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Abstract 

Quantum dot encoded microspheres (QDEMs) offer much potential for bead based identification 

of a variety of biomolecules via flow cytometry (FCM). To date, QDEM subpopulation 

classification from FCM has required significant instrument modification or multiparameter 

gating. It is unclear whether or not current data analysis approaches can handle the increased 

multiplexed capacity offered by these novel encoding schemes. In this thesis the drawbacks of 

currently available data analysis techniques are demonstrated and novel classification methods 

proposed to overcome these limitations. A commercially available 20 code QDEM library with 

fluorescent emissions at 4 distinct wavelengths and 4 different intensity levels was analysed using 

flow cytometry. Multiparameter gating (MPG) a readily available classification method for 

subpopulations in FCM was evaluated. A support vector machine (SVM) and two types of 

artificial neural networks (ANNs), a multilayer perceptron (MLP) and probabilistic radial basis 

function (PRBF) were also considered. For the supervised models rigorous parameter selection 

using cross validation (CV) was used to construct the optimum models. Independent test set 

validation was also carried out. As a further test, external validation of the classifiers was 

performed using multiplexed QDEMs solutions.  
 

The performance of MPG was poor (average misclassification (MC) rate = 9.7%) was a time 

consuming process requiring fine adjustment of the gates, classifications made  on the dataset 

were poor with multiple classifications on single events and as the multiplex capacity increases 

the performance is likely to decrease. The SVM had the best performance in independent test 

validation with 96.33% accuracy on the independent testing (MLP = 96.12%, PRBF = 94.38%). 

Furthermore the performance of the SVM was superior to both MPG and both ANNs for the 

external validation set with an average MC rate for MLP = 6.1% and PRBF = 7.5% whereas the 

SVM MC rate was 2.9%. Assuming that the external test solutions were homogenous the variance 

between classified results should be minimal hence, the variance of correct classifications (CCs) 

was  used as an additional indicator of classifier performance. The SVM demonstrates the lowest 

variance for each of the external validation solutions (average σ2 = 31479) some 50% lower than 

that of MPG. As a conclusion to the development of the classifier, a user friendly software system 

has been developed to allow construction and evaluation of multiclass SVMs for use by FCM 

practitioners in the laboratory. SVMs are a promising classifier for QDEMs that can be rapidly 

trained and classifications made in real time using standard FCM instrumentation. It is hoped that 

this work will advance SAT for bioanalytical applications.  
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ANN artificial neural network RNA  ribonucleic acid 

ASO allele specific oligonucleotide S specificity 

ASPE allele specific primer extension SAT  suspension array technology  

  SEM scanning electron microscope 

CCD charged couple detector SERRS surface enhanced Raman spectra 

cDNA complementary DNA SMO sequential minimal optimization 

CC rate correct classification rate SNP single nucleotide polymorphism 

CoeffV coefficient of variation  SSC side scatter 

CV cross validation SV support vector 

cvacc CV accuracy SVM support vector machine 

DNA  deoxyribonucleic acid testacc test set accuracy 

ECOC error output coding TN true negative 

FCM flow cytometry  TOPO trioctylphosphine oxide 

FCS flow cytometry standard TP true positive 

FITC fluoroscein isothiocyanate trainacc train set accuracy 

FN false negative TSC the SNP consortium  

FP false positive YAG yttrium aluminium garnet 

FSC forward scatter σ
2
 variance 

FWHM full width half maximum   

HIV human immunodeficiency virus   

HLN hidden layer node   

HT heat transfer   

IQR interquartile range   

LDA linear discriminant analysis   

LSC laser scanning cytometry   

LVQ learning vector quantisation   

MC rate misclassification rate   

MLP multilayer perceptron   

MPG multiparameter gating   

MS mass spectrometry   

ODE octadecene   

OLA  oligonucleotide assay   

OVO one versus one   

OVR one versus rest   

PCA principal component analysis   

PCR polymerase chain reaction   

PLSDA partial least squares  
discriminant analysis 

  

PMT  photomultiplier tube   

PRBF probabilistic RBF   

QD quantum dot   

QDC  quantum dot corporation   

QDEM quantum dot encoded microsphere   

R sensitivity   

RBF radial basis function   

RF radio frequency   

RFID radio frequency identification   
 tags   

RMP Recurrent multilayer perceptron   
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1.1 Introduction 

 
The completion of the human genome sequence in 2001 has heralded a new era in the 

biosciences [1, 2]. In the “post genomic age” a molecular systems biology approach 

investigates basic dynamics, feedback control loops and signal processing mechanisms 

underlying cell function through the analysis of genes, proteins and a myriad of other 

molecules. The knowledge gained through these experiments is expected to impact many 

areas of biological science from basic research to medical applications. The availability 

of cost effective, high throughput analytical platforms for the detection of large numbers 

of diverse biochemical constituents present in a cell is the rate limiting step in large scale 

population studies where large numbers of samples are required [3]. Continual 

development of laboratory instrumentation and production of rapid and economically 

viable “point of care” platforms for genomics and proteomics is essential for the 

application of such knowledge in research and the clinic [4]. 

 

Suspension array technology (SAT) has emerged as a potential successor to the 

microarray as a multiplexed analysis platform for applications including single nucleotide 

polymorphism (SNP) genotyping, gene expression analysis and protein assays. For the 

analysis of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) encoded 

microspheres are conjugated to an oligonucleotide, followed by hybridisation to 

amplified nucleotide. By assigning each microsphere a unique identifying signature 

hundreds or thousands of analytes can be measured simultaneously and the identity of the 

target can be determined by “decoding” the micropshere. The level of multiplexing for a 
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single sample depends on the coding scheme employed. Identification of the 

microspheres and detection of hybridisation via a reporter can be measured at rapid rates 

using a flow cytometer (Figure 1). 

 

In comparison to microarrays, suspension array technology is relatively inexpensive, 

statistically superior, with improved hybridisation kinetics and increased flexibility in 

array specification [5, 6]. The limitations of sample number for SNP genotyping analysis 

seen with microarrays are therefore negated. Commercial suspension technology 

platforms such as the Luminex system utilise a dual organic dye microsphere encoding 

scheme offering 100 spectrally distinct microspheres. Various applications including SNP 

genotyping, gene expression and protein analysis have previously been reported using 

this system [7]. However Tsuchihashi suggested that the throughput of the Luminex 

system is limited in terms of multiplex capacity, and the possibility of increasing the  

multiplex beyond current levels is limited [8].  

 

Fluorescent nanocyrstals or quantum dots (QDs) when used in optical (fluorescent) 

encoding increase the encoding capacity and promise to extend suspension array 

technology to the levels of multiplexing possible with high density microarrays. The 

inherent advantages of QDs (chapter 2) allow flow cytometers currently available in a 

wide range of locations including hospitals and universities to be used for detection.  

 

It has been suggested that up to 40,000 QD encoded microspheres are practical [9], the 

identification of such numbers of multicolour microsphere subpopulations from flow 
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cytometry data using current methods may not be straightforward. While polychromatic 

flow (8 or more colours) cytometry is advancing rapidly concerns exist that using 

standard software tools for data analysis lags behind assay chemistry and instrumentation 

[10]. Attempts at QDEM classification have previously been made using a modified flow 

cytometer [11], however the utilisation of existing FCM instrumentation currently found 

in laboratories is advantageous. 

 

The motivation behind this work is the development of novel data analysis techniques 

and dedicated software for nanocyrstal encoded microsphere identification in flow 

cytometry improving on current methods. It is hoped that the methods developed during 

the course of this work will contribute to the development of suspension array technology 

as a high throughput analysis platform for genomics and proteomics by providing robust 

data analysis routines for such experiments. The following page gives a general overview 

of each chapter contained in this thesis.  
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1.2 Thesis overview 

Chapter 2 provides a detailed description of SAT including fluorescent encoding 

strategies, micropshere manufacture, detection platforms and applications in genomics 

and proteomics.  

 

Chapter 3 outlines the fundamentals of flow cytometry instrumentation and acquisition of 

the data used throughout the thesis. The limitations of current microsphere identification 

methods are exposed and the case for more sophisticated multivariate classification 

algorithms presented. 

 
Chapter 4 describes the development and implementation of a supervised learning 

method, support vector machines. The design and evaluation of the system is discussed 

and compared to the methods used in chapter 3. 

 

Chapter 5 An alternative learning algorithm was also applied to the dataset for 

comparison to the support vector machine. Two artificial neural network designs are 

implemented for comparison to the SVM and the optimum classifier determined. 

 

Chapter 6 discusses the optimum data analysis method and a software program for 

QDEM classification utilising the optimum final classifier is presented. Finally the 

implications of this research and future recommendations are also discussed. 
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2.1 Overview  

 
In this chapter suspension array technology is introduced and the potential of the 

technique highlighted (section 2.2). Microsphere encoding schemes (section 2.3), 

manufacture (section 2.4) and detection platforms (section 2.5) are subsequently 

described. Recent examples of SAT applications in the literature are also discussed 

(section 2.6), finally the aims and objectives of this research are presented (section 2.7). 

 

2.2 Introduction to suspension array technology  

Perhaps the technique that has had the most profound effect on modern molecular 

biology is the planar microarray allowing the interrogation of tens of thousands of genes, 

even whole human genome analysis in a single assay. From their beginnings as an 

electropheretic technique with dozens of targets, microarrays have progressed rapidly 

through the development of more sophisticated manufacturing techniques, parallel 

processing and simpler detection methods to the high density microarrays in use today. 

Complementary DNA (cDNA) microarrays were first applied to quantitative gene 

expression analysis of two cell states [12] and applications have expanded to include SNP 

genotyping, protein binding, DNA mapping, protein DNA interaction and epigenetic 

studies [13]. 

 

In nucleic acid analysis, each spot on the microarray  (a slide composed of a non-porous 

substrate such as glass or silicon) contains a target specific capture molecule, e.g. 

oligonucleotide probe. Hybridisation with fluorescently labelled target moieties is carried 
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out in chambers allowing control of the assay conditions to optimise complementary 

sequence binding and minimise non specific interactions. Once the reaction is complete 

non-specific targets are removed by washing and the fluorescence signal of each spot 

quantified using a confocal scanner or charged couple detector (CCD) camera [14, 15]. 

For example, in gene expression studies RNA is extracted from cells, reversed 

transcribed to cDNA, labelled with two organic dyes and attached to the surface of the 

microarray. The fluorescent readings from the array are measured and the ratios of the 

two dyes indicate differential transcript production [13]. 

 

Suspension array technology has recently emerged as a viable alternative to the 2D array 

for a range of applications in genomics, proteomics and drug discovery. In a SAT assay 

microparticles or microspheres act as solid supports for target specific receptor 

molecules, analogous to a spot on a microarray. Through precise control of characteristics 

such as size, shape, and fluorescence each microsphere batch is assigned a unique signal 

analogous to a barcode for the receptor molecule (section 2.3). In comparison to 

microarrays where the identification of each target is achieved through spot position on 

the planar surface (positional encoding), SAT identification is achieved through the 

measurement of identifying signals of the microsphere supports in solution. The first 

encoded microsphere based “liquid arrays” were described in the 1970s through the work 

of Fulwyler and Horan et al. [16, 17]. The multiplexing capacity of early microsphere 

assays was restricted as microspheres were differentiated by particle size (scatter 

measurements) and therefore applications were limited.  
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Optically encoded microspheres developed by the Luminex Corporation called the 

FlowMetrix system [18] increased multiplexing capacity to acceptable levels for 

bioanalytical applications providing the catalyst for renewed focus on SAT and detection 

instrumentation (section 2.5). The combination of uniquely encoded microspheres in a 

single experiment allows a 3D array to be formed free from the constraints of the planar 

surface leading to significant advantages over microarrays in terms of manufacture, 

application and detection [19].  

 

In microarray manufacture the number of arrays produced at any one time is limited, 

microspheres however can be prepared individually at concentrations of up to 107 

particles/ml from which thousands of individual arrays can be prepared [6]. Each assay is 

therefore flexible in that modifications to the array can be made simply by adding or 

removing microspheres. Customisation of SAT experiments is inexpensive as the only 

additional cost is the capture molecules.  

 

The total sample volume required is also decreased for SAT assays. Fuja et al. reported 

for gene expression analysis only 2µg of RNA was required without amplification of 

reverse transcribed cDNA, sample volumes for planar based experiments are typically 

>10 µg [20]. Xu et al. also reported a reduction in sample volume required for bead based 

SNP genotyping, here 1ng of genomic DNA was sufficient for polymerase chain reaction 

(PCR), substantially less than other multiplexed assays [9].  
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SAT reaction speed is greater than that of microarrays as reactions are carried out in 

solution. SAT solution phase kinetics are an order of magnitude greater than that of mass-

transport limited kinetics of probes attached to a planar surface. Diffusion of molecules to 

the surface limit planar arrays, SAT reaction rates have been shown to be greater than 

that of planar arrays, barring steric hindrance in probe-target hybridisation, with the 

efficiency approaching that of unbound complimentary oligonucleotides [6]. Furthermore 

Eastman et al. reported that hybridisation for SAT can be completed in 1-2 hours, at least 

an order of magnitude faster than for microarrays [21]. 

 
Table 1 Basic comparison of microarray (150µm diameter spots) to microspheres (2µm diameter). 

Adapted from [22]. The number of individual microspheres in a SAT assay allows the measurement 

of a number of replicates for each probe increasing statistical confidence in results over those of 

microarrays.  

 

 Element surface  

Area (µm
2
) 

Total array  

Elements  

Total target area  

(cm
2
) 

Microarray 17691 15000 2.7 

Microspheres 12.6 877,000,000 111 

 

While there can be no doubt that microarrays have enabled the rapid acceleration of data 

collection and interpretation, questions have arisen regarding the quality of these results 

[23]. Yu et al. noted that the number of false positive results, even in microarrays 

prepared in-situ is often high [24]. With the rapid analysis rate of SAT, 50 to 100 

replicates per target per well could be possible providing greater statistical confidence in 

results (Table 1). Also each microsphere can be analysed individually improving quality 

control, negating the chip to chip variations associated with microarrays, and increasing 

the signal to noise ratio [22].  
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Detection of microspheres using FCM enables even greater gains in throughput in 

comparison to microarrays. Developments in FCM signal processing, sample handling 

and delivery have the potential to allow analysis rates of 100,000 particles sec-1 [6]. FCM 

can distinguish between free probes and those bound to particles, thus washing steps can 

be reduced or discarded completely [23]. 

 

Recent applications highlighting the potential of SAT are detailed at the end of this 

chapter (section 2.6) allowing the reader to become familiar with encoding strategies, 

bead synthesis (section 2.3 and 2.4) and related instrumentation (section 2.5). A basic 

overview of general steps of a SAT assay is shown below (Figure 1).  

 

 

 
 

Figure 1 Stages of a typical SAT assay. Firstly, a suitable coding scheme is chosen for the experiment 

and a number of sets of distinct microspheres are produced. Capture molecules are attached to each 

microsphere set (e.g. oligonucleotide). The next stage involves the hybridisation of the respective 

target molecules to the specific microspheres (e.g. PCR amplicons). The presence of the target 

molecule is confirmed via a hybridization signal, the identity of the micropshere (and therefore target 

molecule) elucidated using a detection platform (e.g. FCM). 
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2.3 Encoding schemes  

There have been examples of various types of encoding schemes proposed for SAT but 

by far the most popular is optical encoding. The likely reason for the success of 

fluorescent encoded microspheres is the suitability for detection with flow cytometry 

allowing high throughput detection (section 2.5.5 and chapter 3). Optical encoding theory 

(section 2.3.1) and novel methods for encoding using nanocyrstal flourophores (section 

2.3.2) are described. Non optical encoding schemes have also been proposed and are 

outlined below (section 2.2.3). 

2.3.1 Optical encoding 

As stated above, the most popular encoding scheme described in the literature is optical 

encoding via florescent dyes or nanocyrstals. Optically encoded SAT is achieved through 

controlled internal combinatorial doping with various chromophores at discrete 

concentrations (hence varying the intensity) for each microsphere and assigning a unique 

spectral barcode. Decoding of the micropshere signal allows each microsphere target 

molecule to be identified (Figure 2). Depending on the number of individual emission 

wavelengths and intensity levels used the multiplex capacity of a particular encoding 

approach can be calculated as follows:  

 

1mC N −=  (2.1) 

Where: 
C = number of codes  

N = number of intensity levels  

m = the number of emission wavelengths 
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Figure 2 Optical encoding of microspheres. Various emission wavelength flourophores are 

polymerised within a solid support (microsphere), producing an individual spectral code for each 

microsphere set. The presence/absence of a target molecule can be determined by decoding each 

microsphere signal. The multiplex capacity of an encoded library is defined by (Eqn 2.1). 

 

Encoding of microspheres with one or more organic dyes is the most popular form of 

optical encoding described in the literature. Early applications relied on “homemade” 

bead sets, however a range of multiplex sets are now commercially available. The 

Luminex platform represents the most well known example, combining dual organic dyes 

(emitting at 658nm and 712nm to minimise overlap between commonly used reporters) 

for its xMAP bead sets along with a dedicated detection system (section 2.5.3). 

Microspheres of 5.6 µm diameter are encoded over a range of 10 intensities producing up 

to 100 individual microsphere sets [25]. 

 

Beckton Dickenson (BD) Biosciences also produce 7.5 µm diameter beads doped with a 

single dye (emission @650nm) at various concentrations called the BD Cytometric Array 

system designed specifically for the FACScan and FACSCalibur flow cytometers (but 
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also compatible with any cytometer with a 488nm laser) [26, 27]. Several other 

companies manufacture a range of encoded microspheres including Spherotech, Duke 

Scientific and Bang’s Laboratories. Organic dye based beads have been successful in a 

range of applications including human immunodeficiency virus (HIV) analysis, thyroid 

hormone analysis [28] and infectious disease monitoring (section 2.7)[29]. 

 

While organic dye based methods have proved useful in a range of applications, the level 

of multiplexing has not reached the capacity required for post genomic technologies. The 

narrow excitation wavelengths of organic dyes increase the complexity of 

instrumentation; as more colours are added to the encoding scheme, additional excitation 

sources are required prohibiting expansion [8]. 

 

2.3.2 Nanocyrstal encoding  

Nanotechnology is concerned with the chemical and physical properties of materials with 

dimensions in the order of magnitude of one billionth of a metre. Nanoscience applies a 

new philosophy to manufacturing techniques implementing a bottom up approach, 

starting with a single atom and adding atoms until the design is complete. Researchers are 

rapidly developing nano-materials that will have a profound impact on all aspects of life 

over the next decade, none more so than biology and medicine [30]. The first product of 

the nanotechnology age with applications in the biological sciences is fluorescent 

semiconductor nanocyrstals or quantum dots. QDs have been under investigation since 

the 1970s, however their applicability to the life sciences had been limited until recent 

novel advances in surface chemistry and synthesis methods [31, 32]. 
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QDs are composed of semiconductor materials such as Cd and Se, synthesis is precisely 

controlled so that the QD dimensions are of the nanometre scale, typically 2-10nm [31]. 

When a semiconductor material such as CdSe exists at a size less than a critical quantum 

measurement known as the exciton Bohr radius, the quantum confinement effect occurs 

altering the electronic and optical properties in comparison to the bulk material. The 

quantum confinement effect is due to the uncertainty relation that causes the energies of 

an electron or hole to increase as the wave functions are confined to a smaller space [33]. 

Electrons are excited from the ground state to an excited state, when returning to the 

ground state energy is released in the form of photons (fluorescence). The further the 

electrons are from the ground state, the more energy is released and hence the further into 

the UV region the QD will emit. The size, and/or composition of the QD is directly 

proportional to the emission wavelength, so by varying the size or varying the synthesis 

material of a single QD from the same material a range of different coloured dots can be 

created [31]. The emission spectra of six sizes of CdSe QD are shown below, the 

adsorption spectrum is also shown (Figure 3).  

 

At present, organic dyes are the popular choice for fluorescence imaging and detection; 

however organic dyes have a number of drawbacks including rapid photobleaching, red 

tailing of peaks, narrow excitation spectra and broad emission spectra. QDs have been the 

focus of intense research recently due to the inherent advantages of QDs over fluorescent 

dyes, including size dependant emission wavelength, large excitation spectrum, narrow 

Gaussian emission spectrum (full width half maximum (FWHM) = 20 – 40 nm) and an 

extended photo-stable lifetime [31]. 
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Figure 3 Emission spectra of 6 different QDs. The absorption spectrum of the 510nm emitting QDs is 

shown in black. Adapted from [34]. In terms of SAT the biggest advantage of QDs over organic dyes 

is the relatively narrow emission spectrum (20 – 40 FWHM) and broad excitation spectrum which 

allows excitation of multiple QDs with a single laser.  

 

 

The current cost of QDs for encoding has been considered a limitation. QD synthesis 

methods currently produce milligram batches requiring expensive chemicals. In Yu and 

Peng’s synthesis method, 90% of the cost of QD production is attributed to the solvents 

trioctylphosphine oxide (TOPO) or octadecene (ODE) in which the QDs are ‘grown’ 

[35]. Recent work by Asokan’s group demonstrated that the organic solvents could be 

replaced by heat transfer (HT) fluids in the manufacture of CdSe QDs.  The findings of 

the study demonstrated HT fluids were viable alternatives, it was also demonstrated that 

during the synthesis of smaller QDs the HT fluids were superior. The group concluded 

that the cost of QD production could be decreased by ~80%, hence this advance should 

accelerate uptake of QD technology within the community [36].  
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QDs have the potential to replace organic dyes for optically encoded SAT and QD 

encoded microspheres are currently gaining popularity for such applications (Figure 4). 

The broad excitation and relatively narrow emission spectrum of QDs require single laser 

excitation, decreasing detection instrumentation complexity when additional colours are 

added to the encoding scheme; furthermore there is reduced overlap between fluorescent 

emission spectra. The photostability of QDs also allow more reproducible quantitative 

results in comparison to organic dyes. These advantages significantly increase the 

multiplex capacity beyond that of organic dyes. Considering Eqn 2.1 (page 12), the use of 

QDs expand this capacity to that required for large scale genetic analysis, realistically 5-6 

colours could be used and 10,000-40,000 unique codes may be produced [37] allowing 

the multiplexing levels common with high density microarrays to be achieved.  

 

 

 

Figure 4 Fluorescent micrograph of CdSe/ZnS QDEM. The microspheres are doped with QDs 

emitting at 484nm,508nm,547nm,575nm and 611 nm [37]. 
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2.3.3 Non optical encoding schemes  

As stated above, the resurgence of interest in SAT was primarily due to fluorescent 

encoding strategies. While the focus of this work is on optical encoding, alternative 

coding schemes have been previously demonstrated and are described here for 

completeness.  

 

Physical encoding relies on the measurement of physical characteristics of particles such 

as size. The earliest examples of microspheres relied on decoding the scattering 

properties of various sized microspheres [17]. Benecky et al. described the detection of 

hepatitis B surface antigen using a multiplex bead library distinguishable by particle size 

through the measurement of scattered light. Identification was possible when each 

particular bead had 0.1 µm difference in bead size. The group used the sandwich assay 

format and upon presence of the required antibodies aggregates formed, changing the 

scatter signal [38]. Particle shape is also employed by 3D molecular sciences; however 

this encoding scheme is not suitable for high multiplex levels but can be combined with 

other encoding schemes to increase multiplex capacity. 

