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Abstract

The Hybrid Shell Model (HSM) is presented as an intermediate-fidelity structural model

well suited for conceptual design of aerospace vehicles. Although significantly simpler and

more economical than full 3D elasticity models, it can still capture full 3D geometries, large

deformations, and anisotropic materials. HSM is formulated from the full 3D equilibrium

and compatibility equations all projected onto local bases defined on the 2D shell manifold.

General anisotropic constitutive equations are also formulated in the local 2D shell manifold

bases. The resulting continuous HSM formulation is discretized in weak form with a Galerkin

finite element method (FEM), with spherical interpolation used for the local basis vectors.

Displacements, basis rotations, and stress resultants are the primary unknowns.

A fully adjoint-consistent plane-stress HSM version (HSM2D) is developed for the purpose

of model verification and demonstration of order-of-accuracy convergence. The Method of

Exact Solutions (MES) is applied to the case of a uniform plate hanging under its own weight.

The effectiveness of the adjoint model for structural optimization is also demonstrated for

a simplified rotor blade in a centrifugal force field, featuring non-uniform forcing, non-zero

Poisson ratio, large deflection, and optimization of multiple parameters. The suitability of

HSM as an intermediate fidelity conceptual aircraft design tool is thus demonstrated.
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Chapter 1

Introduction

1.1 Motivations from Aircraft Conceptual Design
Conceptual design is an essential first stage in the aircraft design process. The objective

of conceptual design is to arrive at a general aerodynamic and structural layout for the

aircraft that will satisfactorily meet all the design requirements. At this early stage, every

design parameter is considered to be variable. Important design specifications like the aircraft

topology, outer mold line (OML) geometry, and structural configuration, must all be selected

and optimized over the design process to best satisfy the project objectives at the specified

operation condition. Because there are so many design parameters, conceptual design heavily

relies on a process of iteration and convergence. This narrows the scope of the design to a

point that will allow feasible detail-testing of interesting point-cases in the preliminary and

detail design phases to follow.

1.2 Applied Conceptual Design: Modeling and Compu-

tation
The large, multi-dimensional design space that exists in the conceptual design phase neces-

sitates a strategy other than prototyping and testing be used to gain insight and narrow the

scope of design parameters. Today, computational simulation is by far the dominant ap-

proach. In the context of aero-structural design, simulation of an aircraft involves modeling

two systems, the airflow surrounding the aircraft, and the physical deflections of the aircraft

structure that the airflow imposes. Furthermore, these two systems are two-way coupled.

The aerodynaimc forces deform the elastic airframe, and, in turn, the deflected OML geom-

etry modifies the aerodynamic forces. This interaction between aerodynamic and structural

formulations means it is a far better approach to model them together, as a coupled system.

This coupling is illustrated in Figure 1-1.

15



Structural Aerodynamic

Model Model

Figure 1-1: The illpults mid outputs of the coupled aero-structural imodel. The

aerodvnaimic model takes the input of anii aircraft OML and outputs the pressure

forces developed by the airflow. The structural model outputs how the structure

will deflect wheni subjected to these for(;es.

Aero-structural modeling software necessarily relies on a structural rmodel to provide the

stresses. forces. anud deformations of loaled solids, ad such comiprises the bulk of this the-

sis. Because of* the intrinsic reliance on test iteration iii the conceptual design phase, the

coniputatiolal ipleniitations of the phvsical nodels used to simulate the aircraft's struc-

tural response mist be able to run quickly. Indeed. it is this premiiull on conmput ational

speed that has historically drivein the selection of structural modeling software. To achieve

these speed requirements, the historical tendency has lbeen to drasticallv reduce the fidelity

of' the niodel at the conceptual phase to span the fill extent of the design space. and then

test a handful of interesting eases with high fidelity iodels to verify the low-fidelity results.

Unf(ortunately, this practice cani result in the over-simplified models being used to drive early

design methodologies. which ('c1an cauise designers to imake ill-informed decisions in their later

detailed designs as they lack the insights of higher-order physical effects. Iiportallt examples

of' this are the couplings of' extension, bending. aid twist. which may affect the O(ML such

that the aerodyliamic forces (in a coupled aero-structural model) are substantially altered

from an over-simplified beami-bending case.

Clearly. there is a need for a computational alpproach to structural modeling that balances

calculation speed and high-fidelity real-world approximation. To have practicality in con-

ceptual design and optimization applications, an intermnediate level of fidelity is required.

where major geoietric deformation is captured (beyond simple, linear theories) and there-

fore available to be coupled to aerodylanic models. but computation time is low.
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1.3 Structural Model Requirements
The creation of a new structural model for conceptual design is not purely motivated by the
need to address the "fidelity gap" that exists in current structural simulation tools. There are
several factors, unavailable as an inclusive set in commercial off-the-shelf (COTS) software,
that must be included in this model to facilitate coupling with an aerodynamic model and
effective conceptual design.

Fast, "medium-fidelity" model: As previously discussed, the model must capture higher
order effects because the aerodynamic response may be disproportionately larger to small
OML changes.

Solution sensitivities to variables and parameters: Conceptual design frequently in-
volves identifying trends and performing rough optimizations based on the sensitivities of
the solution to the input variables and parameters. While many COTS structural mod-
eling suites calculate solution variable sensitivities, i.e. the sensitivities to applied stresses
and displacements (the primary variables of the partial differential equations used to de-
scribe the structural response), a true design tool must also calculate solution parameter
sensitivities, i.e. the sensitivities to shell thickness, material line direction, and undeformed
geometry. Also, this sensitivity calculation must be more efficient than simple, brute-force
finite differencing.

Large deformations: A structural deformation model for high aspect ratio configurations
must be able to capture geometric nonlinearity from large deflections. However, design-load
cases typically assume absence of yield, so simple Hookean constitutive models generally
suffice.

Anisotropic material properties: Composite materials are the current state-of-the-art
in aerospace structural engineering. Current shell models assume isotropic materials to
simplify the equations, and current full-3D models take too long to simulate anisotropic
materials. To enable composite ply angle tailoring and optimization, the structural model
must include anisotropic material modeling functionality.

Local or global specification of loading and material parameters: Composite air-
craft employ the use of fabric layers of varying number and fiber orientations over different
parts of the structure; therefore an aerospace structural model must be able to accommodate
an arbitrarily complicated material property parametrization.
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1.4 The Hybrid Shell Model
This thesis presents the Hybrid Shell Model (HSM), which is well-suited for the conceptual
design of aerospace vehicles. HSM is an intermediate fidelity method which idealizes the

aircraft structure as a shell located on the aircraft's OML. Structural properties through

the volume of 3D components such as spars and ribs are "lumped" so their stiffnesses are

smeared across this shell. The shell is characterized in three-dimensional space by having
a position and a surface-normal orientation at every point. The surface normal defines a
local coordinate system comprised of two in-plane, and one out-of-plane (the surface nor-
mal), vectors. In a new approach, HSM uses a Cartesian coordinate frame to define these

local coordinates, instead of relying on curvilinear coordinates which only serve to compli-
cate governing equations and computational implementation. The model also includes both

displacements and stresses as primary unknowns in the residual state vector, eliminating
the problem of shear locking and allowing direct assignment of loading boundary conditions

with a Dirichlet formulation.
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Chapter 2

Review of Structural Models

HSM has been created to be an "intermediate-fidelity" structural model. To place it on the

modeling complexity hierarchy, we briefly review existing structural models, proceeding from
lowest to highest fidelity, and therefore most simple to most complex.

2.1 Beam Modeling
A beam is a structures with one dimension much (typically quoted as greater than 10 times)
larger than the other two, and is idealized as a line.

Euler-Bernoulli (Simple) Beam Theory (SBT) is the simplest model of elastic defor-
mation that considers the static deflections of beams. The two assumptions in beam theory
are that the cross sections of the beam do not deform under the application of transverse or
axial loads (deformation can be expressed as two rigid-body translations and one rotation),
and that the cross sections of the beam remain planar and normal to the deformed axis of
the beam (the rotation occurs along the bending axis so as to remain perpendicular to the
normal plane). These are valid when the transverse deflections are small compared to the
depth of the beam so that the small angle approximation may be used in the displacement
equations. Consequences of these assumptions are that there are no shear strains and no
strains in the cross-sectional planes when a beam is exposed to a single axis of flexure. Beam
loading can occur simultaneously in multiple transverse directions, which is handled in beam
theory by translating the loading orientations into components into the beam's principal

centroidal axes of bending and using the superposition of each component as a separate
bending load [13], [19].

Rayleigh Beam Theory (RBT) adds the effect of rotary inertia to SBT, allowing it to
be used for dynamic beam modeling and eigenmode analysis [13].
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Timoshenko Beam Theory (TBT) adds the effect of shear strains to RBT, meaning
it eliminates the assumption that a cross section must remain planar and normal to the
deformed axis of the beam [13]. This allows the model to be used for slightly larger deflections
and for materials that exhibit strong shear coupling to extension or bending.

2.2 Plate Modeling
Plates are planar structural members which have a thickness much smaller (typically quoted
as less than one tenth) than the other two dimensions 1311.

Kirchoff-Love Plate Theory (KLPT) is an extension of Euler-Bernoulli simple beam the-
ory applied to thin plates 1121. Similar to SBT, KLPT has three assumptions: that straight
lines normal to the mid-surface of the plate remain straight after deformation, straight lines
normal to the mid-surface remain normal to the mid-surface after deformation, and the the
thickness of the plate does not change during a deformation. These assumptions are valid
if rotations of the normals of the mid-surface are 100 or less. The only non-zero strains are
in the in-plane directions, and the in-plane strains are linear with respect to the in-plane
displacement transverse derivatives.

von Karman Extension to KLPT Plate Theory (VKPT) continues to assume the
same three assumptions as KLPT, but adds a nonlinear (quadratic) term to the in-plane
strain-displacement relation [32]. This helps relate axial forces to transverse displacement
[181. The out-of-plane strains are still considered infinitesimal. The amount of rotation is
still assumed small, but the in-plane strains can now be reasonably approximated to 15'.

Mindlin Plate Theory (MPT) is an extension of KLPT that eliminates the assumption
that normals of the mid-surface remain normal to the mid-surface after deformation, much as
TBT grows from SBT 116]. Without this restriction, MPT incorporates shear deformations
through the thickness of a plate, and can be used on thicker plates than KLPT, with the
thickness on the order of one tenth that of the other two dimensions (whereas KLPT is best
for thinner plates). The theory that is most commonly associated with the term "Mindlin-
Reissner plate theory" is actually Mindlin's theory, which also assumes a linear variation
of displacement across the plate thickness but zero change in plate thickness during defor-
mation. It also invokes the plane stress condition, which prescribes that the normal stress
through the plate is negligible. MPT is a "first-order" shear deformation model because of
the linear displacement variation through the thickness [181.

Reissner Plate Theory (RPT) considers deformations caused by transverse shear forces
[31] by discarding the assumption of plane stress from MPT [20]. Instead it assumes that the
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bending stress is linear and the shear stress is quadratic through the thickness of the plate.

Therefore the displacement through the thickness is not necessarily linear and the plate

thickness is allowed to change during deformation. It is less commonly used than MPT.

2.3 Shell Modeling
Shells are a generalization of plates. They are structures which have a thickness much smaller

(typically quoted as less than one tenth) than the overall dimensions, but they are allowed

to exist in three dimensions (i.e. they are not restricted to be flat). The reference-surface of

a shell is a 2D manifold existing in the higher-dimensional 3D space.

Directed Surface Theory (DST) also collapses the general three dimensional equations

of classical elasticity to a two dimensional manifold comprised of a surface displacement field

and surface normal orientation vectors, or "directors" [6]. These directors endow every
particle of the continuum with independent rotational degrees of freedom. Strains can thus
be measured both by the deformation gradient and by the change in this rotation field [23].
Simo [24] created a singularity-free parametrization of this director field by constraining the

function space used to represent the director to be a differentiable manifold modeled on the
unit sphere. Simo also made use of bilinear interpolation and spherical interpolation of the
directors in his discretization [25, 26, 271. He makes use of "mixed interpolation", or adding
lower order polynomials in his interpolation scheme to overcome the "shear locking" that
dominates the performance of displacement finite element formulations (meaning that only
displacements compose the primary unknown state vector) in the thin shell limit. Simo's
shell theory in particular employs an "assumed strain method" so the strain interpolated
differently than the stresses and displacements. Simo and Talamini (whose shell model is
based on Simo's [301) both use an energy functional to define the governing equations and
a disconinuous Galerkin (DG) approach to solve their finite element schemes. As a result
of the former, the equations lose all sense of directionality so nonisotropic cases cannot be
handled. As a result of the latter, the piecewise polynomial representation of the manifold is
only C0 so the director is discontinuous across element edges. If left untreated, this difference
in normals would lead to a strain, and therefore deformation energy in the governing energy
functional. Talamini address this issue by arbitrarily selecting one of the two nodal state

values to formulate the energy functional.

2.4 Solid Modeling
General solid modeling incorporates the full 3D Cauchy stress tensor and is used for struc-
tures of arbitrary 3D geometry. No assumptions of relative dimension length or absence of
stresses along certain coordinates are made. Loading and deflections in any dimensions are
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permitted, but the equations are more complicated than those governing shell models. This

general version is what is typically applied in commercial finite element modeling (FEM)

software, where the geometry is broken into smaller volumetric elements and the full 3D

equations are solved locally in each. This takes considerably more computational power

than the geometrical simplifications mentioned earlier so full 3D FEM takes considerably

longer to run.

2.5 Method Overview
Classical shell elasticity theory with complex geometry has traditionally been formulated in

curvilinear coordinate systems on the shell [22, 41. The resulting elasticity equations then

involve coordinate Christoffel symbols which account for the curvatures of the coordinate

lines. This formalism is not only complex, but creates unwarranted demands on geometry

smoothness in computational implementations.

Formulations which treat the shell elements as degenerate 3D solids circumvent the problems

with curvilinear coordinates by formulating the problem in 3D cartesian space. However,

they have their own complications in their need for C1 or even C 2 continuity of assumed

element solution modes, and also have other problems such as shear locking. They also do

not capture solid-body rotations exactly without special treatment.

Local basis vectors

r no

/ e

/1 e

Global cartesian axes

Figure 2-1: Shell geometry defined by deformed aiiH- ue4orrnd position vec-

tors r, ro. Local in-plane and normial vectors l, 62, n are used to define local

anisotropic shell properties. All vectors are defined via components along

global .yz axes.

The Hybrid Shell Model (HSM) was originally conceived by Mark Drela [91, and developed
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into a form that more closely aligns with a classical finite element PDE implementation by
William Thalheimer with guidance from Mark Drela, Marshall Galbraith, Steven Allmaras,
Robert Haimes, and David Darmofal. The present HSM is formulated in the global 3D
cartesian coordinate system, parameterized using local (element) coordinates , rq which also

define a local basis for forming tangential and normal derivatives, and material strains. This

closely follows the analysis of Simo et al [24, 25, 26], except that here the equations are ob-

tained directly from stress equilibrium rather than an energy functional and the continuous

Galerkin (CG) finite element method is employed. The present method also defines a com-

plete local basis, in the form of a normal vector and two in-plane vectors, in which general

anisotropic materials can be specified independently of the discretization. Simo's method

defines only the normal vector (or director), and thus requires that any anisotric properties

are referred to the finite element coordinates which can be inconvenient in practice.

Another key feature of HSM is its mixed formulation, where the stress and stress-moment
resultants are treated as primary unknowns, which completely eliminates the shear locking

problem. The transverse shear strains can then be dropped if they are physically negligible

as is typical, which gives a smaller numerical problem. This formulation is called HSM/KL,
since the simplification is the same as used in classical Kirchoff-Love [121 plate theory, except

here it is applied to a general curved shell geometry. Pure displacement (non-mixed) methods
for general geometries cannot drop the transverse shear strains even if they are physically
negligible, and thus correspond to the more complex Reissner-Mindlin [16, 20 plate theory.
The present HSM formulation which retains the transverse shear strains is called HSM/M.
Either the HSM/M or the simpler HSM/KL formulation can be used for any given problem,
as appropriate.

HSM can be considered a direct extension of the general nonlinear beam model of ASWING
18] to shell structures, in that it uses the same unknown state vector of position, rotation, and
stress and stress-moment resultants. The compatibility, constitutive, and stress-equilibrium
equations are all formulated in the global 3D coordinates and then projected onto the shell
reference surface. All quantities are parameterized in the local reference-element coordinates
with CO continuity being sufficient, which allows a relatively simple bi-linear finite element
formulation. The same cartesian/projection approach has been successfully used to formu-

late and solve 3D boundary layer equations on the surface of bodies of complex shapes by
Drela [7].

Note on HSM Flavors
There currently exist two "flavors" of HSM computational implementation, differing in their
choice of coordinate frame for interpolation and governing equation construction.

This flavor of HSM is denoted HSMs (for s-matrix). This version was developed in depth by
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William Thalheimer to be more closely aligned with conventional finite element computa-
tional methods than the original HSM. The "s-matrix" in question appears in (3.44) and 3.45
and is used to convert from the element-local coordinate system to the "super-element"-local
coordinate system before interpolation of orientation vectors so the results are well defined
even in situations with degenerate geometric parametrization, as discussed in Section 3.1.2.
Since the HSMs stresses and strains are formulated and interpolated in non-degenerate
local-basis axes, its residual equations are formulated in terms of their components in the
same axes. This is why the discretized governing equations of (4.61), (4.62), (4.63), (4.68),
and (4.69) are dotted into their non-degenerate coordinate system components in the residual
integrands.

HSMc (for HSM Cartesian) has been primarily developed and documented by Mark Drela [9].
HSMc formulates the Cartesian strain and strain-curvature tensors of equations (3.50) and (3.51)
directly, just as the stress and stress-moment tensors are calculated here in Section 3.3.3.
While this strategy more easily facilitates implementation by avoiding the tensor coordinate
transformation of equation (3.49), it violates traditional finite element method construction
by introducing a nonlinear function of primary (state vector) variables prior to interpola-
tion. The strategy of converting all entities to the non-degenerate basis in HSMs ensures
that only rotations (and therefore linear functions of the primary variables) are performed
prior to interpolation. Furthermore, because the HSMc stresses and strains are all formu-
lated and interpolated in Cartesian axes, its residual equations are formulated in terms of
their Cartesian components.

Note on Boundary Conditions in Implementation
The implementation of HSM which is presented in Section 7.4 and Chapter 8 has been
simplified to a fully adjoint-consistent plane-stress formulation. This version of HSM2D is
presented in Chapters 5 and 6. It is important to note that the boundary conditions (BCs)
implemented in HSM2D follow from the adjoint-consistent weighted residual formulation of
Section 6.4. The method of direct row substitution in the residual Jacobian matrix presented
in Section 4.5 is left as an alternate form of BC imposition to be tested in future research.
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Chapter 3

The Hybrid Shell Model

3.1 Geometry, Displacements and Rotations

3.1.1 Local Basis
The equations of HSM are formulated on a manifold, a two-dimensional surface existing in

three-dimensional space. A point on a manifold is defined at each point in 3-space by a
location, (x, y, ), and a surface normal vector, (nm, ny, nz). An arbitrary shell geometry is

collapsed to this manifold by means of selecting a "reference surface". The reference surface

(e.g. inner, middle, or outer surface) of the deformed shell geometry is defined by the global
position vector r(u,v), while the specified undeformed geometry is defined by ro(u,v). Here

U, v are any convenient surface material coordinates. Locally these will be replaced by the
canonical finite-element coordinates , ry. The third material coordinate ( is defined normal

to the undeformed reference surface, but will tilt off-normal in the presence of shear strains.
As shown in Figures 2-1 and 3-1, each surface point also has a local orthogonal unit-vector

basis

e(u,v) = (A(u,>)= el 6 2 n (3.1)

eo(u,v) = eo(Ao (u,>v)) eo, e02 no (3.2)

-I I I _

where e,62 are tangent and ft is normal to the reference surface.

Selection of log-quaternion definition of local basis: Because a manifold must be able
to represent any arbitrary geometry, the local basis vectors must be carefully defined such
that ambiguity is eliminated in all surface configurations. This means that describing the
surface orientation with Euler angles is problematic, because Euler angles can exhibit gimbal
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lock and therefore a loss of a rotational degree-of-freedom. For this reason, quaternions have

been selected to describe the manifold surface basis vector orientations. While less intuitive

than Euler angles, they do not suffer from gimbal lock and therefore are more suited to

describe arbitrary surfaces.

