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Chapter 1

Introduction

This dissertation discusses an alternative for the traditional null hypothesis signifi-
cance testing: the Bayesian evaluation of informative hypotheses. Informative hy-
potheses can be constructed using (in)equality constraints among the parameters of
a statistical model. The support in the data for these hypotheses can be quantified
using the Bayes factor. The last decade has rendered many studies with respect to the
evaluation of informative hypotheses by means of the Bayes factor. This approach
was pioneered by Klugkist, Laudy, and Hoijtink (2005) in the context of ANOVA
models, and was extended to repeated measures (Mulder et al., 2009), contingency
tables (Klugkist, Laudy, & Hoijtink, 2010), and multivariate normal linear models
(Mulder, Hoijtink, & Klugkist, 2010). However, each of these studies was limited
to the evaluation of informative hypotheses in one specific model. This disserta-
tion proposes an approximate Bayesian procedure for the evaluation of informative
hypotheses in general statistical models. These models can be structural equation
models (Kline, 2011) including, e.g., path models, confirmatory factor analysis mod-
els, and latent class models; and, generalized linear (mixed) models (McCullogh &
Searle, 2001) including, e.g., multivariate normal linear models, logistic regression
models, and multilevel models. The proposed Bayesian methods are implemented
into two software packages: BIG for Bayesian evaluation of inequality constrained hy-
potheses in general statistical models, and BaIn for Bayesian evaluation of informative
hypotheses.

Bayesian evaluation of informative hypotheses consists of three steps: construct
candidate informative hypotheses based on the expectations of researchers (elaborated
in Section 1.1); specify the prior distribution and derive the posterior distribution
of the parameters used in the informative hypotheses (elaborated in Section 1.2);
and, compute Bayes factors to determine the support in the data for the informative
hypotheses of interest (elaborated in Section 1.3). In Section 1.4, a short summary
of each of the five upcoming chapters will be given.
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1. Introduction

1.1 Informative hypotheses

This section begins with a motivating example to explain how an informative hypoth-
esis expresses the expectation of a researcher. Suppose an experiment is conducted
to investigate pain sensitivity as a function of morphine tolerance and dependence.
The experiment involves four groups of rats which receive infusions four times and
are placed on a hot plate after each infusion.

• Group 1 receives saline on all four trials.

• Group 2 receives morphine on all four trials.

• Group 3 receives morphine on the first three trials and saline on the fourth trial.

• Group 4 receives saline on the first three trials and morphine on the fourth trial.

After the fourth infusion, the pain sensitivity of the rats is measured by the paw-lick
latency in seconds, i.e., the longer the paw-lick latency, the less the pain sensitivity.
Researchers may have the following expectations about this experiment:

• Group 2 is expected to feel the pain as strong as Group 1, because morphine
tolerance develops such that the effect of morphine disappears.

• Group 3 is expected to suffer from even stronger pain than Group 1, because
morphine dependence occurs.

• Group 4 is expected to experience less pain than Group 1 because of the first
use of morphine in the last trial.

These expectations can be represented by an informative hypothesis: Hi : θ3 < θ1 =
θ2 < θ4. where θ = (θ1, · · · , θ4) contains the means of the paw-lick latency in the
four groups.

The informative hypothesis Hi can be compared to an unconstrained hypothesis

Hu : θ is unconstrained, (1.1)

or to its complement
Hic : not Hi. (1.2)

The complement of an informative hypothesis Hi specifies the parameter space that
is not in agreement with Hi. For example, the complement of Hi : θ1 > 0, θ2 > 0
contains at least one parameter that is not larger than 0. We can also compare Hi to
a competing informative hypothesis Hi′ .

12



1.2. Prior and posterior distributions

1.2 Prior and posterior distributions

The computation of the Bayes factor needs the specification of prior distributions
for the parameters used to specify the informative hypothesis. Since the aim of this
dissertation is to evaluate informative hypotheses in a general situation, the param-
eters used in the hypotheses can be either the unbounded location parameters, e.g.,
the group means and regression coefficients, or the bounded parameters, e.g. the
variances, probabilities, and correlations. When informative hypotheses are spec-
ified using only inequality constraints, a noninformative prior distribution can be
used. Chapter 2 specifies a noninformative normal prior distribution under the un-
constrained hypothesisHu with mean vector of zero and diagonal covariance matrix in
which each variance is approaching infinity. Using this prior specification, hypotheses
with the same structure, e.g., H1 : θ1 > 0, θ2 > 0 vs H2 : θ1 < 0, θ2 < 0 are equally
likely a priori. Chapter 3 specifies a noninformative normal prior distribution with
a different covariance matrix. The prior covariance matrix in the new method is a
product of an infinite number and the estimated covariance matrix of the parameters
used in the informative hypothesis. Based on this prior specification, the Bayes factor
is invariant to linear transformation of the data. This property is important when
comparing, for example, three group means θ1, θ2, and θ3, because the evaluation of
hypothesis H3 : θ1 > θ2 > θ3 should be the same as the evaluation of the equivalent
hypothesis H3′ : β1 > 0, β2 > 0 where β1 = θ1 − θ2 and β2 = θ2 − θ3.

Although this noninformative prior performs well for the evaluation of inequality
constrained hypotheses, it cannot be used when testing hypotheses formulated using
equality constraints because vague priors will result in the Lindley-Bartlett paradox
(Lindley, 1957), i.e., the Bayes factor will always favor the equality constrained hy-
pothesis compared to the unconstrained hypothesis regardless of the data. To avoid
this paradox, Bayesian statisticians have proposed default priors that render easily
computable Bayes factors. Examples are JZS priors (Jeffreys, 1961; Zellner & Siow,
1980; Rouder, Speckman, Sun, Morey, & Iverson, 2009), intrinsic priors (Berger &
Pericchi, 1996), expected posterior priors (Pérez & Berger, 2002), and fractional pri-
ors (O’Hagan, 1995). Chapter 4 introduces three typical default priors for the one
sample t test, and investigates the frequentist properties of these priors in standard
situations. It proposes a new method for default prior specification based on the
frequentist properties. This methods is generalized in Chapter 5, for the evaluation
of informative hypotheses in a general class of statistical models.

The posterior distribution of parameters combines information from the prior and
the data. Because in the present context the prior distribution based on either non-
informative or default settings contains little information, the posterior distribution
depends essentially on the data. Using large sample theory (Gelman, Carlin, Stern, &
Rubin, 2004, p. 101-107) the posterior distribution will be approximated by a (mul-
tivariate) normal distribution. Although a normal approximation of the posterior
distribution has a perfect performance only asymptotically, the simulation studies

13



1. Introduction

in this dissertation will demonstrate that its performance is adequate even for small
sample sizes when the goal is to evaluate informative hypotheses.

1.3 Bayes factors

The Bayes factor is defined as the ratio of the marginal likelihoods under two hy-
potheses of interest (Kass & Raftery, 1995; Hoijtink, 2012, p. 59). The marginal
likelihood provides a Bayesian measure of the support in the data for each hypoth-
esis. Therefore, the Bayes factor has a direct interpretation as the relative support
in the data for two hypotheses. For example, BF12 = 5 implies that the support for
hypothesis H1 is five times larger than for H2 after observing the data. Based on
the rule proposed by Kass and Raftery (1995), the degree of support for H1 versus
H2 is categorized as unconvincing if BF12 ∈ [1, 3], positive if BF12 ∈ [3, 20], strong if
BF12 ∈ [20, 150], and very strong if BF12 ∈ [150,∞].

The Bayes factor for an informative hypothesis against an unconstrained hypothe-
sis can be represented as the ratio of the relative fit and complexity of the informative
hypothesis. This will be elaborated in detail in Chapter 2, Chapter 3, and Chapter 5
where two software packages with user manuals are offered for the computation of the
Bayes factor. These packages are developed in Fortran 90 for the Bayesian evaluation
of inequality constrained hypotheses for general statistical models (BIG) and Bayesian
evaluation of informative hypotheses (BaIn). Interested readers can download them
at website http://informative-hypotheses.sites.uu.nl/software/.

1.4 Outlines of the dissertation

This dissertation extends the existing studies into the Bayesian evaluation of infor-
mative hypotheses in three directions. First, it substantially increases the class of
statistical models for which informative hypotheses can be evaluated. Second, it ex-
plores efficient algorithms to compute the Bayes factor for informative hypotheses
and implements them into software packages. Third, it presents new methods for
prior specification resulting in Bayes factors with attractive properties.

Chapter 2 proposes an approximate Bayes procedure that can be used for the
selection of the best of a set of inequality constrained hypotheses based on Bayes
factors in general statistical models. A software package BIG is provided such that
applied researchers can use the approach proposed for the analysis of their own data.
To illustrate the approximate Bayes procedure and the use of BIG, inequality con-
strained hypotheses are evaluated in a path model and a logistic regression model.
Two simulation studies on the performance of our approximate Bayes procedure show
that it results in accurate Bayes factors.

Chapter 3 develops an efficient algorithm for the computation of the Bayes factor
when evaluating inequality constrained hypotheses in SEM models. This algorithm

14



1.4. Outlines of the dissertation

results in substantial improvement of the software package BIG offered in Chapter 2
as it makes BIG much faster and therefore easier to use for applied researchers. Fur-
thermore, this chapter presents two prior specification methods which render Bayes
factors with different features.

Chapter 4 discusses the prior specification for Bayesian null hypothesis testing. It
investigates the classical type I and type II error probabilities of Bayes factors based
on default priors for a Bayesian t test. It is shown that in most typical situations
these Bayes factors are asymmetric in information, i.e., they result in unequal error
probabilities. Although this asymmetry in information is a natural property of a
Bayes factor, severe cases of asymmetry may be undesirable in a default setting be-
cause the default priors are not a translation of subjective prior believes. Frequentist
calibration is used to obtain Bayes factors with about equal error probabilities.

Chapter 5 focuses on Bayesian evaluation of informative hypotheses that contain
both equality and inequality constraints in general statistical models. It generalizes
the prior specification methods discussed in Chapter 4 for testing equality constrained
hypotheses, and incorporates the approximate Bayesian procedure presented in Chap-
ter 2 and the efficient algorithm developed in Chapter 3 for evaluating inequality
constrained hypotheses. All of this is implemented in the software package BaIn that
is introduced in this chapter.

Chapter 6 is an application of the approximate Bayesian method proposed in
Chapter 2. The informative hypotheses are formulated based on the expectations of
biomedical scientists. These hypotheses are evaluated by means of the Bayes factors
obtained using the software package BIG.
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Chapter 2

Bayesian evaluation of inequality
constrained hypotheses1

2.1 Introduction

Bayesian evaluation of inequality constrained hypotheses has become an attractive
alternative for the evaluation of null hypotheses, because the criticism with respect to
the evaluation of the traditional null hypothesis is steadily increasing. This criticism
consists of four aspects. First, it is hard to image a population that is accurately
described by the null hypothesis "nothing is going on" (Cohen, 1994; Royall, 1997,
p.79-81). In addition, Royall claims that a sample size of zero is sufficient to reject
the null hypothesis, because there is no population that can be in agreement with the
null hypothesis. In Sober’s (2002) words this means that the null hypothesis is not
plausible and thus is a problematic hypothesis. For example, one can hardly find a
population in which three means θ1, θ2 and θ3 are exactly equal, that is, H0 : θ1 =
θ2 = θ3. Therefore, H0 is not a plausible hypothesis, and consequently, data are not
needed to be able to reject it. Second, in psychological science most researchers have
clear theories or expectations with respect to their population of interest, which can
not be expressed by the null hypothesis. Thus, rejection of the null hypothesis does
not provide those researchers with an evaluation of their own expectations (van de
Schoot, Hoijtink, & Romeijn, 2011). For instance, three means θ1, θ2 and θ3 could
be ordered from small to large, but this expectation can not be represented by a
null hypothesis. Evaluating a plausible hypothesis like Hi : θ1 < θ2 < θ3 produces

1This chapter has been published as Gu, X., Mulder, J., Deković, M., & Hoijtink, H. (2014).
Bayesian evaluation of inequality constrained hypotheses. Psychological Methods, 19(4), 511-527.
Author contributions: XG, JM and HH designed the research. MD provided the data. XG performed
the data analyses and simulation study, developed the software package, and wrote the paper. JM
and HH gave feedback on software development. JM, HH and MD provided extensive feedback on
constructing and writing the paper.
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2. Bayesian evaluation of inequality constrained hypotheses

more direct and explicit results than traditional null hypothesis evaluation. Inequality
constrained hypotheses are a formal representation of the theory or expectation that
a researcher has using constraints among the parameters of the statistical model.
It fulfills the requirement of constructing plausible (Sober, 2002), specific and thus
falsifiable (Popper, 1959) hypotheses. The third criticism is that the null hypothesis
significance testing by means of p-values can not quantify the evidence in the data
in favor of the hypothesis under investigation (Wagenmakers, 2007). After rejecting
(p<0.05) or not rejecting (p>0.05) the hypothesis, we still do not know the degree
to which the hypothesis is true or false. The Bayes factor (Kass & Raftery, 1995),
however, can measure the evidence from the data for or against the hypothesis. Using
the Bayes factor, which can have values like .5, 1, and 10, the evidence from the data
for Hi or its complement "not Hi" can be quantified. This enables researchers to
make statements like "after observing the data the support for Hi is half as large
as the support for not Hi", "after observing the data the support for Hi is equal
to the support for not Hi", and "after observing the data the support for Hi is ten
times larger than the support for not Hi". Fourth, the null hypothesis significance
testing can only evaluate the null hypothesis against alternative hypotheses, while
Bayes factors are able to compare two or more possible non-nested hypotheses, such
as, H1 : θ1 > 0; θ2 > 0, H2 : θ1 > θ2, and H3 : θ1 + θ2 > 0.

Bayesian evaluation of inequality constrained hypotheses has almost exclusively
been studied in the context of the multivariate normal linear model. For example,
Klugkist et al. (2005) developed it for analysis of variance or analysis of covariance
models with inequality constraints on the means. The same approach has been applied
in repeated measures analysis (Mulder et al., 2009) to evaluate the development of
means over time. Applications in the context of the multivariate normal linear model
are described in Mulder et al. (2010) and implemented in the software package BIEMS
(Mulder, Hoijtink, & de Leeuw, 2012). In addition, there have been a few excursions to
other models such as multilevel models (Kato & Hoijtink, 2006; Mulder & Fox, 2013)
and models for contingency tables (Klugkist et al., 2010). All these studies used the
Bayes factor as the criterion to select the best of competing inequality constrained
hypotheses. However, as will be elaborated later in this paper, the formulation of
the Bayes factor depends on the statistical model at hand. The procedures that have
currently been developed are not generally applicable. For each new statistical model,
Bayesian evaluation of informative hypotheses has to be reanalyzed, redeveloped and
reprogrammed.

To avoid these repetitions, this paper demonstrates an approximate Bayes proce-
dure for the evaluation of inequality constrained hypotheses that can be applied to
a large class of statistical models. The basic principle is that large sample theory
allows posterior distributions to be approximated by normal distributions. Explicit
discussion of this theory is given by Gelman et al. (2004, p.101-107). As will be
shown, this implies that the Bayes factor can be computed based on noninformative
prior and approximate normal posterior distributions for many statistical models (a
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more precise description will be given below). This renders a generally applicable
procedure and will therefore substantially extend the class of statistical models for
which inequality constrained hypotheses can be evaluated.

Throughout the paper, inequality constrained hypotheses will be specified as
Hi : Rθ > r, where R denotes the restriction matrix representing the inequality
constrained hypothesis, and θ and r contain the parameters and constants in the hy-
pothesis, respectively. The number of rows in R is equal to the number of inequality
constraints needed to construct Hi denoted by K, and the number of columns is equal
to the number of parameters denoted by J . The vector θ contains J parameters and
the vector r contains K constants. For instance, Hi : θ1 < θ2 < θ3 is an example

with J = 3 and K = 2, which leads to R =

(
−1 1 0
0 −1 1

)
, θ = (θ1, θ2, θ3)T,

and r = (0, 0)T. Note that R should not be used to construct hypotheses using

equality constraints like Hi : θ1 = θ2 which would be obtained if R =

(
1 −1
−1 1

)
and r = (0, 0)T, or using about equality or range constraints like Hi : 0 < θ1 < 2
which would be obtained if R = (1,−1)T and r = (0,−2)T. The application of our
approach is strictly limited to the evaluation of inequality constrained hypotheses.

The outline of this paper is as follows. First, two examples with respect to path
modeling and logistic regression modeling are presented in which the expectations
of researchers are represented by inequality constrained hypotheses. Subsequently, it
will be elaborated that in order to obtain the normal approximation of the posterior
distribution, the estimates and covariance matrix of parameters of the statistical
model used are needed. For the two examples that will be given, these will be obtained
using Mplus (Muthén & Muthén, 2010; http://www.statmodel.com) and OpenBUGS
(Ntzoufras, 2009; Lunn, Thomas, Best, & Spiegelhalter, 2000; http://www.openbugs
.info), respectively. Thereafter it is elaborated how estimates and covariance matrix
are used to obtain normal approximations of the density of the data, and the resulting
posterior under the statistical model at hand. Then it will be elaborated how the
Bayes factor can be computed and used as a criterion to evaluate the inequality
constrained hypotheses under investigation, after which the two examples will be
analyzed using the approach presented in this paper. Thereafter, the performance of
the approximate Bayes procedure will be assessed using two simulation studies. The
paper is concluded with a short discussion. Appendices will be given that explain the
Mplus and OpenBUGS codes used for the analyses of the examples and to describe
how the program BIG (Bayesian evaluation of inequality constrained hypotheses for
general statistical models) can be used to compute Bayes factors to evaluate inequality
constrained hypotheses in general statistical models.
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2. Bayesian evaluation of inequality constrained hypotheses

Table 2.1: Descriptives for the variables in the path model

Variable Mean S.D.
Antisocial behaviour 1.44 .56

Positive quality 3.03 .92
Negative quality 2.00 .70

Adolescent disclosure 2.76 .64
Deviant peers 1.71 .68

2.2 Two examples of inequality constrained hypotheses

In this section, two examples will be introduced that will be used to illustrate that
our approach can be used for the evaluation of inequality constrained hypotheses in
a rather general class of statistical models. In each example, the expectations of
researchers with respect to the relationships among the variables will be translated
into inequality constrained hypotheses. As will be shown in a later section, the Bayes
factor can be used to determine the support in the data for these hypotheses.

2.2.1 Example 1: Path modelling

Structural equation modeling (SEM) (Kline, 2011) is popular in the behavioural and
social sciences. It incorporates regression, path, and factor analysis models. Here
a path model for the prediction of adolescent antisocial behaviour will be used to
illustrate the evaluation of inequality constrained hypotheses. The child’s family is
regarded as the major factor in the evolvement of antisocial behaviour (Deković,
Wissink, & Meijer, 2004). To assess the parent-adolescent relationship, three aspects
- positive quality, negative quality and adolescent disclosure are frequently investi-
gated. Besides, as children approach adolescence, it is inevitable that the number of
their deviant peers becomes a crucial factor of individual antisocial behaviour. The
descriptives for each variable are given in Table 2.1. The data consists of N=603
adolescents. Most of the variables are measured on 5-point scale except disclosure
which is measured on a 4-point scale. Low scores mean less degree, frequency or quan-
tity of corresponding variables, e.g. for antisocial behaviour the score 1 means the
adolescent does not have any antisocial activities in the last 12 months. High scores
mean more degree, frequency or quantity, e.g. for disclosure the score 4 means the
adolescents tell their parents everything about their activities. The relations among
these variables can be represented by the path model presented in Figure 2.1 (van de
Schoot, Hoijtink, & Deković, 2010).

Figure 2.1 also shows how the variables are related to each other. Evaluation of
inequality hypotheses is only sensible if the parameters involved are comparable, that
is, standardized. This can be achieved by standardizing both the independent and
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2.2. Two examples of inequality constrained hypotheses

Figure 2.1: Path model for the variables in Example 1

the dependent variables:

Z(yi) = ΠZ(yi) + ΓZ(xi) + δi, (2.1)

where Z(.) denotes standardization of the argument, Z(yi) = (Z(y1i), Z(y2i))
T,

Z(xi) = (Z(x1i), Z(x2i), Z(x3i))
T, Π =

(
0 0
θ0 0

)
and Γ =

(
θ11 θ12 θ13

θ21 θ22 θ23

)
are matrices of regression coefficients, and δi ∼ N(0,Ψ) is a vector of residuals with
Ψ being the residual covariance matrix. This manner of dealing with scale differences
in the structural parameters is straightforward and easy to implement. However, it
can be criticized because the data are used twice: once to standardize the dependent
and independent variables; and once to evaluate the inequality constrained hypothe-
ses. As is elaborated in Appendix 2.A, there is a more elaborate manner to deal
with standardization. However, as will be shown using a simulation study, the results
obtained using both approaches are virtually indistinguishable.

Many researchers have expectations that can be represented in the form of in-
equality constraints among the parameters of a SEM model. Deković et al. (2004)
expected that adolescent disclosure is the strongest predictor of antisocial behavior
among the parent-adolescent relationship variables, and indicate that the associa-
tion with deviant peers is the overall strongest determinant of problem behavior in
adolescence. We therefore consider the following inequality constrained hypotheses:

H1 :
θ23 > {θ21, θ22}

θ0 > {θ21, θ22, θ23}
, (2.2)
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2. Bayesian evaluation of inequality constrained hypotheses

Table 2.2: Descriptives for the variables in the LR model

N GRE GPA

Total admit = 1 Mean S.D. Mean S.D.
rank = 1 61 33 611.80 120.24 3.45 .39
rank = 2 151 54 596.03 107.01 3.36 .37
rank = 3 121 28 574.88 121.15 3.43 .38
rank = 4 67 12 570.15 116.22 3.32 .36
Total 400 127 587.70 115.52 3.39 .38

and

H1c : not H1. (2.3)

Note that H1 represents what the researchers consider to be plausible, that is, their
expectation. H1c is the complement of H1, that is, it expresses what the researchers
do not expect. H1 and H1c define an arena in which null hypothesis testing is unable
to play a significant role. As will be shown in the remaining of the paper, theses
hypotheses can be evaluated using the Bayes factor.

2.2.2 Example 2: Logistic regression modelling

The logistic regression (LR) model is the counterpart of the conventional multiple
regression model if the dependent variable is binary instead of continuous. Consider
an example from UCLA Academic Technology Services (data available on the Web
at http://www.ats.ucla.edu/stat/data/binary.sav). When a graduate school in
the USA assesses the qualification of applicants, general determinants are graduate
record examination (GRE) scores and undergraduate grade point average (GPA).
As can be seen from the descriptives in Table 2.2, the outcome called "admit" is a
binary variable, that is, admit = 1 means approval and admit = 0 means refusal.
The independent variable GRE scores are obtained by a standardized test intended to
measure the abilities of graduates and takes on values between 200 and 800. The GPA
is measured on a 4 point scale and reflects the academic result of graduates throughout
their studies. The higher the GRE and GPA scores, the better the applicants.

However, the GPA rendered by undergraduate institutions with high prestige is
more convincing than those with low prestige. We accordingly analyze the data
among the different institution prestige levels denoted by "rank" measured on 4
discrete values. Institutions with a rank of 1 have the highest prestige, while those
with a rank of 4 have the lowest. As described in Table 2.2, consequently, the data
can be separated into four groups based on the rank.

This example can be modelled using a LR model. To ensure comparability of the
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2.3. Estimates and covariance matrix of the structural parameters

regression coefficients, the independent variables are standardized:

logit(pji) = θj0 + θj1Z(GREji) + θj2Z(GPAji). (2.4)

There are four rank groups labeled j = 1, 2, 3, 4. In each group, logit(pji) = ln(
pji

1−pji ),
pji denotes the probability of admit = 1, θj0 is the intercept, and θj1 and θj2 are the
coefficients of two predictors.

As discussed before, the GPA of candidates from low prestige institutions is less
trusted by the evaluator, therefore, the effect of GPA might decrease with ascending
rank level. Besides, when the evaluator determines the admission of candidates from
high prestige institutions, the convincing GPA is likely to play the principal role.
However, for the candidates from low prestige institutions, their GRE scores might
be more important. As a result, the hypotheses for this example can be constructed
as follows:

H1 : θ12 > θ22 > θ32 > θ42, (2.5)

H2 :

θ11 < θ12

θ21 < θ22

θ31 > θ32

θ41 > θ42

, (2.6)

and

H3 :

θ11 < θ12

θ21 < θ22

θ31 > θ32

θ41 > θ42

θ12 > θ22 > θ32 > θ42

, (2.7)

Note that H3 contains all the constraints in H1 and H2 so that it can be expressed
as H3 : H1&H2. Later in this paper these hypotheses will be mutually evaluated and
compared to an unconstrained alternative hypothesis. This will highlight another
advantage of hypothesis evaluation using Bayes factors over null hypothesis significant
testing. The Bayes factor renders a direct comparison of two or more hypotheses,
while null hypothesis significant testing is basically limited to two hypotheses H0 and
Ha.

2.3 Estimates and covariance matrix of the structural
parameters

Once the model has been constructed, the parameters in the model can be estimated
by various approaches. Let θ denote a vector containing the structural parameters
of the specified model, that is, the parameters that will be used in the formulation
of informative hypotheses, and let ζ denote the nuisance parameters, that is, the

23



2. Bayesian evaluation of inequality constrained hypotheses

Table 2.3: Estimates and covariance matrix of the structural parameters in the path
model from Mplus

Σθ

θ̂ θ21 θ22 θ23 θ0
θ21 .046 1.04E-3
θ22 .089 2.25E-4 9.37E-4
θ23 .126 -4.70E-4 7.53E-5 1.04E-3
θ0 .674 -7.21E-5 -2.82E-4 1.78E-4 8.82E-4

parameters that will not be used in the hypotheses. As will be elaborated in the
next section, when evaluating constrained hypotheses using our approach, the es-
timates and covariance matrix of the structural parameters have to be calculated,
which are represented by θ̂ and Σθ, respectively. In the following two subsections we
will estimate the structural parameters using Mplus (Muthén & Muthén, 2010) and
OpenBUGS (Ntzoufras, 2009; Lunn et al., 2000) for both the path model and the LR
model. Mplus can be downloaded from http://www.statmodel.com, and OpenBUGS
can be downloaded from http://www.openbugs.info. Both are rather encompassing
packages that can be used to obtain estimates and covariance matrix of the structural
parameters for very general classes of statistical models.

2.3.1 Example 1 (Continued)

Consider again the example using the path model. Here the structural parameters
are θ = (θ21, θ22, θ23, θ0) and the nuisance parameters are ζ = (θ11, θ12, θ13,Ψ). As
was elaborated above, the first step in the estimation of the structural parameters is
to standardize the variables to ensure that the parameters are comparable. Subse-
quently, both Mplus and OpenBUGS are used to obtain the estimates and covariance
matrix of these structural parameters. The reason for the use of two softwares is to
investigate whether there is a consensus in parameter estimates across programs.

As illustrated in Figure 2.1, Z(y1) regresses on Z(x1), Z(x2), Z(x3), and Z(y2)
regresses on Z(y1), Z(x1), Z(x2), Z(x3). In Appendix 2.B, the commands in Mplus

Table 2.4: Estimates and covariance matrix of the structural parameters in the path
model from OpenBUGS

Σθ

θ̂ θ21 θ22 θ23 θ0
θ21 .046 1.54E-3
θ22 .090 3.37E-4 1.39E-3
θ23 .127 -6.87E-4 1.15E-4 1.53E-3
θ0 .674 -1.01E-4 -4.07E-4 2.58E-4 1.30E-3
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Table 2.5: Estimates and covariance matrix of the structural parameters in the LR
model from Mplus

Σθ

θ̂ θ11 θ12 θ21 θ22 θ31 θ32 θ41 θ42
θ11 .30 9.91E-2
θ12 .42 -3.59E-2 9.18E-2
θ21 .17 0 0 3.36E-2
θ22 .30 0 0 -8.91E-3 3.39E-2
θ31 .40 0 0 0 0 7.35E-2
θ32 .16 0 0 0 0 -3.48E-2 6.98E-2
θ41 .29 0 0 0 0 0 0 .11
θ42 .39 0 0 0 0 0 0 -2.58E-2 .13

needed to estimate the parameters of this model are displayed and annotated, whereas
the commands for OpenBUGS are omitted in this model. Executing Mplus and OpenBUGS
with the data and commands renders the estimates and covariance matrix of the
structural parameters. The results obtained in Mplus and OpenBUGS are displayed
in Table 2.3 and 2.4, respectively, and show that the parameter estimations from
different software packages are almost identical.

2.3.2 Example 2 (Continued)

Consider again the example using the logistic regression model. To ensure that the
regression coefficients are comparable, the predictors in the LR model have to be
standardized. In the hypotheses H1, H2 and H3, the coefficients of each predictor are
treated as the structural parameters, that is θ = (θ11, θ12, θ21, θ22, θ31, θ32, θ41, θ42),
whereas the intercepts are the nuisance parameters, that is, ζ = (θ10, θ20, θ30, θ40).
To estimate these coefficients and their covariance matrix for the LR model, both
Mplus and OpenBUGS are used.

In Appendix 2.C, the OpenBUGS code needed to obtain θ̂ and Σθ is displayed
and annotated, whereas the Mplus code is left out. Implementation of Mplus and
OpenBUGS renders the estimates and covariance matrix of the structural parameters
under consideration. The results are displayed in Table 2.5 and 2.6 using each soft-
ware, and the similar conclusion of consistent estimation in Mplus and OpenBUGS can
be drawn.

2.4 Density of the data, prior and posterior distribution

The density of the data plays an important role both in classical and Bayesian in-
ference. It is a formal representation of the information contained in the data with
respect to the unknown model parameters. For general statistical models, the density

25



2. Bayesian evaluation of inequality constrained hypotheses

Table 2.6: Estimates and covariance matrix of the structural parameters in the LR
model from OpenBUGS

Σθ

θ̂ θ11 θ12 θ21 θ22 θ31 θ32 θ41 θ42
θ11 .32 9.94E-2
θ12 .45 -4.07E-2 .10
θ21 .17 0 0 3.40E-2
θ22 .31 0 0 -8.93E-3 3.48E-2
θ31 .42 0 0 0 0 7.74E-2
θ32 .17 0 0 0 0 -3.70E-2 7.40E-2
θ41 .30 0 0 0 0 0 0 .12
θ42 .41 0 0 0 0 0 0 -2.93E-2 .14

is f(X|θ, ζ), where X denotes the data, and θ and ζ denote the structural and nui-
sance parameters, respectively. For example, consider the path model in the previous
section:

yi = Πyi + Γxi + δi, δi ∼ N(0,Ψ). (2.8)

The data are X = {yi,xi}, the structural parameters are θ = (θ0, θ21, θ22, θ23), and
the nuisance parameters are ζ = (θ11, θ12, θ13,Ψ).

When evaluating inequality constrained hypotheses of the form Rθ > r, we can
specify non-informative normal prior distributions because the complexity of Hi (an
important component of the Bayes factor, see the next section) is independent of the
specification of the prior mean and variance. A thorough discussion of this issue is
given in Chapter 10 of Hoijtink (2012, p.195). Therefore, the prior distribution of the
structural parameters can be chosen as:

h(θ) = N(0,Σ∞), (2.9)

where 0 = (0, . . . , 0)T, and Σ∞ means that the variance of each parameter is ap-
proaching infinity, whereas each covariance is equal to zero.

There are several advantages of using prior distribution (2.9). First, it conjugates
to the normally approximated posterior distribution shown at the end of this section.
Second, the impact of prior distribution (2.9) on the posterior distribution is negli-
gible, therefore, for any sample size the posterior distribution only depends on the
data. Third, for an equivalent set of hypotheses, for example H1 : θ1 > θ2 > θ3 and
other five hypotheses in which the parameters have different orders, all hypotheses
are equally likely a priori, that is, 1/6 of the prior distribution is in agreement with
each hypothesis. The concept of equivalent hypotheses will be elaborated later on in
this section. Other non-informative priors can also be specified without being conju-
gate, such as uniform priors with very large and symmetric bounds and t-distributions
with very large variance. However, estimates and covariance matrix of structural pa-
rameters will not be affected by choosing other non-informative priors, because the
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posterior distribution is virtually independent of non-informative priors, and the pro-
portion of prior distribution in agreement with each hypothesis that is a member of
equivalent set is still unchangeable. For example, when specifying a non-informative
uniform prior distribution, that is, with a lower bound of -10000 and an upper bound
of 10000, for the structural parameters of LR model in OpenBUGS, the estimates of
structural parameters are θ = (0.32, 0.45, 0.17, 0.31, 0.42, 0.17, 0.29, 0.42), which are
almost identical to the results in Table 2.6.

Note that the normal prior distribution (2.9) can straightforwardly be applied to
statistical models in which the structural parameters are unbounded. Examples are
structural equation models (Kline, 2011), the generalized linear model (McCullagh
& Nelder, 1989) which includes, among others, linear and non-linear regression mod-
els, analysis of variance models, and models for the analysis of repeated measures,
generalized mixed models (McCullogh & Searle, 2001), which includes among oth-
ers multilevel models (Hox, 2010; De Leeuw & Meijer, 2008) and log-linear models
(Agresti, 2007, Chapter 7; Azen & Walker, 2010, Chapter 7).

Equation (2.9) can not straightforwardly be applied to statistical models in which
the structural parameters are bounded. Examples of bounded parameters are vari-
ances (which have a lower bound of zero), probabilities (which are bounded between
0 and 1), and correlations. Suitable prior distributions for these parameters have to
account for their bounded nature. If, for example, the data are contained in a 2 x 2
contingency table (an example will be given in the second simulation study presented
later in this paper), the prior distribution of the four cell-probabilities should be
Dirichlet (Klugkist et al., 2010) rather than normal. However, as will be elaborated
in the next section, the prior distribution is used to compute the complexity of the in-
equality constrained hypotheses under consideration. This implies that our approach
can also be applied to models in which the structural parameters are bounded, as
long as the complexity of the inequality constrained hypotheses of interest computed
using (2.9) is the same as the complexity computed using a non-informative prior dis-
tribution that accounts for the bounded nature of the structural parameters (like the
Dirichlet distribution in the contingency table example). As is elaborated in Hoijtink
(2012, Chapter 10.3), this holds for all hypotheses that belong to an equivalent set.

A hypothesis belongs to an equivalent set if: each element ofR is either a 1, −1, or
0; if the sum of the elements in each row of R equals zero; if the first row of R can be
divided into J/M subsets of the same size such that the other rows are permutations
of these subsets (note that M denotes the number of 1’s in the first row of R); and
if r = 0. The following are examples of hypotheses belonging to equivalent sets:

• θ1 > θ2 > θ3 > θ4 for which R =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

. As can be seen,

each element of R is either a 1, -1, or 0. The sum of the elements in each
row equals zero. The first row can be divided in J/M = 4/1 = 4 subsets each
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containing one number and the second and third row are permutations of these
four subsets.

• θ1 − θ2 > θ3 − θ4 > θ5 − θ6 for which R =

(
1 −1 −1 1 0 0
0 0 1 −1 −1 1

)
. As

can be seen, each element of R is either a 1, -1, or 0. The sum of the elements
in each row equals zero. The first row can be divided in J/M = 6/2 = 3
subsets each containing two numbers, that is, {1,−1}, {−1, 1} and {0, 0}, and
the second row is a permutation of these three subsets.

• θ1 > θ2, θ3 > θ4 for which R =

(
1 −1 0 0
0 0 1 −1

)
.

• θ1 > {θ2, θ3, θ4} for which R =

 1 −1 0 0
1 0 −1 0
1 0 0 −1

.

The following are examples of hypotheses that do not belong to an equivalent set:

• θ1− θ2 > θ2− θ3 for which R = (1,−2, 1). Because R contains the value 2 this
hypothesis does not belong to an equivalent set.

• θ1 − θ2 > .5 for which R = (1,−1). Because r contains the value .5 this
hypothesis does not belong to an equivalent set.

• θ1 − θ2 > θ3 − θ4 with θ1 + θ2 > θ3 + θ4 for which R =

(
1 −1 −1 1
1 1 −1 −1

)
.

Note that the first row of R can be divided into J/M = 4/2 = 2 subsets of two
numbers, that is, {1,−1} and {−1, 1}. However because the second row cannot
be obtained by permuting these two subsets, this hypothesis does not belong to
an equivalent set.

The posterior distribution integrates the information contained in both the density
of the data and the prior with respect to the structural parameters. In order to
evaluate informative hypotheses for statistical models in general, large sample theory
(Gelman et al., 2004, p.101-107) is used. A fundamental principle of large sample
theory is the asymptotic normality of the posterior distribution. This implies that
the posterior distribution can be approximated by a normal distribution:

g(θ|X) ≈ N(θ̂,Σθ). (2.10)

where θ̂ denotes the estimates of structural parameters, and Σθ denotes their covari-
ance matrix.

Using normal approximations for the posterior distribution of the structural pa-
rameters of statistical models, the evaluation of informative hypotheses has become
feasible for many statistical models without the need to reformulate, reevaluate and
recompute the Bayes factor for each new statistical model.
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Table 2.7: Degree of evidence

BFia evidence in favor of Hi

1 to 3 anecdotal
3 to 20 positive
20 to 150 strong
> 150 very strong

2.5 Bayes factor

In this paper, the Bayes factor is used to select the best of a set of competing inequality
constrained hypotheses. The Bayes factor of an inequality constrained hypothesis
Hi against an unconstrained hypothesis Ha can be represented as the ratio of the
posterior and prior probability that the inequality constraints hold (Mulder et al.,
2010; Hoijtink, 2012, p.51):

BFia = fi/ci, (2.11)

where ci called complexity is the proportion of the prior distribution (2.9) in agree-
ment with Hi, and fi called fit is the proportion of the posterior distribution (2.10)
in agreement with Hi. In addition to BFia, we can also compute the Bayes factor of
a hypothesis versus its complement. This Bayes factor can be written as:

BFiic =
fi
ci
/

1− fi
1− ci

. (2.12)

The Bayes factor can be interpreted as the amount of evidence from the data in
favor of hypothesis Hi against hypothesis Ha. For example, BFia = 10 indicates that
after observing the data, the support for Hi is ten times stronger than the support
for Ha. To interpret the strength of evidence according to BFia, Kass and Raftery
(1995) proposed rules as given in Table 2.7. Note that, the number 1 is an important
reference value for the interpretation of the Bayes factor. If BFia > 1, Hi obtains
more support from the data than Ha, and if BFia < 1, Ha obtains more support
from the data than Hi. This interpretation of the Bayes factor also applies to BFiic
and BFii′ , the latter will be elaborated below.

In this paper, both ci and fi are estimated by sampling form the prior and posterior
distribution, respectively. Note that the posterior is approximated by a multivariate
normal distribution, for which Gibbs sampler can be particularly used. The Gibbs
sampler obtains draws from the posterior distribution and allows those sample draws
to be summarized to obtain a full description of the posterior distribution of model
parameters. According to the previous paragraph, ci is the proportion of the prior
sample in agreement with Hi, and fi is the proportion of posterior sample in agree-
ment with Hi. In order to obtain accurate estimates of ci and fi, the decomposition
of the Bayes factor presented in Chapter 10 of Hoijtink (2012) is used. The technical
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details of the Gibbs sampler and decomposition of the Bayes factor are presented in
Appendix 2.D.

A software package BIG can be used for the computation of the Bayes factor using
estimates and covariance matrix of the structural parameters and the hypothesis Hi

of interest as input. This package can be downloaded from http://informative
-hypotheses.sites.uu.nl/software/, and a user manual is provided in Appendix
2.E. Execution of BIG renders BFia and BFiic accompanied by their Monte Carlo
error (MC error), that is, an estimate of the standard deviation of each Bayes factor
due to sampling (Hoijtink, 2012, p.211) and a 95% credible interval.

If the evaluation of two or more constrained hypotheses is of interest, the program
BIG has to be run once for every hypothesis, The Bayes factor that compares two
hypotheses Hi and Hi′ can be obtained as:

BFii′ = BFia/BFi′a =
fi
ci
/
fi′

ci′
. (2.13)

As can be seen, using BFia and BFi′a obtained using BIG, BFii′ can straightforwardly
be computed. To present the information in the Bayes factors computed for a set of
three or more hypotheses in an accessible manner, the Bayes factors can be trans-
formed into posterior model probabilities (PMPs) (Hoijtink, 2012, p.52). Assuming
that a priori of each hypothesis is equally likely, these PMPs can be computed as:

PMPi =
BFia∑
iBFia

. (2.14)

The PMPs are a representation of the support in the data for each hypothesis on a
scale between 0 and 1. These PMPs convey the same information as the corresponding
Bayes factors and will be helpful if two or more Bayes factors have to be evaluated.

