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Our brain has this extraordinary ability to experience
functional and structural changes before environmental
stimuli, cognitive demand, or our experience itself. Exer-
cise, diet, an appropriate sleep pattern, and reading habits
are among those activities proposed to induce effects on
cerebral architecture—an active lifestyle seems to induce
changes in the brain function that favour welfare and better
quality of life. This special issue is intended to extend the
knowledge about the relationship between neuroplasticity
and a healthy lifestyle.

L. Mandolesi et al. present a broad approach on environ-
mental effects on neural plasticity in “Environmental Factors
Promoting Neural Plasticity.” Combining concepts such as
brain reserve and cognitive reserve allows us to understand
how different lifestyles impact both brain architecture and
function. Therefore, physical activity, an appropriate sleep
pattern, and certain diet are thought to promote better cogni-
tive functioning, leading to a reduction of deficits such as
those associated with ageing. In this sense, C. Phillips shows
us how to achieve both physical and psychological health in
her review “Lifestyle Modulators of Neuroplasticity: How
Physical Activity, Mental Engagement, and Diet Promote
Cognitive Health during Aging.”

Physical activity has been proposed as a modulator of
brain activity and cognition throughout the lifespan. Y.-K.

Chang et al, in their study “Exercise Modality Is Differen-
tially Associated with Neurocognition in Older Adults,” con-
clude that both aerobic exercise and a programme of
coordinated exercise have beneficial effects in the Stroop test
for inhibitory control in individuals ranging from 55 to 70
years old—both groups exhibit lower reaction time in the
Stroop test. After ERP (event-related potential) analysis, the
authors highlight how N450 wave is reduced in exercised
subjects, which could be reflected in the reduced activity in
the anterior cingulate cortex, a brain area related to conflict
resolution processes. The lower amplitude in N450 wave
might indicate higher resolution capacity in the Stroop test.
In line with this work, C.-H. Chu et al. in “Acute Exercise
and Neurocognitive Development in Preadolescents and
Young Adults: An ERP Study” propose that a simple exercise
programme (20 mins) in preadolescent and young adults
improves the performance in the Stroop test. The ERP tech-
nique showed an increase in P300 wave in every exercised
group, accompanied by an improvement in control inhibi-
tion processes measured in the Stroop test.

On the other hand, M. Tajerian and J. D. Clark
thoroughly review alternative medicine interventions in
“Nonpharmacological Interventions in Targeting Pain-
Related Brain Plasticity.” Their analysis include a review
of not only several of these interventions (distraction,
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mindfulness and meditation, cognitive behaviour therapies,
etc.) but also the plasticity mechanisms underlying each
one of them. Although there are no conclusive data, it seems
that alternative therapies could be a great complementary
tool to classic pharmacological interventions.

Stressors are among the neuroplasticity-affecting agents
that could disfavour welfare, as stressful events can induce
negative effects on both cerebral and cognitive functioning.
M. S. Henry et al. propose that higher resilience could
reduce negative stress-related outcomes in their review
“Enkephalins: Endogenous Analgesics with an Emerging
Role in Stress Resilience.” The concept of resilience is
referred to as the ability an individual has to adapt to adverse
conditions that could happen in life. It is a complex process
combining coping abilities with neurobiological processes
and the interaction between them. The study of resilience is
likely to extend our understanding of affective disorders such
as depression and anxiety.

In the past few years, it has been proposed that healthy
habits (exercise, diet, etc.) could promote resilience. M. S.
Henry et al. conclude that enkephalins (ENK) could play a
relevant role in promoting resilience, increasing the subject’s
adaptability to the environment. Taking into account the
distribution of enkephalins and their receptors in the hippo-
campus, the amygdala (AMG), the medial prefrontal cortex
(mPFC), and the nucleus accumbens (NAc), these opioid
neurotransmitters are proposed not only to exert analgesic
effects but also to affect emotional responses; the level of
anhedonia in rats, measured in the sucrose preference test,
is increased when ENK transcripts show a reduction in the
basolateral amygdala. M. S. Henry et al. show that resilience
to social defeat and chronic unpredictable stress share
common variations of expression among enkephalin sys-
tems within specific brain regions in rats. ENK mRNA
(transcripts) were quantified in 23 nuclei of the mPFC,
NAGg, dorsal striatum, and AMG. Only one significant differ-
ence between control, resilient, and vulnerable individuals
was found in the BLA of vulnerable individuals; ENK mRNA
levels were decreased in vulnerable rats compared to control
and resilient rats. This work extends the action of enkepha-
lins to regions like the preoptic area and the bed nucleus of
the stria terminalis (BST) with regard to stress resilience.
Hence, modulating ENK or DOPr/MOPr expression within
circumscribed regions or modulating selected neuronal
circuits appears to be more appropriate.

Finally, X. Chen et al. analysed in their research “The
Rapid Effect of Bisphenol-A on Long-Term Potentiation in
Hippocampus Involves Estrogen Receptors and ERK Activa-
tion” the effects of bisphenol on memory-related processes
such as long-term potentiation (LTP). Bisphenol-A (BPA)
is a widely used synthetic compound included in polycarbon-
ate plastics and epoxy resins, for example, in food and bever-
age containers, dental prostheses, compact discs, and baby
bottles. Its action on the endocrine function has been
assessed in numerous studies, showing that low doses can
inhibit sexual differentiation and lead to relevant outcomes
during adulthood. X. Chen et al. show that bisphenol-A
exerts dose-dependent effects; that is, they observe biphasic
effects of low-dose (100nM) and high-dose (1000nM)
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BPA on hippocampal LTP. The exposure to BPA at a
low dose enhanced LTP, while exposure to a high dose
inhibited LTP compared with vehicle controls. These effects
require the participation of the membrane-associated estro-
gen receptor (ER).

We have tried to include in this special issue those studies
analysing the role of healthy habits and how brain plasticity
can be affected by them. The aim of this special issue was to
give an insight into the current research of promoting quality
of life.
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The purpose of this study was to examine the effect of a single bout of exercise on neurocognitive function in
preadolescent children and young adults by determining the modulatory role of age and the neuroelectrical
mechanism(s) underlying the association between acute exercise and executive function. Twenty preadolescents and 20
young adults completed the Stroop test, and neuroelectrical activity was recorded during two treatment sessions
performed in a counterbalanced order. Exercise treatments involved moderate intensity aerobic exercise for 20min as
the main exercise and two 5min periods of warm-up and cool-down. The control treatment participants read for a
similar duration of time. Acute exercise improved participant reaction times on the Stroop test, regardless of Stroop congruency,
and greater beneficial effects were observed in young adults compared to those in preadolescents. The P3 amplitudes increased
after acute exercise in preadolescents and young adults, but acute exercise induced lower conflict sustained potential (conflict
SP) amplitudes in preadolescent children. Based on these findings, age influences the beneficial effect of acute exercise on
cognitive performance in general. Furthermore, the event-related brain potential differences attributed to acute exercise provide
a potential clue to the mechanisms that differentiate the effects of acute exercise on individuals from preadolescence to
young adulthood.

Notably, acute exercise is associated with improvements in
a wide range of cognitive functions, including basic infor-

The positive associations between exercise and a variety of
psychological health outcomes, including reductions in anxi-
ety and depression and improvements in emotion and mood,
are well documented [1]. The beneficial effects of exercise on
psychological health extend to cognition [2, 3], and even a sin-
gle bout of aerobic exercise (i.e., acute exercise) has consis-
tently been shown to positively influence cognitive function
[4]. Specifically, the facilitation of cognitive performance by
acute exercise of moderate intensity for 20 to 30 min has
been reported in empirical studies (e.g., [5, 6]), qualitative
reviews [7-9], and meta-analytical reviews [4, 10-12].

mation processing, attention, crystallized intelligence, and
executive function [4, 10], but a disproportionately larger
benefit is observed for cognition related to executive func-
tion [13]. Studies of acute exercise and executive function
typically emphasize effects on younger and/or older adult
populations [5, 14-16], and only a few studies examined
preadolescent children in a narrow age range (e.g., 9 to 10
years) [17, 18]. This research gap in children has generated
several unanswered questions regarding executive function
across childhood and adolescence [19] and how acute
exercise affects executive function from the developmental
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perspective; therefore, this issue is worthy of further investi-
gation [20, 21].

Executive function is an essential cognitive process; this
function includes a number of components of higher level
cognition, and it controls and regulates other more basic cog-
nitive processes to achieve purposeful or goal-directed
behaviors [22, 23]. Executive function has also been shown
to determine the appropriate decision in response to nonrou-
tine or conflict situations [24, 25]. Maturation of executive
function occurs during early childhood and continues during
young adulthood [26]. For example, Velanova et al. [27]
observed better executive function performance in young
adults (older than 17 years), followed by adolescents (aged
13 to 17 years), and then children (aged 8 to 12 years). The
developmental trend in executive function parallels the
neuroanatomical changes in brain regions associated with
executive function [28]. According to functional magnetic
resonance imaging (fMRI) research, children exhibit higher
activation in the anterior cingulate cortex (ACC) and right
dorsolateral prefrontal cortex (DLPFC) than adolescents
and adults, suggesting that children engage more effort for
a given task. Adolescents also exhibit more behavioral errors
[27]. Based on these findings, neurocognitive development
appears to be incomplete in preadolescents, and the matura-
tion of this circuitry continues into adulthood [27].

Executive function constitutes distinct and multifaceted
subcognitive processes, including the inhibition of prepotent
responses, shifting between multiple sets, and updating
working memory [29]. Previous acute exercise studies in
healthy children predominantly explored the inhibitory
aspect of executive function [17, 30, 31], and no consensus
has been reached. For example, acute exercise facilitated
inhibitory performance in some studies [30, 31] but failed
to influence inhibition in other studies [17, 32]. Inhibition
is associated with academic achievement [33], analogical rea-
soning [34], and emotional regulation [35] and is therefore
particularly important in children.

Researchers have not yet conclusively determined
whether age moderates the effect of acute exercise on execu-
tive function. According to meta-analytic reviews, acute exer-
cise positively influences both high school-aged and young
adults (i.e., 14 to 30 years) but not elementary-aged children
(i.e., 6 to 13 years) [4]; however, the positive effect elicited by
acute exercise was not different among preadolescents, ado-
lescents, and young adults [36]. As shown in the study by
Best [21], both age and the nature of executive function
may be moderated by the relationship between acute exercise
and executive function. For instance, prior research indicated
significant influence of acute exercise on task-switching
performance among young adults [37, 38], but not among
children [39]. On the other hand, improved performance in
the flanker task was reported among fit children [40], but
not among young adults [41, 42]. However, to date, no acute
exercise study has simultaneously examined inhibitory func-
tion among different age groups. Because the maturation of
several cortex regions (i.e., ACC and DLPFC) occurs during
neurocognitive development [27, 28, 43], as well as the
association between neurotrophic factors (e.g., serum brain-
derived neurotrophic factor, which plays a significant role
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in executive function) and increased brain volume [27, 28],
age might differentially impact the cognitive performance
of children and young adults in response to acute exercise.
As a result, more research on the effects of acute exercise
on inhibition in children and across the age spectrum is
required to improve our understanding of this topic.

Exercise-induced arousal has frequently been proposed
as a potential mechanism for the beneficial effect of acute
exercise on executive function [10]. Specifically, the inverted
U-trend of the arousal-performance relationship indicates
that the optimal effect of acute exercise on cognitive perfor-
mance is obtained when arousal is induced by moderate
intensity exercise [4, 9, 10, 12]. Studies utilizing electrophys-
iological techniques, such as event-related potentials (ERPs),
have provided additional insights into the mechanisms con-
necting acute exercise and cognition. An ERP is the pattern
of neuroelectrical activation in response to, or in preparation
for, an event (e.g., a stimulus). ERPs are recorded with high
temporal resolution and reflect distinct cognitive processing
between stimulus engagement and response execution [44].
P3 or the P300 component is an endogenous and positive
stimulus-locked ERP component that occurs approximately
300 to 800 ms after a deviant event (e.g., a stimulus), and
the maximal amplitude of P3 is observed over parietal elec-
trode sites [45]. The P3 amplitude reflects the allocation of
attentional resources during stimulus engagement [31, 45]
and the level of physiological arousal [46]. P3 is also linked
to developmental age, as an increased P3 amplitude has been
documented to follow a maturational path from young
children to adolescent children, reaches a peak value at
approximately the age of 20, and then gradually declines
with age [47].

Empirical studies have examined variations in P3 associ-
ated with acute exercise and observed that an increased P3
amplitude corresponded with improved behavioral perfor-
mance, particularly for tasks that required inhibition follow-
ing an acute bout of exercise [17, 31, 48]. Based on these
findings, acute bouts of exercise benefit inhibitory perfor-
mance by increasing the allocation of attentional resources
during task performance. However, most previous studies
of the associations of acute exercise with inhibition relied
exclusively on P3, and fewer efforts have been focused on
other ERP components. The current study examined P3
and the conflict sustained potential (conflict SP) component,
which is a tonic, sustained, and conflict-sensitive slow poten-
tial that is frequently observed in the Stroop Task [49-51].
The polarity of the conflict SP is a region-dependent compo-
nent that occurs approximately 500 ms after stimulus onset,
with greater positivity over the central-parietal region and
greater negativity over frontal regions following incongruent
trials than after congruent trials [50, 52]. The conflict SP over
the central-parietal regions likely reflects neural activity that
responds to the presence of conflict [50, 52] or response
selection [53]. Notably, the conflict SP during the Stroop test
is more sensitive to conflict than P3 [54, 55], suggesting that
this component is appropriate for examining the neurocog-
nitive effects of acute exercise in the current study.

The current study examined the effects of acute exercise
on the neurocognitive function of preadolescents and adults
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TaBLE 1: Participant demographic characteristics (mean + 1 SD; range).

Variable Preadolescent children crou Young adults
Sample size 20 20

Gender (female: male) 0:20 2:18

Age (yrs) 10.50 +. 53; 10-11 20.42 £1.16; 19-23
Education (yrs) 4.40 +.52; 4-5 14.33 £1.37; 13-18

Height (cm)

Weight (kg)

BMI (kg:m2)

Digit span forward

Digit span backward
VO, peak (mLkg 'min~")
Resting heart rate

146.30 +8.79; 138.00-167.00
40.00 +6.13; 30.00-50.00
18.65 £2.14; 15.11-22.32

14.30 £1.49; 11-16
8.70 £2.40; 5-12
50.60 +8.24; 46.43-68.07
70.20 £6.78; 59.00-86.00

169.75 +5.82; 156.00-178.00
66.25 +10.80; 48.00-80.00
22.92 £3.13; 19.15-27.68
14.50 £1.31; 12-16
10.58 £2.97; 5-14
49.18 +7.57; 44.16-65.43
65.50 +5.27; 56.00-73.00

using the Stroop test. Specifically, the influence of age on the
effect of acute exercise on executive function was elucidated.
Furthermore, the neuroelectrical measures P3 and conflict SP
were investigated to examine the potential mechanisms con-
necting acute exercise to neurocognitive function. We
hypothesized that acute exercise would facilitate interference
suppression in both populations, but young adults would
show a larger beneficial effect. Similar patterns of larger P3
and conflict SP amplitudes would also be expected following
the acute exercise intervention, with young adults exhibiting
greater activation, suggesting that acute exercise differentially
impacts cognitive function during the different stages of
neurocognitive development.

2. Methods

2.1. Participants. Forty participants (n=20 preadolescent
male children; n=20 young adults, 18 males and two
females) were recruited through flyers posted in primary
schools or universities in Taoyuan County, Taiwan. All par-
ticipants were initially screened using the Physical Activity
Readiness Questionnaire (PAR-Q) and Health Screening
Questionnaire (HSQ) to ensure their safety prior to engaging
in our fitness test and a single bout of moderate exercise [56].
Participants were also required to meet the following inclu-
sion criteria: (a) right-handedness; (b) no history of psycho-
logical disorders, psychosis, neurological disorders, or head
trauma; (c) no first-degree relatives with a history of psy-
chosis; (d) not currently using any medications that may
affect central nervous system function or cognitive perfor-
mance; and (e) normal or corrected-to-normal vision and
normal color vision. Demographic measures (e.g., age, body
mass index, and education level) and working memory,
which may influence performance on the Stroop test, were
assessed [57]. Specifically, the Digit Span Forwards and
Backwards tests of the Wechsler Adult Intelligence Scale-
Third Edition (WAIS-III) and Wechsler Intelligence Scale
for Children (WISC-R) [58] were administered to young
adults and preadolescents, respectively. These tests have
high test-retest reliability [59]. Participants and their legal
guardians provided written informed consent, as indicated

in the study protocol approved by the National Taiwan
Sport University committee for institutional review. Table 1
presents the demographic data for the young adult and
preadolescent groups.

2.2. Cardiovascular Fitness Assessment. The cardiovascular
fitness of the preadolescents and young adults was estimated
using the single-stage submaximal treadmill walking test
(SSTWT) developed by Ebbeling et al. [60]. The SSTWT is
a convenient protocol for estimating the VO, peak (VO,,,i)
in individuals of various ages and fitness levels [61], and it
has been used previously [61-63]. The SSTWT includes
two 4min stages. Participants warmed-up on the treadmill
at a comfortable speed between 2.0 and 4.5mph at a 0%
grade during the first 4 min stage, and the treadmill speed
increased gradually until the participant’s heart rate (HR)
reached 60% to 70% of the maximum heart rate (HRmax).
The estimated HRmax was calculated using the formula
“208 —(0.78 x age)” for preadolescents [64, 65] and “207
—(0.67 x age)” for young adults [66, 67]. Following the 4 min
warm-up stage, participants were asked to maintain the same
speed for an additional 4 min while the treadmill inclined
to 5%. The steady-state heart rate (SSHR) was recorded as
the moment when the HR did not differ by more than
5bpm during the final two minutes of the second 4min
period. VO, was computed from the following formula:
VO, =15.1+21.8 x speed (mph at 5% grade) —0.327 x HR
(bpm at 5% grade)—0.263 —speed xage (year)+0.00504 x
HR x age +5.96 x gender (0=female; 1=male).

2.3. Stroop Color-Word Test. A modified computerized
Stroop color-word test (Stroop test) developed by Stroop
[68] was used in this study. The Stroop test consists of con-
gruent trials, in which three color words (i.e., red, blue, and
green in Chinese) are presented in the ink of the color indi-
cated by the word, and incongruent trials, in which the three
color words are presented in ink of a nonmatching color. The
three color words, each 2 cm? in size, were displayed in the
center of a 15-inch screen with horizontal and vertical angles
of 28.14° and 1.40°, respectively, using the Neuroscan Stim2
software (Neurosoft Labs Inc., Sterling, VA, USA). The



distance between the screen and participant was approxi-
mately 70cm. Participants were required to complete 6
blocks of 60 trials, in which the congruent and incongruent
trials in each block were arranged in a random order at a ratio
of 2: 1. The total length of the Stroop task was approximately
25 min. A fixed cross first appeared in the center of the screen
for 506 ms, and stimuli were shown for 500 ms each. Partici-
pants were instructed to respond to the ink color according to
the color on a response pane (10 x 8 x 2 cm box) by pressing
one of the three colored buttons with their right thumb as
quickly and accurately as possible. Responses were accepted
between 200 ms and 1000 ms following the stimulus presen-
tation. Responses outside the acceptable time window or with
the wrong key were considered inaccurate responses. The
reaction times and accuracies of the participants were
recorded and analyzed as the primary indices.

2.4. ERP Assessment. Electroencephalography (EEG) was
performed using an elastic cap (Quick-Cap, NeuroScan
Inc., El Paso, TX, USA) with 32 Ag/AgCl electrodes that were
mounted and arranged in accordance with the International
10-20 system [69]. All EEG recordings were referenced to
the average of the right and left mastoid, and the ground elec-
trode was placed on the AFz electrode site. The electrooculo-
gram (EOG) activity was recorded from electrodes attached
below and above the left eye (VEOG) and electrodes located
at the outer canthi of both eyes (HEOG). Electrode imped-
ance was maintained at or below 10kQ prior to testing.
Continuous EEG data were amplified using a SynAmps
EEG amplifier and the Scan 4.5 package (NeuroScan Inc.,
El Paso, TX, USA), with digitization at a 500 Hz sampling
rate and an amplification of 500 times. A 60 Hz notch filter
was also applied to remove potential artifacts.

Offline individual EEG data from correct trials were seg-
mented into epochs from 200ms prestimulus to 1000 ms
poststimulus. Baseline correction was performed using the
100 ms period prior to stimulus onset, and the data were fil-
tered using a 30 Hz zero phase shift (12 dB/octave, low-pass
cutoft). The horizontal and vertical eye movement artifacts
and blinks were corrected using Semlitsch et al’s [70]
algorithm. Amplitude excursions of +100 yV were rejected.
The ERP waveform analysis focused on P3 and conflict SP.
The final remaining correct trial numbers from the control
and exercise conditions for both groups were recorded. P3
was calculated separately at the Fz, Cz, and Pz sites from
the mean voltage from 300 to 450 ms after stimulus onset.
The conflict SP component was quantified as the mean
amplitude from 600 to 800ms following stimulus onset,
and the average conflict SP amplitudes of the right and left
hemispheres were calculated separately (left central-parietal
hemisphere: CP3 and P3; right central-parietal hemisphere:
CP4 and P4).

2.5. Experimental Procedure. Participants visited the labora-
tory three times at least 24 hours apart at approximately the
same time of day. The legal guardians of the preadolescents
and the young adults were briefly introduced to the study
during the first visit and completed the informed consent
form, a demographic questionnaire, IPAQ, and PAR-Q to
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screen for inclusion status. Eligible participants were sub-
jected to the SSTWT to estimate their cardiovascular fitness.
Instructions and practice for the Stroop test (i.e., 15 trials)
were given, and all participants reached the 85% accuracy
rate before further assessment. This accuracy criterion was
employed to limit the learning effect.

Participants attended one of the two treatments (control
or exercise session) in a counterbalanced order on the second
and third visits to eliminate any potential learning or practice
effects. During the exercise session, aerobic exercise was
performed on a motor-driven treadmill in a temperature-
controlled room (mean temperature 22°C). The exercise
protocol consisted of a 5 min warm-up phase, a 20 min main
exercise phase, and a 5min cool-down phase. Participants
were instructed to run at 2.5 mph on a motor-driven tread-
mill that gradually increased in speed to reach the target
65-75% heart rate reserve (HRR) during the 20 min main
exercise phase. This target HR range is considered moderate
intensity, which is suggested to benefit cognitive performance
[6, 9]. Participants were instructed to read educational docu-
ments for 30 min in a quiet room during the control session.
Participants were escorted to an adjacent soundproof room
immediately after each intervention to record the EEGs
elicited during the Stroop test.

A polar HR monitor (Sport Tester PE 3000, Polar Electro
Oy, Kempele, Finland) was utilized throughout the experi-
mental procedure, and three HR indices were identified:
resting HR, HR after 10 min of rest, and treatment HR, which
was the average HR recorded during the 20 min exercise
phase. The rating of perceived exertion (RPE) on the Borg
scale [71] was recorded every 2min during the exercise
session. Participants received $40 and a brief review of the
study purpose after completion of the experiment.

2.6. Data Analysis. The protocol employed a mixed design
with Group as a between-subjects factor and the Treatment
and Stroop congruency as within-subjects factors. Behavioral
data (i.e., reaction time and accuracy) were analyzed using a
three-way repeated-measures analysis of variance (ANOVA):
2 (Treatment: exercise and control) x2 (Group: preadoles-
cents and young adults) x 2 (Stroop congruency: congruent
and incongruent). The remaining correct trial numbers were
analyzed using a two-way repeated-measures ANOVA: 2
(Treatment) x 2 (Group). The mean averaged P3 amplitude
was analyzed using a four-way repeated-measures ANOVA:
2 (Treatment) x 2 (Group) x 2 (Stroop congruency) x 3 (Site:
Fz, Cz, and Pz), and the mean averaged conflict SP amplitude
was analyzed using a different four-way ANOVA: 2 (Treat-
ment) x 2 (Group) x 2 (Stroop congruency) x 2 (Site: averaged
C3 and CP3 and averaged C4 and CP4). A Greenhouse-
Geisser correction was used to adjust for family-wise error
when the sphericity assumption was violated. The subsequent
analyses consisted of univariate ANOVA and paired ¢-tests
with Bonferroni’s correction when appropriate. A partial
eta-squared (17%) value for the effect size was reported
and represented as small (i.e., 0.01 to 0.059), medium
(i.e, 0.06 to 0.139), and large (i.e., >0.14) values [72]. SPSS
versus 18 was used for the statistical analyses, and the
significance level was set at alpha=0.05.
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3. Results

3.1. Exercise Manipulation Analysis. The average heart rates
during the control session were 72.10 +£9.94 and 68.67 £ 5.10
(bpm) for preadolescent children and young adults,
respectively. Regarding the manipulation of the exercise
intensity, the mean heart rates during exercise sessions were
157.77 +4.71 and 150.79 + 7.65 (bpm) for preadolescent chil-
dren and young adults, respectively; these values were within
the range of 60% to 75% of the HRR. This range of HRR
corresponds to the moderate intensity zone, suggesting that
our procedure achieved an appropriate exercise intensity.

3.2. Behavioral Measures

3.2.1. Reaction Time. A three-way ANOVA revealed a main
effect of Treatment, which was superseded by a Treat-
ment x Group interaction (for detailed statistical values, see
Table 2). Subsequent analyses revealed a significantly
shorter reaction time in the exercise session compared to
the control session for young adults (481.09ms versus
536.57 ms), F (1,19=21.13, p < 0.0001, %> = 0.53). A margin-
ally significantly shorter reaction time was observed in the
exercise session compared to the control session for preadoles-
cent children (500.80 ms versus 519.62 ms), F (1, 19)=4.12,
p=0.057, ;12 =0.18. No differences were observed in the
control session or the exercise session between preadolescents
and young adults (Figure 1(a)).

A three-way ANOVA revealed a main effect of congru-
ency, which was superseded by a Stroop congruency x Group
interaction (Table 2). Subsequent analyses revealed a signif-
icantly longer reaction time in the incongruent condition
than in congruent sessions for young adults (542.52 ms ver-
sus 475.14ms), F (1, 19) =674.83, p < 0.0001, > = 0.97 and
for preadolescent children (529.33ms versus 491.09 ms),
F (1, 19)=517.48, p < 0.0001, * = 0.97. No differences were
observed in the congruent condition or the incongru-
ent condition between preadolescents and young adults
(Figure 1(b)). No other significant effects were observed.

3.2.2. Accuracy. A three-way ANOVA revealed a main effect
of Stroop congruency with higher accuracy in the congruent
condition than the incongruent condition (87% versus 76%,
p<0.0001) (Table 2). A main effect of Group, which was
superseded by a Treatmentx Group interaction, did not
reveal significant differences between preadolescents and
young adults (78% versus 85%). No other significant effects
were observed.

3.3. ERP Measurements. For the remaining correct trial
numbers, the main effects of Treatment (exercise=212.6 +
54.36; control =219.95+29.98) or Group (preadolescents =
217.7 £27.68, young adults = 206.8 + 50.93) or an interaction
effect was not observed.

3.3.1. Mean Averaged P3. A four-way ANOVA revealed a
main effect of Treatment (Table 2), with larger P3 amplitudes
in the exercise session than the control session (9.84 uV
versus 8.27 uV, p = 0.04) (Figure 2(a)).

TaBLE 2: Summary of statistical analyses of behavioral and ERP
measures.

Measure and effect df F P s
Stroop test reaction time

Treatment 1,38 2383 <0001 .39
Treatment x group 1,38 5.80 =.021 13
Congruency 1,38  60.65 <.0001 .62
Congruency x group 1,38 4.62 =.038 11
Stroop test accuracy

Treatment x group 1,38 7.03 =012 .16
Congruency 1, 38 56.31 <.0001 .60
Group 1,38 5.24 =.028 12
Mean averaged P3 amplitude

Treatment 1, 36 4.65 =.038 11
Congruency 1, 36 24.66 <.0001 41
Congruency X group 1, 36 9.02 =.005 .20
Site 2,72 71.08 <0001 .66
Site X group 2,72 1451 <0001 .29
Mean averaged SP amplitude

Treatment x group 1, 36 7.00 =.012 .16
Congruency 1,36 13.23 =.001 27
Site x group 1,36 4.61 =.039 11

Note. Only significant effects were presented.

A main effect of Stroop congruency was superseded by a
Stroop congruency x Group interaction. Subsequent analyses
revealed a significantly smaller P3 amplitude in the incongru-
ent trials than in the congruent trials for young adults
(8.28 uV versus 9.72 uV, p = 0.02), but not for preadolescent
children (9.86 4V versus 10.81 uV, p=0.08) (Table 2). No
differences were observed in the congruent and incongruent
conditions between preadolescent and young adult individ-
uals (Figure 2(b)).

A main effect of Site was superseded by a Site x Group
interaction. Subsequent analyses revealed that the P3 ampli-
tude was largest at Pz, followed by Cz and Fz, in preadoles-
cent children (ps<0.0001) and young adults (ps < 0.0001).
Only P3 at Pz exhibited significant differences between
groups (p =0.02) (Table 2). The topographic distribution of
the grand mean P3 amplitude across the scalp for each group
and treatment is illustrated in Figure 2(c). No other signifi-
cant effects were observed.

3.3.2. Conflict SP. A Treatmentx Group interaction was
observed (Table 2), and subsequent analyses revealed that
the conflict SP amplitude was significantly smaller in the
exercise session than that in the control session for pre-
adolescents (-1.63 uV versus 1.60 4V, p=0.03), but not
for young adults (4.54 uV versus 4.04 uV, p=0.51). Addi-
tionally, a difference in the conflict SP amplitude between
preadolescent children and young adults was observed for
the exercise session (p < 0.0001) but not the control session
(p=0.09) (Figure 3(a)).

A four-way ANOVA revealed a main effect of Stroop
congruency, with larger conflict SP amplitudes in the
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FIGURE 1: (a) Interaction effect of treatment and group. (b) Interaction effects of condition and group. *Significant difference (p < 0.05).

incongruent condition than in the congruent condition
(2.81 uV versus 1.16 uV, p < 0.001).

A Site x Group interaction was observed (Table 2), and
subsequent analyses revealed a significantly larger conflict
SP amplitude in the right hemisphere than in the left hemi-
sphere in young adults (4.91 uV versus 3.49 uV, p =0.004),
but this interaction was not observed in preadolescent
children (-0.48 4V versus 0.30 4V, p = 0.45). Additionally, a
difference in the conflict SP amplitudes was observed
between preadolescent children and young adults in the right
hemisphere (p=0.003) and left hemisphere (p=0.0001)
(Figure 3(b)). No other significant effects were observed.
The topographic distribution of the grand mean conflict SP
amplitude across the scalp for each group and treatment is
illustrated in Figure 3(c).

4. Discussion

The current study extended the literature on acute exercise
and cognition by investigating the modulatory role of age
during preadolescence and adulthood using the behavioral
and neuroelectrical indices of the Stroop test. Based on our
primary findings, moderate intensity acute exercise for
20 min improved cognitive performance on the Stroop test
for both Stroop congruency conditions, and these beneficial
effects were greater in young adults than in children. Specif-
ically, young adults exhibited improved performance in reac-
tion time after the cessation of the acute exercise, but
preadolescent children exhibited only marginally improved
performance following exercise. Acute exercise had also dif-
ferential effects on ERP indices in preadolescent children
and young adults. Specifically, larger P3 amplitudes were
observed in preadolescent children and young adults follow-
ing acute exercise. No differences were observed in the
conflict SP amplitudes between the two treatments in young

adults, but the conflict SP amplitudes in preadolescent
children were significantly reduced following acute exercise.

4.1. Acute Exercise and Behavioral Performance. Acute exer-
cise improved the cognitive performance of young adults,
regardless of Stroop congruency. Additionally, the longer
reaction time and lower accuracy in incongruent trials com-
pared to those in congruent trials reflected a robust “Stroop
effect,” which is the response in incongruent trials which
involves greater executive control because of competition
between the stimulus-response translations that are intro-
duced by task-relevant (i.e., ink color) and task-irrelevant
(i.e., word meaning) stimuli [5, 13, 73, 74]. A selective
improvement in the Stroop incongruent condition was
reported after acute exercise [75], but our findings of
improvements in the Stroop incongruent and congruent
trials are partially consistent with recent studies in adults
[5, 6, 13]. For example, Chang et al. [13] assessed the influ-
ence of acute exercise on five conditions of the Stroop test
(i.e., congruent, word, square, neutral, and incongruent
conditions) and observed that acute exercise had the larg-
est positive effect on Stroop incongruent trials, but perfor-
mance was enhanced for all five Stroop test conditions,
which appears to reflect selective and general improvements.
Alternatively, the enhanced behavioral performances induced
by acute exercise may be due to more general effects on
perception or response preparation. Although the statement
may require further examination, acute exercise generally
enhanced cognitive functions associated with the Stroop test
in an adult population in our study.