The e and eo basis vector sets are defined not in terms of quaternions themselves however, but

rather in terms of the unit-quaternion logarithms A and A0 . The logarithms are chosen as

primary variables because they may be bilinearly interpolated directly (as in Section 4.2.2),
whereas the quaternions themselves must use SLER.P for interpolation. In practice, the

specified ro will also be used to define A 0 , and both r and A will be treated as a primary

unknown variables.

n (Shear angles

e ILocal-basis rotations
deformed material coordinates A

reference n A
surface n undeformed . 2

r

xyz ------------

Figure 3-1: View through thickness of shell showing position r and local basis
vectors 4b1 , 82, ni, in local material coordinates ( /(

The explicit definition Of e(A) is via the actual quaternion (PO, P1, P2, P3) =exp(A), as follows.

Po = cosIA1 1 -A12

P2 A sinJAJ ~ A (1 - 1JA)
P JA

(3.3)

(3.4)

1-2(p2 +p2) 2 (P1P2-poP.3)

2 (PiP2+PoP3) 1-2(p +p2)
2 (P1P3-PoP2) 2(p 2p3 +POPI)

2 (P1P3+POP2)

2 (P2P3 PoP1)

1-2(p +p2)

The approximate expressions in equations (3.3) and (3.4) are used whenever A 12 < Emachine,

which prevents roundoff errors or a divide by zero in this limiting case. Definitions (3.3)-(3.5)

are also used to relate eo and A 0 .

The quaternion elements Po . . p3 are equivalent to Euler-Rodrigues rotation parameters,
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and (3.5) is equivalent to the Rodrigues rotation matrix. We note that if PtP2,P3 < 1, the

above definition reduces to the snall-rotation matrix,

S- 2p, 2 P2

e ~ 2p: 1 -2p,
2P2 2pi I (3.6)

which corresponds to linear elasticity if the components from AO are also small. In contrast,
the full nonlinear form (3.5) exactly represents solid-body rotations, and hence is usable for

arbitrarily large overall deformations.

We also define a material quasi-normal vector

fl(u,v) = fi + An

An = 7161 + '72 8 2

(3.7)

'T2 = 22, (3.8)'71 = 2 Ein I

where '71(u,),72(u,v) are tilt angles, shown in Figure 3-1, corresponding to the shell's out-

of-plane shear deformations EjnE2u. These are assumed to be simall, so that ii is still a

unit vector to first order. Note also that iio = no, since Eji,,z are by definition zero for

the undeforimed geometry. In HSM/M, EinI, E2n are directly related via shear stiffnesses to

the out-of-plane shear stress resultants , f,,2 which are primary unknowns. In HSM/KL,

Ein, E2n are assumed to be negligible and are dropped, which is adequate and appropriate

for shells which are very thin relative to their overall dimensions. This also has the benefit

of producing a smaller numerical problem since fl,,, f2, can now be omitted from the list of

unknown variables.

3.1.2 Non-degenerate Coordinate Basis
One possible complication of using the e(u,v) basis for the entire shell surface is that a natural

definition such as 1 d,r/j0,rj will produce numerical problems at coordinate degeneracy

points where &u() is singular.

Coordinate degeneracy points, such as the one shown in Figure 3-3 on

the left, are unavoidable on a simply-connected closed surface such -

as a sphere. This is related to the so-called "Hairy Ball Theorem"

of algebraic topology which states that any tangent vector field such

as 8 1 (u,v) (however defined), cannot be differentiable or even con- Figure 3-2:
A "hairy ball"

tinuous everywhere on the closed surface. To solve this issue, we A hairy b
attempted to be

define alternative tangent vectors I, W2 in the neighborhood (e.g. combed flat but in-
finite element) of a reference point, which are the 81, 62 vectors at stead creating tufts
a single reference point distributed over the element via spherical at the poles. 133]
interpolation, as sketched in Figure 3-3.
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W,( (Er)

Figurer 3-:Th 2 f

gr3-3: The 1,ef 2ref ref basis vectors at a reference point are dis-
tributed locally over the neighborhood of the reference point, thus defining

the *', W2, n( ,r) basis vector fields which are continuous and differentiable. In

contrast, the 61, 62( ,7) vector fields may be discontinous, such as at a coordi-

nate fold point shown on the left. The normal vector n( ,o) is common to both

basis systems.

Physically, the orientation of ni basis vectors is primarily determined

the constitutive and stress-equilibrium equations (presented later).

then determines the deformed geometry via the equations

by the combination of

The nl) distribution

n x (er x 0,,r) VvI - i x (xAro x Oro) - To 0

fi x (Oer x Or) -z 2 - io x (dro x 0Iro) .V70 2 - 0
(3.9)

which in effect tilt the r( ,n) surface to make its tangential derivatives a9r and 0Qr normal

to fn. In each equation the second term involving the undeformed geometry is exactly zero

analytically, but not necessarily numerically. It is therefore subtracted off so that we get

r = ro exactly for the unloaded case, for any discretization.

A third equation is needed to constrain the rotation of 6 1, 8 2 about i and hence within the

surface at each point, with no effect on the geometry. Since the properties of a possibly

non-isotropic shell material will be specified in the 1,2 axes along 81 and 62, the physical

requirement on their orientation is that they remain fixed to the material, with appropriate

allowance for shear angle changes. We therefore first define material line vectors so and s for
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the undeformed and deformed geometries, as sketched in Figure 3-4.

so Ogro

s =0jr

(3.10)

(3.11)

This s is analogous to the ft quasi-normal material vector. The choice to define s along O&r

is arbitrary, and d,r could have been chosen as well.

So

w)

- 0
__M_

Figure 3-4: Top view of a small shell element for undeformed and deformed

geometries, with material vectors so and s. Requiring 0 =0 o makes the *
basis vectors after deformation to be fixed to the same material as * 0 , which

are locally tied to 6 and 80 , respectively.

We also define a "shear-corrected" material vector s by removing from s the rotation due to

the in-plane strain tensor E,

S + Es

s = I +]

+6 2 S

.1
ci

(3.12)

(3.13)

where the convenient approximation in equation (3.13) is valid for the usual small-strain

case - < 1. The orientation of the -i and Ni2 vectors, and hence the orientation of 8 1ref and

2ref which define them, is then imposed by requiring that 0

0 = atan2 ( s -w2 ,

00 in Figure 3-4.

S - *i )
0o = atan2 (S Nwr 02 , sO .1Oi )

0 -0 = 0
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3.2 Equilibrium Equations
The starting point is the following 3D stress-equilibrium differential equation for a material
with stress tensor &, density p, acceleration a, and gravity g.

V - & + p(g-a) = 0 (3.17)

It is noted that while the Eulerian gradient V (w.r.t. the deformed is technically correct
for imposing force equilibrium on the static state of the deformed geometry, the alternative
formulation with Lagrangian gradients V0 (w.r.t the undeformed geometry) also has its
advantages, as will be elaborated upon in subsequent sections.

Vo - a + p(g-a) = 0 (3.18)

3.2.1 Thickness Resultant Integrals
The integral equilibrium equations for a shell will involve the following mass, stress, and
stress-moment resultant integrals over the shell thickness, which are then functions of the
surface coordinates , r7. Only the in-plane 1, 2 components of the M= tensor are significant,
however.

fltop ftop ntop

p([,) p dn , f(C7) a r dn , f(,7) an dn (3.19)
nbot nbot nbot

Note that at a shell element edge with unit normal t as shown in Figure 3-5, f -t is the
overall edge traction force/length vector, and n x m - is the edge bending moment/length
vector. Also appearing will be the net top-bottom surface traction stress,

qO77 top, ftop + 0 bot *flbot (astop - abot) . i(3.20)

which is a force/area vector. The last approximate form assumes that the top and bottom
surface normal vectors are anti-parallel, which is equivalent to assuming that the shell has
negligible thickness variations.

3.2.2 In-Plane Equation Basis Vectors
The in-plane force and moment equations must be resolved along in-plane basis vectors in the
numerical solution. Since the e1 and ^2 vectors defined earlier might possibly have multiple
values or undefined gradients at degenerate surface-coordinate points, we instead will use
the alternative in-plane basis vectors W1 and w 2 which will be defined locally, e.g. over only
adjacent finite elements which define an equation residual, rather than over an entire surface.
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7 ~ dn dA n
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Vtt
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q n

- dA
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Figure 3-5: Shell element volume used to formulate integral equilibrium equa-

tions for the shell's idealized zero-thickness representation on the right. Trac-

tions on volurne surfaces become net force loading q on the shell area, and

force loading f - t and moment loading i x - t on the shell edges. In-plane

equlibrium equations are resolved along -i, w 2 vectors associated with the

element.

3.2.3 In-Plane Force Equilibrium
The integral shell in-plane force-equilibrium equations are obtained by forming [ eq.(3.17)]

* 1iW and [eq.(3.17) -* 2 W, where W(,r,) is a weighting function which is nonzero only over

a finite element such as the one shown in Figure 3-5. We then expand the divergence term,

and integrate over the element volume,

(3.21)

where %' denotes either in-plane vector Ni or w,.

The first pure divergence volume integral in equation (3.21) is replaced by area integrals

over the perimeter surface with normal t and area elements dn dE, and over the top/bottom

surfaces with normals i and area elements dA. For the remaining volume integrals the

volume element is written as dV = dn dA. Equation (3.21) then becomes

IT.f iWdf (3.22)

+ J[- (-f )(W) + q- NrW + p (g-a)-ArW] dA = 0
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where the integrations f dn across the shell thickness have been carried out in the p,f
definitions (3.19), and the q definition (3.20) has also been invoked. The fact that W( ,7)
is defined to not vary in n allowed it to be put outside the f dn thickness integrals. Also,
its divergence only involves in-plane contributions, as quantified by the in-plane gradient
operator i, which excludes any normal components along n.

This weak formulation allows the use of the Lagrangian gradients because the area integrals
taken over the whole of the domain should "wash out" any differences between the deformed
and undeformed gradients. The only difference to equation (3.22) will be the switching of

the (f -) term to (f -io). This has beneficial effects when the domain is discretized, as

is discussed in Section (4.4.4).

3.2.4 Normal Force Equilibrium
We first multiply equation (3.17) by the normal-offset distance n,

[V - + p (g-a)I n = 0

V-(an) - & -n + pn (g-a) = 0 (3.23)

where the relation Vn=n was used. Combining V [eq. (3.23)] + [eq.(3.17) ]i gives

V - [V - (& n) + p n (g - a) ]- (a= - V) - n + p (g - a) -n = 0

which is then multiplied by the weighting function W and integrated over the element volume.

ff V- V-(&n)W] - [V-( .=n)] VW

+V. [pn(g-a)] W - (&-V)-nW + p(g-a) -nW dV = 0 (3.24)

J -nVw - V-(&n)] -VW

- pn(g-a).VW - (&-V)-iW + p(g-a)-iW dV = 0 (3.25)

To get the second form (3.25), V - (& n) in the first term in (3.24) was replaced by & - ii -
p n (g -a) using equation (3.23).

As before, the first pure divergence integral in (3.25) is replaced by area integrals over the
perimeter and top/bottom surfaces, and the f dn integrations are carried out over the volume
and the edges. We will also assume that the moment from gravity and inertial reaction acting
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on the shell's mass n-moment couple is negligible.

/ltopIn~p n dri- 0 (3.26)
nbot

Equation (3.25) then becomes

Jiif -tWde

+I -( - M) - w - (f - t) - n W + q - nW + p (g-a) -i W dA = 0

(3.27)
which is the scalar normal-force equilibrium equation.

3.2.5 Moment Equilibrium
The integral shell moment-equilibrium equation is obtained by forming [eq.(3.23) - 1W

and [eq. (3.23) *-2 W, and expanding the divergence term, and integrating over the element
volume to give

JJ J ( .- n W) - (n & - V) (W) - - ii W + pn (g-a) W } dV (12)

where again, t denotes either in-plane weighting vector * 1 or *2. Carrying out the f dn
integration gives the shell moment equilibrium equation,

S- -i W de + [- ( - V) - (*W) -* -= - i W] dA = 0 (3.29)

in which the mass moment and surface-stress moment terms have been dropped.

The normal force equailibrium equation (3.27) in effect governs in, while the moment equilib-
rium equation (3.29) in effect then governs the two transverse shear force components fin, f2n

via the f - n = fine + f2ne2 term. These force components are explicitly needed only in

HSM/M where they are used to define the 6 1n, E2n transverse shear strains via (3.37), which
in turn also define the small normal vector correction An via (3.8). In the simpler HSM/KL

Ein, 6 2n and An are all ignored, and hence fin, f2n are not needed as primary unknowns and
equation (3.29) is not used.
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3.3 Constitutive Relations
HSM is the first geometrically exact shell model to allow modeling of anisotropic materials
without additional complications. The following section derives the constitutive relations of
HSM with an emphasis on maintaining anisotropic information throughout.

3.3.1 Stress Tensor
Given the assumption of a Hookean material, the stress tensor components are related to the
strain tensor components, both defined in the local ei, e2, n basis, via the stiffness tensor,
Cii.*

all

a 22

U 33

a-23

a 13

a 1 2 )

C0111 C1122

02222

C1133

C2233

C3333

C1123

C2223

C3323

02323

symm

C1113

C2213

03313

02313

C1313

C1112

02212

03312

C2312

C1312

C1212

622

E33

623

613

'12

(3.30)

Where the shear strains are defined as the engineering shear strains. In Voigt notation, pairs
of indices are combined as follows: ()i - ()1, ()22 - ()2, ()2n - ()4, ()in -+ ()5, ()2 M
()6 For specificity of notation, the stiffness tensor Cijkl will be referred to as cij when using
Voigt notation. The 3 component of the stresses and strains has also changed to n to denote
its surface-normal direction.

a1 1

a 2 2

Unn

U2n

1 2n

U12.1

Cl1 C 1 2 C1 3 C 1 4

C2 2 C 2 3 C 2 4

C 1 5

C2 5

C 1 6

C2 6

C 3 3 C3 4 C3 5 C3 6

symm

C4 4 C4 5

C5 5

C4 6

C5 6

C6 6

Ei1

622

Enn

-2n

in

612,

(3.31)

This general constitutive model is considerably simplified using the shell assumptions that
the normal stress (Uan) and strain (Enn) are negligible, and that the in-plane stress ten-
sor components a 11, a 2 2, a 12 are decoupled from the out-of-plane stress tensor components
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U1n, 02n. The stress-strain relations thus reduce to the following.

all C11 C1 2 Ci6  E'l

i22 = - C2 2 C2 6  E22 (3.32)

U12 _6 - C6 112

O'n = K c55 0 El" (3.33)
02n 0 C44 1 2 n

in which the remaining normal stress o-a is assumed to be negligible, and the prime on

6' indicates a strain at a general distance n off the reference surface. Following standard

shell-theory approximations we assume that the transverse material lines remain straight, so

that we can write

El{ 6 Eii K}

E22 E22 K22 (3.34)

E12 E12 K12

where r, are components of the curvatures-change tensor. The out-of-plane shear strains
n, &'2 will have some more complicated n-dependence, since they must fall to zero at the

top and bottom shell surface. Again following shell theory we will assume that they can be

represented in a modulus-weighted average sense by the reference-surface strains Ein, E2n,

{ K 6 (3.35)
E2n E2n

where K is the shear strain energy reduction factor. The commonly-chosen value K = 5/6
corresponds to parabolic Ein(n) and E2n(n) across the shell thickness, which is the correct

result for a uniform isotropic shell.

3.3.2 Force and Moment Resultants, Shell Lumping
We now substitute the strain components in equation (3.34) into the stress/strain rela-

tions (3.32, 3.33), and then insert that into the stress and stress-moment resultant defini-
tions (3.19). This gives the following symmetric linear system which relates the components

of the stress and stress-moment resultants, with the components of the strain and curvature-
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change tensors of the reference surface.

fii Al A12 A 16 B 1 B1 2 B16  E11

f22 A2 2 A26  B 2 2 B 26  622

f12 - A 6 6  B66  612 (3.36)

mil Bi B12 B16 Dil D12 D16 K11

M22 B22 B2 6  D 22 D 26  K22

M12 L - B6 6  D 66  K12

fin Ass 0 E1n (337)

f2n -0 A44. E2n

The stiffness submatrices above are defined by the following weighted integrals over the shell
thickness, which capture the overall lumped properties of the shell cross section.

All AA A16 C11 C12 C16

A = -A 22 A 26  c2 2 C26 dn (3.38)
[ - A 6 6 ] C66

Bil B12 B16 C11 C12 C16
B B22 B26 -- -C22 C26 n dn (3.39)

-L B661 - -C66J

Dil D12 D16  c11 C12 C16

D = D 22 D 26  = c2 2 c 26 n2 dn (3.40)
- - D66 - - C66_

A55 0 C55 0
A = 0 - [K [5540 ldn , K 5/6 (3.41)

[0 A44] J 0 c44J

In shell theory it is traditional to choose the reference surface to lie in the middle of the shell
thickness, so that for a homogeneous shell material the B matrix elements in equation (3.39)
are all zero, and the f and m components in the stiffness matrix equation (3.36) then
decouple. Here no such assumption is made, to allow complete freedom in the choice of the
reference surface location and of the shell composition.

3.3.3 Stress and Moment Basis Conversions
The stress and stress-moment, strain, and curvature-change resultants which are defined in
the local 12n axes must be put in the global xyz axes for application in the equilibrium
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equations. This is performed using the xyz components of the local 61, ^2, ft basis vectors.

fXX fXY fZ I fnl f12 fln - e1 -

fyy fyz = 12 n f22 f2n - e2 - (3.42)

[ fzzJ L I - 0 J -

Fmxx my mxz [ 2 m 1 2 0 1 [ -el

L- myZ [2 12 ?n M22 0 - 2 - (3.43)

-Z I Iz I J L 0 J -_ -

3.3.4 Strain and Curvature Basis Conversions
The strain and curvature-change resultants Fe and KV which are defined in the local 12n axes

must also be put in the global xyz axes for application in the equilibrium equations. In

an effort to limit operations on primary variables used to construct terms in the governing

equations to rotations only, the locally defined stress, stress-moment, and stiffness tensors

appearing in equations (3.36) and (3.37) must first be rotated to the non-degenerate reference

frame. In this way, they are defined everywhere in the local neighborhood of a reference

point, and can then be converted back to the cartesian frame for application of the governing

equations at any point in the neighborhood. Conversion from the e-frame to the w-frame

implicitly involves firstly rotating to the cartesian frame and secondly rotating to the w-

frame, since both coordinate bases are defined in terms of their cartesian components. A
transformation of this kind takes the form XW= (wT- 5) e X. (eT ,). As the product T- s

is used frequently, it will be henceforth referred to as 8.

S 1 S1 2 S13  - W0 -

[S21 22 S23 := - W2 - 2 (3.44)

S31 32 S33_ - n - J L J 0 1 _

The off-diagonal blocks in the final z form in (3.44) are zero because e and w have the same
ii vector. Explicitly, I is defined as

w1-el w1-62
8 = 2-11*2-e2 (3.45)
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The strain and strain-curvatures on the right-hand side of equations (3.36) and (3.37) are
put into the non-degenerate frame using the 8 matrix.

f11 f 112 [1 1f1 fl 2 f ' n T

22 f2n = ' f 2 e. (3.46)

.L . 0 L00 . 0 0 1

Mil M"2 Mi 1M2= zm1 1 s12 (3.47)
- 22 - 22

In some situations, it will be useful to separate the normal shear stress components from the
in-plane stress components. In these cases, we adopt the following nomenclature similar to
the decomposition of the S matrix.

f11 L2 fin~[ f22 f2n = fan (3.48)

.- 0 L 0 1

The stiffness tensor Cijkl of equation (3.30) is actually Ciejkl, defined in the local 12n coordi-
nates and must also be converted to the w-frame. This is accomplished with the 4th-order
tensor basis transformation.

Cijk1 = Sip jq skr ss Cpqrs (3.49)

With the Ciwj, now defined, the lumped stiffness submatrices A, w, B w can be calculated
using equations (3.38) through (3.41). The procedure for calculating the force-dependent

strain and curvature tensors in the local neighborhood of a reference point, Fw(f), kw(f), makes

use of the locally defined stress, stress-moment, and stiffness tensors. Using the inverse of

the constitutive equations (3.36) and (3.37).

