
MIT Open Access Articles

Indistinguishability Obfuscation for RAM
Programs and Succinct Randomized Encodings

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bitansky, Nir, Canetti, Ran, Garg, Sanjam, Holmgren, Justin, Jain, Abhishek et al. 2018.
"Indistinguishability Obfuscation for RAM Programs and Succinct Randomized Encodings." 47
(3).

As Published: 10.1137/15m1050963

Publisher: Society for Industrial & Applied Mathematics (SIAM)

Persistent URL: https://hdl.handle.net/1721.1/137817

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137817

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 47, No. 3, pp. 1123--1210

INDISTINGUISHABILITY OBFUSCATION FOR RAM PROGRAMS
AND SUCCINCT RANDOMIZED ENCODINGS\ast

NIR BITANSKY\dagger , RAN CANETTI\ddagger , SANJAM GARG\S , JUSTIN HOLMGREN\P ,

ABHISHEK JAIN\| , HUIJIA LIN\#, RAFAEL PASS\dagger \dagger , SIDHARTH TELANG\dagger \dagger , AND

VINOD VAIKUNTANATHAN\P

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We show how to construct indistinguishability obfuscation (\bfi \bfO) for RAM programs
with bounded space, assuming \bfi \bfO for circuits and one-way functions, both with subexponential
security. That is, given a RAM program whose computation requires space s(n) in the worst case for
inputs of length at most n, we generate an obfuscated RAM program that, for inputs of size at most
n, runs in roughly the same time as the original program, using space roughly s(n). The obfuscation
process is quasi-linear in the description length of the input program and s(n). At the heart of our
construction are succinct randomized encodings for RAM programs. We present two very different
constructions of such encodings, each with its own unique properties. Beyond their use as a tool in
obfuscation for RAM programs, we show that succinct randomized encodings are interesting objects
in their own right. We demonstrate the power of succinct randomized encodings in applications
such as publicly verifiable delegation, functional encryption for RAMs, and key-dependent security
amplification.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . cryptography, randomized encodings, obfuscation, bootstrapping

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 68P25, 68Q99

\bfD \bfO \bfI . 10.1137/15M1050963

\ast Received by the editors December 2, 2015; accepted for publication (in revised form) March
12, 2018; published electronically June 26, 2018. This paper is based on results from two works,
[BGL+15] and [CHJV15], preliminary versions of which appeared in the proceedings of ACM STOC
2015. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

http://www.siam.org/journals/sicomp/47-3/M105096.html
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The work of the first author was supported by the Alon Young Faculty Fellowship

and by Len Blavatnik and the Blavatnik Family foundation. The work of the second author was
supported by the Check Point Institute for Information Security, ISF grant 1523/14, and NSF Frontier
grants CNS1413920 and 1218461. The work of the fourth and ninth authors was supported by
NSF grants CNS-1350619 and CNS-1414119, a DARPA Safeware grant, a Alfred P. Sloan Research
Fellowship, a Microsoft Faculty Fellowship, the NEC Corporation, and a Steven and Renee Finn
Career Development Chair from MIT. The work of the sixth author was supported in part by NSF
grants CNS-1528178 and CNS-1514526. The work of the seventh and eighth authors was supported in
part by an Alfred P. Sloan Fellowship, a Microsoft New Faculty Fellowship, NSF award CNS-1217821,
NSF CAREER award CCF-0746990, NSF award CCF-1214844, AFOSR YIP award FA9550-10-1-
0093, and DARPA and AFRL under contract FA8750-11-2-0211.

\dagger School of Computer Science, Tel Aviv University, Tel Aviv, 69978 Israel (nirbitan@tau.ac.il).
Member of the Check Point Institute of Information Security. Part of this research was done while
at IBM.

\ddagger Department of Computer Science, Boston University, Boston, MA 02215, and School of Computer
Science, Tel-Aviv University, Tel-Aviv, 69978 Israel (canetti@bu.edu).

\S Department of Electrical Engineering and Computer Science, University of California at Berkeley,
Berkeley, CA 94720 (sanjamg@berkeley.edu).

\P Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02142
(holmgren@csail.mit.edu, vinodv@csail.mit.edu).

\| Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218 (abhishek@
cs.jhu.edu).

\#Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA
93106 (rachel.lin@cs.ucsb.edu).

\dagger \dagger Department of Computer Science, Cornell University, Ithaca, NY 14853 (rafael@cs.cornell.edu,
sidtelang@cs.cornell.edu).

1123

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sicomp/47-3/M105096.html
mailto:nirbitan@tau.ac.il
mailto:canetti@bu.edu
mailto:sanjamg@berkeley.edu
mailto:holmgren@csail.mit.edu
mailto:vinodv@csail.mit.edu
mailto:abhishek@cs.jhu.edu
mailto:abhishek@cs.jhu.edu
mailto:rachel.lin@cs.ucsb.edu
mailto:rafael@cs.cornell.edu
mailto:sidtelang@cs.cornell.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1124 BITANSKY ET AL.

1. Introduction. The ability to cryptographically obfuscate general programs
holds great prospects for securing the future digital world [BGI+01]. However, general-
purpose obfuscation mechanisms prior to this work were inherently inefficient. One
of the main sources of inefficiency is the fact that existing solutions consider different
models of computation from those used to write modern computer programs. Indeed,
the first candidate indistinguishability obfuscator (iO) of Garg et al. [GGH+13] and
most general-purpose obfuscators that followed shortly after were designed for Boolean
circuits. Using a circuit obfuscator for different models of computation such as Turing
machines or random access machines (RAMs) requires first translating the given
program into a circuit. This comes with clear loss in efficiency aspects: the succinct
description of the program (as Turing machine or RAM) is not preserved and now
becomes proportional to its running time on the worst-case input. Similarly, executing
the program on any specific input now requires the same time and space resources
as the worst-case input, while the input-specific resources required by the original
program could potentially be much smaller.

Assuming the existence of succinct noninteractive arguments and circuit obfus-
cators that satisfy a notion of obfuscation called differing-input obfuscation, Boyle,
Chung, and Pass [BCP14] and Ananth et al. [AJS17] show how to construct Turing
machine obfuscators---namely, obfuscators that take a Turing machine as input and
produce an obfuscated Turing machine whose runtime and space requirements per
input, as well as their size, are proportional to those of the input machine (up to a
polynomial factor in the security parameter). However, differing-input obfuscation is
a significantly stronger security requirement that iO; in fact some strong variants of
differing-input obfuscation are believed to be impossible [GGHW13].

Furthermore, while preferable to circuits in terms of succinct representation and
input-specific usage of resources, Turing machines still do not achieve the full gains
of RAM programs, which for some tasks may be much faster due to their ability to
randomly access memory. To apply any of the above obfuscators to a RAM program,
one has to first translate the program to a circuit or a Turing machine, which loses
these advantages.

1.1. This work: iO for RAMs through succinct randomized encodings.
In this work, we show how to directly obfuscate RAM programs with bounded input
and space. That is, our obfuscator \scrO takes as input a RAM program \Pi , input length
n, and memory bound s. It outputs another RAM program \scrO (\Pi) such that \scrO (\Pi)
has the same functionality as that of \Pi on all inputs x of length up to n and such
that the execution of \Pi on x uses space at most s. The running time of \scrO (\Pi) per
each specific input is the same as that of \Pi , and its space usage is proportional to
s (all up to polynomial factors in the security parameter and input bound n). The
running time of the obfuscator, and in particular the size of the obfuscated \scrO (\Pi), is
quasi-linear in that the description \Pi and the space bound s.

We show security of the construction assuming one-way functions and iO that
are subexponentially secure. These assumptions are somewhat better understood and
``more straightforward"" than differing-input obfuscation. In particular, it is easier to
demonstrate that an obfuscator is not subexponentially secure iO (simply demon-
strate a pair of programs along with subexponential-time distinguisher) than it is to
demonstrate that it is not a differing-input obfuscator.

The central piece of our construction and conceptual heart of this paper is the
notion of a succinct randomized encoding. We then extend these schemes to full-
fledged obfuscators in a relatively straightforward way. We thus start by reviewing

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1125

randomized encodings and its history next.

Garbling and randomized encodings. Garbling [Yao86, Rog91] and random-
ized encoding [IK00] schemes are a pillar of cryptographic protocol design, with nu-
merous applications such as secure two-party and multiparty computation, verifiable
delegation schemes, and one-time programs, to name a few (see [Rog91, App11b] for
a survey).

Such schemes partition the process of evaluating a function f on input x into
two stages: a randomized encoding (or, garbling) stage, which results in an encoded

version \widehat f(x) of the computation, and a decoding stage, where the output f(x) can be

recovered from the encoding \widehat f(x). The key property shared by all such schemes is that

the encoding \widehat f(x) should hide all information regarding the computation except for
the output f(x). This privacy requirement is naturally captured by an efficient sim-
ulator \sansS \sansi \sansm (f(x)), which, given only the output f(x), produces a simulated encoding

(perfectly, statistically, or computationally) indistinguishable from \widehat f(x).
Whereas privacy alone could be trivially achieved by having the encoding be

f(x), garbling and randomized encoding schemes feature additional properties that (in
conjunction with privacy) turn them into a powerful tool. These additional properties
may vary. The seminal work of Yao on garbled circuits [Yao86] leverages the ability
to encode (f, x) with low input-locality (each output bit of the encoding depends on
at most one bit of x). Another property of Yao's solution often used in applications
is that encoding the input can be done separately from encoding the function and
independently of the function's complexity (this is sometimes known as separability
or decomposability).1 The work of Ishai, Kushilevitz, and Applebaum on randomized
encodings [IK00, IK02, AIK04, AIK06] asks more generally, how much simpler can
the encoding procedure be compared to direct computation of f(x)?

Capturing what it means to ``simplify the computation of f(x)"" may take dif-
ferent forms according to the complexity measure of interest. The work of Ishai,

Kushilevitz, and Applebaum focuses on computing the randomized encoding \widehat f(x)
with lower parallel-time complexity than required for computing the original function
f . This line of work has been extremely fruitful both in terms of constructions and
applications (again, see [App11b] for a survey).

Succinct randomized encodings. In this work, we address another natural

complexity measure: the time required to compute \widehat f(x). Specifically, we require that,

given the description of f and the input x, we can compute the encoding \widehat f(x) in time\widehat T that is significantly smaller than the time T required to compute f(x). Decoding
time, in contrast, would be as large as T , with some tolerable overhead. For this goal
to be achievable, f has to be given in some succinct representation that is smaller
than T , and cannot be given by, say, a size-T circuit. With the goal of obtaining
obfuscation for RAM machines, we shall focus on the case that f is represented by
a RAM machine \Pi . As a step toward this, we shall also consider the simpler case of
Turing machines, which will already capture much of the challenge.

We will also be interested in the complexity of the decoding process. Ideally,
this decoding should not be much more complicated than the original, nonencoded
computation. In particular, decoding the result of a given RAM computation should

1Accordingly, the term ``garbling"" is usually identified with schemes that have such separate input
encoding, whereas ``randomized encodings"" refer to schemes where the input is encoded together with
the function.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1126 BITANSKY ET AL.

amount to executing this computation (in the RAM model).

The existence of succinct randomized encodings. Under commonly be-
lieved complexity-theoretic assumptions, perfectly private randomized encodings for
all of P are unlikely to be computable in fixed polynomial time.2 In contrast, restrict-
ing our attention to privacy against computationally bounded adversaries, no lower
bounds or barriers are known. Accordingly, we will restrict our attention to computa-
tional privacy---a simulated encoding \sansS \sansi \sansm (f(x)) is computationally indistinguishable

from a real encoding \widehat f(x).
We note that iO for RAMs (respectively, Turing machines) would directly imply

corresponding succinct randomized encodings.

Our contributions. We first show that subexponentially secure succinct ran-
domized encodings for RAMs imply iO for RAMs with similar complexity parameters.

Informal Theorem 1.1 (iO for RAMs from succinct randomized encodings).
Assume there exist one-way functions, (nonsuccinct) iO for \sansP /\sansp \sanso \sansl \sansy , and succinct
randomized encodings for RAM programs, all subexponentially secure. Then there
exists iO for RAM programs with inputs bounded by n. The time to obfuscate a
program \Pi and the size of the obfuscated program are proportional to the time of
encoding (\Pi , x) for inputs x of length n. The time and space requirements of the
obfuscated program, per input, are proportional to those of the decoding process.

The theorem is in a sense the succinct analog of previous bootstrapping theorems
[App14, CLTV15] that show how (nonsuccinct) randomized encodings and pseudo-
random functions in \sansN \sansC 1, together with obfuscation for \sansN \sansC 1 circuits, imply obfus-
cation for \sansP /\sansp \sanso \sansl \sansy . Here, through succinct randomized encodings, we reduce iO for
arbitrarily long computations to iO for circuits of fixed polynomial size. Indeed, the
proof of this theorem follows closely ideas from there. We note that this theorem is
rather general; in particular it is used by [KLW15, CH16, CCC+16] to obtain fully
succinct iO for Turing and RAM machines.

Our core technical contribution consists of two succinct randomized encoding
schemes for RAM programs. Our schemes rely on (nonsuccinct) iO for circuits and
incur encoding overhead that is polynomial in s(n), the worst-case space requirement
of the input machine, but is essentially independent of its time complexity. Decoding
amounts to a RAM computation with the same complexity as the original computa-
tion, up to polynomial factors in the security parameter.

Informal Theorem 1.2 (succinct randomized encodings from circuit iO). As-
sume the existence of iO for \sansP /\sansp \sanso \sansl \sansy and one-way functions. Then there exists a
succinct randomized encoding for all polynomial-time RAM \Pi with bounded space
complexity s(n). The time to encode is quasi-linear in the size of \Pi , input and output

lengths n,m, and the space bound s(n). The time to decode \widehat \Pi (x) is polynomial in the
size of \Pi , and quasi-linear in s(n) and the time T for evaluating \Pi (x).

2Specifically, it can be shown that, for a language \scrL , recognized by a given T (n)-time machine
\Pi , succinct randomized encodings with perfect-privacy computable in time t(n) \ll T (n) would
imply that \scrL has 2-message interactive proofs with an O(t(n))-time verifier, which already suggests
that t(n) should at least depend on the space (or depth) of the computation. Furthermore, under
commonly believed derandomization assumptions (used to show that \sansA \sansM \subseteq \sansN \sansP [Kv99, MV99]), the
above would imply that \scrL can be nondeterministically decided in time poly(t(n)) for some fixed
polynomial poly. Thus, any speedup in encoding would imply related speedup by nondeterminism,
whereas significant speedup is believed to be unlikely.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1127

We give two alternative proofs of Theorem 1.2, by way of two quite different ran-
domized encoding schemes. The first scheme starts with a relatively simple succinct
randomized encoding scheme for Turing machines, based on Yao's garbled circuit
method. The idea is to avoid direct garbling of the machine, and instead obfuscate
the circuit that generates the garbled machine. The evaluator then runs this circuit,
obtains the garbled machine, and then runs it to obtain the desired output value.
Here we use the strong locality properties of Yao's garbling scheme to make sure that
the obfuscated garbling circuit is small. We then show how to extend it to RAMs
based on any (nonsuccinct) RAM garbling scheme [LO13, GHL+14, GLOS15]. An
additional feature of this construction is the following. Assuming puncturable pseudo-
random functions in \sansN \sansC 1 (known based on various hardness assumptions, such as the
hardness of the learning with errors problem [BLMR13]), and restricting our attention
to any class of computations with a-priori-bounded running time t(n), it is enough to
assume existence of nonsuccinct iO for circuits in \sansN \sansC 1 with input size O(log(t(n))).
This appears to be a qualitatively weaker assumption than iO for arbitrary circuits. In
particular, it is a poly(t(n))-time falsifiable assumption in the terminology of [Nao03].

The second scheme takes a more direct approach. Rather than obfuscating the
circuit that garbles the machine, we directly obfuscate the circuit that implements the
basic computational step of the machine itself. That is, we obfuscate the circuit that
reads the contents of the appropriate cell on the machine's tape, writes a new value
to the cell, moves the head to a new tape location, and updates the machine's state
according to its transition function. To make sure that the computation remains
meaningful and that the evaluator does not learn the intermediate values that the
machine writes on its tape, we provide a mechanism for the obfuscated machine
to encrypt and authenticate the contents of the tape. Also here we first describe
the scheme for the simpler case of Turing machines. We then extend the scheme
to the case of RAM machines; here we also provide a mechanism for hiding the
pattern of memory accesses of the machine. This construction approach is more ``low
level"" and more technically involved than the first one. Still its directness provides
some additional power; in particular it was extended in subsequent work to obtain
fully succinct randomized encoding of Turing machines, RAM machines, and RAM
machines with persistent memory [KLW15, CH16, CCC+16, CCHR15, ACC+15] (see
further details in section 4.4).

We note that both constructions also satisfy the more general promise of a garbling
scheme where encodings of the input and of the program can be done separately. More
detailed overviews of the two constructions can be found within.

Dependence on the output length. As stated above, the size of our basic
randomized encodings (or iO) grows with the output of the underlying computation.
Such dependence can be easily shown to be inherent as long as we require simulation-
based security (using a standard incompressibility argument). Nevertheless, we show
that this dependence can be removed if we settle for a weaker indistinguishability-
based guarantee saying that randomized encodings of two computations leading to
the same output are indistinguishable.

1.2. Additional applications of succinct randomized encodings. We dem-
onstrate the power of succinct randomized encodings in several additional applica-
tions, some new, and some analogous to previous applications of randomized encod-
ings, but with new succinctness properties.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1128 BITANSKY ET AL.

Succinct functional encryption and reusable garbling. Recent advance-
ment in the study of obfuscation has brought with it a corresponding advancement
in functional encryption (FE). Today, (indistinguishability-based) functional encryp-
tion for all circuits can be constructed from iO [GGH+13, Wat14], or even from con-
crete (and efficiently falsifiable) assumptions on composite order multilinear graded-
encodings [GGHZ16]. For models of computation with succinct representations, we
may hope to have succinct FE, where a secret key \sanss \sansk \Pi , allowing us to decrypt \Pi (x)
from an encryption of x, can be computed faster than the running time of \Pi . However,
here the state of the art was similar to succinct randomized encodings, or succinct
iO, requiring essentially the same strong (nonfalsifiable) assumptions.

One can replace iO for circuits in the above FE constructions, with the succinct iO
from Theorem 1.1, and obtain FE where computing \sanss \sansk \Pi is comparable to (succinctly)
obfuscating \Pi . This, however, will require the same subexponential hardness of iO for
circuits. Based on existing nonsuccinct functional encryption schemes, we show that
succinct FE can be constructed without relying on subexponentially hard primitives.

As observed in previous work [GHRW14, CIJ+13, GKP+13], FE (even indis-
tinguishability based) directly implies an enhanced version of randomized encodings
known as reusable garbling. Here reusability means that an encoding consists of two
parts: The first part, \widehat \Pi , is independent of any specific input and depends only on the
machine \Pi . \widehat \Pi can then be ``reused"" together with the second part, \widehat x, encoding any
input x. We get succinct reusable garbling for space-bounded computations: encoding
\Pi depends on the space, but is done once; subsequent input encodings depend only
on the input size n and not on space.

Publicly verifiable delegation and succinct NIZKs. Succinct randomized
encodings directly imply a one-round delegation scheme for polynomial-time com-
putations with bounded space complexity. A main feature of the scheme is public-
verifiability, meaning that given the verifier's message \sigma anyone can verify the proof
\pi from the prover, without requiring any secret verification state. Previous schemes
based on standard assumptions could only achieve this goal in an amortized sense
(allowing an expensive preprocessing step) via reusable garbled circuits or RAMs
[GKP+13, GHRW14]. Other schemes relied on strong knowledge assumptions [BCC+17,
BCCT12, DFH12, BCCT13] or proven secure only in the random oracle model
[Mic00].3 Another prominent feature of the scheme is that it guarantees input privacy
for the verifier. While this can generically be guaranteed with fully homomorphic en-
cryption, the generic solution requires the prover to convert the computation into a
circuit, which could incur quadratic blowup; in our solution, the complexity of the
prover corresponds to decoding complexity, which could be made quasi-linear. See
further discussion below.

The delegation scheme is based only on randomized encodings (and one-way func-
tions) and thus, as explained above, can be based only on polynomial assumptions.
Assuming also iO, we can make the verifier's message reusable; namely, the verifier
can publish his message \sigma once and for all, and then get noninteractive proofs for
multiple computations. Our transformation for reusing the verifier's message is, in
fact, a generic one that can be applied to any delegation scheme, including privately
verifiable schemes (e.g., [KRR14]). For privately verifiable schemes, the transforma-
tion has an additional advantage: it removes what is known as the verifier rejection
problem; specifically, in the transformed scheme, soundness holds even against provers

3Notably, in the setting of private-verification, Kalai, Raz, and Rothblum give a solution based
on the subexponential learning with errors assumption [KRR14].

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1129

with a verification oracle.
The delegation schemes mentioned above are restricted to P. Plugging our suc-

cinct iO into the perfect noninteractive zero-knowledge (NIZK) arguments of Sahai
andWaters [SW14] directly yields a construction of perfect succinct NIZK for bounded
space \sansN \sansP from iO for \sansP /\sansp \sanso \sansl \sansy and one-way functions that are both sub-exponentially
secure. The NIZK has a succinct common reference string whose size is independent
of the time required to verify the \sansN \sansP statement to be proven, and depends only on
the space and on the size of the input and witness (verification time depends only on
the length of the statement, as in [SW14]).

Other applications. We reexamine previous applications of (nonsuccinct) ran-
domized encodings and note the resulting succinctness features.

One application is to multiparty computation [IK00, IK02], where we can reduce
the communication overhead from depending on the circuit size required to compute
a multiparty function f(x1, . . . , xm) to depending on the space required to compute

f , which can be much smaller. (In this solution, the parties simply compute \widehat f instead
of f itself.) By now, beyond its conceptual simplicity, this solution does not give
any advantage over recent one-round solutions based on multikey fully homomorphic
encryption [Gen09, AJL+12, LTV12, GGHR14, MW16, DHRW16].

Another application is the amplification of key-dependent message (KDM) secu-
rity. In KDM encryption schemes, semantic security needs to hold, even when the
adversary obtains encryptions of functions of the secret key taken from a certain class
\scrF . Applebaum [App11a] shows that any scheme that is KDM secure with respect to
some class of functions \scrF can be made resilient to a bigger class \scrF \prime \supseteq \scrF if functions
in \scrF \prime can be randomly encoded in \scrF . Our succinct randomized encodings will es-
sentially imply that KDM security for circuits of any fixed polynomial size s(\cdot) (such
as the scheme of [BHHI10]) can be amplified to KDM security for functions that can
be computed by programs with space S \ll s(n), but could potentially have larger
running time.

Obfuscation with quasi-polynomial blowup and a new bootstrapping
theorem. As an application of our technical approach (rather than a direct applica-
tion of our succinct randomized encodings), we show a new bootstrapping theorem for
iO for circuits. This transformation shows that obfuscation for an arbitrary circuit
C can be reduced to obfuscation of O(| C|) circuits whose size depends only on the
security parameter and input length (the circuits themselves are also simple and are
dominated by a constant number of applications of a pseudorandom function). In

particular, the size of the resulting obfuscated C is \widetilde O(| C|).

1.3. Subsequent work. In a beautiful subsequent work, Koppula, Lewko, and
Waters [KLW15] construct fully succinct randomized encodings for Turing machines
from iO. They overcome the ``space barrier"" by introducing a clever ``selective en-
forcement mechanism."" This was extended by Canetti and Holmgren [CH16] and
independently by Chen et al. [CCC+16] to produce a fully succinct randomized en-
coding for RAM machines. Canetti et al. [CCHR15] and independently Ananth et al.
[ACC+15] subsequently extended this scheme to provide security even when RAM
machines to be garbled are chosen adaptively after an initial database is encoded.
Ananth, Jain, and Sahai [AJS15] gave a direct construction of succinct iO for Turing
machines that avoids invoking Theorem 1.1 and achieves a constant multiplicative
size overhead.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1130 BITANSKY ET AL.

1.4. Road map. Most of the remainder of the paper is dedicated to our con-
structions of succinct randomized encodings, covered in sections 3 and 4. More de-
tailed technical overviews of the approaches can be found in the beginning of the
respective sections. Section 5 covers the different applications of succinct randomized
encodings. The required background and preliminaries are given in section 2.

2. Preliminaries. Let \BbbN denote the set of positive integers, and let [n] denote
the set \{ 1, 2, . . . , n\} . We write PPT as shorthand for probabilistic polynomial time
Turing machines. The term negligible is used for denoting functions that are (asymp-
totically) smaller than any inverse polynomial. More precisely, a function \nu : \BbbN \rightarrow \BbbR
is called negligible if, for every constant c > 0 and all sufficiently large n, it holds that
\nu (n) < n - c.

2.1. Models of computation. In this work we will consider different models
of computation. Below we define formally different classes of algorithms; we will
start by defining classes of deterministic algorithms of fixed polynomial size, and then
move to define classes of randomized algorithms and classes of algorithms of arbitrary
polynomial size.

Classes of deterministic algorithms of fixed polynomial size.

Polynomial-time circuits. For every polynomial D, the class \sansC \sansI \sansR [D] = \{ \scrC \lambda \} in-
cludes all deterministic circuits of size at most D(\lambda).

\sansN \sansC 1 circuits. For every constant c and polynomial D, the class \sansN \sansC 1
c [D] = \{ \scrC \lambda \} of

polynomial-sized circuits of depth c log \lambda includes all deterministic circuits of
size D(\lambda) and depth at most c log \lambda .

Exponential-time Turing machines. We consider a canonical representation of
Turing machines M = (M \prime , n,m, S, T), where the bit length of n,m, S, T is \lambda
and n,m \leq S \leq T ; M takes input x of length n, runs M \prime (x) using S space for
at most T steps, and finally outputs the first m bits of the output of M \prime . (If
M \prime (x) does not halt in time T or if M \prime requires more than S space, then M
outputs \bot .) In other words, given the description M of a Turing machine in
this representation, one can efficiently read off its bound parameters denoted
by (M.n,M.m,M.S,M.T).
Now we define the class of exponential-time Turing machines. For every
polynomial D, the class \sansT \sansM [D] = \{ \scrM \lambda \} includes all deterministic Turing
machines \Pi M containing the canonical representation of a Turing machine M
of size D(\lambda); \Pi M (x, t) takes input x and t of length M.n and \lambda , respectively,
runs M(x) for t steps, and finally outputs what M returns.
Remark. Note that machine \Pi M (x, t) on any input terminates in t < 2\lambda ,
and hence its output is well-defined. Furthermore, we say that two Turing
machines M1 and M2 have the same functionality if and only if they produce
identical outputs and run for the same number of steps for every input x.
This property is utilized when defining and constructing indistinguishability
obfuscation for Turing machines, as in previous work [BCP14].

Exponential-time RAMs. We consider a canonical representation of RAM ma-
chines R = (R\prime , n,m, S, T) identical to the canonical representation of Turing
machines above.
For every polynomial D, the class \sansR \sansA \sansM [D] = \{ \scrR \lambda \} of polynomial-sized RAM
machines include all deterministic RAM machines \Pi R, defined as \Pi M above
for Turning machines, except that the Turing machine M is replaced with a
RAM machine R.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1131

Classes of randomized algorithms. The above-defined classes contain only
deterministic algorithms. We define analogously these classes for their corresponding
randomized algorithms. Letting \scrX [D] be any class defined above, we denote by \sansr \scrX [D]
the corresponding class of randomized algorithms. For example, \sansr \sansC \sansI \sansR [D] denotes all
randomized circuits of sizeD(\lambda), and \sansr \sansT \sansM [D] denotes all randomized Turing machines
of size D(\lambda).

Classes of (arbitrary) polynomial-sized algorithms. The above-defined
classes consist of algorithms of a fixed polynomial D description size. We define
corresponding classes of arbitrary polynomial size. Letting \scrX [D] be any class defined
above, we simply denote by \scrX = \cup polyD\scrX [D] the corresponding class of algorithms
of arbitrary polynomial size. For instance, \sansC \sansI \sansR and \sansr \sansC \sansI \sansR denotes all deterministic and
randomized polynomial-sized circuits, and \sansT \sansM denotes all polynomial-sized Turing
machines.

In the rest of the paper, when we write a family of algorithms \{ AL\lambda \} \in \scrX , we
mean \{ AL\lambda \} \in \scrX [D] for some polynomial D. This means the size of the family of
algorithms is bounded by some polynomial. Below, for convenience of notation, when
\scrX is a class of algorithms of arbitrary polynomial size, we write AL \in \scrX \lambda as shorthand
for \{ AL\lambda \} \in \{ \scrX \lambda \} .

Classes of well-formed algorithms. In the rest of the preliminary, we de-
fine various cryptographic primitives. In order to avoid repeating the definitions for
different classes of machines, we provide definitions for general classes of algorithms
\{ \scrA \scrL \lambda \} that can be instantiated with specific classes defined above. In particular,
we will work with classes of algorithms that are well formed , satisfying the following
properties:

1. For every AL \in \scrA \scrL \lambda , and input x, AL on input x terminates in 2\lambda steps.
Note that this also implies that AL has bounded input and output lengths.

2. The size of every ensemble of algorithms \{ AL\lambda \} \in \{ \scrA \scrL \lambda \} is bounded by some
polynomial D in \lambda .

3. Given the description of an algorithm AL \in \scrA \scrL \lambda , one can efficiently read off
the bound parameters AL.n,AL.m,AL.S,AL.T .

All of the above-defined algorithm classes are well formed. Below, we denote by
TAL(x) the running time of AL on input x, and by TAL the worst-case running
time of AL. Note that well-formed algorithm classes are not necessarily efficient; for
instance, the class of polynomial-sized Turing machines \sansT \sansM contain Turing machines
that run for exponential time. In order to define cryptographic primitives for only
polynomial-time algorithms, we will use the notation \sansA \sansL \sansG T =

\bigl\{
\scrA \scrL T

\lambda

\bigr\}
to denote the

class of algorithms in \sansA \sansL \sansG = \{ \scrA \scrL \lambda \} that run in time T (\lambda) (in particular, these with
AL\lambda .T < T (\lambda)).

In the rest of the paper, all algorithm classes are well formed.

2.2. Garbling schemes. In this section, we define garbling schemes, following
in most part the definitions in [BHR12b]. As explained in the introduction, the
main difference between garbling schemes and randomized encodings is that garbling
schemes allow the input to be encoded separately from the program. This slight
strengthening is not needed in our applications, which are described in section 5.

Definition 2.1 (garbling scheme). A garbling scheme for a class of (well-formed)
deterministic algorithms \{ \scrA \scrL \lambda \} \lambda \in \BbbN is a tuple \scrG \scrS = (\sansG \sansa \sansr \sansb ,\sansE \sansn \sansc \sanso \sansd \sanse ,\sansE \sansv \sansa \sansl) satisfying the
following properties:
Syntax: For every \lambda \in \BbbN , AL \in \scrA \scrL \lambda , and input x,

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1132 BITANSKY ET AL.

\bullet \sansG \sansa \sansr \sansb is probabilistic and on input (1\lambda , AL) outputs a pair (\widehat AL,key);4

\bullet \sansE \sansn \sansc \sanso \sansd \sanse is deterministic and on input (key, x) outputs \^x;

\bullet \sansE \sansv \sansa \sansl is deterministic and on input (\widehat AL, \^x) produced by \sansG \sansa \sansr \sansb ,\sansE \sansn \sansc \sanso \sansd \sanse out-
puts y.

Correctness: For every polynomial T and every family of algorithms \{ AL\lambda \} \in \bigl\{
\scrA \scrL T

\lambda

\bigr\}
and sequence of inputs \{ x\lambda \} , there exists a negligible function \mu ,

such that, for every \lambda \in \BbbN ,

Pr[\sansE \sansv \sansa \sansl (\widehat AL, \^x) \not = AL\lambda (x\lambda)] \leq \mu (\lambda)

in the probability space defined by sampling

(\widehat AL,key)
\$\leftarrow \sansG \sansa \sansr \sansb (1\lambda , AL\lambda),

\^x
\$\leftarrow \sansE \sansn \sansc \sanso \sansd \sanse (key, x\lambda).

Definition 2.2 (security of a garbling scheme). We say that a garbling scheme
\scrG \scrS for a class of deterministic algorithms \{ \scrA \scrL \lambda \} \lambda \in \BbbN is secure if the following holds.

There is a uniform machine \sansS \sansi \sansm such that for every nonuniform \sansP \sansP \sansT distinguisher

\scrD , polynomial T \prime , sequence of algorithms \{ AL\lambda \} \in \{ \scrA \scrL T \prime

\lambda \} , and sequence \{ x\lambda \} of
inputs where x\lambda \in \{ 0, 1\} (AL\lambda).n, there exists a negligible function \mu , such that, for
every \lambda \in \BbbN the following holds:\bigm| \bigm| Pr[\scrD (\widehat AL, \^x) = 1] - Pr[\scrD (\widetilde AL, \~x) = 1]

\bigm| \bigm| \leq \mu (\lambda)

in the probability space defined by sampling

(\widehat AL,key)
\$\leftarrow \sansG \sansa \sansr \sansb (1\lambda , AL\lambda),

\^x
\$\leftarrow \sansE \sansn \sansc \sanso \sansd \sanse (key, x),

(\widetilde AL, \~x)
\$\leftarrow \sansS \sansi \sansm (1\lambda , | x| , | AL\lambda | , (n,m, S, T), TAL\lambda

(x), AL\lambda (x)),

where n, m, S, and T are, respectively, shorthand for AL.n, AL.m, AL.S, and AL.T ,
and \sansS \sansi \sansm runs in time poly(\lambda , T). The function \mu is called the distinguishing gap.

Furthermore, we say that \scrG \scrS is \delta -indistinguishable if the above security condition
holds with a distinguishing gap \mu bounded by \delta . Especially, \scrG \scrS is subexponentially
indistinguishable if \mu (\lambda) is bounded by 2 - \lambda \varepsilon

for a constant \varepsilon .

We note that the subexponentially indistinguishability defined above is weaker
than usual subexponential hardness assumptions in that the distinguishing gap only
need to be small for \sansP \sansP \sansT distinguisher, rather than subexponential time distinguishes.

We remark that in the above definition simulator \sansS \sansi \sansm receives many inputs, mean-
ing that a garbled pair \widehat AL, \^x reveals nothing but the following: the output AL(x),
instance running time TAL(x), input length | x| , and machine size | AL| , together with
various parameters (n,m, S, T) of AL. We note that the leakage of the instance
running time is necessary in order to achieve instance-based efficiency (see efficiency
guarantees below). The leakage of | AL| can be avoided by padding machines if an
upper bound on their size is known. The leakage of parameters (n,m, S, T) can be
avoided by setting them to 2\lambda ; see Remark 2.14 for more details. In particular, when
the algorithms are circuits, inputs to the simulation algorithm can be simplified to
(1\lambda , | x| , | C| , AL(x)), since all bound parameters n,m, S, T can be set to 2\lambda .

4Note that as the algorithm class is well formed, \sansG \sansa \sansr \sansb implicitly has all bound parameters of AL.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1133

Efficiency guarantees. We proceed to describe the efficiency requirements for
garbling schemes. When considering only circuit classes, all algorithms \sansG \sansa \sansr \sansb , \sansE \sansn \sansc \sanso \sansd \sanse ,
\sansE \sansv \sansa \sansl should be polynomial-time machines; that is, the complexity of \sansG \sansa \sansr \sansb ,\sansE \sansv \sansa \sansl scales
with the size of the circuit | C| , and that of \sansE \sansn \sansc \sanso \sansd \sanse with the input length | x| . However,
when considering general algorithm classes, since the description size | AL| could be
much smaller than the running time AL.T , or even other parameters AL.S, AL.n,
AL.m, there could be different variants of efficiency guarantees, depending on what
parameters the complexity of the algorithms depends on. Below we define different
variants.

Definition 2.3 (different levels of efficiency of garbling schemes). We say that a
garbling scheme \scrG \scrS for a class of deterministic algorithms \{ \scrA \scrL \lambda \} \lambda \in \BbbN has succinctness
or I/O- / space- / time-dependent complexity if the following holds.
Optimal efficiency: There exist universal polynomials p\sansG \sansa \sansr \sansb , p\sansE \sansn \sansc \sanso \sansd \sanse , and p\sansE \sansv \sansa \sansl such

that for every \lambda \in \BbbN , AL \in \scrA \scrL \lambda , and input x \in \{ 0, 1\} AL.n

\bullet (\widehat AL,key)
\$\leftarrow \sansG \sansa \sansr \sansb (1\lambda , AL) runs in time p\sansG \sansa \sansr \sansb (\lambda , | AL| , AL.m);5

\bullet \^x = \sansE \sansn \sansc \sanso \sansd \sanse (key, x) runs in time p\sansE \sansn \sansc \sanso \sansd \sanse (\lambda , | x| , AL.m); and

\bullet y = \sansE \sansv \sansa \sansl (\widehat AL, \^x) runs in time p\sansE \sansv \sansa \sansl (\lambda , | AL| , | x| , AL.m) \times TAL(x), with
overwhelming probability over the random coins of \sansG \sansa \sansr \sansb . We note that
\sansE \sansv \sansa \sansl has instance-based efficiency.

I/O-dependent complexity: A relaxed version of optimal efficiency, in which the
polynomials p\sansG \sansa \sansr \sansb , p\sansE \sansn \sansc \sanso \sansd \sanse , and p\sansE \sansv \sansa \sansl are additionally functions of AL.n and
AL.m.

Space-dependent complexity: A relaxed version of optimal efficiency, in which
the polynomials p\sansG \sansa \sansr \sansb , p\sansE \sansn \sansc \sanso \sansd \sanse , and p\sansE \sansv \sansa \sansl are additionally functions of AL.S.

Linear-time-dependent complexity: A relaxed version of optimal efficiency, in
which the polynomials p\sansG \sansa \sansr \sansb and p\sansE \sansn \sansc \sanso \sansd \sanse additionally depend (quasi-)linearly
on AL.T , and the running time of \sansE \sansv \sansa \sansl is bounded by AL.T \cdot p\sansE \sansv \sansa \sansl (\lambda , | AL| , | x|).

Furthermore, we say that the garbling scheme \scrG \scrS has succinct input encodings if the
encoding algorithm \sansE \sansn \sansc \sanso \sansd \sanse (key, x) runs in time p\sansE \sansn \sansc \sanso \sansd \sanse (1

\lambda , | x|).
We note that the above four succinctness requirements are ordered from the

strongest one (optimal) to the weakest one (time-dependent). We say that a gar-
bling scheme is succinct if its complexity depends only polylogarithmically on the
time bound. Thus a scheme with space-dependent complexity is succinct for a class
of algorithms whose space usage is bounded by a fixed polynomial.

On output dependence. Note that in the optimal efficiency defined above, the
complexity of the algorithms depends on the length of their respective inputs and
the bound on their output lengths AL.m. We argue that this is necessary as long as
we require simulation-based security. This follows from a standard incompressibility
argument. Indeed, assume the existence of a pseudorandom generator G, and consider
the encoding of G and a random input seed s. We claim that the size of the garbled
function \widehat G or encoded input \widehat s must be as large as the output | G(s)| . Otherwise, the
efficient simulator can ``compress"" random strings, as it cannot distinguish the actual
output G(s) from a uniformly random string.

The dependence on the output size can be eliminated if we settle for a weaker
notion of indistinguishability security, meaning that the garbling of two (equal-length)

5Note that the running time of \sansG \sansa \sansr \sansb , and similarly other algorithms that takes AL as an input,
implicitly depends logarithmically on the time bound of AL, as its description contains the time
bound AL.T .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1134 BITANSKY ET AL.

program-input pairs (\widehat AL0, \widehat x0), (\widehat AL1, \widehat x1) are computationally indistinguishable, pro-
vided that AL0(x0) and AL1(x1) output the same result after a similar number of
steps. In section 5.2, we show how this can be achieved assuming iO.

Static vs. adaptive security. Throughout this work, we consider statically
secure garbling schemes; that is, the privacy guarantees hold only when the entire
computation (AL, x) to be garbled is chosen statically. In the literature, stronger
privacy guarantees have been considered [BHR12a, BHK13], allowing the input x to

be chosen maliciously and adaptively depending on the garbled \widehat AL.
We leave open the question of constructing succinct adaptively secure garbling

schemes.

Garbling schemes for specific algorithm classes. Next we instantiate the
above general definition of a garbling scheme with concrete classes.

Definition 2.4 (garbling scheme for polynomial-sized circuits). A triplet of al-
gorithms \scrG \scrS \sansC \sansI \sansR = (\sansG \sansa \sansr \sansb \sansC \sansI \sansR ,\sansE \sansn \sansc \sanso \sansd \sanse \sansC \sansI \sansR ,\sansE \sansv \sansa \sansl \sansC \sansI \sansR) is a garbling scheme (with linear-time-
dependent complexity) for polynomial-sized circuits if it is a garbling scheme for class
\sansC \sansI \sansR (with linear-time-dependent complexity).

We note that in the case of circuits, succinctness means the complexity scales
polynomially in | C| , whereas linear-time-dependency means the complexity scales
linearly with | C| .

Definition 2.5 (garbling schemes for polynomial-time Turing machines). A trip-
let \scrG \scrS \sansT \sansM = (\sansG \sansa \sansr \sansb \sansT \sansM ,\sansE \sansn \sansc \sanso \sansd \sanse \sansT \sansM ,\sansE \sansv \sansa \sansl \sansT \sansM) of algorithms is a garbling scheme with opti-
mal efficiency or I/O- / space- / linear-time-dependent complexity (and succinct input
encodings) for Turing machines if it is a garbling scheme for class \sansT \sansM , with the same
level of efficiency.

Different efficiency requirements impose qualitatively different restrictions. In this
work, we will construct a garbling scheme for Turing machines with space-dependent
complexity assuming indistinguishability obfuscation for circuits. The construction
of a garbling scheme from iO for Turing machines, sketched in the introduction, has
I/O-dependent complexity. On the other hand, we show that a scheme with I/O-
independent complexity is impossible; in particular, the complexity of the scheme
must scale with the bound on the output length.

Definition 2.6 (garbling schemes for polynomial-time RAM machines). A trip-
let \scrG \scrS \sansR \sansA \sansM = (\sansG \sansa \sansr \sansb \sansR \sansA \sansM ,\sansE \sansn \sansc \sanso \sansd \sanse \sansR \sansA \sansM ,\sansE \sansv \sansa \sansl \sansR \sansA \sansM) of algorithms is a garbling scheme for
polynomial-time RAM machines with optimal efficiency or I/O- / space- / linear-time-
dependent-complexity (and succinct input encodings) if it is a garbling scheme for class
\sansR \sansA \sansM , with the same level of efficiency.

Recently, the works [LO13, GHL+14, GLOS15] provided construction of a gar-
bling scheme for RAM machines with linear-time-dependent complexity and succinct
input encodings, assuming only one-way functions.

Garbled circuits with independent input encoding. In this work, we will
make use of a garbling scheme for circuits with a special structural property. In
Definition 2.4, the key key for garbling inputs is generated depending on the circuit
(by \sansG \sansa \sansr \sansb (1\lambda , C)); the special property of a circuit garbling scheme is that the key can
be generated depending only on the length of the input 1| x| and the security parameter,
which implies that the garbled inputs \^x can also be generated depending only on the
plain input x and the security parameter \lambda , independently of the circuit---we call this

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1135

independent input encoding.

Definition 2.7 (garbling scheme for circuits with independent input encoding).
A garbling scheme \scrG \scrS = (\sansG \sansa \sansr \sansb ,\sansE \sansn \sansc \sanso \sansd \sanse ,\sansE \sansv \sansa \sansl) for a deterministic circuit class \{ \scrC \lambda \} \lambda \in \BbbN
has independent input encoding if the following holds: For every \lambda \in \BbbN , and every
C \in \scrC \lambda

\bullet the algorithm \sansG \sansa \sansr \sansb on input (1\lambda , C) invokes first key
\$\leftarrow \sansG \sanse \sansn (1\lambda , 1| x|) and

then \widehat C \$\leftarrow \sansG \sansb (key, C), where \sansG \sanse \sansn and \sansG \sansb are all \sansP \sansP \sansT algorithms;
\bullet the security condition holds with respect to a simulator \sansS \sansi \sansm that on input (1\lambda ,
1| x| , 1| C| , TC(x), C(x)) outputs (\~x, \~C) that are obtained by sampling

(\~x, st)
\$\leftarrow \sansS \sansi \sansm .\sansG \sanse \sansn (1\lambda , | x|),

\~C
\$\leftarrow \sansS \sansi \sansm .\sansG \sansb ((1\lambda , | x| , | C| , C(x), st),

where \sansS \sansi \sansm .\sansG \sanse \sansn and \sansS \sansi \sansm .\sansG \sansb run in times poly(\lambda , | x|) and poly(\lambda , | C|), respec-
tively.

It is easy to check that many known circuit garbling schemes, in particular the
construction by Yao [Yao86], have independent input encoding.

Proposition 2.8. Assume the existence of one-way functions that are hard to
invert in \Gamma time. Then there exists a garbling scheme \scrG \scrS \sansC \sansI \sansR for polynomial-sized cir-
cuits with independent input encoding that is \Gamma - \varepsilon -indistinguishable for some constant
\varepsilon \in (0, 1).

2.3. Indistinguishability obfuscation. We recall the definition of indistin-
guishability obfuscation, adapting it to arbitrary classes of polynomial-time algo-
rithms. As before, we first define the syntax, correctness and security of iO and then
discuss different efficiency guarantees.