Interestingly, the acute exercise-related improvements in
Stroop test performance were significant in young adults, but
only a positive trend was observed in preadolescent children.
These results indicate a modulatory role of age on the inter-
action between acute exercise and cognition. Compared to
young adults, children experienced a smaller beneficial effect
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on cognitive function after exercise cessation. Executive func-
tion and the brain are still developing in children [27, 76],
which may render children less susceptible to changes elic-
ited by acute exercise than young adults. However, our
findings are inconsistent with previous studies that show
facilitated interference suppression in the flanker task after
acute exercise in preadolescent children, but the hetero-
geneous designs used in these studies should be considered.
For example, acute exercise improved the response accuracy

on a modified flanker task, but the behavioral index of
reaction time [30, 31] and higher accuracy were observed
only in children who displayed a lower inhibitory control
capacity but not in children with a higher capacity [17].
Furthermore, studies [18, 48] also reported an acute
exercise-induced improvement in inhibitory performance
in children with attention-deficit/hyperactivity disorder
(ADHD), which is linked to inhibitory dysfunction. Based
on these findings, the beneficial effect of acute exercise on
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inhibition may be stronger in preadolescent children when
inhibition is assessed using specific tasks and in children
who are characterized by lower levels of or deficits in
inhibitory capacity.

4.2. Acute Exercise and Neuroelectrical Activation. The larger
P3 observed in adults and preadolescent children following
exercise cessation is consistent with previous research using
the flanker task in adults [77-79] and children [31, 48].
Our findings regarding acute exercise extended previous
studies by revealing that neuroelectrical alterations might
correspond to interference suppression during the Stroop
test. The induction of a greater P3 amplitude by acute exer-
cise regardless of Stroop congruency and age was also a novel
finding. These results revealed a general rather than selective
effect of acute exercise on the P3 amplitude for the different
experiments in both age populations. The physiological
arousal induced by acute exercise may be one of the primary
mechanisms underlying improved cognitive function [80],
andacute exercise-induced arousal and cognitive performance
exhibit an inverted U-shaped correlation [77, 81-83].
Arousal induced by moderate intensity exercise leads to bet-
ter performance compared to performances elicited by light
or vigorous exercise. Arousal may be a potential mediator
of the effects of acute exercise on cognition because of the
positive relationship between arousal and P3 amplitude
[45] and the similar inverted U-shape pattern for the correla-
tion between exercise intensity and P3 amplitude [77, 81].
Additionally, the P3 amplitude is linked to the level of atten-
tional allocation [45], and it is possible that our finding of a
larger P3 amplitude after acute exercise might lead to an
increase in arousal as well as in attention allocation, which
might be used in the experimental task. Notably, acute exer-
cise influenced cognitive processing in both age groups, as
indicated by the neuroelectrical P3 index; this effect is unlike
the modulatory role of age in the behavioral measurements,
as preadolescent children received less of a positive effect of
acute exercise than the benefit obtained by young adults.
Thus, the effects of acute exercise are reflected by more
sensitive indices at neuroelectrical levels, and these positive
variations are similar in preadolescents and young adults.

Examination of the conflict SP provided another unique
insight into the relationship between acute exercise and inter-
ference suppression and conflict resolution and conflict
response selection. Young adults did not exhibit differences
between the exercise and control sessions, and preadolescent
children exhibited reduced conflict SP amplitudes following
acute exercise, indicating that the modulatory role of age is
illustrated by this specific ERP component. The current find-
ings, which revealed a main effect of Stroop congruency on a
greater conflict SP amplitude in incongruent trials than in
congruent trials, are consistent with previous visual Stroop
studies reporting that the conflict SP was proportional to
the level of incongruence [50-52, 84]. Based on these results,
the conflict SP reflects the cognitive resources that are
recruited to resolve conflicts by selecting the proper response
during the Stroop test [50, 85].

The maintenance of the conflict SP amplitudes between
control and following acute exercise in young adults might

indicate the lessened impact of acute exercise on conflict res-
olution or conflict response selection. Interestingly, prior
research has suggested that acute exercise resulted in an
increase in conflict detection indexed by the shorter N450
latency [86], suggesting the differential effects of acute exer-
cise on the stages of conflict processing in young adults.
In contrast to young adults, preadolescent children exhibit
evidence of reduced conflict SP amplitude following acute
exercise, which might be interpreted as a reduction in the
interference effect and increased conflict-processing ability.
This finding is accordance with a recent meta-analytic study
[87] in which the authors suggested the greater benefits of
acute exercise for preadolescent children who are undergoing
executive function development changes, such as changes in
the middle frontal gyrus and left extrastriate region [50].

4.3. Age and Stroop Congruency. The “Stroop effect” was
observed in preadolescent children and young adults, with
no differences between these two age groups. Our findings
illustrated a robust interference effect that replicated the pre-
vious studies [5, 13, 73, 74] and indicated that the effect was
similar in the groups with ages between 12 and 20 years.
Inhibitory control dramatically increases in children between
the ages of 3.5 and 5 years, and further improvements are
only modest until 11 years of age [88]. Ikeda et al. [89]
observed less Stroop interference in young adults than in 5-
to 6-year-old, 7- to 8-year-old, and 9- to 10-year-old chil-
dren. However, this difference was not observed when young
adults were compared to 11- to 12-year-old children. Our
findings are consistent with the reports showing that children
aged approximately 12 years may have a similar inhibitory
ability as young adults, but the behavioral measures may also
have limited sensitivity to reflect age-specific differences. Our
neuroelectrical indices may support this assertion.

Smaller P3 amplitudes were elicited in the incongruent
condition than in the congruent condition in young adults
in this study. The congruency-dependent P3 amplitude
observed in young adults is consistent with the previous
research [90-92]. Specifically, the smaller P3 amplitude is
likely caused by the greater difficulty experienced in the eval-
uation and classification processes during incongruent trials
[92]. Notably, the P3 amplitude did not reflect the Stroop
congruency difference in preadolescent children. The P3
amplitude induced by visual stimuli likely decreases from
childhood into early adulthood, as previously reported [93].
A few studies examined the conflict SP and Stroop congru-
ency, and our finding of a main effect of Stroop congruency
is consistent with the previous studies that observed larger
conflict SP amplitudes in the incongruent condition. How-
ever, our study extended the idea of a greater conflict SP in
both brain hemispheres in young adults than in preadoles-
cent children. Based on these findings, young adults exhibit
better interference suppression and conflict resolution abili-
ties compared to those in preadolescent children. Moreover,
young adults exhibited a larger conflict SP in the right
central-parietal regions than that in the left regions; this
finding replicates the results of a study of an applied conflict
task that presented a Chinese stimulus [94]. Collectively, P3
neuroelectrical measures provide sensitive indices of the
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modulatory role of Stroop congruency and age during
various developmental stages. More research is required to
explore which specific ERP components are relevant during
different stages of neurocognitive development.

4.4. Limitations and Future Directions. Certain limitations of
the current study should be acknowledged and considered in
future research. Despite the evidence that acute exercise
improves interference suppression, as assessed by the Stroop
test, a response recorded by key pressing cannot distinguish
whether the acute exercise-induced facilitation results from
the stimulus or response processing benefits [49, 95]. Specif-
ically, the “Stroop effect” is produced by both stimulus-
stimulus incompatible (e.g., the word “red” printed in blue
with a verbal response, which results in semantic competi-
tion) and response-response incompatible relations (e.g.,
the word “red” printed in blue, with the pressing “blue” of
the assigned buttons, which results in a response competi-
tion). Future research may use the Stroop test paradigm with
two colors that are assigned to the same manual response
[49] or a paradigm in which the incongruent trials are either
incongruent-eligible or incongruent-ineligible [96] to further
characterize the beneficial effect of acute exercise. Addition-
ally, the interaction of acute exercise and cognition may be
moderated by individual differences, such as cardiovascular
fitness. For example, individuals with higher cardiovascular
fitness exhibited superior cognitive performance following
acute exercise compared to their counterparts with lower
fitness [97]. Other factors that differ among individuals are
education level and inhibitory control capacity. We did not
observe differences in either the congruent or incongruent
conditions between preadolescents and young adults in the
control session, suggesting that all participants presented a
similar reading ability for the easy words that were tested
(i.e., red, green, and blue in Chinese characters). However,
this finding also implies that the task may be insufficient at
revealing the developmental differences in cognitive control
mechanisms. A future study that considers education level
and manipulates the degree of task difficulty is recom-
mended. A third limitation may be related to the use of read-
ing in the control session. The use of videogames may serve
as a better “active control” protocol since it may be able to
maintain the arousal levels of the participants and prevent
them from becoming bored [98]. Additionally, although dif-
ferences in gender were not observed across the two age
groups (chi square=2.11, p > 0.05), our unbalanced gender
proportion, particularly more males than females, limits
the interpretation and generalization of these findings. The
current study did not examine the correlation between the
acute exercise and behavioral and neurological indices;
therefore, we cannot establish the mediating role of the neu-
rological indices on the variation in behavioral performance.
Future studies are encouraged to use larger numbers of
participants and conduct mediation analysis to further estab-
lish the potential mediator function of P3 and conflict SP on
behavioral improvement. Finally, the present study com-
pared the periods of preadolescence and young adulthood,
but the recruited preadolescent children were limited to
ages between 10 and 12 years. According to a previous
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developmental research, changes in the inhibitory capacity
differ dramatically across childhood [19], and interference
suppression develops in a nonlinear pattern in children
[89]. A better understanding of the effect of acute exercise
on inhibitory control may be achieved by the inclusion of
children across a wider age range and a longitudinal
examination of executive function in children.

5. Conclusions

This study is the first to reveal that the beneficial effect of acute
exercise on interference suppression in the Stroop test is mod-
erated by age, with young adults experiencing more benefit
than preadolescent children, who showed limited benefit from
acute exercise. Young adults had a larger P3 amplitude and an
unaffected conflict SP amplitude following acute exercise, but
preadolescent children exhibited a larger P3 amplitude and
reduced conflict SP amplitude, indicating divergent mecha-
nisms from a neuroelectrical perspective. Although the bene-
ficial effects of acute exercise on cognitive function may be
attributed to more general effects on perception and response
processes, improved cognitive performance may be associated
with enhanced attentional allocation in both age populations,
but the positive effects associated with interference suppres-
sion and conflict resolution were only observed in young
adults. These findings extend the current knowledge base by
revealing a modulatory role of age in the relationship between
acute exercise and interference suppression and provide pre-
liminary evidence for the potential underlying mechanism
by which acute exercise positively affects interference
suppression throughout early adulthood.
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Memory impairments are a frequently reported cognitive symptom in people suffering from major depressive disorder (MDD) and
often persist despite antidepressant therapy. Neuroimaging studies have identified abnormal hippocampal activity during memory
processes in MDD. Exercise as an ad-on treatment for MDD is a promising therapeutic strategy shown to improve mood, cognitive
function, and neural structure and function. To advance our understanding of how exercise impacts neural function in MDD, we
must also understand how exercise impacts healthy individuals without MDD. This pilot study used a subsequent memory
paradigm to investigate the effects of an eight-week exercise intervention on hippocampal function in low-active healthy (n = 8)
and low-active MDD (n =8) individuals. Results showed a marked improvement in depression scores for the MDD group
(p <0.0001) and no change in memory performance for either group (p > 0.05). Functional imaging results showed a marginally
significant decrease in hippocampal activity in both groups following the exercise intervention. Our whole brain analysis
collapsed across groups revealed a similar deactivation pattern across several memory-associated regions. These results suggest
that exercise may enhance neural efficiency in low-fit individuals while still resulting in a substantially greater mood effect for

those suffering from MDD. This trial is registered with clinical trials.gov NCT03191994.

1. Introduction

Memory impairment is the most frequently reported
cognitive symptom in people suffering from major depressive
disorder (MDD) and often persists as a residual symptom
following antidepressant therapy [1, 2]. Although the neural
underpinnings of impaired memory in MDD remain
unclear, research suggests that the hippocampus, which plays
a critical role in the formation of new memories, also plays a
role in the pathogenesis of MDD. To date, cognitive literature
has presented mixed findings in terms of the type, severity,
and specificity of memory deficits in people with MDD,
although the plurality of data has suggested an impairment
in episodic (autobiographical) memory with a sparing
of semantic (general knowledge) memory and short-
term memory [3-8]. The hippocampus has been shown to
play an essential role in the encoding of episodic memories
[5, 9-13], and pathologies associated with this neural struc-
ture may underlie the episodic memory impairments

observed in MDD populations. The relationship between
MDD, memory impairments, and hippocampal structure
and function is based on converging lines of research from
animal studies, neuroimaging, neuropsychology, and post-
mortem investigations which have all shown hippocampal
abnormalities at the structural, functional, and cellular level.
Structural brain imaging studies have shown robust hippo-
campal volume reductions particularly in persistent and
early onset MDD [14-16]. Functional neuroimaging studies
have found that both the memory encoding and retrieval
processes within the hippocampus are to be impaired in
MDD [4, 6, 17-19]. Neuropathological evidence from animal
models of depression and postmortem studies in depressed
humans have revealed cellular abnormalities in the hippo-
campus such as dendritic atrophy and reduced neuron and
glial densities [20-24].

Despite many efforts to develop effective antidepressant
therapies, MDD remains a severely undertreated disorder
in the primary care setting leaving more than half of
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individuals plagued with symptoms [25-28]. Exercise as an
add-on to conventional antidepressant therapies is a promis-
ing treatment strategy for MDD. It is well established that
exercise is efficacious in treating mild to moderate depression
with response rates comparable to mainstream therapies
such as antidepressant medication and cognitive behavioral
therapy [29-34]. However, there is a lack of understanding
of the neurobiological mechanisms that underlie or mediate
the antidepressant effects of exercise. It is well established
that exercise facilitates neuroplasticity [35-37]. To date,
much of our understanding of how exercise facilitates neural
and cognitive plasticity has come from the extensive animal
literature. For instance, rodent studies have shown that
exercise increases new cells in the dentate gyrus of the hippo-
campus, and this is associated with improved learning and
spatial memory [36, 38-40]. Further evidence has shown
that exercise increases synaptogenesis [41] and angiogene-
sis [42] and improves dendritic morphology in the hippo-
campus [43, 44]. However, the effects of exercise on brain
structure and function in humans have been more equivo-
cal. In elderly populations, aerobics exercise training has
been shown to improve spatial memory [45], executive
function [46, 47], and short-term memory [48]; however,
others observed no benefits [49-52]. Neuroimaging studies
have found that aerobics exercise reverses age-associated
brain volume loss in the prefrontal and temporal cortices
[53, 54], improves functional connectivity in the default
mode and frontal executive networks [47], and increases
hippocampal volume in schizophrenics [55]. To date, the
literature examining the effects of chronic exercise on
neural function in both healthy and MDD populations
remains scant. To capitalize on the full treatment potential
of exercise in MDD populations, we must also understand
the relationship between cardiovascular fitness, neural
function, and cognitive performance in healthy individuals
in order to identify neural mechanisms specific to MDD.

To our knowledge, this is the first study using a subse-
quent memory paradigm to determine the effects of an
eight-week exercise prescription on the functional integrity
of the hippocampus in low-active patients with MDD and
low-active healthy individuals. The aim of this pilot study
was twofold: (1) using fMRI to examine changes in hippo-
campal function following an exercise intervention, and (2)
to conduct an exploratory whole brain analysis to determine
how exercise affects overall brain activity.

2. Materials and Methods

2.1. Participants. Eight patients (mean age =37.25, SD = 8.00;
7 females) with comorbid MDD and anxiety were recruited
from an outpatient Mental Health Day Treatment Program
at a local hospital in Oshawa, Ontario Canada. Eight healthy
participants (mean age =20.63, SD = 1.19; 4 females) with no
history of mental health illness or neurological disease were
recruited from a local university in Oshawa, Ontario Canada.
Depressed patients had a diagnosis of MDD according to an
unstructured clinical interview by hospital psychiatrists
based on Diagnostic and Statistical Manual of Mental
Disorders—Fourth Edition (DSM-IV-TR) [56] criteria, no
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coexisting DSM-V Axis I disorders apart from anxiety, and
a score >20 on the Beck Depression Inventory—Second
Edition (BDI-II) [57], and their pharmacological treatment
was stabilized a minimum of six weeks prior to study enrol-
ment. In order to be considered eligible for the study, partic-
ipants needed to indicate that they exercised less than 20
minutes, three times per week. Both groups were also safety
screened for MRI and screened with the Physical Activity
Readiness Questionnaire (PAR-Q) to ensure they had no
medical contraindications to exercise. All participants
provided written consent.

2.2. Psychometric Evaluation. Participants completed the
Montreal Cognitive Assessment (MoCA) which is a brief
neurocognitive tool with high sensitivity for screening
patients with mild cognitive impairment. This cognitive
assessment was performed to identify participants who may
have difficulty performing the associative memory task. The
internal consistency of the MoCA is good, with a coefficient
alpha of 0.83 [58]. Depression was measured using the Beck
Depression Inventory (BDI-II) [57] which is one of the most
widely used self-reported instrument capable of measuring
depression severity ranging from not depressed to severely
depressed. The BDI-II demonstrated excellent internal con-
sistency, with a coeflicient alpha of 0.91 [59]. All measures
were performed before and after the eight-week exercise
intervention.

2.3. Fitness Assessment. Cardiorespiratory fitness was mea-
sured before and after the exercise intervention using the
YMCA cycle ergometer protocol recommended by the
American College of Sports Medicine [60-62]. The YMCA
cycle ergometer protocol is an indirect submaximal exercise
test used to estimate maximal oxygen consumption
(VO,max) from heart rate (HR) measurements. The protocol
consists of two or more consecutive 3-minute stages at a
given workload. The objective was to elevate the participant’s
HR to a target zone to approximately 85% of the age-
predicted maximum HR for two consecutive stages. The ini-
tial workload consisted of a 25-watt workload at a cadence of
50 revolutions per minute. HR was measured and recorded
using the radial pulse method during the final 15 seconds of
each minute, which determined the workload of subsequent
stages indicated by the YMCA protocol. Once a steady state
HR (two successive measures that differ from <5bpm) was
within 10 bpm of the 85% age-predicted maximum HR, the
test was complete. VO, max was estimated using an equation
that includes workload, body mass, and derived constants.

2.4. Exercise Intervention. Participants performed an individ-
ualized eight-week exercise program consisting of three
weekly sessions (described below). Exercise sessions were
performed alone, on nonconsecutive days, and each session
was supervised by a qualified exercise professional to increase
compliance [34]. Attendance was recorded and all partici-
pants completed >80% of the exercise sessions.

The exercise prescription was based on international rec-
ommendation to obtain at least 150 minutes per week of
moderate to vigorous intensity aerobics exercise and to
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perform strengthening activities twice per week, for develop-
ing and maintaining cardiorespiratory, musculoskeletal, and
neuromotor fitness in healthy adults [63, 64]. This
minimum-effective dose of exercise was prescribed to
encourage better compliance since people with depression,
and are low active, tend to be less motivated [65]. Research
has also shown that combining aerobics with strength train-
ing improves depression and cognitive function such as
attention, processing speed, executive function, and memory
performance more than aerobics exercise alone [51, 66].

2.4.1. Resistance Sessions. Resistance sessions were completed
twice per week and incorporated a whole-body exercise pre-
scription using larger muscle groups. Each session included
eight resistance exercises using both resistance training
machines and free weights. Initial workloads were approxi-
mately 95% of the 10 repetition maximum to ensure proper
form. Exercises were performed in two or three supersets
(one set of each exercise with no rest between sets) with an
8-12 repetition range in order to decrease rest times and to
maintain target HR. Workload was increased approximately
5% once participants were able to complete three sets of 12
repetitions with proper form. Specific exercises were changed
every four weeks; however, they targeted the same muscle
groups. Resistance exercises included variations of the chest
press, pull downs, triceps extension, biceps curl, shoulder
press, leg press, leg extensions, leg curls, squats, split squats,
calf raises, and abdominal exercises. During each session,
HR was monitored to ensure that the participant maintained
a HR of between 60-80% of their age-predicted maximum
HR. Each session began with a 5-minute aerobics warmup
and ended with 15 minutes of aerobics activity that was
performed on either the treadmill, stationary bike, or ellip-
tical trainer.

2.4.2. Aerobics Session. Participants completed an aerobics-
only session once per week. They were given the choice to
perform their aerobics activity on either the treadmill,
stationary bike, or elliptical trainer. The aerobics session
workloads were determined by HR response and increased
by five-minute increments over the eight weeks reaching a
maximum of 60 minutes per session. HR was monitored
throughout the session to ensure the participant was in the
target HR range.

2.5. Statistical Analysis. Statistical analyses were performed
using GraphPad Prism software, version 6.0 data. Data are
presented as mean (standard deviation (SD)). P values less
than 0.05 were considered significant. Differences in baseline
variables between groups were tested using a two-tailed Stu-
dent’s f-test and chi-square test for gender distribution.
Within group differences for pre-post-BDI, MoCA, BMI,
and VO,max were tested using a paired f-test. A two-way
repeated measures analysis of variance (ANOVA) was used
to determine any group x time of interactions and to com-
pare the changes between the two treatment groups. Cohen’s
d was used to represent the effect size within each group. For

between group effect sizes, we used d,,,,., [67] which uses the

difference between Hedge’s ¢ of two different treatment
groups in pre-post research designs.

2.6. Associative Memory Task. To evaluate the encoding and
retrieval processes of memory, MRI studies frequently use a
recognition memory paradigm that consists of an “encoding”
and “recall” phase [5, 68]. Associative memory refers to
memory for the relationships between memoranda rather
than memory for objects themselves [69-71]. The role of
the hippocampus in memory formation has also been specif-
ically linked to associative memory [72]. A specific version of
an associative paradigm [17] using face-name pairing known
to reliably activate the hippocampus during the successful
encoding event and sensitive enough to detect hippocampal
dysregulation in a MDD sample [16] was used to investigate
activation patterns of the hippocampus during the encoding
process inside the MRI scanner (see Figure 1). During the
encoding phase inside the MRI, participants were presented
with face-name pairs and used a response box provided to
indicate if the name suited the face. The retrieval phase was
performed after the MRI scan. Participants were presented
with a face and two names and instructed to indicate which
name was paired with that face during the encoding phase.
Participants also rated the confidence of their responses.
Trials during the encoding phase were then reclassified based
on the responses during the retrieval phase into correct (the
participant selected the correct name for the face and indi-
cated a high confidence in their response, suggesting that
the face-name association was successfully encoded), guesses
(a correct selection with low confidence), or incorrect (the
wrong name was selected).

2.7. fMRI Scanning Parameters. Participants were scanned on
a 3-Tesla Tim trio MRI scanner equipped with a 32-channel
phased array head coil. E-prime software version 2.0 (Psy-
chology Software Tools) was used to present stimuli on a
rear-projection system (Avotec, Inc., Stuart, FL) in two sepa-
rate nine-minute functional runs. To obtain optimal hippo-
campal resolution, all scans were acquired in the oblique
coronal plane perpendicular to the long axis of the hippo-
campus to maximize the anatomic delineation. A total of
416 functional scans were acquired with a T,*-weighted gra-
dient echo planar imaging sequence (TR =2500ms,
TE=27ms, FOV=192mm, 3 mm x3 mm x 3 mm, and flip
angle =707 in-plane resolution = 3 mm x 3 mm; and 50 slices
with 3.5 mm slice thickness). The first 4 volumes of each run
were discarded to allow for T1 equilibration. The anatomical
scan lasted six minutes and was acquired with a TI MPRAGE
imaging sequence (TR=2000ms, TE=2.63ms, FOV
256 mm, 1 mm x 1 mm X 1 mm voxels, and flip angle =9°).

2.8. fMRI Analysis. Image preprocessing was performed
using SPM12 methods (Statistical Parametric Mapping,
Wellcome Department of Cognitive Neurology, London,
UK: http://www filion.ucl.ac.uk/spm) within MatLab 8.3
(The MathWorks Inc., MA). Individual functional images
were slice time corrected and realigned to the first image in
the series to correct for motion. The EPI images were coregis-
tered to the T1, and segmentation was applied to the T1
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FIGURE 1: (a) During the encoding task, participants viewed 240 face-name pairs over two nine-minute fMRI runs. Participants were asked if
they thought the name suited the face and responded using a response box. Each run included 120 face-name pairs presented for a duration of
3000 ms, jittered with 34 fixation crosses ranging from 3000-9000 ms in increments of 3000 ms. (b) The retrieval task was then performed on
a laptop computer outside the MR scanner. Participants were instructed to choose which of the two names was originally paired with the face
shown and then asked if they were confident with their choice. This was used to identify the correct successful encoding trials as remembered

(correct) versus lucky guesses.

anatomical images to extract grey matter, white matter, and
CSF masks and calculate a deformation field to transform
the data into MNI space. All EPI images were then spatially
normalized to the ICBM template using the deformation
field, resampled to 3x3x3, and smoothed using a 6 mm
full-width-half maximum isotropic Gaussian filter. General
linear model (GLM) was performed at the single-subject level
and statistical contrasts were created modeling the hemody-
namic response function (HRF) of remembered items with
high confidence (correct), remembered items with low confi-
dence (lucky guess), and incorrect trials (incorrect). Six head
motion parameters (three rigid body translations and three
rotations) were included in the model to reduce the potential
effects of motion. Second-level random effects analysis was
performed using the contrast of t-test of correct > incorrect.
Correct retrieval requires well encoding of the items. As such,
this contrast which differentiates between poorly and well-
encoded trials, known as the subsequent memory effects, is
a powerful tool for examining successful memory encoding
in the brain [73, 74]. As our primary hypothesis was related
to activity in the hippocampus, a hippocampal mask was
defined using the automated anatomical labeling (AAL) atlas.
Significant clusters from an independent sample ¢-test within
the hippocampus (p < 0.01 uncorrected, 10 voxels, for this a
priori ROI-defining analysis only) for correct >incorrect at
baseline were used as an ROI to extract contrast beta values
for correct > incorrect in pre- and postscans for each partici-
pant. The average beta values from each ROI were imported
into SPSS version 20, and a 2 x 2 repeated measures ANOVA
(group x time) was run. We then conducted an exploratory
whole brain analysis to determine if other brain regions
showed task-related effects. For our whole brain analysis,
significant clusters were defined as 20 contiguous voxels
(180mm?) with p<0.005 uncorrected. A 2x2 repeated
measures ANOVA (group x time) was run on f3 values for
the correct > incorrect contrast in order to identify regions

in which there was a difference in pre-post changes across
groups. Additionally, an exploratory analysis was run exam-
ining a group x time interaction across the whole brain.

3. Results

3.1. Baseline Characteristics. At baseline, there were no signif-
icant differences between groups for BMI, VO,max, and
MoCA scores (all p > 0.05). BDI scores for the MDD group
scores indicated severe depression while the healthy
group BDI scores indicated no depression (p <0.0001).
The depressed group was also older than the healthy
group (p<0.0001). See Table 1.

3.2. Psychometric, Memory, and Fitness Results. A 2x2
repeated measures ANOVA revealed a group x time interac-
tion for BDI scores (f (1,15)=30.42, p <0.0001) indicating
that the MDD group had a greater decrease in depression
scores pre-post. There were no significant changes in BMI,
MoCA scores, or performance on the associative memory
task (p > 0.05) for either group pre-post. Although baseline
memory scores between groups were not significantly differ-
ent (p = 0.477), our results showed that the MDD group per-
formed more poorly on the associative memory task
compared to the healthy group (71.48% versus 75.32%) indi-
cating likely memory impairments in the MDD group. One
MDD (n=1) participant discontinued baseline VO,max
testing due to exhaustion and was excluded from VO,max
analysis. Baseline VO,max scores revealed that one MDD
participant (n = 1) was in the good health benefit rating zone,
and the remaining participants (n=14) were in the poor
health benefit rating zone based on the Canadian Society
for Exercise Physiology guidelines [63]. The healthy
group showed a 47% increase in VO,max that was sig-
nificant (p=0.014) while the MDD group showed a
marginally significant increase of 31% (p=0.073). There
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TaBLE 1: Baseline characteristics of participants.

Variables MDD n Healthy n df p

Sex (male/female) 1/7 8 4/4 8 1 0.106*
Age (years) 37.25 (8.00) 8 20.63 (1.19) 8 14 <0.0001°
Body mass index (kg/mz) 28.33 (5.12) 8 28.29 (7.91) 8 14 0.993°
VO,max (mlkg '.min") 24.82 (8.00) 7 20.81 (6.48) 8 12 0.326"
BDI 41.75 (3.50) 8 5.88 (5.03) 8 14 <0.0001°
MoCA 24.63 (1.41) 8 26.13 (3.23) 8 14 0.248°

Data are expressed as the mean with the standard deviation in parentheses. *Pearson’s chi-square. "Student’s t-test. VO,max: maximum oxygen consumption;

BDI: Beck Depression Inventory; MoCA: Montreal Cognitive Assessment.

was no significant difference in VO,max between groups
(p=0.661). These improvements in VO,max suggest that
the exercise intervention was successful at improving
cardiorespiratory fitness (see Table 2).

3.3. fMRI Results. Using a main effect contrast of correct > in-
correct, collapsing across groups, at baseline, we identified
active voxels in the hippocampus and created ROIs for the
right and left hippocampus (see Figure 2(a)). A repeated
measures ANOVA examining group x time using f3 values
for the correct > incorrect contrasts for pre and post revealed
a marginal main effect of time (f (1,15)=3.3, p=0.09), no
main effect of the group (f (1,15)=0.005, p=0.957) or
group x time interaction (f (1,15)=0.165, p=0.69). This
marginal main effect of time is driven by a decrease in the
correct > incorrect contrast in the hippocampus indicating
that there was a decrease in hippocampal activity during suc-
cessful encoding in both groups following the exercise inter-
vention (see Figure 2(b)).

The exploratory whole brain analysis did not reveal any
clusters in which there were group differences in the pre-
post changes following exercise or a main effect of group
differences. Given the lack of interaction of the main effects
of the group or group x time interaction, a post hoc whole
brain analysis was run in which both groups were collapsed.
Given the relatively small sample size, this analysis maxi-
mizes the power to detect changes in brain activity following
the exercise intervention that are common to both healthy
and MDD, using the more powerful paired sample t-test.
Changes in neural activity in the correct > incorrect contrast
were compared from the pretreatment to posttreatment
MRI scans. Decreases in activity following exercise were
noted in several regions (see Figure 3 and Table 3). Regions
included a larger cluster in the left posterior insula and
smaller clusters in the medial superior frontal/mid cingulate
and postcentral superior parietal gyrus.

In order to examine regions in which changes in neural
activity were related to changes in BDI score, an additional
contrast was run, regressing change in BDI against the paired
t-test described above. Again, in order to maximize power,
the healthy and MDD cases were both included in this anal-
ysis. The justifications for including both groups are as fol-
lows: firstly, although the healthy group was not clinically
depressed, there was some pre-post reduction in BDI scores
for the healthy group, and secondly, since cases with depres-
sion tended to have a larger decrease in BDI, this analysis

may be more sensitive to group x time effects, reflected as
BDI changes, while also better reflecting areas in which the
pre-post differences were behaviorally meaningful. The
regression against BDI for pre-post changes found a negative
relationship between changes in depression scores and acti-
vation in the right occipital, left occipital/fusiform, and left
precentral gyrus (see Figure 4 and Table 4).

4. Discussion

This small fMRI pilot study used a subsequent memory par-
adigm to investigate the effects of an eight-week structured,
supervised exercise intervention on hippocampal function
and overall brain activity in low-active patients with MDD
and low-active healthy individuals. The current study yielded
two main findings. First, our ROI analysis of the hippocam-
pus showed a marginal decrease in activation for both groups
pre-post exercise. Although this decrease in hippocampal
activation was only marginally significant, a deactivation pat-
tern was present in both groups and was consistent across
other memory-related brain regions noted in the whole brain
analysis. These data provide the first evidence that improved
cardiovascular fitness, following eight weeks of the minimum
recommended dose of exercise, affects neural function alike
in healthy and MDD brains. The overall deactivation pattern
that we observed in the hippocampus and several other brain
regions despite similar memory performance pre-post sug-
gests increased cortical inhibition that attenuated neural
activity in a subset of brain regions known to inhibit memory
encoding and/or an increase in neural network efliciency
during the memory encoding process. Second, our study
showed that exercise had a robust antidepressant effect on
the MDD group who went from the severe to mild depression
range, providing additional support to the growing body of
literature that exercise is an effective adjunctive therapy for
MDD [75].

A common theme in the neurocognitive literature is that
brain activity for remembered items is greater than brain
activity for forgotten items, as this suggests successful mem-
ory encoding [17, 76-79]. However, neuroimaging studies
employing a subsequent memory design have identified a
negative relationship between remembered items and neural
activity in brain regions such as the insula and the supramar-
ginal gyrus, and hyperactivity in these regions may be
detrimental to new memory formation [76, 80-82]. A
candidate mechanism for the decrease in neural activity
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FIGURE 2: (a) Regions within the hippocampus found to be active in the correct > incorrect contrast for both healthy and MDD at baseline,
used as an ROI to extract beta values for an analysis of activity in the hippocampus. (b) Beta values for correct > incorrect from both groups at
pretreatment and posttreatment. Both groups showed a reduction in hippocampal activity within the bilateral ROI following exercise. Error

bars represent standard error.

