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Understanding actuarial and financial risks poses major challenges. The need for reliable
approaches to risk assessment is particularly acute in the present context of highly uncertain
financial markets. New regulatory guidelines such as the Basel II Accord for banking and
Solvency II for insurance are being implemented in many parts of the world. Regulators
in various countries are adopting risk-based approaches to the supervision of financial
institutions.

Many researchers in a variety of areas have been dealing with nontrivial and highly
multifaceted problems in an attempt to answer seemingly plain questions such as how to
assess and quantify risks (Crouhy, Galai, and Mark [1]). The present issue of the Journal
of Probability and Statistics provides a glimpse of how challenging such problems are,
both philosophically and mathematically, through a collection of papers that cover a large
spectrum of applied and theoretical problems.

A number of ideas concerning measuring risks stem from the economic theory and
in particular from the classical utility theory (Neumann and Morgenstern [2]) as well as
from the prospect theory (Kahneman and Tversky [3]), which were subsequently developed
into the anticipated, also known as rank-dependent or generalized expected, utility theory
(Quiggin [4]), and most recently into a ground-breaking theory of choice under uncertainty
that allows for the presence of catastrophic risks (Chichilnisky [5]).
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This special Journal of Probability and Statistics issue offers many articles based
on such economic theories and their extensions. G. Chichilnisky develops foundations
for dealing with catastrophic risks, called “black swans”, which require tools beyond the
classical σ-additive probability theory. M. Finke, E. Belasco, and S. Huston review household
property risk management theory in order to compare optimal risk retention to conventional
practice. Aided with ideas of behavioral economics and finance, H. Takahashi investigates
the forecast accuracy of fundamental values in financial markets and clarifies issues such as
price fluctuations. F. Greselin, L. Pasquazzi, and R. Zitikis develop statistical inference for
Zenga’s index of economic inequality, whose construction brings to mind the relative nature
of notions such as small and large, poor and rich.

To make us aware of the scope and complexity of the problem, several authors have
contributed papers tackling risks within and beyond the financial sector. G. Chichilnisky and
P. Eisenberger have written a far-reaching article on asteroid risks. They convince us about the
critical importance of these risks, for which very little research has been carried out, and they
provide an interesting methodology for comparing asteroid risks with the risks of climate
change to make better decisions about research and development. For further information on
this and other related topics, we refer to the web site http://www.chichilnisky.com/.

W. J. Braun, B. L. Jones, J. S. W. Lee, D. G. Woolford, and M. Wotton examine the
risk assessment of forest fires in order to generate burn probability risk maps, concentrating
on the district municipality of Muskoka in Ontario, Canada, as an illustrative example.
D. L. K. Hoag and J. Parsons discuss their new program, Risk Navigator SRM, which
greatly expands the number of managers that can address risks in agriculture. The
program lays down solid foundations and provides state-of-the-art practical support tools,
including a web site (http://www.risknavigatorsrm.com/), a risk management simulator
(http://www.agsurvivor.com/), and a book that puts it all together (Hoag [6]).

Specific insurance risk-related problems are tackled by a number of authors.
P. Gaillardetz develops an elaborate evaluation approach to equity-linked insurance products
under stochastic interest rates. O. Furman and E. Furman propose layer-based counterparts of
a number of risk measures and investigate their properties and analytic tractability, especially
within the framework of exponential dispersion models.

One of the basic measures of risk is the so-called value-at-risk, which amounts to a
high quantile from the statistical point of view. It is arguably one of the most challenging
measures to estimate and to work with in practice. This risk measure was advocated by
the Basel Committee on Banking Supervision (http://www.bis.org/bcbs/) and implemented
worldwide. C. Gouriéroux and J. Jasiak suggest and develop a novel nonparametric method
for estimating the conditional value-at-risk and illustrate its performance on real-life portfolio
returns. G. Dmitrasinovic-Vidovic, A. Lari-Lavassani, X. Li, and A. Ware explore the
conditional capital-at-risk measure in the context of portfolio optimization and offer optimal
strategies.

This special Journal of Probability and Statistics issue also includes papers that
develop statistical inference for distortion risk measures and related quantities in the case
of heavy-tailed distributions. A. Necir and D. Meraghni deal with the estimation of L-
functionals, which are generalizations of the distortion risk measure, and which naturally
arise in the aforementioned anticipated utility theory. A. Necir, A. Rassoul, and D. Meraghni
develop a theory for estimating the renewal function of interoccurrence times of heavy-tailed
risks. A. Necir, A. Rassoul, and R. Zitikis introduce a new estimator of the conditional tail
expectation, which is one of the most important examples of the distortion risk measure and
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demonstrate the performance of the new estimator within the framework of heavy-tailed
risks.

We, the editors of this special issue, most sincerely thank three groups of people,
without whom this special issue would not have reached its fruition: first and foremost,
the authors who have shared with us their research achievements; second, the helpful and
efficient Hindawi Publishing Corporation staff; third, the professional and diligent referees
whose efforts resulted in useful feedback incorporated into often several rounds of revisions
of the herein published papers. We are also grateful to various granting agencies (the
Actuarial Foundation, the Actuarial Education and Research Fund, the Society of Actuaries
Committee on Knowledge Extension Research, and the Natural Sciences and Engineering
Research Council of Canada) for their support of our research.

Ričardas Zitikis
Edward Furman

Abdelhakim Necir
Johanna Nešlehová

Madan L. Puri
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This paper presents an analysis of ignition and burn risk due to wildfire in a region of Ontario,
Canada using a methodology which is applicable to the entire boreal forest region. A generalized
additive model was employed to obtain ignition risk probabilities and a burn probability map
using only historic ignition and fire area data. Constructing fire shapes according to an accurate
physical model for fire spread, using a fuel map and realistic weather scenarios is possible with
the Prometheus fire growth simulation model. Thus, we applied the Burn-P3 implementation of
Prometheus to construct a more accurate burn probability map. The fuel map for the study region
was verified and corrected. Burn-P3 simulations were run under the settings (related to weather)
recommended in the software documentation and were found to be fairly robust to errors in the
fuel map, but simulated fire sizes were substantially larger than those observed in the historic
record. By adjusting the input parameters to reflect suppression effects, we obtained a model which
gives more appropriate fire sizes. The resulting burn probability map suggests that risk of fire in
the study area is much lower than what is predicted by Burn-P3 under its recommended settings.

1. Introduction

Fire is a naturally occurring phenomenon on the forested landscape. In Canada’s boreal forest
region, it plays an important ecological role. However, it also poses threats to human safety
and can cause tremendous damage to timber resources and other economic assets.

Wildfires have recently devastated parts of British Columbia, California, and several
other locations in North America, Europe, and Australia. The economic losses in terms of
suppression costs and property damage have been staggering, not to mention the tragic
loss of human life. Many of these fires have taken place at the wildland-urban interface—
predominantly natural areas which are increasingly being encroached upon by human
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habitation. As the population increases in these areas, there would appear to be potential
for increased risk of economic and human loss.

A wildland-urban interface is defined as “any area where industrial or agricultural
installations, recreational developments, or homes are mingled with natural, flammable
vegetation” [1]. The Province of Ontario has several areas which could be classified as
wildland-urban interface. These areas include the Lake of the Woods region, the Thunder
Bay region, the region surrounding Sault St. Marie, and North Bay among others. One of the
most significant of these is the District of Muskoka which is a popular recreational area. This
district, located in Southern Ontario (Figure 1), is commonly referred to as “cottage country”.
It spans 6,475 square kilometers and contains over 100,000 seasonal properties or cottages.
Many of these properties are nestled in forested areas, which make up most of the region.
This concentration of values is of particular interest to the Canadian insurance industry due
to the risk of claims from damage caused by wildfire.

Unlike British Columbia and California where topography plays a major role in the
rate of spread of wildfire, Ontario is relatively flat but is dominated geographically by the
Boreal and Taiga forests, where some of the largest fires in Canada have burned [2]. The
Boreal forest has a large percentage of coniferous trees which are susceptible to high intensity
crown wildfires. The Muskoka region is on the southern edge of the Boreal forest, and thus
there is potential for substantial property damage from fires originating further north.

We are focusing on the Muskoka region to provide an illustration of how the tools
that have been developed by the forest management community can be applied to assess fire
risk. The methods described here can be adapted easily to other wildland-urban interface
locations. The Muskoka area presents some technical challenges which do not exist to the
same degree in most other wildland-urban interface settings.

Although there have not yet been substantial losses due to wildfire in the Muskoka
area, it is important to assess the risk because of what is being observed elsewhere (e.g.,
British Columbia and California) and because of possible climate change effects which could
ultimately lead to increased fire activity across Canada.

Wildfires usually start from point ignitions, either by people or by lightning, and if
not detected immediately, they can spread rapidly under appropriate weather conditions.
Approximately half of the forest fires in Canada are ignited by lightning. Such fires account
for approximately 80 percent of area burned [3].

The spread of a wildfire in a particular area depends on many factors but most
importantly, it is influenced by local weather, vegetation, and geography [2]. Of these three
factors, the geographical features remain static, while vegetation changes gradually over
time. In addition, changes in human land use patterns, such as industrial forestry, or urban
expansion can lead to changes in vegetation. Weather is the most dynamic factor affecting
fire risk. The unpredictable nature of weather makes modelling forest fire spread a difficult
task. Nonetheless, the risk of wildfire in a region can be estimated using the methodology
described in this paper.

In Canada, the fire season can last from early April through October each year. During
this period, the probability of fire ignition and fire spread potential changes depending on
the time of year, primarily influenced by seasonal weather patterns. Each year an average of
2.5 million hectares are burned by 8,500 individual wildfires.

Most regions which are within the Boreal and Taiga zones have very accurate and
up-to-date fuel information because the provincial fire management agencies maintain these
records rigorously. The forest resource inventory information in our study area, and hence
the fuel map which is based upon it, is not updated as frequently by the Ontario Ministry of
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Figure 1: Location of the District of Muskoka within the Province of Ontario.

Natural Resources in this region because there is a higher proportion of private land under
municipal fire protection agreements with the province and relatively little area under forest
management planning. Thus, it was necessary for us to validate the fuel map by doing a field
survey. To apply the methodology in other instances would be straightforward, not requiring
this kind of fieldwork.

The remainder of this paper will proceed as follows. The next section provides a
description of the study area and the fire data for that region. Section 3 contains results of
an ignition risk assessment which uses historic fire data only. This section also contains a
crude burn risk assessment.

In Section 4, we briefly describe the Prometheus fire growth model [4] and how it
is used in the Burn-P3 simulator [5] to generate a burn probability map. This section also
provides a description of the required data inputs and the procedure that was used to obtain
and verify this data. In Section 5, the results of the analysis are presented along with a
summary of the limitations of this study.

2. The Data and Study Area

2.1. Study Area

Of the properties in the Muskoka District, the most expensive are concentrated along the
shores of the three major lakes: Lake Joseph, Lake Muskoka, and Lake Rosseau. A 25 × 35 km
rectangular study area that encompasses a large portion of these lakes was selected (Figure 2)
for the our study. In order to reduce possible biases near the boundaries of this region, we also
considered a 5-km wide “buffer” zone which surrounds the study area. Fires originating in
this zone could spread into the study area, and this possibility needs to be accounted for.

2.2. Description of Historic Fire Data

Fire data for over 12,200 fires from 1980 through 2007 were obtained for a region
encompassing the study area. For each fire, a number of covariates were recorded including
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0 2.5 5 10
(kilometers)

Figure 2: Map illustrating the 25 × 35 km study area which is enclosed in the red box as well as the buffer
zone used in the Burn-P3 modelling denoted by the blue box.

the date, ignition location, and final area. Figure 3 shows an estimate of the density of the
natural log-transformed fire sizes of escaped fires from this dataset. Here, we use the Ontario
Ministry of Natural Resources definition of an escaped fire: any fire where final area exceeds 4
hectares. The fuel composition, weather conditions, and fire suppression capabilities for this
region are relatively homogeneous and hence are representative of our smaller study area.
Within this dataset, 319 fires were located in the study area. Figures 4 and 5 show locations
of human-caused and lightning-caused ignitions

3. Ignition and Burn Probability Modelling Using Generalized
Additive Models

3.1. Ignition Modelling

Brillinger et al. [6] provide a method for assessing fire risk in a region using generalized
additive models. Their technique uses pixellated data on a fine scale where each pixel is
assigned a 1 or a 0 depending on whether or not a fire was ignited at that location. (To be
precise, they considered temporal effects as well, while our focus will be to produce only a
spatial risk map.) The resulting data set is very large with an overwhelming proportion of
1×1 km pixels (sites) without a fire ignition between 1980 and 2007, indicated by a value of 0.
However, a simple random sample of these 0-sites can be analyzed in the same way as the full
dataset with the addition of an offset of the form log(1/πs). Here πs denotes the (constant)
inclusion probability for site s = (s1, s2), where s1 and s2 refer to the easting and northing
geographic coordinates, respectively.
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Figure 3: Estimated density of natural log-transformed fire sizes of historic escaped fires (1980–2007).
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Figure 4: Map of human ignition locations in study area (1980–2007).

We have explored our data set with a simple model from within this family of models:

logit
(
ps
)
= f(s1, s2) + log

(
1
πs

)
, (3.1)
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Figure 5: Map of lightning ignition locations in study area (1980–2007).

where ps = probability of ignition at site s and f(s1, s2) is a penalized tensor product spline
smoother using the cubic B-spline basis in each dimension [see 19, Chapter 4]. We have taken

πs =

⎧
⎨

⎩
0.01 if sites do not contain an ignition (i.e., a “0”)

1 if sites contain an ignition (i.e., a “1”).
(3.2)

We chose this value for πs in order to have a manageable data set which has sufficient
covariate information for inference. The resulting ignition risk map is shown in Figure 6. We
note that there is a relatively high risk of ignition in the southeast region. This is the region
closest to the town of Gravenhurst. The rest of the region is less heavily populated, and thus
less likely to be subject to human-caused ignitions.

3.2. Simple Burn Probability Map

We also used the above modelling approach to assess the probability of burning by applying
the same methodology but instead of assigning a value of 1 to a pixel that had an ignition, we
assign a value of 1 to pixels that have burned, either directly by an ignition or spread from an
ignition point. Unfortunately, actual final fire shape was not available in the database, so we
made a crude approximation based on the observed final burned areas. The resulting burn
probability map is pictured in Figure 7. Notice the decreased fire risk near the town and the
increase in fire risk to the north and to the west. Because of the proximity to town, it may be
that the ignited fires in the southeast may be suppressed relatively quickly, leading to smaller
burned area. This phenomenon has been well documented (e.g., [2]).
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Figure 6: Model of ignition risk using generalized additive models with historic ignition data.

In addition to the loss of accuracy due to incorrect fire shape, the presence of relatively
large lakes in the study area causes some difficulties for the smoother; essentially, boundary-
like effects are introduced into the interior of the region. Furthermore, vegetation type and
presence of other nonfuel fire barriers is not accounted for in this model.

For these reasons, we are motivated to consider a different modelling approach which
is based partially on a physical model for wildfire growth and which incorporates fuel and
fuel breaks. However, this map, based on historic records, can serve as a partial check on the
reasonableness of the model we will propose next.

4. Burn Probability Modelling Using a Fire Growth Model

4.1. The Prometheus Fire Growth Model

Another method of forest fire risk assessment is based on computer simulation of fires, taking
account of fuel information and local weather patterns. To model fire growth, we will employ
the Prometheus Fire Growth Model [4].
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Figure 7: A simple burn probability map using generalized additive models with historic ignition data.

The evolution of a fire front simulated by Prometheus relies on the theory developed
by Huygens for wave propagation: each point of a fire front at a given time acts as an ignition
point for a small fire which grows in the shape of an ellipse based at that point. The size
and shape of each ellipse depend on fuel composition information, weather, and various fire
growth parameters as well as the time duration. The envelope containing all of the ellipses is
taken to be the fire perimeter at the next time step (Figure 8).

In the absence of topographic variation, the orientation of each ellipse is aligned with
the direction of the wind. The shapes of the ellipses at each time step are calculated from
empirical models based on the Canadian Fire Behaviour Prediction (FBP) system which is
described in the next subsection. The length of each ellipse is related to a local estimate of
the forward rate of spread plus an analogous estimate of the back rate of spread, while the
width of an ellipse is related to a local estimate of the flank rate of spread. These local rates of
spread are, in turn, inferred from the empirical FBP models which relate spread rate to wind
speed, fuel moisture, and fuel type. The measurements required for this calculation are based
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on local estimates of the weather conditions which have been extrapolated from the nearest
reliable weather station. Diurnal changes in fuel moisture (as it is affected by temperature
and relative humidity) and wind speed are also incorporated into the model.

4.2. Canadian Fire Behaviour Prediction System and Fire
Weather Index System

In Canada, forest fire danger is assessed via the Canadian Forest Fire Danger Rating
System (CFFDRS). As described by Natural Resources Canada [7], the current form of this
system has been in development since 1968. The structure of the CFFDRS is modular and
currently consists of four subsystems. Two of these subsystems are of interest in our study:
the Canadian Fire Weather Index (FWI) System and the Canadian Forest Fire Behaviour
Prediction (FBP) System, both of which are fully documented and are used operationally
across Canada.

Many parts of the CFFDRS rely on information obtained using the FWI System. This
system is comprised of six components which summarize aspects of the relative fire danger
at its midafternoon peak [8]. All calculations are based on locally observed weather readings
recorded at local noon: temperature, relative humidity, wind speed (usually a 10-minute
average), and rainfall (over the last 24 hours). Three fuel moisture codes are calculated, each
representing the dryness in a different layer of the forest floor. Three fire behaviour indices,
estimating the risk of fire spread, the fuel available for combustion, and the potential intensity
of a fire, are also calculated. For a recent exposition on the CFFDRS, see the account by Wotton
[9] which is a review designed for modellers who require an understanding of this system
and how it is to be interpreted.

The FWI System is used to estimate forest fire potential. Its outputs are unitless
indicators of aspects of fire potential and are used for guiding fire managers in their decisions
about resource movements, presuppression planning, and so forth. However, this is only
a part of fire management. There is also the need, once fires have begun, to estimate
characteristics of fire behaviour at a point on the landscape; this is done with the FBP System.

Given inputs that fall into one of five categories—fuels, weather, topography, foliar
moisture content, and type and duration of prediction—the FBP System can be used to
estimate fire behaviour quantitatively [10]. The FBP System calculations yield four primary
and eleven secondary outputs as fire behaviour indices. It gives estimates which can be used
as the basis for predictions.

The primary outputs are Rate of Spread, Fuel Consumption (as either the surface or
crown consumption, or total), Head Fire Intensity, and a fire description code (crown fraction
burned and fire type). The secondary outputs are Flank and Back Fire Rate of Spread; Flank
and Back Fire Intensity; Head, Flank, and Back Fire Spread Distances; Elliptical Fire Area;
Fire Perimeter; Rate of Perimeter Growth; and Length-to-Breadth Ratio. The primary outputs
are based on a fire intensity equation and the secondary outputs are determined by assuming
elliptical fire growth. All underlying models and calculations are based on an extensive 30-
year field experimental burning program and are fully documented [10].

4.3. Burn-P3 Simulation Model

A burn risk probability map can be generated using the Burn-P3 simulation model software
developed by Marc Parisien of the Canadian Forest Service [5]. P3 stands for Probability,
Prediction, and Planning. Burn-P3 runs repeated simulations of the Prometheus Fire Growth
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(a) (b)

Figure 8: Illustration of fire perimeter growth under uniform burning conditions for homogenous fuels (a)
and nonhomogenous fuels (b) [11].

Model, under different weather scenarios, to give estimates of the probability distribution of
locations being burned during a single fire season.

In each iteration of a Burn-P3 simulation, a pseudorandom number is generated
and used to sample a number from the empirical distribution of the annual number of
escaped fires in the region. This empirical distribution is based on historic data. This number
represents the number of simulated fires for one realization of one fire season.

For each of these fires, a random cause, season, and ignition location combination
is selected from an ignition table. Burn-P3 creates an ignition table by combining ignition
grids for each cause/season combination. Ignition grids partition the study area into coarse
cells and represent the relative likelihood of a fire occurrence of an ignition in each cell.
This spatial distribution can be empirically based on historic ignition patterns or it can be
a uniform distribution, for example. The probability of selecting a certain row in the ignition
table is proportional to the ignition probability of that particular cell specified in the matching
ignition grid.

The duration of each simulated fire is also randomly drawn from an empirical
fire duration distribution based on historic data. Given the location and fuel conditions,
the Prometheus program is then used to simulate the growth of each fire individually
given a random weather stream consisting of conditions conducive to fire growth from
the appropriate season. All simulated fires in a single iteration are collectively used as an
independent realization of a fire season.

Repeatedly simulating such fire seasons allows for construction of a burn probability
map. Specifically, dividing the number of times each cell in the rasterized map of the study
region has been burned by the number of simulations run gives an estimate of the probability
that the particular cell will burn in a single fire season. See Figure 9 for a step-by-step
illustration of this process.

The version of Burn-P3 used in this paper is not programmed to handle vectorized
fuel breaks, that is, features in the landscape which tend to prevent fire from spreading. All
fuel breaks such as roads are rasterized in Burn-P3 which sometimes leads to anomalous
behaviour where a simulated fire passes between grid cells connected only at a single vertex.
By using a small grid cell size, we can avoid this problem.
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Figure 9: Step-by-step illustration of 30 iterations of the Burn-P3 simulation model. Darker colours indicate
areas that have been burned more often. Green areas are unburned fuels. White areas represent nonfuel.
(a) The yellow patch represents a single fire. (b) The two yellow patches represent two fires occurring in
two different years. (c) Yellow patches denote areas burned by one of 3 fires occurring in different years.
The orange patch represents an overlap of 2 of these fires. (d) The red patch represents an area burned by
fires in 3 or more different years.
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Figure 10: Corrected vector fuel map.

4.4. Inputs

4.4.1. Fuel Map

The FBP System classifies vegetation into 16 distinct fuel types (Table 1), that can further be
grouped into the five categories: coniferous, deciduous, mixed wood, slash, and open [10].
A map of the fuel types in the District of Muskoka was obtained from the Ontario Ministry
of Natural Resources. The fuel map was created manually from aerial photography in 1994.
Fieldwork was conducted over the course of 7 days to verify and correct a subsample of the
fuel map which appears in Figure 10.

4.4.2. Verification in the Field

Regardless of the accuracy of the fuel map at the time of its creation, fuel types and extents
change over time due to land use changes, urban expansion, and natural causes such as
forest succession. For example, in the study area, a large area of fuel mapped as C-6 (Conifer
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Table 1: Fire Behavior Prediction System fuel types [10].

Group/Identifier Descriptive name

Coniferous

C-1 Spruce-lichen woodland

C-2 Boreal spruce

C-3 Mature jack or lodgepole pine

C-4 Immature jack or lodgepole pine

C-5 Red and white pine

C-6 Conifer plantation

C-7 Ponderosa pine-Douglas-fire

Deciduous

D-1 Leafless aspen

Mixedwood

M-1 Boreal mixedwood-leafless

M-2 Boreal mixedwood-green

M-3 Dead balsam fir mixedwood-leafless

M-4 Dead balsam fir mixedwood-green

Slash

S-1 Jack or lodgepole pine slash

S-2 White spruce-balsam slash

S-3 Coastal cedar-hemlock-Douglas-fir slash

Open

O-1 Grass

Plantation) was found to be harvested and hence, was reclassified (Figure 11). Not all areas
were accessible by public roads and thus could not be verified by fieldwork. Consequently,
satellite imagery was used to further supplement our fieldwork to help confirm such areas.

To get an estimate of the accuracy of the fuel map, multistage cluster sampling
procedure was carried out in the field. First, 20 roads were selected at random with
probability proportional to the length of the road (Figure 12). For each of these roads,
observations were taken at the beginning, the end, and at various points along the road.
The number of observations taken was randomly generated from a Poisson distribution
with rate equal to the length of the road in kilometers (Table 2). The exact locations of these
observations were randomly selected from a uniform distribution from the beginning to the
end of the road.

At each observation location, the width of the road (including shoulder) was measured
and recorded. One person without prior knowledge of the given fuel classification gave his
best assessment of fuel classification of the fuels on either side of the road, making sure to
look beyond the immediate vegetation at the tree line. Both the assessed fuel classification
and original fuel classification were recorded.

Three of these selected roads were privately owned or not maintained enough to be
traversable; these were not included in the sample. A summary of results is given in Table 3.
The subjective nature of fuel classification can be seen in the 81.1% misclassification rate
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Figure 11: Area mapped as C-6 that has since been harvested and required reclassification.

assuming no tolerance for classification error. However, not all differences in observations
can be considered practically important. For example, an area assessed as 10% mixed wood
originally classified as 20% mixed wood was not updated because the resulting change in fire
behaviour is very slight; the rate of spread changes marginally and the direction of spread
would not be affected at all. On the other hand, if a nonfuel was incorrectly classified as
some form of fuel in the original map, the correction was made because the difference in fire
behaviour could be substantial. Using this criterion, the misclassification rate was found to
be to 22.7% in our sample: most of the fuel types were close to what we assessed them to
be.

4.4.3. Unmapped Private Properties

The main properties of interest are those located along the waterfront because they represent
the highest concentration of values at risk. Unfortunately, on the fuel map obtained from the
Ontario Ministry of Natural Resources, such areas are almost always mapped as nonfuels
because this is a private land not included in the Forest Resource Inventories on which the
fuels classification is based. From what was observed in the field, most of these properties
are located very close to fuels and could in fact be treated as a separately defined fuel type
(Figure 13). The fuel types in these properties are almost always similar to what is located on
the opposite side of the road further inland. For the purpose of this paper, we will assume
that forest stands are continuous across roads into waterfront properties mapped as nonfuel.

Some properties have isolated buildings separated from surrounding fields (e.g., by a
well-kept lawn or driveway). Although these buildings are unlikely to be damaged directly
by a wildfire, they are still at risk to ignitions caused by spotting. Fire spotting is the
situation where firebrands are transported long distances by the wind to start new fires. On
waterfront properties, isolated buildings are not common. Thus, we further assume that all
such properties have the same fuel type as the surrounding area.
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Figure 12: Map of the 20 randomly selected roads to be sampled.

Table 2: Names of the 20 randomly selected roads to be sampled, the number of observations taken on
each road, and the location of each observation.

Name of Road Number of observations Locations along road (km)
Cemetery Road 3 0, 0.5, 0.8
Hekkla Road 5 0, 1.0, 2.3, 2.9, 4.3
Deerwood Drive 2 0, 0.7
Purdy Road 4 0, 0.1, 1.4, 2.4
North Shore Road 8 0, 0.4, 0.6, 3.0, 3.7, 3.9, 4.9, 5.3
Skeleton Lake Road 3 2 0, 1.2
Three Mile Lake Road 2 3 0, 2.5, 3.3
Walkers Road∗ 10 0, 1.9, 2.7, 3.6, 3.7, 4.4, 5.1, 5.5, 5.6, 6.5
Luckey Road∗ 7 0, 1.0, 1.4, 2.4, 2.5, 3.1, 4.0
Clearwater Shores Blvd 2 0, 1.5
Halls Road 2 0, 0.8
Dawson Road 8 0, 0.1, 1.7, 2.0, 2.1, 2.5, 2.6, 2.9
Beatrice Townline 9 0, 1.0, 2.1, 5.2, 7.1, 7.5, 7.6, 8.0, 8.4
Cranberry Road 4 0, 0.6, 1.9, 2.1
Fogo Street 3 0, 1.3, 1.8
Breezy Point Road 5 0, 0.5, 0.9, 1.3, 2.6
Ashworth Road 4 0, 0.3, 1.2, 1.7
Ziska Road 8 0, 0.9, 1.9, 3.3, 4.6, 4.9, 5.2, 5.3
Rock Sand Lane∗ 3 0, 0.2, 0.7
Muskoka Crescent Road 2 0, 6.1
∗Inaccessible roads.
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Table 3: Summary of fuel map accuracy sampling procedure.

Tolerance Margin % Misclassified
Zero tolerance 81.1%
Little practical difference 22.7%

Figure 13: A structure embedded in a region of continuous fuel.

4.4.4. Fuel Breaks

As we have seen, fuel breaks are wide regions of what are essentially nonfuels that have the
potential to prevent a fire from spreading across. The most common fuel breaks are roads,
water bodies, and power lines.

The fuel map classifies major roads as nonfuels. Smaller private roads have not been
included on the map. In some cases, they are located within larger private property regions
mapped as nonfuel. We traced such roads from road data provided by the National Road
Network. These data contain the locations of almost all roads as well as the number of lanes
per road. We took a random sample of roads of varying numbers of lanes to measure their
effective widths. Not only are lane widths not uniform on smaller roads, the size of the
shoulder and distance to the tree line are highly variable. We used an average of sampled
road widths for roads for which the widths are unknown or cannot be reasonably estimated.

Bodies of water such as lakes and rivers are clearly and accurately identified on the
fuel map. However, bogs and swamps are problematic, since they are occasionally classified
as water. Although a sufficiently dry bog could potentially become a fuel source in the heat
of summer, the current fire growth model does not account for such a phenomenon.

Power lines introduce a further difficulty, since they are not identified on the fuel map.
When power lines are built in a forested area, a path is cleared and growth underneath
the line is regularly maintained. The width of this clearing and the amount of growth
directly underneath the power line vary depending on how regular such maintenance occurs.
Without a map of the smaller power lines, power lines are assumed to be negligible as fuel
breaks.

4.4.5. Rasterization

The corrected vector fuel map must be converted to a raster map before it can be used by
the Burn-P3 program. In doing so, detail at resolutions smaller than the grid cell resolution
of the raster fuel map may be lost. However, refining the resolution of the raster fuel map
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Figure 14: Rasterized fuel map at 25 m resolution.

directly increases computation time. In this assessment, a 25 m resolution (Figure 14) was
used. A coarser resolution of 150 m was also tested, but we have not included the results of
this rasterization, because important features such as fuel breaks were not respected.

4.4.6. Historic Weather

We obtained weather data from surrounding weather stations. The most complete weather
record also happens to be the station closest to the study region so only weather data from
this station was used in our analysis. This weather record begins with the 1980 fire season.

Only the extreme weather days are used for input to the Burn-P3 program. These days,
in which there is potential for substantial fire growth, are referred to as spread event days.
Days when the initial spread index (ISI) is less than 7.5 are considered to be nonextreme
and are deleted from the weather stream. The resulting data set consists of 232 cases, each
representing to a single day. Given the large number of simulations to be run, these weather
conditions are sampled frequently.



18 Journal of Probability and Statistics

4.4.7. Seasons and Causes

To properly simulate the growth of fires for an entire year, fires need to be classified by cause
and by season in which they occur.

In regions with a mixture of deciduous and coniferous vegetation, there are often two
distinct fire subseasons each year, the first immediately following snowmelt, and the second
in summer. The spring fire subseason is a period of increased fire risk because leaves have
not appeared on the deciduous trees leading to drier surface conditions. Since there is limited
lightning activity during this period, ignitions are primarily due to people.

After the leaves appear, there is often a brief interval with few fires. Fire occurrence
increases with temperature increase and as lightning activity increases. Thus, during the
summer fire subseason, ignitions are due to people and lightning. This results in different
spatial ignition patterns depending on time of year.

Operationally, early to mid June is typically taken as the transition date between
the spring and summer seasons when classifying fires. However, this date is inferred from
observations taken in the northern boreal forest. The District of Muskoka is further south
and experiences a slightly warmer climate. Consequently, it is reasonable to assume that the
actual transition date occurs approximately a week earlier. Looking at the distribution of
human caused fires (Figure 15), we can see a dip on June 11th in human caused ignitions
which is used as an estimate of the transition date and is highlighted with a vertical line in
the figure.

All fire ignitions can be classified into either human- or lightning-caused fires. Human-
caused fires can be further subdivided into eight specific causes: recreational, residential,
railway, forestry industrial, nonforestry industrial, incendiary, miscellaneous, and unknown.
Each of these causes is associated more strongly with either the spring or summer season
(Figure 16). Between 1996 and 2005 inclusive, across the province, there were a total of 12,974
wildfires resulting in over 1.5 million hectares burned. Of these ignitions, nearly 7,000 can be
attributed to lightning.

4.4.8. Ignition Grids

For each season and cause combination, ignition grids were created to represent the relative
likelihood of an ignition in a certain cell. To create the ignition grids for human caused fires,
a grid twenty times coarser than the fuel grid was created and assigned a value of 1. For each
historic fire, the cell in which the ignition occurred had its value incremented by 1. Lightning
ignitions in the region appear to be uniformly random and so a uniform ignition grid was
used for lightning-caused ignitions.

4.4.9. Estimation of Spread Event Days

Burn-P3 models fire growth only on spread event days. The number of spread event days is
not necessarily equal to the total duration of a fire; there may be days for which a fire does
not spread (either due to suppression or nonconducive weather). The fire data do not contain
information on fire spread days so a best estimate is made by counting the number of days
from the fire start date to the date in which the fire was reported as “held”. A held fire is one
that has been completely surrounded by fire line (i.e., fuel breaks constructed by suppression
efforts as well as naturally occurring fuel breaks). The historic data on the distributions of
spread event days per fire, as defined previously, is displayed in Figure 17.
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Figure 15: Distribution of human caused forest fires during the year. The vertical line indicates the
minimum of the dip, corresponding to June 11th.

The FBP System’s rate of spread is based on peak burning conditions, which are
assumed to occur in the late afternoon, generally specified as 1600 hours [10]. Consequently,
any fire growth models based on this system are effectively simulating spread event days
[12].

5. Analysis and Results

We will begin this section by discussing the application of the Burn-P3 simulator to the
corrected fuel map when the recommended settings are used. We will then discuss the
results of a sensitivity analysis in which the effects of fuel break misclassification on the
burn probabilities are studied. This will provide an indication of the uncertainty induced
by possible inaccuracies in the fuel map. We next compare the burn probability map obtained
from Burn-P3 with the map obtained using generalized additive models, and finally compare
simulated fire size distributions with the historical record; this ultimately guides us to what
we believe is a more accurate burn probability map.

A uniform ignition grid for lightning caused fires is normally recommended for use
in Burn-P3. For human-caused fires, the ignition grid is also uniform, but with increased
probability at locations where previous ignitions occurred. The distribution of spread event
days is based on historic weather data where the weather stream has been adjusted so that it
only contains extreme weather, conducive to fire growth. Using these recommended settings,
we obtain the burn probability map and fire size distribution as shown in the left panel of
Figure 18.

In that figure, it can be seen that the fire risk is higher in the north. This result seems
plausible, since there are larger forest stands in that region, and we have already conjectured
on the possibility of large fires spreading into the study region from further north.

In order to assess the uncertainty induced by possible inaccuracies in the fuel map,
we conducted the same simulation but with 20% of randomly selected nonfuel grid cells
converted to the M-1 20% mixed wood fuel type. By making this kind of change, we should
observe the largest range of realistic fire behaviour in the study region, since much of the
forest in the area is of M-1 type, and changes within this categorization have minimal effect
on fire behaviour. By contrast, changes from nonfuel to any kind of of fuel can have relatively



20 Journal of Probability and Statistics

0

200

400

600

800
Fr

eq
ue

nc
y

50 150 250 350

Julian date

Residential

(a)

0

20

40

60

80

100

Fr
eq

ue
nc

y

100 150 200 250 300

Julian date

Railway

(b)

0

200

400

600

800

1000

Fr
eq

ue
nc

y

50 150 250 350

Julian date

Recreational

(c)

0

50

100

150

200

250

Fr
eq

ue
nc

y

100 150 200 250 300

Julian date

Miscellaneous

(d)

0
5

10
15
20
25
30

Fr
eq

ue
nc

y

100 150 200 250 300

Julian date

Industrial (non-forestry)

(e)

0

10

20

30

40

Fr
eq

ue
nc

y

100 150 200 250 300

Julian date

Unknown

(f)

0

20

40

60

Fr
eq

ue
nc

y

50 150 250 350

Julian date

Incendiary

(g)

0
1
2
3
4
5
6

Fr
eq

ue
nc

y

50 100 150 200 250 300

Julian date

Industrial (forestry)

(h)

0

100

200

300

400

Fr
eq

ue
nc

y

100 150 200 250 300

Julian date

Lightning

(i)

Figure 16: Histograms of forest fires during the year by cause. Vertical line indicates June 11th, the
estimated transition date used to separate “spring” and “summer” subseasons.

dramatic effects on fire behaviour, since nonfuel regions often serve as fuel breaks; replacing
parts of such regions with fuel allows for the possibility of a fire breach where it would
not otherwise have been possible. As expected, the burn probability map (Figure 18(b))
exhibits larger regions of relatively high probability than in the original map, especially in
the eastern region as well as in the north. Note that regions where the burn probability was
already relatively high do not see a substantial gain in burn probability when the nonfuels
are perturbed. Rather, we see somewhat more substantial increases in burn probability in
those areas where the probability was much less. An additional simulation was run with
only 10% of the nonfuel randomly converted to fuel; we have not shown the resulting map
because of its similarity to the map in the right panel of Figure 18. We conclude that gross
misclassification of fuel as nonfuel could lead to a moderate underestimate of the area at
elevated risk.
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Comparing the map obtained from Burn-P3 using the corrected and unperturbed
fuel map (Figure 18) with the burn probability map obtained using the generalized additive
model (Figure 7), we see some similarities. Both maps exhibit elevated burn risk in the north,
but the prevalence of ignitions in the southeast seems to figure more prominently in the
map obtained from the generalized additive model. It should be noted that the latter map
is based on accurate fire sizes but incorrect fire shapes, while the former map is based on
what are possibly more realistic fire shapes, but with a fire shape and size distribution that is
determined by the weather and fuels.

We can then use the historic fire size distribution as a check on the accuracy of the
Burn-P3 output. Figure 19 shows the estimated density of fire sizes in the study region (solid
black curve) on the natural logarithmic scale. The dashed curve represents the estimated
density of the simulated log fire sizes under the recommended settings, and the dotted curve
corresponds to the perturbed nonfuel simulation. Both densities fail to match that of the
historic record. Modal log fire sizes are close to 2 in the historic record, while the simulations
give modes exceeding 5. Note that, in accordance with our earlier observations regarding the
nonfuels, the fire sizes indeed increase when fuel breaks are removed.

In order to find a model which matches the historic record more closely, we could
introduce additional fuel breaks, but we have no way of determining where they should be
located without additional (substantial) fieldwork, and the earlier sensitivity study indicates
that even fairly substantial errors in the fuel map will lead to only modest discrepancies in the
fire size distribution. Instead, it may be more important to consider the effects due to weather.
To investigate this, we have run four additional Burn-P3 simulations under different settings.
The resulting burn probability maps appear in Figure 20. We now proceed to describe these
simulations and their resulting fire size distributions.

First, we replaced the spread event day distribution with a point mass at 1 day. In
other words, we made the assumption that even if fires in the area burn for several days,
there would only be one day in which the fire would burn a nonnegligible amount. All other
simulation settings remain as before. The fire size distribution for this situation is pictured in
Figure 19 as the long-dashed curve, having a mode near 4. This is closer to the historic record,
but still unsatisfactory.
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Figure 18: (a) Burn probability map of simulated fires using recommended Burn-P3 settings. (b) Burn
probability map of simulated fires using recommended settings and 20% of nonfuels randomly converted
to M-1 fuel type.

The next simulation made use of the entire weather record, dispensing with the notion
of spread event days completely. Fire durations were sampled from historic fire duration
distribution. Again, all other simulation settings were the same as before. The resulting fire
size distribution is displayed in Figure 19 as the dashed-dotted curve, having a mode near
3—a substantial improvement, but still not satisfactory. The difference between this result
and the earlier simulations which depend only on extreme weather calls such practice into
question.

In the succeeding simulation run, the duration of the fires was reduced to a single day,
again sampling from the full weather stream. The resulting density estimate is displayed in
Figure 19 as the long-dashed-dotted curve, having a mode near the historic mode, although
its peak is not nearly as pronounced. An additional simulation was conducted using the
same settings but with an ignition grid based on the generalized additive model for ignitions
obtained in Section 3.1. The resulting fire size distribution is also pictured in Figure 19 and is
very similar to the result of the preceding simulation.

We conclude that the use of the full weather stream and that limiting the duration of
the fires to one day give more accurate fire size distributions. Use of the uniform ignition grid
is slightly less accurate than the use of the modelled grid based on historic ignitions.



Journal of Probability and Statistics 23

0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

0 2 4 6 8

log (area) in hectares

Historic
Default
Perturbed non fuels
Full weather

1 spread event day
Full weather + 1 spread event day
Full weather + 1 spread event day
+ GAM ignition grid

Figure 19: Estimated density functions of log-transformed simulated and observed fire sizes under various
scenarios. The historic fire size density is based on data from an area encompassing the study region (1980–
2007). The other fire curves are based on Burn-P3 simulations, using the default setting with the corrected
fuel map as well as a fuel map with 20% of the nonfuel randomly selected to be changed to mixed wood-
type fuel. The Full weather curve is based on a simulation using all weather data but with the same spread
event day distribution as before.

6. Discussion

We have shown how to estimate a burn probability map which could be used by insurers
to estimate expected losses due to wildfire risk in the region under study. We found that
substantial perturbation of the fuel map, converting nonfuels to fuels, gives rise to moderate
changes in the fire risk.

We have also used historic fire size distribution information as a check on its accuracy
and found that the recommendation to use a spread event day distribution for fire duration
overestimates the fire size distribution. The use of spread event days in the Burn-P3 model
could be degrading the probability estimates. The spread event day distribution may be
biased since it is based on the time between when a fire was first reported and when it was
declared as being successfully held by suppression activities. A fire would not necessarily be
spreading rapidly during this entire period.

Note that fire suppression is not accounted for directly in Burn-P3. This could account
for the difference between the simulated and observed fire size distributions. By using the
full weather stream and a one day fire duration, the simulated fire size distribution comes
closer to matching the historic record. In fact, using the 1 day fire duration may be realistic
because of suppression effects; it is unlikely that most fires are allowed to burn for more than
1 day in this region without being attacked. If allowed to burn longer, it would not be under
extreme weather conditions, and such fires would not be spreading fast.

Thus, there is some justification for our approach. We note, however, that there is still
a discrepancy between the simulated fire size distribution and the historic record. As we saw,
fuel/nonfuel misclassification can have a modest effect on the fire size distribution estimates.
It is possible that some of the small roads that are not classified as fuel breaks may in fact
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Figure 20: Burn probability maps under various simulation scenarios. (a) Using full weather stream. (b)
Using one spread event day. (c) Using full weather stream and one spread event day. (d) Using full weather
stream and one spread event day with ignition grid from GAM model.
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be serving as fuel breaks; this kind of error could explain the discrepancy in the fire size
distributions.

Our final model indicates a relatively low burn probability across the region.
Depending on the ignition grid used, the higher risk areas are either in the north (uniform
grid) or to the east and southeast (historic ignition grid). The latter indicates a somewhat
more serious risk for the more heavily populated area, and may be the more realistic
scenario, since there is no reason to believe that the pattern of human-caused ignitions (which
are largely responsible for the fires here) will change in the future without some form of
intervention.

However, there are several limitations to this approach. The results obtained in this
assessment need to be interpreted with some care. We should note that by using the fire size
distribution as our standard for accuracy checking, we are assuming that the fuel distribution
and composition is similar to how it was in the past and that the climate has not changed
substantially. Future research in which this model is run under various realistic climate
change scenarios will be important. Any changes in fire management in the area, either past
or future, have not been factored into our estimates of fire risk.

The Prometheus Fire Growth Model has been used extensively in Canadian fire
management operations. It has been found to be reasonably accurate under many
circumstances, especially under peak burning conditions, which is where the FBP system
is at its most accurate. Indeed, predictions from the FBP System, which forms the foundation
of fire growth in the Prometheus model and consequently in Burn-P3, are used as a regular
and important part of forecasting the active growth of fires and the consequent planning
of fire suppression resource needs. While the FBP has limitations (see discussion below), it
constitutes the best available system for predicting fire ignition and growth in the forests of
Canada. Consequently, the Prometheus fire growth model as well as Burn-P3 have been used
in a number of research studies in a wide variety of locations in Canada [5, 13–16].

However, the size of fires may be overstated under moderate weather conditions
[12]. Since Prometheus is based on the FBP system which is, in turn, based on empirical
observations, the process under which these empirical observations were collected influences
model performance. Some of these observations were from controlled burns, so spread rates
of wildfires in different fuel types may be quite different, at least during the acceleration
phase. The reason for this is that the prescribed fires were started with a line ignition
under somewhat variable weather conditions. Because of the line ignition, the estimated
spread rate may be biased upwards, since point fire ignitions are more common in naturally
occurring fires. Spread rates for mixed wood fuel types were not empirically developed from
observed fire behaviour; instead, they were calculated as weighted averages of spread rates
of coniferous and deciduous fuel types.

The Burn-P3 simulation model is also limited in that it is not programmed to handle
vectorized fuel breaks so any fuel breaks smaller than the chosen cell resolution do not
prevent a fire from spreading. Furthermore, inputs for Burn-P3 are based on empirical
observations which makes an assumption that what will be observed in future fire seasons is
similar to what has happened in the past.
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We extend the foundation of probability in samples with rare events that are potentially
catastrophic, called black swans, such as natural hazards, market crashes, catastrophic climate
change, and species extinction. Such events are generally treated as “outliers” and disregarded.
We propose a new axiomatization of probability requiring equal treatment in the measurement
of rare and frequent events—the Swan Axiom—and characterize the subjective probabilities that
the axioms imply: these are neither finitely additive nor countably additive but a combination of
both. They exclude countably additive probabilities as in De Groot (1970) and Arrow (1971) and
are a strict subset of Savage (1954) probabilities that are finitely additive measures. Our subjective
probabilities are standard distributions when the sample has no black swans. The finitely additive
part assigns however more weight to rare events than do standard distributions and in that
sense explains the persistent observation of “power laws” and “heavy tails” that eludes classic
theory. The axioms extend earlier work by Chichilnisky (1996, 2000, 2002, 2009) to encompass the
foundation of subjective probability and axiomatic treatments of subjective probability by Villegas
(1964), De Groot (1963), Dubins and Savage (1965), Dubins (1975) Purves and Sudderth (1976)
and of choice under uncertainty by Arrow (1971).

1. Introduction

Black swans are rare events with important consequences, such as market crashes, natural
hazards, global warming, and major episodes of extinction. This article is about the
foundations of probability when catastrophic events are at stake. It provides a new axiomatic
foundation for probability requiring sensitivity both to rare and frequent events. The
study culminates in Theorem 6.1, that proves existence and representation of a probability
satisfying three axioms. The last of these axioms requires sensitivity to rare events, a property
that is desirable but not respected by standard probabilities. The article shows the connection
between those axioms and the Axiom of Choice at the foundation of Mathematics. It defines
a new type of probabilities that coincide with standard distributions when the sample is
populated only by relatively frequent events. Generally, however, they are a mixture of
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countable and finitely additive measures, assigning more weight to black swans than do
normal distributions, and predicting more realistically the incidence of “outliers,” “power
laws,” and “heavy tails” [1, 2].

The article refines and extends the formulation of probability in an uncertain world.
It provides an argument, and formalization, that probabilities must be additive functionals
on L∞(U) (where U is a σ-field of ”events” represented by their indicator bounded and real
valued functions), that are neither countably additive nor finitely additive. The contribution
is to provide an axiomatization showing that subjective probabilities must lie in the full space
L∗
∞ rather than L1 as the usual formalization (Arrow, [3]) forcing countable additivity implies.

The new axioms refine both Savage’s [4] axiomatization of finitely additive measures, and
Villegas’ [5] and Arrow’s [3] that are based on countably additive measures, and extend both
to deal more realistically with catastrophic events.

Savage [4] axiomatized subjective probabilities as finitely additive measures repre-
senting the decision makers’ beliefs, an approach that can ignore frequent events as shown
in the appendix. To overcome this, Villegas [5] and Arrow [3] introduced an additional
continuity axiom (called “Monotone Continuity”) that yields countably additivity of the
measures. However Monotone Continuity has unusual implications when the subject is
confronted with rare events, for example, it predicts that in exchange for a couple of
cents, one should be willing to accept a small risk of death (measured by a countably
additive probability), a possibility that Arrow called “outrageous” [3, Pages 48–49]. This
article defines a realistic solution: for some, very large, payoffs and in certain situations,
one may be willing to accept a small risk of death—but not in others. This means that
Monotone Continuity holds in some cases but not in others, a possibility that leads to the
axiomatization proposed in this article and is consistent with the experimental observations
reported by (Chanel and Chichilnisky [6, 7]). The results are as follows. We show that
countably additive measures are insensitive to black swans: they assign negligible weight to
rare events, no matter how important these may be, treating catastrophes as outliers. Finitely
additive measures, on the other hand, may assign no weight to frequent events, which is
equally troubling. Our new axiomatization balances the two approaches and extends both,
requiring sensitivity in the measurement of rare as well as frequent events. We provide an
existence theorem for probabilities that satisfy our axioms, and a characterization of all that
do.

The results are based on an axiomatic approach to choice under uncertainty and
sustainable development introduced by Chichilnisky [8–10] and illuminate the classic issue
of continuity that has always been at the core of “subjective probability” axioms (Villegas,
[5], Arrow [3]). To define continuity, we use a topology that tallies with the experimental
evidence of how people react to rare events that cause fear (Le Doux [11], Chichilnisky [12]),
previously used by Debreu [13] to formalize a market’s Invisible Hand, and by Chichilnisky
[9, 12, 14] to axiomatize choice under uncertainty with rare events that inspire fear. The new
results provided here show that the standard axiom of decision theory, Monotone Continuity,
is equivalent to De Groot’s Axiom SP4 that lies at the foundation of classic likelihood theory
(Proposition 2.1) and that both of these axioms underestimate rare events no matter how
catastrophic they may be. We introduce here a new Swan Axiom (Section 3) that logically
negates them both, show it is a combination of two axioms defined by Chichilnisky [9, 14]
and prove that any subjective probability satisfying the Swan Axiom is neither countably
additive nor finitely additive: it has elements of both (Theorem 4.1). Theorem 6.1 provides
a complete characterization of all subjective probabilities that satisfy linearity and the Swan
Axiom, thus extending earlier results of Chichilnisky [1, 2, 9, 12, 14].
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There are other approaches to subjective probability such as Choquet Expected Utility
Model (CEU, Schmeidler, [15]) and Prospect Theory (Kahneman and Tversky, [16, 17]). They
use a nonlinear treatment of probabilities of likelihoods (see, e.g., Dreze, [18], or Bernstein,
[19]), while we retain linear probabilities. Both have a tendency to give higher weight to
small probabilities, and are theoretical answers to experimental paradoxes found by Allais in
1953 and Ellsberg in 1961, among others refuting the Independence Axiom of the Subjective
Expected Utility (SEU) model. Our work focuses instead directly on the foundations of
probability by taking the logical negation of the Monotone Continuity Axiom. It is striking
that weakening or rejecting this axiom—respectively, in decision theory and in probability
theory—ends up in probability models that are more in tune with observed attitudes when
facing catastrophic events. Presumably each approach has advantages and shortcomings. It
seems that the approach offered here may be superior on four counts: (i) it retains linearity
of probabilities, (ii) it identifies Monotone Continuity as the reason for underestimating
the measurement of catastrophic events, an axiom that depends on a technical definition of
continuity and has no other compelling feature, (iii) it seems easier to explain and to grasp,
and therefore (iv) it may be easier to use in applications.

2. The Mathematics of Uncertainty

Uncertainty

Uncertainty is described by a set of distinctive and exhaustive possible events represented
by a family of sets {Uα}, α ∈ N, whose union describes a universe U =

⋃
α Uα. An event

U ∈ U is identified with its characteristic function φU : U → R where φU(x) = 1 when
x ∈ U and φU(x) = 0 when x /∈U. The subjective probability of an event U is a real number
W(U) that measures how likely it is to occur according to the subject. Generally we assume
that the probability of the universe is 1 and that of the empty set is zero W(∅) = 0. In
this article we make no difference between subjective probabilities and likelihoods, using
both terms intercheangeably. Classic axioms for subjective probability (resp. likelihoods)
are provided by Savage [4] and De Groot [20]. The likelihood of two disjoint events is
the sum of their likelihoods: W(U1 ∪ U2) = W(U1) + W(U2) when U1 ∩ U2 = ∅; a
property called additivity. These properties correspond to the definition of a probability
or likelihood as a finite additive measure on a family (σ-algebra) of measurable sets of U,
which is Savage’s [4] definition of subjective probability. W is countably additive when
W(

⋃∞
i=1 Ui) =

∑∞
i=1 W(Ui) whenever Ui∩Uj if i/= j. A purely finitely additive probability is one

that is additive but not countably additive. Savage’s subjective probabilities can be purely
finitely additive or countably additive. In that sense they include all the probabilities in this
article. However as seen below, this article excludes probabilities that are either purely finitely
additive, or countably additive, and therefore our characterization of a subjective probability
is strictly finer than that of Savage’s [4], and different from the view of a measure as a
countably additive set function (e.g. De Groot , [21]) The following Axioms were introduced
by Villegas [5]; and others for the purpose of obtaining countable additivity.

Monotone Continuity Axiom (MC) (Arrow [3])

For every two events f and g with W(f) > W(g), and every vanishing sequence of events
{Eα}=1,2... (defined as follows: for all α, Eα+1 ⊂ Eα and

⋂∞
α=1 Eα = ∅) there exists N such that

altering arbitrarily the events f and g on the set Ei, where i > N, does not alter the subjective
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probability ranking of the events, namely, W(f ′) > W(g ′), where f ′ and g ′ are the altered
events.

This axiom is equivalent to requiring that the probability of the sets along a vanishing
sequence goes to zero. Observe that the decreasing sequence could consist of infinite intervals
of the form (n,∞) for n = 1, 2 . . . . Monotone continuity therefore implies that the likelihood
of this sequence of events goes to zero, even though all its sets are unbounded. A similar
example can be constructed with a decreasing sequence of bounded sets, (−1/n, 1/n) for n =
1, 2 . . . , which is also a vanishing sequence as it is decreasing and their intersection is empty.

De Groot’s Axiom SP4 (De Groot, [20], Chapter 6, page 71)

If A1 ⊃ A2 ⊃ · · · is a decreasing sequence of events and B is some fixed event that is less likely
than Ai for all i, then the probability of the intersection

⋂∞
i Ai is larger than that of B.

The following proposition establishes that the two axioms presented above are one
and the same; both imply countable additivity.

Proposition 2.1. A relative likelihood (subjective probability) satisfies the Monotone Continuity
Axiom if and only if it satisfies Axiom SP4. Each of the two axioms implies countable additivity.

Proof. Assume that De Groot’s axiom SP4 is satisfied. When the intersection of a decreasing
sequence of events is empty

⋂
i Ai = ∅ and the set B is less likely to occur than every

set Ai, then the subset B must be as likely as the empty set; namely, its probability must
be zero. In other words, if B is more likely than the empty set, then regardless of how
small is the set B, it is impossible for every set Ai to be as likely as B. Equivalently, the
probability of the sets that are far away in the vanishing sequence must go to zero. Therefore
SP4 implies Monotone Continuity. Reciprocally, assume that MC is satisfied. Consider a
decreasing sequence of events Ai and define a new sequence by substracting from each set
the intersection of the family, namely, A1 − ⋂∞

i Ai, A2 − ⋂∞
i Ai, . . . . Let B be a set that is

more likely than the empty set but less likely than every Ai. Observe that the intersection
of the new sequence is empty,

⋂∞
i (Ai −

⋂∞
i Ai) = ∅ and since Ai ⊃ Ai+1 the new sequence

is, by definition, a vanishing sequence. Therefore by MC limiW(Ai −
⋂∞

i Ai) = 0. Since
W(B) > 0, B must be more likely than Ai −

⋂∞
i Ai for some i onwards. Furthermore,

Ai = (Ai −
⋂∞

i Ai) ∪ (
⋂∞

i Ai) and (Ai −
⋂∞

i Ai) ∩ (
⋂∞

i Ai) = ∅, so that W(Ai) > W(B) is
equivalent to W(Ai −

⋂∞
i Ai) + W(

⋂∞
i Ai) > W(B). Observe that W(

⋂∞
i Ai) < W(B) would

contradict the inequality W(Ai) = W(Ai −
⋂∞

i Ai) + W(
⋂∞

i Ai) > W(B), since as we saw
above, by MC, limiW(Ai −

⋂∞
i Ai) = 0, and W(Ai −

⋂∞
i Ai) + W(

⋂∞
i Ai) > W(B). It follows

that W(
⋂∞

i Ai) > W(B), which establishes De Groots’s Axiom SP4. Therefore Monotone
Continuity is equivalent to De Groot’s Axiom SP4. A proof that each of the axioms implies
countable additivity is in Villegas [5], Arrow [3] and De Groot [20].

The next section shows that the two axioms, Monotone Continuity and SP4, are biased
against rare events no matter how catastrophic these may be.

3. The Value of Life

The best way to explain the role of Monotone Continuity is by means of an example provided
by Arrow [3, Pages 48–49]. He explains that if a is an action that involves receiving one cent,
b is another that involves receiving zero cents, and c is a third action involving receiving
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one cent and facing a small probability of death, then Monotone Continuity requires that the
third action involving death and one cent should be preferred to the action with zero cents
if the probability of death is small enough. Even Arrow says of his requirement “this may
sound outrageous at first blush. . .” (Arrow [3, Pages 48–49]). Outrageous or not, Monotone
Continuity (MC) leads to neglect rare events with major consequences, like death. Death is a
black swan.

To overcome the bias we introduce an axiom that is the logical negation of MC:
this means that sometimes MC holds and others it does not. We call this the Swan Axiom,
and it is stated formally below. To illustrate this, consider an experiment where subjects
are offered a certain amount of money to choose a pill at random from a pile, which is
known to contain one pill that causes death. It was shown experimentally (Chanel and
Chichilnisky [7]) that in some cases people accept a sum of money and choose a pill provided
that the pile is large enough—namely, when the probability of death is small enough—thus
satisfying the Monotone Continuity axiom and determining the statistical value of their lives.
But there are also cases where the subjects will not accept to choose any pill, no matter
how large is the pile. Some people refuse the payment of one cent if it involves a small
probability of death, no matter how small the probability may be (Chanel and Chichilnisky,
[6, 7]). This conflicts with the Monotone Continuity axiom, as explicitly presented by Arrow
[3].

Our Axiom provides a reasonable resolution to this dilemma that is realistic and
consistent with the experimental evidence. It implies that there exist catastrophic outcomes
such as the risk of death, so terrible that one is unwilling to face a small probability of death to
obtain one cent versus nothing, no matter how small the probability may be. According to our
Axiom, no probability of death may be acceptable when one cent is involved. Our Axiom also
implies that in other cases there may be a small enough probability that the lottery involving
death may be acceptable, for example if the payoff is large enough to justify the small risk.
This is a possibility discussed by Arrow [3]. In other words: sometimes one is willing to take
a risk with a small enough probability of a catastrophe, in other cases one is not. This is the
content of our Axiom, which is formally stated as follows.

The Swan Axiom

This axiom is the logical negation of Monotone Continuity: There exist events f and g with
W(f) > W(g), and for every vanishing sequence of events {Ei}i=1,2... an N > 0 such that
altering arbitrarily the events f and g on the set Ei, where i > N, does not alter the probability
ranking of the events, namely, W(f ′) > W(g ′), where f ′ and g ′ are the altered events. For
other events f and g with W(f) > W(g), there exist vanishing sequence of events {Ei}i=1,2...
where for every N, altering arbitrarily the events f and g on the set Ei, where i > N, does
alter the probability ranking of the events, namely W(f ′) < W(g ′), where f ′ and g ′ are the
altered events.

Definition 3.1. A probability W is said to be biased against rare events or insensitive to rare events
when it neglects events that are small according to Villegas and Arrow; as stated in Arrow
[3, page 48]: “An event that is far out on a vanishing sequence is “small” by any reasonable
standards” (Arrow [3, page 48]). Formally, a probability is insensitive to rare events when
given two events f and g and any vanishing sequence of events {Ej}, ∃N = N(f, g) > 0,
such that W(f) > W(g) ⇔ W(f ′) > W(g ′) for all f ′, g ′ satisfying f ′ = f and g ′ = g a.e. on
Ec
j ⊂ R when j > N, and Ec denotes the complement of the set E.
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Proposition 3.2. A subjective probability satisfies Monotone Continuity if and only if it is biased
against rare events.

Proof. This is immediate from the definitions of both [3, 12].

Corollary 3.3. Countably additive probabilities are biased against rare events.

Proof. It follows from Propositions 2.1 and 3.2 [9, 12].

Proposition 3.4. Purely finitely additive probabilities are biased against frequent events.

Proof. See example in the appendix.

Proposition 3.5. A subjective probability that satisfies the Swan Axiom is neither biased against rare
events, nor biased against frequent events.

Proof. This is immediate from the definition.

4. An Axiomatic Approach to Probability with Black Swans

This section proposes an axiomatic foundation for subjective probability that is unbiased
against rare and frequent events. The axioms are as follows:

Axiom 1. Subjective probabilities are continuous and additive.

Axiom 2. Subjective probabilities are unbiased against rare events.

Axiom 3. Subjective probabilities are unbiased against frequent events.

Additivity is a natural condition and continuity captures the notion that “nearby”
events are thought as being similarly likely to occur; this property is important to ensure
that “sufficient statistics” exist. “Nearby” has been defined by Villegas [5] and Arrow [3] as
follows: two events are close or nearby when they differ on a small set as defined in Arrow
[3], see previous section. We saw in Proposition 3.2 that the notion of continuity defined by
Villegas and Arrow—namely, monotone continuity—conflicts with the Swan Axiom. Indeed
Proposition 3.2 shows that countably additive measures are biased against rare events. On
the other hand, Proposition 3.4 and the Example in the appendix show that purely finitely
additive measures can be biased against frequent events. A natural question is whether there
is anything left after one eliminates both biases. The following proposition addresses this
issue.

Theorem 4.1. A subjective probability that satisfies the Swan Axiom is neither finitely additive nor
countably additive; it is a strict convex combination of both.

Proof. This follows from Propositions 3.2, 3.4 and 3.5, Corollary 3.3 above, and the fact that
convex combinations of measures are measures. It extends Theorem 6.1 of Section 6 below,
which applies to the special case where the events are Borel sets in R or in an interval (a, b) ⊂
R.
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Theorem 4.1 establishes that neither Savage’s approach nor Villegas’ and Arrow’s
satisfy the three axioms stated above. These three axioms require more than the additive
subjective probabilities of Savage, since purely finitely additive probabilities are finitely
additive and yet they are excluded here. At the same time the axioms require less than the
countably subjective additivity of Villegas and Arrow, since countably additive probabilities
are biased against rare events. Theorem 4.1 above shows that a strict combination of both
does the job.

Theorem 4.1 does not however prove the existence of likelihoods that satisfy all three
axioms. What is missing is an appropriate definition of continuity that does not conflict with
the Swan Axiom. The following section shows that this can be achieved by identifying an
event with its characteristic function, so that events are contained in the space of bounded
real-valued functions on the universe space U, L∞(U), and endowing this space with the sup
norm.

5. Axioms for Probability with Black Swans, in R or (a, b)

From here on events are the Borel sets of the real line R or the interval (a, b). This is a
widely used case that make the results concrete and allows to compare the results with the
earlier axioms on choice under uncertainty of Chichilnisky [9, 12, 14]. We use a concept of
“continuity” based on a topology that was used earlier by Debreu [13] and by Chichilnisky
[1, 2, 9, 10, 12, 14]: observable events are in the space of measurable and essentially bounded
functions L = L∞(R) with the sup norm ‖f‖ = ess supx∈R|f(x)|. This is a sharper and more
stringent definition of closeness than the one used by Villegas and Arrow, since two events
can be close under the Villegas-Arrow definition but not under ours, see the appendix.

A subjective probabiliy satisfying the classic axioms by De Groot [20] is called a
standard probability, and is countably additive. A classic result is that for any event f ∈ L∞
a standard probability has the form W(f) =

∫
Rf(x) ·φ(x)dμ, where φ ∈ L1(R) is an integrable

function in R.
The next step is to introduce the new axioms, show existence and characterize all the

distributions that satisfy the axioms. We need more definitions. A subjective probability W :
L∞ → R is called biased against rare events, or insensitive to rare events when it neglects events
that are small according to a probability measure μ on R that is absolutely continuous with
respect to the Lebesgue measure. Formally, a probability is insensitive to rare events when
given two events f and g ∃ε = ε(f, g) > 0, such that W(f) > W(g) ⇔ W(f ′) > W(g ′) for
all f ′, g ′ satisfying f ′ = f and g ′ = g a.e. on A ⊂ R and μ(Ac) < ε. Here Ac denotes the
complement of the set A. W : L∞ → R is said to be insensitive to frequent events when given
any two events f, g ∃ε(f, g) > 0 that W(f) > W(g) ⇔ W(f ′) > W(g ′) for all f ′, g ′ satisfying
f ′ = f and g ′ = g a.e. on A ⊂ R and μ(Ac) > 1 − ε. W is called sensitive to rare (respectively
frequent) events when it is not insensitive to rare (respectively frequent) events.

The following three axioms are identical to the axioms in last section, specialized to
the case at hand.

Axiom 1. W : L∞ → R is linear and continuous.

Axiom 2. W : L∞ → R is sensitive to frequent events.

Axiom 3. W : L∞ → R is sensitive to rare events.
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The first and the second axiom agree with classic theory and standard likelihoods
satisfy them. The third axiom is new.

Lemma 5.1. A standard probability satisfies Axioms 1 and 2, but it is biased against rare events and
therefore does not satisfy Axiom 3.

Proof. Consider W(f) =
∫
Rf(x)φ(x)dx,

∫
Rφ(x)dx = K < ∞. Then

W
(
f
)
+W

(
g
)
=
∫

R

f(x)φ(x)dx +
∫

R

g(x)φ(x)dx

=
∫

R

f(x) + g(x) · φ(x)dx = W
(
f + g

)
,

(5.1)

since f and g are characteristic functions and thus positive. Therefore W is linear. W is
continuous with respect to the L1 norm ‖f‖1 =

∫
R|f(x)|φ(x)dμ because ‖f‖∞ < ε implies

W
(
f
)
=
∫

R

f(x) · φ(x)dx =
∫

R

∣
∣f(x)

∣
∣ · φ(x)dx ≤ ε

∫

φ(x)dx = εK. (5.2)

Since the sup norm is finer than the L1 norm, continuity in L1 implies continuity with
respect to the sup norm (Dunford and Schwartz, [22]). Thus a standard subjective probability
satisfies Axiom 1. It is obvious that for every two events f, g, with W(f) > W(g), the
inequality is reversed namely W(g ′) > W(f ′) when f ′ and g ′ are appropriate variations of
f and g that differ from f and g on sets of sufficiently large Lebesgue measure. Therefore
Axiom 2 is satisfied. A standard subjective probability is however not sensitive to rare events,
as shown in Chichilnisky [1, 2, 9, 10, 12, 14, 23].

6. Existence and Representation

Theorem 6.1. There exists a subjective probability W : L∞ → R satisfying Axioms 1, 2, and 3. A
probability satisfies Axioms 1, 2 and 3 if and only if there exist two continuous linear functions on L∞,
denoted φ1 and φ2 and a real number λ, 0 < λ < 1, such that for any observable event f ∈ L∞

W
(
f
)
= λ

∫

xεR

f(x)φ1(x)dx + (1 − λ)φ2
(
f
)

(6.1)

where φ1 ∈ L1(R, μ) defines a countably additive measure on R and φ2 is a purely finitely additive
measure.

Proof. This result follows from the representation theorem by Chichilnisky [9, 12].

Example 6.2 (“Heavy” Tails). The following illustrates the additional weight that the new
axioms assign to rare events; in this example in a form suggesting “heavy tails.” The finitely
additive measure φ2 appearing in the second term in (6.1) can be illustrated as follows. On
the subspace of events with limiting values at infinity, L′

∞ = {fεL∞ : limx→∞(x) < ∞},
define φ2(f) = limx→∞f(x) and extend this to a function on all of L∞ using Hahn Banach’s
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theorem. The difference between a standard probability and the likelihood defined in (6.1)
is the second term φ2, which focuses all the weight at infinity. This can be interpreted as a
“heavy tail,” a part of the distribution that is not part of the standard density function φ1 and
gives more weight to the sets that contain terminal events, namely sets of the form (x,∞).

Corollary 6.3. In samples without rare events, a subjective probability that satisfies Axioms 1, 2, and
3 is consistent with classic axioms and yields a countably additive measure.

Proof. Axiom 3 is an empty requirement when there are no rare events while, as shown above,
Axioms 1 and 2 are consistent with standard relative likelihood.

7. The Axiom of Choice

There is a connection between the new axioms presented here and the Axiom of Choice
that is at the foundation of mathematics (Godel, [24]), which postulates that there exists a
universal and consistent fashion to select an element from every set. The best way to describe
the situation is by means of an example, see also Dunford and Schwartz [22], Yosida [25, 26],
Chichilnisky and Heal [27], and Kadane and O’Hagan [28].

Example 7.1 (illustration of a purely finitely additive measure). Consider a possible measure
ρ satisfying the following: for every interval A ⊂ R, ρ(A) = 1 if A ⊃ {x : x > a, for some
a ∈ R}, and otherwise ρ(A) = 0. Such a measure would not be countably additive, because
the family of countably many disjoint sets {Vi}i=0,1,... defined as Vi = (i, i + 1]

⋃
(−i − 1,−i],

satisfies Vi
⋂
Vi = ∅ when i /= j, and

⋃∞
i=0 Vi =

⋃∞
i=0(i, i+1]

⋃
(−i−1,−i] = R, so that ρ(

⋃∞
i=0 Vi) = 1,

while
∑∞

i=0 ρ(Vi) = 0, which contradicts countable additivity. Since the contradiction arises
from assuming that ρ is countably additive, such a measure could only be purely finitely
additive.

One can illustrate a function on L∞ that represents a purely finitely additive measure ρ
if we restrict our attention to the closed subspace L′

∞ of L∞ consisting of those functions f(x)
in L∞ that have a limit when x → ∞, by the formula ρ(f) = limx→∞f(x), as in Example 6.2
of the previous section. The function ρ(·) can be illustrated as a limit of a sequence of delta
functions whose supports increase without bound. The problem however is to extend the
function ρ to another defined on the entire space L∞. This could be achieved in various ways
but as we will see, each of them requires the Axiom of Choice.

One can use Hahn—Banach’s theorem to extend the function ρ from the closed
subspace L′

∞ ⊂ L∞ to the entire space L∞ preserving its norm. However, in its general
form Hahn—Banach’s theorem requires the Axiom of Choice (Dunford and Schwartz, [22]).
Alternatively, one can extend the notion of a limit to encompass all functions in L∞ including
those with no standard limit. This can be achieved by using the notion of convergence along
a free ultrafilter arising from compactifying the real line R as by Chichilnisky and Heal [27].
However the existence of a free ultrafilter also requires the Axiom of Choice.

This illustrates why any attempts to construct purely finitely additive measures, requires
using the Axiom of Choice. Since our criteria include purely finitely additive measures, this
provides a connection between the Axiom of Choice and our axioms for relative likelihood.
It is somewhat surprising that the consideration of rare events that are neglected in standard
statistical theory conjures up the Axiom of Choice, which is independent from the rest of
mathematics (Godel, [24]).
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Appendix

Example A.1 (Illustration of a probability that is biased against frequent events). Consider the
function W(f) = lim infxεR(f(x)). This is insensitive to frequent events of arbitrarily large
Lebesgue measure (Dunford and Schwartz, [22]) and therefore does not satisfy Axiom 2. In
addition it is not linear, failing Axiom 1.

Example A.2 (two approaches to “closeness”). Consider the family {Ei} where Ei = [i,∞),
i = 1, 2, . . . . This is a vanishing family because for all i, Ei ⊃ Ei+1 and

⋂∞
i=1 Ei = ∅. Consider

now the events fi(t) = K when t ∈ Ei and fi(t) = 0 otherwise, and gi(t) = 2K when t ∈ Ei

and gi(t) = 0 otherwise. Then for all i, supEi |fi(t) − gi(t)| = K. In the sup norm topology this
implies that fi and gi are not “close” to each other, as the difference fi − gi does not converge
to zero. No matter how far along the vanishing sequence Ei the two events fi, gi differ by
K. Yet since the events fi, gi differ from f ≡ 0 and g ≡ 0 respectively only in the set Ei, and
{Ei} is a vanishing sequence, for large enough i they are as “close” as desired according to
Villegas-Arrow’s definition of “nearby” events.