Definition 2.9 (indistinguishability obfuscator (i\scrO)). A uniform machine i\scrO is
an indistinguishability obfuscator for a class of deterministic algorithms \{ \scrA \scrL \lambda \} \lambda \in \BbbN if
the following conditions are satisfied.
Correctness: For all security parameters \lambda \in \BbbN , for all AL \in \scrA \scrL \lambda , and for all

input x, we have that

Pr[AL\prime \leftarrow i\scrO (1\lambda , AL) : AL\prime (x) = AL(x)] = 1.

Security: For every polynomial T , every nonuniform \sansP \sansP \sansT sampleable distribution
ensemble \scrD = \{ \scrD \lambda \} over

\bigl\{
\scrA \scrL T

\lambda \times \scrA \scrL
T
\lambda \times \{ 0, 1\} poly(\lambda)

\bigr\}
, and adversary \scrA ,

the following hold:

If when sampling (AL1, AL2, z)
\$\leftarrow \scrD (1\lambda), it holds with probability 1 that

\forall x,AL1(x) = AL2(x),
TAL1

(x) = TAL2
(x),

and\bigl(
| AL1| , (AL1).n, (AL1).m, (AL1).S

\bigr)
=

\bigl(
| AL2| , (AL2).n, (AL2).m, (AL2).S

\bigr)
,

then \bigm| \bigm| \bigm| Pr \bigl[\scrA (AL\prime
1, z) = 1

\bigr]
 - Pr

\bigl[
\scrA (AL\prime

2, z) = 1
\bigr] \bigm| \bigm| \bigm| \leq \mu (\lambda)

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1136 BITANSKY ET AL.

in the probability space defined by sampling

(AL1, AL2, z)
\$\leftarrow \scrD (1\lambda),

AL\prime
1

\$\leftarrow i\scrO (1\lambda , AL1),

AL\prime
2

\$\leftarrow i\scrO (1\lambda , AL2),

where \mu is called the distinguishing gap for \scrD and \scrA .
Furthermore, we say that i\scrO is \delta -indistinguishable if the above security condition
holds with a distinguishing gap \mu bounded by \delta . We say that i\scrO is subexponentially
indistinguishable if \mu (\lambda) is bounded by 2 - \lambda \varepsilon

for a constant \varepsilon .

Note that in the security guarantee above, the distribution \scrD samples algorithms
AL1 and AL2 that have the same functionality and matching bound parameters.
This means that an obfuscated machine ``reveals"" the functionality (as desired) and
these bound parameters. We remark that the leakage of the latter is without loss of
generality: In the case of circuits, all bound parameters are set to 2\lambda . In the case of
other algorithm classes, say Turing and RAM machines, if an iO scheme must ensure
that AL.S or AL.T are not revealed, one can simply pad them to 2\lambda ; then the above
security definition automatically ensures privacy of that parameter. See Remark 2.14
for more details.

Definition 2.10 (different levels of efficiency of IO). We say that an indistin-
guishability obfuscator i\scrO of a class of algorithms \{ \scrA \scrL \lambda \} has optimal efficiency if
there is a universal polynomial p such that for every \lambda \in \BbbN and every AL \in \scrA \scrL \lambda ,
i\scrO (1\lambda , AL) runs in time p(\lambda , | AL|).

Additionally, we say i\scrO has input- / space- / linear-time- dependent complexity if
i\scrO (1\lambda , AL) runs in time poly(\lambda , | AL| , AL.n) / poly(\lambda , | AL| , AL.S) / poly(\lambda , | AL|)AL.T .

We note that, unlike the case of garbling schemes, the optimal efficiency of an
iO scheme does not need to depend on the length of the output. Loosely speak-
ing, this stems from the fact that indistinguishability-based security does not require
``programming"" outputs, which is the case in simulation-based security for garbling.

iO for specific algorithm classes. We recall the definition of iO for polynomial-
sized circuits, \sansN \sansC 1 [BGI+01], and give definitions of iO for polynomial-time Turing
machines [BCP14] and RAM machines with different efficiency guarantees.

Definition 2.11 (indistinguishability obfuscator for polynomial-sized circuits and
for \sansN \sansC 1). A uniform \sansP \sansP \sansT machine i\scrO \sansC \sansI \sansR (\cdot , \cdot) is an indistinguishability obfuscator for
polynomial-sized circuits if it is an indistinguishability obfuscator for \sansC \sansI \sansR with optimal
efficiency.

A uniform \sansP \sansP \sansT machine i\scrO \sansN \sansC 1(\cdot , \cdot , \cdot) is an indistinguishability obfuscator for \sansN \sansC 1

circuits if for all constants c \in \BbbN , i\scrO \sansN \sansC 1(c, \cdot , \cdot) is an indistinguishability obfuscator
for \sansN \sansC c with optimal efficiency.

Definition 2.12 (iO for Turing machines). A uniform machine i\scrO \sansT \sansM (\cdot , \cdot) is an
indistinguishability obfuscator for polynomial-time Turing machines, with optimal effi-
ciency or input- / space-dependent complexity, if it is an indistinguishability obfuscator
for the class \sansT \sansM with the same efficiency.

Recently, the works [BCP14, AJS17] gave constructions of iO for Turing ma-
chines6 with input-dependent complexity assuming fully homomorphic encryption

6Their works actually realize the stronger notion of differing-input, or extractability, obfuscation
for Turing machines.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1137

(FHE), differing-input obfuscation for circuits, and P-certificates [CLP13]; further-
more, the dependency on input length can be removed---leading to a scheme with opti-
mal efficiency---if assuming succinct noninteractive argument of knowledge (\scrS \scrN \scrA \scrR \scrK)
instead of P-certificates.

Definition 2.13 (iO for RAM machines). A uniform machine i\scrO \sansT \sansM (\cdot , \cdot) is an
indistinguishability obfuscator for polynomial-time RAM machines, with optimal effi-
ciency or linear-time-dependent complexity, if it is an indistinguishability obfuscator
for the class \sansR \sansA \sansM with the same efficiency.

Remark 2.14 (explicit vs. implicit bound parameters). In the above definitions
of garbling schemes and iO for general algorithms, we considered a canonical repre-
sentation of algorithms AL that gives information of various bound parameters of the
algorithm, specifically the size | AL| , bound on input and output lengths AL.n,AL.m,
space complexity AL.S, and time complexity AL.T . This representation allows us to
define, in a unified way, different garbling and iO schemes that depend on different
subsets of parameters. The following are some examples of such schemes:

\bullet The garbling and iO schemes for \sansT \sansM that we construct in section 3 and sub-
section 5.2 (from iO and subexp iO for circuits, respectively) have complexity
poly(| AL| , AL.S, log(AL.T)). (In particular, the size of the garbled Turing
machine and obfuscated Turing machine is of this order.)

\bullet The garbling scheme for \sansT \sansM (from iO for \sansT \sansM) sketched in the introduction
has complexity poly(| AL| , AL.n,AL.m, log(AL.T)).

\bullet The garbling scheme for \sansR \sansA \sansM from one-way functions by [LO13, GHL+14,
GLOS15] has complexity that scales polynomially in (| AL| , AL.n,AL.m) and
quasi-linearly in AL.T . This construction leads to an iO for \sansR \sansA \sansM (from
subexp iO for circuits) of the same complexity as in 5.2.

By using the canonical representation, our general definition allows the garbling
or iO scheme to depend on any subset of parameters flexibly. Naturally, if a scheme
depends on a subset of parameters, the resulting garbled or obfuscated machines
may ``leak"" these parameters (in the three examples above, the size of the garbled
or obfuscated machines leaks the parameters they depend on); thus, the security
definitions must reflect this ``leakage"" correspondingly. The general security defi-
nitions, Definitions 2.2 and 2.9, capture this by allowing leakage of all parameters
| AL| , AL.n,AL.m,AL.S,AL.T . However, this seems to ``overshoot,"" since if a spe-
cific scheme does not depend on a particular parameter (e.g., AL.S), then this pa-
rameter should be kept private. This can be easily achieved by simply considering an
algorithm representation that always sets that parameter to 2\lambda (e.g. AL.S = 2\lambda).

2.4. Puncturable pseudorandom functions. We recall the definition of punc-
turable pseudorandom functions (PRF) from [SW14]. Since in this work we only use
puncturing at one point, the definition below is restricted to puncturing only at one
point instead of at polynomially many points.

Definition 2.15 (puncturable PRFs). A puncturable family of PRFs is given by
a triple of uniform PPT machines (\sansP \sansR \sansF .\sansG \sanse \sansn ,\sansP \sansR \sansF .\sansP \sansu \sansn \sansc ,\sansF) and a pair of computable
functions n(\cdot) and m(\cdot), satisfying the following conditions:
Correctness. For all outputs K of \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda), all points i \in \{ 0, 1\} n(\lambda), and

K(- i) = \sansP \sansR \sansF .\sansP \sansu \sansn \sansc (K, i), we have that \sansF (K(- i), x) = \sansF (K,x) for all x \not = i.
Pseudorandom at punctured point. For every \sansP \sansP \sansT adversary (\scrA 1,\scrA 2), there

is a negligible function \mu , such that in an experiment where \scrA 1(1
\lambda) out-

puts a point i \in \{ 0, 1\} n(\lambda) and a state \sigma , K
\$\leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda) and K(i) =

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1138 BITANSKY ET AL.

\sansP \sansR \sansF .\sansP \sansu \sansn \sansc (K, i), the following holds:\bigm| \bigm| Pr[\scrA 2(\sigma ,K(i), i,\sansF (K, i)) = 1] - Pr[\scrA 2(\sigma ,K(i), i, Um(\lambda)) = 1]
\bigm| \bigm| \leq \mu (\lambda),

where \mu is called the distinguishing gap for (\scrA 1,\scrA 2).
Furthermore, we say that the puncturable PRF is \delta -indistinguishable if the above
pseudorandom property holds with a distinguishing gap \mu bounded by \delta . In particular,
the puncturable PRF is subexponentially indistinguishable if \mu (\lambda) is bounded by 2 - \lambda \varepsilon

for a constant \varepsilon .

As observed by [BW13, BGI14, KPTZ13], the GGM construction of PRFs
[GGM86] from pseudorandom generators (PRGs) yields puncturable PRFs for any
(efficiently computable) n(\cdot) and m(\cdot). Furthermore, it is easy to see that if the PRG
underlying the GGM construction is subexponentially hard (and this can in turn
be built from subexponentially hard one-way funstions (OWFs)), then the resulting
puncturable PRF is subexponentially pseudorandom.

2.5. Injective noninteractive commitment. An injective noninteractive bit
commitment scheme is a pair of polynomials n(\cdot) and m(\cdot) and a polynomial-sized
ensemble of injective functions \sansC \sanso \sansm \sansm \sansi \sanst \lambda : \{ 0, 1\} \times \{ 0, 1\} n(\lambda) \rightarrow \{ 0, 1\} m(\lambda) such that
for all polynomial time adversaries \scrA ,

Pr

\biggl[
\scrA (1\lambda ,\sansC \sanso \sansm \sansm \sansi \sanst \lambda (b; r)) = b

\bigm| \bigm| \bigm| \bigm| b\leftarrow \{ 0, 1\}
r \leftarrow \{ 0, 1\} n(\lambda)

\biggr]
\leq 1

2
+ negl(\lambda).

The scheme is said to be subexponentially secure if the negl(\lambda) above can in fact be
replaced by 2 - \lambda \epsilon

for some constant \epsilon > 0.
We can construct a (subexponentially secure) injective noninteractive commit-

ment scheme given a (subexponentially secure) injective one-way function

f : \{ 0, 1\} n
\prime (\lambda) \rightarrow \{ 0, 1\} m

\prime (\lambda),

and we give the construction here without proof. Let h be a hard-core bit of f (note
that the standard construction of a one-way function with a hard-core bit preserves
injectivity). Then define n(\lambda) = n\prime (\lambda), m(\lambda) = m\prime (\lambda) + 1, and

\sansC \sanso \sansm \sansm \sansi \sanst \lambda (b; r) = f(r)\| b\oplus h(r).

3. Succinct garbling via garbled circuits and garbled RAMs. In this
section (based on [BGL+15]) we first show a succinct garbling scheme for Turing
machines based on iO for circuits and Yao's garbled circuit method. We then show
how to extend it to RAMs based on circuit iO and any (nonsuccinct) RAM garbling
scheme.

3.1. Overview. We first provide an overview of our garbling scheme for the class
of Turing machines \sansT \sansM with space-dependent complexity. In particular, we show the
following theorem (formally proven in section 3.2).

Theorem 3.1. Assuming the existence of iO for circuits and one-way functions,
there exists a garbling scheme for \sansT \sansM with space-dependent complexity.

Toward this goal, we proceed in two steps: In the first step, we construct a non-
succinct garbling scheme for \sansT \sansM , which satisfies the correctness and security require-
ments of Definitions 2.1 and 2.2, except that the garbling and evaluation algorithms

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1139

can run in time polynomial in both the time and space complexity, M.T and M.S,
of the Turing machine being garbled, M (as well as the simulation algorithm); the
produced garbled Turing machine is of size in the same order. In contrast, the time
to compute the encoded input \widehat x depends on the length of the input x, but not on
the typically larger running time of M . This feature of ``independent input encoding""
is crucial for our construction. Another crucial property of the nonsuccinct garbling
scheme is that the garbled machine consists of many ``small garbled pieces"" that can
be generated separately. In the second step, we use iO to ``compress"" the size of the
garbled program by providing an obfuscated program that takes an index as input
and generates the ``garbled piece"" corresponding to that index. As a result, the fi-
nal garbled program (namely, the obfuscated program) is small (i.e., depends on the
space complexity M.S). It is only at evaluation time that the underlying nonsuccinct
garbled program is unraveled, by running the obfuscated program on every index, and
decoded.

Nonsuccinct garbling scheme. We outline the nonsuccinct garbling scheme
for Turing machines, based on any one-way function. A ``trivial"" approach toward
such garbling is to simply transform any polynomial-time Turing machine into a circuit
and then garble the circuit. While our construction in essence relies on this principle,
it will in fact invoke garbling for ``small"" fixed-size circuits. Concretely, we rely on
the existence of a circuit garbling scheme satisfying two additional properties. First,
we require that the shared string key, and thus also the input encoding, be generated
independently of the circuit being garbled (e.g., key is sampled at random and given
to both the input encoding and circuit garbling procedures). Second, we require
that encoded inputs can be simulated, given only the input size, whereas the garbled
program is simulated using the result M(x) of the computation (and the randomness
used to simulate the encoded input). We refer to such schemes as garbling schemes
with independent input encoding (Definition 2.7) and note that Yao's basic scheme
[Yao86] satisfies the two properties.

Our nonsuccinct garbling scheme now proceeds as follows. Let M be a Turing
machine with bounded space complexityM.S, running-timeM.T , and inputs of length
M.n. We construct a ``chain"" of M.T garbled circuits that evaluate M step by step.
More precisely, we first generate keys key1, . . . ,keyM.T for the M.T garbled circuits.
The jth garbled circuit (which is computed using key keyj) takes as input some state
of M and computes the next state (i.e., the state after one computation step); if the
next state is a final state, it returns the output generated by M ; otherwise it outputs
an encoding of this new state using the next key keyj+1. (Note that after M.T steps
we are guaranteed to get to a final state, and thus this process is well-defined.)

To encode the input, we simply encode the initial configuration of M , including
the input x, using key1. To evaluate the garbled program, we sequentially evaluate
each garbled circuit using the encodings generated in the previous one as inputs to
the next one, and so on until the output is generated.

Security of the nonsuccinct scheme. To show that this construction is a
secure (nonsuccinct) garbling scheme we need to exhibit a simulator that, given just
the output y = M(x) of the program M on input x and the number of steps t\ast taken
by M(x), can simulate the encoded input and program. (The reason we provide the
simulation with the number of steps t\ast is that we desire a garbling scheme with a
``per-instance efficiency""---that is, the evaluation time is polynomial in the actual
running time t\ast and not just the worst-case running time. To achieve such ``per-
instance efficiency"" requires leaking the running time, which is why the simulator

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1140 BITANSKY ET AL.

gets access to it.) Toward this goal, we start by simulating the t\ast th garbled circuit
with the output being set to y; this simulation generates a garbled program \~Mt\ast and

an encoded input \widetilde conft\ast - 1 (which are the simulated input keys).
We then iteratively, in descending order, simulate the jth garbled circuits \~Mj

with the output being set to \widetilde confj+1 generated in the previously simulated garbled
circuit. We finally simulate the remaining j > t\ast garbled circuits \~Mj with the output
being set to some arbitrary output in the range of the circuit (e.g., the output y).
The simulated encoded input is then \widetilde conf1 and the simulated garbled program is
(\~M1, . . . , \~MM.T).

7

To prove indistinguishability of the simulated garbling and the real garbling,
we consider a sequence of hybrid experiments H0, . . . ,HM.T , where in Hj the first j
garbled circuits are simulated, and the remainingM.T - j garbled circuits are honestly
generated. To ``stitch together"" the simulated circuits with the honestly generated

ones, the jth garbled circuit is simulated using as output an honest encoding \widehat confj of
the actual configuration confj of the Turing machine M after j steps.

It follows from the security of the garbling scheme that hybrids Hj and Hj+1 are
indistinguishable and thus also H0 (i.e., the real experiment) and HM.T .

Let us finally note a useful property of the above-mentioned simulation. Due to
the fact that we rely on a garbling scheme with independent input encoding, each
garbled circuit can in fact be independently simulated---recall that the independent
input encoding property guarantees that encoded inputs can be simulated without
knowledge of the circuit to be computed, and thus all simulated encoded inputs\widetilde conf1, . . . \widetilde confM.T can be generated in an initial step. Next, the garbled circuits can
be simulated in any order.

Succinct garbling scheme. We now show how to make this garbling scheme
succinct. The idea is simple: instead of providing the actual garbled circuits in the
clear, we provide an obfuscation of the randomized program that generates these
garbled circuits. More precisely, we provide an iO of a program Ms,s\prime (\cdot), where s and
s\prime are seeds for a PRF \sansF : Ms,s\prime (j), given a ``time step"" j \in [M.T], which generates
the jth garbled circuit in the nonsuccinct garbling of M using pseudorandom coins
generated by the PRF with seed s and s\prime . Specifically, it uses \sansF (s, j) and \sansF (s, j + 1)
as randomness to generate keyj and keyj+1 (recall that the functionality of the jth
circuit depends on keyj+1) and uses \sansF (s\prime , j) as randomness for garbling the jth circuit.

The succinct garbled program is then the obfuscated program \Lambda
\$\leftarrow i\scrO (Ms,s\prime),

and the encoding \^x of x remains the same as before, except that now it is generated
using pseudorandom coins \sansF (s, 1). Given such a garbled pair \Lambda and \^x, one can com-
pute the output by gradually generating the nonsuccinct garbled program, one garbled
circuit at a time, by computing \Lambda on every time step j and evaluating the produced
garbled circuit with \^x until the output is produced. (This way, the evaluation still
has ``per-instance efficiency."")

Security of the succinct scheme. Given that the new succinct garbled pro-
gram \Lambda produces ``pieces"" of the nonsuccinct garbled program, the natural idea for
simulating the succinct garbled program is to obfuscate a program that produces
``pieces"" of the simulated nonsuccinct garbled program. The above-mentioned ``inde-
pendent simulation"" property of the nonsuccinct garbling (following from independent
input encoding) enables us to fulfill this idea.

7This ``layered"" simulation strategy resembles that of Applebaum, Ishai, and Kushilevitz in the
context of arithmetic garbling [AIK11].

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1141

More precisely, given an output y and the running time t\ast of M(x), the simulator

outputs the obfuscation \widetilde \Lambda of a program \widetilde My,t\ast ,s,s\prime that, given input j, outputs a

simulated jth garbled circuit, using randomness \sansF (s, j+1) to generate \widetilde confj+1 as the
output, and \sansF (s, j) and \sansF (s\prime , j) as the extra randomness needed to simulate the input\widetilde confj and the garbled Mj .

8 The encoded input \~x is simulated as in the nonsuccinct
garbling scheme, but using pseudorandom coins \sansF (s, 1).

It is not hard to see that this simulation works if the obfuscation is virtually black-
box secure, as (nonsuccinct) garbling security guarantees that the entire truth tables

of the two programs Ms,s\prime and \widetilde My,t\ast ,s,s\prime are indistinguishable given an encoding of
x, when the hardwired PRF keys s, s\prime are chosen at random. Our goal, however, is to
show that iO suffices. Toward this goal, we consider a sequence of hybrid experiments

H \prime
0, . . . ,H

\prime
M.T with a corresponding sequence of obfuscated programs \widetilde Ms,s\prime

0 , . . . ,\widetilde Ms,s\prime

M.T

that ``morph"" gradually from the real M to the fully simulated \widetilde M. Specifically, the

program \widetilde Ms,s\prime

j obfuscated in H \prime
j produces a nonsuccinct hybrid garbled program as

in hybrid Hj in the proof of the nonsuccinct garbling scheme, except that pseudo-
random coins are used instead of truly random coins. That is, for the first j inputs,\widetilde Mj produces simulated garbled circuits, and for the rest of the inputs, it produces
honestly generated garbled circuits, having hardwired the true configuration confj+1.

To prove indistinguishability of any two consecutive hybrids H \prime
j and H \prime

j+1, we rely
on the punctured program technique of Sahai and Waters [SW14] to replace pseudo-
random coins \sansF (s, j+1), \sansF (s\prime , j+1) for generating the j+1st simulated garbled circuit
with truly random coins, and then rely on the indistinguishability of the simulation
of the j + 1st garbled circuit. A bit more concretely, at each step we puncture the
seeds s, s\prime only on the (three) points corresponding to the j + 1st step, and hardwire

instead the corresponding outputs generated by \widetilde Ms,s\prime

j ; next, relying on the punctur-
ing guarantee, we can sample these outputs using true independent randomness. At
this point, we can already replace the real hardwired garbling with a simulated one.
Finally, we go back to generating the hardwired value pseudorandomly as part of the

circuit's logic, now identical to \widetilde Ms,s\prime

j+1, and ``unpuncture"" the seeds s, s\prime . We note that
each such step requires hardwiring a new (real) intermediate configuration confj+1

(used to simulate the j+1st garbling), but now the previous hardwired configuration
confj can be ``forgotten"" and blowup is avoided.

iO for a simple class of circuits is enough. The obfuscated circuits in the
construction are of a special kind---their input size is O(logM.T). Canetti et al.
[CLTV15] show that iO for \sansN \sansC 1 can be bootstrapped to obtain iO for all circuits,
assuming puncturable PRFs in \sansN \sansC 1 [BLMR13], and incurring a security loss that is
exponential in the size of the input. Accordingly, for polynomial M.T , it suffices to
assume (polynomially secure) iO for classes in \sansN \sansC 1 with logarithmic-size inputs.

A garbing scheme for any bounded space computation. We observe that
the above approach for constructing a succinct garbling scheme for bounded space
Turing machines applies generally to any bounded space computation (e.g., bounded
space RAM). In particular, we show the following theorem (formally proven in sec-
tion 3.3).

Theorem 3.2. Assume the existence of iO for circuits and one-way functions.
There exists a garbling scheme for any abstract model of sequential computation, such

8Recall that simulating a garbled circuit requires both the output and the randomness for simu-
lating the input encoding.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1142 BITANSKY ET AL.

as \sansT \sansM and \sansR \sansA \sansM , with space-dependent complexity.

The succinct garbling scheme described above for Turing machines does not ap-
ply uniquely to Turing machines, but rather to any model of computation that can
be divided into sequential steps using one memory, for instance, RAMs. Given an
underlying circuit garbling scheme \scrG \scrS = (\sansG \sansa \sansr \sansb ,\sansE \sansn \sansc \sanso \sansd \sanse ,\sansE \sansv \sansa \sansl) with independent input
encoding, to construct a garbling scheme \scrG \scrS A for \{ \scrA \scrL \lambda \} , proceed with the following
two steps.
Step 1. Construct a nonsuccinct garbling scheme. Observe that the computation of

a machine AL of AL.T steps can be divided into AL.T 1-step ``blocks"" that
transforms the current configuration to the next; therefore, to garble AL, it
suffices to produce a sequence of ``garbled blocks,"" one for each 1-step block.
The actual programs being garbled is an ``augmented block,"" whose execution
consists of a 1-step block followed by the encoding algorithm of \scrG \scrS that
encodes the output configuration for the next garbled block (when an output
is produced, it is output directly without encoding). The final garbling then
consists of a sequence of T garbled blocks.

Step 2. Compress the size using iO. As before, we then use iO to ``compress"" the
size of the nonsuccinct garbling constructed in the first step by giving the
obfuscation of the algorithm that on input t runs \sansG \sansa \sansr \sansb to garble the tth
augmented block, producing the tth garbled block. The obfuscated program
is the succinct garbled program.

Improved construction and analysis. We also note that in the case of \sansR \sansA \sansM ,
our construction can be made more efficient, relying on previous garbled RAM so-
lutions [LO13, GHL+14, GLOS15]. In the solution described above, we can in fact
replace the underlying circuit garbling scheme with any garbling scheme, as long as it
admits independent input encoding. For instance, in the case where the program AL
is a RAM, we may use previous garbled RAM solutions [LO13, GHL+14, GLOS15].
The benefit is that this allows optimizing the efficiency of our scheme. Indeed, in the
solution described above, each step of the machine is translated to a garbled circuit
of size O(AL.S) (up to polynomial factors in the security parameter), which means
that the complexity of encoding is poly\bfi \bfO (AL.S), where poly\bfi \bfO (\cdot) is the overhead due
to obfuscation, and the complexity of decoding for a T -time computation AL(x) is at
least T \cdot poly\bfi \bfO (AL.S), which may be significantly larger than the original computa-
tion.

In contrast, known garbled RAM solutions provide a more efficient way of gar-
bling RAMs than converting them into circuits, taking into consideration the RAM
structure, and guaranteeing that encoding and decoding require essentially the same
time and space as the original RAM computation. Aiming to leverage this efficiency
in our solution, instead of partitioning a RAM computation into AL.T steps, each im-
plemented by a circuit of size AL.S, we can partition it into AL.T/AL.S pieces, where
each piece is an AL.S-step RAM. The encoding and decoding time for each piece are
essentially linear in its running time O(AL.S) (whereas a circuit implementing any
such piece might be of size \Omega (AL.S2)).

This modification on its own may still be insufficient; indeed, obfuscating the cir-
cuit that produces the garbled RAM may incur nonlinear overhead poly\bfi \bfO (\cdot), so that
eventually decoding may take time poly\bfi \bfO (AL.S) \cdot AL.T/AL.S, which may be again
as large as AL.T \cdot AL.S. To circumvent this blowup, and as a result of independent
interest, we show how to bootstrap any iO for circuits to one that has quasi-linear
blowup. Overall, in the new solution, for a T -time computation AL(x), encoding

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1143

takes time \~O(AL.S) and decoding \widehat AL(x) takes time O(T +AL.S)).

3.2. Succinct garbling for Turing machines via garbled circuits. In this
section we present our succinct garbling scheme for Turing machines. As explained in
the overview, we first construct a nonsuccinct garbling scheme based on Yao's garbled
circuit construction. Next, we show how to rely on this nonsuccinct scheme and iO
to construct a succinct garbling scheme.

3.2.1. A nonsuccinct garbling scheme. We now describe formally our non-
succinct garbling scheme \scrG \scrS ns = (\sansG \sansa \sansr \sansb ns,\sansE \sansn \sansc \sanso \sansd \sanse ns,\sansE \sansv \sansa \sansl ns). We rely on a garbling
scheme for polynomial-sized circuits with independent input encoding.

Let \scrG \scrS \sansC \sansI \sansR = (\sansG \sansa \sansr \sansb \sansC \sansI \sansR ,\sansE \sansn \sansc \sanso \sansd \sanse \sansC \sansI \sansR ,\sansE \sansv \sansa \sansl \sansC \sansI \sansR) be a garbling scheme for polynomial-
sized circuits, and \sansS \sansi \sansm \sansC \sansI \sansR the simulation algorithm. We require \scrG \scrS \sansC \sansI \sansR to have inde-
pendent input encoding; that is,

\sansG \sansa \sansr \sansb \sansC \sansI \sansR = (\sansG \sanse \sansn \sansC \sansI \sansR ,\sansG \sansb \sansC \sansI \sansR),
\sansS \sansi \sansm \sansC \sansI \sansR = (\sansS \sansi \sansm .\sansG \sanse \sansn \sansC \sansI \sansR ,\sansS \sansi \sansm .\sansG \sansb \sansC \sansI \sansR),

as described in Definition 2.7.
The execution of a Turing machine M consists of a sequence of steps in which

each step t depends on the description of the machine M and its current configuration
conft, and produces the next configuration conft+1. In the Turing machine model,
each step takes constant time, independent of the size of the Turing machine and
its configuration. However, each step can be implemented using a circuit \sansN \sanse \sansx \sanst D,S

that on input (M, conft) with | M | \leq D, | conft | \leq S, outputs the next configuration
conft+1---we call this circuit the ``universal next-step circuit."" The size of the circuit
is a fixed polynomial p\sansN \sanse \sansx \sanst in the size of the machine and the configuration, that is,
p\sansN \sanse \sansx \sanst (D,S). The whole execution of M(x) can be carried out by performing at most
M.T evaluations of \sansN \sanse \sansx \sanst D,S(M, \cdot), producing a chain of configurations denoted by

\sansC \sansO \sansN \sansF \sansI \sansG (M,x) = (T \ast , conf1, . . . , confM.T , confM.T+1),

where T \ast = TM (x) and conf1, . . . , confT\ast - 1, confT\ast are the sequence of configura-
tions of M(x) until it halts (conft is the configuration before the tth step starts).
confT\ast , . . . , confM.T+1 are set for simplicity to the output y = M(x).

We note that the initial configuration conf1 can be derived efficiently from x;
confT\ast is called the final configuration, which can be efficiently recognized and from
which an output y can be extracted efficiently.

For every \lambda and M \in \sansT \sansM \lambda , our scheme proceeds as follows.

The garbling algorithm \sansG \sansa \sansr \sansb ns(1
\lambda ,M): Let S = M.S, T = M.T , and D = | M | .

Sample 2T sufficiently long random strings \alpha 1, . . . , \alpha t and \beta 1, . . . , \beta t; produce
a chain of T garbled circuits using \sansG \sansa \sansr \sansb \sansC \sansI \sansR by running the following program
for every t \in [T].
Program P\lambda ,S,M (t ; (\alpha t, \alpha t+1, \beta t)):
1. Generate the key keyt+1 for the next garbled circuit:

If t < T , compute the key for the t + 1st garbled circuit keyt+1 =
\sansG \sanse \sansn \sansC \sansI \sansR (1

\lambda , 1S ;\alpha t+1) using randomness \alpha t+1. (Note that keyt is gener-
ated for inputs of length S.)

2. Prepare the step-circuit Ct:
Ct on an S-bit input conft (i) computes conft+1 = \sansN \sanse \sansx \sanst D,S(M, conft);
(ii) if conft+1 is a final configuration, simply outputs the output y con-

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1144 BITANSKY ET AL.

tained in it;9 (iii) otherwise, translate conft+1 to the garbled inputs of the

t+1st garbled circuit by computing \widehat conft+1 = \sansE \sansn \sansc \sanso \sansd \sanse \sansC \sansI \sansR (keyt+1, conft+1).
3. Garble the step-circuit Ct:

Compute the key using randomness \alpha t, keyt = \sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , 1S ;\alpha t), and

garble Ct using randomness \beta t, \widehat Ct = \sansG \sansb \sansC \sansI \sansR (keyt,Ct;\beta t).

4. Output \widehat Ct.
Generate key as follows: Compute the key for the first garbled circuit using
randomness \alpha 1, key1 = \sansG \sanse \sansn \sansC \sansI \sansR (1

\lambda , 1S ;\alpha 1); set key = key1 \| 1S .
Finally, output \^M = (\widehat C1, . . . , \widehat CT),key.

The encoding algorithm \sansE \sansn \sansc \sanso \sansd \sanse ns(key, x): Let conf1 \in \{ 0, 1\} S be the initial

configuration ofM with input x; compute \^x = \widehat conf1 = \sansE \sansn \sansc \sanso \sansd \sanse \sansC \sansI \sansR (key1, conf1).

The evaluation algorithm \sansE \sansv \sansa \sansl ns(\^M, \^x): Evaluate the chain of garbled circuits
\^M = (\widehat C1, . . . , \widehat CT) in sequence in T iterations: At iteration t, compute z =

\sansE \sansv \sansa \sansl \sansC \sansI \sansR (\widehat Ct, \widehat conft); if z is the garbled input \widehat conft+1 for the next garbled circuit\widehat Ct+1, proceed to the next iteration; otherwise, terminate and output y = z.
Next, we proceed to show that \scrG \scrS ns is a nonsuccinct garbling scheme for \sansT \sansM .

Efficiency. We summarize the complexity of different algorithms of the non-
succinct scheme. It is easy to see that for any Turing machine M with D = | M | ,
S = M.S, and T = M.T , the garbling algorithm \sansG \sansa \sansr \sansb ns runs in time poly(\lambda ,D, S)\times T
and produces a garbling machine whose size is of the same order. Thus the garbling
scheme is nonsuccinct. On the other hand, the encoding and evaluation algorithms
\sansE \sansn \sansc \sanso \sansd \sanse ns and \sansE \sansv \sansa \sansl ns are all deterministic polynomial-time algorithms. Finally, the
simulation runs in time poly(\lambda ,D, S)\times T , as does the garbling algorithm.

Correctness. We show that for every polynomial T \prime , every sequence of algo-

rithms \{ M = M\lambda \} \in \{ \sansT \sansM T \prime

\lambda \} , and sequence of inputs \{ x = x\lambda \} , where x\lambda \in \{ 0, 1\} M.n,
there exists a negligible function \mu , such that

Pr[(key, \^M)
\$\leftarrow \sansG \sansa \sansr \sansb ns(1

\lambda ,M), \^x = \sansE \sansn \sansc \sanso \sansd \sanse ns(key, x) : \sansE \sansv \sansa \sansl ns(\^M, \^x) \not = M(x)] \leq \mu (\lambda).

Let \sansC \sansO \sansN \sansF \sansI \sansG (M,x) = (T \ast , conf1, . . . , confT , confT+1) be the sequence of configu-
rations generated in the computation of M(x), where T \leq T \prime (\lambda). It follows from the
correctness of the circuit garbling scheme \sansG \sansa \sansr \sansb \sansC \sansI \sansR that with overwhelming probability
(over the randomness of \sansG \sansa \sansr \sansb ns), the following is true: (1) for every t < T \ast , the

garbled circuit \widehat Ct, if given the garbled input \widehat conft corresponding to conft, computes

the correct garbled inputs \widehat conft+1 corresponding to conft+1, and (2) for t = T \ast , the

garbled circuit \widehat CT\ast , if given the garbled input \widehat confT\ast - 1 corresponding to confT\ast - 1,
produces the correct output y. (Note that the evaluation procedure terminates after

T \ast iterations, and circuits \widehat Ct for t > T \ast are never evaluated.) Then since the garbled

input \^x equals the garbled initial configuration \widehat conf1, by conditions (1) and (2), the
evaluation procedure produces the correct output with overwhelming probability.

Security. Fix any polynomial T \prime , any sequence of algorithms \{ M = M\lambda \} \in
\{ \sansT \sansM T \prime

\lambda \} , and any sequence of inputs \{ x = x\lambda \} , where x\lambda \in \{ 0, 1\} M.n. To show the
security of \scrG \scrS ns, we construct a simulation algorithm \sansS \sansi \sansm ns and show that the fol-
lowing two ensembles are indistinguishable: For convenience of notation, we suppress

9Pad y with 0 if it is not long enough.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1145

the appearance of M.n and M.m as input to \sansS \sansi \sansm :

\bigl\{
\sansr \sanse \sansa \sansl ns(1

\lambda ,M, x)
\bigr\}
=

\Bigl\{
(\^M,key)

\$\leftarrow \sansG \sansa \sansr \sansb ns(1
\lambda ,M), \^x = \sansE \sansn \sansc \sanso \sansd \sanse ns(key, x) : (\^M, \^x)

\Bigr\}
\lambda
,

(3.1)

\bigl\{
\sanss \sansi \sansm \sansu ns(1

\lambda ,M, x)
\bigr\}
=

\Bigl\{
(\~M, \~x)

\$\leftarrow \sansS \sansi \sansm ns(1
\lambda , 1| x| , 1| M | , S, T, TM (x),M(x)) : (\~M, \~x)

\Bigr\}
\lambda
.

(3.2)

Below we describe the simulation algorithm. Observe that the garbled machine
\^M consists of T garbled circuits (\widehat C1, . . . , \widehat CT), and the garbled input \^x is simply
the garbled input of the initial configuration conf0 (corresponding to x) for the first

garbled circuit \widehat C1. Naturally, to simulate them, the algorithm \sansS \sansi \sansm ns needs to utilize
the simulation algorithm \sansS \sansi \sansm \sansC \sansI \sansR = (\sansS \sansi \sansm .\sansG \sanse \sansn \sansC \sansI \sansR ,\sansS \sansi \sansm .\sansG \sansb \sansC \sansI \sansR) of the circuit garbling
scheme, which requires knowing the output of each garbled circuit. In a real evaluation
with \^M, \^x, the output of the (T \ast)th garbled circuit is y = M(x), the output of the

garbled circuits t < T \ast is the garbled input \widehat conft+1 for next garbled circuit t + 1,
and the garbled circuits t > T \ast are not evaluated, but for which y is a valid output.
Thus, in the simulation, garbled circuits t = T \ast , . . . , T can be simulated using output
y, whereas garbled circuits t = 1, . . . , T \ast - 1 will be simulated using the simulated
garbled inputs for circuit t+1. More precisely, the simulation algorithm is as follows.

The simulation algorithm \sansS \sansi \sansm ns(1
\lambda , 1| x| , 1| M | , S, T, T \ast = TM (x), y = M(x)):

Sample 2T sufficiently long random strings \alpha 1, . . . , \alpha T , \beta 1, . . . , \beta T . Simulate
the chain of garbled circuits by running the following program for every t \in
[T].
Program Q\lambda ,S,| M | ,T\ast ,y(t ; (\alpha t, \alpha t+1, \beta t)):

1. Prepare the output outt for the tth simulated circuit \widetilde Ct:
If t \geq T \ast , outt = y. Otherwise, if t < T \ast , set the output as the garbled

input for the next garbled circuits, that is, outt = \widetilde conft+1 computed from

(\widetilde conft+1, stt+1) = \sansS \sansi \sansm .\sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , S ; \alpha t+1) using randomness \alpha t+1.

2. Simulate the tth step-circuit \widetilde Ct:
Given the output outt, simulate the tth garbled circuit \widetilde Ct by computing

first (\widetilde conft, stt) = \sansS \sansi \sansm .\sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , S ; \alpha t) and then \widetilde Ct = \sansS \sansi \sansm .\sansG \sansb \sansC \sansI \sansR (1

\lambda , S,
q, outt, stt ; \beta t), using randomness \alpha t, \beta t, where q = q(\lambda , S) is the size
of the circuit Ct.

3. Output \widetilde Ct.

Simulate the garbled input \~x by computing again (\widetilde conf1, st1) = \sansS \sansi \sansm .\sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda ,

S ; \alpha 1) using randomness \alpha 1 and setting \~x = \widetilde conf1.
Finally, output (\~M = (\widetilde C1, . . . , \widetilde CT), \~x).

Toward showing the indistinguishability between honestly generated garbling
(\^M, \^x) and the simulation (\~M, \~x), we will consider a sequence of hybrids \sansh \sansy \sansb 0ns, . . . ,
\sansh \sansy \sansb Tns, where \sansh \sansy \sansb 0ns samples (\^M, \^x) honestly, while \sansh \sansy \sansb Tns generates the simulated
garbling (\~M, \~x). In every intermediate hybrid \sansh \sansy \sansb \gamma ns, a hybrid simulator \sansH \sansS \sansi \sansm \gamma

ns is
invoked, producing a pair (\~M\gamma , \~x\gamma). At a high level, the \gamma th hybrid simulator on input
(1\lambda ,M, x) simulates the first \gamma - 1 garbled circuits using the program Q, generates
the last T - \gamma garbled circuits honestly using the program P, and simulates the \gamma th
garbled circuits using the program R described below, which ``stitches"" together the
first \gamma - 1 simulated circuits with the last T - \gamma honest circuits into a chain that
evaluates to the correct output. More precisely, we will denote by

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1146 BITANSKY ET AL.

\sansC \sansO \sansM \sansB \sansI \sansN \sansE [(P1, S1), \cdot , (P\ell , S\ell)] a merged circuit that on input x in the
domain X computes Pj(x) if x \in Sj , where S1, . . . , S\ell is a partition
of the domain X.

The hybrid simulation algorithm \sansH \sansS \sansi \sansm \gamma
ns(1

\lambda ,M, x) for \gamma = 0, . . . , T :
Compute T \ast = TM (x) and y = M(x), and the intermediate configuration
conf\gamma +1 as defined by \sansC \sansO \sansN \sansF \sansI \sansG (M,x).
Sample 2T sufficiently long random strings \{ \alpha t, \beta t\} t\in [T]. Simulate the chain
of garbled circuits by running the following program for every t \in [T], which
combines programs P, Q, and R as below.
Program M\gamma =\sansC \sansO \sansM \sansB \sansI \sansN \sansE [(Q, [\gamma - 1]), (R, \{ \gamma \}), (P, [\gamma +1, T])] (t ; (\alpha t, \alpha t+1, \beta t)):

\bullet If t \leq \gamma - 1, compute \widetilde Ct = Q\lambda ,S,| M | ,T\ast ,y(t ; (\alpha t, \alpha t+1, \beta t)); output \widetilde Ct.

\bullet If t \geq \gamma + 1, compute \widehat Ct = P\lambda ,S,M (t ; (\alpha t, \alpha t+1, \beta t)); output \widehat Ct.

\bullet If t = \gamma , compute \widetilde Ct = R\lambda ,S,conf\gamma +1(\gamma ; (\alpha \gamma , \alpha \gamma +1, \beta \gamma)) using program

R defined below; output \widetilde Ct.
Program R\lambda ,S,conf\gamma +1(\gamma ; (\alpha \gamma , \alpha \gamma +1, \beta \gamma)):

1. Prepare the output out\gamma of the simulated \gamma th circuit \widetilde Ct:
Set the output out\gamma to y if conf\gamma +1 is a final configuration. Oth-
erwise, the output should be the garbled input corresponding to
conf\gamma +1 for the next garbled circuit; since the \gamma + 1st circuit is

generated honestly, we compute out\gamma = \widehat conf\gamma +1 by first comput-

ing key\gamma +1 = \sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , 1S ; \alpha \gamma +1), and then encoding \widehat conf\gamma +1 =

\sansE \sansn \sansc \sanso \sansd \sanse \sansC \sansI \sansR (key\gamma +1, conf\gamma +1).
(Note that the difference between program Q and R is that the for-

mer prepares the output out\gamma using simulated garbled input \widetilde conft+1,

whereas the latter uses honestly generated garbled input \widehat conf\gamma +1.)

2. Simulate the \gamma th circuit \widetilde Ct:
Given the output out\gamma , simulate the \gamma th garbled circuit \widetilde C\gamma by com-

puting (\widetilde conf\gamma , st\gamma) = \sansS \sansi \sansm .\sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , S ; \alpha \gamma) and \widetilde Ct = \sansS \sansi \sansm .\sansG \sansb \sansC \sansI \sansR (1

\lambda ,
S, q, out\gamma , st\gamma ; \beta \gamma), where q = q(\lambda , S) is the size of the circuit Ct.

3. Output \widetilde Ct.
If \gamma > 0, simulate the garbled input \~x\gamma as \sansS \sansi \sansm ns does. Otherwise, if \gamma = 0,
generate the garbled input \~x0 honestly as in \sansG \sansa \sansr \sansb ns and \sansE \sansn \sansc \sanso \sansd \sanse ns.
Finally, output (\~M\gamma = (\widetilde C1, . . . , \widetilde C\gamma , \widehat C\gamma +1

\widehat CT), \~x\gamma).

We use notation \sansh \sansy \sansb \gamma ns(1
\lambda ,M, x) to denote the output distribution of the hybrid

simulator \sansH \sansS \sansi \sansm \gamma
ns. By construction, in \sansH \sansS \sansi \sansm \gamma

ns, when \gamma = 0, M0 = P and the garbled
input \~x0 is generated honestly, that is, \{ \sansh \sansy \sansb 0ns(1\lambda ,M, x)\} = \{ \sansr \sanse \sansa \sansl ns(1\lambda ,M, x)\} (where
\sansr \sanse \sansa \sansl ns is the distribution of honestly generated garbling; see (3.1)); furthermore, when
\gamma = T , MT = Q and the garbled input \~x\gamma is simulated, that is,

\bigl\{
\sansh \sansy \sansb \gamma ns(1

\lambda ,M, x)
\bigr\}
=\bigl\{

\sanss \sansi \sansm \sansu ns(1
\lambda ,M, x)

\bigr\}
(where \sanss \sansi \sansm \sansu ns is the distribution of simulated garbling; see (3.2)).

Thus to show the indistinguishability between \{ \sansr \sanse \sansa \sansl ns(1\lambda ,M, x)\} and \{ \sanss \sansi \sansm \sansu ns(1
\lambda ,M, x)\} ,

it suffices to show the following claim.