WAE2 A B f2w

E (f),= (f) _ b M12 _12(3.50)

KW j TO

fn [ww - w (3.51)
S2n . uL2n).

Finally, the w-frame strains and strain-curvatures can be converted back into cartesian co-
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ordinates anywhere in the local neighborhood for inclusion in the equilibrium equations.

L - Ezzi L

[&xx 6 xy 6 xz

-eyy Wl = ni

- zz|

n 1 -12 1n -

J L 0 -L

3.4 Compatibility Relations
For points r', r' which are a distance n from the reference surfaces r, ro, along
normal vectors ii and ijO we have

r'( ,R,n) = r + n = r + n (n + An)

Vr'

Vr'

= ro + n fio = ro + n no

= Vr + n (V + VAn)

- Vro + n nVfo

the material-

(3.54)

(3.55)

(3.56)

(3.57)

where we note that Ano = 0 by definition and An is defined as follows. In an effort to
limit operations on primary variables used in the governing equations to rotations only, the
calculation of An occurs in the local w-frame. The tilt angles -Y1,72 in the definition of An
(equation (3.8) and visible in Figure 3-1) come from the shear deformations ew , ewj that
were calculated in equation (3.51). Using the w basis, we formulate equation (3.8) in the
local non-degenerate coordinates.

&EIn

An = 2 w1 *2 n En

- I I I _ 0 } (3.58)

To evaluate VAn in equation (3.56), the in-plane parametric derivatives oceAn are needed,
which in turn requires 0,n, o%*j, and 9,Ew . Calculation of &Bfn is covered in Section 4.2.2

and calculation of &ar uses equations (4.51)-(4.57). Calculation of the normal strain partial

derivatives is accomplished using the explicit expansion of equation (3.51).

w
eln = fwn /A 55

= f2n /A44

(3.59)

(3.60)
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The (9,c derivatives are obtained by application of the chain rule to equations (3.59)
and (3.60). The various surface gradients (at fixed n), Lagrangian (w.r.t undeformed geom-
etry) and Eulerian (w.r.t. deformed geometry), e.g.

tor

ir

- (Vor), -
- - (9ar), -

[- (Vor) -J

[- (Vr), -1
- - (Vr),- I

[- (Vr)2 -j

(Lagrangian)

- Oxr In -

S- _yr I -

L- azr _j

are obtained from r( ,n) and nf( ,) via solutions of the following 3 x 3 linear systems.

r]

0 -

-0 -j

- 0 -

-=6= -FenF--F0F]

(Lagrangian) (3.63)

(Lagrangian) (3.64)

(Eulerian) (3.65)

(Eulerian) (3.66)

Corresponding systems are used to obtain iAn, Vro, and Vino from the parametric deriva-
tives of An( ,77), ro( ,7), and io( ,77) on the right-hand sides.

The Green strain off the reference surface is

2
E = + nkK

- (ir')(Vr' )T]

where the strain and curvature-change tensors of the reference surface are defined as follows.

1 ~
e(r) = -- (Vr)(Vr)y2L

Kc(r)

- (Vro)(Vro)T

(r)(in + tAn)T - (tro)(ino)T

40

(3.61)

(3.62)(Eulerian)

agro -
ro -

no-J

Ogro -
N ro -
no -

Ogr -
Or -1
n-

0-
0 -]

-F-F
-F
-F

tor]

ton

Vr]

.. ]

(3.67)

(3.68)

(3.69)

(3.70)



Note that this definition of strain uses the Eulerian formulation as the surface gradients are
with respect to the deformed geometry. The Almansi strain replaces the Eulerian gradients
V in equations (3.67-3.70) with Lagrangian gradients Vo (w.r.t. undeformed geometry). In
general, the Green strain is more robust for large positive strains, and the Almansi strain is
more robust for large negative strains.

In the linearized approximation (3.68) we have dropped the quadratic n2 term, which is
appropriate for the usual case where the shell thickness is much smaller than the shell's
radius of curvature. The notation e(r), R'(r) indicates that these strains are functions of the
shell geometry.
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Chapter 4

HSM Finite-Element Solution

4.1 Nodal Data
Each element corner node j has the data listed below. Bilinear interpolation to the element

interior then makes these quantities functions of the ((, r) element coordinates as described

earlier. The vector and tensor quantities are defined either in the global xyz axes, or in the

node's 12n axes along the node's 6 = [61, 62, i]4 basis vectors.

4.1.1 Parameters
These input quantities describe the shell geometry, structural properties, mass, and loading.
They are all defined at each node j, and used either at the nodes to compute secondary
variables, or interpolated to the element interior to construct the equation residuals.

symbol N axes description

ro 3 xyz position vector of undeformed geometry

AO 3 - rotation log-quaternion of undeformed geometry, from [eO6,6 02, nob
A3  6 e lumped shell stiffness matrix (extension and shear stiffness)

Be 6 e lumped shell stiffness matrix (extension/bending coupling)

D 6 e lumped shell stiffness matrix (bending stiffness)

A 1 - lumped shell mass (mass/area density)

q* 3 e shell-following applied force/area

qxy,. 3 xyz fixed-direction applied force/area

aj 3 xyz local acceleration

g 3 xyz gravity
In practice, the undeformed geometry is defined by the parametric surface ro(u,v), where u, v

are the (e.g. B-spline) surface coordinates. Its nodal basis vectors can then be conveniently
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computed by evaluating

(1 -t) uro + t Oro
eo, (4.1)

1 |(1-t) O8ro + t &ro(

no = +i ro x &,ro (4.2)6 aro x 0,rol

02 X eo1  (4.3)

at each node, in which the constant t selects the azimuthal orientation of the eOi, eO2 vectors
within the surface; choosing t = 0 aligns 601 with &aro, and choosing t = 1 aligns 01 with

aOro. The positive-n side of the surface is selected by choosing the t sign in equation (4.2).

The AO which corresponds to these nodal basis vectors is obtained by first inverting the
definition (3.5). Using the more convenient index notation

| ||ell e12 e13

0o ' 02 'e = 21 e22 e23  (4.4)
I I I ei e32 e33

we first compute candidates for the largest quaternion component from the diagonal elements,

Po = ! Vmax( 1+e1 1 +e 22 +e 33 , 0 ) (4.5)

Pi = jVrmax( 1+eu -e 22 -e 33 , 0 ) (4.6)

P2 = emax(1-e- e22-e33, 0) (4.7)

p = Vmax( 1-e -e 2 2 e3 3 , 0 ) (4.8)
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and then the remaining components are computed so as to minimize roundoff error.

Po Po

.~ ~ I (e32 - e-23)/40
if Po > max(P, 2, 3 ) : (4.9)

42 e M1 - e31)/Po

p 3 = (e2l - e12 )/P0

(Po = ( -23)/P1

if A > max (PO 2,P 3 ) P i A (4.10)
P2 = 4!(e21 + e12 )/Pi

43 = (13 + e3l)/P1

( = I(e13 - e31)/P2

Ai = (e21 + el2)/P2
if P2 > max (P0,4p,4) : (4.11)1P2 = P2

3  (e32 + e23)/

Po = $(e 2i - e12)/P3

i = $(e13 + e31)3
if PJ 3  Max (POIi P2) i ~ (4.12)

P2 = - (e3 2 + 6 23)/93

P3 = A

Finally, the log-quaternion is obtained by inverting relations (3.3)-(3.4).

0

AO. = tA atan2 ( Np+p-+p , PO) (4.13)

1P3J

4.1.2 Unknowns (Primary Variables)
These are the primary variables which are to be determined at each node j. In HSM/M

fj has 5 variables, while for HSM/KL its fin, f2, components are dropped leaving only 3
variables.
symbol N axes description

ri 3 xyz position vector of deformed geometry

Aj 3 rotation log-quaternion of deformed geometry

f, 3 or 5 e stress resultant tensor components

Mij 3 e stress-moment resultant tensor components
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4.1.3 Nodal Dependents (Secondary Variables)
These are the secondary variables that are calculated at the nodes. They are simply rotations

or summations of primary variables and the parameters.

symbol N var. dep. par. dep. axes description

ej 9 r1 , AJ xyz basis vectors [6 1 ,82, ni of deformed geom.

Wj 9 r1 , Aj xyz basis vectors [' I, w 2 , n] of deformed geom.
- -e

f 6 f , A3  xyz stress resultants

Mi 6 Tn, Aj xyz stress-moment resultants

= W =e
fj 6 fj , Aj w stress resultants

MW 6 JA w stress-moment resultants

gj 3 Aj qxyzj, qj xyz total applied load

The cartesian xyz components of the nodal fj, Mi tensors are computed directly from fi, Tn

using equations (3.42) and (3.43) applied at each node. Similarly, the w-frame 12n compo-

nents of the nodal fj, ij tensors are computed directly from fm, 12 using equations (3.46)

and (3.47) applied at each node. This introduces a Aj dependence via the ej and SJ matrices,
respectively, which perform these basis changes.

The overall applied force q1 is the sum of qxyz and j in the xyz axes

gy + qyzj- + ej

so that qxy. is a fixed-direction load, while ' is a shell-following load.

4.2 Element Interpolation

4.2.1 Bilinear Interpolation

(4.14)

Per standard practice,
basis functions Nj(e,7 ),

cell.

N 4

'X

N

+1

the nodal quantities are interpolated over the element via four bilinear

using the canonical coordinates -1 < < +1, -1 < < +1 spanning the

Ni(6,r)

N2 (&'7)

N1

N,

(4.15)

The various scalar and cartesian vector quantities defined on the element are then obtained
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as weighted sums over the nodal values, e.g.

r= N

f 1,4=If Pj ij

(4.16)

(4.17)etc.

The parametric derivatives of any interpolated quantity are similarly constructed by a sum

over the nodal values weighted by the derivatives of the basis functions.

r) 1 rj O N

BOrtsjj) =E4 1I rj .,N

(4.18)

(4.19)etc.

4.2.2 Spherical Interpolation
Application of the simple interpolation as in (4.16) to the nodal normal vectors fi would

not in general produce a unit vector, so we instead perform the following spherical interpo-

lation procedure. An element reference unit vector nref is first defined normal to the r( ,r,)

interpolated surface at the element centroid ((, r,) (0, 0).

(4.20)firef g x 

O 0,,r
1ref & r x d1 00

orx d,,r| 0,

This is then used to define the log-quaternions Aj which would be needed to rotate nlref into

ij for each element node.

n( ,rj)

n~ A

n rd

Vj = ni'ef X nii

Oj = arctan - -
nref n.

AJ
vj Oj
vj 2

(4.21)

(4.22)

(4.23)

The nodal A. values are then interpolated using the following modified basis functions.

- (1-)(1_ , 2 )] N1

([1- (1 -()(l -r,2)] N2

R13( ) 2 [_,-(1,(1 72) N3

R4 (7 - (1 $2)(1_,r, 2 )] N4
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A E.7 = I A7 N1 (4.25)

This interpolation implicitly includes a fifth term Arf(l- 2)(I _ ,2), where Aref would be

defined from neef via equations (4.21)-(4.23). But since Aref fref Xfref = 0 identically, this

fifth term is omitted from (4.25). This also forces the interpolated n to be equal to nref
at the element centroid. The necessity of this modified interpolation scheme comes from the

disconnect between the nodal normal vectors fi and the geometry, as shown in Figure 4-1.

The nodal normals are purely functions of the log-quaternion basis rotations, n3 = f(Aj) via

equation (3.1), so for a shell grid in a sawtooth configuration, unmodified interpolation of the

nodal normals yields a constant iref, and therefore a surface gradient of zero. This removes

the second term of the normal-force equilibrium equation (3.27) making the sawtooth mode

invisible. The solution of matching the interpolated normal to the reference normal at the

element centroid via the modified interpolation scheme couples the interpolated normals to

the geometry and allows the normal-force equation to sense the grid sawtooth mode.

n fj+i 4

n rctnr

N11

N n=O Nn#

Figure 4-1: Interpolation of the nodal normal vectors nij across a sawtooth

geometry, with (right) and without (left) interpolation via the modified ba-

sis functions that match the interpolated normal to the geometrically-defined

reference normal nref at the element centroid.

The final step is to construct n(.r) by rotating nef using the interpolated A(,q) as follows.

w((j) = cosJA ~ 1 1A 12  (4.26)2

sin Al
V(,7) = A (1 - j1A12 ) A (4.27)

nl(=) =nrcf + 2v x (v X nref + Wflref) (4.28)

The approximate forms in (4.26) and (4.27) are used whenever JAI2 < cmachine, thus avoiding

roundoff problems or a divide by zero in this limiting case.
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The parametric derivatives of n() are obtained via the chain rule,

O A= E4 Aj, O R (4.29)

sinJA J
&e - An A OA -A -8A (4.30)

v sinAI &A + cosAJ -sinA A A- 0&A ~ i&A (4.31)

(9n = 2 &gv x (v x nref + W nref) + 2 v x (&ev x nref + O&W fnref) (4.32)

and likewise for aefn. The approximate forms in (4.30) and (4.31) are used whenever A1 2 <

Emachine -

Operations (4.16)-(4.32) are also applied to the undeformed geometry ro,, io. to obtain the
interpolated no( ,) vector and its parametric derivatives.

4.2.3 Tangential Gradients
The tangential gradient components of some interpolated quantities are required for the
construction of the equation residuals. From the interpolations of rj = (xj, yj, zj) above we

have

X(C77) =E, xj N( ,n) ; &ex = gxj N , & x = j Q0,Nj

Y(C'q) = Ej yj N( ,q) ; '9 y = EZ y3 &NO , y = Ej yj aq N (4.33)

Z(C77) =E j zjNj(&) ; z =Ej zj Nj , a,z = za N

which are then used to obtain the three Cartesian components of the basis function gradient

VNj(gi) (VNj ) xk + (VNj) y + (VNj) z (4.34)

via solution of the following 3 x 3 linear system.

~ 8x O Y yoz~ (t N ), N[ &x &o2 y &nz (VN)9 = &,N (4.35)

_ nx ny nz ji(VN)J 0

Note that the vector {&ex, &ey, aez} is also the covariant tangential basis vector, a = &9r.
Here nx, ny , , are the components of the ni vector at that location, so that the last line in
the system enforces the requirement that VNA has no shell-normal component. Once the
system (4.35) is solved for the three components of VNj, the tangential gradient components
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of any interpolated quantity are obtained by summation, for example

(VAn), = 4t 1 Anj (vNyj) (4.36)

(VAn)y = 4 A__n (VNA)y (4.37)

(VAn)z = An (Vyj)z (4.38)

System (4.35) is also applied to directly determine the components of n, specifically

00z X 0Yay Bz - ( nf), - = -Bn -(4.39)

[Onx ny nz [- (Vi) -1 - 0 -_

where the parametric derivatives On, an on the right-hand side are defined by (4.29)-(4.32).

4.2.4 Interpolated Data
The nodal data listed below is interpolated to specified finite-element Gauss points , n7 in the

element interior via the N( ,,) interpolation functions. The parametric derivatives of some of

the data are also computed at the Gauss points by interpolation using the function derivatives

OaN( ,7), and the tangential gradients are computed using the function gradient tNA( ,n)

defined by (4.35). In the following table, abbreviations are: UG (undeformed geometry),
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DG (deformed geometry), CF (Cartesian frame), LNDF (local non-degenerate frame).

prim. secondary
sym. N var. dep. var. dep. par. dep. axes description

Oaro 6 roj xyz UG position derivatives

0,r 6 rj xyz DG position derivatives

f 6 fj xyz CF stress resultants

m 6 Mn xyz CF stress-moment resultants

q 3 gj xyz CF applied loads

a 3 aj xyz CF acceleration

1 - mass/area density

fW 3 or 5 f7 w LNDF stress resultants

oaf, 4 f, w LNDF normal stress resultant derivatives

" 3 MJ w LNDF stress-moment resultants

AW 6 ej, Wj A3  w LNDF extensional stiffness matrix
=W _ =e
B 6 sj, -v B3  w LNDF ext.-bend coupling stiffness matrix

=W =e
D 6 ej, Wj D w LNDF bending stiffness matrix

A 2 ej, j A w LNDF ext.-shear coupling stiffness matrix
=IW =/e

3A 4 ej, wj A 3  w LNDF ext.-shear stiffness derivatives

The following unit normal vector data is obtained using the spherical interpolation procedure

given by (4.20)-(4.28), and its parametric derivatives are obtained using (4.29)-(4.32).

symbol N var. dep. par. dep. axes description

no 3 ro,, A0 . xyz UG normal vector

ano 6 ro,, Ao0  xyz UG normal vector derivatives

nt 3 rj, A, xyz DG normal vector

oDf 6 rj, A, xyz DG normal vector derivatives

The following unit in-plane vector data is obtained using the spherical interpolation proce-

dure given by (4.20)-(4.25) and (4.47)-(4.50), and its parametric derivatives are obtained
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using (4.51)-(4.57).

symbol I num. I var. dep.

WQ

a93o~a

6
12

6
12

rj, A3

rj, A3

par. dep.

ro., A0 .
ro., A.

axes

xyz

xyz

xyz

xyz

description

UG in-plane vectors

UG in-plane vector derivatives

DG in-plane vectors
DG in-plane vector derivatives

The following tangential gradients of the normal vectors are obtained by solving the linear
system (3.66), using the interpolated 0,ino and Oji derivatives on the righthand side.

symbol I N I var. dep. I par. dep. I axes I description

xyz UG normal vector gradient

xyz DG normal vector gradient

4.2.5 Interior Secondary Variables
These are
terpolated
allowed at
the nodes)

symbol

e(f)

C(f)

s (r)

I'e(r)

the secondary variables that are

to the element interior from the
Gauss points (whereas operations

.
V

6

6

6

6

interpolated dependence

wa, , f m' A,7 

Q, J f m, B

0,ro, 0.r

Ocro, or, fn, Dai, *., BaAW
=W , =,w =,W

a no, f ,ac f,n, A, aA

calculated at the Gauss points using data in-
nodes. Nonlinear operations on dependents is
were restricted to rotations and summations at

axes

xyz

xyz

xyz

xyz

description

stress-dependent strain resultants

stress-dep. strain-curvature resultants

geom.-dependent strain resultants

geom.-dep. strain-curvature resultants

4.3 Edge Interpolation
Quantities along an edge are defined from the nodal values using the linear interpolation
functions

(4.40)

which are the same as N1 and N 2 in (4.15), with (7,7r) = ((,-1). We then have

= r3

f(t) = EN- EJ Al1
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roj, Ao
r3 , Aj

etc.
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This interpolation is needed for evaluation of the edge integrals in (3.22), (3.27), and (3.29).

The normal vector i() along an edge is obtained using spherical interpolation, with one of

the edge's node normal vectors used as the reference vector. Hence, we have

nref = fni (4.43)

and equations (4.21)-(4.23) are then used to obtain A 1 (= 0), and A2. These are then linearly

interpolated along the edge,

A( ) = = 1Aj j (4.44)

and equations (4.26)-(4.28) then give the interpolated fn( ).

4.4 Equation Weighted Residuals

4.4.1 Residual Weights
HSM uses a Galerkin-type finite-element formulation, where the residual weighting function

W4,,) associated with node i is chosen to be the "tent" function formed from the union of

the Nj( ,q) interpolants, shown in Figure 4-3. On each element we then have

W = Ni ( ,n) (4.45)

W, = (9W) x (k+ Wi) y + (W i (4.46)

where the weighting function gradient VWi = VNi (,) is defined in the global xyz axes. This

makes it operable with the f, i, w tensors and vectors which are defined in these same axes.

The Wi , * 2i( ,7) basis vectors for forming the various residuals are defined to be the residual

node's ei2, e 2 ivectors rotated onto the curved shell surface. The generic operation is shown

in Figure 3-3, and here we choose the residual node i as the reference point. The rotation can

then use the same log-quaternions which were used to perform the spherical interpolation

of the iij vectors. The only difference is that here ni plays the role of the reference vector,
which is implemented by subtracting Aj from the local A(,) defined earlier by (4.25). The

operation is then

w(Cq) cosIA-Aij ~ 1 - !IA-A,1 2  (4.47)

=( sinIA- I (A - Aj) ~ (1 - .1A -AX 2) (A-A) (4.48)

*i (c,7) =61 + 2 v x (v x 61i + w 61) (4.49)

W2( = 2i + 2v x (v x 62i + w 62 i) (4.50)
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The approximate forms in (4.47),(4.48) are used whenever IA- Al2 < Emachine- With these

definitions, at the ((, r/) location corresponding to the residual node i, the NT~,?) vectors

coincide with that node's 6& vectors.

