated)tau levels—

in human induced pluripotent stem cell-derived glutamatergic cortical neurons.  Subsequently, 

to gain insight into the molecular cascades underlyingELAVL4 signaling in human neurons, we 

analyzed RNA sequencing and proteomic data from neurons derived from the different cell 

lines generated in this study. 
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Results 
Generation of ELAVL4/HuD knock out, overexpression and rescue induced neurons 

We used CRISPR-Cas9 to generate two monoclonal ELAVL4 KO induced pluripotent stem cell 

(iPSC) lines. Both lines were derived from an early onset AD patient carrying the APP London 

mutation (41). One line harbored the APPV717I mutation (to be referred to as 'fAD'), while in 

the second, isogenic line, the mutation was corrected to wild type (WT) APP (referred to as fAD-

corrected or 'fADcorr') (42). We sequenced the genomic region around the binding site of the 

sgRNA and selected the fADcorr ELAVL4 KO clone B1c2, which has 27 nucleotide and 46 

nucleotide deletions, and the fAD ELAVL4 KO B1c20 containing a 123 nucleotide deletion with a 

23 nucleotide insertion and a one nucleotide deletion, for “induced neuron” (iN) differentiation 

(Figure 1B). Monoclonal unedited CRISPR control lines ('CRC') that had been subjected to the 

same process were also obtained. Common CNV analysis in the monoclonal lines using the 

Nanostring nCounter Human CNV codeset indicated that the editing process did not result in 

large chromosomal abnormalities (Supplementary Figure 1). In iPSCs, ELAVL4 expression is low 

and not readily detectable by either qPCR or Western blotting. Hence, to confirm loss of ELAVL4 

protein levels in the knock out, we transduced the iPSCs with lentivirus encoding NGN2 to 

produce iNs. The used iN protocol yields a homogeneous population of cells with neuronal 

morphologies and transcriptional profiles consistent with layer 2/3 excitatory projection 

neurons within two weeks (43, 50). On iN differentiation DIV21, RNA and protein were 

collected and subjected to qPCR and Western blotting using ELAVL4-specific primers and 

antibodies. 
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Figure 32: Validation of ELAVL4 knock out (KO), over expression (OE), and rescue in iPSCs and iNs. 
(A) Interaction sites for the primary antibody, qPCR primers, and sgRNA for ELAVL4 used in this study 
projected on a schematic representation of ELAVL4. (B) Overview of the cell lines and lentiviral 
conditions generated/used in this study. (C) Full KO of ELAVL4 mRNA in fADcorr iNs (P < 0.0001, 
ttest). (D) 18.6- and 25.5-fold increase in ELAVL4 mRNA upon ELAVL4 sv2 and ELAVL4 sv1 OE 
expression in fADcorr iNs respectively (P < 0.001 and P < 0.0001, Dunnett’s following a significant 
ANOVA). (E) Full KO of ELAVL4 mRNA in fAD iNs (P<0.0001, t-test). (F) 13.5- and 12.4-fold increase in 
ELAVL4 mRNA upon ELAVL4 sv2 and ELAVL4 sv1 OE expression in fADcorr iNs respectively (P < 
0.0001, Dunnett’s following a significant ANOVA). (G) Representative image of immunocytochemistry 
of ELAVL4 rescue with ELAVL4-sv1 in fADcorr ELAVL4 KO iNs, stained with the nuclear DNA stain 
Hoechst, the neuronal marker βIII-tubulin and ELAVL4, mCHerry signal from the overexpression 
plasmid, scale bars: 10 μm. (H) Example western blots are shown for fADcorr iNs and fAD iNs, the 
pre-synaptic marker SYN1 is not significantly affected by manipulating the expression levels of 
ELAVL4. (I) Full KO of ELAVL4 protein in fADcorr iNs (P < 0.0001, t-test). (J) 20.8- and 19.5-fold 
increase in ELAVL4 protein upon ELAVL4 sv2 and ELAVL4 sv1 OE expression in fADcorr iNs 
respectively (P < 0.0001, Dunnett’s following a significant ANOVA). (K) Full KO of ELAVL4 protein in 
fAD iNs (P<0.0001, t-test). (L) 22.4- and 22.3-fold increase in ELAVL4 mRNA upon ELAVL4 sv2 and 
ELAVL4 sv1 OE expression in fADcorr iNs respectively (P < 0.0001, Dunnett’s following a significant 
ANOVA). 
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Full KO of both mRNA and protein was observed in fADcorr ELAVL4 KO (clone B1c2) and fAD 

ELAVL4 KO (clone B1c20) (Figures 1C, 1H, and 1I and Figures 1E, 1H, and 1K, respectively). 

Overexpression (OE) and rescue of ELAVL4 expression in the ELAVL4 KO lines was performed by 

lentiviral transduction of ELAVL4 splice variant (sv) 1 (ENST00000371823.8) or sv2 

(ENST00000371824.7) cDNA on DIV6 and resulted in a sustained 10- to 20-fold increased mRNA 

levels on DIV21 (Figures 1D,1F). Western blotting showed that sv2 was the most predominantly 

expressed splice variant in DIV21 iNs (Figure 1H). Protein expression of the presynaptic 

neuronal marker SYN1 was not affected by ELAVL4 KO, OE, or rescue in iNs (Figure 1H).  

ELAVL4 expression affects APP phenotypes in induced neurons  

After we successfully manipulated ELAVL4 expression in iNs, we examined the effect of these 

manipulations on APP mRNA, protein, and processing. Alternative splicing of APP is known to 

result in three major isoforms: APP751 and APP770, which are ubiquitously expressed, and the 

predominantly neuronally expressed APP695 isoform (51). 
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Figure 33: ELAVL4 affects APP protein levels and Aβ42/40 ratios in fADcorr iNs. 
(A) Example western blot and (B-D) quantifications are shown for ELAVL4 knock out (KO) 
overexpression (OE) and rescue of ELAVL4 in fAD-corrected iNs. In the KO, changes relative to CRISPR 
control line that underwent mock targeting with an empty sgRNA vector transfected alongside with 
Cas9, and monoclonal subclones were isolated and analyzed in parallel to subclones where ELAVL4 
was targeted. For OE and rescue conditions, changes relative to empty vector OE plasmid in the 
CRISPR control or ELAVL4 KO iNs respectively. At day 21 of differentiation, 48h condition media was 
collected and cells were lysed. (E-G) Aβ40 and Aβ42 levels were measured via multiplexed ELISA 
(MSD), and normalized to the fAD-corrected CRISPR control for each differentiation. Quantifications 
(B-G) are from 3 independent differentiations with n=3. In the KO experiments P-values were 
calculated with t tests, while in the OE and rescue experiments, P-values were calculated with 
Dunnett’s multiple comparison that followed after a significant ANOVA test, * P < 0.05, ** P < 0.01, 
*** P < 0.001, **** P < 0.0001. 
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In both the fADcorr and fAD cell lines, loss-of-function of ELAVL4 resulted in the increased 

formation of longer APP splice variants (increased APP751 and APP770 isoforms) (Table 1, 

Supplementary Figures 2 and 3). OE and rescue of ELAVL4 expression in both ELAVL4 KO lines 

had the opposite effect: increased APP695 mRNA and reduced APP751 and APP770 mRNA 