 

Raman encoding of microspheres has previously been reported. Such methods rely on the 

surface enhanced resonant Raman spectra (SERRS) effect to achieve the ultrasensitive 

measurements required. When a molecule is in close proximity to a fractally rough 

colloidal metal such as gold or silver and if the incident light is resonant with the 

molecule and plasmon of the metal, the SERRS effect is observed. The encapsulation of 

gold particles in silica has been shown to overcome problems with interference between 
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the molecules and the metal, enhancing the signal by a factor of 1013 – 1014 [39]. Mirkin 

et al. have shown the effectiveness of the technique to be suitable for multiplex analysis 

of oligonucleotides [40]. The combination of infrared and Raman probes to encode 

microspheres is also a possibility. Fenniri et al. created 24 unique coding signatures 

through the polymerisation of styrene and alkyl styrene monomers suggesting further use 

for combinatorial libraries [41]. Doering and Nie state that while these Raman and 

infrared encoding can be used in a multiplex format they suggest the spectral decoding 

may be limited [39], however recent work has shown that the discrimination of Raman 

probes is possible using a modified flow cytometer and principal component analysis 

(PCA) [42, 43].  

 

Graphical encoding involves the classification of shapes; akin to supermarket barcodes.  

The creation of microbarcodes has been achieved by fusing blocks containing rare earth 

glasses (chosen due to narrow FWHM and large quantum efficiency) in a specific pattern 

on glass ribbons. Each microbarcode could be distinguished using a UV lamp and optical 

microscope or laser scanning cytometry (section 2.5.1). The authors hypothesised that up 

to 1 million combinations are possible. To date this method has been demonstrated with 

an assay to distinguish between human and microbial DNA [44]. Graphical encoding can 

also be achieving using striped cylindrical metal nanorods or nanobarcodes, formed by 

the deposition of gold and silver onto mesoporous aluminium films. 100 different strip 

patterns were created that could be reasonably identified using an optical microscope. 

Chemical modification of the surface for biofunctionality was also demonstrated [45]. 
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Electronic encoding of microspheres has also been reported. The first example employed 

a semiconductor radio frequency (RF) device (analogous to radio frequency identification 

tags (RFID)) enclosed in chemically inert layer. Each of the radio device containers was 

assigned a unique frequency code and formed the building blocks of the microsphere 

codes. Decoding of the micro-transponders was achieved using a custom built radio 

frequency memory retrieval device. These types of codes offer high levels of 

multiplexing. A major drawback cited is the large size of the microspheres, although 

research is progressing toward the development of smaller RF devices. Miniature 

electronic transmitters use an integrated circuit connected to a photovoltaic cell and 

antenna. Each of the microspheres is decoded using capillary electrophoresis with laser 

activated code transmission [46]. 

2.4 Microsphere synthesis, encoding and bio-conjugation  

 
The production of optically encoded beads has three phases; the solid 

support/microparticle must be manufactured, usually from polymers such as polystyrene, 

Latex or methylacrylate. The microspheres must also be doped with the dye of choice 

(organic or nanocyrstal), and the target specific capture molecule attached. Optically 

encoded microsphere quality depends on a number of factors including the size range, 

stability, uniformity and the ability to retain the fluorescent dye. It is also important to 

minimise the surface texture in order to reduce light scatter. Recently there has been an 

increased focus on the methodology required to create large quantities of microspheres 

economically.  
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The drop by drop method as its name suggests produces each micropshere sequentially. A 

number of different variations of this method can be found in the literature such as the 

injection of the polymeric solution through a needle, when the polymer leaves the needle 

and enters the stabilising fluid flowing past the needle tip [47]. Yi et al.  replaced the 

needle with a capillary tube (Figure 5) [48], while Takeuchi et al. developed a 

microfluidic device to control droplet formation [49].  

  
Figure 5 The formation of monodisperse microspheres via drop by drop process [48]. Microspheres 

are formed upon the ejection of droplets from the capillary tube aqueous phase to an oil based phase 

where spontaneous formation of microspheres occurs. Variations of this process involve the 

replacement of the capillary tube with a needle or microfluidic platform. 

 
Microspheres can also be formed simultaneously, using solvent extraction/evaporation 

principles. These techniques were found to be unpredictable in terms of particle size and 

homogeneity of the populations. Moreover, simultaneous bead formation using this 

method is unsuitable for producing large quantities of microspheres economically [50]. 

Laminar jet disintegration techniques again form microspheres simultaneously; the jet 

breaks up into uniform droplets due to capillary instability or oscillatory stimulation. 

These jet based techniques despite perfect size distribution are unable to produce 

microspheres below 25µm. Martin-Banderas et al. overcame this limitation by 
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application of a flow focussing technique to produce a microjet under controlled 

conditions [51]. Monodisperse microparticles with excellent size accuracy (~5µm) were 

produced. The group produced fluorescently encoded microspheres and suggested that 

the high versatility of the technique could be applied to bead based arrays.  

 

Figure 6 Scanning electron microscope(SEM) image of undoped microparticles produced by the flow 

focussing method [51]. The surface texture of these microspheres is “golf ball like” which may 

increase light scattering during detection. 

 
The majority of methods encode the microspheres post synthesis, however it is worth 

noting that attempts have been made at polymerising QDs directly into the microspheres 

during synthesis [52]. To date this method has only been achieved using specially 

designed polymers and QD-ligands, no biological applications have been reported. This 

method suffers drawbacks from the tendency of colloidal QDs to aggregate within the 

polymer. The most successful manufacturing methods employ a two stage process, firstly 

the microsphere are synthesised and flourophores are subsequently added. 

 
There are a number of methods for nanocyrstal encoding of microspheres. The deposition 

of nanocyrstals onto labelled polystyrene beads has previously been described using the 

so-called layer by layer method [53]. Polystyrene (PS) beads were used as the solid 

support, and several layers of QDs were built up in the surface via electrostatic 
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interactions. The number of monochromatic QD layers was precisely controlled to 

encode the beads. Once the layer by layer deposition of QDs was complete successful 

conjugation of anti-immunoglobulin G to the microspheres was achieved [54].  

 

Riegler et al. has described a method for encoding involving the immobilization of 

nanocyrstals within the microsphere interior by demixing two solvents (phase transfer 

process). The method described involves dissolving the QDs in a beads soluble solvent 

e.g. toluene, this solution is then added to an immiscible solvent e.g. water. Upon 

addition of the QDs they are transferred to the polymer phase (a process termed 

demixing) resulting in the nanocyrstals being incorporated throughout the microspheres 

via strong hydrophobic interactions. The method is similar to the swelling method (see 

below); however diffusion plays no part in the process. Using this approach fluorescence 

was found to be stable, with no surface texture and microspheres were amenable to 

bioconjugation [47]. 

 

Nanocyrstals may also be injected into porous microspheres as described by Nie et al. 

[55]. Initial attempts swelled the microspheres and allowed QDs to diffuse into the 

internal structure of the microsphere [37], it was noted however that QDs were only  

absorbed at the surface of the microspheres and they tended to leach from the beads in 

protein solution and buffer [56]. To overcome these limitations mesoporous polystyrene 

beads were added to solutions containing precise ratios of various QDs with different 

emission wavelengths, showing rapid absorption of QDs within the internal porous 

structure and immobilisation of QDs through hydrophobic interactions. Beads prepared 
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by this method showed no leakage of QDs when the process had been completed. FCM 

measurements showed the beads to be 100 times brighter and a observed 5 fold increase 

in encoding uniformity in comparison to non-porous microspheres. This method has 

produced by far the best results to date for uniform encoding and signal strength. Cao et 

al. suggested that these polystyrene beads may be stabilised by encapsulating each bead 

with a layer of silica [57]. The deposition of silica does not effect the bead signal, and 

increases the stability of the microsphere during the hybridisation step of an assay. 

 

The most popular approach for bioconjugation is the attachment of specific nucleic acid 

and protein molecules to carboxylated microspheres. Carboxyl groups on the microsphere 

surface are activated using 1-eythl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) 

transforming the carboxyl groups to amine reactive sulfo-NHS esters. Conjugation 

between the carboxyl groups and the amino modified nucleic acids (or protein primary 

amides) takes place forming an amide bond. A spacer may also be included which in 

some instances can increase the efficiency of hybridisation [9, 19, 57, 58]. 

2.5 Detection platforms  

2.5.1 Laser scanning cytometry  

Laser scanning cytometry (LSC), originally proposed to overcome the limitations of 

FCM for surgical oncology [59-61], has been proposed as an alternative detection 

platform for fluorescent microspheres [23]. This technique uses multiple lasers to scan 

over the imaging surface without the same focusing constraints as fluorescence 

microscopes. The technique is mostly used in SAT to decode graphical arrays however it 
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has also been proposed as an alternative to flow cytometry for optical encoding. Coleman 

et al. evaluated the possibility of combining optically encoded microspheres on a planar 

surface. LSC based optically encoded microsphere measurement however, suffers from a 

number of limitations. Firstly if the height of the imaging surface is not uniform some 

microspheres were not in focus thus requiring multiple images to be acquired. Secondly, 

the microspheres were prone to aggregation on the planar surface possibly due to 

convection currents which may cause the microspheres to move and aggregate [62].  

 

2.5.2 Microfluidic platforms  

 
Microfluidic devices are capable of high throughput analysis by means of parallel assays, 

multiplex capacity and automation. The utilisation of microspheres as solid supports with 

microfluidics is an attractive option. The surface area to volume increase offered by the 

microspheres improves the sensitivity of such assays due to the higher reaction 

efficiency. Currently microfluidic platforms approaches are however limited in 

comparison to FCM in terms of throughput and availability [54].  

2.5.3 The Luminex system 

 
The Luminex platform is a flow based system designed specifically for the analysis of 

dual organic dye encoded microspheres. Luminex has evolved from the FlowMetrix 

system described by Fulton and co-workers [18], FlowMetrix based microspheres were 

originally produced as a set of 64 distinct microspheres for a standard cytometer (BD 

FACScan). The system ran digital signal processing software for real-time analysis of the 
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microspheres. The main disadvantage of the FlowMetrix microspheres was the 

fluorescence overlap between the encoding dyes and reporter (hybridisation signal) 

molecule and compensation was required [63].  

                                                                                                  

 

Figure 7 (A) Luminex Flow System showing the dual laser configuration (YAG and red diode) [64]. 

Microspheres flow past the excitation point individually and spectral responses collected. (B) FL2 

and FL3 values for 64 different types of microspheres from the FlowMetrix system. Average of 300 

microspheres events per set used [18].  

 
To this end the dedicated flow based bench top system, the Luminex 100, was designed 

specifically for analysis of FlowMetrix microspheres. The Luminex system employs a 

635nm red diode laser to excite the microspheres and a yttrium aluminium garnet (YAG) 

532nm laser for improved reporter dye (R-phycoerythrin) excitation in comparison to a 

488nm laser. Using this system 100 unique codes can be created. The Luminex platform 

has been successfully applied in a range of assays including immunoassays [65-69], 

cytokine analysis [70-75] and nucleic acid analysis [7, 76-82] amongst others. 

 

(A) (B) 
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2.5.4 The Mosaic system 

 
The quantum dot corporation (QDC) one of the main suppliers of commercial QDs 

developed the Mosaic system (the world’s first gene-expression system based on Qbead 

(QDEM) technology) in collaboration with Matushita/Panasonic. The Mosaic gene 

expression assay system provided a complete and optimized platform of instrumentation, 

software and reagents for custom-multiplexed, high-content, and mid-throughput gene 

expression analysis from cells or tissues. The system contains an inverted epifluorescence 

microscope equipped with a 405nm laser and CCD detector; multiplex assays are carried 

out in multiwell plates, using image recognition software to decode the QDEMs. 

However CCDs suffer from low sensitivities compared to PMTs [23]. In 2006 the QDC 

was acquired by Invitrogen and since the takeover the Mosaic system seems to have been 

discontinued for reasons unknown.  

 

2.5.5 Flow Cytometry 

Flow cytometry is a well developed technology used for a wide range of analyses. FCM 

equipment is also available in a large number of locations including hospitals, 

universities and core laboratories and was the original detection platform for SAT 

analysis. The detection of QDEMs with FCM offers the possibility of expanding basic 

single laser FCM analyzer applicability (all QDs are excited by a single wavelength) to 

genomic and proteomic applications. FCM provides a well developed detection platform 

for high speed sensitive multiparameter measurements making it ideal for analysis of 

optically encoded microspheres [83]. 
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In terms of throughput FCM is unmatched. Even basic bench top analysers are capable of 

making highly sensitive measurements over four or more colours. Flow cytometry in 

conjunction with sophisticated sample handling techniques can yield a sampling rate of 

one 96-well plate/min. Using as little as 1µl sample volume, a 100plex assay can be 

completed in less than a minute 1 min, which translates to 120 million data points per day 

[6].  

 

This thesis concentrates on the combination of fluorescent encoding of microspheres and 

flow cytometry for high throughput genomic and proteomic assays. In chapter 3 FCM 

instrumentation is examined in detail (section 3.3) and the analysis of multicolour 

QDEMs with an 4 intensity/4 colour encoding scheme is described (section 3.4).  

 

2.6 Applications  

Bolstered by recent innovations, SAT is receiving increasing attention for high 

throughput analysis of genes, proteins and a host of other biomolecular species [19]. The 

following sections discuss examples of SAT applications in proteomics, SNP genotyping 

and gene expression. These are by no means the only applications of SAT assays 

however the following lists focuses on the applications which stand to gain the most 

benefit from the increased multiplexing analysis offered by fluorescent encoding 

QDEMs.  
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2.6.1 SNP genotyping 

SNPs are single base substitutions occurring within the general population at a frequency 

of greater than 1% and accounting for ~80% of the genetic variance between individuals. 

Located every ~1000 base pairs it is estimated that there are in excess of 3 million SNPs 

located in the human genome [84]. Mutations, particularly single nucleotide 

polymorphisms, are thought to play a role in an organisms response to drugs, bacteria, 

disease, viruses and toxins [3, 85], the understanding of these roles will impact a number 

of major areas.  

 

SNPs are providing avenues for novel agricultural research to increase rice, wheat and 

soya bean crop yield, decrease susceptibility to particular diseases and reduce the amount 

of herbicide applied [86, 87]. Microorganism SNP profiles are also important as 

demonstrated by recent outbreaks of E.coli as a result of mutations and the resistance of 

HIV to treatment due to a high frequency of mutation[88].  

 

The application of knowledge gained through SNP identification and relation to 

phenotype for a population has the potential to revolutionise areas such as medicine and 

drug discovery by moving away from the “one size fits all” philosophy to a more 

personalised therapy based on interindividual genetic variations i.e. “the right drug for the 

right patient” and it is this area known as pharmacogenomics which promises to yield the 

greatest impact on human life.  
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Pharmacogenomics aims to elucidate the genetic basis for disease susceptibility, variable 

drug response (efficacy) and adverse drug reactions (toxicity) [89].To this end the SNP 

Consortium (TSC) has been formed by the world leading pharmaceutical and academic 

laboratories to discover and map hundreds and thousands of SNPs with a view to 

identification of genes related to novel disease markers and drug targets leading to 

individual drug therapies and diagnostic tests [90].  

 

It is clear cost effective SNP genotyping platforms will be required to profile large 

numbers of patients and control DNA samples to elucidate the information required in 

order to draw associations for pharmacogenomic applications. Depending on the study 

~5000 tests may be needed to identify functional candidates. When performing a genome 

scan without prior functional evidence as many as 250,000 – 500,000 loci need to be 

analysed. The nature of association studies requires multiple testing on the same patient 

samples. It is estimated that 80% of all haplotypes occur in all populations with only 8% 

being population specific. Research carried out for the European and Japanese 

populations have demonstrated the need for 20% more SNPs to cover both populations 

versus one, research is planned for the African population and the amount of SNPs 

required to cover all three populations is expected to increase. Moreover the integration 

of this technology with various other types of ‘omic’ data is critical in attaining 

maximum benefit from SNP analysis in medicine and drug discovery [89]. 

 

The analysis of single nucleotide polymorphisms has included methods such as single 

strand conformation polymorphism analysis (SSCP) [91-93], gel length restriction 
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fragment length polymorphism [94, 95], allele specific oligonucleotide (ASO) 

hybridisation [96], oligonucleotide ligation assay (OLA) [97] and allele specific primer 

extension assays (ASPE) [98, 99]. In terms of detection and readout of alleles from the 

methodologies above, a number of new technologies have been developed for 

discrimination of signals based on hybridisation or enzymatic cleavage, including mass 

spectrometry (MS), planar array based platforms [100-102] and SAT. Several studies 

have reported the suitability of microsphere based assays for SNP genotyping citing rapid 

data acquisition and excellent sensitivity. SNP assay formats have largely taken the route 

of OLA or single base chain extension [25]. The first combination of SNP genotyping 

and multiplexed microspheres was described in 1997 by Fulton et al. using 16 sequence 

specific oligonucleotide probes and demonstrated the sensitivity, precision and speed of 

the assay format [18].  

 

More recently a number of groups have demonstrated the effectiveness of optically (both 

organic dye and nanocyrstal) encoded microspheres as a detection platform for SNP 

genotyping. Ye and co-workers utilised ASPE for a multiplexed SNP genotyping study, 

with excellent correlation to that of sequencing. The authors also suggested that using a 

flow cytometer up to 30,000 genotypes could be analysed every eight hours [103], 

furthermore the group estimated that the cost per SNP is less than $0.20. Single base 

chain extension has also been detected using fluorescent microspheres. The potential 

throughput of the assay was estimated as 120,000 genotypes per day, however the cost 

was slightly higher [104]. 
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Luminex xMAP technology has been used extensively for SNP genotyping; Armstrong et 

al. developed and validated a 32-plex SNP genotyping assay for 8 different genes. Four 

different ASOs were used for each mutation and employed to detect the allele where the 

highest fluorescence for each of the four possible microspheres determined the genotype. 

A direct comparison of results with the TaqMan assay was carried out. The results of the 

39 genotypes were found to be in good correlation between both assays [58]. Numerous 

other examples can be found in the literature for organic dye encoded microspheres used 

for SNP genotyping including application for basal cell carcinoma [105] and cervical 

cancer [106]. 

 

QDEMs have also been applied to SNP genotyping. The most significant work (and the 

first to apply QD encoded microspheres to SNPs) to date was carried out by Mahoney et 

al. As a proof of concept the P450 gene family was chosen for study, due to its 

importance in drug metabolism and difficulty to genotype (due to the high degree of 

homology between members). QD encoded microspheres were found to highly accurate 

(100% concordant with DNA sequencing); furthermore the method also had a higher call 

rate (although it was suggested that this may have been due to PCR amplicons not being 

purified, suggesting that a PCR purification step maybe avoided when using 

microspheres). Also noted was the decrease in the DNA concentration required for the 

assay (1 ng Genomic DNA), substantially less than that required by other assays without 

direct amplification of the genomic strand. The group also confirmed the advantages over 

planar arrays stated above. Figure 8 below shows the methodology used [9]. 

 



Chapter 2: Suspension array technology 

 

Colin Clarke   Cranfield University 

 

33 

 

Figure 8 SNP system employed by Xu et al. PCR of the genomic DNA is carried out at various SNP 

loci, biotin labelled amplicons are hybridised to allele specific QD encoded microspheres with unique 

spectra. The presence of bound target is determined by presence of the reporter signal, streptavidin-

PE-CY5. Microspheres are identified using FCM [9]. 
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2.6.2 Gene-expression 

 
To date several reports have detailed gene expression studies using SAT. Fuja et al. 

determined the expression levels of four transcripts, BRCA1, MGB1, DLG1 and ACT1 

using SAT. Organic dye based microspheres were conjugated to transcript specific probes 

by covalent coupling. The results from the study were compared to quantitative real-time 

polymerase chain reaction (RT-PCR). The authors concluded that the results were 

concordant with RT-PCR [20] and multiplexed bead assays are a viable alternative to 

planar arrays for gene-expression profiling. In 2001, the beadsArray™ for the detection 

of gene expression (BADGE) was carried out on the Luminex platform; a decrease in 

hybridisation time over other assays was noted. The method also out performed 

quantitative RT-PCR in terms of multiplexing ability and the amount of RNA required 

[107]. 

 

Increasing the multiplexing levels of gene-expression profiling using SAT is crucial and 

to this end attention turned to QDEMs. The Mosaic Q1000 system was designed 

specifically for mid throughput gene expression analysis. In a recent study Eastman et al. 

used 8µm magnetic microspheres for convenience in sample preparation, liquid handling 

and reduction of the background signal. Specific nucleotides were attached to QDEMs 

were used to screen ~100 genes (455 are possible with the coding scheme used). 

Biotinylated cDNA was produced from RNA and hybridised to the microspheres, 

streptavidin coupled to an infrared emitting QD for hybridisation. The results of the study 

showed a high agreement with GeneChip microarrays and improved on results aqquired 

by the Luminex platform [108].  
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2.6.3 Proteomics  

 
Quantitative proteomics has been suggested as one area where multiplex microsphere 

libraries may be used to determine the amount and state of proteins in a sample. In 

comparison to ELISA based techniques which are carried out in microwell plates, 

microspheres act as the solid support for capture antibodies. The sensitivity of ELISA 

based assays is in the pg/ml range using high affinity monoclonal antibodies and is easily 

automated [19]. The large sample sizes required for microplate based methods, led to the 

application of microarray-type techniques. Capture antibodies are spotted onto glass 

membranes and glass slides. In terms of protein concentration the best results have been 

observed using the sandwich assay design. The reproducibility and reliability of 

microarray based ELISA has not reached the clinical level thus far however and [109] 

bead based multiplexing assays have been shown to be a viable alternative to slide based 

methods for highly parallel analysis.  

 

The earliest examples of microsphere based sandwich assays (Figure 9 B) concentrated 

on the detection of multiple cytokines using the FlowMetrix system. Using this method 

Carson et al. reported that the FlowMetrix assay overcame significant variation from 

experiment to experiment and also plate to plate variation observed with ELISA assays 

[110]. 
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Figure 9 Example of protein SAT assay chemistry and detection. (A) Antigen conjugation for 

analysis of blood and plasma antibodies. (B) Sandwich assay design. Adapted from[25].  

 
 
Alternatively the antigen can be conjugated to the beads for the analysis of antibodies in 

blood and plasma (Figure 9 A). For this assay the antigen is immobilised onto the 

microsphere and a labelled class or isotope specific antibody is used to report the 

presence of the analyte [19]. Applications include cryptosporidium antibodies in serum 

and oral fluids [111] showing good correlation when compared with an equivalent ELISA 

assay. McHugh et al. also applied the technique to the detection of antibodies to 

cytomegalovirus and herpes simplex virus [112].  

 

Encoded microspheres have also been applied to the study of carbohydrate-protein 

interactions. An optically encoded microsphere is conjugated to a unique carbohydrate; 

the microspheres are then incubated on a randomly ordered fibre optic array. The assay 

allowed for the simultaneous measurement of carbohydrate binding proteins [113].  

 

 

 

 

 

(A) (B) 
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2.7 Thesis aims and objectives 

 

It is clear that SAT has a great deal of potential in the analysis of genes and proteins for 

post genomic applications. In order to perform the applications described in the previous 

sections, particularly SNP genotyping and gene expression analysis at microarray 

throughput levels an alternative to organic dyes must be found. QDs are an excellent 

candidate for this role, due to single wavelength excitation and relatively narrower 

emission peaks. The inherent advantages of QDs over organic dyes allow the 

multiplexing capabilities of such assays to be extended. Current manufacturing processes 

have progressed sufficiently enabling the production of bright, stable and reproducible 

optically encoded microspheres.  

 

FCM was chosen as the detection platform for QDEMs allowing sensitive measurements 

of multiple fluorescence channels in high throughput. These fluorescent nanocyrstals are 

naturally extendable to basic FCM bench top systems however the process of decoding 

highly multiplexed SAT libraries may not be straightforward on current FCM equipment. 