Claim 3.3. For every \gamma \in \BbbN , the following holds\bigl\{
\sansh \sansy \sansb \gamma - 1

ns (1\lambda ,M, x)
\bigr\}
\lambda
\approx

\bigl\{
\sansh \sansy \sansb \gamma ns(1

\lambda ,M, x)
\bigr\}
\lambda
.

Proof. Fix a \gamma \in \BbbN , a sufficiently large \lambda \in \BbbN , an M = M\lambda , and a x = x\lambda . The
only difference between the garbling (\~M\gamma - 1, \~x\gamma - 1) sampled by \sansh \sansy \sansb \gamma - 1

ns (1\lambda ,M, x) and

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1147

the garbling (\~M\gamma , \~x\gamma) sampled by \sansh \sansy \sansb \gamma ns(1
\lambda ,M, x) is the following: Let conf\gamma be the

intermediate configuration at the beginning of step \gamma .
\bullet In \sansh \sansy \sansb \gamma - 1

ns , the \gamma th garbled circuit \widehat C\gamma is generated honestly using program P.
The circuit C\gamma (as described in algorithm \sansG \sansa \sansr \sansb ns) is the composition of the

circuit \sansN \sanse \sansx \sanst \lambda ,S(M, \cdot) and the encoding algorithm \sansE \sansn \sansc \sanso \sansd \sanse \sansC \sansI \sansR (key\gamma +1, \cdot), where
key\gamma +1 = \sansG \sanse \sansn \sansC \sansI \sansR (1

\lambda , 1S ;\alpha \gamma +1) is generated honestly.
Furthermore, the first \gamma - 1 garbled circuits are simulated usingR andQ. The
simulation of the first \gamma - 1 circuits as well as the generation of the garbled

input \~x\gamma depend potentially on the garbled input \widehat conf\gamma corresponding to

conf\gamma for \widehat C\gamma (when conf\gamma is not a final configuration; see step 1 in R).
In other words, the output of \sansh \sansy \sansb \gamma - 1

ns can be generated by the following al-
ternative sampling algorithm:

-- Generate garbled circuits \gamma +1, . . . , T honestly using program P; prepare
the \gamma th circuit C\gamma using key\gamma +1.

-- Receive externally honest garbling (\widehat C\gamma , \widehat conf\gamma) of (C\gamma , conf\gamma).

-- Simulate the first \gamma - 1 circuits using R and Q, with \widehat conf\gamma hardwired
in R.

\bullet In \sansh \sansy \sansb \gamma ns, the \gamma th garbled circuit \widetilde C\gamma is simulated using programR; the output
out\gamma used for simulation is set to either y (if conf\gamma +1 is a final configuration)

or the honestly generated gabled input \widehat conf\gamma +1. In other words, out\gamma =
C\gamma (conf\gamma), where C\gamma is prepared in the same way as above.
Furthermore, the previous \gamma - 1 garbled circuits are also simulated using
program Q. Their simulation as well as the generation of the garbled input

\~x\gamma +1 depend potentially on the corresponding simulated garbled input \widetilde conf\gamma
of \widetilde C\gamma .
In other words, the output of \sansh \sansy \sansb \gamma ns can be generated by the same alternative
sampling algorithm above, except that the second step is modified as follows:

-- Receive externally simulated garbling (\widetilde C\gamma , \widetilde conf\gamma) generated using out-

put C\gamma (conf\gamma).

Then it follows from the security of the circuit garbling scheme \scrG \scrS \sansC \sansI \sansR that the distri-

butions of (\widehat C\gamma , \widehat conf\gamma) and (\widetilde C\gamma , \widetilde conf\gamma) received externally by the alternative sampling
algorithm above are computationally indistinguishable, and thus the distributions of
outputs of \sansh \sansy \sansb \gamma - 1

ns and \sansh \sansy \sansb \gamma ns, which can be efficiently constructed from them, are also
indistinguishable.

Finally, by the above claim, it follows from a hybrid argument over \gamma that
\{ \sansr \sanse \sansa \sansl ns(1\lambda ,M, x)\} and \{ \sanss \sansi \sansm \sansu ns(1

\lambda ,M, x)\} are indistinguishable. Hence, \scrG \scrS ns is a
secure garbling scheme for \sansT \sansM .

3.2.2. A garbling scheme for \bfsansT \bfsansM with space-dependent complexity. In
this section, we construct a garbling scheme \scrG \scrS = (\sansG \sansa \sansr \sansb ,\sansE \sansn \sansc \sanso \sansd \sanse ,\sansE \sansv \sansa \sansl) for \sansT \sansM with
space-dependent complexity. Our construction relies on the following building blocks:

\bullet A garbling scheme for polynomial-sized circuits, with independent input en-
coding: \scrG \scrS \sansC \sansI \sansR = (\sansG \sansa \sansr \sansb \sansC \sansI \sansR ,\sansE \sansn \sansc \sanso \sansd \sanse \sansC \sansI \sansR ,\sansE \sansv \sansa \sansl \sansC \sansI \sansR), where \sansG \sansa \sansr \sansb \sansC \sansI \sansR = (\sansG \sanse \sansn \sansC \sansI \sansR ,\sansG \sansb \sansC \sansI \sansR)
and whose simulation algorithm is \sansS \sansi \sansm \sansC \sansI \sansR = (\sansS \sansi \sansm .\sansG \sanse \sansn \sansC \sansI \sansR ,\sansS \sansi \sansm .\sansG \sansb \sansC \sansI \sansR).

\bullet An indistinguishability obfuscator i\scrO \sansC \sansI \sansR (\cdot , \cdot) for polynomial-sized circuits.
\bullet A puncturable PRF (\sansP \sansR \sansF .\sansG \sanse \sansn ,\sansP \sansR \sansF .\sansP \sansu \sansn \sansc ,\sansF) with input length n(\lambda) and out-

put length m(\lambda), where n(\lambda) can be set to any superlogarithmic function
n(\lambda) = \omega (log \lambda), and m is a sufficiently large polynomial in \lambda .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1148 BITANSKY ET AL.

Circuit \BbbP = \BbbP \lambda ,S,M,K\alpha ,K\beta : On input t \in [T], does:
Generates pseudorandom strings \alpha t = \sansF (K\alpha , t), \alpha t+1 = \sansF (K\alpha , t + 1) and
\beta t = \sansF (K\beta , t);

Compute \widehat Ct = P\lambda ,S,M (t ; (\alpha t, \alpha t+1, \beta t)) and output \widehat Ct.
Circuit \BbbQ = \BbbQ \lambda ,S,| M| ,T\ast ,y,K\alpha ,K\beta : On input t \in [T], does:

Generate pseudorandom strings \alpha t = \sansF (K\alpha , t), \alpha t+1 = \sansF (K\alpha , t + 1) and
\beta t = \sansF (K\beta , t);

Compute \widetilde Ct = Q\lambda ,S,| M| ,T\ast ,y(t ; (\alpha t, \alpha t+1, \beta t)) and output \widetilde Ct.
The circuits in Figures 3.1, 3.2, and 3.3 are padded to their maximum size.

Fig. 3.1. Circuits used in the construction and simulation of \scrG \scrS .

For every \lambda and M \in \sansT \sansM \lambda , the garbling scheme \scrG \scrS proceeds as follows.

The garbling algorithm \sansG \sansa \sansr \sansb (1\lambda ,M):

1. Sample the PRF keys K\alpha
\$\leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda) and K\beta

\$\leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda).
2. Obfuscate the circuit \BbbP :

Obfuscate the circuit \BbbP (t) = \BbbP \lambda ,S,M,K\alpha ,K\beta (t) as described in Figure 3.1,
which is essentially a wrapper program that evaluates P on t using
pseudorandom coins generated using K\alpha and K\beta as described above.

Obtain \BbbP \$\leftarrow i\scrO (1\lambda ,\BbbP).
3. Generate the key for garbling input:

Compute key in the same way as the garbling scheme \sansG \sansa \sansr \sansb ns does,
but using pseudorandom coins generated using K\alpha . That is, compute
the key for the first garbled circuit using randomness \alpha 1 = \sansF (K\alpha , 1),
key1 = \sansG \sanse \sansn \sansC \sansI \sansR (1

\lambda , 1S ;\alpha 1); set key = key1 \| 1S .
4. Finally, output (\BbbP ,key).

The encoding algorithm \sansE \sansn \sansc \sanso \sansd \sanse (key, x): Compute \^x = \sansE \sansn \sansc \sanso \sansd \sanse ns(key, x).

The evaluation algorithm \sansE \sansv \sansa \sansl (\BbbP , \^x): Generate and evaluate the garbled circuits
in the nonsuccinct garbling \^M one by one; terminate as soon as an output is
produced. More precisely, evaluation proceeds in T iterations as follows:
At the beginning of iteration t \in [T], the previous t - 1 garbled circuits have

been generated and evaluated, producing garbled input \widehat conft (\widehat conf1 = \^x).

Then compute \widehat Ct = \BbbP (t); evaluate z = \sansE \sansv \sansa \sansl \sansC \sansI \sansR (\widehat Ct, \widehat conft); if z is a valid
output, terminate and output y = z; otherwise, proceed to the next iteration

t+ 1 with \widehat conft+1 = z.

Next, we proceed to show that \scrG \scrS is a garbling scheme for \sansT \sansM with space-
dependent complexity.

Correctness. Fix any machine M \in \sansT \sansM and input x. Recall that the garbling
algorithm \sansG \sansa \sansr \sansb generates a pair (\BbbP ,key); the latter is used later by the encoding
algorithm \sansE \sansn \sansc \sanso \sansd \sanse to obtain garbled input \^x, while the former is used later by the
evaluation algorithm \sansE \sansv \sansa \sansl to create the nonsuccinct garbling \^M = \{ \widehat Ct = \BbbP (t)\} t\in [T];

the nonsuccinct garbling \^M is then evaluated with \^x using algorithm \sansE \sansv \sansa \sansl ns. The
distribution of the garbled input and the nonsuccinct garbling recovered by \sansE \sansv \sansa \sansl is as
follows:

\scrD 1 =
\Bigl\{
(\BbbP ,key) \$\leftarrow \sansG \sansa \sansr \sansb (1\lambda ,M) :

\Bigl(
\^x = \sansE \sansn \sansc \sanso \sansd \sanse (key, x), \^M =

\Bigl\{ \widehat Ct = \BbbP (t)
\Bigr\}
t\in [T]

\Bigr) \Bigr\}
.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1149

It follows from the construction of \sansG \sansa \sansr \sansb ,\sansE \sansn \sansc \sanso \sansd \sanse and the correctness of the indistin-
guishability obfuscator that the above distribution \scrD 1 is identical to the distribution
\scrD 2 of a garbled pair (\^M \prime , \^x\prime) generated by the algorithms \sansG \sansa \sansr \sansb ns,\sansE \sansn \sansc \sanso \sansd \sanse ns of the
nonsuccinct scheme, using pseudorandom coins, formalized below:

\scrD 2 =
\Bigl\{
K\alpha ,K\beta

\$\leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda) \forall t \in [T], \alpha t = \sansF (K\alpha , t), \beta t = \sansF (K\beta , t) :\Bigl(
\^x\prime = \sansE \sansn \sansc \sanso \sansd \sanse ns(key

\prime = \sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , 1S ;\alpha 1), x), \^M \prime =

\Bigl\{ \widehat Ct = P(t;\alpha t, \alpha t+1, \beta t)
\Bigr\}
t\in [T]

\Bigr) \Bigr\}
.

By the pseudorandomness of PRF, distribution \scrD 2 is computationally indistinguish-
able from the garbled pair generated by \sansG \sansa \sansr \sansb ns,\sansE \sansn \sansc \sanso \sansd \sanse ns using truly random coins:

\scrD 3 =
\Bigl\{
(\^M \prime \prime ,key\prime \prime)

\$\leftarrow \sansG \sansa \sansr \sansb ns(1
\lambda ,M) :

\Bigl(
\^x\prime \prime = \sansE \sansn \sansc \sanso \sansd \sanse ns(key

\prime \prime , x), \^M \prime \prime
\Bigr) \Bigr\}

.

The correctness of the nonsuccinct garbling scheme \scrG \scrS ns guarantees that, with over-
whelming probability, evaluating \^M \prime \prime with \^x\prime \prime produces the correct output y = M(x);
furthermore, the correct output y is produced after evaluating only the first T \ast =
TM (x) garbled circuits. Thus, it follows from the indistinguishability between \scrD 1 and
\scrD 3 that when evaluating a garbled pair (\^M, \^x) sampled from \scrD 1, the correct output
y is also produced after evaluating the first T \ast garbled circuits. Given that \scrD 1 is
exactly the distribution of the nonsuccinct garbled pairs generated in \sansE \sansv \sansa \sansl , we have
that correctness holds.

Efficiency. We show that the garbling scheme \scrG \scrS has space-dependent complex-
ity.

\bullet The garbling algorithm \sansG \sansa \sansr \sansb (1\lambda ,M) runs in time poly(\lambda , | M | , S). This is
because \sansG \sansa \sansr \sansb produces an obfuscation of the program \BbbP (a derandomized
version of P) which garbles circuits Ct using pseudorandom coins for every
input t \in [T]. Since the program Ct has size q = poly(\lambda , | M | , S) as analyzed
in the nonsuccinct garbling scheme, so do P and \BbbP (note that the input range
T of these two programs is contained as part of the description of M , and
hence | M | > log T). Therefore, \sansG \sansa \sansr \sansb takes time poly(\lambda , | M | , S) to produce
the obfuscation of \BbbP . Additionally, notice that \sansG \sansa \sansr \sansb generates the key as
the algorithm \sansG \sansa \sansr \sansb ns does, which in turn runs \sansG \sansa \sansr \sansb \sansC \sansI \sansR (1

\lambda , 1S) and takes time
poly(\lambda , S). Overall, \sansG \sansa \sansr \sansb runs in time poly(\lambda , | M | , S) as claimed.

\bullet \sansE \sansn \sansc \sanso \sansd \sanse run in the same time as the \sansE \sansn \sansc \sanso \sansd \sanse ns algorithm, which is poly(\lambda , | M | , S).
\bullet Evaluation algorithm \sansE \sansv \sansa \sansl on input (\BbbP , \^x) produced by (\BbbP ,key) \$\leftarrow \sansG \sansa \sansr \sansb (1\lambda , 1S)

and \^x = \sansE \sansn \sansc \sanso \sansd \sanse (key, x) runs in time poly(\lambda , | M | , S)\times T \ast , T \ast = TM (x), with
overwhelming probability.
It follows from the analysis of correctness of \scrG \scrS that, with overwhelming
probability over the coins of \sansG \sansa \sansr \sansb , the nonsuccinct garbling \^M defined by
\BbbP satisfies that when evaluated with \^x, the correct output is produced after
T \ast iterations. Since \sansE \sansv \sansa \sansl does not compute the entire nonsuccinct garbling
\^M in one shot, but rather generates and evaluates the garbled circuits in
\^M one by one, it thus terminates after producing and evaluating T \ast garbled
circuits. Since the generation and evaluation of each garbled circuit takes
poly(\lambda , | M | , S) time, overall \sansE \sansv \sansa \sansl runs in time TM (x) \times poly(\lambda , | M | , S), as
claimed.

Security. Fix any polynomial T \prime , any sequence of algorithms \{ M = M\lambda \} \in
\{ \sansT \sansM T \prime

\lambda \} , and any sequence of inputs \{ x = x\lambda \} , where x\lambda \in \{ 0, 1\} M.n. Toward show-

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1150 BITANSKY ET AL.

ing the security of \scrG \scrS , we construct a simulator \sansS \sansi \sansm satisfying that the following two
ensembles are indistinguishable in \lambda :\bigl\{

\sansr \sanse \sansa \sansl (1\lambda ,M, x)
\bigr\}
=

\Bigl\{
(\BbbP ,key) \$\leftarrow \sansG \sansa \sansr \sansb (1\lambda ,M), \^x = \sansE \sansn \sansc \sanso \sansd \sanse (key, x) : (\BbbP , \^x)

\Bigr\}
\lambda
,(3.3) \bigl\{

\sanss \sansi \sansm \sansu (1\lambda ,M, x)
\bigr\}
=

\Bigl\{
(\BbbQ , \~x)

\$\leftarrow \sansS \sansi \sansm (1\lambda , | x| , | M | , S, T, TM (x),M(x)) : (\BbbQ , \~x)
\Bigr\}
\lambda
.(3.4)

As discussed in the overview, the simulation will obfuscate the programQ used for
simulating the nonsuccinct garbled machine \~M = (\widetilde C1, . . . , \widetilde CT), shown more precisely
as follows.

The simulation algorithm \sansS \sansi \sansm (1\lambda , | x| , | M | , S, T, T \ast = TM (x), y = M(x)):

1. Sample PRF keys: K\alpha
\$\leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda) and K\beta

\$\leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda).
2. Obfuscate the circuit \BbbQ :

Obfuscate the circuit \BbbQ (t) = \BbbQ \lambda ,S,| M | ,T\ast ,y,K\alpha ,K\beta (t) as described in Fig-
ure 3.1, which is essentially a wrapper program that evaluates Q on t,
using pseudorandom coins \{ \alpha t, \beta t\} generated by evaluating \sansF on keys

K\alpha and K\beta and inputs t \in [T]. Obtain \BbbQ \$\leftarrow i\scrO (1\lambda ,\BbbQ).
3. Simulate the garbled input:

Simulate the garbled input \~x in the same way that simulator \sansS \sansi \sansm ns

does, but using pseudorandom coins. That is, compute (\widetilde conf1, st1) =

\sansS \sansi \sansm .\sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , S ; \alpha 1), where \alpha 1 = \sansF (K\alpha , 1); set \~x = \widetilde conf1.

4. Finally, output (\BbbQ , \~x).

The simulator \sansS \sansi \sansm (1\lambda , | x| , | M | , S, T, T \ast , y = M(x)) runs in time poly(\lambda , | M | , S).
This follows because the simulator simulates the garbled Turing machine by obfuscat-
ing the program \BbbQ . As the program \BbbQ simply runs Q using pseudorandom coins, its
size is poly(\lambda , | M | , S); thus obfuscation takes time in the same order. On the other
hand, \sansS \sansi \sansm simulates the garbled input \~x as the simulator \sansS \sansi \sansm ns does, which sim-
ply invokes \sansS \sansi \sansm \sansC \sansI \sansR (1

\lambda , S) of the circuit garbling scheme, which takes time poly(\lambda , S).
Therefore, overall the simulation takes time poly(\lambda , | M | , S) as claimed.

To show the indistinguishability between honestly generated garbling (\BbbP , \^x) \$\leftarrow
\sansr \sanse \sansa \sansl (1\lambda ,M, x) and the simulation (\BbbQ , \~x)

\$\leftarrow \sanss \sansi \sansm \sansu (1\lambda ,M, x) (see (3.3) and (3.4) for for-
mal definitions of \sansr \sanse \sansa \sansl and \sanss \sansi \sansm \sansu), we will consider a sequence of hybrids \sansh \sansy \sansb 0, . . . , \sansh \sansy \sansb T ,
where the output distribution of \sansh \sansy \sansb 0 is identical to \sansr \sanse \sansa \sansl , while that of \sansh \sansy \sansb T is identi-
cal to \sanss \sansi \sansm \sansu . In every intermediate hybrid \sansh \sansy \sansb \gamma , a hybrid simulator \sansH \sansS \sansi \sansm \gamma is invoked,
producing a pair (\BbbM \gamma

, \~x\gamma), where \BbbM \gamma
is the obfuscation of (the derandomized wrapper

of) a merged program M\gamma that produces a hybrid chain of garbled circuits as in the
security proof of the nonsuccinct garbling scheme, where the first \gamma garbled circuits
are simulated and the rest are generated honestly. This hybrid simulation algorithm
is given more precisely as follows.

The hybrid simulation algorithm \sansH \sansS \sansi \sansm \gamma (1\lambda ,M, x) for \gamma = 0, . . . , T :
Compute T \ast = TM (x) and y = M(x) and the intermediate configuration
conf\gamma +1 as defined by \sansC \sansO \sansN \sansF \sansI \sansG (M,x).

1. Sample the PRF keys K\alpha
\$\leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda) and K\beta

\$\leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda).
2. Obfuscate the circuit \BbbM \gamma :

Obfuscate the circuit \BbbM \gamma (t) = (\BbbM \gamma)\lambda ,S,M,T\ast ,y,conf\gamma +1,K\alpha ,K\beta (t) as de-
scribed in Figure 3.2, which is essentially a wrapper program that eval-
uates the combined program

M\gamma = \sansC \sansO \sansM \sansB \sansI \sansN \sansE [(Q, [\gamma - 1]), (R, \{ \gamma \}), (P, [\gamma + 1, T])] (t ; (\alpha t, \alpha t+1, \beta t)),

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1151

using pseudorandom coins \{ \alpha t, \beta t\} generated using K\alpha and K\beta . Obtain

\BbbM \gamma \$\leftarrow i\scrO (1\lambda ,\BbbM \gamma).
3. Simulate the garbled input:

If \gamma > 0, simulate the garbled input \~x\gamma in the same way as in \sansS \sansi \sansm .
Otherwise, if \gamma = 0, generate \~x0 honestly, using \sansG \sansa \sansr \sansb and \sansE \sansn \sansc \sanso \sansd \sanse .

4. Finally, output (\BbbM \gamma
, \~x\gamma).

Circuit \BbbM \gamma = (\BbbM \gamma)\lambda ,S,M,T\ast ,y,conf\gamma +1,K\alpha ,K\beta : On input t \in [T], does:
Generate pseudorandom strings \alpha t = \sansF (K\alpha , t), \alpha t+1 = \sansF (K\alpha , t + 1) and
\beta t = \sansF (K\beta , t);

Compute \widetilde Ct = M\gamma (t ; (\alpha t, \alpha t+1, \beta t)) and output \widetilde Ct, where M\gamma is

(M\gamma)\lambda ,S,M,T\ast ,y,conf\gamma +1

= \sansC \sansO \sansM \sansB \sansI \sansN \sansE [(Q, [\gamma - 1]), (R, \{ \gamma \}), (P, [\gamma + 1, T])] (t ; (\alpha t, \alpha t+1, \beta t)).

The circuits in Figures 3.1, 3.2, and 3.3 are padded to their maximum size.

Fig. 3.2. Circuits used in the security analysis of \scrG \scrS .

We overload the notation \sansh \sansy \sansb \gamma (1\lambda ,M, x) as the output distribution of the \gamma th
hybrid. By construction, when \gamma = 0, M0 = P and the garbled input \~x0 is generated
honestly; thus, \{ \sansh \sansy \sansb 0(1\lambda ,M, x)\} = \{ \sansr \sanse \sansa \sansl (1\lambda ,M, x)\} ; furthermore, when \gamma = T , MT =
Q and the garbled input \~xT is simulated; thus

\bigl\{
\sansh \sansy \sansb T (1\lambda ,M, x)

\bigr\}
=

\bigl\{
\sanss \sansi \sansm \sansu (1\lambda ,M, x)

\bigr\}
.

Therefore, to show the security of \scrG \scrS , it boils down to proving the following claim.

Claim 3.4. For every \gamma \geq 0, the following holds:\bigl\{
\sansh \sansy \sansb \gamma (1\lambda ,M, x)

\bigr\}
\lambda
\approx

\bigl\{
\sansh \sansy \sansb \gamma +1(1\lambda ,M, x)

\bigr\}
\lambda
.

Proof. Fix a \gamma \in \BbbN , a sufficiently large \lambda \in \BbbN , an M = M\lambda , and a x = x\lambda . Note

that the only difference between (\BbbM \gamma
, \~x\gamma)

\$\leftarrow \sansh \sansy \sansb \gamma and (\BbbM \gamma +1
, \~x\gamma +1)

\$\leftarrow \sansh \sansy \sansb \gamma +1 is the
following:

\bullet For every \gamma , the underlying obfuscated programs \BbbM \gamma ,\BbbM \gamma +1 differ in their
implementation by at most two inputs, namely, \gamma , \gamma + 1.

\bullet When \gamma = 0, the garbled input \~x0 is generated honestly in \sansh \sansy \sansb 0, whereas \~x1

is simulated in \sansh \sansy \sansb 1.
To show the indistinguishability of the two hybrids, we consider a sequence of sub-
hybrids from \sansH \gamma

0 = \sansh \sansy \sansb \gamma to \sansH \gamma
7 = \sansh \sansy \sansb \gamma +1. Below we describe these hybrids \sansH \gamma

0 , . . . ,\sansH
\gamma
7

and argue that the output distributions of any two subsequent hybrids are indis-
tinguishable. We denote by (\BbbM \gamma

i , \~x
\gamma
i) the garbled pair produced in hybrid \sansH \gamma

i for
i = 0, . . . , 7. For convenience, below we suppress the superscript \gamma and simply use the
notation \sansH i = \sansH \gamma

i , \BbbM i = \BbbM \gamma

i , \BbbM i = \BbbM \gamma
i , and \~xi = \~x\gamma

i .

Hybrid \sansH 1: Generate a garbled pair (\BbbM 1, \~x1) by running a simulation procedure that
proceeds identically to \sansH \sansS \sansi \sansm \gamma , except with the following modifications:
\bullet In the first step, puncture the two PRF keys K\alpha ,K\beta at input \gamma + 1

and obtain K\alpha (\gamma + 1) = \sansP \sansR \sansF .\sansP \sansu \sansn \sansc (K\alpha , \gamma + 1) and K\beta (\gamma + 1) =
\sansP \sansR \sansF .\sansP \sansu \sansn \sansc (K\beta , \gamma + 1). Furthermore, compute \alpha \gamma +1 = \sansF (K\alpha , \gamma + 1) and
\beta \gamma +1 = \sansF (K\beta , \gamma + 1).

\bullet In the second step, obfuscate a circuit \BbbM 1 slightly modified from \BbbM \gamma :
Instead of having the full PRF keys K\alpha ,K\beta hardwired in, \BbbM 1 has the

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1152 BITANSKY ET AL.

punctured keys K\alpha (\gamma + 1),K\beta (\gamma + 1) and the PRF values \alpha \gamma +1, \beta \gamma +1

hardwired in; \BbbM 1 proceeds identically to \BbbM 1, except that it uses the
punctured PRF keys to generate pseudorandom coins corresponding to
input t \not = \gamma + 1 and directly uses \alpha \gamma +1, \beta \gamma +1 as the coins for input
t = \gamma + 1. See Figure 3.3 for a description of \BbbM 1 = \BbbM \gamma

1 .

We describe circuits \BbbM \gamma
1 to \BbbM \gamma

6 . They all have parameters \lambda , S,M, T \ast , y, conf\gamma +1

hardwired in; for simplicity, we suppress these parameters in the superscript.
Circuit \BbbM \gamma

1 = (\BbbM \gamma
1)

K\alpha (\gamma +1),K\beta (\gamma +1),\alpha \gamma +1,\beta \gamma +1 : On input t \in [T], does:
If t \not = \gamma , generate pseudorandom string \alpha t+1 = \sansF (K\alpha (\gamma + 1), t+ 1).
If t \not = \gamma + 1, generate pseudorandom strings \alpha t+1 = \sansF (K\alpha (\gamma + 1), t) and
\beta t = \sansF (K\beta (\gamma + 1), t).
Proceed as \BbbM \gamma does using random coins \alpha t, \alpha t+1, \beta t.

Circuit \BbbM \gamma
2 = (\BbbM \gamma

2)
K\alpha (\gamma +1),K\beta (\gamma +1),\alpha \prime

\gamma +1,\beta
\prime
\gamma +1 :

Identical to (\BbbM \gamma
1)

K\alpha (\gamma +1),K\beta (\gamma +1),\alpha \prime
\gamma +1,\beta

\prime
\gamma +1 , with \alpha \prime

\gamma +1, \beta
\prime
\gamma +1 sampled at

random.
Circuit \BbbM \gamma

3 = (\BbbM \gamma
3)

K\alpha (\gamma +1),K\beta (\gamma +1),\widehat \bfC \gamma +1, \widehat conf\gamma +1 : On input t \in [T], does:

If t = \gamma + 1, output \widehat C\gamma +1.

If t = \gamma , set out\gamma using \widehat conf\gamma +1 as in step 1 of program R; simulate and
output \widetilde C\gamma as in step 2 of R.
Otherwise, compute as \BbbM \gamma

2 does using the punctured keys K\alpha (\gamma + 1),
K\beta (\gamma + 1).

Circuit \BbbM \gamma
4 = (\BbbM \gamma

4)
K\alpha (\gamma +1),K\beta (\gamma +1),\widetilde \bfC \gamma +1, \widetilde conf\gamma +1 :

Identical to (\BbbM \gamma
3)

K\alpha (\gamma +1),K\beta (\gamma +1),\widetilde \bfC \gamma +1, \widetilde conf\gamma +1 , with simulated garbling

pair \widetilde C\gamma +1, \widetilde conf\gamma +1.

Circuit \BbbM \gamma
5 = (\BbbM \gamma

5)
K\alpha (\gamma +1),K\beta (\gamma +1),\alpha \prime

\gamma +1,\beta
\prime
\gamma +1 : On input t \in [T], does:

If t = \gamma + 1, compute \widetilde C\gamma +1 using program R with randomness
\alpha \prime
\gamma +1, \alpha \gamma +2, \beta

\prime
\gamma +1.

If t = \gamma , compute \widetilde C\gamma using program Q, which internally computes \widetilde conf\gamma +1

for setting the output out\gamma using randomness \alpha \prime
\gamma +1.

Otherwise, compute as \BbbM \gamma
4 does using the punctured keys K\alpha (\gamma + 1),

K\beta (\gamma + 1).
Circuit \BbbM \gamma

6 = (\BbbM \gamma
6)

K\alpha (\gamma +1),K\beta (\gamma +1),\alpha \gamma +1,\beta \gamma +1 :
Identical to (\BbbM \gamma

5)
K\alpha (\gamma +1),K\beta (\gamma +1),\alpha \gamma +1,\beta \gamma +1 , with \alpha \gamma +1 = \sansF (K\alpha , \gamma + 1),

\beta \gamma +1 = \sansF (K\beta , \gamma + 1).
The circuits in Figures 3.1, 3.2, and 3.3 are padded to their maximum size.

Fig. 3.3. Circuits used in the security analysis of \scrG \scrS , continued.

By construction, \sansH 1 only differs from \sansh \sansy \sansb \gamma in the underlying program that
is obfuscated; this program \BbbM 1 has the same functionality as \BbbM \gamma . Thus
it follows from the security of indistinguishability obfuscator i\scrO that the
obfuscated programs \BbbM \gamma

and \BbbM 1 are indistinguishable. (Furthermore, the
garbled inputs \~x\gamma and \~x1 in these two hybrids are generated in the same
way.) Thus, we have that the output (\BbbM 1, \~x1) of \sansH 1 is indistinguishable from
the output (\BbbM \gamma

, \~x\gamma) of \sansh \sansy \sansb \gamma . That is,\bigl\{
\sansh \sansy \sansb \gamma (1\lambda ,M, x)

\bigr\}
\lambda
\approx

\bigl\{
\sansH 0(1

\lambda ,M, x)
\bigr\}
\lambda
.

Hybrid \sansH 2: Generate a garbled pair (\BbbM 2, \~x2) by running the same simulation pro-
cedure as in \sansH 1, except with the following modifications: Instead of using

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1153

pseudorandom coins \alpha \gamma +1 and \beta \gamma +1, hybrid \sansH 2 samples two sufficiently long

truly random string \alpha \prime
\gamma +1, \beta

\prime
\gamma +1

\$\leftarrow \{ 0, 1\} poly(\lambda) and replaces \alpha \gamma +1, \beta \gamma +1 with
these truly random strings. More specifically, \sansH 2 obfuscates a program \BbbM 2

that is identical to \BbbM 1, but with (K\alpha (\gamma + 1),K\beta (\gamma + 1), \alpha \prime
\gamma +1, \beta

\prime
\gamma +1) hard-

wired in; furthermore, if \gamma = 0, \alpha \prime
1 (as opposed to \alpha 1) is used to generate the

garbled input \~x2. Since only the punctured keys K\alpha (\gamma + 1),K\beta (\gamma + 1) are
used in the whole simulation procedure, it follows from the pseudorandomness
of the punctured PRF that the output (\BbbM 2, \~x2) of \sansH 2 is indistinguishable from
(\BbbM 1\~x1) of \sansh \sansy \sansb 1. That is,\bigl\{

\sansH 1(1
\lambda ,M, x)

\bigr\}
\lambda
\approx

\bigl\{
\sansH 2(1

\lambda ,M, x)
\bigr\}
\lambda
.

Hybrid \sansH 3: Generate a garbled pair (\BbbM 3, \~x3) by running the same simulation pro-
cedure as in \sansH 2 with the following modifications:
\bullet Observe that in program \BbbM 2, \alpha

\prime
\gamma +1, \beta

\prime
\gamma +1 are used in the evaluation of

at most two inputs, \gamma and \gamma + 1:
For input \gamma + 1, program P is invoked with input \gamma + 1 and random-
ness \alpha \prime

\gamma +1, \alpha \gamma +2, \beta
\prime
\gamma +1, in which a circuit C\gamma +1 is prepared depending on

\alpha \gamma +2, and then obfuscated by computing

key\gamma +1 = \sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , 1S ;\alpha \prime

\gamma +1),
\widehat C\gamma +1 = \sansG \sansb \sansC \sansI \sansR (key\gamma +1,C\gamma +1;\beta

\prime
\gamma +1).

If \gamma > 0, for input \gamma , program R is invoked with input \gamma and randomness
\alpha \gamma , \alpha

\prime
\gamma +1, \beta \gamma , in which a garbled circuit \widetilde C\gamma is simulated; the output out\gamma

used for the simulation depends potentially on an honest garbling of
conf\gamma +1, that is,

\widehat conf\gamma +1 = \sansE \sansn \sansc \sanso \sansd \sanse \sansC \sansI \sansR
\bigl(
\sansG \sanse \sansn \sansC \sansI \sansR (1

\lambda , 1S ;\alpha \prime
\gamma +1), conf\gamma +1

\bigr)
.

Using out\gamma , \widetilde C\gamma is simulating using randomness \alpha \gamma , \beta \gamma .

First modification: Hybrid \sansH 3 receives externally the above pair \widehat C\gamma +1,\widehat conf\gamma +1. Instead of obfuscating \BbbM 2 (which computes \widehat C\gamma +1, \widehat conf\gamma +1

internally), \sansH 3 obfuscates \BbbM 3 that has \widehat C\gamma +1, \widehat conf\gamma +1 directly hardwired
in (as well as K\alpha (\gamma + 1),K\beta (\gamma + 1)). \BbbM 3 on input \gamma +1 directly outputs\widehat conf\gamma +1; on input \gamma , it uses \widehat conf\gamma +1 to compute \widetilde C\gamma ; on all other inputs,
it proceeds identically as \BbbM 2. (See Figure 3.1 for a description of \BbbM 3.) It

is easy to see that when the correct values \widehat C\gamma +1, \widehat conf\gamma +1 are hardwired,
the program \BbbM 3 has the same functionality as \BbbM 2.

\bullet In \sansH 2, if \gamma = 0, \alpha \prime
1 is used for garbling the input,

key1 = \sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , 1S ;\alpha \prime

1),
\widehat conf1 = \sansE \sansn \sansc \sanso \sansd \sanse \sansC \sansI \sansR (key1, conf1),

where conf1 is the initial state corresponding to x.

Second modification: Instead, if \gamma = 0, hybrid \sansH 3 receives \widehat conf1 exter-

nally and directly outputs it as the garbled inputs \^x3 = \widehat conf1.
When \sansH 3 receives the correct values of (\widehat conf\gamma +1, \widehat C\gamma +1) externally, it follows
from the security of i\scrO that the output distribution of \sansH 3 is indistinguishable
from that of \sansH 2. That is,\bigl\{

\sansH 2(1
\lambda ,M, x)

\bigr\}
\lambda
\approx

\bigl\{
\sansH 3(1

\lambda ,M, x)
\bigr\}
\lambda
.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1154 BITANSKY ET AL.

Hybrid \sansH 4: Generate a garbled pair (\BbbM 4, \~x4) by running the same procedure as

in \sansH 3, except that \sansH 4 receives externally a simulated pair (\widetilde conf\gamma +1, \widetilde C\gamma +1)
produced as follows:

(\widetilde conf\gamma +1, st\gamma +1) = \sansS \sansi \sansm .\sansG \sanse \sansn \sansC \sansI \sansR (1
\lambda , S;\alpha \prime

\gamma +1),(3.5) \widetilde C\gamma +1 = \sansS \sansi \sansm .\sansG \sansb \sansC \sansI \sansR
\bigl(
1\lambda , S, 1q, out\gamma +1, st\gamma +1;\beta

\prime
\gamma +1

\bigr)
,(3.6)

where out\gamma +1 is set to be the output of circuit C\gamma +1 on input conf\gamma +1. Thus,
it follows from the security of the circuit garbling scheme \scrG \scrS \sansC \sansI \sansR that the

simulated pair (\widetilde conf\gamma +1, \widetilde C\gamma +1) that hybrid \sansH 4 receives externally is indistin-

guishable from the honest pair (\widehat conf\gamma +1, \widehat C\gamma +1) that \sansH 3 receives externally.
Since these two hybrids only differ in which pair they receive externally, it
follows that \bigl\{

\sansH 3(1
\lambda ,M, x)

\bigr\}
\lambda
\approx

\bigl\{
\sansH 4(1

\lambda ,M, x)
\bigr\}
\lambda
.

Hybrid \sansH 5: Generate a garbled pair (\BbbM 5, \~x5) by running the same procedure as in

\sansH 4, except that instead of receiving (\widetilde conf\gamma +1, \widetilde C\gamma +1) externally, \sansH 5 computes
them internally using truly random coins \alpha \prime

\gamma +1, \beta
\prime
\gamma +1. More precisely, it does

the following:
\bullet It obfuscates a program \BbbM 5 that has K\alpha (\gamma + 1),K\beta (\gamma + 1), \alpha \prime

\gamma +1, \beta
\prime
\gamma +1

hardwired in:
On input \gamma +1, it computes \widetilde C\gamma +1 using the program R with randomness

\alpha \prime
\gamma +1, \alpha \gamma +2, \beta

\prime
\gamma +1 (which computes \widetilde C\gamma +1 as described in (3.5) and (3.6)).

On input \gamma , it computes \widetilde C\gamma using the program Q with randomness

\alpha \gamma , \alpha
\prime
\gamma +2, \beta \gamma (which computes internally \widetilde conf\gamma +1 as described in (3.5)).

On other inputs t \not = \gamma , \gamma + 1, it computes as \BbbM 4 does.

\bullet If \gamma = 0, \alpha \prime
1 is used for computing \widetilde conf1 as described in (3.5), and then

outputs \~x4 = \widetilde conf1.
It follows from the fact that\BbbM 5 computes (\widetilde conf\gamma +1, \widetilde C\gamma +1) correctly internally
that it has the same functionality as \BbbM 4; thus, the obfuscations of these two
programs are indistinguishable. Combined with the fact that the distribution
of the garbled inputs \~x4 is identical to \~x3, we have that\bigl\{

\sansH 4(1
\lambda ,M, x)

\bigr\}
\lambda
\approx

\bigl\{
\sansH 5(1

\lambda ,M, x)
\bigr\}
\lambda
.

Hybrid \sansH 6: Generate a garbled pair (\BbbM 6, \~x6) by running the same procedure as in
\sansH 5, except that instead of using truly random coins \alpha \prime

\gamma +1, \beta
\prime
\gamma +1, use pseudo-

random coins \alpha \gamma +1 = \sansF (K\alpha , \gamma + 1) and \beta \gamma +1 = \sansF (K\beta , \gamma + 1). In particular,
\sansH 6 obfuscates a program \BbbM 6 that is identical to \BbbM 5 except that K\alpha (\gamma + 1),
K\beta (\gamma + 1), \alpha \gamma +1, \beta \gamma +1 are hardwired in, and if \gamma = 0, \alpha 1 is used to generate
the garbled input \~x6. It follows from the pseudorandomness of the punctured
PRF that \bigl\{

\sansH 6(1
\lambda ,M, x)

\bigr\}
\lambda
\approx

\bigl\{
\sansH 5(1

\lambda ,M, x)
\bigr\}
\lambda
.

Hybrid \sansH 7: Generate a garbled pair (\BbbM 7, \~x7) by running hybrid simulator \sansH \sansS \sansi \sansm \gamma +1.
Note that the only difference between \sansH \sansS \sansi \sansm \gamma +1 and the simulation procedure
in \sansH 6 is that instead of obfuscating \BbbM 6 that has tuple (K\alpha (\gamma + 1), K\beta (\gamma + 1),
\alpha \gamma +1, \beta \gamma +1) hardwired in, \sansH \sansS \sansi \sansm \gamma +1 obfuscates \BbbM \gamma +1 that has the full PRF
keys K\alpha ,K\beta hardwired in and evaluates \alpha \gamma +1, \beta \gamma +1 internally.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1155

Since \BbbM \gamma +1 and \BbbM \gamma
6 have the same functionality, it follows from the security

of i\scrO that \bigl\{
\sansH 6(1

\lambda ,M, x)
\bigr\}
\lambda
\approx

\bigl\{
\sansH 5(1

\lambda ,M, x)
\bigr\}
\lambda
.

Finally, by a hybrid argument, we conclude the claim.

Given the above claim, by a hybrid argument over \gamma , we have that \{ \sansr \sanse \sansa \sansl (1\lambda ,M, x)\}
and \{ \sanss \sansi \sansm \sansu (1\lambda ,M, x)\} are indistinguishable. Hence, \scrG \scrS is a secure garbling scheme for
\sansT \sansM .

3.3. Succinct garbling for RAMs via garbled RAMs. Note that our con-
struction of succinct garbling in the previous section uses the underlying circuit gar-
bling scheme \scrG \scrS in a black-box way. In fact, the scheme does not even require the
underlying garbling scheme to be for circuits---any garbling scheme for any class of
algorithms that is ``complete,"" in particular that can be used to implement the aug-
mented blocks, suffices. Below we show that by plugging in the one-time garbled RAM
of [LO13, GHL+14] and modifying the construction of Theorem 3.2 slightly, we can
improve the efficiency of our garbling scheme when the algorithm class is \sansR \sansA \sansM . More
precisely, we show the following theorem.

Theorem 3.5. Assume the existence of iO for circuits and one-way functions.
There exists a garbling scheme \scrG \scrS \sansR \sansA \sansM for \sansR \sansA \sansM with linear-space-dependent complex-
ity. Furthermore, for any RAM R and input x, evaluation of a garbled pair (\widehat R, \^x)
produced by \scrG \scrS \sansR \sansA \sansM takes time poly(\lambda , | R|)\times (TR(x) + S).

Proof. Our garbling scheme \scrG \scrS supports garbling RAM computations, given by
a RAM program R and an input x. The RAM program R on input x has access to
a memory (initially empty) that R can read from and write to at various locations
throughout its execution. If a RAM program R has space complexity S, its memory
size is bounded by S.

Below, we start with a brief review of schemes in [LO13, GHL+14].

The RAM garbling schemes of [LO13, GHL+14]. These schemes support
garbling RAM computations of a more general form, given by a RAM program R, an
input x, and additional initial data D contained in the memory; denote this evaluation
by RD(x). This formulation is able to capture evaluation of multiple RAM programs
with persistent memory, denoted by (R1(x1), . . . , Rk(xk))

D, where the memory D is
updated by each RAM evaluation and the updates persist to the next evaluation.
Though we do not show that our RAM garbling scheme \scrG \scrS supports persistent mem-
ory, as we will see later, the fact that schemes in [LO13, GHL+14] can garble initial
data D in linear time in its size | D| is the key toward showing the linear-space-
dependent complexity of \scrG \scrS .

Below, we recall the syntax and efficiency of schemes in [LO13, GHL+14] and
note several special properties that will be useful for our construction later. Let R be
a RAM machine with parameters n,m, S, T .

Algorithms: The schemes contain the following algorithms.

\bullet kd
\$\leftarrow \sansG \sanse \sansn d(1\lambda) samples a data garbling key kd in poly(\lambda) steps.

\bullet \widehat D \$\leftarrow \sansG \sansD \sansa \sanst \sansa D(kd) takes D as initial data and a data garbling key kd \in
\{ 0, 1\} \lambda as input and outputs garbled data \widehat D in linear time in the data
size poly(\lambda)| D| . The RAM program \sansG \sansD \sansa \sanst \sansa has size poly(\lambda).

\bullet (\widehat R, ki)
\$\leftarrow \sansG \sansP \sansr \sanso \sansg (kd, R) takes the description of a RAM machine R and

a data garbling key kd and outputs a garbled program \widehat R and an input
garbling key ki in linear time in the time bound poly(\lambda , n, | R|)T .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1156 BITANSKY ET AL.

Independent input/data encoding: Note that the data garbling algorithm
\sansG \sansD \sansa \sanst \sansa does not depend on the program or the input. Moreover, the pro-
gram garbling algorithm \sansG \sansP \sansr \sanso \sansg can be decomposed into two subroutines,

ki
\$\leftarrow \sansG \sanse \sansn i(1\lambda , 1n) and \widehat R \$\leftarrow \sansG \sansP \sansr \sanso \sansg \prime (kd, ki, R), which runs, respectively,

in time poly(\lambda , n) and poly(\lambda , n, | R|)T . (The garbled RAM schemes
of [LO13, GHL+14] are based on Yao's garbled circuits and inherit the
property that the input garbling key depends only on the input length
and security parameter.) Thus, the input garbling algorithm \sansG \sansI \sansn \sansp \sansu \sanst
below also does not depend on the program.