(Table 1, Supplementary Figures 2 and 3). In the OE experiments, we observed an increase in 

total APP mRNA while in the KO and rescue experiment, total APP mRNA levels were not 

significantly affected (Table 1, Supplemental Figures 2 and 3). At the protein level, we observed 

lower APP expression after KO of EALVL4 in fAD neurons and increased APP protein expression 

in neurons with rescued or overexpressed ELAVL4 (Table 1, Figures 2A-D and 3A-D). We 

previously had found, and confirmed here, that fAD neurons express a higher Aβ42/40 ratio 

(41). When we measured Aβ species that result from APP processing, we found that ELAVL4 KO 

lowered Aβ38 and Aβ40 levels in the culture media from fADcorr iNs and Aβ38, Aβ40, and Aβ42 

levels in media of fAD iNs (Supplementary Figures 4 and 5). On the other hand, while OE of 

ELAVL4 sv2 increased the extracellular levels of Aβ38 and Aβ40, all other OE and rescue 

conditions did not affect the levels of the Aβ species measured (Supplementary Figures 4 and 

5). However, the ratio of Aβ42/40 was consistently reduced in the ELAVL4 OE and rescue 

experiments (Table 1, Figures 2E-G and 3E-G).  

ELAVL4 expression affects tau phenotypes in induced neurons 

We further evaluated the effect of ELAVL4 manipulation on AD-relevant phenotypes by 

examining tau, a protein that aggregates in the other pathological hallmark of AD: 

neurofibrillary tangles. The levels of tau mRNA increase and decrease in ELAVL4 KO iNs in 

fADcorr and fAD backgrounds, respectively (Table 1, Figures 4A and 5A). Overexpression of 
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ELAVL4 sv1 increased tau mRNA in both backgrounds, and rescue with ELAVL4 sv1 increased 

tau mRNA in the fAD ELAVL4 KO iNs (Table 1, Figures 4B, C and 5B, C). The elevated 

phosphorylation of tau protein (pTau) facilitates intracellular tangle formation. 

Figure 34: ELAVL4 affects APP protein levels and Aβ42/40 ratios in fAD iNs. 
(A) Example western blot and (B-D) quantifications are shown for ELAVL4 knock out (KO) 
overexpression (OE) and rescue of ELAVL4 in fAD iNs. In the KO, changes relative to CRISPR control 
line that underwent mock targeting with an empty sgRNA vector transfected alongside with Cas9, 
and monoclonal subclones were isolated and analyzed in parallel to subclones where ELAVL4 was 
targeted. For OE and rescue conditions, changes relative to empty vector OE plasmid in the CRISPR 
control or ELAVL4 KO iNs respectively. At day 21 of differentiation, 48h condition media was 
collected and cells were lysed. (E-G) Aβ40 and Aβ42 levels were measured via multiplexed ELISA 
(MSD), and normalized to the fAD-corrected CRISPR control for each differentiation. Quantifications 
(B-G) are from 3 independent differentiations with n=3. In the KO experiments P-values were 
calculated with t tests, while in the OE and rescue experiments, P-values were calculated with 
Dunnett’s multiple comparison that followed after a significant ANOVA test, * P < 0.05, ** P < 0.01, 
*** P < 0.001, **** P < 0.0001. 
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Figure 35: Increased ELAVL4 expression reduces tau phosphorylation in fAD-corrected iNs. 
(A-C) Quantification of tau mRNA in iNs from ELAVL4 knock out (KO) overexpression (OE) and rescue 
in fAD-corrected induced neurons (iNs). In the KO, changes relative to CRISPR control line that 
underwent mock targeting with an empty sgRNA vector transfected alongside with Cas9, and 
monoclonal subclones were isolated and analyzed in parallel to subclones where ELAVL4 was 
targeted. For OE and rescue conditions, changes relative to empty vector OE plasmid in the CRISPR 
control or ELAVL4 KO iNs respectively. At day 21 of differentiation, cells were lysed and protein and 
RNA samples were harvested. (D-F) example blots and (G-L) quantifications tau and p-tau181 protein 
in ELAVL4 KO, OE, and rescue fAD-corrected iNs. Quantifications (A-C,G-L) are from 3 independent 
differentiations with n=3. In the KO experiments P-values were calculated with t tests, while in the 
OE and rescue experiments, P-values were calculated with Dunnett’s multiple comparison that 
followed after a significant ANOVA test, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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We previously had found, and confirmed here, that fAD neurons express higher pTau protein 

levels (41). ELAVL4 KO, OE and rescue of ELAVL4 did not significantly alter total tau protein 

levels in most cells, with the exception of increased tau protein in the fADcorr ELAVL4 KO iNs 

and ELAVL4 sv2 OE in fAD iNs (Table 1, Figures 4G-I and 5G-I). However, ELAVL4 KO did 

consistently increase tau phosphorylation, specifically phosphorylation on residue threonine 

181 (Thr181) in both the fADcorr and fAD cell lines (Table 1, Figures 4J and 5J). On the other 

hand, increasing ELAVL4 levels through OE and rescue experiments had the opposite effect in 

both fADcorr and fAD iNs, reducing phosphorylated Thr181 tau compared to total tau (Table 1, 

Figures 4K,L and 5K,L). 
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Figure 36: Increased ELAVL4 expression reduces tau phosphorylation in fAD iNs. 
(A-C) Quantification of tau mRNA in iNs from ELAVL4 knock out (KO) overexpression (OE) and rescue 
in fAD induced neurons (iNs). In the KO, changes relative to CRISPR control line that underwent mock 
targeting with an empty sgRNA vector transfected alongside with Cas9, and monoclonal subclones 
were isolated and analyzed in parallel to subclones where ELAVL4 was targeted. For OE and rescue 
conditions, changes relative to empty vector OE plasmid in the CRISPR control or ELAVL4 KO iNs 
respectively. At day 21 of differentiation, cells were lysed and protein and RNA samples were 
harvested. (D-F) example blots and (G-L) quantifications tau and p-tau181 protein in ELAVL4 KO, OE, 
and rescue fAD iNs. Quantifications (A-C,G-L) are from 3 independent differentiations with n=3. In 
the KO experiments P-values were calculated with t tests, while in the OE and rescue experiments, 
Pvalues were calculated with Dunnett’s multiple comparison that followed after a significant ANOVA 
test, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Canonical pathway and upstream regulator analysis results 

After confirming that decreasing or increasing ELAVL4 expression affects AD-related molecular 

changes in iNs, we aimed to gain further insight into the molecular cascades involved in ELAVL4 

signaling through conducting analyses of transcriptomic and proteomic data from iNs derived 

from the different cell lines that we had generated. For further analysis, we defined 10 sets of 

differentially expressed genes (DEGs) generated through comparing total RNA sequencing data 

from 48 samples of iNs that included 3 biological replicates for each of 16 conditions (Figure 6A, 

Table 2). First, we analyzed the DEGs in fADcorr ELAVL4 KO iNs compared to fADcorr iNs with 

WT ELAVL4 (Table 2.1, Figure 6B), the DEGs in fADcorr iNs in which ELAVL4 was overexpressed 

(combined analysis of ELAVL4 sv1 and sv2 OE) compared to fADcorr iNs with WT ELAVL4 (Table 

2.2, Figure 6C), and the genes that were differentially expressed in the opposite direction 