2.6 Results for the two examples

2.6.1 Example 1 (Continued)

The inequality constrained hypothesisH1 is compared with its complementH1c in the
path model predicting adolescent antisocial behaviour. BF11c can be computed using
BIG described in Appendix 2.E. Running the program with the parameter estimates
and covariance matrix in Table 2.3 renders BF11c = 39.89. This implies that the
support in the data for H1 is 39.89 times larger than the support for H1c . Based on
the rules of Kass and Raftery (1995) displayed in Table 2.7, BF11c = 39.89 is strong
evidence in favor of H1. The 95% credible interval of BF11c is (32.56, 46.84). This
reflects that the MC error is rather small and does not affect our conclusions.

In a psychological perspective this implies that adolescent disclosure is the strongest
determinant of antisocial behavior among the three parent-adolescent relationships,
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Table 2.8: Bayes Factors and Posterior Model Probabilities

Hi BFia 95% credible interval PMPi
H1 1.72 (1.49, 1.96) .24
H2 1.89 (1.62, 2.16) .26
H3 3.65 (3.02, 4.33) .50

that is, positive quality, negative quality and adolescent disclosure, and that deviant
peers is overall the most prominent predictor of problem behavior in adolescence.

It should be noted that H1 can also be compared to other competing models, for
instance, H2 : θ21 > θ22 > θ23 > θ0. The selection of competing hypotheses depends
on the expectations of researchers. In the path model, hypothesis H1 against its
complement H1c is evaluated using BF11c , whereas in the LR model presented in
the next section, three competing hypotheses will be evaluated via Bayes factors and
posterior model probabilities.

2.6.2 Example 2 (Continued)

With respect to the LR model predicting the probability of being admitted to gradu-
ate school, three inequality constrained hypotheses are considered. To determine the
best hypothesis amongH1, H2 andH3, the Bayes factor of each inequality constrained
hypothesis against the unconstrained hypothesis will be calculated using (2.11). This
can be achieved by running the BIG three times using the parameter estimates and co-
variance matrix displayed in Table 2.6. After obtaining these Bayes factors, posterior
model probabilities will be computed. The results are listed in Table 2.8.

As can be seen in Table 2.8, BF3a = 3.65 is larger than others, which reflects
that H3 is most supported by the data. This can also be seen from the corresponding
PMPs: H3 has the largest PMP. According to the rules shown in Table 2.7, BF3a =
3.65 is positive evidence in favor of H3, whereas both BF1a = 1.72 and BF1a = 1.89
are only anecdotal evidence, that is, they are not convincing evidence in favor of the
corresponding hypotheses. Note that, using (2.13) we obtain that BF31 = 2.12 and
BF32 = 1.93, that is, H3 is not yet convincingly better than H1 and H2. Note finally
that the 95% credible intervals (see Table 2.8) reflecting the size of the MC error are
relatively small. This implies that our conclusions are not affected by the MC error.

In conclusion, although not yet convincingly, H3 is preferred. This suggests that
the impact of GPA declines with ascending rank level and that the GRE score of the
applicant from low prestige institutions is more important than the GRE score for
applicants from high prestige institutions.
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2. Bayesian evaluation of inequality constrained hypotheses

2.7 Performance of normal approximations

Normal approximations are often used in statistics. Examples are Wald’s test if a
parameter is zero (Gourieroux, Holly, & Monfort, 1982) and the derivation of Akaike’s
information criterion (Akaike, 1973). The performance of normal approximations
depends on the true model and the sample size. Therefore, normal approximations
may be not generally applicable and the accuracy of normal approximations needs
to be assessed. In this section, we conduct two simulation studies comparing the
Bayes factors based on a normal approximation of the posterior distribution to the
Bayes factors based on the true posterior distribution. In the first study the Bayes
factor computed using BIG is compared to the Bayes factor computed using BIEMS
(Mulder et al., 2012) in the context of a multiple regression model. In the second
study the Bayes factor computed using BIG is compare to the Bayes factor computed
using ContingencyTable (Klugkist et al., 2010) in the context of inequality constrained
hypotheses for contingency tables. BIEMS and ContingencyTable can be downloaded
from http://informative-hypotheses.sites.uu.nl/software/.

2.7.1 Multiple regression

In the first study the following regression model is considered

yi = θ0 + θ1x1i + θ2x2i + εi, (2.15)

where, θ0 is the intercept, θ1 and θ2 are the regression coefficients relating each
predictor to yi, and εi ∼ N(0, σ2) is the residual. Three inequality constrained
hypotheses are evaluated using the Bayes factor: H1 : θ1 > 0, θ2 > 0, H2 : θ1 > θ2,
and H3 : H1&H2. Data sets with sizes 20, 40, 80 and 160 are generated using the
following specifications:

1. θ0 = 0, θ1 = θ2 = 0, σ2 = 1, µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, ρ = 0

2. θ0 = 0, θ1 = θ2 = .4472, σ2 = .6, µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, ρ = 0

3. θ0 = 0, θ1 = θ2 = .378, σ2 = .6, µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, ρ = .4

4. θ0 = 0, θ1 = 2θ2 = .5656, σ2 = .6, µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, ρ = 0

5. θ0 = 0, θ1 = 2θ2 = .4924, σ2 = .6, µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, ρ = .4

6. θ0 = 0, 2θ1 = θ2 = .5656, σ2 = .6, µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, ρ = 0

7. θ0 = 0, 2θ1 = θ2 = .4924, σ2 = .6, µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, ρ = .4

Note that µ1 and µ2 denote the means of x1 and x2, respectively, and σ2
1 , σ2

2 and
ρ denote the variances and correlation of x1 and x2, separately. As can be seen, in
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Figure 2.2: The first 500 iterations in Markov chain for θ1 in BIG with the goal to
evaluate H2

the first population the proportion of variance explained is 0 and in the other six
populations the proportion of variance explained is .4. It should be noted that data
generation was executed without using Monte-Carlo replications. In fact, data was
generated using the program BIEMS in such a way that the estimates of θ0, θ1, θ2, σ2,
µ1, µ2, σ2

1 , σ2
2 and ρ based on the generated data are exactly equal to their population

values. Take the first population for example, x1i, x2i and εi are both generated from
the normal distribution N(0, 1). Thereafter, we standardize the samples of x1i, x2i

and εi so that their means and variances are precisely 0 and 1, respectively. Finally,
yi is obtained by substituting the standardized samples of x1i, x2i and εi and true
values of θ0, θ1 and θ2 into (2.15).

After generating the data, estimates and covariance matrix of θ1 and θ2 can be
obtained using OpenBUGS. Subsequently, running the program BIG renders the Bayes
factor that is the ratio of fit and complexity. The fit and complexity are computed by
sampling from posterior and prior distributions, respectively. As shown in Appendix
2.D, a particular MCMC algorithm called Gibbs sampler is adopted. Before the
sample obtained from Gibbs sampler is used, there are two important steps, that is,
discarding the burn-in phase and checking the convergence. We only consider the
convergence of the sample from unconstrained posterior distribution used to evaluate
H2 : θ1 > θ2, because parameters in non-informative prior (2.9) are independent such
that convergence is not an issue. For a multivariate posterior normal distribution,
often within a small number of iterations the effect of the initial values vanishes
and sample converges to the desired distribution. This can perhaps be best verified
graphically. Figure 2.2 depicts the values sampled against the iteration number for
θ1 in population 4 with a data size of 40. Note that different starting values of -
3 and 3 are chosen in the sub-figure (a) and (b), respectively. As can be seen in
Figure 2.2 the Markov chain converges very rapidly, therefore, a burn-in period of
100 iterations should be more than sufficient to remove the effect of the initial values.
Thereafter, the convergence of the remaining iterations is demonstrated in Table 2.9,
in which the Gelman and Rubin’s R statistic (Gelman et al., 2004) is rather close to
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2. Bayesian evaluation of inequality constrained hypotheses

Table 2.9: Convergence of Gibbs sampler for θ2 in BIG with the goal to evaluate H2

Data Sample Population 3 Population 6

size size mean standard error R mean standard error R

20
1000 0.384 6.89E-3 1.02 0.570 6.29E-3 1.01
5000 0.373 3.10E-3 1.01 0.561 2.88E-3 1
40000 0.376 1.09E-3 1 0.564 1.01E-3 1

160
1000 0.380 2.16E-3 1.02 0.567 1.96E-3 1.01
5000 0.377 9.75E-4 1 0.565 9.00E-4 1
40000 0.378 3.42E-4 1 0.565 3.15E-4 1

1 even for a sample size of 1000 (which is the least number of iterations used in our
Gibbs sampler according to the rule in Table 2.16 of Appendix 2.D). This implies that
the remaining iterations in the Gibbs sampler converge very well and can be further
used for computing the fit. Note that Table 2.9 only displays the results for θ2 in
population 3 and population 6 because convergence information for other populations
are the same.

Bayes factors for H1, H2 and H3 can be computed using both BIG and BIEMS.
Note that in BIEMS we specified non-informative prior distribution for all the pa-
rameters whereas in BIG we use non-informative prior distributions for the structural
parameters as specified in equation (2.9). The Bayes factors obtained with BIG and
BIEMS are displayed in Tables 2.10 and 2.11 for two of the populations investigated.
We present only the results for these two populations because the results obtained
for the other populations are identical. As can been seen in Table 2.10 and 2.11,
Bayes factors obtained using BIG and BIEMS are quite similar in every population
even though the sample size may be as small as 20. This supports the use of normal
approximations for the computation of the Bayes factor in regression models.

Table 2.10: Comparison of Bayes factors computed using BIG and BIEMS
(population: θ0 = 0, θ1 = θ2 = .4472, σ2 = .6, µ1 = µ2 = 0, σ2

1 = σ2
2 = 1, ρ = 0)

data BF1a BF2a BF3a

size BIG BIEMS BIG BIEMS BIG BIEMS
20 3.880 3.912 1.007 .996 3.951 3.881
40 3.971 4.019 1.006 1.003 3.930 4.031
80 4.001 3.977 1.003 .999 3.951 4.049
160 4.000 4.017 1.003 .997 3.963 3.945
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Table 2.11: Comparison of Bayes factors computed using BIG and BIEMS
(population: θ0 = 0, 2θ1 = θ2 = .4924, σ2 = .6, µ1 = µ2 = 0, σ2

1 = σ2
2 = 1, ρ = .4)

data BF1a BF2a BF3a

size BIG BIEMS BIG BIEMS BIG BIEMS
20 3.425 3.525 .504 .483 1.944 1.791
40 3.792 3.790 .304 .295 1.234 1.188
80 3.932 3.952 .132 .131 .541 .494
160 3.973 3.957 .030 .031 .119 .119

2.7.2 Contingency tables

In the second simulation study inequality constrained hypotheses are evaluated for
data collected in a contingency table. This contingency table is displayed in Table
2.12. A Factor A with levels 1 and 2 is crossed by a Factor B with levels 1 and 2.
Denote the entries of the table by x11, x12, x21 and x22, which denote the number
of persons in each entry. Denote the corresponding probabilities by p11, p12, p21 and
p22. Note that the posterior distribution of these probabilities is Dirichlet (Klugkist
et al., 2010). Using a normal approximation of this posterior will be a strong test
of the viability of our approach. Also note that in the contingency table it holds
that p11 + p12 + p21 + p22 = 1. To deal with this dependency, we computed a normal
approximation to the posterior distribution of p11, p12, and p21. Whenever p22 is used
in an inequality constrained hypotheses it is implicitly replaces by 1−p11−p12−p21.

The following inequality constrained hypotheses (which belongs to an equivalent
set) will be evaluated: H1 : p11 > p12, p21 < p22. Data have been generated from
the following populations with sample sizes N equal to 20, 40, 80 and 160 such that
x11/N = p11, x12/N = p12, x21/N = p21 and x22/N = p22.

1. p11 = p22 = 0.3, p12 = p21 = 0.2,

2. p11 = p22 = 0.2, p12 = p21 = 0.3,

3. p11 = p22 = 0.35, p12 = p21 = 0.15,

4. p11 = p22 = 0.15, p12 = p21 = 0.35.

Table 2.12: A hypothetical contingency table

Factor B

Level 1 Level 2
Factor A Level 1 x11 x12

Level 2 x21 x22
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Table 2.13: Comparison of Bayes factors computed using BIG and ContingencyTable
(Conti denotes ContingencyTable)

p11 = p22 = 0.3 p11 = p22 = 0.2 p11 = p22 = 0.35 p11 = p22 = 0.15
p12 = p21 = 0.2 p12 = p21 = 0.3 p12 = p21 = 0.15 p12 = p21 = 0.35

sample size BIG Conti BIG Conti BIG Conti BIG Conti
20 2.173 2.117 .264 .304 3.278 3.126 2.61E-2 4.95E-2
40 2.657 2.613 .129 .147 3.752 3.664 2.52E-3 5.83E-3
80 3.211 3.186 3.79E-2 4.53E-2 3.971 3.953 3.97E-5 1.30E-4
160 3.710 3.708 4.71E-3 5.45E-3 4.001 4.001 0 2.04E-8

The results are displayed in Table 2.13.
As can be seen in Table 2.13, even for smaller sample sizes the Bayes factors

obtained from BIG and ContingencyTable are very similar. This is further support
for our assertion that normal approximations of posterior distributions render valid
inferences if the goal is to evaluate inequality constrained hypotheses. It even works
in a context where the true posterior distribution rather non-normal as is the case for
a Dirichlet distribution.

2.8 Discussion

This study developed an approach for the evaluation of inequality constrained hy-
potheses in a large class of statistical models. As was discussed in the introduction,
null hypothesis significance testing has a number of drawbacks: the null hypothesis is
not a plausible and realistic hypothesis; p values can not be used as a measure of sup-
port for the null hypothesis; and only two hypotheses can be compared at the same
time. As was shown in this paper by means of two examples, Bayesian evaluation of
inequality constrained hypotheses addressed these problems in an appropriate man-
ner. The method proposed in this research substantially extends the class of models
to which Bayesian evaluation of inequality constrained hypotheses can be applied.
We approximate the posterior distribution of structural parameters in any model by
a normal distribution. This leads to an easy and straightforward tool for the com-
putation of the Bayes factor for inequality constrained hypotheses. Our approximate
Bayes procedure is implemented in the software package BIG that computed Bayes
factors using estimates and covariance matrix of the structural parameters as input.
To illustrate our approach, we evaluated several inequality constrained hypotheses
in two examples with respect to path modelling and logistic regression modelling.
The resulting Bayes factors quantified the evidence from the data in favor of the
hypothesis compared to its complement or to other hypotheses.

The performance of normal approximations to posterior distributions was evalu-
ated by means of a comparison of the resulting Bayes factors with the Bayes factors
obtained from the true distributions. First, we computed Bayes factors of inequality
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constrained hypotheses in a regression model using BIG for normal approximations
and BIEMS for true distributions. The comparison of these two approaches demon-
strated that BIG with normal approximations performs as well as BIEMS in regression
models. Secondly, we evaluated inequality constrained hypotheses using the data in a
contingency table and compared the Bayes factors obtained from BIG and Contingen-
cyTable. The results showed that there were no notable difference between the Bayes
factors from BIG and ContingencyTable. This indicates that normal approximations
can also be used in models with non-normal posterior distributions. Eventually, it
can be concluded that our approach based on normal approximations nicely performs
not only in normal models but also in non-normal models.

2.A A comparison of two standardization approaches

In many statistical models structural parameters have to be standardized when they
are compared in hypotheses. To obtain standardized structural parameters, the de-
pendent and independent variables are often standardized using their observed means
and variances. This approach is widely and easily applied by researchers. However, a
possible flaw is that the data is used twice, that is, both to standardize the variables
and to evaluate the inequality constrained hypotheses. An alternative approach is
to directly obtain the estimates and covariance matrix of the standardized structural
parameters.

The simulation study with respect to the regression model presented in the paper
will be used to compare both approaches. For this simple regression model estimates
and covariance matrix of standardized regression coefficients are obtained using Open-
BUGS without standardizing the data. Consider again this regression model:

yi = θ0 + θ1x1i + θ2x2i + εi, (2.16)

where θ0 is the intercept, θ1 and θ2 are the regression coefficients, and εi ∼ N(0, σ2),
that is, the residual has a normal distribution with mean 0 and variance σ2. Open-
BUGS can be used to sample θ0, θ1, θ2 and σ as well as the means of x1 and x2

denoted by µ1 and µ2, respectively, and their standard deviations and covariance de-
noted by σ1, σ2 and ρσ1σ2, separately. Note that ρ is the correlation between x1 and
x2. Thereafter, a sample of parameter vectors indexed by t = 1, . . . , T is obtained
from OpenBUGS using a Gibbs sampler. For each of these T parameter vectors the
standardized parameter estimates can be computed using

Z(θ1t) = θ1t · σ1t/σyt,
Z(θ2t) = θ2t · σ2t/σyt

(2.17)

where σyt is the sample of the standard deviation of y and can be computed based
on the variance equation of the regression model:

σ2
yt = θ2

1tσ
2
1t + θ2

2tσ
2
2t + 2θ1tθ2tρσ1tσ2t + σ2

t . (2.18)
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Table 2.14: Comparison of parameter variances and Bayes factors computed using
two standardization approaches
(population: θ0 = 0, θ1 = θ2 = .4472, σ2 = .6, µ1 = µ2 = 0, σ2

1 = σ2
2 = 1, ρ = 0)

sample V AR(θ1) V AR(θ2) BF1a BF2a BF3a

size stdp stdd stdp stdd stdp stdd stdp stdd stdp stdd
20 .02865 .03972 .02877 .03999 3.949 3.880 1.006 1.007 3.921 3.951
40 .01358 .01704 .01380 .01726 3.973 3.971 .999 1.006 3.986 3.930
80 .00667 .00804 .00677 .00808 4.001 4.001 .993 1.003 3.945 3.951
160 .00326 .00388 .00333 .00392 4.001 4.000 .994 1.003 3.952 3.963

Thus, a sample of Z(θ1) and Z(θ2) has been generated in OpenBUGS, which can be
used to compute the estimates and covariance matrix of Z(θ1) and Z(θ2) to feed to
BIG.

To study the performance of standardization for coefficients, we compared the
approach in which the data is standardized and the approach in which the parameters
are standardized on the basis of the variance of the regression coefficients and the
Bayes factor. Consider the same data sets and hypotheses used in the first simulation
study presented in the paper. Since the results in all 7 tables are rather similar, we
will only present the Table 2.14 and 2.15 corresponding to the two tables presented
for the first simulation study. Note that the labels "stdp" and "stdd" in the tables
means the values below are obtained using the standardization of parameters and the
data, respectively.

As can be seen in these tables, the variance of the standardized coefficients ob-
tained using standardized parameters is smaller than those obtained using standard-
ized data, whereas the Bayes factors are rather similar. This provides support for our
assertion that in the context of the evaluation of inequality constrained hypotheses it
is sufficient to standardize the data to obtain estimates and covariance matrix of stan-
dardized parameters without having to go through the effort to directly standardize
the parameters as exemplified in this section.

Table 2.15: Comparison of coefficient variances and Bayes factors computed using
two standardization approaches
(population: θ0 = 0, 2θ1 = θ2 = .4924, σ2 = .6, µ1 = µ2 = 0, σ2

1 = σ2
2 = 1, ρ = .4)

sample V AR(θ1) V AR(θ2) BF1a BF2a BF3a

size stdp stdd stdp stdd stdp stdd stdp stdd stdp stdd
20 .03624 .04712 .04712 .04707 3.495 3.425 .497 .504 1.943 1.944
40 .01767 .02033 .01541 .02035 3.805 3.792 .304 .304 1.219 1.234
80 .00878 .00960 .00754 .00956 3.955 3.932 .135 .132 .545 .541
160 .00434 .00463 .00371 .00464 3.973 3.973 .036 .030 .120 .119
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2.B Mplus Command File

DATA: FILE IS PATH.dat; ! load data
VARIABLE: NAMES ARE Zx1 Zx2 Zx3 Zy1 Zy2;
MODEL: ! define the relation between the variables
Zy1 ON Zx1 Zx2 Zx3;
Zy2 ON Zx1 Zx2 Zx3 Zy1;
OUTPUT: TECH3; ! show covariance matrix in the output
SAVEDATA: TECH3 IS PATH.txt; ! save the covariance matrix in PATH.txt

2.C OpenBUGS and R Command Files

After specifying the following model and loading the standardized data in OpenBUGS,
the estimates of structural parameters can be obtained by clicking the "stats" button
in "Sample Monitor Tool".

model {
# The density of data of the logistic regression model are specified.
# Note that there are four groups denoted by rank.
# The number of observed data in four groups are n1=61, n2=151, n3=121
# and n4=67 as shown in Table 2.2.

# rank=1
for (i in 1:n1){
logit(p1[i]) <- theta0[1]+theta[1,1]*Zx1[i,1]+theta[1,2]*Zx1[i,2]
Zx1[i,3] ∼ dbern(p1[i])}

# rank=2
for (i in 1:n2){
logit(p2[i]) <- theta0[2]+theta[2,1]*Zx2[i,1]+theta[2,2]*Zx2[i,2]
Zx2[i,3] ∼ dbern(p2[i])}

# rank=3
for (i in 1:n3){
logit(p3[i]) <- theta0[3]+theta[3,1]*Zx3[i,1]+theta[3,2]*Zx3[i,2]
Zx3[i,3] ∼ dbern(p3[i])}

# rank=4
for (i in 1:n4){
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logit(p4[i]) <- theta0[4]+theta[4,1]*Zx4[i,1]+theta[4,2]*Zx4[i,2]
Zx4[i,3] ∼ dbern(p4[i])}

# Below a noninformative normal prior is specified for all parameters

for(j in 1:4){
theta0[j] ∼ dnorm(0.0,1.0E-5)
theta[j,1] ∼ dnorm(0.0,1.0E-5)
theta[j,2] ∼ dnorm(0.0,1.0E-5)}
}

When running OpenBUGS, researchers have to specify a burn-in period and sample
size in the "Update Tool". After updating the sample, sufficient burn-in period and
the convergence of the MCMC sample can be checked in the diagnostics part of
"Sample Monitor Tool", analogous to how we check burn-in period in Figure 2.2. In
the current model, we use a sample of 30000 with a burn-in period of 3000, both
of which are desirable values according to the diagnostic. Subsequently, using the
"coda" button in the same menu in OpenBUGS, the sample of parameters is given in
"CODAchain 1" and labeled in "CODA index". In combination with the R2WinBUGS
package in R, the covariance matrix of parameters can be obtained using the following
R code.

## Note that R package "R2WinBUGS" must be loaded. To extract
## the information with CODA format in OpenBUGS, "CODAchain 1" and
## "CODA index" produced by OpenBUGS CODA button should be saved
## as "CODAchain1.txt" and "CODAindex.txt". Set the work directory
## where CODAchain1.txt and CODAindex.txt are saved, e.g.,"c:/openbugs"

setwd("c:/openbugs")
## Read the coda information.

output<-read.openbugs(stem = "c://openbugs//")
x<-data.matrix(output,rownames.force=NA)
y<-cov(x)

## Write the output in "covariance.txt".
write(t(y),file=’covariance.txt’,ncolumns=ncol(y))

2.D Constrained Gibbs Sampler

When inequality constrained hypotheses are formulated using a large number of con-
straints, the true values of their complexity and fit may be extremely small. To
accurately estimate such a small probability, a very large sample is needed. For ex-
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ample, for hypothesis H1 : θ1 > . . . > θ10, the complexity is c1 = 1/10! according to
the principle of equivalent set as elaborated before. A sample of more than 20 million
draws is required to obtained a fair estimate of c1 (Hoijtink, 2012, p.207), which may
take so much time that efficient evaluation of H1 is not feasible. This problem can
be solved by means of a decomposition of the Bayes factor:

BFia = BFi1,a ×BFi2,i1 × · · · ×BFiK ,iK−1
(2.19)

where ik, k = 1, . . . ,K denotes a hypothesis using the constraints in the first k rows
of R, and BFik,ik−1

is defined by:

BFik,ik−1
=
fik,ik−1

cik,ik−1

, (2.20)

where cik,ik−1
denotes the proportion of the prior distribution of Hik−1

in agreement
with Hik , and fik,ik−1

denotes the proportion of the posterior distribution of Hik−1

in agreement with Hik . Note that each of the cik,ik−1
and fik,ik−1

is much larger than
ci and fi, and can be accurately computed using a relatively small sample from the
corresponding prior and posterior distributions. As stated earlier, the complexity for
H1 : θ1 > . . . > θ10 is c1 = 1/10! and can be decomposed by c1 = 1

2
1
3 · · ·

1
10 . Each

component in the product is substantially larger than the value of 1/10! and needs a
sample of, say, 9,600 from the prior distribution, which is much smaller than 20 millon
needed without decomposition. The sufficient sample size for accurate estimations of
decomposed complexities and fits is displayed in Table 2.16 (Hoijtink, 2012, p.154).

After decomposing the Bayes factor, the Gibbs sampler is used to compute cik,ik−1

and fik,ik−1
. The basic principle of the Gibbs sampler is to generate a sample for each

parameter from prior or posterior distribution conditionally on the current values of
all the others. Suppose the number of structural parameters is J , and denote the size
of the Gibbs sample by T . Sampling from the prior and posterior distributions of Hik

can be achieved in the following steps:

1. Provide initial values for θ0 that are in agreement with the constraints Hik .

2. Initialize the sample size T = 1000.

3. Repeat the next step T + 100 times for both sampling from the prior and
posterior distributions, where 100 denotes the first 100 iterations, that is, the
burn-in phase of the Gibbs sampler that are discarded.

4. Do for j = 1, . . . , J : Sample θj from its distribution conditional on the current
values of the other θs. In combination with the k − 1 constraints that are
currently active, the current values of the other θs can be used to determine a
lower bound L and upper bound U for θj . Using inverse probability sampling
(Klugkist et al., 2005), it is straightforward to obtain a sample from a truncated
normal distribution within L and U using three sub-steps:
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Table 2.16: Gibbs sample size T determination

bound of .5- .166- .042- .008- .0014- .0002- 0-
cik,ik−1

or fik,ik−1
1 .5 .166 .042 .008 .0014 0.0002

T 1,000 3,000 9,600 120,000 360,000 2,520,000 10,000,000

• Specify the conditional distribution of θj :

(θj |θi, all i 6= j) ∼ N(θ̂j +
∑
i6=j

cji(θi − θ̂i), [(Σ−1
θ )jj ]

−1) (2.21)

where θ̂ is the estimates of θ, and cji is the element of I−[diag(Σ−1
θ )]−1Σ−1

θ

and Σθ is the covariance matrix of θ. A more detailed discussion is given
by Gelman et al. (2004, p.579)

• Sample a random number ν via a uniform distribution on the interval [0,1].

• Compute θj = Φ−1
θj

[Φθj (L) + ν(Φθj (U) − Φθj (L))], where Φθj is the cu-
mulative distribution function of (2.21) and Φ−1

θj
is the inverse cumulative

distribution function.

5. Discard the first 100 iterations and compute cik,ik−1
and fik,ik−1

, that is, the
proportion of the prior and posterior with the first k−1 constraints in agreement
with the first k constraints, respectively. After estimation of cik,ik−1

and fik,ik−1

the rules displayed in Table 2.16 are used to determine whether the number of
iterations T should be reset to ensure accurate computation of the Bayes factor.
If T is reset, restart the computation in Step 3. If T is not reset, the computation
of the Bayes factor is finished.

2.E User manual for BIG.exe

The evaluation of inequality constrained hypotheses can be executed using BIG.exe as
long as structural parameter estimates and covariance matrix are obtained. It com-
putes Bayes factor based on the decomposition presented in Chapter 10 of Hoijtink
(2012), which was elaborated in Appendix 2.D. This decomposition ensures accurate
estimates of the Bayes factor. The software package BIG is available on the website
http://informative-hypotheses.sites.uu.nl/software/. To run BIG.exe only
an input file named Input.txt is needed. This appendix is illustrated using the in-
put and output files for Example 1. For each new analysis the user has to modify
the input file. For both examples given in this paper the input and output files are
provided with the BIG software. The input file for Example 1 is presented below:

Number of structural parameters and constraints
4 3
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Estimates of parameters
0.046 0.089 0.126 0.674
Covariance matrix of parameters
1.04E-3 2.25E-4 -4.70E-4 -7.21E-5
2.25E-4 9.37E-4 7.53E-5 -2.82E-4
-4.70E-4 7.53E-5 1.04E-3 1.78E-4
-7.21E-5 -2.82E-4 1.78E-4 8.82E-4
Restriction matrix (R-r)
-1 0 1 0 0
0 -1 1 0 0
-1 0 0 1 0
0 -1 0 1 0
0 0 -1 1 0

The first line is the label for the next line on which the numbers of structural
parameters and constraints used in the hypothesis have to be recorded. Below the
label on the third line the estimates of parameters displayed in Table 2.3 will be given,
and below the label on the fifth line the covariance matrix of parameters displayed in
Table 2.3 will be given as well. The label restriction matrix reflects that the constraints
in hypothesis (2.2) will be recorded below using Rθ > r. The first J columns belong
to R, where J is the number of structural parameters, and the last column belongs to
r. The meaning of the K lines (one for each restriction) following the label Restriction
matrix can be elaborated using a few examples:

• 1 0 -1 0 0 denote that θ1 − θ3 > 0, that is, θ1 > θ3

• -1 0 1 0 0 denote that −θ1 + θ3 > 0, that is, θ1 < θ3

• 0 1 0 0 .5 denote that θ2 > .5

• 0 -1 0 0 -1 denote that −θ2 > −1, that is, θ2 < 1

• a b c d e denotes that aθ1 + bθ2 + cθ3 + dθ4 > e

It can be seen that five constraints in hypothesis (2.2) leads to five rows in restric-
tion matrix. Note that each column corresponds to one parameter, and that their
order should be in line with the order of the estimates and covariance matrix of the
parameters in the input file.

Executing the BIG.exe with the example input file renders the following output
file:

Result:

Fits Numbers of iterations
0.924 1000
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0.851 1000
1.000 1000
1.000 1000
1.000 1000

Complexities Numbers of iterations
0.510 3000
0.655 1000
0.616 1000
0.816 1000
0.503 1000

Total fits Total complexities
0.786 0.084

BFia MC error (standard deviation) 2.5percentile 97.5percentile
9.310 0.497 8.417 10.343

BFic MC error (standard deviation) 2.5percentile 97.5percentile
39.891 3.624 32.559 46.842

As can be found in the beginning of the output file, the fits and complexities
computed in each step of the decomposition of the Bayes factor, which was elaborated
in Appendix 2.D, can be found. The corresponding numbers of iterations used for the
computation of each fit and complexity are displayed in the same line below the label
Numbers of iterations. The number of iterations is determined by the rules displayed
in Table 2.16 (Hoijtink, 2012, p.154). Multiplying all the fits renders the fit of the
Bayes factor BFia, labeled by Total fit, and the complexity of BFia can be obtained
in the same way, labeled by Total complexity. This corresponds to fi and ci in (2.11)
and (2.12). Subsequently, the Bayes factor of Hi versus Ha is displayed with the label
BFia, followed by its MC error and 2.5 and 97.5 percentile in the same line. In the
last line, the Bayes factor of Hi versus Hic is shown with the label BFic, followed
by its MC error and 2.5 and 97.5 percentile as well. Note that the MC error is the
standard deviation of the corresponding Bayes factor, and the 2.5 and 97.5 percentile
give a 95% credible interval for the Bayes factor due to sampling error.
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Chapter 3

An efficient program for the
evaluation of inequality constrained
hypotheses using Bayes factors in
structural equation models1

3.1 Introduction

Applied researchers have become increasingly interested in the evaluation of inequality
constrained hypotheses, because the traditional null hypothesis is often not a realistic
representation of the population of interest (Cohen, 1994; Royall, 1997, p. 79-81). In
structural equation models, researchers may have explicit theories or expectations, for
example, if an independent variable has positive effect on a dependent variable or what
might be the most representative indicator for a latent variable. These expectations
can be represented by inequality constrained hypotheses among the model parame-
ters. Inequality constrained hypotheses can be evaluated using either the frequentist
approach by means of p values (see, e.g., Silvapulle & Sen, 2004; van de Schoot et al.,
2010) or the Bayesian approach by means of Bayes factors (see, e.g., van de Schoot,
Hoijtink, Hallquist, & Boelen, 2012; Klugkist et al., 2005; Hoijtink, 2012). In this
paper, the Bayes factor (Kass & Raftery, 1995) is used as a criterion for assessing
the hypotheses because p values can only reject a null hypothesis. Bayes factors on

1This chapter will be submitted as Gu, X., Hoijtink, H., Mulder, J., & Rosseel, Y. An efficient
program for the evaluation of inequality constrained hypotheses using Bayes factor in structural
equation models.
Author contributions: XG, HH, and JM designed the research. XG developed the software package,
performed the data analyses and simulation study, and wrote the paper. HH, JM and YR gave
feedback on software development. HH, JM and YR provided extensive feedback on constructing
and writing the paper.

45



3. An efficient program for the evaluation of inequality constrained
hypotheses using Bayes factors in structural equation models

the other hand are able to measure the relative evidence in the data between mul-
tiple non-nested hypotheses containing inequality constraints (Wagenmakers, 2007).
For this reason, Bayes factors can be viewed as a more generally applicable tool for
statistical hypothesis testing than classical p values.

During the past decade, Bayesian evaluation of inequality constrained hypothe-
ses has been studied for various statistical models. Besides statistical theory de-
velopment, these studies rendered software packages that can be used by applied
researchers, see Hoijtink (2012, p. 179) for an overview. As a pioneer, Klugkist et
al. (2005) presented a Bayesian approach to evaluate analysis of (co)variance mod-
els (ANOVA or ANCOVA) with inequality constraints on the means. The study
for ANOVA models was further developed by Kuiper and Hoijtink (2010) for the
comparison of means using both Bayesian and non-Bayesian methods. This research
resulted in a software package ConfirmatoryANOVA (Kuiper, Klugkist, & Hoijtink,
2010). Thereafter, Mulder et al. (2010) extended the previous study to multivariate
linear models (MANOVA, repeated measures, multivariate regression), which is im-
plemented in the software package BIEMS (Mulder et al., 2012). More recently, Gu,
Mulder, Deković, and Hoijtink (2014) explored a Bayesian procedure which is incor-
porated in the software package BIG that can be used for the evaluation of inequality
constrained hypotheses in a very general class of statistical models. However, analyses
with BIG are computationally intensive and may take a lot of time.

This paper provides a new algorithm for the computation of Bayes factors, which
substantially reduces the computational time. The resulting software is still referred
to as BIG, because it has a similar function as its previous version. Furthermore, this
paper proposes two prior specification methods which result in two Bayes factors with
different features (Gu et al., 2014; Mulder, 2014a). BIG renders both Bayes factors
such that researchers can choose either of them to evaluate inequality constrained
hypotheses. It should be noted that BIG needs the estimates and covariance matrix of
the parameters under consideration, which can be obtained using the lavaan package
(Rosseel, 2012) in R for the analysis of structural equation models (SEM). Although
other softwares such as Mplus and OpenBUGS can deal with SEM models as well,
throughout this paper lavaan is used as the basis for analyses with BIG.

In what follows, Section 3.2 shortly introduces SEM models and defines inequality
constrained hypotheses. For the evaluation of inequality constrained hypotheses, the
Bayes factor as a criterion is briefly introduced in Section 3.3. Subsequently, Sec-
tion 3.4 specifies prior and posterior distributions which are the determinants of the
Bayes factor. To illustrate how to evaluate inequality constrained hypotheses using
our program, Section 3.5 analyzes two classic SEM models: confirmatory factor anal-
ysis and multiple regression models with latent variables. Furthermore, the properties
of the prior distributions specified in Section 3.4 are discussed in Section 3.6. The
procedure for the computation of Bayes factors is presented in Section 3.7 in which
seven sub-sections describe the principles and algorithms used. Thereafter, Section
3.8 conducts a simulation study to investigate the performance of our program. Fi-

46



3.2. Inequality constrained structural equation models

nally, a user manual is provided in Appendix 3.B such that researchers can use the
implementation in BIG successfully for the analysis of their own data.

3.2 Inequality constrained structural equation models

3.2.1 Structural equation models

The structural equation model (SEM) mainly consists of two components, i.e., the
measurement model which expresses the relations between latent variables and their
indicators, and the structural model which expresses the relations between endogenous
and exogenous (latent) variables. The measurement model can be written by

y = Λyη + εy

x = Λxξ + εx (3.1)

where y and x denote the vectors of endogenous and exogenous observed variables,
respectively, η and ξ denote the vectors of endogenous and exogenous latent variables,
respectively, Λy and Λx are the corresponding matrices of factor loadings, and the
measurement errors εy and εx have zero means and covariance matrices Ψεy and Ψεx ,
respectively.

The structural model represents the relations among latent variables:

η = Bη + Γξ + δ, (3.2)

where B and Γ are matrices of regression coefficients, and δ with mean of 0 and
covariance matrix of Ψδ is the error term. In addition,

Φη = (I−B)−1(ΓΦξΓ
T + Ψδ)(IT −BT )−1, (3.3)

where Φη and Φξ are the covariance matrices of the latent variables η and ξ, respec-
tively. Note that both η and ξ may contain observed variables if one wants to model
the relationship between observed variables. This can be done by creating single-
indicator latent variables (with a fixed factor loading of 1, and zero measurement
error) corresponding to each observed variable.

The general framework of SEM is described by equations (3.1) and (3.2) which
can be specified using lavaan syntax (Rosseel, 2012) in R. As can be seen from
(3.1), (3.2) and (3.3), the non-fixed elements in {Λy,Λx,B,Γ,Ψεy ,Ψεx ,Ψδ,Φξ} of
a specific SEM model can be collected in a parameter vector λ. The density of the
data is given by f(X|λ), where X denotes the data (Bollen, 1989). Furthermore,
the non-fixed parameters can be divided into λ = {θ, ζ}, where θ denotes the target
parameters that will appear in the inequality constrained hypotheses elaborated in
the next section, and ζ denotes the nuisance parameters that will not.
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3.2.2 Inequality constrained hypotheses

Inequality constrained hypotheses express the expectations of researchers among the
(standardized) target parameters in SEM. For example, hypothesisH1 : θ1 > θ2 where
θ1 and θ2 are the coefficients of the predictors ξ1 and ξ2, respectively, implies that
the predictor ξ1 is stronger than ξ2. The general form of an inequality constrained
hypothesis Hi is given by

Hi : Riθ > ri, (3.4)

where Ri is the restriction matrix containing inequality constraints, and θ and ri
denote the target parameter vector and constant vector in Hi, respectively. We
assume that the number of inequality constraints is K and the number of target
parameters is J . Therefore, Ri is a K × J matrix, and the lengths of θ and ri are J
and K, respectively. For instance, H2 : θ1 > θ2 > θ3 is an example with J = 3 and
K = 2, which leads to θ = (θ1, θ2, θ3)T and an augmented matrix:

[R2|r2] =

[
1 −1 0
0 1 −1

0
0

]
.

The augmented matrix [Ri|ri] should be implemented as an input file in BIG. It should
be emphasised that the application of our program is strictly limited to the evalu-
ation of inequality constrained hypotheses. This implies that, equality constrained
hypotheses like H3 : θ1 = θ2, about equality constrained hypotheses like H4 : θ1 ≈ θ2,
and range constrained hypotheses like H5 : 0 < θ < 1, can not be processed by
our program. In addition, the inequality constrained hypothesis Hi can not contain
contradicting constraints. For example, both H6 : θ > 1, θ < −2 and H7 : θ1 > θ2,
θ2 > θ1 are invalid in our program. Our program will automatically check whether
the hypothesis specified by researchers in the input file is valid or not. This will be
elaborated in Section 3.7.2 and Appendix 3.B. If the hypothesis specified in the input
file is invalid, the program will write a warning message in the output file.

The hypothesis Hi is often compared to an unconstrained hypothesis

Hu : θ ∈ RJ , (3.5)

where RJ denotes the J-dimensional real vector space, or to its complement

Hic : not Hi. (3.6)

Furthermore, we can evaluate Hi against a competing hypothesis

Hi′ : Ri′θ > ri′ . (3.7)

The evaluation of these hypotheses can be conducted using Bayes factors, which will
be elaborated in the next section.
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When specifying inequality constrained hypotheses in SEM models, the target
parameters may need to be standardized. For example, if hypothesis H1 : θ1 > θ2

compares two regression coefficients to determine which predictor is stronger, then
the coefficients θ1 and θ2 should be standardized to be comparable. The standardiza-
tion of target parameters can be achieved by standardizing the observed and latent
variables in SEM models. However, this manner might be criticized because the data
is used twice, once for standardization and once for evaluation of the hypothesis (Gu
et al., 2014). The lavaan package (Rosseel, 2012) provides an alternative approach
that can directly obtain estimates and covariance matrix of standardized target pa-
rameters. This paper uses the alternative standardization approach in lavaan. To
keep the notation simple, in this paper θ will be used to denote both unstandardized
and standardized target parameters.