\bullet \^x
\$\leftarrow \sansG \sansI \sansn \sansp \sansu \sanst (ki, x) takes input x \in \{ 0, 1\} n and the input garbling key ki,

and outputs a garbled input \^x in time poly(\lambda , n).

\bullet y = \sansG \sansE \sansv \sansa \sansl
\widehat D(\widehat R, \^x) takes a garbled program \widehat R and a garbled input \^x,

with access to the garbled data \widehat D, and computes the output y = RD(x)
in linear time in the time bound poly(\lambda , n, | R|)T .10

Simulation: (\~R, \~x, \widetilde D)
\$\leftarrow \sansG \sansS \sansi \sansm (1\lambda , (| x| , | D| , | R| , n,m, S, T), R(x)) simulates the gar-

bled program, input, and data.11

Independent garbled input/data simulation: The simulation algorithm can be
decomposed into the following two \sansP \sansP \sansT procedures:

(\~x, \widetilde D, st)
\$\leftarrow \sansG \sansS \sansi \sansm .\sansG \sanse \sansn (1\lambda , | x| , | D|),

\~R
\$\leftarrow \sansG \sansS \sansi \sansm .\sansG \sansb (1\lambda , (| x| , | D| , | R| , n,m, S, T), R(x), st).

Finally, we note that the schemes of [LO13, GHL+14] assumes the existence of
an identity-based encryption (IBE), which is implied by iO and one-way functions.

The basic RAM garbling scheme \bfscrG \bfscrS \prime . From the nonsuccinct RAM garbling
schemes of [LO13, GHL+14] described above, we derive a basic RAM garbling scheme
\scrG \scrS \prime = (\sansG \sansa \sansr \sansb \prime , \sansE \sansn \sansc \sanso \sansd \sanse \prime , \sansE \sansv \sansa \sansl \prime) with similar syntax to a circuit garbling scheme with
independent input encoding. Then it becomes easier to see why we can use \scrG \scrS \prime to
replace a circuit garbling scheme in the construction of Theorem 3.2. Furthermore,
the efficiency guarantee of \scrG \scrS \prime makes the construction more efficient, leading to linear-
space-dependent complexity.

Algorithms: The scheme \scrG \scrS \prime consists of the following algorithms:

\bullet The garbling algorithm (key, \widehat R)
\$\leftarrow \sansG \sansa \sansr \sansb \prime (1\lambda , R) consists of two subrou-

tines, key
\$\leftarrow \sansG \sanse \sansn \prime (1\lambda) and \widehat R \$\leftarrow \sansG \sansb \prime (key, R), defined below:

key
\$\leftarrow \sansG \sanse \sansn \prime (1\lambda , 1n) : key = (kd, ki), kd

\$\leftarrow \sansG \sanse \sansn d(1\lambda), ki
\$\leftarrow \sansG \sanse \sansn i(1\lambda , 1n) ,\widehat R \$\leftarrow \sansG \sansb \prime (key, R) : \widehat R \$\leftarrow \sansG \sansP \sansr \sanso \sansg \prime (kd, ki, R) .

The runtime of \sansG \sansa \sansr \sansb \prime is bounded by poly(\lambda , n, | R|)T .
\bullet The input/data encoding algorithm \sansE \sansn \sansc \sanso \sansd \sanse \prime runs the \sansG \sansI \sansn \sansp \sansu \sanst and \sansG \sansD \sansa \sanst \sansa

algorithms:

(\^x, \widehat D)
\$\leftarrow \sansE \sansn \sansc \sanso \sansd \sanse \prime

D
(key = (kd, ki), x) : \^x

\$\leftarrow \sansG \sansI \sansn \sansp \sansu \sanst (ki, x), \widehat D \$\leftarrow \sansG \sansD \sansa \sanst \sansa D(kd) .

10Note that the evaluation runs in linear time in the time bound T , as opposed to the instance
running time TR(x). The weaker efficiency guarantee suffices.

11Note that the simulation procedure does not receive the instance running time TR(x). This
matches the fact that evaluation procedure does not have instance-based efficiency.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1157

The runtime of \sansE \sansn \sansc \sanso \sansd \sanse \prime is bounded by poly(\lambda , n)| D| , and the size of
\sansE \sansn \sansc \sanso \sansd \sanse \prime is bounded by poly(\lambda , n).

\bullet The evaluation algorithm \sansE \sansv \sansa \sansl \prime runs \sansG \sansE \sansv \sansa \sansl and outputs y = RD(x):

y = \sansE \sansv \sansa \sansl \prime
\widehat D
(\widehat R, \^x) : y = \sansG \sansE \sansv \sansa \sansl

\widehat D(\widehat R, \^x) .

The runtime of \sansE \sansv \sansa \sansl \prime is bounded by poly(\lambda , n, | R|)T .
Simulation: The simulation procedure \sansS \sansi \sansm \prime runs \sansS \sansi \sansm .\sansG \sanse \sansn \prime := \sansG \sansS \sansi \sansm .\sansG \sanse \sansn and \sansS \sansi \sansm .\sansG \sansb \prime

:= \sansG \sansS \sansi \sansm .\sansG \sansb :

(\~R, (\~x, \widetilde D))
\$\leftarrow \sansS \sansi \sansm \prime (1\lambda , (| x| , | D| , | R| , n,m, S, T), R(x)) :

((\~x, \widetilde D), st)
\$\leftarrow \sansS \sansi \sansm .\sansG \sanse \sansn \prime (1\lambda , | x| , | D|),

\~R
\$\leftarrow \sansS \sansi \sansm .\sansG \sansb \prime (1\lambda , (| x| , | D| , | R| , n,m, S, T), R(x), st) .

Let \scrG \scrS \prime = (\sansG \sansa \sansr \sansb \prime = (\sansG \sanse \sansn \prime ,\sansG \sansb \prime),\sansE \sansn \sansc \sanso \sansd \sanse \prime ,\sansE \sansv \sansa \sansl \prime) be a basic garbling scheme as
described above, with simulation procedure \sansS \sansi \sansm \prime = (\sansS \sansi \sansm .\sansG \sanse \sansn \prime ,\sansS \sansi \sansm .\sansG \sansb \prime). We now con-
struct a garbling scheme \scrG \scrS for bounded space RAM with improved efficiency. In par-
ticular, it has (1) linear-space-dependent complexity and (2) produces garbled RAM

with poly(\lambda , | R|) overhead (that is, evaluation of \widehat R, \^x takes poly(\lambda , | R|)TR(x) steps).
In comparison, the previous general construction has polynomial-space-dependent
complexity and poly(\lambda , | R| , S) overhead. Toward this goal, we plug \scrG \scrS \prime and \sansS \sansi \sansm \prime

into our general construction and make the following modifications.

Modification to step 1: As before, the first step is constructing a nonsuccinct
garbling scheme by dividing a RAM computation into small blocks and gar-
bling all of them using \scrG \scrS \prime .
The only, and key, difference is, instead of dividing a T -step RAM computa-
tion into T 1-step ``blocks,"" divide it into \lceil T/S\rceil S-step ``blocks."" Each block,
say the tth block Wt, is a RAM algorithm that (i) takes as input a state stt
and has access to a memory with content Dt, (ii) runs R for S steps, and (iii)
outputs a state stt+1 for the next block and updates the memory content to
Dt+1. (When t = 1, the memory is initializes with the input D1 = x, and st1
is set to the initial state.) That is, stt+1 = WDt

t (stt). The states have size
at most | R| ,12 and the memory has size at most | S| .
As before, each block Wt is augmented with the encoding algorithm \sansE \sansn \sansc \sanso \sansd \sanse \prime

that garbles the state stt+1 and data Dt+1 produced by Wt, implementing a
keyt+1 used for garbling the next augmented data, that is, the tth augmented
block BDt(t,keyt+1, stt) does the following:

1. Run WDt
t (stt) to obtain output stt+1 and updated data Dt+1.

2. Run \sansE \sansn \sansc \sanso \sansd \sanse \prime
Dt+1(keyt+1, stt+1) and obtain garbled state \widehat stt+1 and data\widehat Dt+1.

3. Output \widehat stt+1, \widehat Dt+1. In addition, if stt+1 is a final state, output y.
Then the program B \star (t,keyt+1, \star) for each augmented block is garbled using
\sansG \sansa \sansr \sansb \prime , producing garbled blocks.
Efficiency. We now analyze various efficiency parameters.

12The states are part of the inputs and outputs of the circuit C\sansC \sansP \sansU implementing the next step
function of R. The description size of R is at least | C\sansC \sansP \sansU | . Therefore, the sizes of states are bounded
by | R| .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1158 BITANSKY ET AL.

\bullet Each augmented block basically runs Wt followed by \sansE \sansn \sansc \sanso \sansd \sanse \prime . Since
keyt+1 has size poly(\lambda), we have

\Psi = | B| = poly(\lambda , | R|), TB = poly(\lambda , | R|)S.

The latter follows since \sansE \sansn \sansc \sanso \sansd \sanse \prime runs in linear time in the data size and
polynomially in the size of the states (which are inputs to \sansE \sansn \sansc \sanso \sansd \sanse \prime).

\bullet By the efficiency of \sansG \sansb \prime , each garbled block has size

\Phi = poly(\lambda , | R| , | B|)TB = poly(\lambda , | R|)S.

\bullet Overall, there are \lceil T/S\rceil blocks, resulting in a nonsuccinct garbled RAM\widehat R of size
| \widehat R| = \lceil T/S\rceil \times \Phi = poly(\lambda , | R|)T.

\bullet We note that for any input x that takes T \ast steps to evaluate, the out-
put R(x) is produced after evaluating \lceil T \ast /S\rceil garbled blocks, taking
poly(\lambda , | R|)(T \ast + S) steps.

Modification to step 2: As before, the second step is using obfuscation to ``com-
press"" the size of the nonsuccinct garbling scheme constructed in step 1.
However, using any obfuscator to obfuscate the program that generates each
of \lceil T/S\rceil garbled blocks leads to an obfuscated program of size at least
poly(\lambda ,\Phi) = poly(\lambda , | R| , S). In this case, the complexity of the new gar-
bling scheme is not linear in S, and the overhead of the produced garbled
RAM is at least poly(\lambda , | R| , S).
Better efficiency. To avoid the polynomial overhead due to obfuscation, we
instead use an i\scrO for circuits with quasi-linear complexity | C| poly(\lambda , n),
where | C| is the size of the circuit obfuscated and n is the length of the input.
As shown in section 5.4, such a scheme can be constructed generically from
any i\scrO (for circuits), puncturable PRF, and randomized encoding that is
local (as defined in section 5.4 and satisfied, for instance, by Yao's garbled
circuits), all with 2 - (n+\omega (log \lambda)) security.
Efficiency. Since the obfuscated programs \BbbP i, \BbbQ i, and \BbbR i take input a time
index t of length O(log T) and output a garbled block computed in time
poly(\lambda , | R|)S (roughly the same as \Phi), the size of the new garbled RAM (and
the complexity for generating it) is therefore

size of garbled RAM = poly(\lambda , | R|)S \times poly(\lambda , log T) = poly(\lambda , | R|)\times S,

which is linear in the space complexity of R.
Moreover, evaluation of an input x of instance complexity T \ast requires gener-
ating and evaluating \lceil T \ast /S\rceil garbled blocks, which takes time

run time of garbled RAM = \lceil T \ast /S\rceil \times poly(\lambda , | R|)\times S = poly(\lambda , | R|)\times (S+T \ast) .

This concludes the proof of Theorem 3.5.

3.3.1. RAM garbling scheme with complexity linear in the program
size. The RAM garbling scheme of Theorem 3.5 produces garbled RAM of size
poly(\lambda , | R|)\times S and running time poly(\lambda , | R|)T \ast (for an input of instance complexity
T \ast), both depending polynomially in the description size of the underlying RAM | R| .
We show that the complexity can be improved to depending linearly on | R| , that is,
the garbled RAM has size poly(\lambda)\times (| R| +S) and running time poly(\lambda)\times (| R| +S+T \ast).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1159

To achieve this, we need to rely on a basic RAM garbling scheme that satisfies the
properties---independent input encoding and linear complexity---described above, and
the following strengthening: The complexity of the garbling algorithm \sansG \sansb \prime depends
linearly on | R| , that is, poly(\lambda)(| R| +T) (as opposed to poly(\lambda , | R|)T). To obtain such
a basic RAM garbling scheme, we observe that there is a universal RAM M , such
that any RAM computation R(x) can be transformed into computing MR(x, | R|),
where the description of R is provided as a part of the initial memory. The universal
machine M has constant size and MR(x, | R|) takes at most cTR(x) steps for some
constant c (since each step of R depends on at most a constant number of bits of the
description of R). Then applying the construction of [LO13, GHL+14] to M with a
persistent database R yields a garbled RAM of size poly(\lambda)(T + | R|) (where poly(\lambda)T
corresponds to the size of garbling of M and poly(\lambda)| R| corresponds to the garbling
of the persistent database R).

Now, instantiate the construction of Theorem 3.5 with such a basic RAM garbling
scheme, with an additional modification: In step 1, instead of dividing a T -step
RAM computation into \lceil T/S\rceil S-step blocks, divide it into \lceil T/(S + | R|)\rceil (S + | R|)-
step blocks; the rest of the construction follows identically. We now argue that this
construction indeed has complexity linear in | R| . Each augmented block has the
same size as before poly(\lambda) + | R| , but a longer running time of poly(\lambda)(S + | R|).
By the complexity of the (new) basic RAM garbling scheme, each of the garbled
blocks has size poly(\lambda)(S+ | R|). Therefore, when obfuscating using an i\scrO with quasi-
linear complexity, the program that produces the garbled blocks, it leads to a new
garbled RAM of size poly(\lambda)(S + | R|). The evaluation of such a garbled RAM with
an input x of instance complexity T \ast takes time \lceil T \ast /(S+ | R|)\rceil \times poly(\lambda)(S+ | R|) =
poly(\lambda)(S + | R| + T \ast). Since the construction and analysis is essentially the same as
in Theorem 3.5, we omit the details here.

4. Succinct garbling via reusable obfuscation. In this section (based on
[CHJV15]) we provide alternative proofs for Theorems 3.1 and 3.2. As mentioned
in the introduction, the approach here is more direct: We obfuscate the circuit that
implements a single computational step of the machine itself. More specifically, this
is the circuit that reads the contents of the appropriate cell on the machine's tape,
writes a new value to the cell, moves the head to a new tape location, and updates
the machine's state according to its transition function. To make sure that the com-
putation remains meaningful and that the evaluator does not learn the intermediate
values that the machine writes on its tape, we provide a mechanism for the obfuscated
machine to encrypt and authenticate the contents of the tape.

We proceed in three steps. First, in section 4.1, we present a special, iO-friendly
authenticated encryption scheme, ACE. This scheme, which is a central piece in our
solution, will be used to encrypt and authenticate data written to the tape.

Second, in section 4.2 we present and analyze the scheme for garbling Turing
machines using iO and an ACE scheme.

Finally, in section 4.3 we present and analyze our scheme for garbling RAM
machines. The main additional component here is an ``iO-friendly oblivious RAM""
mechanism.

4.1. Special authenticated encryption (ACE). In the following sections we
give an alternate method for garbling Turing machines and RAM machines from iO.
These methods rely heavily on a special authenticated encryption scheme, which we
define here and call asymmetrically constrained encryption (ACE). An ACE scheme
has the following special properties:

1. Ciphertexts are unique: for each message m and key K, there is at most a

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1160 BITANSKY ET AL.

single string that decrypts to m under key K.
2. Both encryption and decryption capabilities under the key K are puncturable.

That is, let S be a subset of the message space which is decidable by a
bounded-size circuit C (i.e., S = \{ m : C(m) = 1\}). One can generate a
``punctured"" encryption key EKC which is only able to encrypt messages m
for which m /\in S.
Similarly, one can generate a constrained decryption key DKC which, given
an encryption of m, outputs m only if m /\in S (and otherwise outputs \bot).
We also require that DKC be indistinguishable from DK, even given certain
``allowed"" auxiliary information. In particular, they remain indistinguishable
even given an encryption key which is constrained on a superset of S.

These properties are central in the analysis of our garbling schemes.

4.1.1. Definition.

Definition 4.1. An asymmetrically constrained encryption (ACE) scheme is a
5-tuple of PPT algorithms (\sansS \sanse \sanst \sansu \sansp ,\sansG \sanse \sansn \sansE \sansK ,\sansG \sanse \sansn \sansD \sansK ,\sansE \sansn \sansc ,\sansD \sanse \sansc) satisfying syntax, correct-
ness, security of constrained decryption, and selective indistinguishability of cipher-
texts as described below.

Syntax. The algorithms (\sansS \sanse \sanst \sansu \sansp ,\sansG \sanse \sansn \sansE \sansK ,\sansG \sanse \sansn \sansD \sansK ,\sansE \sansn \sansc ,\sansD \sanse \sansc) have the following syn-
tax.

\bullet Setup. \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n, 1s) is a randomized algorithm that takes as input the
security parameter \lambda , the message length n, and a ``circuit succinctness""
parameter s, all in unary. \sansS \sanse \sanst \sansu \sansp then outputs a secret key SK. We think of
secret keys as consisting of two parts: an encryption key EK and a decryption
key DK.
Let\scrM = \{ 0, 1\} n denote the message space.

\bullet (Constrained) key generation. Let S \subset \scrM be any set whose membership
is decidable by a circuit CS . We say that S is admissible if | CS | \leq s. In-
tuitively, the set size parameter s denotes the upper bound on the size of
circuit description of sets to which encryption and decryption keys can be
constrained.

-- \sansG \sanse \sansn \sansE \sansK (SK,CS) takes as input the secret key SK of the scheme and
the description of circuit CS for an admissible set S. It outputs an
encryption key EK\{ S\} . We write EK to denote EK\{ \emptyset \} .

-- \sansG \sanse \sansn \sansD \sansK (SK,CS) also takes as input the secret key SK of the scheme
and the description of circuit CS for an admissible set S. It outputs a
decryption key DK\{ S\} . We write DK to denote DK\{ \emptyset \} .

Unless mentioned otherwise, we will only consider admissible sets S \subset \scrM .
\bullet Encryption. \sansE \sansn \sansc (EK \prime ,m) is a deterministic algorithm that takes as input an
encryption key EK \prime (that may be constrained) and a message m \in \scrM and
outputs a ciphertext c or the reject symbol \bot .

\bullet Decryption. \sansD \sanse \sansc (DK \prime , c) is a deterministic algorithm that takes as input a
decryption keyDK \prime (that may be constrained) and a ciphertext c and outputs
a message m \in \scrM or the reject symbol \bot .

Correctness. An ACE scheme is correct if the following properties hold.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1161

1. Correctness of decryption. For all n, all m \in \scrM , and all sets S, S\prime \subset \scrM such
that m /\in S \cup S\prime ,

Pr

\left[\sansD \sanse \sansc (DK,\sansE \sansn \sansc (EK,m)) = m

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm|
SK \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda),
EK \leftarrow \sansG \sanse \sansn \sansE \sansK (SK,CS\prime),
DK \leftarrow \sansG \sanse \sansn \sansD \sansK (SK,CS)

\right] = 1.

Informally, this says that \sansD \sanse \sansc \circ \sansE \sansn \sansc is the identity on messages which are in
neither of the punctured sets.

2. Equivalence of constrained encryption. Let SK \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda). For any mes-
sage m \in \scrM and any sets S, S\prime \subset \scrM with m not in the symmetric difference
S\Delta S\prime (i.e., we require that m is in both S and S\prime or m is in neither S nor
S\prime),

Pr

\left[\sansE \sansn \sansc (EK,m) = \sansE \sansn \sansc (EK \prime ,m)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm|
SK \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda),
EK \leftarrow \sansG \sanse \sansn \sansE \sansK (SK,CS),
EK \prime \leftarrow \sansG \sanse \sansn \sansE \sansK (SK,CS\prime)

\right] = 1.

3. Unique ciphertexts. With high probability over SK \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda), it holds for
any c and c\prime that if \sansD \sanse \sansc (DK, c) = \sansD \sanse \sansc (DK, c\prime) \not = \bot , then c = c\prime .

4. Safety of constrained decryption. For all strings c and all S \subset \scrM ,

Pr
\bigl[
\sansD \sanse \sansc (DK, c) \in S

\bigm| \bigm| SK \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda), DK \leftarrow \sansG \sanse \sansn \sansD \sansK (SK,CS)
\bigr]
= 0.

This says that a punctured key DK\{ S\} will never decrypt a string c to a
message in S.

5. Equivalence of constrained decryption. If \sansD \sanse \sansc (DK\{ S\} , c) = m \not = \bot and
m /\in S\prime , then \sansD \sanse \sansc (DK\{ S\prime \} , c) = m.

Security of constrained decryption. Intuitively, this property says that for
any two sets S0, S1, no adversary can distinguish between the constrained keyDK\{ S0\}
and DK\{ S1\} , even given additional auxiliary information in the form of a constrained
encryption key EK \prime and ciphertexts c1, . . . , ct. To rule out trivial attacks, EK \prime is
constrained at least on S0\Delta S1. Similarly, each ci is an encryption of a message
m /\in S0\Delta S1.

Formally, we describe security of constrained decryption as a multistage game
between an adversary \scrA and a challenger.

\bullet Setup. \scrA chooses sets S0, S1, U such that S0\Delta S1 \subseteq U \subseteq \scrM and sends its
circuit descriptions (CS0

, CS1
, CU) to the challenger. \scrA also sends arbitrary

polynomially many messages m1, . . . ,mt such that mi /\in S0\Delta S1.
The challenger chooses a bit b \in \{ 0, 1\} and computes the following:
1. SK \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda).
2. DK\{ Sb\} \leftarrow \sansG \sanse \sansn \sansD \sansK (SK,CSb

).
3. EK \leftarrow \sansG \sanse \sansn \sansE \sansK (SK, \emptyset).
4. ci \leftarrow \sansE \sansn \sansc (EK,mi) for every i \in [t].
5. EK\{ U\} \leftarrow \sansG \sanse \sansn \sansE \sansK (SK,CU).

Finally, it sends the tuple (EK\{ U\} , DK\{ Sb\} , \{ ci\}) to \scrA .
\bullet Guess. \scrA outputs a bit b\prime \in \{ 0, 1\} .

The advantage of \scrA in this game (on security parameter \lambda) is defined as \sansa \sansd \sansv \scrA =\bigm| \bigm| Pr[b\prime = b] - 1
2

\bigm| \bigm| . We require that for all PPT \scrA , \sansa \sansd \sansv \scrA (\lambda) is negligible in \lambda .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1162 BITANSKY ET AL.

Selective indistinguishability of ciphertexts. Intuitively, this property says
that no adversary can distinguish encryptions of m0 from encryptions of m1, even
given certain auxiliary information. The auxiliary information corresponds to con-
strained encryption and decryption keys EK \prime , DK \prime , as well as some ciphertexts
c1, . . . , ct. In order to rule out trivial attacks, EK \prime and DK \prime should both be punc-
tured on at least \{ m0,m1\} , and none of c1, . . . , ct should be an encryption of m0 or
m1. Let both \scrF 1 and \scrF 2 be subexponentially secure.

Formally, we require that for all sets S,U \subset \scrM , for all m\ast
0,m

\ast
1 \in S \cap U , and for

all m1, . . . ,mt \in \scrM \setminus \{ m\ast
0,m

\ast
1\} , the distribution

EK\{ S\} , DK\{ U\} , c\ast 0, c\ast 1, c1, . . . , ct

is computationally indistinguishable from

EK\{ S\} , DK\{ U\} , c\ast 1, c\ast 0, c1, . . . , ct

in the probability space defined by sampling SK \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda), EK \leftarrow \sansG \sanse \sansn \sansE \sansK (SK, \emptyset),
EK\{ S\} \leftarrow \sansG \sanse \sansn \sansE \sansK (SK,CS), DK\{ U\} \leftarrow \sansG \sanse \sansn \sansD \sansK (SK,CU), c

\ast
b \leftarrow \sansE \sansn \sansc (EK,m\ast

b), and
ci \leftarrow \sansE \sansn \sansc (EK,mi).

4.1.2. Construction. We now present a construction of an asymmetrically con-
strainable encryption scheme ACE = (\sansS \sanse \sanst \sansu \sansp ,\sansG \sanse \sansn \sansE \sansK ,\sansG \sanse \sansn \sansD \sansK ,\sansE \sansn \sansc ,\sansD \sanse \sansc). Our scheme
is based on iO and one-way functions that are subexponentially secure and is based
on the ``hidden triggers"" mechanism in the deniable encryption scheme of [SW14].
\sansS \sanse \sanst \sansu \sansp (1\lambda , 1n, 1s) : Let \scrF 1 = (\sansP \sansR \sansF .\sansG \sanse \sansn 1,\sansP \sansR \sansF .\sansP \sansu \sansn \sansc 1,\sansF 1) be a subexponentially secure

puncturable PRF (PPRF) family with domain \{ 0, 1\} n and codomain \{ 0, 1\} 3n+\lambda

such that \scrF 1 is (statistically) injective with failure probability 2 - n - \lambda , as de-
fined and constructed in [SW14, Theorem 2]. Let \scrF 2 = (\sansP \sansR \sansF .\sansG \sanse \sansn 2,\sansP \sansR \sansF .\sansP \sansu \sansn \sansc 2,
\sansF 2) be a (noninjective) subexponentially secure PPRF family with domain
\{ 0, 1\} 3n+\lambda and codomain \{ 0, 1\} n.
Let \lambda \prime denote a security parameter chosen as a function of \lambda and n to ensure
that any nonuniform \sansp \sanso \sansl \sansy (\lambda)-size adversary \scrA has 2 - n \cdot negl(\lambda) advantage in
the PRF games associated to \scrF 1 and \scrF 2, as well as in the iO game associated
with i\scrO (1\lambda \prime

, \cdot). Since we assumed that \scrF 1, \scrF 2, and i\scrO were subexponentially
secure, this is achievable (indeed with subexponential negl) with some \lambda \prime =
\sansp \sanso \sansl \sansy (\lambda).
\sansS \sanse \sanst \sansu \sansp samples keys K1 \leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn 1(1

\lambda \prime
) and K2 \leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn 2(1

\lambda \prime
), and

outputs (K1,K2, p), where p = \sansp \sanso \sansl \sansy (\lambda \prime , n, s) is a fixed polynomial ``padding""
chosen to be larger than \scrG \sanse \sansn \sansc and \scrG \sansd \sanse \sansc in each hybrid distribution of the
security proof (see Remarks 4.4 and 4.6). We will write Fi to denote the
function \sansF i(Ki, \cdot).

\sansG \sanse \sansn \sansE \sansK ((K1,K2, p), CS) : The encryption key generation algorithm takes as input keys
K1,K2 and the circuit description CS of an admissible set S. It prepares a
circuit representation of \scrG \sanse \sansn \sansc (Figure 4.1), padded to be of size p. Next, it
computes the encryption key EK\{ S\} \leftarrow i\scrO (\scrG \sanse \sansn \sansc) and outputs the result.

\sansG \sanse \sansn \sansD \sansK ((K1,K2, p), CS) : The decryption key generation algorithm takes as input keys
K1,K2 and the circuit description CS of an admissible set S. It prepares a
circuit representation of \scrG \sansd \sanse \sansc (Figure 4.2), padded to be of size p. It then
computes the decryption key DK\{ S\} \leftarrow i\scrO (1\lambda \prime

,\scrG \sansd \sanse \sansc) and outputs the result.
\sansE \sansn \sansc (EK \prime ,m) : The encryption algorithm simply runs the encryption key program

EK \prime on message m to compute the ciphertext c\leftarrow EK \prime (m).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1163

Input: Message m \in \{ 0, 1\} n.
Constants: K1, K2, circuit CS .
1. If m \in S, output \bot .
2. Otherwise, output \alpha \| \beta , where \alpha = F1(m) and \beta = F2(\alpha)\oplus m.

Fig. 4.1. (Constrained) encryption \scrG \sanse \sansn \sansc .

Input: Ciphertext c \in \{ 0, 1\} 3n+\lambda .
Constants: K1, K2, circuit CS .
1. Parse c as \alpha \| \beta with \beta \in \{ 0, 1\} n, and compute m = F2(\alpha)\oplus \beta .
2. If m \in S, or if \alpha \not = F1(m), then output \bot .
3. Otherwise, output m.

Fig. 4.2. (Constrained) decryption \scrG \sansd \sanse \sansc .

\sansD \sanse \sansc (DK \prime , c) : The decryption algorithm simply runs the decryption key program DK \prime

on the input ciphertext c and returns the output DK \prime (c).

Remark 4.2. Subexponential security of iO and one-way functions was required
only for 2 - n \cdot negl(\lambda) security against \sansp \sanso \sansl \sansy (\lambda)-time adversaries with relatively small \lambda \prime

(= \sansp \sanso \sansl \sansy (\lambda)). If we only had polynomially secure iO and one-way functions, we would
need \lambda \prime = \lambda \cdot 2\epsilon n for any \epsilon > 0, which in general could be extremely large.

However, in our applications to garbling polynomial-time Turing machine and
RAM computations on inputs of length \sansp \sanso \sansl \sansy (\lambda), we use ACE with n = O(log \lambda).
Thus in this case we can achieve the requisite security with \lambda \prime = \sansp \sanso \sansl \sansy (\lambda), assuming
only polynomially secure iO and one-way functions.

This completes the description of our construction of ACE.

4.1.3. Proof of correctness and security.

Correctness. We first argue correctness:
1. Correctness of decryption. This follow directly from the definitions of \scrG \sanse \sansn \sansc

and \scrG \sansd \sanse \sansc given in Figures 4.1 and 4.2, along with the perfect correctness of
i\scrO .

2. Equivalence of constrained encryption. This follows directly from the defini-
tion of \scrG \sanse \sansn \sansc and the perfect correctness of i\scrO .

3. Uniqueness of encryptions. A ciphertext c = \alpha \| \beta decrypts to m \not = \bot only
if \alpha = F1(m) and \beta = F2(\alpha). Since F1 is injective with probability at least
1 - 2 - \lambda , there can be only one ciphertext which decrypts to m.

4. Safety of constrained decryption. This follows directly from the definition of
\scrG \sansd \sanse \sansc and the perfect correctness of i\scrO .

5. Equivalence of constrained decryption. This follows directly from the defini-
tion of \scrG \sansd \sanse \sansc and the perfect correctness of i\scrO .

Security of constrained decryption. We now prove that ACE satisfies secu-
rity of constrained decryption.

Lemma 4.3. The proposed scheme ACE satisfies security of constrained decryp-
tion.

Proof. Let S0, S1, U be arbitrary subsets of \{ 0, 1\} n such that S0\Delta S1 \subseteq U, and let
CS0

, CS1
, CU be their circuit descriptions. Let m1, . . . ,mt be arbitrary messages such

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1164 BITANSKY ET AL.

that every mi \in M \setminus (S0\Delta S1). We argue that no PPT distinguisher can distinguish
between

(EK\{ U\} , DK\{ S0\} , \{ ci\})

and
(EK\{ U\} , DK\{ S1\} , \{ ci\})

in the probability space defined by sampling the following:

SK \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda),
EK \leftarrow \sansG \sanse \sansn \sansE \sansK (SK, \emptyset),
EK\{ U\} \leftarrow \sansG \sanse \sansn \sansE \sansK (SK,CU).
For every i \in [t]

ci := \sansE \sansn \sansc (EK,mi).
For b \in \{ 0, 1\}

DK\{ Sb\} := \sansG \sanse \sansn \sansD \sansK (SK,CSb
).

Without loss of generality, we will suppose that S0 \subseteq S1. The general case follows
because then

(EK\{ U\} , DK\{ S0\} , \{ ci\}) \approx c (EK\{ U\} , DK\{ S0 \cap S1\} , \{ ci\})
\approx c (EK\{ U\} , DK\{ S1\} , \{ ci\}).

We now prove the lemma by exhibiting a sequence of | S1 \setminus S0| + 1 hybrid exper-
iments \sansH 0, . . . ,\sansH | S1\setminus S0| +1, each of which is 2 - n \cdot negl(\lambda)-indistinguishable from the
previous, such that

\sansH 0 \approx c (EK\{ U\} , DK\{ S0\} , \{ ci\})

and
\sansH | S1\setminus S0| \approx c (EK\{ U\} , DK\{ S1\} , \{ ci\}).

We now proceed to give details. Let ui denote the lexicographically ith element of
S1 \setminus S0. Throughout the experiments, we will refer to the encryption key and decryp-
tion key programs given to the distinguisher as EK \prime and DK \prime , respectively. Similarly,
(unless stated otherwise) we will refer to the unobfuscated algorithms underlying EK \prime

and DK \prime as \scrG \prime \sanse \sansn \sansc and \scrG \prime \sansd \sanse \sansc , respectively.

Hybrid \sansH i (for 1 \leq i \leq | S1 \setminus S0|): In the ith hybrid, the decryption key program
\scrG \prime \sansd \sanse \sansc first checks whether m \in S1 and m \leq ui. If this is the case, then it
simply outputs \bot . Otherwise, it behaves in the same manner as DK\{ S0\} .
The underlying unobfuscated program \scrG \prime \sansd \sanse \sansc is described in Figure 4.3.

Therefore, in hybrid \sansH 0, \scrG \prime \sansd \sanse \sansc has the same functionality as DK\{ S0\} , and in
\sansH | S1\setminus S0| , \scrG \prime \sansd \sanse \sansc has the same functionality as DK\{ S1\} .

Input: Ciphertext c \in \{ 0, 1\} 4n+\lambda .
Constants: PPRF keys K1, K2, circuits CS0

, CS1
.

1. Parse c as \alpha \| \beta with \beta \in \{ 0, 1\} n, and compute m = F2(\alpha)\oplus \beta .
2. If m \leq ui and m \in S1, or m > ui and m \in S0, or \alpha \not = F1(m), output \bot .
3. Otherwise, output m.

Fig. 4.3. (Constrained) decryption \scrG \prime
\sansd \sanse \sansc in hybrid i.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1165

We now construct a series of intermediate hybrid experiments \sansH i,0, . . . ,\sansH i,7, where
\sansH i,0 is the same as \sansH i and \sansH i,7 is the same as \sansH i+1. For every j, we will prove that
\sansH i,j and \sansH i,j+1 are 2 - n \cdot negl(\lambda)-indistinguishable, which establishes that \sansH i and \sansH i+1

are also 2 - n \cdot negl(\lambda)-indistinguishable.
Hybrid \sansH i,0: This is the same as experiment \sansH i.
Hybrid \sansH i,1: This is the same as experiment \sansH i,0 except that we modify \scrG \prime \sansd \sanse \sansc as

in Figure 4.4. If the decrypted message m is ui+1, then instead of check-
ing whether \alpha \not = F1(m) in line 5, \scrG \prime \sansd \sanse \sansc now checks whether \sansC \sanso \sansm \sansm \sansi \sanst (0;\alpha) \not =
\sansC \sanso \sansm \sansm \sansi \sanst (0;F1(ui+1)), where \sansC \sanso \sansm \sansm \sansi \sanst is an injective noninteractive commit-
ment.

Input: Ciphertext c \in \{ 0, 1\} 4n+\lambda .
Constants: PPRF keys K1, K2, circuits CS0

, CS1
, message ui+1, z =

\sansC \sanso \sansm \sansm \sansi \sanst (0;F1(ui+1)).
1. Parse c as \alpha \| \beta with \beta \in \{ 0, 1\} n, and compute m = F2(\alpha)\oplus \beta .
2. If

\bullet m \leq ui and m \in S1, or
\bullet m > ui and m \in S0, or
\bullet m = ui+1 and \sansC \sanso \sansm \sansm \sansi \sanst (0;\alpha) \not = z, or
\bullet \alpha \not = F1(m),

then output \bot .
3. Otherwise, output m.

Fig. 4.4. \scrG \prime
\sansd \sanse \sansc in hybrid \sansH i,1.

Hybrid \sansH i,2: This is the same as experiment \sansH i,1 except that we modify \scrG \prime \sansd \sanse \sansc such
that the PRF key K1 in \scrG \prime \sansd \sanse \sansc is punctured at ui+1; i.e., K1 is replaced with
K1\{ ui+1\} \leftarrow \sansP \sansu \sansn \sansc \sanst \sansu \sansr \sanse \sansP \sansR \sansF (K1, ui+1).

Hybrid \sansH i,3: This is the same as experiment \sansH i,2 except that the PRF key K1

hardwired in \scrG \prime \sanse \sansn \sansc is replaced with the same punctured key K1\{ ui+1\} \leftarrow
\sansP \sansu \sansn \sansc \sanst \sansu \sansr \sanse \sansP \sansR \sansF (K1, ui+1) as is used in \scrG \prime \sansd \sanse \sansc .

Hybrid \sansH i,4: This is the same as experiment \sansH i,3 except that the hardwired value z
in \scrG \prime \sansd \sanse \sansc is now computed as \sansC \sanso \sansm \sansm \sansi \sanst (0; r), where r is a randomly chosen string
in \{ 0, 1\} 3n+\lambda .

Hybrid \sansH i,5: This is the same as experiment \sansH i,4 except that the hardwired value
z in \scrG \prime \sansd \sanse \sansc is now set to \sansC \sanso \sansm \sansm \sansi \sanst (1; r), where r is a randomly chosen string in
\{ 0, 1\} 3n+\lambda .

Hybrid \sansH i,6: This is the same as experiment \sansH i,5 except that we now modify \scrG \prime \sansd \sanse \sansc
such that it outputs \bot when the decrypted message m is ui+1. An equivalent
description of \scrG \prime \sansd \sanse \sansc is that in line 3 it now checks whether m \leq ui+1 instead
of m \leq ui.

Hybrid \sansH i,7: This is the same as experiment \sansH i,6 except that the PRF key corre-
sponding to F1 is unpunctured in both \scrG \prime \sanse \sansn \sansc and \scrG \prime \sansd \sanse \sansc . That is, we replace
K1\{ ui+1\} with K1 in both \scrG \prime \sanse \sansn \sansc and \scrG \prime \sansd \sanse \sansc . Note that experiment \sansH i,7 is the
same as experiment \sansH i+1.

This completes the description of the hybrid experiments.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1166 BITANSKY ET AL.

Remark 4.4. There is a fixed polynomial \sansp \sanso \sansl \sansy such that in each hybrid experiment
\sansH i,j , | \scrG \sanse \sansn \sansc | and | \scrG \sansd \sanse \sansc | are bounded by \sansp \sanso \sansl \sansy (\lambda \prime , n, s).

We now argue their 2 - n \cdot negl(\lambda)-indistinguishability.

Indistinguishability of \sansH i,0 and \sansH i,1. Since \sansC \sanso \sansm \sansm \sansi \sanst is injective, the following two
checks are equivalent: \alpha \not = F1(m) and \sansC \sanso \sansm \sansm \sansi \sanst (0;\alpha) \not = \sansC \sanso \sansm \sansm \sansi \sanst (0;F1(m)). Thus, the
algorithms \scrG \prime \sansd \sanse \sansc in \sansH i,0 and \sansH i,1 are functionally equivalent. Therefore, the indistin-
guishability of \sansH i,0 and \sansH i,1 follows from the security of i\scrO .

Indistinguishability of \sansH i,1 and \sansH i,2. Let \scrG \prime \sansd \sanse \sansc (resp., \scrG \prime \prime \sansd \sanse \sansc) denote the unobfuscated
algorithms underlying the decryption key program DK \prime in experiments \sansH i,1 (resp.,
\sansH i,2). We will argue that \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc are functionally equivalent. The indistin-
guishability of \sansH i,0 and \sansH i,1 then follows from the security of the indistinguishability
obfuscator i\scrO .

Let ci+1 = \alpha i+1\| \beta i+1 denote the unique ciphertext such that \sansD \sanse \sansc (DK, ci+1) =
ui+1 (where DK denotes the unconstrained decryption key program). First note
that on any input c \not = ci+1, both \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc have identical behavior, except that
\scrG \prime \sansd \sanse \sansc uses the PRF key K1, while \scrG \prime \prime \sansd \sanse \sansc uses the punctured PRF key K1\{ ui+1\} . Since
the punctured PRF scheme preserves functionality under puncturing, we have that
\scrG \prime \sansd \sanse \sansc (c) = \scrG \prime \prime \sansd \sanse \sansc (c). Now, on input ci+1, after decrypting to obtain ui+1, \scrG \prime \sansd \sanse \sansc computes
\sansC \sanso \sansm \sansm \sansi \sanst (0;F1(ui+1)) and then checks whether \sansC \sanso \sansm \sansm \sansi \sanst (0;\alpha i+1) \not = \sansC \sanso \sansm \sansm \sansi \sanst (0;F1(ui+1)),
whereas \scrG \prime \prime \sansd \sanse \sansc simply checks whether \sansC \sanso \sansm \sansm \sansi \sanst (0;\alpha i) \not = z. But since the value z hard-
wired in \scrG \prime \prime \sansd \sanse \sansc is equal to \sansC \sanso \sansm \sansm \sansi \sanst (0;F1(ui+1)), we have that \scrG \prime \sansd \sanse \sansc (ci) = \scrG \prime \prime \sansd \sanse \sansc (ci).

Thus we have that \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc are functionally equivalent.

Indistinguishability of \sansH i,2 and \sansH i,3. Let \scrG \prime \sanse \sansn \sansc denote the circuit such that in \sansH i,2,

the encryption key EK \prime is i\scrO (1\lambda \prime
,\scrG \prime \sanse \sansn \sansc). \sansH i,3 is obtained from \sansH i,2 by replacing the

hard-coded PPRF key K1 with the punctured key K1\{ ui+1\} . By the security of i\scrO ,
it suffices to show that this is a functionality-preserving change. Since the punctured
PRF preserves functionality at unpunctured points, it suffices to show that \scrG \prime \sanse \sansn \sansc does
not depend on the value F1(ui+1) (this notion of dependence is well-defined because
\scrG \prime \sanse \sansn \sansc uses F1 as a black box). This is true simply because \scrG \prime \sanse \sansn \sansc evaluates F1 on ui+1

only when its inputm = ui+1. But when this happens, \scrG \prime \sanse \sansn \sansc outputs \bot unconditionally
because ui+1 \in S1 \subseteq U .

Indistinguishability of \sansH i,3 and \sansH i,4. From the security of the punctured PRF, it
follows immediately that \sansH i,3 and \sansH i,4 are computationally indistinguishable.

Indistinguishability of \sansH i,4 and \sansH i,5. \sansH i,4 and \sansH i,5 are computationally indistin-
guishable because of the hiding properties of \sansC \sanso \sansm \sansm \sansi \sanst .

Indistinguishability of \sansH i,5 and \sansH i,6. Let \scrG \prime \sansd \sanse \sansc (resp., \scrG \prime \prime \sansd \sanse \sansc) denote the unobfuscated
algorithms underlying the decryption key program DK \prime in experiments \sansH i,5 and \sansH i,6.
We will argue that with all but negligible probability, \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc are functionally
equivalent. The indistinguishability of \sansH i,5 and \sansH i,6 then follows from the security of
the indistinguishability obfuscator i\scrO .

Let ci denote the unique ciphertext corresponding to the message ui. We note
that with overwhelming probability, the random string z (hardwired in both \sansH i,5 and
\sansH i,6) is not in the image of the PRG. Thus, except with negligible probability, there
does not exist an \alpha i such that PRG(\alpha i) = z. This implies that except with negligible
probability, \scrG \prime \sansd \sanse \sansc (ci) = \bot . Since \scrG \prime \prime \sansd \sanse \sansc also outputs \bot on input ci and \scrG \prime \sansd \sanse \sansc ,\scrG \prime \prime \sansd \sanse \sansc behave
identically on all other input ciphertexts, we have that \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc are functionally
equivalent.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1167

Indistinguishability of \sansH i,6 and \sansH i,7. This follows in the same manner as the
indistinguishability of experiments \sansH i,2 and \sansH i,3. We omit the details.

Selective indistinguishability of ciphertexts. We now prove that ACE sat-
isfies indistinguishability of ciphertexts.

Lemma 4.5. The proposed scheme ACE satisfies selective indistinguishability of
ciphertexts.

Proof. The proof of the lemma proceeds in a sequence of hybrid distributions
where we make indistinguishable changes to EK\{ U\} , DK\{ S\} , and the challenge
ciphertexts (c\ast 0, c

\ast
1). The ``extra"" ciphertexts c1, . . . , ct remain unchanged throughout

the hybrids.

Hybrid \sansH 0: This is the real-world distribution. For completeness (and to ease the
presentation of the subsequent hybrid distributions), we describe the sampling
process here. Let S,U \subset \scrM = \{ 0, 1\} n be the sets chosen by the adversary,
and let CS , CU be their corresponding circuit descriptions. Let m\ast

0,m
\ast
1 be the

challenge messages in S \cap U , and let (m1, . . . ,mt) be the extra messages in
\{ 0, 1\} n. Then the following hold:
1. Sample the PRF keys K1 \leftarrow \sansG \sanse \sansn (1\lambda), K2 \leftarrow \sansG \sanse \sansn (1\lambda), b\leftarrow \{ 0, 1\} .
2. For b \in \{ 0, 1\} , compute \alpha \ast

b \leftarrow F1(m
\ast
b), \gamma

\ast
b \leftarrow F2(\alpha

\ast
b), and \beta \ast

b = \gamma \ast
b \oplus m\ast

b .
Let c\ast b = \alpha \ast

b\| \beta \ast
b .

3. For every j \in [t], compute \alpha j \leftarrow F1(mj), \gamma j \leftarrow F2(\alpha j), and \beta j = \gamma j\oplus mj .
Let cj = \alpha j\| \beta j .