(DEGs-OD) in the fADcorr ELAVL4 sv1+sv2 OE iNs and the fADcorr ELAVL4 KO (Table 2.3). Then, 

we analyzed the DEGs from the rescue experiments: the DEGs in fADcorr ELAVL4 KO iNs with 

ELAVL4 sv1+sv2 rescue compared to fADcorr ELAVL4 KO iNs (Table 2.4, Figure 6D), as well as 

the DEGs-OD in the fADcorr ELAVL4 sv1+sv2 rescue iNs and the fADcorr ELAVL4 KO iNs (Table 

2.5). Subsequently, we performed the same five KO, OE, and rescue analyses based on RNAseq 

data from fAD iNs (Table 2.6-2.10, Supplementary Figure 8A-C). In addition to RNAseq data, we 

analyzed four sets of differentially expressed proteins (DEPs) and differentially expressed 

phosphoproteins (DPPs): DEPs and DPPs in fAD ELAVL4 KO iNs compared to fAD iNs (Table 2.11-

12, Figure 7A,B), and DEPs and DPPs in fAD ELAVL4 KO iNs with ELAVL4 sv2 rescue compared to 

fAD ELAVL4 KO iNs (Table 2.13-14, Figure 7C,D). 
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Figure 37: RNAseq characterization of iPSC lines generated in this study. 
(A) Purified RNA of cell lysates collected from iNs DIV21 were analyzed by RNAseq. Genes were 
selected that mark subsets of neuronal and glial cells and a heat map was created using the 
pheatmap package in R. HKG, housekeeping gene iPSC/NPC, induced pluripotent stem cell/neural 
progenitor cell. (B) Differentially expressed genes (DEGs) in fADcorr ELAVL4 KO iNs compared to 
fADcorr iNs (C) DEGs in fADcorr iNs in which ELAVL4 was overexpressed (combined analysis of 
ELAVL4 sv1 and sv2 OE) compared to fADcorr iNs. (D) DEGs from the rescue experiments: the DEGs in 
fADcorr ELAVL4 KO iNs with ELAVL4 sv1+sv2 rescue compared to fADcorr ELAVL4 KO iNs. DEGs with 
FDR corrected P-values < 0.05 and fold changes ≥ │1.20│ are indicated in red. Volcano DEGs plots 
were generated using the EnhancedVolcano package in R. 
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The data sets generated provide a rich resource for interrogating ELAVL4/HuD biology. 

Supplementary Table 1 includes the results of each of the above-described analyses, which can 

be readily probed for any gene or protein of interest. For example, as mentioned in the 

introduction, several genes have been described in the literature to be targets of ELAVL4, and in 

Table 2, we have listed these genes, with their expression changes in human neurons with 

ELAVL4 knock out or overexpression.  

In order to obtain a global view of the pathways that are altered following ELAVL4 modulation, 

we used IPA to conduct canonical pathway analyses of the above-described lists of DEGs, DEPs, 

and DPPs. When considering the top five most significantly enriched pathways for each 

comparison, 40 different pathways were enriched in the DEGs, DEPs, and DPPs (Table 3; full 

canonical pathway analysis results in Supplementary Table 2). Canonical pathways that were 

found to be among the top five enriched pathways in more than one comparison are 

(“X”=number of comparisons showing enrichment): "Axonal guidance signaling" (6X), "Cell 

Cycle: G2/M DNA Damage Checkpoint Regulation (4X)", "Cyclins and Cell Cycle Regulation" (4X), 

"Kinetochore Metaphase Signaling Pathway" (4X), "Hepatic Fibrosis / Hepatic Stellate Cell 

Activation" (3X), "Hepatic Fibrosis Signaling Pathway" (3X), "Human Embryonic Stem Cell 

Pluripotency" (3X), "Molecular Mechanisms of Cancer" (3X), "14-3-3-mediated Signaling" (2X), 

"Calcium Signaling" (2X), "Mitotic Roles of Polo-Like Kinase" (2X), "Sirtuin Signaling Pathway" 

(2X), and "Synaptogenesis Signaling Pathway" (2X) (Table 3). 
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We then performed focused 'upstream regulator' analyses to identify regulators that influence 

the expression of multiple downstream targets, and we have used similar analyses previously to 

find upstream regulators for movement disorders (52-54). We focused on assessing if altering 

ELAVL4 expression in neurons affects genes and proteins that are downstream transcriptional 

Figure 38: Proteomic characterization of iPSC lines generated in this study. 
(A,C) Protein and (B,D) phosphoprotein quantification of DIV21 iNs from (A,B) ELAVL4 KO 
and (C,D) rescue in fAD induced neurons. Differentially expresses peptides (DEPs) and 
differentially phosporylated peptides (DPPs) with FDR corrected P-values < 0.05 and fold 
changes ≥ │1.20│ are indicated in red. Volcano DEPs and DPPs plots were generated using 
the EnhancedVolcano package in R. 
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targets of four regulators. These regulators were APP and tau, the key components of the AD 

brain lesions, as well as the insulin receptor (INSR) and FOXO1, the only known transcriptional 

regulators of ELAVL4 expression (a mechanism that was demonstrated in pancreatic beta cells 

(40)). The analyses revealed that, with the exception of analysis 8 (DEGs-OD in the fAD ELAVl4 

sv1+sv2 OE iNs versus the fAD ELAVL4 KO), all analyzed DEGs, DEPs and DPPs are significantly 

enriched for transcriptional targets downstream of APP signaling (Table 4). In analysis 1 (DEGs 

in the fADcorr ELAVL4 KO iNs and the fADcorr iNs), APP was also predicted to be activated (Z-

score 2,36) (Table 4). In addition, half of the analyses (7/14) revealed a significant enrichment 

of transcriptional targets downstream of tau signaling (Table 4). Further, the upstream 

regulator analysis of the DEGs in both the fADcorr ELAVL4 KO and fAD ELAVL4 KO iNs (analyses 

1 and 6) revealed that the INSR downstream targets are enriched and the INSR is predicted to 

be inhibited (Z-scores -3,14 and -3,15). In contrast, an enrichment of INSR targets and predicted 

activation of the INSR (Z-score 2,21) was identified in analysis 11 (DEPs in the ELAVL4 KO in fAD 

iNs) (Table 4). In 7 of the remaining 11 analyses, a significant enrichment INSR downstream 

targets was found. As for FOXO1, its downstream transcriptional targets were enriched and it 

was predicted to be inhibited in 3 OE analyses (analyses 2,3, and 7) and 3 rescue analyses (4,5 

and 9), while FOXO1 target enrichment was identified in 3 of the remaining 8 analyses (Table 4). 
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Figure 39: Schematic representation of INSR-FOXO1 signaling putatively regulating ELAVL4 expression 
and the downstream effects of ELAVL4 on APP processing and tau phosphorylation. The figure was 
made using Adobe Illustrator. Abbreviations: Aβ; amyloid beta, P; phosphate group. 
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Discussion 
 

In this study, we showed that manipulating ELAVL4/HuD expression in iPSC-derived induced 

neurons (iNs) affects AD-relevant phenotypes in human neuronal cells. We found that 

increasing ELAVL4 expression in WT and ELAVL4 KO iNs ameliorated AD-associated molecular 

changes—i.e., reduced levels of specific APP isoforms, decreased Aβ42/40 ratio, and reduced 

levels of phosphorylated tau— from both familial AD (fAD) and fAD-corrected iPSCs. For APP 

splicing isoforms and phosphorylated tau levels, the opposite effect was observed in ELAVL4 KO 

cells.  