As the number of unique microspheres increases and additional emission wavelengths are 

added to the coding scheme the classification of individual microspheres becomes more 

difficult as the number of fluorescent parameters to consider increases. 
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This work aims to investigate a number of classification schemes for the identification of 

QDEMs from FCM data. A commonly used method, MPG is evaluated in chapter 3 

followed by the development of supervised learning models. Support vector machines 

(chapter 4) and artificial neural networks (chapter 5) were selected due to their suitability 

for multiparameter data, high generalisation ability and previous success in the field 

(section 4.2.3 and section 5.2.2). The accessibility of these techniques to the community 

is also of considerable importance as such algorithms are not included at present with 

FCM software. 

 

The main objectives of this thesis are:  

 

• To determine the optimum classification method for microsphere identification 

for a QDEM FCM dataset obtained using a flow cytometer representative of those 

found in research laboratories and the clinic.  

• The following techniques were optimised for the data and the most suitable 

methodology chosen: 

o Multiparameter gating            

o Support vector machines         

o Artificial neural networks        

• To develop a user friendly interface to carry out the most suitable method while 

also providing common FCM software functionality (chapter 6), for the benefit of 

lab based researchers.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3: Flow cytometric analysis of nanocyrstal 

encoded microspheres. 
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3.1 Overview 

The focus of this chapter is to illustrate flow cytometer instrumentation, describe the 

acquisition of the datasets used throughout this thesis and to evaluate current encoded 

micropshere identification methods. The chapter is split into two distinct sections 

beginning with a brief introduction to general flow cytometry (section 3.2), FCM 

instrumentation and data processing (section 3.3). The second part of this chapter 

describes the flow cytometric analysis of a nanocrystal encoded library (section 3.4) and 

evaluation of a standard classification method - multiparameter gating - for the 

identification of QDEMs (section 3.4).  

 

3.2 Introduction 

Cytometry is loosely defined as measurement of the physical and chemical characteristics 

of cells. Flow cytometry is the process of measuring these characteristics for a fluid 

stream of cells or particles (the analyte) flowing through an instrument called a flow 

cytometer [114]. A flow cytometer enables multiple simultaneous measurements of light 

scatter and fluorescence at the individual analyte level at very rapid rates. Flow 

cytometers are subdivided into two categories, analysers and sorters; an analyser 

measures the properties of each of the cells in the stream, an optional sorting module may 

be present allowing separation of cells post analysis. (Sorters are not considered here, for 

further information see [114, 115]). 
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During measurement a laser beam is passed through a fluid stream containing the 

population of interest. Excitation of the analyte within the stream (sample core) results in 

a signal dependant on the properties of the analyte in question. The physical properties of 

a given analyte can be determined by measuring scattered light of two types. Side scatter 

(SSC), detected at ~90° to the incident light is proportional to cell granularity and the 

complexity of a cells internal structure (widely used in the differentiation of cells such as 

granulocytes). Forward scatter (FSC), is a measurement of diffracted light, measured via 

a photodiode at a small angle to the axis of the laser beam. Scattering is routinely used as 

a ‘trigger’ for cell sorting. Excluding clinical haematology, all FCM analysis employs the 

use of flourophores. The determination of non-physical characteristics of a cell may be 

elucidated through labelling with an organic flourophore (e.g. fluoroscein isothiocyanate 

(FITC)) attached to a carefully chosen primary or secondary antibody. In FCM 

experiments data is generally presented as histograms or bivariate histograms either as 

scatter, density or contour plots (see below). 

 

FCM is a well established analysis platform and has applications in a broad range of 

standard clinical diagnosis and research areas, ranging from DNA histogram analysis to 

determine ploidy (number of chromosomes in a cell), DNA index S-phase fractions for 

cancer diagnostics, immuno-phenotyping and of course SAT [116-120]. 
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3.3 Flow cytometer instrumentation 

3.3.1 Fluidics system 

 
The flow cytometer fluidics system orders the sample into a stream and transports it 

through the centre of the excitation or “observation” point. There are two types of fluidic 

design implemented in modern flow cytometers, the flow cell and stream-in-air. Bench-

top cytometers such as the Beckman Coulter EPICS XL use the flow chamber or cell 

design (Figure 10). All benchtop cytometers employ the flow cell design and are used in 

conjunction with a laser (or mercury arc lamp source) (section 3.3.2). For an excellent 

discussion of flow chamber design and stream-in-air flow systems see [121]. 

 

 
Figure 10 Flow cytometer flow cell, the sample is aspirated from the tube into the fluid stream where 

it is hydrodynamically focussed to the centre (core). The greater the sheath pressure the more cells 

pass though the laser at any given time. For micropshere analysis, the sheath fluid pressure is kept 

low in order to allow each bead to pass through individually [121]. 

 

Within the flow cell the sample is injected into a rapidly flowing fluid (sheath fluid). 

Principles of laminar flow keep the sample core separate from the sheath fluid by 
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accelerating the particles and restricting them to the centre of the core in a process known 

as hydrodynamic focusing. The pressure of the sheath and sample fluids is critical; 

sample pressure must always be greater than the sheath fluid pressure. A pressure 

regulator controls the sample flow rate by changing the sample pressure relative to the 

sheath pressure. An increase in the sample pressure increases the flow rate by increasing 

the width of the sample core allowing more analytes into the stream. However this may 

lead to more than one cell passing through the excitation point at any given time. 

 

Applications which use a high flow rate during analysis are generally used for qualitative 

analysis for instance immunophenotyping where ultra-high throughput is desired [122]. 

Lower flow rates are used for analysis requiring more precise measurements analysis e.g. 

DNA analysis [123] and SAT applications where a low flow rate is maintained to allow 

measurement of single microsphere events. During operation the fluidic system must be 

kept clear of debris and air bubbles to ensure the sample correctly intercepts the laser 

beam. As the sample core is hydrodynamically focussed toward the centre of the fluidic 

stream, the position of the sample within the core is a potential a source of excitation 

intensity variation [121]. 

3.3.2 Excitation 

Sample excitation is primarily achieved with a laser consisting of a cylindrical plasma 

tube filled with an inert gas such as argon. The primary beam of bench top flow 

cytometer is at 488nm, although some flow cytometers carry a secondary source usually 

either a red diode laser at 635nm or a UV mercury arc lamp at 375nm. The wavelength of 

the laser is monitored and kept constant by means of feedback circuitry. The alignment of 
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the laser is critical in FCM and must remain focussed on the sample core, in bench-top 

flow cytometers no adjustment is necessary as the laser is pre-aligned and fixed in 

position. The beam is directed through a spherical lens which causes the beam shape to 

become elliptical, before finally entering a focussing lens allowing the beam to intercept 

the sample core.  

 
Advances in laser technology have produced very stable lasers for flow cytometry in 

terms of output. Under light stabilized operation modes the laser can maintain an output 

within ± 0.5% during continuous extended operation. Arc-lamp excitation sources usually 

have an electronic feed back loop to correct for any instability. For the majority of the 

arc-lamp lifetime the lamp may maintain ± 0.5% stability however toward the end of its 

lifetime a larger variation in the intensity of the lamp is often observed [121].  

 

3.3.3 Optics and detection  

When a cell is passed through the laser excitation point the emitted side scatter (SSC) and 

fluorescence signals are routed to the detectors via a system of beam splitters and optical 

filters. Dichroic mirrors and lenses are used to direct light of a selected wavelength to a 

particular detector. For example a 560 shortpass (SP) dichroic mirror transmits light of 

less than or equal to 560nm, longer wavelengths are reflected at 45° from the angle of 

incidence[121]. In the case of the Epics XL dichroic lenses are used for this purpose, 

dichroic lenses are used to reflect light shorter than a specified wavelength (Figure 12). 

Photomultiplier tube (PMT) and photodiode (PD) detectors are the detectors of choice for 

FCM due to their high sensitivity. Optimisation of the detector for a particular 

fluorescence signal is achieved through the use of bandpass (BP) filters allowing only a 
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narrow range of wavelengths to reach the detector (Figure 11). Other filters which may 

be used with the flow cytometer are short-pass (SP) filters which transmit wavelengths of 

light equal to or shorter than the required wavelength. Long-pass (LP) filters allow light 

equal to or longer than the specified wavelength through. 

 
Figure 11 Examples of the filter and mirror that form the optical bench. The optical bench route SSC 

and fluorescent signals to the PMTs and PDs during FCM. 

 
Optical filters may also contribute to fluorescence, especially those made from glass. 

Large amounts of light from the excitation source scattered toward the collection optics 

can induce fluorescence from these filters, interfering with analyte measurements [124]. 

The performance of the filter system in a flow cytometer is a probability based function 

and hence there is always a possibility that an excitation photon may enter the detector 

and be mistaken for sample fluorescence. Careful design of the filter combination is 

required to minimize this potential source of variation. For example in a high efficiency 

light collection system, an extra dichroic mirror can be used to decrease the possibility of 

a 488nm photon entering the detector [125]. 
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Figure 12 The EPICS XL optical bench FCM configuration was used for all measurements taken 

during this thesis. Fluorescence is detected at 525nm, 575nm, 620nm and 675nm. Adapted from 

[126]. 

 
The orientation at which the excitation and light collection optics within a flow cytometer 

are held is termed the optical bench (Figure 12). Good design of the optical bench is 

essential to optimise the total amount of light striking the detector. The linear range of the 

optics is also important as there exists a dark current which will restrict the range and 

must be limited through bench design. The high throughput nature of flow cytometry 

means that each analyte is excited by the laser for a few microseconds, to obtain accurate 

results the maximum amount of light must be captured. Modern flow cytometers have a 

light collection efficiency of between 15%-25%, much improved in comparison to older 

instruments [125]. Good light collection efficiency may also lead to an increase not only 

in fluorescent light but also background and scattered light. It is desirable to reduce this 

background noise to a minimum and also to ensure that the increase in fluorescence does 

not saturate the detector, producing a non-linear response [125]. 
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3.3.4 Electronics  

Once light from an analyte is routed to the detector photons are converted to 

photoelectrons, creating an electrical current. The amount of photons generated by 

fluorescence emission is small and PMT dynodes amplify the signal through a number of 

internal gain stages, known as preamplifier gain (PDs generally have no gain and are 

therefore used for bright FSC measurements). The aim of the FCM electronics system 

attempts to maximise the signal to noise ratio i.e. only the photons resulting from the 

interaction of the sample and laser beam are collected. The PMT gain has been described 

as “the least noisy gain available” in the flow cytometer; therefore adjustment of the PMT 

voltages is generally preferable over amplifier gain.  

 

Conversion of the detector output current to voltage is achieved using a transimpedance 

amplifier producing a linear amplification of the signal. Following the restoration of the 

signal baseline (removal of stray light and dark current), a further programmable 

amplification stage allows measurements to be controlled by the operator for online 

histogram adjustment. In order to filter the non-sample signals a discrimination parameter 

is selected and a user defined threshold is applied. For example during DNA content 

analysis the discriminator is defined on the DNA parameter e.g. propidium iodide 

fluorescence, as the analysis measurement of non-nucleated cells is generally of little 

interest. Only when the signal exceeds this discriminator threshold is the sample event 

recorded. Following these operations a voltage pulse is produced, the height and area 

(integral) of the pulses produced are measured. Integration of the pulse width is carried 

out to account for large analytes in the flow cytometer (i.e. particles that are larger than 
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the laser beam width). Digitisation of the data is then carried out for conversion of 

analogue voltages to numeric values using an analogue to digital converter and stored in a 

flow cytometry standard (FCS) file (section 3.4.2). 

 

 

Figure 13 FCM electronics overview. The schematic shows the general FCM signal processing stages 

from when light enters the PMT detector until the sample measurements are written to FCS files. 

*PMT detectors also include an internal gain stage. 

 

The final part of signal processing is carried out on a PC for operations such as 

compensation (user specified correction for overspill between detectors with a correction 

matrix), linear to logarithmic amplification (conversion of linear signals to log signals for 

data display is achieved using a log look-up table with the  EPICS XL instrument) and 

data analysis/display (section 3.4.1) can be performed [127]. The sophisticated 

electronics of modern flow cytometers is unlikely to give rise to significant variation in 

results [125]. 
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3.3.5 The FCS filetype 

The FCS 1.0 format was developed by the Society for Analytical Cytology in 1984, 

necessitated by the need for a standard file format to allow FCM data acquired on one 

computer to be used with other types of computer systems. The FCS 1.0 format consisted 

of a four section file that formed the backbone for subsequent file formats (FCS 2.0 & 

FCS 3.0). The first section of an FCS file is always the HEADER segment and designates 

the FSC version of the file. The HEADER segment also contains the 8 byte offset values 

that defines the remaining file sections. The TEXT segment contains the experimental 

information including the instrument type, detector ids and acquisition time in the form of 

keyword value pairs. An example of a common keyword value pair in a FCS file is 

“$TOT/10000/”, the keyword is $TOT and the value is 10,000 – this specifies that a total 

of 10,000 events were recorded. 

 
The raw data from flow cytometry is stored in the DATA portion in one of four formats, 

binary, floating point, double precision floating point and ASCII, defined by the 

$DATATYPE keyword in the TEXT segment. The most common method of data storage 

is binary integers corresponding to the scatter and fluorescent measurements in columns 

and events stored in the order at which the analyte passes the laser beam known as a 

listmode file. In flow cytometry each measurement of an analyte is termed an “event”, 

with the cytometer outputting a 1 × p vector for p parameters (variables) when each 

QDEM is excited. A dataset is a collection of events from any given analysis, in our case 

a single QDEM population or a multiplexed solution of QDEMs. The ANALYSIS 

section is an optional post analysis portion containing the results of data processing and 

analysis with variables in keyword value format similar to the TEXT section [128, 129].  
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3.4 Application of a supervised FCM data analysis method for 

QDEM classification. 

This section discusses the suitability of a readily available method for subpopulation 

classification for the identification of QDEMs from a commercially available library. The 

acquisition of QDEM data using FCM and the application of MPG are outlined (section 

3.4.1 and section 3.4.2). Finally the performance of MPG for QDEM identification is 

discussed (section 3.4.3). 

 

3.4.1 Multiparameter gating. 

The majority of current FCM analysis is dependant on operator interpretation of results 

from one dimensional histograms or two dimensional scatter plots [121]. These data 

display methods are routinely used throughout FCM experiments from instrument setup 

and acquisition to publication [130]. The simplest type of data display for flow cytometry 

measurements are single parameter frequency histograms (intensity versus the numbers 

of events), which is used routinely in cell cycle analysis. A logarithmic x-axis over a four 

to five decade log scale allows populations with 10,000 to 100,000 fold differences in 

intensity to be displayed, e.g. immunophenotype analysis where a high dynamic range is 

observed. Linear scales are generally used for plotting FSC and SSC measurements. 

 
Bivariate histograms or two dimensional scatter plots are also commonly used to 

visualise FCM results (three dimensional plots are also possible but seldom used due to 

the danger of misinterpretation). The relative intensities of the two selected fluorescence 

and/or scatter parameters specify the x and y coordinates of the point on a plot - here both 
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the axes are logarithmically scaled. A limitation of the standard dot plot is that no 

information is provided as to the proportion of events lying in each subpopulation. An 

extension of the dot plot allows projection of the density of the subpopulations on the plot 

to highlight regions based on the concentration of events. Alternatively a contour plot can 

be produced where lines represent the density based elevation of points. An example of a 

dual parameter QDEM plot can be seen below (Figure 14) the dots are shaded in relation 

to the number of events present at each x y position.  

 
In flow cytometry the definition of a region around a cluster observed on a bivariate 

histogram of two parameters is termed a gate. Gating is essentially human supervised 

classification method (expert method) of subpopulation identification in FCM in that the 

user relies on prior knowledge of the system under measurement to define the regions on 

a 1D or 2D scatter plot. The definition of a subpopulation across multiple fluorescence 

detectors is known as multiparameter gating. MPG functionality is available in the 

majority of FCM software. The process of MPG begins with a series of bivariate 

histograms; the operator interprets these plots to manually define or “draw” the 

classification boundaries. In future analyses the gates are applied to unknown samples, 

events falling within a particular gate are classified with the designated label. The 

classification of fluorescently encoded beads has previously been achieved using MPG, 

although the libraries described were less complex than the QDEMs used in this study 

[131-133]. Each micropshere was analysed individually and a gate defined on each 

bivariate plot for the population, the process continued until all encoded microsphere 

regions had been defined. 
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In the work that follows the MPG method is employed for the recognition of a QDEM 

library with 20 individually encoded microsphere sets. The coding scheme employs 4 QD 

colours emitting at 525nm, 575nm, 620nm and 675nm. The concentration was varied 

over three intensity levels. Each class of microsphere was analysed individually on a 

standard single laser flow cytometer at 488nm and 1000 events acquired for each type of 

QDEM. Gates are combined on multiple parameters for each population individually by a 

flow cytometer operator. Once the gates are defined for each microsphere unknown 

solutions can be presented and the QDEMs present predicited. A set of microsphere 

mixtures containing randomly selected QDEMs were prepared to act as an external 

validation for each of classification methods. Current FCM software does not allow 

internal testing of gating accuracy as the method relies heavily on user interpretation.  

 
Figure 14 2D gating of nanocrystal microspheres. The complexity of the gating procedure is 

increased for each colour in the encoding scheme. The microsphere can be classified by their position 

on the bivariate histogram i.e. class 1 = R1 and class 2 = R2. Adapted from [133]. 

 
Note: An unsupervised clustering algorithm available in the Flojo FCM software suite 

was also evaluated. However all analyses using this software were unsuccessful in that 

the identity of clusters could not be established and the number of events per cluster were 

imbalanced. The details of this study can be seen in appendix 1. 
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3.4.2 Materials and methods 

A library of 20 carboxyl functionalised 5µM mesoporous methacrylate microspheres 

(Table 2) containing composition tuneable QDs (Cyrstalplex, Pittsburgh, USA) was 

analysed using FCM. For more information on QDEM specifications see appendix 3. 

Table 2 Specification of each of the 20 QDEM used in this study. The relative intensity of each 

micropshere is shown at each of the four possible wavelengths.  

 

QD -Emission Wavelength QDEM 

Code 525nm 575nm 620nm 675nm 

QD0000 0 0 0 0 

QD0001 0 0 0 1 

QD0003 0 0 0 3 

QD0010 0 0 1 0 

QD0011 0 0 1 1 

QD0100 0 1 0 0 

QD0101 0 1 0 1 

QD0110 0 1 1 0 

QD0111 0 1 1 1 

QD0202 0 2 0 2 

QD1000 1 0 0 0 

QD1001 1 0 0 1 

QD1010 1 0 1 0 

QD1011 1 0 1 1 

QD1100 1 1 0 0 

QD1101 1 1 0 1 

QD1110 1 1 1 0 

QD1111 1 1 1 1 

QD2100 2 1 0 0 

QD2200 2 2 0 0 

 
All data used in this study was acquired in the laboratory by Clair Gallagher. FCM was 

preformed using an EPICS XL (Beckman Coulter, FL, USA). The instrument was 

equipped with a 488nm air-cooled argon laser and the standard four colour filter set-up 

(525BP; 575BP; 625BP; 675BP). The EPICS XL uses digital signal processing (DSP) 

electronics negating log amplifiers for logarithmic amplification of signals, conversion of 

linear to log is achieved using a log look-up table. Fluorescence compensation 
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(mathematical correction for fluorescence crossover between PMTs in FCM) can be 

accomplished between any pairs of signals from the PMT, which is not possible with 

flow cytometers employing analogue electronics. Another unique advantage of the 

EPICS XL is the prism parameter, allowing automatic analysis and display of multicolour 

data when performing three or four colour analysis [114]. 

 
The instrument was calibrated using Flow-Check beads (Beckman Coulter, CA, USA) as 

per the manufacturer’s instructions. All FCM measurements were gated through the FSC 

and SSC channels and acquired without compensation. 3µl (1mg/ml) QDEM solution 

was suspended in 297µl of PBS pH 7.8. The solution was sonicated prior to aspiration. 

Shown below is the flow cytometer detector setup used during analysis (Table 3). 

Table 3 EPICS XL detector settings for each of the six measurement parameters.FSC = forward 

scatter. SSC = side scatter. FL1 = 525nm. FL2 = 575nm. FL3 = 625nm. FL4 = 675nm 

 Voltage Gain 

FSC 432 2 

SSC 39 10 

FL1 623 1 

FL2 730 1 

FL3 745 1 

FL4 876 1 

 
For each QDEM code in the library 1,000 events were obtained and stored in an 

individual FCS file. All parameter measurements were partitioned into 1,024 channels 

and recorded as dimensionless intensities. Each detected event is stored a 1 × p vector for 

p measurement channels. As the identification of the events in each FCS file were known 

these data are used to construct gates and as training data for the supervised methods in 

chapters 4 and 5. In order to perform external validation of each of the data analysis 

methods described in this thesis, additional mixtures of QDEMs independent of the data 
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used for classifier construction were analysed (Table 4). All MPG was carried out using 

FCS Express from De Novo software (http://www.denovosoftware.com/). 

Table 4 Composition of the multiplexed solutions (QDEMs included are shown). In total there were 

10 tests with various QDEM mixtures (chosen at random). This dataset was used as an  external 

validation of the classification methods described throughout the thesis. 500 events per QDEM in 

solution were recorded. 

 

Mixture # 
 

1 2 3 4 5 6 7 8 9 10 

QD0000 - - - - ���� - - ���� ����  - 

QD0001 - - - - ���� ���� - ���� ���� ���� 

QD0003 - - ���� ���� - - ���� - - - 

QD0010 - - - - - - ���� - - ���� 

QD0011 ���� - - - - ���� - ���� ���� ���� 

QD0100 - ���� - - ���� - - ���� - ���� 

QD0101 - - - - ���� - ���� ���� ���� ���� 

QD0110 ���� - - ���� ���� - - ���� ���� ���� 

QD0111 - - - - ���� - ���� ���� ���� ���� 

QD0202 - - ���� ���� - - - - - - 

QD1000 - - - - - ���� ���� ���� - ���� 

QD1001 - - - - - - - - ���� ���� 

QD1010 - ���� - - - ���� - - - ���� 

QD1011 - ���� - ���� - ���� - ���� ���� ���� 

QD1100 ���� ���� - - - ���� - - ���� ���� 

QD1101 - - - ���� ���� ���� ���� ���� ���� ���� 

QD1110 ���� - - - ���� ���� ���� ���� ���� ���� 

QD1111 - - - ���� - - ���� ���� ���� ���� 

QD2100 - - ���� - - - ���� - - - 

Q
D

E
M

 c
o

d
e 

QD2200 - - ���� - - - ���� - - - 

#Codes 4 4 4 6 8 8 10 12 12 15 

 

Using the external validation set described above requires the determination of the 

number of misclassifications and allows direct comparison between all classification 

methods to be drawn. The number of misclassifications for each mixture is calculated as 

opposed to the number of correct classifications as the identity of each event in the 

training is not known. While an event may have been classified as a QDEM added to a 

particular solution, there is no guarantee that the identified class is a true positive (TP). 

Hence, the number of misclassifications is a more reliable performance measure, as 

QDEMs included in the mixtures were known and therefore the false positive results can 
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be calculated. The misclassification rate (MC rate) is calculated as the number of events 

classified as those not present in a particular mixture as a percentage of total events 

classified in that mixture.  

 

However, when the number of QDEM types present in a single solution is large the MC 

results should be treated with caution as the probability of a false positive correct 

classification increases. To this end the variance of correct classifications was calculated. 