FIGURE 3: Pre to post changes in neural activity in the correct > incorrect contrast (paired sample t-test). Decreases in activity following

exercise were noted in several regions, irrespective of group.

that we observed following the exercise intervention may
be a modulation in the main inhibitory neurotransmitter
y-aminobutyric acid (GABA). Cortical inhibition, mediated
by GABA via cortical interneurons, is an essential mecha-
nism that eliminates task-irrelevant distractors that increase
neural noise, which negatively affects attention for task
demands. Inhibitory pathways consisting of GABAergic
projections between the thalamus and cortex provide a
mechanism that may eliminate task-irrelevant distractors
by suppressing irrelevant sensory inputs early in sensory
processing [83, 84]. A plethora of evidence has identified
GABA deficits in MDD, and it has been postulated that
GABAergic dysregulation may play a significant role in
the pathogenesis of the disorder [85-88]. For example,
neuroimaging studies have identified GABA deficits in
the dorsolateral prefrontal and occipital cortex in depressed
individuals [89-91]. Histopathological studies of postmor-
tem tissue from MDD brains have revealed a reduction in
both the density and size of GABAergic neurons in the

prefrontal and occipital cortex that conceivably underlie the
low levels of GABA seen in neuroimaging studies [92, 93].
Research has shown that exercise may facilitate cortical
inhibition by regulating the interplay between glutamatergic
excitatory neurons and GABAergic inhibitory interneurons.
In mice, running engaged inhibitory mechanisms in the
hippocampus through an increased expression of vesicular
GABA transporter and extracellular GABA release that was
also associated with improved anxiety regulation [94]. In
humans with early Parkinson’s disease, a neurophysiological
study used transcranial magnetic stimulation (TMS) to
examine cortical inhibition of the primary motor cortex
(M1) following an eight-week, high-intensity aerobics exer-
cise intervention. In addition to improving clinical symp-
toms, the exercise intervention normalized corticomotor
excitability through an increase in GABA-mediated corti-
cal inhibition [95]. Nonetheless, literature supporting the
role of exercise in normalizing cortical inhibition via the
GABAergic system remains sparse.
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TABLE 3: Brain regions showing pre-post changes in activity for the correct > incorrect, irrespective of group.

MNI coordinates

Voxels Peak T x v 7 BA Location

37 -6.27 -6 17 41 32 Medial superior frontal/mid cingulate
35 -5.85 -18 -10 8 Left putamen

35 -5.79 -30 —-46 44 40 Left supramarginal/intraparietal sulcus
45 -5.61 -42 -28 35 3 Postcentral, superior parietal gyrus
50 -5.34 3 -16 -7 Thalamus/midbrain

139 -5.3 -42 -37 8 41 Left posterior insula

30 -5.22 -18 -70 47 7 Left superior parietal

36 -5.17 30 -28 14 Right posterior insula

20 —-4.75 54 —-43 —4 21 Right posterior mid temporal

25 -3.82 12 -82 -7 18 Right occipital gyrus

MNI: Montreal Neurological Institute; BA: Broadmann area.

-2.94

FIGURE 4: Pre-post changes found a negative relationship between changes in depression scores and activation in the right occipital, left

occipital/fusiform, and left precentral gyrus, irrespective of group.

Our observed decrease in brain activity during successful
memory encoding pre-post the exercise intervention also
suggests lowered demands on neural networks and increased
neural processing efficiency. Our results provide additional
support to a recent body of literature, which postulates that
exercise increases neural efficiency. In children, an eight-
month aerobics exercise program was associated with
decreased activity in several brain regions during an antisac-
cade task alongside improvements in performance [96]. In
elderly adults, a 12-week aerobics exercise program was asso-
ciated with decreased prefrontal activation despite improve-
ments in visual short-term memory [97]. A similar study
conducted in elderly adults with mild cognitive impairment
found that 12 weeks of aerobics exercise decreased brain
activity in 11 brain regions during memory retrieval despite
improvements in memory performance [98]. In adolescence,
high-fit individuals showed a pattern of decreased activation
in the hippocampus and right superior frontal gyrus com-
bined with a deactivation in the default mode network
(DMN) during the encoding of subsequently remembered
items, that was absent in low-fit individuals [99]. To deter-
mine if aerobics exercise influences learning and memory-
associated neural circuitry, a group of researchers examined

the brain activity in high-fit and low-fit adolescents during
an SME paradigm. Despite comparable memory
performance between the two groups, there were notable
differences in memory-related and default mode (DMN)
brain regions during encoding of successfully remembered
word pairs versus forgotten word pairs. Results showed that
high-fit individuals displayed a robust deactivation pattern
in the DMN areas, such as the ventral medial prefrontal cor-
tex and posterior cingulate cortex, which was absent in the
low-fit group. The low-fit group also showed a greater bilat-
eral hippocampal and right superior frontal gyrus activation
during encoding of later remembered versus forgotten word
pairs. Our results taken together with previous research sug-
gest that improvements in aerobics fitness from the exercise
intervention can promote neural processing efficiency during
memory encoding processes.

Finally, the neurocognitive benefits associated with exer-
cise may be attributed to increases in cerebral blood flow and
neural growth factors, particularly brain-derived neuro-
trophic factor (BDNF), a key mediator of neuroplasticity in
the brain [36, 37]. BDNF, a member of the neurotrophin
family, upregulates neurogenesis, promotes neural survival,
improves neural structure, and increases synaptic efficacy
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TaBLE 4: Regions showing decreased activation associated with
depression, irrespective of group.

Voxels Peak T N)I(NI CO(;rdmatZes BA Location

58 -641 36 -88 11 19 Right occipital

27 -492 -39 -22 56 4  Left precentral gyrus
29 -4.1 24 -73 -13 18 Left occipital/fusiform

MNI: Montreal Neurological Institute; BA: Broadmann area.

[100-103]. BDNF also modulates the formation and plastic-
ity of GABAergic synapses and promotes maturation of
GABAergic inhibitory networks [104-106]. Reduced BDNF
levels are a consistent finding in animal models of depression
[107], and administration of exogenous BDNF into the hip-
pocampus is able to produce antidepressant behavioral
responses comparable to antidepressant medications [108].
Exercise is known to elevate BDNF production in the hippo-
campus [35, 109] and has been postulated as a leading candi-
date mechanism underlying the antidepressant effects of
exercise [110, 111].

5. Limitations

This pilot study has some limitations. First, the sample size
used is rather small and therefore statistically underpowered.
We did not age match our groups, which resulted in the
MDD group being significantly older than the healthy group.
Intrinsically, we wanted to compare MDD brains to young
healthy brains with no history of mental health illness or
other confounding comorbidities that increase with age and
determine if exercise affects neural function in healthy popu-
lations who are low active. Also, we did not measure
sedentary behavior time which has been shown to have dele-
terious health consequences independent of daily physical
activity levels [112]; as a result, future work must consider
sedentary behavior independent of physical activity levels
and cardiorespiratory fitness. Another limitation is that our
MDD samples were all medicated which may have also
affected results. However, this is the typical patient seen in
clinical practice, and in any real-world clinical intervention
using exercise, the participants would likewise be similarly
medicated. Next, even though our analysis collapsing across
groups mediates some of the power issues for a transdiagnos-
tic analysis of the effects of exercise on neural activity, the
analysis was still underpowered to detect group x time inter-
action effects.

While we did not closely replicate the results of Fairhall
et al, it should be noted that they used a contrast comparing
correct trials to fixation, while we made use of a more
standard subsequent memory contrast (correct > incorrect).
Nevertheless, we did observe a decrease in the correct > in-
correct contrast in the hippocampus indicating that there
was a decrease in hippocampal activity during successful
encoding in both groups following the exercise intervention.
We did not however observe any group effects. Given the
small sample size, we were likely underpowered to detect
any subtle group effects, though it remains possible that the

decreases in activity observed following the intervention are
common across low-active individuals regardless of diagnos-
tic status. In fact, it should also be noted there was even a
small decrease in BDI scores amongst the healthy group.
The physiological effects of exercise on the brain may be
common amongst both healthy and MDD while still result-
ing in a substantially greater mood effect for those suffering
from depression.

6. Future Research

This small pilot study demonstrates that eight weeks of the
minimum recommended dose of exercise improved cardio-
respiratory and significantly reduced depression severity in
the MDD group. Importantly, we were able to demonstrate
that combining the minimum recommended dose of exercise
with conventional treatments was effective in treating the
typical patient seen in the primary care setting who continues
to experience severe depressive symptoms despite being
treated with antidepressant medication. On the other hand,
prescribing exercise to MDD patients presents many chal-
lenges to the practitioner since many patients lack motivation
to initiate and maintain an exercise routine. Introducing
patients to the minimum recommended dose of exercise as
an add-on therapy may offer a practical approach for practi-
tioners to help patients initiate and maintain a routine of
daily exercise [113, 114].

An interesting finding from this pilot study was that eight
weeks of exercise affected healthy and MDD brains similarly.
The deactivation pattern we observed in several brain regions
warrants further investigation with a larger sample size to
allow a more robust statistical analysis. Future work must
also include an MDD control group, as this will help us
understand the magnitude of the effect of exercise, in combi-
nation with other therapies, on depressive symptomology
and neural function. Moreover, there is a shortage of report-
ing sedentary behavior, physical activity levels, and cardio-
vascular fitness parameters in the MDD literature. As such,
some of the differences observed in studies comparing
MDD to controls might be confounded by a low-active life-
style, which may be more prevalent in MDD. To address this
gap, future research should compare “fit” and “low-fit” MDD
groups to identify markers independent of cardiorespiratory
fitness and unique to MDD. Furthermore, the exercise and
cognitive literature have not established whether the psycho-
logical effects from engaging in exercise, independent of
changes in fitness, are still beneficial to mental health and
brain function. Future research must indicate whether the
effects seen following an exercise intervention are associated
with improved cardiovascular fitness or from the psycholog-
ical benefits from engaging in exercise.

Lastly, MDD is a heterogeneous disorder, and it is likely
to be a multifaceted interaction of psychological and neuro-
biological mechanisms that underlie or mediate the effects
of exercise. Future research must consider using a combina-
tion approach of multimodal imaging techniques, behavioral
assessments, and biochemical analysis to delineate the
biological and clinical signatures of fit and unfit MDD popu-
lations. Once we are able to elucidate these key biomarkers
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unique to MDD, novel intervention strategies can then be
designed to prevent or reverse neuropsychological patholo-
gies such as MDD.
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Psychological stress is a state of mental or emotional strain or tension that results from adverse or demanding circumstances.
Chronic stress is well known to induce anxiety disorders and major depression; it is also considered a risk factor for Alzheimer’s
disease. Stress resilience is a positive outcome that is associated with preserved cognition and healthy aging. Resilience presents
psychological and biological characteristics intrinsic to an individual conferring protection against the development of
psychopathologies in the face of adversity. How can we promote or improve resilience to chronic stress? Numerous studies have
proposed mechanisms that could trigger this desirable process. The roles of enkephalin transmission in the control of pain,
physiological functions, like respiration, and affective disorders have been studied for more than 30 years. However, their role in
the resilience to chronic stress has received much less attention. This review presents the evidence for an emerging involvement
of enkephalin signaling through its two associated opioid receptors, y opioid peptide receptor and § opioid peptide receptor, in

the natural adaptation to stressful lifestyles.

1. Introduction

Psychological stress is a state of mental or emotional strain
or tension that results from adverse or demanding circum-
stances. It has multifaceted causes and occurs frequently
over a lifetime with varying dimensions and intensity, affect-
ing all walks of life, irrespective of a person’s occupation or
position within a society [1]. While depression is often the
devastating outcome of chronic stress [2] and also a risk fac-
tor and common comorbidity in Alzheimer’s disease [3, 4],
stress resilience, on the other hand, is a positive outcome
that is associated with preserved cognition, reduced oxida-
tive damage, and healthy aging [5, 6]. The American Psycho-
logical Association defines resilience as “the process of
adapting well in the face of adversity, trauma, tragedy,
threats or even significant sources of threat.” Heterogeneity
in the response to chronic stress suggests that resilience is

a complex neurobiological process that emerges from a multi-
tude of gene-environment interactions. Several mechanisms
are proposed to underlie the interindividual differences in
resilience or vulnerability to chronic stress.

Within the neuropeptidergic system, the endogenous
opioids enkephalins (ENK) which signal through the opioid
peptide receptors (OPr), u opioid peptide receptor (MOPr)
and § opioid peptide receptor (DOPr), could be interesting
candidates to naturally promote the adaptation to chronic
stress. ENK are members of the endorphin family and the
first ones to be isolated in the brain [7]. Considering the
binding of morphine and ENK to the same receptors, their
role as a natural analgesic was rapidly proposed. Pioneered
studies have provided the first experimental evidence sup-
porting a role of ENK in analgesia and stress-induced analge-
sia (i.e., pain suppression after an exposure to stressful
stimuli). More specifically, it was shown in the rat that 1)
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the cerebroventricular injection of ENK produces analgesia
[8, 9]; 2) stress increases blood concentrations of ENK [10];
and 3) stress-induced analgesia, such as immobilization stress
on a hot plate or cold water stress, could be reversed by an
opioid antagonist [11, 12]. Subsequently, it was hypothesized
that ENK were playing a major role in stress processes inde-
pendently of their analgesic functions. Madden et al.
reported that inescapable stress induced by footshocks
(mimicking a posttraumatic stress disorder; PTSD) increases
brain levels of ENK [10]. Another study showed a decrease
of ENK immunoreactivity in the rat hypothalamus (HPT)
after stress induced by footshocks [13]. More recently,
ENK in the rat amygdala (AMG) were implicated in Pavlov-
ian conditioned fear [14, 15] as well as in various behavioral
and neuroendocrine aspects of the stress response [16-18].
The ENK are known to be involved in a large set of physio-
logical and emotional processes, but their role in the individ-
ual capacity for stress adaptation has received less interest.
In this review, the biochemistry of ENK and their anatomi-
cal distribution within the central nervous system (CNS) will
be described first, followed by coverage of the well-known
functions of ENK in emotional behaviors, including their
key involvement in Pavlovian conditioned fear, anxiety, and
stress response. Subsequently, the emerging role of ENK in
the development of stress resilience will be discussed, with
an emphasis on the recruitment of ENK projections coming
from the AMG. The AMG is considered a key brain structure
mediating the regulation of emotions and affective behavior,
and the role of ENK in the stress response is notably
suggested by their extended distribution in the AMG.

2. Enkephalins and Their Opioid Receptors

2.1. Biochemistry and Anatomical Distribution of Enkephalins
and Their Receptors, DOPr and MOPr, in the CNS. ENK
are produced from a propeptide precursor, proenkephalin
(proENK), which is translated from preproenkephalin
mRNA that is encoded by a gene distinct from the other
endogenous opioid peptides [19, 20]. The maturation of
propeptides into functional peptides is performed during
the vesicular transport within large dense-core vesicles
(LDCVs) and requires the joint action of several endopepti-
dases (cathepsin L, aminopeptidase B and E, and prohormone
convertase 2) [21-23]. In the rat, the proENK is cleaved
proteolitycally to produce four copies of methionine-ENK
(Met-ENK), one leucine-ENK (Leu-ENK), and two C-
terminal extended Met-ENK. Subsequently, LDCVs are
stored near release sites (i.e., presynaptic, extrasynaptic,
and dendritic) and released following an increase in intra-
cellular calcium [24]. Once released by neurons, ENK are
degraded in order to control the diffusion and synchrony
of the signal. Some studies demonstrated that radioactively
labeled ENK are completely degraded in less than a minute
upon injection (intracerebroventricular) in the rat brain
[25]. ENK degradation is performed by two neuropeptidases
called metallopeptidases: aminopeptidase N and neutral
endopeptidase (or neprilysin) [26, 27]. In vitro, ENK have
a slightly higher affinity for DOPr, even though they can also
bind and activate MOPr and « opioid peptide receptor
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(KOPr) in transfected cells transiently expressing MOPr,
DOPr, or KOPr [28]. Studies describing the distribution
of ENK in the rat brain have demonstrated their preferen-
tial binding to DOPr and MOPr by autoradiographic
labelling [29].

Given the vast extent of biological processes and physio-
logical systems in which ENK are involved (cardiovascular
system, thirst and feeding, pain and analgesia, gastrointesti-
nal functions, respiration, etc. [30]), the expression of ENK,
DOPr, and MOPr is ubiquitous. Indeed, ENK are distributed
among the central, peripheral, and autonomous nervous
systems, as well as in endocrine tissues (adrenal medulla,
endocrine pancreas) and their target organs (liver, skin,
bones, and lungs) [31, 32]. For the purpose of this review,
we will focus mainly on the neuroanatomical distribution of
ENK and their receptors within the “emotional brain” known
as the limbic system that includes the cingulate and entorhi-
nal cortex, hippocampus (HPC), septum, HPT, and the
extended AMG [33]. Most of neuroanatomic studies have
been conducted in rats, although several studies have also
been conducted in humans, showing a similar distribution
across species, especially in the limbic system [34]. Fallon
and Leslie extensively reported in 1986 the distribution of
ENK neurons as well as ENK fibers in the rat brain using
an indirect immunofluorescence technique [35]. ENK neu-
rons are found among the entorhinal, piriform, and medial
prefrontal cortex (mPFC, infralimbic and prelimbic). Most
nuclei of the HPT were shown to contain ENK neurons
(paraventricular, posterior, ventromedial, dorsal, dorsome-
dial, and lateral nuclei). They are widely distributed in the
central (CEA), medial (MEA), and basolateral (BLA) AMG
and its intercalated (IC) nuclei. ENK neurons are also located
in the lateral septum, preoptic area, bed nuclei of the stria
terminalis (BST), nucleus accumbens (NAc), and ventral teg-
mental area (VTA). In the HPC, ENK are present in mossy
fibers and granular cells. ENK fibers mainly project from
the dentate gyrus to the CA3 region of Ammon’s horn, but
also target some neurons of the CA1 and CA2, and dentate
gyrus. Additionally, ENK fibers are found in the dorsal and
ventral pallidum [35, 36].

Similar to ENK, OPr are extensively expressed through-
out the CNS [37]. The anatomical distribution of MOPr
and DOPr is relatively similar to that of ENK projections
[38]. To study the relative distributions of MOPr and DOPr
throughout the CNS, Scherrer and colleagues have generated
a very useful mouse model. They first developed DOPr-eGFP
knock in (KI) mice, presenting a complete functional receptor
fused to an enhanced green fluorescent protein (eGFP) [39].
These mutant mice were subsequently crossed to another
model containing a similar construct, MOPr-mcherry KI
mice [40]. This breeding generated a double KI mouse useful
for in situ visualization of DOPr and MOPr simultaneously
[40, 41]. The study of DOPr and MOPr distribution in the
CNS showed that coexpression of DOPr and MOPr is
observed in HPT, HPC, the lateral parabrachial nucleus and
vestibular nuclei, circuitries which are involved in survival
including water and food consumption, sexual behavior,
and response to aversive stimuli [40]. The large distribution
of ENK and their associated receptors in the limbic system
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of rodents and humans further suggests that ENK transmis-
sion plays a major role in emotional behaviors.

2.2. Roles in Emotional Behaviors. ENK are indeed involved
in several emotional behaviors, including fear conditioning
[14, 15, 42-45], anxiety, and stress response [46-65]. This
section will describe the experimental evidence for such a
role, mainly derived from studies conducted in rodents, using
different approaches, neuroanatomical, silencing, pharmaco-
logical, and genetic, as well as stress paradigms varying in
chronicity and intensity.

2.2.1. Fear Conditioning. The fear conditioning paradigm
allows assessment of learning and memory in association
with fear (see Table 1). The first evidence that ENK partici-
pate in fear conditioning comes from an in situ hybridization
study showing an increase in ENK mRNA levels in the CEA
neurons of rats undergoing this paradigm [14]. Thereafter, it
was shown that ENK knockout (KO) mice exhibit an exagger-
ated immobility compared to wild-type controls during the
auditory-conditioned fear acquisition [42]. A population of
GABAergic neurons expressing protein kinase C-§ (PKC-6)
was identified in the lateral part of CEA (CEAI), using a
molecular genetic approach in mice. Interestingly, this popu-
lation appears to overlap with ENK neurons [45]. In another
study, it was shown that this neuronal population expressing
PKC-§ in the CEAI is implicated in the inhibition of fear
acquisition [66]. However, the exact role of ENK expressed
by these PKC-6 GABAergic neurons is still undetermined.
Asok et al. also showed that exposure to a component of
fox odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT),
which triggers innate fear in rats, increases ENK mRNA
levels in the paraventricular nucleus (PVN) of the HPT
[43]. An increased expression of ENK mRNA levels is simi-
larly observed after repeated footshocks, in the AMG of
SWR/] mice, an inbred strain showing a reduced fear
response, while this expression was unchanged in C57Bl/6]
mice, an inbred strain showing a high fear response [44]. In
the same study, administration of MOPr antagonist (naltrex-
one) or DOPr antagonist (naltrindole) increased fear
response in SWR/J mice, which could be restored with a
DOPr agonist. These results suggest that resistance in the face
of traumatic experiences inducing fear involves ENK from
the AMG and that vulnerability can be modulated by admin-
istration of OPr agonists [44]. Finally, it has been shown by
Poulin et al. that the downregulation of ENK in the rat
CEA decreases unconditioned fear [15]. In this study, rats
were submitted to a contextual conditioning paradigm con-
sisting of footshocks administered in a novel environment.
ENK knockdown (KD) rats showed a reduced fear response
during conditioning, while the context alone, presented
48 h later, did not produce change in freezing behavior. These
results indicate that ENK release from CEA neurons is
involved in the freezing behavior to an unconditioned stimu-
lus, but not in the formation of an associative memory [15].
Results of ENK distribution studies—in addition to pharma-
cological, silencing, and genetic studies—demonstrate the
prominent role of ENK, especially amygdalar ENK, in medi-
ating fear behavior. This connection may further suggest a

role for ENK in anxiety and stress responses, which are closely
related to fear behavior.

2.2.2. Stress and Anxiety. Several studies performed in
humans showed the importance of ENK in anxiety, depres-
sion, and PTSD, a mental illness that appears after experienc-
ing a traumatic event. Indeed, a polymorphism in the gene
encoding neutral endopeptidase, involved in ENK metabo-
lism, was identified in patients with anxiety disorder, tested
with the SCL-90-R inventory of psychological symptoms
[48]. Positron emission tomography (PET) studies have
shown that MOPr expression is decreased in the anterior cin-
gulate cortex of patients with PTSD [47]. In patients with
depression, PET further revealed that the expression of
MOPr is decreased in the HPT and AMG [49]. These studies
suggest that a reduced tone of ENK neurotransmission is a
key component in the expression of anxiety.

In rodents, several behavioral paradigms are commonly
used to assess the level of anxiety, including the elevated plus
maze (EPM), open field (OF), and light-dark box (LDB) tests.
These tests are based on the natural aversion of rodents
for open, elevated, or illuminated areas and their natural
exploratory behavior in novel environments. In addition,
the social interaction test (SI) allows evaluating the pro-
pensity to socialize. The startle response (SR) corresponds
to an unconscious defensive response to unexpected or
threatening stimuli. All behavioral tests discussed in our
review are detailed in Table 1.

The ENK KO mice show an increased anxiety with the
EPM, OF, and LDB tests, have an exaggerated SR, and a
reduced duration of SI [42, 50, 51]. ENK KO mice exposed
to a stress induced by footshocks, mimicking PTSD, similarly
present anxiety- and depressive-like behaviors, contrary to
wild-type controls, using the OF, EPM, and LDB tests (see
Table 1) [52]. However, the downregulation of ENK in
CEA was shown to reduce anxiety as characterized by an
increase of exploratory behavior [15]. ENK KO mice are
resistant to anxiety- and depression-like behaviors after a
chronic mild unpredictable stress—consisting of daily
exposure to different stressors, such as food deprivation
and restraint stress for five weeks—suggesting that ENK
enhance the reactivity to chronic stress [67]. ENK appear
to have varying and even opposing effects on anxiety,
depending on the considered CNS region and the type
and intensity of stress.

The high levels of anxiety generally observed in ENK KO
mice are also seen upon gene inactivation of DOPr [53].
Pharmacological studies conducted in rodents support these
results obtained through gene inactivation of DOPr, since
subcutaneous administration of naltrindole, a DOPr antago-
nist, induces anxiety [54]. Conversely, intraperitoneal injec-
tion of DOPr agonists (SNC80, UFP-512, (+)BW373U86)
was shown to be anxiolytic [55-57]. Moreover, infusion of
[D-Pen 2,5]-ENK (DPDPE), a DOPr agonist, in CEA exerted
similar effects, which could be reversed by the administration
of naltrindole, a DOPr antagonist. Recently, a new DOPr
agonist, KNT-127, has received an increasing interest as a
potential therapeutic treatment for anxiety and depression,
although the efficacy of this molecule has not yet been
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TasLE 1: Evidence for ENK signaling involvement using different behavioral tests.

Behavior Paradigm

Principles and procedures

Evidence for involvement of ENK signaling

Contextual
fear

conditioning A

Fear

Startle
response

In this paradigm, an animal learns to predict aversive

events based on their environmental context. It is a form

(i) In rats, ENK mRNA levels are increased in CEA
upon contextual fear conditioning [14]

of learning and memory in which an aversive stimulus is (ii) ENK knockout (KO) mice show an exaggerated

associated to a neutral context and/or stimulus, resulting

in fear responses upon presentation of the originally
neutral context and/or stimulus. The animal is placed
into a chamber to administer an aversive stimulus (e.g.,
electric footshocks). This procedure can be paired with
another conditioning stimulus, a sound for example.

and/or conditioning stimulus, without the aversive one.

Freezing which is characterized by the total absence of

movement except those required for respiration is then
measured to assess fear responses.

The startle reflex is considered as an innate and
involuntary reaction that appears upon exposure to an
unexpected or threatening stimuli. The response
corresponds to a quick involuntary contraction of the
animal’s skeletal muscles. The test is conducted in an
automated startle chamber that allows measurement
of the reflex.

fter a delay, the animal is reexposed to the environment

immobility during auditory fear conditioning [42]

(iii) ENK neurons in CEAI overlap with PKC-&
GABAergic neurons, which are involved in fear
behavior [45, 66]

(iv) In SWR/J mice (showing a reduced fear response
induced by footshocks), ENK mRNA levels are
increased in AMG [44]

(v) In SWR/J mice (showing a reduced fear response
induced by footshocks), administration of MOPr
and DOPr antagonists increase fear response [44]

(vi) In rats, ENK knockdown (KD) of CEA decreased
unconditioned fear [15].

(i) ENK KO mice show an exaggerated startle
response [50].

Open-field

Elevated
plus maze

Anxiety

Light-dark
box

Social
interaction
test

This task is based on a rodent’s preference for dark
areas. The animal is placed in an open-field chamber,
an arena with surrounding walls to prevent escape,
and the exploratory behavior of the center (lit)
versus periphery (dark) is assessed over time with
a video-recording.

This task is based on a rodent’s natural preference for

(i) ENK KO mice show a decreased exploratory
behavior and avoid the central part of the
open-field (OF) arena [42, 50, 51]

(ii) ENK KO mice, exposed to stress induced by
footshocks, present an anxiety-like behavior [52].

(i) ENK KO mice present anxiety-like behavior
in the elevated plus maze (EPM) [50]

(ii) ENK KO mice, exposed to stress induced by
footshocks, present anxiety-like behavior in
EPM [52]

(iii) In rats, ENK KD in CEA increases the
exploratory behavior in EPM [15]

dark and enclosed areas, compared to lit and uncovered (iv) Infusion of a DOPr agonist in CEA increases

areas, as well as on their natural exploratory behavior of
a novel environment. The animal is placed in the maze,

the number of entries and the time spent in
open arms of the EPM [82]

and its exploratory behavior is assessed over time with a (v) Administration of a DOPr antagonist diminishes

video-recording. The maze has a cross shape with two

opposite arms surrounded by walls (dark and enclosed

area) whereas the two other arms do not present walls
(lit and uncovered).

This task is based on a rodent’s natural preference for

dark areas, compared to lit ones. The box contains two
chambers, one light and one dark. The animal is placed
into the box and its exploratory behavior is assessed over

time with a video-recording.

This test allows evaluating the propensity of an
individual to socialize. The rodent is placed in an
open-field arena alone in the first place and then with
another individual. The time spent interacting with
the intruder is measured.

the exploratory behavior in EPM [54]
(vi) Administration of a DOPr agonist increases
this behavior [55-57, 59, 60]

(vii) DOPr KO mice spent less time in the open

arms of EPM [53]

(viii) MOPr KO mice increase the exploratory

behavior in EPM [53]
(ix) Administration of MOPr agonist increases the
exploratory behavior in EPM [58].

(i) ENK KO mice show a decreased exploratory
behavior in the light-dark box (LDB) [42, 50]
(ii) ENK KO mice, exposed to stress induced by
footshocks, present an anxiety-like behavior
in LDB [52]
(iii) DOPr KO mice spent less time in the
illuminated portions of the LDB [53].

(i) ENK KO mice present a reduced duration of
social interaction [50].
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TaBLE 1: Continued.

Behavior Paradigm Principles and procedures Evidence for involvement of ENK signaling
This test is used to evaluate the antidepressant
Forced swim efficacy of new compounds. A rodent is placed in (i) Administration of a DOPr agonist increases
test a pool containing approximately 15 cm® of water, mobility in the forced swim test [59].
and its mobility is measured on a video-recording.
This task is used as an indicator of anhedonia,
characterized by a lack of interest for a reward. Two (i) After restraint stress, rats showing increased
Sucrose . . o . .
. bottles, one containing a sucrose solution (between 1% anhedonia (assessed with the sucrose preference
Anhedonia  preference o . .
test and 5%) and another plain water, are presented to the test) present a reduced expression of ENK

animal. Its preference for the sweetened versus plain
water reveals anhedonia state.

mRNA in the NAc [70].

investigated in clinical trials. In rodents, KNT-127 produces
anxiolytic and antidepressant-like effects in a dose-
dependent manner (see Table 1) [59, 60]. These results are
consistent between models and suggest that signaling onto
DOPr mainly exerts anxiolytic effects.

In contrast to these findings, a conditional KO mouse for
DOPr (DIx-DOR) in forebrain GABAergic neurons showed a
reduced level of anxiety compared to wild-type littermates,
demonstrating that stimulation of DOPr in GABAergic neu-
rons of the forebrain is anxiogenic (see Table 1) [62]. In the
same way, the gene inactivation of MOPr has anxiolytic
effects, with MOPr KO mice presenting an increased time
spent in the open arms of an EPM [53]. Nevertheless, several
pharmacological studies instead demonstrated that MOPr
activation is anxiolytic. For example, intraperitoneal admin-
istration of morphine, a MOPr agonist, decreases vocaliza-
tions in rats exposed to a predator and anxiety assessed
with the EPM test [58]. Overall, MOPr appear to have vary-
ing effects on anxiety, depending on the methodological
approaches used.

A few recent studies explored the neuroanatomical spec-
ificity of ENK projections that are recruited in steady-state
conditions or upon stress in rats. Single housing (see
Table 2) in early life was shown to decrease immunoreactivity
of Met-ENK—ArgﬁPhe7 (MEAP) in the brain areas that
include the AMG, substantia nigra (SN), HPT, and periaque-
ductal grey (PAG) [63]. Hernandez et al. also measured ENK
neuropeptidase activities in the three main regions of the
stress response circuitry (AMG, HPC, and mPFC) after acute
restraint in rats (see Table 2; [46]). Neuropeptidases regulate
the expression of neuropeptides at the release sites. Peptidase
activity can thus be used to indicate the functional status of
neuropeptides. This neuropeptidase activity was found to
be more intense in AMG than in HPC or mPFC both in con-
trol and stressful conditions, suggesting that ENK metabo-
lism is preponderant in the AMG. After acute restraint
stress, ENK-degrading activity was reduced in AMG and
increased in HPC, while it remained unchanged in the
mPEFC. In stressed rats, a positive correlation was described
between the AMG and HPC, while in control rats, a negative
correlation was observed between the mPFC and HPC. These
results suggest a neuropeptidergic functional connection
between the mPFC, HPC, and AMG, which could be trig-
gered by stress and involved in some of the adaptive func-
tions performed by this circuit.

Overall, these contradictory results found in the literature
regarding the influence of ENK signaling on anxiety could be
attributed first, to the technical approaches (pharmacologi-
cal, genetic), then to the considered nucleus (CEA for exam-
ple) or associated neurotransmitters (GABA), and finally to
the type (acute, chronic stress) and intensity of stress. It still
remains unknown whether the many effects of ENK circuitry
acting in such a diverse array of brain circuits might all be
recruited together in response to a variety of different
stressors and different modalities. Different brain circuits
could synergistically contribute to the stress response,
highlighting the huge challenge we face in understanding
the functions of ENK signaling. Taken together, the com-
bined findings from these silencing, pharmacological,
genetic, and neuroanatomical studies suggest that the stimu-
lation of ENK transmission onto DOPr and/or MOPr might
enhance the natural strategies to cope with stress.

3. Enkephalin Signaling through DOPr and
MOPr, a Major Component of the Stress
Resilience Circuitry

An extreme amount of stress can lead to maladaptive behav-
ioral changes such as anhedonia and social avoidance, in
rodents and humans, as well as serious health consequences
by impacting on the nervous, endocrine, and immune sys-
tems. However, chronic exposure to stress can also engender
compensatory physiological responses in order to reduce
these deleterious effects of stress. This mechanism of defense
allows maintaining homeostasis in the face of adversity. This
phenomenon of “resilience” corresponds to the ability of an
individual to maintain normal psychological and physical
functioning in the front of stress or trauma, in order to avoid
mental and physical illnesses [68].