Three main alternatively spliced isoforms of APP exist, i.e., APP751 and APP770 that are 

ubiquitously expressed and APP695, a predominantly neuronally expressed isoform (51). In 

both fAD-corrected and fAD iNs, knocking out ELAVL4 resulted in altered splicing of APP mRNA 

(increased APP751 and APP770), while overexpression and rescue of ELAVL4 expression in 

ELAVL4 KO cells had the opposite effect (decreased APP751 and APP770) and also led to an 

increase of APP695 levels. These findings are in line with the literature, where ELAVL4 was 

reported to regulate APP splicing, and a strong positive correlation between Hu protein 

expression and APP695 levels was found in the brain (30). Specifically, ELAVL4 was found to 

modulate APP splicing by favoring exclusion of exons 7 and 8 that are coding for the longer APP 

isoforms (APP751 and APP770) (30). In AD, a decrease of APP695 and an increase of the 

APP751/APP770 isoforms have been reported (55, 56), which suggests that ELALV4 function is 

impaired in AD. Further, except for most of the OE experiments—in which we observed an 

increase in total APP mRNA—we found that total APP mRNA levels were not significantly 
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affected by manipulating ELAVL4 expression. At the protein level, increased APP expression was 

seen in most experiments with ELAVL4 OE or rescued iNs, but lower APP expression was 

observed following ELAVL4 KO in fAD iNs. This being said, when we examined APP processing, 

we found that the Aβ42/40 ratio was reduced in almost all (7/8) of the ELAVL4 OE and rescue 

experiments, with higher Aβ42/40 ratios having been correlated to more severe AD pathology 

(22, 57). Again, these findings are in line with ELAVL4 function being reduced in AD.  

According to the Aβ cascade hypothesis, pathogenic Aβ oligomers trigger a signaling cascade 

that results in an increase in phosphorylated tau, synaptic dysfunction, and neurodegeneration 

in the brain of AD patients (58). In this respect, increased CSF and plasma levels of tau 

phosphorylated at threonine 181 (Thr181) are used to predict elevated amounts of cerebral Aβ 

in the clinic (59, 60). In keeping with this, our OE and rescue experiments indeed showed that 

upon upregulating ELAVL4 expression, not only the Aβ42/40 ratio but also the levels of 

intracellular tau phosphorylated at Thr181 were markedly decreased. Conversely, ELAVL4 KO 

also resulted in increased phosphorylated tau (at Thr181) levels. Interestingly, it was recently 

also found in iPSC-derived cerebral organoids carrying frontotemporal dementia-associated 

mutations in MAPT, ELAVL4 is increased in expression but mislocalized together with tau in 

stress granules, which results in impaired ELAVL4 function and altered synaptic signaling 

pathways (61).  

Taken together, our experimental findings provide new, additional evidence in human neurons 

for an important role of ELAVL4 in modulating AD pathogenesis. Specifically, increased 

expression and hence the activity of ELAVL4 in iNs seems to counteract the two main 
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pathological hallmarks of AD, i.e., the formation of extracellular Aβ plaques (resulting from an 

increased Aβ42/40 ratio) and intracellular neurofibrillary tangles (resulting from an increase in 

Thr181-phosphorylated tau levels). Therefore, we submit that ELAVL4 KO iNs represent a novel 

cellular model of dysregulation of tau and Aβ that can be probed to further elucidate 

mechanisms of AD. In particular, our findings in rescued iNs—i.e., upon upregulation of ELAVL4 

levels in ELAVL4 KO cells—indicate that novel approaches aimed at upregulating ELAVL4 

expression levels may be beneficial therapeutically.  

The database of RNA profiles (RNAseq) and protein levels ((phospho)proteomics) resulting from 

ELAVL4 modulation that we created provides a rich resource for us and others studying 

ELAVL4/HuD function to gain insights into the molecular events that result from manipulating 

ELAVL4 expression (KO, OE, or rescue) in human neurons. Analyzing these data, our results for 

three already established ELAVL4 targets NEP, Tau, and ACHE follow a pattern that is consistent 

with previous findings, i.e., that ELAVL4 stabilizes the mRNA of these genes. For the other 

known targets listed in Table 2, this pattern is less consistent, which may be due to the fact that 

cell models different from human iNs or animal models and/or different experimental 

conditions were used to demonstrate that these genes were ELAVL4 targets.  

Our unbiased canonical pathway analysis identified multiple pathways that are significantly 

enriched among the DEGs, DEPs, and DPPs linked to differential ELAVL4 expression. These 

included pathways that have been linked to AD previously. Specifically, we identified several 

enriched synaptic pathways, i.e., "axonal guidance signaling", "semaphorin signaling in 

neurons", and "synaptogenesis signaling". Axonal guidance is generally associated with 

neurodevelopment. Indeed, Hu proteins—that include HuD/ELAVL4—are thought to be one of 
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the earliest markers of neuronal differentiation, and in dentate granule cells from ELAVL4 OE 

mice, increased expression of axonogenesis-related genes has been observed (62). However, 

axonal guidance molecules can also stimulate or inhibit inflammatory responses and play a 

pivotal role in the inflammation of the nervous system associated with AD (63, 64). A second 

set of enriched pathways consisted of DNA damage pathways, including "UVB/C-induced MAPK 

signaling", "ATM signaling", and "p53 signaling". Recently, we have shown that several synaptic 

pathways are impaired in the hippocampus of AD patients by analyzing transcriptomic data and 

have also linked these findings to somatic DNA damage (65). In this respect, an impaired p53-

mediated DNA damage response has been observed in AD patient brains (66). Furthermore, 

aberrant re-entry into the cell cycle has been implicated in the pathogenesis of AD (67, 68). This 

fits with our finding of an enrichment of pathways related to cell cycle regulation ("Cyclins and 

cell cycle regulation", "Cell cycle: G2/M damage checkpoint regulation", "Cell cycle: G1/S 

checkpoint regulation", and "CDK5 signaling"). DNA damage and other stressors may also 

activate a senescence-like phenotype in neurons leading to inflammation and neuronal 

dysfunction (69), and therefore, it is interesting that oxidative stress has been shown to induce 

posttranscriptional gene regulation by RBPs—including Hu protein family member HuR—of 

mRNAs involved in regulating cellular senescence (70). Other significantly enriched pathways 

relate to NAD and sirtuin signaling, and intriguingly, these pathways have been linked to both 

AD and aging/longevity (71, 72) through regulating the activity of FOXO1 (73, 74), one of the 

upstream regulators for which we performed enrichment analyses. Lastly, some pathways that 

we identified are directly linked to phosphorylation of tau, i.e., BAG2 signaling (75), 14-3-3-

mediated signaling (76, 77), and ERK/MAPK signaling (78).  
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Our upstream regulator analyses of the transcriptomic and proteomic data from most 

experiments that we performed—knocking out and/or overexpressing ELAVL4 in iNs—revealed 

that the differentially expressed genes/proteins are strongly enriched for transcriptional targets 

of both APP and tau. These findings suggest that ELAVL4 not only affects APP processing and 

tau phosphorylation but also signaling downstream from these two crucial AD-linked proteins. 