The Dual Space L∗
∞: Countably Additive and Finitely Additive Measures

The space of continuous linear functions on L∞ with the sup norm is the “dual” of L∞, and
is denoted L∗

∞. It has been characterized, for example, in Yosida [25, 26]. L∗
∞ consists of the

sum of two subspaces (i) L1 functions g that define countably additive measures ν on R by
the rule ν(A) =

∫

Ag(x)dx where
∫

R|g(x)|dx < ∞ so that υ is absolutely continuous with respect
to the Lebesgue measure, and (ii) a subspace consisting of purely finitely additive measures.
A countable measure can be identified with an L1 function, called its “density,” but purely
finitely additive measures cannot be identified by such functions.

Example A.3. Illustration of a Finitely Additive Measure that is not Countably Additive
See Example 7.1 in Section 7.
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We evaluate two risk profiles: (i) global warming risks and (ii) collisions with asteroids that can
cause the extinction of our species. The expected values computed for these two risks suggest that
no action will be taken to avoid extinction. The result is somewhat counterintuitive, but it is typical
of the results of using classic decision theory to evaluate catastrophic risks in the distant future, see
the study by Posner (2004). We establish why expected value is insensitive to catastrophic risks see
the study by Chichilnisky (1996), and use another criterion to evaluate risk based on axioms for
choice under uncertainty that update the classic Von Neumann theory and require equal treatment
for rare and frequent events. Optimizing according to the new criterion is shown to be equivalent to
optimizing expected utility with a restriction on the worst outcome in the case of a catastrophe. The
evaluation obtained from the new criterion seems more intuitively plausible, and suggests a more
practical and realistic approach to catastrophic risks: optimizing expected value while minimizing
losses in the case of a catastrophe.

1. Asteroids

Sixty five million years ago, an asteroid crashed into earth. Global winds distributed the dust
throughout the atmosphere, blocking sunlight, and many life forms that relied on the sun
eventually perished. In a short period of time, experts believe, the mighty dinosaurs that
dominated our planet went extinct. Realistically the same fate awaits us. Over 99.99% of the
species that have ever existed are now extinct [1, 2]. If our species survives long enough,
we will be exposed to an asteroid and could suffer the same fate as the dinosaurs. The data
suggests that asteroids of that caliber will hit our planet on average once every 100 million
years [2]. The last one was 65 million years ago. Under current conditions, when the next one
hits the earth, humans and many other species could go extinct.

What should we do about this threat to our survival and others like it? And if the issue
is serious, why is this issue getting so little attention whereas the less catastrophic threat of
global warming is in the news almost daily?
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The purpose of this paper is to provide answers to these questions. We examine
systematically how to deal with catastrophic risks such as asteroid impacts, which are small-
probability events with enormous consequences, events that could threaten the survival
of our species, and compare their treatment with risks like global warming that are more
imminent and familiar but possibly less catastrophic.

The task is not easy. Classic tools for risk management are notoriously poor
for managing catastrophic risks, (see Posner [2] and Chichilnisky [3, 4]). There is an
understandable tendency to ignore rare events, such as an asteroid impact, which are unlikely
to occur in our lifetimes or those of our families [2, 5]. Yes this is a questionable instinct
at this stage of human evolution where our knowledge enables to identify such risks.
Standard decision tools make this task difficult. We show using the existing data that a major
disturbance caused by global warming of less than 1% of GDP overwhelms in expected
value the costs associated with an asteroid impact that can plausibly lead to the extinction
of the human species. We show that the expected value of the loss caused by an asteroid
that leads to extinction—is between $500 million and $92 billion. A loss of this magnitude is
smaller than that of a failure of a single atomic plant—the Russians lost more than $140 billion
with the accident at Chernobyl—or with the potential risks involved in global warming that
is between $890 billion and $9.7 trillion [2]. Using expected values therefore we are led
to believe that preventing asteroid impacts should not rank high in our policy priorities.
Common sense rebels against the computation we just provided. The ability to anticipate
and plan for threats that have never been experienced by any current or past member of the
species and are unlikely to happen in our lifespans, appears to be unique to our species. We
need to use a risk management approach that enables us to deal more effectively with such
threats [2]. To overcome this problem this paper summarizes a new axiomatic approach to
catastrophic risks that updates current methods developed initially by John Von Neumann,
see Chichilnisky [3, 4, 6–9], and offers practical figures to evaluate possible policies that
would protect us from asteroid impacts. Our conclusion is that we are underinvesting in
preventing the risk of asteroid like threats. Much can and should be done at a relatively small
cost; this paper suggests a methodology and a range of dollar values that should be spent to
protect against such risks to help prevent the extinction of our species.

2. Catastrophes and the Survival of the Species

A catastrophe is a rare event with enormous consequences. In a recent book, Posner [2]
classifies catastrophes into various types, each of which threats the survival of our species.
He uses a classic approach to value the importance of a risk by quantifying its expected value,
namely, the product of the probability times the loss. For example, the expected value of an
event that occurs with ten percent probability and involves $1 billion loss is $109×10−1 = $100
million. This approach is used by actuaries to price the cost of life insurance policies, and is
also by law the measure used in US Congress when evaluating budget plans with uncertain
outcomes. The notion of expected value started with Von Neumann and Morgenstern about
60 years ago [10], and it is based on their axioms or principles for decision making under
uncertainty formalized in [11, 12]. Posner [2] uses the concept of expected value to evaluate
risks but warns the reader about its weaknesses for evaluating catastrophic risks (see Posner
[2, Chapter 3, pages 150–154]). This weakness is exposed in the case of asteroids, when we
ask how much we should invest in preventing the impact of an asteroid that can destroy all
of the earth’s economic value forever. Posner [2] argues that expected value does not capture
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the true impact of such a catastrophe; that something else is at stake. Because of his loyalty
to the concept of expected value, which does not work well in these cases, Posner appears
to be arguing that rationality does not work in the case of catastrophes, that we cannot deal
rationally with small probabilities events that cause such large and irreversible damage.

Perhaps the problem is not one of rationality. There may be a different rationality
needed when considering the long-range future of the species. It could be that expected value
is a good measure for evaluating risks that have a good chance to occur in our lifetime, but
not for evaluating risks that are important but have essentially a zero chance to occur while
we are alive. For such risks we may need another approach overall, for both the present and
the future. In our current state of evolution it would seem useful to oppose a human tendency
based on our hunter-gatherer origins to give preference to immediate outcomes as opposed to
more distant ones; see the study by McClure et al. [5]. When using expected value the response
we obtain seems to clash with our intuition because the probabilities involved are so small
that they render the computation almost meaningless, as seen numerically in the examples
provided below. The experimental evidence summarized below provides further support for
this view.

3. Experimental Evidence and Alternative Approaches

Expected utility optimization derives from Von Neumann’s (NM) axioms, but it is well
known for sometime that it conflicts with the experimental evidence on how humans choose
under uncertainty; for example, see the studies by Allais [13], Machina, [14, 15], Tversky
and Wakker [16]. Problems arise when there are infrequent events involved; examples are
weather catastrophes like hurricanes or mass extinctions. Similar types of conflicts appear
when using the standard criterion of present value optimization for choosing among projects
that evolve through time. Other problems arise when the plans involve very long time
horizons as in the disposal of nuclear waste (Heal [17]). While the problem areas mentioned
above are quite different, they all share a common mathematical root: the relative insensitivity
of the classic axioms of choice towards (1) small-probability events (2) the far away future
[3, 4, 6, 17]. The mathematical structure of the problem is the same in all cases: it arises
from the use of “normal” distributions; the “bell curves” to describe the frequency with
which we expect everything to occur from weather events to returns on investments or
corporate profits. Normal distributions arise when many independent events contribute to
some outcome. However when there are unexpected interconnections or catastrophic events,
normal distribution can understate (1) the role of small-probability events (2) the role of
events that are very far into the future. We formalize this problem below and provide a
solution.

Taking a leaf from Von Neumann and Morgenstern’s book, Chichilnisky [3, 4, 6]
reconsidered the foundations of the expected value approach, which are the VNM axioms
for choice under uncertainty, see also Arrow [11] and Hernstein and Milnor [12]. A first
step is to show that classic axioms can be “biased” against small-probability events, as was
established by Chichilnisky in [6]. She introduced new axioms for choice under uncertainty
that require more symmetry in the treatment of small and large probability events [3, 4]. The
new axioms coincide with those of Von Neumann and Morgenstern when the events involved
have “normal” probabilities, for example, when they are likely to occur in our lifetime. But
the new axioms give rise to a rather different decision making criterion when the probabilities
involved are extremely small, or equivalently when the events are only likely to occur in



4 Journal of Probability and Statistics

a very long future. The two sets of axioms are consistent with each other for “normal” events
while they are quite different on catastrophic events. How can this be?

A somewhat far-fetched analogy is the relationship between classical mechanics and
general relativity. The former applies to “normal scales” that are closer to own reality on earth,
while the latter applies to large-scale phenomena involving astral bodies. Both are correct in
their respective spheres, and neither contradicts the other. The same could be the case with
the Von Neumann-Morgenstern and the Chichilnisky’s axioms. The next section presents the
new axioms. It has been shown empirically and theoretically (Posner [2] and Chichilnisky
[3]) that standard tools of decision making under uncertainty are ill suited to evaluate such
risks, more on this below.

In sum: the standard approaches do not provide a satisfactory answer and we provide
here an alternative approach to risk management that seems better suited to the management
of catastrophic risks and risks that are most likely to occur in the very distant future. This
approach has an axiomatic treatment that parallels Von Neumann’s theory of choice under
uncertainty, but extends it requiring equal treatment for frequent and rare events.

The next section provides empirical motivation for the new approach by comparing it
with expected utility in two risk profiles: asteroids and global warming risks.

4. Two Risk Profiles: Asteroids and Global Warming

In September 16, 2000, the British Task Force on Potentially Hazardous Near Earth Objects
(NEOs) produced a report classifying asteroids risks by their size, energy yield, and average
interval between impacts. Large-mass extinctions—for example, the Cretaceous Terciary
Geological boundary—follow from the impact of asteroids of 16 km in diameter, which occur
on the average once every 100 million years, and threaten the survival of all advanced life
forms on the planet of which 99.9% have already gone extinct [18]. Below we compare the
risk profile presented by asteroids with global warming risks.

(i) An asteroid impact of this magnitude occurs on average once every 100 million
years.

(ii) It produces damage of about $120 trillion [2], obliterating all human-produced
value in the planet.

(iii) The damage is permanent—it continues annually for about 1 billion years, the
expected lifetime of our planet before it is destroyed by our sun becoming a red
star.

(iv) Existing observations indicate that such an impact will not take place in the next 30
years.

Below we compare this risk with the risk of “global warming” with the following
simplified profile.

(i) The probability of global warming is 1, namely, it is happening.

(ii) The best estimate is that it will produce damage that is calculated for the
catastrophic case to bring in a permanent loss of about $2 trillion a year loss in
the US and globally about $8 trillion a year; see, for example, the study by (Posner
in [2]). There is no consensus on whether the gradual or the catastrophic case for
global warming is more likely.
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Before examining the two risk profiles, we explain the connection between rare events
and events in the distant future.

5. Decisions over Time and under Uncertainty

We adopt a simple approach that views “choices over time” and “choices under uncertainty”
as two aspects of one and the same phenomenon.

The probability of an event is viewed as the frequency with which this event is likely to
occur through time. (A word of warning is in order. This is not the only approach to defining
probabilities—indeed many people object to it because of it views reality as an experiment
that can repeat itself. Yet for our purposes here the approach has an important advantage in
that it simplifies matters and at the same time generalizes the results.) For example, drawing
“heads” with a fair coin is an event with probability 0.50 because in repeated flipping of the
coin, “tails” tend to occur 50% of the time. The appearance of ”heads” is thus a relatively
frequent event, one that will on average occur one out of every two trials. If we flip a coin
every year, for example, heads will occur almost surely in our lifetime. In this context, high
frequency over time translates into high-probability and vice versa. Low-frequency events
translate into low probability and vice versa. This way we treat “time” and “uncertainty”. as
two aspects of the same phenomenon.

We saw that high-probability events are those that occur frequently in time. In the case
of asteroids, we know with certainty that at some point in time one will hit the earth and
destroy most life on the planet unless we take action. The probability of such destructive
event sometime in the future is one, although the event is so infrequent that the probability
is essentially zero in any person’s lifetime.

A catastrophe has been defined in [2, 6] as an event with enormous negative
consequences—such as the extinction of the species—an event that may occur with
probability one sometime in the distant future, but has nearly zero probability of occurring
during the lifetime of any one individual. There is basically zero risk that the “catastrophe”
will occur in our lifetime, although we know for sure it will occur at some point in the future.
It is possible although very unlikely that we will pick up the papers tomorrow and read
that some astronomer has discovered a massive comet taking deadly aim at our planet. With
this definition, it becomes clear that dealing with catastrophes is the same as dealing with
events that take place in the distant future. It is well known that the losses from events that
take place in the very long-run future are “discounted” in an exponential manner to obtain
a “present discounted value”, and that this exponential discount renders long-term losses
almost meaningless. Having connected “choices over time” and “choices under uncertainty”,
this explains why expected value, which is the parallel to “present discounted value”, leads
to counterintuitive evaluation of catastrophic losses or for that matter distort outcomes
generally. Next we provide a formal framework.

6. The Mathematics of Risk

A system is in one of several possible states that can be described by real numbers. To each
state s ∈ R there is an associated outcome, so that one has x(s) ∈ RN, N ≥ 1. A description
of outcomes across all states is called a lottery x : R → RN. The space of all lotteries
is therefore a function space L (identified in the following by the space of all essentially
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bounded real-valued functions with the “sup norm”, denoted L∞). Under conditions of
uncertainty one makes decisions by ranking lotteries in L.

Von Neumann-Morgenstern (NM) axioms provided a mathematical formalization of
how to rank or order lotteries. Optimization according to such an order is called expected
utility (EU) and defines standard decision making under uncertainty. The main result from
the NM axioms is that the decision procedure is obtained by optimizing a function of the
following form:

W(x) =
∫
s∈R

u(x(s))dμ(x), (6.1)

where the real line R is the state space, x : R → RN is a “lottery”, u : RN → R is a utility
function describing the utility provided by the outcome of the lottery in each state s, u(s),
and where dμ(x) describes a countably additive measure over sets of states (or events) in
R that determines their relative frequency. Arrow [11] explains why utility functions must
be essentially bounded so as to overcome the St. Petersburg paradox. This implies that the
space L of utility values provided by lotteries is L∞, namely, it is the space of measurable and
(essentially) bounded functions (An essentially bounded function is a measurable function
that is bounded except perhaps on a set of measure zero.) on the line R. Using the EU
criterion, a lottery x is ranked above another y if and only if W assigns to x a larger real
number:

x � y ⇐⇒ W(x) > W
(
y
)
, (6.2)

where W satisfies (6.1). The optimization of expected utility (EU) is a widely used procedure
for evaluating choices under uncertainty. (The Euler-Lagrange equations are typically used
to characterize optimal solutions.)

In the following examples we consider the space of lotteries to be the space of all
continuous linear real-valued functions, L∞ with the sup norm, and the dual of L∞, denoted
L∗
∞, consists of all continuous real-valued functions on L∞. L∗

∞ includes integrable functions
on R as well as purely finite additive measures [19–21] that are not representable by functions,
for example a measure that assigns measure zero to all bounded measurable subsets of the
line. Other examples are provided below. (An example of a purely finitely additive measure
is the continuous linear real-valued function φ : L∞ → R defined by φ(f) = lims→∞ f(s) on
all functions that have such a limit, and extended by using Hahn-Banach theorem to the rest.)

6.1. Catastrophic Risks

A catastrophic risk is a rare event leading to major widespread losses. Expected utility
undervalues such risks: Chichilnisky [3, 4, 6] showed formally that using expected utility
criteria underestimates catastrophic risks, and by doing so conflicts with the observed
evidence of how humans evaluate such risks if they are likely to occur in their lifetimes.
In order to formalize the problem we need some definitions.

Definition 6.1. A ranking W : L∞ → R is said to be insensitive to rare events when W(x) >
W(y) ⇔ W(x′) > W(y′) for any two lotteries x′ and y′ that are obtained by modifying
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arbitrarily x and y on any set of states S ⊂ R with an arbitrarily small-probability ε = ε(x, y).
Formally,

W is insensitive to rare events if ∀x, y ∃ε = ε(x, y) : W(x) > W(y) ⇔ W(x′) > W(y′) for
all x′, y′ satisfying

y′ = y a.e. on Sc ⊂ R, x = x′ a.e. on Sc ⊂ R, where μ(S) < ε. (6.3)

Otherwise, W is said to be sensitive to rare events.

Definition 6.2. W is insensitive to frequent events if

∀x, y ∃ε = ε
(
x, y

)
: W(x) > W

(
y
) ⇐⇒ W

(
x′) > W

(
y′) ∀x′, y′ s.t.

x′ = x, y′ = y a.e. on Sc ⊂ R : μ(S) > 1 − ε.
(6.4)

Otherwise, W is called sensitive to frequent events.

Mathematically, the problem with expected utility is that it is insensitive to rare events
no matter how catastrophic these may be.

Proposition 6.3. Any expected utility function
∫
s∈R u(c(s))γ(s)ds, where γ(s) ∈ L1(R) is

insensitive to rare events.

For a proof see the theorem in Chichilnisky [6].

6.2. New Axioms of Choice Under Uncertainty

Introduced in [3, 6] the following axioms contrast with Von-Neumann Morgenstern’s axioms
(NM) in that they treat symmetrically rare and frequent risks. They postulate that the ranking
of lotteries W : L∞ → R must satisfy the following.

Axiom 1. Sensitivity to rare events.

Axiom 2. Sensitivity to frequent events.

Axiom 3. Linearity and continuity of the ranking W .

Axioms 2 and 3 are standard; they satisfied, for example, by expected utility EU.
However Axiom 1 is not satisfied by EU (Proposition 6.3 above).

To clarify the meaning of these axioms, the following are examples of rankings W that
do not satisfy our axioms.

Example 6.4. Consider a criterion of choice W : L → R that ranks lotteries assigning measure
zero to any bounded set in R [19–21]. Such functionals are ruled out by Axiom 2 which
requires sensitivity to frequent events.
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Example 6.5. Expected utility maximization is ruled out, as is shown in Proposition 6.3 above
(see also [6]), because it does not satisfy Axiom 1.

Like the NM axioms, the new Axioms 1, 2, and 3 lead to a representation theorem.

Theorem 6.6. There exist ranking criteria Ψ : L∞ → R that satisfy all three axioms. Any criterion
that satisfies the axioms is a convex combination of an expected utility plus a purely finitely additive
measure focused on catastrophic events, for example:

Ψ =
∫
R

u(c(s))λ(s) + λ(Φ(c(s))), (6.5)

where c(s) describes the value of the lottery in state s ∈ R, γ(s) is an integrable real-valued
function on the line R, for example, λ(s) = e−δs, and u : R → R is a bounded utility function.

The first term is thus an expected utility with an L1(R) density function γ(s), and the
second term is a purely finitely additive measure such as Φ(s) = limc→∞ c(s) for lotteries
that have such a limit and extended otherwise to all lotteries by Hahn-Banach’s theorem. For
a proof see the study by Chichilnisky in [6]. (The optimization of functionals such as Ψ is
not amenable to standard tools of calculus of variations, which must be developed in new
directions; see, for example, the studies by Chichilnisky [3, 6] and Heal [17].)

A recent result established that the new criterion in (6.5) is a way to formalize the
notion of optimizing expected utility while bounding the worst outcome in the case of a
catastrophe:

Theorem 6.7. Optimizing the ranking criterion in (6.5) is equivalent to optimizing an expected
utility function

∫
R u(c(s))λ(s) subject to a constraint on the possible loss in case of a catastrophe.

For a proof see [4].
An interpretation of his theorem is as follows: the first term

∑∞
s=1 λ

−su(x(s)) is an
integral operator with a countably additive kernel {λ−s}s∈Z which emphasizes the weight
of frequent events in the ranking of a lottery x ∈ l∞. The second purely finitely additive part
Φu(x(s)) assigns positive weight to rare events, which have small-probability according to μ.
Both parts are present, so Ψ is sensitive to small and to large probability events. Catastrophic
risks are therefore ranked more realistically by such functionals.

Next section applies this framework for evaluating risks to the two risk profiles
described above, asteroids and global warming.

7. Evaluating Asteroid Impacts

We first use standard methods for calculating the value of the damage caused by a risk
calculated by its present value, which brings future value into the present (Posner [2] for
both, and in particular page 150 for the latter). The reader should refer to the risk profile of
an asteroid impact presented above.

(i) In the case of an asteroid as described above, the expected cost of the loss in any
given year is obtained by multiplying $120 trillion or $120 × 1012—by the probability of the
loss, which occurs on average once every 100 million years, and is therefore 10−8. Once the
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loss occurs, however, it is assumed to be permanent. Therefore the expected value of the loss
in year N is

∞∑
t=1

(
120 × 1012 × 10−8

)
· δN+t =

(
120 × 1012 × 10−8 × δN

) ∞∑
t=1

δt

=
(

120 × 1012 × 10−8 × δN
)( δ

1 − δ

)
,

(7.1)

where δ is the time “discount factor”, 0 < δ < 1, and 1 − δ is the “discount rate”.
If the risk does not occur in year N, then it can occur in year N + 1, and if not in year

N + 2, N + 3, and so forth, and each time it occurs, it lasts permanently. Therefore the total
risk is the sum of the risk of it occurring in year 30, plus the risk of it occurring in year 31,
plus the risk of it occurring in year 32, and so forth, namely,

(
120 × 1012 × 10−8 × δN

)( δ

1 − δ

) ∞∑
j=1

δj =
(

120 × 1012 × 10−8 × δN
)( δ

1 − δ

)2

. (7.2)

At a 5% discount rate δ = 0.95, and the total expected discounted value of the loss from such
as asteroid is

120 × 1012 × 10−8 × 95
100

30

×
(

95/100
1 − 95/100

)2

= 9.2982 × 107 or about $92 million. (7.3)

At a 10% discount rate, that value is

120 × 1012 × 10−8 × 90
100

30

× 81 = 4.1204 × 106 or about $4 million. (7.4)

At a 3% discount rate, the value is

120 × 1012 × 10−8 × 97
100

30

× 322 =: 4.9276 × 108 or about $500 million. (7.5)

These values pale by comparison with the estimated value of other losses such as
global warming, which are estimated to be in the tens of trillions, as shown below. In all
cases, therefore, it appears to makes sense to allocate more funding to the global warming
problem than to the problem of preventing asteroid impacts; more on this below.

7.1. Evaluating Global Warming

The United Nations Intergovernmental Panel on Climate Change (IPCC) found in 1996 that
human-induced global warming is already occurring. There are two main scenarios for the
damages that global warming will cause: (1) catastrophic global warming effects, and (2)
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a more gradual buildup of damages

Scenario 1 (Catastrophic Global Warming). The catastrophic scenario is described by Posner
in [2, page 181], as follows. There is rapid increase in temperature, which produces a damage
that is calculated to bring in a permanent loss of about $2 trillion a year in the US and
globally about $8 trillion a year. Considering the risk profile already established above (cf.
also [Posner, 1992, page 181]), the present discounted value of such a disaster at a 3% discount
rate is

2 × 1012 × δ

1 − δ
= 2 × 1012 × 97

3
= 6.4667 × 1013 or about $65 trillion. (7.6)

At a 5% discount rate the number is

2 × 1012 × 95
5

=: 3.8 × 1013 or about $38 trillion, (7.7)

and at a 10% discount rate the number is

2 × 1012 × 9 =: 1.8 × 1013 or about $18 trillion. (7.8)

Scenario 2 (Gradual Buildup of Damages). In the second scenario global warming is also
here today, but temperature increases slowly and its damages increase for about 100 years
to reach 1% of the planet’s GDP. Global GDP is calculated to be about $120 trillion then
(the same number used in the asteroid risk). After we reach maximum damage, we consider
various possibilities going forward: (1) the annual damage remains the same a perpetuity, and
(2) damages decrease slowly and disappear 100 years later. Let us compute using standard
technique the present discounted value of the losses.

In the first case using a 3% discount rate we obtain

∞∑
i=1

1012

100
× i × 97

100

i

= 1.077 8 × 1013, which is about $10 trillion (7.9)

using a 5% discount rate

∞∑
i=1

1012

100
× i × 95

100

i

= 3.8 × 1012 which is about $3.8 trillion, (7.10)

and using a 10% discount rate,

∞∑
i=1

1012

100
× i × 9

10

i

=: 9.0 × 1011, which is about $900 billion. (7.11)
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In the second case, when the damage gradually decreases until it vanishes after 100
years following its maximum impact we have using a 3% discount rate

[
100∑
i=1

1012

100
× i × 97

100

i
]
+

[
100∑
i=2

1012

100
× (100 − (i − 1)) × 97

100

100+i
]
= 9.7456 × 1012 ∼ $9.7 trillion,

(7.12)

using a 5% discount rate

[
100∑
i=1

1012

100
× i × 95

100

i
]
+

[
100∑
i=2

1012

100
× (100 − (i − 1)) × 95

100

100+i
]
= 3.7506 × 1012 ∼ $3.7 trillion

(7.13)

and using a 10% discount rate

[
100∑
i=1

1012

100
× i × 9

10

i
]
+

[
100∑
i=2

1012

100
× (100 − (i − 1)) × 9

10

100+i
]
= 8.9993 × 1011 ∼ $890 billion.

(7.14)

As was indicated above, in all cases, and with all three discount rates, 3%, 5%, and 10%,
the global warming problem overwhelms in terms of present discounted values the costs
involved with asteroid impacts. This is despite the fact that even in the noncatastrophic case
global warming decreased GDP by a small fraction, only 1% and only after 100 years.

8. Comparing Global Warming and Asteroid Impacts

Using expected values we are led to believe that preventing asteroid impacts should not rank
high in our policy priorities. The results from the numerical computations provided above
to evaluate the risks of asteroids and global warming seem counterintuituve. How can it be
that a major disturbance caused by global warming—even when we take very conservative
estimated losses of less than 1% of GDP building up slowly over 100 years—overwhelm the
costs associated with an asteroid impact that can plausibly lead to the extinction of the human
species? The expected value of the loss caused by an asteroid that leads to extinction—is
between $500 million and $92 billion, as seen above. A loss of this magnitude is smaller that
of a failure of a single atomic plant—the Russians lost more than $140 billion with the accident
at Chernobyl—or with the potential risks involved in global warming that is between $890
billion and $9.7 trillion. Common sense rebels against the computation we just provided.
Let us use other examples for comparison. In year 2004, the profits of the 10 biggest oil
companies were about $100 billion. It seems therefore unreasonable to think of losses from
asteroid impacts as valued between $500 million and $92 billion. At this rate, it seems difficult
to believe that we will ever do anything about averting human extinction, since current
priorities will always outweighed such infrequent events, no matter how important they
may be. Is there anything wrong with this argument? The alternative is to use the evaluation
criterion arising from Axioms 1, 2, and 3 above. In view of the representation theorem, the
next section utilizes a ranking function Φ as defined in (6.5), and to make the computation
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explicit, provides a plausible number for the parameter μ that appears in the definition of Φ
above.

9. Catastrophes and the Survival of the Species

The axioms proposed here lead us to evaluate catastrophic risks by a formula that adds to the
present expected value a second term that focuses on rare events. To focus on catastrophes
that involve extinction of the human species, we evaluate the cost of an event using a sum of
the presented expected value plus the cost of extinction of the species. The most conservative
scenario for the cost of extinction of the species (Posner [2]) is when everyone alive today
dies without warning, and at probabilities that are so small that the value of a human life
is computed (according to experimental evidence) at about $50, 000. Recall (Posner [2]) that
the value of life decreases with the probability of death, so this number corresponds to events
with probabilities lower that 1 in 100 million. At such small probabilities, with the current
population, the species extinction event amounts to $600 trillion. We may therefore assume
that, in the following mathematical expression for our criterion,

Ψ(x) =
∞∑
s=1

λ−su(x(s)) + μ(Φu(x(s))), (9.1)

the expression Φu(x(s) = $600 trillion.
To use this approach, we need to specify now a value for μ, which is the “weight”

one gives to extremely small-probability events in one’s decision making. It is clear that the
weight to give to the second term—which addresses the value of the low probability and
thus likely distant event—is somewhat subjective. Those concerned about the long-term fate
of our species may argue that we should consider it equally to the more familiar current—and
likely more frequent threat like global warming. Others may argue that our capability to deal
with such a threat will improve with time and therefore we should not spend too much on
a threat that will most likely only occur in the distant future. For this discussion we will just
note that many people would say that it is a mistake to spend money on something that will
occur millions of years from now devalue the threat for an incorrect reason. They incorrectly
conclude that something that occurs only every 100 million years on average will not occur
in their lifetime. But it can, in fact the likelihood is the same every year.

Example 9.1. Valuating the Parameter μ: An Illustration.

Consider the criterion Φ defined in (6.5) above. In the studies by Chichilnisky [4, 7–9],
we assume that we give the catastrophic event a weight of only 1 in 100,000, namely,

1 − μ = 10−5, or equivalently μ = 1 − 10−5. (9.2)

On this basis we can compare the global warming scenario with the asteroid collision
scenario. One takes into consideration the following.

(1) Neither of the two cases of global warming—abrupt or gradual—involve human
extinction.

(2) The asteroid impact considered here does involve extinction of the human species.
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Under those conditions, the total cost involved in global warming is (approximately)
$66 trillion at 3% discount rates, as shown above, while the total cost involved in an asteroid
impact (neglecting the presented discounted value which is no larger than $500 million as
shown above), is about

$600 × 1012 × 10−5 = 6 × 109 = 6 billion. (9.3)

Under the conditions, therefore, the yearly investment in prevention of asteroid impacts
should be about 1/10 of the yearly investment in prevention of global warming, which
is currently $1.7 billion (Posner [2, page 182]) leading to $170 million, while the current
expenditures are instead $3.9 million, requiring therefore to be increased by a factor of about
60.

Our rational decision maker who values the future of the species and understands
what probabilities really mean, could go through the following simple analysis. For any
value of μ even close to one-half the expected value we have calculated makes asteroids
more threatening than global warming that is attracting all the attention of policy makers
and the public today. In one sense this is satisfying since we would like to believe that we
would give great value to prevent our extinction. However, we used the number of US$300
trillion (μ = 1/2) for the expected value and argued that it is what we should spend to
defend against extinction. This does not seem intuitively correct for many reasons, not the
least of which is that we would have no resources left to do anything else. The answer to this
dilemma is to recognize that what we are really interested in is utility loss from extinction
rather than expected value for the dollars we allocate. This view can help us achieve an
intuitively pleasing answer that we should spend as much money today on defenses against
extinction as can be usefully transferred into improved protection. In the case of asteroids
based on current estimates many experts believe this might be only about 10 times what
we are now spending which is about US$30 million dollars. This is a small number and
the corrected valuation of the risk is high enough that we should need no further analysis
to decide to increase our efforts now and when new opportunities become available in the
future.

10. Conclusions

We believe that the above analysis is the beginning of a much more extensive assessment and
research about our response to all kinds of catastrophic risks. Recent results provide ways
to enhance our subjective judgments about the value of μ, which is approximated by the
marginal utility of avoiding extinction near the catastrophe, see the study by Chichilnisky in
[4].

Other methods could include the application of Bayesian analysis involving experts
who understand the nature of the threats as well as the correct meaning of low probability
events. A Bayesian approach can be helpful to determine both the true risk profile and
the most plausible utility function for the use of resources to combat a given threat. Such
evaluations identify not only high expected value but also high utility. If there are very
expensive things we can do to prevent the risk the the allocations of a large amount of
resources may be warranted and the problem becomes more complicated. Our political
leaders will need to make the more difficult choices between meeting todays’ needs compared
with the need to defend against distant catastrophic threats. This is not a new challenge since
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we and other nations spend a significant part of our resources to defend against the threat of
nuclear war or the nuclear winter that would follow it. What is new is that now we recognize
that many serious threats like those arising from glaciation, asteroid impact, and biodiversity
loss are unlikely to occur within our lifetimes, yet we do not want to wake up one day and
find that we are facing the impact of what was an avoidable catastrophic risk. Furthermore
the same type of deficiency in our approach also exists for very rare events like tsunamis and
earthquakes also leading to a poor allocation of resources, as was likely the case for the 2005
Asian tsunami. This work provides a framework to address these threats in a way that agrees
with our intuition. We would like to allocate resources in a way that can be useful in reducing
the catastrophic threats we face.

In conclusion we offer another perspective that might also be useful for understanding
why it is now that we are confronting the dilemmas. An analogy might help. Early on nobody
spent a lot of money on personal insurance to protect him/herself. As we gained more
knowledge of the risks we face and as we became affluent enough we decided to spend
increasing amounts of money on insurance. In a similar way our species only recently has
obtained the knowledge of some of the catastrophic risks we face and developed ways to
cope with them. For the moment we are seriously underinsured so any way that we can do
useful things to reduce our risk we should do so. Someday in the future we may be challenged
as we were doing the cold war to decide between present risks and future ones.
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Portfolio optimization with respect to different risk measures is of interest to both practitioners and
academics. For there to be a well-defined optimal portfolio, it is important that the risk measure be
coherent and quasiconvex with respect to the proportion invested in risky assets. In this paper we
investigate one such measure—conditional capital at risk—and find the optimal strategies under
this measure, in the Black-Scholes continuous time setting, with time dependent coefficients.

1. Introduction

The choice of risk measure has a significant effect on portfolio investment decisions.
Downside risk measures—that focus attention on the downside tail of the distribution of
portfolio returns—have received considerable attention in the financial world. Value at risk
(VaR) is probably the most famous among these measures, having featured heavily in various
regulatory frameworks. It can be defined for a random variable X and a confidence level α by
VaR(X) = E[X] − qα, where qα is the α-quantile of X (see e.g., [1, Equation (1.2)]) (Another
common definition is that the VaR of a loss distribution L is the smallest number xα such
that P[L > xα] = α. This is equivalent to the definition given here if we define the loss of
the portfolio X to be given by L = E[X] − X, and identify xα = VaR(X).). A closely-related
downside risk measure is capital at risk (CaR), defined in [2] (see also [3, 4]) as the difference
between the riskless investment and the quantile qα.

Quantile-based risk measures such as VaR and CaR suffer from several shortcomings.
First, while they measure the best of the worst outcomes at the 100(1 − α)% confidence
level, they do not answer the question of how severe the loss can be. Also, one of the



2 Journal of Probability and Statistics

most important concerns is that these measures are not in general subadditive; that is,
when used to measure risk, they do not always satisfy the notion that the diversification
should not create more risk [5]. Finally, as illustrated in [6], VaR can exhibit multiple local
extrema.

These issues were addressed in the widely cited article by Artzner at al. [7], where the
authors define coherent risk measures by four conditions that such measures should satisfy.
The article motivated a number of authors [5, 8–13] to propose and investigate different types
of coherent risk measures, all of which are tail mean-based risk measures.

One such measure, that does not suffer from the critical shortcomings of VaR and CaR,
is conditional capital at risk (CCaR). This is defined (in [14]) as the difference between the
riskless investment and the conditional expected wealth, under the condition that the wealth
is smaller than the corresponding quantile, for a given risk level. As such, this measure
provides an indication of the likely severity of the loss in the event that the loss exceeds a
given quantile. In this paper we prove that CCaR is strongly quasiconvex as a function of the
portfolio, which is an essential property for optimization. We investigate conditional capital
at risk in a multiasset Black-Scholes setting, in continuous time, and with time-dependent
coefficients. We generalize and extend the optimization approach of Emmer at al. (see [2, 14])
to the continuous-time setting.

The outline of this paper is as follows. In Section 2, we give the notation and define
the portfolio process and CCaR. Section 3 provides the proof that CCaR is a coherent risk
measure and that it satisfies the property of strong quasiconvexity. In Section 4, we derive an
analytical solution for the minimal CCaR problem, up to a scalar constant which has to be
evaluated numerically. Section 5 is devoted to the derivation of an analytical strategy for the
maximal expected wealth, subject to constrained CCaR. Section 6 provides some numerical
examples, and Section 7 concludes this paper.

2. Preliminaries

We introduce the following notation. The m-dimensional column vector with each
component equal to 1 is denoted by e, the Euclidean norm of a matrix or vector by ‖ · ‖,
and the space of R

n-valued, square-integrable functions defined on [0, t] by L2([0, t], R
n), or

just L2. The natural inner product of this space is denoted by 〈·, ·〉t, and the corresponding
norm by ‖ · ‖t.

We work under the following assumptions.

Assumption 2.1. (i) The securities are perfectly divisible.
(ii) Negative positions in securities are possible.
(iii) Rebalancing of the holdings does not lead to transaction costs.

Assumption 2.2. (i)m + 1 assets are traded continuously over a finite horizon [0, T].
(ii)m of these assets are stocks that follow the generalized Black-Scholes dynamics:

dSi(t) = Si(t)

⎛
⎝bi(t)dt +

m∑
j=1

σij(t)dWj(t)

⎞
⎠, t ∈ [0, T], Si(0) > 0, i = 1, . . . , m, (2.1)

where Wj(t), j = 1, . . . , m, are independent standard Brownian motions.
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(iii) One of the assets is a bond, whose price S0(t), t ≥ 0, evolves according to the
differential equation:

dS0(t) = r(t)S0(t)dt, t ∈ [0, T], S0(0) = S0 > 0, (2.2)

where r(t)(> 0) is the interest rate of the bond. Throughout this work, we assume that
borrowing in the bond is unconstrained.

(iv) The volatility matrix σ(t) (with ijth element σij(t)), its inverse σ−1(t), the drift
vector b(t) := (b1(t), . . . , bm(t))

′, and the interest rate r(t) are deterministic, Borel measurable,
bounded functions over [0, T], so that they belong to the appropriate L2 spaces.

(v) σ(t) satisfies the nondegeneracy condition:

x′σ(t)σ(t)′x ≥ δx′x, ∀t ∈ [0, T], ∀x ∈ R
m, (2.3)

where δ > 0 is a given constant.

We note that, under the above assumptions, the market is complete.
At any time t, Ni(t) shares are held in the asset Si(t), leading to the wealth Xπ(t) =∑

Ni(t)Si(t). The m + 1-dimensional vector-valued function N(t) = (N0(t), . . . ,Nm(t))
′ is

called the trading strategy. We denote the fraction of the wealth Xπ(t) invested into the risky
asset Si(t) by

πi(t) =
Ni(t)Si(t)
Xπ(t)

, i = 1, . . . , m, (2.4)

and call π(t) := (π1(t), . . . , πm(t))
′ ∈ R

m the portfolio. The fraction held in the bond is π0(t) =
1 −π ′(t)e. Under the assumption that the trading strategy is self-financing, the wealth process
follows the dynamics

dXπ(t) = Xπ(t)
((
r(t) + B(t)′π(t)

)
dt + π ′(t)σ(t)dW(t)

)
, X(0) = X0, (2.5)

where X0 is the initial wealth, and the risk premium vector B(t) is defined by

B(t) := b(t) − r(t)e, t ∈ [0, T]. (2.6)

Proceeding as in [3], to ensure a minimal tractability of the optimization problems
which we solve through the following sections, we restrict our attention in this work to
the class Q of portfolios π(·) which are Borel measurable, deterministic, and bounded over
[0, T]. Such portfolios are called admissible. Note that for an admissible portfolio π(·), (2.5) is
guaranteed to have a strong solution Xπ(·) (see [15, Theorem 5.2.9]). Note that, by allowing
for time-dependent coefficients, this generalises the class of portfolios considered in [14].

Under condition (2.3) the market price of risk is uniquely defined by

θ(t) = σ(t)−1B(t). (2.7)
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It will be shown throughout this work that the magnitude of the L2-norm of the market price
of risk is the determining criterion for optimal investment strategies, which turn out to be the
weighted averages of the bond and Merton’s portfolio defined by

πM(t) := (σ(t)σ(t))−1B(t). (2.8)

This result is an illustration of the mutual fund theorem in complete markets.
We now recall the definitions of the quantiles and quantile-based risk measures for

Xπ(t).

Definition 2.3. Suppose that Ft(x) is the cumulative distribution function of the wealth Xπ(t),
at time t ∈ [0, T]. For a risk level α ∈ (0, 0.5), the α-quantile of Xπ(t) is defined as

qα(X0, π, t) := inf {x ∈ R | F(x) ≥ α}. (2.9)

The tail mean or expected shortfall of the wealth process Xπ(t), which we denote by
TMα(Xπ(t)), is the expected value of Xπ(t) conditional on Xπ(t) ≤ qα(X0, π, t), that is,

TMα(Xπ(t)) := E
[
Xπ(t) | Xπ(t) ≤ qα(X0, π, t)

]
. (2.10)

The conditional capital at risk, which we denote by CCaR(X0, π, t), is defined to be the
difference between the riskless investment and the tail mean, that is,

CCaR(X0, π, t) := X0R(t) − TMα(Xπ(t)), (2.11)

where R(t) is defined as

R(t) = exp

(∫ t
0
r(s)ds

)
. (2.12)

Remark 2.4. Note that, with CCaR defined in this way, we get the following.

(i) An investment in a riskless asset corresponds to zero CCaR.

(ii) An increase in the tail mean corresponds to a decrease in CCaR. Thus, negative
CCaR corresponds to the case when the tail mean is above the riskless return, that
is, a desired result, while positive CCaR corresponds to the case when the tail mean
is below the riskless return which we try to reverse by minimizing CCaR.

It was shown in [3] that the α-quantile of the wealth process Xπ(t) can be written as

qα(X0, π, t) = X0R(t) exp
(
〈B,π〉t −

1
2
∥∥σ ′π∥∥2

t − |zα|
∥∥σ ′π∥∥t

)
, (2.13)
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where, for a given risk level α, zα denotes the corresponding α-quantile of the standard
normal distribution (note that this is negative when α < 0.5). In the following, we let ϕ and
Φ denote the density and cumulative distribution functions of the standard normal random
variable. We have the following proposition.

Proposition 2.5. The tail mean of the wealth process Xπ(t) solving (2.5) can be expressed as

TMα(Xπ(t)) = X0R(t)
1
α

exp(〈B,π〉t)Φ
(
−|zα| −

∥∥σ ′π∥∥t
)
, (2.14)

and the expected value is given by

E[Xπ(t)] = X0R(t) exp(〈B,π〉t). (2.15)

The proof is given in the appendix. From Proposition 2.5 we get the following
corollary.

Corollary 2.6. The conditional capital at risk of the solution to (2.5) can be written as

CCaR(X0, π, t) = X0R(t)
(

1 − 1
α

exp(〈B,π〉t)Φ
(
−|zα| −

∥∥σ ′π∥∥t
))
. (2.16)

Throughout the paper we will use the following function:

gα(π, t) := 〈B,π〉t + ln
(
Φ
(
−|zα| −

∥∥σ ′π∥∥t
))
− lnα, (2.17)

which transforms the expression for conditional capital at risk into

CCaR(X0, π, t) = X0R(t)
(
1 − exp

(
gα(π, t)

))
. (2.18)

We now turn our attention to investigating the properties of CCaR.

3. Coherency and Quasiconvexity of CCaR

The notion of coherent risk measures has been widely discussed in the recent literature (see
[5, 7–13] e. g.). Below we recall the definition of coherency, confirm that CCaR is a coherent
risk measure, and prove that it is quasiconvex.

Definition 3.1. Let V be the set of real-valued random processes on a complete probability
space (Ω,F, P), with its natural filtration {Ft}t∈[0,T], satisfying E[S(t)] < ∞ for all S(t) ∈ V ,
and for t ∈ [0, T]. Then ρ : V → R is a coherent risk measure if it satisfies the following
properties.
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(1) Subadditivity: ρ is subadditive if, for all random processes S(t),Y (t) ∈ V ,

ρ(S(t) + Y (t)) ≤ ρ(S(t)) + ρ(Y (t)) for t ∈ [0, T]. (3.1)

(2) Positive Homogeneity: ρ is positive homogeneous if, for all S(t) ∈ V and constant
c > 0,

ρ(cS(t)) = cρ(S(t)) for t ∈ [0, T]. (3.2)

(3) Monotonicity: ρ is monotone if, for all S(t),Y (t) ∈ V , such that S(t) ≥ Y (t) almost
everywhere, and S0 = Y0,

ρ(S(t)) ≤ ρ(Y (t)) for t ∈ [0, T]. (3.3)

(4) Translation Invariance: ρ is translation invariant if, for all S(t) ∈ V and c ∈ R,

ρ(S(t) + c) = ρ(S(t)) for t ∈ [0, T]. (3.4)

To prove that CCaR(X0, π, t) of a wealth process Xπ(t) ∈ V is a coherent risk measure
we refer to [8, Definition 2.6], where the expected shortfall of a random process X(t), with
the corresponding α-quantile qα, is defined as

ESα(X(t)) = −α−1(E[X(t)IX(t)≤qx
]
+ qx
(
α − P

(
X(t) ≤ qx

)))
(3.5)

and is shown to be coherent [8, Proposition 3.1]. We should note that the definition of
coherency used in [8] involves translation invariance in the sense that ρ(X(t)+c) = ρ(X(t))−c,
for all X(t) ∈ V and c ∈ R.

In order to relate the result in [8] to the coherency of CCaR in the sense used here,
we first note that, if X(t) is a random process with a continuous probability distribution,
we have ESα(X(t)) = −TMα(X(t)), so that (with a slight abuse of notation) CCaR(X(t)) =
X0R(t)+ESα(X(t)). If we consider the shifting of the portfolio value by an amount c, we have

CCaR(X(t) + c) = X0R(t) + c + ESα(X(t) + c)

= X0R(t) + c + ESα(X(t)) − c

= X0R(t) + ESα(X(t)) = CCaR(X(t)),

(3.6)

and so we have the following result.

Corollary 3.2. Conditional capital at risk CCaR(X0, π, t) of a wealth process Xπ(t) ∈ V , at time
t ∈ [0, T], for a risk level α ∈ (0, 0.5), is a coherent risk measure.
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Remark 3.3. (i) While properties 2 and 3 are quite natural, subadditivity has the obvious, yet
important consequence that diversification does not create more risk.

(ii) Properties 1 and 2 together are very important as they guarantee the convexity of
the risk measure which is essential for optimization.

(iii) In our definition of a coherent risk measure we say that a risk measure is
translation invariant, if ρ(X(t) + c) = ρ(X(t)), for all X(t) ∈ V , and c ∈ R. While in article
[8], It is said that arisk measure is translation invariant, if ρ(X(t) + c) = ρ(X(t)) − c, for all
X(t) ∈ V and c ∈ R It is our belief that the definition of the translation invariance, as given
in this paper, corresponds more with the intuition behind the notion of translation invariance
than the definition given in [8].

Remark 3.4. In the above remarks we investigated the impact of diversification to the portfolio
risk, as measured by CCaR. We saw that the axiom of subadditivity requires that the risk
of the sum of two risky processes, say two stock price processes, be less than or equal to
the sum of the individual risks associated with these stock price processes. This means that
diversification does not create more risk, as measured by CCaR, and that, as long as we
diversify, we expect risk reduction.

However, if the portfolio consists of all market assets, the diversification is completed.
Then the risk can be further reduced by optimization, that is, by rebalancing the positions
across these assets. We then look at the risk measure CCaR as a function of the portfolio π ,
and prove that it is strongly quasiconvex in π which further implies the uniqueness of the
corresponding optimization problems’ solutions.

We now turn to the notion of strong quasiconvexity, which we note has not been
discussed in the context of portfolio optimization in any of the quoted references except in
[3, 4]. Its usefulness lies in its role in establishing the existence of unique solutions to portfolio
optimization problems.

We first recall (see [16, Definition 3.5.8]) that a function f : U ⊂ R
m → R is said to be

strongly quasiconvex if

f(λπ + (1 − λ)ξ) < max
{
f(π), f(ξ)

}
∀π, ξ ∈ U,π /= ξ, λ ∈ (0, 1). (3.7)

In the following theorem we prove that CCaR has this important property, when viewed as a
function of the portfolio weights.

Theorem 3.5. For all distinct π(·),ξ(·) ∈ Q (where the set {t ∈ [0, T] | π(t)/= ξ(t)} has a positive
Lebesgue measure), and for all λ ∈ (0, 1)

CCaR(X0, λπ + (1 − λ)ξ, T) < max{CCaR(X0, π, T),CCaR(X0, ξ, T)}. (3.8)

Proof of Theorem 3.5. We suppose, without loss of generality, that

CCaR(X0, π, T) > CCaR(X0, ξ, T), (3.9)

in which case, from (2.18), we have

gα(π, T) < gα(ξ, T). (3.10)
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Let λ ∈ (0, 1). We claim that

CCaR(X0, λπ + (1 − λ)ξ, T) < CCaR(X0, π, T), (3.11)

which is equivalent to the statement

gα(λπ + (1 − λ)ξ, T) > gα(π, T). (3.12)

For ease of notation, we define the function

γ(x) := ln(Φ(−|zα| − x)). (3.13)

Since gα(π, T) = 〈B,π〉T − lnα + γ(‖σ ′π‖T ), (3.10) is equivalent to

〈B, ξ − π〉T + γ
(∥∥σ ′ξ∥∥T

)
− γ
(∥∥σ ′π∥∥T

)
> 0, (3.14)

while (3.12) becomes

(1 − λ)〈B, ξ − π〉T + γ
(∥∥σ ′(λπ + (1 − λ)ξ)

∥∥
T

)
− γ
(∥∥σ ′π∥∥T

)
> 0. (3.15)

Clearly, from (3.14), the left-hand side of (3.15) is greater than

γ
(∥∥σ ′(λπ + (1 − λ)ξ)

∥∥
T

)
− λγ

(∥∥σ ′π∥∥T
)
− (1 − λ)γ

(∥∥σ ′ξ∥∥T
)
, (3.16)

and the theorem will be proved if we can establish that this is nonnegative. In order to do
this, we make use of the following lemma, the proof of which is given in the appendix.

Lemma 3.6. The function k(x) = lnΦ(−x) is decreasing and strictly concave for all x > 0.

Since γ(x) = k(|zα| + |x|), one can make use of Lemma 3.6 to establish the following:

γ
(∥∥σ ′(λπ + (1 − λ)ξ)

∥∥
T

)
≥ γ
(
λ
∥∥σ ′π∥∥T + (1 − λ)

∥∥σ ′ξ∥∥T
)

≥ λγ
(∥∥σ ′π∥∥T

)
+ (1 − λ)γ

(∥∥σ ′ξ∥∥T
)
.

(3.17)

The proof is complete.

This theorem has an immediate, important consequence. Namely, from [16, Theorem
3.5.9], if a function f : U ⊂ R

m → R is strongly quasiconvex, then its local minimum is its
unique global minimum. Therefore, the following corollary is true.

Corollary 3.7. If CCaR(X0, π, T) has a local minimum at π∗(·) ∈ Q, then π∗(·) is its unique global
minimum.

This guarantees that minimization of CCaR(X0, π, T) with respect to π gives the
true, global minimum. To illustrate strong quasiconvexity, we give the plot of CCaR for
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Figure 1: The graph of CCaR as a function of the fraction of wealth π invested in the stock, for π ∈ [−5, 5],
T = 16, S(0) = 10, r = 0.05, σ = 0.2, b = 0.15. Observe that, in this case (with a long-time horizon
and constantly high-performing stocks), the global minimum πε lies in the interval [0, 1] and satisfies
CCaR(πε) < 0.

the following example (where the parameters were chosen to represent rather extreme
conditions, for the purposes of illustration).

Example 3.8. We consider a market consisting of one stock following the SDE

dS(t) = S(t)(0.15dt + 0.2dW(t)), t ∈ [0, 16], S(0) = 10, (3.18)

and the bond with the constant interest rate r = 0.05. The graph of CCaR(π) is given in
Figure 1.

4. Minimal Conditional Capital at Risk

The first portfolio selection problem we consider is to minimize risk as measured by CCaR,
that is, to determine its minimal value over all π ∈ Q. The problem can be stated as

min
π∈Q

CCaR(X0, π, T). (4.1)

Using (2.18), problem (4.1) transforms into

min
π∈Q

X0R(T)
(
1 − exp

(
gα(π, T)

))
. (4.2)

Since R(T) is a constant, problem (4.2) is equivalent to

max
π∈Q

gα(π, T). (4.3)
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We now introduce the fundamental dimension reduction procedure, used throughout this
work. Following [2, 14], we project the optimization problems considered in this paper onto
the family of surfaces Qε = {π(·) ∈ L2 : ‖σ ′π‖2

T = ε2}, and note that Q =
⋃
ε≥0Qε.

We denote by gεα the restriction of gα to Qε, so that

gεα(π, T) = 〈B,π〉T + ln(Φ(−|zα| − ε)) − lnα. (4.4)

Taking into account the definition of Qε, problem (4.3) can be stated as

max
ε≥0

max
π∈Qε

gεα(π, T). (4.5)

We deal with this problem in two stages. First, fixing ε reduces the problem to

max
π∈Qε

gεα(π, T). (4.6)

If πε denotes the unique maximising portfolio for this problem, then (4.5) can be solved
through the one-dimensional problem:

max
ε≥0

gεα(πε, T). (4.7)

It remains to solve the subproblem (4.6). Since ε is fixed, we see from (4.4) that (4.6) is
equivalent to the problem

max
π∈Qε
〈B,π〉T , (4.8)

the solution of which is given by the following proposition (the proof of which is given in [6,
Proposition 2.1]).

Proposition 4.1. For a fixed ε, the solution of problem (4.6) is attained by

πε(t) =
ε

‖θ‖T
(
σ(t)σ(t)′

)−1
B(t), (4.9)

where θ denotes the market price of risk, defined in (2.7).

We are now ready to solve problem (4.3), and we have the following theorem.

Theorem 4.2. Let θ(·) be the market price of risk (2.7). gα(π, T) attains its maximum when

π(t) := πε∗(t) = ε∗‖θ‖−1
T

(
σ(t)σ(t)′

)−1
B(t), (4.10)

where, if ‖θ‖T ≥ ϕ(|zα|)/α, ε∗ is defined to be the unique solution of the equation

ϕ(|zα| + ε)
Φ(−|zα| − ε)

= ‖θ‖T , (4.11)
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and, if ‖θ‖T < ϕ(|zα|)/α, ε∗ = 0. The corresponding minimum conditional capital at risk is

CCaR(X0, πε∗ , T) = X0R(T)
(

1 − 1
α

exp(ε∗‖θ‖T )Φ(−|zα| − ε∗)
)

(4.12)

(which is 0 if ε∗ = 0), and the expected wealth is

E[Xπε∗ (T)] = X0R(T) exp(ε∗‖θ‖T ). (4.13)

Proof of Theorem 4.2. Using the definition of θ(t) and substituting (4.9) into (4.5) allows us to
rewrite (4.5) as

max
ε≥0

gεα(πε, T) := ε‖θ‖T + ln(Φ(−|zα| − ε)) − lnα. (4.14)

If we define the function

f(ε) := gεα(πε, T) = ε‖θ‖T + ln(Φ(−|zα| − ε)) − lnα, (4.15)

we get

f ′(ε) = ‖θ‖T −
ϕ(−|zα| − ε)
Φ(−|zα| − ε)

= ‖θ‖T −
ϕ(|zα| + ε)
Φ(−|zα| − ε)

,

f ′(0) = ‖θ‖T −
ϕ(|zα|)
Φ(−|zα|)

= ‖θ‖T −
ϕ(|zα|)
α

,

f ′′(ε) =
ϕ(|zα| + ε)

(Φ(−|zα| − ε))2

(
(1 −Φ(|zα| + ε))(|zα| + ε) − ϕ(|zα| + ε)

)
.

(4.16)

We see that f ′′(ε) has the same form as k′′(x), where k(x) is defined in Lemma 3.6,
with |zα| + ε, instead of x, so that f ′′(ε) ≤ 0. Since f ′(ε) is a decreasing function of ε for ε > 0,
we have two cases.

(i) If f ′(0) ≥ 0, that is, ‖θ‖T ≥ ϕ(|zα|)/α, then the equation

f ′(ε) = ‖θ‖T −
ϕ(|zα| + ε)
Φ(−|zα| − ε)

= 0 (4.17)

has a unique solution which we denote by ε∗. Since f(ε) is a concave function, it
reaches its maximum at ε∗.

(ii) If f ′(0) < 0, that is, ‖θ‖T < ϕ(|zα|)/α, then f ′(ε) < 0 for all ε ≥ 0, and so (4.17) has
no solution. This implies that f(ε) is decreasing for all ε ≥ 0, so that the optimal
solution to problem (4.14) is ε = 0.
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To complete the proof of Theorem 4.2, note that (4.9), with ε = ε∗, is the optimal
solution of problem (4.3). One can then write

〈B,πε∗〉T =
ε∗

‖θ‖T
‖σ−1B‖2

T = ε∗‖θ‖T , ‖σ ′π‖2
t = ε

∗2, (4.18)

leading to

CCaR(X0, πε∗ , T) = X0R(T)
(

1 − 1
α

exp(ε∗‖θ‖T )Φ(−|zα| − ε∗)
)
,

E[Xπε∗ (t)] = X0R(T) exp(ε∗‖θ‖T ).
(4.19)

Remark 4.3. (i) Note that, if ‖θ‖T ≥ ϕ(|zα|)/α, we can deduce by using (A.12) that

‖θ‖T ≥
ϕ(|zα|)
α

=
ϕ(|zα|)

1 −Φ(|zα|)
≥ |zα|. (4.20)

Therefore, the condition ‖θ‖T ≥ ϕ(|zα|)/α, which has to be satisfied for investing into stocks
under conditional capital at risk, is stronger than the condition ‖θ‖T ≥ |zα|. The latter
condition is sufficient in order to include stocks into the optimal strategy using capital at
risk as a risk measure. Otherwise stated, conditional capital at risk is a more conservative risk
measure than capital at risk, which is consistent with its definition.

(ii) Increasing the time horizon T leads to increasing the L2 norm of the market price
of risk, so that, in case (ii), the optimal strategy changes from a pure bond strategy to a mixed
bond-stocks strategy. In case (i), increasing the L2 norm ‖θ‖T leads to increasing the expected
wealth E[Xπ(T)] and decreasing conditional capital at risk CCaR(X0, π, T).

(iii) As was noted in the preliminary remarks, the optimal portfolio is a weighted
average of Merton’s portfolio and the bond, which is an illustration of the two-fund
separation theorem.

We note that the solution provided in Theorem 4.2 is not an explicit analytical solution,
but it is expressed in terms of the solution of the one-dimensional equation (4.11), whose
solution ε∗ can be easily computed. Analytical upper and lower bounds for ε∗ are given in
the following lemma, whose proof is given in the appendix.

Lemma 4.4. The unique solution ε∗ of (4.17) satisfies the inequality

(
‖θ‖T

(
1 − 1

|zα|2

)
− |zα|

)+

≤ ε∗ ≤ ‖θ‖T − |zα|, (4.21)

where a+ := max{a, 0}.
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Remark 4.5. Note that, for α = 0.05, that is, at the 95% confidence level, (1 − 1/|zα|2) ≈ 0.63,
(4.21) approximates the result from [14], which states

(
2
3
‖θ‖T − |zα|

)+

≤ ε∗ ≤ ‖θ‖T − |zα| for α < 0.15. (4.22)

However, at a higher confidence level, that is, α < 0.05, (4.21) gives a better approximation
for ε∗, that is, a smaller interval to which ε∗ belongs.

5. Portfolio Optimization with Respect to Conditional Capital at Risk

We now turn to the problem of maximizing wealth subject to constrained CCaR, that is,

max
π∈Q

E[Xπ(T)] subject to CCaR(X0, π, T) ≤ C. (5.1)

Using (2.18), the above problem can be written in the form

max
π∈Q

X0R(T) exp(〈B,π〉T ) subject to X0R(T)
(
1 − exp

(
gα(π, T)

))
≤ C, (5.2)

which is equivalent to

max
π∈Q
〈B,π〉T subject to exp

(
gα(π, T)

)
≥ 1 − C

X0R(T)
. (5.3)

Since CCaR, from its definition, is smaller than total wealth, to avoid trivial cases we only
consider C such that

C < X0R(T) (5.4)

Under condition (5.4), problem (5.3) can be written as

max
π∈Q
〈B,π〉T subject to gα(π, T) ≥ c, (5.5)

where

c = ln
(

1 − C

X0R(T)

)
. (5.6)

Note that condition (5.4) guarantees that c is well defined. Using the dimension reduction
procedure of [2, 14] (see Section 4), we can write problem (5.5) as a one-parameter
optimization problem:

max
ε≥0

max
π∈Qε
〈B,π〉T subject to gα(π, T) ≥ c. (5.7)
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The solution to (5.7) is given in the following theorem.

Theorem 5.1. Suppose that the constant risk level C satisfies the following condition:

X0R(T)
(

1 − 1
α

exp(ε∗‖θ‖T )Φ(−|zα| − ε∗)
)
≤ C < X0R(T), if ‖θ‖T ≥

ϕ(|zα|)
α

0 ≤ C < X0R(T), if ‖θ‖T <
ϕ(|zα|)
α

,

(5.8)

where ε∗ is defined in Theorem 4.2. Then the optimal solution to problem (5.7) is

πε∗∗(t) =
ε∗∗

‖θ‖T
(
σ(t)σ(t)′

)−1
B(t), (5.9)

where c is defined in (5.6), and ε∗∗ ∈ [ε∗,∞) is the unique solution of the equation

h(ε) := ε‖θ‖T + ln(Φ(−|zα| − ε)) − lnα − c = 0. (5.10)

The corresponding expected wealth is equal to

E[Xπε∗∗ (T)] = X0R(T) exp(ε∗∗‖θ‖T ), (5.11)

with the corresponding conditional capital at risk:

CCaR(X0, πε∗∗ , T) = C. (5.12)

The efficient frontier is given by the following curve, whose first component is an increasing function
of C defined implicitly through (5.6), (5.10), and (5.11):

{(C,E[Xπε∗∗ (T)]) | C satisfies (5.8)}. (5.13)

Proof of Theorem 5.1. Proposition 4.1 states that the problem

max
π∈Qε
〈B,π〉T (5.14)

has the optimal solution

πε(t) =
ε

‖θ‖T
(σ(t)σ

(
t)′
)−1

B(t). (5.15)

Substituting (5.15) into (5.7) transforms it into the problem

max
ε≥0

ε‖θ‖T subject to gα(πε, T) ≥ c. (5.16)
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Using (5.10), the above problem can be written as

max
ε≥0

ε‖θ‖T subject to h(ε) = ε‖θ‖T + ln(Φ(−|zα| − ε)) − ln α − c ≥ 0. (5.17)

Clearly, the problem achieves its optimal solution for maximal ε for which the constraint is
satisfied. The solution to this problem is given in the following lemma, whose proof is given
in the appendix.

Lemma 5.2. Under condition (5.8), the equation h(ε) = 0 has a maximal solution ε∗∗ ∈ [ε∗,∞).
Furthermore, h′(ε) < 0, for ε > ε∗.

We substitute ε∗∗ into (5.15) to get the optimal portfolio

πε∗∗(t) =
ε∗∗

‖θ‖T
(
σ(t)σ(t)′

)−1
B(t), (5.18)

which yields

E[Xπε∗∗ (T)] = X0R(T) exp(ε∗∗‖θ‖T ), CCaR(X0, πε∗∗ , T) = C. (5.19)

Finally, to prove that the expected wealth is an increasing function of the risk constant C, we
rewrite (5.10) in the form

h(ε∗∗) = ε∗∗‖θ‖T + ln(Φ(−|zα| − ε∗∗)) − lnα − ln
(

1 − C

X0R(T)

)
= 0, (5.20)

which defines ε∗∗ as an implicit function of C. Differentiating the above, we get

∂h

∂ε∗∗
dε∗∗

dC
+
∂h

∂C
= 0, (5.21)

so that

dε∗∗

dC
= − ∂h/∂C

∂h/∂ε∗∗
. (5.22)

Since (∂h/∂C) = (1/X0R(T) − C), and since C < X0R(T), it follows that ∂h/∂C > 0. From
Lemma 5.2 it follows that dh/dε < 0, for all ε > ε∗, and hence for ε∗∗, so that dε∗∗/dC > 0.
Thus, ε∗∗ is an increasing function of C. From (5.11), we see that the expected wealth is an
increasing function of ε∗∗, and consequently ofC. This completes the proof of the theorem.

Remark 5.3. If a risk-averse investor decides to take the minimal risk which, in the first case,
means taking for the risk constant

C = X0R(T)
(

1 − 1
α

exp(ε∗‖θ‖T )Φ(−|zα| − ε∗)
)
, (5.23)
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implying

c = − lnα + ε∗‖θ‖T + ln(Φ(−|zα| − ε∗)), (5.24)

then the unique solution of the equation

ε‖θ‖T + ln(Φ(−|zα| − ε)) − ln α − c = 0 (5.25)

is ε∗∗ = ε∗.
In the second case, for a risk averse investor, the minimal risk constant is C = 0, which

implies c = 0, leading to the equation

h(ε) = ε‖θ‖T + ln(Φ(−|zα| − ε)) − lnα = 0, with h(0) = 0, h′(ε) ≤ 0, (5.26)

so that the unique solution of the equation h(ε) = 0 is ε∗∗ = 0.
Therefore, in both cases, choosing the minimal risk constant leads to the optimal

strategies coinciding with the strategies from the previous chapter, in which minimal
CCaR(X0, π, T) was determined.

6. Applications

To illustrate the results from previous sections, we give some numerical examples. We recall
that the system of SDEs that models the stocks’ prices is

dSi(t) = Si(t)

⎛
⎝bi(t)dt +

m∑
j=1

σij(t)dWj(t)

⎞
⎠, Si(0) > 0, i = 1, . . . , m, (6.1)

and that the stocks’ returns variance-covariance matrix, which we denote by Γ(t), is equal to
σ(t)σ(t)′. We also recall that Γ(t) can be decomposed as

Γ(t) = ν(t)Δ(t)ν(t), (6.2)

where Δ(t) is the stocks’ returns correlation matrix, and ν(t) is a diagonal matrix with the
entries equal to the stocks’ returns standard deviations. Therefore, from (6.2) we get

Γ(t) = σ(t)σ(t)′ = ν(t)Δ(t)ν(t). (6.3)

Although, theoretically, we assume that the vector of independent Brownian motions W(t)
is {Ft}t∈[0,T]-adapted, that is, known at time t ∈ [0, T], it is a common practice that we only
observe Γ(t) or, equivalently, ν(t) and Δ(t), but not σ(t). From (6.3) we see that this leads to a
nonunique decomposition of Γ(t) into the product σ(t)σ(t)′. Despite that fact, the Euclidean
norm, and consequently, the L2-norm of the market price of risk, is uniquely determined by

‖θ(t)‖2 =
∥∥∥σ(t)−1B(t)

∥∥∥
2
= B(t)′(σ(t)σ(t))−1B(t), (6.4)
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or, in the terms of the standard deviation and the correlation matrix, as

‖θ(t)‖2 = B(t)′ν(t)−1Δ(t)−1ν(t)−1B(t). (6.5)

To keep the exposition simple we consider the cases where the interest rate r(t), as
well as the volatility matrix, is constant, and the number of stocks is m = 3. In all numerical
computations and the corresponding plots we use an annual time scale for the drifts, standard
deviations, and the correlation matrix Δ(t) of the 3 stocks. We model time dependency in the
drift bi(t) by assuming that it oscillates periodically around a constant level μi. In order to
capture cycles in the economy or in the dynamics of the stocks we model the drifts as

bi(t) = μi + βi cos
(
ϕit
)
, i = 1, 2, 3. (6.6)

We note that the above model for stocks’ drifts was already used in [17], as the amplitude and
frequency coefficients βi and ϕi allow a high degree of flexibility in adjusting the shape of this
time dependency. We also note that, when modeling real market data, it is quite easy to deal
with the above functional form and estimate these two parameters by maximum likelihood
techniques, rather than detrending the data.

We now look at four special cases with the following characteristics.

(i) We let ϕ1 = ϕ2 = ϕ3 = ϕ, with ϕ = 0.75; that is, the economic cycles of all three stocks
are the same. We consider β1 = 0.75β, β2 = 0.5β, β3 = 0.25β, with β = 0.015, which
corresponds to a 1.5% deviation around the constant values μi.

(ii) We assume that the interest rate is r = 0.05 and numerically explore the sensitivity
of the optimal strategies with respect to μi and ρ.

(iii) We assume that the stocks’ returns have constant standard deviations given as
follows:

ν1 = 20%, ν2 = 25%, ν3 = 30%. (6.7)

To emphasize the importance of the diversification effect and, consequently, of the
market price of risk, for the optimal strategies, in Examples 6.2, 6.3, and 6.4 we keep the same
drift and volatility coefficients and change the correlation matrix.

Example 6.1. We assume that μ1 = 0.12, μ2 = 0.10, and μ3 = 0.08, and that the correlation
matrix is

Δ =

⎡
⎢⎢⎣

1.0 −0.6 −0.8

−0.6 1.0 0.5

−0.8 0.5 1

⎤
⎥⎥⎦. (6.8)

In Figure 2, we show (a) the stocks’ drifts over a ten year period, with daily granularity,
and (b) the optimal strategy, under minimal CCaR.

In this example, we see the expected result, that is, stock 1, which has the largest
constant part in the drift, and the smallest volatility is present in the optimal portfolio in
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Figure 2: Plot of the Stock Drifts (a) and portfolio weights (b) for Example 6.1.
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Figure 3: Plot of the Stock Drifts (a) and portfolio weights (b) for Example 6.2.

the highest percentage. However, to assume that just drifts and volatilities determine the
optimal strategy would be misleading, as the following examples show.

Example 6.2. We assume that μ1 = 0.08, μ2 = 0.10, μ3 = 0.12, and that the correlation matrix is
the same as in Example 6.1.

The stocks’ drifts and portfolio weights are given in Figure 3.
We see that, despite the fact that stock 1 has the smallest constant part of the drift,

it is still present in the optimal portfolio in the highest percentage, due to its high negative
correlations with both stocks 2 and 3.
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Figure 4: Portfolio Weights under Minimal CCaR for Example 6.3.

Example 6.3. In this example we assume that μ1 = 0.08, μ2 = 0.10, and μ3 = 0.12; that is, the
stocks have the same constant parts of the drifts as in Example 6.2 but a different correlation
matrix given by

Δ =

⎡
⎢⎢⎣

1.0 −0.3 0.5

−0.3 1.0 −0.9

0.5 −0.9 1

⎤
⎥⎥⎦. (6.9)

The optimal strategy, under minimal CCaR, is given in Figure 4.
In this example, stocks 2 and 3, which are highly negatively correlated, are present

in the optimal portfolio in percentages above 400%, while stock 1 and the bond are being
borrowed.

Example 6.4. In this example, we assume again that the stocks have the same constant parts
of the drifts as in Examples 6.2 and 6.3, while the correlation matrix is

Δ =

⎡
⎢⎢⎣

1.0 0.2 −0.3

0.2 1.0 0.1

−0.3 0.1 1

⎤
⎥⎥⎦. (6.10)

The criterion for investing into stocks, under the minimal CCaR, is ‖θ‖T ≥ ϕ(|zα|)/α.
For α = 0.05, |zα| = 1.645, so that we must have ‖θ‖T ≥ 2.0620, in order to start investing into
stocks. In the case of low correlation coefficients, such as in the above example, the market
price of risk increases very slowly, so that it takes the time horizon of 34 years to invest into
stocks with the risk level of 0.05. For α = 0.01, |zα| = 2.33, so that we must have ‖θ‖T ≥ 2.6424
to start investing into stocks. If we choose the risk level to be 0.01, we have to assume the very



20 Journal of Probability and Statistics

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
×106

0 200 400 600 800

CCaR ($)

Efficient frontier

E
xp

ec
te

d
w

ea
lt

h
($
)

Figure 5: Efficient Frontier for Example 6.1.

Table 1

T 10 20 30 33 34 40 50 56 57
‖θ‖T 1.1420 1.5944 1.9344 2.0302 2.0705 2.2293 2.5030 2. 6424 2.6655

long time horizon, of 57 years, in order to include stocks into the optimal strategy, under
minimal CCaR. The relation between ‖θ‖T and T can be found in Table 1.

Efficient Frontiers

Figure 5 shows the efficient frontier for Example 6.1 created using Theorem 5.1. The theorem
states that the expected wealth is an increasing function of C, which is bounded above by

Cmax = X0R(T). (6.11)

In order to avoid extremely risky strategies as C → Cmax, and for the sake of more
transparency of the graphs, we restrict C to the interval [0, 0.5Cmax]. We note that the efficient
frontiers for the other three examples are of the same exponential form, so that we omit their
graphs.

The graph given in Figure 5 illustrates the fact that the efficient frontiers are an
increasing function of the risk constant C which bounds CCaR.