4. Compute EK\{ U\} \leftarrow i\scrO (1\lambda \prime
,\scrG \prime \sanse \sansn \sansc), where \scrG \prime \sanse \sansn \sansc is described in Figure 4.5,

but padded to size p.
5. Compute DK\{ S\} \leftarrow i\scrO (1\lambda \prime

,\scrG \prime \sansd \sanse \sansc), where \scrG \prime \sansd \sanse \sansc is described in Figure 4.6,
but padded to size p.

6. Output the following tuple:\bigl(
EK\{ S\} , DK\{ U\} , c\ast b , c\ast 1 - b, c1, . . . , ct

\bigr)
.

Input: Message m \in \{ 0, 1\} n.
Constants: K1, K2, circuit CU .
1. If m \in U , output \bot .
2. Otherwise, output \alpha \| \beta where \alpha = F1(m) and \beta = F2(\alpha)\oplus m.

Fig. 4.5. \scrG \prime
\sanse \sansn \sansc in hybrid \sansH 0.

Input: Ciphertext c \in \{ 0, 1\} 3n+\lambda .
Constants: K1, K2, circuit CS .
1. Parse c as \alpha \| \beta with \beta \in \{ 0, 1\} n, and compute m = F2(\alpha)\oplus \beta .
2. If m \in S, or if \alpha \not = F1(m), then output \bot .
3. Otherwise, output m.

Fig. 4.6. \scrG \prime
\sansd \sanse \sansc in hybrid \sansH 0.

Hybrid \sansH 1: Modify \scrG \prime \sanse \sansn \sansc : the hardwired PRF key K1 is replaced with a punctured
key K1\{ m\ast

0,m
\ast
1\} \leftarrow \sansP \sansu \sansn \sansc \sanst \sansu \sansr \sanse \sansP \sansR \sansF (K1, \{ m\ast

0,m
\ast
1\}).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1168 BITANSKY ET AL.

Input: Ciphertext c \in \{ 0, 1\} 3n+\lambda .
Constants: K1\{ m\ast

0,m
\ast
1\} , K2, circuit CS , c

\ast
0, c

\ast
1.

1. If c = c\ast b for any b \in \{ 0, 1\} , then output \bot .
2. Parse c as \alpha \| \beta with \beta \in \{ 0, 1\} n, and compute m = F2(\alpha)\oplus \beta .
3. If m \in S, or if \alpha \not = F1(m), then output \bot .
4. Otherwise, output m.

Fig. 4.7. \scrG \prime
\sansd \sanse \sansc in hybrid 3.

Hybrid \sansH 2: Modify \scrG \prime \sansd \sanse \sansc : the hardwired PRF key K1 is replaced with a punctured
key K1\{ m\ast

0,m
\ast
1\} \leftarrow \sansP \sansu \sansn \sansc \sanst \sansu \sansr \sanse \sansP \sansR \sansF (K1, \{ m\ast

0,m
\ast
1\}).

Hybrid \sansH 3: Modify \scrG \prime \sansd \sanse \sansc : Perform the following check in the beginning. If input ci-
phertext c = c\ast b for b \in \{ 0, 1\} , then output \bot . The modified \scrG \prime \sansd \sanse \sansc is described
in Figure 4.7.

Hybrid \sansH 4: Modify challenge ciphertexts c\ast b = \alpha \ast
b\| \beta \ast

b : Generate each \alpha \ast
b as a truly

random string.

Hybrid \sansH 5: Modify \scrG \prime \sanse \sansn \sansc : the hardwired PRF key K2 is replaced with a punctured
key K2\{ \alpha \ast

0, \alpha
\ast
1\} \leftarrow \sansP \sansu \sansn \sansc \sanst \sansu \sansr \sanse \sansP \sansR \sansF (K2, \{ \alpha \ast

0, \alpha
\ast
1\}).

Hybrid \sansH 6: Modify \scrG \prime \sansd \sanse \sansc : we change the check performed in line 1 of Figure 4.7.
For any input ciphertext c = \alpha \| \beta , if \alpha = \alpha \ast

b for b \in \{ 0, 1\} , then output \bot .
Note that \scrG \prime \sansd \sanse \sansc only has \alpha \ast

b hardwired, as opposed to c\ast b . The modified \scrG \prime \sansd \sanse \sansc is
described in Figure 4.8.

Input: Ciphertext c \in \{ 0, 1\} 3n+\lambda .
Constants: PPRF keys K1\{ m\ast

0,m
\ast
1\} , K2, circuit CS , ciphertext prefixes \alpha

\ast
0, \alpha

\ast
1.

1. Parse c as \alpha \| \beta with \beta \in \{ 0, 1\} n.
2. If \alpha = \alpha \ast

b for any b \in \{ 0, 1\} , then output \bot .
3. Compute m = F2(\alpha)\oplus \beta .
4. If m \in S, or if \alpha \not = F1(m), then output \bot .
5. Otherwise, output m.

Fig. 4.8. \scrG \prime
\sansd \sanse \sansc in hybrid 6.

Hybrid \sansH 7: Modify \scrG \prime \sansd \sanse \sansc : the hardwired PRF key K2 is replaced with the same punc-
tured key K2\{ \alpha \ast

0, \alpha
\ast
1\} \leftarrow \sansP \sansu \sansn \sansc \sanst \sansu \sansr \sanse \sansP \sansR \sansF (K2, \{ \alpha \ast

0, \alpha
\ast
1\}) as was used in \scrG \prime \sanse \sansn \sansc .

Hybrid \sansH 8: Modify challenge ciphertexts c\ast b = \alpha \ast
b\| \beta \ast

b : For b \in \{ 0, 1\} , generate \beta \ast
b as

a truly random string.

This completes the description of the hybrid experiments.

Remark 4.6. There is a fixed polynomial \sansp \sanso \sansl \sansy such that in each hybrid experiment
\sansH 0, . . . ,\sansH 8, | \scrG \sanse \sansn \sansc | and | \scrG \sansd \sanse \sansc | are bounded by \sansp \sanso \sansl \sansy (\lambda \prime , n, s).

We will now first prove indistinguishability of experiments \sansH i and \sansH i+1 for every
i. We will then observe that no adversary can guess bit b in the final hybrid \sansH 8 with
probability better than 1

2 . This suffices to prove the claim.

Indistinguishability of \sansH 0 and \sansH 1. Let \scrG \prime \sanse \sansn \sansc denote the circuit such that in \sansH 0,

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1169

EK\{ U\} \leftarrow i\scrO (1\lambda \prime
,\scrG \prime \sanse \sansn \sansc). \sansH 1 is obtained from \sansH 0 by replacing the PPRF key K1 in

\scrG \prime \sanse \sansn \sansc by the punctured key K1\{ m\ast
0,m

\ast
1\} . By the security of i\scrO , it suffices to show that

this change is functionality-preserving. Since the punctured PRF scheme preserves
functionality at unpunctured points, it suffices to show that \scrG \prime \sanse \sansn \sansc 's functionality does
not depend on F1(m

\ast
0) or F1(m

\ast
1). This is true because \scrG \prime \sanse \sansn \sansc uses F1 as a black box

and evaluates it at m\ast
0 or m\ast

1 only when its input m is m\ast
0 or m\ast

1. But when this
happens, \scrG \prime \sanse \sansn \sansc outputs \bot (by the check at line 1) no matter what the value of F1 is.

Indistinguishability of \sansH 1 and \sansH 2. Let \scrG \prime \sansd \sanse \sansc denote the circuit such that in \sansH 1,

DK\{ S\} \leftarrow i\scrO (1\lambda \prime
,\scrG \prime \sansd \sanse \sansc). \sansH 2 is obtained from \sansH 1 by replacing the PPRF key K1 in

\scrG \prime \sansd \sanse \sansc with a punctured key K1\{ m\ast
0,m

\ast
1\} . Note that due to the check performed in line

2 of Figure 4.6, \scrG \prime \sansd \sanse \sansc does not depend on the value of F1(m
\ast
0) or F1(m

\ast
1): if m = m\ast

b ,
then m \in S, so \scrG \sansd \sanse \sansc outputs \bot unconditionally. Then, since the punctured PRF
scheme preserves functionality under puncturing, replacing K1 by K1\{ m\ast

0,m
\ast
1\}) is a

functionality-preserving change. The indistinguishability of \sansH 1 and \sansH 2 then follows
from the security of the indistinguishability obfuscator i\scrO .

Indistinguishability of \sansH 2 and \sansH 3. Let \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc denote the circuits such

that in \sansH 2, DK\{ S\} \leftarrow i\scrO (1\lambda \prime
,\scrG \prime \sansd \sanse \sansc), and in \sansH 3, DK\{ S\} \leftarrow i\scrO (1\lambda \prime

,\scrG \prime \prime \sansd \sanse \sansc). The only
difference between \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc is that \scrG \prime \prime \sansd \sanse \sansc outputs \bot if the input ciphertext c is
equal to c\ast 0 or c\ast 1. However, due to line 2 of Figure 4.6, \scrG \prime \sansd \sanse \sansc already outputs \bot on c\ast 0
and c\ast 1. Thus, \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc are functionally equivalent and the indistinguishability of
\sansH 2 and \sansH 3 follows from the security of i\scrO .

Indistinguishability of \sansH 3 and \sansH 4. This follows immediately from the security of
the punctured PRF family \scrF 1. (Note that each ciphertext c1, . . . , ct can be generated
using the punctured PRF key, because they are not encryptions of m\ast

0 or m\ast
1.)

Indistinguishability of \sansH 4 and \sansH 5. Note that with overwhelming probability, the
random strings \alpha \ast

b are not in the range of F1. Therefore, except with negligible
probability, there does not exist a message m such that F1(m) = \alpha \ast

b for b \in \{ 0, 1\} .
Since the punctured PRF scheme preserves functionality under puncturing, \scrG \prime \sanse \sansn \sansc (using
K2) and \scrG \prime \prime \sanse \sansn \sansc (using K2\{ \alpha \ast

0, \alpha
\ast
1\}) behave identically on all input messages, except with

negligible probability. The indistinguishability of \sansH 4 and \sansH 5 follows from the security
of i\scrO .

Indistinguishability of \sansH 5 and \sansH 6. Let \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc denote the circuits such

that in \sansH 5, DK\{ S\} \leftarrow i\scrO (1\lambda \prime
,\scrG \prime \sansd \sanse \sansc), and in \sansH 6, DK\{ S\} \leftarrow i\scrO (1\lambda \prime

,\scrG \prime \prime \sansd \sanse \sansc). The only
difference between \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc is that \scrG \prime \prime \sansd \sanse \sansc explicitly outputs \bot whenever the input
ciphertext c has \alpha \ast

0 or \alpha \ast
1 as a prefix, while \scrG \prime \sansd \sanse \sansc does so only when c is exactly \alpha \ast

0\| \beta \ast
0

or \alpha \ast
1\| \beta \ast

1 . However, with overwhelming probability, each of the random strings \alpha \ast
b

is not in the image of F1. Thus (because of the check that \alpha = F1(m)) \scrG \prime \sansd \sanse \sansc also
(except with negligible probability) outputs \bot on every c with \alpha \ast

0 or \alpha \ast
1 as a prefix.

As a consequence, \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc are functionally equivalent except with negligible
probability, and the indistinguishability of \sansH 5 and \sansH 6 follows from the security of i\scrO .

Indistinguishability of \sansH 6 and \sansH 7. Let \scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc denote the circuits such that

in \sansH 6, DK\{ S\} \leftarrow i\scrO (1\lambda \prime
,\scrG \prime \sansd \sanse \sansc), and in \sansH 7, DK\{ S\} \leftarrow i\scrO (1\lambda \prime

,\scrG \prime \prime \sansd \sanse \sansc). Note that due
to the check performed in line 2 (see Algorithm 4.8), line 3 is not executed in both
\scrG \prime \sansd \sanse \sansc and \scrG \prime \prime \sansd \sanse \sansc whenever the input ciphertext c is of the form \alpha \ast \| \star . Then, since the
punctured PRF scheme preserves functionality under puncturing, \scrG \prime \sansd \sanse \sansc (using K2) and
\scrG \prime \prime \sansd \sanse \sansc (using K2\{ \alpha \ast

0, \alpha
\ast
1\}) are functionally equivalent, and the indistinguishability of \sansH 6

and \sansH 7 follows from the security of i\scrO .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1170 BITANSKY ET AL.

Indistinguishability of \sansH 7 and \sansH 8. This follows immediately from the security
of the punctured PRF family \scrF 2 (note that with overwhelming probability, each
ciphertext c1, . . . , ct can be generated with the punctured F2, because the \~\alpha \ast

b are
chosen randomly).

Finishing the proof. Observe that in experiment \sansH 8, every challenge cipher-
text cbi consists of independent uniformly random strings \alpha \ast

b\| \beta \ast
b that information-

theoretically hide the bit b. Further, EK\{ U\} and DK\{ S\} are also independent of bit
b. Therefore, the adversary cannot guess the bit b with probability better than 1

2 .

4.2. Garbling Turing machines. In this section, we describe a direct approach
to randomized encodings for Turing machines. In section 4.3, we extend this approach
to arbitrary RAM machines. We use the following natural construction.

To compute a randomized encoding of a Turing machine M and an input x
which runs in space at most S and time at most T , our scheme first samples two
authenticated encryption key pairs (EK\sansm \sanse \sansm , DK\sansm \sanse \sansm) and (EK\sanss \sanst \sansa \sanst \sanse , DK\sanss \sanst \sansa \sanst \sanse). It then
generates the randomized encoding in two parts: a garbled machine \~M and a garbled
initial tape \widetilde \scrT 0, which we describe below. We assume that M has an oblivious access
pattern---that is, there is some universal function \tau (independent of M and x) so that
\tau (i) is the ith address accessed by M on x. Furthermore,

\bullet \tau (i) is computable in time \sansp \sanso \sansl \sansy (log i);
\bullet the function \beta , where \beta (i) = min\{ i\prime : i\prime < i\wedge \tau (i\prime) = \tau (i)\} , is also computable
in time \sansp \sanso \sansl \sansy (log i).

This assumption is without loss of generality due to a transformation of Pippenger
and Fischer [PF79], which shows how to compile any Turing machine into one with
such an oblivious access pattern.

The garbled machine. Suppose that M has initial state q0 and transition
function \delta . We define the garbled machine \~M by defining its initial state \~q0 and
its transition function \~\delta , which crucially we give as an obfuscated circuit. We define
\~q0 = \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (0, q0)), and define \~\delta = i\scrO (1\lambda , \^\delta), where \^\delta is described in Figure 4.9,
but padded to a larger size p.

The padding parameter p is \sansp \sanso \sansl \sansy (\lambda) \cdot T \epsilon for arbitrary \epsilon > 0, or \sansp \sanso \sansl \sansy (\lambda , log T) if we
assume subexponentially secure iO and one-way functions.

Input: State ciphertext \~q, memory ciphertext \~s.
Constants: Keys (EK\sanss \sanst \sansa \sanst \sanse , DK\sanss \sanst \sansa \sanst \sanse), (EK\sansm \sanse \sansm , DK\sansm \sanse \sansm), transition function \delta .

1. Decrypt (t, q) \leftarrow \sansD \sanse \sansc (DK\sanss \sanst \sansa \sanst \sanse , \~q) and decrypt (t\sansm \sanse \sansm , \sansa \sansd \sansd \sansr , s) \leftarrow
\sansD \sanse \sansc (DK\sansm \sanse \sansm , \~s).

2. Check that t\sansm \sanse \sansm - 1 = \beta (t) and \sansa \sansd \sansd \sansr = \tau (t) and t \leq T . If not, output
\bot .

3. If \delta (q, s) \in \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst \} , output it. Otherwise, compute (q\prime , s\prime) \leftarrow
\delta (q, s).

4. Encrypt \~q\prime \leftarrow \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (t + 1, q\prime)) and \~s\prime \leftarrow \sansE \sansn \sansc (EK\sansm \sanse \sansm , (t +
1, \sansa \sansd \sansd \sansr , s\prime)).

5. Output (\~q\prime , \~s\prime).

Fig. 4.9. Transition function \^\delta to be obfuscated.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1171

The garbled initial tape. We generate a garbled tape \widetilde \scrT 0 consisting of S ci-
phertexts. The ith ciphertext \widetilde \scrT 0[i] is defined as

\widetilde \scrT 0[i] = \Biggl\{
\sansE \sansn \sansc (EK\sansm \sanse \sansm , (0, i, xi)) if i < | x| ,
\sansE \sansn \sansc (EK\sansm \sanse \sansm , (0, i,\bot)) otherwise.

Evaluation. On input \~M = (\~q0, \~\delta) and \widetilde \scrT 0, \sansE \sansv \sansa \sansl (\~M, \widetilde \scrT 0) is computed by running
\~M as a Turing machine with initial tape contents \widetilde \scrT 0. More precisely, one runs the
procedure described in Figure 4.10.

Input: Garbled Turing machine \~M = (\~q0, \~\delta), garbled initial tape \widetilde \scrT 0 =
(\~x1, . . . , \~xS).

1. Initialize a mutable tape \widetilde \scrT := \widetilde \scrT 0.
2. Initialize a variable \~q := \~q0.
3. For t = 1, 2, . . . , T :

(a) Compute \sanso \sansu \sanst \leftarrow \~\delta (\~q, \~\scrT [\tau (t)]).
(b) If \sanso \sansu \sanst \in \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst \} , output \sanso \sansu \sanst .
(c) Otherwise, parse \sanso \sansu \sanst as (\~q\prime , \~s\prime).

Set \~q := \~q\prime and set \~\scrT [\tau (t)] := \~s\prime .
4. Output \bot .

Fig. 4.10. Procedure for evaluating a garbled Turing machine.

Remark 4.7. In this section and the next, we achieve a stronger notion of garbling
than the one presented in section 2.2. Specifically, we allow the garbling key key to
be generated ahead of time, so that inputs and machines may syntactically be garbled
separately.

4.2.1. Security with virtual black box (VBB) obfuscation: A warmup
and sanity check. In this section we argue that the above garbling scheme is secure
when instantiated with a VBB obfuscator and an authenticated encryption scheme
satisfying existential unforgeability and semantic security. Precisely, we give a sketch
of the following proposition.

Proposition 4.8. For any two machine-input pairs (M (0), x(0)) and (M (1), x(1))
satisfying M (0)(x(0)) = M (1)(x(1)) and Time(M (0), x(0)) = Time(M (1), x(1)), it holds
that for all PPT oracle algorithms \scrA ,

Pr

\left[\scrA \~\delta (\widetilde \scrT 0, \~q0) = b

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm|

b\leftarrow \{ 0, 1\}
M \leftarrow M (b), x\leftarrow x(b)

key\leftarrow \sansG \sanse \sansn (1\lambda)

(\~\delta , \~q0)\leftarrow \sansG \sansb (key,M)\widetilde \scrT 0 \leftarrow \sansE \sansn \sansc \sanso \sansd \sanse (key, x)

\right] \leq 1

2
+ negl(\lambda).

Proof sketch. Let (\~q0, \~s0), . . . , (\~qt\ast , \~st\ast) denote the queries made by \sansE \sansv \sansa \sansl (\~M (b), \~x)
to \~\delta . First, we claim that any \scrA can be simulated by a \scrB which also queries only
(\~q0, \~s0), . . . , (\~qt\ast , \~st\ast) but has nearly the same advantage. That is, in the above prob-
ability space, \bigm| \bigm| \bigm| Pr \Bigl[\scrA \~\delta (\widetilde \scrT 0, \~q0) = b

\Bigr]
 - Pr

\Bigl[
\scrB \~\delta (\widetilde \scrT 0, \~q0) = b

\Bigr] \bigm| \bigm| \bigm| \leq negl(\lambda).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1172 BITANSKY ET AL.

This follows because after having queried (\~q0, \~s0), . . . , (\~qi - 1, \~si - 1), the set of cipher-
texts seen by the adversary only contains one new pair which, when given to \~\delta as
input, causes a non-\bot output (by the checks on line 2 of \^\delta). That pair is (\~qi, \~si).
The existential unforgeability of the authenticated encryption means that with high
probability, \scrA cannot make any other queries for which \~\delta outputs a non-\bot value.

Let q0, . . . , qt\ast - 1 be the internal states of M in an honest execution on x, and let
\scrT 0, . . . , \scrT t\ast - 1 be the tape configurations after every step of M . Then the view of \scrB
is simply y (= M(x)) along with an oracle which is simulatable given the following
ciphertexts:

\bullet \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, i, xi)) for each i \in \{ 0, . . . , | x| - 1\} .
\bullet \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, i,\bot)) for each i \in \{ | x| , . . . , S\} .
\bullet \sansE \sansn \sansc (\sanss \sansk \sanss \sanst \sansa \sanst \sanse , (i, qi)) for each i \in \{ 0, . . . , t\ast - 1\} .
\bullet \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (i+ 1, \tau (i), (\scrT i+1)\tau (i))) for each i \in \{ 0, . . . , t\ast - 1\} .

By the semantic security of the authenticated encryption scheme, \scrB cannot distinguish
the case when these ciphertexts are generated from M = M (0) and x = x(0) from the
case when M = M (1) and x = x(1).

4.2.2. Security with iO: Technical overview. We now undertake to prove
the security of this construction assuming only indistinguishability obfuscation, fol-
lowing the same ideas as the proof of VBB security.

Recall our reasoning for a VBB obfuscator. We first argued (by existential un-

forgeability) that a computationally bounded adversary could query \^\delta only using the

set of ciphertexts it has already accumulated from the outputs of \^\delta . In other words,
there is a certain ``reachable"" set of inputs to \delta , and functionality differences outside
that set are indistinguishable.

We then argued that the information available to an adversary is limited to the
computation's output, plus polynomially many ciphertexts of statically chosen mes-
sages, which computationally reveal no information.

There are two problems with applying this reasoning for an iO obfuscator. First,
in contrast to oracle access, the obfuscated code of \^\delta might leak information about the
authenticated encryption secret key. An additional difficulty is that two obfuscated
programs may be distinguishable even if it is computationally difficult to find an
input on which they differ. We will see, nevertheless, that ACE is a particularly
``iO-friendly"" authenticated encryption scheme. We begin with some (much) simpler
examples.

iO-friendly authentication. Let us first see how ACE and iO can hide func-
tionality differences between two transition functions \delta 0 and \delta 1 outside of a ``reach-
able"" set of inputs. Transition functions are somewhat cumbersome because they take
multiple inputs, but we can illustrate the symbiosis between ACE and IO with a cou-
ple of toy examples. The first toy example demonstrates how ACE is used together
with IO to garble a circuit and an input, for the simple, non-iterated case where the
circuit is applied only a single time. The second toy example demonstrates how ACE
and IO are used for the extended case where the circuit is applied iteratively a fixed
number of times, but the computation performed in all steps but the last one is trivial.
Once these examples are in place, we move on to the actual construction and proof.

Toy Example 1.

Informal Claim 4.9. For any circuit \delta : \{ 0, 1\} n \rightarrow \{ 0, 1\} and input x\ast \in
\{ 0, 1\} n, (\~x\ast , \~\delta) reveals no more than (x\ast , \delta (x\ast)), where \~x\ast and \~\delta are sampled according

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1173

to the following procedure:

SK \leftarrow ACE.\sansS \sanse \sanst \sansu \sansp (1\lambda , 1n, 1O(n)),
EK \leftarrow ACE.\sansG \sanse \sansn \sansE \sansK (SK, \emptyset),
DK \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK, \emptyset),
\~x\ast := ACE.\sansE \sansn \sansc (EK,x\ast),
\^\delta := the circuit described in Figure 4.11,
\~\delta \leftarrow i\scrO (1\lambda , \^\delta).

Input: Ciphertext \~x.
Constants: ACE decryption key DK

1. Decrypt x := \sansD \sanse \sansc (DK, \~x) or output \bot if the output of \sansD \sanse \sansc is \bot .
2. Output \delta (x).

Fig. 4.11. The circuit \^\delta to be obfuscated.

Proof sketch. Let \scrA be any PPT algorithm. We give a sequence of changes to
the distribution of \~x, \~\delta which (assuming the security of ACE and i\scrO) only negligibly
affect the probability that \scrA outputs 1.

1. Instead of sampling

DK \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK, \emptyset),

sample

DK \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK, \{ 0, 1\} n \setminus \{ x\ast \}).

Here we have written \{ 0, 1\} n\setminus \{ x\ast \} as shorthand for the circuit which on input
x \in \{ 0, 1\} n outputs 1 if and only if x \not = x\ast . The change to DK (and hence
to (\~x, \~\delta)) is computationally indistinguishable by the security of constrained
decryption.

2. Modify \^\delta so that instead of computing \delta (x) when x = \bot , it outputs the hard-
coded value \delta (x\ast). Pad \^\delta so that its size is unchanged. This is a functionality-
preserving change by the safety of constrained decryption, and so the change
to (\~x, \~\delta) is computationally indistinguishable by the security of i\scrO .

After applying the last change, the distribution of (\~x, \~\delta) depends only on x and \delta (x),
and thus is a (computationally indistinguishable, efficiently sampleable) simulation of
the ``real-world"" distribution of (\~x, \~\delta).

Our next example illustrates how to handle circuits which need to decrypt (or in
this case simply verify) their own encrypted (authenticated) outputs.

Toy Example 2.

Informal Claim 4.10. For any circuit f : \{ 0, 1\} n \rightarrow \{ 0, 1\} and input x\ast \in
\{ 0, 1\} n, let \^\delta be the circuit, described formally in Figure 4.12, which ``counts to T""
before computing f . (\~x\ast , \~\delta) reveals no more than (x\ast , \delta (x\ast)), where \~x\ast and \~\delta are

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1174 BITANSKY ET AL.

sampled according to the following procedure:

SK \leftarrow ACE.\sansS \sanse \sanst \sansu \sansp (1\lambda , 1n, 1O(n+log(T))),
EK \leftarrow ACE.\sansG \sanse \sansn \sansE \sansK (SK, \emptyset),
DK \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK, \emptyset),
\~x\ast := ACE.\sansE \sansn \sansc (EK, (0, x\ast)),
\^\delta := the circuit described in Figure 4.12,
\~\delta \leftarrow i\scrO (1\lambda , \^\delta b).

Input: Ciphertext \~x.
Constants: ACE encryption, decryption key (EK,DK).

1. Decrypt (i, x) := \sansD \sanse \sansc (DK, \~x), or output \bot if the output of \sansD \sanse \sansc is \bot .
2. If i = T , output f(x). Otherwise, output \sansE \sansn \sansc (EK, (i+ 1, x)).

Fig. 4.12. The circuit \^\delta to be obfuscated.

Proof sketch. The set of ciphertexts that should be ``reachable"" by an adversary
given \~x\ast and \~\delta is just the encryptions of (i, x\ast) for 0 \leq i < T . We would like, therefore,
to imitate the steps of the proof in our first toy example:

1. Replace DK by the punctured key DK\{ (i, x) : i \geq T \vee x \not = x\ast \} .
2. Modify \^\delta so that on an encryption of (T, x\ast) it outputs the hard-coded value

f(x\ast).

However, there is a difficulty with step 1. \^\delta contains both a decryption key
and an encryption key---thus we cannot indistinguishably puncture the decryption
key without first puncturing the encryption key, but neither can we puncture the
encryption key without first puncturing the decryption key.

We solve this problem by stratifying the message space by timestamp, and then
alternately puncturing the encryption and decryption keys a little at a time. That
is, instead of immediately replacing DK by DK\{ (i, x) : i \geq T \vee x \not = x\ast \} , we use a
sequence of O(T) different indistinguishable changes to the distribution of (\~x\ast , \~\delta), as
follows:

(1a) Change the sampling of EK to EK \leftarrow ACE.\sansG \sanse \sansn \sansE \sansK (SK, \{ (i, x) : i \geq T \vee (i =
0\wedge x \not = x\ast)\}). This change does not affect the functionality of \^\delta and hence is
computationally indistinguishable.

(1b) Change the sampling of DK to DK \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK, \{ (i, x) : i \geq T \vee (i =
0 \wedge x \not = x\ast)\}). By the security of constrained decryption, this is a computa-
tionally indistinguishable change to (\~x\ast , DK,EK) and hence to (\~x\ast , \~\delta).

(1c) Repeat steps (a) and (b) alternately, first with ``i = 0"" replaced by ``i \leq 1"",
then by ``i \leq 2"", and so on, up until ``i < T"". Crucially (for ACE's succinct-
ness requirement on the punctured set), the punctured sets are decidable by
a circuit of size O(n+ log T).

iO-friendly encryption. We now see how the ciphertext-indistinguishability of
ACE allows the garbling of much more general ``iterated functions.""

Not-So-Toy Example 3.

Informal Claim 4.11. For any circuit f : \{ 0, 1\} n \rightarrow \{ 0, 1\} n and input x\ast \in
\{ 0, 1\} n, (\~x\ast , \~\delta) reveals no more than fT (x), where \~x\ast and \~\delta are sampled according to

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1175

the following procedure:

SK \leftarrow ACE.\sansS \sanse \sanst \sansu \sansp (1\lambda , 1n, 1O(n)),
EK \leftarrow ACE.\sansG \sanse \sansn \sansE \sansK (SK, \emptyset),
DK \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK, \emptyset),
\~x\ast := ACE.\sansE \sansn \sansc (EK, (0, x\ast)),
\^\delta := the circuit described in Figure 4.13,
\~\delta \leftarrow i\scrO (1\lambda , \^\delta b).

Input: Ciphertext \~x.
Constants: ACE encryption, decryption key EK, DK, total number of itera-
tions T .

1. Decrypt (t, x) := \sansD \sanse \sansc (DK, \~x), or output \bot if the output of \sansD \sanse \sansc is \bot .
2. If t = T , output x. Otherwise output \sansE \sansn \sansc (EK, (t+ 1, f(x))).

Fig. 4.13. The circuit \^\delta to be obfuscated.

Proof sketch. Suppose that \^\delta were padded to be of size \Omega (T). Then we could
show indistinguishability from a simulated distribution by building on the techniques
of Toy Example 2:

1. Change the sampling of DK to DK \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK, \{ (i, x) : i \geq T \vee x \not =
f i(x\ast)\}). This change is indistinguishable by the technique of Toy Example 2.

2. Change \^\delta to a circuit that has fT (x\ast) and c0, . . . , cT hard-coded (but not EK

or DK), where ci = \sansE \sansn \sansc (EK, (i, f i(x\ast))). \^\delta now acts as follows: If the input
is ci for 0 \leq i < T , output ci+1. If the input is cT , output f

T (x\ast). Otherwise,
output \bot .
This change does not affect the functionality of \^\delta , so indistinguishability fol-
lows directly from the security of i\scrO .

3. Change each ciphertext ci to be \sansE \sansn \sansc (EK, (i, 0)), and also change \~x\ast to be
\sansE \sansn \sansc (EK, (i, 0)). The indistinguishability of this change follows from ACE's
ciphertext indistinguishability.

Unfortunately, padding \^\delta to size \Omega (T) would make this construction completely
nonsuccinct, and therefore no better than a Yao garbled circuit.

We show a succinct version of this argument which step by step changes \^\delta to
a circuit which only does ``dummy steps,"" yielding T intermediate hybrid distribu-
tions \sansH 1, . . . ,\sansH T . In \sansH i, \~x

\ast is defined as \sansE \sansn \sansc (EK, (0, f i(x\ast))) and \^\delta is defined as in
Figure 4.14.

Input: Ciphertext \~x.
Constants: ACE encryption, decryption key EK, DK, total number of itera-
tions T , hybrid number i.

1. Decrypt (t, x) := \sansD \sanse \sansc (DK, \~x), or output \bot if the output of \sansD \sanse \sansc is \bot .
2. If t < i, output \sansE \sansn \sansc (EK, (t+ 1, x)).
3. Otherwise, if i \leq t < T , output \sansE \sansn \sansc (EK, (t+ 1, f(x))).
4. Otherwise (if i = T), output x.

Fig. 4.14. The circuit \^\delta to be obfuscated in hybrid \sansH i.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1176 BITANSKY ET AL.

To show that \sansH i \approx \sansH i+1, we give a sequence of indistinguishable changes, proceed-
ing through i intermediate hybrid distributions \sansH i,i, . . . ,\sansH i,0. \sansH i,j is obtained from

\sansH i by modifying \^\delta to output \sansE \sansn \sansc (EK, (j+1, f i+1(x\ast))) when t = j, as in Figure 4.15.
Now we can indistinguishably change \sansH i,j to \sansH i,j - 1 as follows:

Input: Ciphertext \~x.
Constants: ACE encryption, decryption key EK, DK, total number of itera-
tions T , hybrid number i, j, the value f i+1(x\ast).

1. Decrypt (t, x) := \sansD \sanse \sansc (DK, \~x), or output \bot if the output of \sansD \sanse \sansc is \bot .
2. If t = j, output \sansE \sansn \sansc (EK, (j + 1, f i+1(x\ast))).
3. Otherwise, if t < i, output \sansE \sansn \sansc (EK, (t+ 1, x)).
4. Otherwise, if i \leq t < T , output \sansE \sansn \sansc (EK, (t+ 1, f(x))).
5. Otherwise (if i = T), output x.

Fig. 4.15. The circuit \^\delta to be obfuscated in hybrid \sansH i,j .

1. Change the sampling of DK to DK \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK,Gc
i,j), where Gi,j is

the set of ``good"" messages, namely, (t, x) for which the following hold:
\bullet If t \leq j, then x = f i(x\ast).
\bullet If j < t \leq i+ 1, then x = f i+1(x\ast).

Gc
i,j is just the set complement of Gi,j . The indistinguishability of this change

follows from the techniques of Toy Example 2.
2. Change \~\delta so that if t = j - 1, it outputs a hard-coded ciphertext c =

\sansE \sansn \sansc (EK, (j, f i(x\ast))), and replace the ``if t = j"" check with ``if \~x = c"" (to
be executed before decryption). Also, expand the set on which EK and DK
are punctured to include all (t, x) for which t = j. These changes do not
affect the functionality of \~\delta , so indistinguishability follows from i\scrO .

3. Change c to \sansE \sansn \sansc (EK, (j, f i+1(x\ast))). This is indistinguishable by ACE's ci-
phertext indistinguishability.

4. Change \~\delta by removing the ``if \~x = c"" special case. Change the special-case
behavior when t = j - 1 to computing and outputting \sansE \sansn \sansc (EK, (j, f(x)))
rather than using the hard-coded ciphertext c. Remove the hard-coded ci-
phertext c altogether. Unpuncture EK and reduce the puncturing of DK
to the set Gc

i,j - 1. These changes do not affect the functionality of \^\delta , so
indistinguishability follows from i\scrO .

5. Apply the changes of step 1 in reverse to indistinguishably unpunctureDK.

We note that when f is the function which maps one Turing machine configura-
tion to the next, Not-So-Toy Example 3 already is a meaningfully succinct garbling
for Turing machines. In particular, the size of the garbling is \sansp \sanso \sansl \sansy (S, \lambda), and the eval-
uation time is T \cdot \sansp \sanso \sansl \sansy (S, \lambda). Our main construction improves on this by reducing the
evaluation time to T \cdot \sansp \sanso \sansl \sansy (\lambda) and the garbling size to S \cdot \sansp \sanso \sansl \sansy (\lambda). The proof of security
for the construction builds on our proof of security for Not-So-Toy Example 3, but
with a finer-grained ``per-cell"" puncturing strategy.

4.2.3. Security with iO: Proof.

Theorem 4.12. There is a PPT algorithm \sansS \sansi \sansm such that for every Turing ma-

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1177

chine M and input x, running in time T and space S, the distribution

(4.1) \~\delta , \~q0, \~\scrT 0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm|
key\leftarrow \sansG \sanse \sansn (1\lambda , T, S),
\~\delta , \~q0 \leftarrow \sansG \sansb (key,M),\widetilde \scrT 0 \leftarrow \sansE \sansn \sansc \sanso \sansd \sanse (key, x)

is computationally indistinguishable from

\sansS \sansi \sansm (1\lambda ,M(x), 1T , 1S).

Proof. We start with a generalization of the techniques given in the technical
overview (specifically the technique used to show that \sansH i,j and \sansH i,j - 1 were indistin-
guishable in Not-So-Toy Example 3). Let \delta : Q\times \Sigma \rightarrow Q\times \Sigma \cup \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst ,\bot \} be
a circuit.

Definition 4.13. Say that \delta is timed if for every q \in Q and s \in \Sigma there are asso-
ciated timestamps q.t and s.t such that (i) if (q\prime , s\prime) = \delta (q, s), then q\prime .t = s\prime .t = q.t+1,
and (ii) if s.t > q.t, then \delta (q, s) = \bot .

Definition 4.14. Say that a timed circuit \delta is T -bounded if for all q and s with
q.t > T it holds that \delta (q, s) = \bot .

Definition 4.15. A pair of sets G\sanss \sanst \sansa \sanst \sanse \subseteq Q and G\sansm \sanse \sansm \subseteq \Sigma is said to be \delta -
invariant if

\delta (G\sanss \sanst \sansa \sanst \sanse \times G\sansm \sanse \sansm) \cap (Q\times \Sigma) \subseteq G\sanss \sanst \sansa \sanst \sanse \times G\sansm \sanse \sansm .

Lemma 4.16. Let \delta 0, \delta 1 : Q\times \Sigma \rightarrow Q\times \Sigma \cup \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst ,\bot \} be T -bounded timed
circuits, and let (G\sanss \sanst \sansa \sanst \sanse , G\sansm \sanse \sansm) be \delta 0-invariant, with G\sanss \sanst \sansa \sanst \sanse and G\sansm \sanse \sansm decidable by
circuits of size, respectively, \sansp \sanso \sansl \sansy (log | Q|) and \sansp \sanso \sansl \sansy (log | \Sigma |).

Suppose there exist q\ast 0 \in G\sanss \sanst \sansa \sanst \sanse , q
\ast
1 \in Q \setminus G\sanss \sanst \sansa \sanst \sanse and s\ast 0 \in G\sansm \sanse \sansm , s

\ast
1 \in \Sigma \setminus G\sansm \sanse \sansm

such that for all q \in G\sanss \sanst \sansa \sanst \sanse and s \in G\sansm \sanse \sansm , (q
\prime , s\prime) = \delta 0(q, s) if and only if

(\tau \sanss \sanst \sansa \sanst \sanse (q
\prime), \tau \sansm \sanse \sansm (s

\prime)) = \delta 1(\tau \sanss \sanst \sansa \sanst \sanse (q), \tau \sansm \sanse \sansm (s)),

where \tau \sanss \sanst \sansa \sanst \sanse : Q \rightarrow Q denotes the transposition interchanging q\ast 0 and q\ast 1 , and \tau \sansm \sanse \sansm :
\Sigma \rightarrow \Sigma denotes the transposition interchanging s\ast 0 and s\ast 1.

Then for any q0 \in G\sanss \sanst \sansa \sanst \sanse and any s
(0)
0 , . . . , s

(S - 1)
0 \in G\sansm \sanse \sansm , it holds that

\bigl(
\vec{}c0, \~\delta 0

\bigr)
is computationally indistinguishable from

\bigl(
\vec{}c1, \~\delta 1

\bigr)
in the probability space defined by

sampling

SK\sanss \sanst \sansa \sanst \sanse \leftarrow ACE.\sansS \sanse \sanst \sansu \sansp (1\lambda , 1log | Q| , 1\sansp \sanso \sansl \sansy (log | Q|)),
EK\sanss \sanst \sansa \sanst \sanse \leftarrow ACE.\sansG \sanse \sansn \sansE \sansK (SK\sanss \sanst \sansa \sanst \sanse , \emptyset),
DK\sanss \sanst \sansa \sanst \sanse \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK\sanss \sanst \sansa \sanst \sanse , \emptyset),
SK\sansm \sanse \sansm \leftarrow ACE.\sansS \sanse \sanst \sansu \sansp (1\lambda , 1log | \Sigma | , 1\sansp \sanso \sansl \sansy (log | \Sigma |)),
EK\sansm \sanse \sansm \leftarrow ACE.\sansG \sanse \sansn \sansE \sansK (SK\sansm \sanse \sansm , \emptyset),
DK\sansm \sanse \sansm \leftarrow ACE.\sansG \sanse \sansn \sansD \sansK (SK\sansm \sanse \sansm , \emptyset),
\vec{}c0 :=

\Bigl(
\sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , q0),

\bigl(
\sansE \sansn \sansc (EK\sansm \sanse \sansm , s

(i)
0)

\bigr) S - 1

i=0

\Bigr)
,

\vec{}c1 :=
\Bigl(
\sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , \tau \sanss \sanst \sansa \sanst \sanse (q0)),

\bigl(
\sansE \sansn \sansc (EK\sansm \sanse \sansm , \tau \sansm \sanse \sansm (s

(i)
0)

\bigr) S - 1

i=0

\Bigr)
,

for each b \in \{ 0, 1\} :
\~\delta b \leftarrow i\scrO (1\lambda , \^\delta b),

where \^\delta b is the circuit described in Figure 4.16, padded to size \sansp \sanso \sansl \sansy (\lambda , log | Q| , log | \Sigma |).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1178 BITANSKY ET AL.

Input: Ciphertexts \~q, \~s.
Constants: ACE encryption, decryption keys EK\sanss \sanst \sansa \sanst \sanse ,DK\sanss \sanst \sansa \sanst \sanse , EK\sansm \sanse \sansm ,DK\sansm \sanse \sansm .

1. Decrypt q := \sansD \sanse \sansc (DK\sanss \sanst \sansa \sanst \sanse , \~q) and s := \sansD \sanse \sansc (DK\sansm \sanse \sansm , \~s), or output \bot if
the output of \sansD \sanse \sansc is \bot .

2. Compute \sanso \sansu \sanst := \delta b(q, s). If \sanso \sansu \sanst \in \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst ,\bot \} , output \sanso \sansu \sanst . Other-
wise parse \sanso \sansu \sanst as (q\prime , s\prime).

3. Output (\~q\prime , \~s\prime), where \~q\prime = \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , q
\prime) and \~s\prime = \sansE \sansn \sansc (EK\sansm \sanse \sansm , s

\prime).

Fig. 4.16. The circuit \^\delta b in Lemma 4.16.

Proof. We show this by a sequence of O(T) computationally indistinguishable
changes which change (\vec{}c0, \~\delta 0) to (\vec{}c1, \~\delta 1). First, we iteratively restrict EK\sanss \sanst \sansa \sanst \sanse , DK\sanss \sanst \sansa \sanst \sanse

and EK\sansm \sanse \sansm , DK\sansm \sanse \sansm as follows:
1. Restrict EK\sanss \sanst \sansa \sanst \sanse (i.e., change the set at which it is punctured) so that

\sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , q) \not = \bot if and only if q.t > 0 or q \in G\sanss \sanst \sansa \sanst \sanse .

Similarly, restrict EK\sansm \sanse \sansm so that

\sansE \sansn \sansc (EK\sansm \sanse \sansm , s) \not = \bot if and only if s.t > 0 or s \in G\sansm \sanse \sansm .

Because \^\delta 0 never encrypts messages with timestamp 0, these changes to
EK\sanss \sanst \sansa \sanst \sanse and EK\sansm \sanse \sansm are functionality-preserving, and thus by the security
of i\scrO the overall change to \~\delta is computationally indistinguishable.

2. For j = 1, . . . , T , do the following:
(a) Modify DK\sanss \sanst \sansa \sanst \sanse and DK\sansm \sanse \sansm , such that

\bullet if q is in the image of \sansD \sanse \sansc (DK\sanss \sanst \sansa \sanst \sanse , \cdot), then q.t > j - 1 or q \in G\sanss \sanst \sansa \sanst \sanse ;
\bullet if s is in the image of \sansD \sanse \sansc (DK\sansm \sanse \sansm , \cdot), then s.t > j - 1 or s \in G\sansm \sanse \sansm .

The indistinguishability of this change follows from ACE's security of
constrained decryption.

(b) Restrict EK\sanss \sanst \sansa \sanst \sanse and EK\sansm \sanse \sansm analogously to step 1, namely,
\bullet \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , q) \not = \bot if and only if q.t > j or q \in G\sanss \sanst \sansa \sanst \sanse ;
\bullet \sansE \sansn \sansc (EK\sansm \sanse \sansm , s) \not = \bot if and only if s.t > j or s \in G\sansm \sanse \sansm .

The functional equivalence (and hence, by iO, indistinguishability) of
this change follows from the \delta 0-invariance of (G\sanss \sanst \sansa \sanst \sanse , G\sansm \sanse \sansm).

By the T -boundedness of \delta 0, EK\sanss \sanst \sansa \sanst \sanse andDK\sanss \sanst \sansa \sanst \sanse are now punctured atQ\setminus G\sanss \sanst \sansa \sanst \sanse , while
EK\sansm \sanse \sansm and DK\sansm \sanse \sansm are now punctured at \Sigma \setminus G\sansm \sanse \sansm . Let \~q\ast b denote \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , q

\ast
b),

and let \~s\ast b denote \sansE \sansn \sansc (EK\sansm \sanse \sansm , s
\ast
b).

1. Modify \^\delta 0 so that instead of encrypting q\ast 0 (resp., decrypting \~q\ast 0), it uses
the hard-coded correspondence q\ast 0 \updownarrow \~q\ast 0 . Similarly instead of encrypting s\ast 0
(resp. decrypting \~s\ast 0), it uses the hard-coded correspondence s\ast 0 \updownarrow \~s\ast 0. Let
EK\sanss \sanst \sansa \sanst \sanse and DK\sanss \sanst \sansa \sanst \sanse be punctured now on (Q \setminus G\sanss \sanst \sansa \sanst \sanse)\cup \{ q\ast 0\} , and let EK\sansm \sanse \sansm

and DK\sansm \sanse \sansm be punctured on (\Sigma \setminus G\sansm \sanse \sansm) \cup \{ s\ast 0\} . These changes are clearly
functionality-preserving and hence indistinguishable by the security of i\scrO .