Furthermore, the results from our upstream regulator analyses of the transcriptomic data 

indicate that ELAVL4 expression in neurons may be regulated by insulin receptor (INSR)-FOXO1 

signaling: in the ELAVL4 KO iNs, INSR is predicted to be inhibited, whereas FOXO1 is predicted 

to be inhibited in ELAVL4 OE/rescue cells. This is the same mechanism that regulates ELAVL4 

expression in pancreatic beta cells (40). More specifically, upon binding insulin, the INSR is 

activated, and this leads to a downstream signaling cascade that results in phosphorylation of 

FOXO1, a transcription factor that represses ELAVL4 transcription. Phosphorylated FOXO1 

translocates from the nucleus and loses its ability to regulate transcription, resulting in 

increased transcription and expression of ELAVL4 (40). Subsequently, as we demonstrated, 

increased ELAVL4 expression results in a decreased Aβ42/40 ratio and phosphorylated tau 

levels, thereby ameliorating the key AD-related molecular changes. In Figure 8, we have 

schematically represented the directionality of INSR-FOXO1 signaling putatively regulating 

ELAVL4 expression, with its subsequent effects on APP processing and tau phosphorylation. 

As mentioned above, ELAVL4 is (also) an important regulator of pancreatic beta-cell function 

(38), and ELAVL4 deficiency contributes to the etiology of diabetes type 2 (39). In this respect, it 

is interesting that insulin resistance (in the periphery and brain) has been implicated as a core 

mechanism underlying both diabetes and AD (79). In the brain, insulin resistance was found to 
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have a negative effect on synaptic plasticity, which in turn could contribute to AD progression 

(80). Diabetes and AD are often comorbid, and Aβ peptides have been found to compete 

directly with insulin for INSR binding, leading to decreased INSR functioning and ultimately 

insulin resistance (81). Therefore, we could speculate that in AD, aggregated Aβ causes 

decreased INSR activity and subsequently decreased FOXO1 phosphorylation and ELAVL4 

expression, which further exacerbates amyloidogenic APP processing, and hence AD pathology.  

This study has some strengths and limitations. A particular strength is that we were able to 

generate and validate ELAVL4 KO cells as a human cell model of AD that could be used in 

further studies aimed at further elucidating the exact role of ELAVL4 in the brain in general, and 

in AD in particular. A limitation is that the iN system we used does not model the full complexity 

of the human brain, as neurons in the brain are interconnected with other brain regions and 

reside among other cell types. Therefore, more complex (3D) model systems including not only 

neurons but also e.g., astrocytes and microglia may be generated to study ELAVL4 function in 

an experimental setting that more closely resembles a functioning brain. Further, it is unlikely 

that ELAVL4 function in the AD brain is completely reduced to zero in the way that we have 

modeled with full ELAVL4 KO iNs. This being said, we also conducted OE and rescue 

experiments that showed effects opposite to those of the KO experiments, which strengthens 

the evidence that altered ELAVL4 expression leads to the observed phenotypic changes. Lastly, 

the putative ELAVL4 expression-regulating cascade in neurons that we identified through 

analyzing the RNAseq and proteomics data needs to be further studied and corroborated in 

follow-up experiments. 
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Conclusions 
 

In conclusion, we show that increased ELAVL4/HuD expression ameliorates APP and tau 

pathology in neurons. In addition, our transcriptomic data analyses suggest that ELAVL4 affects 

signaling downstream of APP and tau and that INSR-FOXO1 signaling may regulate ELAVL4 

expression in neurons. Taken together with the results from published studies, increasing 

ELAVL4 expression and hence functional protein levels in the brain may be beneficial in AD—

especially through the positive effects that ELAVL4 has on synaptic function—making it a 

promising target for novel drug development. 
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Materials and Methods 
 

Cell culture 

Induced pluripotent stem cells (iPSCs) harboring the APP London mutation (V717I) (fAD) and 

isogenic CRISPR corrected lines (fADcorr) were reported previously (41, 42). iPSCs were 

maintained in Stemflex medium (ThermoFisher) on plates coated with growth factor reduced 

Matrigel (Corning). Generation of induced neurons (iNs) was performed as described previously 

(43). Briefly, iPSCs were plated at 95K/cm2 in mTeSR1 media one-day prior to viral 

transduction. Ultrahigh titer lentiviruses were obtained from Alstem for plasmids FUdeltaGW-

rtTA (Addgene #19780), pTet-O-Ngn2-puro (Addgene #52047), and DRH-307 (Addgene 

#112670), and were transduced at MOIs 5, 2, and 2, respectively. On day in vitro (DIV) 1, 

differentiation was induced by Doxycycline (2μg/ml). On DIV 2, puromycin (5 μg/ml) was added 

to select for cells expressing Ngn2. On DIV 4, iNs were plated on Poly-L-Ornithine laminin 

coated plates and cultured in Neurobasal medium containing Glutamax, dextrose, NEAA, B27, 

Doxycycline, puromycin, BDNF, CNTF, and GDNF. Culturing media was conditioned starting at 

DIV 18, and media, protein, and RNA samples were harvested at DIV 21. 

 

CRISPR-Cas9 knock out 

single guide RNAs targeting exons common to all human ELAVL4 splicing isoforms were 

designed using the Broad CRISPR design tool 

(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrnadesign) (figure 1A). The top 

three sgRNAs were cloned into the pXPR-003 (Addgene #52963) backbone and transfected with 

SpCas9 plasmid (Addgene #78166) into M17D cells using FuGENE HD (Promega) to assess 

https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrnadesign
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sgRNA knockdown (KD) efficiency by qPCR. The most efficient M17D KD of ELAVL4 was 

observed using sgRNA B1, which was subsequently co-transfected with SpCas9 into fAD and 

fADcorr iPSCs using Lipofectamine2000. Two days post-transfection, iPSCs were selected with 

puromycin (5 μg/ml) and blasticidin (4 μg/ml) for enrichment. Editing efficiency in the resulting 

polyclonal lines was assessed with the GeneArt Genomic Cleavage Detection Kit 

(ThermoFisher). Monoclonal cell lines were obtained by limiting dilution and examined by 

sequencing over the sgRNA target region. After monoclonal selection, the cellular karyotype 

was assessed using the NanoString nCounter CNV codeset and visualized using copy number 

package in R (44). 

 

Lentiviral overexpression of ELAVL4 

The EIF1α promoter of pLVX-EF1α-IRES-mCherry (Takara #631987) was switched to a shorter 

CAG promoter (Genewiz) by ClaI and NotI digestion for higher viral packaging efficiency and 

elevated expression in neurons (pLVX-CAG-IRES-mCherry). The two most common isoforms of 

ELAVL4 (splicing variants 1 or 2 (sv1 or sv2) in the postnatal brain arise from alternative splicing 

of ELAVL4 pre-mRNA in the region that codes for the hinge between RRM2 and RRM3 (2). cDNA 

for ELAVL4 sv1 (Origene #RC218612) and sv2 (Genscript #OHu28682D) was amplified by PCR 

using primers 5’-CTCTAGAGCCACCATGGTTATGA-3' (FW) and 5’-

ATATGGATCCTCAGGACTTGTGGG-3' (REV). Amplified cDNA and pLVX-CAG-IRES mCherry vector 

were digested by XbaI and BamHI-HF and ligated using T4-ligase. The ligated product was 

transformed in stable competent E. coli (NEB #C3040H) and plated on ampicillin plates. For 

lentivirus production, 90% confluent HEK293T cells in 15 cm culture plates were 
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transfected with 24 μg pLVX-CAG-ELAVL4-IRES-mCherry, 12 μg envelope plasmid (Addgene 

#12259), and 18 μg packaging plasmid (Addgene #12260) using Lipofectamine2000. Media 

collected at 24H and 36H was pooled and concentrated with Lenti-X-Concentrator (Takara), 

virus particles were resuspended in PBS buffer. 