Time-CCaR-Expected Wealth Surfaces

In Figure 6 we give a three-dimensional plot of the expected wealth as a function of time and
the risk constant C. From Theorem 5.1 we know that the expected wealth increases when the
risk constant C increases. We recall that the expected wealth is also an increasing function
of the time horizon T . The following figure illustrates these facts for Example 6.1. In order
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Figure 6: Time-CCaR-Expected Wealth Surface for Example 6.1.

to avoid extremely risky strategies, and to get a better representation, we restrict the upper
bound for CCaR to the interval [0, 0.5Cmax].

7. Conclusion

In this work we investigated continuous time portfolio selection under the notion of
conditional capital at risk, within the Black-Scholes asset pricing paradigm, with time
dependent coefficients. We showed that conditional capital at risk is a coherent risk measure
and proved that it satisfies an important property of strong quasiconvexity. Based on an
idea from [14], generalized in [3], we introduced the fundamental dimension reduction
procedure which transforms m-dimensional optimization problems into one-dimensional
problems, within the class of admissible portfolios, which are Borel measurable, bounded,
and deterministic. We further developed optimal strategies for portfolio optimization under
constrained conditional capital at risk. It is important to emphasize that we considered time
dependent portfolios, where the methods developed in [14] no longer work. We illustrated
the two-fund separation theorem, by showing that all optimal strategies are the weighted
averages of Merton’s portfolio and the bond, and the weights depend on the investor’s risk
tolerance only. Finding optimal strategies requires solving nonlinear equations which include
the cumulative distribution function of the normal random variable, so that the weights
can be only found numerically. We provide several numerical examples which illustrate
the importance of diversification, given by the correlation matrix. The correlation matrix
significantly impacts the magnitude of the L2 norm of the market price of risk, which, in
turn, is the determining criterion for investment strategies.

Appendix

Proof of Proposition 2.5. Let

μ(t) = r(t) + B(t)′π(t), η(t) = σ(t)′π(t). (A.1)
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Then the differential equation of the wealth process given by (2.5) can be written as

dXπ(t) = Xπ(t)
(
μ(t)dt + η(t)dW(t)

)
, Xπ(0) = X0. (A.2)

For convenience, set Y (t) = lnXπ(t). Applying the multidimensional version of Itô’s Lemma,
it can be shown (see the proof of Proposition 2.1 of [3]) that Y (t) follows the dynamics

dY (t) =
(
μ(t) − 1

2
∥∥η(t)∥∥2

)
dt + η(t)dW(t), Y (0) = ln(X0) = Y0. (A.3)

The α-quantile of Y (t) is equal to

qα(Y0, π, t) = Y0 +
∫ t

0

(
μ(s) − 1

2
∥∥η(s)∥∥2

)
ds − |zα|

√∫ t
0

∥∥η(s)∥∥2
ds, (A.4)

so that the α-quantile of X(t) is equal to qα(X0, π, t) = exp(qα(Y0, π, t)). We will further
simplify the notation by introducing

qx = qα(X0, π, t), qy = qα(Y0, π, t). (A.5)

From

Xπ(t)IXπ≤qx = exp(Y (t))IY≤qy , (A.6)

where I(·) is the corresponding indicator function, and from Bayes’ theorem, we obtain

TMα(Xπ(t)) = α−1E
[
exp(Y (t))IY≤qy

]
. (A.7)

Choose t ∈ [0,T]. We will evaluate (A.7) using the characteristics of the distribution of Y (t),
for fixed t. From (A.3) we have that Y (t) is a normal random variable with the parameters

μy = Y0 +
∫ t

0

(
μ(s) − 1

2
∥∥η(s)∥∥2

)
ds, σy =

√∫ t
0

∥∥η(s)∥∥2
ds. (A.8)

Taking into account (A.7) and (A.8), we can write

TMα(Xπ(t)) = α−1E
[
exp(Y (t))IY≤qy

]
= α−1

∫qy
−∞

exp
(
y
)
ϕ
(
y
)
dy. (A.9)

Using the standard integration techniques, and taking into account that zα < 0, we get

TMα(Xπ(t)) = α−1 exp

(
μy +

σ2
y

2

)
Φ
(
−|zα| − σy

)
. (A.10)
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If we substitute the original notation from (A.8) and (A.1), we get (2.10). This completes the
proof of Proposition 2.5.

Proof of Lemma 3.6. Let x > 0. The function k(x) = lnΦ(−x) is clearly decreasing. To prove
that it is strictly concave, we differentiate twice to get

k′′(x) =
ϕ(x)

(Φ(−x))2

(
(1 −Φ(x))x − ϕ(x)

)
. (A.11)

To evaluate k′′(x), we use the following standard inequality. For x > 0,

1
x
− 1
x3
≤ 1 −Φ(x)

ϕ(x)
≤ 1
x
. (A.12)

Applying the above, we get that k′′(x) ≤ 0 which means that k(x) is concave. To prove that
k(x) is strictly concave we need to show that

x(1 −Φ(x)) < ϕ(x) for x > 0. (A.13)

If we define the function

w(x) := x(1 −Φ(x)) − ϕ(x), (A.14)

it is an easy exercise to prove that w(x) < 0, for all x > 0; that is, the function k(x) is strictly
concave for all x > 0, which ends the proof of Lemma 3.6.

Proof of Lemma 4.4. We prove that the optimal solution ε∗ of (4.17) satisfies (4.21). From (4.17)
we have that

(1 −Φ(|zα| + ε∗))
ϕ(|zα| + ε∗)

=
1
‖θ‖T

. (A.15)

We use again the standard inequality (A.12). From inequality (A.12), with x = |zα| + ε∗, we
have

1
|zα| + ε∗

− 1

(|zα| + ε∗)3
≤ 1
‖θ‖T

=
(1 −Φ(|zα| + ε∗))

ϕ(|zα| + ε∗)
≤ 1
|zα| + ε∗

. (A.16)

The right-hand side of the inequality implies

ε∗ ≤ ‖θ‖T − |zα|. (A.17)

From the left-hand side of the inequality we have

‖θ‖T

(
1 − 1

(|zα| + ε∗)2

)
≤ |zα| + ε∗. (A.18)
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Since

− 1

(|zα| + ε∗)2
≥ − 1

|zα|2
, (A.19)

inequality (A.18) implies

‖θ‖T

(
1 − 1

|zα|2

)
− |zα| ≤ ε∗. (A.20)

The fact that ε∗ ≥ 0 and (A.20) give the desired result, so that Lemma 4.4 is proved.

Proof of Lemma 5.2. In this proof we find a maximal solution of the equation

h(ε) = ε‖θ‖T + ln(Φ(−|zα| − ε)) − ln α − c = 0. (A.21)

Since h′(ε) = f ′(ε), defined by (4.15), we will apply some arguments from the proof of
Theorem 4.2.

(i) Suppose that ‖θ‖T ≥ ϕ(|zα|)/α, which means that h′(0) = f ′(0) ≥ 0. Then the unique
maximum of h(ε) is achieved at ε∗. From condition (5.8) (i) we have that

c = ln
(

1 − C

X0R(T)

)

≤ ln
(

1 −
(

1 − 1
α

exp(ε∗‖θ‖T )
)
Φ(−|zα| − ε∗)

)

= − lnα + ε∗‖θ‖T + ln(Φ(−|zα| − ε∗)).

(A.22)

Hence

h(ε∗) = ε∗‖θ‖T + ln(Φ(−|zα| − ε∗)) − lnα − c

≥ ε∗‖θ‖T + ln(Φ(−|zα| − ε∗)) − lnα

+ lnα − ε∗‖θ‖T − ln(Φ(−|zα| − ε∗)) = 0.

(A.23)

Therefore, h(ε∗) ≥ 0. We further distinguish the following two subcases.

(a) Suppose that C < 0. Then (A.21) implies that h(0) = −c < 0. From the proof
of Theorem 4.2, for ε > ε∗, h′(ε) ≤ 0, h(ε) is concave, and since h(ε∗) ≥ 0, it
follows that the equation h(ε) = 0 has at least one solution, with the bigger
solution ε∗∗ ∈ [ε∗,∞).

(b) For C ≥ 0, h(0) = −c ≥ 0. Using the same arguments as in case (a), we get that
(A.21) has a unique solution ε∗∗ ∈ [ε∗,∞).
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(ii) Suppose ‖θ‖T < ϕ(|zα|)/α, that is, h′(0) < 0. We recall that in this case ε∗ = 0. The
definition of h(ε) yields

h(0) = ln(Φ(−|zα|)) − ln α − c = −c. (A.24)

From condition (5.8) (ii), we have that c ≤ 0, that is, h(0) ≥ 0. Using h′(ε) = f ′(ε), and the
proof of Theorem 4.2, we have

h′′(ε) ≤ 0; h′(0) = ‖θ‖T −
ϕ(|zα|)
α

< 0. (A.25)

Therefore, h′(ε) < 0 for all ε ≥ 0, with h(0) ≥ 0, so that h(ε) = 0 has a unique solution
ε∗∗ ∈ [ε∗,∞). This completes the proof of Lemma 5.2.
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This paper reviews household property risk management and estimates normatively optimal
choice under theoretical assumptions. Although risk retention limits are common in the financial
planning industry, estimates of optimal risk retention that include both financial and human
wealth far exceed limits commonly recommended. Households appear to frame property losses
differently from other wealth losses leading to wealth-reducing, excess risk transfer. Possible
theoretical explanations for excess sensitivity to loss are reviewed. Differences between observed
and optimal risk management imply a large potential gain from improved choice.

1. Introduction

Property risk management, a fundamental aspect of individual financial planning, has
perhaps been subject to the least amount of rigor. While investment management draws
directly from a theoretical structure of modern portfolio theory, risk management often
involves only the identification of risk exposures and products available to eliminate these
exposures. A common method of ensuring consistency in choice among insurance products
is to retain all risks beneath a risk retention limit; however the practice literature offers little
insight into how much retention is appropriate. This paper uses expected utility theory to
estimate optimal risk retention limits for households given reasonable assumptions about risk
aversion, human and financial wealth, and cost of insurance. Estimated retention limits are
generally much larger than limits chosen by individuals or recommended by professionals.
This suggests that households are either overweighting losses in a manner consistent with
Kahneman and Tversky’s [1] prospect theory or unaware of normatively efficient insurance
decision making.

Risky decision making involves consideration of the likelihood of expected outcomes
and the consequences of each outcome on expected well being. While the profit motive
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of firms suggests a preference for risky decisions that have a positive net expected value,
households are willing to pay a greater premium to mitigate risk. More formally, consumers
make decisions that maximize expected utility (U) by sacrificing expected wealth to reduce
the variance of possible outcomes.

For example, a household can face m possible states of nature where the likelihood
of an event is generated from a Ber(ρj) distribution where ρj is the likelihood of event
j occurring. Along with the probabilities associated with each state is the payout or return
(R) associated with each event. In this case, we can compute the expected payout associated
as

E
(
Payout

)
=

m∑

j=1

ρj ∗ Rj. (1.1)

If a household is risk neutral, they will make insurance decisions that maximize their
expected payout. Since the insurance product is costly, this assumption typically leads to
no new purchases of insurance. A more realistic scenario is one where households have some
aversion to risk. For example, if a household is asked whether they prefer an annual salary
of $50,000 with full certainty or either $30,000 with a 95% likelihood or $450,000 with a 5%
likelihood, more households are likely to take the certain salary even though the expected
income from the uncertain scenario is higher. This is an illustration of the Von Neumann-
Morgenstern utility function, which is generally assumed to be strictly concave with respect
to wealth (W). If W were a random variable and utility (u(W)) is strictly concave, then
Jensen’s inequality results in the following relationship where

EU[W] < u(E[W]). (1.2)

This implies that when facing large positive payouts, the utility associated with expected
wealth, u(E[W]), is greater than the expected utility associated wealth, EU[W]. The
difference between these two points represents the welfare gain to the household as well
as the profit opportunity for the insurer. In other words, a household can achieve greater
utility when faced with uncertain outcomes that are less extreme and will be willing to give
up expected wealth in order to forego these potential losses. The amount that a household
is willing to pay to mitigate risk is dependent on their degree of risk aversion, which is
known empirically as the risk aversion parameter. Risk aversion parameters are embedded
into utility functions, where an individual with U(W)′′ < 0 is risk averse, U(W)′′ > 0 is risk
seeking, and U(W)′′ = 0 is risk neutral.

An actuarially fair premium rate is exactly equal to the expected loss or the product of
the expected loss and probability of loss:

rate = E(loss) = ρlossE
(
payout | loss

)
. (1.3)

Risk-averse agents have incentive to purchase insurance in order to mitigate their risk and
increase expected utility. Insurance firms are able to take on new risk due to their ability
to spread risks among a diversified insurance pool while taking advantage of their risk
neutrality. At the same time, consumers are willing to pay a fee for this protection. If insurance
firms charged exactly the actuarial fair premium rate, they would make zero profits if they
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effectively diversified their insurance pool and have no moral hazard or adverse selection.
Insurance firms use load fees to pay for administrative costs and generate profits. The cost of
insurance to individuals is

cost = (1 + load) ∗ E(loss), (1.4)

where load is some percentage greater than zero and adds to the cost. A rational, risk-averse
agent might still have incentive to purchase this insurance product with a negative expected
payout.

Insurance is also subject to other costs that are included in the load. Employees need
to be hired to verify the claim that a negative state has occurred. Employees also need to
be hired to estimate the likelihood that an uncertain state will occur in order to calculate
the cost of the contingent claim (actuaries). Additional employees need to be hired to sell
the contingent claims and manage the collection of fees charged for the claims. These costs,
incurred to provide insurance to households, impact appropriate use of contingent claims to
maximize welfare. They further increase how much wealth is sacrificed to decrease risk.

Household investment choice assumes that there is an optimal amount of portfolio
risk for each investor at the point where an additional unit of risk no longer provides greater
expected utility despite greater expected wealth. Insurance involves this same tradeoff of
expected wealth for reduced risk. The next section focuses on calculating the point at which
an additional unit of insurance no longer provides an increase in expected utility.

2. Estimating Optimal Insurance

Estimating insurance needs is similar to computing an optimal investment portfolio. In a
simple model, we need only know the wealth of the household, its risk aversion, and the cost
of the contingent claim.

2.1. Human Wealth

Total household wealth consists of both net worth and human wealth (discounted expected
future household earnings). A formula to estimate human wealth is provided by Ibbotson et
al. [2], where human capital HC is equal to the expected future earnings E from next year
until retirement, discounted each year by the discount rate r and a risk premium v:

HC(x) =
n∑

t=x+1

E[ht]

(1 + r + v)t−x
. (2.1)

A good proxy for the discount rate r is the rate on taxable, low-risk corporate
bonds, since income streams are similar to a bond and fully taxable. The risk premium v
further discounts expected future income streams that may be more volatile. To illustrate the
importance of human wealth in a household portfolio, consider that a 25-year-old with an
income of $75,000 at a 6% discount rate has an estimated present value wealth of $1.1 million,
assuming no income growth and no volatility if the individual expects to work until age
65. Alternatively, a 55-year-old with an income of $100,000 has a human wealth of $640,000,
given the same assumptions. As we age, we transform our human wealth into income until it
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is exhausted at retirement. Generally, the wealth of younger households will consist primarily
of human wealth.

Risks to net worth include investment risk and negative events which will reduce
the value of assets (destruction of property, a lawsuit, etc.). Risks to human wealth include
uncertain events that decrease the expected value of future earnings, including disability,
death, illness, or a labor market shock. Some risks are insurable through contingent claims, for
example, disability and property destruction, while others must either be retained or insured
through the public sector.

2.2. Cost of the Contingent Claim

Investors are often induced to accept greater risk by the opportunity to realize greater
expected returns. Similarly, the decision to retain or to transfer risk is influenced by the cost of
the insurance product. More expensive insurance will provide a disincentive to transfer risk
and conversely a greater incentive to retain risk. Unfortunately, it is often difficult to estimate
with any degree of accuracy the actual cost of the contingent claim.

In general, insurance products with heavy sales, underwriting, claims, moral, and
morale hazard expenses will be more costly. These types of costs are endemic to many
property and casualty policies. Loss ratios, or claims paid to policyholders, range from
roughly 55% for homeowners insurance to 60% for automobile insurance to 75% for
group health insurance. (Based on 2007 national insurance loss ratio statistics provided by
the Missouri Department of Insurance, Financial Institutions & Professional Registration,
available at http://insurance.mo.gov/reports/lossratio/.)

A loss ratio of 60% for property insurance policies implies that the expected return on
the premium paid for the policies is −40%. Of every dollar paid for an insurance premium
the household can expect to receive 60 cents back in claims on average. A $2,000 autopolicy
will thus yield an expected annual loss in wealth of $800. This is the cost of risk transfer.
However, the policy prevents a wealth loss if a negative state occurs. By choosing to buy
the insurance policy the individual is revealing that the expected utility from preventing the
uncertain negative state is greater than the certain loss of $800 in expected wealth, assuming
full information.

It is also important to note that the ownership of any asset that may decline in
value due to a negative state (peril) implies an expected annual loss in wealth that is a
function of the magnitude and likelihood of this loss. It is the cost of insurance (1-loss ratio)
that represents the loss in wealth above the expected loss inherent in asset ownership. For
example, the ownership of a $100,000 home with a 1 in 100 chance of complete loss from a
fire involves an implied cost of $1,000 per year in risk on average. A policy with a loss ratio of
50% would cost $2,000 (expected payout/loss ratio) implying an additional expected wealth
loss of $1,000 per year.

2.3. Calculation of Insurance Needs

The estimate of insurance needs analysis relies on the following assumptions.

(1) Life is risky. It is possible that negative states may occur that will reduce wealth.

(2) Individuals are risk averse and are willing to reduce expected wealth in order to
avoid a risk.
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(3) Insurance reduces expected wealth to the extent that premiums exceed expected
payouts.

(4) Risk aversion and wealth determine optimal risk retention and transfer.

Optimal risk retention will occur at the point where the expected utility from retaining
an additional dollar of possible loss is equal to the expected utility of transferring risk to
prevent the loss. According to Hanna [3], if we assume that this is a pure risk with two
potential states (loss or no loss), the decision to insure will involve a comparison of utility
over four possible outcomes. The amount of utility gained or lost is a function of wealth and
risk aversion.

Suppose that individuals are assumed to exhibit constant relative risk aversion
(CRRA) which can be written as

U =
W1−r

1 − r
, (2.2)

where r is the coefficient of relative risk aversion. (While CRRA utility functions are
commonly used, decreasing relative risk aversion (DRRA) can also be assumed where the
relative risk coefficient decreases for higher levels of wealth. Because a DRRA utility function
assumes that individuals are relatively less risk averse at higher levels of wealth, the optimal
premium rate may be lower relative to CRRA as individuals are more willing to take on
additional relative risk for higher levels of wealth. Other utility functions include more
flexible forms as well as a class of absolute relative risk aversion functions (CARA, IARA, and
DARA).) Notice that the Arrow-Pratt coefficient (r) of relative risk aversion has the following
relationship in this scenario:

r = −U
′′(w)

U′(w)
x = −

(
∂U′

∂x

)
x

U′ = r (2.3)

implying that the negative of the elasticity of utility with respect to wealth is constant. Also,
notice that a higher r implies greater risk aversion and an r closer to 1 implies greater risk
tolerance. A household with a coefficient of relative risk aversion equal to 1 is indifferent
between a 50/50 chance of a 100% increase in expected lifetime income or a 50% reduction
in income. A coefficient of 4 implies indifference between a gamble whose outcome is either
a 100% increase in income or a 20% decline in income. Empirical estimates from Kaplow [4]
suggest that most fall near a relative risk aversion coefficient of 3 to 5.

As an illustration, if we assume a wealth of W and assume one’s house is worth H
where ρ is the probability of fire damage destroying the house where ρ ∈ [0, 1], the choice to
insure requires a premium payment of π and a deductible payment (d). The loss ratio, which
is the expected loss in wealth to the agent relative to the insurance premium rate, can then be
expressed as the ratio of expected losses over the premium rate:

lr =
π
(
1 − ρ

) −Hρ

π
. (2.4)

For example, in the case where W = $250, 000 and H = $100, 000 where the cost of
insurance was π = $2, 000 and d = $0 with the likelihood of fire (ρ) equal to 1% the resulting
loss ratio would be 50%.
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If we compare only the expected wealth of each choice, given probabilities insurance
will never be the optimal choice since by definition it will require a decline in expected wealth
to be economically viable. To estimate the optimal choice of risk-averse investors dollar values
must be transformed using a utility function that incorporates the degree of relative risk
aversion.

In the case of insurance, two different wealth levels can be attained dependent upon
two possible states (fire or no fire). In the case of fire, wealth (WIF) is equal to initial
wealth (W0) minus the insurance premium (π) and deductible (d). In the case of no fire, no
deductible is paid so that WINF = W0 − π . In the expected utility framework, we can express
expected utility as

EUI = ρ ∗ u(WIF) +
[
1 − ρ

] ∗ u(WINF)

= ρ ∗ (W0 − π − d)1−r

1 − r
+
[
1 − ρ

] ∗ (W0 − π)1−r

1 − r
.

(2.5)

If we assume r = 3, then we obtain EUI = −8.14e − 12 units of utility. Alternatively, if
the agent does not purchase insurance, WNIF = W0 − H and WNINF = W0. In the case of no
insurance, the expected utility (EUNI) is equal to −8.13e − 12.

Because utility is an ordinal measure, we can conclude that even with a 50% loss ratio
an individual with the specified preference function is better off purchasing insurance. The
main reason is that the loss represents a very large share of wealth—in this case a loss of
40% of wealth. With this magnitude of loss an individual would only consider not buying
insurance if the loss ratio fell beneath 45%. In the above example, if the initial wealth had
instead been $500,000, the maximum potential loss represents 20% of wealth. At 20% of
wealth a household would be willing to buy insurance if the loss ratio is 60% or more.

The optimal retention limit is found by computing the point at which expected utility
from retaining risk is exactly equal to the utility from transferring risk through insurance. At
this point, π is set to the point where EUI = EUNI. This can be rewritten as

EUI = ρ(W − π − d)1−r +
[
1 − ρ

]
(W − π)1−r

= ρ(W −H)1−r +
[
1 − ρ

]
(W − d)1−r

= EUNI.

(2.6)

Even though an explicit analytical solution could not be determined for π = f(W,d, r, ρ,H),
the solution can be found numerically. With this example, the premium rate that solves the
above equation is π = 2, 193, which results in a loss ratio of 53.4% when the risk retention ratio
is 20%. A greater loss ratio (or expected insurance claims from each premium dollar) will
encourage greater transfer of risk as the cost of insurance is lower. More expensive insurance
will encourage risk retention. A larger or catastrophic potential loss will lead to a greater
willingness to insure. If the potential loss is small in terms of wealth, then the cost of insurance
would need to be very low to induce a household to buy insurance.

Figure 1 illustrates the optimal tradeoff between risk transfer and risk retention given
loss as a percentage of wealth and loss ratios. As the loss ratio declines, insurance becomes
more expensive and individuals are only willing to insure if the loss represents a high percent
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Figure 1: Optimal Risk Retention Limits.

of wealth. Risk tolerant individuals are assigned a coefficient of relative risk aversion of 3 and
the risk-averse individuals are assigned a relative risk aversion of 5.

At a 40% loss ratio, characteristic of many property policies, it is only rational for
individuals to insure losses that are about 1/7 of total wealth if they are risk averse. For the
more risk tolerant an optimal risk retention limit is closer to 1/5 of total wealth. In practical
terms these risk retention limits are enormous. A risk-averse household with a human wealth
and wealth of $2 million would retain all risks below 10% of total wealth if the policy paid
back 75% of premiums. With wealth this large products like comprehensive or collision
insurance on a vehicle would have no appeal. It would also not make sense to carry anything
other than the highest possible deductibles or to insure any assets whose value falls beneath
$200,000.

While the conclusions of the model may appear extreme, they are valid in the sense
that they are consistent with less intuitively extreme investment decision making. For
example, retaining risk on property insurance either through very high deductibles or by not
buying insurance provides an expected yield equal to the opportunity cost of insurance—
which in the case of most property insurance is equivalent to a yield of at least 40%. The
downside is that the household may subject themselves to a loss of, in this case, up to $200,000
to earn this return. However, expected returns on equities in the U.S. have been roughly 10%–
12% and the tradeoff is exactly the same—the possibility of a large loss in wealth. In terms of
wealth, there is no difference between a $100,000 loss due to property or casualty loss and a
$100,000 loss in an investment portfolio. Both losses were the result of risk borne to maximize
expected utility given uncertain outcomes.

Prudent risk management must also acknowledge the limitations of including human
wealth when estimating risk retention limits. A wealth shock that falls beneath the estimated
risk retention limit, for example, the loss of a $35,000 car to a 25-year-old, will be devastating
if it wipes out liquid savings and if the ability to borrow against human capital is limited.
Credit constraints in the face of a large loss can lead to a significant drop in consumption
and a loss to illiquid projects that require a constant stream of cash to maintain (such as
mortgages, business expenses, and student loan payments). Liquidity and access to credit
are important considerations that impact optimal risk retention for those with high human
wealth and few financial assets.
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These results suggest that many are approaching the process of risk management by
focusing on identifiable losses without recognizing the tradeoff of risk and return when
choosing optimal risk management strategies. Most households are spending too much to
prevent property and casualty risks while simultaneously retaining risk in their investment
portfolio. This is neither wealth nor utility maximizing. However, the authors recognize that
implementing this model will be difficult since many households are not prepared to retain
risk they are accustomed to transferring.

3. Overweighting Losses

While the expected utility framework is rational in that it assumes disutility from wealth
changes to be equal to the reduction in expected consumption, individuals appear to weigh
gains and losses from risky choices differently. In fact, the persistent popularity of insurance
products that protect against small losses suggests that individuals are willing to pay
dearly to protect against minor losses while simultaneously paying insufficient attention
to much larger risks (Kunreuther and Pauly [5]). Using results from experimental data,
Kahneman and Tversky [1] point out three major limitations of expected utility theory which
include the consistent overestimation of low probability events and underestimation of high
probabilities. This would suggest that agents generally overinsure against rare events and
underinsure against more common events, according to expected utility theory. The second
finding is that utility functions (commonly referred to as value functions in the Prospect
Theory literature) are generally concave concerning gains and convex for losses (Tversky
and Kahneman [6]). Convexity for losses implies a large amount of disutility for relatively
small losses and only a modest increase in disutility for larger losses. An individual with a
prospect theory value function will place greater emphasis on avoiding small losses and a
reduced emphasis on large losses than if they followed a conventional utility function.

The third problem with expected utility theory is that of absolute losses versus relative
losses. As indicated by Kahneman and Tversky [1], individuals in experimental settings are
shown to make decisions based on changes in their financial position rather than the impact
on their final wealth. Kunreuther and Pauly [5] show that if an asset is only monetary, then it
is rational to assess values based on absolute wealth changes. Instead, individuals appear to
consider their current wealth a reference point and any loss from that reference point induces
greater disutility than the dollar value of the loss would suggest.

Modeling a risky decision using prospect theory involves a reference point (R) from
which gains and losses are assessed. The most relevant reference point is initial wealth (R =
W0). There is a small net loss associated with paying insurance premiums; however, there
is an even larger net loss in the case of a fire under no insurance. If a fire occurs (F), there
is a small net loss with and a large net loss without insurance; however, there is a no loss if
insurance is not purchased and no fire occurs (NF). We define Xi = Wi−R, where i = {F,NF},
as the net gains/losses. Because the utility function is assumed to be asymmetric around R,
we then define the two parts of the value function which can be written as

v(Xi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if Xi ≥ 0,

−θ(π + d)β if Xi < 0 with probability ρ,

−θ(π)β if Xi < 0 with probability
(
1 − ρ

)
,

(3.1)
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where θ is the loss aversion parameter and is greater than 1. The value function under the
purchase of insurance (VI) becomes

VI = −g(ρ) ∗ θ(π + d)β − g
(
1 − ρ

) ∗ θ(π)β (3.2)

such that g(·) is a weighting function that accounts for overvaluing small probabilities and
undervaluing large probabilities. The same reference point is used when we consider the case
where no insurance is purchased. In this situation a fire results in a net loss and no fire results
in a no loss. In this scenario we obtain

v(Xi) =

⎧
⎨

⎩

0 if Xi ≥ 0,

−θ(H)β if Xi < 0,
(3.3)

which then converts the value function (VNI) to be

VNI = −g(ρ)θ(H)β. (3.4)

To apply this function to the fire example above we assume β = 0.88 and θ = 2.25 as suggested
by Tversky and Kahneman [7]. To assess subjective probability biases we use the function
derived by al-Nowaihi and Dhami [8] who derive their function from a more general form
from Prelec [9], which is essentially

g
(
ρ
)
= e−β(− ln(ρ))α , (3.5)

where we assume α = 0.80. Using this function allows us to inflate our probability of 1%
to 5% and deflate the probability of 99% to 98%. Given these adjusted probabilities and the
downside risk parameter, we now look for the premium amount (π) that solves for VI = VNI.
At some point the premium will be high enough to outweigh the ability of the individual to
manage the downside risk of a fire. For this scenario π = 3, 255. Since both value functions
are not functionally related to W , the optimal risk retention limit is unaffected by W0. This
differs from expected utility theory which assumes increasing risk tolerance with wealth from
a potential loss of a given magnitude.

While prospect theory is useful as a means of understanding how individuals actually
behave when faced with a decision to retain or transfer risk, it has little use as a normative
tool to improve risk management practices. Estimates of optimal insurance using a prospect
theory value function are high for small risks and low for more catastrophic risks. This
is consistent with the current market for consumer insurance with its broad overuse of
low deductibles, extended warranties, and protection of low-value tangible goods and
simultaneous underuse of insurance products protecting more catastrophic risks of liability
and loss of earnings. However, spending heavily to avoid small property and casualty risks
while maintaining an optimal investment portfolio that requires acceptance of market risk
(involving potential losses of a much greater magnitude) results in a wealth loss from framing
these decisions separately. Prospect theory thus lends itself to modeling positive behavior but
fails to guide practitioners or individuals in risk management.
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Another possible shortcoming of Prospect Theory is that an insurance premium is
itself a small-stakes loss. Payment of a premium assumes that an individual is willing to
accept a small loss to avoid a possible larger loss; however, if the utility function is convex in
losses (individuals are risk seeking when presented a choice that involves small and larger
losses), then loss aversion becomes an even less plausible explanation unless the premium is
not seen as a loss in itself. Such an individual may be induced into paying a relatively high
premium to avoid a small-stakes loss since the loss from the random event creates greater
disutility (per dollar) than the certain loss from the insurance premium. This appears to be
the case in decisions involving the choice of homeowners’ insurance deductibles. The choice
between a $250 and a $500 deductible implies the payment of an added premium (say $25) to
avoid an unlikely loss of the $250 difference between the two deductibles. For an individual
with a total wealth of $100,000 (e.g., a destitute 80-year-old whose wealth consists of the
present value of social security), choosing a $250 deductible implies a coefficient of relative
risk aversion of over 500 (Sydnor [10]). Mehra and Prescott [11] describe the equity risk
premium as a puzzle since it implies a coefficient of relative risk aversion of around 30. If
the equity premium is a puzzle, then the risk retention premium is a mystery of inexplicable
magnitude.

The only reasonable explanation for observed property insurance behavior is that
the unexpected loss covered by insurance provides so much disutility that an individual is
willing to give up large amounts of expected wealth to avoid it. This would be plausible if
the losses caused painful regret when a peril caused a loss and if the premium itself was not
viewed as a loss. Braun and Muermann [12] incorporate the unhappiness that is caused by
regret into a utility function that can explain observed demand for insurance. Sydnor [10]
modifies a utility function developed by Koszegi and Rabin [13] in which wealth losses are
amplified by a factor that represents the relative pain felt by a random loss relative to a gain in
wealth. The model suggests very strong amplification for low-stakes losses and more realistic
amplification for large-scale loss, which appears consistent with observed behavior.

4. Conclusions

Proper household management of property and casualty risk requires an assessment of
the dollar values of losses in various possible future states. When wealth in each state is
transformed based on an individual’s risk tolerance, it is possible to estimate the level of
risk transfer through insurance. Using reasonable estimates of risk aversion, cost of property
insurance, and initial wealth, optimal risk retention can be as high as 20% of initial household
wealth. A risk retention limit of this magnitude would imply far higher deductibles in
insurance policies and the abandonment of many popular policies that protect small losses.
If human wealth is considered a component of total wealth, many young individuals would
avoid insuring against all but catastrophic losses.

Advances in portfolio management and dissemination of normative investment
science have led to broad acceptance of investment risk among households. For example,
the percentage of U.S. households owning stock increased from 32% in 1989 to 52%
in 2001 [14]. This increased acceptance of potential loss in investment portfolios has
resulted in a significant improvement in household welfare. Holding a portfolio that is
consistent with risk preferences implies an increase in expected utility relative to one that
is excessively conservative. Similarly, dissemination of normative risk management science
has the potential to improve welfare by illustrating the potential benefits of reducing costly
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protection of small losses and increasing protection against catastrophic risks. This study
provides estimates of a large potential gain from increased acceptance of certain risks that are
costly to insure.

The evidence from household risk retention preference through home insurance
deductibles suggests that the market for property insurance reflects strong preferences for
loss aversion. Benartzi and Thaler [15] provide evidence that Prospect Theory may also
explain the observed high equity premium and an unwillingness to own risky assets.
However, a clear welfare loss results from simultaneous ownership of risky securities and
policy protection against small-scale risks. There is also evidence that individuals place
insufficient weight on the utility loss from random large losses to total wealth by failing to
insure adequately for potentially large losses such as large-scale liability losses and losses
to human wealth (e.g., through disability income insurance). In the case of insurance, where
there is little advice available (including from financial professionals) to maintain consistency
among risky financial decisions, behavior may not accurately reveal preferences. If this is the
case, then the application of a standard expected utility model may provide normative value
that can help guide individuals and advisors toward making better decisions (Campbell
[16]).
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Copyright q 2010 O. Furman and E. Furman. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Layer-based counterparts of a number of well-known risk measures have been proposed and
studied. Namely, some motivations and elementary properties have been discussed, and the
analytic tractability has been demonstrated by developing closed-form expressions in the general
framework of exponential dispersion models.

1. Introduction

Denote by X the set of (actuarial) risks, and let 0 ≤ X ∈ X be a random variable (rv) with
cumulative distribution function (cdf) F(x), decumulative distribution function (ddf) F(x) =
1 − F(x), and probability density function (pdf) f(x). The functional H : X → [0,∞] is
then referred to as a risk measure, and it is interpreted as the measure of risk inherent in
X. Naturally, a quite significant number of risk measuring functionals have been proposed
and studied, starting with the arguably oldest Value-at-Risk or VaR (cf. [1]), and up to the
distorted (cf. [2–5]) and weighted (cf. [6, 7]) classes of risk measures.

More specifically, the Value-at-Risk risk measure is formulated, for every 0 < q < 1, as

VaRq[X] = inf
{
x : FX(x) ≥ q

}
, (1.1)

which thus refers to the well-studied notion of the qth quantile. Then the family of distorted
risk measures is defined with the help of an increasing and concave function g : [0, 1] →
[0, 1], such that g(0) = 0 and g(1) = 1, as the following Choquet integral:

Hg[X] =
∫

R+

g
(
F(x)

)
dx. (1.2)
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Last but not least, for an increasing nonnegative function w : [0,∞) → [0,∞) and the so-
called weighted ddf Fw(x) = E[1{X > x}w(X)]/E[w(X)] the class of weighted risk measures
is given by

Hw[X] =
∫

R+

Fw(x)dx. (1.3)

Note that for at least once differentiable distortion function, we have that the weighted class
contains the distorted one as a special case, that is, Hg[X] = E[Xg ′(F(X))] is a weighted risk
measure with a dependent on F weight function.

Interestingly, probably in the view of the latter economic developments, the so-
called “tail events” have been drawing increasing attention of insurance and general finance
experts. Naturally therefore, tail-based risk measures have become quite popular, with the tail
conditional expectation (TCE) risk measure being a quite remarkable example. For 0 < q < 1
and thus F(VaRq[X])/= 0, the TCE risk measure is formulated as

TCEq[X] =
1

F
(
VaRq[X]

)

∫∞

VaRq[X]
x dF(x). (1.4)

Importantly, the TCE belongs in the class of distorted risk measures with the distortion
function

g(x) =
x

1 − q
1
(
x < 1 − q

)
+ 1
(
x ≥ 1 − q

)
, (1.5)

where 1 denotes the indicator function (cf., e.g., [8]), as well as in the class of weighted risk
measures with the weight function

w(x) = 1
{
x ≥ VaRq[X]

}
(1.6)

(cf., e.g., [6, 7]). The TCE risk measure is often referred to as the expected shortfall (ES) and
the conditional Value-at-Risk (CVaR) when the pdf of X is continuous (cf., e.g., [9]).

Functional (1.4) can be considered a tail-based extension of the net premium H[X] =
E[X]. Furman and Landsman [10] introduced and studied a tail-based counterpart of the
standard deviation premium calculation principle, which, for 0 < q < 1, the tail variance

TVq[X] = Var
[
X | X > VaRq[X]

]
, (1.7)

and a constant α ≥ 0, is defined as

TSDq[X] = TCEq[X] + α · TV1/2
q [X]. (1.8)

For a discussion of various properties of the TSD risk measure, we refer to Furman and
Landsman [10]. We note in passing that for q ↓ 0, we have that TSDq[X] → SD[X] =
E[X] + α · Var1/2[X].
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The rest of the paper is organized as follows. In the next section we introduce and
motivate layer-based extensions of functionals (1.4) and (1.8). Then in Sections 3 and 4 we
analyze the aforementioned layer-based risk measures as well as their limiting cases in the
general context of the exponential dispersion models (EDMs), that are to this end briefly
reviewed in the appendix. Section 5 concludes the paper.

2. The Limited TCE and TSD Risk Measures

Let 0 < q < p < 1 and let X ∈ X have a continuous and strictly increasing cdf. In many
practical situations the degree of riskiness of the layer (VaRq[X],VaRp[X]) of an insurance
contract is to be measured (certainly the layer width VaRp[X] − VaRq[X] = Δq,p > 0).
Indeed, the number of deductibles in a policy is often more than one, and/or there can
be several reinsurance companies covering the same insured object. Also, there is the so-
called “limited capacity” within the insurance industry to absorb losses resulting from, for
example, terrorist attacks and catastrophes. In the context of the aforementioned events, the
unpredictable nature of the threat and the size of the losses make it unlikely that the insurance
industry can add enough capacity to cover them. In these and other cases neither (1.4) nor
(1.8) can be applied since (1) both TCE and TSD are defined for one threshold, only, and
(2) the aforementioned pair of risk measures is useless when, say, the expectations of the
underlying risks are infinite, which can definitely be the case in the situations mentioned
above.

Note 1. As noticed by a referee, the risk measure H : X → [0,∞] is often used to price
(insurance) contracts. Naturally therefore, the limited TCE and TSD proposed and studied
herein can serve as pricing functionals for policies with coverage modifications, such as, for
example, policies with deductibles, retention levels, and so forth (cf., [11, Chapter 8]).

Next, we formally define the risk measures of interest.

Definition 2.1. Let xq = VaRq[X] and xp = VaRp[X], for 0 < q < p < 1. Then the limited TCE
and TSD risk measures are formulated as

LTCEq,p[X] = E
[
X | xq < X ≤ xp

]
, (2.1)

and

LTSDq,p[X] = E
[
X | xq < X ≤ xp

]
+ α · Var1/2[X | xq < X ≤ xp

]
, (2.2)

respectively.

Clearly, the TCE and TSD are particular cases of their limited counterparts. We note in
passing that the former pair of risk measures need not be finite for heavy tailed distributions,
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and they are thus not applicable. In this respect, limited variants (2.1) and (2.2) can provide
a partial resolution. Indeed, for k = 1, 2, . . . , we have that

E
[
Xk | xq < X ≤ xp

]
=

F
(
xp

)
E
[
Xk | X ≤ xp

] − F
(
xq

)
E
[
Xk | X ≤ xq

]

F
(
xp

) − F
(
xq

) < ∞, (2.3)

regardless of the distribution of X.
We further enumerate some properties of the LTSD risk measure, which is our main

object of study.

(1) Translation Invariance. For any constant c ≥ 0, we have that

LTSDq,p[X + c] = LTSDq,p[X] + c. (2.4)

(2) Positive Homogeneity. For any constant d > 0, we have that

LTSDq,p[d ·X] = d · LTSDq,p[X]. (2.5)

(3) Layer Parity. We call X ∈ X and Y ∈ X layer equivalent if for some 0 < q < p < 1,
such that xq = yq, xp = yp, and for every pair {(t1, t2) : q < t1 < t2 < p}, it holds that
P[xt1 < X ≤ xt2] = P[yt1 < Y ≤ yt2]. In such a case, we have that

LTSDt1,t2[X] = LTSDt1,t2[Y ]. (2.6)

Literally, this property states that the LTSD risk measure for an arbitrary layer is
only dependent on the cdf of that layer. Parity of the ddfs implies equality of LTSDs.

Although looking for original ways to assess the degree of (actuarial) riskiness is a
very important task, subsequent applications of various theoretical approaches to a real-
world data are not less essential. A significant number of papers have been devoted to
deriving explicit formulas for some tail-based risk measures in the context of various loss
distributions. The incomplete list of works discussing the TCE risk measure consists of, for
example, Hürlimann [12] and Furman and Landsman [13], gamma distributions; Panjer [14],
normal family; Landsman and Valdez [15], elliptical distributions; Landsman and Valdez
[16], and Furman and Landsman [17], exponential dispersion models; and Chiragiev and
Landsman [18], Vernic [19], Asimit et al. [20], Pareto distributions of the second kind.

As we have already noticed, the “unlimited” tail standard deviation risk measure
has been studied in the framework of the elliptical distributions by Furman and Landsman
[10]. Unfortunately, all members of the elliptical class are symmetric, while insurance risks
are generally modeled by nonnegative and positively skewed random variables. These
peculiarities can be fairly well addressed employing an alternative class of distribution
laws. The exponential dispersion models include many well-known distributions such as
normal, gamma, and inverse Gaussian, which, except for the normal, are nonsymmetric,
have nonnegative supports, and can serve as adequate models for describing insurance risks’
behavior. In this paper we therefore find it appropriate to apply both TSD and LTSD to EDM
distributed risks.
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3. The Limited Tail Standard Deviation Risk Measure for
Exponential Dispersion Models

An early development of the exponential dispersion models is often attributed to Tweedie
[21], however a more substantial and systematic investigation of this class of distributions
was documented by Jørgensen [22, 23]. In his Theory of dispersion models, Jørgensen [24] writes
that the main raison d’étre for the dispersion models is to serve as error distributions for
generalized linear models, introduced by Nelder and Wedderburn [25]. Nowadays, EDMs
play a prominent role in actuarial science and financial mathematics. This can be explained
by the high level of generality that they enable in the context of statistical inference for
widely popular distribution functions, such as normal, gamma, inverse Gaussian, stable, and
many others. The specificity characterizing statistical modeling of actuarial subjects is that
the underlying distributions mostly have nonnegative support, and many EDM members
possess this important phenomenon, (for a formal definition of the EDMs, as well as for a
brief review of some technical facts used in the sequel, cf., the appendix).

We are now in a position to evaluate the limited TSD risk measure in the framework
of the EDMs. Recall that, for 0 < q < p < 1, we denote by (xq, xp) an arbitrary layer having
“attachment point” xq and width Δq,p. Also, let

h
(
xq, xp; θ, λ

)
=

∂

∂θ
log
(
F
(
xp; θ, λ

) − F
(
xq; θ, λ

))
(3.1)

denote the generalized layer-based hazard function, such that

h
(
xq, x1; θ, λ

)
=

∂

∂θ
log
(
F
(
xq; θ, λ

))
= h
(
xq; θ, λ

)
,

h
(
x0, xp; θ, λ

)
= − ∂

∂θ
log
(
F
(
xp; θ, λ

))
= −h(xp; θ, λ

)
,

(3.2)

and thus

h
(
xq, xp; θ, λ

)
=

F
(
xq; θ, λ

)

F
(
xq; θ, λ

) − F
(
xp; θ, λ

)h
(
xq; θ, λ

)

− F
(
xp; θ, λ

)

F
(
xq; θ, λ

) − F
(
xp; θ, λ

)h
(
xp; θ, λ

)
.

(3.3)

The next theorem derives expressions for the limited TCE risk measure, which is a
natural precursor to deriving the limited TSD.



6 Journal of Probability and Statistics

Theorem 3.1. Assume that the natural exponential family (NEF) which generates EDM is regular
or at least steep (cf. [24, page 48]). Then the limited TCE risk measure

(i) for the reproductive EDM Y � ED(¯,œ2) is given by

LTCEq,p[Y ] = μ + σ2 · h(xq, xp; θ, λ
)

(3.4)

and

(ii) for the additive EDM X � ED∗(θ, λ) is given by

LTCEq,p[X] = λκ′(θ) + h
(
xq, xp; θ, λ

)
. (3.5)

Proof. We prove the reproductive case only, since the additive case follows in a similar
fashion. By the definition of the limited TCE, we have that

LTCEq,p[Y ] =
F
(
yq

)
E
[
Y | Y > yq

] − F
(
yp

)
E
[
Y | Y > yp

]

F
(
yp

) − F
(
yq

) . (3.6)

Further, following Landsman and Valdez [16], it can be shown that for every 0 < q < 1, we
have that

E
[
Y | Y > yq

]
= μ + σ2 · h(yq; θ, λ

)
, (3.7)

which then, employing (3.1) and (3.3), yields

LTCEq,p[Y ] =
F
(
yq; θ, λ

)(
μ + σ2 · h(yq; θ, λ

)) − F
(
yp; θ, λ

)(
μ − σ2 · h(yp; θ, λ

))

F
(
yq; θ, λ

) − F
(
yp; θ, λ

)

= μ + σ2 · h(yq, yp; θ, λ
)

(3.8)

and hence completes the proof.

In the sequel, we sometimes write LTCEq,p[Y ; θ, λ] in order to emphasize the
dependence on θ and λ.

Note 2. To obtain the results of Landsman and Valdez [16], we put p ↑ 1, and then, for
instance, in the reproductive case, we end up with

lim
p↑1

LTCEq,p[Y ] = μ + σ2 · h(yq; θ, λ
)
= TCEq[Y ], (3.9)

subject to the existence of the limit.

Next theorem provides explicit expressions for the limited TSD risk measure for both
reproductive and additive EDMs.



Journal of Probability and Statistics 7

Theorem 3.2. Assume that the NEF which generates EDM is regular or at least steep. Then the
limited TSD risk measure

(i) for the reproductive EDM Y � ED(¯,œ2) is given by

LTSDq,p[Y ] = LTCEq,p[Y ] + α ·
√

σ2 ∂

∂θ
LTCEq,p[Y ; θ, λ] (3.10)

and

(ii) for the additive EDM X � ED∗(θ, λ) is given by

LTSDq,p[X] = LTCEq,p[X] + α ·
√

∂

∂θ
LTCEq,p[X; θ, λ]. (3.11)

Proof. We again prove the reproductive case, only. Note that it has been assumed that κ(θ) is
a differentiable function, and thus we can differentiate the following probability integral in θ
under the integral sign (cf., the appendix):

P
(
yq < Y ≤ yp

)
=
∫yp

yq

eλ(θy−κ(θ))dνλ
(
y
)
, (3.12)

and hence, using Definition 2.1, we have that

∂

∂θ

(
LTCEq,p[Y ; θ, λ]

(
F
(
yp; θ, λ

) − F
(
yq; θ, λ

)))

=
∫yp

yq

∂

∂θ
yeλ(θy−κ(θ))dνλ

(
y
)

= λ

∫yp

yq

(
y2eλ(θy−κ(θ)) − yκ′(θ)eλ(θy−κ(θ))

)
dνλ
(
y
)

= σ−2
(

E
[
Y 2 | 1

{
yq < Y ≤ yp

}] − μ(θ) · E
[
Y | 1

{
yq < Y ≤ yp

}])
,

(3.13)
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with the last line following from the appendix. Further, by simple rearrangement and
straightforward calculations, we obtain that

E
[
Y 2 | yq < Y ≤ yp

]
=

∫yp

yq
y2eλ(θy−κ(θ))dνλ

(
y
)

F
(
yp; θ, λ

) − F
(
yq; θ, λ

)

= μ · LTCEq,p[Y ] + σ2 (∂/∂θ)LTCEq,p[Y ; θ, λ]
(
F
(
yp; θ, λ

) − F
(
yq; θ, λ

))

F
(
yp; θ, λ

) − F
(
yq; θ, λ

)

= σ2 ∂

∂θ
LTCEq,p[Y ; θ, λ] + LTCEq,p[Y ]

(
μ + σ2 ∂

∂θ
log
(
F
(
yp; θ, λ

) − F
(
yq; θ, λ

))
)

= σ2 ∂

∂θ
LTCEq,p[Y ; θ, λ] +

(
LTCEq,p[Y ; θ, λ]

)2
,

(3.14)

which along with the definition of the limited TSD risk measure completes the proof.

We further consider two examples to elaborate on Theorem 3.2. We start with the
normal distribution, which occupies a central role in statistical theory, and its position in
statistical analysis of insurance problems is very difficult to underestimate, for example, due
to the law of large numbers.

Example 3.3. Let Y � N(μ, σ2) be a normal random variable with mean μ and variance σ2,
then we can write the pdf of Y as

f
(
y
)
=

1√
2πσ

exp

(

−1
2

(
y − μ

σ

)2
)

=
1√

2πσ
exp
(
− 1

2σ2
y2
)

exp
(

1
σ2

(
μy − 1

2
μ2
))

, y ∈ R.

(3.15)

If we take θ = μ and λ = 1/σ2, we see that the normal distribution is a reproductive EDM with
cumulant function κ(θ) = θ2/2. Denote by ϕ(·) and Φ(·) the pdf and the cdf, respectively, of
the standardized normal random variable. Then using Theorem 3.1, we obtain the following
expression for the limited TCE risk measure for the risk Y :

LTCEq,p[Y ] = μ + σ
ϕ
(
σ−1(yq − μ

)) − ϕ
(
σ−1(yp − μ

))

Φ
(
σ−1
(
yp − μ

)) −Φ
(
σ−1
(
yq − μ

)) . (3.16)

If we put p ↑ 1, then the latter equation reduces to the result of Landsman and Valdez [16].
Namely, we have that

lim
p↑1

LTCEq,p[Y ] = μ + σ
ϕ
(
σ−1(yq − μ

))

1 −Φ
(
σ−1
(
yq − μ

)) = TCEq[Y ]. (3.17)
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Further, let zq = (yq − μ)/σ and zp = (yp − μ)/σ. Then

σ2 ∂

∂θ
LTCEq,p[Y ; θ, λ] = σ2

⎛

⎝1 +
ϕ
(
zq
)
zq − ϕ

(
zp
)
zp

Φ
(
zp
) −Φ

(
zq
) −

(
ϕ
(
zq
) − ϕ

(
zp
)

Φ
(
zp
) −Φ

(
zq
)

)2
⎞

⎠. (3.18)

Consequently, the limited TSD risk measure is as follows:

LTSDq,p[Y ]

= μ + σ
ϕ
(
zq
) − ϕ

(
zp
)

Φ
(
zp
) −Φ

(
zq
) + α

√√
√
√
√σ2

⎛

⎝1 +
ϕ
(
zq
)
zq − ϕ

(
zp
)
zp

Φ
(
zp
) −Φ

(
zq
) −

(
ϕ
(
zq
) − ϕ

(
zp
)

Φ
(
zp
) −Φ

(
zq
)

)2
⎞

⎠.

(3.19)

We proceed with the gamma distributions, which have been widely applied in various
fields of actuarial science. It should be noted that these distribution functions possess
positive support and positive skewness, which is important for modeling insurance losses. In
addition, gamma rvs have been well-studied, and they share many tractable mathematical
properties which facilitate their use. There are numerous examples of applying gamma
distributions for modeling insurance portfolios (cf., e.g., [12, 13, 26, 27]).

Example 3.4. Let X � Ga(γ, β) be a gamma rv with shape and rate parameters equal γ and β,
correspondingly. The pdf of X is

f(x) =
1

Γ
(
γ
)e−βxxγ−1βγ =

1
Γ
(
γ
)xγ−1 exp

(−βx + γ log
(
β
))
, x > 0. (3.20)

Hence the gamma rv can be represented as an additive EDM with the following pdf:

f(x) =
1

Γ(λ)
xλ−1 exp

(
θx + λ log(−θ)), (3.21)

where x > 0 and θ < 0. The mean and variance of X are E[X] = −λ/θ and Var[X] = λ/θ2.
Also, θ = −β, λ = γ , and κ(θ) = − log(−θ). According to Theorem 3.1, the limited tail
conditional expectation is

LTCEq,p[X] = −λ
θ

F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

) . (3.22)

Putting p ↑ 1 we obtain that

lim
p↑1

(
−λ
θ

)
F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

) = −λ
θ

F
(
xq; θ, λ + 1

)

F
(
xq; θ, λ

) = TCEq[X], (3.23)
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which coincides with [13, page 643]. To derive an expression for the limited TSD risk measure,
we use Theorem 3.2, that is,

∂

∂θ
LTCEq,p[X; θ, λ] =

∂

∂θ

(

−λ
θ

F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

)

)

=
λ

θ2

F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

)

− λ

θ

(
∂

∂θ

F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

)

)

.

(3.24)

Further, since for n = 1, 2, . . . ,

∂

∂θ

(
F
(
xp; θ, λ + n

) − F
(
xq; θ, λ + n

))

=
∫xp

xq

∂

∂θ

(
1

Γ(λ + n)
xλ+n−1 exp

(
θx + (λ + n) log(−θ))

)
dx

=
∫xp

xq

f(x; θ, λ + n)
(
x +

λ + n

θ

)
dx

= −λ + n

θ

(∫xp

xq

f(x; θ, λ + n + 1)dx −
∫xp

xq

f(x; θ, λ + n)dx

)

,

(3.25)

the limited TSD risk measure for gamma is given by

LTSDq,p[X]

=
(
−λ
θ

)
F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

)

+ α

√√√√
√

λ

θ2

⎛

⎝(λ + 1)
F
(
xp; θ, λ + 2

) − F
(
xq; θ, λ + 2

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

) − λ

(
F(xp; θ, λ + 1) − F(xq; θ, λ + 1)

F(xp; θ, λ) − F(xq; θ, λ)

)2
⎞

⎠.

(3.26)

In the sequel, we consider gamma and normal risks with equal means and variances,
and we explore them on the interval (t, 350], with 50 < t < 350. Figure 1 depicts the results.
Note that both LTCE and LTSD imply that the normal distribution is riskier than gamma for
lower attachment points and vice-versa, that is quite natural bearing in mind the tail behavior
of the two.

Although the EDMs are of pivotal importance in actuarial mathematics, they fail to
appropriately describe heavy-tailed (insurance) losses. To elucidate on the applicability of
the layer-based risk measures in the context of the probability distributions possessing heavy
tails, we conclude this section with a simple example.
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Figure 1: LTCE and LTSD for normal and gamma risks with means 150 and standard deviations 100, alpha
= 2.

Example 3.5. Let X � Pa(γ, β) be a Pareto rv with the pdf

f(x) =
γβγ

xγ+1
, x > β > 0, (3.27)

and γ > 0. Certainly, the Pareto rv is not a member of the EDMs, though it belongs to the
log-exponential family (LEF) of distributions (cf. [7]). The LEF is defined by the differential
equation

F(dx;λ, ν) = exp
{
λ log(x) − κ(λ)

}
ν(dx), (3.28)

where λ is a parameter, ν is a measure, and κ(λ) = log
∫∞

0 xλν(dx) is a normalizing constant
(the parameters should not be confused with the ones used in the context of the EDMs). Then
X is easily seen to belong in LEF with the help of the reparameterization ν(dx) = x−1dx, and
λ = −γ .

In this context, it is straightforward to see that E[X] is infinite for γ ≤ 1, which thus
implies infiniteness of the TCE risk measure. We can however readily obtain the limited
variant as follows:

LTCEq,p[X] =
1

P
[
xq < X ≤ xp

]
∫xp

xq

γβγ

xγ
dx =

γxpxq

γ − 1

⎛

⎝
x
γ−1
p − x

γ−1
q

x
γ
p − x

γ
q

⎞

⎠, (3.29)

that is finite for any γ > 0. Also, since, for example, for γ < 1, we have that xγ−1
p − x

γ−1
q < 0, the

limited TCE risk measure is positive, as expected. The same is true for γ ≥ 1.
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We note in passing that, for γ > 1 and p ↑ 1 and thus xp → ∞, we have that

TCEq[X] = lim
p↑1

γxpxq

γ − 1

⎛

⎝
x
γ−1
p − x

γ−1
q

x
γ
p − x

γ
q

⎞

⎠ =
γ

γ − 1
xq, (3.30)

which confirms the corresponding expression in Furman and Landsman [8].

Except for the Pareto distribution, the LEF consists of, for example, the log-normal and
inverse-gamma distributions, for which expressions similar to (3.29) can be developed in the
context of the limited TCE and limited TSD risk measures, thus providing a partial solution
to the heavy-tailness phenomenon.

4. The Tail Standard Deviation Risk Measure for
Exponential Dispersion Models

The tail standard deviation risk measure was proposed in [10] as a possible quantifier of
the so-called tail riskiness of the loss distribution. The above-mentioned authors applied
this risk measure to elliptical class of distributions, which consists of such well-known pdfs
as normal and student-t. Although the elliptical family is very useful in finance, insurance
industry imposes its own restrictions. More specifically, insurance claims are always positive
and mostly positively skewed. In this section we apply the TSD risk measure to EDMs.

The following corollary develops formulas for the TSD risk measure both in the
reproductive and additive EDMs cases. Recall that we denote the ddf of say X by F(·; θ, λ) to
emphasize the parameters θ and λ, and we assume that

lim
p↑1

LTSDq,p[X] < ∞. (4.1)

The proof of the next corollary is left to the reader.

Corollary 4.1. Under the conditions in Theorem 3.1, the tail standard deviation risk measure is

TSDq[Y ] = TCEq[Y ] + α

√

σ2 ∂

∂θ
TCEq[Y ; θ, λ] (4.2)

in the context of the reproductive EDMs, and

TSDq[X] = TCEq[X] + α

√
∂

∂θ
TCEq[X; θ, λ] (4.3)

in the context of the additive EDMs.

We further explore the TSD risk measure in some particular cases of EDMs, which
seem to be of practical importance.
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Example 4.2. Let Y � N(μ, σ2) be again some normal rv with mean μ and variance σ2. Then
we easily evaluate the TSD risk measure using Corollary 4.1 and Example 3.3 as follows:

TSDq[X] = μ + σ
ϕ
(
zq
)

1 −Φ
(
zq
) + α

√√
√
√
√σ2

⎛

⎝1 +
ϕ
(
zq
)

1 −Φ
(
zq
)zq −

(
ϕ
(
zq
)

1 −Φ
(
zq
)

)2
⎞

⎠, (4.4)

which coincides with [10].

Example 4.3. Let X � Ga(γ, β) be a gamma rv with shape and scale parameters equal γ and β,
correspondingly. Taking into account Example 3.4 and Corollary 4.1 leads to

TSDq[X]

= −λ
θ

F
(
xq; θ, λ + 1

)

F
(
xq; θ, λ

) + α

√√√√
√ λ

θ2

⎛

⎝(λ + 1)
F
(
xq; θ, λ + 2

)

F
(
xq; θ, λ

) − λ

(
F(xq; θ, λ + 1)

F(xq; θ, λ)

)2⎞

⎠

=
γ

β

F
(
xq; γ + 1, β

)

F
(
xq; γ, β

) + α

√√√√
√

γ

β2

⎛

⎝(γ + 1
)F
(
xq; γ + 2, β

)

F
(
xq; γ, β

) − γ

(
F(xq; γ + 1, β)

F(xq; γ, β)

)2⎞

⎠,

(4.5)

where the latter equation follows because of the reparameterization θ = −β and λ = γ .

We further discuss the inverse Gaussian distribution, which possesses heavier tails
than, say, gamma distribution, and therefore it is somewhat more tolerant to large losses.

Example 4.4. Let Y � IG(μ, λ) be an inverse Gaussian rv. We then can write its pdf as

f
(
y
)
=

√
λ

2πy3
exp
(
λ

(
− y

2μ2
− 1

2y
+

1
μ

))
, y ∈ [0,∞), (4.6)

(cf. [24]), which means that Y belongs to the reproductive EDMs, with θ = −1/(2μ2) and
κ(θ) = −1/μ = −

√
−2θ. Further, due to Corollary 4.1 we need to calculate

∂

∂θ
TCEq[Y ; θ, λ] =

∂

∂θ

(
μ(θ) + σ2 ∂

∂θ
logFY

(
yq; θ, λ

)
)

= μ′(θ) + σ2 ∂

∂θ

(∂/∂θ)FY

(
yq; θ, λ

)

FY

(
yq; θ, λ

) .

(4.7)

To this end, note that the ddf of Y is

F
(
yq;μ(θ), λ

)
= Φ

(√
λ

yq

(
yq

μ(θ)
− 1
))

− e2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

(4.8)
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(cf., e.g., [28]), where Φ(·) is the ddf of the standardized normal random variable. Hence, by
simple differentiation and noticing that

μ′(θ) = (−2θ)−3/2 = μ(θ)3, (4.9)

we obtain that

∂

∂θ
F
(
yq;μ(θ), λ

)

= μ(θ)

(√
λyqϕ

(√
λ

yq

(
yq

μ(θ)
− 1
))

− e2λ/μ(θ)
√
λyqϕ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
)))

+ 2λμ(θ)e2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

.

(4.10)

Notably,

√
λyqϕ

(√
λ

yq

(
yq

μ(θ)
− 1
))

= e2λ/μ(θ)
√
λyqϕ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

, (4.11)

and therefore (4.10) results in

∂

∂θ
F
(
yq;μ(θ), λ

)
= 2λμ(θ)e2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

. (4.12)

Consequently, the expression for the TCE risk measure, obtained by Landsman and Valdez
[16], is simplified to

TCEq[Y ; θ, λ] = μ(θ) +
2μ(θ)

F
(
yq;μ(θ), λ

)e
2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

. (4.13)

In order to derive the TSD risk measure we need to differentiate again, that is,

∂

∂θ
TCEq[Y ; θ, λ] =

∂

∂θ

(

μ(θ) +
2μ(θ)

F
(
yq;μ(θ), λ

)e
2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
)))

= μ(θ)3

⎛

⎜
⎝1 +

∂

∂θ

2μ(θ)e2λ/μ(θ)Φ
(
−
√
λ/yq

(
yq/μ(θ) + 1

))

F
(
yq;μ(θ), λ

)

⎞

⎟
⎠,

(4.14)



Journal of Probability and Statistics 15

where we use μ′(θ) = μ(θ)3. Further, we have that

∂

∂θ

2μ(θ)e2λ/μ(θ)Φ
(
−
√
λ/yq

(
yq/μ(θ) + 1

))

F
(
yq;μ(θ), λ

)

= 2
μ(θ)3e2λ/μ(θ)

(
Φ
(
ỹq

)(
1 − 2λ/μ(θ)

)
+
(√

λyq/μ(θ)
)
ϕ
(
ỹq

))

F
(
yq;μ(θ), λ

)

− λ
(
2μ(θ)e2λ/μ(θ)Φ

(
ỹq

))2

F
(
yq;μ(θ), λ

)2
,

(4.15)

where ỹq = −
√
λ/yq(yq/μ(θ) + 1). Therefore

TSDq[Y ] = μ

(

1 +
Φ
(
ỹq

)

F
(
yq;μ, λ

)2e2λ/μ

)

+ α

√√√√√
√

μ3

λ

⎛

⎜
⎝1 +

e2λ/μ
(
Φ
(
ỹq

)(
1 − 2λ/μ

)
+
(√

λyq/μ
)
ϕ
(
ỹq

))

F
(
yq;μ, λ

) − λ
(
e2λ/μΦ

(
ỹq

))2

μF
(
yq;μ, λ

)2

⎞

⎟
⎠

(4.16)

subject to Var[Y ] = μ3/λ.

5. Concluding Comments

In this work we have considered certain layer-based risk measuring functionals in the context
of the exponential dispersion models. Although we have made an accent on the absolutely
continuous EDMs, similar results can be developed for the discrete members of the class.
Indeed, distributions with discrete supports often serve as frequency models in actuarial
mathematics. Primarily in expository purposes, we further consider a very simple frequency
distribution, and we evaluate the TSD risk measure for it. More encompassing formulas can
however be developed with some effort for other EDM members of, say, the (a, b, 0) class (cf.,
[11, Chapter 6]) as well as for limited TCE/TSD risk measures.

Example 5.1. Let X � Poisson(μ) be a Poisson rv with the mean parameter μ. Then the
probability mass function of X is written as

p(x) =
1
x!
μxe−μ =

1
x!

exp
(
x log

(
μ
) − μ

)
, x = 0, 1, . . . , (5.1)

which belongs to the additive EDMs in view of the reparametrization θ = log(μ), λ = 1, and
κ(θ) = eθ.
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Motivated by Corollary 4.1, we differentiate (cf. [16], for the formula for the TCE risk
measure)

∂

∂θ
TCEq(X; θ, λ) =

∂

∂θ

(

eθ
(

1 +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)

))

= eθ

⎛

⎝1 +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

) +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)
(
xq − eθ

)
− eθ
(

p(xq; θ, 1)

F(xq; θ, 1)

)2
⎞

⎠

= eθ

⎛

⎝F
(
xq − 1; θ, 1

)

F
(
xq; θ, 1

) +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)
(
xq − eθ

)
− eθ
(

p(xq; θ, 1)

F(xq; θ, 1)

)2
⎞

⎠,

(5.2)

where the latter equation follows because

F
(
xq; θ, 1

)
+ p
(
xq; θ, 1

)
= F
(
xq − 1; θ, 1

)
. (5.3)

The formula for the TSD risk measure is then

TSDq(X)

= eθ
(

1 +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)

)

+ α

√√√√
√eθ

⎛

⎝F
(
xq − 1; θ, 1

)

F
(
xq; θ, 1

) +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)zq − eθ

(
p(xq; θ, 1)

F(xq; θ, 1)

)2
⎞

⎠,

(5.4)

where E[X] = Var[X] = eθ and zq = xq − eθ.

Appendix

A. Exponential Dispersion Models

Consider a σ-finite measure ν on R and assume that ν is nondegenerate. Next definition is
based on [24].

Definition A.1. The family of distributions of X � ED∗(θ, λ) for (θ, λ) ∈ Θ × Λ is called
the additive exponential dispersion model generated by ν. The corresponding family of
distributions of Y = X/λ � ED(μ, σ2), where μ = τ(θ) and σ2 = 1/λ are the mean value
and the dispersion parameters, respectively, is called the reproductive exponential dispersion
model generated by ν. Moreover, given some measure νλ the representation of X � ED∗(θ, λ)
is as follows:

exp(θx − λκ(θ))νλ(dx). (A.1)
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If in addition the measure νλ has density c∗(x;λ) with respect to some fixed measure
(typically Lebesgue measure or counting measure), the density for the additive model is

f∗(x; θ, λ) = c∗(x;λ) exp(θx − λκ(θ)), x ∈ R. (A.2)

Similarly, we obtain the following representation of Y � ED(μ, σ2) as

exp
(
λ
(
yθ − κ(θ)

))
νλ
(
dy
)
, (A.3)

where νλ denotes νλ transformed by the duality transformation X = Y/σ2. Again if the
measure νλ has density c(y;λ) with respect to a fixed measure, the reproductive model has
the following pdf:

f
(
y; θ, λ

)
= c
(
y;λ
)

exp
(
λ
(
θy − κ(θ)

))
, y ∈ R. (A.4)

Note that θ and λ are called canonical and index parameters, Θ = {θ ∈ R : κ(θ) < ∞}
for some function κ(θ) called the cumulant, and Λ is the index set. Throughout the paper, we
use X � ED∗(μ, σ2) and X � ED(θ, λ) for the additive form with parameters μ and σ2 and the
reproductive form with parameters θ and λ, correspondingly, depending on which notation
is more convenient.

We further briefly review some properties of the EDMs related to this work. Consider
the reproductive form first, that is, Y � ED(μ, σ2), then

(i) the cumulant generating function (cgf) of Y is, for θ′ = θ + t/λ,

K(t) = log E
[
etY
]
= log

(∫

R
exp
(
λ

(
y

(
θ +

t

λ

)
− κ(θ)

))
dνλ
(
y
)
)

= log
(

exp
(
λ

(
κ

(
θ +

t

λ

)
− κ(θ)

))∫

R
exp
(
λ
[
θ′y − κ

(
θ′)])dνλ

(
y
)
)

= λ

(
κ

(
θ +

t

λ

)
− κ(θ)

)
,

(A.5)

(ii) the moment generating function (mgf) of Y is given by

M(t) = exp
(
λ

(
κ

(
θ + t

λ

)
− κ(θ)

))
, (A.6)

(iii) the expectation of Y is

E[Y ] =
∂K(t)
∂t

∣∣∣∣
t=0

= κ′(θ) = μ, (A.7)
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(iv) the variance of Y is

Var[Y ] =
∂2K(t)
∂t2

∣
∣
∣
∣
∣
t=0

= σ2κ(2)(θ). (A.8)

Consider next an rv X following an additive EDM, that is, X � ED∗(θ, λ). Then, in a
similar fashion,

(i) the cgf of X is

K(t) = λ(κ(θ + t) − κ(θ)), (A.9)

(ii) the mgf of X is

M(t) = exp(λ(κ(θ + t) − κ(θ))), (A.10)

(iii) the expectation of X is

E[X] = λκ′(θ), (A.11)

(iv) the variance of X is

Var[X] = λκ(2)(θ). (A.12)

For valuable examples of various distributions belonging in the EDMs we refer to
Jørgensen [24].
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Johanna Nešlehová, for constructive criticism and suggestions that helped them to revise the
paper.

References

[1] D. H. Leavens, “Diversification of investments,” Trusts and Estates, vol. 80, no. 5, pp. 469–473, 1945.
[2] D. Denneberg, Non-Additive Measure and Integral, vol. 27 of Theory and Decision Library. Series B:

Mathematical and Statistical Methods, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.
[3] S. Wang, “Insurance pricing and increased limits ratemaking by proportional hazards transforms,”

Insurance: Mathematics & Economics, vol. 17, no. 1, pp. 43–54, 1995.



Journal of Probability and Statistics 19

[4] S. S. Wang, “Premium calculation by transforming the layer premium density,” ASTIN Bulletin, vol.
26, pp. 71–92, 1996.

[5] S. S. Wang, V. R. Young, and H. H. Panjer, “Axiomatic characterization of insurance prices,” Insurance:
Mathematics & Economics, vol. 21, no. 2, pp. 173–183, 1997.

[6] E. Furman and R. Zitikis, “Weighted premium calculation principles,” Insurance: Mathematics &
Economics, vol. 42, no. 1, pp. 459–465, 2008.

[7] E. Furman and R. Zitikis, “Weighted pricing functionals with applications to insurance: an overview,”
North American Actuarial Journal, vol. 13, no. 4, pp. 483–496, 2009.

[8] E. Furman and Z. Landsman, “On some risk-adjusted tail-based premium calculation principles,”
Journal of Actuarial Practice, vol. 13, pp. 175–191, 2006.

[9] W. Hürlimann, “Conditional value-at-risk bounds for compound Poisson risks and a normal
approximation,” Journal of Applied Mathematics, no. 3, pp. 141–153, 2003.

[10] E. Furman and Z. Landsman, “Tail variance premium with applications for elliptical portfolio of
risks,” Astin Bulletin, vol. 36, no. 2, pp. 433–462, 2006.

[11] S. A. Klugman, H. H. Panjer, and G. E. Willmot, Loss Models from Data to Decisions, Wiley Series in
Probability and Statistics, John Wiley & Sons, Hoboken, NJ, USA, 3rd edition, 2008.

[12] W. Hürlimann, “Analytical evaluation of economic risk capital for portfolios of gamma risks,” Astin
Bulletin, vol. 31, no. 1, pp. 107–122, 2001.

[13] E. Furman and Z. Landsman, “Risk capital decomposition for a multivariate dependent gamma
portfolio,” Insurance: Mathematics & Economics, vol. 37, no. 3, pp. 635–649, 2005.

[14] H. H. Panjer, “Measurement of risk, solvency requirements, and allocation of capital within financial
conglomerates,” Research Report 01-15, Institute of Insurance and Pension Research, University of
Waterloo, 2002.

[15] Z. M. Landsman and E. A. Valdez, “Tail conditional expectations for elliptical distributions,” North
American Actuarial Journal, vol. 7, no. 4, pp. 55–71, 2003.

[16] Z. Landsman and E. A. Valdez, “Tail conditional expectations for exponential dispersion models,”
Astin Bulletin, vol. 35, no. 1, pp. 189–209, 2005.

[17] E. Furman and Z. Landsman, “Multivariate Tweedie distributions and some related capital-at-risk
analyses,” Insurance: Mathematics and Economics, vol. 46, no. 2, pp. 351–361, 2010.