The parametric derivatives of n'ij(,n) are obtained via the chain rule,

O A = E_= Aj d 1Ry (4.51)

sin A - Al
S = - A-A (A - Ai) -A) A (4.52)

~-(A - Ai) -DeA (4.53)

sin A -A, A+( -A sinA - )A A - A
Ov = ill IAA + osA -Ail - /\-A 2 (A-Aj) . A (4.54)

~ 84A (4.55)

2 O v x (v x 61, + 61,) + 2v x (Oev x 81, + &w 8I) (4.56)

0 w 2 = 2 Ogv x (v x 62i + w 2.) + 2v x (O v x 82 i + O&W 6 2i) (4.57)

and likewise for ON .

nJ

Figure 4-2: Interpolation of the W basis (same as in Figure 3-3), using

61 ., 62 j, fi, at the residual node as the reference vectors. The nodal Aj given
by (4.23) and the interpolated A( ,q) given by (4.25) are re-used here.

Equations (4.29)-(4.32) are also applied with the w) and v defined above to obtain the

O&- and &,r parametric derivatives. These are then used in system (4.35) to obtain the

tangential gradients V'r.
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I

Wi

i W^jj

Figure 4-3: Residual weighting functions W( ,) and residual basis vectors

N, 2 ( jj) associated with interior, edge, and corner nodes. The edge-normal

and edge-parallel tangent vectors t, i and edge length coordinate f are also
shown.

4.4.2 Gauss Integration
Per standard procedure, all area integrals will be recast in terms of the element coordi-

nates (, 'q and their Jacobian JO, and then numerically evaluated using 4-point Gaussian

quadrature,

JF dAo
4

F Jo d dr ~ .Fr,A) J(ttk,nl) wk
k=1

Jo = O8ro x DOro

(4.58)

(4.59)

where the index k runs over the Gauss points (4k, rik) and Wk are the corresponding Gauss

weights. The integration is performed over the undeformed geometry, primarily because this

simplifies linearization of the resulting residual expressions for Newton solution.

For the edge line integrals appearing in (3.22) and (3.29), 2-point Gaussian integration is

used.

F dEo F J d ~o Fgk) Jo U)
k=1

(4.60)

Here, -1 < < +1 is the parameter along the edge, and the Jacobian is a constant Jo = Afo/2

where A O is the edge length of the undeformed element.

4.4.3 Strain-displacement residuals
In the preceding sections, two different expressions have been developed for the strains and

curvature changes. The values related to the geometry metric changes, denoted here by

e(r) and K(r), are given by equations (3.69) and (3.70) applied over the element interior.
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The values related to the force and moment resultants, denoted here by E(f) and k(f), are
given by the matrix equation (3.50) applied at each node, and then interpolated to the
element interior. The appropriate governing equations simply state that these two alternative
definitions are numerically equal. The corresponding weighted residuals are then defined as

RP"

RE12

)7?221

RK12)JZI

elements

elements

Wit

I ,{W1

W 2 i

Wi

[s(r)

[5(r)

[2(r)

[ N(r)

[kN(r)

[ k(r)

I~(f)}

*1;z
2i

W2 i
w2 i

- Wi2

- w22

- w 21

W dAo

}
(4.61)

(4.62)W dAo

where the sums are taken over all the elements which contain node i, pictured in Figure 4-3.
The dot products with the * 1i, 1, vectors enforce equality only for the in-plane components
of the tensors.

4.4.4 Force equilibrium residuals
The area-integral part of the in-plane and normal force equilibrium equations (3.22) and (3.27)
for node i is evaluated as follows, again using the *i 2 , *1, vectors.

Rff - f -Wi - (f - j) ,W + q -W*,14/ + (g-a)-W1,Wi

The vaious ters i thWe l ae a 2e i - n2 W + (g-a)-thW dAO (4.63)

Ef" amets - M=n -iW - ii - W + q - n W + p (g -a) - ii W

The various terms in the residuals above are evaluated in the xyz basis as follows.

w -f VWi = [w~fXX + WYfXY + wzfx ] ( Wi)X

+ [wofXY + WY + wzfJY] (VW )y

+ [wxfxz + WYfYz + wzfJz] (VWi)2

(- )W = foX (Vwx)x + fXY (iwx)y + fxz (Vwx)z

+ fXY (wmy)x + fy, (Vwy)y + fYz (iy)z

+ fz (Vw') + fyz (Vwz)y + fzz (iVwz)z

(i - M=) - = [(tmXX)X + (VmXY)y + (Vmxz)z] (VWi)x

+ [(tmXy)X + (tmyy)Y + (Vmyz)z] (vWi)y

+ [(tmxz)x + (tmyz)y + (Vmzz)z] (VWi)z
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The force-divergence curvature terms (i f i) in the normal-force residual in (4.63) is
evaluated in the same manner as (4.65) above.

Alternatively, equation (4.63) can be formulated with Lagrangian gradient definitions (w.r.t.
undeformed geometry) resulting in the following force equilibrium residuals.

Rf - - -VOWi -(f - 0 *. - Wi + q -*iWi + ft (g-a)-*iiW1

~R Ef2 zJJ N2 - -?0W - (I - t) - *2,W + q -2i W + p (g-a) -2iWi dAo (4.67)

fz elements
(i" 5- MI -to Wi- (=f- -nWi + q-niiWi+pit(g -a)-niiWi

This formulation has the advantage of creating a residual Jacobian matrix that is linear with
respect to the state vector variables since the undeformed geometry is a parameter (not in
the state vector). This formulation is more in line with traditional finite element methods
because it simplifies and expedites the Jacobian matrix solves and calculation of residual
sensitivites to state variables.

4.4.5 Moment equilibrium residuals
The area-integral part of the moment equilibrium equation (3.29) for node i is evaluated in
the local xyz axes, and then projected onto the local i, * 2, basis vectors of that node.

-Ji: m VW - (i -i. W - 1. -fii W
E-A dAo (4.68)

Ri eements V*2- ( = V) - 2 iWi - * 2 f il Wi

Note that these are not used in the simpler HSM/KL formulation. Also note there is a
Lagrangian formulation of this residual as well, similar to (4.67), in which the t of equa-
tion (4.68) become Vo.

4.4.6 Local-basis constraint residuals
The basis vector definition equations (3.9) are integrated and summed over the elements as
usual.

(1 r '
,RA1 n x (Oer x 0,,r) -ni - n~o x (o9 ro x oro) -no

A 2 J~ E s 0 L xWI dAo (4.69)
f elements n2 x (aJr x u1 r) -2i - no x (Ornxaro) -Woi

where again the sums are taken over the elements which contain node i, so that n is tangent
to the plane formed by the weighted average of the normals on the elements. The 1/JO2
factor makes each element's contribution scale inversely with the element area, so that the
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contributions of smaller elements are appropriately weighted more.

The third basis constraint (3.16) is similarly integrated and summed over the elements, with
the 1/JO2 factor again included to increase the weighting for small elements.

9 = 0er (4.70)

SO = agro (4.71)

s = s - Es (4.72)

6 = atan2( s - 2 , s - i (4.73)

00 = atan2(so W , s 0  ) (4.74)

ff (0 -o) Wi dAo (4.75)
elements

4.5 Edge Boundary Conditions
For a well-posed shell elasticity problem, two boundary conditions (BCs) are required on all
the edges of the shell. One BC is either on the position or on the edge force. The other BC is
either on the edge angle or on the edge moment. Mixed boundary conditions which represent
a compliant attachment can also be formulated, although these will not be considered here.

4.5.1 Boundary condition axes
Boundary conditions are specified in terms of force, moment, position, or angle components
either along the global xyz axes, or alternatively along the edge axes ten which are defined by
the edge basis vectors t 1, n. The I vector is first defined either along &gr or o9r, depending

on which element edge is being considered, and using n then defines t.

= {OaBr/Oarj , along constant-ra edge (4.76)

-a,,r/jrj , along constant-i edge

=^ lx n (4.77)

Edge axes at a node are obtained via the undeformed geometry r0 (u,v) which was also used
to define the nodal eo basis via equations (4.1)-(4.3).

( a ro/kroI)j , along constant-v edge
10i (4.78)

(-Oro/IaroI)j , along constant-u edge

i = (i 0i -ei 6i + (I- e '2i (4.79)

tj = 1i x i (4.80)
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All the boundary condition data which can be imposed in the shell edges is listed in the
table below. For generality we specify and superimpose two separate loads: fixed-direction
loads in the xyz axes, and shell-following loads in the tEn axes, in the same manner as the
overall surface load q was obtained from qxyz and q.

The edge position and orientation is specified by rBC and tBC, also listed in the table below.
These will frequently be the same as ro and to of the undeformed geometry, but this is not
required.

symbol N axes description

fxyzBC 3 xyz imposed fixed-direction edge boundary force/length

ftBC 1 ten imposed shell-following edge boundary t-force/length

fBC 1 ten imposed shell-following edge boundary -force/length

fnBC 1 ten imposed shell-following edge boundary n-force/length

MXyzBC 3 xyz imposed fixed-direction edge boundary moment/length

mttBC 1 ten imposed shell-following edge boundary bending moment/length

mUeBC 1 tUn imposed shell-following edge boundary torsion moment/length
mteBC 1 tIn imposed shell-following edge boundary cross-moment/length

rBC 3 xyz imposed edge boundary position

nBC 3 xyz imposed edge surface-normal direction

4.5.2 Force/displacement boundary conditions
Each shell edge point requires either a specified force/length BC or a specified displacement
BC. Either one is imposed on the force-equilibrium residuals RJ defined by (4.63).

Edge force. The specified edge force/length is constructed as

fBC = fXYZBC + ftBC' + fBC + fnBCf (4.81)

which is then inserted into the edge integrals which appear in equations (3.22), (3.27),
and (3.29). After projection to the in-plane and normal directions, this produces the addi-
tional residual changes

Agfi - ng -
=2i _ _ BC W df (4.82)

edges
L n

which are evaluated using Gaussian integration (4.60), and fBC( ) along the edge is defined
by linear interpolation from the two nodes using the NI(t) functions (4.40). The result is
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then added to the force equilibrium residuals IZ[ defined by (4.63).

J~f + A1Z1 2 (4.83)

tl~fnJ1R~~J AizfnJ

Edge position. The specified position of the edge at node i is imposed by replacing the
force equilibrium residuals RIf with the following position-constraint residuals R7Z.

pj' 'R~ -e 1 .- I

lZf2 r2 2 - ri-rBC. (4.84)

The projection onto the residual-node basis vectors ei in (4.84) is not strictly necessary,
although it would likely be convenient if compliant-attachment BC were to be imposed,
presumably in terms of these basis vectors.

Symmetry plane force/displacement. To impose force/displacement boundary condi-
tions at a symmetry plane, we must first project the force equilibrium residuals into the edge
ten axes,

I - J; eie2] -,,25 (4.85)

with the Rfn residual left unchanged. The t-force residual is then replaced with the position
constraint residual

Rft 7+- t = (ri - rs) - n, (4.86)

where the specified r, is a point on the symmetry plane and the specified plane-normal vector

n, gives the plane's orientation. The remaining Rl' and R7" residuals are left unchanged,
which is equivalent to specifying that the resulting edge force has zero components within
the plane.

4.5.3 Moment/normal-vector boundary conditions
Each shell edge point requires either a specified moment/length or a specified shell normal
vector (or the equivalent surfaces angles). Either one is imposed on the curvature-constraint
residuals R'7 defined by (4.62), which are first put into the te edge axes, along with the
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edge-node moments i.

'I
(1& . j)2

( j j)2

(e - 1)e )

mttme I

mTt JM 2nii

m11

= C, 222

{122

(e2 -)2
(62 1)2

(82 - i)(62-

Edge moment.
which replace the

The specified edge moment/length components are imposed
corresponding R ' residuals.

as residuals

RK" T R tt m=- Tm -I--
tt i MYZBC. * '+MttBC)

-z" mer - (mXYZBC + BC)

<- 7Mtft - mtfBC4

(4.90)

(4.91)

(corner node only) (4.92)

As indicated, (4.92) is imposed only at a free salient corner, typically with mttBc = 0.

If the HSM/RM formulation is being used, the edge-moment integral term in equation (3.29)
must also be evaluated and added to the corresponding discrete residuals (4.68). These
moment edge integrals have the same form as the edge force integrals (4.82), except that

only the 1,2 moment components are imposed.

mBC mXYZBC + BC BC

MBc W df{AR 2 edges .24

zIR n2

(4.93)

(4.94)

(4.95)+f- { +} { N7Zn}
[RM~j AR m 2j

Edge normal. The shell surface angles are imposed by requiring the shell normal vector
to be parallel to the specified normal vector. The corresponding residual replaces the shell

61

(4.87)

CE[

(4.88)

(4.89)

)1

2f"

2f"

2 (61 - ((62 -

2 (61. -)(62- )
i)(61 (62 - i) + (61 -I(62 -



edge-normal and edge-tangent curvature constraint residuals.

ni x nBC- -(4.96)

Rf fni x nBCt

Symmetry plane moment/normal-vector. At a symmetry plane, the tangential curvature-
constraint residual is replaced with the requirement that the ni vector is normal to the
symmetry-plane normal vector.

R~ rC9 
S- -zs = - n (4.97)

4.6 Edge Joining Conditions
The present HSM allows a shell to be built up of multiple pieces which are joined at edges.
Assuming the edge joint is rigid, we must enforce matching conditions on the primary vari-
ables on each pair of adjacent nodes i and i' on the two shell pieces. After contributions
from all the elements in a shell piece are summed onto the nodes, the residuals at the i and
i' nodes are modified as follows.

4.6.1 Force and position matching
The force matching condition is the requirement that the internal loads cancel. This is
performed by adding the force residuals from the two nodes, after rotating the node i'
residuals into the 12n axes of node i.

1ZRfl R4 - i{ J2~ g_ 7 2 + - e2. - 1 2 ni Zf? (4.98)
j~ ~ {1~} [.~~~~~~ 7ZAn

The added residuals replace those for node i as indicated. The force residuals for node i'
are then cleared and replaced with position continuity constraints on the node coordinates.
These have the same form as the specified-position constraints (4.84).

Rf1 pri - el,- I
if? } R 72 2 - e 2, - ri -r (4.99)

)ZA Arn A
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4.6.2 Angle and moment matching
Before the curvature-definition residuals for nodes i and i' are combined, they are first put

into their respective tC axes using (4.87).

1Z = IR K 22 (4.100)

'Jzat IRK12J
2 I I

jte ~ 7K12

The Ktt curvature-definition residuals for nodes i and i' are then subtracted to form the new

residual which forces bending-moment continuity across the edge.

Iz" +- m"t - lt" - 7i/ (4.102)

The corresponding residual for node i' is then replaced by the constraint that the relative

angle between nij and fi is the same for the deformed and undeformed geometries.

Vo = atan2 (i x no , -'oi , flo fio, ) (4.103)

V = atan2( ni x n- ii i i, ) (4.104)

7Z" +- 'd - L90 (4.105)
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Chapter 5

HSM2D: Simplifications in

Two-Dimensions

The Hybrid Shell Model of Chapter 3 is a method for modeling the deformations of arbitrarily-
shaped two-dimensional manifolds under the influence of arbitrary loading in three dimen-
sions. This version, "HSM2D", has been simplified for the case of a flat plate subject to
in-plane loading only. Thus the undeformed geometry ro, deformed geometry r, and load-
ing q are only defined in the xy coordinate system. The normal vector remains the same,
niO = ii = 0 0 1}T before and after deformation. HSM2D further makes the assumption
that the parametrization of the undeformed geometry is coaxial with the Cartesian unit
vectors, i.e.

S= ro x = {1 0 0}T - OgrO - y = {0 1 0 }T (5.1)0 Arol 770 ro I

The 2D assumptions eliminate the possibility of deflections normal to the reference plane,
so the HSM/KL and HSM/M formulations reduce to a single model in HSM2D.

This chapter will present HSM2D in an abbreviated format compared to the earlier pre-
sentation of HSM. The inclusion of HSM2D in this thesis is primarily intended to stream-
line the. computational implementation process by providing explicit equations for the two-
dimensional simplifications of HSM.
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5.1 Local Basis
This section provides two-dimensional simplifications for the definition of the local basis

(Section 3.1.1 for HSM).

deformed

e

r

Local-basis rotations

material coordinates A

eo A

1]_

eom

undeformed
Figure 5-1: Bird's eye view of plate showing position r and local basis vectors

61,8 2 , in local material coordinates , r.

5.1.1 Undeformed Basis
Every point on the plate has associated with it a local orthogonal unit-vector basis. The

two-dimensional construct reduces the matrix from a 3 x 3 matrix in HSM to a 2 x 2 matrix in

HSM2D. As previously mentioned, the undeformed basis 6o is defined to follow the cartesian

xyz coordinates.

eo(u,v) = eo(^o >)=
co 1 e02 ]

eoly e02 j-

0

1 I (5.2)

5.1.2 Deformed Basis
The deformed local basis e is defined in terms of the unit-quaternion logarithm A. Both r

and A are treated as primary unknown variables.

e(uv)
ei C12x

Cly C2y_
(5.3)

where 46, { c, , Cay } T, and the vectors 61, 2 are tangent and i = {0 0 1 }T is normal

to the reference surface.

The local basis e is defined from a quaternion-based rotation about a reference vector. In

this 2D implementation, the reference vector is the surface normal vector

Vref = n {0 0 11 T (5.4)
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For a quaternion p representing a rotation through angle 0 about a unit reference vector

Yref, the unit-quaternion logarithm A is defined as below, using equation (5.4), to simplify
the 2D implementation.

Ao 0 0

A = =/ } 0 (5.5)
A2 Y ref 0/2 0

1A31 1 0/21

The quaternion itself is p = exp(A) and is defined as follows.

P0 cos 6/2 cos 6/2 cos A3

= Pil 1 0 0 (5.6)
1P2 j ref sin6/2 0 0

P3 I Isin 0/2 sin A3

The explicit definition of e(A) is via this actual quaternion (Po, P2, p3) = exp(A), as follows.

1-2 p2 -2pop, 0

e(A) = 12p2 0 (5.7)

0 0 1

Note the four (three independent) components of the unit-quaternion logarithm reduce to
a single parameter 6 which defines the non-zero components (po and p3) in two-dimensions.
This is the in-plane rotation of the local-basis. It does not encounter the gimbal-lock issue
of Euler angles in three-dimensions because the rotation axis is the fixed normal vector nl.
In practice, the log-quaternion component A3 is used as the orientation primary unknown.
This is because a log-quaternion may be interpolated via the standard bilinear basis functions
whereas an angle must be interpolated via spherical interpolation. As seen in equation (5.5),
A3 is just twice the rotation angle 0.

Further note there is no need for the non-degenerate local basis of HSM; the e basis is
sufficient as a definition for the orientation unit-quaternion logarithms. A two-dimensional
shape cannot be a closed manifold, and thus the "Hairy Ball" Theorem does not apply. A
non-degenerate geometrical parametrization will always exist for a flat plate so there is no
need to construct an alternate non-degenerate coordinate system.
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5.2 In-Plane Force Equilibrium
This section provides two-dimensional simplifications for construction of the in-plane force
equilibrium equations (Section 3.2.3 for HSM). As there is no normal force component and
no bending moments in the planar case, the only equilibrium equations to consider describe
the in-plane force equilibrium.

The starting point for the two-dimensional force balance is the same as for the 3D case: the
3D stress-equilibrium differential equation (3.17) for a material with stress tensor &, density
p, acceleration a, and gravity g.

V -& + p (g-a) = 0 (5.8)

In HSM2D, we immediately switch to the Lagrangian formulation of the stress equilibrium
equations, for the implementation-driven reasons in the explanation of equation (4.67). Thus
the force equilibrium equation becomes:

Vo .& + p (g-a) = 0 (5.9)

The integral shell in-plane force-equilibrium equations are obtained by forming [eq.(5.9) ] e
and [eq. (5.9)] 2, and expanding the divergence term to give

Vo - ( e) - (6 - 7o) -e + p (g-a) -e = 0 (5.10)

where e denotes either in-plane vector e1 or ^2. We next multiply (5.10) by a weighting
function W(,T) and integrate over the shell volume. We will define W to be nonzero only
over a finite element, so the integration is in effect performed only over this element.