Assuming that each mixture solution of QDEMs was homogenous, there is expected to be 

some variation (instrumental and preparation of solutions) between the correct 

classifications in each mixture solution, a large degree of variation could be indicative of 

misclassifications between QDEMs present in the mixtures. Therefore, as a further 

measure of performance the CC variance (σ2) was calculated as follows:  

 

( ) 2

2
x

N

µ
σ

−
= ∑

 (3.1) 

 

Where: 

x = number of events classified for QDEMs known to be present  

µ = mean true positive events 

N = total number of classifications for events known to be present  

 

 

The calculation of the MC rate and CC variance and thus should allow the performance 

of each classifier to be determined - especially when the number of QDEMs in the 

mixture is large - to be elucidated more accurately.  
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3.4.3 Results and discussion  

Initial analysis of QDEM FCM data 

 
In total 19,796 events were obtained to characterise the library, only 796 events were 

obtained from the QD1100 microsphere most likely due to diminished stock solution 

concentration. Shown below are bivariate plots of the four channels for three QDEM 

subpopulations (Figure 15). The multiplex test samples were also analysed, 500 events 

per QDEM in each test were acquired.  
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Figure 15 Logarithmic bivariate plots of QD0101 (blue), QD0110 (black) and QD0111 (red). 
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A high coefficient of variation (CoeffV), a measure of the precision, was observed for 

each of the populations. While the populations CoeffVs were at the high end of 

acceptability the QDEMs used in this study are one of the few commercial nanocyrstal 

encoded libraries available and should stretch the performance of the standard methods 

and fully test the techniques under investigation in the following chapters.  

 

Closer examination of the data was conducted by means of a boxplot (Figure 16). 

Boxplotting is an informative display method for multiparameter FCM data. The median 

fluorescence intensity (MFI) of each flow cytometer channel is shown for each QDEM 

population. The boxplot also reveals the presence of outliers (events lying beyond 1.5 × 

IQR of the measurement channel) in each QDEM dataset. Outliers in the results were 

possibly due to inherent variation in the instrument, run to run contamination and/or 

errors in microsphere manufacture. The removal of these spurious events would have a 

beneficial effect on QDEM recognition methods; however the software from which MPG 

is applied have no means of outlier removal. Chapter 4 describes the implementation of 

an outlier removal algorithm.  

 

Overspill between parameters for the QDEMs (e.g. the QD1111 boxplot) is evident 

meaning the fluorescence is not uniform across all detectors. This result was expected as 

no compensation was applied to the results to correct for overspill. There is little 

variation in SSC and FSC measurements due to the application of a gate during 

acquisition to remove possible microsphere aggregates and doublets and damaged beads 

from the results.  
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Figure 16 Box and whisker plot of each QDEM FCM population (Table 2). The 25-75th percentile of 

the data is contained within the boxes; the median is represented by the horizontal axis. Outliers 

(beyond 1.5 × IQR) are represented by dots. Data is gated on FSC and SSC channels to remove 

malformed beads and aggregates. (FL1 = 525nm, FL2 = 575nm, FL3 = 625nm, FL4 = 675nm). 
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Evaluation of multiparameter gating 

The first of the classification methods, MPG (section 3.4.1), was employed to 

differentiate QDEMs from the multiplex testing set (Table 4). A combination gate was 

defined by manually “drawing” a gate around each of the individual QDEM 

subpopulations on bivariate histograms and then linking the gates over multiple 

parameters using Boolean logic (Figure 17). The FCSexpress FCM software suite was 

used to accomplish this task. To compensate for possible errors in MPG due to outliers 

the regions were manually tuned to attempt to select the QDEM gates that yielded the 

lowest misclassification on the training data. Defining the gates required for the QDEM 

library was a complex, subjective and time consuming process (~45 min), which 

increases exponentially as the numbers of codes are increased. These concerns would be 

exacerbated at higher levels of multiplexing with additional QDs and intensity levels. To 

assess the accuracy of MPG the multiplex QDEM solution data (Table 4) was presented 

to the combination gates.  

 

Shown below are the number of events recorded for each of the ten tests (an allocation of 

500 events per QDEM set), the first point to note about MPG classification results is 

there are more classifications made on the data than events recorded on the flow 

cytometer (Table 5). Thus certain events are classified as belonging to two or more 

populations. Even with painstaking adjustment in order to optimise the gates, the 

optimum regions for each QDEM were not defined. As stated above the MC rate was 

used to evaluate the results on the mixture solutions as the actual classes of events were 

not known.  
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Figure 17 Combination gating of QDEM library. Each of the twenty gates is set individually on each 

microsphere population. The gates were adjusted to give the best performance on each individual 

microsphere population. The population is shown above is QD1111, the empty gates were defined the 

other populations in sequence. Future mixed subpopulation FCM data can then be presented to the 

gates for classification.  
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Table 5 FCM analysis of QDEM mixture solutions using MPG. QDEMs present in each mixture are 

highlighted. The MC rate for each of the mixture solutions is shown and is a more appropriate 

measure for classifier evaluation in comparison to the correct classifications for reasons outlined 

above (section 3.4.2). The CC variance was also calculated. 

 

Mixture # 
 

1 2 3 4 5 6 7 8 9 10 

QD0000 7 25 0 5 610 148 10 599 357 79 

QD0001 0 3 1 1 232 362 3 345 265 535 

QD0003 0 0 559 608 0 0 523 0 0 0 

QD0010 0 24 0 8 6 38 489 10 11 330 

QD0011 558 3 89 95 0 568 0 363 419 488 

QD0100 137 517 0 129 585 7 11 446 126 410 

QD0101 223 1 0 174 1303 1 824 1069 1414 1287 

QD0110 387 17 0 366 531 1 4 440 450 420 

QD0111 172 0 0 122 1234 3 868 1090 1435 1418 

QD0202 27 7 210 275 0 33 0 29 35 70 

QD1000 0 145 27 0 0 551 519 330 0 446 

QD1001 0 7 0 0 0 5 0 2 311 364 

QD1010 2 531 0 25 1 510 61 8 16 450 

QD1011 1 516 20 361 0 466 0 432 660 510 

QD1100 310 242 0 13 270 444 40 267 369 357 

QD1101 137 15 0 326 453 615 304 633 589 636 

QD1110 542 26 0 128 533 689 351 943 792 857 

QD1111 83 0 0 484 91 115 272 702 606 698 

QD2100 0 0 472 0 0 1 533 1 0 4 

Q
D

E
M

 c
o

d
e 

QD2200 0 0 679 0 0 0 770 0 0 0 

# QDEM codes 4 4 4 6 8 8 10 12 12 15 

#Events 2000 2000 2000 3000 4000 4000 5000 6000 6000 7500 

#Classified 2586 2079 2057 3120 5849 4557 5582 7709 7855 9359 

#Correct 1797 1806 1920 2420 5481 4205 5453 7392 7667 9206 
CC rate (%) 69.4 86.8 93.3 77.5 93.7 92.2 97.6 95.8 97.6 98.3 

σ
2
 14565 19554 39602 14806 143543 10622 45276 77979 158699 110174 

MC rate (%) 30.6 13.2 6.7 22.5 6.3 7.8 2.4 4.2 2.4 1.7 

 
The MPG method performed poorly on the multiplex testing sets, there was a significant 

error for each of the first six sets with the worst multiplex mixtures identified as set 1 

where 30.6% of events were misclassified. The average MC rate for the 10 tests was 

9.7%. However the number of dual classifications was nearly 1900, reducing confidence 

in the classifications made at higher levels of multiplexing (tests 7 to 10). Furthermore 

the σ2 increases for these tests, a high degree of variance between correct classifications 



Chapter 3: Flow cytometric analysis of nanocyrstal encoded microspheres.     

 

Colin Clarke  Cranfield University 63 

suggest that false positive results are present (Figure 18) and the number of QDEMs in 

solution masked the performance of gating, (i.e. misclassified events are more likely to 

fall into a present microsphere gate as additional QDEMs are added). It is more likely 

that multiplex solutions 1-6 reflect the true performance of the classification method, the 

average MC rate for these solutions was 14.5%. 

3.5 Improving on MPG – the case for research 

The limitations of MPG were shown for the identification of QDEMs. The MPG 

accuracy was questionable for the mixture solutions (Figure 18) with an average MC rate 

of 9.7% observed. Results on the solutions containing 10 or more QDEMs where the MC 

rate decreases should be treated with caution as the variance between the correct 

classification increases.  
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Figure 18 Performance of the MPG for the ten mixture sets. The MC rate of the gating system for 

each test is shown in descending order. The average MC rate was 9.7%. The CC variance of 

classifications on solutions containing more QDEMs is increased suggesting misclassifications within 

these solutions.  
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Moreover a large number of dual classifications were observed, these were the result of 

classes lying on the decision boundaries (gates). The technique was also time-consuming, 

requiring the interpretation of a skilled operator; and there was no assurance that the 

optimum regions had been defined. 

 

When the number of parameters increases the number bivariate plots required increases 

exponentially and the interpretation of plots becomes more difficult. The classification 

accuracy of the MPG would decrease further, moreover MPG be would become even 

more complex and time consuming. Hence utility of graphical methods such as MPG in 

polychromatic FCM analysis of QDEMs is limited, and these methods are unsuitable for 

extension of encoded microsphere populations required for bioanalytical studies. It is on 

this rationale that this work is based; in the following chapters two supervised learning 

algorithms are applied to investigate accurate automated discrimination of QDEMs of 

single events in FCM to improve upon the performance of MPG.  

 

Recently a number of machine learning algorithms for multivariate pattern recognition 

have been applied for FCM subpopulation identification. The remainder of this thesis 

describes the construction and evaluation of two popular supervised learning methods, 

SVMs and ANNs. Such techniques would allow automation and optimisation of the MPG 

in multidimensional space, and remove the subjectivity of user defined classification 

boundaries. Moreover these methods would allow the majority of FCM instrumentation 

present in a wide variety of locations, such as the EPICS XL to remain viable for SAT. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 4: Support vector machines for the 

identification of QDEMs from FCM data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4: Support vector machines for the identification of QDEMs from FCM data. 

  
 

Colin Clarke  Cranfield University 66 

4.1 Introduction  

 
Chapter 3 demonstrated the need for improvement in current methods of QDEM 

classification. The overall aim of this research was the development of a rapid automated 

classification method for QDEMs overcoming the limitations of multiparameter gating 

and unsupervised methods. To this end, multivariate supervised techniques (such as 

SVMs and ANNs) offer a novel solution worthy of further investigation. In this chapter 

the theory of supervised learning (section 4.2.1), SVMs (section 4.2.2) and multiclass 

SVM implementations (section 4.2.3) are described. SVMs are used in a wide range of 

applications including bioinformatics and biospectroscopy [134-136], and several 

examples of such methods for the identification of subpopulations from FCM data are 

presented (section 4.2.4). The methodology for the construction and performance 

evaluation of an SVM classifier for QDEMs is presented (section 4.3) and the 

comparison of the SVM to MPG described in chapter 3 discussed (section 4.4). 

 

4.2 Support vector machines 

4.2.1 Supervised learning 

Supervised learning techniques are trained on previous examples with known 

classifications thus “learning” the underlying patterns within the data; such models are 

then applied to previously unknown examples in order to make a prediction. Pattern 

recognition models construct a classification rule from known examples (training data) to 

recognise unknown examples. Given a training set consisting of input and output pairs, 

( ) ( ) ( ){ }ii yxyxyxZ ,,...,,,, 2211= , the aim of training is to produce a function f  which maps 
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the input vectors Xx∈  to the corresponding class labels Yy ∈  to allow the prediction of 

unknown samples. SVM and ANN are examples of popular supervised learning 

algorithms, the following section details SVM theory while chapter 5 deals with ANNs.  

 

4.2.2 Fundamentals of support vector machines 

SVMs are a widely used supervised learning algorithm developed by Vapnik [137]. The 

popularity of SVMs stems from advantages such as the use of kernels for non-linearly 

separable data (known as the kernel trick), no local minima, sparseness of the solution, 

and capacity control (important for good generalisation) obtained by optimising the 

decision boundary in the margin between classes [136, 137]. SVMs have been shown to 

outperform similar supervised classification methods such as artificial neural networks 

and linear discriminant analysis (LDA) in many instances due to a high generalisation 

ability (ability to classify unknown samples) and robustness to high dimensional data 

[136]. 

 

In terms of classification, for a linearly separable two class problem with class labels +1 

and -1, SVMs locate a boundary of separation (hyperplane) to identify the two classes. A 

generalised hyperplane function is shown below (Eqn 4.1) [138].  

 

bxwxf +⋅=)(  (4.1) 

 

Where w  is termed the weight vector and b is the bias.  
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While SVMs share similarities with linear discriminant analysis and perceptrons which 

also aim to find the separating hyperplane between two classes, the use of simple 

hyperplanes in LDA and perceptrons is limited as a unique solution does not exist. The 

best separating hyperplane may not be found as there may be many hyperplanes that 

separate the data (Figure 19), decreasing the classifiers generalisation ability [136].  

 

Figure 19 Many hyperplanes can be located for any given dataset. LDA suffers from drawbacks in 

that the best decision boundary may not be found. SVM overcomes this through optimisation of the 

maximal margin hyperplane (see below). 

 

SVMs calculate the optimum hyperplane (maximal margin hyperplane) yielding the best 

generalisation, avoiding overfitting (memorising the training data, thus unseen examples 

may be misclassified) (Figure 20). The maximal margin hyperplane is determined from 

X  by minimizing the norm of w  by means of a constrained optimisation by 

minimisation of a quadratic function under linear equality constraints (Eqn 4.2) [136]. 

  

Minimize: 
2

2

1
w  

Such that:                                         ( ) ii bxwyi 1≥+⋅ for ,,....1 ni =  

 

(4.2) 
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Figure 20 Representation of the SVM solution applied to a linearly separable two class problem. The 

classes are shown as red diamonds and green circles. The hyperplane is shown as a dark black line. 

Support vectors (SV) (see below) for each class are shown as blanks shapes.  
 

  

Location of the maximal margin classifier alone does not take into account the training 

error of the dataset leaving the SVM susceptible to the effects of noise; as a result more 

robust margin methods that can tolerate noise, outliers and consider more training points 

apart from those on the margin were developed. The so-called slack variables and penalty 

parameter are introduced (Eqn 4.3) allowing the margin to be crossed creating a “soft” 

hyperplane. The penalty parameter C  punishes outliers during the training process and 

controls the trade off between training errors and model complexity. Slack variables, iξ  

are introduced to allow the margin constraints to be overcome during optimisation to 

avoid overfitting to noisy data [136, 137]. 

 

Minimize:  ∑
=

+
n

i

iCw
1

2
,ξ  

 

Such that:                                    ( ) ii bxwyi ξ−≥+⋅ 1  and 0≥iξ  for ,,....1 ni =  

(4.3) 
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The resulting decision function is illustrated below (Eqn 4.4), where the constants iα  are 

called Lagrange multipliers and are determined during the optimisation of the SVM. SV 

are the support vectors, for which iα  > 0, which lie closest to the optimal hyperplane. For 

the remaining patterns the iα  = 0. 

 

( ) ∑
∈

+⋅=
svx

iii

i

bxxyxf α  (4.4) 

 
The above hypothesis holds only for linearly separable data, many applications in real 

world analysis tend to be of a non-linear nature. LDA is limited in this regard and failures 

of the perceptron were exposed by Minsky and Papert in the 1960s [139], leading to the 

development of multilayer neural networks (see chapter 5).  

 

SVMs however employ kernels to map the data to a high dimensional feature space 

where the examples become linearly separable and the SVM classification can proceed 

(Figure 21) [136-138]. Choosing the correct SVM kernel is similar to the choice of ANN 

architecture and is critical to model performance [136], there are a number of commonly 

used kernels (Eqn 4.5-4.8) and custom functions can also be written for a particular 

application. Perhaps one of the main advantages in terms of the application of SVMs is 

that by using kernels the learning algorithm can be decoupled from the application area. 

Classification in the high dimensional feature space is not, however without 

complications, computational expense increases due to the large vectors and high 

dimensionality may cause overfitting, however SVMs offset any decrease in 

generalisation ability of the classifier through location of the maximal margin classifier 

[138]. 
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Figure 21 Kernel mapping. The inputs space is projected to the feature space using a kernel. Linear 

classification is possible allowing non-linear classification where LDA fails. 

 

 

Commonly used SVM Kernels 

 

Linear Kernel:            ( ) ( )j

T

iji xxKxxK =,  (4.5) 

RBF kernel:            

2

2
( , ) exp

2

x z
K x z

σ

 − 
=  

 
             (4.6) 

Sigmoidal:               ( , ) tanh( . )K x z x yγ δ= −  (4.7) 

Polynomial:        ( )( , ) 1
q

TK x z x z= +  (4.8) 
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4.2.3 Multiclass support vector machines 

Thus far only binary SVMs capable of separating two classes from one another have been 

considered; however a classification system for QDEMs requires the identification of 

multiple classes. Various approaches have been utilised for extension of the SVM 

formulation to all classes such as the Vapnik and Weston approach which aims to solve 

the multiclass problem using a single optimisation [140], [141], binary trees and fuzzy 

logic methods are also suggested in the literature but so far all have had limited success 

due to time consuming implementation, the requirement of a priori knowledge and the 

use of clustering or vector quantisation algorithms to determine classifier hierarchy [142, 

143]. For multiclass problems several methods exist that combine binary SVM classifiers 

to create multiclass SVMs. The most popular schemes are the one versus rest (OVR), and 

the one versus one (OVO) method using majority voting and pairwise coupling [140, 

144]. In this thesis only the OVR and OVO methods are employed, it is important to note 

several other methods exist but the methods outlined above have had the greatest success 

[145]. 

 
The OVR approach and OVO are two common methods of error output coding (ECOC) 

[146]. When combining binary SVMs an ECOC scheme is used to combine classifier 

outputs to yield the final prediction. For a K -class problem; when a pattern is classified 

an output vector is produced by the SVM, this output vector consists of the output from K 

classifiers and the vector is subsequently mapped to the predicted label. Majority voting 

(cumulative number of classifications by each SVM) is the basis of class decision; the 

class which receives the most “votes” is the final class decision for the sample.  
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The OVR approach is one of the earliest and most widely used multiclass methods [147] 

and aims to construct K classifiers (one for each class). A hyperplane is formed so that 

the class under consideration is separated from K-1 classes (all other classes) (Figure 22). 

A majority type vote is applied to classify the new point, i.e. the outputs of each decision 

function are employed as the sole measure of class association. (Eqn 4.9) 

 

( )1,2,...,arg maxi K i iclass w x b== ⋅ +  (4.9) 

  

 A limitation of the this method is the assumption that each of the classifiers are equally 

reliable which is not always the case in multiclass problems, and research is ongoing to 

assign each classifier a reliability measure [148]. Also an imbalance in the number of 

examples for each class in the training data can compromise the performance of OVR 

SVMs [147]. 

 

 

 

Figure 22 Illustration of the OVR approach. The hyperplanes for separation of each class from the 

rest are shown. Adapted from [143].  
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OVO multiclass SVMs create a classifier for each pair of classes resulting in 2/)1( −KK  

classifiers (Figure 23); each classifier is trained to separate between any two classes ),( ji . 

The result is a K × K matrix where the classification is made by simply summing each 

row of the matrix for which the sum is maximal (Eqn 4.10):  

 

,maxarg
1

,...,1








= ∑

=
=

K

j
Ki

fijclass  (4.10) 

 

Where, fij  is the signed confidence measure for the ij ’th classifier [146]. While the 

number of individual classifiers is greater than the OVO method, the individual training 

problems are significantly smaller and may also save on training time. Furthermore the 

runtime execution of the OVO multiclass SVM is decreased as there is less overlap 

between classes and individual SVMs require a smaller number of SVs for 

discrimination. However as stated above the output of different binary classifiers may not 

be directly comparable as classes may be of different sizes and or less separable from the 

rest of the data.  

 

Figure 23 Illustration of the one versus all approach. An SVM is formed for each pair of classes. 

Adapted from [143]. 
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4.2.4 Previous examples of SVM and flow cytometry data  

 
Interest is growing for pattern recognition techniques in the FCM community as a result 

of increasing numbers of FCM parameters (more complex analysis), concerns over 

subjective gating [149] and the advent of flow based post-genomic assays [5]. There are a 

number of examples reported in the literature for the automated analysis of FCM data 

with SVMs improving upon traditional FCM data analysis in clinical diagnostics and 

research. Toedling et al. recently demonstrated the use of SVMs in the clinical setting. A 

radial basis SVM was constructed to automate the classification of leukemic cells from 

acute lymphoblastic leukaemia patients and compared to a traditional gating method 

performed by a skilled analyst. The SVM required no control sample group from healthy 

patients. There was a 99.06% agreement between analyst and SVM; moreover 

sensitivities of 99.78% and specificity of 98.87% were reported.  

 

The classification of various types of white blood cells was demonstrated by Adjouadi et 

al. Samples from normal and abnormal patients could be identified with 95% and 86.67% 

accuracy respectively [150]. Quinn et al. described the use of a SVM for the 

identification of cellular viability and lineage in bone marrow cells. In this instance the 

optimum classifier was found to be an RBF ANN, the SVM misclassified 9.4% ± 2.8% in 

comparison to MPG; and 6.4% ± 1.3% for the neural network [151]. Analysis of highly 

variable complex phytoplankton data with SVMs has also been shown to be an effective 

data analysis method. RBF SVMs were utilised for the recognition of 60 species with a 

mean accuracy of 90% for each species, outperforming an RBF ANN by 13% [150, 152, 

153].  
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 4.3 Materials and methods  

4.3.1 SVM training data preparation 

The dataset for this study consisted of 1,000 FCM events, for each spectrally unique 

QDEM, excluding QD1100, of which there were 796 events. The data set described in the 

previous chapter 3 is therefore a 19,796 × 6 matrix (two scatter intensity and four 

fluorescence intensity measurements [FSC, SSC, FL1@525nm, FL2@575nm, 

FL3@625nm and FL4@675nm]), and forms the training data for the SVM. QDEMs were 

analysed individually and the identity of each event in the training data was known, 

allowing the application of supervised learning methods for classification. See chapter 3 

for more information on acquisition of the training data. 

 
Each of the 20 LMD files containing the training data was imported into MATLAB. Mild 

and extreme outliers resulting from inherent FCM variation and/or variation in QDEM 

manufacture were removed beyond 1.5 times the interquartile range (IQR) of each 

parameter [154], reducing the training set by 1,242 events (6.27% of the total events). 

The effect of removing the mild and extreme outliers from the training dataset was 

determined.  

 
Building an SVM classifier has three main phases; parameter selection, training and 

independent test set validation. The training data and corresponding class labels were 

randomised and divided to form the cv_set (25%), train_set (50%) and test_set (25%) 

providing independent data for each of the respective phases (Figure 24). The datasets 

were then converted to sparse data format files for input to the LIBSVM program (section 

4.3.2). 
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Figure 24 SVM training data preparation. Each QDEM solution is measured individually and 

combined with the class labels for each QDEM to form the training data. The data is randomised and 

split to form the datasets for parameter selection, training and testing. An identical procedure is used 

in chapter 5.  

  

Note: The MATLAB code for data import, removal of the outliers and conversion to 

LIBSVM format are available on the CD accompanying this thesis. 

 

4.3.2 SVM implementation  

To implement the SVM algorithm the freely available stand alone package LIBSVM, 

based on sequential minimal optimisation algorithm (SMO), by Chang and Lin [155], 

featuring multiclass classification and probability estimates was used. LIBSVM returns 

probability estimates for each classification based on pair-wise coupling, the class with 

the highest pair-wise probability is returned as the predicted class [156]. SVM 

construction and prediction was preformed on a Linux server, with AMD 64 X2 4400+ 

(dual core) and 4 GB RAM.  

4.3.3 SVM model selection and training 

Training an SVM model begins by choosing a kernel and varying the SVM settings to 

return the most suitable model. The generalisation properties of SVMs are governed by a 

set of meta-parameters (i.e. penalty parameter C) and kernel specific parameters (i.e. RBF 

γ parameter). The process by which the optimal values are chosen is known as model 
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selection [157]. A grid based parameter search was carried out to locate the optimum 

SVM kernel and parameters for the train_set. The accuracy of the SVM solution at each  

parameter setting was assessed using n-fold cross-validation, CV has been demonstrated 

to yield an almost unbiased estimate of the generalisation ability of a model, and most 

representative of the performance [158]. 