[18] A. Chiragiev and Z. Landsman, “Multivariate Pareto portfolios: TCE-based capital allocation and
divided differences,” Scandinavian Actuarial Journal, vol. 2007, no. 4, pp. 261–280, 2007.

[19] R. Vernic, “Tail conditional expectation for the multivariate Pareto distribution of the second kind:
another approach,” Methodology and Computing in Applied Probability. In press.

[20] A. V. Asimit, E. Furman, and R. Vernic, “On a multivariate Pareto distribution,” Insurance: Mathematics
and Economics, vol. 46, no. 2, pp. 308–316, 2010.

[21] M. C. K. Tweedie, “Functions of a statistical variate with given means, with special reference to
Laplacian distributions,” Proceedings of the Cambridge Philosophical Society, vol. 49, pp. 41–49, 1947.

[22] B. Jørgensen, “Some properties of exponential dispersion models,” Scandinavian Journal of Statistics,
vol. 13, no. 3, pp. 187–197, 1986.

[23] B. Jørgensen, “Exponential dispersion models,” Journal of the Royal Statistical Society. Series B, vol. 49,
no. 2, pp. 127–162, 1987.

[24] B. Jørgensen, The Theory of Dispersion Models, vol. 76 of Monographs on Statistics and Applied Probability,
Chapman & Hall, London, UK, 1997.

[25] J. A. Nelder and R. W. M. Wedderburn, “Generalized linear models,” Journal of the Royal Statistical
Society, Series A, vol. 135, pp. 370–384, 1972.

[26] J. Rioux and S. Klugman, “Toward a unified approach to fitting loss models,” 2004, http://www
.iowaactuariesclub.org/library/lossmodels.ppt.

[27] E. Furman, “On a multivariate gamma distribution,” Statistics & Probability Letters, vol. 78, no. 15, pp.
2353–2360, 2008.

[28] R. S. Chhikara and J. L. Folks, “Estimation of the inverse Gaussian distribution function,” Journal of
the American Statistical Association, vol. 69, pp. 250–254, 1974.



Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2010, Article ID 726389, 29 pages
doi:10.1155/2010/726389

Research Article
Pricing Equity-Indexed Annuities under
Stochastic Interest Rates Using Copulas

Patrice Gaillardetz

Department of Mathematics and Statistics, Concordia University, Montreal, QC, Canada H3G 1M8

Correspondence should be addressed to Patrice Gaillardetz, gaillardetz@hotmail.com

Received 1 October 2009; Accepted 18 February 2010

Academic Editor: Johanna Neslehova

Copyright q 2010 Patrice Gaillardetz. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We develop a consistent evaluation approach for equity-linked insurance products under
stochastic interest rates. This pricing approach requires that the premium information of standard
insurance products is given exogenously. In order to evaluate equity-linked products, we derive
three martingale probability measures that reproduce the information from standard insurance
products, interest rates, and equity index. These risk adjusted martingale probability measures are
determined using copula theory and evolve with the stochastic interest rate process. A detailed
numerical analysis is performed for existing equity-indexed annuities in the North American
market.

1. Introduction

An equity-indexed annuity is an insurance product whose benefits are linked to the
performance of an equity market. It provides limited participation in the performance of
an equity index (e.g., S&P 500) while guaranteeing a minimum rate of return. Introduced by
Keyport Life Insurance Co. in 1995, equity-indexed annuities have been the most innovative
insurance product introduced in recent years. They have become increasingly popular since
their debut and sales have broken the $20 billion barrier ($23.1 billion) in 2004, reaching $27.3
billion in 2005. Equity-indexed annuities have also reached a critical mass with a total asset
of $93 billion in 2005 (2006 Annuity Fact Book (Tables 7-8) from the National Association
for Variable Annuities (NAVA)). See the monograph by Hardy [1] for comprehensive
discussions on these products.

The traditional actuarial pricing approach evaluates the premiums of standard life
insurance products as the expected present value of its benefits with respect to a mortality
law plus a security loading. Since equity-linked products are embedded with various types of
financial guarantees, the actuarial approach is difficult to extend to these products and often
produces premiums inconsistent with the insurance and financial markets. Many attempts
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have been made to provide consistent pricing approaches for equity-linked products using
financial and economical approaches. For instance, Brennan and Schwartz [2] and Boyle and
Schwartz [3] use option pricing techniques to evaluate life insurance products embedded
with some financial guarantees. Bacinello and Ortu [4, 5] consider the case where the interest
rate is stochastic. More recently, Møller [6] employs the risk-minimization method to evaluate
equity-linked life insurances. Young and Zariphopoulou [7] evaluate these products using
utility theory1. Particularly for equity-indexed annuities, Tiong [8] and Lee [9] obtain closed-
form formulas for several annuities under the Black-Scholes-Merton framework. Moore [10]
evaluates equity-indexed annuities based on utility theory. Lin and Tan [11] and Kijima and
Wong [12] consider more general models for equity-indexed annuities, in which the external
equity index and the interest rates are general stochastic differential equations.

The liabilities and premiums of standard insurance products are influenced by the
insurer financial performance. Indeed, insurance companies adjust their premiums according
to the realized return from their fixed income and other financial instruments as well
as market pressure. Therefore, mortality security loadings underlying insurance pricing
approach evolve with the financial market. With the current financial crisis, a flexible
approach for equity-linked products that allows interdependency between risks should be
used. Hence, we generalize the approach of Gaillardetz and Lin [13] to stochastic interest
rates. Similarly to Wüthrich et al. [14], they introduce a market consistent valuation method
for equity-linked products by combining probability measures using copulas. Indeed, the
deterministic interest rate assumption may be adequate for short-term derivative products;
however, it is undesirable to extrapolate for longer maturities as for the financial guarantees
embedded in equity-linked products. Therefore, we use the approach of Gaillardetz [15]
to model standard insurance products under stochastic interest rates. It supposes the
conditional independence between the insurance and interest rate risks. Here, this approach
is generalized to models that are based on copulas.

Similarly to Gaillardetz and Lin [13], we assume that the premium information of term
life insurances, pure endowment insurances, and endowment insurances at all maturities
is obtainable. We obtain martingale measures for each standard insurance product under
stochastic interest rates. To this end, it is required to assume that the volatilities for standard
insurance prices are given exogenously. Gaillardetz [15] provides additional structure to
find an implicit volatilities for the standard insurance and annuity products. Then, the
martingale probability measures for the insurance and interest rate risks are combined with
the martingale measure from the equity index. These extend martingale measures are used to
evaluate equity-linked insurance contracts and equity-indexed annuities in particular.

This paper is organized as follows. The next section presents financial models for
the interest rates and equity index as well as insurance model. We then derive martingale
measures for those standard insurance products under stochastic interest rates in Section 3. In
Section 4, we derive the martingale measures for equity-linked products. Section 5 focuses on
recursive pricing formulas for equity-linked contracts. Finally, we examine the implications
of the proposed approaches on the EIAs by conducting a detailed numerical analysis in
Section 6.

2. Underlying Financial Models

In this section, we present a multiperiod discrete model that describes the dynamic of a
stock index and the interest rate. These lattice models have been intensively used to model
stocks, stock indices, interest rates, and other financial securities due to their flexibility and
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tractability; see Panjer et al. [16] and Lin [17], for example. Moreover, as it often happens
when working in a continuous framework, it becomes necessary to resort to simulation
methods in order to obtain a solution to the problems we are considering. Moreover, the
premiums obtained from discrete models converge rapidly to the premiums obtained with
the corresponding continuous models when considering equity-indexed annuities.

2.1. Interest Rate Model

Similarly to Gaillardetz [15], it is assumed that the short-term ratefollows that of Black et al.
[18] (BDT), which means that the short-term rate follows a lattice model that is recombining
and Markovian. Particularly, the short-term rate can take exactly t+ 1 distinct values at year t
denoted by r(t, 0), r(t, 1), . . . , r(t, t). Indeed, r(t, l) represents the short-term rate between time
t and t+ 1 that has made “l” up moves. The short-term rate today, r(0), is equal to r(0, 0), and
in the case where r(t) = r(t, l), the short-term rate at time t+1, r(t+1) can only take two values,
either r(t + 1, l) (decrease) or r(t + 1, l + 1) (increase). We consider the short-term rate process
under the martingale measure Q and hence, the discounted value process L(t, T)/B(t) is a
martingale. L(t, T) represents the price at time t of a default-free, zero-coupon bond paying
one monetary unit at time T and B(t), the money market account, represents one monetary
unit (B(0) = 1) accumulated at the short-term rate

B(t) =
t−1∏

i=0

[1 + r(i)]. (2.1)

Let q(t, l) be the probability under Q that the short-term rate increases at time t + 1
given r(t) = r(t, l). That is

q(t, l) = Q[r(t + 1) = r(t + 1, l + 1) | r(t) = r(t, l)], (2.2)

for 0 ≤ l ≤ t, which is set to be 0.5 under the BDT model. Figure 1 describes the dynamic of
the short-term rate process.

The BDT model also assumes that short-term rate process matches an array of yields
volatilities (σr(1), σr(2), . . .), which is assumed to be observable from the financial market.
This vector is deterministic, specified at time 0, and each element is defined by

σr(t)2 = Var[ln r(t) | r(t − 1) = r(t − 1, l)]

=
[

0.5 ln
(
r(t, l + 1)
r(t, l)

)]2

,
(2.3)

for l = 0, 1, . . . , t − 1 and t = 1, . . . . Hence, r(t, l + 1) is larger than r(t, l) thus, (2.3) may be
rewritten as follows:

σr(t) = 0.5 ln
(
r(t, l + 1)
r(t, l)

)
. (2.4)
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q(0, 0)

1 − q(0, 0)
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1 − q(2, 1)

q(2, 0)

1 − q(2, 0)

Figure 1: The probability tree of the BDT model process over 3 years.

Equation (2.4) holds for l ∈ {0, 1, . . . , t − 1} and leads to

r(t, l) = r(t, 0)1−l/tr(t, t)l/t, (2.5)

for l = 0, 1, . . . , t. Equations (2.4) and (2.5) lead to

σr(t) =
1
2t

ln
(
r(t, t)
r(t, 0)

)
. (2.6)

By matching the market prices and the model prices, we have

L(0, t) = E
[

1
B(t)

]

=
2−t+1

(1 + r(0))

1∑

l1=0

l1+1∑

l2=l1

· · ·
lt−2+1∑

lt−1=lt−2

t−1∏

m=1

(1 + r(m, lm))
−1,

(2.7)

where E[·] represents the expectation with respect to Q. Replacing r(t, l), l = 1, 2, . . . , t − 1, in
(2.7) using (2.5) leads to a system of two equations (2.6) and (2.7) with two unknowns r(t, t)
and r(t, 0), which can be solved for all t.

2.2. Index Model

Similar to Gaillardetz and Lin [13], we suppose that each year is divided into N trading
subperiods of equal length Δ = N−1, which means that the set of trading dates for the index
is {0,Δ, 2Δ, . . .}. We also assume a lattice index model such that the index process S(k), k =
Δ, 2Δ, . . ., has two possible outcomes S(k−Δ)d(k) and S(k−Δ)u(k) given S(k−Δ) for the time
period [k − Δ, k], where S(0) is the initial level of the index. The index level S(k − Δ)d(k) at
time k represents the index level when the index value goes down and S(k−Δ)u(k) represents
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the index level when the index values goes up. Since the short-term rate is a yearly process,
we assume that the values d(k) and u(k) are constant for each year. Hence, we may write
d(k) = d(t) and u(k) = u(t) for k = t− 1+Δ, t− 1+ 2Δ, . . . , t. Because of the number of trading
dates per year, the time-k value of the money-market account is given by

B(k) =
∏

i={0,Δ,...,k−Δ}
[1 + r(�i�)]Δ, (2.8)

for k = 0,Δ, 2Δ, . . . . Here, �·� is the floor function.
A martingale measure for the financial model needs to be determined for the valuation

of equity-linked products. This martingale measures Q should be such that L(t, T)/B(t), t =
0, 1, . . . , T , and S(k)/B(k), k = 0,Δ, . . . , τ, remain martingales. Note that the goal of this
section is to derive the conditional distribution of the index process. Hence, the constraints
imposed by the martingale discounted value process L(t, T)/B(t) are to be discussed later. Let
π(k, l) be the conditional probability that the index value goes up during the period [k−Δ, k]
given r(t − 1) = r(t − 1, l), that is,

Q[S(k) = S(k −Δ)u(t) | S(k −Δ), r(t − 1) = r(t − 1, l)] = π(k, l),

Q[S(k) = S(k −Δ)d(t)S(k −Δ), r(t − 1) = r(t − 1, l)] = 1 − π(k, l),
(2.9)

for k = t− 1+Δ, t− 1+ 2Δ, . . . , t and t = 1, 2, . . . . Supposing that the discounted value process
S(k)/B(k) is a martingale implies

π(k, l) =
(1 + r(t − 1, l))Δ − d(t)

u(t) − d(t) , (2.10)

for k = t−1+Δ, t−1+2Δ, . . . , t and t = 1, 2 . . . . From (2.10) it is obvious that π(k, l) is constant
over each year, that is, π(k, l) = π(t, l) for k = t− 1+Δ, t− 1+ 2Δ, . . . , t. The no-arbitrage thus
requires

d(t) < (1 + r(t − 1, 0))Δ, (1 + r(t − 1, t − 1))Δ < u(t), (2.11)

for t = 1, 2, . . .. The previous conditions may not be respected for the BDT model when long
maturity or high volatility are considered. In this case, the bounded trinomial model from
Hull and White [19] would be more suitable.

Under this model, the ratio (S(t))/(S(t−1)) takes N+1 possible values denoted γ(t, i),
i = 0, 1, . . . ,N, which are defined by

γ(t, i) = u(t)id(t)N−i, i = 0, 1, . . . ,N. (2.12)

Their corresponding conditional martingale probabilities are

Q

[
S(t)

S(t − 1)
= γ(t, i) | r(t − 1) = r(t − 1, l)

]
=

(
N

i

)
π(t, l)i(1 − π(t, l))N−i, (2.13)

for i = 0, . . . ,N.
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S(t)

π(t + 1, l)

π(t + 1, l)

1 − π(t + 1, l)

π(t + 1, l)

1 − π(t + 1, l)

1 − π(t + 1, l)

S(t)u(t + 1)

S(t)d(t + 1)

S(t)u(t + 1)2

S(t)u(t + 1)d(t + 1)

S(t)d(t + 1)2

Figure 2: The probability tree of the index under stochastic interest rates over t and t+ 1 when N = 2 given
r(t) = r(t, l).

The model assumes the usual frictionless market: no tax, no transaction costs, and so
forth. Furthermore, for practical implementation purposes, one may also use current forward
rates for r.

Figure 2 presents the conditional index process tree under stochastic interest rates
when N = 2 for the time period [t, t + 1].

For notational convenience, let

it = {i0, . . . , it}, (2.14)

which represents the index’s realization up to time t with

S(t, it) = S(0)
t∏

l=0

γ(l, il), (2.15)

for t = 0, 1, . . ., where γ(0, i0) = 1.

2.3. Insurance Models

In this subsection, we introduce lattice models for the standard insurance products under
stochastic interest rates. We will use the standard actuarial notation which can be found in
Bowers et al. [20]. Let T(x) be the future lifetime of insured (x) of age x and the curtate-
future-lifetime

K(x) = �T(x)� (2.16)

the number of future complete years lived by the insured (x) prior to death. For notational
purposes, let

lt = {l0, l1, . . . , lt} (2.17)

represent the realization of the short-term rate process up to time t with r(i) = r(i, li), i =
0, 1, . . . , t, where l0 = 0.
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For integers t and n (t ≤ n), let V (j)(x, t, n, lt} denote, respectively, the time-t prices for
the n-year term life insurance (j = 1), n-year pure endowment insurance (j = 2), and n-year
endowment insurance (j = 3) given that the short-term rate followed the path lt.

The value process W (1)(x, t, n, lt−1) of n-year term life insurance is defined by

W (1)(x, t, n, lt−1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B(t)
B(K(x) + 1)

, K(x) < t,

V (1)(x, t, n, {lt−1, lt−1 + 1}), K(x) ≥ t, r(t) = r(t, lt−1 + 1),

V (1)(x, t, n, {lt−1, lt−1}), K(x) ≥ t, r(t) = r(t, lt−1),

(2.18)

with V (1)(x, n, n, ln) = 0. Note that lt represents the interest rate information known by the
process, but does not stand as an indexing parameter.

Similarly, defineW (2)(x, t, n, lt−1) to be the value process of the n-year pure endowment
insurance and it is given by

W (2)(x, t, n, lt−1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, K(x) < t,

V (2)(x, t, n, {lt−1, lt−1 + 1}), K(x) ≥ t, r(t) = r(t, lt−1 + 1),

V (2)(x, t, n, {lt−1, lt−1}), K(x) ≥ t, r(t) = r(t, lt−1),

(2.19)

with V (2)(x, n, n, ln) = 1.
Finally, let W (3)(x, t, n, lt−1) denote the value process generated by the n-year

endowment insurance

W (3)(x, t, n, lt−1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B(t)
B(K(x) + 1)

, K(x) < t,

V (3)(x, t, n, {lt−1, lt−1 + 1}), K(x) ≥ t, r(t) = r(t, lt−1 + 1),

V (3)(x, t, n, {lt−1, lt−1}), K(x) ≥ t, r(t) = r(t, lt−1),

(2.20)

with V (3)(x, n, n, ln) = 1
The processes W (j)(x, t, n), j = 1, 2, 3, represent the intrinsic values of the standard

insurance products and are presented in Figure 3.

3. Martingale Measures for Insurance Models

In this section, we employ a method similar to the approach of Gaillardetz [15] to
derive a martingale probability measure for each of the value processes introduced in
the last section. Gaillardetz [15] derives these martingale measures under conditional
independence assumptions. Here, we relax this assumption by using copulas to describe
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V (j)(x, t, n, lt) and r(t, lt)

b
(j)
x (t, 3, lt)

b
(j)
x (t, 2, lt)

b
(j)
x (t, 1, lt)

b
(j)
x (t, 0, lt)

1{jε{1,3}} and r(t + 1, lt + 1)

1{jε{1,3}} and r(t + 1, lt)

V (j)(x, t + 1, n, {lt, lt + 1})
and r(t + 1, lt + 1)

V (j)(x, t + 1, n, {lt, lt}) and r(t + 1, lt)

Figure 3: The probability tree of the combined insurance product (j = 1, 2, 3) and short-term rate processes
between t and t + 1 given K(x) ≥ t and r(0), r(1), . . . , r(t).

possible dependence structures between interest rates and insurance products. It is important
to point out that these probabilities are age-dependent and include an adjustment for the
mortality risk since we use the information from the insurance market.

The martingale measures Q
(j)
x , j = 1, 2, 3, are defined such that W (j)(x, t, n)/B(t)

and L(t, T)/B(t) are martingales. As mentioned in Section 2, we assume that the time-0
premiums V (j)(x, 0, n), j = 1, 2, 3, of the term life insurance, pure endowment insurance,
and endowment insurance are given exogenously. The annual short-term rate process r(t) is
governed by the BDT model with q(t, l) = 0.5 and volatilities σr(t) are given exogenously for
l = 0, 1, . . . , t and t = 1, 2, . . . . The conditional martingale probability of each possible outcome
is defined by

b
(j)
x (t, 0, lt) = Q

(j)
x [K(x) > t, r(t + 1) = r(t + 1, lt) | K(x) ≥ t, lt],

b
(j)
x (t, 1, lt) = Q

(j)
x [K(x) > t, r(t + 1) = r(t + 1, lt + 1) | K(x) ≥ t, lt],

b
(j)
x (t, 2, lt) = Q

(j)
x [K(x) = t, r(t + 1) = r(t + 1, lt) | K(x) ≥ t, lt],

b
(j)
x (t, 3, lt) = Q

(j)
x [K(x) = t, r(t + 1) = r(t + 1, lt + 1) | K(x) ≥ t, lt],

(3.1)

for j = 1, 2, 3. These martingale probabilities are presented above each branch in Figure 3.
The main objective of this section is to determine b(j)x ’s that will be used to evaluate

equity-indexed annuities in later sections.
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To ensure that the discounted value process L(t, T)/B(t) is a martingale, we must have

b
(j)
x (t, 0, lt) + b

(j)
x (t, 2, lt) =

1
2
, b

(j)
x (t, 1, lt) + b

(j)
x (t, 3, lt) =

1
2
, (3.2)

for j = 1, 2, 3, t = 0, 1, . . ., and all lt. Note that the martingale mortality and survival
probabilities are given, respectively, by

q
(j)
x (t, lt) = Q

(j)
x [K(x) = t | K(x) ≥ t, lt] = b

(j)
x (t, 2, lt) + b

(j)
x (t, 3, lt),

p
(j)
x (t, lt) = Q

(j)
x [K(x) > t | K(x) ≥ t, lt] = b

(j)
x (t, 0, lt) + b

(j)
x (t, 1, lt).

(3.3)

As in the short-term rate model, additional structure is needed to set the time-t
premiums. Similar to Black et al. [18], we suppose that the volatilities of insurance liabilities
σ
(j)
x (t, lt−1) are defined at time t by

σ
(1)
x (t, lt−1)2 = Var(1)x

[
ln
(
W (1)(x, t, n, lt−1)

)
| K(x) ≥ t, lt−1

]
, (3.4)

σ
(j)
x (t, lt−1)2 = Var(j)x

[
ln
(

1 −W (j)(x, t, n, lt−1)
)
| K(x) ≥ t, lt−1

]
, (3.5)

for j = 2, 3, t = 1, 2, . . . , and all lt−1. Here, Var(j)x [·] represents the conditional variance with
respect to Q

(j)
x . We assume that the volatilities are deterministic but vary over time and are

given exogenously. Gaillardetz [15] uses the natural logarithm function to ensure that each
process remains strictly positive. Since W (1) is close to 0, it directly uses ln(W (1)) to ensure
that the process remains strictly greater than 0. On the other hand, it uses ln(1 −W (j)) for
j = 2, 3 to ensure that the processes are strictly smaller than 1 since W (j)’s are closer to 1.

In order to identify the martingale probabilities b
(j)
x , Gaillardetz [15] assumes the

independence or the conditional independence between the interest rate process and the
insurer’s life. Here, the additional structure is provided by the choice of copulas. Indeed,
the dependence structure between the interest rates and the premiums of insurance products
is modeled using a copula. The main advantage of using copulas is that they separate a joint
distribution function in two parts: the dependence structure and the marginal distribution
functions. We use them because of their mathematical tractability and, based on the Sklar’s
Theorem, they can express all multivariate distributions. A comprehensive introduction may
be found in Joe [21] or Nelsen [22]. Frees and Valdez [23], Wang [24], and Venter [25] have
given an overview of copulas and their applications to actuarial science. Cherubini et al. [26]
present the applications of copulas in finance.
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There exists a wide range of copulas that may define a joint cumulative distribution
function. The simplest one is the independent copula

CI(FY1

(
y1
)
, FY2

(
y2
))

= FY1

(
y1
)
FY2

(
y2
)
, (3.6)

where FY1 and FY2 are marginal cumulative distribution functions. Extreme copulas are
defined using the upper and lower Frechet-Hoeffding bounds, which are given by

CU(FY1

(
y1
)
, FY2

(
y2
))

= min
[
FY1

(
y1
)
, FY2

(
y2
)]
, (3.7)

CD(FY1

(
y1
)
, FY2

(
y2
))

= max
[
FY1

(
y1
)
+ FY2

(
y2
)
− 1, 0

]
. (3.8)

One of the most important families of copulas is the archimedean copulas. Among them, the
Cook-Johnson (Clayton) copula is widely used in actuarial science because of its desirable
properties and simplicity. The Cook-Johnson copula with parameter κ > 0 is given by

C
CJ
κ

(
FY1

(
y1
)
, FY2

(
y2
))

=
[
FY1(y1)

−κ + FY2(y2)
−κ − 1

]−1/κ
. (3.9)

The Gaussian (−1 ≤ κ ≤ 1) copula, which is often used in finance, is defined as

CG
κ

(
FY1

(
y1
)
, FY2

(
y2
))

= Φκ

(
Φ−1(FY1

(
y1
))
,Φ−1(FY2

(
y2
)))

, (3.10)

where Φκ is the bivariate standard normal cumulative distribution function with correlation
coefficient κ and Φ−1 is the inverse of the standard normal cumulative distribution function.
Hence, the parameter κ in formulas (3.9) and (3.10) indicates the level of dependence between
the insurance products and interest rates.

The joint cumulative distribution of W (j) and r(t) is obtained using a copula Cκ(t), that
is,

Q
(j)
x

[
W (j)(x, t + 1, n, lt) ≤ y1, r(t + 1) ≤ y2 | K(x) ≥ t, lt

]

= Cκ(t)

(
Q

(j)
x

[
W (j)(x, t + 1, n, lt) ≤ y1 | K(x) ≥ t, lt

]
, Q
[
r(t + 1) ≤ y2 | lt

])
,

(3.11)

for j = 1, 2, 3, where the copula may be defined by either (3.6), (3.7), (3.8), (3.9), or (3.10).
The martingale probabilities have the following constraints:

b
(j)
x (t, 2, lt)

= Q(j)
x

[
W (j)(x, t + 1, n, lt) = 1, r(t + 1) = r(t + 1, lt) | K(x) ≥ t, lt

]

= Q(j)
x

[
W (j)(x, t + 1, n, lt) ≤ 1, r(t + 1) ≤ r(t + 1, lt) | K(x) ≥ t, lt

]

−Q(j)
x

[
W (j)(x, t + 1, n, lt) ≤ V (j)(x, t + 1, n, {lt, lt}), r(t + 1) ≤ r(t + 1, lt) | K(x) ≥ t, lt

]
.

(3.12)
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It follows from (3.11) that

b
(j)
x (t, 2, lt)

= Q(j)
x [r(t + 1) ≤ r(t + 1, lt) | K(x) ≥ t, lt]

− Cκ(t)

(
Q

(j)
x

[
W (j)(x, t + 1, n, lt) ≤ V (j)(x, t + 1, n, {lt, lt}) | K(x) ≥ t, lt

]
,

Q[r(t + 1) ≤ r(t + 1, lt) | lt]
)
.

(3.13)

Using the following inequality

V (j)(x, t + 1, n, {lt, lt}) ≥ V (j)(x, t + 1, n, {lt, lt + 1}) (3.14)

in (3.13) leads to

b
(j)
x (t, 2, lt) = 0.5 − Cκ(t)

(
b
(j)
x (t, 0, lt) + b

(j)
x (t, 1, lt), 0.5

)

= 0.5 − Cκ(t)

(
p
(j)
x (t, lt), 0.5

)
,

(3.15)

for j = 1, 3, and we have for j = 2

b
(2)
x (t, 2, lt) = Q

(2)
x

[
W (2)(x, t + 1, n, lt) = 0, r(t + 1) = r(t + 1, lt) | K(x) ≥ t, lt

]

= Q(2)
x

[
W (2)(x, t + 1, n, lt) ≤ 0, r(t + 1) ≤ r(t + 1, lt) | K(x) ≥ t, lt

]
.

(3.16)

It follows from (3.11) that

b
(2)
x (t, 2, lt) = Cκ(t)

(
Q

(2)
x

[
W (2)(x, t + 1, n, lt) ≤ 0 | K(x) ≥ t, lt

]
, Q[r(t + 1) ≤ r(t + 1, lt) | lt]

)

= Cκ(t)

(
q
(2)
x (t, lt), 0.5

)
.

(3.17)
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3.1. Term Life Insurance

Proposition 3.1. For given V (1)(x, 0, n, l0) (n = 1, 2, . . . , τ), copulas Cκ(t), and volatilities
σ
(1)
x (t, lt−1) (t = 1, 2, . . . , τ and all lt−1), the age-dependent, mortality risk-adjusted martingale

probabilities are given by

b
(1)
x (t, 2, lt) = 0.5 − Cκ(t)

(
1 − V (1)(x, t, t + 1, lt)(1 + r(t, lt)), 0.5

)
, (3.18)

b
(1)
x (t, 3, lt) = V (1)(x, t, t + 1, lt)(1 + r(t, lt)) − b(1)x (t, 2, lt), (3.19)

b
(1)
x (t, i, lt) =

1
2
− b(1)x (t, i + 2, lt), (3.20)

for i = 0, 1, where the price at time t is defined recursively using

V (1)(x, t + 1, n, {lt, lt})

=
V (1)(x, t, n, lt)(1 + r(t, lt)) − b(1)x (t, 2, lt) − b(1)x (t, 3, lt)

b
(1)
x (t, 0, lt) + b

(1)
x (t, 1, lt)e−((b

(1)
x (t,0,lt)+b

(1)
x (t,1,lt))/{b(1)x (t,0,lt)b

(1)
x (t,1,lt)}

0.5
)σ(1)

x (t+1,lt)
,

(3.21)

V (1)(x, t + 1, n, {lt, lt + 1})

=
V (1)(x, t, n, lt)(1 + r(t, lt)) − b(1)x (t, 2, lt) − b(1)x (t, 3, lt)

b
(1)
x (t, 1, lt) + b

(1)
x (t, 0, lt)e((b

(1)
x (t,0,lt)+b

(1)
x (t,1,lt))/{b(1)x (t,0,lt)b

(1)
x (t,1,lt)}

0.5
)σ(1)

x (t+1,lt)
,

(3.22)

for t = 0, 2, . . . , n − 2 and all lt.

Proof. The proof is similar to the proof of Proposition 3.1 of Gaillardetz [15] and can be found
in Gaillardetz [27].

With the martingale structure identified, the n-year term life insurance premiums may
be reproduced as the expected discounted payoff of the insurance

V (1)(x, 0, n) = E(1)
x

[ 1{K(x)<n}

B(K(x) + 1)

]
. (3.23)

3.2. Pure Endowment Insurance

Proposition 3.2. For given V (2)(x, 0, n, l0) (n = 1, 2, . . . , τ), copulas Cκ(t), and volatilities
σ
(2)
x (t, lt−1) (t = 1, 2, . . . , τ and all lt−1), the age-dependent, mortality risk-adjusted martingale

probabilities are given by

b
(2)
x (t, 2, lt) = Cκ(t)

(
1 − V (2)(x, t, t + 1, lt)(1 + r(t, lt)), 0.5

)
, (3.24)

b
(2)
x (t, 3, lt) = 1 − V (2)(x, t, t + 1, lt)(1 + r(t, lt)) − b(2)x (t, 2, lt), (3.25)
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b
(2)
x (t, i, lt) =

1
2
− b(2)x (t, i + 2, lt), (3.26)

for i = 0, 1, where the price at time t is defined recursively using

V (2)(x, t + 1, n, {lt, lt})

=
V (2)(x, t, n, lt)(1 + r(t, lt)) − b(2)x (t, 1, lt)

(
1 − e((b

(2)
x (t,0,lt)+b

(2)
x (t,1,lt))/{b(2)x (t,0,lt)b

(2)
x (t,1,lt)}

0.5
)σ(2)

x (t+1,lt)
)

b
(2)
x (t, 0, lt)+b

(2)
x (t, 1, lt)e((b

(2)
x (t,0,lt)+b

(2)
x (t,1,lt))/{b(2)x (t,0,lt)b

(2)
x (t,1,lt)}

0.5
)σ(2)

x (t+1,lt)
,

V (2)(x, t + 1, n, {lt, lt + 1})

=
V (2)(x, t, n, lt)(1+r(t, lt))−b(2)x (t, 0, lt)

(
1 − e−((b

(2)
x (t,0,lt)+b

(2)
x (t,1,lt))/{b(2)x (t,0,lt)b

(2)
x (t,1,lt)}

0.5
)σ(2)

x (t+1,lt)
)

b
(2)
x (t, 1, lt)+b

(2)
x (t, 0, lt)e−((b

(2)
x (t,0,lt)+b

(2)
x (t,1,lt))/{b(2)x (t,0,lt)b

(2)
x (t,1,lt)}

0.5
)σ(2)

x (t+1,lt)
,

(3.27)

for t = 0, 2, . . . , n − 2 and all lt.

Proof. The proof is similar to the proof of Proposition 3.2 of Gaillardetz [15] and can be found
in Gaillardetz [27].

With the martingale structure identified, the n-year pure endowment insurance
premiums may be reproduced as the expected discounted payoff of the insurance

V (2)(x, 0, n) = E(2)
x

[1{K(x)≥n}

B(n)

]
. (3.28)

3.3. Endowment Insurance

There is no general solution for the endowment insurance products since the n-year
endowment insurance price at time n − 2 may not be expressed using only either mortality
or survival probabilities. For the n-year term-life insurance, the time-(n − 1) price is
determined based on the death martingale probabilities and the n-year pure endowment
price may be obtained using the survival probabilities at time n − 1. Therefore, once
you combine both products to form an endowment insurance, there is no way to solve
explicitly for the martingale probabilities. However, closed-from solutions may be derived
for the independent, upper and lower copulas. Numerical methods need to be used for
the Cook-Johnson and Gaussian copulas. Furthermore, the width of the participation rate
bands for the unified approach is narrow under deterministic interest (see Gaillardetz and
Lin [13]). For these reasons, we are focusing on the independent and Frechet-Hoeffding
bounds.
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Proposition 3.3. For given V (3)(x, 0, n, l0) (n = 1, 2, . . . , τ), copulas C, and volatilities σ(3)
x (t, lt−1)

(t = 1, 2, . . . , τ and all lt−1), the age-dependent, mortality risk-adjusted martingale probabilities are
given by

b
(3)
x (t, 2, lt) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
V (3)(x, t, t + 2, lt)(1 + r(t, lt))

−0.5
(

1
1 + r(t + 1, lt)

+
1

1 + r(t + 1, lt + 1)

)]

÷
(

2 −
(

1
1 + r(t + 1, lt)

+
1

1 + r(t + 1, lt + 1)

))
, Independent,

0, Upper,
[
V (3)(x, t, t + 2, lt)(1 + r(t, lt))

−0.5
(

1
1 + r(t + 1, lt)

+
1

1 + r(t + 1, lt + 1)

)]

÷
(

1 − 1
1 + r(t + 1, lt)

)
, Lower,

(3.29)

b
(3)
x (t, 3, lt) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
(3)
x (t, 2, lt), Independent,
[
V (3)(x, t, t + 2, lt)(1 + r(t, lt))

−0.5
(

1
1 + r(t + 1, lt)

+
1

1 + r(t + 1, lt + 1)

)]

÷
(

1 − 1
1 + r(t + 1, lt + 1)

)
, Upper,

0, Lower,

(3.30)

b
(3)
x (t, i, lt) = 0.5 − b(3)x (t, i + 2, lt), (3.31)

for i = 0, 1, where the price at time t is defined recursively using

V (3)(x, t + 1, n, {lt, lt})

=
[
V (3)(x, t, n, lt)(1 + r(t, lt)) − b(3)x (t, 2, lt) − b(3)x (t, 3, lt)

−b(3)x (t, 1, lt)
(

1 − e((b
(3)
x (t,0,lt)+b

(3)
x (t,1,lt))/{b(3)x (t,0,lt)b

(3)
x (t,1,lt)}

0.5
)σ(3)

x (t+1,lt)
)]
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÷
(
b
(3)
x (t, 0, lt) + b

(3)
x (t, 1, lt)e((b

(3)
x (t,0,lt)+b

(3)
x (t,1,lt))/{b(3)x (t,0,lt)b

(3)
x (t,1,lt)}

0.5
)σ(3)

x (t+1,lt)
)
,

V (3)(x, t + 1, n, {lt, lt})

=
[
V (3)(x, t, n, lt)(1 + r(t, lt)) − b(3)x (t, 2, lt) − b(3)x (t, 3, lt)

−b(3)x (t, 0, lt)
(

1 − e−((b
(3)
x (t,0,lt)+b

(3)
x (t,1,lt))/{b(3)x (t,0,lt)b

(3)
x (t,1,lt)}

0.5
)σ(3)

x (t+1,lt)
)]

÷
(
b
(3)
x (t, 1, lt) + b

(3)
x (t, 0, lt)e−((b

(3)
x (t,0,lt)+b

(3)
x (t,1,lt))/{b(3)x (t,0,lt)b

(3)
x (t,1,lt)}

0.5
)σ(3)

x (t+1,lt)
)
,

(3.32)

for t = 0, 2, . . . , n − 3 and all lt.

Proof. The proof can be found in Gaillardetz [27].

Since we suppose that the time-0 insurance prices, the insurance volatilities, the zero-
coupon bond prices, and the interest rate volatility are given exogenously, it is possible to
extract the stochastic structure of each insurance products using Propositions 3.1, 3.2, and
3.3. There are constraints on the parameters because the martingale probabilities should be
strictly positive. However, there is no closed-form solution for the stochastic interest models.

Theoretically, there exists a natural hedging between the insurance and annuity
products. However, Gaillardetz and Lin [13] argue that it is reasonable to evaluate insurances
and annuities separatelysince in practice due to certain regulatory and accounting constraints
and issues such as moral hazard and anti-selection.

3.4. Determination of Insurance Volatility Structure

For implementation purposes, we now relax the assumption of exogenous insurance
volatilities. In Subsections 3.1, 3.2, and 3.3, the volatilities of insurance liabilities σ(j)

x (t, lt−1)
defined by either (3.4) or (3.5) were supposed to be known. However, identifying these
volatilities is extremely challenging due to the lack of empirical data and studies. Similar
to Gaillardetz [15], we extract an implied volatility from the insurance market under certain
assumptions.

There are three different sources that define the insurance volatilities: the interest rates,
the insurance prices, and the martingale probabilities. The implied insurance volatilities is
obtained assuming that the short-term rate has no impact on the martingale probabilities.
Thus, we extract the insurance volatility such that the martingale probabilities in the case
of an up move from the interest rate process are equal to the martingale probabilities in the

case of a down move. Let σ(j)′

x (t, lt−1) (j = 1, 2, 3, t = 1, 2, . . ., and all lt−1) denote the implied
volatilities defined by (3.4) for j = 1 and (3.5) for j = 2, 3, under the following constraint:

q
(j)
x (t + 1, {lt, lt}) = q

(j)
x (t + 1, {lt, lt + 1}), (3.33)
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for j = 1, 2, 3. In other words, insurance companies that do not react to the interest rate

change should have an insurance volatility close to σ
(j)′

x . Gaillardetz [13, 27] explain that
behavior of insurance companies facing the interest rate shifts could be understood through
these volatilities. They also describe recursive formulas to obtain numerically the implied
volatilities. In the following examples, equity-indexed annuity contracts are evaluated using
the implied volatilities, which are obtained from (3.33).

4. Martingale Measures for Equity-Linked Products

Due to their unique designs, equity-linked products involve mortality and financial risks
since these type of contracts provide both death and accumulation/survival benefits.
Moreover, the level of these benefits are linked to the financial market performance and
an equity index in particular. Hence, it is natural to assume that equity-linked products
belong to a combined insurance and financial markets since they are simultaneously subject
to the interest rate, equity, and mortality risks. Similar to Section 3, we evaluate these types
of products by evaluating the death benefits and survival benefits separately. Under this
approach, two martingale measures again need to be generated: one for death benefits and
another for survival benefits. Furthermore, these martingale measures should be such that
they reproduce the index values in Section 2 and the premiums of insurance products under
stochastic interest rates in Section 3. In other words, the marginal probabilities derived in
the previous sections should be preserved, and the martingale measures Q(j)+

x , j = 1, 2, 3 are
such that {W (j)(x, t, n)/B(t), t = 0, 1, . . .}, {L(t, T)/B(t), t = 0, 1, . . . , T and T = 1, . . .}, and
{S(k)/B(k), k = 0,Δ, . . .} will remain martingales. Let e(j)x (t, i, it, lt) denote the martingale
probability under Q(j)+

x such that (x) survives and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r(t + 1) = r(t + 1, lt),
S(t + 1)
S(t)

= γ(t + 1, i), i = 0, . . . ,N,

r(t + 1) = r(t + 1, lt + 1),
S(t + 1)
S(t)

= γ(t + 1, i − (N + 1)), i =N + 1, . . . , 2N + 1

(4.1)

or the martingale probability such that (x) dies and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r(t + 1) = r(t + 1, lt),
S(t + 1)
S(t)

= γ(t, i − (2N + 2)), i = 2N + 2, . . . , 3N + 2,

r(t + 1) = r(t + 1, lt + 1),
S(t + 1)
S(t)

= γ(t, i − (3N + 3)), i = 3N + 3, . . . , 4N + 3,

(4.2)

between t and t + 1 given S(t), K(x) ≥ t, and lt as illustrated in Figure 4. The function γ is
given explicitly by (2.12).

What remains is to determine the probabilities e(j)x ’s for all it and lt. We introduce
the dependency between the index process, the short-term rate, and the premiums of



Journal of Probability and Statistics 17

insurance products using copulas. Let G(j)
x , j = 1,2,3, denote this joint conditional cumulative

distribution function over time t and t + 1. That is

G
(j)
x

(
y1, y2, y3; it, lt

)
= Q(j)+

x

[
S(t + 1) ≤ y1,W

(j)(x, t + 1, n, lt) ≤ y2,

r(t + 1) ≤ y3 | K(x) ≥ t, it, lt
]
.

(4.3)

As explained, the marginal cumulative distribution functions of the insurance products and
the index are preserved under the extended measures, that is,

G
(j)
x

(
∞, y2, y3; it, lt

)

= Q(j)
x

[
W (j)(x, t + 1, n, lt) ≤ y2, r(t + 1) ≤ y3 | it, lt

]
,

G
(j)
x

(
y1,∞,∞; it, lt

)
= Q
[
S(t + 1) ≤ y1 | it, lt

]
,

(4.4)

which are determined using (3.18), (3.19), and (3.20) for j = 1, (3.24), (45), and (3.26) for
j = 2, (3.29), (3.30), as well as (3.31) for j = 3, and (2.13) for the index. Let Cκ(t) be the choice
of copula, then the cumulative distribution function G(j)

x is defined by

G
(j)
x

(
y1, y2, y3; it, lt

)
= Cκ(t)

(
G

(j)
x

(
y1,∞,∞; it, lt

)
, G

(j)
x

(
∞, y2, y3; it, lt

))
, (4.5)

where κ(t) represents the free parameter between t and t + 1 that indicate the level of
dependence between the insurance product, interest rate, and the index processes. Here,
the copula Cκ(t) could be defined using either (3.6), (3.7), (3.8), (3.9), or (3.10). Note that in
some cases, for example, the lower copula (3.8), the function G

(j)
x would not be a cumulative

distribution function. We also remark that G(j)
x ’s are functions of K(x) ≥ t, but for notational

simplicity we suppress K(x).
The martingale probabilities can be obtained from the cumulative distribution

function and are given by

e
(j)
x (t, i, it, lt) = G

(j)
x

(
S(t)γ(t + 1, i), V (j)(x, t + 1, n, {lt, lt}), r(t + 1, lt); it, lt

)

−G(j)
x

(
S(t)γ(t + 1, i − 1), V (j)(x, t + 1, n, {lt, lt}), r(t + 1, lt); it, lt

)
,

(4.6)

for i = 0, . . . ,N,

e
(j)
x (t, i, it, lt) = G

(j)
x

(
S(t)γ(t + 1, i −N − 1), V (j)(x, t + 1, n, {lt, lt + 1}), r(t + 1, lt + 1); it, lt

)

−G(j)
x

(
S(t)γ(t + 1, i −N − 2), V (j)(x, t + 1, n, {lt, lt + 1}), r(t + 1, lt + 1); it, lt

)
,

(4.7)
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V (j)(x, t, n, lt)
r(t, lt)
S(t)

1{j={1,3}}; r(t + 1, lt + 1);S(t)γ(t + 1,N)

1{j={1,3}}; r(t + 1, lt + 1);S(t)γ(t + 1, 0)

1{j={1,3}}; r(t + 1, lt);S(t)γ(t + 1,N)

V (j)(x, t + 1, n, {lt, lt + 1}); r(t + 1, lt + 1);S(t)γ(t + 1, 0)

V (j)(x, t + 1, n, {lt, lt}); r(t + 1, lt);S(t)γ(t + 1,N)

V (j)(x, t + 1, n, {lt, lt}); r(t + 1, lt);S(t)γ(t + 1, 0)

...

...

...

Figure 4: The probability tree of the combined insurance product (j = 1, 2, 3), short-term rate, and index
processes between t and t + 1 given that K(x) ≥ t, lt, and it.

for i =N + 1, . . . , 2N + 1,

e
(j)
x (t, i, it, lt) = G

(j)
x

(
S(t)γ(t + 1, i − 2N − 2), 1, r(t + 1, lt); it, lt

)

−G(j)
x

(
S(t)γ(t + 1, i − 2N − 3), 1, r(t + 1, lt); it, lt

)

−G(j)
x

(
S(t)γ(t + 1, i − 2N − 2), V (j)(x, t + 1, n, {lt, lt}), r(t + 1, lt); it, lt

)

+G(j)
x

(
S(t)γ(t + 1, i − 2N − 3), V (j)(x, t + 1, n, {lt, lt}), r(t + 1, lt); it, lt

)
,

(4.8)

for i = 2N + 2, . . . , 3N + 2, and

e
(j)
x (t, i, it, lt) = G

(j)
x

(
S(t)γ(t + 1, i − 3N − 3), 1, r(t + 1, lt + 1); it, lt

)

−G(j)
x

(
S(t)γ(t + 1, i − 3N − 4), 1, r(t + 1, lt + 1); it, lt

)

−G(j)
x

(
S(t)γ(t + 1, i − 3N − 3), V (j)(x, t + 1, n, {lt, lt}), r(t + 1, lt + 1); it, lt

)

−G(j)
x

(
S(t)γ(t + 1, i − 3N − 3), 1, r(t + 1, lt); it, lt

)

+G(j)
x

(
S(t)γ(t + 1, i − 3N − 4), V (j)(x, t + 1, n, {lt, lt}), r(t + 1, lt + 1); it, lt

)
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+G(j)
x

(
S(t)γ(t + 1, i − 3N − 4), 1, r(t + 1, lt); it, lt

)

+G(j)
x

(
S(t)γ(t + 1, i − 3N − 3), V (j)(x, t + 1, n, {lt, lt}), r(t + 1, lt); it, lt

)

−G(j)
x

(
S(t)γ(t + 1, i − 3N − 4), V (j)(x, t + 1, n, {lt, lt}), r(t + 1, lt); it, lt

)
, (4.9)

for i = 3N+3, . . . , 4N+3 and j = 1, 3, whereG(j)
x (S(t)γ(t+1,−1), . . . ; it, lt) = 0 andG(j)

x (. . . ; it, lt)
is obtained using (4.5). Similarly, for j = 2,

e
(2)
x (t, i, it, lt) = G

(2)
x

(
S(t)γ(t + 1, i), V (2)(x, t + 1, n, {lt, lt}), r(t + 1, lt); it, lt

)

−G(2)
x

(
S(t)γ(t + 1, i − 1), V (2)(x, t + 1, n, {lt, lt}), r(t + 1, lt); it, lt

)

−G(2)
x

(
S(t)γ(t + 1, i), V (2)(x, t + 1, n, {lt, lt + 1}), r(t + 1, lt); it, lt

)

+G(2)
x

(
S(t)γ(t + 1, i − 1), V (2)(x, t + 1, n, {lt, lt + 1}), r(t + 1, lt); it, lt

)
,

(4.10)

for i = 0, . . . ,N,

e
(2)
x (t, i, it, lt) = G

(2)
x

(
S(t)γ(t + 1, i −N − 1), V (2)(x, t + 1, n, {lt, lt + 1}), r(t + 1, lt + 1); it, lt

)

−G(2)
x

(
S(t)γ(t + 1, i −N − 2), V (2)(x, t + 1, n, {lt, lt + 1}), r(t + 1, lt + 1); it, lt

)

−G(2)
x

(
S(t)γ(t + 1, i −N − 1), 0, r(t + 1, lt + 1); it, lt

)

−G(2)
x

(
S(t)γ(t + 1, i −N − 1), V (2)(x, t + 1, n, {lt, lt + 1}), r(t + 1, lt); it, lt

)

+G(2)
x

(
S(t)γ(t + 1, i −N − 2), 0, r(t + 1, lt + 1); it, lt

)

+G(2)
x

(
S(t)γ(t + 1, i −N − 2), V (2)(x, t + 1, n, {lt, lt + 1}), r(t + 1, lt); it, lt

)

+G(2)
x

(
S(t)γ(t + 1, i −N − 1), 0, r(t + 1, lt); it, lt

)

−G(2)
x

(
S(t)γ(t + 1, i −N − 2), 0, r(t + 1, lt); it, lt

)
,

(4.11)

for i =N + 1, . . . , 2N + 1,

e
(2)
x (t, i, it, lt) = G

(2)
x

(
S(t)γ(t + 1, i − 2N − 2), 0, r(t + 1, lt); it, lt

)

−G(2)
x

(
S(t)γ(t + 1, i − 2N − 3), 0, r(t + 1, lt); it, lt

)
,

(4.12)
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for i = 2N + 2, . . . , 3N + 2, and

e
(2)
x (t, i, it, lt) = G

(2)
x

(
S(t)γ(t + 1, i − 3N − 3), 0, r(t + 1, lt + 1); it, lt

)

−G(2)
x

(
S(t)γ(t + 1, i − 3N − 4), 0, r(t + 1, lt + 1); it, lt

)

−G(2)
x

(
S(t)γ(t + 1, i − 3N − 3), 0, r(t + 1, lt); it, lt

)

+G(2)
x

(
S(t)γ(t + 1, i − 3N − 4), 0, r(t + 1, lt); it, lt

)
,

(4.13)

for i = 3N + 3, . . . , 4N + 3.
Consider now an equity-linked product that pays

⎧
⎨

⎩
D(K(x) + 1) if K(x) = 0, 1, . . . , n − 1,

D(n) if K(x) ≥ n.
(4.14)

For notational convenience, we sometimes use D(t, it) to specify the index’s realization.
Let P (1)(x, t, n, it, lt) denote the premium at time t of the equity-linked contract death

benefit given that (x) is still alive and the index and short-term rate processes have taken the
path it and lt, respectively. With the martingale structure identified by (4.6), (4.7), (4.8), and
(4.9), P (1)(x, t, n, it, lt) may be obtained as the expected discounted payoffs

P (1)(x, t, n, it, lt) = E
(1)+
x

[
D(K(x) + 1)1{K(x)<n}

B(K(x) + 1)
B(t)
∣∣∣∣it, lt, K(x) ≥ t

]
, (4.15)

where E(1)+
x [·] represents the expectation with respect to Q(1)+

x .
On the other hand, let P (2)(x, t, n, it, lt) denote the premium at time t of the equity-

linked product accumulation benefit given that (x) is still alive and the index process has
taken the path it. With the martingale structure identified by (4.10), (4.11), (4.12), and (4.13),
P (2)(x, t, n, it, lt) may be obtained as the expected discounted payoffs

P (2)(x, t, n, it, lt) = E
(2)+
x

[
D(n)1{K(x)≥n}

B(n)
B(t)
∣∣∣∣it, lt, K(x) ≥ t

]
. (4.16)

Let P(x, t, n, it, lt) denote the premium at time t of an n-year equity-linked product
issue to (x) with its payoff defined by (4.14). In particular, P(x, 0, n, i0, l0) is the amount
invested by an insured or, from insurers’ point of view, the premium paid by the
policyholder. We assume that P(x, t, n, it, lt) may be decomposed in two different premiums;
P (1)(x, t, n, it, lt) is the premium to cover the death benefit and P (2)(x, t, n, it, lt) is the premium
to cover the accumulation benefit. That is, we assume that

P(x, t, n, it, lt) = P (1)(x, t, n, it, lt) + P (2)(x, t, n, it, lt), (4.17)

where P (1)(x, t, n, it, lt) and P (2)(x, t, n, it, lt) are obtained using (4.15) and (4.16), respectively.
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An alternative approach is to evaluate equity-linked products containing death
and accumulation benefits in a unified manner, using the pricing information from the
endowment insurance products. In this case, the n-year equity-linked product premium
P(x, t, n, it, lt) may be obtained as expected discounted payoffs

P(x, t, n, it, lt) = E
(3)+
x

[(
D(K(x) + 1)1{K(x)<n−1}

B(K(x) + 1)
+
D(n)1{K(x)≥n−1}

B(n)

)
B(t)
∣∣∣∣it, lt, K(x) ≥ t

]
.

(4.18)

Figure 4 presents the dynamic of the equity-linked premiums for time period [t, t + 1].
Bear in mind that the first approach presented in this section evaluates equity-linked

products by loading the death and survival probabilities separately. The second approach
evaluates the equity-linked product using unified loaded probabilities.

5. Evaluation of Equity-Linked Products

In this section, we evaluate equity-linked contracts using recursive algorithms. It follows from
(4.15) and (4.16) that

P (1)(x, t, n, it, lt)

=
1

1 + r(t, lt)

[
N∑

v=0

(
e
(1)
x (t, v + 2N + 2, it, lt) + e

(1)
x (t, v + 3N + 3, it, lt)

)
D(t + 1, {it, v})

+
N∑

v=0

(
e
(1)
x (t, v, it, lt)P (1)(x, t + 1, n, {it, v}, {lt, lt})

+e(1)x (t, v +N + 1, it, lt)P (1)(x, t + 1, n, {it, v}, {lt, lt + 1})
)]
,

(5.1)

with P (1)(x, n, n, in, ln) = 0 and

P (2)(x, t, n, it, lt) =
1

1 + r(t, lt)

[
N∑

v=0

(
e
(2)
x (t, v, it, lt)P (2)(x, t + 1, n, {it, v}, {lt, lt})

+e(2)x (t, v +N + 1, it, lt)P (2)(x, t + 1, n, {it, v}, {lt, lt + 1})
)]
,

(5.2)

with P (2)(x, n, n, in, ln) = D(n, in).
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Table 1: Point-to-point with term-end design for various interest rate volatilities.

Decomposed approach Unified approach
σ σr(t) CI CU CD C

CJ
0.5 C

CJ
2 CG

−0.1 CG
0.3 CI CU CD

3% Minimum guarantee on 90% premium

20%
0% 62.17 56.27 68.58 59.94 58.38 63.08 59.59 70.28 69.98 70.05
4% 62.17 55.85 69.17 59.79 58.07 63.12 59.46 70.27 69.40 70.64
8% 62.15 55.44 69.75 59.63 57.75 63.15 59.31 70.25 68.83 71.23

30% 0% 48.95 43.20 55.15 47.02 45.63 49.79 46.54 55.46 55.14 55.25
4% 48.95 42.93 55.54 46.93 45.43 49.82 46.45 55.45 54.74 55.68
8% 48.94 42.66 55.93 46.83 45.23 49.85 46.37 55.45 54.35 56.11

3% Minimum guarantee on 100% premium

20%
0% 44.58 41.32 47.87 43.45 42.65 45.06 43.20 53.25 53.12 52.88
4% 44.57 40.93 48.38 43.32 42.36 45.09 43.07 53.25 52.56 53.46
8% 44.55 40.53 48.89 43.18 42.07 45.12 42.94 53.24 52.00 54.03

30%
0% 32.20 29.12 35.38 31.25 30.56 32.63 30.96 39.27 39.13 38.98
4% 32.20 28.89 35.69 31.18 30.40 32.65 30.89 39.27 38.77 39.36
8% 32.19 28.65 36.00 31.10 30.23 32.67 30.81 39.27 38.41 39.75

A recursive formula to evaluate P(x, t, n, it, lt) under Q(3)+
x is determined using (4.18),

that is,

P(x, t, n, it, lt)

=
1

1 + r(t, lt)

[
N∑

v=0

(
e
(3)
x (t, v + 2N + 2, it, lt) + e

(3)
x (t, v + 3N + 3, it, lt)

)
D(t + 1, {it, v})

+
N∑

v=0

(
e
(3)
x (t, v, it, lt)P (3)(x, t + 1, n, {it, v}, {lt, lt})

+e(3)x (t, v +N + 1, it, lt)P(x, t + 1, n, {it, v}, {lt, lt + 1})
)]
,

(5.3)

for t = 0, . . . , n − 2, where

P(x, n − 1, n, in−1, ln−1) =
N∑

v=0

π(n, ln−1)
v(1 − π(n, ln−1))

N−v

1 + r(n − 1, ln−1)
D(n, {in−1, v}). (5.4)

Note that the surrender options for equity-linked products under stochastic interest
rates are evaluated in Gaillardetz [27].

6. Valuation of Equity-Indexed Annuities: Numerical Examples

This section implements numerically the methods we developed previously by considering
two types of equity-indexed annuities. They appeal to investors because they offer the
same protection as conventional annuities by limiting the financial risk, but also provide
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participation in the equity market. From Lin and Tan [11] and Tiong [8], EIA designs may be
generally grouped in two broad classes: Annual Reset and Point-to-Point. The index growth
on an EIA with the former is measured and locked in each year. Particularly, the index growth
with a term-end point design is calculated using the index value at the beginning and the end
of each year. In the latter, the index growth is based on the growth between two time points
over the entire term of the annuity. In the case of the term-end point design, the growth is
evaluated using the beginning and ending values of the index. The cost of the EIA contract is
reflected through the participation rate. Hence, the participation rate is expected to be lower
for expensive designs.

Our examples involve five-year EIAs issued to a male-aged 55 with minimum interest
rate guarantee of either 3% on 100% of the premium or 3% on 90% of the premium. For
illustration purposes, we assume that the insurance product values, V (j)(x, 0, n) (j = 1, 2, 3
and n = 1, 2, 3, 4, 5), are determined using the standard deviation premium principle (see
Bowers et al. [20]) with a loading factor of 5.00% based on the 1980 US CSO table (see
http://www.soa.org/). We also assume that the short-term rate r(t) follows the BDT where
the volatility is either 0%, 4%, or 8%. The observed price of the zero-coupon bond L(0, T)
is assumed to be equal to (1.05)−T for T = 1, 2, . . . , 5. Hence, the interest rate model may be
calibrated using (2.6) and (2.7). For simplification purposes, the index will be governed by
the Cox et al. [28] model where S(0) = 1 and the number of trading dates N is 3. In this
recombining model, the index at time k S(k) has two possible outcomes at time k + Δ: it is
either increasing to S(k + Δ) = US(k) or decreasing to S(k + Δ) = dS(k). The increasing and
decreasing factors u and d are supposed to be constant and are obtained from the volatility of
the index σ. This volatility is assumed to be constant and is either 20% or 30%. In other words,
u = eσ/

√
N(σ = 0.2, 0.3) and d = u−1. The index conditional martingale probability structure is

obtained using (2.10). The conditional joint distribution of the interest rates and the insurance
products are obtained using Propositions 3.1, 3.2, and 3.2. Here, these martingale probabilities
are determined based on the implied insurance volatilities, which are derived numerically
under the constraint given in (3.33).

The analysis is performed using the point-to-point and reset EIA classes with term-end
point design.

6.1. Point-to-Point

We first consider one of the simplest classes of EIAs, known as the point-to-point. Their
payoffs in year t can be represented by

D(t) = max
[
min
[
1 + αR(t), (1 + ζ)t

]
, β
(
1 + g

)t]
, (6.1)

where α represents the participation rate and the “gain” R(t) need to be defined depending
on the design. It also provides a protection against the loss from a down market β(1 + g)t.
The cap rate (1 + ζ)t reduces the cost of such contract since it imposes an upper bound on the
maximum return.

As explained in Lin and Tan [11], an EIA is evaluated through its participation rate
α. Without loss of generality, we suppose that the initial value of EIA contracts is one
monetary unit. The present value of the EIA is a function of the participation rate through
the payoff function D. We then solve numerically for α, the critical participation rate, such
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Table 2: Point-to-point with term-end design and 15% cap rate for various interest rate volatilities.

Decomposed approach Unified approach
σ σr(t) CI CU CD C

CJ
0.5 C

CJ
2 CG

−0.1 CG
0.3 CI CU CD

3% Minimum guarantee on 90% premium

20%
0% 65.65 59.00 72.98 62.95 61.16 66.69 62.73 75.95 76.61 75.43
4% 65.65 58.61 73.40 62.82 60.88 66.72 62.62 75.95 76.10 75.85
8% 65.64 58.23 73.85 62.68 60.61 66.75 62.50 75.94 75.64 76.29

30%
0% 58.94 51.26 67.42 55.97 54.00 60.11 55.62 69.87 70.94 69.33
4% 58.94 51.10 67.54 55.91 53.89 60.12 55.59 69.88 70.66 69.52
8% 58.94 50.96 67.70 55.86 53.79 60.13 55.56 69.90 70.45 69.76

3% Minimum guarantee on 100% premium

20%
0% 45.20 41.85 48.58 44.00 43.18 45.69 43.78 54.60 54.93 54.10
4% 45.19 41.44 49.07 43.87 42.89 45.72 43.66 54.60 54.35 54.63
8% 45.17 41.03 49.56 43.73 42.59 45.74 43.52 54.59 53.80 55.16

30%
0% 34.25 30.86 37.78 33.12 32.34 34.73 32.87 43.20 43.99 42.60
4% 34.25 30.63 38.04 33.06 32.19 34.75 32.81 43.20 43.46 42.96
8% 34.25 30.40 38.31 32.99 32.04 34.77 32.74 43.21 42.97 43.45

that P(x, 0, n, i0, l0) = 1, where P(x, 0, n, i0, l0) is obtained using (4.17) for the first approach
or using (4.18) for the second approach by holding all other parameter values constant.

6.1.1. Term-End Point

In practice, various designs for R(t) have been proposed. The term-end point design is the
simplest crediting method. It measures the index growth from the start to the end of a term.
The index on the day the contract is issued is taken as the starting index, and the index on the
day the policy matures or the time of death is taken as the ending index. Hence, the “gain”
provided by the point-to-point EIA with term-end point may expressed as

R(t) =
S(t)
S(0)

− 1. (6.2)

The EIA payoff given in (6.1) is defined by

D(t, it) = max

[
min

[
1 + α

(
t∏

l=0

γ(l, il) − 1

)
, (1 + ζ)t

]
, β
(
1 + g

)t
]
. (6.3)

Tables 1 and 2 give the critical participation rates based on (5.1) and (5.2) for the
decomposed approach as well as (5.3) for the unified approach over different short-term rate
volatilities (0%, 4%, and 8%). The index volatility is set to either 20% or 30%. We present the
participation rates of 5-year EIA contracts with the term-end design without cap rate (ζ =∞)
in Table 1 and 15% cap rate in Table 2. We consider two types of minimum guarantees:
β = 90% and β = 100% and both with g = 3%.

The participation rates obtained for σr(t) = 0% are consistent with the corresponding
participation rates under deterministic interest rates presented in Gaillardetz and Lin [13].
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Table 3: Annual reset with term-end point design for various interest rate volatilities.

Decomposed approach Unified approach
σ σr(t) CI CU CD C

CJ
0.5 C

CJ
2 CG

−0.1 CG
0.3 CI CU CD

3% Minimum guarantee on 90% premium

20%
0% 38.91 37.19 40.51 38.42 38.02 39.16 38.19 43.26 43.25 43.27
4% 38.91 37.27 40.41 38.44 38.07 39.15 38.21 43.26 43.31 43.21
8% 38.91 37.35 40.32 38.46 38.12 39.14 38.23 43.27 43.37 43.17

30%
0% 28.23 26.72 29.59 27.86 27.54 28.42 27.65 31.39 31.38 31.39
4% 28.23 26.79 29.50 27.88 27.59 28.41 27.67 31.39 31.43 31.34
8% 28.23 26.87 29.41 27.89 27.63 28.41 27.69 31.39 31.50 31.30

3% Minimum guarantee on 100% premium

20%
0% 35.42 33.93 36.74 35.04 34.71 35.62 34.82 40.59 40.57 40.55
4% 35.42 33.92 36.76 35.03 34.70 35.62 34.82 40.59 40.52 40.60
8% 35.41 33.90 36.77 35.02 34.69 35.61 34.81 40.59 40.49 40.66

30%
0% 25.19 23.87 26.36 24.91 24.65 25.35 24.71 28.89 28.86 28.87
4% 25.19 23.88 26.34 24.91 24.66 25.35 24.72 28.89 28.85 28.89
8% 25.19 23.89 26.32 24.91 24.67 25.34 24.72 28.90 28.85 28.91

As expected, the participation rates for the independent copulas decrease as the interest rate
volatility increases; however, this effect is negligible for 5-year contracts.

The independent copula may be obtained by letting κ → 0 in the Cook-Johnson
copula. Similarly, the Frechet-Hoeffding upper bound is obtained by letting κ → ∞. This
explains that the participation rates with κ(t) = 0.5 are closer to the independent one than
the participation rates obtained using κ(t) = 2, which are closer to the upper copula. Setting
κ(t) = 0 in the Gaussian copula also leads to the independent copula. The participation rates
are between the independent copula and the lower copula when κ(t) = −0.1. On the other
hand, when κ(t) = 0.3 the participation rates are between the independent copula and the
upper copula.

The width of participation rate bands for the decomposed approach increases as the
short-term rate volatility increases. Here, the participation rate band represents the difference
between the participation rates obtained from the lower copula and the upper copula. Indeed,
the participation rate for the upper copula (β = 90% and σ = 20%) decreases from 56.27%
(σr(t) = 0%) to 55.44% (σr(t) = 8%), meanwhile under the lower copula the participation rate
passes from 68.58% (σr(t) = 0%) to 69.75% (σr(t) = 0%). This is due to the fact that increasing
σr introduces more uncertainty in the model.

As we increase the volatility of the index, the participation rate decreases since a higher
volatility leads to more valuable embedded financial options. As expected, the participation
rates for β = 100% are lower than the corresponding values with β = 90%.

The dependence effects for the unified approach are negligible since there is a natural
“hedging” between the death and accumulation benefits. The introduction of stochastic
interest rates has more impact when β = 90% than when β = 100% because the participation
rates are higher. Although the participation rates are higher when σ = 20%, the dependence
has relatively more impact if σ = 30% because the model is more risky.

As expected, imposing a ceiling on the equity return that can be credited increases
the participation rates. Furthermore, the magnitude of the increments is more significant



26 Journal of Probability and Statistics

Table 4: Annual reset with term-end point design and 15% cap rate for various interest rate volatilities.

Decomposed Approach Unified Approach
σ σr(t) CI CU CD C

CJ
0.5 C

CJ
2 CG

−0.1 CG
0.3 CI CU CD

3% Minimum Guarantee on 90% Premium

20%
0% 42.49 38.58 45.86 41.35 40.44 43.04 40.86 52.63 52.62 52.65
4% 42.49 38.78 45.65 41.39 40.56 43.02 40.91 52.64 52.76 52.53
8% 42.49 38.98 45.44 41.44 40.69 43.00 40.97 52.66 52.91 52.44

30%
0% 35.80 33.10 38.12 35.02 34.40 36.18 34.69 42.82 42.80 42.83
4% 35.81 33.28 37.93 35.06 34.50 36.17 34.73 42.83 42.94 42.72
8% 35.81 33.47 37.75 35.09 34.60 36.16 34.78 42.84 43.09 42.62

3% Minimum Guarantee on 100% Premium

20%
0% 35.42 33.93 37.69 35.04 34.71 35.62 34.82 47.46 47.45 47.35
4% 35.42 33.92 37.73 35.03 34.70 35.62 34.82 47.46 47.36 47.46
8% 35.41 33.90 37.77 35.02 34.69 35.61 34.81 47.47 47.28 47.60

30%
0% 30.40 27.60 32.72 29.73 29.17 30.75 29.36 39.41 39.45 39.34
4% 30.40 27.63 32.66 29.74 29.19 30.75 29.37 39.42 39.45 39.36
8% 30.40 27.67 32.62 29.75 29.22 30.74 29.38 39.43 39.48 39.40

in a high volatility market. This is because the effect of the volatility diminishes as the cap
rate decreases and hence the behavior of the EIA payoff is similar for different ranges of
volatilities. This is particularly observable when β = 90%.

6.2. Annual Reset

We now consider the most popular class of EIAs, known as the annual reset. They appeal to
investors because they offer similar features as the point-to-point class; however, the interest
credited to a annual reset EIA contract cannot be lost. This “lock-in” feature protects the
investor against a poor performance of the index over a particular year. The payoff of this
type of EIA contracts is defined by

D(t) = max

[
t∏

l=1

max[min[1 + αR(l) − ν, (1 + ζ)], 1], β
(
1 + g

)t
]
, (6.4)

where R(l) represents the realized “gain” in year l, which varies from product to
product.

The cases where ν is set to 0 are known as annual reset EIAs and the cases where
ν > 0 are known as annual yield spreads. Furthermore, the participation levels in those cases
ν > 0 are typically 100%. As mentioned previously, in the case of annual reset, we fix ν = 0
and determine the critical participation rate α while fixing g, β, and ζ. In the traditional yield
spread ν needs to be determined such that the cost of EIA embedded options is covered by
the initial premium while fixing α = 100%, g, β, and ζ.



Journal of Probability and Statistics 27

6.2.1. Term-End Point

In the case of annual reset EIA with term-end point, the index return is calculated each
year by comparing the indices at the beginning and ending policy anniversaries. Hence, the
participation rate may be expressed as

R(t) =
S(t)

S(t − 1)
− 1. (6.5)

In this case, the EIA payoff given in (6.4) is defined by

D(t, it) = max

[
t∏

l=1

max
[
min
[
1 + α

(
γ(l, il) − 1

)
− v, (1 + ζ)

]
, 1
]
, β
(
1 + g

)t
]
. (6.6)

Tables 3 and 4 consider an annual reset EIA with term-end point design for various
cap rates (ζ = ∞ and ζ = 15%). In this numerical illustration, we consider the same set of
parameters; particularly, the short-term rate volatility is either equal to 0%, 4%, or 8% and
the index volatility is set to either 20% or 30% with N = 3. We find α such that (4.17) for the
decomposed approach and (4.18) for the unified approach are equal to 1 by setting ν = 0%.

The annual reset with term-end point design is more expensive than the point-to-
point with the term-end point design. The participation rates from the upper copula increase
while the ones from the lower copula decrease as σr(t) increases for both approaches when
β = 90%. This leads to narrower participation rate bands for the decomposed approach.
These behaviors are inverted for β = 100%. In that case, it leads to wider participation
rate bands for the decomposed approach. The imposition of a 15% cap rate may increase
the participation rate as much as 10%. However, there is no impact on the participation rate
under the decomposed approach when σ = 20% and β = 100%.

7. Conclusions

The purpose of this paper is to generalize the approach presented by Gaillardetz and Lin
[13] under stochastic interest rates. To this end, martingale probability measures for each of
the term life, pure endowment, and endowment insurances are introduced under stochastic
interest rates. Using the insurance market information, we obtain equity-linked martingale
measures that combined the insurance, interest rates, and index information. Although the
choice of copulas is somewhat arbitrary, with additional premium information from certain
equity-linked products, we would be able to narrow down the choices. We present two
different pricing approaches for equity-linked products. The first approach evaluates death
benefits and accumulation/survival benefits separately. In the second approach, we evaluate
the death benefits and the survival benefits in a unified manner by using the endowment
insurance products to define the martingale measure. A detailed numerical analysis is then
performed for existing EIAs in the North American market.

Our methodology may be used to evaluate variable annuities (segregated fund
contracts in Canada) because of the similarity in payoff structure between EIAs and VAs.
Furthermore, our approach may also be used to evaluate Universal Life insurances, variable
Universal Life insurances, and others equity-linked products.
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Endnotes

1. Utility theory is also used to price standard life insurance products.
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This paper presents a new nonparametric method for computing the conditional Value-at-Risk,
based on a local approximation of the conditional density function in a neighborhood of a
predetermined extreme value for univariate and multivariate series of portfolio returns. For
illustration, the method is applied to intraday VaR estimation on portfolios of two stocks traded on
the Toronto Stock Exchange. The performance of the new VaR computation method is compared
to the historical simulation, variance-covariance, and J. P. Morgan methods.

1. Introduction

The Value-at-Risk (VaR) is a measure of market risk exposure for portfolios of assets. It has
been introduced by the Basle Committee on Banking Supervision (BCBS) and implemented
in the financial sector worldwide in the late nineties. By definition, the VaR equals the Dollar
loss on a portfolio that will not be exceeded by the end of a holding time with a given
probability. Initially, the BCBS has recommended a 10-day holding time (and allowed for
computing the VaR at horizon 10 days by rescaling the VaR at a shorter horizon) and loss
probability 1%; (see, [1], page 3), Banks use the VaR to determine the required capital to
be put aside for coverage of potential losses. (The required capital reserve is defined as
RCt = Max[VaRt, (M +m)1/60

∑60
h=1 VaRt−h], (see, [1], page 14 and [2], page 2), where M is

a multiplier set equal to 3, and m takes a value between 0 and 1 depending on the predictive
quality of the internal model used by the bank.) The VaR is also used in portfolio management
and internal risk control. Therefore, some banks compute intradaily VaRs, at horizons of one
or two hours, and risk levels of 0.5%, or less.
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Formally, the conditional Value-at-Risk is the lower-tail conditional quantile and
satisfies the following expression:

Pt[xt+1 < −VaRt(α)] = α, (1.1)

where xt is the portfolio return between t − 1 and t, α denotes the loss probability, and
Pt represents the conditional distribution of xt+1 given the information available at time t.
Usually, the information set contains the lagged values xt, xt−1, . . . of portfolio returns. It can
also contain lagged returns on individual assets, or on the market portfolio.