Recent findings regarding the functions of ENK trans-
mission in stress resilience revealed the involvement of differ-
ent brain areas such as the NAc [69, 70] or septum, PVN and
PAG [17, 18, 71], or locus coeruleus (LC) and paragiganto-
cellularis nucleus (PGi) [72], in addition to the BLA as we will
discuss below, thus suggesting a high level complexity of
ENK circuitry in stress resilience.

Sweis et al. associated the resilience to chronic
stress—measured by a lack of memory impairment post-
stress—to an increased expression of ENK mRNA in the
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TaBLE 2: Evidence for ENK signaling involvement under different stress paradigms.
Paradigm Principles and procedures Evidence for involvement of ENK signaling
Given the social behavior of rodents, chronic or acute single . . .. .
Single housing housing is used to mimic the stress due to social isolation. (i) Prolonged single housing in earlylife decreases ENK

The animal is placed alone in its home cage.

immunoreactivity in AMG, SN, HPT, and PAG [63].

The animal is placed in a tube in such a way that
all movements are prevented. The psychological
and physiological effects due to restraint stress
result from the distress and aversive nature of the

Restraint stress

forced immobility.

(i) After acute restraint stress, ENK-degrading activity
is reduced in AMG and increased in HPC [46]

(ii) After chronic restraint stress, ENK knockout (KO)
mice do not exhibit anxiety nor depression-like
behavior [67]

(iii) After chronic restraint stress, rats showing increased
anhedonia present a reduced expression of ENK
mRNA in the NAc [70].

This task exploits the social conflict between two
individuals to initiate psychological stress. This
experiment can be related to the intimidation or

victimization in humans. An intruder is placed in

Social defeat stress
(or resident-intruder

(i) After a chronic social defeat, OprmI A112G mice
show a strong resilience [71]
(ii) After a chronic social defeat, resilient rats
demonstrate a high recruitment of ENK afferents
from PGi to LC [72]

paradigm) the home cage of a resident each day for a given (iii) After a chronic social defeat in rats and mice,
period of time. ENK mRNA levels decrease in BLA of vulnerable
individuals [17, 81].
Th.l s test allows to mimic t.he uip redlctable disruptions (i) ENK knockdown (KD) in BLA increases anxiety
. of daily life. An animal is subjected to different stressors each . . .
Chronic reproducing behavioral responses encountered in

unpredictable stress

day for a given period of time. Stressors can include restraint
stress, electric footschocks, wet bedding, group housing, mild
shaking of the home cage, cold water swim, etc.

individuals vulnerable to chronic unpredictable
stress [18].

rat NAc, proposing that an ENK-mediated increase of
dopaminergic tone could improve motivation-based cogni-
tive performance [69]. This predominant role of ENK pro-
jections from the NAc is supported by the results of
another study. Indeed, it was shown that after 14 days of
restraint stress, rats showing increased anhedonia (as mea-
sured by their preference for sucrose—see Table 1) also
presented in the NAc a reduced expression of ENK mRNA
and AFosB, a transcription factor that is expressed by ENK
neurons. These results suggest that the individual vulnerabil-
ity to chronic stress, determined here by measuring anhedo-
nia, is associated with a AFosB-mediated downregulation of
ENK [70]. The relationship between AFosB and the resilience
to chronic stress was already known [73].

Downstream of ENK, Akil et al. also studied in rats the
effects of dominance status and housing conditions on the
response to a DOPr agonist, SNC80 [74]. This study revealed
that single housing for 50 days leads to a stronger DOPr
activation in the mPFC, CEA, and NAc. Triad housing for
the same period of time also increases DOPr activation in
the mPFC, CEA, and NAg, in addition to the median emi-
nence and thalamus, of 3 rats that we can assimilate to stress
resilient individuals considering their defensive behaviors
and frequent aggressive interactions with & dominant rats,
which instead display an offensive behavior [74]. This mech-
anism could be involved in the regulation of ENK transmis-
sion upon stress.

Two types of behavioral paradigms are commonly con-
ducted in rodents for studying stress resilience (see Table 2).
The social defeat paradigm, also named resident-intruder
paradigm, in which intruder animals are repeatedly submit-
ted to daily interactions with a home-cage unfamiliar resident

over a given period of time, induces stress resilience by mim-
icking the unpredictable social disruptions of daily life. This
paradigm has been shown to present excellent etiological,
predictive, discriminative, and face validity [75]. Moreover,
unlike other stress paradigm, social defeat stress leads to
long-lasting changes in hypothalamic-pituitary-adrenal axis
function, making it a stress paradigm of choice [76]. The
majority of rodents exposed to this paradigm exhibits
reduced motivation, anhedonia, and avoids social interac-
tions [77]. Conversely, despite the deleterious effects of social
stress, around 30% of the population presents a phenotype of
stress resilience, being resistant to the emergence of
depressive-like behavior. In rats, the daily interaction
between individuals results in subordination of the intruder,
indicated by adoption of a supine position. The latency to
assume a defeated posture is recorded, and the averaged
latency over stress exposition is used as a predictive value to
define resilience or vulnerability to stress. In mice, the resil-
ience or vulnerability to stress is instead assessed at the end
of this experiment by using a SI test (see Table 1). The second
chronic stress paradigm that is commonly used to study stress
resilience is chronic unpredictable stress. In this experiment,
individuals are daily submitted to different stressors that
include restraint stress, wet bedding, food deprivation, and
footshocks. The phenotype of resilience or vulnerability to
stress is assessed at the end of the experiment in mice and rats
using behavioral tests previously described such as SI, EPM,
and OF (also see Table 1).

For example, Briand et al. used the repeated social defeat
paradigm in a mouse model of OPRM1 A118G polymor-
phism (single nucleotide polymorphism, SNP) correspond-
ing to a genetic mutation of MOPr observed in humans
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and expression of ENK, MOPr, and DOPr. Pink circles represent brain regions of interest. Full arrows correspond to circuitries of stress,
fear, and resilience. Dotted arrows represent demonstrated ENK circuitries. The black dot corresponds to expression of pro-enkephalin,
and purple and blue triangles correspond to MOPr and DOPr expression, respectively. AMG: amygdala; HPC: hippocampus; HPT:
hypothalamus; LC: locus ceruleus; mPFC: medial prefrontal cortex; NAc: nucleus accumbens; PAG: periaqueducal grey; PGi:

paragigantocellularis nucleus; VTA: ventral tegmental area.

that is associated with an overall reduction of baseline
MOPr availability in regions implicated in pain and
affective regulation [78], thus allowing to unravel a
potential role of MOPr in the resilience to chronic stress
[71]. This model presents increased home-cage domi-
nance and nonaggressive social interactions, similar to
the human carriers of this mutation. In the presence
of an aggressor during social defeat stress, it also
showed a strong resilience to chronic stress, determined
by a blunted anhedonia and social avoidance following
the social defeat. Neuronal activation measured by c-fos
staining was additionally increased in the NAc, septum,
BLA, PVN, and PAG, thus suggesting an increased
release of endogenous opioids upon stress [71]. In humans,
Troisi et al. demonstrated that the carriers of this mutation
have a greater capacity to experience social reward and are
more prone to fearful attachment, a personality trait that is
related to rejection sensitivity, regardless of the quality
of maternal care [79, 80].

Reyes et al. also revealed involvement of the ENK cir-
cuitry between the LC and PGi in stress resilience in rats.
In this study, fluorogold, a retrograde tracer, was injected
into the LC to determine involvement of different afferents
(corticotropin-releasing factor, CRF neurons from CEA and
ENK neurons from PGi) in resilience under the resident-
intruder paradigm [72]. Individuals presenting a reduced
latency to present a defeated posture (defined as vulnerable
rats) showed an increased activation of LC neurons and affer-
ents of CRF neurons from CEA. Conversely, resilient rats
(longer latency to present a defeated posture) demonstrated

a higher recruitment of ENK afferents from PGi. Thus, two
different afferent pathways to the LC, from CRF neurons in
the CEA and ENK neurons from the PGi, would partly define
the interindividual variation with regard to the capacity to
resist chronic stress.

Two studies conducted in our laboratory demonstrated
that resilience to social defeat and chronic unpredictable
stress share common variations of expression among the
ENK systems within specific brain regions in rats [17, 18].
ENK mRNA (transcripts) were quantified in 23 nuclei of
the mPFC, NAc, dorsal striatum, and AMG. Only one signif-
icant difference between control, resilient, and vulnerable
individuals was found in the BLA of vulnerable individuals;
ENK mRNA levels were decreased in vulnerable rats com-
pared to control and resilient rats. In contrast, no difference
was found in ENK expression in the BLA between controls
and resilient animals [17]. In addition to revealing these asso-
ciations, the functional role of ENK in the AMG was evalu-
ated. The downregulation of ENK in the BLA was shown to
increase anxiety both in the SI test and EPM thus reproduc-
ing certain behavioral responses encountered in individuals
that are vulnerable to chronic stress [18]. Finally, the chronic
social defeat stress was conducted in mice in order to assess
ENK signature in the BLA. The expression of ENK mRNA
was found to be decreased by 33% in vulnerable mice, only
in the BLA. No difference was found between the control
and resilient individuals [81]. These combined results suggest
that specific neuroadaptations mediated by ENK neurotrans-
mission in the BLA could represent a key mediator of stress
resilience. Based on these results, we can hypothesize that



the decrease in ENK transmission from the BLA is a
maladaptive mechanism, which mediates the behavioral
dichotomy observed between vulnerable and resilient ani-
mals experiencing chronic stress.

4. Conclusion

Overall, most of animal studies covered in this review sug-
gest that ENK signaling could be targeted for promoting
resilience to chronic stress. Resilience to chronic stress is
a very complex process involving several brain structures
and neurotransmitters. When considering only one neuro-
peptidergic system, the ENK acting through DOPr and
MOPr, numerous implicated brain structures and circuits
emerge (see Figure 1 for a schematic representation that
we overlapped with the cartography of main connectivities
known to be involved in stress response, fear, and resil-
ience). While the roles of ENK signaling within certain
brain structures such as AMG, HPT, and NAc were largely
described, its involvement in other brain regions remains
unknown with regard to stress resilience. For example,
the preoptic area, BST, and piriform cortex express ENK
without evidence for a potential role in resilience to
chronic stress, to our knowledge. All of these circuits must
be individually dissected. Complete ENK KO models may
thus be inadequate for characterizing the involvement of
ENK signaling in stress resilience. Hence, modulating
ENK or DOPr/MOPr expression within circumscribed
regions or modulating selected neuronal circuits appear to
be more appropriate. In this regard, optogenetic tools could
provide a unique opportunity to modulate ENK transmis-
sion among selected neuronal circuits, over the course of
chronic stress and associated pathologies, as required to
unravel the mechanisms through which distinct ENK path-
ways exert their functional role in stress resilience. Under-
standing the synergistic involvement of different circuits in
stress resilience could additionally provide accurate, power-
ful, and effective therapeutic strategies to prevent or treat
long-term anxiety and depression, in addition to a variety
of stress- and anxiety-related disorders.
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We do not all grow older in the same way. Some individuals have a cognitive decline earlier and faster than others who are older in
years but cerebrally younger. This is particularly easy to verify in people who have maintained regular physical activity and healthy
and cognitively stimulating lifestyle and even in the clinical field. There are patients with advanced neurodegeneration, such as
Alzheimer’s disease (AD), that, despite this, have mild cognitive impairment. What determines this interindividual difference?
Certainly, it cannot be the result of only genetic factors. We are made in a certain manner and what we do acts on our brain. In
fact, our genetic basis can be modulated, modified, and changed by our experiences such as education and life events; daily, by
sleep schedules and habits; or also by dietary elements. And this can be seen as true even if our experiences are indirectly driven
by our genetic basis. In this paper, we will review some current scientific research on how our experiences are able to modulate
the structural organization of the brain and how a healthy lifestyle (regular physical activity, correct sleep hygiene, and healthy

diet) appears to positively affect cognitive reserve.

1. Introduction

Numerous clinical and experimental studies demonstrated
that many environmental factors may affect both the physio-
logical functions of the central nervous system (CNS) and its
ability to counteract pathological changes. It has been dem-
onstrated that experience shapes our neural circuits, making
them more functional, keeping them “young.” Experience is
then the factor which induces our brain to be more plastic.
In other words, experience may increase neuroplasticity.
The complex of molecular and cellular processes known as
neuroplasticity represents the biological basis of the so called

“cerebral reserves.” The first to introduce the concept of
“reserve” was Yaakov Stern who noticed a higher prevalence
of Alzheimer’s disease (AD) in people with lower education.
For Stern, the reserve is a mechanism, which may explain
how, in the face of neurodegenerative changes that are simi-
lar in nature and extent, individuals vary considerably in the
severity of cognitive aging and clinical dementia [1]. Clinical
studies provide evidence that people with a high level of
education have a slower cognitive decline [2, 3].

According to Stern, two types of cerebral reserves are rec-
ognized: brain reserve (BR) and cognitive reserve (CR). BR is
based on the protective potential of anatomical features such
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as brain size, neuronal density, and synaptic connectivity. This
reserve is passive and is also defined as the amount of brain
damage that can be sustained before reaching a threshold for
clinical expression [1]. It also explains differential susceptibil-
ity to functional impairment in the presence of pathology or
neurological insult [4]. This concept arose by the observation
that the prevalence of dementia is lower in individuals with
larger brains [5-7]. In contrast, CR posits the differences in
cognitive processes as a function of lifetime intellectual activ-
ities and other environmental factors that explain the nonlin-
ear relationship between the severity of patients’ brain damage
and the correspondent clinical symptoms. The CR suggests
that the brain actively copes with brain damage by using the
preexisting cognitive processes or by enlisting compensatory
mechanisms [1, 3]. Thus, CR represents a functional reserve
because it is based on the efficiency of neural circuits [8]. CR
is considered an “active reserve” because the brain dynami-
cally attempts to cope with brain damage by using preexisting
cognitive processing networks or by enlisting compensatory
networks [1, 3]. It is important to emphasize that BR and CR
are not mutually exclusive but are involved together, at differ-
ent levels, in providing protection against brain damage [9].
For this reason, it is possible to refer to the accumulated struc-
tural reserve (BR) and capacity for functional compensation
(CR) using the new construct of “brain and cognitive reserve”
(BCR) [10]. In fact, any morphological change results in a
modification of the functional properties of a circuit and vice
versa, and any change in neuronal efficiency and functionality
is based on morphological modifications. For example, factors
associated with an increased CR, such as cognitively stimulat-
ing experiences or a great deal of physical activity, are associ-
ated with neurogenesis, increased levels of neurotrophic
factors, and diminution of neuronal apoptosis [11]. Therefore,
functional and anatomical factors interact in the construction
of the cerebral reserves [12].

In clinical research, we can study the relation between
structural (BR) and functional (CR) changes by analyzing
the gray matter damage in AD patients (structural measure)
and then correlating it with a cognitive evaluation (functional
measure) [13].

More direct measures of experience-due structural and
functional changes are provided by experimental research
on animal models. For example, BR measures are the changes
at cellular and molecular levels [14], while direct CR mea-
sures are the performances in behavioral tasks, such as spatial
tasks [8, 15]. The studies carried out by using enriched envi-
ronment animal models enabled us to understand what kinds
of experiences are necessary to trigger the phenomenon of
brain plasticity and thus to increase cerebral reserves.

The purpose of the present work is to provide an up-
to-date overview on the effects of the environmental fac-
tors on promoting neural plasticity in physiological and
pathological conditions taking into account both human
and animal studies.

2. Animal Studies

There is evidence showing that individuals with more CR are
those who have a high level of education, who maintain
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regular physical activity, and who eat in a healthy way
[16-19]. Despite such evidence, human studies do not allow
us to determine whether one kind of experience determines
the increase in cognitive reserve more than the other ones.
Human research cannot separate the different variables that
make up experience because we cannot analyze them sepa-
rately. The experimental research on animals may compen-
sate for these shortcomings by forcing the stimulation of a
specific experience or a combination of experiences, as
occurs in enriched environment animal models. The animal
models of environmental enrichment (EE) allow us to obtain
a direct, real, and tangible measure of which environmental
factors are able to model neuronal circuits [8].

EE represents an experimental model in which the animal
is exposed for a certain time period to a combination of expe-
riences, such as an intense motor activity and sustained cog-
nitive stimulation. This condition is usually compared to
the standard condition of regular laboratory housing [20].

The majority of EE animal models concern rodents, but
studies have also been carried out on nonhuman primates,
birds, and fish [21].

At the first glance, it may seem strange that the EE in ani-
mals may be really compared to cognitive, motor, social, and
emotional experiences in humans. Although this correlation
may seem impossible, exposure of animals to an enriched
environment is actually similar to that which occurs in human
lifestyle [8]. In fact, in humans, the development of reserves
can be influenced by several factors, such as educational level,
physical activity, social integration, and emotional involve-
ment. In animal models, all these factors are provided by the
environmental complexity and novelty the animals are
exposed to. The repeated replacing of objects in the home
cages creates a wide range of opportunities for enhanced cog-
nitive stimulation, formation of efficient spatial maps, and
heightened ability to detect novelty. Physical training is repre-
sented by foraging in large cages, exploration of new objects
that are constantly introduced into the cages, and general
motor activity related to the use of wheels. The social aspect
that characterizes human relationships may be mimicked by
rearing the animals in a group of conspecifics. In fact, if the
animals are stimulated to live together in the same cage, a
social hierarchy emerges and a dominant figure arranges
and controls the spaces of the cage and when to eat. Figure 1
shows an example of the rearing in an enriched environment.

The first to introduce the experimental concept of
enriched environment was Donald Hebb, although it was
the famous American psychologist Mark Richard Rosenzweig
who clarified the enriched environment as “a combination of
complex inanimate and social stimulations” [22].

Thus, the implementation of a setting of EE is a quite
complex procedure, in which motor activity, cognitive abili-
ties, and social interaction should be taken into account.
Although recently it has been shown that also physical activity
alone is able to increase CR, most studies show that all these
factors should be stimulated to increase brain plasticity [8].

An EE paradigm is used with healthy animals to analyze
neuroplastic functional and structural changes [23], with ani-
mals that present neurodegenerative lesions or transgenic
mutations to analyze neuroprotective and therapeutic effects
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FIGURE 1: A typical enriched setting that enhances motor, sensory, cognitive, and social stimulations in rodents is illustrated in (b). In (a), the
different components acting in the environmental enrichment are shown. Modified from [8].

[10, 15, 24-27], and recently even with an animal model of
psychiatric disorders, such as schizophrenia, to evaluate the
ameliorative effects on behavioral symptoms [28-30].

In general, cognitive abilities in animals are evaluated by
means of specific behavioral tasks such as Morris water maze
(MWM) and radial arm maze (RAM) that analyze the differ-
ent facets of spatial memory. In fact, the memory can be
divided into at least two types, such as declarative and pro-
cedural. Declarative knowledge refers to things that we know
that are accessible to conscious recollection (“knowing
that”), while procedural material regards memories on how
to do something (“knowing how”) and those that are seen
as implicit and unconsciously learned [31]. The two types
of memory have different and specific neural correlates.
Declarative memory mainly involves the hippocampal struc-
tures, while procedural learning and memory rely more on
the cerebellum and basal ganglia [32-34]. Majority results
discussed in the next sessions come from MWM and RAM
behavioral tasks.

2.1. Functional and Structural Effects of EE. Many studies
conducted on healthy animals show that rearing in an
enriched environment has significant functional and struc-
tural effects (Table 1, Figure 2).

To evaluate the functional effects of EE on the perfor-
mances in behavioral tasks, spatial tasks are analyzed. In
particular, these tasks permit us to analyze the different facets

of spatial cognitive function and then to evaluate the function-
ing of underlying neural circuits. For example, Leggio and
coworkers compared the spatial performances in radial
arm maze and in Morris water maze of healthy animals
reared in an enriched environment for three months after
the weaning with those of animals reared in standard condi-
tions [23]. In both spatial tasks, the animals reared in an
enriched environment made fewer errors than the conspe-
cifics reared in standard laboratory conditions and showed
a precocious development of spatial cognitive mapping of
the environment.

In EE structural effects, the changes at cellular level (such
as neurogenesis, gliogenesis, angiogenesis, and synaptogene-
sis) and the alterations at molecular level (such as changes in
neurotransmitter and neurotrophin expression) are consid-
ered [15]. By studying synaptogenesis, Gelfo and coworkers
evidenced as indices of improved neuronal circuitry the
increased dendritic length and spine density shown by the
frontal and parietal pyramidal neuron apical and basal arbor-
izations of rats reared in EE [35]. Molecular effects that
follow EE have been demonstrated by analyzing the neuro-
trophin levels in brain structures where neurotrophins are
produced or transported. In particular, multiple studies in
rodent models showed that EE increases the expression of a
brain-derived neurotrophic factor (BDNF) in the hippocam-
pus that heavily supports the EE-induced improvement in
learning and memory [36, 37]. Moreover, neurotrophin
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FIGURE 2: Schematic representation of the structural and functional effects of environmental enrichment (EE) on animal models and healthy

lifestyle (HL) on humans.

levels were found to be also increased in the cerebellum and
other cerebral areas following EE [14].

Functional and structural effects of EE are analyzed even
from a transgenerational point of view. In particular, Caporali
and coworkers [38] reared female rats in enriched conditions
and then studied the motor behavior and the neurotrophin
levels of their pups reared in standard conditions. This
study demonstrates that positive maternal experiences were
transgenerationally transmitted and influenced offspring
phenotype at both behavioral and biochemical levels. In
fact, the pups from enriched mothers acquired complex
motor behaviors earlier than the pups from mothers reared
in standard conditions. Moreover, in the pups from
enriched mothers, the cerebellar and striatal neurotrophin
expression was significantly higher. Evidence presents that
also paternal EE is able to transgenerationally alter affective
behavioral and neuroendocrine phenotypes of the offspring
[39-41]. These studies suggest that the cerebral reserves
could be even inherited.

2.2. Neuroprotective Effects of EE. As we mentioned, many
studies showed that EE or even just motor exercise
induces neuroprotection against neurodegenerative dis-
eases [15, 24-26]. In a brilliant review on the EE models,
Nithianantharajah and Hannan showed that motor exer-
cise alone produces a positive effect at behavioral, cellular,
and molecular levels on some diseases that affect the
cognitive-motor sphere, such as Huntington’s disease (HD),
Parkinson’s disease (PD), and AD [15]. To give some exam-
ples, in HD mouse models, it was demonstrated that wheel-
running exercise delays the onset of specific motor deficits
[42-44] and diminished the impairment in spatial memory
and cognitive flexibility, also attenuating neuropathology
[45]. Behavioral performance has been demonstrated to be
improved by physical training also in PD rodent models
[46, 47], with neuroprotective effects on the regulation of

neurochemical factors [48, 49]. Finally, in AD, an intensive
locomotor training increases the quality of performance in
behavioral tasks concerning spatial learning and memory
[50]. At cellular level, a decrease in beta-amyloid plaques
occurs and, only in the case of more complex stimulation,
an increase in the levels of neurotrophic substances as synap-
tophysin was also observed [51-53].

Examples coming from transgenic murine models, which
provide the precious advantage to determine exactly when a
structural alteration occurs, allow to evaluate when it is best
to enrich the animals. For example, by means of transgenic
AD mice (Tg2576), Verret and coworkers showed that the
EE effects are more powerful if the animals are reared in an
enriched environment before the formation of beta-amyloid
plaques [54], that is, before their deleterious effects on brain
function and memory processing become permanent.

Decreased levels of beta-amyloid plaque in response to
EE have been highlighted also by Beauquis and coworkers
who analyzed the astroglial changes in the hippocampus of
transgenic animals [55]. In fact, growing evidence shows that
glial changes may precede neuronal alterations and behav-
ioral impairment in the progression of AD and that the mod-
ulation of these changes could be addressed as a potential
therapeutic strategy [56-58]. In particular, Beauquis and
coworkers evidenced that in enriched transgenic animals
(APP mice), a decrement in levels of astrocytes was present,
suggesting that glial alterations have an early onset in AD
pathogenesis and the exposure to an enriched environment
is an appropriate strategy to reverse them.

Moreover, the confirmation that glial alterations play an
important role in cerebral reserves comes from a recent study
that investigated the functional and structural effects of inter-
mittent EE (3 hours/day for two months) on aged rats [58].
In fact, even at advanced ages, behavioral results showed
that EE improved performances in a radial water maze
task and structural data evidenced plastic changes in the



hippocampal astrocytes suggesting that these neuroplastic
alterations are involved in a coping mechanism with age-
related cognitive impairment.

Several authors wondered until which point in life the
enrichment has positive effects on cognitive function. Fuchs
and coworkers assessed the impact of late housing condition
(e.g., from the age of 18 months) on spatial learning and
memory of aged rats (24 months) previously exposed or
unexposed to EE during young adulthood (until 18 months)
[59]. The results showed that late EE was not required for
spatial memory maintenance in aged rats previously housed
in EE. In contrast, late EE mitigates spatial memory deficit
in aged rats previously unexposed to EE. These outcomes
suggest that EE exposure up to middle age provides a
reserve-like advantage that supports an enduring preserva-
tion of spatial capabilities in old age [60, 61].

In addition to the transgenic animal models of EE, also
the studies on lesioned animals contributed to highlighting
the neuroprotective role of environmental stimulation. For
example, it was found that rats exposed to EE at weaning
about three months before a cholinergic basal forebrain
depletion (which mimics AD) recover some cognitive abili-
ties such as spatial memory and cognitive flexibility [62].
These improvements in the cognitive-motor domain were
also accompanied by changes at the morphological level
[26], demonstrating once again the close link between struc-
ture and function and, in this case, between CR and BR.

The main neuroprotective effects of EE are shown
in Table 1.

3.Environmental Factors and Lifestyle in Human

Research on animal models provides an important insight
into understanding the key role of environmental factors in
promoting cognitive reserve. On the other hand, human
studies showed that not only high-demand cognitive activi-
ties are able to improve cognitive skills and counteract a
physiological and pathological cognitive decline but even
other environmental factors such as regular physical activity
and correct sleep hygiene can substantially contribute to
brain well-being.

3.1. Physical Activity (PA) and Neuroplasticity. In EE animal
models, it has been shown that motor exercise has significant
effects on neuroplasticity and counteracts a pathological cog-
nitive decline [10, 15]. In humans, it seems necessary to dis-
tinguish between physical activity (PA) and physical exercise
(PE). In fact, PA is any movement of the body produced by
skeletal muscles that results in energy expenditure over the
baseline levels, including all structured daily activities, such
as housework and leisure activities. Conversely, PE is a struc-
tured and repetitive physical activity, aimed at maintaining
or improving one or more components of physical fitness.
PA and PE are often related to health benefits in the
prevention and in the treatment of many pathological con-
ditions, such as metabolic diseases [63-65] as well as dis-
eases associated with compromised cognition and brain
function [66]. Several studies do exist showing that the
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practice of regular and constant PA reduces the risk of
developing dementia [67].

PA increases blood flow, improves cerebrovascular
health, and determines benefits of glucose and lipid metabo-
lism carrying “food” to the brain. It has been showed that PA
causes neural plasticity phenomena. For example, PA facili-
tates the release of neurotrophic factors like BDNF, stimu-
lates neurogenesis phenomena, and determines structural
changes such as the improvement of white matter integrity
[68]. The brain changes are inevitably reflected in functional
modifications. In this context, children with higher levels of
aerobic fitness showed greater brain volumes in gray matter
brain regions (structural changes) and the best performances
inlearning and memory tasks (functional changes) in compar-
ison to sedentary children [69]. It is important to underlie that
all the structural and functional changes are derived by an
aerobic type of PA. Recently, it has been showed that only
regular aerobic exercise is associated with larger size of the hip-
pocampal regions [70]. Moreover, aerobic exercise increases
gray and white matter volume in the prefrontal cortex [71]
and increases the functioning of key nodes in the executive
control network [72, 73] (Figure 2).

3.2. Sleep and Neuroplasticity. In the last decades, it has been
shown that sleep is an essential feature of animal and human
brain plasticity, which involves both basic (e.g., [74]) and
higher-order functions (e.g., [75]).

Sleep is an active, repetitive, and reversible behavior that
is in the service of several different functions that occur all
over the brain and the body [76, 77]: from repair and growth
to learning or memory consolidation and up to restorative
processes. This basic role of sleep is also indirectly substanti-
ated by the fact that almost all the animal species, from fruit
flies to the biggest mammals [78], share a behavioral state
that can be defined as “sleeplike.” Thus, if sleep subserves
all these aspects of animal life, it would be seen as a crucial
survival-directed drive, so that chronic or repeated sleep dep-
rivation in rodents brings cellular and molecular changes in
the brain [79] while in humans, it can dramatically disrupt
several high-order cognitive functions [75, 80-83].

Different hypotheses have been suggested to deeply
explain the functions of sleep, and one of the well-accepted
ideas is that sleep is linked to memory, learning, and neuro-
plasticity mechanisms [74] (Figure 2).

Several studies showed that sleep plays an important role
in learning processes and memory consolidation [84, 85]
although no direct relationships have been found between
different kinds of memory and different sleep stages [86].
These studies clearly indicated that sleep deprivation can
impair learning and different kinds of memory that can be
divided into at least two types, such as declarative and proce-
dural (as discussed above). Thanks to this distinction, a dual-
process hypothesis has been proposed [87]: the effect of a
sleep state on memory processes would be task-dependent,
with the procedural memory gaining from REM (rapid eye
movement) sleep and declarative memory from NREM
(nonrapid eye movement) sleep [88].

But other data [89] have been interpreted as in line with
the alternative point of view, that is, the hypothesis of a
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sequential processing of memories during sleep stages [90, 91]
suggesting that memory formation would be prompted by
NREM sleep (and particularly by its slow-wave content,
namely, stages 3 and 4) and then consolidated by REM sleep,
indicating that for an efficient consolidation of both knowl-
edge (declarative) and skills (procedural), the worst enemy is
sleep loss or, at least, sleep fragmentation.

The nature of the link between sleep and synaptic plastic-
ity is not fully understood: several different processes of syn-
aptic reorganization would occur during sleep period, but
their functional role needs to be clarified. In a very recent
review [74], it has been discussed that induction of plastic
changes during wake can produce coherent and topographi-
cally specific local changes in EEG slow activity in the subse-
quent sleep and that during sleep, synaptic plasticity would
be restored.

Independently by the actual nature of the link between
sleep and neuroplasticity, now, it is well known and accepted
that a good quality of sleep allows an efficient and successful
aging [92]. In fact, several recent studies have clearly indi-
cated the relevance of sleep quantity and quality as a marker
of general health, well-being, and adaptability in later life
[93-95]. This literature can help in developing health pro-
grams devoted to the oldest aim of improving sleep hygiene
in order to guarantee avoidance of disease, maintenance of
high cognitive and physical function, and continued engage-
ment with life.

4. Conclusions

Experimental research strongly suggests that in order to
increase our cerebral reserves, we have to follow a lifestyle
that takes into account many factors. Clinical studies pro-
vided evidence that individuals with more cerebral reserves
are those who have a high level of education, who main-
tain regular physical activity, who eat in a healthy way,
and so on. The EE animal models confirmed that the
experience plays a key role in increasing brain plasticity
phenomena. Although we are still far from identifying
the basic ingredient responsible for increasing our brain
plasticity and for counteracting neurodegenerative damage,
we can say with confidence that to deal with physiological
and pathological situations, it is not only important to be
“genetically lucky” but also to maintain a lifestyle rich in
experiences also including high levels of physical activity
and good sleep hygiene.
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The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the
population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains,
changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate
dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational
studies have shown that modifiable lifestyle factors—including physical activity, cognitive engagement, and diet—are a key
strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between
lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet
modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and
antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review
are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to
identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians.
Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our
understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging.

1. Introduction

The number of elderly across the globe will approximate
2.1 billion by the year 2050 [1, 2]. Accompanying this
increase will be the personal, social, and economic burden
of care for individuals with age-related disorders. These
challenges are even more worrisome given that nonpatho-
logical aging is associated with decrements in key regions
of the brain vital for cognitive function and, thereby,
decline in several cognitive domains (including memory,
attention, speed of processing, and executive function)
[3, 4], changes that may result in mild disability even
prior to the onset of dementia. Notwithstanding, pharma-
cological treatments that mitigate dementia are still out-
standing, creating an imperative to diversify efforts to find
efficacious alternatives. Modifiable lifestyle factors are
among the candidate therapeutics particularly well-poised

to mitigate age-related disorders [5-11]. Evidence strongly
suggests that the maintenance of adequate levels of physical
activity (PA), engagement in cognitive stimulation, and opti-
mization of nutritional intake can increase neural plasticity
and resilience of the brain [12-15].