2. Change \~q\ast 0 to \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , q
\ast
1), and similarly change \~s\ast 0 to \sansE \sansn \sansc (EK\sansm \sanse \sansm , s

\ast
1).

Similarly modify all ciphertexts in \vec{}c. This is indistinguishable by ACE's
ciphertext indistinguishability.

3. Replace \delta 0 by \delta 1 and remove the hard-coded correspondences q\ast 0 \updownarrow \~q\ast 0 and
s\ast 0 \updownarrow \~s\ast 0. Reduce the puncturing of EK\sanss \sanst \sansa \sanst \sanse and DK\sanss \sanst \sansa \sanst \sanse to Q \setminus \tau \sanss \sanst \sansa \sanst \sanse (G\sanss \sanst \sansa \sanst \sanse),

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1179

and reduce the puncturing of EK\sansm \sanse \sansm and DK\sansm \sanse \sansm to \Sigma \setminus \tau \sansm \sanse \sansm (G\sansm \sanse \sansm). By
assumption on the relation of \delta 1 to \delta 0, this change is functionality-preserving
and hence indistinguishable by the security of i\scrO .

Finally, remove all of the key restrictions and hard-codings. This change is indistin-
guishable by reversing the above hybrids.

We now return to the proof of Theorem 4.12. We present a number of indistin-
guishable hybrid distributions \sansH 0, . . . ,\sansH T , each defining a different way of sampling
\~\delta , \~q0, and \~\scrT 0, where \~\delta is sampled as \~\delta \leftarrow i\scrO (1\lambda , \^\delta) for some \^\delta . In hybrid \sansH 0, (\^\delta , \~q0, \~\scrT 0)
are sampled as in (4.1), while in hybrid \sansH T they are sampled given only M(x), T ,
and S. Thus, if we show that for all i \in \{ 0, . . . , T - 1\} , \sansH i \approx \sansH i+1, then hybrid \sansH T

defines the desired \sansS \sansi \sansm .
All of our hybrids are designed around the transition function \^\delta . We first describe

the sorts of transition functions we will define. \^\delta always takes the following as input:
\bullet \~q, expected to be an encryption of (t, q) for some timestamp t and state q.
\bullet \~s, expected to be an encryption of (t\sansm \sanse \sansm , \sansa \sansd \sansd \sansr , s) for some different timestamp
t\sansm \sanse \sansm , an address tag \sansa \sansd \sansd \sansr , and an underlying memory symbol s.

On an input (\~q, \~s), \^\delta decrypts

(t, q)\leftarrow \sansD \sanse \sansc (DK\sanss \sanst \sansa \sanst \sanse , \~q),
(t\sansm \sanse \sansm , \sansa \sansd \sansd \sansr , s

\prime)\leftarrow \sansD \sanse \sansc (DK\sansm \sanse \sansm , \~s)

and checks that t < T , t\sansm \sanse \sansm = \beta (t), and \sansa \sansd \sansd \sansr = \tau (t). If not, then \^\delta outputs \bot . If

so, \^\delta does one of three things, depending on the hybrid distribution as well as on the
timestamp t:

1. Dummy step: Only update the timestamps. That is, output (\~q\prime , \~s\prime), where

\~q\prime = \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (t+ 1, q)),
\~s\prime = \sansE \sansn \sansc (EK\sansm \sanse \sansm , (t+ 1, \sansa \sansd \sansd \sansr , s)).

2. Real step: Perform one step of M 's computation. That is, compute \sanso \sansu \sanst \leftarrow
\delta (q, s). If \sanso \sansu \sanst is a ``final answer,"" i.e., \sanso \sansu \sanst \in \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst \} , then output \sanso \sansu \sanst
in the clear. Otherwise, parse \sanso \sansu \sanst as (q\prime , s\prime) and output (\~q\prime , \~s\prime), where

\~q\prime = \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (t+ 1, q\prime)),
\~s\prime = \sansE \sansn \sansc (EK\sansm \sanse \sansm , (t+ 1, \sansa \sansd \sansd \sansr , s\prime)).

3. Hard-coded output: Output some hard-coded constant y in the clear.
With this terminology, we can crisply describe our hybrids. Let t\ast denote the

running time of M on x. Let qt denote the tth internal state of M when executed on
x for t steps. Similarly, let \scrT t denote the tape of M when executed on x for t steps.

Hybrid \sansH i (if i < t\ast):

\bullet If t < i, \^\delta does a dummy step. If i \leq t \leq T , \^\delta does a real step.
\bullet \~q0 is defined as \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (0, qi)).

\bullet \widetilde \scrT 0 is defined as (c1, . . . , cS), where cj = \sansE \sansn \sansc (EK\sansm \sanse \sansm , (0, j, \scrT i[j])).

Hybrid \sansH i (if t\ast \leq i \leq T):

\bullet If t < t\ast , \^\delta does a dummy step. If t = t\ast , \^\delta outputs the hard-coded
M(x). If t\ast < t \leq i, \^\delta does a dummy step. If i < t \leq T , \^\delta does a real
step.

\bullet \~q0 is defined as \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (0,\bot)).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1180 BITANSKY ET AL.

\bullet \widetilde \scrT 0 is defined as (c1, . . . , cS), where cj = \sansE \sansn \sansc (EK\sansm \sanse \sansm , (0, j, \scrT t\ast [j])).

Hybrid \sansH T+1:
\bullet If t < t\ast , \^\delta does a dummy step. If t = t\ast , \^\delta outputs the hard-coded
M(x). If t\ast < t, \^\delta does a dummy step.

\bullet \~q0 is defined as \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (0,\bot)).
\bullet \widetilde \scrT 0 is defined as (c1, . . . , cS), where cj = \sansE \sansn \sansc (EK\sansm \sanse \sansm , (0, j,\bot)).

Indistinguishability of hybrids \bfsansH \bfiti and \bfsansH \bfiti +\bfone (for \bfiti < \bfitt \ast). We will show
that \sansH i and \sansH i+1 are indistinguishable by following our earlier proof template using
ACE. We give a sequence of subhybrids.

Hybrid \sansH i,1: This is the same as hybrid \sansH i, but EK\sansm \sanse \sansm , DK\sansm \sanse \sansm and EK\sanss \sanst \sansa \sanst \sanse ,DK\sanss \sanst \sansa \sanst \sanse

are, respectively, punctured at \Sigma \setminus Gi
\sansm \sanse \sansm and Q \setminus Gi

\sanss \sanst \sansa \sanst \sanse , where

Gi
\sansm \sanse \sansm = \{ (t, a, s) : If t \leq i and a = \tau (i), then s = \scrT i[\tau (i)]\}

and
Gi

\sanss \sanst \sansa \sanst \sanse = \{ (t, q) : If t \leq i then q = qi\} .

Hybrid \sansH i,2: Add the following special-case branch to \^\delta : If t = i, output (\~q\ast , \~s\ast),
where these are hard-coded constants

\~q\ast = \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (i+ 1, qi+1))

and
\~s\ast = \sansE \sansn \sansc (EK\sansm \sanse \sansm , (i+ 1, \tau (i), \scrT i+1[\tau (i)])).

\^\delta is now described by Figure 4.17.
Hybrid \sansH i,3: In this step, we change the time at which the special-case branch above

is activated. That is, for j ranging from i to 0, we have a hybrid \sansH i,j in which

the transition function \^\delta instead has the following special-case branches. Let
\gamma (j) denote min\{ j\prime : j\prime \geq j \wedge \tau (j\prime) = \tau (i)\} :
(a) If t = j, set \~q\prime = \~q\ast , where \~q\ast is the hard-coded value \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (j +

1, qi+1)). Otherwise, define \~q\prime as in a dummy step.
(b) If t = \gamma (j), then set \~s\prime = \~s\ast , where \~s\ast is the hard-coded value

\sansE \sansn \sansc (EK\sansm \sanse \sansm , (j + 1, \tau (i), (\scrT i+1)[\tau (i)])).

Otherwise, define \~s\prime as in a dummy step.

Claim 4.17. The distribution of (\^\delta , \~q0, \~\scrT 0) induced by hybrid \sansH i,2 is indistinguish-
able from that induced by \sansH i,3.

Proof. There are really two changes here: changing the time at which branch (a) is
activated (together with the ciphertext c\sanss \sanst \sansa \sanst \sanse), and changing the time at which branch
(b) is activated (together with the ciphertext c\sansm \sanse \sansm). Although the two are treated
analogously, we only illustrate with branch (a) for simplicity because its hard-coded
time always changes from j to j - 1.

We first modify branch (a) to have two parts:
(a.1) If t = j - 1, set \~q\prime = c\sanss \sanst \sansa \sanst \sanse , where c\sanss \sanst \sansa \sanst \sanse = \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (j, qi)).
(a.2) If \~q = c\sanss \sanst \sansa \sanst \sanse , set \~q\prime = \~q\ast , where \~q\ast = \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (j + 1, qi+1)).

This change is indistinguishable by iO. Next, we restrict EK\sanss \sanst \sansa \sanst \sanse and DK\sanss \sanst \sansa \sanst \sanse to be
unable to encrypt or decrypt anything with timestamp j. This is also indistinguishable
by iO because

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1181

Input: State ciphertext \~q, memory ciphertext \~s.
Constants: Keys EK \prime

\sanss \sanst \sansa \sanst \sanse = EK\sanss \sanst \sansa \sanst \sanse \{ Q \setminus G\sanss \sanst \sansa \sanst \sanse \} , DK \prime
\sanss \sanst \sansa \sanst \sanse = DK\sanss \sanst \sansa \sanst \sanse \{ Q \setminus G\sanss \sanst \sansa \sanst \sanse \} ,

EK \prime
\sansm \sanse \sansm = EK\sansm \sanse \sansm \{ \Sigma \setminus G\sansm \sanse \sansm \} , DK \prime

\sansm \sanse \sansm = DK\sansm \sanse \sansm \{ \Sigma \setminus G\sansm \sanse \sansm \} , ciphertexts \~q\ast , and
\~s\ast .

1. Decrypt (t, q) \leftarrow \sansD \sanse \sansc (DK \prime
\sanss \sanst \sansa \sanst \sanse , \~q) and decrypt (t\sansm \sanse \sansm , \sansa \sansd \sansd \sansr , s) \leftarrow

\sansD \sanse \sansc (\sanss \sansk \prime \sansm \sanse \sansm , \~s).
2. Check that t\sansm \sanse \sansm = \beta (t) and \sansa \sansd \sansd \sansr = \tau (t) and t \leq T . If not, output \bot .
3. If t = i, output (\~q\ast , \~s\ast).
4. If \delta (q, s) \in \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst \} , output it. Otherwise, compute (q\prime , s\prime) \leftarrow

\delta (q, s).
5. Encrypt \~q\prime \leftarrow \sansE \sansn \sansc (EK \prime

\sanss \sanst \sansa \sanst \sanse , (t + 1, q\prime)) and \~s\prime \leftarrow \sansE \sansn \sansc (\sanss \sansk \prime \sansm \sanse \sansm , (t +
1, \sansa \sansd \sansd \sansr , s\prime)).

6. Output (\~q\prime , \~s\prime).

Fig. 4.17. Obfuscated transition function \^\delta with punctured keys and hard-coded ciphertexts to
output.

\bullet \^\delta never encrypts something with timestamp j; it outputs c\sanss \sanst \sansa \sanst \sanse instead;
\bullet since DK\sanss \sanst \sansa \sanst \sanse was already restricted to Gi

\sanss \sanst \sansa \sanst \sanse , \sansD \sanse \sansc (DK\sanss \sanst \sansa \sanst \sanse , c) would be of the

form (j, \star) if and only if c = c\sanss \sanst \sansa \sanst \sanse , but \^\delta doesn't ever decrypt c\sanss \sanst \sansa \sanst \sanse .
Next, we change the hard-coded value c\sanss \sanst \sansa \sanst \sanse to be equal to \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (j, qi+1)).

This is indistinguishable due to ciphertext indistinguishability of ACE.
We now undo the hard-coding and key restriction we did to facilitate this change:
1. \^\delta is modified so that when t = j, it computes \~q\prime as in a dummy step instead

of hard-coding \~q\ast . This is indistinguishable because, by the puncturing of
DK\sanss \sanst \sansa \sanst \sanse , the only reachable case (mapping c\sanss \sanst \sansa \sanst \sanse to \~q\ast) is functionally equiv-
alent to a dummy step.

2. We unrestrict EK\sanss \sanst \sansa \sanst \sanse and DK\sanss \sanst \sansa \sanst \sanse to allow encryption and decryption of
(j, qi+1) and remove special-case branch (a.2). This is functionally equiva-
lent, and thus indistinguishable by iO.

3. We then unrestrict DK\sanss \sanst \sansa \sanst \sanse to allow decryption of any message with time-
stamp j. This is indistinguishable by ACE's security of constrained decryp-
tion.

4. We then unrestrict EK\sanss \sanst \sansa \sanst \sanse to allow encryption of any message with time-
stamp j. This is indistinguishable by iO because \^\delta only tries to encrypt (j, q)
when q = qi+1.

The result of these changes is hybrid \sansH i,j - 1, so we have shown that for j > 1,
\sansH i,j \approx \sansH i,j - 1. We must also show that \sansH i,1 \approx \sansH i+1. The proof is exactly analogous,
and hybrid \sansH i+1 should be thought of as a degenerate hybrid \sansH i,0. Instead of modi-

fying \^\delta to have a hard-coded output when t = 0 (\^\delta is never run with t = 0---its first

timestamp is t = 1), one modifies the initial state \~q0 and the initial tape \widetilde \scrT 0.
Indistinguishability of hybrids \sansH t\ast - 1 and \sansH t\ast . This proceeds analogously to the

proof that \sansH i - 1 \approx \sansH i for i < t\ast . The only difference is that the hard-coded behavior
at time t\ast is to output some hard-coded y \in \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst \} rather than to output two
hard-coded ciphertexts (c\sanss \sanst \sansa \sanst \sanse , c\sansm \sanse \sansm). There is also no need to go through hybrids \sansH i,i

to \sansH i,0 to change \~q0 (resp., \widetilde \scrT 0) from \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (0, qt\ast)) to \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , (0, qt\ast +1));
since the running time of M on x is only t\ast , there is no qt\ast +1.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1182 BITANSKY ET AL.

Indistinguishability of hybrids \sansH t\ast and \sansH T . We use the fact that in \sansH t\ast 's definition
of \^\delta , the procedure \sansE \sansn \sansc (EK\sanss \sanst \sansa \sanst \sanse , \cdot) is never invoked on a message of the form (t\ast +
1, \star). We then iteratively restrict EK\sanss \sanst \sansa \sanst \sanse and DK\sanss \sanst \sansa \sanst \sanse so that for any t \in \{ t\ast +
1, . . . , T\} , any message of the form (t, \star) is not in the image of \sansD \sanse \sansc (DK\sanss \sanst \sansa \sanst \sanse , \cdot). Then
modifying \^\delta to run a dummy step on all such t preserves functionality and is therefore
indistinguishable.

Indistinguishability of hybrids \sansH T and \sansH T+1. We need to indistinguishably replace

\~q0 and \widetilde \scrT 0 with null ciphertexts. This will require T \cdot S more hybrids. Due to its
similarity to the lengthy argument described above, we only sketch these hybrids
here.

We change the initial ciphertexts one at a time. For example, we might change \~q0
first, and then change \widetilde \scrT 0, changing addresses from lowest to highest. But the exact or-
der isn't important. Suppose that we want to change \widetilde \scrT 0[0] to be \sansE \sansn \sansc (EK\sansm \sanse \sansm , (0, 0,\bot)).
We go through hybrids \sansH T,1, . . . ,\sansH T,t\ast . In each of these hybrids,

\widetilde \scrT 0[0] = \sansE \sansn \sansc (EK\sansm \sanse \sansm , (0, 0,\bot)),

but only in \sansH T,T will \^\delta be independent of the old value of \widetilde \scrT 0.
In hybrid \sansH T,i, \^\delta will do dummy steps everywhere, except for at t\prime = min\{ t\prime : t\ast >

t\prime > i and \tau (t\prime) = 0\} , if that set is nonempty. At this t\prime , \^\delta sets \~s\prime = \sansE \sansn \sansc (EK\sansm \sanse \sansm , (t
\prime +

1, 0, \scrT t\ast +1[0])).

4.3. Garbling RAM machines. In this section we describe how to modify the
construction of section 4.2 to work for RAM machines. For our purposes, a RAM
machine consists of two components: an initial internal state q0, and a transition
function \delta which takes as input an internal state q and a memory symbol s, and
outputs

1. an internal state q\prime , a memory symbol s\prime , and an address \sansa \sansd \sansd \sansr ; or
2. a ``final output"": either \sansa \sansc \sansc \sanse \sansp \sanst or \sansr \sanse \sansj \sanse \sansc \sanst .

An input to a RAM machine is a tape \scrT 0. To execute a RAM machine M = (q0, \delta)
on a tape \scrT 0, one does the following.

Define \sansa \sansd \sansd \sansr 0 = 0. For each i > 0, define (qi, \sansa \sansd \sansd \sansr i, si) = \delta (qi - 1, \scrT i - 1[\sansa \sansd \sansd \sansr i - 1])
and define the ith memory configuration \scrT i as

\scrT i[\sansa \sansd \sansd \sansr] =

\Biggl\{
si if si \not = \bot and \sansa \sansd \sansd \sansr = \sansa \sansd \sansd \sansr i,

\scrT i - 1[\sansa \sansd \sansd \sansr] otherwise.

If \delta (qt - 1, \scrT i - 1[\sansa \sansd \sansd \sansr i - 1]) = y \in \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst \} for some t, then we say that M(\scrT 0) = y.
If there is no such t, we say that M(\scrT 0) = \bot .

Technical overview. The difficulty with garbling RAM machines is the lack of
an exact analog to the Pippenger--Fischer theorem. Although there is a vast litera-
ture on oblivious RAM (ORAM) transformations, these transformations (unlike the
Pippenger--Fischer theorem) inherently produce randomized RAM machines, with ac-
cess patterns from a fixed distribution on sequences of addresses. With nonsuccinct
garbling schemes, this distinction is unimportant, because typically it is easier to con-
struct a ``weak"" garbling scheme in which a garbling of (M,x) is simulatable given
M(x) and the sequence of addresses accessed by M . Such a garbling scheme can be
composed with any ORAM to yield a scheme with full security: a garbling of (M,x)
is simulatable given only M(x).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1183

Weak garbling schemes typically preserve or nearly preserve the access pattern of
M (indeed otherwise they would themselves be an ORAM, which runs counter to the
goal of modularity). For succinct garbling schemes, such a weak garbling scheme is
impossible: a simulator given an arbitrary access pattern cannot hope to compress it
into a succinct (\~M, \~x), which reproduces that access pattern. Instead, one could hope
for the natural weakening to an indistinguishability-based notion of security: if two
RAM machines have identical access patterns, then their weak garblings should be
indistinguishable. It is not clear how such a weak garbling scheme can be composed
with an ORAM, but a subsequent work of Canetti and Holmgren [CH16] shows how
to do it (for any ORAM satisfying a certain ``localized randomness"" property).

In this work, due to limitations of our techniques (which were later removed in
[KLW15]), we don't know a simpler way of obtaining such a weak garbling scheme.
Indeed what we show is how to adapt the bounded space Turing machine garbling
scheme of section 4.2 (and its security proof) to a garbling scheme for bounded space
RAM machines.

Adapting the construction itself is quite straightforward. Starting with a RAM
machineM = (q0, \delta), we transform it to obtain a different RAMmachine \^M as follows.
First, we transform M to have an oblivious access pattern with a predictably timed
writes property; i.e., just prior to reading any memory address, the last-written time
for that address is efficiently computable from M 's local state. Such a transformation
is given in [GHRW14]. Then we construct a new RAM machine \^M which simulates
M underneath a basic memory authentication mechanism (starting with an initial

tape \widehat \scrT 0): whenever M would perform a write ``\scrT [a] := v,', \^M instead performs the

write ``\widehat \scrT [a] := \sansE \sansn \sansc (t, a, v).'. Whenever M would read \scrT [a], \^M reads a ciphertext at\widehat \scrT [a], decrypts it to obtain (t, a\prime , v), checks that a = a\prime and t is the last time that M
wrote to \scrT [a], and if so returns v to M . Additionally, \^M operates on an encrypted

local state. Let (\^q0, \^\delta) denote the initial state and transition function of \^M . Finally,

the garbled RAM machine is (\^q0, \~\delta , \widehat \scrT 0), where \~\delta \leftarrow i\scrO (1\lambda , \^\delta).
The proof of security follows the same high-level structure as for the Turing ma-

chine garbling scheme, although several new technical difficulties arise. We give a se-
quence of computationally indistinguishable changes to (\~q0, \~\delta , \widetilde \scrT 0), proceeding through
several hybrid distributions \sansH 1, . . . ,\sansH T , and culminating in a distribution which de-
pends only on M(\scrT 0). In hybrid \sansH i, \^M first performs i ``dummy steps"" in which
it accesses memory at a sequence of addresses which simulate those accessed by the
ORAM. At each of these addresses, \^M only reencrypts the contents of each memory
location it touches. After completing all of the i dummy steps, \^M performs T - i
steps of computation as before.

In showing that \sansH i - 1 is indistinguishable from \sansH i, we take two steps, each with
their own challenges. First, we show that \sansH i - 1 and \sansH i are indistinguishable from
distributions in which \^\delta has hard-coded mappings for the input/output pairs that

it would encounter in an honest execution at time i (and otherwise \^\delta outputs \bot for
inputs with timestamp i). This is not easy (see Claim 4.23), but it leaves the hard-

coded input/output mappings in \^\delta as the only remaining difference between \sansH i - 1 and

\sansH i. Within this, the most notable difference is that \^\delta 's hard-coded outputs contain
(in the clear) different memory addresses. In \sansH i - 1, these are real addresses accessed
by the ORAM, while in \sansH i these are simulated addresses (part of a dummy step).

Next, we show that these hard-coded addresses are indistinguishable, even given
the other auxiliary information which is present. In particular, we emphasize that in
\sansH i, the initial state \^q0 and \widehat \scrT 0 contain the entire ORAM internal state following the

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1184 BITANSKY ET AL.

first i accesses. We require the ith oblivious access to remain oblivious even given this
information---this is a forward security property that to the best of our knowledge has
not been previously studied for ORAMs. We show that an existing ORAM (namely,
the ORAM of [CP13]) has this property. It seems likely that other tree-based ORAMs
also have this property, but we have not verified this.

4.3.1. Oblivious RAM. We describe the ORAM of Chung and Pass [CP13],
which is a simplification of [SCSL11], and we highlight the security property needed
for our garbled RAM construction.

Construction. Starting with a RAM machine \Pi that uses N memory words,
the construction transforms it into a machine \Pi \prime that uses N \prime = N \cdot \sansp \sanso \sansl \sansy (logN,\lambda)
memory words. While the eventual goal is to store O(1) words in the local state of
\Pi \prime , Chung and Pass start with a ``basic"" construction in which the local state of \Pi \prime

consists of a ``position map"" \sansp \sanso \sanss : [N/\alpha]\rightarrow [N/\alpha] for some constant \alpha > 1.
The N underlying memory locations are divided into N/\alpha ``blocks,"" each storing

\alpha underlying memory words. The external memory is organized as a complete binary
tree of N/\alpha leaves. The semantics of the position map is that the ith block of memory
maps to the leaf labeled \sansp \sanso \sanss (i). Let d = log(N/\alpha). The CP/SCSL invariant is that

``Block i is stored in some node on the path from the root to the leaf
labeled with \sansp \sanso \sanss (i).""

Each internal node of the tree stores a few memory blocks. In particular, each
internal node, labeled by a string \gamma \in \{ 0, 1\} \leq d, is associated with a ``bucket"" of \beta
blocks for some \beta = \sansp \sanso \sansl \sansy \sansl \sanso \sansg (N).

The reads and writes to a location r \in [N] in the CP/SCSL ORAM proceed as
follows:

\bullet \sansF \sanse \sanst \sansc \sansh : Let b = \lfloor r/\alpha \rfloor be the block containing the memory location r, and
let i = r mod \alpha be the component within block b containing the location r.
We first look up the leaf corresponding to block b using the (locally stored)
position map. Let p = \sansP \sanso \sanss (b).
Next, we traverse the tree from the roof to the leaf p, reading and writing the
bucket associated to each internal node exactly once. In particular, we read
the content once, and then we either write it back, or we erase a block once
it is found, and write back the rest of the blocks.

\bullet \sansU \sansp \sansd \sansa \sanst \sanse \sansP \sanso \sanss \sansi \sanst \sansi \sanso \sansn \sansM \sansa \sansp : Pick a uniformly random leaf p\prime \leftarrow [N/\alpha] and set (in
the local memory) \sansP \sanso \sanss (b) = p\prime .

\bullet \sansW \sansr \sansi \sanst \sanse \sansB \sansa \sansc \sansk : In the case of a READ, add the tuple (b, p\prime , v) to the root of
the tree. In the case of a WRITE, add the tuple (b, p\prime , v\prime), where v\prime is the
new value to be written. If there is not enough space in the bucket associated
with the root, output \sanso \sansv \sanse \sansr fl\sanso \sansw and abort. (We note that [CP13, SCSL11] show
that, setting the parameters appropriately, the probability that the \sanso \sansv \sanse \sansr fl\sanso \sansw
event happens is negligible.)

\bullet \sansF \sansl \sansu \sanss \sansh \sanst \sansh \sanse \sansB \sansl \sanso \sansc \sansk : Pick a uniformly random leaf p\ast \leftarrow [N/\alpha] and traverse the
tree from the roof to the leaf p\ast , making exactly one read and one write
operation for every memory cell associated with the nodes along the path so
as to implement the following task: ``push down"" each tuple (\~b, \~p, \~v) read in
the nodes traversed as far as possible along the path to p\ast while ensuring
that the tuple is still on the path to its associated leaf \~p (i.e., maintaining the
CP/SCSL invariant). In other words, the tuple ends up in the node \gamma = the
longest common prefix of p\ast and \widetilde p. If at any point some bucket is about to

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1185

overflow, abort outputting \sanso \sansv \sanse \sansr fl\sanso \sansw .
The following observation is central to the correctness and security of the CP/SCSL
ORAM.

Observation 1. Each oblivious READ and WRITE operation traverses the tree
along two randomly chosen paths, independent of the history of operations so far.

This key observation follows from the facts that (1) each position in the position
map is used exactly once in a traversal (and before this traversal, this position is
not used in determining what nodes to traverse), and (2) the flushing, by definition,
traverses a random path, independent of the history.

Security property. Suppose an underlying access pattern is given; we will con-
sider the randomized procedure of executing this sequence of accesses via this ORAM.
We want a randomized ``dummy"" access algorithm \sansO \sansS \sansa \sansm \sansp \sansl \sanse which on input j outputs
a list of locations. This list should be distributed according to the real distribution
of accesses corresponding to the jth underlying access.

We can now describe our desired security property. Let Qs be a random variable
for the entire ORAM state (both private registers and memory configuration) after the
sth virtual step, and let Ij be a random variable for the physical addresses accessed
on the jth virtual step.

Lemma 4.18. There exist PPT algorithms \sansS \sansi \sansm and \sansO \sansS \sansa \sansm \sansp \sansl \sanse such that for any s,
any initial virtual memory configuration \scrT 0, any virtual access pattern \vec{}a = (a1, . . . , at)
(including both addresses and values written), and any possible (nonzero probability)
values i1, . . . , is - 1 of I1, . . . , Is - 1, it holds that for all PPT adversaries \scrA ,

Pr

\left[\scrA (qbs, ibs) = b

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm|
q0s - 1 \leftarrow \sansS \sansi \sansm (\scrT 0,\vec{}a, i1, . . . , is - 1)
q0s , i

0
s \leftarrow \sansO \sansA \sansc \sansc \sanse \sanss \sanss (as; qs - 1)

i1s \leftarrow \sansO \sansS \sansa \sansm \sansp \sansl \sanse (s)
q1s \leftarrow \sansS \sansi \sansm (\scrT 0,\vec{}a, i1, . . . , is - 1, i

1
s)

b\leftarrow \{ 0, 1\}

\right] \leq 1

2
+ negl(\lambda).

This is a consequence of the following two claims.

Claim 4.19. Is is independent of I1, . . . , Is - 1 and a1, . . . , as, and is efficiently
sampleable.

Proof. This follows immediately from Observation 1.

This lets us define \sansO \sansS \sansa \sansm \sansp \sansl \sanse (s) as the efficient algorithm which samples Is. Specif-
ically, in the CP/SCSL ORAM, \sansO \sansS \sansa \sansm \sansp \sansl \sanse samples and outputs two uniformly random
paths in each tree.

Claim 4.20. The conditional distribution Qs| I1, . . . , Is is efficiently sampleable
for all values of I1, . . . , Is (that jointly occur with nonzero probability).

Proof. Recall that Qs has two parts: a position map \sansP \sanso \sanss and memory contents
\~Ds, which are structured as a tree. We first give the sampling procedure for the basic
construction, and then extend it to the recursive case. It is easy to verify that this
procedure samples the correct distribution.

To sample Qs given a sequence of physical memory accesses (i1, . . . , is), do the
following. For every memory block b \in [N/\alpha], let \tau b \leq s be the last time when block
b was accessed. Let Ij = (I \sansr \sanse \sansa \sansd j , Ifl\sanss \sansh j) be the pair of paths that comprise each Ij .

\bullet For each block b, pick a uniformly random leaf pb \leftarrow \lfloor N/\alpha \rfloor . Compute the
unique internal node \gamma b such that \gamma b is the largest common prefix between pb
and any of Ifl\sanss \sansh \tau b

, . . . , Ifl\sanss \sansh s .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1186 BITANSKY ET AL.

\bullet Construct \sansP \sanso \sanss by letting \sansP \sanso \sanss (b) = pb.
\bullet Construct \~Ds by writing each memory block b together with its value at time
s to the internal node \gamma b.

To sample Qs for the recursive construction, we note that this basic sampler
doesn't need to know \vec{}x and the entire access pattern; it only needs to know each
\tau b described above, as well as the memory contents at time s. This information
(\{ \tau \prime b\prime \} , \vec{}x\prime

s) for the next smaller recursive case is readily computable. \vec{}x\prime
s for the next

level ORAM is just \sansP \sanso \sanss , which we have already computed. \tau \prime b\prime is the maximum of \tau b
over all b corresponding to b\prime . So we can run the basic sampler repeatedly until we
have sampled Qs for the whole recursive construction.

This allows us to define \sansS \sansi \sansm as the above procedure for efficiently sampling Qs

conditioned on I1 = i1, . . . , Is = is.
We can now prove a stronger (statistical) version of Lemma 4.18, knowing that

\sansS \sansi \sansm and \sansO \sansS \sansa \sansm \sansp \sansl \sanse output the correct conditional distributions.

Claim 4.21. Pr[q0s , i
0
s = qs, is] \approx Pr[q1s , i

1
s = qs, is].

Proof.

Pr[q0s , i
0
s = qs, is] \approx \BbbE qs - 1

[Pr[qs, is| qs - 1, i1, . . . , is - 1]| i1, . . . , is - 1]

= Pr[qs, is| i1, . . . , is - 1]

= Pr[qs| i1, . . . , is] Pr[is| i1, . . . , is - 1]

= Pr[qs| i1, . . . , is] Pr[is]
\approx Pr[q1s , i

1
s = qs, is].

1. The first approximate equality follows from \sansS \sansi \sansm approximately sampling qs - 1

given i1, . . . , is - 1 and from \sansO \sansA \sansc \sansc \sanse \sanss \sanss (exactly) sampling qs, is given qs - 1.
2. The second equality is just marginalization over qs - 1.
3. The third equality is the chain rule for probabilities.
4. The fourth equality is Claim 4.19, namely, that the locations accessed at time

s are independent of previously accessed locations.
5. The fifth approximate equality follows from \sansO \sansS \sansa \sansm \sansp \sansl \sanse approximately sam-

pling is.

4.3.2. Garbling construction. As for Turing machines, our garbling scheme
for RAM machines consists of three parts:

\bullet an initial state \~q0;
\bullet an obfuscated transition function i\scrO (\^\delta);
\bullet an initial tape \widetilde \scrT 0.

We generate (\~q0, \~\delta , \widetilde \scrT 0) by transforming (q0, \^\delta , \scrT 0) into three steps:
1. We apply the ORAM transformation of [CP13]. Additionally, we give the

transformed machine a ``predictably timed writes"" property [GHRW14]. In-
formally, this states that whenever it accesses a memory address, it already
knows the last time at which that address was written to. To supply the
randomness needed by the ORAM, we give the transition function a hard-
coded puncturable PRF F\sansO \sansR \sansA \sansM . The ``randomness"" used at time t is given
by F\sansO \sansR \sansA \sansM (t).

2. We augment the internal states to contain a timestamp which starts at 0 and
is incremented on every step. We also augment the contents of each memory
cell to store its address, as well the timestamp at which it was last written.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1187

Finally, we modify \delta to check, given its internal state, that the accessed
memory value is labeled with the expected timestamp and address (checking
the expected timestamp uses the predictably timed writes property).

3. We modify the transition function so that its inputs and outputs are all
ciphertexts, with the exception of the address \sansa \sansd \sansd \sansr , which it outputs in the
clear. We hard-code two secret keys, \sanss \sansk \sanss \sanst \sansa \sanst \sanse and \sanss \sansk \sansm \sanse \sansm , which it uses to decrypt
its inputs and encrypt its outputs using our special authenticated encryption
scheme (ACE).

We will let M \prime = (q\prime 0, \delta
\prime) and \scrT \prime

0 refer to the result of step 1 above. Internal states q\prime

of M \prime will be tuples (q, q\sansO \sansR \sansA \sansM), where q is a state of M and q\sansO \sansR \sansA \sansM is an ORAM state.
Our hybrids below will primarily modify M \prime , and then will apply the same steps 2
and 3 above.

4.3.3. Security proof. Given a RAM machine M = (q0, \delta) and an input \scrT 0, we
give a sequence of hybrid distributions \sansH 0, . . . ,\sansH T such that \sansH 0 is distributed as our
garbling of (M, \scrT 0) constructed above, and \sansH T is efficiently sampleable given M(\scrT 0).

Definition of hybrids. To better describe our hybrids, we will introduce a bit
of terminology. Suppose the ORAM has an overhead of \eta ---so one step of executing
M on \scrT 0 naturally corresponds to a chunk of \eta steps of \^M on \widehat \scrT 0. We refer to one
such chunk as a virtual step. When we wish to emphasize that we are referencing a
single step in the execution of \^M on \widehat \scrT 0, we use the term physical step.

In the description of our hybrids, the greatest complexity arises in describing the
transition function \^\delta . For simplicity, we describe transition functions by how they act
at the level of virtual steps. Precisely, we will consider transition functions \^\delta which
on input (\~q, \~s) first decrypt (t, q) \leftarrow \sansD \sanse \sansc (\sanss \sansk \sanss \sanst \sansa \sanst \sanse , \~q) and decompose t as \eta \cdot t\sansv \sansr \sanst + t\sansp \sansh \sansy \sanss .
\^\delta then does one of four things:

1. Real virtual step:
(a) Decrypt (t\sansm \sanse \sansm , \sansa \sansd \sansd \sansr , s)\leftarrow \sansD \sanse \sansc (\sanss \sansk \sansm \sanse \sansm , \~s).
(b) Check that t\sansm \sanse \sansm and \sansa \sansd \sansd \sansr are as expected given (t, q) (i.e., t\sansm \sanse \sansm matches

the ``expected timestamp"" given by predictably timed writes). Other-
wise output \bot .

(c) Compute \sanso \sansu \sanst \leftarrow \delta \prime (q, s).
(d) If \sanso \sansu \sanst \in \{ \sansa \sansc \sansc \sanse \sansp \sanst , \sansr \sanse \sansj \sanse \sansc \sanst \} , output it. Otherwise, parse \sanso \sansu \sanst as (q\prime , s\prime , \sansa \sansd \sansd \sansr \prime).
(e) Let \~q = \sansE \sansn \sansc (\sanss \sansk \sanss \sanst \sansa \sanst \sanse , (t+ 1, q\prime)) and let \~s = \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (t+ 1, \sansa \sansd \sansd \sansr , s\prime)).
(f) Output (\~q, \~s, \sansa \sansd \sansd \sansr \prime).

2. Dummy virtual step:
(a) Decrypt (t\sansm \sanse \sansm , \sansa \sansd \sansd \sansr , s)\leftarrow \sansD \sanse \sansc (\sanss \sansk \sansm \sanse \sansm , \~s).
(b) Check that t\sansm \sanse \sansm and \sansa \sansd \sansd \sansr are as expected, given (t, q). Otherwise output
\bot .

(c) Compute (\sansa \sansd \sansd \sansr 1, . . . , \sansa \sansd \sansd \sansr \eta)\leftarrow \sansO \sansS \sansa \sansm \sansp \sansl \sanse (i;F\sansd \sansu \sansm \sansm \sansy (i)).
(d) Let \~q = \sansE \sansn \sansc (\sanss \sansk \sanss \sanst \sansa \sanst \sanse , (t+ 1, q)) and let \~s = \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (t+ 1, \sansa \sansd \sansd \sansr , s)).
(e) Output (\~q, \~s, \sansa \sansd \sansd \sansr t\sansp \sansh \sansy \sanss).

3. Half-dummy virtual step: Do the same thing as in a dummy virtual step,
except use hard-coded values for (\sansa \sansd \sansd \sansr 1, . . . , \sansa \sansd \sansd \sansr \eta) instead of sampling them
from \sansO \sansS \sansa \sansm \sansp \sansl \sanse (i).

4. Hard-coded virtual step: There are \eta different hard-coded output values w1, . . . ,
w\eta , where each wi is a triple (c\sanss \sanst \sansa \sanst \sanse i , c\sansm \sanse \sansm

i , \sansa \sansd \sansd \sansr i). Output wt\sansp \sansh \sansy \sanss .

Definition of hybrid \bfsansH \bfiti . In the ith hybrid, \~M is a RAM program M \prime \prime which
performs i dummy virtual steps, and then continues for up to T - i real virtual steps.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1188 BITANSKY ET AL.

\scrT \prime \prime
0 and q\prime \prime 0 are generated to be consistent with M \prime \prime 's i dummy steps by using the

ORAM's \sansS \sansi \sansm procedure. Namely, let \vec{}a = \sansa \sansd \sansd \sansr 1, . . . , \sansa \sansd \sansd \sansr t\ast be the virtual addresses
accessed by M on x. Let \vec{}a\prime \prime = \sansO \sansS \sansa \sansm \sansp \sansl \sanse (0;F\sansd \sansu \sansm \sansm \sansy (0)), . . . ,\sansO \sansS \sansa \sansm \sansp \sansl \sanse (i;F\sansd \sansu \sansm \sansm \sansy (i)) be
the physical addresses accessed in the first i virtual steps of M \prime \prime . We sample

\scrT \prime \prime
0 , q\prime \prime \sansO \sansR \sansA \sansM \leftarrow \sansS \sansi \sansm \sansO \sansR \sansA \sansM (\scrT 0,\vec{}a,\vec{}a\prime \prime).\widetilde \scrT 0 is defined such that

\widetilde \scrT 0[\sansa \sansd \sansd \sansr] = \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, \sansa \sansd \sansd \sansr , \scrT \prime \prime
0 [\sansa \sansd \sansd \sansr])),

and \~q0 is defined such that

\~q0 = \sansE \sansn \sansc (\sanss \sansk \sanss \sanst \sansa \sanst \sanse , (0, (qi, q
\prime \prime
\sansO \sansR \sansA \sansM))).

Indistinguishability of \sansH i - 1 and \sansH i. To show that hybrid i - 1 is indistinguishable
from hybrid i, we introduce additional hybrids \sansH i - 1,1 through \sansH i - 1,3. These hybrids'

transition functions differ from that of hybrid \sansH i - 1 only in how \^\delta behaves on the ith
virtual step.

Hybrid \sansH i - 1,1: The ith virtual step is a hard-coded step, with hard-coded values
chosen so that the transcript of execution is identical to that of hybrid \sansH i - 1.

Hybrid \sansH i - 1,2: The ith virtual step is a half-dummy step, with the addresses hard-
coded as in hybrid \sansH i - 1,1.
In this hybrid, the initial state \~q0 is defined as \sansE \sansn \sansc (\sanss \sansk \sanss \sanst \sansa \sanst \sanse , (0, qi)), and the

initial tape \widetilde \scrT 0 is defined such that

\widetilde \scrT 0[\sansa \sansd \sansd \sansr] = \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, \sansa \sansd \sansd \sansr , \scrT i[\sansa \sansd \sansd \sansr])).

Hybrid \sansH i - 1,3: The ith virtual step is again a half-dummy step, but the hard-coded
addresses (\sansa \sansd \sansd \sansr 1, . . . , \sansa \sansd \sansd \sansr \eta) are now obtained by sampling

(\sansa \sansd \sansd \sansr 1, . . . , \sansa \sansd \sansd \sansr \eta)\leftarrow \sansO \sansS \sansa \sansm \sansp \sansl \sanse (i).

Additionally, \scrT \prime \prime
0 and q\prime \prime \sansO \sansR \sansA \sansM are now sampled as

\scrT \prime \prime
0 , q\prime \prime \sansO \sansR \sansA \sansM \leftarrow \sansS \sansi \sansm \sansO \sansR \sansA \sansM (\scrT 0,\vec{}a,\vec{}a\prime \prime),

where \vec{}a\prime \prime denotes the physical addresses accessed by the first i virtual steps,
rather than the first i - 1.

Claim 4.22. Hybrid \sansH i - 1 \approx \sansH i - 1,1.

Proof. We apply the template from section 4.2 of iteratively restricting the en-
cryption/decryption keys to ensure that for each t\sansp \sansh \sansy \sanss \in \{ 0, . . . , \eta - 1\} , conditioned on

t = \eta i+t\sansp \sansh \sansy \sanss , there is only one possible output of \^\delta . Once this unique output condition
is satisfied, hard-coding the output values when t\sansv \sansr \sanst = i preserves the functionality of
\^\delta and is hence indistinguishable by the security of i\scrO .

In order to guarantee the above uniqueness of possible outputs, we define the
good set G\sanss \sanst \sansa \sanst \sanse as all (t, q) satisfying the following:

\bullet If t < \eta i, then q differs from q\eta i only in the parts of the state required for
predictably timed writes. In other words, q essentially doesn't change during
the dummy steps.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1189

\bullet If \eta i \leq t < (\eta + 1)i, then q is ``correct,"" i.e., its value is the same as in an
honest execution. Note that this only requires hard-coding \eta values into the
description of G\sanss \sanst \sansa \sanst \sanse .

And we define the good set G\sansm \sanse \sansm as all (t\sansm \sanse \sansm , \sansa \sansd \sansd \sansr , s) satisfying the following:
\bullet If \sansa \sansd \sansd \sansr is one of the physical addresses accessed in the ith virtual step, and if

t\sansm \sanse \sansm < (\eta + 1)i, then s is ``correct""; i.e., its value is the same as in an honest
execution. Since \scrT [\sansa \sansd \sansd \sansr] is modified at most \eta times before virtual step i+1,
and there are at most \eta such addresses, the description size of this constraint
is O(\eta 2).

\bullet If \sansa \sansd \sansd \sansr is the parent of a physical address \sansa \sansd \sansd \sansr \prime accessed in the ith virtual
step (with memory viewed as a tree according to the predictably timed writes
structure), let \tau \sansa \sansd \sansd \sansr \prime denote the last time that a dummy step accesses \sansa \sansd \sansd \sansr . If
\tau \sansa \sansd \sansd \sansr \prime \leq t\sansm \sanse \sansm < \eta i, then s encodes that the expected timestamp for \sansa \sansd \sansd \sansr \prime is
exactly \tau \sansa \sansd \sansd \sansr \prime .

EK\sanss \sanst \sansa \sanst \sanse , DK\sanss \sanst \sansa \sanst \sanse and EK\sansm \sanse \sansm , DK\sansm \sanse \sansm can be restricted and unrestricted to G\sanss \sanst \sansa \sanst \sanse

and G\sansm \sanse \sansm , respectively, because (G\sanss \sanst \sansa \sanst \sanse , G\sansm \sanse \sansm) is \delta -invariant.

Claim 4.23. Hybrid \sansH i - 1,1 \approx \sansH i - 1,2.

Proof. This claim is analogous to Claim 4.17 in our Turing machine construction,
but with additional difficulties.

The challenges. The heart of the proof of Claim 4.17 replaced a conditional ``if
t = t\ast "" with a different condition---``if \~q = c\sanss \sanst \sansa \sanst \sanse "" or ``if \~s = c\sansm \sanse \sansm ""---and then argued
that these conditions were functionally equivalent with suitably (indistinguishably)
punctured keys. In the case of \~s, it suffices to show that t = t\ast if and only if
t\sansm \sanse \sansm = \beta (t\ast), where \beta (t\ast) is the time before t\ast that the same address was accessed.

For Turing machines, these checks were equivalent, because \^\delta directly computed and
checked that t\sansm \sanse \sansm = \beta (t). \beta (t) was the most recent time the tth address of the
Pippenger--Fischer access pattern was accessed.