While the definition of the VaR as a market risk measure is common to all banks,
the VaR computation method is not. In practice, there exist a variety of parametric,
semiparametric, and nonparametric methods, which differ with respect to the assumptions
on the dynamics of portfolio returns. They can be summarized as follows (see, e.g., [3]).

(a) Marginal VaR Estimation

The approach relies on the assumption of i.i.d. returns and comprises the following methods.

(1) Gaussian Approach

The VaR is the α-quantile, obtained by inverting the Gaussian cumulative distribution
function

VaR(α) = −Ext+1 −Φ−1(α)(Vxt+1)1/2, (1.2)

where Ext+1 is the expected return on a portfolio, Vxt+1 is the variance of portfolio returns,
and Φ−1(α) is the α-quantile of the standard normal distribution. This method assumes the
normality of returns and generally underestimates the VaR. The reason is that the tails of the
normal distribution are much thinner than the tails of an empirical marginal distribution of
portfolio returns.

(2) Historical Simulation (see [1])

VaR(α) is approximated from a sample quantile at probability α, obtained from historical
data collected over an observation period not shorter than one year. The advantage of this
method is that it relaxes the normality assumption. Its major drawback is that it provides poor
approximation of small quantiles at α’s such as 1%, for example, as extreme values are very
infrequent. Therefore, a very large sample is required to collect enough information about
the true shape of the tail. (According to the asymptotic properties of the empirical quantile,
at least 200–300 observations, that is, one year, approximately, are needed for α = 5% and at
least 1000, that is, 4 years are needed for α= 1%, both for a Gaussian tail. For fatter tails, even
more observations can be required (see, e.g., the discussion in [3]).

(3) Tail Model Building

The marginal quantile at a small risk level α is computed from a parametric model of the
tail and from the sample quantile(s) at a larger α. For example, McKinsey Inc. suggests to
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infer the 99th quantile from the 95th quantile by multiplying the latter one by 1.5, which is
the weight based on a zero-mean Gaussian model of the tail. This method is improved by
considering two tail quantiles. If a Gaussian model with mean μ and variance σ is assumed
to fit the tail for α < 10%, then the V̂aR(α), for any α < 10%, can be calculated as follows, Let
V̂aR(10%) and V̂aR(5%) denote the sample quantiles at risk levels 5% and 10%. From (1.2),
the estimated mean and variance in the tail arise as the solutions of the system

V̂aR(10%) = −m̂ −Φ−1(10%)σ̂,

V̂aR(5%) = −m̂ −Φ−1(5%)σ̂.
(1.3)

The marginal VaR at any loss probability α less than 10% is calculated as

V̂aR(α) = −m̂ −Φ−1(α)σ̂, (1.4)

where m̂, σ̂ are solutions of the above system. Equivalently, we get

V̂aR(α) − V̂aR(10%)

V̂aR(5%) − V̂aR(10%)
=

Φ−1(α) −Φ−1(10%)
Φ−1(5%) −Φ−1(10%)

. (1.5)

Thus, V̂aR(α) is a linear combination of sample quantiles V̂aR(10%) and V̂aR(5%) with the
weights determined by the Gaussian model of the tail.

This method is parametric as far as the tail is concerned and nonparametric for the
central part of the distribution, which is left unspecified.

The marginal VaR estimation methods discussed so far do not account for serial
dependence in financial returns, evidenced in the literature. (These methods are often applied
by rolling, that is, by averaging observations over a window of fixed length, which implicitly
assumes independent returns, with time dependent distributions.)

(b) Conditional VaR Estimation

These methods accommodate serial dependence in financial returns.

(1) J. P. Morgan

The VaR at 5% is computed by inverting a Gaussian distribution with conditional mean zero
and variance equal to an estimated conditional variance of returns. The conditional variance
is estimated from a conditionally Gaussian IGARCH-type model of volatility σ2

t , called the
Exponentially Weighted Moving Average, where σ2

t = θσ2
t−1 + (1 − θ)x2

t−1, and parameter θ is
arbitrarily fixed at 0.94 for any portfolio [4].

(2) CaViar [5]

The CaViar model is an autoregressive specification of the conditional quantile. The model is
estimated independently for each value of α, and is nonparametric in that respect.
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Table 1: Computation of the VaR.

Parametric Semi-parametric Nonparametric
i.i.d. Gaussian tail model building historical simulation

approach (advisory firms) (regulators)
Serial IGARCH by J. P. Morgan CaViar
Dependence DAQ

(3) Dynamic Additive Quantile (DAQ) [6]

This is a parametric, dynamic factor model of the conditional quantile function.
Table 1 summarizes all the aforementioned methods.
This paper is intended to fill in the empty cell in Table 1 by extending the tail model

building method to the conditional Value-at-Risk. To do that, we introduce a parametric
pseudomodel of the conditional portfolio return distribution that is assumed valid in a
neighbourhood of the VaR of interest. Next, we estimate locally the pseudodensity, and use
this result for calculating the conditional VaRs in the tail.

The local nonparametric approach appears preferable to the fully parametric
approaches for two reasons. First, the nonparametric methods are too sensitive to
specification errors. Second, even if the theoretical rate of convergence appears to be smaller
than that of a fully parametric method (under the assumption of no specification error in
the latter one), the estimator proposed in this paper is based on a local approximation of
the density in a neighborhood where more observations are available than at the quantile of
interest.

The paper is organized as follows. Section 2 presents the local estimation of a
probability density function from a misspecified parametric model. By applying this
technique to a Gaussian pseudomodel, we derive the local drift and local volatility, which
can be used as inputs in expression (1.2). In Section 3, the new method is used to compute
the intraday conditional Value-at-Risk for portfolios of two stocks traded on the Toronto Stock
Exchange. Next, the performance of the new method of VaR computation is compared to
other methods, such as the historical simulation, Gaussian variance-covariance method, J. P.
Morgan IGARCH, and ARCH-based VaR estimation in Monte Carlo experiments. Section 4
discusses the asymptotic properties of the new nonparametric estimator of the log-density
derivatives. Section 5 concludes the paper. The proofs are gathered in Appendices.

2. Local Analysis of the Marginal Density Function

The local analysis of a marginal density function is based on a family of pseudodensities.
Among these, we define the pseudodensity, which is locally the closest to the true density.
Next, we define the estimators of the local pseudodensity, and show the specific results
obtained for a Gaussian family of pseudodensities.

2.1. Local Pseudodensity

Let us consider a univariate or multivariate random variable Y , with unknown density f0,
and a parametric multivariate family of densities F = {f(y, θ), θ ∈ Θ}, called the family of
pseudodensities where the parameter set Θ ⊂ R

p. This family is generally misspecified. Our
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method consists in finding the pseudodensity f(y; θ∗0), which is locally the closest to the true
density. To do that we look for the local pseudo-true value of parameter θ.

In the first step, let us assume that variable Y is univariate and consider an
approximation on an interval A = [c − h, c + h], centered at some value c of variable Y .
The pseudodensity is derived by optimizing the Kullback-Leibler criterion evaluated from
the pseudo and true densities truncated over A. The pseudo-true value of θ is

θ̃c,h = Argmax
θ

[
E0
[
1c−h<Y<c+h log f(Y ; θ)

]

−E0[1c−h<Y<c+h] log
∫

1c−h<y<c+h f
(
y; θ
)
dy

]

= Argmax
θ

E0

[
1

2h
1c−h<Y<c+h log f(Y ; θ)

]

− E0

[
1

2h
1c−h<Y<c+h

]

log
∫

1
2h

1c−h<y<c+h f
(
y; θ
)
dy,

(2.1)

where E0 denotes the expectation taken with respect to the true probability density function
(pdf, henceforth) f0. The pseudo-true value depends on the pseudofamily, the true pdf, the
bandwidth, and the location c. The above formula can be equivalently rewritten in terms of
the uniform kernel K(u) = (1/2)1[−1,1](u). This leads to the following extended definition of
the pseudo-true value of the parameter which is valid for vector Y of any dimension d, kernel
K, bandwidth h, and location c:

θ̃c,h = Argmax
θ

E0

[
1
hd
K

(
Y − c
h

)

log f(Y ; θ)
]

− E0

[
1
hd
K

(
Y − c
h

)]

log
∫

1
hd
K

(
y − c
h

)

f
(
y; θ
)
dy.

(2.2)

Let us examine the behavior of the pseudo-true value when the bandwidth tends to zero.

Definition 2.1. (i) The local parameter function (l.p.f.) is the limit of θ̃c,h when h tends to zero,
given by

θ̃
(
c, f0
)
= lim

h→ 0
θ̃c,h, (2.3)

when this limit exists.

(ii) The local pseudodensity is f[y; θ̃(c, f0)].

The local parameter function provides the set of local pseudo-true values indexed by
c, while the local pseudodensity approximates the true pdf in a neighborhood of c. Let us
now discuss some properties of the l.p.f.



6 Journal of Probability and Statistics

Proposition 2.2. Let one assume the following:

(A.1) There exists a unique solution to the objective function maximized in (2.2) for any h, and
the limit θ̃(c, f0) exists.

(A.2) The kernel K is continuous on R
d, of order 2, such that

∫
K(u)du = 1,

∫
uK(u)du =

0,
∫
uu′K(u)du = η2, positive definite.

(A.3) The density functions f(y, θ) and f0(y) are positive and third-order differentiable with
respect to y.

(A.4) dim θ = p ≥ d, and, for any c in the support of f0,

{
∂ log f(c; θ)

∂y
, θ ∈ Θ

}

= R
d. (2.4)

(A.5) For h small and any c, the following integrals exist:
∫
K(u) log f(c + uh; θ) f0(c + uh)du,∫

K(u)f0(c+uh)du,
∫
K(u)f(c+uh; θ)du, and are twice differentiable under the integral

sign with respect to h.

Then, the local parameter function is a solution of the following system of equations:

∂ log f
[
c; θ̃
(
c; f0
)]

∂y
=
∂ log f0(c)

∂y
, ∀c. (2.5)

Proof . See Appendix A.

The first-order conditions in Proposition 2.2 show that functions f[y, θ̃(c, f0)] and
f0(c) have the same derivatives at c. When p is strictly larger than d, the first-order conditions
are not sufficient to characterize the l.p.f.

Assumption (A.1) is a local identification condition of parameter θ. As shown in
the application given later in the text, it is verified to hold for standard pseudofamilies of
densities such as the Gaussian, where θ̃(c, f0) has a closed form. (The existence of a limit
θ̃(c, f0) is assumed for expository purpose. However, the main result concerning the first-
order conditions is easily extended to the case when θ̃c,h exists, with a compact parameter
set Θ. The proof in Appendix A shows that, even if the limh→ 0θ̃(c, f0) does not exist, we get
limh→ 0(∂ log f[c, θ̃c,h]/∂y) = ∂ log f0(c)/∂y, ∀c. This condition would be sufficient to define
a local approximation to the log-derivative of the density.)

It is known that a distribution is characterized by the log-derivative of its density due
to the unit mass restriction. This implies the following corollary.

Corollary 2.3. The local parameter function characterizes the true distribution.

2.2. Estimation of the Local Parameter Function and
of the Log-Density Derivative

Suppose that y1, . . . , yT are observations on a strictly stationary process (Yt) of dimension d.
Let us denote by f0 the true marginal density of Yt and by {f(y : θ), θ ∈ Θ} a (misspecified)
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pseudoparametric family used to approximate f0. We now consider the l.p.f. characterization
of f0, and introduce nonparametric estimators of the l.p.f. and of the marginal density.

The estimator of the l.p.f. is obtained from formula (2.2), where the theoretical
expectations are replaced by their empirical counterparts:

θ̃T (c) = Argmax
θ

[
T∑

t=1

1
hd
K

(
yt − c
h

)

log f
(
yt; θ
)

−
T∑

t=1

1
hd
K

(
yt − c
h

)

log
∫

1
hd
K

(
y − c
h

)

f
(
y; θ
)
dy

]

.

(2.6)

The above estimator depends on the selected kernel and bandwidth. This estimator allows us
to derive from Proposition 2.2 a new nonparametric consistent estimator of the log-density
derivative defined as

∂ log f̂T (c)
∂y

=
∂ log f

[
c; θ̃T (c)

]

∂y
. (2.7)

The asymptotic properties of the estimators of the l.p.f. and log-density derivatives are
discussed in Section 4, for the exactly identified case p = d. In that case, θ̃T (c) is characterized
by the system of first-order conditions (2.7).

The quantity f[c, θ̃T (c)] is generally a nonconsistent estimator of the density f0(c)
at c (see, e.g., [7] for a discussion of such a bias in an analogous framework ). However,
a consistent estimator of the log-density (and thus of the density itself, obtained as the
exponential function of the log-density) is derived directly by integrating the estimated log-
density derivatives under the unit mass restriction. This offers a correction for the bias, and
is an alternative to including additional terms in the objective function (see, e.g., [7, 8]).

2.3. Gaussian Pseudomodel

A Gaussian family is a natural choice of pseudomodel for local analysis, as the true density
is locally characterized by a local mean and a local variance-covariance matrix. Below, we
provide an interpretation of the Gaussian local density approximation. Next, we consider a
Gaussian pseudomodel parametrized by the mean only, and show the relationship between
the l.p.f. estimator and two well-known nonparametric estimators of regression and density,
respectively.

(i) Interpretation

For a Gaussian pseudomodel indexed by mean m and variance Σ, we have

∂ log f
(
y;m,Σ

)

∂y
= Σ−1(y −m). (2.8)

Thus, the approximation associated with a Gaussian pseudofamily is the standard
one, where the partial derivatives of the log-density are replaced by a family of hyperplanes
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parallel to the tangent hyperplanes. These tangent hyperplanes are not independently
defined, due to the Schwartz equality

∂2 log f
(
y
)

∂yi∂yj
=
∂2 log f

(
y
)

∂yj∂yi
; ∀i /= j. (2.9)

The Schwartz equalities are automatically satisfied by the approximated densities
because of the symmetry of matrix Σ−1.

(ii) Gaussian Pseudomodel Parametrized by the Mean and Gaussian Kernel

Let us consider a Gaussian kernel: K(·) = φ(·) of dimension d, where φ denotes the pdf of the
standard Normal N(0, Id).

Proposition 2.4. The l.p.f. estimator for a Gaussian pseudomodel parametrized by the mean and with
a Gaussian kernel can be written as

θ̃T (c) = c +
1 + h2

h2 [m̃T (c) − c] = c +
(

1 + h2
)∂ log

∂c
f̃T (c), (2.10)

where

m̃T (c) =

(∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)
yt
)

(∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)) (2.11)

is the Nadaraya-Watson estimator of the conditional meanm(c) = E[Y | Y = c] = c, and

f̃T (c) =
1
T

T∑

t=1

1
hd

φ

(
yt − c
h

)

(2.12)

is the Gaussian kernel estimator of the unknown value of the true marginal pdf at c.

Proof. See Appendix B.

In this special case, the asymptotic properties of θ̃T (c) follow directly from the
asymptotic properties of f̃T (c) and ∂f̃T (c)/∂c [9]. In particular, θ̃T (c) converges to c +
∂ log f0(c)/∂y, when T and h tend to infinity and zero, respectively, with Thd+2 → 0.

Alternatively, the asymptotic behavior can be inferred from the Nadaraya-Watson
estimator [10, 11] in the degenerate case when the regressor and the regressand are identical.
Section 5 will show that similar relationships are asymptotically valid for non-Gaussian
pseudofamilies.

2.4. Pseudodensity over a Tail Interval

Instead of using the local parameter function and calibrating the pseudodensity locally
about a value, one could calibrate the pseudodensity over an interval in the tail. (We thank
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an anonymous referee for this suggestion.) More precisely, we could define a pseudo-true
parameter value

θ∗
(
c, f0
)
= Argmax

θ

E0

{

1Y>c log

[
f
(
y; θ
)

S(c, θ)

]}

, (2.13)

where S denotes the survival function, and consider an approximation of the true distribution
over a tail interval f[y; θ∗(c, f0)], for y > c. From a theoretical point of view, this approach
can be criticized as it provides different approximations of f0(y) depending on the selected
value of c, c < y.

3. From Marginal to Conditional Analysis

Section 2 described the local approach to marginal density estimation. Let us now show
the passage from the marginal to conditional density analysis and the application to the
conditional VaR.

3.1. General Approach to VaR Computation

The VaR analysis concerns the future return on a given portfolio. Let xt denote the return
on that portfolio at date t. In practice, the prediction of xt is based on a few summary
statistics computed from past observations, such as a lagged portfolio return, realized market
volatility, or realized idiosyncratic volatility in a previous period. The application of our
method consists in approximating locally the joint density of series yt = (y′

1t, y
′
2t)

′, whose
component y1t is xt, and component y2t contains the summary statistics, denoted by zt−1.
Next, from the marginal density of yt, that is, the joint density of y1t and y2t, we derive the
conditional density of y1t given y2t, and the conditional VaR.

The joint density is approximated locally about c which is a vector of two components,
c = (c′1, c

′
2)

′. The first component c1 is a tail value of portfolio returns, such as the 5% quantile
of the historical distribution of portfolio returns, for example, if the conditional VaR at α < 5%
needs to be found. The second component c2 is the value of the conditioning set, which is
fixed, for example, at the last observed value of the summary statistics in y2t = zt−1. Due to
the difference in interpretation, the bandwidths for c1 and c2 need to be different.

The approach above does not suffer from the curse of dimensionality. Indeed, in
practice, y1 is univariate, and the number of summary statistics is small (often less than 3),
while the number of observations is sufficiently large (250 per year) for a daily VaR.

3.2. Gaussian Pseudofamily

When the pseudofamily is Gaussian, the local approximation of the density of yt is
characterized by the local mean and variance-covariance matrix. For yt = (y′

1t, y
′
2t)

′, these
moments are decomposed by blocks as follows:

μ(c) =

(
μ1(c)

μ2(c)

)

, Σ(c) =

(
Σ11(c) Σ12(c)

Σ21(c) Σ22(c)

)

. (3.1)
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The local conditional first and second-order moments are functions of these joint moments:

μ1|2(c) = μ1(c) − Σ12(c)Σ−1
22 (c)μ2(c), (3.2)

Σ1|2(c) = Σ11(c) − Σ12(c)Σ−1
22 (c)Σ21(c). (3.3)

When y1t = xt is univariate, these local conditional moments can be used as inputs in the
basic Gaussian VaR formula (1.2).

The method is convenient for practitioners, as it suggests them to keep using the
misspecified Gaussian VaR formula. The only modifications are the inputs, which become
the local conditional mean and variance in the tail that are easy to calculate given the closed-
form expressions given above.

Even though the theoretical approach is nonparametric, its practical implementation
is semi-parametric. This is because, once an appropriate location c has been selected, the local
pseudodensity estimated at c is used to calculate any VaR in the tail. Therefore, the procedure
can be viewed as a model building method, in which the two benchmark loss probabilities are
arbitrarily close. As compared with other model building approaches, it allows for choosing
a location c with more data-points in its neighborhood than the quantile of interest.

4. Application to Value-at-Risk

The nonparametric feature of our localized approach requires the availability of a sufficient
number of observations in a neighborhood of the selected c. This requirement is easily
satisfied when high-frequency data are used and an intraday VaR is computed. We first
consider an application of this type. It is followed by a Monte-Carlo study, which provides
information on the properties of the estimator when the number of observations is about 200,
which is the sample size used in practice for computing the daily VaR.

4.1. Comparative Study of Portfolios

We apply the local conditional mean and variance approach to intraday data on financial
returns and calculate the intraday Value-at-Risk. The financial motivation for intraday risk
analysis is that internal control of the trading desks and portfolio management is carried
out continuously by banks, due to the use of algorithmic trading that implements automatic
portfolio management, based on high-frequency data. Also, the BCBS in [2, page 3], suggests
that a weakness of the current (daily) risk measure is that it is based on the end-of-day
positions, and disregards the intraday trading risk. It is known that intraday stock price
variation can be often as high as the variation of the market closure prices over 5 to 6
consecutive days.

Our analysis concerns two stocks traded on the Toronto Stock Exchange: the Bank
of Montreal (BMO) and the Royal Bank (ROY) from October 1st to October 31, 1998, and
all portfolios with nonnegative allocations in these two stocks. This approach under the no-
short-sell constraint will suffice to show that allocations of the least risky portfolios differ,
depending on the method of VaR computation.

From the tick-by-tick data, we select stock prices at a sampling interval of two minutes,
and compute the two minute returns xt = (x1t, x2t)

′. The data contain a large proportion of
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zero price movements, which are not deleted from the sample, because the current portfolio
values have to be computed from the most recent trading prices.

The BMO and ROY sample consists of 5220 observations on both returns from October
1 to October 31, 1998. The series have equal means of zero. The standard deviations are 0.0015
and 0.0012 for BMO and ROY, respectively. To detect the presence of fat tails, we calculate the
kurtosis, which is 5.98 for BMO and 3.91 for ROY, and total range, which is 0.0207 for BMO
and 0.0162 for ROY. The total range is approximately 50 (for BMO) and 20 (for ROY) times
greater than the interquartile range, equal to 0.0007 in both samples.

The objective is to compute the VaR for any portfolio that contains these two assets.
Therefore, yt = (y1t, y2t) has two components; each of which is a bivariate vector. We are
interested in finding a local Gaussian approximation of the conditional distribution of y1t = xt
given y2t = xt−1 in a neighborhood of values c1 = (c11, c12) of xt and c2 = (c21, c22) of
xt−1 (which does not mean that the conditional distribution itself is Gaussian) . We fix c21 =
c22 = 0. Because a zero return is generally due to nontrading, by conditioning on zero past
returns, we investigate the occurrence of extreme price variations after a non-trading period.
As a significant proportion of returns is equal to zero, we eliminate smoothing with respect
to these conditioning values in our application.

The local conditional mean and variance estimators were computed from formulae
(3.2)-(3.3) for c11 = 0.00188 and c12 = 0.00154, which are the 90% upper percentiles of the
sample distribution of each return on the dates preceded by zero returns. The bandwidth for
xt was fixed at h = 0.001, proportionally to the difference between the 10% and 1% quantiles.
The estimates are

μ1 = −6.54 10−3, μ2 = −0.48 10−3,

σ11 = 10.2 10−6, σ22 = 1.33 10−6, ρ =
σ12

σ11σ22
= −0.0034.

(4.1)

They can be compared to the global conditional moments of the returns, which are the
moments computed from the whole sample, μ = E(xt | xt−1 = 0), Σ = V (xt | xt−1 = 0). Their
estimates are

μ1 = −2.057 10−5, μ2 = −1.359 10−4,

σ11 = 2.347 10−6, σ22 = 1.846 10−6, ρ =
σ12

σ11σ22
= 0.0976.

(4.2)

As the conditional distribution of xt given xt−1 = 0 has a sharp peak at zero, it comes as no
surprise that the global conditional moments estimators based on the whole sample lead to
smaller Values-at-Risk than the localized ones. More precisely, for loss probability 5% and a
portfolio with allocations a, 1 − a, 0 ≤ a ≤ 1, in the two assets, the Gaussian VaR is given by

VaR(5%, a) = −(a, 1 − a)μ + 1.64
[
(a, 1 − a)Σ(a, 1 − a)′]1/2

, (4.3)

and determines the required capital reserve for loss probability 5%. Figure 1 presents the
Values-at-Risk computed from the localized and unlocalized conditional moments, for any
admissible portfolios of nonnegative allocations. The proportion a invested in the BMO is
measured on the horizontal axis.
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Figure 1: Localized and Unlocalized VaRs.

As expected, the localized VaR lies far above the unlocalized one. This means that
the localized VaR implies a larger required capital reserve. We also note that, under the
unlocalized VaR, the least risky portfolio contains equal allocations in both assets. In contrast,
the localized measure suggests to invest the whole portfolio in a single asset to avoid extreme
risks (under the no-short-sell constraint).

4.2. Monte-Carlo Study

The previous application was based on a quite large number of data (more than 5000) on
trades in October 1998 and risk level of 5%. It is natural to assess the performance of the new
method in comparison to other methods of VaR computation, for smaller samples, such as
200 (resp. 400) observations that correspond to one year (resp., two years) of daily returns
and for a smaller risk level of 1%.

A univariate series of 1000 simulated portfolio returns is generated from an ARCH(1)
model, with a double exponential (Laplace) error distribution. More precisely, the model is

xt = (0.4 + 0.95x2
t−1)

1/2
ut, (4.4)

where the errors ut are i.i.d. with pdf

g(u) =
1
2

exp(−|u|). (4.5)

The error distribution has exponential tails that are slightly heavier than the tails of a
Gaussian distribution. The data generating process are assumed to be unknown to the person
who estimates the VaR. In practice, that person will apply a method based on a misspecified
model (such as the i.i.d. Gaussian model of returns in the Gaussian variance-covariance
method or the IGARCH model of squared returns by J. P. Morgan with an ad-hoc fixed
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parameter 0.94). Such a procedure leads to either biased, or inefficient estimators of the VaR
level.

The following methods of VaR computation at risk level of 1% are compared. Methods
1 to 4 are based on standard routines used in banks, while method 5 is the one proposed in
this paper.

(1) The historical simulation based on a rolling window of 200 observations. We will
see later (Figure 2) that this approach results in heavy smoothing with respect to time. A
larger bandwidth would entail even more smoothing.

(2) The Gaussian variance-covariance approach based on the same window.
(3) The IGARCH-based method by J. P. Morgan:

V̂aRt = −Φ−1(1%)0.06
∞∑

h=0

(0.94)hx2
t−h. (4.6)

(4) Two conditional ARCH-based procedures that consist of the following steps. First,
we consider a subset of observations to estimate an ARCH(1) model:

xt = (a0 + a1x
2
t−1)

1/2
vt, (4.7)

where vt are i.i.d. with an unknown distribution. First, the parameters a0 and a1 are estimated
by the quasi-maximum likelihood, and the residuals are computed. From the residuals we
infer the empirical 1% quantile q̂, say. The VaR is computed as V̂aRt = −(â0 + â1x

2
t )

1/2
q̂.

We observe that the ARCH parameter estimators are very inaccurate, which is due to the
exponential tails of the error distribution. Two subsets of data were used to estimate the
ARCH parameters and the 1%-quantile. The estimator values based on a sample of 200
observations are â0 = 8.01, â1 = 0.17, and q̂ = −3.85. The estimator values based on a sample
of 800 observations are â0 = 4.12, â1 = 0.56, and q̂ = −2.78. We find that the ratios â1/â0 are
quite far from the true value 0.95/0.4 used to generate the data, which is likely due to fat tails.

(5) Localized VaR.
We use a Gaussian pseudofamily, a Gaussian kernel, and two different bandwidths for

the current and lagged value of returns, respectively. The bandwidths were set proportional
to the difference between the 10% and 1% quantiles, and the bandwidth for the lagged return
is 4 times the bandwidth for the current return. Their values are 1.16 and 4.64, respectively.
We use a Gaussian kernel (resp., a simple bandwidth) instead of an optimal kernel (resp.,
an optimal bandwidth) for the sake of robustness. Indeed, an optimal approach may not be
sufficiently robust for fixing the required capital. Threshold c is set equal to the 3%-quantile
of the marginal empirical distribution. The localized VaR’s are computed by rolling with a
window of 400 observations.

For each method, Figures 2, 3, 4, 5, 6 and 7 report the evolution of the true VaR
corresponding to the data generating model along with the evolution of the estimated VaR.
For clarity, only 200 data points are plotted.

The true VaR features persistence and admits extreme values. The rolling methods
such as the historical simulation and variance-covariance method produce stepwise patterns
of VaR, as already noted, for example, by Hull and White [12]. These patterns result from the
i.i.d. assumption that underlies the computations. The J. P. Morgan IGARCH approach creates
spurious long memory in the estimated VaR and is not capable to recover the dynamics of
the true VaR series. The comparison of the two ARCH-based VaR’s shows that the estimated
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Figure 3: True and Variance-Covariance Based VaRs.
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Figure 4: True and IGARCH-Based VaR.



Journal of Probability and Statistics 15

0

20

40

60

V
aR

0 50 100 150 200

Time

Figure 5: True and ARCH-Based VaR (200 obs).

0

20

40

60

V
aR

0 50 100 150 200

Time

Figure 6: True and ARCH-Based VaR (800 obs).
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Figure 7: True and Localized VaR.
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paths strongly depend on the estimated ARCH coefficients. When the estimators are based
on 200 observations, we observe excess smoothing. When the estimators are based on 800
observations, the model is able to recover the general pattern, but overestimates the VaR
when it is small and underestimates the VaR when it is large. The outcomes of the localized
VaR method are similar to the second ARCH model, with a weaker tendency to overestimate
the VaR when it is small.

The comparison of the different approaches shows the good mimicking properties of
the ARCH-based methods and of the localized VaR. However, these methods need also to be
compared with respect to their tractability. It is important to note that the ARCH parameters
were estimated only once and were kept fixed for future VaR computations. The approach
would become very time consuming if the ARCH model was reestimated at each point in
time. In contrast, it is very easy to regularly update the localized VaR.

5. Properties of the Estimator of the Local Parameter Function

5.1. Asymptotic Properties

In this section, we discuss the asymptotic properties of the local pseudomaximum likelihood
estimator under the following strict stationarity assumption.

Assumption 5.1. The process Y = (Yt) is strictly stationary, with marginal pdf f0.
Let us note that the strict stationarity assumption is compatible with nonlinear

dynamics, such as in the ARCH-GARCH models, stochastic volatility models, and so forth,
All proofs are gathered in Appendices.

The asymptotic properties of the local P. M. L. estimator of θ are derived along
the following lines. First, we find the asymptotic equivalents of the objective function and
estimator, that depend only on a limited number of kernel estimators. Next, we derive the
properties of the local P. M. L. estimator from the properties of these basic kernel estimators.
As the set of assumptions for the existence and asymptotic normality of the basic kernel
estimators for multivariates dependent observations can be found in the literature (see the
study by Bosq in [13]), we only list in detail the additional assumptions that are necessary
to satisfy the asymptotic equivalence. The results are derived under the assumption that
θ is exactly identified (see Assumptions 5.2 and 5.3). (In the overidentified case p > d,
the asymptotic analysis can be performed by considering the terms of order h3, h4 in the
expansion of the objective function (see Appendix A), which is out of the scope of this paper.)

Let us introduce the additional assumptions.

Assumption 5.2. The parameter set Θ is a compact set and p = d.

Assumption 5.3. (i) There exists a unique solution θ̃(c; f0) of the system of equations:

∂ log f(c; θ)
∂y

=
∂ log f0(c)

∂y
, (5.1)

and this solution belongs to the interior of Θ.
(ii) The matrix ∂2 log f[c, θ̃(c, f0)]/∂θ∂y′ is nonsingular.
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Assumption 5.4. The following kernel estimators are strongly consistent:

(i) (1/T)
∑T

t=1(1/h
d)K((yt − c)/h) a.s.→ f0(c),

(ii) (1/T)
∑T

t=1(1/h
d)K((yt − c)/h)((yt − c)/h)((yt − c)/h)′ a.s.→ η2f0(c),

(iii) (1/Th)
∑T

t=1(1/h
d)K((yt − c)/h)((yt − c)/h) a.s.→ f0(c)η2(∂ log f0(c)/∂y).

Assumption 5.5. In any neighbourhood of θ, the third-order derivatives ∂3 log f(y; θ)/
∂yi∂yj∂yk, i, j, k varying, are dominated by a function a(y) such that ‖y‖3a(y) is integrable.

Proposition 5.6. The local pseudomaximum likelihood estimator θ̃T (c) exists and is strongly
consistent for the local parameter function θ̃(c; f0) under Assumptions 5.1–5.5.

Proof. See Appendix C.

It is possible to replace the set of Assumptions 5.4 by sufficient assumptions
concerning directly the kernel, the true density function f0, the bandwidth h, and the Y
process. In particular it is common to assume that the process Y is geometrically strong
mixing, and that h → 0, Thd/(log T)2 → +∞, when T tends to infinity (see [13–15]).

Proposition 5.7. Under Assumptions 5.1–5.5 the local pseudomaximum likelihood estimator is

asymptotically equivalent to the solution
≈
θT (c) of the equation:

∂ log f
[

c;
≈
θT (c)

]

∂y
=
(
η2
)−1 1

h2 (m̃T (c) − c), (5.2)

where:

m̃T (c) =
∑T

t=1 K
((
yt − c

)
/h
)
yt

∑T
t=1 K

((
yt − c

)
/h
) (5.3)

is the Nadaraya-Watson estimator ofm(c) = E(Y | Y = c) = c based on the kernel K.

Proof. See Appendix D.

Therefore the asymptotic distribution of θ̃T (c) may be derived from the properties of
m̃T (c) − c, which are the properties of the Nadaraya-Watson estimator in the degenerate case
when the regressand and the regressor are identical. Under standard regularity conditions
[13], the numerator and denominator of 1/h2(m̃T (c) − c) have the following asymptotic
properties.
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Assumption 5.8. If T → ∞, h → 0, Thd+2 → ∞, and Thd+4 → 0, we have the limiting
distribution

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
Thd+2

[
1

Thd+2

T∑

t=1

K

(
yt − c
h

)
(
yt − c

) − η2 ∂f0(c)
∂y

]

√
Thd
[

1
Thd

T∑

t=1

K

(
yt − c
h

)

− f0(c)

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

d→ N

⎛

⎜
⎜
⎜
⎝

0, f0(c)

⎡

⎢
⎢
⎢
⎣

∫

uu′K2(u)du
∫

uK2(u)du

∫

u′K2(u)du
∫

K2(u)du

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠
.

(5.4)

The formulas of the first- and second-order asymptotic moments are easy to verify (see
Appendix E). (Assumption 5.8 is implied by sufficient conditions concerning the kernel, the
process... (see, [13]). In particular it requires some conditions on the multivariate distribution
of the process such as supt1<t2‖ft1,t2−f⊗f‖∞ <∞,where ft1,t2 denotes the joint p.d.f. of (Yt1 , Yt2)
and f ⊗ f the associated product of marginal distributions, and supt1<t2<t3<t4‖ft1,t2,t3,t4‖∞ < ∞,
where ft1,t2,t3,t4 denotes the joint p.d.f of (Yt1 , Yt2 , Yt3 , Yt4).) Note that the rate of convergence
of the numerator is slower than the rate of convergence of the denominator since we study
a degenerate case, when the Nadaraya-Watson estimator is applied to a regression with the
regressor equal to the regressand.

We deduce that the asymptotic distribution of

√

Thd+2
(

1
h2 [m̃T (c) − c] − η2 ∂ log f0(c)

∂y

)

(5.5)

is equal to the asymptotic distribution of

√
Thd+2 1

f0(c)

(
1

Thd+2

T∑

t=1

K

(
yt − c
h

)
(
yt − c

) − η2 ∂f0(c)
∂y

)

, (5.6)

which is N[0, (1/f0(c))
∫
uu′K2(u)du].

By the δ-method we find the asymptotic distribution of the local pseudomaximum
likelihood estimator and the asymptotic distribution of the log-derivative of the true p.d.f..

Proposition 5.9. Under Assumptions 5.1–5.8 one has the following.
(i)

√
Thd+2

⎛

⎜
⎜
⎝

∂ log f
(

c;
≈
θT (c)

)

∂y
− ∂ log f0(c)

∂y

⎞

⎟
⎟
⎠

d→ N

[

0,

(
η2)−1

f0(c)

∫

uu′K2(u)du
[
η2
]−1
]

. (5.7)
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(ii)

√

Thd+2
(≈
θT (c) − θ̃

(
c; f0
)
)

d−→N

⎡

⎢
⎣0,

⎡

⎢
⎣
∂2 log f

[
c; θ̃
(
c; fo
)]

∂θ∂y′

⎤

⎥
⎦

−1 [
η2]−1

f0(c)

×
∫

uu′K2(u)du
[
η2
]−1

⎡

⎢
⎣
∂2 log f

[
c; θ̃
(
c; f0
)]

∂y∂θ′

⎤

⎥
⎦

−1⎤

⎥
⎦

(5.8)

The first-order asymptotic properties of the estimator of the log-derivative of the
density function do not depend on the pseudofamily, whereas the value of the estimator
does. (It is beyond the scope of this paper to discuss the effect of the pseudofamily when
dimension p is strictly larger than d. Nevertheless, by analogy to the literature on local
estimation of nonparametric regression and density functions (see, e.g., the discussion in [7]),
we expect that the finite sample bias in the associated estimator of the density will diminish
when the pseudofamily is enlarged, that is, when the dimension of the pseudoparameter
vector increases.) For a univariate proces (yt), the functional estimator of the log-derivative
∂ log f0(c)/∂y may be compared to the standard estimator

∂ log f̂0(c)
∂y

=
∑T

t=1(1/h)K̇
((
yt − c

)
/h
)

∑T
t=1(1/h)K

((
yt − c

)
/h
) , (5.9)

where K̇ is the derivative of the kernel of the standard estimator. The standard estimator has
a rate of convergence equal to that of the estimator introduced in this paper and the following
asymptotic distribution:

√

Th3

(
∂ log f̂0(c)

∂y
− ∂ log f0(c)

∂y

)
d→ N

[

0,
1

η4f0(c)

∫

K̇(u)2du

]

. (5.10)

The asymptotic distributions of the two estimators of the log-derivative of the density
function are in general different, except when |dK(u)/du| = |uK(u)|, which, in particular,
arises when the kernel is Gaussian. In such a case the asymptotic distributions of the
estimators are identical.

5.2. Asymptotic versus Finite Sample Properties

In kernel-based estimation methods, the asymptotic distributions of estimators do not
depend on serial dependence and are computed as if the data were i.i.d. However, serial
dependence affects the finite sample properties of estimators and the accuracy of the
theoretical approximation. Pritsker [16] (see also work by Conley et al. in [17]) illustrates
this point by considering the finite sample properties of Ait-Sahalia’s test of continuous time
model of the short-term interest rate [18] in an application to data generated by the Vasicek
model.
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The impact of serial correlation depends on the parameter of interest, in particular on
whether this parameter characterizes the marginal or the conditional density. This problem
is not specific to the kernel-based approaches, but arises also in other methods such as the
OLS. To see that, consider a simple autoregressive model yt = ρyt−1+εt, where εt is IIN(0, σ2).
The expected value of yt is commonly estimated from the empirical mean m̂ = yT that has
asymptotic variance V m̂ ≈ (η2/T)(1/(1−ρ)−1), where η2 = Vyt = σ2/(1−ρ2). In contrast, the
autoregressive coefficient is estimated by ρ̂ =

∑
t ytyt−1/

∑
t y

2
t−1 and has asymptotic variance

V ρ̂ ≈ (1 − ρ2)/T .
If serial dependence is disregarded, both estimators m̂ and ρ̂ have similar asymptotic

efficiencies that are η2/T and 1/T , respectively. However, when ρ tends to one while η2

remains fixed, the variance of m̂ tends to infinity whereas the variance of ρ̂ tends to zero.
This simple example shows that omission of serial dependence does not have the same effect
on the marginal parameters as opposed to the conditional ones. Problems considered by
Conley et al. [17] or Pritsker [16] concern the marginal (long run) distribution of yt, while
our application is focused on a conditional parameter, which is the conditional VaR. This
parameter is derived from the analysis of the joint pdf f(yt, yt−1) as in the previous example
ρ̂ was derived from the bivariate vector ((1/T)

∑
t ytyt−1, (1/T)

∑
t y

2
t−1). Due to cointegration

between yt and yt−1 in the case of extreme persistence, we can reasonably expect that the
estimator of the conditional VaR has good finite sample properties, even when the point
estimators f̂(yt, yt−1) do not. The example shows that in finite sample the properties of the
estimator of a conditional parameter can be even better than those derived under the i.i.d.
assumption.

6. Conclusions

This paper introduces a local likelihood method of VaR computation for univariate or
multivariate data on portfolio returns. Our approach relies on a local approximation of the
unknown density of returns by means of a misspecified model. The method allows us to
estimate locally the conditional density of returns, and to find the local conditional moments,
such as a tail mean and tail variance. For a Gaussian pseudofamily, these tail moments can
replace the global moments in the standard Gaussian formula used for computing the VaR’s.
Therefore, our method based on the Gaussian pseudofamily is convenient for practitioners, as
it justifies computing the VaR from the standard Gaussian formula, although with a different
input, which accommodates both the thick tails and path dependence of financial returns.
The Monte-Carlo experiments indicate that tail-adjusted VaRs are more accurate than other
VaR approximations used in the industry.

Appendices

A. Proof of Proposition 2.2

Let us derive the expansion of the objective function

Ah(θ) = E0

[
1
hd
K

(
Y − c
h

)

log f(Y ; θ)
]

− E0

[
1
hd
K

(
Y − c
h

)]

log
∫

1
hd
K

(
y − c
h

)

f
(
y; θ
)
dy,

(A.1)
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when h approaches zero. By using the equivalence (see Assumption (A.1))

∫
1
hd
K

(
y − c
h

)

g
(
y
)
dy = g(c) +

h2

2
Tr

[
∂2g(c)
∂y∂y′ η

2

]

+ o
(
h2
)
, (A.2)

where Tr is the trace operator, we find that

Ah(θ) = f0(c) log f(c; θ) +
h2

2
Tr

{
∂2

∂y∂y′
[
f0(c) log f(c; θ)

]
η2

}

−
[

f0(c) +
h2

2
Tr

(

η2 ∂
2f0(c)
∂y∂y′

)]

log

{

f(c; θ) +
h2

2
Tr

[

η2 ∂
2f(c; θ)
∂y∂y′

]}

+ o
(
h2
)

= −h
2

2
∂ log f0(c)

∂y′ η2 ∂ log f0(c)
∂y

+
h2

2

[
∂ log f(c; θ)

∂y′ − ∂ log f0(c)
∂y′

]

η2
[
∂ log f(c; θ)

∂y
− ∂ log f0(c)

∂y

]

+ o
(
h2
)
.

(A.3)

The result follows.
The expansion above provides a local interpretation of the asymptotic objective

function at order h2 as a distance between the first-order derivatives of the logarithms of
the pseudo and true pdf’s. In this respect the asymptotic objective function clearly differs
from the objective function proposed by Hjort and Jones [7], whose expansion defines an
l2-distance between the true and pseudo pdfs.

B. Proof of Proposition 2.4

For a Gaussian kernel K(·) = φ(·) of dimension d, we get

∫
1
hd
φ

(
y − c
h

)

f
(
y; θ
)
dy =

∫
1
hd
φ

(
c − y
h

)

φ
(
y − θ)dy

=
1

(1 + h2)d/2
φ

(
c − θ√
1 + h2

)

.

(B.1)
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We have

θ̃T (c) = Argmax
θ

{
T∑

t=1

1
hd
φ

(
yt − c
h

)[

−d
2

log 2π −
∥
∥yt − θ

∥
∥2

2

]

−
T∑

t=1

1
hd
φ

(
yt − c
h

)[

−d
2

log 2π − d

2
log
(

1 + h2
)
− ‖c − θ‖2

2(1 + h2)

]}

=
1 + h2

h2

∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)
yt

∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
) − 1

h2
c

=
1 + h2

h2
m̃T (c) − 1

h2
c.

(B.2)

Moreover we have

θ̃T (c) − c = 1 + h2

h2 (m̃T (c) − c)

=
1 + h2

h2

∑T
t=1
(
1/hd

)(
yt − c

)
φ
((
yt − c

)
/h
)

∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)

=
(

1 + h2
)(∂/∂c)

[∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)]

[∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)]

=
(

1 + h2
)∂ log

∂c
f̃T (c).

(B.3)

C. Consistency

Let us consider the normalized objective function

ÃT,h(θ) =
1

Th2

[
T∑

t=1

1
hd
K

(
yt − c
h

)

log f
(
yt; θ
)

−
T∑

t=1

1
hd
K

(
yt − c
h

)

log
∫

1
hd
K

(
y − c
h

)

f
(
y; θ
)
dy

]

.

(C.1)
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It can be written as

ÃT,h(θ) =
1

Th2

T∑

t=1

1
hd
K

(
yt − c
h

)

×
[

log f(c; θ) +
∂ log f(c; θ)

∂y′
(
yt − c

)
+

1
2

(
y′
t − c
h

)
∂2 log f(c; θ)

∂y∂y′

(
yt − c
h

)

+ R1
(
yt; θ
)∥
∥yt − c

∥
∥3
]

− 1

Th2

T∑

t=1

1
hd
K

(
yt − c
h

)

×
[

log f(c; θ) +
h2

2
1

f(c; θ)
Tr

[

η2 ∂
2f(c; θ)
∂y∂y′

]

+ h3R2(θ, h)

]

(C.2)

where R1(yt; θ), R2(θ;h) are the residual terms in the expansion. We deduce:

ÃT,h(θ) =
1

Th2

T∑

t=1

1
hd
K

(
yt − c
h

)
∂ log f(c; θ)

∂y′
(
yt − c

)

+
1
T

T∑

t=1

1
hd
K

(
yt − c
h

)
1
2

(
yt − c
h

)′ ∂2 log f(c; θ)
∂y∂y′

(
yt − c
h

)

− 1
2

1
T

T∑

t=1

1
hd
K

(
yt − c
h

)
1

f(c; θ)
Tr

[

η2 ∂
2f(c; θ)
∂y∂y′

]

+ residual terms.

(C.3)

Under the assumptions of Proposition 5.7, the residual terms tend almost surely to zero,
uniformly on Θ, while the main terms tend almost surely uniformly on Θ to

A∞ = −∂ log f0(c)
∂y′ η2 ∂ log f0(c)

∂y

+
1
2

[
∂ log f(c; θ)

∂y′ − ∂ log f0(c)
∂y′

]

η2
[
∂ log f(c; θ)

∂y
− ∂ log f0(c)

∂y

]

,

(C.4)

which is identical to limh→ o(Ah(θ)/h2) (see Appendix A).
Then, by Jennrich theorem [19] and the identifiability condition, we conclude that the

estimator θ̃T (c) exists and is strongly consistent of θ(c; f0).



24 Journal of Probability and Statistics

D. Asymptotic Equivalence

The main part of the objective function may also be written as

ÃT,h(θ) ≈ 1

Th2

T∑

t=1

1
hd
K

(
yt − c
h

)
∂ log f(c; θ)

∂y′
(
yt − c

)

− 1
T

T∑

t=1

1
hd
K

(
yt − c
h

)
∂ log f(c; θ)

∂y′ η2 ∂ log f(c; θ)
∂y

.

(D.1)

We deduce that the local parameter function can be asymptotically replaced by the solution
≈
θT (c) of

∂ log f
(

c;
≈
θT (c)

)

∂y
=
(
η2
)−1

(
1/Th2

)∑T
t=1
(
1/hd

)
K
((
yt − c

)
/h
)(
yt − c

)

(1/T)
∑T

t=1
(
1/hd

)
K
((
yt − c

)
/h
) . (D.2)

E. The First- and Second-Order Asymptotic Moments

Let us restrict the analysis to the numerator term (1/Thd+2)
∑T

t=1 K((Yt − c)/h)(Yt − c), which
implies the nonstandard rate of convergence.

(1) First-Order Moment

We get

E

[
1

Thd+2

T∑

t=1

K

(
Yt − c
h

)

(Yt − c)
]

=
1

hd+2
E

[

K

(
Yt − c
h

)

(Yt − c)
]

=
1

hd+2

∫

K

(
y − c
h

)
(
y − c)f0

(
y
)
dy

=
1
h

∫

K(u) u f0(c + uh)du

=
1
h

∫

K(u)u

[

f0(c) + h
∂f0(c)
∂y′ u +

h2

2
u′
∂2f0(c)
∂y∂y′ u + o

(
h2
)
]

du

= η2 ∂f0(c)
∂y

+
h

2

∫

K(u)uu′
∂2f0(c)
∂y∂y′ udu + o(h).

(E.1)
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(2) Asymptotic Variance

We have

V

[
1

Thd+2

T∑

t=1

K

(
Yt − c
h

)

(Yt − c)
]

=
1

Th2d+4
V

[

K

(
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h

)
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]

=
1

Th2d+4

{

E

[

K2
(
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)

(Yt − c)(Yt − c)′
]
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[

K

(
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]

E

[

K

(
Yt − c
h

)

(Yt − c)
]′

=
1

Thd+2
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∂y′ η2

]
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1

Thd+2
f0(c)

∫

uu′K2(u)du + o
(

1

Thd+2
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,

(E.2)

which provides the rate of convergence (Thd+2)
−1/2

of the standard error. Moreover the

second term of the bias will be negligible if h(Thd+2)
1/2 → 0 or Thd+4 → 0.

(3) Asymptotic Covariance

Finally we have also to consider:

Cov

[
1

Thd+2

T∑

t=1

K

(
Yt − c
h

)

(Yt − c), 1
Th

T∑

t=1

K

(
Yt − c
h
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(
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E
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(
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[

K

(
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(
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h
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=
1
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h2
∫
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(
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(
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(E.3)
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For at least a century academics and governmental researchers have been developing measures
that would aid them in understanding income distributions, their differences with respect to
geographic regions, and changes over time periods. It is a fascinating area due to a number of
reasons, one of them being the fact that different measures, or indices, are needed to reveal different
features of income distributions. Keeping also in mind that the notions of poor and rich are relative
to each other, Zenga (2007) proposed a new index of economic inequality. The index is remarkably
insightful and useful, but deriving statistical inferential results has been a challenge. For example,
unlike many other indices, Zenga’s new index does not fall into the classes of L-, U-, and V -
statistics. In this paper we derive desired statistical inferential results, explore their performance
in a simulation study, and then use the results to analyze data from the Bank of Italy Survey on
Household Income and Wealth (SHIW).

1. Introduction

Measuring and analyzing incomes, losses, risks, and other random outcomes, which we
denote by X, has been an active and fruitful research area, particularly in the fields of
econometrics and actuarial science. The Gini index is arguably the most popular measure
of inequality, with a number of extensions and generalizations available in the literature.
Keeping in mind that the notions of poor and rich are relative to each other, Zenga [1]
constructed an index that reflects this relativity. We will next recall the definitions of the Gini
and Zenga indices.
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Let F(x) = P[X ≤ x] denote the cumulative distribution function (cdf) of the random
variable X, which we assume to be nonnegative throughout the paper. Let F−1(p) = inf{x :
F(x) ≥ p} denote the corresponding quantile function. The Lorenz curve LF(p) is given by
the formula (see [2])

LF
(
p
)
=

1
μF

∫p

0
F−1(s)ds, (1.1)

where μF = E[X] is the unknown true mean of X. Certainly, from the rigorous mathematical
point of view we should call LF(p) the Lorenz function, but this would deviate from the
widely accepted usage of the term “Lorenz curve”. Hence, curves and functions are viewed
as synonyms throughout this paper.

The classical Gini index GF can now be written as follows:

GF =
∫1

0

(

1 − LF
(
p
)

p

)

ψ
(
p
)
dp, (1.2)

where ψ(p) = 2p. Note that ψ(p) is a density function on [0, 1]. Given the usual econometric
interpretation of the Lorenz curve [3], the function

GF

(
p
)
= 1 − LF

(
p
)

p
, (1.3)

which we call the Gini curve, is a relative measure of inequality (see [4]). Indeed, LF(p)/p is
the ratio between (i) the mean income of the poorest p × 100% of the population and (ii) the
mean income of the entire population: the closer to each other these two means are, the lower
is the inequality.

Zenga’s [1] index ZF of inequality is defined by the formula

ZF =
∫1

0
ZF

(
p
)
dp, (1.4)

where the Zenga curve ZF(p) is given by

ZF

(
p
)
= 1 − LF

(
p
)

p
· 1 − p

1 − LF
(
p
) . (1.5)

The Zenga curve measures the inequality between (i) the poorest p × 100% of the population
and (ii) the richer remaining (1 − p) × 100% part of the population by comparing the mean
incomes of these two disjoint and exhaustive subpopulations. We will elaborate on this
interpretation later, in Section 5.

The Gini and Zenga indices GF and ZF are (weighted) averages of the Gini and
Zenga curves GF(p) and ZF(p), respectively. However, while in the case of the Gini index the
weight function (i.e., the density) ψ(p) = 2p is employed, in the case of the Zenga index the
uniform weight function ψ(p) = 1 is used. As a consequence, the Gini index underestimates
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comparisons between the very poor and the whole population, and emphasizes comparisons
which involve almost identical population subgroups. From this point of view, the Zenga
index is more impartial: it is based on all comparisons between complementary disjoint
population subgroups and gives the same weight to each comparison. Hence, the Zenga
index ZF detects, with the same sensibility, all deviations from equality in any part of the
distribution.

To illustrate the Gini curve GF(p) and its weighted version gF(p) = GF(p)ψ(p),
and to also facilitate their comparisons with the Zenga curve ZF(p), we choose the Pareto
distribution

F(x) = 1 −
(x0

x

)θ
, x ≥ x0, (1.6)

where x0 > 0 and θ > 0 are parameters. Later in this paper, we will use this distribution in a
simulation study, setting x0 = 1 and θ = 2.06. Note that when θ > 2, then the second moment
of the distribution is finite. The “heavy-tailed” case 1 < θ < 2 is also of interest, especially
when modeling incomes of countries with very high economic inequality. We will provide
additional details on the case in Section 5.

Note 1. Pareto distribution (1.6) is perhaps the oldest model for income distributions. It dates
back to Pareto [5], and Pareto [6]. Pareto’s original empirical research suggested him that the
number of tax payers with income x is roughly proportional to x−(θ+1), where θ is a parameter
that measures inequality. For historical details on the interpretation of this parameter in the
context of measuring economic inequality, we refer to Zenga [7]. We can view the parameter
x0 > 0 as the lowest taxable income. In addition, besides being the greatest lower bound of
the distribution support, x0 is also the scale parameter of the distribution and thus does not
affect our inequality indices and curves, as we will see in formulas below.

Note 2. The Pareto distribution is positively supported, x ≥ x0 > 0. In real surveys, however,
in addition to many positive incomes we may also observe some zero and negative incomes.
This happens when evaluating net household incomes, which are the sums of payroll incomes
(net wages, salaries, fringe benefits), pensions and net transfers (pensions, arrears, financial
assistance, scholarships, alimony, gifts). Paid alimony and gifts are subtracted in forming
the incomes. However, negative incomes usually happen in the case of very few statistical
units. For example, in the 2006 Bank of Italy survey we observe only four households with
nonpositive incomes, out of the total of 7,766 households. Hence, it is natural to fit the
Pareto model to the positive incomes and keep in mind that we are actually dealing with
a conditional distribution. If, however, it is desired to deal with negative, null, and positive
incomes, then instead of the Pareto distribution we may switch to different ones, such as
Dagum distributions with three or four parameters [8–10].

Corresponding to Pareto distribution (1.6), the Lorenz curve is given by the formula
LF(p) = 1− (1−p)1−1/θ (see [11]), and thus the Gini curve becomes GF(p) = ((1−p)1−1/θ − (1−
p))/p. In Figure 1(a) we have depicted the Gini and weighted Gini curves. The corresponding
Zenga curve is equal toZF(p) = (1−(1−p)1/θ)/p and is depicted in Figure 1(b), alongside the
Gini curve GF(p) for an easy comparison. Figure 1(a) allows us to appreciate how the Gini
weight function ψ(p) = 2p disguises the high inequality between the mean income of the very
poor and that of the whole population, and overemphasizes comparisons between almost
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Figure 1: The Gini curve GF(p)(dashed; (a) and (b)), the weighted Gini curve gF(p)(solid; (a)), and the
Zenga curve ZF(p)(solid; (b)) in the Pareto case with x0 = 1 and θ = 2.06.

identical subgroups. The outcome is that the Gini index GF underestimates inequality. In
Figure 1(b) we see the difference between the Gini and Zenga inequality curves. For example,
GF(p) for p = 0.8 yields 0.296, which tells us that the mean income of the poorest 80% of
the population is 29.6% lower than the mean income of the whole population, while the
corresponding ordinate of the Zenga curve is ZF(0.8) = 0.678, which tells us that the mean
income of the poorest 80% of the population is 67.8% lower than the mean income of the
remaining (richer) part of the population.

The rest of this paper is organized as follows. In Section 2 we define two estimators of
the Zenga index ZF and develop statistical inferential results. In Section 3 we present results
of a simulation study, which explores the empirical performance of two Zenga estimators,
Ẑn and Z̃n, including coverage accuracy and length of several types of confidence intervals.
In Section 4 we present an analysis of the the Bank of Italy Survey on Household Income
and Wealth (SHIW) data. In Section 5 we further contribute to the understanding of the
Zenga index ZF by relating it to lower and upper conditional expectations, as well as to
the conditional tail expectation (CTE), which has been widely used in insurance. In Section 6
we provide a theoretical background of the aforementioned two empirical Zenga estimators.
In Section 7 we justify the definitions of several variance estimators as well as their uses in
constructing confidence intervals. In Section 8 we prove Theorem 2.1 of Section 2, which is the
main technical result of the present paper. Technical lemmas and their proofs are relegated to
Section 9.

2. Estimators and Statistical Inference

Unless explicitly stated otherwise, our statistical inferential results are derived under the
assumption that data are outcomes of independent and identically distributed (i.i.d.) random
variables.

Hence, let X1, . . . , Xn be independent copies of X. We use two nonparametric
estimators for the Zenga index ZF . The first one [12] is given by the formula

Ẑn = 1 − 1
n

n−1∑

i=1

i−1 ∑i
k=1 Xk:n

(n − i)−1 ∑n
k=i+1 Xk:n

, (2.1)
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where X1:n ≤ · · · ≤ Xn:n are the order statistics of X1, . . . , Xn. With X denoting the sample
mean of X1, . . . , Xn, the second estimator of the Zenga index ZF is given by the formula

Z̃n = −
n∑

i=2

∑i−1
k=1 Xk:n − (i − 1)Xi:n
∑n

k=i+1 Xk:n + iXi:n
log

(
i

i − 1

)

+
n−1∑

i=1

(
X

Xi:n
− 1 −

∑i−1
k=1 Xk:n − (i − 1)Xi:n
∑n

k=i+1 Xk:n + iXi:n

)

log

(

1 +
Xi:n∑n

k=i+1 Xk:n

)

.

(2.2)

The two estimators Ẑn and Z̃n are asymptotically equivalent. However, despite the fact that
the estimator Z̃n is more complex, it will nevertheless be more convenient to work with when
establishing asymptotic results later in this paper.

Unless explicitly stated otherwise, we assume throughout that the cdf F(x) of X is
a continuous function. We note that continuous cdf’s are natural choices when modeling
income distributions, insurance risks, and losses (see, e.g., [13]).

Theorem 2.1. If the moment E[X2+α] is finite for some α > 0, then one has the asymptotic
representation

√
n
(
Z̃n − ZF

)
=

1√
n

n∑

i=1

h(Xi) + oP(1), (2.3)

where oP(1) denotes a random variable that converges to 0 in probability when n → ∞, and

h(Xi) =
∫∞

0
(1{Xi ≤ x} − F(x))wF(F(x))dx (2.4)

with the weight function

wF(t) = − 1
μF

∫ t

0

(
1
p
− 1

)
LF

(
p
)

(
1 − LF

(
p
))2

dp +
1
μF

∫1

t

(
1
p
− 1

)
1

1 − LF
(
p
)dp. (2.5)

In view of Theorem 2.1, the asymptotic distribution of
√
n (Z̃n−ZF) is centered normal

with the variance σ2
F = E[h2(X)], which is finite (see Theorem 7.1) and can be written as

follows:

σ2
F =

∫∞

0

∫∞

0

(
min

{
F(x), F

(
y
)} − F(x)F(y))wF(F(x))wF

(
F
(
y
))
dx dy. (2.6)

Alternatively,

σ2
F =

∫1

0

(∫

[0,u)
twF(t)dF−1(t) −

∫

[u,1)
(1 − t)wF(t)dF−1(t)

)2

du. (2.7)
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The latter expression of σ2
F is particularly convenient when working with distributions for

which the first derivative (when it exists) of the quantile F−1(t) is a relatively simple function,
as is the case for a large class of distributions (see, e.g., [14]). However, irrespectively of what
expression for the variance σ2

F we use, the variance is unknown since the cdf F(x) is unknown,
and thus σ2

F needs to be estimated empirically.

2.1. One Sample Case

Replacing the population cdf everywhere on the right-hand side of (2.6) by the empirical cdf
Fn(x) = n−1 ∑n

i=1 1{Xi ≤ x}, where 1 denotes the indicator function, we obtain (Theorem 7.2)
the following estimator of the variance σ2

F :

S2
X,n =

n−1∑

k=1

n−1∑

l=1

(
min{k, l}

n
− k

n

l

n

)

×wX,n

(
k

n

)
wX,n

(
l

n

)
(Xk+1:n −Xk:n)(Xl+1:n −Xl:n),

(2.8)

where

wX,n

(
k

n

)
= −

k∑

i=1

IX,n(i) +
n∑

i=k+1

JX,n(i) (2.9)

with the following expressions for the summands IX,n(i) and JX,n(i) : first,

IX,n(1) = −
∑n

k=2 Xk:n − (n − 1)X1:n
(∑n

k=1 Xk:n
)(∑n

k=2 Xk:n
) +

1
X1,n

log

(

1 +
X1:n∑n
k=2 Xk:n

)

. (2.10)

Furthermore, for every i = 2, . . . , n − 1,

IX,n(i) = n
∑i−1

k=1 Xk:n − (i − 1)Xi:n
(∑n

k=i+1 Xk:n + iXi:n
)2

log
(

i

i − 1

)

−
(∑n

k=i+1 Xk:n − (n − i)Xi:n
)(∑n

k=1 Xk:n
)

(∑n
k=i+1 Xk:n + iXi:n

)(∑n
k=i+1 Xk:n

)(∑n
k=i Xk:n

)

+

(
1
Xi:n

+ n
∑i−1

k=1 Xk:n − (i − 1)Xi:n
(∑n

k=i+1 Xk:n + iXi:n
)2

)

log

(

1 +
Xi:n∑n

k=i+1 Xk:n

)

,

(2.11)

JX,n(i) =
n

∑n
k=i+1 Xk:n + iXi:n

log
(

i

i − 1

)

−
∑n

k=i+1 Xk:n − (n − i)Xi:n

Xi:n
(∑n

k=i+1 Xk:n + iXi:n
) log

(

1 +
Xi:n∑n

k=i+1 Xk:n

)

.

(2.12)
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Finally,

JX,n(n) =
1

Xn,n
log

(
n

n − 1

)
. (2.13)

With the just defined estimator S2
X,n of the variance σ2

F , we have the asymptotic result:

√
n
(
Z̃n − ZF

)

SX,n
−→dN(0, 1), (2.14)

where → d denotes convergence in distribution.

2.2. Two Independent Samples

We now discuss a variant of statement (2.14) in the case of two populations when samples
are independent. Namely, let the random variables X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ H be
independent within and between the two samples. Just like in the case of the cdf F(x), here
we also assume that the cdfH(x) is continuous and E[Y 2+α] <∞ for some α > 0. Furthermore,
we assume that the sample sizes n and m are comparable, which means that there exists
η ∈ (0, 1) such that

m

n +m
−→ η ∈ (0, 1) (2.15)

when both n and m tend to infinity. From statement (2.3) and its counterpart for Yi ∼ H we
then have that the quantity

√
nm/(n +m) ((Z̃X,n−Z̃Y,m)−(ZF−ZH)) is asymptotically normal

with mean zero and the variance ησ2
F + (1 − η)σ2

H . To estimate the variances σ2
F and σ2

H , we
use S2

X,n and S2
Y,n, respectively, and obtain the following result:

(
Z̃X,n − Z̃Y,m

)
− (ZF − ZH)

√
(1/n)S2

X,n + (1/m)S2
Y,m

−→dN(0, 1). (2.16)

2.3. Paired Samples

Consider now the case when the two samples X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ H are
paired. Thus, we have that m = n, and we also have that the pairs (X1, Y1), . . . , (Xn, Yn) are
independent and identically distributed. Nothing is assumed about the joint distribution of
(X,Y ). As before, the cdf’s F(x) and H(y) are continuous and both have finite moments
of order 2 + α, for some α > 0. From statement (2.3) and its analog for Y we have that√
n ((Z̃X,n−Z̃Y,n)−(ZF−ZH)) is asymptotically normal with mean zero and the variance σ2

F,H =
E[(h(X) − h(Y ))2]. The latter variance can of course be written as σ2

F − 2E[h(X)h(Y )] + σ2
H .

Having already constructed estimators S2
X,n and S2

Y,n, we are only left to construct an estimator
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for E[h(X)h(Y )]. (Note that when X and Y are independent, then P[X ≤ x, Y ≤ y] =
F(x)H(y) and thus the expectation E[h(X)h(Y )] vanishes.) To this end, we write the equation

E[h(X)h(Y )] =
∫∞

0

∫∞

0

(
P
[
X ≤ x, Y ≤ y] − F(x)H(

y
))
wF(F(x))wH

(
H
(
y
))
dx dy. (2.17)

Replacing the cdf’s F(x) and H(y) everywhere on the right-hand side of the above equation
by their respective empirical estimators Fn(x) and Hn(y), we have (Theorem 7.3)

SX,Y,n =
n−1∑

k=1

n−1∑

l=1

(
1
n

k∑

i=1

1
{
Y(i,n) ≤ Yl:n

} − k

n

l

n

)

×wX,n

(
k

n

)
wY,n

(
l

n

)
(Xk+1:n −Xk:n)(Yl+1:n − Yl:n),

(2.18)

where Y(1,n), . . . , Y(n,n) are the induced (by X1, . . . , Xn) order statistics of Y1, . . . , Yn. (Note that
when Y ≡ X, then Y(i,n) = Yi:n and so the sum

∑k
i=1 1{Y(i,n) ≤ Yl:n} is equal to min{k, l}; hence,

estimator (2.18) coincides with estimator (2.8), as expected.) Consequently, S2
X,n−2SX,Y,n+S2

Y,n

is an empirical estimator of σ2
F,H , and so we have that

√
n
(
Z̃X,n − Z̃Y,n

)
− (ZF − ZH)

√
S2
X,n − 2SX,Y,n + S2

Y,n

−→dN(0, 1). (2.19)

We conclude this section with a note that the above established asymptotic results
(2.14), (2.16), and (2.19) are what we typically need when dealing with two populations,
or two time periods, but extensions to more populations and/or time periods would be a
worthwhile contribution. For hints and references on the topic, we refer to Jones et al. [15]
and Brazauskas et al. [16].

3. A Simulation Study

Here we investigate the numerical performance of the estimators Ẑn and Z̃n by simulating
data from Pareto distribution (1.6) with x0 = 1 and θ = 2.06. These choices give the value
ZF = 0.6, which is approximately seen in real income distributions. As to the (artificial) choice
x0 = 1, we note that since x0 is the scale parameter in the Pareto model, the inequality indices
and curves are invariant to it. Hence, all results to be reported in this section concerning the
coverage accuracy and size of confidence intervals will not be affected by the choice x0 = 1.

Following Davison and Hinkley [17, Chapter 5], we compute four types of confidence
intervals: normal, percentile, BCa, and t-bootstrap. For normal and studentized bootstrap
confidence intervals we estimate the variance using empirical influence values. For the
estimator Z̃n, the influence values h(Xi) are obtained from Theorem 2.1, and those for the
estimator Ẑn using numerical differentiation as in Greselin and Pasquazzi [12].

In Table 1 we report coverage percentages of 10, 000 confidence intervals, for each
of the four types: normal, percentile, BCa, and t-bootstrap. Bootstrap-based approximations
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Table 1: Coverage proportions of confidence intervals from the Pareto parent distribution with x0 = 1 and
θ = 2.06 (ZF = 0.6).

Ẑn Z̃n

0.9000 0.9500 0.9750 0.9900 0.9000 0.9500 0.9750 0.9900
n Normal confidence intervals
200 0.7915 0.8560 0.8954 0.9281 0.7881 0.8527 0.8926 0.9266
400 0.8059 0.8705 0.9083 0.9409 0.8047 0.8693 0.9078 0.9396
800 0.8256 0.8889 0.9245 0.9514 0.8246 0.8882 0.9237 0.9503
n Percentile confidence intervals
200 0.7763 0.8326 0.8684 0.9002 0.7629 0.8190 0.8567 0.8892
400 0.8004 0.8543 0.8919 0.9218 0.7934 0.8487 0.8864 0.9179
800 0.8210 0.8777 0.9138 0.9415 0.8168 0.8751 0.9119 0.9393
n BCa confidence intervals
200 0.8082 0.8684 0.9077 0.9383 0.8054 0.867 0.9047 0.9374
400 0.8205 0.8863 0.9226 0.9531 0.8204 0.886 0.9212 0.9523
800 0.8343 0.8987 0.9331 0.9634 0.8338 0.8983 0.9323 0.9634
n t-bootstrap confidence intervals
200 0.8475 0.9041 0.9385 0.9658 0.8485 0.9049 0.9400 0.9675
400 0.8535 0.9124 0.9462 0.9708 0.8534 0.9120 0.9463 0.9709
800 0.8580 0.9168 0.9507 0.9758 0.8572 0.9169 0.9504 0.9754

have been obtained from 9, 999 resamples of the original samples. As suggested by Efron [18],
we have approximated the acceleration constant for the BCa confidence intervals by one-sixth
times the standardized third moment of the influence values. In Table 2 we report summary
statistics concerning the size of the 10, 000 confidence intervals. As expected, the confidence
intervals based on Ẑn and Z̃n exhibit similar characteristics. We observe from Table 1 that
all confidence intervals suffer from some undercoverage. For example, with sample size 800,
about 97.5% of the studentized bootstrap confidence intervals with 0.99 nominal confidence
level contain the true value of the Zenga index. It should be noted that the higher coverage
accuracy of the studentized bootstrap confidence intervals (when compared to the other
ones) comes at the cost of their larger sizes, as seen in Table 2. Some of the studentized
bootstrap confidence intervals extend beyond the range [0, 1] of the Zenga index ZF , but this
can easily be fixed by taking the minimum between the currently recorded upper bounds
and 1, which is the upper bound of the Zenga index ZF for every cdf F. We note that for the
BCa confidence intervals, the number of bootstrap replications of the original sample has to
be increased beyond 9, 999 if the nominal confidence level is high. Indeed, for samples of size
800, it turns out that the upper bound of 1, 598 (out of 10, 000) of the BCa confidence intervals
based on Ẑn and with 0.99 nominal confidence level is given by the largest order statistics of
the bootstrap distribution. For the confidence intervals based on Z̃n, the corresponding figure
is 1, 641.

4. An Analysis of Italian Income Data

In this section we use the Zenga index ZF to analyze data from the Bank of Italy Survey on
Household Income and Wealth (SHIW). The sample of the 2006 wave of this survey contains
7, 768 households, with 3, 957 of them being panel households. For detailed information on
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Table 2: Size of the 95% asymptotic confidence intervals from the Pareto parent distribution with x0 = 1
and θ = 2.06 (ZF = 0.6).

Ẑn Z̃n

min mean max min mean max
n Normal confidence intervals
200 0.0680 0.1493 0.7263 0.0674 0.1500 0.7300
400 0.0564 0.1164 0.7446 0.0563 0.1167 0.7465
800 0.0462 0.0899 0.6528 0.0462 0.0900 0.6535
n Percentile confidence intervals
200 0.0673 0.1456 0.4751 0.0667 0.1462 0.4782
400 0.0561 0.1140 0.4712 0.0561 0.1143 0.4721
800 0.0467 0.0883 0.4110 0.0468 0.0884 0.4117
n BCa confidence intervals
200 0.0668 0.1491 0.4632 0.0661 0.1497 0.4652
400 0.0561 0.1183 0.4625 0.0558 0.1186 0.4629
800 0.0465 0.0925 0.4083 0.0467 0.0927 0.4085
n t-bootstrap confidence intervals
200 0.0677 0.2068 2.4307 0.0680 0.2099 2.5148
400 0.0572 0.1550 2.0851 0.0573 0.1559 2.1009
800 0.0473 0.1159 2.2015 0.0474 0.1162 2.2051

the survey, we refer to the Bank of Italy [19] publication. In order to treat data correctly
in the case of different household sizes, we work with equivalent incomes, which we have
obtained by dividing the total household income by an equivalence coefficient, which is the
sum of weights assigned to each household member. Following the modified Organization
for Economic Cooperation and Development (OECD) equivalence scale, we give weight 1 to
the household head, 0.5 to the other adult members of the household, and 0.3 to the members
under 14 years of age. It should be noted, however, that—as is the case in many surveys
concerning income analysis—households are selected using complex sampling designs. In
such cases, statistical inferential results are quite complex. To alleviate the difficulties, in the
present paper we follow the commonly accepted practice and treat income data as if they
were i.i.d.