The ability of neurons in the brain to change and reorga-
nize continuously to meet the dynamic demands of the
internal and external environment is termed neuronal
plasticity. This process is dependent on membrane depolari-
zation of the neuron, stimulus-induced synaptic activity, and
subsequent changes in dendritic morphology, central hall-
marks of learning and memory. Importantly, long-term PA
moderates processes that are cornerstone for neuroplasticity
[16]. Van Praag et al. demonstrated that mice that were
given voluntary access to running wheels exhibited selective
enhancement of long-term potentiation (LTP) in the dentate
gyrus [17], a phenomenon linked with concomitant increases
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in brain-derived neurotrophic factor (BDNF) [18]. Eadie
et al. demonstrated that long-term PA significantly increased
dendritic length, dendritic complexity, and spine density in
the dentate gyrus of mice [19]. Stranahan et al. demonstrated
that long-term voluntary wheel running in rats induced
changes in spine density along with changes in arborization
and spine morphology [20]. Altogether, these findings sug-
gest that PA induces neuroplastic changes in brain structure
and function and, therefore, may be an effective component
of therapeutic regimes that aim to improve cognition.
Interestingly, other work suggests that mental engagement
and dietary factors also effectuate changes in plasticity by
altering neurotrophic signaling, neurogenesis, inflammation,
stress response, and antioxidant defense mechanisms, which
are outcomes similar to those implicated in the cognitive
response to PA [16].

Knowledge of the dynamic relationship between brain
plasticity and lifestyle factors creates an imperative to better
understand and harness these links to promote healthy aging
and forestall the onset of disease. Several national bodies have
affirmed this notion, including the National Institutes of
Health [21], the Centers for Disease Control, the Alzheimer’s
Association, and the American Association of Retired Per-
sons (AARP). Accordingly, the purpose of this review is to
(1) explicate key lifestyle factors (in particular PA, cognitive
engagement, and diet) that can be harnessed to enhance
neuroplasticity and optimal brain health; (2) explore the
putative mechanisms by which these factors affect age-
related biology; and (3) highlight implications for clinicians
and researchers.

2. Physical Activity

Numerous studies have reported a robust relationship
between higher levels of PA and improved learning and
memory [22, 23]. Epidemiological studies show that regular
PA reduces the risk of cognitive decline in aging adults
[15, 24-26], with some evidence intimating that midlife
PA may be especially beneficial. A population-based study
of PA at midlife, followed up 26 years later with an assess-
ment of late-life cognitive function, found that groups who
participated in PA during midlife exhibited a faster speed
of processing along with better memory and executive
function. Additionally, those in the moderate PA group
were significantly less likely to have dementia in late life
[15]. A meta-analysis of 29 randomized controlled trials
(n =2049) showed that aerobic exercisers exhibited improve-
ments in attention, processing speed, memory, and executive
function [27]. Another meta-analysis of 15 prospective
studies (n = 33, 816 persons without dementia) reported that
PA consistently resulted in a protective effect at all levels
of activity [28]. Findings from a study of school children
clearly demonstrates a positive correlation between PA
and academic performance [29]. Indeed, higher cardiore-
spiratory fitness levels have been associated with better
performance on a relational memory task and greater hippo-
campal volumes in children [30], findings that have been
recapitulated in adolescents [31, 32]. Together, these results
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suggest that the pervasive central benefits of PA on cognition
span age groups.

Clinical studies demonstrate a positive relationship
between PA and brain structure and function. A neuroana-
tomical study of persons aged 55 to 79 years demonstrated
that age-related declines in cortical tissue density in the
frontal, temporal, and parietal cortices were significantly
reduced as a function of cardiovascular fitness [33], an
interesting fact given that these areas underlie executive
function and yet exhibit the greatest rate of age-related
decline in humans [34]. Another study of elderly persons
showed a direct correlation between increased levels of
PA and improved cognition, with increased hippocampal
volume seen after chronic exercise [35], supporting the idea
that PA may prevent age-related anatomical and physio-
logical deterioration in the brain [36, 37].

Bolstering the notion of PA’s positive central effects are
preclinical and clinical studies demonstrating neuropro-
tective and neuroplastic effects across a variety of neuro-
degenerative and neuropsychiatric diseases [36, 38-44]. A
recent systematic analysis of 38 animal and human studies
reported that PA attenuates Alzheimer-related neuropathol-
ogy and positively affects hippocampal-mediated cognitive
function, particularly when deployed early in the disease
process [36]. Findings from another systematic review and
meta-analysis demonstrate that PA is beneficial for people
with Parkinson’s disorder, specifically in areas of physical
functioning, health-related quality of life, strength, balance,
and gait speed [45]. Moreover, a recent review of clinical
trials demonstrated that acute and chronic exercise generally
increased levels of trophic factors in plasma and serum in
persons with neurodegenerative conditions, including those
with multiple sclerosis [46]. Also, PA has shown clear and
consistent promise in promoting neuroplasticity in persons
with mood disorders and, thereby, improving behavioral
and neurobiological outcomes [38, 47], effects that extend
to persons with posttraumatic stress disorder [48]. In persons
with schizophrenia, evidence suggests that PA improves
global cognition, working memory, social cognition, and
attention [49]. A randomized controlled trial in persons with
schizophrenia demonstrated that PA induced a 12% increase
in hippocampal volume relative to nonexercisers [50]. While
the dynamic cellular and molecular cascades that underlie
the association between PA, cognition, and brain structure
and function have yet to be elucidated fully, several modifi-
able mechanisms that alter neural plasticity have garnered
increased attention recently, especially neurotrophic signal-
ing, neurogenesis, inflammation, stress response, and antiox-
idant defense mechanisms [16]. Admittedly, an exhaustive
review of all factors related to cognitive aging is beyond the
scope of this article. Therefore, the reader is referred to the
following excellent reviews for other factors that have been
implicated in cognitive aging [51-59].

2.1. Neurotrophic Signaling. Neurotrophins are essential
modulators of PA-induced neural plasticity. As one of the
most widely distributed neurotrophins in the brain, BDNF
plays a critical role in the maintenance, growth, and synaptic
plasticity of neurons that underlie emotion and cognition
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[18, 60-62] and also modifies neuronal excitability [62, 63].
BDNF is centrally and peripherally upregulated [64-67]
following acute and long-term PA [68, 69], changes that
endure for days [70] and are prominent in the hippocampus
[22]. While higher levels of training intensity are requisite for
maximal effects [66, 71], both resistance [72] and aerobic
[71] exercise can effectuate the increases in BDNF levels once
sufficient intensity of PA is achieved.

Extending these studies to humans, it has been shown
that moderate levels of PA mitigate cognitive decline in aging
persons through putative mechanisms that involve BDNF.
Laurin and colleagues demonstrated that PA levels were
inversely correlated with the risk for cognitive impairment
and all-cause dementia [73]. Lautenschlager and colleagues
reported that persons with subjective memory impairments
who were randomized to 6 months of aerobic exercise
exhibited lower clinical dementia rating scores, increased
delayed recall, and better outcomes on the cognitive subscale
scores of the Alzheimer’s Disease Assessment Scale relative to
controls during an 18-month follow-up period [74]. Coelho
and colleagues investigated the effects of acute aerobic
exercise on BDNF levels in older persons with AD and found
a significant correlation between BDNF levels and levels of
PA [75], suggesting that long-term PA may persistently
elevate BDNF levels and modulate cognitive function in older
adults. The latter notion is important given that BDNF
gene expression levels naturally decrease in age-related dis-
orders such as AD [76]. Decrements in BDNF are prob-
lematic because retrograde transport of BDNF from the
hippocampus to forebrain cholinergic neurons protects
against neuronal damage and degeneration [66]. Moreover,
the maintenance of basal BDNF levels is requisite for hippo-
campal neurogenesis [77]. Interestingly, while both PA and
cognitive training improve cognitive function, only PA
increases plasma BDNF levels in rodents, suggesting that an
adequate level of PA is essential for BDNF-mediated plas-
ticity [78]. Furthering this notion is work demonstrating
that the blockade of BDNF on TrkB receptors reduced
the positive effects of PA on synaptic plasticity [79].

Altogether, these results suggest that PA effectuates
central neuroplastic adaptations via the optimization of
BDNF levels. The ability of PA to enhance BDNF release
and function in the synapse, to promote dendritic spine
integrity, and to activate other cellular pathways that contrib-
ute to plasticity [80-83] is a cornerstone for homeostatic
processes that maintain, repair, and reorganize circuits
damaged during aging and disease.

2.2. Neurogenesis. The addition of new neurons to existing
circuits through adult neurogenesis represents a unique
form of synaptic plasticity. The majority of the neurons
in the brain are formed in the womb. However, the brain
maintains the ability to generate new neurons throughout
life in certain regions (e.g., dentate gyrus and olfactory
bulb) [84, 85]. Importantly, preclinical work suggests that
PA increases adult neurogenesis, synaptic plasticity, and
learning in the dentate gyrus of the hippocampus. Van Praag
and colleagues demonstrated that voluntary wheel running
simultaneously increased bromodeoxyuridine-positive cell

numbers (precursor cell proliferation) and improved water
maze performance (learning) [17]. Schmidt-Hieber and
colleagues showed that newly born neurons in the hippocam-
pus exhibit a lower excitability threshold and enhanced
capabilities for synaptic plasticity [86], altering the rate by
which new dentate granule cells are functionally integrated
into hippocampal circuitry [87]. Eadie et al. demonstrated
that long-term PA significantly increased total length and
complexity of dendrites. Fascinatingly, they also demon-
strated that long-term PA induced a more immature state
of dentate granule cells [19], suggesting that PA reopens
windows of plasticity. Stranahan et al. demonstrated that
long-term voluntary wheel running in rats induced changes
in spine density along with changes in arborization and
spine morphology [20]. Others demonstrated that PA and
cognitive stimulation exert differential effects on neurogen-
esis in rodents [88-91]. Whereas PA increases proliferation
of neural precursor cells, cognitive stimulation promotes
survival of the newly born cells. Thus, the absence of
complex stimulation can block differentiation into mature
neurons [92].

Translating the preclinical work to humans, clinical
investigations using functional magnetic imaging have
demonstrated that long-term aerobic exercise (3 months)
increased blood volume in the dentate gyrus of the hippo-
campus and improved performance on the modified Rey
Auditory Verbal Learning Test [93]. A randomized con-
trolled study of healthy community-dwelling older adults
demonstrated that those who participated in moderate
aerobic exercise 3 times per week for 12 months showed
a significant increase in size in the right and left hippocampus
with concomitant improvements in spatial memory, a rever-
sal that mitigated 1-2 years of age-related loss in hippocam-
pal volume [94]. Encouragingly, increases in hippocampal
size have been correlated with increases in spatial memory
performance in both healthy adults [94] and persons with
mild cognitive impairment [95]. The fact that PA upregulates
neuronal proliferation and increases plasticity offers much
hope for exploiting newly born neurons to maintain hippo-
campal volume in healthy and high-risk populations during
aging [36, 96].

2.3. Inflammation. Long-term PA upregulates anti-
inflammatory processes, an important finding given that
chronic inflammation is mechanistically linked to cognitive
impairment, mood disorders, cardiovascular diseases, and
neurodegenerative disorders [22, 97]. Several studies have
demonstrated that persons who regularly participate in PA
have fewer viral and bacterial infections and a reduced
incidence of systemic low-grade inflammation [98-102].
For instance, Kohut and colleagues studied the effects of PA
on immune function and found that elderly individuals
who participated in aerobic exercise (45 minutes per day,
3 days/week for 10 months) exhibited a reduction in plasma
interleukin 6 (IL-6), interleukin 8 (IL-8), C-reactive protein
(CRP), and tumor necrosis factor (TNF) levels [101]. A
randomized control trial in sedentary elderly adults demon-
strated that those who participated in a supervised exercise
program (3 days/week for 6 months) showed improvement



in their inflammatory profile [103]. Other studies suggest
that the beneficial effects of long-term exercise on cognition
may stem in part from anti-inflammatory factors, specifically
IL-6 [104-107], IL-8 [108-110], CRP [111-113], and TNF
[114-116]. These findings are in line with several recent
reviews that found that long-term moderate intensity PA
can exert anti-inflammatory and neuroprotective effects
[117-122]. Moreover, a recent review explicated mechanisms
that contribute to neuroinflammation-induced impairments
in neurogenesis in several conditions (aging, Alzheimer’s,
traumatic brain injury, and stroke), underscoring the impor-
tance of therapeutics such as PA that target the interplay
between multiple neuroplasticity substrates, not isolated
factors per se [123]. Together, these studies offer hope that
PA can be used to mitigate age-related changes in immune
senescence and preserve cognitive function with aging.

2.4. Stress Response. The hypothalamic-pituitary-adrenal axis
(HPA) is a neuroendocrine circuit that coordinates emo-
tional, cognitive, autonomic, and neuroendocrine responses
to acute and chronic stress. Acute deactivation and activation
of the HPA effectuates various changes in brain activation
patterns: significant deactivation occurs in the hippocampus,
hypothalamus, medio-orbitofrontal cortex, and anterior
cingulate cortex following stress [124], whereas significant
activation occurs in the amygdala [125, 126]. These activa-
tion patterns likely reflect adaptations to help a person
recognize and counteract similar stressors in the future
[127]. Conversely, persistent activation of the HPA as a
result of chronic stress can mediate long-term changes in
the stress response including damage to keys areas of the
brain (e.g., prefrontal cortex, paraventricular neurons, and
hippocampus) [127]. It has been shown that persistently
elevated levels of glucocorticoids are neurotoxic [128, 129].
Specifically, HPA dysregulation induces neuronal atrophy
secondary to changes in neurochemistry, resilience, and
plasticity in the hippocampus [130].

Activation of the HPA is induced by corticotropin-
releasing hormone (CRH) in the paraventricular nucleus in
response to a stressor challenge, which induces adrenocorti-
cotropic hormone (ACTH) from the pituitary and, in turn,
effectuates the release of glucocorticoids (cortisol in humans
and corticosterone in rodents) from the adrenal glands [131].
Glucocorticoids then modulate the stress response along with
metabolic, immunologic, and genetic functioning [132-134].
Notably, the release of cortisol following an HPA stress
response occurs within the context of ongoing basal cortisol
release. That is, cortisol is naturally secreted over a 24-hour
period daily in the absence of stressors according to a diurnal
cycle [135]. Notwithstanding, cortisol levels naturally vary
in response to endogenous and exogenous factors (e.g.,
sleep wake cycle, exposure to light and dark, hormones,
food consumption, and psychosocial variables) [136].
Thus, HPA function reflects an individual’s basal diurnal
secretion along with their response to ongoing endogenous
and exogenous stress.

Negative feedback mechanisms tightly regulate the
HPA response via mechanisms that involve high-affinity
binding to mineralocorticoid receptors and low affinity
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glucocorticoid receptors [137]. Glucocorticoids “turn oft”
their own secretion by downregulating the release of hor-
mones (CRH and ACTH), a response that then decreases
mineralocorticoid and glucocorticoid receptor signaling
and, in turn, downregulates the activity of the HPA to
prestress baselines. Appropriate modulation of the HPA
response appears paramount to brain health given several
lines of evidence implicating stress-related hyperactivity
and dysregulation of the HPA with age-related, neuropsychi-
atric, and neurodegenerative disorders [128, 133, 138-142].

Unfortunately, some evidence suggests that HPA changes
may occur during the aging process. It has been shown that
cortisol levels increase with age [143, 144] and diurnal slopes
flatten [144-147]. Aging also engenders decreased glucocor-
ticoid sensitivity and impaired negative feedback, changes
that could prolong the stress response [148]. Finally, the
HPA axis may become dysregulated in aging persons
following exposure to chronic stress (e.g., health impair-
ments, loss of function, and bereavement) [149]. With time,
these changes may effectuate systemic changes that are dele-
terious to physical and cognitive health. Indeed, increased
basal cortisol levels are associated with hippocampal-related
memory impairments [150] and frailty [151], whereas lower
levels of basal cortisol are associated with longevity [152].

Fortunately, a bevy of research suggests that long-
term, voluntary PA mitigates an overactive stress response
[153, 154]. Supporting this notion is evidence that exercise
reduces the response to stressor challenge [155], an effect that
may stem from exercise-induced fluctuations of glucocorti-
coid and mineralocorticoid receptor expression in the brain
[155, 156]. The ability of PA to attenuate rises in cortisol
levels may be especially important for preventing hippocam-
pal atrophy [157-159] and for reversing cognitive deficits in
the aging population [94, 160] given that hippocampal
neurons exposed to persistently elevated glucocorticoids
retract their dendrites and exhibit fewer dendritic spines
[161]. Also, preclinical evidence suggests that the degree of
dendritic branching in hippocampal neurons and overall
number of dendritic spines increase with voluntary wheel
running [19, 20, 162], potentially mitigating the effects of
stress exposure. Together, this evidence suggests that PA
may bolster physiological resilience by optimizing the stress
response during aging.

2.5. Antioxidant Protection. Humans have a highly evolved
antioxidant system designed to protect neurons from oxida-
tive stress. By definition, oxidative stress is an imbalance
between antioxidants and reactive oxygen species (ROS)
(e.g., superoxide, hydrogen peroxide, and hydroxyl radical)
[163]. Oxidative stress is widely deleterious in the central
nervous system given that reactive oxygen species damage
proteins, DNA, and lipids [164] and the fact that the brain
has high metabolic demands and low antioxidant capacity
[165, 166]. Notwithstanding, aerobic exercise decreases
overall levels of ROS and increases adaptations to ROS-
induced lipid peroxidation [167, 168]. These mechanisms
stem in part from the ability of PA to increase antioxidant
gene expression (e.g., superoxide dismutases and glutathione
peroxidase) and, thereby, antioxidant enzymatic activities in



Neural Plasticity

the brain [167, 169]. Together, these studies suggest that
long-term exercise optimizes redox homeostasis. Such is
important for aging persons given that the kinase proteins
that induce structural and functional changes in synapses
require specific redox environments and that synaptic
activity can be modulated via ROS levels.

3. Cognitive Engagement as a Component of
Healthy Lifestyle

Convergent evidence suggests that engagement in mental
activity also conveys neuroprotective and neuroplastic bene-
fits during aging. Higher levels of education, a proxy for cog-
nitive reserve, are associated with a reduced risk for cognitive
impairment [170, 171], even in those with high-risk genetic
backgrounds (e.g., apolipoprotein E4 carriers) [172, 173],
possibly by increasing the threshold at which impairments
become clinically manifest [174]. Another study demon-
strates that higher education is protective against cognitive
deficits in elderly individuals with white matter lesions
[175]. Moreover, persons engaged in cognitively demanding
occupational [176-179], leisure [180, 181], and social activi-
ties exhibit a reduced risk for cognitive decline with aging
[13, 14, 176-180, 182-188]. Leisure activities that have
demonstrated procognitive effects include reading, discus-
sion groups, computer usage, participation in card and board
games, solving puzzles, playing musical instruments, and
learning a second language [180, 189-194]. Social activities
that have demonstrated procognitive effects include travel-
ing; attending theater, concerts, or art events; participating
in social groups or pension organizations; socializing with
family; and dancing [180, 191, 192, 194].

Underlying the effects of mental, leisure, and social
engagement on cognition is a concept called “reserve.”
According to the reserve hypothesis, impairments in cogni-
tion become manifest after a pool of brain and cognitive
resources is depleted. Brain reserve refers to structural
differences that increase tolerance to pathology, whereas
cognitive reserve refers to variability in approach to task
performance. The idea of brain reserve derives from studies
showing that the occurrence of dementia is lower in persons
with larger brain weights [195, 196] and that persons who
engage in intellectually stimulating activities experience less
hippocampal atrophy with aging [197]. Cognitive reserve
suggests that a person can mitigate the effects of brain pathol-
ogy by deploying pre-existing processing approaches or by
deriving alternative strategies [198, 199]. By corollary, per-
sons with decreased brain or cognitive reserve are more likely
to exhibit clinical impairments with age- or disease-related
insult given their fewer brain resources, whereas those with
a higher reserve have more resources to rely upon following
age- or disease-related insult, raising their threshold for
clinical impairments.

Contemporary views of brain and cognitive reserve
espouse more nuanced conceptualizations. Enriched envi-
ronments infused with challenging activities are thought to
effectuate the formation of new dendritic branches and syn-
apses. These morphological changes then deepen the brain’s
capacity to resist insult while increasing augmentation of glial

support cells, enhancement of the brain’s capillary network,
and the induction and incorporation of new neurons [200].
Indeed, preclinical work shows that stimulating environ-
ments increase neurogenesis [17, 201, 202] and upregulate
BDNF [203-205], benefits that contribute to neural plasticity
and extend to aging animals [206]. Enriched physical and
social environments may provide short-lived mild to moder-
ate stressors that induce locus coeruleus neurons to release
noradrenaline and facilitate the formation and maintenance
of adaptive memories [47], a process that could enhance
adaptive structural changes in the brain (brain reserve) and
cognitive and socioemotional learning (cognitive reserve).
Supporting the latter notion is a multiplicity of studies
showing that mental and socioemotional factors—including
positive coping, optimism, sense of purpose, self-efficacy,
and social support—are correlated with the stress response
[207], are essential for the maintenance of high resilience
[208-215], and are vital for mitigating age-related cognitive
decline [216-218].

Another strategy that is garnering increased attention
for enhancing brain and cognitive reserve is mindfulness
meditation. A meta-analytic review (of 21 studies with
approximately 300 participants) by Fox and colleagues
examined the structural brain changes associated with mind-
fulness meditation and found that several brain regions
consistently exhibited morphological differences in practi-
tioners: the frontopolar cortex, sensory cortex, insula,
anterior and mid-cingulate, hippocampus, and orbitofrontal
cortex [219]. These areas are known to participate in
awareness, attention, and emotional regulation, but are
adversely affected in age-related disease and mood disorders
[220, 221]. Tang and colleagues [222] reviewed a myriad of
studies to determine the effects of mindfulness meditation
on structural brain changes, functional activation, and
neural connectivity. These authors reported that mindful-
ness meditation was associated with structural (in the
prefrontal cortex, anterior and posterior cingulate, insula,
hippocampus, and amygdala), functional activation (pre-
frontal cortex, anterior cingulate, amygdala, insula, and
orbitofrontal cortex), and neuroplastic changes (anterior
cingulate cortex and prefrontal cortex) in the brain of medi-
tators versus controls [222]. While the underlying mecha-
nisms that contribute to the structural, functional, and
neuroplastic changes associated with mindfulness have yet
to be elucidated fully, it seems plausible that neurogenesis,
dendritic branching, and synaptogenesis may be involved in
emotional and cognitive regions of the brain, particularly
given that meditation reduces cortisol release following
stress [223-225].

Correspondingly, it is also held that cognitive rehabilita-
tive protocols may serve as a form of enriched environment
and effectuate cognitive gains in the aging population.
Approaches to cognitive rehabilitation involve exercises
carefully designed to harness neuroplasticity. Investigating
the effects of cognitive rehabilitation in healthy older adults
and persons with mild cognitive impairment, a Cochrane
review demonstrated that immediate and delayed verbal
recall improved significantly following training as compared
to a no-treatment control condition [226]. Extending these



studies further, another review assessed the effect of cognitive
interventions on activities of daily living, mood, quality of
life, and metacognition in persons with mild cognitive
impairment. The authors found that computerized cognitive
interventions conferred benefits to mood compared to
controls, whereas therapist-based and multimodal interven-
tions had a greater impact on activities of daily living and
metacognitive outcomes than control conditions [227]. The
notion that computerized cognitive rehabilitation may
convey positive cognitive effects during aging is intriguing
given that (1) these techniques can be deployed in a relatively
quick and cost-effective manner; (2) the training can be
personalized; (3) the rehabilitation can be used to target
vulnerable and underserved populations, that is, persons
who are homebound, residents of nursing homes, and
those without access to transportation; and (4) preliminary
evidence suggests residual effects are retained long-term
(5 years) [228].

4. Diet and Healthy Lifestyle

Food consumption is an intrinsically motivated behavior
with the potential to modulate brain structure and function.
Driving this behavior is energy demand: whereas the brain
comprises 2% of total body weight, it consumes 20% of the
total energy derived from nutrients [229]. The exorbitant
demand for energy derives from the requisite needs of
neurons to maintain ionic gradients across their membranes
to facilitate neurotransmission via oxidative metabolism.
Accordingly, neurons are extremely sensitive to mitochon-
drial dysfunction and oxidative stress [166, 230, 231].

The centrality of feeding behavior for survivability makes
it seem plausible that optimized food consumption repre-
sents a means to impact brain function positively. This
putative effect stems in part from the ability of dietary factors
to modulate synaptic plasticity by altering neurogenesis,
inflammation, antioxidant defense mechanisms, neurotro-
phin levels, and energy metabolism [232], mechanisms
similar to those induced by long-term PA [16]. For example,
preclinical studies suggest that increased consumption of
dietary fructose in the presence of an omega-3 fatty acid
deficiency adversely affects learning and memory [233] by
altering the function of molecules that are important in
mitochondrial bioenergetics [234] in key brain regions
such as the hippocampus [235]. Parallel evidence demon-
strates that nutritional content, along with the level and
frequency of food intake, effectuates changes in energy
metabolism and neuroplasticity [229]. Population-based
studies suggest that diets rich in polyphenols promote
better performance in several cognitive abilities in a
dose-dependent manner [9] and lower the risk of cognitive
decline [10, 11] in older persons. Accordingly, it is increas-
ingly held that bioactive substances in food represent a novel
target for lifestyle interventions that may promote healthy
brain aging and preserve cognitive function, especially in
aging adults at risk for nutritional deficits [236]. Given that
dietary modifications are considered by many to be safer
and more easily integrated into lifestyle changes than con-
ventional pharmacotherapeutics, several bioactive substances
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that have received intense investigation are reviewed below
in brief.

Polyphenols (e.g., phenolic acids, stilbenes, lignans,
flavonols, and anthocyanidins) comprise a class of approxi-
mately 8000 compounds with antioxidant properties. These
compounds are found in fruits, vegetables, tea, wine,
juices, plants, and some herbs. Whereas polyphenols are
not considered “essential nutrients,” convergent evidence
does suggest that these factors can mitigate risk for neuro-
degenerative diseases, age-related cognitive decline, and
oxidative stress [12, 237-245] via mechanisms involving
the maintenance of metabolic homeostasis [241, 246] and
the promotion of synaptic plasticity [241, 247]. Several
dietary choices of polyphenols with putative neuroprotec-
tive [232], neuroplastic [248], neurogenic [249-251], and
anti-inflammatory effects [252] have been explored, with a
particular emphasis on curcumin, catechins, resveratrol,
and omega-3 fatty acids.

4.1. Curcumin. As a plant-based diarylheptanoid produced
by the plant turmeric, curcumin is a component of yellow
curry spice. This bright-yellow pigment was first isolated
more than a century ago and has been used extensively in
Indian medicine. Historically, it has been deployed to mitiga-
tion inflammation [253, 254], oxidative damage [255], and
amyloid build-up [256, 257]. The antioxidant capabilities of
curcumin appear to stem from its unique structure that can
donate H-atoms or transfer electrons from two phenolic
sites, allowing it to scavenge free radicals easily. More
recently, curcumin has garnered attention for its effects
on neuroplasticity and its ability to ameliorate processes
involved in brain aging and neurodegeneration.

Preclinical investigations show that dietary supplementa-
tion of curcumin 3 weeks prior to [258] and after [259]
experimentally induced traumatic brain injury partially
ameliorate the consequence of injury on markers of synaptic
plasticity (e.g., BDNF and cAMP response element-binding
protein), mechanisms that may partly involve the restoration
of energy homeostasis [258-260] and facilitation of neuro-
genesis in the dentate gyrus of the hippocampus [261]. Also,
curcumin may prevent secondary sequelae following brain
injury by inhibiting the formation of oligomers and fibrils
and the aggregation of amyloid proteins [262-264]. Interest-
ingly, curcumin appears to cross the blood-brain barrier.
Curcumin injected into the tail vein of rodents altered plaque
formation in a model of AD [265]. A recent meta-analysis
and systematic review of eight preclinical studies demon-
strated that curcumin significantly improved neurological
function in the central nervous system, an effect that was
proportional to dosage [266].

Recently, preclinical studies have focused on the effects of
curcumin administration on aging. One recent study has
demonstrated that curcumin rescued age-related loss of
hippocampal synapse input specificity of LTP by favoring
N-methyl-D-aspartic acid receptor activity [267]. Also,
curcumin and its metabolite, tetrahydrocurcumin, increased
the mean lifespan of at least three model organisms [268]
and modulated the expression of aging genes in some
models [269].
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Extending these studies to humans, a large population-
based study of elderly nondemented Asians investigated the
association between curry consumption and cognitive func-
tion, finding that persons who frequently consumed curry
scored significantly better on the Mini-Mental State Exami-
nation relative to those who infrequently consumed curry
[270]. Another 6-month randomized, placebo-controlled,
double-blind, clinical study of curcumin in persons with
progressive cognitive decline and memory found increased
serum amyloid beta-40, but not improvements on the
Mini-Mental State Examination [271]. Cox and colleagues
investigated the acute, chronic, and acute-on-chronic
effects of a curcumin formulation (400 mg) on cognitive
function, mood, and blood biomarkers in healthy older
adults. They found that curcumin significantly improved
(1) performance in attention and working memory 1 hour
following administration as compared with placebo, (2)
working memory and mood following 4 weeks of treat-
ment, (3) alertness and contentedness 1 hour and 3 hours
after a single dose following chronic treatment, and (4) LDL
cholesterol via reduced total concentration [272]. Daily and
colleagues examined the efficacy of curcumin for alleviating
the symptoms of arthritis and found supportive treatment
evidence for turmeric extract (about 1000 mg/day of curcu-
min) [273], suggesting a translational avenue for its anti-
inflammatory effects. Derosa and colleagues evaluated the
efficacy of curcuminoid supplementation on circulating
concentrations of IL-6 in randomized controlled trials
and reported a significant effect of curcumin in lowering
circulating IL-6 concentrations, an effect that was more
evident in patients with greater systemic inflammation
[274]. A systematic review and meta-analysis of random-
ized controlled trials evaluated the efficacy of curcumin
supplementation on circulating levels of TNF-a and
reported a significant effect of curcumin in lowering circu-
lating TNF-« concentration [275]. The ability of curcumin
to mitigate chronic inflammatory processes is important
because chronic inflammation dysregulates neurotransmis-
sion and trophic factor signaling and disrupts the processes
of neurogenesis and neuroplasticity [276-279]. Moreover,
chronic inflammatory processes can contribute to glutamate-
mediated excitotoxicity [279] and loss and dysfunction of
glial cells [280-282].

To date, the results from preclinical research suggest that
curcumin may benefit the brain and cognitive function
during aging, but the level of evidence is still weak. One of
the main limitations with curcumin studies and interventions
is related to its limited bioavailability, a factor that could
be addressed by chemical modification, conjugation with
lipophilic compounds or coadministration with other com-
pounds. No clinical trials to date provide conclusive evi-
dence of the efficacy of long-term curcumin consumption
for preventing or treating cognitive decline with aging.
More studies are needed to explore the effects of this
factor in persons with different genetic backgrounds and
at different states of health and wellness.

4.2. Catechin Polyphenols. Found naturally in teas, cate-
chin polyphenols are potent bioactive compounds with

antioxidant [283, 284] and anti-inflammatory properties
[285, 286]. Their ability to donate hydrogens and scavenge
reactive oxygen and nitrogen species underlies their antioxi-
dant capabilities [283, 284]. Among the catechins found in
tea, (—)epigallocatechin-3-gallate (EGCG) is a major constit-
uent and therapeutic agent. EGCG has been shown to have
neuroprotective functions that include antioxidant, iron
chelating, and anti-inflammatory properties [287, 288]. Also,
EGCG promotes amyloid precursor protein processing via
the nontoxic amyloid precursor pathway [289] to reduce
amyloid-beta pathology [290]. EGCG also appears to modu-
late cell survival genes [291].

Emerging preclinical and clinical evidence has suggested
that EGCG modulates mechanisms involved in learning
and cognitive decline. EGCG facilitated glutamate release
by enhancing Ca®* entry through voltage-dependent Ca**
channels in isolated nerve terminals from rat cerebral cor-
tex, a process linked to protein kinase C (PKC) activation
[289, 291, 292]. This ability is important because increased
release of glutamate in the brain has been shown to be a
proxy for learning and memory [293, 294]. EGCG also
affected synaptic plasticity as high-frequency stimulation-
evoked LTP was enhanced following preincubation of
hippocampal slices with EGCG [295]. Another study has
demonstrated that the application of EGCG modulated
synaptic transmission and produced a dose-dependent
improvement in the induction of LTP in the rat in vivo
[296]. Moreover, long-term administration of green tea
catechins to rats improved their reference and working
memory-related learning ability and decreased reactive oxy-
gen species concentrations in the hippocampus [297]. These
results are not surprising given the relationship of EGCG to
neurogenesis and BDNF: oral administration of EGCG
enhances cell proliferation and increases the number of
progenitor cells in the hippocampus of rodents [250, 251].
Submicromolar concentrations of EGCG (<0.1 ug/ml) of
unfractionated green tea and low concentrations (<0.5 uM)
of EGCG potentiated the neuritogenic ability of low-
concentration BDNF [298].