However, for an oblivious RAM, there is no such fixed access pattern, and \beta
is therefore not computable by the real-world \^\delta . \^\delta computes \beta instead via the pre-
dictably timed write transformation of [GHRW14]. In this transformation, each access
to memory is transformed into several (logS) accesses, such that if all previous ac-
cesses were performed correctly, then the RAM machine's local state will know what
timestamp to expect in the address presently being accessed.

The approach. We will define more elaborate sets on which \^\delta 's ACE keys are
punctured. These sets must be restrictive enough to ensure that the predictably timed
write steps yield the correct answer at time t\ast , but not so restrictive that they have
too large of a description size. For example, we cannot define the sets to be ``all of
the values in a correct execution."" To construct the appropriate sets, we will need to
look at the structure of the predictably timed write transformation.

We want to emulate virtual random access to some database D, such that on
every physical memory access to an address \sansa \sansd \sansd \sansr , we know the timestamp at which
\sansa \sansd \sansd \sansr was last written to (and therefore the timestamp we should expect to see upon
reading \sansa \sansd \sansd \sansr). We structure physical memory as a complete binary tree whose leaves
are the cells of D. This tree obeys the invariant that, at the beginning of any virtual
access, every node stores the times at which each of its children were most recently
accessed. To virtually access D[i], we first access the root, and then access each
successive child on the path to D[i]. When accessing a node, we first read it, to see
when the next child was last written. We then write back the node with an updated

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1190 BITANSKY ET AL.

timestamp for that child, knowing that the child is about to be accessed.

The proof. To show that \sansH i - 1,1 \approx \sansH i - 1,2, we use a hybrid argument, which we
describe as a sequence of indistinguishable changes.

1. First, we separate the hard-coded state ciphertexts from the hard-coded mem-
ory ciphertexts. That is, instead of

If t = \eta i+ j, output wj

for some hard-coded tuple of outputs wj , \^\delta will instead have three conditions:
If t = \eta i+ j, then set \~q\prime = c\sanss \sanst \sansa \sanst \sanse j

and
If t = \eta i+ j, then set \~s\prime = c\sansm \sanse \sansm

j

and
If t = \eta i+ j, then set \sansa \sansd \sansd \sansr \prime = \sansa \sansd \sansd \sansr j .

Clearly, this change preserves the functionality of \^\delta .
2. Next, for every address, we remove all but the last time at which the address

is written. So, \^\delta contains a line of code saying
If t = \eta i+ \eta - 1, then set \~q\prime = c\sanss \sanst \sansa \sanst \sanse \eta - 1

and also, for every address \sansa \sansd \sansd \sansr j , a line which says
If t = \eta i+ j, then set \~s\prime = c\sansm \sanse \sansm

j .
We can do such a thing because all but the last hard-coded value will never
be decrypted, so the others may as well be dummy steps. The good sets
required to enforce this are similar to good sets we have seen already.

3. Finally, for each of these lines, we go through a sequence of hybrids whose
result is to (i) remove the line and (ii) modify \~\scrT 0 or \~q0 instead to incorporate
the hard-coded c\sansm \sanse \sansm

j or c\sanss \sanst \sansa \sanst \sanse \eta - 1 , respectively. This is the focus of the paragraph
below. For brevity, we include only the (more involved) case of removing the
lines which give a hard-coded value of \~s\prime .

Let \sansa \sansd \sansd \sansr \ast be the address to which \~s\prime is being written, let c\ast = \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm ,m
\ast) be

the hard-coded value of \~s\prime , and let t\ast be the time at which it is written. We will replace
t\ast by \beta (t\ast) until \beta (t\ast) = 0---that is, until t\ast is the first time at which \sansa \sansd \sansd \sansr \ast is written.
Recall that \beta (t\ast) is the last time before t\ast that \sansa \sansd \sansd \sansr \ast was written. We similarly change
the timestamp of m\ast from t\ast to \beta (t\ast). We write this as m\ast [t\sansm \sanse \sansm \mapsto \rightarrow \beta (t\ast)].

If \beta (t\ast) is 0, then we completely remove the line of code and replace \~\scrT 0[\sansa \sansd \sansd \sansr] by
\sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm ,m

\ast) (but with the timestamp of m\ast set to 0).
We now must show how t\ast can be replaced by \beta (t\ast). Again, this is a sequence of

indistinguishable changes.
1. We first add another branch to \^\delta , saying

If t = \beta (t\ast), then set \~s\prime = c\prime
\ast

with hard-coded \beta (t\ast) and hard-coded c\prime
\ast
chosen to be the ``correct"" value.

This change is indistinguishable for the same reason that \sansH i - 1 was indistin-
guishable from \sansH i - 1,1.

2. Next, we change the condition ``if t = t\ast "" into ``if \~s = c\prime
\ast
."" With appropriately

defined sets G\sanss \sanst \sansa \sanst \sanse and G\sansm \sanse \sansm , this change preserves the functionality of \^\delta and
is hence indistinguishable.

3. We replace c\prime
\ast
\sansm \sanse \sansm by \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm ,m

\ast [t\sansm \sanse \sansm \mapsto \rightarrow \beta (t\ast)]). With appropriately re-
stricted ACE keys (no memory ciphertext with a timestamp of \beta (t\ast) needs

to be encrypted or decrypted by \^\delta), this is indistinguishable by semantic
security.

4. We remove the ``if \~s = c\prime
\ast
"" branch. With the newly modified value of c\prime

\ast
,

its action of setting \~s\prime = c\ast is the same as what a dummy step would do, so

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1191

removing the branch has no effect on the functionality of \^\delta .
The main thing now is to show how to make the conditions``if t = t\ast "" and ``if \~s = c\prime

\ast
""

functionally equivalent. It suffices to define the good sets such that the following hold:
\bullet G\sanss \sanst \sansa \sanst \sanse is the set of (t, q) satisfying the following:

-- If t \leq t\ast , then q differs from qt\ast only in the substate of the predictably
timed write mechanism.

-- If t = t\ast , then q = qt\ast .
\bullet G\sansm \sanse \sansm is the set of (t\sansm \sanse \sansm , \sansa \sansd \sansd \sansr , s) satisfying the following:

-- If \sansa \sansd \sansd \sansr is an internal node of the predictably timed write tree on the
path from the root to \sansa \sansd \sansd \sansr \ast , and if t\ast \sansm \sanse \sansm \leq t\sansm \sanse \sansm < t\ast , then s encodes
that the next node on the path to \sansa \sansd \sansd \sansr \ast should also have a timestamp
which is exactly t\ast \sansm \sanse \sansm .

Claim 4.24. Hybrid \sansH i - 1,2 \approx \sansH i - 1,3.

Proof. The indistinguishability of this change is exactly our ORAM security prop-
erty, which is stated and proved in Lemma 4.18 of section 4.3.1.

Claim 4.25. Hybrid \sansH i - 1,3 \approx \sansH i.

Proof. The difference between \sansH i - 1,3 and \sansH i is that \sansH i - 1,3 has a hard-coded list
of addresses (\sansa \sansd \sansd \sansr 1, . . . , \sansa \sansd \sansd \sansr \eta) to access on virtual step i, while \sansH i computes the
addresses as (\sansa \sansd \sansd \sansr 1, . . . , \sansa \sansd \sansd \sansr \eta) = \sansO \sansS \sansa \sansm \sansp \sansl \sanse (i;F\sansd \sansu \sansm \sansm \sansy (i)).

We give a sequence of indistinguishable changes which transform \sansH i - 1,3 into \sansH i:

1. Replace the PRF key F\sansd \sansu \sansm \sansm \sansy in \^\delta with a punctured PRF key F\sansd \sansu \sansm \sansm \sansy \{ i\} . This
preserves the functionality of \^\delta and is thus indistinguishable.

2. Instead of hard-coding the addresses as

(\sansa \sansd \sansd \sansr 1, . . . , \sansa \sansd \sansd \sansr \eta)\leftarrow \sansO \sansS \sansa \sansm \sansp \sansl \sanse (i)

(i.e., with true randomness), hard-code them as

(\sansa \sansd \sansd \sansr 1, . . . , \sansa \sansd \sansd \sansr \eta) = \sansO \sansS \sansa \sansm \sansp \sansl \sanse (i;F\sansd \sansu \sansm \sansm \sansy (i)).

This change is indistinguishable because F\sansd \sansu \sansm \sansm \sansy (i) is pseudorandom even to
a distinguisher which is given the punctured key F\sansd \sansu \sansm \sansm \sansy \{ i\} .

3. Change \^\delta to be as in \sansH i. This preserves the functionality of \^\delta and is hence
indistinguishable.

Claim 4.26. There is a PPT simulator \sansS \sansi \sansm such that hybrid \sansH T is computation-
ally indistinguishable from \sansS \sansi \sansm (M(\scrT 0), 1S , 1T).

Proof. This is not immediately clear, since in our definition of \sansH T , \~\scrT 0 still contains
an encryption of \scrT T , so we need to argue that \scrT T is not revealed. Before describing
how to do this, we first remark that one can get around this in a black-box way with
no asymptotic overhead if restricted to RAM machines whose running time is longer
than their database size. Instead of garbling a RAM machine M directly, one simply
garbles an M \prime which runs M , and then erases its memory.

However, since the RAM model of computation is arguably most useful when
applied to sublinear computations, we would like to achieve something more efficient.

We use a sequence of S+1 hybrids \sansH T,0, . . . ,\sansH T,S , where hybrid \sansH T,j differs from
\sansH T only in that, for all 0 \leq k < j,

\~\scrT 0[k] = \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, k,\bot)).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1192 BITANSKY ET AL.

It therefore suffices to show how to change \~\scrT 0[j] from \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, j, \scrT T [j])) to
\sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, j,\bot)).

For this, we give another sequence of hybrids \sansH T,j - 1,0, . . . ,\sansH T,j - 1,Nj
, where the

number of hybrids Nj is equal to the number of times that \^\delta accesses address j. The
structure of these hybrids resembles those used in Claim 4.23, but in reverse.

Let tk denote the kth time that \^\delta accesses address j. Hybrid \sansH T,j - 1,k is defined

to differ from \sansH T,j only in that \^\delta hard-codes \~s\prime = \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (tk +1, j, \scrT T [j])) at time

tk. Or, if k = 0, \~\scrT [j] has the hard-coded value \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, j, \scrT T [j])) instead.
Just as in Claim 4.23, these hybrids are shown to be indistinguishable by intro-

ducing another hard-coded branch at tk+1, and then switching the hard-coded value
of \~s\prime so that the ``if t = tk"" branch is functionally equivalent to a dummy step. All of
this is done with analogously defined good sets.

4.4. The bounded space requirement and subsequent work. In this sec-
tion we describe why the size of our randomized encodings grows proportional to the
space complexity of the underlying computation, and give a taste of the techniques
used by [KLW15] to remove this dependence.

The dependence on the space complexity appears to come from our proof tech-
nique rather than being inherent in the construction. Consider for simplicity our
Turing machine construction. Recall that only one part of the construction grows
with S---the initial garbled tape \widetilde \scrT 0, defined as

\widetilde \scrT 0[i] = \Biggl\{
\sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, i, xi)) if i < | x| ,
\sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm , (0, i,\bot)) otherwise

for i = 0, . . . , S - 1. In other words, \widetilde \scrT 0 is a bit-by-bit encryption of the input
x, padded with S - | x| dummy ciphertexts. One natural approach to making the
randomized encoding fully succinct is to give out the dummy ciphertexts implicitly
(and succinctly) instead of explicitly, e.g., via a small obfuscated circuit that on input
i (for | x| \leq i < S) outputs \sansE \sansn \sansc (\sanss \sansk \sansm \sanse \sansm (0, i,\bot)). One may conjecture the security of
this variant, and we do not know of any attacks. However, major difficulties arise in
reducing the security of this variant to the security of the underlying primitives (iO
for circuits and ACE).

Indeed, recall that we prove security via a hybrid argument, where in the ith
hybrid \widetilde \scrT 0 encrypts the (padded) ith memory configuration \scrT i of M when executed

on x. In order for these hybrids to be indistinguishable from one another, \widetilde \scrT 0 (in all
hybrids) needs to be as large as S, the size of the largest memory configuration of M
when executed on x. This hybrid structure was no accident: due to the succinctness
requirements on the sets to which ACE keys are constrainable, we were only able to
change the behavior of \^\delta on the i+ 1st step once \^\delta already performs dummy actions
on the first i steps. This behavior of \^\delta necessitated hard-coding the ith configuration
in \widetilde \scrT 0 for correctness.

[KLW15] get around this difficulty by developing a new way of authenticating

the inputs to \^\delta : Rather than using an authenticated encryption scheme directly on
encrypted memory words, they maintain a signed Merkle tree of the entire tape con-
tents. This hash function is designed so that the Merkle tree is ``somewhere statisti-
cally binding"" as in [HW15]. Namely, the ``local opening"" property of the Merkle tree
can be strengthened: for any index j \in [S], the hash function can be indistinguishably
sampled so that for any Merkle root, there is only one local opening at j. Thus the
problem of authenticating the memory inputs to \^\delta on step i is reduced to maintaining

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1193

a small authenticated local state (the TM state and Merkle tree root).
To authenticate this state, [KLW15] uses a special ``splittable signature"" scheme

with constrainability properties resembling those of ACE. They use a puncturable
PRF to generate one signing/verification key pair per time step. As in our security
proof, the signing and verification keys are alternately constrained until the verifica-
tion key used on the ith time step will only accept signatures of the correct ith local
state. The main difficulty now is how to ``forget"" (for the sake of succinctness) that
keys of the first i - 1 time steps are constrained---otherwise the number of hard-coded
keys or messages in \^\delta will grow linearly with T . [KLW15] show how this can be
accomplished by augmenting each local state qi with a special hash of qi - 1.

5. Applications. In this section, we address three of our main applications of
succinct garbling schemes: succinct iO, publicly verifiable delegation, and \scrS \scrN \scrA \scrR \scrG s
(succinct noninteractive argument systems). (The rest of the applications outlined
in the introduction follow directly by plugging in our succinct garbling into previous
work.) In fact, all of our applications can be instantiated with succinct randomized
encodings; namely, they do not required separate input encoding. We first recall the
syntax and properties of randomized encodings.

Randomized encodings. A randomized encoding scheme\scrR \scrE = (\sansR \sansE \sansn \sansc ,\sansD \sanse \sansc) for
\{ \scrA \scrL \lambda \} consists of a randomized encoding algorithm \sansR \sansE \sansn \sansc and a decoding algorithm
\sansD \sanse \sansc . \sansR \sansE \sansn \sansc (1\lambda , AL, x), given any function AL \in \scrA \scrL \lambda and input x, returns the encoded

computation \widehat AL(x). Given such an encoding, \sansD \sanse \sansc can decode the result AL(x).
Any garbling scheme \scrG \scrS = (\sansG \sansa \sansr \sansb ,\sansE \sansn \sansc \sanso \sansd \sanse ,\sansE \sansv \sansa \sansl) for \{ \scrA \scrL \lambda \} can be projected to a
corresponding randomized encoding where \sansR \sansE \sansn \sansc = \sansG \sansa \sansr \sansb \circ \sansE \sansn \sansc \sanso \sansd \sanse is given by

(\widehat AL, \^x) \$\leftarrow \sansR \sansE \sansn \sansc (1\lambda , AL, x), where (\widehat AL,key)
\$\leftarrow \sansG \sansa \sansr \sansb (1\lambda , AL, x), \^x = \sansE \sansn \sansc \sanso \sansd \sanse (key, x)

and the evaluation algorithm \sansE \sansv \sansa \sansl is the decoding algorithm \sansD \sanse \sansc .
In accordance, the correctness, security, and efficiency properties are all defined

similarly to garbling schemes, as defined in section 2.2 (in particular, it will be con-
venient to consider randomized encodings that, like garbling schemes, also guarantee
the privacy of the program and not just the input). When projecting a garbling
scheme to a randomized encoding scheme as above, the randomized encoding inherits
the corresponding efficiency properties of the garbling scheme.

5.1. Overview. We briefly sketch the main ideas behind our main applications
of succinct randomized encodings.

Succinct iO. The construction of succinct iO from randomized encoding and
exponential iO for circuits is a natural instantiation of the bootstrapping approach
suggested by Applebaum [App14]. There, the goal is to reduce obfuscation of general
circuits to obfuscation of \sansN \sansC 1 circuits; our goal is to reduce obfuscation of programs
with large running time (but bounded space) to obfuscation of significantly smaller
circuits. To obfuscate a succinct program \Pi with respect to inputs of size at most n,
we obfuscate a small circuit C\Pi ,K that has a hardwired seed K for a PRF and, given
input x, applies the PRF to x to derive randomness and then computes a succinct
randomized encoding of \widehat \Pi (x). The obfuscated i\scrO (\Pi), given input x, computes the
encoding, decodes it, and returns the result.

The analysis in [App14] establishes security in case the circuit obfuscator i\scrO is
virtually black-box secure. We show that if i\scrO has 2 - \lambda \varepsilon

-security for security param-
eter \lambda \gg n\varepsilon , and the PRF is puncturable and is also 2 - \lambda \varepsilon

-secure, then a similar

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1194 BITANSKY ET AL.

result holds for iO (rather than virtual black box). The proof is based on a general
probabilistic iO argument, an abstraction recently made by Canetti et al. [CLTV15].

Succinct FE. The construction of succinct functional encryption (FE) follows
rather directly by plugging our randomized encodings into previous constructions of
nonsuccinct functional encryption. Concretely, starting with the scheme of Gentry
et al. [GHRW14], we can replace the nonsuccinct randomized encodings for RAM
in their construction with our succinct randomized encodings and obtain selectively
secure FE.13 Alternatively, starting from the scheme of Garg et al. [GGHZ16], we
can replace randomized encodings for circuits in their construction with our succinct
randomized encodings and get an adaptively secure succinct FE scheme. (Here we
also need to rely on the fact that succinct randomized encodings can be computed in
low depth, which is required in their construction.) We note that in both cases, our
succinct randomized encodings already satisfy the required security for their security
proof to go through, and only the succinctness features change.

Publicly verifiable delegation. Finally, we sketch the basic ideas behind the
delegation scheme. The delegation scheme is pretty simple and similar in spirit to
previous delegation schemes (in a weaker processing model) [AIK10, GGP10, PRV12,
GKP+13]. To delegate a computation, given by \Pi and x, the verifier simply sends

the prover a randomized encoding \widehat \Pi \prime (x, r), where \Pi \prime is a machine that returns r if
and only if it accepts x, and r is a sufficiently long random string. The security
of the randomized encoding implies that the prover learns nothing of r, unless the
computation is accepting. The scheme can be easily made publicly verifiable by
publishing f(r) for some one-way function f . Furthermore, the scheme ensures input-
privacy for the verifier.

We then propose a simple transformation that can be applied to any delegation
scheme in order to make the first verifier message reusable. The idea is natural: we
let the verifier's first message be an obfuscation of a circuit CK that has a hardwired
key K for a puncturable PRF and, given a computation (\Pi , x), applies the PRF to
derive randomness and generates a first message for the delegation scheme. Thus, for
each computation, a first message is effectively sampled afresh. Relying on iO and
the security of the puncturable PRF, we can show that (nonadaptive) soundness is
guaranteed. The transformation can also be applied to privately verifiable delegation
schemes, such as the one of [KRR14], and maintains soundness, even if the prover has
a verification oracle.

5.2. From randomized encodings to iO. We present a generic transforma-
tion from a garbling scheme for an algorithm class \{ \scrA \scrL \lambda \} to an indistinguishabil-
ity obfuscator for \{ \scrA \scrL \lambda \} , assuming subexponentially indistinguishability obfuscators
for circuits. We require that the algorithm class have the property that for any
\lambda < \lambda \prime \in \BbbN , it holds that every algorithm AL \in \scrA \scrL \lambda is also contained in \scrA \scrL \lambda \prime ---we
say that such a class is ``monotonically increasing."" For instance, the class of Turing
machines \sansT \sansM and RAM machines \sansR \sansA \sansM are all monotonically increasing.

Proposition 5.1. Let \{ \scrA \scrL \lambda \} be any monotonically increasing class of determin-
istic algorithms. It holds that if there are

(i) a subexponentially indistinguishable iO, i\scrO C , for circuits, and
(ii) a subexponentially indistinguishable randomized encoding \scrR \scrE for \{ \scrA \scrL \lambda \} ,

13Formally, their construction is given in terms of garbling for RAM rather than randomized
encodings, but these are actually used as randomized encodings, without making special use of
independent input encoding.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1195

then there is an indistinguishability obfuscator i\scrO A for \{ \scrA \scrL \lambda \} .
Furthermore, the following efficiency preservation holds:
\bullet If \scrR \scrE has optimal efficiency or I/O-dependent complexity, i\scrO A has I/O-

dependent complexity.
\bullet If \scrR \scrE has space-dependent complexity, so does i\scrO A.
\bullet If \scrR \scrE and i\scrO C have linear-time-dependent complexity, so does i\scrO A.

Before moving to the proof of the proposition, we first note that combining Propo-
sition 5.1 with constructions of garbling schemes for TM and RAM in section 3, we
directly obtain iO for TM and RAM with space-dependent complexity.

Theorem 5.2. Assume a subexponentially indistinguishable iO for circuits and
subexponentially secure OWF. There is an indistinguishability obfuscator for \sansT \sansM and
\sansR \sansA \sansM with space-dependent complexity.

Proof of Proposition 5.1. This result relies on the following natural way of
obfuscating probabilistic circuits, abstracted in [CLTV15].

Probabilistic iO. Let i\scrO and \sansF be 2\lambda
\varepsilon

-indistinguishable iO and puncturable
PRF. Given a probabilistic circuit C, obfuscate it in the following way: Consider
another circuit \Pi C,k that on input x computes C using pseudorandom coins \sansF (k, x)
generated with a hardwired PRF key k, that is, \Pi C,k(x) = C(x;\sansF (k, x)). The ob-
fuscation of C, denoted by pi\scrO (1\lambda , C), is an iO obfuscation of \Pi C,k for a randomly
sampled key C, that is,

\widehat C \$\leftarrow pi\scrO (1\lambda , C), where k
\$\leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda

\prime
); \widehat C \$\leftarrow i\scrO (1\lambda

\prime
,\Pi C,k),

where \lambda \prime = (\lambda + n)1/\varepsilon for n = C.n, so that iO and \sansF are negl(\lambda)2n-indistinguishable.
The work of [CLTV15] showed that the above obfuscations are indistinguishable for
circuits whose output distributions are strongly indistinguishable for every input.
More specifically, circuits C1 and C2 with the same input length n are strongly in-
distinguishable (with respect to auxiliary input z) if for every input x \in \{ 0, 1\} n the
outputs C1(x) and C2(x) are negl(\lambda)2 - n-indistinguishable (given z). The following
lemma summarizes this.

Lemma 5.3 (pi\scrO for circuits [CLTV15]). Assume subexponentially indistinguish-
able iO for circuits i\scrO C , and subexponentially indistinguishable OWF. Then, for
every class \{ C\lambda \} of polynomial-sized circuits, and every nonuniform \sansP \sansP \sansT sampleable
distribution \scrD over the support of

\bigl\{
C\lambda \times C\lambda \times \{ 0, 1\} poly(\lambda)

\bigr\}
, if it holds that for every

nonuniform \sansP \sansP \sansT adversary \scrR , and input x, that\bigm| \bigm| Pr[(C1, C2, z)
\$\leftarrow \scrD \lambda , y

\$\leftarrow C1(x) : \scrR (C1, C2, x, y, z) = 1]

 - Pr[(C1, C2, z)
\$\leftarrow \scrD \lambda , y

\$\leftarrow C2(x) : \scrR (C1, C2, x, y, z) = 1]
\bigm| \bigm| \leq negl(\lambda) \cdot 2 - n,

then the following ensembles are computationally indistinguishable:\bigl\{
C1, C2, pi\scrO (1\lambda , C1), z

\bigr\}
\lambda
\approx

\bigl\{
C1, C2, pi\scrO (1\lambda , C2), z

\bigr\}
\lambda
.

For completeness, we include a proof sketch of the lemma.

Proof sketch of Lemma 5.3. The lemma essentially follows from complexity lev-
eling. To see the proof, first consider a simpler case, where the two circuits C1 and C2

have identical implementation on all but one input x\ast , and the outputs on x\ast , C1(x
\ast)

and C2(x
\ast), are indistinguishable. In this case, it follows directly from the security

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1196 BITANSKY ET AL.

iO that obfuscation of Cb, \^Cb
\$\leftarrow pi\scrO (1\lambda , C1) is indistinguishable to the obfuscation

of C \prime
b

\$\leftarrow i\scrO (C \prime
b), where C \prime

b has a punctured key k(x\ast) and Cb(x
\ast ;\sansF (k, x\ast)) hardwired

in; then it follows from the pseudorandomness of puncturable PRF and the indis-
tinguishability of C1(x

\ast) and C2(x
\ast) that i\scrO (C \prime

0) and i\scrO (C \prime
1) are indistinguishable.

Therefore, overall obfuscation of C1 and C2 are indistinguishable.
Now consider the case where C1 and C2 are sampled from \scrD (1\lambda), and their output

distributions for every input are negl(\lambda)2 - n-indistinguishable. To show that their \sansp IO
obfuscation are indistinguishable, consider an exponential, 2n, number of hybrids
where, in each hybrid, a circuit Ci is obfuscated, which outputs C2(x) for every input
x \leq i and outputs C1(x) for every input x > i. Since in every two neighboring
hybrids, Ci and Ci+1 are the same except on one input, x\ast = i+1. By the argument
above, neighboring hybrids have a distinguishing gap O(negl(\lambda)2 - n). Thus, by a
hybrid argument, obfuscations of C1 and C2 are indistinguishable. This concludes
the lemma.

Construction of iO for general algorithms. Using Lemma 5.3, we now prove
Proposition 5.1.

Given 2 - \lambda \varepsilon

-indistinguishable iO i\scrO C and 2 - \lambda \varepsilon

-indistinguishable randomized en-
coding \scrR \scrE , let pi\scrO be the obfuscator for probabilistic circuits constructed from i\scrO C .
Our iO for the a general algorithm class \{ \scrA \scrL \lambda \} is defined as follows:

\widehat AL(\cdot) \$\leftarrow i\scrO A(1\lambda , AL), where \widehat AL(\cdot) \$\leftarrow pi\scrO (\lambda ,\sansR \sansE \sansn \sansc (1\lambda
\prime
, AL, \cdot)),

where the security parameter \lambda \prime = (\lambda +n)1/\varepsilon for n = AL.n so that \sansR \sansE \sansn \sansc is negl(\lambda)2n-
indistinguishable. (Note that the reason that we can use the security parameter \lambda \prime > \lambda
is because the algorithm class is monotonically increasing, and thus AL \in \scrA \scrL \lambda also
belongs to \scrA \scrL \lambda \prime .) The correctness of i\scrO A follows from the correctness of \scrR \scrE and
i\scrO C underlying pi\scrO . Next, we show the security of i\scrO A.

Security. Fix a polynomial T , a nonuniform \sansP \sansP \sansT sampleable distribution \scrD over
the support

\bigl\{
\scrA \scrL T

\lambda \times \scrA \scrL
T
\lambda \times \{ 0, 1\} poly(\lambda)

\bigr\}
, such that, with overwhelming probability,

(AL1, AL2, z) \leftarrow \scrD (1\lambda) satisfies that AL1 and AL2 are functionally equivalent and
have matching parameters. We want to show that the following distributions are
indistinguishable:\Bigl\{

(AL1, AL2, z)
\$\leftarrow \scrD (1\lambda) : (i\scrO A(1\lambda , AL1), z)

\Bigr\}
\lambda
,\Bigl\{

(AL1, AL2, z)
\$\leftarrow \scrD (1\lambda) : (i\scrO A(1\lambda , AL2), z)

\Bigr\}
\lambda
.

By construction of i\scrO A, this is equivalent to showing\Bigl\{
(AL1, AL2, z)

\$\leftarrow \scrD (1\lambda) : (pi\scrO (1\lambda , \sansR \sansE \sansn \sansc (1\lambda
\prime
, AL1, \cdot)), z)

\Bigr\}
\lambda
,\Bigl\{

(AL1, AL2, z)
\$\leftarrow \scrD (1\lambda) : (pi\scrO (1\lambda , \sansR \sansE \sansn \sansc (1\lambda

\prime
, AL2, \cdot)), z)

\Bigr\}
\lambda
.

Consider the sampler \scrD \prime (1\lambda) that outputs C \prime
1, C

\prime
2, z by sampling (AL1, AL2, z)

\$\leftarrow
\scrD (1\lambda) and setting C \prime

b = \sansR \sansE \sansn \sansc (1\lambda
\prime
, ALb, \cdot). It follows from the security of \scrR \scrE that for

every nonuniform adversary \scrR and every input x, the output distributions of C \prime
1(x)

and C \prime
2(x) are negl(\lambda)2n-indistinguishable, given x, z, C \prime

1, C
\prime
2. Thus, it follows from

Lemma 5.3 that the above two ensembles are indistinguishable, as are the obfuscations
of AL1 and AL2.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1197

Efficiency. Finally, we analyze the efficiency of i\scrO A. It is easy to see that
pi\scrO (1\lambda , C) runs in time TpIO(\lambda ,C.n, | C|), where T\sansp IO is a polynomial depending on
the running time of the underlying iO and PRF as well as the parameters of their
subexponential security; moreover, if the underlying iO has linear-time-dependent
complexity, ppIO also depends linearly in | C| (still polynomially in \lambda and C.n). Let

T\sansR \sansE \sansn \sansc (\lambda
\prime , | AL| , n,m, S, T) be the running time of \sansR \sansE \sansn \sansc (1\lambda

\prime
, AL, x). Overall, the run-

ning time of i\scrO A(1\lambda , AL) is

TpIO(\lambda , n, T\sansR \sansE \sansn \sansc (\lambda
\prime , | AL| , n,m, S, T)), where \lambda \prime = poly(\lambda , n).

Therefore,
\bullet if \scrR \scrE has optimal efficiency (that is, T\sansR \sansE \sansn \sansc depends only on m) or I/O-

dependent complexity (that is, T\sansR \sansE \sansn \sansc does not depend on S, T), i\scrO A has
I/O-dependent complexity;

\bullet if \scrR \scrE has space-dependent complexity (that is, T\sansR \sansE \sansn \sansc does not depend on T),
so does i\scrO A;

\bullet if \scrR \scrE and the underlying iO has linear-time-dependent complexity (that is,
T\sansR \sansE \sansn \sansc depends linearly on T and TpIO depends linearly on | C|), so does i\scrO A.

This concludes the proof of Proposition 5.1.

A corollary: Output-independence. The size of the randomized encodings
(or garbling schemes) described in previous sections depends (linearly) on the output
of the encoded computation; accordingly, so does the succinct iO construction de-
scribed in this section. We start by noting that in the succinct iO construction this
dependence can be easily removed. Concretely, rather than considering the machine
AL(x) that for any input x might have an m-bit output y, we can consider a new
single-bit machine AL\prime (x, i) that, given additional input i \in \{ 0, 1\} logm, outputs yi.
Observe that if AL0 and AL1 compute the same function, then clearly so do their
single-bit versions, AL\prime

0 and AL\prime
1. The overhead is only polylogarithmic in the output

size m. Thus, we directly obtain succinct iO that is output-independent. We note
that this does not involve making any additional computational assumptions. (Note
that we only increase the input size logarithmically, and thus the exponential loss in
the input incurred by the transformation given by Theorem 5.1 is only polynomial.)

Next, we observe that this directly implies indistinguishability-based succinct
randomized encodings that are output-independent. The encoding of AL, x simply
consists of an (output-independent) obfuscation of a machine that has no input and
output AL(x). (Note that this only requires polynomial iO, since the exponential
blowup in the input size of the transformation given by Theorem 5.1 is completely
avoided.)

More efficient construction. Evaluating the iO for \sansT \sansM and \sansR \sansA \sansM obtained
in Theorem 5.2 on input x involves evaluating the obfuscated program on x once to
obtain a randomized encoding \widehat AL(x), and then decoding it. When relying on an ar-
bitrary randomized encoding with space-dependent complexity, the overall evaluation
takes time TAL(x) \times poly(\lambda , | AL| , S). When the space is large, the overhead on the
running time is large.

We now improve the evaluation efficiency by combining Proposition 5.1 with the
specific RAM garbling scheme of Theorem 3.5.

Theorem 5.4. Assume a subexponentially indistinguishable iO for circuits and
subexponentially secure OWFs. There is an indistinguishability obfuscator for \sansT \sansM
and \sansR \sansA \sansM , where obfuscation of a machine R takes linear time in the space complexity

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1198 BITANSKY ET AL.

poly(\lambda , n, | R|) \times S, and evaluation of the obfuscated program on input x takes time
poly(\lambda , n, | R|)\times (TR(x) + S), with n = R.n and S = R.S.

Toward the above theorem, consider instantiating Proposition 5.1 using the RAM
garbling scheme of Theorem 3.5 and a subexponentially secure iO scheme with quasi-
linear complexity (implied by subexponentially secure iO and OWF as shown in
section 5.4). Recall that the RAM garbling scheme of Theorem 3.5 has linear-space-
dependent complexity poly(\lambda , | R|)\times S and evaluation time poly(\lambda , | R|)\times (T \ast +S) with
T \ast = TR(x); such a garbling scheme leads to a randomized encoding algorithm \sansR \sansE \sansn \sansc
with the same encoding and decoding complexity. By the same efficiency analysis
as in Proposition 5.1, this instantiation yields an iO for RAM with linear-space-
dependent complexity, namely, poly(\lambda , | R| , n)S. Therefore, its evaluation time is now
poly(\lambda , | R| , n)\times S + poly(\lambda , | R|)\times (T \ast + S), which is poly(\lambda , | R| , n)\times (S + T \ast).

Remark 5.5 (indistinguishability obfuscation with linear complexity in the pro-
gram size). In section 3.3.1, we showed that the efficiency of our RAM garbling
scheme can be improved to depend only linearly in program description size | R| ,
namely, it has garbling complexity of poly(\lambda)(| R| + S) and evaluation complexity of
poly(\lambda)(| R| + S + T \ast). When using such a RAM garbling scheme as the underlying
scheme in our construction of iO scheme for RAM, we obtain an iO scheme with
complexity poly(\lambda , n)(| R| + S) and evaluation time poly(\lambda , n)(| R| + S + T \ast).

5.3. Publicly verifiable delegation, \bfscrS \bfscrN \bfscrA \bfscrR \bfscrG s for P, and succinct NIZKs
for NP. We now present the publicly verifiable delegation scheme for bounded space
computations, following from our succinct randomized encodings, as well as a general
transformation from delegation schemes to succinct noninteractive arguments. We
also note the implications to succinct NIZKs as a corollary of our succinct iO and the
work of [SW14].

5.3.1. P-delegation. A delegation system for P is a 2-message protocol be-
tween a verifier and a prover. The verifier consists of two algorithms (\scrG ,\scrV): given a
(well-formed) algorithm, input, and security parameter z = (AL, x, \lambda), \scrG generates a
message \sigma . The prover, given (z, \sigma), produces a proof \pi attesting that AL accepts x
within AL.T steps. \scrV then verifies the proof. In a privately verifiable system, the \scrG
produces, in addition to the (public) message \sigma , a secret verification state \tau , and ver-
ification by \scrV requires (z, \sigma , \tau , \pi). In a publicly verifiable scheme, \tau can be published
(together with \sigma), without compromising soundness.

We shall require that the running time of (\scrG ,\scrV) will be significantly smaller than
AL.T , and that the time to prove is polynomially related to AL.T .

Definition 5.6 (P-delegation). A prover and verifier (\scrP , (\scrG ,\scrV)) constitute a del-
egation scheme for P if it satisfies the following:

1. Completeness: For any z = (AL, x, \lambda), such that AL accepts x within AL.T
steps,

Pr

\biggl[
\scrV (z, \sigma , \tau , \pi) = 1

\bigm| \bigm| \bigm| \bigm| (\sigma , \tau)\leftarrow \scrG (z)
\pi \leftarrow \scrP (z, \sigma)

\biggr]
= 1 .

2. Soundness: For any polynomial-sized prover \scrP \ast , polynomial T (\cdot), there exists
a negligible \alpha (\cdot) such that for any z = (AL, x, \lambda), such that AL.T \leq T (\lambda),
and AL does not accept x within AL.T steps,

Pr

\biggl[
\scrV (z, \sigma , \tau , \pi) = 1

\bigm| \bigm| \bigm| \bigm| (\sigma , \tau)\leftarrow \scrG (z)
\pi \leftarrow \scrP \ast (z, \sigma)

\biggr]
\leq \alpha (\lambda) .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1199

3. Optimal verification and instance-based prover efficiency: There exists a (uni-
versal) polynomial p such that for every z = (AL, x, \lambda),
\bullet the verifier algorithms (\scrG ,\scrV) run in time p(\lambda , | AL| , | x| , logAL.T);
\bullet the prover \scrP runs in time p(\lambda , | AL| , | x|)TAL(x).

3\prime . Space-dependent verification complexity: The scheme has space-dependent
verification complexity if the running time of the (\scrG ,\scrV) may also depend on
space; concretely, there exists a (universal) polynomial p such that for every
z = (AL, x, \lambda),
\bullet the verifier algorithms (\scrG ,\scrV) run in time p(\lambda , | AL| , logAL.T,AL.S).

The system is said to be publicly verifiable if soundness is maintained when the ma-
licious prover \scrP \ast is also given the verification state \tau .

Remark 5.7 (input privacy). Our construction achieves an additional property
of input privacy which states that the first message of the delegation scheme \sigma leaks
no information about the input x on which the computation of AL is being delegated,
beyond the output AL(x). This ensures that, in the outsourcing computation appli-
cation, the server performing the computation learns no more than is necessary about
the input to the computation.

We next present a publicly verifiable delegation with fast verification based on
any succinct randomized encoding, and one-way functions.

The scheme. Let f be a one-way function, and let (\sansR \sansE \sansn \sansc ,\sansD \sanse \sansc) be a randomized
encoding scheme. We describe (\scrP , (\scrG ,\scrV)) as follows: Let z = (AL, x, \lambda) be a tuple
consisting of an algorithm, input, and security parameter.

Generator \bfscrG (\bfitz). For r \leftarrow \{ 0, 1\} \lambda , let AL\prime (x, r) be the machine that returns r
if AL(x) = 1, and \bot otherwise. \scrG generates and outputs \sigma \leftarrow \sansR \sansE \sansn \sansc (1\lambda ,\Pi \prime , (x, r)) and
\tau = f(r).

Prover \bfscrP (\bfitz , \bfitsigma). \scrP simply runs \pi \leftarrow \sansD \sanse \sansc (\sigma) and outputs \pi .

Verifier \bfscrV (\bfitz , \bfitsigma , \bfittau , \bfitpi). \scrV outputs 1 if and only if f(\pi) = \tau .

We prove that (\scrP , (\scrG ,\scrV)) is a P-delegation scheme as follows.

Theorem 5.8. If (\sansR \sansE \sansn \sansc ,\sansD \sanse \sansc) is a randomized encoding scheme with optimal com-
plexity (resp., space-dependent complexity), then (\scrP , (\scrG ,\scrV)) as described above is a
publicly verifiable P-delegation scheme with optimal verification (resp., space-dependent
verification).

Proof. The completeness of (\scrP , (\scrG ,\scrV)) follows directly from the correctness of
(\sansR \sansE \sansn \sansc ,\sansD \sanse \sansc). Also, note that the running time of the verifier algorithms (\scrG ,\scrV) is re-
lated to the running time of \sansR \sansE \sansn \sansc . Therefore, it also follows directly that if (\sansR \sansE \sansn \sansc ,\sansD \sanse \sansc)
has optimal complexity (resp., space-dependent complexity), then (\scrG ,\scrV) satisfies
the property of optimal verification (resp., space-dependent verification), and the
instance-based prover efficiency follows from the fact the randomized encoding has
instance efficiency. It remains to show the soundness of (\scrP , (\scrG ,\scrV)).

To show soundness, we will rely on the security of (\sansR \sansE \sansn \sansc ,\sansD \sanse \sansc) and the one-wayness
of f . Assume for contradiction there exist polynomial-size prover \scrP \ast and polynomial
p(\cdot) such that for infinitely many z = (AL, x, \lambda), where AL does not accept x and
AL.T \leq p(\lambda), we have that

Pr

\biggl[
\scrV (z, \sigma , \tau , \pi) = 1

\bigm| \bigm| \bigm| \bigm| (\sigma , \tau)\leftarrow \scrG (z)
\pi \leftarrow \scrP \ast (z, \sigma , \tau)

\biggr]
\geq 1

p(\lambda)
.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1200 BITANSKY ET AL.

Let \scrZ be the sequence of such z = (AL, x, \lambda) and consider any z \in \scrZ . Re-
call that \scrG (z) samples r \leftarrow \{ 0, 1\} \lambda and outputs \sigma \leftarrow \sansR \sansE \sansn \sansc (1\lambda , AL\prime , (x, r)) and \tau \leftarrow
f(r). Since AL does not accept x, we have that AL\prime (x, r) outputs \bot . By the se-
curity of (\sansR \sansE \sansn \sansc ,\sansD \sanse \sansc), there exists a PPT simulator \sansS \sansi \sansm such that the ensembles
\{ \sansR \sansE \sansn \sansc (1\lambda , AL\prime , (x, r)\} r\in \{ 0,1\} \lambda ,z\in \scrZ and \{ \sansS \sansi \sansm (1\lambda ,\bot , AL\prime , 1| x| +| r|)\} r\in \{ 0,1\} \lambda ,z\in \scrZ are in-

distinguishable. Therefore, given a simulated \sigma \leftarrow \sansS \sansi \sansm (1\lambda ,\bot , AL\prime , 1| x| +| r|) we have
that \scrP \ast still convinces \scrV with some noticeable probability. More formally, for in-
finitely many z \in \scrZ , we have that

Pr

\left[\scrV (z, \sigma , \tau , \pi) = 1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm|
r \leftarrow \{ 0, 1\} \lambda

\sigma \leftarrow \sansS \sansi \sansm (1\lambda ,\bot , AL\prime , 1| x| +| r|)
\tau \leftarrow f(r)

\pi \leftarrow \scrP \ast (z, \sigma , \tau)

\right] \geq 1

p(\lambda)
 - \alpha (\lambda)

for some negligible function \alpha (\cdot).
Recall that \scrV outputs 1 if and only if f(\pi) = \tau . Therefore \scrV (z, \sigma , \tau , \pi) = 1 implies

that \scrP \ast , when given \tau = f(r), outputs \pi , which is in the preimage of f(r). Hence
\scrP \ast can be used to break the one-wayness of f , and we have a contradiction. This
completes the proof of the theorem.

5.3.2. \bfscrS \bfscrN \bfscrA \bfscrR \bfscrG s for P. A succinct noninteractive argument system (\scrS \scrN \scrA \scrR \scrG)
for P is a delegation system where the first message \sigma is reusable, independent of any
specific computation, and can be used to verify an unbounded number of compu-
tations. In a privately verifiable \scrS \scrN \scrA \scrR \scrG , soundness might not be guaranteed if
the prover learns the result of verification on different inputs, which can be seen as
certain leakage on the private state \tau (this is sometimes referred to as the verifier
rejection problem). Accordingly, in this case, we shall also address a strong soundness
requirement, which says that soundness holds even in the presence of a verification
oracle.

Definition 5.9 (\scrS \scrN \scrA \scrR \scrG). A \scrS \scrN \scrA \scrR \scrG (\scrP , (\scrG ,\scrV)) is defined as a delegation
scheme, with the following change to the syntax of \scrG : the generator \scrG now gets as
input a security parameter, time bound, and input bound \lambda , T, n \in \BbbN , and does not
get AL, x as before. We require the following:

1. Completeness: For any z = (AL, x, \lambda), such that AL.T \leq T and | AL, x| \leq n,
and AL accepts x,

Pr

\biggl[
\scrV (z, \sigma , \tau , \pi) = 1

\bigm| \bigm| \bigm| \bigm| (\sigma , \tau)\leftarrow \scrG (\lambda , T, n)
\pi \leftarrow \scrP (z, \sigma)

\biggr]
= 1 .

2. Soundness: For any polynomial-sized prover \scrP \ast , polynomials T (\cdot), n(\cdot), there
exists a negligible \alpha (\cdot) such that for any z = (AL, x, \lambda), where AL.T \leq T (\lambda),
| AL, x| \leq n(\lambda), and AL does not accept x,

Pr

\biggl[
\scrV (z, \sigma , \tau , \pi) = 1

\bigm| \bigm| \bigm| \bigm| (\sigma , \tau)\leftarrow \scrG (\lambda , T (\lambda), n(\lambda))
\pi \leftarrow \scrP \ast (z, \sigma)

\biggr]
\leq \alpha (\lambda) .

2\ast . Strong soundness: For any polynomial-sized oracle-aided prover \scrP \ast , polyno-
mials T (\cdot), n(\cdot), there exists a negligible \alpha (\cdot) such that for any z = (AL, x, \lambda),
where AL.T \leq T (\lambda), | AL, x| \leq n(\lambda), and AL does not accept x,

Pr

\biggl[
\scrV (z, \sigma , \tau , \pi) = 1

\bigm| \bigm| \bigm| \bigm| (\sigma , \tau)\leftarrow \scrG (\lambda , T (\lambda), n(\lambda))
\pi \leftarrow \scrP \ast \scrV (\cdot ,\sigma ,\tau ,\cdot)(z, \sigma)

\biggr]
\leq \alpha (\lambda) .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1201

3. Optimal verification and instance-based prover efficiency: There exists a (uni-
versal) polynomial p such that for every z = (AL, x, \lambda),
\bullet the verifier algorithms (\scrG ,\scrV) run in time p(\lambda , n(\lambda), logAL.T);
\bullet the prover \scrP runs in time p(\lambda , | AL| , | x|)TAL(x)).