In Table 3 we report the values of Ẑn and Z̃n according to the geographic area of the
households, and we also report confidence intervals for ZF based on the two estimators. We
note that two households in the sample had negative incomes in 2006, and so we have not
included them in our computations.

Note 3. Removing the negative incomes from our current analysis is important as otherwise
we would need to develop a much more complex methodology than the one offered in this
paper. To give a flavour of technical challenges, we note that the Gini index may overestimate
the economic inequality when negative, zero, and positive incomes are considered. In this
case the Gini index needs to be renormalized as demonstrated by, for example, Chen et al.
[20]. Another way to deal with the issue would be to analyze the negative incomes and their
concentration separately from the zero and positive incomes and their concentration.

Consequently, the point estimates of ZF are based on 7, 766 equivalent incomes with
Ẑn = 0.6470 and Z̃n = 0.6464. As pointed out by Maasoumi [21], however, good care is
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Table 3: Confidence intervals for ZF in the 2006 Italian income distribution.

Ẑn estimator Z̃n estimator
95% 99% 95% 99%

Lower Upper Lower Upper Lower Upper Lower Upper
Northwest: n = 1988, Ẑn = 0.5953, Z̃n = 0.5948

Normal 0.5775 0.6144 0.5717 0.6202 0.5771 0.6138 0.5713 0.6196
Student 0.5786 0.6168 0.5737 0.6240 0.5791 0.6172 0.5748 0.6243
Percent 0.5763 0.6132 0.5710 0.6193 0.5758 0.6124 0.5706 0.6185
BCa 0.5789 0.6160 0.5741 0.6234 0.5785 0.6156 0.5738 0.6226

Northeast: n = 1723, Ẑn = 0.6108, Z̃n = 0.6108
Normal 0.5849 0.6393 0.5764 0.6478 0.5849 0.6393 0.5764 0.6479
Student 0.5874 0.6526 0.5796 0.6669 0.5897 0.6538 0.5836 0.6685
Percent 0.5840 0.6379 0.5773 0.6476 0.5839 0.6379 0.5772 0.6475
BCa 0.5894 0.6478 0.5841 0.6616 0.5894 0.6479 0.5842 0.6615

Center: n = 1574, Ẑn = 0.6316, Z̃n = 0.6316
Normal 0.5957 0.6708 0.5839 0.6826 0.5956 0.6708 0.5838 0.6827
Student 0.5991 0.6991 0.5897 0.7284 0.6036 0.7016 0.5977 0.7311
Percent 0.5948 0.6689 0.5864 0.6818 0.5948 0.6688 0.5863 0.6818
BCa 0.6024 0.6850 0.5963 0.7021 0.6024 0.6850 0.5963 0.7020

South: n = 1620, Ẑn = 0.6557, Z̃n = 0.6543
Normal 0.6358 0.6770 0.6293 0.6834 0.6346 0.6756 0.6282 0.6820
Student 0.6371 0.6805 0.6313 0.6902 0.6371 0.6796 0.6320 0.6900
Percent 0.6351 0.6757 0.6286 0.6828 0.6337 0.6742 0.6276 0.6812
BCa 0.6375 0.6793 0.6325 0.6888 0.6363 0.6778 0.6315 0.6873

Islands: n = 861, Ẑn = 0.6109, Z̃n = 0.6095
Normal 0.5918 0.6317 0.5856 0.6380 0.5910 0.6302 0.5848 0.6364
Student 0.5927 0.6339 0.5864 0.6405 0.5928 0.6330 0.5874 0.6401
Percent 0.5897 0.6297 0.5839 0.6360 0.5885 0.6275 0.5831 0.6340
BCa 0.5923 0.6324 0.5868 0.6414 0.5914 0.6307 0.5860 0.6394

Italy (entire population): n = 7766, Ẑn = 0.6470, Z̃n = 0.6464
Normal 0.6346 0.6596 0.6307 0.6636 0.6341 0.6591 0.6302 0.6630
Student 0.6359 0.6629 0.6327 0.6686 0.6358 0.6627 0.6331 0.6683
Percent 0.6348 0.6597 0.6314 0.6640 0.6343 0.6592 0.6309 0.6635
BCa 0.6363 0.6619 0.6334 0.6676 0.6358 0.6613 0.6330 0.6669

needed when comparing point estimates of inequality measures. Indeed, direct comparison
of the point estimates corresponding to the five geographic areas of Italy would lead us
to the conclusion that the inequality is higher in the central and southern areas when
compared to the northern area and the islands. But as we glean from pairwise comparisons
of the confidence intervals, only the differences between the estimates corresponding to the
northwestern and southern areas and perhaps to the islands and the southern area may be
deemed statistically significant.

Moreover, we have used the paired samples of the 2004 and 2006 incomes of the 3,957
panel households in order to check whether during this time period there was a change
in inequality among households. In Table 4 we report the values of Z̃n based on the panel
households for these two years, and the 95% confidence intervals for the difference between
the values of the Zenga index for the years 2006 and 2004. These computations have been
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Table 4: 95% confidence intervals for the difference of the Zenga indices between 2006 and 2004 in the
Italian income distribution.

Northwest (926 pairs) Northeast (841 pairs) Center (831 pairs)
Z̃

(2006)
n 0.5797 Z̃

(2006)
n 0.6199 Z̃

(2006)
n 0.5921

Z̃
(2004)
n 0.5955 Z̃

(2004)
n 0.6474 Z̃

(2004)
n 0.5766

Difference −0.0158 Difference −0.0275 Difference 0.0155
Lower Upper Lower Upper Lower Upper

Normal −0.0426 0.0102 −0.0573 0.0003 −0.0183 0.0514
Student −0.0463 0.0103 −0.0591 0.0017 −0.0156 0.0644
Percent −0.0421 0.0108 −0.0537 0.0040 −0.0183 0.0505
BCa −0.0440 0.0087 −0.0551 0.0022 −0.0130 0.0593

South (843 pairs) Islands (512 pairs) Italy (3953 pairs)
Z̃

(2006)
n 0.6200 Z̃

(2006)
n 0.6179 Z̃

(2006)
n 0.6362

Z̃
(2004)
n 0.6325 Z̃

(2004)
n 0.6239 Z̃

(2004)
n 0.6485

Difference −0.0125 Difference −0.0060 Difference −0.0123
Lower Upper Lower Upper Lower Upper

Normal −0.0372 0.0129 −0.0333 0.0213 −0.0259 0.0007
Student −0.0365 0.0166 −0.0351 0.0222 −0.0264 0.0013
Percent −0.0372 0.0131 −0.0333 0.0214 −0.0253 0.0016
BCa −0.0351 0.0162 −0.0331 0.0216 −0.0255 0.0013

based on formula (2.19). Having removed the four households with at least one negative
income in the paired sample, we were left with a total of 3, 953 observations. We see that even
though we deal with large sample sizes, the point estimates alone are not reliable. Indeed, for
Italy as the whole and for all geographic areas except the center, the point estimates suggest
that the Zenga index decreased from the year 2004 to 2006. However, the 95% confidence
intervals in Table 4 suggest that this change is not significant.

5. An Alternative Look at the Zenga Index

In various contexts we have notions of rich and poor, large and small, risky and secure.
They divide the underlying populations into two parts, which we view as subpopulations.
The quantile F−1(p), for some p ∈ (0, 1), usually serves as a boundary separating the two
subpopulations. For example, we may define rich if X > F−1(p) and poor if X ≤ F−1(p).
Calculating the mean value of the former subpopulation gives rise to the upper conditional
expectation E[X | X > F−1(p)], which is known in the actuarial risk theory as the conditional
tail expectation (CTE). Calculating the mean value of the latter subpopulation gives rise to
the lower conditional expectation E[X | X ≤ F−1(p)], which is known in the econometric
literature as the absolute Bonferroni curve, as a function of p.

Clearly, the ratio

RF

(
p
)
=

E
[
X | X ≤ F−1(p

)]

E
[
X | X > F−1

(
p
)] (5.1)

of the lower and upper conditional expectations takes on values in the interval [0, 1]. WhenX
is equal to any constant, which can be interpreted as the egalitarian case, then RF(p) is equal
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to 1. The ratio RF(p) is equal to 0 for all p ∈ (0, 1) when the lower conditional expectation
is equal to 0 for all p ∈ (0, 1). This means extreme inequality in the sense that, loosely
speaking, there is only one individual who possesses the entire wealth. Our wish to associate
the egalitarian case with 0 and the extreme inequality with 1 leads to function 1−RF(p), which
coincides with the Zenga curve (1.5) when the cdf F(x) is continuous. The area

1 −
∫1

0

E
[
X | X ≤ F−1(p

)]

E
[
X | X > F−1

(
p
)]dp (5.2)

beneath the function 1 − RF(p) is always in the interval [0, 1]. Quantity (5.2) is a measure
of inequality and coincides with the earlier defined Zenga index ZF when the cdf F(x) is
continuous, which we assume throughout the paper.

Note that under the continuity of F(x), the lower and upper conditional expectations
are equal to the absolute Bonferroni curve p−1ALF(p) and the dual absolute Bonferroni curve
(1 − p)−1(μF −ALF(p)), respectively, where

ALF
(
p
)
=
∫p

0
F−1(t)dt (5.3)

is the absolute Lorenz curve. This leads us to the expression of the Zenga index ZF given by
(1.4), which we now rewrite in terms of the absolute Lorenz curve as follows:

ZF = 1 −
∫1

0

(
1
p
− 1

)
ALF

(
p
)

μF −ALF
(
p
)dp. (5.4)

We will extensively use expression (5.4) in the proofs below. In particular, we will see in the
next section that the empirical Zenga index Z̃n is equal to ZF with the population cdf F(x)
replaced by the empirical cdf Fn(x).

We are now in the position to provide additional details on the earlier noted Pareto
case 1 < θ < 2, when the Pareto distribution has finite E[X] but infinite E[X2]. The above
derived asymptotic results and thus the statistical inferential theory fail in this case. The
required adjustments are serious and rely on the use of the extreme value theory, instead
of the classical central limit theorem (CLT). Specifically, the task can be achieved by first
expressing the absolute Lorenz curve ALF(p) in terms of the conditional tail expectation
(CTE):

CTEF

(
p
)
=

1
1 − p

∫1

p

F−1(t)dt (5.5)

using the equation ALF(p) = μF − (1 − p)CTEF(p). Hence, (5.4) becomes

ZF = 1 −
∫1

0

1
p

(
CTEF(0)
CTEF

(
p
) − (

1 − p)
)

dp, (5.6)

where CTEF(0) is of course the mean μF . Note that replacing the population cdf F(x) by its
empirical counterpart Fn(x) on the right-hand side of (5.6) would not lead to an estimator
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that would work when E[X2] = ∞, and thus when the Pareto parameter 1 < θ < 2. A solution
to this problem is provided by Necir et al. [22], who have suggested a new estimator of the
conditional tail expectation CTEF(p) for heavy-tailed distributions. Plugging in that estimator
instead of the CTE on the right-hand side of (5.6) produces an estimator of the Zenga index
when E[X2] = ∞. Establishing asymptotic results for the new “heavy-tailed” Zenga estimator
would, however, be a complex technical task, well beyond the scope of the present paper, as
can be seen from the proofs of Necir et al. [22].

6. A Closer Look at the Two Zenga Estimators

Since samples are “discrete populations”, (5.2) and (5.4) lead to slightly different empirical
estimators of ZF . If we choose (5.2) and replace all population-related quantities by their
empirical counterparts, then we will arrive at the estimator Ẑn, as seen from the proof of the
following theorem.

Theorem 6.1. The empirical Zenga index Ẑn is an empirical estimator of ZF .

Proof. Let U be a uniform on [0, 1] random variable independent of X. The cdf of F−1(U) is
F. Hence, we have the following equations:

ZF = 1 − EU

(
EX

[
X | X ≤ F−1(U)

]

EX

[
X | X > F−1(U)

]

)

= 1 −
∫

(0,∞)

1 − F(x)
F(x)

E[X 1{X ≤ x}]
E[X 1{X > x}]dF(x)

= 1 −
∫

(0,∞)

1 − F(x)
F(x)

∫
(0,x] y dF

(
y
)

∫
(x,∞) y dF

(
y
)dF(x).

(6.1)

Replacing every F on the right-hand side of (6.1) by Fn, we obtain

1 − 1
n

n−1∑

i=1

1 − Fn(Xi:n)
Fn(Xi:n)

∑n
k=1 Xk:n1{Xk:n ≤ Xi:n}

∑n
k=1 Xk:n1{Xk:n > Xi:n}

, (6.2)

which simplifies to

1 − 1
n

n−1∑

i=1

1 − i/n
i/n

∑i
k=1 Xk:n

∑n
k=i+1 Xk:n

. (6.3)

This is the estimator Ẑn [12].
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If, on the other hand, we choose (5.4) as the starting point for constructing an empirical
estimator for ZF , then we first replace the quantile F−1(p) by its empirical counterpart

F−1
n

(
p
)
= inf

{
x : Fn(x) ≥ p

}

= Xi:n when p ∈
(
(i − 1)
n

,
i

n

] (6.4)

in the definition of ALF(p), which leads to the empirical absolute Lorenz curve ALn(p), and
then we replace each ALF(p) on the right-hand side of (5.4) by the just constructed ALn(p).
(Note that μF = ALF(1) ≈ ALn(1) = X.) These considerations produce the empirical Zenga
index Z̃n, as seen from the proof of the following theorem.

Theorem 6.2. The empirical Zenga index Z̃n is an estimator of ZF .

Proof. By construction, the estimator Z̃n is given by the equation:

Z̃n = 1 −
∫1

0

(
1
p
− 1

)
ALn

(
p
)

X −ALn
(
p
)dp. (6.5)

Hence, the proof of the lemma reduces to verifying that the right-hand sides of (2.2) and (6.5)
coincide. For this, we split the integral in (6.5) into the sum of integrals over the intervals
((i − 1), i/n) for i = 1, . . . , n. For every p ∈ ((i − 1)/n, i/n), we have ALn(p) = Ci,n + pXi:n,
where

Ci,n =
1
n

i−1∑

k=1

Xk:n − i − 1
n

Xi:n. (6.6)

Hence, (6.5) can be rewritten as Z̃n =
∑n

i=1 ζi,n, where

ζi,n =
1
n
−
∫ i/n

(i−1)/n

(
1
p
− 1

)
Λi,n + p
Ψi,n − pdp

(6.7)

with

Λi,n =
Ci,n

Xi:n
, Ψi,n =

X − Ci,n

Xi:n
. (6.8)

Consider first the case i = 1. We have C1,n = 0 and thus Λ1,n = 0, which implies

ζ1,n =

(
X

X1:n
− 1

)

log

(

1 +
X1:n∑n
k=2 Xk:n

)

. (6.9)
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Next, we consider the case i = n. We have Cn,n = X −Xn:n and thus Ψn,n = 1, which implies

ζn,n =

(

1 − X

Xn:n

)

log
(

n

n − 1

)
. (6.10)

When 2 ≤ i ≤ n − 1, then the integrand in the definition of ζi,n does not have any singularity,
since Ψi,n > i/n due to

∑n
k=i+1 Xk:n > 0 almost surely. Hence, after simple integration we have

that, for i = 2, . . . , n − 1,

ζi,n =
(i − 1)Xi:n −

∑i−1
k=1 Xk:n

∑n
k=i+1 Xk:n + iXi:n

log
(

i

i − 1

)

+

(
X

Xi:n
− 1 +

(i − 1)Xi:n −
∑i−1

k=1 Xk:n
∑n

k=i+1 Xk:n + iXi:n

)

log

(

1 +
Xi:n∑n

k=i+1 Xk:n

)

.

(6.11)

With the above formulas for ζi,n we easily check that the sum
∑n

i=1 ζi,n is equal to the right-
hand side of (2.2). This completes the proof of Theorem 6.2.

7. A Closer Look at the Variances

Following the formulation of Theorem 2.1 we claimed that the asymptotic distribution of√
n (Z̃n−ZF) is centered normal with the finite variance σ2

F = E[h2(X)]. The following theorem
proves this claim.

Theorem 7.1. When E[X2+α] < ∞ for some α > 0, then n−1/2 ∑n
i=1 h(Xi) converges in distribution

to the centered normal random variable

Γ =
∫∞

0
B(F(x))wF(F(x))dx, (7.1)

where B(p) is the Brownian bridge on the interval [0, 1]. The variance of Γ is finite and equal to σ2
F .

Proof. Note that n−1/2 ∑n
i=1 h(Xi) can be written as

∫∞
0 en(F(x))wF(F(x))dx, where en(p) =√

n(En(p) − p) is the empirical process based on the uniform on [0, 1] random variables Ui =
F(Xi), i = 1, . . . , n. We will next show that

∫∞

0
en(F(x))wF(F(x))dx−→d

∫∞

0
B(F(x))wF(F(x))dx. (7.2)

The proof is based on the well-known fact that, for every ε > 0, the following weak
convergence of stochastic processes takes place:

{
en
(
p
)

p1/2−ε(1 − p)1/2−ε , 0 ≤ p ≤ 1

}

=⇒
{

B(p)

p1/2−ε(1 − p)1/2−ε , 0 ≤ p ≤ 1

}

. (7.3)
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Hence, in order to prove statement (7.2), we only need to check that the integral

∫∞

0
F(x)1/2−ε(1 − F(x))1/2−εwF(F(x))dx (7.4)

is finite. For this, by considering, for example, the two cases p ≤ 1/2 and p > 1/2 separately,
we first easily verify the bound |wF(p)| ≤ c + c log(1/p) + c log(1/(1 − p)). Hence, for every
ε > 0, there exists a constant c <∞ such that, for all p ∈ (0, 1),

∣
∣wF

(
p
)∣∣ ≤ c

pε
(
1 − p)ε . (7.5)

Bound (7.5) implies that integral (7.4) is finite when
∫∞

0 (1 − F(x))1/2−2εdx < ∞, which is true
since the moment E[X2+α] is finite for some α > 0 and the parameter ε > 0 can be chosen
as small as desired. Hence, n−1/2 ∑n

i=1 h(Xi)→ dΓ with Γ denoting the integral on the right-
hand side of statement (7.2). The random variable Γ is normal because the Brownian bridge
B(p) is a Gaussian process. Furthermore, Γ has mean zero because B(p) has mean zero for
every p ∈ [0, 1]. The variance of Γ is equal to σ2

F because E[B(p)B(q)] = min{p, q} − pq for all
p, q ∈ [0, 1]. We are left to show that E[Γ2] <∞. For this, we write the bound:

E
[
Γ2
]
=
∫∞

0

∫∞

0
E
[B(F(x))B(F(y))]wF(F(x))wF

(
F
(
y
))
dx dy

≤
(∫∞

0

√
E[B2(F(x))] wF(F(x))dx

)2

.

(7.6)

Since E[B2(F(x))] = F(x)(1 − F(x)), the finiteness of the integral on the right-hand side of
bound (7.6) follows from the earlier proved statement that integral (7.4) is finite. Hence,
E[Γ2] <∞ as claimed, which concludes the proof of Theorem 7.1.

Theorem 7.2. The empirical variance S2
X,n is an estimator of σ2

F .

Proof. We construct an empirical estimator for σ2
F by replacing every F on the right-hand side

of (2.6) by the empirical Fn. Consequently, we replace the function wF(t) by its empirical
version

wX,n(t) = −
∫ t

0

(
1
p
− 1

)
ALn

(
p
)

(
X −ALn

(
p
))2

dp +
∫1

t

(
1
p
− 1

)
1

X −ALn
(
p
)dp. (7.7)

We denote the resulting estimator of σ2
F by S2

X,n. The rest of the proof consists of verifying
that this estimator coincides with the one defined by (2.8). Note that min{Fn(x), Fn(y)} −
Fn(x)Fn(y) = 0 when x ∈ [0, X1:n) ∪ [Xn:n,∞) and/or y ∈ [0, X1:n) ∪ [Xn:n,∞). Hence, the just
defined S2

X,n is equal to

∫Xn:n

X1:n

∫Xn:n

X1:n

(
min

{
Fn(x), Fn

(
y
)} − Fn(x)Fn

(
y
))
wX,n(Fn(x))wX,n

(
Fn

(
y
))
dx dy. (7.8)
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Since Fn(x) = k/n when x ∈ [Xk:n, Xk+1:n), we therefore have that

S2
X,n =

n−1∑

k=1

n−1∑

l=1

(
min{k, l}

n
− k

n

l

n

)

×wX,n

(
k

n

)
wX,n

(
l

n

)
(Xk+1:n −Xk:n)(Xl+1:n −Xl:n).

(7.9)

Furthermore,

wX,n

(
k

n

)
= −

∫k/n

0

(
1
p
− 1

)
ALn

(
p
)

(
X −ALn

(
p
))2

dp +
∫1

k/n

(
1
p
− 1

)
1

X −ALn
(
p
)dp

= −
k∑

i=1

IX,n(i) +
n∑

i=k+1

JX,n(i),

(7.10)

where, using notations (6.6) and (6.8), the summands on the right-hand side of (7.10) are

IX,n(i) =
1
Xi:n

∫ i/n

(i−1)/n

(
1
p
− 1

)
Λi,n + p

(
Ψi,n − p

)2
dp (7.11)

for all i = 1, . . . , n − 1, and

JX,n(i) =
1
Xi:n

∫ i/n

(i−1)/n

(
1
p
− 1

)
1

Ψi,n − pdp
(7.12)

for all i = 2, . . . , n. When i = 1, then Λi,n = 0. Hence, we immediately arrive at the expression
for IX,n(1) given by (2.10). When 2 ≤ i ≤ n − 1, then

IX,n(i) =
Λi,n

Xi:nΨ2
i,n

log
(

i

i − 1

)
− (Λi,n + Ψi,n)(Ψi,n − 1)
nXi:nΨi,n(Ψi,n − (i − 1)/n)(Ψi,n − i/n)

+
1
Xi:n

(

1 +
Λi,n

Ψ2
i,n

)

log
(
Ψi,n − (i − 1)/n

Ψi,n − i/n
)
,

(7.13)

and, after some algebra, we arrive at the right-hand side of (2.11). When 2 ≤ i ≤ n − 1, then
we have the expression

JX,n(i) =
1

Xi:nΨi,n
log

(
i

i − 1

)
− 1
Xi:n

(
1 − 1

Ψi,n

)
log

(
Ψi,n − (i − 1)/n

Ψi,n − i/n
)
, (7.14)

which, after some algebra, becomes the expression recorded in (2.12). When i = n, then Ψi,n =
1, and so we see that JX,n(n) is given by (2.13). This completes the proof of Theorem 7.2.
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Theorem 7.3. The empirical mixed moment SX,Y,n is an estimator of E[h(X)h(Y )].

Proof. We proceed similarly to the proof of Theorem 7.2. We estimate the integrand P[X ≤
x, Y ≤ y] − F(x)H(y) using

1
n

n∑

i=1

1
{
Xi ≤ x, Yi ≤ y

} − 1
n

n∑

i=1

1{Xi ≤ x} 1
n

n∑

i=1

1
{
Yi ≤ y

}
. (7.15)

After some rearrangement of terms, estimator (7.15) becomes

1
n

n∑

i=1

1
{
Xi:n ≤ x, Y(i,n) ≤ y

} − 1
n

n∑

i=1

1{Xi:n ≤ x} 1
n

n∑

i=1

1
{
Yi:n ≤ y}. (7.16)

When x ∈ [Xk:n, Xk+1:n) and y ∈ [Yl:n, Yl+1:n), then estimator (7.16) is equal to
n−1 ∑k

i=1 1{Y(i,n) ≤ Yl:n} − (k/n)(l/n), which leads us to the estimator SX,Y,n. This completes
the proof of Theorem 7.3.

8. Proof of Theorem 2.1

Throughout the proof we use the notation AL∗
F(p) for the dual absolute Lorenz curve

∫1
p F

−1(t)dt, which is equal to μF − ALF(p). Likewise, we use the notation AL∗
n(p) for the

empirical dual absolute Lorenz curve.

Proof. Simple algebra gives the equations

√
n
(
Z̃n − ZF

)
= −√n

∫1

0

(
1
p
− 1

)(
ALn

(
p
)

AL∗
n

(
p
) − ALF

(
p
)

AL∗
F

(
p
)

)

dp

= −√n
∫1

0

(
1
p
− 1

)
ALn

(
p
) −ALF

(
p
)

AL∗
F

(
p
) dp

+
√
n

∫1

0

(
1
p
− 1

)
ALF

(
p
)

AL∗2
F

(
p
)
(
AL∗

n

(
p
) −AL∗

F

(
p
))
dp

+OP(rn,1) +OP(rn,2)

(8.1)

with the remainder terms

rn,1 =
√
n

∫1

0

(
1
p
− 1

)
(
ALn

(
p
) −ALF

(
p
))
(

1
AL∗

n

(
p
) − 1

AL∗
F

(
p
)

)

dp,

rn,2 =
√
n

∫1

0

(
1
p
− 1

)
ALF

(
p
)

AL∗
F

(
p
)
(
AL∗

n

(
p
) −AL∗

F

(
p
))
(

1
AL∗

n

(
p
) − 1

AL∗
F

(
p
)

)

dp.

(8.2)
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We will later show (Lemmas 9.1 and 9.2) that the remainder terms rn,1 and rn,2 are of the order
oP(1). Hence, we now proceed with our analysis of the first two terms on the right-hand side
of (8.1), for which we use the (general) Vervaat process

Vn
(
p
)
=
∫p

0

(
F−1
n (t) − F−1(t)

)
dt +

∫F−1(p)

0
(Fn(x) − F(x))dx (8.3)

and its dual version

V ∗
n

(
p
)
=
∫1

p

(
F−1
n (t) − F−1(t)

)
dt +

∫∞

F−1(p)
(Fn(x) − F(x))dx. (8.4)

For mathematical and historical details on the Vervaat process, see Zitikis [23], Davydov and
Zitikis [24], Greselin et al. [25], and references therein. Since

∫1
0 (F

−1
n (t) − F−1(t))dt = X − μF

and
∫∞

0 (Fn(x) − F(x))dx = −(X − μF), adding the right-hand sides of (8.3) and (8.4) gives the
equation V ∗

n (p) = −Vn(p). Hence, whatever upper bound we have for |Vn(p)|, the same bound
holds for |V ∗

n (p)|. In fact, the absolute value can be dropped from |Vn(p)| since Vn(p) is always
nonnegative. Furthermore, we know that Vn(p) does not exceed (p − Fn(F−1(p)))(F−1

n (p) −
F−1(p)). Hence, with the notation en(p) =

√
n(Fn(F−1(p)) − p), which is the uniform on [0, 1]

empirical process, we have that

√
n Vn

(
p
) ≤ ∣∣en

(
p
)∣∣
∣∣∣F−1

n

(
p
) − F−1(p

)∣∣∣. (8.5)

Bound (8.5) implies the following asymptotic representation for the first term on the right-
hand side of (8.1):

− √
n

∫1

0

(
1
p
− 1

)
ALn

(
p
) −ALF

(
p
)

AL∗
F

(
p
) dp

=
√
n

∫1

0

(
1
p
− 1

)
1

AL∗
F

(
p
)

(∫F−1(p)

0
(Fn(x) − F(x))dx

)

dp +OP(rn,3),

(8.6)

where

rn,3 =
∫1

0

(
1
p
− 1

)
1

AL∗
F

(
p
)
∣∣en

(
p
)∣∣
∣∣∣F−1

n

(
p
) − F−1(p

)∣∣∣dp. (8.7)

We will later show (Lemma 9.3) that rn,3 = oP(1). Furthermore, we have the following
asymptotic representation for the second term on the right-hand side of (8.1):

√
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p
)
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(
p
)
(
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(
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))
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= −√n
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0
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− 1

)
ALF

(
p
)

AL∗2
F

(
p
)

(∫∞

F−1(p)
(Fn(x) − F(x))dx

)

dp +OP(rn,4),

(8.8)
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where

rn,4 =
∫1

0

(
1
p
− 1

)
ALF

(
p
)

AL∗2
F

(
p
)
∣
∣en

(
p
)∣∣
∣
∣
∣F−1

n

(
p
) − F−1(p

)∣∣
∣dp. (8.9)

We will later show (Lemma 9.4) that rn,4 = oP(1). Hence, (8.1), (8.6) and (8.8) together with
the aforementioned statements that rn,1, . . . , rn,4 are of the order oP(1) imply that
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n
(
Z̃n − ZF

)
=
√
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0
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− √
n
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ALF

(
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(
p
)
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F−1(p)
(Fn(x) − F(x))dx
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dp + oP(1)

=
1√
n

n∑

i=1

h(Xi) + oP(1).

(8.10)

This completes the proof of Theorem 2.1.

9. Negligibility of Remainder Terms

The following four lemmas establish the above noted statements that the remainder terms
rn,1, . . . , rn,4 are of the order oP(1). In the proofs of the lemmas we will use a parameter δ ∈
(0, 1/2], possibly different from line to line but never depending on n. Furthermore, we will
frequently use the fact that

E[Xq] <∞ implies
∫1

0

∣∣∣F−1
n (t) − F−1(t)

∣∣∣
q
dt = oP(1). (9.1)

Another technical result that we will frequently use is the fact that, for any ε > 0 as small as
desired,

sup
x∈R

√
n|Fn(x) − F(x)|

F(x)1/2−ε(1 − F(x))1/2−ε = OP(1) (9.2)

when n → ∞.

Lemma 9.1. Under the conditions of Theorem 2.1, rn,1 = oP(1).

Proof. We split the remainder term rn,1 =
√
n
∫1

0 · · ·dp into the sum of r∗n,1(δ) =
√
n
∫1−δ

0 · · ·dp
and r∗∗n,1(δ) =

√
n
∫1

1−δ · · ·dp. The lemma follows if

(1) for every δ > 0, the statement r∗n,1(δ) = oP(1) holds when n → ∞,

(2) r∗∗n,1(δ) = h(δ)OP(1) for a deterministic h(δ) ↓ 0 when δ ↓ 0, where OP(1) does not
depend on δ.
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To prove part (1), we first note that when 0 < p < 1 − δ, then AL∗
F(p) ≥ ∫1

1−δ F
−1(t)dt,

which is positive, and AL∗
n(p) ≥

∫1
1−δ F

−1(t)dt+oP(1) due to statement (9.1) with q = 1. Hence,
we are left to show that, when n → ∞,

√
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∣ALn

(
p
) −ALF

(
p
)∣∣
∣
∣AL∗

n

(
p
) −AL∗

F

(
p
)∣∣dp = oP(1). (9.3)

Since AL∗
n(p) −AL∗

F(p) = (X − μF) − (ALn(p) −ALF(p)), statement (9.3) follows if
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n
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∣
∣X − μF

∣
∣
∣
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1
p
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∣ALn

(
p
) −ALF

(
p
)∣∣dp = oP(1), (9.4)

√
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∫1−δ

0

1
p

∣
∣ALn(p) −ALF(p)

∣
∣2
dp = oP(1). (9.5)

We have
√
n |X − μF | = OP(1) and |ALn(p) −ALF(p)| ≤ √

p (
∫1

0 |F−1
n (p) − F−1(p)|2dp)1/2. Since

∫1
0 |F−1

n (p) − F−1(p)|2dp = oP(1) and
∫1−δ

0 p−1√p dp < ∞, we have statement (9.4). To prove
statement (9.5), we use bound (8.5) and reduce the proof to showing that

1√
n
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0

1
p

∣∣∣∣∣

∫F−1(p)

0

√
n (Fn(x) − F(x))dx
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2

dp = oP(1), (9.6)
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∣∣en(p)
∣∣2
∣∣∣F−1

n (p) − F−1(p)
∣∣∣

2
dp = oP(1). (9.7)

To prove statement (9.6), we use statement (9.2) and observe that

∫1−δ

0

1
p

(∫F−1(p)

0
F(x)1/2−εdx

)2

dp ≤ c(F, δ)
∫1−δ

0

1
p
p1−2εdp <∞. (9.8)

To prove statement (9.7), we use the uniform on [0, 1] version of statement (9.2) and Hölder’s
inequality, and in this way reduce the proof to showing that

1√
n

(∫1−δ

0

1
p2εa

dp

)1/a(∫1−δ

0

∣∣∣F−1
n (p) − F−1(p)
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2b
dp

)1/b

= oP(1) (9.9)

for some a, b > 1 such that a−1 + b−1 = 1. We choose the parameters a and b as follows. First,
since E[X2+α] < ∞, we set b = (2 + α)/2. Next, we choose ε > 0 on the left-hand side of
statement (9.9) so that 2εa < 1, which holds when ε < α/(4 + 2α) in view of the equation
a−1 + b−1 = 1. Hence, statement (9.9) holds and thus statement (9.7) follows. This completes
the proof of part (1).

To establish part (2), we first estimate |r∗∗n,1(δ)| from above using the bounds AL∗
F(p) ≥

(1 − p)F−1(1/2) and AL∗
n(p) ≥ (1 − p)F−1

n (1/2), which hold since δ ≤ 1/2. Hence, we have
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reduced our task to verifying the statement
√
n
∫1

1−δ |ALn(p) −ALF(p)|dp = h(δ)OP(1). Using
the Vervaat process Vn(p) and bound (8.5), we reduce the proof of the statement to showing
that the integrals

∫1

1−δ

(∫F−1(p)

0

√
n |Fn(x) − F(x)|dx

)

dp, (9.10)
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∣en

(
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n

(
p
) − F−1(p

)∣∣
∣dp (9.11)

are of the order h(δ)OP(1) with possibly different h(δ) ↓ 0 in each case. In view of statement
(9.2), we have the desired statement for integral (9.10) if the quantity

∫1

1−δ

(∫F−1(p)

0
(1 − F(x))1/2−εdx

)

dp (9.12)

converges to 0 when δ ↓ 0, in which case we use it as h(δ). The inner integral of (9.12) does not
exceed

∫∞
0 (1−F(x))1/2−εdx, which is finite for all sufficiently small ε > 0 since E[X2+α] <∞ for

some α > 0. This completes the proof that quantity (9.10) is of the order h(δ)OP(1). To show
that quantity (9.11) is of a similar order, we use the uniform on [0, 1] version of statement
(9.2) and reduce the task to showing that

∫1
1−δ |F−1

n (p) − F−1(p)|dp is of the order h(δ)OP(1).
By the Cauchy-Bunyakowski-Schwarz inequality, we have that
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. (9.13)

Since E[X2] <∞, we have
∫1

0 |F−1
n (p)−F−1(p)|2dp = oP(1), and so setting h(δ) =

√
δ establishes

the desired asymptotic result for integral (9.11). This also completes the proof of part (2), and
also of Lemma 9.1.

Lemma 9.2. Under the conditions of Theorem 2.1, rn,2 = oP(1).

Proof. Like in the proof of Lemma 9.1, we split the remainder term rn,2 =
√
n
∫1

0 · · ·dp into the

sum of r∗n,2(δ) =
√
n
∫1−δ

0 · · ·dp and r∗∗n,2(δ) =
√
n
∫1

1−δ · · ·dp. To prove the lemma, we need to
show the following.

(1) For every δ > 0, the statement r∗n,2(δ) = oP(1) holds when n → ∞.

(2) r∗∗n,2(δ) = h(δ)OP(1) for a deterministic h(δ) ↓ 0 when δ ↓ 0, where OP(1) does not
depend on δ.

To prove part (1), we first estimate |r∗n,2(δ)| from above using the bounds p−1ALF(p) ≤
F−1(1 − δ) < ∞, AL∗

F(p) ≥
∫1

1−δ F
−1(t)dt > 0, and AL∗

n(p) ≥
∫1

1−δ F
−1(t)dt + oP(1). This reduces

our task to showing that, for every δ > 0,
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Since AL∗
n(p) −AL∗

F(p) = (X − μF) − (ALn(p) −ALF(p)) and
√
n (X − μF)2 = oP(1), statement

(9.14) follows from

√
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∣
∣ALn(p) −ALF(p)

∣
∣2
dp = oP(1), (9.15)

which is an elementary consequence of statement (9.5). This establishes part (1).
To prove part (2), we first estimate |r∗∗n,2(δ)| from above using the bounds AL∗

F(p) ≥
(1 − p)F−1(1/2) and AL∗

n(p) ≥ (1 − p)F−1
n (1/2), and in this way reduce the task to showing

that
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n
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1
1 − p
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n
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F

(
p
)∣∣dp = h(δ)OP(1). (9.16)

Using the Vervaat process, statement (9.16) follows if

∫1
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1
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(
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)∣∣∣dp = h(δ)OP(1) (9.18)

with possibly different h(δ) ↓ 0 in each case. Using statement (9.2), we have that statement
(9.17) holds with h(δ) defined as the integral

∫1

1−δ

1
1 − p

(∫∞

F−1(p)
(1 − F(x))1/2−εdx

)

dp, (9.19)

which converges to 0 when δ ↓ 0 as the following argument shows. First, we write the
integrand as the product of (1 − F(x))ε and (1 − F(x))1/2−2ε. Then we estimate the first factor
by (1 − p)ε. The integral

∫∞
0 (1 − F(x))1/2−2εdx is finite for all sufficiently small ε > 0 since

E[X2+α] < ∞ for some α > 0. Since
∫1

1−δ(1 − p)−1+εdp ↓ 0 when δ ↓ 0, integral (9.19) converges
to 0 when δ ↓ 0. The proof of statement (9.17) is finished.

We are left to prove statement (9.18). Using the uniform on [0, 1] version of statement
(9.2), we reduce the task to showing that
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n

(
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)∣∣∣dp = h(δ)OP(1). (9.20)

In fact, we will see below that OP(1) can be replaced by oP(1). Using Hölder’s inequality, we
have that the right-hand side of (9.20) does not exceed

(∫1
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(9.21)
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for some a, b > 1 such that a−1 + b−1 = 1. We choose the parameters a and b as follows. Since
E[X2+α] < ∞, we set b = 2 + α, and so the right-most integral of (9.21) is of the order oP(1).
Furthermore, a = (2 + α)/(1 + α) < 2, which can be made arbitrarily close to 2 by choosing
sufficiently small α > 0. Choosing ε > 0 so small that (1/2+ε)a < 1, we have that the left-most
integral in (9.21) converges to 0 when δ ↓ 0. This establishes statement (9.18) and completes
the proof of Lemma 9.2.

Lemma 9.3. Under the conditions of Theorem 2.1, rn,3 = oP(1).

Proof. We split the remainder term rn,3 =
∫1

0 · · ·dp into the sum of r∗n,3 =
∫1/2

0 · · ·dp and r∗∗n,3 =
∫1

1/2 · · ·dp. The lemma follows if the two summands are of the order oP(1).

To prove r∗n,3 = oP(1), we use the bound AL∗
F(p) ≥ ∫1

1/2 F
−1(p)dp and the uniform on

[0, 1] version of statement (9.2), and in this way reduce our task to showing that
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(
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) − F−1(p

)∣∣∣dp = oP(1). (9.22)

This statement can be established following the proof of statement (9.20), with minor
modifications.

To prove r∗∗n,3 = oP(1), we use the bound AL∗
F(p) ≥ (1 − p)F−1(1/2), the fact that

supt|en(t)| = OP(1), and statement (9.1) with q = 1. The desired result for r∗∗n,3 follows, which
finishes the proof of Lemma 9.3.

Lemma 9.4. Under the conditions of Theorem 2.1, rn,4 = oP(1).

Proof. We split rn,4 =
∫1

0 · · ·dp into the sum of r∗n,4 =
∫1/2

0 · · ·dp and r∗∗n,4 =
∫1

1/2 · · ·dp, and then
show that the two summands are of the order oP(1).

To prove r∗n,4 = oP(1), we use the bounds p−1ALF(p) ≤ F−1(1/2) < ∞ and AL∗
F(p) ≥

∫1
1/2 F

−1(p)dp > 0 together with the uniform on [0, 1] version of statement (9.2). This reduces

our task to showing that
∫1/2

0 |F−1
n (p) − F−1(p)|dp = oP(1), which holds due to statement (9.1)

with q = 1.
To prove r∗∗n,4 = oP(1), we use the bound AL∗

F(p) ≥ (1 − p)F−1(1/2) and the uniform on
[0, 1] version of statement (9.2), and in this way reduce the proof to showing that

∫1
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1
(
1 − p)1/2+ε

∣∣∣F−1
n

(
p
) − F−1(p

)∣∣∣dp = oP(1). (9.23)

This statement can be established following the proof of statement (9.20). The proof of
Lemma 9.4 is finished.
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Risk Navigator SRM is a ten-step risk management program for agricultural producers, which is
based on the strategic planning process. The ten steps are designed to integrate disparate and
difficult risk management concepts into a single system that is easy to use, yet still effective.
With the aid of computers and the internet, producers can work through each step toward a final
comprehensive plan. The website includes 25 decision tools that help producers accomplish each
step and provides links to complementary educational programs, like a national agricultural risk
education library, the award-winning risk management simulation program called Ag Survivor,
and a recently published book that describes the program and provides additional depth and
explanations. The ten-step program has been presented in over 200 workshops with over 90
percent approval by participants. The website has averaged over 1,000 unique visitors per month
from 120 countries.

1. Risk Navigator SRM:
An Applied Risk Management Tool for Agriculture

Risk management technology has drastically outpaced the ability of most practitioners to
adopt innovations. Studies of farmers and ranchers, for example, consistently show that they
do not utilize what is available; some even seem to virtually disregard risk altogether [1,
2]. One survey of nearly 1,000 farmers for Farm Futures [3] found that only 5 percent use
available tools. That survey also showed that those that did manage risk tended to be high-
end managers with skills not typical of the industry. Agricultural producers were said to
resist change because there are too many decisions and too little time.

Congress considered agricultural risks so important that in 1996 it created the
Risk Management Agency (RMA) in the US Department of Agriculture. Its purpose
is to promote, support, and regulate sound risk management solutions for agricultural
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Table 1: Risk management sources and controls; see source in [6].

Risk Defined Sources Management Controls

Production

Uncontrollable events
such as weather, pests, or
disease make yields
unpredictable. Changing
technology makes a
manager or capital
obsolescent. Inputs are
unavailable or low
quality

Weather, extreme
temperatures, pests, disease,
technology, genetics, inputs
(availability, quality, price),
equipment failure, labor, . . .

Diversification, insurance
(crop, revenue), buildings,
storage, vaccines, extra labor,
production contracts (e.g.,
ensure input supply and
quality), new technologies
(e.g., automate watering)

Marketing and
Price

Prices of inputs or
outputs change after a
producer commits to a
plan of action. Price
fluctuations stem from
domestic and
international supplies or
substantial changes in
demand

Product quality (genetics,
disease, handling,
input/feed)
Product price (quality,
timing, global market,
weather, government policy,
contracts, . . .)

Futures and options, forward
contracting, retained
ownership, quality controls,
storage (timing), cooperatives,
niche/value-added marketing,
. . .

Financial

Stems form the way a
business is financed
Borrowed funds leverage
business equity but
increase business risks

Market, production, legal and
human risk, interest rate
changes, natural disasters
(drought), land market
changes, foreign exchange,
loan calls, . . .

Cash reserves, equity,
borrowing capacity, reducing
other types of risk
(production, marketing, etc.),
insurance

Institutional

Government or other
institutional rules,
regulations, and policies
effect profitability
through costs or returns

Taxes, contract disputes,
regulations, government
policies, law suits, ambiguous
and/or unwritten
agreements, neighbors,
environmental programs, . . .

Estate planning, tax planning,
contracts, bonds (e.g.,
environmental liability),
research and education about
local laws, . . .

Human
Resources

The character, health, or
behavior of people
introduces risk. This
could include theft,
illness, death in the
family, loss of an
employee, or a divorce
for example

Ambiguous and/or
unwritten agreements, poor
planning, miscommunication,
health or other family
disasters, . . .

Family planning, including
labor planning, clear contracts,
training and goal setting,
communication, estate
planning, . . .

producers [4]. According to RMA, there are at least five major forms of agricultural risks
[5]: production, market/price, financial, institutional, and human. As shown in Table 1,
agricultural producers face many sources of risk and a multitude of ways to manage them
across and within these five categories. Price risk, for example, can be affected by product
quality, exogenous supply, and government policies; it has at least seven management
options, including futures, forward pricing, and storage. RMA efforts have substantially
boosted the output of risk information and education to address these risks.

While there is little doubt about its importance for decision making, the “challenge
is to know how to describe, measure, and communicate risk” [7, page 4]. Consider the
parallels to understanding and using probability, which is itself an important component
for risk management. Myerson [8] concludes that there is a disconnection between theory
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and practice because formulas traditionally taught in probability courses are hard to apply to
real problems. He suggests that recent advances in computer technology can help overcome
these disconnects. Aven [7] goes further by suggesting that a common unifying framework is
also needed. For example, websites now combine a framework and computer technology to
make managing a stock portfolio relatively simple, even for those people with only a minimal
understanding of price analysis. These frameworks require integrating multiple fields, like
economics, finance, and statistics, and finding an acceptable balance between the precision
and usability.

Agricultural economics and related fields have contributed greatly to developing
innovative and effective tools for managing risk in agriculture. But, as is the case with
probability, these sometimes disparate theories and concepts can be difficult to understand,
which may make integration difficult. Numerous books, articles, and materials are available
but are generally inaccessible except by specialists [2]. A 2007 study in Nevada, for example,
showed that after six months only 50% of program participants planned to incorporate
what they had learned in a risk management workshop [9]. A 2007 study [10] showed that
older producers had less knowledge about risk management tools, compared to younger
producers, and had less interest in learning more about them. This supports the Farm Futures
survey [3] in that many producers view the human capital investment required to learn how
to properly incorporate the use of risk management tools into their operation as significant.

The purpose of this manuscript is to describe a new framework for risk management
called Risk Navigator SRM. The program is too involved to fully describe here, and it was
prepared for education and extension programs, rather than basic research. Nevertheless,
researchers might be interested in how disparate parts were integrated to strike a balance
between precision and usability, with the purpose of making the components of risk
management more usable through a synergistic and reinforcing framework. Precision can
interfere with usability and vice versa. That balance in Risk Navigator SRM is based on
interaction with producers at over 200 meetings in over a dozen states. This includes a
description of supporting software tools made available by website. Our focus here is on
showing how probability is integrated with other risk concepts to make risk management
more accessible to producers. All ten steps of the process were fully applied to a case study,
EWS Farms, which also may be of interest. EWS Farms produce primarily corn and wheat in
Northeastern Colorado [6].

We proceed with a description of Risk Navigator SRM and explain the SRM process,
which has ten steps. A brief summary is provided for all ten steps, but a more complete
description is provided about steps viewed to be of more interest to this readership. We also
provide examples of the computer tools available to help producers with each step where
appropriate.

2. Risk Navigator

Risk Navigator SRM is a program developed to make risk management accessible to typical
agricultural producers. The process is general enough that it can be applied to other
applications, but all of the examples and tools are customized for agriculture. SRM stands
for Strategic Risk Management. Strategic planning [11, 12] is an umbrella framework used
to organize and integrate risk management concepts and tools for farmers and ranchers. The
SRM process has been taught to hundreds of farmers and ranchers under the brand name Risk
Navigator SRM or under previous incarnations branded “RightRisk”. Risk Navigator SRM is
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housed on a public website at http://www.RiskNavigatorSRM.com/. The website includes
detailed descriptions about a ten-step strategic risk management program and 25 customized
computer tools to help decision makers with each step. The tools are matched to the steps
and standardized through Xcelsius flash files from Excel where possible. Some files are pdf
or Excel spreadsheets. The site also includes links to complementary educational materials,
such as a risk practice simulator called Ag Survivor, http://www.AgSurvivor.com/, a
comprehensive book titled Applied Risk Management in Agriculture [6], and a general
education website called RightRisk, at http://www.RightRisk.org/. The book includes a
comprehensive discussion about risk management, matched to the ten steps, and includes a
case study to demonstrate each step. The RightRisk.org website has publications, workshops,
and access to resources such as the National Ag Risk Education Library.

3. The Strategic Risk Management Process

The framework chosen to make risk management more accessible is strategic planning [6].
The foundation of strategic planning is based on three major phases: strategic, tactical, and
operational [12, 13]. The strategic phase of strategic planning is designed to set boundaries
based on resources, opportunities, and threats, and to set goals. The tactical phase is designed
to evaluate various alternatives for reaching the strategic vision and goals and to develop
a solid plan to achieve them. Implementation, evaluation, and replanning occur in the
operational stage.

The strategic, tactical, and operational phases have also been linked to agriculture in
previous studies. For example, Aull-Hyde and Tadesse [14] modeled strategic differences
when long- and short-term risks are considered in agricultural production. Fountas et al. [15]
modeled the effects of information flows for strategic, tactical, and operational differences
in the context of precision agriculture. Other models review specific details of tactical or
operational implementation, while assuming that the strategic phase of the model has already
been conducted (Ahumada and Villalobos [16]).

Not surprisingly, risk management researchers have proposed frameworks that
intuitively capture the strategic planning process. For example, Clemens and Reilly [17]
propose the following steps that are typical of many risk researchers (e.g., [2, 18, 19]):

(1) identify decision,

(2) identify alternatives,

(3) decompose the problem,

(4) choose best alternative,

(5) conduct sensitivity analysis,

(6) repeat if necessary.

These are the same principles found in the tactical and operational phases of strategic
planning. The strategic phase is more commonly addressed separately through risk
preference and tolerance (e.g., [17, 19]).

Risk Navigator SRM provides formality to agricultural risk management and
condenses this information in a way that is understandable to agricultural operators by fitting
risk management into the strategic management framework. Hoag [20] developed ten steps
that map existing risk management concepts into the three phases (Figure 1). There are three
steps in the first phase: (1) determine financial health, (2) determine risk preference, and (3)
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Determine
financial health

Determine risk
sources

Rank management alternativesImplement
plans

Monitor & adjust
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risk goals

Strategic risk
management

Estimate
likelihoods
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management
alternatives

Determine risk preference

Operational Tactical

Strategic

Replan

Figure 1: Strategic risk management process; see source in the study of Hoag in [6].

establish risk goals. These steps are not typically covered in risk management frameworks,
but were inspired by the strategic planning process. The first two of these steps were chosen
to set boundaries on tactical choices, which are then used to set goals in Step 3, as set forth by
the strategic planning process.

There are four steps in the next phase, the tactical stage, which constitute Steps 4–
7 in the SRM process: (4) determine risk sources, (5) identify management alternatives,
(6) estimate risk probabilities, and (7) rank management alternatives. This tactical phase
is based on another framework, the payoff matrix (Table 2), which is commonly used in
risk analysis to capture frameworks like that shown above [17, 18]. Each of these steps
is designed to elicit a component of a payoff matrix. The payoff matrix is a construct
that displays payoffs, usually profits, by management actions (e.g., cash sale, contract sale,
hedging on the futures market, etc.) and states of nature (e.g., normal weather resulting
in a normal crop and typical crop prices, or bad weather, resulting in a short US crop
and high crop prices). Probability is displayed next to each state of nature. The matrix is
designed to show risk dimensions in a way that helps decision makers rank risks based
on their risk personality, which is further described in Step 7. Summary statistics can be
displayed at the bottom of the table to provide more information, such as expected value
and standard deviation. For the purposes of illustration, the EWS Farms case study manages
corn price risk. There are three marketing management alternatives: selling on the cash
market, forward pricing, or hedging. The source of risk is the likelihood of a short U.S.
crop.

One limitation of the payoff matrix is that it only addresses one risk at a time.
It can accommodate complex problems with multiple management alternatives, but only
one source. Our attempts to discuss joint distributions in risk training workshops, such as
price with yield, reduced comprehension and acceptance by producers when presented;
therefore we chose to focus on addressing multiple management options for a single risk.
Joint distributions and extensions of the model are described by Hoag in [6]. In addition, Ag
Survivor risk simulations are based on joint distributions, where appropriate.
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Table 2: Payoff matrix for EWS farms’ corn pricing decision; see source in [6].

Whole Farm Returns for Management Alternatives

no. 1 no. 2 no. 3

Outcome Forward

Risk states $/bushel corn Probability Cash market Contract Hedge

Normal crop $2.10/bu .35 $287,700 $305,900 $298,200

Short crop $2.50/bu .65 $342,500 $332,700 $339,000

Expected value $323,320 $323,320 $324,720

Standard deviation $38,749 $18,900 $28,850

The last phase, the operational stage, utilizes three steps intended to carry out the plans
made in the tactical stage: (8) implement plans, (9) monitor and adjust, and (10) replan. The
first step focuses on the day-to-day activities to assure that good planning efforts are carried
out. Monitoring can provide the information needed to determine whether plans should be
adjusted. Re-planning takes the decision maker around the circle to start over.

4. The Strategic Phase

We proceed with a brief description of each step. An application to the case study and
examples of tools available at the RiskNavigatorSRM.com website are included, where space
is appropriate for this audience.

Step 1 (Determine Financial Health). The first step is to determine financial health in order to
determine a person’s financial capability to take on risks. Financial health refers to assessing
the well-being of a business’s financial resources, with respect to their ability to take on
risk. Educational programs about financial management are widely available in agricultural
extension programs. There are six tools available at http://www.RiskNavigatorSRM.com/
that were based on an extension program in Montana developed by Duane Grif-
fith (http://www.montana.edu/softwaredownloads/financialmgtdownloads.html). This
includes typical tools to develop not only commonly used financial statements, like a balance
sheet and cash flow statement, but also tools specifically designed to help people understand
how health affects risk resilience. Specifically, the “RDfinancial” tool and “Sweet Sixteen Ratio
Analyzer” tool identify strengths and weaknesses of a decision maker’s financial position.
RDfinancial and the Ratio Analyzer provide a plethora of financial information, including the
sixteen financial ratios commonly used to describe financial health. RDfinancial also contains
a credit scoring model.

Step 2 (Determine Risk Preference). The second step involves assessing a person’s risk
preferences, which affects a person’s attitude about taking on risks. There are many
limitations regarding the elicitation of risk preferences [17, 18] but, sometimes, it is worth
living with these problems if producers need the extra information at the decision margin.
The Risk Navigator SRM’s “Risk Preference Calculator” tool offers three different methods
to help people gauge their preferences. One method, shown in Figure 2, computes a relative
Pratt-Arrow risk preference score [21, 22]. The coefficient of absolute risk aversion, ra(W),
is the negative of the second derivative of utility, U, for wealth, W , divided by the first
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Estimate my risk preference
You have an opportunity to grow onions, but crops fail about half the time. Indicate in row 1 how much you would
spend to produce onions if you have a 50% chance of making no crop and a 50% chance of making $100 thousand
dollars. Do the same in rows 2, 3 and 4 where the odds are slightly different.
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Figure 2: Elicitation of risk preference/tolerance in Risk Preference Calculator. See source in [6].

derivative of utility for wealth:

ra(W) = −U
′′(W)

U′(W)
. (4.1)

This coefficient is positive for risk-averse individuals, zero for risk neutral individuals, and
negative for risk-loving individuals. People that are risk averse would pay a premium to
avoid risk. Risk-neutral individuals maximize expected values and ignore risk. Since “r”
changes with the size of the gamble, the concept of a coefficient of relative risk aversion (RAC)
was created simply by multiplying the coefficient of absolute risk aversion by wealth:

RAC = Wra(W). (4.2)

The RAC equals 0 for someone that is risk neutral. It varies from about 0.5 to 4.0 for risk-
averse people, as suggested by Hardaker et al. [18]:

(i) RAC(W) = 0.5: hardly risk averse at all,

(ii) RAC(W) = 1.0: somewhat risk averse (normal),

(iii) RAC(W) = 2.0: rather risk averse,

(iv) RAC(W) = 3.0: very risk averse,

(v) RAC(W) = 4.0: almost paranoid about risk.
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A common, yet limited, functional form used for utility is the negative exponential
utility function:

U(W) = 1 − exp(−rW). (4.3)

This is a convenient functional form for illustration since the coefficient of absolute risk
aversion is r.

The RAC can be found by eliciting a person’s utility function, which can be estimated
by the ELCE (Equally Likely Certainty Equivalents) method as described by Hardaker et
al. in [18] (Figure 2). ELCE elicits equally likely certainty equivalents by asking a series of
questions that present 50-50 bets, which can be used to sketch a utility function like that
shown in the lower left quadrant of Figure 2. The certainty equivalent is the certain amount
that a person would be indifferent to receiving compared to an expected value with risk. To
provide a more realistic scenario, onion production was chosen for the ELCE questions in
the Risk Preference Calculator tool, since the crop tends to produce boom or bust returns
(so we could use the 50-50 technique). These “bets” are presented by slider bars as shown in
Figure 2. This allowed the program to remain simple and realistic, and fit well with a 50-50 bet
for agricultural producers. Using the Hardaker et al. scale, the EWS case study farmer turned
out to be quite risk tolerant, with a risk preference score of 0.52 (somewhat risk averse).
This score is based on derivatives from the utility curve fitted in the lower left quadrant of
Figure 2.

The second risk preference assessment method (not shown) in the Risk Preference
Calculator provides users the option of taking a short risk quiz designed by Grable and
Lytton [23]. The quiz asks 13 questions, which are tabulated to provide a score from “low
risk tolerance” to “high risk tolerance.” More than one method is offered to counteract
inherent difficulties in measuring risk preferences. In this case, psychological research offers
a completely unique approach in the form of this quiz.

The third method links risk preference to risk tolerance, which is the amount $X,
where a person would be indifferent between an equal chance of receiving $X and losing
$X/2 [8]. A risk-averse person that would pay a certainty equivalent of $7,000 for a risky,
50-50 bet of receiving either 0 or $20,000, for example, has a risk tolerance of $15,641;
risk tolerance increases to $99,833 for someone willing to pay $9,900 for that same bet.
A risk-neutral producer would of course be willing to pay $10,000. Risk tolerance uses a
different means than ELCE to elicit tolerance, but is closely linked to preference. Relative
risk tolerance (RRT) can be derived from the RAC, since absolute risk tolerance, R, is
the inverse of absolute risk preference, r, in the negative exponential utility function.
The scale of RRT spans from 0.25 (1/4) for a person who is almost paranoid about
risk to 2 (1/0.5) for someone who is rarely risk averse to 10 (1/.1) for someone that is
almost risk neutral. This allows the Risk Preference Calculator to provide a comparable
estimate of the relative risk preference based on risk tolerance, which opens the door
to an entirely separate and more prevalent literature. For example, Howard [24] defined
R for firms that he looked at in terms of annual sales, equity, and income. He found
that R = 1.24 multiplied by net income, or 6.4% of sales, or 15.7% of equity for the
businesses that he examined. The Risk Preference Calculator can therefore provide a
parallel estimate of risk preference by simply asking the producer for net income, sales, or
equity.
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Utilizing three methods to elicit risk preferences makes the Risk Preference Calculator
tool more accessible to users with differing tastes. It also provides some continuity and
comparability for those users willing to apply all three methods, which helps combat the
inherent problems with estimating risk preferences [17].

Step 3 (Establish Risk Goals). There are seven goal planning tools on the Risk Navigator SRM
website, including action planning, team roster, mission statement, time management, and
transition planning. These classic tools are updated to assist decision makers with developing
their goals in the “Strategic Goal Worksheet.” EWS Farms’ strategic goals were [6] the
following.

(i) Strategic Goal no. 1 (Financial): Ensure short- and long-term financial success by
maintaining business profitability, while expanding the overall business financial
resource base.

(ii) Strategic Goal no. 2 (Family): Continue to live, work, and grow our families
in a rural, agricultural environment. Encourage individual development and
exploration in a manner that is consistent and flexible in order to allow all
individuals to reach their full potential.

(iii) Strategic Goal no. 3 (Organizational): Continue to pursue organizational structures
that fit the family dynamics of the operation, as well as allow for strategic goal
attainment. Also, increase the business activities efficiency of the operation.

(iv) Strategic Goal no. 4 (Integrated Farm Management): Manage our farm as a
cointegrated unit, while providing a step-by-step process for developing a strategic
risk management plan.

A comprehensive description of all of their goals and mission statement can be found in
Applied Risk Management in Agriculture [6].

5. The Tactical Phase

Step 4 (Determine Risk Sources). The four steps in the tactical phase are those required to
build a payoff matrix. The first step is to determine risk sources. In addition to determining
risk sources, it is also important to prioritize risks so that management efforts can be focused.
EWS Farms chose to focus on price risk for corn. This was interesting since it was not even
one of their risk management goals. However, it is not inconsistent with observations at risk
education extension meetings. Men that have attended the Risk Navigator SRM workshops
have overwhelmingly chosen price and yield risk (revenue) over all other types of risk when
doing this exercise. Decision makers are encouraged in this step to review their goals and
information with those available in the study by Hoag in [6], like those shown in Table 1.

Several methods are demonstrated in the book titled Applied Risk Management
in Agriculture [6], such as influence diagrams and SWOT ((S)trengths, (W)eaknesses,
(O)pportunities, and (T)hreats) analysis. However, the method chosen for the Risk Navigator
tool, “Risk Influence Calculator,” uses a risk-influence diagram to help decision makers sort
out and prioritize risk. The Risk Influence Calculator is simple and only asks producers to list
each risk, then to rate it on a scale of 1 (low) to 10 (high) for (A) probability of occurring, (B)
impact if it occurs, and (C) influence to stop it from occurring.
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After reviewing his goals and reading what others said about risks (e.g., Table 1), EWS
Farms identified the following strategic risks:

(i) Market/Price

(a) Corn Price. Will my price cover my costs?

(ii) Production

(a) Weather. Will rainfall support my crop stand?

(b) Hail. Will hail destroy half my crop?

(c) Input (seed). Will good corn seed be available at a reasonable price?

(iii) Financial

(a) Expansion. Can the operation generate enough profit to cover new land
payments?

(iv) Human

(a) Family. Will my dad retire?

(v) Institutional

(a) Water. Will irrigation water be restricted?

All risks identified are placed in a graph that plots influence against risk, so the
decision maker can prioritize risks where the biggest impact can be made. The Risk Influence
tool has been one of the most popular in Navigator risk management workshops, as it creates
a lot of discussion and rethinking about priorities.

Step 5 (Identify Management Alternatives). The book, Applied Risk Management in Agriculture
[6], describes four main techniques to manage risks: (1) avoid it, (2) transfer it, (3) assume or
retain it, or (4) reduce it. To keep things understandable, we use a risk profile. A risk profile
is a multidimensional representation of the consequences that stem from each management
action. For simplicity, we use a probability density function (PDF) as the risk profile, since
it is familiar to most people and it contains information that is relevant to managing risk,
such as mean, mode, maximum, and minimum. We can show the consequences of the four
basic management actions mentioned above through simple manipulations of the PDF such
as skewing, truncating, changing variance (squishing), or changing the mean (moving). This
simple representation of a risk profile (and terms like squishing) is meant to build basic skills
and understanding in the participants; however, perhaps more importantly, the graphical
depictions engage the audience in what may often be perceived as a dry subject. It also ties
the concept of management alternatives to PDFs for the next step concerning likelihood. Like
the previous step, the book also provides an extensive list and brief discussion about specific
techniques commonly used in agriculture, like crop insurance and the futures market (e.g.,
Table 1).
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Decision makers at EWS Farms identified the following possibilities to manage price
risk in their corn:

(i) Cash market sales (selling everything in the market at harvest),

(ii) Forward contracting to a local grain elevator (contracting for a fixed price before
harvest),

(iii) Hedging on the futures market (selling a contract on the futures market for a fixed
price),

(iv) Spreading out crop sales across the year (multiple marketing points),

(v) Maintaining flexibility on timing of sales (storing, then selling opportunistically).

After more consideration, EWS Farms chose three management alternatives: cash
market, forward contracting, and hedging. They developed a comprehensive marketing
plan using the “Marketing Plan” tool in Risk Navigator SRM. Six components exist in
this marketing plan, and each component has its own worksheet: (1) The Relationship
between the Strategic Risk Management Plan and the Marketing Plan; (2) Production History
and Expectations; (3) Expected Prices; (4) Production Costs; (5) Price, Date, and Quantity
Targets; (6) Review and Evaluation. Each of their marketing alternatives is carefully planned,
including the distribution of the sale over time. The marketing alternatives are also based on
ten years of local data on EWS Farms and for their local elevator (including basis adjustments
for prices).

To help EWS Farms prepare for the remaining steps, the book recommends putting
their information into a decision tree and then a payoff matrix. The main value of starting
with the decision tree, shown in Figure 3, is in its visual construction [25], which requires the
decision maker to identify all relevant courses of action, events, and payoffs in a clear and
understandable manner. It also makes it easier to process information to put into a payoff
matrix, as shown in Table 2.

Step 6 (Estimate Probabilities). The concept of probability has been cultivated throughout
the ten-step process by encouraging decision makers to represent risk with a “risk profile”
and to think of a risk profile in terms that can be easily understood from the basic shape of
a PDF. They are encouraged in Step 2 to determine their “risk personality” (preference) so
they can find the risk profile that best suits them. In Step 5 they are shown how a risk profile
is affected by risk management alternatives, where the random variable is usually income or
cost. In this section we show how to tie the concept of the risk profile to a probability density
function (PDF) or a cumulative density function (CDF) more directly. Much of the book
chapter [6] is dedicated toward a basic lesson about the PDF and CDF, including concepts
like mean, mode, median, variance, standard deviation, and coefficient of variation. Also
included are descriptions about how to interpret basic shapes of the PDF. The discussion is
very basic, aimed at making the PDF and CDF concepts that people could use to quickly and
intuitively interpret the basic statistical components that are important for risk management
(e.g., measures of central tendency, spread, and range). For example, it is easy to convey that
management tools like insurance or the futures market “squish,” “move,” or “truncate,” a
PDF.

The “Risk Profiler” tool makes it relatively easy for producers to build probability
density functions (PDF’s), which then can be used to provide information for probability in
the payoff matrix. The “art” of eliciting probability is fraught with limitations (e.g., [17–19]),
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Figure 3: Decision tree for EWS Farms corn pricing decision; see source in [6].

but the PDF’s are used here to simplify the process of estimating probability in the payoff
matrix and to provide a stable mechanism to tie the steps together. Furthermore, Hoag [6]
discusses some of the common problems, like anchoring, and how to avoid them.

There are at least two major ways to elicit probability information (6,10): asking the
expert about his or her degree of belief about an outcome or present the expert with a lottery
that reveals their probability values. Risk Profiler provides three options to elicit a PDF by
asking the expert about what they believe will happen. The most straightforward method
assumes that the future will look like the past ten periods. Figure 4 shows ten annual corn
price entries for EWS Farms and resulting PDF, CDF, histogram, and summary statistics. The
PDF is assumed to be Normal for simplicity. However, for increased education, a histogram is
also drawn to help decision makers understand what might be hidden behind the normalized
function. For example, a bimodal distribution is hidden by the normal distribution in the case
of corn price on EWS farms. A few summary statistics are also provided for each estimation
method.

The second method offered by Risk Profiler to elicit a PDF involves having the user
“describe profile features.” In this case, a PDF can be drawn based only on the minimum,
most likely, and maximum values elicited from the decision maker for the random variable.
The PERT distribution is applied as follows:

PERT(a, b, c) = Beta(α1, α2) ∗ (c − a) + a, (5.1)
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Figure 4: Building a PDF with Risk Profiler; see source in [6].

where “a” is the minimum value, “b” is the most likely value, “c” is the maximum value, and
“Beta” is the beta distribution [19].

Furthermore,

α1 =

(
μ − a

) ∗ (2b − a − c)
(
b − μ

) ∗ (c − a)
,

α2 =
α1 ∗

(
c − μ

)

(
μ − a

) .

(5.2)

In this case, the resulting PDF and related information are pictured on a screen exactly like
that shown in Figure 4, but the upper left quadrant is replaced with a section to collect the
PERT input data.

The last method is “describe profile PDF.” In this method, people provide five sets of
probabilities and values for the random variable, see Table 3.

This is a variation on the fractal method [17, 18]; in eliciting the PDF for prices for a
given crop, for example, a decision maker might be asked to pick several price values and
give an associated probability for each one. Asking for the producer to supply the probability
and values simultaneously is a combination of what Frey [26] called the fixed value method
and fixed probability method. The fixed value method asks an expert the probability that
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Table 3

Probability Price
.30 $2.00
.20 $2.25
.40 $2.50
.20 $2.75
.10 $3.00

the actual value is higher (or lower) than some arbitrary number for the random variable.
The fixed probability method has the decision maker specify the value range for a random
variable that corresponds to a specific probability. The Risk Profiler method lets the user
simultaneously mix and match the fixed value and fixed probability methods by allowing
them to enter either probabilities or values.

Step 7 (Rank Management Alternatives). The final step of the tactical stage is to rank
the various alternatives considered to this point and select those with the most desirable
outcomes. Risk Navigator SRM offers three tools to help decision makers rank risks. “Value
at Risk” (VaR) is a popular method for capturing the downside risk in financial decision
making. It is an evaluation of what you stand to lose with an investment. VaR answers the
questions “What is my worst-case scenario?” or “How much could I potentially lose in a
really bad month?” [27]. This strategic tool considers only the undesirable parts of dispersion,
those on the negative side of the mean, as opposed to the standard deviation, for example.
The VaR tool is simple to use and involves only one screen (not pictured here). A second
tool, the “Risk Efficiency Tool,” uses Stochastic Efficiency with Respect to a Function to rank
outcomes for all levels of risk preference, except risk preferring.

The easiest and most effective tool, “Risk Ranker,” uses the payoff matrix to link risk
personalities with the risk profiles. This tool allows a user to directly compare risk profiles,
which can provide a lot of information by itself, and offers an instant comparison of the
management alternatives under consideration with seven ranking rules that cater to different
risk personalities (e.g., someone that is avoiding risk as compared to someone that wishes to
maximize expected value).

After filling out a payoff matrix for up to five management alternatives, the program
can be used to compare risk profiles. For example, on the second tab, “Compare Profiles,”
shown in Figure 5, the payoff matrix entered by the decision maker is reprinted in the upper
left corner. The first column paired with any management alternative (e.g., cash) replicates
the information entered in “Risk Profiler,” which provides continuity to the program and
reinforces how the risk profile integrates with the payoff matrix. All five PDFs and CDFs
for EWS Farms are plotted in one graph and summary statistics are provided in tabular form.
Decision makers are provided with information about how to rank alternatives with methods
that use only distributions, such as stochastic dominance [6], and may therefore use this
method alone to rank risks.

In many, if not most, cases risks cannot be ranked by visual inspection of the PDF
or CDF. Therefore, the next tab over, “Risk Ranker” displays seven different risk ranking
measures for the payoff matrix, all on one screen: Maximize EV, Maximax, Most likely,
Minimax regret, Hurwicz, Maximin, and the Laplace Insufficient Reason Index (Table 4).
Each of these techniques ranks risks based on different aspects of the payoff that might, or
might not match a decision maker’s risk personality. For example, Maximize EV (expected
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Figure 5: Risk Ranker—compare profiles—see source in [6].

Table 4: Attributes of basic decision rulesa.

Decision Rule Mean Variation Low High Other

Maximized Expected Value—Choose alternative with highest
expected value

x

Maximax—Choose alternative with best outcome x
Most Likely—Choose alternative that is most likely to occur
(subjective)

x

Minimax Regret—Choose alternative with least hindsight regret x x

Hurwicz—Weighted average of maximax and minimax x x

Maximin—Choose alternative with best of the worst outcomes x

Laplace—Simple average x
aSee a more detailed description in [6]. An x is placed in the column where the rule is primarily focused.

value) is for risk neutral producers. Maximin chooses the alternative with the maximum,
minimum outcome and is therefore designed for very risk-averse individuals.

Table 4 shows that each of the rules focuses on different areas. None is comprehensive,
and many are oversimplified. For example, Maximin would choose A in the two five-year
income streams A and B shown below, since it focuses only on the minimum; however, most
people, if not all, would choose B if they could:

A = (10, 10, 10, 10, 10),

B = (100, 100, 100, 9, 100).
(5.3)

The table presented in the tool makes it handy to compare rankings quickly and easily so that
many dimensions can be considered, and is very effective at getting across the message that
people need to match their risk management personality to their risk ranking techniques.
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6. The Operational Phase

Steps 8–10.

The operational stage involves putting plans into action. The first step, implementation,
involves acquiring the necessary resources, scheduling the tasks to be completed, and
overseeing all aspects of the plan [6]. As plans are implemented, the second step in this
phase kicks in as resources need to be monitored so adjustments can be made as needed.
The last step in the phase, and step ten overall, is re-planning. If not actively brought
to the attention of those involved with the program, this step may be easily ignored by
many managers since it could highlight what was not achieved. Re-planning is also the
first step in preparation for starting the cycle over. There are five SRM tools available on
the website for the operational phase: (1) Action Planning Worksheet, (2) Critical Success
Indicator Worksheet, (3) Resource Flow Plan, (4) Risk Management Worksheet, and (5) Time
Management Worksheet. A detailed description of how EWS Farms applied this step is
provided by Hoag in [6].