 

Quantitative reverse transcription PCR 

Samples for qPCR were prepared using a Fast SYBR Green Cells-to-CT Kit (ThermoFisher) 

according to manufacturer's guidelines, measured using three technical replicates on a ViiA 7 

System (Applied Biosystems), and normalized to GAPDH values during comparative Ct analysis 

(45). Samples (n=3) from three replicate experiments were normalized to control conditions in 

the same experiment. 

 

Western blotting 

iN protein lysates were extracted using RIPA buffer (Abcam) containing complete protease 

inhibitor (Sigma) and phosphatase stop (Roche). Protein concentrations were determined by 

BCA (ThermoFisher), and samples were prepared with 4X sample buffer (LI-COR). Sample 

separation was performed using 4-12% Bis-Tris gels (ThermoFisher) in MOPS running buffer. 

Subsequently, samples were transferred onto nitrocellulose membranes. Membranes were 

blocked in blocking buffer (LI-COR) and probed overnight with primary antibodies at 4°C. 

Secondary anti-mouse and/or antirabbit antibodies (LI-COR), where appropriate, were 

incubated for 1 hour at room temperature (RT), and blots were scanned using the Odyssey CLx 

Imaging System (LI-COR). The primary antibodies used were: RαTau (DAKO, A0024), 
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MαPhospho tau Thr181 (Thermo Fisher, MN1050), RαSYN1 (EMDMillipore, 574777), MαAPP 

(Sigma-Aldrich, MAB348), RαELAVL4 (Proteintech, 24992-1-AP), and MαGAPDH (Proteintech, 

60004-1-Ig). Samples (n=3) from three replicate experiments were normalized to control 

conditions in the same experiment. 

 

Aβ-ELISA 

A triplex electrochemiluminescence assay kit (K15200E-2, V-PLEX Aβ Peptide Panel 1 kit, (Meso 

Scale Diagnostics (MSD)) was used to simultaneously measure levels of Aβ38, Aβ40, and Aβ42 

in conditioned media following manufacturer's instructions. Samples (n=3) from three replicate 

experiments were normalized to control conditions in the same experiment. 

 

RNA sequencing 

Total RNA of DIV21 iNs was purified using PureLink RNA mini kits (ThermoFisher). RNA-Seq 

Library preparation and Illumina HiSeq 2x150bp sequencing was performed by Genewiz, Inc. 

Trimmomatic was used for trimming the beginning and ending bases from each read and 

identifying and trimming adapter sequences from the reads (46). For quantifying gene level 

transcript abundances, we (pseudo)aligned the trimmed reads to a human reference genome 

(GRCh38) using Kallisto (47). Detection of differentially expressed genes (DEGs) was performed 

with Limma-voom using the count data (transcripts per million) obtained from Kallisto. P-values 

were corrected for multiple testing using the false discovery rate (FDR) method (48). 

Immunostaining 
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DIV 21 iNs were fixed with 4% Paraformaldehyde solution at 4°C for 20 min at RT, blocked in 

blocking buffer (2% donkey serum, 0.1% Triton in PBS) for 1 hour at RT, and incubated with 

primary antibodies at 4°C overnight. The next day, secondary antibodies were incubated for 1 

hour at RT followed by Hoechst DNA stain for 10 minutes at RT. Three 10 minutes PBS wash 

steps were performed between each step. 

 

Phosphoproteomics and protein expression profiling 

On DIV21, iN protein samples were collected in 4°C 1% SDS in H2O. Following cell lysis, samples 

were centrifuged at maximum speed (~21,000 x g) for 10 minutes at 4°C to pellet any cell 

debris. Protein concentrations were determined using a BCA assay (PierceTM). Proteins were 

reduced with 10 mM DTT for 1 hour at 56°C, then alkylated with 55 mM Iodoacetamide (IAA, 

Sigma) for 1 hour at RT on a rotator protected from light. SP3 beads were washed three times 

with milliQ water and 500ug beads were added per sample. Acetonitrile was added in 1:1 ratio, 

and the sample was incubated for 8 minutes. After incubating an additional 2 minutes on the 

magnetic rack, the supernatant was removed, and the beads were washed twice with 70% 

ethanol and once with 100% acetonitrile. After letting the beads air dry for 30 seconds to 

remove residual acetonitrile, 10ug of trypsin in 200ul of 50mM HEPES buffer was added for on 

bead digestion. Beads were sonicated for 1 minute and incubated o/n on the rotator. The next 

day, the beads were incubated on the magnetic rack for 2 minutes, and the supernatant 

containing digested peptides was transferred into a new tube. Peptides were dried down using 

a speedvac and then lyophilized. To enable multiplexing and peptide quantification, samples 

were labeled using isobaric Tandem Mass Tags (TMT, ThermoFisher). Lyophilized samples were 
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resuspended in 50 mM HEPES buffer (pH 7.4), and TMT was resuspended in anhydrous 

acetonitrile. 400 μg of TMT was added per sample to a final volume of 50 μl. After allowing the 

labeling reaction to proceed for 1 hour at RT on a platform shaker at 400 rpm, the reaction was 

quenched by adding 3.2 μl of 5% Hydroxylamine in HPLC-grade water. After an additional 15 

minutes on the shaker, samples were pooled and dried by vacuum centrifugation. For 

phosphoserine and phosphothreonine mass spectrometry (MS) analysis, samples were then 

resuspended in 400 μl of buffer (100 mM Tris-HCl, 0.3% NP-40, pH 7.4), and phosphopeptides 

were 

enriched using High-Select™ Fe-NTA phosphopeptide enrichment kits (Thermo). The 

phosphopeptide eluent was reduced in volume to 1-5 μl using vacuum centrifugation and 

resuspended by adding 10 μl of 5% acetonitrile in 0.1% formic acid. Subsequently, the sample 

was loaded onto a 50 μm i.d. capillary (Polymicro technologies) liquid chromatography (LC) 

column containing 5 μm C18 beads and a tip fritted with a mixture of Lithisil (PQ corp), 

Tetramethylammonium (TFA) Silicate (Sigma), and Formamide (Sigma). Phosphopeptide 

enrichment flow-through was preserved for use in a global proteomics run, where 2 μl of 1:500 

diluted sample in 0.1% acetic acid was loaded onto a similarly 

constructed 50 μm i.d. capillary LC column. The column was placed in line with an HPLC, and 

the following gradient was run at a flow rate of 2 μl/min (A = 0.1% acetic acid, B = 80% MeCN in 

0.1% acetic acid): 0-4 min, 0-14% B; 4-50 min, 14-42% B; 50-57 min, 42-60% B; 57-60 min, 60-