Parallel study has investigated the effects of catechins in
humans. A large-scale study of middle-aged adults investi-
gated the long-term association between polyphenol intake
and cognitive performance, finding that catechins were
positively associated with language and verbal memory
[299]. A study of community-living Chinese adults aged
55 years or older demonstrated that consumption of black
and oolong tea was associated with lower risks of cognitive
impairment and decline after a 1- to 2-year follow-up [300].
A cross-sectional study of community-dwelling Japanese
adults aged 70 years or older examined the association
between green tea consumption and cognitive function,
finding that higher consumption of green tea was associated
with a lower prevalence of cognitive impairment as assessed
by the Mini-Mental State Examination [301]. In a small
interventional study in healthy volunteers, increased brain
activity on functional magnetic resonance imaging in the
dorsolateral prefrontal cortex, a proxy for memory process-
ing, was reported in a dose-dependent manner following
administration of green tea [302]. The effects of green tea



consumption on the brain activity of healthy volunteers were
measured using simplified EEG during passive activity in
another study, with findings demonstrating significantly
increased theta waves between 30 minutes and 1-hour post-
consumption, suggesting a role for enhancing cognitive
function [303].

4.3. Resveratrol. As a plant-based stilbene found in grapes,
wine, and peanuts, resveratrol possesses significant free
radical scavenging capabilities [304] given its three OH
groups in positions 3, 4, and 5; aromatic rings; and a double
bond in the molecule. Recently, it has garnered increased
attention amidst reports of its neuroprotective and antiamy-
loid properties [305, 306] in rodents through mechanisms
that likely involve oxidative stress [306], energy homeostasis
[307], and neural plasticity [308, 309]. Bolstering this notion
are cell culture studies that demonstrated that resveratrol
reduced amyloid beta accumulation, ROS, and apoptosis
[310] via modulation of nuclear factor-kB and Sirtuin 1
pathways [310-312]. Some preclinical studies suggest that
resveratrol extends the lifespan [310, 313, 314]. For example,
resveratrol increased cell survival by stimulating Sirtuin 2, a
change that increased DNA stability, slowed aging, and
extended the lifespan by 70% in yeast models [315]. Resvera-
trol added to the food of seasonal fish in early adulthood
induced a dose-dependent increase of median and maximum
lifespan [313]. Dietary consumption of resveratrol enhanced
proliferative states in neuronal stem cells in the rat hippo-
campus [316]. Several parallel preclinical studies have
demonstrated that resveratrol attenuated stress-induced
learning deficits, depressive symptoms, and hippocampal
degeneration by mechanisms that involved the restoration
of BDNF [308, 309, 317-320]. Altogether, this preclinical
data provides evidence that resveratrol treatment may be
efficacious for improving mood and cognitive function.
Extending this line of investigation to humans, one
small-scale, randomized, placebo-controlled, double-blind
trial with Concord grape juice supplementation for 12 weeks
demonstrated that older adults with memory decline but not
dementia significantly improved in a measure of verbal
learning [321]. Also, a double-blind, placebo-controlled
study tested whether supplementation with resveratrol
enhanced memory performance in older adults, finding that
administration of 200 mg of resveratrol daily with 320 mg
quercetin for six months duration in healthy older adults
(50-80 years) effectuated greater hippocampal activity at rest
(as assessed by functional magnetic resonance imaging) and
improved memory performance [322]. Notwithstanding,
low bioavailability of resveratrol is a major drawback [323].
Therefore, methods to enhance bioavailability (nanosized
particles and oral lozenges) are being investigated [324-326].

4.4. Omega-3 Fatty Acids. Whereas transfats have deleterious
effects in the brain, omega-3 fatty acids (found in oily fish
such as salmon, mackerel, herring, anchovies, menhaden,
and sardines) have neuroprotective effects. Omega-3 fatty
acids [e.g., a-linolenic acid, eicosapentaenoic acid, and
docosahexaenoic acid (DHA)] are polyunsaturated fatty
acids that are vitally involved in neuronal physiology. Among
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the omega-3 fatty acid family members is DHA, one of the
most important because of its role in maintaining the
structural balance of cell membranes, its ability to mediate
phospholipid signal transduction at the synapse, and its
ability to modulate enzymatic activity [327, 328]. Also,
DHA stabilizes molecular mechanisms important for mito-
chondrial function [329], brain glucose utilization [330],
and oxidative stress [331]. Dietary DHA also contributes to
epigenetic changes that confer resilience to metabolic pertur-
bations [332]. Notably, humans are reliant on consumption
of dietary DHA from oily fish since the body is inefficient
at synthesizing it. Clinical evidence suggests that dietary
deficiencies can have adverse cognitive effects [333], yet one
study demonstrated that less than half of women consume
the recommended dietary allowance [334, 335], a trend that
can be reversed with supplementation. Preclinical studies
show that dietary restrictions in omega-3 fatty acids are
associated with reductions in neuronal size and neurotrophin
levels [336], whereas dietary supplementation reverses age-
related impairments in LTP and depolarization-induced
glutamate transmitter release [337], effectuates increased
levels of hippocampal neurotrophin levels [331], and upre-
gulates genes that are important for maintaining synaptic
function and plasticity [338].

A number of studies on omega-3 fatty acids have been
extended to humans. Epidemiological studies demonstrate
that high intake of fish rich in polyunsaturated fatty acids
is associated with positive cognitive function. Results from
the Rotterdam study demonstrate that high fish intake is
inversely associated with incident dementia at baseline and
at 2-year follow-up [339]. Elderly persons in the PAQUID
cognitive and functional aging study who ate fish or seafood
at least once a week exhibited a significantly lower risk of
developing dementia in the 7-year follow-up period [340].
Similarly, community-dwelling elders in the Chicago Health
and Aging Project who were in the upper quintile for
consumption of saturated fat had a twofold increased risk
for AD as compared to persons in the lowest quintile [341],
suggesting that high intake of unsaturated, unhydrogenated
fats may be protective against AD. Another study investi-
gated whether omega-3 fatty acid intake is correlated with
gray matter volume in brain structures associated with
emotional circuitry, finding positive associations between
reported dietary omega-3 intake and gray matter volume in
the subgenual anterior cingulate cortex, right hippocampus,
and right amygdala, intimating a mechanism by which
omega-3 fatty acid intake may mediate memory, mood, and
affect regulation [342]. Other study demonstrated that
weekly consumption of baked or broiled fish is positively
associated with increases in gray matter volumes in the hip-
pocampus, precuneus, posterior cingulate, and orbitofrontal
cortex [343]. Moreover, adults with subjective memory
impairment who were administered fish oil (eicosapentae-
noic acid+DHA) for 24 weeks in a randomized, double-
blind, placebo-controlled study exhibited increased cortical
blood oxygen level-dependent activity in the right poste-
rior cingulate and left superior frontal regions during a
memory task as well as enhanced overall working memory
performance [344], results that mirror earlier results of the
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Framingham Heart Study wherein DHA levels in the top
quartile were associated with a 47% lower risk of all-cause
dementia [345]. Another study investigated the effects of
DHA and arachidonic acid (240 mg/day of DHA and arachi-
donic acid) on cognition in amnesic patients and found that
DHA supplementation improved cognitive dysfunction
secondary to aging and organic brain pathology [346].
Finally, a recent study demonstrated that higher-fasting
plasma levels of omega-3 polyunsaturated fatty acids corre-
lated with larger gray matter volume within the left rostral
anterior cingulate cortex, a characteristic that partially medi-
ated the relationship between cognitive flexibility in at-risk
(apolipoprotein E4 carriers) older adults [347].

Admittedly, a National Institute of Health State of the
Science Conference panel previously concluded that there is
insufficient evidence to recommend omega-3 fatty acids for
age-related cognitive decline. Notwithstanding, there are
ongoing clinical trials designed to elucidate efficacy, trials
that may be chiefly beneficial for persons in the lower quartile
of omega-3 consumption or in at-risk groups for cognitive
decline [348].

4.5. Caloric Restriction and Intermittent Fasting. In the
context of adequate consumption of nutrients, caloric restric-
tion conveys lifespan and healthspan benefits, including
preservation of cognitive function. Convergent evidence
suggests that a reduction of caloric intake by 20-40%
extends the lifespan of organisms throughout phylogeny
[349]. Population studies in Danish and Norwegian men
and women revealed that involuntary caloric restriction
without malnutrition for periods of 2-4 years reduced
overall mortality rates [350]. Moreover, it has been shown
that centenarians from Okinawa consumed 17% fewer
calories than average Japanese adults, and they consumed
40% fewer calories than American adults [333]. A recent
review by Most and colleagues detailed the positive health
benefits demonstrated from several recent randomized tri-
als, reporting that caloric restriction in humans effectuate
some of the same metabolic and molecular adaptations
seen in preclinical models of longevity [351]. Finally, a
30% reduction in calories for 3 months has been associated
with a 20% improvement in verbal memory in healthy elderly
adults [352].

The mechanisms underlying caloric restriction appear to
be multifold. Caloric restriction has been shown to increase
cellular repair of DNA [353], reduce oxidative stress [354],
improve the metabolism of glucose [355], and optimize
immune [356] and neuroendocrine function [357, 358].
Moreover, caloric restriction counteracts age-related alter-
ations in the expression of genes related to synaptic transmis-
sion [359]. For example, caloric restriction increases the
expression of BDNF, TrkB, and NR2B subunits of NMDA
receptors [359, 360] to mitigate age-related decrements in
the hippocampus [361, 362]. Similarly, intermittent fasting
exerts neuroprotective effects. It has been shown that
synaptic resilience and function [363], levels of stress protein
chaperones [364, 365], and neurotrophic factors [364] are
increased following intermittent fasting, effects that may be
particularly beneficial during times of injury [366].

5. Conclusions and Future Directions

Finding an effective treatment for age-related cognitive
decline represents an unmet goal. However, considerable
progress has been made in better understanding how
PA and diet modulate common neuroplasticity substrates
(neurotrophic signaling, neurogenesis, inflammation, stress
response, and antioxidant defense mechanisms) in the brain
[16]. Accordingly, this study highlights the importance of
lifestyle modification for protecting cognitive function and
brain health during aging and advocates for higher levels of
PA and consumption of healthy foods to optimize neural
plasticity. Once plasticity has been primed, cognitive training
and rehabilitation can be used to facilitate the reorganization
and proper function of cognitive circuits (to enhance brain
reserve) and practice processing strategies and skills that
translate to daily living (cognitive reserve). The deployment
of techniques to optimize lifestyle are critical given the
expanding size of the aging population juxtaposed with
evidence that 97% of adults nationwide fail to exhibit healthy
lifestyle characteristics [367]. Undoubtedly, the success of
healthy lifestyle campaigns will require more emphasis on
midlife, long-term, preventive approaches—with the goal of
promoting positive health habits that delay progression and
overt cognitive decline. Necessarily, these approaches should
be paralleled by research that aims to disentangle the effects
of lifestyle habits at different points along the aging and
disease continuum.

Admittedly, large-scale, well-conducted, randomized
controlled trials with PA, mental engagement, and dietary
intake are only beginning to emerge. Undoubtedly, there is
a need for future research in human populations that are
well standardized and stratified in relation to genetic back-
grounds, age, sex, and disease severity and duration. This
research is needed to better understand the optimum mode,
intensity, and duration of PA according to biologically
distinct subgroups. Moreover, future studies will need to
disentangle the individual and common pathways that
exist between PA, mental activity, diet, social factors, and
cognitive aging, particularly given evidence that various
components may exert additive protection against cognitive
decline [188]. In the area of cognitive rehabilitation, there
remains a need to derive protocols whose outcomes reify as
generalized, functional improvement in real-world environ-
ments [368]. While doing so, methodological standards will
necessarily have to be considered more fully. It is known that
noradrenergic function is essential for learning and memory
[47] and that optimization of noradrenergic function (via PA
or pharmacotherapeutics) during aging and disease [16, 47]
may likely optimize learning and memory in certain popula-
tions (e.g., Down syndrome, Alzheimer’s, and persons with
mild cognitive impairment). Future studies should take into
account the effects of noradrenergic function on cognitive
training and rehabilitation outcomes in aging populations.
Similarly, the duration of cognitive training and rehabilita-
tion should be considered more fully. It is known that the
effects of PA takes several weeks to reify at the behavioral
level, a reflection of mechanisms that likely involve BDNF,
neurogenesis, and the optimization of neurotransmitter
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levels [16]. Thus, it seems likely that the deployment of PA
prior to cognitive training and rehabilitation could be used
to normalize these factors to enhance outcomes, a notion that
awaits further study. Finally, a greater understanding of
antioxidant status in regard to plasma and brain bioavailabil-
ity is needed, as are studies that disentangle dose-response
effects, safety, tolerability, efficacy, and interactions with
other dietary factors. The latter studies are imperative as it
seems likely that the effects of nutrients in the brain are the
product of a mélange of metabolites and interacting factors,
not isolated factors per se. Together, these future efforts will
help to ensure that research at the frontiers of cognitive
neuroscience will provide a personalized approach to
intervention during states of health, disease, and aging.

In the interim, the Alzheimer’s Association and the
AARP have launched public health initiatives that aim to
foster a greater awareness of strategies that can be deployed
to optimize cognitive function during aging. The initiative
of the Alzheimer’s Association is called Maintain Your Brain
and promotes brain-centered healthy lifestyle choices (e.g.,
maintaining physical, mental, and social activity levels while
concomitantly consuming a low-fat diet rich in antioxidants)
[369]. Similarly, the AARP initiative, called Staying Sharp,
encourages aging individuals to engage in a lifetime of learn-
ing and provides strategies to augment memory [370]. While
neither program has been evaluated long-term, preliminary
results from a two-year, multidomain, randomized, con-
trolled study designed to prevent cognitive impairment are
promising. The intervention consisted of PA, cognitive
training, nutritional guidance, and social activities along
with the management of vascular risk factors. The control
group received regular health advice. After 2 years, a
comprehensive neuropsychological test battery revealed a
significant beneficial intervention effect on overall cognitive
performance, including the domains of memory, executive
function, and psychomotor speed. This novel study demon-
strates the possibility of preventing cognitive decline using a
multidomain intervention among older at-risk individuals
[371]. It also highlights the importance in convincing
patients of the value of a healthy lifestyle while concomi-
tantly underscoring the importance of preventive public
health policy.
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This study explored the effects of exercise modality and type of fitness index on cognitive function in the older adults as assessed via
behavioral and neuroelectrical approaches. Sixty older adults were assigned to an aerobic exercise, a coordination exercise, or a
control group based on their previous exercise experience. The participants completed congruent and incongruent trials of a
modified Stroop Test, during which, event-related potentials were recorded. The participants also completed multiple physical
tests that assessed health- and skill-related fitness. Our findings suggest that, in general, both aerobic and coordination exercise,
as well as higher scores on health- and skill-related fitness indices, are positively associated with better performance of various
cognitive functions in the elderly population. The mechanisms underlying these relationships may be differentially related to
specific neuroelectrical processes involved in neurocognitive control.

1. Introduction

Although aging is generally accompanied by the deteriora-
tion of multiple facets of cognition [1], extensive research
has demonstrated that older adults who regularly engage in
physical exercise or who possess a high level of fitness
experience a reduced degree of cognitive decline or show
improvements in cognitive function. The positive relation-
ships between physical exercise, fitness, and cognitive func-
tion have been further demonstrated by a meta-analysis
that showed a significant positive effect with the small to
large in magnitude [2-4].

The benefits of physical exercise and fitness on cogni-
tive function appear to be disproportionally distributed.
Colcombe and Kramer [3] indicated that although exercise
training leads to improvements in multiple aspects of
cognitive function (i.e., executive function, controlled,
spatial, and speed aspects), the executive function aspect
of cognition displays the largest enhancement, suggesting

that exercise training impacts different types of cognition
not only generally but also specifically. Executive function
refers to high-level hierarchical cognitive processing that
involves inhibitory control, task switching, and working
memory [5] to achieve purposeful or goal-directed behav-
ior, particularly in novel situations [6]. The disproportion-
ate improvement in executive function that results from
exercise training or fitness in older populations is interest-
ing because executive function is particularly vulnerable to
age-related cognitive decline [1]. However, a subsequent
meta-analysis indicated that exercise training is moderately
associated with cognitive improvements, regardless of
whether executive function, attention, processing speed, or
memory is considered [7]. This finding demonstrates that
the modulatory effects of exercise training on cognitive
function remain unclear.

One possibility worth considering is whether exercise
modality modulates the relationship between exercise and
cognition. The majority of studies have investigated either
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aerobic exercise (AE) or cardiovascular fitness. Pesce [8]
argued the importance of shifting the emphasis from
quantitative to qualitative exercise characteristics to advance
our understanding of the exercise-cognition relationship.
Nonetheless, the effects of other modalities, such as coordi-
nation exercise (CE), that involve a variety of exercise
characteristics (e.g., muscular strength and endurance, motor
coordination, agility, flexibility, and visual-spatial perception)
on cognition have received only little or indirect attention
until recently. For example, relative to their nonexercising
counterparts, older adults in both closed-skill (e.g., jogging)
and open-skill (e.g., table tennis) groups demonstrated
superior cognitive performances in terms of inhibitory
control [9] and task switching [10], which are both aspects
of executive function. A similar facilitation of task switching
was observed in older adults in both AE and mind-body
CE (ie, Tai Chi Chuan) groups compared with the
control [11]. Notably, open-skill exercise and Tai Chi
Chuan might be confounded by factors related to environ-
ment prediction and light intensity or to the exercise
characteristics of meditation. Therefore, the current study
replicates and extends existing knowledge by examining the
effects of CE that is more closed-skill and more intense than
Tai Chi Chuan and that involves less meditation (i.e.,
routine-based Chinese martial arts).

Cardiovascular fitness has been recognized as a primary
behavioral mediator and moderator of AE and cognition.
Although cardiovascular fitness is an essential fitness index,
it is only one of many fitness indices. Fitness is a multifaceted
concept that includes both health-related fitness, involving
cardiovascular endurance, muscular strength, muscular
endurance, flexibility, body composition, and flexibility, and
skill-related fitness, involving agility, power, coordination,
balance, reaction time, and speed [12]. Although the relation-
ships between each of these other fitness types and cognition
are not yet fully understood [13], a few recent neuroimaging
studies showed that both physical fitness (i.e., cardiovascular
and muscular strength) and motor fitness indices (i.e.,
flexibility, motor coordination, movement speed, and
balance) not only were positively associated with cognitive
performance but also elicited activity in different brain
regions [14]. Utilizing cross-sectional and longitudinal
approaches, recent neuroimaging studies revealed that both
physical and motor fitness are associated with superior and
more efficient information processing and enlarged volumes
of cognition-related brain areas such as the hippocampus
and the basal ganglia [15, 16]. These findings of positive
alterations in brain function and structure suggest that
types of fitness other than cardiovascular fitness may be
positively associated with cognitive performance. However,
these studies categorized two types of fitness indices within
the category of physical fitness and categorized health- and
skill-related fitness indices within the category of motor
fitness. As such, the relationships between specific fitness
indices and cognition have yet to be determined.

Neuroelectrical studies using event-related potentials
(ERPs) have provided insight beyond overt behavioral
responses into the potential mechanisms underlying the
relationships among exercise, fitness, and cognition [17, 18].
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ERPs are characterized by high temporal sensitivity between
stimulus engagement and response execution and are
believed to reflect implicit and distinct cognitive processes
that are reflected by specific ERP components. For example,
P3, a positively deflecting waveform that occurs between
300 and 600ms following stimulus onset, represents the
amount of attentional resources allocated to a given task
[19]. Previous ERP studies have revealed positive relation-
ships between exercise and neurocognitive performance in
executive function-related tasks; older adults with a higher
fitness status or who are more engaged in physical activity
demonstrate greater P3 amplitudes than those with a
lower fitness status or who are less engaged in physical
activity, respectively [17, 18, 20, 21]. Similarly, larger P3
amplitudes were recently observed in older adults engaged in
either AE or CE compared with controls, with no difference
in P3 amplitude between these two modalities [10, 11]. These
results suggest that exercise enhances neuroelectrical
activation that is related to higher cognitive performance
regardless of the exercise modality and fitness type.
Although P3 has been extensively examined, the utilization
of executive tasks and the study of exercise and other ERP
components have been limited. The current study utilized
the Stroop Test, a widely used and recommended neuro-
psychological assessment of executive function [6, 22]. In
the Stroop Test, subjects in the incongruent condition, in
which the name of the color is different from the meaning
of the word, show increased reaction times and decreased
accuracy compared with their performance under the
congruent condition, in which the name of the color is
the same as the meaning of the word. These behavioral
differences are believed to be associated with the inhibition
aspect of executive function [22, 23]. The combination
of the ERP paradigm with the Stroop Test not only
incorporates congruent and incongruent trials that reflect
information processing and executive function, respectively,
but also elicits late (i.e., P3 and N450) and early components
(i.e, N1 and N2) [24], facilitating the simultaneous
evaluation of the nature of cognitive function and multiple
ERP components.

Accordingly, the purposes of the current study were
to investigate (a) whether AE and CE are generally or
specifically associated with multiple cognitive functions as
assessed by the Stroop Test, (b) the correlations between
cognitive functions and cardiovascular fitness versus other
health-related (i.e., muscular strength and endurance, body
composition, and flexibility) and skill-related fitness
measures (i.e., agility and power), and (c) the mechanisms
underlying the effects of AE and CE on executive-function
task performance based on the time course of early and
late neuroelectrical activation. It was predicted that
individuals engaged in exercise of two modalities would
demonstrate superior cognitive performance, both generally
and specifically. It was also predicted that fitness, regardless
of type, would correlate positively with cognitive perfor-
mance. Finally, we predicted that exercise of both modalities
would not only induce a larger P3 amplitude during a
cognitive task but would also affect other ERP components
that reflect different aspects of neuroelectrical processing.



Neural Plasticity

TaBLE 1: Participant demographic and fitness data for the three groups (mean + SD).

Measures Group
Control (n =20) Coordination (n = 20) Aerobic (n =20)
Female/male 5/15 7/13 10/10
Age (year) 57.51+£3.68 59.15+4.62 58.80+£3.82
Height (cm) 159.13 £0.15 162.52 £0.31 161.55+0.01
Weight (kg) 67.1+9.52 63.62+9.77 61.22+6.84
Education 9.30+3.62 10.01+0.12 9.52+2.12
MMSE 27.71+2.31 27.82+1.01 28.23 +£2.60
Resting HR 66.30+11.00 67.41+12.14 65.25+5.29
WAIS-III
Digit forward span test 12.00 +£2.43 12.45+£1.82 12.55+2.35
Digit backward span test 6.30+1.71 6.40+1.86 6.30+2.83
Digit span total 17.50 £3.50 18.85+2.30 19.15+4.68
Exercise characteristics
Exercise years 0.10+£0.31 3.80+£1.47 320+£1.24
Exercise duration/session 0.11+£0.00 1.80+£0.41 1.85+0.86
Session/week 0.01+£0.00 1.15+0.81 1.85+0.75
Fitness data
VO, ey (ML/kg min) 26.91+6.14 33.67+8.24 41.16£9.73
Muscular strength 51.45+17.72 71.40 +20.01 71.65 +20.49
Muscular endur./press-up 2.50£3.71 11.40+10.81 12.70 £9.80
Muscular endur./CCU 30 4.10+4.18 11.25+5.025 12.95+6.35
Muscular endur./CCU 60 5.70 +5.76 19.60 + 8.55 20.35+11.63
Flexibility (cm) 2490+11.43 37.20+7.58 35.60+9.51
% body fat mass 30.17+6.58 25.41+5.47 24.97 +4.60
Agility (sec) 25.10 +6.05 18.12+2.85 18.24+2.67
Power (cm) 21.65+7.85 31.95+7.38 33.35+12.56

MMSE: Mini-Mental State Exam; Muscular endur.: muscular endurance; WAIS-III: Wechsler adult intelligence scale-third edition.

2. Materials and Methods

2.1. Participants. Healthy older adults were recruited via
flyers posted in universities, communities, hospitals, parks,
jogging clubs, and Chinese Martial Art/Kung Fu establish-
ments (clubs for routine-based Chinese martial arts that
involve a series of complex and intense motor skills).
Participant referrals were also received from the greater
New Taipei and Taipei regions of Taiwan. Eligible partici-
pants met the following initial criteria: (a) age between 55
and 70 years, (b) score > 26 on the Mini-Mental State Exam
(MMSE), (c¢) no psychiatric or neurological disorders,
(d) no history of stroke or head injury, (e) normal or
corrected-to-normal vision without color blindness, (f) right
hand dominance, and (g) score > 7 on the Physical Activity
Readiness Questionnaire (PAR-Q).

The participants in the AE and CE groups were required
to meet additional criteria based on a self-reported exercise
experience survey. The AE and CE groups included older
adults who regularly participated in AE (ie., jogging,
walking, and/or swimming) and CE (i.e., Chinese Marital
Art and/or Tai Chi Chuan), respectively, for at least 30
minutes per session and three times per week for the previous
6 months. The control group included older adults who

irregularly participated in exercise (i.e., less than two times
per week). Each group included 20 participants, with a
total of 60 participants. The sample size was sufficiently
sensitive to reveal differences in cognitive function accord-
ing to the G'Power 3 method based on Colcombe and
Kramer [3]. All of the participants read and signed an
informed consent form that was approved by the Institutional
Review Board of National Taiwan University. Table 1
presents the participant demographic, exercise experience,
and fitness data.

2.2. Assessment of Health-Related Fitness

2.2.1. Cardiorespiratory Fitness. Cardiovascular fitness was
evaluated based on estimated peak oxygen consumption
(VO,pcai) using the submaximal exercise test of the YMCA
cycle ergometry protocol [25]. This protocol, recommended
for individuals of a Class A risk stratification [26], consisted
of two to four three-minute stages with a progressively
increasing workload. VO, was estimated based on the
slope of the heart rate, the workload, and the body weight.
During testing, objective and subjective assessments of
exercise intensity were conducted using a Polar heart rate
monitor (Sport Tester PE 3000, Polar Electro Oy, Kempele,



Finland) and a 6- to 20-point version of the rating of
perceived exertion (RPE) scale, respectively [27].

2.2.2. Muscular Fitness. Muscular strength was defined as the
average hand force assessed with a handgrip dynamometer
(three attempts each for the left and the right hand). Muscular
endurance was defined as the number of push-ups (regular
push-ups for males and knee push-ups for females) in one
minute and the number of abdominal crunches/curl-ups in
30 seconds for males and 60 seconds for females.

2.2.3. Flexibility and Body Composition. Flexibility was
assessed using the YMCA sit-and-reach test and was
reported relative to the distance (cm) between the hamstring
and the lower back. Body composition was presented as the
body mass index and was measured by bioimpedance
spectroscopy (InBody 3.0 DS12B887, Dallas, TX, USA) by
determining the percentage of body fat mass.

2.3. Assessment of Skill-Related Fitness. The skill-related
fitness measures agility and power were evaluated as the time
to complete the T-test and the distance of the vertical jump
test, respectively [28]. During the T-test, each participant
was asked to jump to different corners arranged as T-figures.
During the vertical jump test, participants were asked to
jump from a static position as fast and as high as possible.

2.4. Stroop Test. This task was modified from the Stroop
Color-Word task [29] and consisted of 6 blocks of 60 trials.
The task involved two types of trials: congruent and incon-
gruent. In the congruent trials, one of three Chinese color
words (ALRED, %% GREEN, and ¥ BLUE) was presented,
printed in the same color ink (e.g., RED printed in red ink).
Incongruent trials consisted of one of the same three words
printed in a different ink color (e.g., RED printed in green
ink). One-third of the trials were incongruent, and the
remaining trials were congruent; the trials were randomly
presented. In each trial, a fixation cross (+) appeared in the
center of the screen for 506 ms and followed by stimulus
presentation for 500 ms. The participants were instructed to
respond based on the color of the ink and to ignore the
meaning of the word by pressing one of the three colored
buttons on a response pad. The button colors corresponded
to ink colors. The response was considered as incorrect if
no response was recorded within 1000 ms following stimulus
presentation. The stimuli were 2cm” in size and were
presented in the center of a 15-inch screen, with a visual
angle of 28.14x1.4°. All of the participants performed 20
practice trials prior to beginning the official task. The reaction
times and the accuracy of each participant were recorded and
analyzed as the behavioral outcome measures.

2.5. EEG Recording and ERP Measures. All participants were
instructed to sit in a comfortable chair in an electrically
shielded electroencephalography (EEG) recording chamber
with attenuated sound levels. The participants focused on
the center of the screen and made minimal body movements
during the recording. The EEG data were recorded from 32
Ag/AgCl electrodes embedded in an elastic cap (Quick-Cap,
NeuroScan Inc.) and positioned in accordance with the
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standard 10-20 system [30]. During recording, the imped-
ance of all electrodes was maintained at or below 10kQ.
Online EEG recording data were referenced to the left
and right mastoids, and the AFz electrode site served as
the ground. The EEG data were sampled at 1000 Hz,
filtered using an online band-bass filter (0.05-70 Hz), and
DC-amplified. A 60Hz notch filter was applied using a
SynAmps® amplifier system. Electrooculographic (EOG)
activity was recorded using two additional sets of electrodes,
which were located at the outer canthus of each orbit and
above and below the left orbit. These sets of electrodes
recorded the horizontal and vertical electrooculograms.

The offline EEG data were corrected for ocular artifacts
using the eye movement correction algorithm of the
NeuroScan software. The stimulus-locked epochs acquired
for the Stroop trials were extracted offline from 200ms
prestimulus onset to 1000ms poststimulus onset, and the
period from 100 to Oms prestimulus onset was used as
the baseline. The data were filtered using a zero phase shift,
30Hz (12 dB/oct) low-pass filter. Trials were rejected if the
response was incorrect or if the voltage exceeded +100 pV.
Following the offline analysis processes, ERP data from six
participants were excluded (two from the control group
and four from the CE group). The grand average waveform
across all accepted trials was calculated. The poststimulus
onset time windows used for the calculation of the mean
amplitude of each ERP component at Fz, Cz, and Pz were
80-150 ms for N1, 200-300 ms for N2, 350-550 ms for P3,
and 400-500ms for N450. The topographic distribution
of the specific components across all of the electrode sites
is presented.

2.6. Procedure. The participants were required to come to
the laboratory of National Taiwan Sport University.
Eligibility was assessed using a demographic questionnaire,
a health-screening questionnaire, the MMSE, the PAR-Q,
and a survey about exercise experience. The eligible partic-
ipants were administered with the digit-span test of the
Wechsler Adult Intelligence Scale-Third Edition (WAIS-III)
to assess the working memory component of intelligence
[31] and were instructed to conduct the Stroop Test during
EEG recording. Following the completion of cognition
testing, the electrodes were removed, and body composition,
muscular-related fitness, and flexibility were measured by
trained experimenters, followed by measurements of agility,
power, and cardiorespiratory fitness. The experimental pro-
cedure spanned approximately two hours. The participants
were informed of the purpose of the study and received $30
in remuneration.

2.7. Statistical Analysis. The characteristics of the participants
were compared among the three groups using a one-way
analysis of variance (ANOVA). The behavioral measures of
reaction time and accuracy were assessed separately via a 3
(Group: control, CE, AE) x 2 (Stroop congruency: congruent,
incongruent) repeated-measures ANOVA. Pearson product-
moment correlations were used to examine the associations
between the fitness variables and the behavioral measures.
The neuroelectrical measures for each ERP component
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TaBLE 2: Behavioral and neuroelectrical data for the two congruency conditions in the three groups (mean + SEM).

Measures Group
Control Coordination Aerobic

Reaction time (ms)

Congruent trial 651.69+14.24 570.89 + 14.24 565.01 +14.24

Incongruent trial 738.89+£19.78 647.43 +19.78 636.31+19.78
Accuracy (%)

Congruent trial 0.96 £0.01 0.97+0.01 0.96+0.01

Incongruent trial 0.81+0.02 0.93+0.02 0.91+0.02
N1 amplitude (V)

Congruent trial -1.76 £ 059 -1.18 £0.63 0.03+0.56

Incongruent trial —2.18£058 -1.31+0.61 —0.73+0.55
N2 amplitude (4V)

Congruent trial 413+14 4.23+1.49 10.76 +1.33

Incongruent trial 3.77+1.1 4.16+1.16 9.74+1.04
P3 amplitude (4V)

Congruent trial 5.52+1.23 1145+1.3 17.39+1.16

Incongruent trial 4.42 +0.62 9.69 +0.66 14.03 +£0.59
N450 amplitude (¢V)

Congruent trial 594+1.2 11.92+1.27 17.54+1.14

Incongruent trial 4.82+0.64 10.07 +£0.68 14.35+0.61

(i.e., NI, N2, P3, and N450) were analyzed separately
using a 3 (Group)x2 (Stroop congruency)x3 (Site: Fz,
Cz, and Pz) repeated-measures ANOVA. Multiple pairwise
comparisons were Bonferroni-corrected and applied for
post hoc comparison. Statistical values were presented
following Greenhouse-Geisser corrections, in which a partial
eta-square (1112,) value was provided for the significant
effects. The family-wise alpha value of 0.05 was set prior
to Bonferroni adjustment.