3.3 Bayes factor

The Bayes factor of Hi against Hu is defined as the ratio of two marginal likelihoods
(Jeffreys, 1961; Kass & Raftery, 1995; Hoijtink, 2012):

BFiu =
mi(X)

mu(X)
=

∫∫
f(X|θ, ζ)πi(θ, ζ)dθdζ∫∫
f(X|θ, ζ)πu(θ, ζ)dθdζ

, (3.8)

where πi(θ, ζ) and πu(θ, ζ) denote the prior distribution under Hi and Hu (will be
specified in the next section), respectively, and f(X|θ, ζ) denotes the density of X
given θ and ζ (see Bollen, 1989). Furthermore, from equation (3.8) it follows that
the Bayes factor of Hi against Hic can be obtained as BFiic = BFiu/BFicu, and the
Bayes factor of Hi against Hi′ is BFii′ = BFiu/BFi′u.

The Bayes factor BFiu quantifies the relative evidence in the data in favor of
hypothesis Hi against Hu. For example BFiu = 2 indicates that the support in
the data for Hi is twice as large as the support for Hu. A general guideline for the
interpretation of the Bayes factor is that BFiu ∈ (1, 3] indicates evidence forHi that is
not worth mentioning, and BFiu ∈ (3, 20], BFiu ∈ (20, 150] and BFiu > 150 indicate
positive, strong and very strong evidence for Hi, respectively (Kass & Raftery, 1995).
Note that if BFiu < 1 which implies evidence against Hi, the strength of this evidence
is quantified using the rule above for the reciprocal of BFiu. Furthermore, Bayes
factors BFiic and BFii′ can also be interpreted using the same rule. Although this
rule renders a proposal to interpret the Bayes factor, it is not suggested using it
strictly because this interpretation is a rough descriptive statement with respect to
the standards of evidence, which could very well be modified based on the research
context. For this reason users can judge by themselves when the evidence in the data
is positive, strong or decisive in favor or against a hypothesis based on the observed
Bayes factor.
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Formula (3.8) can be simplified to (Klugkist & Hoijtink, 2007):

BFiu =
fi
ci
, (3.9)

where
ci =

∫∫
θ∈Θi

πu(θ, ζ)dθdζ =

∫
θ∈Θi

πu(θ)dθ, (3.10)

called relative complexity (Mulder, 2014b), is the proportion of the prior distribution
(specified in the next section) in agreement with Hi, and

fi =

∫∫
θ∈Θi

πu(θ, ζ|X)dθdζ =

∫
θ∈Θi

πu(θ|X)dθ, (3.11)

called relative fit, is the proportion of the posterior distribution (specified in the next
section) in agreement with Hi. Here Θi = {θ|Riθ > ri} denotes the parameter
space constrained by Hi, and ζ is not constrained. The complexity implies how
specific a hypothesis is, and the fit implies how much the data supports a hypothesis
relative to Hu. The more specific the hypothesis, the less the complexity, while
the more the support from the data, the larger the fit. The derivation of equation
(3.9) can be found in Mulder (2014b). Equation (3.9) shows that the Bayes factor
of an inequality constrained hypothesis Hi against an unconstrained hypothesis Hu

can be represented as the ratio of the fit and complexity of Hi. This representation
facilitates our development of the software for the evaluation of inequality constrained
hypotheses.

Based on BFiu, the Bayes factor BFiic for Hi against Hic , and BFii′ for two
competing hypotheses Hi and Hi′ can also be derived. Noting that the proportion
of prior and posterior distributions in agreement with Hic are 1 − ci and 1 − fi,
respectively, it follows that

BFiic =
fi
ci
/

1− fi
1− ci

. (3.12)

Analogously, BFii′ can be obtained by

BFii′ = BFiu/BFi′u =
fi
ci
/
fi′

ci′
. (3.13)

Furthermore, an accessible manner for comparing a set of hypotheses is to transform
Bayes factors into posterior model probabilities (PMPs). The PMPs are a represen-
tation of the support in the data for each hypothesis on a scale between 0 and 1.
Assuming equal prior probabilities for the hypotheses, we obtain PMPs for all the
competing hypotheses excluding Hu using (Hoijtink, 2012, p. 52)

PMPi =
BFiu∑
iBFiu

for i = 1, . . . , IN , (3.14)
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where IN denotes the number of competing hypotheses. The execution of our pro-
gram renders both Bayes factors (3.9) and PMPs (3.14). As was shown in (3.9),
the Bayes factor for Hi against Hu depends on the complexity and fit for which the
prior and posterior distributions of θ under Hu need to be specified, respectively.
The specification of prior and posterior distributions will be introduced in the next
section.

3.4 Prior and posterior distributions

3.4.1 Noninformative normal prior distributions

The specification of prior distributions is an important step in Bayesian hypothesis
testing. As can be seen from equation (3.10), only a prior of θ for the unconstrained
hypothesis needs to be specified when evaluating inequality constrained hypotheses.
In this paper, for the target parameters under Hu we specify noninformative normal
priors of the form:

πu(θ) = N(0, ωΣs), (3.15)

where Σs is the prior covariance structure of θ, and the positive number ω → ∞.
Note that in BIG we specify ω = 10000 by default. This manner of prior construction
has several properties. First, the normal prior distribution is a conjugate prior when
assuming that the posterior distribution is approximately normal, which will be elab-
orated in Section 3.4.2. Second, the use of noninformative priors results in a posterior
distribution that is completely determined by the data for any sample size. Although
very vague priors are not recommended when testing hypotheses with equality con-
straints due to Lindley-Bartlett’s paradox (Lindley, 1957), such priors can be used
for testing inequality constrained hypotheses (Klugkist et al., 2005). Third, the com-
plexity is invariant to the actual specification of the prior mean such that a mean
vector of 0 can be used. This property is proven in Section 3.6. In our program, we
use two prior distributions with means of 0 and different covariance structures.

Gu et al. (2014) proposed the noninformative normal prior distribution with iden-
tity covariance structure

π1
u(θ) = N(0, ωI), (3.16)

where 0 = (0, . . . , 0)T and I is an identity matrix. Using this prior distribution every
combination of values of target parameters is a priori equally probable.

Mulder (2014b) proposed to set the prior covariance structure equal to the poste-
rior covariance structure. In our noninformative normal prior this implies

π2
u(θ) = N(0, ωΣ̂θ), (3.17)

where Σ̂θ is the estimated covariance matrix of the (standardized) target parameters
that can be obtained in the lavaan package (Rosseel, 2012).
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Figure 3.1: Two prior distributions of H1 : θ1 > 0, θ2 > 0. Note that the grey area
describes the constrained parameter space under H1. The circle and ellipse denote
the 95% iso-density control, and the numbers in the figures denote the complexities
of H1 under different priors.

The complexity (3.10) based on π1
u(θ) may differ from π2

u(θ). Consider the hy-
pothesis H1 : θ1 > 0, θ2 > 0. Figure 3.1 illustrates the complexities of H1 under prior
distributions

π1
u(θ) ∼ N

([
0
0

]
, ω

[
1 0
0 1

])
and π2

u(θ) ∼ N
([

0
0

]
, ω

[
1 0.5

0.5 1

])
.

As can be seen, the complexity obtained using π1
u(θ) in Figure 3.1 (a) is 1/4 which

is smaller than the complexity obtained using π2
u(θ) in Figure 3.1 (b), i.e., 1/3. This

illustrates how the measure of complexity depends on the covariance structure Σs in
the prior distribution. The prior distributions (3.16) and (3.17) are used to compute
the complexity in our program, because both of them have attractive properties which
will be discussed in Section 3.6. In what follows, the posterior distribution is specified
to obtain the fit (3.11).

3.4.2 Normal approximations to posterior distributions

In order to compute Bayes factors for inequality constrained hypotheses in SEM mod-
els, the asymptotic normality of the posterior distribution is used based on Laplace’s
method (DiCiccio, Kass, Raftery, & Wasserman, 1997; Gelman et al., 2004, p. 101-
107). As elaborated in the beginning of this section, the posterior distribution only
depends on the density of the data f(X|θ, ζ) when using prior (3.16) or (3.17) for
ω →∞. The posterior distribution can be approximated by:

πu(θ|X) ≈ N(θ̂, Σ̂θ), (3.18)

where θ̂ denotes the estimates of the target parameters, and Σ̂θ is their covariance
matrix. Both of them can be obtained in lavaan using estimation methods, such as
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least square estimation and maximum likelihood estimation (Rosseel, 2012). Further-
more, to obtain standardized θ̂ and Σ̂θ lavaan provides approaches to standardize
the observed variables and to directly standardize the target parameters. The perfor-
mance of these two approaches of standardization was discussed in Gu et al. (2014),
which showed that the variances of standardized parameters obtained using two ap-
proaches are different, whereas the resulting Bayes factors are similar. Now that the
prior and posterior distributions have been specified, the Bayes factor can be ob-
tained using (3.9). We will in the next section illustrate how to evaluate inequality
constrained hypotheses using Bayes factors, and in Section 3.7 elaborate on how to
compute Bayes factors technically in our program.

3.5 Examples

In this section, our procedure of evaluating inequality constrained hypotheses will
be illustrated using two classic SEM examples. One example concerns confirmatory
factor analysis (CFA), and the other example concerns multiple regression model.

3.5.1 Confirmatory factor analysis

In the first example, we reanalyze a dataset built into lavaan called HolzingerSwine-
ford1939 (Rosseel, 2012). This dataset is taken from the Holzinger and Swineford
1939 (H&S) study, which is a commonly used example in factor analysis. The raw
dataset consists of scores of 301 seventh and eighth grade students from the Pasteur
School (n=145) and Grant-White School (n=156) who participated in 26 psycholog-
ical aptitude tests. In our example, only a subset with 9 variables of the complete
data is extracted to measure 3 correlated latent variables, each with three indicators,
i.e.,

• a visual factor (ξ1) is measured by visual perception (x1), cubes (x2) and
lozenges (x3).

• a textual factor (ξ2) is measured by paragraph comprehension (x4), sentence
completion (x5) and word meaning (x6)

• a speed factor (ξ3) is measured by addition (x7), counting of dots (x8) and
discrimination of straight and curved capitals (x9).

The descriptives for the observed variables are given in Table 3.1, whereas the relations
between latent variables and their indicators are formulated in the next paragraph
and expressed using path notation (without showing measurement errors) in Figure
3.2.

The confirmatory factor analysis model for the H&S data can be represented as:

x = Λxξ + εx, (3.19)
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Table 3.1: Descriptives for the variables in the confirmatory factor analysis

Variable Mean S.D.
visual perception x1 4.94 1.17

cubes x2 6.09 1.18
lozenges x3 2.25 1.13
paragraph x4 3.06 1.16
sentence x5 4.34 1.29

word mean x6 2.19 1.10
addition x7 4.19 1.09
dots x8 5.53 1.01

straight curved x9 5.37 1.01

where x = (x1, . . . , x9)T denotes observed variables, ξ = (ξ1, ξ2, ξ3)T denotes latent
variables,

ΛT
x =

 θ1 θ2 θ3 0 0 0 0 0 0
0 0 0 θ4 θ5 θ6 0 0 0
0 0 0 0 0 0 θ7 θ8 θ9

 (3.20)

is a matrix of factor loadings, and εx is a 3 × 1 vector of measurement errors with
εx ∼ N(0,Ψεx) and Ψεx being its covariance matrix. The covariance matrix of
observed variables is given by:

Σx = ΛxΦξΛ
T
x + Ψεx , (3.21)

where the factor covariance matrix Φξ is a symmetric matrix:

Φξ =

 φ11 φ12 φ13

φ12 φ22 φ23

φ13 φ23 φ33

 . (3.22)

Because the confirmatory factor analysis model is a measurement model without
a structural model, we can simply specify this model using lavaan syntax in R (see
Appendix 3.A). To ensure that the target parameters are comparable, we standardize
them all. As is elaborated in Appendix 3.A, lavaan provides both the standardized
estimates and covariance matrix of target parameters. Recall that this is all the
information that BIG needs to compute Bayes factors. Furthermore, in factor analysis
models, indicators are required to both identify the model and set a metric for latent
variables. This can be typically achieved either by standardizing the variances of
latent variables or by constraining one factor loading per latent variable to 1. In this
example, the former way is chose.

Factor loadings indicate the degree of correspondence between the factor and the
indicator, with higher loadings making the indictor more representative of the factor.
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Figure 3.2: Confirmatory factor analysis

Researchers might be interested in the issue which indicator plays the most important
role in defining a factor. For instance, the first indicator of every factor may be
expected to be strongest, which can be represented by the following hypothesis

H1 :
θ1 > {θ2, θ3}
θ4 > {θ5, θ6}
θ7 > {θ8, θ9}

. (3.23)

We can also test a hypothesis with respect to the structure of the correlations between
the latent variables. For example, we can evaluate whether the correlation between
visual and textual is larger than the correlation either between visual and speed or
between textual and speed:

H2 : φ12 > {φ13, φ23}. (3.24)

Using BIG (the user manual of BIG can be found in Appendix 3.B) to compute Bayes
factors for H1 against Hu or H1c renders BF1u = 0.088 or BF11c = 0.085 under prior
(3.16), and BF1u = 0.087 or BF11c = 0.084 under prior (3.17). For H2 against Hu or
H2c , BIG renders BF2u = 1.34 or BF22c = 1.61 under prior (3.16), and BF2u = 1.35
or BF22c = 1.63 under prior (3.17). These results imply that hypothesis H1 is not
supported by the data, and the evidence from the data for H2 is not convincing
because BF2u or BF22c is quite close to 1.
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Table 3.2: Descriptives for the variables in the multiple regression model

Variable Mean S.D.
y1 1.06 0.16
y2 1.05 0.15
x11 1.43 0.30
x12 1.33 0.24
x21 2.84 0.43
x22 2.91 0.38
x31 2.54 0.34
x32 2.47 0.32
x4 2.12 0.31

3.5.2 Multiple regression with latent variables

In a study reported by Warren, White, and Fuller (1974) (data available on the Web at
http://tinyurl.com/warren-1974), a sample of 98 managers of farmer cooperatives
was selected with the objective of studying managerial behavior. They postulated that
a latent variable manager performance (η) was predicted by three correlated latent
variables, i.e., knowledge (ξ1), orientation (ξ2) and satisfaction (ξ3), and an observed
variable training (x4). The latent variables η, ξ1, ξ2, and ξ3 were measured based
on qualitative and quantitative answers to identical questionnaires collected from a
random sample of managers in farmer cooperatives. These variables are assumed to
be measured with error, and the errors of measurement were computed using the split
halves procedure (Warren et al., 1974) for all variables subject to measurement error:

• η is measured by y1 and y2,

• ξ1 is measured by x11 and x12,

• ξ2 is measured by x21 and x22,

• ξ3 is measured by x31 and x32.

The observed variables are described in Table 3.2 and the graphical specification of
this structural equation model is found in Figure 3.3.

As can be seen from Figure 3.3, the relations of the variables can be represented by
a multiple regression model with η, ξ1, ξ2, and ξ3 that are latent. The measurement
model is given by

y = Λyη + εy

x = Λxξ + εx, (3.25)
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Figure 3.3: Multiple regression with latent variables

where x = (x01, x02, x11, x12, x21, x22, x31, x32)T denotes observed variables, and η
and ξ = (ξ1, ξ2, ξ3)T are latent variables. For the structural model, we have

η = θ0 + θ1ξ1 + θ2ξ2 + θ3ξ3 + θ4x4 + δ, (3.26)

where θ0 is the intercept, θ1, θ2, θ3, and θ4 are regression coefficients, and δ ∼ N(0, σ2)
is the residual. This regression model is analyzed in lavaan (see Appendix 3.A).
We standardize the coefficients to make them comparable. Using the standardized
estimates and covariance matrix of these coefficients from lavaan, BIG can compute
Bayes factors.

The hypothesis we evaluated is based on the results obtained by Warren et al.
(1974) It states that knowledge is the strongest predictor followed by orientation,
training and satisfaction. The resulting hypothesis is

H3 : θ1 > θ2 > θ4 > θ3. (3.27)

This hypothesis can be compared to, for example, knowledge is stronger than orien-
tation followed by satisfaction and training:

H4 : θ1 > θ2 > θ3 > θ4, (3.28)

and training is stronger than satisfaction followed by orientation and knowledge:

H5 : θ4 > θ3 > θ2 > θ1. (3.29)
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Table 3.3: Bayes factors and PMPs of H3, H4 and H5

BFiu PMPs

π1
u(θ) π2

u(θ) π1
u(θ) π2

u(θ)
H3 5.337 9.461 0.804 0.784
H4 1.294 2.597 0.195 0.215
H5 0.006 0.011 0.001 0.001

The results of the evaluation of these three hypotheses using BIG are displayed in
Table 3.3 (the user manual of BIG can be found in Appendix 3.B). As can be seen,
there is evidence in favor of H3, no convincing evidence for H4, and evidence against
H5. Furthermore, it can be seen from the PMPs introduced in (3.14) that H3 receives
the largest support from the data.

3.6 Properties of two prior distributions

This section discusses the properties of prior distributions π1
u(θ) and π2

u(θ) proposed
in Section 3.4.1. First of all, the following theorem proves that when using noninfor-
mative normal prior the complexity is independent of the prior mean. This property
enables us to simply specify a mean vector of 0 for π1

u(θ) and π2
u(θ).

Theorem 1: If πu(θ) = N(θ0, ωΣs), the limit of P (Riθ > ri|πu(θ)) is independent
of θ0 for ω → ∞. Note that P (Riθ > ri|πu(θ)) is the complexity of Hi : Riθ > ri
under prior πu(θ).

Proof : Let β = Riθ − ri, then

P (Riθ > ri|πu(θ)) = P (β > 0|πu(β)) (3.30)

with
πu(β) = N(Riθ0 − ri, ωRiΣsR

T
i ). (3.31)

Therefore,

lim
ω→∞

P (Riθ > ri|πu(θ))

= lim
ω→∞

P (β > 0|β ∼ N(Riθ0 − ri, ωRiΣsR
T
i )

= lim
ω→∞

P (β > 0|β ∼ N(
Riθ0 − ri√

w
,RiΣsR

T
i )

= P (β > 0|β ∼ N(0,RiΣsR
T
i ) (3.32)

is independent of θ0. �
Through the proof of Theorem 1, it can be seen that the complexity depends on the
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restriction matrixRi and covariance structure Σs. This implies the prior distributions
π1
u(θ) and π2

u(θ) with different covariance structures have different properties with
respect to the complexity.

The prior distribution π1
u(θ) in (3.16) specifies equal probabilities for every pos-

sible value in the parameter space such that it is neutral with respect to compet-
ing inequality constrained hypotheses that belong to an equivalent set (Hoijtink,
2012). A formal definition of the equivalent set is proposed by Hoijtink (2012,
p. 202). An equivalent set consists of equivalent hypotheses Hi1, . . . ,HiQ for which
Hi1

⋃
. . .
⋃
HiQ encompasses 100% of the parameter space and Hiq

⋂
Hiq′ = ∅ for

any q 6= q′, where q, q′ = 1, . . . , Q denotes the index of the equivalent hypotheses of
Hi. These equivalent hypotheses have the same complexity, because they are equally
likely a priori under π1

u(θ) (Hoijtink, 2012, p. 48). This further suggests that the
complexity of a hypothesis from an equivalent set is 1/Q. In this paper, we modify
the definition of the equivalent set so that it has less conditions without sacrificing
properties when using π1

u(θ).
A hypothesis Hi : Riθ > ri is a member of an equivalent set if it has two

characteristics:

1. D = RiR
T
i has a rank of K.

2. Dkk′

Dkk
equals either 0, 1

2 or − 1
2 for k, k′ = 1, . . . ,K and k′ 6= k.

Examples of hypotheses that belong to an equivalent set are

• H1 : θ1 > 0, θ2 > 0 for which R1 =

[
1 0
0 1

]
and D =

[
1 0
0 1

]
. With

different inequality signs Q = 4 equivalent hypotheses, for example H
′

1 : θ1 <
0, θ2 > 0, belong to the same equivalent set. The complexity for each hypothesis
is c1 = 1/4.

• H2 : θ1 > θ2 > θ3 for which R2 =

[
1 −1 0
0 1 −1

]
and D =

[
2 −1
−1 2

]
.

This hypothesis is one of a set of six equivalent hypotheses, for example, H
′

2 :
θ2 > θ1 > θ3, and therefore the complexity for each hypothesis is c2 = 1/6.

• H3 : θ1 > {θ2, θ3} for which R3 =

[
1 −1 0
1 0 −1

]
and D =

[
2 1
1 2

]
. The

other two hypotheses that belong to the same equivalent set are H
′

3 : θ2 >
{θ1, θ3} and H

′′

3 : θ3 > {θ1, θ2}. Each equivalent hypothesis has a complexity
of c3 = 1/3.
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• H4 : 2θ1 > θ2 + θ3 > 2θ4 for which R4 =

[
2 −1 −1 0
0 1 1 −1

]
and D =[

4 −2
−2 4

]
. It has five equivalent hypotheses, e.g., H

′

4 : θ2 + θ3 > 2θ4 > 2θ1,

and its complexity is c4 = 1/6.

Note that based on the definition of equivalent set in Hoijtink (2012) H1 and H4 are
not members of equivalent sets. Examples of hypotheses that do not belong to an
equivalent set are:

• H5 : θ1 > 0, θ2 > 0, θ1 > θ2 for whichR5 =

[
1 0
0 1
1 −1

]
andD =

[
1 0 1
0 1 −1
1 −1 2

]
with a rank of 2.

• H6 : θ1 > 2θ2 > θ3 for which R6 =

[
1 −2 0
0 2 −1

]
and D =

[
5 −4
−4 5

]
,

because D12

D11
= − 4

5 is not equal to 0, 1
2 or − 1

2 .

Although prior distribution π1
u(θ) results in the same complexity of the hypotheses

from an equivalent set, the complexity based on this prior is not invariant for linear
transformations of the data (Mulder, 2014a). Linear transformations of the data
are often considered in repeated measures models. As an example we compute the
complexity of the inequality constrained hypothesis H2 : θ1 > θ2 > θ3 with restriction
matrix

R2 =

[
1 −1 0
0 1 −1

]
for the repeated measures data y = (y1i,y2i,y3i) ∼ N(θ,Σy), where θ = (θ1, θ2, θ3)T

is a mean vector and Σy is a covariance matrix of the data. In this case, the complexity
of H2 using π1

u(θ) is c2 = 1/6 because of the equivalent set. Now the data is trans-
formed according to R2y = z ∼ N(γ,Σz) with γ = (γ1, γ2)T = (θ1−θ2, θ2−θ3)T . In
terms of γ, we obtain H2 : γ1 > 0, γ2 > 0. Hence, using prior distribution (3.16) for γ
the complexity of H2 is c2 = 1/4. This indicates that the complexity of a hypothesis
with constraints on the parameters is generally different from the complexity of a
hypothesis with constraints on the parameter differences, although two hypotheses
represent the same theory.

The complexity under prior distribution π2
u(θ) in (3.17) is invariant to linear one-

to-one transformations of the data. Inspired by Mulder (2014a), Theorem 2 proves
this invariance of complexity for the hypothesis with respect to the mean parameters
in repeated measures. The proof only focuses on the repeated measure model, be-
cause the property of invariance is important when comparing the means.

Theorem 2: The complexity of Hi : Riθ > ri when using π2
u(θ) is invariant for
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linear one-to-one transformation of the repeated measures data y ∼ N(θ,Σy).

Proof : For the repeated measures, the covariance matrix of θ is approximated by
Σ̂θ = SY /n, where SY = (Y − 1ȳT )T (Y − 1ȳT ) with ȳ being the sample means of
Y = (y1, · · · ,yn). Following (3.17) the prior distribution for θ is π2

u(θ) = N(0, ωnSY ).
Consider a linear one-to-one transformation Ly = z ∼ N(γ,Σz), where L is a

J × J full rank matrix, and γ = Lθ and Σz = LΣyL
T . After linear transformation,

similarly, the covariance matrix of γ is approximated by Σ̂γ = SZ/n, where SZ =
(Z − 1z̄T )T (Z − 1z̄T ) with z̄ being the sample means of Z = (z1, · · · , zn). Note
that SZ = L(Y −1ȳT )T (Y −1ȳT )LT = LSYL

T which implies Σ̂γ = LΣ̂θL
T , then

the prior distribution for γ becomes π2
u(γ) = N(0, ωnLSYL

T )

Let β1 = Riθ − ri and β2 = RiL
−1γ − ri with

π2
u(β1) = N(0,

ω

n
RiSYR

T
i ), (3.33)

and

π2
u(β2) = N(0,

ω

n
RiL

−1SZ(RiL
−1)T ) = N(0,

ω

n
RiSYR

T
i ) (3.34)

then we have

P (Riθ > ri|π2
u(θ)) = P (β1 > 0|π2

u(β1)) = P (β2 > 0|π2
u(β2))

= P (RiL
−1γ > ri|π2

u(γ)) (3.35)

which manifests that the complexity is invariant. �
Based on the discussion above, it can be concluded that prior distribution π1

u(θ)
is neutral for every value of parameters such that the complexities of hypotheses
from an equivalent set are equal. However, the complexity with respect to such prior
is not invariant when transforming the data. Conversely, prior distribution π2

u(θ)
has a benefit for the invariance of complexity, but it may favor one or more specific
inequality constrained subspaces a priori under the unconstrained hypothesis.

As was shown in Section 3.4.1, the complexities from two prior distributions may
be different. This is analogous to the classical information criterions AIC (Akaike,
1973) and BIC (Burnham & Anderson, 2002). The AIC has the complexity term
which consists of two times of the number of parameters, whereas the BIC penalizes
log(n) times the number of parameters. There is not a consistent answer whether
AIC or BIC should be preferred in model selection. Similarly, there is not a consistent
answer to the question that which prior distribution is better. This may depend on
the statistical model at hand. Therefore, our program renders Bayes factors obtained
using both prior distributions.
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3.7 Computation of Bayes factors

As was elaborated in Section 3.3, the Bayes factor is a ratio of fit and complexity.
Because both prior distributions π1

u(θ) = N(0, ωI) and π2
u(θ) = N(0, ωΣ̂θ) and the

posterior distribution πu(θ|X) ≈ N(θ̂, Σ̂θ) are normal distributions, for notational
convenience each of them can be denoted by

p(θ) = N(µθ,Σθ). (3.36)

Thus, the complexity and fit can be represented by the following probability

P (Hi) = P (Riθ > ri) =

∫
Riθ>ri

p(θ)dθ. (3.37)

This probability can be estimated by sampling from the prior or posterior distribution
using the Gibbs sampler (Gelman et al., 2004).

Before presenting the core algorithm of the Gibbs sampler, we shall present two
pre-steps of the sampling procedure which can efficiently reduce the computing time.
First, the Bayes factor is decomposed in Section 3.7.1 such that less iterations of the
Gibbs sampler are needed to accurately estimate the complexity and fit. Second,
the target parameters are transformed in Section 3.7.2 such that in each iteration
of the Gibbs sampler less time is needed. Thereafter, Section 3.7.3 introduces the
constrained Gibbs sampling procedure based on the transformed parameters. After
obtaining the samples of transformed parameters, decomposed complexities and fits
can be estimated using two methods proposed in Section 3.7.4. Furthermore, the
sample size of the Gibbs sampler for accurate estimation of the complexity and fit is
discussed in Section 3.7.5. Section 3.7.6 summarizes the constrained Gibbs sampling
procedure by which we estimate the complexity and fit, and thus the Bayes factor.

3.7.1 Decomposition of the Bayes factor

When hypothesis Hi is formulated using a relatively large number of inequality con-
straints, accurately estimating the complexity and fit can be computationally inten-
sive. Consider, for example, the complexity of H1 : θ1 >, . . . , > θ10 under prior
π1
u(θ). As stated in Section 3.6, H1 belongs to an equivalent set and its complexity is
c1 = 1/J ! = 1/10!, that is, a really small value with the need of more than 20 million
Gibbs sampler draws (Hoijtink, 2012, p. 207) to ensure the deviation of the estimate
is almost never over 10%. Directly estimating this complexity may not be feasible
or extremely time-consuming. Consequently, when computing the Bayes factor for
hypotheses with relatively large K, a decomposition of the Bayes factor is needed
(Klugkist et al., 2010):

BFiu = BFi1,u ×BFi2,i1 × · · · ×BFiK ,iK−1
, (3.38)
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where ik, k = 1, . . . ,K denotes a hypothesis using the constraints in the first k rows
of Ri. More specifically, BFik,ik−1

is defined by:

BFik,ik−1
=
fik,ik−1

cik,ik−1

. (3.39)

Let Hik denote the hypothesis using constraints in the first k rows of Ri, then cik,ik−1

and fik,ik−1
denote the probabilities of prior and posterior distributions in agreement

with Hik conditional on Hik−1
, respectively. Then, the complexity and fit can be

expressed by

ci =

K∏
k=1

cik,ik−1
and fi =

K∏
k=1

fik,ik−1
. (3.40)

Let

P (Hik |Hik−1
) = P (Rikθ > rik |Ri1θ > ri1 , . . . ,Rik−1

θ > rik−1
) (3.41)

denote either cik,ik−1
or fik,ik−1

, then the probability (3.37) for ci and fi becomes

P (Hi) = P (Hi1)× P (Hi2 |Hi1)× · · · × P (HiK |HiK−1
). (3.42)

Because each of the probabilities in (3.42) is larger than P (Hi) especially when K
is large, accurately estimating cik,ik−1

or fik,ik−1
requires much less draws from the

Gibbs sampler compared to directly estimating ci or fi. For example, the decomposed
complexities for H1 : θ1 >, . . . , > θ10 are c11,10

= 1
2 , c12,11 = 1

3 , · · · , c110,19 = 1
10 ,

which can be accurately estimated using, e.g., less than 9,600 draws for c110,19
based

on the rule proposed by Hoijtink (2012, p. 154). Although every probability in (3.42)
needs to be estimated, the total sample size for decomposed ci or fi is still less
than that without decomposition because the sample size for accurate estimation
increases dramatically as K increases. This will be illustrated in Section 3.7.5. Before
introducing the method for the computation of the probability (3.41), we transform
the target parameters such that the inequality constrained hypothesis has a simple
form, which will be elaborated in the next section.

3.7.2 Transformation of target parameters

This section simplifies the form of the hypothesis Hi using parameter transformation
β = Riθ − ri such that Hi : Riθ > ri becomes Hi : β > 0 and the decomposed
complexity or fit shown in (3.41) becomes

P (Hik |Hik−1
) = P (βk|β1 > 0, . . . , βk−1 > 0). (3.43)

This transformation was also used in Mulder (in press). It has three benefits in terms
of the efficiency of estimating the decomposed complexity and fit. First, the subset
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of vector β that needs to be sampled has a length that is less than or equal to J (the
length of θ). Take hypothesis H1 : θ1 > θ2 > θ3 for example. The transformation
(β1, β2)T = (θ1−θ2, θ2−θ3)T leads to H1 : β1 > 0, β2 > 0. Therefore, we only need to
sample β with a length of 2. Although for another example H2 : θ1 > 0, θ2 > 0, θ1 >
θ2 the length of β, where (β1, β2, β3)T = (θ1, θ2, θ1−θ2)T , is larger than the length of
θ, only a subset (β1, β2)T needs to be sampled because β3 = β1 − β2. This issue will
be further explained in the following paragraph. Second, it is more straightforward to
define the conditional probability in (3.43) than in (3.41), because each β has a lower
bound of 0 if it is constrained, whereas if θ is constrained, a lower and upper bound
has to be determined which will take much effort especially when K is relatively large.
It will be shown in Section 3.7.3 how the constrained β can be sampled. Third, the
conditional probability P (βk|β1 > 0, . . . , βk−1 > 0) can analytically be determined,
which will be further discussed in Section 3.7.4.

Since θ has a multivariate normal distribution (3.36), after the linear transfor-
mation, β also has a multivariate normal distribution p(β) = N(µβ ,Σβ), where
µβ = Riµθ − ri and Σβ = RiΣθR

T
i . It should be noted that if Ri is of full row

rank, then the elements of β is linearly independent, otherwise the elements of β are
not independent. Take, for example, hypothesis

H3 :

θ1 > θ3

θ1 > θ4

θ2 > θ3

θ2 > θ4

with [R3|r3] =


1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1

0
0
0
0

 . (3.44)

The matrix R3 has a rank of 3 and the transformation

β =


β1

β2

β3

β4

 = R3θ − r3 =


θ1 − θ3

θ1 − θ4

θ2 − θ3

θ2 − θ4

 (3.45)

implies that β4=−β1 + β2 + β3. Without loss of generality, we suppose the rank of
Ri is M and let

β = (β̄, β̃) = (β̄1, . . . , β̄M , β̃M+1, . . . , β̃K), (3.46)

where β̄ contains M independent elements of β, and β̃ is a linear combination of the
elements of β̄. This implies that we only need to sample β̄ from its distribution. The
distribution of β̄ is p(β̄) = N(µβ̄ ,Σβ̄) with µβ̄ = R̄iµθ − r̄i and Σβ̄ = R̄iΣθR̄

T
i ,

where R̄i is a full row rank matrix that consists of M rows of Ri and r̄i is the
corresponding constant vector. Although R̄i may not be unique, any set of linearly
independent M rows of Ri can be chosen because the order of constraints does not
affect the evaluation of the hypothesis.
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The specification of R̄i, r̄i, and the linear combination of β̄ that renders β̃ can
be achieved using elementary row operations (Gaussian elimination) for the matrix
Ri. The detailed procedure is given as follows:

1. Set an identity matrix C with a rank of max {K,J}. Initialize A = Ri,M = K
and d = (1, 2, . . . ,K) to record the swap of constraints in Ri.

2. Repeat step (i), (ii) and (iii) for k = 1, · · · ,K.

(i) If Ak,k = 0 and Ak′,k 6= 0 where k′ > k, then swap the kth row with the
k′th row in A and C, and swap dk and dk′ in d.

(ii) IfAk,k 6= 0 after step (i), then letAk,j = Ak,j/Ak,k andCk,j = Ck,j/Ck,k

for j = 1, · · · , J .
(iii) Let Ak′,j = Ak′,j−Ak,jAk′,k and Ck′,j = Ck′,j−Ck,jCk′,k for all k′ 6= k

and j = 1, · · · , J .

3. For k = 1, · · · ,K, if
∑J
j=1 |Ak,j | = 0 then M = M − 1.

4. For k = 1, · · · ,K, if
∑J
j=1 |Ak,j | = 0 and

∑J
j=1 |Ak′,j | 6= 0 where k′ > k, then

swap the kth row with the k′th row in A and C, and swap dk and dk′ in d.

5. Let Ri = (Ri,d1 , . . . ,Ri,dK )T and ri = (rd1 , . . . , rdK ), where Ri,dk denotes the
dkth row of Ri. Then let β = Riθ > ri in which β̄ corresponds to the first M
elements in β and β̃ corresponds to the remaining part.

After conducting this procedure, we obtain the rank of Ri, i.e., M , and [R̄i|r̄i] which
contains the first M rows of [Ri|ri]. Furthermore, the dependence in β can be
expressed by

CM+1,d1 · β1+ · · · +CM+1,dK · βK = rdM+1
,

...
CK,d1 · β1+ · · · +CK,dK · βK = rdK . (3.47)

For example, for the hypothesis H3 shown in (3.44), executing the procedure above
renders

[A|C] =


1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



→


1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0

0 1 0 0
−1 1 1 0
−1 1 0 0
1 −1 −1 1

 (3.48)
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and d = (1, 3, 2, 4) which means the second and third rows have been swapped. Since
there are three non-zero rows in A after Gaussian elimination, the rank of Ri is
M = 3 and the first three rows of Ri are independent because they correspond to
the non-zero rows. Furthermore, according to (3.47) the last row of C after Gaussian
elimination indicates β1 − β2 − β3 + β4 = 0, i.e., β4 = −β1 + β2 + β3.

As elaborated earlier, our program can not handle hypotheses that contain equal-
ity constraints, about equality constraints and range constraints. The procedure of
transforming parameters can be used to check whether the hypothesis under eval-
uation can be handled by BIG. The invalid hypothesis corresponds to the situation
that all the elements in the kth row of C where k > M have the same sign after the
procedure above is executed. For example, the execution of our procedure for the
range hypothesis H4 : 0 < θ1 < θ2 < 1 results in

[A|C] =

 1 0
−1 1
0 −1

1 0 0
0 1 0
0 0 1

→
 1 0

0 1
0 0

1 0 0
1 1 0
1 1 1

 . (3.49)

As can be seen, the rank of R4 for H4 is 2, and all the elements in the last row of
C are positive. This corresponds to a hypothesis that contains one or more equality,
about equality or range constraints.

After the transformation of parameters, the probability P (βk|β1 > 0, . . . , βk−1 >
0) from equation (3.43) can be estimated using the constrained Gibbs sampler. This
will be discussed in the next section.

3.7.3 Constrained Gibbs sampler

The constrained Gibbs sampler is applied to estimate each decomposed complexity
and fit. The basic principle of the Gibbs sampler is to sequentially generate a sample
for each β conditionally on the current values of all the others. As was elaborated
before, only β̄ needs to be sampled, and the sample of β̃ can be computed using
the sample of β̄. Since β̄ is normally distributed, the conditional distribution of any
parameter of β̄ given the remaining parameters is also normal. In each iteration, β̄tk,
where t denotes the iteration index of the Gibbs sampler and k = 1, . . . ,M , can be
sampled from the following conditional distribution

p(β̄tk|β̄tl 6=k) = N(µβ̄k +

k−1∑
l=1

bkl(β̄
t
l − µβ̄l) +

M∑
l=k+1

bkl(β̄
t−1
l − µβ̄l), [(Σ

−1
β̄

)kk]−1) (3.50)

where µβ̄k is the mean of β̄k in this full conditional distribution, bkl is the element at
the kth row and lth column in the matrix BM×M = I − [diag(Σ−1

β̄
)]−1Σ−1

β̄
with Σβ̄

being the covariance matrix of β̄ and I being a M ×M identity matrix, and (Σ−1
β̄

)kk
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is the element at the kth row and kth column in Σ−1
β̄

. The derivation of equation
(3.50) can be found in Gelman et al. (2004, p. 579).

The estimation of probability P (βk|β1 > 0, . . . , βk−1 > 0) requires a sample of
β̄ = (β̄1, . . . , β̄M ) from the prior or posterior distribution that is in agreement with
the first k− 1 constraints β1 > 0, . . . , βk−1 > 0. Using the current value of β and the
linear restriction if Ri is not of full row rank, a lower bound L and a upper bound U
of β̄ can be specified. More specifically, if k ≤ M + 1 then (β̄1, · · · , β̄k) are sampled
with a lower bound of L = 0 and no upper bound, and other βs are not constrained.
If k > M + 1, all β̄ have a lower bound of L = 0, and (β̃M+1 > 0, . . . , β̃k−1 > 0)
will be used to define a further lower bound and a upper bound of β̄ based on
their dependence. Using inverse probability sampling (Gelfand, Smith, & Lee, 1992),
it is straightforward to obtain a sample from equation (3.50) constrained in (L,U)
according to the following two steps.

(i) Randomly generate a number ν via a uniform distribution on the interval [0,1].

(ii) Compute β̄k = Φ−1
β̄k

[Φβ̄k(L)+ν(Φβ̄k(U)−Φβ̄k(L))], where Φβ̄k is the cumulative
distribution function of (3.50) and Φ−1

β̄k
is the inverse cumulative distribution

function.

Running the Gibbs sampler for t = 1, . . . , T iterations renders a sample of each com-
ponent of β̄ = (β̄1, . . . , β̄M ). As elaborated in Section 3.7.2, β̃ is linearly dependent
on β̄. Thus, we can also obtain a sample of β̃ using the sample of β̄ and equation
(3.47).

The choice of burn-in period and the check of convergence are important steps
in the Gibbs sampler. In our method, however, we specify the prior distribution
and approximate the posterior distribution with a multivariate normal distribution.
Therefore, convergence is not an issue because the sample from multivariate normal
distribution converges very fast even if the initial value is far away from the prior or
posterior mode. This is explicitly illustrated in Gu et al. (2014), which applies the
constrained Gibbs sampler to multivariate normal distributions as well. In addition,
Gu et al. (2014) also shows that within a burn-in period of 100 iterations the effect of
the initial values is eliminated and the sample converges to the desired distribution.
Thus, we discard the first 100 iterations as a burn-in phase of the Gibbs sampler. In
the next section, two methods for estimating the decomposed complexity and fit are
presented based on the samples of β obtained in this section.

3.7.4 Two methods for estimating complexity and fit

In this section, we propose two approaches to estimate the probability (3.43) after
obtaining the samples of β of size T from either prior or posterior distribution. A
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straightforward manner is counting the number of samples in agreement with βk > 0:

P (βk > 0|β1 > 0, . . . , βk−1 > 0) = T−1
T∑
t=1

I(βtk > 0|βt1 > 0, . . . , βtk−1 > 0), (3.51)

where I(·) denotes the indicator function which is 1 if the argument is true and 0
otherwise.