7. Conclusion

Risk Navigator SRM integrates risk management techniques into one place and provides
farmers and ranchers the resources to use the products from their home office. It is both
a learning tool as well as a means to help producers actually manage risks, financial and
other, in their operations. It is also very practical for students in economics and business. The
manageable steps allow for farmers and ranchers to learn the tools at their own speed, while
providing the opportunities to customize the data for their own farm/ranch. We find that
the difference between this and other programs designed to manage risk is the integration
of basic risk management principles into a structured and easy to learn format. This allows
people to use concepts that have been individually available for decades, but inaccessible,
because they are most valuable in a framework, which typically requires expertise to
build. The book, Applied Risk Management in Agriculture [6], can supplement the website
by providing detailed descriptions of each step and by providing additional educational
opportunities. Navigator workshops have been presented in formats from 45 minutes to two
days. The program has grown and the tools can be continuously upgraded since they are
offered at the Navigator website. A blog has been added and a free, ten-step online education
program is nearly complete.
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L-functionals summarize numerous statistical parameters and actuarial risk measures. Their
sample estimators are linear combinations of order statistics (L-statistics). There exists a class
of heavy-tailed distributions for which the asymptotic normality of these estimators cannot be
obtained by classical results. In this paper we propose, by means of extreme value theory,
alternative estimators for L-functionals and establish their asymptotic normality. Our results may
be applied to estimate the trimmed L-moments and financial risk measures for heavy-tailed
distributions.

1. Introduction

1.1. L-Functionals

Let X be a real random variable (rv) with continuous distribution function (df) F. The
corresponding L-functionals are defined by

L(J) :=
∫1

0
J(s)Q(s)ds, (1.1)

where Q(s) := inf{x ∈ R : F(x) ≥ s}, 0 < s ≤ 1, is the quantile function pertaining to df F and
J is a measurable function defined on [0, 1] (see, e.g. Serfling, [1]). Several authors have used
the quantity L(J) to solve some statistical problems. For example, in a work by Chernoff
et al. [2] the L-functionals have a connection with optimal estimators of location and scale
parameters in parametric families of distributions. Hosking [3] introduced the L-moments as
a new approach of statistical inference of location, dispersion, skewness, kurtosis, and other
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aspects of shape of probability distributions or data samples having finite means. Elamir and
Seheult [4] have defined the trimmed L-moments to answer some questions related to heavy-
tailed distributions for which means do not exist, and therefore the L-moment method cannot
be applied. In the case where the trimming parameter equals one, the first four theoretical
trimmed L-moments are

mi :=
∫1

0
Ji(s)Q(s)ds, i = 1, 2, 3, 4, (1.2)

where

Ji(s) := s(1 − s)φi(s), 0 < s < 1, (1.3)

with φi polynomials of order i − 1 (see Section 4). A partial study of statistical estimation of
trimmed L-moments was given recently by Hosking [5].

Deriving asymptotics of complex statistics is a challenging problem, and this was
indeed the case for a decade since the introduction of the distortion risk measure by
Denneberg [6] and Wang [7]; see also Wang [8]. The breakthrough in the area was offered
by Jones and Zitikis [9], who revealed a fundamental relationship between the distortion
risk measure and the classical L-statistic, thus opening a broad gateway for developing
statistical inferential results in the area (see, e.g., Jones and Zitikis [10, 11]; Brazauskas et al.
[12, 13] and Greselin et al. [14]). These works mainly discuss CLT-type results. We have been
utilizing the aforementioned relationship between distortion risk measures and L-statistics to
develop a statistical inferential theory for distortion risk measures in the case of heavy-tailed
distributions.

Indeed L-functionals have many applications in actuarial risk measures (see, e.g.,
Wang [8, 15, 16]). For example, if X ≥ 0 represents an insurance loss, the distortion risk
premium is defined by

Π(X) :=
∫∞

0
g(1 − F(x))dx, (1.4)

where g is a non decreasing concave function with g(0) = 0 and g(1) = 1. By a change of
variables and integration by parts, Π(X) may be rewritten into

Π(X) =
∫1

0
g ′(1 − s)Q(s)ds, (1.5)

where g ′ denotes the Lebesgue derivative of g. For heavy-tailed claim amounts, the empirical
estimation with confidence bounds for Π(X) has been discussed by Necir et al. [17] and Necir
and Meraghni [18]. If X ∈ R represents financial data such as asset log-returns, the distortion
risk measures are defined by

H(X) :=
∫0

−∞

(
g(1 − F(x)) − 1

)
dx +

∫∞

0
g(1 − F(x))dx. (1.6)
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Likewise, by integration by parts it is shown that

H(X) =
∫1

0
g ′(1 − s)Q(s)ds. (1.7)

Wang [8] and Jones and Zitikis [9] have defined the risk two-sided deviation by

Δr(X) :=
∫1

0
Jr(s)Q(s)ds, 0 < r < 1, (1.8)

with

Jr(s) :=
r

2
s1−r − (1 − s)1−r

s1−r(1 − s)1−r , 0 < s < 1. (1.9)

As we see, Π(X),H(X), and Δr(X) are L-functionals for specific weight functions. For more
details about the distortion risk measures one refers to Wang [8, 16]. A discussion on their
empirical estimation is given by Jones and Zitikis [9].

1.2. Estimation of L-Functionals and Motivations

In the sequel let
p→ and D→ , respectively, stand for convergence in probability and

convergence in distribution and let N(0, η2) denote the normal distribution with mean 0 and
variance η2.

The natural estimators of quantity L(J) are linear combinations of order statistics
called L-statistics. For more details on this kind of statistics one refers to Shorack and Wellner
[19, page 260]. Indeed, let (X1, . . . , Xn) be a sample of size n ≥ 1 from an rv X with df F, then
the sample estimator of L(J) is

L̂n(J) :=
∫1

0
J(s)Qn(s)ds, (1.10)

where Qn(s) := inf{x ∈ R : Fn(x) ≥ s}, 0 < s ≤ 1, is the empirical quantile function that
corresponds to the empirical df Fn(x) := n−1 ∑n

i=1 I{Xi ≤ x} for x ∈ R, pertaining to the
sample (X1, . . . , Xn) with I(·) denoting the indicator function. It is clear that L̂n(J) may be
rewritten into

L̂n(J) =
n∑
i=1

ai,nXi,n, (1.11)

where ai,n :=
∫ i/n
(i−1)/nJ(s)ds, i = 1, . . . , n, and X1,n ≤ · · · ≤ Xn,n denote the order statistics

based upon the sample (X1, . . . , Xn). The first general theorem on the asymptotic normality of
L̂n(J) is established by Chernoff et al. [2]. Since then, a large number of authors have studied
the asymptotic behavior of L-statistics. A partial list consists of Bickel [20], Shorack [21, 22],
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Stigler [23, 24], Ruymgaart and Van Zuijlen [25], Sen [26], Boos [27], Mason [28], and Singh
[29]. Indeed, we have

√
n
(
L̂n(J) − L(J)

) D−−−→ N
(

0, σ2(J)
)
, as n −→ ∞, (1.12)

provided that

σ2(J) :=
∫1

0

∫1

0
(min(s, t) − st)J(s)J(t)dQ(s)Q(t) < ∞. (1.13)

In other words, for a given function J , condition (1.13) excludes the class of distributions F
for which σ2(J) is infinite. For example, if we take J = 1, L(J) is equal to the expected value
EX and hence the natural estimator of L̂n(J) is the sample mean Xn. In this case, result (1.12)
corresponds to the classical central limit theorem which is valid only when the variance of F
is finite. How then can be construct confidence bounds for the mean of a df when its variance
is infinite? This situation arises when df F belongs to the domain of attraction of α-stable
laws (heavy-tailed) with characteristic exponent α ∈ (1, 2); see Section 2. This question was
answered by Peng [30, 31] who proposed an alternative asymptotically normal estimator for
the mean. Remark 3.3 below shows that this situation also arises for the sample trimmed L-
moments mi when 1/2 < α < 2/3 and for the sample risk two-sided deviation Δr(X) when
1/(r + 1/2) < α < 1/r for any 0 < r < 1. To solve this problem in a more general setting,
we propose, by means of the extreme value theory, asymptotically normal estimators of L-
functionals for heavy-tailed distributions for which σ2(J) = ∞.

The remainder of this paper is organized as follows. Section 2 is devoted to a brief
introduction on the domain of attraction of α-stable laws. In Section 3 we define, via the
extreme value approach, a new asymptotically normal estimator of L-functionals and state
our main results. Applications to trimmed L-moments, risk measures, and related quantities
are given in Section 4. All proofs are deferred to Section 5.

2. Domain of Attraction of α-Stable Laws

A df is said to belong to the domain of attraction of a stable law with stability index 0 < α ≤ 2,
notation: F ∈ D(α), if there exist two real sequences An > 0 and Cn such that

A−1
n

(
n∑
i=1

Xi − Cn

)
D−−−→ Sα

(
σ, δ, μ

)
, as n −→ ∞, (2.1)

where Sα(σ, δ, μ) is a stable distribution with parameters 0 < α ≤ 2, −1 ≤ δ ≤ +1, σ > 0
and −∞ < μ < +∞ (see, e.g., Samorodnitsky and Taqqu [32]). This class of distributions was
introduced by Lévy during his investigations of the behavior of sums of independent random
variables in the early 1920s [33]. Sα(σ, δ, μ) is a rich class of probability distributions that
allow skewness and thickness of tails and have many important mathematical properties.
As shown in early work by Mandelbrot (1963) and Fama [34], it is a good candidate to
accommodate heavy-tailed financial series and produces measures of risk based on the tails
of distributions, such as the Value-at-Risk. They also have been proposed as models for
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many types of physical and economic systems, for more details see Weron [35]. This class of
distributions have nice heavy-tail properties. More precisely, if we denote by G(x) := P(|X| ≤
x) = F(x) − F(−x), x > 0, the df of Z := |X|, then the tail behavior of F ∈ D(α), for 0 < α < 2,
may be described by the following

(i) The tail 1 −G is regularly varying at infinity with index −α. That is

lim
t→∞

(1 −G(xt))
(1 −G(t))

= x−α, for any x > 0. (2.2)

(ii) There exists 0 ≤ p ≤ 1 such that

lim
x→∞

1 − F(x)
1 −G(x)

= p, lim
x→∞

F(−x)
1 −G(x)

= 1 − p =: q. (2.3)

Let, for 0 < s < 1, K(s) := inf{x > 0 : G(x) ≥ s} be the quantile function pertaining to G and
Q1(s) := max(−Q(1 − s), 0) and Q2(s) := max(Q(s), 0). Then Proposition A.3 in a work by
Csörgő et al. [36] says that the set of conditions above is equivalent to the following.

(i′) K(1 − ·) is regularly varying at 0 with index −1/α. That

lim
s↓0

K(1 − xs)
K(1 − s)

= x−1/α, for any x > 0. (2.4)

(ii′) There exists 0 ≤ p ≤ 1 such that

lim
s↓0

Q1(1 − s)
K(1 − s)

= p1/α, lim
s↓0

Q2(1 − s)
K(1 − s)

=
(
1 − p

)1/α =: q1/α. (2.5)

Our framework is a second-order condition that specifies the rate of convergence in statement
(i′). There exists a function A, not changing sign near zero, such that

lim
s↓0

(A(s))−1
(
K(1 − xs)
K(1 − s)

− x−1/α
)

= x−1/α x
� − 1
�

, for any x > 0, (2.6)

where � ≤ 0 is the second-order parameter. If � = 0, interpret (x� − 1)/� as logx. The
second-order condition for heavy-tailed distributions has been introduced by de Haan and
Stadtmüller [37].

3. Estimating L-Functionals When F ∈ D(α)

3.1. Extreme Quantile Estimation

The right and left extreme quantiles of small enough level t of df F, respectively, are two reals
xR and xL defined by 1 − F(xR) = t and F(xL) = t, that is, xR = Q(1 − t) and xL = Q(t).
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The estimation of extreme quantiles for heavy-tailed distributions has got a great deal of
interest, see for instance Weissman [38], Dekkers and de Haan [39], Matthys and Beirlant
[40] and Gomes et al. [41]. Next, we introduce one of the most popular quantile estimators.
Let k = kn and � = �n be sequences of integers (called trimming sequences) satisfying 1 < k <
n, 1 < � < n, k → ∞, � → ∞, k/n → 0 and �/n → 0, as n → ∞. Weissman’s estimators of
extreme quantiles xR and xL are defined, respectively, by

x̂L = Q̂L(t) :=
(
k

n

)1/αL

Xk,nt
−1/αL , as t ↓ 0,

x̂R = Q̂R(1 − t) :=
(
�

n

)1/αR

Xn−�,nt−1/αR , as t ↓ 0,

(3.1)

where

α̂L = α̂L(k) :=

(
1
k

k∑
i=1

log+(−Xi,n) − log+(−Xk,n)

)−1

,

α̂R = α̂R(�) :=

(
1
�

�∑
i=1

log+(Xn−i+1,n) − log+(Xn−�,n)

)−1
(3.2)

are two forms of Hill’s estimator [42] for the stability index α which could also be estimated,
using the order statistics Z1,n ≤ · · · ≤ Zn,n associated to a sample (Z1, . . . , Zn) from Z, as
follows:

α̂ = α̂(m) :=

(
1
m

m∑
i=1

log+(Zn−i+1,n) − log+(Zn−m,n)

)−1

, (3.3)

with log+u := max(0, logu) and m = mn being an intermediate sequence fulfilling the same
conditions as k and �. Hill’s estimator has been thoroughly studied, improved, and even
generalized to any real-valued tail index. Its weak consistency was established by Mason [43]
assuming only that the underlying distribution is regularly varying at infinity. The almost
sure convergence was proved by Deheuvels et al. [44] and more recently by Necir [45]. The
asymptotic normality has been investigated, under various conditions on the distribution tail,
by numerous workers like, for instance, Csörgő and Mason [46], Beirlant and Teugels [47],
and Dekkers et al. [48].

3.2. A Discussion on the Sample Fractions k and �

Extreme value-based estimators rely essentially on the numbers k and � of lower- and
upper-order statistics used in estimate computation. Estimators α̂L and α̂R have, in general,
substantial variances for small values of k and � and considerable biases for large values of k
and �. Therefore, one has to look for optimal values for k and �, which balance between these
two vices.

Numerically, there exist several procedures for the thorny issue of selecting the
numbers of order statistics appropriate for obtaining good estimates of the stability index α;
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Figure 1: Plots of Hill estimators, as functions of the number of extreme statistics, α̂ (solid line), α̂R (dashed
line), and α̂L (dotted line) of the characteristic exponent α of a stable distribution skewed to the right, based
on 1000 observations with 50 replications. The horizontal line represents the true value of α = 1.2.
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Figure 2: Plots of Hill estimators, as functions of the number of extreme statistics, α̂ (solid line), α̂R (dashed
line), and α̂L (dotted line) of the characteristic exponent α of a stable distribution skewed to the left, based
on 1000 observations with 50 replications. The horizontal line represents the true value of α = 1.2.

see, for example, Dekkers and de Haan [49], Drees and Kaufmann [50], Danielsson et al. [51],
Cheng and Peng [52] and Neves and Alves [53]. Graphically, the behaviors of α̂L, α̂R, and α̂ as
functions of k, � and m, respectively, are illustrated by Figures 1, 2, and 3 drawn by means of
the statistical software R [54]. According to Figure 1, α̂R is much more suitable than α̂L when
estimating the stability index of a distribution which is skewed to the right (δ > 0) whereas
Figure 2 shows that α̂L is much more reliable than α̂R when the distribution is skewed to the
left (δ < 0). In the case where the distribution is symmetric (δ = 0), both estimators seem to be
equally good as seen in Figure 3. Finally, it is worth noting that, regardless of the distribution
skewness, estimator α̂, based on the top statistics pertaining to the absolute value of X, works
well and gives good estimates for the characteristic exponent α.
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Figure 3: Plots of Hill estimators, as functions of the number of extreme statistics, α̂ (solid line), α̂R (dashed
line) and α̂L (dotted line) of the characteristic exponent α of a symmetric stable distribution, based on 1000
observations with 50 replications. The horizontal line represents the true value of α = 1.2.
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Figure 4: Plots of the ratios of the numbers of extreme statistics, as functions of the sample size, for a
stable symmetric distribution S1.2(1, 0, 0) (solid line), a stable distribution skewed to the right S1.2(1, 0.5, 0)
(dashed line) and a stable distribution skewed to the left S1.2(1,−0.5, 0) (dotted line).

It is clear that, in general, there is no reason for the trimming sequences k and � to be
equal. We assume that there exists a positive real constant θ such that �/k → θ as n → ∞. If
the distribution is symmetric, the value of θ is equal to 1; otherwise, it is less or greater than
1 depending on the sign of the distribution skewness. For an illustration, see Figure 4 where
we plot the ratio θ for several increasing sample sizes.

3.3. Some Regularity Assumptions on J

For application needs, the following regularity assumptions on function J are required:
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(H1) J is differentiable on (0, 1),

(H2) λ := lims↓0
J(1 − s)
J(s)

< ∞,

(H3) both J(s) and J(1 − s) are regularly varying at zero with common index β ∈ R.

(H4) there exists a function a(·) not changing sign near zero such that

limt↓0
J(xt)/J(t) − xβ

a(t)
= xβ x

ω − 1
ω

, for any x > 0, (3.4)

where ω ≤ 0 is the second-order parameter.

The three remarks below give more motivations to this paper.

Remark 3.1. Assumption (H3) has already been used by Mason and Shorack [55] to establish
the asymptotic normality of trimmed L-statistics. Condition (H4) is just a refinement of (H3)
called the second order condition that is required for quantile function K in (2.6).

Remark 3.2. Assumptions (H1)–(H4) are satisfied by all weight functions (Ji)i=2,4 with (β, λ) =
(1,±1) (see Section 4.1) and by function Jr in (1.9) with (β, λ) = (r−1,−1). These two examples
show that the constants β and λ may be positive or negative depending on application needs.

Remark 3.3. L-functionals L(J) exist for any 0 < α < 2 and β ∈ R such that 1/α − β < 1.
However, Lemma 5.4 below shows that for 1/α − β > 1/2 we have σ2(J) = ∞. Then, recall
(1.3); whenever 1/2 < α < 2/3, the trimmed L-moments exist however σ2(Ji) = ∞, i = 1, . . . , 4.
Likewise, recall (1.9); whenever 1/(r + 1/2) < α < 1/r, the two-sided deviation Δr(X) exists
while σ2(Jr) = ∞.

3.4. Defining the Estimator and Main Results

We now have all the necessary tools to introduce our estimator of L(J), given in (1.1), when
F ∈ D(α) with 0 < α < 2. Let k = kn and � = �n be sequences of integers satisfying 1 < k < n,
1 < � < n, k → ∞, � → ∞, k/n → 0, �/n → 0, and the additional condition �/k → θ < ∞
as n → ∞. First, we must note that since 1 + β − 1/α > 0 (see Remark 3.3) and since both α̂L

and α̂R are consistent estimators of α (see, Mason [43]), then we have for all large n

P

(
1 + β − 1

α̂L
> 0

)
= P

(
1 + β − 1

α̂R
> 0

)
= 1 + o(1). (3.5)

Observe now that L(J) defined in (1.1) may be split in three integrals as follows:

L(J) =
∫k/n

0
J(t)Q(t)dt +

∫1−�/n

k/n

J(t)Q(t)dt +
∫1

1−�/n
J(t)Q(t)dt =: TL,n + TM,n + TR,n. (3.6)
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Substituting Q̂L(t) and Q̂R(1−t) for Q(t) and Q(1−t) in TL,n and TR,n, respectively and making
use of assumption (H3) and (3.5) yield that for all large n

∫k/n

0
J(t)Q̂L(t)dt =

(
k

n

)1/αL

Xk,n

∫k/n

0
t−1/αLJ(t)dt = (1 + o(1))

(k/n)J(k/n)
1 + β − 1/α̂L

Xk,n,

∫�/n

0
J(1 − t)Q̂R(1 − t)dt =

(
�

n

)1/αR

Xn−�,n

∫�/n

0
t−1/αRJ(1 − t)dt

= (1 + o(1))
(�/n)J(1 − �/n)

1 + β − 1/α̂R
Xn−�,n.

(3.7)

Hence we may estimate TL,n and TR,n by

T̂L,n :=
(k/n)J(k/n)
1 + β − 1/α̂L

Xk,n, T̂R,n :=
(�/n)J(1 − �/n)

1 + β − 1/α̂R
Xn−�,n, (3.8)

respectively. As an estimator of TM,n we take the sample one that is

T̂M,n :=
∫1−�/n

k/n

J(t)Qn(t)dt =
n−�∑
i=k+1

ai,nXi,n, (3.9)

with the same constants ai,n as those in (1.11). Thus, the final form of our estimator is

L̂k,�(J) =
(k/n)J(k/n)
1 + β − 1/α̂L

Xk,n +
n−�∑
i=k+1

ai,nXi,n +
(�/n)J(1 − �/n)

1 + β − 1/α̂R
Xn−�,n. (3.10)

A universal estimator of L(J) may be summarized by

L̂∗
n(J) = L̂k,�(J)I

(
σ2(J) = ∞

)
+ L̂n(J)I

(
σ2(J) < ∞

)
, (3.11)

where L̂n(J) is as in (1.11). More precisely

L̂∗
n(J) = L̂k,�(J)I

(
A
(
α, β

))
+ L̂n(J)I

(
A
(
α, β

))
, (3.12)

where A(α, β) := {(α, β) ∈ (0, 2) × R : 1/2 < 1/α − β < 1} and A(α, β) is its complementary in
(0, 2) × R.

Note that for the particular case � = k and J = 1 the asymptotic normality of the
trimmed mean T̂M,n has been established in Theorem 1 of Csörgő et al. [56]. The following
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theorem gives the asymptotic normality of T̂M,n for more general trimming sequences k and
� and weighting function J . For convenience, we set, for any 0 < x < 1/2 and 0 < y < 1/2,

σ2(x, y; J
)

:=
∫1−y

x

∫1−y

x

(min(s, t) − st)J(s)J(t)dQ(s)Q(t) < ∞, (3.13)

and let σ2
n(J) := σ2(k/n, �/n; J).

Theorem 3.4. Assume that F ∈ D(α) with 0 < α < 2. For any measurable function J satisfying
assumption (H3) with index β ∈ R such that 0 < 1/α − β < 1 and for any sequences of integers k
and � such that1 < k < n, 1 < � < n, k → ∞, � → ∞, k/n → 0, and �/n → 0, as n → ∞,
there exists a probability space (Ω, A, P) carrying the sequenceX1, X2, . . . and a sequence of Brownian
bridges {Bn(s), 0 ≤ s ≤ 1, n = 1, 2, . . .} such that one has for all large n

√
n
(
T̂M,n − TM,n

)
σn(J)

= −
∫1−�/n
k/n J(s)Bn(s)ds

σn(J)
+ op(1), (3.14)

and therefore

√
n
(
T̂M,n − TM,n

)
σn(J)

D−−−→ N(0, 1) as n −→ ∞. (3.15)

The asymptotic normality of our estimator is established in the following theorem.

Theorem 3.5. Assume that F ∈ D(α) with 0 < α < 2. For any measurable function J satisfying
assumptions (H1)–(H4) with index β ∈ R such that 1/2 < 1/α − β < 1, and for any sequences of
integers k and � such that 1 < k < n, 1 < � < n, k → ∞, � → ∞, k/n → 0, �/n → 0,
�/k → θ < ∞, and

√
ka(k/n)A(k/n) → 0 as n → ∞, one has

√
n
(
L̂k,�(J) − L(J)

)
σn(J)

D−−−→ N
(

0, σ2
0

)
, as n −→ ∞, (3.16)

where

σ2
0 = σ2

0
(
α, β

)
:=
(
αβ + 1

)(
2αβ + 2 − α

) ×
(

2α2 +
(
βα − 1

)2 + 2α
(
βα − 1

)
2
((

1 + β
)
α − 1

)4
+

1(
1 + β

)
α − 1

)
+ 1.

(3.17)

The following corollary is more practical than Theorem 3.5 as it directly provides
confidence bounds for L(J).
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Corollary 3.6. Under the assumptions of Theorem 3.5 one has

√
n
(
L̂k,�(J) − L(J)

)

(�/n)1/2J(1 − �/n)Xn−�,n

D−−−→ N
(

0, V 2
)
, as n −→ ∞, (3.18)

where

V 2 = V 2(α, β, λ, θ, p) :=

(
1 + λ−2

(
q

p

)−2/α

θ−2β+2/α−1

)

×
(

2α2 +
(
βα − 1

)2 + 2α
(
βα − 1

)
2
((

1 + β
)
α − 1

)4
+

1(
1 + β

)
α − 1

)
+ 1,

(3.19)

with (p, q) as in statement (ii) of Section 2 and (λ, β) as in assumptions (H2)-(H3) of Section 3.

3.5. Computing Confidence Bounds for L(J)

The form of the asymptotic variance V 2 in (3.20) suggests that, in order to construct
confidence intervals for L(J), an estimate of p is needed as well. Using the intermediate order
statistic Zn−m,n, de Haan and Pereira [57] proposed the following consistent estimator for p :

p̂n = p̂n(m) :=
1
m

n∑
i=1

I{Xi > Zn−m,n}, (3.20)

where m = mn is a sequence of integers satisfying 1 < m < n, m → ∞, and m/n → 0, as
n → ∞ (the same as that used in (3.3)).

Let J be a given weight function satisfying (H1)–(H4) with fixed constants β and λ.
Suppose that, for n large enough, we have a realization (x1, . . . , xn) of a sample (X1, . . . , Xn)
from rv X with df F fulfilling all assumptions of Theorem 3.5. The (1−ς)-confidence intervals
for L(J) will be obtained via the following steps.

Step 1. Select the optimal numbers k∗, �∗, and m∗ of lower- and upper-order statistics used in
(3.2) and (3.3).

Step 2. Determine Xk∗,n, Xn−�∗,n, J(k∗/n), J(1 − �∗/n), and θ∗ := �∗/k∗.

Step 3. Compute, using (3.2), α̂∗
L := α̂L(k∗) and α̂∗

R := α̂R(�∗). Then deduce, by (3.10), the
estimate L̂k∗,�∗(J).

Step 4. Use (3.3) and (3.20) to compute α̂∗ := α̂(m∗) and p̂∗n := p̂n(m∗). Then deduce, by (3.19),
the asymptotic standard deviation

V ∗ :=
√
V 2

(
α̂∗, β, λ, θ∗, p̂∗n

)
. (3.21)
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Finally, the lower and upper (1 − ς)-confidence bounds for L(J), respectively, will be

L̂k∗,�∗(J) − zς/2

√
�∗V ∗Xn−�∗,nJ(1 − �∗/n)

n
,

L̂k∗,�∗(J) + zς/2

√
�∗V ∗Xn−�∗,nJ(1 − �∗/n)

n
,

(3.22)

where zς/2 is the (1−ς/2) quantile of the standard normal distribution N(0, 1) with 0 < ς < 1.

4. Applications

4.1. TL-Skewness and TL-Kurtosis When F ∈ D(α)

When the distribution mean EX exists, the skewness and kurtosis coefficients are,
respectively, defined by L1 := μ3/μ

3/2
2 and L2 := μ4/μ

2
2 with μk := E(X − EX)k, k = 2, 3, and 4

being the centered moments of the distribution. They play an important role in distribution
classification, fitting models, and parameter estimation, but they are sensitive to the behavior
of the distribution extreme tails and may not exist for some distributions such as the Cauchy
distribution. Alternative measures of skewness and kurtosis have been proposed; see, for
instance, Groeneveld [58] and Hosking [3]. Recently, Elamir and Seheult [4] have used the
trimmed L-moments to introduce new parameters called TL-skewness and TL-kurtosis that
are more robust against extreme values. For example, when the trimming parameter equals
one, the TL-skewness and TL-kurtosis measures are, respectively, defined by

υ1 :=
m3

m2
, υ2 :=

m4

m2
, (4.1)

where mi, i = 2, 3, 4, are the trimmed L-moments defined in Section 1. The corresponding
weight functions of (1.3) are defined as follows:

J2(s) := 6s(1 − s)(2s − 1),

J3(s) :=
20
3
s(1 − s)

(
5s2 − 5s + 1

)
,

J4(s) :=
15
2
s(1 − s)

(
14s3 − 21s2 + 9s − 1

)
.

(4.2)

If we suppose that F ∈ D(α) with 1/2 < α < 2/3, then, in view of the results above,
asymptotically normal estimators for υ1 and υ2 will be, respectively,

υ̂1 :=
m̂3

m̂2
, υ̂2 :=

m̂4

m̂2
, (4.3)
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where

m̂i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−6(k/n)2

2 − 1/α̂L
Xk,n +

n−�∑
j=k+1

a
(i)
j,nXj,n +

6(�/n)2

2 − 1/α̂R
Xn−�,n, for i = 2,

20(k/n)2

3(2 − 1/α̂L)
Xk,n +

n−�∑
j=k+1

a
(i)
j,nXj,n +

20(�/n)2

3(2 − 1/α̂R)
Xn−�,n, for i = 3,

−15(k/n)2

2(2 − 1/α̂L)
Xk,n +

n−�∑
j=k+1

a
(i)
j,nXj,n +

15(�/n)2

2(2 − 1/α̂R)
Xn−�,n, for i = 4,

(4.4)

with a
(i)
j,n :=

∫ j/n
(j−1)/nJi(s)ds, i = 2, 3, 4, and j = 1, . . . , n.

Theorem 4.1. Assume that F ∈ D(α) with 1/2 < α < 2/3. For any sequences of integers k and �
such that 1 < k < n, 1 < � < n, k → ∞, � → ∞, k/n → 0, �/n → 0, �/k → θ < ∞, and√
ka(k/n)A(k/n) → 0 as n → ∞, one has, respectively, as n → ∞,

√
n(υ̂1 − υ1)

(�/n)3/2Xn−�,n

D−−−→ N
(

0, V 2
1

)
,

√
n(υ̂2 − υ2)

(�/n)3/2Xn−�,n

D−−−→ N
(

0, V 2
2

)
,

(4.5)

where

V 2
1 :=

36
m2

2

(
1 − 9m3

10m2

)2

σ∗2, V 2
2 :=

225
4m2

2

(
1 − 4m4

5m2

)2

σ∗2, (4.6)

with

σ∗2 :=
(

1 +
(
q/p

)−2/α
θ2/α−3

)
×
(

2α2 + (α − 1)2 + 2α(α − 1)

2(2α − 1)4
+

1
2α − 1

)
+ 1. (4.7)

4.2. Risk Two-Sided Deviation When F ∈ D(α)

Recall that the risk two-sided deviation is defined by

Δr(X) :=
∫1

0
Jr(s)Q(s)ds, 0 < r < 1, (4.8)

where

Jr(s) :=
r

2
s1−r − (1 − s)1−r

s1−r(1 − s)1−r , 0 < s < 1. (4.9)
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An asymptotically normal estimator for Δr(X), when 1/(r + 1/2) < α < 1/r, is

Δ̂r(X) = − r(k/n)r

2r − 4/α̂L
Xk,n +

n−�∑
j=k+1

a
(r)
j,nXj,n +

r(�/n)r

2r − 4/α̂R
Xn−�,n, (4.10)

where

a
(r)
j,n =

1
2

[(
1 − i

n

)−r
−
(

1 − i − 1
n

)−r
−
(

i

n

)−r
+
(
i − 1
n

)−r]
, (4.11)

j = 1, . . . , n.

Theorem 4.2. Assume that F ∈ D(α) with 0 < α < 2 such that 1/(r + 1/2) < α < 1/r, for
any 0 < r < 1. Then, for any sequences of integers k and � such that1 < k < n, 1 < � < n,
k → ∞, � → ∞, k/n → 0, �/n → 0, �/k → θ < ∞, and

√
ka(k/n)A(k/n) → 0 as n → ∞,

one has, as n → ∞,

√
n
(
Δ̂r(X) −Δr(X)

)

(�/n)r−1/2Xn−�,n

D−−−→ N
(

0, V 2
r

)
, (4.12)

where

V 2
r :=

r2

4

(
1 +

(
q

p

)−2/α

θ2/α−2r+1

)
×
(

2α2 + (rα − α − 1)2 + 2α(rα − α − 1)

2(rα − 1)4
+

1
rα − 1

)
+ 1.

(4.13)

5. Proofs

First we begin by the following three technical lemmas.

Lemma 5.1. Let f1 and f2 be two continuous functions defined on (0, 1) and regularly varying at
zero with respective indices κ > 0 and −τ < 0 such that κ < τ . Suppose that f1 is differentiable at zero,
then

lim
x↓0

∫1/2
x f1(s)df2(s)
f1(x)f2(x)

=
τ

κ − τ
. (5.1)

Lemma 5.2. Under the assumptions of Theorem 3.5, one has

lim
n→∞

∫1−�/n
k/n (s(1 − s))1/2−νJ(s)dQ(s)

(k/n)1/2−νJ(k/n)Q(k/n)
=

1 + λθ1/2−ν+β−1/α(q/p)1/α

α
(
1/2 − ν + β

) − 1
, (5.2)

for any 0 < ν < 1/4.
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Lemma 5.3. For any 0 < x < 1/2 and 0 < y < 1/2 one has

σ2(x, y; J
)
= xc2(x) + yc2(1 − y

)
+
∫1−y

x

c2(t)dt −
(
xc(x) + yc

(
1 − y

)
+
∫1−y

x

c(t)dt

)2

,

(5.3)

where c(s) :=
∫s

1/2J(t)dQ(t), 0 < s < 1/2.

Lemma 5.4. Under the assumptions of Theorem 3.5, one has

lim
n→∞

(k/n)J2(k/n)Q2(k/n)
σ2
n(J)

= w2,

lim
n→∞

(�/n)J2(1 − �/n)Q2(1 − �/n)
σ2
n(J)

= λ2
(
q

p

)2/α

θ2β−2/α+1w2,

(5.4)

where

w2 :=

(
αβ + 1

)(
2αβ + 2 − α

)
2
(

1 + λ2
(
q/p

)2/α
θ2β−2/α+1

) . (5.5)

Proof of Lemma 5.1. Let f ′
1 denote the derivative of f1. Applying integration by parts, we get,

for any 0 < x < 1/2,

∫1/2

x

f1(s)df2(s) = f1

(
1
2

)
f2

(
1
2

)
− f1(x)f2(x) −

∫1/2

x

f ′
1(s)f2(s)ds. (5.6)

Since the product f1f2 is regularly varying at zero with index −τ +κ < 0, then f1(x)f2(x) → 0
as x ↓ 0. Therefore

lim
x↓0

∫1/2
x f1(s)df2(s)
f1(x)f2(x)

= −1 − lim
x↓0

∫1/2
x f ′

1(s)f2(s)ds
f1(x)f2(x)

. (5.7)

By using Karamata’s representation (see, e.g., Seneta [59]), it is easy to show that

xf ′
1(x) = κ(1 + o(1))f1(x), as x ↓ 0. (5.8)

Hence

lim
x↓0

∫1/2
x f1(s)df2(s)
f1(x)f2(x)

= −1 − κ lim
x↓0

∫1/2
x f ′

1(s)f2(s)ds

xf ′
1(x)f2(x)

. (5.9)
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It is clear that (5.8) implies that f ′
1 is regularly varying at zero with index κ− 1; therefore f ′

1f2

is regularly varying with index −τ + κ − 1 < 0. Then, Theorem 1.2.1 by de Haan [60, page 15]
yields

lim
x↓0

−
∫1/2
x f ′

1(s)f2(s)ds

xf ′
1(x)f2(x)

=
1

κ − τ
. (5.10)

This completes the proof of Lemma 5.1.

Proof of Lemma 5.2. We have

In :=
∫1−�/n

k/n

(s(1 − s))1/2−νJ(s)dQ(s) =
∫1/2

k/n

(s(1 − s))1/2−νJ(s)dQ(s)

−
∫1/2

1−�/n
(s(1 − s))1/2−νJ(1 − s)dQ(1 − s) =: I1n − I2n.

(5.11)

By taking, in Lemma 5.1, f1(s) = (s(1 − s))1/2−νJ(s) and f2(s) = Q(s) with κ = 1/2− ν + β, τ =
1/α, and x = k/n, we get

lim
n→∞

I1n

(k/n)1/2−νJ(k/n)Q(k/n)
=

1/α
1/2 − ν + β − 1/α

. (5.12)

Likewise if we take f1(s) = (s(1 − s))1/2−νJ(1−s) and f2(s) = Q(1−s) with κ = 1/2−ν+β, τ =
1/α, and x = �/n, we have

lim
n→∞

I2n

(�/n)1/2−νJ(1 − �/n)Q(1 − �/n)
=

1/α
1/2 − ν + β − 1/α

. (5.13)

Note that statement (ii′) of Section 2 implies that

lim
s↓0

Q(1 − s)/Q(s) = −
(
q

p

)1/α

. (5.14)

The last two relations, together with assumption (H2) and the regular variation of Q(1 − s),
imply that

lim
n→∞

I2n

(k/n)1/2−νJ(k/n)Q(k/n)
= −

(
q/p

)1/α
λθ1/2−ν+β−1/α/α

1/2 − ν + β − 1/α
. (5.15)

This achieves the proof of Lemma 5.2.
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Proof of Lemma 5.3. We will use similar techniques to those used by Csörgő et al. [36,
Proposition A.2]. For any 0 < s < 1/2, we set

Wx,y(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c
(
1 − y

)
for 1 − y ≤ t < 1,

c(t) for x < t < 1 − y,

c(x) for 0 < t ≤ x.

(5.16)

Then σ2(x, y; J) may be rewritten into

σ2(x, y; J
)
=
∫1

0
W2

x,y(s)ds −
(∫1

0
Wx,y(s)ds

)2

, (5.17)

and the result of Lemma 5.3 follows immediately.

Proof of Lemma 5.4. From Lemma 5.3 we may write

σ2
n(J)

(k/n)J2(k/n)Q2(k/n)
= Tn1 + Tn2 + Tn3 + Tn4, (5.18)

where

Tn1 :=
(k/n)c2(k/n)

(k/n)J2(k/n)Q2(k/n)
, Tn2 :=

(�/n)c2(1 − �/n)
(k/n)J2(k/n)Q2(k/n)

,

Tn3 :=

∫1−�/n
k/n c2(t)dt

(k/n)J2(k/n)Q2(k/n)
,

Tn4 :=

(
(k/n)c(k/n) + (�/n)c(1 − �/n) +

∫1−�/n
k/n c(t)dt

)2

(k/n)J2(k/n)Q2(k/n)
.

(5.19)

By the same arguments as in the proof of Lemma 5.2, we infer that

lim
n→∞

c(k/n)
J(k/n)Q(k/n)

=
1

αβ − 1
,

lim
n→∞

c(1 − �/n)
J(k/n)Q(k/n)

=
λ
(
q/p

)1/α
θβ−1/α

αβ − 1
.

(5.20)

Therefore

lim
n→∞

Tn1 =
1(

αβ − 1
)2

, lim
n→∞

Tn2 =
λ2(q/p)2/α

θ2β−2/α+1

(
αβ − 1

)2
. (5.21)
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Next, we consider the third term Tn3 which may be rewritten into

Tn3 =

∫1/2
k/nc

2(t)dt

(k/n)J2(k/n)Q2(k/n)
+

∫1−�/n
1/2 c2(t)dt

(k/n)J2(k/n)Q2(k/n)
. (5.22)

Observe that

∫1/2
k/nc

2(t)dt

(k/n)J2(k/n)Q2(k/n)
=
(

c(k/n)
J(k/n)Q(k/n)

)2
∫1/2
k/nc

2(t)dt

(k/n)c2(k/n)
. (5.23)

It is easy to verify that function c2(·) is regularly varying at zero with index 2(β − 1/α). Thus,
by Theorem 1.2.1 by de Haan [60] we have

lim
n→∞

∫1/2
k/nc

2(t)dt

(k/n)c2(k/n)
=

α

2 − 2αβ − α
. (5.24)

Hence

lim
n→∞

∫1/2
k/nc

2(t)dt

(k/n)J2(k/n)Q2(k/n)
=

α(
αβ − 1

)2(2 − 2αβ − α
) . (5.25)

By similar arguments we show that

lim
n→∞

∫1−�/n
1/2 c2(t)dt

(k/n)J2(k/n)Q2(k/n)
=

α
(
q/p

)2/α
λ2θ2β−2/α+1

(
αβ − 1

)2(2 − 2αβ − α
) . (5.26)

Therefore

lim
n→∞

Tn3 =
1 + α

(
q/p

)2/α
λ2θ2β−2/α+1

(
αβ − 1

)2(2 − 2αβ − α
) . (5.27)

By analogous techniques we show that Tn4 → 0 as n → ∞; we omit details. Summing up
the three limits of Tni, i = 1, 2, 3, achieves the proof of the first part of Lemma 5.4. As for the
second assertion of the lemma, we apply a similar procedure.

5.1. Proof of Theorem 3.4

Csörgő et al. [36] have constructed a probability space (Ω, A, P) carrying an infinite sequence
ξ1, ξ2, . . . of independent rv’s uniformly distributed on (0, 1) and a sequence of Brownian
bridges {Bn(s), 0 ≤ s ≤ 1, n = 1, 2, . . .} such that, for the empirical process,

ϕn(s) := n1/2{Γn(s) − s}, 0 ≤ s ≤ 1, (5.28)
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where Γn(·) is the uniform empirical df pertaining to the sample (ξ1, . . . , ξn); we have for any
0 ≤ ν < 1/4 and for all large n

sup
1/n≤s≤1−1/n

∣∣ϕn(s) − Bn(s)
∣∣

(s(1 − s))1/2−ν = Op

(
n−ν). (5.29)

For each n ≥ 1, let ξ1,n ≤ · · · ≤ ξn,n denote the order statistics corresponding to (ξ1, . . . , ξn).
Note that for each n, the random vector (Q(ξ1,n), . . . , Q(ξn,n)) has the same distribution as
(X1,n, . . . , Xn,n). Therefore, for 1 ≤ i ≤ n, we shall use the rv’s Q(ξi,n) to represent the rv’s
Xi,n, and without loss of generality, we shall be working, in all the following proofs, on the
probability space above. According to this convention, the term T̂M,n defined in (3.9) may be
rewritten into

T̂M,n =
∫ ξn−�,n

ξk,n

Q(s)dΨ(Γn(s)), (5.30)

where Ψ(s) :=
∫s

0J(t)dt. Integrating by parts yields

n1/2
(
T̂M,n − TM,n

)
σn(J)

= Δ1,n + Δ2,n + Δ3,n,
(5.31)

where

Δ1,n := −
n1/2

∫1−�/n
k/n {Ψ(Γn(s)) −Ψ(s)}dQ(s)

σn(J)
,

Δ2,n :=
n1/2

∫ ξk,n
k/n{Ψ(Γn(s)) −Ψ(k/n)}dQ(s)

σn(J)
,

Δ3,n :=
n1/2

∫1−�/n
ξn−�,n

{Ψ(Γn(s)) −Ψ(1 − �/n)}dQ(s)

σn(J)
.

(5.32)

Next, we show that

Δ1,n
D−−−→ N(0, 1) as n −→ ∞, (5.33)

Δi,n
p−−−→ 0 as n −→ ∞ for i = 2, 3. (5.34)

Making use of the mean-value theorem, we have for each n

Ψ(Γn(s)) −Ψ(s) = (Γn(s) − s)J(ϑn(s)), (5.35)
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where {ϑn(s)}n≥1 is a sequence of rv’s with values in the open interval of endpoints s ∈ (0, 1)
and Γn(s). Therefore

Δ1,n =
−∫1−�/n

k/n ϕn(s)J(ϑn(s))dQ(s)

σn(J)
. (5.36)

This may be rewritten into

Δ1,n = −
∫1−�/n
k/n ϕn(s)J(s)dQ(s)

σn(J)
−
∫1−�/n
k/n ϕn(s)J(s){J(ϑn(s)) − J(s)}dQ(s)

σn(J)

=: Δ∗
1,n + Δ∗∗

1,n.

(5.37)

Note that

∫1−�/n
k/n

∣∣ϕn(s) − Bn(s)
∣∣J(s)dQ(s)

σn(J)

≤ sup
k/n≤s≤1−�/n

∣∣ϕn(s) − Bn(s)
∣∣

(s(1 − s))1/2−ν

∫1−�/n

k/n

(s(1 − s))1/2−ν|J(s)|dQ(s)/σn(J),

(5.38)

for 0 < ν < 1/4, which by (5.29) is equal to

Op(n−ν)
∫1−�/n
k/n (s(1 − s))1/2−ν|J(s)|dQ(s)

σn(J)
. (5.39)

Since we have, from Lemmas 5.2 and 5.3,

(
n

k

)ν∫1−�/n

k/n

(s(1 − s))1/2−ν|J(s)|dQ(s)/σn(J) = O(1), as n −→ ∞, (5.40)

then the right-hand side of the last inequality is equal to Op(k−ν) which in turn tends to zero
as n → ∞. This implies that as n → ∞

Δ∗
1,n = −

∫1−�/n
k/n Bn(s)J(s)dQ(s)

σn(J)
+ op(1). (5.41)

Next, we show that Δ∗∗
1,n = op(1). Indeed, function J is differentiable on (0, 1); then by

the mean-value theorem, there exists a sequence {ϑ∗
n(s)}n≥1 of rv’s with values in the open

interval of endpoints s ∈ (0, 1) and ϑn(s) such that for each n we have

Δ∗∗
1,n =

∫1−�/n
k/n ϕn(s)J(s){ϑn(s) − s}J ′(ϑ∗

n(s))dQ(s)

σn(J)
. (5.42)
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From inequalities (3.9) and (3.10) by Mason and Shorack [55], we infer that, for any 0 < ρ < 1,
there exists 0 < Mρ < ∞ such that for all large n we have

∣∣J ′(ϑ∗
n(s))

∣∣ ≤ Mρ|J(s)|
(s(1 − s))

, (5.43)

for any 0 < s ≤ 1/2. On the other hand, we have for any 0 < s < 1

|ϑn(s) − s| ≤ |Γn(s) − s|. (5.44)

Therefore

∣∣∣Δ∗∗
1,n

∣∣∣ ≤ Mρn
−1/2

∫1/2
k/n

(∣∣ϕn(s)
∣∣2|J(s)|/s(1 − s)

)
dQ(s)

σn(J)
. (5.45)

This implies, since, for each n ≥ 1, E|ϕn(s)|2 < s(1 − s), that

E
∣∣∣Δ∗∗

1,n

∣∣∣ ≤ Mρn
−1/2

∫1/2
k/n|J(s)|dQ(s)

σn(J)
, (5.46)

which tends to zero as n → ∞.
Next, we consider the term Δ2,n which may be rewritten into

Δ2,n =
n1/2

∫ ξk,n
k/n{Ψ(Γn(s)) −Ψ(s)}dQ(s)

σn(J)
+
n1/2

∫ ξk,n
k/n{Ψ(s) −Ψ(k/n)}dQ(s)

σn(J)
. (5.47)

Making use of the mean-value theorem, we get

Δ2,n =

∫ ξk,n
k/n

ϕn(s)J
(
μn(s)

)
dQ(s)

σn(J)
+
n1/2

∫ ξk,n
k/n(s − k/n)J(s∗n)dQ(s)

σn(J)
, (5.48)

where μn(s) is a sequence of rv’s with values in the open interval of endpoints s ∈ (k/n, ξk,n)
and Γn(s) and s∗n a sequence of rv’s with values in the open interval of endpoints s ∈
(k/n, ξk,n) and k/n. Again we may rewrite Δ2,n into

Δ2,n =

∫ ξk,n
k/nϕn(s)

(
J
(
μn(s)

) − J(s)
)
dQ(s)

σn(J)
+

∫ ξk,n
k/nϕn(s)J(s)dQ(s)

σn(J)

+ n1/2J

(
k

n

)∫ ξk,n

k/n

(
s − k

n

)(
J(s∗n)
J(k/n)

− 1
)
dQ(s)/σn(J)

+ n1/2J

(
k

n

)∫ ξk,n

k/n

(
s − k

n

)
dQ(s)/σn(J).

(5.49)
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Recall that, as n → ∞, both k and � tend to infinity with k/n → 0 and �/n → 0. This implies
that

n

k1/2

(
ξk,n − k

n

)
D−−−→ N(0, 1) as n −→ ∞, (5.50)

n

l1/2

(
ξn−l,n − 1 +

l

n

)
D−−−→ N(0, 1) as n −→ ∞, (5.51)

(see, e.g., Balkema and de Haan [61, page 18]). Next, we use similar arguments to those used
in the proof of Theorem 1 by Csörgő et al. [56]. For any 0 < c < ∞ write

Δ(1)
2,n(c) :=

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)

∣∣ϕn(s)
∣∣∣∣J(μn(s)

) − J(s)
∣∣dQ(s)

σn(J)

+

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)|J(s)|

∣∣ϕn(s)
∣∣dQ(s)

σn(J)
,

Δ(2)
2,n(c) :=

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)n

1/2|s − k/n|J(s∗n)dQ(s)

σn(J)

+
n1/2J(k/n)

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)(s − k/n)(J(s∗n)/J(k/n) − 1)dQ(s)

σn(J)
.

(5.52)

Notice that by (5.49)

lim
c→∞

lim inf
n→∞

P

{
|Δ2,n| ≤ Δ(1)

2,n(c) + Δ(2)
2,n(c)

}
≥ lim

c→∞
lim inf
n→∞

P

{∣∣∣∣ξk,n − k

n

∣∣∣∣ ≤ c
k1/2

n

}
. (5.53)

In view of (5.50), this last quantity equals 1. Therefore to establish (5.34) for i = 2, it suffices
to show that for each 0 < c < ∞

Δ(1)
2,n(c)

p−−−→ 0, Δ(2)
2,n(c) −→ 0 as n −→ ∞. (5.54)

By the mean-value theorem, there exists {μ∗
n(s)}n≥1 a sequence of rv’s with values in the open

interval of endpoints s and μn(s) such that for each n we have

J
(
μn(s)

) − J(s) =
(
μn(s) − s

)
J ′
(
μ∗
n(s)

)
. (5.55)
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Since |μn(s) − s| ≤ |Γn(s) − s|, then by inequality (5.43) we infer that, for any 0 < ρ < 1,
there exists 0 < M′

ρ < ∞ such that for all large n we have

∣∣J(μn(s)
) − J(s)

∣∣ ≤ M′
ρn

−1/2
∣∣ϕn(s)

∣∣|J(s)|
(s(1 − s))

. (5.56)

This implies that the first term in Δ(1)
2,n(c) is less than or equal to

M′
ρn

−1/2
∫k/n+c(k1/2/n)

k/n−c(k1/2/n)

(
ϕ2
n(s)|J(s)|
(s(1 − s))

)
dQ(s)/σn(J) . (5.57)

Since E(ϕ2
n(s)) ≤ s(1 − s), then the expected value of the previous quantity is less than or

equal to

M′
ρn

−1/2
∫ (1+c)k/n
(1−c)k/n|J(s)|dQ(s)

σn(J)
. (5.58)

Likewise the expected value of the second term in Δ(1)
2,n(c) is less than or equal to

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)(s(1 − s))1/2|J(s)|dQ(s)

σn(J)
≤
(
k/n + c(k1/2/n)

)1/2∫k/n+c(k1/2/n)
k/n−c(k1/2/n)|J(s)|dQ(s)

σn(J)
.

(5.59)

Fix 1 < ε < ∞. It is readily verified that, for all large n, the quantity (5.58) is less than

M′
ρn

−1/2
∫ε(k/n)
k/εn |J(s)|dQ(s)

σn(J)
, (5.60)

and the right-hand side of (5.59) is less than

2
(
k

n

)1/2∫ ε(k/n)

k/εn

|J(s)|dQ(s)/σn(J). (5.61)

Therefore for all large n

E
(
Δ(1)

2,n(c)
)
≤
(

2 +M′
ρk

−1/2
)(k

n

)1/2∫ ε(k/n)

k/εn

|J(s)|dQ(s)/σn(J). (5.62)

By routine manipulations, as in the proofs of Lemmas 5.1 and 5.2 (we omit details), we easily
show that

lim
n→∞

(
k

n

)1/2∫ ε(k/n)

k/εn

|J(s)|dQ(s)/σn(J) =
w

αβ − 1

(
ε1/α−β − εβ−1/α

)
. (5.63)
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Since k → ∞, then for any 0 < c < ∞

lim sup
n→∞

E
(
Δ(1)

2,n(c)
)
≤ 2

(
ε1/α−β − εβ−1/α

)
w, (5.64)

for any fixed 1 < ε < ∞. This implies that for all 0 < c < ∞

lim
n→∞

E
(
Δ(1)

2,n(c)
)
= 0. (5.65)

Therefore, by Markov inequality, we have the first result of (5.34).
Now, consider the term Δ(2)

2,n(c). Observe that ns∗/k is a sequence of rv’s with values in

the open interval of endpoints nξk,n/k and 1. On the other hand, (5.49) implies that nξk,n/k
p−→

1 as n → ∞. Hence ns∗/k
p−→ 1 as well. Then, it is readily checked that, in view of relation

(3.9) by Mason and Shorack [55], we have

sups∈Hn
J(s∗n)

J(k/n)
= Op(1) as n −→ ∞. (5.66)

Therefore

Δ(2)
2,n(c) = Op(1)J

(
k

n

)∫k/n+c(k1/2/n)

k/n−c(k1/2/n)
n1/2

∣∣∣∣s − k

n

∣∣∣∣dQ(s)/σn(J). (5.67)

Observe that

∫k/n+c(k1/2/n)

k/n−c(k1/2/n)
n1/2

∣∣∣∣s − k

n

∣∣∣∣dQ(s) ≤ c

(
k

n

)1/2∫k/n+c(k1/2/n)

k/n−c(k1/2/n)
dQ(s). (5.68)

Hence for all large n

Δ(2)
2,n(c) = Op(1)J

(
k

n

)∫ ε(k/n)

k/εn

dQ(s)/σn(J), (5.69)

for any fixed 1 < ε < ∞, we have

Δ(2)
2,n(c) = Op(1)

(
ε1/α−β − εβ−1/α

)
w. (5.70)

this means that Δ(2)
2,n(c) → 0 as n → ∞. By the same arguments and making use of (5.51) we

show that Δ3,n
p→ 0 as n → ∞ (we omit details), which achieves the proof of Theorem 3.4.
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5.2. Proof of Theorem 3.5

Recall (3.8), (3.9), and (3.10) and write

L̂k,�(J) − L(J) =
(
T̂L,n − TL,n

)
+
(
T̂M,n − TM,n

)
+
(
T̂R,n − TR,n

)
. (5.71)

It is easy to verify that

T̂R,n − TR,n =
(k/n)J(k/n)Xk,nα̂L(

1 + β
)
α̂L − 1

−
∫k/n

0
J(s)Q(t)dt = SL

n1 + SL
n2 + SL

n3, (5.72)

where

SL
n1 :=

(
k

n

)
J

(
k

n

)
Xk,n

{
α̂L(

1 + β
)
α̂L − 1

− α(
1 + β

)
α − 1

}
,

SL
n2 :=

α(k/n)Q(k/n)J(k/n)(
1 + β

)
α − 1

{
Xk,n

Q(k/n)
− 1

}
,

SL
n3 :=

α(k/n)J(k/n)Q(k/n)(
1 + β

)
α − 1

−
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0
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(5.73)

Likewise we have

T̂R,n − TR,n =
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)
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−
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n3, (5.74)

where
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(5.75)

It is readily checked that SR
n1 may be rewritten into

SL
n1 =
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)
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)
. (5.76)
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Since α̂L is a consistent estimator of α, then for all large n

SL
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(
1 + op(1)

)α2(k/n)J(k/n)Xk,n((
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)
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)2

(
1
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− 1
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)
. (5.77)

In view of Theorems 2.3 and 2.4 of Csörgő and Mason [46], Peng [30], and Necir et al. [17]
has been shown that under the second-order condition (2.6) and for all large n
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(5.78)

where {Bn(s), 0 ≤ s ≤ 1, n = 1, 2, . . .} is the sequence of Brownian bridges defined in
Theorem 3.4. This implies that for all large n
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(5.79)

Then, in view of Lemma 5.3, we get for all large n
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(5.80)

By the same arguments (we omit details), we show that for all large n
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(5.81)
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where wR := |λ|(q/p)1/αθβ−1/α+1/2w. Similar arguments as those used in the proof of Theorem
1 by Necir et al. [17] yield that

√
nSR
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=

√
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(J) = o(1) as n −→ ∞. (5.82)

Then, by (5.80), (5.81), and (5.82) we get
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(5.83)

The asymptotic variance of
√
n(L̂k,�(J) − L(J))/σn(J) will be computed by
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After calculation we get
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Finally, it is easy to verify that

w2 +w2
R =

(
αβ + 1

)(
2αβ + 2 − α

)
2

. (5.86)

This completes the proof of Theorem 3.5.

5.3. Proof of the Corollary

Straightforward by combining Theorem 3.5 and Lemma 5.4, we omit details.

5.4. Proof of Theorem 4.1

We will only present details for the proof concerning the first part of Theorem 4.1. The proof
for the second part is very similar. For convenience we set

Δm2 := m̂2 −m2, Δm3 := m̂3 −m3. (5.87)

Then we have
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Since m̂2 is consistent estimator of m2, then for all large n
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and therefore
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. (5.91)
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In view of (5.83) we may write that for all large n
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(5.92)

and, by Lemma 5.4, we infer that σn(J3)/σn(J2) → 10/9 as n → ∞,
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(5.93)

with

w1 :=
(α + 1)(2α + 2 − α)

2
(

1 +
(
q/p

)2/α
θ3−2/α

) , wR,1 :=
(
q/p

)1/α
θ3/2−1/αw1. (5.94)

By the same arguments as the proof of Theorem 3.5 we infer that

√
n(υ̂1 − υ1)

(�/n)3/2Xn−�,n

D−−−→ N
(

0, V 2
1

)
as n −→ ∞. (5.95)

This achieves the proof of Theorem 4.1.

5.5. Proof of Theorem 4.2

Theorem 4.2 is just an application of Theorem 3.5, we omit details.
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Making use of the peaks over threshold (POT) estimation method, we propose a semiparametric
estimator for the renewal function of interoccurrence times of heavy-tailed insurance claims with
infinite variance. We prove that the proposed estimator is consistent and asymptotically normal,
and we carry out a simulation study to compare its finite-sample behavior with respect to the
nonparametric one. Our results provide actuaries with confidence bounds for the renewal function
of dangerous risks.

1. Introduction

Let X1, X2, . . . be independent and identically distributed (iid) positive random variables
(rvs), representing claim interoccurrence times of an insurance risk, with common
distribution function (df) F having finite mean μ and variance σ2. Let

Sm :=

⎧
⎨

⎩

X1 + · · · +Xm, m = 1, 2, . . . ,

0, m = 0
(1.1)

be the claim occurrence times, and define the number of claims recorded over the time
interval [0, t] by

N(t) := max{m ≥ 0, Sm ≤ t}. (1.2)
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The corresponding renewal function is defined by

R(t) := E[N(t)] =
∞∑

k=1

F(k)(t), t > 0, (1.3)

where F(k) is the k-fold convolution of F for k ≥ 1.
The renewal theory has proved to be a powerful tool in stochastic modeling in a wide

variety of applications such as reliability theory, where a renewal process is used to model the
successive repairs of a failed machine (see [1]), risk theory, where a renewal process is used
to model the successive occurrences of risks (see [2, 3]), inventory theory, where a renewal
process is used to model the successive times between demand points (see [4]), manpower
planning, where a renewal process is used to model the sequence of resignations from a
given job (see [5]), and warranty analysis, where a renewal process is used to model the
successive purchases of a new item following the expiry of a free-replacement warranty (see
[6]). Therefore, the need for renewal function estimates seems more than pressing in many
practical problems. For a summary of renewal theory, one refers to Feller [7], Asmussen [8],
and Resnick [9].

Statistical estimation of the renewal function has been considered in several ways.
Using a nonparametric approach, Frees [10] introduced two estimators based on the
empirical counterparts of F and F(k) by suitably truncating the sum in (1.3). Zhao and Subba
Rao [11] proposed an estimation method based on the kernel estimate of the density and the
renewal equation. A histogram-type estimator, resembling to the second estimator of Frees,
was given by Markovich and Krieger [12].

When E[X2] = ∞, Sgibnev [13] gave an asymptotic approximation of (1.3) as follows:

R(t) − t

μ
∼ 1

E[X2]

∫ t

0

(∫∞

y

F(x)dx

)

dy, (1.4)

with F := 1 − F being the tail of F.
By replacing F by its empirical counterpart Fn in (1.4), Bebbington et al. [14] recently

proposed a nonparametric estimator for R(t) in the case where F is of infinite variance, given
by

R̃n(t) :=
t

μ̃
+

1
μ̃2

∫ t

0

(∫∞

y

Fn(x)dx

)

dy, (1.5)

where μ̃ and μ̃2, respectively, represent the first and second sample moments of F. Their main
result says that whenever F belongs to the domain of attraction of a stable law Sα with 1/2 <
α < 1 (see, e.g., [15]), the df of R̃n(t) converges, for suitable normalizing constants, to Sα. This
result provides confidence bounds for R(t) with respect to the quantiles of Sα.

In general, people prefer estimators having simple formulas and carrying some kind
of asymptotic normality property in order to facilitate confidence interval construction. From
this point of view, the estimator R̃n(t) may not be as satisfactory to the users as it should be.
Then an alternative estimator to R̃n(t) would be more useful in practice. Our task is to use the
extreme value theory tools to construct such an alternative estimator.
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Indeed, an important class of models having infinite second-order moments is the set
of heavy-tailed distributions (e.g., Pareto, Burr, Student, etc.). A df F is said to be heavy-tailed
with tail index ξ > 0 if

F(x) = cx−1/ξ
(

1 + x−δ
L(x)

)
, as x −→ ∞, (1.6)

for ξ ∈ (0, 1), δ > 0, and some real constant c, with L a slowly varying function at infinity,
that is, L(tx)/L(x) → 1 as x → ∞ for any t > 0. For details on these functions, see Chapter 0
in Resnick [16] or Seneta [17]. Notice that when ξ ∈ (1/2, 1) we have μ < ∞ and E[X2] = ∞.
In this case, an asymptotic approximation of the renewal function R(t) is given in (1.4).

Prior to Sgibnev [13], Teugels [18] obtained an approximation of R(t) when F is heavy-
tailed with tail index ξ ∈ (1/2, 1):

R(t) − t

μ
∼ ξ2t2F(t)

μ2(1 − ξ)(2ξ − 1)
, as t −→ ∞. (1.7)

Extreme value theory allows for an accurate modeling of the tails of any unknown
distribution, making the (semiparametric) statistical inference more accurate for heavy-tailed
distributions. Indeed, the semiparametric approach permits extrapolating beyond the largest
value of a given sample while the nonparametric one does not since the empirical df vanishes
outside the sample. This represents a big handicap for those dealing with heavy-tailed data.

Extreme value theory has two aspects. The first one consists in approximating the tail
distribution by the generalized extreme value (GEV) distribution, thanks to Fisher-Tippett
theorem (see [19, 20]). The second aspect (commonly known as POT method) is based on
Balkema-de Haan result which says that the distribution of the excesses over a fixed threshold
is approximated by the generalized Pareto distribution (GPD) (see [21, 22]). Those interested
in extreme value theory and its applications are referred to the textbooks of de Haan and
Ferriera [23] and Embrechts et al. [24]. In our situation, we have a fixed threshold equal
to the horizon t = tn (see Section 3). Therefore, the POT method would be the appropriate
choice to derive an estimator for R(t) by exploiting the heavy-tail property of df F used in
approximation (1.4). The asymptotic normality of our estimator is established under suitable
assumptions.

The remainder of the paper is organized as follows. In Section 2, we introduce the GPD
approximation, mostly known as the POT method. A new estimator of the renewal function
R(t) is proposed in Section 3, along with two main results on its limiting behavior. Section 4
is devoted to a simulation study. The proofs are postponed until Section 5.

2. GPD Approximation

The distribution of the excesses, over a “fixed” threshold t, pertaining to df F is defined by

Ft

(
y
)

:= P
(
X1 − t ≤ y | X1 > t

)
, for y > 0. (2.1)
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It is shown, in Balkema and de Haan [21] and Pickands [22], that Ft is approximated by a
generalized Pareto distribution (GPD) function Gξ,β with shape parameter ξ ∈ R and scale
parameter β = β(t) > 0, in the following sense:

sup
y>0

∣
∣Ft

(
y
) − Gξ,β

(
y
)∣
∣ = O

(
t−δL(t)

)
, as t −→ ∞, (2.2)

where t−δL(t) → 0 as t → ∞ for any δ > 0. The GPD function Gξ,β is a two-parameter df
defined by

Gξ,β

(
y
)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 −
(

1 + ξ
y

β

)−1/ξ

, ξ /= 0,

1 − exp
(

−y
β

)

, ξ = 0,

(2.3)

for 0 ≤ y < ∞ if ξ ≥ 0 and 0 ≤ y < −β/ξ if ξ < 0.
Let Y1, . . . , YN be iid rvs with exact GPD Gξ,β. It is well known by standard arguments

(see, e.g., [25, Chapter 9]) that there exists, with probability 1 as N tends to infinity, a local
maximum (ξ̂N, β̂N) for the Log-Likelihood of Gξ,β’s density based on the sample (Y1, . . . , YN).
In this case, by Theorem 3.7 page 447 in the work of Lehmann and Casella [26], we infer that
ξ̂N and β̂N are consistent estimators of ξ and β. Moreover, these estimators are asymptotically
normal provided that ξ > −1/2. The extension to ξ ≤ −1/2 was investigated by Smith [27].

Suppose now that Y1, . . . , YN are drawn not from Gξ,β, but from Ft. In view of
the asymptotic approximation (2.2), Smith [27] has proposed estimates for (ξ, β) via the
Maximum Likelihood approach. The obtained estimators (ξ̂N, β̂N) are solutions of the
following system:

1
N

N∑

i=1

log
(

1 + ξ
yi

β

)

= ξ,

1
N

N∑

i=1

yi/β

1 + yi/β
=

1
1 + ξ

,

(2.4)

where (y1, . . . , yN) is a realization of (Y1, . . . , YN).
Letting t = tN → ∞ as N → ∞ and βN = tNξ and making use of (2.2), Smith [28]

established, in Theorem 3.2, the asymptotic normality of (ξ̂N, β̂N) as follows:

√
N

⎛

⎜
⎜
⎝

β̂N
βN

− 1

ξ̂N − ξ

⎞

⎟
⎟
⎠

D−→ N2

(
0,Q−1

)
as N −→ ∞, (2.5)
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where

Q
−1 = (1 + ξ)

(
2 −1

−1 1 + ξ

)

, (2.6)

provided that
√
Nt−δN L(tN) → 0 as N → ∞ and x 	→ x−δ

L(x) is nonincreasing near infinity.

In the case
√
Nt−δN L(tN) � 0, the limiting distribution in (2.5) is biased. Here D−→ denotes

convergence in distribution and N2(ω,Σ) stands for the bivariate normal distribution with
mean vector ω and covariance matrix Σ.

3. Estimating the Renewal Function in Infinite Time

Since we are interested in the renewal function in infinite time, we must assume that time
t is large enough and for asymptotic considerations, we will assume that t depends on the
sample size n. That is, t = tn, with tn → ∞ as n → ∞. Relation (1.7) suggests that in order
to construct an estimator of R(tn), we need to estimate μ, ξ and F(tn). Let n = n(t) be the
number of Xis, which are observed on horizon tn and denoted by

Ntn := card({Xi > tn : 1 ≤ i ≤ n}), (3.1)

the number of exceedances over tn, with card(K) being the cardinality of set K. Notice that
Ntn is a binomial rv with parameters n and pn := F(tn) for which the natural estimator is
p̂n := Nt/n.

Select, from the sample (X1, . . . , Xn), only those observations Xi1 , . . . , XiNtn
that exceed

tn. The Nt excesses

Ej:n := Xij − tn, j = 1, . . . ,Ntn (3.2)

are iid rvs with common df Ftn . As seen in Section 2, the maximum likelihood estimators
(ξ̂n, β̂n) are solutions of the following system:

1
vn

vn∑

j1

log
(

1 + ξ
ej:n

β

)

= ξ,

1
v

vn∑

j=1

ej:n/β

1 + ej:n/β
=

1
1 + ξ

,

(3.3)

where vn is an observation of Ntn and the vector (e1:n, . . . , evn:n) a realization of
(E1:n, . . . , ENtn :n). Regarding the distribution mean μ = E[X1], we know that, for ξ ∈
(0, 1/2], X1 has finite variance and therefore μ could naturally be estimated by the sample
mean X := n−1Sn which, by the Central Limit Theorem (CLT), is asymptotically normal.
Whereas for ξ ∈ (1/2, 1), X1 has infinite variance, in which case the CLT is no longer
valid. This case is frequently met in real insurance data (see, e.g., [29]). Using the GPD
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approximation, Johansson [30] has proposed an alternative estimator for μ =
∫∞

0 xdF(x). For
each n ≥ 1, we write μ as the sum of two components:

μ∗
n :=
∫ tn

0
xdF(x), τn :=

∫∞

tn

xdF(x) = −
∫∞

0
(tn + s)dF(tn + s). (3.4)

Johansson [30] defined his estimator of μ, by estimating both F(x) and F(tn + s), as follows:

μ̂
(J)
n :=

∫ tn

0
xdFn(x) −

∫∞

0
(tn + s)d̂F(tn + s), (3.5)

where Fn is the empirical df based on the sample (X1, . . . , Xn) and ̂F(tn + s) is an estimate of
F(tn + s) obtained from the relation

Ftn(s) =
F(tn + s)

F(tn)
, s > 0, (3.6)

which implies that F(tn + s) = pnFtn(s), s > 0. Approximation (2.2) motivates us to estimate

Ftn(s) by ̂Ftn(s) := Gξ̂n,β̂n
(s), s > 0. Hence, an estimate of F(tn + s) is

̂
F(tn + s) := p̂nGξ̂n,β̂n

(s), s > 0. (3.7)

By integrating (3.5), we get

μ̂
(J)
n =

1
n

n∑

i=1

Xi1{Xi≤tn} + p̂n

(

tn +
β̂n

1 − ξ̂n

)

=: μ̂∗
n + τ̂n,

(3.8)

with ξ̂n ∈ (0, 1) with large probability. Here, 1K denotes the indicator function of set K.

Respectively, substituting μ̂
(J)
n , ξ̂n, and p̂n for μ, ξ and F(tn) in (1.7) yields the following

estimator for the renewal function R(tn)

R̂n(tn) :=
tn

μ̂
(J)
n

+
ξ̂2
nt

2
np̂n

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

) . (3.9)

The asymptotic behavior of R̂n(tn) is given by the following two theorems.
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Theorem 3.1. Let F be a df fulfilling (1.6) with ξ ∈ (1/2, 1). Suppose that L is locally bounded in
[x0,+∞) for x0 ≥ 0 and x 	→ x−δ

L(x) is nonincreasing near infinity, for some δ > 0. Then, for any
tn = O(nαξ/4) with α ∈ (0, 1), one has

R̂n(tn) − R(tn) = OP

(
n(α/2)(ξ−1/4)−1/2

)
, as n −→ ∞. (3.10)

Theorem 3.2. Let F be as in Theorem 3.1. Then for any tn = O(nαξ/4) with α ∈ (4/(1 + 2ξδ), 1), we
have

√
n

sntn

(
R̂n(tn) − R(tn)

) D−→ N(0, 1), as n −→ ∞, (3.11)

where

s2
n := θ2

1 +
pn
(
1 − pn

)

γ2
n

(

θ2 + θ1

(

tn +
βn

1 − ξ

))2

+
pn

γ2
n

(

θ3 +
θ1pnβn

(1 − ξ)2

)2

+
θ2

1β
2
np

3
n

γ2
n(1 − ξ)2

− θ1βnp
2
n

γ2
n

(

θ3 +
θ1pnβn

(1 − ξ)2

) (3.12)

with

θ1 := − 1
μ2

− 2ξ2tnpn

μ3(1 − ξ)(2ξ − 1)
,

θ2 :=
ξ2tn

μ2(1 − ξ)(2ξ − 1)
,

θ3 :=
tnpn

μ2(1 − ξ)(2ξ − 1)

(

2ξ +
4ξ3 − 3ξ2

(1 − ξ)(2ξ − 1)

)

,

(3.13)

pn := F(tn), βn := tnξ, and γ2
n := Var(X11{X1≤tn}).