3. Results

3.1. Participant Characteristics. One-way ANOVA revealed
significant differences among groups only for the fitness-
related variables (Table 1, p <0.001). Post hoc comparison
indicated that the VO, value of the AE group was signif-
icantly higher than the values of the CE and control groups
and that the VO, value of the CE group was significantly
higher than that of the control group. Muscular strength,
endurance, flexibility, and power were significantly higher
in both the AE and CE groups than in the control group,
whereas no differences were observed between the AE and
CE groups. In addition, higher % body fat mass was observed
in the control group than those in the AE and CE groups.
Regarding agility, the AE and CE groups were significantly
faster than the control group, with no difference observed
between the AE and CE groups.

3.2. Behavioral Measures. Table 2 summarizes the behavioral
and neuroelectrical values (mean and SE) for the two congru-
ency conditions across the three groups.

3.2.1. Reaction Time. Two-way ANOVA revealed a main
effect of Group (F,;,=9.82, p<0.001, 1112,=O.26), with a
shorter reaction time for each of the AE and CE groups
than that for the control group (p<0.002 for both),
and a main effect of Stroop congruency (F,,,=258.42,
p<0.001, ;112,=0.82), with a longer reaction time under
the incongruent condition than that under the congruent
condition (p <0.001) (Figure 1(a)).

3.2.2. Accuracy. Two-way ANOVA revealed a main effect of
Group (F, 5,=4.06, p <0.02, 1112,: 0.16) and a main effect of
Stroop congruency (F, 5,=43.33, p <0.001, 1712, =0.43) that
was superseded by a Group x Stroop congruency interaction
(F,5,=8.25, p<0.001, 11; =0.23). Post hoc comparison
indicated higher accuracy in the AE and CE groups than
that in the control group under the incongruent condition
(p <0.02 for both), whereas no difference in accuracy was
found among the three groups under the congruent condi-
tion. In addition, higher accuracy was observed under the
congruent condition than under the incongruent condition
in the control and CE groups (p < 0.02 for all), but not in
the AE group (Figure 1(b)).

3.2.3. Correlation Analysis. Table 3 summarizes the Pearson
product-moment correlations between the fitness variables
and the behavioral measures. Generally, VO,,,,;, muscular
strength, muscular endurance, and power were negatively
correlated with reaction time under both the congruent
and incongruent conditions (p < 0.02 for all). Agility and
body composition were positively correlated with reaction
time under both the congruent and incongruent conditions
(p<0.004 for all). However, no significant relationship
between flexibility and reaction time was observed.
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FIGURE 1: A comparison of the behavioral measures according to Stroop congruency for the three groups: (a) reaction time; (b) accuracy. The
data are presented as the means + SEM. *p < 0.05. CE = coordination exercise; AE = aerobic exercise.

TAaBLE 3: Pearson product-moment correlation matrix for the fitness variables and the behavioral measures.

Measures 1 2 3 4 5 6 7 8 9
(1) VO,,ax 1

(2) Muscular strength (+) 0.48** 1

(3) Muscular endur./press-up (+) 0.47** 0.58** 1

(4) Muscular endur./CCU 30 (+) 0.41** 0.65** 0.64** 1

(5) Muscular endur./CCU 60 (+) 0.44** 0.61** 0.6%* 0.96** 1

(6) Flexibility (+) 0.22* 0.25* 0.29* 0.32%* 0.3* 1

(7) Agility (-) —0.48** -0.43** -0.49** -0.62%* -0.62** —0.4** 1

(8) Power (+) 0.62**  081**  0.59** 0.7** 0.72** 02 ~0.6"* 1

9) Body composition (—) -0.53** -0.57** -0.47** -0.41** —0.42** 0.03 0.49** -0.72** 1
(10) Accuracy (%) Cong. (+) 0.16 0.04 -0.09 -0.14 -0.15  -004  —0.14 0.08 ~0.23*
(11) Accuracy (%) Incong. (+) 0.29* 0.21 0.25* 0.1 0.15 0.18 -0.28* 0.28* —-0.34**
(12) Reaction time (ms) Cong. (-) -0.27* -0.32**  -0.45**  -0.36**  -0.39** -0.16 0.37** -0.39** 0.42**
(13) Reaction time (ms) Incong. (-) -0.24* -0.27* -0.41"*  -0.31**  -0.36"* -0.09 0.34** —0.35"* 0.34**

Cong.: congruent condition; Incong.: incongruent condition. *p < 0.05; **p < 0.01.

3.3. ERP Measures. Figure 2 illustrates the grand average
ERP waveform of each Stroop congruency for each group
and the interaction between Stroop congruency and Group.
Figure 3 illustrates the topographical distribution of each
ERP component (i.e, N1, N2, P3, and N450) across the
global scalp for the three groups.

3.3.1. Mean N1 Amplitude. Three-way ANOVA revealed a
main effect of Site (F, ;,,=32.98, p <0.001, ;72 =0.39), which
was superseded by a Site x Stroop congruency x Group
interaction (F,5,=3.55, p<0.02, ;7; =0.12). Post hoc
comparisons indicated greater N1 amplitude for Cz and Pz
than that for Fz in the three groups (p < 0.008 for all) and
under both congruency conditions (p <0.001 for all). No
other significant main effects or interactions were revealed.

3.3.2. Mean N2 Amplitude. Three-way ANOVA revealed
main effects of Group (F,s,=9.03, p<0001 n 2 =0.26)
and Site (F,;q,=23.83, p<0.001, 7, >=0.32), Wthh were
superseded by a Group X Stroop congruency interaction

(Fy102=4.20, p<0.007, 11;=0.14). Post hoc comparisons
indicated a smaller N2 amplitude in the AE group than
in the CE and control groups under both congruency con-
ditions (p <0.004 for both). No other significant main
effects or interactions were revealed.

3.3.3. Mean P3 Amplitude. Three-way ANOVA revealed main
effects of Group (F, 5, =39.16, p < 0.001, 11 =0.61) and Stroop
congruency (F, 5, =18.89, p <0.001, np— 0.27), which were
superseded by a Group x Stroop congruency interaction
(Fy410,=7-89, p<0.001, 7112,: 0.24). Post hoc comparisons
indicated that the greatest P3 amplitude was observed
in the AE group, followed by the CE group (p < 0.005)
and the control group (p<0.005), under both congru-
ency conditions. However, a difference in P3 amplitude
between the congruent and incongruent conditions was
only observed in the AE and CE groups (p < 0.05 for both),
not in the control group. No other significant main effects or
interactions were revealed.
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FIGURE 2: (a) Grand average ERP waveform of averaged Stroop congruency in each group at the Fz, Cz, and Pz electrode sites.
(b) Interaction effect between Stroop congruency and group for each ERP component on N, N2, P3, and N450. CE = coordination exercise;

AE = aerobic exercise. *p < 0.05.

3.3.4. Mean N450 Amplitude. Three-way ANOVA revealed a
main effect of Group (F,;,=37.11, p<0.001, 77=0.59),
which was superseded by a Group x Site interaction
(F4102=7-16, p<0.001, r];:O.ZZ). Post hoc comparisons
indicated that the smallest N450 amplitude was observed
in the AE group, followed by the CE group (p <0.02 for
all) and the control group (p <0.02 for all), for all three
sites. In addition, although no differences in N450 ampli-
tude were found among the three sites in the CE group,
Fz and Pz displayed higher N450 amplitudes than did Cz
in the AE and control groups. The analysis also revealed
a main effect of Stroop congruency (F, s, =22.70,

p<0.001, 11}2720.31), with a greater N450 amplitude under
the incongruent condition than under the congruent
condition (p <0.001). No other significant main effects or
interactions were revealed.

4. Discussion

The current study, which investigated exercise-cognition
relationships in older adults, is among the first to examine
the modulatory role of exercise modality on cognitive
function, as assessed by the Stroop Test, from behavioral
and neuroelectrical perspectives. The major finding was that
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FiGure 3: Topographic distribution of each ERP component (i.e., N1, N2, P3, and N450) across the global scalp for the three groups.

the AE and CE groups both demonstrated shorter reaction
times than those of the control group in both the congruent
and incongruent trials. In addition, higher ratings on all the
health- and skill-related fitness indices except flexibility
were positively associated with cognitive performances,
and positive relationships between fitness and cognition
were observed regardless of the type of cognitive function
assessed. Examination of the time course of the ERP com-
ponents indicated that the AE group exhibited the largest
P3 amplitude and the smallest N2 and N450 amplitudes
compared with the corresponding amplitudes of the other
two groups. The CE group exhibited a larger P3 amplitude
and a smaller N450, but not N2, amplitude than did the
control group. However, no difference in N1 amplitude
was observed among the three groups.

Our first aim was to test whether exercise modality was
associated with cognition either generally or specifically.
The prolonged reaction times and reduced accuracies
observed in the incongruent trials suggest that these trials
require greater cognitive demand than do the congruent
trials, possibly due to interference. The observed differences
between the congruent and incongruent trials not only
represent the typical “Stroop interference effect” but also
demonstrate the appropriateness of our task manipulation.
Additionally, along with the finding of an increase or no
change in accuracy between each exercise group and the con-
trol group, the association of superior cognitive performance
with exercise in both types of congruency trials excludes the
possibility of a speed-accuracy tradeoff. Although these
results contrast to some degree with the specific improvement
hypothesis, our findings agree with empirical studies that
showed similar improvements in performance on the flanker
task for congruent and incongruent trials [20] and on
working memory task with different loads [21], suggesting
a general improvement associated with AE.

However, a novel finding of the present study was that CE
elicited similar positive effects as AE on the behavioral
measures. That is, general improvements in behavioral
cognitive performance were exhibited by older adults in the
CE group as well as those in the AE group. These findings
from the Stroop Test extend the findings of previous studies
that focused on the effect of CE on performance on the
flanker task [14, 32] and the effects of open-skill exercise
and light-intensity CE on performance on a task-switching
test [10, 21]. These results might be particularly important
because Stroop Test performance has been revealed to
decline with age [33]. CE that involves a variety of exercise
characteristics may enable environmental enrichment to
increase cognitive performance. An extensive rodent study
has shown that environmental enrichment consisting of
repeated exercise, complex motor skills, cognitive stimula-
tion, and/or social interaction has a positive effect on
neurogenesis, neurotrophin expression, and synaptic plas-
ticity involved in memory and learning [34]. Furthermore,
an enriched environment leads to more cell proliferation
than running exercise alone [34], suggesting an association
between complex exercise modalities and cognition. Taken
together, these findings suggest that the positive associa-
tions between exercise and cognition in older adults are
independent of cognitive function type, executive function
type, and exercise modality.

Although both exercise groups demonstrated better
fitness index values than the control group, the AE and CE
groups exhibited higher cardiovascular fitness and greater
flexibility, respectively. These findings suggest that the
relationship between exercise modality and cognition may
be interpreted from the perspective of fitness type [16, 32],
which was our second aim. Our findings demonstrated that
cognitive function, as assessed by the Stroop Test, was
positively correlated with each of the cardiovascular,
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muscular (i.e., strength and muscular endurance), body
composition, and agility fitness indices. Thus, our study
provides the first demonstration that, with the exception
of flexibility, fitness is associated with improved cognitive
performance regardless of whether the measures are
health- or skill-related fitness indices. Although both types
of fitness demonstrated similar positive effects on cognition,
the brain plasticity associated with the fitness indices and
cognition might differ. For example, greater hippocampal
volume was observed in older adults with high cardiovascular
fitness [35] or high motor fitness [16] compared with the
volume in their less-fit counterparts. In contrast, the volume
of basal ganglia, which is responsible for the early stages of
motor learning and the processes of executive function, was
positively associated only with motor fitness and mediated
the association between motor fitness and executive func-
tion [16]. Similarly, physical fitness (i.e., cardiovascular
and muscular fitness) is primarily related to the activation
of sensorimotor cortical areas, whereas motor fitness indices
are primarily related to the activation of visuo-motor and
visuo-spatial networks [14, 32]. In contrast, older adults
who follow long-term resistance exercise interventions dem-
onstrate better cognitive performance but display smaller
frontal and temporal brain volumes [36]. These findings
suggest differential neuromodulation with respect to the type
of fitness. Future study is warranted, including the simulta-
neous examination of health- and skill-related fitness and
cognitive functions using a neuroimaging approach.
Another novel aspect of the current study was the
monitoring of the time course of ERPs, including both late
(i.e., P3 and N450) and early components (i.e., N1 and N2).
Our P3 findings replicate and extend previous results show-
ing a positive association between P3 and exercise [17, 18,
20, 21]. In the present study, older adults in the AE group
exhibited a larger P3 amplitude than those in the control
group. Notably, the P3 amplitudes of the CE group were also
larger than those of the control group but were smaller than
those of the AE group. This result is in accordance with
studies that examined either open-skill exercise or Tai Chi
Chuan [10, 11]. These findings suggest that in addition to
improving cognitive performance, participation in exercise,
regardless of the exercise modality, induces an increase in
attentional resource allocation during cognitive processing.
Interestingly, N450, another late component, showed a
similar pattern to that of P3. The AE group had the
smallest N450 amplitudes, followed by the CE group,
and, finally, the control group. N450, a specific component
induced by the Stroop Test, is believed to originate in the
anterior cingulate cortex (ACC) and to reflect conflict
detection processes [37]. Our finding of greater N450
amplitudes following incongruent trials than following
congruent trials support evidence of a role of N450 in
conflict monitoring activity [38]. The association between
N450 activity and the ACC provides an alternative
explanation for the beneficial effect of exercise. Colcombe
et al. indicated that both older adults with higher cardio-
vascular fitness and those performing AE training exhibit
better executive function, with lower activation in the
ACC [39]. Accordingly, from a neuroelectrical perspective,

our finding of a decrease in N450 amplitude due to
exercise is consistent with the superior performance of
the AE and CE groups on the Stroop Test because of
the reduction of ACC activation, extending these findings
from AE to CE.

The early ERP components displayed largely distinct
activity from that of the late ERP components. Specifically,
a reduced N2 amplitude was observed only in the AE group,
and no differences in N1 were observed among the three
groups. N2 amplitude is susceptible to the degree of conflict
and is believed to be associated with conflict monitoring by
the ACC [40]. Previous studies that investigated the associa-
tion between N2 and fitness have predominately focused on
younger or older children, and our findings demonstrate that
the association of reduced N2 amplitude with AE extends to
older adults [41, 42]. These N2 findings, along with the
reduction in the N450 amplitude in the AE group, suggest
that AE is positively associated with improved top-down
executive control and reduced conflict processing. However,
CE failed to show this N2 alteration, and this result is
inconsistent with our prior expectations. Despite their
similar origin in the ACC and reflection of conflict
processing, N2 and N450 may be distinguishable. N2 is
believed to represent conflict detection, adjustment, and
resolution [24, 40], whereas N450 reflects only conflict
detection within conflict monitoring processes [40]. Our
data reflect that the effects of each exercise modality may
be modulated by the relationship between exercise and
conflict monitoring; specifically, AE likely affects a variety of
subprocesses within conflict monitoring, and CE specifically
impacts conflict detection. Future research is required to
replicate these findings and to test this hypothesis.

The current study failed to identify a difference in N1
among the three groups. N1 is an exogenous ERP component
that reflects stimulus discrimination and is primarily
controlled by the physical characteristics of the event. To
date, only a few studies have examined NI1. Chang
et al. [21] reported that N1 amplitudes were larger in
older adults with more physical activity than in those
with less physical activity, conflicting with our findings.
However, their study utilized a working memory task in
which the memory response of the retrieval phase
depended on the stimulus in the preceding encoding
phase, whereas the cognitive inhibition of the Stroop Test
utilized in the current study might require less effort at
the early stage of information processing. Therefore, the
lack of an observed association of alteration in N1 activity
with exercise in the present study may indicate that the effect
of exercise on effortful stimulus discrimination at the early
stage of the Stroop Test is limited.

Although the present study extends current knowledge
by examining the relationships among exercise, fitness, and
cognitive function using behavioral and neuroelectrical
approaches, caution must be taken when interpreting the
findings. The positive associations among exercise modali-
ties, fitness indices, and cognitive function observed in the
current study were based on cross-sectional evidence,
which limits the interpretation of causal relationships.
However, along with recent neuroimaging studies that
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used longitudinal interventions to show that exercise leads
to modifications of brain function and structure [15, 16],
our findings indicate that further exploration of the effects
of different exercise modalities and fitness measures on cog-
nitive function is warranted, using randomized controlled
trials and neuroelectrical approaches. Although the older
adults in the CE group exhibited lower cardiovascular fitness
and greater flexibility than those in the AE group, the two
groups exhibited similar ratings on the other health- and
skill-related fitness indices. To determine the effectiveness
of an exercise modality and the importance of a specific
fitness index, exercise designed to involve high muscular
demand in addition to intense motor and coordination
demand is required in older adults. A potential confounding
factor in the present study is the gender ratio, which differed
among the groups. Although we found no significant gender
differences regarding the three measures of the WAIS-IIL, our
findings should be interpreted with caution. Finally, although
the emphasis on inhibitory control and the selection of the
Stroop Test were appropriate, exercise might differentially
affect specific aspects of executive function (e.g., working
memory and task switching), or its effects may depend
on the neuropsychological assessment utilized [6]. Thus,
further investigation of the exercise-cognition relationship
by comparing different types of executive function using
a variety of tasks is suggested.

5. Conclusions

Previous studies examined the relationships among AE,
cardiovascular fitness, and cognition. Our study extended
this knowledge based on demonstrating the effectiveness of
AE and CE for improving cognitive performance, irrespective
of the aspect of cognitive function, as indicated by the
results of the Stroop Test. Although we provided the first
demonstration that the positive association between fitness
and cognition is independent of the measure of health- or
skill-related fitness assessed, different exercise modalities
may differentially impact neuroelectrical activation. Specif-
ically, both AE and CE induced enhanced allocation of
attentional resources and improved conflict detection during
conflict monitoring processes, although AE appeared to have
an additional effect on conflict adjustment and resolution. In
addition to clarifying the association between fitness and
cognition and providing the potential mechanism underlying
this relationship, the present research provides an important
implication to serve as a reference for the selection of exercise
modalities to improve cognitive function.
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Chronic pain is a highly prevalent and debilitating condition that is frequently associated with multiple comorbid psychiatric con-
ditions and functional, biochemical, and anatomical alterations in various brain centers. Due to its widespread and diverse manifes-
tations, chronic pain is often resistant to classical pharmacological treatment paradigms, prompting the search for alternative treat-
ment approaches that are safe and efficacious. The current review will focus on the following themes: attentional and cognitive inter-
ventions, the role of global environmental factors, and the effects of exercise and physical rehabilitation in both chronic pain patients
and preclinical pain models. The manuscript will discuss not only the analgesic efficacy of these therapies, but also their ability to
reverse pain-related brain neuroplasticity. Finally, we will discuss the potential mechanisms of action for each of the interventions.

1. Introduction

Chronic pain is a heavy burden for the individual and society
affecting 30% of the adult population in the USA [1] and pre-
senting with multiple comorbid psychiatric disorders, includ-
ing mood alterations [2] and cognitive impairment [3]. With
its growing incidence and prevalence, chronic pain is asso-
ciated with billions of dollars in expenditure related to both
therapeutic efforts and costs linked to loss of productivity [4],
thus becoming one of our most urgent unmet medical needs.
Back pain, headache, and joint pain are some of the most
prevalent types of chronic pain [5].

Due to its distressing and unpleasant nature, acute pain
serves a protective role against tissue damage. However,
under certain circumstances, it can become persistent, even-
tually presenting as a distinct pathology. One of the pivotal
mechanisms that could explain the chronification of pain, as
well as its resistance to classical forms of treatment, is the
concept of pain centralization, where initial sensory events
following trauma can gradually alter the central nervous sys-
tem (CNS), resulting in amplified pain and/or aberrant pain
that exists without peripheral tissue damage or sensitization.

In particular, alterations in brain circuitry have been well
reported across a wide spectrum of pain conditions, such as
complex regional pain syndrome [6, 7], fibromyalgia [8, 9],
neuropathic pain [10-13], and migraine [14], thus prompting
the quest for treatments that could reset these systems.

Defining the exact circuitry of pain in the brain is com-
plex, mainly because pain is a multidimensional experience
that incorporates nociceptive, affective, and cognitive net-
works. In brief, the dorsal posterior insula, the primary and
secondary somatosensory cortices, the anterior insula, the
ventrolateral and medial thalamus, the hypothalamus, and
the dorsal anterior cingulate cortex (dACC) have been impli-
cated in the nociceptive processing of pain, while limbic sys-
tems including the nucleus accumbens, amygdala, and hip-
pocampus could become involved with persistent nociceptive
input, eventually engaging prefrontal cortical circuitry [15,
16]. It is important to note, however, that this pain “matrix”
is not a static entity but rather a dynamic network that is
characterized by specific spatiotemporal neural expression
patterns in painful conditions [17].

Current analgesic therapies rely heavily on pharmacolog-
ical agents and fail in providing relief to a substantial subset
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of the chronic pain population. Despite the recent advances
in understanding the neuroscience of pain and nociception,
most drugs fall into a few narrow categories, including
opioids which are widely used in patients with moderate to
severe chronic pain [18]. With opioids falling increasingly
out of favor due to concerns over poor efficacy and abuse,
complementary and alternative medicine (CAM) approaches
as safe and efficacious replacements or complements to
pharmacotherapy are fast gaining popularity [19].

CAM encompasses an array of treatments that fall outside
the radius of conventional therapies. It can be used together
with conventional therapies (complementary) or in place
of conventional therapies (alternative), with most patients
receiving a coordinated care regimen that integrates main-
stream medicine with complementary approaches to a
healthy lifestyle. Despite an initial skepticism towards the
analgesic efficacy of such interventions, there is now accumu-
lating evidence regarding the utility of CAM treatments as
well as potential underlying mechanisms that could demys-
tify them. To date, there have been few studies directly
addressing the effects of CAM analgesic treatments on pain-
related neuroplasticity, in large part because the field of brain
plasticity that is associated with chronic pain is itself rapidly
evolving. This review aims at describing a few of the com-
monly used, feasible, efficacious, and safe CAM approaches
to treating chronic pain and their associated neuroplastic
mechanisms in the brain both in chronic pain patients and,
where applicable, in preclinical models.

2. Attentional and Cognitive Interventions

Attentional and cognitive factors are key modulators in the
experience of pain. Below we will discuss some of the most
commonly used interventions that have been shown to influ-
ence both pain perception and the related brain alterations.

2.1. Distraction. This intervention is based on diverting
attention from the painful stimulus, instead focusing on cog-
nitively demanding tasks. Multiple functional magnetic res-
onance imaging (fMRI) and electroencephalography (EEG)
studies have shown the efficacy of distraction. For example,
in response to the application of a noxious heat stimulus,
distraction is associated with decreased pain intensity (as
reported by the experimental subject) and decreased activity
of the thalamus and insula [20], decreased activity in the
somatosensory cortex, and increased activity in the prefrontal
areas [21, 22]. Distraction might be particularly efficacious in
patients who appear to be excessively attentive to their pain,
including high pain catastrophizers [23]. Since distraction
analgesia is based on “escaping” the reality of pain, it is
therefore important to create distractions that are immersive.
As such, we have seen arise in the use of virtual reality (VR) as
an analgesic tool, particularly in acute pain conditions. Unlike
classic distraction methods that rely on audiovisual or nar-
rative stimulation, VR relies on the use of a simulated three-
dimensional virtual environment with which the patients can
interact in seemingly “real” and physical manner, often with
the use of a headset or goggles. Due to the simulated nature of
these environments, there is a broad range of virtual scenarios
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that can be presented to the pain patient as a distraction.
Much like more classical techniques, VR has been linked
to reduced pain ratings as well as decreased brain activity
in pain regions such as the ACC, primary and secondary
somatosensory cortices, insula, and thalamus [24].

The effects of distraction have been tested in rodent
models of pain. Mice were injected with formalin and then
placed in a familiar arena containing a novel (nonaversive)
object. Despite the fact that the formalin-evoked swelling
remained unchanged by the distraction paradigm suggesting
alack of effects on peripheral mechanisms, formalin-injected
“distracted” mice spent less time engaged in nocifensive
behaviors (licking, biting, shaking, etc.) and demonstrated
elevated levels of endogenous cannabinoids in the ventral
hippocampus [25].

2.2. Mindfulness and Meditation. Mindfulness and medita-
tion practice comprises a host of constructs that focus on
mental exercises potentially beneficial in modulating painful
stimuli [26]. Unlike distraction, mindfulness relies on being
attentive to pain in a nonjudgmental way, with the consensus
that openness and acceptance to pain, without attaching any
cognitive appraisal to it, diminish pain unpleasantness. In a
study of experimental pain in healthy control subjects, those
who were given mindfulness and meditation training per-
ceived noxious heat stimulation to be less unpleasant and less
intense compared to control subjects [27]. In patients with
diverse chronic pain conditions, acceptance and commitment
therapy (ACT), emphasizing the willingness to live with the
pain rather than expect its full resolution, resulted in reduced
pain interference in daily functioning, as well as improve-
ments in measures of anxiety and depression [28]. These
differences in pain perception are accompanied by functional
and anatomical brain changes. Functionally, expert medi-
tators display low baseline activity in pain-related regions
(such as the dorsal anterior insula and anterior mid-cingulate
cortex) and the amygdala, in addition to enhanced activity
in pain-related regions during painful stimulation [29]. In
another study, expert (pain-free) meditators showed lower
activity in the mid-cingulate cortex, secondary somatosen-
sory cortex, and insula during the painful stimulus [30].
Anatomically, meditation was shown to be associated with
increased gray matter thickness in the secondary somatosen-
sory and dorsal anterior cingulate cortices [31]. These tech-
niques are not only applicable to highly trained and long-term
meditation practitioners. In a study employing pain-free sub-
jects, a 4-day mindfulness/meditation training program was
sufficient in reducing experimental pain unpleasantness and
pain-related activation of the primary somatosensory cortex
[27].

2.3. Cognitive Behavioral Therapy (CBT). One of the most
common CAM approaches to the treatment of chronic pain
is cognitive behavioral therapy (CBT). This psychosocial
intervention relies on cognitive and behavioral approaches to
maximize coping strategies and minimize unhelpful thoughts
and attitudes towards chronic pain. These techniques include,
but are not limited to, homework assignment (e.g., keeping
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a pain journal), relaxation techniques (deep breathing, pro-
gressive muscle relaxation, etc.), positive affirmation, relapse
prevention, operant behavioral therapy, and biofeedback
(using monitoring devices) [32]. Despite the somewhat mixed
reports for CBT efficacy [33-36], there is some evidence that
it can affect pain-related cortical alterations. For example, in
a cohort of patients with painful irritable bowel syndrome, a
10-week CBT course was linked to a reduction in pain and
anxiety, in addition to reduced activation in brain regions
thought to be involved in the emotional and cognitive modu-
lation of pain [37]. In a cohort of female fibromyalgia patients,
a 12-week CBT course was paralleled by improvements in
depression and anxiety and increased activation in brain areas
involved with executive cognitive control [38]. More recently,
Seminowicz et al. reported that, following an 11-week long
CBT course, chronic pain patients showed improved clinical
outcomes in addition to increased gray matter density in the
prefrontal and posterior parietal cortices [39].

3. Environmental Influences

Environmental influences play a significant role in the preva-
lence of chronic pain in humans, with low socioeconomic
status being associated with higher prevalence of chronic
pain conditions both in childhood and adolescence [40]
and in adult populations [41]. In the absence of randomized
controlled studies, we cannot discount the possibility that
these findings reflect a general link between overall health
and socioeconomic disadvantage. Nevertheless, there are a
few reports of environmental manipulations modulating the
perception of pain. In a study conducted in surgical patients,
exposure to natural lighting was associated with diminished
analgesic usage [42]. Furthermore, under experimental pain
conditions, visual images of natural scenery were able to
increase both pain thresholds and pain tolerance in control
subjects [43]. It is unclear, however, whether these improve-
ments are due entirely to an enriched environment or perhaps
due in part to distraction provided by a novel environment.
In contrast to the limited set of data available in human
subjects, environmental manipulations in animal models of
pain are well-studied. The subsequent paragraph will address
the effects of environmental manipulations on reversing or
preventing the neuroplastic changes that accompany chronic
pain.

Similar to clinical observations, preclinical pain measure-
ments are especially sensitive to environmental factors [44].
Housing conditions have been extensively studied, with the
consensus that enriched environments are often associated
with diminished pain, with slight variations between different
reports. Most enriched environments aim to foster natural
rodent behaviors and may include the presence of cagemates,
textured bedding, activity wheels, various objects that the ani-
mals can interact with, and marbles and other similar items
buried in the bedding. The effects of such enriched environ-
ments have been reported in multiple models: for example, in
arat model of inflammation, environmental enrichment (EE)
was associated with reduced thermal, but not mechanical
hyperalgesia [45], and in a model of chronic pain following
spinal cord injury, rats housed in enriched environments after

injury showed a rapid normalization of mechanical allodynia
in addition to improved gross locomotor performance [46].
Similarly, in a mouse model of peripheral neuropathy, EE
that was administered 3 months after injury attenuated
mechanical and cold allodynia [47]. In addition to a stand-
alone therapy, EE synergizes with pharmacological agents in
targeting experimental pain. For example, the antinociceptive
effects (tail withdrawal test) of both mu [48] and kappa opi-
oids [49] are enhanced in EE rats. It is noteworthy that most
EE paradigms rely on both social (cagemates) and physical
(cage dimensions, inanimate objects within the cage, etc.)
enrichment, with physical enrichment having a larger exper-
imental (antiallodynic) effect under certain conditions [50].

Despite the abundance of studies pertaining to behavioral
plasticity after EE in preclinical models of pain, there is a sur-
prising paucity of data regarding the underlying brain neu-
roplasticity. A study from our group investigated the effects
of EE on pain-associated aberrant epigenetic modifications
in the prefrontal cortex (PFC) of the mouse and showed that
global hypomethylation in the PFC, an epigenetic signature of
chronic pain in the brain, is absent in the EE group, although
the specific genes regulated by methylation in EE were not
identified [51]. In another study, Terada et al. demonstrated
that EE-induced hippocampal neurogenesis is hampered in
chronic pain, although the effects of EE on pain measures
were not considered [52]. Finally, in a model of peripheral
neuropathy, Norman et al. showed social isolation to be asso-
ciated with depression and IL1-f upregulation in the frontal
cortex, both of which were reversed by central oxytocin
administration [53]. These results provide preliminary
molecular and biochemical links between EE and pain-
related brain neuroplasticity. While much of the published
literature focuses on EE in chronic pain conditions and its
role in ameliorating allodynia and hyperalgesia, there is some
evidence that EE could increase nocifensive responses to
inflammation. In a mouse model of formalin-induced inflam-
mation, enriched animals demonstrated increased licking
as well as increased response to a “safety” signal (dimly lit
quarters). These behavioral changes were paralleled with
increased plasticity in the ACC [54] and could reflect emo-
tions of fear and safety that are associated with pain.

4. Exercise and Physical Rehabilitation

The chronic pain patient population is highly heterogeneous,
with a wide range of physical abilities and levels of disability.
Nonetheless, physical activity is highly recommended for
most patients, with results being comparable to the use of
nonsteroidal anti-inflammatory drugs (NSAIDS) and simple
analgesics [55-58]. Below we review some evidence support-
ing the role of exercise in improving pain outcomes, as well as
associated brain neuroplastic phenomena, in preclinical and
clinical pain populations.

Clinically, chronic pain is often linked with motor dis-
turbances, potentially due to physiological impairment, limb
immobilization, or kinesiophobia. Such motor disturbances
are associated with alterations in cortical networks perceiving
and regulating motor function [59]. It is therefore not surpris-
ing that, in addition to neuroplasticity in the “pain matrix,”



multiple pain conditions are associated with alterations in the
motor cortex, particularly if motor disability is comorbid with
the pain. For instance, in patients with chronic low back pain,
decreased excitability in the primary motor cortex (M1) [60]
and diminished intracortical motor inhibition in M1 circuits
[61] have been reported. It is therefore plausible that motor
training and physical rehabilitation might be considered as
therapeutic options. Indeed, in a study conducted by Tsao et
al., low back pain patients exhibited a delay in the postural
activation of deep abdominal muscles in addition to abnor-
mal motor representation of this muscle group in the motor
cortex, parameters that were both normalized following
motor skill training of the muscle group [62]. Unfortunately,
self-paced exercise failed to elicit similar improvements [62],
suggesting the need for targeted physical rehabilitation.

The antinociceptive and analgesic effects of physical
exercise have been shown in rodent models of pain as well,
both as prophylactic [63] and therapeutic [64] interventions.
While exercise has similarities to EE, it is nonetheless distinct
since it not only fosters “natural” rodent behaviors, but
actively aims to model aspects of physical rehabilitation
commonly employed in the clinic. One of the few studies that
addresses the topic of brain plasticity after exercise in animal
models of pain comes from Sluka et al. where regular physical
activity was shown to prevent the development of chronic
muscle pain and to downregulate the phosphorylation of the
glutamate receptor NMDA-RI in the rostral ventromedial
medulla, in the absence of any effects on acute nociception
[65].