JJVo .( 0 .) -( VO) -Ie + p (g-a) - } W dV = 0

Vo( .6W) - -.- W - (= -Vo) -6 W + p (g-a) - W dV = 0 (5.11)

Next, the first pure divergence volume integral is replaced by area integrals over the perimeter
surface with normal i and area elements dndf, and over the top/bottom surfaces with normals
+ii and area elements dA. For the remaining volume integrals the volume element is written
as dV = dn dA. Equation (5.11) then becomes

6 -f - t W df

+ -e- - oW - (= - o -W + q-6W + p (g-a)-eW dA = 0

(5.12)
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where the integrations f dn across the shell thickness have been carried out in the replace-
ment of p and O- with y and f. The fact that W( ,R) is defined to not vary in n allows it to

be put outside the f dn thickness integrals.

5.3 Constitutive Relations
This section provides two-dimensional simplifications of the stress-strain relationship (Sec-
tion 3.3 for HSM).

5.3.1 Force Resultants, Shell Lumping
The 12 components of the nodal strain tensor =, denoted in (6.20), are computed

from fj using the compliance matrix equation (3.36) with two simplifications. The first is
that the reference surface lies in the middle of the shell thickness, so B = 0 from symmetry.
The second is that there is no normal component of stress, strain, or stiffness in 2D, so
D = 0. Therefore, Ae is the only matrix that effects the extensional constitutive relation
and equation (3.50) reduces to the following.

Elle fiei
ej = eJ f 2  (5.13)

E12 -

L 12 j

The stiffness submatrix, A, is defined by the following weighted integral of the stiffness

tensor C* over the shell thickness, which captures the overall lumped properties of the shell

cross section. The compliance matrix is the inverse of the stiffness matrix. Note in the

following equations, the superscript ( )* has been dropped from the components for brevity,
but the tensors are defined in the 12n basis.

All A 12 A1 6  C11 C12 c16

A [ A 22 A 26  - c 2 2 c 26 dn (5.14)

- A 6 6  . 66

For an isotropic shell material, the modulus E and Poisson's ratio v are sufficient to give all

the components of = as follows.

Cll C12 C16 E 1V 0
C22 C26 1 2  - 1 0 (5.15)

S - C66 ' - - 1-v

For an orthotropic material such as a balanced and symmetric composite laminate, the
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components of the un-lumped stiffness tensor are

c11 c 1 2  c16] 1 E 2 V 1 2  0

C22 c = - E 2  0 I , v 2 E 2 /E1 (5.16)
S[66 2G1 2 (1-2)

For general composite layering the overall thickness-averaged properties can be calculated
from laminate theory (see Appendix D for more information). Specifically, unbalanced lami-
nates will also have nonzero c16 and c26 constants which represent extension/shear coupling.

5.3.2 Stress Basis Conversions
The force and moment resultants which are defined in the local 12 axes must be put in the
global xy axes for application in the equilibrium equations. This is performed using the xy

components of the local 81, 2 basis vectors.

fXX fXY _ fi f1 2  1 (5.17)
=y e fel( .07)

fX[ fL ff2 fi2J

This can be recast into a more convenient form.

fFX e . e2 2eixe2x f 

=2 2eie 2 y I (5.18)
fXY eil eiy e2x e2y e1x e 2y + e1l e2x _ lfe2

5.4 Compatibility Relations
This section provides two-dimensional simplifications for the definition of the strain-displacement

relation (Section 3.4 for HSM).

HSM2D uses the Almansi-Lagrange strain tensor which is formulated in Cartesian coordi-
nates as

(r) = [(bor)(t1or)T - (Voro)(Voro)T (5.19)
2

= - [(ior)(ior) - I2  (5.20)2

where I2 is the 2 x 2 identity matrix and the surface gradient is defined as

Vor X0x 'XOY (5.21)
(90 x X 0Y I _
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The undeformed geometry Lagrangian surface gradient is the identity matrix

[~ 0x0 o OXOYO 1 0
Voro  L 1 (5.22)

Oyeo 0 yoyo 0 1

The Almansi-Lagrange strain tensor is chosen as to be consistent with the Langrangian
formulation of the stress equilibrium equation (5.9) for the sake of deriving analytic solutions

to be used in model verification. Such analytic solutions are derived in Section 7.4.

The Cartesian stress tensor is then rotated into the local 12n axes with the following trans-
formation.

1 12 T (5.23)
[:12 E221 X Y

5.5 Edge Boundary Conditions
This section provides two-dimensional simplifications of boundary condition formulation
(Section 4.5 for HSM).

For a well-posed shell elasticity problem in 2D, one boundary condition (BC) is required on all
the edges of the shell. This specifies either the position or on the edge force. Mixed boundary
conditions which represent a compliant attachment can also be formulated, although these
will not be considered here.

5.5.1 Boundary condition axes
Boundary conditions are specified in terms of force or position components either along the
global xyz axes, or alternatively along the edge axes tUn which are defined by the edge basis
vectors t, 1, i. The I vector is first defined either along ODr or 0,,r, depending on which
element edge is being considered, and using nt then defines t.

= r/&;rj , along constant-I edge (5.24)

-Oer/j0,rj , along constant-i edge

t= x n (5.25)

All the boundary condition data which can be imposed in the shell edges is listed in the
table below. For generality we specify and superimpose two separate loads: fixed-direction
loads in the xyz axes, and shell-following loads in the ten axes, in the same manner as the
overall surface load q was obtained from qxyz and q'.

The edge position and orientation is specified by rBC and BC, also listed in the table below.
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These will frequently be the same as ro and to of the undeformed geometry, but this is not

required.

symbol num. axes description

fXyBC 2 xy imposed fixed-direction edge boundary force/length

ftBC 1 ten imposed shell-following edge boundary t-force/length

fBC 1 ten imposed shell-following edge boundary f-force/length
rBC 3 xy imposed edge boundary position

5.5.2 Displacement BCs
The specified position r of an edge Fr is imposed via

r = rBC on Fr (5.26)

where rBC are Cartesian vectors specified as Dirichlet data.

5.5.3 Force BCs
The specified lumped stress f of an edge 1f is imposed via

e -- = c on rf (5.27)

where fjc are vectors in the local 12n frame specified as Dirichlet data. It is noted that using

the definition f - t = fBC in which the force BCs are specified as a Cartesian vector fBc results

in non-sensical BC weights. The force BC must be specified in the local frame to produce
well defined adjoint BCs.
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Chapter 6

HSM2D Finite-Element Solution

6.1 Nodal Data
This section provides the two-dimensional simplifications for the Finite-Element Solution of
HSM (Section 4.1).

The following data is defined at each element corner node j. Bilinear interpolation to the
element interior then makes these quantities functions of the ((, r) element coordinates. The
vector and tensor quantities are defined either in the global xy axes (note z = 0), or in the
node's 12 axes (note n = 0) along the node's ey = [81,82]j basis vectors. For more terse
notation, the 12 vectors and tensors will be denoted in plain italic rather than bold, e.g.

_, qi fui f12

q2 f f22 (6.1)

6.1.1 Parameters
These input quantities describe the shell geometry, structural properties, mass, and loading.
symbol num. axes description

roj 2 xy position vector of undeformed geometry

A3  6 12 lumped shell stiffness matrix (extension and shear stiffness)

p 1 lumped shell mass (mass/area density)

q* 2 12 shell-following applied force/area

q 2 xy fixed-direction applied force/area

a 2 xy local acceleration

g 2 xy gravity
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6.1.2 Unknowns (Primary Variables)
These are the primary variables which are to be determined at each node j.

symbol num. axes description

r 2 xy position vector of deformed geometry

Aj 1 - rotation log-quaternion of deformed geometry

3 12 stress resultant tensor components

The state vector will be defined as var

var = [ rx, ry, A3 , ff1 , ff2 , f 2 ] (6.2)

6.2 Element Interpolation
This section provides the two-dimensional simplifications for the Finite-Element Solution of

HSM (Section 4.2).

6.2.1 Bilinear Interpolation
Nodal quantities are interpolated over the element via the same four bilinear basis functions

Nj( ,7), using the same normalized parameters -1 < +1, -1 <j +1 spanning the cell as

in Section 4.2.1.

Note there is no need for the special treatment of the log-quaternion spherical interpolation of

Section 4.2.2 because of the fixed normal direction. The log-quaternions may be interpolated

like any other nodal quantity.

A(Cn)= _, Aj N (6.3)

6.2.2 Tangential Gradients
The covariant tangential basis vectors a, are defined as parametric derivatives of the shell

geometry function r( j).

aO(P) = Bar := { Oax ay }T (6.4)

Note that since ' are not necessarily lengths, these ac are not unit vectors, and are not

even dimensionless. They are also not orthogonal in general.

The tangential gradient components of some interpolated quantities are required for the

construction of the equation residuals. From the interpolations of rj = (xj, yj) above we
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have

(6.5)
x( ,7) = E, xj N(,n) ; OeY = 3 Yi OpNy , Oqx = Ej Xy 07A

Y( '77) = Ej yj N ( ,n) ; Oy = j, yj a N , By = Ej yj aq N

which are then used to obtain the two cartesian components of the basis function gradient,
which reduces to the cartesian partial derivatives in 2D

VNj (A,n) = (VNj) i + (VNj)y OxNjk x + OyN4 Y^ (6.6)

via solution of the following 2 x 2 linear system.

Ogx O9y iJOx N
a7x &Oy Jy N J

O Nj{n Nj
(6.7)

Note. that the vector {Ox, Ogy} is also the covariant tangential basis vector, a = a r,
from equation (6.4). The tangential gradients with respect to the undeformed and deformed
geometries may be calculated using a similar linear system. The definitions of the non-
identical tangential gradient operators are:

V0r [O 0X 0 x0 Y
L0 Yo 0YOYJ

~ [Oxx0 Oxy0V r o . _ O X a Y

For the deformed position gradients w.r.t. the undeformed geometry tor (used in the La-
grangian definition of strain), the 2 x 2 system to solve is

O xo aao 1[yo Xo 0x0Y

A7 x 0
0
77yo 8, 07x OYOy

E Ogx 09y1

Onx 0 Iy
(6.9)

For the undeformed position gradients w.r.t. the deformed geometry tro (used in the Eule-
rian definition of strain), switching the parametric derivative matrices gives the 2 x 2 system
to solve. E x Oy1 [9Ox0 0 xYO1

07x any J yXO 0 yYO J E 09 0Yo1
&77XO 0977Yo

In an alternate formulation (not used in the current HSM2D implementation), once the
system (4.35) is solved for the two components of VNj, the tangential gradient components
of any interpolated quantity can be obtained by summation, for example

(Vr)x Or = ox rj oxN

(Vr)y = Oyr = I rj oyNj

(6.11)

(6.12)
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6.2.3 Interpolated Data
The nodal data listed below is interpolated to specified finite-element Gauss points , rj in
the element interior via the Nj( ,o) interpolation functions. The parametric derivatives of

some of the data are also computed at the Gauss points by interpolation using the function
derivatives oNj( ,q), and the tangential gradients are computed using the function gradient
VNj(,) defined by (4.35).

sym. N var. dep. par. dep. axes description

ro 6 ro. xy undeformed-geometry position

r 6 rx xy deformed-geometry position

A 1 Aj xy deformed-geometry log-quaternions

fe 3 f, e local non-degen. stress resultants

A 6 A, e local in-plane stiffness matrix

q 3 qx,,,, I4*e xy cartesian applied loads

a 3 a xy cartesian local acceleration

Ap 1 A, - mass/area density

Note 6o and g are not interpolated because they are global quantities that are the same
everywhere.

6.2.4 Interior Secondary Variables
These are the secondary variables that are calculated at the Gauss points using data inter-
polated to the element interior from the nodes.

symbol N interpolated dep. axes description

sy 4 A xy deformed basis vectors [11, ^2,

fj 6 fe, A xy cartesian stress resultants

gj 3 A, q xy cartesian total applied load

C(r) 6 OQr, &Qro xy cartesian compatibility strain resultants

6(f) 6 f Z xy cartesian constitutive strain resultants

The overall applied force qj is the sum of qxyj and 4j'e in the xyz axes.

qj = qxy, + y (6.13)
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6.2.5 Edge Interpolation
Quantities along an edge are defined from the nodal values using the linear interpolation
functions

(6.14)

2(c W 1(1+ )

which are the same as N1 and N2 in (4.15), with ( , T) ((,-1). We then have

r = 2= rj N (6.15)

()=w E2 1 j etc. (6.16)

This interpolation is needed for evaluation of the edge integral in equation (3.22).

6.3 Equation Weighted Residuals
This section provides the two-dimensional simplifications for the Finite-Element Solution of
HSM (Section 4.4).

6.3.1 Residual Weights
HSM2D uses the same Galerkin-type finite-element formulation as HSM (see Section 4.4.1).
The one difference is that there is no z-component of the weights and there is no need for
the construction of the non-degenerate basis.

6.3.2 Gauss Integration
Per standard procedure, all area integrals will be recast in terms of the element coordi-
nates , T and their Jacobian JO, and then numerically evaluated using 4-point Gaussian
quadrature,

if y dAo = if F Jo d dq ~ F( k,nk) Jo(k,n) Wk (6.17)
k=1

Jo = | ro x oro (6.18)

where the index k runs over the Gauss points (, k) and Wk are the corresponding Gauss
weights. The integration is performed over the undeformed geometry, primarily because this
simplifies linearization of the resulting residual expressions for Newton solution.

For the edge line integral appearing in (3.22), 2-point Gaussian integration is used.

Fdo = f Jo d ~ T() A Wk (6.19)
k=1
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Here, -1 < 5 +1 is the parameter along the edge, and the Jacobian is a constant Jo = Afo/2
where Ato is the edge length of the undeformed element.

6.3.3 Strain-displacement Residuals
In the preceding sections, two different expressions have been developed for the strains. The
expression related to the geometry metrics and basis functions, denoted here by Fe(r), is
given by (5.20). The values related to the force resultants, denoted here by 6e(f) is given by
(5.13). Both definitions are calculated at the Gauss points from the necessary interpolated
quantities. The appropriate governing equations simply state that these two alternative
definitions are numerically equal. The corresponding weighted residuals are then defined as

the following. { i" [11(r) - E6 1 (f)f22s2(r) - e 2 (f) W dAo (6.20)

RP612 elements e1(r) - e6 (f)

Note there is no need to dot with the *j vectors to determine the the non-degenerate basis

components as in equation (4.61) because the local basis e is assumed to be non-degenerate

itself.

6.3.4 Force Equilibrium Residuals
The area-integral part of the in-plane and normal force equilibrium equations for node i is

evaluated in the global xy axes. Note these are the same residuals of equation (4.63) except

the local basis vectors 6i take the place of the non-degenerate vectors Wn, and there is no

shell-normal component of the residual.

{-e -f -Wi - (f -i) 1 Wi + q- 1 Wi +p (g-a) - e1 Wi 1dAo (6.21)
SI elements - 2 f VWi - (f -V)-62Wi+q -2 Wi+ /(g-a) - A2 Wi

The flux term is evaluated in the xy basis as follows.

el - f - VWi = (eixfX + eiYfXY) (VWi)x

+ (e12/2, + eiyfyy) (VWi)y

The force-curvature term is evaluated in the xy basis as follows.

( 1- = fXX 1 eix + fxy 0ye1x

fxy 19Xei, + fyy Oyely
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Note f refers to the matrix of primary unknowns from Eq.6.1.

6.3.5 Local-basis In-Plane Rotation Constraint Residual
An equation is needed to constrain the rotation of 6i, 2 about ft and hence within the
surface, with no effect on the geometry. Since the properties of a possibly non-isotropic shell

material will be specified in the 1,2 axes along ei and 62, the physical requirement on their

orientation is that they remain fixed to the material, with appropriate allowance for shear

angle changes. We therefore define material line vectors so and s for the undeformed and

deformed geometries, via their components along b1 and 62.

This basis constraint is similarly integrated and summed over the elements, with the 1/J02

factor to increase the weighting for small elements. It is also the sixth equation, which closes
the system for the state vector var with NDOF= 6.

Zj = / 2 (gi go2 - 92 .901)Wi dAo (6.22)
elements

The Jacobian is defined as

Jo = I Oro x &,ro  a = 1 o8yo -Oxo Ogyo (6.23)

We define go by rotating so by the E in-plane strain tensor, to account for the fact that s
also is subjected to this same rotation.

91 = ei. Or (6.24)

92 = 62- o9r (6.25)

s = 0 1 - Ogro =Oxo (6.26)

S02 = 6 0 2 - Oro = 0 yo (6.27)

g o, 1 + E 1 E 1 S ol(6 .2 8 )
s 2  " 612 1+E22. s02

The orientation of the 1 and 82 vectors in the deformed case is then imposed by requiring
that that s is parallel to so. The choice to define s along aer is arbitrary, and &air could have
been chosen as well.

Note the strain tensor 6 used in (6.28) is actually the geometry-dependent strain tensor
e(r) from equation (5.20) which has been rotated into the cartesian frame =(r) with equa-
tion (5.23). The geometric-dependent strain is used because it will give slightly fewer entries
in the residual matrix.
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Figure 6-1: Top view of a small shell element for undeformed and deformed

geometries. Requiring s to be parallel to so makes the 8 1 and 82 basis vectors

after deformation to be fixed to the same material as 60 1 and 60 2.

6.4 Boundary Condition Weighted Residuals
This section was developed by Steven Allmaras [2] and edited by William Thalheimer. Here

we derive weights for incorporating the boundary conditions of Section 5.5 into the weighted

residual formulation of Section 6.3. This involves duality analysis for the analytic/continuous

equations to determine appropriate BC weights such that the adjoint has well defined BCs.

A well defined adjoint facilitates the the use of HSM2D in optimization, examined in detail

in Section 8.

In the discretized geometry, edge axes at a node are obtained via the undeformed geometry

r0 (ii,v).

( ,ro/j03 roj)j , along constant-v edge

ioi =(6.29)
(-Oro/ OjrOI), along constant-u edge

i = (io* d0 1 ) 18 1 + (Ii* d 2 ) 8 2i (6.30)

i =:: ii x nii (6.31)

6.4.1 Dyadic Notation
The following equations make use of (yadic notation to express vector and tensor quantities.

A full explanation of dyadics is available in Appendix E. Here we formulate several important

quantites in dyadic notation.

The deformed and undeformed local bases are expressed as follows.

e = 1elt %+ e2i (6.32)
Cl Y C2y

eo - ( -i-.+j (6.33)
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The cartesian stress tensor is

Y ifX + (=j + A fXY + jjfyy,
fyy

And the two definitions of strain are

Er = (r) = [(tor) - (Vor) T - I2

with the inner products (expressed by the dots) defined in equations (E.5-E.8).

In contrast to the interior residuals which use the geometry-based strains (2*) to calculate
the material line vectors (6.28), here we use force-based strains (Ej) to significantly simplify
the linearization and duality analysis. The material line vectors are thus

- =T Ors = e _ Oro
so = 60 , I

Oro Oro
Jox

6.4.2 Primal and Adjoint Solution Vectors
Primal solution variables and associated adjoint solution variables are the following.

u = {rx, ry, A, fT, f), f2}T (6.39)w= {PX, Py, , #*, #*2, 4i2}e

Adjoint variables are also used as weights in primal residuals, and linearized primal variables
are weights in adjoint residuals. Note that w variables will almost certainly have different
units than u.