 

Figure 25 Graphical representation of n-fold CV. A ten fold CV method was used to select the 

optimum parameters for the SVM. 

 
During the CV procedure the cv_set was split into ten subsets. During the first pass, data 

from splits 1-9 are used to train a SVM. The 10th part is used to test the performance of 

the model (Figure 25). The process continues until all of the data splits are the test set. An 

average of the performance of each pass, the CV accuracy (cvacc) expressed as a 

percentage of correct classification was calculated. The settings which yield the 

maximum cvacc are chosen to construct the final classifier. The accuracy of the model 

upon the train_set (trainacc) and test_set (testacc) (section 4.3.4) was calculated in order to 

choose the best model.  
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CV was carried out using the Linear and RBF kernel to create linear and non-linear 

solutions for QDEM classification. For the linear kernel the penalty parameter, C, is 

varied, however with the RBF kernel C and the width of the RBF function, γ, is also 

varied in order to construct the optimum SVM. The penalty parameter was varied from 1 

× 10-6 to 10 with the linear kernel and RBF kernel. The γ parameter was also varied for 

the RBF kernel from 1 × 10-4 to 50. The effect of removal of outliers was investigated, 

and the OVR and OVO multiclass SVM designs were also compared. Once the best 

solution was determined, the train_set was used to train the appropriate SVM model. 

4.3.4 SVM validation 

An independent validation of the SVM was carried out using the previously unseen 

test_set. From the test_set predictions a confusion matrix was plotted to determine the 

performance of each individual class [159]. A confusion matrix allowed the behaviour of 

each individual class within the entire classification model to be observed. The well 

known indicators accuracy, specificity and sensitivity/recall (see below) were calculated 

from the independent test_set confusion matrix for each QDEM class. Firstly accuracy is 

defined as the probability that a random event will be classified correctly (See Eqn 4.11). 

Specificity can be defined as the probability of correct negative prediction (See Eqn 

4.12). Sensitivity can be defined as the probability of correct positive classification (Eqn 

4.13). Both sensitivity and sensitivity are calculated for each individual class considered 

by the model. 
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( )

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
  (4.11) 

( )
TN

Specificity S
TN FP

=
+

 (4.12) 

( )
TP

Sensitivity R
TP FN

=
+

 (4.13) 

Where:  

TP =  True positives   - the number of QDEMs labelled correctly. 

FP =  False positives   - the number of QDEMs incorrectly labelled. 

TN =  True negatives   - number of QDEMs correctly predicted not to be the specified 

QDEM.  

FN =  False negatives   - number of QDEM predictions that were classified as negative 

but were actually positive [160, 161]. 

 
These performance measures are more likely to reflect the actual performance (and 

overfitting risk) when applied to examples not seen in the training set. As a further 

measure of the SVM, the classifications on the multiplex testing sets described in the 

previous chapter were presented to the classifier. The multiplex test solutions were 

acquired independently of the training data reveal the ability of the SVM to discriminate 

multiple QDEMs in a single solution acting as an external validation of the model. The 

resulting MC rate for these external testing set were calculated for the direct comparison 

to MPG described in chapter 3.  

 
Note: See the CD accompanying this thesis for MATLAB code to construct confusion 

matrices and calculate the performance indicators. 
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4.4 Results and discussion 

The following section describes the results obtained during the construction and 

evaluation of an SVM for QDEM recognition. The optimum kernel and SVM parameters 

are selected for the dataset (section 4.4.1 SVM parameter selection, the effect of outlier 

removal on SVM performance is investigated (section 4.4.2), and the OVO and OVR 

SVM multiclass methods compared (section 4.4.3). The selected model performance is 

further demonstrated through independent test set validation (section 4.4.5) and an 

external validation with the multiplex tests (section 4.4.6). Finally the SVM is compared 

to the MPG method outlined in chapter 3 (section 4.4.6). 

4.4.1 SVM parameter selection  

The primary step in model selection was the identification of the most suitable kernel. 

From the outset it was observed that the polynomial and sigmoidal kernels had a higher 

computational expense and classification rates were poor (~30% less than linear and RBF 

kernels), therefore parameter selection for only the linear and RBF kernels was conducted 

to construct the optimum model for classification of the QDEM dataset in both linear and 

non-linear SVM modes. CV was performed for each SVM parameter combination to 

determine the optimum settings for the model. The train and test accuracies were also 

calculated as additional indicators. In the case of SVM linear kernel the penalty 

parameter C was varied from 1 × 10-6 to 10. RBF SVM parameters were also examined in 

the same manner as the linear kernel; C was chosen first and varied over the same range 

as the linear kernel. Once C had been identified, the width of the RBF function (γ) was 

varied from 1 × 10-4 to 50.  
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Table 6 SVM model selection. The cvacc, trainacc and testacc of each kernel and SVM parameter 

setting. The best model settings for the linear and RBF kernel are highlighted.   

 

Parameters 
Kernel 

C γ 
cvacc(%) trainacc(%) testacc (%) 

Linear 0.000001 ------------- 5.80 25.80 24.92 

Linear 0.00001 ------------- 6.10 52.19 50.77 

Linear 0.0001 ------------- 5.88 36.53 36.69 

Linear 0.001 ------------- 6.74 78.84 78.30 

Linear 0.01 ------------- 63.45 92.54 92.04 

Linear 0.1 ------------- 94.97 95.83 96.08 

Linear 1 
-------------

 96.58 96.72 96.33 

Linear 2 ------------- 96.07 96.83 95.38 

Linear 5 ------------- 95.79 96.64 96.10 

Linear 8 ------------- 96.11 96.90 95.88 

Linear 10 ------------- 95.92 96.87 95.77 

RBF 0.000001 1 5.47 52.03 52.75 

RBF 0.00001 1 5.84 39.4 39.13 

RBF 0.0001 1 5.71 51.23 52.04 

RBF 0.001 1 5.62 39.9 40.66 

RBF 0.01 1 5.71 55.63 55.15 

RBF 0.1 1 27.02 85.81 85.92 

RBF 1 1 18.21 87.36 86.93 

RBF 2 1 89.43 95.25 95.38 

RBF 5 1 95.25 96.48 96.13 

RBF 8 1 95.92 96.7 96.08 

RBF 10 1 95.75 96.58 95.57 

RBF 5 0.0001 8.19 77.35 75.87 

RBF 5 0.001 67.09 92.71 92.75 

RBF 5 0.01 94.76 96.19 96.01 

RBF 5 0.05 96.48 96.34 95.98 

RBF 5 0.1 96.55 96.49 95.70 

RBF 5 0.5 96.44 96.85 95.24 

RBF 5 1.5 96.29 97.67 95.38 

RBF 5 2 95.32 97.56 96.16 

RBF 5 2.5 95.64 97.95 95.92 

RBF 5 5 94.58 98.51 95.64 

RBF 5 8 94.84 98.88 95.12 

RBF 5 10 94.76 97.21 95.01 

RBF 5 12 93.61 99.29 94.58 

RBF 5 15 92.02 99.38 94.35 

RBF 5 20 91.44 99.62 94.35 

RBF 5 30 87.17 99.82 94.17 

RBF 5 50 78.28 99.96 89.99 
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The linear kernel demonstrated the best performance with cvacc (96.58%), trainacc 

(96.72%) and testacc (96.33%) with penalty parameter C = 1 (Table 6). Beyond C = 1 the 

cvacc and the testacc decrease slightly and the trainacc increases slightly (Figure 26). It has 

been shown that after a certain point increase of the penalty parameter when using the 

linear kernel does not increase the performance of the model [162]. Total training time 

was ~3.5 min (average of ten SVMs). 
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Figure 26 Linear SVM Kernel where C is varied from 1 × 10

-6
 to 10. The result of model prediction of 

each subset of the training data is shown. C = 1 was selected as the optimum value for the linear 

SVM. The accuracy of the model remained constant at cvacc = 96.8%, trainacc = 96.72% and testacc= 

96.33%. 

 
In comparison, the optimum RBF kernel had a cvacc (95.32%), trainacc (97.56%) and 

testacc (96.16%) with C = 5 and γ = 2 (Table 6). When the RBF γ was increased above 10, 

overfitting was evident with the training error approaching 0, moreover the CV accuracy 

decreases below 95% and the test error begins to decrease reaching a minimum of 

89.99%, at which point it was decided not to increase γ any further (Figure 27).  
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Figure 27 RBF SVM Kernel, C = 5 (Table 4) (the optimum penalty parameter), γ is varied between 1 

× 10
-4

 to 50. The resulting of model prediction of each subset of the training data is shown. 

Overfitting is evident beyond γ = 10 the CV and test accuracies decrease, the training accuracy 

increases. The optimum RBF accuracies were cvacc = 95.32%, trainacc = 97.6% and testacc = 96.16%. 

 
 
The classification rates of the two SVMs are very similar. The RBF SVM can 

approximate both linear and non-linear problems and has been shown to have 

performance comparable to the linear kernel; therefore achieving similar results for both 

SVMs is not surprising. While LDA or partial least square discriminant analysis 

(PLSDA) could have been used for this dataset, maximal margin optimisation and the 

option of non-linear extension to the classification scheme in the future gives the SVM 

advantages over both methods. The training time for the RBF kernel was slightly greater 

requiring ~5mins in comparison to ~3.5mins for linear SVM training. As new QDEMs 

are added to the model the training time is expected to increase (using the OVR 

multiclass design the number of binary SVMs increasing the training time would increase 

exponentially (section 4.4.3)). 
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The RBF kernel required a greater number of SVs (2230) compared to the linear kernel 

(944) to define the SVM decision boundaries. An increase in the numbers of SVs 

increases the computational cost of the SVM model during prediction. For QDEMs 

analysed in a high throughput format, FCM is capable of detection rates of 1000 events 

per second, the number of calculations required for single event classification are 44% 

less for the linear kernel. The number of SVs is proportional to the complexity of the 

separating hypersurface. The authors of the LIBSVM package advise that the linear 

kernel be chosen following Occam’s razor,  the simplest model is best, and the model 

with the fewest SVs was chosen (i.e. the linear kernel with the lowest geometric decision 

surface complexity ) [163]. 

 

Therefore a SVM incorporating a linear kernel, with C = 1 was found to yield the highest 

CV accuracy with the shortest training time and fewest support vectors. These settings 

were used in the construction SVMs to determine the suitability of outlier removal and 

the comparison between OVO and OVR. However application of the RBF must not be 

discounted for future studies as increases in the coding complexity QDEMs may require a 

non linear kernel. The performance of the RBF kernel demonstrates the flexibility of 

SVMs for pattern recognition tasks.  

4.4.2 Outlier removal suitability 

The suitability of outlier removal process for SVM training by means of the IQR was 

determined by constructing an SVM for training data with and without outliers and 

determining the accuracies on each training data split. The number of outliers removed 

for each class is shown below (Figure 28). 
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Figure 28 Post acquisition outlier removal for each QDEM. A total of 1242 events were removed. The 

remaining events were retained to form the training data.  

 
Following outlier removal an increase in the cvacc from 91.10% to 96.58% was observed, 

moreover the number SVs required to separate the 20 classes decreased from 2145 to 944 

reducing model complexity and increasing the classification speed of the SVM (Table 7). 

The test set accuracy increased by 3.31%. The removal of outliers from the training data 

is a reliable method which does not affect the generalisation ability, hence outlier filtered 

training data is used for the remainder of this thesis.  

 
Table 7 Suitability of outlier removal using the optimum SVM configuration. An SVM was trained 

and tested for the QDEM dataset before and after the removal of outliers.  

 

#Samples 
 

Training Test CV 
Kernel C cvacc(%) 

False  

Positives 

(test) 

testacc(%) 

+Outliers 9900 4948 4948 Linear 1 91.10% 345 93.02% 

-Outliers 9277 4638 4638 Linear 1 96.58% 155 96.33% 
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4.4.3 Evaluation of multiclass SVM designs 

To determine the optimum multiclass SVM design, a comparison of the suitability of the 

OVR and OVO methods (section 4.2.2) for the QDEM dataset was investigated. Cross 

validation, training and testing were performed and the cvacc, trainacc and testacc calculated 

for both multiclass designs (Table 8).  

 
Table 8 Comparison of the OVR and OVO multiclass SVM methods. The CV, train and test 

accuracy for each SVM are shown.  

 

 cvacc (%) trainacc (%) testacc (%) #SV 

OVR 75.24 89.44 89.52 8107 

OVO 96.58 96.72 96.33 944 

 

The OVO method clearly out performs these methods and therefore it was decided to use 

OVO for the SVM. The literature suggests that OVO has a greater performance and the 

results here support those assertions [145]. A drawback of both the OVO and OVR 

method is that for any given sample the significance of each classification is weighted 

equally, while it is impossible to know the classifiers significance, certain classifiers are 

redundant and can be removed with a so-called mixture matrix [164].  

 

The final design of the classifier was an OVO multiclass SVM employing the linear 

kernel, with a penalty parameter C = 1, trained and evaluated on outlier filtered FCM 

data. The performance of the model had cvacc = 96.58%, trainacc = 96.72%, and an 

independent test validation; testacc = 96.33%. These results demonstrate the potential of 

the SVMs for QDEM recognition in FCM.  



Chapter 4: Support vector machines for the identification of QDEMs from FCM data. 

  
 

Colin Clarke  Cranfield University 88 

4.4.4 SVM performance with increasing QDEMs 

The effect of increasing the number of QDEMs per SVM was also investigated as a 

possible measure of the capacity of this approach when the future numbers of QDEMs 

increase. The effect of adding classes to the model was assessed beginning with two 

QDEM populations. To avoid class bias in the evaluation (where the most or least 

separable classes are considered), 10 individual classifiers were constructed containing n 

random classes for each QDEM number considered and the average cvacc, trainacc and 

testacc calculated (Table 9).  

 
Table 9 Evaluation of the effect of addition of QDEMs on test set accuracy. An individual SVM was 

constructed for each test.  

 

#QDEM cvacc (%) trainacc (%) testacc (%) 

2 99.67 99.68 99.69 

3 99.75 99.84 99.78 

4 99.55 99.60 99.43 

5 99.29 99.39 99.33 

6 98.69 98.82 98.44 

7 98.43 98.57 98.36 

8 98.26 98.59 98.43 

9 98.65 98.76 98.59 

10 97.68 97.97 97.79 

11 97.56 97.84 97.66 

12 97.63 97.95 98.05 

13 97.75 98.06 97.61 

14 97.05 97.48 96.95 

15 96.91 97.42 97.04 

16 96.98 97.30 97.00 

17 96.72 97.05 96.70 

18 96.14 96.58 96.48 

19 96.23 96.68 96.28 

20 96.58 96.72 96.33 
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Figure 29 Evaluation of the effect of increasing the number of classes considered by the SVM.  

 
 

A decrease in the accuracy in the classification of the unseen data (testacc = 3.67%) can be 

observed between the 2 class and 20 class model. It is thought that the SVM should 

eventually become independent of the number of QDEM classes as the OVO multiclass 

design creates an individual set of binary classifiers for each QDEM, therefore 

complexity (number of SVs) required for each binary classifier does not increase. As the 

number of QDEMs increases the accuracy would be expected to decrease (as the 

encoding complexity across the QDEM library is considered) and remain constant. In 

comparison the addition of classes with the OVR approach would increase the 

complexity of the decision boundaries as each binary SVM separates a class from all 

other classes. More QDEM types are required to further investigate the SVM beyond 20 

QDEMs and it remains a concern. 
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In the future if the extension of the SVM methodology to greater numbers of QDEMs 

incorporating additional colours and intensities proves problematic for the linear kernel, 

the RBF kernel could be employed. The kernel flexibility offered by the SVM paradigm 

and OVO is well suited to offset the possible problems associated with increasing the 

multiplexing ability of an assay. 

 

4.4.5 Independent testing set validation  

To further assess the suitability of the constructed model a complete classwise analysis of 

the SVM was carried out from the results of the independent test validation. By 

comparing the unseen test_set subset of the training data for which each event was known 

a test accuracy of 96.33% was acquired. In order to determine which QDEMs were 

misclassified a confusion matrix was constructed from the test_set classifications. Each 

element in the confusion matrix represents the number of microspheres in the test set 

whose actual label is the row and the predicted label is the column, the TP, FP, TN and 

FN can be can be calculated from the table. Standard quality indicators of specificity and 

sensitivity were used to evaluate each QDEM class performance in the SVM (section 

4.3.4). The number of SVs required for the discrimination of each class is also shown. 

See appendix for the full SVM confusion matrix for the QDEM library a summarised 

version is presented here (Table 10).  

 

Note: The SVM assigns a label to the class returning the highest pair-wise probability, by 

rejecting classified events below a threshold of P = 0.5 the MC rate can be further 

reduced (see below). The pairwise probability of the testing set classification was not 

taken into account at this stage.  
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Table 10 Independent test Set validation, true positives (#TP), specificity (S) and sensitivity (R) are 

shown. See appendix 1 for the SVM confusion matrix. Test set accuracy = 96.33%. The number of 

support vectors (#SVs) is shown for each class. The least sensitive class is highlighted.  

 

 ID #TP S (%) R (%) #SV 

1 QD0000 233 99.8 92.8 68 

2 QD0001 223 99.6 94.9 65 

3 QD0003 260 99.9 100 10 

4 QD0010 210 99.8 94.5 65 

5 QD0011 234 99.7 97.9 25 

6 QD0100 225 100 97.4 22 

7 QD0101 216 99.9 89.3 121 

8 QD0110 211 99.9 92.5 102 

9 QD0111 229 99.6 93.4 85 

10 QD0202 205 100 98.0 36 

11 QD1000 241 100 99.5 19 

12 QD1001 222 99.8 99.1 19 

13 QD1010 212 99.6 95.9 48 

14 QD1011 210 99.6 99.5 22 

15 QD1100 164 99.4 93.1 60 

16 QD1101 226 99.9 97.8 77 

17 QD1110 218 100 93.5 87 

18 QD1111 254 100 97.3 35 

19 QD2100 223 100 100 6 

20 QD2200 224 100 100 15 

 

The lowest sensitivity observed was for QD0101(R=89.3%) and resulted from a degree 

of confusion between QD0101, QD0110 (R= 92.5%) and QD0111 (R=93.4%). The 

confusion between these classes may have been due to the 620nm QD not being centred 

over the 625nm emission filter for optimum performance. The remaining QDEM classes 

perform well with sensitivity of >90% for the entire 19 classes. The microsphere QD0000 

was expected to have a higher sensitivity (R = 92.8%) as this microsphere had no 

emission. The cause of the low sensitivity is not known, one possibility is that a small 

amount of blank QDEMs were present in the remaining QDEM solutions leading to 

misclassification in the independent test set validation. All QDEM classes returned 

excellent specificity (S > 99%). 
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As stated previously QD1100 had the fewest instances in the training set containing lower 

concentration of QDEM in the stock solution. The specificity and sensitivity of these 

QDEMs was 99.4% and 93.1% respectively, suggesting that the imbalance in the number 

of events for each QDEM has no effect on SVM performance. 

 

4.4.6 Performance on the multiplexed testing sets  

While the performance on the training data was excellent, an additional test was 

conducted to see how the SVM would perform using multiple QDEMs in a single 

solution (Table 11), forming an external validation of the model. No outlier filtering was 

carried out on these results (the IQR filtering method only works with single population 

QDEM datasets) so it was assumed that these datasets would contain similar noise to the 

pre-filtered training data. Post classification removal of these outliers was accomplished 

using the prediction pairwise probability provided by LIBSVM. 

 

For the reasons outlined in section 3.4.2 the success of the SVM was measured by 

calculating the MC rate and σ2. The table shows the number of classified events 

belonging to each QDEM. Events were rejected as unclassified results when the pairwise 

class probabilities were ≤ 0.5, resulting in between 0.1 and 5.2% rejection for each of the 

tests. The MC rate was calculated for each of the 10 multiplexed test sets (simply the 

number of false positives divided by total events remaining after probability filtering). 

Test four yielded the highest number of misclassifications at 6.4%. 
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Table 11 Prediction of unknown events from test samples using SVM classifier. The number of 

misclassifications (p ≤ 0.5) is shown for each QDEM (See Table 2 for test set composition). 

 

Test# 
 

1 2 3 4 5 6 7 8 9 10 

QD0000 7 20 0 5 554 94 7 570 340 52 

QD0001 0 0 1 1 318 448 4 398 298 563 

QD0003 0 0 568 618 0 0 533 0 0 0 

QD0010 4 9 0 9 10 20 560 12 15 419 

QD0011 559 1 22 14 0 571 0 355 410 475 

QD0100 8 530 0 11 426 3 21 321 22 305 

QD0101 6 2 0 1 423 1 147 277 407 388 

QD0110 497 12 0 448 709 1 17 573 625 534 

QD0111 32 0 0 27 523 0 708 592 762 833 

QD0202 10 1 231 287 0 5 1 16 18 25 

QD1000 1 14 3 0 0 467 498 328 0 349 

QD1001 0 0 0 0 0 1 0 0 287 358 

QD1010 1 538 0 32 1 522 5 11 23 419 

QD1011 1 554 1 428 0 504 1 455 662 490 

QD1100 182 247 0 3 80 231 5 75 237 222 

QD1101 1 0 0 234 218 318 135 320 319 338 

QD1110 653 26 0 83 554 677 415 909 726 723 

QD1111 16 2 1 697 25 24 501 600 532 641 

QD2100 0 0 683 0 0 0 778 0 0 0 

Q
D

E
M

 c
o

d
e 

QD2200 0 0 487 0 0 11 574 14 0 10 

# QDEM codes 4 4 4 6 8 8 10 12 12 15 

#Events 2000 2000 2000 3000 4000 4000 5000 6000 6000 7500 

#Classified 1978 1956 1997 2898 3841 3898 4910 5826 5683 7144 

Rejected (%) 1.1 2.2 0.1 3.4 3.9 2.5 1.8 2.9 5.2 4.7 

#Correct 1891 1869 1969 2712 3725 3738 4849 5698 5605 7057 
CC rate (%) 95.7 95.6 98.6 93.6 97 95.9 98.8 97.9 98.7 98.8 

σ
2
 41684 21660 36801 32584 23520 19653 43722 33235 34551 27389 

MC rate (%) 4.3 4.4 1.4 6.4 3.0 4.1 1.2 2.1 1.3 1.2 

 

On increasing the rejection criteria to p = 0.75 the misclassification decreases to 0.2%, 

while the rejection rate increases to 16.3% of total events (data not shown). The SVM 

performed well on the remaining test sets with the MC rate below 4.5%. The 15 QDEM 

had the lowest MC rate demonstrating the ability of the SVM to discriminate between the 

lowest intensity microspheres (level 1 intensity). For test 3 only multiple intensity ratio 
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beads were used.  The SVM accurately identified the four multiple intensity QDEMs with 

only 1.4% misclassifications for test 3. The average MC rate for each of multiplex test 

sets was 2.9% with an average rejection rate of 2.7%. For tests 1-6 the average MC rate 

was 3.9%. For each mixture set the top predicted QDEMs corresponded exactly to those 

QDEMs present in the test solution. QD1100 was also predicted at a lower rate in the 

multiplexed testing, further suggesting that the stock concentration was originally lower. 

Misclassifications may be due to confusion between classes, detector overspill or 

instrumental drift. The use of narrower bandwidth emission filters could reduce cross talk 

between detectors and centering of the FL3 channel at 620nm should decrease the levels 

of misclassification in the SVM. The variance of the CCs for each multiplex solution 

were similar, there was no significant increase in the variance when the individual 

QDEMs in the solution were increased providing a greater confidence in the accuracy of 

classifications for mixtures 7-10. 