Particularly for estimating this probability with respect to the firstM decomposed
constraints β̄ > 0, we adopt a more efficient approach inspired by Gelfand et al. (1992)
and used in Morey, Rouder, Pratte, and Speckman (2011), and Mulder (in press). The
principle of this method is that the density of the univariate βk can be approximated
by the average of its full conditional density constructed using the current sample of
all the other βs. This implies the probability P (βk > 0) given the density of βk can
be approximated by the average of P (βk > 0) given the conditional density based
on different samples. Consequently, using the constrained samples for β1, . . . , βk−1 in
the conditional density, we obtain

P (βk > 0|β1 > 0, . . . , βk−1 > 0)

= T−1
T∑
t=1

P (βk > 0|βt1 > 0, . . . , βtk−1 > 0, βtk+1, . . . , β
t
K). (3.52)

This probability can easily be computed because the conditional distribution (3.50)
of βk is a univariate normal distribution that is easily integrated for βk > 0.

It should be emphasised that this method is not applicable for estimating de-
composed complexities or fits for which k > M , because β̃k for k > M is a linear
combination of β̄1, . . . , β̄M , which means β̃k is a point given β̄1, . . . , β̄M . Therefore
in this case equation (3.51) will be used. Despite of this limitation, the new method
(3.52) is still attractive because it increases the accuracy of the estimation for a give
sample size of the Gibbs sampler. This will be elaborated in the next paragraph. This
implies that fewer iterations of the Gibbs sampler are needed to obtain an acceptable
accuracy. Consequently, for estimating the decomposed complexities and fits in our
program, the new method (3.52) is used when k ≤ M , whereas the approach shown
in (3.51) is used when k > M .

To investigate the performance of the two methods, we shall consider a series of
hypotheses H1 : θ1 > . . . > θJ for J = 3, . . . , 5 and estimate the complexities under
π1
u(θ) = N(0, ωI), where 0 is a zero vector with a length of J , I is a J × J identity

matrix, and ω →∞. The true value of c1 with respect to prior π1
u(θ) in these hypothe-

ses is known as cTrue1 = 1/J !. We estimate the complexities of H1 1000 times using
each method when the sample size of the Gibbs sampler is T = 50, 500, and 5000.
This results in c(s)11 and c(s)12 based on methods (3.51) and (3.52), respectively, where
s = 1, . . . , 1000. Thereafter, we compute the mean squared relative error (MSRE),
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Table 3.4: MSRE of estimate using two methods

True ci=0.166 (J=3) ci=4.17E-2 (J=4) ci=8.33E-3 (J=5)

MSRE1 MSRE2 MSRE1 MSRE2 MSRE1 MSRE2

T = 50 7.76E-2 8.37E-3 0.140 3.36E-2 0.272 9.64E-2
T = 500 9.25E-3 7.62E-4 1.61E-2 3.34E-3 2.44E-2 8.96E-3
T = 5000 5.28E-4 7.78E-5 1.49E-3 3.38E-4 2.46E-3 9.15E-4

MSRE1 = 1
1000

∑1000
s=1 (

cTrue1 −c(s)11

cTrue1
)2 and MSRE2 = 1

1000

∑1000
s=1 (

cTrue1 −c(s)12

cTrue1
)2, to mea-

sure the accuracy of the estimation using methods (3.51) and (3.52), respectively.
Table 3.4 displays the MSREs of the estimate for c1. As can be seen in Table 3.4,

the MSREs from method (3.52) MSRE2 are much smaller than that from method
(3.51) MSRE1. This implies that method (3.52) needs a smaller sample size of the
Gibbs sampler to attain the same accuracy. Furthermore, it can be seen that the
MSREs decreases as sample size increases, and small complexity ci = 0.166 needs
more sample size than large complexity ci =8.33E-3 to obtain the same magnitude of
MSREs. This implies we can determine sample size T for both methods (3.51) and
(3.52) based on the acceptable estimation accuracy and the size of the probability
under estimation. This will be discussed in the next section.

3.7.5 Sample size determination for the Gibbs sampler

This section discusses the sample size T of the Gibbs sampler needed to accurately
estimate P (βk > 0|β1 > 0, . . . , βk−1 > 0), which has a true value PTrue. As stated
earlier, this probability is estimated using method (3.51) if k > M , and method (3.52)
if k ≤M . For method (3.51), Hoijtink (2012, p. 154) proposes a rule to determine the
sample size T1 needed to accurately estimate the complexity or fit, which is shown in
the top panel of Table 3.5. The criterion is that the 95% central credibility interval
for the estimate has lower and upper bounds that are less than 10% different from
the true value. The first row in Table 3.5 displays the true probabilities PTrue that
needs to be estimated. In addition, L-95% and U-95% demonstrate the lower and
upper bounds of the 95% central credibility interval when using the corresponding T1

above.
For method (3.52), we present a new rule to determine the sample size T2 based

on a more strict accuracy criterion, that is, the differences between both L-95% and
U-95%, and PTrue are less than 5%. We let N(µβk , σ

2
βk

) denote the distribution of
βk in P (βk|β1 > 0, . . . , βk−1 > 0), where µβk is the mean and σ2

βk
is the variance.

Then equation (3.52) becomes

P (βk|β1 > 0, . . . , βk−1 > 0) = P (βk > 0|βk ∼ N(µβk , σ
2
βk

))

= P (βk > 0|βk ∼ N(λ̂k, 1)) (3.53)
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Table 3.5: Gibbs sample size determination

PTrue 0.166 4.17E-2 8.33E-3 1.39E-3 1.98E-4 2.48E-5
T1 3,000 9,600 120,000 360,000 2,520,000 20,160,000

L-95% 0.154 3.8E-2 7.8E-3 1.27E-3 1.82E-4 2.3E-5
U-95% 0.180 4.6E-2 8.9E-3 1.52E-3 2.17E-4 2.7E-5
T2 4,000 8,000 12,000 18,000 25,000 32,000

L-95% 0.159 3.97E-2 7.93E-3 1.32E-3 1.89E-4 2.37E-5
U-95% 0.175 4.36E-2 8.74E-3 1.46E-3 2.08E-4 2.60E-5

where λ̂k = µβk/σβk is the standardized population mean of βk. The principle of
the sample size determination for method (3.52) is based on two facts. First, in the
Gibbs sampler, we obtain T2 samples of βk from N(µβk , σ

2
βk

) or standardized βk from
N(λ̂k, 1). This implies that the distribution of the standardized sample mean of βk,
denoted by λk, is N(λ̂k,

1
T2

). Second, the probability P (βk|β1 > 0, . . . , βk−1 > 0)

is a one-to-one correspondence function of λ̂k. For example, if λ̂k = 0, we obtain a
probability of 1/2, and conversely if the true value of the probability is 1/6, we would
expect a λ̂k of −0.97. These enable us to determine the sample size T2 needed to
accurately estimate P (βk > 0|β1 > 0, . . . , βk−1 > 0) given a true value PTrue using
the following steps.

1. Compute λ̂k such that P (βk > 0|βk ∼ N(λ̂k, 1)) = PTrue, and initialize T2 =
1000.

2. Sample λk 10000 times from N(λ̂k,
1
T2

), and then obtain 10000 estimates of
P (βk > 0|βk ∼ N(λ̂k, 1)).

3. Using 10000 estimates of P (βk > 0|βk ∼ N(λ̂k, 1)), compute their 95% central
credibility interval (L,U).

4. If either |L−P
True|

PTrue
> 5% or |U−P

True|
PTrue

> 5%, then T2 = T2 + 1000 and go to
Step 2.

The bottom panel of Table 3.5 displays the sample size T2 and the resulting L-95%
and U-95% from the procedure above given corresponding PTrue.

In BIG, Table 3.5 is adopted to determine the sample size T1 and T2 of the Gibbs
sampler for estimating each decomposed complexity and fit based on methods (3.51)
and (3.52). Because T1 or T2 is large enough to accurately estimate the corresponding
PTrue in the first row of Table 3.5, it will also be sufficient to estimate a probability
that is larger than this PTrue. We estimate P (βk|β1 > 0, . . . , βk−1 > 0) with a
starting sample size T1 = 3000 if k > M or T2 = 4000 if k ≤M , and gradually reset
T1 or T2 based on Table 3.5 until the estimate of the complexity or fit is larger than
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the corresponding PTrue. Note that if the estimate is still less than 2.48E-5 when
using the corresponding T1 or T2, we specify T1 = 100, 000, 000 or T2 = 100, 000.

3.7.6 Summary of the computation of the Bayes factor

This section summarizes the computation of the Bayes factor forHi againstHu, which
is a ratio of the fit and complexity. The following steps describe how our program
computes the complexity and fit, and therefore the Bayes factor.

1. Transform θ into β using the procedure shown in Section 3.7.2. Then, we obtain
(β̄, β̃) and M the rank of Ri.

2. Repeat Step 3, . . . , 10 for k = 1, . . . ,K to estimate each P (βk > 0|β1 >
0, . . . , βk−1 > 0) for the decomposed complexity cik,ik−1

and fit fik,ik−1
.

3. Initialize the sample size of the Gibbs sampler as T2 = 4000 if k ≤ M and
T1 = 3000 if k > M , and initialize β = 0.

4. Repeat Step 5 and 6 for t = 1, . . . , T2 + 100 iterations if k ≤ M or for t =
1, . . . , T1 + 100 iterations if k > M , where 100 denotes the first 100 iterations,
that is, a burn-in phase of the Gibbs sampler.

5. If k ≤ M + 1, then define a boundary (L,U) = (0,∞) for β̄1, . . . , β̄k−1 and no
boundary for β̄k, . . . , β̄K . Thereafter, sequentially generate a sample of β̄t from
the truncated distribution of (3.50) as previously described in Step (i) and (ii)
in Section 3.7.3.

6. If k > M + 1, then define a boundary (L,U) for β̄1, . . . , β̄M using the linear
relation between the β̄ > 0 and β̃ > 0. Thereafter, sequentially generate a
sample of β̄t from the truncated distribution of (3.50) as previously described
in Step (i) and (ii) in Section 3.7.3. Then a sample of β̃

t
is obtained by means

of its linear dependence on β̄t.

7. Discard all the iterations for which t ≤ 100 to account the burn-in period as
discussed in Section 3.7.3.

8. If k ≤M , compute the probability P (βk > 0|β1 > 0, . . . , βk−1 > 0)

= T−1
2

∑T2+100
t=101 P (βk > 0|βk ∼ N(µtβk , (σ

2
βk

)t)) using method (3.52) in Section
3.7.4.

9. If k > M , compute the probability P (βk > 0|β1 > 0, . . . , βk−1 > 0)

= T−1
1

∑T1+100
t=101 I(βtk > 0|βt1 > 0, . . . , βtk−1 > 0) using method (3.51) in Section

3.7.4.
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10. If P (βk|β1 > 0, . . . , βk−1 > 0) obtained in Step 8 or 9 is less than the reference
value that corresponds to the current T2 or T1 in Table 3.5, respectively, then
reset T2 or T1 using the value of the next column in the table and restart the
procedure from Step 4. If not, the estimation of P (βk|β1 > 0, . . . , βk−1 > 0)
is completed, which renders the decomposed complexity cik,ik−1

or fit fik,ik−1
.

This was elaborated in Section 3.7.5.

11. The complexity and fit can be computed by ci =
∏K
k=1 cik,ik−1

and fi =∏K
k=1 fik,ik−1

shown in Section 3.7.1. Then, the Bayes factor for Hi against
Hu is BFiu = fi/ci.

3.8 Simulation study

In this section, the performance of our program is investigated via the comparison with
the software BIEMS (Mulder et al., 2012) for calculating Bayes factors in multivariate
normal models. We compute Bayes factors obtained from both BIEMS and BIG for
two inequality constrained hypotheses in a regression model. Consider a regression
model in which a dependent variable is predicted by four independent variable:

yi = θ0 + θ1xi1 + θ2xi2 + θ3xi3 + θ4xi4 + εi, (3.54)

where yi and xij for i = 1, . . . , n and j = 1, . . . , 4 are the dependent variable and
independent variables, respectively, θ0 is the intercept, θj for j = 1, . . . , 4 denotes
the regression coefficients, and εi ∼ N(0, σ2) denotes the residual for case i with σ2

denoting the residual variance. For this regression model we evaluate two hypotheses,
H1 : θ1 > θ2 > θ3 > θ4 and H2 : θ1 > θ3, θ1 > θ4, θ2 > θ3, θ2 > θ4. Note that the
restriction matrixR1 forH1 is of full row rank, whereasR2 forH2 is not. To illustrate
the performance of the program, data sets of sizes 20 and 80 are generated using
BIEMS from six populations in which the intercept is θ0 = 0, the residual variance
is σ2 = 0.6, and the means and standard deviations of independent variables are 0
and 1, respectively. Furthermore, the target parameters θj for j = 1, · · · , 4 and the
correlations among independent variables ρj′j for j′ < j are specified such that the
proportion of variance explained equals 0.4. Based on these assumptions, we consider
the following six populations.

1. θ1 = θ2 = θ3 = θ4 = 0.316, ρ12 = ρ13 = ρ14 = ρ23 = ρ24 = ρ34 = 0;

2. θ1 = θ2 = θ3 = θ4 = 0.2, ρ14 = ρ23 = 0.5, ρ12 = ρ13 = ρ24 = ρ34 = −0.5;

3. θ1 = 2θ2 = 2θ3 = 3θ4 = 0.498, ρ12 = ρ13 = ρ14 = ρ23 = ρ24 = ρ34 = 0;

4. θ1 = 2θ2 = 2θ3 = 3θ4 = 0.624, ρ12 = ρ34 = 0.5, ρ13 = ρ14 = ρ23 = ρ24 = −0.5;

5. 3θ1 = 2θ2 = 2θ3 = θ4 = 0.498, ρ12 = ρ13 = ρ14 = ρ23 = ρ24 = ρ34 = 0;
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Table 3.6: Bayes factors computed using BIEMS and BIG. Note that BIEMS1 and
BIEMS2 indicate priors π1

u(θ) and π2
u(θ) are specified in BIEMS, respectively, and BIG1

and BIG2 indicate priors π1
u(θ) and π2

u(θ) are specified in BIG, respectively.

H1 H2

Population BIEMS1 BIG1 BIEMS2 BIG2 BIEMS1 BIG1 BIEMS2 BIG2
1 : n = 20 0.995 0.994 1.03 0.977 1.00 1.02 0.984 0.993
1 : n = 80 1.02 0.994 1.01 0.977 0.987 1.02 0.994 0.993
2 : n = 20 1.72 1.71 1.01 0.975 1.35 1.35 0.986 0.997
2 : n = 80 1.68 1.71 1.02 0.975 1.33 1.35 0.986 0.997
3 : n = 20 3.53 3.99 3.57 3.93 2.03 2.15 2.02 2.10
3 : n = 80 6.88 6.95 6.85 6.82 2.61 2.60 2.56 2.54
4 : n = 20 2.38 2.61 6.89 7.78 1.49 1.68 4.70 5.08
4 : n = 80 5.72 5.74 17.39 17.11 2.39 2.39 7.35 7.24
5 : n = 20 0.117 0.068 0.117 0.066 0.214 0.146 0.213 0.144
5 : n = 80 0.0014 0.0013 0.0014 0.0012 0.0054 0.0056 0.0065 0.0057
6 : n = 20 0.032 0.011 0.039 0.011 0.316 0.215 0.240 0.160
6 : n = 80 0 0.0004 0 0.0003 0.0061 0.0059 0.0049 0.0049

6. 3θ1 = 2θ2 = 2θ3 = θ4 = 0.624, ρ13 = ρ24 = 0.5, ρ12 = ρ14 = ρ23 = ρ34 = −0.5.

Note that the data generated from BIEMS under each population result in the estimates
of parameters that are exactly equal to their population values. After generating the
data from each population, we standardize the observed variables yi and xij for
j = 1, . . . , 4. This makes the resulting Bayes factors from BIEMS and BIG comparable.
To compute the Bayes factor using BIG, the standardized data from each population
has to be saved as a data file, e.g., regression.dat in the working directory of R
program.

Table 3.6 displays the Bayes factors obtained using BIEMS and BIG. Note that
in BIEMS the prior distributions are specified using the same manner as in BIG, i.e.,
equations (3.16) and (3.17). As can be seen, the Bayes factors obtained from BIEMS
and BIG are rather similar for each population and prior specification. This implies
our program based on a normal approximation of the posterior distribution performs
well for the evaluation of inequality constrained hypotheses, even if the sample size
is as small as 20 in the regression model with four predictors.

3.9 Discussion

Inequality constrained hypotheses provide a representation of a researcher’s theory
with respect to the relations between the parameters of interest in SEM models.
We developed a program BIG that can evaluate theses hypotheses. The input of BIG
consists of the estimates and covariance matrix of target parameters obtained from the
R package lavaan, and one or more restriction matrices representing a researcher’s
expectations. The output from BIG consists of Bayes factors, which measure the
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evidence from the data for a hypothesis, and posterior model probabilities, which can
be used to compare two or more hypotheses.

BIG as discussed in this paper has two major improvements compared to its pre-
vious version (Gu et al., 2014). First of all, BIG specifies two noninformative normal
prior distributions for the target parameters in inequality constrained hypotheses.
The first prior distribution specifies that every combination of values is equally likely
for the target parameters. This implies that the complexity of a hypothesis only
depends on the hypothesis and not on the data. The second prior distribution has
a data based covariance matrix which results in the complexity that is invariant to
linear one-one transformation of the data. BIG renders the Bayes factors under both
prior specifications. Secondly, BIG is much more efficient than its previous version,
which makes it faster and therefore easier to use for applied researchers.

Acknowledgment The third author was supported by a Veni Grant provided by the
Netherlands Organization for Scientific Research (NWO).

3.A Estimates and covariance matrix obtained using lavaan

BIG uses the estimates and covariance matrix of target parameters to compute Bayes
factors. These can be obtained from the R package lavaan (Rosseel, 2012). This
appendix illustrates how to obtain the estimates and covariance matrix of target
parameters using the two examples discussed in Section 3.5.

First of all, researchers need to install the version 0.5-18 or higher version of
lavaan by starting R and typing install.packages("lavaan"). Note that R should
be upgraded to R.3.1.0 or a higher version. The user manual of the latest version
of lavaan can be found at
http://cran.r-project.org/web/packages/lavaan/lavaan.pdf.
The following R syntax renders the estimates and covariance matrix for the CFA
model presented in Section 3.5.1.

# Load lavaan package.
library(lavaan)

# Specify the CFA model.
CFA.model <- ’visual =˜ x1 + x2 + x3

textual =˜ x4 + x5 + x6
speed =˜ x7 + x8 + x9’

fit<-cfa(CFA.model,data=HolzingerSwineford1939)

# Obtain standardized estimates of parameters
standardizedSolution(fit)

# Obtain standardized covariance matrix of parameters.
ZVCOV <- lavInspect(fit, "vcov.std.all")
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ZVCOV[1:9,1:9] # For target parameters in (3.23)
ZVCOV[19:21,19:21] # For target parameters in (3.24)

The output of standardizedSolution(fit) for the CFA model is
lhs op rhs est.std se z pvalue

1 visual =˜ x1 0.772 0.055 14.041 0
2 visual =˜ x2 0.424 0.060 7.105 0
3 visual =˜ x3 0.581 0.055 10.539 0
4 textual =˜ x4 0.852 0.023 37.776 0
5 textual =˜ x5 0.855 0.022 38.273 0
6 textual =˜ x6 0.838 0.023 35.881 0
7 speed =˜ x7 0.570 0.053 10.714 0
8 speed =˜ x8 0.723 0.051 14.309 0
9 speed =˜ x9 0.665 0.051 13.015 0
...
22 visual ˜˜ textual 0.459 0.064 7.189 0
23 visual ˜˜ speed 0.471 0.073 6.461 0
24 textual ˜˜ speed 0.283 0.069 4.117 0

Note that the label visual =˜ x1 denotes the factor loading θ1 relating x1 to ξ1
and the label visual ˜˜ textual denotes the covariance φ12 between ξ1 and ξ2. We
only show the results for nine factor loadings used in (3.23) and three covariances
used in (3.24). The standardized estimates of the target parameters are given in
the column under est.std. For example, the estimate of θ4 is 0.852 in the row of
textual =˜ x4, and the estimate of φ23 is 0.283 in the row of textual ˜˜ speed.

The output of ZVCOV contains the standardized covariance matrix of the target
parameters. We only show the covariance matrix ZVCOV[19:21,19:21] of φ12, φ13,
and φ23:

visual˜˜textual visual˜˜speed textual˜˜speed
visual˜˜textual 0.0040678110 0.0007276616 0.001156340
visual˜˜ speed 0.0007276616 0.0053037342 0.001480068
textual˜˜ speed 0.0011563398 0.0014800678 0.004723718

The following R syntax renders the estimates and covariance matrix for the re-
gression model in Section 3.5.2.

# Load lavaan package.
library(lavaan)

# Set R working director where the data is saved.
setwd("C:/Example2")

# Read data "example2.dat".
performance<-read.table("example2.dat",header=TRUE)
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# Specify the regression model.
perform.model<-’

# measurement model
kno =˜ x11+x12
ori =˜ x21+x22
sat =˜ x31+x32
per =˜ y1+y2

# regressions
per ˜ kno + ori + sat + tra’

fit<-sem(perform.model,data=performance)

# Obtain standardized estimates and covariance matrix
standardizedSolution(fit)
ZVCOV <- lavInspect(fit, "vcov.std.all")
ZVCOV[9:12,9:12] # For target parameters in (3.27), (3.28), (3.29)

The output of standardizedSolution(fit) for the regression model is
lhs op rhs est.std se z pvalue

...
9 per ˜ kno 0.478 0.161 2.960 0.003
10 per ˜ ori 0.336 0.165 2.030 0.042
11 per ˜ sat 0.151 0.105 1.440 0.150
12 per ˜ tra 0.286 0.084 3.403 0.001
...

Note that the label per ˜ kno denotes the coefficient θ1 which relates η to ξ1
in the regression model (3.26). We only show the results for the four regression
coefficients used in (3.27), (3.28), and (3.29). The standardized estimates of the
target parameters are given in the column under est.std. For example, the estimate
of θ1 is 0.478 in the row of per ˜ kno, and the estimate of θ4 is 0.286 in the row of
per ˜ tra.

The output of ZVCOV[9:12,9:12] renders the standardized covariance matrix of
θ1, . . . , θ4:

per˜kno per˜ori per˜sat per˜tra
per˜kno 0.026034895 -0.0223249106 -0.0050273595 -0.0011610045
per˜ori -0.022324911 0.0273346337 0.0043904540 -0.0007619234
per˜sat -0.005027359 0.0043904540 0.0110250662 -0.0002713825
per˜tra -0.001161004 -0.0007619234 -0.0002713825 0.0070519650
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The standardized estimates and covariance matrix of target parameters obtained
in lavaan can be used as input for BIG. This will be shown in the user manual in
Appendix 3.B.

3.B User Manual of BIG

BIG is a Fortran 90 program developed in Microsoft Visual Studio 2005 with the
IMSL 5.0 Fortran numerical library. This software package is free and available
at http://informative-hypotheses.sites.uu.nl/software/. The downloadable folder con-
tains an executable file BIG.exe, and text files Input.txt and Output.txt for the two
examples used in this paper. This section provides the user manual of BIG such
that researchers can use it for the evaluation of inequality constrained hypotheses
by means of Bayes factors. The input for BIG contains the estimates and covariance
matrix of target parameters obtained in lavaan and the restriction matrix [Ri|ri] for
each hypothesis under consideration. With this input, running BIG renders the Bayes
factor and PMP for each hypothesis. We will use the example from Section 3.5.2 to
illustrate the use of BIG.

3.B.1 Input file

The Input.txt and BIG.exe files have to be located in the same folder. The input file,
e.g., for the regression model from Section 3.5.2 can be found below:
1 #Numbers of target parameters and hypotheses under consideration
2 4 3
3 #Estimates of parameters
4 0.784 0.550 0.248 0.471
5 #Covariance matrix of parameters
6 0.026034895 -0.0223249106 -0.0050273595 -0.0011610045
7 -0.022324911 0.0273346337 0.0043904540 -0.0007619234
8 -0.005027359 0.0043904540 0.0110250662 -0.0002713825
9 -0.001161004 -0.0007619234 -0.0002713825 0.0070519650
10 #Number of constraints in hypothesis 1
11 3
12 #Restriction matrix (R|r) for hypothesis 1
13 1 -1 0 0 0
14 0 1 0 -1 0
15 0 0 -1 1 0
16 #Number of constraints in hypothesis 2
17 3
18 #Restriction matrix (R|r) for hypothesis 2
19 1 -1 0 0 0
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20 0 1 -1 0 0
21 0 0 1 -1 0
22 #Number of constraints in hypothesis 3
23 3
24 #Restriction matrix (R|r) for hypothesis 3
25 -1 1 0 0 0
26 0 -1 1 0 0
27 0 0 -1 1 0

Note that the structure of the input file cannot be changed. Both the lines con-
taining annotation starting with # and the lines with numbers have to be presented.
As can be seen on the second line, there are 4 target parameters in the regression
model and 3 competing hypotheses with respect to those parameters. On the fourth
line, the estimates of parameters obtained from lavaan are given, and on line six
through nine the covariance matrix is given. The eleventh line shows that hypoth-
esis 1 can be specified using 3 constraints. Next, there are three lines under the
label #Restriction matrix (R|r) for hypothesis 1, each of which expresses a
constraint in hypothesis 1. This will be elaborated in detail in the next paragraph.
Because the second line shows that 3 hypotheses have to be evaluated, we need to
specify two extra hypotheses (hypothesis 2 and hypothesis 3) for which the numbers
of constraints and the restriction matrices can be placed in a similar fashion as for
hypothesis 1.

As was shown in Section 3.2.2, an inequality constrained hypothesis Hi can be
formulated by Riθ > ri. Each constraint Rikθ > rik for k = 1, . . . ,K in the hypoth-
esis can be written as Rik1θ1 + . . . + RikJθJ > rik, where K and J are numbers of
constraints and parameters in Hi, respectively. Note that every parameter should be
moved to the left hand side of the inequality sign ">", and the constant should be
moved to the right hand. In the restriction matrix (R|r), the constraint Rikθ > rik
can be expressed by the line

Rik1 Rik2 . . . RikJ rik.
For example,

• θ1 + θ2 + θ3 > 0 corresponds to
1 1 1 0

• θ1 − 2θ2 + 3θ3 > 0.5 corresponds to
1 -2 3 0.5

• θ1 − 2 > θ2 − θ3 corresponds to
1 -1 1 2

• θ1 > θ2 > θ3 corresponds to
1 -1 0 0
0 1 -1 0
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• θ1 − θ2 > θ3 − θ4 > θ5 − θ6 corresponds to
1 -1 -1 1 0 0 0
0 0 1 -1 -1 1 0

Thus, below the label #Restriction matrix (R|r) for hypothesis 1, the three
lines

1 -1 0 0 0
0 1 0 -1 0
0 0 -1 1 0

represent the hypothesis θ1 > θ2 > θ4 > θ1 in the regression model.
It should be noted that the equality, about equality, and range constrained hy-

potheses can not be evaluated using BIG. Therefore, the restriction matrix (R|r)
1 -1 0
-1 1 0

is not allowed, because it implies an equality constrained hypothesis θ1 = θ2. The
restriction matrix (R|r)

1 -1 −d
-1 1 d

is not allowed, because it implies an about equality constrained hypothesis |θ1−θ2| <
d, where d represents the tolerable deviation. The restriction matrix (R|r)

1 0 0
-1 1 0
0 -1 1

is not allowed, because it implies a range constrained hypothesis 0 < θ1 < θ2 < 1.
The restriction matrix (R|r)

1 1
-1 0

is not allowed, because it implies θ1 > 1 and θ1 < 0 which contradict each other. If
the restriction matrix (R|r) contains any equality, about equality, range, or contra-
dicting constraints, executing BIG will produce an error message:
WARNING: Hypothesis i contains equality, about equality, range, or
contradicting constraints!

Besides the input of inappropriate hypotheses, there are four possible ways of
making errors in the Input.txt file. First, one may by accident delete the annotate
line starting with #. This results in the error message:
WARNING: Miss an annotate line in Input.txt!
Second, the length of the estimates and the rank of the covariance matrix of parame-
ters are not in line with the number of target parameters specified in the second line.
This results in the error message:
WARNING: An error below "#Estimates of parameters" in Input.txt!
or
WARNING: An error below "#Covariance matrix of parameters" in
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Input.txt!
Third, the number of lines below #Restriction matrix (R|r) is not in line with
the number below #Number of constraints in hypothesis i. This results in the
error message:
WARNING: An error below #Restriction matrix (R|r) for hypothesis i in
Input.txt!
Fourth, when two or more hypotheses are under consideration, one may forget to
specify the number of constraints and the restriction matrix (R|r) for every hypoth-
esis. This results in the error message:
Hypothesis i needs to be specified in Input.txt!
If an unknown problem occurs when running BIG.exe, please send your Input.txt to
x.gu@uu.nl.

3.B.2 Output file

Executing BIG.exe renders a text file Output.txt in the same folder. If there already
exists an Output.txt, it will be overwritten by the new one. Output.txt not only
displays Bayes factors and PMPs for inequality constrained hypotheses, but also the
decomposed fits and complexities with the corresponding numbers of iterations in
Gibbs sampler. The output file corresponding to Input.txt shown in the previous
section is:

Result for hypothesis 1
Fits numbers of iterations

0.6881 4000
0.4330 4000
0.7631 4000

Complexities (prior 1) numbers of iterations
0.5015 4000
0.3379 4000
0.2514 4000

Complexities (prior 2) numbers of iterations
0.4970 4000
0.1908 4000
0.2534 4000

Total fit Complexity (prior1) Complexity (prior 2)
0.2274 0.0426 0.0240

BFiu (prior 1) BFiu (prior 2)
5.3367 9.4612

BFic (prior 1) BFic (prior 2)
6.6129 11.9512
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Result for hypothesis 2
...

Result for hypothesis 3
...

Result of PMP for each hypothesis
PMP (prior1) PMP (prior2) for hypothesis 1
0.8041 0.7840

PMP (prior1) PMP (prior2) for hypothesis 2
0.1950 0.2152

PMP (prior1) PMP (prior2) for hypothesis 3
0.0009 0.0009

The output file contains the Bayes factors and PMPs for each hypothesis under
consideration. The interpretations of Bayes factors and PMPs are elaborated in
Section 3.3 in this paper. As shown in Section 3.3, the Bayes factor can be computed
by multiplying the decomposed fits divided by decomposed complexities. For the
result of hypothesis 1, first of all three decomposed fits are displayed below the label
Fits, and the corresponding numbers of iterations used for the computation of the
fits are shown on the right side. Then the decomposed complexities under prior
distribution (3.16) are presented below the label Complexities (prior 1), which is
followed by the complexities under prior distribution (3.17). The numbers of iterations
used to obtain these complexities are placed in the corresponding line. Thereafter, the
fit, and complexities under prior (3.16) and (3.17) for hypothesis 1 can be obtained
by multiplying the decomposed fits and complexities, which are shown under the
labels Total fit, Complexity (prior1), and Complexity (prior 2), respectively.
Based on the fit and two complexities, BIG computes the Bayes factors under both
prior distributions and displays them below BFiu (prior 1) and BFiu (prior 2)
for Hi against Hu, and below BFic (prior 1) and BFic (prior 2) for Hi against
Hic . We omit the results for hypothesis 2 and hypothesis 3, because they have the
same form as hypothesis 1. Finally, the PMPs is printed, which can be obtained based
on the results of the Bayes factors above. For each hypothesis, its PMPs under two
prior distributions are written in the line below PMP (prior1) and PMP (prior2).
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Chapter 4

Error Probabilities in Default
Bayesian Hypothesis Testing1

4.1 Introduction

We shall focus on the well-known t test of an effect in a normally distributed popu-
lation with unknown variance, i.e., xi ∼ N(θ, σ2), for i = 1, . . . , n, where θ denotes
the population effect and σ2 denotes the population variance. We will test the null
hypothesis, H0 : θ = 0, which assumes that the population effect equals zero against
the alternative hypothesis, H1 : θ 6= 0, which assumes that the population effect is
unequal to zero. In a Bayesian framework, we have to specify prior distributions of
the free parameters under both hypotheses. These priors reflect which values are as-
sumed to be most likely for the free parameters before observing the data. Therefore,
a prior must be specified for the variance under H0, denoted by π0(σ2), and a joint
prior must be specified for the effect and the variance under H1, denoted by π1(θ, σ2).
A Bayesian hypothesis test can then be formulated as

H0 : θ = 0, π0(σ2) versus H1 : π1(θ, σ2). (4.1)

Note that under H0, the restriction θ = 0 can also be viewed as a prior distribution
with point mass at zero.

A natural way to perform a Bayesian hypothesis test is using the Bayes factor.
The Bayes factor is defined as the ratio of the marginal likelihoods under H0 and H1,

1This chapter has been published as Gu, X., Hoijtink, H., & Mulder, J. (2015). Er-
ror probabilities in default Bayesian hypothesis testing. Journal of Mathematical Psychology.
doi:10.1016/j.jmp.2015.09.001.
Author contributions: XG, HH, and JM designed the research. XG performed the data analyses and
simulation study, and wrote the paper. JM and HH provided extensive feedback on constructing
and writing the paper.
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i.e.,

B01 =
m0(x)

m1(x)
. (4.2)

The marginal likelihood, mt(x) for t = 0, 1, is the probability of observing the data
x under Ht given the prior πt. Thus, the Bayes factor B01 quantifies how much
more likely the data were generated under the null hypothesis H0 with prior π0 in
comparison to the alternative hypothesis H1 with prior π1. Therefore, the Bayes
factor is typically interpreted as a relative measure of evidence in the data between
two hypotheses. If B01 is greater than, equal to, or smaller than 1, this implies that
there is more, equal, or less evidence for H0 relative to H1, respectively. For example,
if B01 = 10 this implies that the data were 10 times more likely to come from H0

than from H1, which clearly implies evidence in favor of H0 against H1.
Although type I and type II error probabilities, i.e., the probability of incorrectly

selecting H1 while H0 is true and the probability of incorrectly selecting H0 while
H1 is true, respectively, are fundamental elements in classical hypothesis testing,
classical error probabilities are often not of focal interest to Bayesians. One of the
reasons is that we do not have to make a dichotomous decision when interpreting
Bayes factors. For example, when observing B01 = 10, a researcher can judge for
him or herself whether this is ‘positive’ or ‘strong’ support for H0 against H1. Thus,
we do not need cut-off values as in classical hypothesis testing where we decide to
reject or not reject H0 against H1 depending on whether the p value is smaller or
larger than a prespecified significance level α. Suggestions have been made how to
qualify Bayes factors (Jeffreys, 1961; Kass & Raftery, 1995), e.g., a Bayes factor
B01 between 3 and 20 should be interpreted as ‘positive’ evidence for H0 against
H1. These suggestions however should not be used as strict rules but more as rough
guidelines when interpreting Bayes factors.

Despite the fact that we do not need to make a dichotomous decision in Bayesian
hypothesis testing, error probabilities do play a central role in hypothesis testing
using the Bayes factor. We shall make this more explicit using the following calibra-
tion scheme. First we generate a hypothesis based on equal prior probabilities, i.e.,
P (H0) = P (H1) = .5. Second, parameters are generated based on the prior density πt
under the hypothesis Ht that is generated in the first step, for t = 0 or 1. Third, data
is generated with sample size n according to the normal distribution N(θ, σ2) where
θ and σ2 are taken from the second step. The Bayes factor B01 is then computed
for these data. If we then select H0 if B01 > 1 and select H1 if B01 < 1, we would
minimize the sum of the type I and the type II error probabilities on average (e.g.,
Berger, 1985). Thus, in addition to the intuitive interpretation of the Bayes factor
as the relative evidence between two hypotheses, testing hypotheses using the Bayes
factor also satisfies an important frequentist argument.

Although this decision rule minimizes the average sum of the error probabilities,
the separate error probabilities are not minimized. Therefore, the unknown type I
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error probability may be very different from the unknown type II error probability,
i.e., p0 = P (B01 < 1|H0) 6= P (B01 > 1|H1) = p1. If this is the case, the Bayes factor
has a tendency to either select H0 or H1. We shall refer to this as asymmetry in
information.

Garcia-Donato and Chen (2005) proposed a correction to the decision rule to
ensure that the error probabilities are equal. They proposed to select H0 if B01 > c
and select H1 if B01 < c, where the value c > 0 is calibrated such that P (B01 <
c|H0) = P (B01 > c|H1). Despite the intuitive appeal of this decision rule from a
frequentist perspective, there is no Bayesian justification for this method. The reason
is that the asymmetry in information in the Bayes factor comes naturally from the
chosen priors under H0 and H1. It may be that it is easier to generate data under
the prior under the null hypothesis, π0, that is consistent with data that is generated
under H1 than to obtain data that is generated under the prior under the alternative
hypothesis, π1, that is consistent with data generated under H0. If this would be
the case, the Bayes factor does exactly what it is supposed to do: it would select
H1 more often if H0 would be true than it would select H0 if H1 would be true.
Consequently, the type I error probability would be larger than the type II error
probability. If the priors under H0 and H1 are carefully chosen based on the prior
beliefs of the researcher, asymmetry in information is a natural property of the Bayes
factor. Therefore it seems more reasonable to select either H0 or H1 depending
on whether B01 is larger or smaller than 1, respectively, instead of comparing the
observed Bayes factor with the observed c.

In this paper we focus on Bayesian hypothesis testing using so-called default Bayes
factors. We shall use the term default Bayes factor when a prior is used that is not
directly related to the substantive expectations of the researcher. Default priors
typically contain little information and have distributional forms that ensure that the
Bayes factor is relatively easy to compute. A potential issue with default Bayes factors
lies in its interpretation. The potential issue is that the outcome of a default Bayes
factor is a default quantification of the relative evidence between two hypotheses.
This default outcome may be very different than the subjective relative evidence in
the data between the hypotheses if priors were used that are based on the researcher’s
substantive beliefs. For example a popular default prior is to set a Cauchy prior for the
standardized effect under H1 centered around 0 with scale 1 (Rouder et al., 2009), and
set noninformative improper Jeffreys priors for the variances under both hypotheses.
This prior has good theoretical properties. For example, it avoids the information
paradox, see Liang, Paulo, Molina, Clyde, and Berger (2008). This Cauchy prior
however implies that we expect that there is 50% chance to find an absolute effect
that is larger than 1 (i.e., an effect that is larger than 1 or smaller than -1) before
observing the data. In psychological research however we hardly ever observe absolute
effects larger than 1, and therefore, it is not realistic that the effect follows this Cauchy
distribution if H1 would be true. Consequently, the relative evidence as quantified
by the default Bayes factor based on this Cauchy prior may have been very different
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from the Bayes factor that would have been obtained when the researcher would have
carefully formulated a prior based on external substantive knowledge.

In this paper we investigate the error probabilities of commonly used default priors
in typical situations in psychological research where the effect is either zero, small,
medium, or large (corresponding to standardized effects of 0, .2, .5, or .8 according
to Cohen, 1992) while considering different sample sizes of n = 20, 50, and 100. Note
that error probabilities for larger samples are not very interesting because as the
sample size grows to infinity the error probabilities go to zero. In the case of limited
data, which is typical in psychological research, understanding the (classical) error
probabilities is useful because of the following three reasons.

First, default Bayes factors are based on default priors which typically do not
reflect the prior beliefs of a researcher. For this reason it is useful to know whether a
default Bayes factor has a tendency to either select H0 or H1 in standard situations
encountered in psychological research because there is no reason to either prefer H0

or H1 more than the other from a subjective point of view because the priors are not
based on subjective prior beliefs.

Second, as was mentioned above Bayes factors minimize the sum of the error
probabilities when generating data under the respective models and priors. Default
Bayes factors are typically not based on proper priors from which we can sample.
For example, the priors of the nuisance parameters can be improper (such as in the
Cauchy prior approach) or the priors are based on the observed data (such as in
the intrinsic Bayes factor (Berger & Pericchi, 1996) or the fractional Bayes factor
(O’Hagan, 1995)). Therefore we do not know under which conditions (priors) the
sum of the error probabilities is minimized when using default Bayes factors.

Third, from the error probabilities we will learn which of the two models (i.e., the
null or alternative) is best in predicting data coming from the other model. Thus we
will find out whether (i) H1 is better in predicting data that come from H0 or (ii)
whether H0 is better in predicting data that come from H1. Because H0 is nested
in H1 one might expect that scenario (i) is more likely than scenario (ii). On the
other hand, Bayes factors automatically correct for model complexity and therefore
it is not automatically true that a Bayes factor has a tendency to prefer the larger
unrestricted model under H1. Furthermore, we will look at typical scenario’s in
psychological research where the standardized effect under H1 is most likely between
0 and 1 (e.g., Cohen, 1992). For example a medium effect of .5 may be “closer” to
H0 than to H1 when using a Cauchy prior for the standardized effect under H1 with
a scale of 1. This suggests that the default Bayes factor based on this Cauchy prior
has a tendency to actually prefer H0 when generating medium effects under H1.