6.4.3 Strain-Displacement Residuals
The adjoint equation to (6.20) imposes equality of the two strain definitions and weights the

integral by # (the adjoint of fe,),

R(ee)(u, geo4) = JJ(ej (r) - ea(f)) 0a dAo, a, # E [1, 2] (6.40)
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-+ = = T . =

Ee = -(f) - - f e

(6.35)

(6.36)

(6.37)

(6.38)

fxx
fXY

==e
SO = (12 + E, -SO



Summing over indices gives,

IZ(6)u, -
a=1 #=1 If

where the double-dot product for symmetric A and B is,

A: B = AuBj + A22B22+ 2A12B12

6.4.4 Force Equilibrium Residuals
The adjoint equation to (6.21) imposes in-plane force equilibrium and weights the integral
by pa (adjoint of ra),

+e f- - Pa

+ e. - I- tpa

- pa - - en + q-ea p + p (g-a) - e. pa dAo

a E [1, 2] (6.43)

Summing over indices gives,

2

RW )(4, P) = E R(f.) (1_, pa)

= -HT f p I2p- (i - T - p + q- T -p y(g-a) - . .p}

+ f( - = -p) -t df

dAo

(6.44)

where 12 is the identity matrix. The first term could alternately be interpreted as the trace of
=T. Vp. The term, along with the boundary integral, results from the integration-by-parts

as follows,

f 1(2p):I2

qpi ( ) -8

Sq -& i

(6.45)

(6.46)

(6.47)T.=qe p
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2 ~ a)
(=ee~) s*f) :64dAo,



6.4.5 In-Plane Basis Rotation Constraint
The adjoint equation to (6.22) enforces in-plane rotations and weights the integral by T (the

adjoint of A),

R(e3)(u, I) = n - (s x s0)T dAo (6.48)

6.4.6 Weighted Residuals
The continuous Dirichlet boundary conditions (5.26-5.27) are put in weighted residual form

in the following manner.

R(rBC)(U, w) jWr (r - rBC) dFr (6.49)

R~fBC)(u,Jw) = wf- (eT - f - fBeC) dFf (6.50)
f

where weights Wr and wf are to-be-determined functions of w and u (linear in w and po-

tentially nonlinear in u). Their specific form will be determined from duality analysis. The

appropriate weights will produce well defined adjoint BCs. Formation of the primal residual

is then posed as follows:

Find u E U such that R(u, w) = 0 for all w E U, where

(, _w) = 7Ze) (, j) + (u, p) + (4 IF) + R(rBC)(u w) + R(fBC) (u, w) (6.51)

6.4.7 Duality Analysis and Adjoint PDE and BCs
Duality is a statement on the equivalence between primal and adjoint output functionals

for solutions that satisfy the primal and adjoint PDE and BCs. We will use an somewhat

unconventional form of the duality statement that explicitly incorporates weighted primal

and adjoint residuals. The resulting analysis provides a means of determining the adjoint

PDEs and associated BCs. It should also determine the appropriate primal BC weights wf

and Wr such that the adjoint BCs are well defined. For general BC weights the duality

analysis leads to multiple and inconsistent constraints on the boundary adjoint, giving a

nonsensical formulation. Only a specific choice of BC weights leads to well defined adjoint

BCs (i.e. unique and determinate conditions on the boundary adjoint).

The process is as follows:

(i) Linearize the primal residuals and output functional about a state u that satisfies the

primal PDE and BCs;

(ii) Linear duality statement to identify adjoint residual and output functional;
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(iii) Integration-by-parts (IBP) where needed to remove derivatives from primal weights in
adjoint residual, and collect terms by primal weight multipliers;

(iv) Examine boundary integral contributions to determine adjoint BCs and constraints on
primal BC weights.

6.4.8 Discrete Residuals
The final (continuous) primal residual is,

Z(u, w) = R~je)(u_, e) + 1R(f)(_, p) + z(e3)(u I) + R(rC) Wr) A(f3C)(uwf)

- j(e)(_ +) + (, + &e3)(U, ) (6.52)

where the BC-augmented residuals are,

( ,e ) =

k (IA(, p) =

(e() - =e(f)) : =e

fJAS-

n - (sxgo) X +ffA 1

e7 . f = 2

+ (p -p -:

-j . =* =e -=T (Vor) - (r - rBC)
J r

-e p + q - e= p + p (g-a) =T T -T

jp. ( - - -B)

i;( x T)- (r - rBC)

We now expand the primal and adjoint solutions into the discretized geometry DOFs times
basis/shape functions,

U(XY)= U Nj(xy), (6.56)W(x,y) = w3 Nj(x,y),

where Nj(x,y) are the basis/shape functions. Substitute w into the primal residuals,

R(_, w) = R(u, wNi) = (6.57)w - R(u, Nj) = 0

where R(u, Nj) is the vector of residuals associated with a given node/DOF,

R(u, Nj) = { (j R (u), N 22(_) (.1), N (u), Rf(u), 3)()}
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(6.55)

(6.58)

-t

-i)W nVi - (so



With arbitrary weight DOFs, each nodal residual must be zero. The individual nodal resid-
uals are then,

-(Ell) = f( (r) -

f ( ) = 2( (r) -

N (u) = J (LE(r)-

E (f))N: (iiN) -

(f)) : (jjN) -

Jr - - (iiNj) -eT - (Vor) - (r - rBC)

S.-(N) : 2

+ j(iN) - eT .f

(f e -) -(iN) +

- (iNj) - (e T  f )

_ . . (jN) + (q

=T (iN)}

(6.62)

- eC) (6.63)

(6.64)
JrA

where the dyadics can be interpreted in terms of vectors and matrices,

fl={ ; 0}

(6.65)

and the i -

so explicitly
(so X
the t

eT) term in equation (6.64) is calculated via equation (E.28) with
erm becomes

n . (go x T)= i(ei,o9 - eixoy) + i(e21,9 - e2x goy)
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(6.60)

12AOS(fu) (

N(f) (U)

(6.61)

_ Jj.;.

+ (jN) -eT-f -

(e3)(U) = I fi. (sxso)Nj +

0
of

kc=fn

(6.66)

e=- - (jjNj) - e= . (tor) - (r - rBC,)

-((ij + ji)Nj) - e= . (tfor) - (r - rBC,)

-

+ p(g-a)) e6

f(fjNj) - (VT . f

(44-)Nj n e s B) -(r -rBC)

i = I
0

0
3 = 1 7

0
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Chapter 7

Verification

7.1 Definition
A physical model may be "verified" if, in solving the continuum partial differential equations

and continuum boundary conditions via discretization, the observed discretization error de-

creases to zero as the mesh increments decrease to zero [211. This means the equations

are "solved correctly", or that the code is solving the equations it was intended to. To be

mathematically explicit, the verification process proves that the governing equations, as im-

plemented in the code, are solved consistently. Code verification does not seek to answer if

the equations of the HSM method are correctly determining the deformation of solids, i.e.

that we are solving the physically correct equations. This is code validation, which is left as

a topic for future investigation of HSM.

7.2 Methods
Several methods have been used in the HSM verification process.

The Method of Exact Solutions (MES) involves using an exact, analytical solution for

plate deformation as a benchmark for comparison against the HSM results. In comparing the

HSM to an exact solution, the same loading and boundary conditions are imposed on a given

geometry, and the resulting HSM deformations and stresses are compared directly to the

analytical deformations and stresses. MES is limited in scope and complexity however, since

few analytical solutions exist for plate deformations. Furthermore, all exact solutions only

apply to small deformations (and are typically based on small-deformation approximations

of plate behavior, such as Kirchoff-Love or Mindlin-Reissner theories), which doesn't help

test the intended purpose of HSM which is to accurately resolve large surface deformations

by only applying these approximations locally.

The Method of Manufactured Solutions (MMS) addresses the restrictions of MES. A
manufactured solution is an exact solution to the set of governing PDEs of HSM that has been
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constructed by solving the problem in reverse. This means the solution procedure begins
with specifying the deformed geometry and boundary conditions, and the applied loads which
will result in the specified geometry are then computed. When HSM is to be compared to
a manufactured solution, the loads calculated from the manufactured solution are imposed
on the same geometry and boundary conditions in HSM, and the output deformations from
HSM are compared back to the originally specified (input) deformations of the manufactured
solution. Because these displacements are arbitrary, MMS does not have the geometry and
loading restrictions that MES does; any displacement may be imposed on the shell and the
associated forces will be calculated. However, the complication of MMS is that source terms
must be added to the governing PDEs. These are additional terms that allow the freedom
in initial condition specification by "filling in the gaps" in the mapping between loading and
displacement. For MMS to be used, these source terms must be specified in the case setup
of the computational implementation of HSM at the same time as the output forces from

the MMS calculation are. Currently, these terms are not included in the implementation.
Therefore it is noted that although this study proposes several test cases for HSM, their
actual use in code verification is left for future study.

The Method of Comparison to an Industry Standard Analog (MCA) involves
comparing the HSM results to a structural modeling code that has already gained widespread
acceptance. The commercially-available finite element code used for comparison in this study
is Solidworks, which features shell modeling capable of large deflections. The advantage
of comparing HSM to another code (as opposed to MES) is that Solidworks can model
geometries and loadings closer to what is expected for HSM to encounter in practice (i.e.
wings bending under aerodynamic and inertial loads). This study also combines MCA with
MES to reinforce claims of verification by simultaneously verifying the industry standard
analog. In doing so, the shell geometries and loading configurations have been limited to
cases with analytical solutions. More complicated configurations are left as further research
topics.

7.3 3D Verification

7.3.1 Initial Verification with MES and MCA
A simplified model of HSM/KL was used in the early stages of HSM development to verify
the computational implementation via MES and MCA. The differences between this early
version and the current HSM formulation are:

9 Definition of local basis, e, from parametric derivatives o9r, &ar, instead of via log-
quaternions

* Definition of strains via the metric tensor method of Simo [24] instead of the Cartesian
method of Section 3.4.
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This version was imuplenented in Fortran by Prof. Mark Drela and verified using MES and

MCA. The error metric is global L2 error via Gauss quadrature. This way both HSM and the

industry-standard analog (Solidworks) are verified with an analytical method, giving more

confidence to future MCA verification.

The configuration of the first HSM test was a simply-supported square plate loaded in the

normal direction by a uniform pressure field. Several sources have performed the Kirchoff-

Love analysis for such loading of a pinned rectangular plate of side lengths a, and b, where

0 < x < a and 0 < y < b. eFunda [10] reports the transverse deflection, w, of a plate of flexural

rigidity D = E t3/12(1 - V2) subjected to a uniform traverse load p as

W (xy) = 16
n=,3,... n=1,3,

sin (7 x sin (-r y W)

S((,n)2 + (n2)ai b

A square simply supported plate was chosen as the first test case due to its sinplicity and

symmetry. The problem setup is shown in Figure 7-1, with the plate parameters in Table 7.1.

p

p

P 1 4

L I

x
Figure 7-1: Loading of a simply-
supported, uniform-transversely-

loaded rectangular plate

paran. value

-L, LY 100 in

t 0.5 in

p I Pa

E 1 GPa

V 0.3
Table 7.1: SS square
plate parameters

Analytical Solution - Uniform Load SS Plate
0.035

X:500.03
Y: 50
Z: 0.03549

0.04 0.025

0-03- 0.02

0.02 0.015

0.01 0.01

0 0.00510

100 0

Figure 7-2: Analytic solution using KLPT for the transverse deflection of a

simply-supported uniform- tranversely- loaded square plate
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The analytical solution was impleinented in MATLAB and samlpled on the nodes of a very

fine (1Oixi01) rectilinear grid, as shown in Figure 7-2. The same plate was then niodeled on

a coarser grid (21x21) with HSM as shown in Figure 7-3. Note HSM uses a rectilinear mesh.

0.04
Max = 0.035858 0.035

0.03
0.05 0.025

0.015
0.03 0.01
0.02 0.005

0
0.01 -0.005

0

00

z0
0 ~ -0 y

6 ----.

x 80

Figure 7-3: HSM calculation of the transverse deflection of a sinply-supported

nifornm-traversely-loadled square plate with niaxinuin deflection location and
value noted

The plate was then nodeled as a thin shell in Solidworks and the solution was deterilineld

using the "Solidworks Simulation" finite element tool, with the small displacelient option

turned on (Figure 7-4). Note Solidworks uses a triangular mesh. A discussion on the actual

algorithms limplenented by the Solidworks solver is given in Appendix B.

URES (m1
max = 3.551e-2 3.551t.00253.255e.002

2,959t. 002

2,6e00 . 2

0 .0 7 lo.003

0 1.00 0e.03 3

Figure 7-4: Solidworks mesh (left) and calculation of transverse deflection

(right) of a silply-sulpported uniform-tranversely-loaded square plate

The HSM and Solidworks results were then compared to the analytical Kirchoff-Love solution

for several grid sizes. The results were colnpared uising different error integral approximiation

algorithms. The Solidworks integral error was colnputed via 4-point Gauss integration oii

each triangular elenent (more detail in Appendix A.2). The HSM integral error was coum-

puted with three different algorithns. The green line in Figure 7-5 is a nodal analysis. where
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the squared difference from the analytical solution was taken at each node, and weighted

by the total area divided by the number of nodes (i.e. the size of the average element if

they are equal and set on the nodes). The red line is the same algorithm as the one used to

process the Solidworks data. Each quadrilateral element in HSM was split into two triangles,
and then a 4-point Gauss quadrature was done oni each triangular element. The blue line is

a 4-point Gauss quadrature done on each quadrilateral element. The mathematical imple-

mentation for quadrilateral integration is slightly different than the triangular set up, and

is summarized in Appendix A.1. The 12 error is plotted against the characteristic element

length, Lciia= 1//Neiems , for five mesh sizes for both HSM and Solidworks and is shown

in Figure 7-5. The expected error convergence was L -2 . Solidworks and HSM (with all

error integral approximations) very closely matched this.

0.1

0.01

0.001

0.0001

1e-005

1e-006
1 10 100

Lchar

Figure 7-5: Error convergence for HSM and Solidworks models of simply-
supported uniform-transversely-loaded square plate with L2 error metrics us-
ing (1) nodal summation, (2) Gauss quadrature on triangular elements, and
(3) Gauss quadrature on quadrilateral elements.

7.3.2 Future Verification with MMS
More exotic loadings and geometries may be verified in the future via the method of manu-

factured solutions. Several recommendations of test cases are proposed in this section. They

have been modeled in Mathemnatica with the intent of being compared to the HSM results
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via Gauss quadrature in a similar procedure to Sections 7.3.1 and 7.4.

Manufactured solutions are parametrized by a , i rectangular grid where , 77 E [0, 1]. This

computational grid is mapped to an x, y, z grid where x = f (,7), y = g( ,7), z = h( ,7) defines
an arbitrary geometry in Cartesian space. The undeformed geometry is represented with
XO, yo, zo and the deformed geometry is represented with x, y, z.

Note that only the geometric deformations and stresses are shown in this paper. A Math-
ematica script was written to also output the nodal source term data necessary to recreate
these manufactured solutions with the HSM code. The ability to take source term input has
not been implemented in the HSM code yet, and is left as an avenue for future development.

Parabolically Bent Square Plate in 1D
A simple test case is square plate, discretized with a 20x20 grid, parabolically bent in the
y-direction. The deformed and undeformed geometries of this manufactured solution are
summarized in Table 7.2. The material properties and loading conditions of the plate are
summarized in Table 7.3. Results for this manufactured solution are shown in Figure 7-6.
Note the expected result that there is no x-direction or shear-stress since the only curvature
is in the y direction, also that the stress in the y-direction assumes the expected parabolic
profile.

Table 7.3: Material properties and
loading conditions of ID bent plate

Table 7.2: Parametrization Parameter Sym. Value
of ID parabolic bent plate x-length Lx 1 m

Undef. Deformed y-length Ly 1 m
Shell (z) thickness L, 0.01 m

f (', Ti) 0 7 = 7Young's Modulus E 100 Pa

h 7r) Yo=i z=771 7) Poisson's Ratio v 0

Applied force/area q 0

Local gravity 9 0

Local acceleration a 0

Material Type Isotropic
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022

0x25 x

0.0

0.1 051
00

8 <'8

0.4- 2.4

0.1 04 00'0
00 00

(a) y-stress au) () xa-stress (a )

0

020

0 02 7.. Tb .3 6 d pr<s t0

0.6 <,'0.2 00&0
xb 8 1 16 "x 0,8 - '

(a) Defrmtion~. () Shx-stress (U 1 )

directiolns. lThe dIefornmed1 andl umndeformed geometries are snnarized ini Table 7.4.

Results for tis inannfactmredl solution are shown in Figure 7-7. Note the x amnd y extensional

stresses are greatest at time extreiia of the associated dlimelnsioml amld along the cemnterlime of the

other dimnension (aka X-(lirection extemisionmal stresses are greatest at (x, yI) = +cnc y9w)

andl tihe y-directionl extenisional stresses are greatest at (x, y) =(x( tL. tys.,) ). ihis is as

expectedf fronm the perspective of membmlrane loadling. Also imote that thle undeformied middle
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regiol has little to 1) stress (extensional or shear) as expeeted.

Paramet rizatio ) Table 7.5: Paraiet rization

of reetangular twisted plate

Undef.

. =() -

!o = /

z--) 0

Deformed

C ZC)
x=z it

1)

.I
'7t)

0 07
006
0.05
0 04
0.03
002
0.01
0

0. 2
06- b-8 ",-02

0.035
0.03

0 025
0 02

0.015
0.01

0 005
0

0

Undef.

=( -0

--4 = 0

II

hi

i1

Deformed

x

(eos(wf)+1) (7/ -i)
(mos(K- 1) ( 2-i

I
0 035
0.03
0.025
0 02
0,015
0 01
0 005
0

68
04 <14

(a) Deformat ion

0 035
0.03
0025
0 02
0015
0 01
0.005
0

02 04

0
10

-0.4 y

(b) x-stress (u 1 )

0005
0004
0 003
0.002
0001
0

-0,001
-0 002
-0003
-0 004
-0.005

0005
0 004
0 003
0002

0 001
0 002

-0003
-0 004
-0.005

0- 
---0.4 -11 4

-166
118

<F-- -- - -1-6'

(c) v-stress ((T22) (d) Sliear-SOVres ((T])

Figure 7-7: Manufaetured 1D Parabolie Plate

Twisted Rectangular Plate
Another test ease is that of a rectangular plate with a 90 degree twist about the Xeterline x-

axis. The plate has the same l)rol)erties as the square plate from Seetion 7.3.2 (see Table 7.3

for material loading parameteis). except the y-leiigth is halved (Ll 0.5m). This molel is

selected to demonst rate large deforimationis ai( show some applicability towards typical wing

skii (leformations. The (eformedl and i(leforiied geometries are sununarized iii Table 7.5.
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Table 7.4:
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I) 

0.07

0 04
0.03
0.02
0 01

0

0 035
0.03

0.025
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0.015
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0.3
0.2
0.1
0

-0.1
-0.2
-0.3

Manufactured Solution - x-stress

0.3
0.2
0.1

0
-0.1
-0.2
-0.3

3

x y

0.2
0.4 OA

0

(a) Deformation (b) x-streSS ((u I)

Manufactured Solution - Shear-stress

0
L0 0

-0.15
-0.2
-0.25
-0.3

-03

<--01 Y

2-0.32

(d) Shear-StreSS ((Tj.)

Figure 7-8: Manifacturied Twisted fiect angular Plate

Results for tins llili 1UfaCtured soltitioll are sliowNii iii Figure 7-8. Note the x-stresses are

greatest at tile tightest ciurvatuire (i.e. at the iiddle .r-locatioli aiidl the Iy-extreilla) while

the y-stresses are essentially constant along the y-directioi since the twist is lap)pelilg at a

colistanit late along tihe .- diriect ion.

Bent Wing with Elliptical Cross-Section

Ultinately, the iiiteiided a))lication of the HSMI code is to miodel the deflectionl of wings

illder aerolVlilallmC loadilig. To1 aP)roxillate sucl a geoiiietr,. a iiallllfactured solutiOll

Coiisistlig of a ving (vith the same structural properties amll loadiiig. but not diueisions,

as Table 7.3) is suggested as a reasonably coimplex test case. The wiNig modeled in this

exampljle has an elliptical cross-section with a thickness-to-chord ratio, '/1 I of 1Ot%. and is

1eilt Upwards aloig all arc witlh radius of twice tile willgspa. the (deforilied aiid midefOriied

geolletries are suliarized in Table 7.6 and Figure 7-9.
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Table 7.6: Parametrization of bent elliptic cross-section wing

Undef.

zO = (
= (1 - cos(27rr;))(1 - (4/2))

zo = I sin(27r1)(1 - (1/2))

Deformed

x = sin(%) (2 - 1 sin(%/)(1 - (/2)))

y ='(1 - cos(27rI))(1 ('/2))

z = 2(1 - cos(/ 2 )) + n cos(%) sin(27rj)(1 - (/2))

(a) Wing planform (b) Undeformed 3-view (c) Deformed 3-view

Figure 7-9: Wing Geometry

Table 7.7: Wing geometry parameters

1 5
,C45

235(a)- *2 x r5

x .05

(a) x-stress (cTi 1i)

Parameter003

002

001

0

-0.01

-0.02

-0,03

-00001

-0.0002
-00003
-00004
0.0005
-00006

00007
00008

451 2

Span

Root chord

Tip chord

Sweep

Airfoil

Thickness /chord

Radius of bend

0005
00015
0,002

00005

-00005
-0001
0.0015
-0002

00025

0
0

Sym.

b

cr

t/c

K

Value

1

0.5

0.25

TE straight

Ellipse

10%

2

0,002
0.0015

m0001
0.0005

-00005m-0001
-0.00 15
-0002
-00025

.45
.35

.25
.2

05115

(b) y-stress (7 2 2) (c) Shear-stress (u 1 2 )

Figure 7-10: Manufactured Bent Wing
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7.4 2D Verification
HSM2D (Section 6) was implemented iii C++ for a simple test case for verification with MES.