 

4.5 Conclusion 

 
The aim of this chapter was to improve the accuracy of QDEM identification from FCM 

data reported in chapter 3. In that chapter, a MPG method was used to classify each 

QDEM by means of selecting regions from a series of 2D plots. The methods suffered 

from an inability to find the optimum gates for classification due to overlap between 

QDEM signatures resulting in multiple classifications for a single event and >30% 

misclassification for the most difficult microspheres to classify. In comparison the 

supervised learning paradigm of SVMs, has been shown to outperform MPG in every 

multiplex test (Figure 30). While MPG analysis returned <2% misclassifications for Test 
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10, 1859 extra classifications were made than events recorded (this was also the case for 

other tests), moreover there was an increase in the variance of CCs calling into question 

the validity of the MPG results and therefore the suitability of the technique. The MPG 

method is also time consuming and as the number of QDEMs increases it becomes more 

so, moreover the optimum gates may not be found.  
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Figure 30 Comparison of MPG (multiparameter gating) and SVM MC rates. The SVM outperforms 

MPG in all tests. Demonstrating the potential of SVM for the discrimination of QDEMs from SVM 

and supervised learning algorithms (For a comparison of the variance of CCs see Figure 45). 

 
SVMs have been shown to be a highly accurate means of QDEM analysis, the technique 

trains rapidly (average training time 3.5mins), moreover the probability of classification 

can be taken into account and results filtered from the data. SVMs are capable of forming 

gates in a kernel induced feature space, the algorithm locates the optimum decision 

boundary between classes by locating the maximum margin hyperplane (section 

4.2.1).The SVM reported here has shown excellent specificity (average R = 96.33%), 

sensitivity (average S = 99.82%), and an overall classification accuracy of 96.33% on 
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unseen data. Moreover the SVM model preformed well in external validation; 

demonstrating reduced MC rate for the QDEMs present in each solution in comparison to 

MPG (Figure 30). The variance of CCs with the SVM model remained relatively constant 

for the SVM in comparison to those of the MPG across the 10 external validation 

solutions (Figure 45). Average SVM σ2 = 31479 in comparison to σ2 = 63482 for MPG.  

 
In comparison to a commercial SAT analysis, the Luminex platform, a classification rate 

is quoted as >80% [165]. The average 3% MC rate using our SVM model, compared to 

Luminex misclassification of less than 2%, test 4 had a MC rate of 6.4%, however the 

Luminex system combines dual organic dyes and a more complex microsphere encoding 

scheme is used here. Concerns still exist as to the suitability of SVMs for the scaling up 

of QDEM libraries. The OVO design should be robust and SVM can operate both in 

linear and non-linear modes which may be advantageous when additional microspheres 

are added. 

 
SVMs are theoretically well suited to the automatic gating of flow cytometry 

subpopulations. SVM can be thought of taking the “flow cytometry input space” and 

using the maximal margin hyperplane to gate the data in a multidimensional feature space 

to produce optimum classification of QDEMs subpopulations for SAT, the results shown 

here confirm this.  

 

In the following chapter a comparison between the SVM and another supervised learning 

algorithm, artificial neural networks is carried out. ANNs have also proved effective for 

FCM subpopulations in the past thus it is prudent to compare these classification methods 

to the SVM. 
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5.1 Overview 

Chapter 4 described the successful application of multiclass SVMs to the classification of 

QDEMs from FCM data. This chapter aims to compare the SVM to artificial neural 

network classifiers (section 5.2.1). These supervised methods have had reasonable 

success in FCM (section 5.2.2). Two popular ANN architectures (section 5.3) were 

constructed using the QDEM data and evaluated using an independent test set validation 

and external validation for comparison to the SVM classifier. 

5.2 Introduction 

5.2.1 Artificial neural networks 

 
An artificial neural network is a machine learning technique loosely based on biological 

nervous systems such as the brain [166, 167]. The origins of ANNs date back to the 

1940s, with the description of simplified neurons by McCulloch and Pitts [168], and 

subsequent development of the perceptron for two class discrimination by Frank 

Rosenblatt in 1956 [169]. However the failures of the single layer perceptron model in 

some basic pattern recognition tasks were demonstrated by Minsky and Papert, leading to 

a decrease in the pace of research lasting until the 80’s. The field was revived through the 

work of Hopkins who demonstrated the use of ANNs for real world applications [170], 

and the development of the back propagation learning algorithm for multilayer 

perceptrons [171]. 
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Today neural networks are a computationally efficient, easily constructed, non-

parametric method which assumes no a priori knowledge of the data under examination 

and are well accepted in many branches of science and engineering for applications such 

as pattern classification, function approximation, image processing and many others 

[166]. 

 
Figure 31 Model of an ANN neuron. 

 

ANNs are composed of a collection of linked processing units (neurons) (Figure 31); 

each neuron obtains inputs from the external environment and from other neurons in the 

network. Connections between the processing units are weighted and each input has a 

weight, w  associated with it. The response (output) of each unit is calculated through 

some function f  of the weighted sum of its inputs (Equation 5.1): 

 

i ij i

j

y f w x
 

=  
 
∑  (5.1) 

Where iy  is the output of the neuron. The weighted sum ij i

j

w x∑  is termed the net input 

to the ith unit and is also called inet . The function f is termed the activation function and 

governs how the neuron processes input signals to produce an output. The activation 

function weights the value of the output, often between 1 and 0 or between -1 and 1 
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depending on the type of activation function used. The activation function introduces 

non-linearity into the network. Examples of common activation including the step 

function, Gaussian and the popular sigmiodal activation functions are shown below 

(Figure 32) [167].  

 

  

Figure 32 Neuron activation functions. (A) Identity function (B) Step function (C) sigmoid function. 

 
The neurons are divided into processing layers of which there are generally three main 

types. Firstly an input layer which connects the ANN to data environment under study, a 

hidden layer models the data distribution and the output layer which delivers the identity 

of each class. As stated above an ANN is an interlinked structure of neurons; the 

arrangement of neurons, layers and the connections between them is termed the ANN 

architecture e.g. feed-forward, recurrent or self organising maps (SOM). With the feed 

forward design the data flow between input and output neurons is only allowed to 

propagate directly through the network; there are no looped connections. Recurrent 

architectures can contain connections between the nodes in the same layer or nodes in the 

previous layers of the network. In the hidden layer of a SOM nodes are arranged into a 

rectangular or hexagonal lattice, each of which are fully connected to the input layer and 

define a topographical position.  

 

(A) (B) (C) 
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Combinations of single one-class networks known as ANN ensembles or stacked neural 

networks (SNN) are also suitable for classification. While some success has been 

demonstrated, such ensembles suffer from the lack of interaction between single 

networks during the learning phase and the way the networks are combined increasing 

the possibility of individual networks not contributing to the classification [172]. 

Therefore the ANNs employed in this thesis were single networks trained on all classes 

simultaneously. For a detailed discussion of ANN architectures see [166]. 

 

ANN training aims to create a predictive model by configuring a network such that the 

presentation of a set of input values produces the desired set of outputs. The initial weight 

vectors for the ANN are chosen randomly and in supervised ANN training the weights 

are adjusted according to response of data patterns. The updating of weights in an ANN is 

determined by learning rules, of which there are four basic types, error-correction, 

Boltzmann, Hebbian, and competitive learning.  

 

While this chapter concentrates on supervised paradigms (section 4.2.1) ANN training 

can be either supervised or unsupervised. Examples of unsupervised networks include the 

Kohonen’s SOM [167], and Hopfield networks [170]. There also exists a hybrid method 

where both supervised learning and unsupervised learning are combined, with part of the 

weights are usually determined through supervised learning, while others are determined 

through unsupervised learning [173]. The specific characteristics and learning methods of 

the selected ANNs for this study are detailed below (section 5.3). For an excellent review 

of training methods for ANNs see [167] and [166]. 



Chapter 5: Development of a neural network based QDEM classification system. 

  

Colin Clarke  Cranfield University 102 

5.2.2 Previous applications in flow cytometry 

To date a number of examples of the application of ANNs to classification of microalgae 

from FCM data have been reported in the literature [174-177]. Boddy et al. previous 

work illustrates the application of ANNs to FCM for the identification of phytoplankton 

species from 11-parameter data. Radial basis function neural networks (section 5.3.2) 

were trained to recognize 35-70 species of phytoplankton. The best performing RBF 

network could correctly identify 91.5% of phytoplankton after training using gradient 

descent algorithm [176]. The identification of fungal spores using flow cytometry and 

artificial neural networks has also been reported previously [178] [179]. 

 
Quinn et al. has recently described a pattern recognition methodology for the 

classification of live, apoptotic (programmed cell death) stage and dead cells from FCM 

data based on ANNs. FSC and SSC measurements relate to cell size and granularity and 

are indicators of the morphological changes that cells undergo during apoptosis. Lecours 

dual staining method with 7-aminoactinomycin D (7AAD) and annexin V was utilised to 

determine cell lineage and the developmental stage. Traditional data analysis was used to 

set gates to define the intensity threshold for these dyes to locate live, apoptotic and dead 

cells, cells positive for 7AAD are designated as dead (degradation of the cellular 

membrane allows access to nuclear DNA resulting in an increase in binding). Cells 

positive for annexin V but negative for 7AAD are designated as apoptotic, and finally 

cells with observed negative populations for both dyes are “live”. The gates were defined 

by an expert panel of analysts resulting in variations between users particularly at the 

boundaries between populations. Both supervised and unsupervised ANNs were 

evaluated consisting of multilayer perceptron, radial basis function (RBF), recurrent 
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multilayer perceptron (RMP), learning vector quantisation (LVQ) and the SOM 

topologies. A comparison of the ANNs to an SVM was also carried out. It was found that 

the RBFP, LVQ, and MLP resulted in an error rate of 6.4% ± 1.3. The RBF was 

determined to be the optimum classifier with an expected error of 4.5% [151]. The 

misclassification rate of the SVM in this instance was 9.4% ± 2.8%  

 
A study by Kothari et al. described the neural network analysis of immunophenotype 

FCM data for the discrimination of leukaemia subcategories based on lineage and 

differential antigen expression. The fluorescence data from 170 samples (28 inputs per 

sample) was used to train the MLP ANN allowing the distinction of leukaemia subtypes, 

a test set accuracy of 89.7% was observed indicating that such a classification scheme has 

potential [180]. DNA flow cytometry histogram plots have also been analysed using 

ANN allowing the identification of high and low leukaemia risk patient groups [181]. 

 
Following a review of the literature it is clear that the RBF and MLP classifiers have been 

the most successful for the identification of FCM subpopulations. It was therefore 

decided to concentrate on these ANN architectures for comparison to MPG and the SVM.  

5.3 Selected ANN architectures 

The topology of an artificial neural network describes the patterns of connections 

between the units and the propagation of data throughout the network. The two most 

successful topologies employed in the literature for FCM applications follow the feed-

forward method. Each ANN classifier constructed in this study had 6 nodes in the input 

layer (one for each FCM parameter) and 20 neurons in the output layer (one for each 
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individual QDEM). The following section describes both the MLP and RBF type 

networks in detail.  

5.3.1 Feed forward multilayer perceptrons 

As stated above single perceptron neurons have limited ability in classification problems, 

the combination of perceptrons arranged in layers however is a much more powerful 

learning technique. MLPs are the most popular ANN described today in the literature. An 

MLP “may be viewed as a practical vehicle for performing a nonlinear input-output 

mapping of a general nature” [182]. These highly connective (each neuron is connected 

to every neuron in the previous layer) feed-forward architectures calculate a weighted 

sum of their inputs, and pass the activation level through the network to produce the 

output.   

 

 

Figure 33 Multilayer perceptron.  
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For any given layer the neurons receive their input from the previous layer on the input 

side of their network and their output to the following layer on the output side, there are 

no interlayer connections (Figure 33). The first layer is known an as the input layer. The 

input signal is modified by the initial weights jpw and the bias 1b  resulting in an input to 

the thj  neuron in the hidden layer (j =1, 2, 3) of jnet , which is a weighted input of the 

intensity values [166, 183]. 

 

The hidden layers are activation functions of the weighted inputs plus a bias, the output 

of the hidden layer is then distributed to any other hidden layers until the output units are 

reached. Based on the equation above the output of the thj  neuron in the hidden layer is: 

The training method employed for MLPs in this work is known as the back propagation 

algorithm [184, 185]. The network weights are updated with respect to the classification 

error calculated upon input of the previous training set, the learning rate and the 

magnitude of the output.  

 

1

N

i i i

i

y f w x b
=

 
= ⋅ + 

 
∑  (5.2) 

( )j H jy f net=  (5.3) 
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The back propagation algorithm, a type of error correction learning is defined as a 

gradient descent method to minimize the squared error cost function [166], an error signal 

is then back-propagated from the output layer to the hidden layer and the network is 

altered. Back propagation consists of two passes throughout the various layers of the 

MLP, a forward pass and backward pass. During the forward pass, an input pattern is 

applied to the nodes of the network, and its effect propagates through the network layer 

by layer producing an output signal. While the weights remain fixed during the forward 

pass of the training algorithm, during the backward pass the weights are adjusted in order 

to reduce the error. The back propagation algorithm is an iterative process, on each 

iteration or epoch the training set is presented to the network. The weights in the network 

are updated according to the degree of classification error, the magnitude of the output 

and the learning rate, η . Once a predefined threshold, for example the desired CVacc or a 

set number of iterations is reached training terminates. A representation of the decision 

boundaries formed by an MLP is shown below (Figure 34). 

 
Figure 34 Representation of MLP separation of a two QDEM problem in 2-dimensional space. 
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5.3.2 Radial basis function networks  

RBF ANNs can be considered as a special type of multilayer feed forward network using 

of a number of locally tuned neurons [186-188]. A RBF is composed of a single hidden 

layer, with linear output functions (there is also a bias on each output node) and nonlinear 

transfer functions [166]. There are no weights in the hidden layer, the outputs of the 

hidden units are in fact calculated using the “closeness” of the input to some positive 

radially symmetric function (a kernel) [183]. A RBF ANN has a hidden layer of radial 

units e.g. Gaussian (Figure 35), this single hidden layer is sufficient for any application 

due to the non-linearity of the radial unit function. While MLP units are defined by their 

weights and threshold, radial units are defined by the central point and radius. Each node 

in the hidden layer represents a kernel function and each output node calculates the 

weighted sum of the hidden layer outputs [188]. 

 
The kernel function output is determined by its centre and width, the output is high when 

close to the centre and decreases rapidly toward zero as the input distance from the centre 

increases. Gaussian functions are popular in the literature and have been shown to be 

successful in FCM subpopulation classification [151]. 

 
The Gaussian hidden layer function is given by: 

Where σ  and µ  are the width and centres of the thj node in the hidden layer. jZ  is the 

output. A summation of each output node gives the response of the network for a given 

input. 

2

2
( ) exp ,

2

j

j

j

X
Z x

µ

σ
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 
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 (5.4) 
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Figure 35 Radial Basis Function: Hidden layer nodes use Gaussians of varying standard deviations to 

determine the output.  

 
While MLPs classify a given pattern by means of hyperplanes, RBF ANNs divide up the 

input space by considering the distribution of the data under consideration (Figure 37). 

Training a RBF ANN is different to the training of MLPs in that there is no updating of 

the weights after each pass. Training of the RBF hidden node kernel is achieved through 

the selection of the function centres and widths using a cross validation procedure, finally 

the hidden-to-output weights are calculated. Selection of the radial function can be 

thought of as defining the optimum number of basis functions.  

 
The training of RBF neural networks occurs in two separate stages; an unsupervised 

routine such as K-means clustering can be used to determine the centres of the basis 

functions [189], for more information see [183]. The second stage involves a simple least 

mean squares (LMS) optimisation or singular value decomposition to calculate the 

weights for the output layer of the network [190]. Further improvement in the 

classification performance of the network has been reported using a gradient descent 

method to simultaneously adjust the basis function and weights.  
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For classification problems standard RBF ANNs can encounter difficulties as the output 

decision is based on distance from the hyperplane. It is preferable to return a probabilistic 

confidence level for example a softmax probability function may be implemented. An 

alternative solution is to use a variation of RBF networks called probabilistic RBF. The 

training algorithm employed is based on Bayesian probability distributions, classified 

patterns are ranked as probabilities of a match. This ANN has three layers, input, pattern 

layer and a decision layer (Figure 36).The pattern layer contains a node representative for 

each class and receives the weight value from the hidden neuron. 

 
Figure 36 Probabilistic radial basis function ANN. Hidden node layers contain Gaussian functions. 

Class specific notes compute a weighted sum based on the values of the hidden nodes for each group 

and the decision layer produces the classification based on the largest vote. 

 
Classification of an unknown sample x is determined from the product of the class 

kernels and the a priori probabilities. The designated class is that which has the highest 

discriminatory values [191]. For the Gaussian kernel used in this study the discriminant 

function is in form of: 

( ) ( )( )2

2
1

( ) 1
exp , ,

2
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i j

ji

p i
D x d x x

M σ

∧

=

 = − 
 

∑  (5.5) 

Where ( )i

j
x  is the j th training sample of class i , 

iM is the number of training samples of 

class i  and 
^

p is the mean a priori probability. σ  is known as the smoothing parameter. 
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Class specific votes are then cast for each pattern neuron and proceeds to the pattern layer 

where the weighted votes are compared and classification based on the largest vote. 

 

Figure 37 Representation of PRBF separation of a 3 class QDEM problem in 2-dimensional space 

adapted from [179]. 

 
The PRBF ANN has advantages over standard RBF ANNs as the outputs are 

probabilistic and training time is rapid (transfer of training cases into the radial layer is 

therefore sub-second). However the advantage of rapid training is balanced by the slow 

execution time as the model contains all training cases. PRBFs have a single tuneable 

parameter called the smoothing factor. Careful selection (through CV) of smoothing 

factor is important, if too small overfitting risk is increased, too large and the 

classification error may increase [192]. 

10
1

10
2

10
1

10
2

FL-2 (log)

F
L
-4
(l
o
g
)

Radial centre 

Hyperplane 



Chapter 5: Development of a neural network based QDEM classification system. 

  

Colin Clarke  Cranfield University 111 

5.4 Materials and methods  

5.4.1 Training data 

The training data described in section 3.4.2 was supplied to the artificial neural networks. 

Outliers were removed from the data using the process described previously. For more 

information on the training data preparation see section 4.5.1. 

 

5.4.2 Multilayer perceptron implementation 

The open source DTU toolbox (available from http://isp.imm.dtu.dk/toolbox/ann/) was 

used to construct the MLP as the nc_multiclass algorithm included in the package allows 

the output of class probabilities. The algorithm allows the construction of a two layer 

network, the hidden layer has hyperbolic tangent functions and the output layer 

incorporates softmax function allowing the outputs for each class to be determined as 

probabilities [193, 194]. 

 

5.4.3 PRBF ANN implementation 

The PRBF ANN was implemented using the MATLAB neural network toolbox. The 

ANN is constructed using the newpnn function in MATLAB which adds neurons 

iteratively to the hidden layer until a specified error value is achieved. For more 

information see the MATLAB user manual [195]. 
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5.4.4 Cross validation  

The parameters of the MLP ANN (number of hidden layer neurons (HLNs)) and PRBF 

ANN smoothing factor (σ) were selected using a ten fold CV procedure identical to that 

applied with SVM parameter selection (section 4.5.2). 

 

5.4.5 Classifier testing and external validation   

For the optimal ANN designs the number of QDEMs per ANN was varied from 2 to 20 

and the cvacc, trainacc and testacc were calculated. The trainacc of the PRBF network was 

always 100% (as the training data is copied to HLN (section 5.3.2)). An independent test 

set validation was carried out using a portion of the training data held back from ANN 

construction. The effectiveness of each model was determined using the previously 

described methodology. An external validation of both ANNs was performed on the 

multiplex testing sets (section 3.5.2). 

 

 

Note: The source code for the MLP and PRBF implementation, CV and independent test 

set validation are available on the CD accompanying this thesis. 
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5.5 Results and Discussion  

The results of each ANN are shown below for parameter selection (section 5.5.1); 

training (section 5.5.2) independent test set validation (section 5.5.3). In addition each of 

the supervised techniques classification rates were monitored as the number of QDEMs 

per model was increased to determine the capacity of the models for identification of 

increased coding complexity (section 5.5.4). The multiplex mixture solutions were then 

presented to the optimum ANN models (section 5.5.5). Within each of the sections 

comparisons to the multiclass SVM classifier described in chapter 4 are discussed. 

5.5.1 ANN parameter selection 

Parameter selection for the MLP involved tuning of the HLNs until the optimum number 

for the data set was found (Table 12 and Figure 38). A Similar cvacc was observed for the 

4, 5 and 6 HLN MLPs. Independent test set validation was used to select the model that 

yielded the optimum generalisation on unseen data. The best testacc = 96.12% was 

obtained using the 5 HLN MLP and was therefore the optimum MLP design for this 

dataset. 

Table 12 MLP ANN parameter selection. The cvacc of the 4, 5 and 6 HLN MLPs were similar. 

Independent test validation identified the optimum MLP with 5 neurons in the hidden layer as 

optimal (highlighted). Average of ten MLPs. 

 

HLNs cvacc trainacc testacc 

1 46.50 46.75 45.49 

2 87.20 87.50 87.30 

3 95.55 95.72 95.17 

4 96.45 96.84 95.92 

5 96.72 96.95 96.12 

6 96.63 96.77 96.01 
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Figure 38 Performance of MLP with the CV, training and testing sets versus HLNs. The optimum 

number of nodes in the hidden layer was determined to be 5. cvacc = 96.72% for the 5 HLN MLP.  

 

 

In order to construct the best PRBF network the smoothing factor σ was varied from 1 × 

10-6 to 50. The results presented are the average of 10 individual cross validation training 

and independent test sets (Table 13). The optimum smoothing factor using the PRBF 

ANN was calculated to be σ = 2.5. The cvacc and testacc for the most accurate ANN were 

94.69% and 94.38% respectively. The trainacc is not applicable in the case of the PRBF 

(the training data is copied to the hidden layer therefore trainacc will always be 100%). 
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Table 13 PRBF model selection. The smoothing factor sigma is varied from 1 × 10
-6

 to 50 and the 

cvacc and testacc are calculated as an average of ten PRBF ANNs. There is no training error for PRBF 

ANNs. A QDEM classification based on the ranked probabilities for each class, the class with the 

maximum posterior probability is chosen (see eqn. 5.5 above).  

 

(σ) cvacc (%) testacc (%) (σ) cvacc (%) testacc (%) 

0.000001 5.01 4.56 2.0 92.06 93.56 

0.00001 4.92 5.12 2.2 92.68 94.02 

0.0001 5.14 5.01 2.5 94.69 94.38 

0.001 4.88 5.18 2.8 94.14 94.18 

0.01 5.16 4.96 3.0 93.95 94.10 

0.1 5.30 5.24 4 94.24 94.20 

0.5 5.53 23.40 5 94.24 94.70 

1 59.79 72.04 10 94.42 94.82 

1.2 72.89 81.9 15 94.70 94.60 

1.5 85.04 90.02 20 94.30 94.20 

1.8 90.47 92.58 30 94.57 94.94 

   50 94.15 94.18 
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Figure 39 PRBF cross validation results. A ten fold cross validation procedure was carried out for a 

selection of PRBF smoothing factor from 1 × 10
-6

 to 50. The optimum accuracy was at σ = 2.5. 