As will be shown certain default Bayes factors may result in very different type
I and type II error probabilities. If a researcher finds this undesirable there are two
possible solutions. The first solution is to construct a prior that corresponds to one’s
subjective beliefs. The second solution, which may be useful in the case of limited
prior knowledge, is to use a default Bayes factor that is close to being symmetric in
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information. At the end of the paper a method is discussed how the default prior
can be tuned so that we obtain a Bayes factor that results in almost equal error
probabilities in certain scenario’s. Note that combining Bayesian and frequentist
properties is not new (e.g., Good, 1992; Berger, Boukai, & Wang, 1997). So far,
however, we have not seen that the two approaches are combined in this manner.
Morey, Wagenmakers, and Rouder (in press) criticized the way of choosing default
priors based on frequentist error probabilities in two aspects. First, it may render
inconsistent Bayes factors. As will be shown in Section 4.6 of this paper, however,
the tuned Bayes factor based on our method are consistent and are not very different
from typical default Bayes factors. Second, it renders Bayes factors that behave
like a classical test statistic (we will elaborate this in Section 4.5). We agree that the
Bayesian test with tuned Bayes factors will render a similar decision as the frequentist
test where type I and type II errors are set to be equal. Nevertheless, the proposed
method offers a way to obtain equal error probabilities and a reasonable default
quantification of the relative support for two hypotheses (this will be elaborated in
Section 4.6 and Section 4.7).

Three different default Bayes factors will be considered for testing an effect in a
normal population: a Bayes factor based on Zellner’s g prior (Zellner, 1986), a Bayes
factor based on an inverse gamma mixture of g priors (e.g., Liang et al., 2008), which
implies a Cauchy distribution of the standardized effect under H1, and an adjustment
of O’Hagan’s fractional Bayes factor (O’Hagan, 1995), which was recently proposed
by Mulder (2014b). Each of these Bayes factors contains a tuning parameter which
directly influences the prior variance of the effect θ under H1. The prior variance
of θ plays a key role in the Bayes factor which can be seen for example from the
Jeffreys-Lindley paradox (Jeffreys, 1961; Lindley, 1957). Symmetry in information
will be investigated for default choices of the tuning parameters.

This paper is organized as follows. Section 4.2 presents an empirical example which
will be used to illustrated our method. Thereafter, three different Bayes factors are
introduced in Section 4.3. In Section 4.4 the type I and type II error probabilities
are investigated of these Bayes factors in a default setting. Section 4.5 shows how we
can tune these Bayes factors such that they are symmetric in information. Section
4.6 illustrates the consistency of the tuned Bayes factors. Then a simulation study
is conducted to investigate the error probabilities based on the tuned Bayes factors
in Section 4.7. Section 4.8 revisits the empirical example based on the tuned default
Bayes factors. We end this paper with a discussion.

4.2 Empirical example

We reanalyze the t test example used in Howell (2012, p. 196). An experiment
is conducted to assess whether therapeutic touch (a widely used nursing practice)
practitioners are able to identify which of their hands is below the experimenter’s
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under blinded condition. The experiment involved 28 testing sessions of 10 trials.
For chance performance we expect an average of 5 correct trials out of 10. The
difference between the observed score from 0 to 10 and chance score 5 is assumed to
be normally distributed and denoted by xi ∼ N(θ, σ2), where i = 1, ..., n and n = 28.
To investigate whether the participants made correct decisions by chance, we apply
the t test to the following hypotheses: H0 : θ = 0 versus H1 : θ 6= 0. If H0 is selected,
this implies that there is no difference between the observed score and chance score.
If H1 is selected, we would conclude there is a difference. From the report of Howell
(2012, p. 196), the sample mean equals 0.607, the sample standard deviation equals
1.663, and the standardized effect equals 0.365. Throughout this paper we will use
this as an illustrative running example.

4.3 Bayes factor

The Bayes factor for comparing a null hypothesisH0 against an alternative hypothesis
H1 is defined as the ratio of their marginal likelihoods (Kass & Raftery, 1995):

BF01 =
m0(x)

m1(x)
=

∫
f(x|θ = 0, σ2)π0(σ2)dσ2∫∫
f(x|θ, σ2)π1(θ, σ2)dθdσ2

, (4.3)

where x = (x1, · · · , xn)′ and the likelihood of the data is given by

f(x|θ, σ2) = (2π)−n/2σ−n exp

{
− 1

2σ2
[ns2 + n(x̄− θ)2]

}
, (4.4)

with sample mean x̄ and sums of squares s2 = 1
n

∑n
i=1(xi− x̄)2. The integrals in (4.3)

can be computed analytically or numerically depending on the distributional form of
the priors π0 and π1. The outcome then quantifies the relative evidence between the
two hypotheses.

Below three different default Bayes factors are described, which have been pro-
posed in the literature where the prior of θ under H1 is centered at zero and a single
tuning parameter is chosen to specify the prior variance. We consider the Bayes factor
based on Zellner’s (1986) g prior with tuning parameter g, the Bayes factor based
on a mixture of g priors (Liang et al., 2008) with tuning parameter r, and the prior
adjusted default Bayes factor (Mulder, 2014b) with tuning parameter b.

4.3.1 The Bayes factor based on Zellner’s g prior

In the context of regression models Zellner’s (1986) g prior is widely used in Bayesian
hypothesis testing and model selection. It specifies a normally conditional prior
distribution for θ with a mean of 0 and a variance that contains a scalar parame-
ter g. For the one sample t-test (4.1), Zellner’s g prior is defined as π1(θ, σ2|g) =
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π1(θ|σ2, g)π1(σ2), with

π1(θ|σ2, g) = N(0, gσ2/n), π1(σ2) ∝ σ−2. (4.5)

Under H0, the prior equals π0(σ2) ∝ σ−2.
An appealing aspect of the g prior is that the resulting Bayes factor has an analytic

expression. By substituting (4.5) into (4.3), the Bayes factor based on Zellner’s g prior
(ZBF) can be obtained as

ZBF01(x, g) = (1 + g)−
n−1

2 (1 + g
1+(x̄/s)2 )

n
2 . (4.6)

Note that x̄/s reflects the observed standardized effect (Cohen, 1992). One can tune
the amount of prior information in a relatively simple way via g, where a large (small)
value for g implies a very vague (informative) prior with a large (small) variance.

A popular choice is to set g = n which results in the so-called ‘unit information
prior’ (Kass & Wasserman, 1995), where the amount of prior information corresponds
to the information of one observation. Other choices for g that have been recom-
mended in the literature are generally smaller than n. For an overview, see Liang et
al. (2008), for example. Throughout this paper, we will let g vary in the interval (0, n]
so that the amount of prior information is never less than the amount of information
in one observation. Furthermore, we shall focus on two extreme choices: g = n (‘unit
information’) and g = 1. The latter choice implies that the amount of information in
the prior is equal to amount of information in the data.

4.3.2 The Bayes factor based on a mixture of g priors

Despite the popularity and usefulness of the g prior, it does have an undesirable
property, i.e., it is information inconsistent. This implies that when the standardized
effect x̄/s goes to infinity the Bayes factor ZBF01 does not go to zero, which would
be expected in this extreme situation, but instead it converges to a constant. A way
to avoid the problem is by putting a probability distribution on g. The resulting prior
on θ under H1 is then a mixture of g priors (Liang et al., 2008). The choice of an
inverse-Gamma(1/2, r2/2) on g is becoming increasingly popular (e.g., Rouder et al.,
2009). Thus the prior distribution is given by

π1(θ|σ2, g) = N(0, gσ2/n), π1(g|r) = inv-Gamma(1/2, r2/2), π1(σ2) ∝ σ−2, (4.7)

and again we set π0(σ2) ∝ σ−2 under H0. The Bayes factor can then be obtained by
integrating the ZBF in (4.6) over the prior of g, i.e.,

MBF10(x, r) =

∫
ZBF10(g)π1(g|r)dg. (4.8)

Note thatMBF01 can be obtained as a reciprocal ofMBF10. Although an analytical
expression for equation (4.8) does not exist, we can obtain the outcome using either
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a Laplace approximation (see Liang et al., 2008) or an approximated Savage-Dickey
method (see Morey et al., 2011).

In this prior, we can obtain the conditional prior for θ given σ2 by integrating
out g in the joint prior, i.e., π1(θ|σ2, r) =

∫
π1(θ|σ2, g)π1(g|r)dg. This implies that

the standardized effect θ/σ has a Cauchy prior centered at 0 with scale parameter
r/
√
n. Throughout this paper we will let r vary in the interval (0,

√
n] because

r =
√
n also corresponds to ‘unit information’, similar as by setting g = n in the

ZBF. For the MBF, we consider two default choices: r =
√
n (Rouder et al., 2009)

and r =
√
n/2 (http://bayesfactorpcl.r-forge.r-project.org/). Note that both choices do

not reflect very realistic prior distributions for substantive researchers because the
prior probability of observing an absolute effect larger than 1 would be equal to 50%
and 29.5%, respectively, when setting r =

√
n and r =

√
n/2. These probabilities are

substantially larger than what we would expect in substantive research.

4.3.3 Prior adjusted default Bayes factors

The prior adjusted default Bayes factor was introduced by Mulder (2014b) as a
modification of O’Hagan’s (1995) fractional Bayes factor (FBF). In the FBF a frac-
tion b is taken from the likelihood of the data, i.e., f(x|θ, σ2)b, for default prior
specification, resulting in a marginal updated prior for θ under H1 of π1(θ|xb) =
t(x̄, s2/(nb − 1), nb − 1), i.e., a Student t density with mean x̄, scale parameter
s2/(nb − 1), and degrees of freedom nb − 1. Thus, if b is large, the prior variance
will be small, and vice versa. However it has been advocated that the prior under
H1 should be symmetrical around 0 and nonincreasing for |θ| because 0 is the focal
point of our hypothesis test (e.g., Jeffreys, 1961; Berger & Delampady, 1987). For
this reason, Mulder (2014b) proposed an adjustment such that the underlying prior
has a t(0, s2/(nb−1), nb−1) distribution, which is centered at 0 and nonincreasing in
|θ|. The resulting prior adjusted default Bayes factor (DBF) for the Bayesian t test
can then be expressed as

DBF01(x, b) =
Γ(n/2)

Γ((n− 1)/2)
/

Γ(nb/2)

Γ((nb− 1)/2)
(1 + (x̄/s)2)−n/2. (4.9)

Throughout this paper we will let b vary between [ 2
n , 1]. Note that the minimal

choice of 2
n corresponds to the amount of information of two observations, which is

the minimal number of observations needed to obtain a proper updated prior. As can
be seen, the value b = 1

n is not allowed because it implies a density with zero degrees
of freedom in the updated prior, which is improper. For the DBF, we consider two
default choices: b = 2/n and b = 1/

√
n, where the latter choice was proposed by

O’Hagan (1995), with the goal of reducing the sensitivity of the Bayes factor to the
prior distribution.
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4.3.4 Application of default choices to the empirical example

Different choices of g, r, and bmay result in Bayes factors that do not have a consistent
preference towards either H0 or H1. Consider the empirical example from Section 4.2
in which x̄ = 0.607, s = 1.663, and a standardized effect of 0.365 for n = 28. Using
ZBF with g = 1 (Default 1) renders ZBF01 = 0.606 which is in favor of H1, and
with g = n (Default 2) renders ZBF01 = 1 which does not prefer any hypothesis.
In addition, the choices of r =

√
n/2 (Default 1) and r =

√
n (Default 2) render

MBF01 = 0.83 and MBF01 = 1.26, respectively, and the choices of b = 2/n (Default
1) and b = 1/

√
n (Default 2) render DBF01 = 1.12 and DBF01 = 0.46, respectively.

Based on these outcomes we cannot determine which hypothesis is preferred by
the data because different default Bayes factors differ in their preference towards
either H0 or H1 based on the observed data. In these default Bayes factors, the
underlying default priors do not directly reflect substantive believes about the model
parameters, and therefore, we cannot choose either one of these outcomes to get an
idea in which direction the data are most likely pointing. In this situation it would
be insightful to know whether these default Bayes factors have a tendency to prefer
either H0 or H1. For example if the default Bayes factor MBF with r =

√
n has a

tendency to prefer H0 for example (which implies that the type I error probability is
smaller than the type II error probability), the observed (small) preference towards
H0 (MBF01 = 1.26) might very well be caused by the asymmetry of the default Bayes
factor. For this reason it would be interesting to investigate how large the type I and
type II error probabilities are for these default Bayes factors. This is discussed in the
following section.

4.4 Error probabilities of default Bayes factors

By means of the empirical example above it was illustrated that the choices of g,
r, and b play an important role in hypothesis testing. In this section we investigate
whether Bayes factors based on certain default choices for g, r, and b have a tendency
to either select H0 or H1 based on their type I and type II error probabilities. This
will be done by calibrating Bayes factors under H0 and H1.

4.4.1 Sampling distributions of the Bayes factor under H0 and H1

The three Bayes factors can be used as a test statistic where we select H0 when
BF01 > 1 and select H1 when BF01 < 1. Because of the clear relation with classical
hypothesis testing, it is interesting to investigate the sampling distribution of each
Bayes factor for a given population. This sampling distribution can be obtained in
three steps: (i) sample K data sets x(k) with fixed sample size n, for k = 1, . . . ,K
either from H0 or from H1; (ii) compute the sample mean x̄(k), the sample standard
deviation s(k), and the resulting Bayes factor BF (k)

01 via (4.6), (4.8), or (4.9) for all

91



4. Error Probabilities in Default Bayesian Hypothesis Testing

K data sets; and (iii) plot the distribution of the Bayes factor based on the sampled
outcomes.

Let us assume σ2 = 1 under both H0 and H1, and under H1 the effect is equal to
θ = .4. Thus, under H0 we generate data according to xi ∼ N(0, 1), and under H1,
we generate data according to xi ∼ N(.4, 1). Note that we do not sample data by
sampling effects from the default priors under H0 and H1. The reason is that these
priors do not represent substantive beliefs, and that we cannot sample the variance
σ2 because noninformative improper priors are used.

The sampling distributions are displayed in Figure 4.1 under H0 (solid line) and
under H1 (dashed line) for different choices for g: Panel (a) displays the sampling
distribution of the logarithm of the ZBF for H0 against H1 for g = 1 and panel
(b) displays the sampling distribution for g = n = 50. In addition, the sampling
distribution in panel (c) is obtained based on g = 9.4, which will be discussed in
Section 4.5.

Figure 4.1 shows that the distribution of the ZBF highly depends on g. More
specifically, when g = 1, the ZBF is distributed around relatively small values, i.e.,
the means of the sampling distribution of ZBF01 under H0 and H1 are 1.15 and
0.33, respectively. When g = n, the ZBF is distributed around relatively large values,
i.e, the means of the sampling distribution under H0 and H1 are 5.07 and 0.72,
respectively. This suggests a preference towards H0 when g = n, and a preference
towards H1 in the case of g = 1. When g = 9.4 there is not clear preference towards
either one of the two hypotheses. This will be made more explicit in Section 4.4.3.

4.4.2 Error probabilities for default choices of g, r, and b

The preference towards either H0 or H1 can be observed more precisely by comput-
ing the error probabilities. We shall define the error probability, p0, of H0 as the
probability that BF01 < 1 given that H0 is true, i.e., p0 = P (BF01 < 1|H0), which
corresponds to the type I error in the classical sense, and the error probability, p1, of
H1 as the probability that BF01 > 1 given that H1 is true, i.e., p1 = P (BF01 > 1|H1),
the type II error probability. Regarding the three Bayes factors discussed earlier, we
let pZt , pMt , and pDt , for t = 0 or 1, denote the corresponding error probabilities in
ZBF, MBF, and DBF, respectively.

The error probabilities can be obtained from the sampling distribution of the
Bayes factor as the proportion of samples generated under a hypothesis resulting in
preferring the other hypothesis. Table 4.1 provides an overview of the error proba-
bilities for the ZBF , MBF , and DBF based on their default choices for g, r, and b,
respectively. As can be seen in Table 4.1 (rows p0, p1, and p0 +p1), default choices for
g, r, and b result in unequal error probabilities under H0 and H1. For example, it can
be seen that g = 1 renders a small pZ1 = 0.052 but a large pZ0 = 0.244, whereas g = n
renders a large pZ1 = 0.214 but a small pZ0 = 0.048. These values can also be found in
Figure 4.1 where the dark grey area represents pZ0 and the light grey area represents
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Figure 4.1: Sampling distributions of the logarithm of the ZBF01 based on g = 1
(panel a), g = 50 (panel b) and g = 9.4 (panel c) where θ = .4 is assumed under H1.
The dark grey area represents the error probability under H0 and the light grey area
represents the error probability under H1.
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Table 4.1: Error probabilities of the Bayes factors using different tuning parameters
(n = 50, θ = 0 and σ2 = 1 under H0, and θ = 0.4 and σ2 = 1 under H1) with
error probabilities defined as p0 = P (BF01 < 1|H0) and p1 = P (BF01 > 1|H1), and
p̃0 = P (BF01 <

1
3 |H0) and p̃1 = P (BF01 > 3|H1).

ZBF MBF DBF

g = 1 g = n r =
√
n/2 r =

√
n b = 2

n b = 1√
n

p0 0.244 0.048 0.079 0.035 0.043 0.151
p1 0.052 0.214 0.213 0.315 0.238 0.090

p0 + p1 0.296 0.262 0.292 0.350 0.281 0.241
p̃0 0.016 0.014 0.017 0.010 0.011 0.041
p̃1 0.000 0.068 0.085 0.153 0.087 0.000

p̃0 + p̃1 0.016 0.082 0.102 0.163 0.098 0.041

pZ1 . These error probabilities clearly show that the ZBF has a tendency to select H0

if g = n, and it has a tendency to select H1 if g = 1. A similar pattern can be seen for
both default choices of b in the DBF . Furthermore, both default choices of r in the
MBF result in considerably larger type II errors than type I errors. In this specific
setting, the MBF with r =

√
n seems to be most asymmetric in information with a

type II error probability that is 9 times larger than the type I error probability. In
sum, all default choices result in Bayes factors that are asymmetric in information in
this situation which would be typical in psychological research.

One may object to the choice of “selecting” a hypothesis based on a Bayes factor
that is larger or smaller than 1 because Bayes factors close to 1, e.g., B01 = 1.5, do not
imply any clear evidence towards one specific hypothesis anyway. For this reason we
also looked at the error probabilities when the wrong hypothesis receives three times
more evidence from the data than the true hypothesis, i.e., p̃0 = P (BF01 <

1
3 |H0)

and p̃1 = P (BF01 > 3|H1). The interval ( 1
3 , 3) can then been as a “no decision” region

(similar as in Berger, Brown, and Wolpert (1994)). The results can be found in Table
4.1 (rows p̃0, p̃1, and p̃0 + p̃1). As can be seen the direction of the asymmetry is the
same as when selecting a hypothesis based on a Bayes factor larger or smaller than 1.
This suggests that the direction (and the severity) of the asymmetry in information
of default Bayes factors does not change a lot when using other cut-off values than
1. For this reason we shall continue to use the cut-off value of 1 in the definition of
error probabilities throughout this paper.

4.4.3 Error probabilities for other choices of g, r, and b

In the previous section we showed that default choices for the tuning parameters
result in default Bayes factors with unequal error probabilities. In this section we
investigate the error probabilities for other choices of the tuning parameters than
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the default choices. We will discuss this in detail for all values of b in the interval
( 1
n , 1] in the DBF for different effects under H1 and different sample sizes n. The

value for b that results in equal error probabilities, i.e., pD0 = pD1 , will be denoted by
b∗. Similarly, the tuning parameters that results in equal error probabilities for the
ZBF and MBF will be denoted by g∗ and r∗, respectively, such that pZ0 = pZ1 and
pM0 = pM1 .

Figure 4.2 displays the plots of the error probabilities pD0 (solid line) and pD1
(dashed line) for b ∈ ( 1

n , 1], for σ2 = 1, a fixed sample size of n = 20, 50, or 100,
and an effect size under H1 of θ = 0.2, 0.5, or 0.8, which typically corresponds to
a small, medium or large effect size, respectively (Cohen, 1992). Because all three
default Bayes factors in (4.6), (4.8), and (4.9) only depend on the standardized effect
in the data, x̄s , the resulting error probabilities also only depend on the standardized
effect in the population, the tuning parameter, and the sample size. This implies for
example that θ = 1 and σ = 2 under H1 would result in the same plots as Figure 4.2
(b), (e), and (h) for the respective sample sizes based on θ = .5 and σ = 1 under H1.
In the remaining part of this paper, we will only consider the case that σ = 1 when
generating data which implies that θ corresponds to a standardized effect. Also note
that similar types of figures can also be obtained as in Figure 4.2 for the ZBF and
the MBF by letting g and r vary.

The results in Figure 4.2 can be summarized as follows. First, when b increases,
pD0 increases and pD1 decreases. This suggests an intersection point exists for b = b∗

for a given standardized effect size and sample size such that pD0 = pD1 . We discuss
the existence of b∗, g∗, and r∗ in Appendix 4.A. Second, for a given standardized
effect size a larger sample size results in the reduction of b∗ and the corresponding
error probabilities. Note that the default choices b = 2

n and 1√
n
also decrease when

increasing the sample size. The figure suggests b∗ approaches zero and the resulting
error probabilities pD0 = pD1 also go to zero as the sample size increases. Third, for a
given sample size a larger standardized effect size results in a smaller b∗ and smaller
error probabilities. Fourth, the error probability under H0 is independent of the
actual effect because it is calibrated under H0. Note that the error probability under
H0 only slightly depends on the sample size for a fixed b.

Hence, the tuning parameters b∗, g∗, and r∗ that result in equal error probabilities
depend on the sample size n and the standardized effect size θ under H1. Therefore,
we will denote them as functions of θ and n, i.e., b∗(θ, n), g∗(θ, n), and r∗(θ, n).
Figure 4.3 displays these functions by varying θ from 0 to 1 for a fixed sample size of
n = 20, 50, or 100. As can be seen in Figure 4.3 (a), the plot indicates that b∗(θ, n)
is a decreasing function of the standardized effect size and sample size. Furthermore,
Figure 4.3 (b) and (c) display g∗(θ, n) and r∗(θ, n), respectively. As can be seen,
g∗(θ, n) and r∗(θ, n) are increasing functions of the standardized effect size θ and the
sample size n. Note that the allowed regions for b, g, and r, i.e., [ 2

n , 1], (0, n] and
(0,
√
n], respectively, are also taken into account in these plots. Therefore, the minimal
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Figure 4.2: Error probabilities pD0 (solid line) and pD1 (dashed line) when b ∈ ( 1
n , 1],

based on an effect size under H1 of θ = .2, .5, or .8 and σ2 = 1 (displayed in the
columns) and a sample size of n = 20, 50, or 100 (displayed in the rows). In the
intersection b∗ the error probabilities are equal.
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b∗ = 2
n , and the maximal g∗ = n and r∗ =

√
n are obtained if the standardized effect

is assumed to be larger than a certain threshold value (e.g., 0.73, 0.52, and 0.39 for
n = 20, 50, and 100, respectively, in the case of g∗).

As an example, Figure 4.1 (c) shows the sampling distributions of the tuned ZBF
with g = 9.4 and n = 50 under H0 and under a fixed standardized effect of θ = .4
under H1. As can be seen, the error probabilities are equal which was not the case
for the default choices as can be seen in Figure 4.1 (a) and (b). This can also be seen
in Figure 4.3 (b) that under n = 50 and θ = .4 the tuned parameter g∗ = 9.4.

The plots in Figure 4.3 show an interesting characteristic of the tuning parameter
that results in equal error probabilities. As can be seen in Figure 4.3 (b), for example,
a large (small) standardized effect under H1 results in a g∗ that is also large (small),
which, in turn, implies a large (small) prior variance in (4.6). This relationship
between the standardized effect θ and g∗ corresponds exactly with how g would be
chosen based on the expected standardized effect underH1 in prior specification based
on substantive expectations: If we would expect a large (small) standardized effect
under H1, we want the prior variance for θ under H1 to be large (small), which can
be achieved by setting a large (small) value for g. This relationship also holds for r∗
and b∗. Thus, it can be concluded that well-specified subjective priors result in Bayes
factors with good frequency properties (in the sense that the type I error probability
is close to the type II error probability) for the range of effects that are likely under
the specified prior.

4.4.4 Final remarks about default choices of the tuning
parameters

In this section we observed that default choices of the tuning parameters may result
in default Bayes factors that are highly asymmetry in information when n = 50 and
the true standardized effect is of medium size under H1. The MBF with r =

√
n

(Default 2) which resulted in the largest asymmetry with a type I error probability
that is 9 times smaller than the type II error probability. This asymmetry can be
explained by the fact that this MBF uses a Cauchy prior for the standardized effect
with a scale parameter of 1. Under this prior absolute standardized effects larger than
1 are equally likely a priori as absolute standardized effects smaller than 1 (Morey et
al., in press). Consequently, medium effects can on average be better predicted by
H0 than that zero effects can be predicted by H1. Furthermore, this MBF resulted
in the largest sum of the error probabilities .350 (which is an important property
in Bayesian hypothesis testing). For this reason, this MBF (with tuning parameter
r =
√
n) is not the preferred choice for default Bayesian hypothesis testing based on

the error probabilities. The DBF (with Default 2) resulted in the least asymmetric
results and the smallest sum of the error probabilities of .241 in this specific scenario.
To get a better idea about the error probabilities of the default Bayes factors in other
scenario’s a more thorough simulation study will be conducted.
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Figure 4.3: Examples of b∗, g∗, and r∗ that result in equal error probabilities as a
function of the expected standardized effect under H1 and sample size n.

Before discussing this simulation study we present a method on how to set the
tuning parameter so that the default Bayes factor is approximately symmetric in in-
formation in a specific scenario. As was noted by Morey et al. (in press) two issues
may arise with this approach. First, the resulting default Bayes factor may not be
consistent in the sense that the evidence towards a true alternative hypothesis will not
go to infinity as the sample size goes to infinity. In the following two sections we will
show how default Bayes factors can be obtained that are approximately symmetric
in information and also consistent. The second potential issue is that the resulting
default Bayes factor that is approximately symmetric in information behaves essen-
tially as a classical test statistic. We come back to this in the following section and
in the discussion.
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4.5 A new default choice for the tuning parameters

In the previous section we observed that the tuning parameters can be chosen such
that the resulting default Bayes factors are symmetric in information for a specific
effect under H1. We can use this result to tune the default Bayes factors such that
it is symmetric in information for a specific effect. The problem is however that the
effect under H1 is unknown. Because of this uncertainty we suggest to specify a dis-
tribution of effects for which the default Bayes factor is symmetric in information.
This distribution of effects, which will be denoted by π∗(θ), should reflect for which
effects we want the default Bayes factor to have equal error probabilities. The rule
for setting the tuning parameter is

Rule: For a distribution of the standardized effect under H1, π∗(θ), and a given
sample size n, choose gπ∗ = Eπ∗(θ)[g

∗(θ, n)], rπ∗ = Eπ∗(θ)[r
∗(θ, n)], and bπ∗ =

Eπ∗(θ)[b
∗(θ, n)].

We consider two choices for π∗(θ). The first option is a uniform distribution in
the interval [−1, 1], i.e., π∗(θ) = U(−1, 1), which implies that small, medium, and
large effects are equally likely. The second option is a normal distribution with mean
of 0 and a standard deviation of .6, i.e., π∗(θ) = N(0, 0.62), which implies that small
effects are more likely than large effects. Note that 90% of a normal distribution
N(0, 0.62) lies within [−1, 1]. We focus on the interval [−1, 1] because in the social
sciences effect sizes larger than 1 are not realistic. Note that other choices for π∗(θ)
could also be used.

In the case of the DBF, the optimal tuning parameter bπ∗ can be computed using
the following formula:

bπ∗ = Eπ∗(θ)[b
∗(θ, n)] =

∫
b∗(θ, n)π∗(θ)dθ ≈ T−1

T∑
t=1

b∗(θ(t), n), (4.10)

where θ(t) is the tth draw from π∗(θ) and the total number of draws from π∗(θ), T ,
must be large enough, e.g., T = 1000. For each b∗(θ(t), n) an efficient algorithm for
the computation of the optimal tuning parameter is provided in Appendix 4.B. This
procedure can also be used for determining gπ∗ and rπ∗ .

Note that the use of the new default choices gπ∗ , rπ∗ , and bπ∗ results in default
Bayes factors that work as a classical test statistic. Thus, when selecting H0 or H1

depending on whether B01 is larger or smaller than 1, respectively, the type I and the
type II error probabilities are equal on average when the standardized effect under H1

is sampled from π∗(θ). Consequently, the outcome of the new default Bayes factor
no longer reflects the relative evidence in the data between the two hypotheses of a
researcher. Note however that a similar issue also arises when using the default Bayes
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factors based on default choices for g, r, and b because the underlying default priors
also do not directly reflect substantive prior beliefs of a researcher.

4.6 Consistency of tuned Bayes factors

Consistency is a crucial property in Bayesian hypothesis testing. This property im-
plies that the Bayes factor will always select the true hypothesis when the sample size
is large enough, i.e., it requires that as the sample size n goes to infinity, the Bayes
factor for the null hypothesis approaches infinity if H0 is true, and approaches 0 if
H1 is true. In this section we show that the tuned Bayes factors that were proposed
in the previous section are consistent.

It is important to note that the Bayes factors for the null hypothesis based on
default choices b = 2/n, b = 1/

√
n, g = n, r =

√
n/2 and r =

√
n are consistent

(O’Hagan, 1995; Liang et al., 2008). The following shows that the tuned Bayes
factor based on bπ∗ , gπ∗ , and rπ∗ are consistent as well, if the tuning parameters are
always constrained in b ∈ [ 2

n , 1], g ∈ (0, n], and r ∈ (0,
√
n] which have been specified

in Section 4.3. Here we use the fact that as n goes to infinity, the observed effect
converges to the true effect in the population.

First we consider the case that H0 is true so that the observed standardized
effect, x̄/s, goes to 0 as n goes to infinity. In this case, DBF01 in (4.9) is a decreasing
function of b, and ZBF01 in (4.6) and MBF01 in (4.8) are increasing functions of g
and r. Then as shown in Figure 4.3, when the sample size increases, b∗ decreases and
g∗ and r∗ increase for a given effect size unequal to 0. Along this line of reasoning,
it holds that bπ∗ goes to 0, and gπ∗ and rπ∗ go to infinity as the sample size goes to
infinity for a calibration distribution under H1 for which Pr(θ = 0) = 0 holds under
π∗(θ). Consequently, if the observed effect converges to 0, as the sample size goes to
infinity, the tuned Bayes factors for the null hypothesis go to infinity. For example,
ZBF01 → (1 + gπ∗)

1
2 when x̄/s → 0, which goes to infinity as n goes to infinity

because gπ∗ goes to infinity with n.
Second we consider the case that H1 is true so that the observed standardized

effect, x̄/s, converges to a value unequal to 0 as n goes to infinity. As stated earlier
the tuning parameters are constrained by b ≥ 2

n , g ≤ n, and r ≤
√
n. Therefore,

based on equation (4.10) bπ∗ , gπ∗ , and rπ∗ under the distribution of standardized
effect sizes π∗(θ) are constrained as well, i.e., bπ∗ ≥ 2

n , gπ∗ ≤ n, and rπ∗ ≤
√
n.

Thus, the tuned Bayes factors BF01 are always smaller than the Bayes factors under
b = 2/n, g = n, and r =

√
n (as can be seen from (4.9), for example, DBF decreases as

b increases). Consequently, if the observed effect converges to a value unequal to zero,
as the sample size goes to infinity, the tuned Bayes factors for the null hypothesis go
to 0, since the Bayes factors under b = 2/n, g = n, and r =

√
n go to 0. For example,

the DBF under bπ∗ is smaller than the DBF under b = 2/n which goes to 0 as n goes
to infinity.
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It should be noted that the tuned Bayes factors can be inconsistent when the
tuning parameters are without constraints. Morey et al. (in press) elaborates that
the tuning parameter specified for equal error probabilities may result in inconsistent
Bayes factors. They show that for a specific standardized effect θ under H1, the tuned
Bayes factor for the null is always larger than 1 as long as the observed standardized
effect x̄/s is less than half of θ. This implies that as n goes to infinity the tuned Bayes
factors for the null hypothesis do not converge to 0 under the observed standardized
effects that are less than θ/2 but unequal to 0. For example, for a specific standardized
effect of θ = 0.5 under H1 and sample size of n = 100, the tuning parameter in DBF
for equal error probabilities is b∗ = 0.0134 which can be roughly seen from Figure 4.2
(h). For an observed standardized effect x̄/s = 0.24 that is less than half of θ = 0.5,
the tuned Bayes factor under b∗ = 0.0134 is about 1.73 which supports Morey et al.
(in press)’s finding. In our paper, however, we constrain the tuning parameters in
reasonable ranges, i.e., b ∈ [ 2

n , 1], g ∈ (0, n], and r ∈ (0,
√
n]. This implies b∗ = 0.0134

in the example above should be abandoned because it is smaller than 2/n in the case
of n = 100. In fact, our method specifies b∗ = 0.02 according to Figure 4.3 (a),
which is equal to the default choice b = 2/n. This avoids the inconsistency issue
of the tuned Bayes factors, since the previous studies have shown the consistency
of Bayes factors under default choices of tuning parameters. Although constraining
tuning parameters may lose the property of equal error probabilities for some specific
standardized effects, we suggest using distributions π∗(θ) of the standardized effects
under H1 to reduce the influence of these constraints. This specification addresses
the consistency issue of the tuned Bayes factors which will be illustrated below, and
still results in approximately equal error probabilities which will be shown in the next
section.

We illustrate the consistency of the tuned DBF based on bπ∗ using two distri-
butions of standardized effects, i.e., π∗(θ) = U(−1, 1) and π∗(θ) = N(0, 0.62). The
sample size n increases from 10 to 500. For each n and a distribution of standardized
effects, we compute bπ∗ using (4.10) and DBF01 using (4.9) with different observed
effects x̄/s = 0, 0.1, 0.2 and 0.5. For an observed effect x̄/s = 0, the DBF01 should
go to infinity, and for x̄/s = 0.1, 0.2 and 0.5, the DBF01 should go to 0 as sample
size n goes to infinity.

Figure 4.4 illustrates the logarithm of the DBF with respect to n under different
observed effect sizes. First, the logarithms of DBF01 with two default choices b = 2/n
and b = 1/

√
n are shown in Figure 4.4 (a) and (b), respectively, which illustrates

consistency since its logarithm goes to positive infinity under H0 and goes to minus
infinity under H1. Second, Figure 4.4 (c) and (d) show the logarithms of DBF01

with bπ∗ obtained using θ ∼ U(−1, 1) and θ ∼ N(0, 0.62) under H1. As can be
seen, the logarithm of DBF01 with bπ∗ goes to positive infinity under observed effect
x̄/s = 0 and goes to negative infinity under other observed effects which correspond
to the fact that H1 is true. This suggests consistency of the DBF based on bπ∗

under θ ∼ U(−1, 1) and θ ∼ N(0, 0.62). Furthermore, it is interesting to find that
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Figure 4.4: The logarithm of the DBF against n with default choices of b and bπ∗

under two distributions of standardized effect under H1. Note that oe denotes the
observed effect x̄/s.
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4.7. Numerical simulations

the logarithms of tuned DBFs against n under π∗(θ) = U(−1, 1) in Figure 4.4 (c)
and π∗(θ) = N(0, 0.62) in Figure 4.4 (d) are similar with the logarithm of the DBF
against n under default choice b = 2/n in Figure 4.4 (b). This illustrates that the
tuned default Bayes factors also result in reasonable default outcomes of the relative
evidence between two hypothesizes (under the condition that the default choices of
the tuning parameters also considered to be “reasonable”).

4.7 Numerical simulations

We investigated the error probabilities based on the new proposals discussed in the
previous section and the default choices in different settings for various conditions
that are typical in psychological research. We also conducted a sensitivity analysis
of our new proposal by considering distributions of effects under H1 that do not
correspond to the distribution π∗(θ) that was used to tune the default Bayes factors.

4.7.1 Study 1

First, we consider the case where the distribution of the standardized effect under
H1 corresponds with the actual distribution of the standardized effect, for the case
of π∗(θ) = U(−1, 1), and π∗(θ) = N(0, 0.62). The tuned parameters and error prob-
abilities are obtained using (4.10) with T = 1000 for both π∗(θ) = U(−1, 1) and
π∗(θ) = N(0, 0.62). The results in Tables 4.2 (n = 20), 4.3 (n = 50), and 4.4
(n = 100) display all the error probabilities for default choices and new choices for
g, r, and b. The last two rows in each of the fragments for b, g, and r in the tables
show the median logarithm of the Bayes factor for true hypothesis, which should be
larger than 0. The logarithm of the Bayes factors are reported to check whether the
tuned Bayes factors still render reasonable default outcomes (i.e., outcomes that are
close to the “accepted” default outcomes).

Several conclusions can be drawn from these tables. If the anticipated distribution
of the standardized effect is identical to the distribution used to generate the data
in the simulation under H1, Bayes factors based on optimal tuning parameters are
approximately symmetric in information in most cases. Note that optimal tuning
parameters can also render slightly unequal error probabilities. The reason is that
when either a very large or small effect is sampled from its distribution, the optimal
tuning parameters may attain their boundaries as was illustrated in Figure 4.3. For
example, if the observed effect equals 0.9 Figure 4.3 (c) shows that the optimal r∗
under n = 20, 50, and 100 is equal to the default choice r =

√
n, and if the observed

effect equals 0.2 Figure 4.3 (b) shows that the optimal g∗ is very close to 0.
Furthermore, the tables show that the Bayes factors based on default tuning

parameters are always asymmetric in information. This asymmetry can be quite
severe. For example, if default choice r =

√
n = 4.47 (Default 2) is used in the MBF
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4. Error Probabilities in Default Bayesian Hypothesis Testing

Table 4.2: Choices of b, g, r and error probabilities under two distributions of stan-
dardized effect θ and a sample size of n = 20. Note that for b, g, and r, Default
1 indicates b = 2/n, g = 1, and r =

√
n/2, respectively, and Default 2 indicates

b = 1/
√
n, g = n, and r =

√
n, respectively. For b, g, and r, mL(BF01)(H0) denotes

the median logarithm of BF01 under H0 and mL(BF10)(H1) denotes the median
logarithm of BF10 under H1.

θ ∼ U(−1, 1) θ ∼ N(0, 0.62)

n = 20 Tuned Default 1 Default 2 Tuned Default 1 Default 2
b 0.292 0.100 0.224 0.336 0.100 0.224
pD0 0.235 0.077 0.195 0.260 0.077 0.195
pD1 0.223 0.409 0.294 0.257 0.479 0.358

pD0 + pD1 0.458 0.486 0.489 0.517 0.556 0.553
mL(BF01)(H0) 0.472 1.435 0.656 0.391 1.445 0.666
mL(BF10)(H1) 1.730 0.767 1.546 1.328 0.274 0.105

g 7.84 1.00 20.0 6.77 1.00 20.0
pZ0 0.203 0.253 0.085 0.219 0.253 0.085
pZ1 0.245 0.225 0.398 0.266 0.300 0.449

pZ0 + pZ1 0.448 0.478 0.483 0.485 0.553 0.534
mL(BF01)(H0) 0.882 0.230 1.299 0.822 0.231 1.300
mL(BF10)(H1) 1.161 0.859 0.916 0.495 0.498 0.152

r 1.46 2.24 4.47 1.22 2.24 4.47
pM0 0.209 0.116 0.065 0.231 0.117 0.066
pM1 0.252 0.393 0.466 0.292 0.459 0.530

pM0 + pM1 0.461 0.509 0.531 0.523 0.576 0.596
mL(BF01)(H0) 0.548 0.866 1.510 0.427 0.860 1.518
mL(BF10)(H1) 0.730 0.679 0.258 0.383 0.268 0.208

when n = 20, Table 4.2 shows that in the case of θ ∼ N(0, 0.62) the error probability
pM1 = 0.530 under H1 is 8 times larger than the error probability pM0 = 0.066 under
H0. This was also observed for another case in Table 4.1.

It is also interesting that the optimal tuning parameters also result in a smaller sum
of error probabilities under θ ∼ U(−1, 1) and θ ∼ N(0, 0.62). This is an interesting
finding because it implies that the tuned default Bayes factors are not only symmetric
in information when testing H0 versus H1, they are also most likely to select the true
hypothesis on average if the distribution of standardized effect sizes specified in (4.10)
is the same as the distribution used in the simulation under H1.

The result of the median logarithm of Bayes factors renders the following findings.
First, the median logarithms of the default and tuned Bayes factors result in positive
evidence for the true hypothesis in all cases. Second, the median logarithms of the
Bayes factors increase with the sample size, which supports the consistency of the
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4.7. Numerical simulations

Table 4.3: Choices of b, g, r and error probabilities under two distributions of stan-
dardized effect θ and a sample size of n = 50. Note that for b, g, and r, Default
1 indicates b = 2/n, g = 1, and r =

√
n/2, respectively, and Default 2 indicates

b = 1/
√
n, g = n, and r =

√
n, respectively. For b, g, and r, mL(BF01)(H0) denotes

the median logarithm of BF01 under H0 and mL(BF10)(H1) denotes the median
logarithm of BF10 under H1.