It was created as a module in the Solution Adaptive Numerical Solver (SANS) framework

developed by Darmofal, Allmaras, Galbraith, et al. at the MIT Aerospace Computational

Design Laboratory (ACDL).

The first test case consists of a rectangular plate hanging under its own weight in a uniform

gravitational field, as seen in Figure 7-11. The plate is isotropic and uniform in its stiffness,
thickness, and density distributions.

Table 7.8: Hanging
x plate parameters

Y param. value

p=pt L 2
const.

/ 1

p 1,000

t 0.01

E 500,000

v 0

g 10
Figure 7-11: Hanging plate diagr am

We choose the case with Poisson ratio v= 0 because it decouples the extensional responses

of the height and width of the bar. This allows gravity to stretch the bar in the y-dimension

without changing shape in the x-direction so the width of the bar will remain uniform before

and after deflection.

We begin with the force equilibrium equation (5.9), repeated here for convenience.

Vo -a + p (g-a) = 0 (7.2)

We then use the shell lumping definitions (3.19) to convert from - and p to f and u. We

also eliminate the acceleration field.

VO - f + g = 0 (7.3)

We note that g only has a yo-conponent, and thus VO . f will only have a yo-conponent.

The divergence term becomes a yo-derivative in the single dimension.

Oyo f22 + P g = 0 (7.4)
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We then integrate both sides in yo to get

f22 (Y) - f 22(0) + A g yo = 0 (7.5)

From our free-body diagram, we note that the base of the bar carries the entire weight of
the bar. Remembering that the lumped shell stress f is a force per length, we calculate the
yo-direction lumped shell stress at the base of the block as

Fgrav_ gLi
f 22 (0) = f _ - pgL (7.6)

The analytic solution for the lumped stress is then

f22(y) = ag(L-yo) (7.7)

We then use the constitutive relations to map this stress to a strain. We begin with equa-
tion (5.13) repeated here for convenience.

622(f) = f ] 22 (7.8)
612(f) f12,

Where we have dropped the ()* superscripts because we have specified extensional loading
aligned with the y-direction and we expect no deformation in the x-direction, so we expect
the local material directions e, to remain fixed and co-linear with the x and y directions
after deformation. Using (5.15) to define A in terms of E and v, we note that the = matrix
reduces to an identity when v = 0. We assume the Young's Modulus is constant through
the thickness resulting in the following

1 0 0
A = Et 0 1 0 (7.9)

LO 0 11

Since f22 is the only nonzero component of the stress tensor, equation (5.13) reduces to a
simple Hookean 1D stress-strain relation. Introducing the stress function (7.7) and assuming
a constant density p so p = p t yields

622(f22) = (E t) 1 lf 2 2  (7.10)

622(f22(vo)) = t (L - yo) (7.11)

( -g
- 9 (L -yo) (7.12)
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We then introduce the Almansi-Lagrange strain-displacement relation (5.20) repeated here
for convenience.

E(r) = [ (or)(tor)T - 12 (7.13)

From the definition of Vor (5.19), the only nonzero term is &Oyy, so the strain-displacement
relation becomes

1
6 22(Y) = [(OyOY) 2 

- 1 (7.14)

We solve for y by integrating in yo. We incorporate the strain consistency equation (6.20)
to set the constitutive strain (7.12) equal to the compatibility strain (7.14)

0 yOy = 2E22 + 1 (7.15)

S 2 pg (L - yo) + 1 (7.16)
E

= k (L - yo) + 1 (7.17)

With k = 2 p g/E. We integrate both sides of (7.17) in yo from 0 to some yo with the
boundary condition yo(O) = 0 to get.

2 F -r
Y(yo) = j 1+ kL- 1+ k(L - yo)

+k (yo 1+ k(L -yo) + L 1+ kL - 1+ k(L - yo))) (7.18)

This analytic result was compared against triangular and quadrilateral grids at varying
resolution to test the error convergence rates. The test case rotated the domain by 7r/8
radians so that all terms in the state vector would be exercised in an asymmetric manner

(e.g./ keeping the orientation as pictured in Figure 7-11 would only exercise the y and f22

terms, rotating by 7r/2 would only exercise the x and fli terms, and rotating by 7r/2 would
exercise the x, y and fi, f22 pairs symmetrically). Results are shown in Figure 7-12. Note
the similar response of x and y for both tri and quad element types. Also note the stresses are
approximately 9-10 orders more accurate for rectangular grids than triangular grids. This
is because the analytic solution (7.7) is linear in yo so the behavior can be captured exactly
with a single quadrilateral element using hierarchical basis functions. It is noted that the
expected P +1 order of accuracy is not achieved for even polynomial basis functions (P2
and P4). Additional stabilization is needed to stabilize the discretization and achieve the
expected order of accuracy.
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Chapter 8

Optimization in 2D

8.1 Verification
We seek to verify optimization of the thickness distribution of the hanging plate via MES.

We use the same plate and constant gravitational loading from the previous section, but now

we seek to minimize the mass of the plate for a given tip deflection constraint. We simplify

the problem by specifying a constant density, so the mass minimization becomes a volume

minimization. To further simplify the optimization, we pose this constrained optimization

problem as an unconstrained optimization problem by prescribing a penalty function for tip

displacements other than the constraint. The objective function J is thus

J = ftdAo+K(LetL) j (8.1)

Z

S=const

L

t (y") == to 0(tL - t 0) YoL

to ----------e--ufac ----------------------- -

Figure 8-1: Plate hanging under gravity with linear,
non-constant thickness distribution.

101



With plate of dimensions L x f x t(y), specified tip thickness tL, and tip displacement 6tip. The
constant (L e tL) is included to convert the second term to units of volume to match the first
term (the area integral of thickness). The tip deflection penalty K is thus a non-dimensional
gain set to an arbitrarily large number ~ 100.

We now assign a thickness distribution to the plate. We begin with a linear distribution.

N~O) = to +(tL - to O(8.2)
L

Where the tip thickness tL and plate length L are parameters, and the root thickness to is
the variable to be optimized.

Table 8.1: Hanging
The plate geometry is visible in Figure (8-1). plate opt. parameters

In the SANS (C++) implementation, the centerline single-point param. value
tip displacement is actually defined as the integral of the dis- L 1
placements along the tip edge weighted by an arbitrarily thin 1
Gaussian, so that the centerline displacement values are weighted

p 1,000
most heavily. However, for this test case with Poisson ratio v = 0, tL 0.01
the cross-sections of the bar remain straight through the defor-

E 500,000
mation, so every point along the tip edge are displaced the same
amount. We therefore ignore the weighting complication in this V 0
analysis and proceed to plug in the definition of displacement g 10
6 tip = y(L) - L. We may also eliminate the plate width e as the 6 spec 0.008

area integral will be linear in e. K 100

J = -(to + tL)+ Kht - 1 (8.3)
2 6 spec

With the new assumption that the thickness is nonuniform, the force equilibrium analysis
form the previous section must be repeated. Equation (7.4) now becomes

ayo f22 + p tg = 0 (8.4)

with M = p t. We solve this equation with the linear thickness distribution (8.2) and the
boundary condition, similar to (7.6), that specifies the base of the plate supports the weight
of the full plate.

f22(0) = ptavggL = pg L(to +tL) (8.5)

We plug the solution of the differential equation and the linear thickness distribution into
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the constitutive strain definition (7.10).

E22(122) (Et)-' f22

E (to + (t, - to) t) f22

pg (L

2 E

yo) (L (to + tL) + Yo (tL

Lto + yo (tL - to)

We again set the two definitions of strain equal (6.20) so 822(r)

differential equation

2 E22(f22(YO)) (Oyto ) 2 1

E2 2 (f) by solving the

(8.9)

We take this opportunity to select values for the parameters, visible in Table (8.1).

This substitution yields:

22(f22(Yo)) =-2 (100 to (Yo - 1) - Yo - 1)(yo - 1) = (YO Y) 2- 1
100 (100 to (Yo - 1)- Yo)

(8.10)

The solution of (8.10), evaluated at yo = L to yield the tip deflection, is too long to be

included here. The plot of tip deflection vs root thickness is included in Figure 8-2.

0
4-0

0

4-j

a)
E
0-

1.010

.009

1.007

1

Tip Displacement vs Root Thickness

Predicted solution

Deflection constraint

- - - - - - -------------------

1.005 F t

I 1.0041

0.04 0.06 0.08 0.10
Root thickness to

Figure 8-2: Tip displacement for gravitationally loaded plate as a function of

root thickness for fixed tip thickness. Problem construction assumes to > tL
which is cause of discontinuity at to = tL = 0.01.
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The motivation for setting the tip deflection constraint at 6,Pc,= 0.008 also comes from this

plot, as it conveniently occurs at the intersection of major gridlines on the plot. We then

seek to minimize the objective function (8.3). We plug the displacement equation y(yo; to)

evaluated at yo = L into the objective function (8.3) with K = 100, tL = 0.01, and L = 1.

We also impose the "constraint" on tip deflection by setting spec = 0.008. We minimize J(to)

by solving

( y(yo; to) - 1 ~ 21-0(.)
ato Ji = at, (to + 0.01) + N o o - 1 = 0 (8.11)

02 0.008

The formula for 0t0J is again too long to be included in this report, but a plot has again

been included in Figure 8-3.

Solving (8.11) yields an optimum value for the root thickness of to = 0.0191013.

Root Thickness Objective Sensitivity vs Root Thickness
2

Optimum

OtoJ(to

.02 0.03 0.04 0.05 0.06

-2 -------

-3

-4
Root thickness to

Figure 8-3: Objective function sensitivity to root thickness as a function of

root thickness. Objective function is minimized at &Ot J = 0.

HSM2D was implemented in C++ as described in Section 6. Sensitivities of the state variable

outputs to the input parameters were made available as inputs to an external optimization

library. Optimization was performed using the niopt library 111]. The specific optimization al-

gorithm employed was the method of moving asymptotes 128] which is a globally-convergent 1

method for gradient-based local optimization.

1guaranteed to converge to some local minimum of the objective function from any feasible starting point
in the domain
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A grid refinement study was performied to test that the optimum root thickness converged to

the exact solution at the expected order of accuracy. Figure 8-4 shows that the optimization

is indeed 2nd order accurate (for P1 quads).

Grid Convergence of Optimum Root Thickness
ir3"10-

2 id order

10-4

10--

-~1610--

10~7
10-2 10-1 100

1//No. elcims

Figure 8-4: Optimum root thickness error for several grid res-
olutions using P1 quad elements.
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8.2 Results
With the optimization validated in the linear-thickness hanging plate case, a more compli-
cated configuration was optimized to exemplify the full feature set of HSM2D, including:

" Non-linear thickness distribution

" Non-constant acceleration

* Non-zero Poisson ratio

e Large def
z

jy

ormation

co/7st

Atc

reference surface

L

Figure 8-5: Spinning rotor blade with quadratic thickness distribution

The problem is that of a rotor blade subject to a large centrifugal force, as shown in Figure 8-
5. The blade is clamped at the rotor hub and deforms according to the centrifugal force field

proportional to the radial (spanwise) coordinate. The blade still has a constant density

but now has a thickness distribution quadratic in yo. This is implemented by using the

hierarchical basis functions of Figure 8-6 to represent the blade thickness.

Hierarchical Basis Functions

8

- 1 = s

02 = 4s(1-s)

0208 Ref. coord.

Figure 8-6: Hierarchical ba-
sis functions used to repre-
sent quadratic blade thick-
ness. Note that, as imple-
mented, the reference coor-
dinate s = 0 corresponds to
the tip of the blade yo = 1,
and s =1 corresponds to

Yo = 0
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The geometry/loading of the blade, and the parameters for its thickness optimization, are
summarized in Tables 8.2 and 8.3, respectively. The blade is rotating with frequency f =27r W
of 3Hz, chosen so the average acceleration felt by the blade, avg = (ao + aL) = aL/2 was
approximately double that of the gravity in the optimization verification case (Section 8.1).

The constraint in this optimization is the tip deflection, increased
to 10% of the span to prove the large deflection modeling ability of
HSM. However, in the SANS (C++) implementation, the tip dis-
placement parameter sensitivities are only available as weighted
integrals of the displacements along the entire length of the tip
edge. To isolate the centerline tip-edge displacement values, the
a Gaussian weighting distribution was chosen such that the the
middle 10% of the edge lies within three standard deviations of
the mean. The Gaussian weighting function is

W(Xo) = (2 u-w) exp (-(x 0 - x )2/ (2 o))

Table 8.2: Rotor blade
geometry/loading

param.

L

1

p
tL

E

V

(8.12)

where 1 = a" and = - _ max and is visible in Figure 8-7.2x0  and 0u = il n iue87

To enable convergence of the non-linear solver, minimum values of
were selected. The minimum quadratic basis function weight was

g

f
a

value

1

0.5

1,000
0.01

500,000
0.3

0

3

U 2 r

the optimization variables
selected as the value that

would give the plate a minimum thickness of 5% of tL when to was also at a minimum.

Atmin _i

c = 0.95 - 4 1+2
tL 4

The minimum to was set at eight times larger than tL, chosen purely heuristically.

The optimization took 30 iterations to converge at an opti-
mum plate thickness of to = 0.0929 and quadratic weight of
Ate = -0.0341. The results can be seen in Figure 8-8. The
large deformation to the desired tip deflection is clearly visible,
as is the necking expected of a plate with non-zero Poisson ratio
in uniaxial extension. As expected, the optimizer thickened the
root and allowed a quadratic taper to the thin tip. The outwards
flare of the sides and buldging of the tip edge is correctly cap-
tured by the in-plane rotation log-quaternion A3. The x-direction
tensile stress along the base and the concentrated shear stress at
the base corners due to the clamped boundary condition are also
captured correctly.

Table 8.3: Rotor blade
opt. parameters

param.

K

N x

Ny

6spec

0~At"i"
C-

01

value

100

16

32

0.1

0.085

-3.64 x 10-2

8.33 x 10-

0.25
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Gaussian Tip Weighting Function
Weight

25 -

20

15

10

5

0.2 0.4 0.6 0.8 1.0

Figure 8-7: Gaussian weighting distribution to isolate tip-edge centerline de-
flection values. The third standard deviation aligns with the middle 10% of
the edge, so that 99.7% of the weighting comes from that span.

8.3 Summary and Conclusions
The development of HSM is motivated by the need for an intermediate-fidelity structural

model capable of capturing effects due to complex 3D geometries, large deformations, and

anisotropic materials.

HSM is formulated on two-dimensional manifolds in three-dimensional space employing

locally-Cartesian coordinate bases on which the governing equations are constructed. The

governing equations include the in-plane and out-of-plane force and moment equilibrium

equations, the equations enforcing the duality of the constitutive and compatibility strain

definitions, and the equations bounding rotations to within the manifold. Both displacements

and the stresses themselves are counted as primary unknowns in these equations which gives

the "Hybrid" Shell Method its name. Structural parameters of three-dimensional objects

are integrated, or lumped, through the thickness to idealize them as shells and reduce the

complexity of the model.

The continuous HSM formulation is discretized with a Galerkin finite element method

(FEM). The governing equations are cast in the weak form as weighted area integrals taken

over the manifold surface. Spherical interpolation of the local Cartesian bases keeps vector-

defined quantities consistent across a changing surface orientation without resorting to curvi-

linear coordinate systems.

HSM is simplified to HSM2D by restricting the geometry and loading to a plane for the

purpose of model verification. The HSM2D boundary conditions (BCs) are cast in the weak
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form and imposed as additional weights to the governing equation residuals yielding an
adjoint-consistent equation set.

The order-of-accuracy convergence for HSM2D, the adjoint-consistent plane-stress version of
HSM, is verified by the Method of Exact Solutions (MES). P1 elements are found to be second
order accurate for a a uniform plate hanging under its own weight with zero Poisson ratio.
The optimization features of HSM2D are exercised on plate thickness distributions. The
verification test case adds a linear thickness distribution to the hanging plate problem. The
objective function is defined to minimize plate weight subject to a tip deflection constraint,
imposed by adding a tip deflection penalty term to the objective function so the optimization
is unconstrained. The root thickness (for a specified tip thickness) is optimized and is found
to be second order accurate with P1 elements via verification with MES.

A final test case, a rotor blade with quadratic thickness distribution in a centrifugal force field,
exercises the full feature set of HSM2D: non-uniform forcing, non-zero Poisson ratio, large
deflection, and optimization of multiple parameters. The rapid calculation of this complex
optimization provides proof of concept for HSM as an intermediate fidelity conceptual aircraft
design tool.
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Appendix A

Gauss Quadrature in Two-Dimensions

Two-dimensional Gauss qmadratur(. the imet hio(l of calculating sirf(acc integrals by using a

weighted suni of function values evaluated at specific locatiois withiii thIle the surface integral

olidls. was ise( to lehiie I le U normis used as the error iieti in the grid conivergence

studies of Sections 7.3.1. 7.4. and 8.1. Both triangular and quadrilateral elements were

considered.

A.1 Quadrilateral Elements
Gauss quadrature fOr an aritrary quadrilateral element is a three step procedure 151. The

first step is to Imap the arbitrary (1 adrilateral to a square as shown inl Figure A-1. Per

(X 4 , Y4)

(X 1 , Yi)

Figure A-I:
clonment

y (X 3, Y3)

x =P , q)

y
XK2111j

_ _ (X 2, Y2)

Mapping of arbitrarv quadrilateral element to reference square

standard practice. this is accomplished with the nodal (bilinear) shape fnlict ions, N > of

Equations 4.15. The mapping is then:

I = (6/) T N (r/>(A.1t)

(A. 2)
i-i

111

I

(-1, 1)
17

(1, 1)

(1,-i)(- 1,-i)



With the Jacohian of the transformat ion defined by

O(.i. !)J~eaO(=. ' ) [ ocrU .r'1

The second step is to c(alculate the (ladrat nrc weights mid nodes . Finally, the squared

error from the analytical solution at each node is weighted accordingly anld summed. Since

the values of the llodeled solution are only available at the element nodes. they nust be

interpolated to find the values at each (IIadrature poiIt 2.

The equation for the N order Gauss (qaldrature of a quadrilateral element K is

(A .4)
N Ar

w w F (P ( i. -J), Q ( i -y ))| (;.M

A.2 Triangular Elements
Gauss quadrat Ilre for tiianguilar elements is similar to that for quadrilateral elements. Ill

this case. the mlapping is from arbitrary triangle to standard. right triangle as shown in

Figure A-2.

(x3 , y 3 )

(x1, Y1)

(0, 1)|
(x2, Y2)

x =P(f, 0
W=

xK

27

(0,0) (1,0)

Figure A-2: iapping of arbit rary triangular element to referenee right-triangle
element

This is again accomplished with nodal functions.

a 1 (n) i 1 -

For the triangle. the nodal functions.

- 1/
(A. 5)

MATj(1) - r1/

SAccomplislhed in Section 7.3.1 via the lgwt.m M[ATLAB functioti from Greg von Winckel aid iii Sec-
tions 7.4 and 8.1 with native imethods in SANS

2 Accomplished in Section 7.3.1 via the griddata.m MATLAB function
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The mapping is then

3

x = P(c,7) =i zMi( ,?I)
i=1

3

y = Q(C,) = Mi(,)

(A.6)

(A.7)

The Jacobian of this mapping can be found to be J( ,q) = 2AK where AK is the area of
element K, and is calculated via the shoelace formula (shown below for an n-point polygon)

A = n detx x 1
2 = dt Yi Yi+1

(A.8)

The quadrature weights and points are different for the reference triangle than for the refer-
ence quadrilateral element 3.