4. Simulation Study

In this section, we carry out a simulation study (by means of the statistical software R, see
[31]) to illustrate the performance of our estimation procedure, through its application to
sets of samples taken from two distinct Pareto distributions F(x) = 1 − x−1/ξ, x > 1 (with tail
indices ξ = 3/4 and ξ = 2/3). We fix the threshold at 4, which is a value above the intermediate
statistic corresponding to the optimal fraction of upper-order statistics in each sample. The
latter is obtained by applying the algorithm of Cheng and Peng [32]. For each sample size,
we generate 200 independent replicates. Our overall results are then taken as the empirical
means of the values in the 200 repetitions.

A comparison with the nonparametric estimator is done as well. In the graphical
illustration, we plot both estimators versus the sample size ranging from 1000 to 20000.
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Figure 1: Plots of the new and sample estimators of the renewal function, of interoccurrence times of
Pareto-distributed claims with tail indices 2/3 (a) and 3/4 (b), versus the sample size. The horizontal line
represents the true value of the renewal function R(t) evaluated at t = 4.

Table 1: Semiparametric and nonparametric estimates of the renewal function of interoccurrence times
of Pareto-distributed claims with shape parameter 3/4. Simulations are repeated 200 times for different
sample sizes.

True value R = 1.708

Sample size Semiparametric R̂ Nonparametric R̃

Mean Bias RMSE Mean Bias RMSE
1000 1.696 −0.013 0.250 2.141 0.433 0.553
2000 1.719 0.011 0.183 1.908 0.199 0.288
5000 1.705 −0.003 0.119 1.686 −0.022 0.168

Figure 1 clearly shows that the new estimator is consistent and that it is always
better than the nonparametric one. For the numerical investigation, we take samples of sizes
1000, 2000 and 5000. In each case, we compute the semiparametric estimate R̂ as well as the
nonparametric estimate R̃. We also provide the bias and the root mean squared error (rmse).

The results are summarized in Tables 1 and 2 for ξ = 3/4 and ξ = 2/3 respectively.
We notice that, regardless of the tail index value and the sample size, the semiparametric
estimation procedure is more accurate than the nonparametric one.

5. Proofs

The following tools will be instrumental for our needs.
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Table 2: Semiparametric and nonparametric estimates of the renewal function of interoccurence times
of Pareto-distributed claims with shape parameter 2/3. Simulations are repeated 200 times for different
sample sizes.

True value R = 2.222

Sample size Semiparametric R̂ Nonparametric R̃

Mean Bias RMSE Mean Bias RMSE
1000 2.265 0.042 0.185 2.416 0.193 0.229
2000 2.247 0.024 0.157 2.054 −0.167 0.223
5000 2.223 0.001 0.129 2.073 −0.149 0.192

Proposition 5.1. Let F be a df fulfilling (1.6) with ξ ∈ (1/2, 1), δ > 0, and some real c. Suppose that
L is locally bounded in [x0,+∞) for x0 ≥ 0. Then for n large enough and for any tn = O(nαξ/4), α ∈
(0, 1), one has

pn = c(1 + o(1))n−α/4,

γ2
n = O

(
n(α/2)(ξ−1/2)) ,

s2
n = O

(
n(α/2)(ξ−1/2)),

√
npnt

−δ
n L(tn) = O

(
n−α/8−αξδ/4+1/2),

(5.1)

where pn, γ2
n , and s2

n are those defined in Theorem 3.2.

Lemma 5.2. Under the assumptions of Theorem 3.2, one has, for any real numbers u1, u2, u3 and
u4,

E

⎡

⎢
⎣exp

⎧
⎪⎨

⎪⎩
iu1

√
n

γn

(
μ̂∗
n − μ∗

n

)
+ i
√
npn(u2, u3)

⎛

⎜
⎝

β̂n
βn

− 1

ξ̂n − ξ

⎞

⎟
⎠ + iu4

√
n
(
p̂n − pn

)

√

pn
(
1 − pn

)

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦

−→ exp

{

−u
2
1

2
− 1

2
(u2, u3)Q−1

(
u2

u3

)

− u2
4

2

}

, as n −→ ∞,

(5.2)

where i2 = −1.

Proof of the Proposition. We will only prove the second result, the other ones are straightfor-
ward from (1.6). Let x0 > 0 be such that F(x) = cx−1/ξ (1 + x−δ

L(x)), for x > x0. Then for n
large enough, we have

E
[
X11{X1≤tn}

]
=
∫ tn

0
xdF(x) =

∫x0

0
xdF(x) +

∫ tn

x0

xdF(x). (5.3)

Recall that μ < ∞, hence
∫x0

0 xdF(x) < ∞. Making use of the proposition assumptions, we get
E[X11{X1≤tn}] = O(1) and E[X2

11{X1≤tn}] = O(t2−1/ξ
n ) and therefore γ2

n = O(nα/2(ξ/2−1)).

Proof of Lemma 5.2. See Johansson [30].
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Proof of Theorem 3.1. We may readily check that for all large n,

(
R̂n(tn) − Rn(tn)

)

tn
∼ An + Bn + Cn,

(5.4)

where

An :=

⎛

⎜
⎝− 1

μ̂
(J)
n μ

−
ξ2tnpn

(
μ̂
(J)
n + μ

)

μ̂
(J)2
n μ2(1 − ξ)(2ξ − 1)

⎞

⎟
⎠

(
μ̂
(J)
n − μ

)
,

Bn :=
ξ̂2
ntn

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

)
(
p̂n − pn

)
,

Cn :=
tnpn

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

) ×

⎛

⎜
⎝ξ̂n + ξ +

2ξ2
(
ξ̂n + ξ

)
− 3ξ2

(1 − ξ)(2ξ − 1)

⎞

⎟
⎠

(
ξ̂n − ξ

)
.

(5.5)

Johansson [30] proved that there exists a bounded sequence kn such that

μ̂
(J)
n − μ = OP

⎛

⎝γn

√

kn
n

⎞

⎠, (5.6)

hence μ̂
(J)
n − μ = OP(n(α/4)(ξ−1/2)−1/2). The first result of the proposition yields that

tnpn
(
μ̂
(J)
n − μ

)
= OP

(
n(α/4)(2ξ−3/2)−1/2

)
. (5.7)

Since (α/4)(2ξ − 3/2) − 1/2 < 0, then tnpn (μ̂(J)
n − μ) = oP(1). On the other hand, by the CLT

we have

p̂n − pn = OP

(√
pn
n

)

, (5.8)

then tn(p̂n − pn) = OP(n(α/4)(ξ−1/2)−1/2) = oP(1). On the other hand, Smith [28], yields

ξ̂n − ξ = OPt
−δ
n L(tn), (5.9)
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it follows that, ξ̂2
ntn (p̂n − pn) = OP(n(α/4)(ξ(1−2δ)−1/2)−1/2) = oP(1), therefore

ξ̂2
ntn
(
p̂n − pn

)

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

) = oP(1),

tnpn
(
ξ̂n − ξ

)
= OP

(
n(α/4)(ξ(1−δ)−1)

)
= oP(1),

ξ̂ntnpn
(
ξ̂n − ξ

)
= OP

(
n(α/4)(ξ(1−2δ)−1)

)
= oP(1),

pn
(
ξ̂n − ξ

)
= OP

(
n(−α/4)((1+ξδ))

)
= oP(1).

(5.10)

Thus,

(
ξ̂n + ξ

)

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

) tnpn
(
ξ̂n − ξ

)
P−→ 0,

tnpn
(

2ξ2
(
ξ̂n + ξ

)
− 3ξ2

)

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

)
(1 − ξ)(2ξ − 1)

(
ξ̂n − ξ

)
P−→ 0 as n −→ ∞.

(5.11)

Therefore for all large n, we get R̂(tn) − R(tn) = OP(n(α/2)(ξ−1/4)−1/2), as sought.

Proof of Theorem 3.2. From the proof of Theorem 3.1, for all large n, it is easy to verify that

(
R̂n(tn) − Rn(tn)

)

tn
= θ1(1 + oP(1))

(
μ̂
(J)
n − μ

)

+ θ2(1 + oP(1))
(
p̂n − pn

)

+ θ3(1 + oP(1))
(
ξ̂n − ξ

)
,

(5.12)

where

θ1 = − 1
μ2

− 2ξ2tnpn

μ3(1 − ξ)(2ξ − 1)
,

θ2 =
ξ2tn

μ2(1 − ξ)(2ξ − 1)
,

θ3 =
tnpn

μ2(1 − ξ)(2ξ − 1)

(

2ξ +
4ξ3 − 3ξ2

(1 − ξ)(2ξ − 1)

)

.

(5.13)
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Multiplying by
√
n/γn and using the proposition and the lemma together with the continuous

mapping theorem, we find that

√
n

γntn

(
R̂n(tn) − Rn(tn)

)
= θ1(1 + oP(1))

√
n

γn

(
μ̂
(J)
n − μ

)

+ θ2(1 + oP(1))
√
n

γn

(
p̂n − pn

)

+ θ3(1 + oP(1))
√
n

γn

(
ξ̂n − ξ

)
.

(5.14)

On the other hand, from Johansson [30], we have for all large n

√
n

γn

(
μ̂
(J)
n − μ

)
=

√
n

γn

(
μ̂∗
n − μ∗

n

)
+
(

tn +
βn

1 − ξn

)√
n

γn

(
p̂n − pn

)

+
pnβn

(1 − ξ)2

√
n

γn

(
ξ̂n − ξ

)
+

pn
1 − ξ

√
n

γn

(
β̂n − βn

)
+ oP(1).

(5.15)

This enables us to rewrite (
√
n/γntn)(R̂n(tn) − Rn(tn)) into

θ1

√
n

γn

(
μ̂∗
n − μ∗

n

)
+

√

pn
(
1 − pn

)

γn

(

θ2 + θ1

(

tn +
βn

1 − ξ

))√
n
(
p̂n − pn

)

√

pn
(
1 − pn

)

+ θ1
βnpn

√
pn

γn(1 − ξ)

√
n

pn

(
β̂n
βn

− 1

)

+
√
pn

γn

(

θ3 + θ1
pnβn

(1 − ξ)2

)√
n

pn

(
ξ̂n − ξ

)
+ oP(1),

Q
−1 = (1 + ξ)

(
2 −1

−1 1 + ξ

)

.

(5.16)

In view of Lemma 5.2, we infer that for all large n, the previous quantity is

θ1W1 +

√

pn
(
1 − pn

)

γn

(

θ2 + θ1

(

tn +
βn

1 − ξ

))

W2

+

√
2(1 + ξ)θ1βnpn

√
pn

γn(1 − ξ)
W3 +

(1 + ξ)√pn

γn

(

θ3 +
θ1pnβn

(1 − ξ)2

)

W4 + oP(1),

(5.17)
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where (Wi)i=1,4 are standard normal rvs with E[WiWj] = 0 for every i, j = 1, . . . , 4 with i /= j,
except for

E[W3W4] = E

[
√

2(1 + ξ)

√
n

pn

(
β̂n
βn

− 1

)

(1 + ξ)

√
n

pn

(
ξ̂n − ξ

)
]

=
√

2(1 + ξ)(1 + ξ)E

[√
n

pn

(
β̂n
βn

− 1

)√
n

pn

(
ξ̂n − ξ

)
]

= −
√

2(1 + ξ)(1 + ξ)2.

(5.18)

Therefore, the rv (
√
n/γntn)(R̂n(tn) − Rn(tn)) is Gaussian with mean zero with asymptotic

variance

K2
n := θ2

1 +
pn
(
1 − pn

)

γ2
n

(

θ2 + θ1

(

tn +
βn

1 − ξ

))2

+
2(1 + ξ)θ2

1β
2
np

3
n

γ2
n(1 − ξ)2

+
(1 + ξ)2pn

γ2
n

(

θ3 +
θ1pnβn

(1 − ξ)2

)2

− 2θ1βnp
2
n(1 + ξ)4

(1 − ξ)γ2
n

(

θ3 +
θ1pnβn

(1 − ξ)2

)

+ oP(1).

(5.19)

Observe now that K2
n = s2

n + oP(1), where s2
n is that in (3.12), this completes the proof of

Theorem 3.2.

6. Conclusion

In this paper, we have proposed a new estimator for the renewal function of heavy-tailed
claim interoccurence times, via a semiparametric approach. Our considerations are based on
one aspect of the extreme value theory, namely, the POT method. We have proved that our
estimator is consistent and asymptotically normal. Moreover, simulations show that it is more
accurate than the nonparametric estimator given by Bebbington et al. [14].
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The conditional tail expectation (CTE) is an important actuarial risk measure and a useful tool
in financial risk assessment. Under the classical assumption that the second moment of the loss
variable is finite, the asymptotic normality of the nonparametric CTE estimator has already been
established in the literature. The noted result, however, is not applicable when the loss variable
follows any distribution with infinite second moment, which is a frequent situation in practice.
With a help of extreme-value methodology, in this paper, we offer a solution to the problem by
suggesting a new CTE estimator, which is applicable when losses have finite means but infinite
variances.

1. Introduction

One of the most important actuarial risk measures is the conditional tail expectation (CTE)
(see, e.g., [1]), which is the average amount of loss given that the loss exceeds a specified
quantile. Hence, the CTE provides a measure of the capital needed due to the exposure to
the loss, and thus serves as a risk measure. Not surprisingly, therefore, the CTE continues
to receive increased attention in the actuarial and financial literature, where we also find its
numerous extensions and generalizations (see, e.g., [2–8], and references therein). We next
present basic notation and definitions.

Let X be a loss random variable with cumulative distribution function (cdf) F.
Usually, the cdf F is assumed to be continuous and defined on the entire real line,
with negative loss interpreted as gain. We also assume the continuity of F throughout
the present paper. The CTE of the risk or loss X is then defined, for every t ∈ (0, 1),
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by

CTEF(t) = E[X | X > Q(t)], (1.1)

where Q(t) = inf{x : F(x) ≥ t} is the quantile function corresponding to the cdf F. Since the
cdf F is continuous, we easily check that

CTEF(t) =
1

1 − t

∫1

t

Q(s)ds. (1.2)

Naturally, the CTE is unknown since the cdf F is unknown. Hence, it is desirable to
establish statistical inferential results such as confidence intervals for CTEF(t) with specified
confidence levels and margins of error. We shall next show how to accomplish this task,
initially assuming the classical moment assumption E[X2] < ∞. Namely, suppose that we
have independent random variables X1, X2, . . . , each with the cdf F, and let X1:n < · · · < Xn:n

denote the order statistics of X1, . . . , Xn. It is natural to define an empirical estimator of
CTEF(t) by the formula

ĈTEn(t) =
1

1 − t

∫1

t

Qn(s)ds, (1.3)

where Qn(s) is the empirical quantile function, which is equal to the ith order statistic Xi:n

for all s ∈ ((i − 1)/n, i/n], and for all i = 1, . . . , n. The asymptotic behavior of the estimator
ĈTEn(t) has been studied by Brazauskas et al. [9], and we next formulate their most relevant
result for our paper as a theorem.

Theorem 1.1. Assume that E[X2] < ∞. Then for every t ∈ (0, 1), we have the asymptotic normality
statement

√
n
(

ĈTEn(t) − CTEF(t)
)
(1 − t)−→dN

(
0, σ2(t)

)
, (1.4)

when n → ∞, where the asymptotic variance σ2(t) is given by the formula

σ2(t) =
∫1

t

∫1

t

(
min
(
x, y
) − xy

)
dQ(x)dQ

(
y
)
. (1.5)

The assumption E[X2] < ∞ is, however, quite restrictive as the following example
shows. Suppose that F is the Pareto cdf with index γ > 0, that is, 1−F(x) = x−1/γ for all x ≥ 1.
Let us focus on the case γ < 1, because when γ ≥ 1, then CTEF(t) = +∞ for every t ∈ (0, 1).
Theorem 1.1 covers only the values γ ∈ (0, 1/2) in view of the assumption E[X2] < ∞. When
γ ∈ [1/2, 1), we have E[X2] = ∞ but, nevertheless, CTEF(t) is well defined and finite since
E[X] < ∞. Analogous remarks hold for other distributions with Pareto-like tails, an we shall
indeed work with such general distributions in this paper.
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Namely, recall that the cdf F is regularly varying at infinity with index (−1/γ) < 0 if

lim
t→∞

1 − F(tx)
1 − F(t)

= x−1/γ (1.6)

for every x > 0. This class includes a number of popular distributions such as Pareto,
generalized Pareto, Burr, Fréchet, Student, and so forth, which are known to be appropriate
models for fitting large insurance claims, fluctuations of prices, log-returns, and so forth
(see, e.g., [10]). In the remainder of this paper, therefore, we restrict ourselves to this class
of distributions. For more information on the topic and, generally, on extreme value models
and their manifold applications, we refer to the monographs by Beirlant et al. [11], Castillo et
al. [12], de Haan and Ferreira [13], Resnick [14].

The rest of the paper is organized as follows. In Section 2 we construct an alternative,
called “new”, CTE estimator by utilizing an extreme value approach. In Section 3 we establish
the asymptotic normality of the new CTE estimator and illustrate its performance with a
little simulation study. The main result, which is Theorem 3.1 stated in Section 3, is proved in
Section 4.

2. Construction of a New CTE Estimator

We have already noted that the “old” estimator ĈTEn(t) does not yield the asymptotic
normality (in the classical sense) beyond the condition E[X2] < ∞. Indeed, this follows by
setting t = 0, in which case ĈTEn(t) becomes the sample mean of X1, . . . , Xn, and thus the
asymptotic normality of ĈTEn(0) is equivalent to the classical Central Limit Theorem (CLT).
Similar arguments show that the finite second moment is necessary for having the asymptotic
normality (in the classical sense) of ĈTEn(t) at any fixed “level” t ∈ (0, 1). Indeed, note that
the asymptotic variance σ2(t) in Theorem 1.1 is finite only if E[X2] < ∞.

For this reason, we next construct an alternative CTE estimator, which takes into
account different asymptotic properties of moderate and high quantiles in the case of heavy-
tailed distributions. Hence, from now on we assume that γ ∈ (1/2, 1). Before indulging
ourselves into construction details, we first formulate the new CTE estimator:

C̃TEn(t) =
1

1 − t

∫1−k/n

t

Qn(s)ds +
kXn−k,n

n(1 − t)
(
1 − γ̂

) , (2.1)

where we use the simplest yet useful and powerful Hill’s [15] estimator

γ̂n =
1
k

k∑
i=1

logXn−i+1:n − logXn−k:n (2.2)

of the tail index γ ∈ (1/2, 1). Integers k = kn ∈ {1, . . . , n} are such that k → ∞ and k/n → 0
when n → ∞, and we note at the outset that their choices present a challenging task. In
Figures 1 and 2, we illustrate the performance of the new estimator C̃TEn(t) with respect to
the sample size n ≥ 1, with the integers k = kn chosen according to the method proposed by
Cheng and Peng [16]. Note that when t increases through the values 0.25, 0.50, 0.75, and 0.90
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Figure 1: Values of the CTE estimator C̃TEn(t) (vertical axis) versus sample sizes n (horizontal axis)
evaluated at the levels t = 0.25, t = 0.50, t = 0.75, and t = 0.90 (panels (a)–(d), resp.) in the Pareto case with
the tail index γ = 2/3.

(panels (a)–(d), resp.), the vertical axes of the panels also increase, which reflects the fact that
the larger the t gets, the more erratic the “new” and “old” estimators become. Note also that
the empirical (i.e., “old”) estimator underestimates the theoretical CTEF(t), which is a well
known phenomenon (see [17]).

We have based the construction of C̃TEn(t) on the recognition that one should estimate
moderate and high quantiles differently when the underlying distribution is heavy-tailed. For
this, we first recall that the high quantile qs is, by definition, equal to Q(1 − s) for sufficiently
small s. For an estimation theory of high quantiles in the case of heavy-tailed distributions
we refer to, for example, Weissman [18], Dekkers and de Haan [19], Matthys and Beirlant
[20], Gomes et al. [21], and references therein. We shall use the Weissman estimator

q̃s =
(
k

n

)γ̂

Xn−k:ns
−γ̂ , 0 < s <

k

n
, (2.3)

of the high quantile qs. Then we write CTEF(t) as the sum CTE1,n(t) + CTE2,n(t) with the
two summands defined together with their respective empirical estimators C̃TE1,n(t) and
C̃TE2,n(t) as follows:

CTE1,n(t) =
1

1 − t

∫1−k/n

t

Q(s)ds ≈ 1
1 − t

∫1−k/n

t

Qn(s)ds = C̃TE1,n(t),

CTE2,n(t) =
1

1 − t

∫1

1−k/n
Q(s)ds ≈ 1

1 − t

∫1

1−k/n
q̃1−sds = C̃TE2,n(t).

(2.4)
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Figure 2: Values of the CTE estimator C̃TEn(t) (vertical axis) versus sample sizes n (horizontal axis)
evaluated at the levels t = 0.25, t = 0.50, t = 0.75, and t = 0.90 (panels (a)–(d), resp.) in the Pareto case with
the tail index γ = 3/4.

Simple integration gives the formula

C̃TE2,n(t) =
kXn−k,n

n
(
1 − γ̂

)
(1 − t)

. (2.5)

Consequently, the sum C̃TE1,n(t)+ C̃TE2,n(t) is an estimator of CTEF(t), and this is exactly the
estimator C̃TEn(t) introduced above. We shall investigate asymptotic normality of the new
estimator in the next section, accompanied with an illustrative simulation study.

3. Main Theorem and Its Practical Implementation

We start this section by noting that Hill’s estimator γ̂n has been thoroughly studied, improved,
and generalized in the literature. For example, weak consistency of γ̂n has been established
by Mason [22] assuming only that the underlying distribution is regularly varying at infinity.
Asymptotic normality of γ̂ has been investigated under various conditions by a number of
researchers, including Csörgő and Mason [23], Beirlant and Teugels [24], Dekkers et al. [25],
see also references therein.

The main theoretical result of this paper, which is Theorem 3.1 below, establishes
asymptotic normality of the new CTE estimator C̃TEn(t). To formulate the theorem, we need
to introduce an assumption that ensures the asymptotic normality of Hill’s estimator γ̂n.
Namely, the cdf F satisfies the generalized second-order regular variation condition with
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second-order parameter ρ ≤ 0 (see [26, 27]) if there exists a function a(t) which does not
change its sign in a neighbourhood of infinity and is such that, for every x > 0,

lim
t→∞

1
a(t)

(
1 − F(tx)
1 − F(t)

− x−1/γ
)

= x−1/γ x
ρ/γ − 1
ρ/γ

. (3.1)

When ρ = 0, then the ratio on the right-hand side of (3.1) is interpreted as logx. For
statistical inference concerning the second-order parameter ρ, we refer, for example, to Peng
and Qi [28], Gomes et al. [21], Gomes and Pestana [29]. Furthermore, in the formulation of
Theorem 3.1, we shall also use the function A(z) = γ2a(U(z)), where U(z) = Q(1 − 1/z).

Theorem 3.1. Assume that the cdf F satisfies condition (3.1) with γ ∈ (1/2, 1). Then for any
sequence of integers k = kn → ∞ such that k/n → 0 and k1/2A(n/k) → 0 when n → ∞,
we have that for any fixed t ∈ (0, 1),

√
n
(

C̃TEn(t) − CTEF(t)
)
(1 − t)

(k/n)1/2Xn−k:n

−→dN
(

0, σ2
γ

)
, (3.2)

where the asymptotic variance σ2
γ is given by the formula

σ2
γ =

γ4

(
1 − γ

)4(2γ − 1
) . (3.3)

The asymptotic variance σ2
γ does not depend on t, unlike the variance in Theorem 1.1.

This is not surprising because the heaviness of the right-most tail of F makes the asymptotic
behaviour of

∫1
t (Qn(s)−Q(s))ds “heavier” than the classical CLT-type behaviour of

∫ t
0(Qn(s)−

Q(s))ds, for any fixed t. This in turn implies that under the conditions of Theorem 3.1,
statement (3.2) is equivalent to the same statement in the case t = 0. The latter statement
concerns estimating the mean E[X] of a heavy-tailed distribution. Therefore, we can view
Theorem 3.1 as a consequence of Peng [30], and at the same time we can view results of
Peng [30] as a consequence of Theorem 3.1 by setting t = 0 in it. Despite this equivalence, in
Section 4 we give a proof of Theorem 3.1 for the sake of completeness. Our proof, however,
is crucially based on a powerful technique called the Vervaat process (see [31–33], for details
and references).

To discuss practical implementation of Theorem 3.1, we first fix a significance level
ς ∈ (0, 1) and use the classical notation zς/2 for the (1 − ς/2)-quantile of the standard
normal distribution N(0, 1). Given a realization of the random variables X1, . . . , Xn (e.g.,
claim amounts), which follow a cdf F satisfying the conditions of Theorem 3.1, we construct
a level 1 − ς confidence interval for CTEF(t) as follows. First, we choose an appropriate
number k of extreme values. Since Hill’s estimator has in general a substantial variance
for small k and a considerable bias for large k, we search for a k that balances between the
two shortcomings, which is indeed a well-known hurdle when estimating the tail index. To
resolve this issue, several procedures have been suggested in the literature, and we refer to,
for example, Dekkers and de Haan [34], Drees and Kaufmann [35], Danielsson et al. [36],
Cheng and Peng [16], Neves and Fraga Alves [37], Gomes et al. [38], and references therein.
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Table 1: Point estimates C̃TEn(t) and 95% confidence intervals for CTEF(t) when γ = 2/3.

t = 0.75 CTEF(t) = 7.005
n k∗ C̃TEn(t) error rmse lower upper cover length
1000 054 6.876 0.045 0.303 6.356 7.397 0.839 1.041
2000 100 6.831 0.025 0.231 6.463 7.199 0.882 0.736
5000 219 7.119 0.016 0.194 6.881 7.357 0.895 0.476
t = 0.90 CTEF(t) = 12.533
n k∗ C̃TEn(t) error rmse lower upper cover length
1000 054 12.753 0.017 0.534 12.241 13.269 0.847 1.028
2000 100 12.487 0.003 0.294 12.137 12.838 0.841 0.701
5000 219 12.461 0.005 0.236 12.246 12.676 0.887 0.430

Table 2: Point estimates C̃TEn(t) and 95% confidence intervals for CTEF(t) when γ = 3/4.

t = 0.75 CTEF(t) = 9.719
n k∗ C̃TEn(t) error rmse lower upper cover length
1000 051 9.543 0.018 0.582 8.589 9.543 0.854 0.954
2000 104 9.808 0.009 0.466 9.150 10.466 0.888 1.316
5000 222 9.789 0.007 0.410 9.363 10.215 0.915 0.852
t = 0.90 CTEF(t) = 18.494
n k∗ C̃TEn(t) error rmse lower upper cover length
1000 051 18.199 0.015 0.989 17.437 18.960 0.874 1.523
2000 104 18.696 0.011 0.858 18.052 19.340 0.895 1.288
5000 222 18.541 0.002 0.798 18.092 18.990 0.925 0.898

In our current study, we employ the method of Cheng and Peng [16] for an appropriate value
k∗ of the “parameter” k. Having computed Hill’s estimator and consequently determined
Xn−k∗:n, we then compute the corresponding values of C̃TEn(t) and σ2

γ̂n
, and denote them by

C̃TE
∗
n(t) and σ2∗

γ̂n
, respectively. Finally, using Theorem 3.1 we arrive at the following (1 − ς)-

confidence interval for CTEF(t):

C̃TE
∗
n(t) ± zς/2

(k∗/n)1/2Xn−k∗:n σ2∗
γ̂n

(1 − t)
√
n

. (3.4)

To illustrate the performance of this confidence interval, we have carried out a small-
scale simulation study based on the Pareto cdf F(x) = 1 − x−1/γ , x ≥ 1, with the tail index γ
set to 2/3 and 3/4, and the level t set to 0.75 and 0.90. We have generated 200 independent
replicates of three samples of sizes n = 1000, 2000, and 5000. For every simulated sample, we
have obtained estimates C̃TEn(t). Then we have calculated the arithmetic averages over the
values from the 200 repetitions, with the absolute error (error) and root mean squared error
(rmse) of the new estimator C̃n(t) reported in Table 1 (γ = 2/3) and Table 2 (γ = 3/4). In
the tables, we have also reported 95%-confidence intervals (3.4) with their lower and upper
bounds, coverage probabilities, and lengths.

We note emphatically that the above coverage probabilities and lengths of confidence
intervals can be improved by employing more precise but, naturally, considerably more
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complex estimators of the tail index. Such estimators are described in the monographs by
Beirlant et al. [11], Castillo et al. [12], de Haan and Ferreira [13], and Resnick [14]. Since the
publication of these monographs, numerous journal articles have appeared on the topic. Our
aim in this paper, however, is to present a simple yet useful result that highlights how much
Actuarial Science and developments in Mathematical Statistics, Probability, and Stochastic
Processes are interrelated, and thus benefit from each other.

4. Proof of Theorem 3.1

We start the proof of Theorem 3.1 with the decomposition

(
C̃TEn(t) − CTEF(t)

)
(1 − t) = An,1(t) +An,2, (4.1)

where

An,1(t) =
∫1−k/n

t

(Qn(s) −Q(s))ds,

An,2 =
k/n

1 − γ̂n
Xn−k:n −

∫1

1−k/n
Q(s)ds.

(4.2)

We shall show below that there are Brownian bridges Bn such that

√
nAn,1(t)

(k/n)1/2Q(1 − k/n)
= −

∫1−k/n
0 Bn(s)dQ(s)

(k/n)1/2Q(1 − k/n)
+ oP(1), (4.3)

√
nAn,2

(k/n)1/2Q(1 − k/n)
=

γ2

(
1 − γ

)2

√
n

k
Bn

(
1 − k

n

)

− γ(
1 − γ

)2

√
n

k

∫1

1−k/n

Bn(s)
1 − s

ds + oP(1).

(4.4)

Assuming for the time being that statements (4.3) and (4.4) hold, we next complete the proof
of Theorem 3.1. To simplify the presentation, we use the following notation:

W1,n = −
∫1−k/n

0 Bn(s)dQ(s)

(k/n)1/2Q(1 − k/n)
,

W2,n =
γ2

(
1 − γ

)2

√
n

k
Bn

(
1 − k

n

)
,

W3,n = − γ(
1 − γ

)2

√
n

k

∫1

1−k/n

Bn(s)
1 − s

ds.

(4.5)
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Hence, we have the asymptotic representation

√
n
(

C̃TEn(t) − CTEF(t)
)
(1 − t)

(k/n)1/2Q(1 − k/n)
= W1,n +W2,n +W3,n + oP(1). (4.6)

The sum W1,n+W2,n+W3,n is a centered Gaussian random variable. To calculate its asymptotic
variance, we establish the following limits:

E
[
W2

1,n

]
−→ 2γ

2γ − 1
, E

[
W2

2,n

]
−→ γ4

(
1 − γ

)4
, E

[
W2

3,n

]
−→ 2γ2

(
1 − γ

)4
,

2E[W1,nW2,n] −→
−2γ2

(
1 − γ

)2
, 2E[W1,nW3,n] −→

2γ(
1 − γ

)2
,

2E[W2,nW3,n] −→
−2γ3

(
1 − γ

)4
.

(4.7)

Summing up the right-hand sides of the above six limits, we obtain σ2
γ , whose expression in

terms of the parameter γ is given in Theorem 3.1. Finally, since Xn−k:n/Q(1 − k/n) converges
in probability to 1 (see, e.g., the proof of Corollary in [39]), the classical Sultsky’s lemma
completes the proof of Theorem 3.1. Of course, we are still left to verify statements (4.3) and
(4.4), which make the contents of the following two subsections.

4.1. Proof of Statement (4.3)

If Q were continuously differentiable, then statement (4.3) would follow easily from the proof
of Theorem 2 in [39]. We do not assume differentiability of Q and thus a new proof is required,
which is crucially based on the Vervaat process (see [31–33], and references therein)

Vn(t) =
∫ t

0
(Qn(s) −Q(s))ds +

∫Q(t)

−∞
(Fn(x) − F(x))dx. (4.8)

Hence, for every t such that 0 < t < 1 − k/n, which is satisfied for all sufficiently large n since
t is fixed, we have that

An,1(t) =
∫1−k/n

0
(Qn(s) −Q(s))ds −

∫ t

0
(Qn(s) −Q(s))ds

= −
∫Q(1−k/n)

Q(t)
(Fn(x) − F(x))dx + Vn

(
1 − k

n

)
− Vn(t).

(4.9)

It is well known (see [31–33]) that Vn(t) is nonnegative and does not exceed −(Fn(Q(t)) −
t)(Qn(t) −Q(t)). Since the cdf F is continuous by assumption, we therefore have that

√
nVn(t) ≤ |en(t)||Qn(t) −Q(t)|, (4.10)
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where en(t) is the uniform empirical process
√
n(Fn(Q(t)) − F(Q(t)), which for large n looks

like the Brownian bridge Bn(t). Note also that with the just introduced notation en, the
integral on the right-hand side of (4.9) is equal to

∫Q(1−k/n)
Q(t) en(F(x))dx. Hence,

√
nAn,1(t)

(k/n)1/2Q(1 − k/n)
= −
∫Q(1−k/n)
Q(t) en(F(x))dx

(k/n)1/2Q(1 − k/n)

+OP(1)
|en(1 − k/n)||Qn(1 − k/n) −Q(1 − k/n)|

(k/n)1/2Q(1 − k/n)

+OP(1)
|en(t)||Qn(t) −Q(t)|
(k/n)1/2Q(1 − k/n)

.

(4.11)

We shall next replace the empirical process en by an appropriate Brownian bridge Bn in
the first integral on the right-hand side of (4.11) with an error term of magnitude oP(1),
and we shall also show that the second and third summands on the right-hand side of
(4.11) are of the order oP(1). The replacement of en by Bn can be accomplished using, for
example, Corollary 2.1 on page 48 of Csörgő et al. [40], which states that on an appropriately
constructed probability space and for any 0 ≤ ν < 1/4, we have that

sup
1/n≤s≤1−1/n

|en(s) − Bn(s)|
s1/2−ν(1 − s)1/2−ν = OP

(
n−ν). (4.12)

This result is applicable in the current situation since we can always place our original
problem into the required probability space, because our main results are “in probability”.
Furthermore, since Q(t) ≤ x ≤ Q(1 − k/n), we have that t ≤ F(x) ≤ 1 − k/n. Hence, statement
(4.12) implies that

−
∫Q(1−k/n)
Q(t) en(F(x))dx

(k/n)1/2Q(1 − k/n)
= −
∫Q(1−k/n)
Q(t) Bn(F(x))dx

(k/n)1/2Q(1 − k/n)
+OP(1)

∫Q(1−k/n)
Q(t) (1 − F(x))1/2−νdx

nν(k/n)1/2Q(1 − k/n)
.

(4.13)

Changing the variables of integration and using the property (k/n)1/2Q(1−k/n) → ∞ when
n → ∞, we obtain that

−
∫Q(1−k/n)
Q(t) Bn(F(x))dx

(k/n)1/2Q(1 − k/n)
= −

∫1−k/n
0 Bn(s)dQ(s)

(k/n)1/2Q(1 − k/n)
+ oP(1). (4.14)

The main term on the right-hand side of (4.14) is W1,n. We shall next show that the right-most
summand of (4.13) converges to 0 when n → ∞.
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Changing the variable of integration and then integrating by parts, we obtain the
bound

∫Q(1−k/n)
Q(t) (1 − F(x))1/2−νdx

nν(k/n)1/2Q(1 − k/n)
≤

(1 − s)1/2−νQ(s)
∣∣∣1−k/n
t

nν(k/n)1/2Q(1 − k/n)
+O(1)

∫1−k/n
t (1 − s)−1/2−νQ(s)ds

nν(k/n)1/2Q(1 − k/n)
.

(4.15)

We want to show that the right-hand side of bound (4.15) converges to 0 when n → ∞. For
this, we first note that

(1 − s)1/2−νQ(s)
∣∣∣1−k/n
t

nν(k/n)1/2Q(1 − k/n)
=

1
kν

− (1 − t)1/2−νQ(t)

nν(k/n)1/2Q(1 − k/n)
−→ 0. (4.16)

Next, with the notation φ(u) = Q(1 − u)/u1/2+ν, we have that

∫1−k/n
t (1 − s)−1/2−νQ(s)ds

nν(k/n)1/2Q(1 − k/n)
=

1
kν

∫1−t
k/n φ(s)ds

(k/n)φ(k/n)
−→ 0 (4.17)

when n → ∞, where the convergence to 0 follows from Result 1 in the Appendix of Necir
and Meraghni [39]. Taking statements (4.15)–(4.17) together, we have that the right-most
summand of (4.13) converges to 0 when n → ∞.

Consequently, in order to complete the proof of statement (4.3), we are left to show that
the second and third summands on the right-hand side of (4.11) are of the order oP(1). The
third summand is of the order oP(1) because |en(t)‖Qn(t) −Q(t)| = OP(1) and (k/n)1/2Q(1 −
k/n) → ∞. Hence, we are only left to show that the second summand on the right-hand side
of equation (4.11) is of the order oP(1), for which we shall show that

|en(1 − k/n)|
(k/n)1/2

∣∣∣∣Qn(1 − k/n)
Q(1 − k/n)

− 1
∣∣∣∣ = oP(1). (4.18)

To prove statement (4.18), we first note that

|en(1 − k/n)|
(k/n)1/2

≤ |en(1 − k/n) − Bn(1 − k/n)|
(k/n)1/2

+
|Bn(1 − k/n)|
(k/n)1/2

. (4.19)

The first summand on the right-hand side of bound (4.19) is of the order OP(1) due to
statement (4.12) with ν = 0. The second summand on the right-hand side of bound (4.19)
is of the order OP(1) due to a statement on page 49 of Csörgő et al. [40] (see the displayed
bound just below statement (2.39) therein). Hence, to complete the proof of statement (4.18),
we need to check that

Qn(1 − k/n)
Q(1 − k/n)

= 1 + oP(1). (4.20)
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Observe that, for each n, the distribution of Qn(1−k/n) is the same as that of Q(E−1
n (1−k/n)),

where E−1
n is the uniform empirical quantile function. Furthermore, the processes {1−E−1

n (1−
s), 0 ≤ s ≤ 1} and {E−1

n (s), 0 ≤ s ≤ 1} are equal in distribution. Hence, statement (4.20) is
equivalent to

Q
(
1 − E−1

n (k/n)
)

Q(1 − k/n)
= 1 + oP(1). (4.21)

From the Glivenko-Cantelli theorem we have that E−1
n (k/n) − k/n → 0 almost surely, which

also implies that E−1
n (k/n) → 0 since k/n → 0 by our choice of k. Moreover, we know from

Theorem 0 and Remark 1 of Wellner [41] that

sup
1/n≤s≤1

s−1
∣∣∣E−1

n (s) − s
∣∣∣ = oP(1), (4.22)

from which we conclude that

nE−1
n (k/n)
k

= 1 + oP(1). (4.23)

Since the function s �→ Q(1 − s) is slowly varying at zero, using Potter’s inequality (see the
5th assertion of Proposition B.1.9 on page 367 of de Haan and Ferreira [13],we obtain that

Q
(
1 − E−1

n (k/n)
)

Q(1 − k/n)
= (1 + oP(1))

(
nE−1

n (k/n)
k

)−γ±θ
(4.24)

for any θ ∈ (0, γ). In view of (4.23), the right-hand side of (4.24) is equal to 1 + oP(1), which
implies statement (4.21) and thus finishes the proof of statement (4.3).

4.2. Proof of Statement (4.4)

The proof of statement (4.4) is similar to that of Theorem 2 in Necir et al. [42], though some
adjustments are needed since we are now concerned with the CTE risk measure. We therefore
present main blocks of the proof together with pinpointed references to Necir et al. [42] for
specific technical details.

We start the proof with the function U(z) = Q(1 − 1/z) that was already used in the
formulation of Theorem 3.1. Hence, if Y is a random variable with the distribution function
G(z) = 1 − 1/z, z ≥ 1, then U(Y ) = Q(G(Y ))=dX because G(Y ) is a uniform on the interval
[0, 1] random variable. Hence,

An,2 =
k/n

1 − γ̂n
U(Yn−k:n) −

∫k/n

0
U

(
1
s

)
ds, (4.25)
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and so we have

√
nAn,2

(k/n)1/2Q(1 − k/n)
=
√
k

⎛
⎝ 1

1 − γ̂n

U(Yn−k:n)
U(n/k)

− (n/k)
∫k/n

0 U(1/s)ds
U(n/k)

⎞
⎠

=
√
k

(
1

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
1 − γ

)

+
√
k

(
1

1 − γ
−
∫∞

1 s−2
U(ns/k)ds

U(n/k)

)
.

(4.26)

We next show that the right-most term in (4.26) converges to 0 when n → ∞. For this reason,
we first rewrite the term as follows:

√
k

(
1

1 − γ
−
∫∞

1 s−2
U(ns/k)ds

U(n/k)

)
= −
√
k

∫∞

1

1
s2

(
U(ns/k)
U(n/k)

− sγ
)
ds. (4.27)

The right-hand side of (4.27) converges to 0 (see notes on page 149 of Necir et al. [42]) due to
the second-order condition (3.1), which can equivalently be rewritten as

lim
z→∞

1
A(z)

(
U(zs)
U(z)

− sγ
)

= sγ
sρ − 1
ρ

(4.28)

for every s > 0, where A(z) = γ2a(U(z)). Note that
√
kA(n/k) → 0 when n → ∞. Hence, in

order to complete the proof of statement (4.4), we need to check that

√
k

(
1

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
1 − γ

)
=

γ2

(
1 − γ

)2

√
n

k
Bn

(
1 − k

n

)

− γ(
1 − γ

)2

√
n

k

∫1

1−k/n

Bn(s)
1 − s

ds + oP(1).

(4.29)

With Hill’s estimator written in the form

γ̂n =
1
k

k∑
i=1

log
(

U(Yn−i+1:n)
U(Yn−k:n)

)
, (4.30)

we proceed with the proof of statement (4.29) as follows:

√
k

(
1 − γ

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
)

=
√
k

1 − γ

1 − γ̂n

(
U(Yn−k:n)
U(n/k)

−
(
Yn−k:n

n/k

)γ)
+
√
k

1 − γ

1 − γ̂n

((
Yn−k:n

n/k

)γ

− 1
)
+
√
k

γ̂n − γ

1 − γ̂n
.

(4.31)
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Furthermore, we have that

√
k

γ̂n − γ

1 − γ̂n
=

1
1 − γ̂n

1√
k

k∑
i=1

(
log
(

U(Yn−i+1:n)
U(Yn−k:n)

)
− γ log

(
Yn−i+1:n

Yn−k:n

))

+
γ

1 − γ̂n

1√
k

k∑
i=1

(
log
(
Yn−i+1:n

Yn−k:n

)
− 1
)
.

(4.32)

Arguments on page 156 of Necir et al. [42] imply that the first term on the right-hand side of
(4.32) is of the order OP(

√
kA(Yn−k:n)), and a note on page 157 of Necir et al. [42] says that√

k A(Yn−k:n) = oP(1). Hence, the first term on the right-hand side of (4.32) is of the order
oP(1). Analogous considerations using bound (2.5) instead of (2.4) on page 156 of Necir et al.
[42] imply that the first term on the right-hand side of (4.31) is of the order oP(1). Hence, in
summary, we have that

√
k

(
1 − γ

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
)

=
1 − γ

1 − γ̂n

√
k

((
Yn−k:n

n/k

)γ

− 1
)

+
γ

1 − γ̂n

1√
k

k∑
i=1

(
log
(
Yn−i+1:n

Yn−k:n

)
− 1
)
+ oP(1).

(4.33)

We now need to connect the right-hand side of (4.33) with Brownian bridges Bn. To this
end, we first convert the Y -based order statistics into U-based (i.e., uniform on [0, 1]) order
statistics. For this we recall that the cdf of Y is G, and thus Y is equal in distribution to G−1(U),
which is 1/(1 −U). Consequently,

√
k

(
1 − γ

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
)

=
1 − γ

1 − γ̂n

√
k

((
1

(n/k)(1 −Un−k:n)

)γ

− 1
)

+
γ

1 − γ̂n

1√
k

k∑
i=1

(
log
(

(1 −Un−k:n)
(1 −Un−i+1:n)

)
− 1
)
+ oP(1).

(4.34)

Next we choose a sequence of Brownian bridges Bn (see pages 158-159 in [42] and references
therein) such that the following two asymptotic representations hold:

√
k

((
1
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)
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1√
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(
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(
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)
− 1
)

=
√
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Bn

(
1 − k

n

)

−
√

n

k

∫1

1−k/n

Bn(s)
1 − s

ds + oP(1).

(4.35)
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Using these two statements on the right-hand side of (4.34) and also keeping in mind that γ̂n
is a consistent estimator of γ (see [22]), we have that

√
k

(
1 − γ

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
)

=
γ2

1 − γ

√
n

k
Bn

(
1 − k

n

)

− γ

1 − γ

√
n

k

∫1

1−k/n

Bn(s)
1 − s

ds + oP(1).

(4.36)

Dividing both sides of equation (4.36) by 1 − γ , we arrive at (4.29). This completes the proof
of statement (4.4) and of Theorem 3.1 as well.
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[27] J. Geluk, L. de Haan, S. Resnick, and C. Stărică, “Second-order regular variation, convolution and the
central limit theorem,” Stochastic Processes and Their Applications, vol. 69, no. 2, pp. 139–159, 1997.

[28] L. Peng and Y. Qi, “Estimating the first- and second-order parameters of a heavy-tailed distribution,”
Australian & New Zealand Journal of Statistics, vol. 46, no. 2, pp. 305–312, 2004.

[29] M. I. Gomes and D. Pestana, “A simple second-order reduced bias’ tail index estimator,” Journal of
Statistical Computation and Simulation, vol. 77, no. 5-6, pp. 487–504, 2007.

[30] L. Peng, “Estimating the mean of a heavy tailed distribution,” Statistics & Probability Letters, vol. 52,
no. 3, pp. 255–264, 2001.

[31] R. Zitikis, “The Vervaat process,” in Asymptotic Methods in Probability and Statistics, B. Szyszkowicz,
Ed., pp. 667–694, North-Holland, Amsterdam, The Netherlands, 1998.

[32] Y. Davydov and R. Zitikis, “Generalized Lorenz curves and convexifications of stochastic processes,”
Journal of Applied Probability, vol. 40, no. 4, pp. 906–925, 2003.

[33] Y. Davydov and R. Zitikis, “Convex rearrangements of random elements,” in Asymptotic Methods
in Stochastics, B. Szyszkowicz, Ed., vol. 44 of Fields Institute Communications, pp. 141–171, American
Mathematical Society, Providence, RI, USA, 2004.

[34] A. L. M. Dekkers and L. de Haan, “Optimal choice of sample fraction in extreme-value estimation,”
Journal of Multivariate Analysis, vol. 47, no. 2, pp. 173–195, 1993.

[35] H. Drees and E. Kaufmann, “Selecting the optimal sample fraction in univariate extreme value
estimation,” Stochastic Processes and Their Applications, vol. 75, no. 2, pp. 149–172, 1998.

[36] J. Danielsson, L. de Haan, L. Peng, and C. G. de Vries, “Using a bootstrap method to choose the sample
fraction in tail index estimation,” Journal of Multivariate Analysis, vol. 76, no. 2, pp. 226–248, 2001.

[37] C. Neves and M. I. Fraga Alves, “Reiss and Thomas’ automatic selection of the number of extremes,”
Computational Statistics & Data Analysis, vol. 47, no. 4, pp. 689–704, 2004.

[38] M. I. Gomes, D. Pestana, and F. Caeiro, “A note on the asymptotic variance at optimal levels of a
bias-corrected Hill estimator,” Statistics & Probability Letters, vol. 79, no. 3, pp. 295–303, 2009.

[39] A. Necir and D. Meraghni, “Empirical estimation of the proportional hazard premium for heavy-
tailed claim amounts,” Insurance: Mathematics & Economics, vol. 45, no. 1, pp. 49–58, 2009.



Journal of Probability and Statistics 17
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This research analyzed the influence of the differences in the forecast accuracy of fundamental
values on the financial market. As a result of intensive experiments in the market, we made
the following interesting findings: (1) improvements in forecast accuracy of fundamentalists can
contribute to an increase in the number of fundamentalists; (2) certain situations might occur,
according to the level of forecast accuracy of fundamentalists, in which fundamentalists and
passive management coexist, or in which fundamentalists die out of the market, and furthermore;
(3) where a variety of investors exist in the market, improvements in the forecast accuracy could
increase the number of fundamentalists more than the number of investors that employ passive
investment strategy. These results contribute to clarifying the mechanism of price fluctuations in
financial markets and also indicate one of the factors for the low ratio of passive investors in asset
management business.

1. Introduction

A growing body of studies regarding asset pricing have been conducted, and many
prominent theories have been proposed [1–4]. Along with the advancement of these theories,
many arguments regarding securities investment in practical business affairs in finance have
been actively discussed. The theory of asset pricing and investment strategy for shares are
also currently being discussed with enthusiasm. The accurate valuation of fundamental
values of investment grade assets is one of significant interest for those investors that actually
make transactions in real financial markets. For example, many of institutional investors
have a number of security analysts in their own companies in order to try to evaluate the
fundamental values of each security.

Market efficiency is a central hypothesis in traditional asset pricing theories and
there has been a large amount of discussion regarding it [5]. For example, in the Capital
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Asset Pricing Model (CAPM), which is one of the most popular asset pricing theories,
equilibrium asset prices are derived on the assumption of efficient markets and rational
investors. CAPM indicates that the optimal investment strategy is to hold market portfolio1

[2]. Since it is very difficult for investors to get an excess return in an efficient market,
it is assumed to be difficult to beat market portfolio even though fundamental values
are estimated correctly based on public information [2, 6]. On the other hand, passive
investment strategy, which tries to maintain an average return using benchmarks based
on market indices, is consistent with traditional asset pricing theories and is considered
to be an effective method in efficient markets. On the basis of such arguments, there
has been growing interest in passive investment strategy in the practical business affairs
of asset management. Many investors employ the passive investment strategy for their
investment.2

Recently, however, traditional financial theories have been criticized in terms of
their explanation power and the validity of their assumptions. Behavioral finance has
recently been in the limelight and many reports indicate that deviation from rational
decision-making can explain anomalies which cannot be explained with traditional financial
theories [7–10]. Generally, investor behavior which is assumed in behavioral finance has
complicated rules for decision making compared to decision making based on expected
utility maximization. For this reason, in many cases, it is difficult to derive the influence
of investor behavior on prices analytically [11]. In order to take such investors behavior
into account in analyzing financial markets, we need to introduce a different analytical
method.

In the area of computer science, Agent-Based Modeling has been proposed as an
effective approach to analyze the relation between microrules and macrobehavior [12]. This
is a bottom-up approach that tries to describe macrobehavior of the entire system using
local rules. This approach is appropriate for analyzing a multiagent system in which a
great number of agents that act autonomously gather together.3 The agent-based approach is
applied in a wide variety of study fields such as engineering and biology, and many reports
have been made about analyses adopting this approach in the field of social science [13–
17].

In the background of the above-mentioned arguments, the purpose of this research
is to clarify the influence of the difference in the forecast accuracy of fundamental values
on financial markets by using the agent-based model for analysis. This analysis includes
the relationship between fundamentalists that invest based on fundamentals and passive
investment strategy. Section 2 describes the model used in this analysis. Section 3 shows the
results of the analysis. Section 4 summarizes this paper.

2. Model

A computer simulation of the financial market involving 1000 investors was used as
the model for this research. Shares and risk-free assets were the two types of assets
used along with the possible transaction methods. Several types of investors exist in the
market, each undertaking transactions based on their own stock evaluations. This market
was composed of three major stages, (1) generation of corporate earnings, (2) formation
of investor forecasts, and (3) setting transaction prices. The market advances through
repetition of these stages. The following sections describe negotiable transaction assets,
modeling of investor behavior, setting transaction prices, and natural selection rules in the
market.
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Table 1: List of investor types.

No. Investor types

1 Fundamentalist

2 Forecasting by past average (most recent 10 days)

3 Forecasting by trend (most recent 10 day)

4 Passive investor

2.1. Negotiable Assets in the Market

This market has risk-free and risk assets. There are risky assets in which all profits gained
during each term are distributed to the shareholders. Corporate earnings (yt) are expressed
as yt = yt−1 ·(1+εt). However, they are generated according to the process of εt ∼ N(0, σ2

y) with
share trading being undertaken after the public announcement of profits for the term [18].
Each investor is given common asset holdings at the start of the term with no limit placed on
debit and credit transactions (1000 in risk-free assets and 1000 in stocks). Investors adopt the
buy-and-hold method for the relevant portfolio as a benchmark4 to conduct decision-making
by using a one-term model.

2.2. Modeling Investor Behavior

Each type of investor handled in this analysis is organized in Table 1.5 The investors in
this market evaluate transaction prices based on their own forecasts for market tendency,
taking into consideration both risk and return rates when making decisions. Each investor
determines the investment ratio (wi

t) based on the maximum objective function (f(wit)) as
shown below6 [19]:

f
(
wi

t

)
= r int,i

t+1 ·wi
t + rf ·

(
1 −wi

t

)
− λ

(
σs,i
t−1

)2 ·
(
wi

t

)2
. (2.1)

Here, r int,i
t+1 and σs,i

t−1 express the expected rate of return and risk for stocks as estimated by
each investor i. rf indicates the risk-free rate. wi

t represents the stock investment ratio of the
investor i for term t.

The expected rate of return for shares is calculated as follows [19]:

r int,i
t+1 =

1 · c−1
(
σs,i
t−1

)−2 · rf,it+1 + 1 ·
(
σs,i
t−1

)−2 · r imt
1 · c−1

(
σs,i
t−1

)−2
+ 1 ·

(
σs,i
t−1

)−2
. (2.2)

Here, rf,it+1Cr
im
t expresses the expected rate of return, calculated from short-term expected rate

of return, and risk and gross current price ratio of stocks, respectively. c is a coefficient that
adjusts the dispersion level of the expected rate of return calculated from risk and gross
current price ratio of stocks [19].
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The short-term expected rate of return (rf,it ) is obtained where (Pf,i

t+1, y
f,i

t+1) is the equity
price and profit forecast for term t + 1 is estimated by the investor, as shown below:

r
f,i

t+1 =

⎛
⎝P

f,i

t+1 + y
f,i

t+1

Pt
− 1

⎞
⎠ ·

(
1 + ηi

t

)
. (2.3)

The short-term expected rate of return includes the error term (ηi
t ∼ N(0, σ2

n)) reflecting that
even investors using the same forecast model vary slightly in their detailed outlook. The stock
price (Pf,i

t+1), profit forecast (yf,i

t+1), and risk estimation methods are described in Section 2.2.2.
The expected rate of return obtained from stock risk and so forth is calculated from

stock risk (σi
t−1), benchmark equity stake (Wt−1), investorsf degree of risk avoidance (λ), and

risk-free rate (rf), as shown below [19, 20]:

r imt = 2 · λ ·
(
σi
t−1

)2 ·Wt−1 + rf . (2.4)

2.2.1. Stock Price Forecasting Method

The fundamental value is estimated by using the dividend discount model, which is a well-
known model in the field of finance. Fundamentalists estimate the forecasted stock price
and forecasted profit from profit for the term (yt) and the discount rate (δ) as P

f,i

t+1 = yt/δ,

y
f,i

t+1 = yt.
Forecasting based on trends involves forecasting the next term stock prices and profit

through extrapolation of the most recent stock value fluctuation trends. The next term stock
price and profit is estimated from the most recent trends of stock price fluctuation (at−1) from
time point t − 1 as Pf,i

t+1 = Pt−1 · (1 + at−1)
2, y

f,i

t+1 = yt · (1 + at−1).
Forecasting based on past averages involves estimating the next term stock prices and

profit based on the most recent average stock value.

2.2.2. Risk Estimation Method

In this analysis, each investor estimates risk from past price fluctuations. Specifically, stock
risk is estimated as σi

t−1 = σh
t−1 (common to each investor). Here, σh

t−1 represents the stock
volatility that is calculated from price fluctuation from the most recent 100 terms.

2.3. Determination of Transaction Prices

Transaction prices are determined as the price where stock supply and demand converge
(
∑M

i=1(F
i
tw

i
t)/Pt = N). In this case, the total asset (Fi

t) of investor i is calculated from
transaction price (Pt) for term t, profit (yt) and total assets from the term t−1, stock investment
ratio (wi

t−1), and risk-free rate (rf), as Fi
t = Fi

t−1 · (wi
t−1 · (Pt + yt)/Pt−1 + (1 −wi

t−1) · (1 + rf)).
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2.4. Rules of Natural Selection in the Market

The rules of natural selection can be identified in this market. The driving force behind these
rules is cumulative excess profit [21]. The rules of natural selection go through the following
two stages: (1) the identification of investors who alter their investment strategy, and (2) the
actual alteration of investment strategy [17, 22].

Each investor determines the existence of investment strategy alteration based on the
most recent performance of each 5-term period after 25 terms have passed since the beginning
of market transactions. The higher the profit rate obtained most recently is, the lesser the
possibility of strategy alteration becomes. The lower the profit, the higher the possibility
becomes. Specifically, when an investor could not obtain a positive excess profit for the
benchmark portfolio profitability, they are likely to alter their investment strategy with the
probability below:7

pi = min(1,max(−100 · rcum, 0)). (2.5)

Here, however, rcum
i is the cumulative excess profitability for the most recent benchmark of

investor i. Measurement was conducted for 1 term, 5 terms, and 25 terms, and the cumulative
excess profitability was a profitability of one-term conversion.

Regarding the determination of a new investment strategy, an investment strategy that
has a high cumulative excess profit for the most recent five terms (forecasting type) is more
likely to be selected. Where the strategy of the investor i is zi and the cumulative excess profit
for the most recent five terms is rcum

i , the probability pi that zi is selected as a new investment
strategy is given as pi = e(a·r

cum
i )/

∑M
j=1 e

(a·rcum
j ).8 Those investors who altered their strategies

make investments based on the new strategies after the next step.

3. Analysis Results

First of all, the case where investors make decisions based on past prices in the market is
analyzed. Specifically, a market where there are investors that make forecasts based on past
price trends and past price averages, as well as fundamentals, is analyzed. Afterwards, the
case where there are investors that conduct passive investment strategy in the market is
analyzed.

3.1. Where There Exist Investors That Forecast Based on
Past Price Fluctuations

First of all, the influence of differences in the forecast accuracy of fundamentals on the
market was analyzed. Afterwards, the influence of the difference in the forecast dispersion of
investors other than fundamentalists was analyzed.

3.1.1. Influence of the Difference in the Forecast Accuracy of Fundamentals

This section analyzes the influence of the difference in the forecast accuracy of fundamental-
ists on the market where there exist heterogeneous investors in the market. From the start,
there are a similar number of the three types of investors (Table 1: Type 1–3) in the market. In
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Figure 1: Price transitions (σn = 1%).
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Figure 2: Transition of the number of investors (σn = 1%).

the beginning, the case where the forecast dispersion of investors (σn) is 1% is described, and
then the case where the forecast error of fundamentalists differs is described.

Where the Forecast Dispersion of Investors Is 1%

Figures 1 and 2 show the transitions of transaction prices and the number of investors. The
typical price transitions obtained in this analysis are shown with respect to the transition
of transaction prices. With regard to the transition of the numbers of investors, the average
value obtained by conducting the analysis 50 times was used (the same being true in the
following analysis). Figure 1 shows that transaction prices are consistent with fundamental
values throughout the entire transaction period. Figure 2 confirms that the number of
fundamentalists increases as time goes on.
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Figure 3: Price transitions (σn = 2%).

Where the Forecast Error of Fundamentalists Is 2%

Figures 3 and 4 show the transaction prices and the transition of the number of
investors where the forecast error of fundamentalists increases. In this analysis, the forecast
error of fundamentalists (σn) is 2%, and the forecast dispersion of investors other than
fundamentalists (σn) is 1%.

With respect to the transitions of transaction prices, as shown in Figure 3, it can be
confirmed that transaction prices are consistent with fundamental values. Regarding the
transition of the number of investors, similarly, the number of fundamentalists increases
as time passes. When Figures 2 and 4 are compared regarding the rate of increase in the
number of fundamentalists, the rate of increase is significant where fundamentalists have
high accuracy in their forecasting. These results show that the better the forecast accuracy of
fundamentalists becomes, the greater the rate of increase in the number of fundamentalists.
The next section analyzes the case where the forecast error is 0%.9

Where the Forecast Error of Fundamentalists Is 0%

Figure 5 shows the transition of the number of investors where the forecast error of
fundamentalists (σn) is 0%.10 The forecast dispersion of investors other than fundamentalists
(σn) is constant at 1%. Where Figure 5 is compared with Figures 2 and 4, the rate of increase
of the number of fundamentalists is fastest in the case of Figure 5. When it comes to the rate
of increase in the number of fundamentalists, the rate of increase goes up as the forecast
accuracy improves. These results show that the better the forecast accuracy becomes, the
more likely it is that fundamentalists can survive in the market. This result is consistent
with traditional financial theory. The influence of the difference in the forecast accuracy of
fundamentalists was analyzed in this analysis. Whether or not fundamentalists can survive
in the market likely depends on the influence of the forecast dispersion of other investors.
To confirm the influence of other investors, the next section analyzes the influence of forecast
dispersion of investors other than fundamentalists.
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Figure 4: Transition of the number of investors (σn = 2%).
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Figure 5: Transition of the number of investors (σn = 0%).

3.1.2. Influence of Forecast Dispersion of Other Investors

Here, the influence of forecast dispersion of other investors on the rate of increase in the
number of fundamentalists is analyzed. The forecast accuracy of fundamentalists in this
analysis (σn) is consistent at 1%.

Figures 6 and 7 show the transitions of the number of investors where the forecast
dispersion of investors other than fundamentalists is 2% and 3%. As the same with the
previous section with respect to the transition of the number of investors, the number of
fundamentalists increases as time passes. Furthermore, the rate of increase becomes faster as
the dispersion of investors other than fundamentalists becomes significant.11 These results
show that interaction with other investors should be taken into consideration in order to
clarify the mechanism of financial markets. In this sense, these results are highly suggestive.12
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Figure 6: Transition of the number of investors (σn = 2%).
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Figure 7: Transition of the number of investors (σn = 3%).

3.2. Where There Exist Investors That Conduct Passive Investment Strategy

This section analyzes the case where there exist investors that conduct passive investment
strategy. First of all, the influence of the difference in the forecast accuracy of fundamentalists
is analyzed, and then another analysis considers more practical conditions.

3.2.1. Influence of the Difference in Forecast Accuracy of Fundamentalists

This section analyzes the influence of differences in the forecast accuracy of fundamentalists
on the market where there exist investors that conduct passive management. In the early
stages, there are a similar number of the four types of investors (Table 1: Type 1–4) in the
market. First of all, the case where the forecast dispersion of investors (σn) is 1% is described.
Afterwards, a case where the forecast error of fundamentalists is 0% is described.
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Figure 8: Price transitions (σn = 1%).

Where the Forecast Dispersion of Investors Is 1%

Figures 8 and 9 show the transitions of transaction prices and the numbers of investors.
Figure 9 shows that the number of investors that conduct passive investment strategy
increases as time passes, and all the investors are conducting passive investment strategy
after a certain period of time.13 These results support the effectiveness of conducting passive
investment strategy from the viewpoint of investment performance, which is consistent with
traditional asset pricing theories [2]. Transaction prices, however, do not show fundamental
values from around the middle of the transaction period. The same trend can also be
confirmed in the case where the forecast accuracy of fundamentalists is 2%. Under the present
conditions, the investment behavior of fundamentalists and passive management is the same
on average. However, among fundamentalists, the number of investors that conduct passive
investment strategy increases due to forecast error of fundamentalists.14 Where the forecast
accuracy of fundamentalists is good, (σn = 0), coexistence of fundamentalists and passive
management can be predicted. The next section analyzes the case where the forecast error of
fundamentalists (σn) is 0%.

Where the Forecast Error of Fundamentalists Is 0%

Figures 10 and 11 show the transitions of transaction prices and the number of investors
where the forecast error of fundamentalists (σn) is 0%. In this analysis, the forecast dispersion
of investors other than fundamentalists (σn) is constant at 1%. The price history shows
that traded prices are consistent with fundamental values throughout the entire transaction
period. Additionally, the transitions of the number of investors show that fundamentalists
coexist with those investors that conduct passive investment strategy in the market. Just as
with the present conditions, where there exist only two types of investors in the market,
those investors that conduct passive investment strategy and fundamentalists, and where
the forecast accuracy of fundamentalists is good (σn = 0), as a result, investment behavior
of both investors becomes equal. Given this, both types of investors are likely to exist in the
market.
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Figure 9: Transition of the number of investors (σn = 1%).
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Figure 10: Price transitions (σn = 0%).
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Figure 11: Transition of the number of investors (σn = 0%).
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Figure 12: Transition of the number of investors (mutation: 1%, σn = 1%).

The analysis conducted in this section confirmed that different situations could be
generated. For example, fundamentalists and investors who employ passive investment
strategy coexisted in the market according to the forecast accuracy level of fundamentalists
or fundamentalists could die out in the market. These results suggest that the difference in
estimation accuracy of fundamentalists should have a significant impact on the market. Thus,
the results obtained in this analysis are very interesting.

3.2.2. Analysis That Considers the Actual Investment Environment

This section conducts analysis under conditions close to that of actual market conditions. In
real markets, investors do not always determine their investment strategy based only on past
investment performance. This section focuses on how to change investment strategy in order
to analyze the case where some investors randomly change investment strategy.15

First of all, the case where 1% of investors changes investment strategy in a random
manner is analyzed. Afterwards, another case, where there is an increase in the rate
of investors in changing investment strategy randomly, is analyzed. In the early stage,
there are a similar number of the four types of investors (Table 1: Type 1–4) in the
market. The forecast dispersion of investors other than fundamentalists (σn) is constant at
(1%).

Where a 1% of Investors Randomly Changes Investment Strategy

Figure 12 shows the transitions of the number of investors where the forecast accuracy of
fundamentalists (σn) is 1%. This shows that fundamentalists and investors that conduct
passive investment strategy coexist together in the market.16 Since investors who randomly
change investment strategy exist, fundamentalists and passive investors coexist in the market
when fundamentalists’ forecasts are not entirely accurate. The existence of a wide variety of
investors can make it possible for fundamentalists to obtain more excess earnings through
market transactions. As a result, the number of fundamentalists probably increases.17
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Figure 13: Transition of the number of investors (mutation: 1%, σn = 2%).
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Figure 14: Transition of the number of investors (mutation: 1%, σn = 0%).

Figures 13 and 14 show the transitions of the number of investors where the forecast
accuracy of fundamentalists is 2% and 0%. These results can confirm that fundamentalists
and investors that conduct passive investment strategy coexist. In addition, a comparison
of Figures 13 and 14 shows that as the estimation accuracy of fundamentalists increases,
there is a corresponding increase in the number of fundamentalists over time. These
results are interesting. They show that the number of fundamentalists who can survive
in the market is significantly influenced by the estimation accuracy level of fundamental-
ists.

Where the Rate of Investors That Randomly Change Investment Strategy Increases

Figure 15 shows the transitions of the number of investors where the rate of investors
that randomly change investment strategy is 2%.18 If there is an increase in the rate of
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Figure 15: Transition of the number of investors (mutation: 2%, σn = 1%).
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Figure 16: Transition of the number of investors (mutation: 3%, σn = 1%).

investors who randomly change investment strategy, there is a corresponding increase
in the number of fundamentalists.19 Figure 16 shows the transitions of the number
of investors where the rate of investors who randomly change investment strategy is
3%. This shows that the number of fundamentalists increases even further, exceeding
the number of investors who conduct passive investment strategy.20 In real markets,
the effectiveness of passive investment strategy has widely been recognized from the
viewpoint of practical business affairs as well as the academic standpoint. However,
when the entire market is focused on, the rate of investors that adopt passive invest-
ment strategy is not always high. These results suggest that the existence of various
sources of excess earnings should be included as one of the factors for the low ratio
of passive investors. These are interesting results from both business and academic
viewpoints.21
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4. Summary

Using analyses of agent-based model, this research looked at the influence of the difference
in the forecast accuracy of fundamental values on financial markets. As a result of this
computer-based market analysis, the following findings were made: (1) improvements in
the forecast accuracy of fundamentalists can contribute to an increase in the number of
fundamentalists; (2) certain situations might occur, according to the level of the forecast
accuracy of fundamentalists, in which fundamentalists and passive management coexist,
or in which fundamentalists die out of the market, and furthermore; (3) where a variety of
investors exist in the market, improvements in forecast accuracy could increase the number of
fundamentalists more than the number of investors that conduct passive investment strategy.
These results contribute to clarifying the mechanism of price fluctuations in financial markets
and also indicate one of the factors for the low ratio of passive investors in real financial
markets. At the same time, they indicate that agent-based modeling is effective in conducting
analyses in the field of financial studies. The results obtained in this analysis have significant
meaning from both an academic and a practical business viewpoint. A more detailed analysis
that considers the actual investment environment should be included in future research.

5. List of Parameters

This section lists the major parameters of the financial market designed for this paper. The
explanation and value for each parameter is described.

Parameters Abbreviations

M: Number of investors (1000)
N: Number of shares (1000)
Fi
t : Total asset value of investor i for term t (Fi

0 = 2000: common)
Wt: Ratio of stock in benchmark for term t (W0 = 0.5)
wi

t: Stock investment rate of investor i for term t (wi
0 = 0.5: common)

yt: Profits generated during term t (y0 = 0.5)
σy: Standard deviation of profit fluctuation (0.2/

√
200)

δ: Discount rate for stock (0.1/200)
λ: Degree of investor risk aversion (1.25)
σn: Standard deviation of dispersion from short-term expected rate of return on shares

(0.01–0.03)
a: Degree of selection pressure (10)
c: Adjustment coefficient (0.01)
r imt : Expected rate of share return as estimated from risk etc.
σs
t : Assessed value of standard deviation of share fluctuation

σh
t : Historical volatility of shares

Pt: Transaction prices for term t

P
f(,i)
t : Forecast value of transaction prices (of investor i) for term t

y
f(,i)
t : Forecast value of profits (of investor i) for term t

rf(,i): Short-term expected rate of return on shares (of investor i)
at: Price trend on stock until term t
rcum
i : Cumulative excess return of investor i for the most recent five terms
pi: Probability that investorsf who alter their strategy will adopt investor ifs strategy.
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Endnotes

1. CAPM is also applied frequently to evaluate the enterprise value in Mergers and
Acquisitions (M&A) [23].

2. Passive investment strategy has been well-known in the actual asset management
businesses. On the other hand, active investment strategy that tries to obtain excess
earnings using investments has been widely prevalent. There also exist investment trust
funds that look for their basis of conducting active management in behavioral finance.

3. In the case of a financial market, investors represent agents and a stock market represents
a multiagent system [17, 24].

4. Buy-and-hold method is an investment method to hold shares for medium to long term.

5. This analysis covered major types of investor behavior as the analysis object [9].

6. The value of objective function f(wi
t) depends on the investment ratio (wi

t). The investor
decision-making model here is based on the Black/Litterman model that is used in the
practice of securities investment [19, 25].

7. In the actual market, evaluation tends to be conducted according to baseline profit and
loss.

8. Selection pressures on an investment strategy become higher as the coefficients’ value
increases.

9. This is one of the characteristics of agent-based modeling where such an analysis can be
conducted.

10. Where the forecast accuracy (σn) is 0%, there are no forecast errors by fundamentalists.

11. In other words, these results show that the rate of increase in the number of
fundamentalists is influenced by the forecast dispersion of other investors.

12. A detailed analysis of the forecast accuracy of fundamentalists and the forecast
dispersion of other investors needs to be carried out in the future.

13. See Takahashi et al. [6] for a detailed analysis of the influence of passive investment
strategy on stock markets.

14. Under the present conditions, where the estimation accuracy of fundamentalists (σn) is
1% and 2%, all the investors conduct passive investment strategy in either case. In this
sense, under the present conditions, the estimation accuracy of fundamentalists (σn) does
not have any impact on whether or not fundamentalists can survive in the market.

15. Such a mechanism that works can make it possible for investors other than fundamen-
talists to always exist in the market.

16. In this case, transaction prices are consistent with fundamental values.

17. In the case under discussion here, market transactions consist of funds transferred
between fundamentalists and other kinds of investors. The existence of various investors
serves to provide the source of excess earnings for fundamentalists. These transactions
serve to determine transaction prices and therefore conform to fundamental values.

18. The increase in the rate of investors who randomly change investment strategy means
that there are more investors whose investments are based on trends and past averages
in the market.

19. In this case, transaction prices are consistent with fundamental values.
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20. This paper analyzes the relationship between microbehavior and macrobehavior under
conditions where market prices are consistent with fundamental values. Analyzing the
market under other conditions, such as when fundamentalists are eliminated from the
market, will form part of our future work [17].

21. These results provide a significant suggestion with regard to the meaning of conducting
active investment strategy.
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