θ ∼ U(−1, 1) θ ∼ N(0, 0.62)

n = 50 Tuned Default 1 Default 2 Tuned Default 1 Default 2
b 0.174 0.040 0.141 0.227 0.040 0.141
pD0 0.151 0.041 0.148 0.194 0.040 0.148
pD1 0.134 0.280 0.194 0.181 0.379 0.271

pD0 + pD1 0.285 0.321 0.342 0.375 0.419 0.419
mL(BF01)(H0) 0.734 1.936 0.852 0.521 1.891 0.806
mL(BF10)(H1) 4.611 3.397 4.482 3.049 1.679 2.763

g 28.1 1.00 50.0 21.7 1.00 50.0
pZ0 0.136 0.245 0.048 0.188 0.245 0.049
pZ1 0.151 0.154 0.279 0.205 0.194 0.373

pZ0 + pZ1 0.287 0.399 0.327 0.393 0.439 0.422
mL(BF01)(H0) 1.464 0.232 1.741 1.358 0.241 1.758
mL(BF10)(H1) 3.886 2.383 3.701 3.224 2.042 2.954

r 3.61 3.54 7.07 2.99 3.54 7.07
pM0 0.145 0.075 0.038 0.165 0.075 0.038
pM1 0.161 0.290 0.335 0.214 0.343 0.395

pM0 + pM1 0.306 0.365 0.373 0.379 0.418 0.433
mL(BF01)(H0) 1.332 1.306 1.987 1.138 1.293 1.964
mL(BF10)(H1) 3.346 3.352 2.974 1.981 1.882 1.466

Bayes factors under both tuned and default choices. Third, the choices of bπ∗ , gπ∗ , and
rπ∗ under π∗(θ) = U(−1, 1) and π∗(θ) = N(0, 0.62) always result in a larger median
logarithm of the Bayes factor under H1 than under H0. This implies our method is
symmetric in two error probabilities, but not symmetric in terms of the magnitude
of the support for the true hypothesis. This is a common property of the Bayes
factor caused by the fact that it is easier to find support against H0 instead of finding
support for H0 because H0 is a precise hypothesis while H1 is a composite hypothesis.
Interested readers are referred to Johnson and Rossell (2010) who proposed a method
where the evidence for the true hypothesis accumulates with the same rate under H0

and H1.
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4. Error Probabilities in Default Bayesian Hypothesis Testing

Table 4.4: Choices of b, g, r and error probabilities under two distributions of stan-
dardized effect θ and a sample size of n = 100. Note that for b, g, and r, Default
1 indicates b = 2/n, g = 1, and r =

√
n/2, respectively, and Default 2 indicates

b = 1/
√
n, g = n, and r =

√
n, respectively. For b, g, and r, mL(BF01)(H0) denotes

the median logarithm of BF01 under H0 and mL(BF10)(H1) denotes the median
logarithm of BF10 under H1.

θ ∼ U(−1, 1) θ ∼ N(0, 0.62)

n = 100 Tuned Default 1 Default 2 Tuned Default 1 Default 2
b 0.120 0.020 0.100 0.161 0.020 0.100
pD0 0.110 0.026 0.121 0.144 0.026 0.120
pD1 0.096 0.217 0.148 0.132 0.298 0.210

pD0 + pD1 0.206 0.243 0.269 0.276 0.324 0.330
mL(BF01)(H0) 0.880 2.282 0.985 0.719 2.285 0.989
mL(BF10)(H1) 9.801 8.398 9.695 7.344 5.777 7.074

g 64.5 1.00 100 56.3 1.00 100
pZ0 0.105 0.242 0.032 0.122 0.242 0.032
pZ1 0.112 0.126 0.226 0.154 0.149 0.281

pZ0 + pZ1 0.217 0.368 0.258 0.276 0.391 0.313
mL(BF01)(H0) 1.885 0.242 2.101 1.783 0.224 2.064
mL(BF10)(H1) 7.930 4.491 7.774 5.315 3.254 5.092

r 6.24 5.00 10.0 5.15 5.00 10.0
pM0 0.105 0.053 0.026 0.129 0.053 0.026
pM1 0.129 0.220 0.251 0.167 0.284 0.323

pM0 + pM1 0.234 0.273 0.277 0.296 0.337 0.349
mL(BF01)(H0) 1.842 1.633 2.306 1.683 1.642 2.322
mL(BF10)(H1) 8.308 8.396 7.983 5.170 5.212 4.817

4.7.2 Study 2

In the second study the error probabilities were obtained when the distribution of the
standardized effects used for determining the optimal tuning parameters differs from
the actual distribution of the standardized effects under H1 (Table 4.5). It can be
seen from the top panel of Table 4.5 that a misspecified distribution of standardized
effect sizes and the resulting tuning parameters render unequal error probabilities,
which implies that the default Bayes factors are asymmetric in information.

Furthermore, the sum of error probabilities with respect to tuning parameters
from misspecified distribution of standardized effect sizes is larger than those from
true distribution. Based on these findings it can be concluded that the performance
of the tuned default Bayes factors depends on whether the true sampling distribution
of effects under H1 corresponds with the chosen distribution π∗ that is used for
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Table 4.5: Choices of b, g, r under two distributions of standardized effect θ and
error probabilities under true distributions of standardized effects and a sample size
of n = 50.

θ ∼ U(−1, 1) is true θ ∼ N(0, 0.62) is true

n = 50 θ ∼ U(−1, 1) θ ∼ N(0, 0.62) θ ∼ U(−1, 1) θ ∼ N(0, 0.62)
b 0.174 0.227 0.174 0.227
pD0 0.151 0.214 0.175 0.194
pD1 0.134 0.142 0.237 0.181

pD0 + pD1 0.285 0.366 0.412 0.375
g 28.1 21.7 28.1 21.7
pZ0 0.136 0.075 0.066 0.188
pZ1 0.151 0.264 0.333 0.205

pZ0 + pZ1 0.287 0.339 0.399 0.393
r 3.61 2.99 3.61 2.99
pM0 0.145 0.087 0.064 0.165
pM1 0.161 0.274 0.347 0.214

pM0 + pM1 0.306 0.361 0.411 0.379
θ = 0.2 is true θ = 0.5 is true

n = 50 θ ∼ U(−1, 1) θ ∼ N(0, 0.62) θ ∼ U(−1, 1) θ ∼ N(0, 0.62)
b 0.174 0.227 0.174 0.227
pD0 0.175 0.205 0.172 0.214
pD1 0.483 0.440 0.022 0.018

pD0 + pD1 0.658 0.645 0.194 0.232
g 28.1 21.7 28.1 21.7
pZ0 0.065 0.082 0.073 0.087
pZ1 0.667 0.632 0.048 0.048

pZ0 + pZ1 0.732 0.714 0.121 0.132
r 3.61 2.99 3.61 2.99
pM0 0.062 0.075 0.077 0.093
pM1 0.682 0.638 0.087 0.060

pM0 + pM1 0.744 0.713 0.164 0.153

calibration.
However, if we compare the results obtained using the wrong distribution in the

top panel of Table 4.5 with the results obtained using the default choices in Table 4.3,
the sum of error probabilities from the former is usually smaller than and otherwise
about equal to the latter. For example, when θ ∼ N(0, 0.62) is true under H1 and
π∗(θ) = U(−1, 1) is used for tuning a default Bayes factor, the resulting sum of the
error probabilities equals .399 for the ZBF (see the fourth column of the top panel in
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Table 4.6: Bayes factors obtained using different choices of b, g, and r. Note that
for b, g, and r, Default 1 indicates b = 2/n, g = 1, and r =

√
n/2, respectively,

and Default 2 indicates b = 1/
√
n, g = n, and r =

√
n, respectively. Tuned 1 and

Tuned 2 indicate the optimal tuning parameters are obtained using θ ∼ U(−1, 1) and
θ ∼ N(0, 0.62), respectively.

n = 28 Tuned 1 Tuned 2 Default 1 Default 2
b 0.248 0.294 0.071 0.189

DBF01 0.382 0.344 1.12 0.457
g 12.4 10.1 1.00 28.0

ZBF01 0.730 0.682 0.606 1.00
r 2.20 1.76 2.65 5.29

MBF01 0.769 0.723 0.83 1.26

Table 4.5). This sum is smaller than .439 and .422 that can be found in the last two
columns of Table 4.3 for Default 1 and Default 2 for the ZBF.

Furthermore, when specifying a wrong distribution, the difference between two
error probabilities in the DBF is smaller than in the ZBF and the MBF. For example,
if θ ∼ N(0, 0.62) is true under H1, and π∗(θ) = U(−1, 1) is used for tuning a default
Bayes factor, this renders pD0 = 0.175 and pD1 = 0.237, pZ0 = 0.066 and pZ1 = 0.333,
and pM0 = 0.064 and pM1 = 0.347. This implies that for distributions of effect sizes
that cover most commonly used effect in the social sciences, the difference between
two error probabilities of the tuned DBF is less sensitive to the wrong specification
of distributions of effect sizes than the ZBF and the MBF. As can be seen in the
bottom panel of Table 4.5, for each specified effect size the difference between error
probabilities may be large. However, returning to the top panel of Table 4.5, averaged
over a reasonable distribution of effect sizes for the DBF results in error probabilities
that are similar.

4.8 Empirical example revisited

The empirical data of Howell (2012, p. 196) is re-analyzed using default Bayes factors
with the new choices for the tuning parameters. We are interested in testing whether
there is difference between the observed score and chance score, i.e., H0 : θ = 0 versus
H1 : θ 6= 0 using default Bayes factors.

We use the two tuned Bayes factors which are approximately symmetric in in-
formation under the distributions: π∗(θ) = U(−1, 1) and π∗(θ) = N(0, 0.62). The
optimal choice for the tuning parameters for ZBF, MBF, and DBF are obtained
given a sample size of n = 28, using the algorithm in Appendix 4.B. The resulting
Bayes factors are displayed in Table 4.6 for the two tuned choices and the two default
choices. The table shows that the ZBF, MBF, and DBF based on the tuned choices

108



4.9. Discussion

all favor the alternative hypothesis which assumes there is a difference between the
observed score and chance score, whereas they favor different hypotheses under two
default tuning parameters. This suggests that different default Bayes factors render
similar results as long as the tuning parameters are chosen based on the calibration
scheme discussed in Section 4.5. The relative evidence for H1 however is quite small.
In order to draw more decisive conclusions more data need to be collected.

4.9 Discussion

In this paper we investigated the type I and type II error probabilities of default
Bayes factors in Bayesian hypothesis testing of a population effect with unknown
variance. It was shown that the error probabilities are unequal in situations that are
typically encountered in psychological research (i.e., for sample sizes of 20, 50 and
100, and standardized effects between .2 and .8). In certain situations the asymmetry
was quite severe. For example the Bayes factor based on a mixture of g priors with
default tuning parameter r =

√
n (Default 2), which corresponds to a standardized

effect with a Cauchy prior with a scale parameter of 1, has a strong tendency to
prefer H0. Thus if one is interested in default Bayes factors with approximately equal
error probabilities, this default Bayes factor is not recommended. The asymmetry in
information was less severe for the other default Bayes factors.

It was also shown how a default Bayes factor can be tuned such that the error
probabilities for a given sample size and a given distribution of standardized effect
under the alternative hypothesis are approximately equal. Two choices for the distri-
bution of effects were chosen (namely, a uniform distribution on [-1,1] and a normal
distribution with mean 0 and standard deviation .6) which seem reasonable in psy-
chological research. It was shown that the resulting ‘tuned’ Bayes factor is consistent
in the sense that the evidence for the true hypothesis goes to infinity as sample size
goes to infinity.

Furthermore, two numerical simulation studies showed that the tuned default
Bayes factors also resulted in smaller sums of the error probabilities (which plays
an important role in Bayesian hypothesis testing) than when using default choices.
Therefore if the true distribution of standardized effect sizes under H1 corresponds
with the distribution that is used for tuning the default Bayes factors, we are more
likely to select the true hypothesis and the error probabilities will also be close to
each other.

When the true distribution of standardized effect sizes under H1 does not corre-
spond to the calibration distribution that is used for the tuned default Bayes factors,
the error probabilities will also be unequal. However, the simulation study shows
that the error probabilities are still closer to each other than when using the default
choices. This simulation study also showed that the DBF seemed to be more robust
to misspecification of the calibration distribution in comparison to the ZBF and the
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MBF. For this reason, the tuned DBF may be preferred over the other default Bayes
factors.

Furthermore, it was interesting to observe that the "tuned" default prior depends
on the expected standardized effect size under the alternative in the same way as if
we would have specified the prior based on subjective beliefs: when a large (small)
standardized effect is expected, the prior variance of the effect under H1 is relatively
large (small). For example, Figure 4.3 (a) shows that a large standardized effect size
corresponds to a small b∗ which suggests a large prior variance in DBF. This implies
that a well-specified subjective prior also results in Bayes factors with good frequency
properties in the range of effects that are anticipated.

As was elaborated in the paper, the tuned Bayes factor acts as a classical test
statistic. In fact, the test procedure for equal error probabilities can also be developed
in a frequentist test. For example, we can conduct a classical t test, where the critical
value of t statistic is determined by the sample size and standardized effect size under
H1 such that the type I and type II error probabilities are equal. For the distribution
of the standardized effect size, an average of critical t values can be obtained using
each standardized effect size from the distribution. The frequentist t test based on
the average of these critical values would have similar outcomes of selecting H0 or H1

as the Bayesian t test using tuned Bayes factors.
Finally we want to mention two properties of the tuned Bayes factors which are

not favorable from a Bayesian point of view. First the method is not coherent when
sequentially observing data. For example assume that we observe a sample, say x1,
and we would compute a tuned default Bayes factor. If we would observe a second
sample, say x2, and we would update our tuned Bayes factor according to Bayes’
theorem, the resulting Bayes factor would differ from the tuned Bayes factor based
on the complete data set (x′1,x′2)′. Note that this issue is also present in other default
Bayes factors such as the fractional Bayes factor (O’Hagan, 1995) and certain intrinsic
Bayes factors (Berger & Pericchi, 1996).

Another issue lies in the interpretation of the tuned default Bayes factor. The
problem is that the outcome is not the relative evidence between the hypotheses of
the researcher because the underlying prior is not based on substantive beliefs but
instead it is constructed using frequentist error probabilities. Note however that this
is also an issue with default Bayes factors where default priors are chosen, not based
on substantive expectations but on theoretical or computational simplicity.

A possible advantage of using a criterion that results in equal error probabilities,
such as the tuned default Bayes factors, is that there is no tendency to either select
the null or the alternative hypothesis. Furthermore, it selects the true hypothesis
on average more often than default Bayes factors in certain scenario’s. Consequently
when a tuned default Bayes factor results in a preference towards H0 or H1 for a given
fixed data set, this preference cannot be caused by an a priori tendency to prefer H0

or H1, respectively.
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4.A The existence of b∗, g∗, and r∗

Theorem 1: There exists a unique b∗ ∈ (1/n, 1] so that p0 = p1.
Proof : First note that pD0 = P (DBF01 < 1|H0) and pD1 = P (DBF01 > 1|H1) =
1− P (DBF01 < 1|H1), and therefore,

pD0 = pD1 ⇔ P (DBF01 < 1|H0) + P (DBF01 < 1|H1) = 1.

Furthermore, we set

cD(b) = pD0 + 1− pD1
= P (DBF01 < 1|H0) + P (DBF01 < 1|H1)

= P (hD(x̄/s) < AD(b)|H0) + P (hD(x̄/s) < AD(b)|H1),

where DBF01 = AD(b)−1hD(x̄/s), with hD(x̄/s) = (1 + (x̄/s)2)−n/2 and AD(b) =
Γ(nb/2)

Γ((nb−1)/2)/
Γ(n/2)

Γ((n−1)/2) . Based on the characteristic of the gamma function, it holds
that AD(b) is a strictly increasing function of b. For this reason, cD(b) is an increasing
function of b ∈ (1/n, 1]. If b→ 1/n, then AD(b)→ 0 which implies that lim

b→1/n
cD(b) =

0. On the other hand, if b = 1, then AD(b) = 1 which implies that cD(1) = 2 because
hD(x̄/s) < 1. Therefore, a unique b∗ ∈ (1/n, 1] exists such that cD(b∗) = 1, which
implies that pD0 = pD1 . �

The g∗ ∈ (0,∞) and r∗ ∈ (0,∞) need not exist. For the ZBF, first note that

ZBF01 < 1

⇔ (1 + g)−
n−1
2 (1 + g/(1 + (x̄/s)2))

n
2 < 1

⇔ (1 + g/(1 + (x̄/s)2))
n
2 < (1 + g)

n−1
2

⇔ 1 + g/(1 + (x̄/s)2) < (1 + g)
n−1
n

⇔ (1 + (x̄/s)2)−1 < ((1 + g)
n−1
n − 1)/g.

This implies pZ0 = P (hZ(x̄/s) < AZ(g)|H0) and pZ1 = P (hZ(x̄/s) > AZ(g)|H1),
where hZ(x̄/s) = (1 +(x̄/s)2)−1 and AZ(g) = ((1 +g)

n−1
n −1)/g. The first derivative

of AZ(g) is
d

dg
AZ(g) = g−2(1 + g)−1/n[(1 + g)1/n − 1− g/n]. (4.11)

The last term is strictly negative, i.e., (1 + g)1/n − 1 − g/n < 0 if n > 1 and g > 0.
The reason is that (1 + g)1/n − 1 − g/n is a decreasing function of g because of its
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derivative 1
n ((1 + g)1/n−1 − 1) < 0, and (1 + g)1/n − 1− g/n goes to 0 when g → 0.

Therefore, d
dgAZ(g) < 0 which indicates that AZ(g) is a strictly decreasing function

of g. Thus, as g decreases, p0 increases and p1 decreases. If g →∞ then AZ(g)→ 0
and therefore pZ0 < pZ1 in the limit. If g → 0 then AZ(g) → n−1

n . In the case of
g → 0, hZ(x̄/s) < AZ(g) implies that (1 + (x̄/s)2)−1 < n−1

n which implies that
pZ0 = P (|x̄/s| > 1/

√
n− 1|H0) and pZ1 = P (|x̄/s| < 1/

√
n− 1|H1).

If the effect size is larger than approximately 2√
n−1

, then P (|x̄/s| < 1√
n−1
|H0) >

P (|x̄/s| > 1√
n−1
|H1) because the distributions of x̄/s under H0 and H1 are approxi-

mately symmetric on θ/2 which is larger than 1√
n−1

. As g → 0, therefore, pZ0 > pZ1
under θ > 2√

n−1
. This renders the result that a unique g∗ exists such that pZ0 = pZ1

for θ > 2√
n−1

.

If the effect size is smaller than approximately 2√
n−1

, then P (|x̄/s| < 1√
n−1
|H0) <

P (|x̄/s| > 1√
n−1
|H1) such that pZ0 < pZ1 as g → 0. Thus, there is no solution of g for

pZ0 = pZ1 because pZ0 < pZ1 for any g > 0. In this case, however, it is still applicable
that the smaller the g, the less the difference between pZ0 and pZ1 . This forces us to
select a g∗ that is approaching 0 such that pZ0 is as close as possible to pZ1 . In the
case of pZ0 < pZ1 for any g > 0, the computation algorithm in Appendix 4.B decreases
g∗ and stops until g∗ < 0.001. Note that g∗ = 0.001 is such a small number that will
not much influence gπ∗ that is an average of g∗(θ, n) obtained using different effects
from their distribution. The above discussion of existence for g∗ can also be applied
to r∗.

4.B Computation of b∗, g∗ and r∗ given standardized effect
size and sample size

The computation of the optimal tuning parameter b∗, g∗, and r∗ resulting in equal er-
ror probabilities can be carried out using a dichotomy algorithm. The basic principle
is to gradually adjust the tuning parameter by first computing the error probabilities
p0 and p1 for a certain value of the tuning parameter b, and then let b decrease (or
increase in the case of g or r) if p0 > p1 or let b increase (or decrease in the case of g
or r) if p0 < p1. Furthermore, if p0 > p1 when b is smaller than 2/n, then b∗ = 2/n,
the allowed lower bound of b in the DBF. Similarly, g∗ = n and r∗ =

√
n are chosen

if the resulting p0 > p1 in ZBF and MBF, respectively. The method is described for
determining b∗ in the DBF.

Computing the error probability. We compute the error probabilities for a given
sample size n, standardized effect θ under H1, and value for b. The error probabilities
can then be obtained as follows.

112



4.B. Computation of b∗, g∗ and r∗ given standardized effect size and sample size

(a) Randomly drawK samples of size n underH0 andH1, i.e., x
(k)
0 = (x

(k)
01 , . . . , x

(k)
0n )′,

x(k)
1 = (x

(k)
11 , . . . , x

(k)
1n )′, where x(k)

0i ∼ N(0, 1) and x
(k)
1i ∼ N(θ, 1), respectively.

Note that variances are set to 1 which is allowed because the ZBF, MBF, and
DBF only depend on the standardized effect x̄/s.

(b) Estimate the error probabilities as p̂0 = 1
K

∑
k I(DBF k01(x0, b) < 1), and p̂1 =

1
K

∑
k I(DBF k01(x1, b) > 1), where I(·) is the indicator function.

Obtaining the optimal b∗. LB and UB denote the (dynamic) lower and upper bound
of b∗ in this procedure, respectively.

1. Initialize b′ = 2/n, LB = 2/n and UB = 1.

2. Compute pD0 and pD1 using step (a) and (b).

3. If pD0 > pD1 , then set b∗ = 2/n, and exit algorithm. Else, set b′ = (LB+UB)/2.

4. Compute pD0 and pD1 based on b′ using step (a) and (b).

5. If |pD0 − pD1 |/[(pD0 + pD1 )/2] < eb, given an acceptable approximation bound
eb = .01, then set b∗ = b′ and exit algorithm. Else,

(i) let LB = b′ and b′ = (LB + UB)/2 if pD0 < pD1 .

(ii) let UB = b′ and b′ = (LB + UB)/2 if pD0 > pD1 .

(iii) Go to step 4.

As was discussed in Appendix 4.A, g∗ and r∗ need not exist for p0 = p1. To obtain
the optimal g∗ and r∗, we add an extra step between step 4 and 5: If g′ < 0.001 or
r′ < 0.001 which is a replacement of b′, then set g∗ = g′ or r∗ = r′ and exit algorithm.
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Chapter 5

Approximated adjusted fractional
Bayes factors: A general method for
testing informative hypotheses1

5.1 Introduction

An informative hypothesis explicitly expresses a researcher’s expectation with respect
to the structure of the model parameters. It consists of equality and/or inequality
constraints among the parameters of interest in a statistical model. For example,
three equal parameters can be represented by an equality constrained hypothesis
H1 : θ1 = θ2 = θ3, and three ordered parameters can be represented by an inequality
constrained hypothesis H2 : θ1 < θ2 < θ3. Testing informative hypotheses is more
flexible than the traditional null hypothesis testing of a null hypothesis with only
equality constraints against an unconstrained alternative with no constraints on the
parameters of interest.

The informative hypothesis has drawn a lot of attention both in frequentist hy-
pothesis testing (Barlow, Bartholomew, Bremner, & Brunk, 1972; Silvapulle & Sen,
2004) and in Bayesian hypothesis testing (Hoijtink, 2012). In the frequentist frame-
work, hypothesis testing with inequality constraints has been studied over fifty years
starting with (Bartholomew, 1959). Some recent contributions can be found in van de
Schoot et al. (2010), and Klugkist, Bullens, and Postma (2012). Bayesian evaluation
of informative hypotheses by means of the Bayes factor is relatively new. A decade

1This chapter will be submitted as Gu, X., Mulder, J., & Hoijtink, H. Approximated adjusted
fractional Bayes factors: A general method for testing informative hypotheses.
Author contributions: XG, JM, and HH designed the research. XG developed the software package,
performed the data analyses and simulation study, and wrote the paper. JM and HH gave feedback
on software development. JM and HH provided extensive feedback on constructing and writing the
paper.
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ago, Klugkist et al. (2005) started using Bayes factors to evaluate inequality con-
strained hypotheses in ANOVA models. Follow-up research appears in Klugkist and
Hoijtink (2007) for Bayesian testing of inequality and about equality constrained
hypotheses, in Mulder et al. (2009) for Bayesian informative hypothesis testing in
repeated measures models, in Klugkist et al. (2010) for Bayesian evaluation of equal-
ity and inequality constrained hypotheses in contingency tables, and in Mulder et al.
(2010) for Bayesian model selection of equality and inequality constrained hypotheses
in the context of multivariate normal linear models. The developments on the use of
Bayes factors for informative hypothesis testing are summarized in Hoijtink (2012).
However, these studies are limited to assess informative hypotheses in specific mod-
els and cannot yet be applied in other models, e.g., confirmatory factor analysis or
logistic regression. More recently, van de Schoot et al. (2012) enables researchers to
test inequality constrained hypotheses in structural equation models, while Gu et al.
(2014) allows to evaluate inequality constrained hypothesis in general statistical mod-
els. Although these studies enable inequality constrained hypothesis testing in a large
number of statistical models using the Bayes factor, these methods cannot be used
for testing hypotheses with equality constraints possibly in addition to inequalities.

The incessant debate between frequentist hypothesis testing and Bayesian hypoth-
esis testing (Wagenmakers, 2007) has highlighted an advantage of the Bayes factor:
it quantifies the relative support in the data for one hypothesis against another (Kass
& Raftery, 1995). This cannot be done using classical p-values. However, the popu-
larity of the Bayes factor is limited because of two reasons: the specification of the
prior can be a difficult task, especially when prior information is weak or completely
unavailable, and the computation can be very intensive when the statistical model
is complex. To break these barriers, Bayesian statisticians have presented several
default Bayes factors based on default priors, for example, JZS priors (Jeffreys, 1961;
Zellner & Siow, 1980; Rouder et al., 2009), intrinsic priors (Berger & Pericchi, 1996),
expected posterior priors (Pérez & Berger, 2002), and fractional priors (O’Hagan,
1995). Default priors usually do not reflect subjective prior beliefs and have dis-
tributional forms chosen such that the Bayes factor can easily be computed. The
fractional prior stands out for its convenience of evaluating informative hypotheses
(Mulder, 2014b). The fractional prior is implicitly specified by a noninformative prior
updated with a fraction of the likelihood (O’Hagan, 1995). The remaining fraction
of the likelihood is used for testing the hypotheses of interest. The resulting Bayes
factor is called the fractional Bayes factor. Recently, Mulder (2014b) proposed an ad-
justment of the fractional Bayes factor where the fractional prior was shifted around
the null value. This approach resulted in an adjusted fractional Bayes factor that
converges faster to a true inequality constrained hypothesis. However, the current
applications of (adjusted) fractional Bayes factors in informative hypothesis testing
are still within the class of multivariate normal linear models.

This paper proposes an approximation of a fractional Bayes factor to extend its ap-
plicability for testing informative hypotheses for more general models. These models
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can be generalized linear (mixed) models (McCullogh & Searle, 2001) such as logis-
tic regression models and multilevel models, and structural equation models (Kline,
2011) such as path models, confirmatory factor analysis models and latent class mod-
els. Due to large sample theory (Gelman et al., 2004, p.101-107), the posterior dis-
tribution of the parameters in each model can be approximated by a (multivariate)
normal distribution. This paper also approximates the implicit fractional prior with
a (multivariate) normal distribution as a general methodology to ensure a fast com-
putation of the (adjusted) fractional Bayesian factor. Based on these approximations
we can approximate a fractional Bayes factor to evaluate informative hypotheses in
general statistical models. In addition, we discuss different choices of the fraction
(O’Hagan, 1995; Gu, Mulder, & Hoijtink, in press), which is a tuning parameter in
the fractional prior, and provide a guideline for choosing this fraction.

This paper is organized as follows. Section 5.2 introduces the informative hypoth-
esis in general statistical models, and illustrates how the informative hypothesis is
constructed based on researchers’ expectation by means of two empirical examples.
Thereafter, Section 5.3 elaborates the specification of the adjusted fractional prior
and the posterior distribution using normal approximations. Based on the specified
prior and posterior distributions, the approximated adjusted fractional Bayes factor
is derived and a software package is presented for the evaluation of informative hy-
potheses in general statistical models. In Section 5.4 we discuss different choices of
the fraction, and conduct a sensitivity study for the fractional Bayes factors with
those choices. Subsequently, Section 5.5 revisits the two empirical examples to show
how to evaluate informative hypotheses using the proposed fractional Bayes factors.
This paper ends with a short conclusion.

5.2 Informative hypotheses in general statistical models

A statistical model is described by the likelihood function f(X|θ, ζ), whereX denotes
the data, θ contains the parameters that are used to specify informative hypotheses,
and ζ contains the nuisance parameters. Informative hypotheses are constructed
using equality and/or inequality constraints based on the theories or expectations of
researchers. The general form of the informative hypothesis is given by

Hi : Ri0θ = ri0 ,Ri1θ > ri1 , (5.1)

where Ri0 and Ri1 are the restriction matrices for equality and inequality constraints
in Hi, respectively, and ri0 and ri1 contain constants. Note that the number of rows
in Ri0 equals the number of equality constraints, the number of rows in Ri1 equals
the number of inequality constraints, and the numbers of columns in Ri0 and Ri1

equal the length of θ. For example, hypothesis H1 : θ1 = 2θ2 = 3θ3 > 4θ4 < 5
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corresponds to

R10
θ =

[
1 −2 0 0
0 2 −3 0

]
θ1

θ2

θ3

θ4

 =

[
0
0

]
= r10

,

R11
θ =

[
0 0 3 −4
0 0 0 −4

]
θ1

θ2

θ3

θ4

 > [ 0
−5

]
= r11

.

Note that informative hypotheses with range constraints, for example, H2 : 0 < θ < 1
are not considered in this paper.

An informative hypothesis Hi can be tested against the unconstrained hypothesis

Hu : θ is unconstrained, (5.2)

against its complement
Hic : not Hi, (5.3)

which expresses what a researchers does not expect, or against another informative
hypothesis

Hi′ : Ri
′
0
θ = ri′0

,Ri
′
1
θ > ri′1

. (5.4)

It should be noted that when an informative hypothesis Hi contains at least one
equality constraint, the complement ofHi is the same as the unconstrained hypothesis
Hu.

Before evaluating the informative hypotheses, the parameters of interest may need
to be standardized in some situations. The need of standardization depends on the
statistical model and informative hypothesis under evaluation. On the one hand,
the parameters have to be standardized when comparing, e.g., coefficients in regres-
sion models and factor loadings in confirmatory factor analysis. For example, testing
whether the regression coefficient θ1 is larger than θ2 requires the standardization of
θ1 and θ2, because a large coefficient can also result from a large scale of the cor-
responding predictor. On the other hand, it may not be necessary to standard the
parameters θ if they are compared to constants, and it is undesirable to standardize
the parameters θ if they represent the means. For instance, testing whether a regres-
sion coefficient is larger than 0 or testing whether the mean of group 1 is smaller than
the mean of group 2 does not require standardization. If standardization is required,
Gu et al. (2014) discussed two ways to do this: (1) standardize all observed and latent
variables, or (2) use standardized parameters. In the situation considered by Gu et
al. (2014), there was little difference between the performances of the two methods.
Therefore, researchers can use either of them if necessary.

In what follows, we will use two empirical examples to illustrate how researchers’
expectations can be expressed by informative hypotheses.
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Table 5.1: Data descriptive for variables in regression model

yi x1i x2i x3i

mean 965.92 5.91 35.24 16.86
standard deviation 74.82 1.36 26.76 2.27

5.2.1 Example 1 : multiple regression

The first example concerns a multiple regression model used in Guber (1999) to
investigate the relation between the educational costs of the school and the academic
performance of the students. The data were collected in 50 U.S. states (available
at www.amstat.org/publications/jse/secure/v7n2/datasets.guber.cfm). The
performance of the students is measured by the average total SAT score yi ranging
from 400 to 1600. Its predictors are the average public school expenditure x1i, the
percentage of students taking the SAT exams x2i, and the average pupil/teacher ratio
x3i. The descriptives of the dependent variable yi and independent variables x1i, x2i

and x3i are shown in Table 5.1. The relationship between the student performance
and its predictors is given in a regression model.

yi = θ0 + θ1x1i + θ2x2i + θ3x3i + εi, (5.5)

where θ0 is the intercept, θ1, θ2 and θ3 are the regression coefficients, and εi ∼ N(0, σ2)
denotes the residuals with σ2 being their residual variance. For this regression model,
the likelihood is

f(X|θ, ζ) =

n∏
i=1

1

(2πσ2)1/2
exp {− 1

2σ2
(yi − θ0 − θ1x1 − θ2x2 − θ3x3)2}, (5.6)

where n = 50 denotes the sample size, and θ = (θ1, θ2, θ3)T and ζ = (θ0, σ
2).

Guber (1999) theorized that higher education expenditures results in better per-
formance of the students in SAT exams, which implies that the coefficient θ1 of the
predictor x1i is positive. In addition, in those states with a small percentage of the
students taking SATs, the students are expected to do well because they have self-
selected themselves into the SAT exam which is only required by universities with
a high prestige. This implies that the coefficient θ2 of the predictor x2i is negative.
Furthermore, although a lower pupil/teacher ratio would be associated with better
performance, a school needs to spend more money on education and therefore this
predictor overlaps with the expenditures. This suggests that the coefficient θ3 of
predictor x3i is zero. Consequently, we specify the informative hypothesis:

H1 : θ1 > 0, θ2 < 0, θ3 = 0 (5.7)

with R10 = (0, 0, 1), R11 =

[
1 0 0
0 −1 0

]
, θ = (θ1, θ2, θ3)T , r10 = 0, and r11 =

(0, 0)T in H1 : R10
θ = r10

,R11
θ > r11

. Hypothesis H1 can be tested against its
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Table 5.2: Data in repeated measures ANOVA

Baseline Training

Subject week 1 week 2 week 3 week 4
1 21 22 6 6
2 20 19 4 4
3 17 15 4 5
4 25 30 12 17
5 30 27 8 6
6 19 27 7 4
7 26 16 2 5
8 17 18 1 5
9 26 24 8 9

complement
H1c : not H1. (5.8)

5.2.2 Example 2: repeated measures ANOVA

We reanalyze the example of the repeated measures ANOVA used in Howell (2012,
p.462) based on an experiment with relaxation therapy. The experiment investigated
the duration of nine patients’s migraine headaches before and after relaxation training.
The duration of headaches is measured by the number of hours per week. Our example
uses the data for the last two weeks of the baseline where patients received no training
and the last two weeks of training. Therefore, the data shown in Table 5.2 consists
of four dependent variables, i.e., the number of hours with a headache per week for
nine patients in four weeks. The random effects model for these dependent variables
is (Hox, 2010, p.83):

yij = µ+ ηi + τj + εij , (5.9)

where yij for i = 1, . . . , 9 and j = 1, . . . , 4 denotes the four dependent variables, µ
denotes the grand mean, ηi ∼ N(0, σ2

η) denotes the random difference for person i
which is constant for different j, τj denotes the fixed measurement difference for week
j which is constant for different i, and εij ∼ N(0, σ2

ε ) is the measurement error with
respect to person i and week j. To investigate the effect of relaxation training, we
specify the individual differences with a random effect and the treatment differences
with a fixed effect. Thus, the mean for each measurement is

θj = µ+ τj (5.10)

and Σ4
j=1τj = 0.

The researchers expected a reduction of the duration of headaches after relaxation
training. Furthermore, it is reasonable to expect that the mean durations are equal
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in the first two weeks of baseline and in the last two weeks of training to ensure that
other factors do not influence the duration of headaches. These expectations can be
expressed by the following informative hypothesis:

H2 : θ1 = θ2 > θ3 = θ4 (5.11)

with R20 =

[
1 −1 0 0
0 0 1 −1

]
, R21 = [0, 1,−1, 0], θ = (θ1, θ2, θ3, θ4)T , r20 = (0, 0)T ,

and r21
= 0 in H2 : R20

θ = r20
,R21

θ > r21
. We compare this hypothesis to

another informative hypothesis representing that the mean number of headache hours
continually declines in the four weeks:

H2′ : θ1 > θ2 > θ3 > θ4, (5.12)

which only contains inequality constraints R2
′
1
θ > r2

′
1
with r2

′
1

= (0, 0, 0)T and

R2
′
1

=

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 .
The informative hypotheses constructed in these examples can be evaluated using

Bayes factors, which will be elaborated in the next section. We will revisit these
examples in Section 5.5 to display the results of the evaluation of these informative
hypotheses.

5.3 Approximated adjusted fractional Bayes factors

The Bayes factor is the corner-stone of Bayesian hypothesis testing. It quantifies the
relative evidence in the data for one hypothesis against another. The Bayes factor of
an informative hypothesis Hi against another informative hypothesis Hi′ is defined
by their marginal likelihood ratio (Jeffreys, 1961; Kass & Raftery, 1995):

BFii′ =
m(X|Hi)

m(X|Hi′ )
. (5.13)

In Bayesian hypothesis testing, the Bayes factor has a direct interpretation as the
relative evidence from the data for one hypothesis against another. If BFii′ > 1
(BFii′ < 1), this implies that hypothesis Hi (Hi′ ) receives more support from the
data. Specifically, if BFii′ = 5, then the support for Hi is 5 times larger than for
Hi′ . For researchers who are new to Bayes factors we recommend using the guidelines
for the interpretation of Bayes factors as provided by Kass and Raftery (1995). The
degree of evidence in favor of Hi can be classified as unconvincing for 1 < BFii′ < 3,
positive for BFii′ > 3, strong for BFii′ > 20, and very strong for BFii′ > 150.

121



5. Approximated adjusted fractional Bayes factors: A general
method for testing informative hypotheses

However, these rules for interpreting Bayes factors are not strict and can differ in
different contexts.

The informative hypothesisHi is nested in the unconstrained hypothesisHu which
does not contain any constraints on θ. When comparing Hi to Hu we can use the en-
compassing prior approach of Klugkist et al. (2005) where a prior is constructed under
Hi via a truncation of the unconstrained (or encompassing) prior under Hu. Con-
sequently, the Bayes factor for the informative hypothesis against the unconstrained
hypothesis can be expressed as:

BFiu =

∫∫
θ∈Θi

πu(θ, ζ|X)dθdζ∫∫
θ∈Θi

πu(θ, ζ)dθdζ
, (5.14)

where πu(θ, ζ) and πu(θ, ζ|X) are the prior and posterior distributions of θ and
ζ under Hu, and Θi = {θ|Ri0θ = ri0 ,Ri1θ > ri1} is the parameter space of θ
in agreement with the informative hypothesis Hi. Thus, in order to compute the
Bayes factor the unconstrained prior and corresponding unconstrained posterior need
to be determined, and subsequently the unconstrained prior and posterior need to
be integrated over the constrained region under the informative hypothesis. In this
section we propose a novel and general approach by using normal distributions to
approximate the unconstrained posterior and the unconstrained fractional prior to
compute default Bayes factors.

5.3.1 Fractional prior and posterior

To avoid ad hoc or subjective specification of the unconstrained prior, we consider the
default approach of O’Hagan (1995) which is referred to as the fractional Bayes factor.
In this approach the prior is automatically generated using a fraction of the likelihood.
The resulting unconstrained fractional prior is specified using a noninformative prior
and a proportion of the likelihood:

πu(θ, ζ|Xb) ∝ πNu (θ, ζ)f(X|θ, ζ)b, (5.15)

where πNu (θ, ζ) is the noninformative prior distribution of θ and ζ, and b is the fraction
on the likelihood f(X|θ, ζ). The posterior distribution can then be obtained using the
fractional prior distribution πu(θ, ζ|Xb) and the remaining likelihood f(X|θ, ζ)1−b:

πu(θ, ζ|X) ∝ πu(θ, ζ|Xb)f(X|θ, ζ)1−b ∝ πNu (θ, ζ)f(X|θ, ζ). (5.16)

Note that the unconstrained posterior is identical to the posterior based on a nonin-
formative improper prior updated with the complete data.

Finally note that the nuisance parameters can be integrated out, which results in
the following marginal prior and marginal posterior for θ:

πu(θ|Xb) =

∫
πu(θ, ζ|Xb)dζ (5.17)
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and
πu(θ|X) =

∫
πu(θ, ζ|X)dζ. (5.18)

5.3.2 Normal approximations to fractional prior and posterior
distributions

Due to large sample theory (e.g., Gelman et al., 2004, p. 101), the posterior in (5.18)
can be approximated using a normal distribution where the mean is equal to the
maximum likelihood estimate and the covariance matrix is equal to the inverse of the
Fisher information matrix, i.e.,

πu(θ|X) ≈ N(θ̂, Σ̂θ), (5.19)

where θ̂ and Σ̂θ denote the maximum likelihood estimate and covariance matrix of
θ, respectively. θ̂ and Σ̂θ can be obtained using statistical software, such as, Mplus
(Muthén & Muthén, 2010) or the R-package lavaan (Rosseel, 2012). This will be
further elaborated when we come back to the empirical examples in Section 5.5.