 

The training, evaluation of these classifiers is discussed below and comparisons to the 

multiclass SVM demonstrated in chapter 4 are drawn.  
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5.5.2 Training and execution 

 
Training time is an important consideration in the application of supervised learning 

techniques for SAT application to allow experimental flexibility with respect to the assay 

targets (chapter 2). Minimisation of the training time would allow QDEM populations for 

analysis to be changed rapidly. The MLP had the longest training time of the three 

classifiers (5.75 hours) decreasing the rate at which the classifier can be re-trained on 

additional QDEM signatures, furthermore significant experimentation is required for 

MLP optimisation [179]. The PRBF ANN on the other hand has near instantaneous 

training times, however for large numbers of events the prediction is time consuming and 

computationally expensive (section 5.3.2). The SVM classifier required ~3.5mins to 

train; moreover the classification speed was in the order of seconds for thousands of 

events, therefore the SVM offers a compromise between classification speed of MLPs 

and the training time of the PRBF. 

5.5.3 Independent test set validation 

Following presentation of the independent test data to the MLP and PRBF the sensitivity 

and specificity of each class was calculated (Table 1). See the appendix for full MLP and 

PRBF confusion matrices. The MLP (testacc = 96.12%) was a more suitable classifier than 

the PRBF (testacc = 94.12%), the SVM (testacc = 96.33%) outperformed both ANNs. 

 

The SVM had the lowest sensitivity for the QD0101 QDEM (R = 89.3%), resulting from 

confusion between this QDEM and the QD0110 and QD0111 microspheres. The 

sensitivity for this code calculated from the MLP was improved by 6.3%. The PRBF 

sensitivity on QD0101 (R = 86.8%) performed worse than that of the SVM. For the 
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QD0110 and QD0111 microspheres the identification sensitivity of both ANNs 

underperformed in comparison to the SVM, therefore while the MLP increased the 

sensitivity on the QD0101(R = 95.60%) signal, there was a decrease with the QD0110(R 

= 89.95%) and QD0111(R = 91.73%) in comparison to the SVM. For the remaining 

microspheres sensitivities of the SVM were greater than that of the ANNs or the 

difference was small. From the results of independent testing the SVM and MLP yielded 

a comparable performance on the unseen data; the PRBF was clearly the worst classifier 

with sensitivities for the QD1110 microsphere greatly diminished (R = 84.1%). In order 

to further separate the SVM and MLP methods the accuracy of each of the mixture test 

solutions were compared (section 5.5.5).  

Table 14 MLP and PRBF independent test set validation; true positives (#TP), % specificity (S) and 

% sensitivity (R) are shown.  The class with the lowest sensitivity for the ANNs are highlighted.  

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

5 HLN-MLP PRBF 
 QDEM 

#TP S (%) R (%) #TP S (%) R (%) 

1 QD0000 245 99.7 92.93 250 99.7 91.1 

2 QD0001 193 99.7 92.16 200 99.7 88.9 

3 QD0003 236 100 100 236 100 100 

4 QD0010 228 99.6 93.49 230 99.0 92.7 

5 QD0011 253 99.9 96.25 257 100 94.8 

6 QD0100 216 99.9 99.54 221 99.9 97.3 

7 QD0101 217 99.6 95.60 239 99.4 86.8 

8 QD0110 188 99.5 89.95 197 99.4 85.8 

9 QD0111 224 99.7 91.73 222 99.3 92.6 

10 QD0202 214 99.7 99.07 215 99.7 98.6 

11 QD1000 230 99.9 98.73 234 99.9 97.0 

12 QD1001 220 99.9 100 222 100 99.1 

13 QD1010 231 99.7 98.00 246 99.7 92.0 

14 QD1011 230 99.9 98.70 229 100 99.1 

15 QD1100 162 99.7 94.85 166 99.7 92.6 

16 QD1101 224 99.9 95.41 229 99.5 93.3 

17 QD1110 185 99.7 88.18 194 99.5 84.1 

18 QD1111 228 99.7 98.71 230 99.6 97.9 

19 QD2100 213 100 100 213 100 100 

20 QD2200 227 99.9 99.13 228 99.9 98.7 
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5.5.4 Effect of increasing QDEMs on performance 

 
The capacity of the MLP and PRBF was investigated with respect to the effect of 

increasing classes. The cvacc, trainacc and testacc were determined for each ANN (Table 2). 

To avoid bias arising from using well separated classes each of the experiments was 

comprised of n random QDEMs in the training data were selected, an average of 10 

passes were calculated. The accuracy of the ANNs shows a clear decrease as the number 

of QDEMs added increase (Figure 40 and Figure 41).  

 

Table 15 ANN performance against the number of QDEM considered by the model.  

 

5HLN-MLP PRBF 
#QDEM 

cvacc (%) trainacc (%) testacc (%) cvacc (%) testacc (%) 

2 100 100 100 99.85 99.68 

3 99.9 100 99.94 99.86 99.41 

4 98.55 99.38 98.67 99.06 98.93 

5 99.10 99.64 99.46 98.24 97.87 

6 99.04 99.57 99.26 99.18 98.92 

7 98.10 98.94 98.25 98.49 98.24 

8 98.99 99.17 98.68 98.77 98.45 

9 98.32 98.76 98.42 97.68 97.68 

10 98.72 98.28 98.96 96.83 97.31 

11 98.21 98.08 98.40 96.20 96.43 

12 98.31 98.04 98.48 95.95 95.98 

13 98.27 98.04 98.16 95.92 96.18 

14 97.08 98.00 97.36 95.66 96.09 

15 97.10 97.20 97.08 95.80 95.98 

16 96.99 97.20 97.24 95.67 95.60 

17 96.94 97.40 97.10 94.80 94.80 

18 96.78 97.27 96.96 94.88 94.94 

19 96.34 97.01 96.59 94.20 94.39 

20 96.06 96.98 96.12 94.27 94.09 
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Figure 40 Evaluation of the effect of increasing the number of classes considered by the MLP ANN. 

PRBF as expected had no train error. There is a steady decrease in both the cvacc, trainacc and testacc 

accuracy. 
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Figure 41 Evaluation of the effect of increasing the number of classes considered by the PRBF. The 

plot shows that there is an observable decrease in test set accuracy with increasing numbers of 

QDEMs. 



Chapter 5: Development of a neural network based QDEM classification system. 

  

Colin Clarke  Cranfield University 120 

In the future as additional classes are added to the model, the classification accuracy may 

decrease further, possibly as a result of the single net design; The combinatorial binary 

classifier of the SVM may offset the decrease in classifier performance. There are 

attempts within the community to create more efficient ensemble ANNs through the use 

of ECOC schemes which may prove useful for QDEM in the future. 

 

5.5.5 External validation  

External validation was carried out using the multiplex solutions for the MLP (Table 16) 

and PRBF (Table 17). The MLP incorporates the SOFTMAX function in output layer to 

allow probability outputs [196] and classified events below p < 0.5 are filtered, from the 

final results, in a similar manner to the SVM. There is no filtering of the classified events 

using the PRBF ANN as the network outputs are naturally probability based. Once again 

the MC rate and σ2 were determined for each mixture solution as described in section 

3.4.2. For the SVM the highest MC rate was for the multiplex tests was 6.4% (test 4). The 

performance of the MLP on this test set has decreased by 7.16% in comparison to the 

SVM. The FP classifications were mainly observed for the QD0101, QD1010 and 

QD1110. For the mixture 1 analysis; the solution containing the most difficult to classify 

microspheres performed poorly, with a MC rate of 20.9%, some 16.6% below that of the 

SVM. Misclassifications occur mainly with QD0101 and QD1101 microspheres. The 

SVM outperformed the MLP or the difference was negligible for the remaining multiplex 

testing solutions. The average MLP MC rate from external validation was 6.1%. The 

variance of the CCs across the MLP was however poor, again the 7-10 mixtures were 

large in comparison to the SVM additionally a higher variance for tests 1-6 was observed. 

The average σ2 =56698 for the ten mixtures. 
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Table 16 Prediction of unknown events from test samples using MLP ANN classifier. The total 

numbers of QDEM classifications (p ≤ 0.5) are shown for each dataset, the microspheres present in 

the mixtures are highlighted. 

Mixture# 
 

1 2 3 4 5 6 7 8 9 10 

QD0000 4 13 0 3 453 41 3 475 278 29 

QD0001 1 3 3 5 389 493 8 453 337 585 

QD0003 0 0 565 610 0 0 523 0 0 0 

QD0010 14 35 3 21 49 63 579 58 58 472 

QD0011 551 0 18 6 0 548 0 348 394 450 

QD0100 45 538 0 38 457 4 9 352 42 344 

QD0101 165 5 2 117 1191 2 848 920 1204 1142 

QD0110 331 1 0 330 410 0 4 391 436 376 

QD0111 1 0 0 1 60 0 34 92 112 169 

QD0202 11 0 219 281 0 18 8 14 27 40 

QD1000 0 19 2 37 0 469 508 343 42 403 

QD1001 0 0 0 0 0 0 0 0 287 341 

QD1010 1 642 0 119 4 587 2 50 111 480 

QD1011 2 441 6 302 0 429 2 405 581 460 

QD1100 257 252 0 1 106 281 32 107 279 293 

QD1101 148 10 3 825 458 599 394 944 844 920 

QD1110 388 2 1 54 286 348 321 782 576 549 

QD1111 0 1 1 132 0 0 347 50 59 110 

QD2100 0 0 682 0 0 0 777 0 0 0 

Q
D

E
M

 c
o

d
e 

QD2200 10 6 487 2 10 31 567 20 16 24 

#Codes 4 4 4 6 8 8 10 12 12 15 

#Events 2000 2000 2000 3000 4000 4000 5000 6000 6000 7500 

#Classified 1929 1968 1986 2884 3873 3913 4968 5804 5683 7187 

Rejected (%) 3.5 1.6 0.7 3.8 3.1 2.1 0.6 3.2 5.2 4.1 

#Correct 1527 1873 3906 2481 3750 3754 4898 5555 5387 7094 
CC rate (%) 79.1 95.1 98.3 86.0 96.8 95.9 98.5 95.7 94.7 98.7 

σ
2
 15608 27520 38642 64829 99563 12747 54661 81720 102309 69385 

MC rate (%) 20.9 4.9 1.7 14.0 3.2 4.1 1.5 4.3 5.3 1.3 

 

Interestingly the PRBF showed improvement for test 1 (Table 17). The RBF displayed a 

MC rate decrease of 11.9%, although there were still 4.7% of events misclassified in 

comparison to the SVM. The PRBF performance on mixture 5 was poor, returning 16.7% 

misclassified events, 13.7% and 13.5% worse than the SVM and MLP respectively. The 

main source of misclassifications in this mixture were due to QD0111 misclassifications 

(R = 92.6%). A considerable number of errors were also noted on mixture 4 (12.8%) due 
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to significant misclassifications on QD0010 (R = 92.7%) and to lesser extent on QD1110. 

The sensitivity of this class was R = 84.11%. The average MC rate for the PBRF external 

validation was 7.5%. 

Table 17 Prediction of unknown events from test samples using PRBF ANN classifier. (See section 

3.4.2 for multiplex test compositions). The QDEMs present in each solution are highlighted. 

Mixture #  

1 2 3 4 5 6 7 8 9 10 

QD0000 8 18 0 4 569 122 8 582 349 73 

QD0001 0 1 1 1 298 419 3 374 281 532 

QD0003 0 0 562 604 0 0 523 0 0 0 

QD0010 47 105 24 234 75 159 1006 150 380 901 

QD0011 550 1 28 16 0 551 0 354 396 454 

QD0100 24 530 0 22 449 4 16 330 32 317 

QD0101 13 1 0 5 429 2 145 285 395 352 

QD0110 479 10 0 437 735 2 28 616 686 554 

QD0111 27 0 0 28 542 0 717 570 762 871 

QD0202 16 2 225 284 0 21 0 17 31 49 

QD1000 1 10 3 0 0 446 480 321 0 342 

QD1001 0 1 0 0 0 1 0 1 178 215 

QD1010 1 508 0 15 3 492 18 13 21 378 

QD1011 1 537 1 321 0 496 0 431 624 462 

QD1100 176 236 0 8 94 236 9 91 238 217 

QD1101 6 2 0 247 225 322 156 331 307 367 

QD1110 616 38 0 52 535 671 356 805 703 702 

QD1111 35 0 0 722 46 47 222 725 617 707 

QD2100 0 0 682 0 0 0 774 0 0 0 

Q
D

E
M

 c
o

d
e 

QD2200 0 0 474 0 0 9 539 4 0 7 

#Codes 4 4 4 6 8 8 10 12 12 15 

#Events 2000 2000 2000 3000 4000 4000 5000 6000 6000 7500 

#Correct 1821 1811 1943 2615 3334 3633 4918 5724 5536 7371 
CC rate (%) 91.0 90.5 97.1 87.1 83.3 90.8 98.3 95.4 92.2 98.2 

σ
2
 37788 21033 37485 36414 25872 17992 80262 30915 41614 47338 

MC rate (%) 9 9.5 2.9 12.8 16.7 9.2 1.6 4.6 7.8 1.8 

 
The average variance for the multiplex tests for the PBRF was σ2 = 37671. An increase is 

observed in test 7-10 suggesting that there is an increase in the number of 

misclassifications between QDEMs present in the mixture.(For a comparison of the 

variances for each of the classifiers see Figure 45)  
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The MLP is the most suitable ANN classifier and performs comparably to the SVM in 

independent test set validation in terms of accuracy. The SVM however outperforms the 

MLP in external validation, moreover the SVM sensitivities for the most difficult to 

classify microspheres were superior. Additionally for the SVM there was less variance 

exhibited across the ten mixtures, moreover the variance were more uniform.  

 

5.6 Conclusion 

The ANNs implemented here have been shown in previous studies to be successful in 

classification of events from flow cytometry data. Two ANN implementations, the PRBF 

and MLP were trained using the QDEM FCM training set and compared to the 

performance of the SVM classifier in chapter 4. Rigorous parameter selection was 

applied in order to construct the optimum ANN. For the MLP, a five HLN configuration 

yielded the best performance (cvacc = 96.72%, trainacc = 96.95% and test acc = 96.12%). A 

PRBF with σ = 2.5 gave the best prediction of the dataset (cvacc = 94.69%, and test acc = 

94.38%).The SVM (cvacc = 96.58%, trainacc = 96.72% and testacc = 96.33%) is therefore 

the most suitable model for the classification of QDEMs from FCM data. The results of 

an external validation using multiplex QDEM test solutions further demonstrated the 

suitability of the SVM method. The SVM had a lower MC rate in each of the 10 tests 

than both the ANN classifiers and the variance for the SVM CCs (see Figure 45). 

Average SVM σ2  = 31479, MLP σ2 = 56698 and PRBF σ2 = 37671.  

 

The accuracy of the SVM is superior for the both the independent test set and multiplex 

test sets. Therefore the SVM is the optimum supervised learning technique to classify 
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events from the QDEM dataset. The model is highly accurate, sensitive and specific, 

outperforming ANNs. It has been shown previously that SVM outperforms the MLP for 

classification problems and underperforms with regression, although the differences are 

indeed small, the results presented here confirm this.  
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Figure 42 MC rates of the ten mixture tests for the supervised learning algorithms. The SVM has the 

lowest number of misclassifications in each test.  

 

The main difference between the methods relates to model complexity, the MLP network 

usually consists of a small number of units in the hidden layer, the SVM incorporates a 

much larger number of SVs. The SVM formulation of the learning problem, (i.e. 

quadratic optimisation, greatly reduces the number of operations required thus reducing 

the training time [197]). The training and execution time of the SVMs were the most 

practical. The MLPs training time would prohibit flexibility in the laboratory and the 

execution time of PRBF was also time-consuming. 
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6.1 Overview 

 
This chapter begins with an overall conclusion of the work described in this thesis. We 

begin with a discussion of the classification methods (section 6.2). As part of this project 

a user friendly software program was also developed to enable a flow cytometrist to 

apply the SVM classifier to QDEM recognition. The main functions of the program are 

outlined below (section 6.3). Finally an overall conclusion of this work is presented and 

recommendations for future work are outlined (section 6.4 and section 6.5).  

 

6.2 General discussion  

 
Increasing the multiplexing capacity of QDEM libraries to the levels suggested in the 

literature (~40,000 unique signatures) requires the utilisation of numerous emission 

wavelengths and discrete intensity levels. The first question asked in this thesis was if 

current means of QDEM identification were suitable for multicolour QDEMs analysed on 

a standard bench top flow cytometer. To this end MPG was evaluated with regard to its 

suitability to distinguish members of commercially available QDEMs from FCM data 

acquired on an EPICS XL with single laser excitation and four colour detection.  

 
A 20-plex QDEM set was analysed using FCM with approximately 20,000 training 

events recorded. An external testing set of QDEM solutions was also prepared and 

analysed to provide a benchmark for the methods under examination here, 500 events for 

each QDEM in the solution were recorded. While the capacity of the library used was not 

large, the coding scheme complexity (4 emission wavelengths and 4 intensity levels) was 

greater than those previously described in the literature for QDEMs. The complex coding 
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scheme considered here should give a clear picture of how currently available data 

analysis methods would perform at higher levels of multiplexing.  

 

A number of outliers were identified in each QDEM data set possibly arising from 

variations in bead manufacture, damage to the bead or variation in measurements. There 

is a degree of overspill between the fluorescent channels as the median fluorescent 

intensity was not uniform for each detector (Figure 16). The CoeffVs was also high for 

the microspheres analysed and provided a suitable dataset to rigorously test the 

classification methods. 

 
Investigation of the suitability of a current encoded microsphere identification method 

was carried out. The method applied was an expert supervised gating technique, MPG. 

MPG in recent times has been applied successfully to such libraries (although the coding 

schemes described were less complex than for the QDEMs used here). MPG 

misclassified a large proportion of the multiplex solutions showing disappointing levels 

of false positive identifications resulting in average MC rate of 9.7% for the 10 mixtures 

(14.1% for mixtures 1-6). The most difficult to classify QDEMs in mixture 1 yielded a 

MC rate of ~30.6%. As stated previously the results for mixtures 7-10 should be treated 

with caution, while the classification accuracy increases, the increasing numbers of 

QDEMs in the solution mask the true performance of the model. The variance of correct 

classification may show that false positive classifications were present. To this end the 

variance of correct classification were calculated. MPG had the highest average variance 

across the external validation (Figure 45). The results could not be improved even after 

fine tuning of each QDEM region. Moreover multiple classifications were made on single 
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events; due to overlap between the gates (there were more classifications than events in 

the testing sets). Therefore the confidence in results obtained using this method was poor. 

There was no way to ensure the optimum gate for each population was obtained and the 

regions selected were based on the interpretation of the user. Therefore MPG is a 

subjective process relying on the skill of a particular user and as the number of QDEMs 

per assay increases would the number of plots to be considered increases non-linearly. 

MPG was also a time consuming method with ~1 hour required to set and tune the 

regions for each population.  

 
The central aim of this thesis was to improve upon the classification accuracy of MPG for 

QDEM recognition through the use of supervised learning algorithms. Two of the most 

popular supervised algorithms for the discrimination of FCM subpopulations are SVMs 

and ANNs. Supervised learning techniques offer a novel solution to QDEM 

subpopulation identification. Multivariate machine learning algorithms have advantages 

over the MPG in that subjectivity is removed from the process and classification occurs 

in a multidimensional space where subtle relationships between detector signals are 

considered. SVMs have a good theoretical basis, allowing the multidimensional gating of 

subpopulations, moreover through the calculation of the maximal margin hyperplane the 

optimum gates can be found. ANN classifiers have also shown good potential FCM 

studies, the two most widely used ANN classifiers in the literature were utilised for 

QDEM classification A PRBF and MLP ANN were implemented and a comparison with 

the MPG and SVM model carried out for the QDEM dataset.  
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An outlier removal procedure was also developed to remove outlying events through 

setting an IQR threshold for each parameter, the classification accuracy was improved 

using this method. A total of 1,242 events (6.27% of total events acquired) were removed 

from the original training data improving the accuracy by 3.31% in the case of the SVM. 

As outlier removal was not included as part of the FCSexpress program, outlier filtered 

datasets were used only to construct the SVMs and ANNs. 

 
In order to select the optimum model for the data set using SVMs and ANNs, a rigorous 

cross validation procedure was carried out for each learning system. An independent 

testing set was used to determine the generalisation error of each classifier. The cvacc, 

trainacc and testacc of each model (SVM, MLP, and PRBF) are shown below (Table 18). 

The classification accuracy of the SVM incorporating a linear kernel and C = 1 using the 

OVO multiclass design outperforms those of the ANNs (Table 8) with the best 

performance independent test set validation, cvacc = 96.58%, trainacc = 96.72% and testacc = 

96.12%.. The MLP is the best ANN for the task. The optimum number of HLNs for the 

MLP was determined to be 5 through cross validation; cvacc = 96.72%, trainacc = 96.95% 

and testacc = 96.12%. The PRBF ANN (σ = 2.5) had the poorest performance of the three 

classifiers cvacc = 94.69% and testacc = 94.38%. The SVM outperforms both ANN 

implementations although the difference between the SVM and MLP is small in 

independent testing. 

Table 18 Comparison of supervised learning techniques for the identification of QDEMs from FCM 

data. The best classifier for the QDEM dataset is the SVM. 

 

 cvacc (%) trainacc (%) testacc (%) 

SVM 96.58 96.72 96.33 

MLP 96.72 96.95 96.12 

PRBF 94.69 N/A 94.38 
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As a further measure of confidence the sensitivity and specificity for each class was 

calculated on the test set predictions. The specificities for the three classifiers were 

comparable. The sensitivities for each model are shown below (Figure 43). For the most 

difficult microspheres to classify (QD0110, QD0111 and QD0101) the SVM again 

yielded the best average performance. 
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Figure 43 Sensitivities for the three classifiers. See section 4.3.4 for sensitivity calculation. MPG is not 

included as there is no independent test set validation. 

 
To test the performance of the classifiers and compare the supervised algorithms with 

MPG, 10 QDEM mixtures were prepared using different numbers of QDEMs and 

analysed using FCM. The MC rate was calculated as there was no way of independently 

verifying the identities of the microspheres from the mixture solutions prior to analysis. 

The subpopulations present in the solution were known; hence the false positive results of 

each classifier are used to determine suitability.  
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All supervised learning algorithms were shown to return fewer false positives than the 

MPG method. The SVM showed excellent classification performance on these samples 

clearly outperforming MPG and both ANN methods (Table 19 and Figure 44). The MLP 

was the slightly more suitable ANN method outperforming the PRBF method by ~2%.  

 
As stated previously the MC rate results should be treated with caution, as more QDEMs 

are included in the mixture. Hence the likely hood of a misclassified event being 

designated as QDEM known to be present. In future work it is essential that the 

classifications of SAT assay and SVM classification system be run in parallel with a 

standard detection platform e.g. microarray.  

 
The variance was also calculated for classifications on QDEMs present in the mixture 

solutions (i.e. correct classifications) in each solution for each of the four classifiers 

(Figure 45). Calculation of the variance allows a further measure of performance of the 

classification techniques. Assuming that each of the testing solutions was homogeneous 

(rigorously agitated before aspiration to the flow cytometer), the most suitable classifier 

was identified as having the lowest MC rate and the lowest variance between the numbers 

of events assigned as correct. Although the QD1100 QDEM seemed to have a diminished 

stock concentration each classification paradigm was tested on an identical dataset, 

therefore this effect was negated.  

Table 19 Comparison of the mixture misclassification rates and CC variances for each of the 

classification systems evaluated. 