When discussing the “desirable” effects (antidepressive,
antiallodynic, analgesic, antinociceptive, etc.) of physical
exercise, we must distinguish between voluntary and forced
activity. In rodent studies, it appears that the positive out-
comes of innately driven exercise could be reversed if the ani-
mal subjects are forced to exercise. As such, forced exercise is
associated with stress-induced hyperalgesia [66] (thus negat-
ing the desirable effects of exercise) or stress-induced analge-
sia [67] (thereby obscuring the interpretation of the acquired
data). These differential effects are also paralleled by brain
alterations: for example, forced swimming in rats is associated
with increased hyperalgesia after peripheral inflammation, in
addition to biochemical and epigenetic marks of plasticity in
the insular cortex [68]. It is possible that a similar scenario
exists in pain patients as well: those who choose to lead an
active lifestyle might benefit the most from it, while those
who view it as an unpleasant obligation might profit from
the addition of CBT or other intervention that changes their
mindset regarding physical exercise.

5. Potential Mechanisms of Action

The interventions reviewed in this manuscript affect multiple
organ systems in the body, and as such, it is difficult to
trace the exact mechanisms by which it can alter pain-related
brain plasticity. Below, we describe several potential routes by
which CAM therapies can play a part.

5.1. Blood-Brain Barrier (BBB) Permeability. BBB compro-
mise has been described in both preclinical [69, 70] and
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clinical [71, 72] pain conditions and is an attractive candidate
for linking peripheral changes following a painful injury
to behavioral changes associated with brain plasticity [73].
One possible mechanism by which exercise could prevent
some of the maladaptive neuroplasticity observed in chronic
pain is limiting BBB permeability after peripheral injury. For
instance, data from an experimental model of autoimmune
encephalomyelitis shows physical exercise to be associated
with the reestablishment of tight junctions and the partial
restoration of the BBB [74]. This is particularly relevant to
pain-associated comorbidities: in both preclinical models
and patients with chronic pelvic pain, pain and depression are
associated with elevated levels of prostate-derived cytokines
in the cerebrospinal fluid [75], suggesting a BBB breach.

5.2. Normalization of Endogenous Neuroplasticity and Neu-
rogenesis. In addition to alterations in motor areas, motor
deficits that often parallel chronic pain can also hamper
endogenous neurogenesis, in both mice and humans [76].
Furthermore, chronic pain itself is associated with altered
neurogenesis, despite the presence of conflicting studies
regarding the relationship between the two [77]. It is therefore
possible that physical exercise and EE can restore some of
endogenous neurorestoration, potentially through antineu-
roinflammatory mechanisms [78, 79], thereby altering the
processing of nociceptive signals. Furthermore, both exercise
and EE can have beneficial effects on anxiety and memory
deficits that often coexist with pain. Clinical studies show that
exercise induces neuroprotection and synaptic strengthening
and improves cognitive function as well as motor control in
Parkinson’s disease [80]; preclinically, EE paired with exercise
stimulates neurogenesis in transgenic mice with impaired
neurogenesis and reverses the observed memory deficits [81]
and, in WT mice, this exercise/EE paradigm reduces anxiety
and improves memory. Additional observations demonstrate
that EE/exercise modulates multiple gene targets with known
involvement in synaptic plasticity [82].

5.3. Ascending Control of Nociceptive Signals. Nociceptive
information travels from peripheral nociceptors and dorsal
horn to the thalamus (spinothalamic tract) and brainstem
and medulla (spinoreticular and spinomesencephalic tracts).
Mindfulness therapy and other similar cognitive interven-
tions could interfere with the ascending nociceptive signal,
since they rely on a “bottom-up” approach that focuses on
the pain sensation without appraising it in any way. To date,
there is some conflicting evidence for thalamic modulation in
CAM therapies.

On one hand, there is evidence for thalamic activation
in CAM-related pain amelioration. For instance, mindful-
ness practitioners have lower pain sensitivity in addition
to increased thalamic activation and decreased connectivity
between cognitive (e.g., dorsolateral PFC [dIPFC]) and pain-
related (e.g., ACC) cortices [83]. Additionally, it is possible
that thalamic activation during exercise could hinder the
relay of nociceptive signals. This hypothesis is supported by
both the robust and direct anatomic connections between the
motor cortex and the thalamus, by clinical data showing effec-
tive neuropathic pain relief by motor cortex stimulation [84],
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and by preclinical data where chronic exercise was paralleled
by an increased activation of the cerebellar-thalamic-cortical
circuit in rats [85], thus providing additional incentive for
ongoing physical activity in pain patients. For those patients
with reduced mobility, ascending noxious signals can be
modulated via guided imagery. For instance, motor imagery
under hypnotic trance results in thalamic activation [86].

On the other hand, some studies have found thalamic
inhibition to be linked with decreased nociception. In a study
conducted by Pagano et al., motor cortex stimulation (with-
out any physical exercise) was shown to result in increased
nociceptive thresholds and the inhibition of thalamic hyper-
activity in naive rats [87].

The seeming discrepancy between these sets of findings
could be due to multiple factors, including the pain-free ver-
sus chronic pain state of the subjects (thalamic activity varies
significantly between these two groups [88]), the type of inter-
vention, and the alternate mechanisms that could be at play.
For example, it is possible that motor imagery is efficacious,
at last in part, through its ability to function as a distraction
agent. Finally, the thalamus is part of a complex set of circuits
and pathways that constitute the pain matrix. As such, itis an
oversimplification to assume thalamic activation alone as a
proxy for pain relay and processing.

5.4. Descending Modulation of Pain. In addition to control-
ling ascending signals, the brain exerts control over noci-
ception via a descending brain network that encompasses
the dIPFC, ACC, insula, hypothalamus, rostral ventromedial
medulla (RVM), and the periaqueductal gray (PAG) [89].
These “top-down” regulators may be disrupted in chronic
pain conditions and may be rectified by nonpharmacological
means: For example, distraction, by the virtue of being a “top-
down” pain regulator, could possibly act through the modu-
lation of descending pain [22]. It is even arguable that classic
descending noxious inhibitory control (DNIC) paradigms are
efficacious due to the element of distraction (distracting one
type of pain by another) [90]. By the same token, descending
pain modulation is a likely mechanism of action for CBT
as well, where improved clinical outcomes could be due to
enhanced top-down control of pain (pain modulation) and
altered experience of noxious stimuli (pain perception), as
evidenced by CBT-associated increase in gray matter density
in the dIPFC and posterior parietal cortex [39]. Finally, this
top-down regulation of pain can be modulated through exer-
cise: in a study conducted in a cohort of fibromyalgia patients
(compared to control subjects), a brief bout of exercise was
shown to modulate pain and stimulate the anterior insula and
the dIPFC [91].

Serotonergic, dopaminergic, and noradrenergic pathways
are all involved in modulating the facilitatory and inhibitory
pain drives. In brief, serotonin (5-HT) and dopamine (D)
can exert both pro- and antinociceptive effects, depending on
the type of pain and the expression of its receptors (5-HT1,
D2, and D3 being antinociceptive and 5-HT2, 5-HT3, and
D1 being pronociceptive), and noradrenergic pathways have
been shown to be mainly antinociceptive (for review, please
see [92]). The balance between these various drives is altered
in chronic pain. For instance, nerve injury is accompanied by

an overall enhancement of the descending 5-HT facilitatory
drive [93] and chronic peripheral inflammation is paralleled
by increased activity in the descending dopaminergic path-
way [94]. The pain-related alterations in these monoamin-
ergic pathways can be modulated by physical exercise. In
rodents, peripheral neuropathy was ameliorated by low inten-
sity aerobic exercise and was associated with increased 5-
HT and 5-HT receptor content, reduced 5-HT turnover, and
decreased proinflammatory cytokine levels in the brainstem
[95].

5.5. Opioid Regulation. Data from animal studies show the
involvement of EE is regulating opioids, with somewhat con-
flicting results. While rodent data shows that EE is commonly
associated with activated opioid signaling [96], data from
porcine subjects shows that enriched housing environments
are associated with decreased expression of opioid receptors
in the amygdala [97].

In general, exercise is associated with increased endoge-
nous opioids in healthy subjects [98]. In the chronic pain pop-
ulation, this link is less clear: On one hand, there is evidence
of dysfunctional regulation of central (hypothalamus) and
peripheral (pituitary) endogenous opioids following acute
bouts of exercise [99]; on the other, motor cortex stimulation
in chronic pain patients was linked to pain relief as well
as the release of endogenous opioids in the anterior middle
cingulate cortex and the PAG [100]. Preclinically, physical
activity is commonly associated with increased endogenous
opioid peptides, and increased y-opioid receptors have been
reported in the rat hippocampus following acute and chronic
exercise [101]. Moreover, rats who were bred for high moti-
vation for voluntary running showed elevated opioidergic
signaling in the nucleus accumbens [102], and hyperalgesia
following limb immobilization in rats was ameliorated by
treadmill exercise and was linked with increased levels of -
endorphins in the hypothalamus and midbrain PAG [103].

The role of endogenous opioids in mindfulness/medita-
tion is less clear: in a study conducted in healthy medita-
tion practitioners, the analgesic effects of meditation were
reversed by the administration of the opioid antagonist
naloxone [104]. In contrast, in meditation-naive healthy par-
ticipants, a 4-day mindfulness/meditation training protocol
resulted in analgesic effects that were naloxone independent
[105]. It is therefore possible that the duration of meditation
practice is key in recruiting various neuroplastic mechanisms
for pain perception and regulation.

5.6. Endocannabinoid Mechanisms. The endocannabinoid
system has recently emerged as a potential therapeutic
target for multiple chronic pain conditions [106]. Similar to
the aforementioned opioid-mediated analgesia, cannabinoid
mediated analgesia and antinociception are mediated by
brainstem circuits, including the inhibition of GABA release
in the PAG and RVM [107]. In chronic pain, there is evidence
from rodent studies showing that CBIR, one of the two main
cannabinoid receptors, is downregulated in the RVM, with
CB2R playing a compensatory role in GABA modulation
[108].
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Data from a rat model of formalin-evoked pain shows
the endocannabinoid system to be involved in distraction-
induced antinociception, where distraction is associated with
increased levels of the endogenous ligands in the ventral
hippocampus, and the administration of a CBIR antago-
nist attenuates distraction-induced analgesia [109]. Similarly,
both aerobic exercise and resistance training in rats were
shown to be associated with increased nociceptive thresholds
as well as increased CBIR levels in the PAG [110, 111].

5.7 Placebo. Clinically, pain is usually measured as a sub-
jective report and is particularly sensitive to the placebo
effect through both opioid and cannabinoid systems [112-
114]. However, it would be shortsighted to equate placebo
treatments with the administration of an inert substance.
Instead, the key to the measurable and physical effects that
placebo has may lie in the treatment or care that the patient
receives. Viewed in this light, it is plausible that various CAM
modalities exert significant placebo effects in part because
of expectations of alleviation of pain. Particularly in those
patients where CAM is integrated alongside more traditional
pharmacotherapy, a “preconditioning” effect could take place,

where the pharmacological agent both relieves the pain and
boosts the efficacy of the placebo [115], even reaching the
extent of overriding the knowledge that the intervention is
only a placebo [116].

6. Limitations and Future Directions

It is noteworthy that many of the studies reviewed here do
not distinguish between the neuroplastic changes that occur
indirectly through the amelioration of pain through CAM
approaches versus the direct effect of these CAM interven-
tions on the brain. Indeed, many of the described neuroplastic
changes may not be unique to pain but could rather serve
as a proxy for the plethora of pain-associated comorbidities,
including memory deficits, anxiety, and depression. Addi-
tionally, much of the reviewed data was collected in pain-
free control subjects under experimental pain conditions.
These data may not be directly relevant to the chronic pain
brain, since pain perception in healthy subjects is radically
different from that in chronic pain patients. Finally, despite
the multiple reports showing beneficial results of CAM treat-
ments, we lack concrete evidence of their efficacy in different
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pain conditions, especially since there are preclinical [117]
and clinical [118] studies that fail to show any benefits. We
anticipate that future research findings both from preclinical
studies and from controlled clinical trials will provide us with
an improved mechanistic understanding of the efficacy of
CAM therapies in the treatment of chronic pain.

7. Conclusions

This review summarizes the effects of noninvasive treatments
in preventing or reversing pain-related alterations in brain
biochemistry, structure, and function in preclinical models
as well as chronic pain patients (please refer to Figure 1 for an
illustrated summary). The limited efficacy of traditional phar-
macotherapy, along with our increased understanding of the
mechanisms behind the action of complementary therapies,
has led the shift towards a more holistic view of pain treat-
ment, where long-lasting supra-spinal changes are targeted.
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Bisphenol-A (BPA), a widely used synthetic compound in plastics, disrupts endocrine function and interferes with physiological
actions of endogenous gonadal hormones. Chronic effects of BPA on reproductive function, learning and memory, brain structure,
and social behavior have been intensively investigated. However, less is known about the influence of BPA on long-term potentiation
(LTP), one of the major cellular mechanisms that underlie learning and memory. In the present study, for the first time we
investigated the effect of different doses of BPA on hippocampal LTP in rat brain slices. We found a biphasic effect of BPA
on LTP in the dentate gyrus: exposure to BPA at a low dose (100 nM) enhanced LTP and exposure to BPA at a high dose
(1000 nM) inhibited LTP compared with vehicle controls. The rapid facilitatory effect of low-dose BPA on hippocampal LTP
required membrane-associated estrogen receptor (ER) and involved activation of the extracellular signal-regulated kinase (ERK)
signaling pathway. Coadministration of 173-estradiol (E,, the primary estrogen hormone) and BPA (100 nM) abolished both the
BPA-induced enhancement of LTP and the E,-induced enhancement of baseline fEPSP, suggesting a complex interaction between
BPA- and E,-mediated signaling pathways. Our investigation implies that even nanomolar levels of endocrine disrupters (e.g., BPA)

can induce significant effects on hippocampal LTP.

1. Introduction

Bisphenol-A (BPA) is a widely used synthetic compound
included in polycarbonate plastics and epoxy resins, for
example, in food and beverage containers, dental prostheses,
compact discs, and baby bottles. It is capable of acting
as an endocrine disrupter and interferes with actions of
endogenous gonadal hormones (e.g., estrogen or androgen)
at low concentrations. BPA can bind to estrogen receptors
(ERs) at low concentration and thus affects normal hormonal
regulation and endocrine function [1]. A large number of
studies have indicated that chronic exposure to the low-
dose (nanomolar) BPA during fetal/neonatal stages inhibits
sexual differentiation and nonreproductive behaviors of adult
animals [2-4].

Although the widespread effects of BPA on reproductive
function, brain structure, and social behavior have been
investigated, recent studies reported controversial actions of
BPA on learning and memory, ranging from deficits to no
effect and to enhancements. In rodents, pre- and perinatal
exposures to BPA at or below the TDI (tolerable daily intake;
<50 pg/kg/day) have resulted in adverse effects on memory
processes [4-9]. Adolescent exposure to BPA below the TDI
impairs spatial memory in rats [5]. In contrast, other studies
have shown that chronic oral exposure to BPA does not alter
memory processes of adult male or ovariectomized (OVX)
female rats [10, 11]. We previously found that acute exposure
to BPA rapidly enhanced short-term passive avoidance mem-
ory in the developing rats [12]. The underlying mechanism
is unclear. The role of BPA in synaptic remodeling in brain
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areas involved in learning and memory is also controversial.
Adolescent exposure to low-dose BPA inhibited spinogenesis
and synaptic modification in hippocampi of rodents [13]. BPA
inhibited 17 -estradiol (E,)-induced formation of dendritic
spine synapses in hippocampal CAl area and prefrontal
cortex of adult ovariectomized rats or nonhuman primates
[14, 15]. However, other studies have shown the facilitatory
effects of BPA on synaptic plasticity in neuronal development.
Exposure to BPA at low doses (<100 nM) enhanced both den-
dritic and synaptic development in cultured hypothalamic
cells [16,17]. Exposure to BPA at10-100 nM for 30 min rapidly
increased the spine density dendritic filopodia mobility of
the hippocampus [18]. Nanomolar doses of BPA rapidly
modulated spinogenesis in adult hippocampal neurons [19].
Our previous study has also identified the facilitatory effect
of BPA on dendritic morphogenesis of cultured hippocampal
neurons through ER activation [12].

The long-lasting plasticity of synaptic transmission,
as long-term potentiation (LTP) or long-term depression
(LTD), is thought to be the cellular basis of learning and
memory processes. Interestingly, it has been reported that
exposure to BPA at low concentrations (10-100 nM) rapidly
enhanced LTD in CAI and CA3 but suppressed LTD in the
dentate gyrus of the hippocampus [20, 21]. However, no
studies have assessed the potential of BPA to influence LTP,
and the underlying mechanisms are yet largely unknown.

The extracellular signal-regulated kinase (ERK) signal
pathway is a component of a mitogen-activated protein
kinase (MAPK) signaling cascade which regulates a variety
of important cellular events. Recently, evidence highlights the
ERK-mediated effects of estrogen and xenoestrogens in the
brain [22]. Our previous studies have demonstrated that ERK
signaling is involved not only in the chronic effect of BPA on
dendritic morphogenesis in hippocampal neurons but also
in the rapid effect of BPA on passive avoidance memory of
young rats [12, 23].

In the present study, we investigated the dose-dependent
effect of BPA on hippocampal LTP and explored the down-
stream intracellular pathways. In addition, we examined the
synergistic role of BPA and E, in hippocampal LTP. Therefore
our study provides additional information on possible mech-
anisms for the effects of BPA on synaptic plasticity in brains.

2. Materials and Methods

2.1. Animal and Drug Treatment. All experiments were car-
ried out on male Wistar rats (Weight 120-140g, age 5-6
weeks). The use of animals for experimental procedures was
carried out in accordance with Guidelines for the Care and
Use of the Laboratory Animals of Ningbo University, China.

2.2. Preparation of Slices. All experiments were conducted
on transverse slices of the rat hippocampus. The brains
were rapidly removed after decapitation and placed in cold
oxygenated (95% O,, 5% CO,) artificial cerebral spinal fluid
(ACSF). Slices were cut at a sickness of 350 ym using a VT
1000S vibroslicer (Leica, Germany) and placed in a storage
chamber containing oxygenated medium at room temper-
ature (20-22°C) for 1h. The slices were then transferred
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to a recording chamber and continuously superfused at a
rate of 5-6 mL/min at 30-32°C. The ACSF contained (mM)
NaCl, 120; KCI 2.5, NaH,PO,, 1.25; NaHCO, 26; MgSO,,
2.0; CaCl,, 2.0; p-glucose 10. All solutions contained 100 uM
picrotoxin (Sigma, St Louis, MO, USA) to block GABA,-
mediated activity.

2.3. In Vitro Electrophysiological Techniques. The electrophys-
iological techniques were applied according to our previous
reports [24, 25]. Presynaptic stimulation was applied to
the medial perforant pathway of the dentate gyrus using a
bipolar insulated tungsten wire electrode, and field excitatory
postsynaptic potentials (fEPSPs) were recorded at a control
test frequency of 0.033 Hz from the middle one-third of the
molecular layer of the dentate gyrus with a glass microelec-
trode. The inner blade of the dentate gyrus was used in all
studies. In each experiment, an input-output curve (afferent
stimulus intensity versus fEPSP amplitude) was plotted at the
test frequency. For all experiments, the amplitude of the test
EPSP was adjusted to one-third of maximum (~1.2 mV). LTP
was evoked by high-frequency stimulation (HES) consisting
of two trains (each of two stimuli at 100 Hz for 1s, intertrain
interval 155s) with the stimulation voltage increased during
the HFS so as to evoke an initial EPSP of the train of double
the normal test EPSP amplitude.

2.4. Statistics. Recordings were analyzed using pCLAMP 10.3
software (Axon Instruments, Foster City, CA, USA). Values
are the means + SEM for # slices. All brain slices in the same
group were from different animals. In most experiments,
the amplitude of fEPSPs measured 40 min after HFS (post-
HEFS) was shown, unless indicated otherwise. Two-tailed
Student’s t-test and one-way ANOVA were used for the
detailed statistical analysis where appropriate; p < 0.05 was
considered statistically significant.

2.5. Agents. All drugs were applied through the perfusion
medium. BPA was purchased from Shanghai Chemical
Reagent Research Institute (Shanghai, China). 173-E, and
U0126 were purchased from Cell Signaling (Boston, MA,
USA). ICI182,780 was purchased from Tocris (Ballwin, MO,
USA). All reagents were dissolved in dimethyl sulphoxide
(DMSO, from Sigma, St. Louis, MO, USA) and then diluted in
ACSF (0.05% vehicle). Control levels of LTP were measured
on slices perfused with vehicle (DMSO) alone.

3. Results

3.1. The Facilitatory Effect of Low-Dose BPA on LTP in the
Dentate Gyrus. We first investigated the dose-dependent
effect of BPA (10, 100, and 1000 nM; added to the ASCF
60 min before HFS) on synaptic plasticity of perforant path-
granule cell synapses induced by HES in the dentate gyrus
(DG). We found that application of 10 nM BPA did not have
any effect on LTP (140.8 £ 5.2% of baseline, n = 8) compared
with vehicle controls (143.7 + 7.6% of baseline, n = 8, p >
0.05, Figures 1(a) and 1(b)). However, 100 nM BPA increased
LTP (193.1 + 8.3% of baseline, n = 8) compared to control
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FIGURE 1: The biphasic effect of BPA on LTP in rat dentate gyrus in vitro. (a) High-frequency stimulation induced LTP in the medial perforant
path of the dentate gyrus of acute rat hippocampus slices (open circles, n = 8). Applications of BPA are indicated at concentrations of 10 nM
(filled squares, n = 8), 100 nM (filled circles, n = 8), and 1000 nM (open squares, n = 8), respectively. All hippocampal slices were preperfused
with ACSE 30 min before HFS, to obtain baseline EPSP amplitude. (b) Summary of the major experimental outcomes. The average fEPSP
amplitudes at 60 min after HFS in separate perfusion of different concentration BPA. Applications of BPA 100 nM and BPA 1000 nM have
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significant effects on LTP, *p < 0.05,
respectively.

(143.7 + 7.6% of baseline, n = 8, p < 0.001, Figures 1(a) and
1(b)). In contrast, application of BPA 1000 nM resulted in an
inhibition of LTP in DG (121.1 + 4.0% of baseline, n = 8,
p < 0.05, Figure 1(b)), indicating a biphasic effect of low-dose
(100 nM) and high-dose (1000 nM) BPA on hippocampal LTP.

3.2. The BPA-Enhanced LTP Requires Activation of ERs. To
examine whether the enhancement of LTP by 100 nM BPA
involves ERs, we add a high-affinity nonselective ER antag-
onist ICI 182,780 (100 nM) into bath solution 30 min before
BPA application. Application of ICI 182,780 had no effect on
LTP (120.6 + 3.7% of baseline, n = 8, controls: 140.8 + 5.2%
of baseline, n = 8. p > 0.05, Figure 2(b)) but blocked BPA-
enhanced LTP (123.4 + 6.2% of baseline, n = 8, p < 0.001,
Figure 2(b)), suggesting that the facilitatory effect of BPA
(100 nM) on LTP in hippocampal dentate gyrus requires the
activation of ERs.

P < 0.001 as compared to controls. Solid and dashed example traces before HFS and after HFS,

3.3. BPA-Enhanced LTP Involves ERKs. To explore the down-
stream signaling pathway of the BPA-enhanced LTP in rat
hippocampus, we examined whether the ERK pathway is
involved. Application of 100 nM U0126 (a MEK1/2 or ERK
inhibitor) 60 min before HFS did not alter the baseline
fEPSP but inhibited the hippocampus LTP in rat dentate
gyrus compared with vehicle controls (103.1 + 3.5% of
baseline, n = 8, p < 0.001, Figures 3(a) and 3(c)).
In addition, pretreatment of 100 nM U0126 added 30 min
before BPA application completely blocked BPA-enhanced
LTP (102.8 £ 6.1% of baseline, n = 8, p < 0.001, Figure 3(c)).
However, pretreatment of BPA (added 30 min before U0126
application) resulted in partial inhibition of BPA-enhanced
LTP (151.0 + 4.7% of baseline, n = 8, p < 0.001, Figure 3(d)).
These results indicate that activation of ERK pathway is not
only required for physiological LTP but also necessary for the
facilitatory effect of BPA on LTP in the dentate gyrus.
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FIGURE 2: The enhancement of BPA on hippocampal LTP was ER-dependent. (a) Administration of ICI 182,780 10 nM (an antagonist of
ERs, filled square, n = 8) remarkably decreased the 100 nM BPA-induced enhancement of LTP. Pretreatment with the ERs antagonist ICI
182,780 30 min before BPA 100 nM (open squares, n = 8) application completely blocked BPA-enhanced LTP compared with BPA alone. (b)
Figure columns express the average fEPSP amplitudes after HES in separate perfusion or coperfusion of BPA 100 nM and ICI 182,780 100 nM,
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HES, respectively.

3.4. The Effects of BPA and E, on Baseline fEPSP and LTP
Enhancement. Previous studies have reported the facilitatory
effect of E, on both baseline fEPSP and LTP induction
[26]. Here, we applied 10nM E, on rat brain slice and
observed a significant increase (~20-30%) of baseline fEPSP
compared with vehicle controls (Figures 4(a) and 4(b)).
However, coapplication of BPA (100 nM) and E, reversed the
enhancement of baseline fEPSP induced by E, (Figure 4(b)).
In terms of LTP enhancement, E, treatment did not enhance
LTP while comparing fEPSP before HES (at 0 min) and after
HFS (at 60 min) in the dentate gyrus (Figures 4(b) and 4(c)).
Unexceptionally, coapplication of E, and BPA blocked both
the BPA-induced enhancement of LTP and the E,-induced
enhancement of baseline fEPSP (Figures 4(b) and 4(c)).

4. Discussion

4.1. The Rapid Facilitatory Effect of Low-Dose BPA on Hip-
pocampal LTP Is ER-Dependent and Involves Activation of
ERK Pathway. The rapid effect of BPA on synaptic plasticity

P < 0.001 as compared to the control, “** p < 0.001 as compared to the BPA 100 nM. Solid and dashed example traces before HFS and after

has been investigated by several studies. It is shown that low-
dose BPA (10 nM) increases Ca influx, enhances filopodia
flexibility in cultured hippocampal neurons, and rapidly
modulates spinogenesis in adult hippocampal slices [18, 19].
These effects have been reported to relate to ERs and MAPK
activation [19]. In the terms of memory-related synaptic
plasticity (e.g., LTP and LTD), the effect of BPA has been
less investigated. Hasegawa et al. [21] have reported the
BPA-induced enhancement of LTD in CAl region of rat
hippocampus, but this effect does not require ER activation
[21]. However, we here demonstrate that low-dose BPA
(100 nM) significantly enhances LTP in rat DG region and
this facilitatory effect of BPA on LTP depends on ER activa-
tion since E, antagonist ICI 182,780 completely abolishes the
BPA enhancement on LTP.

There are two types of ERs: one type is nuclear estrogen
receptors (nERs), which are members of the nuclear receptor
family of intracellular receptors, including ER« and ER; the
other type is membrane estrogen receptors (mERs), which are
mostly G protein-coupled receptors, including Gq-coupled
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mER (Gq-ER), GPERI (formerly GPR30), and ER-X [27]. signaling to the BPA-induced enhancement of hippocampus
In the genomic mechanism, E, binds to ERa and ERS in ~ LTP. Considering the essential roles of glutamate receptors
the cytoplasm, and then the E,-ER complex translocates =~ (AMPA, NMDA, and metabotropic glutamate receptor) in
into the nucleus, binds to an estrogen response element  thehippocampal LTP and the interactions between glutamate
on the DNA, and finally facilitates gene transcription. The = receptors and mERs, the glutamate receptors may also be
nongenomic mechanism involves actions of mERs at the  involved in BPA-induced enhancement of LTP.

plasma membrane: ERa and ERf interact with mERs to Growing evidence demonstrates that the hippocampal
rapidly activate extracellular signal-regulated kinase (ERK)  ERK signaling is necessary for E, to enhance hippocampal
cell signaling, which further triggers epigenetic processes, =~ memory consolidation [28, 29]. Here our results confirm

gene expression, and other cell signaling pathways [22].  that ERK activation is also required for the BPA-induced
Although it is not clear which type of ER(s) is involved in ~ enhancement of LTP. It is interesting that the blockade of
the facilitatory effect of BPA on LTP because ICI 182,780  ERK pathway did not completely inhibit BPA-enhanced LTP
blocks both nERs and mERs, the rapid effect of BPA (within ~ while the slices were preincubated with BPA for 30 min before
1h) indicates a greater contribution of the nongenomic mER ~ U0126 treatment. The reason may be due to the rapid effect of
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BPA on LTP since preincubation of BPA may already launch
certain rapid downstream effects to enhance EPSP amplitude
after high-frequency stimulation, whereas some slow effects
of BPA requiring ERK activation are inhibited by following
the application of U0126. These results are consistent with our
previous findings on cultured rat hippocampal neurons that
exposure to BPA for 30 min rapidly enhances the motility and
the density of dendritic filopodia through the ER-mediated
pathway [30]. Finally, our results also show that high-
dose BPA (1000 nM) could severely inhibit hippocampal
LTP, indicating a complex mechanism of BPA actions on
neuroplasticity in hippocampi.

4.2. BPA and E, Differently Influence Hippocampal LTP
and There Might Be a Complex Interaction between Them.
Estrogen (e.g., E,) is also locally synthesized within the
hippocampus in addition to the gonads. Mounting articles
demonstrate that E, influences hippocampal memory [31,
32]. A number of studies have reported rapid effects of E,
on LTP, LTD, and spinogenesis in the hippocampus. Low
concertation of E, (1nM) rapidly enhances LTD in CAl, CA3,
and dentate gyrus of the hippocampus. The density of thin
type spines increases in CAl pyramidal neurons within 2h
after application of 1 nm estradiol and this enhancement of
spinogenesis requires ERs and MAPK signals [33]. Vedder
et al. have demonstrated that E,-induced enhancements in
both spatial memory and LTP occur within a similar time
frame, linking E,-induced changes in LTP with hippocampal
memory formation [34]. Our previous study also confirms
that E, (10nM) significantly increases the total dendritic
length and enhances motility and density of dendritic filopo-
dia in cultured hippocampal neurons [12]. In the terms of
hippocampal LTP, although application of E, (1-10 nM) does
not directly enhance LTP, it induces a baseline increase of
the excitatory postsynaptic potential (EPSP) in CAl neurons
(26, 35].

Consistently, in the present study, we have shown a
significant increase (~20-30%) of baseline fEPSP induced
by application of E,. Molecular mechanisms of modulation
through synaptic estrogen receptor (ER) and its downstream
signaling are still unknown. It may involve a complex kinase
network based on a recent study investigating the induc-
tion of LTP by the presence of E, upon weak theta burst
stimulation (a subthreshold stimulation that did not induce
full-LTP) in CAI region of the adult male hippocampus
[36]. This E,-induced LTP is ER-dependent and requires
activation of multiple kinases including ERK, protein kinase
A (PKA), protein kinase C (PKC), phosphatidylinositol 3-
kinase (PI3K), and calcium calmodulin kinase II (CaMKII)
[36].

It is worth noting that although exposure to either
low-dose BPA or E, alone enhances LTP suppression of
these effects is observed when low-dose BPA and low-dose
E, are administrated together. Our findings are consistent
with a previous in vivo study showing that the E,-induced
increase in synapse density is inhibited by the simultaneous
application of BPA (40 ug/kg) and E, (60 ug/kg) in ovariec-
tomized rats for 30 min [37]. The underlying mechanism
is still unclear and requires further exploration. A possible

explanation might be the influence of the allosteric effect
of BPA on ERs. Binding of BPA to ERs may change the
structure of E, binding sites and affect the affinity of E, to
ERs. However, recent studies highlight another possibility
that fluctuations of local E, levels during a learning event
may be a key factor in learning and memory [32]. A study in
adult nonhuman primates reported that elevated E, level by
applying exogenous E, interferes with a cognitive function on
the delayed response task in female monkeys [38]. Neverthe-
less, a study in finches has found that dynamic suppression
of E, synthesis during a learning event may be a critical
component of learning processes [39]. Possibly, low-dose
BPA alone may act as the ER modulator and has estrogen-
like effects on synaptic plasticity in the hippocampus, whereas
high-dose BPA alone may act as the ER disrupter and
impair hippocampal LTP, LTD, and spinogenesis. However,
in physiological states, if we take into account the locally
synthesized E, in the hippocampus and the importance of
fluctuations of local E, levels in cognitive circuits, a small
amount of BPA could disturb the subtle regulation of E, level
and then influence hippocampal LTP.

5. Conclusions

In summary, we demonstrated biphasic effects of BPA on
LTP in DG region of rat hippocampus: exposure to BPA
at a low dose (100 nM) enhances LTP while to a high dose
BPA (1000 nM) inhibits LTP. The rapid facilitatory effect of
low-dose BPA on hippocampal LTP requires membrane-
associated ER and involves activation of ERK signaling
pathway. Coadministration of E, and BPA (100 nM) abolishes
BPA-induced enhancement of LTP and E,-induced enhance-
ment of baseline fEPSP, suggesting a complex interaction
between BPA- and E,-mediated downstream pathways. Our
investigation about hippocampal LTP implies that even
nanomolar low doses of endocrine disrupters (e.g., BPA)
could induce significant effects on hippocampal synaptic
plasticity.
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