The fractional prior in (5.17) is also centered around the maximum likelihood esti-
mate. However, it is based on a fraction b of the data which implies an approximated
covariance matrix of Σ̂θ/b. Consider, for example, a normally distributed data set
xi ∼ N(θ, σ2) with known σ2. The posterior of θ is given by πu(θ|X) = N(θ̂, σ̂2

θ)

where θ̂ equals the sample mean x̄ and σ̂2
θ = σ2/n. In this setting the fractional prior

of θ would be πu(θ|Xb) = N(θ̂, σ̂2
θ/b) = N(x̄, σ2/nb). For this reason we propose to

approximate the fractional prior according to

πu(θ|Xb) ≈ N(θ̂, Σ̂θ/b). (5.20)

5.3.3 Adjusting the prior mean

It has been suggested to center the prior distribution of θ around the focal point of
interest. This heuristic argument was first proposed by Jeffreys (1961) when evalu-
ating H1 : θ ≤ 0 against its complement H2 : θ > 0. By constructing the priors for θ
under H1 and H2 as a truncation of an unconstrained prior that is centered around
the focal point 0, the prior distribution for θ under both hypotheses are essentially
equivalent; the only difference is the sign. A more detailed discussion on centering
prior means can be found in Mulder (2014b). In this paper, we adjust the prior in
(5.20) as follows:

π∗u(θ|Xb) = N(θ∗, Σ̂θ/b), (5.21)

where the adjusted prior mean is given by θ∗ ∈ Θ∗i = {θ|Ri0θ = ri0 ,Ri1θ = ri1}.
For each informative hypothesis, one can define a parameter space Θ∗i which contains
one or more θ∗. For example, H1 : θ1 > 2θ2 > 4 results in θ∗ = (4, 2)T , and
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H2 : θ1 = θ2 results in θ∗ ∈ Θ∗i = {θ1, θ2|θ1 = θ2} in which θ∗1 = θ∗2 can be any value.
Below we will deal with the choice of θ∗.

Adjusting the prior mean from θ̂ to θ∗ results in a slight change of the posterior for
θ. In particular, the posterior mean of θ̂ would be slightly shifted towards the prior
mean θ∗. Large sample theory however dictates that the prior has a negligible effect
on the posterior for large samples. Therefore, we leave the approximated posterior
for θ, given by N(θ̂, Σ̂θ), unaltered. Note that a similar argument is used in the BIC
approximation of the Bayes factor (Schwarz, 1978; Kass & Raftery, 1995).

Based on the adjusted fractional prior distribution (5.21) and the posterior dis-
tribution (5.19), the approximated adjusted fractional Bayes factor (AAFBF) for an
informative hypothesis versus the unconstrained hypothesis can be defined as:

AAFBFiu =

∫
θ∈Θi

πu(θ|X)dθ∫
θ∈Θi

π∗u(θ|Xb)dθ
, (5.22)

where the parameter space Θi = {θ|Ri0θ = ri0 ,Ri1θ > ri1} is in agreement with
the informative hypothesis Hi. The computation of the AAFBF will be elaborated
in Section 5.3.5.

5.3.4 Comparable informative hypotheses

The prior distribution proposed in (5.21) depends on the informative hypothesis under
evaluation, because the prior mean θ∗ is located on the boundary of the constrained
region of the informative hypothesis. When two or more informative hypotheses are
under comparison, the intersection of their constrained regions must be nonempty
so that a common unconstrained prior mean θ∗ exists to evaluate all informative
hypotheses against the unconstrained hypothesis. A set of informative hypotheses Hi

for i = 1, . . . , I are comparable if there exists at least one solution of θ to the set of
equations (Mulder et al., 2010):[

R10

R11

]
θ =

[
r10

r11

]
, . . . ,

[
RI0

RI1

]
θ =

[
rI0
rI1

]
. (5.23)

The solution of θ for these equations defines the parameter space Θ∗. Examples for
comparable hypotheses are H1 : θ = 0 versus H2 : θ > 0 and H3 : θ1 > θ2 > θ3

versus H4 : θ3 > θ2 > θ1. Hypotheses H5 : θ1 = θ2 versus H6 : θ1 > θ2 + 1 are
not comparable because there is no solution of θ1 and θ2 for equations θ1 = θ2 and
θ1 = θ2 + 1. It should be noted that the hypothesis H7 : θ1 > 0, θ2 > 0, θ2 > θ1 − 1
cannot be properly evaluated yet because a solution does not exist for equations
θ1 = 0, θ2 = 0, and θ2 = θ1 − 1.
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5.3.5 Bayes factor computation

This section presents the computation of the AAFBF. First of all, we need to deter-
mine the adjusted prior mean θ∗ in (5.21). Finding the parameter space Θ∗i can be
difficult for complicated informative hypotheses (Mulder et al., 2012). However, if we
transform the parameters of interest using β0 = Ri0θ − ri0 and β1 = Ri1θ − ri1 ,
then the informative hypothesis under consideration becomes Hi : β0 = 0,β1 > 0
such that we can simply specify the prior mean vector equal to zero for the new
parameter vector β = (βT0 ,β

T
1 )T . This parameter transformation was elaborated in

Chapter 3 of this dissertation, and was also used in Mulder (in press) for hypotheses
with only inequality constraints. Note that the parameter transformation of θ to β
simplifies the form of the hypothesis without changing the expectation of researchers.
For instance, testing whether two parameters are equal θ1 = θ2 is identical to testing
whether their difference is 0, i.e., β0 = θ1 − θ2 = 0. Consequently, the adjusted
fractional prior distribution and posterior distribution for the new parameter β are
given by:

π∗u(β|Xb) = N(0, Σ̂β/b) (5.24)

and
πu(β|X) = N(β̂, Σ̂β), (5.25)

respectively, where β̂ = Rθ̂ − r and Σ̂β = RΣ̂θR
T with R = (RT

i0 ,R
T
i1)T and r =

(rTi0 , r
T
i1

)T . Specifically, β̂ = (β̂
T

0 , β̂
T

1 )T where β̂0 = Ri0 θ̂− ri0 and β̂1 = Ri1 θ̂− ri1 ,

and Σ̂β =

[
Σ̂β0

Σ̂01

Σ̂10 Σ̂β1

]
where Σ̂β0

= Ri0Σ̂θR
T
i0 and Σ̂β1

= Ri1Σ̂θR
T
i1 .

This parameter transformation from θ to β simplifies the computation of the
AAFBF. First, the AAFBF for an informative hypothesis with only equality con-
straints, i.e., Hi : β0 = 0, compared to the unconstrained hypothesis can be obtained
using the Savage-Dickey density ratio (Dickey, 1971; Wagenmakers, Lodewyckx,
Kuriyal, & Grasman, 2010; Mulder, 2014b):

AAFBF 0
iu =

πu(β0 = 0|X)

π∗u(β0 = 0|Xb)
, (5.26)

where π∗u(β0 = 0|Xb) and πu(β0 = 0|X) are the densities of the prior (5.24) and
posterior (5.25), respectively, for β0 at the point β0 = 0 under Hu. Second, the
AAFBF for an informative hypothesis with only inequality constraints, i.e., Hi : β1 >
0, compared to the unconstrained hypothesis is given by (Hoijtink, 2012; Mulder,
2014b):

AAFBF 1
iu =

∫
β1>0

πu(β1|X)dβ1∫
β1>0

π∗u(β1|X
b)dβ1

, (5.27)
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where π∗u(β1|X
b) and πu(β1|X) are the prior (5.24) and posterior (5.25), respectively,

for β1. Finally, the AAFBF for an informative hypothesis with both equality and
inequality constraints, i.e., Hi : β0 = 0,β1 > 0, compared to the unconstrained
hypothesis can be obtained via:

AAFBFiu =
πu(β0 = 0|X)

π∗u(β0 = 0|Xb)
·

∫
β1>0

πu(β1|β0 = 0,X)dβ1∫
β1>0

π∗u(β1|β0 = 0,Xb)dβ1

, (5.28)

where π∗u(β1|β0 = 0,Xb) and πu(β1|β0 = 0,X) are the prior and posterior distribu-
tions of β1 given β0 = 0, respectively. Note that π∗u(β1|β0 = 0,Xb) = N(0, (Σ̂β1

−
Σ̂10Σ̂

−1

β0
Σ̂01)/b) and πu(β1|β0 = 0,X) = N(β̂1 − Σ̂10Σ̂

−1

β0
β̂0, Σ̂β1

− Σ̂10Σ̂
−1

β0
Σ̂01).

We let c0i = π∗u(β0 = 0|Xb) and c1i =
∫
β1>0

π∗u(β1|X
b)dβ1, which can be inter-

preted as the relative complexities of equality constrained hypothesis and inequality
constrained hypothesis, respectively, compared to Hu under prior (5.24). Then, in
general

ci = π∗u(β0 = 0|Xb) ·
∫
β1>0

π∗u(β1|β0 = 0,Xb)dβ1 (5.29)

represents the relative complexity of informative hypothesis Hi (Hoijtink, 2012; Mul-
der, 2014a), which is a relative measure of the size of the parameter space under
an informative hypothesis in comparison to the unconstrained parameter space. For
example, the relative complexity of "θ1 > θ2, and θ3 unconstrained" is larger than
the relative complexity of "θ1 > θ2 > θ3". This can be understood from the fact
that the parameter space of the latter is a subset of the parameter space of the first.
Similarly, the relative complexity of "θ1 = 0, θ2 unconstrained" is larger than the
relative complexity of "θ1 = 0, θ2 = 0". It is interesting to note that the relative com-
plexity c0i of an equality constrained hypothesis Hi : β = 0 becomes smaller when the
prior variance of β under Hu becomes larger. The reason is that a larger variance of
the unconstrained prior implies that a larger region of the unconstrained parameter
space is likely a priori, which means that Hi is simpler relative to the unconstrained
hypothesis. Furthermore, we let f0

i = πu(β0 = 0|X) and f1
i =

∫
β1>0

πu(β1|X)dβ1,
which can be interpreted as the measures of relative fit of the equality constrained hy-
pothesis and inequality constrained hypothesis, respectively, compared to Hu. Then,

fi = πu(β0 = 0|X) ·
∫
β1>0

πu(β1|β0 = 0,X)dβ1 (5.30)

expresses the relative fit ofHi (Hoijtink, 2012; Mulder, 2014a), which implies how well
a hypothesis is supported by the data compared to the unconstrained hypothesis. The
relative complexity and fit in the AAFBF can be estimated based on a similar pro-
cedure presented in Chapter 3 of this dissertation. The computation of the AAFBF
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is implemented in the software package BaIn (Bayesian evaluation of informative hy-
potheses) available at http://informative-hypotheses.sites.uu.nl/software/.
A user manual for BaIn is given in Appendix 5.A. The input of BaIn needs the max-
imum likelihood estimate and covariance matrix of the parameters of interest, which
can be obtained using other software packages such as Mplus (Muthén & Muthén,
2010) or the free R-package lavaan (Rosseel, 2012). Executing BaIn renders the
AAFBF for each informative hypothesis Hi under evaluation.

The Bayes factor of an informative hypothesis Hi against its complement Hic is

AAFBFiic =
fi
ci
/

1− fi
1− ci

, (5.31)

if Hi does not contain equality constraints. Otherwise AAFBFiic = AAFBFiu be-
cause the marginal likelihood of the complement of a hypothesis which contains equal-
ity constraints is equal to the marginal likelihood of the unconstrained hypothesis.
For the comparison of two informative hypotheses Hi and Hi′ , the AAFBF for Hi

against Hi′ can be obtained by

AAFBFii′ = AAFBFiu/AAFBFi′u. (5.32)

Running BaIn forHi andHi′ renders AAFBFiu and AAFBFi′u such that AAFBFii′
can be computed using (5.32).

5.4 Choices for b

This section discusses the choices of the fraction b for the specification of fractional
priors. We first show the influence of the choices of b on the AAFBF when evaluating
informative hypotheses. Thereafter, two traditional choices and one novel choice of b
are presented. At the end of this section, a sensitivity study is conducted to investigate
the approximation error of the AAFBF relative to the actual adjusted fractional Bayes
factor. It should be noted that this paper uses one common fraction b of the likelihood
for prior specification. For this reason the AAFBF should only be used for testing
hypotheses based on data that come from one population or balanced data with equal
group sizes in the case of multiple populations, similar as the fractional Bayes factor
(de Santis & Spezzaferri, 2001).

5.4.1 The role of b in AAFBF

The influence of fraction b on the AAFBF is different for the evaluation of equality
constraints Ri0θ = ri0 and for the evaluation of inequality constraints Ri1θ > ri1 .
First of all, the fraction b is a very influential parameter when evaluating equality
constraints Ri0θ = ri0 . The underlying reason is that a small (large) b implies a prior
with large (small) variance such that the prior density evaluated at Ri0θ = ri0 or
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Figure 5.1: Relative complexities under different b

β0 = 0 in (5.26) is small (large). This can be illustrated in Figure 5.1 in which the blue
line and the red line represent the densities of prior distribution π∗u(θ|xb) = N(0, σ2

θ/b)
with σ2

θ = 0.02 under b = 0.05 and b = 0.2, respectively. As can be seen, when
testing hypothesis H1 : θ = 0 vs Hu, the prior density at θ = 0 is 0.63 under
b = 0.05, which is two times smaller than 1.26, the prior density at θ = 0 under
b = 0.2. Given an estimate of θ̂ = 0.2 the resulting AAFBF for H1 against Hu under
b = 0.05 is AAFBF1u = 1.64, whereas the AAFBF under b = 0.2 is AAFBF1u = 0.82
according to equation (5.26). Secondly, the AAFBF is independent of the choice of b
for inequality constrained hypotheses. This property was proven in Mulder (2014b)
and can also be seen in Figure 5.1 where the prior probability that the constraint of
H3 : θ > 0 holds under Hu is equal to 0.5 for both choices of b.

The influence of b on AAFBF is illustrated in Figure 5.2 when comparing the
equality constrained hypothesis H1 : θ = 0 to the unconstrained hypothesis Hu,
and comparing the inequality constrained hypothesis H2 : θ > 0 to Hu. Given the
estimate θ̂ = 0.2 and variance σ̂2

θ = 0.02 for θ, Figure 5.2 shows the AAFBF for
each informative hypothesis under various b ∈ (0, 0.5]. As can be seen, the AAFBF
for H1 decreases as b increases, and the AAFBF for H2 is stable as b changes. This
illustrates that the fraction b has to be carefully specified when equality constrained
hypotheses are of interest by the researcher, while any fraction b can be used when
only inequality constrained hypotheses are formulated by the user. In what follows
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Figure 5.2: Influence of b on AAFBF

we will specify b in three different ways.

5.4.2 Traditional choices for b

Previous studies have recommended two choices for b for the fractional Bayes fac-
tor. The first one comes from Berger and Pericchi (1996) and O’Hagan (1995) who
suggested using the minimal training sample for prior specification to leave maxi-
mal information in the data for hypothesis testing. This corresponds to b = m/n in
the fractional prior, where m is the size of the minimal training sample that makes
all parameters identifiable. For example, for the one sample t test of H0 : θ = 0
where data is xi ∼ N(θ, σ2), the actual adjusted fractional prior distribution for θ
is π∗u(θ|xb) = t(0, s2/(nb − 1), nb − 1), i.e., a Student t density with mean 0, scale
parameter s2/(nb− 1), and degree of freedom nb− 1. In this case, the minimal m is
2 because m = 1 results in b = 1/n and a degree of freedom 0, which is not allowed.

For the AAFBF we propose a similar approach to determine our first choice of b.
To estimate β (with length J) we need at least J + 1 observations. Therefore, our
first choice of the fraction equals

bmin = (J + 1)/n. (5.33)

Note that J is the number of independent constraints in all the informative hypotheses
under investigation, i.e., J equals the rank of R = (RT

10
,RT

11
, . . . ,RT

I0 ,R
T
I1)T for
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a set of informative hypotheses Hi for i = 1, . . . , I. Thus, if H3 : θ1 = 0 and
H4 : θ1 > 0, θ2 > 0 are under evaluation, for example, J = 2 when computing the
AAFBF for each informative hypothesis against the unconstrained hypothesis because
there are two independent constraints.

For the multiple regression model (5.5) in Section 5.2, J = 3 because H1 : θ1 >
0, θ2 < 0, θ3 = 0 can be formulated using a vector β of length 3. With the sample size
of n = 50, the first choice of the fraction b can be set as bmin = 4/50. For the repeated
measures model (5.10), J = 3 based on a vector β of length 3 inH2 : θ1 = θ2 > θ3 = θ4

and H2′ : θ1 > θ2 > θ3 > θ4, and therefore bmin = 4/36 based on sample size n = 36.
The second way of choosing b is (O’Hagan, 1995):

brobust = max {(J + 1)/n, 1/
√
n}, (5.34)

which is in general larger than the first choice. O’Hagan (1995) stated that a larger
b can reduce the sensitivity of the fractional Bayes factor to the distributional form
of the prior. This choice can also be applied to the AAFBF defined in (5.22). When
setting a larger fraction b, the AAFBF becomes more similar to the non-approximated
adjusted fractional Bayes factor. We will elaborate more on this topic in Section 5.4.4.
Given the sample size of n = 50 in the regression model in Section 5.2, brobust = 1/

√
50

is specified to evaluate hypothesis H1. In the case of the repeated measures model
with sample size n = 36, one can set brobust = 1/6 for the comparison of H2 and H2′ .

5.4.3 A frequentist choice for b

Gu et al. (in press) recently proposes another method of specifying b by taking into
account the frequentist error probabilities. In Bayesian hypothesis testing, the prob-
ability of a Bayes factor favouring Hu when Hi is true is

p1 = P (BFiu < 1|Hi) (5.35)

which corresponds to the Type I error probability if Hi would be a traditional null
hypothesis, and the probability of a Bayes factor favouring Hi when Hu is true is

p2 = P (BFiu > 1|Hu). (5.36)

which then corresponds to the Type II error probability. Gu et al. (in press) found
that these probabilities are often quite different when using traditional choices of b
in the one sample t test. This may not be preferable from a frequentist point of view
where the goal typically is to control the error probabilities. Here we show how to
specify b to control the error probabilities under certain conditions. First, we shall use
a one sample t test to illustrate the procedure for specifying b based on this method,
and then apply it to the AAFBF (5.26) for general statistical models. In the end, a
rule of choosing b is proposed.
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One sample t test

Consider a one sample t test for which data come from xi ∼ N(θ, σ2), where θ denotes
the population mean and σ2 denotes the population variance, and the hypotheses
under consideration are H1 : θ = 0 against Hu : θ. The AAFBF for H1 against Hu

can be derived using equation (5.26):

AAFBF1u = b−1/2 exp (−1

2
n(x̄/s)2), (5.37)

where x̄ =
∑n
i=1 xi/n and s =

√
1
n

∑n
i=1(xi − x̄)2. For this AAFBF the error proba-

bilities (5.35) and (5.36) become

p1 = P (AAFBF1u < 1|H1) = P (| x̄
s
| >

√
− log b/n | H1)

≈ 1

L

L∑
l=1

I(| x̄
(1l)

s(1l)
| >

√
− log b/n) (5.38)

and

p2 = P (AAFBF1u > 1|Hu) = P (| x̄
s
| <

√
− log b/n | Hu)

≈ 1

L

L∑
l=1

I(| x̄
(2l)

s(2l)
| >

√
− log b/n), (5.39)

where x̄(1l) and s(1l) for l = 1, . . . , L are the mean and standard deviation of data
x

(1l)
i sampled from H1, x̄(2l) and s(2l) are the mean and standard deviation of data
x

(2l)
i sampled from Hu, and I(·) is the indicator function which is 1 if the argument

is true and 0 otherwise. When sampling data from Hu, an expected standardized
effect size, denoted by βe, needs to be specified under Hu, i.e., Hu : θ = βeσ so that
the scaled data is sampled from yi ∼ N(βe, 1) under Hu where yi = xi/σ. Note that
sampling x̄(2l)

s(2l)
based on xi ∼ N(θ, σ2) where θ/σ = βe is identical to sampling the

mean ȳ(2l) based on yi ∼ N(βe, 1). The specification of the standardized effect size
βe will be discussed in Section 5.4.3.

In the one sample t test, x̄
s is the observed standardized effect size known as

Cohen’s d (Cohen, 1992). It has sampling distributions under H1 and Hu which can
be obtained using x̄(1l)

s(1l)
and x̄(2l)

s(2l)
, respectively. Figure 5.3 shows the distributions

of x̄
s under H1 : θ = 0 (solid line) and Hu : θ = βe (dashed line) given σ2 = 1

and n = 20, where βe = 0.5 is the pre-specified standardized effect size under Hu.
Note that according to Cohen (1992) βe = .2, .5, and .8 correspond to the small,
medium, and large effects, respectively. If we use bmin = 2/n, the error probabilities
in (5.38) and (5.39) become p1 = P (| x̄s | > 0.34|H1) = 0.073 and p2 = P (| x̄s | <
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0.34|Hu) = 0.241, whereas if we specify brobust = 1/
√
n, the error probabilities are

p1 = P (| x̄s | > 0.27|H1) = 0.122 and p2 = P (| x̄s | < 0.27|Hu) = 0.159. These error
probabilities are marked in Figure 5.3 (a) for bmin and (b) for brobust, where the dark
grey area represents p1 and the light grey area represents p2. As can be seen, p1 < p2

under both bmin and brobust, which means that we are more likely to incorrectly prefer
H1 when Hu is true than incorrectly prefer Hu when H1 is true.

In order to correct for this, Gu et al. (in press) showed how to choose b such that
p1 = p2 given sample size n and effect size βe under Hu. A direct way of obtaining
such a b is proposed by Morey et al. (in press) and illustrated in Figure 5.3 (c). As
can be seen in Figure 5.3 (c), the distributions of x̄s under H1 : θ = 0 and Hu : θ = βe
are symmetric on βe/2. This implies that we can simply specify

√
− log b/n = βe/2

or equivalently b = exp (−nβ2
e/4) to attain equal error probabilities, because p1 =

P (| x̄s | > βe/2|H1) is equal to p2 = P (| x̄s | < βe/2|Hu). For example, given n = 20 and
βe = 0.5 under Hu in Figure 5.3 (c), the dark grey area for p1 has the same size as the
light grey area for p2 when setting b = exp (−nβ2

e/4) = 0.287. The error probabilities
under this setting are p1 = p2 = 0.139.

General case

The method of choosing b based on equal error probabilities can be generalized to the
AAFBF of any Hi : β0 = 0 against Hu : β0 6= 0. Based on the adjusted fractional
prior (5.24) and approximated posterior (5.25), the AAFBF in (5.26) is

AAFBF 0
iu = b−1/2 exp (−1

2
β̂Σ̂
−1

β β̂
T

). (5.40)

It is interesting to note that
√
β̂Σ̂
−1

β β̂
T

in (5.40) is the test statistic in Wald test
(Engle, 1984) which assumes that β is approximately normally distributed. The
test statistic is not only the cornerstone in frequentist hypothesis testing, but it is
also important in default Bayes factors. For example, the Bayes factor proposed by
Rouder et al. (2009) for the t test is a function of t statistic, and the Bayes factor
based on Zellner’s g prior (Zellner & Siow, 1980) in regression models is a function
of F statistic. The standardized effect size is often defined as a test statistic divided
by
√
n to offset the influence of the sample size (Cohen, 1992), because the effect

size should not be affected by the sample size as it expresses the degree to which
Hu differs from Hi. Thus, the observed standardized effect size in this case can be
defined as

β̂e =

√
β̂Σ̂
−1

β β̂
T
/n. (5.41)

Then using the steps as in (5.38) and (5.39) for the one sample t test, the error
probabilities of AAFBFs are defined as

p1 = P (AAFBF 0
iu < 1|Hi) = P (β̂e >

√
− log b/n|Hi) (5.42)
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Figure 5.3: Sampling distributions of observed effect size x̄/s in one sample t test for
n = 20 and βe = 0.5 under Hu.
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and
p2 = P (AAFBF 0

iu > 1|Hu) = P (β̂e <
√
− log b/n|Hu). (5.43)

The observed standardized effect size β̂e is usually within the interval [0, 1] for
equality constrained hypothesis testing, because β̂e can be interpreted analogously as
the Cohen’s d or Cohen’s f2 (Cohen, 1992), which rarely exceeds 1. First, for a one
sample t test xi ∼ N(θ, σ2), and H1 : θ = 0 versus Hu : θ, the maximum likelihood
estimate of β = θ is β̂ = x̄ and the standard deviation is σ̂β = s/

√
n. Then the

observed standardized effect size (5.41) becomes β̂e = β̂
σ̂β
/
√
n = x̄

s which is the same
as Cohen’s d. Second, we consider the F test of H2 : θ1 = 0 versus Hu : θ1 in a
simple linear regression model yi = θ0 + θ1xi + εi, where θ0 is the intercept, θ1 is
the regression coefficient, and εi ∼ N(0, σ2) is the residual. The maximum likelihood
estimate of β = θ1 is β̂ = rxy

sy
sx

and the standard deviation is σ̂β = σ
sx
/
√
n, where sx

and sy are the standard derivations of xi and yi, and rxy is the correlation coefficient
between xi and yi. Note that r2

xy is equal to the coefficient of determination R2

in the case of the simple linear regression model. Thus, because the coefficient of
determination is equal to R2 = 1 − σ2/s2

y, the observed standardized effect size in

(5.41) becomes β̂e = β̂
σ̂β
/
√
n = rxy

sy
σ =

√
R2

1−R2 , which is the square root of Cohen’s

f2 = R2

1−R2 .
Analogous to the effect size x̄/s in the one sample t test, the observed standardized

effect size β̂e also has sampling distributions under Hi and Hu, which are symmetric
around half of the pre-specified standardized effect size βe under Hu. Therefore, by
setting

√
− log b/n = βe/2 or equally

b = exp (−nβ2
e/4), (5.44)

the test for Hi against Hu using AAFBF has equal error probability:

p1 = P (β̂e > βe/2|Hi) = P (β̂e < βe/2|Hu) = p2. (5.45)

How to specify βe in (5.44) will be discussed in the next subsection.

A new rule of choosing b

Before presenting the new choice of b based on equal error probabilities, we need to
deal with two issues: the range of b for consistent Bayes factors and the specification
of standardized effect size βe under Hu. The consistency of the Bayes factor is an
important property in Bayesian hypothesis testing. The Bayes factor for Hi : β = 0
against Hu : β 6= 0 is consistent if it goes to infinity as sample size goes to infinity
when Hi is true, and goes to 0 when Hu is true. Morey et al. (in press) found that the
prior specification based on frequentist error probabilities may result in inconsistent
Bayes factors. Gu et al. (in press) showed how to resolve this by restricting the
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fraction b according to b ≥ (J + 1)/n in the one sample t test. As stated earlier in
Section 5.4.2, b = (J+1)/n is based on the minimal number of observations to specify
proper priors, and therefore we will always constrain b ≥ (J + 1)/n in the AAFBF.
Furthermore, we also suggest constraining b ≤ 1/2 because b > 1/2 implies that
more than half of the likelihood is used for prior specification, which is undesirable
in Bayesian tests (Berger & Pericchi, 1996). Consequently, the range of the fraction
b is set as b ∈ [(J + 1)/n, 1/2].

To obtain the fraction b in (5.44) for equal error probabilities, the standardized
effect size βe under Hu has to be specified. Given any specific βe, a fraction b in (5.44)
can be obtained such that p1 = p2. However, in practice βe is unknown. Therefore, a
distribution for βe is specified that covers a range of realistic effect sizes, i.e., βe ∈ [0, 1]
as elaborated before. Here we consider a uniform distribution π∗(βe) = U(0, 1) in
which every effect size from small to large is equally likely within the interval [0, 1]
(Gu et al., in press). Note that this choice for b would be the same as when using
π∗(βe) = U(−1, 1) because the choice of b is independent of the sign of the effect.

Based on the distribution of effects π∗(βe) = U(0, 1), the third choice of fraction
b for equal error probabilities is given by:

bfreq = Eπ∗(βe)[exp (−nβ2
e/4)] =

∫ 1

0

exp (−nβ2
e/4)dβe. (5.46)

The integration in (5.46) can be numerically calculated (see Gu et al., in press).
Although bfreq cannot always achieve equal error probabilities as we constrain b ∈
[(J+1)/n, 1/2] and specify π∗(βe) = U(0, 1), Gu et al. (in press) show that this choice
results in error probabilities that are often about equal for the one sample t test. It
was shown that the difference between the type I and type II error probabilities was
typically smaller for this choice than when using the more traditional choices for b.
We recommend the choice bfreq when the sample size is small, because in this case
the error probabilities p1 and p2 are relatively large and difference between p1 and
p2 can be quite severe. In the following subsection, we will discuss the sensitivity of
AAFBF based on different choices of b.

5.4.4 Sensitivity to prior distributions

In Section 5.3, we specified the normal prior (5.24) for β in general statistical models.
However, the adjusted fractional prior for the parameters in a specific model is often
not normally distributed. Thus, when using a normal approximation of the fractional
prior, as in the case of the AAFBF, we may misspecify the prior distribution for
the parameters of interest. For example, if the parameter is a probability which is
bounded in [0, 1] in a binomial model, the (implicit) fractional prior would have a
beta distribution. Therefore the use of the AAFBF, where the fractional prior is ap-
proximated using a normal distribution, may be different from the non-approximated
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adjusted fractional Bayes factor. Thus, it is useful to investigate the sensitivity of the
AAFBF when the fractional prior is far from normally distributed.

O’Hagan (1995) argued that the sensitivity of the fractional Bayes factor depends
on the magnitude of the fraction b. Increasing b reduces the sensitivity to the distri-
butional form of the fractional prior. This is also the case for the adjusted fractional
Bayes factor (AFBF) of Mulder (2014b), because a larger fraction b implies that more
information in the data is used for prior specification, which makes the distribution of
the adjusted fractional prior in the AFBF more similar to a normal distribution. This
section will use two simple examples to illustrate how much difference there is between
the AAFBF using the normal prior and the AFBF using the actual fractional prior.
In these examples, we will only focus on equality constrained hypotheses because, as
elaborated earlier, the AFBF for inequality constrained hypotheses is independent of
the fraction b.

The first example again concerns the one sample t test, where data come from xi ∼
N(θ, σ2) with unknown mean and variance, and the hypotheses under consideration
are H1 : θ = 0 against Hu : θ. In the AAFBF, the default prior (5.24) for β = θ is
π∗u(β|Xb) = N(0, s2/nb), while the actual adjusted fractional prior for a normal mean
has a t distribution π∗u(β|Xb) = t(0, s2/(nb− 1), nb− 1) with mean of 0, variance of
s2/(nb− 1), and degrees of freedom of nb− 1. It is well known that the t distribution
has heavier tail than the normal distribution such that the density at the mode
β = 0 from the normal distribution is larger than the density from the t distribution.
Furthermore, as the fraction b increases, the degrees of freedom nb− 1 increase such
that the t distribution t(0, s2/(nb − 1), nb − 1) becomes more similar to the normal
distribution N(0, s2/nb). This implies that for a larger b the AAFBF where the
default prior has a normal distribution performs more similarly as the AFBF under
the actual fractional prior. This is illustrated in Figure 5.4.

Figure 5.4 shows the logarithms of AFBFs and AAFBFs for H1 versus Hu under
different observed effect sizes x̄/s = 0, 0.1, 0.2, and different fractions bmin, brobust,
and bfreq. The sample size n varies from 10 to 500. First, as can be seen in Figure
5.4 (a), based on bmin the logarithms of AAFBFs under the normal prior distribution
(dashed line) differ substantially from the logarithms of AFBFs under the t prior
distribution (solid line). This difference does not decrease as n increases because
when setting bmin = 2/n the degree of freedom in the t distribution is nb − 1 = 1,
which is independent of n. This suggests high sensitivity to the functional form of
the prior distribution. Second, Figure 5.4 (b) shows that based on brobust there is
not much difference between the logarithms of AAFBFs and AFBFs. This implies
that the choice of brobust results in less sensitivity to the functional form of the prior
distribution than bmin. Third, Figure 5.4 (c) demonstrates the logarithms of AAFBFs
and AFBFs under bfreq. As can be seen, with bfreq there is no sensitivity either.

It is interesting to note that Figure 5.4 also illustrates the consistency of AAFBFs.
The consistency in this example requires that as sample size goes to infinity the
AAFBF for H1 against Hu approaches to infinity when the observed effect size is
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Figure 5.4: The logarithms of the AFBF with a Student t prior (solid line) and the
AAFBF with a normal prior (dashed line). The dark, red, and green lines correspond
to the logarithms of Bayes factors under observed effect sizes x̄/s = 0, 0.1, and 0.2,
respectively.
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equal to 0 and the AAFBF goes to zero when the observed effect size is unequal to
0. As can be seen in Figure 5.4, for an observed effect size x̄/s = 0 the logarithm
of the AAFBF (black lines) in each figure goes to infinity as sample size n increases.
Conversely, the logarithms of the AAFBF based on an observed effect size of x̄/s = 0.1
(red lines) and x̄/s = 0.2 (blue lines) diverge to minus infinity, which implies decisive
evidence for the true unconstrained hypothesis as the sample size goes to infinity.

Next, we consider a binomial model, where data come from x ∼ Bin(n, p).
The hypotheses under evaluation are H2 : p = 0.4 against Hu : 0 ≤ p ≤ 1.
Since H2 is nested in Hu, we can use the AAFBF (5.26) to evaluate H2 against
Hu. Given data x ∼ Bin(n, p), the estimate of β = p − 0.4 is β̂ = x/n − 0.4

and the variance is σ̂2
β = x(n−x)

n2(n+1) , and therefore the normal adjusted fractional

prior (5.24) is π∗u(β|Xb) = N(0, bx(n−x)
n2(n+1) ). On the other hand, following the idea

of adjusted fractional Bayes factors the fractional prior has a beta distribution, i.e.,
p = β + 0.4 ∼ Beta(0.4nb, 0.6nb) which has a mean of 0.4 and thus β has a prior
mean of 0. Note that this prior is centered on the focal point of 0.4 in H2.

Figure 5.5 draws the lines of the logarithms of the AFBFs and AAFBFs for H2

against Hu as the sample size n increases from 10 to 500. The observed data are
x = 0.4n, 0.5n, 0.6n. As can be seen in Figure 5.5 there is a considerable smaller
approximation error of the AAFBF with respect to the AFBF in comparison to the
first example in Figure 5.4. Again, the difference is largest for bmin because this
fraction is always smaller than brobust and bfreq.

These two examples include the evaluation of equality constrained hypotheses in
both continuous data and discrete data. Although the models used are simple, the re-
sults of the sensitivity study of adjusted fractional Bayes factors can be applied in the
multivariate normal model where the parameters (e.g., the group means in ANOVA
model, the coefficients in regression model) have a multivariate t distribution, and in
multinomial model where the parameters (e.g., the probabilities in Contingency Ta-
bles) have a Dirichlet distribution which is the multivariate generalization of the Beta
distribution. Furthermore, in more complicated settings such as structural equation
models and generalized linear models, it can be anticipated that the larger b will
result in less sensitive AFBFs because this implies that more data are used to spec-
ify the fractional prior such that the normal approximation to the prior has better
performance based on the large sample theory.

Based on the discussion in this section, we propose the following scheme for spec-
ifying the fraction b in the AAFBF.

• Choose bmin = (J + 1)/n to have a default prior that is based on the idea of a
minimal training sample.

• Choose brobust = max {(J + 1)/n,
√
n/n} to ensure that the default prior is

close to normal.
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Figure 5.5: The logarithms of the AFBF with a Beta prior (solid line) and the AAFBF
with a normal prior (dashed line). The dark, red, and green lines correspond to the
logarithms of Bayes factors under observed effect sizes x̄/s = 0.4n, 0.5n, and 0.6n,
respectively.
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Table 5.3: Result for regression model example

bmin = 0.080 brobust = 0.141 bfreq = 0.216
AAFBF11c 6.04 4.46 3.55

• Choose bfreq =
∫ 1

0
exp (−nβ2

e/4)dβe to control the frequentist error probabili-
ties when testing an equality constrained hypothesis against the unconstrained
alternative.

Note that n and J denote the sample size and the number of independent constraints
for all the informative hypotheses, respectively.

5.5 Results for empirical examples

The examples introduced in Section 5.2 are revisited to illustrate how the AAFBF can
be used to evaluate informative hypotheses. In the regression model, three parameters
with respect to the regression coefficients are considered in the informative hypothesis
H1 : θ1 > 0, θ2 < 0, θ3 = 0. The first step is to specify the prior and posterior
distributions in (5.24) and (5.25), which needs the estimates θ̂ and covariance matrix
Σ̂θ of the parameters. These can be obtained by analyzing the regression model
with the data in Table 5.1 using a number of statistical software (packages), such
as Mplus (Muthén & Muthén, 2010) and R package lavaan (Rosseel, 2012). Note
that we do not need to standardize the three coefficients as they are compared with
zero. The analysis of data in lavaan renders the maximum likelihood estimates of the
parameters, i.e., θ̂1 = 11.01, θ̂2 = −2.85, θ̂3 = −2.03, and the covariance matrix:

Σ̂θ =

 18.236 −0.500 2.812
−0.500 0.043 −0.004
2.812 −0.004 4.481

 .
To obtain the AAFBF for H1 against H1c , the fraction b has to be specified. Based

on the sample size of n = 50 and the length of vector β of J = 3 in this example,
the three choices of fraction are bmin = 0.080, brobust = 0.141, and bfreq = 0.216.
Running BaIn with the estimates and covariance matrix of parameters of interest
renders the AAFBF displayed in Table 5.3. As can be seen, AAFBF11c is larger than
3 under each choice of b, which implies positive evidence in the data for H1 against
H1c according to Kass and Raftery (1995)’s rule.

The hypotheses in the repeated measures ANOVA model consists of four param-
eters of which the estimates are θ̂1 = 22.33, θ̂2 = 22, θ̂3 = 5.78 and θ̂4 = 6.78, and
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the covariance matrix is

Σ̂θ =


5.18 4.86 2.61 2.86
4.86 5.13 2.90 3.03
2.61 2.90 1.93 1.97
2.86 3.03 1.97 2.39

 .
Given sample size n = 36 and length of vector β of J = 3, three choices of b are
automatically specified in BaIn as bmin = 0.111, brobust = 0.167, and bfreq = 0.255.
Based on these specification BaIn renders the AAFBFs AAFBF2u for H2 versus
Hu and AAFBF2′u for H2′ versus Hu. The results are shown in Table 5.4. As
can be seen, AAFBF2′u is independent of b because the AAFBF for inequality con-
strained hypotheses is invariant to the choice of the fraction b. Thereafter, the AAFBF
AAFBF22′ for H2 versus H2′ can be computed by AAFBF2u/AAFBF2′u which is
shown in the last row in Table 5.4. The result of AAFBF22′ in the last row suggests
positive evidence in the data for H2 against H2′ .

5.6 Conclusion

This paper presented a new approximate Bayesian procedure for the evaluation of
informative hypotheses that can be used for virtually any model. The methodology
is based on the prior adjusted default Bayes factor of Mulder (2014b). Furthermore,
normal approximations were used to ensure fast computations. Numerical results
showed that the approximation is close to the prior adjusted fractional Bayes factor.
This implies that the proposed AAFBF provides an accurate quantification of the
relative evidence between informative hypotheses. Furthermore, different choices were
given for the fraction b, similar as in the fractional Bayes factor of O’Hagan (1995).
The first choice relies on the concept of priors containing minimal information. The
second choice uses a robustness argument resulting in a default prior distribution that
is close to normal. The third choice is based on a frequency argument to control the
classical error probabilities. The choice can be made by the user depending on the
property which he/she finds most important. By computing the AAFBF for each
choice of b we get a complete picture how much support there is in the data between
two hypotheses when taking into account different philosophies.

Table 5.4: Result for repeated measures ANOVA example

bmin = 0.111 brobust = 0.167 bfreq = 0.255
AAFBF2u 4.60 3.07 2.01
AAFBF2′u 0.24 0.24 0.24
AAFBF22′ 19.2 12.8 8.38
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We provide a software package BaIn with a user manual in the Appendix to eval-
uate the informative hypotheses which only needs the maximum likelihood estimates
and covariance matrix of the parameters of interest, denoted by θ in this paper. BaIn
computes the AAFBF for an informative hypothesis against an unconstrained hy-
pothesis. By computing these quantifies for each informative hypothesis against the
unconstrained hypothesis we can straightforwardly compute the relative support in
the data for pairs of informative hypotheses.

5.A User manual of BaIn

The software package BaIn is developed in Fortran 90 with the IMSL 5.0 numeri-
cal library. It computes Bayes factors to evaluate any informative hypotheses (Sec-
tion 5.2) and compare pairs from a set of informative hypotheses if they are com-
parable (Section 5.3.4). BaIn can be freely downloaded from the website http://
informative-hypotheses.sites.uu.nl/software/bain/. The downloaded folder
consists of an executable file "BaIn.exe", an input file "Input.txt", and an output
file "Output.txt". Running "BaIn.exe" with "Input.txt" located in the same folder
renders "Output.txt". This appendix instructs researchers to fill in the "Input.txt"
such that "BaIn.exe" can properly read the information. The "Input.txt" mainly
contains the estimates and covariance matrix of parameters θ for prior and poste-
rior specification, and the restriction matrix and constant vector for each informative
hypothesis.