The equation for the Nth order Gauss quadrature of a triangular element K is

N

/1 F(x,y) dx dy Ak w F (P (i, rT), Q (iri) ) (A.9)

3Accomplished in Section 7.3.1 via the TriGaussPoints.m function from Shaozhong Deng [5] and in
Sections 7.4 and 8.1 with native methods in SANS
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Appendix B

Discussion of Solidworks Solver

Algorithms

The information concerning which algorithms Solidworks actually uses for their shell models
is proprietary to Dassault Systemes. The publically-available theory manual [291, while giv-
ing comprehensive background on FEA in general, does not identify which software options
employ which equations. To gain insight, a brief study was performed with the same plate
geometry, material properties, and loading as Table 7.1 to test the effect of each different
solver option on the maximum deformation of the square plate (with a constant mesh size).
The options include thick vs thin shell, small displacement vs large displacement, linear vs
nonlinear modeling, and constant direction vs norm following loads. The results are shown
in Figures B-1 and B-2.

It is noted from Figure B-1 that there is little difference between the thick and thin shell
options. As discussed in Section 2.2, the difference in application between the two dominant
plate deformation models is that KLPT is for thin plates and MPT is for thick plates. This
test case was specifically selected so the thin-plate approximation of KLPT would apply
(in order for the KLPT analytic solution to be compared against the Solidworks solution
in Section 7.3.1). Therefore, we don't expect to see a difference in thick and thin modeling
options.

It appears then, that the "Thin shell - Small Displacement" option employs KLPT and the
"Thick shell - Small Displacement" option employs MPT. Further investigation of the "Large
Displacement" options is shown in Figure B-2.

It can be assumed the large displacement options use the full non-linear shear deformation
equations and are solved in multiple time-steps to allow large deformations. The non-linear
option, as expected, results in smaller max-deflections than the linear option because it
most-likely takes the increased shear stiffness at large strains into account. Furthermore, the
norm-following results in smaller max-deflections than constant-direction loading, because

115



Solidworks Shell
Solver Algorithms

Thin Shell - Small Disp.

-0-Thick Shell - Small Disp.

10 1i00

z-load [Pa]

Figure B-1: Comparison of thick vs thin shell and large vs small displacement

options for a transverselv-loa(ed SS square plate in Solidworks
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Figure B-2: Comparison of large displacement solver options. linear vs non-

linear anid fixed-direction vs norm-following load. for a transverselv-loaded SS
square plate in Solidworks
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Appendix C

Analytical Solutions for Plate

Deformations

Several sources have performed the Kirchoff-Love analysis for a rectangular plate with di-

mensions 0 < x < a and 0 < y b , pinned on all edges, subjected to a uniform trans-

verse pressure load. eFunda 110] gives the bending deflection of a plate of flexural rigidity

D =(E t3 )/ (12(1 - V2)) subjected to a uniform traverse load p as

W(xy) 00 16p

m=1,3,... n=1,3,....

sin (7r x m) sin (7r y n)

m n ((M)2 + ()2)

Liu and Li [14] studied thin, isotropic plates based on classical thin plate theory. They
determined the bending deflection of a rectangular plate subjected to a uniform transverse

load with two adjacent edges simply supported and the others slidingly-supported to be

W(x,y) =
n=1,3,...

32pa 3 sin(II-E)cos (aix) [Dnr 5 7r5 (1 + cosh (2an) )-

2 a (1 + cosh (2an) ) + n 7r y cosh(Oan)sinh ('n)

- cosh ( nY) (4 a cosh (an) + 2 a an sinh (an) )

eFunda [10] also gives the analytical solution for a circular plate of radius R
uniform transverse pressure load p.

subject to a

(R)4)] (C.3)
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where an - bn7r/(2a)

(C.2)

4

pR I ( , )2) (1 + V) (1W (r) -_ 2 (3 + v)
64D(I+v) I R
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Appendix D

Composite Laminate Theory

D. 1 Overview

Lamination parameters describe the structural properties (in-plane, bending, and extension-

bending coupling stiffnesses) of a composite laminate without having to maintain the detail

of the material, thickness, and fiber-angle of each layer of the composite stack. The classical

stiffness tensor, consisting of the A, B, D sub-matrices, governs the material deformation

via the stress-strain and constitutive relations. For a composite stack, these relations can

be decoupled into "material dependent" and "geometry dependent" effects. The material

dependent effects are summarized by the five Tsai-Pagano parameters, which are functions

purely of the elastic and shear moduli and Poisson's ratios of the materials. The geometry

dependent effects are then summarized by the 15 lamination parameters, which are functions

of the number, thicknesses, and fiber orientations of the composite plies. This number of

lamination parameters is sufficient regardless of the complexity of the composite layup.

Furthermore, three of the lamination parameters are either constant or functions of the

total thickness alone, so the geometric dependent effects of a constant-thickness, arbitrarily

complex, composite laminate is summarized by only 12 parameters.

Use of the Tsai-Pagano and lamination parameters considerably simplifies a lamination com-

posite optimization problem because the feasible regions of lamination parameters (i.e. lam-

ination parameter combinations that correspond to physically realizable layup sequences) is

convex. The feasibility region for 0, 90, 30, +45, and +60 degree plies has been derived,
validated, and confirmed in previous work[15]. This method creates hyperplane-bounded

convex hulls and then groups the three different feasibility regions created from the in-plane

(A-matrix), coupling(B-matrix), and out-of-plane (D-matrix) stiffness elements.

Finding the optimum laminate stacking sequence for a given set of constraints is a two-step
optimization process. Once the feasibility region has been created, the first step is to search
the convex feasible space for the optimum lamination parameters. Then a second optimiza-
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tion must be done to realize a physical stacking sequence from the optimum lamination
parameters (since multiple stacking sequences can yield the same set of lamination param-
eters). The lamination parameter optimization can utilize inverse-gradient based methods
but the stacking sequence optimization is necessarily discrete because it involves an integer
number of layers. Previous implementations have shown success in these discrete optimiza-
tions with particle swarm[3] and genetic[1] algorithms. It is also possible to approximate the
discretized problem with a continuous domain. The optimized number of layers will involve
fractional layers which are rounded to the nearest integer post optimization. Previous stud-
ies have shown this method to nearly approximate the optimum stacking sequence[341, but
the post-process rounding implies the true optimum is not being found.

D.2 Nomenclature

A composite stacking sequence can be very complex, with dozens of layers each at a unique
fiber angle, so the industry has developed a compact nomenclature[341. Composites are
described beginning with the top (outermost) layer of a stack. The simplifying assumption
in this nomenclature (and indeed the analysis and design methods described in later sections)
is that all layers are equally thick and composed of the same material. A composite with N
layers is represented as

[01/02/ ... ION]

Where the top layer has fiber angle 01 and the bottom layer has angle ON (both with respect
to some reference orientation). On-axis layers have 0 = 0' or 0 = 90'. Off-axis layers can

have any other angle of fiber orientation.

Repeated layers, or groups of layers, are represented by subscripts denoting the number of
repetitions. Repeating layer sequences are grouped with parentheses, as in the following
examples:

[02/45/603] = [0/0/45/60/60/60]

[0/(45/602)21 = [0/45/60/60/45/60/60]

[0/45/60]2 = [0/45/60/0/45/60]

Many composites are symmetric about the centerline. Such composites are abbreviated with
a subscript s after the brackets. Note that any symmetric composite has an even number of
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layers. Symmetric stacks can also have repeated subgroups as in the following examples:

[0/45/60]s

[0/(45/60)2]s

[0/45/60]2s

= [0/45/60/60/45/0]

= [0/45/60/45/60/60/45/60/45/0]

= [0/45/60/0/45/60/60/45/0/60/45/0]

Another category of laminates are balanced laminates which have a ply oriented at angle 0 for

each occurrence of a -6 layer. These layers opposite layers need not be stacked adjacently,
but in practice they often are. Such laminates are abbreviated with t or - as follows:

[ 15/ - 30]

[ 15/ -F 30]s

= [15/-15/-30/30]

= [15/-15/-30/30/30/-30/-15/15]

D.3 Derivation and Relation to Classical Stiffness Matrix

The following derivation is an abbreviated form of the derivation in [34] with some edits.

D.3.1 Stress-strain Relations for Rotated Orthotropic Material

The stress-strain relation for an orthotropic material in plane stress (thin section) is:

1

{-2
T12

Q11
Q12

0

Q12
Q22

0

0
0 E2

Q66_ 'Y2

E 2
Q11 = 1 2Ell - E22 V12

Q22 = ElIE2 2 22Ell -- E22 V12

Q12 = v 12 Q22

Q66 = G12

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)
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The transformation matrix for a rotation through an angle 0 (from axes x, y to axes 1, 2) is:

cos 2(9)

sin 2(0)

- cos() sin(9)

sin 2(9)

cos 2(o)
cos(O) sin(O)

2 cos(9) sin(9)
-2 cos(0)

cos2(9) -sin 2 (9)]

1-

=1 o-r

{x
-J

and similarly

The conversion between tensor

(D.7){2 = EY
e12 s EXY

shear strains, E, and engineering shear strains, -y, is:

[1

=10
0

All together, for an orthotropic
relation is:

0
1
0

01
01
2J

(cx)
s6y

EXyJ

eX
= Ey

1EXY

(D.8)

material rotated by an angle 9, the transformed stress-strain

=-1 = = = =_1
=T Q RT R

l-xJ

TXY

Ex

e6y

7jxyJ

Q11

Q12

Q16

Q12

Q22

Q26

Q16
Q26

Q66

ex

~ey
vxyJ

(D.9)

Where Qjj = f(E, v, G, 0)

The combination of the stress-strain relations and the constitutive relations yield the forces
and moment resultants through the classical A, B, D stiffness tensor (which makes the
Kirchoff-Love assumption of zero in-plane deformations of the mid-plane in bending):

fX
fy
fe,
mX
MY
Mxy

A
B

B
D I

Ex

'Y12

KXY

All A 12

A 22

A 16

A 26

A66

B 1 B12 B16

- B 22 B26

- - B6 6

B 1 B 12

- B 2 2

Dil D 12

-D22

B16

B26

B66

D16

D26

D66

Ex
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Ky

KXY

(D.10)

D.3.2 Lamination Parameters and the Stiffness Matrix

For a laminate of orthotropic plies, the material properties are found by integrating the
transformed stiffnesses Qjj through the thickness of the stack. Thus the A, B, D stiffness
matrices can be expressed as a summation of the contributions of each layer. The integrals
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can be reduced to summations because the fiber orientation angle 6 is constant through
each layer. For a laminate of N layers and total height h, where the kth layer has thickness

tk = Zk - Zk-1, top-plane z-coordinate Zk, and mid-plane z-coordinate f = (z Zk+1), the

stiffness terms are:
N

Aij= E (Qii)(k) (Zk - Zk1) (D.11)
k=1

N

Bij = ( (Z2 -Z2_1) (D. 12)

N

Di = j (Qj)( (z - z3_) (D.13)
k=1

The lamination parameter formulation is used to decouple the geometry dependency from
the material property dependency. This allows optimization over a smaller design space since
geometric properties can be lumped through the thickness. The first step is to define the
Tsai-Pagano parameters, also known as the material invariants, which are functions of the
material properties Qij alone.

1
U = -(3 Q11 + 3 Q22 + 2 Q12 + 4 Q66) (D.14)

8
1

U2  -(Q11 - Q22) (D.15)
2

U3= (Q11 + Q22 - 2 Q2 - 4 Q66) (D.16)
8

U4 = 1 (Q11 + Q22 + 6 Q12 - 4 Q66) (D.17)
8
1

U5 = -(Q11 + Q22 - 2 Q12 + 4 Q66) (D.18)
8
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The geometric, or ply-dependent, parameters are then:

O{A,=, } 0 h (D.19)

N

1{AB,}= I tk cos(2 O(k)) dk{Anb} (D.20)
k=1

N

2{ = E tk sin(2 O(k)) { (D.21)
k=1

N

3{ = 1 tk cos(4 O(k)) dk{An5} (D.22)
k=1

N

4 }= 1 tk sin(4 O(k)) dk{ A } (D.23)
k=1

where

dk{A } , , (z - 2 zk zk1 + 2_ 1)} (D.24)

represents the dimensionality of the A, B, D tensors after discretization of the integral

Zk I, z, , z 2}dz through constant fiber orientation layers.

If each layer of the laminate has the same thickness (tk = t), the layer thicknesses can
be moved outside the summation. The geometric terms can then be further simplified by
normalizing by the total thickness, h = Nt [17]. This formulation yields the lamination
parameters, where = :

O 1,0' h2 (D.25)

N

AB, = cos(2 O(k)) dk{Ann} (D.26)
k=1

N

32{A,B,D} = E sin(2 O(k)) dk{A,,} (D.27)
k=1

N

3{ ABD} = E cos(4(k)) dk{J (D.28)
k=1

N

4{ A, B,D} = 5: sin (4 O(k)) dk~} (D.29)
k=1
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The A, B, D stiffness matrices may then be reconstructed as the combination of the material

properties and geometric configuration:

{Al, B11 , Di}~ U1  U2  0 U3  0 01xBDj
{A22, B 2 2, D 22 } U1 -U 2  0 U3  0 = = =

{A 12 , B 12, D 12} h U4  0 0 -U 3 0

{A 66 , B66 , D66} U5  0 0 -U 3 0 2{A,B,D}

{A 16, B16, D16} 0 0 U2  0 0 31A,BD}

{A26,B 26 , D 26} _ _ 0 0 U2  0 0 _ 4{ A, ,DI

D.4 Properties

There are several rules-of-thumb with which a composite designer should be familiar:

" A composite in uniaxial tension will have stiffness properties that are the unweighted-

average of all the layers. In bending, due to the large z-dependence of section modulus,
the stiffness properties of the outer layers have a far greater effect than those of the

inner layers.

* There is no coupling (B = 0) between in-plane and bending deformations of a sym-

metric laminate.

" Extension-twist coupling (B16 and B2 6) are caused by off-axis (6 , 0 or 90) layers that
are not symmetric with respect to the laminate mid-plane. If the laminate is made of
isotropic layers, then B16 = B 26 = 0 even for asymmetric laminates.

" Bending-twist coupling (D16 and D 26 ) exists for all laminates with off-axis layers.

Balancing the laminate (with layers) can make this coupling smaller. The closer
together the balancing layers are, the smaller the coupling will be.

" Balanced laminates will not have shear-extension coupling (A 16 and A26 ) regardless of

how far apart the balancing layers are.
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D .5 Takeaways

* 15 parameters can describe the geometry of any composite laminate of a single material.

* The of the geometric parameters ( O=, = ) are constants or functions of the total
stack thickness alone, leaving 12 geometry dependent parameters for composite
of a given thickness.

* The design space for realizable lamination parameters is always convex.

* There is no direct mapping from lamination parameters to physical ply lay-up,
optimization routines must be used.

* Lamination parameters may use continuous optimization strategies, while the lay-up
optimization is necessarily discrete.

* PSO and GA methods have been successfully used to generate optimized laminate
stacks from given lamination parameters.

126



Appendix E

Dyadic Notation

This section was developed by Steven Allmaras [21 and shared with the author via offline

communication.

Let i and j be unit vectors in x and y, respectively. Operations are dot or inner products

(e.g. i -j = 0), and outer products (e.g. ij). Outer products of unit vectors represent higher
order tensors.

Matrix representation of 2-rank tensors,

1 0)
0 0

1

0)
*-=0 0)
3z = (

.L(0 0
0 1)

Identity matrix,

I2 = ii +ji.) =(1 0)
0 1

Consider generic vector (1-rank tensor) and matrices (2-rank tensors),

A = iiA + i.B + iC+D,

where a, b, A, B, C, D, E, F, G and H are scalars. Matrix transpose,

A =iiA+ijC +jiB + D
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(E.1)

r=ia+ b,

(E.2)

B = iiE+ijF + iG +H (E.3)

(E.4)

S0
0



Matrix-vector inner products:

A r = (iiA + ijB + PiC + 33D) - (Zia + b) = i(Aa + Bb) + j(Ca + Db)
=T

A r= (iiA + ^C +PB +33D) - (Zia+b) = i(Aa + Cb) + X(Ba + Db)
r . A =(ia + jb) - (iiA + ijB + iC + 33D) = i(Aa + Cb) + (Ba + Db)

A r= r. A ,
A-
A *r=r.A

Matrix-vector outer products (producing 3-rank tensors):

Ar = (iiA + Z3B + 3^C + 33D) (ia + b)

= ziiAa + iijAb + ijiBa + ^njBb + jiiCa + 3i3Cb + jjiDa + ^ffDb

A r = (iiA + i3lC + 3iB + jiD) (Za + ^b)

= ziiAa + iijAb + zijzCa + iziCb + ^Z1ziBa + jijBb + 3^Da + jjDb

rA= (ia + b) (ZZA + 3-B + PiC + D)

= %iAa+ i^ Ba+ jjCa+i^iDa+3 jAb+ ijBb+ 5iCb+ ̂  Db

r) T = AT

Gradient operator:

Gradient and vector operations,

VX

V = i-9 +3-
ax ay

4 ) -(za +^b)

X ayr- V = (za + jb)

Vr = OX y) (ia

rV = ia+3b ) ) x

Da
+^7b =zz +

OX

Da
Dx

19
a +

9X
b a

9y
^Ob +Da
3- 3Z- -
Ox Dy

- a a
Sa- + Dy
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(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

(E.12)

(E.13)

(E.14)

(E.15)

(E.16)

(E.17)

ob
-33-ay
+3jb a

Oy
+^ b 9

9X
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Gradient and matrix operations,

V-A= (0
Dz O

A-V= (iiA+i^B

VA= i
oz O
DA
Dx

+^ (iiA+ijB
11y)\
_DB

+ flz3- + ''z 

+^iC +jjD)

Dx
-OA

Dy

AV= (iiA + B + ^iC + ^D) (j
/OX

=zziA a
19X y

+ ijiB a
OX

+ ^1B a
Oy

0Dx

Cross Products

k is normal to plane,

i x k k,

ixk= 1 0 0 =-

0 0 1

s = ic + jd

r x s = (ia + jb) x (ic + .d) = k(ad - bc)

s x r = (ic + jd) x (ia + jb) = k(cb - da) = -r x s

A x r = (iiA + ijB + jiC + jjD) x (ia +^ b) ik(Ab - Ba) + jk(Cb - Da)

r x A = (ia + .b) x (iiA + ijB + fzC + j^D) = ki(Ca - Ab) + k^(Da - Bb)

JA
ax

DC\
Dy

ODB
09(

=i (A a
OXDy ')

D

y
(E. 18)

(y
(E.19)

wDB
+3 Z3-

Oy

DC
Dy +333-

C

+ ^niD 0
9X

(E.20)
y

+j(E2D
Oy

(E.21)

j x = , k x i = , 3 x i f, (E.22)

(E.23)

(E.24)

(E.25)

(E.26)

(E.27)

(E.28)

(E.29)(r x A =-Ax r
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A x B= (iiA +ijB+ jiC+33D) x (iiE +i jF + -ZG+ jjH)

= zik A(G + 3H) - ZikB( ZE + F) + iiC (iG + ) - jiD(ZE +3F)

= ziZ(AG - BE) +zkf3(AH - BF) + 3flc(CG - DE) + jekX(CH - DF)

B x A = (ii E +UF +PG+33H) x (iiA + 1B+37C+33D)

= k E(iC + .D) - ^k^F(%A + B) + .AkG(iC + D) - jkH(%A + ^B)

= iki(EC - FA) + ikj(ED - FB) + j.ki(GC - HA) + .3|(GD - HB)

(Bx ) T = -A x

For material line boundary-integral term, transfer r to final position,

(A -r) x s =-s x (Ar)

= (jC + 3d) x

=-(ic + jd) x

(2iA + UB + jC + jjD) - (ia + Db)

(i( Aa + Bb) + (Ca + Db))

-k (c(Ca + Db) - d(Aa + Bb))

= (ia + 3b)

= k (a(Ad - Cc) + b(Bd -

= r- (AT x s)

= (ki(Ad - Cc) + kj(Bd - Dc)) - (ia + jb)

=-(s x A) - r
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(E.31)

(E.32)

(ZC(Ad - Cc) + 3k(Bd - Dc))

Dc))
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