100% B, 60-68 min, 100% B, 68-69min, 100-0%B; 69-75 min, 0% B. The samples were analyzed 

on a ThermoFisher QExactive Plus mass spectrometer. The instrument was operated in data-

dependent acquisition mode, with the top 15 most abundant precursors with charge +2 or 
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greater selected for fragmentation and dynamic exclusion set to 15 seconds. Precursors were 

isolated with a 0.4 m/z window and fragmented at 33 NCE via HCD. Precursor scan settings 

were set to AGC = 3e6, maximum IT = 50 ms, and resolution of 70,000. MS2 scan settings were 

set to AGC = 1e5, maximum IT = 300 ms, and resolution of 35,000. The total acquisition time 

was 75 minutes per sample. MS datafiles were searched on MASCOT version 2.4 with fixed 

modifications for NEM alkylation on cysteines (+125.047 Da), addition of TMT 6-plex to N-

termini and lysine residues (+229.163 Da), oxidation of methionine residues (+15.995 Da) and 

phosphorylation on tyrosine, threonine, and serine residues (+79.966 Da). Precursor tolerance 

was ppm, fragment tolerance was 15 mmu, two missed cleavages were allowed. Peptides were 

considered to be positively identified if they had an ion score of at least 25. Peptides were 

discarded if they had TMT reporter ion intensities less than 1000 in any one channel, if they did 

not contain a phospho- or TMT-modification for the phosphoproteomics runs, or if they had 

isolation interference of more than 40%. To control for technical variation between channels, 

values were normalized to the median of each channel of the global proteomics runs. 

Differential expression analysis for peptides and phophopeptides were performed using limma-

voom in R. P-values were corrected for multiple testing using the FDR method (48). 

 

Enrichment analyses 

By performing enrichment analyses, we aimed to gain insight into the molecular mechanisms 

that underlie the functional outcome of manipulating ELAVL4 expression in neurons. First, we 

used Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.com; QIAGEN Bioinformatics, 

Redwood City, CA, USA) to assess the global enrichment of canonical pathways within the 
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generated transcriptomic and proteomic data. IPA uses the Ingenuity Knowledge Base, a 

combined repository of data from publicly accessible databases and data that are manually 

curated through systematically reviewing published literature, and currently, 712 canonical 

pathways have been annotated by IPA. For pathway enrichment, we analyzed all differentially 

expressed genes (DEGs), differentially expressed proteins (DEPs), and differentially 

phosphorylated proteins (DPPs) in the different neuronal lines with a FDRcorrected P-value 

(FDR P) < 5.0 X 10-2 and a fold change (FC) ≥ │1.20│. Peptides and phosphorylated peptides 

were mapped to one master protein, and the lowest P-value and the corresponding FC per 

protein was used for analysis. P-values for enriched canonical pathways were corrected using 

the FDR method (48). Subsequently, we used IPA to perform 'upstream regulator' analyses (49), 

using the same lists of DEGs, DEPs and DPPs (i.e., with FDR P < 5.0 X 10-2 and FC ≥ │1.20│). 

Upstream regulators can be any type of molecule—e.g., proteins, hormones, drugs and 

chemical compounds, and transcription factors—that can affect the expression of 'target' 

genes/proteins. For these analyses, we specifically focused on four upstream regulators, i.e., 

APP and tau, the key components of the main pathological lesions in AD (21), and the insulin 

receptor (INSR) and FOXO1, the only known transcriptional regulators of ELAVL4 expression (in 

pancreatic beta cells) (40). IPA calculates P-values that reflect the enrichment of targets of the 

upstream regulator in an input list (in this study our RNAseq and phosphoproteomics data), i.e., 

the amount of overlap between all known targets of the upstream regulator and the number of 

targets that are found in the input list. Furthermore, based on the direction of the expression 

changes of the input genes/proteins (up- or downregulated), IPA calculates an activation score 

(Z-score) that reflects the activation state of the upstream regulator. Z-scores ≥ 2 or ≤ -2 – 
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reflecting predicted activation or inhibition of the upstream regulator-dependent, downstream 

effects on target gene expression, respectively – are considered significant. 
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Supplemental Figures 

 

Supplementary figure 14: CRISPR/Cas9 editing did not result in large chromosomal abnormalities in 
iPSC lines generated in this study. Common CNV analysis in the monoclonal lines using the Nanostring 
nCounter Human CNV codeset for (A) fAD corrected CRISPR control (B) fAD CRISPR control (C) fAD 
corrected ELAVL4 knock out B1c2 (D) fAD ELAVL4 knock out B1c20 
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Supplementary figure 15: ELAVL4 affects APP mRNA splicing in fAD-corrected iNs. 
Quantification of specific APP mRNA splice forms in iNs from ELAVL4 knock out (KO) overexpression 
(OE) and rescue in fAD-corrected induced neurons (iNs). In the KO, changes relative to CRISPR control 
line that underwent mock targeting with an empty sgRNA vector transfected alongside with Cas9, 
and monoclonal subclones were isolated and analyzed in parallel to subclones where ELAVL4 was 
targeted. For OE and rescue conditions, changes relative to empty vector OE plasmid in the CRISPR 
control or ELAVL4 KO iNs respectively. At day 21 of differentiation, cells were lysed and protein and 
RNA samples were harvested. Quantifications are from 3 independent differentiations with n=3. In 
the KO experiments P-values were calculated with t tests, while in the OE and rescue experiments, 
Pvalues 
were calculated with Dunnett’s multiple comparison that followed after a significant ANOVA 
test, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Supplementary figure 16: ELAVL4 affects APP mRNA splicing in fAD iNs. 
Quantification of specific APP mRNA splice forms in iNs from ELAVL4 knock out (KO) overexpression 
(OE) and rescue in fAD induced neurons (iNs). In the KO, changes relative to CRISPR control line that 
underwent mock targeting with an empty sgRNA vector transfected alongside with Cas9, and 
monoclonal subclones were isolated and analyzed in parallel to subclones where ELAVL4 was 
targeted. For OE and rescue conditions, changes relative to empty vector OE plasmid in the CRISPR 
control or ELAVL4 KO iNs respectively. At day 21 of differentiation, cells were lysed and protein and 
RNA samples were harvested. Quantifications are from 3 independent differentiations with n=3. In 
the KO experiments P-values were calculated with t tests, while in the OE and rescue experiments, 
Pvalues were calculated with Dunnett’s multiple comparison that followed after a significant ANOVA 
test, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Supplementary figure 17: ELAVL4 affects extracellular Aβ species in fAD-corrected iNs 
Quantification of extracellular Aβ species (Aβ38, Aβ40, and Aβ42) in culture media of ELAVL4 knock 
out (KO) overexpression (OE) and rescue in fAD-corrected induced neurons (iNs). In the KO, changes 
relative to CRISPR control line that underwent mock targeting with an empty sgRNA vector 
transfected alongside with Cas9, and monoclonal subclones were isolated and analyzed in parallel to 
subclones where ELAVL4 was targeted. For OE and rescue conditions, changes relative to empty 
vector OE plasmid in the CRISPR control or ELAVL4 KO iNs respectively. At day 21 of differentiation, 
72 h conditioned media were collected and cells lysed. Quantifications are from 3 independent 
differentiations with n=3. In the KO experiments P-values were calculated with t tests, while in the OE 
and rescue experiments, P-values were calculated with Dunnett’s multiple comparison that followed 
after a significant ANOVA test, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Supplementary figure 18: ELAVL4 affects extracellular Aβ species in fAD iNs. 
Quantification of extracellular Aβ species (Aβ38, Aβ40, and Aβ42) in culture media of ELAVL4 knock 
out (KO) overexpression (OE) and rescue in fAD induced neurons (iNs). In the KO, changes relative to 
CRISPR control line that underwent mock targeting with an empty sgRNA vector transfected 
alongside with Cas9, and monoclonal subclones were isolated and analyzed in parallel to subclones 
where ELAVL4 was targeted. For OE and rescue conditions, changes relative to empty vector OE 
plasmid in the CRISPR control or ELAVL4 KO iNs respectively. At day 21 of differentiation, 72 h 
conditioned media were collected and cells lysed. Quantifications are from 3 independent 
differentiations with n=3. In the KO experiments P-values were calculated with t tests, while in the OE 
and rescue experiments, P-values were calculated with Dunnett’s multiple comparison that followed 
after a significant ANOVA test, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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CHAPTER 9 