 Mixture # MPG SVM MLP PRBF 

1-6 14.5 3.9 8.1 10.0 
MC rate (%) 

All 9.7 2.9 6.1 7.5 

1-6 40448 29317 43151 29430 CC variance 

(σ
2
) All 63482 31479 56698 37671 
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Figure 44 Comparison of the MC rate for the 10 multiplex test solutions. The SVM (red) has the 

lowest MC rate for all QDEM mixtures (2.9%). 
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Figure 45 Variance of each multiplex mixture solution for the four different classification algorithms 

used. Assuming a homogenous mixture of QDEMs within the test solutions the variance of the 

included QDEMs is used an indicator of classification performance in the external validation. The 

SVM (red) demonstrates the lowest variance between the numbers of events detected in each mixture 

(average σ
2 
= 31479).  
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MPG had the highest variance over the mixture solutions (average σ2 = 63482) suggesting 

that FPs were present. The SVM (average σ2 = 31479) showed a more balanced 

classification of the events expected with a homogeneous, ~50% lower than that of MPG 

(average σ2 = 63482). Interestingly the PRBF variance (average σ2 = 37671) was 

significantly lower than the MLP (average σ2 = 56698). 

 

The results of independent test set validation and analysis of the QDEMs show the SVM 

classifier to be the most suitable for the classification of QDEMs from FCM data 

outperforming both MPG and the ANNs. The success of the SVM over the ANN 

implementations for this task concurs with Moriss et al. who reported success with SVM 

for the discrimination of 20 phytoplankton species. Here a multiclass SVM outperformed 

single species RBF ANN and a large optimised RBF ANN for all species [152]. Although 

Quinn et al. reported that PRBF had the best performance for the classification of FCM 

events during an in vitro viability study, overcoming both the MLP and SVM learning 

algorithms [151]. Our work shows that in this case the SVM is superior to that of the 

ANNs for classification of QDEMs.  

 
The effect of each of three classifiers when additional microspheres were added was 

determined to assess possible scale up issues. However there was no significant 

difference observed in the accuracy of each type of model with the addition of QDEMs 

for the results here; it is unclear if the classification accuracy would decrease beyond 20 

QDEMs. The “scaling up” of RBF ANNs was also deemed to be more problematic for 

ANNs in comparison to SVM. The work of Boddy et al. points to SVM handling the 

scale of a number of classes to be handled much more efficiently by a SVM [152].  
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Figure 46 Effect of addition of QDEMs considered by the classifier on test set accuracy. The SVM 

and MLP decrease at a similar rate, future performance is unknown however the OVO SVM is well 

suited to offset these concerns.   

 

The scale-up issue could be a potential limitation of the system although the theory of 

OVO SVMs should offset this. The creation of binary classifiers to discriminate against 

one another should be dependant on the complexity of the decision boundary required. 

Furthermore the performance of the RBF kernel SVM is encouraging, in that the 

performance was similar to that of the linear kernel SVM. If the complexity of class 

decision boundaries increases, a non-linear SVM could be employed to achieve 

classification in a kernel induced feature space e.g. RBF kernel.  

 
Apart from possible scale-up issues, it is not yet clear at this stage if the current 

performance of the SVM can be improved. In theory it is possible that the SVM could 

exceed 99% accuracy, however accuracy is proportional to the quality of the microsphere 

manufacturing and encoding methods therefore increasing the precision of the FCM 

analysis (reduction of the CoeffV). Such a reduction in CoeffV may be required for 
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expansion of QDEM libraries. The high throughput nature of FCM also suggests spurious 

events are always likely to be present. The use of probability filtering of classification 

results removes the majority of these events . While the supervised learning methods 

have been shown to be successful perhaps the largest limitation of a supervised learning 

system is the application of these methods by laboratory users. The methods described in 

chapters 4 and 5 were implemented in the MATLAB environment restricting access to 

normal FCM users. To overcome this limitation a user friendly interface was designed in 

order to allow rapid and construction and evaluation of multiclass SVMs for the 

identification of QDEMs from SVM data. This software program forms a natural 

conclusion to the work described in this thesis. 

  

6.3 FlowSVM: A software program for the SVM construction for 

the classification of QDEM from FCM data  

6.3.1 Introduction 

To allow laboratory users to construct and evaluate multiclass SVMs for QDEM 

subpopulation identification in flow cytometry a user friendly program, FlowSVM, was 

created. FlowSVM is a freely available standalone package developed in the MATLAB 

environment allowing standard data plotting and the development and evaluation of SVM 

classifiers for QDEM subpopulations. The following sections briefly describe the features 

of the program in two parts, firstly the standard data analysis module (section 6.3.2) 

allowing traditional FCM plotting and the module for the application of multiclass SVMs 

to QDEM classification (section 6.3.3). 
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6.3.2 FlowSVM: FCM data plotting tool 

To allow visual inspection of the data prior to SVM training a tool to allow standard 

FCM plotting was developed (Figure 47). The FCM data directory must be chosen first, 

sample information contained in the HEADER portion of the FCS files is then extracted 

and displayed for each file. The FCM data is imported by selecting the relevant file from 

the listbox (Figure 47). Note: If the plotting tool is activated directly from the SVM 

manager (section 6.3.3), selected FCM data is transferred automatically. There are three 

types of plots available, standard non density histograms (univariate, bivariate and 

trivariate) and event density plots (scatter, contour and surface). Each FCS in the selected 

directory can be overlaid on a single plot with standard histogram plots - a useful feature 

for an initial indication of separation between QDEMs. A region selection tool is also 

included allowing only events within the selected area to be retained, sample statistics are 

recalculated for the selected region and new plots can be drawn. Standard plotting 

functions are also included such as 3D plot rotation, magnification, annotation and plot 

export.  

 
 

Figure 47 FlowSVM: Plotting tool interface. A surface plot of event density is shown. 
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Sample statistics are calculated for each dataset including the mean, median, standard 

deviation and the IQR. The number of outliers in each channel is also shown for each 

FCM channel. Boxplots can also be used to display all detector measurements 

simultaneously and outliers in the dataset.  

6.3.3 FlowSVM: SVM management module 

 
The main aim of the FlowSVM program was to allow laboratory users to construct and 

evaluate multiclass SVMs for the identification of QDEMs independently from 

MATLAB. The methodology described throughout chapter 4 is incorporated into the 

program. The main screen can be seen below (Figure 48), the various panels for each 

stage are selected from the top of the screen allowing data formatting, CV, training, 

testing and unknown QDEM prediction. 

 
 
Figure 48 FlowSVM training data importation. Files in the current directory can be selected to form 

the training data. Outlier filtering is also carried out during the data formatting process.   



Chapter 6: Overall discussion and conclusion  

  

Colin Clarke  Cranfield University 

 

138 

The first stage in construction of an SVM for classification is the selection and formatting 

of training data. Once a directory has been specified the information contained in the 

HEADER is displayed. The user can then select the FCS files containing each class for 

SVM training. Selected data files are shown in the lower listbox (double clicking on a file 

in the upper listbox activates the plotting tool and transfers the selected training data - see 

section 6.3.2). Once data formatting is activated the training data is randomised, split into 

the training subsets and written to the LIBSVM format. The IQR cut-off for outlier 

removal can also be specified. The training data must be designated file name for data 

storage. An individual file is created for each training data subset and the events in each 

subset displayed to user along with the number of outliers removed. Standard statistics 

for each QDEM population can also be displayed for each class in the training data.  

 

The four phases (parameter selection, training, testing and application) in SVM analysis 

are contained in separate panel within the program. Model selection using cross 

validation can be carried out by pressing the CV tab. Here the optimum parameters for 

the SVM can be determined for the selected cv_set. The four most popular kernels are 

implemented and the kernel specific parameters can be assigned. The number of folds 

must be entered for the CV procedure. Once the CV has completed the cvacc is outputted 

for the selected parameters (Figure 49). If the cvacc is unsatisfactory new parameters can 

be re-entered and the process repeated until the optimum model is located.  

 
Following the selection of the optimum parameters SVM training can be carried out in 

the TRAIN panel. The training screen is very similar to that of parameter selection. Here 
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the parameters selected through CV can be applied to a training set selected from the data 

store. The constructed model is stored for further evaluation.  

 
Figure 49 FlowSVM Parameter selection. CV is carried out on the selected dataset and the results 

returned to the user. 

 
Complete independent test set validation of trained SVMs can be carried out in the TEST 

panel. The classification accuracy of corresponding testing sets for each model can be 

determined. Confusion matrices are also constructed and evaluated automatically and the 

sensitivity and specificity of each class outputted to the user. A bar chart of classification 

is presented to the user showing the extent of classifications across the test set. Therefore 

the user can efficiently determine the success of each SVM model on the data and 

maintain a record of each SVM constructed.  
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Validated classifiers can be applied to assay data in the CLASSIFY tab. Here the required 

SVM is selected along with the probability cut-off. An FCS file is then selected for 

presentation to the SVM. Following classification of the data set a plot of classified 

events for each class is displayed. The results of classification and the probability 

threshold applied are also recorded for further use.  

   
Figure 50 Prediction of QDEM SAT assays using the FlowSVM program. Trained models are 

selected for application to test files. The probability output cutoff points for classification can be 

specified and the results stored. A classification plot is presented. The total classifications are 

presented to the user.  

 
It is hoped that this tool will make the SVM classifier more accessible to typical 

laboratory-based users. Future recommendations for possible extensions of this software 

are included in the next section.  

Note: The standalone program and source code for the program described above is 

freely available on the CD accompanying this thesis. 
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6.4 Overall Conclusion 

 
Suspension array technology has much potential in post genomic applications. 

Traditional methods of subpopulation identification methods have been shown to be 

limited for the complex encoding strategies possible with nanocyrstal optically encoded 

microspheres. An unmodified flow cytometer representative of equipment found in a 

variety of locations was used to acquire the QDEM data used in this thesis. Both a 

multiparameter gating and unsupervised clustering method were found to be deficient for 

the QDEM library analysed in this study. The aim of this work was to improve upon 

these methods using supervised learning techniques.  

 

To this end two of the most popular learning paradigms, ANNs and SVMs were applied 

to the dataset.  A 10-fold cross validation was used to select the optimum classifiers for 

each model type. Each model was then evaluated using internal and external validation. 

The multiclass SVM classification produced the classifier with the best classification rate 

in both independent test set validation (96.33%) and MC rate (2.94%) on the QDEM 

mixtures outperforming the ANNs and approaching that of the Luminex system (~2%). 

Additionally the training time of the SVM was rapid and classifications could be 

performed rapidly an important consideration for FCM. SVMs are well suited to this task 

and allowing the optimum gates to be located in a multidimensional space for each class. 

There is no reason why organic dye encoded microsphere could not be classified by the 

SVM although no such encoding scheme has been considered during this study. 
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A user friendly interface has been created to allow construction and evaluation of SVMs 

by laboratory users was developed for flow cytometrists. The program facilitates the 

conversion of FCS files into training data, parameter selection, training and independent 

test set validation. The resulting SVMs can be applied to unknown FCM in order to 

determine the identity of the microspheres present.  

 

It is unclear how the SVM would perform when the encoding scheme is expanded. The 

OVO multiclass SVM should classify these microsphere with the similar results as those 

presented here, as the design of the classifier only considers any two classes at the same 

time. It is therefore likely that the intensity resolution between the encoding levels is the 

limiting factor in classification as opposed to the number of colours used or the SVM 

paradigm itself.  

 

In conclusion the overall aims of this thesis have been met, an improved classifier for 

SAT using QDEM encoded microspheres has been developed using SVMs. SVMs 

outperform MPG and ANNs and have potential for the automated identification of 

QDEMs in expanded multiplexed assays for applications in genomics and proteomics. It 

is hoped that this work will contribute to the application of high throughput SAT assays 

using flow cytometry. 
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6.5 Recommendations for future work  

 
While there is no doubt that SVM is a promising classifier for QDEMs, this potential 

needs to be built upon. The points below list the areas recommended for future work   

 

• Further SVM evaluation is required at higher levels of multiplexing (increased 

numbers of unique QDEMs).  

 

• Application and validation of the SVM QDEM classifier to biological problems, i.e. a 

SNP genotyping or gene expression analysis in parallel with microarrays is critical.  

 

• Integration of the hybridisation signal within the SVM or possibly using the reporter 

channel as the recording trigger i.e. only hybridised events would be recorded 

negating the need for inclusion in the classification algorithm.  

 

• Expansion of the FlowSVM software for increased number of unique microspheres 

and the development of a database for storage of experimental parameters, models 

and results.  

 

• The integration of the SVM with flow cytometry acquisition software to allow online 

classification of events.  

 

• Further development of assay chemistry, including the development of specific 

multiplex PCR protocols for applications such as SNP genotyping. Work is currently 

under way at Cranfield University toward the development of a multiplex bead assay 

for diabetes type II studies.  
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Clustering algorithms can be used to identify subsets of cells in FCM data based on 

different characteristics of that data. The second standard classification method evaluated 

for the QDEM library was an unsupervised clustering method called frequency difference 

gating first described by Roeder et al [198]. The technique has overcome previous 

limitations including the computational expense of such algorithms and integration of 

domain specific knowledge and is implemented as part of the Flojo software suite (Tree 

Star, San Carlos, CA). A possible advantage of this method is that no training data is 

required for subpopulation identification. Decisions are based solely on the multiplexing 

test set distributions and no underlying assumptions are made. The similarity and 

dissimilarity of samples can be identified and the data can be gated on events in one 

sample that are different from a control even if the differences are not visible on bivariate 

plots. A variation of the chi-squared statistic was extended to a multivariate space. The 

normalised chi-squared value for the ith bin is calculated as:  
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Where ic and is are the number of control and test samples falling into bin i. cE and 

sE are the total events in the control and test samples. In the case of samples where no 

control is possible or logical (in our case), the control is the combination of the test 

sample events. Each sample is then compared to the combined test control. The algorithm 

has been successfully applied to the differentiation of HIV+ and HIV- samples and 

mouse B cells [199].  



Appendix 1: Frequency difference gating and probability difference gating 

  

Colin Clarke  Cranfield University 

 

164 

The probability binning method described above can also be used to generate so-called 

“frequency difference gates”. Frequency difference gating constructs gates in multivariate 

space where there is a difference in frequency between multivariate distributions 

(determined using probability binning comparison). A possible limitation of this method 

is that small differences in staining intensity can result in incorrect classifications of the 

data; therefore robust calibration is required for measurements [200]. 

 
 

 

Figure 51 Clustering of the Multiplex test 10 using the probability binning clustering method 

described by Roederer et al. The 15 clusters containing the most events were frequency difference 

gated using the Flojo software suite. While the algorithm has indeed identified a number of 

subpopulations in the data it is difficult to conclude which cluster pertains to a QDEM. Therefore a 

tabular output is also provided (Table 20).  

 
The clustering algorithm was applied to the 10 FCM datasets (Table 20 and Figure 51). 

The remaining nine multiplex tests can be found in the CD appendix accompanying this 
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thesis. As can be seen from the multiplex results (test 10) it is difficult to reliably assign 

identity to the QDEM subpopulations. For the 15 clusters containing the most events, the 

biggest cluster contains more than 1900 events while the lowest cluster contains only 93 

events. We would expect there to be a greater balance between microsphere classes (as 

equal amounts of the stock solution were added to each multiplex solution). It is possible 

that more events were acquired for certain QDEM classes however this imbalance in 

class detection was not observed during the MPG analysis.  

Table 20 Flojo clustering results. The test solutions were clustered using probability binning 

comparison and frequency difference gating applied. The results for multiplex test 10 are shown. The 

top 15 cluster designations were also plotted (Figure 51). It is difficult from these results to identify 

the QDEMs correctly. The output of the Flojo algorithm was deemed to be unsuitable for the 

discrimination of the QDEMs from FCM data.  
 
 

Events Name FL1  FL2  FL3  FL4  QDEM 

7500 Parent      

1901 Cluster 1 + ++ ++ + 1221 

1897 Cluster 2 — + + + 0111 

565 Cluster 3 — — — + 0001 

493 Cluster 4 — — ++ ++ 0022 

405 Cluster 5 + — + — 1010 

383 Cluster 6 + — — + 1001 

248 Cluster 7 + — + ++ 1012 

238 Cluster 8 — — + ++ 0012 

228 Cluster 9 — + + — 0110 

215 Cluster 10 — — + + 0011 

160 Cluster 11 + — — — 1000 

123 Cluster 12 — — + — 0010 

111 Cluster 13 + + + — 1110 

99 Cluster 14 + — — — 1000 

93 Cluster 15 + — — — 1000 

 
The second deficiency of the method is that the actual identification of the class is 

subjective. Shown above is the output of the analysis, here the fluorescent parameters are 

shown where a ranking scheme is used to define the parameters that distinguish the 

microspheres (Table 20). It can be seen that the identification of the microspheres 
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becomes subjective relying on the cluster plot and the user interpretation of the results 

shown below.  

 
This point is outlined by Roderer et al. who state that frequency difference gating is 

meant to identify subsets in multidimensional space. Confident identification of multiple 

populations using this method was impossible. It is likely that this algorithm works best 

when a control population is provided. The paper describing this algorithm presented an 

example of HIV analysis where a test was provided with excellent results. In our case as 

mentioned above a control” set is not applicable. Therefore the Flojo clustering method, 

while having a distinct advantage (in that no training set is required) is not suitable for the 

identification of QDEMs from the datasets provided. It is expected that by increasing the 

number of unique microspheres that the performance of the algorithm would decrease. 

 
In conclusion, each of the ten QDEM mixtures were analysed using this method, however 

results were poor. It was difficult to determine the identity of each cluster; moreover 

there was a large discrepancy between the numbers of events in each cluster when 

compared to the quantities inputted in each QDEM solution. As each QDEM solution 

was added to the test solution in equal concentration (except for QD1100) the results 

obtained highlight the deficiency of this method for classification of the QDEMs within 

the test solutions. Therefore the MPG results provided the benchmark for current QDEM 

identification techniques. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 2: Confusion Matrices. 
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SVM confusion Matrix 
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MLP confusion Matrix 
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Product data sheet 

 

MultiPlexBeads™ 

 
Authorized for research use only  

 

Contents  

The vial(s) contains carboxyl-functionalized, 5 µm acrylic beads encoded with fluorescent, 

composition-tuneable nanocyrstals. Blank beads are not encoded with nanocyrstals.  There are 

approximately 1.46 x 107   beads per mg.  The beads are shipped in deionised water with 0.01% 

sodium azides.  

 

Instructions  

The beads should be stored between 2 and 25 ºC in the dark.  Beads may be centrifuged (1000 G,  

5 minutes) to change solvent if desired.  If beads aggregate, follow directions below to disperse.  

Binding ligands to surface carboxylic acids can be accomplished with EDC in TBS in a pH range  

of 6.5 - 8.0 by following our recommended Protein Binding Protocol.  

 

Bead dispersion protocol  

1)   Vortex, 10 seconds  

2)   Shake vigorously by hand, 5 seconds  

3)   Sonicate, 20 seconds (vortex 50 seconds if sonicator not available)  

4)   Repeat three times  

 
 
MultiPlxBeads is a trademark of Crystalplex Corp 
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Material safety data sheet 

 

Chemical Product 

 

Acrylic beads that encapsulate semiconductor nanocyrstals, are stored in tris-buffered 
saline, and have -COOH groups or UltraAvidin (Leinco Technologies) on its surface. 
 

Composition, Information on Ingredients 

 

Name CAS # % by weight 

Water 7732-18-5 97.0-98.5 

Polystyrene 9003-70-7 0.5-2.0 

Sodium Chloride 7647-14-5 0.8 

Tris (Hydroxymethyl) 
Aminomethane Free Base 

77-86-1 .11 

Tris (Hydroxymethyl) 
Aminomethane 
Hydrochloride Salt 

1185-53-1 .02 

Potassium chloride 7447-40-7 .02 

Divinyl benzene 1321-74-0 .01 

Sodium Azide 26628-22-8 0.01 

BSA 9048-46-8 0-1 

Avidin 1405-69-2 0-0.01 

CdSe 1306-24-7 <0.001 

 
 

Section 3 - Hazards Identification 

Appearance: Opaque liquid. CAUTION! The toxicological properties of this material 
have not been fully investigated. May cause eye and skin irritation. May cause respiratory 
and digestive tract irritation. 
 
Target Organs: None known. 
 
Potential Health Effects 

Eye: May cause eye irritation. The toxicological properties of this material have 
not been fully investigated. 

Skin: May cause skin irritation. The toxicological properties of this material 
have not been fully investigated. 

Ingestion: May cause gastrointestinal irritation with nausea, vomiting and diarrhea. 
The toxicological properties of this substance have not been fully 
investigated. 

Inhalation: May cause respiratory tract irritation. The toxicological properties of this 
substance have not been fully investigated. 

Chronic: No information found. 
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Section 4 - First Aid Measures 

 
Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting  

The upper and lower eyelids. Get medical aid immediately. 
 
Skin: Get medical aid. Flush skin with plenty of water for at least 15 minutes while 

removing contaminated clothing and shoes. Wash clothing before reuse. 
 
Ingestion:  If victim is conscious and alert, give 2-4 cupfuls of milk or water. Never give 

anything by mouth to an unconscious person. Get medical aid immediately. 
 
Inhalation: Remove from exposure and move to fresh air immediately. If not breathing, 

give artificial respiration. If breathing is difficult, give oxygen. Get medical 
aid. 

 
Physician: Treat symptomatically and supportively. 
 

Section 5 - Firefighting Measures 

Not a fire hazard. 
 

Section 6 - Accidental Release Measures 

Wear NIOSH approved chemical safety gloves, goggles, and rubber boots.  Sweep up 
product and place in a sealed bag.  Hold for disposal. Avoid generating dusty conditions. 
Provide ventilation. 
 

Section 7 - Handling and Storage 

Store in a dark, cool (2 - 25 ºC) place.  Gentle sonication to disperse beads in solution is 
recommended prior to use.  Beads may be centrifuged to change solvent if desired. 
 

Section 8 - Engineering Controls & Personal Protective Equipment 

Engineering Controls 

Use adequate ventilation to keep airborne concentrations low. 
 
Personal Protective Equipment 

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described 
by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European 
Standard EN166. 

 
Skin: Wear appropriate protective gloves to prevent skin exposure. Clothing:   Wear 

appropriate protective clothing to prevent skin exposure. 
 
Respirators: Follow the OSHA respirator regulations found in 29 CFR 1910.134 or 

European Standard EN 149. Use a NIOSH or European Standard EN 149 
approved respirator when necessary.
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� FCM data – flow cytometry data used in the thesis 

o Training data – for construction of classifiers. 
o Mixture data   – for external validation. 
 

� FlowSVM  

o MATLAB code – GUI m-files. 
o Standalone – compiled version. 
 

� General m-files  

o classifierEval.m – calculation of performance measures from confusion 
matrix.  

o constructConfusion.m – construction of confusion matrix from the results 
of independent testing 

o medoutlierfilt.m – outlier filtering using IQR. 
 

� MLP construction 

o nc_muliclass toolbox – DTU ANN toolbox. 
o mlpconstruction.m – construct n-node MLP. 
o mlpPrediciton.m – determine unknown QDEMs. 
o mlpXval.m – MLP cross validation. 
 

� MPG construction 

o QDEM multiparameter gating.fey – multiparameter gating set-up for 
FCSExpress. 

 

� PRBF construction 

o prbfconstruction.m – script for the construction and evaluation of a PRBF. 
o prbfXval.m – function selection of the optimal smoothing factor for a 

PRBF. 
 

� SVM construction 

o svmconstruction.m – script for the construction and evaluation of a SVM. 
o svmlread.m– read the LIBSVM sparse density format. 
o svmlwrite.m – write to LIBSVM sparse density format. 
o svmpredict.exe – LIBSVM executable for classification. 
o svmtrain.exe – LIBSVM executable for training. 
 

� Thesis  

 

Note: In order to run the m-files on the CD the MATLAB path must be set to the CD to 

include subfolders. To run the FlowSVM program without either MATLAB or the 

MATLAB MCR must be installed on the machine.  