As before, the system is said to be publicly verifiable if soundness is maintained
when the malicious prover is also given the verification state \tau . (In this case, strong
soundness follows from standard soundness.) Also, we can naturally extend the def-
inition for the case of semisuccinctness, in which case, \scrG will also get a space bound
S, and the running time of algorithms (\scrG ,\scrV) may also depend on S.

Remark 5.10 (nonadaptive soundness). Note that in the definition above and in
our construction, we will consider only nonadaptive soundness, as opposed to adaptive
soundness, where the malicious prover \scrP \ast can pick the statement z after seeing the
first message \sigma .

We now show a simple transformation, based on iO, that takes any 2-message
delegation scheme (e.g., the one constructed above) and turns it into a \scrS \scrN \scrA \scrR \scrG for
P. The transformation works in either the public or private verification setting. Fur-
thermore, it always results in a \scrS \scrN \scrA \scrR \scrG with strong soundness; even the delegation
we start with does not have strong soundness (such as the scheme of [KRR14]).

The scheme. Let (\scrP d, (\scrG d,\scrV d)) be a P-delegation scheme, (\sansP \sansR \sansF .\sansG \sanse \sansn ,\sansP \sansR \sansF .\sansP \sansu \sansn \sansc ,
\sansF) a puncturable PRF scheme, and iO an indistinguishability obfuscator. We describe
a \scrS \scrN \scrA \scrR \scrG (\scrP , (\scrG ,\scrV)) as follows.

Let z = (AL, x, \lambda) be a tuple consisting of an algorithm, input, and security
parameter such that | AL, x| \leq n and AL.T \leq T . For notational convenience, we
decompose \scrG d into (\scrG \sigma d

,\scrG \tau d), where \scrG \sigma d
(z) only outputs the message \sigma d and \scrG \tau d(z)

only outputs the secret verification state \tau d.

Generator \bfscrG (\bfitlambda , \bfitT , \bfitn).
1. \scrG samples a puncturable PRF key K \leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda).
2. Let C\sigma [K] be a circuit that on input z runs r \leftarrow \sansF (K, z) and outputs \sigma d \leftarrow
\scrG \sigma d

(z; r). That is, C\sigma runs \scrG \sigma d
to generate a first message of the delegation

scheme, using randomness from the PRF key K. Similarly, C\tau [K] on input z
runs r \leftarrow \sansF (K, z) and outputs \tau d \leftarrow \scrG \tau d(z; r). \scrG generates the circuits C\sigma [K]
and C\tau [K] and pads them to be of size \ell \sigma and \ell \tau , respectively, which will be
specified precisely later in the analysis. For now, we mention that if we use
a delegation scheme with optimal verification, then \ell \sigma , \ell \tau \leq poly(\lambda , n, log T).
We subsequently assume the circuits C\sigma and C\tau are padded.

3. \scrG runs \sigma \leftarrow i\scrO (1\lambda , C\sigma [K]), \tau \leftarrow i\scrO (1\lambda , C\tau [K]) and outputs (\sigma , \tau).

Prover \bfscrP (\bfitz , \bfitsigma). \scrP runs \sigma on input z to get \sigma d \leftarrow \sigma (z). Note that \sigma d is a first
message of the underlying delegation scheme (\scrP d, (\scrG d,\scrV d)). Next, \scrP generates the
corresponding proof of the delegation scheme \pi \leftarrow \scrP d(z, \sigma d) and outputs \pi .

Verifier \bfscrV (\bfitz , \bfitsigma , \bfittau , \bfitpi). \scrV runs \sigma d \leftarrow \sigma (z), \tau d \leftarrow \tau (z) and outputs the result of
\scrV d(z, \sigma d, \tau d, \pi).

Theorem 5.11. Assume the existence of an indistinguishability obfuscator i\scrO . If
(\scrP d, (\scrG d,\scrV d)) is a privately verifiable (resp., publicly verifiable) P-delegation scheme,
then (\scrP , (\scrG ,\scrV)) as described above is a privately verifiable (resp., publicly verifiable)
\scrS \scrN \scrA \scrR \scrG with strong soundness. Moreover, if the delegation scheme has optimal or
space-dependent verification and relative prover efficiency, then so does the \scrS \scrN \scrA \scrR \scrG .

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1202 BITANSKY ET AL.

Proof. The completeness of (\scrP , (\scrG ,\scrV)) follows directly from that of (\scrP d, (\scrG d,\scrV d))
and the correctness of iO. The running time of \scrG (\lambda , T, n) is polynomial in \lambda and
the maximum running time of \scrG d on inputs z = (AL, x, \lambda), where | AL, x| \leq n and
AL.T \leq T . Similarly, the running times of \scrP and \scrV are polynomial in \lambda and the
running times of \scrP d and \scrV d, respectively. Therefore, the optimal (or space-dependent)
verification and prover efficiency of (\scrP d, (\scrG d,\scrV d)) implies that the same properties hold
for (\scrP , (\scrG ,\scrV)).

To show strong soundness of (\scrP , (\scrG ,\scrV)), we will rely on the soundness of (\scrP d,
(\scrG d,\scrV d)) and the security of iO and the punctured PRF (\sansP \sansR \sansF .\sansG \sanse \sansn ,\sansP \sansR \sansF .\sansP \sansu \sansn \sansc ,\sansF). We
will first consider the privately verifiable setting. Assume for contradiction that there
exist polynomial-sized oracle-aided prover \scrP \ast , polynomials T (\cdot),n(\cdot),p(\cdot) such that for
infinitely many z = (AL, x, \lambda), where AL.T \leq T (\lambda), | AL, x| \leq n(\lambda), and AL does not
accept x,

Pr

\biggl[
\scrV (z, \sigma , \tau , \pi) = 1

\bigm| \bigm| \bigm| \bigm| (\sigma , \tau)\leftarrow \scrG (\lambda , T (\lambda), n(\lambda))
\pi \leftarrow \scrP \ast \scrV (\cdot ,\sigma ,\tau ,\cdot)(z, \sigma)

\biggr]
\geq 1

p(\lambda)
.

We will refer to the above probability as the advantage \scrA (z,\scrP \ast). We will now con-
struct a malicious prover \scrP \ast

d to break the soundness of the delegation scheme. \scrP \ast
d

gets as input z and \sigma d, which is some first message of the delegation scheme. \scrP \ast

runs a subroutine \scrD described in the following paragraph, on input (z, \sigma d), to obtain
a ``fake"" \scrS \scrN \scrA \scrR \scrG message and verification state (\sigma , \tau), which it will then use to run

\scrP \ast and answer its queries. That is, \scrP \ast
d runs (\sigma , \tau) \leftarrow \scrD (z, \sigma d), \pi \leftarrow \scrP \ast \scrV (\cdot ,\sigma ,\tau ,\cdot)(z, \sigma)

and outputs \pi . The subroutine \scrD is defined as follows.

Subroutine \bfscrD (\bfitz , \bfitsigma \bfitd).
1. \scrD samples a puncturable PRF key K \leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda) and punctures it at the

input z to obtain a punctured key Kz \leftarrow \sansP \sansR \sansF .\sansP \sansu \sansn \sansc (K, z).
2. Let C\ast

\sigma [Kz, \sigma d] be a circuit that on input z\ast behaves as follows: If z\ast = z, then
C\ast

\sigma simply outputs the hardwired value \sigma d. Otherwise, C\ast
\sigma runs r \leftarrow \sansF (Kz, z

\ast)
and outputs the result of \scrG \sigma d

(z\ast ; r).
3. Similarly, let C\ast

\tau [Kz] be a circuit that on input z\ast behaves as follows: If
z\ast = z, then C\ast

\tau simply outputs \bot . Otherwise, C\ast
\tau runs r \leftarrow \sansF (Kz, z

\ast) and
outputs the result of \scrG \tau d(z\ast ; r).

4. \scrD generates the circuits C\ast
\sigma [Kz\ast , \sigma d] and C\ast

\tau [Kz\ast] and pads them to sizes \ell \sigma
and \ell \tau , respectively, where \ell \sigma is the maximum size of the circuits C\ast

\sigma [Kz\ast , \sigma \ast
d]

and C\sigma [K] and \ell \tau is the maximum size of the circuits C\ast
\tau [Kz\ast] and C\tau [K].

We subsequently assume the circuits C\ast
\sigma and C\ast

\tau are padded.
5. \scrD generates \sigma \leftarrow i\scrO (1\lambda , C\ast

\sigma [Kz, \sigma d]), \tau \leftarrow i\scrO (1\lambda , C\ast
\tau [Kz]) and outputs (\sigma , \tau).

Note that when \scrP \ast
d uses \tau , as generated by \scrD above, to answer \scrP \ast 's verification

oracle queries on the input z, then, unlike a ``real"" verification state, \tau simply outputs
\bot . In this case, \scrP \ast

d answers the query with the bit 0 (rejecting the proof submitted
in the query).

We now analyze the success probability of \scrP \ast
d . We want to show there exists a

polynomial p\prime such that for infinitely many z = (AL, x, \lambda), where AL does not accept
x, the following holds:

\scrA d(z,\scrP \ast
d) = Pr

\biggl[
\scrV d(z, \sigma d, \tau d, \pi) = 1

\bigm| \bigm| \bigm| \bigm| (\sigma d, \tau d)\leftarrow \scrG d(z)
\pi \leftarrow \scrP \ast

d (z, \sigma d)

\biggr]
\geq 1

p\prime (\lambda)
.

Let \scrZ be the sequence of such z = (AL, x, \lambda).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1203

To show \scrP \ast
d succeeds with noticeable probability, we will consider a hybrid mali-

cious prover \scrP \sansH \sansy \sansb
d that is very similar to \scrP \ast

d except that it also gets the secret verifi-
cation state \tau d as input and uses it in a different subroutine \scrD \sansH \sansy \sansb . We will first show
that for every z \in \scrZ , \scrA d(z,\scrP \ast

d) = \scrA d(z,\scrP \sansH \sansy \sansb
d). Next, we show that relying on the

security of the indistinguishability obfuscator and the puncturable PRF, \scrA d(z,\scrP \sansH \sansy \sansb
d)

is negligibly close to \scrA (z,\scrP \ast) for all z \in \scrZ . By assumption, \scrA (z,\scrP \ast) is noticeable,
and hence we have that \scrA d(z,\scrP \ast

d) is noticeable, contradicting the soundness of the
P-delegation scheme.

We now describe the hybrid malicious prover \scrP \sansH \sansy \sansb
d . \scrP \sansH \sansy \sansb

d gets as input z and
both \sigma d and \tau d. It uses the hybrid subroutine \scrD \sansH \sansy \sansb on input (z, \sigma d, \tau d) to generate a
hybrid ``fake"" (\sigma , \tau) to run \scrP \ast and answer its queries. However, unlike \scrP \ast

d , it uses \tau
to answer all of \scrP \ast 's queries (including those on input z). \scrD \sansH \sansy \sansb is defined as follows.

Subroutine \bfscrD \bfsansH \bfsansy \bfsansb (\bfitz , \bfitsigma \bfitd , \bfittau \bfitd).
1. \scrD \sansH \sansy \sansb samples Kz and generates \sigma exactly as in \scrD . The only difference is in

the generation of \tau .
2. Let C\ast

\tau [Kz, \tau d] be a circuit that on input z\ast behaves as follows: If z\ast = z, then
C\ast

\tau simply outputs the hardwired value \tau d. Otherwise, C\ast
\tau runs r \leftarrow \sansF (Kz, z

\ast)
and outputs the result of \scrG \tau d(z\ast ; r).

3. \scrD \sansH \sansy \sansb generates C\ast
\tau [Kz, \tau d], pads it to the maximum size of C\ast

\tau [Kz, \tau d] and
C\tau [K], and generates \tau \leftarrow i\scrO (1\lambda , C\ast

\tau [Kz, \tau d]). \scrD \sansH \sansy \sansb outputs (\sigma , \tau).

We now observe that for every z \in \scrZ , \scrA d(z,\scrP \ast
d) = \scrA d(z,\scrP \sansH \sansy \sansb

d). The only differ-
ence in the two experiments is in the view of \scrP \ast : When run by \scrP \ast

d , its oracle responses

are answered using \tau as generated by \scrD , and when run by \scrP \sansH \sansy \sansb
d , its oracle responses

are answered using \tau as generated by \scrD \sansH \sansy \sansb . However, we claim that the responses are
distributed identically in both cases. They could only potentially differ on queries on
the input z, but since z is a ``false"" input, i.e., AL does not accept x, in both cases
the verification oracle response on such queries is 0 (reject).

Next we show that there is a negligible function \alpha (\cdot) such that for every z \in \scrZ ,

| \scrA d(z,\scrP \sansH \sansy \sansb
d) - \scrA (z,\scrP \ast)| \leq \alpha (\lambda).

We first observe that in the experiment corresponding to \scrA d(z,\scrP \sansH \sansy \sansb
d), the event

\scrV d(z, \sigma d, \tau d, \pi) = 1 is equivalent to the event \scrV (z, \sigma , \tau , \pi) = 1, where (\sigma , \tau) \leftarrow
\scrD \sansH \sansy \sansb (z, \sigma d, \tau d). This follows directly from the construction of \scrV and the fact that
\sigma and \tau are hardwired to output \sigma d and \tau d on input z. Hence we have that

\scrA d(z,\scrP \sansH \sansy \sansb
d) = Pr

\left[\scrV (z, \sigma , \tau , \pi) = 1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm|
(\sigma d, \tau d)\leftarrow \scrG d(z)

(\sigma , \tau)\leftarrow \scrD \sansH \sansy \sansb (z, \sigma d, \tau d)

\pi \leftarrow \scrP \ast \scrV (\cdot ,\sigma ,\tau ,\cdot)(z, \sigma)

\right] .

Viewed this way, we can now observe that the only difference between the above
experiment and that of \scrA (z,\scrP \ast) is in how (\sigma , \tau) are generated. In the above experi-
ment, (\sigma , \tau) comes from \scrD \sansH \sansy \sansb and \scrG d, whereas in the experiment for \scrA (z,\scrP \ast), (\sigma , \tau)
comes from \scrG . It suffices to show the following claim.

Claim 5.12. The following ensembles are computationally indistinguishable:

\{ (\sigma , \tau) : (\sigma , \tau , \pi)\leftarrow \scrD \sansH \sansy \sansb (z, \sigma d, \tau d), (\sigma d, \tau d)\leftarrow \scrG d(z)\} z\in \scrZ (5.1)

\approx c\{ (\sigma , \tau) : (\sigma , \tau)\leftarrow \scrG (\lambda , T (\lambda), n(\lambda))\} z\in \scrZ .(5.2)

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1204 BITANSKY ET AL.

Proof. Recall that in ensemble (5.1), \sigma \leftarrow i\scrO (C\ast
\sigma [Kz, \sigma d]), where Kz is a PRF

key punctured at input z and C\ast
\sigma on all input z outputs \sigma d and on all other inputs

z\ast outputs \scrG d(z\ast ;\sansF (Kz, z
\ast)). However, in ensemble (5.2), \sigma \leftarrow i\scrO (C\sigma [K]), where C

on input z\ast outputs \scrG d(z\ast ;\sansF (K, z\ast)). The difference between \tau in ensembles (5.1)
and (5.2) is the same. Indistinguishability follows from the security of iO and that of
(\sansP \sansR \sansF .\sansG \sanse \sansn ,\sansP \sansR \sansF .\sansP \sansu \sansn \sansc ,\sansF) in the standard way. We provide a brief overview.

Consider a hybrid ensemble that is identical to ensemble (5.1) except that instead
of uniform randomness, \scrG d uses randomness from \sansF (K, z), where K is a PRF key. K
is then punctured at input z and given to \scrD \sansH \sansy \sansb to use as Kz. By the security of the
punctured PRF, this hybrid ensemble is indistinguishable from ensemble (5.1). Fur-
thermore, the circuits obfuscated as \sigma and \tau in this hybrid ensemble and in ensemble
(5.2) are functionally equivalent. Hence, by the security of iO, ensemble (5.2) is in-
distinguishable from the hybrid ensemble. A hybrid argument completes the proof of
the claim.

This completes the proof of strong soundness in the privately verifiable setting.
Proving strong soundness in the publicly verifiable setting is very similar. The mali-
cious prover for the \scrS \scrN \scrA \scrR \scrG \scrP \ast now also requires \tau as input to generate the convinc-
ing proof \pi . On the other hand the prover we want to construct for the delegation
scheme \scrP \ast

d gets \tau d as input from the challenger. \scrP \ast
d uses the same strategy as \scrP \sansH \sansy \sansb

d

to generate \tau and simply gives it to \scrP \ast . Using the same proof as above, we have that
if \scrP \ast succeeds with noticeable probability, then so does \scrP \ast

d .

5.3.3. Succinct perfect NIZK for NP. In this section we briefly note that by
using the succinct indistinguishability obfuscator from section 5.2 in the construction
of [SW14], we can obtain an NIZK argument scheme for any NP language \scrR L that is
perfect zero-knowledge and additionally succinct in the following sense: Let \Pi \scrR be a
uniform program that computes the NP relation \scrR (x,w), and let \tau (n) and s(n) be,
respectively, bounds on the length of witness and space needed by \Pi \scrR for n-bit state-
ments. The length of the common reference string (CRS) of the scheme for proving
n-bit statements grows polynomially with n, \tau (n), and s(n) (and is essentially inde-
pendent of the verification time of the language). Below we provide a brief overview
of the [SW14] construction and how it can be made succinct using succinct iO.

In [SW14], the NIZK scheme relies on iO for circuits as follows: The CRS contains
an obfuscation of two circuits that contain the same PRF key. The first obfuscation
is used by the Prover to generate proofs: the circuit takes as input a statement and
witness (x,w) of lengths n and \tau (n), and outputs the image of the input under the
PRF as the proof if the witness is valid, that is, \Pi \scrR (x,w) = 1. The second obfuscation
is used by the Verifier to check if this proof is valid. [SW14] shows how to use this
idea relying on iO and puncturable PRFs. In their construction, the length of the
proof is succinct: it depends only on the security parameter. However, the length of
the CRS is related to the size of the circuits obfuscated in the CRS, which is related
to the verification time. We note that by obfuscating the pair of Turing machines that
perform the above functionality, and using our succinct indistinguishability obfuscator
instead, the length of the CRS can be made to depend on the statement and witness
lengths, as well as the space complexity of the verification program, independent of
the verification time.

Note that this succinct construction relies on our succinct indistinguishability
obfuscator, which in turn relies on subexponentially secure iO for circuits (as opposed
to standard iO for circuits that the [SW14] construction is based on).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1205

Theorem 5.13 (follows from [SW14]). Assuming subexponentially secure iO for
circuits and subexponentially secure OWFs, there exists an NIZK argument scheme
for every NP language determined by a uniform polynomial-time program \Pi \scrR with
the following properties:

1. The scheme is perfectly zero-knowledge.
2. The scheme has adaptive soundness.14

3. There are universal polynomials p, p\prime , and p\prime \prime , such that the length of the
CRS of the scheme for verifying statements x of length n is p(\lambda , n, \tau (n), s(n)),
where \lambda is the security parameter, \tau (n) is a bound on the length of witness,
and s(n) is the space complexity of \Pi \scrR for verifying n-bit statements. The
length of the proof is p\prime (\lambda). The running time of the prover for statement
and witness (x,w) is p\prime \prime (\lambda , n, \tau (n), s(n))T , where T is the running time of
\Pi \scrR (x,w).

Remark 5.14 (improved efficiency of delegation and \scrS \scrN \scrA \scrR \scrG s). When plugging
in the more efficient garbling scheme of section 3.3.1, we directly obtain a publicly
verifiable delegation scheme that the verification complexity is poly(\lambda)(| AL| +AL.S+
| x|) and the prover complexity for a T -time computation AL(x) is poly(\lambda)(| AL| +
AL.S+T). Furthermore, combining this delegation scheme with Theorem 5.11, while
applying the trick of ``obfuscating in a piecemeal fashion"" as in sections 3.3 and 5.2,
we obtain a \scrS \scrN \scrA \scrR \scrG for P with the same verification and prover efficiency.

Finally, using the more efficiency succinct iO of Remark 5.5 in Theorem 5.13, the
size of the CRS can be improved to poly(\lambda , n, \tau (n)) \cdot s(n), and the prover efficiency
can be improved to poly(\lambda , n, \tau (n))(s(n) + T).

5.4. A new bootstrapping theorem. In general, when considering iO for
circuits, the size of an obfuscation | i\scrO (C)| (or more generally the time required to
obfuscate) is allowed to be an arbitrary polynomial in the original circuit size | C| .
In known candidate constructions (e.g., [GGH+13]) the blowup is quadratic (see the
discussion in [GHRW14]). In this section, we show how to bootstrap iO for circuits
(with arbitrary polynomial blowup) to obtain iO for circuits where the blowup is
quasi-linear. The transformation has the additional feature that the underlying ob-
fuscation scheme is only used for (simple) circuits whose size depends only on the
security parameter and input.

The high-level idea. The transformation relies on ideas similar to those used
in section 5.2 to construct succinct iO from succinct randomized encodings, which
in turn go back to the bootstrapping technique of Applebaum [App14]. Concretely,
we rely on plain randomized encodings [IK02, AIK06] for circuits known to have the
following basic locality property: Given a circuit C with s gates and n-bit input x,
computing a randomized encoding \widehat C(x;R) can be decomposed into s computations\widehat C1(x;R), . . . , \widehat Cs(x;R), each of fixed size \ell independent of the circuit size | C| . In

particular, each such computation \widehat Ci(x;R) involves at most \ell bits of the shared
randomness R.

Similarly to the transformation in section 5.2, the transformation here is based
on the basic idea of obfuscating the circuit that computes the randomized encoding\widehat C(x; r) for any input x, while deriving the randomness R, by applying a puncturable
PRF to the input x. The only difference is that, rather than obfuscating this circuit

14The perfect NIZK construction of [SW14] only satisfies nonadaptive soundness, but by a stan-
dard complexity leveraging trick it can be made to satisfy adaptive soundness. Since we assume
subexponential security of the \bfi \bfO anyway, this comes at no cost to us.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1206 BITANSKY ET AL.

as a whole, we separately obfuscate s smaller circuits computing the corresponding\widehat Ci(x;R). To make sure that deriving the randomness is also local, we associate
r = | R| PRF keys K1, . . . ,Kr with each of the bits of the shared randomness R.
Each one of the s obfuscated circuits only includes the PRF keys required for its local
computation. The corresponding bits of randomness are again derived by applying
the corresponding PRFs to the input x.

The gain is that the size of the resulting obfuscated circuit is thus s \cdot poly(\lambda , n),
as required. The proof of security relies on a variant of the probabilistic iO argument
invoked in section 5.2, with the difference that puncturing is performed simultaneously
across all r PRF keys. Accordingly, it incurs a 2n security loss in the input length
n (which is polynomial when considering circuits with logarithmic-sized inputs, as is
often the case in this work).

We next describe the transformation in more detail and sketch the proof of secu-
rity. We start by defining the required notion of locality for the randomized encoding.

Definition 5.15 (locality of randomized encodings). A randomized encoding \scrR \scrE
= (\sansR \sansE \sansn \sansc ,\sansD \sanse \sansc) for circuits is said to be local if

\sansR \sansE \sansn \sansc (1\lambda , C, x;R) = \widehat C1(x;R| S1
), . . . , \widehat Cs(x;R| Ss

) ,

where s = \Theta (| C|), Si \subseteq \{ 1, . . . , | R| \} , R| Si is the restriction of R to Si, and the
following properties are satisfied:

\bullet \widehat Ci is a circuit of fixed size \ell (\lambda , | x|) = poly(\lambda , | x|), independent of | C| .
\bullet The circuits

\bigl\{ \widehat Ci

\bigr\}
and sets \{ Si\} can be computed from C in time | C| \cdot poly(\lambda , | x|).

\bullet Decoding can be done in time | C| \cdot poly(\lambda , | x|).
Such randomized encodings can be constructed based on any one-way function

[Yao86, AIK06].

A quasi-linear obfuscator \bfiti \bfscrO \ast . We now describe the new obfuscator. The
obfuscator relies on the following building blocks:

\bullet A randomized encoding \scrR \scrE = (\sansR \sansE \sansn \sansc ,\sansD \sanse \sansc) for circuits that is local and which
used randomness of length at most r = r(| C| , \lambda).

\bullet An indistinguishability obfuscator i\scrO for circuits (with arbitrary polynomial
blowup).

\bullet A puncturable PRF (\sansP \sansR \sansF .\sansG \sanse \sansn ,\sansP \sansR \sansF .\sansP \sansu \sansn \sansc ,\sansF).
All building blocks are assumed to be 2 - n+\omega (log \lambda)-secure.

The obfuscator i\scrO \ast (1\lambda , C) proceeds as follows:

1. Compute the circuits \widehat C1(\cdot ; \cdot), . . . , \widehat Cs(\cdot ; \cdot) and sets S1, . . . , Ss.
2. Sample PRF keys K1, . . . ,Kr \leftarrow \sansP \sansR \sansF .\sansG \sanse \sansn (1\lambda).
3. For each i \in [s], obfuscate using i\scrO the circuit \BbbC i that has hardwired
\{ Kj : j \in Si\} and given x operates as follows:
\bullet Derive randomness R| Si by invoking \sansF Kj (x) for j \in Si.

\bullet Output \widehat Ci(x,R| Si
).

The circuit is further padded to be of total size \ell (\lambda , x), where \ell is determined
in the analysis.

4. Output the obfuscations i\scrO (\BbbC 1), . . . , i\scrO (\BbbC s).
To evaluate i\scrO \ast (1\lambda , C) on input x, first evaluate each i\scrO (\BbbC i) on x, obtain the ran-
domized encoding \widehat C(x) = \widehat C1(x;R| S1

), . . . , \widehat Cs(x;R| Ss
) ,

and decode to obtain the result C(x).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1207

Proposition 5.16. i\scrO \ast is a circuit obfuscator with quasi-linear blowup.

Proof sketch. The functionality of i\scrO \ast follows directly from the functionality of
the underlying iO and the correctness of decoding. The fact that the size | i\scrO \ast (1\lambda , C)|
obfuscated circuit is | C| \cdot poly(\lambda , | x|) follows from the locality of the randomized
encoding. We next sketch the security.

We use a probabilistic iO argument similar to the one used in section 5.2. Con-
cretely, given two circuits C,C \prime of the same size and functionality, we consider 2n +1
hybrids that transition from i\scrO \ast (1\lambda , C) to i\scrO \ast (1\lambda , C \prime). In the jth hybrid, the s obfus-

cations are with respect to hybrid circuits \BbbC j
1, . . . ,\BbbC j

s, where \BbbC j
i uses \widehat Ci for all inputs

x < j and \widehat C \prime
i for all inputs x \geq j. Each two consecutive hybrids differ on only a single

point, j. Similarly to section 5.2, we puncture the underlying PRFs at this point j and
hardwire the values \widehat C1(x;R| S1

), . . . , \widehat Cs(x;R| Ss
) (or \widehat C \prime

1(x;R| S1
), . . . ,\widehat C \prime

s(x;R| Ss
), re-

spectively), using true randomness instead of pseudorandomness. Then we can rely
on the security of the randomized encodings to switch between the two.

The padding parameter \ell (\lambda , | x|) is chosen to account for the above hybrids (and
only induces quasi-linear blowup).

Acknowledgments. We thank Boaz Barak and Guy Rothblum for their input
regarding the plausibility of interactive proofs with fast verification (relevant to the
plausibility of perfectly private succinct randomized encodings). We thank Daniel
Wichs for discussing several aspects of [GHRW14]. We thank Stefano Tessaro for
many delightful discussions at the early stage of the project. Finally, we thank the
anonymous reviewers of STOC and SICOMP for their valuable comments.

REFERENCES

[ACC+15] P. Ananth, Y.-C. Chen, K.-M. Chung, H. Lin, and W.-K. Lin, Delegating RAM
computations with adaptive soundness and privacy, in Theory of Cryptography
-- TCC 2016, M. Hirt and A. Smith, eds., Lecture Notes in Comput. Sci. 9986,
Springer, 2016, pp. 3--30.

[AIK04] B. Applebaum, Y. Ishai, and E. Kushilevitz, Cryptography in NC0, in 45th An-
nual Symposium on Foundations of Computer Science (Rome, Italy, 2004), IEEE
Computer Society Press, 2004, pp. 166--175.

[AIK06] B. Applebaum, Y. Ishai, and E. Kushilevitz, Computationally private randomizing
polynomials and their applications, Comput. Complexity, 15 (2006), pp. 115--162.

[AIK10] B. Applebaum, Y. Ishai, and E. Kushilevitz, From secrecy to soundness: Efficient
verification via secure computation, in ICALP 2010: 37th International Colloquium
on Automata, Languages and Programming, Part I (Bordeaux, France, 2010), Lec-
ture Notes in Comput. Sci. 6198, S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer
auf der Heide, and P. G. Spirakis, eds., Springer, 2010, pp. 152--163.

[AIK11] B. Applebaum, Y. Ishai, and E. Kushilevitz, How to garble arithmetic circuits, in
52nd Annual Symposium on Foundations of Computer Science (Palm Springs, CA,
2011), R. Ostrovsky, ed., IEEE Computer Society Press, 2011, pp. 120--129.

[AJL+12] G. Asharov, A. Jain, A. L\'opez-Alt, E. Tromer, V. Vaikuntanathan, and
D. Wichs, Multiparty computation with low communication, computation and in-
teraction via threshold FHE, in Advances in Cryptology -- EUROCRYPT 2012
(Cambridge, UK, 2012), Lecture Notes in Comput. Sci. 7237, D. Pointcheval and
T. Johansson, eds., Springer, 2012, pp. 483--501.

[AJS15] P. Ananth, A. Jain, and A. Sahai, Indistinguishability Obfuscation with Constant
Size Overhead, IACR Cryptology ePrint Archive, 2015:1023, 2015.

[AJS17] P. Ananth, A. Jain, and A. Sahai, Indistinguishability Obfuscation for Turing
Machines: Constant Overhead and Amortization, in Advances in Cryptology
-- CRYPTO 2017, J. Katz and H. Shacham, eds., Lecture Notes in Comput.
Sci. 10402, Springer, 2017, pp. 252--279.

[App11a] B. Applebaum, Key-dependent message security: Generic amplification and complete-
ness, in Advances in Cryptology -- EUROCRYPT 2011 (Tallinn, Estonia, 2011),

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1208 BITANSKY ET AL.

Lecture Notes in Comput. Sci. 6632, K. G. Paterson, ed., Springer, 2011, pp. 527--
546.

[App11b] B. Applebaum, Randomly encoding functions: A new cryptographic paradigm (invited
talk), in Proceedings of the 5th International Conference on Information Theoretic
Security, ICITS 2011 (Amsterdam, The Netherlands), 2011, pp. 25--31.

[App14] B. Applebaum, Bootstrapping obfuscators via fast pseudorandom functions, in Ad-
vances in Cryptology - ASIACRYPT 2014 - Proceedings of the 20th International
Conference on the Theory and Application of Cryptology and Information Security
(Kaoshiung, Taiwan, R.O.C.), 2014, pp. 162--172.

[BCCT12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again, in
ITCS 2012: 3rd Innovations in Theoretical Computer Science (Cambridge, MA,
2012), S. Goldwasser, ed., Association for Computing Machinery, 2012, pp. 326--
349.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, Recursive composition and
bootstrapping for SNARKS and proof-carrying data, in 45th Annual ACM Sympo-
sium on Theory of Computing (Palo Alto, CA, 2013), D. Boneh, T. Roughgarden,
and J. Feigenbaum, eds., ACM Press, 2013, pp. 111--120.

[BCC+17] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and
E. Tromer, The hunting of the SNARK, J. Cryptology, 30 (2017), pp. 989--1066.

[BCP14] E. Boyle, K.-M. Chung, and R. Pass, On extractability obfuscation, in TCC 2014:
11th Theory of Cryptography Conference (San Diego, CA, 2014), Lecture Notes in
Comput. Sci. 8349, Y. Lindell, ed., Springer, 2014, pp. 52--73.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang, On the (im)possibility of obfuscating programs, in Advances in Cryptol-
ogy CRYPTO 2001, Springer, 2001, pp. 1--18.

[BGI14] E. Boyle, S. Goldwasser, and I. Ivan, Functional signatures and pseudorandom
functions, in PKC, 2014, pp. 501--519.

[BGL+15] N. Bitansky, S. Garg, H. Lin, R. Pass, and S. Telang, Succinct randomized encod-
ings and their applications, in Proceedings of the 47th Annual ACM on Symposium
on Theory of Computing, STOC 2015 (Portland, OR), ACM, 2015, pp. 439--448.

[BHHI10] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai, Bounded key-dependent message
security, in Advances in Cryptology -- EUROCRYPT 2010 (French Riviera, 2010),
Lecture Notes in Comput. Sci. 6110, H. Gilbert, ed., Springer, 2010, pp. 423--444.

[BHK13] M. Bellare, V. T. Hoang, and S. Keelveedhi, Instantiating random oracles via
UCEs, in Advances in Cryptology -- CRYPTO 2013, Part II (Santa Barbara, CA,
2013), Lecture Notes in Comput. Sci. 8043, R. Canetti and J. A. Garay, eds.,
Springer, pp. 398--415.

[BHR12a] M. Bellare, V. T. Hoang, and P. Rogaway, Adaptively secure garbling with appli-
cations to one-time programs and secure outsourcing, in Advances in Cryptology
-- ASIACRYPT 2012 (Beijing, China, 2012), Lecture Notes in Comput. Sci. 7658,
X. Wang and K. Sako, eds., Springer, 2012, pp. 134--153.

[BHR12b] M. Bellare, V. T. Hoang, and P. Rogaway, Foundations of garbled circuits, in The
ACM Conference on Computer and Communications Security, CCS'12 (Raleigh,
NC), 2012, pp. 784--796.

[BLMR13] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan, Key homomorphic
PRFs and their applications, in Advances in Cryptology -- CRYPTO 2013, Part I
(Santa Barbara, CA, 2013), Lecture Notes in Comput. Sci. 8042, R. Canetti and
J. A. Garay, eds., Springer, 2013, pp. 410--428.

[BW13] D. Boneh and B. Waters, Constrained pseudorandom functions and their applica-
tions, in ASIACRYPT (2), 2013, pp. 280--300.

[CCC+16] Y.-C. Chen, S. S. M. Chow, K.-M. Chung, R. W. F. Lai, W.-K. Lin, and
H.-S. Zhou, Cryptography for Parallel RAM from Indistinguishability Obfusca-
tion, IACR Cryptology ePrint Archive, Report 2015/406, 2015, https://eprint.
iacr.org/2015/406.

[CCHR15] R. Canetti, Y. Chen, J. Holmgren, and M. Raykova, Succinct Adaptive Garbled
RAM, Cryptology ePrint Archive, Report 2015/1074, 2015, https://eprint.iacr.
org/2015/1074.

[CH16] R. Canetti and J. Holmgren, Fully succinct garbled RAM, in Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science (Cambridge,
MA, 2016), MIT, 2016, pp. 169--178, http://doi.acm.org/10.1145/2840728.2840765.

[CHJV15] R. Canetti, J. Holmgren, A. Jain, and V. Vaikuntanathan, Succinct garbling and

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://eprint.iacr.org/2015/406
https://eprint.iacr.org/2015/406
https://eprint.iacr.org/2015/1074
https://eprint.iacr.org/2015/1074
http://doi.acm.org/10.1145/2840728.2840765

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IO FOR RAMs AND SUCCINCT RANDOMIZED ENCODINGS 1209

indistinguishability obfuscation for RAM programs, in Proceedings of the 47th
Annual ACM Symposium on Theory of Computing, STOC 2015 (Portland, OR),
2015, pp. 429--437.

[CIJ+13] A. De Caro, V. Iovino, A. Jain, A. O'Neill, O. Paneth, and G. Persiano, On the
achievability of simulation-based security for functional encryption, in Advances in
Cryptology - CRYPTO 2013, Part II (Santa Barbara, CA, 2013), Springer, 2013,
pp. 519--535.

[CLP13] K.-M. Chung, H. Lin, and R. Pass, Constant-round concurrent zero knowledge from
p-certificates, in 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013 (Berkeley, CA), 2013, pp. 50--59.

[CLTV15] R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan, Obfuscation of prob-
abilistic circuits and applications, in Theory of Cryptography - 12th Theory of
Cryptography Conference, Part II, TCC 2015 (Warsaw, Poland), 2015, pp. 468--
497.

[CP13] K.-M. Chung and R. Pass, A Simple ORAM, IACR Cryptology ePrint Archive,
2013:243, 2013.

[DFH12] I. Damg\r ard, S. Faust, and C. Hazay, Secure two-party computation with low com-
munication, in TCC 2012: 9th Theory of Cryptography Conference (Sicily, Italy,
2012), Lecture Notes in Comput. Sci. 7194, R. Cramer, ed., Springer, 2012, pp. 54--
74.

[DHRW16] Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs, Spooky encryption and its
applications, in Advances in Cryptology - CRYPTO 2016, Part III (Santa Barbara,
CA), Springer, 2016, pp. 93--122.

[Gen09] C. Gentry, Fully homomorphic encryption using ideal lattices, in 41st Annual ACM
Symposium on Theory of Computing (Bethesda, MD, 2009), M. Mitzenmacher,
ed., ACM Press, pp. 169--178.

[GGH+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, Candidate
indistinguishability obfuscation and functional encryption for all circuits, in 54th
Annual Symposium on Foundations of Computer Science (Berkeley, CA, 2013),
IEEE Computer Society Press, 2013, pp. 40--49.

[GGHR14] S. Garg, C. Gentry, S. Halevi, and M. Raykova, Two-round secure MPC from
indistinguishability obfuscation, in TCC 2014: 11th Theory of Cryptography Con-
ference (San Diego, CA, 2014), Lecture Notes in Comput. Sci. 8349, Y. Lindell,
ed., Springer, 2014, pp. 74--94.

[GGHW13] S. Garg, C. Gentry, S. Halevi, and D. Wichs, On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input, in Ad-
vances in Cryptology - CRYPTO 2014 (Santa Barbara, CA, 2014), Springer, 2014,
pp. 518--535.

[GGHZ16] S. Garg, C. Gentry, S. Halevi, and M. Zhandry, Functional encryption without
obfuscation, in Theory of Cryptography - 13th Theory of Cryptography Conference,
Part II, Lecture Notes in Comput. Sci. 9563, Springer, 2016, pp. 480--511.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions,
J. ACM, 33 (1986), pp. 792--807.

[GGP10] R. Gennaro, C. Gentry, and B. Parno, Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers, in Advances in Cryptology -- CRYPTO
2010 (Santa Barbara, CA, 2010), Lecture Notes in Comput. Sci. 6223, T. Rabin,
ed., Springer, 2010, pp. 465--482.

[GHL+14] C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and D. Wichs, Garbled
RAM revisited, in Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques (Copenhagen, Denmark), 2014, pp. 405--422.

[GHRW14] C. Gentry, S. Halevi, M. Raykova, and D. Wichs, Outsourcing private RAM com-
putation, in 55th Annual Symposium on Foundations of Computer Science, 2014.

[GKP+13] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich,
Reusable garbled circuits and succinct functional encryption, in 45th Annual ACM
Symposium on Theory of Computing (Palo Alto, CA, 2013), D. Boneh, T. Rough-
garden, and J. Feigenbaum, eds., ACM Press, 2013, pp. 555--564.

[GLOS15] S. Garg, S. Lu, R. Ostrovsky, and A. Scafuro, Garbled RAM from one-way func-
tions, in 47th Annual ACM Symposium on Theory of Computing, ACM Press,
2015.

[HW15] P. Hub\'acek and D. Wichs, On the communication complexity of secure function
evaluation with long output, in ITCS, ACM Press, 2015, pp. 163--172.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1210 BITANSKY ET AL.

[IK00] Y. Ishai and E. Kushilevitz, Randomizing polynomials: A new representation with
applications to round-efficient secure computation, in 41st Annual Symposium on
Foundations of Computer Science (Redondo Beach, CA, 2000), IEEE Computer
Society Press, 2000, pp. 294--304.

[IK02] Y. Ishai and E. Kushilevitz, Perfect constant-round secure computation via perfect
randomizing polynomials, in Automata, Languages and Programming, 29th Inter-
national Colloquium, ICALP 2002 (Malaga, Spain), 2002, pp. 244--256.

[KLW15] V. Koppula, A. B. Lewko, and B. Waters, Indistinguishability obfuscation for Tur-
ing machines with unbounded memory, in 47th Annual ACM Symposium on The-
ory of Computing, ACM Press, 2015.

[KPTZ13] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias, Delegatable
pseudorandom functions and applications, in CCS, 2013, pp. 669--684.

[KRR14] Y. T. Kalai, R. Raz, and R. D. Rothblum, How to delegate computations: The power
of no-signaling proofs, in 46th Annual ACM Symposium on Theory of Computing,
D. B. Shmoys, ed., ACM Press, 2014, pp. 485--494.

[Kv99] A. Klivans and D. van Melkebeek, Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses, in 31st Annual ACM Sympo-
sium on Theory of Computing (Atlanta, GA, 1999), ACM Press, 1999, pp. 659--667.

[LO13] S. Lu and R. Ostrovsky, How to garble RAM programs, in Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques (Athens, Greece), 2013, pp. 719--734.

[LTV12] A. L\'opez-Alt, E. Tromer, and V. Vaikuntanathan, On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption, in 44th Annual
ACM Symposium on Theory of Computing, H. J. Karloff and T. Pitassi, eds.,
ACM Press, 2012, pp. 1219--1234.

[Mic00] S. Micali, Computationally sound proofs, SIAM J. Comput., 30 (2000), pp. 1253--1298,
https://doi.org/10.1137/S0097539795284959.

[MV99] P. B. Miltersen and N. V. Vinodchandran, Derandomizing Arthur-Merlin games
using hitting sets, in 40th Annual Symposium on Foundations of Computer Science
(New York, 1999), IEEE Computer Society Press, 1999, pp. 71--80.

[MW16] P. Mukherjee and D. Wichs, Two round multiparty computation via multi-key FHE,
in Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Part II (Vi-
enna, Austria), 2016, pp. 735--763.

[Nao03] M. Naor, On cryptographic assumptions and challenges (invited talk), in Advances in
Cryptology -- CRYPTO 2003 (Santa Barbara, CA, 2003), Lecture Notes in Comput.
Sci. 2729, D. Boneh, ed., Springer, 2003, pp. 96--109.

[PF79] N. Pippenger and M. J. Fischer, Relations among complexity measures, J. ACM, 26
(1979), pp. 361--381.

[PRV12] B. Parno, M. Raykova, and V. Vaikuntanathan, How to delegate and verify in
public: Verifiable computation from attribute-based encryption, in TCC 2012: 9th
Theory of Cryptography Conference (Sicily, Italy, 2012), Lecture Notes in Comput.
Sci. 7194, R. Cramer, ed., Springer, 2012, pp. 422--439.

[Rog91] P. Rogaway, The Round Complexity of Secure Protocols, Ph.D. thesis, Massachusetts
Institute of Technology, 1991.

[SCSL11] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, Oblivious RAM with O((logN)3)
worst-case cost, in ASIACRYPT, 2011, pp. 197--214.

[SW14] A. Sahai and B. Waters, How to use indistinguishability obfuscation: Deniable en-
cryption, and more, in Proceedings of the 46th ACM Symposium on Theory of
Computing, STOC 2014, D. B. Shmoys, ed., ACM Press, 2014, pp. 475--484.

[Wat14] B. Waters, A Punctured Programming Approach to Adaptively Secure Functional En-
cryption, Cryptology ePrint Archive, Report 2014/588, 2014.

[Yao86] A. C.-C. Yao, How to generate and exchange secrets (extended abstract), in 27th An-
nual Symposium on Foundations of Computer Science (Toronto, Ontario, Canada,
1986), IEEE Computer Society Press, 1986, pp. 162--167.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/S0097539795284959

	Introduction
	This work: iO for RAMs through succinct randomized encodings
	Additional applications of succinct randomized encodings
	Subsequent work
	Road map

	Preliminaries
	Models of computation
	Garbling schemes
	Indistinguishability obfuscation
	Puncturable pseudorandom functions
	Injective noninteractive commitment

	Succinct garbling via garbled circuits and garbled RAMs
	Overview
	Succinct garbling for Turing machines via garbled circuits
	A nonsuccinct garbling scheme
	A garbling scheme for TM with space-dependent complexity

	Succinct garbling for RAMs via garbled RAMs
	RAM garbling scheme with complexity linear in the program size

	Succinct garbling via reusable obfuscation
	Special authenticated encryption (ACE)
	Definition
	Construction
	Proof of correctness and security

	Garbling Turing machines
	Security with virtual black box (VBB) obfuscation: A warmup and sanity check
	Security with iO: Technical overview
	Security with iO: Proof

	Garbling RAM machines
	Oblivious RAM
	Garbling construction
	Security proof

	The bounded space requirement and subsequent work

	Applications
	Overview
	From randomized encodings to iO
	Publicly verifiable delegation, SNARGs for P, and succinct NIZKs for NP
	P-delegation
	SNARGs for P
	Succinct perfect NIZK for NP

	A new bootstrapping theorem

	References