Conclusions & Future Perspectives 
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In this thesis, the signaling mechanisms of receptor tyrosine kinases were extensively studied and 

discussed. Insights in mechanism and novel nodes were presented. This chapter concludes the 

findings of these studies, and discusses their impact on drug discovery and potential future 

research directions.    
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Conclusions & Future perspectives 

EGFR and the RTK signaling network 

The incredible resilience of EGFR and other members of the RTK family makes for an incredibly 

complex mechanism that is challenging to artificially modulate. Our work on the EGFR signaling 

network has highlighted this resilience as well as the ability to use our approach to identifiy 

novel associations that lead to a better understanding of these signaling networks. As our work 

on AXL and PTPRJ illustrated as well, there are as many potential ways to intervene and affect 

EGFR signaling as there are ways for EGFR to circumvent this. One important aspect we 

highlighted in these studies is to make a link between signaling response and phenotype. Too 

often, studies focus on one or the other, but to truly understand these networks, one should 

aim to create a holistic view to determine whether any of the signaling nodes are in fact  

responsible for a phenotypic outcome, or which mechanism is underlying that particular 

outcome.  

 

Phosphoproteomics and signaling studies 

Quantitative MS-based phosphoproteomics has emerged as a powerful technique to identify 

oncogenic signaling networks in a variety of biological systems. While global 

phosphoproteomics can provide an impressive overview of the phosphorylation state of 

thousands of proteins within a given sample, this analysis method may fail to identify and 

quantify low-abundance sites, e.g., pTyr and many oncogenic kinase substrates, that may be 

critical regulators of biological function, especially in cancer cell signaling. Although more 

technically challenging to detect due to sample losses, these data provide critical and unique 
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insight into activated tyrosine kinase signaling networks. As tools and methods continue to 

advance, e.g. higher affinity reagents for enrichment, targeted approaches for monitoring 

selected sites of interest, and instrumentation with increased sensitivity, these technique are 

becoming more widely accessible.  

One potential application of phosphoproteomics would be in interrogating signaling networks 

in patient derived tumor models, combining signaling and genetic data to inform combination 

therapies to advance efforts in personalized medicine. As methods become larger-throughput 

thanks to development of auto-sampler platforms and commercial columns, implementing 

phosphoproteomics in an industry setting is more conceivable every day.  
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Final notes 

In conclusion, phosphoproteomics in particular when applied for mechanistic purposes holds 

great potential to expand our understanding of signaling mechanisms, identify novel 

biomarkers, and informing therapeutic strategy in cancer and beyond.  As the field continues to 

accelerate and is pushed to focus on “translatable” research in PDX samples, tumor tissues and 

other human samples, my hope is that we do not forget about the power of fundamental 

research, and the replicability of in vitro studies (human samples often show great 

heterogeneity in signaling response making it challenging to distill meaningful insight). 

Furthermore, we should not get lost in inefficient giant library screens to find biomarkers for 

our diseases with no regards for underlying mechanism. Rather, we should aim for a deep 

mechanistic understanding that informs biomarker identification and validation studies. This is 

something that the approaches outlined in this thesis can help to achieve, and hopefully will 

continue to be used to pave the way for many therapeutic discoveries to be made.   
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Summary 
 

This thesis has provided novel insights in the signaling mechanisms of various members of the 

receptor tyrosine kinase family, with EGFR being our main node of interest. EGFR is part of the 

ErbB subfamily of RTKs and often dysregulated in many different diseases, in particular cancers. 

The many therapies that have been developed over the past few decades have had various 

successes, stressing the need for an improved understanding of the underlying signaling 

mechanisms. Chapter 1 introduces the main subjects of this thesis, including RTK signaling, 

EGFR function, tyrosine phosphorylation and phosphoproteomics. The latter is extensively 

discussed in Chapter 2, which highlights the recent advances in tools and methods that have 

enabled valuable discoveries to be made using phosphoproteomic approaches as it relates to 

cancer. One particularly powerful approach that can provide mechanistic insight when 

combined with ‘omics approaches, are Y-to-F mutational studies. As described in Chapter 3, 

these site-specific mutations allow for systematic interrogation of function of tyrosine sites, and 

have been used for a variety of applications. This review discusses valuable insight gained so far 

using such an approach, and the potential when combined with other advanced tools to link 

signaling and phenotype together. Chapter 4 describes the main thesis project, where a Y-to-F 

mutational approach was combined with phosphoproteomics and phenotypic assays to obtain 

a holistic view of the function of the individual tyrosines on the C-terminal tail of EGFR. Using 

various clustering and regression approaches, novel network nodes were identified as well as 

phenotype predictors that could serve as biomarkers in future applications. One of our earlier 

model systems for this study contained a GFP tag at the end of the C-terminal tail, causing 

signaling data to deviate from non-GFP labeled constructs. As the use of these types of large 
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reporters should be carefully considered in highly dynamic assays such as signaling studies, 

these data are presented and discussed in Chapter 5. Our Y-to-F approach combined with 

phosphoproteomics is applicable beyond EGFR, as shown by our similar study for AXL, another 

RTK often dysregulated in cancer. Chapter 6 discusses the signaling and phenotypic 

consequences of stimulation with AXL stimulants and EGFR inhibitors for various mutant 

isoforms. Beyond understanding direct RTK mechanism, others aim to regulated RTKs through 

neighboring proteins, e.g. phosphatases. One such phosphatase, PTPRJ, is known to be inactive 

as a dimer, prompting research to find ways to shift the equilibrium towards monomers in an 

attempt to downregulate EGFR in cancer. One mutation that prevents dimerization of PTPRJ is 

G983L, yet the mechanism through which PTPRJ downregulates EGFR is poorly understood. 

Chapter 7 evaluates potential mechanisms through a phosphoproteomic approach. As 

highlighted in Chapter 8, phosphoproteomics can have a profound impact beyond cancer. Using 

a combination of genomics and phosphoproteomics, ELAVL4 was identified as a potential novel 

drug target for Alzheimer’s disease. In summary, this thesis highlights the power of 

phosphoproteomics in identifying signaling mechanisms and biomarkers in RTKs and their 

interactors, in cancer and beyond. Chapter 9 provides a thoughtful overview of conclusions 

from this work, as well as a discussion of potential for this work moving forward. In all, these 

results may guide future research and drug development efforts, ultimately enabling more 

effective modulation of signaling networks in disease. 
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