The repeated measures ANOVA example in Section 5.2.2 is used to illustrate the
valid specification of input file. We will first display and then explain the context
below written in the "Input.txt" when evaluating informative hypothesis H2 (5.11)
and H2′ (5.12).
1 #Number of parameters of interest; Number of informative

hypotheses; Sample size
2 4 2 36
3 #Estimates of parameters
4 22.33 22 5.78 6.78
5 #Covariance matrix of parameters
6 5.18 4.86 2.61 2.86
7 4.86 5.13 2.90 3.03
8 2.61 2.90 1.93 1.97
9 2.86 3.03 1.97 2.39
10 #Numbers of equality and inequality constraints in H1
11 2 1
12 #Restriction matrix (R0|r0) for equality constraints
13 1 -1 0 0 0
14 0 0 1 -1 0
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15 #Restriction matrix (R1|r1) for inequality constraints
16 0 1 -1 0 0
17 #Numbers of equality and inequality constraints in H2
18 0 3
19 #Restriction matrix (R0|r0) for equality constraints
20 #Restriction matrix (R1|r1) for inequality constraints
21 1 -1 0 0 0
22 0 1 -1 0 0
23 0 0 1 -1 0

The input text has strictly fixed structure. There are annotation lines starting
with # below which the corresponding information (numbers) has to be given. The
first line is the annotation for the number of structural parameters, number of infor-
mative hypotheses, and sample size, which means we need to write three numbers
in the second line, i.e., 4, 2 and 9. Because the number of structural parameters is
4, four numbers for the estimates of parameters are presented in line 4, and a 4 × 4
covariance matrix is written in lines 6 to 9. Furthermore, because the number of in-
formative hypotheses is 2, two hypotheses are specified. For the first hypothesis, line
11 specifies 2 and 1 for the numbers of equality and inequality constraints, respec-
tively. Therefore, the augmented restriction matrix with constant vector for equality
constraints has two rows shown in lines 13 and 14, and one row for inequality con-
straints in line 16. For the second hypothesis, the numbers of equality and inequality
constraints are 0 and 3 given in line 18, respectively. As can be seen, there is not
a line with numbers below the annotation line 19 #Restriction matrix (R0|r0)
for equality constraints because this hypothesis does not contain any equality
constraint. While from lines 21 to 23 the augmented restriction matrix for three
inequality constraints are displayed.

The estimates and covariance matrix of structural parameters can be obtained
from other statistical software, e.g., Mplus (Muthén & Muthén, 2010) and R package
lavaan (Rosseel, 2012), and the augment restriction matrix (R0|r0) and (R1|r1)
can be specified based on the informative hypotheses under evaluation. Executing
"BaIn.exe" with these information renders the relative complexities, fits, and Bayes
factors for informative hypotheses under different choices of fraction b in the "Out-
put.txt". The results for repeated measures ANOVA example is shown as follows.

Result for H1

Equality constraints
Fit Complexity (b1) Complexity (b2) Complexity (b3)
0.091 0.049 0.059 0.096

Inequality constraints (conditional on equality constraints)
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Fit Complexity (b1) Complexity (b2) Complexity (b3)
1.000 0.500 0.500 0.500

Number of iterations
3000 3000 3000 3000

BF1u (b1=0.111) BF1u (b2=0.167) BF1u (b3=0.255)
4.603 3.069 2.006

BF1c (b1=0.111) BF1c (b2=0.167) BF1c (b3=0.255)
4.603 3.069 2.006

Result for H2

Equality constraints
Fit Complexity (b1) Complexity (b2) Complexity (b3)
1.000 1.000 1.000 1.000

Inequality constraints (conditional on equality constraints)
Fit Complexity (b1) Complexity (b2) Complexity (b3)
0.023 0.096 0.098 0.097

Number of iterations
46000 9000 9000 9000

BF2u (b1=0.111) BF2u (b2=0.167) BF2u (b3=0.255)
0.240 0.237 0.238

BF2c (b1=0.111) BF2c (b2=0.167) BF2c (b3=0.255)
0.223 0.219 0.220

The results contain the relative fits and complexities for both equality and in-
equality constraints, as well as the Bayes factors under different fraction b in each
hypothesis. For equality constraint, the relative fit and complexity are the normal
posterior and prior densities in (5.26), and thus can be directly computed. However,
the computation of relative fit and complexity for inequality constraints is often dif-
ficult and needs to sample from the posterior and prior distributions using Monte
Carlo Markov Chain methods (Gu et al., 2014). BaIn uses an efficient algorithm
presented in Chapter 3, which requires less number of iterations (displayed below fit
and complexities) in the Markov chains to accurately estimate the relative fit and
complexity. Note that the Bayes factor for informative hypotheses H1 against H2 can
be computed using (5.32) with BF1u and BF2u.
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Chapter 6

An n-of-one RCT for intravenous
immunoglobulin G for inflammation
in hereditary neuropathy with
liability to pressure palsy (HNPP)1

6.1 Background

Hereditary neuropathy with liability to pressure palsy (HNPP; tomaculous neuropa-
thy) is an autosomal dominant disorder caused by a loss of function of the gene
for peripheral myelin protein 22 (PMP22; OMIM #601097) on chromosome 17.p12.
HNPP is a rare disorder, with an estimated prevalence of two to five per 100,000
(Bird, 1998). Symptoms usually start in the second or third decade of life and consist
of recurrent painless episodes of focal sensory loss and muscle weakness (palsy) in
the distribution of a peripheral nerve. Episodes are often provoked by compression
of the nerve and resolve spontaneously within days to months (Dubourg, Mouton,
Brice, LeGuernb, & Bouchea, 2000; Stögbauer, Young, Kuhlenbäumer, de Jonghe, &
Timmerman, 2000; Mouton et al., 1999). There is no curative treatment; manage-
ment consists of supportive measures to prevent nerve compression, and bracing to

1A short version of this chapter has been published as a letter as Vrinten, C., Gu, X., Weinreich,
S., Schipper, M., Wessels, J., Ferrari, M., Hoijtink, H., & Verschuuren, J. (2015). An n-of-one
RCT for intravenous immunoglobulin G for inflammation in hereditary neuropathy with liability to
pressure palsy (HNPP). Journal of Neurology, Neurosurgery & Psychiatry. doi:10.1136/jnnp-2014-
309427.
Author contributions: JV, JW and MF conceived the study and carried out the data collection. JV,
CV, SW, HH and XG formulated the informative hypotheses which were evaluated by HH and XG.
JV and CV drafted the paper, with assistance from MS. All authors provided extensive feedback on
writing the paper.
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alleviate muscle weakness.
In this report, we describe the case of a female patient with HNPP who initially

presented with symptoms of a painful neuropathy which were successfully treated with
intravenous immunoglobulin (IVIg), as well as the results of a subsequent placebo-
controlled n-of-one randomised controlled trial (RCT) that was conducted to formally
assess the effects of IVIg on pain and muscle strength and the need for continued
treatment with IVIg.

6.1.1 Case report

In 2002, a 35-year-old female patient presented to the Leiden University Medical
Centre Neurology Clinic with a 15-month history of neuropathic pain in the right
gluteal region that radiated via the back of the leg to the right foot. Four months
before presentation, she had experienced weakness and sensory loss in the lower left
leg after a prolonged car journey, but this resolved spontaneously after several weeks.
Two months later, she experienced more severe weakness and sensory loss: she was
unable to lift her left leg when lying prone and also experienced numbness in her left
hand. No triggering events were reported for this episode. Her medical history was
unremarkable, and there were no family members with similar symptoms.

Her physical examination at the time of presentation showed mild proximal weak-
ness of the left leg (MRC 4) and severe weakness (MRC 0-2) of the left foot extensor
muscles. Hypoalgesia was found in the ulnar side of the left hand and the left lower
leg. She had reduced tendon reflexes; Achilles tendon reflexes were completely absent.
The following examinations were normal or negative: lumbar MRI, cerebrospinal fluid
analysis, serum anti-GM1, and serology for cytomegalovirus, Epstein-Barr virus, my-
coplasma, and Borrelia burgdorferi. Faecal tests for Salmonella, Shigella and Campy-
lobacter were also negative. A nerve biopsy was not performed.

Electromyographic studies showed bilateral demyelinating conduction blocks at
compression sites of the ulnar nerves, prolonged distal motor latencies of the right
and left-sided ulnar, tibial, peroneal, and left median nerves, and absent F-waves in
both peroneal and the right tibial nerves, consistent with HNPP, but also with defi-
nite electrodiagnostic criteria for chronic inflammatory demyelinating polyneuropathy
(CIDP) according to the EFNS/PNS CIDP guidelines (van den Bergh et al., 2010).
Based on these results, a preliminary diagnosis of CIDP was made and a DNA test
for suspected HNPP was ordered.

She was treated with IVIg (0.4 mg/kg per day) for five days, which resulted in
marked improvement: after three weeks she was able to do domestic chores again
for the first time in a year. She continued to receive a maintenance dose of IVIg
every three weeks, and her muscle strength continued to improve. The pain disap-
peared completely and she only suffered residual mild weakness of left foot dorsiflexion
(MRC4). However, DNA analysis subsequently revealed a deletion of 17p11.2 includ-
ing the PMP22 gene, and a definite diagnosis of HNPP was made.
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6.1.2 Rationale for n-of-one trial

It remains debated whether genetic neuropathies can give rise to superimposed immune-
mediated neuropathies (Sagnelli, Piscosquito, & Pareyson, 2013), and the diagnosis
of HNPP raised doubts whether continued IVIg was needed, especially given its high
cost and limited availability (Kuitwaard & van Doorn, 2009). In light of this ambigu-
ity, the patient consented to a formal assessment of the effects of IVIg in an n-of-one
trial. This is a multiple crossover trial in a single patient in which intervention and
control treatment periods are randomised over time (e.g. AB-BA-BA). It is suitable
to evaluate the effects of relatively fast-acting, symptomatic treatment for chronic
and relatively stable disease symptoms in individual patients (J. Nikles et al., 2009;
Guyatt et al., 1988).

By means of the n-of-one trial, we aimed to evaluate the effects of IVIg on pain
(primary outcome) and muscle strength (secondary outcome) in this patient with
HNPP and an associated CIDP-like inflammatory neuropathy. The following hy-
potheses were tested: a) IVIg infusions reduce pain more than placebo infusions and
this reduction is clinically meaningful; b) IVIg infusions increase subjective muscle
strength more than placebo infusions and this increase is clinically meaningful. To
assess the need for continued use of IVIg, we also tested the following hypotheses:
c) following IVIg, pain levels first decrease and then increase again; and finally, d)
following IVIg, subjective muscle strength first increases and then decreases again.

6.2 Methods

6.2.1 Trial design

We conducted a double-blind, multiple crossover n-of-one trial of four trial infusions
that were given in hospital on an outpatient basis and in a randomised order at three
week intervals. The intervention treatment consisted of intravenous immunoglobulin
(0.4 mg/kg) and was compared to an inactive placebo infusion of 0.9% saline. A
placebo infusion was chosen as comparator, because there is currently no pharma-
cotherapy for HNPP. The patient consented to participate in this study as a way to
optimise her personal long-term clinical treatment.

A week after each trial infusion, an optional “rescue” infusion with the opposite
treatment was offered (i.e. placebo if IVIg had been administered most recently and
vice versa). The patient could accept or refuse this rescue infusion depending on her
subjective assessment of the effects of the trial infusion (see Figure 6.1). The rescue
infusion was offered to ensure that the most beneficial treatment was not withheld
for more than a week after it was due according to her pre-trial 3-weekly treatment
schedule. An open run-in period had shown that a 1-week delay in administering
IVIg was not associated with unacceptable muscle weakness or pain. If the patient
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Figure 6.1: Flow diagram of one cycle of the n-of-one trial with optional rescue
infusion one week after each trial infusion. Note that the interval between the last
infusion (i.e. ‘trial’ if deemed adequate 1 week post-infusion, or ‘rescue’ if trial infusion
is deemed inadequate 1 week post-infusion) and the next trial infusion is held constant
at 3 weeks.

opted to have the rescue infusion, she returned to the randomisation schedule 3 weeks
later.

Simple randomisation was carried out by the dispensing hospital pharmacy, which
was also responsible for blinding of treatment by delivering all infusion packs to the
hospital infusion room wrapped in opaque tin foil. This ensured that the patient and
clinician remained blind to the order of the trial infusions, although both were aware
that the rescue infusion was always the opposite one to the trial infusion given the
week before.

6.2.2 Outcomes and data collection

Pain was chosen as primary outcome measure and muscle strength as secondary
outcome measure. Pain scores for the right leg, which had always been most affected
by pain, were recorded by the patient three times per week in a patient diary at
home. Pain was scored on a 14 cm visual analogue scale (VAS) ranging from 0
(indicating complete absence of pain) to 14 (worst possible pain imaginable). Ratings
were converted into scores in millimetres, from which the percentage change from
baseline was calculated. A clinically meaningful reduction in pain was defined as a
30% reduction compared to the baseline level of pain at the time of the last infusion.
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A reduction of this magnitude was previously found to correspond to ’some’ to ’much’
change in pain, and is associated with not needing rescue medication for chronic pain
(Dworkin et al., 2008).

Analogous to pain, subjective muscle strength was recorded three times a week on
a 14 cm VAS scale (0 = complete paralysis to 14 = normal strength for this patient).
This was done for the left leg, which was most affected by weakness. Ratings were
converted into scores in millimetres, from which the percentage change from baseline
was calculated. No reference values were available from the literature and we chose
to define a clinically meaningful difference in muscle strength as an increase of at
least 30% compared to baseline. Finally, at the time of each infusion, the patient was
asked to report any side effects since the last infusion.

6.2.3 Data analysis

The effect of IVIg on pain and subjective muscle strength was assessed for the first 7
days after each infusion only (not longer because rescue infusions were offered 7 days
after each randomised infusion). To assess the need for continued administration of
IVIg every 3 weeks, the course of pain and subjective muscle strength was evaluated
over the course of three weeks following IVIg. Coefficients were first estimated using
SPSS version 20.0 (Dworkin et al., 2008), followed by Bayesian evaluation of informa-
tive hypotheses using BIG (Gu et al., 2014). Bayesian hypothesis testing allowed us to
evaluate the inequality constrained hypotheses we had formulated regarding the mag-
nitude of the increase/decrease following IVIg and placebo (Gu et al., 2014). We com-
pared the inequality constrained hypotheses that IVIg was superior to placebo to an
unconstrained hypothesis which did not specify a relationship between the magnitude
of the effect following IVIg and placebo infusions. For each comparison, a Bayes factor
was calculated, which is a measure of support for two competing hypotheses. A Bayes
factor of 1 indicates that the data support both hypotheses equally. In the present
study, a Bayes factor of more than 1 indicates that our (inequality constrained) hy-
potheses are more supported by the data than the unconstrained hypothesis, while
a Bayes factor of less than one indicates the reverse. Conventionally, Bayes factors
larger than 10 would denote strong support for the inequality constrained hypothesis
(Jeffreys, 1961). A detailed description of the analyses is provided in Appendix 6.A,
and the data archive is provided on the Web at http://jnnp.bmj.com/content/
suppl/2015/07/17/jnnp-2014-309427.DC1/jnnp-2014-309427supp3.zip.

6.3 Results

The total number of infusions given during the trial was eight, but there were reasons
to exclude data from one infusion for the analyses (The reason for excluding data
from one infusion is that the trial partly took place over the summer and the patient
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Figure 6.2: Trial timeline, administered infusions and VAS scores for pain and sub-
jective muscle strength (IVIg, intravenous immunoglobulin G; VAS, visual analogue
scale).

requested to receive one non-randomised and non-blinded IVIg infusion before her
summer holiday. The results of this infusion were not used in the analyses; data for
this infusion are not shown in tables or graphs). Four infusions were given according to
the randomisation schedule: one IVIg and three placebo infusions. After each placebo
infusion, the patient opted for a rescue infusion with the alternative treatment one
week later; she did not ask for a rescue infusion after the randomised IVIg infusion.
The total duration of the trial was 15 weeks. The timeline of the trial and VAS
scores for pain and self-reported muscle strength are shown in Figure 6.2. The results
presented below can be found in Appendix 6.A.

6.3.1 Pain

We first tested the expectation that the decrease in pain in the first 7 days after
IVIg is greater than after placebo. We obtained a Bayes factor of 33.22 when we
compared this hypothesis to the unconstrained hypothesis, providing strong evidence
that IVIg reduces pain more than placebo. We obtained a Bayes factor of 13.40 when
we compared the hypothesis that IVIg produces a clinically relevant reduction in pain
(≥ 30%) to the unconstrained hypothesis, which implies that there is strong support
for the hypothesis that IVIg reduces pain.

When these hypotheses were combined in a single hypothesis, i.e. pain decreases
more rapidly after IVIg than after placebo in the first week after infusion, and it
decreases to a clinically relevant level, and evaluated against the unconstrained hy-
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pothesis, we obtained a Bayes factor of 63.74. This strongly supported the hypothesis
that IVIg has a clinically meaningful effect on pain, compared to placebo. Estimates
and variances of the coefficients are shown in Table 6.1 in Appendix 6.A.

6.3.2 Subjective muscle strength

We assessed the effects on subjective muscle strength in a similar fashion. We obtained
a Bayes factor of 36.24 when we compared the hypothesis that the subjective increase
in muscle strength in the first 7 days after IVIg infusion would be greater than after
placebo to the unconstrained hypothesis. This implies that there is strong evidence
that IVIg increases muscle strength more than placebo. We then assessed whether the
increase in subjective muscle strength could be considered meaningful, as expressed
by a 30% increase in subjective muscle strength compared to the baseline muscle
strength score for each infusion. We obtained a Bayes factor of 15.05 for the hypothesis
that IVIg produces a clinically relevant increase in muscle strength (≥ 30%) when
compared to the unconstrained hypothesis. This implies that there is strong evidence
that IVIg increases muscle strength.

When these hypotheses were combined, i.e. muscle strength increases more rapidly
and to a clinically relevant level in the first week after IVIg than after placebo, and
evaluated against the unconstrained hypothesis, we obtained a Bayes factor of 61.51.
This strongly supported the hypothesis that IVIg has a clinically meaningful effect
on subjective muscle strength, compared to placebo.

6.3.3 Course of pain and muscle strength

Finally, to assess the need for regular IVIg infusions, we used quadratic models to test
the hypotheses that pain first decreases and then increases again, and that muscle
strength first increases and then decreases, in the three weeks following IVIg. The
Bayes factor for the hypothesis about pain was 13.78, and the Bayes factor for the
hypothesis about muscle strength was 15.67. These findings strongly support the
notion that IVIg needs to be administered regularly to control pain and improve
muscle strength. No adverse effects were reported during the trial.

6.3.4 Follow-up

We have now followed up this patient for 11 years. After the trial, she first continued
to receive IVIg infusions every three to four weeks for two years, without any adverse
effects. The interval was then successfully increased to five weeks. After a period
of symptom stability, we attempted to give infusions every six weeks. However,
this was followed by an increase in muscle weakness and pain, and the interval was
reduced again to five weeks. Multiple EMGs during follow-up (2003-2014) initially
showed signs of demyelination (prolonged distal motor latencies and decreased nerve
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conduction times), but over the years became more consistent with stable axonal
damage. The patient’s quality of life has remained stable: her muscle strength is
stable, and she continues to work in the same job.

6.4 Discussion

The results of this trial suggest that IVIg had a clinically meaningful effect on pain
and weakness in this patient with HNPP. The positive effects of IVIg diminished after
several weeks, necessitating continued treatment with regular IVIg infusions every few
weeks for a sustained clinical response.

Our findings lend support to the growing number of case reports suggesting that
some patients with hereditary neuropathies such as HNPP, Charcot-Marie-Tooth dis-
ease, and hereditary brachial plexus neuropathy may also be affected by inflammation
(Mouton et al., 1999; Korn-Lubetzki, Argov, Raas-Rothschild, Wirguin, & Steiner,
2002; Remiche, Abramowicz, & Mavroudakis, 2013; Luigetti, Zollino, Conti, Romano,
& Sabatelli, 2013; Pou Serradell et al., 2002; Le Forestier et al., 1997; Ginsberg et al.,
2004; Marques et al., 2010; Desurkar et al., 2009; Watanabe et al., 2002; Klein et al.,
2002). Like our patient, most of these patients initially presented with clinical and
electrophysiological findings suggestive of an acute or chronic inflammatory demyeli-
nating polyneuropathy (AIDP or CIDP), but were later diagnosed with an hereditary
neuropathy. Some also responded favourably to immunomodulatory treatment with
steroids or intravenous immunoglobulin (IVIg) (Korn-Lubetzki et al., 2002; Remiche
et al., 2013; Le Forestier et al., 1997; Ginsberg et al., 2004; Watanabe et al., 2002). Al-
though the co-occurrence of inflammatory and hereditary neuropathies may be purely
coincidental, some have suggested that the tissue damage caused by hereditary neu-
ropathies could evoke an immune response leading to superimposed inflammatory
neuropathies (Korn-Lubetzki et al., 2002; Remiche et al., 2013).

Regardless of whether their CIDP is idiopathic or not, a diagnosis of inflammation
in patients with an hereditary neuropathy may be difficult. Clinical signs and symp-
toms may overlap, and evaluations such as electrophysiology or nerve biopsies are not
helpful to establish a diagnosis of inflammatory demyelinating disease when demyeli-
nation is already present due to hereditary disease. Moreover, current diagnostic
criteria for CIPD list hereditary demyelinating neuropathies as a diagnostic exclu-
sion criterion (van den Bergh et al., 2010), meaning that inflammatory neuropathies
may go unrecognised and untreated in patients with an established diagnosis of an
hereditary neuropathy.

However, it is important to recognise possible inflammation in patients with hered-
itary neuropathies, because of its therapeutic implications: where hereditary neu-
ropathies can usually only be managed with lifestyle changes, bracing, and physical
therapy, inflammation may be amenable to pharmacological treatment. The use of
IVIG in CIPD, for example, is well established (Eftimov, Winer, Vermeulen, de Haan,
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& van Schaik, 2013), and there is a growing body of evidence on the use of IVIg in
chronic pain syndromes (Goebel, 2014). Hereditary neuropathies are usually painless,
so the presence of pain, like in our patient, may indicate inflammation. Inflammation
should also be considered in patients who show signs of a long-term, progressive neu-
ropathy rather than the regular episodic weakness seen in HNPP. An n-of-one trial to
test the effect of treatment for this potentially coexisting inflammatory neuropathy,
such as the one described for our patient, could be considered in these patients.

Clinical n-of-one trials, such as the one presented here, are a tool that can be
used to guide appropriate treatment in rare diseases (Guyatt et al., 1988). N-of-one
trials have been used in the past to optimise treatment for individual patients, reduce
unnecessary prescribing, and increase treatment compliance (C. Nikles, Clavarino, &
Del Mar, 2005; Scuffham et al., 2010). Formal "trials of therapy", such as the one
described in this study, can be valuable in guiding clinical practice when there is no
evidence available from group-randomised clinical trials (RCTs), when the results of
such trials do not necessarily generalise to one’s patient in the consultation room, or
when there are other pertinent reasons to optimise treatment, for example, because of
the high cost of a medicinal product (Guyatt et al., 1988). IVIg to treat inflammation
associated with HNPP fulfils these criteria: there are no clinical treatment guidelines,
there is no evidence from earlier trials available, and IVIg is costly to produce and
its availability is limited. Moreover, many diseases for which IVIg is prescribed re-
quire long-term treatment (Donofrio et al., 2009; Kumar, Teuber, & Gershwin, 2006),
including when it is used to treat CIDP. The majority of patients require infusions
every two to six weeks for a sustained response (Kuitwaard & van Doorn, 2009), and a
review suggests that it can be withdrawn in less than 15% without causing a relapse
(van Doorn, Dippel, & van Burken, 2003). In our patient, increasing the interval
between infusions from five to six weeks led to an unacceptable clinical deterioration.
N-of-one trials such as the current one may help to establish whether a particular
patient has a true need for this type of treatment, and may thus aid appropriate
prescription.

To our knowledge, this is the first randomised controlled trial (RCT) of IVIg to
treat symptoms of inflammation in patients with HNPP; thus far, only anecdotal
evidence suggested that IVIg may be effective in such patients (Mouton et al., 1999;
Korn-Lubetzki et al., 2002; Remiche et al., 2013). The lack of RCTs may partly be due
to the challenges associated with conducting RCTs in such small patient populations
(Griggs et al., 2009). The n-of-one trial design could greatly facilitate the process of
conducting RCTs in this type of patient population, since data from several n-of-one
trials can be aggregated to obtain population effect estimates (Zucker, Ruthazer, &
Schmid, 2010; Zucker et al., 1997). Furthermore, Bayesian analysis methods, which
can make use of prior knowledge, allow for continued updating of treatment effect
estimates as new data become available (Zucker et al., 1997). Thus, results from
future trials in similar patients can be meaningfully combined with the results from
the current trial to obtain an increasingly robust estimate of the population effect of
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IVIg to treat inflammation in patients with HNPP. Such personalised and adaptive
approaches may also be useful in other situations where only very few patients are
available for research (Griggs et al., 2009).

Because this study was done in only one patient, its results may not necessarily
generalise to other patients. Other limitations of the design include the need for
multiple crossovers between the active and control intervention, which means that the
participant burden in n-of-one trials is generally higher than in most other intervention
research. Efforts should be made to reduce this burden and to prevent dropout during
the trial. We chose to use a patient diary with two separate VAS scales to measure our
outcomes and minimise the number of hospital visits for the patient. Although the
VAS scale for pain has been extensively validated (Dworkin et al., 2008), this was not
the case with the VAS for subjective muscle strength. Furthermore, subjective scores
of pain and strength may co-vary. For example, when a limb is painful, it may also
be self-reported as being weak, even if bedside strength assessment is normal. Future
studies could benefit from using only validated outcome measures and from including
more objective outcome measures alongside subjective ones, if this is possible without
increasing the participant burden to an unacceptable level. Because of the frequent
crossovers between IVIg and placebo, we were unable to assess whether the effect
of IVIg is cumulative over several doses. Unblinding of the patient may also be a
problem in multiple crossover trials, and may occur more easily when there are clear
treatment or adverse effects. Our patient experienced such a clear effect of treatment
(but no adverse effects). Although she was blinded to the infusion type at the time
of each trial infusion, the clear treatment effect of IVIg meant that she was able to
guess the nature of the infusion after several hours to days. This may have introduced
some bias in the outcome measures, although Figure 6.1 still displays considerable
variation and trend changes in both outcomes over time and regardless of the type
of trial infusion. In future studies, bias may be reduced by using objective outcome
measures and blinding of the outcome assessor. Finally, readers may not be familiar
with Bayesian testing of informative hypotheses, a method which is more common in
psychological research than clinical medicine. Therefore, it is noted that conventional
statistical analysis of this n-of-1 RCT could not have accommodated consideration
of multiple, clinically relevant hypotheses. Furthermore, conventional analyses would
have suffered from low power. Despite the limitations of the trial, the results were
useful to guide treatment of this patient.

In conclusion, we presented a trial of a patient with HNPP and concomitant
symptoms of pain and muscle weakness which improved after continued treatment
with IVIg. This suggests that some patients with hereditary neuropathies may have
co-existing inflammation, which is important to recognise because adequate treatment
can improve their symptoms and quality of life. We also demonstrated the value of
n-of-one trials for conducting research in rare conditions.
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6.A Description of analyses

6.A.1 Effect of IVIg on pain

The effect of pain after the infusions can be analysed using the regression model:

y1ti = α1t + β1tx1ti + ε1ti, (6.1)

where y1ti, t = 1, . . . , 7 denotes the pain on a 14 point scale after 7 infusions, x1ti de-
notes the number of days after the treatment, α1t is the intercept, β1t is the coefficient
of the day number, and ε1ti is the residual, which is normally distributed with mean
0 and unknown variance. We first tested the expectation that the decrease in pain in
the first 7 days after IVIg infusions is greater than after placebo. This expectation
can be translated into the following hypothesis H1 among the coefficients of the day
numbers:

H1 : {β11, β12, β13} > {β14, β15, β16, β17}, (6.2)

which was compared to the unconstrained hypothesis Ha:

Ha : β11, β12, β13, β14, β15, β16, β17, (6.3)

where β1t, t = 1, . . . , 3 denote the coefficients after three placebo infusions, whereas
β1t, t = 4, . . . , 7 are those after four IVIg infusions. Note that the day numbers x1ti

for each infusion are 1, 4, 6, and 8, except the infusion t = 6 for which the day
numbers are 0, 2, 5, and 7. Using SPSS, the estimate and squared standard error of
each coefficient were obtained, which are displayed in Table 6.1 (see the end of this
appendix). Hypothesis H1 was then evaluated using BIG, which rendered a Bayes
factor of 33.22 for H1 against Ha, which implies that H1 gains strong support from
the data.

We then assessed whether IVIg produced a clinically relevant reduction in pain,
which can be expressed by:

H2 : β14 < l14, β15 < l15, β16 < l16, β17 < l17, (6.4)

where l1t = −30% ∗ y1t1/7, t = 4, . . . , 7 is the clinically relevant level for each treat-
ment, and y1t1 is the pain on the day after each IVIg infusion is given. Using the
results in Table 6.1 for β1t and l1t, t = 4, . . . , 7, we obtained a Bayes factor of 13.40
for H2 against Ha, which implies strong evidence that IVIg produces a clinically
meaningful reduction in pain in this patient.

We then proceeded to test the combined first and second expectations, i.e., in the
first week after infusion, pain decreases more rapidly after IVIg than after placebo,
and the pain after IVIg decreases beyond the clinically relevant level. This leads to
the following hypothesis:

H3 :
{β11, β12, β13} > {β14, β15, β16, β17};

β14 < l14, β15 < l15, β16 < l16, β17 < l17.
(6.5)
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This hypothesis can be expressed as H3 : H1&H2 because it contains the constraints
both inH1 andH2. Evaluating this hypothesis rendered a Bayes factor of 63.74, which
implies that there is strong evidence that IVIg decreases pain more than placebo, and
that it decreases pain to a clinically meaningful extent in this patient.

6.A.2 Subjective muscle strength

A similar model was specified for the effect on subjective muscle strength:

y2ti = α2t + β2tx2ti + ε2ti, (6.6)

where y2ti, x2ti, α2t, β2t, and ε2ti are the same notations but for muscle strength.
Analogous to the effect on pain, we assessed whether the subjective increase in muscle
strength in the first 7 days after IVIg infusion is greater than after placebo. This
results in the following hypothesis:

H4 : {β21, β22, β23} < {β24, β25, β26, β27}, (6.7)

where β2t, t = 1, . . . , 7 again denote the coefficients after the treatments (see Table
6.1). Evaluating H4 in BIG rendered a Bayes factor of 36.24, which implies strong
evidence that IVIg increases muscle strength more than placebo in this patient.

Secondly, we assessed whether the increase in muscle strength was subjectively
meaningful by evaluating the hypothesis:

H5 : β24 > l24, β25 > l25, β26 > l26, β27 > l27, (6.8)

where l2t = 30%∗y2t1/7, t = 4, . . . , 7 is the subjectively relevant level for an increase in
muscle strength, and y2t1 represents the muscle strength at the time of IVIg infusion.
Using the results in Table 6.1 for β2t and l2t, t = 4, . . . , 7, we obtained a Bayes
factor of 15.05, which implies strong evidence that IVIg increases muscle strength to
a meaningful extent in this patient.

Similar to pain, we then combined these hypotheses and tested whether in the
first week after infusion muscle strength increased more rapidly after IVIg than after
placebo and whether it increased beyond the clinically meaning level. This hypothesis
can be expressed by:

H6 :
{β21, β22, β23} < {β24, β25, β26, β27};

β24 > l24, β25 > l25, β26 > l26, β27 > l27,
(6.9)

where H6 : H4&H5. Evaluating this hypothesis resulted in a Bayes factor of 61.51,
meaning that there is strong evidence that IVIg increases subjective muscle strength
more than placebo, and that it increases it to a clinically meaningful extent.
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6.A.3 Course of pain and muscle strength following IVIg infusions

Finally, to assess the need for regular IVIg infusions, we tested the hypothesis that
pain first decreases and then increases again in the three weeks following IVIg infusion.
To investigate this expectation, a quadratic regression model was used:

y1ti = α1t + β1tx1ti + γ1tx
2
1ti + ε1ti, (6.10)

where γ1t, t = 1, . . . , 4 is the coefficient of the squared day number. If γ1t > 0, this
means the pain y1ti decreased during the first several days after infusion and then
increased again. For this reason we constructed the hypothesis:

H7 : γ11 > 0, γ12 > 0, γ13 > 0, γ14 > 0. (6.11)

Running BIG with the estimates and variances of γ1t shown in Table 6.1 rendered a
Bayes factor of 13.78, which implies strong evidence that pain first decreases following
IVIg, and then increases again as the effects of IVIg start to wear off. A similar
quadratic model was used for subjective muscle strength:

y2ti = α2t + β2tx2ti + γ2tx
2
2ti + ε2ti. (6.12)

A negative γ2t indicates that in the beginning days muscle strength y2ti increases and
thereafter it decreases again. Thus, hypothesis H8 is as follows:

H8 : γ21 < 0, γ22 < 0, γ23 < 0, γ24 < 0. (6.13)

The Bayes factor for this hypothesis was 15.67, indicating that there is strong support
that subjective muscle strength increases in the first days after IVIg infusion, and then
decreases again over the following weeks.
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Table 6.1: Estimates and variances of the coefficients (l1t and l2t denote the relevant
levels for the decrease of pain and increase of muscle strength, respectively, in the
first week after IVIg. Note that n denotes the number of measurements upon which
the estimates are based.

Pain Muscle strength

n estimates variance l1t n estimates variance l2t
placebo β11 4 0.416 0.187 β21 4 -0.734 0.142

β12 4 0.253 2.79E-2 β22 4 -0.319 3.17E-2
β13 4 0.824 2.76E-2 β23 4 -0.234 5.04E-3

IVIg β14 4 -0.907 0.106 -0.270 β24 4 0.823 3.39E-2 0
(1 week) β15 4 -0.412 3.61E-2 -0.126 β25 4 0.508 8.41E-4 0.216

β16 4 -0.753 1.04E-2 -0.294 β26 4 0.321 4.10E-3 0.210
β17 4 -0.984 4.62E-3 -0.354 β27 4 0.340 5.93E-3 0.246

IVIg γ11 8 0.063 1.96E-4 γ21 8 -0.041 4.9E-5
(3 week) γ12 9 0.016 1.69E-4 γ22 9 -0.029 9.0E-6

γ13 10 0.044 3.60E-5 γ23 10 -0.022 9.0E-6
γ14 9 0.056 2.89E-4 γ24 9 -0.024 9.0E-6
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Summary

The evaluation of informative hypotheses has gained in popularity in applied sciences,
because it enables researchers to investigate their expectations with respect to the
population of interest. In this dissertation, approximate Bayesian approaches are
developed to evaluate informative hypotheses by means of the Bayes factor in a very
general class of statistical models. The Bayes factor quantifies the support from the
data in favor of one hypothesis against another. The computation of the Bayes factor
requires the specification of the prior distribution and the derivation of the posterior
distribution for model parameters under the unconstrained hypothesis.

In this dissertation several prior specification methods are presented in different
situations. On the one hand, for the evaluation of informative hypotheses specified
using only inequality constraints, Chapter 2 specifies a noninformative normal prior
distribution under the unconstrained hypothesis in which every combination of values
is equally likely for the parameters used in the hypotheses. An alternative noninfor-
mative prior is proposed in Chapter 3 such that the Bayes factor is invariant to linear
one-one transformation of the data. On the other hand, the Bayesian evaluation of
informative hypotheses that contain equality constraints requires the specification of
default priors under the unconstrained hypothesis when subjective prior information
is not available. In Chapter 4 a new method is proposed for specifying default priors
in the one sample t test based on the frequentist properties. A follow-up study in
Chapter 5 generalizes this method to evaluate informative hypotheses in a general
class of statistical models.

The posterior distribution of the parameters integrates the information contained
in the prior and the data. The distributional form of the posterior depends on the
statistical model at hand. In Chapter 2, Chapter 3, and Chapter 5, however, the
posterior distribution in any model is approximated using a (multivariate) normal
distribution based on large sample theory, which leads to an easy and straightfor-
ward tool for the computation of the Bayes factor for informative hypotheses. This
approximation renders a generally applicable Bayesian procedure and therefore sub-
stantially extends the class of statistical models to which the evaluation of informative
hypotheses can be applied.

The development of software packages for the proposed Bayesian approaches is
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another aspect of this research. Chapter 2 provides a software package BIG to compute
the Bayes factor for the evaluation of informative hypotheses that only consist of
inequality constraints. In Chapter 3 a new efficient algorithm is explored for the
computation of Bayes factors, which dramatically reduces the computational time in
BIG. Finally, a software package BaIn is developed in Chapter 5 to fill the vacancy of
the Bayesian evaluation of informative hypotheses with possible equality constraints.
The user manuals for BIG and BaIn are included in the dissertation.

170



Samenvatting

Het evalueren van informatieve hypotheses heeft aan populariteit gewonnen binnen
de toegepaste wetenschappen, omdat het wetenschappers in staat stelt om hun speci-
fieke verwachtingen over de populatie van interesse te onderzoeken. In deze dissertatie
worden Bayesiaanse benaderingen gepresenteerd voor het evalueren van informatieve
hypotheses middels de Bayes factor, voor een zeer brede klasse van statistische mod-
ellen.

Door middel van de Bayes factor wordt gekwantificeerd in hoeverre de data een
bepaalde hypothese ondersteunen in verhouding tot een andere hypothese. Het
berekenen van de Bayes factor in de context van informatieve hypotheses vereist
het specificeren van prior kansverdelingen voor de parameters in het model en het
afleiden van de posterior kansverdeling, gegeven een hypothese zonder restricties.

In deze dissertatie worden verschillende methoden voor het specificeren van prior
kansverdelingen gepresenteerd die geschikt zijn voor verschillende omstandigheden.
In Hoofdstuk 2 en 3 ligt de focus op hypotheses met alleen ongelijkheidsrestricties.
In Hoofdstuk 2 worden niet-informatieve normaalverdelingen gespecificeerd, waarin
elke combinatie van waardes voor de parameters die betrekking hebben op de hy-
potheses even waarschijnlijk zijn. Een alternatieve niet-informatieve priorspecificatie
wordt voorgesteld in Hoofdstuk 3, waarbij de Bayes factor invariant is voor lineaire
één-op-één transformaties van de data.

In Hoofdstuk 4 en 5 ligt de focus op het Bayesiaans evalueren van informatieve hy-
potheses met gelijkheidsrestricties. Als er geen subjectieve prior informatie beschik-
baar is in deze context, is het noodzakelijk om standaardpriors te specificeren. In
Hoofdstuk 4 wordt een nieuwe methode voorgesteld om dergelijke standaardpriors te
specificeren voor een t-toets voor één steekproef, gebaseerd op frequentistische eigen-
schappen. Een generalisatie van deze methode voor het evalueren van informatieve
hypotheses wordt gepresenteerd in Hoofdstuk 5, zodat de methode gebruikt kan wor-
den voor een meer algemene klasse van statistische modellen.

De posterior kansverdeling van de parameters integreert de informatie in de prior
kansverdeling en in de data. De vorm van de posterior kansverdeling hangt af van het
statistische model. Echter, in Hoofdstuk 2, 3 en 5 wordt de posterior kansverdeling in
ieder model benaderd met een (multivariaat) normale verdeling op basis van de wet
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van de grote aantallen, wat resulteert in een eenvoudige, recht-toe-recht-aan-methode
voor de berekening van de Bayes factor voor informatieve hypotheses. Deze benader-
ing levert een algemeen toepasbare Bayesiaanse procedure op en breidt daarmee de
klasse van statistische modellen waarop de evaluatie van informatieve hypothese kan
worden toegepast aanzienlijk uit.

Een ander aspect van dit onderzoek is de ontwikkeling van softwarepaketten voor
de voorgestelde Bayesiaanse benaderingen. Voor het onderzoek in Hoofdstuk 2 is het
software pakket BIG ontwikkeld dat gebruikt kan worden voor het berekenen van de
Bayes factor voor het evalueren van informatieve hypotheses die alleen uit ongelijkhei-
dsrestricties bestaan. In Hoofdstuk 3 wordt een nieuw efficient algoritme besproken
dat de tijd die nodig is voor het berekenen van Bayes factors in pakket BIG drastisch
verminderd. Ten slotte wordt in Hoofdstuk 5 het softwarepakket BaIn gepresenteerd,
dat is ontwikkelt om een gat in de markt — het evalueren van informatieve hypothe-
ses met eventuele gelijkheidsrestricties — te vullen. In deze dissertatie zijn ook de
handleidingen voor BIG en BaIn toegevoegd.
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